
"An Empirical Investigation Into Problem Decomposition Strategies

Used In Program Design"

by

Jawed Iqbal Ahmed Siddiqi

A thesis submitted to the University of Aston in Birmingham

for the degree of

Doctor of Philosophy.

Department of Computer Science

October 1984

The University of Aston in Birmingham

An Empirical Investigation Into Problem Decomposition Strategies Used

In Program Design

by

Jawed Iqbal Ahmed Siddiqi

Summary

In this thesis, findings are presented of a research
investigation into general strategies for, and the effect of certain
factors relating to, problem decomposition used in program design.
The investigation involved two empirical studies, totalling six
separate experiments, in which subjects trained in the broad
principles of structured programming were asked to undertake various
program design tasks associated with particular programming problems,
solutions to which can be mapped through the use of "process structure
hierarchies' onto a small number of ‘process decomposition paradigms’.
Analysis of the results revealed that solutions based on primitive, as
opposed to abstract, perceptions of problem structure were strongly
preferred, initially easier to perceive though harder to complete and
were more error-prone. A model of program designer behaviour together
with generalised problem decomposition strategies are advanced, that
view program design as a problem-solving activity. These proposals
form an explanatory framework for interpreting the experimental
results, which are shown to be consistent with the proposals. In
particular, it is argued that aspects of problem presentation and
subject familiarity with component parts of a problem, are major
factors that influence problem decomposition, and were responsible for
the observed strong bias towards simplistic solutions. Additionally,
it is argued that such bias can also be caused by "perception
difficulty" allied to inadequacies in abstraction skills attributable
to previous training. The thesis concludes with a recommendation that
more specific, "“criteria-driven" forms of structured programming need
to be taught and practiced.

Keywords: structured programming, empirical investigation,
problem decomposition strategies, program design

A thesis submitted to the University of Aston in Birmingham in October
1984 for the degree of Doctor of Philosophy.

Acknowledgements

I would like to acknowledge the encouragement and supervision

given to me by Bryan Ratcliff throughout the entire project. I am

particularly grateful for his critical reading of my manuscripts,

because it assisted me in expressing many of the ideas in this work

with a greater degree of clarity and precision than would have been

otherwise possible.

I would also like to thank all the students who volunteered to be

experimental subjects.

The first three years of this reseach was funded by the Science

Research Council.

Chapter 1

Chapter 2

2.1

2.1.1

2.1.2

2.1.3

Chapter 3

Salt

3.2

3.3.3

3.4

3.4.1

3.4.2

3.4.3

3.5

Contents

~- Introduction

- Background Review

Issues In Program Design

Introduction

Early Contributions

Programming Methodologies

Recent Developments

Empirical Considerations

Introduction

Methodological Issues

Conclusion

- Report of Investigation

Experimental Context

Hypothesis Testing

Methodological Specifics

Choice of Subjects

Choice of Experimental Material

Choice of Metrics

The Signal Study

Experiment 1

Experiment 2

Experiment 3

The Line-Edit Study

Experiment 1

Experiment 2

PAGE

12

23

25

2

30

43

45

49

52

ae

54

St

61

61

65

67

69

70

72

3.5.3

Chapter 4

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.2

4.2.1

4.3

4.3.1

Chapter 5

Appendice:

Appendix

Appendix

Experiment 3

- Discussion

Problem Analysis and Design Evaluation

Introduction

The Signal Problem

The Line Edit Problem

Conclusion

Conceptual Model of Programmer

Designer Behaviour

Formulation of the model

Problem Decomposition Behaviour

Strategies

Related Factors

Further Contributory Factors

Elaboration of Decomposition Paradigms

- Conclusion

s

EY

1.2

is

1.4

1.5

2.1

2.2

74

79

a9

81

87

29

100

100

106

106

lll

114

116

121

126

127

128

129.

130

tt

132

133

2.3 134

Appendix 3.1 135

Be) 136

3.3 137

3.4 138

35 139

3.6 140

3.7 141

Appendix 4.1 142

4.2 143

4.3 144

4.4 145

4.5 146

Appendix 5.1 147

52 147

5.3 148

5.4 149

Appendix 6 149a

References 150

1. Introduction

In a society where considerable reliance is placed on computer

software systems, it is imperative to constantly improve software

construction methods and practitioner skills, so that ultimately we

are able to justify, and have confidence in, this reliance. The

motivation and perhaps the ultimate goal of this research is to

attempt to have a direct bearing on this continuing need for improved

software. However, the immediate aim to which this thesis addresses

itself, is to contribute to the field of software engineering by

improving our understanding of the program design process.

Whilst the overall direction of the research is closely allied

to Dijkstra's compelling desire to change the current state of

affairs, in -which most of the programs written are totally "unfit for

human appreciation" [1]; its particular line of attack is to undertake

and attempt to counteract Weinberg's tempting challenge that "Perhaps

programming is too complex a behaviour to be studied and must remain

largely a mysterious process" [2]. Specifically, the research

investigates the area of program design from a human-factors

viewpoint. This is in line with Dijkstra's work, which considers

programming as a purely human activity; as Weinberg himself states,

“programming is a form - a complex form - of human behaviour" [ibid].

Therefore, this investigation, in common with many that involve the

study of human behaviour, is empirical in nature. It employs the

established principle of such research known as the ‘scientific

method', which consists of conducting experiments to gather, evaluate

and interpret observational evidence.

A first major goal of the research was to analyse and synthesise

the separate fields of program design and empirical evaluation into a

coherent project. Chapter 2 of this dissertation provides a review of

PAGE 1

appropriate background material and concludes with a summary in which

four specific investigative research objectives are stated, these

representing the basis of a study of problem decomposition strategies

used in program design. Initially, the review surveys early

contributions to program design, the structured progamming revolution

and current programming methodologies. The survey ends with a

long-term perspective of the issues central to program design. An

overview of the rationale behind, and the mechanisms of, the

scientific method is then presented, together with the methodological

issues of experimental research into software engineering and the

reasons why a suitable experimental methodology is necessary. The

particular spectrum of investigations presented in this chapter is

chosen because it illustrates important aspects concerning

methodological issues central to programming experiments.

A further goal was to devise an experimental methodology, based

on established principles of the scientific method but tailored for

application to program design, that could be applied to each of the

experiments to be carried out. After detailing the context within

which experimentation was performed, chapter 3 describes this

methodology, and in particular, the experimental methods specifically

devised. These methods represent a contribution to techniques for

analysing the nature and effects of problem decomposition strategies

used in program design. They include the use of:

GD) hierarchical process structures for classifying programs;

(ii) algorithmic outlines as process structure cues in

controlled experiments;

(iii) error frequencies as indicators of possible relationships

between strategies and errors.

In total, six experiments are described. These experiments,

which formed two sets of studies, were performed over a period of 18

PAGE 2

months in academic environments, each set being associated with a

different programming problem. The subjects used in the experiments

were mainly computer science undergraduates, although in the very

first experiment pre-university and post-graduate students also took

part. Each experiment involved groups of subjects, all of whom had

been previously taught to program in a "structured manner",

undertaking various program design tasks. The problems chosen,

namely, the ‘signal problem' [3] and the ‘line editing problem’ [4]

are such that their various solutions can be mapped respectively onto

a small number of “process decomposition paradigms", corresponding to

different algorith mic structures.

The investigation involved the collection and statistical

analysis of data from both observational and comparative experiments,

the details of which are also described in chapter 3. Both types of

experiments employed non-parametric tests for two or more independent

samples, as a decision mechanism for statistical Eiguieiaance: The

observational experiments used measures of association as indicators

for further investigation, whereas the controlled experiments tested

causal relationships.

Chapter 4 details an informal step-wise refinement of the signal

and line-edit problems and considers a design evaluation of their

solutions, this being followed by the formulation of a model of

program designer behaviour in which goal generation is hypothesised to

be stimulus and knowledge activated. The application of the model to

the two problems used in the experiments provides a description of

presumed designer behaviour. Evidence consistent with the model

obtained from the experimental studies is presented, the significant

results of which are as follows. ;

Observations from an exploratory experiment in the set of

investigatigative studies associated with the signal problem led to

PAGE 3

proposals that subjects do not use an idealised "top-down" manner of

design. Moreover, two generalised forms of problem-solving strategy

were advanced, namely, ‘process next item' and ‘incremental design’.

The former strategy is data-driven, - that is, its application in

problem decomposition results in a program structure based upon some

particular perception of the data stream and how the latter should be

processed. In contrast, the latter strategy is requirements-driven -

that is, it focusses on identifying, and then fullfilling, those

processing requirements that are immediately attainable in developing

a solution.

A further conclusion is that there appeared to be a strong

tendency towards using strategies that produce solutions based on

primitive perceptions of problem structure. Confirmatory observations

were obtained from an experiment on the 'line-edit problem', in which

it was predicted that applying the above-mentioned strategies would

produce certain decompositions, the greater proportion of which would

be based on primitive, as opposed to, higher-level, more abstract,

perceptions. In addition, one implication of the result of the

exploratory experiment on the signal problem was that such

decompositions are easier to perceive; this was also confirmed via a

subsequent controlled experiment.

Consideration of possible factors affecting such strategies, and

why the ‘primitive pathway' is more obvious, gave rise to two

contributory factors being advanced: the nature of training received

and of problem wording. Eyfasncer ees gathered, firstly by comparing

results from two experiments investigating the effect of training.

These results supported the view that subjects trained in the broad

principles of structured programming possess less developed

abstraction skills than those trained in a form of structured

programming that incorporates decomposition criteria more specific

PAGE 4

than those associated with simple "top-down refinement". In addition,

an investigation into the effect of problem wording revealed that the

presence of certain aspects of problem presentation, had a marked

effect on decompositions produced.

Investigations concerning the effect of strategies on subjects'

performance as measured in terms of correctness achieved and effort

required, showed that solutions based on primitive perceptions, which

were of poor quality in modularity terms, contained a greater

proportion of errors. Moreover, it was observed that subjects' errors

were strongly associated with the placement of those program

components that contributed to the low degree of modularity.

The concluding chapter summarises the findings of the research

and considers their implications. In particular, a recommendation is

advanced that subjects should be trained in more "directed" forms of

structured programming where abstraction skills receive greater

emphasis. Some possible directions for future research are also

considered and it is proposed that the model and hypothesised

strategies constitute a framework for further experimentation into

this broad "from-specification-to-decomposition" area.

PAGE 5

2. Background Review

2.1 Issues In Program Design

2.1.1 Introduction

Expert practitioners have from time to time made numerous

recommendations concerning how program design should be performed.

However, little research has been carried out into how this process

actually is performed and whether or not their recommendations are

beneficial.

Two fundamental components appropriate to investigating program

design are the design activity itself and the program it generates.

Traditionally, a program is viewed as a series of instructions obeyed

by a machine. This definition places emphasis on control flow and

accords well with the obsolete method of using flowcharts for design

but does not reflect the modern practice of emphasising structure. To

do this, a more suitable definition of a program might be: "a

structured representation of a task to be performed in order to solve

a given problem, expressed (usually) in a procedural language". The

activity of designing therefore involves deriving such a structure.

Thus it is not suprising, that the use of hierarchical structuring to

manage complexity (the basis of most, if not all, modern design

methodologies) is in accordance with ideas forwarded in a number of

early works [e.g.,5,6,7] that investigated the way people handled

complexity.

However, before focussing attention on specific issues,

consideration needs to be given briefly to the developmental stages of

software production, of which design is an integral part. As this

research is concerned with program, rather than system design, the

PAGE 6

requirements analysis stage can be omitted. Hence, specification,

design and implementation will be considered to be the stages required

to engineer a program. Requirements specification produces in part a

precise prescription of the program function. From this specification

of "what" has to be achieved, design produces a specification of "how"

it will be achieved, or, as many authors have stated: a process of

transforming “the what into the how". Implementation involves

producing, installing and maintaining the final product. The

realisation of a program from a design specification involves coding

(translating the design description into the required source

language), testing (detecting errors in the program) and debugging

(removing errors detected by testing). As with other engineering

disciplines, software engineering is not a sequential, but rather a

cyclic, process. This is because each representation of the problem,

whether a specification, a design or a program, undergoes a process of

validation which may reveal possible flaws that need to be corrected

or resolved.

To fully appreciate the claimed benefits of ideas that have

transformed program design from a mystery surrounded by folklore to a

systematic discipline, it is instructive to start at its inception -

that is, at the advent of computers.

2.1.2 Early Contributions

The history of computers has witnessed not only a rapid increase

in the number of computer-based systems, but also an ever diversifying

range of applications in which they are used. The constructional

approach adopted for hardware was to build a "general-purpose" machine

capable of executing a series of instructions, whilst software was to

be "custom-designed" for each application. The obvious and most

PAGE 7

significant benefit for software production that accrued from this

separation was that the physical characteristics of the machine could

be ignored. However, because hardware design involved building

machines from physical components that had the specific task of

executing computational processes, standardised techniques were

developed and an "engineering" approach used. In contrast, software

design involved constructing programs from abstract components that

were required to carry out varied tasks; as a consequence, software

design remained very much a mysterious process.

This state-of-the-art in software production, coupled with the

dramatic growth in the size of software systems, led to observed,

sometimes large differences between what was hoped for and what was

actually achieved in the construction of those systems. There were

widely held views as to the seriousness or otherwise of the problem;

in retrospect, many have come to refer to it as the "software crisis".

Boehm [8] provides a quantitative assessment of the cost of dealing

with inadequate software, giving examples of software-hardware cost

ratios ranging from 8:1 to 2:1 with an average of 7:3 for 1970. He

pointed out that the cost of computer software compared to hardware

had escalated and predicted a continued increase. For example, in

1955 the ratio was as low as 2:8; Boehm predicted this to be as high

as 9:1 in 1985.

Despite the size of the problem and its impact, the primary

condition for improvement is to accept its existence. Indeed, reports

such as [9] contain documented experiences of development efforts

which suggested that not only had the existence of the problem been

acknowleged, but also that improved methods were being sought to

develop software. In the late sixties, it became increasingly

apparent that there was a need to provide a disciplined approach to

software production. Consequently, much of the debate at that time

PAGE 8

focussed on structuring the design process and on ordering design

decisions.

One of the earliest and most significant contributors to the

debate was E.W. Dijkstra [10], whose concern lay with "intrinsically

large" programs. By this he meant “programs that are large due to

complexity of the task, in contrast to programs that have exploded (by

inadequacy of the equipment, unhappy decisions, poor understanding of

the problem, etc.)" [ibid]. His method of attack was to carry out

introspective “programming experiments"; these investigated "what

techniques (mental, organisational or mechanical) could be applied in

the process of program composition” [ibid] that would produce "an

increase in our programming ability by an order of magnitude" [ibid]

so as to overcome problems associated with large programs and enable

the latter's correctness to be demonstrated. He overcame the anomaly

of having to choose, for practical reasons, relatively small programs

for his experiments "by treating problems of size explicitly and

trying to find their consequences as much as possible by analysis,

inspection and reflection" [ibid].

From Dijkstra's experiments [11] in the design and construction

of multiprogramming systems, he suggested applying the principle of

"divide and rule" for structuring the design process so that

size-induced Romnler ey could be controlled and the construction of

such systems could be carried out in manageable steps. The

application of this principle structures the system as a hierachical

set of layers or "machines" where the relationship between consecutive

layers is such that the machine at some non-primitive level is an

abstraction or functional description of the machine at the next lower

level, the latter providing the resources for the formulation of the

former. Dijkstra [12] concluded from his development work on the

“THE"-multiprogramming system that "the hierarchical structure proved

PAGE 9

to be vital for the verification of the logical soundness of the

design and the correctness of its implementation".

Whilst Dijkstra had laid down the guiding principle that program

structure should be a layered hierarchy, there was - and still remains

- some controversy as to whether the layers should be constructed from

the "bottom-up" (i.e., starting with primitives) or from the

"top-down" (i.e., starting with the target system). Gill [13] gives

this practical and sound advice:

“Clearly, the top-down approach is appropriate when the target
system is already closely defined but the hardware or low-level

language is initially in doubt. Conversely the bottom-up
approach is appropriate when the hardware is given but the
target system is only defined in a general way."

He points out that the weakness of both approaches is that early

decisions will “be propagated through the layers and will finally

cause trouble by proving undesirable and difficult to remove" [ibid]

and that their success is dependent on the designer's ability to

foresee the consequences: of these problems. The need for clearly

defined primitives and target systems is implicit in his

recommendations, although he realised they rarely occurred in

practice.

Randell's observations [14], based on work carried out on three

major independent, yet related systems, revealed that their structure

reflected the development process, and that each layer of the

structure was a set of solutions to a set of problems considered to be

closely related. On the ordering of decisions, he notes two features

of the top-down approach. The first is that the designer "at each

stage is attempting to define what a given component should do, before

getting involved in decisions as to how the given component should

provide this function" [ibid]. The other is suitability of the

appproach "for the designer who has faith in in his ability to

estimate the feasibility of constructing a component to match a set of

PAGE 10

specifications". In contrast, the features of the bottom-up approach

are that it "proceeds by a gradually increasing complexity of

combinations of building blocks" [ibid] and is best suited "for the

designer who prefers to estimate the utility of the component that he

has decided he can construct" [ibid]. Like Gill, Randell warns

against the dangers of strict adherence to the top-down or bottom-up

approaches and points out that the then current emphasis on the former

was an attempt to reduce the preponderance of the latter. Finally, in

order to improve systems quality, Randell stressed the need for an

effective methodological approach to design and for guidelines on the

order in which decisions are made.

The need seriously to consider from an engineering perspective

the desirability of a software components industry, analogous to its

hardware counterpart, was noted by Perlis [15], and elaborated by

McIlroy [16]. McIlroy's work stressed the desirability of building

big systems from smaller standardised families of components.

Analogies with hardware were noted at differing component levels. For

instance, at the primitive level "software production in the large

would be enormously helped by the availability of spectra of high

quality routines, quite as mechanical design is abetted by the

existence of families of structural shapes, screws or resistors"

[ibid]. Moreover, at the conceptual level, the importance of

exploiting the correspondence between interchangeability of hardware

sub-assemblies and modularity of software was identified.

One of the earliest practised techniques that attempted to

contain the complexity explosion of "monolithic" programs was modular

programming. This was initally just the crude application of the

divide-and-conquer principle in which the division of a program into

modules was governed by implementation convenience rather than design

needs. Not suprisingly, this approach proved to be an inadequate

PAGE 11

rationale, although it allowed the exploitation of benefits that

result in implementation from using common modules. Because the

emphasis of modular programming was on the attainment of modular

designs, its guidelines were to have a direct bearing on later

methodologies. These considerations, in particular the notion of

module independence and the idea of a central control module

directing subordinate modules were to provide the impetus for the

development of functional decomposition in program design [17].

In retrospect, it can be seen that such early and-significant

concepts as hierarchical structuring, the principle of

divide-and-conquer and modularity, formed the basis of past and

present programming methodologies, which are considered next.

2.1.3 Programming Methodologies

The Structured Programming Revolution

The start of the seventies saw a considerable amount of

literature vigorously propounding a programming philosophy commonly

referred to as "structured programming". Its origins lay in

Dijkstra's earlier works and specifically in a paper entitled

“structured programming" [10] in which he stated the following:

“program testing can be used to show the presence of bugs

but never their absence”

As a consequence of this self-evident, yet at the same time alarming

maxim, his primary concern was (and still is) program correctness.

From the outset, he perceived that the difficulties involved in

proving the correctness of programs were such that, "unless measures

were taken, the amount of labour involved might well (will) explode

PAGE 12

with program size" [ibid]. To consider the measures required involved

him addressing the question: “for what program structures can we give

correctness proofs without undue labour, even if the programs get

large?" [ibid]. Before turning attention to what those structures

are, some consideration needs to be given to the advice, stated in

Dijkstra's much quoted article "Go To Statement Considered Harmful"

[18], that transferring control to labelled points should be avoided.

This advice led to the misconception that a program without goto

statements is necessarily structured. The rationale for restricting

the use of GOTOs was (paraphrasing Dijkstra) to shorten the conceptual

gap between the static program and the dynamic process so as to make

the correspondence between the program text and the process taking

place under its control as trivial as possible. Furthermore, Dijkstra

warned against the practice of converting programs with goto

statements into programs without goto statements, because it would

lead to programs which are as opaque as their originals.

The structures proposed by Dijkstra to ease correctness proofs

were such that they restricted sequencing of control to specific

forms of concatenation, selection and repetition that possess modular

characteristics (i.e., single entry and exit). The factors that

contribute to the ease of use of these structures in correctness

proofs are:

(i) they minimise the mental gap between the static program text

and its dynamic process because their progress can be

characterised by a combination of textual and/or dynamic

indices (the former describes the place in the text for

successive actions whilst the latter is associated with a

‘repetition number' for repetition structures)

(ii) standard correctness proof propositions for each structure

type can be formulated.

PAGE 13

Structured programming, as a design technique in which program

correctness is either self-evident or can be proved formally or

rigorously was elaborated by Dijkstra in the classic monograph "Notes

on Structured Programming" [19]. He suggests that program structure

should be derived from hierarchical decomposition of the problem into

sub-problems; hence the program produced is a hierarchy where

intermediate levels consist of abstracted components which are defined

in terms of "what they do" rather than “how they do it". A number of

examples are used to illus trate this "step-wise" decomposition

process and provide an "introspective exposition" of the methods

Dijkstra had hitherto unconsciously applied.

The conceptual tools required to “understand” - in Dijkstra's

sense, to prove the correctness of - a program are : Enumeration,

Induction and Abstraction. The first tool, enumeration, is used to

understand sequences of statements including selection statements.

This means that, in practice, these statements can be

understood/proved by giving consideration to each execution path;

therefore it is an adequate tool provided the number of statements is

small. In order to understand repetition constructs and recursive

procedures, it is necessary to use mathematical induction. Its use

in program correctness proving is similar to proving properties about

integers or recurrence relations in number theory. Abstraction, the

third tool, is probably the most powerful in program design; by using

this the designer is able to concentrate on relevant properties of the

problem and ignore irrelevant ones. For example, procedurisation

allows us to synthesise the details of how a process works into an

abstracted form specifying what it does; defining new data types

allows one to manipulate the objects they described as abstract

entities.

The application of structured programming produces levels of

PAGE 14

conceptualisation in which each refinement represents some implicit

design decision. Wirth [20] strongly stressed the need not only to

make these decisions explicit so that "the programmer be aware of the

underlying criteria" [ibid] used but also “to consider the the

existence of alternative solutions" [ibid]. His guidelines in the

step-wise refinement process are:

“"to decompose design decisions as much as possible, to untangle

aspects which are only seemingly interdependent, and to defer

decision which concern details of representations as long

as possible" [ibid].

Moreover, he suggested that this refinement of program description

into subtasks should be accompanied by a parallel refinement in the

description of data that may be necessary for communication between

sub tasks.

The qualified success of applying structured programming

principles, reported by Aron [21] in an experiment described as “the

superprogrammer project", provided the impetus for using these ideas

in a production environment on a large-scale information retrieval

project which involved over 80,000 lines of source code. The findings

of this experiment revealed that the productivity of progammers

increased five-fold and that the rate of detected errors produced by

principal programmers was approximately one per man-year-effort

(22523). Observations from introspective experiments [24], rather

than quantative evidence from controlled experiments, such as “an

experiment in structured programming" [25] supported the preumenes!

expressed in favour of structured programming, which are, for example,

that it facilitates the intellectual task of handling size-induced

complexity and of proving design correctness.

Structured programming undoubtedly provides a framework for

disciplined design, and there is some evidence supporting claimed

benefits. However, it would be somewhat short-sighted to suggest

PAGE 15

that its principles provide a completely adequate recipe for the

production of correct and clear programs. Indeed, the detected error

in Henderson's solution to the so called "telegram problem" [25] was

in fact a direct result of not perceiving an appropriate level of

abstraction. Moreover, the authors retrospectively observed that data

concepts were obscured and recommended that thee: be elaborated in

much the same way as algorithms. This could be seen as a step towards

Jackson's emphasis on the role of data structuring in program design

[26]. A similar criticism can be made of the undetected error in

Naur's solution of the ‘line edit problem’ [4], in which the need for

the data concept 'word' as a basis for structuring the design had not

been identified. Both these examples illustrate the main weaknesses

of structured programming, which are: the lack of specific

decomposition criteria in formulating levels of abstraction and the

absence of evaluation mechanisms to be used in the decision-making

process for determining the best dtaeormacttvion from a number of

alternatives. In terms reflecting the incisive spirit of Occam's

razor, we can say:

"whilst we have the knife, we do not know how to carve"

One of the primary objectives of most, if not all, disciplined

programming methodologies is to achieve a modular design. However,

the manner in which problem decomposition into modules is performed

can often introduce a variety of complexities. The method of

sequencing control as advocated by the structured programming school

enables programs to be modular in terms of control flow -

inter-connectivity of control between program components is reduced,

thus eliminating the production of programs with a "spaghetti-like”

structure. However, this restriction provides no guarantee of

achieving modularity in terms of flow of information between modules.

Current programming methodologies based on structured programming can

PAGE 16

be viewed as attempts to augment its basic principles with additional

design criteria. These criteria minimise information flow to preserve

a “separation of concerns", i.e., decomposition is performed in such a

way that “we don't lump concerns together that were perfectly

separated to start with" [27].

Two schools of thought, the 'data structure' school represented

by Jackson [26] and Warnier [28], and the ‘data flow' school

represented by Yourdon and Constantine [29], Myers [30] and Stevens

[31] will now be considered. The former school considers it essential

to base program design on the logical structure of data, whilst the

latter school emphasises that program structure should be based on

functional decomposition of the problem. For the purposes of the

discussion, it is sufficient to focus attention on Jackson's work as

representative of the data structure school and Constantine and

Yourdon's work as representative of the other.

Structured Design

Structured Design, as defined in [29], “is the process of

deciding which components interconnected in which way will solve some

well-specified problem". The definition clearly recognises design as

being a problem-solving exercise in partitioning and organising the

components of a program. It aims to ease implementation, in

particular testing, maintenance and modification, by structuring

programs so that each program component corresponds to some

"well-defined" piece of the problem, and the relationships between

program components reflect existing relationships between parts of the

problem. This strategy ensures "independence of modules", which can

be seen as an alternative implementation of Dijkstra's notion of

PAGE 17

"separation of concerns". Moreover, module independence originates

from consideration of modularity [32] and criteria for good design

[33]. These considerations culminated in Constantine's paper £171,

from which the basis of the methodology is taken.

The | methodology synthesises the program design concepts of

modularity, hierarchical decomposition, levels of abstraction and

design evaluation with systems theory notions of structural

organisation and inter-connection of components. Indeed, Constantine

[29], having acknowledged the influence of Dijkstra's works makes, the

following statement of Emery's work [34] on systems theory:

"From it I gleaned the essential concept of intercomponent
coupling and firmed my commitment to a systems-theoretical
view of the universe."

Therefore, not suprisingly, Structured Design views a program as an

organised composition of aggregates and components, and uses the

conceptual, linguistic and notational tools of systems theory in the

statement of the methodology. More importantly, information flow is

of primary consideration in Structured Design because it is not only

used for orientating the design process, but is also at the heart of

the measures used for design evaluation.

The steps applied in the design phase of the methodology are :

CEy Depict the problem as an information flow model by

identifying the major data transformations; represent

this model as a data flow graph, preven linear

chains of processes, known as a "bubble chart";

(ii) Identify the afferent (importing) and efferent (exporting)

data elements. This step leaves some transformations in

the middle, which are termed as "central transforms";

(iii) Represent the information flow model as a hierarchy of

modules with their imports and exports so that a

PAGE 18

controlling module when activated will perform the entire

task by calling upon Afferent, Central and Efferent

subordinate modules;

(iv) Repeat steps (i) - (iii) for abstract subordinate modules.

There are no specific rules for structuring the data flow

diagrams. However, central to this process is the perception of

suitable levels of abstraction in data flow. The identification of

the afferent section involves tracing the input stream from its

primitive form to its highest level of abstraction. Similarly,

finding the highest level of abstraction in the output stream

determines the efferent data section.

Structured Design shares with structured programming the same,

rather impractical, guideline for producing "good" decompositions in

terms of modularity, namely, the perception of "appropriate" levels of

abstraction. However, in contrast, it not only emphasises a specific

a priori orientation for structuring - that of data flow - but also

provides design evaluation mechanisms which are applied a posteriori.

These evaluation mechanisms are directly related to the notion of

module independence. A set of modules is said to exhibit a high

degree of independence - in Structured Design terms, exhibit

functional independence - if they satisfy two complementary

characteristics, namely, minimal coupling and maximal cohesion.

Coupling, or inter-module dependence, is a measure of the strength of

association between a module and its external calling environments;

cohesion or intra-module dependence is a measure of the degree of

association within a module.

Structured Design's rationale of functional decomposition of the

problem as series of procedural modules characterises it as a

solution-oriented methodology [35]. Furthermore, it makes no major

break with traditional modular programming but merely refines

PAGE 19

pre-exisisting concepts of modularity. In contrast, the data

structure school, as exemplified by the methodology to be consdidered

next, is problem-oriented because it seeks to ascertain pertinent

relationships in the problem and to transfer them to the data to be

processed. Moreover, it infers that functional decomposition should

not be carried out because function is implicit in data.

Jackson's Approach

The rationale behind Jackson's methodology can simply be

summarised by the structuring principle that program structure should

match problem structure. The method of achieving this is to base

program structure on the logical structure of data. Consequently,

program modularity reflects data structure rather than data flow.

Furthermore, whilst the data flow school views a program as a

hierarchy of functionally decomposed processes, Jackson relegates

functional considerations to a later stage and promotes in its place

the activity of modelling the real world. His fundamental design

principle is firstly to produce an abstract model and then consider

the functions required. The second step is to implement the abstract

model. In common with most current methodologies therefore, Jackson

preserves a separation between design and implementation, thereby

absorbing those aspects of development that relate to producing an

abstraction of the real world into a design and those that relate to

realisation of the model into implementation.

Jackson argues that, for programs whose structure is based on

problem structure, there will be no difficulty in associating the

primitive operations required by the program with the components of

that structure. This is because an abstract model of the problem

environment (i.e., the program) perceives the real world through the

PAGE 20

medium of its data structures (e.g., files). Jackson's approach

therefore reflects the well-known principle that "data structures

steer algorithms" [19,20]. The program therefore consists of

operations concerned with manipulating data structures (i.e., reading

and writing) and those operations directly concerned with the task to

be performed (i.e., elementary actions required to perform the

function). The claimed benefit of such an approach is that the

program produced is easier to understand and modify because of the

correspondence between problem and program structure.

The methodology employs the principles of structured programming

in that levels of abstraction are expressed using the composite forms

of sequence, selection and iteration. However, in relation to

structured programming, Jackson says that it is insufficient merely

to build programs from "structured" constructs - the crucial problem

is to decide how these constructs should be fitted together and on

what basis the structuring should be performed. The basic steps

involved in Jackson's method are:

(sy Consider the problem environment and use this to describe the

logical structure of each input and output data stream (using

special structure diagrams);

(ii) Form a program structure based on the designed data structures;

(iii) Define the task to be performed in terms of elementary

operations;

(iv) Allocate each operation to its appropriate component in the

program structure;

(wv) Determine the necessary conditions to control execution of

selection and iteration components;

(vi) Translate the completed algorithm into Jackson's schematic

logic (a special program design language) or the chosen target

programming language.

PAGE 21

Stage (i) is the creative phase because it involves the designer

in abstracting that which is relevant to the problem requirements

(i.e., perceiving the problem's logical structure) or, in structured

programming terms, perceiving “appropriate levels of abstraction".

The next stage involves finding components in the input data stream

that, when processed, will produce components in the output stream.

Combining these structures yields a single program structure. The

methodology, however, provides no means of ensuring the necessary

completeness of the operations list in stage (iii). The notion of

"appropriateness" is at the heart of the design evaluation mechanism

in Jackson methodology. It is applied at stage (iv). It can be stated

as follows :

if processing a data component X involves the primitive operation
p, then p should be allocated to the program component

corresponding to X.

In addition to his basic method, Jackson provides not only the

means for the recognition of “structure clashes” (where the input and

output data streams are not in correspondence and hence cannot be

combined into one program structure) and "backtracking" (where the

serial nature of the input stream prevents an a priori selection), but

also standardised methods for their resolution. These allow the match

between program structure and problem structure to be preserved.

Structure clashes are modelled by communicating processes that can be

implemented in a variety of ways, ranging from programs communicating

via intermediate files using read and write operations, to concurrent

processes that communicate via resume commands. Backtracking is

modelled by assuming the validity of one of two possible outcomes of

subsequent processing, with the proviso that it may prove necessary to

reject the assumption, thereby admitting the validity of the other

outcome, and hence having to "backtrack".

PAGE 22

2.1.4 Recent Developments

It is instructive to compare the recent directions taken by the

‘data-flow', '‘data-structure' and 'structured programming' schools.

The 'data-flow' school have adapted their work for systems

development, systems analysis and specification [36,37] to provide a

system eaten methodology. The methodology shows how to obtain a

structured specification from the user requirements and how to use

Structured Design tools to produce a system of programs. Furthermore,

they have addressed themselves to administrative aspects of project

control, planning and management [38,39]. These works depict methods

that can enhance the productivity and effectiveness of a software

engineering project; for example, Semprevivo [40] provides a set of

practical guidelines for analysing, evaluating and improving team

performance. The school aims to integrate the variety of structured

tools and techniques already used for analysis, specification, design,

coding, . testing and maintenance with management guidelines and

controls to yield a comprehensive methodology that covers every stage

of the software engineering cycle.

Similarly, the data structure school have adapted their ideas to

system design. For example, Orr [41] has married Warnier's ideas on

program design with those of data base design to form a structuring

tool for logical analysis, design and development of systems.

Similarly, Jackson [42] has produced a development methodology which

specifically addresses itself to system design and is not simply a

"front-end" to his principles of program design; instead, it is a

methodology in which the tools developed for program design are

diffused throughout the systems development procedure.

Whilst the data-flow and data structure school have focussed

attention on presenting guidelines for good designs and mechanisms to

evaluate design quality, the structured programming school in

PAGE 23

contrast has concentrated on correctness proofs. A major criticism of

all three approaches is that there is an a posteriori application

method for design assessment. However, advocates of structured

programming have recognised this weakness of proving/evaluating the

correctness of completed programs. Indeed, Jones [43] recommends a

stepeyiae scheme in which, at each level of decomposition, proposed

realizations are proved. Moreover, Dijkstra [1] not only recommends

that development and proofs should proceed hand in hand, but that

correctness conditions should steer program development. He has

proposed a formal discipline in which, as Coleman [44] points out:

"Dijkstra's guarded commands constitute a calculus for program
development such that if the rules of the calculus are followed,

the correctness of the resulting program is guaranteed".

The long term perspective for program design is difficult to

visualise with any great assurance Meer icnier iy with the increased

interest in concurrency and new models for the semantics of

computations, both of which require architectures that depart

radically from the classical Von Neumann model underlying sequential

procedural languages. There is an urgent need, and one which is

likely to remain in the near future, to develop program design

techniques for concurrent programs for the variety of multi-processor

architectures [45] that support concurrent processing. The primary

concern is developing methods to overcome problems of communication

and synchronisation of component processors. Such stucturing methods

as parallel composition of communicating sequential processes [46] and

guarded commands [47] provide vie of the necessary tools to increase

our understanding of concurrent program design methods.

Attention has recently been focussed on the re-emergence of an

alternative form of programming - that of functional programming

[48,49] - in which the semantic model is applicative rather than

procedural. Examples of applicative systems are Church's lambda

PAGE 24

calculus [50] and McCarthy's pure Lisp [51]. In such systems, the

notion of an algorithm is specified in functional terms (i.e as

mapping from one set to another) and programs are built by combining

functions using "functional forms" [48]. As Backus points out, a

functional approach has many advantages over the conventional

approach; these include a concise mathematical description of the

underlying model and the fact that both programs and correctness

proofs can be expressed in a languge that has the same associated

algebra [ibid].

2.2 Empirical Considerations

2.2.1 Introduction

Many researchers in programming have been motivated by a belief

that their recommendations will aid the programmer's task and

therefore improve the quality of programs produced. Whilst the

contributions made by "expert" programmers have been, to paraphrase

Shiel [52], an unholy mixture of mathematics (e.g., Dijkstra 1968),

literary criticism (e.g., Kern 74), and folklore (e.g., Brooks 75),

their recommendations have been, in the majority of cases, couched in

human factors terms. These recommendations have taken the form that a

particular aspect of programming practice will make the programming

task either easier, or faster, or less error-prone etc. Despite the

authority and vigour with which these expert recommendations have been

made and their common-sense appeal to our intuitive notions of

programming, they do not constitute a scientific basis for acceptance

but need to be empirically tested. Indeed, experimental evaluation

can not only be a useful and powerful tool for assessing such

proposals but can also provide evidence augmenting the contributions

PAGE 25

of practitioners and experts in the field. Therefore, the temptation

to accept experts' proposals without evaluation must be resisted.

Many researchers consider that Weinberg's classic work "The

Psychology of Computer Programming" [2] was the catalyst for arousing

a much-needed interest in human factors investigation generally. In

particular, it was directly responsible for most of the investigations

on the psychology of programmer team organisation [53,54,55]. The

thrust of initial experiments in programming, and to a lesser extent

current works, was in the vein of establishing whether a particular

product or practice was in some sense better than others. For

example, one of the earliest contributions was Sackman's experimental

investigation [56] in response to the then current debate on the

relative merits of time-shared and batch processing environments. The

primary force responsible for the increased volume of work within the

last decade has arisen from the debate caused by the structured

programming movement with its radical ideas on programming practices

and language constructs. This debate has provided experimental

researchers the opportunity of empirically evaluating various claims

made by proponents of the philosophy. Therefore, interestingly,

there has been a parallel increase in both structured programming

ideas and experimental work in programming. The impact of

experimental results on language and software designers is difficult

to assess. Indeed, views differ considerably. For instance, Sheil's

article [52] is highly critical of the experimental techniques used

and of the "shallow view of the nature of programming" held by

experimental researchers; he argues that "the computing community has

paid relatively little attention to the results". In contrast, Green

[57] cites Embley's paper [58] (in which a proposed new construct is

subjected to both empirical evaluation and formal analysis before

agreeing upon a final version) as a hopeful sign of things to come.

PAGE 26

As yet, it is too early to gauge the impact of experimental work on an

area that is constantly undergoing radical change.

The two possible empirical evaluation paradigms available to

researchers are observational and comparative experiments. Both types

involve testing a relationship known as the 'null hypothesis’. This

hypothesis peserte that there is no relations:hip between the

independent . variable, which is the variable under investigation and

therefore the one the experimenter manipulates, and the dependent

variable, which is the variable that is affected and therefore the one

on which measurements are performed. A crucial aspect of designing an

experiment is to ensure that the effect on the dependent variable is

attributable to the independent variable under investigation. In order

to achieve this, it is necessary to introduce experimental controls to

constrain other independent variables that may affect the outcome. It

is precisely because these controls are absent in observational

experiments that there are a number of reservations about results

obtained from them.

The simplest form of observational experiment is introspection

and is probably the basis of many past recommendations, for example

Dijkstra [10]. A variant of this rather subjective method, used with

considerable success by Simon and Newell [59] in their pioneering work

on problem solving, is protocol analysis. Traditionally, this

technique involves recording individual subjects "talking aloud" about

the task they are performing. The recorded speech transcription is

divided into lines known as protocols. This technique has seen

relatively little use in programming experiments, notable exceptions

being Brooks [60] and Miller [61]. However, as Shneiderman [62]

points out, whilst this technique can be "worthwhile when the subject

is a capable sensitive programmer, since important insights may be

obtained", there is no guarantee about similar behaviour of other

PAGE 27

programmers.

Another method of gathering information using the observational

paradigm is the case or field study. Examples include Knuth's

empirical study of FORTRAN programs [63] and the earlier cited New

York Times project [22]. The rationale behind this approach is that

gathering large volumes of data can yield something significant.

However, the lack of experimental controls provides no assurance as

to the reliability or generality of the results obtained.

Before reviewing the scope of previous research concerned with

human factors in software engineering, it is necessary to explain

briefly the basis and the details of the scientific method as used by

most, if not all, of the reviewed work. In the most general terms,

the scientific method is to observe a system in order to gather

knowledge. Therefore, in many cases, scientific investigations must

initially start with observational experiments which provide the basis

for subsequent hypothesis-testing comparative experiments. It must be

made clear at the outset that the commonly held belief that knowledge

obtained using the scientific method is unquestionably true because it

is objectively proven or derived in some rigorous way, is a

misconception since the method is based on the inductive principle.

This principle can be stated as:

If, for a wide variety of conditions, a hypothesis is confirmed
by a large number of observations and, of all those observations,
none refute the hypothesis, the latter is held to be universally
applicable for those conditions.

The validity of making this inductive leap is a controversial

issue of philosophy. One of the most simple and amusing illustrations

of the dangers of this leap is Bertrand Russell's story [64] of the

“inductivist turkey". The turkey observed that on arrival at the farm

it was fed at 9 a.m.. However, as a good inductivist, it gathered a

number of observations under a variety of conditions that confirmed

PAGE 28

the initial observation and that led it to the obvious inductive

inference about the pattern of being fed . Alas, the consequence of

this inference proved to be disastrous on the morning of Christmas

Eve. There have been a number of responses attempting to resolve this

problem. One view as characterised by Feyerabend[65], who suggests

Ancien the scientific method. Others believe that it is possible

to provide probability measures associated with hypotheses and that

each scientific theory is the best explanation available at that time,

accepting that it may be necessary to revise the theories in the light

of new observations.

The discussion so far constitutes only a partial account of the

scientific method, because it is a process involving not only

induction but also deduction. Once theories have been derived from

observations of the system being studied, these theories can then be

used to predict or explain the behaviour of the system using deductive

reasoning. In summary, the fundamental cycle of the scientific

method is:

(i) Record sufficient observations for varying sets of

conditions of the model under investigation;

(ii) Formulate hypotheses to explain the observations;

(iii) Empirically evaluate the significance of these hypotheses;

(iv) Derive a theory or model from these hypotheses;

(v) Perform controlled experiments to evaluate model accuarcy;

(vi) Deduce behaviour hypotheses for the model;

(vii) Repeat from (i).

The above schema is a general one, and it is necessary to consider the

issues involved in tailoring this methodology to suit the needs of

human factor investigations in programming.

PAGE 29

2.2.2 Methodological Issues

Having accepted at the outset that programming is a complex form

of human problem-solving behaviour, it may seem tempting to consider

what psychological theories of problem-solving behaviour have to

offer. Unfortunately, as Green [57] points out, "Psychology does not

have a general theory of thinking and is not likely to have one in any

reasonable time to come". Sheil [52] observes that "although some

psychological theory is “very suggestive, it usually lacks the

robustness and precision required to yield exact predictions for

behaviour as complex as programming".

The need to establish a suitable experimental methodology was

recognised by Weissman [66] and Shneiderman [67] nearly a decade ago.

Since then, there has been little progress, with some notable

exceptions [68,69,70]. Furthermore, as Moher and Schneider [71] the

authors of one of the few recent papers on the problems of

experimental research in software engineering observe, whilst "the

literature contains numerous references to the use of experimental

methods, there are few references on investigations into the

methodology itself" [ibid]. At present, the enormity of the problems

caused by the absence of an experimental methodology is such that

"the study of experimental methodology is well beyond the scope of a

single research problem" [ibid], and that, furthermore, experimental

methodological considerations in programming constitute "an entirely

new research area which will require the attention and energy of many

researchers over a long period" [ibid]. Because of this absence,

researchers investigating intuitively based claims of expert

programmers have, in many cases, made methodological decisions that

are, ironically, based on intuitive grounds. The review of

experimental work that follows is not intended to be a comprehensive

PAGE 30

survey of the literature (for such a treatment, see Shneiderman [62],

Software Metrics [72]) but concerns itself specifically with the

methodological issues central to programming experiments and the

controls necessary for such experiments to be effective.

The aim of comparative behavioural experiments in programming is

to prente an environment in which subject behaviour can be observed

and - analysed effectively. Devising such environments obviously

neccesitates the selection of suitable subjects, suitable materials

that will yield the desired effect and the application of appropriate

measures to analyse the effect produced. Therefore, the

methodological issues at the heart of this type of experiment relate

to a judicious choice of subjects, materials and measures; see

[68,69].

Subjects

There are two primary concerns in the selection of subjects,

according to Brooks [69]. First, the sample chosen should be

representative, that is, the observed behaviour of the sample should

be characteristic of the population under consideration. Second, the

individuals in it should be relatively homogeneous as regards

characteristics other than those under investigation, so as not to

influence the results obtained. The reason for insisting that these

requirements be satisfied is that, when an experimental sample is

sub-divided into groups for differing treatments (i.e, the different

procedures whose effects are to be measured), it is essential that any

significant results obtained for any group are attributable to the

treatments and not the characteristics of the subjects in that group.

A priori, it is not always possible to know all the subject

characteristics that will influence experimental results for any

PAGE 31

programming-related task, although, in practice, for a given task it

may be possible to determine which subject characteristics will

introduce an experimental bias. For instance, in an experiment

investigating the effect of particular programming practices,

differences in such factors as intelligence, discipline studied, and

level of education, could introduce an unwanted bias and therefore

measures would need to be taken to control their effects.

One aspect of designing a "good" experiment is to minimise the

effects of those subject characteristics that are responsible for

experimental bias. There are various well-established techniques

which reduce the effect of between-subject-variations; see [73,74,75].

These techniques include :

- random assignment of treatments;

- the use of "matched pairs", in which participants of an

experiment are matched on some important characteristic; the

consequence of this is that no group has a disproportionate

number of biased subjects;

- a "within-subjects-design" where all the subjects undergo all

experimental treatments.

In the case where the parent population exhibits a large degree of

heterogeneity, the two desired goals of representativeness and

uniformity become contradictory because, as Brooks [69] points out,

whilst a Buen large sample size is required to ensure the

former, the greater the sample size, the greater the variation among

individuals.

There is some evidence of identifiable heterogeneity amongst

subjects performing programming-related tasks. In Sackman's work [56]

investigating the relative merits of time-shared and batch processing,

variations in performance were observed as high as 25 to 1 across

experienced programmers. Miller's observational study with novices

PAGE 32

[76] yielded differences ranging from 4 to 1. Much more recent work

investigating the behaviour of experts and novice problem-solvers,

such as [77,78,79], reveals that there is a qualitative, rather than

quantitative, difference between the two groups with regard to

organisation of information and types of strategies applied. Contrary

to our intuitive notions, the two earlier results taken together seem

to suggest less variability amongst novice subjects. The more recent

results, however, are in accordance with our intuitive notions,

showing that experts are a more cohesive group in that they use

organising principles and strategies that are domain specific (i.e.,

specific to the problem domain being investigated).

Methodologically the variability as found in Sackman's and

Miller's works implies that careful consideration needs to be given to

the sample composition of subjects. Ironically, the established

practice in the vast majority of behavioural experimental

investigations is to use restricted groups of subjects (usually

undergraduate students). Indeed, as Weinberg [80] succinctly

comments:

"Whereas psychology may be the psychology of college freshmen,
the psychology of programming could easily become the psychology

of programmer trainees."

This apparent consensus over the proper sample composition of subjects

(that is on the use of undergraduates) is based on convenience rather

than any methodological criteria. Indeed,. where subjects have not

been first-year students, the lack of agreement among researchers is

well illustrated in Moher and Schneider's article [71]. They observe

"that subjects have ranged from those with no prior computer

experience to highly trained professional programmers". Futhermore,

they cite Miller's work [76], in which subjects with no previous

computing experience were asked to write sorting programs in a subset

of BASIC, as an example of the use of naive subjects. Miller claims

PAGE 33

the use of these subjects can lead to the detection of characteristics

that have not been influenced by the effects of factors such as

training and experience. In contrast, Moher and Schneider cite

Young's findings [81] on programming errors, which revealed that the

strategies used by experts and novices were radically different; for

example, novices eliminated all the errors with the same degree of

diligence whilst experts eliminated superficial errors with greater

rapidity.

The implication of experimental investigations with novices

suggests little justification for assuming that their findings are

applicable to experienced programmers. However, comparative

experiments involving both types of subjects need to be performed

before such an implication is verified. Some researchers have

attempted to design experiments so that the effect of variation in

subject characteristics is brought under experimental control and

have tried to conduct experimental investigations in such a way as to

reveal the class of subjects to which their findings apply. An

obvious and tempting way of controlling the effect of variability in

subject characteristics is to use subjects that are undergoing similar

training. However, as Brooks [69] argues, the use of intermediate

programming classes can in some cases be problematic. He cites

Shneiderman's work as an example which shows that significant

differences can sometimes be attributed to relatively short

differences in experience.

One possible way of ensuring that results obtained are

representative of the parent population under consideration is to

replicate experiments. This approach has been successfully adopted by

negcomitas at the MRC SAPU unit [82]. They performed experiments

with novice and expert programmers in such a way that findings could

be compared for both groups of subjects. Their work is a long-term

PAGE 34

investigation of the ease with which subjects can read, write and

debug programs using different styles of conditional constructs

[83,84]. In their exploratory experiments [85,86,87,88], naive

subjects were chosen because interest was centered on occasional

computer users rather than experienced programmers. It was considered

that individuals in the latter group would be unlikely to have the

same. learning history, or that they might have preconceived prejudices

about a particular style. For comparison purposes an experiment was

conducted [82] using experienced programmers as subjects. The results

regarding readability and debugging were found to concur with the

exploratory experiments using novices.

The technique that is most effective in systematically

controlling individual differences in: performance between experimental

treatments is the within-subjects-design, which has been used in a

variety of studies [82,89,90,91]. The use of this technique is well

illustrated by Love's experimental work [91], in which the primary

objective was to show that controlled experiments can be designed to

help to improve coding practices. The experimental aim was to

investigate the effect of program structure on program understanding.

The treatments in the investigation were complexity of control flow

(at two levels: simple or complex) and paragraphing of source code

(also at two levels: present or absent). Two groups of subjects

differing in levels of experience were used. Experimental materials

consisted of four Fortran programs written in four different forms

corresponding to the two different levels of the two treatments. The

experimental procedure consisted of randomly assigning each subject to

one of the four groups, each of which received exactly the same set of

programs to study and recall. Hence, each subject received both

levels of the two treaments. The advantage of this design was that it

enabled the investigation to measure the effect of two other

PAGE 35

independent variables that could influence the results, namely, level

of experience and sequence of programs. Its major disadvantages

generally are that it involved the preparation of large amounts of

material and, more importantly, that it could lead to subjects getting

bored because of the number of experimental tasks they had to perform.

fa summary it must be acknowledged that many researchers were,

and -still are, forced to use undergraduate students as subjects. In

many cases, because of cost constraints, the use of professionals is

impossible. However, the burden of proof still lies on the

experimenter to show that the results obtained are representative of

the population under consideration.

Materials

The second of the methodological concerns - the choice of

experimental materials - is only one factor relating to a broader

category, namely, that of "experimental environment" (i.e. that which

encompasses all the available stimulus). As Moher and Schneider [71]

point out, behavioural researchers have long realised that differences

in results can often be attributed to a variety of factors in the

experimental environment. Amongst the environmental factors that

investigators need to consider, in their opinion, are:

- the choice of experimental materials;

- the physical setting in which programmers work, so that

this can be reflected in the experimental setting;

- the different types of incentive (whether money, or the

satisfaction of knowing the aims and subsequent achievements

of the research, or being reassured that experimental results

will not reflect course grades), so that these incentives can

be used in a manner that ensures consistent performance of

PAGE 36

subjects;

- various ways of presenting experimental instructions

(i.e., whether in oral or written form, or whether presented

informally or formally)

An illustration of the effect of the last factor is Weinberg and

Sonus investigation [92] of programmer performance; this revealed

that- small differences in statement of objectives can be responsible

for large differences in results. Their work demonstrates that

experimenters need to specify the goals of the experiment clearly,

otherwise subjects will simply set their own goals. that may not

coincide with the experimenter's intention.

The main concern in controlling unwanted bias in the experimental

stimuli lies with the choice of material used. There are two issues

relating to this choice. Firstly, the material should allow the

experimenter to elicit any existing differences in treatments;

secondly, the effect of these differences should be attributable to

these treatments. When considering the effects of subject variation,

it was seen that these could be controlled by the use of a number of

standard techniques. However, when choosing experimental material,

the controls required for counteracting possible bias will vary from

experiment to experiment.

Empirical investigations into programming language features

provide examples of the types of material-choice problem encountered

by researchers and their attempts to overcome the latter. These

investigatons have used material that includes natural language [76],

small sub-sets of a programming language [85], complete languages [93]

and a special purpose query language [94,95]. The use of

“micro-languages" (i.e., where a language comprises of only those

operations and syntactic features that are under investigation) is

advocated by Sime et.al. [85] in their work on different types of

PAGE 37

conditional constructs. They consider that such languages allow

researchers to focus on the specific issue being investigated, thereby

avoiding any bias due to differences in subject training. Obviously,

not all questions concerning language design are amenable to the use

of micro-languages; its primary use is in comparing single linguistic

features. Indeed, Gannon et.al. [93] point out that when it is

necessary to investigate the interaction of language features, then

the latter must be evaluated in the context in which they are used.

Their work involved an experiment in which subjects wrote programs

using two block-structured languages that differed with regard to nine

specific features under investigation. These features included the

use of the semi-colon as either a separator or as a terminator, and

either automatic or requested inheritance of environments. Both Green

[82], and Gannon [93] advanced a clear rationale in the choice of

experimental material for detecting existing differences and made a

reasonable case for their findings. However, both works have been the

subject of criticism by Sheil [52]. He argues that the former work

does not systematically control unwanted sources of variations in the

experimental material, whilst his critique of the latter work

questions the effectiveness of such an approach for yielding a clear

aterereei ior of the results.

The measures taken by Sime et. al. [68] to control unwanted bias

included devising a scenario that involved writing a series of

cookery instructions for a mechanical hare. The hare responded to

these instructions, fed to it in the form of edge-punched cards, by

lighting lamps in its ears or sounding a buzzer. This simple scenario

meant that subjects needed little training to adapt to the physical

setting of the experiment which was an advantage over the

conventional set-up of writing a computer program when (as in their

case) using naive subjects. The presence of what Sime et. al [68]

PAGE 38

term as "almost necessary effects" pertaining to the experimental

material is a further factor that could’ produce an unwanted bias by

increasing the already large between-subject-variance that is present

in programming tasks. In Sime et. al's experiment [85] comparing

IF-THEN-ELSE with the GOTO (i.e., conditionals involving an explicit

transfer of control), an example of these effects is difference in

program length, i.e., number of symbols needed and the amount of

physical space occupied. Their solution was to provide subjects with

a joystick pointing to a dictionary, so that the time spent by

subjects in actually putting symbols into the programs was minimal.

However, they considered that effects due to spatial differences were

an important part of the comparison. A further problem in the same

experiment was whether the provision of indentation would produce

unwanted bias. Realising that, in general, it is not possible to

indent a language with an explicit transfer of control so as to make

its intended elaboration clear (as is the case with a nested

language), they had to “decide whether indenting the nested language

means providing an artifical prop for the subjects, or is merely

taking full advantage of the structural features of the language in a

realistic way".

Measures

The final methodological concern is the choice of measures.

Human factor investigations in programming have used a variety of

experimental metrics that seems to have resulted from a combination of

necessity and a carte-blanche application of the principle "to measure

is to know". Most experimental researchers would claim that their

choice is based on necessity. However some concern has been expressed

as to the relevance of some of the metrics in contributing to the

PAGE 39

understanding of the program design process [57,69,96].

Software Science [97] is, to paraphrase Yeh [98], a unified and

coherent field in which attributes of a computer program, such as

implementation efforts, clarity, structure, error rates, language

levels, etc, can be derived from metrics based on intrinsic

characteristics of the program itself. Such metrics measure what

Shneiderman [62] terms as the ‘logical complexity’ (i.e., the

complexity due to control flow) of a program. These include:

functions of frequencies of operators and operands in a program [97],

the knot count [99] and McCabe's cyclomatic number based on graph

theory [100]. Such metrics have the obvious advantage of facilitating

automatic computation of measures from the program text, and the

gathering of quantative evidence that readily lends itself to

hypothesis-testing methods. Experimental studies reveal a high degree

of association between attributes such as programming time [101],

number of bugs [102],program clarity [103] and their proposed

Halstead metrics. Investigations by Curtis et.al [104] using

Halstead and McCabe metrics reveal that "these metrics appear to

assess psychological complexity primarily where programming practices

do not provide assistance” (i.e., they measure the difficulty in

understanding programs which have been written in an "unstructured"

manner). Such experiments exhibiting high correlations between

factors and their proposed metrics therefore can offer useful

quantative evidence. However, because these measures are based on

intrinsic properties of the program, they take no account of the

interaction between the program and the programmer.

Although there are a variety of metrics, the effect being

measured in most cases has been the ease with which programs can be

constructed and/or the ease with which existing programs can be

understood. Experimentation involving program construction tasks

PAGE 40

usually takes the form of comparing two groups of subjects: a control

group and a group undergoing the treatment being investigated. The

metric most commonly used for determining the effort required to

develop a program is the time taken to write it. Some of the

difficulties that can arise in using time as a metric have been noted

by Brooks [69]. An obvious problem is identifying the time spent on

aspects of the task that are not relavant to the investigation so that

the former can be either eliminated or minimised. Brooks [ibid]

suggests that time measures should be supplemented by evidence from

other measures such as the number of debugging runs performed and the

ratio of total number of recalled lines to program size. In addition

to ascertaining the required times, problems can occur because time

metric distributions are often skewed. This bias can be corrected

using standard statistical transformations. For example, Sime et.al.'s

data [85] resulted in a positively skewed distribution of times which

they - corrected through a logarithmic transformation. Other

program-construction metrics relating to the ease with which a program

can be constructed involve functions of errors made; for example, the

investigations by both Sime. et.al [85] and Gannon et.al [93] used the

frequency and persistency of errors as alternative metrics.

One of the earliest investigations on program

“understandability", or what Weissman [66] termed "psychological

complexity", proposed three measures of understanding. These related

to subjects' effectiveness in: "“hand-simulating" (i.e dry-running)

programs, filling in blanks in a paragraph describing the program, and

a subjective measure of how well subjects felt they understood the

program. An obvious problem with Weissman's use of the first measure

is that hand-simulation of a program can be performed on a

statement-by-statment basis without knowledge of it s overall

structure. Therefore, the decision to use a question/answer task to

PAGE 41

obtain a second measure placed greater confidence in the

investigation. Indeed, Weissman notes that "although hand-simulation

as such is not a valid measure of understanding" [ibid], nevertheless

"both reading and hand-simulation are important components of

understanding a program" [ibid].

A eoumonly used technique for measuring program comprehensibilty

is the use of 'memorisation-and-recall'. This technique, as used by

Shneiderman [105] involves the subject reading a program and then

re producing it as accurately as possible in every detail. The

rationale for this work is based on Simon and Chase's work on chess

[106], which suggests that experts have large amounts of organised

knowledge and use high-level organisation principles. By analogy,

Shneiderman hypothesised that for two forms of a program (executable

and shuffled), experienced programmers would be able to re-construct

the executable form with greater rapidity. Evidence from Shneiderman's

experiments supports the use of memorisation-and-recall as a metric

for measuring program quality and programmer comprehension. This

technique has also been used by Love [91] to investigate the effect of

complexity of control flow and indentation on program understanding.

He bases the experimental rationale on Craik and Lockhart's theory of

memory [107], which suggests that the probability of recalling

information is dependent upon the depth of processing undertaken.

Although there are a number of ways in which memorisation-and-recall

can be applied, it s use as advocated by S:hneiderman and Love is

appropriate essentially for small programs. A suitable variant, as

suggested by Brooks [69], for large programs would be to ask subjects

to reconstruct a program that is close as possible to the original.

Finally, whilst it is desirable to conduct the "ideal experiment"

(i.e., one in which unwanted bias due to between-subject-variation,

non-uniform characteristics in experimental material and/or

PAGE 42

inaccuracies in metrics, is negligible) so that the results obtained

can be attributed solely to the treatment under investigation. In

practice this is extremely difficult to achieve when investigating the

complex tasks involved in programming. The options are to choose

either:

- WnAE Green [57] describes as the utopian solution, that is,

“Once psychologists have taken the wrinkles out of a theory

of thinking, programming can be treated as a special case and

it will be obvious how to make it easier", or

- to conduct experiments as methodologically precise as is

practically achievable so as to "chip away" at the problem

under investigation.

2.3. Conclusion

The discussion presented in this chapter has considered

practitioner recommendations on program design from a human-factors

perspective and methodological issues appropriate to experimentation

in program design. From this, objectives for suitable research can be

identified, and these are presented in the following summary:

The proponents of structured programming view the design process

as a complex problem-solving activity. Moreover, they believe that

the use of cognitive tools such as stepwise refinement, hierarchical

structuring, levels of abstraction etc., help to make the development

task . "easier". There are strong arguments in favour of this view from

a problem-solving perspective because the overall approach in

structured programming embodies the well-established problem-solving

technique of problem reduction. However, whilst there is evidence for

the benefits that are claimed for this method of design, it would be

wrong to regard it as a panacea for designing programs. There is an

obvious neccessity to investigate the effect on the program design

PAGE 43

process of applying, on the one hand, structured programming

principles, and on the other, practices incorporating those principles

but involving more specific decomposition criteria.

Whilst this investigation acknowledges that the evidence obtained

using the scientific method is not irrefutable, it does, however, take

as axiomatic the view that using this method can provide a probability

measure of the observation being representative of the system under

investigation, so that the latter's significance can be assessed.

Moreover, a model or theory based on the results from such

observations then constitutes a proposed explanation of the behaviour

of the system under investigation. The research was faced with the

problem of applying the broad principles of the scientific method,

rather than a suitably designed experimental methodology. However,

the unwanted bias introduced because of this problem can be controlled

by judiciously augmenting the scientific method with guidelines based

on methodological decisions made in previous empirical investigations.

Therefore, it was decided to make effective use of such guidelines so

that an increased level of confidence could be placed in the results

obtained.

In conclusion the specific research objectives were to

investigate:

(i) the nature of problem decomposition strategies used in program

design;

(ii) the factors related to these strategies;

(iii) the factors affecting these strategies;

(iv) the relationship between these strategies and errors made.

PAGE 44

3. Report of Investigation

3.1 Experimental Context

The ‘aim of this chapter is to describe the specifics of the

investigation. Before these are detailed, consideration is given to

two important aspects: first, the identification of the context within

which experimentation was performed, and hence within which the

research results are to be interpreted; second, the description of

the experimental methodology employed - in particular, the assumptions

made and the steps taken to provide a methodology tailored to the

needs of the investigation.

Several factors contribute to the experimental context. The most

significant include: the population under investigation, the physical

setting and the size of problems to be investigated. Ideally, it was

felt desirable to conduct the investigation so that the results:

- applied to a large cross-section of the programming community

whose members' characteristics varied considerably with regard

to ability, experience, training, etc.;

- were obtained from an experimental environment which closely

resembled the physical setting within which programmers work;

- related to "realistic" programming problems;

In practice, however, the experimental context was considerably

constrained because of the limits imposed by time, resources and

availability of subjects.

At present, empirical research (whether conducted in an

industrial or academic environment) on a complex problem-solving

activity such as program design (an area in which there is a scarcity

of empirical’ investigation), can have little hope of arriving at a

satisfactorily complete solution. However, there is a difference

PAGE 45

between investigations in industrial and academic environments. The

former often involve large-scale experiments, whereas the latter are

frequently constrained to small-scale experimentation. Therefore,

academic studies are open to the often-voiced criticism that such

studies deal with "toy", rather than "life-size", programs and use

subjects from academic, rather than production environments performing

tasks in artificial settings. The reason for this disparity between

academic and industrial investigations is often attributable to

availability differences in finance, resources and subjects. Some

academic studies have attempted to counteract the effects of this

disparity by such means as co-operating with commercial organisations

(for example, the work by Hammond et. al. [108] used professional

system designers), and developing courses in which subjects are

encouraged/expected to participate in experimentation [55].

The circumstances surrounding this research were that no

provisional arrangements had been agreed either for industrial

co-operation (i.e. there were no commercial organisations who had

agreed to supply volunteer subjects and/or make available resources)

or for financing of programmers to act as volunteers. In addition, at

the academic establishments where students were willing to be

participants, there was no precedent for their being used as

experimental subjects, which ruled out any serious possibility of

organising experiments in students' free time. Moreover, because

subjects’ tutors were concerned about the possible disruption to their

course of study, it was agreed that experimentation would be performed

during one tutorial/practical session (i.e. a period of approximately

fifty minutes) per term.

These above-mentioned circumstances dictated that:

(i) unpaid subjects be used;

(ii) since subject availabilty was restricted to infrequent, short

PAGE 46

periods, the size-related complexity of the problems to be

used as experimental material should be relatively small;

(iii) experimentation had to be performed in test-type conditions

due to the necessity for adequate numbers of students to

produce individual solutions to the same problem or sets of

problems

Nevertheless, Lt was considered that despite these practical

constraints, an experimental context in which computer-science

undergraduates were asked to construct programs for "small" problems

under experimental conditions, could constitute a meaningful research

framework. This view could simply be justified on the principle that

because of the scarcity of research in program design any contribution

- even with severe constraints - could be a worthwhile one. However,

a stronger case can be advanced:

- the chosen subjects represent a significant proportion of

the programming community, as well as being potential future

professional programmers;

- the specific objectives of the research meant that a number

of important factors affecting strategies used in problem

decomposition, other than problem size, could be investigated;

- the provision of a reassurance that subjects were participating

in an experiment rather than a test, together with the "reward"

of being allowed access to the outcome of the research, would

help to motivate subjects, thereby overcoming possible adverse

effects associated with the artifical setting of experimental

conditions.

The overall direction that any programming research project using

the scientific method follows, is an investigative path combining

exploration and evaluation. In an approach where the former is

emphasised, the intention is to "discover" from a human-factors

PAGE 47

standpoint what features of a program makes its specification,

construction, verification etc. more tractable. However, in an

approach where emphasis is on the latter, the investigator posits,

prior to experimentation, certain factors which are believed, or

assumed, to be of interest; the aim then becomes to "measure" the

effect of those factors. Investigations on programming style and

language design by Sime et. al. [85] provide examples of the former

approach, whilst the latter approach is exemplified by Weissman [66]

and Gannon [93]. The present study chose essentially an exploratory

path, albeit confined within an evaluative framework investigating the

nature — of, and the factors affecting, problem decomposition

strategies. An approach with the alternative emphasis would have

involved assuming that such factors as: problem size, programmer

ability, design methodology, length of training etc. affect problem

decomposition; and the validity of these assumptions would then be

tested. This approach would make it easier to identify evaluative

experimental hypotheses. However, because of the scarcity of

empirical research on program design it was considered that initially

the exploratory approach would prove more illuminating. One of the

consequences of this decision was that an initial pilot experiment had

to be performed so that the broad objectives of the research could be

transformed into specific experimental aims and hypotheses.

The investigative methodology devised was based on the

established principles of. the scientific method. Its exposition,

which foll ows, introduces concerns relating to experimentation in

general before specific issues relating to the current research, are

presented. The introduction on evaluation paradigms, statistical test

procedures and choice of decision statistic provide the background

necessary for assessing the type of conclusions that can be drawn

from, and the confidence placed in, the results obtained.

PAGE 48

Consideration of the choice of subjects, materials and measures

completes the discussion.

3.2 Hypothesis Testing

Both observational and comparative evaluation paradigms involve

testing an experimental hypothesis using statistical test procedures.

However, as Leach [109] points out, they apply in two different

situations, which differ in the degree of control applied and the type

of conclusion that can be reached. The difference between the two

paradigms depends on whether the variable under investigation is an

attribute or a treatment. An experiment where the variable being

investigated is an attribute (i.e., a property of the subjects

participating in the experiment and therefore not under experimental

control) is said to be an observational study. In contrast, if the

variable being investigated is a treatment (i.e, is assigned to

experimental subjects and therefore under experimental control), the

study is said to be comparative. Therefore, observational studies

need only involve one group of subjects in which the effect of the

attribute under study is measured. However, a comparative experiment,

in its simplest form, involves two or more groups of subjects in which

each group is assigned one of the possible types of treatment.

The distinction between observational and comparative studies is

crucial with regard to the conclusions that can be reached. With the

former, one may establish only a correlative measure (i.e., the

variables exhibit a measured degree of association) whilst, with the

latter, one may also infer a causal relationship (i.e., the effect of

the dependent variable is attributable to the treatment).

Furthermore, the choice concerning the type of study has to be made at

the start of the investigation because it effects both the designing

PAGE 49

and performing of experiments. In some cases, for practical reasons,

it may be difficult or impossible to carry out comparative studies.

For example, studies investigating differences in intelligence due to

gender or race must of neccessity be observational since the latter

are attributes of the subjects. Therefore, differences in results

obtained from such studies cannot infer a causal relationship which is

directly attributable to gender or sex, because such differences may

be due to other factors such as environment or culture.

A statistical test procedure is a decision mechanism, founded on

the principles of mathematical probability theory, that transforms the-

experimental hypothesis and the set of collected observations by means

of a decision statistic into an outcome that accepts or rejects that

hypothesis. The similarity between the mechanics of a statistical

procedure and the reasoning used in a court of law provides, as Leach

[109] notes, a useful analogy to explain the force of argument used in

the former. At ‘the start of the experiment, we assume that there is

no relationship between the variables in the experimental hypothesis

(we assume the innocence of the accused). Therefore, the researcher

(prosecuter) must aim to demonstrate on the basis of collected

observations, the validity of the experimental hypothesis (must

produce evidence that establishes the guilt of the accused) at some

level of significance (beyond reasonable doubt)

The standard procedure for carrying out a statistical test is as

follows:

(i) Posit the validity of the Null Hypothesis (i.e., assume that

there is no relationship between the variables being

investigated);

(ii) Choose the decision statistic to be used;

(iii) State the level of significance;

Civ) Compute, using the decision statistic chosen, the probabilty of

PAGE 50

obtaining the observed sample, this probability being denoted

by ps

(v) Reject the null hypothesis (and accept the experimental

hypothesis) provided the computed probability exceeds the

significance level.

The level of significance is the smallest probability value for

the collected observations that would result in the null hypothesis

being accepted. In theory, the value chosen is at the discretion of

the experimenter and may vary from experiment to experiment depending

on the degree of assurance required. However, in practice, the sole

purpose of experiment is to verify the desired hypothesis and

demonstrate the occurrence of an effect. Therefore, the smaller the

significance level, the greater the confidence that an effect has

occurred. The most frequently used value for the significance level

in experimental psychology, so that the researcher can conclude that

the observed effect is not the result of chance variation, is 0.05.

However, many studies adopt the convention of using the value of the

computed probability p, asserting that the result is signifcant at

that level; for example, as Sheil [52] points out, effects have been

reported as high as p <0.2. There are obvious dangers in choosing

“appropriate” significance levels after computing p. There is,

however, an even greater danger, as Sheil warns, in choosing

significance levels in such a manner, because the computed value for p

is an estimate that an effect has occurred and not an estimate of the

size of an effect.

The choice determining the decision statistic employed depends on

the observed sample characteristics. These include the underlying

nature of the population distribution from which the sample is

collected and the type of data collected. The first feature

determines whether the decision statistic is parametric or

PAGE 51

non-parametric decision statistic, it is necessary to consider whether

the type of data will be:

categorical data, for example when subjects' solutions are

classified into two mutually exclusive categories;

- ordinal data, for example when subject performance is

measured via the number of correctly placed instructions

in a program outline;

- continuous data, for example when a subject's “perception

difficulty" is measured by the time taken to complete a task.

Two further features that determine the required decision statistic

are the independence of data(i.e., whether measurements influenced

each other) and the number of samples.

3.3 Methodological Specifics

The investigation can be viewed as two sets of studies, each one

being associated with a particular programming problem and involving

three separate experiments. Initially, for each of the two studies,

it was prefered to perform an observational experiment where the

overall aim was to discover something about the general nature of the

strategies people use in program design. It would have been

preferable to carry out the remaining experiments in both studies in a

comparative manner; however, practical constraints (i.e., the absence

of a control group of subjects) made this impossible for one of the

experiments in the first study. The discussion that now follows

details the methodological issues involved in choosing subjects,

materials and measures.

3.3.1 Choice of Subjects

PAGE 52

Two previously mentioned factors concerning training, and payment

(i.e., subjects were familiar with step-wise refinement and were

willing to be unpaid volunteers), restricted the population from which

subjects could be chosen to that of computer science students trained

in the broad principles of structured programming. In choosing

subjects : from this population, two differing criteria, dependent upon

whether the experiment was observational or comparative, were adopted.

For the observational experiments where the general aim was to

discover those elements of the design process that are common to

programmers, the criterion was to "cast the net fairly wide" so as to

gather as much information as possible. In contrast, the comparative

experiments had specific aims of establishing differences for a

particular aspect of program design between two or more groups of

subjects; this meant that the overall criterion was the need for

homogeneity of subject characteristics.

The techniques considered in order to control the effects of

between-subject-variance in relation to such factors as length of

training, nature of training, intelligence etc. were ¢

within-subjects-design, matched pairs and random assignment of

treatments. Use of the first technique meant devising a number of

problems (equal to the number of treatment levels) that were of

equivalent complexity so that each subject could undergo all

experimental treatments. The obvious difficulties in assessing

complexity equivalence of programs ruled out this possibility. The

second technique would have involved the pairing of subjects in

relation to characteristics that might contribute to subject variance.

In theory, this could be achieved by matching on length or course of

study undertaken by subjects and course grades attained. However,

this was only partly possible because, in practice, it was not known

prior to experimentation which of the students would volunteer.

PAGE 53

Therefore, the homogeneity assumption was based on choosing subjects

from the same course (i.e., matching differences due to length and

type of training) as well as randomly assigning treatments (i.e.,

assuming that effects of other factors such as skill levels would be

randomly distributed across treatments).

3.3.2 Choice of Experimental Material

The most significant factor in choosing experimental material is

deciding the type of task to be performed. Two possible choices are

program construction and program comprehension tasks. The former type

was considered more appropriate to the needs of the investigation.

The material to be used for each experiment consisted of a problem

Speci ftestion where the task to be performed broadly involved

designing a program for the problem so specified. It was considered

essential that these problems each should possess more than one

distinct solution in order that the experiments might yield evidence

concerning the different design strategies that subjects employ.

Another important factor which influenced the choice of

experimental material was the decision to restrict the scope of the

investigation to problems whose general characteristics were similar

to each other, The reason for choosing this approach was that it

would have the advantage of reaching more detailed conclusions that -

albeit derived from a limited problem arena - could with

circumspection be extrapolated to a family of problems. Furthermore,

it was felt desirable that the problems should be fairly "balanced" in

their characteristics as this would avoid undue emphasis either on

input data content or, alternatively, on processing requirement.

The problems chosen were considered to satisfy the

above-mentioned requirements. For the first study, the problem used

PAGE 54

was derived from Findlay and Watt's signal problem [3] (specified in

appendix 1). Naur's line-edit problem [4] was used as a basis for

the experimental material (specified in appendix 3) in two of the

experiments in the second study. The four problem specifications (

specified in appendix 5) for the remaining third experiment of this

study were derived from both the signal and line-edit problems.

‘ Program construction tasks provide an obvious means of

investigating the nature of program design, although they have the

serious disdvantage that it is difficult to devise comparative

experiments involving their use (therefore, they are usually employed

in observational studies). The source of the difficulty in the

present context was that subjects' strategies were attributes and

therefore not under experimental control. The obvious preference for

comparative experimentation necessitates devising a scenario in which

the variable under investigation is a treatment rather than an

attribute. For two of the comparative experiments “carried out,

suitable experimental material was specially devised, this comprising

of outline programs (hereafter known as a process structure cues) and

lists of “elementary” instructions. The two process structure cues

with their respective lists of actions used for the signal problem are

provided in appendix 2, whilst the three cues and lists for the line

edit problem are given in appendix 4.

The process structure cues used corresponded to different

decompositions of the problem. Each was based on a particular (e.g

primitive or abstract) perception of the problem structure. The cues

were refined to a level such that a complete program could be obtained

by allocating "elementary" actions (elementary in the sense that their

functional description needed no further elaboration) to the former.

Therefore, these cues in skeletal form (i.e., without the actions

necessary to fulfill the processing requirements) consisted of

PAGE 55

suitable key-words used to express sequence, selection, and iteration

structures, with appropriate conditions for the latter two constructs.

The experimental procedure involved subjects having to construct

programs by allocating actions from the action list to their given

process structure cues. Hence, problem decomposition became a

treatment in the experiment. Furthermore, in order to ensure that the

effect of any significant differences could be attributed to the

treatment rather than alternative sources of variation, the following

measures were considered in developing the cues:

- The key-words used were from the subjects' main programming

language (Algo168);

- The idea of labelling the action list so that subjects need

write only numbers (say) in the spaces provided in the process

structure cues was considered; however, the superficial

convenience of reducing the task to “programming by numbers"

was rejected on the grounds that it might have caused

confusion with program readability and understanding as

subjects assimilated the problem and developed the program;

- The positioning and size of blank areas in the process

structure cues was such that no implied significance could

be attached to them regarding the number, or placement,

of instructions. The spacing of blank areas was such that,

wherever subjects would have reasonably expected instructions

to appear in relation to their knowledge of Algol68 syntax,

a spatial area was left blank. In addition, these blank

areas between key-words were made equal in size;

- The stylistic rules used regarding formatting and

discriminability of key-words, choice of variable names etc.

were in accordance with the conventions for program clarity

as advocated on their programming courses.

PAGE 56

The action list could have been formulated in a number of

different ways depending on the elementary actions chosen. Though

syntactical form would correspond to Algol68, there were a number of

equivalent semantic forms. The list used could either be:

- a “complete set", where the required actions included all

possible alternative forms;

-.a "sufficient" set, where all the required actions include

repetitions for those that would be required more than once;

- a “canonical” set, in which each of the required actions

is given once only.

The latter alternative was chosen because it was considered that the

first alternative would lead to a lengthy list involving a large

number of actions that would not be used and would therefore be a

source of confusion. Furthermore, in the second alternative, the

actions that needed to be repeated were not dependent solely on the

problem requirements but also on the syntactical rules of the language

being used.

3.3.3 Choice of Metrics

Deciding upon suitable metrics depends largely on the variable

being. investigated and the type of task being performed . In the

experiments where subjects developed a program from the specification

alone, it was necessary to devise an investigative rationale/framework

so that subjects’ attempted solutions could be analysed. The problems

were chosen on the basis that they possessed more than one distinct

solution. Furthermore, the problems were such that their solutions

could be mapped according to their constituent process abstractions

onto one of a small number (e.g two or three) of decomposition

paradigms. A first-level solution template for the family of problems

PAGE 57

chosen can be represented as a hierarchy of abstract processes (where

processes 1 and 2 are components of either a sequence or selection

construct) as shown below.

program

initial process final

process data process

process

item

process 1 process 2

The actual decomposition paradigms for a particular problem can be

generated from this template by characterising the processes involved

in the hierarchy - in particular, the process pair at the root of the

hierarchy, hereafter referred to as the ‘characteristic process pair'.

By way of example, for the signal problem, two possible decomposition

paradigms can be characterised as follows. On the one hand,

specifying the characteristic process-pair as 'process vehicle signal'

and ‘process timing signal' leads to one paradigm. On the other hand,

a characterisation which incorporates a process specified as 'process

PAGE 58

waiting period', irrespective of the precise nature of the other

process, leads to the other paradigm.

In the classification of attempted solutions, it was decided that

the process description of the characteristic pair was to be the sole

arbiter, _so that factors such as syntax/notation used or positioning

(correct or otherwise) of "elementary actions" (e.g input statements,

assignments etc.) were not considered. In addition, the quantitative

metric in analysing subjects' attempted solutions would be the

frequency/proportion of solutions based on the different possible

decomposition paradigms. It was considered that this metric would

effectively quantify subjects' "preference" for a particular paradigm

and would therefore be a useful contribution to the investigation.

In two of the experiments, there was a specific aim of

investigating the relationship between different problem decomposition

strategies and effort required. In these experiments, subjects were

asked to produce solutions to specified problems. using process

structure cues and an action list, and it was necessary to devise

metrics to analyse subjects attempted solutions. The effort required

was measured in terms of the total time taken to develop a complete

program. The rationale for using this measure is that the rate at

which subjects are able to perform the task of accomodating actions

into cues reflects the effort required to comprehend and elaborate the

latter. Moreover, the justification for such a view is as follows.

It can be assumed that, in decomposing a problem and designing a

program, a subject produces some internal representation of the

problem together with a subsequent model of its solution (this is

consistent with Greeno's idea [110] of cognitive representation and

Hoc's notion of a "systeme de representation et de traitment" [111] in

the area of problem solving). It follows therefore, that the

ease/difficulty with which subjects comprehend and elaborate cues

PAGE 59

will be dependent upon the degree to which the latter "mirrors" their

internal model. On this basis, it is reasonable to use this metric to

evaluate different problem decompositions with respect to the effort

required in their comprehension and elaboration.

A further metric used for measuring subjects' performance was

defined in terms of the number of elementary actions correctly located

in the structure cue. A better measure may have been achieved by

weighting the components, as some were deemed more difficult to locate

than others. However, as there were no objective criteria by which

such weighting could be carried out, it was accepted that the choice

of equal weight would prove satisfactory.

To obtain observational information about the relationship

between decomposition strategies and subjects’ errors, a metric was

specially devised which measured the error frequencies in subjects'

attempted solutions. The analysis required to compute these

frequencies consisted of classifying and mecumuTaeing subjects' errors

made in relation to certain features of the problem requirements, so

that each frequency corresponded to the number of errors for a

particular feature. More specifically, the chosen features were

associated with refinements of the characteristic process-pair. The

Tationale for this choice was that such an analysis could yield an

"in-depth" insight (i.e., one that is subsequent to the first level of

refinement and focuses on those sub-processes which require the most

elaboration) into possible relationships between strategies and

errors.

In the next two sections, details of the plan, execution and

analysis of the investigation, involving the two sets of experimental

studies, are presented.

PAGE 60

2 (an example of an error frequency computation is shown in appendix 6)

3.4. The Signal Study

The problem specification used in the three experiments of this

study possessed several different solutions, a feature considered

pertinent to the objective of obtaining insight into subjects' design

strategies.

3.4.1 Experiment 1

Aim

The aim of this exploratory experiment was not only to gather

observational evidence on the kind of strategies used by subjects, but

also to use this evidence to form evaluative hypotheses for further

experimentation.

Subjects

The 129 subjects taking part were groups of computer science

students attending a number of different educational establishments.

Individuals therefore exhibited considerable variation with respect to

the following characteristics:

length of experience (from about 1/2 year to 3 years or more) 3

level of training (from pre-university to postgraduate);

- the design notation they employed (this included flowcharts,

Nassi-Shniederman diagrams and Algol-style language);

primary programming language (from Basic to Algol 68).

Materials

Subjects vere each supplied with a single-sheet computer

print-out of the signal problem as given in appendix l.

Procedure

The experiment was conducted during a 50-minute class period with

different groups over a number of weeks. The subjects were given

PAGE 61

instructions verbally by the same experimenter for each session. They

were told that they were required to design a program in any design

notation or high-level language with which they were familiar. It was

emphasised that they were participating in an experiment and not a

test, and that they should feel free to seek clarification of any

aspect of the problem from the experimenter, though not from each

other, They were encouraged to show any development or working

carried out in obtaining the program.

Metrics

Various metrics were used to analyse the experimental data, these

relating to: subjects' preference for a particular solution type,

subject performance and frequencies of errors in solutions. Although

several different hierarchical process structures can be identified

for the signal problem (see 4.1.2), attempted solutions were

categorised into only two decomposition paradigms , hereafter denoted

by sl and s2, this classification being considered adequate to the

needs of the investigation. The sl paradigm corresponds to a solution

in which the characteristic process-pair is ‘process vehicle signal’

and ‘process timing signal’, whereas the s2 paradigm corresponds to a

variety of solutions in which one process in the characteristic pair

is ‘process waiting period', the precise nature of the other process

being immaterial. Representations of these two decompositions,

accompanied by corresponding complete solutions, are given in appendix

ie The first metric above was used to evaluate the significance of

subjects' preferences. The second and third metrics were used

respectively to evaluate the significance of a trend between length of

experience and performance, and error frequencies associated with

fulfilling certain problem requirement goals .

Results

Data for 106 (90%) of the subjects was analysed, the remaining

PAGE 62

subjects having- made insufficient progress in producing programs that

could be meaningfully analysed. The most illuminating statistic was

the frequency of subjects' preferences for solutions based on sl and

s2 3 these were 97 (91.5%) and 9 (8.5%) respectively.

The performance scores (i.e., the number of elementary actions

correctly’ located) ranged from a maximum possible of 9 to a minimum

observed of 5. They were grouped into four sets corresponding to

different lengths of experience. A table of each set with its mean

performance score and frequency is given below:

length of mean group.

experience performance frequency

less than 1 year 6.81 Si

between 1 & 2 years 7.02 50

between 2 & 3 years Peed 14

greater than 3 years 7.55 Le

The resulting data consisted of 4 independent samples of ordinal

values, and there is a strong intuitive basis for assuming a

correlation between experience and performance. Therefore, a

Jonckheere trend test [112] was applied.

Null Hypothesis: There is no relationship between experience and

performance.

Alternative Hypothesis: Performance improves with experience.

Decision Statistic: Normal approximation to the Jonckheere test with

ties.

Significance level: 0.05

Computed probability: p < 0.005

Conclusion: Accept alternative hypothesis.

In addition to establishing the presence of this highly significant

trend, it was decided to assess the degree of improved performance.

PAGE 63

The use of an assymetrical measure of association is appropriate,

since the focus of interest was on how length of experience improves

performance, rather than the other way round. The value obtained

using Somer's delta [113] was 0.23 which may be interpreted as saying

that, if two subjects were selected from different sets, there would

be a 23% chance that the subject from the more experienced group would

perform better.

Before considering subjects' errors, a table is presented below

showing frequencies with respect to the progress made as defined by

specific "milestones" in the development of an sl-type solution:

Progress made Freq

Satisfied the first two processing requirements only 18

Satisfied the first two requirements, and attempted the third,] 45

Correct solution apart from "final check for longest wait" 30

Correct solution 6

The error analysis centered on problem-requirement features of

the signal problem that are associated with the refinement of the

characteristic process-pair, and in particular on the two processes

involved in fulfilling the third processing requirement, as it is the

attainment of the latter that is the main source of complexity with

the signal problem. In practice, this involved inspecting solutions

to determine whether certain actions had been omitted or misplaced.

The relative frequencies (expressed as a percentage of the frequency

of solutions in the second category above) of the two processes -

namely, ‘reset waiting period' and 'check for longest waiting period'

- were 53% and 47% respectively. In addition, a significant error

measurement for the 106 subjects was the absence of the ‘final check

for the longest waiting period' in 94% of the solutions.

PAGE 64

3.4.2 Experiment 2

The aim of the second experiment was to obtain evidence as to why

such a highly significant proportion of subjects favoured an sl-type

solution. One obvious explanation for this preference, which became

the investigative hypothesis for this experiment, was that an sl-type

solution is in some sense easier to perceive. Since problem

decomposition was merely an attribute of the participants in

experiment 1, it was now made a treatment. To achieve this, subjects

were split into two groups, one being guided or "cued" to sl, the

other to s2.

Subjects

The subjects were 20 second-year computer science undergraduates

trained in step-wise refinement and Algol68. They were divided

randomly into two groups of equal size.

Materials

Supplied to each subject were:

(a) A specification of the problem as for experiment 1;

(b) A skeletal process structure cue corresponding to either

sl or s2 (see appendix 2);

(c) A list of actions necessary to develop a complete program

(see appendix 2).

Procedure

The procedure was essentially the same as for the first

experiment. Subjects were instructed that, from the materials they

received, they had to produce a solution to the given problem by

allocating actions from the action list to appropriate positions in

the skeletal cue. They were informed that certain actions might have

PAGE 65

to be inserted more than once in order to obtain a complete solution,

and that no implied significance should be attached to the size or

positioning of blank areas in the outline program structure. The

start time of the experiment and the finishing times for subjects were

recorded.

Metrics

The ease with which subjects comprehended their cues was measured

in terms of the total time taken to accomplish the task of developing

a program.

Results

A table of times (to the nearest minute) taken by individuals of

the two groups in producing completed solutions is given below.

Group sl OS 14 dais) Se 1S! 17 20, 527

Group $2) 1/215 22° 23° 23) 23. 24 29' 29: 30

Note, that of the 20 subjects who took part, 1 in group sl and 2 in

group s2 produced solutions that had to be rejected due to

insufficient development. The times taken formed two independent

samples of ordinal data and therefore were analysed using a

Mann-Whitney test [114] (although informal inspection of the table

suggests a significant difference between the two groups).

Null Hypothesis: The two groups do not differ in the time taken to

develop a program from the given cue and action list.

Alternative Hypothesis: The group cued to decomposition s2 will take

longer.

Decision Statistic: Mann-Whitney

Significance Level: 0.05

Computed Probability: p < 0.005

Conclusion: Accept alternative hypothesis

PAGE 66

Furthermore, the size of the difference was measured using a

Hodges-Lehman estimate [115], which indicated that a subject cued to

s2 would take some 9 minutes longer to complete the task.

3.4.3 Experiment 3

Aim

If the signal problem's processing requirements are imposed upon the

sequence of input signals, the outcome will be a (logical) data

structure corresponding to s2. It would therefore be expected that a

population of subjects who had received training in Jackson's

principles would produce a significantly greater proportion of s2-type

solutions than the participants of experiment 1. The aim of the third

experiment was to test this prediction. The obvious course of action

would have been to conduct a comparative experiment involving a

population divided into two groups, so that one group received

training in step-wise refinement and the other group was trained to

use a data-emphasis structuring principle. However, practical

circumstances precluded comparative experimentation (no subjects who

had received both types of training were available), and thus another

observational investigation similar to experiment 1 was conducted.

Subjects

The 34 subjects were second-year undergraduates from various

disciplines who had chosen programming as a "complementary studies"

option. As part of their training, they were required to attend a

weekly series of first-year computer science undergraduate lectures on

step-wise refinement and Pascal. In addition, they received separate

parallel instruction that stressed the need to consider the logical

structure of data as a means of obtaining an outline algorithim.

p\ Materials, Procedure and Metrics

PAGE 67

As for experiment 1.

Results

Five subjects failed to produce solutions which could be meaningfully

analysed. The frequencies (with their percentages) of sl-type and

s2-type solutions produced by the 29 subjects were 16 (55%) and 13

(452). respectively. Comparing this result with that of experiment 1

yielded two independent samples of categorical data.

Null hypothesis: There is no difference in the division of sl and s2

frequencies between subjects in experiments 1 and 3.

Alternative Hypothesis: Subjects trained in Jackson's principles will

produce a greater proportion of s2 solutions.

Decision Statistic : A normal approximation to the Fisher exact test

[Lisy.

Significance level: 0.05

Computed probabilty: p < 0.000005

Conclusion: Accept alternative hypothesis.

An estimate of the size of the difference using a Somer delta [113]

revealed that it was 36% more likely that subjects from experiment 3

would produce a s2-type solution than those from experiment 1. The

frequencies of performance values ranging from the minimum observed to

the maximum possible for the two groups is given below.

scores

4S 6. ov 8 9

Group sl Deane 2. 2!

Group s2 ao: 3 1
The results form ‘two independent samples of ordinal data. Although

informal inspection reveals a marked difference between groups, data

was nevertheless analysed for significance using a Mann-Whitney test

PAGE 68

[116]. Moreover, as an s2-type solution was considered superior to

the other because it possesses a greater degree of modularity, a test

was carried out for increased performance in the s2-group.

Null Hypothesis: There is no difference in performance scores between

the two groups.

Alternative hypothesis: The performance of group s2 is significantly

greater.

Decision Statistic: Normal approximation to the Mann-Whitney test with

extensive ties.

Level of Significance: 0.05

Computed probability: p < 0.0001

Conclusion: Accept alternative hypothesis

In addition, an estimate of the size of the effect was made using

Somer's delta [113], which revealed that there was a 78% chance that a

subject from the s2 group would perform better than from the other.

One possible contributory factor that was advanced to explain the

apparent ease with which sl-type solutions were perceived, was the

presence of certain key-words or phrases in the problem wording and

the particular combination of processing requirements presented

therein. This formed the basis for the second investigative study.

3.5 The Line-Edit Study

It is almost axiomatic that problem wording will influence

problem solving and hence the solutions produced. The aim of the

first two experiments in this study was to characterise subjects

strategies and gather observational evidence regarding the conjecture

(from the first study) that certain features of the problem wording

would act as cues for decomposition. Furthermore, the problem chosen

was considered appropriate to the needs of the investigation because

PAGE 69

it contained explicit references to both primitive and abstract

problem specification features. In the third experiment, the

previously mentioned conjecture was systematically investigated by

devising four problems, constructed from the specifications of both

the signal and line-edit problems.

3.5.1 Experiment 1

Subjects

These consisted of 36 third-year computer science undergraduates

trained in step-wise refinement and Algol68.

Materials and Procedure

These were as for experiment 1 of the signal study except that

each subject was supplied with a specification of the line-edit

problem as given in appendix 3.

Metrics

As in the observational experiments of the signal study,

subjects' attempted solutions were mapped onto decomposition

paradigms. The three paradigms (respectively refered to hereafter as

Ll, L2 and L3) that were judged adequate for classification, in terms

of the characteristic ~ process-pair. were:

Ca): "build a line of m chars', ‘adjust line and then output';

(ii) ‘process space', ‘process character';

(iii) ‘build a word', ‘output a word’.

Representations of the corresponding hierarchical process structures

with their completed solutions are given in appendix 3.

The error analysis carried out was similar to that of the signal

study, the frequencies of errors associated with fulfilling the

following problem requirement features being accumulated:

(a) removing successive spaces;

PAGE 70

(b) inserting a single space between words;

(c) preventing a space being output before the first word;

(d) preventing a space being output before the end of a line.

These were chosen because their attainment, or lack of, was the source

of several mistakes, as noted by Goodenough and Gerhart [117], in

Naur's [a] original, and other subsequent published solutions.

Results

Of the 36 solutions, 5 were not classified as they had either not

made sufficent progress or did not match one of the three

decomposition paradigms. The division of frequencies for the

remaining subjects, respectively corresponding to decompositions Ll,

L2 and L3 were 15 (48%), 6 (20%) and 11 (32%), did not reflect a

strong preference for a particular decomposition type. On the basis

of interpreting the preference for sl-type solutions in the signal

study as an indication that subjects favour solutions based on

primitive perceptions, comparisons of frequencies based on primitive

(i.e., Ll & L2) and abstract (i.e., L3) solutions were performed.

Null Hypothesis : There is no significant difference between

frequencies of solutions based on primitive, as opposed to, abstract

perceptions.

Alternative Hypothesis: There is a preference for solutions based on

primitive perceptions.

Decision Statistic: Normal approximation to a Binomial test [118]

Significance Level: 0.05

Computed Probability : p < 0.024

In addition to the division of frequencies for progress made

(i.e. frequencies corresponding to solutions satisfying either all

three or the first two problem requirements), the error analysis also

involved calculating for each solution type:

- the error frequency for each of the four above-mentioned

PAGE 71

features;

- the error percentage, which is the total number of subject

errors expressed as a percentage of the maximum possible number

of errors that subjects could make the latter simply being four

times the group frequency). The results are as follows:

Solution Progress Errors Error %

Type all 3 first two a, =D “a> od

Ll 4 11 214 15 7 5 78

L2 6 0 3 eee. 5 45

L3 ah 0 1 is Lee) 30
Since decomposition strategy was an attribute in this experiment,

a second controlled experiment was performed using process structure

cues to make the variable under investigation a treatment.

3.5.2 Experiment 2

The first experiment in the line-edit study revealed that all

subjects' attempts, irrespective of solution type, were based on

erroneous decompositions. This was because they had not realized that

certain additional predicates were necessar y to ensure that solutions

did not contain the errors previously mentioned in (3.5.1). It was

considered that the inclusion of these predicates in the process

structure cues would unecessarily increase the complexity of the cues

and might also be a source of confusion. Hence, the cues used in this

experiment were erroneous, in that they were in a form that non-cued

subjects might be expected to produce when attempting to solve the

problem (as in the first experiment). Furthermore, since the

completed solutions presented in appendix 3 are based on these

PAGE 72

decomposition cues, they are also incorrect.

Aim

In the signal study, the preference for primitive solutions was

attributed to the ease with which primitive decompositions were

perceived. In general terms, the effort required to- produce a

solution is not simply the effort involved in perceiving a

decomposition. More accurately, it can be described as the sum of the

effort required to perceive a decomposition and elaborate this

resulting decomposition into a completed solution. It might therefore

be reasonable to assume that in the case of a problem for which there

is no strong preference for a particular decomposition type (e.g.,

the line edit problem), possible differences in times taken to produce

a solution may be indicative of elaborative effort required to

complete that solution. Moreover, on the basis that the effort

required in elaborating decomposition types will vary from one

decomposition to another, the following experiment .to compare

differences in elaborative efforts between groups was performed.

Subjects

The 24 subjects were third-year computer science undergraduates

trained in step-wise refinement and Algol68. They were divided

randomly into three groups.

Materials

Each subject was provided with : a specification of the

line-edit problem, a process structure cue corresponding to either Ll,

L2 or L3, and a list of actions to develop a complete program from the

cue (see appendix 4).

Procedure

As for experiment 2 of the signal study.

Metrics

The effort required to produce a program was measured in terms of the

PAGE 73

time taken to develop a complete solution.

Results

Of the 24 subjects that participated, one in each group produced

solutions that had to be rejected due to insufficient progress. The

data for individual times taken (to the nearest minute) by the three

groups is shown in the table below.

Group Ll 2122) 23.2428 33; 36

Group L2 | 15 15 19 19 20 20 22 24

Group L3 | 14 15 20 20 21 21

The data was analysed for differences between groups using a Kruskal

Wallis test [119]. This revealed a significant difference between

groups (p < 0.005). Moreover, pair-wise comparisons testing for

differences between groups using a Mann-whitney test [114] with a

significance level appropriate to the comparisons rather than the

experiment (i.e., 1/3 of 0.05), yielded the following:

- times of group Ll >, times of group L2 (p < 0.005)

- times of group Ll > times of group L3 (p < 0.005)

- times of groups L2 and L3 do not differ significantly.

3.5.3 Experiment 3

Aim

The aim of this experiment was to investigate the effect of problem

specitication on problem decomposition by varying the processing

requirements and key-words in the input data description. More

specifically, the experimental hypothesis was that explicit references

to primitive or abstract problem specification features are

responsible for corresponding (i.e., primitive and abstract)

PAGE 74

decomposition types.

Subjects

53 second-year computer science undergraduates trained in step-wise

refinement and Algol68 were used. They were randomly divided into

four groups, each group being assigned one of four treatments.

Materials

The ‘four treatments were devised by systematically manipulating two

factors, namely, removing the need to fulfill primitive processing

requirements, and/or introducing the presence of abstract data items.

The four problem specifications (specified in appendix 5), which

represent the four experimental treatments, are characterised as

follows:

(i) Problem I is the signal problem unaltered;

(ii) Problem II is formed from the data description of the

line-edit problem containing references to an abstract data

item, namely, ‘'word' and a set of processing requirements

that are equivalent to those of the signal problem;

(iii) Problem III is the signal problem with only the third

requirement. The specification removes the explicit

presence of primitive processing requirements (i.e., those

that correspond to single elementary actions),

thereby emphasise the presence of the remaining abstract one;

(iv) Problem IV is formed by taking the data description of the

line-edit problem and adding a processing requirement which

is equivalent to the third requirement of the signal

problem.

The hypothesis to be tested was that the proportion of abstract to

primitive decompositions should increase from group solving problem I,

PAGE 75

having the smallest ratio, to the group solving problem IV, having the

largest.

Procedure and Metrics

As for experiment 1.

Results

The data for 46 (87%) of the solutions was analysed, as the remainder

had made insufficient progress for analysis. The frequencies for

primitive and abstract solution types for each group were:

Group Frequencies

primitive abstract

is 11 0

ob 10 3

Til a }

IV 4 6
4

The data reveals that the preference for primitive solutions can not

only be counteracted, but actually reversed, with appropriate cues in

the specification. Furthermore, a Jonckwere test [|.112] was applied

for a trend’ in group order I (II, III) and IV, where the middle two

groups were combined as there was no obvious a priori rationale for

distinguishing an order difference between them. The test indicates

the presence of a highly significant trend (p <0.005).

Summary

In theory, significant results obtained from comparative

experiments imply that the treatment under investigation is

responsible for the observed effect, provided that other factors were

PAGE 76

experimentally controlled. In practice however, this high degree of

control was not achievable for two reasons. First, it was difficult

to determine prior to experimentation exactly what factors might need

controlling. Second, control of between-subject-variance via the

within-subjects-design technique would have implied producing

programming problems of equivalent complexity. Therefore, a more

reasonable, and at the same time more cautious interpretation is that

the results from comparative experiments represent a higher degree of

association between the treatment and the observed effect than those

obtained from observational experiments. Bearing this in mind, the

results of the investigation can be summarised as follows:

- There is a marked preference for solutions based on primitive

perceptions of problem structure as observed in the first

experiments of the signal and line-edit studies;

- There is a difference in effort required to produce solutions

based on primitive and abstract perceptions. The second

experiment on the signal problem suggests that greater effort

is required for solutions based on abstract perceptions, whereas

the corresponding experiment on the line-edit problem indicates

the reverse;

- The effect of prior training of subjects to look for logical

data abstractions produces, as seen in experiment 3 of the

signal study, an increase in solutions based on abstract

perceptions of the problem structure;

- The results of the last experiment in the line-edit study

strongly suggest that the presence of certain key-words

and processing requirements in the problem specification

can influence the decompostion strategy employed by subjects;

- Observations from the initial experiments in each study

indicate that there is a relationship between subject error

PAGE 77

PAGE 78

4. Discussion

4.1. Problem Analysis and Design evaluation

4.1.1 Introduction

The first part of this chapter details an analysis of the signal

and line-edit problems and their respective possible solutions, an

informal "top-down" exposition of which is presented. Initially, each

solution is characterised in terms of an “item-type-to-be-processed",

hereafter refered to as ITEM. Essentially, an Item is that perception

obtained from consideration of input data and/or processing

requirements (including output) which becomes pivotal to the

subsequent decomposition of the problem. The various alternative

solutions to each problem based on different ITEMs are mapped onto

characteristic ; process structure pairs corresponding to the

decomposition paradigms presented in appendices 1 and 3; the various

characteristic pairs are then refined to obtain process structure

hierarchies. With regard to the line-edit problem, modifications

needed to produce correct versions of the erroneous solutions given in

appendix 3 are also discussed. In addition, all solutions are

subjected to a design evaluation based on the notion of "modularity",

as characterised by certain stated criteria.

Since one aspect of this discussion concerns design evaluation,

it is relevant to consider what constitutes a “good design". At

present, there is no universally accepted method of quantitative

design assessment, although one frequently stressed qualitative

property that is considered necessary for. a good design is a high

degree of modularity. This notion is, to paraphrase Dijkstra [27],

the partitioning of the original amorphous knot of obligations,

PAGE 79

constraints and goals (i.e., the problem specification) into a set of

"separate concerns" (i.e., levels of abstractions). To arrive at an

effective separation of concerns, the levels of abstraction should be

“internally coherent" and “externally isolated", or in Structured

Design terms "tightly cohesive" and "loosely coupled". More

specifically, the implications of these requirements, as pointed out

by Liskov [23], are that:

the combined activity of functions of an abstraction level

supports that process abstraction (i.e, the task implied by

the process specification);

- each level of abstraction has resources (e.g., data) which it

owns exclusively and which other levels are not permitted to

access;

- the flow of information between levels should be in the form

of data passed as explicit arguments via functions;

- the direction of control flow between levels snout proceed

from the top to the bottom; i.e., higher level functions

may call lower level functions, but the latter are not aware

of the existence of the former.

The qualitative assessment of each solution type for the two

problems is carried out by considering three design evaluation

parameters associated with the corresponding characteristic process

pair. These parameters, which readily suggest themselves from the

above requirements, are: the process specification/name, the functions

performed by the process and its resources. In practice, the approach

adopted is to use the above requirements as "benchmarks" to categorise

a solution as being either of "high" quality if it satisfies all of

the above four requirements, or "low" quality if it violates one or

more of those requirements. Additionally, those specific features of

the solution that contribute to its categorisation are highlighted.

PAGE 80

4.1.2 The Signal Problem

Problem Analysis

For ee signal problem, there are two possiblities for ITEM

namely: a "primitive" signal or a "chunked" (waiting) period. Both

these perceptions inevitably influence the manner in which the input

stream is viewed, the processing of which then dominates the

elaboration of the decomposition. There are in fact several distinct,

but correct, perceptions of the input stream, each with its

characteristic process structure pair, the details of which are

presented below:

ITEM Input Characteristic

Stream pair

t* (ve & te) process vehicle period

or process waiting period

(t* & vee

te (ve ft te)* process vehicle period

process waiting period

te (vf t*)* process vehicle signal

process waiting period

Wilt (ve ! t)* process vehicle period

process timing signal

Vel t : Ww ! t)* process vehicle signal

process timing signal

Ww = "vehicle signal", t = “timing signal" and !, & and 8}

PAGE 81

respectively denote unordered alternation, concatenation and unbounded

iteration).

The first three alternatives map onto an s2-type decomposition,

because of the presence of a t* process which deals with a waiting

period, whereas the latter two alternatives map onto an sl-type

decomposition. Although the structure t* & v is incorrect, it is

worth noting because it appeared in some of the solutions of

experiments 1 and 3 of the signal study. Whilst the fourth

alternative is interpreted as an sl-type decomposition, it is regarded

as a perverse solution of the problem since a v* component bears

little relevance to the processing requirements; not suprisingly, it

never occured among subjects' solutions

Since the third and fifth alternatives respectively correspond to

the standard s2 and el paradigms, consideration is now given to the

refinement of their characteristic process structure pairs. In

relation to the fifth alternative, the elaboration of ‘process timing

signal’ is simply two elementary actions, that of incrementing

waiting, and total survey times. The elaboration of 'process vehicle

signal' is, however, more complex acdsee it involves a sequence of

three processes. The first and third are elementary actions that

respectively correspond to ‘increment a vehicle count' and 'reset

waiting period', whilst the second process is composite and involves

the 'check for a possible longest waiting period'. This latter

component is also needed as part of 'final process', to ensure that

the waiting period between the last vehicle and the end of the survey

is also compared against ‘the longest waiting period’.

The refinements of the process pair associated with the s2

paradigm are such that ‘process vehicle signal' is simply the

elementary action of incrementing a vehicle count, whilst ‘process

waiting period' consists of the two composite processes ‘process

PAGE 82

accumulate period' and ‘check for longest waiting period'. This

completes the refinements of the two paradigms and representations of

their process structure hierarchies are presented below:

Psignal
data

Pinitial Pdata Pfinal
body

Psignal Pcheck

max
period

° °
Pvehicle Ptiming
signal signal

Pincrement Pcheck Preset Pincrement Pincrement
v-count max waiting t-count waiting

period period period

sl-type Process structure hierarchy

PAGE 83

Psignal
data

Pinitial Pdata Pfinal
body

Pperiod

° °
Pvehicle Pwaiting
signal period

Pincrement Paccumulate Pcheck
v-count period max-period

Ptiming
signal

Pincrement
t-count

s2-type Process structure hierarchy

PAGE 84

Design Evalauation of sl and s2 paradigms

The characteristic process pair for an sl paradigm in terms of

its design evaluation parameters are:

(i) specification - process vehicle signal

functions - increment vehicle signal, check max period

and reset waiting period

resources - num of vehicles, longest waiting period,

waiting period

Ce specification - process timing signal

functions - increment length of survey and waiting period

resources - length of survey and waiting period

The sl-type is not a high quality design because it violates two of

the four previously mentioned requirements for modularity (see

4.1.1). The latter two functions of "process vehicle signal" do not

support its abstraction, which violates the first requirement; and the

resources of both processes are not exclusively owned, which violates

the second requirement. Re-arrangement of the program code so as to

remove these violations produces:

IF signal = 1

THEN

(* process vehicle *)

increment vehicle count;

set v-arrived

PAGE 85

ELSE

%* process waiting period *)

IF v-arrived

THEN

check for max period;

reset waiting period;

reset v-arrived

FI;

increment waiting period;

increment survey length

ee

This re-arranged version has a resource item v-arrived that is used as

a flag to communicate between the two processes, violating the last

two requirements. In addition, it highlights the placement of actions

that contribute to its poor quality, namely, 'reset waiting period'

and ‘check for max period'. Similarly, it can also be shown that the

'final check for max period' is a further contributory factor to low

quality. In Structured design terms, this solution type is of low

quality because it is control coupled (one process commands the other

process on what action it should take via the flag variable). From a

Jackson perspective, this decomposition type would be deemed

inappropriate because it does not possess a 'process waiting period’

component to which actions associated with a waiting period such as

"reset waiting period' should be allocated.

The s2-paradigm is of a high design quality because all four

requirements are satisfied. The component 'process vehicle' performs

a single function that supports its abstraction and exclusively owns a

data resource which it communicates as an explicit argument. The

PAGE 86

other component "process longest waiting period' performs two

functions (i.e., "process waiting period' and 'process check

max-period'), both of which support its abstraction; its data

resources are exclusively owned and communicated as explicit

arguments. The feature that contributes to this design being high

quality is the presence of the component ‘process waiting period’,

which produces a design encapsulating an abstraction level that

preserves an effective "separation of concerns", or from a Jackson

viewpoint, reflects the logical structure of the data.

4.1.3 The Line-edit Problem.

Problem Analysis

In order to analyse the line-edit problem in the same manner as

the the signal problem, the following observations concerning the

former should be noted: that it includes non-trivial input and output

streams and that ITEM can be perceived as either a line, word or

character. Each of these perceptions defines a different solution;

these are presented as three separate cases (s = space character, c =

non-space character, n = newline):

Line-driven

The implications for the input and output streams of perceiving

ITEM as a line are that there are two possible perceptions for the

former, namely: (s ! c)* or (s* & c*)*, whilst the latter's structure

is ((s & c*)* & n))*. The characteristic process-pair for the first

input perception is ‘build a line of m characters' and ‘adjust line

and then output', whereas for the second it is 'build a line' and

‘output a line’. In the first perception, a line-item is visualised

PAGE 87

as a simple repetition of characters, which implies that there is the

possibility of ‘build a line of m characters' encountering a line

break in the middle of a word; the second perception, however,

visualises a line-item as a repetition of words and therefore 'build a

line' produces a repetition of complete words. Interestingly, all

eapieeeas, solutions based on a line ITEM corresponded to the first

alternative, which can be refined into the Ll-type solution presented

in appendix 3.

Character-driven

There are three different solutions that are based on ITEM as a

character. One possible way of arriving at a program that is

essentially Naur's original solution [4] is to visualise the input

stream as (s ! c)*, the characteristic process-pair as being 'process

space' and ‘process non-space-character’. The other two possible

solutions have input streams that correspond to (s* ! c)* and (s !

cv), For all three solutions, the output stream structure is ((s &

ex) ! (n & c%*))*, though it is the input stream perception that

dominates the initial decomposition. Of the three, only the first

alternative can be elaborated to an L2-type solution as given in

appendix 3. The latter two are “hybrid” in the sense that some

"chunking" (i.e., character grouping) is present. Of the six subjects

who produced solutions that were categorised as L2-type

decompositions, there was one of each hybrid type.

Word-driven

There are two alternative solutions where ITEM is a word. One

solution is based on a perception of the input stream as (s* & c%

PAGE 88

with a characteristic process pair of ‘build a word’ and ‘output a

word'; the other is based on (s* ! c*)* with a characteristic process

pair of 'process spaces' and ‘process non-space characters’. The

output stream structure for both solutions is the same as in the

previous case. Note thus that, from a Jackson perspective, making

ITEM a send achie ves a degree of perceptual correspondence between

the :input and output stream structures that is absent in the other

two cases, Note further that, the former alternative can be refined

to an L3-type solution, whilst the latter never appeared amongst

subjects' solutions.

Refinement of characteristic pairs

Having specified the characteristic pairs for the three

decomposition types, consideration is now given to their refinements

so as to produce detailed process structure hierarchies. Both

characteristic processes of the line-based perception, namely, ‘build

a line' and ‘adjust a line and then output', involve composite

sub-processes that need considerable refinement. The first process

repetitively adds a non-redundant character to the current line,

whilst the second process adjusts the line if there was a line break

in the middle of a word, and then outputs the line. This latter task

is elaborated in terms of two composite processes that need further

refinement (as can be seen from the completed solution). However, the

process structure hierarchy for an Ll-type solution shown in Figure 1

is adequate for the needs of this discussion.

The elaboration of ‘process non-space character', a

characteristic process of an L2-type decomposition, consists of two

elementary actions adding a character to a word and incrementing the

size of the word. The refinement of ‘process space',the other

PAGE 89

characteristic process, is more complex. This is due to the need to

distinguish between the cases when a space is either redundant or acts

as control character for output, in which latter case a space denotes

either the end of a word ora line. The process hierarchy for an

L2-type solution is shown in Figure 2.

iprocesd output word', one of the characteristic processes for a

word-based decomposition, distinguishes between the cases in which a

word is output on either the current line or a new line, so that the

word can be preceded by an appropriate separator. The function of

‘process build a word' is to get the next word; this involves two

repetitive processes, one skipping over spaces, the other

concatenating non-space characters to form the next word. The process

hierarchy for an L3-type solution is shown in Figure 3.

PAGE 90

Ptext

Pstart Ptext
of text body

Pline

Pbuild
a line

Pdeal with
character

Pspace Pnon-space
character

Pend of
text

Padjust a line
then output

° °
Pline-break Pnormal
in middle line-break
of word

Figurel

PAGE 91

Ptext

we
Pstart Ptext Pend of
of text body text

Pcharacter

de ,

Pspace Pnon-space
character

° °
Predundant Pcontrol
space space

oo |

Pend of Pend of
word line

Figure2

PAGE 92

Ptext

Pstart Ptext Pend of
of text body text

Pword

Pbuild a Poutput
word a word

°

Premove Pproduce Pnewline Peurrent
spaces a word word line word

= ‘

Pspace Pnon-space

character

Figure3

PAGE 93

Design Evaluation

It is appropriate for the purposes of this discussion to evaluate

design quality of decomposition paradigms based on subjects’ actual -

albeit incorrect - attempts rather than on the correct versions. For

the 13-ype decomposition, the characteristic pair described in terms

of its design evaluation parameters is as follows:

- one process specifies its abstraction as "build a word";

it "imports" character items and "exports" word items

via a function that performs only the task specified

in its process abstraction;

- the other process, specified as "output a word", imports

and exports word items via a single-task function.

The design satisfies all four previously mentioned requirements:

first, the function of each process support the its abstraction;

second, the resources form an effective "separation of concerns"

because ‘build a word' conceals the details of processing characters

to form words from ‘output a word'; third, both processes communicate

data as explicit arguments; fourth, control flow is "top-down" and

therefore, the design quality is assessed as "good". The presence of

the two single-task functions, each of which owns its resources

exclusively, is responsible for this evaluation.

The functions performed by 'process space’, a characteristic

process of the L2-type design, are to remove redundant spaces and to

output words. Because the process abstraction (i.e., the task implied

in its specification) is not supported by these functions and in

addition, there is no effective "separation of concerns" in resources

(i.e., words and characters), neither of which is exclusively owned by

either process, the design quality is assessed as poor. The major

PAGE 94

factors that contribute to this classification lie with ‘process

space’, or more specifically, with the functions of this process.

The characteristic processes for the line-based decomposition,

"build a line’ and ‘adjust line and then output', violate the second

requirement because both processes own character and line (i.e., there

is no effective separation of data). Furthermore, the information

being passed from the former process to the latter appears to be a

single explicit data item. However, closer examination reveals that

two parameters are actually being passed, namely, the line and the

next input character. The latter item acts as a flag which transmits

control from the first to the second process.

Interestingly, from a Jackson perspective, the L3-type

decomposition is based on the logical structure of the input data,

whilst the other two designs would be rejected as their structure is

inappropriate to the problem requirements. From a Structured Design

viewpoint, the L3-type decomposition is functionally cohesive, whereas

the other two solutions are such that their characteristic processes

are control coupled.

Program Modifications

The errors in the solutions presented in appendix 3 are related

to the output of a space at the start, and/or end, of output lines.

The modifications needed for each of the three solutions are discussed

as three separate cases:

(i) -Ll-type solution

The component controlling the output is:

IF char # space OR prev char # space

THEN

PAGE 95

line := line + char;

line size := line size + 1

FI;

The function of the above predicate can be mistakenly interpreted as

detecting the presence of a non-redundant character (which

corresponds to the situation of the input character being one of =

possibilities: either a non-redundant space or a non-space character).

More accurately, its function is simply the removal of successive

spaces. To correct this mistake involves two major changes: first,

the need to separate the two components of the conditional expression,

and second, to introduce the conditions ‘line size F O' and ‘line size

+ 1 <€ m' to ensure that there is no space respectively at the start

and finish of lines. With these modifications, the corrected version

of the component is:

IF char = space

THEN

IF prev char # space

THEN

IF line size # 0 and line size+1¢m

THEN

add space to line;

increment line size

FI

EL

ELSE

add char to line;

increment line size

BLS

(ii) L2-type solution

PAGE 96

The component ‘process space' controlling the output is:

IF word size # 0 (*non-redundant space *)

THEN

output word;

set word size to zero;

set word to empty string

FI;

Since ‘output a word' prints a word preceded by a separator, the first

word will be preceded by a space. However, this will only be the case

for the first line, since, for every subsequent line, the first word

will be preceded by a newline character. The remedy chosen by

Goodenough and Gerhart [117] is to specify a blank line at the

beginning of the output text, which will result in the first word of

every output line being preceded by a newline separator. The effect

of this change can be achieved, as they point out, eicter by:

- conjoining the predicate ‘line size # 0' with the existing

condition that checks whether the current word should be

output on the current line or on a newline;

- or by setting the length of the line to "m" (i.e., maximum

number of characters on a line) at the start of the program.

A simpler modification that does not change the specification is to

nest the condition ‘line size # 0' within the condition for a

non-redundant space.

(iii) L3-type solution

The nature of the error and the reason for its occurrence are the

same as in the previous case, and therefore "guarding" the component

‘process output a word' with the condition ‘line size # 0' in the same

way as above ensures that the first line does not begin with a space.

The approach taken in the above discussion is to consider what

PAGE 97

modifications need to be introduced to the code of certain incorrect

programs to produce corrected version. An alternative approach is to

consider what aspect of the abstract model on which the program design

is based is incorrect; having identified and corrected this error in

the design, the code is then modified accordingly. The former

strategy ae in marked contrast to the latter, because it does not make

use of the refinement levels produced in the derivation process to

trace the source of the error, but simply "patches" the program code.

Applying the alternative approach to the line-edit problem and viewing

the ITEM as a "word-item", the argument is as follows. The program

design model for the L3-type solution processes each word in the same

manner. However, from the above discussion it can be deduced that the

first word in the text should be processed differently. Therefore,

the required perception of ITEM is (s* & c*) & (s* & c¥)*, resulting

in the program:

build word;

print(word);

WHILE word # "*"

DO

build a word;

output a word

oD

In relation to design assessment of corrected versions, it can be

seen that “inserted patches of code" would reduce modularization,

because their presence would not support the process abstraction,

thereby violating, or adding to the existing violation, of the first

requirement. However, the program design based on the modified model

for the L3-type does not violate this requirement and would therefore

be assessed as "good". This consequence is a strong argument for

advocating an error removal strategy that is based on re-designing the

PAGE 98

program rather than "patching" it.

4.1.4 Conclusion

It can be seen that the decision regarding the choice of an ITEM

is a significant determinant in the formulation of subsequent,

refinement levels of an algorithm. Moreover, the input and output

streams are two obvious factors that influence this choice. Indeed,

the Ll-type solution is an 'output-driven' design, whereas the sl and

L2 paradigms are ‘input-driven' designs. In certain cases, the

problem requirements may suggest the possibility of a further

alternative for an ITEM, for example in the case of the signal problem

‘a waiting period' and in the case of the line-edit problem ‘a word'.

In relation to design quality, the discussion reveals that

solutions based on abstract perceptions are superior to those based on

primitive perceptions. Two examples of program structure illustrating

this comparative difference in quality are sl with s2 and L2 with L3.

The "poor" quality of an Ll-type program structure shows that abstract

perceptions do not necessarily correspond to "simply chunked", but

rather “appropriately chunked", perceptions. With regard to modifying

programs, it is noted that a good design (e.g., an L3-type) is easier

to correct than a poor one (e.g., an Ll-type). Furthermore, a SEDEram

modification strategy based on re-design rather than "patch" is

preferable.

A conceptual model will now be presented. This model is based on: the

literature review covering issues in program design; further reading in

rel@vent cognitive psychology; and the experimental results reported

above.

PAGE 99

4.2 Conceptual Model Of Program Designer Behaviour

Software practitioners and human factor researchers, whose common

goal is that of easing the programmer's task, also share an approach

to representing the results of their investigations as a synthesised

system or theory, which is frequently expressed in terms of principles

and notions from other disciplines. For example, Dijkstra has

expressed his ideas [1] on how a program should be designed as a

calculus using mathematical principles, whilst Constantine [17] and

Jackson [26] incorporate into their methodologies concepts from sytems

theory and information modelling respectively. Human factor

researchers in programming have used notions from cognitive psychology

and problem-solving to produce conceptual models of programmer

behaviour for various programming-related tasks. For i atteane Allen

[120] cites several examples of such models including: Sime et. al's

investigations [86] into nested conditionals where results are

explained in terms of a theory of "taxon" and "sequence" information;

Shneiderman and Mayer's proposal [121] of a syntactic/semantic model

of programmer behaviour and Atwood and Ramsay's work [122] which

applies to program comprehension the notion of Kintsch “hierarchical

schema" [123] on text comprehension. This investigation follows the

same tradition by proposing a conceptual problem-solving model of

programmer behaviour for the program design process. The model

explains the behaviour of an aggregrate of programmers trained in

structured programming principles.

4.2.1 Formulation of the model

The program design task is hypothesised to involve the problem

solver, at any given time, carrying out one of three distinct types of

PAGE 100

behaviour:

- problem understanding;

- solution planning (i.e., the generation of a set of goals);

- solution representing (i.e., recording the solution sequence).

Furthermore, since the overall design strategy in structured

programming is essentially step-wise refinement, it can be said to be

reductionistic (i.e., the problem to be solved is reduced into several

sub-problems, with the reduction process being repeated on each

sub-problem). Therefore, the three stages mentioned above need to be

performed repeatedly.

Problem solving, as viewed in its most general form, is an

activity which transforms an initial state, by applying a given set of

operators, to produce a solution sequence that leads to a final state

CSc Therefore, the correspondence between program design (in

structured programming terms) and problem-solving can be specified as:

- initial state : problem specification;

- final state : the program in a formal notation;

- ‘operators : decomposition, abstraction,

concatenation, selection and repetition;

- solution sequence : levels of refinement.

The model components - the problem solver, the problem and the

solution sequence - will now be characterised from a problem solver

perspective.

The problem solver is viewed as an information processor, whose

structure is hypothesised to consist of: a set of knowledge structures

relevant to program design, memory for storing and processing

information and a facility for planning. The former, as Shneiderman

[121] has pointed out, is a complex multi-levelled body of concepts

and techniques that he refers to as "semantic knowledge". In general

terms, this knowledge includes general methods for constructing

PAGE 101

programs, strategies for producing specific programs or program

"segments" and the effects of various program statements. For

example, with respect to all the subjects that participated in the

experiments, it could be said that their knowledge included high-level

notions such as the structured programming operators previously

specitied, and strategies for producing program segments that ranged

from. simple segments such as accumulating a count, to intermediate

segments such as finding the largest element of a list.

The memory structure adopted is based on Greeno's work [110] on

problem solving and Shneiderman's model of programmer behaviour [121].

The structure consists of three components: short-term memory,

long-term memory and working memory. The former stores information

from the outside world to which the problem-solver pays attention but

has a relatively limited capacity (Miller [!24] suggests seven plus

or minus two "“chunks"), although information from it is easily

retrieved. The knowledge acquired through experience by the problem

solver is permanent and resides in semantic form in the long-term

memory, whose capacity is essentially unlimited and retrieval from

which is systematic. The stored information is assumed to be

hierarchically structured, as hypothesised by Lindsay and Norman

{:2g, in terms of categories of concepts; these are organised in the

form of a semantic network (i.e., a tree structure), in which each

node represents a generic concept that is related to its sub-nodes by

an "ISA" (i.e., is an instance of) relationship. The component termed

as “working memory" (due to Feigenbaum [!2é]) is not a permanent store

but has a greater capacity and longer retention time than short-term

memory. Information from short-term and long-term memory can be

integrated in this component to produce solutions during problem

solving.

Solution planning is viewed as goal generation, where a goal

PAGE 102

structure defines the current state, the desired state and a set of

possible strategies to transform the former into the latter. The

mechanism for generating goals needs to be considered because goal

elaboration in program design terms is equivalent to problem

decomposition. Structured programming has no specific well-defined

decomposition criteria, and therefore no systematic mechanism for goal

generation can be defined. However, two distinct approaches can be

hypothesised, which occur when the designer's primary focus of

attention is on one of the two main ingredients of the descriptions of

most programming problems, namely: either the data (it should be noted

here that the term "data" in this context is intended to include both

input and output) specification or the processing requirements. The

two approaches can be respectively termed as "data-driven" and

"“requirements-driven". In addition, it is hypothesised that goal

generation can be characterised by cognitive processes that are a

function of an "availability heuristic". The rationale for this

characterisation is influenced by Pollard's application [!27] of

Tversky and Kahneman's theory of nonrational intuitive judgement to

logical reasoning tasks [12%]. This theory proposes that a subject's

judgements are mediated by an availability heuristic. Pollard

suggests that this heuristic is responsible for two different types of

availability effects, one being the availability derived from the

subject's experience and the other from the salient characteristics of

the stimulus. Both types have an essential common feature: they

directly "cue" the subject's response. Thus the response is a

function of this cueing and is not based on a rational reasoning

process.

The implications of interpreting availability theory in context

of solution planning is that goal generation is not necessarily based

on rational reasoning but is a function of two possible sources that

PAGE 103

are responsible for cue availability. Hence, two different types cE

activations are hypothesised, termed as "stimulus" and "knowledge"

activation, occurring when planning is steered by specific

characteristics of the stimulus and the knowledge structures of the

problem solver respectively. This characterisation of designer

behaviour implies that human-centered factors in program design (e.g.,

the level of difficulty) are not simply attributes of the task alone

but are also related to problem solver knowledge. Furthermore, such a

characterisation attempts to view program design as an accquired

skill, and in so doing, takes note of Sheil's critique [52] that

“programming is clearly a learned skill, and, therefore, what is easy

or difficult is much more a function of what skills an individual has

learned than any inherent quality of the task".

The application of two different types of problem decomposition

strategy are proposed, being based on what Greeno [110] refers to as

“reproductive thinking" and "productive thinking". The former is

essentially a retrieval process, occuring when the subject understands

the problem being solved, remembers the strategy for solving it and

then transfers it in an integrated form from long-term memory to

working memory. In contrast, the latter is a reconstruction precede

that takes place when the problem-solver does not have an existing

strategy for solving the problem. In such a case, the task becomes

one of constructing a solution plan by transforming existing

strategies. An illustrative example from Greeno's discussion is

Wertheimer's area-of-a-parallelogram problem, where knowing the

formula for the area involves a simple retrieval of a strategy, and

therefore is reproductive, whereas realising that a parallelogram can

be transformed to a rectangle is productive.

The input to the model is the problem specification (the

stimulus), which is hypothesised to be a function of the cues

PAGE 104

(primitive or abstract) in the problem wording. In particular, a

distinction is made between cues that stem from the data content and

processing requirements of the specification. Both are assumed to be

possible sources of cues, given that subjects trained in structured

programming should have been taught to pay attention to data

specification as well as processing requirements as a basis for

coleten structuring.

The output from the model (the solution sequence) is hypothesised

to be the stages of program development performed by subjects. For a

particular model, as Card et. al [129] point out, the "grain of

analysis" (i.e., the level of detail) is defined by the operators

used. The operators in this model are simply the strategies that

transform one state to another state. However, in order to provide a

more detailed description of designer behaviour, the approach adopted

in documenting the output when applying the model to a given problem

is that strategies are described informally and the states of the

model, which correspond to program development stages, are

characterised in algorithmic form. Thus, an operational overview of

the model is:

(i) The process of problem understanding yields a description of

the problem-to-be-solved which enters the short-term memory;

(ii) The available cues in this description are the primary

sources for activating cognitive processes that generate

goals in the working memory; these goals are then elaborated;

(iii) Each problem refinement is recorded.

The implications of advancing a model involving stimulus and/or

knowledge activated goal generation processes based on availabilty

theory are that problem decomposition strategies need to be

hypothesised. Furthermore, hypotheses regarding preference for, and

effort associated with, these strategies and contributory factors

PAGE 105

affecting goal generation can then be formulated. The next section

considers these hypotheses and provides empirical evidence that is

consistent with the proposed model.

4.3 Problem Decomposition Behaviour

4.3.1 Strategies

Top-down exposition of a design cannot be regarded as proof of

program development in a step-wise manner. Indeed, Wirth [130], in

relation to his step-wise refinement method, is quite explicit: " 1

should like to stress that we should not be led to infer that program

development proceeds in such a well organised, straightforward,

top-down manner". The implied premise, which will act as a

starting-point for postulating various strategies, is that programs

are not necessarily developed using this idealised way of thinking.

This view is supported by arguments resulting from the application of

the proposed model to the signal and line-edit problems. These

arguments detail the goals, knowledge and/or stimulus activated

processes or other mechanisms for goal generation, and problem

decomposition strategies associated with such goals. A partial record

is thus provided of the "chain of thought" that a typical subject

might undertake in the initial stages of problem decomposition.

First, let us suppose for the signal problem a data-driven

approach where the processing requirements initially are a secondary

consideration. In this case, the goal generation process is both

stimulus and knowledge activated. This is because availability is

derived from the presence of the prevailing signal stream emphasis in

the data specification as well as from the subjects' familiarity with

PAGE 106

the strategy associated with a hypothesised goal, broadly described

as: ‘process a repetition of two different types of signal’. The

representations of this goal structure and the relevant portion of the

problem description are transferred into the working memory. These

representations are then processed by the application of a general

hypothesised data-driven strategy that is assumed to be reproductive

(i.e., part of the knowledge set of the problem solver) and is

characterised as: ‘Process Next Item' (PNI). The transferred problem

description, views an "item" in its most trivial form i.e., as either

(1 or 2) signal. The application of the strategy results in a problem

refinement that corresponds to an sl-type solution and is of the form:

read (signal);

WHILE signal # 0

DO

IF signal = 1

THEN

process a l-signal

ELSE

process a 2-signal

FI;

read (signal)

oD

Alternatively, consider a requirements-driven approach. A

hypothesised goal of: ‘accumulate counts for vehicle and timing

signals', derives its availability from the first two processing

requirements. Furthermore, if it is assumed that the goal is one with

which the subject is familiar, then, the process generating it is both

stimulus, and knowledge activated. Transference of the appropriate

part of the problem description and the goal into the working memory

is followed by the application of a hypothesised general

PAGE 107

requirements-driven strategy termed as ‘incremental design' (ID); its

somewhat bottom-up character can be encapsulated informally by the

phrase: "do what you can and make the rest fit around it". The

resulting component is :

IF signal =1

THEN

increment vehicle count

ELSE

increment survey length

FI

Preservation of this component in the subsequent steps produces an

sl-type solution.

Naturally, a deeper analysis of the signal problem (i.e., one

that is not based simply on the readily available cues) is needed to

generate goals that would elaborate to an s2-type solution. This

involves either :

- perceiving appropriately chunked items which will result in

the generation of the abstract goal: 'process a repetition of

two types of item', where one of these is itself a subsequence;

- or recognising subgoals which reside at a higher level

in the problem structure and therefore require a certain

amount of refinement themselves, which in the signal problem,

context relates to determining the length of a waiting period.

Thus, in developing an s2-type decomposition, the problem-solver

realises the advantage gained from including of a "subsequence of 2

signals" component, as these chunks relate directly to satisfying the

requirement of determining 'the length of the longest waiting period’.

The resulting component is:

WHILE signal = 2

DO

PAGE 108

process signal;

read (signal)

OD;

For the line-edit problem, the three possibile cues in a

data-driven approach are character, word and line. However, since

neither be the three cues is strongly emphasised in the problem

wording, it is considered unlikely that these cues will be the major

source of the availability effects. Similarly, in a

requirements-driven approach, none of the requirements appear to

contain explicit features that could be a major source of availability

effects. Hence, for both approaches it is conjectured that

goal-generating processes are both stimulus, and knowledge, activated.

An L2-type solution results from a data-driven approach in which

a hypothesised goal of the form: ‘process a repetition of two

different types of characters' is both stimulus and knowlegde

activated; this is because availability is derived partially from the

presence of a character emphasis in the problem wording and also

partially from problem-solver familiarity with the hypothesised goal.

The general strategy associated with such a goal is the reproductive

PNI strategy. The transference of this strategy with a description of

the appropriate portion of the problem into the working memory is

processed to yield a decomposition corresponding to an L2-type

solution of the form:

read (char);

WHILE char # '"*"

DO

IE char = space

THEN

process space

ELSE

PAGE 109

process a non-space char

FL

read (char);

oD

To arrive at an Ll-type solution from a data-driven approach

involves hypothesising a goal of the form: ‘process lines of

characters'. The generation of such a goal is considered unlikely for

two reasons. First, availabilty effects would have to originate from

a not particulary pronounced line-item emphasis in the problem

wording. Second, for goal generation to be knowledge-activated would

involve assuming that subjects were familiar with a strategy for

processing a repetition of items (i.e lines) where the item is itself

a subsequence. However, since the results of the first observational

experiment in the signal eculy) indicate a paucity of solutions based
oO

on subsequences, the validity,the latter assumption is questionable.

In a requirements-driven approach, the second requirement, namely, 'no

line will contain more than m characters and each line will be filled

as far as possible', is stimulus activated. This requirement is also

knowledge-activated because the hypothesised goal of: 'fill a line of

m characters', which satisfies the requirement, is one for which it is

reasonable to assume that the problem solver will be familiar with a

program component of the form:

WHILE not m characters

DO

process a character;

read (char)

op’

An L3-decomposition type requires a goal of the form:

‘repeatedly, build a word and then process it’. The presence of ‘word’

in the data description is not sufficiently emphasised to act as an

PAGE 110

an available cue and neither of the three processing requirements are

possible sources of availability effects; therefore, it is considered

unlikely that the goal is generated from these effects alone. One

possible explanation is that the problem solver may have generated

goals of the form: 'repeatedly build a word' and ‘repeatedly process a

word' which derive their availabilty from a combination of the

stimulus and the subject being familiar with a "process next word"

(i.e., PNI-type) strategy; then, in a piece-meal manner reminiscent of

ID, the subject combines the goals to form the required problem

decomposition. An alternative explanation is that the subject,

through a logical reasoning process, perceives the chunking of words,

recognises the necessity for appropriate abstract goals, i.e., ‘build

a word' and 'process a word', and uses a productive strategy to

combine them to produce an L3-type decomposition.

The two problem decomposition strategies hypothesised are assumed

to be of general applicability. The PNI strategy, which is strongly

associated with a data-driven approach, bears some similarity to Hoc's

[131] findings that strategies for program construction are influenced

by the role of "mental execution of the program": it is reasonable to

assume that the most likey self-elaboration of the task is that

subjects would visualise, having contemplated the data, would be to

deal with the list an item at a time. Also, Hoc's ideas of

“strategies of progressive generalisation of a sequential procedure"

and "mechanisms of adapting known procedures to computer operation"

[ibid] provides an alternative perspective to the role ID plays in a

requirements-driven approach.

4.3.2 Related Factors

From the strategies discussion on the signal problem, it was

PAGE 111

observed that there are strong availability effects in both data, and

requirements driven approaches; moreover, these effects both reinforce

the generation of goals whose elaboration leads to an sl-type

decomposition. Therefore, for the signal problem, a strong preference

for sl-type solutions can be predicted, as was confirmed by the

observed bias for sl-type solutions, in experiment 1 of the signal

study. However, for the line-edit problem the strength of

availability effects are not mutually aligned towards one particular

goal, but are in fact responsible, in differing strengths, for

generating distinct goals that elaborate to the three different

decomposition types. The model does not predict the relative

frequencies of the three decomposition types, because of the

difficulty in quantitatively assessing availability effects. It does

however suggest that all three types will be present with relatively

significant frequencies. The frequencies corresponding to Ll, L2 and

L3 decomposition types obtained in the first experiment of the

line-edit study are in accordance with this prediction.

An alternative view of problem solving behaviour presented by

postulating availability effects is, that subjects are not conciously

inclined to seek other possible decompositions but instead adopt a

route of "least initial resistance". The word "initial" is important

here since the ease with which a first-level decomposition is

accomplished is likely not to be related to the ease of its subsequent

elaboration. Such an interpretation means that decompositions

produced by goals that result from availability effects rather than a

logical reasoning process are easier to comprehend, although not

necessarily easier to elaborate. In case of the signal problem, since

all the availability effects are in mutual alignment for an sl-type

decomposition, this means that the latter will be significantly easier

to perceive. The result of the controlled experiment in the signal

PAGE 112

study strongly supports this prediction.

The general implication of the above is that goals generated on

the basis of availability will be based primarily upon simplistic,

rather than abstract perceptions and that the former will occur with

greater frequency, as was observed in two of the experiments. In the

first experiment of the signal study, the bias towards an sl-type

solution can be re-interpreted as a strong preference for solutions

for a decomposition based ona primitive perception. Similarly, in

the first experiment of the line-edit study, comparison of frequencies

of solutions based on abstract and primitive perceptions revealed a

significant preference for the latter. Conversely, solutions based on

abstract perceptions are inherently harder to perceive because they

are more likely to be the product of a logical reasoning process

rather than being triggered by availability effects.

A relevant consideration at this point is the distinction between

novice, expert and experienced subjects. The ability to handle

abstractions .has been identified as one major attribute of experts

that distinguishes them from novices [132]. Therefore it may be

argued that the results obtained simply reflect that subjects were

novices at structured programming who had had insufficient time to

develop the abstraction capabilities that characterise an expert.

Whether the second and third year undergraduates who took part in the

experiments were still novices is a matter of debate. Similarly,

whether any of the participants were experts is something that is

difficult to establish. It is, however, considered that gaining

experience involves applying acquired techniques over a prolonged

period, but this does not necessarily develop skills of any particular

kind. Indeed, the results of the first experiment of the signal

study, where the range of experience of subject groups was the most

diverse, revealed that neither the failures nor the few s2-type

PAGE 113

solutions produced were monopolised by any one particular group in the

population. Therefore, it can be argued that the degree to which

abstractions become revealed to subjects during problem decomposition

is largely due to other contributory factors to which consideration is

now given.

4.3.3 Further Contributory Factors

One of the factors responsible for goal generation is subject

experience. In fact, as predicted by the model and as the

experimental evidence indicates, subjects whose background could be

characterised as experienced in only a broadly "structured approach”

are inclined towards simplistic data, or requirements, driven

reasoning. The generalised converse of this is that abstraction

skills are likely to be more developed in subjects taught structured

programming which incorporates more specific decomposition criteria

(of whatever kind) where perception of abstractions receives greater

emphasis. The third experiment in the signal study, in which the aim

was to investigate the effect of training on problem decomposition,

attempted to make abstract perceptions act as response cues, this

being achieved by training subjects to look for logical abstractions

in data and therefore enabling cues to derive their availability from

subjects’ training. The experimental results indicate an increased

proportion of solutions based on abstract perceptions and therefore

lends support to the view that training in the application of more

specific criteria for decomposition can lead to an improvement in

abstraction skills.

As already noted another factor which may influence decomposition

strategy is the problem specification itself. The presence of certain

key-words and phrases, the ordering of constituent parts, or other

PAGE 114

textual features, may cause attention to be focused on a particular

problem component, thereby triggering off some decomposition pathway.

For example, primitive features in the description of the signal

problem, namely, the signal stream and the first two processing

requirements, could both act as available cues and therefore promote

simplietic reasoning. In the line-edit problem, however, the presence

of "words" in the data specification is considered to be in some part

responsible for abstract goal generation. Observational evidence

supporting the view (and its converse) that primitive features are

responsible for primitive decompositions can be obtained by comparison

of the proportions of simplistic-to-abstract-based decompositions in

the first experiments of both studies.

The model's prediction that changes in problem wording will imply

a change in availibilty effects is supported from the results of the

third experiment of the line-edit study where certain primitive and

abstract problem specification features were manipulated to produce an

increased number of abstract decomposition types. The four problem

specifications corresponding to the four experimental treatments were:

- problem I contained two cues responsibile for availability

effects that produce primitive decomposition;

- problems II and III contained cues responsible for availability

effects that yield both primitive and abstract decompositions;

- problem IV contained two cues responsible for availability

effects that result in abstract decomposition.

The experimental results revealed the predicted increase in abstract

decompositions. In addition, a more specific hypothesis testing the

implied trend in the above treatments was also verified. Furthermore,

the results also revealed a greater proportion of abstract

decompositions for solutions based on the third treatment than for

those based on the second. Since the former treatment corresponds to

PAGE 115

emphasising abstract features pertaining to processing requirements

rather than data, it would appear that the role of emphasing such

requirements has a greater influence than that of the data

specification. A possible explanation for this result is that the

training subjects received, places greater emphasis on functional

Mecommo si cion tTather than inspection of data structure.

The precise effects of previous training and problem description

in any given circumstance will depend on the individual

characteristics of subjects and the specification with which they are

confronted. As both effects were aligned in the signal problem - the

latter effect magnifying elementary problem components, the former

providing no positive compensation - the result was a bias towards a

simplistic solution, whereas in the line-edit problem the data

description provided only a partial positive compensation. Therefore,

it can be concluded that these factors can in general mitigate against

a wholly top-down approach being employed. Indeed, for problem

decomposition to be performed in a top-down manner requires the

designer having a set of decomposition rules rather than merely being

cued in a possibily non-rational manner to some "least-resistance"”

decomposition pathway. This lends cre dence to the original assertion

that problem decomposition is often carried out in a somewhat

disorganised, piece-meal, bottom-up manner.

4. 4 Elaboration of Decomposition Paradigms

To yield further understanding of program designer behaviour,

attention is now focused on the frequencies and nature of errors made

in the elaboration of a decomposition to a completed solution. An

explanatory framework based on the notion of generic concepts, as

described in the model, is presented to provide reasons for the

PAGE 116

occurrence of errors. Moreover, a relationship between decomposition

quality and and error frequen cy is noted.

The elaboration of either decomposition of the signal problem is

essentially the fulfillment of a goal that satisfies the third

requirement, namely: "find the largest accumulated waiting period".

The strategy associated with this goal, hypothesised to involve a

productive reasoning process, can be visualised as categorising

components into .appropriate "clusters" and allocating these clusters

to the existing decomposition structure.

For the s2-type, clustering of components and their allocation to

process structures is hypothesised to be relatively error free. The

rationale for this view is that the three actions ‘increment waiting

period', ‘reset wait' and ‘check for longest waiting period’, and the

process component to which these actions are allocated, namely

‘process timing signal', all belong to the same generic category,

namely 'time'. Therefore, clustering of these components is simply

performed through generic grouping (the basis upon which storage and

retrieval of information takes place within the model). The

observational evidence from the first experiment in the signal study

supports the above view because only a small percentage of s2-type

solutions contained errors associated with the placement of the

actions required to satisfy the third requirement. Note that, from a

design evaluation perspective, the abstraction level corresponding to

the component ‘process waiting period' is precisely the cluster of

actions associated with the generic category ‘time’.

In the case of an sl-type decomposition, for the problem solver

to arrive at a correct solution, the hypothesised productive reasoning

process involves recategorising the cluster of three components

differently from that based on generic categories. The process is

predictably, therefore, relatively error prone. Supporting evidence

PAGE 117

for this hypothesis is based on the first experiment of the signal

study; in nearly all subjects' solutions, the component ‘final check

for the longest waiting period' was absent, and of those that

attempted satisfying the third requirement, approximately half the

solutions contained errors associated with the components ‘reset

waiting period' and/or ‘check for Toneeet, waiting period'. The

explanation for the first mistake is that a subject's focus of

attention is on the refinement of the characteristic process-pair

(i.e., retrieving the necessary knowledge structures needed to satisfy

the third requirement, transforming them into program components and

deciding upon their placement) and therefore becomes, as Rumelhart

[133] terms, "sensitive to the local context". In so doing, the

designer “loses sight of" (i.e., no longer retains in the working

memory) the overall design structure, which is necessary to arrive at

a correct placement of the action in question because it forms part of

the initial level of refinement. Similar programmer behaviour during

which subjects "lose sight of the overall view of the procedure" has

been reported by Hoc [111]. In relation to the last two mistakes, it

was noticable that components associated with the generic category

'time', that form part of 'process vehicle signal’, were placed within

‘process timing signal’. Although it is difficult to explain the

exact reason for choosing this placement, the influence of wanting to

retain things with the generic category to which they belong cannot be

ignored. It is also worth noting that the solution features with

which errors were associated correspond to actions whose placement, in

a correct solution, contribute to the solution's poor modularity.

Further evidence which substantiates the proposition that the

elaboration process for primitive perceptions is more error-prone than

that for abstract perceptions is the error frequencies for Ll, L2 and

L3-type solutions from experiment 1 of the line-edit study; these

PAGE 118

frequencies were respectively 75%, 45% and 30%. Moreover, the highest

error frequencies were associated with those solution features which

contributed to a solution's poor modularity measure.

From the above discussion, particularly the description of the

elaboration of sl-type and s2-type decompositions, it would appear

that the elaboration of poor quality decompositions is not only

relatively more error prone but also requires greater effort. The

reason for the latter is that in elaborating a poor quality

decomposition correctly, additional effort is required to either

recategorise actions in an unobvious manner or introduce conditions

whose need was not apparent in the initial decomposition. Therefore,

on this basis, it can be hypothesised that high-quality decompositions

are easier to elaborate than low quality ones.

The results of the second experiment in the line-edit study,

which revealed that different decompositions require differing amounts

of effort, supports the hypothesis which relates effort to

decomposition quality. Furthermore, comparisons of effort required to

elaborate poor quality decompositions (Ll and L2 types) with one of

good quality (the L3-type) also provide partial support for the

hypothesis because they indicate significant differences between Ll

and L3 but not between L2 and L3. The factors responsible for these

differences cannot be explained by availabilty effects, although the

previously mentioned relationship between effort and the quality of

the decompositions provides one possible source of explanation. The

exact reason for there not being a significant difference, as would be

predicted, in the effort required between L2 and L3 types is difficult

to establish, but a possible cause is the inaccuracy in measuring

"effort". Two possible sources of this inaccuracy are: first, the

difficulty in relating two factors, where one factor is assessed

qualitatively Che@xy. categories) and the other is assessed

PAGE 119

quantitatively (i.e.,time); second, the validity of assuming that the

effort required in perceiving different decomposition types is

approximately the same.

PAGE 120

5. Conclusion

Initially, the broad aim of the research was to investigate

whether structured programming is a completely effective design

technique. Therefore, the original motivation for conducting

experiments was simply to gather empirical evidence that would

validate or refute hypotheses concerning this design technique. One

conclusion from the pilot study was that both theory and application

of structured programming are still problematic areas, because

analysis of subjects' attempts at solving a reasonably simple

programming problem, in what was judged to be an adequate time to

complete the task, yielded relatively high percentages of incorrect

and incomplete solutions. This conclusion supports the doubts raised

in the background review as to whether structured programming really

is entirely sufficient for the production of high quality, correct

programs. Moreover, such doubts are shared by many others; Green for

example questions "the wisdom of propounding it [the principle of

divide and rule] as the single vital principle that allows a program

to be produced mechanically and errorlessly" [57]. The pilot study's

confirmatory evidence concerning the sufficiency of structured

programming led to the formulation of the more specific objective of

developing a better understanding of how program design actually is

performed, so that ultimately advice might then be given as to how it

should be taught and practiced.

The specific line of attack chosen was to investigate the nature

of problem decomposition strategies and certain factors related and

contributory to those strategies. The results of the two experimental

studies conducted revealed that decompositions based on simplistic, as

opposed to abstract, perceptions of problem structure were:

significantly more frequent in subjects attempts, required

PAGE 121

to complete

considerably less effort to perceive but relatively more effort, and

produced solutions that contained a greater proportion of errors.

More importantly, the experimental work provided significant insight

into the various decomposition strategies that are employed by

subjects -who have been taught, and in principle, practice top-down

structured programming. A model of program designer behaviour was

then devised in the light of this insight gained, which would provide

an explanatory framework for interpreting the experimental results.

The model views program design as a problem-solving task where

solution planning is regarded as a goal generation activity. The

fulfillment of a goal yields some particular (partial) decomposition

of the problem, possibly accompanied by "tying loose ends together,"

i.e., fitting collections of program segments piece by piece into a

(partially) developed program structure. The view that program design

is actually performed in an idealised top-down manner is rejected in

favour of the alternative view that such aspects as problem

specification, subject familiarity with component parts and the level

of abstraction skills developed in previous training, are major

contributory factors responsible for the strategies by which problem

decomposition is effected. The model (in conjunction with

assumptions regarding generalised knowledge structures and problem

decomposition strategies possessed by subjects), when applied to the

signal and line-edit problems, yields a description plausibly

corresponding to a subject's chain of thought. The experimental

results are then interpreted within the behavioural framework provided

by this description.

However, the degree to which the model adequately reflects the

behaviour of a typical participant of the experiments is to some

extent a matter of debate. Whilst, for example, the findings suggest

that the two contributory factors advanced certainly play an

PAGE 122

influencing role in problem decomposition, it would be somewhat

short-sighted to propose that they are solely responsible for

"shaping" this complex task. Nevertheless, the model provides a

richer description, and perhaps captures more of the flavour, of how

program design might proceed than the traditional top-down exposition.

Although the research findings have certainly yielded answers to

some of the questions posed, it is a characteristic tendency of an

empirical investigation that further issues are then raised; these

issues generate more hypotheses that hopefully prove easier to test

than in preceding stages of an investigation. In particular,

attention needs to be given to whether subjects' approaches are

broadly data and/or requirements driven and what role is played by the

strategies of PNI and ID respectively in these approaches. In order

to provide a more detailed description of program designer behaviour,

a further possible direction for future research is the use of video

and/or verbal "protocols" to obtain more detailed behavioural

evidence which can then be represented using production systems that

model human cognition [134].

In relation to methodological issues, the following points are

noted. First, the extent to which these findings are applicable to

experts is difficult to establish. Although attempts made to enlist

groups of presumed experts for this research were unsuccessful, a

comparison of these findings with those involving experts would be a

useful augmentation to this work. Second, whilst the materials used,

(e.g., programming tasks, process structure cues), the method of

analysing solutions used (e.g., process structure hierarchies) and the

measures employed (e.g., completion time as a measure of effort) have

been reasonably successful in eliciting experimental results,

nevertheless, replication of their use in further program design

experiments would provide valuable evidence as to their effectiveness

PAGE 123

in this area. In particular, the problems encountered in trying to

determine effort required to perceive and elaborate decompositions,

using process structure cues and completion times, merit further

investigation.

As already noted, the two generalised rudimentary forms of

data-driven and requirements-driven strategies that have been

proposed, when applied to the problems used in the experiments, lead

to inferior solutions. A natural induction is that this might be the

case for the majority of problems. This gives rise to a certain

amount of concern since the experimental evidence indicates a

preference eae such strategies (apparently irrespective of background,

training, experience etc.). If that is the case, it is important to

minimise the effect of any factor that promotes usage of these

strategies and their possibile entrenchment in a person's general

approach to program construction. One possible way of achieving this

amelioration is by providing of training in more "directed" forms of

structured programming that concentrates on the development of

abstraction skills by providing "concrete" models on which

decompositions can be based. This training would, hopefully, advance

subjects' general design know-how and therefore possibly also help to

counteract any tendency to adopt - without further analysis - an

inferior strategy implicitly suggested by aspects of problem

presentation, for example.

Finally, in relation to the initial aim of assessing the

effectiveness of step-wise refinement as a problem decomposition

strategy, the conclusion is that in structured programmming, the

importance of the rule of Descartes:

“Divide each problem that you examine into as many
parts as you need, to solve them more easily."

Rene Descartes, Oeuveres, vol. VI,

Discours de la Methode, Part II

PAGE 124

has been appreciated, but the warning of Leibnitz:

“This rule of Descartes is of little use, as long
as the art of dividing ... remains unexplained.
By dividing his problem into unsuitable parts,
the unexperienced problem solver may increase

his difficulty."

Gottfried von Leibnitz
Philosophiche Schriften, vol. VI

remains unheeded.

PAGE 125

PAGE 126

Appendix 1.1 The Signal Problem

A traffic survey is conducted automatically by placing a detector

at the road side connected by data-links to a computer. Whenever a

vehicle passes the detector, it transmits a signal consisting of the

the number 1. A clock in the detector is started at the beginning of

the survey, and at one second intervals thereafter it transmits a

signal consisting of the number 2. At the end of the survey the

detector transmits a0. Each signal is received by the computer as a

single number (i.e. it is impossible for two signals to arrive at the

same time). Design a program which reads such a set of signals and

outputs the following:

(a) the length of the survey period;

(b) the number of vehicles recorded;

(c) the length of the longest waiting period without a vehicle.

PAGE 127

Appendix 1.2 sl-type Decomposition

Psignal
data

Pinitial Pdata Pfinal
body

Psignal

Pvehicle Ptiming
signal signal

PAGE 128

Appendix 1.3 Complete Solution (sl-type)

num of vehicles := 0; length of survey := 0; waiting period := 03;

longest waiting period := 0;

read(signal);

WHILE signal # 0

Do

IF signal = 1

THEN

(*process a vehicle signal*)

num of vehicles := num of vehicles + 1;

IF waiting period > longest waiting period

THEN longest waiting period := waiting period

FI;

waiting period := 0

‘ELSE

(*process a timing signal*)

waiting period := waiting period + 1;

length of survey := length of survey + 1

ELS

read(signal)

OD;

IF waiting period > longest waiting period

THEN longest waiting period := waiting period

FI

print(length of survey, num of vehicles, longest waiting period)

PAGE 129

Appendix 1.4 s2-type Decomposition

Psignal
data

Pinitial Pdata Pfinal
body

Pperiod

° °

Pvehicle Pwaiting
period period

PAGE 130

Appendix 1.5 Complete Solution (s2-type)

num of vehicles := 0; length of survey := 0;

longest waiting period := 0;

read(signal);

WHILE signal # 0

IF signal = 1

DO

THEN

ELSE

2a

OD;

(*process a vehicle*)

num of vehicles := num of vehicles + 1;

read(signal)

(*process a waiting period*)

waiting period := 0;

WHILE signal = 2

DO

length of survey := length of survey + 1;

waiting period := waiting period + 1;

read(signal)

OD;

IF waiting period > longest waiting period

THEN longest waiting period := waiting period

FL

print(length of survey, num of vehicles, longest waiting period)

PAGE 131

Appendix 2.1 Skeletal program structure cue for sl-type solution

WHILE. .:. . . . signal f# 0
Do

IF signal = 1
THEN

oD

PAGE 132

Appendix 2.2 Skeletal program structure cue for s2-type solution

WHILE . » » « « signal $0
DO .

IF signal = 1
THEN

WHILE... . . signal = 2

FI

PAGE 133

Appendix 2.3 List of elementary actions

read(signal)

num of vehicles := 0

length of survey := 0

waiting period :=

longest waiting period := 0

num of vehicles := num of vehicles + 1

length of survey := length of survey + 1

waiting period := waiting period + 1

IF waiting period longest waiting period
THEN longest waiting period := waiting period

ai

print(length of survey, num of vehicles, longest waiting period)

(*) Strictly, this is not an "elementary" action; however, determining

its location in the skeletal structure was considered to be an

integral part of the design task.

PAGE 134

Appendix 3.1 The Line-edit problem

A piece of text consisting of words separated by one or more space

characters is terminated by an *.

It is required to convert it to line by line form in accordance

with the following Tules:

(a) Redundant spaces between words are to be removed;

(b) No line will contain more than m characters and

each line is filled as far as possible;

(c) Line-breaks must not occur in the middle of a word.

(You may ignore the presence of line-feed characters and the

possibility of a word being greater than m characters).

Design a program to read the text and output it in accordance with the

above rules.

PAGE 135

Appendix 3.2 Ll-type Decomposition

Ptext

Pstart Ptext Pend of
of text body text.

*

Pline

Pbuild Padjust a line
a line then output

PAGE 136

Appendix 3.3 Ll-type Solution

line := empty;

line size := 0;

prev char = space;

read (char);
WHILE char # "*"
DO

WHILE (line size< m) AND (char # "*"")

DO (loop to build a line of m chars

4 with redundant spaces removed*)

IF (char # space) OR (prev char # space)
THEN

line := line + char;
& (*add non-redundant space or character*)

line size := line size + 1

FI;

prev char := char;

read (char)

OD;

IF (char = space) OR (char = '*")

THEN

print (line);

print (newline);
line size := 0; line := empty

ELSE (*process line with a possible
remove partial word (part word, word size); break in the

middle of a word*)
print (line); print (newline);
line := part word; line size := word size

FI;

PAGE 137

Appendix 3.4 L2-type Decomposition

Ptext

Pstart Ptext Pend of
of text body text

Pcharacter

° °
Pspace Pnon-space

character

PAGE 138

Appendix 3.5 L2-type Solution

line size 0;

word size := 03;

word := empty;

read (char);

WHILE 9. 7.02 9.) char foe"
DO

IF char = space
THEN

IF word size 7 0 (mot a redundant space*)

THEN

(*output a word on, current or new, line*)
IF line size + word sized m
THEN

print (space);
line size := line size + 1

ELSE

print (newline);
line size := 0

FI;

print (word); line size := line size + word;
word := empty; word size := 0

FI

ELSE (*build a word*)
word := word + char;

word size := word size + 1

FI;

tread (char)

oD

PAGE 139

Appendix 3.6 L3-type Decomposition

Ptext

Pstart Ptext Pend of
of text body text

Pword

Pbuild a Poutput
word a word

PAGE 140

Appendix 3.7 L3-type Solution

line size := 0;

read (char);

WHILE s\oomea oevchar purer
DO

WHILE + « « « Char = space DO read (char) OD;

word size := 0; word := empty;

WHILE char # space AND char f# "*"
DO

word := word + char;
word size := word size + 1; (*build a word*)

read (char)

OD;

(*output a word on current, or new, line*)

IF line size + wordsize< m
THEN

print (space);
line size := line size + 1

ELSE

print (newline);
line size := 03

ELs

print (word);
line size := line size + word size

OD

PAGE 141

Appendix 4.1 Process Structure Cue for Ll-type Decomposition

WHILE edi omecmonan¢ sree
DO

WHILE (line size m) AND (char # "*"")
DO (*#loop to build a line of m chars

. with redundant spaces removed’)

IF (char é space) OR (prev char Zf space)

THEN

. (*add non-redundant space or character*)

FI

IF (char = space) OR (char =
THEN

ELSE (*process line with possible break in the

é middle of a word*)

PAGE 142

Appendix 4.2 Action List for Ll-type Cue

line size := 0

line size := line size + 1

line := line + char

print (line)

print (newline)

read (char)

prev char := char

line := empty (*empty is the null string*)

remove partial word (part word, word size) seceded

line := part word

line size := word size

NOTE : “remove partial word" removes part of the word "part word"

of size "word size" from the end of a line i.e., when there is a line

break in the middle of a word.

PAGE 143

Appendix 4.3 Process Structure Cue for L2-type decomposition

WHILE) se) 6 Char tt
DO

IF-char = space

THEN

IF word size # 0 (not a redundant space*)
THEN

(*print a word on, current or new, line*)
IF line size + word size <m
THEN

ELSE

FL

FL

ELSE (*build a word*)

FI

oD

PAGE 144

Appendix 4.4 Action list for 12 and 13 type solutions

line size := 0

word size := 0

line size := line size + 1

word size := word size + 1

line Eee line size + word size

word -:= word + char

print (space)

print (newline)

print (word)

read (char)

word := empty (*empty is the null string*)

PAGE 145

Appendix 4.5 Process Structure Cue for L3-type Decomposition

WHILE 5 =~ . char f "*"
DO

WHILE a sere oo) Char = space DO _. 5, =... «80D (*remove
spaces*)

WHILE char # space AND char # '"*"
DO

(*build a word*)

oD

(*output a word on current, or new, line**)
IF line size + wordsize< m
THEN

ELSE

PAGE 146

Appendix 5.1

(see appendix 1.1)

Appendix 5.2

A line of text consisting of words separated by one or more spaces

terminated by an *.

Design a program to input the text and output the following:

(a) the number of non-space characters;

(b) the number of spaces;

(c) the length of the longest word.

PAGE 147

is

Appendix 5.3

A traffic survey is conducted automatically by placing a detector

at the road side connected by data-links to a computer. Whenever a

vehicle passes the detector, it transmits a signal consisting of the

“the number 1. A clock in the detector is started at the beginning of

the survey, and at one second intervals thereafter it transmits a

signal consisting of the number 2. At the end of the survey the

detector transmits a0. Each signal is received by the computer as a

single number (i.e. it is impossible for two signals to arrive at the

same time). Design a program which reads such a set of signals and

outputs the length of the longest waiting period without a vehicle

PAGE 148

Appendix 5.4

A line of text consisting of words separated by one or more spaces is

terminated by an *.

Design a program to input the text and output the length of the

longest word.

PAGE 149

Appendix 6 : A typical solution containing errors for the

signal problem,

num of vehicles := 0; length of survey := 0;

waiting period := 0; longest waiting period := 0;

read(signal);

WHILE signal # 0

DO.

IF signal = 1

THEN

(* process vehicle signal *)

num of vehicles := num of vehicles + 1;

waiting period := 0

ELSE

(* process timing signal *)

waiting period := waiting period + 1;

IF waiting period > longest waiting period

THEN longest waiting period := waiting period

FI;

length of survey := length of survey + 1

FI;

read(signal)

OD;

The error frequency for above solution would be 2, since :

(i) ‘check for longest waiting period’ has been placed

within "process timing signal’ rather than

"process vehicle signal'

(ii) 'final check for longest waiting period' is absent

PAGE 149a

PAGE 150

E.W. Dijkstra 1976

A Discipline of Programming, preface xiii

Prentice Hall

G.M. Weinberg 1971

The Psychology of Computer Programming, pp. 27

Van Nostrand Reinhold Company

W. Findlay and D.A Watt 1979

PASCAL An Introduction to Methodical Programming pp 60-66

Pitman

P. Naur 1969

Programming by Action Clusters

BIT Vol. 9, No. 3, pp 250-258

A. Koestler 1964

The Act of Creation

Hutchinson

C. Alexander 1966

Notes on the Synthesis of Form

Harvard University Press

H.A. Simon 1969

The Sciences of the Artificial

M.I.T Press

B.W. Boehm 1973

PAGE 151

10.

ll.

12.

13.

14,

15.

Software and Its Impact: A Quantitative Assessment

Datamation, Vol. 19, No. 5, pp. 48-59

P. Naur, B. Randell and J.N. Buxton (Editors) 1976

Software Engineering Concepts and Techniques

Petrocelli Charter

E.W. Dijkstra 1968

Structured Programming

in P. Naur, B. Randell and J. N. Buxton, pp. 222-226

E.W. Dijkstra 1968

Complexity controlled by Hierarchical Ordering of Function and

Variability

in P. Naur, B. Randell and J. N Buxton, pp. 114-116.

E.W. Dijkstra 1968

The Structure of the T.H.E Multiprogramming System

Communications of the ACM, Vol. 11, No. 5, pp. 341-346

S. Gill 1968

Thoughts on the Sequence of Writing Software

in P. Naur, B. Randell and J.N. Buxton, pp. 116-118

B. Randell 1968

Towards a Methodology of Computing System Design

in P. Naur, B. Randell and J.N. Buxton, pp. 127-129

A.J. Perlis 1968

Keynote Speech

PAGE 152

16.

17.

18.

19.

20.

215

22.

in P. Naur, B. Randell and J. N. Buxton, pp. 87-88

M.D. McIlroy 1968

Mass Produced Software Components

in P. Naur, B. Randell and J. N. Buxton, pp. 88-95

W. Stevens, G. Myers and L. Constantine 1974

Structured Design

IBM Systems Journal, Vol. 13, No. 2,pp. 115-139

E.W. Dijkstra 1968

Goto statement considered harmful (Letter to the Editor)

Communications of the ACM, Vol. 11, No. 3, pp. 147-148

E.W. Dijkstra 1972

Notes on Structured Programming

in 0-J. Dahl, E.W. Dijkstra and C.A.R. Hoare

Structured Programming

Academic Press, London

N. Wirth 1971

Program development by Stepwise Refinement

Communications of the ACM, Vol. 14, No. 4, pp. 221-226

J.D. Aron 1968

The Superprogrammer Project

in P, Naur, B. Randell and J.N Buxton, pp. 188-190

F.T. Baker 1972

Systems Quality through Structured Programming

PAGE 153

23.

24.

25.

26.

27,

28.

Proceedings of the Fall Joint Computer Conference

AFIPS Press, Vol. 41, Part 1, pp. 339-343

F.T. Baker 1975

Structured programming in a production programming environment

Proceeding of the International Conference on Reliable Software

ACM SIGPLAN Notices, Vol. 6, No. 10, pp. 172-185

R.A. Snowdon 1974

Interactive use of a computer in the preparation of structured

programs.

University of Newcastle upon Tyne

Ph.D thesis

P. Henderson and R. Snowdon 1972

An Experiment in Structured Programming

BIT, Vol. 12, No. 1, pp. 38-53

M.A. Jackson 1975

Principles of Program Design

Academic Press

E.W. Dijkstra 1976

A Discipline of Programming, pp. 211-212

Academic Press

J.D. Warnier 1974

Logical Construction of Programs

Van Nostrand Reinhold

PAGE 154

29.

30.

31.

32.

33.

34.

35.

E. Yourdon and L.L Constantine 1979

Structured Design

Prentice Hall

G.J. Myers 1975

Reliable Software through Composite Design

Van Nostrand and Reinhold

W.P. Stevens

Using Structured Design

J. Wiley & sons

D.L. Parnas 1972

On the Criteria to be Used in Decomposing Systems into Modules

Communications of the ACM, Vol 12, No. 15, pp. 1053-1058

B.H. Liskov 1972

A Design Methodology for Reliable Software Systems

Fall Joint Computer Conference

AFIPS Press, pp. 191-199

J. Emery 1964

The Planning Process and its Formalisation in Computer Models.

Proceedings of the 2nd Congress of Information System Science.

S.N. Griffiths 1979

Design Methodologies - A Comparison

in G. Bergland and R. Gordon (editors)

Tutorial: Software design strategies

IEEE Computer Society Press, pp. 189-213

PAGE 155

36.

37.

38.

39,

40

41.

T. DeMarco 1978

Structured Analysis and System Specification

Yourdon Inc.

C. Gane and T. Sarson 1979

Structured Systems Analysis: Tools and Techniques

Prentice Hall

E. Yourdon 1979

Managing the Structured Techniques

Yourdon Inc.

T. DeMarco 1979

Controlling Software Projects

Yourdon Inc.

P.C Semprevivo 1979

Teams in Information Systems Development

Yourdon Inc.

K.T. Orr 1977

_ Structured Systems Development

42.

43.

Yourdon Inc.

M.A. Jackson 1983

System Development

Prentice Hall

C.B. Jones 1980

PAGE 156

44,

45.

46.

47.

48.

49.

50.

Software Development: A Rigorous Approach

Prentice Hall

D. Coleman 1978

A Structured Programming Approach to Data, pp. 209

Macmillan Press Ltd.

P.C. Treleaven 1978

Exploiting program concurrency in computing systems

Technical report University of Newcastle

C.A. Hoare 1978

Communicating Sequential Processes

Communications of the ACM Vol. 21, No. 8, pp. 666-677

E.W. Dijkstra 1975

Gaurded commands, nondeterminancy and formal derivation of

programs

Communications of the ACM, Vol. 18, No. 8, pp. 453-457

J. Backus 1978

Can Programminmg Be Liberated from the von Neumann style ?

A Functional Style and Its Algebra of Programs

Communications of the ACM, Vol. 21, No. 8, pp. 613-641

P. Henderson 1980

Functional Programming: Applications and Implementation

Prentice Hall

A. Church 1941

PAGE 157

51.

52.

53.

54.

55.

56.

The Calculi Of Lambda-Conversion

Princeton Univ. Press

J. McCarthy 1960

Recursive Functions of Symbolic Expressions and their computations

by machines

Communications of the ACM, Vol. 3, No. 4, 184-195

B.A. Sheil 1981

The Psychological Study Of Programming

Computing Surveys, Vol. 13, No. 1, pp. 101-120

F.T. Baker and H.D. Mills 1973

Chief Programmer Teams

Datamation Vol 10, pp. 58-61

F.T. Baker 1972

Chief programmer team management of production programming

I.B.M Systems Journal, Vol 11., No.1, pp. 56-73

V.R. Basli and R.W. Reiter 1981

A Controlled Experiment Quantatively Comparing Software

Development Approaches

IEEE Transactions on Software Engineering, Vol. 7, No. 3

pp. 299-320

H. Sackman, W. Erikson and E. Grant 1968

Exploratory Experimental Studies Comparing Online and Off-line

Programming Performance

Communications of the ACM Vol. 11, No. 1, pp. 3-11

PAGE 158

57.

58.

59.

60.

6l.

62.

63.

T.R.Green 1980

Programming as a Cognitive Activity

in, H.T. Smith and T.R.G. Green (editor)

Human Interaction With Computers, pp. 271-320

D.W. Embley 1978

Empirical and formal language design applied to a unified control

construct for interactive computing

International Journal of Man-Machine Studies, 10, pp. 197-216

A. Newell and H.A. Simon 1972

Human Problem Solving

Prentice Hall

R. Brooks 1977

Towards a theory of the cognitive processes in computer

programming

International Journal of Man-Machine Studies, 9, pp. 735-751

M.L. Miller 1978

A structured planning and debugging environment for elementary

programming

International Journal of Man-Machine Studies, 11, pp. 79-95

B. Shneiderman 1980

Software Psychology

Winthrop Publishers

D.E Knuth 1971

An Empirical study of FORTRAN programs

PAGE 159

64.

65.

66.

67.

68.

69.

Software Practice and Experience, Vol. 1, No. 2, pp. 105-133

A.F. Chalmers 1982

What is thing called Science ?

The Open University Press, pp. 14

P.K. Feyerabend1970

Philosophy of Science:A subject with a great past

in R.H. Stuewer (Editor)

Historical and Philosophical perspectives of Science

Minnesota Studies in Philosophy of Science, Vol. 5

University of Minnesota Press

L. Weissman 1974

Psychological Complexity of Computer Programs:An Experimental

Methodology

ACM SIGPLAN NOTices, 9, pp. 25-36

B. Shneiderman 1975

Experimental testing in programming languages, stylistic

considerations and design techniques

AFIPS Conference Proceedings, National Computer Conference

pp. 447-452

T.R.G. Green, M.E. Sime and M. Fitter 1975

Behavioural Experiments on Programming Languages: Some

Methodological Considerations

MRC Social and Applied Psychology Unit, Memo No. 66

R. Brooks 1980

Studying Programmer Behaviour Experimentally: The problems of

PAGE 160

70.

We

72.

73.

74,

a Proper Methodology

Communications of the ACM, Vol. 23, No. 4, pp. 207-213

B. Shneiderman and D. McKay 1976

Experimental investigations of computer program Debugging and

Modification

Proceedings of the 6th International Ergonomics Association

Santa Monica 1976

T. Moher and G.M. Schneider

Methodology and Experimental Research in Software Engineering

International Journal of Man-Machine Studies, 16, pp. 65-87

A. Perlis, F. Sayward and M. Shaw 1981 (Editors)

Software Metrics

MIT Press

D.R. Cox 1958

Planning of Experiments

Wiley Publications

R.A. Fisher 1966

Design of Experiments

Oliver and Boyd, (8th Edition)

PAGE 161

75.

76.

77.

78.

79,

80.

81.

W.G. Cochran and G.M. Cox 1950

Experimental Designs

Wiley Publications

L. Miller 1974

Programming by Non-Programmers

International Journal of Man-Machine Studies, 6, pp. 237-260

E. Soloway, K. Ehrlich, J. Bonar and J. Greenspan

What Do Novices Know About Programming?

in A. Badre and B. Shneiderman (Editors)

Directions in Human/Computer interactions, pp. 27-54

Ablex Publishing Corporation

K.B. McKeithen, J.S. Reitman, H.H. Rueter and S.C. Hirtle 1981

Knowledge Organisation and Skill Differences in Computer

Programmers

Cognitive Psychology, 13, 307-32

B. Adelson 1981

Problem solving and the development cof abstract categories in

programming languages

Memory and Cognition No. 4, Vol 9, 422-433

G. Weinberg 1971

The Psychology of Computer Programming, pp.33

Van Nostrand Reinhold Company

E.A. Youngs 1974

Human errors in programming

PAGE 162

82.

83.

84.

85.

86.

87.

88.

International Journal Of Man-Machine Studies, 6, pp. 361-376

T.R.G. Green 1977

Conditional program statements and their comprehensibility to

professional programmers

Journal of Occupational Psychology, 50, 93-109

A.T. Arblaster, M.E. Sime, and T.R.G Green 1979

Jumping to some purpose

The Computer Journal, Vol. 22, No. 2 pp. 105-109

T.R.G. Green 1980

IFs and THENs: Is Nesting just for the Birds ?

Software-Practice and Experience, 10, pp. 373-381

M.E. Sime, T.R.G. Green and D.J. Guest 1973

Psychological Evaluation Of Two Conditional Constructions Used

In Computer Languages

International Journal of Man-Machine Studies, 5, pp. 105-113

M.E. Sime, T.R.G. Green and D.J. Guest 1977

Scope marking in computer conditionals a psychological evaluation

International Journal of Man-Machine Studies, 9, pp. 107-118

M.E. Sime, A.T.Arblaster and T.R.G. Green 1977

Reducing programming errors in nested conditionals by prescribing

a writing procedure

International Journal of Man-Machine Studies, 9, pp. 119-126

M.E. Sime, A.T. Arblaster and T.R.G Green 1977

PAGE 163~

89.

90.

91s

92.

93.

94,

Structuring the programmer's task

Journal of Occupational Psychology, 50, 205-216

J.D. Gould 1975

Some Psychological Evidence on How People Debug Computer Programs

International Journal of Man-Machine Studies, 7, 151-182

S.B. Sheppard, M.A.Borst, P. Millman, and T.love 1979

Modern coding practices and programmer performance

Computer, Vol. 12, No. 3, pp. 41-49

T. Love 1977

An experimental investigation of the effect of program structure

on program understanding

ACM SIGPLAN NOTICES, 12, 3, pp. 105-113.

G.M. Weinberg and E.L. Schulman 1974

Goals and Performance in Computer Programming

Human Factors, 16, 1, pp. 70-77

J.D. Gannon and J.J. Horning 1975

The Impact of Language Design on the Production of

Reliable Software

IEEE Transation on Software-Engineering, 1, pp. 179-191

P. Reisner, R.F. Boyce and D.D Chamberlin 1975

Human factors evaluation of two data base query languages:

SQUARE and SEQUEL

Proceedings of the national computer conference, AFIPS Press

PAGE 164

95.

96.

97,

98.

99,

P, Reisner 1977

Use of psychological experimentation as an aid to development

of a query language

IEEE Transaction on Software Engineering, 3, pp. 218-229

B. Curtis, S.B. Sheppard and P. millman 1979

Third time charm: Stronger prediction of programmer performance by

software complexity measures

Proceedings of the 4th International conference on

software engineering

IEEE, New York, pp. 356-360

M.H. Halstead 1977

Elements Of Software Science

Elsevier

R.T. Yeh 1979

In Memory of Maurice H. Halstead

IEEE Transaction on Software Engineering, Vol. 5, No. 2,

M.R. Woodward, M.A. Hennel and D, Hedley 1979

A Measure of Control Flow Complexity in Program Text

IEEE Transaction on Software Engineering, Vol. 5, No. 1, pp. 45-50

100, T. McCabe 1976

A Complexity Measure

IEEE Transaction on Software Engineering, 2, 6, pp. 308-320

101. R.D. Gordon and M.H. Halstead 1976

PAGE 165

102.

103.

104.

105.

106.

107.

An Experiment comparing FORTRAN programing times with

software physics hypothesis

Purdue University, Tech. Rep. CSD-TR-167

L.H, Cornell and M.H. Halstead 1976

Predicting the number of bugs in a program module.

Purdue University, Tech. Rep. CSD-TR-205

R.D. Gordon 1979

Measuring Improvements in Program Clarity

IEEE Transaction on Software Engineering, Vol. 5, No. 2,

pp. 79-90

B. Curtis, S.B. Sheppard, P. Millman, M.A. Borst and

T. Love 1979

Measuring the Psychological Complexity of Software Maintainance

Tasks with the Halstead and McCabe metrics

IEEE Transaction on Software Engineering, 5, 2, pp. 96-104

B. Shneiderman 1977

Measuring computer program quality and comprehension

International Journal of Man-Machine Studies, 9, pp. 465-478

W.G. Chase and H.A. Simon 1973

Perception in chess

Cognitive Psychology, 4, pp. 55-81

F.I.M. Clark and R.S. Lockhart 1972

Levels of Processing: A Framework for Memory Research

Journal of Verbal Learning and Verbal Behaviour, 11, pp. 671-684

PAGE 166

108. N. Hammond, P. Barnard, A.H. Jorgensen and I. Clark. 1982

Naming Commands: An Analysis of Designers' Naming Behaviour.

Proceedings of a Conference on the Psychology of Problem

Solving with Computers: Cognitive Engineering

Vjrie University, Amsterdam

109. C. Leach 1979

Introduction to Statistics

A Nonparametric Approach for SocialScientist

?
John Wiley & Sons

110. J.G. Greeno 1973

The structure of memory and the process of solving problems.

in, Contemporary issues in cognitive psychology:

the Loyola Symposium (ed. R.L. Solso) pp 103-131

V.H.Winston & Sons

111. J.M. Hoc 1977

Role of mental representation in learning a program language.

International Journal Of Man-Machine Studies, 9, 87-105

112. C. Leach 1982

Op. Cit., pp, 169-180

John Wiley & Sons

113. C. Leach

Op. Cit., pp, 80-85.

114. J.Greene & M. d'Oliveira 1978

PAGE 167

115.

116.

117.

118.

119.

120.

121,

Cognitive Psychology

Methodology Handbook, part 1, pp 56-58

Open University Press

S. Siegel 1956

Nonparametric Statistics for the Behavioral Sciences

McGraw-Hill

C. Leach 1982

Op. Cit., pp 65-66

J.B. Goodenough and S.L. Gerhart 1975

Towards a theory of test data selection

IEEE, Transactions on Software Engineering, SE-1,2, 156-173

C. Leach 1982

Op. Cit., pp 134-135

J.Greene & M. d'Oliveira 1978

Op. City Dp. 92-9)

R.B. Allen 1981

in, A.Badre & B.Shneiderman (Editors)

Cognitive factors in human interaction with computers

Directions in Human/Computer Interaction, pp 1-26

Ablex Publishing Corporation

B. Shneiderman & R. Mayer 1979

Syntactic/Semantic interactions in programmer behaviour:

PAGE 168

122.

123.

124,

L256.

126.

A Model and experimental results

International Journal of Computer and Information Sciences,

Vol 8, No 3, pp. 219-235

M.E, Attwood & H.R. Ramsey 1978

Cognitive structure in the comprehension and memory of computer

programs:An investigation of computer program debugging.

Army Research Institute

W. Kintsch 1978

Comprehension and memory text

in W.K. Estes (Editor)

Handbook of learning and cognitive

processes Vol 6

Lawerence Erlbaum Associates

G.A. Miller 1956

The magical number seven, plus or minus two:

Some limits on our capacity for processing information

Psychological Review, 63, pp. 81-97

P.H. Linsday & D.A. Norman 1977

Human Information Processing, pp 381-417

Academic Press

E.A. Feigenbaum 1970

Information processing and memory

in D.A. Norman, (Editor)

Models of memory, pp. 451-469

Academic Press

PAGE 169

127.

128.

129.

130.

131,

132,

133.

P. Pollard 1982

Human reasoning:Some possibile effects of availabilty

Cognition 12, pp. 65-96

A. Tversky & D. Kahneman 1973

Availability:a heuristic for judging frequency and probability

Cognitive Psychology 5, pp. 207-232

S.K. Card, T.P. Moran & A. Newell 1980

Computer text editing:An information processing analysis of

a routine cognitive skill

Cognitive Psychology 12, pp. 32-74

N. Wirth 1974

On the composition of well-structured programs

Computing Survey 6, pp. 247-259

J.M. Hoc 1982

Analysis of beginners problem solving strategies in programnming

Proceedings of a conference on the psychology of problem solving

with computers: Cognitive Engineering

Vrijie University Amsterdam

H. Kahney 1983

The behaviour of novice and expert problem solvers.

Artificial Intelligence and Simulation of Behaviour Quarterly

Issue 48, pp. 20-24

D.E. Rumelhart 1977

PAGE 170

Introduction to Human Information Processing

John Wiley & Sons

134. R. Young 1979

in, D. Michie (editor)

Expert Systems in the Micro-electronic age

Production systems for modelling human cognition pp. 35-45

Edinburgh University Press

PAGE 171

