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Summary

In this thesis, findings are presented of a research
investigation into general strategies for, and the effect of certain
factors relating to, problem decomposition used in program design.
The investigation involved two empirical studies, totalling six
separate experiments, in which subjects trained in the broad
principles of structured programming were asked to undertake various
program design tasks associated with particular programming problems,
solutions to which can be mapped through the use of 'process structure
hierarchies' onto a small number of 'process decomposition paradigms'.
Analysis of the results revealed that solutions based on primitive, as
opposed to abstract, perceptions of problem structure were strongly
preferred, initially easier to perceive though harder to complete and
were more error-prone. A model of program designer behaviour together
with generalised problem decomposition strategies are advanced, that
view program design as a problem-solving activity. These proposals
form an explanatory framework for interpreting the experimental
results, which are shown to be consistent with the proposals. In
particular, it 1is argued that aspects of problem presentation and
subject familiarity with component parts of a problem, are major
factors that influence problem decomposition, and were responsible for
the observed strong bias towards simplistic solutions. Additionally,
it is argued that such bias can also be caused by "perception
difficulty" allied to inadequacies in abstraction skills attributable
to previous training. The thesis concludes with a recommendation that
more specific, "criteria-driven" forms of structured programming need
to be taught and practiced.
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1.Introduction

In a society where considerable reliance is placed on computer
software systems, it 1is imperative to constantly improve software
construct}on methods and practitioner skills, so that ultimately we
are able to justify, and have confidence 1in, this reliance. The
motivation and perhaps the wultimate goal of this research is to
attempt to have a direct bearing on this continuing need for improved
software. However, the immediate aim to which this thesis addresses
itself, is to contribute to the field of software engineering by
improving our understanding of the program design process.

Whilst the overall direction of the research is closely allied
to Dijkstra's compelling desire to change the current state of
affairs, in -which most of the programs written are totally "unfit for
human appreciation' [1]; its particular line of attack is to undertake
and attempt to counteract Weinberg's tempting challenge that "Perhaps

programming 1is too complex a behaviour to be studied and must remain

largely a mysterious process" [2]. Specifically, the research
investigates the area of program design from a human-factors
viewpoint. This 1is in 1line with Dijkstra's work, which considers

programming as a purely human activity; as Weinberg himself states,
"programming is a form - a complex form - of human behaviour" [ibid].
Therefore, this investigation, in common with many that involve the
study of human behaviour, 1is empirical in nature. It employs the
established principle of such research known as the ‘'scientific
method', which consists of conducting experiments to gather, evaluate
and interpret observational evidence.

A first major goal of the research was to analyse and synthesise
the separate fields of program design and empirical evaluation into a

coherent project. Chapter 2 of this dissertation provides a review of
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appropriate background material and concludes with a summary in which
four specific 1investigative research objectives are stated, these
representing the basis of a study of problem decomposition strategies
used in program design. Initially, the review surveys early
'contributions to program design, the structured progamming revolution
and current programming methodologies. The survey ends with a
long;term perspective of the 1issues central to program design. An
overview of the rationale behind, and the mechanisms of, the
scientific method 1s then presented, together with the methodological
issues of experimental research into software engineering and the
reasons why a suitable experimental methodology is necessary. The
particular spectrum of investigations presented in this chapter is
chosen because it illustrates important aspects concerning
methodological issues central to programming experiments.

A further goal was to devise an experimental methodology, based
on established principles of the scientific method but tailored for
application to program design, that could be applied to each of the
experiments to be carried out. After detailing the context within
which experimentation was performed, chapter 3 describes this
methodology, and in particular, the experimental methods specifically
devised. These methods rtepresent a contribution to techniques for
analysing the nature and effects of problem decomposition strategies
used in program design. They include the use of:

(i) hierarchical process structures for classifying programs;

(ii) algorithmic outlines as process structure cues in
controlled experiments;

(iii) error frequencies as indicators of possible relationships
between strategies and errors.

In total, six experiments are described. These experiments,
which formed two sets of studies, were performed over a period of 18
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months in academic environments, each set being associated with a
different programming problem, The subjects used in the experiments
were mainly computer science undergraduates, although 1in the very

first experiment pre-university and post-graduate students also took

part. Each experiment 1involved groups of subjects, all of whom had
been previously taught to program 1in a '"structured manner",
undeftaking various program design tasks. The problems chosen,

namely, the ‘'signal problem' [3] and the 'line editing problem' [4]
are such that their various solutions can be mapped respectively onto
a small number of "process decomposition paradigms", corresponding to
different algorith mic structures.

The investigation 1involved the collection and statistical
analysis of data from both observational and comparative experiments,
the details of which are also described in chapter 3. Both types of
experiments employed non-parametric tests for two or more independent
samples, as a decision_ mechanism for statistical gignificancé. The
observational experiments used measures of association as indicators
for further investigation, whereas the controlled experiments tested
causal relationships.

Chapter 4 details an informal step-wise refinement of the signal
and line-edit problems and considers a design evaluation of their
solutions, this being followed by the formulation of a model of
program designer behaviour in which goal generation is hypothesised to
be stimulus and knowledge activated. The application of the model to
the two problems used in the experiments provides a description of
presumed designer behaviour. Evidence consistent with the model
obtained from the experimental studies is presented, the significant
results of which are as follows.

Observations from an exploratory experiment in the set of

investigatigative studies associated with the signal problem led to
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proposals that subjects do not use an idealised "top-down" manner of

design. Moreover, two generalised forms of problem-solving strategy
were advanced, namely, 'process next item' and 'incremental design'.
The former strategy 1s data-driven, - that is, its application in

problem decomposition results 1in a program structure based upon some
particular perception of the data stream and how the latter should be
procéssed. In contrast, the latter strategy is requirements-driven -
that 1is, it focusses on identifying, and then fullfilling, those
processing requirements that are immediately attainable in developing
a solution.

A further conclusion 1s that there appeared to be a strong
tendency towards using strategies that produce solutions based on
primitive perceptions of problem structure. Confirmatory observations
were obtained from an experiment on the 'line-edit problem', in which
it was predicted that applying the above-mentioned strategies would
produce certain decompositions, the gfeater proportion of which would
be based on primitive, as opposed to, higher—level; more abstract,
perceptions. In addition, one implication of the result of the
exploratory experiment on the signal problem was that such
decompositions are easier to perceive; this was also confirmed via a
subsequent controlled experiment.

Consideration of possible factors affecting such strategies, and
why the ‘'primitive pathway' 1is more obvious, gave rise to two
contributory factors being advanced: the nature of training received
and of problem wording. Evidence‘was gathered, firstly by comparing
results from two experiments investigating the effect of training.
These results supported the view that subjects trained in the broad
principles of structured programming possess less developed
abstraction skills than those trained in a form of structured

programming that incorporates decomposition criteria more specific
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than those associated with simple "top-down refinement'". In addition,
an 1investigation into the effect of problem wording revealed that the
presence of certain aspects of problem presentation, had a marked
effect on decompositions produced.

Investigations concerning the effect of strategies on subjects'
performance as measured 1in terms of correctness achieved and effort
required, showed that solutions based on primitive perceptions, which
were of poor quality in modularity terms, contained a greater
proportion of errors. Moreover, it was observed that subjects' errors
were strongly associated with the placement of those program
components that contributed to the low degree of modularity.

The concluding chapter summarises the findings of the research
and considers their implications. In particular, a recommendation is
advanced that subjects should be trained in more "directed" forms of
structured programming where abstraction skills receive greater
emphasis. Some possible directions for future research are also
considered and it 1is proposed that the model and hypothesised
strategies constitute a framework for further experimentation into

this broad '"from-specification-to-decomposition'" area.
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2. Background Review

2.1 Issues In Program Design

Zoiked Int;oduction

Expert practitioners have from time to time made numerous
recommendations concerning how program design should be performed.
However, 1little research has been carried out into how this process
actually 1is performed and whether or not their recommendations are
beneficial.

Two fundamental components appropriate to investigating program
design are the design activity itself and the program it generates.
Traditionally, a program is viewed as a series of instructions obeyed
by a machine. This definition places emphasis on control flow and
accords well with the obsolete method of using flowcharts for design
but does not reflect the modern practice of emphasising structure. To
do this, a more suitable definition of a program might be: "a
structured representation of a task to be performed in order to solve
a given problem, expressed (usually) in a procedural language". The
activity of designing therefore involves deriving such a structure.
Thus it is not suprising, that the use of hierarchical structuring to
ménage complexity (the basis of most, if not all, modern design
methodologies) 1is in accordance with ideas forwarded in a number of
early works [e.g.,5,6,7] that investigated the way people handled
complexity.

However, before focussing attention on specific issues,
consideration needs to be given briefly to the developmental stages of
software production, of which design 1is an integral part. As this
research 1s concerned with program, rather than system design, the
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requirements analysis stage can be omitted. Hence, specification,
design and implementation will be considered to be the stages required
to engineer a program. Requirements specification produces in part a
precise prescription of the program function. From this specification
of "whatf has to be achieved, design produces a specification of "how"
it will be achieved, or, as many authors have stated: a process of
transforming ''the what into the how". Implementation involves
producing, installing and maintaining the final product. The
realisation of a program from a design specification involves coding
(translating the design description into the required source
language), testing (detecting errors in the program) and debugging
(removing errors detected by testing). As with other engineering
disciplines, software engineering 1is not a sequential, but rather a
cyclic, process. This is because each representation of the problem,
whether a specification, a design or a program, undergoes a process of
validation which may reveal possible flaws that need to be corrected
or resolved.

To fully appreciate the claimed benefits of ideas that have
transformed program design from a mystery surrounded by folklore to a
systematic discipline, it 1s instructive to start at its inception -

that is, at the advent of computers.

2.1.2 Early Contributions

The history of computers has witnessed not only a rapid increase
in the number of computer-based systems, but also an ever diversifying
range of applications in which they are used. The constructional
approach adopted for hardware was to build a '"general-purpose'" machine
capable of executing a series of instructions, whilst software was to

be '"custom-designed" for each application. The obvious and most
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significant benefit for software production that accrued from this
separation was that the physical characteristics of the machine could
be 1ignored. However, because hardware design involved building
machines from physical components that had the specific task of
executing computational processes, standardised techniques were
developed and an "engineering" approach used. In contrast, software
desién involved constructing programs from abstract components that
were required to carry out varied tasks; as a consequence, software
design remained very much a mysterious process.

This state-of-the-art in software production, coupled with the
dramatic growth in the size of software systems, led to observed,
sometimes large differences between what was hoped for and what was
actually achieved in the construction of those systems. There were
widely held views as to the seriousness or otherwise of the problem;
in retrospect, many have come to refer to it as the "software crisis".
Boehm [8] provides a quantitative assessment of the cost of dealing
with 1inadequate software, giving examples of software-hardware cost
ratios ranging from 8:1 to 2:1 with an average of 7:3 for 1970. He
pointed out that the cost of computer software compared to hardware
had escalated and predicted a continued increase. For example, in
1955 the ratio was as low as 2:8; Boehm predicted this to be as high
as 9:1 in 1985, |

Despite the size of the problem and its impact, the primary
condition for improvement is to accept its existence. Indeed, reports
such as [9] contain documented experiences of development efforts
which suggested that not only had the existence of the problem been
acknowleged, but also that improved methods were being sought to
develop software. In the 1late sixties, it became increasingly
apparent that there was a need to provide a disciplined approach to

software production. Consequently, much of the debate at that time
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focussed on structuring the design process and on ordering design
decisions.

One of the earliest and most significant contributors to the
debate was E.W. Dijkstra [10], whose concern lay with "intrinsically
large" programs. By this he meant "programs that are large due to
complexityu of the task, in contrast to programs that have exploded (by
inadequacy of the equipment, unhappy decisions, poor understanding of
the problem, etc.)" [ibidl]. His method of attack was to carry out
introspective "programming experiments'; these 1investigated '"what
techniques (mental, organisational or mechanical) could be applied in
the process of program composition" [ibid] that would produce "an
increase in our programming ability by an order of magnitude" [ibid]
so as to overcome problems associated with large programs and enable
the 1latter's correctness to be demonstrated. He overcame the anomaly
of having to choose, for practical reasons, relatively small programs
for his experiments "by trgating problems of size explicitly and
trying to find their consequences as much as possible by analysis,
inspection and reflection" [ibid].

From Dijkstra's experiments [11] in the design and construction
of multiprogramming systems, he suggested applying the principle of
"divide and rule" for structuring the design process so that
size-induced complexity could be controlled and the construction of
such systems could be carried out in manageable steps. The
application of this principle structures the system as a hierachical
set of layers or "machines'" where the relationship between consecutive
layers 1is such that the machine at some non-primitive level is an
abstraction or functional description of the machine at the next lower
level, the 1latter providing the resources for the formulation of the
former. Dijkstra [12] concluded from his development work on the

"THE"-multiprogramming system that "the hierarchical structure proved
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to be vital for the verification of the logical soundness of the
design and the correctness of its implementation",

Whilst Dijkstra had laid down the guiding principle that program
structure should be a layered hierarchy, there was - and still remains
- some controversy as to whether the layers should be constructed from
the "bottom-up" (i.e., starting with primitives) or from the
"top~down" (i.e., starting with the target system). Gill [13] gives
this practical and sound advice:

"Clearly, the top-down approach is appropriate when the target
system is already closely defined but the hardware or low-level
language is initially in doubt. Conversely the bottom-up
approach is appropriate when the hardware is given but the
target system is only defined in a general way."

He points out that the weakness of both approaches is that early
decisions will "be propagated through the layers and will finally

cause trouble by proving undesirable and difficult to remove" [ibid]

and that their success 1is dependent on the designer's ability to

foresee the consequences: of ' these problems. The need for clearly
defined primitives and target systems is implicit in his
recommendations, although he realised they rarely occurred in
practice.

Randell's observations [14], based on work carried out on three
major independent, yet related systems, revealed that their.structure
reflected the development process, and that each layer .of the
structure was a set of solutions to a set of problems considered to be
closely related. On the ordering of decisions, he notes two features
of the top-down approach. The first is that the designer "at each
stage 1is attempting to define what a given component should do, before
getting 1involved in decisions as to how the given component should
provide this function'" [ibid]. The other is suitability of the
appproach "for the designer who has faith in in his ability to

estimate the feasibility of constructing a component to match a set of
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specifications". In contrast, the features of the bottom-up approach
are that it ‘"proceeds by a gradually increasing complexity of
combinations of building blocks" [ibid] and is best suited "for the
designer who prefers to estimate the utility of the component that he
has decided he can construct" [ibid]. Like Gill, Randell warns
against the dangers of strict adherence to the top-down or bottom-up
apprbaches and points out that the then current emphasis on the former
was an attempt to reduce the preponderance of the latter. Finally, in
order to improve systems quality, Randell stressed the need for an
effective methodological approach to design and for guidelines on the
order in which decisions are made.

The need seriously to consider from an engineering perspective
the desirability of a software components industry, analogous to its
hardware counterpart, was noted by Perlis [15], and elaborated by
McIlroy [16]. McIlroy's work stressed the desirability of building
big systems from smaller standardised families of components.
Analogies with hardware were noted at differing component levels. For
instance, at the primitive level "software production in the large
would be enormously helped by the availability of spectra of high
quality routines, quite as mechanical design is abetted by the
existence of families of structural shapes, screws or resistors"
[ibid]. Moreover, at the conceptual level, the importance of
exploiting the correspondence between interchangeability of hardware
sub-assemblies and modularity of software was identified.

One of the earliest practised techniques that attempted to
contain the complexity explosion of "monolithic" programs was modular
programming. This was 1initally just the crude application of the
divide-and-conquer principle in which the division of a program into
modules was governed by implementation convenience rather than design

needs. Not suprisingly, this approach proved to be an inadequate
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rationale, although it allowed the exploitation of benefits that
result in impleméntation from using common modules. Because the
emphasis of modular programming was on the attainment of modular
designs, its guidelines were to have a direct bearing on later
methodologies. These considerations, in particular the notion of
module independence and the 1idea of a central control module
directing subordinate modules were to provide the impetus for the
development of functional decomposition in program design [17].

In retrospect, it can be seen that such early and-significant
concepts as hierarchical structuring, the principle of
divide-and-conquer and modularity, formed the basis of past and

present programming methodologies, which are considered next.

2.1.3 Programming Methodologies

The Structured Programming Revolution

The start of the seventies saw a considerable amount of
literature vigorously propounding a programming philosophy commonly
referred to as ‘'structured programming". Its origins 1lay in
Di jkstra's earlier works and specifically in a paper entitled
"structured programming" [10] in which he stated the following:

"program testing can be used to show the presence of bugs
but never their absence"

As a consequence of this self-evident, yet at the same time alarming
maxim, his primary concern was (and still is) program correctness.
From the outset, he perceived that the difficulties involved in
proving the correctness of programs were such that, '"unless measures
were taken, the amount of labour involved might well (will) explode
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with program size" [ibid]. To consider the measures required involved
him addressing the question: "for what program structures can we give
correctness proofs without wundue labour, even if the programs get
large?" [ibid]. Before turning attention to what those structures
are, some consideration needs to be given to the advice, stated in
Di jkstra's much quoted article "Go To Statement Considered Harmful"
[18]; that transferring control to labelled points should be avoided.
This advice 1led to the misconception that a program without goto
statements 1is necessarily structured. The rationale for restricting
the use of GOTOs was (paraphrasing Dijkstra) to shorten the conceptual
gap between the static program and the dynamic process so as to make
the correspondence between the program text and the process taking
place under its control as trivial as possible. Furthermore, Dijkstra
warned against the practice of converting programs with goto
statements into programs without goto statements, because it would
lead to programs which are as opaque as their originals.

The structures proposed by Dijkstra to ease correctness proofs
were such that they restricted sequencing of control to specific
forms of concatenation, selection and repetition that possess modular
characteristics (i.e., single entry and exit). The factors that
contribute to the ease of use of these structures in correctness
proofs are:

(1) they minimise the mental gap between the static program text
and its dynamic process because their progress can be
characterised by a combination of textual and/or dynamic
indices (the former describes the place in the text for
successive actions whilst the latter is associated with a
'repetition number' for repetition structures)

(ii) standard correctness proof propositions for each structure

type can be formulated.
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Structured programming, as a design technique in which program‘
correctness 1is either self-evident or can be proved formally or
rigorously was elaborated by Dijkstra in the classic monograph "Notes
on Structured Programming™ [19]. He suggests that program structure
should be derived from hierarchical decomposition of the problem into
sub-problems; hence the program produced 1is a hierarchy where
intermediate 1levels consist of abstracted components which are defined
in terms of '"what they do'" rather than '"how they do it'". A number of
examples are used to 1illus trate this '"step-wise'" decomposition
process and provide an "introspective exposition" of the methods

Dijkstra had hitherto unconsciously applied.

The conceptual tools required to '"understand" - in Dijkstra's
sense, to prove the correctness of - a program are : Enumeration,
Induction and Abstraction. The first tool, enumeration, is used to

understand sequences of statements 1including selection statements.
This means that, in practice, these statements can be
understood/proved by giving consideration to each execution path;
therefore it 1s an adequate tool provided the number of statements is
small. In order to understand repetition constructs and recursive
procedures, it 1is necessary to use mathematical induction. Its use
in program correctness proving is similar to proving properties about
integers or recurrence relations in number theory. Abstraction, the
third tool, 1is probably the most powerful in program design; by using
this the designer is able to concentrate on relevant properties of the
problem and ignore irrelevant ones. For example, procedurisation
allows us to synthesise the details of how a process works into an
abstracted form specifying what it does; defining new data types
allows one to manipulate the objects they described as abstract
entities.

The application of structured programming produces levels of
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conceptualisation in which each refinement represents some implicit
design decision. Wirth [20] strongly stressed the need not only to
make these decisions explicit so that "the programmer be aware of the
underlying criteria" [ibid] wused but also "to consider the the
existence_ of alternative solutions" [ibid]. His guidelines in the
step-wise refinement process are:

‘"to decompose design decisions as much as possible, to untangle
aspects which are only seemingly interdependent, and to defer
decision which concern details of representations as long
as possible" [ibid].

Moreover, he suggested that this refinement of program description
into subtasks should be accompanied by a parallel refinement in the
description of data that may be necessary for communication between
sub tasks.

The qualified success of applying structured programming
principles, reported by Aron [21] in an experiment described as "the
superprogrammer project", provided the impetus for using these ideas
in a production environment on a large-scale information retrieval
project which involved over 80,000 lines of source code. The findings
of this experiment revealed that the productivity of progammers
increased five-fold and that the rate of detected errors produced by
principal programmers was approximately one per man-year-effort
22,231 Observations from introspective experiments [24], rather
than quantative evidence from controlled experiments, such as "an
experiment in structured programming" [25] supported the arguments‘
expressed in favour of structured programming, which are, for example,
that it facilitates the intellectual task of handling size-induced
complexity and of proving design correctness.

Structured programming undoubtedly provides a framework for
disciplined design, and there is some evidence supporting claimed

benefits. However, it would be somewhat short-sighted to suggest
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that 1its principles provide a completely adequate recipe for the
production ofl correct and clear programs. Indeed, the detected error
in Henderson's solution to the so called "telegram problem" [25] was
in fact a direct result of not perceiving an appropriate level of
abstractipn. Moreover, the authors retrospectively observed that data
concepts were obscured and recommended that these-be elaborated in
much the same way as algorithms. This could be seen as a step towards
Jackson's emphasis on the role of data structuring in program design
[26]. A similar criticism can be made of the undetected error in
Naur's solution of the 'line edit problem' [4], in which the need for
the data concept 'word' as a basis for structuring the design had not
been identified. Both these examples illustrate the main weaknesses
of structured programming, which are: the lack of specific
decomposition criteria in formulating 1levels of abstraction and the
absence of evaluation mechanisms to be used in the decision-making
process for determining the best decomposiéion from a number of
alternatives. In terms reflecting the 1incisive spirit of Occam's
razor, we can say:
"whilst we have the knife, we do not know how to carve"

One of the primary objectives of most, if not all, disciplined
programming methodologies 1s to achieve a modular design. However,
the manner in which problem decomposition into modules is performed
can often 1introduce a variety of complexities. The method of
sequencing control as advocated by the structured programming school
enables programs to be modular in terms of control flow -
inter-connectivity of control between program components is reduced,
thus eliminating the production of programs with a "spaghetti-like"
structure. However, éhis restriction provides no guarantee of
achieving modularity in terms of flow of information between modules.

Current programming methodologies based on structured programming can
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be viewed as attempts to augment its basic principles with additional
design criteria. These criteria minimise information flow to preserve
a ‘"separation of concerns", i.e., decomposition is performed in such a
way thqt "we don't lump concerns together that were perfectly
separated to start with" [27].

“Two schools of thought, the 'data structure' school represented
by Jackson [26] and Warnier [28], and the ‘'data flow' school
represented by Yourdon and Constantine [29], Myers [30] and Stevens
[31] will now be considered. The former school considers it essential
to base program design on the logical structure of data, whilst the
latter school emphasises that program structure should be based on
functional decomposition of the problem. For the purposes of the
discussion, it 1is sufficient to focus attention on Jackson's work as
representative of the data structure school and Constantine and

Yourdon's work as representative of the other.
Structured Design

Structured Design, as defined in [29], "is the process of
deciding which components interconnected in which way will solve some
well-specified problem". The definition clearly recognises design as
being a problem-solving exercise in partitioning and organising the
components of a program. It aims to ease implementation, in
particular testing, maintenance and modification, by structuring
programs so that each program component corresponds to some
"well-defined" piece of the problem, and the relationships between
program components reflect existing relationships between parts of the
problem. This strategy ensures '"independence of modules", which can

be seen as an alternative implementation of Dijkstra's notion of
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"separation of concerns". Moreover, module independence originates
from consideration of modularity [32] and criteria for good design
[33]. These considerations culminated in Constantine's paper [17],
from which the basis of the methodology is taken.

The methodology synthesises the program design concepts of
modularity, hierarchical decomposition, 1levels of abstraction and
desigh evaluation with systems theory notions of structural
organisation and inter-connection of components. Indeed, Constantine
[29], having acknowledged the influence of Dijkstra's works makes, the

following statement of Emery's work [34] on systems theory:

"From it I gleaned the essential concept of intercomponent
coupling and firmed my commitment to a systems-theoretical
view of the universe."
Therefore, not suprisingly, Structured Design views a program as an
organised composition of aggregates and components, and uses the
conceptual, linguistic and notational tools of systems theory in the
statement of the methodology. More importantly, information flow is
of primary consideration in Structured Design because it is not only
used for orientating the design process, but is also at the heart of
the measures used for design evaluation.
The steps applied in the design phase of the methodology are :
() Depict the problem as an information flow model by
identifying the major data transformations; represent
this model as a data flow graph,.involving linear
chains of processes, known as a "bubble chart";
(ii) Identify the afferent (importing) and efferent (exporting)
data elements. This step leaves some transformations in
the middle, which are termed as 'central transforms";
(iii) Represent the information flow model as a hierarchy of
modules with their imports and exports so that a
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controlling module when activated will perform the entire
task by calling upon Afferent, Central and Efferent
subordinate modules;

(iv) Repeat steps (i) - (iii) for abstract subordinate modules.

There are no specific rules for structuring the data flow
diagrams. However, central to this process is the perception of
suitéble levels of abstraction in data flow. The identification of
the afferent section 1involves tracing the 1input stream from its
primitive form to its highest 1level of abstraction. Similarly,
finding the highest 1level of abstraction in the output stream
determines the efferent data section.

Structured Design shares with structured programming the same,
rather impractical, guideline for producing "good'" decompositions in
terms of modularity, namely, the perception of "appropriate" levels of
abstraction. However, in contrast, it not only emphasises a specific
a priori orientation for structuring - that of data flow - but also
provides design evaluation mechanisms which are applied a posteriori.
These evaluation mechanisms are directly related to the notion of
module independence. A set of modules is saia to exhibit a high
degree of independence - in Structured Design terms, exhibit
functional independence - if they satisfy two complementary
characteristics, namely, minimal coupling and maximal cohesion.
Coupling, or inter-module dependence, is a measure of the strength of
association between a module and its external calling environments;
cohesion or intra-module dependence 1is a measure of the degree of
association within a module.

Structured Design's rationale of functional decomposition of the
problem as series of procedural modules characterises it as a
solution-oriented methodology [35]. Furthermore, it makes no major

break with  traditional modular programming but merely refines
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pre-exisisting concepts of modularity. In contrast, the data
structure school, as exemplified by the methodology to be consdidered
next, 1is problem-oriented because it seeks to ascertain pertinent
relationships in the problem and to transfer them to the data to be
processed. Moreover, it infers that functional decomposition should

not be carried out because function is implicit in data.

Jackson's Approach

The rationale behind Jackson's methodology can simply be
summarised by the structuring principle that program structure should
match problem structure. The method of achieving this is to base
program structure on the logical structurg of data. Consequently,
program modularity reflects data structure rather than data flow.
Furthermore, whilst the data flow school views a program as a
hierarchy of functionally decomposed processes, Jackson relegates
functional considerations to a later stage and promotes in its place
the activity of modelling the real world. His fundamental design
principle is firstly to produce an abstract model and then consider
the functions required. The second step is to implement the abstract
model. In common with most current methodologies therefore, Jackson
preserves a separation between design and implementation, thereby
absorbing those aspects of development that relate to producing an
abstraction of the real world into a design and those that relate to
realisation of the model into implementation.

Jackson argues that, for programs whose structure is based on
problem structure, there will be no difficulty in associating the
primitive operations required by the program with the components of
that structure. This 1is because an abstract model of the problem

environment (i.e., the program) perceives the real world through the
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medium of its data structures (e.g., files). Jackson's approach
therefore reflects the well-known principle that '"data structures
steer algorithms" [19,20]. The program therefore consists of
operations concerned with manipulating data structures (i.e., reading
and writing) and those operations directly concerned with the task to
be performed (i.e., elementary actions required to perform the
function). The claimed benefit of such an approach is that the
program produced 1is easier to understand and modify because of the
correspondence between problem and program structure.

The methodology employs the principles of structured programming
in that 1levels of abstraction are expressed using the composite forms
of sequence, selection and iteration. However, in relation to
structured programming, Jackson says that it is insufficient merely
to build programs from "structured" constructs - the crucial problem
is to decide how these constructs should be fitted together and on
what basis the structuring should be performed. The basic steps
involved in Jackson's method are:

(i) Consider the problem environment and use this to describe the
logical structure of each input and output data stream (using
special structure diagrams);

(ii) Form a program structure based on the designed data structures;

(iii) Define the task to be performed in terms of elementary
operations;

(iv) Allocate each operation to its appropriate component in the
program structure;

(v) Determine the necessary conditions to control execution of
selection and iteration components;

(vi) Translate the completed algorithm into Jackson's schematic
logic ( a special program design language) or the chosen target
programming language.
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Stage (i) 1is the creative phase because it involves the designer
in abstracting that which 1is relevant to the problem requirements
(i.e., perceiving the problem's logical structure) or, in structured
programming terms, perceiving "appropriate levels of abstraction".
The next stage involves finding components in the input data stream
that, when processed, will produce components in the output stream.
Combining these structures yields a single program structure. The
methodology, however, provides no means of ensuring the necessary
completeness of the operations 1list in stage (iii). The notion of
"appropriateness" 1is at the heart of the design evaluation mechanism
in Jackson methodology. It is applied at stage (iv). It can be stated
as follows :

if processing a data component X involves the primitive operation
p, then p should be allocated to the program component
corresponding to X.

In addition to his basic method, Jackson provides not only the
means for the recognition of "structure clashes" (where the input and
output data streams are not in correspondence and hence cannot be
combined into one program structure) and "backtracking" ( where the
serial nature of the input stream prevents an a priori selection), but
also standardised methods for their resolution. These allow the match
between program structure and problem structure to be preserved.
Structure clashes are modelled by communicating processes that can be
implemented in a variety of ways, ranging from programs communicating
via intermediate files using read and write operations, to concurrent
processes that communicate via resume commands. Backtracking is
modelled by assuming the validity of one of two possible outcomes of
subsequent processing, with the proviso that it may prove necessary to
reject the assumption, thereby admitting the validity of the other

outcome, and hence having to '"backtrack".
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2.1.4 Recent Developments

It is 1instructive to compare the recent directions taken by the
‘data-flow', 'data-structure' and 'structured programming' schools.
The ‘data-flow' school have adapted their work for systems
development, systems analysis and specification [36,37] to provide a
system désign methodology. The methodology shows how to obtain a
structured specification from the user requirements and how to use
Structured Design tools to produce a system of programs. Furthermore,
they have addressed themselves to administrative aspects of project
control, planning and management [38,39]. These works depict methods
that can enhance the productivity and effectiveness of a software
engineering project; for example, Semprevivo [40] provides a set of
practical guidelines for analysing, evaluating and improving team
performance. The school aims to integrate the variety of structured
tools and techniques already used for analysis, specification, design,
coding, . testing and maintenance with management guidelines and
controls to yield a comprehensive methodology that covers every stage
of the software engineering cycle.

Similarly, the data structure school have adapted their ideas to
system design. For example, Orr [41] has married Warnier's ideas on
program design with those of data base désign to form a structuring
tool for 1logical analysis, design and develoPment of systems.
Similarly, Jackson [42] has produced a development methodology which
specifically addresses itself to system design and is not simply a
"front-end" to his principles of program design; instead, it is a
methodology in which the tools developed for program design are
diffused throughout the systems development procedure.

Whilst the data-flow and data structure school have focussed
attention on presenting guidelines for good designs and mechanisms to
evaluate design quality, the structured programming school in
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contrast has concentrated on correctness proofs. A major criticism of
all three approaches 1is that there 1is an a posteriori application
method for design assessment. However, advocates of structured
programming have recognised this weakness of proving/evaluating the
correctness of completed programs. Indeed, Jones [43] recommends a
step—wise' scheme in which, at each level of decomposition, proposed
realizations are proved. Moreover, Dijkstra [1] not only recommends
that development and proofs should proceed hand in hand, but that
correctness conditions should steer program development. He has
proposed a formal discipline in which, as Coleman [44] points out:

"Dijkstra's guarded commands constitute a calculus for program

development such that if the rules of the calculus are followed,
the correctness of the resulting program is guaranteed".

The 1long term perspective for program design is difficult to
visualise with any great assurance pérticularly with the increased
interest. in concurrency and new models for the semantics of
computations, both of which require architectures that depart
radically from the classical Von Neumann model underlying sequential
procedural languages. There 1s an wurgent need, and one which is
likely to remain in the near future, to develop program design
techniques for concurrent programs for the variety of multi-processor
architectures [45] that support concurrent processing. The primary
concern 1is developing methods to overcome problems of communication
and synchronisation of component processors. Such stucturing methods
‘as parallel composition of communicating sequential processes [46] and
guarded commands [47] provide ;ome of the necessary tools to increase
our understanding of concurrent program design methods.

Attention has recently been focussed on the re-emergence of an

alternative form of programming - that of functional programming
[48,49] - in which the semantic model is applicative rather than
procedural. Examples of applicative systems are Church's lambda
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calculus [50] and McCarthy's pure Lisp [51]. In such systems, the
notion of an algorithm is specified in functional terms (i.e as
mapping from one set to another) and programs are built by cdﬁbining
functions using ‘"functional forms" [48]. As Backus points out, a
functional approach has many advantages over the conventional
approach;‘ these 1include a concise mathematical description of the
underlying model and the fact that both programs and correctness
proofs can be expressed in a languge that has the same associated

algebra [ibid].
2.2 Empirical Considerations
2.2.1 Introduction

Many researchers 1in programming have been motivated by a belief

that their recommendations will aid the programmer's task and
therefore improve the quality of programs produced. Whilst the
contributions made by "expert' programmers have been, to paraphrase

Shiel [52], an unholy mixture of mathematics (e.g., Dijkstra 1968),
literary criticism (e.g., Kern 74), and folklore (e.g., Brooks 75),
their recommendations have been, in the majority of cases, couched in
human factors terms. These recommendations have taken the form that a
particular aspect of programming practice will make the programming
task either easier, or faster, or less error-prone etc. Despite the
authority and vigour with which these expert recommendations have been
made and their common-sense appeal to our intuitive notions of
programming, they do not constitute a scientific basis for acceptance
but need to be empirically tested. Indeed, experimental evaluation
can not only be a useful and powerful tool for assessing such

proposals but can also provide evidence augmenting the contributions
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of practitioners and experts in the field. Therefore, the temptation
to accept experts' proposals without evaluation must be resisted.

Many researchers consider that Weinberg's classic work '"The
Psychology of Computer Programming" [2] was the catalyst for arousing
a much-needed 1interest in human factors investigation generally. In
particulai, it was directly responsible for most of the investigations
on the psychology of programmer team organisation [53,54,55]. The
thrust of initial experiments in programming, and to a lesser extent
current works, was 1in the vein of establishing whether a particular
product or practice was in some sense better than others. For
example, one of the earliest contributions was Sackman's experimental
investigation [56] in response to the then current debate on the
relative merits of time-shared and batch processing environments. The
primary force responsible for the increased volume of work within the
last decade has arisen from the debate caused by the structured
programming movement with its radical ideas on programming practices
and language constructs. This debate has provided experimental
researchers the opportunity of empirically evaluating various claims
made by proponents of the philosophy. Therefore, interestingly,
there has been a parallel increase in both structured programming
ideas and experimental work 1in programming. The impact of
experimental results on language and software designers is difficult
to assess. Indeed, views differ considerably. For instance, Sheil's
article [52] 1is highly critical of the experimental techniques used
and of the '"shallow view of the nature of programming" held by
experimental researchers; he argues that "the computing community has
paid relatively 1little attention to the results". In contrast, Green
[57] cites Embley's paper [58] (in which a proposed new construct is
subjected to both empirical evaluation and formal analysis before

agreeing upon a final version) as a hopeful sign of things to come.
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As yet, it is too early to gauge the impact of experimental work on an
area that is constantly undergoing radical change.

The two possible empirical evaluation paradigms available to
researchers are observational and comparative experiments. Both types
involve testing a relationship known as the 'null hypothesis'. This
hypothesis aséerts that there 1is no relations:hip between the
independent . variable, which 1is the variable under investigation and
therefore the one the experimenter manipulates, and the dependent
variable, which is the variable that is affected and therefore the one
on which measurements are performed. A crucial aspect of designing an
experiment 1is to ensure that the effect on the dependent variable is
attributable to the independent variable under investigation. In order
to achieve this, it is necessary to introduce experimental controls to
constrain other independent variables that may affect the outcome. It
is precisely because these controls are absent in observational
experiments that there are a number of reservations about results
obtained from them.

The simplest form of observational experiment is introspection
and 1s probably the basis of many past recommendations, for example
Dijkstra [10]. A variant of this rather subjective method, used with
considerable success by Simon and Newell [59] in their pioneering work
on problem- solving, 1is protocol analysis. Traditionally, this
technique involves recording individual subjects '"talking aloud' about
the task they are performing. The recorded speech transcription is
divided into 1lines known as protocols. This technique has seen
relatively 1little use in programming experiments, notable exceptions
being Brooks [60] and Miller [61]. However, as Shneiderman [62]
points out, whilst this technique can be "worthwhile when the subject
is a capable sensitive programmer, since important insights may be

obtained", there 1is no guarantee about similar behaviour of other
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programmers.

Another method of gathering information using the observational
paradigm 1is the case or field study. Examples include Knuth's
empirical study of FORTRAN programs [63] and the earlier cited New
York Times project [22]. The rationale behind this approach is that
gathering 1large volumes of data can yield something significant.
However, the 1lack of experimental controls provides no assurance as
to the reliability or generality of the results obtained.

Before reviewing the scope of previous research concerned with
human factors in software engineering, it is necessary to explain
briefly the basis and the details of the scientific method as used by
most, 1if mnot all, of the reviewed work. In the most general terms,
the scientific method is to observe a system in order to gather
knowledge. Therefore, 1in many cases, scientific investigations must
initially start with observational experiments which provide the basis
for subsequent hypothesis-testing comparative experiments. It must be
made clear at the outset that the commonly held belief that knowledge
obtained using the scientific method is unquestionably true because it
is objectively proven or derived in some rigorous way,  1is a
misconception since the method 1is based on the inductive principle.
This principle can be stated as:

If, for a wide variety of conditions, a hypothesis is confirmed

by a large number of observations and, of all those observations,

none refute the hypothesis, the latter is held to be universally

applicable for those conditions.

The validity of making this inductive 1leap is a controversial
issue of philosophy. One of the most simple and amusing illustrations
of the dangers of this leap is Bertrand Russell's story [64] of the
"inductivist turkey". The turkey observed that on arrival at the farm
it was fed at 9 a.m.. However, as a good inductivist, it gathered a

number of observations wunder a variety of conditions that confirmed
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the 1initial observation and that 1led it to the obvious inductive
inference about the pattern of being fed . Alas, the consequence of
this 1inference proved to be disastrous on the morning of Christmas
Eve. There have been a number of responses attempting to resolve this
problem. One view as characterised by Feyerabend(65], who suggests
abandoniné the scientific method. Others believe that it is possible
to provide probability measures associated with hypotheses and that
each scientific theory is the best explanation available at that time,
accepting that it may be necessary to revise the theories in the light
of new observations.

The discussion so far constitutes only a partial account of the
scientific method, because it 1is a process 1involving not only
induction but also deduction. Once theories have been derived from
observations of the system being studied, these theories can then be
used to predict or explain the behaviour of the system using deductive
reasoning. In summary, the fundamental cycle of the scientific
method 1is:

(i) Record sufficient observations for varying sets of
conditions of the model under investigation;
(ii) Formulate hypotheses to explain the observations;
(iii) Empirically evaluate the significance of these hypotheses;
(iv) Derive a theory or model from these hypotheses;
(v) Perform controlled experiments to evaluate model accuarcy;
(vi) Deduce behaviour hypotheses for the model;
(vii) Repeat from (i).
The above schema is a general one, and it is necessary to consider the
issues involved 1in tailoring this methodology to suit the needs of

human factor investigations in programming.
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2.2.2 Methodological Issues

Having accepted at the outset that programming is a complex form
of human problem-solving behaviour, it may seem tempting to consider
what psychological theories of problem-solving behaviour have to
offer. Unfortunately, as Green [57] points out, "Psychology does not
havel a general theory of thinking and is not likely to have one in any
reasonable time to come". Sheil [52] observes that "although some
psychological theory is 'very suggestive, it wusually 1lacks the
Tobustness and precision required to yield exact predictions for
behaviour as complex as programming".

The need to establish a suitable experimental methodology was
recognised by Weissman [66] and Shneiderman [67] nearly a decade ago.
Since then, there has been 1little progress, with some notable
exceptions [68,69,70]. Furthermore, as Moher and Schneider [71] the
authors of one of the few recent papers on the problems of
experimental research in software engineering observe, whilst "the
literature contains numerous treferences to the use of experimental
methods, there are few references on investigations into the
methodology itself" [ibid]. At present, the enormity of the problems
caused by the absence of an experimental methodology is such that
"the study of experimental methodology is well beyond the scope of a
single research problem" [ibid], and that, furthermore, experimental
methodological considerations in programming conétitute "an entirely
new research area which will require the attention and energy of many
researchers over a long period" [ibid]. Because of this absence,
researchers investigating intuitively based claims of expert
pfogrammers have, in many cases, made methodological decisions that
are, ironically, based on intuitive grounds. The review of

experimental work that follows is not intended to be a comprehensive
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survey of the literature (for such a treatment, see Shneiderman [62],
Software Metrics [72]) but concerns itself specifically with the
methodological issues central to programming experiments and the
controls necessary for such experiments to be effective.

The aim of comparative behavioural experiments in programming is
to creaté an environment 1in which subject behaviour can be observed
and - analysed effectively. Devising such environments obviously
neccesitates the selection of suitable subjects, suitable materials
that will yield the desired effect and the application of appropriate
measures to analyse the effect produced. Therefore, the
methodological issues at the heart of this type of experiment relate
to a judicious choice of subjects, materials and measures; see

[68,69].
Sub jects

There are two primary concerns in the selection of subjects,
according to Brooks [69]. First, the sample chosen should be
representative, that 1s, the observed behaviour of the sample should
be characteristic of the population under consideration. Second, the
individuals in it should be relatively homogeneous as regards
characteristics other than those under investigation, so as not to
influence the results obtained. The reason for insisting that these
requirements be satisfied 1is that, when an experimental sample is
sub-divided into groups for differing treatments (i.e, the different
procedures whose effects are to be measured), it is essential that any
significant results obtained for any group are attributable to the
treatments and not the characteristics of the subjects in that group.
A priori, it is not always possible to know all the subject

characteristics that will influence experimental results for any
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programming-related task, although, in practice, for a given task it
may be possible to determine which subject characteristics will
introduce an experimental bias. For instance, in an experiment
investigating the effect of particular programming practices,
differences in such factors as intelligence, discipline studied, and
level of education, could introduce an unwanted bias and therefore
measures would need to be taken to control their effects.

One aspect of designing a "good" experiment is to minimise the
effects of those subject characteristics that are responsible for
experimental bias. There are various well-established techniques
which reduce the effect of between-subject-variations; see E3y75 5251,
These techniques include :

-~ random assignment of treatments;

- the use of "matched pairs", in which participants of an
experiment are matched on some important characteristic; the
consequence of this is that no group has a disproportionate
number of biased subjects;

- a "within-subjects-design" where all the subjects undergo all
experimental treatments.

In the case where the parent population exhibits a large degree of
heterogeneity, the two desired goals of representativeness and
uniformity become contradictory because, as Brooks [69] points out,
whilst a suffiéently large sample size 1is required to ensure the
former, the greater the sample size, the greater the variation among
individuals.

There 1is some evidence of identifiable heterogeneity amongst
subjects performing programming-related tasks. In Sackman's work [56]
investigating the relative merits of time-shared and batch processing,
variations in performance were observed as high as 25 to 1 across

experienced programmers. Miller's observational study with novices
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[76] yielded differences ranging from 4 to 1. Much more recent work
investigating the behaviour of experts and novice problem-solvers,
such as [77,78,79], reveals that there is a qualitative, rather than
quantitative, difference between the two groups with regard to
organisation of information and types of strategies applied. Contrary
to our intuitive notions, the two earlier results taken together seem
to suggest less variability amongst novice subjects. The more recent
results, however, are 1in accordance with our intuitive notions,
showing that experts are a more cohesive group in that they use
organising principles and strategies that are domain specific (i.e.,
specific to the problem domain being investigated).

Methodologically the variability as found in Sackman's and

Miller's works implies that careful consideration needs to be given to

the sample composition of subjects. Ironically, the established
practice in the vast majority of behavioural experimental
investigations is to wuse restricted groups of subjects (usually
undergraduate students). Indeed, as Weinberg [80] succinctly
comments:

"Whereas psychology may be the psychology of college freshmen,
the psychology of programming could easily become the psychology
of programmer trainees."

This apparent consensus over the proper sample composition of subjects
(that 1is on the use of undergraduates) is based on convenience rather
than any methodological criteria. Indeed,. where subjects have not
been first-year students, the lack of agreement among researchers is
well 1illustrated in Moher and Schneider's article [71]. They observe
" that subjects have ranged from those with no prior computer
experience to highly trained professional programmers'. Futhermore,
they cite Miller's work [76], in which subjects with no previous

computing experience were asked to write sorting programs in a subset

of BASIC, as an example of the use of naive subjects. Miller claims
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the wuse of these subjects can lead to the detectién of characteristics
that have not been influenced by the effects of factors such as
training and experience. In contrast, Moher and Schneider cite
Young's findings [81] on programming errors, which revealed that the
strategies used by experts and novices were radically different; for
example, novices eliminated all the errors with the same degree of
diligence whilst experts eliminated superficial errors with greater
rapidity.

The 1implication of experimental investigations with novices
suggests 1little justification for assuming that their findings are
applicable to experienced  programmers. However, comparative
experiments 1involving both types of subjects need to be performed
before such an implication 1is verified. Some researchers have
attempted to design experiments so that the effgct of variation in
subject characteristics 1is brought under experimental control and
have tried. to conducé experimental investigations in such a way as to
reveal the class of subjects to which their findings apply. An
obvious and tempting way of controlling the effect of variability in

subject characteristics is to use subjects that are undergoing similar

training. However, as Brooks [69] argues, the use of intermediate
programming classes can in some cases be problematic. He cites
Shneiderman's work as an example which shows that significant
differences can sometimes be attributed to relatively short

differences in experience.

One possible way of ensuring that results obtained are
representative of the parent population under consideration is to
replicate experiments. This approach has been successfully adopted by
fesearchers at the MRC SAPU unit [82]. They performed experiments
with novice and expert programmers in such a way that findings could
be compared for both groups of subjects. Their work is a long-term
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investigation of the ease with which subjects can read, write and
debug programs using different styles of conditional constructs
[83,84]. In their exploratory experiments [85,86,87,88], naive
subjects were chosen because interest was centered on occasional
computer users rather than experienced programmers. It was considered
that individuals in the latter group would be unlikely to have the
same: learning history, or that they might have preconceived prejudices
about a particular style. For comparison purposes an experiment was
conducted [82] using experienced programmers as subjects. The results
regarding readability and debugging were found to concur with the
exploratory experiments using novices.

The technique that 1is most effective in systematically
controlling individual differences in: performance between experimental
treatments 1s the within-subjects-design, which has been used in a
variety of studies [82,89,90,91]. The use of this technique is well
illustrated by Love's experimental work [91], in which the primary
objective was to show that controlled experiments can be designed to
help to improve coding practices. The experimental aim was to
investigate the effect of program structure on program understanding.
The treatments in the 1investigation were complexity of control flow
(at two 1levels: simple or complex) and paragraphing of source code
(also at two 1levels: present or absent). Two groups of subjects
differing in levels of experience were used. Experimental materials
consisted of four Fortran programs written in four different forms
corresponding to the two different levels of the two treatments. The
experimental procedure consisted of randomly ascigning each subject to
one of the four groups, each of which received exactly the same set of
programs to study and recall. Hence, each subject received both
levels of the two treaments. The advantage of this design was that it
enabled the 1investigation to measure the effect of two other
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independent variables that could influence the results, namely, level
of experience and sequence of programs. Its major disadvantages
generally are that it 1involved the preparation of large amounts of
material and, more importantly, that it could lead to subjects getting
bored because of the number of experimental tasks they had to perform.
In. summary it must be acknowledged that many researchers were,
and - still are, forced to use undergraduate students as subjects. In
many cases, because of cost constraints, the use of professionals is
impossible. However, the burden of proof still 1lies on the
experimenter to show that the results obtained are representative of

the population under consideration.

Materials
The second of the methodological concerns - the choice of
experimental materials - 1is only one factor relating to a broader

category, mnamely, that of "experimental environment" (i.e. that which
encompasses all the available stimulus). As Moher and Schneider [71]
point out, behavioural researchers have long realised that differences
in Tesults can often be attributed to a variety of factors in the
experimental environment. Amongst the environmental factors that
investigators need to consider, in their opinion, are:
- the choice of experimental materials;
- the physical setting in which programmers work, so that
this can be reflected in the experimental setting;
- the different types of incentive (whether money, or the
satisfaction of knowing the aims and subsequent achievements
of the research, or being reassured that experimental results
will not reflect course grades), so that these incentives can

be used in a manner that ensures consistent performance of
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subjects;
- various ways of presenting experimental instructions

(i.e., whether in oral or written form, or whether presented

informally or formally)
An 1illustration of the effect of the 1last factor is Weinberg and
Schulman‘g investigation [92] of programmer performance; this revealed
that- small differences 1in statement of objectives can be responsible
for large differences in results. Their work demonstrates that
experimenters need to specify the goals of the experiment clearly,
otherwise subjects will simply set their own goals that may not
coincide with the experimenter's intention.

The main concern in controlling unwanted bias in the experimental
stimuli 1lies with the choice of material used. There are two issues
relating to this choice. Firstly, the material should allow the
experimenter to elicit any existing differences 1in treatments;
secondly, the effect of these differences should be attributable to
these treatments. When considering the effects of subject variation,
it was seen that these could be controlled by the use of a number of
standard techniques. However, when choosing experimental material,
the controls required for counteracting possible bias will vary from
experiment to experiment.

Empirical investigations into programmiﬁg language features
provide examples of the types of material-choice problem encountered
by researchers and their attempts to overcome the latter. These
investigatons have wused material that includes natural language [76],
small sub-sets of a programming language [85], complete languages [93]
and a special purpose query language [94,95]. The use of
"micro-languages" (i.e., where a language comprises of only those
operations and syntactic features that are under investigation) is

advocated by Sime et.al. [85] in their work on different types of
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conditional constructs. They consider that such languages allow
researchers to focus on the specific issue being investigated, thereby
avoiding any bias due to differences in subject training. Obviously,
not all questions concerning language design are amenable to the use
of micro-languages; 1its primary use is in comparing single linguistic
features.. Indeed, Gannon et.al. [93] point out that when it is
necessary to investigate the interaction of language features, then
the latter must be evaluated in the context in which they are used.
Their work involved an experiment 1in which subjects wrote programs
using two block-structured languages that differed with regard to nine
specific features under investigation. These features included the
use of the semi-colon as either a separator or as a terminator, and
either automatic or requested inheritance of environments. Both Green
[82], and Gannon [53] advanced a clear rationale in the choice of
experimental material for detecting existing differences and made a
reasonable case for their findings. However, both works have been the
subject of criticiém by Sheil [52]. He argues that the former work
does not systematically control unwanted sources of variations in the
experimental material, whilst his critique of the latter work
questions the effectiveness of such an approach for yielding a clear
intefpretation of the results.

The measures taken by Sime et. al. [68] to control unwanted bias
included devising a scenario that 1involved writing a series of
cookery instructions for a mechanical hare. The hare responded to
these instructions, fed to it in the form of edge-punched cards, by
lighting 1lamps in its ears or sounding a buzzer. This simple scenario
meant that subjects needed 1little training to adapt to the physical
setting of the experiment which was an advantage over the
conventional set-up of writing a computer program when (as in their

case) using naive subjects. The presence of what Sime et. al [68]
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term as "almost necessary effects'"  pertaining to the experimental
material is a further factor that could produce an unwanted bias by
increasing the already large between-subject-variance that is present
in programming tasks. In Sime et. al's experiment [85] comparing
IF-THEN-ELSE with the GOTO (i.e., conditionals involving an explicit
transfer of control), an example of these effects is difference in
program length, 1i.e., number of symbols needed and the amount of
physical space occupied. Their solution was to provide subjects with
a joystick pointing to a dictionary, so that the time spent by
subjects 1in actually putting symbols into the programs was minimal.
However, they considered that effects due to spatial differences were
an important part of the comparison. A further problem in the same
experiment was whether the provision of indentation would produce
unwanted bias. Realising that, in general, it is not possible to
indent a 1language with an explicit transfer of control so as to make
its intended elaboration clear (as is the case with a nested
language), they had to "decide whether indenting the nested language
means providing an artifical prop for the subjects, or is merely
taking full advantage of the structural features of the language in a

realistic way".
Measures

The final methodological concern 1is the choice of measures.
Human factor investigations 1in programming have used a variety of
experimental metrics that seems to have resulted from a combination of
necessity and a carte-blanche application of the principle '"to measure
is* to: know'. Most experimental researchers would claim that their
choice 1is based on necessity. However some concern has been expressed

as to the relevance of some of the metrics in contributing to the
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understanding of the program design process [57,69,96].
Software Science [97] is, to paraphrase Yeh [98], a unified and
coherent field in which attributes of a computer program, such as

implementation efforts, clarity, structure, error rates, language

levels, etc. can be derived from metrics based on intrinsic
characteristics of the program itself. Such metrics measure what
Shneiderman [62] terms as the '1ogical complexity" (i.e., the
complexity due to control flow) of a program. These include:

functions of frequencies of operators and operands in a program [97],
the knot count [99] and McCabe's cyclomatic number based on graph
theory [100]. Such metrics have the obvious advantage of facilitating
automatic computation of measures from the program text, and the
gathering of quantative evidence that readily 1lends itself to
hypothesis-testing methods. Experimental studies reveal a high degree
of association between attributes such as programming time [101],
number of bugs [102],program clarity [103] and their proposed
Halstead metrics. Investigations by Curtis et.al [104] using
Halstead and McCabe metrics reveal that "these metrics appear to
assess psychological complexity primarily where programming practices
do not provide assistance" (i.e., they measure the difficulty in

understanding programs which have been written in an "unstructured"

manner). Such experiments exhibiting high correlations between
factors and their proposed metrics therefore can offer useful
quantative evidence. However, because these measures are based on

intrinsic properties of the program, they take no account of the
interaction between the program and the programmer.

Although there are a variety of metrics, the effect being
measured in most cases has been the ease with which programs can be
constructed and/or the ease with which existing programs can be
understood. Experimentation involving program construction tasks
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usually takes the form of comparing two groups of subjects: a control
group and a group undergoing ~the treatment being investigated. The
metric most commonly used for determining the effort required to
develop a program is the time taken to write 1it. Some of the
difficulties that can arise in using time as a metric have been noted
by Brook; [69]. An obvious problem is identifying the time spent on
aspects of the task that are not relavant to the investigation so that
the former can be either eliminated or minimised. Brooks [ibid]
suggests that time measures should be supplemented by evidence from
other measures such as the number of debugging runs performed and the
ratio of total number of recalled lines to program size. In addition
to ascertaining the required times, problems can occur because time
metric distributions are often skewed. This bias can be corrected
using standard statistical transformations. For example, Sime et.al.'s
data [85] resulted in a positively skewed distribution of times which
they - corrected through a 1logarithmic transformation. Other
program-construction metrics relating to the ease with which a program
can be constructed involve functions of errors made; for example, the
investigations by both Sime. et.al [85] and Gannon et.al [93] used the
frequency and persistency of errors as alternative metrics.

One of the earliest investigations on program
"understandability", or what Weissman [66] termed '"psychological
complexity", proposed three measures of understanding. These related
to subjects' effectiveness in: '"hand-simulating" (i.e dry-running)
programs, filling in blanks in a paragraph describing the program, and
a subjective measure of how well subjects felt they understood the
program. An obvious problem with Weissman's use of the first measure
is that hand-simulation of a program can be performed on a
statement-by-statment basis without knowledge of it s overall

structure. Therefore, the decision to use a question/answer task to
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obtain a second measure placed greater confidence in the
investigation. Indeed, Weissman notes that "although hand-simulation
as such 1is not a valid measure of understanding" [ibid], nevertheless
"both reading and hand-simulation are important components of
understanding a program" [ibid].

A cgmmonly used technique for measuring program comprehensibilty
is the use of 'memorisation-and-recall'. This technique, as used by
Shneiderman [105] involves the subject reading a program and then
re producing it as accurately as possible in every detail. The
rationale for this work 1is based on Simon and Chase's work on chess
[106], which suggests that experts have large amounts of organised
knowledge and use high-level organisation principles. By analogy,
Shneiderman hypothesised that for two forms of a program (executable
and shuffled), experienced programmers would be able to re-construct
the executable form with greater rapidity. Evidence from Shneiderman's
experiments supports the use of memorisation-and-recall as a metric
for measuring program quality and programmer comprehension. This
technique has also been used by Love [91] to investigate the effect of
complexity of control flow and indentation on program understanding.
He bases the experimental rationale on Craik and Lockhart's theory of
memory [107], which suggests that the probability of recalling
information 1is depeﬁdent upon the depth of processing undertaken.
Although there are a number of ways in which memorisation-and-recall
can be applied, it s wuse as advocated by S :hneiderman and Love ig
appropriate essentially for small programs. A suitable variant, as
suggested by Brooks [69], for large programs would be to ask subjects
to reconstruct a program that is close as possible to the original.

Finally, whilst it is desirable to conduct the '"ideal experiment"
(i.e., one 1in which unwanted bias due to between-subject-variation,

non-uniform characteristics in experimental material and/or
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inaccuracies in metrics, 1is negligible) so that the results obtained
can be attributed solely to the treatment under investigation. 1In
practice this 1s extremely difficult to achieve when investigating the
complex tasks invelved in programming. The options are to choose
either:
- what Green [57] describes as the utopian solution, that is,
"Once psychologists have taken the wrinkles out of a theory
of thinking, programming can be treated as a special case and
it will be obvious how to make it easier", ot
- to conduct experiments as methodologically precise as is
practically achievable so as to "chip away" at the problem

under investigation.

2.3. Conclusion

The discussion presented in this chapter has considered
practitioner recommendations on program design from a human-factors
perspective and methodological 1issues appropriate to experimentation
in program design. From this, objectives for suitable research can be
identified, and these are presented in the following summary:

The proponents of structured programming view the design process
as a complex problem-solving activity. Moreover, they believe that
the wuse of cognitive tools such as stepwise refinement, hierarchical
structuring, levels of abstraction etc., help to make the development
task . "easier". There are strong arguments in favour of this view from
a problem-solving perspective because the overall approach in
structured programming embodies the well-established problem-solving
technique of problem reduction. However, whilst there is evidence for
the benefits that are claimed for this method of design, it would be
wrong to regard it as a panacea for designing programs. There is an

obvious neccessity to investigate the effect on the program design
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process of applying, on the one hand, structured programming
principles, and on the other, practices incorporating those principles
but involving more specific decomposition criteria.

Whilst this investigation acknowledges that the evidence obtained
using the scientific method is not irrefutable, it does, however, take
as axioﬁatic the view that using this method can provide a probability
measure of the observation being representative of the system under
investigation, so that the latter's significance can be assessed.
Moreover, a model or theory based on the results from such
observations then constitutes a proposed explanation of the behaviour
of the system under investigation. The research was faced with the
problem of applying the broad principles of the scientific methed,
rather than a suitably designed experimental methodology. However,
the unwanted bias introduced because of this problem can be controlled
by Jjudiciously augmenting the scientific method with guidelines based
on methodological decisions made in previous empirical investigations.
Therefore, it was decided to make effective use of such guidelines so

that an increased 1level of confidence could be placed in the results

obtained.
In conclusion the specific research objectives were to
investigate:

(L) the nature of problem decomposition strategies used in program
design;

(ii) the factors related to these strategies;

(iii) the factors affecting these strategies;

(iv) the relationship between these strategies and errors made.
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3. Report of Investigation

3.1 Experimental Context

The ‘aim of this chapter is to describe the specifics of the
investigation. Before these are detailed, consideration is given to
two important aspects: first, the identification of the context within
which experimentation was performed, and hence within which the
research results are to be interpreted; second, the description of
the experimental methodology employed - in particular, the assumptions
made and the steps taken to provide a methodology tailored to the
needs of the investigation.

Several factors contribute to the experimental context. The most
significant 1include: the population under investigation, the physical
setting and the size of problems to be investigated. Ideally, it was
felt desirable to conduct the investigation so that the results:

- applied to a large cross-section of the programming community
whose members' characteristics varied considerably with regard

to ability, experience, training, etc.;

- were obtained from an experimental environment which closely
resembled the physical setting within which programmers work;
- related to "realistic" programming problems;
In practice, however, the experimental context was considerably
constrained because of the 1limits imposed by time, resources and
availability of subjects.

At present, empirical research (whether conducted in an
industrial or academic environment) on a complex problem-solving
activity such as program design (an area in which there is a scarcity
of empirical  investigation), can have 1little hope of arriving at a

satisfactorily complete solution. However, there 1is a difference
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between 1investigations in industrial and academic environments. The
former often involve large-scale experiments, whereas the latter are
frequently constrained to small-scale experimentation. Therefore,
academic studies are open to the often-voiced criticism that such
studies deal with "toy", rather than "life-size", programs and use
subjects from academic, rather than production environments performing
tasks 1in artificial settings. The reason for this disparity between
academic and industrial investigations 1is often attributable to
availability differences in finance, resources and subjects. Some
academic studies have attempted to counteract the effects of this
disparity by such means as co-operating with commercial organisations
(for example, the work by Hammond et. al. [108] used professional
system designers), and developing courses in which subjects are
encouraged/expected to participate in experimenfation [55].

The circumstances surrounding this research were that no
provisional arrangements had been agreed either for industrial
co-operation (i.e. there were no cogmercial organisations who had
agreed to supply volunteer subjects and/or make available resources)
or for financing of programmers to act as volunteers. In addition, at
the academic establishments where students were willing to be
participants, there was no precedent for their being used as
experimental subjects, which ruled out any serious possibility of
organising experiments in students' free time. Moreover, because
subjects' tutors were concerned about the possible disruption to their
course of study, it was agreed that experimentation would be performed
during one tutorial/practical session (i.e. a period of approximately
fifty minutes) per term.

These above-mentioned circumstances dictated that:

(1) unpaid subjects be used;

(ii) since subject availabilty was restricted to infrequent, short
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periods, the size-related complexity of the problems to be
used as experimental material should be relatively small;
(iii) experimentation had to be performed in test-type conditions
due to the necessity for adequate numbers of students to
produce individual solutions to the same problem or sets of

problems

Nevertheless, it was considered that despite these practical
constraints, an experimental context in which computer-science

undergraduates were asked to construct programs for '"small" problems
under experimental conditions, could constitute a meaningful research
framework. This view could simply be justified on the principle that
because of the scarcity of research in program design any contribution
- even with severe constraints - could be a worthwhile one. However,
a stronger case can be advanced:
- the chosen subjects represent a significant proportion of
the programming community, as well as being potential future
professional programmers;
- the specific objectives of the research meant that a number
of important factors affecting strategies used in problem
decomposition, other than problem size, could be investigated;
- the provision of a reassurance that subjects were participating
in an experiment rather than a test, together with the "reward"
of being allowed access to the outcome of the research, would
help to motivate subjects, thereby overcoming possible adverse
effects associated with the artifical setting of experimental
conditions.
The overall direction that any programming research project using
the scientific method follows, 1is an 1investigative path combining
exploration and evaluation. In an approach where the former is

emphasised, the intention 1is to "discover" from a human-factors
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standpoint what features of a program makes its specification,
construction, verification etc. more tractable. However, in an
approach where emphasis 1s on the latter, the investigator posits,
prior to experimentation, certain factors which are believed, or
assumed, to be of 1interest; the aim then becomes to '"measure" the
effect of those factors. Investigations on programming style and
language design by Sime et, al. [85] provide examples of the former
approach, whilst the latter approach is exemplified by Weissman [66]
and Gannon [93]. The present study chose essentially an exploratory
path, albeit confined within an evaluative framework investigating the
nature of, and the factors affecting, problem decomposition
strategies. An approach with the alternative emphasis would have
involved assuming that such factors as: problem size, programmer
ability, design methodology, 1length of training etc. affect problém
decomposition; and the validity :of these assumptions.would then be
tested. This approach would make it easier to identify evaluative
experiméntal hypotheses. However, because of the scarcity of
empirical research on program design it was considered that initially
the exploratory approach would prove more illuminating. One of the
consequences of this decision was that an initial pilot experiment had
to be performed so that the broad objectives of the research could be
transformed into specific experimental aims and hypotheses.

The investigative methodology devised was based on the
established principles of. the scientific method. Its exposition,
which foll ows, introduces concerns relating to experimentation in
general before specific 1issues relating to the current research, are
presented. The introduction on evaluation paradigms, statistical test
procedures and choice of decision statistic provide the background
necessary for assessing the type of conclusions that can be drawn

from, and the confidence placed 1in, the results obtained.
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Consideration of the choice of subjects, materials and measures

completes the discussion.
3.2 Hypothesis Testing

Both observational and comparative evaluation paradigms involve
testing an experimental hypothesis using statistical test procedures.
However, as Leach [109] points out, they apply in two different
situations, which differ in the degree of control applied and the type
of conclusion that can be reached. The difference between the two
paradigms depends on- whether the variable under investigation is an
attribute or a treatment. An experiment where the variable being
investigated is an attribute (i.e., a property of the subjects
participating in the experiment and therefore not under experimental
control) is said to be an observational study. In contrast, if the
variable being investigated is a treatment (i.e, is assigned to
experimental subjects and therefore under experimental control), the
study is said to be comparative. Therefore, observational studies
need only involve one group of subjects in which the effect of the
attribute under study is measured. However, a comparative experiment,
in its simplest form, involves two or more groups of subjects in which
each group is assigned one of the possible types of treatment.

The distinction between observational and comparative studies is
crucial with regard to the conclusions that can be reached. With the
former, one may establish only a correlative measure (i.e., the
variables exhibit a measured degree of association) whilst, with the
latter, one may also infer a causal relationship (i.e., the effect of
the dependent variable is attributable to the treatment).
Furthermore, the choice concerning the type of study has to be made at

the start of the investigation because it effects both the designing
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and performing of experiments. In some cases, for practical reasons,
it may be difficult or impossible to carry out comparative studies.
For example, studies investigéfing differences in intelligence due to
gender or rTace must of neccessity be observational since the latter
are attributes of the subjects. Therefore, differences in results
obtained from such studies cannot infer a causal relationship which is
directiy attributable to gender or sex, because such differences may
be due to other factors such as environment or culture.

A statistical test procedure is a decision mechanism, founded on
the principles of mathematical probability theory, that transforms the-
experimental hypothesis and the set of collected observations by means
of a decision statistic into an outcome that accepts or rejects that
hypothesis. The similarity between the mechanics of a statistical
procedure and the reasoning used in a court of law provides, as Leach
[109] notes, a useful analogy to explain the force of argument used in
the former. At‘the start of the experiment, we assume that there is
no relationship between the variables in the experimental hypothesis
(we assume the 1innocence of the accused). Therefore, the researcher
(prosecuter) must aim to demonstrate on the basis of collected
observations, the validity of the experimental hypothesis (must
produce evidence that establishes the guilt of the accused) at some
level of significance (beyond reasonable doubt).

The standard procedure for carrying out a statistical test is as
follows:

(1) Posit the validity of the Null Hypothesis (i.e., assume that
there is no relationship between the variables being
investigated);

(ii). Choose the decision statistic to be used;

(iii) State the level of significance;

(iv) Compute, using the decision statistic chosen, the probabilty of
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obtaining the observed sample, this probability being denoted
by p;

(v) Reject the null hypothesis (and accept the experimental
hypothesis) provided the computed probability exceeds the
significance level.

The 1level of significance is the smallest probability value for
the collected observations that would result in the null hypothesis
being accepted. In theory, the value chosen is at the discretion of
the experimenter and may vary from experiment to experiment depending
on the degree of assurance required. However, in practice, the sole
purpose of experiment is to verify the desired hypothesis and
demonstrate the occurrence of an effect. Therefore, the smaller the
significance 1level, the greater the confidence that an effect has
occurred. The most frequently used value for the significance level
in experimental psychology, so that the researcher can conclude that
the observed effect 1is not the result of chance variation, is 0.05.
However, many studies adopt the convention of using the value of the
computed probability p, asserting that the result is signifcant at
that 1level; for example, as Sheil [52] points out, effects have been
reported as high as p €0.2. There are obvious dangers in choosing
"appropriate" significance 1levels after computing p. There 1is,
however, an even greater danger, as Sheil warns, in choosing
significance 1levels in such a manner, because the computed value for p
is an estimate that an effect has occurred and not an estimate of the
size of an effect.

The choice determining the decision statistic employed depends on
the observed sample characteristics. These include the underlying
nature of the population distribution from which the sample is
collected and the type of data collected. The first feature

determines whether the decision statistic is parametric or
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non-parametric decision statistic, it is necessary to consider whether

the type of data will be:

categorical data, for example when subjects' solutions are
classified into two mutually exclusive categories;
- ordinal data, for example when subject performance is
meaéured via the number of correctly placed instructions
. in a program outline;
- continuous data, for example when a subject's "perception
difficulty" is measured by the time taken to complete a task.
Two further features that determine the required decision statistic
are the independence of data(i.e., whether measurements influenced

each other) and the number of samples.

3.3 Methodological Specifics

The 1investigation can be viewed as two sets of studies, each one
being associated with a particular programming problem and involving
three separate experiments. Initially, for each of the two studies,
it was prefered to perform an observational experiment where the
overall aim was to discover something about the general nature of the
strategies people use 1in program design. It would have been
preferable to carry out the remaining experiments in both studies in a
comparative manner; however, practical constraints (i.e., the absence
of a control group of subjects) made this impossible for one of the
experiments in the first study. The discussion that now follows
details the methodological issues involved in choosing subjects,

materials and measures.

3.3.1 Choice of Subjects
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Two previously mentioned factors concerning training, and payment
(i.e., subjects were familiar with step-wise refinement and were
willing to be unpaid volunteers), restricted the population from which
subjects could be chosen to that of computer science students trained
in the broad principles of structured programming. In choosing
subjects .from this population, two differing criteria, dependent upon
whether the experiment was observational or comparative, were adopted.
For the observational experiments where the general aim was to
discover those elements of the design process that are common to
programmers, the criterion was to "cast the net fairly wide" so as to
gather as much information as possible. In contrast, the comparative
experiments had specific aims of establishing differences for a
particular aspect of program design between two or more groups of
subjects; this meant that the overall criterion was the need for
homogeneity of subject characteristics.

The techniques considered in order to control the effects of

between-subject-variance in relation to such factors as length of

training, nature of training, intelligence etc. were :
within-subjects-design, matched pairs and random assignment of
treatments. Use of the first technique meant devising a number of

problems (equal to the number of treatment levels) that were of
equivalent complexity so tﬁat each subject could undergo all
experimental  treatments. The obvious difficulties 1in assessing
complexity equivalence of programs ruled out this possibility. The
second technique would have involved the pairing of subjects in
relation to characteristics that might contribute to subject variance.
In theory, this could be achieved by matching on length or course of
study undertaken by subjects and course grades attained. However,
this was only partly possible because, in practice, it was not known

prior to experimentation which of the students would volunteer.
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Therefore, the homogeneity assumption was based on choosing subjects
from the same course (i.e., matching differences due to length and
type of training) as well as randomly assigning treatments (i.e.,
assuming that effects of other factors such as skill levels would be

randomly distributed across treatments).
3.3.2 Choice of Experimental Material

The most significant factor in choosing experimental material is
deciding the type of task to be performed. Two possible choices are
program construction and program comprehension tasks. The former type
was considered more appropriate to the needs of the investigation.
The material to be wused for each experiment consisted of a problem
specification where the task to be performed broadly involved
designing a program for the problem so specified. It was considered
essential that these problems each should possess more than one
distinct solution in order that the experiments might yield evidence
concerning the different design strategies that subjects employ.

Another important factor which influenced the choice of
experimental material was the decision to restrict the scope of the
investigation to problems whose general characteristics were similar
to each other. The reason for choosing this approach was that it
would have the advantage of reaching more detailed conclusions that -
albeit derived from a limited problem arena - could with
circumspection be extrapolated to a family of problems. Furthermore,
it was felt desirable that the problems should be fairly "balanced" in
their characteristics as this would avoid undue emphasis either on
input data content or, alternatively, on processing requirement.

The problems chosen were considered to satisfy the

above-mentioned requirements. For the first study, the problem used
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was derived from Findlay and Watt's signal problem [3] ( specified in
appendix I ). Naur's line-edit problem [4] was used as a basis for
the experimental material (specified in appendix 3) in two of the
experiments in the second study. The four problem specifications (
specified in appendix 5) for the remaining third experiment of this
study were derived from both the signal and line-edit problems.

" Program construction tasks provide an obvious means of
investigating the nature of program design, although they have the
serious disdvantage that it 1is difficult to devise comparative
experiments involving their use (therefore, they are usually employed
in observational studies). The source of the diffiEulty in the
present context was that subjects' strategies were attributes and
therefore not under experimental control. The obvious preference for
comparative experimentation necessitates devising a scenario in which
the wvariable under investigation 1is a _treatmeht rather than an
attribute. For two of the comparative experiments ‘carried out,
suitable experimental material was specially devised, this comprising
of outline programs (hereafter known as a process structure cues) and
lists of "elementary" instructions. The two process structure cues
with their respective lists of actions used for the signal problem are
provided in appendix 2, whilst the three cues and lists for the line
edit problem are given in appendix 4.

The process structure cues used corresponded to different
decompositions of the problem. Each was based on a particular (e.g
primitive or abstract) perception of the problem structure. The cues
were refined to a level such that a complete program could be obtained
by allocating "elementary' actions (elementary in the sense that their
functional description needed no further elaboration) to the former.
Therefore, these cues in skeletal form (i.e., without the actions

necessary to fulfill the processing requirements) consisted of
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suitable key-words used to express sequence, selection, and iteration
structures, with appropriate conditions for the latter two constructs.
The experimental procedure involved subjects having to construct
programs by allocating actions from the action list to their given
process  structure cues. Hence, problem decomposition became a
treatment 1in the experiment. Furthermore, in order to ensure that the
effect of any significant differences could be attributed to the
treatment rather than alternative sources of variation, the following
measures were considered in developing the cues:
- The key-words used were from the subjects' main programming
language (Algolé68);
- The idea of labelling the action list so that subjects need
write only numbers (say) in the spaces provided in the process
structure cues was considered; however, the superficial
convenience of reducing the task to "programmipg by numbers"
was rejected on the grounds ﬁhat it might have caused
confusion with program readability and understanding as
subjects assimilated the problem and developed the program;
- The positioning and size of blank areas in the process
structure cues was such that no implied significance could
be attached to them regarding the number, or placement,
of instructions. The spacing of blank areas was such that,
wherever subjects would have reasonably expected instructions
to appear in relation to their knowledge of Algol68 syntax,
a spatial area was left blank. In addition, these blank
areas between key-words were made equal in size;
- The stylistic rules used regarding formatting and
discriminability of key-words, choice of wvariable names etc.
were in accordance with the conventions for program clarity

as advocated on their programming courses.
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The action 1list could have been formulated in a number of
different ways depending on the elementary actions chosen. Though
syntactical form would correspond to Algolé68, there were a number of
equivalent semantic forms. The list used could either be:

~ a "complete set'", where the required actions included all

possible alternative forms;

- .a "sufficient" set, where all the required actions include
repetitions for those that would be required more than once;
- a "canonical" set, in which each of the required actions
is given once only.
The latter alternative was chosen because it was considered that the
first alternative would 1lead to a 1lengthy 1list involving a large
number of actions that would not be used and would therefore be a
source of confusion. Furthermore, in the second alternative, the
actions that needed to be repeated were not dependent solely on the
problem requirements but also on the syntactical rules of the language

being used.
3.3.3 Choice of Metrics

Deciding upon suitable metrics depends largely on the variable
being. investigated and the type of task being performed . In the
experiments where subjects developed a program from the specification
alone, it was necessary to devise an investigative rationale/framework
so that subjects' attempted solutions could be analysed. The problems
were chosen on the basis that they possessed more than one distinct
solution. Furthermore, the problems were such that their solutions
could be mapped according to their constituent process abstractions
onto one of a small number (e.g two or three) of decomposition

paradigms. A first-level solution template for the family of problems
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chosen can be represented as a hierarchy of abstract processes (where
processes 1 and 2 are components of either a sequence or selection

construct) as shown below.

program
initial process final
process data process
%
process
item
process 1 process 2

The actual decomposition paradigms for a particular problem can be
generated from this template by characterising the processes involved
in the hierarchy - in particular, the process pair at the root of the
hierarchy, hereafter referred to as the 'characteristic process pair'.
By way of example, for the signal problem, two possible decomposition
paradigms can be characterised as follows. On the one hand,
specifying the characteristic process-pair as 'process vehicle signal’
and ‘'process timing signal' leads to one paradigm. On the other hand,

a characterisation which incorporates a process specified as 'process
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waiting period', irrespective of the precise nature of the other
process, leads to the other paradigm.

In the classification of attempted solutions, it was decided that
the process description of the characteristic pair was to be the sole
arbiter, @ so that factors such as syntax/notation used or positioning
(correct or otherwise) of "elementary actions" (e.g input statements,
assignments etc.) were not considered. In addition, the quantitative
metric in analysing subjects' attempted solutions would be the
frequency/proportion of solutions based on the different possible
decomposition paradigms. It was considered that this metric would
effectively quantify subjects' "preference" for a particular paradigm
and would therefore be a useful contribution to the investigation.

In two of the experiments, there was a specific aim of
investigating the relationship between different problem decomposition
strategies and effort required. In these experiments, subjects were
asked to produce solutions to specified problems - using process
structure cues and an action 1list, and it was necessary to devise
metrics to analyse subjects attempted solutions. The effort required
was measured in terms of the total time taken to develop a complete
program. The rationale for wusing this measure is that the rate at
which subjects are able to perform the task of accomodating actions
into cues reflects the effort required to comprehend and elaborate the
latter. Moreover, the justification for such a view is as follows.
It can be assumed that, in decomposing a problem and designing a
program, a subject produces some internal representation of the
problem together with a subsequent model of its solution (this is
consistent with Greeno's idea [110] of cognitive representation and
Hoc's notion of a "systeme de representation et de traitment'" [111] in
the area of problem solving). It follows therefore, that the

ease/difficulty with which subjects comprehend and elaborate cues
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will be dependent upon the degree to which the latter "mirrors" their
internal model. On this basis, it is reasonable to use this metric to
evaluate different problem decompositions with respect to the effort
required in their comprehension and elaboration.

A further metric used for measuring subjects' performance was
defined in terms of the number of elementary actions correctly located
in the structure cue. A Dbetter measure may have been achieved by
weighting the components, as some were deemed more difficult to locate
than others. However, as there were no objective criteria by which
such weighting could be carried out, it was accepted that the choice
of equal weight would prove satisfactory.

To obtain observational information about the relationship
between decomposition strategies and subjects' errors, a metric was
specially devised which measured the error frequencies in subjects'
attempted solutions. The analysis required to compute these
frequencies consisted of classifying and acéumulating subjects' errors
made in relation to certain features of the'problem requirements, so
that each frequency corresponded to the number of errors for a
particular feature. More specifically, the chosen features were
associated with refinements of the characteristic process-pair. The
rationale for this choice was that such an analysis could yield an
"in-depth" insight (i.e., one that is subsequent to the first level of
refinement and focuses on those sub-processes which require the most
elaboration) into possible relationships between strategies and
errors.

In the next two sections, details of the plan, execution and
analysis of the investigation, involving the two sets of experimental

studies, are presented.
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3.4. The Signal Study

The problem specification used in the three experiments of this
study possessed several different solutions, a feature considered
pertinent to the objective of obtaining insight into subjects' design

strategies.
3.4.1 Experiment 1

Aim

The aim of this exploratory experiment was not only to gather
observational evidence on the kind of strategies used by subjects, but
also to use this evidence to form evaluative hypotheses for further
experimentation.
Subjects

The 129 subjects taking part were groups of computer science
students attending a humber of different educational establishments.
Individuals therefore éxhibited considerable variation with respect to

the following characteristics:

length of experience (from about 1/2 year to 3 years or more);

level of training (from pre-university to postgraduate);

the design notation they employed (this included flowcharts,

Nassi-Shniederman diagrams and Algol-style language);

primary programming language (from Basic to Algol 68).
Materials
Subjects were each supplied with a single-sheet computer
print-out of the signal problem as given in appendix 1.
Procedure
The experiment was conducted during a 50-minute class period with

different groups over a number of weeks. The subjects were given
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instructions verbally by the same experimenter for each session. They
were told that they were required to design a program in any design
notation or high-level language with which they were familiar. It was
emphasised that they were participating in an experiment and not a
test, and that they should feel free to seek clarification of any
aspect ofl the problem from the experimenter, though not from each
other, They were encouraged to show any development or working
carried out in obtaining the program.
Metrics

Various metrics were used to analyse the experimental data, these
relating to: subjects' preference for a particular solution type,
subject performance and frequencies of errors in solutions. Although
several different hierarchical process structures can be identified
for the signal problem (see 4.1.2), attempted solutions were
categorised into only two decomposition paradigms , hereafter denoted
by sl and s2, this classification being considered adequate to the
needs of the investigation. The sl paradigm corresponds to a solution
in which the characteristic process-pair is 'process vehicle signal'
and 'process timing signal', whereas the s2 paradigm corresponds to a
variety of solutions in which one process in the characteristic pair
is 'process waiting period', the precise nature of the other process
being immaterial. Representations of these two decompositions,
accompanied by corresponding complete solutions, are given in appendix
- The first metric above was used to evaluate the significance of
subjects' preferences. The second and third metrics were used
respectively to evaluate the significance of a trend between length of
experience and performance, and error frequencies associated with
fulfilling certain problem requirement goals
Results

Data for 106 (90%) of the subjects was analysed, the remaining
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subjects having: made insufficient progress in producing programs that
could be meaningfully analysed. The most illuminating statistic was
the frequency of subjects' preferences for solutions based on sl and
s2 ; these were 97 (91.5%) and 9 (8.5%) respectively.

The performance scores (i.e., the number of elementary actions
correctly’ located) ranged from a maximum possible of 9 to a minimum
observed of S They were grouped into four sets corresponding to
different 1lengths of experience. A table of each set with its mean

performance score and frequency is given below:

length of ' mean group

experience performance frequency
less than 1 year 6.81 3L
between 1 & 2 years 7.02 S0
between 2 & 3 years Ve2d : 14
greater than 3 years e DS i 5

The resulting data consisted of 4 independent samples of ordinal
values, and there 1is a strong intuitive basis for assuming a
correlation between  experience and performance. Therefore, a
Jonckheere trend test [112] was applied.

Null Hypothesis: There 1is no relationship between experience and
performance.

Alternative Hypothesis: Performance improves with experience.

Decision Statistic: Normal approximation to the Jonckheere test with
ties.

Significance level: 0.05

Computed probability: p < 0.005

Conclusion: Accept alternative hypothesis.

In addition to establishing the presence of this highly significant

trend, it was decided to assess the degree of improved performance.
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The use of an assymetrical measure of association is appropriate,
since the focus of interest was on how length of experience improves
performance, - rather than the other way round. The value obtained
using Somer's delta [113] was 0.23 which may be interpreted as saying
that, if two subjects were selected from different sets, there would
be a 23Z.chance that the subject from the more experienced group would
perform better.

Before considering subjects' errors, a table is presented below
showing frequencies with respect to the progress made as defined by

specific "milestones" in the development of an sl-type solution:

Progress made Freq

Satisfied the first two processing requirements only 18
Satisfied the first two requirements, and attempted the third,| 45
Correct solution apart from "final check for longest wait" 30

Correct solution 6

The error analysis centered on problem-requirement features of
the signal problem that are associated with the refinement of the
characteristic process-pair, and 1in particular on the two processes
involved in fulfilling the third processing requirement, as it is the
attainment of the 1latter that is the main source of complexity with
the signal problem. In practice, this involved inspecting solutions
to determine whether certain actions had been omitted or misplaced.
The relative frequencies (expressed as a percentage of the frequency
of solutions in the second category above) of the two processes -
namely, 'reset walting period' and 'check for longest waiting period'
- were 53%Z and 47% respectively. In addition, a significant error
measurement for the 106 subjects was the absence of the 'final check

for the longest waiting period' in 947 of the solutions.
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3.4,2 Experiment 2

Aim

The aim of the second experiment was to obtain evidence as to why
such a highly significant proportion of subjects favoured an sl-type
solution. One obvious explanation for this preference, which became
the investigative hypothesis for this experiment, was that an sl-type
solution 1is in some sense easier to perceive, Since problem
decomposition was merely an attribute of the participants in
experiment 1, it was now made a treatment. To achieve this, subjects
were split into two groups, one being guided or "cued" to sl, the
other to s2.
Subjects

The subjects were 20 second-year computer science undergraduates
trained in step-wise refinement and Algolé63. They were divided
randomly into two groups of equal size.
Materials

Supplied to each subject were:
(a) A specification of the problem as for experiment 1;
(b) A skeletal process structure cue corresponding to either

sl or s2 (see appendix 2);
(c) A list of actions necessary to develop a complete program

(see appendix 2).

Procedure
The procedure was essentially the same as for the first
experiment. Subjects were instructed that, from the materials they

received, they had to produce a solution to the given problem by
allocating actions from the action list to appropriate positions in

the skeletal cue. They were informed that certain actions might have
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to be 1inserted more than once in order to obtain a complete solution,
and that no implied significance should be attached to the size or
positioning of blank areas in the outline program structure. The
start time of the experiment and the finishing times for subjects were
recorded.
Metrics

.The ease with which subjects comprehended their cues was measured
in terms of the total time taken to accomplish the task of developing
a program.
Results

A table of times (to the nearest minute) taken by individuals of

the two groups in producing completed solutions is given below.

Group sl o S S i SR W s R B S S iy e 0 S

Group s2 2LS225 0238 S 23S S I3 P4 2D 25 30

Note, that of the 20 subjects who took part, 1 in group sl and 2 in

group s2 produced solutions that had to be rejected due to
insufficient development. The times taken formed two independent
samples of ordinal data and therefore were analysed using a

Mann-Whitney test [114] (although informal inspection of the table
suggests a significant difference between the two groups).

Null Hypothesis: The two groups do not differ in the time taken to
develop a program from the given cue and action list.

Alternative Hypothesis: The group cued to decomposition s2 will take
longer.

Decision Statistic: Mann-Whitney

Significance Level: 0.05

Computed Probability: p <€ 0.005

Conclusion: Accept alternative hypothesis
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Furthermore, the size of the difference was measured using a
Hodges-Lehman estimate [115], which indicated that a subject cued to

s2 would take some 9 minutes longer to complete the task.

3.4.3 Experiment 3

Aim

If the signal problem's processing requirements are imposed_upon the
sequence of input signals, the outcome will be a (logical) data
structure corresponding to s2. It would therefore be expected that a
population of subjects who had received training in Jackson's
principles would produce a significantly greater proportion of s2-type
solutions than the participants of experiment 1. The aim of the third
experiment was to test this prediction. The obvious course of action
would have been to conduct a comparative experiment involving a
population divided into two groups, so that one group received
training in step-wise refinement and the other group was trained to
use a data-emphasis structuring principle. However, practical
circumstances precluded comparative experimentation (no subjects who
had received both types of training were available), and thus another
observational investigation similar to experiment 1 was conducted.
Subjects

The 34 subjects were second-year undergraduates from vgrious
disciplines who had chosen programming as a "complementary studies"
option. As part of their training, they were required to attend a
weekly series of first-year computer science undergraduate lectures on
step-wise refinement and Pascal. In addition, they received separate
parallel instruction that stressed the need to consider the logical
structure of data as a means of obtaining an outline algorithim.

Materials, Procedure and Metrics

PAGE 67



As for experiment 1.

Results

Five subjects failed to produce solutions which could be meaningfully
analysed. The frequencies (with their percentages) of sl-type and
s2-type solutions produced by the 29 subjects were 16 (55%) and 13
(45%) regpectively. Comparing this result with that of experiment 1
yielded two independent samples of categorical data.

Null hypothesis: There 1is no difference in the division of sl and s2
frequencies between subjects in experiments 1 and 3.

Alternative Hypothesis: Subjects trained in Jackson's principles will
produce a greater proportion of s2 solutions.

Decision Statistic : A normal approximation to the Fisher exact test
(115].

Significance level: 0,05

Computed probabilty: p £ 0.000005

Conclusion: Accept alternative hypothesis.

An estimate of the size of the difference using a Somer delta [113]
revealed that it was 367% more likely that subjects from experiment 3
would produce a s2-type solution than those from experiment 1. The
frequencies of performance values ranging from the minimum observed to

the maximum possible for the two groups is given below.

sScores

Group sl 2B AR SR

1=
(O]
(s ¢]
=

Group s2

The results form 'two independent samples of ordinal data. Although
informal inspection reveals a marked difference between groups, data

was nevertheless analysed for significance using a Mann-Whitney test
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60 Moreover, as an s2-type solution was considered superior to
the other because it possesses a greater degree of modulari;y, a test
was carried out for increased performance in the s2-group.

Null Hypothesis: There is no difference in performance scores between
the two gTroups.

Alternative hypothesis: The performance of group s2 is significantly
greater.

Decision Statistic: Normal approximation to the Mann-Whitney test with
extensive ties.

Level of Significance: 0.05

Computed probability: p £ 0.0001

Conclusion: Accept alternative hypothesis

In addition, an estimate of the size of the effect was made using
Somer's delta [113], which revealed that there was a 78% chance that a
subject from the s2 group would perform better than from the other.

One possible contributory factor that was advanced to explain the
apparent ease with which sl-type solutions were perceived, was the
presence of certain key-words or phrases in the problem wording and
the particular combination of processing requirements presented

therein. This formed the basis for the second investigative study.

3.5 The Line-Edit Study

It 1is almost axiomatic that problem wording will influence
problem solving and hence the solutions produced. The aim of the
first two experiments in this study was to characterise subjects
strategies and gather observational evidence regarding the conjecture
(from the first study) that certain features of the problem wording
would act as cues for decomposition. Furthermore, the problem chosen

was considered appropriate to the needs of the investigation because
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it contained explicit references to both primitive and abstract
problem specification features. In the third experiment, the
previously mentioned conjecture was systematically investigated by
devising four problems, constructed from the specifications of both

the signal and line-edit problems.

3.5.1 Experiment 1

Subjects

These consisted of 36 third-year computer science undergraduates
trained in step-wise refinement and Algol68.
Materials and Procedure

These were as for experiment 1 of the signal study except that
each subject was supplied with a épecification of the line-edit

problem as given in appendix 3.

Metrics

As in the observational experiments of the signal study,
subjects' attempted solutions were mapped onto decomposition
paradigms. The three paradigms (respectively refered to hereafter as

L1, L2 and L3) that were judged adequate for classification, in terms

of the characteristic < process-pair.were:
(1) 'build a line of m chars', 'adjust line and then output';
(ii) ‘'process space', 'process character';

(iii) 'build a word', 'output a word'.
Representations of the corresponding hierarchical process structures
with their completed solutions are given in appendix 3.
The error analysis carried out was similar to that of the signal
study, the frequencies of errors associated with fulfilling the
following problem requirement features being accumulated:

(a) removing successive spaces;
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(b) inserting a single space between words;

(¢) preventing a space being output before the first word;

(d) preventing a space being output before the end of a line.
These were chosen because their attainment, or lack of, was the source
of several mistakes, as noted by Goodenough and Gerhart [117], in
Naur's [4] original, and other subsequent published solutions.
Results

Of the 36 solutions, 5 were .not classified as they had either not
made sufficent progress or did not match one of the three
decomposition paradigms. The division of frequencies for the
remaining subjects, respectively corresponding to decompositions L1,
L2 and L3 were 15 (48%), 6 (20%) and 11 (32%), did not reflect a
strong preference for a particular decomposition type. On the basis
of interpreting the preference for sl-type solutions in the signal
study as an indication that subjects favour solutions based on
primitive perceptions, comparisons of frequencies based on primitive
(i.e., L1 & L2) and abstract (i.e., L3) solutions were performed.
Null Hypothesis : There 1is no significant difference between
frequencies of solutions based on primitive, as opposasd to, abstract
perceptions.
Alternative Hypothesis: There 1is a preference for solutions based on
primitive perceptions.
Decision Statistic: Normal approximation to a Binomial test [118]
Significance Level: 0.05
Computed Probability : p £ 0.024

In addition co the division of frequencies for progress made

(i.e. frequencies corresponding to solutions satisfying either all
three or the first two problem requirements), the error analysis also
involved calculating for each solution type:

- the error frequency for each of the four above-mentioned
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features;

- the error percentage, which is the total number of subject
errors expressed as a percentage of the maximum possible number
of errors that subjects could make the latter simply being four

times the group frequency). The results are as follows:

- Solution Progress Errors Error 7%
Type all 3 first two SR ]
Ll 4 11 3 14 15 1S5 78
L2 6 0 Fo 4t 2.5 45
L3 Lk 0 1 il IR %) 30

Since decomposition strategy was an attribute in this experiment,
a second controlled experiment was performed using process structure

cues to make the variable under investigation a treatment.

3.5.2 Experiment 2

The first experiment in the 1line-edit study revealed that all
subjects' attempts, irrespective of solution type, were based on
erroneous decompositions. This was because they had not realized that
certain additional predicates were necessar y to ensure that solutions
did not contain the errors previously mentioned in (3.5.1). It was
considered that the inclusion of these predicates in the process
structure cues would unecessarily increase the complexity of the cues
and might also be a source of confusion. Hence, the cues used in this
experiment were erroneous, in that they were in a form that non-cued
subjects might be expected to produce when attempting to solve the
problem (as in the first experiment). Furthermore, since the

completed solutions presented in appendix 3 are based on these
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decomposition cues, they are also incorrect.
Aim
In the signal study, the preference for primitive solutions was

attributed to the ease with which primitive decompositions were

perceived. In general terms, the effort required to produce a
solution is not simply the effort involved in perceiving a
decomposition. More accurately, it can be described as the sum of the

effort required to perceive a decomposition and elaborate this
resulting decomposition into a completed solution. It might therefore
be reasonable to assume that in the case of a problem for which there
is no strong preference for a particular decomposition type (e.g.,
the 1line edit problem), possible differences in times taken to produce
a solution may be indicative of elaborative effort required to
complete that solution. Moreover, on the basis that the effort
required in elaborating decomposition types will vary from one
decomposition to another, the following experiment to compare
differences in elaborative efforts between groups was performed.
Subjects

The 24 subjects were third-year computer science undergraduates
trained in step-wise refinement and Algol68. They were divided
randomly into three groups.
Materials

Each subject was provided with : a specification of the
line-edit problem, a process structure cue corresponding to either L1,
L2 or L3, and a list of actions to develop a complete program from the
cue (see appendix 4).
Procedure
As for experiment 2 of the signal study.
Metrics

The effort required to produce a program was measured in terms of the
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time taken to develop a complete solution.

Results

0Of the 24 subjects that participated, one 1in each group produced
solutions that had to be rejected due to insufficient progress. The
data for 1individual times taken (to the nearest minute) by the three

groups is shown in the table below.

Group L1 2122 23 24 28 33 36

Group L2 | 15 15 19 19 20 20 22 24

Group L3 | 14 15 20 20 21 21

The data was analysed for differences between groups using a Kruskal
Wallis test [119]. This revealed a significant difference between
groups (p < 0.005). Moreover, pair-wise comparisons testing for
differences between groups using a Mann-whitney test-[lla] with a
significance 1level appropriate to the comparisons rather than the
experiment (i.e., 1/3 of 0.05), yielded the following:

- times of group L1 D times of group L2 (p < 0.005)

- times of group L1 » times of group L3 (p £ 0.005)

- times of groups L2 and L3 do not differ significantly.
3.5.3 Experiment 3

Aim

The aim of this experiment was to investigate the effect of problem
specirication on problem decomposition by varying the processing
requirements and key-words in the input data description. More
specifically, the experimental hypothesis was that explicit references
to primitive or abstract problem specification features are

responsible for corresponding (i.e., primitive and abstract)
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decomposition types.

Subjects

53 second-year computer science undergraduates trained in step-wise
refinement and Algol6é8 were used. They were randomly divided into
four groups, each group being assigned one of four treatments.
Materialsl

The -four treatments were devised by systematically manipulating two
factors, namely, removing the need to fulfill primitive processing
requirements, and/or introducing the presence of abstract data items.
The four problem specifications (specified in appendix 35), which
represent the four experimental treatments, are characterised as

follows:

(i) Problem I is the signal problem unaltered;

(ii) Problem II is formed from the data description of the
line-edit prbblem containing referenges to an abstract data
item, namely, 'word' and a set of processing requirements
that are equivalent to those of the signal problem;

(iii) Problem III is the signal problem with only the third
requirement. The specification removes the explicit
presence of primitive processing requirements (i.e., those
that correspond to single elementary actions),

thereby emphasise the presence of the remaining abstract one;

(iv) Problem IV is formed by taking the data description of the
line-edit problem and adding a processing requirement which
is equivalent to the third requirement of the signal
problem.
The hypothesis to be tested was that the proportion of abstract to

primitive decompositions should increase from group solving problem I,
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having the smallest ratio, to the group solving problem IV, having the
largest.

Procedure and Metrics

As for experiment 1.

Results

The data for 46 (87%) of the solutions was analysed, as the remainder
had made insufficient progress for analysis. The frequencies for

primitive and abstract solution types for each group were:

Group Frequencies

primitive abstract

I 11 0
i 10 3
III 7 S
IV 4 6

The data reveals that the preference for primitive solutions can not
only be counteracted, but actually reversed, with appropriate cues in
the specification. Furthermore, a Jonckkere test [/112] was applied
for a trend in group order I (II, III) and IV, where the middle two
groups were combined as there was no obvious a priori rationale for
distinguishing an order difference between them. The test indicates

the presence of a highly significant trend (p & 0.005).

Summary
In theory, significant results obtained from comparative
experiments irnpiy that the treatment under investigation is

responsible for the observed effect, provided that other factors were
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experimentally controlled. In practice however, this high degree of
control was not achievable for two reasons. First, it was difficult

to determine prior to experimentation exactly what factors might need

controlling. Second, control of between-subject-variance via the
within-subjects-design technique would have 1implied producing
programming problems of equivalent complexity. Therefore, a more

reasonable, and at the same time more cautious interpretation is that
the results from comparative experiments represent a higher degree of
association between the treatment and the observed effect than those
obtained from observational experiments. Bearing this in mind, the
results of the investigation can be summarised as follows:

- There is a marked preference for solutions based on primitive
perceptions of problem structure as observed in the first
experiments of the signal and line-edit studies;

- There is a difference in effort required to produce solutions
based on primitive and abstract perceptions. The second
experiment on the signal problem suggests that greater effort
is required for solutions based on abstract perceptions, whereas
the corresponding experiment on the line-edit problem indicates
the reverse;

- The effect of prior training of subjects to look for logical
data abstractions produces, as seen in experiment 3 of the
signal study, an increase in solutions based on abstract
perceptions of the problem structure;

- The results of the last experiment in the line-edit study
strongly suggest that the presence of certain key-words
and processing requirements in the problem specification
can influence the decompostion strategy employed by subjects;

- Observations from the initial experiments in each study
indicate that there is a relationship between subject error
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4, Discussion

4.1. Problem Analysis and Design evaluation

4,1.1 Introduction

- The first part of this chapter details an analysis of the signal
and 1line-edit problems and their respective possible solutions, an
informal "top-down" exposition of which is presented. Initially, each
solution 1is characterised in terms of an "item-type-to-be-processed",

hereafter refered to as ITEM. Essentially, an Item is that perception

obtained from consideration of input data and/or processing
requirements (including output) which becomes pivotal to the
subsequent decomposition of the problem. The various alternative

solutions to each problem based on different ITEMs are mapped onto
characteristic‘ process structure pairs corresponding to the
decomposition paradigms presented in appendices 1 and 3; the various
characteristic pairs are then refined to obtain process structure
hierarchies. With regard to the line-edit problem, modifications
needed to produce correct versions of the erroneous solutions given in
appendix 3 are also discussed. In addition, all solutions are
subjected to a design evaluation based on the notion of "modularity",
as characterised by certain stated criteria.

Since one aspect of this discussion concerns design evaluation,
it is relevant to consider what constitutes a ""'good design". At
present, there is no universally accepted method of quantitative
design assessment, although one frequently stressed qualitative
property that is considered necessary for  a good design is a high
degree of modularity. This notion is, to paraphrase Dijkstra [27],

the partitioning of the original amorphous knot of obligations,
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constraints and goals (i.e., the problem specification) into a set of
"separate concerns" (i.e., 1levels of abstractions). To arrive at an
effective separation of concerns, the levels of abstraction should be
"internally coherent" and "externally isolated"™, or in Structured
Design  terms "tightly cohesive" and '"loosely coupled", More
specifically, the 1implications of these requirements, as pointed out

by Liskov [23], are that:

the combined activity of functions of an abstraction level
supports that process abstraction (i.e, the task implied by
the process specification);

- each level of abstraction has resources (e.g., data) which it

owns exclusively and which other levels are not permitted to

access;

- the flow of information between levels should be in the form
of data passed as explicit arguments via functions;
- the direétion of control flow between levels shoul& proceed

from the top to the bottom; i.e., higher level functions

may call lower level functions, but the latter are not aware

of the existence of the former.

The qualitative assessment of each solution type for the two
problems is carried out by considering three design evaluation
parameters associated with the corresponding characteristic process
pair. These parameters, which readily suggest themselves from the
above requirements, are: the process specification/name, the functions
performed by the process and its resources. In practice, the approach
adopted 1is to use the above requirements as "benchmarks" to categorise
a solution as being either of "high'" quality if it satisfies all of
the above four requirements, or "low" quality if it violates one or
more of those requirements. Additionally, those specific features of

the solution that contribute to its categorisation are highlighted.
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4,1.2 The Signal Problem
Problem Analysis

For )the signal problem, there are two possiblities for ITEM
namely: a ‘"primitive" signal or a "chunked" (waiting) period. Both
these perceptions 1inevitably influence the manner in which the input
stream is viewed, the processing of which then dominates the
elaboration of the decomposition. There are in fact several distinct,
but correct, perceptions of the input stream, each with its
characteristic process structure pair, the details of which are

presented below:

ITEM Input Characteristic
Stream pair
T (v & t¥*)* process vehicle period
or process waiting period
(t* & v¥)*
t (vie | oge)w process vehicle period

process waiting period

t* (v ! t®)* process vehicle signal

process waiting period

LS (v ! £)=* process vehicle period

process timing signal

R ' (v b )% process vehicle signal

process timing signal

(v = "vehicle signal", t = "timing signal" and !, & and
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respectively denote unordered alternation, concatenation and unbounded
iteration).
The first three alternatives map onto an s2-type decomposition,
because of the presence of a t* process which deals with a waiting
period, whereas the latter two alternatives map onto an sl-type
decomposition. Although the structure t¥* & v is incorrect, it is
worth  noting because it appeared in some of the solutions of
experiments 1 and 3 of the signal study. Whilst the fourth
alternative 1is interpreted as an sl-type decomposition, it is regarded
as a perverse solution of the problem since a v* component bears
little relevance to the processing requirements; not suprisingly, it
never occured among subjects' solutions

Since the third and fifth alternatives respectively correspond to
the standard s2 and .sl paradigms, consideration is now given to the
refinement of their characteristic process structure pairs. In
relation to the fifth alternative, the elaboration of 'process timing
signal’ is simply two elementary actions, that of incrementing
waiting, and total survey times. The elaboration of 'process vehicle
signal' 1is, however, more complex Because it involves a sequence of
three processes. The first and third are elementary actions that
respectively correspond to 'increment a vehicle count' and 'reset
waiting period', whilst the second process is composite and involves
the 'check for a possible longest waiting period’'. This latter
component is also needed as part of 'final process', to ensure that
the waiting period between the last vehicle and the end of the survey
is also compared against 'the longest waiting period’.

The refinements of the process pair associated with the s2
paradigm are such that 'process vehicle signal' 1is simply the
elementary action of incrementing a vehicle count, whilst 'process

waiting period' consists of the two composite processes 'process
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accumulate period' and ‘'‘check for longest waiting period'. This
completes the refinements of the two paradigms and representations of

their process structure hierarchies are presented below:

Psignal
data
Pinitial Pdata Pfinal
' body
Psignal Pcheck
- max
period
o o}
Pvehicle Ptiming
signal signal
Pincrement Pcheck Preset Pincrement Pincrement
v-count max waiting t-count waiting
period period period

sl-type Process structure hierarchy
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Psignal

data
Pinitial Pdata Pfinal
body
Pperiod
o o
Pvehicle Pwaiting
signal period
Pincrement Paccumulate Pcheck
v-count - period max-period

Ptiming-
signal

Pincrement
t-count

s2-type Process structure hierarchy
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Design Evalauation of sl and s2 paradigms

The characteristic process pair for an sl paradigm in terms of
its design evaluation parameters are:
(i) specification - process vehicle signal
functions - increment vehicle signal, check max period
and reset waiting period
resources - num of vehicles, longest waiting period,

waiting period

(ii) specification - process timing signal
functions - increment length of survey and waiting period
resources - length of survey and waiting period

The sl-type 1is not a high quality design because it violates two of
the four previously mentioned requirements for modularity ( see
Yo i The 1latter two functions of "process vehicle signal"™ do not
support 1its abstraction, which violates the first requirement; and the
resources of both processes are not exclusively owned, which violates
the second requirement. Re-arrangement of the program code so as to

remove these violations produces:

IF signal =1

THEN
(* process vehicle *)
increment vehicle count;

set v-arrived
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ELSE

(* process waiting period *)

IF v-arrived

THEN
check for max period;
reset waiting period;
reset v-arrived

FI;

increment waiting period;

increment survey length

FI

This re-arranged version has a resource item v-arrived that is used as
a flag to communicate between the two processes, violating the last
two Trequirements. In addition, it highlights the placement of actions
that contribute to its poor quality, namely, 'reset waiting perioed'
and ‘'check for max period'. Similarly, it can also be shown that the
‘final check for max period' is a further contributory factor to low
quality. In Structured design terms, this solution type is of low
quality because it is control coupled (one process commands the other
process on what action it should take via the flag variable). From a
Jackson perspective, this decomposition type would be deemed
inappropriate because it does not possess a 'process waiting period'
component to which actions associated with a waiting period such as
'reset waiting period' should bé allocated.

The s2-paradigm is of a high design quality because all four
requirements are satisfied. The component 'process vehicle' performs
a single function that supports its abstraction and exclusively owns a

data resource which it communicates as an explicit argument. The
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other component 'process longest waiting period' performs two

functions (i.e., 'process waiting period' and 'process check
max-period'), both of which support its abstraction; 1its data
resources are exclusively owned and communicated as explicit
arguments. The feature that contributes to this design being high

quality 1is the presence of the component 'process waiting period’,
which produces a design encapsulating an abstraction 1level that
preserves an effective '"separation of concerns", or from a Jackson
viewpoint, reflects the logical structure of the data.

4.1.3 The Ling-edit Problem.
Problem Analysis

In order to analyse the line-edit problem in the same manner as
the the signal problem, the following observations concerning the
former shoﬁld be noted: that it includes non-trivial input and output
streams and that ITEM can be perceived as either a line, word or
character. Each of these perceptions defines a different solution;
these are presented as three separate cases (s = space character, ¢ =

non-space character, n = newline):
Line-driven

The implications for the input and output streams of perceiving
ITEM as a 1line are that there are two possible perceptions for the
former, namely: (s ! ¢)* or (s* & c*)%, whilst the latter's structure
is ((s & c¢*)* & n))*. The characteristic process-pair for the first
input perception is ‘'build a line of m characters' and 'adjust line
and then output', whereas for the second it is 'build a line' and
'‘output a line'. In the first perception, a line-item is visualised
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as a simple repetition of characters, which implies that there is the
possibility of 'build a line of m characters' encountering a line
break in the middle of a word;: the second perception, however,
visualises a line-item as a repetition of words and therefore 'build a
line' produces a repetition of complete words. Interestingly, all
subjects" solutions based on a 1line ITEM corresponded to the first
alternative, which can be refined into the Ll-type solution presented

in appendix 3.
Character-driven

There are three different solutions that are based on ITEM as a
character. One possible way of arriving at a program that is
essentially Naur's original solution [4] 1is to visualise the input
stream as (s ! c)*, the characteristic process-pair as being 'process
space' and ‘'process non-space-character’'. The other two possible

solutions have input streams that correspond to (s* ! c)* and (s !

c¥)%*, For all three solutions, the output stream structure is ((s &
c*) ! (n & c¥*))*, though it 1is the input stream perception that
dominates the 1initial decomposition. Of the three, only the first

alternative can be elaborated to an L2-type solution as given in
appendix 3. The latter two are "hybrid" in the sense that some
"chunking” (i.e., character grouping) is present. Of the six subjects
who produced solutions that were categorised as L2-type

decompositions, there was one of each hybrid type.

Word-driven

There are two alternative solutions where ITEM is a word. One

solution is based on a perception of the input stream as (s* & c¥)%,
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with a characteristic process pair of 'build a word' and ‘output a
word'; the other is based on (s* ! c*)* with a characteristic process
pair of 'process spaces' and 'process non-space characters'. The
output stream structure for both solutions is the same as in the
previous case, Note thus that, from a Jackson perspective, making
ITEM a gord achie ves a degree of perceptual correspondence between
the :input and output stream structures that is absent in the other
two cases. Note further that, the former alternative can be refined
to an L3-type solution, whilst the latter never appeared amongst

subjects' solutions.
Refinement of characteristic pairs

Having specified the characteristic pairs for the three
decomposition types, consideration is now given to their refinements
§0 as to produce detailed process structure hierarchies. Both
characteristic processes of the line-based perception, namely, 'build
a2 line' and ‘'adjust a 1line and then output', involve composite
sub-processes that need considerable refinement. The first process
repetitively adds a non-redundant character to the current line,
whilst the second process adjusts the line if there was a line break
in the middle of a word, and then outputs the line. This latter task
is elaborated in terms of two composite processes that need further
refinement (as can be seen from the completed solution). However, the
process structure hierarchy for an Ll-type solution shown in Figure 1
is adequate for the needs of this discussion.

The elaboration of 'process non-space character', a
characteristic process of an L2-type decomposition, consists of two
elementary actions adding a character to a word and incrementing the

size of the word. The refinement of 'process space',the other
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characteristic process, is more complex. This is due to the need to
distinguish between the cases when a space is either redundant or acts
as control character for output, in which latter case a space denotes
either the end of a word or a line. The process hierarchy for an
L2-type solution is shown in Figure 2.

'Proéess output word', one of the characteristic processes for a
word-based decomposition, distinguishes between the cases in which a
word 1is output on either the current line or a new line, so that the
word can be preceded by an appropriate separator. The function of
'process build a word' 1is to get the next word; this involves two
repetitive processes, one skipping over spaces, the other
concatenating non-space characters to form the next word. The process

hierarchy for an L3-type solution is shown in Figure 3.
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Design Evaluation

It 1is appropriate for the purposes of this discussion to evaluate
design quality of decomposition paradigms based on subjects' actual -
albeit incorrect - attempts rather than on the correct versions. For
the L3—t}pe decomposition, the characteristic pair described in terms
of its design evaluation parameters is as follows:

- one process specifies its abstraction as "build a word";

it "imports" character items and '"exports' word items

via a function that performs only the task specified
in its process abstraction;

- the other process, specified as "output a word", imports

and exports word items via a single-task function.

The design satisfies all four previously mentioned requirements:
first, the function of each process support the its abstraction;
second, the resources form an effective '"separation of concerns"
because ‘'build a word' conceals the details of processing characters
to form words from 'output a word'; third, both processes communicate
data as explicit arguments; fourth, control flow is "top-down" and
therefore, the design quality is assessed as '"good". The presence of
the two sihgle—task functions, each of which owns its resources
exclusively, is responsible for this evaluation.

The functions performed by 'process space', a characteristic
process of the L2-type design, are to remove redundant spaces and to
output words. Because the process abstraction (i.e., the task implied
in its specification) 1is not supported by these functions and in
addition, there 1is no effective '"separation of concerns" in resources
(i.e., words and characters), neither of which is exclusively owned by

either process, the design quality 1is assessed as poor. The major
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factors that contribute to this classification lie with 'process
space', or more specifically, with the functions of this process.

The characteristic processes for the line-based decomposition,
'build a line' and ‘'adjust line and then output', violate the second
requirement because both processes own character and line (i.e., there
is no effective separation of data). Furthermore, the information
being passed from the former process to the latter appears to be a
single explicit data item. However, closer examination reveals that
two parameters are actually being passed, namely, the line and the
next input character. The latter item acts as a flag which transmits
control from the first to the second process.

Interestingly, from a Jackson perspective, the L3-type
decomposition is based on the logical structure of the input data,
whilst the other two designs would be rejected as their structure is
inappropriate to the problem requirements. From a Structured Design
viewpoint, the L3-type decomposition is functionally cohesive, whereas
the other two solutions are such that their characteristic processes

are control coupled.

Program Modifications

The errors in the solutions presented in appendix 3 are related
to the output of a space at the start, and/or end, of output lines.
The modifications needed for each of the three solutions are discussed
as three separate cases:

(i) Ll-type solution

The component controlling the output is:

IF char # space OR prev char # space
THEN
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line := line + char;
line size := line size + 1

FI;

The function of the above predicate can be mistakenly interpreted as
detecting the presence of a non-redundant character (which
éorrésponds to the situation of the input character being one of gwo
possibilities: either a non-redundant space or a non-space character).
More accurately, its function 1is simply the removal of successive
spaces. . To correct this mistake involves two major changes: first,
the need to separate the two components of the conditional expression,
and second, to introduce the conditions 'line size £ 0' and 'line size
+ 1 ¢ m' to ensure that there is no space respectively at the start
and finish of lines. With these modifications, the corrected version
of the component is:

IF char = space

THEN
IF prev char # space
THEN
IF line size # 0 and line size + 1< m
THEN
add space to line;
increment line size
FI
FI
ELSE
add char to line;
increment line size
3l 18-

(ii) L2-type solution
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The component 'process space' controlling the output is:

IF word size # 0 (*non-redundant space *)

THEN
output word;
éet word size to zero;
set word to empty string
FI;

Since ‘'output a word' prints a word preceded by a separator, the first
word will be preceded by a space. However, this will only be the case
for the first 1line, since, for every subsequent line, the first word
will be preceded by a newline character. The remedy chosen by
Goodenough and Gerhart [117] is to specify a blank line at the
beginning of the output text, which will result in the first word of
every output line being preceded by a newline separator. The effect
of this change can be achieved, as they point out, ;ither by:
- conjoining the predicate 'line size # 0' with the existing
condition that checks whether the current word should be
output on the current line or on a newline;
- or by setting the length of the line to "m" (i.e., maximum

number of characters on a line) at the start of the program.
A simpler modification .that does not change the specification is to
nest the condition 'line size # 0' within the condition for a
non-redundant space.
(iii) L3-type solution

The nature of the error and the reason for its occurrence are the
same as in the previous case, and therefore '"guarding'" the component
'‘process output a word' with the condition 'line size # 0' in the same
way as above ensures that the first line does not begin with a space.

The approach taken in the above discussion is to consider what
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modifications need to be introduced to the code of certain incorrect
programs to produce corrected version. An alternative approach is to
consider what aspect of the abstract model on which the program design
is based 1is 1incorrect; having identified and corrected this error in
the design, the code is then modified accordingly. Thelformer
strategy .fs in marked contrast to the latter, because it does not make
use of the refinement 1levels produced in the derivation process to
trace the source of the error, but simply 'patches" the program code.
Applying the alternative approach to the line-edit problem and viewing
the ITEM as a "word-item", the argument is as follows. The program
design model for the L3-type solution processes each word in the same
manner. However, from the above discussion it can be deduced that the
first word in the text should be processed differently. Therefore,
the required perception of ITEM is (s* & c*) & (s* & c*)*, resulting
in the program:

build word;

print(word);

WHILE word # "*"

DO

build a word;
output a word
0D
In relation to design assessment of corrected versions, it can be

seen that "inserted patches of code" would reduce modularization,
because their presence would not support the process abstraction,
thereby violating, or adding to the existing violation, of the first
requirement. However, the program design based on the modified model
for the L3-type does not violate this requirement and would therefore
be assessed as '"good". This consequence is a strong argument for

advocating an error removal strategy that is based on re-designing the
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program rather than "patching" it.
4,.1.4 Conclusion

It can be seen that the decision regarding the choice of an ITEM
is a significant determinant in the formulation of subsequent,
refinement 1levels of an algorithm. Moreover, the input and output
streams are two obvious factors that influence this choice. Indeed,
the Ll-type solution is an 'output-driven' design, whereas the sl and
L2 paradigms are 'input-driven' designs. In certain cases, the
problem requirements may suggest the possibility of a further
alternative for an ITEM, for example in the case of the signal problem
'a waiting period' and in the case of the line-edit problem 'a word'.

In relation to design quality, the discussion reveals that
solutions based on abstract perceptions are superior to those based on
primitive perceptions. Two examples of program structure illustrating
this comparative difference in quality are sl with s2 and L2 with L3.
The '"poor'" quality of an Ll-type program structure shows that abstract
perceptions do not necessarily correspond to "simply chunked", but
rather "appropriately chunked", perceptions. With regard to modifying
programs, it 1is noted that a good design (e.g., an L3-type) is easier
to correct than a poor one (e.g., an Ll-type). Furthermore, a ﬁrogram
modification strategy based on re-design rather than 'patch" 1is

preferable.

A conceptual model will now be presented. This model is based on

: the
literature review covering issues in program design; further reading in
rel@vent cognitive psychology; and the experimental results reported

above.
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4,2 Conceptual Model Of Program Designer Behaviour

Software practitioners and human factor researchers, whose common
goal 1is that of easing the programmer's task, also share an approach
to representing the results of their investigations as a synthesised
system or theory, which is frequently expressed in terms of principles
and notions from other disciplines. For example, Dijkstra has
expressed his ideas [1] on how a program should be designed as a
calculus wusing mathematical principles, whilst Constantine [17] and
Jackson [26] incorporate into their methodologies concepts from sytems
theory and information modelling respectively. Human factor
researchers in programming have used notions from cognitive psychology
and problem-solving to produce conceptual models of programmer
behaviour for various programming-related tasks. For insgance, Allen
[120] cites several examples of such models including: Sime et. al's
investigations [86] into nested conditionals where results are
explained in terms of a theory of "taxon" and "sequence" information;
Shneiderman and Mayer's proposal [121] of a syntactic/semantic model
of programmer behaviour and Atwood and Ramsay's work [122] which
applies to program comprehension the notion of Kintsch "hierarchical
schema" [123] on text comprehension. This investigation follows the
same tradition by proposing a conceptual problem-solving model of
programmer behaviour for the program design process. The model
explains the behaviour of an aggregrate of programmers trained in

structured programming principles.
4.2.1 Formulation of the model

The program design task is hypothesised to involve the problem
solver, at any given time, carrying out one of three distinct types of
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behaviour:

- problem understanding;

- solution planning (i.e., the generation of a set of goals);

- solution representing (i.e., recording the solution sequence).
Furthermore, since the overall design strategy in structured
programming is essentially step-wise refinement, it can be said to be
reductionistic (i.e., the problem to be solved is reduced into several
sub-problems, with the reduction process being repeated on each
sub-problem). Therefore, the three stages mentioned above need to be
performed repeatedly.

Problem solving, as viewed in 1its most general form, is an
activity which transforms an initial state, by applying a given set of
operators, to produce a solution sequence that leads to a final state
[5%]. Therefore, the correspondence between program design (in

structured programming terms) and problem-solving can be specified as:

initial state : problem specification;

final state : the program in a formal notation;

‘operators

decomposition, abstraction,

concatenation, selection and repetition;

solution sequence : levels of refinement.

The model components - the problem solver, the problem and the
solution sequence - will now be characterised from a problem solver
perspective.

The problem solver 1is viewed as an information processor, whose
structure 1is hypothesised to consist of: a set of knowledge structures
relevant to program design, memory for storing and processing
information and a facility for planning. The former, as Shneiderman
[121] has pointed out, is a complex multi-levelled body of concepts
and techniques that he refers to as "semantic knowledge'". In general

terms, this knowledge includes general methods for constructing
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programs, strategies for producing specific programs or program
"segments" and the effects of various program statements. For
example, with respect to all the subjects that participated in the
experiments, it could be said that their knowledge included high-level
notions such as the structured programming operators previously
specified, and strategies for producing program segments that ranged
from: simple segments such as accumulating a count, to intermediate
segments such as finding the largest element of a list.

The memory structure adopted 1is based on Greeno's work [110] on
problem solving and Shneiderman's model of programmer behaviour [121].
The structure consists of three components: short-term memory,
long-term memory and working memory. The former stores information
from the outside world to which the problem-solver pays attention but
has a relatively limited capacity ( Miller [!24] suggests seven plus
or minus two ‘'"chunks"), although information from it 1is easily
retrieved. The knowledge acquired through experience by the problem
solver is permanent and resides in semantic form in the long-term
memory, whose capacity 1is essentially unlimited and retrieval from
which 1s systematic. The stored information is assumed to be
hierarchically structured, as hypothesised by Lindsay and Norman
[123d, in terms of categories-of concepts; these are organised in the
form of a semantic network (i.e., a tree structure), in which each
node represents a generic concept that is related to its sub-nodes by
an "ISA" (i.e., is an instance of) relationship. The component termed
as "working memory" (due to Feigenbaum [ 12&]) is not a permanent store
but has a greater capacity and longer retention time than short-term
Memory . Information from short-term and long-term memory can be
integrated in this component to produce solutions during problem
solving.

Solution planning 1is viewed as goal generation, where a goal
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structure defines the current state, the desired state and a set of
possible strategies to transform the former into the latter. The
mechanism for generating goals needs to be considered because goal
elaboration in program design terms 1is equivalent to problem
decomposition. Structured programming has no specific well-defined
decomposi£ion criteria, and therefore no systematic mechanism for goal
generation can be defined. However, two distinct approaches can be
hypothesised, which occur when the designer's primary focus of
attention 1is on one of the two main ingredients of the descriptions of
most programming problems, namely: either the data (it should be noted
here that the term "data" in this context is intended to include both
input and output) specification or the processing requirements. The
two  approaches can be respectively termed as 'data-driven'" and
"requirements-driven". In addition, it 1is hypothesised that goal
generation can be characterised by cognitive processes that are a
function of an "availability heuristic". The rationale for this
characterisation is influenced by Pollard's application [127] of
Tversky and Kahneman's theory of nonrational intuitive judgement to
logical reasoning tasks [12%]. This theory proposes that a subject's
judgements are mediated by an availability heuristic. Pollard
suggests that this heuristic is responsible for two different types of
availability effects,. one being the availability derived from the
subject's experience and the other from the salient characteristics of
the stimulus. Both types have an essential common feature: they
directly 'cue" the subject's response. Thus the response 1is a
function of this cueing and 1is not based on a rational reasoning
process.

The implications of interpreting availability theory in context
of solution planning is that goal generation is not necessarily based

on rational reasoning but is a function of two possible sources that
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are responsible for cue availability. Hence, two different types of
activations are hypothesised, termed as "stimulus" and "knowledge"
activation, occurring when planning 1is steered by specific
characteristics of the stimulus and the knowledge structures of the
problem solver respectively. This characterisation of designer
behaviour implies that human-centered factors in program design (e.g.,
the 1level of difficulty) are not simply attributes of the task alone
but are also related to problem solver knowledge. Furthermore, such a
characterisation attempts to view program design as an accquired
skill, and in so doing, takes note of Sheil's critique [52] that
"programming 1is clearly a learned skill, and, therefore, what is easy
or difficult is much more a function of what skills an individual has
learned than any inherent quality of the task".

The application of two different types of problem decomposition
strategy are proposed, being based on what Greeno.[llo] refers to as
"reproductive thinking'" and "productive thinking". The former is
essentially a retrieval process, occuring when the subject understands
the problem being solved, remembers the strategy for solving it and
then transfers it in an 1integrated form from long-term memory to
working memory. In contrast, the latter is a reconstruction procéss
that takes place when the problem-solver does not have an existing

strategy for solving the problem. In such a case, the task becomes

one of constructing a solution plan by transforming existing
strategies. An 1illustrative example from Greeno's discussion is
Wertheimer's area-of-a-parallelogram problem, where knowing the

formula for the area involves a simple retrieval of a strategy, and
therefore 1is reproductive, whereas realising that a parallelogram can
be transformed to a rectangle is productive.

The input to the model is the problem specification (the

stimulus), which 1is hypothesised to be a function of the cues
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(primitive or abstract) in the problem wording. In particular, a
distinction 1is made between cues that stem from the data content and
processing requirements of the specification. Both are assumed to be
possible sources of cues, given that subjects trained in structured
programming should have been taught to pay attention to data
specificétion as well as processing requirements as a basis for
soluéion structuring.

The output from the model (the solution sequence) is hypothesised
to be the stages of program development performed by subjects. For a
particular model, as Card et. al [129] point out, the "grain of
analysis" (i.e., the 1level of detail) 1is defined by the operators
used. The operators in this model are simply the strategies that
transform one state to another state. However, in order to provide a
more detailed description of designer behaviour, the approach adopted
in documenting the output when applying the model to a given problem
is that strategies are described informally and the states of the
model, which correspond to program development stages, are
characterised in algorithmic form. Thus, an operational overview of
the model is:

(i) The process of problem understanding yields a description of
the problem-to-be-solved which enters the short-term memory;
(ii) The available cues in this description are the primary
sources for activating cognitive processes that generate
goals in the working memory; these goals are then elaborated;
(iii) Each problem refinement is recorded.

The 1implications of advancing a model involving stimulus and/or
knowledge activated goa; generation processes based on availabilty
theory are that problem decomposition strategies need to be
hypothesised. Furthermore, hypotheses regarding preference for, and

effort associated with, these strategles and contributory factors
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affecting goal generation can then be formulated. The next section
considers these hypotheses and provides empirical evidence that is

consistent with the proposed model,

4,3 Problem Decomposition Behaviour

4.3.1 Strategies

Top-down exposition of a design cannot be regarded as proof of
program development in a step-wise manner. Indeed, Wirth [130], in
relation to his step-wise refinement method, is quite explicit: " I
should 1like to stress that we should not be led to infer that program
development proceeds in such a well organised, straightforward,
top-down manner". The 1implied premise, which will act as a
starting-point for postulating various strategies, is that programs
are not necessarily developed using this idealised way of thinking.
This view is supported by arguments resulting from the application of
the proposed model to the signal and line-edit problems. These
arguments detail the goals, knowledge and/or stimulus activated
processes or other mechanisms for goal generation, and problem
decomposition strategies associated with such goals. A partial record
is thus provided of the "chain of thought" that a typical subject
might undertake in the initial stages of problem decomposition.

First, let us suppose for the signal problem a data-driven
approach where the processing requirements initially are a secondary
consideration. In this case, the goal generation process is both
stimulus and knowledge activated. This is because availability is
derived from the presence of the prevailing signal stream emphasis in

the data specification as well as from the subjects' familiarity with
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the strategy associated with a hypothesised goal, broadly described
as: 'process a repetition of two different types of signal'. The
representations of this goal structure and the relevant portion of the
problem description are transferred 1into the working memory. These
representaFions are then processed by the application of a general
hypothesised data-driven strategy that is assumed to be reproductive
(i.e., part of the knowledge set of the problem solver) and is
characterised as: ‘'Process Next Item' (PNI). The transferred problem
description, views an "item" in its most trivial form i.e., as either
(1 or 2) signal. The application of the strategy results in a problem
refinement that corresponds to an sl-type solution and is of the form:
read (signal);

WHILE signal # O

DO
IF signal =1
THEN
process a l-signal
ELSE
process a 2-signal
FI1;
read (signal)
0D
Alternatively, consider a requirements-driven approach. A

hypothesised goal of: ‘'accumulate counts for vehicle and timing
signals', derives 1its availability from the first two pfocessing
requirements. Furthermore, if it is assumed that the goal is one with
which the subject is familiar, then, the process generating it is both
stimulus, and knowledge activated. Transference of the appropriate
part of the problem description and the goal into the working memory

is followed by the application of a hypothesised general
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requirements-driven strategy termed as 'incremental design' (ID); its
somewhat bottom-up character can be encapsulated informally by the
phrase: 'do what you can and make the rest fit around it". The
resulting component is :
IF sigpal =1
THEN
increment vehicle count
ELSE
increment survey length
FI
Preservation of this component 1in the subsequent steps produces an
sl-type solution.

Naturally, a deeper analysis of the signal problem (i.e., one
that is not based simply on the readily available cues) is needed to
generate goals that would elaborate to an s2-type solution. This
involves either :

- perceiving appropriately chunked items which will result in
the generation of the abstract goal: 'process a repetition of
two types of item', where one of these is itself a subsequence;

- or recognising subgoals which reside at a higher level

in the problem structure and therefore require a certain

amount of refinement themselves, which in the signal problem,

context relates to determining the length of a waiting period.
Thus, in developing an s2-type decompoéition, the problem-solver
realises the advantage gained from including of a '"subsequence of 2
signals' component, as these chunks relate directly to satisfying the
requirement of determining 'the length of the longest waiting period'.
The resulting component is:

WHILE signal = 2

DO
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process signal;
read (signal)
0D;

For the 1line-edit problem, the three possibile cues in a
data-driven approach are character, word and line. However, since
neither ;f the three cues 1is strongly emphasised in the problem
wording, it 1s considered unlikely that these cues will be the major
source of the availability effects. Similarly, in a
requirements-driven approach, none of the requirements appear to
contain explicit features that could be a major source of availability
effects. Hence, for both approaches it 1is conjectured that,
goal-generating processes are both stimulus, and knowledge, activated.

An L2-type solution results from a data-driven approach in which
a hypothesised goal of the form: 'process a repetition of two
different types of characters' 1is both stimulus and knowlegde
activated; this 1is because availability is derived partially from the
presence of a character emphasis in the problem wording and also
partially from problem-solver familiarity with the hypothesised goal.
The general strategy associated with such a goal is the reproductive
PNI strategy. The transference of this strategy with a description of
the appropriate portion of the problem into the working memory is
processed to yield a decomposition corresponding to an L2-type
solution of the form:

read (char);
WHILE char * ik
DO
I1F char = space
THEN
process space

ELSE

PAGE 109



process a non-space char
FI
read (char);
0D

To arrive at an Ll-type solution from a data-driven approach

involves hypothesising a goal of the form: 'process lines of
characters'. The generation of such a goal is considered unlikely for
two Teasons. First, availabilty effects would have to originate from

a not particulary pronounced 1line-item emphasis in the problem
wording. Second, for goal generation to be knowledge-activated would
involve assuming that subjects were familiar with a strategy for
processing a repetition of items (i.e lines) where the item is itself
a subsequence. However, since the results of the first observational
experiment in the signal study;indicate a paucity of solutions based
o
on subsequences, the validityithe latter assumption is questionable.
In a requirements-driven approach, the second requirement, namely, 'no
line will contain more than m characters and each line will be filled
as far as possible', is stimulus activated. This requirement is also
knowledge-activated because the hypothesised goal of: 'fill a line of
m characters', which satisfies the requirement, is one for which it is
reasonable to assume that the problem solver will be familiar with a

program component of the form:

WHILE not m characters

DO
process a character;
read (char)
op’
An L3-decomposition type requires a goal of the form:
'repeatedly, build a word and then process it'. The presence of 'word'

in the data description is not sufficiently emphasised to act as an
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an available cue and neither of the three processing requirements are
possible sources of availability effects; therefore, it is considered
unlikely that the goal 1s generated from these effects alone. One
possible explanation is that the problem solver may have generated
goals of the form: 'repeatedly build a word' and 'repeatedly process a
word' which derive their availabilty from a combination of the
stimulus and the subject being familiar with a "process next word"
(i.e., PNI-type) strategy; then, in a piece-meal manner reminiscent of
ID, the subject combines the goals to form the required problem
decomposition. An alternative explanation 1is that the subject,
through a 1logical reasoning process, perceives the chunking of words,
recognises the necessity for appropriate abstract goals, i.e., 'build
a word' and 'process a word', and uses a productive strategy to
combine them to produce an L3-type decomposition.

The two problem decomposition strategies hypothesised are assumed
to be of general applicability. The PNI strategy, which is strongly
associated with a data-driven approach, bears some similarity to Hoc's
[131] findings that strategies for program construction are influenced
by the role of "mental execution of the program": it is reasonable to
assume that the most 1likey self-elaboration of the task is that
subjects would visualise, having contemplated the data, would be to
deal with the 1list an item at a time. Also, Hoc's 1ideas of
"strategies of progressive generalisation of a sequential procedure"
and '"mechanisms of adapting known procedures to computer operation"
[ibid] provides an alternative perspective to the role ID plays in a

requirements-driven approach.

4,3.2 Related Factors

From the strategies discussion on the signal problem, it was
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observed that there are strong availability effects in both data, and
requirements driven approaches; moreover, these effects both reinforce
the generation of goals whose elaboration 1leads to an sl-type
decomposition. Therefore, for the signal problem, a strong preference
for sl-type solutions can be predicted, as was confirmed by the
observed bias for sl-type solutions, in experiment 1 of the signal
study. However, for the 1line-edit problem the strength of
availability effects are not mutually aligned towards one particular
goal, but are in fact responsible, in differing strengths, for
generating distinct goals that elaborate to the three different
decomposition types. The model does not predict the relative
frequencies of the three decomposition types, because of the
difficulty in quantitatively assessing availability effects. It does
however suggest that all three types will be present with relatively
significant frequencies. The frequencies corresponding to L1, L2 and
L3 decomposition types obtained in the first experiment of the
line-edit study are in accordance with this prediction.

An alternative view of problem solving behaviour presented by
postulating availability effects is, that subjects are not conciously
inclined to seek other possible decompositions but instead adopt a
route of '"least initial resistance". The word "initial" is important
here since the ease with which a first-level decomposition is
accomplished 1is likely not to be related to the ease of its subsequent
elaboration. Such an interpretation means that decompositions
produced by goals that result from availability effects rather than a
logical reasoning process are easier to comprehend, although not
necessarily easier to elaborate. In case of the signal problem, since
all the availability effects are in mutual alignment for an sl-type
decomposition, this means that the latter will be significantly easier

to perceive. The result of the controlled experiment in the signal
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study strongly supports this prediction.

The general implication of the above is that goals generated on
the basis of availability will be based primarily upon simplistic,
rather than abstract perceptions and that the former will occur with
greater [frequency, as was observed in two of the experiments. In the
first experiment of the signal study, the bias towards an sl-type
solution can be re-interpreted as a strong preference for solutions
for a decomposition based on a primitive perception. Similarly, in
the first experiment of the line-edit study, comparison of frequencies
of solutions based on abstract and primitive perceptions revealed a
significant preference for the latter. Conversely, solutions based on
abstract perceptions are inherently harder to perceive because they
are more likely to be the product of a logical reasoning process
rather than being triggered by availability effects.

A relevant consideration at this point is the distinction between
novice, expert and experience& subjects. The ability to handle
abstractions . has been identified as one major attribute of experts
that distinguishes them from novices [132]. Therefore it may be
argued that the results obtained simply reflect that subjects were
novices at structured programming who had had insufficient time to
develop the abstraction capabilities that characterise an expert.
Whether the second and third year undergraduates who took part in the
experiments were still novices is a matter of debate. Similarly,
whether any of the participants were experts is something that is
difficult to establish. It 1is, however, considered that gaining
experience involves applying acquired techniques over a prolonged
period, but this does not necessarily develop skills of any particular
kind. Indeed, the results of the first experiment of the signal
study, where the range of experience of subject groups was the most

diverse, revealed that neither the failures nor the few s2-type
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solutions produced were monopolised by any one particular group in the
popﬁlation. Therefore, it can be argued that the degree to which
abstractions become revealed to subjects during problem decomposition
is 1largely due to other contributory factors to which consideration is

now given.
4.3.3 Further Contributory Factors

One of the factors responsible for goal generation is subject
experience,. In fact, as predicted by the model and as the
experimental evidence indicates, subjects whose background could be
characterised as experienced in only a broadly "structured approach"
are inclined towards simplistic data, or requirements, driven
reasoning. The generalised converse of this 1is that abstraction
skills are 1likely to be more developed in subjects taught structured
programming which incorporates more specific decomposition criteria
(of whatever kind) where perception of abstractions receives greater
emphasis. The third experiment in the signal study, in which the aim
was to 1investigate the effect of training on problem decomposition,
attempted to make abstract perceptions act as response cues, this
being achieved by training subjects to 100# for logical abstractions
in data and therefore enabling cues to derive their availability from
subjects' training. The experimental results indicate an increased
proportion of solutions based on abstract perceptions and therefore
lends support to the view that training in the application of more
specific criteria for decomposition can 1lead to an improvement in
abstraction skills.

As already noted another factor which may influence decomposition
strategy 1is the problem specification itself. The presence of certain
key-words and phrases, the ordering of constituent parts, or other
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textual features, may cause attention to be focused on a particular
problem component, thereby triggering off some decomposition pathway.
For example, primitive features in the description of the signal
problem, namely, the signal stream and the first two processing
requirements, could both act as available cues and therefore promote
simplistié reasoning. In the line-edit problem, however, the presence
of '"words" in the data specification is considered to be in some part
responsible for abstract goal generation. Observational evidence
supporting the view (and its converse) that primitive features are
responsible for primitive decompositions can be obtained by comparison
of the proportions of simplistic-to-abstract-based decompositions in
the first experiments of both studies.
The model's prediction that changes in problem wording will imply
a change 1in availibilty effects is supported from the results of the
third eiperiment of the lihe-edit study where certain primitive and
abstract problem specification features were manipulated to produce an
increased number of abstract decomposition types. The four problem
specifications corresponding to the four experimental treatments were:
- problem I contained two cues responsibile for availability
effects that produce primitive decomposition;
- problems II and III contained cues responsible for availability
effects that yield both primitive and abstract decompositions;
- problem IV contained two cues responsiblé for availability
effects that result in abstract decomposition.
The experimental results revealed the predicted increase in abstract
decompositions. In addition, a more specific hypothesis testing the
implied trend in the above treatments was also verified. Furthermore,
the results also revealed a greater proportion of abstract
decompositions for solutions based on the third treatment than for

those based on the second. Since the former treatment corresponds to
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emphasising abstract features pertaining to processing requirements
rather than data, it would appear that the role of emphasing such
requirements has a greater influence than that of th; data
specification. A possible explanation for this result is that the
training subjects received, places greater emphasis on functional
decomposiﬁion rather than inspection of data structure.

.-The precise effects of previous training and problem description
in any given circumstance will depend on the individual
characteristics of subjects and the specification with which they are
confronted. As both effects were aligned in the signal problem - the
latter effect magnifying elementary problem components, the former
providing no positive compensation - the result was a bias towards a
simplistic solution, whereas in the 1line-edit problem the data
description provided only a partial positive compensation. Therefore,
it can be concluded that these factors can in general mitigate against
a wholly top-down approach being employed. Indeed, for problem
decomposition to be performed in a top-down manner requires the
designer having a set of decomposition rules rather than merely being
cued in a possibily non-rational manner to some "least-resistance"
decomposition pathway. This lends cre dence to the original assertion
that problem decomposition is often carried out in a somewhat

disorganised, piece-meal, bottom-up manner.
4, 4 Elaboration of Decomposition Paradigms

To yield further understanding of program designer behaviour,
attention 1is now focused on the frequencies and nature of errors made
in the elaboration of a decomposition to a completed solution. An
explanatory framework based on the notion of generic concepts, as

described in the model, 1is presented to provide reasons for the
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occurrence of errors. Moreover, a relationship between decomposition
quality and and error frequen cy is noted.

The elaboration of either decomposition of the signal problem is
essentially the fulfillment of a goal that satisfies the third
requirement, namely: "find the largest accumulated waiting period".
The strategy associated with this goal, hypothesised to involve a
productive reasoning process, can bDe visualised as categorising
components into . appropriate "clusters" and allocating these clusters
to the existing decomposition structure.

For the s2-type, clustering of components and their allocation to
process structures is hypothesised to be relatively error free. The
rationale for this view is that the three actions 'increment waiting
period', 'reset wait' and 'check for longest waiting period', and the
process component to which these actions are allocated, namely
'process timing signal', all belong to the same generic category,
namely ‘'time', Therefore, ‘clustering of these components is simply
performed through generic grouping (the basis upon which storage and
retrieval of information takes place within the model). The
observational evidence from the first experiment in the signal study
supports the above view because only a small percentage of s2-type
solutions contained errors associated with the placement of the
actions required to satisfy the third requirement. Note that, from a
design evaluation perspective, the abstraction level corresponding to
the component ‘'process waiting period' 1is precisely the cluster of
actions associated with the generic category 'time’'.

In the case of an sl-type decomposition, for the problem solver
to arrive at a correct solution, the hypothesised productive reasoning
process involves recategorising the cluster of three components
differently from that based on generic categories. The process is

predictably, therefore, relatively error prone. Supporting evidence
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for this hypothesis 1is based on the first experiment of the signal
study; in nearly all subjects' solutions, the component 'final check
for the 1longest waiting period' was absent, and of those that
attempted satisfying the third requirement, approximately half the
solutions_ contained errors associated with the components 'reset
waiting period' and/or ‘'check for longesg waiting period'. The
explanation for the first mistake is that a subject's focus of
attention 1is on the refinement of the characteristic process-pair
(i.e., retrieving the necessary knowledge structures needed to satisfy
the third requirement, transforming them into program components and
deciding upon their placement) and therefore becomes, as Rumelhart
[133] terms, "sensitive to the 1local context". In so doing, the
designer '"loses sight of" (i.e., no longer retains in the working
memory) the overall design structure, which is necessary to arrive at
a correct placement of the action in question because it forms part of
the 1initial 1level of refinement. Similar programmer behaviour during
which subjects "lose sight of the overall view of the procedure" has
been reported by Hoc [111]. In relation to the last two mistakes, it
was noticable that components associated with the generic category
'time', that form part of 'process vehicle signal', were placed within
‘procqss timing signal’. Although it 1is difficult to explain the
exact reason for choosing this placement, the influence of wanting to
retain things with the generic category to which they belong cannot be
ignored. It 1is also worth noting that the solution features with
which errors were associated correspond to actions whose placement, in
a correct solution, contribute to the solution's poor modularity.
Further evidence which substantiates the proposition that the
elaboration process for primitive perceptions is more error-prone than
that for abstract perceptions is the error frequencies for L1, L2 and

L3-type solutions from experiment 1 of the line-edit study; these
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frequencies were respectively 75%, 45% and 30%. Moreover, the highest
error frequencies were associated with those solutioﬁ features which
contributed to a solution's poor modularity measure.

From the above discussion, particularly the description of the
elaboratiQn of sl-type and s2-type decompositions, it would appear
that the elaboration of poor quality decompositions 1is not only
relatively more error prone but also requires greater effort. The
reason for the 1latter is that 1in elaborating a poor quality
decomposition correctly, additional effort 1is required to either
recategorise actions in an unobvious manner or introduce conditions
whose need was not apparent in the initial decomposition. Therefore,
on this basis, it can be hypothesised that high-quality decompositions
are easier to elaborate than low quality ones.

The results of the second experiment in the line-edit study,
which revealed that different decompositions require differing amounts
of effort, supports the hypothesis which relates effort to
decomposition quality. Furthermore, comparisons of effort required to
elaborate poor quality decompositions (L1 and L2 types) with one of
good quality (the L3-type) also provide partial support for the
hypothesis because they indicate significant differences between L1
and L3 but not between L2 and L3. The factors responsible for these
differences cannot be explained by availabilty effects, although the
previously mentioned relationship between effort and the quality of
the decompositions provides one possible source of explanation. The
exact reason for there not being a significant difference, as would be
predicted, 1in the effort required between L2 and L3 types is difficult
to establish, but a possible cause 1is the inaccuracy in measuring
Yeftort”. Two possible sources of this inaccuracy are: first, the
difficulty in relating two factors, where one factor is assessed

qualitatively Lies, categories) and the other 1is assessed
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quantitatively (i.e.,time); second, the validity of assuming that the
effort required in perceiving different decomposition types 1is

approximately the same.
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5. Conclusion

Initially, the broad aim of the research was to investigate
whether structured programming is a completely effective design
technique. Therefore, the original motivation for conducting
experiments was simply to gather empirical evidence that would
validate or refute hypotheses concerning this design technique. One
conclusion from the pilot study was that both theory and application
of structured programming are still problematic areas, because
analysis of subjects' attempts at solving a reasonably simple
programming problem, in what was judged to be an adequate time to
complete the task, yielded relatively high percentages of incorrect
and incomplete solutions. This conclusion supports the doubts raised
in the background review as to whether structured programming really
is entirely sufficient for the production of high quality, correct
programs. Moreover, such doubts are shared by many others; Green for
example questions "the wisdom of propounding it [the principle of
divide and rule] as the single vital principle that allows a program
to be produced mechanically and errorlessly'" [57]. The pilot study's
confirmatory evidence concerning the sufficiency of structured
programming led to the formulation of the more specific objective of
developing a better understanding of how program design actually is
performed, so that ultimately advice might then be given as to how it
should be taught and practiced.

The specific line of attack chosen was to investigate the nature
of problem decomposition strategies and certain factors related and
contributory to those strategies. The results of the two experimental
studies conducted revealed that decompositions based on simplistic, as
opposed to abstract, perceptions of problem structure were:

significantly more frequent in subjects attempts, required
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to complete
considerably less effort to perceive but relatively more effort, and

produced solutions that contained a greater proportion of errors.
More importantly, the experimental work provided significant insight
into the various decomposition strategies that are employed by
subjects - who have been taught, and in principle, practice top-down
structured programming. A model of program designer behaviour was
thenl devised 1in the light of this insight gained, which would provide
an explanatory framework for interpreting the experimental results.

The model views program design as a problem-solving task where
solution planning is regarded as a goal generation activity. The
fulfillment of a goal yields some particular (partial) decomposition
of the problem, possibly accompanied by "tying loose ends together, "
i.e., fitting collections of program segments piece by piece into a
(partially) developed program structure. The view that program design
is actually performed in an idealised top-down manner is rejected in
favour of the alternative view that such aspects as problem
specification, subject familiarity with component parts and the level
of abstraction skills developed in previous training, are ma jor
contributory factors responsible for the strategies by which problem
decomposition is effected. The model (in conjunction with
assumptions regérding generalised knowledge structures and problem
decomposition strategies possessed by subjects), when applied to the
signal and line-edit problems, yields a description plausibly
corresponding to a subject's chain of thought. The experimental
results are then interpreted within the behavioural framework provided
by this description.

However, the degree to which the model adequately reflects the
behaviour of a typical participant of the experiments is to some
extent a matter of debate. Whilst, for example, the findings suggest

that the two contributory factors advanced certainly play an
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influencing role in problem decomposition, it would be somewhat
short-sighted to propose that they are solely responsible for
"shaping' this complex task. Nevertheless, the model provides a
richer description, and perhaps captures more of the flavour, of how
program design might proceed than the traditional top-down exposition.

Although the research findings have certainly yielded answers to
some of the questions posed, it is a characteristic tendency of an
empirical investigation that further issues are then raised; these
issues generate more hypotheses that hopefully prove easier to test
than in preceding stages of an investigation. In particular,
attention needs to be given to whether subjects' approaches are
broadly data and/or requirements driven and what role is played by the
strategies of PNI and ID respectively in these approaches. In order
to pro*ide a more detailed description of program designer behaviour,
a further possible direction for future research is the use of video
and/or verbal ‘'protocols" to obtain more detailed behavioural
evidence which can then be represented using production systems that
model human cognition [134].

In relation to methodological issues, the following points are
noted. First, the extent to which these findings are applicable to
experts is difficult to establish. Although attempts made to enlist
groups of presumed experts for this research were unsuccessful, a
comparison of these findings with those involving experts would be a
useful augmentation to this work. Second, whilst the materials used,
(e.g., programming tasks, process structure cues), the method of
analysing solutions used (e.g., process structure hierarchies) and the
measures employed (e.g., completion time as a measure of effort) have
been Teasonably successful in eliciting experimental results,
nevertheless, replication of their use in further program design

experiments would provide valuable evidence as to their effectiveness
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in this area. In particular, the problems encountered in trying to
determine effort required to perceive and elaborate decompositions,
using process structure cues and completion times, merit further
investigation.

As already noted, the two generalised rudimentary forms of
data-driven and requirements-driven strategies that have been
proposed, when applied to the problems used in the experiments, lead
to inferior solutions. A natural induction is that this might be the
case for the majority of problems. This gives rise to a certain
amount of concern since the experimental evidence indicates a
preference ‘for such strategies (apparently irrespective of background,
training, experience etc.). If that is the case, it is important to
minimise the effect of any factor that promotes usage of these
strategies and their possibile entrenchment in a person's general
approach to program construction. One possible way of achieving this
amelioration is by providing of training in more "directed" forms of
structured programming that concentrates on the development of
abstraction skills by providing "concrete" models on which
decompositions can be based. This training would, hopefully, advance
subjects' general design know-how and therefore possibly also help to
counteract any tendency to adopt - without further analysis - an
inferior strategy implicitly suggested by aspects of problem
presentation, for example.

Finally, in Telation to the 1initial aim of assessing the
effectiveness of step-wise refinement as a problem decomposition
strategy, the conclusion is that in structured programmming, the
importance of the rule of Descartes:

“Divide each problem that you examine into as many
parts as you need, to solve them more easily."

Rene Descartes, Oeuveres, vol. VI,
Discours de la Methode, Part II
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has been appreciated, but the warning of Leibnitz:

"This rule of Descartes is of little use, as long
as the art of dividing ... remains unexplained.
By dividing his problem into unsuitable parts,

the unexperienced problem solver may increase
his difficulty."

Gottfried von Leibnitz
Philosophiche Schriften, vol. VI

remains unheeded.
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Appendix 1.1 The Signal Problem

A traffic survey is conducted automatically by placing a detector
at the road side connected by data-links to a computer. Whenever a
vehicle passes the detector, it transmits a signal consisting of the
the number 1. A clock in the detector is started at the beginning of
the ' survey, and at one second intervals thereafter it transmits a
signal consisting of the number 2. At the end of the survey the
defector transmits a 0. Each signal is received by the computer as a
single number (i.e. it is impossible for two signals to arrive at the
same time). Design a program which reads such a set of signals and

outputs the following:
(a) the length of the survey period;

(b) the number of vehicles recorded;

(c) the length of the longest waiting period without a vehicle.
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Appendix 1.2  sl-type Decomposition

Psignal
data

Pinitial Pdata Pfinal
body

Psignal

Pvehicle Ptiming
signal signal
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Appendix 1.3 Complete Solution (sl-type)

num of vehicles := 0; length of survey := 0; waiting period
longest waiting period := 0;
read(signal);

WHILE signal fo
DO
IF signal =1
THEN
(*process a vehicle signal*)
num of vehicles := num of vehicles + 1;

IF waiting period > longest waiting period

THEN longest waiting period := waiting period
FI;
waiting period := 0

%LSE
(*process a timing signal¥)
waiting period := waiting period + 1;
length of survey := length of survey + 1
FI;
read(signal)
0D;
IF waiting period > longest waiting period
THEN longest waiting period := waiting period

FI;

print(length of survey, num of vehicles, longest waiting period)
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Appendix 1.4 s2-type Decomposition

Psignal
data

Pinitial Pdata Pfinal
body

Pperiod

0 o)
Pvehicle Pwaiting
period period
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Appendix 1.5 Complete Solution (s2-type)

num of vehicles := 0; length of survey := 0;
longest waiting period := 0O;
read(signal);

WHILE signal # O

DO
IF signal = 1
THEN
(*process a vehicle¥*)
num of vehicles := num of vehicles + 1;
read(signal)
ELSE
(*process a waiting period*)
waiting period := 0;
WHILE signal = 2
DO
length of survey := length of survey + 1;
waiting period := waiting period + 1;
read(signal)
0D;
IF waiting period > longest waiting period
THEN longest waiting period := waiting period
FI
FI
0D;

print(length of survey, num of vehicles, longest waiting period)
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Appendix 2.1  Skeletal program structure cue for sl-type solution

WHILE . .. . . . signal #0
DO

IF signal = 1
THEN

0D
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Appendix 2.2  Skeletal program structure cue for s2-type solution

WHILE . + +» « » signal #0
DO :

IF signal =1
THEN

-

WHILE . . . . . signal = 2

FI
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Appendix 2.3 List of elementary actions

read(signal)
num of wvehicles := 0

length of survey := 0

wailting period := 0

longest waiting period := 0

nun of vehicles := num of vehicles + 1
length of survey := length of survey + 1
waiting period := waiting period + 1

IF waiting period » longest waiting period

THEN longest waiting period := waiting period ()
FI

print(length of survey, num of vehicles, longest waiting period)

(*) Strictly, this is not an "elementary" action; however, determining

its location in the skeletal structure was considered to be an

integral part of the design task.
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Appendix 3.1 The Line-edit problem

A piece of text consisting of words separated by one or more space
characters is terminated by an *.
It 1is required to convert it to line by line form in accordance

with the following Tules:

(a) Redundant spaces between words are to be removed;
(b) No line will contain more than m characters and
each line is filled as far as possible;

(c) Line-breaks must not occur in the middle of a word.

(You may 1ignore the presence of 1line-feed characters and the

possibility of a word being greater than m characters).

Design a program to read the text and output it in accordance with the

above rules.
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Appendix 3.2 Ll-type Decomposition

Ptext
Pstart Ptext Pend of
of text body text
%
Pline
Pbuild ' Padjust a line
a line then output
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Appendix 3.3 Ll-type Solution

line := empty;
line size := 0;
prev char = space;
read (char);

WHILE . . . . char § "*"
DO
WHILE . . . . (line size& m) AND (char # "*')
DO (*loop to build a line of m chars

with redundant spaces removed®)

IF (char § space) OR (prev char f space)
. THEN
line := line + char;
: (*add non-redundant space or character®)
line size := line size + 1

FI;

prev char := char;
read (char)

0D;

IF (char = space) OR (char = "#")
THEN

print (line);

print (newline);

line size := 0; line := empty

ELSE (*process line with a possible
remove partial word (part word, word size); break in the

middle of a word¥)
print (line); print (newline);
line := part word; line size := word size
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Appendix 3.4  L2-type Decomposition

Pstart
of text

Ptext

Ptext
body

wla
"

Pcharacter

Pend of
text

0

Pnon-space
character
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Appendix 3.5 L2-type Solution

line size := 0;
word size := 0;
word := empty;
read (char);

WRILE . o i a chapif nae
DO

IF char = space
THEN

IF word size # O (*not a redundant space¥*)
THEN

(*output a word on, current or new, line¥)
IF line size + word size & m
THEN

print (space);
line size := line size + 1

ELSE
print (newline);
line size := 0

Fls

print (word); line size := line size + word;
word := empty; word size := 0

FI

.

ELSE (**build a word¥*)
word := word + char;

word size := word size + 1
Fls

read (char)

0D
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Appendix 3.6  L3-type Decomposition

Ptext
Pstart Ptext Pend of
of text body text
Pword
Pbuild a Poutput
word a word
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Appendix 3.7 L3-type Solution

line size := 0;
read (char);

WHILE . - . N char f e
DO

WHILE .« « « « char = space DO read (char) 0D;

word size :

1}

03 word := empty;

WHILE . . . . char # space AND char # "*"
DO
word := word + char;
word size := word size + 1; (*build a word¥*)

read (char)

(*output a word on current, or new, line¥*)
IF line size + wordsize { m
THEN

print (space);

line size := line size + 1

ELSE
print (newline);
line size := 0;
Els

print (word);
line size := line size + word size

0D
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Appendix 4.1 Process Structure Cue for Ll-type Decomposition

WHELE " & %l "y chisg'f e
DO
WHILE . . . . (line size & m) AND (char /£ "#")
DO (*loop to build a line of m chars
; with redundant spaces removed¥)

IF (char { space) OR (prev char / space)
THEN

: (*add non-redundant space or character¥*)

FL

IF (char = space) OR (char = "*")

THEN

ELSE (*process line with possible break in the
o middle of a word¥*)

F1
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Appendix 4.2 Action List for Ll-type Cue
line size := 0

line size := line size + 1

line := line + char

print (1ipe)

print (newline)

read (char)

prev char := char
line := empty (*empty is the null string*)
remove partial word (part word, word size) e

line := part word

line size := word size

#¥%%% NOTE : "remove partial word" removes part of the word '"part word"
of size "word size'" from the end of a line i.e., when there is a line

break in the middle of a word.
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Appendix 4.3 Process Structure Cue for L2-type decomposition

WHILE '« + =+ « (char # &
DO

IF-char = space

THEN
IF word size # 0 (*not a redundant space¥)
THEN
(*print a word on, current or new, line¥)
IF line size + word size & m
THEN
ELSE
FI
FI

ELSE (*build a word¥)
FI

0D
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Appendix 4.4  Action list for 12 and 13 type solutions

line size := 0

word size := 0
line size := line size + 1
word size := word size + 1

line size := line size + word size
word - := word + char

print (space)

print (newline)

print (word)

read (char)

word := empty (*empty is the null string¥)
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Appendix 4.5  Process Structure Cue for L3-type Decomposition

WHEILE &% % s chay # Nen
DO

WHILE S Tar e e Chap'=spape PO L SRl =L it 0T
spaces¥®)

WHILE . . . . char # space AND char # "*"

DO

(**build a word®*)

0D

(*output a word on current, or new, line¥*)
IF line size + wordsize m
THEN

ELSE
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Appendix 5.1

(see appendix 1.1)

Appendix 5.2

A 1line of text consisting of words separated by one or more spaces
terminated by an *.

Design a program to input the text and output the following:

(a) the number of non-space characters;

(b) the number of spaces;

(c) the length of the longest word.

PAGE 147

is



Appendix 5.3

A traffic survey is conducted automatically by placing a detector
at the road side connected by data-links to a computer. Whenever a
vehicle passes the detector, it transmits a signal consisting of the
‘the number 1. A clock in the detector is started at the beginning of
the ' survey, and at one second intervals thereafter it transmits a
signal consisting of the number 2. At the end of the survey the
detector transmits a 0. Each signal is received by the computer as a
single number (i.e. it is impossible for two signals to arrive at the
same time). Design a program which reads such a set of signals and

outputs the length of the longest waiting period without a vehicle
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Appendix 5.4

A line of text consisting of words separated by one or more spaces is

wla
[

terminated by an

Design a program to input the text and output the length of the

longest word.
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Appendix 6 : A typical solution containing errors for the

signal problem,

num of vehicles := 0; length of survey := 0;
waiting period := 0; longest waiting period := 0;
read(signal);

WHILE signal £ 0

DO
IF signal =1
THEN
(* process vehicle signal *)
num of vehicles := num of vehicles + 1;
waiting period := 0
ELSE
(* process timing signal *)
waiting period := waiting period + 1;
IF waiting period > longest waiting period
THEN longest waiting period := waiting period
FIs
length of survey := length of survey + 1
Fl3;
read(signal)
0D;

The error frequency for above solution would be 2, since :
(i) ‘'check for longest waiting period' has been placed
within ‘process timing signal’ rather than
'process vehicle signal'

(ii) 'final check for longest waiting period' is absent
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