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Summary 

The Design of a Real Time, Fault-Tolerant Multiprocessor System. 

Thesis submitted for Ph.D. Degree, 1983. 

Timothy Edwin Sharp. 

It is essential that real-time computers should be reliable. 

The majority of methods used to achieve fault tolerance in such 

systems employ a substantial duplication of hardware. This thesis 

suggests an alternative approach by placing a greater emphasis on 

firmware. 

It is shown that a greater degree of control can be obtained in 

a microprogrammed computer. Furthermore, this control can often be 

maintained after a component failure. The use of bit-slice 

components is proposed as a suitable medium for the implementation 

of such a microprogrammed, fault-tolerant system. 

It is also suggested that it is useful to overlay a high level 

language onto the microcoded system. A suitable language, 

Concurrent Pascal, is outlined. The architecture of the bit-slice 
processor, which has been built and tested, is described. 

A set of tests, performed at microcode level, to diagnose a 

fault are proposed. It is shown that these tests depend upon the 

cooperation of another error-free processor within the system. The 

special problems which occur when running microcode on a faulty 

processor are also discussed. 

The final chapter concludes that the use of microcode to achieve 

fault-tolerance can reduce the amount of hardware required. 

Suggestions for further research are also included. 
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Chapter 1 

Introduction 

1.1 Fault-Tolerant Computing 

Today, the applications of computers in real-time systems cover 

a multitude of uses, especially since the advent of microprocessors. 

Computers are entrusted with very important tasks. These include 

process control applications in power stations, chemical plants and 

oilfields and electronic applications in telephone switching 

systems. Also, computers are used in space systems for controlling 

satellites and deep space probes. 

All of these real-time systems share one basic requirement. it 

is vitally important that the control be reliable. In other words 
  

the computer controlling them must continue to function correctly at 

all times. In some cases this may be essential to avoid halts in 

production. In spacecraft control a computer fault could mean the 

failure of the entire mission. More importantly, in many cases it 

could mean the loss of human life. It is for this reason that much 

computing research has been aimed at producing fault-tolerant 

computers ([1.1] and [1.2] for example). In line with any other 

field of research, once a goal has been achieved further research 

has been conducted to try to improve the original developments. 

Several different approaches have been adopted to achieve 

reliability in computer systems. These approaches have varied, 

especially since the requirements of different fault-tolerant 

systems vary. For example, a telephone switching system could



easily be repaired within, say, twenty-four hours, whereas a deep 

space probe may have to work for up to ten years without any 

maintenance. All of these approaches share one thing in common; to 

achieve fault tolerance there must be redundancy in the hardware. 

In other words extra hardware units must be added at some level so 

that if one unit fails then the others will continue to operate. 

There have been two basic approaches to this problem. The first 

is termed dynamic or standby redundancy. This is where an outward 

approach is adopted. No attempt is made to improve the reliability 

of an individual processor or memory module. Processor units and 

memory modules are duplicated and some of these units remain on 

standby ready to take over if other units become faulty. The second 

approach is known as static or masking redundancy. The philosophy 

here is to adopt an inward approach. An attempt is made to improve 

the reliability of a single processor by duplicating its individual 

constituent components. 

The following two sections in this chapter will discuss these 

two approaches. Following this, a common weakness of these methods 

is suggested and an alternative is proposed which will help to 

remedy this problem. Finally, in this chapter, the general aims and 

objectives of this project are presented.



1.2 Dynamic Redundancy 

When dynamic redundancy is employed a single computer processor 

is broken down into three essential parts; the processing unit, the 

memory and a bus to communicate between the two (Fig. 1.1). 

Dynamic redundancy makes no attempt to improve the reliability of a 

single unit. However, all of these modules are duplicated. This 

reduces the probability of a catastrophic failure since if one 

component develops a fault then the system as a whole continues to 

function. Furthermore, the probability that two identical units 

will develop a fault during any given period is far less than the 

probability that one such unit will be faulty. If many more 

redundant units are added on to the system then multiple failures 

can also be accommodated. There are two classes of dynamic 

redundancy; tightly-coupled systems and loosely-coupled systems. 

1.2.1 Loosely-Coupled Systems 

A loosely-coupled system is one in which complete processors are 

duplicated and operate with a degree of independence from one 

another. Each processor has its own private memory which cannot be 

accessed by any other processors although they would have some means 

of inter-communication. 

The simplest form of loosely-coupled system consists of a dual 

processor architecture. One processing unit works in main mode and 

the other operates in backup mode [1.3]. The main processor 

performs all the functional tasks required. Whenever an alteration 

to any vital system data is made the backup processor will be



informed. Therefore, the backup system keeps a complete record of 

all the data stored on the main processor. This means that if the 

main processor fails, then the backup unit can assume responsibility 

and the system as a whole will suffer no loss of continuity or 

availability. 

However, this system is very limited since if a fault of any 

kind develops then half the total processing power is immediately 

lost. Furthermore, it may take an appreciable time to repair the 

fault. There is no backup facility during this period. It is quite 

possible that the one remaining operational processor could develop 

a fault and thereafter no service would be available. 

It is for these reasons that more recently developed 

loosely-coupled systems have used more than two processors 

{1.4,1.5]. The way in which they are linked together can vary 

considerably. If there is a reasonably large number of processors 

in a system then it will be impractical to connect every processing 

unit to every other one. Generally, therefore, some subset 

connection scheme is adopted whereby there is a limited number of 

links. Not all processors would be able to communicate directly 

with each other. Fig. 1.2 shows a typical example. 

Needless to say, in such systems additional software is required 

to control the processor interaction and make them appear to higher 

levels as one complete unit. 

One advantage of a loosely-coupled system is that if a processor 

does fail then it will not have access to memory other than its own. 

This helps to prevent propogation of errors. On the other hand, it 

4
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could be argued that since a processing module consists of a 

processor and a memory then the fault will have occurred in either, 

but not both, of these. This means that the complete processing 

unit, which contains either an operational processor or an 

operational memory, is disabled. Therefore, in hardware terms it 

could be argued that a fault causes twice as much damage than 

necessary- 

1.2.2 Tightly-Coupled Systems 

The second way that dynamic redundancy can be achieved is by 

means of a tightly-coupled system. This is where a multiprocessor 

consists of a common pool of processing units and a shared set of 

memory modules. All processors will have access to any memory 

module. The essential difference between a tightly-coupled system 

and a loosely coupled one, therefore, is that the former has shared 

memory and the latter does not. 

The most common architecture employed within a tightly-coupled 

system is one in which processors and memory modules are connected 

by duplicated shared buses. Fig. 1.3 gives an example of such a 

scheme, although many variations are possible [1.6]. 

A failure of any one unit (this includes a bus failure) means 

that only a small part of the processor is out of service. However, 

there are hardware problems since the memory modules must have a 

separate port for each bus, i.e. a multi-port memory is required. 

Also, there is a very real danger of a faulty processor "running 

wild" and corrupting memory which is being used by other units. It 

6
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is for this reason that hardware protection registers are employed. 

A processor would have to access a memory module via one of these 

registers. The registers would contain preset upper and lower 

addresses and they would not allow a processor to access an area of 

memory outside this range. In other words each processor has a 

section of memory which it is allowed to use and this protection is 

enforced by hardware registers. Tightly-coupled systems thus 

require extra hardware. On the other hand, they require less memory 

than loosely coupled ones. 

As with loosely-coupled systems there is an additional overhead 

in terms of the amount of software needed to control the 

multiprocessor. There are many control schemes. The processors may 

be regarded as an anonymous pool of resources as in the Plessey 

System 250 [1.7, 1.8, 1-9] or they may each have separate tasks to 

perform as in the JPL-STAR [1.10]. Some systems use a combination 

of tightly and loosely coupled schemes so that there will be a pool 

of shared memory but each processor will also have a private store 

[1.11].



1.3 Static Redundancy 

An alternative approach that has been taken to achieve 

fault-tolerance is to make single processors more reliable by 

utilising intra-processor redundancy. Rather than duplicating 

processors an attempt is made to maximise the internal reliability 

of a single processor. There are two types of static redundancy; 

Triple Modular Redundancy (TMR) and Self-Checking checkers. 

1.3.1 Triple Modular Redundancy 

If a computer is built using Triple Modular Redundancy (TMR) 

then all vital components are triplicated. Also, a voting circuit 

is added to allow the three identical wnits to ignore the output 

from a faulty unit. In Fig. 1.4 there are three identical units; 

U1, U2 and U3. The voter chooses their majority output. Normally, 

if all wnits are non-faulty then all three outputs will agree. 

However, if one unit is faulty then the voter will choose whichever 

two outputs agree. If two or more units are faulty then the voter 

may choose the incorrect outputs. 

Although the failure of a single unit can be tolerated a fault 

in the voter will cause the circuit to fail. Fortunately, the 

structure of a digital computer is such that most components are 

constantly passing values between one another. As an example take a 

register and an adder (Fig. 1.5). In a normal non-redundant system 

the register will produce one of the inputs of the adder and the 

results of the addition will be placed back in the register. If the 

register and the adder are triplicated then there will be six 

9



Fig. 1.4. Triple Modular Redundancy. 
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Fig. 1.5 b). An ALU implemented using TMR.



voters. Each one of these will be associated with the input to a 

particular unit. If a voter fails then it will have the same effect 

as if the unit it was feeding had failed. If, for example, in Fig. 

1.5 b) the voter V1 failed then REG1 would contain incorrect data. 

However, this fault would not propogate since the three voters 

feeding the adders would mask out the incorrect data. 

TMR is, in one sense, an ingenious solution since it requires no 

additional software and can tolerate any single fault within each 

sub-system. TMR can even be used at higher levels since the units 

which were given as examples in Fig 1.5 could equally well have been 

processors and memories [1.12]. TR, however, does require an 

increase in hardware by a factor of greater than three. This is 

because voting circuitry is required in addition to triplication of 

units. This increase in hardware can increase the probability of a 

fault occurring and although the system can tolerate this, it could 

not withstand a multiple failure. In order to be able to tolerate 

two faults of any description five units of each type would be 

required. MR, therefore, although requiring no extra software, 

requires a large increase in the amount of hardware. 

1



1.3.2 Self-Checking Checkers 

Another form of static redundancy which can be a useful aid for 

fault-diagnosis is in the use of self-checking checkers [1.13]. In 

this situation a functional unit within a processor is duplicated 

but only one of the two units produces an output which is used by 

other parts of the processor. The second redundant unit is used to 

check the output of the first one, using a self-checking checker. 

Fig. 1.6 gives an example of this using an ALU. A self-checking 

checker produces one particular output if the two units agree and 

another output if they disagree or the checker itself is faulty. 

The circuitry becomes more complicated when comparing 'n' bits but 

the manner in which it operates can be illustrated in Fig. 1.7. 

This shows a self-checking checker for comparing the two bits x1 and 

*2. %It can be seen by examination that if x1 = x2 then the outputs 

(£1,£1') will be either (0,1) or (1,0). If the outputs (f1,f1') of 

the checker are either (0,0) or (1,1) then either its two inputs are 

unequal or the checker itself is faulty. A description of how this 

is implemented for n-bit comparisons can be found in [1.14]. 

Unlike the other methods described so far in this chapter 

self-checking checkers are used to assist in fault diagnosis rather 

than fault tolerance. This is nevertheless useful for two reasons. 

First, it is important to be able to detect and diagnose a fault 

when it occurs in order to isolate it. Second, failed components 

can be replaced more quickly, thus reducing the probability of 

multiple faults. Self-checking checkers perform a similar function 

to parity and error-code checks, both of which are well established 

and documented [1.15]. However, self-checking checkers are more 

reliable since they can detect faults of any multiplicity [1.14, 

12
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1.4 An Alternative approach 

There are many variations on the basic themes described in the 

previous two sections. However, it is hoped that this chapter has 

outlined the various methods that can be used to achieve 

fault-tolerance. All of the approaches discussed require a 

disproportionate amount of resources to achieve fault-tolerance when 

compared with normal systems capable of performing the same tasks 

without fault tolerance. These methods always require additional 

hardware to achieve redundancy and they may, in many cases, require 

special software. Furthermore, a situation is rapidly reached where 

the addition of further hardware produces very little increase in 

reliability. The author believes that some so called non-redundant 

systems contain a certain amount of duplication. This can be 

regarded as a form of redundancy if used correctly. If this were 

exploited fully it would help to reduce the amount of redundancy 

required at other levels using the methods that have been described. 

This section will attempt to outline the rationale behind this 

statement. 

Consider an ordinary computer processor which is made up from 

thousands of components. A failure of any one of these will render 

this processor useless although the vast majority of its components 

are still operational. Since these components are mutually 

interactive and dependant it would be impossible to isolate a fault 

at this level. However, if a processor is regarded as being split 

up into a few separate subsystems then the same argument can be 

14



applied. A processor could, for example, be regarded as being split 

up into a memory module, a bus, an arithmetic unit and a control 

unit. If the memory bus were to become faulty then the processor as 

a whole would be inoperable. However, the processor, consisting of 

a control unit and an arithmetic unit would still be functioning 

correctly. Once it is wumable to access memory to obtain the 

instructions the complete processor becomes inoperable. 

In the past it has been practical to regard a computer system as 

being made up of two essential elements; hardware and software. An 

additional, third element is used in many digital systems; 

firmware. 

If a computer processor employs a microprogrammed control 

structure [1.19] then it will be arranged as follows. All 

sub-systems within the processor such as the ALU, the memory, etc. 

will be directly under the control of the Microprogram Control Unit 

(MCU). The MCU consists of the microcode memory together with some 

means of sequencing the accesses to this memory (the Microcode 

Sequencer). Each word of microcode memory consists of a series of 

bits (ones and zeroes) which will be routed directly to the 

sub-system they are controlling. Since there can be many 

sub-systems with several functions a fairly large number of control 

pulses are required. The length of a word of microprogram memory 

can be quite large when compared to main memory (usually between 64 

and 128 bits). However, the number of words required is 

comparatively small (typically between 1/2K and 4K). Consequently, 

the addressing mechanism tends to be fairly simple. 

There are two advantages to a structure of this type when used 

15



with fault-tolerance. First, since the MCU is relatively simple in 

terms of its addressing mechanism it is less likely to develop a 

fault than other functional units. Second, if the main memory does 

become inaccessible then the MCU offers an alternative source of 

control. This source is located entirely within the processor 

itself. Consequently, it may be able to make use of the sub-systems 

within the processor that are still operational. 

Some commercially available computers already employ a technique 

known as micro-verification. This involves checking the hardware 

status of the machine at microcode level. One example of this is 

the current PRIME range of minicomputers [1.20]. The microverify 

routines on the PRIME consist of a set of 11 tests. These are 

always executed at the start of the power-on sequence. They can 

also be explicitly called by the operator at the control console and 

they are also called in the event of a processor parity error being 

detected. If a test fails then the machine will halt and the number 

of the failed test can be displayed on the front panel of the 

machine (assuming it is still operational). 

These tests consist of passing values through various registers 

and of testing buses, ALU functions (add, subtract, shift etc.), 

parity, the I/O bus, and main memory. These tests prevent a faulty 

machine from being put into operation after being powered up, thus 

preventing it from corrupting vital data in areas such as the backup 

store.



1.5 Aims and Objectives 

Microcoded control can take place to a limited extent under 

degraded conditions on commercially available computers. This 

indicates that it is a viable proposition to investigate its further 

use in fault-tolerant systems. It would be useful to analyse 

thouroughly the structure of a microcoded computer to see how its 

architecture can be used to obtain a level of fault-tolerance. The 

limited scope of a project such as this means that the amount of 

time available is small. it is for this reason that two 

specifications of the research to be carried out should be as 

follows. First, only one existing computer architecture will be 

selected and analysed rather than proposing a general theory of 

fault-tolerance. Second, the research, when completed, will be in 

such a state that it will be easy for subsequent researchers to 

continue the work. 

After a processor architecture has been selected and analysed a 

basic fault-tolerance philosophy for this type of microcoded machine 

will be derived. Following this, an attempt will be made to 

implement it. It is felt by the author that this is important for 

two reasons. First, since little work has been done in this field 

it would be prudent to prove by experimentation that any principles 

derived are correct. Second, it could be useful for future 

researchers to have access to a working system. This could be used 

as a vehicle for further research. 

There are two ways in which the proposed research could be 

carried out. The system can either be simulated or the appropriate 

hardware can be built. Simulation is a powerful tool. However, it 
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was rejected for the following reasons:- 

1) Simulation requires powerful computing facilities. It was felt 

that the level of detail involved in such a simulation would result 

in considerably more computing power being required than was 

available. 

2) The structure of any processor, chosen for simulation, would 

involve several layers. In addition to the hardware levels there 

would need to be simulation of the microcode, machine code and 

(possibly) the high level language. This could be a complex 

structure to simulate. 

3) It was felt that considerable benefit would be gained by 

designing and implementing a processor, rather than merely 

simulating the structure. 

4) This processor would then be available for future work. 

A means is required whereby a fault-tolerant computer system can 

be built economically, but which uses an architecture that is 

specific to requirements. One of the developments in commercial 

microprocessors in recent years has been the advent of bit-slice 

computers. Bit-slice elements allow a computer designer to 

implement a processor from individual sub-systems. This can be done 

using commercially available devices rather than buying a complete 

“off the shelf" processor. In order to be able to define the 

architecture of a processor completely the designer needs to be able 

to specify the machine instruction set. Consequently, a 

microprogrammed control structure is an inherent requirement of a 

bit-slice processor. This would, therefore, make an ideal vehicle 

on which to conduct the proposed research.



Some research has already been conducted in this area [1.18]. 

The approach that will be adopted here will vary from this earlier 

work. First, the research already carried out used some additional 

hardware. Second, a faulty sub-system attempted to analyse itself 

by using its own internal components. The approach described in 

this thesis allows a faulty sub-system to be analysed by external 

functional units. Therefore, the difference between these two 

approaches is that the fault diagnosis will operate at different 

levels. More importantly, an attempt will be made to maximise the 

degree of fault tolerance available from an existing architecture 

without using any additional hardware. 

The rest of this thesis describes the work that has been 

undertaken. Chapters 2 and 3 describe the decisions that were made 

in choosing a suitable design and also describe the system itself. 

Chapter 4 describes the fault-tolerant. principles derived and 

Chapter 5 outlines the problems that were found when an attempt was 

made to implement them. Finally, a conclusion is presented in 

Chapter 6.



Chapter 2 

Concurrent Pascal 

2.1 Advantages of a High Level Language 

An important decision that had to be made at the beginning “of 

this research project was whether the multiprocessor, when built, 

should have the ability to support a High Level Language (HLL). 

Since the hardware was to be built from Bit-slice components the 

system programming could take place at either HLL, machine code or 

microcode level (Fig. 2.1). A HLL programming capability does not 

diminish the ability to program at other levels. 

As one moves from a high to a low level there is a decrease in 

software productivity and an increase in the amount of detailed 

machine knowledge required. The advantages of programming in a HLL 

are obtained at the expense of code efficiency. The amount of time 

taken to process any given algorithm written in microcode is 

significantly shorter even than in machine code but a detailed 

knowledge of the processor architecture is needed. At machine code 

level it is usual to require only an awareness of the register 

transfers that take place within the computer. However, machine 

code is still one and a half to two times faster in execution than a 

good real-time language. If a HLL is used then virtually no 

knowledge of the machine architecture is required. All that might 

be necessary are any specific details that are peculiar to the 

language implementation on the particular machine. It will be shown 

in Section 2.3 and Appendix 11 that, in the solution eventually 

adopted, these are negligible. The one level of software which 
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could not be entirely eliminated is the microcode level. This is 

because whatever permutation of the three levels is used they must 

be implemented in firmware. 

If a HLL is implemented in microcode (Fig 2.2), as opposed to 

machine code on a conventional non-microprogrammable processor, it 

can be more efficient. This is because an optimum machine 

instruction set can be chosen as the compiled and executable form of 

the code. Furthermore, once the basic firmware implementation of 

the HLL has been achieved it would be possible for much of the 

development to be performed at a high level. This would make it 

possible for any future researchers to continue with the project and 

program the computer with no knowledge of the machine architecture 

being required. The use of a HLL, therefore, would give an enhanced 

rate of code development with the first steps being undertaken in 

microcode and the latter stages using a HLL. The choice of whether 

to use machine code need not be taken until the HLL has been 

implemented. Once a HLL capability has been attained the ability to 

program in machine code still remains. However, the use of machine 

code is at the software designers discretion. 

The use of microcode at low level can be used to advantage in 

providing fault-tolerant test routines. If a set of fault-tolerance 

routines are imbedded in the firmware and can be called from higher 

levels then the effectiveness of these routines can be efficiently 

evaluated. This can be done, for example, by calling them at 

different times and in different orders. Again, this is merely an 

option while the HLL is being developed. The software designer is 

still able to write code at the microprogram level after a HLL has 

been implemented. 
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To summarise then, a HLL implemented in microcode minimises the 

loss in processing power whilst retaining the speed of software 

development attributed to such a tool. It would make the system 

more approachable to new researchers. Also, it would allow certain 

software design decisions, such as where the fault-tolerance code 

should appear and the expandability of the system, to be deferred 

until after the HLL had been implemented. 

It was therefore decided that the processor should have the 

ability to execute programs written in a HLL. One of the main 

arguments which influenced this decision was that a microcode 

implementation could be very efficient. It was felt necessary to 

choose the HLL before the processor architecture was selected. This 

was because an architecture which could efficiently execute the HLL 

was required. The main indicator of whether a processor structure 

is suitable is the run-time machine code produced by the HLL 

compiler. It was therefore necessary to select a processor 

architecture that was well matched to the run-time machine code. 

This made the choice of a suitable HLL the next logical step in the 

research. 
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2.2 Languages Considered 

A suitable language for this type of project would be, as the 

title of this thesis suggests, one designed for a real-time 

application. Alternatively, a systems programming language could be 

suitable. In order to achieve a working system within the 

timescales allowed, it was important to choose a language which had 

a readily available compiler and needed little effort to transport 

it. Therefore, in the end, practical considerations prevailed in 

choosing between theoretically equally matched languages. 

Five languages were investigated for use on this project. They 

were CORAL 66 [2.1], RTL/2 [2.2], MODULA [2.3,2.4,2.5], ADA [2.6] 

and CONCURRENT PASCAL [2.7]. 

Coral 66 was the oldest of the languages. It has been a popular 

real-time language for many years, especially in industry. It was 

felt, however, that a more modern language with greater flexibilty 

should be employed. 

The second real-time language that was considered was RTL/2. 

This was a language that was rapidly gaining popularity and was 

quite suitable. It was more modern than Coral in its design 

philosophy. There was also a good portable compiler available. 

Another language that was considered was the most recently 

designed of; the five; Ada. It was designed as a general-purpose 

language and incorporated facilities normally found in both 

real-time and system-programming languages. Unfortunately, Ada was 

so new that no compiler existed and, although it would have been 

25



highly suitable, it was immediately discounted. 

The fourth language that was investigated was Modula which was 

designed as an operating systems language and was based on Pascal. 

The structure of the language was such that it was possible to 

maximise the amount of software written in Modula and minimise the 

amount written in machine code. Modula is a multiprocessing 

language and embodies the concept of concurrent processes. At the 

time of the investigation the author was not aware of the location 

of any readily available compilers. 

The final language that was considered was Concurrent Pascal 

which was also based on Pascal. It was designed for implementing 

small operating systems and was therefore suitable for the 

application required. Again, like Modula, Concurrent Pascal is a 

multiprocessing language. However, the multiprocessing concepts are 

applied in different ways. It is beyond the scope of this text to 

critically compare Modula and Concurrent Pascal but the author 

preferred the approach to multiprocessing that the latter took. 

Also, Concurrent Pascal was found to be more readable. These 

factors, combined with the lack of availabilty of a compiler for 

Modula, led the author to select Concurrent Pascal out of the two 

multiprocessing languages. 

Having eliminated Modula for the above mentioned reasons, Coral 

on the grounds of its age and Ada due to the lack of a compiler the 

author was left with a choice between RTL/2 and Concurrent Pascal. 

The factor which eventually swayed the balance was not the high 

level features of the languages but an aspect at a lower level. In 

order to achieve portability both RTL/2 and Concurrent Pascal use 
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Intermediate Level Languages (ILL). The ILL used by Concurrent 

Pascal, called P-code, is at a lower level than the one used by 

RTL/2. P-code is actually a hypothetical machine code. This means 

that it would not be necessary to design a machine instruction set 

if Concurrent Pascal were used. This would mean that there would be 

one fewer task to perform, thus allowing more time and effort to be 

spent on the fault-tolerance aspect of this project. Designing a 

machine instruction set to implement a HLL is difficult in terms of 

achieving the optimum solution. Also, P-code is based on a 

zero-addressing (or stack-machine) architecture which is 

particularly efficient for the execution of a high-level 

block-structured language such as Pascal [2.8]. 

Therefore, the use of Concurrent Pascal would ensure that by 

writing microcode to execute P-code an efficient implementation of 

the language could be obtained. This fact, coupled with the 

relative ease of obtaining and transporting a compiler, led to its 

selection as the HLL to be used. However, this choice virtually 

closed another design option. P-code, although very suitable for 

the execution of a HLL, should not be considered as a general 

purpose programming language. This is because the programmer needs 

to keep track of the current state of a frequently used stack. 

Also, P-code makes many more memory (stack) accesses than a normal 1 

or 2-addressing machine code. These memory accesses would occur in 

any implementation of a block-structured language but not in 

software written directly in machine code. There would therefore be 

very little gain in processing speed obtained by writing software 

directly in P-code. This meant that it was only practical to write 

software at the HLL or the microcode level. This restriction did 

not seem to be particularly important for two reasons. First, an 
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extremely efficient implementation of the HLL would be obtained. 

This meant that some code requiring fast processing could be written 

in Concurrent Pascal. Second, programs which would normally be 

written in machine code could be implemented in microcode which is 

faster. 

2.3 A Brief Overview of Concurrent Pascal 
  

2 1 The Language 

In subsequent chapters a description of the high-level, 

fault-tolerance software will appear. In this section a description 

of the basic concepts of Concurrent Pascal will be presented. 

Hopefully, this will help to give the reader an understanding of the 

design decisions that were taken. For a more detailed description 

of Concurrent Pascal the reader should consult [2.9]. 

Per Brinch Hansen, the designer of Concurrent Pascal claims that 

his aims were to achieve simplicity, reliability, adaptibility, 

portability, efficiency and generality. The language was designed 

for implementing small operating systems, although Brinch Hansen has 

stated that it could be used for larger operating systems. This has 

been done to implement a time-sharing system in [2.10]. The 

language is based on the well-known and popular Pascal programming 

language. The language is structured so that the hub of the 

operating system is written in Concurrent Pascal and all the user 

and application programs are written in Sequential (ordinary) 

Pascal. One of the main aims of the language is to ensure that any 

time-dependent, and possibly non-predictable, errors caused by 

concurrency cannot occur. To this end, the language depends very 
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heavily on the compiler to trap any such potential errors, thus 

reducing or even eliminating them. 

Concurrent Pascal extends Sequential Pascal by the use of three 

concepts, Processes, Monitors and Classes. 

A typical Concurrent Pascal program would consist of two or more 

processes each one merely being a piece of code. All processes 

would run concurrently. Thus, for example, one process might handle 

input, another run user programs and a third handle output. 

The main problem that occurs with concurrency is that of process 

communication. In order to achieve this, processes must share data 

in memory. However, if they attempt to write to a shared-data area 

simultaneously then it may be corrupted. There are several means of 

overcoming this, Concurrent Pascal uses Monitors as a solution. 

A Monitor consists of some data (in the form of VAR 

declarations) and some operations (in the form of Procedures) to 

access this data. A process that uses a Monitor cannot access its 

data directly, it can only call the operations that act upon this 

data (Fig 2.3). To ensure that there are no concurrency problems, 

only one process can use the Monitor at atime. If a Process 

attempts to call a Monitor which is already being used then it must 

enter a queue and await its turn to obtain exclusive access. 

The way that Processes communicate to each other via Monitors 

can be shown diagramatically using access graphs (Fig 2.4). 

Therefore, in this way, only one Process can access a shared 
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data area at atime. However, a Process is unaware of the detailed 

structure of the data. For example, a Monitor might consist of a 

buffer (an array) together with a set of operations. There might be 

an operation to read a item from the buffer and another one to 

write to the buffer. It is because a Process is only aware of the 

existence of data and not its structure that Monitors are referred 

to as Abstract Data Types. 

Because a Monitor call carries a large run-time overhead another 

structure called a Class is also employed. This is similar to a 

Monitor as it contains some data and a set of operations to act upon 

the data. However, it is ensured at compile time that only one 

Process has access to a Class. A Class therefore posseses the data 

abstraction of a Monitor but it reduces the run-time overhead. This 

concept has been adapted from the language Simula 67 [2.11]. 

There are also some Process scheduling facilities in Concurrent 

Pascal. Suppose a Process calls a Monitor to read an item from a 

buffer which is empty. A Monitor has the ability to Delay the 

Process using a Queue which is simply another variable type. When 

the buffer becomes full again (i.e. another Process puts data into 

it) the Monitor has the ability to Continue a Delayed Process. 

There also exists a real-time primitive called Wait which delays 

the calling Process for one second, thus allowing long-term 

real-time scheduling. 

A Concurrent Pascal program has the ability to call a Sequential 

Pascal program in virtually the same way as it might call a 

Procedure. However, it is responsible for first ensuring that the 
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Sequential Pascal program is ready to run. For example, by reading 

it in from disc into memory. 

2.3.2 The Implementation 

The implementation of Concurrent Pascal is somewhat different to 

that of conventional sequential programming languages. For example, 

an ordinary implementation of Pascal would only require some means 

of executing P-code. This would be performed either using an 

interpreter, a translator or by direct execution with microcode. 

However, in addition, Concurrent Pascal requires a means of 

executing its additional Concurrent P-code instructions. One 

possible method is to write an interpreter for the Sequential P-code 

and a Kernel for the Concurrent P-code. This classic approach was 

adopted in the original implementation and also by most subsequent 

users of the language [2.12, 2.13]. Brinch Hansen acknowledges that 

interpretation results in a loss of efficiency which can be 

eliminated if a firmware implementation is employed. It has already 

been stated that this method would be adopted on this project. To 

the author's knowledge this is the first approach of this type which 

has been attempted, although firmware implementation of ordinary 

Pascal has been achieved [2.13]. Also, [2.14] did adopt a 

compromise approach of microcoding frequently used Sequential P-code 

instructions.Therefore, it is felt that the implementation deserves 

some mention as it adds an extra element of originality to the 

project. 

The implementation of the Sequential P-code was fairly 

straightforward although time-consuming and is fully documented in 
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Appendices 7 and 9. The Kernel is the part of the microcode that 

makes a single processor appear as a multiprocessor with one 

processing unit for each process. This is done by multiplexing the 

single available processor between the software processes defined in 

the high-level program. The Kernel is also responsible for policing 

Monitor usage, this is done by means of a structure called a Gate 

(Fig. 2.5). This consists of a boolean variable called OPEN which 

indicates whether the Monitor is in use and an array in which 

Processes can be queued. If a Process calls a Monitor the Kernel 

checks to see if it is in use. If it is, the caller is put in the 

queue. Whenever a process leaves a Monitor the next one in the 

queue is allowed to enter the monitor. 

The Kernel is also responsible for the real-time facilities such 

as the Wait directive and must therefore maintain a record of the 

time. In addition, it is responsible for input and output. 

Therefore, it can be seen that the Kernel constitutes the core 

of an operating system consisting of process scheduling, shared-data 

access policing, real-time facilities and input/output. The extra 

operating system features required are overlayed onto this using 

high-level Concurrent-Pascal code. Since parts of the operating 

system are written in microcode they are very efficient. The 

operating system interface between the high-level code and the 

microcode is by means of P-code instructions (Enter Monitor, Leave 

Monitor, Initialise process etc.). This notion of having low-level 

scheduling operations that can be called from a higher level was 

also adopted in the only other microcode implementation of a 

scheduler that the author is aware of [2.15]. 
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Therefore, the kernel is (in this case) a microprogrammed 

implementation of the concurrent aspects of the language. It is the 

part of the implementation that tends to be altered by new users of 

the language in order to achieve any changes required [2.10]. It is 

also, in this case, an unusual approach to writing an operating 

system by using microcode. A detailed description of the Kernel can 

be found in Appendices 8 and 9. 

2.3.3 Adaptability 

Concurrent Pascal had been originally designed to run on 

minicomputers with many peripherals such as disc drives, paper and 

magnetic tape etc. The implementation required here was on a 

smaller system, as described in Section 3.2, whose only i/o was 

either to a terminal or to another processor. In addition, it was 

not possible to store Sequential Pascal programs on disc and read 

them into memory before execution. All code, both Concurrent and 

Sequential, was stored on EPROM. These were machine details that 

were impossible to hide from the software programmer. They affected 

two areas of the high-level software, namely the "io" command which 

was responsible for input/output and also the mechanism for calling 

Sequential Pascal programs. The project already required a 

diversified knowledge of hardware, firmware and software. 

Therefore, the author felt that it would not be practical to alter 

the Concurrent Pascal compiler as well. Fortunately, Concurrent 

Pascal proved sufficiently flexible to be able to alter machine 

details without amending the language definition. 

The input/output directive, io, is called with three parameters. 
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As a special case the compiler performs no type checking on these 

parameters. It merely generates P-code to push them on the stack 

and make an "io" call on the Kernel. This means that it was only 

necessary to define the new i/o operations within the Kernel. 

Meaningful names can be given to the values required as parameters 

in the high level code using standard Pascal "type" and "const" 

declarations. This approach was taken from [2.10]. 

The calling of programs also required no alteration to the 

language, only its implementation had to be changed. Both of these 

machine-dependent modifications are defined formally in Appendix 10. 
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Chapter 3 

Bit-Slice Hardware 

3.1 The principles of a Bit-Slice architecture 
  

The term "Bit-Slice" is derived from the fact that a basic 

processing element comes in a package with a small bit width. To 

implement a larger wnit of the same description several of these 

devices would be cascaded together. For example, to construct a 

16-bit ALU, 4 X 4-bit sub-units would be used. These devices have 

various inputs which control such factors as the function to be 

performed, the data to be operated on and where the results should 

be stored. For an ALU the functions would include adding, 

subtracting, shifting right and left and so on. The data to be 

operated on could come from internal registers or an external 

source. If the former is chosen then the register number must be 

specified. The outputs should also be to an internal register or an 

external destination. Connecting the control inputs of these 

devices to the microcode memory gives the microcode control unit 

complete command over the operation of the ALU. 

One of the main manafacturers of bit-sliced products is Advanced 

Micro Devices (AMD) whose components were used in the design of the 

hardware to be described. The following descriptions draw freely on 

technical specifications from the Am2900 range of bit-slice devices. 

Further details of these components are given in [3.1]. A further 

description of bit-slice principles can be found in [3.2]. 
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3.1.1 Construction of a bit-sliced ALU 

A 16-bit ALU which has been constructed from 4 X Am2903 

bit-slice devices is shown in Fig. 3.1. Since the four devices are 

meant to act as one unit they must perform the same operation on 

data from the same sources. The Am2903 has 16 internal registers 

and any two of them can be accessed at a time. Accordingly, the 

control pins of the Am2903 have 4-bit A and B register select fields 

which indicate the register to be operated on. In order to make 

sure that each device operates on the same registers the field 

select control pins on each chip are connected together. There are 

9 ALU function and destination control signals. These are 

designated I0 to I9 and the corresponding pins on each package are 

connected together. I0 to 14 control the function (add, subtract 

etc.) and I5 to 18 determine the destination (whether to latch the 

result into a register, whether to shift it, etc.). All these 

functions are defined fully in Tables 3.2 and 3.3. The source of 

data is defined by the Ea Ob and 10 signals which are connected 

together on each device. The sources available are defined fully in 

Table 3.1, they include an internal ALU register or one of the two 

external Da or Db inputs. Typically, these would be connected to a 

source such as the memory data register. Each bit-sliced device 

would receive 4 bits of this data. Any outputs, as well as being 

latched into registers, would appear at the Y outputs of these 

devices. All of the control inputs described above are connected to 

the microcode instruction register. This gives the microcode 

complete control over the ALU. 

Whenever there is a device boundary two things must happen to 

make the ALU function correctly :- 
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1) Any data which overflows in an arithmetic operation in one device 

must be added on to the value in the next most significant sub-unit. 

Accordingly, the Carry Out (Cout) output of each device is connected 

to the Carry In (Cin) input of its most significant neighbour. 

2) Any data shifted out of one device must be shifted in to the next 

one. Accordingly, the shift-out outputs of each sub-unit (SI03 = 

Shift Out Left, SIO0 = Shift Out Right) are connected to the 

shift-in inputs of its neighbour (SIOO = Shift In Left, SIO3 = Shift 

In Right). This allows the ALU to perform 16-bit shifts. 

The above is a simplistic description of how large units may be 

constructed from smaller components and how the microcode controls 

them. 

3.1.2 A Simple Bit-Slice Architecture 

A very simple bit-slice computer will consist of three basic 

functional units; the Computer Contol Unit (CCU), the Arithmetic 

and Logic Unit (ALU) and the main memory (Fig. 3.2). 

The CCU consists of the microcode which is usually stored in 

ROM, it is not related to main memory where the machine code is 

contained. There must also be some means of sequencing the 

microcode. This entails generating the next microinstruction 

address, allowing for conditional jumps, subroutines and other 

transfers of control. The cCU is at the heart of a bit-slice 

computer. It directs all the other components by means of control 
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Ea 10 OED ALU operand R ALU Operand Ss 

Ts aay wae A-port Register B-port Register 

b. iy) 2 A-port register DB 

Gey A-port Register Q Register 

BVLies DA B-port Register 

Hach os DA DB 

H H X ODA Q Register 

Note 

1) L = LOW, H = HIGH, X = DON'T CARE. 

2) The Q Register is an extra internal scratch register 

independent of the 16 RAM registers. It can be written to or 

read from. 

Table 3.1. Am2903 Operand Source Control. 
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Note 

H w H ix)
 

H H ° 

  

ALU Functions 

L L L L Special Functions 

L L L H Fi = HIGH 

L L H x F = s’>R - 1+ Cin 

L H L x F= R= § = 4+ Cin 

L H H x F=R+S +Cin 

H L L x Pras Cin 

Heads. Sn x F=8S+Cin 
H H L L Reserved 

H H L H F=R+Cin 

H H H L Reserved 

en Hg) F=R+Cin 
L L L L Reserved 

L L L H Fi = Low 

L L H x Fi Ri AND Si 

L H L x Fi = Ri EXCLUSIVE NOR Si 

L H H x Fi = Ri EXCLUSIVE OR Si 

H L L x Fi = Ri AND Si 

H L H x Fi = Ri NOR Si 

H H L x Fi = Ri NAND Si 

H H H x Fi = Ri OR Si 

1) L = LOW, H = HIGH, X = DON'T CARE. 

2) i= 0 to 3. 

3) ALU Special Function details have been ommitted for the sake 

of simplicity. 

Table. 3.2. Am2903 Function Control 
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Note 

Toei vieeL Onl oO Destination 
L L L L Arithmetic Shift Right, store result in B-port 

Register 

L oL L H Logical Shift Right, store result in B-port Re 

gister 

Tey H L Arithmetic Shift Right, store result in B-port 

Register * 

Logical Shift Right, store result in B-port Re 

gister * 

e e m a 
L H L L No Shift, store result in B-port Register 

L H L H No Shift, result goes to YBUS only * 

L H H L No Shift, store result in Q Register 

iy 8 H H No Shift, store result in B-port and Q Registe 

rs 
H phe Ne L Arithmetic Shift Left, store result in B-port 

Register 

H L L H Logical Shift Left, store result in B-port Reg 

ister 
H L H L Arithmetic Shift Left, store result in B-port 

register * 

Logical Shift Left, store result in B-port reg 

ister * 

No Shift, result goes to YBUS only 

No Shift, result goes to YBUS only * 

Sign extend, result goes to B-port Register 

No Shift, result goes to B-port Register 

a e a = 

m
m
 
m
o
 

m
m
m
 m
 

m
m
e
e
 

m
e
m
e
 

1) L = LOW, H = HIGH, X = DON'T CARE 

2) Destinations marked '*' also shift the QO Register 

independently of the main ALU results. Details have been 

ommitted for simplicity. 

3) Details of the sign extend facility and parity generation 

have also been ommitted. 

4) All results appear on the YBUS regardless of I8 - I5 

Table 3.3. Am2903 Destination Control 
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signals directly connected from the current microinstruction 

register to the control inputs of the various devices within the 

processor. 

The ALU is responsible for all the various arithmetic operations 

required. These fall into three categories:- 

1) Those that are implicit to a certain machine-code 

instruction (e.g. "ADD", "SUB" etc.). 

2) The generation of addresses for memory read and write 

operations. This would include incrementing the program counter 

before fetching the next machine code instruction. Also, 

incrementing and decrementing the stack pointer. 

3) The generation of any addresses explicit in a machine code 

instruction. 

The ALU receives control signals from the CCU such as the 

operation required (Add, Subtract etc.) and the data sources 

(memory, internal registers etc.). In return it sends back the 

result of any operations ( >0, <0, =0 etc.). This enables the CCU 

to make conditional jumps based on these results. 

Finally, the main memory is used to store the computer program, 

consisting of machine code instructions, together with any data that 

is required. It receives control signals from the CCU (memory 

request, read/write etc.). 

At the start of a power-on sequence the CCU instructs the ALU to 

generate the address for the first machine-code instruction. After 

this has been done a memory-read request is made. The first 
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instruction will then be read from memory. After this, a Decoder in 

the CCU will translate its op-code into a microcode memory address. 

This will correspond to the location where the microcode to execute 

the current machine instruction is stored. After its execution has 

taken place, the microcode sequencer will jump to the the fetch 

cycle microcode. Typically, this would consist of incrementing the 

program counter (a register in the ALU) or generating a jump 

address, requesting a memory read and decoding the op-code as 

before. The next instruction would then be executed and control 

would continue in this manner. 

3.1.3 An Advanced Bit-Slice Architecture 
  

In order to produce a faster and more efficient processor the 

technique of machine-code pipelining would be adopted in a bit-slice 

architecture. This is achieved by adding two extra functional 

sub-systems to the computer; a Program Control Unit (PCU) and a 

Datapath (Machine Instruction Pipeline) as shown in Fig. 3.3. 

The philosophy behind speeding up the processor is quite simple. 

There are two Arithmetic Units, one generates the program counter 

addresses and the other one performs the arithmetic operations 

required by the machine code. This means that there is no need to 

wait until the current instruction is executed before the next one 

is fetched. It can be done simultaneously. This notion can be 

taken even further since there are two steps involved in a fetch 

cycle; forming the address and then reading the instruction. A 

pipelined machine will be performing three functions at any one 

time. It will be executing the current instruction, reading the 

44



  

ALU Operation results 
  

  

    

    

ALU Control signals 

  

Main 

Memory 

  

      

Fig. 3.2. A Simple Bit-Slice Computer. 
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Fig. 3.3. An Advanced Bit-Slice Architecture. 
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next one and generating the address for the succeeding instruction. 

This process clearly speeds up the processor as long as _ the 

machine code is reasonably sequential. If there are many jumps at 

machine-code level then the advantage tends to be lost. Thi.s' -is 

because the processor is not aware of the jump until the instruction 

is executed. By this time the next instruction has been fetched and 

the address for its successor has been generated. Both of these 

must be discarded. However, a pipelined processor would still be as 

fast as a non-pipelined machine even if every instruction was a 

jump. 

Because concurrency exists in the processor design another 

sub-system is required. This would be where data, which has been 

read from memory and is waiting to be processed, can be stored. To 

do this the Datapath is introduced. This is merely a series of 

registers in which values read from memory can be "pipelined" en 

route to one of the ALUs or the CCU. 

3.2 The Super Sixteen Processor 

3.2.1 Origin of the Super Sixteen 

The Super Sixteen processor was obtained from [3.2]. It had 

been originally designed to demonstrate the principles of a 

microprogrammed system. In particular, it used appropriate 

techniques to maximise the processor's throughput. Accordingly, it 

uses two arithmetic units; the main ALU and the Program Control 
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Unit (PCU) which generates memory addresses. 

The Super Sixteen was chosen for three main reasons. The first 

was its fast memory accesses. There is no time overhead involved in 

memory operations provided that the address is generated two 

microcycles before the data is required. This makes the Super 

Sixteen particularly suitable for executing P-code with its large 

number of memory accesses, particularly to the stack. 

The second reason for the choice was its addressing modes. 

P-code required 8-bit byte or 16-bit word addressing. All words are 

accessed on an even boundary as shown in Fig. 3.4. The Super 

Sixteen is capable of this. 

The final reason was that machine-code pipelining and the 

inherent requirement of an extra ALU introduced an element of 

redundancy which could be used to achieve fault-tolerance. This 

concept is discussed fully in the next Chapter. 

Certain modifications to the original design were made, these 

were due to the following reasons :- 

1) There were errors in the original design. 

2) The Datapath was configured for a 2-addressing instruction set. 

P-code is a zero-addressing machine code. 

3) Significant hardware difficulties were experienced with the 

original memory board. This was replaced with a standard equivalent 

used within the department. The new board included memory-mapped 
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I/O. It was therefore considered practical to alter the I/0. 

4) The interrupt hardware was simplified by the introduction of 

polling. This meant that the implementation of I/O was simpler. A 

slight loss in processor speed might be obtained but this would not 

affect the demonstration of fault-tolerance principles. Also, a 

timer interrupt was introduced. This was necessary for performing 

real-time scheduling which is a basic requirement of Concurrent 

Pascal. 

5) The CCU required test results from the PCU as well as the ALU. 

3.2.2 Hardware Description 

3.2.2.1 The Processor 

The processor organisation is shown in Fig. 3.5, it consists of 

five functional sub-systems; the program control Unit (PCU), the 

Arithmetic and Logic Unit (ALU), the Computer Control Unit (CCU), 

the Datapath and the Timer Interrupt Unit (TIU). 

The PCU is responsible for generating memory addresses. 

Normally, it only needs to push and pop the stack and increment the 

program counter. However, occasionally, it must reload the program 

counter (for jumps) and reposition the stack pointer (for example, 

when exiting subroutines). The PCU, therefore, only needs to be 

able to perform addition and subtraction operations. The Program 

Counter (PC) and the Stack Pointer (SP) are represented by two 
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internal registers. To make the PCU more efficient three of the 

internal registers permanently hold the numbers 1,2 and 4. This 

allows an increment or decrement by these values to be made 

internally to the PCU. Table 3.4 shows the detailed register 

assignment. 

The PCU is built from 4 X Am2901s in a similar manner to that 

described in 3.1.1. It produces a Z-output which is '1' if the 

result of an arithmetic operation is zero and '0' otherwise. This 

boolean output is routed to the CCU via a Test Tree circuit, which 

enables it to act on the results of conditional tests made within 

the PCU. 

The PCU can use either an internal register as a source or the 

DA bus. This allows it to receive immediate data from the CCU or 

values read from memory. Its output can be loaded into the Memory 

Address Register (MAR) or transferred to the YBUS via the PCU 

Transceiver (PCUTRAN). 

The ALU sub-system is constructed from 4 X Am2903 devices and an 

Am2904 Status and Shift Control Unit. The Am2903 has better 

arithmetic facilities than the Am2901. For example, these speed up 

multiplication and division. It has three external buses; the DA 

bus, the DB bus (which is not used) and the YBUS. Both the DB bus 

and the YBUS can be tri-stated and used as external inputs or 

outputs. Immediate values from the CCU or data read from memory can 

be input along the DA bus. Data output onto the YBUS can be latched 

into the Data Register (DREG) for writing into memory or the 

Transfer Register (TREG) for transferring to the DA bus or to the 

MAR via the PCUTRAN. If the Y outputs on the Am2903 are not enabled 
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Word Address Byte Address 

O
O
R
N
O
 

  

etc. 

Fig. 3.4. P-code Addressing Requirement. 

Register No. Assignment 

Pc 

SP 

1 

Current Concurrent Pascal Process Head Address 

2 
4 

Scratch Register 

Scratch Register 

=15 Not Used (Wired Disable) O
B
I
n
u
r
h
w
n
a
d
 

Table 3.4. PCU Register Assignment. 
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then they will become inputs. This allows data transferred from the 

PCU via the PCUTRAN to be loaded into the ALU. The TREG can be used 

to transfer data from the ALU to the PCU. 

There are four operation result outputs produced by the ALU; 

the Z, N, C and O bits. The Z-bit indicates whether the ALU result 

is zero, the N-bit is the sign of the result and the C and O bits 

respectively represent Carry-out and Overflow. These bits are 

transferred to the Am2904. Here they are converted into boolean 

values (>, >=, <, <=, =, NOT =) for signed and unsigned comparisons 

for the test required by the Am2904 instruction signals. These 

inputs are connected directly to the CCU. As well as being a Test 

Status Multiplexer the Am2904 provides Shift Linkage and Carry-in 

values for the ALU. 

The 16-bit Datapath is mainly constructed from 2 X 8-bit 

devices, most of which are latches. Any data read from memory is 

received through the Z register (ZREG). This data can then be 

routed onto the DA bus via the Z0 register (ZOREG) or to the CCU 

Decoder via the ZI Register (ZIREG). From the DA bus, data can then 

be routed to the ALU or the PCU. If the data is transferred to the 

CCU Decoder then it is treated as an op-code. The Decoder is a PROM 

whose address inputs are connected to the ZIREG and whose 8-bit data 

outputs are connected to the Am2910 microcode sequencer. The 

Decoders function is to convert an op-code into a microcode address 

where it will be executed. 

The CCU controls the order of the execution of 

microinstructions. The Am2910 microprogram controller sequences the 

microcode. It contains an internal incrementer. When no jump is 
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made the next microinstruction is fetched from microprogram memory 

by incrementing the microprogram counter. In order to be able to 

perform jumps the Am2910 can receive branch addresses from the 

current microinstruction register. In order to be able to execute 

machine code instructions the Am2910 is also connected to the 

mapping PROM. When a “jump to map" instruction is executed the 

am2910 loads up the microprogram counter with the current mapping 

PROM value. This causes a jump to the microcode to execute that 

instruction. The Am2910 also contains an internal counter for 

performing fixed duration loops independently of any external test 

results. The microcode memory is 96 bits wide and consists of 12 xX 

8-bit EPROMs. The current microinstruction register, also known as 

the pipeline register, consists of 12 X 8-bit latches. 

The Timer Interrupt Unit (TIU) is a 16-bit counter consisting of 

4X 4-bit sub-units. Whenever the counter reaches zero it causes an 

interrupt. The interrupt bit disables the mapping PROM Decoder. 

This means that the next time a "jump to map" instruction is 

executed by the Am2910 it will cause the Sequencer to jump to a 

wired-in interrupt address. An interrupt will only occur at the end 

of the execution of a machine code instruction since this is the 

only time that a "jump to map" instruction is executed. At the 

start of the microcode interrupt sequence the TIU counter will be 

reloaded with a value from the pipeline register corresponding to 

the interrupt period. This causes the next interrupt to be 

generated when the counter reaches zero again. The interrupt signal 

is also routed to the Test Tree. This allows the CCU to detect 

interrupts (by polling) when machine code is not being executed. 
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3.2.2.2 Memory and Input/Output 

The author experienced hardware difficulties with the original 

Super Sixteen memory design. It was decided that the best action 

was to replace it with,a memory board based on a standard piece of 

hardware used within the department. The original memory board had 

a complicated timing and handshake mechanism. Much of this is no 

longer used. However, since the timing signals are all 

inter-dependent they still appear in the circuit. 

The memory unit eventually used was based on a Motorola M6809 

processor board which was used for microprocessor work within the 

department [3.3]. The processor was removed and the board was used 

as a normal memory. The M6809 board was only 8-bits wide and so two 

such units had to be cascaded together to provide a 16-bit memory. 

An extra board was built to select one or both of these depending on 

whether a byte or word memory request was made (Fig. 3.6). 

The memory board uses memory-mapping of I/O. This means that 

each I/O device has a specific memory address. To access it the 

processor merely performs a read or write to the correct location. 

This makes I/O requests quite simple, they are merely a sequence of 

Memory accesses. All I/O devices are 8-bits wide and appear on the 

least significant of the two memory boards. 

The memory contains 8K of RAM and 16K of EPROM in which 

Concurrent and Sequential Pascal programs can be stored. It also 

posseses an Asynchronous Communications Interface Adapter (ACIA) 

wnich can be used to access a terminal and up to five Peripheral 

Interface Adapters (PIA) to communicate with other processors. Only 
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m-s. 8 bits of 
RAM and EPROM 

      

M.S. BOARD 
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Requests 5 Memory 

From Select 
Processor 

      

  

l.s. 8 bits of 
RAM and EPROM, 

ACIA and PIAs       

L.S. BOARD 

Fig. 3.6. Constructing a 16-bit memory with word and byte 

addressing from 2 X 8-bit memory boards. 
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one of these PIAs is needed for a dual processor system. The logic 

diagrams for the memory board appear in Appendix 6. 

3.2.3 Control of the Processor 

All parts of the Super Sixteen, including the CCU itself, are 

under microcode control. Normally, the CCU is executing machine 

code (P-code), there are four basic stages involved in this :- 

1) Form the instruction memory address. 

2) Fetch (read) the instruction. 

3) Decode the op-code. 

4) Execute the instruction. 

As an example take a simple P-code instruction with no operands. 

This would normally read two values off the stack, perform an 

arithmetic operation on them (add say) and then write the result 

back onto the stack. This could be implemented as shown in Table 

3.5. 

The structure of the Super Sixteen, however, makes several of 

these operations concurrent. Also, the first three stages of the 

next P-code instruction (Form address, Fetch, Decode) can be 

executed simultaneously. This means that the control cycle would be 

as shown in Table 3.6. Several points should be noted from this :- 

1) More than 3 microcycles are saved as Tables 3.5 and 3.6 suggest. 

This is because microcycles 1 to 3 would be executed concurrently 

with instruction n-1. Therefore, with an instruction such as this, 
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Microcycle Operation 

1 PC -> MAR 

2 Memory Read Request 

3 ZREG -> ZIREG and 

Jump to Map 

4 SP -> MAR 

> Memory Read Request 

6 ZREG -> ALU reg. x 

oe SP + 2 -> MAR 

8 Memory Read Request 

9 ZREG + ALU reg.x -> DREG 

10 SP -> MAR 

44 Memory Write Request 

Comment 

Form Address 

Fetch Instruction 

Decode 

Start of Execution :- Generate 

Address for First Operand 

Fetch First Operand 

Store First Operand in ALU 

register number x 

Generate Address for Second 
Operand 

Fetch Second Operand 

Execute Instruction 

Generate Stack Address 

Put Result on Stack 

Table 3.5. Non-pipelined execution of a typical P-code instruction. 
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Microcycle 

1 

Table 3.6. 

Operation 

PC -> MAR 

Memory Read Request, 

PC + 2 -> MAR 

Memory Read Request 

PC + 2 -> MAR 

Jump to Map 

SP -> MAR, 
ZREG -> ZIREG 

Memory Read Request, 

SP + 2 -> MAR 

ZREG -> ALU register x, 

Memory Read Request, 

PC -> MAR 

ZREG + ALU reg. x -> DREG 

Memory Read Request, 

SP -> MAR 

Memory Write Request, 
PC + 2 -> MAR, 

Jump to Map 

Comment 

Form Address for instruction n 

Form Address for instruction 
n+1 and fetch instruction n 

Fetch Instruction n+1, 

Form Address for Instruction 
n+2 and Decode Instruction n 

Generate Address for First 
Operand and move Instruction 

nt+1 down the Pipeline 

Fetch First Operand and 

Generate Address for Second 
Operand 

Store First Operand in ALU 

register x, Fetch Second 

Operand and Form Address for 

Instruction n+2 

Execute Instruction, 

Fetch Instruction n+2 and 

Generate Address and Data for 
Writing Result to Stack 

Write Result to Stack, 
Generate Address for 
Instruction n+3 and Decode 

Instruction n+1 

Pipelined Execution of a typical P-code Instruction. 

58



pipelining effectively halves the execution time. 

2) The address for instruction n+2 is generated twice, once at 

microcycle 3 and again at microcycle 6. It would, in this case, 

save an extra cycle if the stack address was instead generated at 

microcycle 3. However, at least half of the P-code instructions 

have several operands following them in memory. These require the 

program counter address to be in the MAR following the decode 

operation. All P-code instructions are independently executed and 

can appear in any order. It is therefore necessary to standardise 

the Pipeline state at the start of the execution of each 

instruction. It was decided to arrange the microcode so that all 

P-code instructions could assume that the next memory word was in 

the ZREG and the address of the word after that was in the MAR. 

Each P-code instruction is responsible for leaving the processor in 

the same state for its successor. 

If there is a timer interrupt then the P-code “will be 

interrupted when the next decode (Jump to Map) is performed. When 

the CCU has finished serving the interrupt it must refill the 

Pipeline in a similar manner to that shown in microcycles 1 to 3 of 

Table 3.6. 

In the event of a fault in some other functional unit being 

detected the CCU can continue to operate. However, no P=-code will 

be executed nor any decodes performed (unless testing the Decoder). 

The generation of both P-code and microcode and their testing 

requires quite a complex development system. A description of this 

can be found in Appendices 1 and 4. Full listings of the microcode, 

together with documentation appears in Appendices 9 and i 
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Chapter 4 

Fault-Tolerance Theory 

4.1 A Multiprocessor Architecture 

The basic philosophy of using a microprogrammable machine, such as 

the Super Sixteen, to achieve fault-tolerance is that the CCU 

sub-system is the only functional unit whose failure would prove 

catastrophic. ‘However, it is no use having an operational CCU 

unless it has some computational facilities such as an arithmetic 

capability. The architecture of the Super Sixteen is such that 

these computational facilities will always be available to the CCU 

provided that not more than one functional unit fails since it has 

access to two arithmetic units, the ALU and the PCU. The essential 

requirement of the theory to be described is that one of these wits 

will be operational, even though the CCU is unaware of which one. 

There is, therefore, a basic duplication of components in a 

processor architecture such as this to achieve high performance. 

However, in the event of a failure this can be regarded as a form of 

redundancy to achieve fault-tolerance (Fig. 4.1). 

In this chapter a method will be described whereby the CCU will 

attempt to diagnose which functional unit has failed. To achieve 

this the CCU must test each unit within the processor architecture, 

this includes the main m 

  

ry and the Datapath as well as both ALUs. 

One or both of the ALUs must be used to carry out these tests. This 

poses a dilemma. Until the tests have been evaluated it is not 

clear which of the two ALUs is at fault. On the other hand the 

tests cannot be analysed until it is known which ALU is operational. 
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Therefore, it would seem that a faulty processor may have the 

ability to perform a set of tests at microcode level but it does not 

have the ability to evaluate correctly these tests in order to make 

a fault diagnosis. Consequently, a reliable means of analysing 

these results must be defined. 

Consider the computer system as a whole. Operating in real time 

it will have a set of tasks to perform. The control of these tasks 

is in the form of machine code (P-code) stored in main memory. It 

may be that the main memory has failed or that the address 

generation mechanism to access the main memory is at fault in which 

case the machine code cannot be accessed. It would be unreasonable 

to expect the microcode to assume all of these tasks on an already 

degraded processor, in any case this would defeat the entire purpose 

of having machine code and high level languages. There must be some 

type of multiprocessor architecture whereby one or more processors 

can assume the tasks of the faulty processor. In order to simplify 

the multiprocessor architecture only one extra processor will be 

used. In addition to taking over the tasks previously performed by 

the faulty processor, the second processor could also perform the 

function of evaluating the microcode test results. 

Hence, the solution proposed is to perform a set of tests at 

microcode level within the faulty processor. Their results can then 

be passed to another processor which will evaluate them at HLL level 

and, hopefully, diagnose the fault. It would be useful at this 

stage to define some terms of reference (Fig. 4.2). 

A fault is defined as a failure of a component within a 

functional subsystem which causes it to operate incorrectly. A 
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ALU1 (PCU) 

      

  

ccu 

      

  

ALU2 (ALU) 

      

Fig. 4.1. The Basic Redundancy of a High Speed Bit-slice Computer. 

  
  

  

  

            

PROCESSOR 1 PROCESSOR2 

Monitor Periodic . “|Monitor 
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System tasks Standby 

Fig. 4.2 a). Processor Status - Both processors non-faulty. 

  
  

  

            

PROCESSOR 1 PROCESSOR2 

Faulty Test Operational 

Mode Results Mode 

Microcode Tests Test Diagnosis 

and System Tasks 

Fig. 4.2 b). Processor Status - One processor Faulty. 
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single fault will cause only one sub-system to fail. A multiple 

fault will prevent several functional units from operating as 

required. 

The Faulty (or failed) Processor is the processing unit which 

has a fault and is attempting to perform a set of microcode tests. 

The Operational Processor is that which is error-free and has 

assumed all the tasks performed by the Faulty Processor and is also 

evaluating the test results generated by it. 

The Main Processor is the processor which performs all the 

real-time tasks required of the system. In an error-free 

two-processor system this could be either processor, if there is a 

fault present in the system then clearly it will be the Operational 

Processor. This corresponds to the traditional main/backup 

real-time fault-tolerance approach. 

The Backup Processor is on standby should a fault occur. If the 

Main Processor does fail then it will become the Main Processor and 

assume all the system tasks. 

If the system is error-free then both processors will be in 

monitor mode. This is completely independent of the main/backup 

status of the processor. A processor in monitor mode listens for 

periodic messages from its neighbouring processor in order to make 

sure that it has not failed. If a fault occurs in the backup 

processor then this will be diagnosed in the same way as a failure 

in the main processor, the only difference being that transfer of 

task responsibility does not take place. 
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4.2 Microcode Tests - The Faulty Processor 
  

This section describes a set of microcode tests the results of 

which will uniquely determine certain fault conditions within the 

processor. These tests will apply to single failures and it is 

assumed that multiple faults are not present. 

4.2.1 The Arithmetic Units 

Although the Super Sixteen uses the PCU to generate memory 

addresses and the ALU to produce memory data it is often useful in 

practice to be able to exchange these roles. For this reason, the 

Super Sixteen incorporates the PCUTRAN which allows the transfer of 

ALU data to the MAR and PCU values to the DREG. In addition the 

PCUTRAN, together with the TREG, can be used to convey data between 

the two arithmetic units. Fig. 4.3 shows this section of the Super 

Sixteen. 

The facility of being able to use either Arithmetic Unit for any 

purpose and the capability to transfer data between them is very 

useful from the point of view of fault-tolerance since they can be 

used to test each other. Also, memory tests can be performed with 

all permutations of two out of the three functional units (ALU, PCU 

and PCUTRAN). If there is only one fault present then the only test 

that will pass will be the one that does not use the failed unit. 

This means that it will be a straightforward matter to diagnose the 

fault. If the main memory, which is being tested, is faulty then 

this can also be detected since all three tests will fail and no 

other single functional unit failure would cause all of the memory 
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tests not to pass. 

To clarify the situation the three tests are as defined below : 

  

Test A 

Without using the PCUTRAN, test the memory using the PCU to 

generate addresses and the ALU to produce and evaluate other data. 

Test B 

Without using the PCU, test the memory using the ALU and the 

PCUTRAN to generate addresses and the ALU to produce and evaluate 

other data. 

Test C 

Without using the ALU, test the memory using the PCU to generate 

addresses and evaluate data and the PCU and the PCUTRAN to produce 

data. 

If the PCUTRAN is faulty then test A is the only one that will 

Pass since it is the only test that does not use that unit. 

Similarly, only test B will pass in the event of a PCU failure and 

only test C will pass if the ALU is faulty. If all three tests fail 

then the PCU, the ALU and the PCUTRAN are all in agreement that the 

memory is faulty. If a notation is adopted whereby a boolean 

variable indicates whether a test has passed or not then their 

results canbe shown using an appropriate expression. For example, 
easy en 

   

  

af s= 
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"A' indicates that test A has passed 

and ‘A' indicates that test A has failed 

then A.B.CT means that tests A,B and C have all failed. 

Having defined a set of tests and a notation to represent their 

outcomes the argument stated above can be re-iterated in a concise 

manner :- 

A.B.T Indicates a memory failure. 

  

A.B.C Indicates a faulty PCUTRAN. 

  

R.B.t Indicates a faulty PCU. 

B.C Indicates a faulty ALU. 

Since none of the three tests use the TREG its failure will not 

be detected. It is therefore necessary to introduce a further test 

which will detect this condition. 

Test D 

Pass some data from the ALU to the TREG, through the PCU and the 

PCUTRAN and back to the ALU. Use the ALU to see if the value is the 

same after its passage through the machine. 

Although the first three tests defined above will diagnose any 

fault within the ALU or the PCU they will not identify the specific 

component within that functional unit that has failed. For example, 

if the ALU is diagnosed as faulty then this might be due to the 
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actual arithmetic unit (4 X Am2903s) being faulty or it could be 

because the Test Status Multiplexer (Am2904) has failed. Similarly, 

if a fault is diagnosed within the PCU it might be the aAm2901 

devices that have failed or it could be due to a faulty Test Tree. 

Test D combined with the other three tests will diagnose the 

fault within the PCU. This is because a faulty PCU will cause test 

D to fail as well as tests A and C since it requires the PCU to 

transmit the value through it. However, if the Test Tree is faulty 

then test D will pass since it does uct use this unit (Test A will 

also pass). 

However, to diagnose a faulty Test Status Multiplexer within the 

ALU another test must be defined. This test, like the PCU in test 

D, requires the ALU to pass a value without making any comparisons 

on it. This raises the question of where the value should be 

checked. Since the purpose of the test is to avoid using the Am2904 

Test Status Multiplexer it cannot assume this responsibility. 

However, the Faulty Processor already transmits the results of all 

tests to the Operational Processor (in the form of message codes). 

There is no reason why the actual value used in the test could not 

be transmitted to the Operational Processor which would then decide 

whether it was correct or not. The test, therefore, is defined as 

follows :- 

Test E 

Pass some data through the ALU and across to the Operational 

Processor. The Operational Processor will examine this value to 

check whether it has been corrupted. 

69



A faulty Test Status Multiplexer will be detected by the 

outcome :—- 

since C and E are the only tests which do not use it. 

4.2.2 The Datapath 

With the set of five tests described in the previous section any 

fault in the ALU, the PCU or the transfer devices (PCUTRAN and TREG) 

can be uniquely determined. It has also been stated that a faulty 

memory can be diagnosed. This is a rather broad generalisation 

since a memory failure could be due to a faulty Datapath within the 

processor itself. A closer examination of the Datapath (Fig. 4.4) 

reveals that a more detailed diagnosis can be made. 

Most of this sub-system is constructed from 2 X 98-bit devices 

cascaded together to form 16-bit registers. One possibility is that 

one of the m.s. devices in the Datapath has failed and not the 

Memory. Since the Super Sixteen can perform byte memory addressing 

a fault in one of the m.s. components can be detected because 

accessing the memory in this mode will only require the use of the 

l.s. devices in the Datapath. 

Therefore, another test must be defined :- 
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Test F 

Perform a memory test using byte addressing only. 

If a faulty memory is detected and test F passes (denoted by 

R.B.C.D.E.F) then one of the m.s. devices in the Datapath has 

failed. 

However, there still remain two further possibilities :- 

1) The ZREG is not faulty but the ZOREG has failed, thus 

causing all memory tests to fail. 

2) Both the ZREG and the ZOREG are functioning correctly but 

the ZIREG or the Decoder is faulty. This would cause all 

memory tests to pass. 

A test must be defined which checks the route from the ZREG to 

the CCU via the ZIREG and the Decoder. This test depends upon the 

co-operation of the Operational Processor. A machine-code 

instruction is defined, the function of which is to send a message 

to the Operational Processor. The test then has three stages :- 

Test G 

1) The Operational Processor sends the op-code of this machine 

instruction as a message to the Faulty Processor. 

2) The Faulty Processor receives the message and routes it via 
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the ZREG to the ZIREG and the Decoder. 

3) The Faulty Processor will attempt to execute the 

instruction, if successful it will send a message back to the 

Operational Processor. 

If test G passes then it proves that the ZIREG and the Decoder 

are functioning correctly. This means that a faulty ZOREG will 

result in the test sequence :- 

If the m.s. part of the ZOREG has failed then test F (byte 

test) will pass but the test will fail if the l.s. half of the 

ZOREG is faulty. If the ZIREG or the Decoder is at fault then the 

test outcome will be :- 

A.B.C.D.E.F.G 

A complete list of the tests that are performed are given in 

Table 4.1. A complete list of all the possible diagnosable faults, 

together with their test outcomes, is given in Table 4.2. 
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Test Description 

A Test memory using the ALU to produce write-data and 
evaluate data read back from memory and using the PCU 
to generate memory addresses. The PCUTRAN is not 
used. 

B Test memory using the ALU to produce write-data and 
evaluate data read back from memory and using the ALU 
to generate memory addresses, loading the MAR via the 
PCUTRAN. The PCU is not used. 

SC Test memory using the PCU to produce write-data and 
to evaluate data read back from the memory and using 
the PCU to generate memory addresses. The PCUTRAN is 

used to load the DREG. The ALU is not used. 

D Pass a value from the ALU to the TREG, through the 

PCU and the PCUTRAN and back to the ALU. Use the 
am2904 Test Status Multiplexer to test whether the 
value has been corrupted. 

E Pass a value through the ALU and across to the 
Operational Processor which tests whether it has been 

corrupted or not. 

F Perform a memory test using byte addressing only. 

G The Operational Processor sends an op-code as a 
message to the Faulty Processor. If the message has 
been received then the Faulty Processor sends a 
message back. 

Table 4.1. The set of microcode tests performed by the Faulty 
Processor. 
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Test Results 

B.B.C.D.E 

  

A.B.C.D.E 
4.5.c.D.E 

  

Diagnosis 

PCU Failure (Am2901) 

ALU Failure (am2903) 
PCUTRAN Failure 
TREG Failure 

Test Tree Failure 
Test Multiplexer Failure (Am2904) 

ZREG (m.s.), DREG (m.s.) or ZOREG (m.s.) Failure 
Memory, MAR, ZREG (l.s.) or DREG (l.s.) Failure 

ZOREG (m.s.) Failure 
ZOREG (1.s.) Failure 
ZIREG or Decoder Failure 

Table 4.2. Test Results and their Diagnosis. 
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4.3 High Level Test Evaluation - the Operational Processor 
  

Having defined a set of microcode tests to be performed by the 

Faulty Processor it is now necessary to define the functions to be 

performed by the Operational Processor using a High Level Language 

(Concurrent Pascal). This includes the real-time tasks required of 

the system when no faults are present. 

In [2.9] Brinch Hansen uses example operating systems to 

describe Concurrent Pascal and how it can be applied. A similar 

approach is used here to describe the high level fault-tolerance 

operating system (FTOS) written for this project. The main aim of 

this section is to familiarise the reader with the high level 

concepts employed but it is hoped that a useful bi-product will also 

be to detail further the concepts of Concurrent Pascal. 

4.3.1 Problem Specification 

Since this project is concerned with the fault-tolerance aspect 

of a multiprocessor system the other functions required by the user 

are not especially important. However, whatever these functions 

are, one requirement will remain in any fault-tolerant system. 

There will be a database containing some information and it will be 

vital that its integrity be preserved. This will be done by using 

the classical approach of having one processor in main mode and its 

neighbouring processor in backup mode. A set of operations on this 

database will be defined which will only be executable on the main 

processor. Whenever an update is made a message will be sent to the 

backup system to perform the same task. Since, in this case, any 
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user interface defined is merely for the purposes of demonstrating 

fault-tolerance it must be easy to change without altering the rest 

of the system. Fortunately Concurrent Pascal is very modular so 

this poses no difficulties. 

The fault-tolerance aspect of the problem consists of updating 

(or receiving updates to) the database and of being able to detect 

and analyse a failed neighbour processor. The Backup processor must 

be able to assume control, thus becoming the Main Processor. When 

the user notifies the Main Processor it must re-accept a repaired 

standby unit. 

The fault detection is achieved merely by the processors sending 

messages to each other in turn. If a message is not received within 

a certain time then it is deemed to have failed and the fault 

analysis will start. 

All that is required in terms of fault analysis is to receieve 

the messages that are sent from the Failed Processor and, when the 

sequence is complete, to evaluate the results and output the 

diagnosis. The evaluation of the test results is merely a sequence 

of boolean comparisons. There is no need for the user to be aware 

of the fact that the processors are communicating. He only needs to 

receive information about the fault tolerance of the system should 

there be a failure. If this occurs he will be informed (by the 

Operational Processor) that there has been a failure and, if 

possible, the location of the fault. 

The user functions chosen to be implemented were based on a 

simple database containing oil well details; their name, location 
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and size. A set of operations were defined on the database :- 

Well Status (W) Command 

Display the database contents at the terminal. 

Change (C) Command 

Change an entry. 

Delete (D) Command 

Delete an entry. 

Insert (1) Command 

Insert a new entry. 

In addition, two other operations were required :- 

Processor Status (P) Command 

Output the System status at the terminal i.e. is the processor 

in main or backup mode and is its neighbouring processor operational 

or faulty. 
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Re-instate (R) Command 

Re-instate the neighbouring processor. This would be called on 

the Operational processor after the Faulty Processor had been 

repaired to indicate to the system that it should now be regarded as 

being functional again. 

The Change, Delete, Insert and Re-instate commands are only 

available in main mode. 

4.3.2 The Solution 

The first step taken in achieving a solution to this problem was 

to analyse the tasks required, remembering that concurrency of 

functions was available. The tasks that need to be performed by the 

system are as follows :- 

1) The User Functions. 

2) Communication with the neighbour processor. 

3) Detection and Analysis of any faults in the system. 

It would therefore be logical to make each of these functions a 

separate Concurrent process. The next problem to be considered is 

how these processes need to communicate with each other :- 

1) The USER process needs to be able to communicate with the 

fault detection and analysis process (call it DEBUG) to 

assertain whether the processor is in main or backup mode. nx 

also needs to be able to communicate with the COMMUNICATOR 

process to update the Backup Processor when necessary. This 
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should only take place when the Backup Processor is not faulty. 

Therefore, it seems reasonable to inform the DEBUG process 

when an update has been made and allow it to decide whether or 

not to inform the Backup Processor. Consequently, the USER 

process does not need to communicate directly with the 

COMMUNICATOR process. 

2) The DEBUG process needs to communicate with the COMMUNICATOR 

process. 

3) Both the USER and the DEBUG processes require access to a 

terminal. 

The system interactions are displayed in Fig. 4.5 in the form 

of an access graph. It appears from this as though USER and DEBUG 

have access to individual terminals. This is also how it appears in 

the Concurrent Pascal program since both processes have their own 

copy of the TERMINAL class. However, before accessing it they call 

the RESOURCE monitor which delays the process if the terminal is 

already in use, thus ensuring that only one of them will use it at 

any one time. 

The WELL UPDATES monitor contains the .database and also some 

Other essential system information such as the main/backup mode and 

the neighbouring processor faulty/operational status. The NEIGHBOUR 

monitor is used to transfer message requests. PROCCOMM is merely a 

set of routines for sending and receiving messages. 

The final step in designing a solution to this problem is to 

80



  

  

PIA VOU VDU 

c)PROCCOMM ) ERMINAL (yea 

NEIGHBOUR RESOURCE 

                

   

  

      
COMMUNICATOR USER 

WELL UPDATES 

Fig. 4.5. Access Graph for FTOS. 

81



decide which part of each process should be implemented in 

Concurrent Pascal and which should be implemented in Sequential 

Pascal (Fig. 4.6). Since the user functions should be easy to 

modify it is convenient to write them as a Sequential Pascal 

program. To alter them it would only be necessary to re-write this 

program. However, there must be a set of routines imbedded in the 

USER process in Concurrent Pascal to perform the following :- 

1) Communicate with the terminal. 

2) Read and write items from the database. 

3) Read system information (main/backup mode etc.) and set the 

operational mode of the neighbouring processor in the event of 

the Re-instate command being invoked. 

4) Inform the DEBUG process that an alteration to the database 

has been made. 

These routines can be called from the Sequential Pascal program. 

In Concurrent Pascal terminology they are known as "prefix 

procedures’. 

The DEBUG process has two functions. If the neighbouring 

processor is operational then it has to detect a fault. Once this 

has been done it needs to perform the analysis. The process of 

fault detection merely consists of sending and receiving messages. 

This is a mutual operation since both processors are performing 

fault detection on each other. If a message is not received within 

a certain time then the neighbouring processor is assumed to be 
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faulty and the analysis starts. The fault detection is fairly 

straightforward and does not merit a Sequential Pascal program. 

However, the fault analysis is more involved and could be altered as 

the fault-tolerance firmware evolves. Therefore, this should be 

written in the form of a Sequential Pascal program. This program 

should have access to prefix procedures to perform the following :- 

1) Communicate with the terminal. 

2) Send and receive messages (via the NEIGHBOUR monitor which 

acts as a postbox to the COMMUNICATOR process). 

The Communicator process merely examines the NEIGHBOUR monitor 

for message requests and sends or receives them as required. If the 

neighbouring processor is faulty and a message is sent, but no reply 

is receieved, then COMMUNICATOR will be delayed until it is 

repaired. Howevever, this will not cause DEBUG to be delayed. 

After waiting for the required period it will detect that no reply 

has been put in NEIGHBOUR and, assuming that a fault is present, it 

will act accordingly. 

A more detailed documentation of FTOS can be found in Appendix 
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Chapter 5 

Fault-Tolerance Implementation 

5.1 Assumptions Made 

In the previous chapter a set of firmware tests were described. 

These routines, when performed on the Faulty Processor and 

interpreted by the Operational Processor, would diagnose certain 

faults. Throughout the description of this process it was assumed 

that the CCU was operational. However, by the very nature of the 

problem no other part of the processor can be assumed to be 

functioning correctly. In fact the opposite is true, all parts are 

suspected as being faulty. This poses a problem. Although the CCU 

is operational it depends upon results of arithmetic operations 

carried out in other sub-systems. These results are used for 

directing conditional branch responses in the microcode sequencer 

(Pig. 5.1). Therefore, there is a significant problem since the 

cCU cannot rely on the results that it receives. Consequently, it 

could make erroneous conditional jumps and execute the wrong 

microcode. The whole processor would effectively be useless and the 

diagnosis process would be defeated. 

In order to counter this situation certain assumptions about the 

faulty units must be made. These assumptions apply to test results 

which normally consist of one bit only. If this result is 

unreliable then there are three possible causes :- 

1) It is permanently at the value '1'. 

2) It is permanently at the value '0'. 
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3) It is completely spurious and is intermittently '0' or '1'. 

The third possibility is extremely unlikely since most component 

failures usually cause the output to remain at a certain value. 

Also, an intermittent or spurious fault is far harder to detect. It 

was therefore decided to assume one of the first two cases. Again, 

the choice between these two was based on probability. More likely 

than not a device will fail completely. In other words, it will be 

as if its outputs were in the high impedance state. This would 

normally be interpreted as a '1' by any inputs of another 

operational device [5.1]. Furthermore, on a practical level, it 

would be easier to test fault-tolerance firmware if the "permanently 

at 1" assumption were made. This is because a faulty package could 

be simulated merely by removing it from its socket. 

It was therefore decided that a faulty test result would be 

assumed to be permanently at 1. Clearly this assumption limits the 

scope of the diagnosis possible. The author is aware of this fact 

and suggestions for further research on the problem are included in 

the final chapter. 
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5.2 Trapping of Errors 

5.2.1 Normal Error Entry 

Although a set of tests have been defined to diagnose a faulty 

processor they will not be of use wnless they are called. 

Therefore, it is required that the CCU should perform regular fault 

detection. 

To a certain extent the structure of P-code is quite 

advantageous since it requires a good deal of exception checking to 

be performed at microcode level. Several P-code instructions 

require checks to be made on the data upon which they are operating. 

If the data is invalid then an exception will occur. As an example, 

take the "Test In Set" instruction. This corresponds to the high 

level "IN" operator in Pascal (as applied to sets). Its function is 

to take a value off the stack, call this value i. It then checks to 

see whether the i'th bit of a set (which is also on the stack) is a 

‘1'. Since a set is represented by eight words (128 bits) the value 

must be in the range 0 <= i <= 127. The "Test In Set" instruction 

checks this and if the value is out of range an exception is 

generated. P-code makes many such checks, division by zero and 

array bounds are further examples. 

Therefore, if a processor is faulty it is highly likely that a 

P-code instruction will either detect an illegal value or 

incorrectly mark valid data as being in error. This will generate 

an exception which is merely a jump to the fault diagnosis 

microcode. 
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Another way of trapping errors is if an illegal op-code is read 

from memory. This is also quite likely if the processor incorrectly 

executes machine code. Illegal op-codes are easily trapped by 

making all unused values in the Decoder point to the fault diagnosis 

microcode start address. 

Therefore, most failures can be detected either by the presence 

of invalid data generating an exception or an illegal op-code. 

5.2.2 Timer Interrupt Test Routines 

Despite the precautions mentioned in the previous sections it is 

possible for some faults in the processor to go undetected. As an 

example take the "NOT" P-code instruction. Its function is to 

invert the word on the top of the stack. No checking of data is 

required. No arithmetic overflow can occur and the stack pointer is 

not altered, so stack overflow cannot take place. If the PCU was 

faulty it might generate the same address at each machine cycle. 

This means that the processor could become trapped in an infinite 

loop of the type :- 

Fetch Instruction, 

Instruction = NOT, Execute, 

Fetch Instruction, 

Instruction = NOT, Execute, 

Fetch Instruction, 

Instruction = NOT, Execute 

etc. 
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Therefore, it is necessary to have some means of identifying 

errors of this type. Concurrent Pascal requires a record of 

real-time to be maintained. To achieve this the Super Sixteen 

generates a timer interrupt at fixed intervals. This means that an 

infinite loop would be interrupted at some point. It is therefore 

necessary for the interrupt firmware to perform a test to trap this 

type of error. 

The code to perform this test merely consists of passing values 

from the PCU via the PCUTRAN to the ALU and checking that they 

arrive without being corrupted. This test is designed mainly to 

test the PCU using the ALU. However, if the PCU was functioning 

correctly and the ALU was faulty then this would also be indicated 

by the test. 

It is possible that a faulty memory, especially an EPROM 

containing P-code, might generate a similar problem. tf, for 

example, the EPROM was faulty then the processor might pick up every 

word of the program memory to be the "NOT" instruction. So, to the 

processor the program would appear as :- 
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Memory Location Op-code 

x NOT 

xt+2 Not 

x+2 NOT 

x+6 NOT 

etc. 

Which would generate an infinite loop similar to the one previously 

described. 

Therefore, it is necessary for the timer interrupt firmware to 

check for this condition. The test to detect this is based on a 

knowledge of the stucture of a compiled Concurrent Pascal program. 

Referring to Figures 5.2 and 5.3, the compiler always inserts at the 

start of the program four words of control information followed by a 

jump past any procedures. Even if there are no procedures this 

transfer of control is still present. So, assuming that a valid 

program is stored in EPROM, there will always be a branch 

instruction in the fifth memory word. It is a fairly simple matter 

for the interrupt test firmware to read the fifth location and check 

that it is the op-code for "Jump". If this is not found then the 

hardware is assumed to be faulty. 

To summarise then, most faults are either trapped as illegal 

op-codes or invalid data in the program by the P-code firmware. 

Some errors will escape these tests. Hence, it is Necessary for a 

certain amount of testing to be performed by the Timer Interrupt 

firmware (Fig 5.4). 
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5.2.3 Faulty Timer Interrupt Hardware 

One fault which cannot be detected with the methods described so 

far is one occuring in in the timer interrupt hardware. If no timer 

interrupts were being generated it would not affect the P-code in 

any way, hence no exception would be caused. The only feature of 

the system that would probably be affected would be the maintenance 

of real time. It is unlikely that process scheduling would be 

affected since a Kernel call is made whenever an exit from a Monitor 

occurs. The solution to the problem lies at the Concurrent Pascal 

level. Two extra processes must be added to any program. The first 

process performs a Wait (for one second) operation and then sends a 

message (via a Monitor) to a second process. The second process 

maintains a count which is sufficiently large to last for at least 

one second. If, when the count terminates, no message has been 

received from the first process then the second one must output a 

message to indicate that the Timer Interrupt Unit is faulty. This 

feature of fault detection has not yet been implemented in FTOS. 

91



  

  

Command 

Microcode ALU or 
oe) Result PCU 

Fig. 5.1. CCU/ALU/PCU Interaction. 

  

  
        

    PROGSTART+0 PROGS TART+0 

    

  
  

  

  

  

          

  

PROGSTART+1] Control PROGSTART+1 | Control 

+2 Data +2] Data 
+3 +3 

+4 JUMP +4 JUMP 

+5 [PROGSTART+n +5 JPROGSTART+6 

+6 +6 

Procedures Main 

Program 

PROGSTART+n Main 

Program 

Fig. 5.2. A Typical Concurrent Fig. 5.3. A Concurrent 

P-code program stored in EPROM. P-code program with 

no procedures. 

92



  

P-code 

Microcode 

  

Timer 

Interrupt 
Microcode 

  

ccu 

Decoder       

Fig. 5.4. Fault detection 

Trapping of 

Invalid data. 

Trapping of 

Infinite Loops. 

Trapping of 

Invalid op-codes. 

in the Super Sixteen 

93



5.2.4 Faulty Mapping PROM Decoder 

Another type of fault which would probably always be trapped by 

one of the methods mentioned in 2.1 or 2.2 occurs when the Mapping 

PROM Decoder is faulty. The Decoder converts machine instruction 

op-codes into microcode addresses (Fig. 5.5). It is assumed that 

the outputs of this 8-bit EPROM would all be '1' if it failed. This 

means that whenever the CCU executed a "Jump to Map" instruction a 

branch to address Hex FF would be made. What would happen after 

this would depend on the microcode stored there. The result is 

clearly unpredictable, especially when one takes into account that 

future addition or deletion of microcode to the addresses below Hex 

FF would alter the code stored in Hex FF itself. 

For this reason it was necessary to modify the assembler so that 

it placed an instruction at Hex FF to enter the fault diagnosis 

microcode. The assembler always rearranges the instructions in 

memory and modifies the sequencing fields so that they branch round 

location Hex FF. This means that if the microinstruction at Hex FF 

is executed a fault can be assumed. This ensures that a faulty 

“permanently at 1" Mapping PROM Decoder will be detected. 

Before calling the fault diagnosis microcode, a special message 

is sent to the Operational Processor. In the case of the test 

sequence A.B.C.D.E.F.G- mentioned in Chapter 4, indicating a faulty 

ZIREG or Decoder, it can resolve which of the two units is faulty. 

If the Operational Processor receives the message then the Decoder 

must be functioning correctly and the ZIREG is faulty. If the 

message is not received then the Decoder is assumed to have failed. 
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map" instruction is executed. 

2) A faulty zero-fill buffer generates 1111 XXXX XXXX = Hex FXX when 

a "jump to map" instruction is executed (X = DON'T CARE). 

Fig. 5.5. Function of the Mapping PROM Decoder. 
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A faulty zero-fill buffer could be detected by applying the same 

technique to microcode memory locations $F00 to $FFF. However, this 

would use 256 locations of microcode memory and has not been 

implemented on the Super Sixteen. 

5.3 Microcoding Techniques 

5.3.1 Faulty Test Results 

The CCU has to contend with the fact that a test result which 

should be a ‘'O' might be a '1'. If it is executing a loop and is 

waiting for a test result to terminate it, then that result may 

never arrive. The CCU would be within an infinite loop. At the 

heart of the CCU is the Am2910 microprogram sequencer. This device 

has a one bit input (CC) which determines whether a conditional jump 

is made. If this bit is zero then the CCU takes the current test 

(an arithmetic operation in the ALU or PCU) as having passed and a 

branch is taken. If the bit is a one then the current test has 

failed and no jump is made. 

A faulty unit is assumed to make this test "permanently at 1", 

hence no conditional jumps will be made. The firmware in the CCU 

must be structured to take account of this fact. As an example, 

consider a loop of the following type :- 

Load Counter 

LOOP: Decr nt Counter, if = 0 jump to NEXT 

  

microinstruction 1 
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microinstruction 2 

microinstruction n 

Jump back to LOOP 

NEXT: microinstruction nt+1 

A counter is decremented. When it reaches zero an exit is made 

from the loop using a conditional jump. If the processor is faulty 

it is possible that this branch is never taken. The CCU would be 

within an infinite loop. There is obviously no way that a structure 

of this kind can exist without a conditional transfer of control. 

To overcome this problem, the loop must be structured so that an 

exit will be made wnless the test succeeds. The solution is to 

re-write the code as follows :- 

Load Counter 

LOOP: Decrement Counter, if NOT = 0 then jump to NEXT1 

Jump to NEXT 

NEXT 1: microinstruction 1 

microinstruction 2 

microinstruction n 

Jump to LOOP 

NEXT: microinstruction n+1 

This stucture will exit the loop if a test fails and remain 

within it if the test passes. A fault in the ALU test result 

circuitry would therefore cause an exit to be made. 
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If the CCU uses test results from the PCU then the situation 

becomes more complex. Connecting the two sub-systems is a circuit 

known as the Test Tree (Fig 5.6). It is possible that the Test Tree 

may be faulty ("permanently at 1") which would cause all CCU tests 

to fail. Unfortunately, the Test Tree, when operating correctly, 

inverts all boolean results from the PCU. This means that if the 

PCU fails ("permanently at 1") the Test Tree will invert the result 

and make it a zero. All CCU tests would pass. 

If the Test Tree is faulty then the previous argument concerning 

the re-structuring of loops still applies. However, if the PCU 

itself has failed then this condition must be detected before any 

potentially infinite loops are entered. This is relatively easy to 

do. For example, in the PCU memory test described in the previous 

chapter the first action that is taken is to load one of the PCU 

registers with the bottom RAM address. This value is always 

non-zero. It is then possible to structure the code to perform a 

test using the PCU as follows :- 

1) Load PCU register with a non-zero value. 

2) Test the PCU register, if it equals zero then the test fails 

(conditional jump). 

3) Perform the Test. 

If the PCU itself is faulty then the current test will fail at 2 

since all PCU results will cause a conditional branch to be taken. 

If the Test Tree is faulty then the test will fail at 3) in the 

manner described for loops previously. 

Another problem of this type that occurs is if the most 
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significant device of the 4 X Am2903 bit-sliced ALU is faulty. The 

four sub-units are cascaded together as shown in Fig. 5.7. 

The most significant device is responsible for passing the 

results of any arithmetic operations to the aAm2904 Test Status 

Multiplexer. This then converts the values into a one bit test 

result which is conveyed to the CCU. These results consist of 4 

bits; the Z flag which is set to 1 if the result of an operation is 

zero and is zero otherwise, the N flag which is the sign bit, the C 

flag which is the Carry out and the O flag which indicates overflow. 

Using these four bits the Test Status Multiplexer can make any 

boolean comparison (=, NOT =, >, >=, <, <=) for both signed and 

unsigned values. If the m.s. device is faulty then the N, C and 0 

flags will all be “permanently at 1". There are two facts to be 

noted about this. First, this does not mean that all tests will 

automatically pass. For example, the N flag will be taken to be 

high by the Test Status Multiplexer so that all "less than zero" 

tests will pass but all "greater than zero" tests will fail. 

Second, the most significant device is jointly responsible with all 

the other sub-units for generating the Z bit, since the Z flags from 

each device are wire-ored together. All of the 4-bit outputs from 

each package must be '0000' for the Z flag to be high. This means 

that if the m.s. device has failed the Z bit will be "permanently 

at 1". However, consider the following case. Suppose a comparison 

is made. If the two values compared are equal (i.e. the result of 

a subtraction is zero) then the test being performed passes and 

fails otherwise. This would be coded as :- 

1) Make a comparison, jump to error code if NOT = 

2) Test passed, continue 
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Suppose the two values being compared are equal, but one of the 

bit-sliced sub-units other than the m.s. device is faulty. This 

will mean that the next bit-sliced device in the m.s. direction 

will receive a ‘'1' as its Carry-in. Hence its four bits will be 

'0001' rather than '0000', as they should be. The Z flag fed to the 

Test Status Multiplexer will be low so the test will fail. If the 

m.s- device fails then its Z% flag will be high. This will be 

wire-ored with the other three Z flags which are also high. The 

Test Status Multiplexer will assume that the comparison was 

successful. This would make the above algorithm pass when it should 

fail. If the methods developed already are used an algorithm would 

be obtained as follows :- 

Make comparison, if = jump to NEXT 

Jump to error 

NEXT Continue with the rest of the test 

This algorithm would also fail since if the m.s. ALU device 

were faulty then no error would be detected. So, an algorithm must 

be developed such that if two equal values were compared and the 

m.s- ALU sub-unit were faulty, then all test flags (Z,N,C and 0) 

would be "permanently at 1". The solution to this problem is quite 

simple, a value cannot be zero and negative, hence if N and Z are 

both high there is an error. The algorithm, therefore, is as 

follows :- 

1) Make Comparison, error if NOT = 

2) Make Comparison (again) if result is -ve then error 

3) Continue with the rest of the test 
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, The Am2904 Test Status Multiplexer is also responsible for other 

functions. One of these is the generation of a Carry-in bit for the 

ALU (Fig. 5.8). This value can come from several sources. 

Typically, it would be '0' if a value were being loaded into the ALU 

or an addition were taking place and a '1' if a subtraction were 

being performed. However, if the Am2904 were faulty the Carry-in to 

the ALU would always be high. This means that when loading constant 

values into the ALU a failure of the Am2904 would cause the message 

to be corrupted. This is overcome by ensuring that during assembly 

such constants are decremented by one with the Carry-in value set to 

a‘'1'. This means that it does not matter whether the Carry-out is 

operational or “permanently at 1". Addition and loading of 

non-constant values (i.e. data read from memory etc.) will still 

be incorrect. However, this will only cause tests to fail whereas 

invalid constants would result in incorrect messages being sent to 

the Operational Processor. 

5.3.2 Message Transmission 

It is vitally important whenever a test succeeds that a message 

is sent to indicate this result. Messages are sent via Peripheral 

Interface Adapters (PIAs). The normal method of accessing a PIA is 

by putting its address in the MAR and reading or writing a value 

from or to it via the ALU. If a successful test has been performed 

by certain sub-systems then those are the only functional units that 

can be assumed to be operational. This means that the CCU should 

depend on no other units to send a message to the Operational 

Processor. It is therefore necessary to have three sets of 

microcode; one section of code to send a message (and receive a 
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reply) using the ALU only, another using the PCU only and a third 

employing both the ALU and the PCU but without using the PCUTRAN. 

This means that the microcode for sending messages and receiving 

replies is very tedious and repetitive. It is performing the same 

task in three different ways. This is a necessary but inelegant 

requirement. However, this is a form of firmware redundancy. A 

faulty sub-system only prevents any messages generated by that unit 

from being sent. The Operational Processor can assume that any 

messages that are not received are due to the failure of the 

corresponding test. This duplication of code does ensure that 

successful test results produced by error-free sub-systems will be 

sent to the Operational Processor. 

Another deviation from the standard practice of sending messages 

via a PIA is required. Normally a PIA is initialised at the start 

of a power-up sequence in the processor. Thereafter it can be 

accessed whenever required. This initialisation sequence consists 

of writing values to the control and other registers in the PIA. It 

is possible that a faulty sub-system may try to access these PIAs 

and corrupt them. This could mean that an error-free unit might 

subsequently be unable to send an important message. It is 

therefore necessary for the PIAs to be re-initialised by the 

sub-system before it sends a message. Again, it is necessary to 

have three pieces of microcode to initialise the PIAs using 

different functional units to perform the task. 

It is also possible that a value read from the PIA is corrupted 

en route to the testing unit. If a message is sent and a reply does 

not arrive, then no further action can be taken other than to 
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provide a backup set of PIAs. This is discussed in Chapter 6. 

However, it is possible that the fault is in the Datapath and is a 

read-only fault. This would mean that messages are being sent but 

replies are not being received. It is important that the Faulty 

Processor should wait for a reply. If it sends two messages in too 

short a period then one may be lost due to the receiving processor 

not having time to process both messages. This means that in 

addition to having three separate pieces of code for sending and 

receiving messages, it is necessary for each of them to check the 

integrity of the data received. These tests are performed by 

examining the PIA control register (Fig. 5.9) [5.2]. The six least 

significant bits of this register should remain constant unless 

written to by the processor. The only bits that can possibly alter 

are the two m.s. ones which indicate whether replies to messages 

have been received. It is a simple matter to examine and test the 

six l.s. bits for comparison. A difficulty occurs when the PCU 

performs this test, since it has no 'AND' facility to mask out the 

two m.s. bits. This means that four comparisons have to be made 

corresponding to each permutation of the two bits. 

Once a fault in the PIA read mechanism has been detected a 

method must be devised to ensure that another message is not sent 

until the Operational Processor has processed the message. This is 

done by entering a delay routine. Unfortunately it is not posssible 

to use the ALU or the PCU to perform a count since they might well 

be faulty. The Am2910 microcode sequencer posseses an internal 

counter. This can be used to implement a delay subroutine entirely 

within the CCU. This counter is only 12 bits wide and, in practice, 

the delay needs to be greater than 4096 (2 to the power of 12). 

This means that the microcode must be tediously structured as 
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follows :- 

Load counter with x 

Decrement counter, repeat if NOT = 0 

Load counter with x 

n Decrement counter, repeat if NOT = 0 

times 

Load Counter with x 

Decrement counter, repeat if NOT = 0 

The above will obtain a delay for n*(x+1) microcycles. 

5.4 Summar: 

Several aspects of writing fault-tolerant microcode have been 

outlined in this chapter. It is necessary for the CCU to assume 

that faulty components will remain permanently at a certain binary 

value. The “permanently at 1" case is the most likely and also the 

easiest to simulate. 

In order to be able to detect all fault conditions it is 

necessary to perform fault checking during the timer interrupts. 

However, the structure of P-code is such that many errors will be 

detected before an interrupt occurs. 

The CCU (which is assumed to be operational) depends upon test 

results which may be faulty. Therefore, it is necessary to 

106



structure the microcode in such a fashion that the CCU cannot remain 

within an infinite loop. 

There are also problems associated with sending messages and 

receiving replies from the neighbouring processor. The solution to 

this involves firmware redundancy at the cost of inelegance of the 

microcode. This ensures that successful test messages are sent 

using only error-free units. 
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Chapter 6 

Conclusions and Proposals for Further Work 
  

6.1 Conclusions 

The fault-tolerant, bit-sliced microprocessors described in this 

thesis have been built and tested. With the exception of certain 

hardware problems within the processor implementation, the fault 

diagnosis and recovery procedures function exactly as predicted. At 

times, the hardware was susceptible to external noise. This can be 

a problem with a large, wire-wrapped, prototype system. 

The system was tested by removing packages from their sockets to 

simulate a fault. The diagnosis process would start and the 

Operational Processor would take over all system tasks. The 

integrity of the database was maintained by periodically updating 

the backup processor. Hence, a set of principles have been derived 

and put into practice. These could be adapted to implement any 

fault-tolerant, real-time system using bit-sliced components. 

Therefore, these principles are appropriate to all types of 

computer. 

The intentions of this project were to design and verify a 

fault-tolerance philosophy using bit-slice techniques. To this 

extent it has been successful. Also, a useful by-product has been 

that a fast and efficient Concurrent Pascal machine has been 

produced on which small operating systems can easily be written. 

It is interesting to constrast this project with [1.18] as 
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mentioned in Chapter 1. The approaches differ in two respects. 

First, the Super Sixteen processor contained no special-purpose 

fault-tolerant hardware. The firmware merely demonstrated the 

inherent redundancy within the machine. Second, the firmware was 

capable of diagnosing some faults within sub-systems other than 

those which used the actual bit-sliced devices. For example, the 

Datapath and the PCUTRAN. 

It is significant to note that a large amount of redundancy 

exists within the hardware of a fast processor such as the Super 

Sixteen. Only the firmware can utilise this redundancy. A level of 

fault-tolerance within a single processor has been achieved which is 
  

considerably greater than that which could be achieved by software 
  

alone. To achieve a similar level of fault-tolerance using 

software, it would be necessary to augment the hardware. 

Fault-tolerance firmware provides a half-way stage between no 

fault tolerance and a full MR _ system. If there is a need to 

improve the processor reliability without incurring the cost of a 

TR system, firmware techniques may be appropriate. Of course, this 

implies the use of a microprogrammable machine. It would be 

possible to implement fault-tolerance firmware on an existing 

machine by the addition of appropriate microcode.



6.2 Suggestions for Further Research 

Whilst engaged on this research project several ideas for 

further research in this field have occured to the author. These 

suggestions are divided into two categories. The first section 

contains improvements to the existing system. These are extensions 

to the work carried out to date but have not been pursued due to the 

limited amount of time available. 

6.2.1 System Improvements 

The system that has been built demonstrates the principles of 

achieving fault-tolerance through the use of bit-slice techniques. 

However, it could be improved as a working unit. 

To enhance the operating speed of the processor and minimise its 

susceptibility to switching noise it would be necessary to re-design 

the board layout. 

Although the Super Sixteen can diagnose a fault in the PCU, it 

cannot at present diagnose which of the four bit-sliced devices 

making up that sub-system has failed. It would be a reasonably 

simple matter to remedy this situation. The CCU would need to 

transmit values through the wnit and then forward them to the 

Operational Processor as a message. The Operational Processor would 

determine which one of the four 4-bit fields was corrupted. 

It was assumed throughout Chapter 5 that a faulty device would 

produce binary outputs of '1'. The reasons for this assumption were 
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given at the time, but it was stated that they were based on 

probability. It would be highly desirable for the system to be able 

to detect “permanently at 0" faults. This could be achieved by 

having two sets of microcode. To supplement the present code there 

could be a similar set of tests but they would assume the 

“permanently at 0" case. At the start of the diagnosis sequence the 

CCU would have to determine which set of tests to choose (Fig. 

6.1)- This could be achieved in a similar manner to that used to 

solve the problem with the PCU and the Test Tree described in 

Section 5.3.1. In other words the CCU would pass the value '0' 

through the ALU and then test to see if it had been altered. It 

would then re-test to see if it were non-zero. If both tests failed 

the “permanently at 1" microcode would be called. If they both 

passed then the “permanently at 0" code would be executed. If the 

results were both correct then the process would be repeated on the 

PCU to determine whether it was permanently at a certain value. As 

in previous examples, this is a form of microcode redundancy and is 

gained at the cost of elegance and compactness in the firmware. 

Because the Super Sixteen uses memory-mapped I/O a problem might 

arise. This would be if the memory board either failed completely 

or in such a way as to make the PIAs inaccessible. The Faulty 

Processor would be functioning correctly but would be unable to send 

any messages to its operational neighbour. The memory-mapped I/O 

facility is required in order to make test G in Chapter 4 possible. 

However, a set of backup PIAs, which were not memory mapped, could 

be provided. In other words, the processor would have direct access 

to these PIAs. They could be connected to the YBUS of the Super 

Sixteen. This would give both the ALU and the PCU access to them. 
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The practical work undertaken on this project has concentrated 

on faults within the processor. If the main memory circuitry fails 

then the Operational Processor is only aware of this basic fact. It 

has no information concerning which part of the memory has failed. 

The memory tests performed could be enhanced so that they determine 

the faulty memory addresses. A test could also be performed to try 

and detect whether the fault was in the most significant 8-bit 

memory board or the least significant one. 

6.2.2 Further Research 

At present the CCU is a functional sub-system whose failure 

would prove catastrophic to the fault diagnosis of the system. The 

first two suggestions in this section are concerned with remedying 

this weakness. 

Microcode memory consists of various fields of control data. In 

a normal microcoded machine the logical format of these fields would 

take no consideration of the physical boundaries of the ROMs on 

which they were stored. A set of fields controlling a sub-system 

might be scattered across several physical devices. A failure of 

any one of these, or the latches constituting the pipeline register, 

would cause all the wnits they were part-controlling to become 

inoperable. There would be no overhead or disadvantage in 

formatting these fields so that they occupied a single, or at most 

two, ROMs. No single physical device would hold code controlling 

more than one sub-system. This would mean that a fault in a single 

memory device within the CCU would only cause one sub-system to fail 

(Fig. 6.2). This fault would be diagnosed in the normal manner. 
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When repairing the sub-system the engineer would check that the ROM 

and latch controlling that sub-system were not faulty. 

The second suggestion for improving the CCU reliability is to 

use self-checking hardware. The microprogram sequencer could be 

modified by duplicating the sequencer and introducing a 

self-checking checker circuit to compare the outputs. This approach 

has already been taken in [1.18] and was mentioned in Chapter 1. 

The microcode memory and pipeline register could either be checked 

using the method of partitioning the microprogram fields, as 

mentioned above, or by using parity which has been employed in 

[1.18]. A fault-tolerant system clock could also be introduced. 

This could be achieved by using similar redundancy of hardware. 

If the CCU was totally self-checking and the Datapath devices 

were duplicated then the entire processor could be completely 

self-diagnosable for any single unit failure. The cost of the extra 

hardware compared to the total processor cost would be minimal, 

particularly when compared to some of the systems described in 

Chapter 1. If the CCU and the clock control circuitry were to use 

some form of Triple Modular Redundancy then the processor should be 

able to function to some extent, although at a slower rate, when any 

single fault is present. 

Several papers have been published on the pure mathematical 

theory of fault diagnosis [6.3 - 6.12]. These are all based on an 

original paper by Preperata et al. [6.2]. The theory investigates 

how many units can fail and still be diagnosed correctly by other 

operational ones within a system. The ALU/PCU analysis within the 

Super Sixteen can be used to draw an analogy with this theory. 

To:



There are three units; the ALU, the PCU and the PCUTRAN. If any 

one of them fails then the other two can effectively diagnose the 

faulty unit. It would be interesting to investigate how this theory 

could be applied in terms of bit-slice machines. It would be useful 

to determine whether the addition of further arithmetic units within 

a single processor would improve its reliability. It might be 

appropriate to use simulation in such an investigation. It would 

also be a logical development to determine whether multiple 

sub-system failures could be diagnosed. 

Another idea which merits further thought is the reconfiguration 

of the processor architecture at microcode level. If it were still 

possible for the processor to operate at a satisfactory speed then a 

reconfiguration could take place under certain circumstances. 

Normally, the microcode will make full use of all the facilities 

within the architecture available to it. However, under degraded 

conditions it could continue to function without using certain 

components. There is no reason why the CCU could not have several 

Decoders pointing to different blocks of microcode. Only one of 

these would be selected at any particular time. One Decoder would 

address the standard microcode. Another one would address a block 

of microcode which executed machine instructions without using the 

ALU, this would be selected in the event of its failure. There 

would be another block of code which did not use the PCU and also a 

section which used byte memory addressing only. 

Such a reconfigurable capability would require a significant 

duplication of microcode and would use large amounts of ROM. 

However, it would be possible provided that the speed of processing 

was still satisfactory. This would allow the processor to continue 
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functioning under degraded conditions. This might be useful in a 

medium to large multiprocessor system. The number of tasks 

performed by a faulty processor could be reduced but not entirely 

eliminated. It would still contribute to the running of the system, 

its individual performance would merely be degraded.
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