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Summary. 

Requirements for systems to continue to operate 

satisfactorily in the presence of faults has led to the 

development of techniques for the construction of fault 

tolerant software. This thesis addresses the problem 

of error detection and recovery in distributed systems 

which consist of a set of communicating sequential 

processes, 

A method is presented for the “a priori” design of 

conversations for this class of distributed system. 

Petri nets are used to represent the state and to solve 

state reachability problems for concurrent systems. 

The dynamic behaviour of the system can be character- 

ised by a state-change table derived from the state 

reachability tree. 

Systematic conversation generation is possible by 

defining a closed boundary on any branch of the state- 

change table. By relating the state-change table to 

process attributes it ensures all necessary processes 

are included in the conversation. The method also 

ensures properly nested conversations. 

An implementation of the conversation scheme using 
the concurrent language occam is proposed. The struc— 

ture of the conversation is defined using the special 

features of occam. The proposed implementation gives a 

structure which is independent of the application and 

is independent of the number of processes involved. 

Finally, the integrity of inter-process communica- 
tions is investigated. The basic communication primi- 
tives used in message passing systems are seen to have 
deficiencies when applied to systems with safety impli- 

cations. Using a Petri net model a boundary for a 

time-out mechanism is proposed which will increase the 
integrity of a system which involves inter-process com- 

munications. 

Keywords: Fault tolerant software, Petri nets, Occam, 

Concurrent processes, Conversations. 

ie



ACKNOWLEDGEMENTS. 

There are a number of people who have helped dur- 

ing the course of this work and in the production of 

this thesis. 

I would like to thank Helen Turner for typing the 

mathematical equations, Peter Miller for getting sys- 

tems working when I could not and to Mike Spann _ for 

refreshments. A special thanks is due to Geof Car- 

penter for many stimulating discussions and his help 

in the preparation of this thesis. I would also like 

to thank the SERC for their funding over the past 3 

years. Finally I am indebted to my supervisor Dr 

David Holding without whose constant encouragement and 

searching questions, this work would not have been 

possible.



Chapter 

Chapter 

Chapter 

LIST OF CONTENTS. 

INTRODUCTION 

Introduction 

Summary of Thesis 

AIMS AND OBJECTIVES OF THE RESEARCH 

Introduction 

Placement of Conversations 

Implementation of Conversations 

Communication Failures 

Discussion 

SYSTEM MODEL 

Introduction 

Petri Net Structure and Graph 

Se2en) Petri Net Structure 

3.2.2 Petri Net Graph 

Representing State 

3.3.1 Petri Net Marking 

3.3.2 Execution Rules 

Sequential Processes 

Concurrent Processes 

3.5.1 Axioms of C.S.P. 

3.5.2 Occam 

3.5.2.1 Primitives 

3.5.2.2 Constructs 

3.5.2.2.1 Sequential 
Constructs 

11 

17 

20 

22 

27 

29 

30 

a2 

33 

39) 

36 

36 

38 

40 

43 

43 

45 

45 

46 

46



Chapter 

S25e2.252  Peratlel 
Constructs 

3.5.3 Modelling Concurrent Software 

Reachability Tree 

3.6.1 State Dynamics of a Petri Net 

Discussion 

THE STRUCTURED DESIGN OF CONVERSATIONS 

Introduction 

Error Detection and Recovery 

4.2.1 Sequential Systems 

4.2.2 Concurrent Systems 

Conversations 

4.3.1 Basic Structure of a 
Conversation 

4.3.2 Problems with Conversation 

Design 

A Possible Solution to Conversation 

Design 

System State and Petri Nets 

Identification of Fault Tolerant 
Boundaries 

4.6.1 Construction of State-Change 
Table 

4.6.2 Identification of Communications 

4.6.3 Identification of Conversations 

4.6.4 Entry and Exit States 

4.6.5 Processes in Conversation 

Design of Conversations 

4.7.1 Demonstrator Example 

Proof of Nesting 

46 

47 

52 

53 

56 

Si, 

59 

59 

63 

66 

66 

69 

70 

71 

UE 

73 

76 

77 

79 

79 

80 

81



Chapter 

Chapter 

Discussion 91 

IMPLEMENTATION OF THE CONVERSATION SCHEME 

Introduction 

Features of Occam Support Environment 

5.2.1 Initialisation and Termination 
of Processes 

5.2.2 Folds 

An Implementation of the Conversation 

Scheme 

5.3.1 Features of the Conversation 
Scheme 

5.3.2 Design and Implementation of a 
Centralised Conversation 
Mechanism 

5.3.3 Implementation Example 

5.3.4 Nested Conversations 

5.3.5 Global Acceptance Tests 

Implementation of a Distributed 

Acceptance Test Process 

5.4.1 Disadvantages of this Method 

Advantages Gained Using Occam 

Discussion 

RELIABLE COMMUNICATIONS 

Introduction 

Communication Primitives 

6.2.1 Synchronous 

6.2.2 Asynchronous 

6.2.3 Remote Procedure Call 

6.2.4 Message Transactions 

Requirements for Reliable 

Communications 

104 

105 

105 

105 

106 

106 

107 

109



Chapter 7.0 

APPENDIX 

REFERENCES 

Implementation of Message Types 

6.4.1 Command Message Types 

6.4.2 Notify Message Types 

Modelling with Petri Nets 

Discussion 

CONCLUSIONS 

Conclusions 

Future Work 

143 

146 

148 

157 

160 

203



Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

Fig 

LIST OF FIGURES AND TABLES. 

Petri Net Structure Consisting of Two 
Transitions and Five Places 

Petri Net Graph for Fig 3.1 

Marking of Fig 3.2 

Transition t2 Enabled 

Result of t2 Firing 

Petri Net Models of Sequential Software 

Constructs 

Reachability Tree for Fig 3.3 

Recovery Block Outline 

Example of the Domino Effect 

Conversation Scheme 

Example of Two Conversations which are Not 

Strictly Nested 

4.5(a-b) Occam Program for 3-Axis Robot Arm 
Controller 

Petri Net of Occam Program in Fig 4.5 

Reachability Tree of Fig 4.6 

Partition from Table 4.4 

Partition from Table 4.5 

Example of Nested Conversations 

Example of Bad Nesting 

Petri Net with Bad Nesting 

3-Axis Control Robot 

Process Operator 

Process Control 

Process Motor 

35 

36 

a7) 

39 

og: 

41 

55 

63 

65 

68 

69 

94 

96 

ot 

99. 

100 

85 

86 

103



  

Fig 5.3 

Fig 5.4 

Fig 5<5 

Fig 5.6 

Fig 5.7 

Fig 5.8 

Fig 5.9 

Fig 5.10 

Fig 5.11 

Fig 5.12( 

Fig 6.1 

Fig 6.2 

Fig 6.3 

Fig 6.4 

Fig 6.5 

Fig 6.6 

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.4 

Axis Control Robot with Refolding to 
Show Conversation 

Acceptance Test and Recovery Structure 

Test Line Process 

Primary Block of Control Process 

Acceptance Test and Recovery Structure 

of Control Part of Conversation b with 
Global Acceptance Test 

Acceptance Test and Recovery Structure 

of Operator Part of Conversation b with 

Global Acceptance Test 

Test Line Process for Conversation b with 
Global Acceptance Test Added 

Acceptance Test and Recovery Structure of 
Control Part of Conversation b with 
Decentralised Acceptance Test 

Acceptance Test and Recovery Structure of 

Operator Part of Conversation b with 

Decentralised Acceptance Test 

a-c) Acceptance Test Structure with Three 

Processes in the Conversation with 
Decentralised Acceptance Test 

Model of Synchronous Communication 
Primitives 

Model of Reduced Synchronous Primitives 

Model of Synchronous Communications with 

Breakout 

Model of Command Type Transaction 

Model of Reduced Command Transaction 

Model of Command Transaction with Breakout 

State-Change Table of Fig 4.7 

Communication State-Change Table of 

Table 4.1 

Partition of Table 4.2 from t2 to t27 

Partition of Table 4.2 from t10 to t3 

123 

128 

129 

130 

13 

132 

149 

149 

baz 

98 

101



  

Table 4.5 Partition of Table 4.2 

-10- 

from t10 to £27



  

Chapter l. 

Introduction. 

1.1 Introduction. 

Throughout this thesis the terms fault, error and 

failure are used. It is important that the discus-— 

sions are conducted with a defined terminology for the 

relevant concepts. The definitions given here are 

derived from those given in [1] : 

a) a failure occurs whenever the external 

behaviour of a system does not conform to that 

prescribed by the system specification, 

b) an error is a state of the system which, in 

the absence of any corrective action by the sys- 

tem, could lead to a failure which would not be 

attributed to any event subsequent to the error, 

c) a fault is the adjudged cause of an error. 

Due to the complexity of computer systems, it is 

generally impossible to obtain a system which is com- 

pletely free from faults [2]. Failure of a system may 

hie



  

be caused by either hardware or software faults. 

The concept of hardware fault tolerance has been 

studied for a long time [3]. Hardware structures have 

been developed which will cope, with a high degree of 

probability, with these faults. Hardware reliability 

has increased as component reliability improves, while 

due to the increased complexity of software systems, 

software faults have become more prevalent. 

All software failures result from design faults 

Cai. The relative frequency of software errors com- 

pared with hardware errors reflects the increased log- 

ical complexity of software [4]. This complexity is 

due to the fact that machines used for hardware design 

have a relatively small number of possible internal 

states, making it usually possible to consider the 

hardware design as correct. In comparison to this 

even a small software system has an enormous number of 

different possible states, making it very difficult to 

justify the assumption that the software design is 

correct. Methods are being developed for increasing 

the correctness of a design [5], for ascertaining the 

correctness of a design using correctness proofs [6], 

and for introducing fault avoidance methods [7]. 

These methods are in an early stage of development and 

can at present be applied only to a limited set of 

tasks, such as proving the logic for a specific



operating system function. It is not thought that 

these methods could be applied to complete systems at 

present [8], although work on automating theorem prov- 

ing may provide useful gains in productivity. Work in 

software fault tolerance has increased over the last 

10 years in an attempt to prevent the increase in 

software complexity increasing software faults. 

The requirement for systems to continue to 

operate satisfactorily in the presence of faults has 

lead to techniques for the construction of fault 

tolerant software systems. A fault tolerant system 

detects errors created as the effects of a fault and 

applies error recovery provisions in the form of 

abnormal or exceptional mechanisms and algorithms to 

continue operation and restore normal computations. 

These methods must be based on useful redundancy, this 

redundancy must be a redundancy of design [9]. 

Once error detection has taken place, the fault 

tolerant methods for software systems are usually 

classified into backward or forward recovery tech- 

niques [10]. Forward error recovery is achieved by 

making corrections to a system state containing errors 

so that normal operation can be resumed [10]. Back- 

ward error recovery restores the system to an error 

free state which occurred prior to the manifestation 

of the fault. Using this earlier state, the function 

SiS,



of the system is then provided by an alternative algo- 

rithm [11]. Forward error recovery techniques are 

generally used for recovering from predictable faults. 

In contrast, backward error recovery is used for 

unpredictable faults [12]. This thesis is concerned 

with the development of design methods for backward 

error recovery systems. 

The recovery block mechanism [11,4] provides a 

backward error recovery scheme for general sequential 

systems. It uses a similar mechanism to the standby 

spares used in hardware systems [13]. If a fault is 

detected by an acceptance test, the system is restored 

to a previous correct state and control is transferred 

to a spare component. 

In distributed concurrent systems the software 

can be partitioned into a number of processes, the 

partitioning often being performed on a functional 

basis [14,15]. Inter-process communications or infor- 

mation flow will take place through defined interfaces 

to the processes. These information flows are essen- 

tial to the operation of the complete system. How- 

ever, under fault conditions, errors may propagate 

through the inter-process channels, It is therefore 

essential to limit and control such communications. 

One way of limiting the extent of information flow is 

by the use of atomic actions [16]. An atomic action



  

can be defined as follows [17] : "The activity of a 

group of components constitutes an atomic action if 

there are no interactions between that group and_ the 

rest of the system for the duration of the activity". 

The conversation [4] is a backward error recovery 

mechanism using the idea of atomic actions to provide 

a fault structure for distributed concurrent systems. 

The conversation is an extension of the sequen- 

tial fault tolerant mechanism mentioned earlier, the 

recovery block. It encompasses a set of interacting 

concurrent processes by coordinating the recovery 

activity of the interacting processes into a common 

recovery structure. The faults this fault tolerant 

mechanism will deal with are unpredictable design 

faults which generate errors detectable with logical 

tests. 

The conversation provides an error recovery 

mechanism which allows a specific , predefined, subset 

of a set of processes to be included within the fault 

tolerant mechanism. The conversation is usually used 

to protect a specific function or part of the system. 

The boundary of the conversation must be designed with 

care to ensure that all required processes are 

included by the conversation. If conversations are 

nested, it must be ensured that this nesting is 

designed properly. 
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In this thesis the problem of designing the 

conversation mechanism for sets of distributed 

processes is related to the problem of identifying and 

protecting certain sequences of states of the set of 

processes. A solution is proposed in which : (i) the 

system is modelled as a set of communicating sequen- 

tial processes and described in the occam programming 

language, (ii) the model is transformed into a Petri 

net and the network state and state reachability space 

are determined and (iii) a method is presented for 

identifying conversation boundaries within the state 

reachability space of the system. An implementation 

of the conversation scheme is then shown and is 

described in the occam programming language. 

A further problem in distributed concurrent sys- 

tems concerns the inter-process communications [18]. 

In a system consisting of a set of communicating 

processes, as outlined above, if one of the communi- 

cating processes fails to reach a communication point, 

the other process involved in the communication will 

become deadlocked [19]. In a distributed system, the 

conversation scheme relies on communications for its 

correct operation. It is therefore essential to 

prevent processes becoming deadlocked. By using Petri 

nets to model the communication primitives, a scheme 

is discussed which decreases the likelyhood of 

processes deadlocking [20]. 
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1.2 Summary of Thesis. 

Chapter 2 of the thesis sets out the objectives 

of the research presented here. It presents a survey 

of previous work in this field of research. It “also 

identifies a number of tangible goals which were 

achieved to obtain the set objectives. 

A crucial concept in the subsequent chapters of 

this thesis is the idea of the state of a process or 

system. The design method presented uses the state of 

a system to identify the placement of a fault tolerant 

mechanism within that system. A method was therefore 

required for identifying the state of a system. In 

chapter 3 Petri nets [21] are used for the state 

definition of a system consisting of a set of communi- 

cating sequential processes. The concurrent program- 

ming language occam [22] is described and related to a 

Petri net model, thus making it possible to model a 

concurrent system described in occam, including infor- 

mation about the state of the interacting processes. 

A formal definition of Petri nets and the Petri 

net structure is given. The concept of net state is 

introduced and mapped onto the reachability tree of a 

Petri net. Petri net techniques are then used to 

model sequential software systems. The state of the 

Petri net is mapped to the state of the software sys- 

tem and the transition from one state to the next 

ahs



shown on the reachability tree. The model for the 

sequential system is then extended to incorporate the 

additional features required in concurrent software 

systems. 

In chapter 4 the fault tolerant mechanism for 

concurrent processes, the conversation, is introduced 

and a number of design problems identified. Before a 

conversation can be constructed the boundaries of the 

conversation must be identified. It is shown that 

analysis of process state and state transitions can be 

used to identify conversation boundaries automatically 

[23]. The model developed in chapter 3 is used to 

determine the states within a conversation. Particular 

emphasis is placed on identifying the state of a 

conversation because these states are used directly in 

the implementation of the recovery mechanism. The 

method which is developed in this chapter will iden- 

tify all processes within a specific conversation. 

Perhaps more important from the point of view of 

design, the method can be used to provide fault toler- 

ance for a particular function or subsystem, because 

it allows the designer to identify the boundary of a 

conversation, or properly nested set of conversations 

which enclose the particular feature. 

An implementation of the conversation scheme is 

given in chapter 5. The special facilities of the 
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language occam can be used to generate a conversation 

framework. This is independent of the application and 

due to the nature of the language is independent of 

the number of processes involved. By using the design 

rules developed in the previous chapter, the conversa- 

tion framework is incorporated into a distributed con- 

current control example. 

When processes are involved in communications 

with other processes in the system there is always a 

possibility of a communication failure. In certain 

circumstances these failures could lead to a loss of 

system integrity. Chapter 6 considers some of the 

problems involved in designing reliable communications 

for concurrent systems. The requirements for reliable 

communications are described for the different types 

of communication primitives, and their relative advan- 

tages and deficiences are highlighted. A system is 

discussed which gives a higher degree of reliability 

than existing systems [24]. This system is modelled 

again using Petri nets and implemented in the con- 

current programming language occam. 

Chapter 7 summarises the achievements of the 

research and draws a number of conclusions about 

these. Also in this chapter a number of areas for 

further research are suggested. 
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Chapter 2. 

Aims and Objectives of the Research. 

2.1 Introduction. 

The major objective of the research in this 

thesis was to produce a design method for the produc-— 

tion of fault tolerant software for distributed sys- 

tems. The approach used to recover from unanticipated 

faults is state restoration; this ensures the 

comprehensive removal of errors. The system must be 

reset to a state which has already occurred during the 

operation of the system. If the system can be 

restored to a state which it occupied prior to the 

occurrence of a fault then errors resulting from that 

fault will have been removed. 

To attain the objective of this thesis, a number 

of goals had to be achieved. Firstly a mechanism had 

to be identified which could provide fault tolerance 

in a distributed system. The recovery block scheme 

[4] is a well known and proven fault tolerant mechan- 

ism for sequential systems. The conversation scheme 

proposed by Randell [4] is an extension to the 

recovery block scheme, for concurrent systems. Back- 

ward error recovery using a conversation is relatively 

straightforward since it uses a planned recovery line



[17]. This method of recovery does not suffer from 

the disadvantages of unplanned recovery line methods. 

Unplanned recovery line methods require a complex 

mechanism to locate the recovery lines, even with this 

mechanism non-identification of a recovery line is 

possible and the possibility of the domino effect 

occurring is high. 

A conversation limits the extent of the migration 

of an error between a number of interacting concurrent 

processes [4]. This is achieved by placing a boundary 

around a set of these interacting processes. The 

boundary has four edges: an entry line prohibits a 

process from rolling too far back when in recovery and 

holds a set of correct prior states, which are used 

for state replacement. The exit line is a synchronis- 

ing line between the processes within the conversa-— 

tion; the state of each process is checked at this 

line and if found in error will cause all the 

processes in the conversation to roll back to the 

entry line. The two side walls prohibit the passing 

of information (either into or out from the conversa-— 

tion) to processes outside the conversation. 

When designing a conversation to increase the 

fault tolerance of a system two major of problems 

arise: identification of constituent processes and 

identification of conversation boundaries. For). 2 
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given set of events a system consisting of a set of 

concurrent processes will have a subset of these 

processes interacting with each other. Thus, between 

any two specific events in a system only a subset of 

the processes within the system will be interacting 

with each other. If a fault tolerant boundary is 

required between these two events, only those 

processes interacting with each other need to be 

included within the boundary. The remaining processes 

in the system will need to be excluded from the fault 

tolerant activity. Each conversation will thus con- 

tain a characteristic subset of processes. In gen- 

eral, the processes in one conversation will not be 

the same subset as those in another conversation. A 

method is required which identifies these processes 

for any given conversation. 

To increase the usefulness of a fault tolerant 

mechanism nesting should be possible. Conversations 

do allow nesting. However, if conversations are not 

properly nested one or more processes could leave an 

inner conversation making it impossible for an outer 

conversation to recover fully [4]. Care must there- 

fore be taken when designing a system with nested 

conversations [25]. 

2.2 Placement of Conversations.



This thesis develops a method of identifying 

conversations by examining the state of the processes 

in the system. For an error recovery technique to be 

able to restore a prior state of a system, a record of 

that state must have been preserved. State restora- 

tion is certainly a possible recovery method for 

software systems, since the notion of state is 

inherent in such systems. 

A number of papers have been published on the 

recording of state information in a dynamic manner, 

that is, where the state of a system is recorded as 

the system executes. In [26] the state of the 

processes is defined using occurrence graphs P2u). 

These graphs are generated by the system itself as it 

executes. Each process keeps a record of that part of 

the growing occurrence graph in which it is involved. 

If recovery is to be performed a process must send a 

fail message to other processes in the system deter- 

mined by its part of the occurrence graph. A process 

receiving a fail message must stop its normal opera-— 

tion and send fail messages determined by its graph. 

Due to the independent nature of the processes and 

their restorable places on the occurrence graph, the 

probability of multiple rollbacks occurring is high 

[17] and the searching for a set of restorable states 

back to the beginning of the software is possible; 

this is the domino effect [4]. 
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Barigazzi et al. [27] avoid the domino effect by 

keeping only one copy of previous states for each pro- 

cess. This does however, have the disadvantage of not 

allowing fault tolerant blocks to be nested. In their 

proposal states are saved either when a local counter 

reaches zero count or because states have been saved 

in another process and a communication has occurred 

between the two processes. The communications in the 

latter case, for saving process state, does bring a 

further source of unreliability into the system. EC 

is probable that the recovery mechanism will be 

required to protect certain functional aspects of the 

processes. In this method no consideration is made of 

the functional aspects of the processes. 

Russell [28], has discussed state restoration in 

systems with the restriction that process interactions 

are unidirectional. It further postulates that a sys- 

tem which is not domino-free may still not exhibit the 

domino effect. 

A shared memory system is considered by Kim [29]. 

Here a monitor [30] is used as the sole control of 

process interactions. It assumes that there is a cen- 

tralising process which manages restoration of moni- 

tors and coordination of process rollbacks. The dom- 

ino effect is eliminated by placing an additional con- 

straint on the system, that is, suspicion of received



  

messages being in error is prohibited. That is) s= 

propagations [29] are not allowed. 

In this thesis a method for identification of 

planned recovery lines is proposed. A method is 

developed in which the state behaviour of the system 

is mapped onto a state reachability tree. By using 

this idea of state the boundary lines are defined. 

The exit line is the set of states belonging to the 

processes prior to leaving the conversation. By 

relating the states between the entry and exit lines 

to the processes, the minimum set of processes 

required for a given conversation can be determined. 

It is also shown that by using the state reachability 

tree of the system it can be determined whether two or 

more conversations are properly nested or not. 

It is therefore proposed in this thesis that the 

design of fault tolerant distributed software, using 

the conversation scheme, can be simplified by con- 

sideration of the system state. 

The simplification can not be considered until a 

method for defining the state of a distributed system 

is specified. A system state is a point of state 

space defined by a vector of values assumed by system 

variables. Any assignment or communication operation 

corresponds to a transition from one system state to 

another. The state representation used in this thesis 
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is achieved using Petri net techniques [31]. Petri 

nets provide several advantages as a system modelling 

technique. First, the overall system structure and 

behaviour is easy to understand due to the precise and 

graphical nature of the representation scheme, 

Second, the behaviour of the system can be analysed 

using Petri net theory and analytical tools [32,33]. 

A model of the distributed system must be defined 

before the state of the system can be defined. To 

model a system it is essential to have an complete 

specification of the system. The specification should 

be complete and unambiguous [5]. Work on formal 

methods for system specification [5,34,35] is intended 

to satisfy these objectives, but these methods are at 

an early stage of development and not widely used. In 

this thesis the description of the distributed system 

is achieved using the concurrent programming language 

occam [22]. Although it is a programming language, 

occam can also be used to specify distributed systems 

[36]. 

The modelling tool should have a formal defini- 

tion, enabling the model of a system to be constructed 

in a rigorous manner and, in addition, allowing 

analysis of a system. Before the model for a con- 

current system can be constructed modelling techniques 

for a sequential system are needed. These modelling 
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techniques were again constructed using Petri nets 

from a general specification of sequential primitives 

and constructs. This was constructed by firstly 

modelling the basic primitives which are the most fun- 

damental features of a computational machine; assign- 

ment, input and output. 

Thus, by using occam as a specification language 

for concurrent systems and modelling the specification 

using Petri nets, a state-transition model of a con- 

current system was developed. This model was then 

used to identify boundaries for the placement of 

conversations. 

2.3 Implementation of Conversations. 

Once the conversation has been designed the inev- 

itable step is to implement the design. A number of 

implementations have been proposed for the conversa-— 

tion scheme. 

In [37], the name-linked recovery block is intro- 

duced, The paper looks at both asynchronous and syn- 

chronous conversations. Multiprocess recovery blocks 

are also considered. The ideas presented are only 

slight advances towards a full implementation over 

those of the original proposal [4], and are proposed 

constructs rather than implementations. 
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Kim [25], assumes that interprocess communica- 

tions take place through monitors, i.e. a shared 

memory system, and presents a number of possible 

implementations, based around the language Concurrent 

Pascal [38]. Extensions to the language Concurrent 

Pascal are proposed which it is suggested will help in 

the structuring of recoverable process interactions. 

This method restricts the design to a shared memory 

system and has the disadvantage of requiring specific 

extensions to be made to the language Concurrent Pas— 

cal before any design can be implemented. 

This thesis proposes an implementation of the 

conversation which uses the concurrent programming 

language occam, with no extensions. Although occam 

assumes that interprocess communications take place by 

message passing through channels [39], this is not a 

real restriction on the design since it is possible to 

change a message passing system into one which uses 

hared memory [40]. a 

The first aim of the implementation was to pro- 

vide a system which was independent of the applica- 

tion; that is, once the structure for the conversation 

was constructed, this could be used for any applica- 

tion by changing the algorithms inside the structure, 

but mot the structure, Secondly, it should be clear 

where a conversation starts and finishes for each pro- 
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cess in the conversation. The acceptance tests for 

the conversations should be identified clearly, allow- 

ing changes to be easily made; this is the only part 

of the conversation structure which may require 

alteration from application to application. The 

implementation obviously must allow synchronised exit 

from the conversation. Finally, it should be possible 

to nest conversations. 

It is shown here that these aims are meet by the 

proposed implementation. An example is given to 

highlight the main features of the implementation. 

2.4 Communications Failures. 

A tacit assumption for the system considered is 

that communications do not fail. This may not always 

be the case [41]. The final part of this thesis is 

concerned with this subject. The problem considered 

here is that of communication failure due to non- 

receipt of message, i.e. processes failing to reach 

communication points, failure of communication medium. 

The main objective for this is to ensure that 

processes do not deadlock [19] due to communications 

failure. 

To achieve this objective each of the communica- 

tion types, for message passing, are investigated and 

are shown to be deficient when applied in a fault



tolerant situation. A suggestion is made for the 

placement of a timeout mechanism [42] which it is 

argued gives a higher reliability system from those 

proposed before. Each communication primitive used in 

message passing is analysed using a Petri net state- 

transition model. By using state reduction on the 

state-transition model a boundary for a timeout 

mechanism is identified. 

2.5 Discussion. 

The systematic design of a fault tolerant system 

requires a method for the placement of the fault 

recovery mechanism within the system. Previous 

designs for fault tolerant distributed systems do not 

consider explicitly the placement problem. In the 

method proposed in this thesis the distributed system 

is described using the concurrent language occam, this 

description is mapped onto Petri nets allowing the 

state of the system to be defined. It is shown that 

from the definition of state the boundaries of conver— 

sations can be identified and thus placed in the sys- 

tem. 

The implementation of a fault tolerant structure 

should be easy for the designer to incorporate into 

systems, it should not add complexity to the system 

making the probability of design errors greater. 
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Implementations previously proposed have required 

extensions to languages, put restrictions of the final 

system structure and in some cases increased the com- 

plexity of the system. The implementation given in 

this thesis requires no extensions to the language; it 

is application independent and is structured such that 

system complexity is not increased too much. 

paises



  

Chapter 3. 

System Model. 

3.1 Introduction. 

In many fields of study, a phenomena is not stu- 

died directly but indirectly through a model of the 

phenomena. A model is a representation of what are 

felt to be the important features of the system under 

study. By the manipulation of the representation, it 

is hoped that new knowledge about the modelled 

phenomena can be obtained without the danger, cost or 

inconvenience of manipulating the real phenomena 

ttselt. 

Computer systems are often complex, large, sys- 

tems of many interacting components. Each component 

itself can be complex, as can its interactions with 

other components in the system. Thus, one fundamental 

idea is that systems are composed of separate 

interacting components [43]. Each component may 

itself be a system, but its behaviour can be described 

independently of other components of the system, 

except for well-defined interactions with other com- 

ponents. These components may exhibit concurrency. 

In order to model computer systems a tool is required 

which will cope with the interacting components of the 

system and allow concurrency to be represented.



The model used throughout this thesis is a Petri 

net [44,31] description of the system. 

A formal definition for the basic Petri net has 

been specified [31] together with the Petri net graph 

allowing analysis of the system to be carried out. A 

formal definition for the state of the Petri net graph 

is given. Thus, by using Petri nets it is possible to 

represent the state of the system being modelled. 

Using this formal definition, the structures present 

in sequential and concurrent software systems are 

modelled. 

Modelling a concurrent system requires a number 

of additional constructs not required for modelling 

sequential systems such as parallelism and communica- 

tions (C4515 These features are incorporated in the 

concurrent notation C.S.P. [46], and concurrent 

language occam [22]. It is shown here that these 

additional constructs can be modelled using Petri 

nets. 

The models are analysed using the reachability 

tree of the graph [31]. The reachability tree is 

built up from the formal definitions of Petri nets. 

3.2 Petri Net Structure and Graph, 

Petri nets are composed of two fundamental com- 
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ponents : a set of places, P, and a set of transi- 

tione,. T. To define the relationship between the 

places and the transitions two functions connecting 

transitions to places are defined: I the input func- 

tion, and 0, the output function. The Petri net is 

defined completely by its places, transitions, input 

function, and output function [31]. 

The Petri net can be used to model a computer 

program by representing sequences of statements 

(actions) by transitions, the points between actions 

by places, and the value of a program counter by the 

location of a Petri net token [47]. These actions can 

be local to a process, such as assignment, or more 

complex actions involving more than one process, such 

as communication. 

3.2.1 Petri Net Structure. 

Peterson [31] defines a number of important pro- 

perties of Petri nets which enable them to be 

analysed, The definitions are based on bag _ theory 

[48], an extension of set theory. A Petri net struc-— 

ture, C, is a four-tuple, C = (P,T,1I,0). 

P= (Py Pgreeeer Da, } is a finite set of places, n >= 

Ms T = ¢ tyrtgresees te } is a finite set of transi- 

tions, m >= 0. i 2 T — > P (ts the input function, a4 

mapping from transitions to bags of places. Or 

P is the output function, a mapping from transitions 

a



  

to bags of places. The set of places and the set of 

transitions are disjoint, Pa T= 0. (An example 

of a Petri net structure is given in fig 3.1.) 

Cc 2s Des OD 

P = {py PgrP3rPyr Ps } 

T= {t,t} 

I(t, ) = {p,} o(t) = {p,} 

T(t)) = (PorPg} OC t>) = {p5,P5} 

Fig 3.1 Petri net structure consisting of 

two transitions and five places. 

3.2.2 Petri Net Graph. 

From the definitions of the Petri net structure 

given above a diagram of the modelled system can be 

specified, the Petri net graph. 

A Petri net graph G is a bipartite directed mul- 

tigraph (multiple arcs between the two kinds of 

nodes), G = (V,A), where V = {vyrvyr Ssecnevet LS a. Set 
s 

of vertices and A = {arr seeer By, } is a bag of 

directed arcs, a, = (v5ry,h> with V57%, © V. The set 

V can be partitioned into two disjoint sets P and T 

such that V = P UT, and P m YT = 0, and for each 

directed arc, a; € A, if aie ( Vga vy)» then 

either v.,€ P and v,€ Tor v.€ T and vi e€ P. The 
j k 5) k 

graph contains two kinds of node, place nodes and 
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transition nodes. Places (p) are represented by cir- 

cles. Transitions (t) are represented by bars. The 

Petri net graph for fig 3.1 is shown in fig 3.2. 

Pa 

  

Fig 3.2 Petri net graph for fig 3.1. 

3.3 Representing State. 

Each component of a system has its own state. 

The state of a component may change with time. The 

state of a component thus depends on the past history 

of that component. The concept of state is very 

important to modelling systems. The state gives 

information which enables future actions to be 

predicted. The concept of state is mapped onto Petri 

nets by marking the places on a Petri net graph with 

tokens. This can then be related back to the state of 

the system the Petri net is modelling. 

3.3.1 Petri Net Marking, 
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A marking ji is an assignment of tokens to the 

places of a Petri net. A marking y of a Petri net C = 

(P,T,1,0) is a function from the set of places P to 

the nonnegative integer N. 

ae — 

The marking yp can be defined as an n-vector, 

yu =C yr gress Uy)» where n = |P| and each uy € N, i = 

15 ateiste 5th « The state of a Petri net is defined by its 

marking. A marking for the Petri net graph of fig 3.2 

is shown in fig 3.3. 

Hee tes 0), 05 00) 

Fig 3.3 Marking of fig 3.2. 

The marking HL can also be defined as a vector U= 

{Py, Py soePy} where p; € P and these are the only 
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places marked at the particular instant. Thus, for 

fig 3.3 above yp = {1,4}. 

3.3.2 Execution Rules. 

An action in software can only take place when 

all required information is available, i.e. x := ytz 

must have both y and z before the assignment can take 

place. Similarly, for a transition on a Petri net 

graph, a transition t5 € T in a marked Petri net C = 

(P,T,I1,0) with marking p is enabled if for all Py e 2 

H(p,) 2 A (p,, X(t,)) 

A transition fires by removing all of its ena- 

bling tokens from its input places and depositing into 

each of its output places one token for each arc from 

the transition to the place. 

A transition ty in a marked Petri net with mark- 

ing wu may fire whenever it is enabled. Firing an 

enabled transition S results in a new 

marking w' defined by 

uN (B,) = u(y) — Aly, T(e,)) + # (By, Olt,)) 

The firing of a transition represents a change in 

the state of the Petri net by a change in the marking 

of the net. The state space of a Petri net with no 
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places is the set of all markings, that is, NOS An 

example of transitions firing is shown in figs 3.4 and 

   
3.5. 

PL Pa 

Gp 

P3 Ps 

wom {2,4} 

Fig 3.4: Transition tg enabled. 

  

uw = (355) 

Fig 3.5: Result of t, firing. 

A description and formal definition of the 
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modelling tool, Petri nets, have been given. It has 

been shown that from a mathematical definition of the 

net a graph may be constructed of the model. Using 

this graphical model of the net, state was introduced 

and the rules for changing the state were given. 

In the following sections Petri nets are used to 

model software systems. It is shown that both sequen- 

tial and concurrent systems may be modelled using 

Petri nets. 

3.4 Sequential Processes. 

Sequential programs can be written using six 

primitive processes [49]: 

INPUT 

OUTPUT 

ASSIGNMENT 

SEQUENCE 

SELECTION 

REPETITION 

Each basic primitive can be modelled as an ele- 

ment of a Petri net, such that the state of the pro- 

cess is represented by the marking of the places of 

the net, u. 

The Petri net models for these primitive con- 

structs are shown in figure 3.6. It follows that any 
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sequential program can be modelled as a Petri net by 

combining a number of these primitives. 

  

Process Program Flow Diagram Petri Net Model 

a) INPUT 

INPUT(Y) INPUT (Y) INPUT (Y) | 

b) OUTPUT 

OUTPUT(Y) OUTPUT (Y) OUTPUT (Y) 

  
c) ASSIGNMENT 

  

xi=y 

        
“d) SEQUENCE 

SEQ 
PBL Py P 
P2 1 

P2   

O
+
o
+
O
o
 
O
+
o
0
 
O
+
O
 

Pie



  

e) SELECTION 

  

    
  

IF x<O THEN Pl — P} RB 
ELSE P2 

  

£) REPETITION 

  

  
  

      

        

Ta = 

K<100 C 

SEQ alia T 
k:=1 “Tae Pp a 
WHILE k<100 2 

SEQ Fav 

Pl 
P2 O Py 

Fig 3.6 Petri Net Models of Sequential 

Software Constructs. 

From the above it can be seen that every place 

has a unique output transition, except for places 

which precede decisions (e,f); these places have two 

output transitions corresponding to TRUE and FALSE 

=ho=



outcomes of the decision predicate. The choice as_ to 

which are to take can be made non-deterministically or 

by some outside influence (such as the designer). 

3.5 Concurrent Systems. 

The sequential constructs described above are 

sufficient to describe sequential systems and the 

sequential parts of concurrent systems. However, con- 

current systems can not be fully described using the 

sequential concepts alone. Additional constructs must 

be introduced to describe parallelism, inter-process 

communications and inter-process synchronisation [38]. 

Hoare has introduced the notation C.S.P. [46,50], 

which allows the sequential and parallel composition 

of communicating processes. This notation also uni- 

fies input, output and inter-process synchronisation 

in a simple mechanism for internal (inter-process) or 

external (input,output) communications. The problem 

of inter-process communication is handled by inter- 

process message passing. 

3.5.1 Axioms of C.S.P. : 

The basic axioms of C.S.P. are as follows :- 

a) A parallel command based on Dijkstra“s parbegin 

(s1] is used to specify concurrent execution. All 

processes start simultaneously, the command is only 
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completed when all processes have completed their exe- 

cution. Communication via updating global variables 

is not possible. 

b) A simple form for input and output commands is 

used; it is also used for communications between con- 

current processes, 

c) For communication between two processes to take 

place there must be a logical pairing of input and 

output in which : 

i) the receiver process must identify the transmitter 

process, 

ii) the transmitter process must identify the receiver 

process, 

iii) the data object to be transmitted must be of the 

same type as the data type expected in the receiver, 

iv) there is no buffering in the data channel: both 

transmitter and receiver must be ready for communica- 

tion. This enforces synchronisation between the 

processes and either process may be delayed until the 

other process is ready. 

d) Dijkstra“’s guarded commands [52] are used as 

sequential control structures and the means of intro- 

ducing and controlling non-determinism between 

processes, 
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e) Input commands may appear in guards. This then 

acts as an alternative constructor. A process which 

is guarded by an input is not executed unless the pro- 

cess at the other end of the communication is waiting 

to output. If several input guards of a set of alter- 

natives have ready sources, only one is selected arbi- 

trarily. 

By using the above proposals the programming 

language occam has been developed, which is relatively 

simple to understand and introduces input, output and 

concurrency as explicit primitives. 

3.5.2 Occan. 

Occam enables a system to be described as a col- 

lection of concurrent communicating processes. The 

communications is achieved via channels, 

In occam each primitive process and construct 

occupy a single line. The components of the con- 

structs are indented. 

3.5.2.1 Primitive Processes. 

Occam has three primitive processes: 

assignment,input and output : 

  

e assign an expression e to a variable v. 

eine output expression e on channel c. 
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a2 ww input variable v from channel c. 

3.5.2.2 Constructs. 

The primitive processes can be combined tno a 

number of ways by using the constructs available in 

occam, 

3.5.2.2.1 Sequential Constructs. 

Sequential (SEQ): primitives following this construct 

are executed in sequence one after the other. 

Conditional (IF): this construct is followed by a con- 

dition. If the condition is true the primitives 

encompassed by the construct will be executed. 

Repetition (WHILE): a condition follows the WHILE and 

the primitives encompassed by the construct are exe- 

cuted until the condition is false. 

3.5.2.2.2 Parallel Constructs. 

Parallel (PAR): all processes in the scope of the con- 

struct are performed concurrently. The construct ter- 

minates when all constituent components have _ ter- 

minated. 

Alternative (ALT): the alternative constructor chooses 

one of its components for execution. Each component 
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process has a guard which is an input, with an 

optional condition. The earliest process which is 

ready to be executed is chosen; the guard is executed 

followed by the guarded process. If more than one 

guard is satisfied the choice as to which alternative 

is taken is arbitrary. 

Replicator: replicators are used to describe collec— 

tions of similar processes. They can be used with the 

constructs PAR, SEQ and ALT. 

3.5.3 Modelling Concurrent Software. 

Concurrent programming languages such as occam 

allow the user to model concurrent systems. Such sys-— 

tems are composed of separate, interacting components. 

Each component may itself be a process, and its 

behaviour can be described independently of the other 

components of the system, except for well-defined 

interactions with other components. In this section a 

state model of concurrent software is derived using 

Petri net techniques: Petri nets have been previously 

used to generate state models of sequential software 

[53]. To deal with concurrent systems Petri net 

models have to be developed for concurrent constructs, 

such as parallel processes, synchronised communica- 

tions and asynchronous ALT processes. By incorporat— 

ing these concurrent constructs a unified Petri net- 
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based state model of sequential and concurrent 

software was developed. 

Assignment. 

Assignment is an action which involves a _ single 

process only: it can be modelled as a transition with 

single input and output arcs. 

ole 

Parallel. 

In the parallel construct all actions are ini- 

tiated simultaneously. The construct does not ter- 

minate until all parallel processes have terminated. 
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PAR 

   
Communications. 

For the action of communication two processes are 

involved. One sends the information and one receives 

tS Thus a transition modelling a communication 

requires at least two input arcs, one from each pro- 

cess involved in the communication and at least two 

output ares, again one to each process. To distin- 

guish input and output actions the occam notation for 

input and output on the transitions is used.



Input. 

comm.chan ? var 2 

Output. 

comm.chan ! exp t 

These two actions, input and output, always appear in 

pairs in the system. In occam type systems where the 

communications is synchronised, the same transition 

will be shared by both processes involved in the com- 

munication. 

Process A Process B 

  

Alternative. 
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The alternative constructor consists of a number 

of guarded processes. The guard of each component 

process comprises an input, and an optional input 

expression. When an input is ready, the corresponding 

guard will be satisfied and the guarded process exe- 

cuted. If more than one guard is satisfied simultane- 

ously the choice as to which alternative is taken is 

arbitrary. 

  

The previous sections have developed a model, 

firstly for sequential systems and then for concurrent 

systems described as a set of communicating sequential 

processes, using Petri nets. It has been shown that 

parallelism is inherent within the model, inter- 

process communications can be represented and that 

asynchronous alternatives may be included within the 

model. 

Section 3.3 showed how state could be introduced 

into the model. To be able to interpret the changing 
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sequence of state through which a system evolves, a 

means of representing the evolving state must be used. 

The next section introduces such a technique, the 

reachability tree. 

3.6 Reachability Tree. 

It has been shown that by using the basic defini- 

tions of Petri nets and a formal concurrent language, 

occam, it is possible to model the constructs required 

for concurrent systems. A model can be constructed of 

the concurrent software for a complete system, by sim- 

ply connecting the nets for each component construct. 

In such a network each place on the Petri net will 

have an associated state, and each transition will 

correspond to a component process. The state of the 

software is the marking of the places on the Petri 

net. 

The state of a Petri net is defined by its mark- 

ing. To analyse the dynamics of the system the mark- 

ings (states) of the model must be mapped as they are 

changed. In what follows a number of functions are 

formally defined which enable the reachability space 

to be constructed. The method used here is the 

reachability tree [31]. 

The reachability tree consists of nodes which 

represent markings of the Petri net connected by arcs 
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which represent the firing of transitions. Each node 

on the tree will have an associated state, and each 

arc represents the transition of the corresponding 

component process. Each node on the reachability tree 

is labelled with a marking, arcs are labelled with tran- 

sitions. 

The initial node (root of the reachability tree) 

is labelled with the initial marking. Given a node x 

in the tree, additional nodes are added to the tree 

for each marking that is directly reachable from the 

marking of the node x. This is given by the next 

state function 6 . In the modelling of software sys- 

tems the reachability tree can be transformed to 

nodes represent the state of the system and arcs 

represent the possible changes in state resulting from 

performing actions. 

3.6.1 State Dynamics of a Petri Net. 

n 
The next-state function 6: N7 x tT —S N™ for. Val 

Petri net C = (P,T,1,0) with marking uw and transi- 

tion ty € T is defined if and only if 

up) 2 (Dr I(t,)) 

for all Pie P. 

If 6(u, ey is defined, then oCire.) = u', where 

ui (p;) =up;) — - (pyr Z(t,)) + # (pyr O(t,)) 

on



for all P Le P. 

From figs 3.4 and 3.5, p = {2,4} and 6 (u,t5) 

Hos 

For a Petri net C = (P,T,1,0) with marking uw, a 

marking u' is immediately reachable from yp if there 

exists a transition SF € T such that Sturt.) =u'. 

For each transition t, on the Petri net which is 

enabled in the marking for node x, a new node on the 

reachability tree with marking 8(x,t,) is created, and 

an arc labelled ty is directed from the node x to this 

new node. This process is repeated for all new nodes. 

Continuing this process will create the entire state 

space. This is known as the reachability set R(C,U). 

In practice repetitive constructs will usually bound 

the reachability tree. 

The reachability set R(C,u) of a Petri net C with 

marking uw is defined to be all markings which are 

reachable from uw. A marking u' is in R(C,n) if there 

is any sequence of transition firings which will 

change marking yp into marking u'. 

The reachability set R(C,u) for a Petri net C = 

(P,T,1,0) with marking yp is the set of markings 

defined by 

say



1. pe R(C,p) 

Zoe 2h oi e REC QU) ands uo = du" t,) for some = eT, 

then WH" € R(C,W). 

ROC, U) for fig 3.3 = {€1,4)5(2,4),(3,5)) > The 

corresponding reachability tree is shown in figure 

RWG 

Fig 3.7 Reachability Tree for fig 3.3. 

A path from the initial marking (root) to a node 

in the tree corresponds to an execution sequence and 

can be defined by . the extended next-state 

function 6(u,;A) . The extended next-state function is 

defined for a marking wU and a sequence of transi- 

tions o ¢ T* by 

Su, ae = 6(6(u, ae o) = 6(u,A) 

For fig 3.3, let o = tpt, and uw = {1,4} 

then 6(u,A) = {3,5}. 

The definitions given above are concerned with 

the dynamics of the Petri net. They enable the state 
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space of a Petri net to be calculated given an initial 

state. These states can be used to construct the 

reachability tree of the net. The reachability tree 

represents the whole reachability set of a Petri net. 

3.7 Discussion. 

This chapter has built up a number of important 

ideas used throughout the rest of this thesis. It has 

demonstrated that Petri nets can be used as a notation 

for state space and space reachability in asynchronous 

concurrent systems. It has examined software con- 

structs for SEQ, PAR and asynchronous processes. A 

state-transition description of occam processes was 

derived. Concurrent system models were mapped onto 

state-transition models and the state reachability was 

determined. Finally, the state of software was mapped 

onto the state reachability tree of the Petri net 

model. 
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Chapter 4. 

The Structured Design of Conversations. 

4,1 Introduction. 

A fault is the mechanical or algorithmic cause of 

an error in a system [10]. Despite the adoption of 

fault avoidance techniques, faults still occur in con- 

structed systems. These faults can occur, for exam- 

ple, due to the unavailability of fault-free hardware 

components, or because of the complexity in system 

software. The non-deterministic nature of concurrent 

systems, consisting of a number of asynchronous com- 

ponents interacting with each other make exhaustive 

testing of software for such systems impossible [17]. 

Yet in many applications it is essential that the sys- 

tem continues to operate correctly, even in the pres- 

ence of faults [54]. There is therefore a need for 

fault tolerant software. 

Fault tolerance should be based on the provision 

of useful redundancy [9]. In a hardware system this 

is achieved by duplicating system components and 

diverse design. Tolerance to faults in software can 

only be achieved by redundancy of design : replacing a 

faulty software module by an identical module would 
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just cause the same fault [8]. 

A further problem in designing error detection 

and recovery capabilities into a concurrent program 

structured in the form of a collection of cooperating 

asynchronous processes, arises from the possibility of 

error propagation through process interaction [25]. 

An error in one process may produce a fault in another 

process and lead to an error in the second process. 

It is therefore necessary to bound the extent of error 

propagation and to introduce a coordinated recovery in 

all processes involved. 

In this chapter the recovery mechanism for fault 

tolerant systems is considered. This is divided into 

two major sections: one for sequential systems 

(recovery blocks) and one for concurrent systems 

(conversations). The mechanisms for error detection 

and error control are considered (test line, accep- 

tance test and roll back) and a need for desgin tools 

identified. 

It is the aim of this chapter to develop a method 

of identifying conversations to protect either 

processes or functions within a system and to provide 

analysis and design tools so that the designer can use 

such a method. The object was to develop a method for 

the systematic design of conversations for that class 

of systems which can be modelled using the SEQ, PAR 
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and asynchronous constructs available in occam. 

The goals which were satisfied to meet this 

objective were: the derivation of a state model and 

state reachability model for the systems using Petri 

net techniques (as developed in chapter 3), the iden- 

tification of local transitions, sequences of which 

can be protected by recovery blocks and inter-process 

communications/transitions, which can only be pro- 

tected by conversations, the identification of conver- 

sation boundaries (by reducing the reachability 

tree), identification of processes within a conversa- 

tion (by relating processes to state-transition attri- 

butes), the identification of conversation boundaries 

to the control mechanisms (test line etc.) and a 

specification of how to design a conversation to pro- 

tect a particular function. 

4,2 Error Detection and Recovery. 

4.2.1 Sequential Systems. 

The recovery block scheme [4,55] has been pro- 

posed as a method of introducing redundancy into the 

software of computing system, in the form of stand-by 

spares, in order to provide tolerance against faults. 

The recovery block scheme for error recovery is 

based on the idea that programs are written in func- 

tional blocks. Although these blocks, which are 
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assumed to be non-redundant, may have been designed 

carefully and tested to some extent, design faults 

could still be present. It is therefore necessary to 

design around these blocks, known as the “primary 

blocks”, a mechanism which will deal with these 

faults. A recovery scheme for such a system will be 

designed in a number of steps. 

The first step in this process is to provide a 

means of detecting the errors caused by the block. A 

process known as an “acceptance test” is incorporated 

into the system to check on the correctness or reason- 

ableness of the results calculated by the primary 

block. Thus: 

primary block 

acceptance test 

The acceptance test will consist of a sequence of 

statements which will raise an exception if the state 

of the system is not acceptable. 

The next stage in designing a structure to pro- 

vide fault tolerance is to consider a suitable method 

of error recovery if the primary block fails its 

acceptance test. Since the precise time at which the 

errors will be generated is not known the most suit- 

able prior state for restoration is the state of the 
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process that existed just before entry to the primary 

block. A recovery point can be established at this 

point by the introduction of an additional process 

“establish recovery point” before the primary block. 

establish recovery point 

primary block 

acceptance test 

If an error is detected by the acceptance test 

the primary block will be restored to the state at the 

recovery point, a retry of the primary block may be 

useless since the same fault could result in an excep- 

tion being raised again. What is required is a secon- 

dary block which will produce results that pass the 

same acceptance test as designed for the primary 

block, but which has a different design which it is 

hoped will not be prone to the same fault. This 

secondary block can be thought of as an “alternative 

block” to the primary block. 
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establish recovery point 

primary block 

acceptance test 

pass \en 

continue reset to recovery point 

alternative block 

acceptance test 

eae) puueis 

continue reset 

etc. 

The recovery scheme is not restricted to a single 

alternate block; a number of alternative blocks may be 

added, to be executed in turn if previous blocks have 

failed the acceptance test. 

This recovery block scheme is described by the 

syntax given in fig 4.1. The common acceptance test 

is designated by the ENSURE statement and is placed at 

the beginning of the recovery block. Following the 

acceptance test is the primary block (BY) and the 

alternate blocks (ELSE BY). 
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ENSURE <acceptance test> 

BY <primary block> 

ELSE BY <alternate block 1> 

ELSE BY <alternate block 2> 

ELSE ERROR 

Fig 4.1. Recovery Block Outline. 

On entry to the recovery block the recovery point 

is established and the primary block entered. On com- 

pletion of the primary block the acceptance test is 

executed: if the test does not raise an exeception the 

recovery block is exited. However, if an exception is 

raised the recovery point is restored, the next alter- 

mate block is executed and above procedure is 

repeated, 

Recovery blocks can be nested so that one 

recovery block can form part of a primary block of an 

enclosing recovery block [4]. 

4.2.2 Concurrent Systems. 

The recovery block scheme for error detection and 

recovery in single sequential process systems cannot 

be used directly for networks of communicating 

fo



sequential processes [4]. In concurrent systems con- 

sisting of a set of communicating processes, when one 

process raises an exception it is not sufficient to 

perform recovery actions on just that single process. 

The extent the recovery of that process impinges upon 

the other processes in the system must be considered. 

In communicating processes information flows between 

the processes and faults migrate. This influences the 

nature of the required recovery process. 

For example, if a process has just sent informa- 

tion to a second process and an exception is raised, 

both processes should undergo recovery since the 

transmitted information could be in error. Similarly, 

if a process has received information from another 

process and then an exception is raised, it may 

require the information to be sent again (or another 

form of it); and thus both processes must be 

recovered. 

A further problem in the design of error detec- 

tion and recovery mechanisms for a system of communi- 

cating sequential processes is that the recovery 

points of the processes cannot be chosen arbitrarily. 

If recovery points of interacting processes are not 

properly coordinated, then an intolerably long 

sequence of rollback propagations can occur. This is 

termed the domino effect [4]. In the most extreme case



the roll back sequence would continue to the beginning 

of the program. This effect can be illustrated by 

considering a system of three processes as shown in 

figure 4.2. The three processes, P1,P2,P3, have auto- 

monously established four recovery points. The dotted 

lines indicate process interactions. af Process 2 

fails, it will be backed up to its fourth recovery 

point past an interaction with Process 1; this must 

therefore also be backed up to the recovery point 

immediately prior to this interaction. However, if 

Process 3 should fail all the processes will have to 

be backed up right to their starting points. 
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Fig 4.2 Example of the Domino Effect. 

The domino effect can occur when two particular 

circumstances exist in combination [4]: 

1) The recovery block structure of the various 

processes is uncoordinated, and take no account of



process interdependencies caused by their interac- 

tions. 

2) The processes are symmetrical with respect to 

failure propagation - either member of any pair of 

interacting processes can cause the other to roll 

back. 

4.3 Conversations. 

An abstract construct termed a conversation was 

proposed [4] as an aid to the structuring of properly 

coordinated error detection and backward recovery 

actions of interacting processes. A conversation 

attempts to prevent the domino effect by dealing with 

circumstance 1 above. A conversation [37,25] is an 

extension of the recovery block technique, to two 

dimensions (i.e. time and processes). Like recovery 

blocks, conversations provide boundaries which serves 

to limit the damage caused to a system by errors. 

4.3.1 Basic Structure of a Conversation. 

The boundary of a conversation consists of a 

recovery line, a test line and two side walls. The 

boundary encloses the set of communicating (interact- 

ing) processes which are party to the conversation. 

The recovery line is the part of the boundary which 
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defines the start of the conversation. It consists of 

a coordinated set of states (recovery points) for the 

interacting processes. At the start of a conversa- 

tion, the state of each entry process is stored for 

use if recovery is necessary. The entry to a conver-— 

sation need not be a synchronous event. 

The test line is a coordinated set of acceptance 

tests for the set of interacting processes. Each test 

line process is required to pass an acceptance test. 

A conversation is successful only if all test line 

processes pass their acceptance tests. Processes must 

exit from a conversation synchronously. If any accep- 

tance test is failed, recovery is achieved by rolling 

back the conversation to the recovery line, restoring 

the process state to that on entry to the conversa- 

tion, and executing the alternate blocks. Thus, 

processes in the conversation cooperate in error 

detection. The side walls of the conversation prohi- 

bit the passing of information to processes not 

involved in the conversation (prevent information 

smuggling). A representation of a conversation con- 

sisting of three processes is shown in fig 4.3. 
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Process A Process B Process C 

recovery line 

  

Fig 4.3. Conversation Scheme. 

As with recovery blocks, conversations can be 

nested within other conversations, so as to provide 

additional possibilities for error detection and 

recovery. However, it is possible to envisage conver- 

sations which intersect and are not strictly nested 

Such a structure is shown in fig 4.4. 
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    ! { 

Fig 4.4. Example of Two Conversations which 

are not Strictly Nested. 

Here if Y or Z fail their acceptance test at C 

and D it would not be possible to roll back X if it 

had passed its acceptance test at G. Thus conversa-— 

tions which intersect and are not strictly nested can- 

not be allowed. 

4.3.2 Problems with Conversation Design. 

The conversation scheme is a good fault tolerant 

mechanism for a system consisting of a set of communi- 

cating sequential processes, but a number of problems 

do exist in the design of such a scheme for a given 

system. These problems can be related with the boun- 

dary of the conversation. 

Firstly, in order to define the boundary of a 
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conversation it is necessary to have some definition 

of system state. Without this definition of state Le 

is obviously not possible to identify the entry and 

exit states (i.e. the boundary) of the conversation. 

When defining the recovery states of the conver- 

sation it is crucial that the states be a consistent 

set. If the entry states do not form a consistent set 

the domino effect could occur. A consistent set can 

be precisely defined as follows [17]: 

Consider a subset of processes Pl ... Pn, which 

establish recovery points at times tl ... tn. Then a 

set is said to be consistent at some later time t iff 

(i) in the period ti to tj processes Pi and Pj do not 

communicate 

(ii) in the period ti to t, process Pi does not com- 

municate with any process not in the subset. 

Part (ii) of this definition of consistent set 

brings out a further problem of atomicity [16,12] when 

designing conversations: that is ensuring that all 

processes interacting within the space of the conver- 

sation must be party to the conversation. If this is 

not the case information smuggling will occur and the 

conversation mechanism will be useless. 

4.4 A Possible Solution to Conversation Design. 
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In sequential single-process systems, the state 

of the process can be ascertained and saved, allowing 

the restoration of these states during fault recovery, 

as in the recovery block method. 

The design problem is more complex in distributed 

systems which consist of a set of processes which 

operate automonously between synchronising inter= 

process communications [26]. This means that, between 

communications, the state of each process is indepen- 

dent of the state of the other processes and this 

leads to a considerable increase in the possible 

states of the system. 

By using the Petri net model of a distributed 

system given in chapter 3, the states of the system 

are identified. Using the associated reachability 

tree it is possible to identify the entry and exit 

states of conversations [23,56] and to identify all 

processes involved in the conversation. 

4.5 System State and Petri Nets. 

The reachability tree of the system is used in a 

new design procedure to incorporate a fault tolerant 

mechanism in the form of conversations into a distri- 

buted system. 

In chapter 3 the state of a Petri net was defined 

wi



by its marking at a given instance in time [31]. The 

marking, and thus, the state of the net is changed by 

the firing of enabled transitions. The net state will 

continue to change until the net terminates, deadlocks 

or falls into an infinite loop. The most convenient 

way of representing these state changes in the net is 

by the use of a reachability tree. All of the possi- 

ble states of a Petri net can be obtained by travers— 

ing all branches of the reachability tree. 

In chapter 3 a state-transition description of 

occam processes was derived. The state of software 

was mapped onto the state reachability tree of a Petri 

net model. By placing the initial markings onto the 

Petri net, the operation of the program can be simu- 

lated. 

As each transition fires the marking of the Petri 

net will change. At each decision point, each branch 

must be considered seperately to obtain the complete 

reachability tree. The set of markings for the Petri 

net form a set of states for the program from which 

the Petri net was derived. Each node on the reacha- 

bility tree defines the state of the whole system at 

that time. 

It follows that, for any system modelled in 

occam, one can determine the "entry" state (or subset 

of states) and the set of possible reachable "exit"



states for each primitive process (or combination of 

processes). 

It is also possible to distinguish between 

changes of state caused by local operations and 

changes of state caused by communication with other 

processes in the system by looking at the states 

changed by a given transition (local operations cause 

only one state change, communications cause more than 

one change). The complete reachability tree gives all 

possible combinations of system state which can exist 

with the given transitions. 

4.6 Identification of Fault Tolerant Boundaries. 

4.6.1 Construction of State Change Table. 

A table which identifies which states change when 

a transition fires is constructed. The system dynam- 

ics are characterised by the evolution of the system 

states through a sequence of state transitions. This 

can be defined by a state-change table which lists the 

state changes for each transition in the reachability 

tree. 

From the reachability tree it is possible to 

identify the present state and next-state for each 

transitions. 
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Present State wu = {pa..pm} 4.1 

Next State ue = 6(urt,) = {pe..pn} Ga) 

Equations 4.1 and 4.2 give the complete state of 

the system before and after the transition ty has 

fired . If a state is unchanged after the firing of a 

transition, that state is independent of the particu- 

lar transition. Since process state change is of 

interest, the states which do not change can be elimn- 

inated. This table (the state-change table) can be 

built by using the reachability tree, the present 

state of the system and the next-state function. 

By taking the two relative complements {5:7)] 

(relative complement of a and b [a-b] is the set of 

values which are in a but not in b) it is possible to 

determine only those states which change during the 

transition tye 

rT H & w {pe..ps} 

W tt + 5 {pg..pt} ‘set
 1 os 

The set I represents the subset of the initial 

states which are altered by the transition. The set E 

represents the subset of the final states which are 

created by the firing of the transition. For example, 

from table 4.1: 

res



I E 

£10| 41,29 42,20 

Thus, for transition tl0 states Ld and 19 are 

changed and 12 and 20 created, also 11 —> 12 and 

TOP> 20's, 

By determining the state changes for each transi- 

tion in the reachability tree, a state-change table 

can be constructed, which lists the evolution of the 

system states as a function of the state transitions. 

As an example table 4.1 is the state-change table of 

the reachability tree in figure 4.7. The two lower- 

halves of the state-change table correspond to the two 

branches on the reachability tree. 

Going from left to right on the same row in the 

table shows the change in system state caused by the 

transition on that particular row. If a state appears 

on the left hand side of the table, it is changed by 

that particular transition. If a state appears on the 

right hand side of the table, it has been changed to 

that state by the transition. The transition rows as 

they proceed down the table correspond to increasing 

time. For example, from table 4.1, state 1 is changed 

to state 2 by transition tl. 
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4.6.2 Identification of Communications. 

When designing conversations inter-process com- 

munications are of interest, rather than intra-process 

communications. The state-change table may be reduced 

to a communication state-change table consisting of 

only communication transitions by removing all intra- 

process transitions. 

Forming equivalent relationships between states 

created by intra-process actions (since these form 

local states between communication transitions) sim- 

plifies the state-change table. This table will be 

known as_ the communication state-change table. 

Inter-process communications can be identified by exa- 

mining the process-identifier attributes of the rela- 

tive complements in either equation 4.3 or 4.4. 

If only one state has changed after a transition 

firing, then this is a local change and not a communi- 

cation. A communication must cause at least two 

states to change, one in each of the communicating 

process. If two states have changed but both _ states 

belong to the same process, then again this is a local 

change. 

However, if two states have changed and they 

belong to two different processes, then this is a 

state change caused by a communication. i.e. consider 
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a transition th 

Let PyPy € us or Py /P, € Ej 

where Pie PROCg and Py & PRocr 

then the transition is an inter-process communication 

Lf iq # r. When q = r the transition can be classified 

as an intra-process action. 

For example, the state-change table, table 4.1, 

can be reduced to the communication state-change 

table, table 4.2. 

Transitions t10,t19,t25 can be combined to form a 

single row of the state-change table, because the 

associated ALT constructs are embedded within a repli- 

cator statement and the three ALT statements must all 

fire before the replicated ALT can terminate, i.e. the 

REP construct implies a replication of structure, 

which allows reduction. This can be seen by the fact 

that all three transitions share the same present 

state (11) and next state (12). Similarly, transi- 

tions t13,t21,t27 are condensed to a single row of the 

state-change table. 

4.6.3 Identification of Conversations. 

The underlying reason for a conversation is the 

interactions (communications) between the processes. 
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It is essential for proper placement of conversations 

to look at the interactions between the processes. ce 

there are no interactions between processes, no 

conversation is required. 

If guaranteed recoverability is to be provided 

for a set of processes which by interacting have 

become mutually dependent on each others progress, it 

must be arranged that processes cooperate in the pro- 

vision of recovery points, as well as in the inter- 

change of ordinary information [17]. It is shown here 

that a conversation can be constructed by generating 

systematically the entry and exit lines of the conver- 

sation such that no process interaction takes place 

through the side walls of the conversation. 

The method partitions the reachability tree to 

form boundaries within the state space of the system. 

Any two transitions on the same branch of the reacha- 

bility tree can be considered to form a boundary or 

partition within the communication state-change table. 

To determine a complete set of states which are ini- 

tially marked at the chosen boundary and a set of 

states created at the end of the boundary two sets § 

and F, are formed from the union of all present and 

next states within the partition boundary, the rela- 

tive complements of these sets are then taken to elim- 

inate states created and destroyed within the boun- 
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dary. 

a W {EIU B20 ee eon 4.5 

yt " {El U £2. U2... En} 4.6 

Taking the relative complements of these sets: 

nw
 ~ § - F = {pl,p2.,.-.pn} 

u a S oo F- S = {pr,ps,-.-py} 

4.6.4 Entry and Exit States. 

The set K represents the subset of the initial 

states which are altered by inter-process transitions 

and the set J represents the subset of final states 

which are created by inter-process transitions which 

fire within the boundary, table 4.3. 

The two sets, J and K, can be considered to be 

the entry and exit states of a conversation. The par- 

tition or boundary of the communication state-change 

table then forms the boundary of the conversation. It 

follows that, by partitioning the state-change table 

at required transitions, the entry and exit points are 

defined by the sets K and J. 

4.6.5 Processes in Conversation. 

Each state in K and J can be identified with a 

process through the process-identifier attributes of 

the states 
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P, € PROCa, 

PS € PROCr. 

Since the communications state-change table gives 

all the communications in a given state space, these 

are all the processes that are interacting during this 

state space and are thus the only processes required 

in the conversation. 

4.7 Design of Conversations. 

The design problem involves specifying a conver- 

sation boundary which will protect a particular part 

or function of the system. Such a specification will 

be expressed in terms of the functional processes, 

PROCcontrol, etc. The transitions and states associ- 

ated with these functions can be identified through 

their process-identifier attributes. It is therefore 

possible to identify the corresponding transition and 

states in the communication state-change table. EE 

the function is to be protected, then all the associ- 

ated states must lie within the conversation. The 

entry state will coincide with the generation of the 

states, and the test line with the termination of 

these states. The set of states within the conversa- 

tion can be found by identifying the entry and test 

lines which enclose the identified states (and a 

minimum set of the states) along the same branch of 
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the reachability tree. Since the sets K and J have as 

their members the entry and exit states for a given 

partition, only a single element of these sets is 

required to determine the complete set of entry and 

exit states for the particular partition. 

4.7.1 Demonstrator Example. 

Consider the example of a 3-axis robot arm con- 

troller [58]. The controller consists of an “opera- 

tor” process which inputs the coordinates from _ the 

keyboard, checks for the reserved value, i.e. final 

position (0,0,0); passes the input values to process 

“control”; and waits to receive further inputs. Pro- 

cess “control” accepts inputs from process “operator”; 

calculates the new value for direction and distance 

for each motor; and passes the computed values to the 

“motor” processes. An occam solution to this problem 

is given in fig 4.5. There are five concurrent 

processes in this solution. There are three motor 

processes one for each axis which input values for 

distance and direction from process “control” and move 

the motors. 

The robot arm control program of figure 4.5, can 

be translated into a Petri net graph using the 

transformations described in chapter 3. The complete 

Petri net graph for the robot program of figure 4.5 is 

shown in figure 4.6 and is partitioned into five 
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functional processes which correspond the actual 

processes in the program. The repetitive construct in 

each functional process gives rise to cyclic struc- 

tures in the Petri net graph which serve to bound the 

graph. The closure of the cyclic loops is signified 

in figure 4.6 by the primes on the state identifiers 

Cole, po, etc. ).. 

The functional process boundaries 

(operator,control,motors) associated with the distri- 

buted system can be mapped onto occam and Petri net 

models of these systems. The transitions and states 

of the Petri net can therefore be associated with 

specific processes and assigned a process-identifier 

attribute; PROCi = {ti,pi}. Where ti = {ta..tg} and 

pi = {pa..ph}. Using the Petri net graph each state 

and transition can be assigned to a process-identifier 

attribute. 

PROCoperator = {tl,t2,t3,t4,t5,t6,t7,t8,t16,t18,t22, 

t24,t28,t30,pl,p2,p3,p4,p5,p6,p7, ps} 

PROCcontrol = {62,3 ,t5,¢8,t9 to ;tll,tl2,ti3,ti4, 

t19, £21,625 ,€27,p9,p10,pll,pi2, pid ,pl4, pls, pl6 , p17, 

pls} 
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PROCmotorl {ELO; tis, 615,016 ,t17,t18 p19 p20. pel, 

p22,p23,p24} 

PROCmotor2 = {t19,t20,t21,t22,t23,t24,p25,p26,p27, 

p28,p29,p30} 

PROCmotor3 {t25,t26,t27,t28,t29,t30,p31,p32,p33, 

p34,p35,p36} 

The reachability tree for the Petri net graph is 

shown in fig 4.7. There is only one decision point in 

this case (corresponding to the IF clause (t4)), 

therefore there are only two branches in this reacha- 

bility tree : the main branch which is concerned with 

normal input variables and a second branch if the 

input is the final position of 0,0,0 in which case all 

processes are stopped. 

Consider the robot control example and its asso- 

ciated communication state-change table (table 4.2). 

The main conversation protects the control process 

from the point at which new coordinates are input to 

the point at which all axial control motor processes 

have reported correct execution of the axial movement 

commands output by the control process. This specifi- 

cation is associated with the process control between 

the entry line state “9° and the test line state als=. 

Therefore, the communication state-change table can be 

partitioned on the main branch to enclose states 9 and 
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15 as shown in table 4.3. From this partition, the 

start and finish states, S and F, the entry line and 

the exit line states, K and J can be determined, 

Although in this example, the conversation parti- 

tions have been applied to the communication state- 

change table, the partitions can also be applied to 

the state-change table. This may be necessary if a 

conversation is required to protect a particular func- 

tion hidden, by the equivalence relationships, within 

the communication state-change table. The procedure 

is exactly the same as above. 

4.8 Proof of Nesting. 

Conversations can occur within other conversa- 

tions, so as to provide additional possibilities of 

error detection and recovery. The partitioning of the 

state change table can be performed a number of times 

for a given problem as in tables 4.4 and 4.5. Every 

time a new partition is made, new conversation boun- 

daries will be produced. Any or all of these conver- 

sations can be used on the system in question, as in 

figs 4.8 and 4.9. 

If a system involves more than one conversation 

it may be the case that these conversations overlap 

each other. This overlapping will only occur if the



  

conversations are not disjoint with respect to both 

time and processes. If this overlapping does occur it 

is essential for the proper operation of the conversa- 

tions that these conversations are strictly nested 

[25]; i.e. the inner conversation starts last and fin- 

ishes first, and is completely enclosed by the outer 

conversation, as shown. 

  

Fig 4.10. Example of Nested Conversation. 

If the outer conversation does not fully enclose 

the inner conversation then the recovery mechanism may 

be useless. A process may leave the inner conversa- 

tion and continue its execution. If the outer conver- 

sation acceptance test is then failed, the processes 

within it will be rolled back. However, since the 

process in the inner conversation has left the bounds 

of the outer conversation it is impossible to roll it 

back. An example of bad nesting is shown below. 
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Fig 4.11. Example of Bad Nesting. 

In all but trivial examples it is difficult to 

decide by inspection alone whether the conversations 

are properly nested or not. However, by using a state 

space analysis it is possible to determine if they are 

strictly nested or not. 

Let the conversations be denoted by : 

A conversation consists of two or more processes 

performing a number of actions. These actions may be 

local to a process or an interaction with another pro- 

cess in the conversation. 

A conversation can thus be defined as a set of 

two sets: a set of transitions which take place during 
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it and a set of processes involved in it. Hence, 

Ca = {ta,Pa} 

Cb = {tb,Pb} 

where ta = {tl,t2,...} 

and Pa = {PA,PB,...} 

Two conversations are said to be disjoint if 

either: they do not share any processes or if they do 

share processes one conversation has finished before 

the second has started. If the conversations are dis- 

joint no nesting will be required. To decide fe the 

conversations are disjoint, tests must be performed. 

1) Taking the intersection of the sets of processes 

shows if the conversations are independent with 

respect to processes : 

Ca OM Cb = {P} 

If the intersection produces an empty set, {0}, 

then no communications take place between these 

conversations in this time and no nesting will be 

required.



  

          
2) It is possible that the 

conversation involves one 

their operation, but these 

TEs 

ERG ty tex fa < ty, 

  

  

    
above test fails, i.e. each 

Or more common processes in 

may be disjoint in time. 

where ta is the set of transitions in conversation Ca 

and tb is the set of transitions in conversation Cb. 

In this case conversation Ca finishes before conversa-— 

tion Cb starts. 

conversation Ch finishes before conversation Ca 

if 

atx, ty 28x | & ta > tye; tb 

then, 

starts. 
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In either of the case the conversations are dis- 

joint in time, i.e. one conversation is finished 

before the next starts and no nesting will be 

required. 

  

  
  

  

  

          
If both of these tests prove negative then the 

conversations are not disjoint and further investiga- 

tion must be made to determine if they are strictly 

nested or not. 

For two conversations to be strictly nested, the 

outer conversation must fully enclose the inner 

conversation. Hence, the outer conversation must 

include all states present within the inner conversa- 

tion. 

The full set of states for a given conversation 

can be calculated using equations 4.5 - 4.8. 

Equation 4.5 gives the set of all present states 

in the conversation. 

Equation 4.7 gives the entry states of the 
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conversation, i.e. the states before the conversation 

was entered, thus 

(Ss - K) =L 4.9 

gives all the present states enclosed by the conversa-— 

tion. 

Similarly: 

CF = J) = 4.10 

gives all the next states enclosed by the conversa- 

tion. 

Now, the complete set of states enclosed by the 

conversation can be determined by taking the union of 

equations 4.9 and 4.10 

This is the set of all states which are changed 

during the conversation. 

Let ACn be the change in states during conversa- 

tion Cn. 

KGa me etpl spleen ese 
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ACb = {pn,pm,.....} 

For a conversation to operate successfully all 

processes involved in the conversation must be rolled 

back to the beginning of the conversation if an accep- 

tance test is failed. To roll back after a failure 

has been detected all states in the inner conversation 

must be present in the outer conversation since the 

inner conversation will be re-entered on subsequent 

tries. 

-. dca Acb = Acb for successful nesting. 

where Cb is the inner conversation. 

Example of improperly nested conversations. 

Looking at fig 4.12 

Aca TG LO pit 512519), 14,15} 

ACb 412,13, 14,20,21,26,27 32,33) 

Aca n Acb = {12,13,14} #Acb 

these conversations are not properly nested. 

4.9 Discussion. 
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When errors occur a process should be rolled back 

to a previous state. It is critical that it is rolled 

back to a unique and well defined state on the entry 

boundary of the conversation. Once a conversation 

boundary has been identified it is important that all 

processes that are interacting within the state space 

of the conversation must be included in that conversa- 

tion. 

This chapter has addressed the problem of speci- 

fying and designing error detection and recovery 

mechanisms for a class of distributed systems. A 

method was described for the systematic identification 

of conversation boundaries. 

The formalised definition of system state and 

reachability using Petri net techniques has been used. 

The properties of the state reachability tree were 

exploited in the development of a method for the 

design of proper conversations. The functional attri- 

butes of the system were used to identify conversa-— 

tions which would protect a particular part of a sys- 

tem (the conversation placement problem). The conver- 

sations designed using this method automatically 

enclose all processes which are party to the conversa- 

tion. 

The design method reduced the complexity of the 

problem by systematically reducing design



considerations to only those system states which are 

changed through interfunctional actions. These states 

provided the minimum set required for the design pro- 

cedure and the identification of the recovery and test 

lines. 

By using the same tools a technique was developed 

for testing if two or more conversations are properly 

nested, 
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Robot3.0CC 
-- Occam program for 3-axis robot arm controller. 

-- Declaration of inter-process channels. 

CHAN request,return,motion[3],finished[3],stop[4],go[4]: 
-- Declaration of process “operator. 

PROC operator (CHAN send,receive) = 
VAR x,y,z,run 

SEQ 
run := TRUE 

WHILE run 
SEQ 

5 input x,y,z from keyboard. =—(tl) 

  

send ! x --send to control process. (t2) 
send ! y 

send ! z 

receive ? ANY --motors moved.(t3) 

TF 

(x=0)AND(y=0)AND(z=0) --check for finish, (t4) 
SEQ 

PAR i = [0 FOR 4] 

stop[i] ! ANY --finish.(t5,t16,t22,t28) 
run := FALSE == (t6) 

TRUE == (t7) 

PAR i = [0 FOR 4] 

goli] } ANY : -—-continue.(ts,t18,t24,t30) 

-- Declaration of process “motor”. 

PROC motor (CHAN motion,finished,stopi,goi) = 

VAR step,direction,going 

SEQ 
going := TRUE 
WHILE going 

SEQ 

motion ? step --get from control.(t10,t19,t25) 
motion ? direction 

ane move motor =—(t15,t201,t26) 

finished ! ANY ==(tio,t2),t27) 

ALT 

stopi ? ANY ==finish.(tlo,t22,t28) 
going := FALSE --(t17,t23,t29) 

goi ? ANY --continue.(t18,t24,t30) 
SKIP 

Fig 4.5a. Occam Program for 3-Axis Robot 

Arm Controller. 
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-- Declaration of process “control”. 

PROC control (CHAN receive,send,stopi,goi) = 
VAR xold,yold,zold,xnew,ynew,znew, 

count,step[3],direction[3],going 

SEQ 
ae. initialise xold,yold,zold 

going := TRUE 

WHILE going 

SEQ 

receive ? xnew --input from operator. (t2) 
receive ? ynew 
receive ? zgnew 

  

| calculate distance and direction --(t9) 

PAR i = [0 FOR 3] 
SEQ 

motion[i] ! step[i] --send to each motor. 
motion[i] ! direction[i] --(t10,t19,t25) 

update xold,yold,zold --(t11,t12) 

count := 0 
WHILE count <> 3 

ALT i = [0 FOR 3] 

  

finished[i] ? ANY --check all motors moved. 
count := count + 1 --(t13,t21,t27) 

send ! ANY —=(ta) 

ALT 

stopi ? ANY finish. (t5) 
going := FALSE (t14) 

goi ? ANY --continue. (t8) 
SKIP 

-- main program. 

PAR 

PAR i = [0 FOR 3] 
motor(motion[i],finished[i],stop[i],go[i]) 

control(request,return,stop[3],go[3]) 
operator(request,return) 

Fig 4.5b. Occam Program for 3 - Axis Robot 

Arm Controller. 
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ot su 2 

t2 ao) 3,10 

t9 10 ll 

0) BL LO 2520 

£19 D2 OL 2526. 

t25 VAG An i252 

tll 12 13 

tls 20 20 

t20 26 27 

t26 a2 33 

eis 12 14 

t13 L452) 115522 

£20 145.27 | 15528 

£27) 14,33 | 15,35 

          
  

4,16 

t4 4 5 

© 56) 6 Ly 

tl6 | 5,22 | 6,23 

t22 | 5,28 | 6,29 

t28 | 5,34 | 6,35 

  

  
t6 6 7 

tl4 Le 18 

tiZ 23 24 

t23 29 30 

t29 a5 36       
Table 4.1. State Change Table of fig 4.7. 
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Table 4.2. Communication State-Change Table 

of table 4.1. 

  

t2 239) 

€10,€19),025 | 18,19 525,531 

CLS ,E2b,t20 jee y2t y27,33) 

oe 

14,21,,27,33 

15522,28,34 
  

Boundary eo) 

Entry States K 

Exit States J 

St 27 

{259.195.259.531} 

1351522529594) 

Table 4.3. Partition of table 4.2 from 

t2 to t27.. 
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£10,t19,825 |11,19,95,31 [14 ,21,27,35 

13 yt2l 827 L421 527,33 15 522,281,534 

    3) 3515 4,16 
  

Boundary CLOG ES: 

Entry States K = {3,11,19,25,31} 

Exit States J {4,16,22,28,34} 

Table 4.4. Partition of table 4.2 from 

C10 to t3. 

  

  

£10,¢19,¢25 Los coro ba,21 27,33 

  £19,001,¢27 |14,21,27,33 115,22,28,34 
  

Boundary C10 = 2s 

Entry States K (11519,25,31} 

Exit States a) {15222834} 

Table 4.5. Partition of table 4.2 from 

tl10 to t27. 
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Chapter 5. 

Implementation of the Conversation Scheme. 

5.1 Introduction. 

In the previous chapter a design method was 

developed which enabled the designer to place conver- 

sation boundaries systematically. The method also 

gave properly nested conversation boundaries when two 

conversations were not disjoint. The aim of this 

chapter is to present an implementation for the 

conversation scheme using the concurrent programming 

language occam [36]. To be able to develop an imple- 

mentation of the conversation scheme, once its boun- 

daries have been identified, a number of subgoals must 

be met. Methods must be presented for the recovery 

roll back mechanism, if the conversation is failed, a 

structure for alternative blocks is required, the 

acceptance tests should be performed by the processes 

within the conversation and their results relayed to 

all other processes in the conversation and finally 

information smuggling should be prevented. 

The method described here shows how these struc— 

tures may be built without extensions to the language 

occam. An illustrative example is given to demon- 
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strate the use of these methods. 

5.2 Features of Occam Support Environment. 

In chapter 3 the primitives and constructs of the 

concurrent language occam were described. Some 

features of the support environment are now outlined, 

which prove useful in the implementation of conversa- 

tions. 

5.2.1 Initialisation and Termination of Processes. 

Processes can be initialised and activated at the 

beginning of a program by the operating system. 

Processes may also be created during the operation of 

the program using process calls which may involve 

passing channels, variables and values as parameters 

to the process. The system terminates only when all 

processes within it have terminated. If the processes 

in the system contain loops or are part of races then 

termination messages passed along channels may be 

required to ensure proper termination of all processes 

in the system. 

5.2.2 Folds. 

The occam program support environment [22,59] 

provides a folding editor. The folds can be used to 

accommodate a hierarchical set of program elabora- 
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tions. The folds do not alter the execution of the 

program, however, they clarify the structure of the 

program and are used in the implementation presented 

here to highlight the structure of the programs and 

the structure of the conversations used for error 

detection and recovery. Each fold, denoted by "..." 

and a fold name, can contain program statements and/or 

other folds. An opened fold is denoted by "{{{ 

}}}" and the fold name. 

5.3 An Implementation of the Conversation Scheme. 

A conversation may be implemented using either 

centralised control with a test line coordinator pro- 

cess or distributed control with a distributed coordi- 

nation mechanism. In the following both centralised 

and distributed mechanisms are developed and imple- 

mented using the occam programming language. 

5.3.1 Features of the Conversation Scheme. 

The structure of a conversation is described in 

chapter 4, In summary: 

- A recovery line is defined at the entry to the 

conversation, which processes may not cross during 

roll back. 

- A test line is defined at the exit from the conver- 

sation, which is an acceptability criterion for the 
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processes leaving the conversation. 

- No information should be passed to or from processes 

outside the conversation. Thus, two side walls are 

postulated to prevent information smuggling. 

- Processes can enter a conversation asynchronously. 

- Processes must leave a conversation synchronously. 

- Processes cooperate in error detection. 

5.3.2 Design and Implementation of a Centralised 

Conversation Mechanism. 

Consider 3 processes (P1,P2,P3) which interact 

with each other by message passing, as shown below. 

Where process flow is denoted by -. 

A conversation is required to protect a critical 

part of the system. To place the conversation in the 

correct position across the processes the techniques 

developed in chapter 4 are used. The boundary is 

shown below by *. 

nO ie



The parts of processes included in the conversa- 

tion can be enclosed within a fold associated with the 

conversation. This clarifies the program structure. 

To make the conversation structure easier to identify, 

and to increase checks on information smuggling, the 

parts of the processes involved in the conversation 

can be put in "conversation processes" (CP1,CP2,CP3 

below) and initiated by the main processes themselves. 

All these "conversation processes" can then be folded 

away in a conversation fold. 

PL 2 2S cpl cP2 cP3 

In the centralised case a conversation consists 
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of its constituent processes and a conversation con- 

trol process which acts as a test line coordinator for 

the conversation. When a conversation is started, a 

nominated member of the set of entry processes ini- 

tialises the conversation coordinator. The coordina- 

tor exists for the duration of the conversation. When 

all acceptance tests have been passed all processes 

involved in the conversation are terminated. Below 

the test line process is shown by TLP and will be 

included into the conversation fold with the "conver- 

sation processes". 

Pl Pl P3 CPL cP2 cPe3 TLP 

Since the processes in the conversation are 

grouped together in folds easy identification of side 

wall violations is achieved. 

5.3.3 Implementation Example. 

Consider, for example, the three axis positional 

robot discussed in chapter 4. This comprises opera- 

tor, control and axial positioning processes (fig 5.1) 
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which are elaborated in figure 5.2(a,b,c). A central- 

ised coordinator is used for each conversation which 

provides fault tolerant control of a distributed sys- 

tem. 

{{{ process 3 axis robot 

eee operator process 

eee control process 

eee 3-axial position processes 

y}} 

Fig 5.1. 3 Axis Control Robot. 

The conversations are determined by partitioning 

the reachability tree of the system. The main conver- 

sation is required to protect the process which calcu- 

lates new values of axial coordinates and the motor 

process implements these coordinates. This conversa- 

tion involves all main processes: operator, control, 

motors and its boundary is shown clearly in the list- 

ing for each process (fig 5.2a,b,c). Alternatively, 

folding can be used to clarify the structure of the 

conversation, For example, the program can be 

refolded such that all constituent parts of the 

conversation (including the test line process) lie 

within a fold, as in figure 5.3. 
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The structure of the control part of the conver- 

sation including the control test line and recovery 

procedure is shown in fig 5.4. The primary and alter- 

native blocks are again folded away to reveal the 

structure of the recovery mechanism. On entry, the 

recovery variables are saved, for use if the process 

is rolled back. The control variable, "enter", con- 

trols the forward path and initially points to the 

primary block, which is then executed. On exit from 

the primary block the local acceptance test is exe- 

cuted on the control part of the conversation. The 

result of this acceptance test (pass or fail) is 

reported to the test line process. The test line pro- 

cess (fig 5.5) collects the results of all local 

acceptance tests and determines whether the conversa- 

tion has succeeded. If all tests are passed the test 

line process notifies all exit processes in the 

conversation and the conversation is terminated. If 

one or more of the acceptance tests fails the test 

line process notifies all processes that recovery roll 

back is to be executed. The processes then roll back 

and restore the saved entry states and the block entry 

variable is updated, the next block is then executed. 

The above procedure is then repeated. 

The test line process (fig 5.5) uses the ALT con- 

struct to receive notification of the results of local 

acceptance tests. The acceptance process does not 
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therefore assume any particular order for the termina- 

tion of the constituent processes; nor does it impose 

any timing constraints on the systems performance. 

Thus, the figures 5.2a - 5.5 show a conversation 

design using occam which includes a recovery roll back 

mechanism, a structure to choose the alternatives, an 

acceptance test procedure and easy identification of 

information smuggling. In the next section an imple- 

mentation of nested conversations is considered. 

5.3.4 Nested Conversations. 

Properly nested conversations may be designed 

using the methodology outlined in chapter 4, by iden- 

tifying partitions which are totally enclosed within 

other partitions; the inner nested conversation is 

initiated by processes which are themselves within a 

conversation, Again these processes can be folded 

away into a conversation fold. An example of this 

type is shown (fig 5.6) in an elaboration of the pri- 

mary block of the control process (fig 5.2b). Here 

the conversation protects the procedure by which 

operator passes new input values to process control, 

and the controller calculates new coordinates. This 

conversation involves the processes: operator, control 

and test line. 

5.3.5 Global Acceptance Tests. 
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The processes in a system of communicating 

processes will inherently not have the complete infor- 

mation relating to the whole system. To provide a 

higher degree of reliability for the system, informa- 

tion from a number of processes may be required to 

enable an acceptance test to be performed. In such 

circumstances the local acceptance tests are not suf- 

ficient to protect the system. An additional global 

acceptance test will be required to ensure certain 

conditions between processes do not exist. In the 

implementation presented here an acceptance test pro- 

cess is used to coordinate the processes leaving the 

conversation, there by providing a global acceptance 

test. When each process sends its local acceptance 

test results to the acceptance test process they also 

send the data required for the global acceptance test. 

This data are collected by the acceptance test process 

which performs the global acceptance test and reports 

the result to the other processes in the conversation. 

This extension to the previous example are shown in 

figs 5.7), 5.8 and 5.59. 

5.4 Implementation of a Distributed Acceptance Test 

Process. 

The centralised control of a conversation, such 

as those described above, can be removed by introduc-— 
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ing a mechanism in which each process transmits the 

result of its local acceptance test to all other exit 

processes. Each exit process will contain an indivi- 

dual version of the test line and will autonomously 

decide whether to continue or recover. An example of 

this method using the two processes in conversation b, 

is shown in figs 5.10 and 5.11. 

5.4.1 Disadvantages of this Method. 

Communications between processes as well as 

design faults are a possible source of errors. It is 

therefore advantageous to reduce the number of commun- 

ication channels required in the system. 

Consider the number of channels required in a 

distributed system: 

assuming there are N processes in the conversation, 

Process(i) will require (N-1) channels to communicate 

to all other processes, therefore the total number of 

channels required is N(N-1). 

For the centralised case Process(i) will require 2 

channels, one to the test line coordinator and one to 

receive the return message, again assuming N processes 

the total number of channels required is 2N. 

Thus, the number of channels required for more 

oe 5



than three processes is much larger than that for the 

centralised conversation structure. For example, a 

conversation involving 5 processes requires 10 chan- 

nels in the centralised case and 20 channels in the 

decentralised case. 

In addition the processes have to communicate 

with each other in a specific order. This becomes 

necessary because in occam outputs can not be used as 

guards to processes. This adds further complexity to 

the implementation of this type of conversation, and 

means the structure of the processes will change with 

the number of processes involved in the conversation. 

The complexity is increased with an increase in the 

number of processes in the conversation. 

A further example to emphasise this point is 

shown in figs 5.12a,b,c, where the program following 

the acceptance test is illustrated for a conversation 

involving three processes. It can be seen from this 

that the processes are asymmetric and careful design 

of the distributed test line process is necessary if 

deadlocks are to be avoided. 

Finally, a global acceptance test with this type 

of implementation is not easily performed. One of the 

processes within the conversation would have to be 

nominated to perform such a test and all results would 

have to be sent to it. 
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Thus, a centralised test line process is to be 

preferred in many applications. The relative simpli- 

city of the centralised test line process implementa- 

tion is due to the constructs available within the 

language occam. 

5.5 Advantages Gained using occam,. 

A channel in occam can only belong to two 

processes, one of which is the input and the other the 

output of the channel [60,61]. This limitation is 

very useful when constructing conversations. For 

example, one of the major rules of conversations is 

that no information smuggling should occur. That is, 

only processes involved in the conversation should 

interact with each other. Within a conversation smug- 

gling will not occur if no channel belongs to a  pro- 

cess outside the conversation. 

The alternative construct (ALT) makes it possible 

for a process to accept inputs from any number of 

channels in a nondeterministic way. This simplifies 

construction of the test line process. In addition 

the operation of accepting inputs from all other 

processes is simplified by the use of the replicator 

on the alternative construct (ALT i = [0 FOR n]). The 

resulting part of the program consists of only two 

statements and its length is independent of the number 
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of processes involved in the conversation. 

Similarly the acceptance process transmits to all 

other processes in the conversation by using the 

replicator with the parallel construct (PAR i = [0 FOR 

m}). 

Although the technique of folds does not affect 

the actual construction of the program it does help 

clarify the structure of the program. By using the 

folds in appropriate places it is possible to reveal 

the important features of the conversation. For exam- 

ple, the processes involved in each conversation can 

be seen clearly, as in fig 5.3. Similarly, the struc-— 

ture for roll back and entry into alternatives are 

highlighted in fig 5.4. The acceptance test for each 

process involved in the conversation can be seen 

easily also in fig 5.4. 

Finally, the structure of the recovery mechanism 

is independent of the primary and alternate blocks. 

The recovery mechanism proposed here considers’ the 

alternatives as blocks which are entered and then pro- 

duce results. How this is achieved is of no conse- 

quence to the recovery mechanism. Each block within a 

conversation can therefore be considered indepen- 

dently, as in the primary block of the control pro- 

cess, fig 5.6. These blocks may be changed without 

affecting the structure of the conversation mechanism 
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in any way. An extra alternative can be added easily 

to the structure by the addition to the IF clause 

(i.e. enter = 4) and the new alternative block. 

By using the centralised test line process’ the 

constituent processes in the conversation do not 

require knowledge of the number of other processes 

within the conversation. This makes the mechanism for 

the acceptance test independent of the number of 

processes. 

The mechanism proposed thus forms a generalised 

design and implementation of the conversation mechan- 

ism. 

5.6 Discussion. 

It has been shown that by using the features of 

the concurrent language occam a conversation design 

can be implemented easily and is independent of the 

application. Further, the characteristics of the com- 

munications in occam, in which communication channels 

belong to two processes only, was exploited to solve 

the problem of information smuggling by ensuring that 

no channel in the conversation belongs to a process 

outside the conversation. The design procedure was 

aided by the use of folding editors which facilitate 

functional elaboration. These were used to highlight 
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the structure and extent of the conversation; in 

effect folds were used as a design notation for the 

boundary of conversations. 
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{{{ process operator 

PROC operator (CHAN send,receive,dis0O) = 
VAR: X5¥4,2, Dun 

SEQ 

run := TRUE 
WHILE run 

SEQ 
aes get inputs x,y,z 

  

Initiate conversation a. 
—-*#4* Recovery Line *####AxHARAARARAREE 

PAR 

acceptest 
operatortocontrol(send,x,y,z) 

HHkREKK Test Line *#*RRRKKKERKAKEAREERE 

-- Conversation a ends. 

receive ? ANY 
-- receive move confirmed 

out(disO,"arm moved to position*n*c") 
LF 

(x=0) AND( y=0) AND(z=0) 
-- then finish 

SEQ 

out(disO,"finished arm at 0,0,0*n*c") 
PAR i = [0 FOR 5] 

stop[i] ! ANY 
run := FALSE 

TRUE 
-- else continue 

PAR i = [0 FOR 4] 

go[i] ! ANY 
PE} 

Fig 5.2a. Process operator



{{{ process control 
PROC control (CHAN receive,send,stopi,goi,disl) = 

VAR going 

SEQ 
xold 
yold 

zold 
going := TRUE 

WHILE going 
SEQ 

0 
0 
0 

-- Initiate conversation a. 
--*##*k* Recovery Line *#kKKKKKHEARHRER ERK 

controltomotor(receive,send,disl) 
K-*#KEKK Test Line ****KAKKKKKKKKKKAREREKE 

-- Conversation a ends. 

send ! ANY 
ALT 

stopi ? ANY 

going := FALSE 

goi ? ANY 

SKIP 

}}} 

Fig 5.2b. Process Control.



  

{{{ process motor 

PROC motor(CHAN motion,finished,stopi,goi, 

disi,alrighti,oki,VALUE n) = 
VAR step,direction,going 

SEQ 
going := TRUE 

WHILE going 

SEQ 

-- Initiate conversation a. 
--#kkk* Recovery Line #*###AKKARRARKAKEA 

movemotors(motion,finished,disi, 
alrighti,oki,n) 

K=*KREK Test Line BRR EAKKKKKEKEKEEERE 

-- Conversation a ends. 

ALT 

stopi ? ANY 
going := FALSE 

goi ? ANY 
SKIP 

bP} 

Fig 5.2¢c. Process Motor.



  

{{{ conversation a. 
—-*kk** Conversation Fold Start ***#x*x* 
».. conversation a, (operator part). 

cee CONVErSAtLON a, Coonteol pant). 

e». conversation a, (motor part). 

++. test line (coordinator). 
—-*ekk* Conversation Fold Finish **#***% 
by} 

+... remainder of operator process 

».. remainder of control process 

«». remainder of motor process 

Fig 5.3. Axis Control Robot with Refolding 

to show Conversation. 
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{{{ conversation a, from control. 
PROC controltomotor (CHAN receive,send,disl) = 

DEF limit = 10, pass = 1, fail = 0 

VAR going,enter 

SEQ 
going TRUE 
enter 0 

  

* «+ Save recovery variables 

WHILE going 

SEQ 
recovery line. 

ae. restore variables if roll back occurs 

  

-- Recovery loop. 

enter := enter + 1 
LF 

(enter = 1) 
«+. primary block 

(enter = 2) 
»«.2nd block 

(enter = 3) 
Se 5 ore ibLock 

  

Acceptance test for control part of 

-- conversation a. 
LF 

((xold < limit)AND(yold < limit)AND 
(zold < limit)) 

-- Inform test line process result of 

-- acceptance test. 

allright[0] ! pass 
TRUE 

allright[0] ! fail 

  

Get result of combined acceptance test from 
-- test line process. 

ok[0] ? test 
LF 

(test = pass) 
going := FALSE 

TRUE 

SKIP 

SKIP 

th} 

Fig 5.4. Acceptance Test and Recovery Structure.



{{{ test line. 
PROC acceptest = 

DEF pass = 1, fail = 0, total = 5 

VAR flag,num,going,test 

SEQ 

going := TRUE 

WHILE going 
SEQ 

flag : 
num := 0 

  

pass 

- Get results from all processes in conversation, 

  

WHILE num < total 
ALT i = [0 FOR total] 

allright[i] ? test 

  

IF 

(test = pass) 
num 2= num + | 

TRUE 

SEQ 
flag fail 
num := num + | 

-- Communicate result of all accptance tests 

-- to processes in conversation. 

LF 

(flag = £211) 
PAR i = [0 FOR total] 

ok[i] ! fail 

TRUE 

SEQ 
PAR i = [0 FOR total] 

ok[i] ! pass 
going := FALSE 

SKIP 

yh} 

Fig 5.5. Test Line Process. 
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-- Initiate conversation a. 

{{{ primary block of control process 
DEF total = 3 : 
VAR count,step[3],direction[3] 
SEQ 

-- Initiate conversation b. 
—-#RKEK Recovery Line **#kRKRKAKRERKKRAKR ERK 

PAR 

acceptestb 

calstepdir(receive,send,disl) 
R-KREEK Test Line *#XXRRAKKRKKKKKRRERRERRERKR 

- conversation b ends. 

  

PAR i = [0 FOR 3] 

  

SEQ 
motion[i] ! step[i] 
motion[i] ! direction[i] 

xold xnew 
yold ynew 
zold := znew 

count := 0 
WHILE count <> total 

ALT i = [0 FOR 3] 
finished[i] ? ANY 

count := count + 1 
-- conversation a ends. 
}}} 

Fig 5.6. Primary Block of Control Process. 
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{{{ conversation b, from control. 

PROC calstepdir (CHAN receive,send,disl) = 
DEF limit = 10, pass = 1, fail = 0 
VAR going,enter 

  

SEQ 
going := TRUE 

enter := 0 
*.. save recovery variables 

WHILE going 

SEQ 

-- recovery line. 

«.«. restore variables on roll back 

-- Recovery loop. 

enter ¢=Jjenter + 1 
L¥ 

Center = 1) 
«os primary block 

(enter = 2) 
s sie 2nd block 

(enter = 3) 
< s2oG0i block 

  

Acceptance test for control part of 

-- conversation b. 
IF 

((xnew < limit)AND(ynew < limit)AND 

(znew < limit)) 

-- Inform test line process result of acceptance 

-- test, and send data for global acceptance test. 

SEQ 
allright[5] ! pass 

allright[5] ! xnew 
TRUE 

allright[({5] ! fail 

-- Get result of combined acceptance test from 

test line process. 

    

ok[5] ? test 
LE 

(test = pass) 
going := FALSE 

TRUE 

SKIP 

SKIP 

i: 
Fig 5.7. Acceptance Test and Recovery Structure 

of control part of Conversation b with 

global acceptance test. 
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{{{ conversation b, from operator. 

PROC optocontrol (CHAN receive,send,disl) = 

DEF limit = 10, pass = 1, fail = 0 

VAR going,enter 

  

SEO 
going := TRUE 
enter := 0 

» as Save recovery variables 

WHILE going 

SEQ 
-- recovery line. 
».. restore variables on roll back 

-- Recovery loop. 

enter := enter + 1 
ak 

(enter = 1) 
«.. primary block 

(enter = 2) 

se. 2nd block 
(enter = 3) 

»«, 3rd block 

  

Acceptance test for operator part of 

-- conversation b. 
ak 

((x < limit)AND(y < limit)AND(z < limit)) 

  

Inform test line process result of acceptance 

-- test, and send data for global acceptance test. 

SEQ 
allright[6] ! pass 
allright[6] ! x 

TRUE 
allright(6] ! fail 

-- Get result of combined acceptance test from 

-- test line process. 

ok[6] ? test 

IF 

(test = pass) 

going := FALSE 

TRUE 

SKIP 

SKIP 

}}} 
Fig 5.8. Acceptance Test and Recovery Structure 

of operator part of Conversation b with 

global acceptance test.



{{{ test line for conversation b. 

PROC acceptest = 

DEF pass = 1, fail = 0, total = 2 

VAR flag,num,going,test,data[7] : 
SEQ 

going := TRUE 
WHILE going 

SEQ 
flag 

num 
pass 

0 
   

  

Get results from all processes in conversation. 

WHILE num < total 
ALT £ = [5 FOR cotal] 

allright[i] ? test 
IF 

(test = pass) 
SEQ 

-- Input data for global acceptance test. 

allright[i] ? data[i] 

  

num := num + 1 
TRUE 

SEQ 
flag fail 

num := num + 1 

  

Communicate result of all accptance tests to 
-- processes in conversation. 

LF 

(flag = fail) 
PAR i = [5 FOR total] 

ok{i] ! fail 

TRUE 

-- Global acceptance test. 

TF 
(data[5] <> data[6]) 

PAR i = [5 FOR total] 
okt) b £add 

TRUE 
SEQ 

PAR i = [5 FOR total] 
ok[i] ! pass 

going := FALSE 

SKIP 

wht 
Fig 5.9. Test Line Process for Conversation b 

with global acceptance test added.



{{{ conversation b, from control. 
PROC calstepdir (CHAN receive,send,disl) = 

DEF limit = 10, pass = 1, fail = 0 
VAR going,enter,test 

SEO 

going := TRUE 

enter := 0 
+s». Save recovery variables 

WHILE going 

SEQ 
=—- recovery line. 
«..- restore variables on roll back 

  

Recovery loop. 

enter := enter + 1 
OE 

(enter = 1) 
... primary block 

(enter = 2) 

««. 2nd block 

(enter = 3) 
eae ord block: 

  

Acceptance test for control part of 

-- conversation b. 

LF 

((xnew < limit)AND(ynew < limit)AND 

(znew < limit)) 

Inform other process result of 

acceptance test and receive theirs. 

  

SEQ 
allright[5] ! pass 
allright[6] ? test 

ce 

(test = pass) 

going := FALSE 

TRUE 

SKIP 

TRUE 

SEQ 
allright[(5] ! fail 
allright[6] ? test 

SKIP 

}}} 

Fig 5.10. Acceptance Test and Recovery Structure 

of control part of Conversation b with 
decentralised acceptance test. 
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{{{ conversation b, from operator. 
PROC optocontrol (CHAN receive,send,disl) 

DEF limit = 10, pass = 1, fail = 0 
VAR going,enter,test 

SEQ 
going TRUE 

enter 0 
«a. Save recovery variables 

WHILE going 

SEQ 
recovery line. 

- restore variables on roll back 

      

Recovery loop. 

enter := enter + 1 
IF 

(enter = 1) 
».. primary block 

(enter = 2) 
» ee 2nd block 

(enter = 3) 
++ 3rd block 

  

Acceptance test 

conversation b. 
IF 

((x < limit)AND(y < limit)AND(z 

for operator part of 

  

Receive results from other process 

and relay own results. 

  

< limit)) 

SEQ 

allright[5] ? pass 
allright[6] ! test 
ne 

(test = pass) 
going := FALSE 

TRUE 

SKIP 

TRUE 

SEQ 

aliright(5], ? fait 

allright[6] ! test 
SKIP 

}}} 

Fig 5.11. Acceptance Test and Recovery Structure 

of operator part of Conversation b with 

decentralised acceptance test. 
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PROC A 

recovery loop 

LF 
(acceptance test) 

SEQ -- passed local test 

PAR i = [0 FOR 2] 

allright[i] ! pass --inform other processes 
WHILE num ¢ total 

ALT i = [2 FOR 2] 
allright[i] ? test -- get their results 

IF 
(test = pass) -- pass 

num := num + 1 
TRUE 

SEQ ==) £41. 

fulltest := fail 
num := num + 1 

IF 

(fulltest = pass) -- if all pass 
going := FALSE -- exit conversation 

TRUE 
SKIP 

TRUE 
SEQ -- failed local test 

PAR i = [0 FOR 2] 
allright[{i] ! fail -- inform other processes 

WHILE num ¢ total 
ALT i = [2 FOR 2] 

allright[i] ? test -- get their results 

num := num + 1 

Fig 5.12a. Acceptance Test Structure with 
three processes in the Conversation 
with decentralised acceptance test. 
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PR 

IF 

oc B 

recovery loop 

(acceptance test) 
SEQ 

allright[0] ? test 
IF 

(test = pass) 

SKIP 

TRUE 

fulltest :=' fail 
PAR 

allright[2] ! pass 

allright[4] ! pass 
allright[5] ? test 

Le 

(test = pass) 
SKIP 

TRUE 

fulltest := fail 
IF 

(fulltest = pass) 

going := FALSE 

TRUE 

SKIP 

TRUE = 

PAR 

allright[0] ? test - 
allright[2] ! fail 
allright[4] ! fail 

allright[5] ? test - 

Fig 5. 12b. 

passed local test 

result from A 

infrom local to A 
infrom local to C 
get result from C 

  

failed local test 

from A 
to A 

to C 
from C 

Acceptance Test Structure with 

three processes in the Conversation 

with decentralised acceptance test. 

ipa



  

PROC C 
recovery loop 

IF 

(acceptance test) 
SEQ 

allright[1] ? test 
IF 

(test = pass) 
SKIP 

TRUE 

fulltest s= fail 
PAR 

allright[3] ! pass 
allright[4] ? test 

LF 

(test = pass) 
SKIP 

TRUE 

fulltest := fail 
allright[5] ! pass 
IF 

(fulltest = pass) 
going FALSE 

TRUE 

SKIP 

TRUE 

PAR 

allright[{1] ? test 
allright[3] ! fail 

allright[4] ? test 
allright[5] ! fail 

Fig 5.12c. 

passed local 

local from A 

inform local 
local from B 

infrom local 

failed local 

from A 
to A 

from B 
to B 

Acceptance Test Structure with 

test 

to A 

test 

three processes in the Conversation 

with decentralised acceptance test. 
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Chapter 6. 

Reliable Communications. 

6.1. Introduction. 

In a system consisting of a set of communicating 

processes, if one of the communicating processes fails 

to reach a communication point the other process 

involved in the communication could become deadlocked 

[19]. If a process has become deadlocked it is not 

possible for the process to recover from faults by 

using the conversation scheme alone; since process 

flow has stopped. A deadlocked process may cause 

further processes to become deadlocked by its failure 

to reach future communication points. In a system 

using conversations for fault tolerance a process 

deadlocking could cause a complete failure of the sys- 

tem. The main objective of this chapter is to ensure 

that processes do not become deadlocked. 

To achieve this objective each of the communica- 

tion primitives, for message passing, are introduced. 

Message types for such systems are considered and two 

main types are identified. The requirements for reli- 

able communications for each of these message types 

are given. Each of the communication primitives are 
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compared with the requirements for reliable communica- 

tions. 

The analysis of the communication primitives show 

them to be deficient in a fault tolerant situation. 

The message types are analysed using a Petri net 

state-transition model. State reduction of the 

state-transition model can be made. It is then possi- 

ble to identify a boundary for a mechanism which will 

timeout the process. It is argued that by placement 

of a timeout mechanism around this boundary the pro- 

cess will not deadlock if a communication has failed. 

Much research has been done on the implementation 

of distributed systems [22,46,62-68]. This has mainly 

concentrated on the development of languages for such 

systems. Less research has been done on the design of 

such systems. Generally in these designs [69-73] the 

issues of communication and synchronisation by message 

passing are not addressed explicitly. Communication 

mechanisms, such as the monitor [30], rely upon shared 

memory for passing messages. This limits the choice 

of hardware for the system. A message passing mechan- 

ism for interprocessor communications provides a more 

flexible choice of hardware for the final implementa- 

tion, since this can use any hardware configuration 

from a completely distributed system to a shared 

Memory system. Message passing also has the advantage



  

of mirroring better a physically distributed system. 

6.2 Communication Primitives. 

In this chapter a task which initiates a communi- 

cation will be referred to as a source task. The task 

to which a communication is sent is called an object 

task. A channel is the medium used for such communi- 

cations. Channels are unidirectional. 

It is assumed that all interprocess communication 

is accomplished by message passing. The different 

communication primitives used in message passing can 

be classified into three types [63]: 

a) Synchronous. 

b) Asynchronous. 

c) Remote Procedure Call. 

6.2.1 Synchronous. 

In a synchronous system the process that reaches 

the communication point first must wait for the other 

process before it can continue. The source task 

requires an acknowledgement from the object task 

before it can proceed. The source task may then issue 

an initiating message. On receipt of this message, 

the object task will issue an acknowledgement message. 
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When the source has received the acknowledgement both 

processes may continue autonomously. Process syn- 

chronisation is thus enforced through communication. 

This type of communication can be found in C.S.P., 

occam, L [46,22,62]. 

Synchronous communication has two primitives, 

shown below: 

comms ! <message>; --source task sends 

--<message> to object task. 

comms ? <message>; --object task receives 

--<message> from source task. 

Since these are primitives of the language the 

acknowledge is implied and not shown in the notation. 

6.2.2 Asynchronous. 

Asynchronous communication systems do not require 

the object task to acknowledge the receipt of a mes- 

sage from the source. In this type of communication 

primitive the source task issues an initiating message 

and may then continue its operation. Since synchroni- 

sation is not enforced, some form of buffering is 

required to hold the initiating message should the 

object task not be ready to receive the message. 

Similarly, the object task may be required to wait if 

the message has not been initiated by the source. 

This type of communication primitive can be found in 
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CLU, PLITS [63,64]. 

The asynchronous communication also has two prim- 

itives; these are of the form: 

SEND <message> TO <object.task>; 
-- source task sends <message> to object task 

RECEIVE <message> FROM <source.task>; 

-- object task receives <message> from source task. 

6.2.3 Remote Procedure Call. 

The third type of communication primitive is the 

remote procedure call (remote invocation). The object 

task performs a specific function for the source task 

in away similar to that of a subroutine. The object 

task is not initiated until it has received the source 

message, it completes local computation before issuing 

a reply. The source task waits for the object task to 

report completion of the procedure before continuing. 

Communication primitives of this type can be found in 

ADA, DP, CONIC [65-70]. 

The remote procedure call primitives have two 

parameters as shown below: 

SOURCE TASK 

object.request <in-parameters,out-parameters>; 

OBJECT (PROCEDURE) TASK 

accept.request <in-parameters> 

do <service request 

send out-parameters>; 

So



6.2.4 Message Transactions. 

Messages are used in distributed systems for the 

collection or distribution of data and to promulgate 

decisions or actions. Three main functional classifi- 

cations or transfer categories are identified for mes- 

sages in distributed computer systems [74] : command, 

status and alarm. 

COMMANDS are messages which cause a change of 

state or action in the object task. These messages 

generally require a reply from the object task to sig- 

nify completion of the action. 

STATUS messages are sent by a source task to a 

number of object tasks and are used to convey source 

status. These message may be initiated by the source 

either periodically or when the state of the source 

task changes. Status messages may also be generated by 

an object task in response to a request from a source 

task. 

ALARMS are messages initiated by the source to 

inform the other tasks that the controlled process is 

malfunctioning or is in an unsafe state. 

These transfer categories can be divided into two 

message types [74]: 

Command Message Type: Those requiring a reply to 
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their initial message: command and requested status 

messages. 

Notify Message Type: Those requiring no reply: 

periodic status, event status and alarm messages. 

6.3 Requirements for Reliable Communications. 

As discussed in the introduction of this chapter 

tasks should not be allowed to deadlock. In this sec- 

tion the requirements this imposes for both source and 

object task are considered. Each of the message pass-— 

ing primitives are used to model the message types 

described above and related to the requirements for 

reliable communications. 

The source task may fail to complete a request- 

reply transaction for a number of reasons: loss of the 

request message by the communications system; non- 

acceptance of the request by the object task due to 

processor failure or object task failure; falilaere “of 

the object task while it is servicing the request; 

loss of the reply message by the communications sys- 

tem. 

Any of the above failures will leave the source 

task suspended indefinitely, i.e. deadlock. Conse- 

quently, the requirement for a task initiating a 

request-reply transition is that it should have the



capability of detecting failure of a transaction and 

abandoning or aborting it. 

While a task is awaiting completion of a 

request-reply transaction it cannot respond to other 

inputs from other tasks. A task must be able to set a 

maximum limit on the time it allocates to the 

request-reply transaction. Thus, a periodic interrupt 

from an independent time source is required to provide 

a time-reference event, independent of the software 

processes. The timing performance of an application 

process can be monitored by a real-time time-lapse 

counter, Both processes will be attempted con- 

currently; the first task to complete succeeds and the 

other attempt is withdrawn. This “timeout” technique 

is known as a “watchdog” [42] mechanism. The timeout 

can also be used to meet the requirement to detect and 

abandon failed transactions. 

The integrity requirement for the object task is 

primarily that it should not be capable of suspending 

itself indefinitely waiting to receive a transaction 

which could fail to arrive. This requirement is par- 

tially met by the behavioural requirement for the 

object task to be able to wait on more than one poten- 

tial transaction. 

However, where a task is committed to performing 

an action regularly it must be able to limit the time



it is in the waiting state. For the object task this 

is the time it is prepared to wait to accept transac-— 

tions. The object task must be able to timeout from 

awaiting transactions. This timeout covers the 

integrity requirement that the task should not be 

indefinitely suspended. 

6.4 Implementation of Message Types. 

The two groups of message types (command and 

notify) for distributed systems identified above can 

be modelled using the communication primitives of sec- 

tion 6.27. In this section analysis shows that when 

these two groups of messages are implemented directly 

with these primitives they contain ambiguities and 

deficiencies [24]. 

6.4.1 Command Message Types. 

The command message can be modelled using the primi- 

tives described in section 6.2: 

Command: Asynchronous Implementation. 

SOURCE TASK OBJECT TASK 

SEND <request> 
TO <object>;  <-<-=--+= > RECEIVE <request> FROM 

<source>; 
(service request) 

RECEIVE <reply> <======-—=— SEND <reply> TO <source>; 

FROM <object>; 

The communication subsystem of a distributed 
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computer system may be subject to failure, either from 

external cause or because of faults in the object or 

source tasks. It is common to incorporate a timeout 

mechanism in such a system which will initiate the 

appropriate recovery mechanism. The timing require- 

ments of such a system are only partially satisfied if 

the RECEIVE primitive is put in a SELECTIVE or ALTER- 

NATIVE construct with a timeout. 

SOURCE TASK 

SEND <request> TO <object>; 
SELECT 

TIMEOUT <period> 

Se cerae <request> FROM <object> 

When the select statement is executed both the 

communication and timeout tasks are attempted. Which- 

ever task is completed first is defined as executed 

and the other attempt is withdrawn. However, such a 

model is still ambiguous because of the absence of any 

logical or notational paring between the two halves of 

the transaction. This could lead to a situation in 

which the object task sends a message to a timed-out 

source task, 

Command: Synchronous Implementation. 
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SOURCE TASK OBJECT TASK 

initiate ! <request>; ====——-= > initiate ? <request>; 

(service request) 
answer ? <“reply>;  <---=s=--= answer ! <reply>; 

In this case the logical clarity is good. How- 

ever, the timing requirements are not easily satis-— 

fied. For example, if a timeout was placed on the 

receive primitive to break the wait-for- 

synchronisation then the source task could be 

suspended if the timeout was activated: 

SOURCE TASK OBJECT TASK 

clock := NOW; 
ALT 

WAIT NOW AFTER <clock + 

timeout> 
initiate ! <request> ===> initiate ? <request> 

A time-out can not be placed on the send primi- 

tive because outputs are not allowed as guards in syn- 

chronous primitives. 

The remote procedure call primitive of section 

6.2 simulates the command message directly: 

Command: Remote Procedure Call Implementation. 

SOURCE TASK 

objecttask.request <in-parameter, 

out-parameter>; 

OBJECT (PROCEDURE) TASK 

accept request <in-parameters> do 

<service request - send out-parameters>; 
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Remote procedure calls of this type are used for 

communications in the Ada language [65]. The Ada 

implementation uses a timeout on the acceptance of 

the message by the object task and has the form :- 

SOURCE TASK 

SELECT 

TIMEOUT <period> 
OR 

object.request <in-parameters,out-parameters>; 

This system is again ambiguous, for if the reply 

message is lost then the source task is suspended 

indefinitely. A solution to the problem of source 

task suspension was included in CONIC [70] in which 

the timeout is placed on the completion of the whole 

transaction. 

6.4.2 Notify Message Types. 

Notify transactions consist of one message con- 

veying unsolicited information from source to object 

task. The information is unsolicited in the sense 

that it is not in reply to a specific request from the 

object task. Notify transactions can be between one 

source task and one or more object tasks. The nota- 

tion below describes a notify transaction, 
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SOURCE TASK OBJECT TASK 

initiate notify message 
nea > accept 

continue continue 

As with the command message type, some form of 

breakout mechanism is required around this transaction 

if process deadlock is to be prevented. 

To achieve a reliable system the communication 

models outlined above must be assessed as formal nota- 

tions for the expression of concurrency, the pairing 

of communication primitives, and the ability to incor- 

porate timeout mechanisms in a satisfactory manner. 

None of the models outlined satisfy all of these 

objectives. The first two objectives are satisfied by 

the synchronous communication system which is 

developed in C.S.P. [50] and embedded as primitives in 

the derived language occam [22]. The formal semantics 

of C.S.P. allow certain proofs of program correctness 

and include correctness preserving transformations. 

However, the scope of the language does not include 

timeout mechanisms. The third objective is met by 

CONIC. 

The two separate lines of development [22,70] 

have led to the language CONIC which satisfy the 

-147-



transaction and timing requirments and to the synchro- 

nous communication systems such as that in occam which 

provides a formal notation and mechanism for the 

implementation of strictly synchronous systems. The 

following section explores the advantages to be real- 

ised by developing a formal construct which includes 

select or “breakout” to provide the flexibility 

required to satisfy timing constraints for a synchro- 

nous communication system [20]. 

6.5 Modelling with Petri Nets. 

Using the modelling techniques of chapter 3 it is 

possible to show where the boundary for a timeout 

mechanism must be placed if the communications are to 

be protected. 

Starting with the lowest transaction level, it is 

possible to model a synchronous communications primi- 

tive (pair) using Petri net techniques (fig 6.1). 

Since the actions within the dotted line are atomic, 

i.e. to the outside world it looks like one action, 

this communication primitive may be re-drawn by making 

the atomic actions a single transition (fig 6.2). 

This procedure is similar to that of hierarchical 

Petri nets [75]. From fig 6.2 it can now be seen that 

the only position to put a breakout mechanism is 

around the transition, as in fig 6.3.



  

Figure 6.1. Model of Synchronous Communication 

Primitive. 

  

Figure 6.2. Model of Reduced Synchronous 

Primitives. 
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Q 
select O14 select 

| { 

  

Figure 6.3. Model of Synchronous Communications 

with Breakout. 

Considering the command type transaction: this 

can also be modelled using a Petri net graph (fig 

6.4). Again looking at the graph the natural place to 

simplify the graph is to reduce the map from t4 to t6 

into a single transition which can be thought of as 

the atomic (fig 6.5). The double line indicates tha cr 

entry transition is an output for the source task and 

input for the object task, and the other way around 

for the exit transition. 

Thus, when considering where to place a timeout 

mechanism the only place is around this transition 

(Eig 6.56)! 
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Figure 6.4. Model of Command Type Transaction. 

  

Figure 6.5. Model of Reduced Command Transaction. 
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TO 

  

Figure 6.6. Model of Command Transaction 

with Breakout. 

The command group message type can now be imple- 

mented by synchronous communications. However, the 

communication primitives have been enhanced by the 

inclusion of a select mechanism which provides an 

ability to break-out of the formal notation in the 

event of system behaviour conflicting with timing 

requirments. (This is necessary because the ALT con- 

struct does not allow the inclusion of the initiating 

output).



SOURCE TASK. 

SELECT 

SEQ 

initiate ! <request>; 

answer ? <reply>; 

OR 

TIMEOUT (period); 

OBJECT TASK. 

SELECT 

SEQ 

initiate ? <request>; 

SEQ 

(service request); 
answer ! <reply>; 

OR 

TIMEOUT (period); 

Under normal circumstances the 

munication will be successful. 

    

--send request to 

-object task. 

-wait reply from object 

--task. 

--time-out if above not 
--completed by period. 

--receive from source 
=-request. 

--service request. 

--send reply to source. 

--time-out if above not 
--completed by period. 

synchronous 

However, 

cases when the timeout will be chosen: 

i) Timeout occurring when either 

object task is waiting for the other task to reach the 

communication point. In this event the 

the source or 

will not have been initiated. 

ii) Timeout occurring after 

object task 

saction, 

In each case, 

back to 

both processes will have to 

the initiation of 

but before completion of the whole tran- 

be 

the start of the communication for recovery. 
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A timeout for each communication primitive is not 

required, since a timeout on the whole transaction 

will prevent either task from being suspended indefin- 

itely. 

An implementation of the notify type message with 

synchronous communication primitives will not meet the 

reliability requirements stated in section 6.3. Both 

the source and object tasks could be suspended inde- 

finitely if its partner in the communication fails to 

reach the communication point. However, by using the 

SELECT construct introduced for the command message 

type, the integrity requirements can be met, ensuring 

neither task suspends itself indefinitely. 

SOURCE TASK 

SELECT 

initiate ! <message> 
OR 

TIMEOUT (period) 

OBJECT TASK 

SELECT 
initiate ? <message> 

OR 
TIMEOUT (period) 

As with the command message type, under normal 

circumstances the synchronous communication will be 

successful. If however one of the tasks fails to 

reach the communication point the other task will be 

broken out of the transaction by the timeout process 

and will not be left suspended indefinitely.



  

6.6 Discussion, 

This chapter examined some of the problems of 

designing software for distributed computer systems. 

It takes the view that in such systems communication 

and synchronisation should be addressed explicitly. 

It has shown that existing languages are ambiguous 

because they lack a logical paring between the two 

halves of the transaction, or have other deficiencies 

when applied to the design of distributed systems that 

are used in time-critical, real-time situations. How- 

ever, the timing requirments of such systems are 

satisfied by CONIC while the formal notation of 

languages such as occam satisfy the concurrency and 

communication needs of strictly synchronous systems. 

A notation has been proposed for the design of 

command and notify type messages in distributed com- 

puter systems. This notation provides strictly syn- 

chronous communication primitives in normal operation 

but includes break-out facilities necessary to satisfy 

timing constraints. This communication transaction 

built from occam-type primitives adds real-time com- 

munication to the notation. 

Comparing the transactions proposed in this 

chapter with the implementation described in chapter 

5, it can be seen that both the command and notify 

group message types are present. The notify type of 
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message is the most common where data are sent from 

one process to one or more processes and all processes 

continue. The command type of message can be identi- 

fied in the acceptance test structure. Here each of 

the exit processes sends its acceptance test results 

to the test line process and then waits for a result 

back from this process. 
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Chapter 7. 

Conclusions. 

7.1 Conclusions. 

In many situations the complexity of a system may 

prohibit a software design which is totally fault 

free. The use of design methodologies and correctness 

proofs will help towards the production of error free 

software but are impractical at the moment for large 

systems. In such cases the best that can be aimed for 

is a system which has a high probability of success in 

the presence of errors. Since the process of testing 

non-trivial software cannot be achieved fully provi- 

sion for hidden design errors must be made. 

This thesis has been concerned with the design of 

fault tolerant software for distributed computer sys- 

tems consisting of sets of communicating sequential 

processes, which can only communicate with each other 

by message passing. A backward error recovery mechan- 

ism was used. The type of errors the technique 

described can cope with are unpredictable design 

errors which can be detected by logical acceptance 

tests. 

A state-transition model for concurrent systems 
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was developed. The concurrent system described in the 

form of an occam specification is mapped onto a Petri 

net model. It is shown that all of the sequential and 

concurrent constructs present in occam can be modelled 

successfully. Given the Petri net model of the system 

it is shown that the state of the system can be 

represented by the Petri net and state evolution 

mapped onto a state-transition diagram of the net, 

i.e. the reachability tree. 

Since the occam language is sufficient to 

represent concurrent system, the state-transition 

model developed should also be sufficient for a con- 

current system. The Petri net model not only has the 

ability to model the control flow of concurrent sys- 

tems, and map the state evolution of such a system, it 

is also possible to provide information about the con- 

current system such as the possibility of process 

deadlock. 

A systematic design of conversations was proposed 

in chapter 4. The design method uses the state- 

transition model developed in chapter 3. The design 

makes uses of the system state evolution. A state 

evolution (state-change) table was constructed from 

the state-transition model. This table enables the 

designer to identify boundaries to protect specific 

functional parts of the system. It provides a list of 
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the minimum set of states required for entry into and 

exit from a conversation. Using process attributes 

the method also allows the designer to identify a 

minimum set of processes which must be party to a 

conversation. 

By partitioning the state-change table a number 

of times, mested conversation boundaries can be 

obtained, Since the state-transition model includes 

all state changes within the system, these nested 

conversations will always be correctly nested. 

An implementation for the conversation mechanism 

using the concurrent programming language occam is 

presented. Again the system is considered to consist 

of a set of communicating sequential processes, com- 

municating via message passing. The implementation is 

designed to be functionally independent, i.e. the 

conversation has the same structure whatever the 

application. This enables the designer to place the 

function requiring protection into the conversation 

structure and write the appropriate acceptance tests 

for each exit process in the conversation. Occam com- 

munication channels (each of which link two named 

processes only) are used to remove the problem of 

information smuggling by ensuring that no channel 

belongs to a process outside the conversation. 

The communication primitives used in message 
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passing systems are shown to be vulnerable and require 

careful design when applied to systems requiring high 

integrity. Two message types were identified into 

which the communication types can be classified. 

These message types were modelled using the same 

state-transition model developed in chapter 3. Boun- 

daries are identified for the placement of a breakout 

mechanism which will increase the integrity of the 

communications. 

7.2 Future Work. 

The implementation for the entry and exit state- 

ments of the conversation scheme has no mechanism to 

cope with the problem of a deserter process [25]. If 

a process is included in a conversation, but never 

enters it, then the other processes in the conversa- 

tion will be blocked from exiting. A possible solu- 

tion to this problem would be to place a timeout 

mechanism around the conversation block. This would 

ensure an exit from the conversation. However, this 

would complicate the recovery strategy considerably 

and is not easy to implement in the proposed system. 

A time-independent deserter detection mechanism would 

be more desirable. 

This thesis has dealt with the problem of design- 

ing and implementing a backward error recovery mechan- 
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ism for a distributed system consisting of a set of 

communicating sequential processes. The other main 

mechanism for dealing with errors in software is the 

forward error recovery mechanism. The two mechanisms 

deal with different types of errors and should not be 

thought of as being mutually exclusive. A higher 

reliability system could be produced if it incor- 

porated both forms of error recovery mechanisms. 

Thus, it would seem a very useful extension to this 

research to investigate the design and implementation 

of a forward error recovery mechanism which could be 

used with the design proposed here. 

It is felt that the design technique described in 

chapter 4 could lend itself very well to an automated 

design procedure. Taking the Petri net graph of the 

program as a starting point, it should be possible to 

generate the reachability tree automatically, with 

possible operator input for certain timings of transi- 

tions. Once the reachability tree has been produced 

the state-change and communications state-change 

tables can be produced by using simple set operations 

and the rules given for identifying communication 

transitions. The designer could then specify where he 

requires the conversation boundary on all processes or 

any one process and the system will produce a minimum 

set of entry and exit states for the conversation. It 

should also be possible for the system to detect if 

Tel



  

nested conversations are correctly nested or not. 

The proposed starting point was the Petri net 

graph of the program. Given the transformation tech- 

niques in chapter 3, it is thought possible to auto- 

mate this part of the design technique also. Tf “pos— 

sible, it would give a design tool which takes as its 

input a concurrent program or specification (in the 

form of an occam program) and produces minimum sets of 

entry and exit states for properly nested conversa-— 

tions. It would seem that this could be a very useful 

and powerful tool to have when designing fault 

tolerant distributed software. 

Work is still required on the proposal for more 

reliable communications. The system proposed in this 

thesis has not been implemented. Since it requires an 

extension to the language occam. To take this propo- 

sal further a means would be required to actually add 

this extension to the language and then run tests on 

the proposed mechanism. 
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ASPECTS OF SOFTWARE ENCINEEPING FOR SYSTEMS WITH SAFETY IMPLICATIONS 

D J Holding, G F Carpenter, A M Tyrrell 

University of Aston in Birmingham, UK 

INTRODUCTION 

Microprocessors and other programmable 
electronic systems are being used increasingly 
in communication and control systems for the 
real-time control of process plant. Modern 
microprocessors now provide, on a single 
integrated circuit, the processing power of 
a more than competent minicomputer of only a 
few years ago. The processing capability of 
the microprocessor can be enhanced by 
complementary families of programmable inter- 
face and communications devices such that 
both open and embedded microelectronic 
systems can be built with full computing 
systems capabilities. These microprocessor- 
based systems have the computational power, 
systems capabilities, low power consumption, 
high reliability and low cost necessary for 
widescale use in centralised and distributed 
control and communication systems. 

Software is used to define the information 
processing activities which turn the hardware 
into a functioning system. The required 
behaviour and performance will be achieved 
only if the software is specified correctly, 
and if the design satisfies the specification 
and is implemented properly. The systems and 
applications software necessary to apply a 
programmable electronic system to its task is 
basically independent of the size of the 
processor, but does depend on the power and 
complexity of the processor or processing 
systems. The problems of software generation 
have not been reduced as the hardware 
processing systems have been miniaturised. 

The task of designing software for process 
control systems is not trivial. Many appli- 
cations require the computing system to 
provide real-time sequential and continuous 
control over a number of process loops which 
may have safety implications. These systems 
are often required to produce computed 
responses. within critical time constraints, 
even though the control program may be event- 
driven and subject to external interrupts. 
Multi-tasking systems of this type make 
severe demands on the systems software (which 
is responsible for the allocation and control 
of the computing resources) and on the 
applications software (which is responsible 
for the control of physical plant and 
processes). Much work has been done on the 
development of techniques for use in the 
design of such systems. More recent work has 
concentrated on methodologies for the appli~ 
cation of these techniques. 

The trends outlined above have added impetus 
to the development and establishment of 
microprocessor-based distributed control 
systems which consist of sets of controllers 
linked by a suitable communications network, 
Decentralised systems of this type require 
careful co-ordination and synchronisation. 
Although the software design of such a system 
can be complex, it may be helped by the formal 
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notations and constructs developed in recent 
high-level languages for both conventional 
(sequential) and concurrent (communicating 
sequential) processes. These concepts are now 
being designed into the kernel of an emerging 
generation of microprocessors which should 
contribute much to systems design. Equally 
important, the software techniques on which 
these systems are based may be applied to the 
design of certain control systems and will 
provide a good foundation for research into 
new designs. 

The rapid increase in the application of 
programmable electronic systems in the field 
of communication and control has been 
accompanied by a corresponding increase in the 
community of designers and users of such 
systems. Those involved must have an aware- 
ness of the specific demands imposed on: the 
software, particularly in high performance 
systems which involve safety functions or have 
implications for safety. The quality of the 
software will be critically dependent on the 
use of proper procedures and techniques in all 
stages of the software life cycle (Daniels 
ay). 

      

This paper examines the various performance 
and environmental constraints which arise in 
communication and control applications and 
relates them to specific problems in software 
design. Well-established techniques for 
making such systems safe and robust are 
identified. The paper also draws on known 
techniques for specification and implementation, 
and describes current areas of research and 
concern which may affect design, particularly 
in distributed systems. 

APPLICATIONS ENVIRONMENT 

A typical microprocessor-based communication 
and control system will consist of a set of 
one or more processors which may be closely 
or loosely coupled to form an information 
processing system, and which will be inter- 
faced to a physical process or plant via 
suitable data acquisition and control actua- 
tion units. The system will also be inter- 
faced to man-machine interface units. The 
system will be classified as ‘decentralised’ 
if inter-processor communication is necessary 
for the overall control of the plant. The 
term ‘distributed’ will be used to describe 
the physical distribution of the processors. 

The software for such a system can be parti- 
tioned functionally into the systems software, 
which governs the operation of the set of 
processors, and the applications software, 
which defines user tasks. The systems soft- 
ware provides the host environment for the 
applications software, and controls its 
execution. The applications software will 
manage the resources of the physical plant 
and will control its operation. Both the 
systems and applications software must be 
designed properly and implemented correctly



236 

if the system is to carry out specified tasks 
in a predictable and safe manner. 

The requirements specification for a specific 
application will constrain the type of host 
environment. It may also restrict the type 
of algorithm which can be used in the appli- 
cations software. These two factors influence 
the selection of a suitable design methodology 
for systems analysis ‘and software synthesis, 
and will determine the type of design rules 
and techniques which must be used to generate 
correct and safe software, The selection of 
the most appropriate method and technique 
should increase the probability of generating 
correct and properly-validated code. This 
approach can be illustrated best by consider- 
ing a number of typical applications. 

SEQUENTIAL DETERMINISTIC PROCESSES 

The simpler host environments can be used 
when the software processes are independent 
of the sequence and time of occurrence of 
real-world events. These characteristics 
apply to much of scientific computing, such 
as data reduction and analysis; they are also 
typical of many programs which acquire their 
data by sampling under computer direction. 
The computations involve sequential and deter- 
ministic programs in which the algorithm 
specifies the sequence of operations which 
must be performed on the input data to obtain 
the desired output data. The techniques which 
can be applied inthe specification, design, 
development and maintenance of sequential and 
deterministic processes have been summarised 
recently in the STARTS guide (2). 

During the requirements specification phase 
the specification may be expressed in natural 
language or in a more formal notation. The 
use of a specification language is recommended 
(Ross (3), Sommerville (4)) to remove the 
inherent ambiguity and complexity of a natural 
language description. The specification 
languages which are available include general 
purpose notations for expressing requirements 
(for example, Bell et al (5)) and specialist 
notations developed for specific applications 
(thus, PSL/PSA for information processing, 
Teichrow and Hershey (6)). 

The specification phase will include the 
identification of the methodologies to be 
adopted in design and assessment of the 
product. The STARTS guide identifies the need 
for appropriate management during the specifi- 
cation stage when the activity is chiefly 
intellectual and specifications rather than 
program code are being produced. However, 
this stage is necessary if costly re-iteration 
of the early design phase is to be avoided at 
a later stage in the lifecycle (Boehm (7)). 

The program design phase will use the techni- 
ques of top-down analysis which have been 
widely described (Welsh and McKeag (8), Alagic 
and Arbib (9)). The principal technique 
involves successive functional partitioning in 
which the transformations affecting the data 
are analysed and refined. The resulting 
program modules will each perform a distinct 
function and will have a clearly-defined 
interface with other modules. The philosophy 
of structured programming is also used in the 
internal design of the modules. 

A second and parallel activity carried out 
within the design phase is design for test, 
since in general it is not practical to 
prove that the software is free of faults, 

Tests can be specified during the top-down 
design, and executed during the test phase to 
detect faults. Stepwise refinement should 
constrain the scope of the modifications 
required to remove a fault and thus correct 
the error. 

The specification will state the degree of 
robustness required under fault conditions. 
This will determine the extent to which fault- 
tolerant computing techniques should be used 
(Anderson and Lee (10)). 

The third and largest phase in the software 
life cycle involves the maintenance of the 
software. This includes perfective maintenance 
which encompasses changes in the specification 
of the program, adaptive maintenance which 
arises from changes in the program environment, 
and cofrective maintenance to remove residual 
faults. In safety applications criteria for 
controlling and accepting changes to the 
program must be applied rigorously. 

Many users have experience and substantial 
ability in the field of designing prescriptive 
sequential deterministic programs to be run in 
a single-user environment or within a protected 
multi-user environment. Unfortunately, this 
computational environment does not exercise 
some of the most crucial techniques required 
in the control of complex systems, real-time 
systems, or time-critical real-time systems. 

~CONCURRENT PROCESSES 

More complex host software is required when 
more than one software process is allowed to 
exist concurrently in a system. Typically 
this occurs when a task with implicit concur- 
rency is partitioned into a set of communi- 
cating sequential processes, each of which 
can be executed concurrently. Techniques for 
the control of concurrent processes and the 
assignment of resources in concurrent systems 
were developed during the late 1960s and the 
early 1970s (Brinch Hansen (11), Dijkstra (12), 
Hoare (13)). These methods involve the identi- 
fication of critical sections and the provision 
of mechanisms for enforcing mutual exclusion 
using semaphores and monitors. 

  

It must be emphasised that the techniques of 
resource assignment, inter-process communica- 
tion and synchronisation apply to concurrent 
systems in general. These techniques must be 
used in the control and allocation of the 
computational resources among the concurrent 

software processes, and in the control and 
allocation of the physical concurrent 
processes in the external plant. A proper 
understanding of the techniques is essential 
if they are to be used correctly in specifi- 
cation, design and implementation. 

More recent developments in the theory of 
communicating sequential processes (Hoare (14)) 
have led to the development of formal methods 
for synchronising concurrent processes through 
communications. These extensions can be used 
to describe both centralised systems in which 
the processes exist within one processor, and 
distributed and decentralised systems in which 
the processes are distributed over a set of 
processors. In a general distributed system, 
there will not be a centralised monitoring 
facility to guarantee orderly processing among 
the processes. Process interaction, to collect 
or distribute data, or to promulgate control 
decisions, takes place through inter-process 
communication. Each process wil: advance 
asynchronously with its computations, unless 
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forced into synchronism by communication. 
Consequently, the integrity of the communica~ 
tion medium in this type of system must be a 
paramount concern. 

Three forms of inter-process communication 
primitives can be recognised. 

In a synchronous system the task initiating 
the communication (the source task) requires 
an acknowledgement from the object task before 
it can proceed; the process that reaches the 
communication point first must wait for the 
other before it can continue (see (14) and 
May (15)). The usual notation i: 

  

SOURCE TASK OBJECT TASK 

object ! <request>; -----> source ? <request>; 

Process synchronisation is thus enforced; 
subsequently both processes proceed 
autonomously. 

In an asynchronous system, the source task 
does not wait for an acknowledgement before 
it proceeds; the object task, however, will 
wait if it arrives at the communication point 
first (Liskov (16)), The notation is: 

SOURCE TASK OBJECT Task 

SEND <request> 
TO <object>; ---------> RECEIVE <request> 

FROM <source>; 

A third form of inter-process communication is 
the remote procedure call, used most notably 
in Ada (17), but inwide use elsewhere (Brinch 
Hansen (18), Mao and Yeh (19), Kramer et al 
(20)). Here the source task invokes the 
object task to perform a specific function 
and waits for the object task to respond 
before continuing. The notation is: 

SOURCE TASK 

objecttask.request <in-parameter, 
out-parameter>; 

OBJECT (PROCEDURE) TASK 

accept request <in-parameters> do 
<service request - send out-parameters>; 

For distributed control systems, it is common 
practice to classify inter-process messages 
according to the function they require of the 
object task (Kramer et al (21)). Commands 
require a change of state or action in the 
object task; acknowledgement from the object 
task is a necessary requirement. Status 
messages are sent to give information about 
the source task; such messages may be issued 
upon command from another task, in which case 
acknowledgement from the object task may not 
be necessary. However, if a change of state 
in the source task indicates an alarm cond 
tion, then the source task may need to initiate 
an Alarm message; this would have high priority 
and would require an immediate response. 

  

Analysis shows that in process control systems 
it is possible to identify two groups of 
messages: command messages, which require a 
reply to the initiator, and notify messages, 
which require no reply to the initiator. The 
communication primitives introduced above 
appear to support these message groups. In 
practical process control, however, it will 
be shown that the constructs are deficient and 
open to ambiguity. 
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STATE- OR EVENT-DRIVEN SYSTEMS 

The number of processes within a concurrent 
processing system may vary as new independent 
processes are created or as existing processes 
are terminated. The determinism of such a 
system is destroyed if the creation, activa- 
tion or termination of processes is not 
initiated by, and synchronised from, existing 
processes. Non-deterministic systems cannot 
be tested exhaustively, and the quality of the 
software will be dependent critically upon the 
use of proper techniques at all stages of 
specification, design and implementation, and 
upon the application of software quality 
control methods. The resulting system can only 
be accessed by qualitative measures of the 
software, and through statistical records of 
dynamic tests on the software. 

Control applications often require the 
computational system to respond to an external 
event. Such an event may be detected as the 
computer analyses data from the external plant. 
Alternatively, it may interrupt the computing 
activity directly, and thus asynchronously 
create a new process. In the first case the 
external event will cause a computed response 
which may change the schedule of processing 
activities. While the system may eventually 
return to resume the schedule of processing 
which existed before the event occurred, the 
state of the external system and the assign- 
ment of external or computational resources 
may have changed, and the system become non- 
deterministic. The second case leads directly 
to a non-deterministic system. 

The specification for an event-driven system 
will necessarily identify the causal events 
and define the corresponding response actions. 
It should also identify clearly the subset of 
events which are asynchronous, for the presence 
of such inputs will normally result in a non- 
deterministic system. In systems with safety 
applications it is preferable that an explicit 
statement be made of whether non-deterministic 
behaviour is to be allowed in the application. 

REAL-TIME SYSTEMS 

The majority of industrial control systems are 
real-time systems in which a periodic interrupt 
from an independent time source or ‘real-time 
clock' is used to provide a time-reference 
event which does not depend on the state of 
the software processes. The computational 
system wiil synchronise its processing schedule 
on the occurrence of this event. Typically, 
this synchronisation is used in multi-tasking 
systems to apportion processing time to the 
processes according to their scheduling 
requirements. Such a technique could be used 
in a multi-tasking control system for applica- 
tions which depend only on the relative 
Sequence of events. 

The design problem is more severe if the 
application is critically dependent on the 
absolute time attributes of the system states. 
For example, many monitoring and control 
systems are required to sample input data from 
the plant at specific and equally-spaced 
instances of time. Waits or delays are often 
used in control systems to sequence process 
activities on a relative or an absolute basis. 
Similarly, closed-loop direct digital control 
systems usually require-inputs and outputs to 
be synchronised to a real-time schedule. Such 
systems are considered below.
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TIME-CRITIGAL REAL-TIME SYSTEMS 

The generation of computed responses at 
specific instances of time is central to 
nearly all direct digital control (DDC) 
systems. This forms the basis of real-time 
sequence control. It is also fundamental to 
the design of control algorithms for continu- 
ous processes, for the sampling period is 
usually a critical parameter and can radically 
affect the performance and stability of the 
system. In extreme cases, plant which is 
intrinsically unstable will depend on the 
control system for stabilisation. These 
systems may be classified as time-critical 
real-time systems. 

The dynamical performance of the above can be 
monitored at either scheduler or application 
program level. The timing performance is 
usually monitored by running a real-time 
time-lapse counter concurrently with the 
application task. Both processes will be 
attempted; the first task to complete succeeds 
and the other attempt is withdrawn. This 
‘timeout’ technique is used as a ‘watchdog’ 
mechanism in real-time control systems. 

The specification of a time-critical real- 
time system will include a definition of the 
actions to be taken when input data is out of 
range, or when outputs from processes fail to 
meet acceptance tests. Similar specifications 
are required for the actions to be taken in 
the event of timeouts. These could arise when 
processes exceed specified execution times, or 
from a general loss of synchronism at scheduler 
level. Failures of inter-process or inter- 
processor communications might also lead to 
timeout events; however, recovery in multi- 
process or distributed systems is much more 
complex and care is required if ambiguity is 
to be avoided. 

Consider, for example, the failure of an 
asynchronous inter-process communication in 
which the object task would wait indefinitely 
to receive the inter-process message. A 
selective construct with a timeout would only 
partially resolve the problem due to the 
absence of any logical pairing between the 
source and object tasks: 

SOURCE TASK 

Send <request> to <object task>; 
Select | Receive <reply> from <object> 

or Timeout <period>; 

With synchronous communications, such as in 
occam (15), a timeout can be placed on the 
receive primitive to break the wait~for- 
synchronisation. However, the source task 
would be suspended if the timeout were 
activated: 

SOURCE TASK OBJECT TASK 

clock := NOW; 
ALT 

WAIT NOW AFTER 
<clock + timeout> ; 

object ! <request>; --> source ? <request> ; 

In occam, a timeout cannot be placed on the 
send primitive since outputs are not allowed 
as guards in synchronous primitives. 

With remote procedure calls, as in Ada (17), a 
timeout can be placed on the acceptance of the 
initiating message by the object task. However, 
the transaction is not completed until the 

reply message is sent by the object task. If 
this message is lost then the source task is 
suspended indefinitely: 

SOURCE TASK 

SELECT TIMEOUT <period> 
OR objecttask.request 

<in-parameters, out-parameters>; 

The timeouts used above monitor specific 
communication primitives. The groups of 
messages used in control systems would be 
protected better if the whole transaction were 
included in the timeout (20). A new notation 
is required for such a mechanism. Perhaps the 
greatest advantage can be obtained from a model 
which uses the formal notation of communicating 
sequential processes, but which includes a 
select construct to provide a mechanism to 
break-out from the formal notation in the event 
of a timing failure. Thus: 

SOURCE TASK. 

SELECT 
SEQ 

objecttask ! <request>; 
objecttask ? <reply>; 

OR TIMEOUT (period); 

OBJECT TASK. 

SELECT 
SEQ 

sourcetask ? <request>; 
SEQ 

(service request); 
sourcetask ! <reply>; 

OR TIMEOUT (period); 

In systems with safety applications, failure 
modes must be specified and measures taken to 
generate safe outputs. Specific problems arise 
in the case of distributed systems with distri- 
buted databases in which database migration may 
eccur. The concept of 'conversations' addresses 
this problem (Randell (22), Kim (23)) and might 
provide a suitable basis for the design of a 
recovery mechanism for the ‘break-out’ described 
above. 

In practical applications a time-critical real- 
time system may be required to undertake 
complex processing schedules defined by hier- 
archical sequential control schemes while 
maintaining continuous feedback control over a 
number of concurrent plant-processes. The 
bespoke design of such systems places the most 
stringent demands on designers. In many appli- 
cations limited configurability systems are 
used in which system-specific safety-critical 
features are placed within a restricted-access 
kernel, However, this does not remove the need 
for the proper design of applications-specific 
safety functions. 

CONCLUSION 

The design of programmable electronic systems 
for safety applications or systems with safety 
functions places specific demands on the design 
of these systems. This paper has examined some 
of the performance and environmental constraints 
on these systems and has considered techniques 
for their solution. 
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TRE DESIGN OF COMMUNICATIONS SOFTWARE FOR DISTRIBUTED MULTIVARIABLE 
CONTROL SYSTEMS 
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Distributed computer control systems have advantages over a centralised 
system, including distributed functionality, increased fault tolerance, and 
piecewise growth capability. These advantages are gained at the expense of 
increased complexity in the systems software. This paper examines the 
communication mechanisms required to synchronise and co-ordinate distributed 
computer-based control systems under normal and abnormal operating condi- 
tions. Various formal notations and communication primitives are examined. 
The limitations of present solutions are determined. A new notation is 
introduced and used to describe a generalised distributed control function. 
Finally, a structure in this notation is identified in a wide class of 
control system. 

  

  

1.0 INTRODUCTION 

Distributed computer control systems offer a number of advantages 
over a centralised system, including distributed functionality, increased 
fault tolerance, higher speed of computation through concurrency, piece- 
wise growth capabilities, and piecewise system upgrading [1]. However, 
these advantages are gained at the expense of increased system complexity. 

In distributed systems, the distributed systems and applications 
software can be a major source of complexity. ch work has been done on 
the implementation of distributed systems [2-10]. This work concentrates 
mainly on programming languages for such systems. Work has also been done 
on the design of these systems [11-15] although, in general, these designs 
do not address explicitly the issues of communication and synchronisation. 
However, the kernel of any such design is the communication and synchroni- 
sation mechanisms used to coordinate the distributed system; these usually 
involve a message-based scheme. Mechanisms such as the monitor [17], 
which rely upon shared memory for such communications, limit the choice 
of hardware configuration for the system. A more flexible choice of 
system implementation is obtained if a message passing mechanism is used 
for inter-process or inter-processor communication. 

    

       

This paper is concerned with a distributed computer control system 
in which the process control software consists of a set of distributed 
processes which communicate by message passing over a communication 
network. This type of system can be characterised by the following 
assumptions: 

a. There is no centralised monitoring facility or resource management to 
guarantee orderly processing among the processors. 
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b. There is no overall clock control: processes therefore advance 
asynchronously with computations. 

c. Processes can only interact by the transaction of passing messages. 

d. The communication medium, while generally reliable, may be subject 
to transient or sustained failure when messages will be lost. 

Any technique for representing distributed software must describe 
explicitly the interactions between tasks on different processors. In 
time-critical, real-time systems, tasks must be properly synchronised 
and must satisfy critical timing requirements. The system design must 
aig ts robust and incorporate fault-tolerant methods in the software 
18,19]. 

This paper investigates the problems of designing robust software 
for distributed multi-input, multi-output control systems. Section 2 
gives an overview of the different types of communication primitives 
used in languages intended for distributed systems and describes the 
applicability and limitations of these communication mechanisms. 

Section 3 proposes a notation that is suitable for real-time 
system specification, design and implementation. This notation is 
formed by combining the transaction-timing communication controls 
described in CONIC [12], with some of the synchronous communication 
primitives developed in C.S.P. [2]. The suggested notation has the 
advantage of allowing formal methods to be used in the design of the 
system for normal operations. Break-out mechanisms are implemented to 
allow recovery procedures where timing constraints are involved. 

The notation is used to develop a schematic design for a distributed 
control system. A number of design stages are identified. To implement 
the initial stages of the design, a design methodology derived from 
MASCOT [13] is used. This, combined with the proposed notation, forms 
a method which will help in the design of software for distributed multi- 
input, multi-output, time-critical, real-time systems. 

Finally, a software structure which appears in each subsystem is 
identified asa template for use in the design of distributed systems. 
This software structure template could also be embedded within the 

recovery mechanisms required in fault-tolerant systems. 

2.0 COMMUNICATION PRIMITIVES 

In this paper a task which initiates communications will be 
referred to as a source task. The task to which a communication is sent 
is called an object task. A chnnnel is the unidirectional medium used 
for such communications. 

2.1 Communication Primitives for Distributed Processes 

Tne different communication primitives used in message passing can 
be classified into three types: asynchronous, synchronous, and remote 

procedure call. 
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a. Asynchronous 

An asynchronous communication does not require the object task to 
acknowledge the receipt of a message from the source. The source task 
issues an initiating message and then continues its operation. Since 
synchronisation is not enforced, some form of buffering is required to 
hold the initiating message should the object task not be ready to 
receive the message [4,5]. Similarly, the object task may be required 
to wait if the message has not been initiated by the source. 

The asynchronous communicaticn has two primitives; these are of 
the form: 

SEND <message> TO <object.task>; 

RECEIVE <message? FROM <source.task>; 

b. Synchronous 
  

In a synchronous communication the source task requires an acknow- 
ledgement from the object task before it can proceed. The process that 
reaches the communication point first must wait for the other process 
before it can continue. The source task may then issue an initiating 
message. On receipt of this message, the object task will issue an 
acknowledgement message. When the source has received the acknowledge- 
ment both processes may continue autonomously. Process synchronisation 
is thus enforced through communication [2-4]. 

Synchronous communication also has two primitives: 

objecttask ! <message>; | --send from source task 

-- to object task <message>. 

sourcetask 2 <message? ; -- receive at object task 

-- <message> from source task. 

c. Remote Procedure Call 

The third type of communication primitive is the remote procedure 
call. The source task waits for the object task to report completion of 
the procedure. The object task performs a specific function for the 
source task in a way similar to that of a subroutine. The object task 
is not initiated until it has received the source's message and completes 
its local computation before issuing a reply [7-12]. 

The remote procedure call primitives have two parameters in their 
communications as shown below: 

SOURCE TASK 

object.request <in,out parameters>; 
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OBJECT (PROCEDURE) TASK 

accept.request <in parameters> 

do <service request 

send out parameters>; 

2.2 Message Types in Distributed Computer Control Systems 

Messages are used widely in distributed computer-based control 
systems for the collection or distribution of data and to promulgate 
control decisions or actions. In [16] three main functional classifi- 
cations or transfer categories are identified: 

COMMANDS are messages which cause a change of state or action in 
the object task. These messages generally require a response from the 
object task to signify completion of the action. 

STATUS messages are sent by a source task to a number of object 
tasks and are used to convey source status. These messages may be 
initiated by the source either periodically or when the state of the 
source task changes. Status messages may also be generated by an object 
task in response to a request from a source task. 

ALARMS are messages initiated by the source to inform the other 
tasks that the controlled process is malfunctioning or is in an unsafe 
state. . 

These three message types are divided into two groups in [16]: 

Command Message Group: Those requiring a reply to their initial 
message: command and requested status messages. 

Notify Message Group: Those requiring no reply: periodic status, 
event status and alarm messages. 

2.3 Communication Primitives for Distributed Computer Control Systems 

The message groups can be modelled using the communication primi- 
tives of section 2.1. Analysis shows that when these groups of messages 
are directly implemented they contain ambiguities and deficiencies. 

2.3.1 Command Message Types 

  

The command message can be modelled using the primitives described 
in Section 2.1: 
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Asynchronous Implementation: 

SOURCE “TASK OBJECT TASK 

SEND <request> 

  

TO <object>; RECEIVE <request> FROM 

<source>; 

(service request) 

RECEIVE <reply><   SEND <reply> TO <source>; 

FROM <object>; 

The communication subsystem of a distributed computer control 
system may be subject to failure. It is common to incorporate a timeout 
mechanism which will initiate the appropriate recovery mechanism. The 
timing requirements of such a system are only partially satisfied if the 
object task RECEIVE primitive is put in a SELECTIVE construct with a 
timeout: 

SOURCE TASK 

SEND <request> TO <object>; 

SELECT 

TIMEOUT <period> 

OR 

RECEIVE <request> FROM <object> 

When the select statement is executed both the communication and 

timeout tasks are attempted. Whichever task is completed first is 

defined as executed and the other attempt is withdrawn. However, such a 

model is still ambiguous because of the absence of any logical or 
notational paring between the two halves of the transaction. This could 

lead to a situation in which the object task sends a message to a timed- 

out source task. 

Synchronous Implementation: 

SOURCE TASK OBJECT TASK 

object ! <request>; -----~’ >source ? <request>; 

(service request) 

object ? <reply>; 

  

source ! <reply>; 

In this case the logical clarity is good. However, the timing 
requirements are not easily satisfied. For example, if a timeout was 

placed on the receive primitive to break the wait-for-synchronisation, 
then the source task could be suspended if the timeout was activated: 
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SOURCE TASK OBJECT TASK 

clock := NOW; 

ALT 

WAIT NOW AFTER <clock + 

timeout> 

  

object |! <request> source ? <request> 

The send primitive cannot be modified to include a time-out by using an 
ALT mechanism, because outputs are not allowed as guards in synchronous 
primitives. 

The remote procedure call primitive simulates the command message 
directly: 

‘ 

Remote Procedure Call Implementation: 

SOURCE TASK 

objecttask.request <in-parameter, 

out-parameter>; 

OBJECT (PROCEDURE) TASK 

accept request <in parameters> do 

<service request - send out parameters>; 

Remote procedure calls of this type are used for communication in 
the Ada language (7]. The Ada implementation uses a timeout on the 
acceptance of the message by the object task and has the form: 

SOURCE TASK 

SELECT 

TIMEOUT <period> 

OR 

object.request <in,out parameters>; 

This system is again ambiguous, for if the reply message is lost, 
then the source task is suspended indefinitely. A solution to this 
problem was included in CONIC [12] in which the timeout is placed on the 
completion of the whole transaction. 

The communication models outlined above must be assessed as formal 
notations for the expression of concurrency, the pairing of communication 
primitives, and the ability to incorporate timeout mechanisms successfully. 
None of the models outlined satisfy all of these objectives. The first | 
two objectives are satisfied by the synchronous communication system 
which is developed in C.S.P. [2] and embedded as primitives in the derived [ 
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language occam [3]. The formal semantics of C.S.P. allow certain proofs 
of program correctness and include correctness preserving transformations. 
However, the scope of the language does not, of course, include timeout 
mechanisms. The third objective is met by CONIC. 

3.0 PROPOSED SYSTEM DESIGN 

The two separate lines of development have led to communication 
mechanisms such as CONIC which satisfy the transaction and timing 

requirements, and to synchronous communication systems such as those in 

occam which provide a formal notation, and mechanisms for the implemen— 

tation of strictly synchronous systems. The following section explores 

the advantages to be realised by developing a formal construct which 

includes select asd ‘breakout’ to provide the flexibility required to 
satisfy timing constraints. 

3.1 Notation for Communications in Real-Time Control Systems 

Consider the case of a command group message implemented as a 
synchronous communication by message passing, with the inclusion of a 
select mechanism which provides an ability to break out of the formal 
notation inthe event of system behaviour conflicting with timing 
requirements. 

SOURCE TASK 

SELECT 

TIMEOUT (period); --time-out if not completed by period 

OR 

SEQ 

objecttask ! <request>; --send request to object task 

objecttask ? <reply>; --wait reply from object task 

OBJECT TASK 

SELECT 

TIMEOUT (period);   time-out if above not completed by 

-- period 

OR 

SEQ 

sourcetask ? <request>; --receive from source request 

SEQ 

(service request); --service request 

sourcetask ! <reply>; --send reply to source 
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In the normal sequence of events the synchronous communication 

will be successful. However, there are two cases when the timeout will 

be chosen: z 

i. When either the source or the object task is waiting for the other 

task to reach the communication point. In this event the communication 

will not have been initiated. 

ii. After the initiation of the object task but before completion of 

the whole transaction. 

In both cases the processes will have to be rolled-back to the start of 

the communication for recovery. The time-out on the whole transaction 

will prevent either task from being suspended indefinitely. This commu- 

nication transaction built from occam-type primitives adds real-time 

communication to the notation. 

3.2 Distributed Software Design 

When designing software for distributed systems the design is 

split into a number of stages: 

i. Partitioning of the problem into subsystems on & functional basis. 

iz. Identification of concurrency. 

ii. Design of process structure into sequential and parallel sub- 

components. 

iv. Design of inter-process communication. Identification of those 

channels which require a real-time, time-critical communication such as 

those described in 3.1. 

ve Design of initialisation and termination mechanism for the communi- 

cation system. 

vi. Design of processes. 

3.3 Control Station Design 

The above design procedure was used in the schematic design of a 

system consisting of two control stations each having part of the total 

System state information (Figure 1). To ensure total system controll- 

ability the observability, communications between systems were required 

[22]. 

For the initial stages of the design the real-time design methodo- 

logy MASCOT [13] was used. MASCOT provides a unified discipline of 

Rodularisation based upon the decomposition of a program into a set of 

parallel processes. It also provides tight control over intra-processor 

Permunications. Tasks within a processor can only exchange data via data 

structures: the channel or the pool. Direct task-to-task communication ! 

is prohibited. 

The control station was partitioned into eight subsystems in the 

initial stage of the design (Figure 2). Each of these subsystems was 

then decomposed into a number of simpler processes interacting via pools 

and channels (Figure 3). { 
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A fragment of program was written specifying the communication between tasks and data structures. Each communication primitive was examined and the select mechanism introduced in those instances in which breakout facilities were required to satisfy timing constraints. Those tasks receiving data from pools required standard synchronous communi- cations. - However, tasks reading data from channels require extended communication primitives. In Figure 3 tasks that require the extended communication are shown in double rings. 

Each task consists basically of an input channel using extended 
communications, a task taking inputs from a standard communication 
channel, and an output channel. This fundamental structure was found to 
be embedded within each subsystem (Figure 4). y 

3.4 Use of Template 

Having identified a basic template which can be used in the design of all the subsystems, the design of robust systems can be simplified. 
Each template could be embedded within a fault-tolerant mechanism which would ensure correct operation of the system. For example, the recovery block mechanism proposed by Randell [17] could be used to provide fault tolerance with sequential processes. A number of different mechanisms have also been suggested for concurrent system fault tolerance -18-21.. The conversation first proposed by Randell [18] and extended by Kim (202 would be applicable in this case. 

4.0 CONCLUSIONS 

This paper has examined some aspects of the problems of designing software for distributed multi-input, multi-output control systems. It takes the view that in such systems communication and synchronisation should be addressed explicitly. It has shown that languages proposed before are not matched exactly to the design of distributed systems, or have deficiencies when applied to time-critical, real-time situations. However, the timing requirements of such systems are satisfied by CONIC while the formal notation of synchronous languages such as occam satisfy the concurrency and communication needs of strictly synchronous systems. 
The paper has proposed a notation for the design of command group 

messages in distributed computer control systems. This notation provides strictly synchronous communication primitives in normal operation, but includes break-out facilities necessary to satisfy timing constraints. 
The schematic software design for a control station in a distri- buted control system was formulated as a set of communicating processes. 

An analogous MASCOT design of the system was expressed in the proposed 
notation. 

Examination of the design showed that each communicating process could be built about a common software structure. It is suggested that this structure is a good candidate for embedding within a fault-tolerant 
framework. 
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GUIDELINES FOR THE SYNTHESIS OF SOFTWARE 
FOR DISTRIBUTED PROCESSORS 

CARPENTER, G.F., TYRRELL, A.M. and HOLDING, D.J. 

Department of Electrical and Electronic Engineering 
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Birningham 

ABSTRACT 

A systen of distributed processors offers an attractive method for 
the control of many real-world systems, with the prospect of increased 
efficiency, throughput and reliability. Modern software engineering 
analysis methods, design techniques and programming languages should be 
used in the construction of such systems to control and exploit the 
parallel nature of the system. Where a robust system is required, par— 
ticular attention aust be paid to the role of interprocess communica- 
tions, because they provide not only a mechanism for synchronising and 
co-ordinating the distributed system, but also a mechanism for the pro- 
pagation of errors. A proper fault tolerant framework must be imple~ 
mented to restrict such error propagation and to provide proper conver- 
sation error-recovery mechanisms. 

INTRODUCTION 

Microprocessors now offer high computational power, high reliabil~ 
ity and low power consumption at a low cost. They are finding widespread 
use in instrumentation and control systems where the microprocessor pro~ 

vides a centralised computing resource. Increasingly, microprocessors 
are being used in the construction of decentralised and distributed sys~ 

tens, in which a number of processors are physically distributed about 
the application plant and interact, or exchange information, with each 
other by passing messages over interprocessor communication channels. 
The individual processors in these systems not only provide local func~ 
tions, such as data acquisition, control, and operator intertaces, Dut 
also form part of an overall system which must be co-ordinated to give a 
global response. 

The primary concern in the construction of a computational system 
is to produce a design which satisfies the requirements specification of 
the system, The question of whether a computing resource should be 
duplemented as a centralised or distributed system may be only of secon- 
dary importance. When a satisfactory design has been generated, and a 
computational architecture selected, a software specification for the 
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chosen system has to be drawn up. Whether the computational parts of the system be centralised or decentralised, the function is determined by the software. Software must therefore be designed which meets the software specification and this design must be converted accurately into @ program implemented on the target processing systen. The resulting system will only operate correctly if the software {s properly designed. For practical applications, the production of correct software is non~ 
trivial. 

The requirements specifications of monitoring and control systems often demand high levels of performance from a computational system. For example, the computational task may involve real-world data acquisi— tion, combinational or sequential logic functions, complex arithmetic calculations, and the generation of control outputs to the application 
plant. The computational response may be required within very tight time constraints, perhaps as part of a real-time schedule. The schedule may have to be maintained in the presence of asynchronous external inputs, such as operator commands or alarms. In addition, the system may have to perform safety functions or functions with safety implica- tions. 

Requirenents of this type make severe denands on the software, both at a systems level (involving the control and allocation of processor resources), and at the application level (responsible for the control of the plant). The design of such systems requires a proper understanding and application of the appropriate design techniques. These include, in the case of distributed systems, methods for the design of concurrent Processing systems. The quality of the software, and of the resultant system, is critically dependent upon the adoption of proper methods and disciplines throughout the software life cycle (1). 

This paper addresses some of the problems involved in the design of software for distributed processors, particularly where there are impli- cations for safety. Modern software engineering techniques and languages are used to consider possible approaches to the design of such systems, and to discuss methods of providing fault tolerant structures for high reliability applications. 

DESIGN CONSIDERATIONS FOR DISTRIBUTED PROCESSES. 

The requirements specification for a computer system is chiefly concerned with identifying the functions which the system has to per- 
form, the interfaces with the plant, and constraints within which it Must operate. At this stage it is unlikely that a definite need to decentralise the computational system, or to distribute it, will have been identified. Indeed, only a detailed analysis of the requirements 
may lead to the decision that a distributed system is appropriate. The decision will normally be based on the following characteristics: 
- | Functional distribution 

A real world system may be naturally distributed in a functional 
sense. Functionally distributed systems are often modelled and con- trolled as a set of distributed processes. The software for such a 
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system invariably reflects the distributed nature of the application. 
This should provide a good correspondence between the real-world system 
function and the computational function. 

- Geographical distribution 

Real world systens are often spatially, or geographically, distri- 
buted. It is then appropriate to distribute the computational resource 
across the plant, and to design software which can be implemented over 

the set of physically distributed processors. Such software will neces- 
sarily consist of a set of communicating processes. Since many geo- 
graphically distributed applications also have functionally distributed 
attributes, then both characteristics naturally lead to software designs 
which consist of a set of communicating distributed processes. 

Once the decision to distribute the system is taken, then the 
software design and synthesis must adopt design rules and techniques 
which will lead to a high probability of generating correct, properly 
validated code within the specific demands of a distributed system (2). 

- Partitioning and the reduction of complext' 

  

The technique of partitioning is used to divide a system into a set 
of processes. The criteria used to partition a system can alter the 
extent to which interprocess communications are necessary to maintain 
the overall system function. System partitions are often chosen to 
emphasise the physical topology of the plant, the functional charac- 
teristics of a system, or the physical location of the processors. If 
they are chosen so that they emphasise the dominant characteristics of a 
system, they may give, to a first approximation, a fully decoupled sys~ 
ten. 

  

In many cases the partitions lead to an apparent reduction in the 
complexity of the system, or allow aggregation to reduce design complex- 
ity. However, the granularity introduced by partitioning should be 
carefully considered because it will affect the type of system implemen- 
tation. For example, as the number of parallel processes into which a 
computational task is partitioned is increased, so the volume of inter- 

communications for control and data interchange is also 

ed, thus leading to a closely coupled system implementation. 

  

- Concurrency 

Physical processes in continuous plant inherently involve the flow 
of energy or materials which often flow simultaneously through parallel 
forward paths, or forward and feedback paths. When such systems are 
modelled, the parallel processes are represented by parallel or con- 
current data flows and are readily amenable to parallel processing for 
model simulation or control. This removes the constraint of modelling 
these systems in sequential terms which is required for solution by 
sequential computer programs executing on computers with a Von Neumann 
architecture, Concurrent programming languages and computing systems 
can therefore be regarded as the digital equivalent of the analogue com- 
puters, simulators and control systems which find widespread acceptance 
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and continuous use in industry. 

DISTRIBUTED PROCESSING 

Each process (or processor) in a spatially or functionally distri- buted system may be equipped with local data acquisition or control interfaces. If each process is operated independently without communi- cations with other processes then the system is said to be decoupled and each process can only operate asynchronously and autonomously and exe- cute its local function only. Unfortunately, few practical applications have the characteristics necessary for decoupled control. 
If a system can be controlled using a network of communicating Processes, then the system is said to be coupled. The volume of inter- Process communications determines the degree of coupling. In a loosely coupled system, relatively infrequent interprocess communications can be used to compute partitioned functions or to co-ordinate the distributed processes. A systen is said to be closely or tightly coupled if there is a closer coupling between the component processes such that a high degree of interprocess communication is required to control and co- ordinate the system. Since the availability of communication links is often limited and the bandwidth of such links decreases with distance, closely coupled systems are often implemented as sets of processes come municating through shared menory on a centralised single or mulzi— Processor computing resource. Loosely coupled systems on the other hand can easily be implemented as geographically or spatially distribuced systems. 

A distributed system is said to be decentralised if the distributed Processes have incomplete and non-identical information about the system state. Such a system requires the co-operative action of constituent Processes in order to provide total system observability, controllabil- ity and overall function. The distribution of system function and the decentralisation of information can be used to enhance the robustness of the system. 

For example, if the system is designed with the ability to recog- nise failure and can identify the processor or process concerned, then it may be possible to contain and isolate the faulz. In distributed Systems error migration through communications is a particular problen and it may be necessary to backtrack and crace or linit the effect of the erroneous communications. The reliability of the system may also be increased by the use of fault recovery techniques. If the fault leads to decreased functionality, then it may even be possible to regenerate a degraded function using other processes or processors provided the sur— viving communication systems will support the communications necessary for the recovery and operation of the reconfigured system (3). 
COMMUNICATING SEQUENTIAL PROCESSES (CSP) 

The software design of distributed systems necessarily involves the design of a set of communicating sequential processes, involving aspects of concurrency. The methods for the design of centralised multiprocess- ing systems have been developed over the last eighteen years (4-6). 
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However, the techniques for the identification of critical sections of 
code, and the provision of mechanisms for enforcing mutual exclusion and 
synchronism essentially provide bottom-up design primitives. They are 
used extensively in the kernal of design methodologies such as MASCOT 
(7) and are hidden from the applications designer. Such monitor based 
techniques are unsuited to distributed systems design since a central- 
ised facility is unavailable. 

The development of concurrent programming languages, such as CSP 
and its derivatives, such as occam (8-9), in which message-passing syn- 
chronising inter-process communications are a primitive of the language, 
allows the high level design of distributed systems. The use of such 
constructs simplifies systems analysis and facilitates the design of 
distributed systems. The formal background of CSP also provides an 
mathenatical basis for the analysis of the system behaviour and the 
design of fault tolerant methods. 

A CLASSIFICATION OF INTER-PROCESS COMMUNICATIONS. 

Interprocess communications may be classified (10) into one of 
three groups: 

1) synchronous communications, where neither the sending nor 
receiving process is allowed to proceed beyond the communication point 
until {ts complementary process has also reached that point. This is 
found most notably within CSP and occan, 

44) asynchronous communications, where the process sending the mes- 
sage does not wait for acknowledgement, but the receiving process is not 
permitted to proceed beyond the communication point until the message 
has arrived (11). 

414) renote procedure call, where the process sending the message 
requires the receiving process to perform some specific function and 
respond before they both can proceed further. In essence it is an asyn- 
chronous communication followed by a synchronous communication. This 
form is found in ADA and elsewhere (12-13). 

Ir 1s common to associate inter-process messages with the function 
they perform (10). Alarm messages have high priority on the interpro- 
cess medium; they are issued by one process and require immediate 
response by the receiving process. Command messages require a change of 
state or action to occur in due course; acknowledgement is a necessary 
requirement before the issuing process continues. Status messages are 
sent to notify other processes of information about the source task. No 
acknowledgement is required. 

These message groups can be constructed using any of the above com- 
munication primitives. However, detailed study is required to ensure 
that the logical structure of the inter-process action (the transaction 
level) 4s not disrupted should the lower level communication primitives 
fail in a particular application (14). Single failure detection sys- 
tems, such as time-outs, can only be applied at process level on a per- 
process basis and this does not necessarily provide protection at the 
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ction level. 

  

For example, failure in an asynchronous communication system can leave a process suspended indefinitely awaiting a communication, or may leave one process avare of a failure but unable to co-ordinate recovery action through the absence of a logical pairing between participating Processes. The remote procedure call requires the object task to ack- nowledge when its action 1s complete (12); if the reply is lost then the Source process is suspended indefinitely. Synchronous primitives, such as those in occam, preclude the protection of individual transactions since the language 1s specifically intended for deterministic system design only and outputs can not be used as guards on synchronous primi- tives. Hence, timeouts cannot be used in parallel with other processes fo form a race condition, and so they cannot be placed on the send prin~ itives of inter-process transactions. However, experimental languages, 
such as Pascal m (15), have attempted to overcome these deficiencies, but no general consensus nor formal method is as yet suitable. Although transaction level protection cannot be supplied directly, software fault tolerance methods can be applied to such systens using state based Tecovery techniques which may enclose complete inter-process communica- tion transactions within the distributed recovery block or conversation (6). 

    

SOFTWARE DESIGN TOOLS FOR DISTRIBUTED SYSTEMS 

The design and synthesis of software for distributed syscens requires the use of a design methodology and progranzing language which builds on the inherent parallel nature of such systems. Formal methods applied to the design of software for distributed processors lead to the identification of processes, capable of asynchronous execution, interacting with other processes by communications. The provision of constructs for sequence, variable assignment, selection and iteration, augmented by constructs which enable parallel execution, the use of syn— chronous communications for input/output, the provision of guarded Processes and the formal inclusion of time are sufficient for the design of software for distributed systems (17-18). 

  

The progranming language occam, which 1s derived from the theory of communicating sequential processes provides a good notation in which to Pursue the design of distributed systens. Occam produces concise, elegant and easily understood software. The mathematical axiomatic base of CSP permits algebraic analysis of software. In particular, correct- Ress preserving transforus can be applied to it. It therefore offers the prospect that in the future such software may be formally verified. 
The language is intended for use with both sequential and inherently parallel systens. The starting point in design using occam 

is the identification of the natural parallelism and the partitioning of the softvare into naturally occurring processes. Interaction betueen Processes is solely by means of interprocess communication. Again this isa good match with a distributed system. The mapping of processes onto target processors occurs at a late stage in the design. This allows the designer to concentrate on the application function rather than implementation details. 
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HIGH RELIABILITY DISTRIBUTED SYSTEMS 

For high reliability applications it is essential that failure 
modes be identified and measures taken to ensure that the system recog- 
nises when a fault occurs, constrains the scope for error propagation, 
and recovers to generate a safe response (19). A taxonomy of faults, 
ranging from sensor failure to software faults, can be drawn up with 
methods for their detection, and appropriate remedial action. The 
framework for recovery is relatively straightforvard for centralised 
sequential systems, involving the use of process roll-back within 
recovery blocks and offering alternative processes (20), possibly within 
the confines of time-out watchdog timers (21). A fundamental assumption 
is that the framework itself is immune from faults 

However, the situation becomes more complex for decentralised sys- 
tems since there is scope for error propagation by inter-process commun- 
ideation, which once initiated cannot be retracted. Methods are required 
which restrict the scope of error propagation between communicating 
processes, and which co-ordinate recovery amongst all processes partici- 
pating in erroneous communications. The conversation scheme (20) is 
appropriate, and requires all participating processes to perform an 
acceptance test at pre-determined points in their processing. If any 
process is found to be in error at that test then all participating 
processes must perform co-ordinated recovery. No process is allowed to 
proceed beyond the acceptance test until all the other processes also 
pass the test. 

The chief design problea is the proper placement of conversations. 
It is evident that the conversation scheme requires synchronism at, or 
following, the acceptance test to exchange the results of the test and, 
4f necessary, coordinate process action. Current approaches to this 
problem have used the centralised concept of a monitor to implement 
acceptance tests. Unfortunately, this centralising feature of the moni- 
tor makes it unsuitable for distributed systems. An alternative 
approach developed by the authors (16) makes use of the synchronising 
properties of CSP/occam communications to design and implement distri- 
buted acceptance tests. 

The crucial problem of conversation placement has received somewhat 
less attention. In effect the designer must identify the extent of pro- 
cess corruption and error migration through inter-process communication 
for all faults in the system. The objective of this fault effect 
analysis is the identification of a boundary or set of properly nested 
boundaries, which define known entry (recovery line) and exit (accep- 
tance) states for the system. This allows the entry and exi= state for 
each component process to be determined. Software must be designed to 
save recovery line entry states, and to implement and synchronise the 
acceptance tests on all processes in the conversation. Attempts to 

identify recovery lines and acceptance points dynamically are prone to 
progressive collapse (20). 

An alternative approach (16) is to utilise the deterministic state 
properties of CSP/occam in the static design of conversations within the 
known state reachability space of the distributed system. This approach 

  

=E29> 

 



  

171 

offers considerable advantages and allows the use of design aids which 
automatically generate sets of proper conversation boundaries within the 
system, It is then for the designer to choose the features of a design 
which he wishes to protect and the degree of software fault tolerance 
appropriate to a particular class of application. 

The conversation schene offers the most appropriate structure for 
recovering from unanticipated faults. The nature of the conversation 
scheme is that the acceptance test results (go/no-go) must be compared 

amongst the participating processes. The detection of an error during 
an acceptance test does not necessarily identify uniquely the fault; 
indeed the fault might lie in the interprocessor communication medium. 
Circumstances may arise where it is impossible to promulgate the result 
of the acceptance test to promote error recovery, perhaps due to a 
failure of the interprocess medium. In this cases the framework for 
recovery fails because the fault affects the recovery structure itself. 
Similar problems are inherent in any recovery structure and have been 
recognised for recovery block structures applied to sequential software 
(22). However, thay have not detracted significantly from the effec- 
tiveness of the technique. 

  

A CONTROL EXAMPLE 

‘The program fragment presented in Figures 1-4 is taken from a exam- 
ple program used to explore the problems involved in the design of 
software for distributed processes. It concerns the motion of a robot 
in each of three axes. It illustrates a number of points: 

i) inherently local functions are modelled as processes, each capa~ 
ble of execution in parallel. Thus motion in each axis is programmed, 
and occurs, independently of motion in the other axes. Each process 
could be targetted onto separate processors at a late stage in the 
design. 

11) interprocess communications is the only form of interaction 
between the processes. This would take place over an interprocess con- 
munication medium. Thus each process is commanded to perform its 
activity, and signals when it has completed its activity. 

111) The software also contains a command process which initiates 
parallel commands and receives, as they occur and in whatever order they 
occur, the responses corresponding to the execution of those commands. 

  

iv) The software contains a proper conversation boundary for the 
protection of the critical interprocess communication which governs the 
co-ordinated axial movement of the robot. 

  

an equivalent fault-tolerant program written in a conventional 
language would be much more difficult to design, program and verify. 
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Figure 1 

{{{ PROGRAM robot 
+. system parameters 
CHAN request, return, motion{3], finished[3], stop[4]: 

process operator 
process motor 
process control 

—- initiate processes 
Pi 

  

AR 

PAR i = [0 FOR 3] 
motor(motion[i], finished[i], stop[1]) 

control(request, return, stop(3]) 
operator(request, return) 

Figure 2 

{{{ process motor 
PROC motor (CRAN motion, finished, stopi)= 

VAR step, direction, going: 
SEQ 

going := TRUE 
WHILE going 

ALT 

stopi ? ANY 
going FALSE 

on ? step 
SEQ 

motion ? direction 

-- move motor 
finished ANY: 

Hh 

    

  

Sadia
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| 
| 
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Figure 3 

{{{ process operator 
PROC operator (CHAN send, receive)= 

VAR x, Y, 2, run: 

  

Screen ! ‘i’ 

Screen ! EndBuffer 
Keyboard 7 x 
Screen ! x 
Screen ! EndBuffer 
Keyboard ? y 
Screen ! y 
Screen ! EndBuffer 
Keyboard 7? z 
Screen 1 2 
Screen ! EndBuffer 
xis x= '0" 
pores °0" 

i= 2-0" 

  

z 
IF 

(x=0) AND (y=0) AND (z=0) 
SEQ 

Screen | ’£’ 
Screen ! EndBuffer 
PAR i = [0 FOR 4] 

stop[i] ! ANY 
run := FALSE 

  

Screen | ‘m 
Screen ! EndBuffer: 

tt 
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Figure 4 

{{{ process control 
PROC control (CHAN receive, send, stopi)= 

VAR xold, yold, zold, mew, ynew, znew, count, step[3], direction{3], 
going: 

SEQ 
xold 
yold 
zold 
going 
WHILE going 

ALT 

  

receive 
SEQ 

receive ? ynew 
receive ? znew 

— calculate distance and direction of each 
— notor. These can be calculated in parallel. 

PAR i = [0 FOR 3] 
SEQ 
notion[i] ! step{1] 
motion(i] ! direction[1] 

xold := xnew 
yold := ynew 
zold := znew 
count := 0 
WHILE count <> 3 

ALT 1 = [0 FOR 3] 
finished{1] ? ANY 

count := count + 1 
send _! ANY 

    

    

  

dH} 

CONCLUSION 

The design of distributed computer systems requires specific metho- 
dologies and techniques if high reliability is to be achieved. Sys- 
tematic analysis of the specification is required to identify and to 
exploit the parallelism inherent in the application. This must be com- 
plemented by design methods and programming languages suited to a highly 
parallel computing environment. Careful analysis of the communications 
is required to co-ordinate the processing. and to ensure that proper 
conversations are produced for recovery activity. 
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Design of Reliable Software in Distributed Systems 

Using the Conversation Scheme 

ANDREW M. TYRRELL, MEMBER, IEEE, AND DAVID J. HOLDING 

Abstract—A fundamental problem in the design of error detection 
and recovery mechanisms for networks of cooperating asynchronous 
processes is the prevention of error propagation through process in- 
teraction. The recovery procedure must be a cooperative effort involy- 
ing all the interactive processes and may be limited to bounded parts 
of the system by the conversation mechanism proposed by Randell. 

This paper examines the problems of error detection and recovery 
in a number of concurrent processes expressed as a set of communi- 
cating sequential processes (C.S.P). A method is proposed which uses 
a Petri net model to identify formally both the state and the state reach- 
ability tree of a distributed system. These are used to define system- 
atically the boundaries of a conversation including the recovery and 
test lines which are essential parts of the fault-tolerant mechanism. 

The method can be used as a design tool to determine a single con- 
versation or a set of properly nested conversations. The technique can 
be used to identify the full set of processes enclosed within a particular 
conversation, or to design a conversation which will protect a specific 
functional aspect of a distributed system. 

The techniques described in this paper are implemented using the 
occam programming language, which is derived from C.S.P. The ap- 
plication of this method is shown by a control example. 

Index Terms—Communicating sequential processes, concurrent 
processes, conversation, distributed systems, fault-tolerant software, 
occam, Petri nets, recovery block. 

I. INTRODUCTION 

FUNDAMENTAL problem in the development of 
fault-tolerant distributed systems is the design of er- 

ror detection and recovery procedures for the distributed 
system [1]. 

This paper addresses the problem of error detection and 
recovery in distributed systems which consist of a coop- 
erating set of asynchronous processes. These systems can 
be modeled as a set of communicating sequential pro- 
cesses using the C.S.P. notation [2]. In such a system, 
error detection and recovery must be a cooperative effort 
involving all interacting processes [3]. If the recovery op- 
eration is to be limited in extent, rather than global, then 
it is necessary to identify boundaries within the state space 

of the network of processes which can be used for error 
detection and recovery [4]. 

The conversation mechanism proposed by Randell [5] 
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uses such a boundary as a recovery block for a general set 
of distributed processes. A number of mechanisms have 
been proposed for implementing this type of system [6]- 
[8]. However, these methods do not address the problem 
of determining the boundary of the conversation and their 
implementation requires language extensions or involves 
the use of centralized techniques such as monitors [9]. 

Fault-tolerant mechanisms such as the recovery block 
and the conversation implement recovery by backtracking 
operations which restore the system to a previous state. If 
the state involves temporal attributes, then the backtrack- 
ing operation will also retum the system to the virtual time 
at which the previous state was instantiated, and the prob- 
lems of time warp must be accommodated in the alterna- 
tive path of the recovery block. 

The definition of the state of the system and the assign- 
ment of state identifiers are fundamental parts of the de- 
sign procedure [10]. This is not a major problem in se- 
quential systems in which the state of the active process 
can be ascertained and saved at appropriate points in the 
program in order to implement the recovery block tech- 
nique [5]. The design problem is more complex in dis- 
tributed systems because the set of concurrent processes 
may operate asynchronously until brought into synchro- 
nism by interprocess communications. Since the state of 
each process can be independent of the state of other pro- 
cesses, it is not possible to determine a priori the partic- 
ular sequence of states which will be instantiated during 
operation or execution of the system. Thus, the conver- 
sation boundary must be identified dynamically or must 
be independent of the sequence of occurrence of the in- 
dependent states. 

A number of papers have addressed the problem of the 
dynamic identification of conversation boundaries in dis- 
tributed systems [10]-[13]. However, dynamic recovery 

techniques may exhibit the domino effect [5] and this lim- 

its their usefulness. 
This paper proposes a method for the a priori design of 

conversations for the class of distributed system which 
can be expressed as a set of communicating sequential 
processes. It is shown that the problem of defining the 
system state can be resolved using Petri nets [14] to iden- 
tify the state and state reachability tree of the system. The 
dynamic behavior of the system can be characterized by 
a state-change table derived from the state reachability 
tree. It is shown that a conversation can be generated by 
defining a closed boundary on any branch of the state- 
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ge table. The boundary encloses all processes which 
arty to the conversation.- The associated acceptance 
and recovery states can be identified at the intersec- 

s of the boundary and the state-change table. 
onversations are generally designed to provide fault 
rance for specific functional parts of a system. In this 
er the functional boundaries of a system are mapped 
) the Petri net model of the system. The functional 
butes of the system states are then used to reduce the 
em state-change table to a table of those states which 
changed by interfunction actions. It is shown that this 
e can be used either to design conversations which 
ect a particular functional aspect of a system or to 
‘mine those functions which would be effected by a 
icular conversation. 
1 this paper the distributed systems are expressed in 
concurrent programming language occam [15] which 
lerived from the C.S.P. notation. Occam is used for 
design and implementation of the conversation mech- 
sm for error detection and recovery. These methods 
illustrated by an example which involves the control 

| three-axis robot using five concurrent processes. 

II. Recovery IN CONCURRENT SYSTEMS 

‘he recovery block technique [5] for error detection and 
overy in single process sequential systems cannot be 
ended directly to networks of communicating sequen- 
processes. Error detection mechanisms for distributed 
tems must take into account the possibility that errors 
| promulgate through process interaction and any re- 
ery scheme must involve all processes which interact 
hin the space of the recovery mechanism. The conver- 
on [5] uses a coordinated set of recovery blocks to 
jlement the distributed error detection and recovery 
chanisms. 

e boundary of a conversation consists of a recovery 
a test line, and two side walls. The boundary en- 

ses the set of communicating (interacting) processes 
ich are party to the conversation. The recovery line is 
part of the boundary which defines the start of the 

versation. It consists of a coordinated set of states (re- 

ery points) for the interacting processes. At the start 
1 conversation, the state of each entry process is stored 
use during recovery. The entry to a conversation need 
be a synchronous event. 7 

fhe test line is a coordinated set of acceptance tests for 
set of interacting processes. Each test line process is 
uired to pass an acceptance test. A conversation is suc- 
sful only if all test line processes pass their acceptance 
's. Processes must exit from a conversation synchro- 

isly. If any acceptance test is failed, recovery is 
ieved by rolling back the conversation to the recovery 
2, restoring the process state to that on entry to the con- 
ation, and executing the alternate blocks. Thus, pro- 

ses in the conversation cooperate in error detection. 
side walls of the conversation prohibit the passing of 

ormation to processes not involved in the conversation 

   

  

    

  

(prevent information smuggling). A conversation consist- 
ing of four processes is shown below. 

recovery side walls 
line 

  

time ——> 

Ill. DistrisuTep System MODEL 

In a distributed system modeled using the concurrent 
programming language occam, each process will proceed 
asynchronously until forced into synchronism by interpro- 
cess action. In such a model, process synchronization and 
information exchange are unified in the occam interpro- 
cess communication primitives. 

A. Functional Boundaries 

The functional boundaries of a distributed system can 
be mapped onto the C.S.P. or occam model of the system. 
Thus each process in the model can be associated with a 
particular functional partition or boundary and can be 
given a function-identifier attribute. These attributes will 
be used to discriminate between intrafunctional and inter- 
functional communications. 

B. Robot Description 

Consider the problem of controlling the position of a 
three-axis robot [16]. Let the proposed control system 
consist of five functional processes: the operator inter- 
face, the controller, and three axial motor controllers. 

_ The ‘‘operator’’ process inputs the coordinates of the 
desired position of the robot, and checks the input data 
for reserved values or control overrides (such as the final 

(stop) position 0, 0, 0) and outputs control values to the 

“‘control’’ process. Process ‘‘control’’ accepts inputs from 
process ‘‘operator,’’ calculates the relative direction and 

distance of the new coordinates, and outputs the com- 

puted values of derived axial movement to each of the 
“‘motor’’ processes. Each of the three axial *‘motor’’ pro- 
cesses inputs axial values of direction and distance from 
process ‘‘control’’ and moves the robot to the desired ax- 
ial position. 

The proposed solution to the control problem is de- 
scribed in the occam program listed in Fig. 1. 

C. Petri Net Models 

Considerable research has been done on Petri nets [14], 
{17]-[19] and a formal definition for the basic structure 

of a Petri net has been published [14]. Petri nets are com- 
monly used to model asynchronous and synchronous logic 
systems. They have also been used to model the primi- 
tives and constructs of sequential software [20]. The GMB 
[21] technique can also be used for modeling such sys- 

tems [22]. 
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Robot Exagple.0cc 
== Occam program for 3-Axis Robot Arm Controller. 
— Declaration of inter-procesn channels. 
CHAN request ,return,sotion(3] ,finished{3],stop(4],go(41 : 
— Declaration of process ‘operator’. 
PROC operator (CHAN send,receive) = 

VAR x,y,2,Fun 

  

  

  

input x,y,z from keyboard. (en) 

  

end tx —send to control process. (t2) 
end ty, 

send |g 

receive ? ANY —notors moved. (t3) 

r 
(x=0)AND(y=0)AND(200) check for finish. (24) 

E 
PAR £ = [0 FOR 4] 

stop(t] {ANY  —finish, (t5,t16,c22,t28) 
run := FALSE = (6) 

‘TRUE — cen) 
PAR {= [0 FOR 4] = 

golt] ! ANY: continue. (£8,t18,024,t30) 

  

— Declaration of process ‘motor’. 
PROC motor (CHAN motion, fintshed,stopi,got) = 

VAR step,direction,going : 
EQ 

going = TRUE 
WHILE going 

SEQ 

    

notion ? step —get from control. (£10,19,225) 
aotion ? direction 

nove notor (15,220,226) 

finished 1 ANY = —(£13,£21,£27) 

at 
‘scopi ? ANY —finteh. (¢16,t22,228) 

going i= FALSE —(17,t23,t29) 
got 7 ANY —continue. (18,224,230) 

SKIP 

@) 

— Declaration of process ‘control’. 
e,send ,stopi,got) = 

VAR xold,yold,zold,xnew, ynew,znew, 
count, step(3] ,direction(3],going : 

    

je xold,yold,zold 
going := TRUE 
WHILE going 

SEQ 
receive ? mew input from operator. (t2) 
receive ? ynew 
receive ? znew 

a calculate distance and direction -~(t9) 

PAR = (0 FOR 3] 
SEQ 

motion[i} 1 step[{] _ —send to each aotor.(t10,t19,t25) 
motion({] 1 direction[{] 

tee | wpdace xold,yold, zold —(e11,212) 
count := 0 
WHILE count <> 3 

ALT 4 = (0 FOR 3] 
finished(i] 7 ANY check motors soved.(¢13,21,t27) 

count := count + 1 
send | ANY =) 
ar 

acopi 2 ANY —Finteh.(25) 
going :~ FALSE (114) 

got ? ANY continue. (£8) 
SKIP : 

= sain progras. 
PAR 

PAR £ = (0 FOR 3] 
sotor(aotion{ i] ,finished{ 1] ,stop{t] ,golt]) 

control(request ,return,atop(3],g0(31) 
operator(request return) 

b) 

1. Occam program for three-axis robot arm controller. 

  

    

Concurrent programming languages can be modeled 
using Petri nets (or GMB) if models are developed for the 
primitives and constructs in the concurrent languages. In 
the following it is shown that the concurrent programming 
language occam can be modeled using Petri nets. This 
enables Petri net models to be derived for distributed sys- 
tems described by occam programs. 

1) Communications and Synchronization: Occam pro- 
cesses communicate by message passing. This also pro- 
vides interprocess synchronism because communications 
only take place when both the input (?) and output (!) 
processes are ready. This primitive process can be mod- 
eled by the Petri net transition shown below. 

    (23) Present stace 

Transition 

Ci) nent state 

2) PAR (Parallel Construct): In the parallel construct, 

PAR, all actions are initiated simultaneously. The con- 
struct does not terminate until all actions have terminated. 
This can be modeled by the Petri net shown below. 

  

3) ALT (Alternative Construct): The alternative con- 

struct chooses one of its components for execution. Each 
component process has a guard which is an input (?). The 
process whose guard is satisfied earliest is executed. If 
more than one guard is satisfied the choice as to which 
alternative is taken is defined as being arbitrary. This con- 
struct can be modeled by the Petri net shown below. 

  
es
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Fig. 2. Petri net graph of robot arm controller. 

4) Functional Attributes: The functional boundaries of 
distributed systems can also be mapped onto Petri net 
models. The transitions (ti) and the states (pi) of the Petri 

net can then be associated with specific functions and as- 
signed the attributes of the function identifier or process 
(PROC). 

PROCi = {ti, pi} where ti = {ta.. tn} 

and pi = {pa.. pk} 

D. Petri Net Model of Robot Example 

The robot arm control program of Fig. 1(a), (b), which 

consists of five concurrent processes, can be translated 
into a Petri net graph using the transformations described 
above. The complete Petri net graph for the robot pro- 
gram of Fig. 1 is shown in Fig. 2 and is partitioned into 
five functional processes which correspond to the actual 
processes in the program. The repetitive construct in each 
functional process gives rise to cyclic structures in the 
Petri net graph which serve to bound the graph. The clo- 
sure of the cyclic loops is signified in Fig. 2 by the primes 
on the states identifiers (p1', p9', p19’, p25’, p31"). The 
functional attributes of the system can be mapped onto the 

Petri net and the attributes of each state and transition are 
listed below. 

PROCoperator = {t1, 12, 13, 14, t5, 16, 17, 18, 116, 
122, 128, £18, 24, 130, pl, p2, p3, 
PA, p5, p6, p7, p8} 

{t2, 29, 210, £19, 125, 111, 212, 113, 
121, 127, ¢3, t5, 114, t8, p9, p10, 

pil, pl2, pl3, pl4, p15, p16, 
p17, pis} 

{r10, 115, £13, £16, £17, 118, 
P19, p20, p21, p22, p23, p24} 

{t19, 120, 121, 122, 123, 124, 
p25, p26, p27, p28, p29, p30} 

PROCmotor3 = {125, 126, 127, t28, 129, 130, 
P31, p32, p33, p34, p35, p36} 

PROCcontrol = 

PROCmotor1 

PROCmotor2 = 

E. System State and Reachability Tree 

If M is the state (or marking) of the Petri net, with state 

variables pa . . pz, such that pk € M, then for a given tran- 
sition #j the next state function 6(u, tj) = gw’ defines the 

=198=
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1,9,19,25,31 

el 

2,9,19,25,31 

2 

3,10,19,25,31 

9 

3,11,19,25,31 

210,019,025 

3,12,20,26,32 

e11,t15,£20,¢26 

3513,21,27,33 

c12 

3,14,21,27,33 

| 13,021,027 

3,15,22,28,34 

3 

4,16,22,28,36 

7 4 

  

5,16,22,28,34 

£8,018,024,030 €5,t16,e22,028 

1797 519° 525° 5317 6,17,23,29,35 

£6,014,017,£23,£29 

7,18,26,30,36 

Fig. 3. Reachability tree of Fig. 2. 

transition from present state » = {pa.. pm} to the next 
state p’ = {pc.. pn}. The next state function can be de- 
termined for each transition in the Petri net. For example, 

transition 2 of Fig. 2 corresponds to an occam commun- 
cation primitive and defines the transition from the pre- 
sent state {p2, p9, p19, p25, p31} to the next state {p3, 
p10, p19, p25, p31}. 

The reachability tree of a Petri net model can be formed 
from the set of all next state functions. The set of all states 
forms the state space of the system and is known as the 
reachability set R(C, »). The reachability tree defines the 
system behaviour within the state space of the system. It 
therefore forms a good basis for the placement of conver- 
sations and the identification of the associated test and 
recovery lines. 

The reachability tree for the Petri net graph of the robot 
controller is shown in Fig. 3. The tree has two branches, 
the bifurcation being caused by the conditional clause in 
the process ‘‘operator.’’ This detects whether the robot 
should be operated normally or moved to the reserved 
portion (0, 0, 0) and shut down. 

TV. CONVERSATION PLACEMENT 

A. State Transitions and Interprocess Communication 

The system dynamics are characterized by the evolution 
of the system states through a sequence of state transi- 
tions. This can be defined by a state-change table which 
lists the state changes for each transition in the reachabil- 
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TABLE I 
STATE CHANGE TABLE OF Fic. 3 

Transitions 1 E 

chop. 2 

2) 1959) | |'3;10 

eo | 10 1 

10 | 11,19] 12,20 

19 | 11,25 | 12,26 

e25 | 11,31] 12,32 

eit | 12 13 

1s | 20 2 

20 | 26 27 

26 | 32 33 

e12 | 13 14 

e13 | 14,21] 15,22 

21 | 14,27] 15,28 

227 | 14,33] 15,35 

t3 | 3,15 | 4,16 

14 8 thoy 4 5 

+8 ts | 5,16 | 6,17 

t18 16 | 5,22 | 6,23 

24 22 | 5,28 | 6,29 

£30 28 | 5,34] 6,35 

te | 6 7 

tra] a7 | 18 

    e291 35! 36 
  

ity tree. The elements of the state-change table can be 
identified by taking the relative complements of the pres- 
ent state » and the next state »’ for each transition ff: 

{pe.. ps} = Ij 

B'— pw = {pg..pt} = Bf 
The sets / and E represent, respectively, the subset of 

the initial states which are terminated by the transition and 
the subset of the final states which are created by the tran- 
sition. The state-change table for the robot controller can 
be derived from the reachability tree (Fig. 3) and is shown 
in Table I. 

P= = 

M 

B. Identification of Conversations 

A conversation limits the extent of error propagation in 
a distributed system. Conversations can be constructed by 

generating systematically the entry and exit lines of the 
conversation such that no process interaction takes place 
through the side walls of the conversation. Such a bound- 
ary will contain all processes which participate in the con- 
versation, 

ei
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The reachability tree defines all process interactions: no 
eractions take place between different branches of the 

. The proposed method uses these properties of the 
ichability tree to form boundaries within the state space 
the system. Any two transitions on the same branch of- 

> reachability tree can be considered to form a boundary 
partition enclosing part of the branch. The partition can 
considered to be the boundary of a conversation and 

n be mapped onto (or defined within) the state-change 
le. For any such partition of the state-change table, 
o sets S and F, can be formed from the union of all 
esent and next states within the partition boundary. 

S={NURU..h} 
F = {El U E2 U.. En} 

  

ie relative complements of these sets can be formed into 
0 sets, J and K, which can be considered to be the entry 
id exit states of the conversation. 

S—F={pl..pn} =K 

F-S=({pr..py} =J 

If conversation boundaries overlap it is essential that 
ese conversations should be properly nested for the re- 
very mechanism to work correctly [5]. The properties 
‘the reachability tree ensure that a number of conver- 
tions will be properly nested. 

_ Interfunctional Communications 

Interfunctional communications can be identified by ex- 
nining the functional attributes of the elements of the 
ate-change table. Let the element corresponding to tran- 
tion fj contain pl and p2: 

here pl,p2e]j or pl,p2e 

id pl €PROCg; p2 € PROCr 

en the transition is an interfunctional communication if 
# r. When q = r the transition can be classified as an 
trafunction action. 
The state-change table may be reduced to a communi- 
tion state-change table consisting of only interfunction 
unsitions by removing all intrafunctional transitions and 
rming equivalent relationships between states created by 
trafunctional actions (since these form local states be- 
een interfunctional transitions). This table will be 
jown as the communication state-change table. 
The state-change table, Table I, can be reduced to a 
mmunication state-change table. This table can be fur- 
er reduced as shown in Table II by grouping together 
| transitions corresponding to replicated ALT state- 
ents. For example, transitions 110, 119, 125 can be 
mbined to form a single element in the communication 
te-change table, because all three ALT statements must 
e before the replicated ALT process can terminate. 
The set of functional processes which are party to a 
nversation can be identified by the functional attributes 
the entry and exit states, K and J. These functional 
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TABLE Il 
Comms. STATE TABLE OF TaBLE I 

12 2,9 api 

10,019,025 11,19,25,31 | 14,21,27,33 

13,021,027 14,21,27,33 | 15,22,28,34 

03 3,15 4,16 

EITHER 

t8,£18,£24,c20 | 4,16,22,28,34 | 1°,9°,19°,25°,31 

oR 

5,£16,£22,¢28 | 4,16,22,28,34 | 7,18,24,30,36           

TABLE Ill 
PARTITION OF TABLE II 
  

2 2,9 3,11 

10,019,025] 11,19,25,31 | 14,21,27,33 

£13,021,t27| 14,21,27,33 | 15,22,28,34         
processes will be involved in the error detection and re- 
covery procedures. 

D. Design of Conversations 

The design problem usually involves protecting a par- 
ticular part or function of the system. The states and tran- 
sitions associated with this function can be identified 
through their functional attributes. Similarly, it is possi- 
ble to identify the corresponding elements in the com- 
munication state-change table. The functions may be pro- 
tected by specifying a boundary which encloses the 
complete set of identified states (and a minimal set of other 
states), provided all such states lie along the same branch 
of the reachability tree. The boundary can then be used to 
identify the test and recovery lines as described above. In 
addition to protecting a particular function, this technique 
identifies all processes within a particular conversation 
and all functions which are party to the conversation. 

Consider the robot control example whose communi- 
cation state-change is shown in Table II. Let the main 
conversation protect the ‘‘control’’ process from the point 
at which new coordinates are input (state 9) to the point 
at which all axial control ‘‘motor’’ processes have re- 
ported correct execution of the axial movement com- 
mands output by the ‘‘control’’ process (state 15). There- 
fore, the communication state-change table can be 
partitioned on the main branch to enclose state 9 as the 
recovery line and state 15 as the test line as shown in 
Table III. The corresponding initial and final states of the 
conversation S and F, and the recovery line states and test 
line states K and J can be determined as follows: 

S = {2,9, 11, 19, 25, 31, 14, 

F = {3, 11, 14, 

p2iy,27,33} 

, 21, 27, 33, 15, 22, 28, 34} 

k=5—F = (2,9, 19,25, 31} 

J=F-—S = {3, 15, 22, 28, 34}
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Examination of K and J shows that the functional attri- 
butes of the states involved in the conversation are: 

| 9, 15 € PROC control 
2, 3 € PROC operator 

19, 22 € PROC motorl 

25, 28 € PROC motor2 

31, 34 € PROC motor3 

The boundary of this conversation is as shown by the 
dotted line on the Petri net graph (Fig. 2). 

This design technique may also be used as a structuring 
tool by a designer who wishes to protect a particular part 
of a concurrent program. The designer would simply 
specify the parts of the program which are to be protected 
and identify the associated states and transitions. A proper 
conversation boundary could then be generated using the 
communications state-change table to enclose these states 
(and a minimum set of other states). The design procedure 
would then continue as above. 

E. Implementation 

The conversation scheme can be implemented using the 
concurrent language occam. The constructs available 
within this language facilitate the design process. For ex- 
ample, test lines can be implemented using ALT con- 
structs. Similarly, occam communication channels (each 

of which link two named processes only) can be used to 
remove the problem of information smuggling by ensur- 
ing that no channel belongs to a process outside the con- 
versation. 

The conversation consists of its constituent processes 
and a conversation control process which acts as a test 
line coordinator for the conversation. When a conversa- 
tion is started, a nominated member of the set of entry 
processes initializes the conversation coordinator. The 
coordinator exists for the duration of the conversation. 

Each constituent process, when complete, executes a 
local acceptance test and enters an exit process. The result 
of these acceptance tests are reported to the test line pro- 
cess. The test line process collects the results of all local 
acceptance tests and determines whether the conversation 
has succeeded. If all local acceptance tests are successful 
the test line process notifies all exit processes in the con- 
versation and the conversation is terminated. If one or 
more of the acceptance tests has failed the test line pro- 
cess notifies all exit processes that recovery roll back is 
to be executed. 

The test line process is implemented using an ALT con- 
struct which receives notification of the results of local 
acceptance tests. The acceptance process does not there- 
fore assume any particular order for the termination of the 
constituent process; nor does it impose any timing con- 
straints on the systems performance. 

V. CONCLUSIONS 

This paper has considered some of the fundamental 
problems of designing robust software for distributed con- 
trol systems. It has specifically addressed the problem of 

  

specifying and designing error detection and recovery 
mechanisms for a class of distributed systems. A method 
was described for the systematic identification of conver- 
sation boundaries. 

The paper formalized the definition of system state and 
reachability by using Petri net techniques. The properties 
of the state reachability tree were then exploited in the 
development of a method for the design of proper con- 
versations. The functional attributes of the system were 
used to identify conversations which would protect a par- 
ticular part of a system (the conversation placement prob- 
lem). The conversations designed using this method au- 
tomatically enclose all processes which are party to the 

conversation. : 
The design method reduced the complexity of the prob- 

lem by systematically reducing design considerations to 
only those system states which are changed through in- 
terfunctional actions. These states provided the minimum 
set required for the design procedure and the identification 
of the recovery and test lines. The use of the technique 
has been demonstrated by example. 
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