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SUMMARY

In the design of mass-produced components, it is essential that
manufacturing tolerances should be analysed to make sure that assem
blies fit together satisfactorily and that parts are not produced to
unnecessarily tight specifications. The analysis may be divided into
three stages:

(a) calculation of the sensitivity of a feature's position to the
magnitude of the tolerances upon which it depends,

(b) ensuring that the permitted tolerances which together influence
a critical measurement are allocated in the most economical way,
and

(¢) analysing the statistical distribution of tolerances on critical
measurements.

This thesis describes a method of performing stage (a). Stages
(v) and (c) bave been dealt with elsewheie.

It is demonstrated that the analysis of tolerances in all but the
most straightforward cases is not a trivial operation and a model is
developed 1o assist with the calculation. This is a location element
derived from the classical six-point system for locating a body in
three dimensions. Elements mey be combined to describe multi-datum
machining operations, assemblies and drawing dimension systems by a
{ree=like structure. The model is analysed mathematically, a compendium
of commonly-occurring cases is appended and algorithms for obtaining
results of interest to the engineer designer are described. A computer
program for the sensitivity analysis is also described and the integra-
tion of thc methed into a full {olerance-analysis system is discussed.
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1« General Discuasion

11 The Principle of Infallible Interchangeabiiity'

Many of the aims in the design of mass-produced components are
unattainable. Examples are zero cost, zero weight, infinite strength
and ultimate aesthetic appeal. However, 2 major aim which can often be
achieved is infallible interchangeability. This term, probably first used
in ref. T«7 means that a component selected at random from a batch of like
components should fit satisfactorily to any one of a batch of mating
components. In some situations, selective assembly may be a suitable
process but usually it is precluded since it is costly in resources of
labour and time. Normally, batches of components must be sssembled
unselectively.

The principle of infallible interchangeability leads {o some diffi-
culties in practice. All manufacturing processes are subject to size
variation in a degree depending on the particular procesas; +two components,
even vwhen produced on the same machine, will be unlikely to be of the same
size. Exact fit is, therefore, another unattainable aim of mass production
design and design clearances must make allowance for process error.

1.2 Types of Working Drawings

Unfortunately, modern design is a specialised function and modern
designefs are not e:ﬁected 10 be experts in jig and tool design, in
metrology nor in any other of the branches of production engineering.

The task of the designer is to specify the functional requirements of the
finished part, énd, although he will ususnlly have some knowledge of the
manufacturing and inspecticn processes irvolved, he will not normally lay
down a rigorous specification for them. This principle is clearly siated

in BS 308: Part 2: 1972:

"Production processes or inspection methodes should not be specified unless
they are essential to ensure satisfactory functioning or interchangeability.™

It is also discussed at length in ref. T.T.
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There are two types of working drawing. These are =
(a) product drawings completely defining the finished product as

required by the designer, and
(b) process drawings defining products in a partly finished state

suitably dimensioned for the manufacturing process to be adopted.

A view sometimes expressed is that the product drawing is not the
definition of a machined part, but the definition of a gauging method
for a machined part. Although this is contrary to the spirit of BS 308
since gauging may be considered to be a manufacturing process, it ia.
partially true.

A part may be therefore dimensioned in three ways:

(a) for its function, so that it may work saticzfactorily,
(b) for a process, so that it may be made, and
(¢) for inspection, so that sizes may be checked.

Each of these may involve different dimension systems for the same
part and it is essential that tolerances arising from (b) and (c¢) be not
greater than those specified in (a). In many cases, this may be checked
using simple arithmetic (and some simplifying assumptions, usually) bui
often it is no trivial process.

13 Further Problems in Dimensioning

A machining process will affect some functional clearance, possibly
in an indirect way; and often a functional clearance is affected by more
than one process. Usually, the production engineer has several possible
machining proceéses available, each haviug its own accuracy. As a rule,
the more accurate a machining process, the higher the unit cost and it is
desirable that the more accurate processes are used in features which have
the greatest effect on the functional clearance.

Another difficulty is that meny common dimensioning systems, even
some described im BS 308, are ambiguous and their interpretstion depends

on some convention. In the majority of cases, alternative interpretatione
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lead to differences in functional clearances which are small., However,

this may not always be so and an unequivocal method of describing

dimension systems is desirable.
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2e Basic Concepts

2.1 Component chains « A model for complex manufacturing processes and

assemblies

A feature on a component may be displaced from its nominal position
for two reasons. Firstly, the component may be machined in several stages,
each stage having its own, possibly distinct, datum systems. Secondly,
the component may be assembled on other components each having its own
variations in size. Both of these cases can be treated in the same way
since they are conceptually identical.

Each stage in the machining of a component may be regarded as a
separate physical component, the stages being assembled together to make
the finished part. An example is shown in Fig. 1. The reference body is
the nominal size drawing of the casting, the actual casting being located
on it by the dimensions on the casting drawing. Each subsequent machining
stage is located either on the actual cast form, or on previous machining
stages, or on both. A machined part may then be treated in the same way
as an assemblye.

The classical method of location consists of clamping a bedy to a
plane, to a line and to a point, so that six degrees of freedom are
removed. This applies both to the physical assembly of components and to
a machined feature on a component since six point location is considered
to be good jig and tool practice (for example, see ref. Go12, po 77)e
Some common dimensioning systems cannot be described in six point location
form and these will be discussed at a later stage.

The example shown in Fig. 1 is described diagrammatically in Fig. 2.
Each box represents a machining siage and each arrow represents the
relationship fdepends on the size of'. Thus variations in size will be
passed on, through a chain, to the finished part.

Finished components may alsc be fitted together to form an assembly.

Assemblies may also be described by diagrams similar to Fig. 2. Each box



Fl'g 2 Component Chains.
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now represents a finished part, the meaning of the arrows being the same
as for machining stages. MNulti-stage machining proéasaes and assemblies
may, then, be considered in the same way, and, to avoid confusion, they
will subsequently be called ‘assemblages®,

2.2 Problems to be solved

Assemblages of both kinds may be linked together in the same way.

At some stege, a useful limit will be reached, and questions that one
might wish to ask are =
(a) in Fig. 2, what ie the effect at a feature in stage C of given

variations in size at stages A and B,

(b) in Fige 2, if the maximum permitted variation in position or size

in stage C be known, then how should the tolerances be apportioned

between stages A and B so as to minimise the process cost, and
(c) what is the clearance between a feature on component D and one on

component E in Fig. 2?

The concept of regarding a finished part as en assembly with some of
the components possibly occupying the same space as others is fundamental
to the system to be described. Its use enables assemblages 0 be defined
in a unified way and questions (a), (b) and (¢) may be answered in much
the same fashion.

The terms 'tolerance' and '"location' have been used so far in a fairly
loose, commonsense way since they are ¢f common currency in engineering.
However, as they will be used subsequenily in a more specialised sense,
some discussion of them follcws.

2.3 Tolerances
2¢3¢1 Definitions

Tolerance is the variation from nominal position of a feature of
interest on a component.

Tolerances may be specified bilaterally, the locating dimension

consisting of a mean size with a tolerance equally disposed about it;
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or unilaterally, the locating dimension consisting of a size at one extrome
with a tolerance quoted in the opposite direction. In all the examples
which follow tolerances will be specified bilaterally.

A tolerance zone is the zone within which the feature of interest is
required to be contained. BS 308 specifies that a tolerance zone is one
of the foilowing:

(1) a circle or cylinder

(2) the area between two parallel lines or two parallel straight lines
(3) the space between two parallel surfaces or two parallel planes

(4) the space in a parallelepiped.

A tolerance zone which is occasionally useful, but which is absent from
the list, ie a sphere.

263:2 Intrinsic and extrinsic tolerances

A feature may be displaced from its nominal position for two reasons.
Firstly, there will be a tolerance on its position due to error in the
manufacturing stage which has produced it. This will be called intrinsic
tolerance, and will be the tolerance quoted on the process drawing of the
feature. In following examples, standard BS 308 tolerance frames will be
used to show intrinsic tolerance. Secondly, there will be a tolerance on
the position of the feature resulting from tolerances on previous manuface
turing stages on which its location depends, or tolerances on the finished
parts on which it is assembled. This will be called extrinsic tolerance
and must be calculated from the intrimsic tolerances on the locating parts.
The sum of intrinsic and extrinsic tolerance will be termed 'total tolerance!.
In all cases, tolerance is relative to some frame of reference. Intrinsic
tolerance is relative to the nominal positions of the locating features,
while extrinsic and total tolerances are relative to any feature of interest.
2.4 Locations

There are two types of location system which are described below using

two-dimensional examples for illustrative purposes.
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2¢4+1 Real Locations
These are location systems which may be realised physically and
locate real bodies on real locating features, both necessarily having
irregularities in form and displacemenis from nominal positions. Real
locations occur in the jigging of manufacturing processes and in the
assembly of components. Examples of each are shown in Fig. 3A.

2¢4.2 Gecmetrical Locations

Functional drawings often describe location systems whicﬁ may not
be realised physically since they refer to idealised geometrically exact
figures. A common example is shown in Fige. 3B. As may be seen, the
drilled hole cannot be located physically on two datum faces. The most
plausible interpretation which can be made of this system is that any
convenient jigging system (which necessarily involves a real location) is
to be used but that on the finished part, the hole is to lie within the
parallelepipedal tolerance zone defined on the drawing and centred at the
intersection peint of {two lines parallel with the datum face at a distance
from them specified by the drawing dimensions.

A detailed discussion of this dimension system will be found in
ref. TeT ppe 266=270.

2.5 Cumlative Tole?ance

The concepts described in the previous sections are illustrated by
the example chown in Fige 4. This is unrealistic but not wildly so.

Feces E and F are assumed to be geometrically exact, while face D is
subject to a profile tolerance and lies within a band as shown in (1) on
the diagram. It is further assumed that all locating points are exact,
but the central axis of the machine tool is subject to a cirenlar tolerance
gone relative to the corresponding locations. Form irregularities normal

to the plane of the diagram are discounted.

The three holes are machined using separate locating systems as
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shown below:

Stage 1t Hole A ++s datum Face E, and a poiﬁt on Face D.

Stage 2: Hole B +e.e datum Hole A, and a point on Face E.

Stage 3: Hole C e.e datum Hole B, and a poinl on Face F.

Stage 1. The linear tolerance at face D will result in the position
of hole A relative to all other faces of the plate being subject to a
linear tolerance = &s in (1). There will also be a circular tolerance
zone at A relative to the locating features. This will also be relative
to the actual profile of face D and all other nominal faces.

The total tolerance at A relative to all nominal faces will be these
iwo tolerance zones superimposed.

Stege 2. The linear tolerance at A results in a linear tolerance
at B (shown in (2)); +the circular positiocnal tolerance zome at A (plus
clearance between hole A and the locating peg) causes a tolerance zone
at B which is approximately elliptical (shown in (3)). There will also
be a circular positional tolerance at B, and the total tolerance zone at
{this hole relative to the noﬁinal profile will be the superimposition of
the linear, elliptical and circular tolerance zones.

Stege 3. There are four tolerance zones at C: a linear zone due
to linear tolerance at B (shown in (4)), an elliptical zone due to the
elliptical zone at B (shown in (5)), an elliptical zone due to the
circular zone and clearance at B, and a circular positional tolerancee.
The total tolerance zone is the superimposition of the four.

All tolerance zones shown in the diagram are grossly exaggerated,
and have been obtained by tracing the tolerance loci; but the effect
of cumulative tolerance is clearly shown. In a real system, extra complie
cation would be added because of factors which have been conveniently
ignored in this model. For instance, the locating points would not be

exactly positioned; and face F would be subject to a form tolerance.



(a)

(b)

1.
Difficulties involved in analysing a multigtage system are:
The extreme position of a tolerance zone at a feature is not
necessarily the position corresponding to an extreme position
of zones at the locating features.
Some tolerance zones are dependent = an example being the two zones
ahown.in (3)e The nett displacement between holes B and A does not
depend on these zones. Deciding on which displacements at one
feature are relative to another can involve much book=keeping and
possible error.
Real parts exist in three dimensions and though many tolerance
situvations may be considered as being two-dimensional, this is not
always so. In a three~dimensional system, tolerance zones may be
parallelepipedal or elliﬁsoidal and their effects are difficult

to visualise, let alone calculatee.
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3. DESCRIPTION OF THE LOCATION MODEL
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3s Description of the Location Model

3¢1 Tolerance Mechanisms

Fig. 5A shows a common dimensioning system. Hole a is located by the
centre points of holes b and c. The dimensioning system is analogous to
a structure — there are no redundancies in the dimensions and if any
dimension is deleted, then the remainder are insufficient to locate the
hole. In this case, the three members of the structure are the centre
distances of the holes.

Extrinsic tolerances will be passed to the located feature from each
of the locations. If a circular tolerance be imposed at hole b, hole ¢
being held at its nominal pesitiony then the dimension system may be
regarded as a mechunism, each position of hole b corresponding with an
unique position of hole a. The mechanism in the case illustrated is a
four bar chain and the locus of hole a is a short circular arc. If now
hole b be held at nominal and a circular tolerance zone applied %o hols c,
then a similar mechanism is obtained — Figures 5 A=1 and A=2, Since the
radius of each tolerance zone is small in comparison with the locating
dimensions, the {wo systems may be superiuposed to give a total tolerance
zone as shown in the figure. This approximates to a parallelogram as
the lengths.of arc are smell.

Another dimensioning system is illustrated in Fige 5B. In this case,
hole a is located by its distance from hole b and by its perpendicular
distance from line c. Again the system is exactly determined and may be
considered us a structure. If & circular tolerance zone be applied at
hole b then an equivalent mechanism may be derived. In this case, since
the perpendicular distance from line ¢ is specified, a sliding member is
necessary on the line, while the crank centred at the nominal position
of hole b generates the circumference of the tolerance zone. At hole a,
the zone generated is a short straight line parallel with c.

Similarly, if a tolerance band is allowed at line ¢, hole b being
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held at its nominal position, the resulting zone at hole a will be a
small circular arec centred at b.

The two tolerance zones may be superimposed and the resulting zone
ie approximately a parallelogram.

Fige 6 shows a mechanism with two sliding pairs which is equivalent
to a point dimenaioned from two straight line datums.

There is a general solution for three dimensional mechanisms come
prised of pure turning and sliding pairs (refs. G.6 and G.14): and it
gseems feasible that a method for the analysis of tolerances based directly
on the use of such elements could be derived. This direct approach suffers
from some disadvantages, however. As has been demonstrated in section 2.5,
explicit tolerance zomes are of irregular shapes; and if, for example,
hole b in Fige. 5A were located in the same way as hole B in Fig. 4, then
the tolerance zone would cexrtainly not be circular. Even if the zone
were decomposed into its separate elements, it would be necessary to use
a crank arm with a radius varying dynamically with turning angle, one of
the elements being elliptical. Also, the method is rather inflexible,
as each of the many possible dimension systems would require a separate
equivalent mechanism with a separate method of calculatione Although the
vector equations for these mechanisms may be written down using the methods
of ref. G.6 they do not appear tractable for solution in some cases. These
problems are exacerbated in three dimenzions.

Equivalent mechanisms are useful in visualising the effects of
explicit tolerances, but the preferred method will be based on a standard
unit of location. Indeed, the method might be used, with a little modifie
cation, in the analysis of the general kinematic mechanism; but this is
outside the scope of this thesis.

3.2 Elemental Location

A body is located elementally if -

(2) a point on it is held against a locating plane,
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(b) a point on it is held against a locating line, and
(¢) a point on it is held against a locating p;int:

The located body is sensitive to small displacements =
(a) along the normal to the locating plane,

(b) orthogonal to the locating line and
(¢) in any direction at the locating pointe

Elemental location is illustrated in Fig. 7.

In order to avoid confusion, a locating plane will be called a
plate, a locating line will be called a hinge and a locating point a
socket. The terms have been picked because of their obvious mechanical
analogies and also because they have distinct initial letters. In sube
sequent reference, the following concise terms will often be used:

(a) a plate location will be called a P=locy

(b) a hinge location will be called an H-loc, and

(o) a socket location will be called an S-loc.

These will be referred to collectively as a location triad.

A displacement at a locating feature will result in a displacement at
other points on the located body. A point at which the displacement is
required will be called a result-point (or more concisely an R-point).

An B-point located on a triad will be shown graphically as exemplified
in Fig. 7. The root node represents the R-point and the three links are
distinguished by the convention:\

(a) a P=loc is shown by a square,

(b) an B-lec is shown by a triangle, and

(¢) an S-loc is shown by a circle.

Each symbol is placed cn the appropriate link, and a link indicates the
relationship 'is located on', in a top-down sense.

3.3 Displacement Matrices

The general location element, described previously, is analysed by

using energy methods since these are commonly used in engineering sciencee.



LINEAR
ZONE

() ELLIPTICAL
} / ZONE

B- POINT

1\ ELLIPSCIDAL
ZONE

Fi g 8  Transformations



16,

Details of the analysis will be found in Appendix A but an outline is
given here for reference. 5
The parameters listed below define the location system, coordinates
being relative to some convenient set of orthogonal axes. The sense of
the directions of the lines is immaterial.
(a) Coordinates of the R-point.
(b) Coordinates of the points of action of the P=, H= and é—locs.
(¢) Direction cosines of the normal %o the locating plane and of the
direction of the locating line.
If the displacement at a locating feature bg 5;n’ and the displacement

at the R=point be E;ut’ both of these being column vectors, then
Dot = X Dine
M is a 3 x 3 matrix with coefficients depending on the coordinates
of the locating triad. Each location feature will have a different matrix;

the notation for these is shown belowe.

(a) P=loo; M = P
(b) H-loc; M = H
(¢) S-looc; K =

There are, as is discussed in Appendix A, restrictions on the positions
and directions of the locating features. These define a proper location
and are easily visualised; for instance, a socket may not exactly correse
pond with the centre of action of a P=loce If the location features are
noi restricted in this way, then matrix coefficients may become infinite.

It is proved in Appendix A that a P-matrix is of rank at most 1,
an H-matrix of rank at most 2 and an S-matrix of rank at most 3. The
matrices may be thought of as three~dimensional transformation operators,
and if they act on a unit sphere, then the Pematrix transforms it o a
straight line, the H-matrix transforms it into an ellipse; and the S-matrix

transforms it into an ellipsoide. These trangformations are illustrated in

Fig. Be
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4. LOCATION RETWORKS




Fig 9 Location Networks
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4. lLocation Networks

4.1 Assemblage network and paths

An assemblage mey be represented by a directed graph consisting of
location triads linked together as shown in Fige. 9. The effect of a
displacement at feature O will be transmitted through the network to
feature B« The corresponding displacement at B will be found by multi-
plying all the matrices corresponding to the edges of the graph lying on
the path between the two features. If the product matrix be ﬁ; then the
output displacement at B may be found from the general equation: |

3;ut % E.ﬁ;n
where Bgut is the output displacement column vector, and
5;n is the input displacement column vector.

Often multiple paths exist between the location at which the dis-
placement is applied and the R~point. In this case, the calculation of
the matrix f is not so straightforward and a discussion is to be found in
Appendix A. An example of multiple paths is the pair of paths joining
nodes N and A in Fig. 9. (Paths NHC A and NIE A).

If a spherical displacement locus is applied at O, then the resulting
output displacement locus at B will be a transformation of the sphore.

In the general case, .the output zone might be linear, elliptical ox
ellipsoidal depending on the rank of the transformation metrix 1 (see
Fige 8)s For a pair of nodes which are comnected by multiple paths, it
is not possible to predict the rank of I without first celculating the
path products. For a simple path, the rank of M will be the lowest rank
of matrix associated with any edge along it (Appendix A).

4.2 Examples

The construction of assemblage networks requires some skill in
visualising the tolerance mechanisms involved, although some assistance

is provided in Appendix D which contains details of all the common locating
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systems. Fig. 10 shows a simple example. Hole A is located on the centre
of hole B, the nominal centres of both holes being éoincident and hole A
having a concentricity tolerance relative to hole B. Extrinsic tolerance
due to displacement of hole B must be separated from the intrinsic tolerw
ance due to the concentricity tolerancee. The situation is shown in

Fig. 10, the mechanism XYZ being used to assist in visualising the location
triad. Some, possibly irregular, folerance zone exists at hole B, and this
must be passed unchanged to hole A which has its own tolerance relative

to hole B. If member XY be made very short and member YZ very long in
comparison with other dimensions in the neighbourhood of holes A and B,
then the path traced out by point Y will be very nearly the same as that
traced out by point X. The displacement at X will be passed unchanged to
Y in the limiting case. If point X is taken to represent the locating
hole B and point Y is taken to represent the located hole A, then the
required locating system has been obtained. The use of links of zero
length such asXY, and links of infinite length, such as YZ, is common

and there are several standard cases in which these are useful. The

final location triad is shown in Pig. 10.

The whole assemblage network is made up from standard components
similar to the one just described — another two-dimensional example is
illustrated in Fige 11. In order {o generate a two~dimensional system,
the P=loc is taken to be in the plane of the paper and the two-dimensional
H-loc and S~loc representations are a slot and pivot as shown in Fig. 11.

Further discussion of the network will be found in Appendix D.

4¢3 Ceneration of Tolerance Zones

The input tolerance zone at a feature is always taken to be a sphere.
The ocutput tolerance zone at the located feature may be linear, or elliptical
or ellipsoidal depending on the matrix of the path joining the two features.

The use of a spherical input tolerance zone is not as restrictive as it

might appear, since all other common tolerance zones may be generated
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from it - see Fige. 12.

If a spherical tolerance is applied to a P-loc; then since only
displacements normal to the locating plane are sensed, this is equivalent
to a linear tolerance zone. At an H=loc, onlf displacements at right-
angles to the locating. line are sensed, so the application of a spherical
zone is equivalent to a circular zone. At an S-loc, the whole spherical
zone is sensed.

By superimposition of P=locs, a parallelepipedal tolerance zone may
be generated. Similarly, superimposition of H= and P-locs generates a
cylindrical zone.

A spherical tolerance zone may therefore be used to generate all the
gtandard tbleranoe zones listed in BS 308 and quoted in section 2¢3.1.

A more detailed treatment is given in Appendix D.

4.4 Use of a location network

When & location network has been established for a particular
assemblage, it may be used to provide qualitative answers to various
questions of interest.

(a) The vector displacement at a locating feature is known. What is
the effect at a located feature?

The output displacement may be found directly from the relation

Bgut 0 ﬁ.ﬁgn
i is the prth matrix between the two Peatures. If this is to be found
automaticaily, it is essential that if there be no path between the two
features, then H = O.
(b) If a spherical tolerance zone is applied at a locating feature,

what will be the maximum displacement and its direction at a

particular R-point on the body?

Again the path matrix M is calewlated. The meximum displacement and

its direction are evaluvated by finding the dominant eigenvalue and
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associated eigenvector of the product of il and its transposes Details

of the method used are to be found in Appendix B, but it is wnnecessary

for the user to know anything about the method used.

(¢) A feature of interest depends on several locating features. What
will be the effect of unit tolerances at each feature?

M matrices are calculated for the paths between each locating
feature and the R—point in question. The maximum tolerances for each
are evaluated as outlined in (b) and displayed in a convenient way. The
resulis may be used as an aid fo the selection of manufacturing processes
and locating systems.

(d) What is the relative displacement between two features of interest
in the assemblage?

The calculation is performed using a device described in Appendix A
which is again transparent to the usere The answer is useful in several
wayse. It may,; for instance, be employed to calculate clearances between
points on the assemblage. Another use might be to check whether a
particular system of location used in the manufacturing process gives
tolerances which are inside the bounds specified in the functional

drawing of the part.
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5. THE WORKING SYSTEM
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S5« The Working System

5.1 The Tarpet Computer confipuration

It has been assumed, in the design of the pilot system, that
(a) the computer available for engineering use is a bare 16K mini,

(b) the program is to be contained within 8K, the remainder of the
store being reserved for array space,
(c¢) a compiler is available for a reasonably high level language such

as ALGOL 60 or FORTRAN.

The selection of the computer is clearly of great importance in the
system design; and it was decided at an early stage that the design basis
should be the minimal configuration above. A useful network should contain
around two hundred nodes and 8K would bs sufficient to provide array space
for this size of assemblage.

Since the data structure chosen is fairly complex, ideal languages
would be ALGOL 68 or PL/1 since both provide reference variables so that
data structures may be built up dynamically. It is, however, unlikely
that either of these languages would be available on the minimum configure—
‘ation selected. It was reluctantly decided that the linked structure
would be held in array form, links being integer pointers to array
elements. ‘This is a common, although artificial, way of holding a linked
structure, but it does have the clear advantage that a data structure may
be output in a comprehensible form.

The prototype program was written in ALGOL 60 and it did, afier some
paring, fit into 8K of store. The computer used was a Marconi~Elliott 905
which has an excellent ALGOL 60 compiler with good error diagnostics.
ALGOL 60 was used in preference to FORTRAN mainly because it is more
suitable for the communication of algorithms. The fact that FORTRAN
has no facilities for dynamic arrays is irrelevant, because in this

application a fixed area of core is set aside for array space.
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5.2 The assemblage network « « . computer representation

The first stage in the analysis of the location systems om an
assemblage is to set up the network manually. It might be possible to
automate this to some extent, since sub-networks for all the common cases
of dimensions systems have been established (Appendix D). These might be
stored as a library of standard cases in the computer, probably on backing
store; and the relevant sub-system selected by means of an index. The
appropriate feature coordinates would also be supplied together with
linkago data. A section of network would then be linked into the main
data structure together with node information. There are two main Qiffi-
culties. Firstly, it would be necessary to maintain a dynamic data=-
structure and this is not conveniently achieved in the languages most
commonly available for engineering applications. Secondly, in some sub-
systems (for example, those defining symmetric tolerance), some of the
coordinates of nodes internal to the sub-system are calculated from
externally supplied coordinates, and so a library entry would consist
not only of a piece of structure, but would also contain a section of
code which would be handled rather like a macro definition. This is an
interesting problem but it would complicate the system drastically. For
this reasoﬂ, the library of standard cases is held in a manual in the
prototype system and the network completed by hand.

It would be unreasonable if it were required that a whole network
were to be compiled by hand for an assemblage as complex as, say, &
motor car. Fortunately, networks can be built up piecemeal from more
tractable sub-networks which can be separately tested. The physical unit
corresponding to such a sub-network might be as small as a single process
drawing.

The present prototype program is for general purposes, but in a wmore

elaborate configuration, a separate specialised program for validating sube

networks would be very useful. This might display selected output
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tolerance zones graphically for given input tolergnces so that the
correctness of a given sub-network could be checked before incorporation
into the main system. The test program would also be a valuable training
aid; particularly if output tolerance zones were displayed visually.

5¢3 Data Input Format

The details of the network are supplied to the program by providing
the data for each node. The format of the input data is described below.

(a) External node index

Each node represents a feature on the assemblage and must have a
distinct index. These are provided in random order and the format may
be designed to any fixed convention. In the prototype program, simple
positive integers were used.

(b) Node type index

For a normal node, the type index is O, In the case of a node with
unitary links (see Appendix D), the type index is 1, such nodes being
treated in a special way. Artificial nodes of this kind will have nonw
zero indices and although the unitary node is the only cne included in
the prototype program a good case might be made for using others, notably
those connected with symmetric tolerances.

(¢) Link indices

Each normal necde will have three links, each pointing to another
node in the networke. Leaf nodes will Lave links pointing to & notional
null node, indicated by zero. Artificial nodes are treated in a different
way and the unitary node, for example, may have a mixture of zero and
non-zero linkse.

A node may not have a link to itself - this will be rejected at the
data validation stage of the program. The convention assumed for the
order of the links is (i) P=loc link, (1i) H=loc link, (iii) S=loc link.

Weak links (see Appendix D) are distinguished by a negative node number.
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(d) Feature coordinates

All nodes have the following five ooordinates:a
X, Y and Z coordinates relative to the general reference axes of the
system, and two angles which define the directions of the locating plane
for a P-loc and the locating line for an H-loc. These are specified in
the prototype program as degrees and in cylindrical coordinates.

Some storage space is wasted by quoting angular coordinates for an
S-loce If these were not included the array structure would become more
complicated. Another reason for including them is that it enables an
S=loc t0 be used in a dual role as a P= or H=loc which might be useful
for larger networks since this saves nodes.

(e) Tolerance size

The bilateral tolerance size (or radius of the generating spherical
tolerance zone) may be included, if it is known, and if qualitative values
of displacements are required. This was not done in the prototype, all
tolerance zones were considered as being of unit size and the output
interpreted as displacement per unit input tolerance or sensitivity coe
efficient. Other information which might be useful here is the standard
deviation of the process tolerance in the case of a well=-established processe.
This would enable statistical confidence limits to be calculated for output
tolerances as is done in the system described in ref. S.5.

5.4 Internal Node Data

(a) Internal node indices

It is desirable, although not essential, that node indices should be
provided in random order on inpute Networks for large assemblages are
built up from smaller sub-networks and the onus of organising the feature
references into a form suitable for computer processing is better put on
the computer than on the user. The program assigns an internal index to
each node which is held as part of the node record. This internal index

is an integer with absolute value in the range 1 -~ N where N is the total
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number of nodes. Againg O is used as the null node and negative integers
denote weak links. Internal node indices are assigned to each node in
topological order. This is discussed at length in Appendix B but informally
may be defined in the following way:

'If nodes are in topological order, then no node can have a link
to a node with a lower index, except to node zero, which is a special
case.’

Internal node indices may be used in two ways. Firstly, the node data
may be sorted so that all the nodes are physically in topological order.
Secondly, a node index vector might be held in store and all operations
on nodes might be performed indirectly. Each method has its own merits;
the former being faster for actual processing of an established network,
but resulting in re-ordering of the prime data; the latter requiring that
node access has a further degree of indirection which is particularly time-
consuming unless the compiler uses Iliffe vector array access. In the
prototype program, node records were topologically sorted.

(b) Scratch pad matrix

Associated with each node is a 3 x 3 matrix which has coefficients
depending on the coordinates of the location triad of which the node is
the R-poinf. This represents a large overhead of store, but it is difficult
to see how processing of networks might be achieved efficiently without it.

(¢) Direction cosine vector

For speed of execution, the two cylindrical coordinates which define
the normal to the plane or the line of the hinge are converted to direc—
tion cosines which are held in the node record as a 3-element vector.

It is possible that some, or all, of the internal node data might
be omitted and the associated quantities calculated as required during
processing. As usual, the compromise must be made between minimising

storage space and reducing running time. In the prototype program, it was

decided that 200 nodes should be sufficient for most practical problems and
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80 all internal data was included since sufficient array space was

available for them.

5¢5 The structure - alternatives

So far, the data structure has been referred to rather tentatively

as 'a network'. There are several possibilities for the actual form of

the date structure: +two of these are particularly useful and a dis-—

cussion of their respective merits follows:

(a) This is the most natural structure and an example will be found in

(b)

Fige 13A¢ The set of nodes is connected unidirectionally. Nodes
have outdegree three except for the leaf nodes which have outdegree
zero. One or more root nodes have indegree zero, while the remaining
nodeg are not restricted as to indegree. There are no closed loops.
Although it is tempting to refer to the structure as a ternary tree,
it would be incorrect to do so since all sub-structures are not dise
joint (refe. Ge1)e A similar structure without the restriction on
outdegree is termed 'a generalised arborescence' and 'a hierarchical
gtructure! in ref. Ge15. To avoid inventing another name equally as
clumsy as these, the structure will inaccurately but concisely be
called a 'iree! from now one

Another structure which is more flexible than the previous one is
shown in Fig. 13B. The main advantage of this structure is that
duplicated input data is avoided since each node in the structure
does not carry directly its associated record, but merely a pointer
1o ite The structure is divorced from the prime data and so all
calculations are indirect. Another clear advantage is that hori-
zontal links represent superimposition and so unitary matrices are
not requirede.

The second siructurs is appropriate where a language is used which has

reference (ALGOL 68) or pointer (PL/1) variables. For more commonly used
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languages, the indirection involved is probably, an intolerable overhead
of processing time, and for this reason in the prototype program, the
less compact but more natural 'tree' was used.

5.6 Data validation phase

The only data which can be directly checked for validity are the
external node index and the node type index. The former must conform
with a fixed format and the latter is resiricted to a fixed number of
integers (0 and 1 in the prototype program). In the prototype program,
if N nodes were input, then each external node index would be a separate
integer in the range 1 = N but in random order. This is not excessively
restrictive on the user, but might be inconvenient where a large network
was to be built up from smaller sub=*trees?,

At this stage, the 'tree; must be checked to ensure that it contains
no closed loops which would be physically impossible and would result in
the program looping. This may be done by topologically sorting the ncdes,
which also facilitates processing of the firee' at a later stage. Topolog-
ical sorting is described in refse. Gel1, G¢13 and G.15; the algorithm used
being a modification of the one described in ref. G.13.

Each node is re-numbered, node indices again being consecutive integers
in the rangé 1 = N when N is the number of nodes. After sorting, a node
(K) does not point, even indirectly to nodes (1) to (K - 1) — see Fig. 14.

The algorithm is described in Appendix B; it constructs a sorte
index which is a vector of N elements showing the sorted position of each
node. The sort—index is used to sort the data physically. Although this
is not absolutely necessary, subsequent processing being possible by
referring to the sort-index, it is convenient{ because =
(a) it is useful to separate the routines for setting up the siructure

from those used for processing it,

(r) the structure should be permanent after being validated and so the

physical sort is only required once,
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(¢) much indirect referencing is obviated in subsequent processing, and
(a) subsequent programming is easier. The algorithm used for sorting

on the index was also obtained from ref. G.13 (see Appendix B).

At the end of this phase, the data siructure is ready for processing.
The internal node index is the index of the node in topological order.
It is convenient at this stage to convert the angular coordinates of
P-— and H=locs to direction cosines which are written into the direction
cosine vector.

5¢7 Processing the structure = prototype program

In the interests of conserving storage space, nodes were re-numbered
during the sort phase. All nodes must be subsequently referred to by
their newlnumbers in the prototype programe For this reason a sort—index
is output at the beginning of the processing stage. The user must re-
number the nodes on his 'itree' diagram with the help ofthis index. In a
larger system, the original node mumbers would still be availeble and an
inverted list used {o access the sorted node numbers which would only be
used internally. The existing system is mildly inconvenient..

Two options only are available in the prototype program and are
described below. For test purposes, the path matrix elements and the
number of iterations-required in the eigenvalue calculation may be outpute.
These may be suppressed if, as is likely, they are not required.

(a) Maxiram displacement |

Required: a maximum sensitivity coefficient = i.e. the maximum
displacement at a result feature caused by the application of a unit
tolerance at an input feature.

Input (i) the result feature node number,

(ii) +the input feature node number.
The 'tree! is traversed from result feature node to input feature

node, path matrices being calculated cumulatively at each node encountered

en route as described in Appendix A, section A4.
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The maximum displacement is calculated as described in Appendix A,
section A6, and output together with its associated direction cosines.

(b) Relative displacement

Required: +he relative displacement between two resuli features
due to a unit tolerance at an input feature which affects either, or
bothe

Input (i) +the code O,

(ii) the two result feature node numbers,
(iii) +the input feature node number.

A dummy node is attached to the two result points and the "tree!,
of which it is the root node, is traversed. This device is described in
Appendix A, section A4. The relative displacement is calculated and out-
put with its associated direction cosines which are used merely for

checking purposes.

5.8 Further extensions

The options described in section 5.7 are sufficient for normal use,
but several more may be added for convenience. Two of these are:
(a) Calculation of all the sensitivity coefficients at a result

feature.

Since all the nodes at which tolerances occur are known to the user,
these may be flagged on input to the system. A list of sensitivity co=
efficients may be obtained by traversing the 'tree' and calculating
maximum displacements at each input node. In order to do this efficiently
and to obviate superfluous output, a more elegant method of traversal is
desirable. This would require an appreciasble increase in the size of the
program and so was omitied from the prototype program.

(b) Calculation of the maximum displacement in a particular direction.

This is dene easily from the paths matrix and since it is a straight-

forward calculation by hand, it was omitted from the prototype program.
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59 An Integrated Tolerance Control System

-

The system described in sections 5He1 = 5.7 is.aasigned 28 a stand-
alone program for a mini-~computer. Its input is a network description
of an assemblage together with a list of features of interest and the
points having tolerances which affect thems The output is a list of
sensitivity coefficients for each feature of interest. This is a useful
tool for the analysis of tolerances in iis present form. However, if a
more ambitious configuration were available, several other sub=programs
involving established techniques could be amalgamated to form an integrated
tolerance control systeme In view of the interest displayed in the system
described in ref. S.5 which also assists the designer in part of the analysis
of dimensional tolerancing, an integrated system would be an invaluable aid
in this field.

A possible configuration might consist of the following modules:

(a) Network Proving Subprogram

As each component of an assemblage were considered, its individual
location networks might be separately proved by using a specially tailored
version of the protolype programe. Ideally, interactive graphics would be
used to display the envelope of the output tolerance zone for one input
tolerance zone or several acting simultaneously. This would enable the
user to prove the sub=network to his own satisfaction. A set of standard
sub-networks, such as those given in Aprendix D could be stored and dis-
played on demand individually, and {ested interactively ensuring that the
case selected was appropriate to the location situation. The catalogue
of standard cases would be augmented by cases which had been thoroughly
proven. It would also be convenient to display information regarding
the purpese and usage of each standard sub-network on demand.

(b) Network Building Sub-program

A difficulty with the current prototype program is that if the

sensitivities obtained for a particular application are not satisfactory,
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then the complete network must be modified and ?e-input. This is due in
some measure to the resiricted core available on tﬁé target configuration,
but also because Algol 60 is not a suitable language for handling data
structures of any complexity. If Algol 68 or PL/1 were available then
the structures could be dynamically modified and it would be possible to
delete sections of network, to insert modified sub-networks and to append
proven sub-networks to an existing network. A complex assemblage network
could be built up section by section interactively,vhich is a more natural
method of developing the data structure.

(c) Sensitivity Coefficient Sub=progsram

The next stage in the design process would be to process the
established network and obtain sensitivity coefficients for all tolerances
affecting points of interest. This would be a refined version of the pro-
totype program; an obvious improvement being to trade off some storage
space for a quicker and more elegant method of traversing paths in the
networke The output from this sub-program would be lists of sensitivity
coefficients for each critical feature in the assemblage. Possibly, some
of these might be sufficiently low 1o be ignored and the network
might then be re~defined omitiing them in the interests of running
efficiency.

(d) Allocation Sub~prozram

Eventually, a stage would be reachsd when the designer was content
with the assemblage description. The tolerance allocation could then be
optimised on a least cost basis. Two options would be availables
statistical and surefit bases (see Appendix C). This would be a logically
straightforward section but judging from the variety of the methods avail-
able for non-linear optimisation, it would probably require study by a
specialist in the field. The output from this sub-program would be the

aotual tolerances a% each input point. It is possible that some of these
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might be too small for practical considerations.necessitating further
constraints to be applied (see Appendix C) and subsequent reprocessing
and recalculation.

(e) Statistical Analysis Sub=program

The final sub=program in the system would be a system similar to
the one described in ref. S.5 but operating on the output from section (d)
rather than on sub-ﬁrograms and data supplied by the user. The resulis
which could be in histogram form would give the distribution of the
variaticns in size on features of interest.

A suggested system is illustrated in Fig. 15.
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5.10 Comments on the System

Much of the preliminary work has been done with dimensioning equally
as eccentric as that on the examples discussed in Appendix E.1. A
problen in applying the method to practical examples is that most
designed components are under—defined dimensionally, occasionally
even in critical measurements and assumptions must be made particularly
with regard to tolerances such as squareness, flatness and parallelism
which are normally not specified explicitly. Uswally it is assumed,
even by experienced detail designers, that some features of a component
are geometrically exact. A location network is certainly a more precise
method of specifying a part than most dimensioned drawings.

For most of the applications which have been checked analytically,
the sensitivity coefficients obtained have been accurate to two decimal
places even when dimensions h;ve been scaled from a drawing. Occasionally
it is difficult to check a particular network and interactive graphics
would be a great help.

The method is reasonably easy to use after a little practice. To
date, a sub-network has been found for every dimensioning system encoun-
tered and the method should be particularly suitable for the use of
engineering designers, who are normally good at visualising mechanisms.
Since asaeﬁblies are represented by real, rather than the more complex
geometrical, locationsy;applying the method to assemblies is very easy.

The restrictions of the target configuration have resulted in the
system being a’'little inconvenient to use. Networks are best developed
bit by bit in a similar way to that deoscribed in the examples but due
to limited core it was necessary to keep the program as short as
possible and it was not feasible to generate major networks dynamically.
As each sub-network is proved, it is necessary to modify the network
manvally and this is then re-presented to the program.

It would seem from work done so far that this is a powerful method
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for analysing small displacements and it may have applications other
than tolerancihg. Some preliminary investigation has been performed
on the analysis of kinematic mechanisms, and this seems promising.
Three-dimensional kinematic mechanisms are easier to model using
the system than are tolerance mechanisms and the program may be used
in its present form to determine instantaneous velocities of links in
mechanisms. This has been done successfully in a variety of cases and
further vwork is being carried out on the analysis of accelerations.
Some recent papers have described efforts to analyse tolerance at
joints in mechanisms; it seems that the system is useful for this

purposes
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APPENDIX A

ANALYSIS OF THE MODEL
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A+l Analysis of the Location Triad

The body is located in a set of mutually orthogonal right handed

¥ ] 1
axes ix,i, Xy xB; and is constrained as follows:

(i) At a point on a plane (P=loc). Fig.Alae

'1;' is the position vector of the point of application on
the plane.
£ is the unit normal to the plane.

(ii) At a point on a line (H-loc). Fig. Atb.
E' ig the position vector of the point of application on
the line.
g is the unit vector along the line.

(iii) At a point (S=loc). Fig. Alce

'E' is the position vec:tor of the pointe.
A general point on the located body (R=point) has position
vector T Fig. Ald.

Energy methods will be used to obtain displacements,and forces ati
P-, H- and S-=locs, and the R=-point are -1;, 'fl', S and R respectively.

The system may be described by vector equations (i) - (iv):

(i) P+H+S+R = 0

(i) Pxp +Hxh +5x8 +Rxr = 0
(iii) & H = 0

(iv) T = IFIf.

Equations (i) and (ii) are the genecral equilibrium equations,
vector sums of forces and moments being zero. Equation (iii) represents
the condition that force H is at right-angles to the H=loc. Equation (iv)
represents the condition that force P acts normal to the P—loc.

Known values are:

>
']

—'
P=loc: p and

o |

H-lcc: h zand

m>
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w
-

S=loc:

R-point: R and r

Required:
P-loc: [PI
H~loc: il
S=loc: S

Solution:

(a) The equations (i) = (iv) are transformed by changing the coordinate
axes to {xv Xoy xB; a parallel system with the S~loc as the origin.
Position vectors will be modified as follows:

2 D = 8

=l el
]
=3
!
)

g = 0
- [ | et
Ty e B

Equation (ii) now becomes
(iia) P x p + Ex h + Rx 7 = 0
(b) . Taking the scalar product of h with (iia)
-ﬁ'.(?x;+§xf+'ﬁxa = 0
= he(PFxp) +h.(Rx7T since generally h o (Hx h) =0

- [Pl B . (%‘x;) +h.(RxT) since P = |PI £ (equation iv)e.

Finally, IP| = = .I& i%); E.(#xp) £ o

(¢) Toking the vector product of £ with (iia)e
Ex(Pxp+Hxh+Rxr) = 0
= x(Pxp) + (@ .DNIi-(E.Dh+8x(Rx 7T
since generally ax (bx©c) = (2« 0)b~(a « D)o
= £x(Fxp) +(.DE+2x(Rx7
since § « H = 0 from equation (iii)e.
gx('f;x.];;*'-ﬁx?)

Finally, B = = s LA o B Y0,
g.h
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(d) From equation (i)

S « =(P+H+ W)

This completes the solution of equations (i) = (iv).
Summarising:

Solutions:

v IF - he (Rxr)

i 57 X p)
= Ex(Pxp+RxrT)
(vi) H = Q.H

(vii) S = - (P+H+7%)
Conditions
(viti) B.(fxD) £ 0
(ix) . B oF £ 0

Conditions (viii) and (ix) describe a proper location system.

A.2 Displacement at a Result Point

Fig. A2 ghows a body located on the triad PHES. If a displacement
SF be applied to the locating feature F (which might be any one of P, H

or S) then there will be a resulting displacement 6R

If an arbitrary force R be applied at the R=point, then forces 5, Hand 5

at the R-point.

will resuli at the P-, H= and S-=locs. These forces may be found from
equations (v) = (vii) and in particular the force at F will be F.

From energy considerations:

The general locating feature F has a vector displacement Eg.l, §2, §32

where the subscripts here and in subsequent expressions denote components
in the X4y X, and Xy directions respectively., The corresponding displace-
ment at the R-point is {71, 722, ?233.

To find displacement component 721, say, a unit force in the x

1
direction is applied at R. The resulting force at F may be written as
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F1 = {F11, F12, F133, the first subsfript denoting the

direction of the unit force at R, the second denoting the component

direction at F.

Similarly unit forces in the X, and x3 directions yield the equations

s {F21' Fopr F23}
Ty iF31’ Fyo0 F'33.}"
From energy considerationss

(s yn 23} == [Po1 P P {500 06

Fog Fop Foq

F31 F32 33
- or using the tensor suffix conventions

The Fij may be found from equations (v) = (vii) using R, in place

of the general R.

5 h.h(Hixr)?

i ho(fxp)
i £x (F; xp +'§i x T)
H = =

i gE.R

where subscript i denotes the ith row vector of the matrices subscripted
and R is the unitary matrix.

It is useful to abandon vector notation at this stage since it is no
longer convenient., Using the suffix summation convention, and the
operators
1 imj
Kronecker delta: é%. =

‘ Gl 0
1 for ijk = 123, 231, 312.
Permutation operator eijk = -1 for ijk = 132, 213, 321.

0 otherwise,



the equations may be written in the compact form:

€ hor. T

(x) P PN rit Tt ']
ij X
AR €4 By Ty (g5p5F 5 = €5 p,) — Klgor, S, . - &;r;)
ij Kg h
ge
(xii) 8;5 = = (Pij +H o+ Sij)

where K = eahc _ha.fbpc'

The subscripts in (xi) may be simplified a little and (xii) may be
expanded, but the forms given are the most useful. When these expressions
are used in the analysis of location 'trees®, they are modified by being
multiplied by -1, so that the general displacement equation may be

written as

This is purely a matter of convenience.

Although subscript notation is very convenient for algebraic
manipulation, it did not prove very efficient for calculation of the
matirix coefficients on the computer. The main reason for this was that
in calculating the values of the permutation operators, most of the time
was spent in evaluat?ng zero coefficients. Special purpose algebraic
manipulation languages have been implemented which, it is claimed, can
evaluate expressions of this kind efficisntly and conveniently
(eegs MATHLAB) but as most designers have access to the more mundane
ALGOL 60 and FOﬁTR&N, the vector approach was used in the prototype
program. As usual, it was apparent that the commoner computer languages

are not very suitable for mathematical purposes.



H perturbed ':y vector E .
R & P corcident.

Fig A3. Coincident Features.
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A.3 Conditions for a proper Location Triad

The conditions for proper locations are summat-'iaed by the inequalities:
(1) &.% # o,
(i1) F.(fx3) £ 0.

(i) and (ii) imply that

(a) the S=loc must not coincide with the He or P=locs,

(b) +the line joining the points of application of the S and H=locs must
not be perpendicular to the line of action of the H—loc,- and

(c) the normal to the plane of the P~loc and the lines joining the

S~loc and the H~ and P=locs must not be coplanar.

There is no restriction on the position of the R-point. Occasionally,
it is useful to employ limiting cases of (i) and (ii), an example being
illustrated in Fig. A3. The P= and H-locs, and the R=point are coincident,
the normal to the P=loc is perpendicular to the line of the H-loc, the
line of the H-loc lies along the lines jcining them with the S~loc.

S;ince the B~ and P=locs are coincident, condition (ii) is not observed.
All the location matrices will have infinite coefficients. Use can be
made of this system, however, if the B=loc is slightly displaced, so that
h becomes h + e. In the case illustrated:

T = p = Mg where Ais a scalar
and f1=f2g2=g3=0; f3=g1=1.

i A eri‘t(hr t er) lg‘t fj

8 ea’bc(ha. b ea)f’b a* €¢

A Erit eI- &y fj
€ abe eaa. £

‘bgc

P s €ri1 %y fj

ij e,
€. ., 8
rif :
ieee Pij = = 32 for Jio = 3

0 for j # 3



Fig A4 . Network Paths.
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If the H-loc is perturbed in the plane of the P—, S=locs and R-point,
then '
Pk i -1 for i = j = 3
0 for i,] # 3
The equation for Hij maey be written in the form:

83PaF14 = BeFieP * BeTyp ‘Sij - 85T

B e
+ &, by

81P1P; 5 = 84P34Ps + E47y ‘Sij o

ij 37§
gy by

8P4 Py 5 + &7y 81;1 = 8Ty

o i SR
1] g by

which reduces to
H..=§-1foriuj=2
13
0 for i,j # 2
Similarly,
S..=§-1fori=ju1
1)
0 foy 4,5 f 1
This limiting case depends not only on the coordinates of the
locations, but also on the direction of the perturbation. Similar
analyses may be performed for all the cases in which this technigue
is used.
This system is useful in passing three orthogonal displacements
to a result point, and may be used in the generation of a general paral-

lelepipedal tolerance zone.

A.4 Path matrix products

(a) Disjoint case Fige Ada.
A displacemen$<5N is applied at node Ne It is required to find the
displacement 50 at node O« Since node 0 is not located, even indirecily,

on node N, the equation
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50 . FON 6N requires that in this case where no path exists

between nodes O and N, FGH = O,
(b) Simple path Fige. A4b.

A displacement 51\7 is applied to node N, resulting in a displacement
511-1 at node N-1. 6N—1 will cause a displacement at node N-2 and so on
along the path joining nodes N and O.

‘50 = Fo1 51

& = Fp6,

(EE NN

“ P $

5H—1 N~1TN K

50 = F01 F12 esece FN-1 'N SH

In the evaluation of a simple path matrix, the matrices corres—

ponding to the links on the path are multiplied.

(e¢) Multiple paths Fig. Adoc.

A displacement 53 is applied at node 3 and the displacement 50 is

required.
5 = F1353
8y = Fp36;.
8y m By Sy + By, 0,
‘50 53 (Fm Fiy * Fop 23) S, = Fo3 53

The path matrix products are evaluated separately and added to give the

nett path matrix product F03'

(d) Multiple paths Fig. A4d.
A displacement 55 is applied at node 5 and again the displacement
60 is required.

0= Foq 6,

31 = 1?12 32 + F13 453 by superposition.
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244

A d, + 17'25 65 by superpositio‘n.
53 - F_ O
J

34 4
= 459
Back=substitution gives
bg = (Foy Fyp Fpy Fys + Foy Fyp Fps + Foy Fiu Py F) 6,
= Fos 65
Again, path matrix products are evaluated separately and added to
give the neit path matrix product F05. In this case, it is most conven=
ient to calculate partial mairix products at each node moving dowr from

the R-point.

At node 1, product = F‘O

At node 2, product = F'01 F‘12

At node 3, product = FO 1 F1 3

At node 4, product = F01 F12 24 + F F13 34

At node 5, product = T o1 P12 F 25 * Foq Fyp F 24 45 + F, F13 F34 F45
(e) Relative displacements Fig. Ade.

A displacement (54 is applied at node 4. The displacement of node 1
relative to that of node 2 is required.
A method is needed to evaluate
61 - 52 = (FM - F24) 54 conveniently.
The method which will be used is to attach a dummy node O to nodes
1 and 2 as shown in the figure. If F is set to the wnitary matrix é‘j

and F., is set to -<5 31 then the resuls will be obtained by the methods

02
earlier described in (a) - (d).

= (P =Ty 64.
The method also works for the case where there is no path between
the input node and one, or iwo of the ouiput nodes. This case is illus-

trated in Fig. A4de, the input being applied at node 3.



Some useful results will now be derived.

A5 Matrix Rank
AHe1 The rank of a P-matrix
Eap By T L

ea:l:oc ha fb pc

Sinc_e Pij

St By T

1 ea.bc ha f'b pc

=l
"
Hj

Erpt By Ty
ea‘bc I"‘a. fb pc

Yol
[}
|

€3¢ By Ty

3 eabc ha f"b P c

T

ol
]

P is of rank 1 at most, since each row vector is a multiple of

Vvector ?.
A5.2 The rank of an H-matrix

It has been proved (equation xi) that:

H

€pit Bp Ty (gapdfi = 8,5,p;) = Klgery S, . - g;r.)

13 = h
Kggg

47+

Multiplying each element in(xi) by r, and considering each term in

the numerator in turn:

(2) €.t By Ty Ty may be summed over i.

ZCriy Bp Ty Ty = Ty By Ty Ty

if i and t Ybe interchanged.

. = g. r. r.) may be sunmed over i.

(v) (gf Te Ty 6:13 2 Eltay

Zi.(gf To “1513 e Tk rj) = E:(gf Te T, -8 T rj) = 0.

s

Hence r1 H1 + r2 H2 4+ 1

3y

and an H-matrix is of rank at most 2.

g8 0
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AcH5e3 The rank of an S-matrix

The rank of an H-matrix is at most 2 and of a P-matrix at most 1.
In the special case r = O (i.e. S=loc and R-point coincident), p, h # O
then both P and H are of rank O since P = H = O.
From equation (xii) |

8y, = (P . +H .+8, )=a=08,_ 1t P and F ave of mull rank.
J R s AR ij

Sij is of rank 3 since all row vectors of 6ij are linearly independent
(aet( Sij) . 1)
An S-matrix is of rank at most 3.

AHe4 The rank of a matrix product

A result proved in ref. 14 is:
*the product AB has a rank not greater than the rank of either factor.!
The rule may be applied to path matrix products to give the following
conclusions:
(a) if a path contains the node of a P=loc, then the path matrix
product is of rank at most 1,
(b) if a path contains the node of an H-loc, then the path matrix
product is of rank at most 2, and
(¢) if a path contains the node of an S-loc, then the path matrix
product is of rank at most 3.
The rank of the path matrix product is determined by the most stringent
of conditions (a), (b) and (c) which car be applied to the path.

A.5.5 Relative Numbers of P—, H- and S-matrices

It will assist in assessing algorithms used in processing 'trees!
if the relative proportions of matrix ranks are known. For the fully
balanced ternary tree shown in Fig. A5 the following results apply:
(a) At level n, there are 3n nodess.
(v) 1f, af level n~1 there are N _, paths with matrix products of rank 1

at most, then there will be 3n-1 + 2an1 paths with similar rank at

level n.
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n=1
Nn = 3 4 2Nn_1o

Solving this difference equation with N1 = 1 gives

Nn = 3n - O paths with product matrices of at least 1 at level n.
Summing over n levels gives:

T = §§n+1 -3) - (2n+1 - 2) = the total number of paths with

i 2
product matrix rank at least 1 down to level n.
(¢) At each level there will be one path with path matrix product of
rank at least 3. Over n levels there will be a total of n such paths.

(d) The total number of paths down to level n is j}n+1 - 3)
2

(e) The total number of paths with product matrices of rank at least 2

down to level n may be found by subtracting the number of paths with

product matrices of ranks 1 and 3 at most from the total number of paths
n+1

down to level n This is 2 = 2 = N

(£) For n levels, there will be 2n+1 -~ 1 nodes.
2

Tabulating values up to 6 levels:

Path Product Matrix Maximum Rank No. of

Level 1 2 3 Nodes
1 1 1 1 4
2 - .6 4 2 13
3 25 11 3 40
4 90 26 4 121
5 301 5T 5 364
6 966 120 6 1093

For large n, rank 1 matrices will predominate and the ratio of rank 1
matrices to rank 2 matrices = 0(%-(§Jn+1). For the system designed,
about 200 nodes is considered as a maximume The number of levels of
the corresponding balenced ternary tree will lie between 4 and 5 giving

a ratio of approximately 4.5 rank 1-at-most matrices to 1 rank 2-at-most

matrices. The number of rank 3—at-most matrices will be negligible.
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Although a practical location !{ree! is unlikely to be a balanced
tree, it seems reasonable to assume that these ratios will be approxi-
mately correct and will serve as a useful measure in the assessment of

algorithms used for processing the 'treet.

As6 The meximum outvut displacement (sensitivity coefficient)

In the discussion which follows, the mairix results listed below
will be used. They are proved in refs. G2 and G8.
(i) If A* denotes the transpose of matrix A, then the product A¥A
is positive definite, ref. G8, p.46.
(ii) If A is positive definite, then all its eigenvalues are positive,
ref. G8, p.46.
(iii) If the eigenvalues of A*A are .'Xi, then the eigenvalues of
(A-1 )*&_1 are (1/_1‘1), the associated eigenvectors being
identical, ref. G8, p.43.
Generally, the output tolerance 3 resulting from an input displace-
ment & applied to a path with matrix F is given by:
d=F¢€.
A general spherical input tolerance zone of radius r mey be
written
*E o 2%,

In particular, if F be of rank 3, then it will have an inverse,

say G, and
GS = &
or €*x = & xgx

and E*E = §*G*G3
or S *CHG S = r2
The product G*G is symmeiric and positive definite by result (i ), and

80 may be diagonalised giving the relation:

BALT o 22,
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L being the diagonal matrix Lij = .Xi,i = j

0,if3j
The J\i are the eigenvalues of L.
Since G*G is positive definite, .li> 0 and the relation describes an
ellipsoid:
LS W o
The maximum exis of the ellipsoid will be given by:

fm

where A = min( li) in a direction given by the associated eigenvector
of -1. This will be the maximum output displacement.
The matrix result (iii) simplifies the calculation considerably.

If the eigenvalues of G*G are Ji' then the eigeiwvalues of F*F are il.

Also the maximum eigenvalue of F*F is the minimum eigenvalue of G*Gf
The corresponding eigenvectors are identical.

The procedure for finding the maximum output displacement, and its
direction, may be summarised as follows.

If a spherical input tolerance zone radius r be applied at the base
of a location chain with path matrix F (P non-singular), then the maximum
output displacement is given by

Sm'ﬁ-,r,
where Ais the dominant eigenvalue of the product F*F. The direction of
é%mx will be given by the correspondins eigenvector. For a more detailed
development, see ref. G16.

The result has been derived for a rank 3 matrix but it can be shown
t0 be generally true for ranks 2 and 1. The argument is broadly the same,
but since ranks 2 and 1 3 x 3 matrices are singular, they have no inverse
and it is necessary to consider the natural or general inverse. Ref. G2

contains a concise description of the use of general inverses, while

ref. G3 is completely devoted to them.
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B.1 Evaluation of Eigenvalues

B.1s1 Choice of algorithm

The methods available are:

(i) to obtain a closed solution by expanding the characteristic poly-

nomial which will, in the most general case, be a cubic;
(ii) +to use an iterative method, such as the power method, or
(iii) to use a transformation method, e.g. Householder's method.
The factors governing the choice of the method are:
(i) all matrices are of order 3,
(ii) +the bulk of the matrices involved will be of rank 1,
(iii) +the dominant eigenvector is also required,

(iv) the number of matrices is likely %o be large,

(v) accuracy of solution is not extremely critical - accuracy of

1 in 10° should suffice, and
(vi) matrices are positive definite and symmetric.
The power method was chosen gince
(i) in this case, it may be used generally for all ranks,
(ii) +the dominant eigenvalue is obtained naturally and
(iii) the corresponding eigenvector is obtained at the same time.

B.1.2 Description of the algorithm

The power method is detailed in ref. G8 and an error analysis
provided in ref. G9, but the method will be briefly described.
If the dominant eigenvalue of matrix A is required, then the

computing scheme is

Y(P) = Ay(P'1); y(o) arbitrary.

The y(N) are successive iterates and are vectors. It is customary

4o select as initial vector y(O) = {1,1,1}. The ratios of corresponding

(x)

(k=1)

components of successive vectors y and y

the dominant eigenvaluwe of A, if the method is successful. Further,

(K)

each iterate y is an estimate of the corresponding unnormalised

will converge to .?\ '

53
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eigenvector. The rate of convergence depends on the ratio between the
dominant and sub-dominant eigenvalues. Methods arenavailable for
accelerating convergence.

Since the majority of the matrices will be of rank 1, it would
seem advantageous to select as initial vector y(o) = %A11,A21,A31} or
any other column vector of A. The dominant eigenvalue would then be
obtained in one iteration only, since the corresponding eigenvector
(wmormalised) is a column vector of A. Unfortunately, it is common
for one or more of the column vectors in location matrices to consist
of all zero elements. This is a particular case of a general problem
in selecting the initial vector for use with the power method. If the
initial vector is exactly the eigenvector corresponding to an infra-
dominant eigenvalue, then the method will yield that eigenvalue in one
iteration. Clearly, an answer obtained in one iteration should be
viewed with suspicion and the calculation rspeated with the original
initial vector slightly perturbed. This problem is not mentioned in
most of the standard texts (ref. G8 is an exception) nor is it consid-
ered in any of the programs described in the less theoretical books on
numerical methods. Unfortunately, the case of a location matrix having
an infra-dominant eigenvector {1,1,1; ie not uncommon in practice. In
view of the fact that the bulk of the matrices processed will be of
rank 1 and single iteration answers will be common, it is considered
that repeating the calculation with a perturbed initial vector would be
an intolerable overhead of time. The initial wvector {im/4,e,loge10} is
used in the programe. Even though there is a remote possibility that
these values will give an incorrect answer, it is considered worthwhile
to use them because of the saving in time.

(x)

Since the successive y are unnormalised, their components tend to

increase rapidly and it is necessary to normalise at each stage. This is
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done by dividing each element of y(K) by "y(K)”a,, where "y(K)"w is the
maximum value of ‘ng)] over all i. P

A test program was written to check the efficiency of various
programs for calculating eigenvalues. A random number generator was
used in conjunciion with a method of generating matrices of prescribed
eigenvalues and eigenvectors which was found in ref. G10.

B.1.3 Generatinz test data

Batches of 40 matrices were generated in the following manner:
(i) The constitution of each batch was
1 rank 3 matrix,
T rank 2 matrices,
32 rank 1 matrices.
These proportions were approximately those calculated in
Appendix A, section A.5.5 for 200 nodes.

(ii) A matrix S was constructed with column vectors mutually orthogonal,
but otherwise random. If 12 denote the i-th random number generated,
then

Si1 . {P1 ipz ’ p3 }
8, = fp3p4,p3p5.—(p1p4 + p2p5)g
' 2 2 2 2
S;y = {(p1p2p4 * PP + P3Pg)y = (p3p, + Pyp, + PyD,Rs),
= (p4pyp5 - p2p3p5);
(iii) Since column vectors of 3 are linearly independent, s~ exists
and is calculated directly.

(iv) The aiagonal matrix A is constructed where the diagonal elements
are the eigenvalues.

Aij = p5 o1 for i = 1 to the rank of A, i = j
0 otherwise

(v) The matrix product S™'A S will have the required properties

(ref' G2, P°99)'
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This rather elaborate procedure was used so that the batches of
matrices should be as representative as possible of those occurring in
practice.

A separate program was used for the generation of batches of
matrices, so that the time taken in their generation could be separated
from the time taken for calculating their dominant eigenvalues and

eigenvectors.

B.2 Topological Sort Algorithm
The algorithm used was a modification of that described in detail

in ref. G13. Its action is shown diagrammatically in Fig. B1.

Data used is selected from the 'tree'! description supplied as input.
If the "{ree'® contains N nodes, each allotted a distinct integer in the
range 1N, and if M of these are non=leaf nodes, then there will be M
partial ordering relations of the form {R,P,H,S) , which are needed by
the algorithm. Each integer R represents an R=point; and P, H and S
are the node numbers of the corresponding P-, H- and S-locs. A further
N relations of the form <R,0,0,0> are also aveilable = the R, in this
case, representing a leaf-node and O being a notional earth-node.

A vector, length N is used in three guises. It is used initially
to count the direct predecessors of each node; it is used as a queue
for unprocessed nodes and, finally, it is used as an index to show
topological sort order. Two pointers sre used %o point to the head and
tail of the queue of unprocessed nodes. The sort process is as follows:

(i) Zeroise count [i] for i = 1 %o n.
(ii) Count the predecessors of each node.
(iii) All nodes with zero count are root nodes. Set up a queuwe for
thega; if there are no root nodes, then the structure is
incorrect.

(iv) Select the first item on the queue. If its three successor nodes
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are not earth nodes, then their counis are reduced by oﬁe.
If any count becomes zero, then the corresponding node is
ready for processing and its index number is gueued.
(v) The node at the head of the queue is deleted and it is next

iﬁ topological‘order. It is allocated the next index number.

(vi) If the queue is empty, and 2ll nodes have been processed, then
the sort has been successfully accomplished. If the queue is
empty and all nodes have not been processed, then the structure
is inoorrect. If the queue is not empty, then the algorithm is
continued from stage (iv).

It is claimed in ref. G13 that the algorithm is near-optimal.
Processing time is of the order of C1 M+ 02 N where 01 and 02 are
constants, and storage is used economically.

It is possible to re—order the records during the algorithm but
this was not done for various reasons. Firstly, it is considered good
practice to divorce the data validation stage of a program from the
data processing stage both as a policy and because, for some configura=~
tions, it might be necessary to perform these operations by separate
programs. Also, subsequent programming is neater and more easily tested

if a structured approach is used.

B.3 Invertinzg the Topological Sort Index

It is possible to refer to cach record indirectly using the sort
index, but it saves much processing time if the records are re-sorted.
Re=sorting may be performed in several ways; the familiar dilemma of
time taken versus extra storage required applies in this case, as in
all sorting problems. The following is a sample of the methods possible:

Given a sequence of records R1,R2, oxe RN and a sort index

QH,EE, ¢ & TN where Tk shows the required.sort position of record RK’
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(2) Perform an exchange sort, repeatedly passing through the list R,

and exchanging R(TK) until no exchanges are necessary,

(b) Invert the sort—index T by I(TK) = K to form another sort-index
11,I2, oo o I .IK shows the number of the record which is to
be placed into position K. Records can now be exchange-sorted
in one pass by:
temp 12 = R(IK) 3 H(IK) : =Ry ;
temp 2: = R(T(IK)) : H(T(IK)) ¢ = temp 1
R(IK) ¢ = temp 2.

(¢) Invertthe sort-index in situ, saving setting up an extra sort—
index vector. The algorithm used may be found in refs. G1 and G13.
In particular, ref. G13 quotes two algorithms for this PUIPOSe,
but one, though more elegant, may be discounted since it is less
efficients Records may then be exchange-sorted in one pass as
in (b).

It was decided in the interests of storage economy, to select
method (c)s The method is analysed in ref. G13 and the processing time
is of the crder of C N vhere C is a constant. Exchange-sorting is
performed in one pass and so it appears that method (c) is better on a
processing time basis than (a) since normal exchange-soriing time is
proportional to Nz, and better from sforege economy considerations than

method (b) since no inverted sort-—index is required.

B.4 Processing the %tree!

From tests conducted on the prototype program, this section of the
processing is easily the most lengthy. Not only must all the paths from
input location to R~point be traversed but also matrices for each link
on the paths must be calculatede Although it is a straightforward matter
to minimise the matrix calculation time by writing efficient code, path

traversal is a difficult probleme For N nodes Warshall's algorithm

(ref. G1) requires an N x N matrix and is out of the question because
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of the storage limitations. Alternatively, linked lists may be held
for the immediate predecessors of each node = this élso needs an
unacceptable overhead of store. This problem is largely overcome by
an elegant algorithm quoted in ref. G15 but this is not general and
depends on the relative number of leaf nodes and nodes with multiple
antecedents. A possible method is to use a marking algorithm, tagging
in some way all edges on the paths between input location and R~point
using a stack = this again needs extra store.

The method used in the prototype program was crude but straight-
forward, priority being given to economy of store. All matrices were
evalvated and multiplied, and were added at junctions for all nodes
whose indices lay between those of the input node and the Re=pointe.

The problem of traversing paths of structures of this kind occurs
in many diverse applications and it seems that the algorithms available
involve considerable storage overhead. For the configuration considered,
it is unavoidable that this brute force method should be used in prefere

ence 1o one more sophisticated but requiring more store.
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Ce1 The Allocation of Tolerancas — sure-~fit

If there are m critical clearances D; (i = 1,-2, e ¢ o« m) in an
assemblage and each is affected by one or more of the set of tolerances
x; (3 =1, 2y o o o n), then m linear inequalities may be written:

Sijxngi 1wy 250 5 @ MEIL J RIRRD i By
The constants Sij are sensitivity coefficients, Slk’ for instance being
the effect at the critical clearance Dl of a unit tolerance at the point

where X actse In the case where a critical clearance Dl does not depend

on tolerance ) then Slk = O,

Subject to these constraints, it is required that the total cost of
maintaining the critical clearance should be minimised. Clearly, the
more precise a part is made, the higher will be the unit cost but there
seems to be some disagreement in the references as to the exact form of
the cost-tolerance relationship. Models suggested are =

(1) ocost = kxr™™ where k is a oconetant (ref. A2)

(i) cost = Jkx® where k and a are constant

and a < 0 (ref. A1)

(iii) cost = k + 1" where k, 1 and m are constant (ref. A8)
Although (iii) is the most widely used model and is used in several
American ﬁapers, where it is called Speckhart's Exponential Model,
(ii) appears to have been based on rather more solid experimental
foundations. Studies of data on the cost=tolerance relationship for
various manufacturing processes were analysed and best curves fitted
by the method of least squares. No experimental basis is described for
model @iii), the author baldly stating that the expression fits cost—
tolerance data 'very well's lModel (i) is comprehensively (if rather
unfairly) discredited in ref. Al. The evidence would suggest that the
most suitable model is (ii) and this is uwsed in the following develop-

mente
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The cost of maintaining tolerance x is giyen by the expression:
C = k* :

- 0.8< a < ~0.4 and depends on ihe process. k depends on the shape
and size of the component. Values of k are not critical, only the

relative values being of significance.

The cost of maintaining the n tolerances x, is given by:
n
a4
C = .Z. ki Ii
1=l
The Allocation of Tolerances problem may now be stated in its full

forms

a4 2z an
Minimise C = k1x1 £ k2x2 + ¢ o o + kn;n

Subject to constraints:

Siq%y Sqp¥p + e e ot 5,0 %, & Dy
¢ o e ®
[ ] L[] L -
© e ° ©
Sm 1x 1 + Sm2x2 + o0 o+ Smnxn .,<~ Dm

There are also implicit constraints
Xq1Xpy o o o X >0

and there may also be constraints due to practical considerations:
- Y

where e; is the lowest practicable bound on X,e

This is an optimisation problem with a non-linear objective function

and linear constraints.

Ce2 The Alloc&tion of Tolerances = gtatistical~fit

The development of equations for allocating tolerances on a
statistical-fit basis follows broadly the lines of that for sure-fit
basis. In this case, however, it is usual to assume that the tolerance
distributions follow a Gaussian distribution and often the tolerance
range is teken as the nominal position plus or minus three standard

deviations, 99.7% of the parts produced then having the dimension within



63,
the allowed tolerance range. The cost is that‘of maintaining the
dimension within plus or minus three standard deviétiona around the
nominal dimension. Using the properties of the Gaussian distribution,

it may be established that the Allocation of Tolerances problem may

be stated:

5 I a4 az an
Minimise C = K1x1 -+ kéx2 + o @ kﬂxn

Subject to constraints:
%x 2 8.2 e 2% 2

?11 i *?1212 *"‘*?1::"11“]’1
2 2 2 2 2 2 2
Sm.l I,I + Sm2 x2 + o ¢ o + Smn xn é Dm

With implicit constraints:
x1,x2,...xn>0 '
and possibly practicel minima on tolerances:
o
All constants and variables are as defined in C1.

This is an optimisation problem with a non=linear objective function

and non-linear constraints.

C.3 Solution of the Allocation Problem

Befse. A1 and A8 both use the classical technique of Lagrange
multipliers in order to solve the Allocation Problem, obtaining what
both call lambda equations, which are solved by an iterative technique
such as Newton's method. This is a straighiforward technique for one
critical dimension, but in the more gencral case, where more than one
critical dimension is concerned, the method discussed in ref. A1
requires considerable manual work before submission to the computer
program and is only applicable to the sure-~fit case. Ref. A8 uses an
iterative procedure but it is stated that there is no guarantee that

the procedure described will converges
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Several general methods of non-linear op}imisation are described
in ref. G4 and it would seem that the methods descfibed in refs. A1 and
A8 have been superseded by later techniques. It is probable that these
are more suitable methods and this particular aspect of tolerance
analysis merits investigation. Possibly different methods would be
required for the sure-fit and statistical-fit cases, since it is stated
in ref. G4 that 2 universal optimizer does not exist and a method suit-
able for linear constraints (sure~fit) may not be adequate for quadratic
constraints (statistical-fit). This is, however, outside the scope of

this thesis.
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D.1 The Displacement at a Point = Fige. D.1.
A point must be located on a location triad of plate, hinge and
socket.

(a)

(v)

The displacement at a point is made up of two components:

the extrinsic displacement which is due to displacements of the
features on which it is located, and

the intrinsic displacement which is due to the permitted tolerance
at the point.

Extrinsic tolerance is passed to the point by the location sube

system upon which it depends; intrinsic tolerance must be applied

directly at the point or indirectly through a tolerance generating sub—

structure.

(1)

(ii)

(iii)

and (

If the result point is on a plane, then a linear tolerance normal
to the plane may be applied directly.
If the result point lies on a line, then a circular tolerance in
a plane perpendicular to the line may be applied directly.
If the result point is a general point, then a spherical tolerance
may be applied directly.

The majority of tolerance situvations will be covered by (i), (ii)

iii)‘since these are the positional tolerances recommended in

BS 308, but occasionally a rectangular or parallelepipedal tolerance

Zone

is guoted; and it is sometimes necessary to generate this by

using & tolerance generating sub-structure. The method will be des—

cribed later.

It is necessary to use bi-lateral tolerances when this method is

appliede For most systems, the tolerance is small in comparison with

nominal dimensions and so the nominal dimension does not need to be

+ 010

altered. For instance, a tolerance of 1.000 - .000 &Y be considered

as 1.

+ <005

000 — .005.

The reason for this is that only clearances are
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analysed in this method. Nominal dimensions are only used in inter—
mediate calculations and so do not necessarily need %o be extremely
accurate. Of course, if it is preferred the dimension can be quoted
as 1,005 © 005, but this should make very little difference to the

results obtained.

De.2 Definition of Features = Fige De2.
1¢ A point feature.

(a) A general point is described by a socket.

(b) A point on a line is described by a hinges.

(e) 4 point on a plane is described by a plate.

2. A line feature.

(2) A general line is described by two hinges.

(b) A line on a plane is described by two plates.
3¢ A plane feature.

(a) A plane is described by three plates.

In order to define a feature, the points at which the locations
are centred may be chosen arbitrarily su%ject only to the following
restrictions:

(2) in order to define a line, the points must not be coincident, and
(b) in order to define a plane, the points must not be collinear.

Plates defining a plane must have normals parallel with the normal

1o the plane, and hinges defining a line must have dirfcﬁions along the

line.

D.3 General Points on Lines and Planes

A general point on a line or a plane may be considered as being
located on the lins or plane. Since a point is located on a plate,
hinge and socket in the basic location triad, the general point cannot
be located directly on the line or plane, which are defined by two

hinges or plates, or three plates respectively. This problem is resolved
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as follows:
(a) A general point on a line.
(i) A general line = see Fige De3els
The general point R is on the line A-B. The displacement at B
must be passed unchanged to the coiﬁcident point B! so that a valid
socket location can éxiat at B'« R is also located on plate C which
is stationed at a remote point with normal parallel with A—B.
(ii) A line on a plane = see Fige De3.2.
The general point R is on the line A-B. Again the displacement
at B must be passed unchanged to the coincident point B! so that = valid
socket can exist at B's R is also located at hinge C, stationed at a
remote point with direction parallel with the normals to A and B.
(b) A general point on a plane — see Fige De3e3e
The general point R is on the plane A=B-C., Displacements at B and

C are passed unchanged to B! and C' for valid locations.

De4 Remote Locations

Many useful location systems can be devised using remote locations.
In cases studied so far, the following dimensions give adequate accuracy:
(i) A gmall displacement — of the order of 1072,
(ii) A peighbouring feature — one within a radius of about 102 centred
at the point being considered.
(iii) A rvemote feature = one further than 10% £rom the point being
considered.
(2) To pass a displacement unchanged from a feature to a neighbouring
pointe.
(i) From a plate = Fige Dedels
The displacement at plate A is passed unchanged to point A' (which
may be coincident with A)e A' coen be any neighbouring point along the

normal to plate A. The angle BAC is a right angle; and the direction
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of hinge B is parallel with AC. Both B and C are remote from A.

(ii) From a hinge = Fige Dele2. ¢

The displacement at hinge A is passed unchanged to point A' (which
may be coincident with A). A' can be any neighbouring point whose
position vector AAY is at right angias to the hinge direction. The
remote socket C is aﬁpraximately in line with the hinge direction and
remote plate B is arbitrarily positioned and oriented. -

(iii) From a socket = Fige Dele3.

The displacement at point A is passed unchanged to A* (which must not
be exactly coincident with A, and is displaced a small amount)e There is
no restriction on the position of B nor on the position of C.

(b) To transfer a selected component of a displacement to a point -

Fige Du5ele

The normal to plate A2 is in the direction of the selected component.
32 and 02 are in the plane of Az' the direction of 02 is parallel with
Asz, and Aé is coincident with Az' The selected component of the dis-
is transmitted to A,.

1 2
(¢) To rotate a linear displacement through 90° - Fige DeHe2e

placement at A

(Useful for generating a square or cubic tolerance zone).

Tble;ance 1 is passed, using a unitary matrix, unchanged to remote
hinge and socket B and i,  The methods of (a) could be used to transmit
6, but use of a unitary metrix saves nodes, and avoids the need for a
higher order of 'remoteness's If B and C are orthogonal features, then
a cubic tolerance, side t will be induced at A', which may be coincident
with A. Adjustment of the direction of B and the positions of B and C
will result in a parallelepipedal tolerance zone. If the locating
features are stationed at the same large distances from the R-point with
the direction of the H~loc and the normal to the P=loc lying along the

lines joining them tc the R~point, a unit parallelepipedal tolerance
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zone will be generated. This will have sides pormal to the directions
of the lines joining P=, H= and S~locs to the R—point. This device is
particularly useful and will be used for other purposes.
(d) To transmit a proportion of a displacement to a neighbouring

point = Fige Debele

(Useful in generating symmetric tolerances).

It is required to pase a proportion k of the tolerance at plate A
1o the neighbouring point R Displacement at A is passed unchanged to
remote hinge C stationed at distance M in the plane of the plate. The
neighbouring point R is located on C, and on B, a remote socket placed
at a distance %gﬁ on ﬁhe line AC, but on the opposite side of A to the
position of C. R is also located on plate D which has normal orthogonal
to the plane RAC and passing through R. It may for convenience be co-
incident with Re In the case of symmetric tolerances, k must be %, and
80 B and C are equidistant from A« It is important that A, B and C
should not be exactly collinear but only approximately so.

(e) To transmit the rotation of a line to a point which rotates about

a neighbouring point = Fige D.6.2.

Due to displacements at A and B, the line joining them will rotate
in space.' It is required that neighbouring result point R should rotate
the same angle, in the same plane about location point E. Displacement
at A is passed unchanged to A' a hinge with direction parallel with AB.
To be consistent, the displacement at B should be passed to a coincident
socket, but a node may be saved by locating directly at B. Displacements
at A and B are passed to the remote hinge C by way of hinge and socket
locations. C is stationed approximately in line with AB and located on
D, a coincident remote plate whose normal is orthogonal to normals at A
and Be The result point R is located on the socket E, the hinge C a~d

coincident plate F. A, B, E and R are co-=planar, and the normal of
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plate F is orthogonal to this plane. ’

Any displacement at E is passed unchanged to‘ﬁ.

(f) Use of unitary links to pass a displacement unchanged from a
feature to a point.

The unitary link is an artificial device used for the generation
of geometric tolerance networks which cannot be done by using real
locations. It may be used to obtain the results shown in (a) with a
saving of nodes. In most of the networks which follow, the preferred
method is to use the devices shown in (a), since this leads to a more
natural systiem. However, occasionally, unitary links have been included
so as to give examples of their use. A separate section is devoted to
tﬁia application. Unitary links are used for the superposition of
separate tolerance systems.

(g) Use of weak links.

A result point is located on plate, hinge and socket, and displace-
ment at the locations may be considered to be transmitted along the link,
usually. Occesionally, however, it is convenient, in the interests of
node conservation, to use a device called the weak link. A weak link
points to a location node which is only used for the calculation of dig—
placements transmitted from other nodes. Displacement occurring at the
weakly linked node is not transmitted to the result node. This device,
like the unitary link, is not essential) to the system but avoids node
duplication. An example of a weak link is shown in Fig. D.6.1, the
unitary link from remote socket B being distinguished as weak by the bar
drawn across the link. Examples of the use of weak links will be found

later in this Appendix.

D.5 Use of Unitary Links
The use of imaginary locations in transferring displacements unchanged

from features to neighbouring points has been deseribed in detail. This
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device is necessary in many cases = for instance a point located on a
plane requires that the point should be located in three plane features.
This is clearly impossible to de directly, since the model demands that
each feature should be located on a triad of plate, hinge and socket.
The point can be located on one of the plates, while displacements at
the other two plates must be passed unchangéd to coincident features,
one a hinge, the other a socket. All calculation of matrices will then
be consistent. However,; this necessitates the introduction of nodes which
do not represent actuval points, or features on the assembly, these being
termed 'organisational nodes'. They occur in most practical location
systems, represent a considerable overhead in storage and also tend to
make sub-networks appear more complex then they actually are. A typical
example is shown in Fig. D.7.1. |

The unitary link is an artificial device which obviates the need for
most of these organisational nodes. Instead of the effect of unchanged
transfer being obtained by using features at infinity, the matrix is
evaluated directly. An advantage of this method is that one or more
of the links may be null without affecting the validity of the model.
An example is shown in Fig. D.T7.2 which is the equivalent of Fig. D.T7.1.

The ﬂetwork illustrated represents a plane located on a datum plane
and occurs in tolerances of parallelism and angularity. In the examples
which follow,unitary links are not usuvally used but it is probable that
in a large practical network, it would be necessary 1o conserve storage
by using them.

Another use of unitary links is to superpose the extrinsic and
intrinsic tolerances at an R-point. Thic may often be done by other
means but using the unitary link method avoids complication. An example

is shown in Fig. D.8.



S-Loc on
Plane.

Coincident R-Point
& P.Loc. P-Loc normal
perpendicular to Plane

H- Lbc- Iying
along Plane

Fig D10. Location in a Plane.
F{g D9 Equivalent Mechanisms. .



T3e

D.6 Eoguivalent Mechanisms

The devices shown on pfevious pages are a few of the many which can
be created to attain special effects. It is useful, in considering
systems of this kind, to think of the location triad as a mechanism =
this is particularly useful when the system is two dimensional.

Two examples are shown.

(a) Fig. D.9.1 = Passing a tolerance unchanged from a socket to a
neighbouring point. H is a hinge which can in the planar case be
imagined as a closely fitting slot around a fixed pin. Clearance
at S will be passed to R unchanged when the mechanism is moved
around.

(b) Fig. D.9.2 = Passing a tolerance unchanged from a hinge to a neigh-
bouring point. In this case 5 is a remote socket freely piveting
around a close fitting pine If S is in line with H, then when the

mechanism is moved, clearance at H will be passed unchanged {o R.

D.7 Two Dimensional Cases

The most common dimensioning system ocours when features are located
on a plane. These are the most easily visualised using equivalent mech=-
anisms. The main pFinciple involved is the stationing of a P=loc
coincident with the R=point with normal perpendicular to the plane of
interest. This ensures that all displacement at the R-point caused by
features on the plane of interest is in the plane. Tolerancing systems
on the plane may now be described by using H=locs lying in the plane and
S=locs lying on ite An example is shown in Fig. D.10.

Some common cases of dimensioning in two dimensions will be dis-
cussed, but it is first necessary to consider another use of remote

features.
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DeTe1 Intersection Points of Lines

Often a point is located geometrically. This usually implies the
superposition of two or more real location systems. A common example
is the point described by the interseotion of two straight lines. In
Fige Ds11 lines AB and CB intersect at the point feature B. If lines
AB and CB are separately located, there will be an ambiguity at B.
Point B1 on line AB will be displaced due {0 intrinsic displacement of
AB and point B2 will be displaced due to intrinsic displacement of CB
and these displacements will not be identical. Consequently, the true
intersection of AB and CB will be neither Bi nor B2 but some point B3.
If B1 and B2 are at right angles, the point B3 will be defined by the
vector sum of the displacements of B1 and B2 but this is not generally
80. It is convenient to consider the displacement of B1 as being con—
strained by the line CB which does not contain it. A sub-network for the
generation of the displacement of point B3 from its nominal position at B
is given by the following:

(a) two remote features M1 and M2 are set at equal distances from the
origin, for example at 106 units,

(b) M1 is stationed at right angles to AB, M2 at right angles to BC,

(¢) either is chosen as an H-loc, the other as a P=loc, the direction
of the hinge vector being at right angles to the line joining it
to the origin,

(d) displacement at Bi is passed unchanged via a unitary link to M1,
displacement at B2 is passed similarly to M2,

(e) the R=point is taken at the nominal position of B.

This sub-network is wseful in various situvations and its validity may

easily be proved by comsidering instantaneous centres.
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D.T.2 Location of a Point in a Plane .

(a) Location by a point and a point on a line.

This is the simplest case, since it is a real location. An example
is shown in Fig. D.12.

(b) Location by the distances from two points.

This case may be described by considering it as a case of constrained
displacement. M1 and M2 are taken along the lines joining the points and
the R=point as shown in Fig. D.13.

(¢) Location by the distance from a line and distance from a point.

The remote features M1 and M2 are set at right angles to the line
and along the line joining the point and the R-point as shown in Fig. D.14.
(d) Location by the psrpendicular distances from two lines.

M1 and M2 are set at right angles to each line. The point is located
separately on each line by using two networks as described in (a) and
superimposing them. Noie that only the H~loc displacement is passed from
each point, weak links being used, and that each point on the line is used
in a dual capacity as H-loc and S-loc. An example is shown in Fig. D.15.
This case is very common, occurring in coordinated dimensions.

In each of these cases, the sub-network describes the extrinsic
tolerance; Intrinsic tolerance is handled differently for the two
gtandard methods.

(a) Positional tolerance is spplied directly at the R-point.

(b) Tolerances on dimensions are applied directly at the remote
features usually.

They may all be generalised to thice dimensions.
The most common cases of tolerancing as shown in BS 308 will now be

described.
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D.8 Three Dimensional Systems

D.8.1 Tolerances of Straishtness and Flatness

(a) Tolerance of straightness of a line =— Fige De16.1.

The centre line A of the cylinder is subject to a straightness
tolerance t/p. This is appiied directly to node 1. Nodes 6 and 7
describe the centre line; and the network transmits displacements
at 6 and 7 to the node 1.

(b) Tolerance of flatness of a plane = Fige De16.2.

Plane A is subject to a flatness tolerance t/2- This is applied
directly to node 1, which describes a point on the plane. Nodes 6, 7
and 8 describe the plane; and the network transmits displacements at
6, T and 8 to the node 1.

D.8.2 Tolerances of Concen%ricity

(a) Concentricity of a point = Fige Da1Te1e

The centre of circle B is required to lie within a circle diameter
t; concentric with the centre of the datum circle A. Displacement at
node 4 -~ centre of circle A - is passed unchanged to node 1 which des=
cribes thelcentre of circle B« The tolerance t/z is applied directly to
node 1.
(b) Concentricity of a line = Fige De17.2.

The axis of the cylinder B is required to be contained within a
cylinder diameter t co-axial with cylinder A. Displacemenis at nodes
6 and 7 which describe the axis of A are passed unchanged to nodes 1
and 2 describing axis B. The tolerance %/ is applied directly to nodes
1 and 2. In this case, nodes 1 and 2 are chosen to be coincident with
nodes 6 and 7 which results in a simp}e networke In the more general
case where 1 and 2 are not coincident with 6 and 7, then displacements

at both 6 and 7 will result in displacements at both of 1 and 2; and

the network is consequently more complex.
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De8.3 Squareness Tolerances 2

(a) Squareness of a plane relative to a datum plane - Fig. D.18.

Datum plane A is described by plates stationed arbitrarily on A -
nodes 8, 9 and 10. Displacements af 9 and 10 are passed unchanged to
coincident features 4 and 5 using remote features 6 and 7. Features 4
and 5 act as hinge and socket locations for features 1, 2 and 3 which
describe the dependent plane B, Features 1, 2 and 3 are also located
directly on feature B. The squareness tolerance t/é is applied directly
at 1, 2 and 3, indirect displacements at 8, 9 and 10 being passed through
the network.

(b) Squareness of a line relative to a datum plane = Fig. De19.

The case shown is that of an axis of symmeiry which is square to
a plane within a cylindrical tolerance zone. The network organisation
is similar to that in (a) except that there are two hinge features 1 and
2 describing the dependent line.

An alternative case of this kind is that of a line on a plane square
to the datum plane, within a rectangular tolerance band. This system is
identical to the one shown in Fig. D.19 except that 1 and 2 will be rlate
features with normal in the plane of the tolerance band.

D.8.4 Tolerances of Angularity

(a) Angularity of a face relative to a datum plane - Fig. D.20

- Tolerance band.

Fige D¢20 shows the method of specifying angularity tolerances
recommended in BS 308. The network system is identical with that for a
squareness tolerance which is a paiticular case of angularity tolerance,

if this {olerancing method is used.

(b) Angularity of a face relative to a datum plame = Tolerance on angle.

For this non-standard case, the angle is shown ag; for example



Fig D2l Angularif_y

Fig Dzo Ansularl'f_y
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60° + 1°. The easiest way to deal with this case is calculate the

actual tolerances at features 1, 2 and 3; and to ;pply these at features

1, 2 and 3 as shown in Fig. D.20. Each tolerance value will be different

in this case, but the network will be the same as (a).

(c) Angularity of a face relative to a datum plane = Unit tolerance,
ie.ee tolerance/unit distance.

Again, in this non-standard case, it is mosi convenient to calculate
the actual tolerance at features 1, 2 and 3, so as to retain the same
network. However, since this case occurs fairly frequently, a separate
treatment follows.

In the case shown in Fig. D.21, tolerance t/2 is applied at unit
distance from the intersection line of the two planes A and B. The
point of application is labelled as 'Point C'.

This construction uses unitary links. The displacements due to
displacement of datum plane A (indirect tolerance), and the unit angular
tolerance 1 are superposed by means of unitary links. The weak links at
nodes 1, 2 and 3 are redundant, and may be omitted from the diagram, but
are included for the sake of consistency = each node has outdegree 3.

The network shown can be simplified to some extent, and some of the
nodes omitted; but in all the networks shown in the examples, the mosti
direct method has been used even if this has necessitated using extra
nodes.

D.8.5 Tolerances of Symmetry

(a) Symmetric tolerance — datum planes parallel - Fig. D.22.

Again unitary links are used; and weak links to ensure that
unwanted tolerances are not passed along a paths In general, the presence
of a unitary link implies that the location system is not physical but
geometrice In view of the number of nodes used in this system, it might

be considered useful to provide an artificial Thelf-unitary! node, which



Fig D23 Symmetry

Fig D22 Symmefr‘y.
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would considerably simplify the network. Once again, the view is taken
that it is better to be a little prodigal with noéés rather than to
complicate the system.

(b) Symmetric tolerance = datum planes not parallel — Fig. D.23.
This case is more general than (a), but is basically the same
network.

D.8.6 Tolerances of Parallelism

(a) Parallelism of a plane relative to a plane -~ Fig. D.24.
Nodes 8, 9 and 10 describe the datum plane; nodes 1, 2 and 3
describe the located plane.

D.8.7 Coordinate Distances from Three Planes

(Cartesian coordinate system) = Fige D.25.

Point P is located on three flat faces A, B and C« Each of the
three planes is defined by a sub-network shown dotted in Fige D.25 and
previously described in section D.3 . Femote features X, Y and Z are
used to separate out components of displacements in the directions
indicated by their names. Z is a plate stationed at infinity along the
Z axis, with normal along the Z axis, X is a hinge stationed at infinity
along the X axis with direction at right angles to the X axis; Y is a
socket stationed at .infinity along the Y axis. These will select the
components in the directions of the axes along which they are stationed
and these components are passed to P using unitary links.

The network for this system appears rather complicated and requires
a disproportionate number of nodes. However, each extra point located on
this system only needs four extira nodes similar o P; and the spare
unitary links at X, Y and Z may also be used for two extra points, extra
X, Y and Z nodes being necessary for each three result points. The number
of nodes can also be reduced by using the remote features in more complice

ated wayse For instance, instead of the six remote nodes used in the



Fig D25. Co-ordinates

Fig D24 Parallelism.
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sub~network for planes A, B and C, three features may be used jointly,
each feature being used once as a hinge and on;a as a socket. However,
once again the most direct network system has been chosen. Fig. D.25
shows a spherical tolerance t/g applied directly at the result point Pe.
If the tolerance is parallelepipedal, then the three components may be
applied directly at X, Y and Z.

The sub-networks described in this Appendix are by no means an

exhaustive set but they should be sufficient to handle most common

dimensioning systems.
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APPENDIX E

PRACTICAL EXAMPLES
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E.1 Examples

The cases considered will be didactic rather than practical and
the dimensioning sufficiently eccentric as to include most of the
common datum systems met in practice. It is quite difficult to check
some of the results, and this has been done mainly by oalcuiation but
occasionally by drawing.

(a) Two dimensional system. Fig. E.1

The plate is defined by the five points A0, A1, A2, A3 and A4.
Each of these points may be considered as two subsidiary points coincident
in the plane. For example, point A1 lying at the intersection of lines
AO = A1 and A1 - A2 may be considered as points Ala lying on A0 ~ A1 2nd
A1b lying on A1 - A2, The lamina is located in orthogonal coordinates
as shown in Fig. E.1 and since all displacement is in the plane of the
lamina, a plate feature is set at each point with its normal perpendicular
to the plane of the lamina. The input tolerance at this P-loc will be
zero, thus ensuring that displacements at all the features on the lamina
will be in its plane. The datum is chosen as the point DO (coincident
with A0) end a line through DO and D1 (coincident with 44).

The five points will be considered separately.
(i) Point A4. Fig. E.2.

A parallelism tolerance is applied directly to A4. Since only one
tolerance acts at this point, it is not necessary to use the duval point.
(ii) Point A1. Fig. E.3.

Two tolerances are applied at A1, an angularity tolerance at Ala
and a parallelism tolerance at A1b. These will be compounded to give
the actual position of point A1. Since the angularity tolerance is
quoted as 'tolerance per unit distance', a subsidiary point U1 is taken

at unit distence from A0 along A0 « A1 and an H-loc set at Ul. This is

passed via a tolerance generating network to Ala.
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Since A1 ie located on a datum which ia'earthed, there is no
extrinsic tolerance network necessary and the parailelism tolerance
may be applied directly to point A1b. Displacements at Ala and Alb are
compounded using remote points M3 and M4 at right angles to lines 20 -
A1 and A1 - A2 respectively. This completes the definition of point A1.

Thie location system may be imagined as a 'black box' with one
or more input terminals at which are applied extrinsic tolerances due
to location, one or more input terminals at which are applied intrinsic
tolerance due to permitted displacement of the point itself and one
output terminal which may be connected with a unitary link to another
'black box'.

(iii) Point A2. Fig. E.4.

There are two tolerances acting at this point. As with A1, the
parallelism tolerance acts directly and may be applied through a tolerance
defining sub-network to point A2a. The symmetric tolerance depends on
the two defining points A1 and A4, and is passed through a sub-network
to A2b, using the remote features M3 and M4 stationed as shown in the
figure. This completes the definition of point A2.

(iv) Point A3. Fig. E.5.

Dual point A3a is fixed in relation to A1 (a point on A1 = A2)
and point A2. Displacements at these features are transmitted to A3a
through a sub-network as shown. The angularity tolerance is passed
through a tolerance generating sub-network to A3a, the weak link from
A2 ensuring that tolerance is not passed twice from the same point.

The parallelism tolerance is applied directly to point A3b and the dis-
rlacements compounded using remote features normal to lines A2 - A3 and
A4 - A3. )

The ﬁlate is now defined. FEach of the 'black boxes' describing the

points may be tested separately before being linked into a full network
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(Fig. E.6). Using separate definitions of points is rather wasteful
of nedes, many more unitary links being used than are necessary but it
is considered much easier to develop the network point by point using
standard cases than to regard it as an entity.
The system may now be used to establish sensitivities and in this

case those on the height A4 = A3 were found. The non-zero coefficients

ares
Tolerance Sensitivity at A4 - A3
line AO = A1 Angularity with DO - D1 0.577
line A1 = A2 Parallelism with DO - D1 3.667
line A3 = A4  Parallelism with A0 — A1 ' 0.866
line A2 = A3 Angularity with A1 - A2 2,000
point A2 Symmetry with A1 and A4 0.577

These ooefficients may be used to find the tolerance on the height
A4 - A3 for existing values of tolerance. For instance if angularity
tolerances are 1 in 100 (about + %°), parallelism is 4+ 2010 and the
tolerance of symmetry + .020, the tolerance on height A4 - A3 will be
+ 083,

Alternatively, they may be used to allocate manufacturing tolerance
either in an informal way or, if cost details are known, by using an
optimising program.

(b) Two dimensional system.

Two holes will now be added to the plate analysed in (a). Both
are located by dimensions from sides A0 = A1 and AO - A4, but centre A5
is positionally toleranced, while centre A6 is dimensionally toleranced
(Fige E.7).

(i) Centre AS5. Fig. E.8.
The dimensional system is described by the network shown in the

figure. Thg positional tolerance may be applied directly tc A5 - this

being a general principle in positional tolerancing. Hole H1 may be
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located on its centre using a unitary link, the diametral tolerance
being applied directly.
(ii) Centre A6. Fig. E.9.
This is located in & similar fashion to A5. The tolerance may
be applied by means of a tolerance generating network or if storage
is tight, it may be applied to the location network. H2 is located on
A6 by means of a ﬁnitany link,
This completes the definition of the plate and holes and sensitivity
coefficients may be computed. Two sets are shown below for the distances

between points on holes H1 and H2, and between a point on H1 and line

A2 —« A3,
Tolerance Sensitivity at H1 = H2
Dimensions Parallelism with AQ - A1 0.424
Dimensions Position tolerance on A5 1.000
Dimensions Dimensional tolerance on A6 (i) 0.707
Dimensional tolerance on A6 (ii) 0.707
Hole H1 Radial tolerance 1.000
Hole H2 Radial tolerance 1.000
Sensitivity at H1 =
Tolerance
: line A2 = A3
line A1 = A2 Parallelism with DO = D1 1974
line A3 = A4 Parallelism with A0 ~ A1 0.250
line A0 = A1 Angularity with DO = D1 0.097
line A2 = A3 Angularity with A1 — A2 0.832
point A2 Symmetry with A1 and A4 0,500
point A5 Positional with dimensions 1.000
hole H1 Radial tolerance 1.000

If the three sets of sensitivity coefficients are for the influence

of tolerances on three critical function dimensions, then they may be
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used as input for an optimisation program. The second set was computed
for the distance between H1 and a point R1 which #as located on line

A2 = A3 by a sub-networke. The coordinates of R1 were calculated for
one computation and measured from a drawing for another run and there
was little difference between the coefficients obtained.

Displaying the network in the 'tree' form used previously is not
very convenient nor easily read. The form illustrated in Figs. E.2 -
E.9 is an improvement but it is important that for clarity, the nodes
should be in topological order.

(¢) Thres dimensional systems.

This example is deliberately very detailed. In practice much of
the resulting network (where features of no interest are concerned)
may be omitted. The solid form shown in Fige E.10 will be described.

A plane (the X-Y plane), a line on it (the line OY) and a point
on this line (the origin), will be taken as the datum system. Points
AO and A1 are positioned relative to this system. Point A0 is fixed
at the origin, but A1 may be displaced along the line OY.

The line A0 — BO is located on line A0 = A1 with an applied
tolerance of angularity relative to A0 ~ A1 acting at point Ba.

The line BO - Bl is located on line A0 = A1 with applied tolerances
of paralleliem acting on BOb and Bla. BOa and EOb displacements are
compounded at BO,

The line B1 = A1 is located on line A0 —~ BO with applied tolerances
of parallelism acting at B1b and A1. The two tolerances at Bla and B1b
are compounded to form the intersection point Bi1.

In addition, flatness tolerances may also be imposed at BO and Bi.
These are not shown in the figure.

This completes the description of the plane A0 — Bi.

Lines A0 = A2; A1 = A3, B1 - B3 and B0 - B2 are defined by locating
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the points A2, A3, B3 and B2 on the plane A0 = Bl. Each of these points
may have three displacemenis; one parallel to th; XY plane due to the
locating point, a squareness tolerance relative to the XY plane and a
parallelism tolerance relative to the XY plane. These three displace=
ments, the first extrinsic, the others intrinsic must be compounded in
the three orthogenal directions to give the intersection points. Since
the displacements are also orthogonal, they may be simply superposed.

This completes the description of the solid form.

Points A4 « B4 are now to be added. A4 is symmetrically toleranced
relative to A2 and A3, B4 relative to B2 and B3. The displacements due
to this tolerance will be in the OY direction. There will also be
extrinsic displacements on these points due to their situation on the
lines A2 = A3 and B2 - B3, in the OX and 0Z directions. These may also
be superposed to give the true displacements at A4 and B4.

The cutting plane A4 - BS is located on line A4 — B4 with an
angularity tolerance relative to plane A2 ~ B4, It is sufficient to
consider this plane as defined by the points A2, A4, B4 for the purpose
of applying the angularity tolerance to points A5a and B5a. In addition,
since A5 and B5 are necessarily constrained to lie on lines A1 — A3 and
B1 - B3, dual points A5b and B5b are located on these lines and the
consequent displacements compounded with those at A5a and B5a to give
the actval positions of A5 and B5. Fig. E.11 illustrates the procedure.

A hele is to be drilled at an angle to face A1 = A2. The centre
at point A6 is located on plane A1 — A2 and is dimensioned from datum
lines AO -~ A2 and AO = A1 in the same way as in the two-dimensional case,
but the displacement due to its position on the plane is applied to the
P-loce The point on face Bl = B2 where the axis of the hole runs out
(point B6) will be subject to an angular tolerance relative to plane

A1 = A2 and will also be constrained to lie on plane B! = B2, These
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displacements will be compounded to give the true run=outpoint B6.
The hole H1 is described by setting H-locs along A6-B6, tolerances at
A6 and B6 being passed directly by means of unitary links.

A further hole H2 is drilled normal to face A4 - BS5. This is
described in the same way as H1, except that there need be no complica—
tion at the run—out ﬁoint on face A0 = B1, this being a datum. The
network is shown in Fige. E.12.

It is now possibie to obtain sensitivity coefficients for the
distance between holes H1 and H2. Although this has been a very
detailed analysis of the form, much of it being unnecessary for obtaining
these results, all the working has made use of a few standard networks
and may be done reasonably quickly with a little practice. If it were
known in advance that only the sensitivity coefficients between H1 and
H2 were required, face Bl = B2 could be ignored and this has been done

using seventy nodes only.
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APFENDIX F

SUMMARY CF REFERENCES




Fe.1 Summary of References

Comparatively little work has been published since 1960 on the
subject of engineering tolerances. The Secretary of the Institution of
Engineering Designers has suggested to the author, in private communic—=
ation, that this might be because this topic is very much tied up with
a company's profitability. About fifty papers, articles and books have
been published during the period 1960-1976. Historically, papers pube
lished prior to 1960 are concerned with good drawing practice; from
1960-1970, they are concerned with statistical implications and from
1970 onwards, they are mainly about the allocation problem.

(i) Practical treatments dealing with Ygood practice'.

A few detailed manuals of dimensioning practice have been written.
Possibly the best is ref. TT; This contains details ofall the common
dimensioning systems and was written as a companion volume to BS 308
(refe G5) which was the first wholehearted attempt to systematise design
practice in this country. A further, extended version of BS 308 was
published in 1972 and this is widely regarded as the standard for drawing
practice. Ref. T7 contains much that is relevant to the latest version
of BS 308, but has not been re-printed by the publisher.

Theré are several excellent papers and articles which may be found
in the list of references. Refs. T1, T2, T3 may be singled out as
being particularly useful.

(ii) Analysis of Statistical Tolerancing

The principle of infallible interchangeability (sometimes called
sure-fit) assumes that all the critical dimensions of a manufactured
part are al an extreme limit of the allowed tolerance range. It has
long been recognised that this is normally an unlikely eventuality and
that this pessimistic approach often results in parts which are specified

with unnecessary precision. This causes high unit manufacturing costs
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and excessive rejection rates. A common assvmption is that the bulk of
the tolerances involved in an assembly will be dis¥ributed in Gaussian
fashion and in cases where this is not so, the overall 'stacked' tolerance
will be approximately Gaussian, as proved in the Central Limit Theorem.
Thus, the majority of assemblies will have critical clearances which are
reasonably close to the nominale An excellent introduction to this
treatment of atatistical tolerancing may be found in ref. S3, and a
more advanced description in ref. S8.

In practice, tolerances are not quite so well behaved and often,
for a variety of reasons, the distribution is not Gaussian. For instance,
it is good practice to allow for tool wear by starting to remove metal
at one eﬁd of the tolerance range and {o drift towards the other limit
as the tool wearse A batch of parts machined in this way may, then, all
be close to extreme tolerance limite. Another example is in the drilling
of a hole through a locating bush. The hole centre will very likely be
at extreme tolerance.

A detailed discussion of these situations may be found in ref. ™.

It seems safer to assume a more general distribution tha; the
Gaussian for the component tolerances of highly critical clearances.
A description of a computer package for the statistical analysis of
tolerances with general distributions may be found in refe. S5. The
designer uses the system interactively with a graphic console. He
provides the system with an expected statistical distribution for each
tolerance, together with a sub-program (written in.PL/1) describing the
geometrical relationships between each dimension. The computer then
generates representative critical dimensions for each component, sampling
from the appropriate distributions. The number of simlations is
typically of the order of 1,000 and results are displayed graphically

in various forms. Tolerances may be adjusted interactively by the user.
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The system has been widely used in the Body Divisipn of General Motors and
is regarded as a useful design tool.

The main drawback of the system is that the geometric form of the
dimensioning system must be specified by a sub-program either written
by the user or submitted by him to a specialist programmer. This seems
inconvenient at best and certainly unsatisfactory in a firm smaller than
General Motors. Another problem is that it does not seem possible, as
far as can be judged, to specify complex multi-stage machining processes
in vwhich dimensions at a stage depends on those obtained at a pravious
stage. The system, however, is the first to use a computer for this
purpose and will, no doubt, be progressively refined as further experience
is gained in its use. It would, cléarly, be an improvement if the
dimensioning and datum systeﬁ were submitted to the program not as a
sub=program but as data.

(iii) Allocation of Tolerances

Although the ﬁroblem of allocating tolerances to the component
dimensions of a critical clearance has been recognised for many years,
the first paper to be published in this field was ref. A4. The problem
is clearly defined and solved in ref. A2. This is an elegant account
but uses én inverse square law for the tolerance cost which has been
superseded in later papers by more realistic models. Possibly the most
important paper is ref. A8. This uses a negative exponential model (now
commonly called 'the Speckhart model!) For the tolerance cost function.
The method of Lagrange multipliers i used to minimise the total cost
and various practical examples are analysed. The author has developed
a program to calculate optimum tolerance allocations on both sure-=fit
and statistical=fit bases.

Another approach to the minimisation of tolerance cost is to use

dynamic programming. An account may be found in ref. AS.
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The most detailed and comprehensive descniptipn to date is a two-
part paper ref. Ale Earlier papers on the subject are reviewed, coste
tolerance data obtained from various sources analysed and practical
models derived for different manufacturing processes. A mathematical
analysis is performed for sure-fit cases and the method is applied to
several practical examples. A further paper dealing with statistical—
fit cases is prOmised.

An account of the problem and method of solution will be found
in AppendixC. This is largely eclectic drawing mainly on refs. A1
and A8 and is included for reference.

It is interesting to note that ref. A1 pre-dates ref. A8, is a
fuller treatment and the cost equations are based on a thorough investi-
gation of practical results and yet the latter paper seems to be con-
sidered definitive in the literature.

(iv) Geometric Calculation of Tolerances

This topic in tolerancing theory has not been dealt with systeme
atically. Various papers have been written on specific problems (refs.
C1 and C2) but the examples quoted are either trivial or too specialised
Yo be of much general interest. It is hoped that this paper might fulfil

a need in'this respect.
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For convenience, references are separated into 5 classifications,

each being given a distinct prefix.

G . ¢« General references which are mainly textbooks used in

the theoretical development.

T e« + These refer to general principles of tolerancing and

dimensions.
5 ¢ ¢ o Deal with statistical considerations.
A + « « Concerned with the problem of allocation of tolerancese.
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011
SUMMARY

In the design of mass-=produced components, it is essential that
manufacturing tolerances should be analysed to make sure that assemw
blies fit together satisfactorily and that parts are not produced to
unnecessarily tight specifications. The analysis may be divided into
three stages:

(a) calculation of the sensitivity of a feature's position to the
magnitude of the tolerances upon which it depends,

(b) ensuring that the permitted tolerances which together influence
a critical measurement are allocated in the most economical way,
and

(¢) analysing the statistical distribution of tolerances on critical
measurements.

This thesis describes a method of performing stage (a). Stages
(v) and (c) bave been dealt with elsewheie.

It is demonstrated that the analysis of tolerances in all but the
most straightforward cases is not a trivial operation and a model is
developed to assist with the calculation. This is a location element
derived from the classical six-point system for locating a body in
three dimensions. Elements mey be combined to describe multi-datum
machining operations, assemblies and drawing dimension systems by a
{ree=like structure. The model is analysed mathematically, a compendium
of commonly-occurring cases is appended and algorithms for obtaining
results of interest to the engineer designer are described. A computer
program for the sensitivity analysis is also described and the integra-
tion of thc methed into a full {olerance-analysis system is discussed.

KEYWORDS :

TOLERANCES, DESIGN, ENGINEERING, COMPUTERS
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1« General Discuasion

11 The Principle of Infallible Interchangeabiiity'

Many of the aims in the design of mass-produced components are
unattainable. Examples are zero cost, zero weight, infinite strength
and ultimate aesthetic appeal. However, 2 major aim which can often be
achieved is infallible interchangeability. This term, probably first used
in ref. T.7 means that a component selected at random from a batch of like
components should fit satisfactorily to any one of a batch of mating
components. In some situations, selective assembly may be a suitable
process but usually it is precluded since it is costly in resources of
labour and time. Normally, batches of components must be assembled
unselectively.

The principle of infallible interchangeability leads {o some diffi-
culties in practice. All manufacturing processes are subject to size
variation in a degree depending on the particulaer process; +two components,
even when produced on the same machine, will be unlikely to be of the same
size. Exact fit is, therefore, another unsttainable aim of mass production
design and design clearances must make allowance for process error.

1.2 Types of Working Drawings

Unfortunately, modern design is a specialised function and modern
deaignefs are not e:ﬁected to be experts in jig and tool design, in
metrology nor in any other of the branches of production engineering.

The task of the designer is to specify the functional requirements of the
finished part, énd, although he will usually have some knowledge of the
manufacturing and inspecticn processes irvolved, he will not normally lay
down a rigorous specification for them. This principle is clearly siated

in BS 308: Part 2: 1972:

"Production processes or inspection methode should not be specified unless
they are essential to ensure satisfactory functioning or interchangeability.™

It is also discussed at length in ref. T.T.
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There are two types of working drawing. Thece are =
(a) product drawings completely defining the finished product as

required by the designer, and
(b) process drawings defining products in a partly finished state

suitably dimensioned for the manufacturing process to be adopted.

A view sometimes expressed is that the product drawing is not the
definition of a machined part, but the definition of a gauging method
for a machined part. Although this is contrary to the spirit of BS 308
since gauging may be considered to be a manufacturing process, it is
partially true.

A part may be therefore dimensioned in three ways:

(a) for its function, so that it may work satiszfactorily,
(b) for a process, so that it may be made, and
(¢) for inspection, so that sizes may be checked.

Each of these may involve different dimension systems for the same
part and it is essential that tolerances arising from (b) and (c) be not
greater than those specified in (a). In many cases, this may be checked
using simple arithmetic (and some simplifying assumptions, usually) bui
often it is no trivial process.

1¢3 Further Problems in Dimensioning

A machining process will affect some functional clearance, possibly
in an indirect way; and often a functional clearance is affected by more
than one process. Usually, the production engineer has several possible
machining proceéses available, each having its own accuracy. As a rule,
the more accurate a machining process, the higher the unit cost and it is
desirable that the more accurate processes are used in features which have
the greatest effect on the functional clearance.

Another difficulty is that many common dimensioning systems, even
some described im BS 308, are embiguous and their interpretstion depends

on some convention. In the majority of cases, alternative interpretations
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lead to differances in functional clearances which are small., However,

this may not always be so0 and an unequivocal method of describing

dimension systems is desirable.
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2e Basic Concepts

2.1 Component chains —« A model for complex manufacturine processes and

assemblies

A feature on a component may be displaced from its nominal position
for two reasons. Firstly, the component may be machined in several steges,
each stage having its own, possibly distinct, datum systems. Secondly,
the component may be assembled on other components each having its own
variations in size. Both of these cases can be treated in the same way
since they are conceptually identical.

Each stage in the machining of a component may be regarded as a
separate physical component, the stages being assembled together to make
the finished part. An example is shown in Fig. 1. The reference body is
the nominal size drawing of the casting, the actual casting being located
on it by the dimensions on the casting drawing. Each subsequent machining
stage is located either on the actual cast form, or on previous machining
stages, or on both. A machined part may then be treated in the same way
as an assemblye.

The classical method of location consists of clamping a bedy to a
plane, to a line and to a point, so that six degrees of freedom are
removed. This applies both to the physical assembly of components and to
a machined feature on a component since six point location is considered
to be good jig and tool practice (for example, see ref. Go12, po 77).

Some common dimensioning systems cannot be described in six point location
form and these will be discussed at a later stage.

The example shown in Fig. 1 is described diagrammatically in Fig. 2.
Each box represents a machining siage and each arrow represents the
relationship fdepends on the size of'. Thus variations in size will be
passed on, through a chain, to the finished part.

Finished components may alsc be fitted together to form an assembly.

Assemblies may also be described by diagrams similar to Fig. 2. Each box
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now represents a finished part, the meaning of the arrows being the same
as for machining stages. MNulti-stage machining proéesses and assemblies
may, then, be considered in the same way, and, to avoid confusion, they
will subsequently be called ‘assemblagest®.

2.2 Problems to be solved

Assemblages of both kinds may be linked together in the same way.

At some stege, & useful limit will be reached, and questions that one
might wish to ask are =
(2) in Fig. 2, what is the effect at a feature in stage C of given

variations in size at stages A and B,

(b) in Fige 2, if the maximum permitted variation in position or size

in stage C be known, then how should the tolerances be apportioned

between stages A and B so as to minimise the process cost, and
(c) what is the clearance between a feature on component D and one on

component E in Fig. 2?

The concept of regarding a finished part as en assembly with some of
the components possibly occupying the same space as others is fundamental
to the system to be described. Its use enables assemblages 0 be defined
in a unified way and questions (a), (b) and (¢) may be answered in much
the same fashion.

The terms 'tolerance' and '"location' have been used so far in a fairly
loose, commonsense way since they are ¢f common currency in engineering.
However, as they will be used subsequenily in a more specialised sense,
some discussion of them follcws.

2.3 Tolerances
2¢3.1 Definitions

Tolerance is the variation from nominal position of a feature of
interest on a component.

Tolerances may b“e specified bilaterally, the locating dimension

consisting of a mean size with a tolerance equally disposed about it;
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or unilaterally, the locating dimension consisting of a size at one extreme
with a tolerance quoted in the opposite direction. In all the examples
which follow tolerances will be specified bilaterally.

A tolerance zone is the zone within which the feature of interest is
required to be contained. BS 308 specifies that a tolerance zone is one
of the foilowing:

(1) a circle or cylinder

(2) the area between two parallel lines or two parallel straight lines
(3) the space between two parallel surfaces or two parallel planes

(4) the space in a parallelepiped.

A tolerance zone which is occasionally useful, but which is absent from
the list, ie a sphere.

263:2 Intrinsic and extrinsic tolerances

A feature may be displaced from its nominal position for two reasons.
Firstly, there will be a tolerance on its position due to error in the
manufacturing stage which has produced it. This will be called intrinsic
tolerance, and will be the tolerance quoted on the process drawing of the
feature. In following examples, standard BS 308 tolerance frames will be
used to show intrinsic tolerance. Secondly, there will be a tolerance on
the position of the feature resulting from tolerances on previous manuface
turing stages on which its location depends, or tolerances on the finished
parts on which it is assembled. This will be called extrinsic tolerance
and must be calculated from the intrimsic tolerances on the locating parts.
The sum of intrinsic and extrinsic tolerance will be termed 'total tolerance!.
In all cases, tolerance is relative to some frame of reference. Intrinsic
tolerance is relative to the nominal positions of the locating features,
while extrinsic and total tolerances are relative to any feature of interest.

2.4 Locations

There are two types of location system which are described below using

two-dimensional examples for illustrative purposes.
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2¢4+1 Real Locations
These are location systems which may be realised physically and
locate real bodies on real locating features, both necessarily having
irregularities in form and displacements from nominal positions. Real
locations occur in the jigging of manufacturing processes and in the
assembly of components. Examples of each are shown in Fig. 3A.

2e4e2 Gecmetrical Locations

Functional drawings often describe location systems whicﬁ may not
be realised physically since they refer to idealised geometrically exact
figures. A common example is shown in Fige. 3B. As may be seen, the
drilled hole cannot be located physically on two datum faces. The most
plausible interpretation which can be made of this system is that any
convenient jigging system (which necessarily involves a real location) is
to be used but that on the finished part, the hole is to lie within the
parallelepipedal tolerance zone defined on the drawing and centred at the
intersection psint of {two lines parallel with the datum face et a distance
from them specified by the drawing dimensions.

A detailed discussion of this dimension system will be found in
refe TeT ppe 266=270.

2.5 Cumlative Tole;ance

The concepts described in the previous sections are illustrated by
the example chown in Fige 4. This is unrealistic but not wildly so.

Feces E and F are assumed to be geometrically exact, while face D is
subject to a profile tolerance and lies within a band as shown in (1) on
the diagrame It is further assumed that all locating points are exacth,
but the central axis of the machine tool is subject to a cirenlar tolerance
gone relative to the corresponding locations. Form irregularities normal

to the plane of the diagram are discounted.

The three holes are machined using separate locating systems as
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shown below:

Stage 1t Hole A <es datum Face E, and a poiﬁt on Face D,

Stage 2: Hole B +e.e datum Hole A, and a point on Face E.

Stage 3: Hole C e.e datum Hole B, and a poinl on Face F.

Stage 1. The linear tolerance at face D will result in the position
of hole A relative to all other faces of the plate being subject to a
linear tolerance = &8 in (1). There will also be a circular tolerance
zone at A relative to the locating features. This will also be relative
to the actual profile of face D and all other nominal faces.

The total tolerance at A relative to all nominal faces will be these
iwo tolerance zones superimposed.

Stage 2, The linear tolerance at A results in a linear tolerance
at B (shown in (2)); +the circular positiocnal tolerance zone at A (plus
clearance between hole A and the locating peg) causes a tolerance zone
at B which is approximately elliptical (shown in (3)). There will also
be a circular positional tolerance at B, and the total tolerance zone at
{this hole relative to the nnﬁinal profile will be the superimpositicn of
the linear, elliptical and circular tolerance zones.

Stage 3. There are four tolerance zones at C: a linear zone due
to linear tolerance at B (shown in (4)), an elliptical zone due to the
elliptical zone at B (shown in (5)), an elliptical zone due to the
circular zone and clearance at B, and a circular positional tolerancee.
The total tolerance zone is the superimposition of the four.

All tolerance zones shown in the diagram are grossly exaggerated,
and have been obtained by tracing the tolerance loci; but the effect
of cumulative tolerance is clearly shown. In a real system, extra complie
cation would be added because of factors which have been conveniently
ignored in this model. For instance, the locating points would not be

exactly positioned; and face F would be subject to a form tolerance.
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Difficulties involved in analysing a multigtaga system are:

(2) The extreme position of a tolerance zone at a feature is not
necessarily the position corresponding to an extreme position
of zones at the locating features.

(b) Some tolerance zones are dependent - an example being the two zones
shown.in (3)e The nett displacement between holes B and A does not
depend on these zones. Deciding on which displacements at one
feature are relative to another can involve much book=keeping and
possible error.

(c) Real parts exist in three dimensions and though many tolerance
situvations may be considered as being two-dimensional, this is not
always so. In a three~dimensional system, tolerance zones may be
parallelepipedal or elliﬁsoidal and their effects are difficult

to visualise, let alone calculatee.
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3. DESCRIPTION OF THE LOCATION MODEL
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3s Description of the Location Model

3+1 Tolerance Mechanisms

Fig. 5A shows a common dimensioning system. Hole a is located by the
centre points of holes b and c. The dimensioning system is analogous to
a structure — there are no redundancies in the dimensions and if any
dimension is deleted, then the remainder are insufficient to locate the
hole. In this case, the three members of the structure are the centre
distances of the holes.

Extrinsic tolerances will be passed to the located feature from each
of the locations. If a circular tolerance be imposed at hole b, hole ¢
being held at its nominal pesitiony then the dimension system may be
regarded as a mechunism, each position of hole b corresponding with an
unique position of hole a. The mechanism in the case illustrated is a
four bar chain and the locus of hole a is a short circular arc. If now
hole b be held at nominal and a circular tolerance zone applied to hols ¢,
then a similar mechanism is obtained — Figures 5 A=1 and A=2, Since the
radius of each tolerance zone is small in comparison with the locating
dimensions, the {wo systems may be superiuposed to give a total tolerance
zone as shown in the figure. This approximates to a parallelogram as
the lengths.of arc are smell.

Another dimensioning system is illustrated in Fige 5B. In this case,
hole a is located by its distance from hole b and by its perpendicular
distance from line c. Again the system is exactly determined and may be
considered us a structure. If & circular tolerance zone be applied at
hole b then an equivalent mechanism may be derived. In this case, since
the perpendicular distance from line ¢ is specified, a sliding member is
necessary on the line, while the crank centred at the nominal position
of hole b generates the circumference of the tolerance zone. At hole a,
the zone generated is a short straight line parallel with ce.

Similarly, if a tolerance band is allowed at line ¢, hole b being
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held at its nominal position, the resulting zone at_hole 2 will be a
small circular arec centred at b.

The two tolerance zones may be superimposed and the resulting zone
ie approximately a parallelogram.

Fige 6 shows a mechanism with two sliding pairs which is equivalent
to a point dimenaioned from two straight line datums.

There is a general solution for three dimensional mechanisms com=
prised of pure turning and sliding pairs (refs. G.6 and G.14), and it
gseems feasible that a method for the analysis of tolerances based directly
on the use of such elements could be derived. This direct approach suffers
from some disadvantages, however. As has been demonstrated in section 2.5,
explicit tolerance zomes are of irregular shapes; and if, for example,
hole b in Fige. 5A were located in the same way as hole B in Fig. 4, then
the tolerance zone would cexrtainly not be circular. Even if the zone
were decomposed into its separate elements, it would be necessary to use
a crank arm with a radius varying dynamically with {turning angle, one of
the elements being elliptical. Also, the method is rather inflexible,
as each of the many possible dimension systems would require a separate
equivalent mechanism with a separate method of calculatione Although the
vector equations for these mechanisms may be written down using the methods
of ref. G.6 they do not appear tractable for solution in some cases. These
problems are exacerbated in three dimenzions.

Equivalent mechanisms are useful in visualising the effects of
explicit tolerances, but the preferred method will be based on a standard
unit of location. Indeed, the method might be used, with a little modifie
cation, in the analysis of the general kinematic mechanismj but this is
outside the scope of this thesis.

3.2 Elemental Location

A body is located elementally if -

(a) a point on it is held against a locating plane,
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(b) a point on it is held against a locating line, and
(¢) a point on it is held against a locating p;ini:

The located body is sensitive to small displacements =
(a) along the normal to the locating plane,

(b) orthogonal to the locating line and
(¢) in any direction at the locating pointe.

Elemental location is illustrated in Fig. 7.

In order to avoid confusion, a locating plane will be called a
plate, a locating line will be called a hinge and a locating point a
socket. The terms have been picked because of their obvious mechanical
analogies and also because they have distinct initial letters. In sube
sequent reference, the following concise terms will often be used:

(a) a plate location will be called a P-loc,

(b) a hinge location will be called an H-loc, and

(o) a socket location will be called an S=loc.

These will be referred to collectively as a location triad.

A displacement at a locating feature will result in a displacement at
other points on the located body. A point at which the displacement is
required will be called a result-point (or more concisely an R-point).

An B-point located on a triad will be shown graphically as exemplified
in Fig. 7. The root node represents the R-point and the three links are
distinguished by the convention:\

(a) a P=loc is shown by a square,

(b) an B-lec is shown by a triangle, and

(¢) an S-loc is shown by a circle.

Each symbol is placed cn the appropriate link, and a link indicates the
relationship 'is located on', in a top-down sense.

3.3 Displacement Matrices

The general location element, described previously, is analysed by

using energy methods since these are commonly used in engineering science.
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Details of the analysis will be found in Appendix A but an outline is
given here for reference. 3
The parameters listed below define the location system, coordinates
being relative to some convenient set of orthogonal axes. The sense of
the directions of the lines is immaterial.
(a) Coordinates of the R-point.
(b) Coordinates of the points of action of the P=, H= and 81008,
(c) Direction cosines of the normal to the locating plane and of the
direction of the locating line.
If the displacement at a locating feature bg 3;n’ and the displacement

at the R=point be Sgut’ both of these being column vectors, then
Pout, = X T
Misa3x 3 matrix with coefficients depending on the coordinates
of the locating triad. Each location feature will have a different matrix;

the notation for these is shown below.

(a) P-loo; ¥ = P
(b) H-loc; M = H
(c) S=loc; W =

There are, as is discussed in Appendix A, restrictions on the positions
and directions of the locating features. These define a proper location
and are easily visualised; for instance, a socket may not exactly correse
pond with the centre of action of a P=loce If the location features are
noi restricted in this way, then matrix coefficients may become infinite.

It is proved in Appendix A that a P-matrix is of rank at most 1,
an He-matrix of rank at most 2 and an Sematrix of rank at most 3. The
matrices may be thought of as three-~dimensional transformation operators,
and if they act on a unit sphere, then the Pematrix transforms it +o a
straight line, the H-matrix transforms it into an ellipse; and the S-matrix

transforms it inio an ellipsoide. These ﬁrangformations are illustrated in

Figo Be
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Fig 9 Location Networks
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4. lLocation Networks

4.1 Assemblage network and paths

An assemblage mey be represented by a directed graph consisting of
location triads linked together as shown in Fige. 9. The effect of a
displacement at feature O will be transmitted through the network to
feature B« The corresponding displacement at B will be found by multi-
plying all the matrices corresponding to the edges of the graph lying on
the path between the two features. If the product matrix be ﬁ; then the
output displacement at B may be found from the general equation: |

-ﬁout - X ﬁin
where Bgut is the output displacement column vector, and
5;n is the input displacement column vector.

Often multiple paths exist between the location at which the dis-
placement is applied and the R~point. In this case, the calculation of
the matrix M is not so straightforward and a discussion is to be found in
Appendix A. An example of multiple paths is the pair of paths joining
nodes N and A in Fig. 9. (Paths NHC A and NIE A4).

If a spherical displacement locus is applied at O, then the resulting
output displacement locus at B will be a transformation of the sphere.
In the general case, .the output zone might be linear, elliptical ox
ellipsoidal depending on the rank of the transformation metrix 1 (see
Fige 8)s For a pair of nodes which are comnected by multiple paths, it
is not possible to predict the rank of I without first celculating the
path products. For a simple path, the rank of M will be the lowest rank
of matrix associated with any edge along it (Appendix A).
4.2 Examples

The construction of assemblage networks requires some skill in

visualising the tolerance mechanisms involved, although some assistance

is provided in Appendix D which contains details of all the common locating
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systems. Fig. 10 shows a simple example. Hole A is located on the centre
of hole B, the nominal cenires of both holes being éoincident and hole A
having a concentricity tolerance relative to hole B. Extrinsic tolerance
due to displacement of hole B must be separated from the intrinsic toler—
ance due to the concentricity tolerance. The situation is shown in

Fig. 10, the mechanism XYZ being used to assist in visualising the location
triad. Some, possibly irregular, folerance zone exists at hole B, and this
must be passed unchanged to hole A which has its own tolerance relative

to hole B. If member XY be made very short and member YZ very long in
comparison with other dimensions in the neighbourhood of holes A and B,
then the path traced out by point Y will be very nearly the same as that
traced out by point X. The displacement at X will be passed unchanged to
Y in the limiting case. If point X is taken to represent the locating
hole B and point Y is taken to represent the located hole A, then the
required locating system has been obtained. The use of links of zero
length such asXY, and links of infinite length, such as YZ, is common

and there are several standard cases in which these are useful. The

final location triad is shown in Pig. 10.

The whole assemblage network is made up from standard components
similar to the one just described — another two-dimensional example is
illustrated in Fige 11. In order 1o generate a two-dimensional system,
the P=~loc is taken {0 be in the plane of the paper and the two-dimensional
H-loc and S~loc representations are a slot and pivot as shown in Fig. 11.

Further discussion of the network will be found in Appendix D.

4¢3 Ceneration of Tolerance Zones

The input tolerance zone at a feature is always taken to be a sphere.
The ocutput tolerance zone at the located feature may be linear, or elliptical
or ellipsoidal depending on the matrix of the path jeining the two features.

The use of a spherical input tolerance zone is not as restrictive as it

might appear, since all other common tolerance zones may be generated
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from it = see Fige. 12,

If a spherical tolerance is applied to a P-loc; then since only
displacements normal to the locating plane are sensed, this is equivalent
to a linear tolerance zone. At an H=loc, onl& displacements at right-
angles to the locating. line are sensed, so the app;ication of a spherical
zone is equivalent to a circular zone. At an S-loc, the whole spherical
zone is seonsed.

By superimposition of P=locs, a parallelepipedal tolerance zone may
be generated. Similarly, superimposition of H= and P-locs generates a
cylindrical zone.

A spherical tolerance zone may therefore be used to generate all the
gtandard tblerance zones listed in BS 308 and quoted in section 2¢3.1.

A more detailed treatment is given in Appendix D.

4.4 Use of a location network

When & location network has been established for a particular
assemblage, it may be used to provide qualitative answers to various
questions of interest.

(a) The vector displacement at a locating feature is known. What is
the effect at a located feature?

The output displacement may be found directly from the relation

Bgut & ﬁ.ﬁgn
il is the poth matrix between the two features. If this is to be found
automaticaily, it is essential that if there be no path between the two
features, then H = O.
(b) If a spherical tolerance zone is applied at a locating feature,

what will be the maximum displacement and its direction at a

particular R-point on the body?

Again the path matrix M is calcwlated. The meximum displacement and

its direction are evaluvated by finding the dominant eigenvalue and
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associated eigenvector of the product of il and its ;ranspose. Details

of the method used are to be found in Appendix B, but it is wnnecessary

for the user to know anything about the method used.

(¢) A feature of interest depends on several locating features. What
will be the effect of unit tolerances at each feature?

M matrices are calculated for the paths between each locating
feature and the R-point in question. The maximum tolerances for each
are evaluated as outlined in (b) and displayed in a convenient way. The
resulis may be used as an aid fo the selection of manufacturing processes
and locating systemse.

(d) What is the relative displacement between two features of interest
in the assemblage?

The calculation is performed using a device described in Appendix A
vwhich is again transparent to the usere The answer is useful in several
wayse. It may,; for instance, be employed to calculate clearances between
points on the assemblage. Another use might be to check whether a
particular system of location used in the manufacturing process gives
tolerances which are inside the bounds specified in the functional

drawing of the part.
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5. THE WORKING SYSTEM
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5« The Working System

5.1 The Tarpet Computer confipuration

It has been assumed, in the design of the pilot system, that
(a) the computer available for engineering use is a bare 16K mini,

(b) the program is to be contained within 8K, the remainder of the
store being reserved for array space,
(c¢) a compiler is available for a reasonably high level language such

as ALGOL 60 or FORTRAN.

The selection of the computer is clearly of great importance in the
system design; and it was decided at an early stage that the design basis
ghould be the minimal configuration above. A useful network should contain
around two hundred nodes and 8K would bs sufficient to provide array space
for this size of assemblage.

Since the data structure chosen is fairly complex, ideal languages
would be ALGOL 68 or PL/1 since both provide reference variables so that
data structures may be built up dynamically. It is, however, unlikely
that either of these languages would be available on the minimum configur—
‘ation selecteds It was reluctantly decided that the linked structure
would be held in array form, links being integer pointers to array
elements. ‘This is a common, although artificial, way of holding a linked
structure, but it does have the clear advantage that a data structure may
be output in a comprehensible form.

The prototype program was written in ALGOL 60 and it did, afier some
paring, fit into 8K of store. The computer used was a Marconi~Elliott 905
which has an excellent ALGOL 60 compiler with good error diagnostics.
ALGOL 60 was used in preference to FORTRAN mainly because it is more
suitable for the communication of algorithms. The fact that FORTRAN
has no facilities for dynamic arrays is irrelevant, because in this

application a fixed area of core is set aside for array space.
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5.2 The assemblage network « « . computer representation

The first stage in the analysis of the location systems om an
assemblage is to set up the network manually. It might be possible to
automate this to some extent, since sub-networks for all the common cases
of dimensions systems have been established (Appendix D). These might be
stored as a library of standard cases in the computer, probably on backing
store; and the relevant sub-system selected by means of an index. The
appropriate feature coordinates would also be supplied together with
linkago data. A section of network would then be linked into the main
data structure together with node information. There are two main Qiffi-
culties. Firstly, it would be necessary to maintain a dynamic data=-
siructure and this is not conveniently achieved in the languages most
commonly available for engineering applications. Secondly, in some sub-
systems (for example, those defining symmetric tolerance), some of the
coordinates of nodes internal to the sub-system are calculated from
externally supplied coordinates, and so a library entry would consist
not only of a piece of structure, but would also contain a section of
code which would be handled rather like a macro definition. This is an
interesting problem but it would complicate the system drastically. For
this reaaoﬂ, the library of standard cases is held in a manual in the
prototype system and the network completed by hand.

It would be unreasonable if it were required that a whole network
were to be compiled by hand for an assemblage as complex as, say, &
motor car. Fortunately, networks can be built up piecemeal from more
tractable sub-networks which can be separately tested. The physical unit
corresponding to such a sub-network might be as small as a single process
drawinge.

The present prototype program is for general purposes, but in a wmore

elaborate configuration, a separate specialised program for validating sube

networks would be very useful. This might display selected output



25
tolerance zones graphically for given input tolergnces so that the
correctness of a given sub-network could be checked before incorporation
into the main system. The test program would also be a valuable training
aid,; pariticularly if output tolerance zones were displayed visually.

5.3 Data Input Format

The deteils of the network are supplied to the program by providing
the date for each node. The format of the input data is described below.

(a) External node index

Each node represents a feature on the assemblage and must have a
distinct index. These are provided in random order and the format may
be designed to any fixed convention. In the prototype program, simple
positive integers were used.

(b) Node type index

For a normal node, the type index is O, In the case of a node with
unitary links (see Appendix D), the type index is 1, such nodes being
treated in a special way. Artificial nodes of this kind will have non-
zero indices and although the unitary node is the only cne included in
the prototype program a good case might be made for using others, notably
those connected with symmetric tolerances.

(¢) Link indices

Each normal node will have three links, each pointing to another
node in the networke. Leaf nodes will Lave links pointing to & notional
null node, indicated by zero. Artificial nodes are treated in a different
way and the unitary node, for example, may have a mixture of zero and
non=zero links.

A node may not have a link to itself «~ this will be rejected at the
data validation stage of the program. The convention assumed for the
order of the links is (i) P=loc link, (3i) B=loc link, (iii) S-loc link.

Weak links (see Appendix D) are distinguished by a negative node number.
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(d) Feature coordinates

All nodes have the following five ooordinates:a
X, Y and Z coordinates relative to the general reference axes of the
system, and two angles which define the directions of the locating plane
for a P-loc and the locating line for an H=loc. These are specified in
the prototype program as degrees and in cylindrical coordinates.

Some storage space is wasted by quoting angular coordinates for an
S-loce If these were not included the array struncture would become more
complicated. Another reason for including them is that it enables an
S=loc t0 be used in a dual role as a P= or H=loc which might be useful
for larger networks since this saves nodes.

(e) Tolefance gize

The bilateral tolerance size (or radiuvs of the generating spherical
tolerance zone) may be included, if it is kmown, and if qualitative values
of displacements are required. This was not done in the prototype, all
tolerance zones were considered as being of unit size and the output
interpreted as displacement per unit input tolerance or sensitivity coe
efficient. Other information which might be useful here is the standard
deviation of the process tolerance in the case of a well=established process.
This would enable statistical confidence limits to be calculated for output
tolerances as is done in the system described in ref. S.5.

5.4 Internal Node Data

(a) Internal node indices

It is desirable, although not essential, that node indices should be
provided in random order on inpute Networks for large assemblages are
built up from smaller sub-networks and the onus of organising the feature
references into a form suitable for computer processing is better put on
the computer than on the user. The progrem assigns an internal index to
each node which is held as part of the node record. This internal index

is an integer with absolute value in the range 1 -~ N where N is the total
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number of nodes. Againy, O is used as the null node and negative integers
denote weak links. Internal node indices are assigned to each node in
topological order. This is discussed at length in Appendix B but informally
may be defined in the following way:

'If nodes are in topological order, then no node can have a link
to a node with a lower index, except to node zero, which is a special
case.’

Internal node indices may be used in two ways. Firstly, the node data
may be sorted so that all the nodes are physically in topological order.
Secondly, a node index vector might be held in store and all operations
on nodes might be performed indirectly. Each method has its own merits;
the former being faster for actual processing of an established network,
but resulting in re-ordering of the prime data; the latter requiring that
node access has a further degree of indirection which is particularly time-
consuming unless the compiler uses Iliffe vector array accesse In the
prototype program, node records were topologically sorted.

(b) Scratch pad matrix

Associated with each node is a 3 x 3 matrix which has coefficients
depending on the coordinates of the location triad of which the node is
the R-poinf. This represents a large overhead of store, but it is difficult
to see how processing of networks might be achieved efficiently without it.

(¢) Direction cosine vector

For speed of execution, the two cylindrical coordinates which define
the normal to the plane or the line of the hinge are converted to direc—
tion cosines which are held in the node record as a 3-element vector.

It is possible that some, or all, of the internal node data might
be omitted and the associated quantities calculated as required during
processing. As usual, the compromise must be made between minimising

storage space and reducing running time. In the prototype program, it was

decided that 200 nodes should be sufficient for most practical problems and
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80 all internal data wes included since sufficient array space was

available for them.

5¢5 The structure = alternatives
So far, the data structure has been referred to rather tentatively

as 'a network'. There are several possibilities for the actual form of

the date structure: two of these are particularly useful and a dis-

cussion of their reépective merits follows:

(a) This is the most natural structure and an example will be found in
Fige 13A¢ The set of nodes is connected unidirectionally. Nodes
have outdegree three except for the leaf nodes which have outdegree
zero. One or more root nodes have indegree zero, while the remaining
nodeg are not restricted as to indegree. There are no closed loops.
Although it is tempting to refer to the structure as a ternary tree,
it would be incorrect to do so since all sub=-structures are not dig-
joint (ref. Ge1)e A similar structure without the restriction on
outdegree is termed 'a generalised arborescence' and 'a hierarchical
structure! in ref. Ge15. To avoid inventing another name equally as
clumsy as these, the structure will inaccurately but concisely be
called a 'iree! from now one

(b) Another structure which is more flexible than the previous one is
shown in Fig. 13B. The main advantage of this structure is that
duplizated input data is avoided since each node in the structure
does not carry directly its associated record, but merely a pointer
10 ite The structure is divorced from the prime data and so all
calculations are indirect. Another clear advantage is that hori-
zontal links represent superimposition and so unitary matrices are
not requirede.

The second siructurs is appropriate where a language is used which has

reference (ALGOL 68) or pointer (PL/1) variables. For more commonly used
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languages, the indirection involved is probably an intolerable overhead
of processing time, and for this reason in the prototype program, the
less compact but more natural 'tree' was used.

5.6 Data validation phase

The only data which can be directly checked for validity are the
external node index and the node type index. The former must conform
with a fixed format and the latter is resiricted to a fixed number of
integers (0 and 1 in the prototype progrem). In the prototype program,
if N nodes were input, then each external node index would be a separate
integer in the range 1 = N but in random order. This is not excessively
restrictive on the user, but might be inconvenient where a large network
was to be built up from smaller sub='trees?,

At this stage, the 'tree; must be checked to ensure that it contains
no closed loops which would be physically impossible and would result in
the program looping. This may be done by topologically sorting the ncdes,
which also facilitates processing of the firee' at a later stage. Topolog-
ical sorting is described in refse. Gel1, G¢13 and G.15; the algorithm used
being a modification of the one described in refe. Ge13.

Each node is re-numbered, node indices again being consecutive integers
in the rangé 1 = N when N is the number of nodes. After sorting, a node
(K) does not point, even indirectly to nodes (1) to (K - 1) — see Fig. 14.

The algorithm is described in Appendix B; it constructs a sorte
index which is a vector of N elements showing the sorted position of each
node. The sort—index is used to sort the data physically. Although this
is not absolutely necessary, subsequent processing being possible by
referring to the sort-index, it is convenient{ because =
(a) it is useful to separate the routines for setting up the structure

from those used for processing it,

() +the structure should be permanent after being validated and so the

physical sort is only required once,
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(¢) much indirect referencing is obviated in subsequent processing, and
(a) subsequent programming is easier. The algorithm used for sorting

on the index was also obtained from ref. G.13 (see Appendix B).

At the end of this phase, the data siructure is ready for processing.
The internal node index is the index of the node in topological order.
It is convenient at this stage to convert the angular coordinates of
P= and H=locs to direction cosines which are written into the direction
cosine vector.

57 Processing the structure — prototype program

In the interests of conserving storage space, nodes were re-numbered
during the sort phase. All nodes must be subsequently referred to by
their newlnumbers in the prototype programe. For this reason a sort—index
is output at the beginning of the processing stage. The user must re-
number the nodes on his 'itree' diagram with the help ofthis index. In a
larger system,; the original node numbers would still be available and an
inverted list used {o access the sorted node numbers which would only be
used internally. The existing system is mildly inconvenient..

Two options only are available in the prototype program and are
described below. For test purposes, the path matrix elements and the
number of iterations-required in the eigenvalue calculation may be outpute.
These may be suppressed if, as is likely, they are not required.

(a) Maximrom displacement |

Required: a maximum sensitivity coefficient = i.e. the maximum
displacement at a result feature caused by the application of a unit
tolerance at an input feature.

Input (i) the result feature node number,

(ii) the input feature node number.
The 'tree! is traversed from result feature node to input feature

node, path matrices being calculated cumulatively at each node encountered

en route as described in Appendix A, section A4.
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The maximum displacement is calculated as described in Appendix A,
section A6, and output together with its associated direction cosines.

(b) Relative displacement

Required: +he relative displacement between two result features
due to a unit tolerance at an input feature which affects either, or
both.

Input (i) +the code O,

(ii) the two result feature node numbers,
(iii) +the input feature node number.

A dummy node is attached to the two result points and the "tree!,
of which it is the root node, is traversed. This device is described in
Appendix A, section A4. The relative displacement is calculated and out-
put with its associated direction cosines which are used merely for
checking purposes.

5.8 Turther extensions

The options described in section 5.7 are sufficient for normal use,
but several more may be added for convenience. Two of these are:
(a) Calculation of all the sensitivity coefficients at a result

feature.

Since all the nodes at which tolerances occur are known to the user,
these may be flagged on input to the system. A list of sensitivity co=
efficients may be obtained by traversing the 'tree! and calculating
maximum displacements at each input node. In order to do this efficiently
and to obviate superfluous output, a more elegant method of traversal is
desirable. This would require an appreciasble increase in the size of the
program and so was omitied from the prototype program.

(b) Calculation of the maximum displacement in a particular direction.

This is dene easily from the paths matrix and since it is a straight-

forward calculation by hand, it was omitted from the prototype program.
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5¢9 An Integrated Tolerance Control System

-

The system described in sections He1 = 5.7 is.designed 28 a stand-
alone program for a mini—computer. Its input is a network description
of an assemblage together with a list of features of interest and the
points having tolerances which affect thems The output is a list of
sensitivity coefficients for each feature of interest. This is a useful
tool for the analysis of tolerances in iis present form. However, if a
more ambitious configuration were available, several other sub=programs
involving established techniques could be amalgamated to form an integrated
tolerance control systeme In view of the interest displayed in the system
described in ref. S.5 which also assists the designer in part of the analysis
of dimensional tolerancing, an integrated system would be an invaluable aid
in this field.

A possible configuration might consist of the following modules:

(a) Networlt Proving Sub-prosram

As each component of an assemblage were considered, its individual
location networks might be separately proved by using a specially tailored
version of the protoiype programe. Ideally, interactive graphics would be
used to display the envelope of the output tolerance zone for one input
tolerance zone or several acting simultaneously. This would enable the
user to prove the sub=network to his own satisfaction. A set of standard
sub-networks, such as those given in Aprendix D could be stored and dis-
played on demand individually, and {ested interactively ensuring that the
case selected was appropriate to the location situation. The catalogue
of standard cases would be augmented by cases which had been thoroughly
proven. It would also be convenient o display information regarding
the purpaese and usage of each standard sub-network on demand.

(b) Network Building Sub=program

A difficulty with the current prototype program is that if the

sensitivities obtained for a particular application are not satisfactory,
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then the complete network must be modified and ?e-input. This is due in
some measure to the restricted core available on tﬁé target configuration,
but also because Algol 60 is not a suitable language for handling data
structures of any complexity. If Algol 68 or PL/1 were available then
the structures could be dynamically modified and it would be possible to
delete sections of network, to insert modified sub-networks and to append
proven sub-networks to an existing network. A complex assemblage network
could be built up section by section interactively,vhich is a more natural
method of developing the data structure.

(c) Sensitivity Coefficient Sub=progsram

The next stage in the design process would be to process the
established network and obtain sensitivity coefficients for all tolerances
affecting points of interest. This would be a refined version of the pro-
totype program; an obvious improvement being to trade off some storage
space for a quicker and more eclegant method of traversing paths in the
networke. The output from this sub-program would be lists of sensitivity
coefficients for each critical feature in the assemblage. Possibly, some
of these might be sufficiently low 1o be ignored and the network
might then be re~defined omititing them in the interests of running
efficiency.

(d) Allocation Sub~prozram

Eventually, a stage would be reach2d when the designer was content
with the assemblage description. The tolerance allocation could then be
optimised on a least cost basis. Two options would be availables
statistical and surefit bases (see Appendix C). This would be a logically
straightforvard section but judging from the variety of the methods avail-
able for non-linear optimisation, it would probably require study by a
specialist in the field. The output from this sub-program would be the

aotual tolerances a% each input point. It is possible that some of these
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might be too small for practical considerations.necessitating further
constraints to be applied (see Appendix C) and subsequent reprocessing
and recalculation.

(a) Statistical Analysis Sub-program

The final sub-program in the system would be a system similar to
the one described in ref. S.5 but operating on the output from section (d)
rather than on sub-ﬁrograma and data supplied by the user. The resulis
which could be in histogram form would give the distribution of the
variaticns in size on features of interest.

A suggested system is illustrated in Fig. 15.
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5.10 Comments on the System

Much of the preliminary work has been done with dimensioning equally
as eccentric as that on the examples discussed in Appendix E.1. A
problem in applying the method to practical examples is that most
designed components are under—defined dimensionally, occasionally
even in critical measurements and assumptions must be made particularly
with regard to tolerances such as squareness, flatness and parallelism
which are normally not specified explicitly. Uswally it is assumed,
even by experienced detail designers, that some features of a component
are geomeirically exact. A location network is certainly a more precise
method of specifying a part than most dimensioned drawings.

For most of the applications which have been checked analytically,
the sensitivity coefficients obtained have been accurate to two decimal
places even when dimensions h;ve been scaled from a drawing. Occasionally
it is difficult to check a particular network and interactive graphics
would be a great help.

The method is reasonably easy to use after a little practice. To
date, a sub-network has been found for every dimensioning system encoun-
tered and the method should be particularly suitable for the use of
engineering designers, who are normally good at visualising mechanisms.
Since asaeﬁblies are represented by real, rather than the more complex
geometrical, locations;applying the method to assemblies is very easy.

The restrictions of the target configuration have resulted in the
system being a’'lifttle inconvenient to use. Networks are best developed
bit by bit in a similar way to that deoscribed in the examples but due
1o limited core it was necessary to keep the program as short as
possible and it was not feasible to generate major networks dynamically.
As each sub-network is proved, it is necessary to modify the network
manvally and this is then re-presented to the program.

It would seem from work done so far that this is a powerful method
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for analysing small displacements and it may have applications other
than tolerancihg. Some preliminary investigation has been performed
on the analysis of kinematic mechanisms, and this seems promising.
Three-dimensional kinematic mechanisms are easier to model using
the system than are tolerance mechanisms and the program may be used
in its present form to determine instantaneous velocities of links in
mechanismse This has been done successfully in a variety of cases and
further vork is being carried out on the analysis of accelerations.
Some recent papers have described efforts to analyse tolerance at
joints in mechanisms; it seems that the system is useful for this

purposes
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APPENDIX A

ANALYSIS OF THE MODEL




Fig Al. A Llocation Triad.
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A+l Analysis of the Location Triad

The body is located in a set of mutually orthogonal right handed

L] ] 1
axes {x,l, Xys xB} and is constrained as follows:

(i) At a point on a plane (P=loc). Fig.Alae
'1;' is the position vector of the point of application on
the plane.
£ is the unit normal to the plane.
(ii) At a point on a line (H-loc). Fig. Albe.
E' ig the position vector of the point of application on
the line.
g is the unit vector along the line.
(iii) At a point (S=loc). Fig. Alce
'E' is the position vec:tor of the pointe.
A general point on the located body (R=point) has position
vector T o Fig. Ald.
Energy methods will be used to obtain displacements,and forces at
P-, H- and S-=locs, and the R=-point are -1;, 'fl', S and R respectively.
The system may be described by vector equations (i) = (iv):
(i) P+H+S+R = 0
(i)

(iii)

- | — e -
xp +Hxh +8x8 +Rx>r = 0

ol

.-ﬁ=0

og>

(iv) T = [l £,
Equations (i) and (ii) are the gencral equilibrium equations,
vector sums of forces and moments being zero. Equation (iii) represents
the condition that force H is at right-angles to the H=loc. Equation (iv)
represents the condition that force P acts normal to the P—=loce.

Known values are:

>
']

—‘
P=loc: p and

. |

H-lcc: h zand

m>



S=loc:

R=point:

Required:
P=loc:
H-loc:
S=loc:

Solution:

R and T

@
-

=<1 T

2l

39.

(a) The equations (i) = (iv) are transformed by changing the coordinate

axes to ix“ Xoy xS; a parallel system with the S~loc as the origin.

Position vectors will be modified as follows:

P =D
- . |
h = h
T =0
- st
i

Equation (ii) now becomes

(iia) P

(b) . Taking the scalar product of h with (iia)
-ﬂ.(?x;+§xf+'ﬁxa = 0
= he(PFxp) +h.(Rx7T

- [Pl B . (i‘x;) +h . (RxT) since P = |PI £ (equation iv)e.

Finally, IPI =

(¢) Taking the vector product of £ with (iia)e
Ex(Pxp+Hxh+RxT) = 0
= gx(Pxp)+ (B .DNi-(E.NDh+8x(Rx 7T
since generally ax (bx©c) = (2« )b ~(a « D)o
= §x(Fxp) +(8-DE+2x(Ex7T)

since § « H = O from equation (iii).

xF+Hx

h s
b e

gx('ﬁx.],:;*'-ﬁx?)

since generally h « (Ixh) = 0

Rx v

E.(?x-p-),! O

g.h¢{ O,

A
g
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(d) From equation (i)

S «- =(P+H+ R

This completes the solution of equations (i) = (iv).
Summarising:

Solutions:

) IF - he (Rxr)

i 57 X p)
2 Ex(Pxp+Rxr)
(vi) H = &.H

(vii) S = - (P+H+R)
Conditions
(viti) B.(fxD) £ 0
(ix) . Bl £ 0

Conditions (viii) and (ix) describe a proper location system.

A.2 Displacement at a Result Point

Fig. A2 ghows a body located on the triad PHES. If a displacement

SF be applied to the locating feature F (which might be any one of P, H

-

or S) then there will be a resulting displacement ‘SR

If an arbitrary force R be applied at the R=point, then forces 5, Hand §

at the R-point.

will resuli at the P-, H= and S=locs. These forces may be found from
equations (v) = (vii) and in particular the force at F will be F.

From energy considerations:

The general locating feature F has a vector displacement Eg.l, §2, ng

where the subscripts here and in subsequent expressions denote components
in the X4y X, and Xy directions respectively., The corresponding displace-
ment at the R-point is {721, Mo ?23;.

To find displacement component 721, say, a unit force in the x

1
direction is applied at R. The resulting force at F may be written as
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F1 - {F11, F12, F13;, the first subs?ript denoting the

direction of the unit force at R, the second denoting the component

direction at F.

Similarly unit forces in the X, and x3 directions yield the equations
£y {F21' Foo Fz3}

% iF31’ Fi0 p33}"

From energy considerationss

(s 0 23} == [Po1 P P {510 £p0. 6

Fog Fop Foqy

31 T3 F33
- or using the tensor suffix conventions
Ny ==Fyy §5 3 o= 1,243
The Fij may be found from equations (v) = (vii) using R, in place
of the general R.
el E'g (?g'x ;3
dun EOExT)
£x (F; X p +‘ﬁi X r)

£

(=
0>
L ]

=1

where subscript i denotes the ith row vector of the matrices subscripted
and R is the unitary matrix.

It is useful to abandon vector notation at this stage since it is no
longer convenient., Using the suffix summation convention, and the
operators
1 1Y
Kronecker delta: é%. =

’ g T g
1 for ijk = 123, 231, 312,
Permutation operator eijk = -1 for ijk = 132, 213, 321.

0 otherwise,



the equations may be written in the compact form:

€ hor. T

(x) P e o rit r .t 'i
ij X
AR €44 By Ty (8904F; = €, Fp.) - Kgprp 6, = g;%;)
ij Kg h
ge
(xii) 8;5 = = (Pij +H o+ Sij)
where K = eabc b fip .

The subscripts in (xi) mey be simplified a little and (xii) may be
expanded, but the forms given are the most useful. When these expressions
are used in the analysis of location *trees®, they are modified by being
multiplied by -1, so that the general displacement equation may be

written as

This is purely a matter of convenience.

Although subscript notation is very convenient for algebraic
manipulation, it did not prove very efficient for calculation of the
matrix coefficients on the computer. The main reason for this was that
in calculating the values of the permutation operators, most of the time
was spent in evaluat?ng zero coefficients. Special purpose algebraic
manipulation languages have been implemented which, it is claimed, can
evaluate expressions of this kind efficisntly and conveniently
(eegs MATHLAB) but as most designers have access to the more mundane
ALGOL 60 and FOﬁTRAN, the vector approach was used in the prototype
program. As usual, it was apparent that the commoner computer languages

are not very suitable for mathematical purposes.



H perturbed l:zy vector E .
R & P conncident.

Fig A3. Coincident Features.
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A.3 Conditiona for a proper Location Triad

The conditions for proper locations are summat-'ised by the inequalities:
(1) &.% # o
(i1) T.(fxp)#£ 0.

(i) and (ii) imply that

(a) the S=loc must not coincide with the He or P=locs,

(b) +the line joining the points of application of the S and H=locs must
not be perpendicular to the line of action of the H—loc,- and

(¢) the normal to the plane of the P~loc and the lines joining the

S~loc and the H~ and P=locs must not be coplanar.

There is no restriction on the position of the R-point. Occasionally,
it is useful to employ limiting cases of (i) and (ii), an example being
illustrated in Fig. A3. The P= and H-locs, and the R=point are coincident,
the normal to the P=loc is perpendicular to the line of the H-loc, the
line of the H-loc lies along the lines jcining them with the S~loc.

E‘;ince the B~ and P=locs are coincident, condition (ii) is not observed.
All the location matrices will have infinite coefficients. Use can be
made of this sysitem, however, if the B=loc is slightly displaced, so that
h becomes h + e. In the case illustrated:

T = p = Mg where Ais a scalar
and f1=f2=g2=g3=0; f3=g1=1.

P gy rl‘t(h e ) lg‘t
ij abc(h + e )f rg,

A Erit eI- g‘t £
Eavo % p 8¢

P Y €riq % fj
ij e,
€. .. 8
rif 2
jeee Pij = S 32 for ] = 3

0 for j # 3



®

V@.m o e .9
OO

Fig A4. Network Paths.
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If the H-loc is perturbed in the plane of the P—, S-locs and R-point,
then '
Pk i -] for i = j = 3
0 for i,j # 3
The equation for Hij may be written in the form:
a 8aPaF14 = 8FiePj + &l 513’ - 8T
44
4 &y By

3'11:1?

= 84P;4P; + 47y ‘Sij ~ &;T
&y By

ij

81P4P5 5 + &7y Sii = 8Ty

O SH e e
1] g4 by

which reduces to
H..=§-1fori=-j=2
1
0 for i,j # 2
Similarly,
S..=§-1fori=ju1
1)
O Cor 1,4 f 1
This limiting case depends not only on the coordinates of the
locations, but also on the direction of the perturbation. Similar
analyses may be performed for all the cases in which this technique
is used.
This system is useful in passing three orthogonal displacements
to a result point, and may be used in the generation of a general paral-

lelepipedal tolerance zonee.

A.4 Path matrix products

(a) Disjoint case Fige Ada.
A displacemen.téN is applied at node Ne It is required to find the
displacement 50 at node O« Since node 0 is not located, even indirecily,

on node N, the equation
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80 - FON 6N requires that in this case where no path exists

between nodes O and N, Fon = 0.

(b) Simple path Fig. A4b.

A displacement 51\7 is applied to node N, resulting in a displacement
5H—1 at node N-1. 5N—1 will cause a displacement at node N-2 and so on
along the path joining nodes N and O.

‘50 = Fos 51

8 = Fip6,

(KR NN

“ ¥ $

5H—1 N~1TN K

50 = F01 F12 seee FN-1 'N SH

In the evaluation of a simple path matrix, the matrices corres—

ponding to the links on the path are multiplied.

(e¢) Multiple paths Fig. Adc.

A displacement 53 is applied at node 3 and the displacement 50 is

required.
5 = F1353
& = Fp36; .
8y = TSy + B, 0,
‘So = (Fm Fi3 * Fop 23) S, = Fo3 53

The path matrix products are evaluated separately and added to give the

nett path matrix product F03"

(d) Multiple paths Fig. A4d.
A displacement (55 is applied at node 5 and again the displacement
60 is required.

o= Foq 6,

31 = F12 52 + F"I} 453 by superposition.
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™ 2464 + F2565 by superposition.
Syi= 259
Del="Tys O
Back=substitution gives
bg = (Foy Fyp Fpy Fys + Foy Fyp Fps + Foy Fiu Py F) S,
- d..

05 9
Again, path matrix products are evaluated separately and added to
give the nett path matrix product F05. In this case, it is most conven=-
ient to calculate partial matirix products at each node moving dowr from
the R-point.

At node 1, product = F‘O

At node 2, product = F01 F‘12

At node 3, product = FO 1 }?‘1 3

At node 4, product = F01 F12 24 + F F13 34

At node 5, product = L o1 P2 F 25 * Foq Fop F 24 45 + Foq F13 F34 F45
(e) Relative displacements Fig. Ade.

A displacement (54 is applied at node 4. The displacement of node 1
relative to that of node 2 is required.
A method is needed to evaluate
61 - 52 = (F14 - F24) 54 conveniently.
The method which will be used is to attach a dummy node O to nodes
1 and 2 as shown in the figure. If F is set to the wnitary matrix é‘j

and F., is set to -<5 31 then the resuls will be obtained by the methods

02
earlier described in (a) - (d).
The method also works for the case where there is no path between

the input node and one, or iwo of the ouiput nodes. This case is illus-

trated in Fig. A4de, the input being applied at node 3.



Some useful results will now be derived.

A5 Matrix Rank
AsHe1 The rank of a P-matrix
Gqt By T L,

ea:bc ha fb pc

Sinc‘e Pij =

St By T
1 ea‘oc ha £

ol

=l
]

'bpc
3 S o

€r2t ¢t “r

2 c ha. fb pc

Yol
[}
it |

abe

5 . Srat h 1, s
3 eabc ha f'b pc

P is of rank 1 at most, since each row vector is a multiple of

vector .f.
A5.2 The rank of an H-matrix

It has been proved (equation xi) that:

H

Epit By Ty (8505 = £,£,D;) = Klgpry S, 5 - g;r.)

5 h
Kggg

47+

Multiplying each element in(xi) by r, and considering each term in

the numeratpr in turn:

(a) €4t bp Ty Ty may be summed over i.
ZCpy By Ty Ty = Ty By Ty Ty
if i and t %be interchanged.

s - -
es %cl'it hr rt ri B 0

(b) (gf T, T, {Si;j -g T rj) may be summed over i.

Zi.(gf Tp “1513 -& T rJ.) = %(gf Tp Ty -8 Ty rj) = 0.

Ld wnm —

Hence r1 H1 -+ r2 H2 “+ r3 H3

and an H-matrix is of rank at most 2.

g8 0
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AcH5e3 The rank of an S-matrix

The rank of an H-matrix is at most 2 and of a P-matrix at most 1.
In the special case r = O (i.e. S=loc and R-point coincident), p, h # O
then both P and H are of rank O since P = H = O.
From equation (xii) ‘

S;, = = (P +H 45 )=~ if Fand Fare of null rank.
J L3583 T ij

Sij is of rank 3 since all row vectors of 6:1:} are linearly independent
(aet( Sij) = 1)e

An S-matrix is of rank at most 3.

A5e4 The rank of a matrix product

A result proved in ref. 14 is:
*the product AB has a rank not greater than the rank of either factor.!
The rule may be applied to path matrix products to give the following
conclusions:
(a) if a path contains the node of a P-loc, then the path matrix
product is of rank at most 1,
(b) if a path contains the node of an H-loc, then the path matrix
product is of rank at most 2, and
(¢) if a path contains the node of an S-loc, then the path matrix
product is of rank at most 3.
The rank of the path matrix product is determined by the most stringent
of conditions (a), (b) and (c) which car be applied to the path.

A.5.5 Relative Numbers of P—, H- and S-matrices

It will assist in assessing algorithms used in processing 'trees!
if the relative proportions of matrix ranks are known. For the fully
balanced ternary tree shown in Fig. A5 the following results apply:
(a) At level n, there are 3" nodes.
(v) if, af level n=1 there are Nn-1 paths with matrix products of rank 1

at most, then there will be 3n—1 + 2an1 paths with similar rank at

level n.



ne=1
Nn = 3 + 2NII.—1.

Solving this difference equation with N1 e 1 gives

Nn = 3n i P paths with product matrices of at least 1 at level n.
Summing over n levels gives:

T = §§n+1 -3) - (2n+1 - 2) = the total number of paths with

i 2
product matrix rank at least 1 down to level n.
(¢) At each level there will be one path with path matrix product of
rank at least 3. Over n levels there will be a total of n such paths.

(d) The total number of paths down to level n is j}n+1 - 3)
2

(e) The total number of paths with product matrices of rank at least 2

down to level n may be found by subtracting the number of paths with

product matrices of ranks 1 and 3 at most from the total number of paths
n+1

down to level ne This is 2 = 2 = N

(£) For n levels, there will be 2n+1 - 1 nodese
2

Tabulating values up to 6 levels:

Path Product Matrix Maximum Rank No. of

Level 1 2 3 Nodes
1 1 1 1 4
2 - 8 4 2 13
3 25 11 3 40
4 90 26 4 121
5 301 57 5 364
6 966 120 6 1093

For large n, rank 1 matrices will predominate and the ratio of rank 1
matrices to rank 2 matrices = 0(%-(§Jn+1). For the system designed,
about 200 nodes is considered as a maximume The number of levels of
the corresponding balenced ternary tree will lie between 4 and 5 giving

a ratio of approximately 4.5 rank 1-at-most matrices to 1 rank 2-at-most

matrices. The number of rank 3-at-most matrices will be negligible.
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Although a practical location !{ree! is unlikely to be a balanced
tree, it seems reasonable to assume that these ratios will be approxi-
mately correct and will serve as a useful measure in the assessment of

algorithms used for processing the 'treet.

A.6 The maximum output displacement (sensitivity coefficient)

In the discussion which follows, the mairix results listed below
will be used. They are proved in refs. G2 and G8.
(i) If A* denotes the transpose of matrix A, then the product A*A
is positive definite, ref. G8, p.46.
(ii) If A is positive definite, then all its eigenvalues are positive,
ref. G8, p.46.
(iii) If the eigenvalues of A*A are Ai’ then the eigenvalues of
(A-1 )*&_1 are (Vh), the associated eigenvectors being
identical, ref. G8, p.43.
Generally, the output tolerance 3 resulting from an input displace-
ment & applied to a path with matrix F is given by:
d=F €.
A general spherical input tolerance zone of radius r may be
written
rE o 2

In particular, if F be of rank 3, then it will have an inverse,

say G, and
GS = €
or €* = & xgx

and E*E = §*G*G3
or S *CHGS = r2
The product G*G is symmeiric and positive definite by result (i ), and

80 may be diagonalised giving the relation:

BAUT - 2,
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L being the diagonal matrix L. = .'Ki,i = j

J
0,ifj
The J\i are the eigenvalues of L.
Since G*G is positive definite, Ji> 0 and the relation describes an
ellipsoid:
LT W
The maximum exis of the ellipsoid will be given by:

P " X

where A = min( li) in a direction given by the associated eigenvector
of -1. Thieg will be the maximum output displacement.

The matrix result (iii) simplifies the calculation considerably.
If the eigenvalues of G*G are Ji' then the eigenvalues of F*F are i%-.
Also the maximum eigenvalue of F*F is the minimum eigenvalue of G*Gf
The corresponding eigenvectors are identical.

The procedure for finding the maximum output displacement, and its
direction, may be summarised as follows.

If a spherical input tolerance zone radius r be applied at the base
of a location chain with path matrix F (F non-singular), then the maximum
output displacement is given by

(Smaic . qfi— Ty
where Ais the dominant eigenvalue of the product F*F. The direction of
‘Sma.x will be given by the correspondins; eigenvector. For a more detailed
development, see ref. G16.

The result has been derived for a rank 3 matrix but it can be shown
t0 be generally true for ranks 2 and 1. The argument is broadly the same,
but since ranks 2 and 1 3 x 3 matrices are singular, they have no inverse
and it is necessary to consider the natural or general inverse. Ref. G2

contains a concise description of the use of general inverses, while

ref. G3 is completely devoted to them.
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B.1 Evaluvation of Eigenvalues

B.1s1 Choice of algorithm

The methods available are:

(i) to obtain a closed solution by expanding the characteristic poly-

nomial which will, in the most general case, be a cubicj;
(ii) +to use an iterative method, such as the power method, or
(iii) to use a transformation method, e.g. Householder's method.
The factors governing the choice of the method are:
(i) all matrices are of order 3,
(ii) +the bulk of the matrices involved will be of rank 1,
(iii) +the dominant eigenvector is also required,

(iv) the number of matrices is likely to be large,

(v) accuracy of solution is not extremely critical - accuracy of

1 in 10° should suffice, and
(vi) matrices are positive definite and symmetric.
The power method was chosen gince
(i) in this case, it may be used generally for all ranks,
(ii) +the dominant eigenvalue is obtained naturally and
(iii) the corresponding eigenvector is obtained at the same time.

Be1.2 Description of the algorithm

The power method is detailed in ref. G8 and an error analysis
provided in ref. G9, but the method will be briefly described.

If the dominant eigenvalue of matrix A is required, then the
computing scheme is

Y(P) = Ay(P'1) $ y(o) arbitrary.

The y(N) are successive iterates and are vectors. It is customary

to select as initial vector y(O) = {1,1,1}. The ratios of corresponding

(x)

(k=1)

components of successive vectors y and y

the dominant eigenvaluwe of A, if the method is successful. Further,

(K)

each iterate y is an estimate of the corresponding unnormalised

will converge to .?\ '

53
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eigenvector. The rate of convergence depends on the ratio between the
dominant and sub-dominant eigenvalues. Methods arenavailable for
accelerating convergence.

Since the majority of the matrices will be of rank 1, it would
seem advantageous to select as initial vector y(o) = 2A11,A21,A31} or
any other column vector of A. The dominant eigenvalue would then be
obtained in one iteration only, since the corresponding eigenvector
(wmormalised) is a column vector of A. Unfortunately, it is common
for one or more of the column vectors in location matrices to consist
of all zero elements. This is a particular case of a general problem
in selecting the initial vector for use with the power method. If the
initial vector is exactly the eigenvector corresponding to an infra-
dominant eigenvalue, then the method will yield that eigenvalue in one
iteration. Clearly, an answer obtained in one iteration should be
viewed with suspicion and the calculation ropeated with the original
initial vector slightly perturbed. This problem is not mentioned in
most of the standard texts (ref. G8 is an exception) nor is it consid-
ered in any of the programs described in the less theoretical books on
numerical methods. Unfortunately, the case of a location matrix having
an infra-dominant eigenvector {1,1,1; ie not uncommon in practice. In
view of the fact that the bulk of the matrices processed will be of
rank 1 and single iteration answers will be common, it is considered
that repeating the calculation with a perturbed initial vector would be
an intolerable overhead of time. The initial wvector {im/4,e,loge10} is
used in the programe. Even though there is a remote possibility that
these values will give an incorrect answer, it is considered worthwhile
to use them because of the saving in time.

Since the successive y(K) are unnormalised, their components tend to

increase rapidly and it is necessary to normalise at each stage. This is
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done by dividing each element of y(K) by "y(K)”aa, where "y(K)"w is the
maximum value of ‘ng)] over all i. AT

A test program was written to check the efficiency of various
programs for calculating eigenvalues. A random number generator was
used in conjunciion with a method of generating matrices of prescribed
eigenvalues and eigenvectors which was found in ref. G10.

B.1.3 Generatinz test data

Batches of 40 matrices were generated in the following manner:
(i) The constitution of each batch was
1 rank 3 matrix,
T rank 2 matrices,
32 rank 1 matrices.
These proportions were approximately those calculated in
Appendix A, section A.5.5 for 200 nodes.

(ii) A matrix S was construoted with column vectors mutually orthogonal,
but otherwise random. If Py denote the i-th random number generated,
then

Si1 o {P1 ipz ’ p3 }
S8, = fp3p4,p3p5.-(p1p4 + p2p5)g
' 2 2 2 2
S;3 = {(p1p2p4 * DoPg5 + P3Pg)y = (p3p, + Pyp, + PyD,Rs),
= (p4pyp5 - p21>3p5);
(iii) Since column vectors of 3 are linearly independent, 51 exists
and is calculated directly.

(iv) The aiagonal matrix A is constructed where the diagonal elements
are the eigenvalues.

Aij = Aghils for i = 1 to the rank of A, i = j
0 otherwise

(v) The matrix product S™'A S will have the required properties

(ref. G2, P°99)'
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This rather elaborate procedure was used so that the batches of
matrices should be as representative as possible of those occurring in
practice.

A separate program was used for the generation of batches of
matrices, so that the time taken in their generation could be separated
from the time taken for calculating their dominant eigenvalues and

eigenvectors.

B.2 Topological Sort Algorithm
The algorithm used was a modification of that described in detail

in ref. G13. Its action is shown diagrammatically in Fig. B1.

Data used is selected from the 'tree! description supplied as input.
If the "{ree'® contains N nodes, each allctted a distinct integer in the
range 1N, and if M of these are non-leaf nodes, then there will be M
partial ordering relations of the form {R,P,H,S) , which are needed by
the algorithme Each integer R represents an R-point; and P, Hand S
are the node numbers of the corresponding P-, H- and S-locs. A further
N=M relations of the form <R,0,0,0> are also aveilable = the R, in this
case, representing a leaf-node and O being a notional earth-node.

A vector, length N is used in three guises. It is used initially
to count the direct predecessors of each node; it is used as a queue
for unprocessed nodes and, finally, it is used as an index to show
topological sort order. Two pointers ave used o point to the head and
tail of the queue of unprocessed nodes. The sort process is as follows:

(i) Zeroise count [i] for i = 1 %o n.
(ii) Count the predecessors of each node.
(iii) All nodes with zero count are root nodes. Set up a queuwe for
thega; if there are no root nodes, then the structure is
incorrect.

(iv) Select the first item on the queue. If its three successor nodes
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are not earth nodes, then their counts are reduced by oﬁe.
If any count becomes zero, then the corresponding node is
ready for processing and its index number is gueued.
(v) The node at the head of the queue is deleted and it is next

in topological‘order. It is allocated the next index number.

(vi) If the queue is empty, and all nodes have been processed, then
the sort has been successfully accomplished. If the queue is
empty and all nodes have not been processed, then the structure
is inoorrect. If the queue is not empty, then the algorithm is
continued from stage (iv).

It is claimed in ref. G13 that the algorithm is near-optimal,
Processing time is of the order of C1 M+ 02 N where 01 and 02 are
constants, and storage is used economically.

It is possible to re—order the records during the algorithm but
this was not done for various reasons. Firstly, it is considered good
practice to divorce the data validation stage of a program from the
data processing stage both as a policy and because, for some configura=~
tions, it might be necessary to perform these operations by separate
programs. Also, subsequent programming is neater and more easily tested

if a structured approach is used.

B.3 Inverting the Topological Sort Index

It is possible to refer to cach record indirectly using the sort
index, but it saves much processing time if the records are re-—sorted.
Re=sorting may be performed in several ways; the familiar dilemma of
time taken versus extra storage required applies in this case, as in
all sorting problems. The following is a sample of the methods possible:

Given a sequence of records R1,R2, olve RN and a sort index

QH,EE, c o e TN where Tk shows the required.sort position of record RK'
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(2) Perform an exchange sort, repeatedly passing through the list R,

and exchanging R(TK) until no exchanges are necessary,

(b) Invert the sort—index T by I(TK) = K to form another sort-index
I1,I2, oo o I lIK shows the number of the record which is to
be placed into position K. Records can now be exchange-sorted
in one pass by:
temp 12 = R(IK) 3 H(IK) : =R ;
temp 2: = R(T(IK)) : H(T(IK)) ¢ = temp 1
R(IK) ¢ = temp 2.

(¢) Invertthe sort-index in situ, saving setting up an extra sort-
index vector. The algorithm used may be found in refs. G1 and G13.
In particular, ref. G13 quotes two algorithms for this puIrpose,
but one, though more elegant, may be discounted since it is less
efficients Records may then be exchange-sorted in one pass as
in (b).

It was decided in the interests of storage economy, to select
method (c)s The method is analysed in ref. G13 and the processing time
is of the crder of C N vhere C is a constant. Exchange-sorting is
performed in one pass and so it appears that method (c¢) is better on a
processing time basis than (a) since normal exchange-soriing time is
proportional to Nz, and better from storage economy considerations than

method (b) since no inverted sort-—index is required.

B.4 Processing the %tree!

From tests conducted on the prototype program, this section of the
processing is easily the most lengthy. Not only must all the paths from
input location to R~point be traversed but also matrices for each link
on the paths must be calculatede Although it is a straightforward matter
to minimise the matrix calculation time by writing efficient code, path

traversal is a difficult probleme For N nodes Warshall's algorithm

(ref. G1) requires an N x N matrix and is out of the question because



of the storage limitations. Alternatively, linked lists may be held
for the immediate predecessors of each node = this glso needs an
unacceptable overhead of store. This problem is largely overcome by
an elegant algorithm quoted in ref. G15 but this is not general and
depends on the relative number of leaf nodes and nodes with multiple
antecedents. A possible method is to use a marking algorithm, tagging
in some way all edges on the paths between input location and R~point
using a stack = this again needs extra store.

The method used in the prototype program was crude but straight-
forward, priority being given to economy of store. All matrices were
evalvated and multiplied, and were added at junctions for all nodes
whose indices lay between those of the input node and the R=pointe.

The problem of traversing paths of structures of this kind occurs

in many diverse applications and it seems that the algorithms available

29

involve congiderable storage overhead. For the configuration considered,

it is unavoidable that this brute force method should be used in prefere

ence to one more sophisticated but requiring more store.



APPENDIX C

ALLOCATION OF TOLERANCES




61,

Ce1 The Allocation of Tolerancas — sure-~fit

If fhere are m critical clearances D; (i = 1,-2, e ¢« o« m) in an
assemblage and each is affected by one or more of the set of tolerances
x (3 =1, 2y « o o n), then m linear inequalities may be written:

Sijxngi 1wy 250 5 @ M T BITRD S s By
The constants Sij are sensitivity coefficients, slk’ for instance being
the effect at the critical clearance Dl of a unit tolerance at the point

where actse In the case where a critical clearance D. does not depend
Ty 1|

on tolerance ) then slk = O,

Subject to these constraints, it is required that the total cost of
maintaining the critical clearance should be minimised. Clearly, the
more precise a part is made, the higher will be the unit cost but there
seems to be some disagreement in the references as to the exact form of
the costi-~tolerance relationship. Models suggested are -

(1)  cost = X" where ks & oconebant (ref. A2)

(i) cost = Jkx® where k and a are constant

and a < 0 (ref. A1)

(iii) cost = k + 1" where k, 1 and m are constant (ref. A8)
Although (iii) is the most widely used model and is used in several
American ﬁapers, where it is called Speckhart's Exponential Model,
(ii) appears 4o have been based on rather more solid experimental
foundations. Studies of data on the cost=tolerance relationship for
various manufacturing processes were analysed and best curves fitted
by the method of least squares. No experimental basis is described for
model Gii), the author baldly stating that the expression fits cost-
tolerance data 'very well's lModel (i) is comprehensively (if rather
unfairly) discredited in ref. Al. The evidence would suggest that the
most suitable model is (ii) and this is uwsed in the following develop~

mente
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The cost of maintaining tolerance x is giyen by the expression:
C = k* _

- 0.8< a < =~ 0.4 and depends on ihe process. k depends on the shape
and size of the component. Values of k are not critical, only the

relative values being of significance.

The cost of maintaining the n tolerances x, is given by:

n
as
1
¢ ’Z. , g X
1=],

The Allocation of Tolerances problem may now be stated in its full

forms
L o 8y a2 an
Minimise C = k1x1 £ k2x2 + o o o + kn;n
Subject to constraints:
Sqq%y Sip%p e e ot 5%, & ?1
Sm1x1 + Sm212 + o o o + Smnxn ..<~ Dm

There are also implicit constraints
Xq9Xpy o ¢ 0 X >0

and there may also be constraints due to practical considerations:
Y

where e; is the lowest practicable bound on Xie

This is an optimisation problem with a non-linear objective function

and linear constraints.

Ce2 The Allocétion of Tolerances = statistical~fit

The development of equations for allocating tolerances on a
statistical-fit basis follows broadly the lines of that for sure-fit
basis. In this case, however, it is usual to assume that the tolerance
distributions follow a Gaussian distribution and often the tolerance
range is teken as the nominal position plus or minus three standard

deviations, 99.7% of the parts produced then having the dimension within
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the allowed tolerance range. The cost is that‘of maintaining the
dimension within plus or minus three standard deviétiona around the
nominal dimension. Using the properties of the Gaussian distribution,

it may be established that the Allocation of Tolerances problem may

be stated:

. a4 az an
Minimise C = K1x1 -+ kéx2 + o o o kﬂxn

Subject to constraints:

2 g2 2 2. 2 2
<
11 x1 + ?12 x2 + o o ¢ + Sin e D1

o

s
2.2 2D 2- 52 2
x sm2 Ia + o o o + Smn xn

w

With implicit constraints:
x1,x2,...xn>0 '
and possibly practical minima on tolerances:
T Y
All constants and variables are as defined in C1.

This is an optimisation problem with a non-linear objective function

and non-linear constraints.

Ce3 Solution of the Allocation Problem

Refs.. A1 and AS both use the classical technique of Lagrange
multipliers in order to solve the Allocation Problem, obtaining what
both call lambda equations, which are solved by an iterative technique
such as Newton's method. This is a straightforward technique for one
critical dimension, but in the more gencral case, where more than one
critical dimension is concerned, the method discussed in ref. Al
requires considerable manual work before submission to the computer
program and is only applicable to the sure-~fit case. Ref. A8 uses an
iterative procedure but it is stated that there is no guarantee that

the procedure described will converge.
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Several general methods of non-linear op}imisation are described
in ref. G4 and it would seem that the methods descfibeﬁ in refs. A1 and
A8 have been superseded by later techniques. It is probable that these
are more suitable methods and this particular aspect of tolerance
analysis merits investigation. Possibly different methods would be
required for the sure-fit and statistical-fit cases, since it is stated
in ref. G4 that 2 universal optimizer does not exist and a method suit-
able for linear constraints (sure-fit) may not be adequate for quadratic
constraints (statistical-fit). This is, however, outside the scope of

this thesis.
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APPENDIX D

STANDARD CASES
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D.1 The Displacement at a Point = Fig. D.1.
A point must be located on a location triad of plate, hinge and
sockete

(a)

(v)

The displacement at a point is made up of two components:

the extrinsic displacement which is due to displacements of the
features on which it is located, and

the intrinsié displacement which is due to the permitted tolerance
at the point.

Extrinsic tolerance is passed to the point by the location sube

system upon which it depends; intrinsic tolerance must be applied

directly at the point or indirectly through a tolerance generating sub—

structure.

(1)

(ii)

(iii)

and (

If the result point is on a plane, then a linear tolerance normal
1o the plane may be applied directly.
If the result point lies on a line, then a circular tolerance in
a plane perpendicular to the line may be applied directly.
If the result point is a general point, then a spherical tolerance
may be applied directly.

The majority of tolerance situvations will be covered by (i), (ii)

iii)‘since these are the positional tolerances recommended in

BS 308, but occasionally a rectangular or parallelepipedal tolerance

Zone

iz guoted; and it is sometimes necessary to generate this by

using & tolerance generating sub-structure. The method will be des—

cribed later.

It is necessary to use bi-lateral tolerances when this method is

appliede For most systems, the tolerance is small in comparison with

nominal dimensions and so the nominal dimension does not need to be

+ 010

altered. For instance, a tolerance of 1.000 - .000 &Y be considered

as 1.

+ 005

000 - .005.

The reason for this is that only clearances are
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analysed in this method. Nominal dimensions are only used in inter—
mediate calculations and so do not necessarily need to be extremely
accurate. Of course, if it is preferred the dimension can be quoted
as 1,005 © 005, but this should make very little difference to the

results obtained.

De.2 Definition of Features = Fige De2.
1« A point feature.

(a) A general point is described by a socket.

(b) A point on a line is described by a hinge.

(¢) 4 point on a plane is described by a plate.

2. A line feature.

(a) A general line is described by two hinges.

(b) A line on a plane is described by two plates.
3¢ A plane feature.

(a) A plane is described by three plates.

In order to define a feature, the points at which the locations
are centred may be chosen arbitrarily su%ject only to the following
restrictions:

(2) in order to define a line, the points must not be coincident, and
(b) in order to define a plane, the points must not be collinears

Plates defining a plane must have normals parallel with the normal

1o the plane, and hinges defining a line must have dirfcﬁions along the

line.

De3 General Points on Lines and Planes

A general point on a line or a plane may be considered as being
located on the lins or plane. Since a point is located on a plate,
hinge and socket in the basic location triad, the general point cannot
be located directly on the line or plane, which are defined by two

hinges or plates, or three plates respectively. This problem is resolved
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as follows:
(a) A general point on a line.
(i) A general line = see Fige De3els
The general point R is on the line A~B. The displacement at B
must be passed unchanged to the coiﬁcident point B! so that a valid
socket location can éxist at B'« R is also located on plate C which
is stationed at a remote point with normal parallel with A—B.
(ii) A line on a plane = see Fige De3.2.
The general point R is on the line A-B. Again the displacement
at B must be passed unchanged to the coincident point B! so that a valid
socket can exist at B's R is also located at hinge C, stationed at a
remote point with direction parallel with the normals to A and B.
(b) A general point on a plane — see Fige De3e3e
The general point R is on the plane A=B-C., Displacements at B and

C are passed unchanged to B! and C' for valid locations.

De4 Remote Locations

Many useful location systems can be devised using remote locations.
In cases studied so far, the following dimensions give adequate accuracy:
(i) 2 gmall displacement — of the order of 10~
(ii) A reighbouring feature — one within a radius of about 102 centred
at the point being considered.
(iii) A rvemote feature = one further than 10% £rom the point being
congidered.
(2) To pass a displacement unchanged from a feature to a neighbouring
point.
(i) From a plate = Fige Dedel.
The displacement at plate A is passed unchanged to point A' (which
may be coincident with A)e A' cen be any neighbouring point along the

normal to plate A. The angle BAC is a right angle; and the direction
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of hinge B is parallel with AC. Both B and C are remote from A.

(ii) From a hinge = Fige Dele2s g

The displacement at hinge A is passed unchanged to point A' (which
may be coinecident with A). A' can be any neighbouring point whose
position vector AA' is at right angies to the hinge direction. The
remote socket C is aﬁpraximately in line with the hinge direction and
remote plate B is arbitrarily positioned and oriented. -

(iii) From a socket = Fige Dele3.

The displacement at point A is passed unchanged to A* (which must not
be exactly coincident with A, and is displaced a small amount)e There is
no restriction on the position of B nor on the position of C.

(b) To transfer a selected component of a displacement to a point -

Fige Du5Sele

The normal to plate A2 is in the direction of the selected component.
B2 and 02 are in the plane of Az' the direction of 02 is parallel with
AQBZ, and Aé is coincident with Az' The selected component of the dis-
is transmitted to A,.

1 2
(¢) To rotate a linear displacement through 90° - Fige DeHe2e

placement at A

(Useful for generating a square or cubic tolerance zome).

Tble;ance 1 is passed, using a unitary matrix, unchanged to remote
hinge and socket B and C. The methods of (2) could be used to transmit
6, but use of a unitary metrix saves nodes, and avoids the need for a
nigher order of 'remoteness's If B and C are orthogonal features, then
a cubic tolerance, side t will be induced at A', which may be coincident
with A. Adjustment of the direction of B and the positions of B and C
will result in a parallelepipedal tolerance zone. If the locating
features are stationed at the same large distances from the R~point with
the direction of the H~loc and the normal to the P=loc lying along the

lines joining them tc the R~point, a unit parallelepipedal tolerance
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zone will be generated. This will have sides pormal to the directions
of the lines joining P=, H= and S~locs to the R=point. This device is
particularly useful and will be used for other purposes.

(d) To transmit a proportion of a displacement to a neighbouring

point = Fige Debele

(Useful in generating symmetric tolerances).

It is required to pases a proportion k of the tolerance at plate A
Yo the neighbouring point Re Displacement at A is passed unchanged %o
remote hinge C stationed at distance M in the plane of the plate. The
neighbouring point R is located on C, and on B, a remote socket placed
at a distance %%E on ﬁhe line AC, but on the opposite side of A to the
position of C. R is also located on plate D which has normal orthogonal
to the plane RAC and passing through R. It mey for convenience be co-
incident with R. In the case of symmetric tolerances, k must be %, and
80 B and C are equidistant from A« It is important that A, B and C
should not be exactly collinear but only approximately so.

(e) To transmit the rotation of a line to a point which rotates about

a neighbouring point = Fige D.6.2.

Due to displacements at A and B, the line joining them will rotate
in space.' It is required that neighbouring result point R should rotate
the same angle, in the same plane about location point E. Displacement
at A is passed unchanged to A' a hinge with direction parallel with AB.
To be consistent, the displacement at B should be passed to a coincident
socket, but a node may be saved by locating directly at B. Displacements
at A and B are passed to the remote hinge C by way of hinge and socket
locations. C is stationed approximately in line with AB and located on
D, a coincident remote plate whose normal is orthogonal to normals at A
and Be The result point R is located on the socket E, the hinge C a~d

coincident plate F. A, B, E and R are co-=planar, and the normal of
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plate F is orthogonal to this plane. ’

Any displacement at E is passed unchanged to‘h.

(f) Use of unitary links to pass a displacement unchanged from a
feature to a point.

The unitary link is an artificial device used for the generation
of geometric tolerance networks which cannot be done by using real
locations. It may be used to obtain the results shown in (a) with a
saving of nodes, In most of the networks which follow, the preferred
method is to use the devices shown in (a), since this leads to a more
natural system. However, occasionally, unitary links have been included
so as to give examples of their use. A separate section is devoted to
tﬁia application. Unitary links are used for the superposition of
separate tolerance systems.

(g) Use of weak links.

A result point is located on plate, hinge and socket, and displace-
ment at the locations may be considered to be transmitted along the link,
usually. Occesionally, however, it is convenient, in the interests of
node conservation, to use a device called the weak link. A weak link
points to a location node which is only used for the calculation of dis—
placements transmitted from other nodes. Displacement occurring at the
weakly linked node is not transmitted to the result node. This device,
like the unitary link, is not essential) to the system but avoids node
duplication. An example of a weak link is shown in Fig. D.6.1, the
unitary link from remote socket B being distinguished as weak by the bar
drawn across the link. Examples of the use of weak links will be found

later in this Appendix.

D.5 Use of Unitary Links
The use of imaginary locations in transferring displacements unchanged

from features to neighbouring points has been deseribed in detail. This
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device is necessary in many cases = for instance a point located on a
plane requires that the point should be located in three plane features.
This is clearly impossible to de directly, since the model demands that
each feature should be located on a triad of plate, hinge and socket.
The point can be located on one of the plates, while displacements at
the other two plates must be passed unchangéd to coincident features,
one a hinge, the other a socket. All calculation of matrices will then
be consistent. However, this necessitates the introduction of nodes which
do not represent actuval points, or features on the assembly, these being
termed 'organisational nodes'. They occur in most practical location
systems, represent a considerable overhead in storage and also tend to
make sub-networks appear more complex then they actually are. A typical
example is shown in Fig. D.7.1. -

The unitary link is an artificial device which obviates the need for
most of these organisational nodes. Instead of the effect of unchanged
transfer being obtained by using features at infinity, the matrix is
evaluated directly. An advantage of this method is that one or more
of the links may be null without affecting the validity of the model.

An example is shown in Fig. D.T7.2 which is the equivalent of Fig. D.T7.1.

The ﬂetwork illustrated represents a plane located on a datum plane
and occurs in tolerances of parallelism and angularity. In the examples
which follow,unitary links are not usuvally used but it is probable that
in a large practical network, it would be necessary 1o conserve storage
by using them.

Another use of unitary links is to superpose the extrinsic and
intrinsic tolerances at an R-point. Thic may often be done by other
means but using the unitary link method avoids complication. An example

is shown in Fig. D.8.
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D.6 Ecguivalent Mechanisms

The devices shown on pfevious pages are a few of the many which can
be created to attain special effects. It is useful, in considering
systems of this kind, to think of the location triad as a mechanism =
this is particularly useful when the system is two dimensional.

Two examples are shown.

(a) Fige. D.9.1 = Passing a tolerance unchanged from a socket to a
neighbouring point. H is a hinge which can in the planar case be
imagined as a closely fitting slot around a fixed pin. Clearance
at S will be passed to R unchanged when the mechanism is moved
around.

(b) Fig. D.9.2 = Passing a tolerance unchanged from a hinge to a neigh-
bouring point. In this case 5 is a remote socket freely piveting
around a close fitting pine If S is in line with H, then when the

mechanism is moved, clearance at H will be passed unchanged to R.

D.7 Two Dimensional Cases

The most common dimensioning system ocours when features are located
on a plane. These are the most easily visualised using equivalent mech=
anisms. The main pFinciple involved is the stationing of a P=loc
coincident with the R=point with normal perpendicular to the plane of
interest. This ensures that all displacement at the R-point caused by
features on the plane of interest is in the plane. Tolerancing systems
on the plane may now be described by using H=locs lying in the plane and
S=locs lying on ite An example is shown in Fig. D.10.

Some common cases of dimensioning in two dimensions will be dis-
cussed, but it is first necessary to consider another use of remote

features.



Fig Di1. The Intersection of Two Lines



T4

DeTe1 Intersection Points of Lines

Often a point is located geometrically. This usually implies the
superposition of two or more real location systems. A common example
is the point described by the interseotion of two straight lines. In
Fige Ds11 lines AB and CB intersect at the point feature B. If lines
AB and CB are separately located, there will be an ambiguity at B.
Point B1 on line AB will be displaced due {0 intrinsic displacement of
AB and point B2 will be displaced due to intrinsic displacement of CB
and these displacements will not be identical. Consequently, the true
intersection of AB and CB will be neither Bi nor B2 but some point B3.
If B1 and B2 are at right angles, the point B3 will be defined by the
vector sum of the displacements of B1 and B2 but this is not generally
80. It is convenient to consider the displacement of B1 as being con—-
strained by the line CB which does not contain it. A sub-network for the
generation of the displacement of point B3 from its nominal position at B
is given by the following:

(a) two remote features M1 and M2 are set at equal distances from the
origin, for example at 106 units,

(b) M1 is stationed at right angles to AB, M2 at right angles to BC,

(¢) either is chosen as an H-loc, the other as a P=loc, the direction
of the hinge vector being at right angles to the line joining it
to the origin,

(d) displacement at Bi is passed unchanged via a unitary link to M1,
displacement at B2 is passed similarly to M2,

(e) the R=point is taken at the nominal position of B.

This sub-network is wseful in various situations and its validity may

eagily be proved by considering instantaneous centres.
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D.T.2 Location of a Point in a Plans .

(a) Location by a point and a point on a line.

This is the simplest case, since it is a real location. An example
is shown in Fig. D.12.

(b) Location by the distances from two points.

This case may be described by considering it as a case of constrained
displacement. M1 and M2 are taken along the lines joining the points and
the R=point as shown in Fig. D.13.

(¢) Location by the distance from a line and distance from a point.

The remote features M1 and M2 are set at right angles to the line
and along the line joining the point and the R-point as shown in Fig. D.14.
(d) Location by the perpendicular distances from two lines.

M1 and M2 are set at right angles to each line. The point is loecated
separately on each line by using two networks as described in (a) and
superimposing them. Noie that only the H-~loc displacement is passed from
each point, weak links being used, and that each point on the line is used
in a dual capacity as H-loc and S-loc. An example is shown in Fig. D.15.
This case is very common, occurring in coordinated dimensions.

In each of these cases, the sub-netwerk describes the extrinsic
toleranca; Intrinsic tolerance is handled differently for the two
gtandard methods.

(a) Positional tolerance is spplied directly at the R-point.

(b) Tolerances on dimensions are applied directly at the remote
features usually.

They may all be generalised to thirce dimensions.
The most common cases of tolerancing as shown in BS 308 will now be

described.
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D.8 Three Dimensional Systems

D.8.1 Tolerances of Straishtness and Flatness

(a) Tolerance of straightness of a line =— Fige De16.1.

The centre line A of the cylinder is subject to a straightness
tolerance t/o. This is appiied directly to node 1. Nodes 6 and 7
describe the centre linej; and the network transmits displacements
at 6 and 7 to the node 1.

(b) Tolerance of flatness of a plane = Fige De16.2.

Plane A is subject to a flatness tolerance t/2. This is applied
directly to node 1, which describes a point on the plane. Nodes 6, 7
and 8 describe the plane; and the network transmits displacements at
6, T and 8 to the node 1.

D.8.2 Tolerances of Concen%ricity

(a) Concentricity of a point = Fige Da1Te1e

The centre of circle B is required to lie within a circle diameter
t; concentric with the centre of the datum circle A. Displacement at
node 4 -~ centre of circle A - is passed unchanged to node 1 which des=
cribes thelcentre of circle B« The tolerance t/z is applied directly to
node 1.
(b) Concentricity of a line = Fige De17.2.

The axis of the cylinder B is required to be contained within a
cylinder diameter t co—axial with cylinder A. Displacemenis at nodes
6 and 7 which describe the axis of A are passed unchanged to nodes 1
and 2 describing axis B. The tolerance t/g is applied directly to nodes
1 and 2. In this case, nodes 1 and 2 are chosen to be coincident with
nodes 6 and 7 which results in a simple networke In the more general
case where 1 and 2 are not coincident with 6 and 7, then displacements

at both 6 and 7 will result in displacements at both of 1 and 2; and

the network is consequently more complex.
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D.8.3 Squareness Tolerances <

(2) Squareness of a plane relative to a datum plene — Fig. D,18.

Datum plane A is described by plates stationed arbitrarily on A -
nodes 8, 9 and 10. Displacements af 9 and 10 are passed unchanged to
coincident features 4 and 5 using remote features 6 and T Features 4
and 5 act as hinge and socket locations for features 1, 2 and 3 which
describe the dependent plane B, Features 1, 2 and 3 are also located
directly on feature B. The squareness tolerance t/é is applied directly
at 1, 2 and 3, indirect displacements at 8, 9 and 10 being passed through
the network.

(b) Squareness of a line relative to a datum plane - Fig. De19.

The case shown is that of an axis of symmeiry which is square to
a plane within a cylindrical tolerance zone. The network organisation
is similar to that in (a) except that there are two hinge features 1 and
2 describing the dependent line.

An alternative case of this kind is that of a line on a plane square
to the datum plane, within a rectangular tolerance band. This system is
identical to the one shown in Fig. D.19 except that 1 and 2 will be rlate
features with normal in the plane of the tolerance band.

De8.4 Tolerances of Ansularity

(a) Angularity of a face relative to a datum plane - Fig. D.20

- Tolerance band.

Fige D¢20 shows the method of specifying angularity tolerances
recommended in BS 308. The network system is identical with that for a
squareness tolerance which is a paiticular case of angularity tolerance,

if this {olerancing method is used.

(b) Angularity of a face relative to a datum plame = Tolerance on angle.

For this non-standard case, the angle is shown ag; for example
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60° + 1°. The easiest way to deal with this case is calculate the

actual tolerances at features 1, 2 and 3; and to ;pply these at features

1, 2 and 3 as shown in Fig. D.20. Each tolerance value will be different

in this case, but the network will be the same as (a).

(¢) Angularity of a face relative to a datum plane = Unit tolerance,
ie.ee tolerance/unit distance.

Again, in this non-standard case, it is most convenient to calculate
the actual tolerance at features 1, 2 and 3, so as to retain the same
network. However, since this case occurs fairly frequently, a separate
treatment follows.

In the case shown in Fig. D.21, tolerance t/2 is applied at unit
distance from the intersection line of the two planes A and B. The
point of application is labelled as 'Point C'.

This construction uses unitary links. The displacements due to
displacement of datum plane A (indirect tolerance), and the unit angular
tolerance t are superposed by means of unitary links. The weak links at
nodes 1, 2 and 3 are redundant, and may be omitted from the diagram, but
are included for the sake of consistency = each node has outdegree 3.

The network shown can be simplified to some extent, and some of the
nodes omitted; but in all the networks shown in the examples, the mosti
direct method has been used even if this has necessitated using extra
nodes.

D.8.5 Tolerances of Symmetry

(a) Symmetric tolerance — datum planes parallel - Fig. D.22.

Again unitary links are used; and weak links to ensure that
unwanted tolerances are not passed along a pathe In general, the presence
of a unitary link implies that the location system is not physical but
geometrice In view of the number of nodes used in this system, it might

be considered useful to provide an artificial Thalf-unitary® node, which
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would considerably simplify the network. Once'again, the view is taken
that it is better to be a little prodigal with no&és rather than to
complicate the system.
(b) Symmetric tolerance = datum planes not parallel - Fig. D.23,
This case is more general than (a), but is basically the same
network.

D.8.6 Tolerances of Parallelism

(a) Parallelism of a plane relative to a plane -~ Fig. D.24.
Nodes 8, 9 and 10 describe the datum plane; nodes 1, 2 and 3
describe the located planc.

D.8.7 Coordinate Distances from Three Planes

(Cartesian coordinate system) = Fige D.25.

Point P is located on three flat faces A, B and C« Each of the
three planes is defined by a sub-network shown dotted in Fig. D.25 and
previously described in section D.3 . Femote features X, Y and 2 are
used to separate out components of displacements in the directions
indicated by their names. Z is a plate stationed at infinity along the
Z axis, with normal along the Z axis, X is a hinge stationed at infinity
along the X axis with direction at right angles to the X axis; Y is a
socket stationed at .infinity along the Y axis. These will select the
components in the directions of the axes along which they are stationed
and these components are passed to P using unitary links.

The network for this system appears rather complicated and requires
a disproportionate number of nodes. However, each extra point located on
this system only needs four extra nodes similar o P; and the spare
unitary links at X, Y and 2 may also be used for two extra points, extra
X, Y and 2 nodes being necessary for each three result points. The number
of nodes can also be reduced by using the remote features in more complice

ated wayse For instance, instead of the six remote nodes used in the
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sub~-network for planes A, B and C, three features may be used jointly,
each feature being used once as a hinge and onga as a socket. However,
once again the most direct nelwork system has been chosen. Fig. D.25
shows a spherical tolerance t/g applied directly at the result point Pe.
If the tolerance is parallelepipedal, then the three components may be
applied directly at X, Y and Z.

The sub-networks described in this Appendix are by no means an

exhaustive set but they should be sufficient to handle most common

dimensioning systems.
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APPENDIX E

PRACTICAL EXAMPLES
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E.1 Examples

The cases considered will be didactic rather than practical and
the dimensioning sufficiently eccentric as to include most of the
common datum systems met in practice. It is quite difficult to check
some of the results, and this has been done mainly by oalcuiation but
occasionally by drawing.

(a) Two dimensional system. Fig. E.1

The plate is defined by the five points A0, A1, A2, A3 and A4.
Each of these points may be considered as two subsidiary points coincident
in the plane. For example, point A1 lying at the intersection of lines
A0 = A1 and A1 - A2 may be considered as points Ala lying on A0 ~ A1 znd
A1b lying on A1 - A2, The lamina is located in orthogonal coordinates
as shown in Fig. E.1 and since all displacement is in the plane of the
lamina, a plate feature is set at each point with its normal perpendicular
to the plane of the lamina. The input tolerance at this P-loc will be
zero, thus ensuring that displacements at all the features on the lamina
will be in its plane. The datum is chosen as the point DO (coincident
with A0) end a line through DO and D1 (coincident with 44).

The five points will be considered separately.
(i) Point A4. Fig. E.2.

A parallelism tolerance is applied directly to A4. Since only one
tolerance acts at this point, it is not necessary to use the duval point.
(ii) Point A1. Fig. E.3.

Two tolerances are applied at A1, an angularity tolerance at Ala
and a parallelism tolerance at A1b. These will be compounded to give
the actual position of point A1. Since the angularity tolerance is
quoted as 'tolerance per unit distance'; a subsidiary point U1 is taken

at unit distence from A0 along A0 « A1 and an H-loc set at Ul. This is

passed via a tolerance generating network to Ala.
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Since A1 is located on a datum which iﬂ'earthed, there is no
extrinsic tolerance network necessary and the parailelism tolerance
may be applied directly to point A1be. Displacements at Ala and Alb are
compounded using remote points M3 and M4 at right angles to lines 20 -
A1 and A1 - A2 respectively. This completes the definition of point A1.

Thie location system may be imagined as a 'black box' with one
or more input terminals at which are applied extrinsic tolerances due
to location, one or more input terminals at which are applied intrinsic
tolerance due to permitted displacement of the point itself and one
output terminal which may be connected with a unitary link to another
'black box'.

(iii) Point A2. Fig. E.4.

There are two tolerances acting at this point. As with A1, the
parallelism tolerance acts directly and may be applied through a tolerance
defining sub-network to point A2a. The symmetric tolerance depends on
the two defining points A1 and A4, and is passed through a sub-network
to A2b, using the remote features M3 and M4 stationed as shown in the
figure. This completes the definition of point A2.

(iv) Point A3. Fig. E.5.

Dual point A3a is fixed in relation to A1 (a point on A1 - A2)
and point A2. Displacements at these features are transmitted to A3a
through a sub-network as shown. The angularity tolerance is passed
through a iolerance generating sub-network to A3a, the weak link from
A2 ensuring that tolerance is not passed twice from the same point.

The parallelism tolerance is applied directly to point A3b and the dis-
prlacements compounded using remote features normal to lines A2 - A3 and
A4 - A3. 3

The ﬁlate is now defined. FEach of the 'black boxes' describing the

points may be tested separately before being linked into a full network
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(Fig. E.6). Using separate definitions of points is rather wasteful
of nedes, many more unitary links being used than are necessary but it
is considered much easier to develop the network point by point using
standard cases than to regard it as an entity.
The system may now be used to establish sensitivities and in this

case those on the height A4 = A3 were found. The non-zero coefficients

ares
Tolerance Sensitivity at A4 - A3
line A0 = A1 Angularity with DO - D1 0.577
line A1 = A2 Parallelism with DO - D1 3.667
line A3 = A4  Parallelism with A0 — A1 ' 0.866
line A2 = A3 Angularity with A1 - A2 2,000
point A2 Symmetry with A1 and A4 0.577

These owefficients may be used to find the tolerance on the height
A4 - A3 for existing values of tolerance. For instance if angularity
tolerances are 1 in 100 (about + 3°), parallelism is 4+ .010 and the
tolerance of symmetry + .020, the tolerance on height A4 - A3 will be
+ 083,

Alternatively, they may be used to allocate manufacturing tolerance
either in an informal way or, if cost details are known, by using an
optimising program.

(b) Two dimensional system.

Two holes will now be added to the plate analysed in (a). Both
afe located by dimensions from sides A0 - A1 and AO - A4, but centre A5
is positionally toleranced, while centre A6 is dimensionally toleranced
(Fige E.7).

(i) Centre AS5. Fig. E.8.
The dimensional system is described by the network shown in the

figure. The positional tolerance may be applied directly tc A5 - this

being a general principle in positional tolerancing. Hole H1 may be
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located on its centre using a unitary link, the diametral tolerance
being applied directly.
(ii) Centre A6. Fig. E.9.
This is located in a similar feshion to A5. The tolerance may
be applied by means of a tolerance generating network or if storage
is tight, it may be applied to the location network. H2 is located on
A6 by means of a ﬁnitany link.
This completes the definition of the plate and holes and sensitivity
coefficients may be computed. Two sets are shown below for the distances

between points on holes H1 and H2, and between a point on H1 and line

A2 -~ A3,
Tolerance Sensitivity at H1 = H2
Dimensions Parallelism with AQ - A1 0.424
Dimensions Position tolerance on A5 1.000
Dimensions Dimensional tolerance on A6 (i) 0.707
Dimensional tolerance on A6 (ii) 0.707
Hole H1 Radial tolerance 1.000
Hole H2 Radial tolerance 1.000
Sensitivity at H1 =
Tolerance
: line A2 = A3
line A1 = A2 Parallelism with DO = D1 1974
line A3 = A4 Parallelism with A0 ~ A1 0.250
line A0 = A1 Angularity with DO = D1 0.097
line A2 = A3 Angularity with A1 = A2 0.832
point A2 Symmetry with A1 and A4 0.500
point A5 Positional with dimensions 1.000
hole H1 Radial tolerance 1.000

If the three seis of sensitivity coefficients are for the influence

of tolerances on three critical function dimensions, then they may be
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used as input for an optimisation program. Tﬁa second set was computed
for the distance between H1 and a point R1 which ﬁas located on line

A2 - A3 by a sub-network. The coordinates of R1 were calculated for
one computation and measured from a drawing_for another run and there
was little difference between the coefficients obtained.

Displaying the network in the 'tree' form used previously is not
very convenient nor easily read. The form illustrated in Figs. E.2 -
E.9 is an improvement but it is important that for clarity, the nodes
should be in topological order.

(¢) Thres dimensional systiems.

This example is deliberately very detailed. In practice much of
the resulting network (where features of no interest are concerned)
may be omitted. The solid form shown in Fige E.10 will be described.

A plane (the X-Y plane), a line on it (the line OY) and a point
on this line (the origin), will be taken as the datum system. Points
A0 and A1 are positioned relative to this system. Point A0 is fixed
at the origin, but A1 may be displaced along the line OY.
| The line A0 - BO is located on line A0 = A1 with an applied
tolerance of angularity relative to A0 ~ A1 acting at point Ba.

The line BO - Bl is located on line A0 = A1 with applied tolerances
of paralleliesm acting on BOb and Bla. BOa and BOb displacements are
compounded at EO,

The line B1 = A1 is located on line A0 —~ BO with applied tolerances
of parallelism acting at B1b and A1. The two tolerances at Bla and B1b
are compounded to form the intersection point Bi1.

In addition, flatness tolerances may also be imposed at B0 and Bi.
These are not shown in the figure.

This completes the description of the plane A0 — Bi.

Lines A0 = A2, A1 = A3, Bf = B3 and B0 - B2 are defined by locating
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the points A2, A3, B3 and B2 on the plane A0 - B1., Each of these points
may have three displacemenis; one parallel to th; XY plane due to the
locating point, a squareness tolerance relative to the XY plane and a
parallelism tolerance relative to the XY plane. These three displace=
ments, the first extrinsic, the others intrinsic must be compounded in
the three orthogenal directions to give the intersection points. Since
the displacements are also orthogonal, they may be simply superposed.

This completes the description of the solid form.

Points A4 « B4 are now to be added. A4 is symmetrically toleranced
relative to A2 and A3, B4 relative to B2 and B3. The displacements due
to this tolerance will be in the OY direction. There will also be
extrinsic displacements on these points due to their situation on the
lines A2 = A3 and B2 - B3, in the OX and 0Z directions. These may also
be superposed to give the true displacements at A4 and B4.

The cutting plane A4 - BS is located on line A4 — B4 with an
angularity tolerance relative to plane A2 ~ B4, It is sufficient to
consider this plane as defined by the points A2, A4, B4 for the purpose
of applying the angularity tolerance to points A5a and B5a. In addition,
since A5 and B5 are necessarily constrained to lie on lines A1 — A3 and
B1 - B3, dual points A5b and B5b are located on these lines and the
consequent displacements compounded with those at A5a and B5a to give
the actval positions of A5 and B5. Fige E.11 illustrates the procedure.

A hele is to be drilled at an angle to face A1 = A2. The centre
at point A6 is located on plane A1 — A2 and is dimensioned from datum
lines AQ = A2 and AO = A1 in the same way as in the two-dimensional case,
but the displacement due to its position on the plane is applied to the
P~loc. The point on face B1 = B2 where the axis of the hole runs out
(point BS) will be subject to an angular tolerance relative to plane

A1 = A2 and will also be constrained to lie on plane B! = B2, These
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displacements will be compounded to give the true run—outpoint B6.
The hole H1 is described by setting H=locs along A6-B6, tolerances at
A6 and B6 being passed directly by means of unitary links.

A further hole H2 is drilled normal to face A4 - BS5. This is
described in the same way as H1, except that there need be no complica—
tion at the run-out ﬁoint on face A0 = B1, this being a datum. The
network is shown in Fige. E.12.

It is now possibie to obtain sensitivity coefficients for the
distance between holes H1 and H2. Although this has been a very
detailed analysis of the form, much of it being unnecessary for obtaining
these results, all the working has made use of a few standard networks
and may be done reasonably quickly with a little practice. If it were
known in advance that only the sensitivity coefficients between H1 and
H2 were required, face Bl = B2 could be ignored and this has been done

using seventy nodes only.
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APFENDIX F

SUMMARY OF REFERENCES




Fe.1 Summary of References

Comparatively little work has been published since 1960 on the
subject of engineering tolerances. The Secretary of the Institution of
Engineering Designers has suggested to the author, in private communic—=
ation, that this might be because this topic is very much tied up with
a company's profitability. About fifty papers, articles and books have
been published during the period 1960-1976. Historically, papers pube
lished prior to 1960 are concerned with good drawing practice; from
1960~1970, they are concerned with statistical implications and from
1970 onwards, they are mainly about the allocation problem.

(i) Practical treatments dealing with Ygood practicel.

A few detailed manuals of dimensioning practice have been written.
Possibly the best is ref. TT; This contains details ofall the common
dimensioning systems and was written as a companion volume to BS 308
(refe G5) which was the first wholehearted attempt to systematise design
practice in this country. A further, extended version of BS 308 was
published in 1972 and this is widely regarded as the standard for drawing
practice. Ref. T7 contains much that is relevant to the latest version
of BS 308, but has not been re-printed by the publisher.

Theré are several excellent papers and articles which may be found
in the list of references. Refs. T1, T2, T3 may be singled out as
being particularly useful.

(ii) Analysis of Statistical Tolerancing

The principle of infallible interchangeability (sometimes called
sure-fit) assumes that all the critical dimensions of a manufactured
part are al an extreme limit of the allowed tolerance range. It has
long been recognised that this is normally an unlikely eventuality and
that this pessimistic approach often results in parts which are specified

with unnecessary precisicn. This causes high unit manufacturing costs
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and excessive rejection rates. A common assvmption is that the bulk of
the tolerances involved in an assembly will be diB¥ributed in Gaussian
fashion and in cases where this is not so, the overall 'stacked' tolerance
will be approximately Gaussian, as proved in the Central Limit Theorem.
Thus, the majority of assemblies will have critical clearances which are
reasonably close to the nominale An excellent introduction to this
treatment of atatistical tolerancing may be found in ref. S3, and a
more advanced description in ref. S8.

In practice, tolerances are not quite so well behaved and often,
for a variety of reasons, the distribution is not Gaussian. For instance,
it is good practice to allow for tool wear by starting to remove metal
at one eﬁd of the tolerance range and {o drift towards the other limit
as the tool wears. A batch of parts machined in this way may, then, all
be close to extreme tolerance limite. Another example is in the drilling
of a hole through a locating bush. The hole centre will very likely be
at extreme tolerance.

A detailed discussion of these situations may be found in ref. ™.

It seems safer to assume a more general distribution tha; the
Gaussian for the component tolerances of highly critical clearances.
A description of a computer package for the statistical analysis of
tolerances with general distributions may be found in ref. S5. The
designer uses the system interactively with a graphic console. He
provides the system with an expected statistical distribution for each
tolerance, together with a sub-program (written in.PL/1) describing the
geometrical relationships between each dimension. The computer then
generates representative critical dimensions for each component, sampling
from the appropriate distributions. The number of simlations is
{typically of the order of 1,000 and results are displayed graphically

in various forms. Tolerances may be adjusted interactively by the user.
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The system has been widely used in the Body Divisipn of Ceneral Motors and
is regarded as a useful design tool.

The main drawback of the system is that the geometric form of the
dimensioning system must be specified by a sub-program either written
by the user or submitted by him to a specialist programmer. This seems
inconvenient at best and certainly unsatisfactory in a firm smaller than
General Motors. Another problem is that it does not seem possible, as
far as can be judged, to specify complex multi-stage machining processes
in which dimensions at a stage depends on those obtained at a pravious
stage. The system, however, is the first to use a computer for this
purpose and will, no doubt, be progressively refined as further experience
is gained in its use. It would, cléarly, be an improvement if the
dimensioning and datum systeﬁ were submitted to the program not as a
sub=-program but as data.

(iii) Allocation of Tolerances

Although the ﬁroblem of allocating tolerances to the component
dimensions of a critical clearance has been recognised for many years,
the first paper to be published in this field was ref. A4. The problem
is clearly defined and solved in ref. A2, This is an elegant account
but uses én inverse square law for the tolerance cost which has been
superseded in later papers by more realistic models. Possibly the most
important paper is ref. A8, This uses a negative exponential model (now
commonly called 'the Speckhart model!) For the tolerance cost function.
The method of Lagrange multipliers i used to minimise the total cost
and various practical examples are analysed. The author has developed
a program to calculate optimum tolerance allocations on both sure=fit
and statistical=fit bases.

Another approach to the minimisation of tolerance cost is to use

dynamic programmings. An account may be found in ref. AS.



93

The most detailed and comprehensive descriptipn to date is a two-
part paper ref. Ale Earlier papers on the subject are reviewed, coste
tolerance data obtained from various sources analysed and practical
models derived for different manufacturing processes. A mathematical
analysis is performed for sure-fit cases and the method is applied to
several practical examples. A further paper dealing with statistical-
fit cases is prOmised.

An account of the problem and method of solution will be found
in AppendixC. This is largely eclectic drawing mainly on refs. A1
and A8 and is included for reference.

It is interesting to note that ref. A1 pre-dates ref. A8, is a
fuller treatment and the cost equations are based on a thorough investi-
gation of practical results and yet the latter paper seems to be con-
sidered definitive in the literature.

(iv) Ceometric Calculation of Tolerances

This topic in tolerancing theory has not been dealt with systeme
aticallye Various papers have been written on specific problems (refs.
C1 and C2) but the examples quoted are either trivial or %oo specialised
Yo be of much general interest. It is hoped that this paper might fulfil

a need in'this respecte.



REFERENCES

For convenience, references are separated into 5 classifications,

each being given a distinct prefix.

G . ¢ ¢ General references which are mainly textbooks used in

the theoretical development.

T « .+ ¢ These refer to general principles of tolerancing and

dimensions.
5 o « e Deal with statistical considerations.
A + ¢« « Concerned with the problem of allocation of tolerancese.

C o o ¢ Deal with the calculation of tolerations geometricallye.
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