
THE DESIGN OF FAULT TOLERANT SOFTWARE FOR

LOOSELY COUPLED DISTRIBUTED SYSTEMS.

Andrew Martin Tyrrell

Submitted for the degree of Doctor of Philosophy.

The University of Aston in Birmingham

April 1987.

This copy of the thesis has been supplied on condition

that anyone who consults it is understood to recognise
that its copyright rests with its author and that no

quotation from the thesis and no information derived

from it may be published without the author”s_ prior,
written consent.

THE UNIVERSITY OF ASTON IN BIRMINGHAM

The Design of Fault Tolerant Software for

Loosely Coupled Distributed Systems.

Andrew Martin Tyrrell

Submitted for the degree of Doctor of Philosophy 1987.

Summary.

Requirements for systems to continue to operate

satisfactorily in the presence of faults has led to the

development of techniques for the construction of fault

tolerant software. This thesis addresses the problem

of error detection and recovery in distributed systems

which consist of a set of communicating sequential

processes,

A method is presented for the “a priori” design of

conversations for this class of distributed system.

Petri nets are used to represent the state and to solve

state reachability problems for concurrent systems.

The dynamic behaviour of the system can be character-

ised by a state-change table derived from the state

reachability tree.

Systematic conversation generation is possible by

defining a closed boundary on any branch of the state-

change table. By relating the state-change table to

process attributes it ensures all necessary processes

are included in the conversation. The method also

ensures properly nested conversations.

An implementation of the conversation scheme using
the concurrent language occam is proposed. The struc—

ture of the conversation is defined using the special

features of occam. The proposed implementation gives a

structure which is independent of the application and

is independent of the number of processes involved.

Finally, the integrity of inter-process communica-
tions is investigated. The basic communication primi-
tives used in message passing systems are seen to have
deficiencies when applied to systems with safety impli-

cations. Using a Petri net model a boundary for a

time-out mechanism is proposed which will increase the
integrity of a system which involves inter-process com-

munications.

Keywords: Fault tolerant software, Petri nets, Occam,

Concurrent processes, Conversations.

ie

ACKNOWLEDGEMENTS.

There are a number of people who have helped dur-

ing the course of this work and in the production of

this thesis.

I would like to thank Helen Turner for typing the

mathematical equations, Peter Miller for getting sys-

tems working when I could not and to Mike Spann _ for

refreshments. A special thanks is due to Geof Car-

penter for many stimulating discussions and his help

in the preparation of this thesis. I would also like

to thank the SERC for their funding over the past 3

years. Finally I am indebted to my supervisor Dr

David Holding without whose constant encouragement and

searching questions, this work would not have been

possible.

Chapter

Chapter

Chapter

LIST OF CONTENTS.

INTRODUCTION

Introduction

Summary of Thesis

AIMS AND OBJECTIVES OF THE RESEARCH

Introduction

Placement of Conversations

Implementation of Conversations

Communication Failures

Discussion

SYSTEM MODEL

Introduction

Petri Net Structure and Graph

Se2en) Petri Net Structure

3.2.2 Petri Net Graph

Representing State

3.3.1 Petri Net Marking

3.3.2 Execution Rules

Sequential Processes

Concurrent Processes

3.5.1 Axioms of C.S.P.

3.5.2 Occam

3.5.2.1 Primitives

3.5.2.2 Constructs

3.5.2.2.1 Sequential
Constructs

11

17

20

22

27

29

30

a2

33

39)

36

36

38

40

43

43

45

45

46

46

Chapter

S25e2.252 Peratlel
Constructs

3.5.3 Modelling Concurrent Software

Reachability Tree

3.6.1 State Dynamics of a Petri Net

Discussion

THE STRUCTURED DESIGN OF CONVERSATIONS

Introduction

Error Detection and Recovery

4.2.1 Sequential Systems

4.2.2 Concurrent Systems

Conversations

4.3.1 Basic Structure of a
Conversation

4.3.2 Problems with Conversation

Design

A Possible Solution to Conversation

Design

System State and Petri Nets

Identification of Fault Tolerant
Boundaries

4.6.1 Construction of State-Change
Table

4.6.2 Identification of Communications

4.6.3 Identification of Conversations

4.6.4 Entry and Exit States

4.6.5 Processes in Conversation

Design of Conversations

4.7.1 Demonstrator Example

Proof of Nesting

46

47

52

53

56

Si,

59

59

63

66

66

69

70

71

UE

73

76

77

79

79

80

81

Chapter

Chapter

Discussion 91

IMPLEMENTATION OF THE CONVERSATION SCHEME

Introduction

Features of Occam Support Environment

5.2.1 Initialisation and Termination
of Processes

5.2.2 Folds

An Implementation of the Conversation

Scheme

5.3.1 Features of the Conversation
Scheme

5.3.2 Design and Implementation of a
Centralised Conversation
Mechanism

5.3.3 Implementation Example

5.3.4 Nested Conversations

5.3.5 Global Acceptance Tests

Implementation of a Distributed

Acceptance Test Process

5.4.1 Disadvantages of this Method

Advantages Gained Using Occam

Discussion

RELIABLE COMMUNICATIONS

Introduction

Communication Primitives

6.2.1 Synchronous

6.2.2 Asynchronous

6.2.3 Remote Procedure Call

6.2.4 Message Transactions

Requirements for Reliable

Communications

104

105

105

105

106

106

107

109

Chapter 7.0

APPENDIX

REFERENCES

Implementation of Message Types

6.4.1 Command Message Types

6.4.2 Notify Message Types

Modelling with Petri Nets

Discussion

CONCLUSIONS

Conclusions

Future Work

143

146

148

157

160

203

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

Fig

LIST OF FIGURES AND TABLES.

Petri Net Structure Consisting of Two
Transitions and Five Places

Petri Net Graph for Fig 3.1

Marking of Fig 3.2

Transition t2 Enabled

Result of t2 Firing

Petri Net Models of Sequential Software

Constructs

Reachability Tree for Fig 3.3

Recovery Block Outline

Example of the Domino Effect

Conversation Scheme

Example of Two Conversations which are Not

Strictly Nested

4.5(a-b) Occam Program for 3-Axis Robot Arm
Controller

Petri Net of Occam Program in Fig 4.5

Reachability Tree of Fig 4.6

Partition from Table 4.4

Partition from Table 4.5

Example of Nested Conversations

Example of Bad Nesting

Petri Net with Bad Nesting

3-Axis Control Robot

Process Operator

Process Control

Process Motor

35

36

a7)

39

og:

41

55

63

65

68

69

94

96

ot

99.

100

85

86

103

Fig 5.3

Fig 5.4

Fig 5<5

Fig 5.6

Fig 5.7

Fig 5.8

Fig 5.9

Fig 5.10

Fig 5.11

Fig 5.12(

Fig 6.1

Fig 6.2

Fig 6.3

Fig 6.4

Fig 6.5

Fig 6.6

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Axis Control Robot with Refolding to
Show Conversation

Acceptance Test and Recovery Structure

Test Line Process

Primary Block of Control Process

Acceptance Test and Recovery Structure

of Control Part of Conversation b with
Global Acceptance Test

Acceptance Test and Recovery Structure

of Operator Part of Conversation b with

Global Acceptance Test

Test Line Process for Conversation b with
Global Acceptance Test Added

Acceptance Test and Recovery Structure of
Control Part of Conversation b with
Decentralised Acceptance Test

Acceptance Test and Recovery Structure of

Operator Part of Conversation b with

Decentralised Acceptance Test

a-c) Acceptance Test Structure with Three

Processes in the Conversation with
Decentralised Acceptance Test

Model of Synchronous Communication
Primitives

Model of Reduced Synchronous Primitives

Model of Synchronous Communications with

Breakout

Model of Command Type Transaction

Model of Reduced Command Transaction

Model of Command Transaction with Breakout

State-Change Table of Fig 4.7

Communication State-Change Table of

Table 4.1

Partition of Table 4.2 from t2 to t27

Partition of Table 4.2 from t10 to t3

123

128

129

130

13

132

149

149

baz

98

101

Table 4.5 Partition of Table 4.2

-10-

from t10 to £27

Chapter l.

Introduction.

1.1 Introduction.

Throughout this thesis the terms fault, error and

failure are used. It is important that the discus-—

sions are conducted with a defined terminology for the

relevant concepts. The definitions given here are

derived from those given in [1] :

a) a failure occurs whenever the external

behaviour of a system does not conform to that

prescribed by the system specification,

b) an error is a state of the system which, in

the absence of any corrective action by the sys-

tem, could lead to a failure which would not be

attributed to any event subsequent to the error,

c) a fault is the adjudged cause of an error.

Due to the complexity of computer systems, it is

generally impossible to obtain a system which is com-

pletely free from faults [2]. Failure of a system may

hie

be caused by either hardware or software faults.

The concept of hardware fault tolerance has been

studied for a long time [3]. Hardware structures have

been developed which will cope, with a high degree of

probability, with these faults. Hardware reliability

has increased as component reliability improves, while

due to the increased complexity of software systems,

software faults have become more prevalent.

All software failures result from design faults

Cai. The relative frequency of software errors com-

pared with hardware errors reflects the increased log-

ical complexity of software [4]. This complexity is

due to the fact that machines used for hardware design

have a relatively small number of possible internal

states, making it usually possible to consider the

hardware design as correct. In comparison to this

even a small software system has an enormous number of

different possible states, making it very difficult to

justify the assumption that the software design is

correct. Methods are being developed for increasing

the correctness of a design [5], for ascertaining the

correctness of a design using correctness proofs [6],

and for introducing fault avoidance methods [7].

These methods are in an early stage of development and

can at present be applied only to a limited set of

tasks, such as proving the logic for a specific

operating system function. It is not thought that

these methods could be applied to complete systems at

present [8], although work on automating theorem prov-

ing may provide useful gains in productivity. Work in

software fault tolerance has increased over the last

10 years in an attempt to prevent the increase in

software complexity increasing software faults.

The requirement for systems to continue to

operate satisfactorily in the presence of faults has

lead to techniques for the construction of fault

tolerant software systems. A fault tolerant system

detects errors created as the effects of a fault and

applies error recovery provisions in the form of

abnormal or exceptional mechanisms and algorithms to

continue operation and restore normal computations.

These methods must be based on useful redundancy, this

redundancy must be a redundancy of design [9].

Once error detection has taken place, the fault

tolerant methods for software systems are usually

classified into backward or forward recovery tech-

niques [10]. Forward error recovery is achieved by

making corrections to a system state containing errors

so that normal operation can be resumed [10]. Back-

ward error recovery restores the system to an error

free state which occurred prior to the manifestation

of the fault. Using this earlier state, the function

SiS,

of the system is then provided by an alternative algo-

rithm [11]. Forward error recovery techniques are

generally used for recovering from predictable faults.

In contrast, backward error recovery is used for

unpredictable faults [12]. This thesis is concerned

with the development of design methods for backward

error recovery systems.

The recovery block mechanism [11,4] provides a

backward error recovery scheme for general sequential

systems. It uses a similar mechanism to the standby

spares used in hardware systems [13]. If a fault is

detected by an acceptance test, the system is restored

to a previous correct state and control is transferred

to a spare component.

In distributed concurrent systems the software

can be partitioned into a number of processes, the

partitioning often being performed on a functional

basis [14,15]. Inter-process communications or infor-

mation flow will take place through defined interfaces

to the processes. These information flows are essen-

tial to the operation of the complete system. How-

ever, under fault conditions, errors may propagate

through the inter-process channels, It is therefore

essential to limit and control such communications.

One way of limiting the extent of information flow is

by the use of atomic actions [16]. An atomic action

can be defined as follows [17] : "The activity of a

group of components constitutes an atomic action if

there are no interactions between that group and_ the

rest of the system for the duration of the activity".

The conversation [4] is a backward error recovery

mechanism using the idea of atomic actions to provide

a fault structure for distributed concurrent systems.

The conversation is an extension of the sequen-

tial fault tolerant mechanism mentioned earlier, the

recovery block. It encompasses a set of interacting

concurrent processes by coordinating the recovery

activity of the interacting processes into a common

recovery structure. The faults this fault tolerant

mechanism will deal with are unpredictable design

faults which generate errors detectable with logical

tests.

The conversation provides an error recovery

mechanism which allows a specific , predefined, subset

of a set of processes to be included within the fault

tolerant mechanism. The conversation is usually used

to protect a specific function or part of the system.

The boundary of the conversation must be designed with

care to ensure that all required processes are

included by the conversation. If conversations are

nested, it must be ensured that this nesting is

designed properly.

=] 5—

In this thesis the problem of designing the

conversation mechanism for sets of distributed

processes is related to the problem of identifying and

protecting certain sequences of states of the set of

processes. A solution is proposed in which : (i) the

system is modelled as a set of communicating sequen-

tial processes and described in the occam programming

language, (ii) the model is transformed into a Petri

net and the network state and state reachability space

are determined and (iii) a method is presented for

identifying conversation boundaries within the state

reachability space of the system. An implementation

of the conversation scheme is then shown and is

described in the occam programming language.

A further problem in distributed concurrent sys-

tems concerns the inter-process communications [18].

In a system consisting of a set of communicating

processes, as outlined above, if one of the communi-

cating processes fails to reach a communication point,

the other process involved in the communication will

become deadlocked [19]. In a distributed system, the

conversation scheme relies on communications for its

correct operation. It is therefore essential to

prevent processes becoming deadlocked. By using Petri

nets to model the communication primitives, a scheme

is discussed which decreases the likelyhood of

processes deadlocking [20].

lar

1.2 Summary of Thesis.

Chapter 2 of the thesis sets out the objectives

of the research presented here. It presents a survey

of previous work in this field of research. It “also

identifies a number of tangible goals which were

achieved to obtain the set objectives.

A crucial concept in the subsequent chapters of

this thesis is the idea of the state of a process or

system. The design method presented uses the state of

a system to identify the placement of a fault tolerant

mechanism within that system. A method was therefore

required for identifying the state of a system. In

chapter 3 Petri nets [21] are used for the state

definition of a system consisting of a set of communi-

cating sequential processes. The concurrent program-

ming language occam [22] is described and related to a

Petri net model, thus making it possible to model a

concurrent system described in occam, including infor-

mation about the state of the interacting processes.

A formal definition of Petri nets and the Petri

net structure is given. The concept of net state is

introduced and mapped onto the reachability tree of a

Petri net. Petri net techniques are then used to

model sequential software systems. The state of the

Petri net is mapped to the state of the software sys-

tem and the transition from one state to the next

ahs

shown on the reachability tree. The model for the

sequential system is then extended to incorporate the

additional features required in concurrent software

systems.

In chapter 4 the fault tolerant mechanism for

concurrent processes, the conversation, is introduced

and a number of design problems identified. Before a

conversation can be constructed the boundaries of the

conversation must be identified. It is shown that

analysis of process state and state transitions can be

used to identify conversation boundaries automatically

[23]. The model developed in chapter 3 is used to

determine the states within a conversation. Particular

emphasis is placed on identifying the state of a

conversation because these states are used directly in

the implementation of the recovery mechanism. The

method which is developed in this chapter will iden-

tify all processes within a specific conversation.

Perhaps more important from the point of view of

design, the method can be used to provide fault toler-

ance for a particular function or subsystem, because

it allows the designer to identify the boundary of a

conversation, or properly nested set of conversations

which enclose the particular feature.

An implementation of the conversation scheme is

given in chapter 5. The special facilities of the

=18—

language occam can be used to generate a conversation

framework. This is independent of the application and

due to the nature of the language is independent of

the number of processes involved. By using the design

rules developed in the previous chapter, the conversa-

tion framework is incorporated into a distributed con-

current control example.

When processes are involved in communications

with other processes in the system there is always a

possibility of a communication failure. In certain

circumstances these failures could lead to a loss of

system integrity. Chapter 6 considers some of the

problems involved in designing reliable communications

for concurrent systems. The requirements for reliable

communications are described for the different types

of communication primitives, and their relative advan-

tages and deficiences are highlighted. A system is

discussed which gives a higher degree of reliability

than existing systems [24]. This system is modelled

again using Petri nets and implemented in the con-

current programming language occam.

Chapter 7 summarises the achievements of the

research and draws a number of conclusions about

these. Also in this chapter a number of areas for

further research are suggested.

195

Chapter 2.

Aims and Objectives of the Research.

2.1 Introduction.

The major objective of the research in this

thesis was to produce a design method for the produc-—

tion of fault tolerant software for distributed sys-

tems. The approach used to recover from unanticipated

faults is state restoration; this ensures the

comprehensive removal of errors. The system must be

reset to a state which has already occurred during the

operation of the system. If the system can be

restored to a state which it occupied prior to the

occurrence of a fault then errors resulting from that

fault will have been removed.

To attain the objective of this thesis, a number

of goals had to be achieved. Firstly a mechanism had

to be identified which could provide fault tolerance

in a distributed system. The recovery block scheme

[4] is a well known and proven fault tolerant mechan-

ism for sequential systems. The conversation scheme

proposed by Randell [4] is an extension to the

recovery block scheme, for concurrent systems. Back-

ward error recovery using a conversation is relatively

straightforward since it uses a planned recovery line

[17]. This method of recovery does not suffer from

the disadvantages of unplanned recovery line methods.

Unplanned recovery line methods require a complex

mechanism to locate the recovery lines, even with this

mechanism non-identification of a recovery line is

possible and the possibility of the domino effect

occurring is high.

A conversation limits the extent of the migration

of an error between a number of interacting concurrent

processes [4]. This is achieved by placing a boundary

around a set of these interacting processes. The

boundary has four edges: an entry line prohibits a

process from rolling too far back when in recovery and

holds a set of correct prior states, which are used

for state replacement. The exit line is a synchronis-

ing line between the processes within the conversa-—

tion; the state of each process is checked at this

line and if found in error will cause all the

processes in the conversation to roll back to the

entry line. The two side walls prohibit the passing

of information (either into or out from the conversa-—

tion) to processes outside the conversation.

When designing a conversation to increase the

fault tolerance of a system two major of problems

arise: identification of constituent processes and

identification of conversation boundaries. For). 2

i=

given set of events a system consisting of a set of

concurrent processes will have a subset of these

processes interacting with each other. Thus, between

any two specific events in a system only a subset of

the processes within the system will be interacting

with each other. If a fault tolerant boundary is

required between these two events, only those

processes interacting with each other need to be

included within the boundary. The remaining processes

in the system will need to be excluded from the fault

tolerant activity. Each conversation will thus con-

tain a characteristic subset of processes. In gen-

eral, the processes in one conversation will not be

the same subset as those in another conversation. A

method is required which identifies these processes

for any given conversation.

To increase the usefulness of a fault tolerant

mechanism nesting should be possible. Conversations

do allow nesting. However, if conversations are not

properly nested one or more processes could leave an

inner conversation making it impossible for an outer

conversation to recover fully [4]. Care must there-

fore be taken when designing a system with nested

conversations [25].

2.2 Placement of Conversations.

This thesis develops a method of identifying

conversations by examining the state of the processes

in the system. For an error recovery technique to be

able to restore a prior state of a system, a record of

that state must have been preserved. State restora-

tion is certainly a possible recovery method for

software systems, since the notion of state is

inherent in such systems.

A number of papers have been published on the

recording of state information in a dynamic manner,

that is, where the state of a system is recorded as

the system executes. In [26] the state of the

processes is defined using occurrence graphs P2u).

These graphs are generated by the system itself as it

executes. Each process keeps a record of that part of

the growing occurrence graph in which it is involved.

If recovery is to be performed a process must send a

fail message to other processes in the system deter-

mined by its part of the occurrence graph. A process

receiving a fail message must stop its normal opera-—

tion and send fail messages determined by its graph.

Due to the independent nature of the processes and

their restorable places on the occurrence graph, the

probability of multiple rollbacks occurring is high

[17] and the searching for a set of restorable states

back to the beginning of the software is possible;

this is the domino effect [4].

=35-

Barigazzi et al. [27] avoid the domino effect by

keeping only one copy of previous states for each pro-

cess. This does however, have the disadvantage of not

allowing fault tolerant blocks to be nested. In their

proposal states are saved either when a local counter

reaches zero count or because states have been saved

in another process and a communication has occurred

between the two processes. The communications in the

latter case, for saving process state, does bring a

further source of unreliability into the system. EC

is probable that the recovery mechanism will be

required to protect certain functional aspects of the

processes. In this method no consideration is made of

the functional aspects of the processes.

Russell [28], has discussed state restoration in

systems with the restriction that process interactions

are unidirectional. It further postulates that a sys-

tem which is not domino-free may still not exhibit the

domino effect.

A shared memory system is considered by Kim [29].

Here a monitor [30] is used as the sole control of

process interactions. It assumes that there is a cen-

tralising process which manages restoration of moni-

tors and coordination of process rollbacks. The dom-

ino effect is eliminated by placing an additional con-

straint on the system, that is, suspicion of received

messages being in error is prohibited. That is) s=

propagations [29] are not allowed.

In this thesis a method for identification of

planned recovery lines is proposed. A method is

developed in which the state behaviour of the system

is mapped onto a state reachability tree. By using

this idea of state the boundary lines are defined.

The exit line is the set of states belonging to the

processes prior to leaving the conversation. By

relating the states between the entry and exit lines

to the processes, the minimum set of processes

required for a given conversation can be determined.

It is also shown that by using the state reachability

tree of the system it can be determined whether two or

more conversations are properly nested or not.

It is therefore proposed in this thesis that the

design of fault tolerant distributed software, using

the conversation scheme, can be simplified by con-

sideration of the system state.

The simplification can not be considered until a

method for defining the state of a distributed system

is specified. A system state is a point of state

space defined by a vector of values assumed by system

variables. Any assignment or communication operation

corresponds to a transition from one system state to

another. The state representation used in this thesis

=25=

is achieved using Petri net techniques [31]. Petri

nets provide several advantages as a system modelling

technique. First, the overall system structure and

behaviour is easy to understand due to the precise and

graphical nature of the representation scheme,

Second, the behaviour of the system can be analysed

using Petri net theory and analytical tools [32,33].

A model of the distributed system must be defined

before the state of the system can be defined. To

model a system it is essential to have an complete

specification of the system. The specification should

be complete and unambiguous [5]. Work on formal

methods for system specification [5,34,35] is intended

to satisfy these objectives, but these methods are at

an early stage of development and not widely used. In

this thesis the description of the distributed system

is achieved using the concurrent programming language

occam [22]. Although it is a programming language,

occam can also be used to specify distributed systems

[36].

The modelling tool should have a formal defini-

tion, enabling the model of a system to be constructed

in a rigorous manner and, in addition, allowing

analysis of a system. Before the model for a con-

current system can be constructed modelling techniques

for a sequential system are needed. These modelling

mire

techniques were again constructed using Petri nets

from a general specification of sequential primitives

and constructs. This was constructed by firstly

modelling the basic primitives which are the most fun-

damental features of a computational machine; assign-

ment, input and output.

Thus, by using occam as a specification language

for concurrent systems and modelling the specification

using Petri nets, a state-transition model of a con-

current system was developed. This model was then

used to identify boundaries for the placement of

conversations.

2.3 Implementation of Conversations.

Once the conversation has been designed the inev-

itable step is to implement the design. A number of

implementations have been proposed for the conversa-—

tion scheme.

In [37], the name-linked recovery block is intro-

duced, The paper looks at both asynchronous and syn-

chronous conversations. Multiprocess recovery blocks

are also considered. The ideas presented are only

slight advances towards a full implementation over

those of the original proposal [4], and are proposed

constructs rather than implementations.

27s

Kim [25], assumes that interprocess communica-

tions take place through monitors, i.e. a shared

memory system, and presents a number of possible

implementations, based around the language Concurrent

Pascal [38]. Extensions to the language Concurrent

Pascal are proposed which it is suggested will help in

the structuring of recoverable process interactions.

This method restricts the design to a shared memory

system and has the disadvantage of requiring specific

extensions to be made to the language Concurrent Pas—

cal before any design can be implemented.

This thesis proposes an implementation of the

conversation which uses the concurrent programming

language occam, with no extensions. Although occam

assumes that interprocess communications take place by

message passing through channels [39], this is not a

real restriction on the design since it is possible to

change a message passing system into one which uses

hared memory [40]. a

The first aim of the implementation was to pro-

vide a system which was independent of the applica-

tion; that is, once the structure for the conversation

was constructed, this could be used for any applica-

tion by changing the algorithms inside the structure,

but mot the structure, Secondly, it should be clear

where a conversation starts and finishes for each pro-

=78—

cess in the conversation. The acceptance tests for

the conversations should be identified clearly, allow-

ing changes to be easily made; this is the only part

of the conversation structure which may require

alteration from application to application. The

implementation obviously must allow synchronised exit

from the conversation. Finally, it should be possible

to nest conversations.

It is shown here that these aims are meet by the

proposed implementation. An example is given to

highlight the main features of the implementation.

2.4 Communications Failures.

A tacit assumption for the system considered is

that communications do not fail. This may not always

be the case [41]. The final part of this thesis is

concerned with this subject. The problem considered

here is that of communication failure due to non-

receipt of message, i.e. processes failing to reach

communication points, failure of communication medium.

The main objective for this is to ensure that

processes do not deadlock [19] due to communications

failure.

To achieve this objective each of the communica-

tion types, for message passing, are investigated and

are shown to be deficient when applied in a fault

tolerant situation. A suggestion is made for the

placement of a timeout mechanism [42] which it is

argued gives a higher reliability system from those

proposed before. Each communication primitive used in

message passing is analysed using a Petri net state-

transition model. By using state reduction on the

state-transition model a boundary for a timeout

mechanism is identified.

2.5 Discussion.

The systematic design of a fault tolerant system

requires a method for the placement of the fault

recovery mechanism within the system. Previous

designs for fault tolerant distributed systems do not

consider explicitly the placement problem. In the

method proposed in this thesis the distributed system

is described using the concurrent language occam, this

description is mapped onto Petri nets allowing the

state of the system to be defined. It is shown that

from the definition of state the boundaries of conver—

sations can be identified and thus placed in the sys-

tem.

The implementation of a fault tolerant structure

should be easy for the designer to incorporate into

systems, it should not add complexity to the system

making the probability of design errors greater.

=30—

Implementations previously proposed have required

extensions to languages, put restrictions of the final

system structure and in some cases increased the com-

plexity of the system. The implementation given in

this thesis requires no extensions to the language; it

is application independent and is structured such that

system complexity is not increased too much.

paises

Chapter 3.

System Model.

3.1 Introduction.

In many fields of study, a phenomena is not stu-

died directly but indirectly through a model of the

phenomena. A model is a representation of what are

felt to be the important features of the system under

study. By the manipulation of the representation, it

is hoped that new knowledge about the modelled

phenomena can be obtained without the danger, cost or

inconvenience of manipulating the real phenomena

ttselt.

Computer systems are often complex, large, sys-

tems of many interacting components. Each component

itself can be complex, as can its interactions with

other components in the system. Thus, one fundamental

idea is that systems are composed of separate

interacting components [43]. Each component may

itself be a system, but its behaviour can be described

independently of other components of the system,

except for well-defined interactions with other com-

ponents. These components may exhibit concurrency.

In order to model computer systems a tool is required

which will cope with the interacting components of the

system and allow concurrency to be represented.

The model used throughout this thesis is a Petri

net [44,31] description of the system.

A formal definition for the basic Petri net has

been specified [31] together with the Petri net graph

allowing analysis of the system to be carried out. A

formal definition for the state of the Petri net graph

is given. Thus, by using Petri nets it is possible to

represent the state of the system being modelled.

Using this formal definition, the structures present

in sequential and concurrent software systems are

modelled.

Modelling a concurrent system requires a number

of additional constructs not required for modelling

sequential systems such as parallelism and communica-

tions (C4515 These features are incorporated in the

concurrent notation C.S.P. [46], and concurrent

language occam [22]. It is shown here that these

additional constructs can be modelled using Petri

nets.

The models are analysed using the reachability

tree of the graph [31]. The reachability tree is

built up from the formal definitions of Petri nets.

3.2 Petri Net Structure and Graph,

Petri nets are composed of two fundamental com-

=93=

ponents : a set of places, P, and a set of transi-

tione,. T. To define the relationship between the

places and the transitions two functions connecting

transitions to places are defined: I the input func-

tion, and 0, the output function. The Petri net is

defined completely by its places, transitions, input

function, and output function [31].

The Petri net can be used to model a computer

program by representing sequences of statements

(actions) by transitions, the points between actions

by places, and the value of a program counter by the

location of a Petri net token [47]. These actions can

be local to a process, such as assignment, or more

complex actions involving more than one process, such

as communication.

3.2.1 Petri Net Structure.

Peterson [31] defines a number of important pro-

perties of Petri nets which enable them to be

analysed, The definitions are based on bag _ theory

[48], an extension of set theory. A Petri net struc-—

ture, C, is a four-tuple, C = (P,T,1I,0).

P= (Py Pgreeeer Da, } is a finite set of places, n >=

Ms T = ¢ tyrtgresees te } is a finite set of transi-

tions, m >= 0. i 2 T — > P (ts the input function, a4

mapping from transitions to bags of places. Or

P is the output function, a mapping from transitions

a

to bags of places. The set of places and the set of

transitions are disjoint, Pa T= 0. (An example

of a Petri net structure is given in fig 3.1.)

Cc 2s Des OD

P = {py PgrP3rPyr Ps }

T= {t,t}

I(t,) = {p,} o(t) = {p,}

T(t)) = (PorPg} OC t>) = {p5,P5}

Fig 3.1 Petri net structure consisting of

two transitions and five places.

3.2.2 Petri Net Graph.

From the definitions of the Petri net structure

given above a diagram of the modelled system can be

specified, the Petri net graph.

A Petri net graph G is a bipartite directed mul-

tigraph (multiple arcs between the two kinds of

nodes), G = (V,A), where V = {vyrvyr Ssecnevet LS a. Set
s

of vertices and A = {arr seeer By, } is a bag of

directed arcs, a, = (v5ry,h> with V57%, © V. The set

V can be partitioned into two disjoint sets P and T

such that V = P UT, and P m YT = 0, and for each

directed arc, a; € A, if aie (Vga vy)» then

either v.,€ P and v,€ Tor v.€ T and vi e€ P. The
j k 5) k

graph contains two kinds of node, place nodes and

=35—

transition nodes. Places (p) are represented by cir-

cles. Transitions (t) are represented by bars. The

Petri net graph for fig 3.1 is shown in fig 3.2.

Pa

Fig 3.2 Petri net graph for fig 3.1.

3.3 Representing State.

Each component of a system has its own state.

The state of a component may change with time. The

state of a component thus depends on the past history

of that component. The concept of state is very

important to modelling systems. The state gives

information which enables future actions to be

predicted. The concept of state is mapped onto Petri

nets by marking the places on a Petri net graph with

tokens. This can then be related back to the state of

the system the Petri net is modelling.

3.3.1 Petri Net Marking,

=36-

A marking ji is an assignment of tokens to the

places of a Petri net. A marking y of a Petri net C =

(P,T,1,0) is a function from the set of places P to

the nonnegative integer N.

ae —

The marking yp can be defined as an n-vector,

yu =C yr gress Uy)» where n = |P| and each uy € N, i =

15 ateiste 5th « The state of a Petri net is defined by its

marking. A marking for the Petri net graph of fig 3.2

is shown in fig 3.3.

Hee tes 0), 05 00)

Fig 3.3 Marking of fig 3.2.

The marking HL can also be defined as a vector U=

{Py, Py soePy} where p; € P and these are the only

Sa7=

places marked at the particular instant. Thus, for

fig 3.3 above yp = {1,4}.

3.3.2 Execution Rules.

An action in software can only take place when

all required information is available, i.e. x := ytz

must have both y and z before the assignment can take

place. Similarly, for a transition on a Petri net

graph, a transition t5 € T in a marked Petri net C =

(P,T,I1,0) with marking p is enabled if for all Py e 2

H(p,) 2 A (p,, X(t,))

A transition fires by removing all of its ena-

bling tokens from its input places and depositing into

each of its output places one token for each arc from

the transition to the place.

A transition ty in a marked Petri net with mark-

ing wu may fire whenever it is enabled. Firing an

enabled transition S results in a new

marking w' defined by

uN (B,) = u(y) — Aly, T(e,)) + # (By, Olt,))

The firing of a transition represents a change in

the state of the Petri net by a change in the marking

of the net. The state space of a Petri net with no

-38-

places is the set of all markings, that is, NOS An

example of transitions firing is shown in figs 3.4 and

3.5.

PL Pa

Gp

P3 Ps

wom {2,4}

Fig 3.4: Transition tg enabled.

uw = (355)

Fig 3.5: Result of t, firing.

A description and formal definition of the

—30=

modelling tool, Petri nets, have been given. It has

been shown that from a mathematical definition of the

net a graph may be constructed of the model. Using

this graphical model of the net, state was introduced

and the rules for changing the state were given.

In the following sections Petri nets are used to

model software systems. It is shown that both sequen-

tial and concurrent systems may be modelled using

Petri nets.

3.4 Sequential Processes.

Sequential programs can be written using six

primitive processes [49]:

INPUT

OUTPUT

ASSIGNMENT

SEQUENCE

SELECTION

REPETITION

Each basic primitive can be modelled as an ele-

ment of a Petri net, such that the state of the pro-

cess is represented by the marking of the places of

the net, u.

The Petri net models for these primitive con-

structs are shown in figure 3.6. It follows that any

-40=

sequential program can be modelled as a Petri net by

combining a number of these primitives.

Process Program Flow Diagram Petri Net Model

a) INPUT

INPUT(Y) INPUT (Y) INPUT (Y) |

b) OUTPUT

OUTPUT(Y) OUTPUT (Y) OUTPUT (Y)

c) ASSIGNMENT

xi=y

“d) SEQUENCE

SEQ
PBL Py P
P2 1

P2

O
+
o
+
O
o

O
+
o
0

O
+
O

Pie

e) SELECTION

IF x<O THEN Pl — P} RB
ELSE P2

£) REPETITION

Ta =

K<100 C

SEQ alia T
k:=1 “Tae Pp a
WHILE k<100 2

SEQ Fav

Pl
P2 O Py

Fig 3.6 Petri Net Models of Sequential

Software Constructs.

From the above it can be seen that every place

has a unique output transition, except for places

which precede decisions (e,f); these places have two

output transitions corresponding to TRUE and FALSE

=ho=

outcomes of the decision predicate. The choice as_ to

which are to take can be made non-deterministically or

by some outside influence (such as the designer).

3.5 Concurrent Systems.

The sequential constructs described above are

sufficient to describe sequential systems and the

sequential parts of concurrent systems. However, con-

current systems can not be fully described using the

sequential concepts alone. Additional constructs must

be introduced to describe parallelism, inter-process

communications and inter-process synchronisation [38].

Hoare has introduced the notation C.S.P. [46,50],

which allows the sequential and parallel composition

of communicating processes. This notation also uni-

fies input, output and inter-process synchronisation

in a simple mechanism for internal (inter-process) or

external (input,output) communications. The problem

of inter-process communication is handled by inter-

process message passing.

3.5.1 Axioms of C.S.P. :

The basic axioms of C.S.P. are as follows :-

a) A parallel command based on Dijkstra“s parbegin

(s1] is used to specify concurrent execution. All

processes start simultaneously, the command is only

mh

completed when all processes have completed their exe-

cution. Communication via updating global variables

is not possible.

b) A simple form for input and output commands is

used; it is also used for communications between con-

current processes,

c) For communication between two processes to take

place there must be a logical pairing of input and

output in which :

i) the receiver process must identify the transmitter

process,

ii) the transmitter process must identify the receiver

process,

iii) the data object to be transmitted must be of the

same type as the data type expected in the receiver,

iv) there is no buffering in the data channel: both

transmitter and receiver must be ready for communica-

tion. This enforces synchronisation between the

processes and either process may be delayed until the

other process is ready.

d) Dijkstra“’s guarded commands [52] are used as

sequential control structures and the means of intro-

ducing and controlling non-determinism between

processes,

lh

e) Input commands may appear in guards. This then

acts as an alternative constructor. A process which

is guarded by an input is not executed unless the pro-

cess at the other end of the communication is waiting

to output. If several input guards of a set of alter-

natives have ready sources, only one is selected arbi-

trarily.

By using the above proposals the programming

language occam has been developed, which is relatively

simple to understand and introduces input, output and

concurrency as explicit primitives.

3.5.2 Occan.

Occam enables a system to be described as a col-

lection of concurrent communicating processes. The

communications is achieved via channels,

In occam each primitive process and construct

occupy a single line. The components of the con-

structs are indented.

3.5.2.1 Primitive Processes.

Occam has three primitive processes:

assignment,input and output :

e assign an expression e to a variable v.

eine output expression e on channel c.

-45-

a2 ww input variable v from channel c.

3.5.2.2 Constructs.

The primitive processes can be combined tno a

number of ways by using the constructs available in

occam,

3.5.2.2.1 Sequential Constructs.

Sequential (SEQ): primitives following this construct

are executed in sequence one after the other.

Conditional (IF): this construct is followed by a con-

dition. If the condition is true the primitives

encompassed by the construct will be executed.

Repetition (WHILE): a condition follows the WHILE and

the primitives encompassed by the construct are exe-

cuted until the condition is false.

3.5.2.2.2 Parallel Constructs.

Parallel (PAR): all processes in the scope of the con-

struct are performed concurrently. The construct ter-

minates when all constituent components have _ ter-

minated.

Alternative (ALT): the alternative constructor chooses

one of its components for execution. Each component

=46=

process has a guard which is an input, with an

optional condition. The earliest process which is

ready to be executed is chosen; the guard is executed

followed by the guarded process. If more than one

guard is satisfied the choice as to which alternative

is taken is arbitrary.

Replicator: replicators are used to describe collec—

tions of similar processes. They can be used with the

constructs PAR, SEQ and ALT.

3.5.3 Modelling Concurrent Software.

Concurrent programming languages such as occam

allow the user to model concurrent systems. Such sys-—

tems are composed of separate, interacting components.

Each component may itself be a process, and its

behaviour can be described independently of the other

components of the system, except for well-defined

interactions with other components. In this section a

state model of concurrent software is derived using

Petri net techniques: Petri nets have been previously

used to generate state models of sequential software

[53]. To deal with concurrent systems Petri net

models have to be developed for concurrent constructs,

such as parallel processes, synchronised communica-

tions and asynchronous ALT processes. By incorporat—

ing these concurrent constructs a unified Petri net-

=47—

based state model of sequential and concurrent

software was developed.

Assignment.

Assignment is an action which involves a _ single

process only: it can be modelled as a transition with

single input and output arcs.

ole

Parallel.

In the parallel construct all actions are ini-

tiated simultaneously. The construct does not ter-

minate until all parallel processes have terminated.

-48=-

PAR

Communications.

For the action of communication two processes are

involved. One sends the information and one receives

tS Thus a transition modelling a communication

requires at least two input arcs, one from each pro-

cess involved in the communication and at least two

output ares, again one to each process. To distin-

guish input and output actions the occam notation for

input and output on the transitions is used.

Input.

comm.chan ? var 2

Output.

comm.chan ! exp t

These two actions, input and output, always appear in

pairs in the system. In occam type systems where the

communications is synchronised, the same transition

will be shared by both processes involved in the com-

munication.

Process A Process B

Alternative.

-50-

The alternative constructor consists of a number

of guarded processes. The guard of each component

process comprises an input, and an optional input

expression. When an input is ready, the corresponding

guard will be satisfied and the guarded process exe-

cuted. If more than one guard is satisfied simultane-

ously the choice as to which alternative is taken is

arbitrary.

The previous sections have developed a model,

firstly for sequential systems and then for concurrent

systems described as a set of communicating sequential

processes, using Petri nets. It has been shown that

parallelism is inherent within the model, inter-

process communications can be represented and that

asynchronous alternatives may be included within the

model.

Section 3.3 showed how state could be introduced

into the model. To be able to interpret the changing

=—5he

sequence of state through which a system evolves, a

means of representing the evolving state must be used.

The next section introduces such a technique, the

reachability tree.

3.6 Reachability Tree.

It has been shown that by using the basic defini-

tions of Petri nets and a formal concurrent language,

occam, it is possible to model the constructs required

for concurrent systems. A model can be constructed of

the concurrent software for a complete system, by sim-

ply connecting the nets for each component construct.

In such a network each place on the Petri net will

have an associated state, and each transition will

correspond to a component process. The state of the

software is the marking of the places on the Petri

net.

The state of a Petri net is defined by its mark-

ing. To analyse the dynamics of the system the mark-

ings (states) of the model must be mapped as they are

changed. In what follows a number of functions are

formally defined which enable the reachability space

to be constructed. The method used here is the

reachability tree [31].

The reachability tree consists of nodes which

represent markings of the Petri net connected by arcs

==

which represent the firing of transitions. Each node

on the tree will have an associated state, and each

arc represents the transition of the corresponding

component process. Each node on the reachability tree

is labelled with a marking, arcs are labelled with tran-

sitions.

The initial node (root of the reachability tree)

is labelled with the initial marking. Given a node x

in the tree, additional nodes are added to the tree

for each marking that is directly reachable from the

marking of the node x. This is given by the next

state function 6 . In the modelling of software sys-

tems the reachability tree can be transformed to

nodes represent the state of the system and arcs

represent the possible changes in state resulting from

performing actions.

3.6.1 State Dynamics of a Petri Net.

n
The next-state function 6: N7 x tT —S N™ for. Val

Petri net C = (P,T,1,0) with marking uw and transi-

tion ty € T is defined if and only if

up) 2 (Dr I(t,))

for all Pie P.

If 6(u, ey is defined, then oCire.) = u', where

ui (p;) =up;) — - (pyr Z(t,)) + # (pyr O(t,))

on

for all P Le P.

From figs 3.4 and 3.5, p = {2,4} and 6 (u,t5)

Hos

For a Petri net C = (P,T,1,0) with marking uw, a

marking u' is immediately reachable from yp if there

exists a transition SF € T such that Sturt.) =u'.

For each transition t, on the Petri net which is

enabled in the marking for node x, a new node on the

reachability tree with marking 8(x,t,) is created, and

an arc labelled ty is directed from the node x to this

new node. This process is repeated for all new nodes.

Continuing this process will create the entire state

space. This is known as the reachability set R(C,U).

In practice repetitive constructs will usually bound

the reachability tree.

The reachability set R(C,u) of a Petri net C with

marking uw is defined to be all markings which are

reachable from uw. A marking u' is in R(C,n) if there

is any sequence of transition firings which will

change marking yp into marking u'.

The reachability set R(C,u) for a Petri net C =

(P,T,1,0) with marking yp is the set of markings

defined by

say

1. pe R(C,p)

Zoe 2h oi e REC QU) ands uo = du" t,) for some = eT,

then WH" € R(C,W).

ROC, U) for fig 3.3 = {€1,4)5(2,4),(3,5)) > The

corresponding reachability tree is shown in figure

RWG

Fig 3.7 Reachability Tree for fig 3.3.

A path from the initial marking (root) to a node

in the tree corresponds to an execution sequence and

can be defined by . the extended next-state

function 6(u,;A) . The extended next-state function is

defined for a marking wU and a sequence of transi-

tions o ¢ T* by

Su, ae = 6(6(u, ae o) = 6(u,A)

For fig 3.3, let o = tpt, and uw = {1,4}

then 6(u,A) = {3,5}.

The definitions given above are concerned with

the dynamics of the Petri net. They enable the state

al ee

space of a Petri net to be calculated given an initial

state. These states can be used to construct the

reachability tree of the net. The reachability tree

represents the whole reachability set of a Petri net.

3.7 Discussion.

This chapter has built up a number of important

ideas used throughout the rest of this thesis. It has

demonstrated that Petri nets can be used as a notation

for state space and space reachability in asynchronous

concurrent systems. It has examined software con-

structs for SEQ, PAR and asynchronous processes. A

state-transition description of occam processes was

derived. Concurrent system models were mapped onto

state-transition models and the state reachability was

determined. Finally, the state of software was mapped

onto the state reachability tree of the Petri net

model.

=56—-

Chapter 4.

The Structured Design of Conversations.

4,1 Introduction.

A fault is the mechanical or algorithmic cause of

an error in a system [10]. Despite the adoption of

fault avoidance techniques, faults still occur in con-

structed systems. These faults can occur, for exam-

ple, due to the unavailability of fault-free hardware

components, or because of the complexity in system

software. The non-deterministic nature of concurrent

systems, consisting of a number of asynchronous com-

ponents interacting with each other make exhaustive

testing of software for such systems impossible [17].

Yet in many applications it is essential that the sys-

tem continues to operate correctly, even in the pres-

ence of faults [54]. There is therefore a need for

fault tolerant software.

Fault tolerance should be based on the provision

of useful redundancy [9]. In a hardware system this

is achieved by duplicating system components and

diverse design. Tolerance to faults in software can

only be achieved by redundancy of design : replacing a

faulty software module by an identical module would

=s7 5

just cause the same fault [8].

A further problem in designing error detection

and recovery capabilities into a concurrent program

structured in the form of a collection of cooperating

asynchronous processes, arises from the possibility of

error propagation through process interaction [25].

An error in one process may produce a fault in another

process and lead to an error in the second process.

It is therefore necessary to bound the extent of error

propagation and to introduce a coordinated recovery in

all processes involved.

In this chapter the recovery mechanism for fault

tolerant systems is considered. This is divided into

two major sections: one for sequential systems

(recovery blocks) and one for concurrent systems

(conversations). The mechanisms for error detection

and error control are considered (test line, accep-

tance test and roll back) and a need for desgin tools

identified.

It is the aim of this chapter to develop a method

of identifying conversations to protect either

processes or functions within a system and to provide

analysis and design tools so that the designer can use

such a method. The object was to develop a method for

the systematic design of conversations for that class

of systems which can be modelled using the SEQ, PAR

-58-

and asynchronous constructs available in occam.

The goals which were satisfied to meet this

objective were: the derivation of a state model and

state reachability model for the systems using Petri

net techniques (as developed in chapter 3), the iden-

tification of local transitions, sequences of which

can be protected by recovery blocks and inter-process

communications/transitions, which can only be pro-

tected by conversations, the identification of conver-

sation boundaries (by reducing the reachability

tree), identification of processes within a conversa-

tion (by relating processes to state-transition attri-

butes), the identification of conversation boundaries

to the control mechanisms (test line etc.) and a

specification of how to design a conversation to pro-

tect a particular function.

4,2 Error Detection and Recovery.

4.2.1 Sequential Systems.

The recovery block scheme [4,55] has been pro-

posed as a method of introducing redundancy into the

software of computing system, in the form of stand-by

spares, in order to provide tolerance against faults.

The recovery block scheme for error recovery is

based on the idea that programs are written in func-

tional blocks. Although these blocks, which are

-59-

assumed to be non-redundant, may have been designed

carefully and tested to some extent, design faults

could still be present. It is therefore necessary to

design around these blocks, known as the “primary

blocks”, a mechanism which will deal with these

faults. A recovery scheme for such a system will be

designed in a number of steps.

The first step in this process is to provide a

means of detecting the errors caused by the block. A

process known as an “acceptance test” is incorporated

into the system to check on the correctness or reason-

ableness of the results calculated by the primary

block. Thus:

primary block

acceptance test

The acceptance test will consist of a sequence of

statements which will raise an exception if the state

of the system is not acceptable.

The next stage in designing a structure to pro-

vide fault tolerance is to consider a suitable method

of error recovery if the primary block fails its

acceptance test. Since the precise time at which the

errors will be generated is not known the most suit-

able prior state for restoration is the state of the

~60=

process that existed just before entry to the primary

block. A recovery point can be established at this

point by the introduction of an additional process

“establish recovery point” before the primary block.

establish recovery point

primary block

acceptance test

If an error is detected by the acceptance test

the primary block will be restored to the state at the

recovery point, a retry of the primary block may be

useless since the same fault could result in an excep-

tion being raised again. What is required is a secon-

dary block which will produce results that pass the

same acceptance test as designed for the primary

block, but which has a different design which it is

hoped will not be prone to the same fault. This

secondary block can be thought of as an “alternative

block” to the primary block.

=6i—

establish recovery point

primary block

acceptance test

pass \en

continue reset to recovery point

alternative block

acceptance test

eae) puueis

continue reset

etc.

The recovery scheme is not restricted to a single

alternate block; a number of alternative blocks may be

added, to be executed in turn if previous blocks have

failed the acceptance test.

This recovery block scheme is described by the

syntax given in fig 4.1. The common acceptance test

is designated by the ENSURE statement and is placed at

the beginning of the recovery block. Following the

acceptance test is the primary block (BY) and the

alternate blocks (ELSE BY).

=626

ENSURE <acceptance test>

BY <primary block>

ELSE BY <alternate block 1>

ELSE BY <alternate block 2>

ELSE ERROR

Fig 4.1. Recovery Block Outline.

On entry to the recovery block the recovery point

is established and the primary block entered. On com-

pletion of the primary block the acceptance test is

executed: if the test does not raise an exeception the

recovery block is exited. However, if an exception is

raised the recovery point is restored, the next alter-

mate block is executed and above procedure is

repeated,

Recovery blocks can be nested so that one

recovery block can form part of a primary block of an

enclosing recovery block [4].

4.2.2 Concurrent Systems.

The recovery block scheme for error detection and

recovery in single sequential process systems cannot

be used directly for networks of communicating

fo

sequential processes [4]. In concurrent systems con-

sisting of a set of communicating processes, when one

process raises an exception it is not sufficient to

perform recovery actions on just that single process.

The extent the recovery of that process impinges upon

the other processes in the system must be considered.

In communicating processes information flows between

the processes and faults migrate. This influences the

nature of the required recovery process.

For example, if a process has just sent informa-

tion to a second process and an exception is raised,

both processes should undergo recovery since the

transmitted information could be in error. Similarly,

if a process has received information from another

process and then an exception is raised, it may

require the information to be sent again (or another

form of it); and thus both processes must be

recovered.

A further problem in the design of error detec-

tion and recovery mechanisms for a system of communi-

cating sequential processes is that the recovery

points of the processes cannot be chosen arbitrarily.

If recovery points of interacting processes are not

properly coordinated, then an intolerably long

sequence of rollback propagations can occur. This is

termed the domino effect [4]. In the most extreme case

the roll back sequence would continue to the beginning

of the program. This effect can be illustrated by

considering a system of three processes as shown in

figure 4.2. The three processes, P1,P2,P3, have auto-

monously established four recovery points. The dotted

lines indicate process interactions. af Process 2

fails, it will be backed up to its fourth recovery

point past an interaction with Process 1; this must

therefore also be backed up to the recovery point

immediately prior to this interaction. However, if

Process 3 should fail all the processes will have to

be backed up right to their starting points.

1 2 4
L L L [Process: 1 f 7 Lt T ((a82

(et \ 1 \
jen 1 ' 1

1 \ 2 1 1 3 4
Process 2 = 7 nat T T t

' ! tant \

rae 1 2 Som UG
Process 3 ut L “ : Batt

tine — >

Fig 4.2 Example of the Domino Effect.

The domino effect can occur when two particular

circumstances exist in combination [4]:

1) The recovery block structure of the various

processes is uncoordinated, and take no account of

process interdependencies caused by their interac-

tions.

2) The processes are symmetrical with respect to

failure propagation - either member of any pair of

interacting processes can cause the other to roll

back.

4.3 Conversations.

An abstract construct termed a conversation was

proposed [4] as an aid to the structuring of properly

coordinated error detection and backward recovery

actions of interacting processes. A conversation

attempts to prevent the domino effect by dealing with

circumstance 1 above. A conversation [37,25] is an

extension of the recovery block technique, to two

dimensions (i.e. time and processes). Like recovery

blocks, conversations provide boundaries which serves

to limit the damage caused to a system by errors.

4.3.1 Basic Structure of a Conversation.

The boundary of a conversation consists of a

recovery line, a test line and two side walls. The

boundary encloses the set of communicating (interact-

ing) processes which are party to the conversation.

The recovery line is the part of the boundary which

=66=

defines the start of the conversation. It consists of

a coordinated set of states (recovery points) for the

interacting processes. At the start of a conversa-

tion, the state of each entry process is stored for

use if recovery is necessary. The entry to a conver-—

sation need not be a synchronous event.

The test line is a coordinated set of acceptance

tests for the set of interacting processes. Each test

line process is required to pass an acceptance test.

A conversation is successful only if all test line

processes pass their acceptance tests. Processes must

exit from a conversation synchronously. If any accep-

tance test is failed, recovery is achieved by rolling

back the conversation to the recovery line, restoring

the process state to that on entry to the conversa-

tion, and executing the alternate blocks. Thus,

processes in the conversation cooperate in error

detection. The side walls of the conversation prohi-

bit the passing of information to processes not

involved in the conversation (prevent information

smuggling). A representation of a conversation con-

sisting of three processes is shown in fig 4.3.

67>

Process A Process B Process C

recovery line

Fig 4.3. Conversation Scheme.

As with recovery blocks, conversations can be

nested within other conversations, so as to provide

additional possibilities for error detection and

recovery. However, it is possible to envisage conver-

sations which intersect and are not strictly nested

Such a structure is shown in fig 4.4.

=68=

 ! {

Fig 4.4. Example of Two Conversations which

are not Strictly Nested.

Here if Y or Z fail their acceptance test at C

and D it would not be possible to roll back X if it

had passed its acceptance test at G. Thus conversa-—

tions which intersect and are not strictly nested can-

not be allowed.

4.3.2 Problems with Conversation Design.

The conversation scheme is a good fault tolerant

mechanism for a system consisting of a set of communi-

cating sequential processes, but a number of problems

do exist in the design of such a scheme for a given

system. These problems can be related with the boun-

dary of the conversation.

Firstly, in order to define the boundary of a

-69-

conversation it is necessary to have some definition

of system state. Without this definition of state Le

is obviously not possible to identify the entry and

exit states (i.e. the boundary) of the conversation.

When defining the recovery states of the conver-

sation it is crucial that the states be a consistent

set. If the entry states do not form a consistent set

the domino effect could occur. A consistent set can

be precisely defined as follows [17]:

Consider a subset of processes Pl ... Pn, which

establish recovery points at times tl ... tn. Then a

set is said to be consistent at some later time t iff

(i) in the period ti to tj processes Pi and Pj do not

communicate

(ii) in the period ti to t, process Pi does not com-

municate with any process not in the subset.

Part (ii) of this definition of consistent set

brings out a further problem of atomicity [16,12] when

designing conversations: that is ensuring that all

processes interacting within the space of the conver-

sation must be party to the conversation. If this is

not the case information smuggling will occur and the

conversation mechanism will be useless.

4.4 A Possible Solution to Conversation Design.

a =

In sequential single-process systems, the state

of the process can be ascertained and saved, allowing

the restoration of these states during fault recovery,

as in the recovery block method.

The design problem is more complex in distributed

systems which consist of a set of processes which

operate automonously between synchronising inter=

process communications [26]. This means that, between

communications, the state of each process is indepen-

dent of the state of the other processes and this

leads to a considerable increase in the possible

states of the system.

By using the Petri net model of a distributed

system given in chapter 3, the states of the system

are identified. Using the associated reachability

tree it is possible to identify the entry and exit

states of conversations [23,56] and to identify all

processes involved in the conversation.

4.5 System State and Petri Nets.

The reachability tree of the system is used in a

new design procedure to incorporate a fault tolerant

mechanism in the form of conversations into a distri-

buted system.

In chapter 3 the state of a Petri net was defined

wi

by its marking at a given instance in time [31]. The

marking, and thus, the state of the net is changed by

the firing of enabled transitions. The net state will

continue to change until the net terminates, deadlocks

or falls into an infinite loop. The most convenient

way of representing these state changes in the net is

by the use of a reachability tree. All of the possi-

ble states of a Petri net can be obtained by travers—

ing all branches of the reachability tree.

In chapter 3 a state-transition description of

occam processes was derived. The state of software

was mapped onto the state reachability tree of a Petri

net model. By placing the initial markings onto the

Petri net, the operation of the program can be simu-

lated.

As each transition fires the marking of the Petri

net will change. At each decision point, each branch

must be considered seperately to obtain the complete

reachability tree. The set of markings for the Petri

net form a set of states for the program from which

the Petri net was derived. Each node on the reacha-

bility tree defines the state of the whole system at

that time.

It follows that, for any system modelled in

occam, one can determine the "entry" state (or subset

of states) and the set of possible reachable "exit"

states for each primitive process (or combination of

processes).

It is also possible to distinguish between

changes of state caused by local operations and

changes of state caused by communication with other

processes in the system by looking at the states

changed by a given transition (local operations cause

only one state change, communications cause more than

one change). The complete reachability tree gives all

possible combinations of system state which can exist

with the given transitions.

4.6 Identification of Fault Tolerant Boundaries.

4.6.1 Construction of State Change Table.

A table which identifies which states change when

a transition fires is constructed. The system dynam-

ics are characterised by the evolution of the system

states through a sequence of state transitions. This

can be defined by a state-change table which lists the

state changes for each transition in the reachability

tree.

From the reachability tree it is possible to

identify the present state and next-state for each

transitions.

7 Se

Present State wu = {pa..pm} 4.1

Next State ue = 6(urt,) = {pe..pn} Ga)

Equations 4.1 and 4.2 give the complete state of

the system before and after the transition ty has

fired . If a state is unchanged after the firing of a

transition, that state is independent of the particu-

lar transition. Since process state change is of

interest, the states which do not change can be elimn-

inated. This table (the state-change table) can be

built by using the reachability tree, the present

state of the system and the next-state function.

By taking the two relative complements {5:7)]

(relative complement of a and b [a-b] is the set of

values which are in a but not in b) it is possible to

determine only those states which change during the

transition tye

rT H & w {pe..ps}

W tt + 5 {pg..pt} ‘set
 1 os

The set I represents the subset of the initial

states which are altered by the transition. The set E

represents the subset of the final states which are

created by the firing of the transition. For example,

from table 4.1:

res

I E

£10| 41,29 42,20

Thus, for transition tl0 states Ld and 19 are

changed and 12 and 20 created, also 11 —> 12 and

TOP> 20's,

By determining the state changes for each transi-

tion in the reachability tree, a state-change table

can be constructed, which lists the evolution of the

system states as a function of the state transitions.

As an example table 4.1 is the state-change table of

the reachability tree in figure 4.7. The two lower-

halves of the state-change table correspond to the two

branches on the reachability tree.

Going from left to right on the same row in the

table shows the change in system state caused by the

transition on that particular row. If a state appears

on the left hand side of the table, it is changed by

that particular transition. If a state appears on the

right hand side of the table, it has been changed to

that state by the transition. The transition rows as

they proceed down the table correspond to increasing

time. For example, from table 4.1, state 1 is changed

to state 2 by transition tl.

oS

4.6.2 Identification of Communications.

When designing conversations inter-process com-

munications are of interest, rather than intra-process

communications. The state-change table may be reduced

to a communication state-change table consisting of

only communication transitions by removing all intra-

process transitions.

Forming equivalent relationships between states

created by intra-process actions (since these form

local states between communication transitions) sim-

plifies the state-change table. This table will be

known as_ the communication state-change table.

Inter-process communications can be identified by exa-

mining the process-identifier attributes of the rela-

tive complements in either equation 4.3 or 4.4.

If only one state has changed after a transition

firing, then this is a local change and not a communi-

cation. A communication must cause at least two

states to change, one in each of the communicating

process. If two states have changed but both _ states

belong to the same process, then again this is a local

change.

However, if two states have changed and they

belong to two different processes, then this is a

state change caused by a communication. i.e. consider

=76=

a transition th

Let PyPy € us or Py /P, € Ej

where Pie PROCg and Py & PRocr

then the transition is an inter-process communication

Lf iq # r. When q = r the transition can be classified

as an intra-process action.

For example, the state-change table, table 4.1,

can be reduced to the communication state-change

table, table 4.2.

Transitions t10,t19,t25 can be combined to form a

single row of the state-change table, because the

associated ALT constructs are embedded within a repli-

cator statement and the three ALT statements must all

fire before the replicated ALT can terminate, i.e. the

REP construct implies a replication of structure,

which allows reduction. This can be seen by the fact

that all three transitions share the same present

state (11) and next state (12). Similarly, transi-

tions t13,t21,t27 are condensed to a single row of the

state-change table.

4.6.3 Identification of Conversations.

The underlying reason for a conversation is the

interactions (communications) between the processes.

T=

It is essential for proper placement of conversations

to look at the interactions between the processes. ce

there are no interactions between processes, no

conversation is required.

If guaranteed recoverability is to be provided

for a set of processes which by interacting have

become mutually dependent on each others progress, it

must be arranged that processes cooperate in the pro-

vision of recovery points, as well as in the inter-

change of ordinary information [17]. It is shown here

that a conversation can be constructed by generating

systematically the entry and exit lines of the conver-

sation such that no process interaction takes place

through the side walls of the conversation.

The method partitions the reachability tree to

form boundaries within the state space of the system.

Any two transitions on the same branch of the reacha-

bility tree can be considered to form a boundary or

partition within the communication state-change table.

To determine a complete set of states which are ini-

tially marked at the chosen boundary and a set of

states created at the end of the boundary two sets §

and F, are formed from the union of all present and

next states within the partition boundary, the rela-

tive complements of these sets are then taken to elim-

inate states created and destroyed within the boun-

=73—

dary.

a W {EIU B20 ee eon 4.5

yt " {El U £2. U2... En} 4.6

Taking the relative complements of these sets:

nw
 ~ § - F = {pl,p2.,.-.pn}

u a S oo F- S = {pr,ps,-.-py}

4.6.4 Entry and Exit States.

The set K represents the subset of the initial

states which are altered by inter-process transitions

and the set J represents the subset of final states

which are created by inter-process transitions which

fire within the boundary, table 4.3.

The two sets, J and K, can be considered to be

the entry and exit states of a conversation. The par-

tition or boundary of the communication state-change

table then forms the boundary of the conversation. It

follows that, by partitioning the state-change table

at required transitions, the entry and exit points are

defined by the sets K and J.

4.6.5 Processes in Conversation.

Each state in K and J can be identified with a

process through the process-identifier attributes of

the states

=70—

P, € PROCa,

PS € PROCr.

Since the communications state-change table gives

all the communications in a given state space, these

are all the processes that are interacting during this

state space and are thus the only processes required

in the conversation.

4.7 Design of Conversations.

The design problem involves specifying a conver-

sation boundary which will protect a particular part

or function of the system. Such a specification will

be expressed in terms of the functional processes,

PROCcontrol, etc. The transitions and states associ-

ated with these functions can be identified through

their process-identifier attributes. It is therefore

possible to identify the corresponding transition and

states in the communication state-change table. EE

the function is to be protected, then all the associ-

ated states must lie within the conversation. The

entry state will coincide with the generation of the

states, and the test line with the termination of

these states. The set of states within the conversa-

tion can be found by identifying the entry and test

lines which enclose the identified states (and a

minimum set of the states) along the same branch of

=86=

the reachability tree. Since the sets K and J have as

their members the entry and exit states for a given

partition, only a single element of these sets is

required to determine the complete set of entry and

exit states for the particular partition.

4.7.1 Demonstrator Example.

Consider the example of a 3-axis robot arm con-

troller [58]. The controller consists of an “opera-

tor” process which inputs the coordinates from _ the

keyboard, checks for the reserved value, i.e. final

position (0,0,0); passes the input values to process

“control”; and waits to receive further inputs. Pro-

cess “control” accepts inputs from process “operator”;

calculates the new value for direction and distance

for each motor; and passes the computed values to the

“motor” processes. An occam solution to this problem

is given in fig 4.5. There are five concurrent

processes in this solution. There are three motor

processes one for each axis which input values for

distance and direction from process “control” and move

the motors.

The robot arm control program of figure 4.5, can

be translated into a Petri net graph using the

transformations described in chapter 3. The complete

Petri net graph for the robot program of figure 4.5 is

shown in figure 4.6 and is partitioned into five

=81—

functional processes which correspond the actual

processes in the program. The repetitive construct in

each functional process gives rise to cyclic struc-

tures in the Petri net graph which serve to bound the

graph. The closure of the cyclic loops is signified

in figure 4.6 by the primes on the state identifiers

Cole, po, etc.)..

The functional process boundaries

(operator,control,motors) associated with the distri-

buted system can be mapped onto occam and Petri net

models of these systems. The transitions and states

of the Petri net can therefore be associated with

specific processes and assigned a process-identifier

attribute; PROCi = {ti,pi}. Where ti = {ta..tg} and

pi = {pa..ph}. Using the Petri net graph each state

and transition can be assigned to a process-identifier

attribute.

PROCoperator = {tl,t2,t3,t4,t5,t6,t7,t8,t16,t18,t22,

t24,t28,t30,pl,p2,p3,p4,p5,p6,p7, ps}

PROCcontrol = {62,3 ,t5,¢8,t9 to ;tll,tl2,ti3,ti4,

t19, £21,625 ,€27,p9,p10,pll,pi2, pid ,pl4, pls, pl6 , p17,

pls}

=82—

PROCmotorl {ELO; tis, 615,016 ,t17,t18 p19 p20. pel,

p22,p23,p24}

PROCmotor2 = {t19,t20,t21,t22,t23,t24,p25,p26,p27,

p28,p29,p30}

PROCmotor3 {t25,t26,t27,t28,t29,t30,p31,p32,p33,

p34,p35,p36}

The reachability tree for the Petri net graph is

shown in fig 4.7. There is only one decision point in

this case (corresponding to the IF clause (t4)),

therefore there are only two branches in this reacha-

bility tree : the main branch which is concerned with

normal input variables and a second branch if the

input is the final position of 0,0,0 in which case all

processes are stopped.

Consider the robot control example and its asso-

ciated communication state-change table (table 4.2).

The main conversation protects the control process

from the point at which new coordinates are input to

the point at which all axial control motor processes

have reported correct execution of the axial movement

commands output by the control process. This specifi-

cation is associated with the process control between

the entry line state “9° and the test line state als=.

Therefore, the communication state-change table can be

partitioned on the main branch to enclose states 9 and

=93—

15 as shown in table 4.3. From this partition, the

start and finish states, S and F, the entry line and

the exit line states, K and J can be determined,

Although in this example, the conversation parti-

tions have been applied to the communication state-

change table, the partitions can also be applied to

the state-change table. This may be necessary if a

conversation is required to protect a particular func-

tion hidden, by the equivalence relationships, within

the communication state-change table. The procedure

is exactly the same as above.

4.8 Proof of Nesting.

Conversations can occur within other conversa-

tions, so as to provide additional possibilities of

error detection and recovery. The partitioning of the

state change table can be performed a number of times

for a given problem as in tables 4.4 and 4.5. Every

time a new partition is made, new conversation boun-

daries will be produced. Any or all of these conver-

sations can be used on the system in question, as in

figs 4.8 and 4.9.

If a system involves more than one conversation

it may be the case that these conversations overlap

each other. This overlapping will only occur if the

conversations are not disjoint with respect to both

time and processes. If this overlapping does occur it

is essential for the proper operation of the conversa-

tions that these conversations are strictly nested

[25]; i.e. the inner conversation starts last and fin-

ishes first, and is completely enclosed by the outer

conversation, as shown.

Fig 4.10. Example of Nested Conversation.

If the outer conversation does not fully enclose

the inner conversation then the recovery mechanism may

be useless. A process may leave the inner conversa-

tion and continue its execution. If the outer conver-

sation acceptance test is then failed, the processes

within it will be rolled back. However, since the

process in the inner conversation has left the bounds

of the outer conversation it is impossible to roll it

back. An example of bad nesting is shown below.

-85-

Fig 4.11. Example of Bad Nesting.

In all but trivial examples it is difficult to

decide by inspection alone whether the conversations

are properly nested or not. However, by using a state

space analysis it is possible to determine if they are

strictly nested or not.

Let the conversations be denoted by :

A conversation consists of two or more processes

performing a number of actions. These actions may be

local to a process or an interaction with another pro-

cess in the conversation.

A conversation can thus be defined as a set of

two sets: a set of transitions which take place during

=EA—

it and a set of processes involved in it. Hence,

Ca = {ta,Pa}

Cb = {tb,Pb}

where ta = {tl,t2,...}

and Pa = {PA,PB,...}

Two conversations are said to be disjoint if

either: they do not share any processes or if they do

share processes one conversation has finished before

the second has started. If the conversations are dis-

joint no nesting will be required. To decide fe the

conversations are disjoint, tests must be performed.

1) Taking the intersection of the sets of processes

shows if the conversations are independent with

respect to processes :

Ca OM Cb = {P}

If the intersection produces an empty set, {0},

then no communications take place between these

conversations in this time and no nesting will be

required.

2) It is possible that the

conversation involves one

their operation, but these

TEs

ERG ty tex fa < ty,

above test fails, i.e. each

Or more common processes in

may be disjoint in time.

where ta is the set of transitions in conversation Ca

and tb is the set of transitions in conversation Cb.

In this case conversation Ca finishes before conversa-—

tion Cb starts.

conversation Ch finishes before conversation Ca

if

atx, ty 28x | & ta > tye; tb

then,

starts.

-88-

In either of the case the conversations are dis-

joint in time, i.e. one conversation is finished

before the next starts and no nesting will be

required.

If both of these tests prove negative then the

conversations are not disjoint and further investiga-

tion must be made to determine if they are strictly

nested or not.

For two conversations to be strictly nested, the

outer conversation must fully enclose the inner

conversation. Hence, the outer conversation must

include all states present within the inner conversa-

tion.

The full set of states for a given conversation

can be calculated using equations 4.5 - 4.8.

Equation 4.5 gives the set of all present states

in the conversation.

Equation 4.7 gives the entry states of the

-89-

conversation, i.e. the states before the conversation

was entered, thus

(Ss - K) =L 4.9

gives all the present states enclosed by the conversa-—

tion.

Similarly:

CF = J) = 4.10

gives all the next states enclosed by the conversa-

tion.

Now, the complete set of states enclosed by the

conversation can be determined by taking the union of

equations 4.9 and 4.10

This is the set of all states which are changed

during the conversation.

Let ACn be the change in states during conversa-

tion Cn.

KGa me etpl spleen ese

=90—

ACb = {pn,pm,.....}

For a conversation to operate successfully all

processes involved in the conversation must be rolled

back to the beginning of the conversation if an accep-

tance test is failed. To roll back after a failure

has been detected all states in the inner conversation

must be present in the outer conversation since the

inner conversation will be re-entered on subsequent

tries.

-. dca Acb = Acb for successful nesting.

where Cb is the inner conversation.

Example of improperly nested conversations.

Looking at fig 4.12

Aca TG LO pit 512519), 14,15}

ACb 412,13, 14,20,21,26,27 32,33)

Aca n Acb = {12,13,14} #Acb

these conversations are not properly nested.

4.9 Discussion.

a4 as

When errors occur a process should be rolled back

to a previous state. It is critical that it is rolled

back to a unique and well defined state on the entry

boundary of the conversation. Once a conversation

boundary has been identified it is important that all

processes that are interacting within the state space

of the conversation must be included in that conversa-

tion.

This chapter has addressed the problem of speci-

fying and designing error detection and recovery

mechanisms for a class of distributed systems. A

method was described for the systematic identification

of conversation boundaries.

The formalised definition of system state and

reachability using Petri net techniques has been used.

The properties of the state reachability tree were

exploited in the development of a method for the

design of proper conversations. The functional attri-

butes of the system were used to identify conversa-—

tions which would protect a particular part of a sys-

tem (the conversation placement problem). The conver-

sations designed using this method automatically

enclose all processes which are party to the conversa-

tion.

The design method reduced the complexity of the

problem by systematically reducing design

considerations to only those system states which are

changed through interfunctional actions. These states

provided the minimum set required for the design pro-

cedure and the identification of the recovery and test

lines.

By using the same tools a technique was developed

for testing if two or more conversations are properly

nested,

=93=

Robot3.0CC
-- Occam program for 3-axis robot arm controller.

-- Declaration of inter-process channels.

CHAN request,return,motion[3],finished[3],stop[4],go[4]:
-- Declaration of process “operator.

PROC operator (CHAN send,receive) =
VAR x,y,z,run

SEQ
run := TRUE

WHILE run
SEQ

5 input x,y,z from keyboard. =—(tl)

send ! x --send to control process. (t2)
send ! y

send ! z

receive ? ANY --motors moved.(t3)

TF

(x=0)AND(y=0)AND(z=0) --check for finish, (t4)
SEQ

PAR i = [0 FOR 4]

stop[i] ! ANY --finish.(t5,t16,t22,t28)
run := FALSE == (t6)

TRUE == (t7)

PAR i = [0 FOR 4]

goli] } ANY : -—-continue.(ts,t18,t24,t30)

-- Declaration of process “motor”.

PROC motor (CHAN motion,finished,stopi,goi) =

VAR step,direction,going

SEQ
going := TRUE
WHILE going

SEQ

motion ? step --get from control.(t10,t19,t25)
motion ? direction

ane move motor =—(t15,t201,t26)

finished ! ANY ==(tio,t2),t27)

ALT

stopi ? ANY ==finish.(tlo,t22,t28)
going := FALSE --(t17,t23,t29)

goi ? ANY --continue.(t18,t24,t30)
SKIP

Fig 4.5a. Occam Program for 3-Axis Robot

Arm Controller.

=94—

-- Declaration of process “control”.

PROC control (CHAN receive,send,stopi,goi) =
VAR xold,yold,zold,xnew,ynew,znew,

count,step[3],direction[3],going

SEQ
ae. initialise xold,yold,zold

going := TRUE

WHILE going

SEQ

receive ? xnew --input from operator. (t2)
receive ? ynew
receive ? zgnew

| calculate distance and direction --(t9)

PAR i = [0 FOR 3]
SEQ

motion[i] ! step[i] --send to each motor.
motion[i] ! direction[i] --(t10,t19,t25)

update xold,yold,zold --(t11,t12)

count := 0
WHILE count <> 3

ALT i = [0 FOR 3]

finished[i] ? ANY --check all motors moved.
count := count + 1 --(t13,t21,t27)

send ! ANY —=(ta)

ALT

stopi ? ANY finish. (t5)
going := FALSE (t14)

goi ? ANY --continue. (t8)
SKIP

-- main program.

PAR

PAR i = [0 FOR 3]
motor(motion[i],finished[i],stop[i],go[i])

control(request,return,stop[3],go[3])
operator(request,return)

Fig 4.5b. Occam Program for 3 - Axis Robot

Arm Controller.

-95-

Co
ut

Ro
t

 OP
ER
AT
OR
.

Figure 4.6. Petri Net of Occam

Program in Fig 4.5.

=96—

Vig oi eo!

tl

2b 9 N19 5257598

2.

310), 195 25,38

to

BRL To 525534

£10,¢19),£25

312,205 26,02

tid $695 ,t20),t26

3,135 21 524 05:

t12

Sy 421d oo

t13 ,t21),t27

351542228 ,34

t3
4,16,22,,28 ,34

a +4

8,16,22,28,34 5,16,22,28,34

| eo,e18,e24,e30 | t5,t16,t22,t28

17,97), 19-257 317 6,17,23,29,35

| t6,t14,t17,t23,t29

7,18,24,30,36

Fig 4.7. Reachability Tree of fig 4.6.

=oy=

WOLWaIO

Partition from Table 4.4, Figure 4.8.
-98-

VOLWWIIO

Partition from Table 4.5. Figure 4.9.

-99-

Transitions I E

ot su 2

t2 ao) 3,10

t9 10 ll

0) BL LO 2520

£19 D2 OL 2526.

t25 VAG An i252

tll 12 13

tls 20 20

t20 26 27

t26 a2 33

eis 12 14

t13 L452) 115522

£20 145.27 | 15528

£27) 14,33 | 15,35

4,16

t4 4 5

© 56) 6 Ly

tl6 | 5,22 | 6,23

t22 | 5,28 | 6,29

t28 | 5,34 | 6,35

t6 6 7

tl4 Le 18

tiZ 23 24

t23 29 30

t29 a5 36
Table 4.1. State Change Table of fig 4.7.

-100-

£2

£10,t19,t25

tis,e2l1,t27

t3

EITHER

t8,t18,t24,t20

OR

£5,016, 622,028

2,9

Lhe 25531

AQ. 1 33

315

4,16,22,28 ,34

4,16,22,28,34

ay 1d

VAN212 7433

15,22,28,34

4,16

Loo Gs bom eo ot

7,18,24,30,36

Table 4.2. Communication State-Change Table

of table 4.1.

t2 239)

€10,€19),025 | 18,19 525,531

CLS ,E2b,t20 jee y2t y27,33)

oe

14,21,,27,33

15522,28,34

Boundary eo)

Entry States K

Exit States J

St 27

{259.195.259.531}

1351522529594)

Table 4.3. Partition of table 4.2 from

t2 to t27..

=101=

£10,t19,825 |11,19,95,31 [14 ,21,27,35

13 yt2l 827 L421 527,33 15 522,281,534

 3) 3515 4,16

Boundary CLOG ES:

Entry States K = {3,11,19,25,31}

Exit States J {4,16,22,28,34}

Table 4.4. Partition of table 4.2 from

C10 to t3.

£10,¢19,¢25 Los coro ba,21 27,33

 £19,001,¢27 |14,21,27,33 115,22,28,34

Boundary C10 = 2s

Entry States K (11519,25,31}

Exit States a) {15222834}

Table 4.5. Partition of table 4.2 from

tl10 to t27.

-102—

OP
ER

AT
OR

Figure 4,12)

Petri Net with Bad Nesting.

=103=

Chapter 5.

Implementation of the Conversation Scheme.

5.1 Introduction.

In the previous chapter a design method was

developed which enabled the designer to place conver-

sation boundaries systematically. The method also

gave properly nested conversation boundaries when two

conversations were not disjoint. The aim of this

chapter is to present an implementation for the

conversation scheme using the concurrent programming

language occam [36]. To be able to develop an imple-

mentation of the conversation scheme, once its boun-

daries have been identified, a number of subgoals must

be met. Methods must be presented for the recovery

roll back mechanism, if the conversation is failed, a

structure for alternative blocks is required, the

acceptance tests should be performed by the processes

within the conversation and their results relayed to

all other processes in the conversation and finally

information smuggling should be prevented.

The method described here shows how these struc—

tures may be built without extensions to the language

occam. An illustrative example is given to demon-

-104-

strate the use of these methods.

5.2 Features of Occam Support Environment.

In chapter 3 the primitives and constructs of the

concurrent language occam were described. Some

features of the support environment are now outlined,

which prove useful in the implementation of conversa-

tions.

5.2.1 Initialisation and Termination of Processes.

Processes can be initialised and activated at the

beginning of a program by the operating system.

Processes may also be created during the operation of

the program using process calls which may involve

passing channels, variables and values as parameters

to the process. The system terminates only when all

processes within it have terminated. If the processes

in the system contain loops or are part of races then

termination messages passed along channels may be

required to ensure proper termination of all processes

in the system.

5.2.2 Folds.

The occam program support environment [22,59]

provides a folding editor. The folds can be used to

accommodate a hierarchical set of program elabora-

=L05-

tions. The folds do not alter the execution of the

program, however, they clarify the structure of the

program and are used in the implementation presented

here to highlight the structure of the programs and

the structure of the conversations used for error

detection and recovery. Each fold, denoted by "..."

and a fold name, can contain program statements and/or

other folds. An opened fold is denoted by "{{{

}}}" and the fold name.

5.3 An Implementation of the Conversation Scheme.

A conversation may be implemented using either

centralised control with a test line coordinator pro-

cess or distributed control with a distributed coordi-

nation mechanism. In the following both centralised

and distributed mechanisms are developed and imple-

mented using the occam programming language.

5.3.1 Features of the Conversation Scheme.

The structure of a conversation is described in

chapter 4, In summary:

- A recovery line is defined at the entry to the

conversation, which processes may not cross during

roll back.

- A test line is defined at the exit from the conver-

sation, which is an acceptability criterion for the

=L06—

processes leaving the conversation.

- No information should be passed to or from processes

outside the conversation. Thus, two side walls are

postulated to prevent information smuggling.

- Processes can enter a conversation asynchronously.

- Processes must leave a conversation synchronously.

- Processes cooperate in error detection.

5.3.2 Design and Implementation of a Centralised

Conversation Mechanism.

Consider 3 processes (P1,P2,P3) which interact

with each other by message passing, as shown below.

Where process flow is denoted by -.

A conversation is required to protect a critical

part of the system. To place the conversation in the

correct position across the processes the techniques

developed in chapter 4 are used. The boundary is

shown below by *.

nO ie

The parts of processes included in the conversa-

tion can be enclosed within a fold associated with the

conversation. This clarifies the program structure.

To make the conversation structure easier to identify,

and to increase checks on information smuggling, the

parts of the processes involved in the conversation

can be put in "conversation processes" (CP1,CP2,CP3

below) and initiated by the main processes themselves.

All these "conversation processes" can then be folded

away in a conversation fold.

PL 2 2S cpl cP2 cP3

In the centralised case a conversation consists

=108—-

of its constituent processes and a conversation con-

trol process which acts as a test line coordinator for

the conversation. When a conversation is started, a

nominated member of the set of entry processes ini-

tialises the conversation coordinator. The coordina-

tor exists for the duration of the conversation. When

all acceptance tests have been passed all processes

involved in the conversation are terminated. Below

the test line process is shown by TLP and will be

included into the conversation fold with the "conver-

sation processes".

Pl Pl P3 CPL cP2 cPe3 TLP

Since the processes in the conversation are

grouped together in folds easy identification of side

wall violations is achieved.

5.3.3 Implementation Example.

Consider, for example, the three axis positional

robot discussed in chapter 4. This comprises opera-

tor, control and axial positioning processes (fig 5.1)

=109=

which are elaborated in figure 5.2(a,b,c). A central-

ised coordinator is used for each conversation which

provides fault tolerant control of a distributed sys-

tem.

{{{ process 3 axis robot

eee operator process

eee control process

eee 3-axial position processes

y}}

Fig 5.1. 3 Axis Control Robot.

The conversations are determined by partitioning

the reachability tree of the system. The main conver-

sation is required to protect the process which calcu-

lates new values of axial coordinates and the motor

process implements these coordinates. This conversa-

tion involves all main processes: operator, control,

motors and its boundary is shown clearly in the list-

ing for each process (fig 5.2a,b,c). Alternatively,

folding can be used to clarify the structure of the

conversation, For example, the program can be

refolded such that all constituent parts of the

conversation (including the test line process) lie

within a fold, as in figure 5.3.

eT =

The structure of the control part of the conver-

sation including the control test line and recovery

procedure is shown in fig 5.4. The primary and alter-

native blocks are again folded away to reveal the

structure of the recovery mechanism. On entry, the

recovery variables are saved, for use if the process

is rolled back. The control variable, "enter", con-

trols the forward path and initially points to the

primary block, which is then executed. On exit from

the primary block the local acceptance test is exe-

cuted on the control part of the conversation. The

result of this acceptance test (pass or fail) is

reported to the test line process. The test line pro-

cess (fig 5.5) collects the results of all local

acceptance tests and determines whether the conversa-

tion has succeeded. If all tests are passed the test

line process notifies all exit processes in the

conversation and the conversation is terminated. If

one or more of the acceptance tests fails the test

line process notifies all processes that recovery roll

back is to be executed. The processes then roll back

and restore the saved entry states and the block entry

variable is updated, the next block is then executed.

The above procedure is then repeated.

The test line process (fig 5.5) uses the ALT con-

struct to receive notification of the results of local

acceptance tests. The acceptance process does not

t=

therefore assume any particular order for the termina-

tion of the constituent processes; nor does it impose

any timing constraints on the systems performance.

Thus, the figures 5.2a - 5.5 show a conversation

design using occam which includes a recovery roll back

mechanism, a structure to choose the alternatives, an

acceptance test procedure and easy identification of

information smuggling. In the next section an imple-

mentation of nested conversations is considered.

5.3.4 Nested Conversations.

Properly nested conversations may be designed

using the methodology outlined in chapter 4, by iden-

tifying partitions which are totally enclosed within

other partitions; the inner nested conversation is

initiated by processes which are themselves within a

conversation, Again these processes can be folded

away into a conversation fold. An example of this

type is shown (fig 5.6) in an elaboration of the pri-

mary block of the control process (fig 5.2b). Here

the conversation protects the procedure by which

operator passes new input values to process control,

and the controller calculates new coordinates. This

conversation involves the processes: operator, control

and test line.

5.3.5 Global Acceptance Tests.

=bi2—

The processes in a system of communicating

processes will inherently not have the complete infor-

mation relating to the whole system. To provide a

higher degree of reliability for the system, informa-

tion from a number of processes may be required to

enable an acceptance test to be performed. In such

circumstances the local acceptance tests are not suf-

ficient to protect the system. An additional global

acceptance test will be required to ensure certain

conditions between processes do not exist. In the

implementation presented here an acceptance test pro-

cess is used to coordinate the processes leaving the

conversation, there by providing a global acceptance

test. When each process sends its local acceptance

test results to the acceptance test process they also

send the data required for the global acceptance test.

This data are collected by the acceptance test process

which performs the global acceptance test and reports

the result to the other processes in the conversation.

This extension to the previous example are shown in

figs 5.7), 5.8 and 5.59.

5.4 Implementation of a Distributed Acceptance Test

Process.

The centralised control of a conversation, such

as those described above, can be removed by introduc-—

mio

ing a mechanism in which each process transmits the

result of its local acceptance test to all other exit

processes. Each exit process will contain an indivi-

dual version of the test line and will autonomously

decide whether to continue or recover. An example of

this method using the two processes in conversation b,

is shown in figs 5.10 and 5.11.

5.4.1 Disadvantages of this Method.

Communications between processes as well as

design faults are a possible source of errors. It is

therefore advantageous to reduce the number of commun-

ication channels required in the system.

Consider the number of channels required in a

distributed system:

assuming there are N processes in the conversation,

Process(i) will require (N-1) channels to communicate

to all other processes, therefore the total number of

channels required is N(N-1).

For the centralised case Process(i) will require 2

channels, one to the test line coordinator and one to

receive the return message, again assuming N processes

the total number of channels required is 2N.

Thus, the number of channels required for more

oe 5

than three processes is much larger than that for the

centralised conversation structure. For example, a

conversation involving 5 processes requires 10 chan-

nels in the centralised case and 20 channels in the

decentralised case.

In addition the processes have to communicate

with each other in a specific order. This becomes

necessary because in occam outputs can not be used as

guards to processes. This adds further complexity to

the implementation of this type of conversation, and

means the structure of the processes will change with

the number of processes involved in the conversation.

The complexity is increased with an increase in the

number of processes in the conversation.

A further example to emphasise this point is

shown in figs 5.12a,b,c, where the program following

the acceptance test is illustrated for a conversation

involving three processes. It can be seen from this

that the processes are asymmetric and careful design

of the distributed test line process is necessary if

deadlocks are to be avoided.

Finally, a global acceptance test with this type

of implementation is not easily performed. One of the

processes within the conversation would have to be

nominated to perform such a test and all results would

have to be sent to it.

=115=

Thus, a centralised test line process is to be

preferred in many applications. The relative simpli-

city of the centralised test line process implementa-

tion is due to the constructs available within the

language occam.

5.5 Advantages Gained using occam,.

A channel in occam can only belong to two

processes, one of which is the input and the other the

output of the channel [60,61]. This limitation is

very useful when constructing conversations. For

example, one of the major rules of conversations is

that no information smuggling should occur. That is,

only processes involved in the conversation should

interact with each other. Within a conversation smug-

gling will not occur if no channel belongs to a pro-

cess outside the conversation.

The alternative construct (ALT) makes it possible

for a process to accept inputs from any number of

channels in a nondeterministic way. This simplifies

construction of the test line process. In addition

the operation of accepting inputs from all other

processes is simplified by the use of the replicator

on the alternative construct (ALT i = [0 FOR n]). The

resulting part of the program consists of only two

statements and its length is independent of the number

=Li6—

of processes involved in the conversation.

Similarly the acceptance process transmits to all

other processes in the conversation by using the

replicator with the parallel construct (PAR i = [0 FOR

m}).

Although the technique of folds does not affect

the actual construction of the program it does help

clarify the structure of the program. By using the

folds in appropriate places it is possible to reveal

the important features of the conversation. For exam-

ple, the processes involved in each conversation can

be seen clearly, as in fig 5.3. Similarly, the struc-—

ture for roll back and entry into alternatives are

highlighted in fig 5.4. The acceptance test for each

process involved in the conversation can be seen

easily also in fig 5.4.

Finally, the structure of the recovery mechanism

is independent of the primary and alternate blocks.

The recovery mechanism proposed here considers’ the

alternatives as blocks which are entered and then pro-

duce results. How this is achieved is of no conse-

quence to the recovery mechanism. Each block within a

conversation can therefore be considered indepen-

dently, as in the primary block of the control pro-

cess, fig 5.6. These blocks may be changed without

affecting the structure of the conversation mechanism

ays

in any way. An extra alternative can be added easily

to the structure by the addition to the IF clause

(i.e. enter = 4) and the new alternative block.

By using the centralised test line process’ the

constituent processes in the conversation do not

require knowledge of the number of other processes

within the conversation. This makes the mechanism for

the acceptance test independent of the number of

processes.

The mechanism proposed thus forms a generalised

design and implementation of the conversation mechan-

ism.

5.6 Discussion.

It has been shown that by using the features of

the concurrent language occam a conversation design

can be implemented easily and is independent of the

application. Further, the characteristics of the com-

munications in occam, in which communication channels

belong to two processes only, was exploited to solve

the problem of information smuggling by ensuring that

no channel in the conversation belongs to a process

outside the conversation. The design procedure was

aided by the use of folding editors which facilitate

functional elaboration. These were used to highlight

=Lieg—

the structure and extent of the conversation; in

effect folds were used as a design notation for the

boundary of conversations.

“lig

{{{ process operator

PROC operator (CHAN send,receive,dis0O) =
VAR: X5¥4,2, Dun

SEQ

run := TRUE
WHILE run

SEQ
aes get inputs x,y,z

Initiate conversation a.
—-*#4* Recovery Line *####AxHARAARARAREE

PAR

acceptest
operatortocontrol(send,x,y,z)

HHkREKK Test Line *#*RRRKKKERKAKEAREERE

-- Conversation a ends.

receive ? ANY
-- receive move confirmed

out(disO,"arm moved to position*n*c")
LF

(x=0) AND(y=0) AND(z=0)
-- then finish

SEQ

out(disO,"finished arm at 0,0,0*n*c")
PAR i = [0 FOR 5]

stop[i] ! ANY
run := FALSE

TRUE
-- else continue

PAR i = [0 FOR 4]

go[i] ! ANY
PE}

Fig 5.2a. Process operator

{{{ process control
PROC control (CHAN receive,send,stopi,goi,disl) =

VAR going

SEQ
xold
yold

zold
going := TRUE

WHILE going
SEQ

0
0
0

-- Initiate conversation a.
--*##*k* Recovery Line *#kKKKKKHEARHRER ERK

controltomotor(receive,send,disl)
K-*#KEKK Test Line ****KAKKKKKKKKKKAREREKE

-- Conversation a ends.

send ! ANY
ALT

stopi ? ANY

going := FALSE

goi ? ANY

SKIP

}}}

Fig 5.2b. Process Control.

{{{ process motor

PROC motor(CHAN motion,finished,stopi,goi,

disi,alrighti,oki,VALUE n) =
VAR step,direction,going

SEQ
going := TRUE

WHILE going

SEQ

-- Initiate conversation a.
--#kkk* Recovery Line #*###AKKARRARKAKEA

movemotors(motion,finished,disi,
alrighti,oki,n)

K=*KREK Test Line BRR EAKKKKKEKEKEEERE

-- Conversation a ends.

ALT

stopi ? ANY
going := FALSE

goi ? ANY
SKIP

bP}

Fig 5.2¢c. Process Motor.

{{{ conversation a.
—-*kk** Conversation Fold Start ***#x*x*
».. conversation a, (operator part).

cee CONVErSAtLON a, Coonteol pant).

e». conversation a, (motor part).

++. test line (coordinator).
—-*ekk* Conversation Fold Finish **#***%
by}

+... remainder of operator process

».. remainder of control process

«». remainder of motor process

Fig 5.3. Axis Control Robot with Refolding

to show Conversation.

=123>

{{{ conversation a, from control.
PROC controltomotor (CHAN receive,send,disl) =

DEF limit = 10, pass = 1, fail = 0

VAR going,enter

SEQ
going TRUE
enter 0

* «+ Save recovery variables

WHILE going

SEQ
recovery line.

ae. restore variables if roll back occurs

-- Recovery loop.

enter := enter + 1
LF

(enter = 1)
«+. primary block

(enter = 2)
»«.2nd block

(enter = 3)
Se 5 ore ibLock

Acceptance test for control part of

-- conversation a.
LF

((xold < limit)AND(yold < limit)AND
(zold < limit))

-- Inform test line process result of

-- acceptance test.

allright[0] ! pass
TRUE

allright[0] ! fail

Get result of combined acceptance test from
-- test line process.

ok[0] ? test
LF

(test = pass)
going := FALSE

TRUE

SKIP

SKIP

th}

Fig 5.4. Acceptance Test and Recovery Structure.

{{{ test line.
PROC acceptest =

DEF pass = 1, fail = 0, total = 5

VAR flag,num,going,test

SEQ

going := TRUE

WHILE going
SEQ

flag :
num := 0

pass

- Get results from all processes in conversation,

WHILE num < total
ALT i = [0 FOR total]

allright[i] ? test

IF

(test = pass)
num 2= num + |

TRUE

SEQ
flag fail
num := num + |

-- Communicate result of all accptance tests

-- to processes in conversation.

LF

(flag = £211)
PAR i = [0 FOR total]

ok[i] ! fail

TRUE

SEQ
PAR i = [0 FOR total]

ok[i] ! pass
going := FALSE

SKIP

yh}

Fig 5.5. Test Line Process.

—125-

-- Initiate conversation a.

{{{ primary block of control process
DEF total = 3 :
VAR count,step[3],direction[3]
SEQ

-- Initiate conversation b.
—-#RKEK Recovery Line **#kRKRKAKRERKKRAKR ERK

PAR

acceptestb

calstepdir(receive,send,disl)
R-KREEK Test Line *#XXRRAKKRKKKKKRRERRERRERKR

- conversation b ends.

PAR i = [0 FOR 3]

SEQ
motion[i] ! step[i]
motion[i] ! direction[i]

xold xnew
yold ynew
zold := znew

count := 0
WHILE count <> total

ALT i = [0 FOR 3]
finished[i] ? ANY

count := count + 1
-- conversation a ends.
}}}

Fig 5.6. Primary Block of Control Process.

=25-

{{{ conversation b, from control.

PROC calstepdir (CHAN receive,send,disl) =
DEF limit = 10, pass = 1, fail = 0
VAR going,enter

SEQ
going := TRUE

enter := 0
*.. save recovery variables

WHILE going

SEQ

-- recovery line.

«.«. restore variables on roll back

-- Recovery loop.

enter ¢=Jjenter + 1
L¥

Center = 1)
«os primary block

(enter = 2)
s sie 2nd block

(enter = 3)
< s2oG0i block

Acceptance test for control part of

-- conversation b.
IF

((xnew < limit)AND(ynew < limit)AND

(znew < limit))

-- Inform test line process result of acceptance

-- test, and send data for global acceptance test.

SEQ
allright[5] ! pass

allright[5] ! xnew
TRUE

allright[({5] ! fail

-- Get result of combined acceptance test from

test line process.

ok[5] ? test
LE

(test = pass)
going := FALSE

TRUE

SKIP

SKIP

i:
Fig 5.7. Acceptance Test and Recovery Structure

of control part of Conversation b with

global acceptance test.

i271

{{{ conversation b, from operator.

PROC optocontrol (CHAN receive,send,disl) =

DEF limit = 10, pass = 1, fail = 0

VAR going,enter

SEO
going := TRUE
enter := 0

» as Save recovery variables

WHILE going

SEQ
-- recovery line.
».. restore variables on roll back

-- Recovery loop.

enter := enter + 1
ak

(enter = 1)
«.. primary block

(enter = 2)

se. 2nd block
(enter = 3)

»«, 3rd block

Acceptance test for operator part of

-- conversation b.
ak

((x < limit)AND(y < limit)AND(z < limit))

Inform test line process result of acceptance

-- test, and send data for global acceptance test.

SEQ
allright[6] ! pass
allright[6] ! x

TRUE
allright(6] ! fail

-- Get result of combined acceptance test from

-- test line process.

ok[6] ? test

IF

(test = pass)

going := FALSE

TRUE

SKIP

SKIP

}}}
Fig 5.8. Acceptance Test and Recovery Structure

of operator part of Conversation b with

global acceptance test.

{{{ test line for conversation b.

PROC acceptest =

DEF pass = 1, fail = 0, total = 2

VAR flag,num,going,test,data[7] :
SEQ

going := TRUE
WHILE going

SEQ
flag

num
pass

0

Get results from all processes in conversation.

WHILE num < total
ALT £ = [5 FOR cotal]

allright[i] ? test
IF

(test = pass)
SEQ

-- Input data for global acceptance test.

allright[i] ? data[i]

num := num + 1
TRUE

SEQ
flag fail

num := num + 1

Communicate result of all accptance tests to
-- processes in conversation.

LF

(flag = fail)
PAR i = [5 FOR total]

ok{i] ! fail

TRUE

-- Global acceptance test.

TF
(data[5] <> data[6])

PAR i = [5 FOR total]
okt) b £add

TRUE
SEQ

PAR i = [5 FOR total]
ok[i] ! pass

going := FALSE

SKIP

wht
Fig 5.9. Test Line Process for Conversation b

with global acceptance test added.

{{{ conversation b, from control.
PROC calstepdir (CHAN receive,send,disl) =

DEF limit = 10, pass = 1, fail = 0
VAR going,enter,test

SEO

going := TRUE

enter := 0
+s». Save recovery variables

WHILE going

SEQ
=—- recovery line.
«..- restore variables on roll back

Recovery loop.

enter := enter + 1
OE

(enter = 1)
... primary block

(enter = 2)

««. 2nd block

(enter = 3)
eae ord block:

Acceptance test for control part of

-- conversation b.

LF

((xnew < limit)AND(ynew < limit)AND

(znew < limit))

Inform other process result of

acceptance test and receive theirs.

SEQ
allright[5] ! pass
allright[6] ? test

ce

(test = pass)

going := FALSE

TRUE

SKIP

TRUE

SEQ
allright[(5] ! fail
allright[6] ? test

SKIP

}}}

Fig 5.10. Acceptance Test and Recovery Structure

of control part of Conversation b with
decentralised acceptance test.

=130-

{{{ conversation b, from operator.
PROC optocontrol (CHAN receive,send,disl)

DEF limit = 10, pass = 1, fail = 0
VAR going,enter,test

SEQ
going TRUE

enter 0
«a. Save recovery variables

WHILE going

SEQ
recovery line.

- restore variables on roll back

Recovery loop.

enter := enter + 1
IF

(enter = 1)
».. primary block

(enter = 2)
» ee 2nd block

(enter = 3)
++ 3rd block

Acceptance test

conversation b.
IF

((x < limit)AND(y < limit)AND(z

for operator part of

Receive results from other process

and relay own results.

< limit))

SEQ

allright[5] ? pass
allright[6] ! test
ne

(test = pass)
going := FALSE

TRUE

SKIP

TRUE

SEQ

aliright(5], ? fait

allright[6] ! test
SKIP

}}}

Fig 5.11. Acceptance Test and Recovery Structure

of operator part of Conversation b with

decentralised acceptance test.

=131=

PROC A

recovery loop

LF
(acceptance test)

SEQ -- passed local test

PAR i = [0 FOR 2]

allright[i] ! pass --inform other processes
WHILE num ¢ total

ALT i = [2 FOR 2]
allright[i] ? test -- get their results

IF
(test = pass) -- pass

num := num + 1
TRUE

SEQ ==) £41.

fulltest := fail
num := num + 1

IF

(fulltest = pass) -- if all pass
going := FALSE -- exit conversation

TRUE
SKIP

TRUE
SEQ -- failed local test

PAR i = [0 FOR 2]
allright[{i] ! fail -- inform other processes

WHILE num ¢ total
ALT i = [2 FOR 2]

allright[i] ? test -- get their results

num := num + 1

Fig 5.12a. Acceptance Test Structure with
three processes in the Conversation
with decentralised acceptance test.

ale

PR

IF

oc B

recovery loop

(acceptance test)
SEQ

allright[0] ? test
IF

(test = pass)

SKIP

TRUE

fulltest :=' fail
PAR

allright[2] ! pass

allright[4] ! pass
allright[5] ? test

Le

(test = pass)
SKIP

TRUE

fulltest := fail
IF

(fulltest = pass)

going := FALSE

TRUE

SKIP

TRUE =

PAR

allright[0] ? test -
allright[2] ! fail
allright[4] ! fail

allright[5] ? test -

Fig 5. 12b.

passed local test

result from A

infrom local to A
infrom local to C
get result from C

failed local test

from A
to A

to C
from C

Acceptance Test Structure with

three processes in the Conversation

with decentralised acceptance test.

ipa

PROC C
recovery loop

IF

(acceptance test)
SEQ

allright[1] ? test
IF

(test = pass)
SKIP

TRUE

fulltest s= fail
PAR

allright[3] ! pass
allright[4] ? test

LF

(test = pass)
SKIP

TRUE

fulltest := fail
allright[5] ! pass
IF

(fulltest = pass)
going FALSE

TRUE

SKIP

TRUE

PAR

allright[{1] ? test
allright[3] ! fail

allright[4] ? test
allright[5] ! fail

Fig 5.12c.

passed local

local from A

inform local
local from B

infrom local

failed local

from A
to A

from B
to B

Acceptance Test Structure with

test

to A

test

three processes in the Conversation

with decentralised acceptance test.

-134-

Chapter 6.

Reliable Communications.

6.1. Introduction.

In a system consisting of a set of communicating

processes, if one of the communicating processes fails

to reach a communication point the other process

involved in the communication could become deadlocked

[19]. If a process has become deadlocked it is not

possible for the process to recover from faults by

using the conversation scheme alone; since process

flow has stopped. A deadlocked process may cause

further processes to become deadlocked by its failure

to reach future communication points. In a system

using conversations for fault tolerance a process

deadlocking could cause a complete failure of the sys-

tem. The main objective of this chapter is to ensure

that processes do not become deadlocked.

To achieve this objective each of the communica-

tion primitives, for message passing, are introduced.

Message types for such systems are considered and two

main types are identified. The requirements for reli-

able communications for each of these message types

are given. Each of the communication primitives are

=139=

compared with the requirements for reliable communica-

tions.

The analysis of the communication primitives show

them to be deficient in a fault tolerant situation.

The message types are analysed using a Petri net

state-transition model. State reduction of the

state-transition model can be made. It is then possi-

ble to identify a boundary for a mechanism which will

timeout the process. It is argued that by placement

of a timeout mechanism around this boundary the pro-

cess will not deadlock if a communication has failed.

Much research has been done on the implementation

of distributed systems [22,46,62-68]. This has mainly

concentrated on the development of languages for such

systems. Less research has been done on the design of

such systems. Generally in these designs [69-73] the

issues of communication and synchronisation by message

passing are not addressed explicitly. Communication

mechanisms, such as the monitor [30], rely upon shared

memory for passing messages. This limits the choice

of hardware for the system. A message passing mechan-

ism for interprocessor communications provides a more

flexible choice of hardware for the final implementa-

tion, since this can use any hardware configuration

from a completely distributed system to a shared

Memory system. Message passing also has the advantage

of mirroring better a physically distributed system.

6.2 Communication Primitives.

In this chapter a task which initiates a communi-

cation will be referred to as a source task. The task

to which a communication is sent is called an object

task. A channel is the medium used for such communi-

cations. Channels are unidirectional.

It is assumed that all interprocess communication

is accomplished by message passing. The different

communication primitives used in message passing can

be classified into three types [63]:

a) Synchronous.

b) Asynchronous.

c) Remote Procedure Call.

6.2.1 Synchronous.

In a synchronous system the process that reaches

the communication point first must wait for the other

process before it can continue. The source task

requires an acknowledgement from the object task

before it can proceed. The source task may then issue

an initiating message. On receipt of this message,

the object task will issue an acknowledgement message.

=137>=

When the source has received the acknowledgement both

processes may continue autonomously. Process syn-

chronisation is thus enforced through communication.

This type of communication can be found in C.S.P.,

occam, L [46,22,62].

Synchronous communication has two primitives,

shown below:

comms ! <message>; --source task sends

--<message> to object task.

comms ? <message>; --object task receives

--<message> from source task.

Since these are primitives of the language the

acknowledge is implied and not shown in the notation.

6.2.2 Asynchronous.

Asynchronous communication systems do not require

the object task to acknowledge the receipt of a mes-

sage from the source. In this type of communication

primitive the source task issues an initiating message

and may then continue its operation. Since synchroni-

sation is not enforced, some form of buffering is

required to hold the initiating message should the

object task not be ready to receive the message.

Similarly, the object task may be required to wait if

the message has not been initiated by the source.

This type of communication primitive can be found in

=LSS~

CLU, PLITS [63,64].

The asynchronous communication also has two prim-

itives; these are of the form:

SEND <message> TO <object.task>;
-- source task sends <message> to object task

RECEIVE <message> FROM <source.task>;

-- object task receives <message> from source task.

6.2.3 Remote Procedure Call.

The third type of communication primitive is the

remote procedure call (remote invocation). The object

task performs a specific function for the source task

in away similar to that of a subroutine. The object

task is not initiated until it has received the source

message, it completes local computation before issuing

a reply. The source task waits for the object task to

report completion of the procedure before continuing.

Communication primitives of this type can be found in

ADA, DP, CONIC [65-70].

The remote procedure call primitives have two

parameters as shown below:

SOURCE TASK

object.request <in-parameters,out-parameters>;

OBJECT (PROCEDURE) TASK

accept.request <in-parameters>

do <service request

send out-parameters>;

So

6.2.4 Message Transactions.

Messages are used in distributed systems for the

collection or distribution of data and to promulgate

decisions or actions. Three main functional classifi-

cations or transfer categories are identified for mes-

sages in distributed computer systems [74] : command,

status and alarm.

COMMANDS are messages which cause a change of

state or action in the object task. These messages

generally require a reply from the object task to sig-

nify completion of the action.

STATUS messages are sent by a source task to a

number of object tasks and are used to convey source

status. These message may be initiated by the source

either periodically or when the state of the source

task changes. Status messages may also be generated by

an object task in response to a request from a source

task.

ALARMS are messages initiated by the source to

inform the other tasks that the controlled process is

malfunctioning or is in an unsafe state.

These transfer categories can be divided into two

message types [74]:

Command Message Type: Those requiring a reply to

-140-

their initial message: command and requested status

messages.

Notify Message Type: Those requiring no reply:

periodic status, event status and alarm messages.

6.3 Requirements for Reliable Communications.

As discussed in the introduction of this chapter

tasks should not be allowed to deadlock. In this sec-

tion the requirements this imposes for both source and

object task are considered. Each of the message pass-—

ing primitives are used to model the message types

described above and related to the requirements for

reliable communications.

The source task may fail to complete a request-

reply transaction for a number of reasons: loss of the

request message by the communications system; non-

acceptance of the request by the object task due to

processor failure or object task failure; falilaere “of

the object task while it is servicing the request;

loss of the reply message by the communications sys-

tem.

Any of the above failures will leave the source

task suspended indefinitely, i.e. deadlock. Conse-

quently, the requirement for a task initiating a

request-reply transition is that it should have the

capability of detecting failure of a transaction and

abandoning or aborting it.

While a task is awaiting completion of a

request-reply transaction it cannot respond to other

inputs from other tasks. A task must be able to set a

maximum limit on the time it allocates to the

request-reply transaction. Thus, a periodic interrupt

from an independent time source is required to provide

a time-reference event, independent of the software

processes. The timing performance of an application

process can be monitored by a real-time time-lapse

counter, Both processes will be attempted con-

currently; the first task to complete succeeds and the

other attempt is withdrawn. This “timeout” technique

is known as a “watchdog” [42] mechanism. The timeout

can also be used to meet the requirement to detect and

abandon failed transactions.

The integrity requirement for the object task is

primarily that it should not be capable of suspending

itself indefinitely waiting to receive a transaction

which could fail to arrive. This requirement is par-

tially met by the behavioural requirement for the

object task to be able to wait on more than one poten-

tial transaction.

However, where a task is committed to performing

an action regularly it must be able to limit the time

it is in the waiting state. For the object task this

is the time it is prepared to wait to accept transac-—

tions. The object task must be able to timeout from

awaiting transactions. This timeout covers the

integrity requirement that the task should not be

indefinitely suspended.

6.4 Implementation of Message Types.

The two groups of message types (command and

notify) for distributed systems identified above can

be modelled using the communication primitives of sec-

tion 6.27. In this section analysis shows that when

these two groups of messages are implemented directly

with these primitives they contain ambiguities and

deficiencies [24].

6.4.1 Command Message Types.

The command message can be modelled using the primi-

tives described in section 6.2:

Command: Asynchronous Implementation.

SOURCE TASK OBJECT TASK

SEND <request>
TO <object>; <-<-=--+= > RECEIVE <request> FROM

<source>;
(service request)

RECEIVE <reply> <======-—=— SEND <reply> TO <source>;

FROM <object>;

The communication subsystem of a distributed

-143-

computer system may be subject to failure, either from

external cause or because of faults in the object or

source tasks. It is common to incorporate a timeout

mechanism in such a system which will initiate the

appropriate recovery mechanism. The timing require-

ments of such a system are only partially satisfied if

the RECEIVE primitive is put in a SELECTIVE or ALTER-

NATIVE construct with a timeout.

SOURCE TASK

SEND <request> TO <object>;
SELECT

TIMEOUT <period>

Se cerae <request> FROM <object>

When the select statement is executed both the

communication and timeout tasks are attempted. Which-

ever task is completed first is defined as executed

and the other attempt is withdrawn. However, such a

model is still ambiguous because of the absence of any

logical or notational paring between the two halves of

the transaction. This could lead to a situation in

which the object task sends a message to a timed-out

source task,

Command: Synchronous Implementation.

-144-

SOURCE TASK OBJECT TASK

initiate ! <request>; ====——-= > initiate ? <request>;

(service request)
answer ? <“reply>; <---=s=--= answer ! <reply>;

In this case the logical clarity is good. How-

ever, the timing requirements are not easily satis-—

fied. For example, if a timeout was placed on the

receive primitive to break the wait-for-

synchronisation then the source task could be

suspended if the timeout was activated:

SOURCE TASK OBJECT TASK

clock := NOW;
ALT

WAIT NOW AFTER <clock +

timeout>
initiate ! <request> ===> initiate ? <request>

A time-out can not be placed on the send primi-

tive because outputs are not allowed as guards in syn-

chronous primitives.

The remote procedure call primitive of section

6.2 simulates the command message directly:

Command: Remote Procedure Call Implementation.

SOURCE TASK

objecttask.request <in-parameter,

out-parameter>;

OBJECT (PROCEDURE) TASK

accept request <in-parameters> do

<service request - send out-parameters>;

-145-

Remote procedure calls of this type are used for

communications in the Ada language [65]. The Ada

implementation uses a timeout on the acceptance of

the message by the object task and has the form :-

SOURCE TASK

SELECT

TIMEOUT <period>
OR

object.request <in-parameters,out-parameters>;

This system is again ambiguous, for if the reply

message is lost then the source task is suspended

indefinitely. A solution to the problem of source

task suspension was included in CONIC [70] in which

the timeout is placed on the completion of the whole

transaction.

6.4.2 Notify Message Types.

Notify transactions consist of one message con-

veying unsolicited information from source to object

task. The information is unsolicited in the sense

that it is not in reply to a specific request from the

object task. Notify transactions can be between one

source task and one or more object tasks. The nota-

tion below describes a notify transaction,

-146-

SOURCE TASK OBJECT TASK

initiate notify message
nea > accept

continue continue

As with the command message type, some form of

breakout mechanism is required around this transaction

if process deadlock is to be prevented.

To achieve a reliable system the communication

models outlined above must be assessed as formal nota-

tions for the expression of concurrency, the pairing

of communication primitives, and the ability to incor-

porate timeout mechanisms in a satisfactory manner.

None of the models outlined satisfy all of these

objectives. The first two objectives are satisfied by

the synchronous communication system which is

developed in C.S.P. [50] and embedded as primitives in

the derived language occam [22]. The formal semantics

of C.S.P. allow certain proofs of program correctness

and include correctness preserving transformations.

However, the scope of the language does not include

timeout mechanisms. The third objective is met by

CONIC.

The two separate lines of development [22,70]

have led to the language CONIC which satisfy the

-147-

transaction and timing requirments and to the synchro-

nous communication systems such as that in occam which

provides a formal notation and mechanism for the

implementation of strictly synchronous systems. The

following section explores the advantages to be real-

ised by developing a formal construct which includes

select or “breakout” to provide the flexibility

required to satisfy timing constraints for a synchro-

nous communication system [20].

6.5 Modelling with Petri Nets.

Using the modelling techniques of chapter 3 it is

possible to show where the boundary for a timeout

mechanism must be placed if the communications are to

be protected.

Starting with the lowest transaction level, it is

possible to model a synchronous communications primi-

tive (pair) using Petri net techniques (fig 6.1).

Since the actions within the dotted line are atomic,

i.e. to the outside world it looks like one action,

this communication primitive may be re-drawn by making

the atomic actions a single transition (fig 6.2).

This procedure is similar to that of hierarchical

Petri nets [75]. From fig 6.2 it can now be seen that

the only position to put a breakout mechanism is

around the transition, as in fig 6.3.

Figure 6.1. Model of Synchronous Communication

Primitive.

Figure 6.2. Model of Reduced Synchronous

Primitives.

-149-

Q
select O14 select

| {

Figure 6.3. Model of Synchronous Communications

with Breakout.

Considering the command type transaction: this

can also be modelled using a Petri net graph (fig

6.4). Again looking at the graph the natural place to

simplify the graph is to reduce the map from t4 to t6

into a single transition which can be thought of as

the atomic (fig 6.5). The double line indicates tha cr

entry transition is an output for the source task and

input for the object task, and the other way around

for the exit transition.

Thus, when considering where to place a timeout

mechanism the only place is around this transition

(Eig 6.56)!

=150-

Figure 6.4. Model of Command Type Transaction.

Figure 6.5. Model of Reduced Command Transaction.

=15i=

TO

Figure 6.6. Model of Command Transaction

with Breakout.

The command group message type can now be imple-

mented by synchronous communications. However, the

communication primitives have been enhanced by the

inclusion of a select mechanism which provides an

ability to break-out of the formal notation in the

event of system behaviour conflicting with timing

requirments. (This is necessary because the ALT con-

struct does not allow the inclusion of the initiating

output).

SOURCE TASK.

SELECT

SEQ

initiate ! <request>;

answer ? <reply>;

OR

TIMEOUT (period);

OBJECT TASK.

SELECT

SEQ

initiate ? <request>;

SEQ

(service request);
answer ! <reply>;

OR

TIMEOUT (period);

Under normal circumstances the

munication will be successful.

--send request to

-object task.

-wait reply from object

--task.

--time-out if above not
--completed by period.

--receive from source
=-request.

--service request.

--send reply to source.

--time-out if above not
--completed by period.

synchronous

However,

cases when the timeout will be chosen:

i) Timeout occurring when either

object task is waiting for the other task to reach the

communication point. In this event the

the source or

will not have been initiated.

ii) Timeout occurring after

object task

saction,

In each case,

back to

both processes will have to

the initiation of

but before completion of the whole tran-

be

the start of the communication for recovery.

=153=

com-

there are two

communication

rolled—

A timeout for each communication primitive is not

required, since a timeout on the whole transaction

will prevent either task from being suspended indefin-

itely.

An implementation of the notify type message with

synchronous communication primitives will not meet the

reliability requirements stated in section 6.3. Both

the source and object tasks could be suspended inde-

finitely if its partner in the communication fails to

reach the communication point. However, by using the

SELECT construct introduced for the command message

type, the integrity requirements can be met, ensuring

neither task suspends itself indefinitely.

SOURCE TASK

SELECT

initiate ! <message>
OR

TIMEOUT (period)

OBJECT TASK

SELECT
initiate ? <message>

OR
TIMEOUT (period)

As with the command message type, under normal

circumstances the synchronous communication will be

successful. If however one of the tasks fails to

reach the communication point the other task will be

broken out of the transaction by the timeout process

and will not be left suspended indefinitely.

6.6 Discussion,

This chapter examined some of the problems of

designing software for distributed computer systems.

It takes the view that in such systems communication

and synchronisation should be addressed explicitly.

It has shown that existing languages are ambiguous

because they lack a logical paring between the two

halves of the transaction, or have other deficiencies

when applied to the design of distributed systems that

are used in time-critical, real-time situations. How-

ever, the timing requirments of such systems are

satisfied by CONIC while the formal notation of

languages such as occam satisfy the concurrency and

communication needs of strictly synchronous systems.

A notation has been proposed for the design of

command and notify type messages in distributed com-

puter systems. This notation provides strictly syn-

chronous communication primitives in normal operation

but includes break-out facilities necessary to satisfy

timing constraints. This communication transaction

built from occam-type primitives adds real-time com-

munication to the notation.

Comparing the transactions proposed in this

chapter with the implementation described in chapter

5, it can be seen that both the command and notify

group message types are present. The notify type of

=155>

message is the most common where data are sent from

one process to one or more processes and all processes

continue. The command type of message can be identi-

fied in the acceptance test structure. Here each of

the exit processes sends its acceptance test results

to the test line process and then waits for a result

back from this process.

<i 5G-

Chapter 7.

Conclusions.

7.1 Conclusions.

In many situations the complexity of a system may

prohibit a software design which is totally fault

free. The use of design methodologies and correctness

proofs will help towards the production of error free

software but are impractical at the moment for large

systems. In such cases the best that can be aimed for

is a system which has a high probability of success in

the presence of errors. Since the process of testing

non-trivial software cannot be achieved fully provi-

sion for hidden design errors must be made.

This thesis has been concerned with the design of

fault tolerant software for distributed computer sys-

tems consisting of sets of communicating sequential

processes, which can only communicate with each other

by message passing. A backward error recovery mechan-

ism was used. The type of errors the technique

described can cope with are unpredictable design

errors which can be detected by logical acceptance

tests.

A state-transition model for concurrent systems

S15 75)

was developed. The concurrent system described in the

form of an occam specification is mapped onto a Petri

net model. It is shown that all of the sequential and

concurrent constructs present in occam can be modelled

successfully. Given the Petri net model of the system

it is shown that the state of the system can be

represented by the Petri net and state evolution

mapped onto a state-transition diagram of the net,

i.e. the reachability tree.

Since the occam language is sufficient to

represent concurrent system, the state-transition

model developed should also be sufficient for a con-

current system. The Petri net model not only has the

ability to model the control flow of concurrent sys-

tems, and map the state evolution of such a system, it

is also possible to provide information about the con-

current system such as the possibility of process

deadlock.

A systematic design of conversations was proposed

in chapter 4. The design method uses the state-

transition model developed in chapter 3. The design

makes uses of the system state evolution. A state

evolution (state-change) table was constructed from

the state-transition model. This table enables the

designer to identify boundaries to protect specific

functional parts of the system. It provides a list of

=158—

the minimum set of states required for entry into and

exit from a conversation. Using process attributes

the method also allows the designer to identify a

minimum set of processes which must be party to a

conversation.

By partitioning the state-change table a number

of times, mested conversation boundaries can be

obtained, Since the state-transition model includes

all state changes within the system, these nested

conversations will always be correctly nested.

An implementation for the conversation mechanism

using the concurrent programming language occam is

presented. Again the system is considered to consist

of a set of communicating sequential processes, com-

municating via message passing. The implementation is

designed to be functionally independent, i.e. the

conversation has the same structure whatever the

application. This enables the designer to place the

function requiring protection into the conversation

structure and write the appropriate acceptance tests

for each exit process in the conversation. Occam com-

munication channels (each of which link two named

processes only) are used to remove the problem of

information smuggling by ensuring that no channel

belongs to a process outside the conversation.

The communication primitives used in message

malls

passing systems are shown to be vulnerable and require

careful design when applied to systems requiring high

integrity. Two message types were identified into

which the communication types can be classified.

These message types were modelled using the same

state-transition model developed in chapter 3. Boun-

daries are identified for the placement of a breakout

mechanism which will increase the integrity of the

communications.

7.2 Future Work.

The implementation for the entry and exit state-

ments of the conversation scheme has no mechanism to

cope with the problem of a deserter process [25]. If

a process is included in a conversation, but never

enters it, then the other processes in the conversa-

tion will be blocked from exiting. A possible solu-

tion to this problem would be to place a timeout

mechanism around the conversation block. This would

ensure an exit from the conversation. However, this

would complicate the recovery strategy considerably

and is not easy to implement in the proposed system.

A time-independent deserter detection mechanism would

be more desirable.

This thesis has dealt with the problem of design-

ing and implementing a backward error recovery mechan-

-160-

ism for a distributed system consisting of a set of

communicating sequential processes. The other main

mechanism for dealing with errors in software is the

forward error recovery mechanism. The two mechanisms

deal with different types of errors and should not be

thought of as being mutually exclusive. A higher

reliability system could be produced if it incor-

porated both forms of error recovery mechanisms.

Thus, it would seem a very useful extension to this

research to investigate the design and implementation

of a forward error recovery mechanism which could be

used with the design proposed here.

It is felt that the design technique described in

chapter 4 could lend itself very well to an automated

design procedure. Taking the Petri net graph of the

program as a starting point, it should be possible to

generate the reachability tree automatically, with

possible operator input for certain timings of transi-

tions. Once the reachability tree has been produced

the state-change and communications state-change

tables can be produced by using simple set operations

and the rules given for identifying communication

transitions. The designer could then specify where he

requires the conversation boundary on all processes or

any one process and the system will produce a minimum

set of entry and exit states for the conversation. It

should also be possible for the system to detect if

Tel

nested conversations are correctly nested or not.

The proposed starting point was the Petri net

graph of the program. Given the transformation tech-

niques in chapter 3, it is thought possible to auto-

mate this part of the design technique also. Tf “pos—

sible, it would give a design tool which takes as its

input a concurrent program or specification (in the

form of an occam program) and produces minimum sets of

entry and exit states for properly nested conversa-—

tions. It would seem that this could be a very useful

and powerful tool to have when designing fault

tolerant distributed software.

Work is still required on the proposal for more

reliable communications. The system proposed in this

thesis has not been implemented. Since it requires an

extension to the language occam. To take this propo-

sal further a means would be required to actually add

this extension to the language and then run tests on

the proposed mechanism.

=162—

Appendix A.

Published Papers.

Aspects of Software Engineering for Systems with Safe-

ty Implications.

Eurocon “84, Brighton 1984.

The Design of Communication Software for Distributed

Multivariable Control Systems.

Symposium on Application of Multivariable System Tech-

niques, Plymouth 1984.

Guidelines for the Synthesis of Software for Distri-

buted Processes.

PES3 Conference, Guernsey 1986.

Design of Reliable Software in Distributed Systems Us-—

ing the Conversation Scheme.

IEEE Transactions on Software Engineering, Vol. SE =

12, No. 9, Sept. 1986.

=163-—

235

ASPECTS OF SOFTWARE ENCINEEPING FOR SYSTEMS WITH SAFETY IMPLICATIONS

D J Holding, G F Carpenter, A M Tyrrell

University of Aston in Birmingham, UK

INTRODUCTION

Microprocessors and other programmable
electronic systems are being used increasingly
in communication and control systems for the
real-time control of process plant. Modern
microprocessors now provide, on a single
integrated circuit, the processing power of
a more than competent minicomputer of only a
few years ago. The processing capability of
the microprocessor can be enhanced by
complementary families of programmable inter-
face and communications devices such that
both open and embedded microelectronic
systems can be built with full computing
systems capabilities. These microprocessor-
based systems have the computational power,
systems capabilities, low power consumption,
high reliability and low cost necessary for
widescale use in centralised and distributed
control and communication systems.

Software is used to define the information
processing activities which turn the hardware
into a functioning system. The required
behaviour and performance will be achieved
only if the software is specified correctly,
and if the design satisfies the specification
and is implemented properly. The systems and
applications software necessary to apply a
programmable electronic system to its task is
basically independent of the size of the
processor, but does depend on the power and
complexity of the processor or processing
systems. The problems of software generation
have not been reduced as the hardware
processing systems have been miniaturised.

The task of designing software for process
control systems is not trivial. Many appli-
cations require the computing system to
provide real-time sequential and continuous
control over a number of process loops which
may have safety implications. These systems
are often required to produce computed
responses. within critical time constraints,
even though the control program may be event-
driven and subject to external interrupts.
Multi-tasking systems of this type make
severe demands on the systems software (which
is responsible for the allocation and control
of the computing resources) and on the
applications software (which is responsible
for the control of physical plant and
processes). Much work has been done on the
development of techniques for use in the
design of such systems. More recent work has
concentrated on methodologies for the appli~
cation of these techniques.

The trends outlined above have added impetus
to the development and establishment of
microprocessor-based distributed control
systems which consist of sets of controllers
linked by a suitable communications network,
Decentralised systems of this type require
careful co-ordination and synchronisation.
Although the software design of such a system
can be complex, it may be helped by the formal

-164-

notations and constructs developed in recent
high-level languages for both conventional
(sequential) and concurrent (communicating
sequential) processes. These concepts are now
being designed into the kernel of an emerging
generation of microprocessors which should
contribute much to systems design. Equally
important, the software techniques on which
these systems are based may be applied to the
design of certain control systems and will
provide a good foundation for research into
new designs.

The rapid increase in the application of
programmable electronic systems in the field
of communication and control has been
accompanied by a corresponding increase in the
community of designers and users of such
systems. Those involved must have an aware-
ness of the specific demands imposed on: the
software, particularly in high performance
systems which involve safety functions or have
implications for safety. The quality of the
software will be critically dependent on the
use of proper procedures and techniques in all
stages of the software life cycle (Daniels
ay).

This paper examines the various performance
and environmental constraints which arise in
communication and control applications and
relates them to specific problems in software
design. Well-established techniques for
making such systems safe and robust are
identified. The paper also draws on known
techniques for specification and implementation,
and describes current areas of research and
concern which may affect design, particularly
in distributed systems.

APPLICATIONS ENVIRONMENT

A typical microprocessor-based communication
and control system will consist of a set of
one or more processors which may be closely
or loosely coupled to form an information
processing system, and which will be inter-
faced to a physical process or plant via
suitable data acquisition and control actua-
tion units. The system will also be inter-
faced to man-machine interface units. The
system will be classified as ‘decentralised’
if inter-processor communication is necessary
for the overall control of the plant. The
term ‘distributed’ will be used to describe
the physical distribution of the processors.

The software for such a system can be parti-
tioned functionally into the systems software,
which governs the operation of the set of
processors, and the applications software,
which defines user tasks. The systems soft-
ware provides the host environment for the
applications software, and controls its
execution. The applications software will
manage the resources of the physical plant
and will control its operation. Both the
systems and applications software must be
designed properly and implemented correctly

236

if the system is to carry out specified tasks
in a predictable and safe manner.

The requirements specification for a specific
application will constrain the type of host
environment. It may also restrict the type
of algorithm which can be used in the appli-
cations software. These two factors influence
the selection of a suitable design methodology
for systems analysis ‘and software synthesis,
and will determine the type of design rules
and techniques which must be used to generate
correct and safe software, The selection of
the most appropriate method and technique
should increase the probability of generating
correct and properly-validated code. This
approach can be illustrated best by consider-
ing a number of typical applications.

SEQUENTIAL DETERMINISTIC PROCESSES

The simpler host environments can be used
when the software processes are independent
of the sequence and time of occurrence of
real-world events. These characteristics
apply to much of scientific computing, such
as data reduction and analysis; they are also
typical of many programs which acquire their
data by sampling under computer direction.
The computations involve sequential and deter-
ministic programs in which the algorithm
specifies the sequence of operations which
must be performed on the input data to obtain
the desired output data. The techniques which
can be applied inthe specification, design,
development and maintenance of sequential and
deterministic processes have been summarised
recently in the STARTS guide (2).

During the requirements specification phase
the specification may be expressed in natural
language or in a more formal notation. The
use of a specification language is recommended
(Ross (3), Sommerville (4)) to remove the
inherent ambiguity and complexity of a natural
language description. The specification
languages which are available include general
purpose notations for expressing requirements
(for example, Bell et al (5)) and specialist
notations developed for specific applications
(thus, PSL/PSA for information processing,
Teichrow and Hershey (6)).

The specification phase will include the
identification of the methodologies to be
adopted in design and assessment of the
product. The STARTS guide identifies the need
for appropriate management during the specifi-
cation stage when the activity is chiefly
intellectual and specifications rather than
program code are being produced. However,
this stage is necessary if costly re-iteration
of the early design phase is to be avoided at
a later stage in the lifecycle (Boehm (7)).

The program design phase will use the techni-
ques of top-down analysis which have been
widely described (Welsh and McKeag (8), Alagic
and Arbib (9)). The principal technique
involves successive functional partitioning in
which the transformations affecting the data
are analysed and refined. The resulting
program modules will each perform a distinct
function and will have a clearly-defined
interface with other modules. The philosophy
of structured programming is also used in the
internal design of the modules.

A second and parallel activity carried out
within the design phase is design for test,
since in general it is not practical to
prove that the software is free of faults,

Tests can be specified during the top-down
design, and executed during the test phase to
detect faults. Stepwise refinement should
constrain the scope of the modifications
required to remove a fault and thus correct
the error.

The specification will state the degree of
robustness required under fault conditions.
This will determine the extent to which fault-
tolerant computing techniques should be used
(Anderson and Lee (10)).

The third and largest phase in the software
life cycle involves the maintenance of the
software. This includes perfective maintenance
which encompasses changes in the specification
of the program, adaptive maintenance which
arises from changes in the program environment,
and cofrective maintenance to remove residual
faults. In safety applications criteria for
controlling and accepting changes to the
program must be applied rigorously.

Many users have experience and substantial
ability in the field of designing prescriptive
sequential deterministic programs to be run in
a single-user environment or within a protected
multi-user environment. Unfortunately, this
computational environment does not exercise
some of the most crucial techniques required
in the control of complex systems, real-time
systems, or time-critical real-time systems.

~CONCURRENT PROCESSES

More complex host software is required when
more than one software process is allowed to
exist concurrently in a system. Typically
this occurs when a task with implicit concur-
rency is partitioned into a set of communi-
cating sequential processes, each of which
can be executed concurrently. Techniques for
the control of concurrent processes and the
assignment of resources in concurrent systems
were developed during the late 1960s and the
early 1970s (Brinch Hansen (11), Dijkstra (12),
Hoare (13)). These methods involve the identi-
fication of critical sections and the provision
of mechanisms for enforcing mutual exclusion
using semaphores and monitors.

It must be emphasised that the techniques of
resource assignment, inter-process communica-
tion and synchronisation apply to concurrent
systems in general. These techniques must be
used in the control and allocation of the
computational resources among the concurrent

software processes, and in the control and
allocation of the physical concurrent
processes in the external plant. A proper
understanding of the techniques is essential
if they are to be used correctly in specifi-
cation, design and implementation.

More recent developments in the theory of
communicating sequential processes (Hoare (14))
have led to the development of formal methods
for synchronising concurrent processes through
communications. These extensions can be used
to describe both centralised systems in which
the processes exist within one processor, and
distributed and decentralised systems in which
the processes are distributed over a set of
processors. In a general distributed system,
there will not be a centralised monitoring
facility to guarantee orderly processing among
the processes. Process interaction, to collect
or distribute data, or to promulgate control
decisions, takes place through inter-process
communication. Each process wil: advance
asynchronously with its computations, unless

= lbs

z

i

i :

:
‘
i

237

forced into synchronism by communication.
Consequently, the integrity of the communica~
tion medium in this type of system must be a
paramount concern.

Three forms of inter-process communication
primitives can be recognised.

In a synchronous system the task initiating
the communication (the source task) requires
an acknowledgement from the object task before
it can proceed; the process that reaches the
communication point first must wait for the
other before it can continue (see (14) and
May (15)). The usual notation i:

SOURCE TASK OBJECT TASK

object ! <request>; -----> source ? <request>;

Process synchronisation is thus enforced;
subsequently both processes proceed
autonomously.

In an asynchronous system, the source task
does not wait for an acknowledgement before
it proceeds; the object task, however, will
wait if it arrives at the communication point
first (Liskov (16)), The notation is:

SOURCE TASK OBJECT Task

SEND <request>
TO <object>; ---------> RECEIVE <request>

FROM <source>;

A third form of inter-process communication is
the remote procedure call, used most notably
in Ada (17), but inwide use elsewhere (Brinch
Hansen (18), Mao and Yeh (19), Kramer et al
(20)). Here the source task invokes the
object task to perform a specific function
and waits for the object task to respond
before continuing. The notation is:

SOURCE TASK

objecttask.request <in-parameter,
out-parameter>;

OBJECT (PROCEDURE) TASK

accept request <in-parameters> do
<service request - send out-parameters>;

For distributed control systems, it is common
practice to classify inter-process messages
according to the function they require of the
object task (Kramer et al (21)). Commands
require a change of state or action in the
object task; acknowledgement from the object
task is a necessary requirement. Status
messages are sent to give information about
the source task; such messages may be issued
upon command from another task, in which case
acknowledgement from the object task may not
be necessary. However, if a change of state
in the source task indicates an alarm cond
tion, then the source task may need to initiate
an Alarm message; this would have high priority
and would require an immediate response.

Analysis shows that in process control systems
it is possible to identify two groups of
messages: command messages, which require a
reply to the initiator, and notify messages,
which require no reply to the initiator. The
communication primitives introduced above
appear to support these message groups. In
practical process control, however, it will
be shown that the constructs are deficient and
open to ambiguity.

=166—

STATE- OR EVENT-DRIVEN SYSTEMS

The number of processes within a concurrent
processing system may vary as new independent
processes are created or as existing processes
are terminated. The determinism of such a
system is destroyed if the creation, activa-
tion or termination of processes is not
initiated by, and synchronised from, existing
processes. Non-deterministic systems cannot
be tested exhaustively, and the quality of the
software will be dependent critically upon the
use of proper techniques at all stages of
specification, design and implementation, and
upon the application of software quality
control methods. The resulting system can only
be accessed by qualitative measures of the
software, and through statistical records of
dynamic tests on the software.

Control applications often require the
computational system to respond to an external
event. Such an event may be detected as the
computer analyses data from the external plant.
Alternatively, it may interrupt the computing
activity directly, and thus asynchronously
create a new process. In the first case the
external event will cause a computed response
which may change the schedule of processing
activities. While the system may eventually
return to resume the schedule of processing
which existed before the event occurred, the
state of the external system and the assign-
ment of external or computational resources
may have changed, and the system become non-
deterministic. The second case leads directly
to a non-deterministic system.

The specification for an event-driven system
will necessarily identify the causal events
and define the corresponding response actions.
It should also identify clearly the subset of
events which are asynchronous, for the presence
of such inputs will normally result in a non-
deterministic system. In systems with safety
applications it is preferable that an explicit
statement be made of whether non-deterministic
behaviour is to be allowed in the application.

REAL-TIME SYSTEMS

The majority of industrial control systems are
real-time systems in which a periodic interrupt
from an independent time source or ‘real-time
clock' is used to provide a time-reference
event which does not depend on the state of
the software processes. The computational
system wiil synchronise its processing schedule
on the occurrence of this event. Typically,
this synchronisation is used in multi-tasking
systems to apportion processing time to the
processes according to their scheduling
requirements. Such a technique could be used
in a multi-tasking control system for applica-
tions which depend only on the relative
Sequence of events.

The design problem is more severe if the
application is critically dependent on the
absolute time attributes of the system states.
For example, many monitoring and control
systems are required to sample input data from
the plant at specific and equally-spaced
instances of time. Waits or delays are often
used in control systems to sequence process
activities on a relative or an absolute basis.
Similarly, closed-loop direct digital control
systems usually require-inputs and outputs to
be synchronised to a real-time schedule. Such
systems are considered below.

238

TIME-CRITIGAL REAL-TIME SYSTEMS

The generation of computed responses at
specific instances of time is central to
nearly all direct digital control (DDC)
systems. This forms the basis of real-time
sequence control. It is also fundamental to
the design of control algorithms for continu-
ous processes, for the sampling period is
usually a critical parameter and can radically
affect the performance and stability of the
system. In extreme cases, plant which is
intrinsically unstable will depend on the
control system for stabilisation. These
systems may be classified as time-critical
real-time systems.

The dynamical performance of the above can be
monitored at either scheduler or application
program level. The timing performance is
usually monitored by running a real-time
time-lapse counter concurrently with the
application task. Both processes will be
attempted; the first task to complete succeeds
and the other attempt is withdrawn. This
‘timeout’ technique is used as a ‘watchdog’
mechanism in real-time control systems.

The specification of a time-critical real-
time system will include a definition of the
actions to be taken when input data is out of
range, or when outputs from processes fail to
meet acceptance tests. Similar specifications
are required for the actions to be taken in
the event of timeouts. These could arise when
processes exceed specified execution times, or
from a general loss of synchronism at scheduler
level. Failures of inter-process or inter-
processor communications might also lead to
timeout events; however, recovery in multi-
process or distributed systems is much more
complex and care is required if ambiguity is
to be avoided.

Consider, for example, the failure of an
asynchronous inter-process communication in
which the object task would wait indefinitely
to receive the inter-process message. A
selective construct with a timeout would only
partially resolve the problem due to the
absence of any logical pairing between the
source and object tasks:

SOURCE TASK

Send <request> to <object task>;
Select | Receive <reply> from <object>

or Timeout <period>;

With synchronous communications, such as in
occam (15), a timeout can be placed on the
receive primitive to break the wait~for-
synchronisation. However, the source task
would be suspended if the timeout were
activated:

SOURCE TASK OBJECT TASK

clock := NOW;
ALT

WAIT NOW AFTER
<clock + timeout> ;

object ! <request>; --> source ? <request> ;

In occam, a timeout cannot be placed on the
send primitive since outputs are not allowed
as guards in synchronous primitives.

With remote procedure calls, as in Ada (17), a
timeout can be placed on the acceptance of the
initiating message by the object task. However,
the transaction is not completed until the

reply message is sent by the object task. If
this message is lost then the source task is
suspended indefinitely:

SOURCE TASK

SELECT TIMEOUT <period>
OR objecttask.request

<in-parameters, out-parameters>;

The timeouts used above monitor specific
communication primitives. The groups of
messages used in control systems would be
protected better if the whole transaction were
included in the timeout (20). A new notation
is required for such a mechanism. Perhaps the
greatest advantage can be obtained from a model
which uses the formal notation of communicating
sequential processes, but which includes a
select construct to provide a mechanism to
break-out from the formal notation in the event
of a timing failure. Thus:

SOURCE TASK.

SELECT
SEQ

objecttask ! <request>;
objecttask ? <reply>;

OR TIMEOUT (period);

OBJECT TASK.

SELECT
SEQ

sourcetask ? <request>;
SEQ

(service request);
sourcetask ! <reply>;

OR TIMEOUT (period);

In systems with safety applications, failure
modes must be specified and measures taken to
generate safe outputs. Specific problems arise
in the case of distributed systems with distri-
buted databases in which database migration may
eccur. The concept of 'conversations' addresses
this problem (Randell (22), Kim (23)) and might
provide a suitable basis for the design of a
recovery mechanism for the ‘break-out’ described
above.

In practical applications a time-critical real-
time system may be required to undertake
complex processing schedules defined by hier-
archical sequential control schemes while
maintaining continuous feedback control over a
number of concurrent plant-processes. The
bespoke design of such systems places the most
stringent demands on designers. In many appli-
cations limited configurability systems are
used in which system-specific safety-critical
features are placed within a restricted-access
kernel, However, this does not remove the need
for the proper design of applications-specific
safety functions.

CONCLUSION

The design of programmable electronic systems
for safety applications or systems with safety
functions places specific demands on the design
of these systems. This paper has examined some
of the performance and environmental constraints
on these systems and has considered techniques
for their solution.

REFERENCES

1. Daniels, B.K., 1983, Reliability Engineer-
ing, 4, 199-234, ae

157

:
{

239

2. Department of Trade and Industry, 1984,
“Software Tools for Application to large Real
Time Systems".

3. Ross, D.T., 1977, IEEE Trans on software
engineering, S' 16-315 te 7 = eee

4. Sommerville, I., 1982, "Software
Engineering", Addison-Wesley.

5. Bell, T.E., Bixler, D.C., and Dyer, M.E.,
1977, IEEE Trans on software engineering,
SE-3, 49-60. a eee

6. Teichrow, D., and Hershey, E.A., 1977,
IEEE Trans on software engineering, SE-3,
T1-48-

7. Boehm, B.W., 1981, "Software Engineering
Economics", Prentice-Hall.

8. Welsh, J., and McKeag, M., 1980,
"Structured System Programming", Prentice-Hall.

9. Alagic, S., and Arbib, M.A., 1978, "The
design of well-structured and correct programs”,
Springer-Verlag.

10. Anderson, T., and Lee, P.A., 1981, "Fault
Tolerance: Principles and Practice", Prentice-
Hall.

11. Brinch Hansen, P., 1973, "Operating system
principles", Prentice-Hall.

12. Dijkstra, E.W., 1968, "Co-operating
sequential processes" in "Programming
Languages", 43-112, ed Genuys, F., Academic
Press.

13. Hoare, C.A.R., 1974, Comm ACM, 17, 549-557.

14. Hoare, C.A.R., 1978, Comm ACM, 21, 666-677.

15. May, D., 1983, Sigplan Notices, 18, 69-79.

16. Liskov, B., 1979, "Primitives for Distri-
buted Computing", Proc of 7th ACM SIGOPS Symp
on Operating Systems Principles, 33-72.

17. United States Department of Defence, 1980,
"Reference Manual for the Ada Programming
Language".

18. Brinch Hansen, P., 1978, Comm ACM, 21,
934-941.

19. Mao, T., and Yeh, T., 1980, IEEE Trans on
software engineering, SE-6, 194-207...

20. Kramer, J., Magee, J., Sloman. M., and
Lister, A., 1983, IEE Proc Pt E, 130, 1-10.

21. Kramer, J., Magee, J., and Sloman, M.,
1981, "Intertask communication primitives for
distributed computer control systems", Proc of
2nd Int Conf on Distributed Computer Systems,
404-411.

22. Randell, B.R., 1975, IEEE Trans on soft-
ware engineering, SE-l1, 230-232.

23. Kim, K.J., 1982, IEEE Trans on software
engineering, SE-8, 189-197.

-168-

TRE DESIGN OF COMMUNICATIONS SOFTWARE FOR DISTRIBUTED MULTIVARIABLE
CONTROL SYSTEMS

ANDREW M. TYRRELL, DAVID J. HOLDING

UNIVERSITY OF ASTON

Distributed computer control systems have advantages over a centralised
system, including distributed functionality, increased fault tolerance, and
piecewise growth capability. These advantages are gained at the expense of
increased complexity in the systems software. This paper examines the
communication mechanisms required to synchronise and co-ordinate distributed
computer-based control systems under normal and abnormal operating condi-
tions. Various formal notations and communication primitives are examined.
The limitations of present solutions are determined. A new notation is
introduced and used to describe a generalised distributed control function.
Finally, a structure in this notation is identified in a wide class of
control system.

1.0 INTRODUCTION

Distributed computer control systems offer a number of advantages
over a centralised system, including distributed functionality, increased
fault tolerance, higher speed of computation through concurrency, piece-
wise growth capabilities, and piecewise system upgrading [1]. However,
these advantages are gained at the expense of increased system complexity.

In distributed systems, the distributed systems and applications
software can be a major source of complexity. ch work has been done on
the implementation of distributed systems [2-10]. This work concentrates
mainly on programming languages for such systems. Work has also been done
on the design of these systems [11-15] although, in general, these designs
do not address explicitly the issues of communication and synchronisation.
However, the kernel of any such design is the communication and synchroni-
sation mechanisms used to coordinate the distributed system; these usually
involve a message-based scheme. Mechanisms such as the monitor [17],
which rely upon shared memory for such communications, limit the choice
of hardware configuration for the system. A more flexible choice of
system implementation is obtained if a message passing mechanism is used
for inter-process or inter-processor communication.

This paper is concerned with a distributed computer control system
in which the process control software consists of a set of distributed
processes which communicate by message passing over a communication
network. This type of system can be characterised by the following
assumptions:

a. There is no centralised monitoring facility or resource management to
guarantee orderly processing among the processors.

191

=—169—

b. There is no overall clock control: processes therefore advance
asynchronously with computations.

c. Processes can only interact by the transaction of passing messages.

d. The communication medium, while generally reliable, may be subject
to transient or sustained failure when messages will be lost.

Any technique for representing distributed software must describe
explicitly the interactions between tasks on different processors. In
time-critical, real-time systems, tasks must be properly synchronised
and must satisfy critical timing requirements. The system design must
aig ts robust and incorporate fault-tolerant methods in the software
18,19].

This paper investigates the problems of designing robust software
for distributed multi-input, multi-output control systems. Section 2
gives an overview of the different types of communication primitives
used in languages intended for distributed systems and describes the
applicability and limitations of these communication mechanisms.

Section 3 proposes a notation that is suitable for real-time
system specification, design and implementation. This notation is
formed by combining the transaction-timing communication controls
described in CONIC [12], with some of the synchronous communication
primitives developed in C.S.P. [2]. The suggested notation has the
advantage of allowing formal methods to be used in the design of the
system for normal operations. Break-out mechanisms are implemented to
allow recovery procedures where timing constraints are involved.

The notation is used to develop a schematic design for a distributed
control system. A number of design stages are identified. To implement
the initial stages of the design, a design methodology derived from
MASCOT [13] is used. This, combined with the proposed notation, forms
a method which will help in the design of software for distributed multi-
input, multi-output, time-critical, real-time systems.

Finally, a software structure which appears in each subsystem is
identified asa template for use in the design of distributed systems.
This software structure template could also be embedded within the

recovery mechanisms required in fault-tolerant systems.

2.0 COMMUNICATION PRIMITIVES

In this paper a task which initiates communications will be
referred to as a source task. The task to which a communication is sent
is called an object task. A chnnnel is the unidirectional medium used
for such communications.

2.1 Communication Primitives for Distributed Processes

Tne different communication primitives used in message passing can
be classified into three types: asynchronous, synchronous, and remote

procedure call.

192

TiO

a. Asynchronous

An asynchronous communication does not require the object task to
acknowledge the receipt of a message from the source. The source task
issues an initiating message and then continues its operation. Since
synchronisation is not enforced, some form of buffering is required to
hold the initiating message should the object task not be ready to
receive the message [4,5]. Similarly, the object task may be required
to wait if the message has not been initiated by the source.

The asynchronous communicaticn has two primitives; these are of
the form:

SEND <message> TO <object.task>;

RECEIVE <message? FROM <source.task>;

b. Synchronous

In a synchronous communication the source task requires an acknow-
ledgement from the object task before it can proceed. The process that
reaches the communication point first must wait for the other process
before it can continue. The source task may then issue an initiating
message. On receipt of this message, the object task will issue an
acknowledgement message. When the source has received the acknowledge-
ment both processes may continue autonomously. Process synchronisation
is thus enforced through communication [2-4].

Synchronous communication also has two primitives:

objecttask ! <message>; | --send from source task

-- to object task <message>.

sourcetask 2 <message? ; -- receive at object task

-- <message> from source task.

c. Remote Procedure Call

The third type of communication primitive is the remote procedure
call. The source task waits for the object task to report completion of
the procedure. The object task performs a specific function for the
source task in a way similar to that of a subroutine. The object task
is not initiated until it has received the source's message and completes
its local computation before issuing a reply [7-12].

The remote procedure call primitives have two parameters in their
communications as shown below:

SOURCE TASK

object.request <in,out parameters>;

193

SL 7dr

OBJECT (PROCEDURE) TASK

accept.request <in parameters>

do <service request

send out parameters>;

2.2 Message Types in Distributed Computer Control Systems

Messages are used widely in distributed computer-based control
systems for the collection or distribution of data and to promulgate
control decisions or actions. In [16] three main functional classifi-
cations or transfer categories are identified:

COMMANDS are messages which cause a change of state or action in
the object task. These messages generally require a response from the
object task to signify completion of the action.

STATUS messages are sent by a source task to a number of object
tasks and are used to convey source status. These messages may be
initiated by the source either periodically or when the state of the
source task changes. Status messages may also be generated by an object
task in response to a request from a source task.

ALARMS are messages initiated by the source to inform the other
tasks that the controlled process is malfunctioning or is in an unsafe
state. .

These three message types are divided into two groups in [16]:

Command Message Group: Those requiring a reply to their initial
message: command and requested status messages.

Notify Message Group: Those requiring no reply: periodic status,
event status and alarm messages.

2.3 Communication Primitives for Distributed Computer Control Systems

The message groups can be modelled using the communication primi-
tives of section 2.1. Analysis shows that when these groups of messages
are directly implemented they contain ambiguities and deficiencies.

2.3.1 Command Message Types

The command message can be modelled using the primitives described
in Section 2.1:

194

iS

Asynchronous Implementation:

SOURCE “TASK OBJECT TASK

SEND <request>

TO <object>; RECEIVE <request> FROM

<source>;

(service request)

RECEIVE <reply>< SEND <reply> TO <source>;

FROM <object>;

The communication subsystem of a distributed computer control
system may be subject to failure. It is common to incorporate a timeout
mechanism which will initiate the appropriate recovery mechanism. The
timing requirements of such a system are only partially satisfied if the
object task RECEIVE primitive is put in a SELECTIVE construct with a
timeout:

SOURCE TASK

SEND <request> TO <object>;

SELECT

TIMEOUT <period>

OR

RECEIVE <request> FROM <object>

When the select statement is executed both the communication and

timeout tasks are attempted. Whichever task is completed first is

defined as executed and the other attempt is withdrawn. However, such a

model is still ambiguous because of the absence of any logical or
notational paring between the two halves of the transaction. This could

lead to a situation in which the object task sends a message to a timed-

out source task.

Synchronous Implementation:

SOURCE TASK OBJECT TASK

object ! <request>; -----~’ >source ? <request>;

(service request)

object ? <reply>;

source ! <reply>;

In this case the logical clarity is good. However, the timing
requirements are not easily satisfied. For example, if a timeout was

placed on the receive primitive to break the wait-for-synchronisation,
then the source task could be suspended if the timeout was activated:

195

LT oe

SOURCE TASK OBJECT TASK

clock := NOW;

ALT

WAIT NOW AFTER <clock +

timeout>

object |! <request> source ? <request>

The send primitive cannot be modified to include a time-out by using an
ALT mechanism, because outputs are not allowed as guards in synchronous
primitives.

The remote procedure call primitive simulates the command message
directly:

‘

Remote Procedure Call Implementation:

SOURCE TASK

objecttask.request <in-parameter,

out-parameter>;

OBJECT (PROCEDURE) TASK

accept request <in parameters> do

<service request - send out parameters>;

Remote procedure calls of this type are used for communication in
the Ada language (7]. The Ada implementation uses a timeout on the
acceptance of the message by the object task and has the form:

SOURCE TASK

SELECT

TIMEOUT <period>

OR

object.request <in,out parameters>;

This system is again ambiguous, for if the reply message is lost,
then the source task is suspended indefinitely. A solution to this
problem was included in CONIC [12] in which the timeout is placed on the
completion of the whole transaction.

The communication models outlined above must be assessed as formal
notations for the expression of concurrency, the pairing of communication
primitives, and the ability to incorporate timeout mechanisms successfully.
None of the models outlined satisfy all of these objectives. The first |
two objectives are satisfied by the synchronous communication system
which is developed in C.S.P. [2] and embedded as primitives in the derived [

196

-174-

language occam [3]. The formal semantics of C.S.P. allow certain proofs
of program correctness and include correctness preserving transformations.
However, the scope of the language does not, of course, include timeout
mechanisms. The third objective is met by CONIC.

3.0 PROPOSED SYSTEM DESIGN

The two separate lines of development have led to communication
mechanisms such as CONIC which satisfy the transaction and timing

requirements, and to synchronous communication systems such as those in

occam which provide a formal notation, and mechanisms for the implemen—

tation of strictly synchronous systems. The following section explores

the advantages to be realised by developing a formal construct which

includes select asd ‘breakout’ to provide the flexibility required to
satisfy timing constraints.

3.1 Notation for Communications in Real-Time Control Systems

Consider the case of a command group message implemented as a
synchronous communication by message passing, with the inclusion of a
select mechanism which provides an ability to break out of the formal
notation inthe event of system behaviour conflicting with timing
requirements.

SOURCE TASK

SELECT

TIMEOUT (period); --time-out if not completed by period

OR

SEQ

objecttask ! <request>; --send request to object task

objecttask ? <reply>; --wait reply from object task

OBJECT TASK

SELECT

TIMEOUT (period); time-out if above not completed by

-- period

OR

SEQ

sourcetask ? <request>; --receive from source request

SEQ

(service request); --service request

sourcetask ! <reply>; --send reply to source

197

=iio>

In the normal sequence of events the synchronous communication

will be successful. However, there are two cases when the timeout will

be chosen: z

i. When either the source or the object task is waiting for the other

task to reach the communication point. In this event the communication

will not have been initiated.

ii. After the initiation of the object task but before completion of

the whole transaction.

In both cases the processes will have to be rolled-back to the start of

the communication for recovery. The time-out on the whole transaction

will prevent either task from being suspended indefinitely. This commu-

nication transaction built from occam-type primitives adds real-time

communication to the notation.

3.2 Distributed Software Design

When designing software for distributed systems the design is

split into a number of stages:

i. Partitioning of the problem into subsystems on & functional basis.

iz. Identification of concurrency.

ii. Design of process structure into sequential and parallel sub-

components.

iv. Design of inter-process communication. Identification of those

channels which require a real-time, time-critical communication such as

those described in 3.1.

ve Design of initialisation and termination mechanism for the communi-

cation system.

vi. Design of processes.

3.3 Control Station Design

The above design procedure was used in the schematic design of a

system consisting of two control stations each having part of the total

System state information (Figure 1). To ensure total system controll-

ability the observability, communications between systems were required

[22].

For the initial stages of the design the real-time design methodo-

logy MASCOT [13] was used. MASCOT provides a unified discipline of

Rodularisation based upon the decomposition of a program into a set of

parallel processes. It also provides tight control over intra-processor

Permunications. Tasks within a processor can only exchange data via data

structures: the channel or the pool. Direct task-to-task communication !

is prohibited.

The control station was partitioned into eight subsystems in the

initial stage of the design (Figure 2). Each of these subsystems was

then decomposed into a number of simpler processes interacting via pools

and channels (Figure 3). {

198 |

=e

\
|
|

|

|
|

A fragment of program was written specifying the communication between tasks and data structures. Each communication primitive was examined and the select mechanism introduced in those instances in which breakout facilities were required to satisfy timing constraints. Those tasks receiving data from pools required standard synchronous communi- cations. - However, tasks reading data from channels require extended communication primitives. In Figure 3 tasks that require the extended communication are shown in double rings.

Each task consists basically of an input channel using extended
communications, a task taking inputs from a standard communication
channel, and an output channel. This fundamental structure was found to
be embedded within each subsystem (Figure 4). y

3.4 Use of Template

Having identified a basic template which can be used in the design of all the subsystems, the design of robust systems can be simplified.
Each template could be embedded within a fault-tolerant mechanism which would ensure correct operation of the system. For example, the recovery block mechanism proposed by Randell [17] could be used to provide fault tolerance with sequential processes. A number of different mechanisms have also been suggested for concurrent system fault tolerance -18-21.. The conversation first proposed by Randell [18] and extended by Kim (202 would be applicable in this case.

4.0 CONCLUSIONS

This paper has examined some aspects of the problems of designing software for distributed multi-input, multi-output control systems. It takes the view that in such systems communication and synchronisation should be addressed explicitly. It has shown that languages proposed before are not matched exactly to the design of distributed systems, or have deficiencies when applied to time-critical, real-time situations. However, the timing requirements of such systems are satisfied by CONIC while the formal notation of synchronous languages such as occam satisfy the concurrency and communication needs of strictly synchronous systems.
The paper has proposed a notation for the design of command group

messages in distributed computer control systems. This notation provides strictly synchronous communication primitives in normal operation, but includes break-out facilities necessary to satisfy timing constraints.
The schematic software design for a control station in a distri- buted control system was formulated as a set of communicating processes.

An analogous MASCOT design of the system was expressed in the proposed
notation.

Examination of the design showed that each communicating process could be built about a common software structure. It is suggested that this structure is a good candidate for embedding within a fault-tolerant
framework.

199

Sil

5.0

G4]

[2]

[3]

G4

(¢]

[7]

B]

f)

Bo]

fa]

D3)

f3]

D4)

ps}

16

REFERENCES

Halsall, F., Grimsdale,

I.E.E. Proc., Vol.130,

R.L., Shoja, G.C. and Lambert, J.E.

DEVELOPMENT " ENVIRONMENT FOR THE DESIGN AND TEST OF APPLICATIONS

‘SOFTWARE FOR A DISTRIBUTED MICROPROCESSOR COMPUTER SYSTEM.
Pt.E. (1983).

Hoare, C.A.R. COMMUNICATING SEQUENTIAL PROCESSES. Comm. ACM,

Vol.21, No.8, August 1978.

May, D. OCCAM. Sigplan Notices, Vol.18, No.4, April 1983.

Boussinot, F., Martin, R., Memmi, G. Ruggiu, G. and Vapne, J.
A LANGUAGE FOR FORMAL DESCRIPTION OF REAL-TIME SYSTEMS.
IFAC Safecomp, 1983.

Liskov, B. PRIMITIVES FOR DISTRIBUTED COMPUTING. Proceedings of
7th ACMSIGOPS Symposium on Operating Systems Principles,
December 1979.

Feldmann, F. HIGH-LEVEL PROGRAMMING FOR DISTRIBUTED COMPUTING.

Comm.ACM, Vol.22, No.6, dune 1979.

REFERENCE MANUAL FOR ADA PROGRAMMING LANGUAGE. United States

Department of Defence, 1980.

Brinch Hansen, P. DISTRIBUTED PROCESSES: A CONCURRENT

PROGRAMMING CONCEPT.

Mao, T. and Yeh, T.
CONCURRENT PROGRAMMING.
SE-6, No.2, March 1980

Comm.ACM, Vol. 21, No.11, November 1978.

COMMUNICATION PORT; A LANGUAGE CONCEPT FOR
I.E.E.E. Trans. Software Engineering,

Tsukamoto, M. LANGUAGE STRUCTURES AND MANAGEMENT METHOD IN A

DISTRIBUTED REAL-TIME

Grimsdale, R.L., Halsa:

ENVIRONMENT.

aay Fs

IFAC 3rd DCCS Workshop 1981.

Martin-Polo, F. and Wong

STRUCTURE AND TASKING FEATURES OF THE PROGRAMMING TNeeace MARTLET.
I.E.E. Proc. Vol.129, Pt.E, No.2, March 1982.

Kramer, J., Magee, J.,

Jackson, K, and Simpso:

October 1975.

Darondeau, Ph., Le Gue:
TION OF COMMUNICATION

Yau, S., Yang, C.C. an

Sloman, M. and Lister, A. CONIC: AN
INTEGRATED APPROACH TO DISTRIBUTED COMPUTER CONTROL SYSTEMS.
I.E.E. Proc., Vol.130, Pt.E, No.1, January 1983.

mn, H.R. MASCOT - A MODULAR APPROACH TO

SOFTWARE CONSTRUCTION OPERATION AND TEST. REE Tech. Note No.778,

nic, P. and Raynal, M. ABSTRACT SPECIFICA-
SYSTEMS. Proceedings lst International

Conference on Distributed Computing Systems, October 1979.

id Shatz, S.M.
COMPUTER SYSTEM SOFTWARE DESIGN. I
Engineering, SE-7, No.

Kramer, J., Magee, J.

4, July 1981.

and Sloman, M.

AN APPROACH TO DISTRIBUTED
-E.E.E. Trans. Software

INTERTASK COMMUNICATION
PRIMITIVES FOR DISTRIBUTED COMPUTER CONTROL SYSTEMS. Proceedings

of 2nd Internaticnal Conference on Distributed Computer Systems.

April 1981.

200

=17/3—

7]

Bs]

Bs]

Po]

fy

22]

Hoare, C.A.R. MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT.
Comm.ACM, Vol.17, No.10, October 1974.

Randell, B. SYSTEM STRUCTURE FOR SOFTWARE FAULT TOLERANCE.
I.E.E.E. Trans. Software Engineering, SE-1, No.2, June 1975.

Campbell, R.H., Anderson, T. and Randell, B. PRACTICAL FAULT-
TOLERANT SOFTWARE FOR ASYNCHRONOUS SYSTEMS. IFAC Safecomp, 1983.

Kim, K.H. APPROACHES TO MECHANISATION OF THE CONVERSATION SCHEME
BASED ON MONITORS. I.E.E.E. Trans. Software Engineering, SE-8,
No.3, May 1982.

Russell, D.L. and Tiedeman, M.J. | MULTIPROCESS RECOVERY USING
CONVERSATIONS. Proceedings FTC-9, 1979.

Momen, S.E.M. and Holding, D.J. CONTROL AND COMMUNICATION
STRUCTURES IN DISTRIBUTED CONTROL SYSTEMS. Proc. I.E.E. Inter-
national Conference on Control and its Applications, Publication
194, March 1981.

* 201

conTroL,

STATION 1

PROCESS

, '
: |

| \
i \
| |
| CONTPOL 1 ae = ee | fe et

STATION 2

Fis

-------5-------7--------

| ! Communications
| | to Subsystens

| Input State: |! Combine states \
| _——
| I
1 I Communications

POTTS SSS ee 5 from Subsystems

Clock t CONTROL ALCC°ITHM 1

Output States Computed Control States

202

—180—=

---H----

Laie
eee,

‘siisatvnauid

Ae e
s

p
e

nk
a

ee eee tae mlm oe eed

ACP DIAGRAM OF CONTROL STATION
a ee i ee a oe ee

Figure 3:

203

18>

Input
Channel

Output
“| Channel

I
|
!
!
I

Figu TEMPLATE OF SUBSYSTEM

|

|
|

-

1 204

WS Pa

GUIDELINES FOR THE SYNTHESIS OF SOFTWARE
FOR DISTRIBUTED PROCESSORS

CARPENTER, G.F., TYRRELL, A.M. and HOLDING, D.J.

Department of Electrical and Electronic Engineering
and Applied Physics
Aston University
Birningham

ABSTRACT

A systen of distributed processors offers an attractive method for
the control of many real-world systems, with the prospect of increased
efficiency, throughput and reliability. Modern software engineering
analysis methods, design techniques and programming languages should be
used in the construction of such systems to control and exploit the
parallel nature of the system. Where a robust system is required, par—
ticular attention aust be paid to the role of interprocess communica-
tions, because they provide not only a mechanism for synchronising and
co-ordinating the distributed system, but also a mechanism for the pro-
pagation of errors. A proper fault tolerant framework must be imple~
mented to restrict such error propagation and to provide proper conver-
sation error-recovery mechanisms.

INTRODUCTION

Microprocessors now offer high computational power, high reliabil~
ity and low power consumption at a low cost. They are finding widespread
use in instrumentation and control systems where the microprocessor pro~

vides a centralised computing resource. Increasingly, microprocessors
are being used in the construction of decentralised and distributed sys~

tens, in which a number of processors are physically distributed about
the application plant and interact, or exchange information, with each
other by passing messages over interprocessor communication channels.
The individual processors in these systems not only provide local func~
tions, such as data acquisition, control, and operator intertaces, Dut
also form part of an overall system which must be co-ordinated to give a
global response.

The primary concern in the construction of a computational system
is to produce a design which satisfies the requirements specification of
the system, The question of whether a computing resource should be
duplemented as a centralised or distributed system may be only of secon-
dary importance. When a satisfactory design has been generated, and a
computational architecture selected, a software specification for the

=183=

165

chosen system has to be drawn up. Whether the computational parts of the system be centralised or decentralised, the function is determined by the software. Software must therefore be designed which meets the software specification and this design must be converted accurately into @ program implemented on the target processing systen. The resulting system will only operate correctly if the software {s properly designed. For practical applications, the production of correct software is non~
trivial.

The requirements specifications of monitoring and control systems often demand high levels of performance from a computational system. For example, the computational task may involve real-world data acquisi— tion, combinational or sequential logic functions, complex arithmetic calculations, and the generation of control outputs to the application
plant. The computational response may be required within very tight time constraints, perhaps as part of a real-time schedule. The schedule may have to be maintained in the presence of asynchronous external inputs, such as operator commands or alarms. In addition, the system may have to perform safety functions or functions with safety implica- tions.

Requirenents of this type make severe denands on the software, both at a systems level (involving the control and allocation of processor resources), and at the application level (responsible for the control of the plant). The design of such systems requires a proper understanding and application of the appropriate design techniques. These include, in the case of distributed systems, methods for the design of concurrent Processing systems. The quality of the software, and of the resultant system, is critically dependent upon the adoption of proper methods and disciplines throughout the software life cycle (1).

This paper addresses some of the problems involved in the design of software for distributed processors, particularly where there are impli- cations for safety. Modern software engineering techniques and languages are used to consider possible approaches to the design of such systems, and to discuss methods of providing fault tolerant structures for high reliability applications.

DESIGN CONSIDERATIONS FOR DISTRIBUTED PROCESSES.

The requirements specification for a computer system is chiefly concerned with identifying the functions which the system has to per-
form, the interfaces with the plant, and constraints within which it Must operate. At this stage it is unlikely that a definite need to decentralise the computational system, or to distribute it, will have been identified. Indeed, only a detailed analysis of the requirements
may lead to the decision that a distributed system is appropriate. The decision will normally be based on the following characteristics:
- | Functional distribution

A real world system may be naturally distributed in a functional
sense. Functionally distributed systems are often modelled and con- trolled as a set of distributed processes. The software for such a

-184-

166

system invariably reflects the distributed nature of the application.
This should provide a good correspondence between the real-world system
function and the computational function.

- Geographical distribution

Real world systens are often spatially, or geographically, distri-
buted. It is then appropriate to distribute the computational resource
across the plant, and to design software which can be implemented over

the set of physically distributed processors. Such software will neces-
sarily consist of a set of communicating processes. Since many geo-
graphically distributed applications also have functionally distributed
attributes, then both characteristics naturally lead to software designs
which consist of a set of communicating distributed processes.

Once the decision to distribute the system is taken, then the
software design and synthesis must adopt design rules and techniques
which will lead to a high probability of generating correct, properly
validated code within the specific demands of a distributed system (2).

- Partitioning and the reduction of complext'

The technique of partitioning is used to divide a system into a set
of processes. The criteria used to partition a system can alter the
extent to which interprocess communications are necessary to maintain
the overall system function. System partitions are often chosen to
emphasise the physical topology of the plant, the functional charac-
teristics of a system, or the physical location of the processors. If
they are chosen so that they emphasise the dominant characteristics of a
system, they may give, to a first approximation, a fully decoupled sys~
ten.

In many cases the partitions lead to an apparent reduction in the
complexity of the system, or allow aggregation to reduce design complex-
ity. However, the granularity introduced by partitioning should be
carefully considered because it will affect the type of system implemen-
tation. For example, as the number of parallel processes into which a
computational task is partitioned is increased, so the volume of inter-

communications for control and data interchange is also

ed, thus leading to a closely coupled system implementation.

- Concurrency

Physical processes in continuous plant inherently involve the flow
of energy or materials which often flow simultaneously through parallel
forward paths, or forward and feedback paths. When such systems are
modelled, the parallel processes are represented by parallel or con-
current data flows and are readily amenable to parallel processing for
model simulation or control. This removes the constraint of modelling
these systems in sequential terms which is required for solution by
sequential computer programs executing on computers with a Von Neumann
architecture, Concurrent programming languages and computing systems
can therefore be regarded as the digital equivalent of the analogue com-
puters, simulators and control systems which find widespread acceptance

=100>

167

and continuous use in industry.

DISTRIBUTED PROCESSING

Each process (or processor) in a spatially or functionally distri- buted system may be equipped with local data acquisition or control interfaces. If each process is operated independently without communi- cations with other processes then the system is said to be decoupled and each process can only operate asynchronously and autonomously and exe- cute its local function only. Unfortunately, few practical applications have the characteristics necessary for decoupled control.
If a system can be controlled using a network of communicating Processes, then the system is said to be coupled. The volume of inter- Process communications determines the degree of coupling. In a loosely coupled system, relatively infrequent interprocess communications can be used to compute partitioned functions or to co-ordinate the distributed processes. A systen is said to be closely or tightly coupled if there is a closer coupling between the component processes such that a high degree of interprocess communication is required to control and co- ordinate the system. Since the availability of communication links is often limited and the bandwidth of such links decreases with distance, closely coupled systems are often implemented as sets of processes come municating through shared menory on a centralised single or mulzi— Processor computing resource. Loosely coupled systems on the other hand can easily be implemented as geographically or spatially distribuced systems.

A distributed system is said to be decentralised if the distributed Processes have incomplete and non-identical information about the system state. Such a system requires the co-operative action of constituent Processes in order to provide total system observability, controllabil- ity and overall function. The distribution of system function and the decentralisation of information can be used to enhance the robustness of the system.

For example, if the system is designed with the ability to recog- nise failure and can identify the processor or process concerned, then it may be possible to contain and isolate the faulz. In distributed Systems error migration through communications is a particular problen and it may be necessary to backtrack and crace or linit the effect of the erroneous communications. The reliability of the system may also be increased by the use of fault recovery techniques. If the fault leads to decreased functionality, then it may even be possible to regenerate a degraded function using other processes or processors provided the sur— viving communication systems will support the communications necessary for the recovery and operation of the reconfigured system (3).
COMMUNICATING SEQUENTIAL PROCESSES (CSP)

The software design of distributed systems necessarily involves the design of a set of communicating sequential processes, involving aspects of concurrency. The methods for the design of centralised multiprocess- ing systems have been developed over the last eighteen years (4-6).

-186-—

168

However, the techniques for the identification of critical sections of
code, and the provision of mechanisms for enforcing mutual exclusion and
synchronism essentially provide bottom-up design primitives. They are
used extensively in the kernal of design methodologies such as MASCOT
(7) and are hidden from the applications designer. Such monitor based
techniques are unsuited to distributed systems design since a central-
ised facility is unavailable.

The development of concurrent programming languages, such as CSP
and its derivatives, such as occam (8-9), in which message-passing syn-
chronising inter-process communications are a primitive of the language,
allows the high level design of distributed systems. The use of such
constructs simplifies systems analysis and facilitates the design of
distributed systems. The formal background of CSP also provides an
mathenatical basis for the analysis of the system behaviour and the
design of fault tolerant methods.

A CLASSIFICATION OF INTER-PROCESS COMMUNICATIONS.

Interprocess communications may be classified (10) into one of
three groups:

1) synchronous communications, where neither the sending nor
receiving process is allowed to proceed beyond the communication point
until {ts complementary process has also reached that point. This is
found most notably within CSP and occan,

44) asynchronous communications, where the process sending the mes-
sage does not wait for acknowledgement, but the receiving process is not
permitted to proceed beyond the communication point until the message
has arrived (11).

414) renote procedure call, where the process sending the message
requires the receiving process to perform some specific function and
respond before they both can proceed further. In essence it is an asyn-
chronous communication followed by a synchronous communication. This
form is found in ADA and elsewhere (12-13).

Ir 1s common to associate inter-process messages with the function
they perform (10). Alarm messages have high priority on the interpro-
cess medium; they are issued by one process and require immediate
response by the receiving process. Command messages require a change of
state or action to occur in due course; acknowledgement is a necessary
requirement before the issuing process continues. Status messages are
sent to notify other processes of information about the source task. No
acknowledgement is required.

These message groups can be constructed using any of the above com-
munication primitives. However, detailed study is required to ensure
that the logical structure of the inter-process action (the transaction
level) 4s not disrupted should the lower level communication primitives
fail in a particular application (14). Single failure detection sys-
tems, such as time-outs, can only be applied at process level on a per-
process basis and this does not necessarily provide protection at the

=—13/=

169

ction level.

For example, failure in an asynchronous communication system can leave a process suspended indefinitely awaiting a communication, or may leave one process avare of a failure but unable to co-ordinate recovery action through the absence of a logical pairing between participating Processes. The remote procedure call requires the object task to ack- nowledge when its action 1s complete (12); if the reply is lost then the Source process is suspended indefinitely. Synchronous primitives, such as those in occam, preclude the protection of individual transactions since the language 1s specifically intended for deterministic system design only and outputs can not be used as guards on synchronous primi- tives. Hence, timeouts cannot be used in parallel with other processes fo form a race condition, and so they cannot be placed on the send prin~ itives of inter-process transactions. However, experimental languages,
such as Pascal m (15), have attempted to overcome these deficiencies, but no general consensus nor formal method is as yet suitable. Although transaction level protection cannot be supplied directly, software fault tolerance methods can be applied to such systens using state based Tecovery techniques which may enclose complete inter-process communica- tion transactions within the distributed recovery block or conversation (6).

SOFTWARE DESIGN TOOLS FOR DISTRIBUTED SYSTEMS

The design and synthesis of software for distributed syscens requires the use of a design methodology and progranzing language which builds on the inherent parallel nature of such systems. Formal methods applied to the design of software for distributed processors lead to the identification of processes, capable of asynchronous execution, interacting with other processes by communications. The provision of constructs for sequence, variable assignment, selection and iteration, augmented by constructs which enable parallel execution, the use of syn— chronous communications for input/output, the provision of guarded Processes and the formal inclusion of time are sufficient for the design of software for distributed systems (17-18).

The progranming language occam, which 1s derived from the theory of communicating sequential processes provides a good notation in which to Pursue the design of distributed systens. Occam produces concise, elegant and easily understood software. The mathematical axiomatic base of CSP permits algebraic analysis of software. In particular, correct- Ress preserving transforus can be applied to it. It therefore offers the prospect that in the future such software may be formally verified.
The language is intended for use with both sequential and inherently parallel systens. The starting point in design using occam

is the identification of the natural parallelism and the partitioning of the softvare into naturally occurring processes. Interaction betueen Processes is solely by means of interprocess communication. Again this isa good match with a distributed system. The mapping of processes onto target processors occurs at a late stage in the design. This allows the designer to concentrate on the application function rather than implementation details.

—188-

170

HIGH RELIABILITY DISTRIBUTED SYSTEMS

For high reliability applications it is essential that failure
modes be identified and measures taken to ensure that the system recog-
nises when a fault occurs, constrains the scope for error propagation,
and recovers to generate a safe response (19). A taxonomy of faults,
ranging from sensor failure to software faults, can be drawn up with
methods for their detection, and appropriate remedial action. The
framework for recovery is relatively straightforvard for centralised
sequential systems, involving the use of process roll-back within
recovery blocks and offering alternative processes (20), possibly within
the confines of time-out watchdog timers (21). A fundamental assumption
is that the framework itself is immune from faults

However, the situation becomes more complex for decentralised sys-
tems since there is scope for error propagation by inter-process commun-
ideation, which once initiated cannot be retracted. Methods are required
which restrict the scope of error propagation between communicating
processes, and which co-ordinate recovery amongst all processes partici-
pating in erroneous communications. The conversation scheme (20) is
appropriate, and requires all participating processes to perform an
acceptance test at pre-determined points in their processing. If any
process is found to be in error at that test then all participating
processes must perform co-ordinated recovery. No process is allowed to
proceed beyond the acceptance test until all the other processes also
pass the test.

The chief design problea is the proper placement of conversations.
It is evident that the conversation scheme requires synchronism at, or
following, the acceptance test to exchange the results of the test and,
4f necessary, coordinate process action. Current approaches to this
problem have used the centralised concept of a monitor to implement
acceptance tests. Unfortunately, this centralising feature of the moni-
tor makes it unsuitable for distributed systems. An alternative
approach developed by the authors (16) makes use of the synchronising
properties of CSP/occam communications to design and implement distri-
buted acceptance tests.

The crucial problem of conversation placement has received somewhat
less attention. In effect the designer must identify the extent of pro-
cess corruption and error migration through inter-process communication
for all faults in the system. The objective of this fault effect
analysis is the identification of a boundary or set of properly nested
boundaries, which define known entry (recovery line) and exit (accep-
tance) states for the system. This allows the entry and exi= state for
each component process to be determined. Software must be designed to
save recovery line entry states, and to implement and synchronise the
acceptance tests on all processes in the conversation. Attempts to

identify recovery lines and acceptance points dynamically are prone to
progressive collapse (20).

An alternative approach (16) is to utilise the deterministic state
properties of CSP/occam in the static design of conversations within the
known state reachability space of the distributed system. This approach

=E29>

171

offers considerable advantages and allows the use of design aids which
automatically generate sets of proper conversation boundaries within the
system, It is then for the designer to choose the features of a design
which he wishes to protect and the degree of software fault tolerance
appropriate to a particular class of application.

The conversation schene offers the most appropriate structure for
recovering from unanticipated faults. The nature of the conversation
scheme is that the acceptance test results (go/no-go) must be compared

amongst the participating processes. The detection of an error during
an acceptance test does not necessarily identify uniquely the fault;
indeed the fault might lie in the interprocessor communication medium.
Circumstances may arise where it is impossible to promulgate the result
of the acceptance test to promote error recovery, perhaps due to a
failure of the interprocess medium. In this cases the framework for
recovery fails because the fault affects the recovery structure itself.
Similar problems are inherent in any recovery structure and have been
recognised for recovery block structures applied to sequential software
(22). However, thay have not detracted significantly from the effec-
tiveness of the technique.

A CONTROL EXAMPLE

‘The program fragment presented in Figures 1-4 is taken from a exam-
ple program used to explore the problems involved in the design of
software for distributed processes. It concerns the motion of a robot
in each of three axes. It illustrates a number of points:

i) inherently local functions are modelled as processes, each capa~
ble of execution in parallel. Thus motion in each axis is programmed,
and occurs, independently of motion in the other axes. Each process
could be targetted onto separate processors at a late stage in the
design.

11) interprocess communications is the only form of interaction
between the processes. This would take place over an interprocess con-
munication medium. Thus each process is commanded to perform its
activity, and signals when it has completed its activity.

111) The software also contains a command process which initiates
parallel commands and receives, as they occur and in whatever order they
occur, the responses corresponding to the execution of those commands.

iv) The software contains a proper conversation boundary for the
protection of the critical interprocess communication which governs the
co-ordinated axial movement of the robot.

an equivalent fault-tolerant program written in a conventional
language would be much more difficult to design, program and verify.

S190=

172

Figure 1

{{{ PROGRAM robot
+. system parameters
CHAN request, return, motion{3], finished[3], stop[4]:

process operator
process motor
process control

—- initiate processes
Pi

AR

PAR i = [0 FOR 3]
motor(motion[i], finished[i], stop[1])

control(request, return, stop(3])
operator(request, return)

Figure 2

{{{ process motor
PROC motor (CRAN motion, finished, stopi)=

VAR step, direction, going:
SEQ

going := TRUE
WHILE going

ALT

stopi ? ANY
going FALSE

on ? step
SEQ

motion ? direction

-- move motor
finished ANY:

Hh

Sadia

| !
|
|
|

173

Figure 3

{{{ process operator
PROC operator (CHAN send, receive)=

VAR x, Y, 2, run:

Screen ! ‘i’

Screen ! EndBuffer
Keyboard 7 x
Screen ! x
Screen ! EndBuffer
Keyboard ? y
Screen ! y
Screen ! EndBuffer
Keyboard 7? z
Screen 1 2
Screen ! EndBuffer
xis x= '0"
pores °0"

i= 2-0"

z
IF

(x=0) AND (y=0) AND (z=0)
SEQ

Screen | ’£’
Screen ! EndBuffer
PAR i = [0 FOR 4]

stop[i] ! ANY
run := FALSE

Screen | ‘m
Screen ! EndBuffer:

tt

-192-

y
a

174

Figure 4

{{{ process control
PROC control (CHAN receive, send, stopi)=

VAR xold, yold, zold, mew, ynew, znew, count, step[3], direction{3],
going:

SEQ
xold
yold
zold
going
WHILE going

ALT

receive
SEQ

receive ? ynew
receive ? znew

— calculate distance and direction of each
— notor. These can be calculated in parallel.

PAR i = [0 FOR 3]
SEQ
notion[i] ! step{1]
motion(i] ! direction[1]

xold := xnew
yold := ynew
zold := znew
count := 0
WHILE count <> 3

ALT 1 = [0 FOR 3]
finished{1] ? ANY

count := count + 1
send _! ANY

dH}

CONCLUSION

The design of distributed computer systems requires specific metho-
dologies and techniques if high reliability is to be achieved. Sys-
tematic analysis of the specification is required to identify and to
exploit the parallelism inherent in the application. This must be com-
plemented by design methods and programming languages suited to a highly
parallel computing environment. Careful analysis of the communications
is required to co-ordinate the processing. and to ensure that proper
conversations are produced for recovery activity.

REFERENCES

1. Daniels, B.K., Reliability Engineering, 4, 1983, 199.

2. Boehm, B.W., Software Engineering Economics, 1981, Prentice-Hall.

=193—

15

3. Momen, S.E,
cations, ItE.E.

Holding, D.J., Proc Int Conf on Control and its appli- 1981, 291.

4. Brinch Hansen, P., Operating System Principles, 1973, Prentice-Hall.
5. Dijsktra, E.W., Co-operating sequential processes, 1968, in Progran— ming Languages, ed. Genuys, F., Academic Press.
6. Hoare, C.A.R., Comm ACM, 17, 1974, 549.

7. Simpson, H.R., MASCOT 3, I.E.E. Coll on MASCOT, 1984.
8. Hoare, C.A.R., Comm ACM, 21, 1978, 666.

9. May, D., Sigplan Notices 18, 1983, 67.

10. Kramer, J., Magee, J., Sloman, M., Proc 2nd Int Conf on Distributed Computer Systems, 1981, 404.

11, Liskov, B., Proc 7th ACM SIGOPS Symp on Operating system Princi- ples, 1979, 33.

12. US Department of Defense. ADA Reference Manual. 1980.
13. Krauer, J., Magee, J., Sloman, M., Lister, A., IEE Proc Pt E, 130, 1983, 1.

14, Holding, D.J., Carpenter,G.F., Tyrrell,A.M., Proc 6th IEEE/Eurel Conf on Computers in communications and control, 1984, 235.
15. Bornat, R., A protocol for generalised occam, Research report 348. Queen Mary College, 1984.

16. Tyrrell, A.M., Holding, D.J., subuitted to I.E.E.E. Trans on Software Engineering, 1986.

17, Linger, R.C., Mills, H.D., Witt, R.C., Structured programming, theory and practice, Addison Wesley, 1979.
18. Hoare, C.A.R., Communicating Sequential Processes. Prentice-Hall; 1985.

19. Anderson, T., Lee, P.A., Fault Tolerance: Principles and Practice, 1981, Prenzice Hall.

20. Randell, B.R., I.E.E.£. Trans on Software Engineering, sE-1, 1975, 220.

21. Kim, K.J., I-E.E.E. Trans on Software Engineering, SE-8, 1982, 189.
22. Jackson, P.R., White, B.A., The application of fault tolerant tech- niques to a real-tine systen., Safety of Computer Control systems, Per- gamon, 1983.

Los

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-I2, NO. 9, SEPTEMBER 1986 921

Design of Reliable Software in Distributed Systems

Using the Conversation Scheme

ANDREW M. TYRRELL, MEMBER, IEEE, AND DAVID J. HOLDING

Abstract—A fundamental problem in the design of error detection
and recovery mechanisms for networks of cooperating asynchronous
processes is the prevention of error propagation through process in-
teraction. The recovery procedure must be a cooperative effort involy-
ing all the interactive processes and may be limited to bounded parts
of the system by the conversation mechanism proposed by Randell.

This paper examines the problems of error detection and recovery
in a number of concurrent processes expressed as a set of communi-
cating sequential processes (C.S.P). A method is proposed which uses
a Petri net model to identify formally both the state and the state reach-
ability tree of a distributed system. These are used to define system-
atically the boundaries of a conversation including the recovery and
test lines which are essential parts of the fault-tolerant mechanism.

The method can be used as a design tool to determine a single con-
versation or a set of properly nested conversations. The technique can
be used to identify the full set of processes enclosed within a particular
conversation, or to design a conversation which will protect a specific
functional aspect of a distributed system.

The techniques described in this paper are implemented using the
occam programming language, which is derived from C.S.P. The ap-
plication of this method is shown by a control example.

Index Terms—Communicating sequential processes, concurrent
processes, conversation, distributed systems, fault-tolerant software,
occam, Petri nets, recovery block.

I. INTRODUCTION

FUNDAMENTAL problem in the development of
fault-tolerant distributed systems is the design of er-

ror detection and recovery procedures for the distributed
system [1].

This paper addresses the problem of error detection and
recovery in distributed systems which consist of a coop-
erating set of asynchronous processes. These systems can
be modeled as a set of communicating sequential pro-
cesses using the C.S.P. notation [2]. In such a system,
error detection and recovery must be a cooperative effort
involving all interacting processes [3]. If the recovery op-
eration is to be limited in extent, rather than global, then
it is necessary to identify boundaries within the state space

of the network of processes which can be used for error
detection and recovery [4].

The conversation mechanism proposed by Randell [5]

Manuscript received August 30, 1985; revised February 28, 1986.
A. M. Tyrrell is with the Department of Electrical, Electronic, and Sy:

tems Engineering, Coventry (Lanchester) Polytechnic, Coventry CV1 SFB,
England

D. J. Holding is with the Department of Electrical and Electronic En-
gineering and Applied Physics, Aston University, Birmingham B4 7ET,
England.

IEEE Log Number 8609737.

uses such a boundary as a recovery block for a general set
of distributed processes. A number of mechanisms have
been proposed for implementing this type of system [6]-
[8]. However, these methods do not address the problem
of determining the boundary of the conversation and their
implementation requires language extensions or involves
the use of centralized techniques such as monitors [9].

Fault-tolerant mechanisms such as the recovery block
and the conversation implement recovery by backtracking
operations which restore the system to a previous state. If
the state involves temporal attributes, then the backtrack-
ing operation will also retum the system to the virtual time
at which the previous state was instantiated, and the prob-
lems of time warp must be accommodated in the alterna-
tive path of the recovery block.

The definition of the state of the system and the assign-
ment of state identifiers are fundamental parts of the de-
sign procedure [10]. This is not a major problem in se-
quential systems in which the state of the active process
can be ascertained and saved at appropriate points in the
program in order to implement the recovery block tech-
nique [5]. The design problem is more complex in dis-
tributed systems because the set of concurrent processes
may operate asynchronously until brought into synchro-
nism by interprocess communications. Since the state of
each process can be independent of the state of other pro-
cesses, it is not possible to determine a priori the partic-
ular sequence of states which will be instantiated during
operation or execution of the system. Thus, the conver-
sation boundary must be identified dynamically or must
be independent of the sequence of occurrence of the in-
dependent states.

A number of papers have addressed the problem of the
dynamic identification of conversation boundaries in dis-
tributed systems [10]-[13]. However, dynamic recovery

techniques may exhibit the domino effect [5] and this lim-

its their usefulness.
This paper proposes a method for the a priori design of

conversations for the class of distributed system which
can be expressed as a set of communicating sequential
processes. It is shown that the problem of defining the
system state can be resolved using Petri nets [14] to iden-
tify the state and state reachability tree of the system. The
dynamic behavior of the system can be characterized by
a state-change table derived from the state reachability
tree. It is shown that a conversation can be generated by
defining a closed boundary on any branch of the state-

0098-5589/86/0900-0921$01.00 © 1986 IEEE

=i29=

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 9, SEPTEMBER 1986

ge table. The boundary encloses all processes which
arty to the conversation.- The associated acceptance
and recovery states can be identified at the intersec-

s of the boundary and the state-change table.
onversations are generally designed to provide fault
rance for specific functional parts of a system. In this
er the functional boundaries of a system are mapped
) the Petri net model of the system. The functional
butes of the system states are then used to reduce the
em state-change table to a table of those states which
changed by interfunction actions. It is shown that this
e can be used either to design conversations which
ect a particular functional aspect of a system or to
‘mine those functions which would be effected by a
icular conversation.
1 this paper the distributed systems are expressed in
concurrent programming language occam [15] which
lerived from the C.S.P. notation. Occam is used for
design and implementation of the conversation mech-
sm for error detection and recovery. These methods
illustrated by an example which involves the control

| three-axis robot using five concurrent processes.

II. Recovery IN CONCURRENT SYSTEMS

‘he recovery block technique [5] for error detection and
overy in single process sequential systems cannot be
ended directly to networks of communicating sequen-
processes. Error detection mechanisms for distributed
tems must take into account the possibility that errors
| promulgate through process interaction and any re-
ery scheme must involve all processes which interact
hin the space of the recovery mechanism. The conver-
on [5] uses a coordinated set of recovery blocks to
jlement the distributed error detection and recovery
chanisms.

e boundary of a conversation consists of a recovery
a test line, and two side walls. The boundary en-

ses the set of communicating (interacting) processes
ich are party to the conversation. The recovery line is
part of the boundary which defines the start of the

versation. It consists of a coordinated set of states (re-

ery points) for the interacting processes. At the start
1 conversation, the state of each entry process is stored
use during recovery. The entry to a conversation need
be a synchronous event. 7

fhe test line is a coordinated set of acceptance tests for
set of interacting processes. Each test line process is
uired to pass an acceptance test. A conversation is suc-
sful only if all test line processes pass their acceptance
's. Processes must exit from a conversation synchro-

isly. If any acceptance test is failed, recovery is
ieved by rolling back the conversation to the recovery
2, restoring the process state to that on entry to the con-
ation, and executing the alternate blocks. Thus, pro-

ses in the conversation cooperate in error detection.
side walls of the conversation prohibit the passing of

ormation to processes not involved in the conversation

(prevent information smuggling). A conversation consist-
ing of four processes is shown below.

recovery side walls
line

time ——>

Ill. DistrisuTep System MODEL

In a distributed system modeled using the concurrent
programming language occam, each process will proceed
asynchronously until forced into synchronism by interpro-
cess action. In such a model, process synchronization and
information exchange are unified in the occam interpro-
cess communication primitives.

A. Functional Boundaries

The functional boundaries of a distributed system can
be mapped onto the C.S.P. or occam model of the system.
Thus each process in the model can be associated with a
particular functional partition or boundary and can be
given a function-identifier attribute. These attributes will
be used to discriminate between intrafunctional and inter-
functional communications.

B. Robot Description

Consider the problem of controlling the position of a
three-axis robot [16]. Let the proposed control system
consist of five functional processes: the operator inter-
face, the controller, and three axial motor controllers.

_ The ‘‘operator’’ process inputs the coordinates of the
desired position of the robot, and checks the input data
for reserved values or control overrides (such as the final

(stop) position 0, 0, 0) and outputs control values to the

“‘control’’ process. Process ‘‘control’’ accepts inputs from
process ‘‘operator,’’ calculates the relative direction and

distance of the new coordinates, and outputs the com-

puted values of derived axial movement to each of the
“‘motor’’ processes. Each of the three axial *‘motor’’ pro-
cesses inputs axial values of direction and distance from
process ‘‘control’’ and moves the robot to the desired ax-
ial position.

The proposed solution to the control problem is de-
scribed in the occam program listed in Fig. 1.

C. Petri Net Models

Considerable research has been done on Petri nets [14],
{17]-[19] and a formal definition for the basic structure

of a Petri net has been published [14]. Petri nets are com-
monly used to model asynchronous and synchronous logic
systems. They have also been used to model the primi-
tives and constructs of sequential software [20]. The GMB
[21] technique can also be used for modeling such sys-

tems [22].

=196=

JTYRRELL AND HOLDING: DESIGN OF RELIABLE SOFTWARE IN DISTRIBUTED SYSTEMS 923

Robot Exagple.0cc
== Occam program for 3-Axis Robot Arm Controller.
— Declaration of inter-procesn channels.
CHAN request ,return,sotion(3] ,finished{3],stop(4],go(41 :
— Declaration of process ‘operator’.
PROC operator (CHAN send,receive) =

VAR x,y,2,Fun

input x,y,z from keyboard. (en)

end tx —send to control process. (t2)
end ty,

send |g

receive ? ANY —notors moved. (t3)

r
(x=0)AND(y=0)AND(200) check for finish. (24)

E
PAR £ = [0 FOR 4]

stop(t] {ANY —finish, (t5,t16,c22,t28)
run := FALSE = (6)

‘TRUE — cen)
PAR {= [0 FOR 4] =

golt] ! ANY: continue. (£8,t18,024,t30)

— Declaration of process ‘motor’.
PROC motor (CHAN motion, fintshed,stopi,got) =

VAR step,direction,going :
EQ

going = TRUE
WHILE going

SEQ

notion ? step —get from control. (£10,19,225)
aotion ? direction

nove notor (15,220,226)

finished 1 ANY = —(£13,£21,£27)

at
‘scopi ? ANY —finteh. (¢16,t22,228)

going i= FALSE —(17,t23,t29)
got 7 ANY —continue. (18,224,230)

SKIP

@)

— Declaration of process ‘control’.
e,send ,stopi,got) =

VAR xold,yold,zold,xnew, ynew,znew,
count, step(3] ,direction(3],going :

je xold,yold,zold
going := TRUE
WHILE going

SEQ
receive ? mew input from operator. (t2)
receive ? ynew
receive ? znew

a calculate distance and direction -~(t9)

PAR = (0 FOR 3]
SEQ

motion[i} 1 step[{] _ —send to each aotor.(t10,t19,t25)
motion({] 1 direction[{]

tee | wpdace xold,yold, zold —(e11,212)
count := 0
WHILE count <> 3

ALT 4 = (0 FOR 3]
finished(i] 7 ANY check motors soved.(¢13,21,t27)

count := count + 1
send | ANY =)
ar

acopi 2 ANY —Finteh.(25)
going :~ FALSE (114)

got ? ANY continue. (£8)
SKIP :

= sain progras.
PAR

PAR £ = (0 FOR 3]
sotor(aotion{ i] ,finished{ 1] ,stop{t] ,golt])

control(request ,return,atop(3],g0(31)
operator(request return)

b)

1. Occam program for three-axis robot arm controller.

Concurrent programming languages can be modeled
using Petri nets (or GMB) if models are developed for the
primitives and constructs in the concurrent languages. In
the following it is shown that the concurrent programming
language occam can be modeled using Petri nets. This
enables Petri net models to be derived for distributed sys-
tems described by occam programs.

1) Communications and Synchronization: Occam pro-
cesses communicate by message passing. This also pro-
vides interprocess synchronism because communications
only take place when both the input (?) and output (!)
processes are ready. This primitive process can be mod-
eled by the Petri net transition shown below.

 (23) Present stace

Transition

Ci) nent state

2) PAR (Parallel Construct): In the parallel construct,

PAR, all actions are initiated simultaneously. The con-
struct does not terminate until all actions have terminated.
This can be modeled by the Petri net shown below.

3) ALT (Alternative Construct): The alternative con-

struct chooses one of its components for execution. Each
component process has a guard which is an input (?). The
process whose guard is satisfied earliest is executed. If
more than one guard is satisfied the choice as to which
alternative is taken is defined as being arbitrary. This con-
struct can be modeled by the Petri net shown below.

es

924

OPERATOR,

|
| Maren 2

I

|
|

Fig. 2. Petri net graph of robot arm controller.

4) Functional Attributes: The functional boundaries of
distributed systems can also be mapped onto Petri net
models. The transitions (ti) and the states (pi) of the Petri

net can then be associated with specific functions and as-
signed the attributes of the function identifier or process
(PROC).

PROCi = {ti, pi} where ti = {ta.. tn}

and pi = {pa.. pk}

D. Petri Net Model of Robot Example

The robot arm control program of Fig. 1(a), (b), which

consists of five concurrent processes, can be translated
into a Petri net graph using the transformations described
above. The complete Petri net graph for the robot pro-
gram of Fig. 1 is shown in Fig. 2 and is partitioned into
five functional processes which correspond to the actual
processes in the program. The repetitive construct in each
functional process gives rise to cyclic structures in the
Petri net graph which serve to bound the graph. The clo-
sure of the cyclic loops is signified in Fig. 2 by the primes
on the states identifiers (p1', p9', p19’, p25’, p31"). The
functional attributes of the system can be mapped onto the

Petri net and the attributes of each state and transition are
listed below.

PROCoperator = {t1, 12, 13, 14, t5, 16, 17, 18, 116,
122, 128, £18, 24, 130, pl, p2, p3,
PA, p5, p6, p7, p8}

{t2, 29, 210, £19, 125, 111, 212, 113,
121, 127, ¢3, t5, 114, t8, p9, p10,

pil, pl2, pl3, pl4, p15, p16,
p17, pis}

{r10, 115, £13, £16, £17, 118,
P19, p20, p21, p22, p23, p24}

{t19, 120, 121, 122, 123, 124,
p25, p26, p27, p28, p29, p30}

PROCmotor3 = {125, 126, 127, t28, 129, 130,
P31, p32, p33, p34, p35, p36}

PROCcontrol =

PROCmotor1

PROCmotor2 =

E. System State and Reachability Tree

If M is the state (or marking) of the Petri net, with state

variables pa . . pz, such that pk € M, then for a given tran-
sition #j the next state function 6(u, tj) = gw’ defines the

=198=

TYRRELL AND HOLDING: DESIGN OF RELIABLE SOFTWARE IN DISTRIBUTED SYSTEMS

1,9,19,25,31

el

2,9,19,25,31

2

3,10,19,25,31

9

3,11,19,25,31

210,019,025

3,12,20,26,32

e11,t15,£20,¢26

3513,21,27,33

c12

3,14,21,27,33

| 13,021,027

3,15,22,28,34

3

4,16,22,28,36

7 4

5,16,22,28,34

£8,018,024,030 €5,t16,e22,028

1797 519° 525° 5317 6,17,23,29,35

£6,014,017,£23,£29

7,18,26,30,36

Fig. 3. Reachability tree of Fig. 2.

transition from present state » = {pa.. pm} to the next
state p’ = {pc.. pn}. The next state function can be de-
termined for each transition in the Petri net. For example,

transition 2 of Fig. 2 corresponds to an occam commun-
cation primitive and defines the transition from the pre-
sent state {p2, p9, p19, p25, p31} to the next state {p3,
p10, p19, p25, p31}.

The reachability tree of a Petri net model can be formed
from the set of all next state functions. The set of all states
forms the state space of the system and is known as the
reachability set R(C, »). The reachability tree defines the
system behaviour within the state space of the system. It
therefore forms a good basis for the placement of conver-
sations and the identification of the associated test and
recovery lines.

The reachability tree for the Petri net graph of the robot
controller is shown in Fig. 3. The tree has two branches,
the bifurcation being caused by the conditional clause in
the process ‘‘operator.’’ This detects whether the robot
should be operated normally or moved to the reserved
portion (0, 0, 0) and shut down.

TV. CONVERSATION PLACEMENT

A. State Transitions and Interprocess Communication

The system dynamics are characterized by the evolution
of the system states through a sequence of state transi-
tions. This can be defined by a state-change table which
lists the state changes for each transition in the reachabil-

925

TABLE I
STATE CHANGE TABLE OF Fic. 3

Transitions 1 E

chop. 2

2) 1959) | |'3;10

eo | 10 1

10 | 11,19] 12,20

19 | 11,25 | 12,26

e25 | 11,31] 12,32

eit | 12 13

1s | 20 2

20 | 26 27

26 | 32 33

e12 | 13 14

e13 | 14,21] 15,22

21 | 14,27] 15,28

227 | 14,33] 15,35

t3 | 3,15 | 4,16

14 8 thoy 4 5

+8 ts | 5,16 | 6,17

t18 16 | 5,22 | 6,23

24 22 | 5,28 | 6,29

£30 28 | 5,34] 6,35

te | 6 7

tra] a7 | 18

 e291 35! 36

ity tree. The elements of the state-change table can be
identified by taking the relative complements of the pres-
ent state » and the next state »’ for each transition ff:

{pe.. ps} = Ij

B'— pw = {pg..pt} = Bf
The sets / and E represent, respectively, the subset of

the initial states which are terminated by the transition and
the subset of the final states which are created by the tran-
sition. The state-change table for the robot controller can
be derived from the reachability tree (Fig. 3) and is shown
in Table I.

P= =

M

B. Identification of Conversations

A conversation limits the extent of error propagation in
a distributed system. Conversations can be constructed by

generating systematically the entry and exit lines of the
conversation such that no process interaction takes place
through the side walls of the conversation. Such a bound-
ary will contain all processes which participate in the con-
versation,

ei

5 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-I2, NO. 9, SEPTEMBER 1986

The reachability tree defines all process interactions: no
eractions take place between different branches of the

. The proposed method uses these properties of the
ichability tree to form boundaries within the state space
the system. Any two transitions on the same branch of-

> reachability tree can be considered to form a boundary
partition enclosing part of the branch. The partition can
considered to be the boundary of a conversation and

n be mapped onto (or defined within) the state-change
le. For any such partition of the state-change table,
o sets S and F, can be formed from the union of all
esent and next states within the partition boundary.

S={NURU..h}
F = {El U E2 U.. En}

ie relative complements of these sets can be formed into
0 sets, J and K, which can be considered to be the entry
id exit states of the conversation.

S—F={pl..pn} =K

F-S=({pr..py} =J

If conversation boundaries overlap it is essential that
ese conversations should be properly nested for the re-
very mechanism to work correctly [5]. The properties
‘the reachability tree ensure that a number of conver-
tions will be properly nested.

_ Interfunctional Communications

Interfunctional communications can be identified by ex-
nining the functional attributes of the elements of the
ate-change table. Let the element corresponding to tran-
tion fj contain pl and p2:

here pl,p2e]j or pl,p2e

id pl €PROCg; p2 € PROCr

en the transition is an interfunctional communication if
r. When q = r the transition can be classified as an
trafunction action.
The state-change table may be reduced to a communi-
tion state-change table consisting of only interfunction
unsitions by removing all intrafunctional transitions and
rming equivalent relationships between states created by
trafunctional actions (since these form local states be-
een interfunctional transitions). This table will be
jown as the communication state-change table.
The state-change table, Table I, can be reduced to a
mmunication state-change table. This table can be fur-
er reduced as shown in Table II by grouping together
| transitions corresponding to replicated ALT state-
ents. For example, transitions 110, 119, 125 can be
mbined to form a single element in the communication
te-change table, because all three ALT statements must
e before the replicated ALT process can terminate.
The set of functional processes which are party to a
nversation can be identified by the functional attributes
the entry and exit states, K and J. These functional

-200-

TABLE Il
Comms. STATE TABLE OF TaBLE I

12 2,9 api

10,019,025 11,19,25,31 | 14,21,27,33

13,021,027 14,21,27,33 | 15,22,28,34

03 3,15 4,16

EITHER

t8,£18,£24,c20 | 4,16,22,28,34 | 1°,9°,19°,25°,31

oR

5,£16,£22,¢28 | 4,16,22,28,34 | 7,18,24,30,36

TABLE Ill
PARTITION OF TABLE II

2 2,9 3,11

10,019,025] 11,19,25,31 | 14,21,27,33

£13,021,t27| 14,21,27,33 | 15,22,28,34
processes will be involved in the error detection and re-
covery procedures.

D. Design of Conversations

The design problem usually involves protecting a par-
ticular part or function of the system. The states and tran-
sitions associated with this function can be identified
through their functional attributes. Similarly, it is possi-
ble to identify the corresponding elements in the com-
munication state-change table. The functions may be pro-
tected by specifying a boundary which encloses the
complete set of identified states (and a minimal set of other
states), provided all such states lie along the same branch
of the reachability tree. The boundary can then be used to
identify the test and recovery lines as described above. In
addition to protecting a particular function, this technique
identifies all processes within a particular conversation
and all functions which are party to the conversation.

Consider the robot control example whose communi-
cation state-change is shown in Table II. Let the main
conversation protect the ‘‘control’’ process from the point
at which new coordinates are input (state 9) to the point
at which all axial control ‘‘motor’’ processes have re-
ported correct execution of the axial movement com-
mands output by the ‘‘control’’ process (state 15). There-
fore, the communication state-change table can be
partitioned on the main branch to enclose state 9 as the
recovery line and state 15 as the test line as shown in
Table III. The corresponding initial and final states of the
conversation S and F, and the recovery line states and test
line states K and J can be determined as follows:

S = {2,9, 11, 19, 25, 31, 14,

F = {3, 11, 14,

p2iy,27,33}

, 21, 27, 33, 15, 22, 28, 34}

k=5—F = (2,9, 19,25, 31}

J=F-—S = {3, 15, 22, 28, 34}

TYRRELL AND HOLDING: DESIGN OF RELIABLE SOFTWARE IN DISTRIBUTED SYSTEMS 927

Examination of K and J shows that the functional attri-
butes of the states involved in the conversation are:

| 9, 15 € PROC control
2, 3 € PROC operator

19, 22 € PROC motorl

25, 28 € PROC motor2

31, 34 € PROC motor3

The boundary of this conversation is as shown by the
dotted line on the Petri net graph (Fig. 2).

This design technique may also be used as a structuring
tool by a designer who wishes to protect a particular part
of a concurrent program. The designer would simply
specify the parts of the program which are to be protected
and identify the associated states and transitions. A proper
conversation boundary could then be generated using the
communications state-change table to enclose these states
(and a minimum set of other states). The design procedure
would then continue as above.

E. Implementation

The conversation scheme can be implemented using the
concurrent language occam. The constructs available
within this language facilitate the design process. For ex-
ample, test lines can be implemented using ALT con-
structs. Similarly, occam communication channels (each

of which link two named processes only) can be used to
remove the problem of information smuggling by ensur-
ing that no channel belongs to a process outside the con-
versation.

The conversation consists of its constituent processes
and a conversation control process which acts as a test
line coordinator for the conversation. When a conversa-
tion is started, a nominated member of the set of entry
processes initializes the conversation coordinator. The
coordinator exists for the duration of the conversation.

Each constituent process, when complete, executes a
local acceptance test and enters an exit process. The result
of these acceptance tests are reported to the test line pro-
cess. The test line process collects the results of all local
acceptance tests and determines whether the conversation
has succeeded. If all local acceptance tests are successful
the test line process notifies all exit processes in the con-
versation and the conversation is terminated. If one or
more of the acceptance tests has failed the test line pro-
cess notifies all exit processes that recovery roll back is
to be executed.

The test line process is implemented using an ALT con-
struct which receives notification of the results of local
acceptance tests. The acceptance process does not there-
fore assume any particular order for the termination of the
constituent process; nor does it impose any timing con-
straints on the systems performance.

V. CONCLUSIONS

This paper has considered some of the fundamental
problems of designing robust software for distributed con-
trol systems. It has specifically addressed the problem of

specifying and designing error detection and recovery
mechanisms for a class of distributed systems. A method
was described for the systematic identification of conver-
sation boundaries.

The paper formalized the definition of system state and
reachability by using Petri net techniques. The properties
of the state reachability tree were then exploited in the
development of a method for the design of proper con-
versations. The functional attributes of the system were
used to identify conversations which would protect a par-
ticular part of a system (the conversation placement prob-
lem). The conversations designed using this method au-
tomatically enclose all processes which are party to the

conversation. :
The design method reduced the complexity of the prob-

lem by systematically reducing design considerations to
only those system states which are changed through in-
terfunctional actions. These states provided the minimum
set required for the design procedure and the identification
of the recovery and test lines. The use of the technique
has been demonstrated by example.

REFERENCES

{1] B. Randell, P. A. Lee, and P. C. Treleaven, ‘Reliability issues in
computing,"’ Comput. Surveys. vol. 10, no. 2, pp. 123-165, June
1978.

(2] C. A. R. Hoare, “Communicating sequential processes,"* Commun.
ACM, vol. 21, no. 8, pp. 666-677, 1978.

[3] T. Anderson and P. A. Lee, Fault Tolerance Principles and Practice.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[4] R. H. Campbell. T. Anderson, and B. Randell, **Practical fault tol-
erant software for asynchronous systems," in [FAC Safecomp '83,
Cambridge, England, Aug. 1983, pp. 59-65.

[5] B. Randell, “*System structure for software fault tolerance,"” IEEE
Trans. Software Eng., vol. SE-1, pp. 220-232. June 1975.

[6] K. H. Kim, **Approaches to mechanisation of the conversation scheme
based on monitors,”* IEEE Trans. Software Eng... vol. SE-8, pp. 189-
197, May 1982.

{7] D. L. Russell and M. J. Tiedeman, “*Multiprocess recovery using
conversations,”” in Proc. FTC-9, 1979, pp. 106-109.

[8] T. Anderson and J. C. Knight, ‘*A framework for software fault tol-
erance in real time systems." /EEE Trans. Software Eng., vol. SE~
9, pp. 355-364, May 1983.

19] C. A. R. Hoare, **Monitors: An operating system structuring con-
cept.” Commun. ACM, vol. 17, no. 10. pp. 549-557, Oct. 1974

[10] P. Me:Aeslin and B. Randell, ‘State restoration in distributed sys-
tems,"” in Dig. Papers FTCS—8: Eighth Annu. Int. Symp. Fault Tol-
erant Comput., Toulouse, France, 1978, pp. 129-134.

[11] K. M. Kim, ‘An approach to programmer-transparant coordination
ering parallel processes and its efficient implementation
in Proc. Int. Conf. Parallel Processing, 1978. pp. 58-68.

[12] G. Barigazzi and L. Stringini, **Application transparent setting of re-
covery points," in Proc. 13th Int. Symp. Fault Tolerant Comput..
1983, pp. 48-55.

[13] D. L. Russell, ‘State restoration in systems of communicating pro-
cesses," IEEE Trans. Software Eng., vol. SE-6, pp. 183-194. Mar.
1980.

[14] J. L. Peterson, Petri Net Theory and the Modeling of Systems. En-
glewood Cliffs, NJ: Prentice-Hall, 1981.

[15] D. May, *Occam,”” Sigplan Notices, vol. 18, no. 4, pp. 69-79, 1983.
[16] J. M. Kerridge and D. Simpson, “Three solutions for a robot arm

controller using Pascal-Plus, occam and Edison." Software—Prac-
tice and Experience, vol. 14, pp. 3-15, 1984.

{17] J. L. Peterson, “*An introduction to Petri nets," in Proc. Nat. Elec-
tron. Conf., vol. 32, 1978, pp. 144-148.

[18] —, “Petri nets,"* Comput. Surveys, vol. 9, no. 3, pp. 223-252,
Sept. 1977.

[19] J. Dennis, “Concurrency in softivare systems," in Advanced Course
in Software Engineering, X. Eauer. Ed. 1973, pp. 111-127.

[20] L. J. Mekly and S. S. Yau, ‘‘Software design representation usi
abstract process networks,"’ JEEE Trans. Software Eng., vol. SE-6,
pp. 420-434, Sept. 1980.

B : IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 9, SEPTEMBER 1986

| J. W. Winchester and G. Estrin, “Requirements definition and its
interface to the SARA design methodology for computer-based sys-
tems," in AFIPS Conf. Proc. Nat. Comput. Conf., vol. 51, 1982, pp.
369-379.

1 W. Ruggiero, G. Estrin, R. Fenchel, R. Razouk, D. Schwabe, and
M. Veron, ‘*Analysis of data flow models using the SARA graph
model of behavior,"” in AFIPS Conf. Proc. Nat. Comput. Conf., vol.
48, 1979, pp. 975-988.

Andrew M. Tyrrell (S'82-M"85) received the
Honours degree in electronic engineering from
Bolton Institute of Technology, Bolton, England,
in 1982. From 1982 to 1985 he was a research
student at Aston University, Birmingham, En-
gland, working toward the Ph.D. degree in the de-
sign of fault-tolerant distributed systems.

Since September 1985 he has been employed
as a Lecturer at Coventry (Lanchester) Polytech-
nic, Coventry, England. His research interests are
in fault-tolerant software, distributed processor

temis, had distributed fopalbsies fox image’ proceselag applications:

David J. Holding was born in Nottingham, En-
gland, on August 12, 1946. He received the B.Sc.
(Eng.) and Ph.D. degrees from the University of
London, London, England, in 1968 and 1974, re-
spectively.

From 1964 to 1969 he was employed and spon-
sored by the East Midlands Electricity Board.
From 1969 to 1980 he was a Lecturer in Electrical
and Electronic Engineering at Queen Mary Col-
lege, University of London. The period 197
1978 was spent on leave at the Warren Spring

Laboratory, Department of Industry, England. Since 1980 he has been at
Aston University, Birmingham, England, first in the Aston Microprocessor
Unit as Head of Unit and Senior Lecturer, and then in the Department of
Electrical and Electronic Engineering as a Senior Lecturer. His main re-
search interests are in the design of decentralized and distributed process-
ing systems, fault-tolerant systems, and control applications.

Dr. Holding is a member of the Institute of Electrical Engineers and the
Institute df Measurements and Control of the U.K.

References.

[1] P.M. Melliar-Smith and B. Randell, Software Relia-

bility: The role of programmed exception handling,

Proc. Conf. Language Design for Reliable Software,

SIGPLAN Notices, Vol. 12, May 1977, pp 95 - 100.

[2] T. Anderson, P.A. Lee and §.K.Shrivastava, A Model

of Recoverability in Multilevel Systems, IEEE Trans.

on Software Engineering, Vol. SE - 4, No. 6, Nov 1978,

pp 486 - 494,

(3] W.H. Pierce, Fault - Tolerant Computer Design, New

York, Academic Press, 1965.

[4] B. Randell, System Structure for Software Fault

Tolerance, IEEE Trans. on Software Engineering, Vol.

SE -1, No. 2, June 1975, pp 220 - 232.

{5] Software Tools for Application to Large Real Time

Systems, Department of Trade and Industry, 1984.

[6] Z.C. Chen and C.A.R. Hoare, Partial Correctness of

Communicating Processes and Protocols, Research Mono-

graph PRG - 20, Oxford University Computing Laborato-

ry, May 1981.

[7] A. Avizienis, Fault Tolerant Systems, IEEE Trans.

on Computing, Vol. C - 25, No. 12, Dec. 1976, pp 1304

= sl 2s

aoe

[8] L. Chen and A. Avizienis, N-version Programming: A

Fault Tolerance Approach to Reliability of Software

Operation, Digest of 8th Annual International Confer-

ence on Fault Tolerant Computing, Toulouse, June 1978,

pp 3s — 92

(9] H. Hecht, Fault Tolerant Software, IEEE Trans. on

Reliability, Vol. R - 28, No. 3, Aug. 1979, pp 227 -

232.

[10] B. Randell, P.A. Lee and P.C. Treleaven, Relia-

bility Issues in Computing System Design, Computing

Surveys, Voi. 10,, No. 2, June 1978, pp 123 = 165).

[11] J.J Horning, H.C. Lauer, P.M. Melliar-Smith and

B. Randell, A Program Structure for Error Detection

and Recovery, Proc. Conf. Operating Systems: Theoreti-

cal and Practical Aspects, April 1974, pp 177 - 193.

[12] R.H. Campbell, T. Anderson and B. Randell, Prac-

tical Fault Tolerant Software for Asynchronous Sys-

tems, Proc. Conf. IFAC Safecomp “83, Cambridge 1983,

pp 59 - 65.

[13] A. Avizienis and L. Chen, On the Implementation

of N-Version Programming for Software Fault Tolerance

During Program Execution, Proc, COMPSAC 77, Nov.

POIs pp Eos ols Si

[14] E. Yourdon and L. Constantine, Structured Design,

-204-

Englewood Cliffs, NJ: Prentice Hall, 1979.

[15] J. Welsh and M. McKeag, Structured System Pro-

gramming, Prentice Hall, 1980.

[16] D.B. Lomet, Process Structuring, Synchronization

and Recovery using Atomic Actions, Sigplan Notices,

Vol~. 12, No. 3, March 1977, pp 128 — 137.

[17] T. Anderson and P.A. Lee, Fault Tolerance, Prin-

ciples and Practice, Englewood Cliffs, NJ: Prentice

Havele i 9s lig

[18] I. Gertner and R.L. Gordon, Experiences with Ex-

ception Handling in Distributed Systems, 2nd Symposium

on Reliability in Distributed Software and Database

Systems, Pittsburgh 1982, pp 144 - 149.

[19] E. Dijkstra, Solution of a Problem in Concurrent

Program Control, Comm. ACM, Vol. 8, No. 9, Sept. 1965,

pp 569.

[20] Dad. Holding, G.F. Carpenter and A.M. Tyrrell,

Aspects of Software Engineering for Systems with Safe-

ty Implications, Eurocon “84, Brighton 1984, pp 235 —-

239.

[21] J.L. Peterson, Petri Nets, Computing Surveys,

Vol. 9, No. 3, Sept. 1977; pp 223 - 252.

[22] Occam Programming Manual, Prentice Hall, 1984.

=205—

[23] A.M. Tyrrell and D.J. Holding, Design of Reliable

Software in Distributed Systems using the Conversation

Scheme, IEEE Trans. on Software Engineering, Vol. SE -

LINO a eeDt. LIsOm po Fell 7926.

[24] A.M. Tyrrell and D.J. Holding, The Design of Com-

munication Software for Distributed Multivariable Con-

trol Systems, Symposium on Application of Multivari-

able System Techniques, Plymouth 1984, pp 191 - 204.

[25] K.H. Kim, Approaches to Mechanization of the

Conversation Scheme Based on Monitors, IEEE Trans. on

Software Engineering, Vol. SE - 8, No. 3, May 1982, pp

LES) = L977

[26] P.M. Merlin and B. Randell, Consistent State Res-

toration in Distributed Systems, Digest of Papers

FTCS-8: 8th Annual Int. Symposium on Fault Tolerant

Computing, Toulouse, June 1978, pp 129 - 134.

[27] G. Barigazzi and L. Strigini, Application - Tran-

sparent Setting of Recovery Points, 13th Annual Int.

Symposium on Fault Tolerant Computing, 1983, pp 48 -

S5%

[28] D.L. Russell, State Restoration in Systems of

Communicating Processes, IEEE Trans. on Software En-

gineering, Vol. SE - 6, No. 2, March 1980, pp 183 —-

194,

-206-

[29] K.H. Kim, An Approach to Programmer Transparent

Coordination of Recovering Parallel Processes and its

Efficient Implementation Rules, Proc. Tite. Conf. on

Parallel Processing, Aug. 1978, pp 58 - 68.

[30] C.A.R. Hoare, Monitors: An Operating System

Structuring Concept, Comm. ACM, Oct. 1974, pp 549 -

557.

[31] J.L. Peterson, Petri Net Theory and the Modeling

of Systems, Prentice Hall, 1980.

[32] W.L. Heimerdinger, A Petri Net Approach to System

Level Fault Tolerance Analysis, Proc. of the National

Electronics Conference, Vol. 32, 1978, pp 161 - 165.

[33] Y.W. Han, Performance Evaluation of a Digital

System using a Petri Net - Like Approach, Proc. of the

National Electronics Conference, Vol. 32, 1978, pp 166

ae 2s

[34] C.B. Jones, Software Development - A Rigorous Ap-

proach, Prentice Hall, 1980.

[35] C. Morgan, Schemas in Z: A Preliminary Reference

Manual, Programming Research Group, Oxford, March

1984,

[36] D. May, Occam, Sigplan Notices, Vol. 18, No. 4,

L983) pp 69 = 795

-207-

[37] D.L. Russell and M.J. Tiedeman, Multiprocess

Recovery using Conversations, Proc. FTC - 9, 1979, pp

106 - 109.

[38] P. Brinch Hansen, The Architecture of Concurrent

Programs, Englewood Cliffs, NJ: Prentice Hall, 1977.

[39] D. May and R. Taylor, Occam - An Overview, Mi-

croprocessors and Microsystems, Vol. 8, No. 2, March

1984, ppl ds = 79.

[40] R. Williamson and E. Horowitz, Concurrent Commun-

ication and Synchronization Mechanisms, Software -

Practice and Experience, Vol. 14, No. 2, Feb. 1984, pp

135) = ols.

[41] A.S. Tanenbaum, Computer Networks, Prentice Hall,

1981.

[42] R.H. Campbell, K.H. Horton and G.G. Belford,

Simulations of a Fault Tolerant Deadline Mechanism,

Digest of papers FTCS - 9, Madison, June 1979, pp 95 —-

101.

[43] J. Dennis, Concurrency in Software Systems, Ad-

vanced Course in Software Engineering, Ed. X. Eauer,

P9735 pp ti = 27.

[44] J.L. Peterson, An Introduction to Petri Nets,

Proc. of the National Electronics Conference, Vol. 32,

1978, pp 144 - 148.

-208-—

[45] S.S. Yau and §.M. Shatz, On Communication in the

Design of Software Components of Distributed Computer

Systems, 3rd Int. Conf. on Distributed Computing Sys-

tems, 1982, pp 280 - 287.

[46] C.A.R. Hoare, Communicating Sequential Processes,

Comm. ACM, Vol. 21, No. 8, 1978, pp 666 - 677.

[47] L.J. Mekly and S.S. Yau, Software Design

Representation using Abstract Process Networks, IEEE

Trans. on Software Engineering, Vol. SE - 6, Sept

1980, pp 420 - 434.

[48] J.L. Peterson, Computation Sequence Sets, Journal

of Computer and System Sciences, Vol. 13, No. 1, Aug.

1976, pp 1 - 24.

[49] E.W. Dijkstra, Notes on Structured Programming,

in Structured Programming, 0O.J. Dahl, E.W. Dijkstra

and C.A.R. Hoare, Academic Press, 1972.

[50] C.A.R. Hoare, Communicating Sequential Processes,

Prentice Hall, 1985.

[51] E.W. Dijkstra, Co-operating Sequential Processes,

in Programming Languages, Ed. F. Genuys, Academic

Press, 1968,

[52] E.W. Dijkstra, Guarded Commands, Non-determinancy

and Formal Derivation of Programs, Comm. ACM, Vol. 18,

NO. Te L975, press = 457

=209-

[53] R. Shapiro and H. Saint, A New Approach to Optim-—

ization of Sequencing Decisions, Annual Review in Au-

tomatic Programming, Vol. 6, Part 5, 1970, pp 257 -

288.

{54] T. Anderson and J.C. Knight, A Framework for

Software Fault Tolerance in Real Time Systems, IEEE

Trans. on Software Engineering, Vol. SE - 9, May 1983,

Pp 255 364.

[55] $.k. Shrivastava and J-P. Banatro, Reliable

Resource Allocation between Unreliable Processes, IEEE

Trans. on Software Engineering, Vol. SE - 4, May 1978,

pp 230 - 241.

[56] G.F. Carpenter, A.M. Tyrrell and D.J. Holding,

Guidelines for the Synthesis of Software for Distri-

buted Processes, PES3 Conference, Guernsey, March

1986, pp 164 - 175.

[57] J. Welsh and J Elder, Introduction to Pascal,

Prentice Hall, 1982.

[58] J.M. Kerridge and D. Simpson, Three Solutions for

a Robot Arm Controller using Pascal-Plus, occam and

Edison, Software-Practice and Experience, Vol. 14,

19845, pp 3 = I5-

[59] P. Wilson, Programming System Builds Multiproces-—

sor Software, Electronic Design, July 1983.

ay ANS

[60] D. May, Communicating Processes and Occam, Esprit

Summer School on Future Parallel Computers, 1986.

[61] D. May and R. Shepherd, The Transputer Implemen-

tation of Occam, Esprit Summer School on Future Paral-

lel Computers, 1986.

[62] F. Boussinot, R. Martin, G. Memmi, G. Ruggiu and

J. Vapne, A Language for Formal Description of Real

Time Systems, IFAC Safecomp, 1983, pp 119 - 126.

[63] B. Liskov, Primitives for Distributed Computing,

Proc. 7th ACM SISOPS Symposium on Operating Systems

Principles, Dec. 1979, pp 33 - 42.

[64] J.A. Feldman, High-Level Programming for Distri-

buted Computing, Comm. ACM, Vol. 22, No. 6, June 1979,

PP ooo = 368%.

[65] Reference Manual for ADA Programming Language,

United States Department of Defence, 1980.

[66] P. Brinch Hansen, Distributed Processes: A Con-

current Programming Concept, Comm. ACM, Vol. 21, No.

11, Nov. 1978, pp 934 - 941.

[67] T. Mao and T. Yeh, Communication Port: A Language

Concept for Concurrent Programming, IEEE Trans. on

Software Engineering, Vol. SE - 6, No. 2, March 1980,

pp 194 - 204.

=2d l=

(68] M. Tsukamoto, Language Structures and Management

Method in a Distributed Real Time Environment, 3rd

IFAC Workshop on Distributed Computer Systems, 1981,

pp 103 — 113.

[69] R.L. Grimsdale, F. Halsall, F. Martin-Polo and S.

Wong, Structure and Tasking Features of the Program-

ming Language Martlet, IEE Proc. Vol 129, Part E, No.

2, March 1982, pp 63. — 69).

[70] J. Kramer, J. Magee, M. Sloman and A. Lister,

CONIC: An Integrated Approach to Distributed Computer

Control Systems, IEE Proc. Vol. 130, Part E, No. cs

dan. 1983, pp 1 = 10.

[71] K. Jackson and H.R. Simpson, MASCOT - A Modular

Approach to Software Construction Operation and Test,

RRE Technical Note No. 778, Oct. 1975.

[72] Ph. Darondeau, P. Le Guernic and M. Raynal,

Abstract Specification of Communication Systems, Proc.

lst International Conference on Distributed Computing

Systems, Oct. 1979, pp 339 - 346.

[73] S. Yau, C.C. Yang and S.M. Shatz, An Approach to

Distributed Computer System Software Design, IEEE

Trans. on Software Engineering, Vol. SE - 7, No. 4,

July 1981, pp 427 - 436.

[74] J. Kramer, J. Magee and M. Sloman, Intertask Com-

12>

munication Primitives for Distributed Computer Control

Systems, Proc. of 2nd International Conference on Dis-

tributed Computer Systems, April 1981, pp 404 - 411.

[75] J.D. Noe, Hierarchical Modelling with Pro-Nets,

Proc. of the National Electronics Conference, Vol. 32,

1978, pp) 155 — 160.

=213—

