
The Design of a Real Time,

Fault-Tolerant, Multiprocessor System.

Volume 1 of 2.

Timothy Edwin Sharp.

Submitted for Ph.D. Degree.
The Computer Centre,

The University of Aston in Birmingham.

June, 1983.

The University of Aston in Birmingham

Summary

The Design of a Real Time, Fault-Tolerant Multiprocessor System.

Thesis submitted for Ph.D. Degree, 1983.

Timothy Edwin Sharp.

It is essential that real-time computers should be reliable.

The majority of methods used to achieve fault tolerance in such

systems employ a substantial duplication of hardware. This thesis

suggests an alternative approach by placing a greater emphasis on

firmware.

It is shown that a greater degree of control can be obtained in

a microprogrammed computer. Furthermore, this control can often be

maintained after a component failure. The use of bit-slice

components is proposed as a suitable medium for the implementation

of such a microprogrammed, fault-tolerant system.

It is also suggested that it is useful to overlay a high level

language onto the microcoded system. A suitable language,

Concurrent Pascal, is outlined. The architecture of the bit-slice
processor, which has been built and tested, is described.

A set of tests, performed at microcode level, to diagnose a

fault are proposed. It is shown that these tests depend upon the

cooperation of another error-free processor within the system. The

special problems which occur when running microcode on a faulty

processor are also discussed.

The final chapter concludes that the use of microcode to achieve

fault-tolerance can reduce the amount of hardware required.

Suggestions for further research are also included.

Keywords: Bit-slice, Fault-Tolerance, Concurrent Pascal.

Acknowledgements

First and foremost, I should like to thank Dr. Malcolm Walker,

my supervisor. The fact that he guided me through all the important

stages in this project, whilst still allowing me to conduct the

research in my own way, is much appreciated. Also, I should like to

thank Neil Toye for attempting to restore sanity to some of the

computing facilities and nearly always succeeding. I should like to

thank Geoff Clarke for wire-wrapping some of the hardware. Finally,

there are many people to whom I am grateful for their spiritual

guidance, but particularly John Runchman and Steve Jamieson.

List of Contents

Volume 1 - Main Text

Chapter 1 Introduction

1.1 Fault-Tolerant Computing

1.2 Dynamic Redundancy

1.2.1 Loosely-Coupled Systems

ore Tightly-Coupled systems

1.3 Static Redundancy

1.3.1 Triple Modular Redundancy

1.3.2 Self-Checking Checkers

1.4 An Alternative approach

1.5 Aims and Objectives

Chapter 2 Concurrent Pascal

2.1 Advantages of a High Level Language

2.2 Languages Considered

2.3 A Brief Overview of Concurrent Pascal

2.3.1 The Language

2.3.2 The Implementation

253.3 Adaptability

Chapter 3 Bit-Slice Hardware

3.1 The principles of a Bit-Slice architecture

3.1.1 Construction of a bit-sliced ALU

Ba lee A Simple Bit-Slice Architecture

3.1.3 An Advanced Bit-Slice Architecture

3.2 The Super Sixteen Processor

3.2.1 Origin of the Super Sixteen

3.2.2 Hardware Description

12

14

17

20

20

25

28

28

31

34

36

36

37

38

44

46

46

48

3.2.2.1 The Processor

3.2.2.2 Memory and Input/Output

3.2.3 Control of the Processor

Chapter 4 Fault-Tolerance Theory

4.1 A Multiprocessor Architecture

4.2 Microcode Tests - The Faulty Processor

4.2.1 The Arithmetic Units

4.2.2 The Datapath

4.3 High Level Test Evaluation - the Operational Processor

4.3.1 Problem Specification

4.3.2 The Solution

Chapter 5 Fault-Tolerance Implementation

5.1 Assumptions Made

5.2 Trapping of Errors

$.251 Normal Error Entry

5.2.2 Timer Interrupt Test Routines

5.2.3 Faulty Timer Interrupt Hardware

5.2.4 Faulty Mapping PROM Decoder

5.3 Microcoding Techniques

5.3.1 Faulty Test Results

5.3.2 Message Transmission

5.4 Summary

Chapter 6 Conclusions and Proposals for Further Work

6.1 Conclusions

6.2 Suggestions for Further Research

6.2.1 System Improvements

6.2.2 Further Research

vi

48

54

56

61

61

65

65

70

76

76

79

85

85

87

87

88

91

94

96

96

102

106

108

108

110

113

References

Volume 2 - Appendices

Appendix 1 The Software and Firmware Development System

1.1 Introduction

1.1.1 A Conventional Microcode Development System - The

AMD System 29

1.1.2 Facilities Available

1.2 The Concurrent Pascal Development System

1.3 The Microcode Development System.

1.3.1 Microcode Assembly

1.3.1.1 Using an Ordinary Machine Code Assembler to

Assemble Microcode

1.3.1.2 Producing a Loadable File

1.3.2 Producing a Mapping PROM

1.4 The PRIME-AMD Interface

1.4.1 The Motorola M6809 Microprocessor Board

1.4.2 Transfer from the PRIME to the Super Sixteen

1.5 Testing the Microcode

1.5.1 Intelligent Memory

1.5.2 The Logic Analyser

1.6 Disadvantages of this system vs. a conventional system

Appendix 2 The P-code Interpreter

2.1 Introduction

2.2 Initialisation

2.3 Environment Simulation

2.4 Code Interpretation

vil

10

10

10

15

16

18

18

20

21

24

23

24

26

26

26

31

36

2.5 Operational Details

2.5.1 P-code Utility Programs

2.5.2 Running the Interpreter

2.5.3 Interpreter Performance

Appendix 3 Interpreter Source Listings

Appendix 4 Microcode Development System User Guide

4.1 Microcode Assembly

4.2 Generation of the Mapping PROM File

4.3 Transfer to the Motorola and Programming EPROMs

4.4 Use of The Intelligent Memory

Appendix 5 Development System Listings

Appendix 6 Processor Logic Diagrams

Appendix 7 P-code Description

7.1 The P-code Machine

7.2 The P-code Instruction Set

Appendix 8 Concurrent P-code Documentation

8.1 System Data Structures

8.2 Subroutines

8.3 Monitor Policing P-code Instructions

8.4 Process Scheduling

8.5 Real-Time and I/O Instructions

Appendix 9 Microcode Source Listings

viii

40

40

42

45

46

90

90

93.

94

98

102

149

163

163

165

241

241

254

255

258

260

Appendix 10 Amendments to Concurrent Pascal

10.1 Sequential Pascal Programs

10.2 The io command.

Appendix 11 FTOS Documentation

Appendix 12 FTOS Source listings

Appendix 13 FTOS User Guide

13.1 The Command Interpreter

13.2 Fault Detection and Analysis

451

451

452

454

465

491

491

496

List of Diagrams

Volume 1

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Pig.

Fig.

Fig.

Fig.

1.1.

1.2.

1.3.

1.4.

= Main Text

Breaking a computer processor up into three conceptual

parts.

An example of a loosely-coupled multiprocessor

connection scheme.

An Example of a Tightly-Coupled Architecture.

Triple Modular Redundancy.

1.5 a). A non-redundant ALU.

1.5 b). An ALU implemented using TMR.

1.6.

1.7.

2.1.

2.2.

2.3.

2.4.

3.2.

3.3.

3.4.

3.5.

3.6.

Use of a self-checking checker to implement an ALU.

A one-bit self-checking checker.

The three levels of Software Development.

Implementation of a HLL.

A Monitor.

An Access Graph of two processes P1 and P2

communicating via a Monitor M.

A Gate.

A 16-bit ALU consisting of 4 X Am2903.

A Simple Bit-Slice Computer.

An Advanced Bit-Slice Architecture.

P-code Addressing Requirement.

Block Diagram of the Super Sixteen Processor.

Constructing a 16-bit memory with word and byte

addressing from 2 X 8-bit memory boards.

The Basic Redundancy of a High Speed Bit-slice

Computer.

4.2 a). Processor Status - Both processors non-faulty.

4.2 b). Processor Status - One processor Faulty.

21

23

33

33

33

39

45

45

50

St

55

63

63

63

Fig. 4.3. Transfer of data between the ALU and the PCU. 66

Fig. 4.4. Transfer of data through the Datapath. 71

Fig. 4.5. Access Graph for FTOS. 81

Fig. 4.6. Sequential/Concurrent allocation of FTOS functions. 83

Fig. 5.1. CCU/ALU/PCU Interaction. 92

Fig. 5.2. A Typical Concurrent P-code program stored in EPROM. 92

Fig. 5.3. A Concurrent P-code program with no procedures. 92

Fig. 5.4. Fault detection in the Super Sixteen 93.

Fig. 5.5. Function of the Mapping PROM Decoder. 95)

Fig. 5.6. PCU/CCU Interaction. 100

Fig. 5.7. Test evaluation in the bit-sliced ALU. 100

Fig. 5.8. Use of the Am2904 Test Status Multiplexer to generate

the ALU Carry-in. 105

Fig. 5.9. PIA Control Register. 105

Fig. 6.1. An algorithm for deciding whether to call "permanently

at 0" microcode or "permanently at 1" microcode. 112

Fig. 6.2. Partitioning of microcode in memory to achieve greater

reliability of the CCU. 114

Volume 2 - Appendices

Fig. 1.1. A Conventional Firmware Development Scheme Using the

AMD System 29 3

Fig. 1.2. A Microcode Development System Using The Facilities

Available. 8

Fig. 1.3. Logical and Physical Microcode Format. 17

Fig. 2.1. Initial Memory Structure. 27)

Fig. 2.2. Initial Parameter Structure. 30

Fig. 4.1. The Transfer Switch Box. 96

Fig. 7.1. Exception handling. 168

Fig. 7.2. The AND SET instruction. 173

7.10. The

7.11. The

7.12. The

7.13. The

7.14. The

7.15. The

7.16. The

7.17. The

7.18. The

7.19. The

7.20. The

721. The

7.22. The

7.23. The

8.1. Conc

8.2. Conc’

8.3. A Ga’

8.4. A pr

8.5. A Pr

8.6 Alloc:

8.7. Proc

8.8 Memor’

8.9. Allo

BUILD SET instruction.

CALL PROGRAM Instruction.

COPY BYTE Instruction.

COPY REAL Instruction.

COPY SET Instruction.

COPY TAG Instruction.

CASE JUMP Instruction.

COMPARE REAL Instructions.

COPY STRUCTURE Instruction.

ENTER PROCEDURE Instruction.

ENTER PASCAL PROGRAM Instruction.

ENTER CLASS Instruction.

ENTER MONITOR Instruction.

EXIT PROCEDURE Instruction.

FUNCTION VALUE Instruction.

INITIALISE CLASS Instruction.

INITIALISE POINTER VARIABLE Instruction.

OR SET Instruction.

PUSH ARRAY COMPONENT Instruction.

SUBTRACT SET Instruction.

TEST IN SET Instruction.

urrent Pascal Machine Memory

furrent P-code System Pointers.

te.

‘ocess Queue.

ocess Head.

ation of Process Data Space.

ess Data Space.

‘y-Mapped I/O Devices.

cation of Concurrent and Sequential P-code.

xii

173

178

181

181

183

184

193

195

195

200

202

204

242

244

244

246

246

249

249

250

List of Tables

Volume 1 -

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 4.1.

Table 4.2.

Volume 2 -

Table 4.1.

Main Text

am2903 Operand Source Control.

Am2903 Function Control.

Am2903 Destination Control.

PCU Register Assignment.

Non-pipelined execution of a typical P-code

instruction.

Pipelined Execution of a typical P-code Instruction.

The set of microcode tests performed by the

Faulty Processor.

Test Results and their Diagnosis.

Appendices

Exorciser Memory Assignment after Transfer.

40

41

42

50

57

58

74

72)

96

Chapter 1

Introduction

1.1 Fault-Tolerant Computing

Today, the applications of computers in real-time systems cover

a multitude of uses, especially since the advent of microprocessors.

Computers are entrusted with very important tasks. These include

process control applications in power stations, chemical plants and

oilfields and electronic applications in telephone switching

systems. Also, computers are used in space systems for controlling

satellites and deep space probes.

All of these real-time systems share one basic requirement. it

is vitally important that the control be reliable. In other words

the computer controlling them must continue to function correctly at

all times. In some cases this may be essential to avoid halts in

production. In spacecraft control a computer fault could mean the

failure of the entire mission. More importantly, in many cases it

could mean the loss of human life. It is for this reason that much

computing research has been aimed at producing fault-tolerant

computers ([1.1] and [1.2] for example). In line with any other

field of research, once a goal has been achieved further research

has been conducted to try to improve the original developments.

Several different approaches have been adopted to achieve

reliability in computer systems. These approaches have varied,

especially since the requirements of different fault-tolerant

systems vary. For example, a telephone switching system could

easily be repaired within, say, twenty-four hours, whereas a deep

space probe may have to work for up to ten years without any

maintenance. All of these approaches share one thing in common; to

achieve fault tolerance there must be redundancy in the hardware.

In other words extra hardware units must be added at some level so

that if one unit fails then the others will continue to operate.

There have been two basic approaches to this problem. The first

is termed dynamic or standby redundancy. This is where an outward

approach is adopted. No attempt is made to improve the reliability

of an individual processor or memory module. Processor units and

memory modules are duplicated and some of these units remain on

standby ready to take over if other units become faulty. The second

approach is known as static or masking redundancy. The philosophy

here is to adopt an inward approach. An attempt is made to improve

the reliability of a single processor by duplicating its individual

constituent components.

The following two sections in this chapter will discuss these

two approaches. Following this, a common weakness of these methods

is suggested and an alternative is proposed which will help to

remedy this problem. Finally, in this chapter, the general aims and

objectives of this project are presented.

1.2 Dynamic Redundancy

When dynamic redundancy is employed a single computer processor

is broken down into three essential parts; the processing unit, the

memory and a bus to communicate between the two (Fig. 1.1).

Dynamic redundancy makes no attempt to improve the reliability of a

single unit. However, all of these modules are duplicated. This

reduces the probability of a catastrophic failure since if one

component develops a fault then the system as a whole continues to

function. Furthermore, the probability that two identical units

will develop a fault during any given period is far less than the

probability that one such unit will be faulty. If many more

redundant units are added on to the system then multiple failures

can also be accommodated. There are two classes of dynamic

redundancy; tightly-coupled systems and loosely-coupled systems.

1.2.1 Loosely-Coupled Systems

A loosely-coupled system is one in which complete processors are

duplicated and operate with a degree of independence from one

another. Each processor has its own private memory which cannot be

accessed by any other processors although they would have some means

of inter-communication.

The simplest form of loosely-coupled system consists of a dual

processor architecture. One processing unit works in main mode and

the other operates in backup mode [1.3]. The main processor

performs all the functional tasks required. Whenever an alteration

to any vital system data is made the backup processor will be

informed. Therefore, the backup system keeps a complete record of

all the data stored on the main processor. This means that if the

main processor fails, then the backup unit can assume responsibility

and the system as a whole will suffer no loss of continuity or

availability.

However, this system is very limited since if a fault of any

kind develops then half the total processing power is immediately

lost. Furthermore, it may take an appreciable time to repair the

fault. There is no backup facility during this period. It is quite

possible that the one remaining operational processor could develop

a fault and thereafter no service would be available.

It is for these reasons that more recently developed

loosely-coupled systems have used more than two processors

{1.4,1.5]. The way in which they are linked together can vary

considerably. If there is a reasonably large number of processors

in a system then it will be impractical to connect every processing

unit to every other one. Generally, therefore, some subset

connection scheme is adopted whereby there is a limited number of

links. Not all processors would be able to communicate directly

with each other. Fig. 1.2 shows a typical example.

Needless to say, in such systems additional software is required

to control the processor interaction and make them appear to higher

levels as one complete unit.

One advantage of a loosely-coupled system is that if a processor

does fail then it will not have access to memory other than its own.

This helps to prevent propogation of errors. On the other hand, it

4

 ete al
PROCESSOR

MEMORY |

 Lace Poe
Fig. 1.1. Breaking a computer processor up into three conceptual

parts.

phe
aba oo

Fig. 1.2. An example of a loosely-coupled multiprocessor

connection scheme.

could be argued that since a processing module consists of a

processor and a memory then the fault will have occurred in either,

but not both, of these. This means that the complete processing

unit, which contains either an operational processor or an

operational memory, is disabled. Therefore, in hardware terms it

could be argued that a fault causes twice as much damage than

necessary-

1.2.2 Tightly-Coupled Systems

The second way that dynamic redundancy can be achieved is by

means of a tightly-coupled system. This is where a multiprocessor

consists of a common pool of processing units and a shared set of

memory modules. All processors will have access to any memory

module. The essential difference between a tightly-coupled system

and a loosely coupled one, therefore, is that the former has shared

memory and the latter does not.

The most common architecture employed within a tightly-coupled

system is one in which processors and memory modules are connected

by duplicated shared buses. Fig. 1.3 gives an example of such a

scheme, although many variations are possible [1.6].

A failure of any one unit (this includes a bus failure) means

that only a small part of the processor is out of service. However,

there are hardware problems since the memory modules must have a

separate port for each bus, i.e. a multi-port memory is required.

Also, there is a very real danger of a faulty processor "running

wild" and corrupting memory which is being used by other units. It

6

PROCESSOR PROCESSOR} PROCESSOR

Duplicated

Buses

MEMORY MEMORY MEMORY

Fig. 1.3. An Example of a Tightly-Coupled Architecture.

is for this reason that hardware protection registers are employed.

A processor would have to access a memory module via one of these

registers. The registers would contain preset upper and lower

addresses and they would not allow a processor to access an area of

memory outside this range. In other words each processor has a

section of memory which it is allowed to use and this protection is

enforced by hardware registers. Tightly-coupled systems thus

require extra hardware. On the other hand, they require less memory

than loosely coupled ones.

As with loosely-coupled systems there is an additional overhead

in terms of the amount of software needed to control the

multiprocessor. There are many control schemes. The processors may

be regarded as an anonymous pool of resources as in the Plessey

System 250 [1.7, 1.8, 1-9] or they may each have separate tasks to

perform as in the JPL-STAR [1.10]. Some systems use a combination

of tightly and loosely coupled schemes so that there will be a pool

of shared memory but each processor will also have a private store

[1.11].

1.3 Static Redundancy

An alternative approach that has been taken to achieve

fault-tolerance is to make single processors more reliable by

utilising intra-processor redundancy. Rather than duplicating

processors an attempt is made to maximise the internal reliability

of a single processor. There are two types of static redundancy;

Triple Modular Redundancy (TMR) and Self-Checking checkers.

1.3.1 Triple Modular Redundancy

If a computer is built using Triple Modular Redundancy (TMR)

then all vital components are triplicated. Also, a voting circuit

is added to allow the three identical wnits to ignore the output

from a faulty unit. In Fig. 1.4 there are three identical units;

U1, U2 and U3. The voter chooses their majority output. Normally,

if all wnits are non-faulty then all three outputs will agree.

However, if one unit is faulty then the voter will choose whichever

two outputs agree. If two or more units are faulty then the voter

may choose the incorrect outputs.

Although the failure of a single unit can be tolerated a fault

in the voter will cause the circuit to fail. Fortunately, the

structure of a digital computer is such that most components are

constantly passing values between one another. As an example take a

register and an adder (Fig. 1.5). In a normal non-redundant system

the register will produce one of the inputs of the adder and the

results of the addition will be placed back in the register. If the

register and the adder are triplicated then there will be six

9

Fig. 1.4. Triple Modular Redundancy.

 REGI ADDER
STER

Fig. 1.5 a). A non-redundant ALU.

 IADDER1

 ADDER2|

Fig. 1.5 b). An ALU implemented using TMR.

voters. Each one of these will be associated with the input to a

particular unit. If a voter fails then it will have the same effect

as if the unit it was feeding had failed. If, for example, in Fig.

1.5 b) the voter V1 failed then REG1 would contain incorrect data.

However, this fault would not propogate since the three voters

feeding the adders would mask out the incorrect data.

TMR is, in one sense, an ingenious solution since it requires no

additional software and can tolerate any single fault within each

sub-system. TMR can even be used at higher levels since the units

which were given as examples in Fig 1.5 could equally well have been

processors and memories [1.12]. TR, however, does require an

increase in hardware by a factor of greater than three. This is

because voting circuitry is required in addition to triplication of

units. This increase in hardware can increase the probability of a

fault occurring and although the system can tolerate this, it could

not withstand a multiple failure. In order to be able to tolerate

two faults of any description five units of each type would be

required. MR, therefore, although requiring no extra software,

requires a large increase in the amount of hardware.

1

1.3.2 Self-Checking Checkers

Another form of static redundancy which can be a useful aid for

fault-diagnosis is in the use of self-checking checkers [1.13]. In

this situation a functional unit within a processor is duplicated

but only one of the two units produces an output which is used by

other parts of the processor. The second redundant unit is used to

check the output of the first one, using a self-checking checker.

Fig. 1.6 gives an example of this using an ALU. A self-checking

checker produces one particular output if the two units agree and

another output if they disagree or the checker itself is faulty.

The circuitry becomes more complicated when comparing 'n' bits but

the manner in which it operates can be illustrated in Fig. 1.7.

This shows a self-checking checker for comparing the two bits x1 and

*2. %It can be seen by examination that if x1 = x2 then the outputs

(£1,£1') will be either (0,1) or (1,0). If the outputs (f1,f1') of

the checker are either (0,0) or (1,1) then either its two inputs are

unequal or the checker itself is faulty. A description of how this

is implemented for n-bit comparisons can be found in [1.14].

Unlike the other methods described so far in this chapter

self-checking checkers are used to assist in fault diagnosis rather

than fault tolerance. This is nevertheless useful for two reasons.

First, it is important to be able to detect and diagnose a fault

when it occurs in order to isolate it. Second, failed components

can be replaced more quickly, thus reducing the probability of

multiple faults. Self-checking checkers perform a similar function

to parity and error-code checks, both of which are well established

and documented [1.15]. However, self-checking checkers are more

reliable since they can detect faults of any multiplicity [1.14,

12

N

To other units in

the processor as

required.

SELF-

ALU1 ALU2 CHECKING | COMPARISON

CHECKER

Fig. 1.6. Use of a self-checking checker to implement an ALU.

be 1 xi x2 co

ee

f

. . . .

+

£1 £4"

Fig. 1.7. A one-bit self-checking checker.

AiG, 1-47n qalale

1.4 An Alternative approach

There are many variations on the basic themes described in the

previous two sections. However, it is hoped that this chapter has

outlined the various methods that can be used to achieve

fault-tolerance. All of the approaches discussed require a

disproportionate amount of resources to achieve fault-tolerance when

compared with normal systems capable of performing the same tasks

without fault tolerance. These methods always require additional

hardware to achieve redundancy and they may, in many cases, require

special software. Furthermore, a situation is rapidly reached where

the addition of further hardware produces very little increase in

reliability. The author believes that some so called non-redundant

systems contain a certain amount of duplication. This can be

regarded as a form of redundancy if used correctly. If this were

exploited fully it would help to reduce the amount of redundancy

required at other levels using the methods that have been described.

This section will attempt to outline the rationale behind this

statement.

Consider an ordinary computer processor which is made up from

thousands of components. A failure of any one of these will render

this processor useless although the vast majority of its components

are still operational. Since these components are mutually

interactive and dependant it would be impossible to isolate a fault

at this level. However, if a processor is regarded as being split

up into a few separate subsystems then the same argument can be

14

applied. A processor could, for example, be regarded as being split

up into a memory module, a bus, an arithmetic unit and a control

unit. If the memory bus were to become faulty then the processor as

a whole would be inoperable. However, the processor, consisting of

a control unit and an arithmetic unit would still be functioning

correctly. Once it is wumable to access memory to obtain the

instructions the complete processor becomes inoperable.

In the past it has been practical to regard a computer system as

being made up of two essential elements; hardware and software. An

additional, third element is used in many digital systems;

firmware.

If a computer processor employs a microprogrammed control

structure [1.19] then it will be arranged as follows. All

sub-systems within the processor such as the ALU, the memory, etc.

will be directly under the control of the Microprogram Control Unit

(MCU). The MCU consists of the microcode memory together with some

means of sequencing the accesses to this memory (the Microcode

Sequencer). Each word of microcode memory consists of a series of

bits (ones and zeroes) which will be routed directly to the

sub-system they are controlling. Since there can be many

sub-systems with several functions a fairly large number of control

pulses are required. The length of a word of microprogram memory

can be quite large when compared to main memory (usually between 64

and 128 bits). However, the number of words required is

comparatively small (typically between 1/2K and 4K). Consequently,

the addressing mechanism tends to be fairly simple.

There are two advantages to a structure of this type when used

15

with fault-tolerance. First, since the MCU is relatively simple in

terms of its addressing mechanism it is less likely to develop a

fault than other functional units. Second, if the main memory does

become inaccessible then the MCU offers an alternative source of

control. This source is located entirely within the processor

itself. Consequently, it may be able to make use of the sub-systems

within the processor that are still operational.

Some commercially available computers already employ a technique

known as micro-verification. This involves checking the hardware

status of the machine at microcode level. One example of this is

the current PRIME range of minicomputers [1.20]. The microverify

routines on the PRIME consist of a set of 11 tests. These are

always executed at the start of the power-on sequence. They can

also be explicitly called by the operator at the control console and

they are also called in the event of a processor parity error being

detected. If a test fails then the machine will halt and the number

of the failed test can be displayed on the front panel of the

machine (assuming it is still operational).

These tests consist of passing values through various registers

and of testing buses, ALU functions (add, subtract, shift etc.),

parity, the I/O bus, and main memory. These tests prevent a faulty

machine from being put into operation after being powered up, thus

preventing it from corrupting vital data in areas such as the backup

store.

1.5 Aims and Objectives

Microcoded control can take place to a limited extent under

degraded conditions on commercially available computers. This

indicates that it is a viable proposition to investigate its further

use in fault-tolerant systems. It would be useful to analyse

thouroughly the structure of a microcoded computer to see how its

architecture can be used to obtain a level of fault-tolerance. The

limited scope of a project such as this means that the amount of

time available is small. it is for this reason that two

specifications of the research to be carried out should be as

follows. First, only one existing computer architecture will be

selected and analysed rather than proposing a general theory of

fault-tolerance. Second, the research, when completed, will be in

such a state that it will be easy for subsequent researchers to

continue the work.

After a processor architecture has been selected and analysed a

basic fault-tolerance philosophy for this type of microcoded machine

will be derived. Following this, an attempt will be made to

implement it. It is felt by the author that this is important for

two reasons. First, since little work has been done in this field

it would be prudent to prove by experimentation that any principles

derived are correct. Second, it could be useful for future

researchers to have access to a working system. This could be used

as a vehicle for further research.

There are two ways in which the proposed research could be

carried out. The system can either be simulated or the appropriate

hardware can be built. Simulation is a powerful tool. However, it

17)

was rejected for the following reasons:-

1) Simulation requires powerful computing facilities. It was felt

that the level of detail involved in such a simulation would result

in considerably more computing power being required than was

available.

2) The structure of any processor, chosen for simulation, would

involve several layers. In addition to the hardware levels there

would need to be simulation of the microcode, machine code and

(possibly) the high level language. This could be a complex

structure to simulate.

3) It was felt that considerable benefit would be gained by

designing and implementing a processor, rather than merely

simulating the structure.

4) This processor would then be available for future work.

A means is required whereby a fault-tolerant computer system can

be built economically, but which uses an architecture that is

specific to requirements. One of the developments in commercial

microprocessors in recent years has been the advent of bit-slice

computers. Bit-slice elements allow a computer designer to

implement a processor from individual sub-systems. This can be done

using commercially available devices rather than buying a complete

“off the shelf" processor. In order to be able to define the

architecture of a processor completely the designer needs to be able

to specify the machine instruction set. Consequently, a

microprogrammed control structure is an inherent requirement of a

bit-slice processor. This would, therefore, make an ideal vehicle

on which to conduct the proposed research.

Some research has already been conducted in this area [1.18].

The approach that will be adopted here will vary from this earlier

work. First, the research already carried out used some additional

hardware. Second, a faulty sub-system attempted to analyse itself

by using its own internal components. The approach described in

this thesis allows a faulty sub-system to be analysed by external

functional units. Therefore, the difference between these two

approaches is that the fault diagnosis will operate at different

levels. More importantly, an attempt will be made to maximise the

degree of fault tolerance available from an existing architecture

without using any additional hardware.

The rest of this thesis describes the work that has been

undertaken. Chapters 2 and 3 describe the decisions that were made

in choosing a suitable design and also describe the system itself.

Chapter 4 describes the fault-tolerant. principles derived and

Chapter 5 outlines the problems that were found when an attempt was

made to implement them. Finally, a conclusion is presented in

Chapter 6.

Chapter 2

Concurrent Pascal

2.1 Advantages of a High Level Language

An important decision that had to be made at the beginning “of

this research project was whether the multiprocessor, when built,

should have the ability to support a High Level Language (HLL).

Since the hardware was to be built from Bit-slice components the

system programming could take place at either HLL, machine code or

microcode level (Fig. 2.1). A HLL programming capability does not

diminish the ability to program at other levels.

As one moves from a high to a low level there is a decrease in

software productivity and an increase in the amount of detailed

machine knowledge required. The advantages of programming in a HLL

are obtained at the expense of code efficiency. The amount of time

taken to process any given algorithm written in microcode is

significantly shorter even than in machine code but a detailed

knowledge of the processor architecture is needed. At machine code

level it is usual to require only an awareness of the register

transfers that take place within the computer. However, machine

code is still one and a half to two times faster in execution than a

good real-time language. If a HLL is used then virtually no

knowledge of the machine architecture is required. All that might

be necessary are any specific details that are peculiar to the

language implementation on the particular machine. It will be shown

in Section 2.3 and Appendix 11 that, in the solution eventually

adopted, these are negligible. The one level of software which

20

High Level

High Level

Language

Machine Code

Microcode

Hardware

Low Level

Fig. 2.1. The three levels of

Machine Independence

Speed of Software Development

Machine Dependence £

Processing Power

Software Development.

21

could not be entirely eliminated is the microcode level. This is

because whatever permutation of the three levels is used they must

be implemented in firmware.

If a HLL is implemented in microcode (Fig 2.2), as opposed to

machine code on a conventional non-microprogrammable processor, it

can be more efficient. This is because an optimum machine

instruction set can be chosen as the compiled and executable form of

the code. Furthermore, once the basic firmware implementation of

the HLL has been achieved it would be possible for much of the

development to be performed at a high level. This would make it

possible for any future researchers to continue with the project and

program the computer with no knowledge of the machine architecture

being required. The use of a HLL, therefore, would give an enhanced

rate of code development with the first steps being undertaken in

microcode and the latter stages using a HLL. The choice of whether

to use machine code need not be taken until the HLL has been

implemented. Once a HLL capability has been attained the ability to

program in machine code still remains. However, the use of machine

code is at the software designers discretion.

The use of microcode at low level can be used to advantage in

providing fault-tolerant test routines. If a set of fault-tolerance

routines are imbedded in the firmware and can be called from higher

levels then the effectiveness of these routines can be efficiently

evaluated. This can be done, for example, by calling them at

different times and in different orders. Again, this is merely an

option while the HLL is being developed. The software designer is

still able to write code at the microprogram level after a HLL has

been implemented.

22)

Fig. 2.2.

Operating System

and

User programs

Direct Use

Optional

HLL Machine | Fault-Tolerance
Code Firmware

the HLL)

T

|
Execution | (accessable from

|

Implementation of a HLL.

25)

Machine Code

Microcode

To summarise then, a HLL implemented in microcode minimises the

loss in processing power whilst retaining the speed of software

development attributed to such a tool. It would make the system

more approachable to new researchers. Also, it would allow certain

software design decisions, such as where the fault-tolerance code

should appear and the expandability of the system, to be deferred

until after the HLL had been implemented.

It was therefore decided that the processor should have the

ability to execute programs written in a HLL. One of the main

arguments which influenced this decision was that a microcode

implementation could be very efficient. It was felt necessary to

choose the HLL before the processor architecture was selected. This

was because an architecture which could efficiently execute the HLL

was required. The main indicator of whether a processor structure

is suitable is the run-time machine code produced by the HLL

compiler. It was therefore necessary to select a processor

architecture that was well matched to the run-time machine code.

This made the choice of a suitable HLL the next logical step in the

research.

24

2.2 Languages Considered

A suitable language for this type of project would be, as the

title of this thesis suggests, one designed for a real-time

application. Alternatively, a systems programming language could be

suitable. In order to achieve a working system within the

timescales allowed, it was important to choose a language which had

a readily available compiler and needed little effort to transport

it. Therefore, in the end, practical considerations prevailed in

choosing between theoretically equally matched languages.

Five languages were investigated for use on this project. They

were CORAL 66 [2.1], RTL/2 [2.2], MODULA [2.3,2.4,2.5], ADA [2.6]

and CONCURRENT PASCAL [2.7].

Coral 66 was the oldest of the languages. It has been a popular

real-time language for many years, especially in industry. It was

felt, however, that a more modern language with greater flexibilty

should be employed.

The second real-time language that was considered was RTL/2.

This was a language that was rapidly gaining popularity and was

quite suitable. It was more modern than Coral in its design

philosophy. There was also a good portable compiler available.

Another language that was considered was the most recently

designed of; the five; Ada. It was designed as a general-purpose

language and incorporated facilities normally found in both

real-time and system-programming languages. Unfortunately, Ada was

so new that no compiler existed and, although it would have been

25

highly suitable, it was immediately discounted.

The fourth language that was investigated was Modula which was

designed as an operating systems language and was based on Pascal.

The structure of the language was such that it was possible to

maximise the amount of software written in Modula and minimise the

amount written in machine code. Modula is a multiprocessing

language and embodies the concept of concurrent processes. At the

time of the investigation the author was not aware of the location

of any readily available compilers.

The final language that was considered was Concurrent Pascal

which was also based on Pascal. It was designed for implementing

small operating systems and was therefore suitable for the

application required. Again, like Modula, Concurrent Pascal is a

multiprocessing language. However, the multiprocessing concepts are

applied in different ways. It is beyond the scope of this text to

critically compare Modula and Concurrent Pascal but the author

preferred the approach to multiprocessing that the latter took.

Also, Concurrent Pascal was found to be more readable. These

factors, combined with the lack of availabilty of a compiler for

Modula, led the author to select Concurrent Pascal out of the two

multiprocessing languages.

Having eliminated Modula for the above mentioned reasons, Coral

on the grounds of its age and Ada due to the lack of a compiler the

author was left with a choice between RTL/2 and Concurrent Pascal.

The factor which eventually swayed the balance was not the high

level features of the languages but an aspect at a lower level. In

order to achieve portability both RTL/2 and Concurrent Pascal use

26

Intermediate Level Languages (ILL). The ILL used by Concurrent

Pascal, called P-code, is at a lower level than the one used by

RTL/2. P-code is actually a hypothetical machine code. This means

that it would not be necessary to design a machine instruction set

if Concurrent Pascal were used. This would mean that there would be

one fewer task to perform, thus allowing more time and effort to be

spent on the fault-tolerance aspect of this project. Designing a

machine instruction set to implement a HLL is difficult in terms of

achieving the optimum solution. Also, P-code is based on a

zero-addressing (or stack-machine) architecture which is

particularly efficient for the execution of a high-level

block-structured language such as Pascal [2.8].

Therefore, the use of Concurrent Pascal would ensure that by

writing microcode to execute P-code an efficient implementation of

the language could be obtained. This fact, coupled with the

relative ease of obtaining and transporting a compiler, led to its

selection as the HLL to be used. However, this choice virtually

closed another design option. P-code, although very suitable for

the execution of a HLL, should not be considered as a general

purpose programming language. This is because the programmer needs

to keep track of the current state of a frequently used stack.

Also, P-code makes many more memory (stack) accesses than a normal 1

or 2-addressing machine code. These memory accesses would occur in

any implementation of a block-structured language but not in

software written directly in machine code. There would therefore be

very little gain in processing speed obtained by writing software

directly in P-code. This meant that it was only practical to write

software at the HLL or the microcode level. This restriction did

not seem to be particularly important for two reasons. First, an

27

extremely efficient implementation of the HLL would be obtained.

This meant that some code requiring fast processing could be written

in Concurrent Pascal. Second, programs which would normally be

written in machine code could be implemented in microcode which is

faster.

2.3 A Brief Overview of Concurrent Pascal

2 1 The Language

In subsequent chapters a description of the high-level,

fault-tolerance software will appear. In this section a description

of the basic concepts of Concurrent Pascal will be presented.

Hopefully, this will help to give the reader an understanding of the

design decisions that were taken. For a more detailed description

of Concurrent Pascal the reader should consult [2.9].

Per Brinch Hansen, the designer of Concurrent Pascal claims that

his aims were to achieve simplicity, reliability, adaptibility,

portability, efficiency and generality. The language was designed

for implementing small operating systems, although Brinch Hansen has

stated that it could be used for larger operating systems. This has

been done to implement a time-sharing system in [2.10]. The

language is based on the well-known and popular Pascal programming

language. The language is structured so that the hub of the

operating system is written in Concurrent Pascal and all the user

and application programs are written in Sequential (ordinary)

Pascal. One of the main aims of the language is to ensure that any

time-dependent, and possibly non-predictable, errors caused by

concurrency cannot occur. To this end, the language depends very

28

heavily on the compiler to trap any such potential errors, thus

reducing or even eliminating them.

Concurrent Pascal extends Sequential Pascal by the use of three

concepts, Processes, Monitors and Classes.

A typical Concurrent Pascal program would consist of two or more

processes each one merely being a piece of code. All processes

would run concurrently. Thus, for example, one process might handle

input, another run user programs and a third handle output.

The main problem that occurs with concurrency is that of process

communication. In order to achieve this, processes must share data

in memory. However, if they attempt to write to a shared-data area

simultaneously then it may be corrupted. There are several means of

overcoming this, Concurrent Pascal uses Monitors as a solution.

A Monitor consists of some data (in the form of VAR

declarations) and some operations (in the form of Procedures) to

access this data. A process that uses a Monitor cannot access its

data directly, it can only call the operations that act upon this

data (Fig 2.3). To ensure that there are no concurrency problems,

only one process can use the Monitor at atime. If a Process

attempts to call a Monitor which is already being used then it must

enter a queue and await its turn to obtain exclusive access.

The way that Processes communicate to each other via Monitors

can be shown diagramatically using access graphs (Fig 2.4).

Therefore, in this way, only one Process can access a shared

29

data area at atime. However, a Process is unaware of the detailed

structure of the data. For example, a Monitor might consist of a

buffer (an array) together with a set of operations. There might be

an operation to read a item from the buffer and another one to

write to the buffer. It is because a Process is only aware of the

existence of data and not its structure that Monitors are referred

to as Abstract Data Types.

Because a Monitor call carries a large run-time overhead another

structure called a Class is also employed. This is similar to a

Monitor as it contains some data and a set of operations to act upon

the data. However, it is ensured at compile time that only one

Process has access to a Class. A Class therefore posseses the data

abstraction of a Monitor but it reduces the run-time overhead. This

concept has been adapted from the language Simula 67 [2.11].

There are also some Process scheduling facilities in Concurrent

Pascal. Suppose a Process calls a Monitor to read an item from a

buffer which is empty. A Monitor has the ability to Delay the

Process using a Queue which is simply another variable type. When

the buffer becomes full again (i.e. another Process puts data into

it) the Monitor has the ability to Continue a Delayed Process.

There also exists a real-time primitive called Wait which delays

the calling Process for one second, thus allowing long-term

real-time scheduling.

A Concurrent Pascal program has the ability to call a Sequential

Pascal program in virtually the same way as it might call a

Procedure. However, it is responsible for first ensuring that the

30

Sequential Pascal program is ready to run. For example, by reading

it in from disc into memory.

2.3.2 The Implementation

The implementation of Concurrent Pascal is somewhat different to

that of conventional sequential programming languages. For example,

an ordinary implementation of Pascal would only require some means

of executing P-code. This would be performed either using an

interpreter, a translator or by direct execution with microcode.

However, in addition, Concurrent Pascal requires a means of

executing its additional Concurrent P-code instructions. One

possible method is to write an interpreter for the Sequential P-code

and a Kernel for the Concurrent P-code. This classic approach was

adopted in the original implementation and also by most subsequent

users of the language [2.12, 2.13]. Brinch Hansen acknowledges that

interpretation results in a loss of efficiency which can be

eliminated if a firmware implementation is employed. It has already

been stated that this method would be adopted on this project. To

the author's knowledge this is the first approach of this type which

has been attempted, although firmware implementation of ordinary

Pascal has been achieved [2.13]. Also, [2.14] did adopt a

compromise approach of microcoding frequently used Sequential P-code

instructions.Therefore, it is felt that the implementation deserves

some mention as it adds an extra element of originality to the

project.

The implementation of the Sequential P-code was fairly

straightforward although time-consuming and is fully documented in

31

Appendices 7 and 9. The Kernel is the part of the microcode that

makes a single processor appear as a multiprocessor with one

processing unit for each process. This is done by multiplexing the

single available processor between the software processes defined in

the high-level program. The Kernel is also responsible for policing

Monitor usage, this is done by means of a structure called a Gate

(Fig. 2.5). This consists of a boolean variable called OPEN which

indicates whether the Monitor is in use and an array in which

Processes can be queued. If a Process calls a Monitor the Kernel

checks to see if it is in use. If it is, the caller is put in the

queue. Whenever a process leaves a Monitor the next one in the

queue is allowed to enter the monitor.

The Kernel is also responsible for the real-time facilities such

as the Wait directive and must therefore maintain a record of the

time. In addition, it is responsible for input and output.

Therefore, it can be seen that the Kernel constitutes the core

of an operating system consisting of process scheduling, shared-data

access policing, real-time facilities and input/output. The extra

operating system features required are overlayed onto this using

high-level Concurrent-Pascal code. Since parts of the operating

system are written in microcode they are very efficient. The

operating system interface between the high-level code and the

microcode is by means of P-code instructions (Enter Monitor, Leave

Monitor, Initialise process etc.). This notion of having low-level

scheduling operations that can be called from a higher level was

also adopted in the only other microcode implementation of a

scheduler that the author is aware of [2.15].

32

MONITOR

Data

PROCESS

rations

Fig. 2.3. A Monitor.

Fig. 2.4. An Access Graph of two processes P1 and P2 communicating

via a Monitor M.

OPEN

QUEUE

Fig. 2.5. A Gate.

33:

Therefore, the kernel is (in this case) a microprogrammed

implementation of the concurrent aspects of the language. It is the

part of the implementation that tends to be altered by new users of

the language in order to achieve any changes required [2.10]. It is

also, in this case, an unusual approach to writing an operating

system by using microcode. A detailed description of the Kernel can

be found in Appendices 8 and 9.

2.3.3 Adaptability

Concurrent Pascal had been originally designed to run on

minicomputers with many peripherals such as disc drives, paper and

magnetic tape etc. The implementation required here was on a

smaller system, as described in Section 3.2, whose only i/o was

either to a terminal or to another processor. In addition, it was

not possible to store Sequential Pascal programs on disc and read

them into memory before execution. All code, both Concurrent and

Sequential, was stored on EPROM. These were machine details that

were impossible to hide from the software programmer. They affected

two areas of the high-level software, namely the "io" command which

was responsible for input/output and also the mechanism for calling

Sequential Pascal programs. The project already required a

diversified knowledge of hardware, firmware and software.

Therefore, the author felt that it would not be practical to alter

the Concurrent Pascal compiler as well. Fortunately, Concurrent

Pascal proved sufficiently flexible to be able to alter machine

details without amending the language definition.

The input/output directive, io, is called with three parameters.

34

As a special case the compiler performs no type checking on these

parameters. It merely generates P-code to push them on the stack

and make an "io" call on the Kernel. This means that it was only

necessary to define the new i/o operations within the Kernel.

Meaningful names can be given to the values required as parameters

in the high level code using standard Pascal "type" and "const"

declarations. This approach was taken from [2.10].

The calling of programs also required no alteration to the

language, only its implementation had to be changed. Both of these

machine-dependent modifications are defined formally in Appendix 10.

35

Chapter 3

Bit-Slice Hardware

3.1 The principles of a Bit-Slice architecture

The term "Bit-Slice" is derived from the fact that a basic

processing element comes in a package with a small bit width. To

implement a larger wnit of the same description several of these

devices would be cascaded together. For example, to construct a

16-bit ALU, 4 X 4-bit sub-units would be used. These devices have

various inputs which control such factors as the function to be

performed, the data to be operated on and where the results should

be stored. For an ALU the functions would include adding,

subtracting, shifting right and left and so on. The data to be

operated on could come from internal registers or an external

source. If the former is chosen then the register number must be

specified. The outputs should also be to an internal register or an

external destination. Connecting the control inputs of these

devices to the microcode memory gives the microcode control unit

complete command over the operation of the ALU.

One of the main manafacturers of bit-sliced products is Advanced

Micro Devices (AMD) whose components were used in the design of the

hardware to be described. The following descriptions draw freely on

technical specifications from the Am2900 range of bit-slice devices.

Further details of these components are given in [3.1]. A further

description of bit-slice principles can be found in [3.2].

36

3.1.1 Construction of a bit-sliced ALU

A 16-bit ALU which has been constructed from 4 X Am2903

bit-slice devices is shown in Fig. 3.1. Since the four devices are

meant to act as one unit they must perform the same operation on

data from the same sources. The Am2903 has 16 internal registers

and any two of them can be accessed at a time. Accordingly, the

control pins of the Am2903 have 4-bit A and B register select fields

which indicate the register to be operated on. In order to make

sure that each device operates on the same registers the field

select control pins on each chip are connected together. There are

9 ALU function and destination control signals. These are

designated I0 to I9 and the corresponding pins on each package are

connected together. I0 to 14 control the function (add, subtract

etc.) and I5 to 18 determine the destination (whether to latch the

result into a register, whether to shift it, etc.). All these

functions are defined fully in Tables 3.2 and 3.3. The source of

data is defined by the Ea Ob and 10 signals which are connected

together on each device. The sources available are defined fully in

Table 3.1, they include an internal ALU register or one of the two

external Da or Db inputs. Typically, these would be connected to a

source such as the memory data register. Each bit-sliced device

would receive 4 bits of this data. Any outputs, as well as being

latched into registers, would appear at the Y outputs of these

devices. All of the control inputs described above are connected to

the microcode instruction register. This gives the microcode

complete control over the ALU.

Whenever there is a device boundary two things must happen to

make the ALU function correctly :-

37

1) Any data which overflows in an arithmetic operation in one device

must be added on to the value in the next most significant sub-unit.

Accordingly, the Carry Out (Cout) output of each device is connected

to the Carry In (Cin) input of its most significant neighbour.

2) Any data shifted out of one device must be shifted in to the next

one. Accordingly, the shift-out outputs of each sub-unit (SI03 =

Shift Out Left, SIO0 = Shift Out Right) are connected to the

shift-in inputs of its neighbour (SIOO = Shift In Left, SIO3 = Shift

In Right). This allows the ALU to perform 16-bit shifts.

The above is a simplistic description of how large units may be

constructed from smaller components and how the microcode controls

them.

3.1.2 A Simple Bit-Slice Architecture

A very simple bit-slice computer will consist of three basic

functional units; the Computer Contol Unit (CCU), the Arithmetic

and Logic Unit (ALU) and the main memory (Fig. 3.2).

The CCU consists of the microcode which is usually stored in

ROM, it is not related to main memory where the machine code is

contained. There must also be some means of sequencing the

microcode. This entails generating the next microinstruction

address, allowing for conditional jumps, subroutines and other

transfers of control. The cCU is at the heart of a bit-slice

computer. It directs all the other components by means of control

38

JewJo4
UOlpnuysulosI

I,

v
g

I-°r
|

930

@

in
A

A
A

===
lqpIs

IS
OOIS

EI
1S

i
Rs

oy
eS

uly
40)

wanes

0-€ sia
[
g
e
]

4-1 Sie
aa]

§-
sig

Foga
J
2-98

P
r
e

4 e0lheq
[
r
e
r

aoinag
e
e
e

Z D
i
a
g
]

1 ArAag
w
s

wv
v

v
77

)

‘a;
‘a

‘d
“a

‘a|
“a

a

“|
Aiouayy
o
r
i
g

A 16-bit ALU consisting of 4 X Am2903. 3.1. Fig.

39

Ea 10 OED ALU operand R ALU Operand Ss

Ts aay wae A-port Register B-port Register

b. iy) 2 A-port register DB

Gey A-port Register Q Register

BVLies DA B-port Register

Hach os DA DB

H H X ODA Q Register

Note

1) L = LOW, H = HIGH, X = DON'T CARE.

2) The Q Register is an extra internal scratch register

independent of the 16 RAM registers. It can be written to or

read from.

Table 3.1. Am2903 Operand Source Control.

40

H S
m
m
m

M
M

m
r

P
P

e
o

Note

H w H ix)

H H °

ALU Functions

L L L L Special Functions

L L L H Fi = HIGH

L L H x F = s’>R - 1+ Cin

L H L x F= R= § = 4+ Cin

L H H x F=R+S +Cin

H L L x Pras Cin

Heads. Sn x F=8S+Cin
H H L L Reserved

H H L H F=R+Cin

H H H L Reserved

en Hg) F=R+Cin
L L L L Reserved

L L L H Fi = Low

L L H x Fi Ri AND Si

L H L x Fi = Ri EXCLUSIVE NOR Si

L H H x Fi = Ri EXCLUSIVE OR Si

H L L x Fi = Ri AND Si

H L H x Fi = Ri NOR Si

H H L x Fi = Ri NAND Si

H H H x Fi = Ri OR Si

1) L = LOW, H = HIGH, X = DON'T CARE.

2) i= 0 to 3.

3) ALU Special Function details have been ommitted for the sake

of simplicity.

Table. 3.2. Am2903 Function Control

41

Note

Toei vieeL Onl oO Destination
L L L L Arithmetic Shift Right, store result in B-port

Register

L oL L H Logical Shift Right, store result in B-port Re

gister

Tey H L Arithmetic Shift Right, store result in B-port

Register *

Logical Shift Right, store result in B-port Re

gister *

e e m a
L H L L No Shift, store result in B-port Register

L H L H No Shift, result goes to YBUS only *

L H H L No Shift, store result in Q Register

iy 8 H H No Shift, store result in B-port and Q Registe

rs
H phe Ne L Arithmetic Shift Left, store result in B-port

Register

H L L H Logical Shift Left, store result in B-port Reg

ister
H L H L Arithmetic Shift Left, store result in B-port

register *

Logical Shift Left, store result in B-port reg

ister *

No Shift, result goes to YBUS only

No Shift, result goes to YBUS only *

Sign extend, result goes to B-port Register

No Shift, result goes to B-port Register

a e a =

m
m

m
o

m
m
m
 m

m
m
e
e

m
e
m
e

1) L = LOW, H = HIGH, X = DON'T CARE

2) Destinations marked '*' also shift the QO Register

independently of the main ALU results. Details have been

ommitted for simplicity.

3) Details of the sign extend facility and parity generation

have also been ommitted.

4) All results appear on the YBUS regardless of I8 - I5

Table 3.3. Am2903 Destination Control

42

signals directly connected from the current microinstruction

register to the control inputs of the various devices within the

processor.

The ALU is responsible for all the various arithmetic operations

required. These fall into three categories:-

1) Those that are implicit to a certain machine-code

instruction (e.g. "ADD", "SUB" etc.).

2) The generation of addresses for memory read and write

operations. This would include incrementing the program counter

before fetching the next machine code instruction. Also,

incrementing and decrementing the stack pointer.

3) The generation of any addresses explicit in a machine code

instruction.

The ALU receives control signals from the CCU such as the

operation required (Add, Subtract etc.) and the data sources

(memory, internal registers etc.). In return it sends back the

result of any operations (>0, <0, =0 etc.). This enables the CCU

to make conditional jumps based on these results.

Finally, the main memory is used to store the computer program,

consisting of machine code instructions, together with any data that

is required. It receives control signals from the CCU (memory

request, read/write etc.).

At the start of a power-on sequence the CCU instructs the ALU to

generate the address for the first machine-code instruction. After

this has been done a memory-read request is made. The first

43

instruction will then be read from memory. After this, a Decoder in

the CCU will translate its op-code into a microcode memory address.

This will correspond to the location where the microcode to execute

the current machine instruction is stored. After its execution has

taken place, the microcode sequencer will jump to the the fetch

cycle microcode. Typically, this would consist of incrementing the

program counter (a register in the ALU) or generating a jump

address, requesting a memory read and decoding the op-code as

before. The next instruction would then be executed and control

would continue in this manner.

3.1.3 An Advanced Bit-Slice Architecture

In order to produce a faster and more efficient processor the

technique of machine-code pipelining would be adopted in a bit-slice

architecture. This is achieved by adding two extra functional

sub-systems to the computer; a Program Control Unit (PCU) and a

Datapath (Machine Instruction Pipeline) as shown in Fig. 3.3.

The philosophy behind speeding up the processor is quite simple.

There are two Arithmetic Units, one generates the program counter

addresses and the other one performs the arithmetic operations

required by the machine code. This means that there is no need to

wait until the current instruction is executed before the next one

is fetched. It can be done simultaneously. This notion can be

taken even further since there are two steps involved in a fetch

cycle; forming the address and then reading the instruction. A

pipelined machine will be performing three functions at any one

time. It will be executing the current instruction, reading the

44

ALU Operation results

ALU Control signals

Main

Memory

Fig. 3.2. A Simple Bit-Slice Computer.

Memory Datapath

Addresses|

Exchange of

Data 5

PCU ALU

ccu

Arithmetic
Results

Fig. 3.3. An Advanced Bit-Slice Architecture.

45

ccu

Control Signals

to all Units

next one and generating the address for the succeeding instruction.

This process clearly speeds up the processor as long as _ the

machine code is reasonably sequential. If there are many jumps at

machine-code level then the advantage tends to be lost. Thi.s' -is

because the processor is not aware of the jump until the instruction

is executed. By this time the next instruction has been fetched and

the address for its successor has been generated. Both of these

must be discarded. However, a pipelined processor would still be as

fast as a non-pipelined machine even if every instruction was a

jump.

Because concurrency exists in the processor design another

sub-system is required. This would be where data, which has been

read from memory and is waiting to be processed, can be stored. To

do this the Datapath is introduced. This is merely a series of

registers in which values read from memory can be "pipelined" en

route to one of the ALUs or the CCU.

3.2 The Super Sixteen Processor

3.2.1 Origin of the Super Sixteen

The Super Sixteen processor was obtained from [3.2]. It had

been originally designed to demonstrate the principles of a

microprogrammed system. In particular, it used appropriate

techniques to maximise the processor's throughput. Accordingly, it

uses two arithmetic units; the main ALU and the Program Control

46

Unit (PCU) which generates memory addresses.

The Super Sixteen was chosen for three main reasons. The first

was its fast memory accesses. There is no time overhead involved in

memory operations provided that the address is generated two

microcycles before the data is required. This makes the Super

Sixteen particularly suitable for executing P-code with its large

number of memory accesses, particularly to the stack.

The second reason for the choice was its addressing modes.

P-code required 8-bit byte or 16-bit word addressing. All words are

accessed on an even boundary as shown in Fig. 3.4. The Super

Sixteen is capable of this.

The final reason was that machine-code pipelining and the

inherent requirement of an extra ALU introduced an element of

redundancy which could be used to achieve fault-tolerance. This

concept is discussed fully in the next Chapter.

Certain modifications to the original design were made, these

were due to the following reasons :-

1) There were errors in the original design.

2) The Datapath was configured for a 2-addressing instruction set.

P-code is a zero-addressing machine code.

3) Significant hardware difficulties were experienced with the

original memory board. This was replaced with a standard equivalent

used within the department. The new board included memory-mapped

47

I/O. It was therefore considered practical to alter the I/0.

4) The interrupt hardware was simplified by the introduction of

polling. This meant that the implementation of I/O was simpler. A

slight loss in processor speed might be obtained but this would not

affect the demonstration of fault-tolerance principles. Also, a

timer interrupt was introduced. This was necessary for performing

real-time scheduling which is a basic requirement of Concurrent

Pascal.

5) The CCU required test results from the PCU as well as the ALU.

3.2.2 Hardware Description

3.2.2.1 The Processor

The processor organisation is shown in Fig. 3.5, it consists of

five functional sub-systems; the program control Unit (PCU), the

Arithmetic and Logic Unit (ALU), the Computer Control Unit (CCU),

the Datapath and the Timer Interrupt Unit (TIU).

The PCU is responsible for generating memory addresses.

Normally, it only needs to push and pop the stack and increment the

program counter. However, occasionally, it must reload the program

counter (for jumps) and reposition the stack pointer (for example,

when exiting subroutines). The PCU, therefore, only needs to be

able to perform addition and subtraction operations. The Program

Counter (PC) and the Stack Pointer (SP) are represented by two

48

internal registers. To make the PCU more efficient three of the

internal registers permanently hold the numbers 1,2 and 4. This

allows an increment or decrement by these values to be made

internally to the PCU. Table 3.4 shows the detailed register

assignment.

The PCU is built from 4 X Am2901s in a similar manner to that

described in 3.1.1. It produces a Z-output which is '1' if the

result of an arithmetic operation is zero and '0' otherwise. This

boolean output is routed to the CCU via a Test Tree circuit, which

enables it to act on the results of conditional tests made within

the PCU.

The PCU can use either an internal register as a source or the

DA bus. This allows it to receive immediate data from the CCU or

values read from memory. Its output can be loaded into the Memory

Address Register (MAR) or transferred to the YBUS via the PCU

Transceiver (PCUTRAN).

The ALU sub-system is constructed from 4 X Am2903 devices and an

Am2904 Status and Shift Control Unit. The Am2903 has better

arithmetic facilities than the Am2901. For example, these speed up

multiplication and division. It has three external buses; the DA

bus, the DB bus (which is not used) and the YBUS. Both the DB bus

and the YBUS can be tri-stated and used as external inputs or

outputs. Immediate values from the CCU or data read from memory can

be input along the DA bus. Data output onto the YBUS can be latched

into the Data Register (DREG) for writing into memory or the

Transfer Register (TREG) for transferring to the DA bus or to the

MAR via the PCUTRAN. If the Y outputs on the Am2903 are not enabled

49

Word Address Byte Address

O
O
R
N
O

etc.

Fig. 3.4. P-code Addressing Requirement.

Register No. Assignment

Pc

SP

1

Current Concurrent Pascal Process Head Address

2
4

Scratch Register

Scratch Register

=15 Not Used (Wired Disable) O
B
I
n
u
r
h
w
n
a
d

Table 3.4. PCU Register Assignment.

50

al hee

TINN
TOMINGD Y3LNdWoD

ND GvOLL
JOUINOD

EQUS TX
TONLNOD|__

AYOW3H
G=avnt

y3INn0}
y3013

:

ales
e
e

s
t
a
y

A
V
N
A
d
T

a

LINO
LdgNUaLNI

uanyL
\

sey
Wyd0ud

peasy
OudIW

ay
x

a
4062 WY

|
|

orszwy
fF

4821
:

e
e

ee,
 [SMLVIS

g

)

woud)
w
a
t
e

sha
vo

(gsrey|
Y300030

zh
1

TINT
315907

ONVI
ee

els
P
i
e

inalaat
i

el
o
m
a

Tila
“
1

SLSWHITYY
vd

HOIV7)
31V9

ae
e
e

OBI Z
gau0Z

SIVIUAAHI
“a

e
e

a

ai
p
a
l

|
(HIV)

LINN
(HILV'1)

340
aVH

104 1NO}
eabiae

O3uZ
|

WVu90Nd
<

4
F

iq
Z.

AToway
wiep oy

~

Kjoway
UleW OL

sn@
vivd
v
s

Block Diagram of the Super Sixteen Processor. 3.5. Fig.

51

then they will become inputs. This allows data transferred from the

PCU via the PCUTRAN to be loaded into the ALU. The TREG can be used

to transfer data from the ALU to the PCU.

There are four operation result outputs produced by the ALU;

the Z, N, C and O bits. The Z-bit indicates whether the ALU result

is zero, the N-bit is the sign of the result and the C and O bits

respectively represent Carry-out and Overflow. These bits are

transferred to the Am2904. Here they are converted into boolean

values (>, >=, <, <=, =, NOT =) for signed and unsigned comparisons

for the test required by the Am2904 instruction signals. These

inputs are connected directly to the CCU. As well as being a Test

Status Multiplexer the Am2904 provides Shift Linkage and Carry-in

values for the ALU.

The 16-bit Datapath is mainly constructed from 2 X 8-bit

devices, most of which are latches. Any data read from memory is

received through the Z register (ZREG). This data can then be

routed onto the DA bus via the Z0 register (ZOREG) or to the CCU

Decoder via the ZI Register (ZIREG). From the DA bus, data can then

be routed to the ALU or the PCU. If the data is transferred to the

CCU Decoder then it is treated as an op-code. The Decoder is a PROM

whose address inputs are connected to the ZIREG and whose 8-bit data

outputs are connected to the Am2910 microcode sequencer. The

Decoders function is to convert an op-code into a microcode address

where it will be executed.

The CCU controls the order of the execution of

microinstructions. The Am2910 microprogram controller sequences the

microcode. It contains an internal incrementer. When no jump is

52

made the next microinstruction is fetched from microprogram memory

by incrementing the microprogram counter. In order to be able to

perform jumps the Am2910 can receive branch addresses from the

current microinstruction register. In order to be able to execute

machine code instructions the Am2910 is also connected to the

mapping PROM. When a “jump to map" instruction is executed the

am2910 loads up the microprogram counter with the current mapping

PROM value. This causes a jump to the microcode to execute that

instruction. The Am2910 also contains an internal counter for

performing fixed duration loops independently of any external test

results. The microcode memory is 96 bits wide and consists of 12 xX

8-bit EPROMs. The current microinstruction register, also known as

the pipeline register, consists of 12 X 8-bit latches.

The Timer Interrupt Unit (TIU) is a 16-bit counter consisting of

4X 4-bit sub-units. Whenever the counter reaches zero it causes an

interrupt. The interrupt bit disables the mapping PROM Decoder.

This means that the next time a "jump to map" instruction is

executed by the Am2910 it will cause the Sequencer to jump to a

wired-in interrupt address. An interrupt will only occur at the end

of the execution of a machine code instruction since this is the

only time that a "jump to map" instruction is executed. At the

start of the microcode interrupt sequence the TIU counter will be

reloaded with a value from the pipeline register corresponding to

the interrupt period. This causes the next interrupt to be

generated when the counter reaches zero again. The interrupt signal

is also routed to the Test Tree. This allows the CCU to detect

interrupts (by polling) when machine code is not being executed.

53

3.2.2.2 Memory and Input/Output

The author experienced hardware difficulties with the original

Super Sixteen memory design. It was decided that the best action

was to replace it with,a memory board based on a standard piece of

hardware used within the department. The original memory board had

a complicated timing and handshake mechanism. Much of this is no

longer used. However, since the timing signals are all

inter-dependent they still appear in the circuit.

The memory unit eventually used was based on a Motorola M6809

processor board which was used for microprocessor work within the

department [3.3]. The processor was removed and the board was used

as a normal memory. The M6809 board was only 8-bits wide and so two

such units had to be cascaded together to provide a 16-bit memory.

An extra board was built to select one or both of these depending on

whether a byte or word memory request was made (Fig. 3.6).

The memory board uses memory-mapping of I/O. This means that

each I/O device has a specific memory address. To access it the

processor merely performs a read or write to the correct location.

This makes I/O requests quite simple, they are merely a sequence of

Memory accesses. All I/O devices are 8-bits wide and appear on the

least significant of the two memory boards.

The memory contains 8K of RAM and 16K of EPROM in which

Concurrent and Sequential Pascal programs can be stored. It also

posseses an Asynchronous Communications Interface Adapter (ACIA)

wnich can be used to access a terminal and up to five Peripheral

Interface Adapters (PIA) to communicate with other processors. Only

54

m-s. 8 bits of
RAM and EPROM

M.S. BOARD

Memory

Requests 5 Memory

From Select
Processor

l.s. 8 bits of
RAM and EPROM,

ACIA and PIAs

L.S. BOARD

Fig. 3.6. Constructing a 16-bit memory with word and byte

addressing from 2 X 8-bit memory boards.

55

one of these PIAs is needed for a dual processor system. The logic

diagrams for the memory board appear in Appendix 6.

3.2.3 Control of the Processor

All parts of the Super Sixteen, including the CCU itself, are

under microcode control. Normally, the CCU is executing machine

code (P-code), there are four basic stages involved in this :-

1) Form the instruction memory address.

2) Fetch (read) the instruction.

3) Decode the op-code.

4) Execute the instruction.

As an example take a simple P-code instruction with no operands.

This would normally read two values off the stack, perform an

arithmetic operation on them (add say) and then write the result

back onto the stack. This could be implemented as shown in Table

3.5.

The structure of the Super Sixteen, however, makes several of

these operations concurrent. Also, the first three stages of the

next P-code instruction (Form address, Fetch, Decode) can be

executed simultaneously. This means that the control cycle would be

as shown in Table 3.6. Several points should be noted from this :-

1) More than 3 microcycles are saved as Tables 3.5 and 3.6 suggest.

This is because microcycles 1 to 3 would be executed concurrently

with instruction n-1. Therefore, with an instruction such as this,

56

Microcycle Operation

1 PC -> MAR

2 Memory Read Request

3 ZREG -> ZIREG and

Jump to Map

4 SP -> MAR

> Memory Read Request

6 ZREG -> ALU reg. x

oe SP + 2 -> MAR

8 Memory Read Request

9 ZREG + ALU reg.x -> DREG

10 SP -> MAR

44 Memory Write Request

Comment

Form Address

Fetch Instruction

Decode

Start of Execution :- Generate

Address for First Operand

Fetch First Operand

Store First Operand in ALU

register number x

Generate Address for Second
Operand

Fetch Second Operand

Execute Instruction

Generate Stack Address

Put Result on Stack

Table 3.5. Non-pipelined execution of a typical P-code instruction.

7

Microcycle

1

Table 3.6.

Operation

PC -> MAR

Memory Read Request,

PC + 2 -> MAR

Memory Read Request

PC + 2 -> MAR

Jump to Map

SP -> MAR,
ZREG -> ZIREG

Memory Read Request,

SP + 2 -> MAR

ZREG -> ALU register x,

Memory Read Request,

PC -> MAR

ZREG + ALU reg. x -> DREG

Memory Read Request,

SP -> MAR

Memory Write Request,
PC + 2 -> MAR,

Jump to Map

Comment

Form Address for instruction n

Form Address for instruction
n+1 and fetch instruction n

Fetch Instruction n+1,

Form Address for Instruction
n+2 and Decode Instruction n

Generate Address for First
Operand and move Instruction

nt+1 down the Pipeline

Fetch First Operand and

Generate Address for Second
Operand

Store First Operand in ALU

register x, Fetch Second

Operand and Form Address for

Instruction n+2

Execute Instruction,

Fetch Instruction n+2 and

Generate Address and Data for
Writing Result to Stack

Write Result to Stack,
Generate Address for
Instruction n+3 and Decode

Instruction n+1

Pipelined Execution of a typical P-code Instruction.

58

pipelining effectively halves the execution time.

2) The address for instruction n+2 is generated twice, once at

microcycle 3 and again at microcycle 6. It would, in this case,

save an extra cycle if the stack address was instead generated at

microcycle 3. However, at least half of the P-code instructions

have several operands following them in memory. These require the

program counter address to be in the MAR following the decode

operation. All P-code instructions are independently executed and

can appear in any order. It is therefore necessary to standardise

the Pipeline state at the start of the execution of each

instruction. It was decided to arrange the microcode so that all

P-code instructions could assume that the next memory word was in

the ZREG and the address of the word after that was in the MAR.

Each P-code instruction is responsible for leaving the processor in

the same state for its successor.

If there is a timer interrupt then the P-code “will be

interrupted when the next decode (Jump to Map) is performed. When

the CCU has finished serving the interrupt it must refill the

Pipeline in a similar manner to that shown in microcycles 1 to 3 of

Table 3.6.

In the event of a fault in some other functional unit being

detected the CCU can continue to operate. However, no P=-code will

be executed nor any decodes performed (unless testing the Decoder).

The generation of both P-code and microcode and their testing

requires quite a complex development system. A description of this

can be found in Appendices 1 and 4. Full listings of the microcode,

together with documentation appears in Appendices 9 and i

59

Chapter 4

Fault-Tolerance Theory

4.1 A Multiprocessor Architecture

The basic philosophy of using a microprogrammable machine, such as

the Super Sixteen, to achieve fault-tolerance is that the CCU

sub-system is the only functional unit whose failure would prove

catastrophic. ‘However, it is no use having an operational CCU

unless it has some computational facilities such as an arithmetic

capability. The architecture of the Super Sixteen is such that

these computational facilities will always be available to the CCU

provided that not more than one functional unit fails since it has

access to two arithmetic units, the ALU and the PCU. The essential

requirement of the theory to be described is that one of these wits

will be operational, even though the CCU is unaware of which one.

There is, therefore, a basic duplication of components in a

processor architecture such as this to achieve high performance.

However, in the event of a failure this can be regarded as a form of

redundancy to achieve fault-tolerance (Fig. 4.1).

In this chapter a method will be described whereby the CCU will

attempt to diagnose which functional unit has failed. To achieve

this the CCU must test each unit within the processor architecture,

this includes the main m

ry and the Datapath as well as both ALUs.

One or both of the ALUs must be used to carry out these tests. This

poses a dilemma. Until the tests have been evaluated it is not

clear which of the two ALUs is at fault. On the other hand the

tests cannot be analysed until it is known which ALU is operational.

61

Therefore, it would seem that a faulty processor may have the

ability to perform a set of tests at microcode level but it does not

have the ability to evaluate correctly these tests in order to make

a fault diagnosis. Consequently, a reliable means of analysing

these results must be defined.

Consider the computer system as a whole. Operating in real time

it will have a set of tasks to perform. The control of these tasks

is in the form of machine code (P-code) stored in main memory. It

may be that the main memory has failed or that the address

generation mechanism to access the main memory is at fault in which

case the machine code cannot be accessed. It would be unreasonable

to expect the microcode to assume all of these tasks on an already

degraded processor, in any case this would defeat the entire purpose

of having machine code and high level languages. There must be some

type of multiprocessor architecture whereby one or more processors

can assume the tasks of the faulty processor. In order to simplify

the multiprocessor architecture only one extra processor will be

used. In addition to taking over the tasks previously performed by

the faulty processor, the second processor could also perform the

function of evaluating the microcode test results.

Hence, the solution proposed is to perform a set of tests at

microcode level within the faulty processor. Their results can then

be passed to another processor which will evaluate them at HLL level

and, hopefully, diagnose the fault. It would be useful at this

stage to define some terms of reference (Fig. 4.2).

A fault is defined as a failure of a component within a

functional subsystem which causes it to operate incorrectly. A

62

ALU1 (PCU)

ccu

ALU2 (ALU)

Fig. 4.1. The Basic Redundancy of a High Speed Bit-slice Computer.

PROCESSOR 1 PROCESSOR2

Monitor Periodic . “|Monitor
Mode Messages Mode

System tasks Standby

Fig. 4.2 a). Processor Status - Both processors non-faulty.

PROCESSOR 1 PROCESSOR2

Faulty Test Operational

Mode Results Mode

Microcode Tests Test Diagnosis

and System Tasks

Fig. 4.2 b). Processor Status - One processor Faulty.

63

single fault will cause only one sub-system to fail. A multiple

fault will prevent several functional units from operating as

required.

The Faulty (or failed) Processor is the processing unit which

has a fault and is attempting to perform a set of microcode tests.

The Operational Processor is that which is error-free and has

assumed all the tasks performed by the Faulty Processor and is also

evaluating the test results generated by it.

The Main Processor is the processor which performs all the

real-time tasks required of the system. In an error-free

two-processor system this could be either processor, if there is a

fault present in the system then clearly it will be the Operational

Processor. This corresponds to the traditional main/backup

real-time fault-tolerance approach.

The Backup Processor is on standby should a fault occur. If the

Main Processor does fail then it will become the Main Processor and

assume all the system tasks.

If the system is error-free then both processors will be in

monitor mode. This is completely independent of the main/backup

status of the processor. A processor in monitor mode listens for

periodic messages from its neighbouring processor in order to make

sure that it has not failed. If a fault occurs in the backup

processor then this will be diagnosed in the same way as a failure

in the main processor, the only difference being that transfer of

task responsibility does not take place.

64

4.2 Microcode Tests - The Faulty Processor

This section describes a set of microcode tests the results of

which will uniquely determine certain fault conditions within the

processor. These tests will apply to single failures and it is

assumed that multiple faults are not present.

4.2.1 The Arithmetic Units

Although the Super Sixteen uses the PCU to generate memory

addresses and the ALU to produce memory data it is often useful in

practice to be able to exchange these roles. For this reason, the

Super Sixteen incorporates the PCUTRAN which allows the transfer of

ALU data to the MAR and PCU values to the DREG. In addition the

PCUTRAN, together with the TREG, can be used to convey data between

the two arithmetic units. Fig. 4.3 shows this section of the Super

Sixteen.

The facility of being able to use either Arithmetic Unit for any

purpose and the capability to transfer data between them is very

useful from the point of view of fault-tolerance since they can be

used to test each other. Also, memory tests can be performed with

all permutations of two out of the three functional units (ALU, PCU

and PCUTRAN). If there is only one fault present then the only test

that will pass will be the one that does not use the failed unit.

This means that it will be a straightforward matter to diagnose the

fault. If the main memory, which is being tested, is faulty then

this can also be detected since all three tests will fail and no

other single functional unit failure would cause all of the memory

65

Fig.

PCU

TREG

TEST
TREE

4.

3

MAR

PCUTRAN

x

TEST
MULTI-
PLEXER ALU
(Am2904)

AN

x \
4: 7

DREG

Transfer of data between the ALU and the PCU.

66

tests not to pass.

To clarify the situation the three tests are as defined below :

Test A

Without using the PCUTRAN, test the memory using the PCU to

generate addresses and the ALU to produce and evaluate other data.

Test B

Without using the PCU, test the memory using the ALU and the

PCUTRAN to generate addresses and the ALU to produce and evaluate

other data.

Test C

Without using the ALU, test the memory using the PCU to generate

addresses and evaluate data and the PCU and the PCUTRAN to produce

data.

If the PCUTRAN is faulty then test A is the only one that will

Pass since it is the only test that does not use that unit.

Similarly, only test B will pass in the event of a PCU failure and

only test C will pass if the ALU is faulty. If all three tests fail

then the PCU, the ALU and the PCUTRAN are all in agreement that the

memory is faulty. If a notation is adopted whereby a boolean

variable indicates whether a test has passed or not then their

results canbe shown using an appropriate expression. For example,
easy en

af s=

“ones 67

"A' indicates that test A has passed

and ‘A' indicates that test A has failed

then A.B.CT means that tests A,B and C have all failed.

Having defined a set of tests and a notation to represent their

outcomes the argument stated above can be re-iterated in a concise

manner :-

A.B.T Indicates a memory failure.

A.B.C Indicates a faulty PCUTRAN.

R.B.t Indicates a faulty PCU.

B.C Indicates a faulty ALU.

Since none of the three tests use the TREG its failure will not

be detected. It is therefore necessary to introduce a further test

which will detect this condition.

Test D

Pass some data from the ALU to the TREG, through the PCU and the

PCUTRAN and back to the ALU. Use the ALU to see if the value is the

same after its passage through the machine.

Although the first three tests defined above will diagnose any

fault within the ALU or the PCU they will not identify the specific

component within that functional unit that has failed. For example,

if the ALU is diagnosed as faulty then this might be due to the

68

actual arithmetic unit (4 X Am2903s) being faulty or it could be

because the Test Status Multiplexer (Am2904) has failed. Similarly,

if a fault is diagnosed within the PCU it might be the aAm2901

devices that have failed or it could be due to a faulty Test Tree.

Test D combined with the other three tests will diagnose the

fault within the PCU. This is because a faulty PCU will cause test

D to fail as well as tests A and C since it requires the PCU to

transmit the value through it. However, if the Test Tree is faulty

then test D will pass since it does uct use this unit (Test A will

also pass).

However, to diagnose a faulty Test Status Multiplexer within the

ALU another test must be defined. This test, like the PCU in test

D, requires the ALU to pass a value without making any comparisons

on it. This raises the question of where the value should be

checked. Since the purpose of the test is to avoid using the Am2904

Test Status Multiplexer it cannot assume this responsibility.

However, the Faulty Processor already transmits the results of all

tests to the Operational Processor (in the form of message codes).

There is no reason why the actual value used in the test could not

be transmitted to the Operational Processor which would then decide

whether it was correct or not. The test, therefore, is defined as

follows :-

Test E

Pass some data through the ALU and across to the Operational

Processor. The Operational Processor will examine this value to

check whether it has been corrupted.

69

A faulty Test Status Multiplexer will be detected by the

outcome :—-

since C and E are the only tests which do not use it.

4.2.2 The Datapath

With the set of five tests described in the previous section any

fault in the ALU, the PCU or the transfer devices (PCUTRAN and TREG)

can be uniquely determined. It has also been stated that a faulty

memory can be diagnosed. This is a rather broad generalisation

since a memory failure could be due to a faulty Datapath within the

processor itself. A closer examination of the Datapath (Fig. 4.4)

reveals that a more detailed diagnosis can be made.

Most of this sub-system is constructed from 2 X 98-bit devices

cascaded together to form 16-bit registers. One possibility is that

one of the m.s. devices in the Datapath has failed and not the

Memory. Since the Super Sixteen can perform byte memory addressing

a fault in one of the m.s. components can be detected because

accessing the memory in this mode will only require the use of the

l.s. devices in the Datapath.

Therefore, another test must be defined :-

70

Fig.

Se
.

DREG

ALU

ZOREG

PCU/ALU

MEMORY

DECODER!

ccu
4.4. Transfer of data through the Datapath.

Test F

Perform a memory test using byte addressing only.

If a faulty memory is detected and test F passes (denoted by

R.B.C.D.E.F) then one of the m.s. devices in the Datapath has

failed.

However, there still remain two further possibilities :-

1) The ZREG is not faulty but the ZOREG has failed, thus

causing all memory tests to fail.

2) Both the ZREG and the ZOREG are functioning correctly but

the ZIREG or the Decoder is faulty. This would cause all

memory tests to pass.

A test must be defined which checks the route from the ZREG to

the CCU via the ZIREG and the Decoder. This test depends upon the

co-operation of the Operational Processor. A machine-code

instruction is defined, the function of which is to send a message

to the Operational Processor. The test then has three stages :-

Test G

1) The Operational Processor sends the op-code of this machine

instruction as a message to the Faulty Processor.

2) The Faulty Processor receives the message and routes it via

72

the ZREG to the ZIREG and the Decoder.

3) The Faulty Processor will attempt to execute the

instruction, if successful it will send a message back to the

Operational Processor.

If test G passes then it proves that the ZIREG and the Decoder

are functioning correctly. This means that a faulty ZOREG will

result in the test sequence :-

If the m.s. part of the ZOREG has failed then test F (byte

test) will pass but the test will fail if the l.s. half of the

ZOREG is faulty. If the ZIREG or the Decoder is at fault then the

test outcome will be :-

A.B.C.D.E.F.G

A complete list of the tests that are performed are given in

Table 4.1. A complete list of all the possible diagnosable faults,

together with their test outcomes, is given in Table 4.2.

73

Test Description

A Test memory using the ALU to produce write-data and
evaluate data read back from memory and using the PCU
to generate memory addresses. The PCUTRAN is not
used.

B Test memory using the ALU to produce write-data and
evaluate data read back from memory and using the ALU
to generate memory addresses, loading the MAR via the
PCUTRAN. The PCU is not used.

SC Test memory using the PCU to produce write-data and
to evaluate data read back from the memory and using
the PCU to generate memory addresses. The PCUTRAN is

used to load the DREG. The ALU is not used.

D Pass a value from the ALU to the TREG, through the

PCU and the PCUTRAN and back to the ALU. Use the
am2904 Test Status Multiplexer to test whether the
value has been corrupted.

E Pass a value through the ALU and across to the
Operational Processor which tests whether it has been

corrupted or not.

F Perform a memory test using byte addressing only.

G The Operational Processor sends an op-code as a
message to the Faulty Processor. If the message has
been received then the Faulty Processor sends a
message back.

Table 4.1. The set of microcode tests performed by the Faulty
Processor.

74

Test Results

B.B.C.D.E

A.B.C.D.E
4.5.c.D.E

Diagnosis

PCU Failure (Am2901)

ALU Failure (am2903)
PCUTRAN Failure
TREG Failure

Test Tree Failure
Test Multiplexer Failure (Am2904)

ZREG (m.s.), DREG (m.s.) or ZOREG (m.s.) Failure
Memory, MAR, ZREG (l.s.) or DREG (l.s.) Failure

ZOREG (m.s.) Failure
ZOREG (1.s.) Failure
ZIREG or Decoder Failure

Table 4.2. Test Results and their Diagnosis.

75

4.3 High Level Test Evaluation - the Operational Processor

Having defined a set of microcode tests to be performed by the

Faulty Processor it is now necessary to define the functions to be

performed by the Operational Processor using a High Level Language

(Concurrent Pascal). This includes the real-time tasks required of

the system when no faults are present.

In [2.9] Brinch Hansen uses example operating systems to

describe Concurrent Pascal and how it can be applied. A similar

approach is used here to describe the high level fault-tolerance

operating system (FTOS) written for this project. The main aim of

this section is to familiarise the reader with the high level

concepts employed but it is hoped that a useful bi-product will also

be to detail further the concepts of Concurrent Pascal.

4.3.1 Problem Specification

Since this project is concerned with the fault-tolerance aspect

of a multiprocessor system the other functions required by the user

are not especially important. However, whatever these functions

are, one requirement will remain in any fault-tolerant system.

There will be a database containing some information and it will be

vital that its integrity be preserved. This will be done by using

the classical approach of having one processor in main mode and its

neighbouring processor in backup mode. A set of operations on this

database will be defined which will only be executable on the main

processor. Whenever an update is made a message will be sent to the

backup system to perform the same task. Since, in this case, any

76

user interface defined is merely for the purposes of demonstrating

fault-tolerance it must be easy to change without altering the rest

of the system. Fortunately Concurrent Pascal is very modular so

this poses no difficulties.

The fault-tolerance aspect of the problem consists of updating

(or receiving updates to) the database and of being able to detect

and analyse a failed neighbour processor. The Backup processor must

be able to assume control, thus becoming the Main Processor. When

the user notifies the Main Processor it must re-accept a repaired

standby unit.

The fault detection is achieved merely by the processors sending

messages to each other in turn. If a message is not received within

a certain time then it is deemed to have failed and the fault

analysis will start.

All that is required in terms of fault analysis is to receieve

the messages that are sent from the Failed Processor and, when the

sequence is complete, to evaluate the results and output the

diagnosis. The evaluation of the test results is merely a sequence

of boolean comparisons. There is no need for the user to be aware

of the fact that the processors are communicating. He only needs to

receive information about the fault tolerance of the system should

there be a failure. If this occurs he will be informed (by the

Operational Processor) that there has been a failure and, if

possible, the location of the fault.

The user functions chosen to be implemented were based on a

simple database containing oil well details; their name, location

Th

and size. A set of operations were defined on the database :-

Well Status (W) Command

Display the database contents at the terminal.

Change (C) Command

Change an entry.

Delete (D) Command

Delete an entry.

Insert (1) Command

Insert a new entry.

In addition, two other operations were required :-

Processor Status (P) Command

Output the System status at the terminal i.e. is the processor

in main or backup mode and is its neighbouring processor operational

or faulty.

78

Re-instate (R) Command

Re-instate the neighbouring processor. This would be called on

the Operational processor after the Faulty Processor had been

repaired to indicate to the system that it should now be regarded as

being functional again.

The Change, Delete, Insert and Re-instate commands are only

available in main mode.

4.3.2 The Solution

The first step taken in achieving a solution to this problem was

to analyse the tasks required, remembering that concurrency of

functions was available. The tasks that need to be performed by the

system are as follows :-

1) The User Functions.

2) Communication with the neighbour processor.

3) Detection and Analysis of any faults in the system.

It would therefore be logical to make each of these functions a

separate Concurrent process. The next problem to be considered is

how these processes need to communicate with each other :-

1) The USER process needs to be able to communicate with the

fault detection and analysis process (call it DEBUG) to

assertain whether the processor is in main or backup mode. nx

also needs to be able to communicate with the COMMUNICATOR

process to update the Backup Processor when necessary. This

79

should only take place when the Backup Processor is not faulty.

Therefore, it seems reasonable to inform the DEBUG process

when an update has been made and allow it to decide whether or

not to inform the Backup Processor. Consequently, the USER

process does not need to communicate directly with the

COMMUNICATOR process.

2) The DEBUG process needs to communicate with the COMMUNICATOR

process.

3) Both the USER and the DEBUG processes require access to a

terminal.

The system interactions are displayed in Fig. 4.5 in the form

of an access graph. It appears from this as though USER and DEBUG

have access to individual terminals. This is also how it appears in

the Concurrent Pascal program since both processes have their own

copy of the TERMINAL class. However, before accessing it they call

the RESOURCE monitor which delays the process if the terminal is

already in use, thus ensuring that only one of them will use it at

any one time.

The WELL UPDATES monitor contains the .database and also some

Other essential system information such as the main/backup mode and

the neighbouring processor faulty/operational status. The NEIGHBOUR

monitor is used to transfer message requests. PROCCOMM is merely a

set of routines for sending and receiving messages.

The final step in designing a solution to this problem is to

80

PIA VOU VDU

c)PROCCOMM) ERMINAL (yea

NEIGHBOUR RESOURCE

COMMUNICATOR USER

WELL UPDATES

Fig. 4.5. Access Graph for FTOS.

81

decide which part of each process should be implemented in

Concurrent Pascal and which should be implemented in Sequential

Pascal (Fig. 4.6). Since the user functions should be easy to

modify it is convenient to write them as a Sequential Pascal

program. To alter them it would only be necessary to re-write this

program. However, there must be a set of routines imbedded in the

USER process in Concurrent Pascal to perform the following :-

1) Communicate with the terminal.

2) Read and write items from the database.

3) Read system information (main/backup mode etc.) and set the

operational mode of the neighbouring processor in the event of

the Re-instate command being invoked.

4) Inform the DEBUG process that an alteration to the database

has been made.

These routines can be called from the Sequential Pascal program.

In Concurrent Pascal terminology they are known as "prefix

procedures’.

The DEBUG process has two functions. If the neighbouring

processor is operational then it has to detect a fault. Once this

has been done it needs to perform the analysis. The process of

fault detection merely consists of sending and receiving messages.

This is a mutual operation since both processors are performing

fault detection on each other. If a message is not received within

a certain time then the neighbouring processor is assumed to be

82

USER Continuous

Process | loop calling

Command

Interpreter

USER 1) I/O to

Prefix terminal
Procs. 2) Database and

System info.

Access

3) Update Backup

Command | Process
I'preter| User

Requests

Fig. 4.6.

N

Concurrent

Pascal

Sequential

Pacal

83

DEBUG

Process

DEBUG

Prefix
Procs.

Diagnosis

Program

Fault Detection
and calling

of Diagnosis

program

1) I/0 to
terminal

2) I/0 to
neighbouring
Processor

Fault

Diagnosis

Sequential/Concurrent allocation of FTOS functions

faulty and the analysis starts. The fault detection is fairly

straightforward and does not merit a Sequential Pascal program.

However, the fault analysis is more involved and could be altered as

the fault-tolerance firmware evolves. Therefore, this should be

written in the form of a Sequential Pascal program. This program

should have access to prefix procedures to perform the following :-

1) Communicate with the terminal.

2) Send and receive messages (via the NEIGHBOUR monitor which

acts as a postbox to the COMMUNICATOR process).

The Communicator process merely examines the NEIGHBOUR monitor

for message requests and sends or receives them as required. If the

neighbouring processor is faulty and a message is sent, but no reply

is receieved, then COMMUNICATOR will be delayed until it is

repaired. Howevever, this will not cause DEBUG to be delayed.

After waiting for the required period it will detect that no reply

has been put in NEIGHBOUR and, assuming that a fault is present, it

will act accordingly.

A more detailed documentation of FTOS can be found in Appendix

84

Chapter 5

Fault-Tolerance Implementation

5.1 Assumptions Made

In the previous chapter a set of firmware tests were described.

These routines, when performed on the Faulty Processor and

interpreted by the Operational Processor, would diagnose certain

faults. Throughout the description of this process it was assumed

that the CCU was operational. However, by the very nature of the

problem no other part of the processor can be assumed to be

functioning correctly. In fact the opposite is true, all parts are

suspected as being faulty. This poses a problem. Although the CCU

is operational it depends upon results of arithmetic operations

carried out in other sub-systems. These results are used for

directing conditional branch responses in the microcode sequencer

(Pig. 5.1). Therefore, there is a significant problem since the

cCU cannot rely on the results that it receives. Consequently, it

could make erroneous conditional jumps and execute the wrong

microcode. The whole processor would effectively be useless and the

diagnosis process would be defeated.

In order to counter this situation certain assumptions about the

faulty units must be made. These assumptions apply to test results

which normally consist of one bit only. If this result is

unreliable then there are three possible causes :-

1) It is permanently at the value '1'.

2) It is permanently at the value '0'.

85

3) It is completely spurious and is intermittently '0' or '1'.

The third possibility is extremely unlikely since most component

failures usually cause the output to remain at a certain value.

Also, an intermittent or spurious fault is far harder to detect. It

was therefore decided to assume one of the first two cases. Again,

the choice between these two was based on probability. More likely

than not a device will fail completely. In other words, it will be

as if its outputs were in the high impedance state. This would

normally be interpreted as a '1' by any inputs of another

operational device [5.1]. Furthermore, on a practical level, it

would be easier to test fault-tolerance firmware if the "permanently

at 1" assumption were made. This is because a faulty package could

be simulated merely by removing it from its socket.

It was therefore decided that a faulty test result would be

assumed to be permanently at 1. Clearly this assumption limits the

scope of the diagnosis possible. The author is aware of this fact

and suggestions for further research on the problem are included in

the final chapter.

86

5.2 Trapping of Errors

5.2.1 Normal Error Entry

Although a set of tests have been defined to diagnose a faulty

processor they will not be of use wnless they are called.

Therefore, it is required that the CCU should perform regular fault

detection.

To a certain extent the structure of P-code is quite

advantageous since it requires a good deal of exception checking to

be performed at microcode level. Several P-code instructions

require checks to be made on the data upon which they are operating.

If the data is invalid then an exception will occur. As an example,

take the "Test In Set" instruction. This corresponds to the high

level "IN" operator in Pascal (as applied to sets). Its function is

to take a value off the stack, call this value i. It then checks to

see whether the i'th bit of a set (which is also on the stack) is a

‘1'. Since a set is represented by eight words (128 bits) the value

must be in the range 0 <= i <= 127. The "Test In Set" instruction

checks this and if the value is out of range an exception is

generated. P-code makes many such checks, division by zero and

array bounds are further examples.

Therefore, if a processor is faulty it is highly likely that a

P-code instruction will either detect an illegal value or

incorrectly mark valid data as being in error. This will generate

an exception which is merely a jump to the fault diagnosis

microcode.

87

Another way of trapping errors is if an illegal op-code is read

from memory. This is also quite likely if the processor incorrectly

executes machine code. Illegal op-codes are easily trapped by

making all unused values in the Decoder point to the fault diagnosis

microcode start address.

Therefore, most failures can be detected either by the presence

of invalid data generating an exception or an illegal op-code.

5.2.2 Timer Interrupt Test Routines

Despite the precautions mentioned in the previous sections it is

possible for some faults in the processor to go undetected. As an

example take the "NOT" P-code instruction. Its function is to

invert the word on the top of the stack. No checking of data is

required. No arithmetic overflow can occur and the stack pointer is

not altered, so stack overflow cannot take place. If the PCU was

faulty it might generate the same address at each machine cycle.

This means that the processor could become trapped in an infinite

loop of the type :-

Fetch Instruction,

Instruction = NOT, Execute,

Fetch Instruction,

Instruction = NOT, Execute,

Fetch Instruction,

Instruction = NOT, Execute

etc.

88

Therefore, it is necessary to have some means of identifying

errors of this type. Concurrent Pascal requires a record of

real-time to be maintained. To achieve this the Super Sixteen

generates a timer interrupt at fixed intervals. This means that an

infinite loop would be interrupted at some point. It is therefore

necessary for the interrupt firmware to perform a test to trap this

type of error.

The code to perform this test merely consists of passing values

from the PCU via the PCUTRAN to the ALU and checking that they

arrive without being corrupted. This test is designed mainly to

test the PCU using the ALU. However, if the PCU was functioning

correctly and the ALU was faulty then this would also be indicated

by the test.

It is possible that a faulty memory, especially an EPROM

containing P-code, might generate a similar problem. tf, for

example, the EPROM was faulty then the processor might pick up every

word of the program memory to be the "NOT" instruction. So, to the

processor the program would appear as :-

89

Memory Location Op-code

x NOT

xt+2 Not

x+2 NOT

x+6 NOT

etc.

Which would generate an infinite loop similar to the one previously

described.

Therefore, it is necessary for the timer interrupt firmware to

check for this condition. The test to detect this is based on a

knowledge of the stucture of a compiled Concurrent Pascal program.

Referring to Figures 5.2 and 5.3, the compiler always inserts at the

start of the program four words of control information followed by a

jump past any procedures. Even if there are no procedures this

transfer of control is still present. So, assuming that a valid

program is stored in EPROM, there will always be a branch

instruction in the fifth memory word. It is a fairly simple matter

for the interrupt test firmware to read the fifth location and check

that it is the op-code for "Jump". If this is not found then the

hardware is assumed to be faulty.

To summarise then, most faults are either trapped as illegal

op-codes or invalid data in the program by the P-code firmware.

Some errors will escape these tests. Hence, it is Necessary for a

certain amount of testing to be performed by the Timer Interrupt

firmware (Fig 5.4).

30

5.2.3 Faulty Timer Interrupt Hardware

One fault which cannot be detected with the methods described so

far is one occuring in in the timer interrupt hardware. If no timer

interrupts were being generated it would not affect the P-code in

any way, hence no exception would be caused. The only feature of

the system that would probably be affected would be the maintenance

of real time. It is unlikely that process scheduling would be

affected since a Kernel call is made whenever an exit from a Monitor

occurs. The solution to the problem lies at the Concurrent Pascal

level. Two extra processes must be added to any program. The first

process performs a Wait (for one second) operation and then sends a

message (via a Monitor) to a second process. The second process

maintains a count which is sufficiently large to last for at least

one second. If, when the count terminates, no message has been

received from the first process then the second one must output a

message to indicate that the Timer Interrupt Unit is faulty. This

feature of fault detection has not yet been implemented in FTOS.

91

Command

Microcode ALU or
oe) Result PCU

Fig. 5.1. CCU/ALU/PCU Interaction.

 PROGSTART+0 PROGS TART+0

PROGSTART+1] Control PROGSTART+1 | Control

+2 Data +2] Data
+3 +3

+4 JUMP +4 JUMP

+5 [PROGSTART+n +5 JPROGSTART+6

+6 +6

Procedures Main

Program

PROGSTART+n Main

Program

Fig. 5.2. A Typical Concurrent Fig. 5.3. A Concurrent

P-code program stored in EPROM. P-code program with

no procedures.

92

P-code

Microcode

Timer

Interrupt
Microcode

ccu

Decoder

Fig. 5.4. Fault detection

Trapping of

Invalid data.

Trapping of

Infinite Loops.

Trapping of

Invalid op-codes.

in the Super Sixteen

93

5.2.4 Faulty Mapping PROM Decoder

Another type of fault which would probably always be trapped by

one of the methods mentioned in 2.1 or 2.2 occurs when the Mapping

PROM Decoder is faulty. The Decoder converts machine instruction

op-codes into microcode addresses (Fig. 5.5). It is assumed that

the outputs of this 8-bit EPROM would all be '1' if it failed. This

means that whenever the CCU executed a "Jump to Map" instruction a

branch to address Hex FF would be made. What would happen after

this would depend on the microcode stored there. The result is

clearly unpredictable, especially when one takes into account that

future addition or deletion of microcode to the addresses below Hex

FF would alter the code stored in Hex FF itself.

For this reason it was necessary to modify the assembler so that

it placed an instruction at Hex FF to enter the fault diagnosis

microcode. The assembler always rearranges the instructions in

memory and modifies the sequencing fields so that they branch round

location Hex FF. This means that if the microinstruction at Hex FF

is executed a fault can be assumed. This ensures that a faulty

“permanently at 1" Mapping PROM Decoder will be detected.

Before calling the fault diagnosis microcode, a special message

is sent to the Operational Processor. In the case of the test

sequence A.B.C.D.E.F.G- mentioned in Chapter 4, indicating a faulty

ZIREG or Decoder, it can resolve which of the two units is faulty.

If the Operational Processor receives the message then the Decoder

must be functioning correctly and the ZIREG is faulty. If the

message is not received then the Decoder is assumed to have failed.

94

0 (4-bits) Op-code

(8-bits)

zero-fill Mapping PROM

Buffer Decoder

L_4-bits] s-pits

am2910 <I
Microcode sequencer

12-bit address

Microcode
Memory

wd
Current dump

Microinstruction|Control
Register

Note

Enable
Control

Next Address
Control

1) A faulty PROM generates 0000 1111 1111 = Hex FF when a “jump to

map" instruction is executed.

2) A faulty zero-fill buffer generates 1111 XXXX XXXX = Hex FXX when

a "jump to map" instruction is executed (X = DON'T CARE).

Fig. 5.5. Function of the Mapping PROM Decoder.

95

A faulty zero-fill buffer could be detected by applying the same

technique to microcode memory locations $F00 to $FFF. However, this

would use 256 locations of microcode memory and has not been

implemented on the Super Sixteen.

5.3 Microcoding Techniques

5.3.1 Faulty Test Results

The CCU has to contend with the fact that a test result which

should be a ‘'O' might be a '1'. If it is executing a loop and is

waiting for a test result to terminate it, then that result may

never arrive. The CCU would be within an infinite loop. At the

heart of the CCU is the Am2910 microprogram sequencer. This device

has a one bit input (CC) which determines whether a conditional jump

is made. If this bit is zero then the CCU takes the current test

(an arithmetic operation in the ALU or PCU) as having passed and a

branch is taken. If the bit is a one then the current test has

failed and no jump is made.

A faulty unit is assumed to make this test "permanently at 1",

hence no conditional jumps will be made. The firmware in the CCU

must be structured to take account of this fact. As an example,

consider a loop of the following type :-

Load Counter

LOOP: Decr nt Counter, if = 0 jump to NEXT

microinstruction 1

96

microinstruction 2

microinstruction n

Jump back to LOOP

NEXT: microinstruction nt+1

A counter is decremented. When it reaches zero an exit is made

from the loop using a conditional jump. If the processor is faulty

it is possible that this branch is never taken. The CCU would be

within an infinite loop. There is obviously no way that a structure

of this kind can exist without a conditional transfer of control.

To overcome this problem, the loop must be structured so that an

exit will be made wnless the test succeeds. The solution is to

re-write the code as follows :-

Load Counter

LOOP: Decrement Counter, if NOT = 0 then jump to NEXT1

Jump to NEXT

NEXT 1: microinstruction 1

microinstruction 2

microinstruction n

Jump to LOOP

NEXT: microinstruction n+1

This stucture will exit the loop if a test fails and remain

within it if the test passes. A fault in the ALU test result

circuitry would therefore cause an exit to be made.

97

If the CCU uses test results from the PCU then the situation

becomes more complex. Connecting the two sub-systems is a circuit

known as the Test Tree (Fig 5.6). It is possible that the Test Tree

may be faulty ("permanently at 1") which would cause all CCU tests

to fail. Unfortunately, the Test Tree, when operating correctly,

inverts all boolean results from the PCU. This means that if the

PCU fails ("permanently at 1") the Test Tree will invert the result

and make it a zero. All CCU tests would pass.

If the Test Tree is faulty then the previous argument concerning

the re-structuring of loops still applies. However, if the PCU

itself has failed then this condition must be detected before any

potentially infinite loops are entered. This is relatively easy to

do. For example, in the PCU memory test described in the previous

chapter the first action that is taken is to load one of the PCU

registers with the bottom RAM address. This value is always

non-zero. It is then possible to structure the code to perform a

test using the PCU as follows :-

1) Load PCU register with a non-zero value.

2) Test the PCU register, if it equals zero then the test fails

(conditional jump).

3) Perform the Test.

If the PCU itself is faulty then the current test will fail at 2

since all PCU results will cause a conditional branch to be taken.

If the Test Tree is faulty then the test will fail at 3) in the

manner described for loops previously.

Another problem of this type that occurs is if the most

98

significant device of the 4 X Am2903 bit-sliced ALU is faulty. The

four sub-units are cascaded together as shown in Fig. 5.7.

The most significant device is responsible for passing the

results of any arithmetic operations to the aAm2904 Test Status

Multiplexer. This then converts the values into a one bit test

result which is conveyed to the CCU. These results consist of 4

bits; the Z flag which is set to 1 if the result of an operation is

zero and is zero otherwise, the N flag which is the sign bit, the C

flag which is the Carry out and the O flag which indicates overflow.

Using these four bits the Test Status Multiplexer can make any

boolean comparison (=, NOT =, >, >=, <, <=) for both signed and

unsigned values. If the m.s. device is faulty then the N, C and 0

flags will all be “permanently at 1". There are two facts to be

noted about this. First, this does not mean that all tests will

automatically pass. For example, the N flag will be taken to be

high by the Test Status Multiplexer so that all "less than zero"

tests will pass but all "greater than zero" tests will fail.

Second, the most significant device is jointly responsible with all

the other sub-units for generating the Z bit, since the Z flags from

each device are wire-ored together. All of the 4-bit outputs from

each package must be '0000' for the Z flag to be high. This means

that if the m.s. device has failed the Z bit will be "permanently

at 1". However, consider the following case. Suppose a comparison

is made. If the two values compared are equal (i.e. the result of

a subtraction is zero) then the test being performed passes and

fails otherwise. This would be coded as :-

1) Make a comparison, jump to error code if NOT =

2) Test passed, continue

99

PCU test Test test ccu

Tree

Fig. 5.6. PCU/CCU Interaction

16 -bit .

Ki

N N N N

Am2904 Cc Cc c Cc

Test MeSe les.

Status 0 | device ke ° Lo O}| device
Multi-

Plexer Zz Zz Zz Zz

4-bit 4-bit 4-bit 4-bit

Aree
wire-ored

Test Results
to the CCU

Fig. 5.7. Test evaluation in the bit-sliced ALU.

100

Suppose the two values being compared are equal, but one of the

bit-sliced sub-units other than the m.s. device is faulty. This

will mean that the next bit-sliced device in the m.s. direction

will receive a ‘'1' as its Carry-in. Hence its four bits will be

'0001' rather than '0000', as they should be. The Z flag fed to the

Test Status Multiplexer will be low so the test will fail. If the

m.s- device fails then its Z% flag will be high. This will be

wire-ored with the other three Z flags which are also high. The

Test Status Multiplexer will assume that the comparison was

successful. This would make the above algorithm pass when it should

fail. If the methods developed already are used an algorithm would

be obtained as follows :-

Make comparison, if = jump to NEXT

Jump to error

NEXT Continue with the rest of the test

This algorithm would also fail since if the m.s. ALU device

were faulty then no error would be detected. So, an algorithm must

be developed such that if two equal values were compared and the

m.s- ALU sub-unit were faulty, then all test flags (Z,N,C and 0)

would be "permanently at 1". The solution to this problem is quite

simple, a value cannot be zero and negative, hence if N and Z are

both high there is an error. The algorithm, therefore, is as

follows :-

1) Make Comparison, error if NOT =

2) Make Comparison (again) if result is -ve then error

3) Continue with the rest of the test

101

, The Am2904 Test Status Multiplexer is also responsible for other

functions. One of these is the generation of a Carry-in bit for the

ALU (Fig. 5.8). This value can come from several sources.

Typically, it would be '0' if a value were being loaded into the ALU

or an addition were taking place and a '1' if a subtraction were

being performed. However, if the Am2904 were faulty the Carry-in to

the ALU would always be high. This means that when loading constant

values into the ALU a failure of the Am2904 would cause the message

to be corrupted. This is overcome by ensuring that during assembly

such constants are decremented by one with the Carry-in value set to

a‘'1'. This means that it does not matter whether the Carry-out is

operational or “permanently at 1". Addition and loading of

non-constant values (i.e. data read from memory etc.) will still

be incorrect. However, this will only cause tests to fail whereas

invalid constants would result in incorrect messages being sent to

the Operational Processor.

5.3.2 Message Transmission

It is vitally important whenever a test succeeds that a message

is sent to indicate this result. Messages are sent via Peripheral

Interface Adapters (PIAs). The normal method of accessing a PIA is

by putting its address in the MAR and reading or writing a value

from or to it via the ALU. If a successful test has been performed

by certain sub-systems then those are the only functional units that

can be assumed to be operational. This means that the CCU should

depend on no other units to send a message to the Operational

Processor. It is therefore necessary to have three sets of

microcode; one section of code to send a message (and receive a

102

reply) using the ALU only, another using the PCU only and a third

employing both the ALU and the PCU but without using the PCUTRAN.

This means that the microcode for sending messages and receiving

replies is very tedious and repetitive. It is performing the same

task in three different ways. This is a necessary but inelegant

requirement. However, this is a form of firmware redundancy. A

faulty sub-system only prevents any messages generated by that unit

from being sent. The Operational Processor can assume that any

messages that are not received are due to the failure of the

corresponding test. This duplication of code does ensure that

successful test results produced by error-free sub-systems will be

sent to the Operational Processor.

Another deviation from the standard practice of sending messages

via a PIA is required. Normally a PIA is initialised at the start

of a power-up sequence in the processor. Thereafter it can be

accessed whenever required. This initialisation sequence consists

of writing values to the control and other registers in the PIA. It

is possible that a faulty sub-system may try to access these PIAs

and corrupt them. This could mean that an error-free unit might

subsequently be unable to send an important message. It is

therefore necessary for the PIAs to be re-initialised by the

sub-system before it sends a message. Again, it is necessary to

have three pieces of microcode to initialise the PIAs using

different functional units to perform the task.

It is also possible that a value read from the PIA is corrupted

en route to the testing unit. If a message is sent and a reply does

not arrive, then no further action can be taken other than to

103

provide a backup set of PIAs. This is discussed in Chapter 6.

However, it is possible that the fault is in the Datapath and is a

read-only fault. This would mean that messages are being sent but

replies are not being received. It is important that the Faulty

Processor should wait for a reply. If it sends two messages in too

short a period then one may be lost due to the receiving processor

not having time to process both messages. This means that in

addition to having three separate pieces of code for sending and

receiving messages, it is necessary for each of them to check the

integrity of the data received. These tests are performed by

examining the PIA control register (Fig. 5.9) [5.2]. The six least

significant bits of this register should remain constant unless

written to by the processor. The only bits that can possibly alter

are the two m.s. ones which indicate whether replies to messages

have been received. It is a simple matter to examine and test the

six l.s. bits for comparison. A difficulty occurs when the PCU

performs this test, since it has no 'AND' facility to mask out the

two m.s. bits. This means that four comparisons have to be made

corresponding to each permutation of the two bits.

Once a fault in the PIA read mechanism has been detected a

method must be devised to ensure that another message is not sent

until the Operational Processor has processed the message. This is

done by entering a delay routine. Unfortunately it is not posssible

to use the ALU or the PCU to perform a count since they might well

be faulty. The Am2910 microcode sequencer posseses an internal

counter. This can be used to implement a delay subroutine entirely

within the CCU. This counter is only 12 bits wide and, in practice,

the delay needs to be greater than 4096 (2 to the power of 12).

This means that the microcode must be tediously structured as

104

CARRY

CONTROL Se ee ee
FROM an ALU a5)

ccu | |
| |
| |

lam2904 OUT cIN t

| |

cour | |

[gain ie 8 Scale sr Dnt a 2 eo

Fig. 5.8. Use of the Am2904 Test Status Multiplexer to generate

the ALU Carry-in.

8 bits

fae ee
Read Read/write
Only

SSS) ey
2 bits 6 bits

Fig. 5.9. PIA Control Register.

105

follows :-

Load counter with x

Decrement counter, repeat if NOT = 0

Load counter with x

n Decrement counter, repeat if NOT = 0

times

Load Counter with x

Decrement counter, repeat if NOT = 0

The above will obtain a delay for n*(x+1) microcycles.

5.4 Summar:

Several aspects of writing fault-tolerant microcode have been

outlined in this chapter. It is necessary for the CCU to assume

that faulty components will remain permanently at a certain binary

value. The “permanently at 1" case is the most likely and also the

easiest to simulate.

In order to be able to detect all fault conditions it is

necessary to perform fault checking during the timer interrupts.

However, the structure of P-code is such that many errors will be

detected before an interrupt occurs.

The CCU (which is assumed to be operational) depends upon test

results which may be faulty. Therefore, it is necessary to

106

structure the microcode in such a fashion that the CCU cannot remain

within an infinite loop.

There are also problems associated with sending messages and

receiving replies from the neighbouring processor. The solution to

this involves firmware redundancy at the cost of inelegance of the

microcode. This ensures that successful test messages are sent

using only error-free units.

107

Chapter 6

Conclusions and Proposals for Further Work

6.1 Conclusions

The fault-tolerant, bit-sliced microprocessors described in this

thesis have been built and tested. With the exception of certain

hardware problems within the processor implementation, the fault

diagnosis and recovery procedures function exactly as predicted. At

times, the hardware was susceptible to external noise. This can be

a problem with a large, wire-wrapped, prototype system.

The system was tested by removing packages from their sockets to

simulate a fault. The diagnosis process would start and the

Operational Processor would take over all system tasks. The

integrity of the database was maintained by periodically updating

the backup processor. Hence, a set of principles have been derived

and put into practice. These could be adapted to implement any

fault-tolerant, real-time system using bit-sliced components.

Therefore, these principles are appropriate to all types of

computer.

The intentions of this project were to design and verify a

fault-tolerance philosophy using bit-slice techniques. To this

extent it has been successful. Also, a useful by-product has been

that a fast and efficient Concurrent Pascal machine has been

produced on which small operating systems can easily be written.

It is interesting to constrast this project with [1.18] as

108

mentioned in Chapter 1. The approaches differ in two respects.

First, the Super Sixteen processor contained no special-purpose

fault-tolerant hardware. The firmware merely demonstrated the

inherent redundancy within the machine. Second, the firmware was

capable of diagnosing some faults within sub-systems other than

those which used the actual bit-sliced devices. For example, the

Datapath and the PCUTRAN.

It is significant to note that a large amount of redundancy

exists within the hardware of a fast processor such as the Super

Sixteen. Only the firmware can utilise this redundancy. A level of

fault-tolerance within a single processor has been achieved which is

considerably greater than that which could be achieved by software

alone. To achieve a similar level of fault-tolerance using

software, it would be necessary to augment the hardware.

Fault-tolerance firmware provides a half-way stage between no

fault tolerance and a full MR _ system. If there is a need to

improve the processor reliability without incurring the cost of a

TR system, firmware techniques may be appropriate. Of course, this

implies the use of a microprogrammable machine. It would be

possible to implement fault-tolerance firmware on an existing

machine by the addition of appropriate microcode.

6.2 Suggestions for Further Research

Whilst engaged on this research project several ideas for

further research in this field have occured to the author. These

suggestions are divided into two categories. The first section

contains improvements to the existing system. These are extensions

to the work carried out to date but have not been pursued due to the

limited amount of time available.

6.2.1 System Improvements

The system that has been built demonstrates the principles of

achieving fault-tolerance through the use of bit-slice techniques.

However, it could be improved as a working unit.

To enhance the operating speed of the processor and minimise its

susceptibility to switching noise it would be necessary to re-design

the board layout.

Although the Super Sixteen can diagnose a fault in the PCU, it

cannot at present diagnose which of the four bit-sliced devices

making up that sub-system has failed. It would be a reasonably

simple matter to remedy this situation. The CCU would need to

transmit values through the wnit and then forward them to the

Operational Processor as a message. The Operational Processor would

determine which one of the four 4-bit fields was corrupted.

It was assumed throughout Chapter 5 that a faulty device would

produce binary outputs of '1'. The reasons for this assumption were

110

given at the time, but it was stated that they were based on

probability. It would be highly desirable for the system to be able

to detect “permanently at 0" faults. This could be achieved by

having two sets of microcode. To supplement the present code there

could be a similar set of tests but they would assume the

“permanently at 0" case. At the start of the diagnosis sequence the

CCU would have to determine which set of tests to choose (Fig.

6.1)- This could be achieved in a similar manner to that used to

solve the problem with the PCU and the Test Tree described in

Section 5.3.1. In other words the CCU would pass the value '0'

through the ALU and then test to see if it had been altered. It

would then re-test to see if it were non-zero. If both tests failed

the “permanently at 1" microcode would be called. If they both

passed then the “permanently at 0" code would be executed. If the

results were both correct then the process would be repeated on the

PCU to determine whether it was permanently at a certain value. As

in previous examples, this is a form of microcode redundancy and is

gained at the cost of elegance and compactness in the firmware.

Because the Super Sixteen uses memory-mapped I/O a problem might

arise. This would be if the memory board either failed completely

or in such a way as to make the PIAs inaccessible. The Faulty

Processor would be functioning correctly but would be unable to send

any messages to its operational neighbour. The memory-mapped I/O

facility is required in order to make test G in Chapter 4 possible.

However, a set of backup PIAs, which were not memory mapped, could

be provided. In other words, the processor would have direct access

to these PIAs. They could be connected to the YBUS of the Super

Sixteen. This would give both the ALU and the PCU access to them.

111

Pass across
zero to the

ALU

All tests fail. Test not All tests O.K¥4 |All tests pass.

Call “permanent"| |Repeat for Call

“permanently but ALU may| PCU. "permanently

at 1" code. be faulty. lat 0" code.

Call either.

Fig. 6.1. An algorithm for deciding whether to call "permanently

at 0" microcode or "permanently at 1" microcode.

112

The practical work undertaken on this project has concentrated

on faults within the processor. If the main memory circuitry fails

then the Operational Processor is only aware of this basic fact. It

has no information concerning which part of the memory has failed.

The memory tests performed could be enhanced so that they determine

the faulty memory addresses. A test could also be performed to try

and detect whether the fault was in the most significant 8-bit

memory board or the least significant one.

6.2.2 Further Research

At present the CCU is a functional sub-system whose failure

would prove catastrophic to the fault diagnosis of the system. The

first two suggestions in this section are concerned with remedying

this weakness.

Microcode memory consists of various fields of control data. In

a normal microcoded machine the logical format of these fields would

take no consideration of the physical boundaries of the ROMs on

which they were stored. A set of fields controlling a sub-system

might be scattered across several physical devices. A failure of

any one of these, or the latches constituting the pipeline register,

would cause all the wnits they were part-controlling to become

inoperable. There would be no overhead or disadvantage in

formatting these fields so that they occupied a single, or at most

two, ROMs. No single physical device would hold code controlling

more than one sub-system. This would mean that a fault in a single

memory device within the CCU would only cause one sub-system to fail

(Fig. 6.2). This fault would be diagnosed in the normal manner.

113

Microcode ROM 1 ROM2 ROM3 ROM4
Memory

etc.

Current Latch1 Latch2 Latch3 Latch4
Micro-

I'str'ion

Register

ALU Control Only PCU Control Only

Fig. 6.2. Partitioning of microcode in memory to achieve greater

reliability of the CCU.

114

When repairing the sub-system the engineer would check that the ROM

and latch controlling that sub-system were not faulty.

The second suggestion for improving the CCU reliability is to

use self-checking hardware. The microprogram sequencer could be

modified by duplicating the sequencer and introducing a

self-checking checker circuit to compare the outputs. This approach

has already been taken in [1.18] and was mentioned in Chapter 1.

The microcode memory and pipeline register could either be checked

using the method of partitioning the microprogram fields, as

mentioned above, or by using parity which has been employed in

[1.18]. A fault-tolerant system clock could also be introduced.

This could be achieved by using similar redundancy of hardware.

If the CCU was totally self-checking and the Datapath devices

were duplicated then the entire processor could be completely

self-diagnosable for any single unit failure. The cost of the extra

hardware compared to the total processor cost would be minimal,

particularly when compared to some of the systems described in

Chapter 1. If the CCU and the clock control circuitry were to use

some form of Triple Modular Redundancy then the processor should be

able to function to some extent, although at a slower rate, when any

single fault is present.

Several papers have been published on the pure mathematical

theory of fault diagnosis [6.3 - 6.12]. These are all based on an

original paper by Preperata et al. [6.2]. The theory investigates

how many units can fail and still be diagnosed correctly by other

operational ones within a system. The ALU/PCU analysis within the

Super Sixteen can be used to draw an analogy with this theory.

To:

There are three units; the ALU, the PCU and the PCUTRAN. If any

one of them fails then the other two can effectively diagnose the

faulty unit. It would be interesting to investigate how this theory

could be applied in terms of bit-slice machines. It would be useful

to determine whether the addition of further arithmetic units within

a single processor would improve its reliability. It might be

appropriate to use simulation in such an investigation. It would

also be a logical development to determine whether multiple

sub-system failures could be diagnosed.

Another idea which merits further thought is the reconfiguration

of the processor architecture at microcode level. If it were still

possible for the processor to operate at a satisfactory speed then a

reconfiguration could take place under certain circumstances.

Normally, the microcode will make full use of all the facilities

within the architecture available to it. However, under degraded

conditions it could continue to function without using certain

components. There is no reason why the CCU could not have several

Decoders pointing to different blocks of microcode. Only one of

these would be selected at any particular time. One Decoder would

address the standard microcode. Another one would address a block

of microcode which executed machine instructions without using the

ALU, this would be selected in the event of its failure. There

would be another block of code which did not use the PCU and also a

section which used byte memory addressing only.

Such a reconfigurable capability would require a significant

duplication of microcode and would use large amounts of ROM.

However, it would be possible provided that the speed of processing

was still satisfactory. This would allow the processor to continue

116

functioning under degraded conditions. This might be useful in a

medium to large multiprocessor system. The number of tasks

performed by a faulty processor could be reduced but not entirely

eliminated. It would still contribute to the running of the system,

its individual performance would merely be degraded.

References

{1.1]

[1.2]

[1.3]

[1.4]

[1.5]

[1.6]

[1.7]

[1.8]

[1.9]

[1.10]

(1.11)

IEEE Computer Society

International Symposium on Fault-Tolerant Computing,

1971.

IEEE Computer Society

International Symposium on Fault-Tolerant Computing,

1972.

Martin, J.
Design of Real-Time Computer Systems, Prentice Hall

Series in Automatic Computation, pp. 56-61.

Nissen, J.C.D. and Geiger, G.V.

A Fault-Tolerant Multimicroprocessor for

Telecommunication and General Applications, G.E.C.

Telecommunications Ltd., P.O. Box 53, Coventry.

Rennels, D.A.

Reconfigurable Modular Computer Networks for Spacecraft

On-Board Processing, Computer, July 1978, pp. 49-59.

Enslow, P.H.

Multiprocessor Organisation - A Survey, Computing

Surveys, Vol. 9, No. 1, March 1977, pp.103-128.

Hamer-Hodges, K.J.

Fault Resistance and Recovery within System 250, Proc.

Iccc Conf. on Telephone Systems, 1972, pp. 290-295.

Cosserat, D.C.

A Capability Oriented Multi-Processor System for

Real-Time Applications, Proc. ICCC Conf. on Telephone

Systems, 1972, pp. 282-289.

Repton, C.S.
Reliability Assurance for System 250, A Reliable,

Real-Time Control System, Proc. Iccc Conf. on

Telephone Systems, 1972, pp. 297-305.

Avizienis, A., Gilley, G.C., Mathur, F.P., Rennels, D.A.,

Rohr, J.A. and Rubin, D.K.
The STAR (Self-Testing and Repairing) Computer: An

Investigation into the Theory and Practice of

Fault-Tolerant Computer Design, IEEE Transactions on

Computers, vol. C-20, No. 11, Nov. 1971, pp.

1312-1321.

Hopkins, A.L.

A Fault-Tolerant Information Processing Concept for

Space Vehicles, IEEE Transactions on Computers, Nov.

1971, pp. 1394-1403.

(1. 12]

(1.13]

[1.14]

[1.15]

[1.16]

[1.17]

[1.18]

(1.19]

[1.20]

[2.1]

[2.2]

[2.3]

Wakerly, J.F.

Microcomputer Reliability Improvement Using

Triple-Modular Redundancy, Proceedings of the IEEE,

Vol. 64, No. 6, June 1976, pp. 5-1 to 5-7.

Carter, W.C. and Schneider, P.R.

Design of Dynamically Checked Computers,IFIP Congr.

1968, Vol. 2, 1968,pp. 878-883.

Anderson, D.A. and Metze, G.
Design of Totally Self Checking Check circuits for

m-out of n Codes, IEEE Transactions on Computers, Vol.

C-22, March 1973, pp. 263-269.

Abd-alla, A.M. and Meltzer, A.C.

Principles of Digital Computer Design, Vol. A

Prentice Hall, 1976, pp. 83-89.

Reddy, S.M.
A Note on Self-Checking Checkers, IEEE Transactions on

Computers, Vol. C-23, Oct. 1974, pp. 1100-1102.

Diaz, M.

Conception de Systemes Totalement Auto-Testables et a

Pannes Non-Dangereuses, Ph.D. Thesis (Universite Paul

Sabatier de Toulouse) no. 618, 1974.

Ciompi, P. and Simoncini, L.
Design of Self-Diagnosable Minicomputers Using

Bit-Sliced Microprocessors, Journal of Design

Automation and Fault-Tolerant Computing, Vol. 1; Now

4, Oct. 1977, pp. 363-375.

Katzan, H.

Microprogramming Primer, Mcgraw Hill, 1977.

PRIME Computer Co. Ltd. .

PRIME Microcoders Handbook, 145 Pennsylvania Ave.,

Framingham, Mass. 01701, USA, pp. C-11 to C-14.

Woodward, P.M., Wetherall, P.R. and Gorman, B.

Official Definition of Coral 66, HMSO, London, 1973.

Barnes, J.G.

RTL/2 Design and Philosophy, Heyden and Son Ltd., 1976.

Wirth, N.
Modula: A Language for Modular Multiprogramming,

Software Practice and Experience, Vol. TreeNosie ty

1977, pp. 3-35.

[2.4]

[2.5]

[2.6]

[2-7]

[2.8]

[2.9]

[2.10]

(2.44)

[2.12]

[2.13]

[2.14]

[2.15]

Wirth, N.

The Use of Modula, Software Practice and Experience,

Vol. 7, No. 1, 1977, pp. 37-65.

Wirth, N.

Design and Implementation of Modula, Software Practice

and Experience, Vol. 7, No. 1, 1977, pp. 67-84.

Ichbiah, J.D., Barnes, T.G.P., Heliard, J.C,
Krieg-Brueckner, B., Rouline, 0. and Wichmann, B.A.

Ada Preliminary Reference Manual and Design Rationale,

SIGPLAN, Special Edition, June 1979.

Brinch-Hansen, P.
The Programming Language Concurrent Pascal, IEEE

Transactions on Software Engineering, June 1975, pp.
199-207.

IEEE Computer Society.

Stack machines, special edition, Computer, May 1977.

Brinch-Hansen, P.
The Architecture of Concurrent Programs, Prentice Hall,

1977.

Graef, N., Kretschmar, H. and Loehr, K. and Morawetz,

Be

How to Design and Implement Small Time-Sharing Systems

using Concurrent Pascal, Software Practice and

Experience, Vol. 9, 1979, pp. 17-24.

DAHL, O.J., DIJKSTRA, E.W. and Hoare, C.A.R.

Structured Programming, Academic Press, New York, 1972.

Matison, S.E.
Implementation of Concurrent Pascal on LSI-11, Software

Practice and Experience, Vol. 10, 1980, pp. 205-217.

Kerridge, J.M.

A Fortran Implementation of Concurrent Pascal, Software

Practice and Experience, Vol. 12, 1982, pp. 45-55.

Hall, J.A.
A Microprogrammed Interpreter for the Data General

Eclipse S/130 Minicomputer, Software Practice and

Experience, Vol. 12, No. 8, pp. 755-765.

Neal, D. and Wallertine ,V.

Experiences with the Portability of Concurrent Pascal,

Software Practice and Experience, Vol. 8, 1978, pp-

341-353.

120

[2.16]

[3.1]

(3.2]

[3.3]

(5. 1]

[5.2]

[6.1]

[6.2]

[6.3]

[6.4]

[6.5]

Chattergy, G.

Microprogrammed Implementation of a Scheduler, Sigmicro

Newsletter, Vol. 7, Sept. 1976, pp. 15-19.

Advanced Micro Devices Ltd.

The Am2900 Family Data Book, 901 Thompson Place,

Sunnyvale, California 94086, USA, 1979.

Mick, J. and Brick, J.

Bit-Slice Microprocessor Design, McGraw Hill, 1980.

Stuart James Systems Ltd.

6809 Microcomputer Documentation, Stuart James Systems

Ltd., 16 Watling street, Wall, Lichfield, Staffs.

Lenk, J.D.

How to Troubleshoot and Repair Microcomputers, Repton

Publishing, pp. 213-217.

Motorola Semiconductors Products Inc.

M6800 Microprocessor Applications Manual, pp. 3-8 to

3-20, Motorola Semiconductor Products Inc., York House,
Empire Way, Middlesex.

Wilkes, M.V. and Stringer, J.B.

Microprogramming and the Design of Control Circuits in

an Electronic Digital Computer, Proceedings of the

Cambridge Philosophical Society, Part 2, Vol. 49,

April 1953, pp. 230-248. Reprinted in Computer
Structures: Readings and Examples, C.G. Bell and A.

Newell, McGraw Hill, New York, 1971.

Preperata, F.P., Metze, G. and Chien, R.T.

On the Connection Assignment of Diagnosable Systems,

TEEE Transactions on Electronic Computers, Vol. EC-16,

Dec. 1967, pp. 848-854.

Preperata, F.P.

Some Results on Sequentially Diagnosable Systems,

Proceedings of the Hawaii International Conference on

System Sciences, University of Hawaii, Jan. 1968, pp.
623-626.

Hakimi, S.L. and Amin, A.T.

Charicterisation of the Connection Assignment of

Diagnosable Systems, IEEE Transactions on Computing,

Vol. C-23, Jan. 1974, pp. 986-88.

Ciompi, P. and Simoncini, L.

The Boundary Graphs: An Approach to the Diagnosability

With Repair of Digital Systems, Proceedings of the

third Texas Conference on Computer Systems, Austin, pp.

9.3.1-9.3.9, Nov. 1974.

121

[6.6]

[6.7]

[6.8]

[6.9]

[6.10]

[6.11]

[6.12]

Ciompi, P. and Simoncini, L.

On the Diagnosability With Repair of Digital Systems,

Technical Report no. 75001/E, Pisa, Convenzione

Selenia - CNR, Jan. 1975.

Friedman ,A.D.

A New Measure of Digital System Diagnosis,

International Symosium of Fault-Tolerant Computing,

FTC-5, Paris, Jan. 1975, pp. 167-171.

Barsi, F., Grandoni, F.and Maestrini, P.

Diagnosability of a System Partitioned into Complex

Units, International Symposium on Fault-Tolerant

Computing, FTC-5, Paris, pp- 171-176, June 1975.

Barsi, F., Grandoni, F, and Maestrini, P.

A Study on Self-Diagnosis of Digital Systems, Technical

Report, no. 75003/E, Pisa, Convenzione Selenia - CNR,

Feb. 1975.

Russel, J.D. and Kime, C.R.

System Fault Diagnosis: Closure and Diagnosability

with Repair, IEEE Transactions on Computers, Vol.

C-24, Dec. 1975, pp. 1155-1161.

Russel, J.D. and Kime, C.R.

System Fault Diagnosis: Exposure and Diagnosability

without Repair, IEEE Transactions on Computers, Vol.

C-25, Jan. 1976, pp. 228-236.

Maheshwori, S.N. and Hakimi, S.L.

On Models For Diagnosable Systems and Probabilistic

Fault Diagnosis, IEEE Transactions on Computers, Vol.

C-25, Jan. 1976, pp. 228-236.

122

