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Summary 

In this thesis, findings are presented of a research 
investigation into general strategies for, and the effect of certain 
factors relating to, problem decomposition used in program design. 
The investigation involved two empirical studies, totalling six 
separate experiments, in which subjects trained in the broad 
principles of structured programming were asked to undertake various 
program design tasks associated with particular programming problems, 
solutions to which can be mapped through the use of "process structure 
hierarchies' onto a small number of ‘process decomposition paradigms’. 
Analysis of the results revealed that solutions based on primitive, as 
opposed to abstract, perceptions of problem structure were strongly 
preferred, initially easier to perceive though harder to complete and 
were more error-prone. A model of program designer behaviour together 
with generalised problem decomposition strategies are advanced, that 
view program design as a problem-solving activity. These proposals 
form an explanatory framework for interpreting the experimental 
results, which are shown to be consistent with the proposals. In 
particular, it is argued that aspects of problem presentation and 
subject familiarity with component parts of a problem, are major 
factors that influence problem decomposition, and were responsible for 
the observed strong bias towards simplistic solutions. Additionally, 
it is argued that such bias can also be caused by "perception 
difficulty" allied to inadequacies in abstraction skills attributable 
to previous training. The thesis concludes with a recommendation that 
more specific, "“criteria-driven" forms of structured programming need 
to be taught and practiced. 
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1. Introduction 

In a society where considerable reliance is placed on computer 

software systems, it is imperative to constantly improve software 

construction methods and practitioner skills, so that ultimately we 

are able to justify, and have confidence in, this reliance. The 

motivation and perhaps the ultimate goal of this research is to 

attempt to have a direct bearing on this continuing need for improved 

software. However, the immediate aim to which this thesis addresses 

itself, is to contribute to the field of software engineering by 

improving our understanding of the program design process. 

Whilst the overall direction of the research is closely allied 

to Dijkstra's compelling desire to change the current state of 

affairs, in -which most of the programs written are totally "unfit for 

human appreciation" [1]; its particular line of attack is to undertake 

and attempt to counteract Weinberg's tempting challenge that "Perhaps 

programming is too complex a behaviour to be studied and must remain 

largely a mysterious process" [2]. Specifically, the research 

investigates the area of program design from a human-factors 

viewpoint. This is in line with Dijkstra's work, which considers 

programming as a purely human activity; as Weinberg himself states, 

“programming is a form - a complex form - of human behaviour" [ibid]. 

Therefore, this investigation, in common with many that involve the 

study of human behaviour, is empirical in nature. It employs the 

established principle of such research known as the ‘scientific 

method', which consists of conducting experiments to gather, evaluate 

and interpret observational evidence. 

A first major goal of the research was to analyse and synthesise 

the separate fields of program design and empirical evaluation into a 

coherent project. Chapter 2 of this dissertation provides a review of 
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appropriate background material and concludes with a summary in which 

four specific investigative research objectives are stated, these 

representing the basis of a study of problem decomposition strategies 

used in program design. Initially, the review surveys early 

contributions to program design, the structured progamming revolution 

and current programming methodologies. The survey ends with a 

long-term perspective of the issues central to program design. An 

overview of the rationale behind, and the mechanisms of, the 

scientific method is then presented, together with the methodological 

issues of experimental research into software engineering and the 

reasons why a suitable experimental methodology is necessary. The 

particular spectrum of investigations presented in this chapter is 

chosen because it illustrates important aspects concerning 

methodological issues central to programming experiments. 

A further goal was to devise an experimental methodology, based 

on established principles of the scientific method but tailored for 

application to program design, that could be applied to each of the 

experiments to be carried out. After detailing the context within 

which experimentation was performed, chapter 3 describes this 

methodology, and in particular, the experimental methods specifically 

devised. These methods represent a contribution to techniques for 

analysing the nature and effects of problem decomposition strategies 

used in program design. They include the use of: 

GD) hierarchical process structures for classifying programs; 

(ii) algorithmic outlines as process structure cues in 

controlled experiments; 

(iii) error frequencies as indicators of possible relationships 

between strategies and errors. 

In total, six experiments are described. These experiments, 

which formed two sets of studies, were performed over a period of 18 
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months in academic environments, each set being associated with a 

different programming problem. The subjects used in the experiments 

were mainly computer science undergraduates, although in the very 

first experiment pre-university and post-graduate students also took 

part. Each experiment involved groups of subjects, all of whom had 

been previously taught to program in a "structured manner", 

undertaking various program design tasks. The problems chosen, 

namely, the ‘signal problem' [3] and the ‘line editing problem’ [4] 

are such that their various solutions can be mapped respectively onto 

a small number of “process decomposition paradigms", corresponding to 

different algorith mic structures. 

The investigation involved the collection and statistical 

analysis of data from both observational and comparative experiments, 

the details of which are also described in chapter 3. Both types of 

experiments employed non-parametric tests for two or more independent 

samples, as a decision mechanism for statistical Eiguieiaance: The 

observational experiments used measures of association as indicators 

for further investigation, whereas the controlled experiments tested 

causal relationships. 

Chapter 4 details an informal step-wise refinement of the signal 

and line-edit problems and considers a design evaluation of their 

solutions, this being followed by the formulation of a model of 

program designer behaviour in which goal generation is hypothesised to 

be stimulus and knowledge activated. The application of the model to 

the two problems used in the experiments provides a description of 

presumed designer behaviour. Evidence consistent with the model 

obtained from the experimental studies is presented, the significant 

results of which are as follows. ; 

Observations from an exploratory experiment in the set of 

investigatigative studies associated with the signal problem led to 
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proposals that subjects do not use an idealised "top-down" manner of 

design. Moreover, two generalised forms of problem-solving strategy 

were advanced, namely, ‘process next item' and ‘incremental design’. 

The former strategy is data-driven, - that is, its application in 

problem decomposition results in a program structure based upon some 

particular perception of the data stream and how the latter should be 

processed. In contrast, the latter strategy is requirements-driven - 

that is, it focusses on identifying, and then fullfilling, those 

processing requirements that are immediately attainable in developing 

a solution. 

A further conclusion is that there appeared to be a strong 

tendency towards using strategies that produce solutions based on 

primitive perceptions of problem structure. Confirmatory observations 

were obtained from an experiment on the 'line-edit problem', in which 

it was predicted that applying the above-mentioned strategies would 

produce certain decompositions, the greater proportion of which would 

be based on primitive, as opposed to, higher-level, more abstract, 

perceptions. In addition, one implication of the result of the 

exploratory experiment on the signal problem was that such 

decompositions are easier to perceive; this was also confirmed via a 

subsequent controlled experiment. 

Consideration of possible factors affecting such strategies, and 

why the ‘primitive pathway' is more obvious, gave rise to two 

contributory factors being advanced: the nature of training received 

and of problem wording. Eyfasncer ees gathered, firstly by comparing 

results from two experiments investigating the effect of training. 

These results supported the view that subjects trained in the broad 

principles of structured programming possess less developed 

abstraction skills than those trained in a form of structured 

programming that incorporates decomposition criteria more specific 
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than those associated with simple "top-down refinement". In addition, 

an investigation into the effect of problem wording revealed that the 

presence of certain aspects of problem presentation, had a marked 

effect on decompositions produced. 

Investigations concerning the effect of strategies on subjects' 

performance as measured in terms of correctness achieved and effort 

required, showed that solutions based on primitive perceptions, which 

were of poor quality in modularity terms, contained a greater 

proportion of errors. Moreover, it was observed that subjects' errors 

were strongly associated with the placement of those program 

components that contributed to the low degree of modularity. 

The concluding chapter summarises the findings of the research 

and considers their implications. In particular, a recommendation is 

advanced that subjects should be trained in more "directed" forms of 

structured programming where abstraction skills receive greater 

emphasis. Some possible directions for future research are also 

considered and it is proposed that the model and hypothesised 

strategies constitute a framework for further experimentation into 

this broad "from-specification-to-decomposition" area. 
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2. Background Review 

2.1 Issues In Program Design 

2.1.1 Introduction 

Expert practitioners have from time to time made numerous 

recommendations concerning how program design should be performed. 

However, little research has been carried out into how this process 

actually is performed and whether or not their recommendations are 

beneficial. 

Two fundamental components appropriate to investigating program 

design are the design activity itself and the program it generates. 

Traditionally, a program is viewed as a series of instructions obeyed 

by a machine. This definition places emphasis on control flow and 

accords well with the obsolete method of using flowcharts for design 

but does not reflect the modern practice of emphasising structure. To 

do this, a more suitable definition of a program might be: "a 

structured representation of a task to be performed in order to solve 

a given problem, expressed (usually) in a procedural language". The 

activity of designing therefore involves deriving such a structure. 

Thus it is not suprising, that the use of hierarchical structuring to 

manage complexity (the basis of most, if not all, modern design 

methodologies) is in accordance with ideas forwarded in a number of 

early works [e.g.,5,6,7] that investigated the way people handled 

complexity. 

However, before focussing attention on specific issues, 

consideration needs to be given briefly to the developmental stages of 

software production, of which design is an integral part. As this 

research is concerned with program, rather than system design, the 
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requirements analysis stage can be omitted. Hence, specification, 

design and implementation will be considered to be the stages required 

to engineer a program. Requirements specification produces in part a 

precise prescription of the program function. From this specification 

of "what" has to be achieved, design produces a specification of "how" 

it will be achieved, or, as many authors have stated: a process of 

transforming “the what into the how". Implementation involves 

producing, installing and maintaining the final product. The 

realisation of a program from a design specification involves coding 

(translating the design description into the required source 

language), testing (detecting errors in the program) and debugging 

(removing errors detected by testing). As with other engineering 

disciplines, software engineering is not a sequential, but rather a 

cyclic, process. This is because each representation of the problem, 

whether a specification, a design or a program, undergoes a process of 

validation which may reveal possible flaws that need to be corrected 

or resolved. 

To fully appreciate the claimed benefits of ideas that have 

transformed program design from a mystery surrounded by folklore to a 

systematic discipline, it is instructive to start at its inception - 

that is, at the advent of computers. 

2.1.2 Early Contributions 

The history of computers has witnessed not only a rapid increase 

in the number of computer-based systems, but also an ever diversifying 

range of applications in which they are used. The constructional 

approach adopted for hardware was to build a "general-purpose" machine 

capable of executing a series of instructions, whilst software was to 

be "custom-designed" for each application. The obvious and most 
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significant benefit for software production that accrued from this 

separation was that the physical characteristics of the machine could 

be ignored. However, because hardware design involved building 

machines from physical components that had the specific task of 

executing computational processes, standardised techniques were 

developed and an "engineering" approach used. In contrast, software 

design involved constructing programs from abstract components that 

were required to carry out varied tasks; as a consequence, software 

design remained very much a mysterious process. 

This state-of-the-art in software production, coupled with the 

dramatic growth in the size of software systems, led to observed, 

sometimes large differences between what was hoped for and what was 

actually achieved in the construction of those systems. There were 

widely held views as to the seriousness or otherwise of the problem; 

in retrospect, many have come to refer to it as the "software crisis". 

Boehm [8] provides a quantitative assessment of the cost of dealing 

with inadequate software, giving examples of software-hardware cost 

ratios ranging from 8:1 to 2:1 with an average of 7:3 for 1970. He 

pointed out that the cost of computer software compared to hardware 

had escalated and predicted a continued increase. For example, in 

1955 the ratio was as low as 2:8; Boehm predicted this to be as high 

as 9:1 in 1985. 

Despite the size of the problem and its impact, the primary 

condition for improvement is to accept its existence. Indeed, reports 

such as [9] contain documented experiences of development efforts 

which suggested that not only had the existence of the problem been 

acknowleged, but also that improved methods were being sought to 

develop software. In the late sixties, it became increasingly 

apparent that there was a need to provide a disciplined approach to 

software production. Consequently, much of the debate at that time 
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focussed on structuring the design process and on ordering design 

decisions. 

One of the earliest and most significant contributors to the 

debate was E.W. Dijkstra [10], whose concern lay with "intrinsically 

large" programs. By this he meant “programs that are large due to 

complexity of the task, in contrast to programs that have exploded (by 

inadequacy of the equipment, unhappy decisions, poor understanding of 

the problem, etc.)" [ibid]. His method of attack was to carry out 

introspective “programming experiments"; these investigated "what 

techniques (mental, organisational or mechanical) could be applied in 

the process of program composition” [ibid] that would produce "an 

increase in our programming ability by an order of magnitude" [ibid] 

so as to overcome problems associated with large programs and enable 

the latter's correctness to be demonstrated. He overcame the anomaly 

of having to choose, for practical reasons, relatively small programs 

for his experiments "by treating problems of size explicitly and 

trying to find their consequences as much as possible by analysis, 

inspection and reflection" [ibid]. 

From Dijkstra's experiments [11] in the design and construction 

of multiprogramming systems, he suggested applying the principle of 

"divide and rule" for structuring the design process so that 

size-induced Romnler ey could be controlled and the construction of 

such systems could be carried out in manageable steps. The 

application of this principle structures the system as a hierachical 

set of layers or "machines" where the relationship between consecutive 

layers is such that the machine at some non-primitive level is an 

abstraction or functional description of the machine at the next lower 

level, the latter providing the resources for the formulation of the 

former. Dijkstra [12] concluded from his development work on the 

“THE"-multiprogramming system that "the hierarchical structure proved 
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to be vital for the verification of the logical soundness of the 

design and the correctness of its implementation". 

Whilst Dijkstra had laid down the guiding principle that program 

structure should be a layered hierarchy, there was - and still remains 

- some controversy as to whether the layers should be constructed from 

the "bottom-up" (i.e., starting with primitives) or from the 

"top-down" (i.e., starting with the target system). Gill [13] gives 

this practical and sound advice: 

“Clearly, the top-down approach is appropriate when the target 
system is already closely defined but the hardware or low-level 

language is initially in doubt. Conversely the bottom-up 
approach is appropriate when the hardware is given but the 
target system is only defined in a general way." 

He points out that the weakness of both approaches is that early 

decisions will “be propagated through the layers and will finally 

cause trouble by proving undesirable and difficult to remove" [ibid] 

and that their success is dependent on the designer's ability to 

foresee the consequences: of these problems. The need for clearly 

defined primitives and target systems is implicit in his 

recommendations, although he realised they rarely occurred in 

practice. 

Randell's observations [14], based on work carried out on three 

major independent, yet related systems, revealed that their structure 

reflected the development process, and that each layer of the 

structure was a set of solutions to a set of problems considered to be 

closely related. On the ordering of decisions, he notes two features 

of the top-down approach. The first is that the designer "at each 

stage is attempting to define what a given component should do, before 

getting involved in decisions as to how the given component should 

provide this function" [ibid]. The other is suitability of the 

appproach "for the designer who has faith in in his ability to 

estimate the feasibility of constructing a component to match a set of 
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specifications". In contrast, the features of the bottom-up approach 

are that it "proceeds by a gradually increasing complexity of 

combinations of building blocks" [ibid] and is best suited "for the 

designer who prefers to estimate the utility of the component that he 

has decided he can construct" [ibid]. Like Gill, Randell warns 

against the dangers of strict adherence to the top-down or bottom-up 

approaches and points out that the then current emphasis on the former 

was an attempt to reduce the preponderance of the latter. Finally, in 

order to improve systems quality, Randell stressed the need for an 

effective methodological approach to design and for guidelines on the 

order in which decisions are made. 

The need seriously to consider from an engineering perspective 

the desirability of a software components industry, analogous to its 

hardware counterpart, was noted by Perlis [15], and elaborated by 

McIlroy [16]. McIlroy's work stressed the desirability of building 

big systems from smaller standardised families of components. 

Analogies with hardware were noted at differing component levels. For 

instance, at the primitive level "software production in the large 

would be enormously helped by the availability of spectra of high 

quality routines, quite as mechanical design is abetted by the 

existence of families of structural shapes, screws or resistors" 

[ibid]. Moreover, at the conceptual level, the importance of 

exploiting the correspondence between interchangeability of hardware 

sub-assemblies and modularity of software was identified. 

One of the earliest practised techniques that attempted to 

contain the complexity explosion of "monolithic" programs was modular 

programming. This was initally just the crude application of the 

divide-and-conquer principle in which the division of a program into 

modules was governed by implementation convenience rather than design 

needs. Not suprisingly, this approach proved to be an inadequate 
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rationale, although it allowed the exploitation of benefits that 

result in implementation from using common modules. Because the 

emphasis of modular programming was on the attainment of modular 

designs, its guidelines were to have a direct bearing on later 

methodologies. These considerations, in particular the notion of 

module independence and the idea of a central control module 

directing subordinate modules were to provide the impetus for the 

development of functional decomposition in program design [17]. 

In retrospect, it can be seen that such early and-significant 

concepts as hierarchical structuring, the principle of 

divide-and-conquer and modularity, formed the basis of past and 

present programming methodologies, which are considered next. 

2.1.3 Programming Methodologies 

The Structured Programming Revolution 

The start of the seventies saw a considerable amount of 

literature vigorously propounding a programming philosophy commonly 

referred to as "structured programming". Its origins lay in 

Dijkstra's earlier works and specifically in a paper entitled 

“structured programming" [10] in which he stated the following: 

“program testing can be used to show the presence of bugs 

but never their absence” 

As a consequence of this self-evident, yet at the same time alarming 

maxim, his primary concern was (and still is) program correctness. 

From the outset, he perceived that the difficulties involved in 

proving the correctness of programs were such that, "unless measures 

were taken, the amount of labour involved might well (will) explode 
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with program size" [ibid]. To consider the measures required involved 

him addressing the question: “for what program structures can we give 

correctness proofs without undue labour, even if the programs get 

large?" [ibid]. Before turning attention to what those structures 

are, some consideration needs to be given to the advice, stated in 

Dijkstra's much quoted article "Go To Statement Considered Harmful" 

[18], that transferring control to labelled points should be avoided. 

This advice led to the misconception that a program without goto 

statements is necessarily structured. The rationale for restricting 

the use of GOTOs was (paraphrasing Dijkstra) to shorten the conceptual 

gap between the static program and the dynamic process so as to make 

the correspondence between the program text and the process taking 

place under its control as trivial as possible. Furthermore, Dijkstra 

warned against the practice of converting programs with goto 

statements into programs without goto statements, because it would 

lead to programs which are as opaque as their originals. 

The structures proposed by Dijkstra to ease correctness proofs 

were such that they restricted sequencing of control to specific 

forms of concatenation, selection and repetition that possess modular 

characteristics (i.e., single entry and exit). The factors that 

contribute to the ease of use of these structures in correctness 

proofs are: 

(i) they minimise the mental gap between the static program text 

and its dynamic process because their progress can be 

characterised by a combination of textual and/or dynamic 

indices (the former describes the place in the text for 

successive actions whilst the latter is associated with a 

‘repetition number' for repetition structures) 

(ii) standard correctness proof propositions for each structure 

type can be formulated. 

PAGE 13



Structured programming, as a design technique in which program 

correctness is either self-evident or can be proved formally or 

rigorously was elaborated by Dijkstra in the classic monograph "Notes 

on Structured Programming" [19]. He suggests that program structure 

should be derived from hierarchical decomposition of the problem into 

sub-problems; hence the program produced is a hierarchy where 

intermediate levels consist of abstracted components which are defined 

in terms of "what they do" rather than “how they do it". A number of 

examples are used to illus trate this "step-wise" decomposition 

process and provide an "introspective exposition" of the methods 

Dijkstra had hitherto unconsciously applied. 

The conceptual tools required to “understand” - in Dijkstra's 

sense, to prove the correctness of - a program are : Enumeration, 

Induction and Abstraction. The first tool, enumeration, is used to 

understand sequences of statements including selection statements. 

This means that, in practice, these statements can be 

understood/proved by giving consideration to each execution path; 

therefore it is an adequate tool provided the number of statements is 

small. In order to understand repetition constructs and recursive 

procedures, it is necessary to use mathematical induction. Its use 

in program correctness proving is similar to proving properties about 

integers or recurrence relations in number theory. Abstraction, the 

third tool, is probably the most powerful in program design; by using 

this the designer is able to concentrate on relevant properties of the 

problem and ignore irrelevant ones. For example, procedurisation 

allows us to synthesise the details of how a process works into an 

abstracted form specifying what it does; defining new data types 

allows one to manipulate the objects they described as abstract 

entities. 

The application of structured programming produces levels of 
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conceptualisation in which each refinement represents some implicit 

design decision. Wirth [20] strongly stressed the need not only to 

make these decisions explicit so that "the programmer be aware of the 

underlying criteria" [ibid] used but also “to consider the the 

existence of alternative solutions" [ibid]. His guidelines in the 

step-wise refinement process are: 

“"to decompose design decisions as much as possible, to untangle 

aspects which are only seemingly interdependent, and to defer 

decision which concern details of representations as long 

as possible" [ibid]. 

Moreover, he suggested that this refinement of program description 

into subtasks should be accompanied by a parallel refinement in the 

description of data that may be necessary for communication between 

sub tasks. 

The qualified success of applying structured programming 

principles, reported by Aron [21] in an experiment described as “the 

superprogrammer project", provided the impetus for using these ideas 

in a production environment on a large-scale information retrieval 

project which involved over 80,000 lines of source code. The findings 

of this experiment revealed that the productivity of progammers 

increased five-fold and that the rate of detected errors produced by 

principal programmers was approximately one per man-year-effort 

(22523). Observations from introspective experiments [24], rather 

than quantative evidence from controlled experiments, such as “an 

experiment in structured programming" [25] supported the preumenes! 

expressed in favour of structured programming, which are, for example, 

that it facilitates the intellectual task of handling size-induced 

complexity and of proving design correctness. 

Structured programming undoubtedly provides a framework for 

disciplined design, and there is some evidence supporting claimed 

benefits. However, it would be somewhat short-sighted to suggest 
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that its principles provide a completely adequate recipe for the 

production of correct and clear programs. Indeed, the detected error 

in Henderson's solution to the so called "telegram problem" [25] was 

in fact a direct result of not perceiving an appropriate level of 

abstraction. Moreover, the authors retrospectively observed that data 

concepts were obscured and recommended that thee: be elaborated in 

much the same way as algorithms. This could be seen as a step towards 

Jackson's emphasis on the role of data structuring in program design 

[26]. A similar criticism can be made of the undetected error in 

Naur's solution of the ‘line edit problem’ [4], in which the need for 

the data concept 'word' as a basis for structuring the design had not 

been identified. Both these examples illustrate the main weaknesses 

of structured programming, which are: the lack of specific 

decomposition criteria in formulating levels of abstraction and the 

absence of evaluation mechanisms to be used in the decision-making 

process for determining the best dtaeormacttvion from a number of 

alternatives. In terms reflecting the incisive spirit of Occam's 

razor, we can say: 

"whilst we have the knife, we do not know how to carve" 

One of the primary objectives of most, if not all, disciplined 

programming methodologies is to achieve a modular design. However, 

the manner in which problem decomposition into modules is performed 

can often introduce a variety of complexities. The method of 

sequencing control as advocated by the structured programming school 

enables programs to be modular in terms of control flow - 

inter-connectivity of control between program components is reduced, 

thus eliminating the production of programs with a "spaghetti-like” 

structure. However, this restriction provides no guarantee of 

achieving modularity in terms of flow of information between modules. 

Current programming methodologies based on structured programming can 
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be viewed as attempts to augment its basic principles with additional 

design criteria. These criteria minimise information flow to preserve 

a “separation of concerns", i.e., decomposition is performed in such a 

way that “we don't lump concerns together that were perfectly 

separated to start with" [27]. 

Two schools of thought, the 'data structure' school represented 

by Jackson [26] and Warnier [28], and the ‘data flow' school 

represented by Yourdon and Constantine [29], Myers [30] and Stevens 

[31] will now be considered. The former school considers it essential 

to base program design on the logical structure of data, whilst the 

latter school emphasises that program structure should be based on 

functional decomposition of the problem. For the purposes of the 

discussion, it is sufficient to focus attention on Jackson's work as 

representative of the data structure school and Constantine and 

Yourdon's work as representative of the other. 

Structured Design 

Structured Design, as defined in [29], “is the process of 

deciding which components interconnected in which way will solve some 

well-specified problem". The definition clearly recognises design as 

being a problem-solving exercise in partitioning and organising the 

components of a program. It aims to ease implementation, in 

particular testing, maintenance and modification, by structuring 

programs so that each program component corresponds to some 

"well-defined" piece of the problem, and the relationships between 

program components reflect existing relationships between parts of the 

problem. This strategy ensures "independence of modules", which can 

be seen as an alternative implementation of Dijkstra's notion of 
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"separation of concerns". Moreover, module independence originates 

from consideration of modularity [32] and criteria for good design 

[33]. These considerations culminated in Constantine's paper £171, 

from which the basis of the methodology is taken. 

The | methodology synthesises the program design concepts of 

modularity, hierarchical decomposition, levels of abstraction and 

design evaluation with systems theory notions of structural 

organisation and inter-connection of components. Indeed, Constantine 

[29], having acknowledged the influence of Dijkstra's works makes, the 

following statement of Emery's work [34] on systems theory: 

"From it I gleaned the essential concept of intercomponent 
coupling and firmed my commitment to a systems-theoretical 
view of the universe." 

Therefore, not suprisingly, Structured Design views a program as an 

organised composition of aggregates and components, and uses the 

conceptual, linguistic and notational tools of systems theory in the 

statement of the methodology. More importantly, information flow is 

of primary consideration in Structured Design because it is not only 

used for orientating the design process, but is also at the heart of 

the measures used for design evaluation. 

The steps applied in the design phase of the methodology are : 

CEy Depict the problem as an information flow model by 

identifying the major data transformations; represent 

this model as a data flow graph, preven linear 

chains of processes, known as a "bubble chart"; 

(ii) Identify the afferent (importing) and efferent (exporting) 

data elements. This step leaves some transformations in 

the middle, which are termed as "central transforms"; 

(iii) Represent the information flow model as a hierarchy of 

modules with their imports and exports so that a 
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controlling module when activated will perform the entire 

task by calling upon Afferent, Central and Efferent 

subordinate modules; 

(iv) Repeat steps (i) - (iii) for abstract subordinate modules. 

There are no specific rules for structuring the data flow 

diagrams. However, central to this process is the perception of 

suitable levels of abstraction in data flow. The identification of 

the afferent section involves tracing the input stream from its 

primitive form to its highest level of abstraction. Similarly, 

finding the highest level of abstraction in the output stream 

determines the efferent data section. 

Structured Design shares with structured programming the same, 

rather impractical, guideline for producing "good" decompositions in 

terms of modularity, namely, the perception of "appropriate" levels of 

abstraction. However, in contrast, it not only emphasises a specific 

a priori orientation for structuring - that of data flow - but also 

provides design evaluation mechanisms which are applied a posteriori. 

These evaluation mechanisms are directly related to the notion of 

module independence. A set of modules is said to exhibit a high 

degree of independence - in Structured Design terms, exhibit 

functional independence - if they satisfy two complementary 

characteristics, namely, minimal coupling and maximal cohesion. 

Coupling, or inter-module dependence, is a measure of the strength of 

association between a module and its external calling environments; 

cohesion or intra-module dependence is a measure of the degree of 

association within a module. 

Structured Design's rationale of functional decomposition of the 

problem as series of procedural modules characterises it as a 

solution-oriented methodology [35]. Furthermore, it makes no major 

break with traditional modular programming but merely refines 
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pre-exisisting concepts of modularity. In contrast, the data 

structure school, as exemplified by the methodology to be consdidered 

next, is problem-oriented because it seeks to ascertain pertinent 

relationships in the problem and to transfer them to the data to be 

processed. Moreover, it infers that functional decomposition should 

not be carried out because function is implicit in data. 

Jackson's Approach 

The rationale behind Jackson's methodology can simply be 

summarised by the structuring principle that program structure should 

match problem structure. The method of achieving this is to base 

program structure on the logical structure of data. Consequently, 

program modularity reflects data structure rather than data flow. 

Furthermore, whilst the data flow school views a program as a 

hierarchy of functionally decomposed processes, Jackson relegates 

functional considerations to a later stage and promotes in its place 

the activity of modelling the real world. His fundamental design 

principle is firstly to produce an abstract model and then consider 

the functions required. The second step is to implement the abstract 

model. In common with most current methodologies therefore, Jackson 

preserves a separation between design and implementation, thereby 

absorbing those aspects of development that relate to producing an 

abstraction of the real world into a design and those that relate to 

realisation of the model into implementation. 

Jackson argues that, for programs whose structure is based on 

problem structure, there will be no difficulty in associating the 

primitive operations required by the program with the components of 

that structure. This is because an abstract model of the problem 

environment (i.e., the program) perceives the real world through the 
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medium of its data structures (e.g., files). Jackson's approach 

therefore reflects the well-known principle that "data structures 

steer algorithms" [19,20]. The program therefore consists of 

operations concerned with manipulating data structures (i.e., reading 

and writing) and those operations directly concerned with the task to 

be performed (i.e., elementary actions required to perform the 

function). The claimed benefit of such an approach is that the 

program produced is easier to understand and modify because of the 

correspondence between problem and program structure. 

The methodology employs the principles of structured programming 

in that levels of abstraction are expressed using the composite forms 

of sequence, selection and iteration. However, in relation to 

structured programming, Jackson says that it is insufficient merely 

to build programs from "structured" constructs - the crucial problem 

is to decide how these constructs should be fitted together and on 

what basis the structuring should be performed. The basic steps 

involved in Jackson's method are: 

(sy Consider the problem environment and use this to describe the 

logical structure of each input and output data stream (using 

special structure diagrams); 

(ii) Form a program structure based on the designed data structures; 

(iii) Define the task to be performed in terms of elementary 

operations; 

(iv) Allocate each operation to its appropriate component in the 

program structure; 

(wv) Determine the necessary conditions to control execution of 

selection and iteration components; 

(vi) Translate the completed algorithm into Jackson's schematic 

logic ( a special program design language) or the chosen target 

programming language. 
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Stage (i) is the creative phase because it involves the designer 

in abstracting that which is relevant to the problem requirements 

(i.e., perceiving the problem's logical structure) or, in structured 

programming terms, perceiving “appropriate levels of abstraction". 

The next stage involves finding components in the input data stream 

that, when processed, will produce components in the output stream. 

Combining these structures yields a single program structure. The 

methodology, however, provides no means of ensuring the necessary 

completeness of the operations list in stage (iii). The notion of 

"appropriateness" is at the heart of the design evaluation mechanism 

in Jackson methodology. It is applied at stage (iv). It can be stated 

as follows : 

if processing a data component X involves the primitive operation 
p, then p should be allocated to the program component 

corresponding to X. 

In addition to his basic method, Jackson provides not only the 

means for the recognition of “structure clashes” (where the input and 

output data streams are not in correspondence and hence cannot be 

combined into one program structure) and "backtracking" ( where the 

serial nature of the input stream prevents an a priori selection), but 

also standardised methods for their resolution. These allow the match 

between program structure and problem structure to be preserved. 

Structure clashes are modelled by communicating processes that can be 

implemented in a variety of ways, ranging from programs communicating 

via intermediate files using read and write operations, to concurrent 

processes that communicate via resume commands. Backtracking is 

modelled by assuming the validity of one of two possible outcomes of 

subsequent processing, with the proviso that it may prove necessary to 

reject the assumption, thereby admitting the validity of the other 

outcome, and hence having to "backtrack". 
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2.1.4 Recent Developments 

It is instructive to compare the recent directions taken by the 

‘data-flow', '‘data-structure' and 'structured programming' schools. 

The 'data-flow' school have adapted their work for systems 

development, systems analysis and specification [36,37] to provide a 

system eaten methodology. The methodology shows how to obtain a 

structured specification from the user requirements and how to use 

Structured Design tools to produce a system of programs. Furthermore, 

they have addressed themselves to administrative aspects of project 

control, planning and management [38,39]. These works depict methods 

that can enhance the productivity and effectiveness of a software 

engineering project; for example, Semprevivo [40] provides a set of 

practical guidelines for analysing, evaluating and improving team 

performance. The school aims to integrate the variety of structured 

tools and techniques already used for analysis, specification, design, 

coding, . testing and maintenance with management guidelines and 

controls to yield a comprehensive methodology that covers every stage 

of the software engineering cycle. 

Similarly, the data structure school have adapted their ideas to 

system design. For example, Orr [41] has married Warnier's ideas on 

program design with those of data base design to form a structuring 

tool for logical analysis, design and development of systems. 

Similarly, Jackson [42] has produced a development methodology which 

specifically addresses itself to system design and is not simply a 

"front-end" to his principles of program design; instead, it is a 

methodology in which the tools developed for program design are 

diffused throughout the systems development procedure. 

Whilst the data-flow and data structure school have focussed 

attention on presenting guidelines for good designs and mechanisms to 

evaluate design quality, the structured programming school in 
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contrast has concentrated on correctness proofs. A major criticism of 

all three approaches is that there is an a posteriori application 

method for design assessment. However, advocates of structured 

programming have recognised this weakness of proving/evaluating the 

correctness of completed programs. Indeed, Jones [43] recommends a 

stepeyiae scheme in which, at each level of decomposition, proposed 

realizations are proved. Moreover, Dijkstra [1] not only recommends 

that development and proofs should proceed hand in hand, but that 

correctness conditions should steer program development. He has 

proposed a formal discipline in which, as Coleman [44] points out: 

"Dijkstra's guarded commands constitute a calculus for program 
development such that if the rules of the calculus are followed, 

the correctness of the resulting program is guaranteed". 

The long term perspective for program design is difficult to 

visualise with any great assurance Meer icnier iy with the increased 

interest in concurrency and new models for the semantics of 

computations, both of which require architectures that depart 

radically from the classical Von Neumann model underlying sequential 

procedural languages. There is an urgent need, and one which is 

likely to remain in the near future, to develop program design 

techniques for concurrent programs for the variety of multi-processor 

architectures [45] that support concurrent processing. The primary 

concern is developing methods to overcome problems of communication 

and synchronisation of component processors. Such stucturing methods 

as parallel composition of communicating sequential processes [46] and 

guarded commands [47] provide vie of the necessary tools to increase 

our understanding of concurrent program design methods. 

Attention has recently been focussed on the re-emergence of an 

alternative form of programming - that of functional programming 

[48,49] - in which the semantic model is applicative rather than 

procedural. Examples of applicative systems are Church's lambda 
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calculus [50] and McCarthy's pure Lisp [51]. In such systems, the 

notion of an algorithm is specified in functional terms (i.e as 

mapping from one set to another) and programs are built by combining 

functions using "functional forms" [48]. As Backus points out, a 

functional approach has many advantages over the conventional 

approach; these include a concise mathematical description of the 

underlying model and the fact that both programs and correctness 

proofs can be expressed in a languge that has the same associated 

algebra [ibid]. 

2.2 Empirical Considerations 

2.2.1 Introduction 

Many researchers in programming have been motivated by a belief 

that their recommendations will aid the programmer's task and 

therefore improve the quality of programs produced. Whilst the 

contributions made by "expert" programmers have been, to paraphrase 

Shiel [52], an unholy mixture of mathematics (e.g., Dijkstra 1968), 

literary criticism (e.g., Kern 74), and folklore (e.g., Brooks 75), 

their recommendations have been, in the majority of cases, couched in 

human factors terms. These recommendations have taken the form that a 

particular aspect of programming practice will make the programming 

task either easier, or faster, or less error-prone etc. Despite the 

authority and vigour with which these expert recommendations have been 

made and their common-sense appeal to our intuitive notions of 

programming, they do not constitute a scientific basis for acceptance 

but need to be empirically tested. Indeed, experimental evaluation 

can not only be a useful and powerful tool for assessing such 

proposals but can also provide evidence augmenting the contributions 
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of practitioners and experts in the field. Therefore, the temptation 

to accept experts' proposals without evaluation must be resisted. 

Many researchers consider that Weinberg's classic work "The 

Psychology of Computer Programming" [2] was the catalyst for arousing 

a much-needed interest in human factors investigation generally. In 

particular, it was directly responsible for most of the investigations 

on the psychology of programmer team organisation [53,54,55]. The 

thrust of initial experiments in programming, and to a lesser extent 

current works, was in the vein of establishing whether a particular 

product or practice was in some sense better than others. For 

example, one of the earliest contributions was Sackman's experimental 

investigation [56] in response to the then current debate on the 

relative merits of time-shared and batch processing environments. The 

primary force responsible for the increased volume of work within the 

last decade has arisen from the debate caused by the structured 

programming movement with its radical ideas on programming practices 

and language constructs. This debate has provided experimental 

researchers the opportunity of empirically evaluating various claims 

made by proponents of the philosophy. Therefore, interestingly, 

there has been a parallel increase in both structured programming 

ideas and experimental work in programming. The impact of 

experimental results on language and software designers is difficult 

to assess. Indeed, views differ considerably. For instance, Sheil's 

article [52] is highly critical of the experimental techniques used 

and of the "shallow view of the nature of programming" held by 

experimental researchers; he argues that "the computing community has 

paid relatively little attention to the results". In contrast, Green 

[57] cites Embley's paper [58] (in which a proposed new construct is 

subjected to both empirical evaluation and formal analysis before 

agreeing upon a final version) as a hopeful sign of things to come. 
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As yet, it is too early to gauge the impact of experimental work on an 

area that is constantly undergoing radical change. 

The two possible empirical evaluation paradigms available to 

researchers are observational and comparative experiments. Both types 

involve testing a relationship known as the 'null hypothesis’. This 

hypothesis peserte that there is no relations:hip between the 

independent . variable, which is the variable under investigation and 

therefore the one the experimenter manipulates, and the dependent 

variable, which is the variable that is affected and therefore the one 

on which measurements are performed. A crucial aspect of designing an 

experiment is to ensure that the effect on the dependent variable is 

attributable to the independent variable under investigation. In order 

to achieve this, it is necessary to introduce experimental controls to 

constrain other independent variables that may affect the outcome. It 

is precisely because these controls are absent in observational 

experiments that there are a number of reservations about results 

obtained from them. 

The simplest form of observational experiment is introspection 

and is probably the basis of many past recommendations, for example 

Dijkstra [10]. A variant of this rather subjective method, used with 

considerable success by Simon and Newell [59] in their pioneering work 

on problem solving, is protocol analysis. Traditionally, this 

technique involves recording individual subjects "talking aloud" about 

the task they are performing. The recorded speech transcription is 

divided into lines known as protocols. This technique has seen 

relatively little use in programming experiments, notable exceptions 

being Brooks [60] and Miller [61]. However, as Shneiderman [62] 

points out, whilst this technique can be "worthwhile when the subject 

is a capable sensitive programmer, since important insights may be 

obtained", there is no guarantee about similar behaviour of other 
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programmers. 

Another method of gathering information using the observational 

paradigm is the case or field study. Examples include Knuth's 

empirical study of FORTRAN programs [63] and the earlier cited New 

York Times project [22]. The rationale behind this approach is that 

gathering large volumes of data can yield something significant. 

However, the lack of experimental controls provides no assurance as 

to the reliability or generality of the results obtained. 

Before reviewing the scope of previous research concerned with 

human factors in software engineering, it is necessary to explain 

briefly the basis and the details of the scientific method as used by 

most, if not all, of the reviewed work. In the most general terms, 

the scientific method is to observe a system in order to gather 

knowledge. Therefore, in many cases, scientific investigations must 

initially start with observational experiments which provide the basis 

for subsequent hypothesis-testing comparative experiments. It must be 

made clear at the outset that the commonly held belief that knowledge 

obtained using the scientific method is unquestionably true because it 

is objectively proven or derived in some rigorous way, is a 

misconception since the method is based on the inductive principle. 

This principle can be stated as: 

If, for a wide variety of conditions, a hypothesis is confirmed 
by a large number of observations and, of all those observations, 
none refute the hypothesis, the latter is held to be universally 
applicable for those conditions. 

The validity of making this inductive leap is a controversial 

issue of philosophy. One of the most simple and amusing illustrations 

of the dangers of this leap is Bertrand Russell's story [64] of the 

“inductivist turkey". The turkey observed that on arrival at the farm 

it was fed at 9 a.m.. However, as a good inductivist, it gathered a 

number of observations under a variety of conditions that confirmed 
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the initial observation and that led it to the obvious inductive 

inference about the pattern of being fed . Alas, the consequence of 

this inference proved to be disastrous on the morning of Christmas 

Eve. There have been a number of responses attempting to resolve this 

problem. One view as characterised by Feyerabend[65], who suggests 

Ancien the scientific method. Others believe that it is possible 

to provide probability measures associated with hypotheses and that 

each scientific theory is the best explanation available at that time, 

accepting that it may be necessary to revise the theories in the light 

of new observations. 

The discussion so far constitutes only a partial account of the 

scientific method, because it is a process involving not only 

induction but also deduction. Once theories have been derived from 

observations of the system being studied, these theories can then be 

used to predict or explain the behaviour of the system using deductive 

reasoning. In summary, the fundamental cycle of the scientific 

method is: 

(i) Record sufficient observations for varying sets of 

conditions of the model under investigation; 

(ii) Formulate hypotheses to explain the observations; 

(iii) Empirically evaluate the significance of these hypotheses; 

(iv) Derive a theory or model from these hypotheses; 

(v) Perform controlled experiments to evaluate model accuarcy; 

(vi) Deduce behaviour hypotheses for the model; 

(vii) Repeat from (i). 

The above schema is a general one, and it is necessary to consider the 

issues involved in tailoring this methodology to suit the needs of 

human factor investigations in programming. 
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2.2.2 Methodological Issues 

Having accepted at the outset that programming is a complex form 

of human problem-solving behaviour, it may seem tempting to consider 

what psychological theories of problem-solving behaviour have to 

offer. Unfortunately, as Green [57] points out, "Psychology does not 

have a general theory of thinking and is not likely to have one in any 

reasonable time to come". Sheil [52] observes that "although some 

psychological theory is “very suggestive, it usually lacks the 

robustness and precision required to yield exact predictions for 

behaviour as complex as programming". 

The need to establish a suitable experimental methodology was 

recognised by Weissman [66] and Shneiderman [67] nearly a decade ago. 

Since then, there has been little progress, with some notable 

exceptions [68,69,70]. Furthermore, as Moher and Schneider [71] the 

authors of one of the few recent papers on the problems of 

experimental research in software engineering observe, whilst "the 

literature contains numerous references to the use of experimental 

methods, there are few references on investigations into the 

methodology itself" [ibid]. At present, the enormity of the problems 

caused by the absence of an experimental methodology is such that 

"the study of experimental methodology is well beyond the scope of a 

single research problem" [ibid], and that, furthermore, experimental 

methodological considerations in programming constitute "an entirely 

new research area which will require the attention and energy of many 

researchers over a long period" [ibid]. Because of this absence, 

researchers investigating intuitively based claims of expert 

programmers have, in many cases, made methodological decisions that 

are, ironically, based on intuitive grounds. The review of 

experimental work that follows is not intended to be a comprehensive 
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survey of the literature (for such a treatment, see Shneiderman [62], 

Software Metrics [72]) but concerns itself specifically with the 

methodological issues central to programming experiments and the 

controls necessary for such experiments to be effective. 

The aim of comparative behavioural experiments in programming is 

to prente an environment in which subject behaviour can be observed 

and - analysed effectively. Devising such environments obviously 

neccesitates the selection of suitable subjects, suitable materials 

that will yield the desired effect and the application of appropriate 

measures to analyse the effect produced. Therefore, the 

methodological issues at the heart of this type of experiment relate 

to a judicious choice of subjects, materials and measures; see 

[68,69]. 

Subjects 

There are two primary concerns in the selection of subjects, 

according to Brooks [69]. First, the sample chosen should be 

representative, that is, the observed behaviour of the sample should 

be characteristic of the population under consideration. Second, the 

individuals in it should be relatively homogeneous as regards 

characteristics other than those under investigation, so as not to 

influence the results obtained. The reason for insisting that these 

requirements be satisfied is that, when an experimental sample is 

sub-divided into groups for differing treatments (i.e, the different 

procedures whose effects are to be measured), it is essential that any 

significant results obtained for any group are attributable to the 

treatments and not the characteristics of the subjects in that group. 

A priori, it is not always possible to know all the subject 

characteristics that will influence experimental results for any 
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programming-related task, although, in practice, for a given task it 

may be possible to determine which subject characteristics will 

introduce an experimental bias. For instance, in an experiment 

investigating the effect of particular programming practices, 

differences in such factors as intelligence, discipline studied, and 

level of education, could introduce an unwanted bias and therefore 

measures would need to be taken to control their effects. 

One aspect of designing a "good" experiment is to minimise the 

effects of those subject characteristics that are responsible for 

experimental bias. There are various well-established techniques 

which reduce the effect of between-subject-variations; see [73,74,75]. 

These techniques include : 

- random assignment of treatments; 

- the use of "matched pairs", in which participants of an 

experiment are matched on some important characteristic; the 

consequence of this is that no group has a disproportionate 

number of biased subjects; 

- a "within-subjects-design" where all the subjects undergo all 

experimental treatments. 

In the case where the parent population exhibits a large degree of 

heterogeneity, the two desired goals of representativeness and 

uniformity become contradictory because, as Brooks [69] points out, 

whilst a Buen large sample size is required to ensure the 

former, the greater the sample size, the greater the variation among 

individuals. 

There is some evidence of identifiable heterogeneity amongst 

subjects performing programming-related tasks. In Sackman's work [56] 

investigating the relative merits of time-shared and batch processing, 

variations in performance were observed as high as 25 to 1 across 

experienced programmers. Miller's observational study with novices 
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[76] yielded differences ranging from 4 to 1. Much more recent work 

investigating the behaviour of experts and novice problem-solvers, 

such as [77,78,79], reveals that there is a qualitative, rather than 

quantitative, difference between the two groups with regard to 

organisation of information and types of strategies applied. Contrary 

to our intuitive notions, the two earlier results taken together seem 

to suggest less variability amongst novice subjects. The more recent 

results, however, are in accordance with our intuitive notions, 

showing that experts are a more cohesive group in that they use 

organising principles and strategies that are domain specific (i.e., 

specific to the problem domain being investigated). 

Methodologically the variability as found in Sackman's and 

Miller's works implies that careful consideration needs to be given to 

the sample composition of subjects. Ironically, the established 

practice in the vast majority of behavioural experimental 

investigations is to use restricted groups of subjects (usually 

undergraduate students). Indeed, as Weinberg [80] succinctly 

comments: 

"Whereas psychology may be the psychology of college freshmen, 
the psychology of programming could easily become the psychology 

of programmer trainees." 

This apparent consensus over the proper sample composition of subjects 

(that is on the use of undergraduates) is based on convenience rather 

than any methodological criteria. Indeed,. where subjects have not 

been first-year students, the lack of agreement among researchers is 

well illustrated in Moher and Schneider's article [71]. They observe 

"that subjects have ranged from those with no prior computer 

experience to highly trained professional programmers". Futhermore, 

they cite Miller's work [76], in which subjects with no previous 

computing experience were asked to write sorting programs in a subset 

of BASIC, as an example of the use of naive subjects. Miller claims 
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the use of these subjects can lead to the detection of characteristics 

that have not been influenced by the effects of factors such as 

training and experience. In contrast, Moher and Schneider cite 

Young's findings [81] on programming errors, which revealed that the 

strategies used by experts and novices were radically different; for 

example, novices eliminated all the errors with the same degree of 

diligence whilst experts eliminated superficial errors with greater 

rapidity. 

The implication of experimental investigations with novices 

suggests little justification for assuming that their findings are 

applicable to experienced programmers. However, comparative 

experiments involving both types of subjects need to be performed 

before such an implication is verified. Some researchers have 

attempted to design experiments so that the effect of variation in 

subject characteristics is brought under experimental control and 

have tried to conduct experimental investigations in such a way as to 

reveal the class of subjects to which their findings apply. An 

obvious and tempting way of controlling the effect of variability in 

subject characteristics is to use subjects that are undergoing similar 

training. However, as Brooks [69] argues, the use of intermediate 

programming classes can in some cases be problematic. He cites 

Shneiderman's work as an example which shows that significant 

differences can sometimes be attributed to relatively short 

differences in experience. 

One possible way of ensuring that results obtained are 

representative of the parent population under consideration is to 

replicate experiments. This approach has been successfully adopted by 

negcomitas at the MRC SAPU unit [82]. They performed experiments 

with novice and expert programmers in such a way that findings could 

be compared for both groups of subjects. Their work is a long-term 
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investigation of the ease with which subjects can read, write and 

debug programs using different styles of conditional constructs 

[83,84]. In their exploratory experiments [85,86,87,88], naive 

subjects were chosen because interest was centered on occasional 

computer users rather than experienced programmers. It was considered 

that individuals in the latter group would be unlikely to have the 

same. learning history, or that they might have preconceived prejudices 

about a particular style. For comparison purposes an experiment was 

conducted [82] using experienced programmers as subjects. The results 

regarding readability and debugging were found to concur with the 

exploratory experiments using novices. 

The technique that is most effective in systematically 

controlling individual differences in: performance between experimental 

treatments is the within-subjects-design, which has been used in a 

variety of studies [82,89,90,91]. The use of this technique is well 

illustrated by Love's experimental work [91], in which the primary 

objective was to show that controlled experiments can be designed to 

help to improve coding practices. The experimental aim was to 

investigate the effect of program structure on program understanding. 

The treatments in the investigation were complexity of control flow 

(at two levels: simple or complex) and paragraphing of source code 

(also at two levels: present or absent). Two groups of subjects 

differing in levels of experience were used. Experimental materials 

consisted of four Fortran programs written in four different forms 

corresponding to the two different levels of the two treatments. The 

experimental procedure consisted of randomly assigning each subject to 

one of the four groups, each of which received exactly the same set of 

programs to study and recall. Hence, each subject received both 

levels of the two treaments. The advantage of this design was that it 

enabled the investigation to measure the effect of two other 
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independent variables that could influence the results, namely, level 

of experience and sequence of programs. Its major disadvantages 

generally are that it involved the preparation of large amounts of 

material and, more importantly, that it could lead to subjects getting 

bored because of the number of experimental tasks they had to perform. 

fa summary it must be acknowledged that many researchers were, 

and -still are, forced to use undergraduate students as subjects. In 

many cases, because of cost constraints, the use of professionals is 

impossible. However, the burden of proof still lies on the 

experimenter to show that the results obtained are representative of 

the population under consideration. 

Materials 

The second of the methodological concerns - the choice of 

experimental materials - is only one factor relating to a broader 

category, namely, that of "experimental environment" (i.e. that which 

encompasses all the available stimulus). As Moher and Schneider [71] 

point out, behavioural researchers have long realised that differences 

in results can often be attributed to a variety of factors in the 

experimental environment. Amongst the environmental factors that 

investigators need to consider, in their opinion, are: 

- the choice of experimental materials; 

- the physical setting in which programmers work, so that 

this can be reflected in the experimental setting; 

- the different types of incentive (whether money, or the 

satisfaction of knowing the aims and subsequent achievements 

of the research, or being reassured that experimental results 

will not reflect course grades), so that these incentives can 

be used in a manner that ensures consistent performance of 
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subjects; 

- various ways of presenting experimental instructions 

(i.e., whether in oral or written form, or whether presented 

informally or formally) 

An illustration of the effect of the last factor is Weinberg and 

Sonus investigation [92] of programmer performance; this revealed 

that- small differences in statement of objectives can be responsible 

for large differences in results. Their work demonstrates that 

experimenters need to specify the goals of the experiment clearly, 

otherwise subjects will simply set their own goals. that may not 

coincide with the experimenter's intention. 

The main concern in controlling unwanted bias in the experimental 

stimuli lies with the choice of material used. There are two issues 

relating to this choice. Firstly, the material should allow the 

experimenter to elicit any existing differences in treatments; 

secondly, the effect of these differences should be attributable to 

these treatments. When considering the effects of subject variation, 

it was seen that these could be controlled by the use of a number of 

standard techniques. However, when choosing experimental material, 

the controls required for counteracting possible bias will vary from 

experiment to experiment. 

Empirical investigations into programming language features 

provide examples of the types of material-choice problem encountered 

by researchers and their attempts to overcome the latter. These 

investigatons have used material that includes natural language [76], 

small  sub-sets of a programming language [85], complete languages [93] 

and a special purpose query language [94,95]. The use of 

“micro-languages" (i.e., where a language comprises of only those 

operations and syntactic features that are under investigation) is 

advocated by Sime et.al. [85] in their work on different types of 
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conditional constructs. They consider that such languages allow 

researchers to focus on the specific issue being investigated, thereby 

avoiding any bias due to differences in subject training. Obviously, 

not all questions concerning language design are amenable to the use 

of micro-languages; its primary use is in comparing single linguistic 

features. Indeed, Gannon et.al. [93] point out that when it is 

necessary to investigate the interaction of language features, then 

the latter must be evaluated in the context in which they are used. 

Their work involved an experiment in which subjects wrote programs 

using two block-structured languages that differed with regard to nine 

specific features under investigation. These features included the 

use of the semi-colon as either a separator or as a terminator, and 

either automatic or requested inheritance of environments. Both Green 

[82], and Gannon [93] advanced a clear rationale in the choice of 

experimental material for detecting existing differences and made a 

reasonable case for their findings. However, both works have been the 

subject of criticism by Sheil [52]. He argues that the former work 

does not systematically control unwanted sources of variations in the 

experimental material, whilst his critique of the latter work 

questions the effectiveness of such an approach for yielding a clear 

aterereei ior of the results. 

The measures taken by Sime et. al. [68] to control unwanted bias 

included devising a scenario that involved writing a series of 

cookery instructions for a mechanical hare. The hare responded to 

these instructions, fed to it in the form of edge-punched cards, by 

lighting lamps in its ears or sounding a buzzer. This simple scenario 

meant that subjects needed little training to adapt to the physical 

setting of the experiment which was an advantage over the 

conventional set-up of writing a computer program when (as in their 

case) using naive subjects. The presence of what Sime et. al [68] 
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term as "almost necessary effects" pertaining to the experimental 

material is a further factor that could’ produce an unwanted bias by 

increasing the already large between-subject-variance that is present 

in programming tasks. In Sime et. al's experiment [85] comparing 

IF-THEN-ELSE with the GOTO (i.e., conditionals involving an explicit 

transfer of control), an example of these effects is difference in 

program length, i.e., number of symbols needed and the amount of 

physical space occupied. Their solution was to provide subjects with 

a joystick pointing to a dictionary, so that the time spent by 

subjects in actually putting symbols into the programs was minimal. 

However, they considered that effects due to spatial differences were 

an important part of the comparison. A further problem in the same 

experiment was whether the provision of indentation would produce 

unwanted bias. Realising that, in general, it is not possible to 

indent a language with an explicit transfer of control so as to make 

its intended elaboration clear (as is the case with a nested 

language), they had to “decide whether indenting the nested language 

means providing an artifical prop for the subjects, or is merely 

taking full advantage of the structural features of the language in a 

realistic way". 

Measures 

The final methodological concern is the choice of measures. 

Human factor investigations in programming have used a variety of 

experimental metrics that seems to have resulted from a combination of 

necessity and a carte-blanche application of the principle "to measure 

is to know". Most experimental researchers would claim that their 

choice is based on necessity. However some concern has been expressed 

as to the relevance of some of the metrics in contributing to the 
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understanding of the program design process [57,69,96]. 

Software Science [97] is, to paraphrase Yeh [98], a unified and 

coherent field in which attributes of a computer program, such as 

implementation efforts, clarity, structure, error rates, language 

levels, etc, can be derived from metrics based on intrinsic 

characteristics of the program itself. Such metrics measure what 

Shneiderman [62] terms as the ‘logical complexity’ (i.e., the 

complexity due to control flow) of a program. These include: 

functions of frequencies of operators and operands in a program [97], 

the knot count [99] and McCabe's cyclomatic number based on graph 

theory [100]. Such metrics have the obvious advantage of facilitating 

automatic computation of measures from the program text, and the 

gathering of quantative evidence that readily lends itself to 

hypothesis-testing methods. Experimental studies reveal a high degree 

of association between attributes such as programming time [101], 

number of bugs [102],program clarity [103] and their proposed 

Halstead metrics. Investigations by Curtis et.al [104] using 

Halstead and McCabe metrics reveal that "these metrics appear to 

assess psychological complexity primarily where programming practices 

do not provide assistance” (i.e., they measure the difficulty in 

understanding programs which have been written in an "unstructured" 

manner). Such experiments exhibiting high correlations between 

factors and their proposed metrics therefore can offer useful 

quantative evidence. However, because these measures are based on 

intrinsic properties of the program, they take no account of the 

interaction between the program and the programmer. 

Although there are a variety of metrics, the effect being 

measured in most cases has been the ease with which programs can be 

constructed and/or the ease with which existing programs can be 

understood. Experimentation involving program construction tasks 
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usually takes the form of comparing two groups of subjects: a control 

group and a group undergoing the treatment being investigated. The 

metric most commonly used for determining the effort required to 

develop a program is the time taken to write it. Some of the 

difficulties that can arise in using time as a metric have been noted 

by Brooks [69]. An obvious problem is identifying the time spent on 

aspects of the task that are not relavant to the investigation so that 

the former can be either eliminated or minimised. Brooks [ibid] 

suggests that time measures should be supplemented by evidence from 

other measures such as the number of debugging runs performed and the 

ratio of total number of recalled lines to program size. In addition 

to ascertaining the required times, problems can occur because time 

metric distributions are often skewed. This bias can be corrected 

using standard statistical transformations. For example, Sime et.al.'s 

data [85] resulted in a positively skewed distribution of times which 

they - corrected through a logarithmic transformation. Other 

program-construction metrics relating to the ease with which a program 

can be constructed involve functions of errors made; for example, the 

investigations by both Sime. et.al [85] and Gannon et.al [93] used the 

frequency and persistency of errors as alternative metrics. 

One of the earliest investigations on program 

“understandability", or what Weissman [66] termed "psychological 

complexity", proposed three measures of understanding. These related 

to subjects' effectiveness in: "“hand-simulating" (i.e dry-running) 

programs, filling in blanks in a paragraph describing the program, and 

a subjective measure of how well subjects felt they understood the 

program. An obvious problem with Weissman's use of the first measure 

is that hand-simulation of a program can be performed on a 

statement-by-statment basis without knowledge of it s overall 

structure. Therefore, the decision to use a question/answer task to 
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obtain a second measure placed greater confidence in the 

investigation. Indeed, Weissman notes that "although hand-simulation 

as such is not a valid measure of understanding" [ibid], nevertheless 

"both reading and hand-simulation are important components of 

understanding a program" [ibid]. 

A eoumonly used technique for measuring program comprehensibilty 

is the use of 'memorisation-and-recall'. This technique, as used by 

Shneiderman [105] involves the subject reading a program and then 

re producing it as accurately as possible in every detail. The 

rationale for this work is based on Simon and Chase's work on chess 

[106], which suggests that experts have large amounts of organised 

knowledge and use high-level organisation principles. By analogy, 

Shneiderman hypothesised that for two forms of a program (executable 

and shuffled), experienced programmers would be able to re-construct 

the executable form with greater rapidity. Evidence from Shneiderman's 

experiments supports the use of memorisation-and-recall as a metric 

for measuring program quality and programmer comprehension. This 

technique has also been used by Love [91] to investigate the effect of 

complexity of control flow and indentation on program understanding. 

He bases the experimental rationale on Craik and Lockhart's theory of 

memory [107], which suggests that the probability of recalling 

information is dependent upon the depth of processing undertaken. 

Although there are a number of ways in which memorisation-and-recall 

can be applied, it s use as advocated by S:hneiderman and Love is 

appropriate essentially for small programs. A suitable variant, as 

suggested by Brooks [69], for large programs would be to ask subjects 

to reconstruct a program that is close as possible to the original. 

Finally, whilst it is desirable to conduct the "ideal experiment" 

(i.e., one in which unwanted bias due to between-subject-variation, 

non-uniform characteristics in experimental material and/or 
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inaccuracies in metrics, is negligible) so that the results obtained 

can be attributed solely to the treatment under investigation. In 

practice this is extremely difficult to achieve when investigating the 

complex tasks involved in programming. The options are to choose 

either: 

- WnAE Green [57] describes as the utopian solution, that is, 

“Once psychologists have taken the wrinkles out of a theory 

of thinking, programming can be treated as a special case and 

it will be obvious how to make it easier", or 

- to conduct experiments as methodologically precise as is 

practically achievable so as to "chip away" at the problem 

under investigation. 

2.3. Conclusion 

The discussion presented in this chapter has considered 

practitioner recommendations on program design from a human-factors 

perspective and methodological issues appropriate to experimentation 

in program design. From this, objectives for suitable research can be 

identified, and these are presented in the following summary: 

The proponents of structured programming view the design process 

as a complex problem-solving activity. Moreover, they believe that 

the use of cognitive tools such as stepwise refinement, hierarchical 

structuring, levels of abstraction etc., help to make the development 

task . "easier". There are strong arguments in favour of this view from 

a problem-solving perspective because the overall approach in 

structured programming embodies the well-established problem-solving 

technique of problem reduction. However, whilst there is evidence for 

the benefits that are claimed for this method of design, it would be 

wrong to regard it as a panacea for designing programs. There is an 

obvious neccessity to investigate the effect on the program design 
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process of applying, on the one hand, structured programming 

principles, and on the other, practices incorporating those principles 

but involving more specific decomposition criteria. 

Whilst this investigation acknowledges that the evidence obtained 

using the scientific method is not irrefutable, it does, however, take 

as axiomatic the view that using this method can provide a probability 

measure of the observation being representative of the system under 

investigation, so that the latter's significance can be assessed. 

Moreover, a model or theory based on the results from such 

observations then constitutes a proposed explanation of the behaviour 

of the system under investigation. The research was faced with the 

problem of applying the broad principles of the scientific method, 

rather than a suitably designed experimental methodology. However, 

the unwanted bias introduced because of this problem can be controlled 

by judiciously augmenting the scientific method with guidelines based 

on methodological decisions made in previous empirical investigations. 

Therefore, it was decided to make effective use of such guidelines so 

that an increased level of confidence could be placed in the results 

obtained. 

In conclusion the specific research objectives were to 

investigate: 

(i) the nature of problem decomposition strategies used in program 

design; 

(ii) the factors related to these strategies; 

(iii) the factors affecting these strategies; 

(iv) the relationship between these strategies and errors made. 

PAGE 44



3. Report of Investigation 

3.1 Experimental Context 

The ‘aim of this chapter is to describe the specifics of the 

investigation. Before these are detailed, consideration is given to 

two important aspects: first, the identification of the context within 

which experimentation was performed, and hence within which the 

research results are to be interpreted; second, the description of 

the experimental methodology employed - in particular, the assumptions 

made and the steps taken to provide a methodology tailored to the 

needs of the investigation. 

Several factors contribute to the experimental context. The most 

significant include: the population under investigation, the physical 

setting and the size of problems to be investigated. Ideally, it was 

felt desirable to conduct the investigation so that the results: 

- applied to a large cross-section of the programming community 

whose members' characteristics varied considerably with regard 

to ability, experience, training, etc.; 

- were obtained from an experimental environment which closely 

resembled the physical setting within which programmers work; 

- related to "realistic" programming problems; 

In practice, however, the experimental context was considerably 

constrained because of the limits imposed by time, resources and 

availability of subjects. 

At present, empirical research (whether conducted in an 

industrial or academic environment) on a complex problem-solving 

activity such as program design (an area in which there is a scarcity 

of empirical’ investigation), can have little hope of arriving at a 

satisfactorily complete solution. However, there is a difference 
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between investigations in industrial and academic environments. The 

former often involve large-scale experiments, whereas the latter are 

frequently constrained to small-scale experimentation. Therefore, 

academic studies are open to the often-voiced criticism that such 

studies deal with "toy", rather than "life-size", programs and use 

subjects from academic, rather than production environments performing 

tasks in artificial settings. The reason for this disparity between 

academic and industrial investigations is often attributable to 

availability differences in finance, resources and subjects. Some 

academic studies have attempted to counteract the effects of this 

disparity by such means as co-operating with commercial organisations 

(for example, the work by Hammond et. al. [108] used professional 

system designers), and developing courses in which subjects are 

encouraged/expected to participate in experimentation [55]. 

The circumstances surrounding this research were that no 

provisional arrangements had been agreed either for industrial 

co-operation (i.e. there were no commercial organisations who had 

agreed to supply volunteer subjects and/or make available resources) 

or for financing of programmers to act as volunteers. In addition, at 

the academic establishments where students were willing to be 

participants, there was no precedent for their being used as 

experimental subjects, which ruled out any serious possibility of 

organising experiments in students' free time. Moreover, because 

subjects’ tutors were concerned about the possible disruption to their 

course of study, it was agreed that experimentation would be performed 

during one tutorial/practical session (i.e. a period of approximately 

fifty minutes) per term. 

These above-mentioned circumstances dictated that: 

(i) unpaid subjects be used; 

(ii) since subject availabilty was restricted to infrequent, short 
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periods, the size-related complexity of the problems to be 

used as experimental material should be relatively small; 

(iii) experimentation had to be performed in test-type conditions 

due to the necessity for adequate numbers of students to 

produce individual solutions to the same problem or sets of 

problems 

Nevertheless, Lt was considered that despite these practical 

constraints, an experimental context in which computer-science 

undergraduates were asked to construct programs for "small" problems 

under experimental conditions, could constitute a meaningful research 

framework. This view could simply be justified on the principle that 

because of the scarcity of research in program design any contribution 

- even with severe constraints - could be a worthwhile one. However, 

a stronger case can be advanced: 

- the chosen subjects represent a significant proportion of 

the programming community, as well as being potential future 

professional programmers; 

- the specific objectives of the research meant that a number 

of important factors affecting strategies used in problem 

decomposition, other than problem size, could be investigated; 

- the provision of a reassurance that subjects were participating 

in an experiment rather than a test, together with the "reward" 

of being allowed access to the outcome of the research, would 

help to motivate subjects, thereby overcoming possible adverse 

effects associated with the artifical setting of experimental 

conditions. 

The overall direction that any programming research project using 

the scientific method follows, is an investigative path combining 

exploration and evaluation. In an approach where the former is 

emphasised, the intention is to "discover" from a human-factors 
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standpoint what features of a program makes its specification, 

construction, verification etc. more tractable. However, in an 

approach where emphasis is on the latter, the investigator posits, 

prior to experimentation, certain factors which are believed, or 

assumed, to be of interest; the aim then becomes to "measure" the 

effect of those factors. Investigations on programming style and 

language design by Sime et. al. [85] provide examples of the former 

approach, whilst the latter approach is exemplified by Weissman [66] 

and Gannon [93]. The present study chose essentially an exploratory 

path, albeit confined within an evaluative framework investigating the 

nature — of, and the factors affecting, problem decomposition 

strategies. An approach with the alternative emphasis would have 

involved assuming that such factors as: problem size, programmer 

ability, design methodology, length of training etc. affect problem 

decomposition; and the validity of these assumptions would then be 

tested. This approach would make it easier to identify evaluative 

experimental hypotheses. However, because of the scarcity of 

empirical research on program design it was considered that initially 

the exploratory approach would prove more illuminating. One of the 

consequences of this decision was that an initial pilot experiment had 

to be performed so that the broad objectives of the research could be 

transformed into specific experimental aims and hypotheses. 

The investigative methodology devised was based on the 

established principles of. the scientific method. Its exposition, 

which foll ows, introduces concerns relating to experimentation in 

general before specific issues relating to the current research, are 

presented. The introduction on evaluation paradigms, statistical test 

procedures and choice of decision statistic provide the background 

necessary for assessing the type of conclusions that can be drawn 

from, and the confidence placed in, the results obtained. 
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Consideration of the choice of subjects, materials and measures 

completes the discussion. 

3.2 Hypothesis Testing 

Both observational and comparative evaluation paradigms involve 

testing an experimental hypothesis using statistical test procedures. 

However, as Leach [109] points out, they apply in two different 

situations, which differ in the degree of control applied and the type 

of conclusion that can be reached. The difference between the two 

paradigms depends on whether the variable under investigation is an 

attribute or a treatment. An experiment where the variable being 

investigated is an attribute (i.e., a property of the subjects 

participating in the experiment and therefore not under experimental 

control) is said to be an observational study. In contrast, if the 

variable being investigated is a treatment (i.e, is assigned to 

experimental subjects and therefore under experimental control), the 

study is said to be comparative. Therefore, observational studies 

need only involve one group of subjects in which the effect of the 

attribute under study is measured. However, a comparative experiment, 

in its simplest form, involves two or more groups of subjects in which 

each group is assigned one of the possible types of treatment. 

The distinction between observational and comparative studies is 

crucial with regard to the conclusions that can be reached. With the 

former, one may establish only a correlative measure (i.e., the 

variables exhibit a measured degree of association) whilst, with the 

latter, one may also infer a causal relationship (i.e., the effect of 

the dependent variable is attributable to the treatment). 

Furthermore, the choice concerning the type of study has to be made at 

the start of the investigation because it effects both the designing 
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and performing of experiments. In some cases, for practical reasons, 

it may be difficult or impossible to carry out comparative studies. 

For example, studies investigating differences in intelligence due to 

gender or race must of neccessity be observational since the latter 

are attributes of the subjects. Therefore, differences in results 

obtained from such studies cannot infer a causal relationship which is 

directly attributable to gender or sex, because such differences may 

be due to other factors such as environment or culture. 

A statistical test procedure is a decision mechanism, founded on 

the principles of mathematical probability theory, that transforms the- 

experimental hypothesis and the set of collected observations by means 

of a decision statistic into an outcome that accepts or rejects that 

hypothesis. The similarity between the mechanics of a statistical 

procedure and the reasoning used in a court of law provides, as Leach 

[109] notes, a useful analogy to explain the force of argument used in 

the former. At ‘the start of the experiment, we assume that there is 

no relationship between the variables in the experimental hypothesis 

(we assume the innocence of the accused). Therefore, the researcher 

(prosecuter) must aim to demonstrate on the basis of collected 

observations, the validity of the experimental hypothesis (must 

produce evidence that establishes the guilt of the accused) at some 

level of significance (beyond reasonable doubt) 

The standard procedure for carrying out a statistical test is as 

follows: 

(i)  Posit the validity of the Null Hypothesis (i.e., assume that 

there is no relationship between the variables being 

investigated); 

(ii) Choose the decision statistic to be used; 

(iii) State the level of significance; 

Civ) Compute, using the decision statistic chosen, the probabilty of 
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obtaining the observed sample, this probability being denoted 

by ps 

(v) Reject the null hypothesis (and accept the experimental 

hypothesis) provided the computed probability exceeds the 

significance level. 

The level of significance is the smallest probability value for 

the collected observations that would result in the null hypothesis 

being accepted. In theory, the value chosen is at the discretion of 

the experimenter and may vary from experiment to experiment depending 

on the degree of assurance required. However, in practice, the sole 

purpose of experiment is to verify the desired hypothesis and 

demonstrate the occurrence of an effect. Therefore, the smaller the 

significance level, the greater the confidence that an effect has 

occurred. The most frequently used value for the significance level 

in experimental psychology, so that the researcher can conclude that 

the observed effect is not the result of chance variation, is 0.05. 

However, many studies adopt the convention of using the value of the 

computed probability p, asserting that the result is signifcant at 

that level; for example, as Sheil [52] points out, effects have been 

reported as high as p <0.2. There are obvious dangers in choosing 

“appropriate” significance levels after computing p. There is, 

however, an even greater danger, as Sheil warns, in choosing 

significance levels in such a manner, because the computed value for p 

is an estimate that an effect has occurred and not an estimate of the 

size of an effect. 

The choice determining the decision statistic employed depends on 

the observed sample characteristics. These include the underlying 

nature of the population distribution from which the sample is 

collected and the type of data collected. The first feature 

determines whether the decision statistic is parametric or 
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non-parametric decision statistic, it is necessary to consider whether 

the type of data will be: 

categorical data, for example when subjects' solutions are 

classified into two mutually exclusive categories; 

- ordinal data, for example when subject performance is 

measured via the number of correctly placed instructions 

in a program outline; 

- continuous data, for example when a subject's “perception 

difficulty" is measured by the time taken to complete a task. 

Two further features that determine the required decision statistic 

are the independence of data(i.e., whether measurements influenced 

each other) and the number of samples. 

3.3 Methodological Specifics 

The investigation can be viewed as two sets of studies, each one 

being associated with a particular programming problem and involving 

three separate experiments. Initially, for each of the two studies, 

it was prefered to perform an observational experiment where the 

overall aim was to discover something about the general nature of the 

strategies people use in program design. It would have been 

preferable to carry out the remaining experiments in both studies in a 

comparative manner; however, practical constraints (i.e., the absence 

of a control group of subjects) made this impossible for one of the 

experiments in the first study. The discussion that now follows 

details the methodological issues involved in choosing subjects, 

materials and measures. 

3.3.1 Choice of Subjects 
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Two previously mentioned factors concerning training, and payment 

(i.e., subjects were familiar with step-wise refinement and were 

willing to be unpaid volunteers), restricted the population from which 

subjects could be chosen to that of computer science students trained 

in the broad principles of structured programming. In choosing 

subjects : from this population, two differing criteria, dependent upon 

whether the experiment was observational or comparative, were adopted. 

For the observational experiments where the general aim was to 

discover those elements of the design process that are common to 

programmers, the criterion was to "cast the net fairly wide" so as to 

gather as much information as possible. In contrast, the comparative 

experiments had specific aims of establishing differences for a 

particular aspect of program design between two or more groups of 

subjects; this meant that the overall criterion was the need for 

homogeneity of subject characteristics. 

The techniques considered in order to control the effects of 

between-subject-variance in relation to such factors as length of 

training, nature of training, intelligence etc. were ¢ 

within-subjects-design, matched pairs and random assignment of 

treatments. Use of the first technique meant devising a number of 

problems (equal to the number of treatment levels) that were of 

equivalent complexity so that each subject could undergo all 

experimental treatments. The obvious difficulties in assessing 

complexity equivalence of programs ruled out this possibility. The 

second technique would have involved the pairing of subjects in 

relation to characteristics that might contribute to subject variance. 

In theory, this could be achieved by matching on length or course of 

study undertaken by subjects and course grades attained. However, 

this was only partly possible because, in practice, it was not known 

prior to experimentation which of the students would volunteer. 
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Therefore, the homogeneity assumption was based on choosing subjects 

from the same course (i.e., matching differences due to length and 

type of training) as well as randomly assigning treatments (i.e., 

assuming that effects of other factors such as skill levels would be 

randomly distributed across treatments). 

3.3.2 Choice of Experimental Material 

The most significant factor in choosing experimental material is 

deciding the type of task to be performed. Two possible choices are 

program construction and program comprehension tasks. The former type 

was considered more appropriate to the needs of the investigation. 

The material to be used for each experiment consisted of a problem 

Speci ftestion where the task to be performed broadly involved 

designing a program for the problem so specified. It was considered 

essential that these problems each should possess more than one 

distinct solution in order that the experiments might yield evidence 

concerning the different design strategies that subjects employ. 

Another important factor which influenced the choice of 

experimental material was the decision to restrict the scope of the 

investigation to problems whose general characteristics were similar 

to each other, The reason for choosing this approach was that it 

would have the advantage of reaching more detailed conclusions that - 

albeit derived from a limited problem arena - could with 

circumspection be extrapolated to a family of problems. Furthermore, 

it was felt desirable that the problems should be fairly "balanced" in 

their characteristics as this would avoid undue emphasis either on 

input data content or, alternatively, on processing requirement. 

The problems chosen were considered to satisfy the 

above-mentioned requirements. For the first study, the problem used 

PAGE 54



was derived from Findlay and Watt's signal problem [3] ( specified in 

appendix 1 ). Naur's line-edit problem [4] was used as a basis for 

the experimental material (specified in appendix 3) in two of the 

experiments in the second study. The four problem specifications ( 

specified in appendix 5) for the remaining third experiment of this 

study were derived from both the signal and line-edit problems. 

‘ Program construction tasks provide an obvious means of 

investigating the nature of program design, although they have the 

serious disdvantage that it is difficult to devise comparative 

experiments involving their use (therefore, they are usually employed 

in observational studies). The source of the difficulty in the 

present context was that subjects' strategies were attributes and 

therefore not under experimental control. The obvious preference for 

comparative experimentation necessitates devising a scenario in which 

the variable under investigation is a treatment rather than an 

attribute. For two of the comparative experiments “carried out, 

suitable experimental material was specially devised, this comprising 

of outline programs (hereafter known as a process structure cues) and 

lists of “elementary” instructions. The two process structure cues 

with their respective lists of actions used for the signal problem are 

provided in appendix 2, whilst the three cues and lists for the line 

edit problem are given in appendix 4. 

The process structure cues used corresponded to different 

decompositions of the problem. Each was based on a particular (e.g 

primitive or abstract) perception of the problem structure. The cues 

were refined to a level such that a complete program could be obtained 

by allocating "elementary" actions (elementary in the sense that their 

functional description needed no further elaboration) to the former. 

Therefore, these cues in skeletal form (i.e., without the actions 

necessary to fulfill the processing requirements) consisted of 
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suitable key-words used to express sequence, selection, and iteration 

structures, with appropriate conditions for the latter two constructs. 

The experimental procedure involved subjects having to construct 

programs by allocating actions from the action list to their given 

process structure cues. Hence, problem decomposition became a 

treatment in the experiment. Furthermore, in order to ensure that the 

effect of any significant differences could be attributed to the 

treatment rather than alternative sources of variation, the following 

measures were considered in developing the cues: 

- The key-words used were from the subjects' main programming 

language (Algo168); 

- The idea of labelling the action list so that subjects need 

write only numbers (say) in the spaces provided in the process 

structure cues was considered; however, the superficial 

convenience of reducing the task to “programming by numbers" 

was rejected on the grounds that it might have caused 

confusion with program readability and understanding as 

subjects assimilated the problem and developed the program; 

- The positioning and size of blank areas in the process 

structure cues was such that no implied significance could 

be attached to them regarding the number, or placement, 

of instructions. The spacing of blank areas was such that, 

wherever subjects would have reasonably expected instructions 

to appear in relation to their knowledge of Algol68 syntax, 

a spatial area was left blank. In addition, these blank 

areas between key-words were made equal in size; 

- The stylistic rules used regarding formatting and 

discriminability of key-words, choice of variable names etc. 

were in accordance with the conventions for program clarity 

as advocated on their programming courses. 
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The action list could have been formulated in a number of 

different ways depending on the elementary actions chosen. Though 

syntactical form would correspond to Algol68, there were a number of 

equivalent semantic forms. The list used could either be: 

- a “complete set", where the required actions included all 

possible alternative forms; 

-.a "sufficient" set, where all the required actions include 

repetitions for those that would be required more than once; 

- a “canonical” set, in which each of the required actions 

is given once only. 

The latter alternative was chosen because it was considered that the 

first alternative would lead to a lengthy list involving a large 

number of actions that would not be used and would therefore be a 

source of confusion. Furthermore, in the second alternative, the 

actions that needed to be repeated were not dependent solely on the 

problem requirements but also on the syntactical rules of the language 

being used. 

3.3.3 Choice of Metrics 

Deciding upon suitable metrics depends largely on the variable 

being. investigated and the type of task being performed . In the 

experiments where subjects developed a program from the specification 

alone, it was necessary to devise an investigative rationale/framework 

so that subjects’ attempted solutions could be analysed. The problems 

were chosen on the basis that they possessed more than one distinct 

solution. Furthermore, the problems were such that their solutions 

could be mapped according to their constituent process abstractions 

onto one of a small number (e.g two or three) of decomposition 

paradigms. A first-level solution template for the family of problems 
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chosen can be represented as a hierarchy of abstract processes (where 

processes 1 and 2 are components of either a sequence or selection 

construct) as shown below. 

program 

initial process final 

process data process 

process 

item 

process 1 process 2 

The actual decomposition paradigms for a particular problem can be 

generated from this template by characterising the processes involved 

in the hierarchy - in particular, the process pair at the root of the 

hierarchy, hereafter referred to as the ‘characteristic process pair'. 

By way of example, for the signal problem, two possible decomposition 

paradigms can be characterised as follows. On the one hand, 

specifying the characteristic process-pair as 'process vehicle signal' 

and ‘process timing signal' leads to one paradigm. On the other hand, 

a characterisation which incorporates a process specified as 'process 
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waiting period', irrespective of the precise nature of the other 

process, leads to the other paradigm. 

In the classification of attempted solutions, it was decided that 

the process description of the characteristic pair was to be the sole 

arbiter, _so that factors such as syntax/notation used or positioning 

(correct or otherwise) of "elementary actions" (e.g input statements, 

assignments etc.) were not considered. In addition, the quantitative 

metric in analysing subjects' attempted solutions would be the 

frequency/proportion of solutions based on the different possible 

decomposition paradigms. It was considered that this metric would 

effectively quantify subjects' "preference" for a particular paradigm 

and would therefore be a useful contribution to the investigation. 

In two of the experiments, there was a specific aim of 

investigating the relationship between different problem decomposition 

strategies and effort required. In these experiments, subjects were 

asked to produce solutions to specified problems. using process 

structure cues and an action list, and it was necessary to devise 

metrics to analyse subjects attempted solutions. The effort required 

was measured in terms of the total time taken to develop a complete 

program. The rationale for using this measure is that the rate at 

which subjects are able to perform the task of accomodating actions 

into cues reflects the effort required to comprehend and elaborate the 

latter. Moreover, the justification for such a view is as follows. 

It can be assumed that, in decomposing a problem and designing a 

program, a subject produces some internal representation of the 

problem together with a subsequent model of its solution (this is 

consistent with Greeno's idea [110] of cognitive representation and 

Hoc's notion of a "systeme de representation et de traitment" [111] in 

the area of problem solving). It follows therefore, that the 

ease/difficulty with which subjects comprehend and elaborate cues 
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will be dependent upon the degree to which the latter "mirrors" their 

internal model. On this basis, it is reasonable to use this metric to 

evaluate different problem decompositions with respect to the effort 

required in their comprehension and elaboration. 

A further metric used for measuring subjects' performance was 

defined in terms of the number of elementary actions correctly located 

in the structure cue. A better measure may have been achieved by 

weighting the components, as some were deemed more difficult to locate 

than others. However, as there were no objective criteria by which 

such weighting could be carried out, it was accepted that the choice 

of equal weight would prove satisfactory. 

To obtain observational information about the relationship 

between decomposition strategies and subjects’ errors, a metric was 

specially devised which measured the error frequencies in subjects' 

attempted solutions. The analysis required to compute these 

frequencies consisted of classifying and mecumuTaeing subjects' errors 

made in relation to certain features of the problem requirements, so 

that each frequency corresponded to the number of errors for a 

particular feature. More specifically, the chosen features were 

associated with refinements of the characteristic process-pair. The 

Tationale for this choice was that such an analysis could yield an 

"in-depth" insight (i.e., one that is subsequent to the first level of 

refinement and focuses on those sub-processes which require the most 

elaboration) into possible relationships between strategies and 

errors. 

In the next two sections, details of the plan, execution and 

analysis of the investigation, involving the two sets of experimental 

studies, are presented. 
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3.4. The Signal Study 

The problem specification used in the three experiments of this 

study possessed several different solutions, a feature considered 

pertinent to the objective of obtaining insight into subjects' design 

strategies. 

3.4.1 Experiment 1 

Aim 

The aim of this exploratory experiment was not only to gather 

observational evidence on the kind of strategies used by subjects, but 

also to use this evidence to form evaluative hypotheses for further 

experimentation. 

Subjects 

The 129 subjects taking part were groups of computer science 

students attending a number of different educational establishments. 

Individuals therefore exhibited considerable variation with respect to 

the following characteristics: 

length of experience (from about 1/2 year to 3 years or more) 3 

level of training (from pre-university to postgraduate); 

- the design notation they employed (this included flowcharts, 

Nassi-Shniederman diagrams and Algol-style language); 

primary programming language (from Basic to Algol 68). 

Materials 

Subjects vere each supplied with a single-sheet computer 

print-out of the signal problem as given in appendix l. 

Procedure 

The experiment was conducted during a 50-minute class period with 

different groups over a number of weeks. The subjects were given 
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instructions verbally by the same experimenter for each session. They 

were told that they were required to design a program in any design 

notation or high-level language with which they were familiar. It was 

emphasised that they were participating in an experiment and not a 

test, and that they should feel free to seek clarification of any 

aspect of the problem from the experimenter, though not from each 

other, They were encouraged to show any development or working 

carried out in obtaining the program. 

Metrics 

Various metrics were used to analyse the experimental data, these 

relating to: subjects' preference for a particular solution type, 

subject performance and frequencies of errors in solutions. Although 

several different hierarchical process structures can be identified 

for the signal problem (see 4.1.2), attempted solutions were 

categorised into only two decomposition paradigms , hereafter denoted 

by sl and s2, this classification being considered adequate to the 

needs of the investigation. The sl paradigm corresponds to a solution 

in which the characteristic process-pair is ‘process vehicle signal’ 

and ‘process timing signal’, whereas the s2 paradigm corresponds to a 

variety of solutions in which one process in the characteristic pair 

is ‘process waiting period', the precise nature of the other process 

being immaterial. Representations of these two decompositions, 

accompanied by corresponding complete solutions, are given in appendix 

ie The first metric above was used to evaluate the significance of 

subjects' preferences. The second and third metrics were used 

respectively to evaluate the significance of a trend between length of 

experience and performance, and error frequencies associated with 

fulfilling certain problem requirement goals . 

Results 

Data for 106 (90%) of the subjects was analysed, the remaining 
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subjects having- made insufficient progress in producing programs that 

could be meaningfully analysed. The most illuminating statistic was 

the frequency of subjects' preferences for solutions based on sl and 

s2 3 these were 97 (91.5%) and 9 (8.5%) respectively. 

The performance scores (i.e., the number of elementary actions 

correctly’ located) ranged from a maximum possible of 9 to a minimum 

observed of 5. They were grouped into four sets corresponding to 

different lengths of experience. A table of each set with its mean 

performance score and frequency is given below: 

  

  

  

length of mean group. 

experience performance frequency 

less than 1 year 6.81 Si 

between 1 & 2 years 7.02 50 

between 2 & 3 years Peed 14 

greater than 3 years 7.55 Le   
  

The resulting data consisted of 4 independent samples of ordinal 

values, and there is a strong intuitive basis for assuming a 

correlation between experience and performance. Therefore, a 

Jonckheere trend test [112] was applied. 

Null Hypothesis: There is no relationship between experience and 

performance. 

Alternative Hypothesis: Performance improves with experience. 

Decision Statistic: Normal approximation to the Jonckheere test with 

ties. 

Significance level: 0.05 

Computed probability: p < 0.005 

Conclusion: Accept alternative hypothesis. 

In addition to establishing the presence of this highly significant 

trend, it was decided to assess the degree of improved performance. 

PAGE 63



  

The use of an assymetrical measure of association is appropriate, 

since the focus of interest was on how length of experience improves 

performance, rather than the other way round. The value obtained 

using Somer's delta [113] was 0.23 which may be interpreted as saying 

that, if two subjects were selected from different sets, there would 

be a 23% chance that the subject from the more experienced group would 

perform better. 

Before considering subjects' errors, a table is presented below 

showing frequencies with respect to the progress made as defined by 

specific "milestones" in the development of an sl-type solution: 

  

Progress made Freq 
  

Satisfied the first two processing requirements only 18 

Satisfied the first two requirements, and attempted the third,] 45 

Correct solution apart from "final check for longest wait" 30 

Correct solution 6       

The error analysis centered on problem-requirement features of 

the signal problem that are associated with the refinement of the 

characteristic process-pair, and in particular on the two processes 

involved in fulfilling the third processing requirement, as it is the 

attainment of the latter that is the main source of complexity with 

the signal problem. In practice, this involved inspecting solutions 

to determine whether certain actions had been omitted or misplaced. 

The relative frequencies (expressed as a percentage of the frequency 

of solutions in the second category above) of the two processes - 

namely, ‘reset waiting period' and 'check for longest waiting period' 

- were 53% and 47% respectively. In addition, a significant error 

measurement for the 106 subjects was the absence of the ‘final check 

for the longest waiting period' in 94% of the solutions. 
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3.4.2 Experiment 2 

The aim of the second experiment was to obtain evidence as to why 

such a highly significant proportion of subjects favoured an sl-type 

solution. One obvious explanation for this preference, which became 

the investigative hypothesis for this experiment, was that an sl-type 

solution is in some sense easier to perceive. Since problem 

decomposition was merely an attribute of the participants in 

experiment 1, it was now made a treatment. To achieve this, subjects 

were split into two groups, one being guided or "cued" to sl, the 

other to s2. 

Subjects 

The subjects were 20 second-year computer science undergraduates 

trained in step-wise refinement and Algol68. They were divided 

randomly into two groups of equal size. 

Materials 

Supplied to each subject were: 

(a) A specification of the problem as for experiment 1; 

(b) A skeletal process structure cue corresponding to either 

sl or s2 (see appendix 2); 

(c) A list of actions necessary to develop a complete program 

(see appendix 2). 

Procedure 

The procedure was essentially the same as for the first 

experiment. Subjects were instructed that, from the materials they 

received, they had to produce a solution to the given problem by 

allocating actions from the action list to appropriate positions in 

the skeletal cue. They were informed that certain actions might have 
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to be inserted more than once in order to obtain a complete solution, 

and that no implied significance should be attached to the size or 

positioning of blank areas in the outline program structure. The 

start time of the experiment and the finishing times for subjects were 

recorded. 

Metrics 

The ease with which subjects comprehended their cues was measured 

in terms of the total time taken to accomplish the task of developing 

a program. 

Results 

A table of times (to the nearest minute) taken by individuals of 

the two groups in producing completed solutions is given below. 

  

Group sl OS 14 dais) Se 1S! 17 20, 527 

Group $2) 1/215 22° 23° 23) 23. 24 29' 29: 30         

Note, that of the 20 subjects who took part, 1 in group sl and 2 in 

group s2 produced solutions that had to be rejected due to 

insufficient development. The times taken formed two independent 

samples of ordinal data and therefore were analysed using a 

Mann-Whitney test [114] (although informal inspection of the table 

suggests a significant difference between the two groups). 

Null Hypothesis: The two groups do not differ in the time taken to 

develop a program from the given cue and action list. 

Alternative Hypothesis: The group cued to decomposition s2 will take 

longer. 

Decision Statistic: Mann-Whitney 

Significance Level: 0.05 

Computed Probability: p < 0.005 

Conclusion: Accept alternative hypothesis 
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Furthermore, the size of the difference was measured using a 

Hodges-Lehman estimate [115], which indicated that a subject cued to 

s2 would take some 9 minutes longer to complete the task. 

3.4.3 Experiment 3 

Aim 

If the signal problem's processing requirements are imposed upon the 

sequence of input signals, the outcome will be a (logical) data 

structure corresponding to s2. It would therefore be expected that a 

population of subjects who had received training in Jackson's 

principles would produce a significantly greater proportion of s2-type 

solutions than the participants of experiment 1. The aim of the third 

experiment was to test this prediction. The obvious course of action 

would have been to conduct a comparative experiment involving a 

population divided into two groups, so that one group received 

training in step-wise refinement and the other group was trained to 

use a data-emphasis structuring principle. However, practical 

circumstances precluded comparative experimentation (no subjects who 

had received both types of training were available), and thus another 

observational investigation similar to experiment 1 was conducted. 

Subjects 

The 34 subjects were second-year undergraduates from various 

disciplines who had chosen programming as a "complementary studies" 

option. As part of their training, they were required to attend a 

weekly series of first-year computer science undergraduate lectures on 

step-wise refinement and Pascal. In addition, they received separate 

parallel instruction that stressed the need to consider the logical 

structure of data as a means of obtaining an outline algorithim. 

p\ Materials, Procedure and Metrics 
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As for experiment 1. 

Results 

Five subjects failed to produce solutions which could be meaningfully 

analysed. The frequencies (with their percentages) of sl-type and 

s2-type solutions produced by the 29 subjects were 16 (55%) and 13 

(452). respectively. Comparing this result with that of experiment 1 

yielded two independent samples of categorical data. 

Null hypothesis: There is no difference in the division of sl and s2 

frequencies between subjects in experiments 1 and 3. 

Alternative Hypothesis: Subjects trained in Jackson's principles will 

produce a greater proportion of s2 solutions. 

Decision Statistic : A normal approximation to the Fisher exact test 

[Lisy. 

Significance level: 0.05 

Computed probabilty: p < 0.000005 

Conclusion: Accept alternative hypothesis. 

An estimate of the size of the difference using a Somer delta [113] 

revealed that it was 36% more likely that subjects from experiment 3 

would produce a s2-type solution than those from experiment 1. The 

frequencies of performance values ranging from the minimum observed to 

the maximum possible for the two groups is given below. 

  

scores 

4S 6. ov 8 9 
  

Group sl Deane 2. 2! 

Group s2 ao: 3 1         
The results form ‘two independent samples of ordinal data. Although 

informal inspection reveals a marked difference between groups, data 

was nevertheless analysed for significance using a Mann-Whitney test 
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[116]. Moreover, as an s2-type solution was considered superior to 

the other because it possesses a greater degree of modularity, a test 

was carried out for increased performance in the s2-group. 

Null Hypothesis: There is no difference in performance scores between 

the two groups. 

Alternative hypothesis: The performance of group s2 is significantly 

greater. 

Decision Statistic: Normal approximation to the Mann-Whitney test with 

extensive ties. 

Level of Significance: 0.05 

Computed probability: p < 0.0001 

Conclusion: Accept alternative hypothesis 

In addition, an estimate of the size of the effect was made using 

Somer's delta [113], which revealed that there was a 78% chance that a 

subject from the s2 group would perform better than from the other. 

One possible contributory factor that was advanced to explain the 

apparent ease with which sl-type solutions were perceived, was the 

presence of certain key-words or phrases in the problem wording and 

the particular combination of processing requirements presented 

therein. This formed the basis for the second investigative study. 

3.5 The Line-Edit Study 

It is almost axiomatic that problem wording will influence 

problem solving and hence the solutions produced. The aim of the 

first two experiments in this study was to characterise subjects 

strategies and gather observational evidence regarding the conjecture 

(from the first study) that certain features of the problem wording 

would act as cues for decomposition. Furthermore, the problem chosen 

was considered appropriate to the needs of the investigation because 
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it contained explicit references to both primitive and abstract 

problem specification features. In the third experiment, the 

previously mentioned conjecture was systematically investigated by 

devising four problems, constructed from the specifications of both 

the signal and line-edit problems. 

3.5.1 Experiment 1 

Subjects 

These consisted of 36 third-year computer science undergraduates 

trained in step-wise refinement and Algol68. 

Materials and Procedure 

These were as for experiment 1 of the signal study except that 

each subject was supplied with a specification of the line-edit 

problem as given in appendix 3. 

Metrics 

As in the observational experiments of the signal study, 

subjects' attempted solutions were mapped onto decomposition 

paradigms. The three paradigms (respectively refered to hereafter as 

Ll, L2 and L3) that were judged adequate for classification, in terms 

of the characteristic ~ process-pair. were: 

Ca): "build a line of m chars', ‘adjust line and then output'; 

(ii) ‘process space', ‘process character'; 

(iii) ‘build a word', ‘output a word’. 

Representations of the corresponding hierarchical process structures 

with their completed solutions are given in appendix 3. 

The error analysis carried out was similar to that of the signal 

study, the frequencies of errors associated with fulfilling the 

following problem requirement features being accumulated: 

(a) removing successive spaces; 
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(b) inserting a single space between words; 

(c) preventing a space being output before the first word; 

(d) preventing a space being output before the end of a line. 

These were chosen because their attainment, or lack of, was the source 

of several mistakes, as noted by Goodenough and Gerhart [117], in 

Naur's [a] original, and other subsequent published solutions. 

Results 

Of the 36 solutions, 5 were not classified as they had either not 

made sufficent progress or did not match one of the three 

decomposition paradigms. The division of frequencies for the 

remaining subjects, respectively corresponding to decompositions Ll, 

L2 and L3 were 15 (48%), 6 (20%) and 11 (32%), did not reflect a 

strong preference for a particular decomposition type. On the basis 

of interpreting the preference for sl-type solutions in the signal 

study as an indication that subjects favour solutions based on 

primitive perceptions, comparisons of frequencies based on primitive 

(i.e., Ll & L2) and abstract (i.e., L3) solutions were performed. 

Null Hypothesis : There is no significant difference between 

frequencies of solutions based on primitive, as opposed to, abstract 

perceptions. 

Alternative Hypothesis: There is a preference for solutions based on 

primitive perceptions. 

Decision Statistic: Normal approximation to a Binomial test [118] 

Significance Level: 0.05 

Computed Probability : p < 0.024 

In addition to the division of frequencies for progress made 

(i.e. frequencies corresponding to solutions satisfying either all 

three or the first two problem requirements), the error analysis also 

involved calculating for each solution type: 

- the error frequency for each of the four above-mentioned 
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features; 

- the error percentage, which is the total number of subject 

errors expressed as a percentage of the maximum possible number 

of errors that subjects could make the latter simply being four 

times the group frequency). The results are as follows: 

  

  

Solution Progress Errors Error % 

Type all 3 first two a, =D “a> od 

Ll 4 11 214 15 7 5 78 

L2 6 0 3 eee. 5 45 

L3 ah 0 1 is Lee) 30               
Since decomposition strategy was an attribute in this experiment, 

a second controlled experiment was performed using process structure 

cues to make the variable under investigation a treatment. 

3.5.2 Experiment 2 

The first experiment in the line-edit study revealed that all 

subjects' attempts, irrespective of solution type, were based on 

erroneous decompositions. This was because they had not realized that 

certain additional predicates were necessar y to ensure that solutions 

did not contain the errors previously mentioned in (3.5.1). It was 

considered that the inclusion of these predicates in the process 

structure cues would unecessarily increase the complexity of the cues 

and might also be a source of confusion. Hence, the cues used in this 

experiment were erroneous, in that they were in a form that non-cued 

subjects might be expected to produce when attempting to solve the 

problem (as in the first experiment). Furthermore, since the 

completed solutions presented in appendix 3 are based on these 
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decomposition cues, they are also incorrect. 

Aim 

In the signal study, the preference for primitive solutions was 

attributed to the ease with which primitive decompositions were 

perceived. In general terms, the effort required to- produce a 

solution is not simply the effort involved in perceiving a 

decomposition. More accurately, it can be described as the sum of the 

effort required to perceive a decomposition and elaborate this 

resulting decomposition into a completed solution. It might therefore 

be reasonable to assume that in the case of a problem for which there 

is no strong preference for a particular decomposition type (e.g., 

the line edit problem), possible differences in times taken to produce 

a solution may be indicative of elaborative effort required to 

complete that solution. Moreover, on the basis that the effort 

required in elaborating decomposition types will vary from one 

decomposition to another, the following experiment .to compare 

differences in elaborative efforts between groups was performed. 

Subjects 

The 24 subjects were third-year computer science undergraduates 

trained in step-wise refinement and Algol68. They were divided 

randomly into three groups. 

Materials 

Each subject was provided with : a specification of the 

line-edit problem, a process structure cue corresponding to either Ll, 

L2 or L3, and a list of actions to develop a complete program from the 

cue (see appendix 4). 

Procedure 

As for experiment 2 of the signal study. 

Metrics 

The effort required to produce a program was measured in terms of the 
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time taken to develop a complete solution. 

Results 

Of the 24 subjects that participated, one in each group produced 

solutions that had to be rejected due to insufficient progress. The 

data for individual times taken (to the nearest minute) by the three 

groups is shown in the table below. 

  

Group Ll 2122) 23.2428 33; 36 

Group L2 | 15 15 19 19 20 20 22 24 

      
  

Group L3 | 14 15 20 20 21 21 

The data was analysed for differences between groups using a Kruskal 

Wallis test [119]. This revealed a significant difference between 

groups (p < 0.005). Moreover, pair-wise comparisons testing for 

differences between groups using a Mann-whitney test [114] with a 

significance level appropriate to the comparisons rather than the 

experiment (i.e., 1/3 of 0.05), yielded the following: 

- times of group Ll >, times of group L2 (p < 0.005) 

- times of group Ll > times of group L3 (p < 0.005) 

- times of groups L2 and L3 do not differ significantly. 

3.5.3 Experiment 3 

Aim 

The aim of this experiment was to investigate the effect of problem 

specitication on problem decomposition by varying the processing 

requirements and key-words in the input data description. More 

specifically, the experimental hypothesis was that explicit references 

to primitive or abstract problem specification features are 

responsible for corresponding (i.e., primitive and abstract) 
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decomposition types. 

Subjects 

53 second-year computer science undergraduates trained in step-wise 

refinement and Algol68 were used. They were randomly divided into 

four groups, each group being assigned one of four treatments. 

Materials 

The ‘four treatments were devised by systematically manipulating two 

factors, namely, removing the need to fulfill primitive processing 

requirements, and/or introducing the presence of abstract data items. 

The four problem specifications (specified in appendix 5), which 

represent the four experimental treatments, are characterised as 

follows: 

(i) Problem I is the signal problem unaltered; 

(ii) Problem II is formed from the data description of the 

line-edit problem containing references to an abstract data 

item, namely, ‘'word' and a set of processing requirements 

that are equivalent to those of the signal problem; 

(iii) Problem III is the signal problem with only the third 

requirement. The specification removes the explicit 

presence of primitive processing requirements (i.e., those 

that correspond to single elementary actions), 

thereby emphasise the presence of the remaining abstract one; 

(iv) Problem IV is formed by taking the data description of the 

line-edit problem and adding a processing requirement which 

is equivalent to the third requirement of the signal 

problem. 

The hypothesis to be tested was that the proportion of abstract to 

primitive decompositions should increase from group solving problem I, 
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having the smallest ratio, to the group solving problem IV, having the 

largest. 

Procedure and Metrics 

As for experiment 1. 

Results 

The data for 46 (87%) of the solutions was analysed, as the remainder 

had made insufficient progress for analysis. The frequencies for 

primitive and abstract solution types for each group were: 

  

Group Frequencies 

primitive abstract 

  

        

is 11 0 

ob 10 3 

Til a } 

IV 4 6 
4   

The data reveals that the preference for primitive solutions can not 

only be counteracted, but actually reversed, with appropriate cues in 

the specification. Furthermore, a Jonckwere test [|.112] was applied 

for a trend’ in group order I (II, III) and IV, where the middle two 

groups were combined as there was no obvious a priori rationale for 

distinguishing an order difference between them. The test indicates 

the presence of a highly significant trend (p <0.005). 

Summary 

In theory, significant results obtained from comparative 

experiments imply that the treatment under investigation is 

responsible for the observed effect, provided that other factors were 
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experimentally controlled. In practice however, this high degree of 

control was not achievable for two reasons. First, it was difficult 

to determine prior to experimentation exactly what factors might need 

controlling. Second, control of between-subject-variance via the 

within-subjects-design technique would have implied producing 

programming problems of equivalent complexity. Therefore, a more 

reasonable, and at the same time more cautious interpretation is that 

the results from comparative experiments represent a higher degree of 

association between the treatment and the observed effect than those 

obtained from observational experiments. Bearing this in mind, the 

results of the investigation can be summarised as follows: 

- There is a marked preference for solutions based on primitive 

perceptions of problem structure as observed in the first 

experiments of the signal and line-edit studies; 

- There is a difference in effort required to produce solutions 

based on primitive and abstract perceptions. The second 

experiment on the signal problem suggests that greater effort 

is required for solutions based on abstract perceptions, whereas 

the corresponding experiment on the line-edit problem indicates 

the reverse; 

- The effect of prior training of subjects to look for logical 

data abstractions produces, as seen in experiment 3 of the 

signal study, an increase in solutions based on abstract 

perceptions of the problem structure; 

- The results of the last experiment in the line-edit study 

strongly suggest that the presence of certain key-words 

and processing requirements in the problem specification 

can influence the decompostion strategy employed by subjects; 

- Observations from the initial experiments in each study 

indicate that there is a relationship between subject error 

PAGE 77



    

  
PAGE 78



4. Discussion 

4.1. Problem Analysis and Design evaluation 

4.1.1 Introduction 

The first part of this chapter details an analysis of the signal 

and line-edit problems and their respective possible solutions, an 

informal "top-down" exposition of which is presented. Initially, each 

solution is characterised in terms of an “item-type-to-be-processed", 

hereafter refered to as ITEM. Essentially, an Item is that perception 

obtained from consideration of input data and/or processing 

requirements (including output) which becomes pivotal to the 

subsequent decomposition of the problem. The various alternative 

solutions to each problem based on different ITEMs are mapped onto 

characteristic ; process structure pairs corresponding to the 

decomposition paradigms presented in appendices 1 and 3; the various 

characteristic pairs are then refined to obtain process structure 

hierarchies. With regard to the line-edit problem, modifications 

needed to produce correct versions of the erroneous solutions given in 

appendix 3 are also discussed. In addition, all solutions are 

subjected to a design evaluation based on the notion of "modularity", 

as characterised by certain stated criteria. 

Since one aspect of this discussion concerns design evaluation, 

it is relevant to consider what constitutes a “good design". At 

present, there is no universally accepted method of quantitative 

design assessment, although one frequently stressed qualitative 

property that is considered necessary for. a good design is a high 

degree of modularity. This notion is, to paraphrase Dijkstra [27], 

the partitioning of the original amorphous knot of obligations, 
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constraints and goals (i.e., the problem specification) into a set of 

"separate concerns" (i.e., levels of abstractions). To arrive at an 

effective separation of concerns, the levels of abstraction should be 

“internally coherent" and “externally isolated", or in Structured 

Design terms "tightly cohesive" and "loosely coupled". More 

specifically, the implications of these requirements, as pointed out 

by Liskov [23], are that: 

the combined activity of functions of an abstraction level 

supports that process abstraction (i.e, the task implied by 

the process specification); 

- each level of abstraction has resources (e.g., data) which it 

owns exclusively and which other levels are not permitted to 

access; 

- the flow of information between levels should be in the form 

of data passed as explicit arguments via functions; 

- the direction of control flow between levels snout proceed 

from the top to the bottom; i.e., higher level functions 

may call lower level functions, but the latter are not aware 

of the existence of the former. 

The qualitative assessment of each solution type for the two 

problems is carried out by considering three design evaluation 

parameters associated with the corresponding characteristic process 

pair. These parameters, which readily suggest themselves from the 

above requirements, are: the process specification/name, the functions 

performed by the process and its resources. In practice, the approach 

adopted is to use the above requirements as "benchmarks" to categorise 

a solution as being either of "high" quality if it satisfies all of 

the above four requirements, or "low" quality if it violates one or 

more of those requirements. Additionally, those specific features of 

the solution that contribute to its categorisation are highlighted. 
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4.1.2 The Signal Problem 

Problem Analysis 

For ee signal problem, there are two possiblities for ITEM 

namely: a "primitive" signal or a "chunked" (waiting) period. Both 

these perceptions inevitably influence the manner in which the input 

stream is viewed, the processing of which then dominates the 

elaboration of the decomposition. There are in fact several distinct, 

but correct, perceptions of the input stream, each with its 

characteristic process structure pair, the details of which are 

presented below: 

  

  

  

ITEM Input Characteristic 

Stream pair 

t* (ve & te) process vehicle period 

or process waiting period 

(t* & vee 

te (ve ft te)* process vehicle period 

process waiting period 
  

te (vf t*)* process vehicle signal 

process waiting period 

  

Wilt (ve ! t)* process vehicle period 

process timing signal 
  

Vel t : Ww ! t)* process vehicle signal 

process timing signal       

Ww = "vehicle signal", t = “timing signal" and !, & and 8} 
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respectively denote unordered alternation, concatenation and unbounded 

iteration). 

The first three alternatives map onto an s2-type decomposition, 

because of the presence of a t* process which deals with a waiting 

period, whereas the latter two alternatives map onto an sl-type 

decomposition. Although the structure t* & v is incorrect, it is 

worth noting because it appeared in some of the solutions of 

experiments 1 and 3 of the signal study. Whilst the fourth 

alternative is interpreted as an sl-type decomposition, it is regarded 

as a perverse solution of the problem since a v* component bears 

little relevance to the processing requirements; not suprisingly, it 

never occured among subjects' solutions 

Since the third and fifth alternatives respectively correspond to 

the standard s2 and el paradigms, consideration is now given to the 

refinement of their characteristic process structure pairs. In 

relation to the fifth alternative, the elaboration of ‘process timing 

signal’ is simply two elementary actions, that of incrementing 

waiting, and total survey times. The elaboration of 'process vehicle 

signal' is, however, more complex acdsee it involves a sequence of 

three processes. The first and third are elementary actions that 

respectively correspond to ‘increment a vehicle count' and 'reset 

waiting period', whilst the second process is composite and involves 

the 'check for a possible longest waiting period'. This latter 

component is also needed as part of 'final process', to ensure that 

the waiting period between the last vehicle and the end of the survey 

is also compared against ‘the longest waiting period’. 

The refinements of the process pair associated with the s2 

paradigm are such that ‘process vehicle signal' is simply the 

elementary action of incrementing a vehicle count, whilst ‘process 

waiting period' consists of the two composite processes ‘process 
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accumulate period' and ‘check for longest waiting period'. This 

completes the refinements of the two paradigms and representations of 

their process structure hierarchies are presented below: 

Psignal 
data 

Pinitial Pdata Pfinal 
body 

Psignal Pcheck 

max 
period 

° ° 
Pvehicle Ptiming 
signal signal 

Pincrement Pcheck Preset Pincrement Pincrement 
v-count max waiting t-count waiting 

period period period 

sl-type Process structure hierarchy 
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Psignal 
data 

Pinitial Pdata Pfinal 
body 

Pperiod 

° ° 
Pvehicle Pwaiting 
signal period 

Pincrement Paccumulate Pcheck 
v-count period max-period 

Ptiming 
signal 

Pincrement 
t-count 

s2-type Process structure hierarchy 
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Design Evalauation of sl and s2 paradigms 

The characteristic process pair for an sl paradigm in terms of 

its design evaluation parameters are: 

(i) specification - process vehicle signal 

functions - increment vehicle signal, check max period 

and reset waiting period 

resources - num of vehicles, longest waiting period, 

waiting period 

Ce specification - process timing signal 

functions - increment length of survey and waiting period 

resources - length of survey and waiting period 

The sl-type is not a high quality design because it violates two of 

the four previously mentioned requirements for modularity ( see 

4.1.1). The latter two functions of "process vehicle signal" do not 

support its abstraction, which violates the first requirement; and the 

resources of both processes are not exclusively owned, which violates 

the second requirement. Re-arrangement of the program code so as to 

remove these violations produces: 

IF signal = 1 

THEN 

(* process vehicle *) 

increment vehicle count; 

set v-arrived 

PAGE 85



ELSE 

%* process waiting period *) 

IF v-arrived 

THEN 

check for max period; 

reset waiting period; 

reset v-arrived 

FI; 

increment waiting period; 

increment survey length 

ee 

This re-arranged version has a resource item v-arrived that is used as 

a flag to communicate between the two processes, violating the last 

two requirements. In addition, it highlights the placement of actions 

that contribute to its poor quality, namely, 'reset waiting period' 

and ‘check for max period'. Similarly, it can also be shown that the 

'final check for max period' is a further contributory factor to low 

quality. In Structured design terms, this solution type is of low 

quality because it is control coupled (one process commands the other 

process on what action it should take via the flag variable). From a 

Jackson perspective, this decomposition type would be deemed 

inappropriate because it does not possess a 'process waiting period’ 

component to which actions associated with a waiting period such as 

"reset waiting period' should be allocated. 

The s2-paradigm is of a high design quality because all four 

requirements are satisfied. The component 'process vehicle' performs 

a single function that supports its abstraction and exclusively owns a 

data resource which it communicates as an explicit argument. The 
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other component "process longest waiting period' performs two 

functions (i.e., "process waiting period' and 'process check 

max-period'), both of which support its abstraction; its data 

resources are exclusively owned and communicated as explicit 

arguments. The feature that contributes to this design being high 

quality is the presence of the component ‘process waiting period’, 

which produces a design encapsulating an abstraction level that 

preserves an effective "separation of concerns", or from a Jackson 

viewpoint, reflects the logical structure of the data. 

4.1.3 The Line-edit Problem. 

Problem Analysis 

In order to analyse the line-edit problem in the same manner as 

the the signal problem, the following observations concerning the 

former should be noted: that it includes non-trivial input and output 

streams and that ITEM can be perceived as either a line, word or 

character. Each of these perceptions defines a different solution; 

these are presented as three separate cases (s = space character, c = 

non-space character, n = newline): 

Line-driven 

The implications for the input and output streams of perceiving 

ITEM as a line are that there are two possible perceptions for the 

former, namely: (s ! c)* or (s* & c*)*, whilst the latter's structure 

is ((s & c*)* & n))*. The characteristic process-pair for the first 

input perception is ‘build a line of m characters' and ‘adjust line 

and then output', whereas for the second it is 'build a line' and 

‘output a line’. In the first perception, a line-item is visualised 
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as a simple repetition of characters, which implies that there is the 

possibility of ‘build a line of m characters' encountering a line 

break in the middle of a word; the second perception, however, 

visualises a line-item as a repetition of words and therefore 'build a 

line' produces a repetition of complete words. Interestingly, all 

eapieeeas, solutions based on a line ITEM corresponded to the first 

alternative, which can be refined into the Ll-type solution presented 

in appendix 3. 

Character-driven 

There are three different solutions that are based on ITEM as a 

character. One possible way of arriving at a program that is 

essentially Naur's original solution [4] is to visualise the input 

stream as (s ! c)*, the characteristic process-pair as being 'process 

space' and ‘process non-space-character’. The other two possible 

solutions have input streams that correspond to (s* ! c)* and (s ! 

cv), For all three solutions, the output stream structure is ((s & 

ex) ! (n & c%*))*, though it is the input stream perception that 

dominates the initial decomposition. Of the three, only the first 

alternative can be elaborated to an L2-type solution as given in 

appendix 3. The latter two are “hybrid” in the sense that some 

"chunking" (i.e., character grouping) is present. Of the six subjects 

who produced solutions that were categorised as L2-type 

decompositions, there was one of each hybrid type. 

Word-driven 

There are two alternative solutions where ITEM is a word. One 

solution is based on a perception of the input stream as (s* & c% 
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with a characteristic process pair of ‘build a word’ and ‘output a 

word'; the other is based on (s* ! c*)* with a characteristic process 

pair of 'process spaces' and ‘process non-space characters’. The 

output stream structure for both solutions is the same as in the 

previous case. Note thus that, from a Jackson perspective, making 

ITEM a send achie ves a degree of perceptual correspondence between 

the :input and output stream structures that is absent in the other 

two cases, Note further that, the former alternative can be refined 

to an L3-type solution, whilst the latter never appeared amongst 

subjects' solutions. 

Refinement of characteristic pairs 

Having specified the characteristic pairs for the three 

decomposition types, consideration is now given to their refinements 

so as to produce detailed process structure hierarchies. Both 

characteristic processes of the line-based perception, namely, ‘build 

a line' and ‘adjust a line and then output', involve composite 

sub-processes that need considerable refinement. The first process 

repetitively adds a non-redundant character to the current line, 

whilst the second process adjusts the line if there was a line break 

in the middle of a word, and then outputs the line. This latter task 

is elaborated in terms of two composite processes that need further 

refinement (as can be seen from the completed solution). However, the 

process structure hierarchy for an Ll-type solution shown in Figure 1 

is adequate for the needs of this discussion. 

The elaboration of ‘process non-space character', a 

characteristic process of an L2-type decomposition, consists of two 

elementary actions adding a character to a word and incrementing the 

size of the word. The refinement of ‘process space',the other 
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characteristic process, is more complex. This is due to the need to 

distinguish between the cases when a space is either redundant or acts 

as control character for output, in which latter case a space denotes 

either the end of a word ora line. The process hierarchy for an 

L2-type solution is shown in Figure 2. 

iprocesd output word', one of the characteristic processes for a 

word-based decomposition, distinguishes between the cases in which a 

word is output on either the current line or a new line, so that the 

word can be preceded by an appropriate separator. The function of 

‘process build a word' is to get the next word; this involves two 

repetitive processes, one skipping over spaces, the other 

concatenating non-space characters to form the next word. The process 

hierarchy for an L3-type solution is shown in Figure 3. 
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Pstart Ptext 
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PAGE 91



Ptext 

we 
Pstart Ptext Pend of 
of text body text 

Pcharacter 

de , 

Pspace Pnon-space 
character 

° ° 
Predundant Pcontrol 
space space 

oo | 

Pend of Pend of 
word line 

Figure2 

PAGE 92



Ptext 

Pstart Ptext Pend of 
of text body text 

Pword 

Pbuild a Poutput 
word a word 

° 

Premove Pproduce Pnewline Peurrent 
spaces a word word line word 

= ‘ 

Pspace Pnon-space 

character 

Figure3 

PAGE 93



Design Evaluation 

It is appropriate for the purposes of this discussion to evaluate 

design quality of decomposition paradigms based on subjects’ actual - 

albeit incorrect - attempts rather than on the correct versions. For 

the 13-ype decomposition, the characteristic pair described in terms 

of its design evaluation parameters is as follows: 

- one process specifies its abstraction as "build a word"; 

it "imports" character items and "exports" word items 

via a function that performs only the task specified 

in its process abstraction; 

- the other process, specified as "output a word", imports 

and exports word items via a single-task function. 

The design satisfies all four previously mentioned requirements: 

first, the function of each process support the its abstraction; 

second, the resources form an effective "separation of concerns" 

because ‘build a word' conceals the details of processing characters 

to form words from ‘output a word'; third, both processes communicate 

data as explicit arguments; fourth, control flow is "top-down" and 

therefore, the design quality is assessed as "good". The presence of 

the two single-task functions, each of which owns its resources 

exclusively, is responsible for this evaluation. 

The functions performed by 'process space’, a characteristic 

process of the L2-type design, are to remove redundant spaces and to 

output words. Because the process abstraction (i.e., the task implied 

in its specification) is not supported by these functions and in 

addition, there is no effective "separation of concerns" in resources 

(i.e., words and characters), neither of which is exclusively owned by 

either process, the design quality is assessed as poor. The major 
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factors that contribute to this classification lie with ‘process 

space’, or more specifically, with the functions of this process. 

The characteristic processes for the line-based decomposition, 

"build a line’ and ‘adjust line and then output', violate the second 

requirement because both processes own character and line (i.e., there 

is no effective separation of data). Furthermore, the information 

being passed from the former process to the latter appears to be a 

single explicit data item. However, closer examination reveals that 

two parameters are actually being passed, namely, the line and the 

next input character. The latter item acts as a flag which transmits 

control from the first to the second process. 

Interestingly, from a Jackson perspective, the L3-type 

decomposition is based on the logical structure of the input data, 

whilst the other two designs would be rejected as their structure is 

inappropriate to the problem requirements. From a Structured Design 

viewpoint, the L3-type decomposition is functionally cohesive, whereas 

the other two solutions are such that their characteristic processes 

are control coupled. 

Program Modifications 

The errors in the solutions presented in appendix 3 are related 

to the output of a space at the start, and/or end, of output lines. 

The modifications needed for each of the three solutions are discussed 

as three separate cases: 

(i) -Ll-type solution 

The component controlling the output is: 

IF char # space OR prev char # space 

THEN 
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line := line + char; 

line size := line size + 1 

FI; 

The function of the above predicate can be mistakenly interpreted as 

detecting the presence of a non-redundant character (which 

corresponds to the situation of the input character being one of = 

possibilities: either a non-redundant space or a non-space character). 

More accurately, its function is simply the removal of successive 

spaces. To correct this mistake involves two major changes: first, 

the need to separate the two components of the conditional expression, 

and second, to introduce the conditions ‘line size F O' and ‘line size 

+ 1 <€ m' to ensure that there is no space respectively at the start 

and finish of lines. With these modifications, the corrected version 

of the component is: 

IF char = space 

THEN 

IF prev char # space 

THEN 

IF line size # 0 and line size+1¢m 

THEN 

add space to line; 

increment line size 

FI 

EL 

ELSE 

add char to line; 

increment line size 

BLS 

(ii) L2-type solution 

PAGE 96



The component ‘process space' controlling the output is: 

IF word size # 0 (*non-redundant space *) 

THEN 

output word; 

set word size to zero; 

set word to empty string 

FI; 

Since ‘output a word' prints a word preceded by a separator, the first 

word will be preceded by a space. However, this will only be the case 

for the first line, since, for every subsequent line, the first word 

will be preceded by a newline character. The remedy chosen by 

Goodenough and Gerhart [117] is to specify a blank line at the 

beginning of the output text, which will result in the first word of 

every output line being preceded by a newline separator. The effect 

of this change can be achieved, as they point out, eicter by: 

- conjoining the predicate ‘line size # 0' with the existing 

condition that checks whether the current word should be 

output on the current line or on a newline; 

- or by setting the length of the line to "m" (i.e., maximum 

number of characters on a line) at the start of the program. 

A simpler modification that does not change the specification is to 

nest the condition ‘line size # 0' within the condition for a 

non-redundant space. 

(iii) L3-type solution 

The nature of the error and the reason for its occurrence are the 

same as in the previous case, and therefore "guarding" the component 

‘process output a word' with the condition ‘line size # 0' in the same 

way as above ensures that the first line does not begin with a space. 

The approach taken in the above discussion is to consider what 
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modifications need to be introduced to the code of certain incorrect 

programs to produce corrected version. An alternative approach is to 

consider what aspect of the abstract model on which the program design 

is based is incorrect; having identified and corrected this error in 

the design, the code is then modified accordingly. The former 

strategy ae in marked contrast to the latter, because it does not make 

use of the refinement levels produced in the derivation process to 

trace the source of the error, but simply "patches" the program code. 

Applying the alternative approach to the line-edit problem and viewing 

the ITEM as a "word-item", the argument is as follows. The program 

design model for the L3-type solution processes each word in the same 

manner. However, from the above discussion it can be deduced that the 

first word in the text should be processed differently. Therefore, 

the required perception of ITEM is (s* & c*) & (s* & c¥)*, resulting 

in the program: 

build word; 

print(word); 

WHILE word # "*" 

DO 

build a word; 

output a word 

oD 

In relation to design assessment of corrected versions, it can be 

seen that “inserted patches of code" would reduce modularization, 

because their presence would not support the process abstraction, 

thereby violating, or adding to the existing violation, of the first 

requirement. However, the program design based on the modified model 

for the L3-type does not violate this requirement and would therefore 

be assessed as "good". This consequence is a strong argument for 

advocating an error removal strategy that is based on re-designing the 
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program rather than "patching" it. 

4.1.4 Conclusion 

It can be seen that the decision regarding the choice of an ITEM 

is a significant determinant in the formulation of subsequent, 

refinement levels of an algorithm. Moreover, the input and output 

streams are two obvious factors that influence this choice. Indeed, 

the Ll-type solution is an 'output-driven' design, whereas the sl and 

L2 paradigms are ‘input-driven' designs. In certain cases, the 

problem requirements may suggest the possibility of a further 

alternative for an ITEM, for example in the case of the signal problem 

‘a waiting period' and in the case of the line-edit problem ‘a word'. 

In relation to design quality, the discussion reveals that 

solutions based on abstract perceptions are superior to those based on 

primitive perceptions. Two examples of program structure illustrating 

this comparative difference in quality are sl with s2 and L2 with L3. 

The "poor" quality of an Ll-type program structure shows that abstract 

perceptions do not necessarily correspond to "simply chunked", but 

rather “appropriately chunked", perceptions. With regard to modifying 

programs, it is noted that a good design (e.g., an L3-type) is easier 

to correct than a poor one (e.g., an Ll-type). Furthermore, a SEDEram 

modification strategy based on re-design rather than "patch" is 

preferable. 

A conceptual model will now be presented. This model is based on: the 

literature review covering issues in program design; further reading in 

rel@vent cognitive psychology; and the experimental results reported 

above. 
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4.2 Conceptual Model Of Program Designer Behaviour 

Software practitioners and human factor researchers, whose common 

goal is that of easing the programmer's task, also share an approach 

to representing the results of their investigations as a synthesised 

system or theory, which is frequently expressed in terms of principles 

and notions from other disciplines. For example, Dijkstra has 

expressed his ideas [1] on how a program should be designed as a 

calculus using mathematical principles, whilst Constantine [17] and 

Jackson [26] incorporate into their methodologies concepts from sytems 

theory and information modelling respectively. Human factor 

researchers in programming have used notions from cognitive psychology 

and problem-solving to produce conceptual models of programmer 

behaviour for various programming-related tasks. For i atteane Allen 

[120] cites several examples of such models including: Sime et. al's 

investigations [86] into nested conditionals where results are 

explained in terms of a theory of "taxon" and "sequence" information; 

Shneiderman and Mayer's proposal [121] of a syntactic/semantic model 

of programmer behaviour and Atwood and Ramsay's work [122] which 

applies to program comprehension the notion of Kintsch “hierarchical 

schema" [123] on text comprehension. This investigation follows the 

same tradition by proposing a conceptual problem-solving model of 

programmer behaviour for the program design process. The model 

explains the behaviour of an aggregrate of programmers trained in 

structured programming principles. 

4.2.1 Formulation of the model 

The program design task is hypothesised to involve the problem 

solver, at any given time, carrying out one of three distinct types of 
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behaviour: 

- problem understanding; 

- solution planning (i.e., the generation of a set of goals); 

- solution representing (i.e., recording the solution sequence). 

Furthermore, since the overall design strategy in structured 

programming is essentially step-wise refinement, it can be said to be 

reductionistic (i.e., the problem to be solved is reduced into several 

sub-problems, with the reduction process being repeated on each 

sub-problem). Therefore, the three stages mentioned above need to be 

performed repeatedly. 

Problem solving, as viewed in its most general form, is an 

activity which transforms an initial state, by applying a given set of 

operators, to produce a solution sequence that leads to a final state 

CSc Therefore, the correspondence between program design (in 

structured programming terms) and problem-solving can be specified as: 

- initial state : problem specification; 

- final state : the program in a formal notation; 

- ‘operators : decomposition, abstraction, 

concatenation, selection and repetition; 

- solution sequence : levels of refinement. 

The model components - the problem solver, the problem and the 

solution sequence - will now be characterised from a problem solver 

perspective. 

The problem solver is viewed as an information processor, whose 

structure is hypothesised to consist of: a set of knowledge structures 

relevant to program design, memory for storing and processing 

information and a facility for planning. The former, as Shneiderman 

[121] has pointed out, is a complex multi-levelled body of concepts 

and techniques that he refers to as "semantic knowledge". In general 

terms, this knowledge includes general methods for constructing 
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programs, strategies for producing specific programs or program 

"segments" and the effects of various program statements. For 

example, with respect to all the subjects that participated in the 

experiments, it could be said that their knowledge included high-level 

notions such as the structured programming operators previously 

specitied, and strategies for producing program segments that ranged 

from. simple segments such as accumulating a count, to intermediate 

segments such as finding the largest element of a list. 

The memory structure adopted is based on Greeno's work [110] on 

problem solving and Shneiderman's model of programmer behaviour [121]. 

The structure consists of three components: short-term memory, 

long-term memory and working memory. The former stores information 

from the outside world to which the problem-solver pays attention but 

has a relatively limited capacity ( Miller [!24] suggests seven plus 

or minus two "“chunks"), although information from it is easily 

retrieved. The knowledge acquired through experience by the problem 

solver is permanent and resides in semantic form in the long-term 

memory, whose capacity is essentially unlimited and retrieval from 

which is systematic. The stored information is assumed to be 

hierarchically structured, as hypothesised by Lindsay and Norman 

{:2g, in terms of categories of concepts; these are organised in the 

form of a semantic network (i.e., a tree structure), in which each 

node represents a generic concept that is related to its sub-nodes by 

an "ISA" (i.e., is an instance of) relationship. The component termed 

as “working memory" (due to Feigenbaum [!2é]) is not a permanent store 

but has a greater capacity and longer retention time than short-term 

memory. Information from short-term and long-term memory can be 

integrated in this component to produce solutions during problem 

solving. 

Solution planning is viewed as goal generation, where a goal 
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structure defines the current state, the desired state and a set of 

possible strategies to transform the former into the latter. The 

mechanism for generating goals needs to be considered because goal 

elaboration in program design terms is equivalent to problem 

decomposition. Structured programming has no specific well-defined 

decomposition criteria, and therefore no systematic mechanism for goal 

generation can be defined. However, two distinct approaches can be 

hypothesised, which occur when the designer's primary focus of 

attention is on one of the two main ingredients of the descriptions of 

most programming problems, namely: either the data (it should be noted 

here that the term "data" in this context is intended to include both 

input and output) specification or the processing requirements. The 

two approaches can be respectively termed as "data-driven" and 

"“requirements-driven". In addition, it is hypothesised that goal 

generation can be characterised by cognitive processes that are a 

function of an "availability heuristic". The rationale for this 

characterisation is influenced by Pollard's application [!27] of 

Tversky and Kahneman's theory of nonrational intuitive judgement to 

logical reasoning tasks [12%]. This theory proposes that a subject's 

judgements are mediated by an availability heuristic. Pollard 

suggests that this heuristic is responsible for two different types of 

availability effects, one being the availability derived from the 

subject's experience and the other from the salient characteristics of 

the stimulus. Both types have an essential common feature: they 

directly "cue" the subject's response. Thus the response is a 

function of this cueing and is not based on a rational reasoning 

process. 

The implications of interpreting availability theory in context 

of solution planning is that goal generation is not necessarily based 

on rational reasoning but is a function of two possible sources that 
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are responsible for cue availability. Hence, two different types cE 

activations are hypothesised, termed as "stimulus" and "knowledge" 

activation, occurring when planning is steered by specific 

characteristics of the stimulus and the knowledge structures of the 

problem solver respectively. This characterisation of designer 

behaviour implies that human-centered factors in program design (e.g., 

the level of difficulty) are not simply attributes of the task alone 

but are also related to problem solver knowledge. Furthermore, such a 

characterisation attempts to view program design as an accquired 

skill, and in so doing, takes note of Sheil's critique [52] that 

“programming is clearly a learned skill, and, therefore, what is easy 

or difficult is much more a function of what skills an individual has 

learned than any inherent quality of the task". 

The application of two different types of problem decomposition 

strategy are proposed, being based on what Greeno [110] refers to as 

“reproductive thinking" and "productive thinking". The former is 

essentially a retrieval process, occuring when the subject understands 

the problem being solved, remembers the strategy for solving it and 

then transfers it in an integrated form from long-term memory to 

working memory. In contrast, the latter is a reconstruction precede 

that takes place when the problem-solver does not have an existing 

strategy for solving the problem. In such a case, the task becomes 

one of constructing a solution plan by transforming existing 

strategies. An illustrative example from Greeno's discussion is 

Wertheimer's area-of-a-parallelogram problem, where knowing the 

formula for the area involves a simple retrieval of a strategy, and 

therefore is reproductive, whereas realising that a parallelogram can 

be transformed to a rectangle is productive. 

The input to the model is the problem specification (the 

stimulus), which is hypothesised to be a function of the cues 
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(primitive or abstract) in the problem wording. In particular, a 

distinction is made between cues that stem from the data content and 

processing requirements of the specification. Both are assumed to be 

possible sources of cues, given that subjects trained in structured 

programming should have been taught to pay attention to data 

specification as well as processing requirements as a basis for 

coleten structuring. 

The output from the model (the solution sequence) is hypothesised 

to be the stages of program development performed by subjects. For a 

particular model, as Card et. al [129] point out, the "grain of 

analysis" (i.e., the level of detail) is defined by the operators 

used. The operators in this model are simply the strategies that 

transform one state to another state. However, in order to provide a 

more detailed description of designer behaviour, the approach adopted 

in documenting the output when applying the model to a given problem 

is that strategies are described informally and the states of the 

model, which correspond to program development stages, are 

characterised in algorithmic form. Thus, an operational overview of 

the model is: 

(i) The process of problem understanding yields a description of 

the problem-to-be-solved which enters the short-term memory; 

(ii) The available cues in this description are the primary 

sources for activating cognitive processes that generate 

goals in the working memory; these goals are then elaborated; 

(iii) Each problem refinement is recorded. 

The implications of advancing a model involving stimulus and/or 

knowledge activated goal generation processes based on availabilty 

theory are that problem decomposition strategies need to be 

hypothesised. Furthermore, hypotheses regarding preference for, and 

effort associated with, these strategies and contributory factors 
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affecting goal generation can then be formulated. The next section 

considers these hypotheses and provides empirical evidence that is 

consistent with the proposed model. 

4.3 Problem Decomposition Behaviour 

4.3.1 Strategies 

Top-down exposition of a design cannot be regarded as proof of 

program development in a step-wise manner. Indeed, Wirth [130], in 

relation to his step-wise refinement method, is quite explicit: " 1 

should like to stress that we should not be led to infer that program 

development proceeds in such a well organised, straightforward, 

top-down manner". The implied premise, which will act as a 

starting-point for postulating various strategies, is that programs 

are not necessarily developed using this idealised way of thinking. 

This view is supported by arguments resulting from the application of 

the proposed model to the signal and line-edit problems. These 

arguments detail the goals, knowledge and/or stimulus activated 

processes or other mechanisms for goal generation, and problem 

decomposition strategies associated with such goals. A partial record 

is thus provided of the "chain of thought" that a typical subject 

might undertake in the initial stages of problem decomposition. 

First, let us suppose for the signal problem a data-driven 

approach where the processing requirements initially are a secondary 

consideration. In this case, the goal generation process is both 

stimulus and knowledge activated. This is because availability is 

derived from the presence of the prevailing signal stream emphasis in 

the data specification as well as from the subjects' familiarity with 

PAGE 106



the strategy associated with a hypothesised goal, broadly described 

as: ‘process a repetition of two different types of signal’. The 

representations of this goal structure and the relevant portion of the 

problem description are transferred into the working memory. These 

representations are then processed by the application of a general 

hypothesised data-driven strategy that is assumed to be reproductive 

(i.e., part of the knowledge set of the problem solver) and is 

characterised as: ‘Process Next Item' (PNI). The transferred problem 

description, views an "item" in its most trivial form i.e., as either 

(1 or 2) signal. The application of the strategy results in a problem 

refinement that corresponds to an sl-type solution and is of the form: 

read (signal); 

WHILE signal # 0 

DO 

IF signal = 1 

THEN 

process a l-signal 

ELSE 

process a 2-signal 

FI; 

read (signal) 

oD 

Alternatively, consider a requirements-driven approach. A 

hypothesised goal of: ‘accumulate counts for vehicle and timing 

signals', derives its availability from the first two processing 

requirements. Furthermore, if it is assumed that the goal is one with 

which the subject is familiar, then, the process generating it is both 

stimulus, and knowledge activated. Transference of the appropriate 

part of the problem description and the goal into the working memory 

is followed by the application of a hypothesised general 
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requirements-driven strategy termed as ‘incremental design' (ID); its 

somewhat bottom-up character can be encapsulated informally by the 

phrase: "do what you can and make the rest fit around it". The 

resulting component is : 

IF signal =1 

THEN 

increment vehicle count 

ELSE 

increment survey length 

FI 

Preservation of this component in the subsequent steps produces an 

sl-type solution. 

Naturally, a deeper analysis of the signal problem (i.e., one 

that is not based simply on the readily available cues) is needed to 

generate goals that would elaborate to an s2-type solution. This 

involves either : 

- perceiving appropriately chunked items which will result in 

the generation of the abstract goal: 'process a repetition of 

two types of item', where one of these is itself a subsequence; 

- or recognising subgoals which reside at a higher level 

in the problem structure and therefore require a certain 

amount of refinement themselves, which in the signal problem, 

context relates to determining the length of a waiting period. 

Thus, in developing an s2-type decomposition, the problem-solver 

realises the advantage gained from including of a "subsequence of 2 

signals" component, as these chunks relate directly to satisfying the 

requirement of determining 'the length of the longest waiting period’. 

The resulting component is: 

WHILE signal = 2 

DO 
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process signal; 

read (signal) 

OD; 

For the line-edit problem, the three possibile cues in a 

data-driven approach are character, word and line. However, since 

neither be the three cues is strongly emphasised in the problem 

wording, it is considered unlikely that these cues will be the major 

source of the availability effects. Similarly, in a 

requirements-driven approach, none of the requirements appear to 

contain explicit features that could be a major source of availability 

effects. Hence, for both approaches it is conjectured that 

goal-generating processes are both stimulus, and knowledge, activated. 

An L2-type solution results from a data-driven approach in which 

a hypothesised goal of the form: ‘process a repetition of two 

different types of characters' is both stimulus and knowlegde 

activated; this is because availability is derived partially from the 

presence of a character emphasis in the problem wording and also 

partially from problem-solver familiarity with the hypothesised goal. 

The general strategy associated with such a goal is the reproductive 

PNI strategy. The transference of this strategy with a description of 

the appropriate portion of the problem into the working memory is 

processed to yield a decomposition corresponding to an L2-type 

solution of the form: 

read (char); 

WHILE char # '"*" 

DO 

IE char = space 

THEN 

process space 

ELSE 
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process a non-space char 

FL 

read (char); 

oD 

To arrive at an Ll-type solution from a data-driven approach 

involves hypothesising a goal of the form: ‘process lines of 

characters'. The generation of such a goal is considered unlikely for 

two reasons. First, availabilty effects would have to originate from 

a not particulary pronounced line-item emphasis in the problem 

wording. Second, for goal generation to be knowledge-activated would 

involve assuming that subjects were familiar with a strategy for 

processing a repetition of items (i.e lines) where the item is itself 

a subsequence. However, since the results of the first observational 

experiment in the signal eculy) indicate a paucity of solutions based 
oO 

on subsequences, the validity,the latter assumption is questionable. 

In a requirements-driven approach, the second requirement, namely, 'no 

line will contain more than m characters and each line will be filled 

as far as possible', is stimulus activated. This requirement is also 

knowledge-activated because the hypothesised goal of: 'fill a line of 

m characters', which satisfies the requirement, is one for which it is 

reasonable to assume that the problem solver will be familiar with a 

program component of the form: 

WHILE not m characters 

DO 

process a character; 

read (char) 

op’ 

An L3-decomposition type requires a goal of the form: 

‘repeatedly, build a word and then process it’. The presence of ‘word’ 

in the data description is not sufficiently emphasised to act as an 
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an available cue and neither of the three processing requirements are 

possible sources of availability effects; therefore, it is considered 

unlikely that the goal is generated from these effects alone. One 

possible explanation is that the problem solver may have generated 

goals of the form: 'repeatedly build a word' and ‘repeatedly process a 

word' which derive their availabilty from a combination of the 

stimulus and the subject being familiar with a "process next word" 

(i.e., PNI-type) strategy; then, in a piece-meal manner reminiscent of 

ID, the subject combines the goals to form the required problem 

decomposition. An alternative explanation is that the subject, 

through a logical reasoning process, perceives the chunking of words, 

recognises the necessity for appropriate abstract goals, i.e., ‘build 

a word' and 'process a word', and uses a productive strategy to 

combine them to produce an L3-type decomposition. 

The two problem decomposition strategies hypothesised are assumed 

to be of general applicability. The PNI strategy, which is strongly 

associated with a data-driven approach, bears some similarity to Hoc's 

[131] findings that strategies for program construction are influenced 

by the role of "mental execution of the program": it is reasonable to 

assume that the most likey self-elaboration of the task is that 

subjects would visualise, having contemplated the data, would be to 

deal with the list an item at a time. Also, Hoc's ideas of 

“strategies of progressive generalisation of a sequential procedure" 

and "mechanisms of adapting known procedures to computer operation" 

[ibid] provides an alternative perspective to the role ID plays in a 

requirements-driven approach. 

4.3.2 Related Factors 

From the strategies discussion on the signal problem, it was 
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observed that there are strong availability effects in both data, and 

requirements driven approaches; moreover, these effects both reinforce 

the generation of goals whose elaboration leads to an sl-type 

decomposition. Therefore, for the signal problem, a strong preference 

for sl-type solutions can be predicted, as was confirmed by the 

observed bias for sl-type solutions, in experiment 1 of the signal 

study. However, for the line-edit problem the strength of 

availability effects are not mutually aligned towards one particular 

goal, but are in fact responsible, in differing strengths, for 

generating distinct goals that elaborate to the three different 

decomposition types. The model does not predict the relative 

frequencies of the three decomposition types, because of the 

difficulty in quantitatively assessing availability effects. It does 

however suggest that all three types will be present with relatively 

significant frequencies. The frequencies corresponding to Ll, L2 and 

L3 decomposition types obtained in the first experiment of the 

line-edit study are in accordance with this prediction. 

An alternative view of problem solving behaviour presented by 

postulating availability effects is, that subjects are not conciously 

inclined to seek other possible decompositions but instead adopt a 

route of "least initial resistance". The word "initial" is important 

here since the ease with which a first-level decomposition is 

accomplished is likely not to be related to the ease of its subsequent 

elaboration. Such an interpretation means that decompositions 

produced by goals that result from availability effects rather than a 

logical reasoning process are easier to comprehend, although not 

necessarily easier to elaborate. In case of the signal problem, since 

all the availability effects are in mutual alignment for an sl-type 

decomposition, this means that the latter will be significantly easier 

to perceive. The result of the controlled experiment in the signal 
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study strongly supports this prediction. 

The general implication of the above is that goals generated on 

the basis of availability will be based primarily upon simplistic, 

rather than abstract perceptions and that the former will occur with 

greater frequency, as was observed in two of the experiments. In the 

first experiment of the signal study, the bias towards an sl-type 

solution can be re-interpreted as a strong preference for solutions 

for a decomposition based ona primitive perception. Similarly, in 

the first experiment of the line-edit study, comparison of frequencies 

of solutions based on abstract and primitive perceptions revealed a 

significant preference for the latter. Conversely, solutions based on 

abstract perceptions are inherently harder to perceive because they 

are more likely to be the product of a logical reasoning process 

rather than being triggered by availability effects. 

A relevant consideration at this point is the distinction between 

novice, expert and experienced subjects. The ability to handle 

abstractions .has been identified as one major attribute of experts 

that distinguishes them from novices [132]. Therefore it may be 

argued that the results obtained simply reflect that subjects were 

novices at structured programming who had had insufficient time to 

develop the abstraction capabilities that characterise an expert. 

Whether the second and third year undergraduates who took part in the 

experiments were still novices is a matter of debate. Similarly, 

whether any of the participants were experts is something that is 

difficult to establish. It is, however, considered that gaining 

experience involves applying acquired techniques over a prolonged 

period, but this does not necessarily develop skills of any particular 

kind. Indeed, the results of the first experiment of the signal 

study, where the range of experience of subject groups was the most 

diverse, revealed that neither the failures nor the few s2-type 
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solutions produced were monopolised by any one particular group in the 

population. Therefore, it can be argued that the degree to which 

abstractions become revealed to subjects during problem decomposition 

is largely due to other contributory factors to which consideration is 

now given. 

4.3.3 Further Contributory Factors 

One of the factors responsible for goal generation is subject 

experience. In fact, as predicted by the model and as the 

experimental evidence indicates, subjects whose background could be 

characterised as experienced in only a broadly "structured approach” 

are inclined towards simplistic data, or requirements, driven 

reasoning. The generalised converse of this is that abstraction 

skills are likely to be more developed in subjects taught structured 

programming which incorporates more specific decomposition criteria 

(of whatever kind) where perception of abstractions receives greater 

emphasis. The third experiment in the signal study, in which the aim 

was to investigate the effect of training on problem decomposition, 

attempted to make abstract perceptions act as response cues, this 

being achieved by training subjects to look for logical abstractions 

in data and therefore enabling cues to derive their availability from 

subjects’ training. The experimental results indicate an increased 

proportion of solutions based on abstract perceptions and therefore 

lends support to the view that training in the application of more 

specific criteria for decomposition can lead to an improvement in 

abstraction skills. 

As already noted another factor which may influence decomposition 

strategy is the problem specification itself. The presence of certain 

key-words and phrases, the ordering of constituent parts, or other 
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textual features, may cause attention to be focused on a particular 

problem component, thereby triggering off some decomposition pathway. 

For example, primitive features in the description of the signal 

problem, namely, the signal stream and the first two processing 

requirements, could both act as available cues and therefore promote 

simplietic reasoning. In the line-edit problem, however, the presence 

of "words" in the data specification is considered to be in some part 

responsible for abstract goal generation. Observational evidence 

supporting the view (and its converse) that primitive features are 

responsible for primitive decompositions can be obtained by comparison 

of the proportions of simplistic-to-abstract-based decompositions in 

the first experiments of both studies. 

The model's prediction that changes in problem wording will imply 

a change in availibilty effects is supported from the results of the 

third experiment of the line-edit study where certain primitive and 

abstract problem specification features were manipulated to produce an 

increased number of abstract decomposition types. The four problem 

specifications corresponding to the four experimental treatments were: 

- problem I contained two cues responsibile for availability 

effects that produce primitive decomposition; 

- problems II and III contained cues responsible for availability 

effects that yield both primitive and abstract decompositions; 

- problem IV contained two cues responsible for availability 

effects that result in abstract decomposition. 

The experimental results revealed the predicted increase in abstract 

decompositions. In addition, a more specific hypothesis testing the 

implied trend in the above treatments was also verified. Furthermore, 

the results also revealed a greater proportion of abstract 

decompositions for solutions based on the third treatment than for 

those based on the second. Since the former treatment corresponds to 
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emphasising abstract features pertaining to processing requirements 

rather than data, it would appear that the role of emphasing such 

requirements has a greater influence than that of the data 

specification. A possible explanation for this result is that the 

training subjects received, places greater emphasis on functional 

Mecommo si cion tTather than inspection of data structure. 

The precise effects of previous training and problem description 

in any given circumstance will depend on the individual 

characteristics of subjects and the specification with which they are 

confronted. As both effects were aligned in the signal problem - the 

latter effect magnifying elementary problem components, the former 

providing no positive compensation - the result was a bias towards a 

simplistic solution, whereas in the line-edit problem the data 

description provided only a partial positive compensation. Therefore, 

it can be concluded that these factors can in general mitigate against 

a wholly top-down approach being employed. Indeed, for problem 

decomposition to be performed in a top-down manner requires the 

designer having a set of decomposition rules rather than merely being 

cued in a possibily non-rational manner to some "least-resistance"” 

decomposition pathway. This lends cre dence to the original assertion 

that problem decomposition is often carried out in a somewhat 

disorganised, piece-meal, bottom-up manner. 

4. 4 Elaboration of Decomposition Paradigms 

To yield further understanding of program designer behaviour, 

attention is now focused on the frequencies and nature of errors made 

in the elaboration of a decomposition to a completed solution. An 

explanatory framework based on the notion of generic concepts, as 

described in the model, is presented to provide reasons for the 
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occurrence of errors. Moreover, a relationship between decomposition 

quality and and error frequen cy is noted. 

The elaboration of either decomposition of the signal problem is 

essentially the fulfillment of a goal that satisfies the third 

requirement, namely: "find the largest accumulated waiting period". 

The strategy associated with this goal, hypothesised to involve a 

productive reasoning process, can be visualised as categorising 

components into .appropriate "clusters" and allocating these clusters 

to the existing decomposition structure. 

For the s2-type, clustering of components and their allocation to 

process structures is hypothesised to be relatively error free. The 

rationale for this view is that the three actions ‘increment waiting 

period', ‘reset wait' and ‘check for longest waiting period’, and the 

process component to which these actions are allocated, namely 

‘process timing signal', all belong to the same generic category, 

namely 'time'. Therefore, clustering of these components is simply 

performed through generic grouping (the basis upon which storage and 

retrieval of information takes place within the model). The 

observational evidence from the first experiment in the signal study 

supports the above view because only a small percentage of s2-type 

solutions contained errors associated with the placement of the 

actions required to satisfy the third requirement. Note that, from a 

design evaluation perspective, the abstraction level corresponding to 

the component ‘process waiting period' is precisely the cluster of 

actions associated with the generic category ‘time’. 

In the case of an sl-type decomposition, for the problem solver 

to arrive at a correct solution, the hypothesised productive reasoning 

process involves recategorising the cluster of three components 

differently from that based on generic categories. The process is 

predictably, therefore, relatively error prone. Supporting evidence 
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for this hypothesis is based on the first experiment of the signal 

study; in nearly all subjects' solutions, the component ‘final check 

for the longest waiting period' was absent, and of those that 

attempted satisfying the third requirement, approximately half the 

solutions contained errors associated with the components ‘reset 

waiting period' and/or ‘check for Toneeet, waiting period'. The 

explanation for the first mistake is that a subject's focus of 

attention is on the refinement of the characteristic process-pair 

(i.e., retrieving the necessary knowledge structures needed to satisfy 

the third requirement, transforming them into program components and 

deciding upon their placement) and therefore becomes, as Rumelhart 

[133] terms, "sensitive to the local context". In so doing, the 

designer “loses sight of" (i.e., no longer retains in the working 

memory) the overall design structure, which is necessary to arrive at 

a correct placement of the action in question because it forms part of 

the initial level of refinement. Similar programmer behaviour during 

which subjects "lose sight of the overall view of the procedure" has 

been reported by Hoc [111]. In relation to the last two mistakes, it 

was noticable that components associated with the generic category 

'time', that form part of 'process vehicle signal’, were placed within 

‘process timing signal’. Although it is difficult to explain the 

exact reason for choosing this placement, the influence of wanting to 

retain things with the generic category to which they belong cannot be 

ignored. It is also worth noting that the solution features with 

which errors were associated correspond to actions whose placement, in 

a correct solution, contribute to the solution's poor modularity. 

Further evidence which substantiates the proposition that the 

elaboration process for primitive perceptions is more error-prone than 

that for abstract perceptions is the error frequencies for Ll, L2 and 

L3-type solutions from experiment 1 of the line-edit study; these 
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frequencies were respectively 75%, 45% and 30%. Moreover, the highest 

error frequencies were associated with those solution features which 

contributed to a solution's poor modularity measure. 

From the above discussion, particularly the description of the 

elaboration of sl-type and s2-type decompositions, it would appear 

that the elaboration of poor quality decompositions is not only 

relatively more error prone but also requires greater effort. The 

reason for the latter is that in elaborating a poor quality 

decomposition correctly, additional effort is required to either 

recategorise actions in an unobvious manner or introduce conditions 

whose need was not apparent in the initial decomposition. Therefore, 

on this basis, it can be hypothesised that high-quality decompositions 

are easier to elaborate than low quality ones. 

The results of the second experiment in the line-edit study, 

which revealed that different decompositions require differing amounts 

of effort, supports the hypothesis which relates effort to 

decomposition quality. Furthermore, comparisons of effort required to 

elaborate poor quality decompositions (Ll and L2 types) with one of 

good quality (the L3-type) also provide partial support for the 

hypothesis because they indicate significant differences between Ll 

and L3 but not between L2 and L3. The factors responsible for these 

differences cannot be explained by availabilty effects, although the 

previously mentioned relationship between effort and the quality of 

the decompositions provides one possible source of explanation. The 

exact reason for there not being a significant difference, as would be 

predicted, in the effort required between L2 and L3 types is difficult 

to establish, but a possible cause is the inaccuracy in measuring 

"effort". Two possible sources of this inaccuracy are: first, the 

difficulty in relating two factors, where one factor is assessed 

qualitatively Che@xy. categories) and the other is assessed 
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quantitatively (i.e.,time); second, the validity of assuming that the 

effort required in perceiving different decomposition types is 

approximately the same. 
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5. Conclusion 

Initially, the broad aim of the research was to investigate 

whether structured programming is a completely effective design 

technique. Therefore, the original motivation for conducting 

experiments was simply to gather empirical evidence that would 

validate or refute hypotheses concerning this design technique. One 

conclusion from the pilot study was that both theory and application 

of structured programming are still problematic areas, because 

analysis of subjects' attempts at solving a reasonably simple 

programming problem, in what was judged to be an adequate time to 

complete the task, yielded relatively high percentages of incorrect 

and incomplete solutions. This conclusion supports the doubts raised 

in the background review as to whether structured programming really 

is entirely sufficient for the production of high quality, correct 

programs. Moreover, such doubts are shared by many others; Green for 

example questions "the wisdom of propounding it [the principle of 

divide and rule] as the single vital principle that allows a program 

to be produced mechanically and errorlessly" [57]. The pilot study's 

confirmatory evidence concerning the sufficiency of structured 

programming led to the formulation of the more specific objective of 

developing a better understanding of how program design actually is 

performed, so that ultimately advice might then be given as to how it 

should be taught and practiced. 

The specific line of attack chosen was to investigate the nature 

of problem decomposition strategies and certain factors related and 

contributory to those strategies. The results of the two experimental 

studies conducted revealed that decompositions based on simplistic, as 

opposed to abstract, perceptions of problem structure were: 

significantly more frequent in subjects attempts, required 
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to complete 

considerably less effort to perceive but relatively more effort, and 

produced solutions that contained a greater proportion of errors. 

More importantly, the experimental work provided significant insight 

into the various decomposition strategies that are employed by 

subjects -who have been taught, and in principle, practice top-down 

structured programming. A model of program designer behaviour was 

then devised in the light of this insight gained, which would provide 

an explanatory framework for interpreting the experimental results. 

The model views program design as a problem-solving task where 

solution planning is regarded as a goal generation activity. The 

fulfillment of a goal yields some particular (partial) decomposition 

of the problem, possibly accompanied by "tying loose ends together," 

i.e., fitting collections of program segments piece by piece into a 

(partially) developed program structure. The view that program design 

is actually performed in an idealised top-down manner is rejected in 

favour of the alternative view that such aspects as problem 

specification, subject familiarity with component parts and the level 

of abstraction skills developed in previous training, are major 

contributory factors responsible for the strategies by which problem 

decomposition is effected. The model (in conjunction with 

assumptions regarding generalised knowledge structures and problem 

decomposition strategies possessed by subjects), when applied to the 

signal and line-edit problems, yields a description plausibly 

corresponding to a subject's chain of thought. The experimental 

results are then interpreted within the behavioural framework provided 

by this description. 

However, the degree to which the model adequately reflects the 

behaviour of a typical participant of the experiments is to some 

extent a matter of debate. Whilst, for example, the findings suggest 

that the two contributory factors advanced certainly play an 
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influencing role in problem decomposition, it would be somewhat 

short-sighted to propose that they are solely responsible for 

"shaping" this complex task. Nevertheless, the model provides a 

richer description, and perhaps captures more of the flavour, of how 

program design might proceed than the traditional top-down exposition. 

Although the research findings have certainly yielded answers to 

some of the questions posed, it is a characteristic tendency of an 

empirical investigation that further issues are then raised; these 

issues generate more hypotheses that hopefully prove easier to test 

than in preceding stages of an investigation. In particular, 

attention needs to be given to whether subjects' approaches are 

broadly data and/or requirements driven and what role is played by the 

strategies of PNI and ID respectively in these approaches. In order 

to provide a more detailed description of program designer behaviour, 

a further possible direction for future research is the use of video 

and/or verbal "protocols" to obtain more detailed behavioural 

evidence which can then be represented using production systems that 

model human cognition [134]. 

In relation to methodological issues, the following points are 

noted. First, the extent to which these findings are applicable to 

experts is difficult to establish. Although attempts made to enlist 

groups of presumed experts for this research were unsuccessful, a 

comparison of these findings with those involving experts would be a 

useful augmentation to this work. Second, whilst the materials used, 

(e.g., programming tasks, process structure cues), the method of 

analysing solutions used (e.g., process structure hierarchies) and the 

measures employed (e.g., completion time as a measure of effort) have 

been reasonably successful in eliciting experimental results, 

nevertheless, replication of their use in further program design 

experiments would provide valuable evidence as to their effectiveness 

PAGE 123



in this area. In particular, the problems encountered in trying to 

determine effort required to perceive and elaborate decompositions, 

using process structure cues and completion times, merit further 

investigation. 

As already noted, the two generalised rudimentary forms of 

data-driven and requirements-driven strategies that have been 

proposed, when applied to the problems used in the experiments, lead 

to inferior solutions. A natural induction is that this might be the 

case for the majority of problems. This gives rise to a certain 

amount of concern since the experimental evidence indicates a 

preference eae such strategies (apparently irrespective of background, 

training, experience etc.). If that is the case, it is important to 

minimise the effect of any factor that promotes usage of these 

strategies and their possibile entrenchment in a person's general 

approach to program construction. One possible way of achieving this 

amelioration is by providing of training in more "directed" forms of 

structured programming that concentrates on the development of 

abstraction skills by providing "concrete" models on which 

decompositions can be based. This training would, hopefully, advance 

subjects' general design know-how and therefore possibly also help to 

counteract any tendency to adopt - without further analysis - an 

inferior strategy implicitly suggested by aspects of problem 

presentation, for example. 

Finally, in relation to the initial aim of assessing the 

effectiveness of step-wise refinement as a problem decomposition 

strategy, the conclusion is that in structured programmming, the 

importance of the rule of Descartes: 

“Divide each problem that you examine into as many 
parts as you need, to solve them more easily." 

Rene Descartes, Oeuveres, vol. VI, 

Discours de la Methode, Part II 
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has been appreciated, but the warning of Leibnitz: 

“This rule of Descartes is of little use, as long 
as the art of dividing ... remains unexplained. 
By dividing his problem into unsuitable parts, 
the unexperienced problem solver may increase 

his difficulty." 

Gottfried von Leibnitz 
Philosophiche Schriften, vol. VI 

remains unheeded. 
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Appendix 1.1 The Signal Problem 

A traffic survey is conducted automatically by placing a detector 

at the road side connected by data-links to a computer. Whenever a 

vehicle passes the detector, it transmits a signal consisting of the 

the number 1. A clock in the detector is started at the beginning of 

the survey, and at one second intervals thereafter it transmits a 

signal consisting of the number 2. At the end of the survey the 

detector transmits a0. Each signal is received by the computer as a 

single number (i.e. it is impossible for two signals to arrive at the 

same time). Design a program which reads such a set of signals and 

outputs the following: 

(a) the length of the survey period; 

(b) the number of vehicles recorded; 

(c) the length of the longest waiting period without a vehicle. 

PAGE 127



Appendix 1.2 sl-type Decomposition 

Psignal 
data 

Pinitial Pdata Pfinal 
body 

Psignal 

Pvehicle Ptiming 
signal signal 
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Appendix 1.3 Complete Solution (sl-type) 

num of vehicles := 0; length of survey := 0; waiting period := 03; 

longest waiting period := 0; 

read(signal); 

WHILE signal # 0 

Do 

IF signal = 1 

THEN 

(*process a vehicle signal*) 

num of vehicles := num of vehicles + 1; 

IF waiting period > longest waiting period 

THEN longest waiting period := waiting period 

FI; 

waiting period := 0 

‘ELSE 

(*process a timing signal*) 

waiting period := waiting period + 1; 

length of survey := length of survey + 1 

ELS 

read(signal) 

OD; 

IF waiting period > longest waiting period 

THEN longest waiting period := waiting period 

FI 

print(length of survey, num of vehicles, longest waiting period) 

PAGE 129



Appendix 1.4 s2-type Decomposition 

Psignal 
data 

Pinitial Pdata Pfinal 
body 

Pperiod 

° ° 

Pvehicle Pwaiting 
period period 
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Appendix 1.5 Complete Solution (s2-type) 

num of vehicles := 0; length of survey := 0; 

longest waiting period := 0; 

read(signal); 

WHILE signal # 0 

IF signal = 1 

DO 

THEN 

ELSE 

2a 

OD; 

(*process a vehicle*) 

num of vehicles := num of vehicles + 1; 

read(signal) 

(*process a waiting period*) 

waiting period := 0; 

WHILE signal = 2 

DO 

length of survey := length of survey + 1; 

waiting period := waiting period + 1; 

read(signal) 

OD; 

IF waiting period > longest waiting period 

THEN longest waiting period := waiting period 

FL 

print(length of survey, num of vehicles, longest waiting period) 
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Appendix 2.1 Skeletal program structure cue for sl-type solution 

WHILE. .:. . . . signal f# 0 
Do 

IF signal = 1 
THEN 

oD 
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Appendix 2.2 Skeletal program structure cue for s2-type solution 

WHILE . » » « « signal $0 
DO . 

IF signal = 1 
THEN 

WHILE... . . signal = 2 

FI 
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Appendix 2.3 List of elementary actions 

read(signal) 

num of vehicles := 0 

length of survey := 0 

waiting period := 

longest waiting period := 0 

num of vehicles := num of vehicles + 1 

length of survey := length of survey + 1 

waiting period := waiting period + 1 

IF waiting period longest waiting period 
THEN longest waiting period := waiting period 

ai 

print(length of survey, num of vehicles, longest waiting period) 

(*) Strictly, this is not an "elementary" action; however, determining 

its location in the skeletal structure was considered to be an 

integral part of the design task. 
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Appendix 3.1 The Line-edit problem 

A piece of text consisting of words separated by one or more space 

characters is terminated by an *. 

It is required to convert it to line by line form in accordance 

with the following Tules: 

(a) Redundant spaces between words are to be removed; 

(b) No line will contain more than m characters and 

each line is filled as far as possible; 

(c) Line-breaks must not occur in the middle of a word. 

(You may ignore the presence of line-feed characters and the 

possibility of a word being greater than m characters). 

Design a program to read the text and output it in accordance with the 

above rules. 
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Appendix 3.2  Ll-type Decomposition 

Ptext 

Pstart Ptext Pend of 
of text body text. 

* 

Pline 

Pbuild Padjust a line 
a line then output 
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Appendix 3.3 Ll-type Solution 

line := empty; 

line size := 0; 

prev char = space; 

read (char); 
WHILE . . . . char # "*" 
DO 

WHILE . . . . (line size< m) AND (char # "*"") 

DO (loop to build a line of m chars 

4 with redundant spaces removed*) 

IF (char # space) OR (prev char # space) 
THEN 

line := line + char; 
& (*add non-redundant space or character*) 

line size := line size + 1 

FI; 

prev char := char; 

read (char) 

OD; 

IF (char = space) OR (char = '*") 

THEN 

print (line); 

print (newline); 
line size := 0; line := empty 

ELSE (*process line with a possible 
remove partial word (part word, word size); break in the 

middle of a word*) 
print (line); print (newline); 
line := part word; line size := word size 

FI; 
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Appendix 3.4 L2-type Decomposition 

Ptext 

Pstart Ptext Pend of 
of text body text 

Pcharacter 

° ° 
Pspace Pnon-space 

character 
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Appendix 3.5 L2-type Solution 

line size 0; 

word size := 03; 

word := empty; 

read (char); 

  

  

WHILE 9. 7.02 9.) char foe" 
DO 

IF char = space 
THEN 

IF word size 7 0 (mot a redundant space*) 

THEN 

(*output a word on, current or new, line*) 
IF line size + word sized m 
THEN 

print (space); 
line size := line size + 1 

ELSE 

print (newline); 
line size := 0 

FI; 

print (word); line size := line size + word; 
word := empty; word size := 0   

FI 

ELSE (*build a word*) 
word := word + char; 

word size := word size + 1 

FI; 

tread (char) 

oD 
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Appendix 3.6 L3-type Decomposition 

Ptext 

Pstart Ptext Pend of 
of text body text 

Pword 

Pbuild a Poutput 
word a word 
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Appendix 3.7 L3-type Solution 

line size := 0; 

read (char); 

WHILE s\oomea oevchar purer 
DO 

WHILE + « « « Char = space DO read (char) OD; 

word size := 0; word := empty; 

WHILE . . . . char # space AND char f# "*" 
DO 

word := word + char; 
word size := word size + 1; (*build a word*) 

read (char) 

OD; 

(*output a word on current, or new, line*) 

IF line size + wordsize< m 
THEN 

print (space); 
line size := line size + 1 

ELSE 

print (newline); 
line size := 03 

ELs 

print (word); 
line size := line size + word size 

OD 
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Appendix 4.1 Process Structure Cue for Ll-type Decomposition 

WHILE edi omecmonan¢ sree 
DO 

WHILE . . . . (line size m) AND (char # "*"") 
DO (*#loop to build a line of m chars 

. with redundant spaces removed’) 

IF (char é space) OR (prev char Zf space) 

THEN 

. (*add non-redundant space or character*) 

FI 

IF (char = space) OR (char = 
THEN 

  

ELSE (*process line with possible break in the 

é middle of a word*) 
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Appendix 4.2 Action List for Ll-type Cue 

line size := 0 

line size := line size + 1 

line := line + char 

print (line) 

print (newline) 

read (char) 

prev char := char 

line := empty (*empty is the null string*) 

remove partial word (part word, word size) seceded 

line := part word 

line size := word size 

  

NOTE : “remove partial word" removes part of the word "part word" 

of size "word size" from the end of a line i.e., when there is a line 

break in the middle of a word. 
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Appendix 4.3 Process Structure Cue for L2-type decomposition 

WHILE) se) 6 Char tt 
DO 

IF-char = space 

THEN 

IF word size # 0 (not a redundant space*) 
THEN 

(*print a word on, current or new, line*) 
IF line size + word size <m 
THEN 

ELSE 

FL 

FL 

ELSE (*build a word*) 

FI 

oD 
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Appendix 4.4 Action list for 12 and 13 type solutions 

line size := 0 

word size := 0 

line size := line size + 1 

word size := word size + 1 

line Eee line size + word size 

word -:= word + char 

print (space) 

print (newline) 

print (word) 

read (char) 

word := empty (*empty is the null string*) 
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Appendix 4.5 Process Structure Cue for L3-type Decomposition 

WHILE 5 =~ . char f "*" 
DO 

WHILE a sere oo) Char = space DO _. 5, =... «80D (*remove 
spaces*) 

WHILE . . . . char # space AND char # '"*" 
DO 

(*build a word*) 

oD 

(*output a word on current, or new, line**) 
IF line size + wordsize< m 
THEN 

ELSE 
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Appendix 5.1 

(see appendix 1.1) 

Appendix 5.2 

A line of text consisting of words separated by one or more spaces 

terminated by an *. 

Design a program to input the text and output the following: 

(a) the number of non-space characters; 

(b) the number of spaces; 

(c) the length of the longest word. 
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Appendix 5.3 

A traffic survey is conducted automatically by placing a detector 

at the road side connected by data-links to a computer. Whenever a 

vehicle passes the detector, it transmits a signal consisting of the 

“the number 1. A clock in the detector is started at the beginning of 

the survey, and at one second intervals thereafter it transmits a 

signal consisting of the number 2. At the end of the survey the 

detector transmits a0. Each signal is received by the computer as a 

single number (i.e. it is impossible for two signals to arrive at the 

same time). Design a program which reads such a set of signals and 

outputs the length of the longest waiting period without a vehicle 
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Appendix 5.4 

A line of text consisting of words separated by one or more spaces is 

terminated by an *. 

Design a program to input the text and output the length of the 

longest word. 
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Appendix 6 : A typical solution containing errors for the 

signal problem, 

num of vehicles := 0; length of survey := 0; 

waiting period := 0; longest waiting period := 0; 

read(signal); 

WHILE signal # 0 

DO. 

IF signal = 1 

THEN 

(* process vehicle signal *) 

num of vehicles := num of vehicles + 1; 

waiting period := 0 

ELSE 

(* process timing signal *) 

waiting period := waiting period + 1; 

IF waiting period > longest waiting period 

THEN longest waiting period := waiting period 

FI; 

length of survey := length of survey + 1 

FI; 

read(signal) 

OD; 

The error frequency for above solution would be 2, since : 

(i) ‘check for longest waiting period’ has been placed 

within "process timing signal’ rather than 

"process vehicle signal' 

(ii) 'final check for longest waiting period' is absent 
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