Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

Protecting Agents Against
Malicious Host Attacks

KAMALRULNIZAM ABU BAKAR

Doctor of Philosophy

AsTON UNIVERSITY
October 2004

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Protecting Agents Against
Malicious Host Attacks

KAMALRULNIZAM ABU BAKAR
Doctor of Philosophy, 2004

Thesis Summary

The introduction of agent technology raises several security issues that are beyond
conventional security mechanisms capability and considerations, but research in pro-
tecting the agent from malicious host attack is evolving.

This research proposes two approaches to protecting an agent from being attacked
by a malicious host. The first approach consists of an obfuscation algorithm that is able
to protect the confidentiality of an agent and make it more difficult for a malicious host
to spy on the agent. The algorithm uses multiple polynomial functions with multiple
random inputs to convert an agent’s critical data to a value that is meaningless to the
malicious host. The effectiveness of the obfuscation algorithm is enhanced by addition
of noise code. The second approach consists of a mechanism that is able to protect
the integrity of the agent using state information, recorded during the agent execution
process in a remote host environment, to detect a manipulation attack by a malicious
host. Both approaches are implemented using a master-slave agent architecture that
operates on a distributed migration pattern.

T'wo sets of experimental test were conducted. The first set of experiments measures
the migration and migration+computation overheads of the itinerary and distributed
migration patterns. The second set of experiments is used to measure the security over-
head of the proposed approaches. The protection of the agent is assessed by analysis
of its effectiveness under known attacks.

Finally, an agent-based application, known as Secure Flight Finder Agent-based
System (SecureFAS) is developed, in order to prove the function of the proposed ap-
proaches.

Keywords: Agent Security, Malicious Host, Random Sequence 3-level obfuscation
algorithm, Recorded State Mechanism

Acknowledgements

I wish to thank my supervisor Mr Bernard S. Doherty for his help, guidance and valu-
able advice throughout the research and writing of the thesis.

I also wish to thank the staff of the Department and to the folks in room MB306
for their support

Finally, I wish to thank my sponsor, the Universiti Teknologi Malaysia for providing
the financial support for this research.

Contents

I Introduction 12
1 Introduction 13
1.1 Motivation e e e 14
1.2 Aims of Research 17

1.3 Research Methodology 17
1.3.1 Literature Review oo 17

1.3.2 Analysis and Investigation 19

1.3.3 Prototyping o 19

1.3.4 Tests Used o 19

1.4 Novel features of the thesis 20

1.5 Outlineof thesis. o 21

IT Literature Review and Research Formulation 23
2 Agent Technology 24
2.1 Introduction o 24
2.2 Evolution of Agents 24
2.3 Agent Definition 26
2.4 Agent and Agent Systemo 28
2.5 Agent Terminology 29
2.5.1 Agent Attributes 29

2.5.2 Typesof Agents. 30

2.6 Advantages of Agents 31
2.7 Disadvantages of Agents 33
2.8 Application Domains for Agentso 33
2.9 The Enabling Technologies 34
2.9.1 The master-slave agent architecture 35

2.9.2 The distributed migration pattern 36

2.10 Concluding remarks 36

3 Security in Agent Technology 38
3.1 Introduction e 38
3.2 Attack Definition 38
3.3 Agent Security Areas 39
3.3.1 Security Between Agents 40

3.3.2 Security Between Hosts 41

CONTENTS

3.3.3 Security Between Host and Unauthorised Third Parties 43

3.3.4 Security Between Agent and Execution Host 43

3.4 The Malicious Host Problem o 46

3.4.1 The analysis of the Malicious host problem 47

3.4.2 Malicious Host Attacks oo 49

3.5 Existing approaches for the malicious hosts problem 52

3.5.1 Protecting agents using trusted hosts 52

3.5.2 Protect agents against all attacks 58

3.6 The Enabling Technology 61

3.6.1 The cryptographic protocol 61

3.7 Research Formulation, Design and Procedures 67

3.7.1 Formulation of the research problem 67

3.7.2 Research problem oo 69

3.7.3 Research design and procedure 69

3.8 Concluding remarks 70

III Proposed Security Mechanisms and Prototype 72

4 The Description of The Proposed Security Mechanisms 73

4.1 Introduction e 73

4.2 The proposed security mechanisms 73

4.9.1 The Random Sequence 3-level obfuscation algorithm 73

4.2.2 The Recorded State Mechanism 82

4.3 Concluding remarks 88

5 The Secure Flight Finder Agent-Based System 89

5.1 Introduction 89

5.2 The SecureFAS design requirementso 89

5.3 The SecureFAS designo 90

5.3.1 The SecureFAS Master Agent system 91

5.3.2 The SecureFAS Slave Agent system 97

5.4 The SecureFAS implementation 102

5.4.1 The SecureFAS application 105

5.5 Concluding remarks 107

IV Experimental Analysis 108

6 Experimental Results 109

6.1 Introduction 109
6.2 Comparison Experiment Between The Itinerary and Distributed Migra-

tion Pattern 110

6.2.1 The experimental migration pattern 110

6.2.2 Experiment configuration and scenario 111

6.2.3 Experimental Results oL 113

6.2.4 Summary of experimental resultso 118

6.3 The Overhead of Implementing Security Protection 123

CONTENTS

6.3.1 The experimental security protection mechanisms

6.3.2 Experiment configuration and scenario
6.3.3 Experiment Results
6.4 Concluding remarks

V Conclusion

7 Evaluations and Conclusions
7.1 Introduction
7.2 Aims of Research
7.3 Evaluation

7.3.1 Evaluation of the security mechanisms
7.3.2 Evaluation of the experimental tests
7.3.3 Evaluation of the prototype application

7.3.4 Evaluation of the suitability of the proposed security mechanisms

for different agents applications
7.4 Recommendations for future work

7.5 Conclusion

VI Appendices

A The Aglets Software Development Kit Configuration

A.1 Step 1. Downloaded the ASDK Installation Source . . .
A.2 Step 2. System Requirements
A.3 Step 3: Configure Server Properties
A4 Step 4: Installation
A5 Step 5: Start Up The Tahiti Server

B SecureFAS User Manual

B.1 Introductionm
B.2 Start Up The SecureFAS Environment
B.2.1 The Certificate Authority System
B.2.2 The Airline System
B.2.3 The SecureFAS Prototype System
B.3 The SecureFAS Operation
B.3.1 Travel Information
B.3.2 TravelDate,
B.3.3 Passenger Information
B.3.4 UserBudget
B.3.5 Searching Button
B.3.6 SecureFAS Result

C SecureFAS Use Case and Sequence Diagram

C.1 Introduction
C.2 SecureFAS Prototype System Model

C.2.1 Initialisation Process

CONTENTS

C.2.2 Registration and Public Key Retrieval Process 178

C.2.3 Find Flight Offer Process 182

D Listings 185
D.1 SecureFAS Prototype System (MasterAgent.java) 185
D.2 SecureFAS Slave Agent (SlaveAgent.java) 196
D.3 Airline System (AirlineAgent.java) 206
D.4 Certificate Authority System (CAAgent.java) 213
D.5 Register Agent (RegisterAgent.java) 214
D.6 Request Agent(RequestAgent.java) 216
D.7 Evaluation Agent (EvaluationAgent.java) 217

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

4.1
4.2

4.3
4.4

5.1
5.2
5.3
5.4

6.1

Remote Procedure Calls (RPC) 25
Remote Evaluation (REV) 26
Agent Technology 27
Agent and Agent System 29
Agents Reduce the Network Load 32
Disconnected Operation 33
Master-slave agent architecture 35
Distributed Migration Method 36
A Purchasing Agent (data block) - adapted from Hohl (1997) 47
A Purchasing Agent Routeo 48
A Purchasing Agent (code block) - adapted from Hohl (1997) 49
(a): Code Fragment and (b): Trace of the Code 54
A SAFER Agent Community - adapted from Wang et al. (2002) 57
A Blackbox Approach - adapted from Hohl (1998a) 59
Computing With Encrypted Functions - adapted from Sander and Tschudin
(1998a) . . . o . . 60
Signature Generation using the SHA-1 with the RSA algorithm 62
Signature Verification using the SHA-1 with the RSA algorithm 63
A function that generates a digital signature written in Java 64
A function that verifies a digital signature written in Java 65
Public Key Infrastructure (RSA Encryption and Decryption Method) . 66
The RSA encryption function written in Java, 66
The RSA decryption function written in Java 67
The Structure of Random Sequence 3-level obfuscation Algorithm . . . 75
A Random Sequence 3-level obfuscation algorithm written in Java (shown
partially)o 75
The RS3 Obfuscation Algorithm Obfuscation Process 78
The Effect of Adding Noise Codes Into The Agent Application - adapted

from Ng and Cheung (1999a,b) 80
A Slave Agent Program added with Noise Code (data block) 81
The SecureFAS Master Agent System 92
The SecureFAS Slave Agent System 98
The SecureFAS implementation environment 103
The conceptual view of the participating agents 104
Itinerary Migration Pattern L. 111

LIST OF FIGURES

6.2 Distributed Migration Pattern0 oo o oo 111
6.3 Comparison Experiment Configuration 112
6.4 Migration Overhead for 1 Remote Host oo 114
6.5 Migration Overhead for 2 Remote Hosts 116
6.6 Migration Overhead for 3 Remote Hosts 116
6.7 Migration Overhead for 8 Remote Hosts 117
6.8 Migration+Computation Overhead for 1 Remote Host 120
6.9 Migration+Computation Overhead for 2 Remote Hosts 120
6.10 Migration-+Computation Overhead for 3 Remote Hosts 122
6.11 Migration-+Computation Overhead for 8 Remote Hosts 122

6.12 Security Overhead of The Random Sequence 3-Level Obfuscation Al-
gorithm (1 Cycle and 1 Obfuscation Value Experiment(without noise
code)) ... 126

6.13 Security Overhead of The Random Sequence 3-Level Obfuscation Algo-
rithm (1 Cycle and 100 Obfuscation Value Experiment(with noise code)) 127

6.14 Security Overhead of The Random Sequence 3-Level Obfuscation Al-
gorithm (1 Cycle and 1000 Obfuscation Value Experiment(with noise
code)) ... 128

6.15 Security Overhead of The Random Sequence 3-Level Obfuscation Algo-
rithm (100 Cycle and 1000 Obfuscation Value Experiment(with noise

code)) ... 129
6.16 Security Overhead of The Recorded State Mechanism (1 Input and 1
Cycle Experiment) 130
6.17 Security Overhead of The Recorded State Mechanism (100 Input and 1
Cycle Experiment) 131
6.18 Security Overhead of The Recorded State Mechanism (1 Input and 10000
Cycle Experiment) 132
6.19 Security Overhead of The Recorded State Mechanism (100 Input and
10000 Cycle Experiment) 133
A1 A Tahiti Window 163
B.1 A Tahiti Window 165
B.2 A Create Window 166
B.3 The Certificate Authority System running on the Tahiti Server 166
B.4 A Tahiti Window 167
B.5 A Create Window 168
B.6 The Airline System running on the Tahiti Server 168
B.7 A Tahiti Window 169
B.8 A Create Window 169
B.9 The SecureFAS running on the Tahiti Server 170
B.10 The SecureFAS GUI 170
B.11 SecureFAS GUI Display Results 172
C.1 The SecureFAS Prototype System Main Model 175
C.2 Use Case Diagram of the SecureFAS Prototype System 175
C.3 Use Case Diagram of the Certificate Authority System Initialisation
Process e 176

LIST OF FIGURES

C.4 Sequence Diagram of the Certificate Authority System Initialisation
Process.
C.5 Use Case Diagram of the SecureFAS Prototype System Initialisation
Process.
C.6 Sequence Diagram of the SecureFAS Prototype System Initialisation
Process. e
C.7 Use Case Diagram of the Virtual Airline System Initialisation Process .
C.8 Sequence Diagram of the Virtual Airline System Initialisation Process .
C.9 Use Case Diagram of the SecureFAS Prototype System Registration and
Public Key Retrieval Process.,
C.10 Sequence Diagram of the SecureFAS Prototype System Registration and
Public Key Retrieval Process.
C.11 Use Case Diagram of the Virtual Airline System Registration and Public
Key Retrieval Process oo
C.12 Sequence Diagram of the Virtual Airline System Registration and Public
Key Retrieval Process oo
C.13 Use Case Diagram of the SecureFAS Prototype System Find Flight Offer
Process. e
C.14 Sequence Diagram of the SecureFAS Prototype System Find Flight Offer
Process e

10

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

7.1

Summary Statistics of Migration Overhead for 1 Remote Host 114
Summary Statistics of Migration Overhead for 2 Remote Host 115
Summary Statistics of Migration Overhead for 3 Remote Host 115
Summary Statistics of Migration Overhead for 8 Remote Host 117
Summary Statistics of Migration+Computation Overhead for 1 Remote
Host e 119
Summary Statistics of Migration+Computation Overhead for 2 Remote
Host e 119
Summary Statistics of Migration+Computation Overhead for 3 Remote
Host e 121
Summary Statistics of Migration+Computation Overhead for 8 Remote
Host e 121
Summary Statistics of The Random Sequence 3-Level Obfuscation Al-

gorithm (1 Cycle, 1 Obfuscation Value Experiment(without noise code)
and 1000 Obfuscation Value Experiment(with noise code)) 125
Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-
rithm Overhead (1 Cycle and 1 Obfuscation Value Experiment(without
noise code)) 125
Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-
rithm (1 Cycle and 100 Obfuscation Value Experiment(with noise code)) 126
Summary Statistics of The Random Sequence 3-Level Obfuscation Al-
gorithm (1 Cycle and 1000 Obfuscation Value Experiment(with noise
code)) ... 127

Summary Statistics of The Random Sequence 3-Level Obfuscation Al-
gorithm (100 Cycle and 1000 Obfuscation Value Experiment(with noise
code)) ... 128
Summary Statistics of The Recorded State Mechanism Overhead (1 In-
put and 1 Cycle Experiment) 130
Summary Statistics of The Recorded State Mechanism Overhead (100
Input and 1 Cycle Experiment) 131
Summary Statistics of The Recorded State Mechanism Overhead (1 In-
put and 10000 Cycle Experiment) 132
Summary Statistics of The Recorded State Mechanism Overhead (100
Input and 10000 Cycle Experiment) 133
Security mechanisms and their protection abilities 142

11

Part 1

Introduction

12

Chapter 1

Introduction

Agent is a new technology that will become a major trend of distributed systems in
the next decade. This technology is capable in managing the complexity of building
complex applications because they provide a new way of describing a complex system
or process compared to Client-Server and Peer-to-Peer Networking. However, with the
advent of agent technology, the need for security of applications becomes a concern
that is beyond classical data security capability and considerations. Without proper
security protection, especially against attacks by malicious hosts, the widespread use
of agent technology can be severely impeded.

This thesis presents the results of research carried out on the problem of protecting
agents against malicious hosts attacks. It describes an investigation of the malicious
host problem, the design of proposed security mechanisms for protecting agents against
malicious host attacks and development of a prototype system to implement the pro-
posed security mechanisms. The effectiveness of the protection offered by the proposed
security mechanisms is evaluated by analysis of its ability to withstand known attacks.
In addition, experimental results on the agent’s migration pattern and the overhead of

the proposed security mechanisms are also presented in this thesis.

13

CHAPTER 1. INTRODUCTION

1.1 Motivation

The motivation of this research is based on problems that arise when agents are used
in an open and unsecured environment. For example, a customised agent application
is sent out to visit several airline servers (in an open and unsecured environment) to
find a suitable flight. In this example, the agent application is allowed to completely
migrate to (the agent’s originating host transfers the agent’s code, data and state
to the remote server) and execute in (the remote server executes the receiving agent
application) the remote server environment, to take advantage of exploiting resources
at the data source and thus reducing network traffic (Wang et al., 2002). This opens
a greater opportunity for the agent application to be abused by the executing host,
because the agent application is fully under control of the executing host (Hohl, 2000;
Kotzanikolaou et al., 2000; Vigna, 1998).

An example of an attack by the executing host (which is known as a malicious host)
is spying on the agent’s data or state (Hohl, 1998a; Sander and Tschudin, 1998a).
Spying attack by the malicious host may invade the agent’s privacy, especially an
agent’s critical data such as user budget. The knowledge of an agent’s critical data
gives a malicious host an advantage in any competition over other hosts because the
malicious host knows what is expected by the agent. For example, a customised agent
is sent out (in an open and unsecured environment) to find a suitable flight with the fare
price less than or equal to 500 pounds. An attack from a malicious host based on the
spying attack is implemented by raising the offered price until it meets the maximum
price that has been set by the agent’s owner, even though the normal price is much
lower. This is possible because the malicious host knows that the price that it offers
still fulfils the requirement set by the agent’s owner. A Spying attack by the malicious
host on an agent’s data or state is one of the most difficult attacks to detect, because
the attack does not leave any trace that could be detected (Hohl, 1998a; Sander and
Tschudin, 1998a; Hohl, 2000). In addition, the executing host has to read the agent’s
code, must have access to agent’s data, and must be able to manipulate the agent’s

variable data in order to execute the agent (Hohl, 1998a, 2000; Mandry et al., 2001).

14

CHAPTER 1. INTRODUCTION

Therefore, the executing host can see and access all of the agent’s code including data
and state, which makes any attempt to address spying attack difficult.

Another kind of malicious host attack is to tamper with the agent’s code, data
or state, so that the agent will forget all the previous visits and offers held by the
agent, and thus force the agent (application) to accept an offer from the malicious host
even though the malicious host’s offer is not the best offer (Hohl, 2000; Sander and
Tschudin, 1998a; Vigna, 1998). That kind of attack is known as a manipulation attack
(Hohl, 1998a, 2000). In this attack, the owner of the agent may not know the attack
has happened. This is because the malicious host may make subtle changes in the
agent’s code, data and state, which are difficult to detect, thus enabling the malicious
host to achieve its objective. In addition, the agent (application) that returns from
the malicious host does not show any different behaviour from an untampered agent,
which makes the attack difficult to detect and prevent.

The problem of a malicious host attacking an agent executing inside the malicious
host cannot be addressed fully by traditional security services such as confidentiality,
integrity and authenticity (Hohl, 1998a, 2000). In addition, traditional security services
were not devised to address attacks on the application by the executing host (Hohl,
2000; Jansen, 2000).

Although encrypting the entire agent’s code, data and state could prevent attack
by the malicious host, the inability of the malicious host to read, write or execute an
encrypted agent application, prevents the host executing the agent, thus preventing
the agent from executing its tasks (Mandry et al., 2001).

This thesis proposes two security mechanisms for protecting agents against ma-
licious hosts attacks. The first mechanism aims to protect the confidentiality of an
agent against a malicious host’s spying attack. This mechanism uses multiple poly-
nomial functions for obfuscating the actual value of the agent’s critical data to an
obfuscated value that is meaningless to the malicious host, in order to prevent the
malicious host from spying on the agent critical data. The obfuscation method used

in the first mechanism enables the execution host to execute the comparing process in

15

CHAPTER 1. INTRODUCTION

an obfuscated format without the execution host having any knowledge of the actual
value of the agent’s critical data. This comparing process can be done on obfuscated
data without needing deobfuscation of the data, unlike cryptographic methods, which
require decryption of the data, thus revealing its value, before a comparison can be
made. The second mechanism is proposed to protect the integrity of the agent’s data
and state against the malicious host’s manipulation attack. This mechanism uses the
agent state information, which consists of the agent’s data (located in its variables) and
execution information. The state is recorded during the agent execution session inside
the executing host environment, and used by the master agent to detect manipulation
attacks from the malicious host.

In order to enhance the level of security protection provided by the proposed security
mechanisms, a distributed migration pattern and master-slave agent architecture are
combined with the proposed security mechanisms. This combination will overcome
extraction of information attack * and collaboration attack 2 by consecutive executing
hosts (the malicious hosts). This is because, instead of using one agent to migrate
through a sequence of n remote hosts, which allows the extraction of information
and collaboration attack to occur, the distributed migration pattern allows n agents
(slave agent) to migrate to n remote hosts. Here, one specific agent serves one specific
remote host without any relationship with other agents. This prevents extraction
of information attacks because each of the agents has knowledge only of a specific
remote host visit. Furthermore, the isolated relationship between the agents makes
collaboration attack by the malicious hosts impossible. This thesis offers the hypothesis
that the security of agents can be improved by the proposed security mechanisms.

This thesis also investigates two performance hypotheses:

e the performance of an agent-based application that uses master-slave agent ar-
chitecture with a distributed migration pattern is faster than an agent-based

application using single agent architecture with an itinerary migration pattern,

1o attack from the malicious host by extracting information from agent’s previous visit to win
any competition against other remote hosts

2.5 attack from the malicious host by collaborating with other malicious hosts to remove any
attacks’ traces recorded by the agent from the previous agent visit

16

CHAPTER 1. INTRODUCTION

even though the first agent-based application is required to generate and dispatch
more than one agent to execute a transaction, which does increase the network

overhead at the originating host, and

e the performance of an agent-based application equipped with security mecha-

nisms is slower than the agent-based application without security mechanism.

In order to investigate the hypotheses, this thesis analysed agent security under
known attacks and developed an evaluation method, proposing two sets of experimental

measurements:

e an experimental test on the migration and migration+computation overhead of

the itinerary and distributed migration patterns, and

e an experimental test on the implementation overhead of the proposed security

mechanisms.

1.2 Aims of Research

The aims of this thesis are:

1. to propose security mechanisms for protecting agents against malicious host at-

tacks,
2. to assess the effectiveness of the security mechanisms in protecting the agent,

3. to develop and carry out tests for evaluating the security mechanisms in terms

of their overheads, and

4. to develop a prototype system to implement the security mechanisms.

1.3 Research Methodology

1.3.1 Literature Review

The literature review covers two main areas:

17

CHAPTER 1. INTRODUCTION

o Agent Technology. The area of agent technology is investigated due to the
use of agent technology as a foundation technology for this research. Agent
technology has been found in the literature as an alternative technology for the
traditional client-server and message-based architecture in designing distributed
systems application. Agent technology also provides powerful and effective mech-
anisms to develop applications in distributed systems. The investigation in this

area provides:

— an introduction to agent technology, which includes the description of its

components, migration process and execution environment,

— a brief discussion of agent evolution, which emerges from the Remote Proce-
dure Call (RPC) and Remote Evaluation (REV) technology (Minar, 1998;
Stamos and Gifford, 1990; Wong et al., 1999),

— a general discussion of agent technology that presents a definition of an
agent, description of agent attributes and their types, the advantages and

disadvantages of using agents and a few examples of agent applications,

— an introduction to the Aglets Software Development Kit (ASDK), which is

used as an agent system for this research work.

e Agent Security. In the area of agent security, emphasis is given to the problem
of the malicious host attacking the agent executing on the remote host. The
lack of security protection against a malicious host has been a crucial aspect that
has severely impeded widespread use of agent technology. In addition, existing
security mechanisms were not devised to address attacks on an application by
the executing host. This investigation has identified four areas of agent security

that need to be addressed, which are:

— the security between agents,
— the security between hosts,

— the security between a host and unauthorised third parties, and

18

CHAPTER 1. INTRODUCTION

— the security between an agent and a host.

1.3.2 Analysis and Investigation

Analysis and investigation are carried out in the agents security area, which is mainly
focused on the problem of protecting agents against malicious hosts attacks. Two main
kinds of the malicious host attacks on the agents, spying attack and manipulation attack
(These attacks will be discussed further in Chapter 3, Section 3.4.2), were studied
(Hohl, 1997, 1998a; Guan et al., 1999). Conclusions found were used to develop the

proposed security mechanisms.

1.3.3 Prototyping

A prototype was developed to implement the proposed security mechanisms in order
to examine the feasibility of the proposed security mechanisms. The prototype was

developed using the Java language. This is due to the following reasons:

e the Aglets Software Development Kit (ASDK) used for developing an agent-based

application in this research uses the Java language as its programmiing language,

e suitable cryptographic functions and APIs for the prototype system security im-

plementation are available in Java,

e to make the prototype system able to operate in heterogeneous environments and

support platform independence, and

e to benefit from the Java language that works well with the agent technology.

1.3.4 Tests Used

In this research, two sets of experimental tests were used to investigate the research

hypotheses:

1. An experimental test on the itinerary and distributed migration patterns in order

to evaluate the migration and migration+computation overheads,

19

CHAPTER 1. INTRODUCTION

2. The experimental test to evaluate the overhead of the proposed security mecha-

nisms.

The first experimental test was conducted by timing the interval taken starting
from sending the agents to the remote hosts and ending by receiving the agents from
the remote hosts. For evaluating migration overhead, no processing activities were
required at the remote host, the agents were simply returned. However, for evaluating
migration+computation overhead, the agents have to execute a numerical calculation
algorithm inside the remote host environment.

The second experimental test was conducted by measuring the time taken starting
from sending the agents to the remote hosts, where the proposed security algorithm or
mechanism was executed inside the remote host environment, and ending by receiving

the agents back from the remote hosts.

1.4 Novel features of the thesis

The novel aspects of this thesis are:

o the Random Sequence 3-level obfuscation algorithm, which was designed from
the idea of Hohl (1998a), is used to overcome the problem of a malicious host
spying attack on an agent’s critical data. The Random Sequence 3-level obfus-
cation algorithm is able to prevent the malicious host from spying on the initial
conversion process of the actual value of agent’s critical data to the obfuscated
value and, combining the algorithm with noise codes (Ng and Cheung, 1999a,b),
makes it more difficult for the malicious host to guess the agent’s critical data.

The implementation overhead of this algorithm is also measured.

o the Recorded State Mechanism, which is built on the work of Hohl (Hohl, 2000),
Vigna (Vigna, 1998) and Farmer (Farmer et al., 1996a), to address the prob-
lem of a malicious host’s manipulation attack on an agent’s data and state. We
extended that work by using a master slave agent architecture with a distrib-

uted migration pattern that is able to prevent collaboration attacks by more

20

CHAPTER 1. INTRODUCTION

than one consecutive remote host and also prevent the extraction of information
by the malicious host. Also three Recorded State Mechanism’s containers (ie.
RecordedReadOnly, RecordedExecuteOnly and RecordedCollectOnly) were used
for detecting a manipulation attack from the malicious host. In addition, the

evaluation of the agent’s migration pattern overheads are conducted to measure:

— the migration overhead (which includes communication and serialization
overhead) that occurs while dispatching the agent to or receiving the agent

from the remote host, and

— the total execution time (including processing and migration time) of the

agent plus the migration overhead.

Furthermore, an evaluation of the Recorded State Mechanism is also conducted

to measure the time overhead for executing the mechanism.

1.5 Outline of thesis

The thesis is organised into seven chapters. This first chapter gives an overall intro-
duction to the research and areas related to it. This includes discussion on the research
problem, aims, methodology and novelty of the thesis.

Chapter 2 presents an overview of the agent technology, which is a foundation
technology for this research.

Chapter 3 mainly describes on the problem of protecting the agents against the
malicious hosts attacks.

Chapter 4 describes the design of the proposed security mechanisms for protecting
the agents against the malicious hosts attacks.

Chapter 5 describes the prototype developed to implement the proposed security
mechanisms in order to examine the feasibility of the proposed security mechanism.

Chapter 6 summarises the experimental results, which followed by the interpretation

of the results.

21

CHAPTER 1. INTRODUCTION

Chapter 7 presents the evaluation of the research as a whole, proposals for further
research and a conclusion.

Appendix A describes a step-by-step installation and configuration procedures of
the Aglets Software Development Kit (ASDK).

Appendix B presents the SecureFAS user manual.

Appendix C presents the design of the SecureFAS using Use Case and Sequence
Diagram.

Appendix D presents program listings.

22

Part 11

Literature Review and Research

Formulation

23

Chapter 2

Agent Technology

2.1 Introduction

Agent technology is an emerging technology that is gaining momentum in the field
of distributed systems (Schoder and Eymann, 2000; Wong et al., 1999; Silva et al.,
2000). It provides a new paradigm in designing and implementing applications that
operate in a distributed environment (Perraju, 1999). It supports asynchronous and
autonomous execution, and robustness in complex distributed system application. In
addition, agent technology has gained much attention from industry and the academic
community, and many commercial implementations of agents have been presented in
the market, such as ARCHON (Cockburn and Jennings, 1996), Kasbah (Chavez and
Maes, 1996) and BargainFinder (Krulwich, 1996).

2.2 Evolution of Agents

The rapid growth of network technology and the demand for resource sharing have mo-
tivated computing to evolve from centralised systems into distributed systems (Coulouris
et al., 2001; Bacon, 1997). In distributed systems, four major enabling technologies
are in place. In historical order, they are the Message Passing, Remote Procedure Call
(RPC), Remote Evaluation (REV) and Agent technology (Minar, 1998; Stamos and

Gifford, 1990; Wong et al., 1999), with the later one building on top of the previous

24

CHAPTER 2. AGENT TECHNOLOGY

one.

Message Passing involves with an architecture in which client and servers commu-
nicate using communication lines. This technology uses communication media such as
sockets, ports and server sockets for two or more computers to communication with
each other’s (Ince, 2002).

As an alternative to Message Passing technology, Remote Procedure Call (RPC)
and Distributed Objects are a client-server infrastructure that allows programs (ap-
plications) to be distributed over multiple heterogeneous platforms. It reduces the
complexity of developing applications by insulating the application developer from the
details of the various operating systems and network interface function calls (Coulouris
et al., 2001; Peterson and Davie, 2003). In RPC, a program (client program) that is
executing in a client host, communicates with another program (server program) that
is executing in a server host by calling functions provided by the other program (server
program)(Minar, 1998; Coulouris et al., 2001; Peterson and Dawie, 2003; Bacon, 1997)
(see figure 2.1). The client program that issues the communication request will then
wait for a response to be returned from the server program before the client program

can continue to execute other processes.

Client Request

Host A data Host B

Client > Server
Program > Program

result (data)

Figure 2.1: Remote Procedure Calls (RPC)

On top of all that, Remote Evaluation (REV) was proposed by Stamos and Gifford
(1990). In REV (see figure 2.2), the client, instead of using a remote procedure calls to
communicate with a server, sends its own program to a server and requests the server
to execute the program. Upon receiving the client request, the server executes the

program supplied to it by the client. Once the execution is completed, a result is sent

CHAPTER 2. AGENT TECHNOLOGY

to the client. In this technology, the client that sends the Remote Evaluation request
can wait until the result is received from the server, or continue executing some other
processes whilst the server is processing the client program (Stamos and Gifford, 1990;

Hughes, 2001).

Program A
Host A e Host B
i codeand
e — : e Program A
. Client S . P Server
. Program ! < > Program
... result (data)

Figure 2.2: Remote Evaluation (REV)

Agent technology (see figure 2.3) on the other hand, is an extension of the Remote
Evaluation (REV). An agent is an executable program that consists of code, data and
state sent by a client to a server (Lange and Oshima, 1998, 1999; Hohl, 1997, Biehl
et al., 1998). Unlike a Remote Evaluation (REV) which requires a client to send a
program to a server to get a result (if any) (Stamos and Gifford, 1990), an agent could
migrate to wherever there are computing resources, execute its tasks on a remote server
and return to its origin as needed. An agent is able to control its own migration®, thus

it has more autonomy than a Remote Evaluation (REV).

2.3 Agent Definition

Various definitions for agent have been produced, but so far, the research community
has accepted none of them as a standard definition (Nwana, 1996; Sundsted, 1998).
This is because many definitions are given from different perspectives based on the
specific work of the researchers. For example, Nwana (Nwana, 1996) defines agents as,

“a component of software and/or hardware which is capable of acting inde-
pendently in order to accornplish tasks on behalf of its user”.

'the agent ability to move from one machine to another

26

CHAPTER 2.

AGENT TECHNOLOGY

Host A Agent A HostB
Ecodc, data%
Agent A | and state | Agent A Agent B
2l <
........................ dispatch : _ B
{ Q
S 2
T o
e e
2)
= =
2 5
E E
Host D Host C
Agent A Agent D Agent C

Agent A

) s

Note: Agent’s data and state can change at each Host.

migrate to Host D

Figure 2.3: Agent Technology

While Maes (Maes, 1995) defines agents as,
“a computational system that inhabits a complez, dynamic environment.

The agent can sense, and act on, its environment, and has a set of goals or
motiwations that it tries to achieve through these actions”,

and Hayzelden and Bigham (Hayzelden and Bigham, 1999) say an agent is
“an independently exzecuting program able to handle autonomously (i.e.,

without direct input at run time from a human) the selections of actions
when expected or limited unexpected events occur”.

Coulouris (Coulouris et al., 2001) on the other hand defines an agent as,
“a running program (including both code and data) that travels from one

computer to another in a network carrying out a task on someone’s behalf,
such as collecting information, eventually returning with the results ”.

The definition of an agent given by Coulouris et al. (2001) will be used in this

research.

27

CHAPTER 2. AGENT TECHNOLOGY

2.4 Agent and Agent System

An agent has three main components (Hohl, 1997; Biehl et al., 1998):
e the code, which consists of the instructions that define the behaviour of the agent,
e the data, which is the value of the instance variables in agent code, and

e the current state of execution of the agent (including agent program counter and

frame stack).

An agent has the ability to travel or migrate from one execution host to another
execution host that contains services with which the agent wants to interact. This
ability enables the agent to take advantage of being in the same execution host as the
services (Lange and Oshima, 1998, 1999; Wang et al., 2002) (see figure 2.3), which
can reduce network communication, thus reducing network traffic (Wang et al., 2002;
Tripathi et al., 2002).

In order to execute inside the execution host environment, an agent needs an exe-
cution environment provided by the execution host. This is known as an agent system.
The agent system can be regarded as the operating system for agents (see figure 2.4)
(Lange and Oshima, 1998; Chess et al., Mar., 1995). This agent system has the capa-
bility to create, execute, transfer and terminate the agent processes. It is responsible
for providing services for the agent to do its work and can support more than one
executing agent at the same time. The agent system consists of four elements (Lange

and Oshima, 1998):

e An engine which serves as virtual machine for executing the agent, and provides
links to the underlying network and other resources provided by the execution

host,

e Resources such as databases, processors, and other services provided by the exe-

cution host,

28

CHAPTER 2. AGENT TECHNOLOGY

Execution Host

(Location: “atp://cs.aston.ac.uk?) i

Resources

Agent

Code

Data

State

Execution Environment

Principals

Figure 2.4: Agent and Agent System

e A location which is an address of an executing agent, produced from the combi-
nation of the name of the execution environment and the network address of the

engine in which the execution environment resides, and

e Principals which control the operation of the execution environment.

There are many agent systems but some examples of agent system are Aglets Software
Development Kit (ASDK) from IBM (Lange and Oshima, 1999; Tai, 1999; Silva et al.,
2000), Odyssey and D’Agents from General Magic (Noble and Satyanarayanan, 1999;
Ousterhout, 1994; Silva et al., 2000), and Voyager from ObjectSpace (ObjectSpace,
1997; Silva et al., 2000).

2.5 Agent Terminology

2.5.1 Agent Attributes

Some of the commonly identified agent attributes that are useful for the thesis are

described below:

e Mobility. An agent can travel or migrate to other environments, interact with

29

CHAPTER 2. AGENT TECHNOLOGY

remote hosts, gather information on behalf of its owner and come back to the

originating host after having performed the duties (Jansen, 2000).

Autonomy. An agent can operate without any intervention or guidance from
humans or others (Nwana, 1996; Chauhan, 1997). This means, agent should have
a degree of autonomy from its owner? to do its jobs. Otherwise, it is just doing
the tasks as instructed by the owner of the agent, and it will be locked-step and

fixed, i.e. waiting to be instructed by its owner (Foner, 1993).

Social Ability/Co-operation. An agent can interact with other agents and/or
humans (Chauhan, 1997). Owner-agent cooperation can be described as a form
of collaboration in constructing a contract. The owner specifies what actions
should be performed on their behalf, and the agent specifies what it can do and
provides results (Foner, 1993). In inter-agent cooperation, both agents can co-
operate with each other to solve large problems that are beyond their individual
capabilities. The agents can exchange their knowledge and plans in order to work

together (Chauhan, 1997).

Temporal Continuity. An agent is a continuously running process, not a “one-
shot” computation that terminates itself when the processes had been completed

(Chauhan, 1997).

2.5.2 Types of Agents

The combination of the agent’s attributes creates different types of agent and each of

them serves specific type of tasks. Different types of agent are described as below:

e Mobile Agent. An agent that is capable of moving from one computer to
another, interacting with remote hosts, gathering information and returning to

its originating host after having performed a task (Chauhan, 1997).

e Autonomous Agent. An agent that can sense and act autonomously within

the environments where it is situated (Franklin and Graesser, 1997).

a creator of an agent

30

CHAPTER 2. AGENT TECHNOLOGY

e Information Agent. An agent that has access to potentially many information
sources and is able to collate and manipulate information obtained from these
sources to answer queries posed by users and/or agents (Chauhan, 1997). This
agent is sometimes referred to as an Internet Agent as such an agent roams the

Internet in order to collect information.

Intelligent Agent. An agent that can carry out some sets of operations on
behalf of a user or another program with some degree of independence (Chauhan,
1997). This agent is encoded with artificial intelligence and has the ability to
perform a learning operation during its execution in order to find the best way

to complete a task.

2.6 Advantages of Agents

There are many advantages claimed for agents (Lange and Oshima, 1999; Chess et al.,

Mar., 1995). Some of the more frequently quoted and accepted claims are:

e Reduce the network load. In distributed systems, a communication protocol
involves multiple interactions in accomplishing a given task. As a result, it causes
a lot of network traffic (see figure 2.5 a). However, using an agent, user’s conver-
sation will be packaged and dispatched to a destination host where interactions
take place at the destination host. This reduces network traffic. On the other
hand, agents can also reduce the flow of raw data in the network by processing
the raw data where it is found rather than transferring it over the network. This
can be done by moving the computation to the data rather than the data to the

computation (see figure 2.5 b).

Overcome network latency. Network latency® is a very critical problem to
real-time systems especially in distributed environments. One of the solutions to

this problem is to use agents. The agents can reduce network latency problems

3the delay on a network that occurs while a data is being stored and forwarded

31

CHAPTER 2. AGENT TECHNOLOGY

Host A ~ HostB
request N
Client . Server
Program Program
<%
respond

a) Client-server approach

Host A Host B
T—————— dispatch
Agent A
<
return
b) Agent approach

Figure 2.5: Agents Reduce the Network Load

because it can be dispatched from a central system to act locally and execute the

system’s directions directly.

e Execute asynchronously and autonomously. An agent has the capability
to operate asynchronously and autonomously in order to execute the given tasks.
After being dispatched, the agent’s owner can disconnect his network connection.
After that, the agent becomes independent and can operate asynchronously and
autonomously. The agent’s owner can reconnect at a later time to collect the

agent (see figure 2.6).

e Adapt dynamically. An agent can sense its execution environment and react

autonomously to changes.

These advantages make agents a suitable and beneficial technology for various ap-

plication domains. The author elaborates on this in section 2.8.

32

CHAPTER 2. AGENT TECHNOLOGY

Client A _Server B
E:'Mobile Agent dispatch agent Server
A Program

Client A disconnect Server B

< Server
<> Program
[P
Client A Server B
Mobile Agent P reconnect Server
A Program

Figure 2.6: Disconnected Operation

2.7 Disadvantages of Agents

Although many advantages of agents have been described, there are a few disadvantages
of agents that need to be considered, such as (Chess et al., Mar., 1995; Schoder and

Eymann, 2000):
o a need for highly secure agent execution environment to protect the remote host,

e performance limitations resulting from security to protect the agents,

2.8 Application Domains for Agents

There are wide ranges of application domains that make use of agents. Agent appli-
cations are being developed for ficlds as varied as electronic commerce, information
gathering and parallel processing. Lange and Oshima (1998, 1999) have compiled a

list of agent application domains:

e E-Commerce. This application consists of a commercial transaction that re-

quires real-time access to remote resources such as customer, shopper and banking

33

CHAPTER 2. AGENT TECHNOLOGY

databases. Agent technology is well suited for this kind of application because
it has the ability to support real time application. In addition, agents can act
and negotiate on behalf of their owners in order to accomplish transactions in

electronic commerce.

o Information Gathering. Agent owners can dispatch their agent to remote in-
formation sources to perform searching and create search indexes locally. Agents
can also perform extended searches that are not constrained by the hours during

which an owner’s computer is operational.

e Information Dissemination. Information in the computer network can eas-
ily be disseminated using agent technology. Agents can disseminate news, soft-
ware updates from vendor and installation procedures, direct to the customers’
computers. Agent can also autonomously update and manage that information

without user interference.

e Monitoring and Notification. In this application, an agent is used to monitor
remote hosts without being dependent on the systems from which the agent orig-
inated. The agent will notify the originator hosts if certain kinds of information

become available.

e Parallel Processing. Agents have an advantage in this application. Agents can
create a cascade of clones in the network and administer parallel processing tasks.
Agents can also distribute tasks among multiple processors if a computation

requires more processor power.

2.9 The Enabling Technologies

Two enabling technologies used to support the implementation of the proposed security

mechanisms are:

e the master-slave agent architecture,

e the distributed migration pattern.

34

CHAPTER 2. AGENT TECHNOLOGY

2.9.1 The master-slave agent architecture

This architecture was first introduced by Buschmann et al. (1996) and later extended
by Lange and Oshima (1999) to fit into agent technology. Generally there is not
much difference between these two architecture (Buschmann et al., 1996; Lange and
Oshima, 1999), nevertheless their usage is completely different. Whereas Buschmann’s
intent was to support fault tolerance, parallel computation and computational accuracy,
Lange and Oshima used it for one more purpose, which is to support tasks at remote
destinations.

The master-slave agent architecture has been defined as a scheme whereby the
master agent can delegate tasks among slave agents (Lange and Oshima, 1999) (see
Figure 2.7). This scheme allows the master agent to continue its tasks after despatching
the slave agent to other destination hosts to perform the assigned task. For instance,
the master agent creates a slave agent for each subtask and dispatches it to a remote
host. While the slave agent computes the partial result to the task it has been assigned,
the master agent can continue its work. When the slave agents have all finished their

work, the master agent compiles the final result and returns it to the user.

Master Agcut

Agent execution environment

Figure 2.7: Master-slave agent architecture

The main objective behind this architecture is to achieve a better performance
in terms of the processing speed by delegating tasks to other agents. However, the
drawback of this architecture is that the behaviour of a slave agent is fixed at design
time. In addition, simple problems may not benefit from partitioning and delegating

tasks, because it increases the overall computation effort of the global task.

35

CHAPTER 2. AGENT TECHNOLOGY

2.9.2 The distributed migration pattern

The distributed migration pattern is the agent migration pattern that allows agent
migration to n remote servers, but instead of using one agent to migrate through a
sequence of n remote servers, the distributed migration pattern allows n agents to
migrate to n remote servers in parallel, with one agent for one remote server (see

Figure 2.8).

Master Agent

Host A

Figure 2.8: Distributed Migration Method

The distributed migration pattern can be used together with the master-slave agent

architecture to support operation of the proposed security mechanisms.

2.10 Concluding remarks

This chapter presents an overview of agents, which is a foundation technology for the
research work. It started by giving agent definitions, then presented the evolution of
the agent, which emerges from Remote Procedure Call (RPC) and Remote Evalua-
tion (REV) technology. This was followed by a brief discussion on agents to give a

description of its components and the execution environment.

36

CHAPTER 2. AGENT TECHNOLOGY

The attributes and the types of agent form the terminology of agents in the next
section. However, only those related to the thesis were described.

The advantages and disadvantages of agents were presented in this chapter for a
basic guideline on the benefits and problems in using the technology. A few examples
on agent application domains were presented to show the impact of the technology in
real world applications. Finally, two agent’s enabling technologies were introduced to
support the implementation of the proposed security mechanisms that will be discussed
in the later chapter.

This chapter has been focussing on agent technology in general and the next chapter

will look specifically into the literature of the security in agent technology.

37

Chapter 3

Security in Agent Technology

3.1 Introduction

In the literature, many application areas such as electronic commerce, mobile comput-
ing, network management and information retrieval can benefit from agent technology
because the exploitation of agent technology offer several advantages such as reduc-
tion of network load, overcoming network latency and allowing asynchronous execution
(Lange and Oshima, 1998, 1999; Corradi et al., 1999b; Hohl, 1997). In addition, agent
technology is often described as a promising technology for developing applications in
an open, distributed and heterogeneous environment, such as the Internet (Coulouris
et al., 2001; Corradi et al., 1999b; Hohl, 1997). However the lack of security protection
has severely impeded the widespread use of the agent technology (Coulouris et al.,

2001; Jansen, 2000; Oppliger, 1999; Corradi et al., 1999b).

3.2 Attack Definition

The term “attack” in this thesis is defined as the act of extracting, spying on or

changing the executing agent’s code, data or state by the execution host, resulting in

an unintended change in behaviour or unauthorised access to data (Hohl, 2000).
From this definition, an attempt to extract or spy on agent’s code, data or state

requires a security mechanism where sensitive information need to be protected, while

38

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

an attempt to change the agent’s code, data or state requires a security mechanism
that can at least detect the difference between the attacked agent and non-attacked
agent.

This definition of attack will be used as the foundation for the whole discussion in

this thesis.

3.3 Agent Security Areas

An agent can migrate among hosts, seeking to fulfill tasks on behalf of its owner
and eventually returning to its originating host with a result (Coulouris et al., 2001;
Luckham, 2002; Rus et al., 1997).

In a closed network environment, for example one contained entirely within a single
organisation where all hosts are controlled by one administration and the same ad-
ministration also employs the agents, it may be possible to trust both the agents and
the hosts (Tripathi and Karnik, 1998). On the other hand, in an open and unsecured
network environment where different hosts are controlled by different administrations
and a different administration employs the agents (Farmer et al., 1996b; Hohl, 1998b;
Jansen, 2000), neither the agents nor the hosts are necessarily trustworthy.

The agent, if it is a malicious agent might try to access or destroy privileged infor-
mation, which the agent is not authorized to access, or may consume more resources
than it can should. The execution host, if it is a malicious host, might try to extract
confidential information from the visiting agent, tamper with the agent’s code, data
and state or spy on agent’s code, data or state (Hohl, 1998a, 2000).

As agent technology is expected to become a possible base platform for an electronic
services framework, especially in the area of Electronic Commerce (Hohl, 1998a; Wang
et al., 2002; Corradi et al., 1999a), reliable security protection is a crucial aspect, since
some transactions in this area might involve confidential information, such as credit
card number, bank account information or some form of digital cash, that has value
and might therefore be attacked. In addition, without proper and reliable security

protection, the widespread use of agent technology in real world applications could be

39

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

impeded.
In the literature, there are four main security areas in agent technology that need

to be addressed (Jansen, 2000; Hohl, 1997; Gray et al., 1998):

security between agents, which is concerned with the problem of an agent attack-

ing another agent that is resident in the same execution host,

e security between hosts, which is concerned with the problem of a host attacking

another host,

e security between host and unauthorised third parties. This is concerned with the
problem of other entities (agent or host) from outside or inside the execution host

attacking the execution host, and

e security between agent and host, which is concerned with the problem of an agent

attacking an execution host, and an execution host attacking an agent.

3.3.1 Security Between Agents

An agent has the capability to communicate, exchange information and services, and
collaborate with other agents in the same execution host in executing its tasks. This
capability could expose the agent to the problem of malicious agent attacks (Jansen,
2000; Hohl, 1997, 2000). For example, consider a situation where an agent is used to
execute payment transactions on behalf of its owner in a host owned by a bank. In this
situation, the malicious agent, which is also executing inside the bank host execution
environment, can pretend (masquerade) to be an authorised agent that works on behalf
of the bank host in responding to any transactions from other executing agents (Hohl,
1998a,b). The malicious agent could convince the attacked agent to provide it with,
for example, a payment in some form of digital cash, a credit card number, bank
account information, or other private information during the attacks. This attack
could harm the agent that is being deceived and the agent whose identity has been
assumed, especially in agent societies where reputation is valued and used as a means

to establish trust.

40

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

The malicious agent can also attack other agents by repudiating transactions or
communications from other agents (Vigna, 1998). This could lead to serious disputes
that may not be easily resolved without proper countermeasures in place. For example,
in the situation where the malicious agent buys goods from a trader agent and then
refuses to pay after receiving the goods, because the malicious agent denies receiving
the goods. Without sufficiently strong evidence the trader agent cannot prove that the
malicious agent was involved in the transaction and has received the goods.

A denial of service attack is another kind of malicious agent attack that can be
launched against another agent (Hohl, 1997). The malicious agent can attack other
agents by repeatedly sending messages to the attacked agent. The attack will cause
the attacked agent to find a high burden on its message handling routines, which could
affect the attacked agent’s performance and eventually could prevent it executing its
tasks. In addition, if the attacked agent is to be charged for payment by the number of
CPU cycles it consumes on the agent’s host, the attacked agent could be charged with
a high amount of money when the agent ends its execution process, even though the
agent’s own task requires only a small number of CPU cycles to processes it. This could
be due to an extra processing overhead consumed by the attacked agent to handle a
denial of service attacks from the malicious agent.

However, attacks such as masquerade, repudiation and denial-of-service from a ma-
licious agent do not raise any new security issues that do not arise in current computer
systems (Hohl, 1997, 2000). Many existing security mearures such as digital signature,
public key infrastructure and other cryptographic algorithms, such as DES and IDEA

could be use to overcome these attacks (Stallings, 1999; Pfleeger, 1997; Schneier, 1996).

3.3.2 Security Between Hosts

As in an ordinary computer host, an execution host has the capability to communicate
with other execution hosts to exchange information or set up transactions. This capa-
bility could lead to an internetwork security problem (Stallings, 1999; Pfleeger, 1997;

Ford and Baum, 2001). To illustrate the problem, consider the following cases:

41

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Host A transmits a file to Host B. The transmitted file contains sensitive infor-
mation, such as payroll records that need to be protected from disclosure. Host C
(the malicious host), which is not authorised to read the transmitted file, is able

to monitor the transmission and capture a copy of the file during its transmission.

The Certificate Authority (CA) server transmits a message to Host A. The mes-
sage instructs Host A to update its authorisation file to include the identities of
a number of new trusted hosts, which are to be given access to that host. Host
C (the malicious host) intercepts the message, alters its contents to add or delete
entries, and then forwards the message to Host A, which accepts the message as

coming from the CA server and updates its authorisation file accordingly.

Rather than intercept a message, Host C (the malicious host) constructs its own
message with the desired entries and transmits the message to Host A as if it had
come from the CA server. Host A accepts the message as coming from the CA

server and updates its authorisation file accordingly.

A message is sent from Host B to a Stock Broker Host with instruction for
various transactions. Subsequently, the investments lose value and the Host B

denies sending the message.

Host C (the malicious host) floods Host B with dummy messages to prevent Host

B providing services or obtaining resources needed to perform its own tasks.

Host C (the malicious host) pretends to be trusted host to access other host

confidential data or damage the system.

None of the above attacks are new to current computer systems (Hohl, 1997, 2000).

Common security protection such as authentication and authorisation can be applied

to overcome the problems without any modifications specific to agent technology (Hohl,

1997, 2000; Stallings, 1999).

42

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

3.3.3 Security Between Host and Unauthorised Third Parties

A host can interact with other entities both from outside and inside the host environ-
ment, which may include agents and other hosts. In an open and unsecured network
environment, these entities may attempt to disrupt, harm, or subvert the host, which
interacts with it (Hohl, 1998a; Mandry et al., 2001). For example, the entity could
masquerade as a trusted agent, and request access to services or resources for which it
is not authorised (Hohl, 1998a; Jansen, 2000). The entity could also intercept agents
or messages in transit to manipulate their contents, or simply replay the transmission
dialogue at a later time in an attempt to disrupt the synchronisation or integrity of
the agent, or the entity could intercept a shopping agent and replay it several times
to make the shopping agent buy more than the original shopping agent had intended
(Jansen, 2000).

This area does not introduce new security issues that differ from the security issues
in current computer system. Existing security mechanisms can be applied to address

the problems that exist in this area (Hohl, 1997; Mandry et al., 2001).

3.3.4 Security Between Agent and Execution Host

In this area, there are two security issues that need to be addressed (Hohl, 1997; Jansen,

2000):
e security of a host against a malicious agent, and

e security of an agent against a malicious host.

Security of a Host against a Malicious Agent

An execution host can easily be exposed to various security threats, such as a malicious
agent attacks, because the host has to provide an execution environment to support
the execution of incoming agents that originate sometimes from generally unknown
and untrusted host (Corradi et al., 1999b; Kun et al., 2000). For example, consider a

situation where a malicious agent masquerades as an authorised agent. In this example,

43

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

the malicious agent can easily gain access to services or resources of the execution host,

and use them in an unexpected and disruptive fashion. The malicious agent can also

shift the blame for any actions for which it does not want to be held responsible to

the agent it is pretending to be. This could damage the trust the legitimate agent has

established in an agent community and it associated reputation.

In the literature, there are many security protection methods have been developed

to protect the execution host against the malicious agent attacks, such as Sandboxing,

Digital “shrink-wraps”, and Proof-Carrying Code (West and Gloudon, 2003; Oppliger,

1999; Necula and Lee, 1998).

e Sandboxing. A “Sandbox” is a technique that protects the execution envi-
ronment of the host from malicious agent attacks (West and Gloudon, 2003).
The technique imposes security restrictions on privileges and access rights of the
agents that execute inside the execution host environment to prevent the agent
from damaging the execution host. Java is one of the well-known programming

languages that use this technique.

Digital “shrink-wraps”. Digital “shrink-wrap” is a technique that has been
pioneered by Microsoft in its Authenticode technology (Oppliger, 1999). This
technique is able to protect the execution host from the malicious agent attacks
by authenticating the arriving agent before the agent is executed. This done by
having the execution host inspect the arriving agent to identify the producer of

signed code and verify that the code has not been tampered with.

Proof-Carrying Code. Proof-Carrying Code (PCC) is a technique that has
been proposed to enable the execution host to determine whether the arriving
code (agent), which is provided by other hosts is safe to install and execute
(Necula and Lee, 1998). This technique uses an encoding of a proof provided by
the code producer, which is encoded in a form that can be transmitted digitally
to the consumer (the execution host) and then quickly validated using a specific

proof-checking process.

44

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

The solutions described above can be used to address the problem of a malicious
agent attacking a host without requiring any changes specific to agent technology.

Therefore, the security problem in this area is considered solved.

Security of an Agent against a Malicious Host

The problem of the execution host attacking the application (the agent) executing
inside the execution host environment is difficult to solve (Hohl, 1998a; Oppliger, 1999).
That is because existing security mechanisms were not devised to address attacks on
the application by the execution host (Hohl, 1998a; Oppliger, 1999; Jansen, 2000).
Normally in the current computer system, the party that maintains the execution
environment generally also employs the application. However, in agent technology, the
agent and the execution host are operated in most cases by different parties. This
situation leads to the problem of the malicious host (Mandry et al., 2001; Chan et al.,
2000; Schelderup and Olnes, 1999).

A malicious host can be defined as a party that is able to execute an agent that
belongs to another party and tries to attack that agent in some way (Hohl, 1998a;
Oppliger, 1999). The malicious host can exist anywhere along the agent route, pre-
tending to be a trusted host to deceive agents as a true and trusted destination to
launch attacks. For example, the malicious host pretends to be a trusted shopper host,
attracting shopping agents to its execution environment and attacks the executing
agents by extracting sensitive information, such as a credit card number, bank account
information, some form of digital cash, or other private information that is valuable to
the attacker. The malicious host could also deny the execution of an agent or terminate
the agent execution without any notification.

During the execution process of an agent in a remote host execution environment,
the entire agent code, data and state is exposed to the execution host. This offers a
greater opportunity for the malicious host to attack the agent that executing inside
the malicious host execution environment (Mandry et al., 2001; Schelderup and Olnes,

1999). For example, the malicious host could spy on an agent’s secret keys or electronic

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

cash, where the simple knowledge of the data results in loss of privacy or money (Hohl,
1998a). The malicious host could also manipulate the executing agent code with the
effect that the agent prefers the offer of a certain airline provider, regardless of the
price, or modify the shop list after setting the offer of the local airline provider as the
best offer (Hohl, 1998a).

Since the aspect of securing an application (an agent) against a malicious host is a
new security issue in computer science, and the existing security mechanisms are not
applicable to address the issue, there are very few propose solutions to the problem
of protecting agents against a malicious host is estimated in the literature (Oppliger,
1999; Corrads et al., 1999b; Hohl, 1998a). For that reason, this thesis will investigate
how to prevent the problem of a malicious host attacking an agent that is executing

inside the malicious host environment.

3.4 The Malicious Host Problem

The term attack has been defined in section 3.2 as extracting, spying on or changing
agent’s code, data or state.

In the literature, the problem of a malicious host attacking agents that are execut-
ing under the malicious host execution environment has been classified as a difficult
problem to be solved (Corradi et al., 1999a; Vigna, 1998; Chess et al., Mar., 1995).
This is due to the fact that different agents have been managed and executed by various
parties, the execution host has full access to all parts of the agents (i.e. code, data
and state), and also has total control on the agents execution (Diaz et al., 2000; Hohl,
1998b; Vigna, 1998). In addition, some researchers have declared that the problem of
malicious host is not solvable (Farmer et al., 1996a; Chess, 1998) and currently only a
few approaches exist that try to solve the problem entirely. These include Mobile Cryp-
tography (Sander and Tschudin, 1998a) and Time Limited Blackbox Protection (Hohl,
1998a), which are considered not mature enough to be used in real world applications
(Hohl, 2000).

Security protection of an agent can be divided into two categories: security pro-

46

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

tection for an agent that is in transit and security protection for an agent that is at
its destination host (Vigna, 1998; Reisner and Donkor, 2000; Kun et al., 2000; Chess,
1998). Security protection for the agent in transit is relatively simple. The sending
host could encrypt and digitally sign the entire agent, including its code, data and
state, such that only a true destination host will be able to read and execute the
agent. In addition, a few attacks such as traffic analysis, stolen keys and attacks on
the key-distribution infrastructure that could attack the agent in transit are mostly
well understood and could be addressed by current security mechanisms (Chess, 1998;
Schneier, 1996; Ford and Baum, 2001). However, once the agent arrives at its desti-
nation host, the agent is exposed to a severe problem of malicious host attack that has

rarely occurred in current computer systems (Hohl, 1997, 2000; Vigna, 1998).

3.4.1 The analysis of the Malicious host problem

To analyse the problem of malicious host, an example of a simple purchasing agent is
presented. In this example, the purchasing agent is required to buy an airline ticket
from virtual airline companies on the Internet on behalf of its owner. The purchasing
agent is equipped with a list of virtual airline companies, a credit card number, the

owner’s maximum budget and the owner’s travel information, as shown in figure 3.1.

homeAddress = “AstonUniv”;

airlineAddress = “Airline_A, Airline_B, Airline_C”;

creditcard = “200177773333™;

owner maximumbudget ="£5007;

travel information=""Departure=Birmingham, Destination=Kuala Lumpur, Departure Date=18/2/2004 ”*;
bestoffer=null;

bestofferairline Address=null;

Figure 3.1: A Purchasing Agent (data block) - adapted from Hohl (1997)

The journey of the purchasing agent starts when the owner of the purchasing agent
dispatches it on the Internet (see figure 3.2). The purchasing agent then migrates to
every virtual airline company in the owner list to ask for the price of the requested

ticket. If the price is lower than the maximum budget and lower than the lowest price

47

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

so far, the purchasing agent stores the new lowest price and the address of the virtual
airline company in its data variable (see figure 3.3). After visiting all the virtual airline
companies in the owner list, the purchasing agent then migrates back to the virtual
airline company that offers the lowest price and buys the ticket using its owner credit

card number, which the purchasing agent carries.

(Purchasing Agent
Home Host) e :

AstonUniv Host - PA Airline A Host
Purchasing B '_> AA
[Aoe dispatch P PA A
Agent (PA) P —

return to home host

l migrate

~Airline: C-Host:

Note: AAA ~ Airline_A Agent
ABA — Airline_B Agent PA ;
ACA — Airline_C Agent L R S

Figure 3.2: A Purchasing Agent Route

In this example, the purchasing agent carries items that are sensitive and confiden-
tial such as the credit card number, the owner’s maximum budget, the best offer and
best offer airline address. Those data items are vulnerable to attack.

To illustrate a malicious host attack, assume that Airline_C host, which is one of the
virtual airline companies in the example (figure 3.2), is a malicious host. During the
purchasing agent’s journey, the purchasing agent will visit all virtual airline companies
listed in the owner list including the Airline_C host, without knowing that the Airline C

host is a malicious host. As mentioned in section 3.4, the execution host has full access

48

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

1. public void startAgent() {

2

3 if (airline Address == null) {

4. airlineAddress[airline Index] = getAddress().getAddressOf(“Airline™);
S. dispatch(airlineAddress[airline Index]);

6 break;

7 }

8 if{airline Address[airline Index].offerprice < owner_maximumbudget) {
9. bestoffer = airlincAddress[airline Index].offerprice;

10. bestofferairlineAddress = airlineAddress[airline Index};

1. }

12. if(airlineIndex >= (airline Addess.length — 1) {

13 buy(bestofferairlinc Address, travel information, creditcard);

14. return(home);

15. }

16. }

Figure 3.3: A Purchasing Agent (code block) - adapted from Hohl (1997)

to all parts of the agent (i.e. code, data and state), and also has total control of
the agents execution. In this example, when the purchasing agent migrates to the
Airline_C host, the purchasing agent’s code, data and state will be accessible to the
Airline_C host. This gives the Airline_C host the opportunity to manipulate the existing
best offer, the best offer airline company and copy the purchasing agent’s credit card
number. Without security protection, the purchasing agent owner can detect none of

these attacks.

3.4.2 Malicious Host Attacks

This section discusses the different types of attack that could be theoretically launched
on an agent executing inside a malicious host execution environment.

Spying attack

A spying attack is used to gather information about the agent, especially the agent’s
sensitive information such as a credit card number, bank information and user purchase
requirement, which could be used by a malicious host in future attacks (Hohl, 1997,

Guan et al., 1999; Hohl, 1998a).

49

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Although a spying attack does not physically harm the agent or tamper with its
code, data or state, the attack could cause the problem of a leak of privacy from the
agent (Hohl, 1998a).

Spying attack by a malicious host is difficult to detect or prevent. This is due to
the fact that this attack does not leave any trace on the attacked agent (Hohl, 1998a,
1997).

Manipulation attack

Due to the fact that the execution host (malicious host) must be able to read and access
the entire agent in order to execute the agent, the malicious host can easily attack the
executing agent by manipulating its code, data and state (Hohl, 1997, 1998a). In this
attack, the owner of the agent may not know that the attack has happened. That
is because the malicious host may make subtle changes in the agent’s code, data and
state, which are difficult to detect but enable the malicious host to achieve its objective.
In addition, the agent that returns from a malicious host does not show any different
behaviour to distinguish it from an untampered agent, thus this attack is difficult to
detect and prevent.

To illustrate a manipulation attack, consider an example where a purchasing agent
is sent out to visit several airline servers in an open and unsecured environment to find
a suitable flight fare before booking the flight. One kind of attack by the malicious host
is to manipulate the executing agent with the effect that the agent prefers the offer
of a certain airline server, regardless of the price, or to modify the airline server list
after setting the offer of the local airline server as the best offer, forcing the purchasing
agent to purchase the required flight ticket from the local airline server and forcing the
purchasing agent to return to its home host without visiting all of the airline servers
on its original list.

This kind of manipulation attack is difficult to prevent. However if we can detect

it, we can avoid being tricked by the malicious host (Hohl, 1998a, 1997).

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Incorrect execution of code

Normally, once the agent arrives at its destination host, the host will be responsible
for providing the agent with an execution environment in which to execute the agent.
However, in a malicious environment, the malicious host can execute the agent in many
different way without changing the code or the control flow of the agent (Hohl, 1997,
1998a). For example, the malicious host could delay the execution of the agent, the
malicious host could jump within the executable code to execute the agent selectively,
or the malicious host could terminate the execution of the agent prematurely. However
if we able detect it, the possibility to be tricked by the malicious host can be avoided
(Hohl, 1998a, 1997).

Masquerading

The malicious host pretends to be a trusted host to deceive the agent to execute inside
its execution environment (Hohl, 1997, 1998a). In this attack, once the agent starts to
execute inside the malicious host execution environment, the malicious host can launch

other attacks, such as spying on or manipulation.

Denial Of Execution

Since the execution host has full control of the agent that is resident inside its execu-
tion environment, a malicious host could deny the execution of the agent (Hohl, 1997,
1998a). This is known as a denial of execution attack. For example, in the situation
where the malicious host knows about a time limited offer of another host, the mali-
cious host could delay the execution of the agent that is resident inside its execution
environment until the offer expires. In addition, the malicious host could totally refuse

to execute the agent to prevent the agent continuing its work.

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

3.5 Existing approaches for the malicious hosts prob-
lem

This section presents existing approaches that try to solve the problem of malicious

hosts. The approaches can be divided into three categories (Hohl, 1998b):

e protect agents using trusted hosts,
e protect agents against single attacks, and

e protect agents against all attacks.

3.5.1 Protecting agents using trusted hosts

This category comprises approaches that either employ a host infrastructure that is
operated by a single party (Organisational Solution), or approaches that allow agents
to migrate only to trusted hosts (Trusted Hosts) (Farmer et al., 1996b; Hohl, 1998b;
Sander and Tschudin, 1998a).

Organisational Solution

The organisational solution is an approach that uses one trustworthy party to maintain
the execution hosts and also to execute the agents (Hohl, 2000, 1998a). Normally, this
approach is implemented within the same organisation or company where only one
trustworthy party is required to maintain the execution hosts. Unfortunately, the
use of this approach will restrict the agent’s autonomy and require a critical mass of

infrastructure in order for it to be used (Hohl, 2000).

e Trusted Hosts

Trusted hosts is an approach that uses a separate trustworthy host to evaluate
the data that has been collected by the agent (Farmer et al., 1996b; Marques
et al., 1998). In this approach, both code and data of the agent are encrypted

and digitally signed and only the trusted host can read it. This guarantees

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

the confidentiality and integrity of the code and data. However, according to
Mandry et al. (2001), the problem of this approach is to find trustworthy hosts.
Furthermore, all of the collected data needs to be sent over the network, but only

a part may be actually used.

e Protect agents against single attacks

This category contains approaches that try to prevent a single malicious host
attack (Vigna, 1998; Yee, 1997; Meadows, 1997), and these approaches are set

out in the following subsection.

Reference State

Reference State is a mechanism that is able to detect most manipulation attacks from
the malicious host (Hohl, 2000). The mechanism consists of the variable parts (i.e. the
state) of an agent executed by a host, showing reference behaviour (i.e. the information
about agent activities during its execution session). It uses the next host in the agent’s
path to measure the difference in the variable parts of an agent computed from the
untrusted host on one hand and a reference host on the other hand. The input to the
reference states mechanism includes all of the data from outside the agent, such as
both communication with partners residing on other hosts and data received directly
by or via the current host. This includes the results from system calls such as random
numbers or the current system time (Hohl, 2000, 1999).

The Reference State mechanism was developed based on the “Cryptographic Traces”
approach (Vigna, 1998), but used different ways to check the resulting states. In the
cryptographic traces approach, the suspicions of the owner are used to start the check-
ing. However, in reference states mechanism, the checking is done in every case. In
addition, the reference states mechanism uses the next host in the agent’s path to check
the resulting state regardless of whether the next host is a trusted one or an untrusted
one. The decision has the disadvantage that a collaboration attack involving two or
more consecutive hosts cannot be detected (Hohl, 2000). The mechanism is able to

detect the attack if the resulting state is different from a reference state, arising from

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

20 homeHost=HomeAddress | 20 homeHost=www.HomeSweetHome.co.uk
21 targetHost=targetAddress | 21 targetHost=www.trader.co.uk

22 Time=systemTime 22 Time=14:15 PM
23 read(Price) 23 Price=100

24.1 if (userBudget > price) 24.1

24.2 Status = Accept 24.2

24.3 else 24.3

24.4 Status = notAccept 24.4

24.5 endif 24.5 Status = Accept

(a) (b)
Figure 3.4: (a): Code Fragment and (b): Trace of the Code

manipulation, write and incorrect execution attack. However, not every manipulation,
write and incorrect execution attack can be detected, only those which indeed result in
an incorrect state of the agent can be detected (Hohl, 2000, 1999). In addition, attacks
such as a read attack cannot be detected by the mechanism because these attacks do

not result in a different agent state.

Cryptographic Traces

Cryptographic traces is an approach for tracing the execution of a migrating agent
(Vigna, 1998). It allows the owner of the agent to check its agent’s execution traces at
each hosts in the route followed by the agent when an attempt to tamper with the agent
is suspected. In addition, the owner of the agent can prove, in case of tampering that
the agent could never have performed the claimed operations. This approach requires
each of the hosts visited by the agent to record the execution trace of the visiting agent
when it executes the agent (see figure 3.4b). The execution trace includes a sequence
of statements executed by the host and any related information obtained.

When the execution process of the agent has completed, the host creates a hash
of the trace and a hash of the resulting agent state. These hashes are signed by the
host and sent to the next host, together with the code and state of the agent. The

trace itself has to be stored by the host. The agent then continues to fulfil its task and

o4

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

returns to its home host afterwards.

Now, the agent owner can decide whether he wants to check the agent or not. In
case of suspicion, the owner of the agent can request the trace from the corresponding
hosts starting with the first host. After receiving the trace, the owner of the agent can
compare it with the one stored at the next host. If these traces are identical, the host
commits to this trace and the agent with its initial state is re-executed. In the case
that the statements used are input from the outside, the values recorded in the trace
are used. If a hash of the resulting state of the agent on the host is equal to the one
signed by this host (which can be provided also by the next host), this means that
the host did not cheat, and the checking process continues (Hohl, 1999). However, the
large size of the agent execution trace, even if the trace is compressed is a disadvantage

of this approach (Vigna, 1998).

Partial Result Authentication Codes

Partial Result Authentication Codes (PRAC) is a mechanism that provides forward
integrity of an intermediate agent state or a partial result that resulted from agent
execution process on a host (Yee, 1997). In this mechanism, instead of authenticating
the origins of a message, the mechanism authenticates the intermediate agent state or
partial results by using a cryptographic checksum.

The PRAC mechanism requires an agent and its owner to maintain, or incrementally
generate, a list of secret keys used in the PRAC computation. Once a key is applied
to encapsulate the information collected, the agent destroys it before moving onto the
next host, guaranteeing forward integrity. The forward integrity property ensures that
if one of the hosts visited is malicious, the previous set of partial results remains valid.
However, only the owner can verify the results since no other copies of the secret key
remains. As an alternative, public key cryptography and digital signatures can be
used in lieu of secret key techniques. One of the benefits of this mechanism is the
authentication of the results can be made a publicly verifiable process at any platform

along the way, while maintaining forward integrity.

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

However, the PRAC mechanism has a number of limitations (Jansen, 2000). The
most serious occurs when a malicious host retains copies of the original keys or key
generating functions of an agent. If the agent revisits the host or visits another host
conspiring with it, a previous partial result entry or series of entries could be modified
without the possibility of detection. Since the PRAC is oriented toward integrity and
not confidentiality, any host visited can view the accumulated set of partial results,

but this can be easily resolved by applying sliding key or other forms of encryption.

Double Integrity Verification

Double Integrity Verification is an approach that uses the combination of a one-way
collision-resistant hash function and a digital signature (Wang et al., 2002). As stated
by Wang et al. (2002), for each code module fabricated by the agent factory, a digest
using the hash function is computed, denoted as IMD (Intermediate Message Digest).
Another digest of the overall agent code, including the original agent body, together
with all the currently added code modules contributed to the value of OMD (Overall
Message Digest). Each time the agent roams to a trusted host (T'TP) in the SAFER'
community, both the IMD and OMD digests are updated and digitally signed by the
trusted host (see figure 3.5). For clarity, SAFER community is an infrastructure for
intelligent agent-mediated electronic commerce. It comprises of various components
and entities, such as the agent butler, agent factory and community administration
center (Zhu et al., 2000).

The task of integrity verification involves double verification of the digital signature
and hash value of both IMD and OMD. The verification of digital signatures indicates
whether or not the hash value is valid. IMD verification indicates whether the individ-
ual code part has been compromised, while OMD indicates the integrity of agent code
as a whole.

However, this scheme currently has been applied only within the SAFER commu-
nity, which is a closed network community and all of the hosts inside the SAFER

community are a certified trusted host. Therefore, the probability of the existence of

1Secure Agent Fabrication, Evolution and Roaming

o6

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

SAFER Community A
} Administration Centre l Trusted Host
(TTP)
8
=t Agent Charger l
& Agent Factory
g
g S)
= Clearing House
Agent Butler
‘ Bank ‘

i .

User Host 1 Host2 —========-=-=—- Host n

Figure 3.5: A SAFER Agent Community - adapted from Wang et al. (2002)

a malicious host is very low. In addition, if this approach is implemented in an open
and unsecured network environment, collaboration attack by consecutive hosts cannot

be detected.

Environmental Key Generation

Environmental key generation is an approach that allows an agent to take predefined
action when some environmental condition is occurs (Riordan and Schneier, 1998). For
example, an agent has a cipher-text message (a data set and a series of instructions) and
a method for searching through the environment for the data needed to generate the
decryption key. When the proper environment information is located (environmental
condition is triggered), the key is generated, the cipher-text is decrypted, and the
resulting plain text is acted upon. Unfortunately, if the agent is unable to find the
environment input to decrypt the cipher-text, the agent itself cannot decrypt its own
cipher-text.

In this approach, the environmental condition is hidden through either a one-way
hash or public key encryption of the environmental trigger. This mean that a host of
the agent cannot uncover the triggering message or response action by directly reading

the agent’s code (Jansen, 2000). However, the host could simply modify the agent

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

code to force the agent to print out the unlocked executable code upon receipt of the

trigger.

3.5.2 Protect agents against all attacks

This category contains approaches that try to protect an agent from any attack by a

malicious host (Sander and Tschudin, 1998a,b).

Time Limited Blackbox

Time limited blackbox is an approach that is able to protect an agent from most
malicious host attacks (Hohl, 1998a). This approach is based on an obfuscation algo-
rithm such as variable re-composition, conversion of control flow elements into value-
dependent jumps and deposited keys, where the strength of these algorithms does not
necessarily imply encryption mechanisms, but relies mainly on obfuscation algorithms.
The main strategy behind this approach is to scramble the agent’s code in such a way
that no one is easily able to gain a complete understanding of the agent’s code function.
After being input into the conversion mechanism (see figure 3.6), the agent appears
to be a blackbox to the intruders, where it becomes difficult to decode and analyse.
In addition, when a time factor is applied to this blackbox agent, the computations
carried by the agent are only valid within a period of time. If the intruders cannot
understand the blackbox within the time interval, the attack is claimed void. Since
an agent code may be invalid after certain period, this approach is suitable only for
applications that do not convey information intended for long-lived concealment.
Unfortunately, no known algorithm to fully provide blackbox protection exists so far
(Hohl, 1998a; Jansen, 2000). In addition, a serious drawback for this technique is the
lack of an approach for quantifying the protection interval provided by the obfuscation

algorithm, thus making it difficult to apply in practice (Jansen, 2000).

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Conversion Mechanism

Executable Agent

Agent (blackbox)

?

Parameters

Figure 3.6: A Blackbox Approach - adapted from Hohl (1998a)

Mobile Cryptography

Mobile Cryptography is an approach that uses encrypted programs as a method to
protect agents against malicious host attacks (Sander and Tschudin, 1998b,c,a). This
approach provides computation privacy for the agent to safely compute any computa-
tion and operate autonomously in untrusted computing environment. The approach
requires the execution host to execute an agent program embodying an enciphered
function (Jansen, 2000).

An example of an approach that uses encrypted programs as in the Mobile Cryptog-
raphy approach is the Computing with Encrypted Functions approach that has been
introduced in (Sander and Tschudin, 1998a). Figure 3.7 shows how the computing with
encrypted function approach works and the explanation of the approach is described

as below:

Alice has an algorithm to compute a function f. Bob has input x and he
willing to compute f(x) for Alice. However, Alice does not want Bob to
learn anything about function f. To address this problem, Alice transforms
the original function f to the encrypted function E(f) and creates a program
P(E(f)), that implements E(f). Since Bob receives an encrypted version
of function f, he does not have any knowledge about function f. Alice then
sends the program to Bob, the program is embedded within her agent. Bob

then runs the agent, which executes P(E(f)) on x, and returns the result to

29

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

(€)]
(2)
(3}
@
(5)
(6)

Alice
PR) A
SO T B
1
(@] 4
v) Bob
P (/) (x) 3

PEN) g @)y

Alice cnerypts f.

Alice creates a program P(E(/)) which implements E(/).
Alice sends P(E (f)) to Bob.

Bob executes P(E(/)) at x.

Bob sends P(E(f))(x) to Alice.

Alice decrypts P(E(/))(x) and obtains f(x).

Figure 3.7: Computing With Encrypted Functions - adapted from Sander and Tschudin

(1998a)

Alice who decrypts it to obtain f(x). If f is a signature algorithm with an
embedded key, the agent has an effective means to sign information without
the platform discovering the key. Similarly, if it is an encryption algorithm

containing an embedded key, the agent has an effective means to encrypt

information at the platform (Jansen, 2000).

However, this approach currently supports polynomials and rational functions only
and it is hard to find any appropriate encryption schemes to perform the approach
(Sander and Tschudin, 1998a; Jansen, 2000). In addition, the approach also does not

prevent attacks such as denial of service, replay, and extraction attack against the agent

(Sander and Tschudin, 1998a).

Code Obfuscation

Code obfuscation is a collection of approaches to obfuscate the code and the flow of
the program (Collberg and Thomborson, 2002; Collberg et al., 1997). These approaches
can protect an agent code from being reversed engineered by malicious host in order

to extract a valuable piece of code or information. The gencral idea is to make the

60

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

program look much more complicated than it really is by changing its structure, and
complicate the way data is represented.

In order to obfuscate the program, a number of transformations method can be
applied, which can result in a new program with the same functionality as the orig-
inal one but is much harder to analyse. In the literature, there are three types of

transformations:

e lexical transformations exchange names with variables, or replace them with

names without semantic value.

e control flow transformations are created by inserting special predicates in or-
der to make the flow of the program more complex, while obtaining its original

functionality.

e data flow transformations act on data structures by changing storage, encoding,

aggregation and order of data.

This code obfuscation approach might provide a medium of protection for an agent

against attacks by malicious hosts.

3.6 The Enabling Technology

This section presents the enabling technology that is used to support the implementa-

tion of the proposed security mechanisms.

3.6.1 The cryptographic protocol

Cryptographic protocols (also known as security protocols) are essential to protect the
applications. They are used to ensure identity (i.e. authentication), guarantee privacy,
exchange keys, and for many other purposes.

There are two widely used cryptographic protocols used to support the proposed

security mechanism:

61

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY
e Digital Signatures, and

e The RSA Crypotsystem

A Digital Signatures

A digital signature is a digital code that can be attached to an electronically transmitted
message that uniquely identifies the sender. Like a written signature, the purpose of a
digital signature is to guarantee that the individual sending the message really is who
he or she claims to be.

In this thesis, a combination algorithm between the Secure Hash Algorithm (SHA-
1) (NIST, 1993, 1994) and the RSA algorithm (Schneier, 1996; Russell and Gangemd,
1991; Devargas, 1993) is used as a signature algorithm.

The SHA-1 algorithm takes a message of less than 254 bits in length and produces
a 160-bit message digest. The message digest can then be input to the RSA Algo-
rithm, which generates or verifies the signature for the message (see Figure 3.8 and 3.9

respectively).

Message

\ 4

SHA -1

v

Message Digest

Private Digital
RSA Sign
) Operation)
Key Signature

Figure 3.8: Signature Generation using the SHA-1 with the RSA algorithm

The digital signature is generated using the digital signature function in Figure

3.10. This function implements the IAIK-JCE digital signature generator to generate

62

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Received Message

\ 4

SHA -1

v

Message Digest

\ 4

Digital Public
RSA Verify
) Operation (
Signature * Key

Yes — Signature Verified
or

No — Signature Verification Failed

Figure 3.9: Signature Verification using the SHA-1 with the RSA algorithm

the digital signature using

Signature genSig = Signature.getinstance (“SHAIwithRSA”);

To identify any unauthorised access from unauthorised parties that try to violate

the integrity of the data, all data have to be verificd using a digital signature verifi-

cation function shown in figure 3.11. This function implements the IAIK-JCE digital

signature verification to verify the digital signature using

Signature verifySig = Signature.getinstance (“SHA IwithRSA”);

Both functions are implemented in this thesis to protect the integrity of the data

and to prevent a repudiation attack from the malicious host.

63

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

public bytel[] genSignature(PrivateKey privKey, String(] plainText) {

byte[] sig=null;
byte(]l cipherText;
try {
Signature genSig = Signature.getInstance {("SHAlwithRSA") ;

genSig.initSign(privKey);

try |
for { int i=0; 1i<java.lang.reflect.Array.getLength plainText); i++) {
cipherText = plainText [i]. getBytes{};
genSig.update{ cipherText); //add msg to be sign

}
} catch(Exception e) {
System.out .println ("\n[Updating signature error] " + e.toString()) ;

}
sig = genSig.sign{();

} catch(Exception e){
System.out.println ("\n[Generating signature error] " + e.toString());

}

return sig;

Figure 3.10: A function that generates a digital signature written in Java

The RSA Crypvtosystem

The RSA cryptosystem is a public-key cryptosystem that offers both encryption and
digital signature (authentication) schemes (Rivest et al., 1998). This cryptosystem
enables users of an unsecured public network such as the Internet to securely and
privately exchange data through the use of a public and a private cryptographic key
pair that is obtained and shared through a trusted authority, e.g. Certificate Authority
(CA) host.

The RSA cryptosystem use public key cryptography for authenticating a message
sender or encrypting a message. In public key cryptography, a public and a private key
are created simultaneously using the same algorithm. The private key is given only
to the requesting party and the public key is made publicly available in a certificate

authority (CA) host that all parties can access. The private key is never shared with

64

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

public void verifySignature(PublicKey pubKey, byte(] inSig, Stringl]
plainText) {

boolean verifies=false;
byte([] inCipher;

try {
Signature verifySig = Signature.getlInstance ("SHAlwithRSA"Y) ;
verifySig.initVerify(pubKey) ;

for (int 1=0; 1i<java.lang.reflect.Array.getLength(plainText); i++) {
inCipher = plainText[i].getBytes();
verifySig.update{ inCipher); // add msg that need to verify

}

verifies =verifySig.verify{ 1inSig);

} catch(Exception e) {
System.out.println ("\n[Verifying signature error] " + e.toString());

}
}

Figure 3.11: A function that verifies a digital signature written in Java

anyone or sent across the Internet.

In this thesis, the RSA cryptosystem is used for the authentication and encryp-
tion scheme. For instance, if the Sender (S) wants to send confidential data to the
Receiver(R) (see Figure 3.12), using a public key cryptosystem, both the Sender (S,
and Ss) and the Receiver (R, and R,) have a pair of keys associated with them, one of
which is publicly known (S, and R,), the other one only known to the Sender (S;) or
the Receiver (I7,) respectively. In order to be able to encrypt and send the data to the
Receiver, the Sender must retrieve the Receiver’s public key (12,) from the Certificate
Authority host. The Receiver’s public key is used to encrypt data meant to be read by
the Receiver; the Receiver can decrypt the result using its private key: D = R (R,(D)).

The RSA cryptosystem is implemented using the RSA encryption function shown

in figure 3.13. This function using the IAIK-JCE RSA encryption generator as follows:

Cipher cipher = Cipher.getlnstance (“RSA”, “IAIK”);
cipher.init(Cipher. ENCRYPT_MODE, privKey);

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

Certificate Authority
Host

Receiver’s Private

Recciver’s
f Public Key (Ry) Key (R) {
. N o O
&
B >\ &

Encrypts and sends Reccives and decrypts
Ry(D) Ry(Rp(DD))

Figure 3.12: Public Key Infrastructure (RSA Encryption and Decryption Method)

public byte[] [] RSAencrypt { PrivateKey pvKey, String{] text) {
byte[] {] cipherText=new byte{ Jjava.lang.reflect.Array.getLength(text)]{};
byte[] textByte=null;
String tempStr = "";

try {
Cipher cipher = Cipher.getInstance ("RSA", "IAIK") ;
cipher.init(Cipher.ENCRYPT_ MODE, pvKey) ;

for(int i=0; 1i<java.lang.reflect.Array.getLength(text); i++) {
tempStr = addvalidStr(text[i]);
textByte = tempStr.getBytes() ;
cipherText [1i)}=cipher.doFinal(textByte);

} catch(Exception e) {
System.out.println ("\n[PKI encryption error] " + e.toString());

}

return cipherText;

Figure 3.13: The RSA encryption function written in Java

On the other hand, in order to decrypt the encrypted data, the function in figure

3.14 is implemented. This function implements the IAIK-JCE decryption command as

66

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

follows:

Cipher cipher = Cipher.getinstance (“RSA”, “IAIK”);
cipher.init(Cipher. DECRYPT_MODE,pubKey);

public Stringl] RSAdecrypt{ PublicKey pbKey, bytel[] [] cipherText) {
String{]l plainText = new
String{ java.lang.reflect.Array.getLength { cipherText}];
byte[] cipherByte=null;

String tempStr = "%;

try {
Cipher cipher = Cipher.getInstance ("RSA", "IAIK") ;
cipher.init(Cipher.DECRYPT_MODE,pbKey) ;

for (int i=0; i<java.lang.reflect.Array.getLength/(cipherText); i++) {
cipherByte = cipher.doFinal(cipherText{ 1il);
tempStr = new String(cipherByte) ;
plainText[i] = cutValidStr{ tempStr);

} catch(Exception e) {
System.out.println ("\n{PKI decryption error] " + e.toString());

}

return plainText;

Figure 3.14: The RSA decryption function written in Java

3.7 Research Formulation, Design and Procedures

3.7.1 Formulation of the research problem

This section formulates the research problem based on the review of literature covered.

Summary of the literature review findings

In this thesis, the literature review on the malicious host problem has led to the recog-

nition that:

e the lack of security protection has severely impeded the widespread use of agent

67

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

technology (Coulouris et al., 2001; Jansen, 2000; Oppliger, 1999; Corradi et al.,
1999b),

e existing security mechanisms were not devised to address attacks on the applica-
tion (the agent) by the execution host (the malicious host) (Hohl, 2000, 1998a;
Jansen, 2000), and

e the solubility of the problem of protecting agents against a malicious host attacks
is estimated in the literature to be very low (Oppliger, 1999; Corrads et al., 1999b;
Hohl, 1998a).

Based on the investigation and analysis conducted, new security mechanisms are
required to protect the agent against malicious host attacks.

In the literature, there are two main requirements that need to be considered in
protecting agents against malicious host attacks (Biehl et al., 1998; Schelderup and
Olnes, 1999; Sander and Tschudin, 1998a; Tripathi and Karnik, 1998; Abu Bakar and
Doherty, 2002):

1. The agent is able to protect the confidentiality of its code, data and
state. The agent is able to prevent the malicious host from learning information
about its code, data and state (Biehl et al., 1998; Schelderup and Olnes, 1999).
This is to guarantee the privacy of the agent against access by unauthorised

parties.

2. The agent is able to protect the integrity of its code, data and state.
The agent is able to guarantee the correctness of its code, data and state at all
time (Biehl et al., 1998; Schelderup and Olnes, 1999). This is to ensure that the
agent code, data and state are not being manipulated by the malicious host during
the agent execution process inside the malicious host execution environment and
prevent the agents from being “brainwashed” by the malicious host (Sander and

Tschudin, 1998a).

68

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

3.7.2 Research problem

This section outlines the problem, the purpose and the importance of this research.

Statement of the problem

The research problem is to provide security protection for agents that execute inside
an untrusted execution host against attacks by any malicious host encountered by the
agent. More spccilically, to design and develop conlidentiality and integrity protection
mechanisms for the agent in order to protect the agent’s confidentiality and integrity
against malicious host attack.
Purpose of study
The purpose of this study is to develop confidentiality and integrity protection mech-
anisms, which includes:

e the design and evaluation of a confidentiality protection mechanism for protecting

the agent against spying attack by the malicious host,

e the design and evaluation of an integrity protection mechanism for protecting the

agent against manipulation attack by the malicious host,
e the evaluation of agent architectures and migration patterns, and
e the development of a secured agent-based application that implements the pro-

posed confidentiality and integrity protection mechanism.

3.7.3 Research design and procedure
Research design

This research is conducted in three stages. These stages involved:

e the development of security protection mechanisms to protect the agent against

malicious host attacks,

69

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

e the evaluation of the proposed agent architecture, migration pattern, and the

performance of the proposed security protection mechanisms, and

e the development of an agent-based prototype to implement the proposed security

mechanisms.

Focus of the study

This study focuses on the problem of protecting agents against a malicious host attack,
specifically, spying and manipulation attacks by the malicious host. The reason for
focusing on that is to the inability of the existing security mechanisms to address those

kinds of attacks.

Outcomes from the study

The outcomes from this research provide the following:

e a confidentiality protection mechanism that is able to prevent spying attack from

the malicious host,

e an integrity protection mechanism that can protect the agents against manipu-

lation attack by the malicious host, and

e an agent-based application that is equipped with security protection that can
protect the agents against spying and manipulation attack from the malicious

host.

3.8 Concluding remarks

This chapter presents security issues of the agent technology. Four main security areas
of the agent technology that impede the wide spread use of agent technology in real
world applications have been identified and investigated. However, the work is focused
only on the security area involving malicious host because the aspect of securing an

application (an agent) against a malicious hosts is a new security issue in current

70

CHAPTER 3. SECURITY IN AGENT TECHNOLOGY

computer system, and the existing security mechanisms cannot be applied to address
the issue. Details of the malicious host problem have been discussed including analysis
of the malicious host problem, malicious host attacks and existing approaches that
address the problem. The formulation of the research problem based on the literature
review done, is also presented in this chapter. The statement of the problem, the
purpose of study and the importance of the study highlight the need for this research.
Finally, the research methodology, research design, limitations and outcome of the

study are presented.

71

Part 111

Proposed Security Mechanisms and

Prototype

72

Chapter 4

The Description of The Proposed

Security Mechanisms

4.1 Introduction

This chapter describes the proposed security mechanisms for protecting agents against
malicious host attack. The proposed security mechanisms aim to protect the confi-
dentiality and the integrity of the agent executing inside an unsecured remote host
execution environment, specifically against spying and manipulation attack by the ma-

licious host.

4.2 The proposed security mechanisms
There are two security mechanisms proposed as follows:
e the Random Sequence 3-level obfuscation algorithm, and

e the Recorded State Mechanism.

4.2.1 The Random Sequence 3-level obfuscation algorithm

The spying attack by the malicious host on an agent’s code, data and state is one of the

attacks that is difficult to solve, because the attack does not leave any trace that could

73

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

be detected (Hohl, 1998a). In addition, a host has to read the agent’s code, must have
access to agent’s data, and must be able to manipulate the agent’s variable data in
order to execute the agent. Therefore, the host can see all of the agent’s code including
data and state, thus making difficult any attempt to address malicious spying attack.

In order to overcome spying attack from the malicious host, this thesis proposes
an extension to the Conversion of Control Flow Elements into Value-dependent Jumps
algorithm (Hohl, 1998a). The proposed algorithm is named the Random Sequence
3-level(RS3) obfuscation algorithm (Abu Bakar and Doherty, 2003a).

The RS3 obfuscation algorithm consists of multiple polynomial equations for ob-
fuscating the actual value of the agent’s critical data to an obfuscated value that is
meaningless to the attacker. The polynomial function is selected because the function
is a monotonic function, hence suitable for values comparison purposes. A function is
said to be monotonic if is either always decreases or always increases. In this work,
it is strictly increasing, that is f(z') > f(z) for £ > z. In addition, a function can
also be proven monotonic if its first derivative does not change sign. The polynomial
function that is used in the work can be proven to be a monotonic function as below:

Given f(z) = az?® + bz + ¢, where a,b,c,z > 0. Let say a=2, b=500 and c=10.

i. for ' > z, then f(2') > f(z); If z = 5 and 2" = 10, f(5) = 2(5)? + 500(5) +
10 = 2560 and f(10) = 2(10)% + 500(10) + 10 = 5210. Therefore, for ' > =,
fla) > f(2).

ii. f'(x) does not change sign.
f'(z) = 2az + b and for a,b,c,z > 0, f (z) > 0.

Since the polynomial function used has been proven to satisfy both the conditions

for a monotonic function, therefore it is a monotonic function.
This algorithm can only obfuscate numbers and not characters, therefore, the al-

gorithm is only applicable to an agent-based application that carries numbers, such

as a shopper agent that buys goods based on the user budget. The RS3 obfuscation

74

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

algorithm can be divided into three levels, and each level consists of a sequence of three

polynomial equations (see Figure 4.1).

RS3
Alporithm

L1 Sl L 82 Lt S3

L2851 1282 1283 1.2 St 12382 1283 1.2 S1 1282 1283

L,} Si L,} S2 LJ S3i 1L3S1 llj S2 Lﬁ S3 l{,} St ll,} S2 iL} S3 lL] St 1L3 S2 11,3 S3 lLS S1 Lﬁ S2 L,} S3 LJ S1 lL} S2 l{.?& S3
LJ S1 41382 L..} S3 1.3S1 |I.3S2 (1383 1381]1L3S2 11383
[] ®
&

L. = Level
S = Sequence

Figure 4.1: The Structure of Random Sequence 3-level obfuscation Algorithm

Only one polynomial function will be selected randomly in each level by executing
the mod operation’. The selected function in each level together with multiple random
inputs will produce an obfuscated value that obfuscates the actual value of the agent’s

critical data (see Figure 4.2).

public double rs3(double budget,int randomNumber) {
int branch;
int newRnd = randomNumber;
for (int i=0; i<MAXLEVEL; i++) {
branch = newRnd % MAXLEVEL;
Random selector = new Random(branch) ;
newRnd = {int) {selector.nextDouble() * 1000000);

pbudget = polynomial (branch, budget, (newRnd % randomNumber), randomNumber) ;
}

return budget;

Figure 4.2: A Random Sequence 3-level obfuscation algorithm written in Java (shown
partially)

Ireturns the remainder after division of two integer numbers

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

The RS3 obfuscation algorithm operation

Since RS3 is implemented using master-slave agent architecture and operates on the
distributed migration pattern, the operation of the RS3 obfuscation algorithm can be

divided into two:

e home operation, and

e remote operation.

The home operation.

The home operation of the RS3 obfuscation algorithm is executed only inside the
agent originating host environment. This operation is controlled by the master agent,
which executes the conversion process of the RS3 obfuscation algorithm and dispatches
the slave agents, which carry an obfuscated value from the conversion process, to the
remote hosts. Only the master agent knows the actual value of agent’s critical data
and no information about the actual value of the agent’s critical data leaves the master
agent environment. The detailed operation of the RS3 obfuscation algorithm’s home

operation is described below:

The home operation of the obfuscation algorithm starts when the user sets
up the master agent. The master agent asks the user to provide it with
the user maximum budget, e.g. £500. After receiving the user maximum
budget, the master agent starts generating its first random number, e.g. 59.
The master agent then executes the mod operation of the random number
with the RS3 obfuscation algorithm maximum level number, which is 3,
that is 59 mod 3 = 2. The result is used to determine the selected sequence
in the first level of the RS3 obfuscation algorithm. In this example, the
remainder of 2 which is the selected sequence number means the third se-
quence in level 1 is selected because the first sequence in each level starts

with zero.

76

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

The polynomial function in the selected sequence is given by f(z) = az® +
bx + ¢ where the value of the constant a is the selected sequence number,
b is the user maximum budget, ¢ is the result of mod operation between a
new random number generated inside the current level using the previous
selected sequence number (which is 2) as a seed number and a fixed value
which is taken to be the first master agent random number obtained that
1s 09 and z is a fixed value which is the first master agent random number
obtained. This polynomial function is used to produce a polynomial result
(see figure 4.3) to substitute the value of the user maximum budget as one
of the inputs for the next level. For this example, at this stage, a = 2,

b = 500, ¢ = 731146 mod 59 and z = 59.

The new random number generated in the current level is used in determin-
ing a new sequence in the next level of the RS3 algorithm and the process
will continue until all levels of the RS3 algorithm have been executed. The
result gathered from the third level of the RS3 algorithm is an obfuscated
value of the user maximum budget that is use in the remote operation of
the RS3 obfuscation algorithm. Note that the Java random number is guar-
antee to generate identical sequences of random numbers on different Java

Virtual Machine (Sun Microsystems, 2004)

After the process of obfuscating user maximum budget is complete, the obfuscated

value is transfered to the slave agent, together with the first random number generated

by the master agent (which is 59) and the RS3 obfuscation algorithm. The slave agent

then is dispatched to the remote host to execute the given tasks.

The remote operation.

The main objective of the RS3 obfuscation algorithm is to enable the operation of
comparing confidential values within an unsecured remote host environment without

exposing the value to an unauthorised party. An example of a slave agent searching for

7

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

User Level |
Budget
Selected Sequence
Number
. Level !
First Random Random
Number Polynomial Function Nusmber mod
First Random
Number
level 2
Scicetad Scquence
Number Polynomist result
from fevel 1
First Random fevel2
Number Polynomisi Function Random
Number mod
First Random
Number
Sclected Sequence Level 3
Nunsber Polynomial resul E——
from levet 2
Level 3
Finst Rundom Polynomial Function __ Random
Nurber Number mod
First Random
Nugmber

A4

Figure 4.3: The RS3 Obfuscation Algorithm Obfuscation Process

a flight offer is used to show the remote operation of the RS3 obfuscation algorithm.
The remote operation of the RS3 obfuscation algorithm starts when the slave agent
arrives at the remote host environment. The detailed operation of the RS3 obfuscation

algorithm’s remote operation is described as below:

Once the slave agent arrives at the remote host environment, the execution
of the slave agent is started by the host. In the execution process, any
offer that was gathered from the remote host is converted by the slave
agent into an obfuscated value to be used in the comparing operation. The
only difference between home operation and remote operation of the RS3
obfuscation algorithm is in generating the first random number that is used
to start both obfuscation processes and the value of the user’s maximum
budget. In the remote operation, the first random number is supplied by
the master agent during the initial execution of the home operation which

1s 59 to ensure the same sequence of polynomial function is selected for

78

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

obfuscation operation whereas, in the home operation the random number
is generated by the master agent. The RS3 obfuscation algorithm uses the
remote host offer in place of the user budget in the obfuscation process

shown in Figure 4.3.

The vulnerabilities of RS3 obfuscation algorithm

Although the RS3 obfuscation algorithm is able to obfuscate the actual value of an
agent’s critical data to make it more difficult for the malicious host to spy, the malicious
host can execute multiple copies of the obfuscation algorithm in parallel in order to
analyse the algorithm quickly, making this obfuscation algorithm protection vulnerable.
This can be addressed by limiting the processing time available to the host before the
agent is discarded (Hohl, 1998a). However, the problem in determining an effective
protection interval that can prevent the malicious host from having enough time to
execute multiple copies of the obfuscation algorithm also makes it difficult for this
obfuscation algorithm to be implemented in real applications. In order to overcome the
problem of malicious host executing multiple copies of the RS3 obfuscation algorithm
and of determining an effective protection interval to protect the algorithm, noise code
(Ng and Cheung, 1999a,b) is introduced for the agent that executes in the remote host
environment. The RS3 obfuscation algorithm with noise code is described in the next

section.

The Random Sequence 3-level obfuscation Algorithm with Noise Code

The objective for implementing the noise code in the agent application is to hide the
actual obfuscated value among a numbers of fake obfuscated values in order to make
it more difficult for the malicious host to discover the true value of the agent’s critical
data (Ng and Cheung, 1999a,b). This is due to the fact that in order to discover the
true value of the agent’s critical data, the malicious host must first discover the actual
obfuscated value among a number of fake obfuscated values. Any wrong decision in

choosing the obfuscated value will result in determining a wrong value for the agent’s

79

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

critical data. For instance, if the agent is equipped only with the actual obfuscated
value, X without adding any noise code, the probability that the malicious host could
discover the actual obfuscated value by searching a range of values is one, i.e. P(X) = 1.

However, if noise codes E; (fake obfuscated values) are added to the agent, where

1

t=1,2,...,100 — 1, the probability of discovering the actual obfuscated value is 355

Hence, the probability of guessing the actual obfuscated value gets smaller as more noise
codes are added, i.e. P(X) — 100. This will make the actual obfuscated value difficult
to guess because the malicious host never knows the right obfuscated value. Figure 4.4
illustrates the effect of introducing noise codes into the agent application. In addition,
the time needed to guess the actual obfuscated value will delay the malicious host
in analysing the obfuscation algorithm. Therefore, the use of an effective protection

interval in enhancing the obfuscation algorithm protection could be less important.

An agent with one
obfuscated value

123 45 6 7 8 9 10

Noise Code \

(a number of fake + ‘The real obfuscated
obfuscated values) value

An agent with a
number of
obfuscated values

Figure 4.4: The Effcct of Adding Noise Codes Into The Agent Application - adapted
from Ng and Cheung (1999a,b)

Implementing RS3 obfuscation Algorithm with Noise Code

The operation of the RS3 obfuscation algorithm with noise code is almost the same as
the operation of the RS3 obfuscation algorithm without noise code. The only differ-

ence between these two obfuscation algorithms is in the number of obfuscated values

80

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

generated and added by the master agent into the slave agent application before the
slave agent is dispatched to the remote host execution environment to execute its tasks.

In the operation of the RS3 obfuscation algorithm without noise code, the master
agent only has to obfuscate the value of the user’s budget and add the obfuscated value
into the RecordedReadOnly container before dispatching the slave agent to execute its
tasks in the remote host execution environment. However, in the operation of RS3
obfuscation algorithm with noise code, the master agent has to generate more than
one obfuscated values, which serve as noise codes and add these obfuscated values into
the RecordedReadOnly container before dispatching the slave agent to execute in the

remote host execution environment (see figure 4.5).

Vector hostAddress = new Vector();
double newOftfer=0;

double bestOffer!, bestOffer2, bestOffer3;
URL bestShopl, bestShop?2, bestShop3;

if(NewObfuscationValue <= ObfuscationValucl)) //fake obfuscated value

bestOffer]l = newOffer;
bestShop! = hostAddress;
}else
if(NewObfuscationValue <= ObfuscationValue2)) //true obfuscated value

1
1

bestOffer2 = newOffer;
bestShop2 = hostAddress;
}clse
if(NewObfuscationValue <~ ObfuscationValue3)) //fake obfuscated value

!
t

bestOffer3 = newOfier;
bestShop3 = hostAddress;

}

Figure 4.5: A Slave Agent Program added with Noise Code (data block)

To illustrate, the noise code is an obfuscated value that is generated by the master
agent from a fake user budget value. This fake user budget value is created by adding
or subtracting a random number from the actual user budget value. For example, let
say the actual user budget value is 500. To create a fake user budget value, the master
agent needs to generate a random number, e.g. 176, and add or subtract the random

number from the real user budget value. If the master agent chooses to add the random

81

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

number to the real user budget value, the fake user budget value becomes 676. This
value is then obfuscated using the RS3 obfuscation algorithm. On the other hand, if
the master agent chooses to subtract the random number from the real user budget
value, the fake user budget value becomes 324. The RS3 obfuscation algorithm will
be applied to obfuscated that value. To generate more spurious obfuscated values, the
master agent has to generate more random numbers and repeat the process described
above.

Once the obfuscation process in the home host is completed, the master agent
dispatches the slave agent together with all the generated obfuscated values to the
remote host to execute its given tasks. In the remote host execution environment, the
slave agent starts its execution process by converting any offer that was gathered from
the remote host into an obfuscated value to be used in the comparing process. For
example, if the slave agent has 4 obfuscated values (one real and three fake values), the

slave agent has to execute 4 comparisons comparing the offer with each budget value.

4.2.2 The Recorded State Mechanism

To address manipulation attacks from an execution host, this thesis proposed the
Recorded State Mechanism (RSM) (Abu Bakar and Doherty, 2002, 2003b). The RSM
is developed from features of Reference States Mechanism (Hohl, 2000), Cryptographic
Traces (Vigna, 1998) and State Appraisal (Farmer et al., 1996a). However, instead of
using the next host in the agent travel sequence to check the recorded state, where good
execution performance is achieved but the agent is exposed to collaboration attacks,
the RSM mechanism uses the master agent, resident in the home host, to do the
checking, and multiple slave agents to do the travel, thus preventing a collaboration
attack. Furthermore, the checking process is done automatically in every case without
waiting for a suspicious owner to start it, giving prompt warning that an attack has
occurred.

The mechanism uses Java object serialisation to capture the state information of

the agent. This is due to the fact that Java object serialisation offers an easy way to

82

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

capture the state of Java objects that exist in the agent application (Funfrocken, 1998).

The Recorded State Mechanism Containers

The RSM consists of three different kinds of container that are provided to an agent,
executing inside a remote host execution environment. These different kinds of con-
tainer are used to separate out three different type of data: read-only, execute-only and
collect-only data, which are carried and collected by the agent inside a remote host
execution environments. The categorisation of different types of data using these con-
tainers is useful for the RSM evaluation process because it helps the evaluation process

to easily identify and analyse specific data in a short time. The three containers are:

e RecordedReadOnly container,
e RecordedExecuteOnly container,

e RecordedCollectOnly container.

The RecordedReadOnly container

An agent’s program often contains some read-only data as part of its state. For in-
stance, the user’s purchase requirement data in a buyer agent should not be modifiable
by anyone other than its owner, and thus are read-only during the agent’s travels.
Without any security protection, this read-only data could easily be tampered with by
the malicious host. This is due to the fact that the execution host is able to access
all parts of the agent during the agent execution session and has knowledge on the
physical location of the agent data in its memory (Hohl, 1997). Thus even though the
agent data is known to the execution host, it is essential to have a security mechanism
that can protect this data.

In the RSM, the agent’s read-only data is contained in the RecordedReadOnly
container. In order to protect its integrity, the read-only data inside the container is
digitally signed by the owner of the data and then encrypted with a particular host’s

public key before it leaves the owner host. This is to guarantee the integrity of the

83

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

data and to avoid any unauthorised parties such as the malicious host easily accessing

or tampering with the data without being detected by the agent owner.

The RecordedExecuteOnly container

Once the agent arrives at a remote host execution environment, the agent is fully under
control of the remote host. Thus it opens greater opportunities for the remote host to
abuse the agent. To overcome this problem, the execution activities of the agent inside
the remote host execution environment need to be recorded. This is to enable the
owner of the agent to detect any malicious activities that might occurred during the
agent execution process inside the remote host execution environment and to provide
proof in case of tampering that an alleged operation of the agent could have never been
performed.

In the RSM, the execution activities of the agent are recorded in the RecordedEx-
ecuteOnly container. The owner of the agent set the agent to store specific agent state
information such as the agent’s execution results, i.e. Flight not available or Flight
found, executing agent’s 1D, and executing agent’s data. The agent execution activi-
ties continue to be recorded into the RecordedExecuteOnly container until the agent
has completed its tasks in the remote host environment. Before the agent returns to its
originating host, the RecordedExecuteOnly container is digitally signed by the remote

host.

The RecordedCollectOnly container

The RecordedReadOnly container has a limited utility in that it only serves the kind
of data that remains constant throughout the agent’s travels. In some situations, the
agent needs to collect data such as an offer or input data from the remote host that it
visits.

In the RSM, collectable data is stored into the RecordedCollectOnly container.
This container will store any input received from the host during the agent execution

process. In order to prevent any subsequent modification from unauthorised parties or

84

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

the malicious host, and to guarantee the integrity of the collected data, the data inside
the container needs to be digitally signed by the remote host before the agent returns

to its originating host.

The Recorded State Mechanism operation

Since the Recorded State Mechanism is implemented using master-slave agent architec-
ture and operates on the distributed migration pattern, the operation of the Recorded

State Mechanism can be divided into three:

e home operation,
e remote operation, and

e cvaluation operation.

Home operation

The home operation of the RSM (Recorded State Mechanism) starts when the mas-
ter agent that is executing inside the home host execution environment executes the
mechanism. During this operation (home operation), the master agent will store the
read-only data such as the user’s purchase requirement in the RecordedReadOnly con-
tainer, digitally sign the container and encrypt it using the targeted remote host’s
public key that was retrieved by the master agent from the Certificate Authority (CA)
host. The master agent then equips each of the slave agents with a RecordedReadOnly
container, a RecordedExecuteOnly container, a RecordedCollectOnly container, mas-
ter agent’s public key, and targeted remote host address before dispatching the slave

agents to the targeted remote host.

Remote operation

The remote operation of the Recorded State Mechanism starts when the slave agent
arrives at the remote host environment. Once the slave agent has been started by the

remote host, the slave agent starts its execution process to execute its given tasks.

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

During the slave agent execution process, the execution data of the slave agent
is recorded by the slave agent in a RecordedExecuteOnly container. In this process,
specific execution data (e.g. executing agent’s ID, data and originating host informa-
tion), which have been determine previously by the master agent for the slave agent to
record, will be recorded by the slave agent. On the other hand, any input data from
the remote host including the result is recorded in a RecordedCollectOnly container.

Upon returning to the home host, the remote host signs the RecordedExecuteOnly

and the RecordedCollectOnly containers.

Evaluation operation

The final operation of the Recorded State Mechanism, which is evaluating the Record-
edReadOnly, RecordedExecuteOnly and RecordedCollectOnly containers, starts when
the slave agent returns to the home host. This operation is executed by the mas-
ter agent to detect manipulation attack by the malicious host that might attack the
slave agent during the slave agent execution process inside the remote host execution

environment. There are two-sub evaluation processes that will be executed:
1. digital signatures verification, and
2. data verification.

The digital signatures verification is a process that is executed to check the integrity
of the RecordedReadOnly, RecordedExecuteOnly and RecordedCollectOnly data. In
this process the master agent uses the visiting remote host public key to verify the
RecordedReadOnly, RecordedExecuteOnly and RecordedCollectOnly containers digi-
tal signatures. An unverified digital signature will indicate that the containers have
been tampered. This will cause the slave agent including its data and state to be dis-
carded, and the visited remote host address is added to the blacklist address database.
Otherwise, the containers are forwarded to the data verification process.

The data verification is a process to detect attacks by the malicious host. In this

process, the Recorded State Mechanism containers entries will be analysed by the mas-

86

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

ter agent. The entries in the RecordedReadOnly, RecordedExecuteOnly and Record-
edCollectOnly will be compared. Any mismatch entries indicates that an attack had
happened.

One possibility is to check for manipulation attack, where the offer value in the
RecordedExecuteOnly and RecordedCollectOnly containers are not the same. For
example, lets say the user budget in the RecordedReadOnly container is set at 150
pounds, and the offer given by the remote host in the RecordedCollectOnly is 100
pounds which is within the user budget. However, the lowest ofler recorded by the
RecordedExecuteOnly container is 170 pounds. As mentioned earlier, different offer
values in the RecordedCollectOnly and RecordedExecuteOnly containers show that an
attack had happened.

Another possibility is to check for incorrect execution attack by re-executing the
Random Sequence 3-level obfuscation algorithm on the offer value given in the Record-
edCollectOnly container. If the obfuscated value obtained is not the same as the obfus-
cated value recorded in the RecordedExecuteOnly container that means that incorrect
execution attack has occurred.

Checking for manipulation attack on the read only data is another possibility. One
example is an attack on the user budget value. The user budget value in the Record-
edReadOnly container is compared with the user budget value in the RecordedExe-
cuteOnly container. Any mismatch in the value means that manipulation attack had
occurred since the read only data should be the same.

Cloning attack is another possible attack that can be traced by the Recorded State
Mechanism. This can be done by comparing the agent identification number recorded in
the RecordedReadOnly container, which is recorded by the agent before it is dispatched
to the remote host with the agent identification number in the RecordedExecuteOnly
container, which is recorded during the agent execution process in the remote host
environment. If the number is not the same, it means that cloning attack has happened.

If any of the mentioned attacks above are detected, the slave agent’s data and state

will be discarded and the visited remote host address will be added to the blacklist

87

CHAPTER 4. THE DESCRIPTION OF THE PROPOSED SECURITY MECHANISMS

address database.

4.3 Concluding remarks

This chapter presented the description of the Random Sequence 3-level obfuscation
algorithm and the Recorded State Mechanism. The RS3 obfuscation algorithm provides
us with a mechanism to hide information and prevent a spying attack. The Recorded

State Mechanism provides us with the potential to detect manipulation attacks.

88

Chapter 5

The Secure Flight Finder

Agent-Based System

5.1 Introduction

This chapter describes the design and development of a Secure Flight Finder Agent-
Based System (SecureFAS), which serves as a test bed system for implementing and
testing the proposed security mechanismis.

The objective of the SecureFAS is to search for the best flight offer (lowest (light of-
fer) among unsecured virtual airline hosts in the Internet that is managed by untrusted
parties. The scenario used is slightly more complex than the simple lowest flight offer
scenario mentioned earlier. This is due to the SecureFAS design requirements that will

be explained in the next section.

5.2 The SecureFAS design requirements

One of the aims of this research is to design and develop a prototype system to im-
plement the proposed security mechanisms (Aim 3). To meet this aim, the design

requirements for this prototype system are:

1. the ability to simulate a real world application, and

89

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

2. the ability to test the functionality of the Random Sequence 3-level obfuscation

algorithm and the Recorded State Mechanism.

The first. SecureFAS design requirement is fulfilled by selecting a flight finder sce-

nario for a real world application simulation due to the following reasons:

e the selected scenario has been used in many real world applications (FlightFound,

2004; Travelocity, 2004; Couriertravel, 2004),

e the selected scenario has been used as an example in the literature in order to
explain the malicious host problem (Hohl, 1997; Berkovits et al., 1998; Farmer
et al., 1996a; Yee, 1997),

e the selected scenario requirement for an agent together with its sensitive informa-
tion such as user maximum budget and user purchase requirement to be trans-
ferred to the remote host in order to find a flight information and fare, enables a

malicious host attack scenario to be illustrated.

The second SecureFAS design requirement is fulfilled by implementing both security
mechanisms in the SecureFAS prototype system to find the best flight offer among many
other virtual airline hosts in the Internet. The Random Sequence 3-level obfuscation
algorithm is used to prevent the data from being spied upon, and the Recorded State

Mechanism is used to detect manipulation attacks.

5.3 The SecureFAS design

The SecurelFAS is designed from the integration of two sub systems (components):

e the SecureFAS Master Agent system, and

e the SecureFAS Slave Agent system.

90

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

5.3.1 The SecureFAS Master Agent system

This section describes the design of the SecureFAS Master Agent system that is shown

in Figure 5.1. The SecureFAS Master Agent system process consists of:
e Initialisation,
e Cryptographic key registration,
e Filtering bad addresses,
e Cryptographic key retrieval,
e Obfuscating data,
e Storing read-only data,
e Generating and dispatching slave agent,
e Evaluation, and

e Compare offers collected by the slave agents.

Initialisation

The initialisation process of the SecureFAS Master Agent system begins when the Se-
cureFAS user starts up the SecureFAS Prototype application. Once the SecureFAS
Prototype application has been started up, the SecureFAS Master Agent starts gen-
erating a public and a private cryptographic key by executing the RSA cryptosystem
algorithm. This algorithm produces 1024 bit private and public keys that are useful for
implementing digital signature and public key infrastructure (PKI) used throughout
the SecureFAS operation. After generating a pair of cryptographic keys, the Secure-
FAS Master Agent prompts the user to input the user’s specific purchase requirement
and the list of virtual airline hosts addresses. The user’s specific purchase requirement
contains the user’s flight information, such as the flight destination and its origin, the

departure date, the passenger information including the number of passengers and the

91

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

- start up the SecureFAS Master Agent

¢ - generate cryptographic keys

- input user’s specific purchase requirement
- input a list of virtual airline host addresses

Initialisation

Cryptographic Key . register SecureFAS home host’s
Registration public key with the Certificate

Authority (CA) host
DB of blacklisted

addresses Pl Filtering Bad Addresses

- request a list of : ¢
virtual airline host’s
public key from :
Certificate Authority :
(CA) host H

Cryptographic
Key Retrieval

v

- digitally sign and

Stored Read-Only data encrypt the container

v

Generating and dispatching - equip with a recorded read -only, execute -
SecureFAS Slave Agent only and collect -only container, and
SecureFAS home host’s public key

AS Slave Agent returns, start

- blacklist the visiting host
address if any malicious
outcome detect ed during the
evaluation process I DBof —

.. * blacklisted
addresses l

Compare offers collected
by the slave agents

- once the SecureF
¢ verifying all its containers.

i - cvaluate the content of the recorded
cxecute-only state container

Evaluation

FUsclect the best offerand
display the result to the
SecureFAS user

End

Figure 5.1: The SecureFAS Master Agent System

passenger type (such as adult, child or infant), and the user’s maximum budget. The

list of virtual airline hosts addresses contains the suggested virtual airline hosts ad-

92

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

dresses to be visited by the agent in order to find the best flight offer that fulfils the

user’s specific purchase requirement.

Cryptographic key registration

To enable each of the participant hosts in the SecureFAS implementation environment
to securely and privately exchange data in the Internet, each of them needs to register
their public key with the Certificate Authority (CA) host. In the SecureFAS Prototype
application system, the SecureFAS Master Agent will register the SecureFAS public
key to the CA host to enable other hosts to share or exchange data with it. For
example, in order to verify the SecureFAS’s data, which has been digitally signed by
the SecureFAS Master Agent using the SecureFFAS private key, the other hosts need to
obtain the SecureFAS’s public key from the CA host. Only a valid SecureFAS’s public

key from the CA host is able to verify the SecureFAS’s digital signature.

Filtering bad addresses

The aim of this process is to prevent the SecureFAS Slave Agent from migrating to a
host that is suspected to be the malicious host. To fulfil this aim, once the SecureFAS
Master Agent had received a list of virtual airline hosts’ addresses from the SecureFAS
user, the list has to be filtered by the SecureFAS Master Agent by comparing it with
the SecureFAS host’s blacklist address database. The SecureFAS Master Agent will
remove the host address that matches the SecureFAS host’s blacklist address database,
and forward only “clean” addresses (addresses that do not match with the SecureFAS

host’s blacklist addresses) to the next stage.

Cryptographic key retrieval

Since the SecurelFAS prototype system implements the public key infrastructure (PKI)
to securely and privately exchange data in the Internet using a public and a private
cryptographic key, the public key of each participating virtual airline hosts needs to

be obtained from a CA host. This is essential for encrypting the SecureFAS data

93

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

before the data can be dispatched to a particular virtual airline host together with the
SecureFAS Slave Agent. However, the SecureFAS Master Agent will obtain only a list

of clean host’s public keys from the CA host and these keys are forwarded to the next

stage.

Obfuscating data

To prevent the malicious host from spying on the SecureFAS Slave Agent’s confiden-
tial data during the SecureFAS Slave Agent execution session inside the malicious
host execution environment, the SecureFAS Master Agent uses an obfuscating mecha-
nism. The obfuscation mechanism is used by the SecureFAS Master Agent to obfuscate
the user’s maximum budget. Before the SecureFAS Slave Agent is dispatched by the
SecureFAS Master Agent to the remote host to execute it’s given tasks, the user’s
maximum budget is converted by the obfuscating mechanism into an obfuscated value.
The obfuscated value is carried out by the SecureFAS Slave Agent into the remote host
execution environment. The true value of the user’s maximum budget will remain with
the SecureFAS Master Agent inside the SecureFAS host. The obfuscated value from

this stage is forwarded to the next stage for further process.

Storing read-only data

In order to prevent unauthorised parties from eavesdropping on SecureFAS data, espe-
cially the read-only data that contains the user specific purchase requirement, in transit
or gaining access to the data by pretending to be the destination host, the SecureFAS
read-only data is stored in the RecordedReadOnly container in an encrypted form, after
being digitally signed by the SecureFAS Master Agent. The read-only data is digitally
signed by the SecureFAS Master Agent using the SecureFAS host’s private key and
encrypted using the destination host’s public key that was obtained from the CA host.
Only the SecureFAS host’s public key can be used to verify the read-only data integrity
and only the destination host’s private key can be used to decrypt the encrypted read-

only data. Once the read-only data has been digitally signed and encrypted by the

94

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

SecureFAS Master Agent, the RecordedReadOnly container is forwarded to the next

stage for further process.

Generating and dispatching Slave Agent

The use of the master-slave agent architecture in the SecureFAS prototype application
allows the SecureFAS Master Agent to delegate tasks to SecureFAS Slave Agents in
order to increase the SecureFAS performance in term of its processing speed. Once
the SecureFAS Master Agent receives a list of the virtual airlines’ public keys from
the cryptographic key retrieval phase, the SecureFAS Master Agent starts generating
the SecureFFAS Slave Agents to delegate the user tasks. The number of the Secure-
FAS Slave Agents generated by the SecureFAS Master Agent is based on the number
of the virtual airline host’s public keys received from the cryptographic key retrieval
phase. In order to enable each of the SecureFAS Slave Agents to execute the given
tasks inside a particular virtual airline host execution environment, each of the Secure-
FAS Slave Agents is equipped with the Recorded State mechanism, which contains the
RecordedReadOnly container, the RecordedExecuteOnly container and the Recorded-
CollectOnly container, the obfuscation algorithm, and the SecureFAS host’s public key.
The SecureFAS Master Agent then dispatches each of the SecureFAS Slave Agents in
parallel to a particular virtual airline hosts and waits until the SecureFAS Slave Agent

finishes its task and returns to the SecureFAS host.

Evaluation

"The evaluation process of the SecureFAS prototype system is required in order to carry
out the evaluation phase of the Recorded State Mechanism (see to Section 4.2.2). This
process s started when the SecureFAS Master Agent receives the returning SecureFAS
Slave Agent. The evaluation process on the returning SecureFAS Slave Agent can be

divided into two main processes as follows:

1. the SecureFAS Evaluation Agent (generated by the SecureFAS Master Agent for

the evaluation process) verifies the signature on three Recorded State Mechanism

95

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

containers, the RecordedReadOnly, the RecordedExecuteOnly and the Record-
edCollectOnly using the visited virtual airline host’s public key obtained by the
SecureFFAS Master Agent from the CA host. If any of the signatures could not
be verified, the SecureFAS Slave Agent, including its data and state, will be dis-
carded and the visited virtual airline host address is added to the blacklist address
database. This action is taken in order to filter any malicious host interference
with the SecureFAS Slave Agent result. Once both Recorded State Mechanism
containers have been verificd, the SecureFAS Evaluation Agent will start the final

evaluation process on the SecureFAS Slave Agent.

. the SecureFAS Evaluation Agent analyses the contents of the RecordedExecu-
teOnly container and RecordedCollectOnly container that were recorded during
the Securel’AS Slave Agent execution process and also the contents of the Mas-
ter Agent’s RecordedReadOnly container that were created by the Master Agent

before the SecureFAS Slave Agent was dispatched.

The evaluation process is done by the master agent by comparing, for example,
the slave agent’s ID recorded inside the RecordedReadOnly container with the
slave agent’s ID recorded inside the RecordedExecuteOnly container. If any mis-
match result is produced from the process, the SecureFAS Slave Agent, including
its data and state, will be discarded and the visited virtual airline host address is
added to the blacklist address database. This is to guarantee that the SecureFAS
Slave Agent result is genuine and free from any malicious host attacks. On the
other hand, if the analysis process is successful, the offer and the virtual airline
host information are extracted from the SecureFAS Slave Agent and stored in
the SecureFAS Master Agent’s result container. For other examples on detecting

the malicious host attack, see section 4.2.2.

The evaluation process on the returning SecureFAS Slave Agent will continue un-

til all the SecureFAS Slave Agents have returned or the evaluation time set by the

SecureFAS Master Agent has expired.

96

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

Compare offers collected by the slave agents

This process begins once the SecureFAS Master Agent has finished evaluating the
SecureFAS Slave Agents. In order to select the best offer, that is the lowest flight
price, the SecureFAS Master Agent browses all the SecureFAS Slave Agent’s results in
the result container. Only the best is selected and the virtual airline host information
for the best offer is extracted from the SecureFAS Master Agent result container. This

information is displayed to the SecureFAS user.

9.3.2 The SecureFAS Slave Agent system

This section describes the design of the SecureFAS Slave Agent system shown in Figure

5.2. The SecureFAS Slave Agent system process consists of:

e Initialisation,

e Hstablish connection,

Decrypt and verify,

Search flight date,

Search flight, and

Return to SecureFAS host.

Initialisation

The initialisation process of the SecureFAS Slave Agent system begins when the des-
tination host starts up the SecureFAS Slave Agent application. Once the SecureFAS
Slave Agent has been started up, each of the processes executed by the SecureFAS
Slave Agent in the destination host execution environment will be recorded in the
RecordedExecuteOnly container and any input received from the destination host will
be recorded in the RecordedCollectOnly container, until the SecureFAS Slave Agent

leaves the destination host execution environment to return to the SecureFAS host.

97

CHAPTER 5.

Search flight fare

THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

Establish connection

v

Decrypt and verify

- decrypt by the local agent using
its host’s private key
- verify by the SecureFAS Slave

>

Agent using its home host

s public key

Search flight date

Search flight

Record message
“flight not available™

Record message

“flight too expensive”

A 4

Record message
“the departure date not

match”

Return to SecureFAS
host

End

Figure 5.2: The SecureFAS Slave Agent System

98

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

The recorded data in both containers allow the SecureFAS Evaluation Agent in the
SecureFAS host to analyse the SecureFAS Slave Agent, in order to detect any ma-
liclous activities that have tried to tamper with the SecureFAS Slave Agent process
during SecureFAS Slave Agent execution session inside the destination host execution

environment,.

Establish connection

As in the client-server concept, in order to enable the SecureFAS Slave Agent to com-
municate or execute any transaction with the destination host, the SecureFAS Slave
Agent has to establish a connection with the destination host’s local agent. The dif-
ference between these two concepts is in the way the connection is established. In the
client-server, the connection is established over the network, while in the agent-based
system, the connection is established inside the destination host execution environment,
allowing the visiting agent to take advantage of exploiting resource near the data source
and thus reducing network traffic (Wang et al., 2002). In the SecureFAS Slave Agent
system, once the SecureFAS Slave Agent’s initialisation process has completed, the Se-
cureFAS Slave Agent starts searching for the destination host’s local agent. Once the
SecureFAS Slave Agent found it, the SecureFAS Slave Agent will establish a connection

with the local agent and will start executing its given tasks.

Decrypt and verify

In the SecureFAS prototype system, the RecordedReadOnly container that contains
the user’s specific purchase requirement data is encrypted by the SecureFAS Master
Agent using the destination host’s public key and digitally signed using the SecureFAS
host’s private key before being dispatched to the destination host. This is to protect the
data of the RecordedReadOnly container from being accessed by unauthorised parties
and also to protect its integrity.

In order to enable the SecureFAS Slave Agent to use the data inside the Recorde-

dReadOnly container during its execution session inside the destination host execution

99

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

environment, the data of the RecordedReadOnly container needs to be decrypted and
verified by the local agent of the destination host. Since the data in the Recorded Read-
Only container was encrypted by the SecureFAS Master Agent using the destination
host’s public key, the data of the RecordedReadOnly container can only be decrypted
by the local agent of the destination host using the destination host’s private key and
verified using the SecureFAS host’s public key. To decrypt the data of the Recorde-
dReadOnly container, the SecureFAS Slave Agent needs {0 send the encrypted Record-
edReadOnly container to the local agent of the destination host. Once the local agent
of the destination host receives the RecordedReadOnly container, the local agent starts
decrypting the data of the container using its host private key and verifying it using
the SecureFAS host’s public key, before sending the data back to the SecureFAS Slave
Agent for further actions. Once the SecureFAS Slave Agent receives the version of
unencrypted RecordedReadOnly container from the local agent, the SecureFAS Slave
Agent has to verify the RecordedReadOnly container using its SecureFAS host public
key to ensure that the data in the RecordedReadOnly container has not been tampered
with by the destination host or unauthorised parties during the process of dispatching
the SecureFAS Slave Agent from the SecureFAS host to the destination host and dur-
ing the process of the RecordedReadOnly data decryption inside the destination host
execution environment. Once verified, the SecureFAS Slave Agent continues to execute

the next stage.

Search flight date

The SecureFAS Slave Agent executes the search flight date process in order to check
the flight availability that suits the SecureFAS user requested date. If the local agent
responds with the message “the departure date not match”, the SecureFAS Slave Agent
will stop it execution process and return to the SecureFAS host with the message “the
departure date not match” recorded in the RecordedCollectOnly container. On the

other hand, the SecureFAS Slave Agent continues to execute the next stage.

100

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

Search flight

The search flight process started by the SecureFAS Slave Agent by sending a flight
request that contains the user flight information such as departure place, and desti-
nation place to the local agent of the destination host and wait for the local agent
to respond. If the local agent responds with the message “flight not available”, the
SecureFAS Slave Agent will stop its execution process and return to its SecureFAS host
with the message “flight not available” recorded in the RecordedCollectOnly container.
Otherwise, if the local agent responds with the message “fight found”, the local agent
will supply the SecureFAS Slave Agent with the flight information such as the flight
number, the flight departure and arrival date, and the number of seats available in
each cabin. Once the flight information has been received from the local agent, the

SecureFAS Slave Agent continues to execute the next phase.

Search flight fare

The SecureFAS Slave Agent starts this process by checking for the flight cabin that
can accommodate the number of passengers requested by the user, starting from the
first class cabin and sends a request to the local agent to enquire for the flight fare.
The local agent will respond to the SecureFAS Slave Agent enquiry by providing the
SecureFAS Slave Agent with the lowest flight fare available. The SecureFAS Slave
Agent then compares it with the user maximum budget. If the fare is higher than the
user maximum budget, the SecureFAS Slave Agent will downgrade the cabin class, for
example, if the previous cabin class selected was the first class cabin, the SecureFAS
Slave Agent will downgrade it to the business class cabin and so on. If the cabin
class selected can accommodate the number of passengers requested by the user, the
SecureFFAS Slave Agent will send a new request to enquire for the flight fare. Otherwise,
the SecureFAS Slave Agent will downgrade the cabin class again until it reaches the
economy class cabin. If the flight fare is still higher than the user maximum budget,
the Securel'AS Slave Agent will return to the SecureFAS host with the message “the

flight is too expensive” recorded in the RecordedCollectOnly container. Otherwise, the

101

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

SecureFAS Slave Agent will accept the flight fare offered and forward it to the next
phase.

When looking for the first, business and economic class cabin offer, if the SecureFAS
Slave Agent stopped searching after it found the matching offer at the first class cabin
offer, the remote host could assume that the SecureFAS Slave Agent can afford the most
expensive flight offer. Therefore the SecureFAS Slave Agent will continue to search for

business and economic offers to prevent a malicious host from inferring anything.

Return to SecureFAS host

Once the SecureFAS Slave Agent has completed its tasks at the destination host, the
SecureFAS Slave Agent has to return to its SecureFAS host in order to deliver the
result that was gathered at the destination host. However, before the SecureFAS
Slave Agent, together with its data in the RecordedState mechanism can return, the
SecureFAS Slave Agent has to ask the local agent to digitally sign its data in the
Recorded State Mechanism containers. This is to guarantee the integrity of the data
and to provide a proof for the SecureFAS host in order to overcome the problem of
the destination host trying to deny offering any flight fare or flight information to the
SecureFAS Slave Agent (repudiation attack). Once the local agent has digitally signed
the SecureFAS Slave Agent’s data, the SecureFAS Slave Agent together with its data,

then returns to the SecureFAS host for further actions.

5.4 The SecureFAS implementation

The SecureFAS prototype has been developed based on the design that was described
in the earlier section. The prototype is implemented on an environment that consists
of the home host (SecureFAS host), the certificate authority host and a few simulated
airline hosts. Figure 5.3 shows the overall implementation of the SecureFAS prototype.

The home host is the host of the SecureFAS user. This host is used by the user
to initiate the SecureFAS transactions in finding the best flight offer among the airline

hosts in the Internet. The user initiates the SecureFAS transactions by starting up

102

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

Airline Host A

)

® Flight Database

Flight Database

User Home Host

Flight Database

Figure 5.3: The SecureFAS implementation environment

the master agent to execute inside the home host execution environment to generate
and dispatch slave agents to execute tasks, on behalf of the user, inside the airline
host execution environment. The certificate authority host is the host responsible for
maintaining the public keys of all the participating hosts. Each of the participating
hosts has to register their own public keys with the certificate authority host before they
are allowed to execute any transactions with other participating hosts. The airline host
is the host that offers flight services, such as flight information, flight fare etc. These
hosts are competing among each other, resulting in some of the services, such as the
flight fare offered being different.

To carry out any transaction in the SecureFAS implementation environment, seven
different types of agent as given in Figure 5.4 are used as follows:

The Master Agent(MA) is the agent that is started up by the user and only executes
inside the home host execution environment. This agent is used as an interface between
the user and the SecureFAS prototype and function to manage all the user transactions

in order to find the best flight offer among the participating airline hosts in the Internet.

103

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

PCICIZAS

Airline Host A Flight Database

ty

Airline Host B

Certificate Authority Host

Newgrmo

{

Flight Database

Flight Database
MA - Master Agent Airline Host C
SA - Slave Agent
AA - Airline Agent
CA - Certificate Authority Agent
QA - Request Agent
RA - Register Agent
EA - Evaluation Agent

Figure 5.4: The conceptual view of the participating agents

The Slave Agent(SA) is started up by the master agent. This agent is used by
the master agent to execute the user tasks on the participating airline hosts execution
environment. In each transaction, the master agent will generate n slave agents to
serve n participating airline hosts and will dispatch each of the agents to a particular
airline host to execute the user tasks and will eventually return to it home host with
the result.

The Airline Agent(AA) is the agent that manages all the airline host services. This
agent acts as an interface between the airline host and other agent or party that wants
to interact with the airline host. This agent is started up by the owner of the airline
host and only executes inside the airline host execution environment, waiting for any
request from the visiting agent or party.

The Certificate Authority Agent(CA) is an agent that manages the operation of
the certificate authority host. This agent is used by other visiting agent or party to

register or request for a particular host’s public key from the certificate authority host

104

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

database. This agent is started up by the authority that maintains the certificate
authority host.

The Request Agent(QA) is the agent that is used for requesting public key from
the certificate authority host. This type of agent is used by the master agent and the
airline agent during the flight finding operation.

The Register Agent(RA) on the other hand is used for registering public key at
the certificate authority host. Each of the participating hosts has to register their own
public key at the certificate authority host to enable them to participate in the flight
finding operation.

The Evaluation Agent(EA) is the agent that is responsible for processing and
analysing the returning slave agent’s data and state. This agent will be started up
by the master agent upon receiving the first returning slave agent. This agent will
remain resident inside the home host execution environment until all the slave agents
have returned or the evaluation time that is set once the evaluation agent is started up

by the master agent has expired, whichever comes first,.

5.4.1 The SecureFAS application

The SecureFAS prototype application is designed to execute on the Unix and Windows
platform, and use either a Unix workstation or a personal computer as an execution
host to execute the participating agents.

The Securel"AS application can be divided into two main modules, the master agent
module and the slave agent module. The master agent is the module that is responsible
in coordinating the SecurelFAS process from the initial process of dealing with the user
requirement until the final process of evaluating the slave agent to choose the best offer
and purchase the flight ticket. On the other hand, the slave agent is the module that
is created and dispatched by the master agent module to execute tasks on the remote

host execution environment.

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

The agent execution environment

The agent execution environment is a place where agents execute and operate. It
provides a uniform set of services for the executing agent to perform it tasks, where it
can be regarded as the operating system for the agent (Lange and Oshima, 1998). This
research used the Tahiti aglet server (Lange and Oshima, 1998) as an agent execution
environment for controlling the agents.

The Taliti aglet server is a Java application that allows the user to manage, receive
and send the agents to other computers. It can be started by executing the “ agletsd -f

b

my _aglets.props ” command, which will produce a window of the Tahiti Aglet Server
(see section A.5).

In the SecureFAS implementation environment, each of the participating computer
host needs to start the Tahiti Aglet Server. This is to enable the participating computer
host to manage, receive and send agents. Once the participating computer host have
starts up the Tahiti Aglet Server, the user of the computer host can create and execute
their agents.

To execute the SecurelFAS prototype, the user has to execute the Master Agent
module on the Tahiti Aglet Server running on the user’s computer host (home host).

Once the Master Agent of the SecureFAS prototype is executed, the master agent,
will execute the initialisation function, cryptographic key registration function, filtering
bad addresses function, cryptographic key retrieval function, obfuscating data function,
storing read-only data function, generating and dispatching slave function, evaluation
function, and display result function as mentioned in section 5.3.1.

The Slave Agent module will be created and executed by the Master Agent during
the execution of the generating and dispatching slave agent function. The executing
Slave Agent on the Tahiti Aglet Server on the home host will be dispatched by the
Master Agent to execute the user’s tasks on the remote host. The Slave Agent will
returned to the Master Agent’s computer host for further action once all it given tasks

have been executed on the remote host execution environment.

106

CHAPTER 5. THE SECURE FLIGHT FINDER AGENT-BASED SYSTEM

The Aglets Software Development Kit (ASDK) package

A set of Java classes and interfaces for creating a SecureFAS prototype system is
provided by the ASDK package. This package contains methods for initialising an
agent and message handling, as well as dispatching, deactivating/activating, retracting,
cloning, and disposing an agent (Lange and Oshima, 1998). For examples, the dispatch
method using “dispatch(new URL(“atp://name.host.com/context”));” causes an agent
to move from the local host to the destination host, the deactivate method using
“deactivate(300 * SECONDS);” allows an agent to be stored in secondary storage, and
the clone method (addCloneListener(CloneListener listener)) spawns a new instance of

the agent, which has the state of the original agent. A complete ASDK package can
be referred in (Lange and Oshima, 1998)

5.5 Concluding remarks

This chapter presented the development of the SecureFFAS prototype system. This
includes the implementation of the enabling methods: the master-slave agent archi-
tecture, the distributed migration pattern, and the cryptographic protocol, and the
implementation of the security mechanisms: the Random Sequence 3-level obfusca-
tion algorithm and the Recorded State Mechanism. The implementations are to show
the acceptability and the functionality of the security mechanisms on an agent-based
system application. Finally, the chapter presented a discussion on the SecureFAS pro-
totype implementation that includes explanation on the steps to execute the SecureFAS

application.

107

Part TV

Experimental Analysis

108

Chapter 6

Experimental Results

6.1 Introduction

This chapter presents two sets of experimental results. First are the results of the

experiments done on:
e the itinerary migration pattern, and
e the distributed migration pattern.

This is to measure the migration and migration+-computation time overheads. These
results will be analysed and the faster migration pattern will be chosen.
Second are the results of the experiments done to measure the security time over-

head. Experiments are done on:

e plain agents - agents without security mechanisms,

agents with conventional cryptographic security mechanisms (e.g. encryption and

digital signature mechanisms),

agents with the random sequence 3-level obfuscation algorithm, and

agents with security and recorded state mechanisms.

This experiment is to measure the security overhead for the agents with security mech-

anism compared to the agent without the security mechanism.

109

CHAPTER 6. EXPERIMENTAL RESULTS

In this thesis, the experimental results, for both sets of experimental test, are
measured using the “System.currentTimeMillis()” method in the Java language. This
method produces a specific instant in time with millisecond precision (Sun Microsys-
tems, 2004). The experimental results are gathered by taking the difference between
the start time (time taken starting from sending the agent to the remote host) and the

end time (time taken when receiving the agent from the remote host).

6.2 Comparison Experiment Between The Itinerary

and Distributed Migration Pattern

This section describes the comparison experiment between the itinerary and the dis-
tributed migration pattern in order to examine their performances in terms of the
migration and migration+computation speed. This comparison experiment is used to
investigate the hypothesis that the performance of an agent-based application that uses
a distributed migration pattern with master-slave agent architecture, is faster than an
agent-based application with the itinerary migration pattern using single agent ar-
chitecture, even though the first agent-based application is required to generate and
dispatch more than one agent to execute a transaction, which does increase network

overhead at the originating host.

6.2.1 The experimental migration pattern

In this research, the itinerary and distributed migration pattern have been selected
as the experimental migration pattern for this comparison experiment. This is be-
cause both migration patterns are widely used in agent-based applications (Hohl, 2000;
Kotzanikolaou et al., 2000; Vigna, 1998)

The itinerary migration pattern is a migration pattern that allows a single agent
to travel from one host to another in sequence (see figure 6.1). The implementation
of this pattern needs the agent to maintain a list of destinations and to always know

where to go next (Lange and Oshima, 1998).

110

CHAPTER 6. EXPERIMENTAL RESULTS

Agent migrate Agent migrate Agent migrate

Host A Host B Host C Host D

Figure 6.1: Itinerary Migration Pattern

The distributed migration pattern, on the other hand is a pattern that allows
more than one agent to travel to different remote hosts (see figure 6.2). This pattern
allows agents to be dispatched in parallel to different remote hosts, with one agent is

dispatched to each remote host (Lange and Oshima, 1998).

Agent migrate

% Host 13

[

Host A N Host C

Host D

Figure 6.2: Distributed Migration Pattern

6.2.2 Experiment configuration and scenario

The comparison experiment on the itinerary and distributed migration pattern is exe-
cuted on nine 400 MHz Sun Ultra Sparc 5 workstations with 128 MB of main memory.
Fach of the workstations is running the Solaris.8 operating system and is connected
to the others using 100 Mbit/s UTP ! cable. All of the workstations involved in this

experiment were situated in the same room.

1Unshielded Twisted Pair Category 5e

111

CHAPTER 6. EXPERIMENTAL RESULTS

To start up the comparison experiment, all of the workstations are required to
execute the Tahiti Aglet Server (Lange and Oshima, 1998). This is to enable the
participant workstations to have the capability to manage, dispatch and receive agents
to or from other workstations. Figure 6.3 shows the experiment configuration. In this
configuration, one workstation will be chosen among the nine workstations to be the
home host for the agent, and only this host has the permission to manage and dispatch
the agent. The rest of the workstations are assumed to be the remote host and only

have the capability to receive and dispatch the agent back to its home host.

Internet

Figure 6.3: Comparison Experiment Configuration

To examine the migration overhead for both itinerary and distributed migration
patterns, we measure the length of time starting from when the first agent is sent
to the remote host and ending when the last agent returns. There are no processing
activities required at the remote host, the agent simply return. On the other hand the
migration+computation overhead for the itinerary and distributed migration patterns
is examined by measuring the migration+computation time starting from sending the

agent to the remote host, waiting for the agent to execute the function of numerical

112

CHAPTER 6. EXPERIMENTAL RESULTS

calculation (generating prime numbers) inside the remote host and ending when the
last agent has returned from the remote host.

In each test, the agent will carry different amounts of data, varying from 100KB to
800KB with increments of 100KB. For example, in the first test the agent carry 100KB
data, then in the second test the agent carry 200KB data, and so on.

Both experiments are repeated for 20 times and the result for each run is gathered in
milliseconds. The mean result of all 20 runs is then converted into seconds by dividing
by 1000. The result is then rounded and presented in two decimal places. From the
author’s observation, all the 20 runs in this experiment give very similar results and

for this reason, 20 runs of the experiment are considered suflicient.

6.2.3 Experimental Results

There are two comparison experiments conducted on the itinerary and distributed
migration pattern: the migration and the migration+computation experiment. All

time results in section 7.3 are given in seconds.

Migration experiment

To evaluate the migration overhead of both migration patterns, four different experi-
ments are done using one remote host, two remote hosts, three remote hosts and eight
remote hosts respectively.

Based on the observation of the results gained through the experiments, it can be
seen that the standard error and the standard deviation of the migration overhead gets
larger as the number of bytes and remote host gets bigger. The assumption made is
that, the greater the number of bytes carried by the agent during the migration process,
the larger the network bandwidth consumed, therefore the network will be congested
and the time taken will less predictable.

From the results given in Table 6.1 and illustrated in Figure 6.4, it can be seen that
the mean of the migration overhead is almost the same for both migration patterns

where the difference is just around 0.06 % to 0.85 % except for the 200KB and 800KB

113

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Bytes Itinerary | Distributed || Itinerary | Distributed || Itinerary | Distributed
100KB 9.44 9.36 0.02 0.01 0.08 0.06
200KB 17.09 17.40 0.06 0.02 0.25 0.10
300KB 25.35 25.38 0.02 0.01 0.08 0.06
400KB 32.45 32.47 0.02 0.02 0.10 0.08
500KB 41.43 41.51 0.04 0.03 0.16 0.12
600KB 48.43 48.36 0.10 0.04 0.43 0.20
700KB 55.18 55.09 0.06 0.04 0.27 0.20
800KB 66.40 67.20 0.09 0.08 0.41 0.34

Table 6.1: Summary Statistics of Migration Overhead for 1 Remote Host

Complete Cycle of
Migration Time (Seconds)
N
o

@
o

Migration Overhead for 1 Remote Host

()]
o

N
o

o

1 2 3

4 5 6 7 8

Number of Byte Carried by the Agent (100

KB units)

—¢— ltinerary
@ Distributed

Figure 6.4: Migration Overhead for 1 Remote Host

data size where the mean of the overhead for the distributed migration pattern is higher

by 1.81 % and 1.2 % respectively.

From Table 6.2 and Figure 6.5, considerable differences in the mean of the migration

overhead can be seen starting from the 500KB. The highest difference is for 600KB

where the overhead for the distributed migration pattern is 4.36 % lower than the

itinerary migration pattern.

114

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Bytes Itinerary | Distributed || Itinerary | Distributed | Itinerary | Distributed
100KB 17.53 17.17 0.01 0.03 0.07 0.14
200KB 32.84 33.88 0.06 0.05 0.26 0.21
300KB 48.20 46.89 0.07 0.05 0.31 0.23
400KB 62.03 61.20 0.08 0.03 0.37 0.15
500KB 82.68 79.32 0.31 0.19 1.37 0.85
600KB 95.69 91.52 0.20 0.29 0.91 1.29
700KB 113.01 108.43 0.33 0.31 1.47 1.40
800KB 132.76 129.80 1.42 0.35 6.33 1.55

Table 6.2: Summary Statistics of Migration Overhead for 2 Remote Host

Number of Mean Standard Error Standard Deviation
Bytes Itinerary | Distributed || Itinerary | Distributed | Itinerary | Distributed
100KB 25.62 23.13 0.03 0.03 0.15 0.12
200KB 47.59 45.51 0.09 0.08 0.40 0.38
300KB 70.18 65.88 0.12 0.28 0.56 1.25
400KB 90.24 86.08 0.19 0.28 0.86 1.26
500KB 121.90 105.41 0.31 0.43 1.41 1.92
600KB 141.48 126.07 0.54 0.65 2.41 2.91
700KB 165.77 154.72 0.58 3.40 2.58 15.20
800KB 194.54 181.43 0.81 0.91 3.61 4.09

Table 6.3: Summary Statistics of Migration Overhead for 3 Remote Host

CHAPTER 6. EXPERIMENTAL RESULTS

Migration Overhead for 2 Remote Hosts

0
5 £ 140
PR 120
5. B 100 | |
= 2 80 —e— ltinerary
[}
o 60 ~&— Distributed
Q - 40 e —
E 9
§%

D

=

1 2 3 4 5 6 7 8
Number of Byte Carried by the Agent (100
KB units)

Figure 6.5: Migration Overhead for 2 Remote Hosts

Migration Overhead for 3 Remote Hosts

250
200
150

—e— |tinerary

100 —&— Distributed

W
o

o

Complete Cycle of
Migration Time (Seconds)

1 2 3 4 5 6 7 8

Number of Byte Carried by the Agent (100
KB units)

Figure 6.6: Migration Overhead for 3 Remote Hosts

For three remote hosts, the results in Table 6.3 and Figure 6.6 show that the mean
of the migration overhead for the distributed migration pattern is lower even from
the beginning but the highest difference in the mean of the overhead is for 500KB
where the overhead for the distributed migration pattern is 13.53 % lower than the
itinerary migration pattern and the lowest difference is for 200KB where the overhead
for distributed migration pattern is 4.37 % lower than the itinerary migration pattern.

As for eight remote hosts (see Table 6.4 and Figure 6.7), the difference in the mean

116

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Bytes Itinerary | Distributed | Itinerary | Distributed || Itinerary | Distributed
100KB 71.58 65.12 0.24 0.24 1.06 1.07
200KB 134.93 126.18 0.54 0.43 2.41 1.93
300KB 194.60 181.70 0.72 1.43 3.22 6.38
400KB 265.89 243.36 2.12 4.08 9.49 18.26
500KB 341.07 292.73 1.36 4.59 6.07 20.53
600KB 404.07 363.25 1.65 8.32 7.39 37.22
700KB 467.62 439.44 3.11 5.64 13.89 25.23
800KB 526.85 497.47 3.00 8.60 13.44 38.48

Table 6.4: Summary Statistics of Migration Overhead for 8 Remote Host

Complete Cycle of Migration

Migration Overhead for 8 Remote Hosts

Time (Seconds

2 3

4 5

6 7 8

Number of Byte Carried by the Agent(100

KB units)

—eo— ltinerary

—#— Distributed

Figure 6.7: Migration Overhead for 8 Remote Hosts

of the migration overhead for both the migration pattern is more obvious. Even for

100KB, it can be seen that the mean of the overhead for the distributed migration

pattern is much lower that is 9.02 % lower than the mean of the overhead for the

itinerary migration pattern.

117

CHAPTER 6. EXPERIMENTAL RESULTS

6.2.4 Summary of experimental results

From the graphs given in Figure 6.4 to 6.6, it can be seen that there is not much
difference in the migration overhead for the distributed and itinerary migration pattern.
For a small number of remote hosts, both migration patterns perform equally where the
highest difference between the two overhead is just 4.36 %, but as the number of remote
hosts increases as given in Figure 6.6 to 6.7, it can be seen that the distributed migration
pattern gives lower migration overhead of up to 14.17 %. For both migration patterns,
the time taken increases approximately linearly as the number of bytes increases. In
conclusion, the distributed migration pattern is better than the itinerary migration

pattern in term of reduced migration overhead.

Migration+Computation experiment

To evaluate the migration+computation overhead of both the migration patterns, four
different experiments are done starting with one remote host, two remote hosts, three
remote hosts and eight remote hosts.

Based on the observation on the results gained through the experiments done,
it can be seen that the standard error and the standard deviation of the migra-
tion+computation overhead are similar regardless of the number of prime generated
or the number of remote host. The assumption made is that, the smaller the num-
ber of bytes carried by the agent, the less network bandwidth consumed, therefore the
probability that network congestion occurs is low and the time taken will be consistent.

From the results given in Table 6.5 and illustrated in Figure 6.8, it can be seen
that the mean of the migration+computation overhead is almost the same for both
migration patterns since the experiment is done on only one remote host.

From Table 6.6 and Figure 6.9, the difference in the mean of the migration+computation
overhead between the two migration patterns can be seen clearly.

For three remote hosts and eight remote hosts, the results in Table 6.7, Table
6.8, Figure 6.10 and Figure 6.11 show that the difference in mean of the migra-

tion+computation overhead for both the migration patterns is getting bigger, where

118

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Prime Itinerary | Distributed || Itinerary | Distributed || Itinerary | Distributed
10000 2.39 2.31 0.01 0.002 0.03 0.01
20000 3.67 3.58 0.01 0.01 0.04 0.02
30000 5.4 5.38 0.01 0.01 0.04 0.07
40000 7.43 7.32 0.01 0.01 0.05 0.06
50000 9.41 9.5 0.004 0.01 0.02 0.03
60000 12.17 12.11 0.01 0.01 0.04 0.03
70000 14.83 14.82 0.01 0.02 0.04 0.07
80000 17.84 17.83 0.01 0.01 0.04 0.05
90000 21.11 21 0.03 0.01 0.11 0.04
100000 24.42 24.28 0.03 0.02 0.15 0.07

Table 6.5: Summary Statistics of Migration+Computation Overhead for 1 Remote

Host

Number of Mean Standard Error Standard Deviation
Prime Itinerary | Distributed || Itinerary | Distributed || Itinerary | Distributed
10000 5.74 3.59 0.01 0.01 0.03 0.03
20000 10.13 5 0.05 0.01 0.22 0.05
30000 15.66 6.41 0.01 0.01 0.04 0.06
40000 22.79 8.48 0.03 0.02 0.14 0.07
50000 29.78 10.75 0.05 0.01 0.21 0.04
60000 37.92 13.36 0.14 0.01 0.63 0.06
70000 46.52 16.13 0.04 0.01 0.19 0.05
80000 55.73 19.23 0.04 0.01 0.17 0.06
90000 65.28 22.19 0.01 0.01 0.07 0.05
100000 75.77 25.41 0.06 0.02 0.26 0.07

Table 6.6: Summary Statistics of Migration+Computation Overhead for 2 Remote

Host

119

CHAPTER 6. EXPERIMENTAL RESULTS

Migration+Computation Overhead for 1 Remote Hosts

30
G _ o 25
o8 E
58t 820 |
30T —e—ltinerary |
o= 5515 |
g g_.g o —m— Distributed |
ST E -® 10 ,
EZ 2
(o]
S (o] 5

1 2 3 4 5 6 7 8 9 10

Number of Prime Generated (10 K units)

Figure 6.8: Migration+Computation Overhead for 1 Remote Host

Migration+Computation Overhead for 2 Remote Hosts

80
G _ o 70
2EEL00
Sﬁ 4 T 50 !——o—ltinerary
250 340 istri
2% 0 g !—vﬁw Distributed
o E s 23
g 8 o 20
& o 10

0

1 2 3 4 5 6 7 8 9 10

Number of Prime Generated (10 K units)

Figure 6.9: Migration+Computation Overhead for 2 Remote Hosts

the migration+computation overhead for the distributed migration pattern is up to
95.65 % lower than the itinerary migration pattern.
Summary of experimental results

It can be seen from the graphs 6.8 to 6.11 that the migration+computation overhead
for the distributed migration pattern is much lower than the migration+computation

overhead for the itinerary migration pattern (up to 95.65 %) except for one remote host

120

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Prime Itinerary | Distributed || Itinerary | Distributed || Itinerary | Distributed
10000 10.59 4.73 0.02 0.01 0.09 0.03
20000 19.69 6.36 0.03 0.01 0.12 0.06
30000 30.91 7.65 0.04 0.01 0.18 0.04
40000 44.37 9.68 0.21 0.01 0.93 0.03
50000 57.92 11.79 0.07 0.003 0.32 0.01
60000 73.53 14.59 0.04 0.01 0.20 0.03
70000 90.59 17.46 0.03 0.02 0.15 0.08
80000 107.92 20.06 0.07 0.02 0.32 0.09
90000 127.57 23.38 0.20 0.02 0.88 0.09
100000 147.15 26.75 0.20 0.03 0.88 0.13

Table 6.7: Summary Statistics of Migration+Computation Overhead for 3 Remote

Host

Number of Mean Standard Error Standard Deviation
Prime Itinerary | Distributed | Itinerary | Distributed | Itinerary | Distributed
10000 48.96 11.45 0.14 0.02 0.63 0.07
20000 99.92 12.65 0.19 0.01 0.83 0.06
30000 160.32 14.46 0.33 0.02 1.47 0.07
40000 232.67 16.39 0.22 0.02 0.99 0.1
50000 307.9 18.38 0.18 0.02 0.82 0.09
60000 390.06 20.87 0.53 0.05 2.37 0.22
70000 476.83 23.58 0.46 0.02 2.06 0.11
80000 569.98 26.46 0.68 0.02 3.05 0.08
90000 668.44 29.59 0.38 0.01 1.7 0.03
100000 769 33.46 1.1 0.02 4.9 0.07

Table 6.8: Summary Statistics of Migration+Computation Overhead for 8 Remote

Host

121

CHAPTER 6. EXPERIMENTAL RESULTS

Migration+Computation Overhead for 3 Remote Hosts

160

% _ o 140

s3E

o]

5-;"_?,) ° 100 —e— ltinerary §
S50 80 |
ﬁ g_.% o 50 —a— Distributed

§§§@ 40

8 © 20

0

1 2 3 4 5 6 7 8 9 10

Number of Prime Generated (10 K units)

Figure 6.10: Migration4+Computation Overhead for 3 Remote Hosts

Migration+Computation Overhead for 8 Remote Hosts

1000
T _ o
o8 E _ 800
S RaC
OF gc 600 —e— ltinerary
o5 o0
B 2T 8 400 —&— Distributed |
o £ L ®
ES &7 200
(o]
§°o

0

1 2 3 4 5 6 7 8 9 10

Number of Prime Generated (10 K units)

Figure 6.11: Migration+Computation Overhead for 8 Remote Hosts

where the migration+computation overhead for both migration patterns is almost the
same (the highest difference is only 3.35 %).

These results are as expected because in the itinerary migration pattern, only one
agent migrates in sequence for all the remote hosts, whereas, in distributed migration
pattern, many agents depending on the number of remote host are used in parallel
at one time. However, for the distributed migration pattern, the home host need to

collate the information that was brought back by the agents and therefore, another

122

CHAPTER 6. EXPERIMENTAL RESULTS

small or negligible overhead will be incurred during this process. In conclusion, the
distributed migration pattern is better than the itinerary migration pattern in terms

of reduced migration+computation overhead.

6.3 The Overhead of Implementing Security Pro-
tection

This section describes the experiment conducted in order to measure the overhead of
implementing security protection mechanism into an agent-based application. This
experiment is used to investigate the hypothesis that the performance of an agent-
based application equipped with security mechanisms is slower than the agent-based
application without security mechanisms. Taking into consideration both migration
and migration+computation overheads, the distributed migration pattern has been
confirmed as the most appropriate migration pattern and therefore, for simplicity, the

security overhead will only be tested on this migration pattern.

6.3.1 The experimental security protection mechanisms

The Random Sequence 3-level obfuscation algorithm and the Recorded State Mecha-
nism are two security protection mechanisms that are used in the experimental test to
measure the overhead of implementing security protection in an agent-based applica-
tion.

The Random Sequence 3-level obfuscation algorithm is a security protection mech-
anism that is used to protect the confidentiality of an agent from being spied on by
the malicious host. The mechanism uses multiple polynornial functions for obfuscating
the agent’s data to an obfuscated value that is meaningless to the malicious host.

The Recorded State Mechanism, on the other hand is a security protection mecha-
nism that is used to protect the integrity of an agent. This mechanism is used to detect
any modification attacks from the malicious host by examining the state information

of an agent that has been recorded during the agent execution process.

123

CHAPTER 6. EXPERIMENTAL RESULTS

6.3.2 Experiment configuration and scenario

The experiments to measure the overhead of implementing security protection in aﬁ
agent-based application are conducted using the same experiment configuration as in
section 6.2.2. However, due to the renovation of the computer laboratory, there were
fewer workstations available, so only 6 workstations are used in this experiment, where
1 workstation will be chosen to be the home host and other 5 workstations are assumed
to be the remote hosts.

To examine the security overhead for implementing both the Random Sequence
3-level obfuscation algorithm and the Recorded State Mechanism in an agent-based
application, security overhead times are taken starting from sending of the agents to
the remote hosts, executing the security algorithm or mechanism at the remote hosts
and ending by receiving the agents back from the remote hosts. However, the Recorded
State Mechanism required extra processing overhead at the originating host to simulate
the evaluation process on the returning agent.

Both experiments are repeated 20 times and the result for each run is gathered
in milliseconds. From the author’s observation, all the 20 runs in this experiment
give very similar results and for this reason, 20 runs of the experiment are considered
sufficient. The mean result of all 20 runs is then converted into seconds by dividing by

1000. The result is then rounded and presented in two decimal places.

6.3.3 Experiment Results
The Random Sequence 3-level obfuscation algorithm

To evaluate the security overhead for implementing the Random Sequence 3-level ob-
fuscation algorithm, four different experiments are conducted starting with one remote
host, two remote hosts, three remote hosts and five remote hosts on two different pairs
of agents that are plain agent and agent with the Random Sequence 3-level obfus-
cation algorithm (RS3) or plain agent and agent with the Random Sequence 3-level

obfuscation algorithm with noise code (RS3N).

124

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean

Remote Hosts || Plain | RS3 | RS3N

1 149 | 1.5 1.69
2 2.45 | 2.52 | 2.67
3 3.36 | 3.56 | 3.63

542 | 543 | 5.66

(@21

[able 6.9: Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-
rithm (1 Cycle, 1 Obfuscation Value Experiment(without noise code) and 1000 Obfus-
cation Value Experiment(with noise code))

The results of the security overhead of the Random Sequence 3-level obfuscation
algorithm without noise (RS3) and the Random Sequence 3-level obfuscation algorithm
with noise are compared to the plain agent as shown in Table 6.9. From these results, it
can be seen that there is not much difference in the security overhead for the RS3 with-
out noise and RS3 with noise for all numbers of remote hosts. The highest difference
is for one remote host, where the security overhead for RS3 with noise is just 12.67 %
higher than the security overhead of RS3 without noise. Therefore, it is assumed that
RS3 with noise will add a negligible overhead. More detail of the results now follows:

Firstly, consider plain and RS3, then plain and RS3N experimental results.

Number of Mean Standard Error || Standard Deviation
Remote Hosts || Plain | RS3 || Plain RS3 Plain RS3
1 1.49 | 1.5 | 0.001 | 0.001 0.003 0.004
2 2.45 | 2.52 1 0.003 | 0.005 | 0.011 0.022
3 3.36 | 3.56 || 0.003 | 0.004 | 0.011 0.02
5 5.42 | 5.43 || 0.007 | 0.006 | 0.031 0.025

Table 6.10: Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-
rithm Overhead (1 Cycle and 1 Obfuscation Value Experiment(without noise code))

From the results given in Tables 6.10 and 6.11 and illustrated in Figure 6.12 and

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error || Standard Deviation

Remote Hosts || Plain | RS3N || Plain | RS3N Plain RS3N

1 1.49 1.54 | 0.001 | 0.001 0.003 0.003

]

245 | 2.52 | 0.002 | 0.007 | 0.011 0.031
3 3.36 | 3.51 | 0.003 | 0.005 0.011 0.022
542 | 5.44 | 0.007 | 0.007 | 0.031 0.031

(2

Table 6.11: Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-
rithm (1 Cycle and 100 Obfuscation Value Experiment(with noise code))

Security Overhead for Implementing The Random
Sequence 3-Level Obfuscated Algorithm

Time in Seconds
Q =~ N W Db T

1 2 3 5

Number of Remote Hosts

Figure 6.12: Security Overhead of The Random Sequence 3-Level Obfuscation Algo-
rithm (1 Cycle and 1 Obfuscation Value Experiment(without noise code))

6.13 respectively, it can be seen that the mean of the security overhead for a plain
agent is almost the same as the security overhead for RS3 and RS3N, where when
comparing with RS3, the highest difference is just 5.95 % and 4.46 % when comparing
with RS3N. However, from Table 6.12 and illustrated in Figure 6.14, it can be seen that
as the number of noise codes is increased from 0 to 99 and to 999, the difference becomes
larger, where the highest difference is 13.42 %, but it is still considered negligible.
Surprisingly, the result for RS3 using three remote host, which is shown in Table
6.10 is higher than the result of the RS3N using three remote host (in Table 6.11).

Supposedly, the RS3N should produce higher result than just the RS3. One possibility

126

CHAPTER 6. EXPERIMENTAL RESULTS

N W oAU O

Security Overhead for Implementing The Random

Sequence 3-Level Obfuscated Algorithm

Time in Seconds

Figure 6.13: Security Overhead of The Random Sequence 3-Level Obfuscation Algo-

1 2

Number of Remote Hosts

rithm (1 Cycle and 100 Obfuscation Value Experiment(with noise code))

is that, the experiment is run on public network. Therefore, the results produce is

unpredictable.

Number of Mean Standard Error || Standard Deviation
Remote Hosts || Plain | RS3N || Plain | RS3N | Plain RS3N
1 1.49 | 1.69 | 0.001 | 0.004 | 0.003 0.016
2 245 | 2.67 | 0.003 | 0.006 | 0.011 0.028
3 3.36 | 3.63 || 0.003 | 0.003 | 0.011 0.015
5 5.42 | 5.66 || 0.007 | 0.006 | 0.031 0.028

Table 6.12: Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-

rithm (1 Cycle and 1000 Obfuscation Value Experiment(with noise code))

From Table 6.13 and Figure 6.15, the security overhead for both the agents is almost

the same as the security overhead given in Tables 6.10 to 6.12, even though now the

number of cycles has been increased to 100.

Based on the observation on the results gained through the experiments done, it
can be seen that the standard error and the standard deviation of the security overhead

for both pairs of agents (plain and RS3) and (plain and RS3N) are similar since the

127

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error || Standard Deviation
Remote Hosts || Plain | RS3N || Plain | RS3N || Plain RS3N
1 1.48 | 1.65 | 0.0003 | 0.002 | 0.001 0.008
2 2.46 | 2.65 0.002 | 0.003 || 0.01 0.014
3 3.45 | 3.67 0.007 | 0.005 | 0.03 0.021
5 546 | 5.67 0.013 | 0.004 | 0.06 0.02

Table 6.13: Summary Statistics of The Random Sequence 3-Level Obfuscation Algo-

rithm (100 Cycle and 1000 Obfuscation Value Experiment(with noise code))

Security Overhead for Implementing The Random
Sequence 3-Level Obfuscated Algorithm

Time in Seconds
o = N W b O

Figure 6.14: Security Overhead of The Random Sequence 3-Level Obfuscation Algo-

Number of Remote Hosts

rithm (1 Cycle and 1000 Obfuscation Value Experiment(with noise code))

agent with the Random Sequence 3-level obfuscation algorithm (RS3) and the agent

with the Random Sequence 3-level obfuscation algorithm with noise (RS3N) only needs

to execute a simple task (obfuscating method).

Summary of experimental results

It can be seen from the results shown in Tables 6.10 to 6.13 and illustrated in Figures
6.12 to 6.15 that the implementation of the Random Sequence 3-level obfuscation
algorithm and the Random Sequence 3-level obfuscation algorithm with noise does

increase the overhead by up to 13.42 % compared to the plain agent. The noise code

adds little to the overhead.

128

CHAPTER 6. EXPERIMENTAL RESULTS

Security Overhead for Implementing The Random
Sequence 3-Level Obfuscated Algorithm

Time in Seconds
O 2 N W A

1 2 3 5

Number of Remote Hosts

Figure 6.15: Security Overhead of The Random Sequence 3-Level Obfuscation Algo-
rithm (100 Cycle and 1000 Obfuscation Value Experiment(with noise code))

The Recorded State Mechanism

To evaluate the security overhead for implementing the Recorded State Mechanism,
four different experiments are conducted starting with one remote host, two remote
hosts, three remote hosts and five remote hosts on three different types of agent: plain
agent, agent with conventional cryptographic security mechanism and agent with these
security mechanisms and the recorded state mechanism.

Plain agent is an agent application without any security mechanism implementa-
tion. This agent executes normal agent process such as migration and remote execution
during its execution process. Whereas, agent with conventional cryptographic security
mechanism is an agent application with encryption and digital signature implemen-
tation. This agent will execute these mechanisms during its execution process. In
addition, agent with these security mechanisms and the recorded state mechanism is
an agent application with the implementation of conventional cryptographic security
mechanism and the recorded state mechanism. This agent will execute encryption and
digital signature mechanisms, together with the recorded state mechanism during its
execution process.

Based on the observation on the results gained through the experiments done, it

can be seen that the standard error and the standard deviation of the security overhead

129

CHAPTER 6. EXPERIMENTAL RESULTS

are similar regarding the number of remote host but different between agents. Agents
with security mechanism give larger standard error since the agents have to execute
many tasks such as generate the cryptography key, generate digital signature, verify

digital signature and execute encryption and decryption.

Number of Mean Standard Error Standard Deviation
Remote Hosts || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec

1 1.54 | 29.15 28.91 0.003 | 2.18 1.23 0.01 | 9.73 5.92

2 2.49 | 30.89 31.11 0.003 | 2 1.38 0.02 | 8.93 6.19

3 3.37 31 32 0.004 | 0.93 0.98 0.02 | 4.15 4.38

5 5.35 | 36.36 36.03 0.011 | 1.5 1.87 0.05 | 6.7 8.37

Table 6.14: Summary Statistics of The Recorded State Mechanism Overhead (1 Input
and 1 Cycle Experiment)

Security Overhead for implementing The Recorded
State Mechanism

—e— Plain

#--- Security

—e— Security+Rec.

Time in Seconds

Number of Remote Hosts

Figure 6.16: Security Overhead of The Recorded State Mechanism (1 Input and 1
Cycle Experiment)

From the results given in Table 6.14 and illustrated in Figure 6.16, it can be seen
that the mean of the security overhead is almost the same for agents with security
mechanism and agents with security mechanism plus RSM, where the security overhead

for the agent with security mechanism plus RSM is just 7.82 % higher than the overhead

130

CHAPTER 6. EXPERIMENTAL RESULTS

for the agent with security mechanism. However, both agent’s security overheads are

higher by up to 1792.86 % than the overhead for the plain agent.

Number of Mean Standard Error Standard Deviation
Remote Hosts || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec

1 1.55 | 45.43 45.32 0.003 | 1.21 1.19 0.01 | 5.42 5.34

2 2.53 | 45.99 | 48.21 0.005 | 1.35 1.83 0.02 | 6.03 8.18

3 3.37 | 49.76 49.42 0.002 | 1.13 1.26 0.01 | 5.03 5.65

5 5.43 | 53.09 53.14 0.005 | 1.09 1.76 0.02 | 4.86 7.85

Table 6.15: Summary Statistics of The Recorded State Mechanism Overhead (100
Input and 1 Cycle Experiment,)

Security Overhead for Implementing The Recorded
State Mechanism

—e—Plain [
—@—~ Security

—e— Security+Rec.

Time in Seconds

1 2 3 5

Number of Remote Hosts

Figure 6.17: Security Overhead of The Recorded State Mechanism (100 Input and 1
Cycle Experiment)

From Table 6.15 and Figure 6.17, the security overhead for the plain agent is almost
the same as with one input given in Table 6.14 and Figure 6.16, but the security
overhead for the agents with security mechanism is increased by up to 60.52 % along
the security overhead with one input.

Results in Table 6.16, Table 6.17, Figure 6.18 and Figure 6.19 show that the security

overhead for all the agents is similar to the security overhead of the agents with the

131

CHAPTER 6. EXPERIMENTAL RESULTS

same number of input but different number of cycle given in Table 6.14, Table 6.15,

Figure 6.16 and Figure 6.17 respectively. Therefore, it is worth noting that number of

cycles does not affect the security overhead of the agents.

Number of Mean Standard Error Standard Deviation
Remote Hosts || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec

1 241 | 27.65 28.94 0.008 | 0.77 1.55 0.04 | 3.45 6.94

2 3.53 | 30.91 31.31 0.008 | 1.38 1.68 0.04 |6.18 7.53

3 5.17 | 30.94 33.36 0.005 | 1 1.04 0.02 | 4.46 4.65

5 7.34 | 38.46 37.57 0.01 | 1.29 1.69 0.05 | 5.76 7.55

Table 6.16: Summary Statistics of The Recorded State Mechanism Overhead (1 Input
and 10000 Cycle Experiment)

Time in Seconds

= N W A O
S o o o o o

Security Overhead for Implementing The Recorded
State Mechanism

%«O—Piain

‘ —#— Security

Number of Remote Hosts

| —@— Security+Rec.

Figure 6.18: Security Overhead of The Recorded State Mechanism (1 Input and 10000
Cycle Experiment)

Summary of experimental results

It can be seen from the results shown in Tables 6.14 to 6.17 and illustrated in Figures

6.16 to 6.19 that the implementation of the Recorded State Mechanism does increase

132

CHAPTER 6. EXPERIMENTAL RESULTS

Number of Mean Standard Error Standard Deviation
Remote Hosts || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec || Plain | Sec | Sec+Rec

1 2.39 | 45.93 47.26 0.005 | 1.06 1.11 0.02 | 4.76 4.97

2 3.56 | 48.63 48.85 0.005 | 0.73 1.42 0.02 | 3.28 6.36

3 5.17 | 50.86 51.54 0.008 | 1.52 1.57 0.03 | 6.82 7.01

) 7.4 | 54.36 54.48 0.015 | 1.8 1.94 0.07 | 8.05 8.66

Table 6.17: Summary Statistics of The Recorded State Mechanism Overhead (100
Input and 10000 Cycle Experiment)

Security Overhead for Implementing The Recorded
State Mechanism

{—.—main

— Security
—e— Security+Rec.

Time in Seconds

Number of Remote Hosts

Figure 6.19: Security Overhead of The Recorded State Mechanism (100 Input and
10000 Cycle Experiment)

the overhead by only up to an acceptable 7.82 % when compared to the agent with
security mechanism but 2830.96 % when compared to the plain agent. However, in a
real world application, the low overhead of the plain agent is not important since the
plain agent does not have any security protection. Unsecured agent in a real world
application will be vulnerable to attacks and it is consider unacceptable to not provide
any security. So in practice, plain agents would never be used. On the other hand, the
7.82 % increase in overhead when comparing with the agent with security mechanism

is still negotiable since more protection is offered for a very small increase in overhead.

133

CHAPTER 6. EXPERIMENTAL RESULTS

6.4 Concluding remarks

In this chapter, thirty two experiments were done in order to test two hypotheses that
are the distributed migration pattern has a lower network overhead than the itinerary
migration pattern and the performance of an agent-based application equipped with
security mechanisms is slower than the agent-based application without security mech-
anisms. The first hypothesis is used to choose the better migration pattern in term
of its migration and migration+computation speeds, while the second hypothesis is
use to examine the level of overhead for implementing the Random 3-level obfuscation
algorithm and the Recorded State Mechanism, to see whether is acceptable or not.

Based on the results obtained, both the hypotheses are proven to be true.

134

Part V

Conclusion

135

Chapter 7

Evaluations and Conclusions

7.1 Introduction

This chapter summarises the findings of the thesis. These consist of evaluation of the

research, suggestions for further research and conclusion.

7.2 Aims of Research
This section reiterates the aims of this research. The aims of this thesis were:

1. to propose security mechanisms for protecting agents against malicious host at-
tack, which has resulted in;
(a) the Random Sequence 3-level obfuscation algorithm, to prevent spying at-
tack, and
(b) the Recorded State Mechanism, to offer protection against manipulation
attack.
2. to assess the effectiveness of the security mechanisms in protecting the agent;
(a) the evaluation of the Random Sequence 3-level obfuscation algorithm pro-
tection capabilities, and

(b) the evaluation of the Recorded State Mechanism protection capabilities.

136

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

3. to develop and carry out tests for evaluating the security mechanisms in terms

of their overhead;

(a) the evaluation of the migration and migration+computation overheads of

the itinerary and distributed migration patterns, and

(b) the evaluation of the security overhead of the security mechanisms.
4. to develop a prototype system to implement the security mechanisms;

(a) to test the feasibility of the security mechanisms in real agent-based appli-

cations.

7.3 Evaluation

This section presents the evaluation of this research. The evaluation includes the
literature review, the proposed security mechanism, the experiments and the prototype

system.

7.3.1 Evaluation of the security mechanisms

Referring to the definition of attack in Section 3.2, the malicious host could launch
an attack on the executing agent’s code, data or state during its execution process
inside the malicious host environment. This definition leads to interpret an attack as
either an unexpected change in the behaviour of an agent or unauthorised access to
information.

In this research, two security mechanisms, the Random Sequence 3-level obfusca-
tion algorithm to prevent unauthorised access to information and the Recorded State
Mechanism to detect unexpected change in the behaviour of an agent are proposed.

Both security mechanisms will be evaluated in the next subsections.

137

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

The Random Sequence 3-level obfuscation algorithm

The Random Sequence 3-level obfuscation algorithm is an algorithm that is used to
prevent spying attack on agent’s critical data by a malicious host. The algorithm
obfuscates the actual value of the agent’s critical data to an obfuscated value that is
meaningless to the malicious host. This makes it difficult for the malicious host to spy
on the agent’s critical data, thus preventing malicious host spying attack. However,
there are a few attacks in which the malicious host could attempt to break the Random
Sequence 3-level obfuscation algorithm. Therefore the evaluation on the protection
capabilities of the Random Sequence 3-level obfuscation algorithm will be discussed

below.
e Spying on agent’s data

If the malicious host is given enough time to execute, the malicious host can
attack the RS3 obfuscation algorithm using binary search, which uses different
result values and watch the pattern of the RS3 obfuscation algorithm outcomes
(which result value the agent accepts and which it rejects) to guess the actual
value of agent’s critical data. Furthermore, if the malicious host does not care
about the cost of breaking the RS3 obfuscation algorithm, the malicious host
can employ several computers to execute the RS3 obfuscation algorithm using
different result values in parallel and watch the pattern of the RS3 obfuscation
algorithm outcomes to guess the actual value of agent’s critical data.

This attack can be ruled out by introducing a time factor to the agent that carries
the obfuscation value to make the agent valid only for a limited period of time
(Hohl, 1998a). However, the user cannot decide the effective protection interval
of the R53 obfuscation algorithm for each transaction. In order to overcome the
problem of determining the cffective protection interval for the RS3 obfuscation
algorithm, noise codes are introduced to the agent application that is executing
in the remote host to make it more difficult for the malicious host to guess the
actual value of the user maximum budget. In addition, the implementation of

the noise code could also delay the analysing process of the obfuscation algorithm

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

by the malicious host. Therefore, the use of an effective protection interval to

enhance the level of obfuscation algorithm protection is less important.

The malicious host can discover the actual value of an agent’s critical data in
advance (in the case where a remote host dispatches successive agents to perform
the same kind of task) by spying on the previous visiting agent’s code, data and
state, and use it to analyse the RS3 obfuscation algorithm to attack the next

visiting agent that comes from the same host.

This attack can be ruled out by using a different obfuscated value for each time
a slave agent is dispatched to execute a transaction with the remote host. The
different obfuscated value can be generated using a new random number for each

agent to convert agent’s critical data.

In addition, if the conversion process and the knowledge about the actual value of
agent’s critical data are not removed from the agent’s code, data and state, before
the agent migrates to the remote host, the malicious host can spy on the initial
conversion process of the actual value of agent’s critical data to the obfuscated

value.

This attack can be ruled out by using the master-slave agent architecture in
implementing the RS3 obfuscation algorithm. This is because by using master-
slave agent architecture, the initial conversion process can only be allowed to
execute inside the owner host and by the master agent that is not directly in
transaction with the remote hosts. Only the slave agent will transact with the
remote hosts on behalf of the master agent and no knowledge of the actual value
of the agent’s critical data is revealed to the slave agent in order to protect the
confidentiality of the actual value and to protect the value from malicious host

spying attack.

The Recorded State Mechanism

The Recorded State mechanism is designed to detect manipulation attacks by detecting

inconsistencies or changes in the agent’s data or state. However, there are a few attacks

139

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

in which a malicious host could use to get around the Recorded State Mechanism.

Therefore the evaluation on the protection capabilities of Recorded State Mechanism

will be discussed below.

e Manipulation attack on agent’s data and state

The malicious host could make subtle changes to the read-only data inside the
RecordedReadOnly container to enable it to achieve its objective, in such a way
that the owner’s digital signature that was signed in the RecordedReadOnly

container still remains valid.

"T'his attack can be ruled out, because the digital signature (using SHA1), which is
used in the Recorded State Mechanism is secured against brute-force collision and
inversion attacks, where by using the SHA1 as the digital signature function could
make the attacker computationally infeasible to find a message which corresponds
to a given message digest, or to find two different messages which produce the

same message digest.

The malicious host could also make subtle changes to both the read-only data
and the digital signature of the RecordedReadOnly container, in order to make

both of them appear to be valid.

This possible attack can also be ruled out because in order to create a new
digital signature that will be valid for other host, the malicious host needs to
have a private key of the agent owner. However, only the key owner has this key

and no other entity can produce this key from a modified hash value.

In addition, the malicious host could tamper with the agent state recorded in
the RecordedExecuteOnly and RecordedCollectOnly container by modifying the
agent state before the state is recorded into both containers. This is due to the
fact that the recorded process of the Recorded State Mechanism is under the

malicious host’s control and therefore, the malicious host can do anything to it.

This attack can be ruled out because the malicious host has to use its own

private key that contains its identity in order to compute and re-compute the

140

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

digital signature of the tampered state, thus revealing itself during the Recorded

State Mechanism evaluation process.

Manipulation attack on agent’s input data

The malicious host could lie about the input data, which is recorded in the
RecordedExecuteOnly and the RecordedCollectOnly containers in order to de-

ceive the owner of the agent.

The attack can be ruled out because the owner of the agent knows the identity
of the host, which supplies the input data to the agent because all the data and
state are digitally signed by the execution host before the data and state left
the execution host. Thus, the owner of the agent knows which execution host is

responsible for supplying the false input data.

Collaboration attack

The malicious host could attack the agent by launching collaboration attacks in
cooperation with two or more consecutive hosts in order to deny the checking
process for detecting any malicious host attack from the previous visit or to
remove any agent state that records the changes made by the previous host on
the agent during its execution session.

The attack can be ruled out since the used of master-slave agent architecture in
implementing the Recorded State Mechanism only allows different agents to be
sent. and served by diflerent remote hosts. An agent only visits one host, thus

precluding the collaboration attack.

Incorrect execution of code attack

The malicious host could also alter some agent codes and execute them in many
different ways.

This attack can be ruled out since the Recorded State Mechanism will check the
results gathered by the returning slave agent by re-executing the same execution

process done by the slave agent inside the remote host execution environment.

141

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

Summary of evaluation of security mechanisms

Table 7.1 shows the summary of the protection abilities for the Random Sequence 3-
level obfuscation algorithm and the Recorded State Mechanism, together with other
security approaches. Although in Table 7.1, there are four security approaches: Organ-
1sational Solution, Trusted Hosts, Time Limited Blackbox and Mobile Cryptographic,
that are capable to providing full security protection for the agent, these approaches are
not mature enough to be used. However, other approaches such as Random Sequence
3-level obfuscation algorithm, Recorded State Mechanism, Reference States, Crypto-
graphic Traces, Partial Result Authentication Codes, Double Integrity Verification,
Environmental Key Generation and Code Obfuscation, are only capable of providing

partial protection for the agent.

Confidentiality Integrity Remark
o . o
E EOEEZ B OE B2
K> - 8 = & -l 8 =]
Recorded State Mechanism D D
Random Sequenced 3 -level P
obfuscation algorithm
Organisational Solution P P P P r P Required one trustworthy party to
maintain the execution hosts and
agents
Trusted Hosts P P P P r P Required trusted hosts
Reference States D D Exposed to collaboration attack by
consecutive hosts
Cryptographic Traces D D Produces large size of execution
trace
Partial Result Auth entication Codes P Malicious host can retain copies of
secret key or seeret key generating
functions
Double Integrity Verification P P Exposed to colfaboration attack by
consecutive hosts and required
trusted hosts
Environmental Key Generation P The malicious host can force the
agent to give it’s secret key
Time Limited Blackbox P P P P P P Time-restricted and still on going
research
Mobile Cryptography P P P P r P Still on going research
Code Obfuscation P P
(D) Detection (P) Prevention

Table 7.1: Security mechanisms and their protection abilities

In this thesis, confidentiality and integrity protection are two main requirements for

142

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

protecting agents against a malicious host attacks. These requirements are successfully
fulfilled® by the Random Sequence 3-level obfuscation algorithm and the Recorded
State Mechanism. Both security mechanisms are able to protect the confidentiality

and integrity of the agents from most of the malicious host attacks.

7.3.2 Evaluation of the experimental tests

There are two sets of experiments conducted in this thesis. The first set of the experi-
ments was the comparison experiment between the Itinerary and the Distributed Migra-
tion Pattern. This comparison experiment is conducted to examine the performance
of both migration patterns in terms of their migration and migration+computation
overhead. The second set of the experiments was conducted to measure the over-
head of implementing security protection mechanisms into an agent-based application.
These experiments were done to analyse the security overhead of the Random Sequence
3-Level Obfuscation Algorithm and the Recorded State Mechanism.

The comparison experiment between the Itinerary and Distributed Migration Pat-
tern is used to investigate the hypothesis that the performance of the proposed model
that uses the Distributed Migration Pattern with master-slave agent architecture is
faster than the model of Jtinerary Migration Pattern using single agent architecture,
even though the proposed model is required to generate and dispatch more than one
agents to execute a transaction, which does increase the network overhead at the orig-
inating host. The experimental results gathered from both experiments prove that
the hypothesis is true. This is shown by the experimental results that both migration
pattern perform equally but as the number of remote host increases, the Distributed
Migration Pattern gives lower migration overhead by up to 14.17% and the migra-
tion4-computation overhead for the Distributed Migration Pattern is up to 95.65%
lower than the migration+computation overhead for the Itinerary Migration Pattern
except for one remote host experiment where the migration+computation overhead for

both migration pattern is almost the same where the difference is just within 3.35%.

blocked some attacks and made others more difficult

143

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

The second set of experiments is used to investigate the hypothesis that the perfor-
mance of an agent-based application equipped with security mechanisms is slower than
the agent-based application without security mechanisms. The experimental results
gathered from both experiments prove that this hypothesis is also true. This proof
is shown by the experimental results for both the Random Sequence 3-level Obfusca-
tion Algorithm and the Recorded State Mechanism experiments, where both security
protection mechanisms does increase the overhead but the agent confidentiality and

integrity can be protected against malicious host attacks.

7.3.3 Evaluation of the prototype application

The Secure Flight Finder Agent-based System (SecureFAS) prototype was constructed
to implement the proposed security mechanisms in order to develop a secure agent-
based application that is able to detect and prevent the malicious host attacks. The
prototype was developed using the Java programming language, due to the benefit
that the Java language is designed to operate in heterogeneous environments because
it has no platform-dependent aspects. In addition, the Aglets Software Development
Kit (ASDK) that is used for developing an agent-based application in this research also
uses the Java language as its programming language.

The prototype was also constructed to prove that:
e the proposed security mechanisms as developed are fully functional, and
e the proposed security mechanism can be applied into a real world agent-based
application to secure the application against the malicious host attack.
Summary of evaluation of the prototype application

The SecureFAS prototype developed is successful in testing the functionality of the
proposed security mechanisms and in performing tasks of protecting an agent against
a malicious host attacks. In addition, the prototype has showed that the proposed

security mechanisms can be applied in real world applications.

144

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

7.3.4 Evaluation of the suitability of the proposed security

mechanisms for different agents applications

The Random Sequence 3-level obfuscation algorithm and the Recorded State Mecha-
nism are two security mechanisms that were proposed to protect the confidentiality and
the integrity of an agent against a malicious host attack. These security mechanisms
are useful especially for an agent-based application such as e-commerce, and monitoring
and notification application that might carry sensitive information for their execution
process inside the remote host execution environment, which could be a malicious host
that might try to attack or abuse the agent. By implementing the proposed security
mechanisms, the malicious host attacks such as spying, manipulation, extraction of
information, collaboration and repudiation could be addressed. On the other hand, it
is not recommended to implement these security mechanisms to applications such as
parallel processing, information gathering and dissemination because they do not carry
any sensitive information that could attract the malicious host to attack. Therefore,
the overhead incurred for implementing the security mechanisms will only be an extra

burden.

7.4 Recommendations for future work

There are a number of areas for future development in this area. The list is provided

below:

e The Randon: Sequence 3-level Obfuscation algorithm that is currently used to
protect the confidentiality of the agent, can only obfuscate numbers and not
characters. Therefore, this obfuscation algorithm is only applicable to an agent-
based application that carries numbers, such as a shopper agent that buys goods
based on the user budget. This algorithm can be expanded further to include
facilities that can obfuscate characters and characters with numbers or vice versa

by finding the way to obfuscate ASCII code that represents the characters that

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

need to be obfuscated. This is to enable the algorithm to be used in other agent-

based application.

Another limitation of the Random Sequence 3-level Obfuscation algorithm is that
the algorithm has to be carried by the agent that is executed inside the remote
host to enable the agent to execute the comparison process between the user
budget obfuscated value and remote host offer obfuscated value, thus exposing
the complete RS3 obfuscation algorithm to the attacker (the malicious host). This
problem can be overcome by obfuscating the RS3 obfuscation algorithm itself, so
that the attacker does not have any knowledge about the algorithm even though

the algorithm is carried by the agent that execute inside the attacker host.

Furthermore, the Random Sequence 3-level Obfuscation algorithm is vulnerable
to multiple execution attack from the malicious host, where the malicious host
can execute the algorithm many times or create multiple copies of the algorithm
and execute them concurrently to discover the actual value that was obfuscated.
This problem can be improved further by designing a method that only allow
the algorithm to be executed once and preventing copies of the algorithm using

unique serial number that is only valid for one execution process.

The conflidentiality and integrity protection, has currently been implemented on
the prototype system. It is possible to extend this protection to protect the
agent against other malicious host attacks such as masquerading and denial of

execution.

Further tests to evaluate the strength of the proposed mechanism and algorithm

could also be conducted by simulating the malicious host attacks on the agents.

e The SecureFAS prototype system can be extended to a second phase, to include
the purchasing process when the best offer has been found. In this phase, a
negotiation process can be introduced. In negotiation process, a shopping agent
can negotiate with the virtual airline host to reduce the flight fare as low as

possible.

146

CHAPTER 7. EVALUATIONS AND CONCLUSIONS

7.5 Conclusion

This research has investigated the problem of malicious host attacking the agents and
has proposed security mechanisms to increase the security of agents by making mali-
cious host attack more difficult and forcing at best possibility identification of secret
information. The experimental result shows that the distributed migration pattern
does enhance the performance of an agent-based system and the agent security mech-
anisms 1mpose an acceptable small time overhead. From the analysis of the proposed
mechanisms under well-known attack scenarios, it can be shown that the proposed
mechanisms prevent or detect some attacks and make other attacks more difficult.
Security mechanisms proposed are applicable to an agent-based application such as
e-commerce, and monitoring and notification but would not benefit applications such
as parallel processing, and information gathering and dissemination. This research has
offered significant advances in protection of agents against malicious host attack, and

is suitable for use in real world applications.

147

Bibliography

Abu Bakar, K., and B. S. Doherty, A New Model for Protecting Mobile Agents
against Malicious Host, in Proceedings of the IADIS International Conference

WWW /Internet, pp. 780 — 784, IADIS, 2002.

Abu Bakar, K., and B. S. Doherty, A Random Sequence 3-Level Obfuscated Algorithm
for Protecting Mobile Agents Against Malicious Hosts, in Proceedings of the 2003
International Conference on Informatics, Cybernetics and Systems, pp. 525 — 530,

I-Shou University, 2003a.

Abu Bakar, K., and B. S. Doherty, Protecting Mobile Agents Against A Malicious
Host Attacks Using Recorded State Mechanism, in Proceedings of the 2008 Interna-
tronal Conference on Informatics, Cybernetics and Systems, pp. 396 — 401, I-Shou

University, 2003b.

Bacon, J., Concurrent Systems : Operating Systems, Database and Distributed Systems:

An Integrated Approach, 2nd ed., Addison-Wesley, United States, 1997.

Berkovits, S., J. D. Guttman, and V. Swarup, Authentication for Mobile Agents, in G.
Vigna(Ed.): Mobile Agents and Security, vol. 1419, pp. 114 — 136, Springer Verlag,
1998.

Biehl, I., B. Meyer, and S. Wetzel, Ensuring the Integrity of Agent-Based Compu-
tations by Short Proofs, in Mobile Agents Second International Workshop MA’98
Proceedings, pp. 183 — 194, Springer Verlag, 1998.

148

BIBLIOGRAPHY

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented

Software Architecture: A System of Patterns, John Wiley and Sons Ltd., 1996.

Chan, A., C. Wong, T. Wong, and M. Lyu, Design, implementation, and experimenta-
tion on mobile agent security for electronic commerce applications, in Proceedings of
the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA’2000), vol. 4, pp. 1871 — 1877, CSREA Press, 2000.

Chauhan, D., JAFMAS: A Java-based Agent Framework for Multiagent System Devel-
opment and Implementation, Ph.D. thesis, ECECS Department,University of Cincin-

nati, United State, 1997.

Chavez, A., and P. Maes, Kasbah: An agent marketplace for buying and selling goods,
in First International Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM’96), pp. 75-90, Practical Application Company,
1996.

Chess, D., Security Issues in Mobile Code Systems, in G. Vigna(Fd.): Mobile Agents

and Security, vol. 1419, pp. 1 — 14, Springer Verlag, 1998.

Chess, D.,; C. Harrison, and A. Kershenbaum, Mobile Agents: Are They a Good Idea?,
IBM Research Report, Mar., 1995, http://www.research.ibm.com/iagents/public-

ations.html.

Cockburn, D., and N. R. Jennings, ARCHON: A Distributed Artificial Intelligence Sys-
tem for Industrial Applications, in Foundations of Distributed Artificial Intelligence,
edited by G. M. P. O’Hare and N. R. Jennings, pp. 319-344, John Wiley & Sons,
1996.

Collberg, C., and C. Thomborson, Watermarking, Tamper-Proofing, and Obfuscation
- Tools for Software Protection, in IEEE Transaction on Software Engineering, pp.

735 — 746, IEEE, 2002.

149

BIBLIOGRAPHY

Collberg, C., C. Thomborson, and D. Low, A Taxonomy of Obfuscat-
ing 'Transformations, Tech. Rep. 148, 1997, http://www.cs.auckland.ac.nz/

~collberg/Research /Publications/CollbergThomborsonLow97a/index.html.

Corradi, A., M. Cremonini, R. Montanari, and C. Stefanelli, Mobile Agents Integrity
for Electronic Commerce Application, in Information System, pp. 519 — 533, Elsevier

Science, 1999a.

Corradi, A., R. Montanari, and C. Stefanelli, Security Issues in Mobile Agent Technol-
ogy, in Proceedings 7th IEEE Workshop on Future Trends of Distributed Computing
Systems, pp. 3 — 8, IEEE Computer Society, 1999b.

Coulouris, G., J. Dollimore, and T. Kindberg, Distributed Systems, Concept and De-
sign, 3rd ed., Pearson Education Ltd., England, 2001.

Couriertravel, http://www.couriertravel.org/flightfinder.asp, 2004.
Devargas, M., Network Security, NCC Blackwell Ltd., United Kingdom, 1993.

Diaz, J., D. Gutierrez, and J. Lovelle, An Implementation of A Secure Java2-Based
Mobile Agent System, in Proceedings of The Second International Conference on
The Practical Application of Java, pp. 125 ~ 142, Practical Application Company,
2000.

Farmer, W., J. Guttman, and V. Swarup, Security for Mobile Agents: Issues and Re-
quirements, in Proceedings of the 19th National Information Systern Security Con-

ference, pp. 591 — 597, Baltimore, 1996a.

Farmer, W., J. Guttman, and V. Swarup, Security for Mobile Agents: Authentication
and State Appraisal, in Computer Security-ESORICS 96 4th European Symposium

on Research in Computer Security Proceedings, pp. 118 ~ 130, Springer Verlag, 1996b.

FlightFound, http://www flightfound.com/eng/index.asp, 2004.

BIBLIOGRAPHY

Foner, L., What is an Agent Anyway? A Sociological Case Study, Agents Memo
98-01, 1993, http://foner.www.media.mit.edu/people/foner/Reports/Julia/Agents-

Julia.ps.

Ford, W., and M. Baum, Secure Electronic Commerce, 2nd ed., Prentice Hall, New

Jersey, United State, 2001.

Franklin, S., and A. Graesser, Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents, in Intelligent Agent I1I. Agent Theories, Architectures and Lan-

quages., pp. 21 — 35, Springer Verlag, 1997.

Funfrocken, S., Transparent Migration of Java-based Mobile Agents: Capturing and
re-establishing the State of Java Programs, in Personal Technologies, vol. 1.2, pp.

109 - 116, Springer Verlag, 1998.

Gray, R., D. Kotz, G. Cybenko, and D. Rus, D’Agents: Security in a Multiple-
Language, Mobile-Agent System, in G. Vigna(Ed.): Mobile Agents and Security,
vol. 1419, pp. 154 — 187, Springer Verlag, 1998.

Guan, X., Y. Yang, and J. You, POM - A Mobile Agent Security Model against Mali-
cious Hosts, in Proceedings of IS €& N’99, pp. 155 — 167, Spring Verlag, 1999.

Hayzelden, A., and J. Bigham, Agent Technology in Communication Systems: An
Overview, in The Knowledge Engineering Review, vol. 14, pp. 341 — 375, Cambridge

University Press, 1999.

Hohl, F., An Approach to Solve the Problem of Malicious Hosts, Tech. rep., Institute of
Parallel and Distributed High-Performance Systems (IPVR), University of Stuttgart,
Germany, 1997.

Hohl, F., Time Limited Blackbox Security: Protecting Mobile Agents from Malicious
Hosts, in In: G. Vigna (Ed.). Mobile Agent and Security. Lecture note in Computer

Science, vol. 1419, pp. 92 — 113, Springer Verlag, Berlin, 1998a.

151

BIBLIOGRAPHY

Hohl, F., A Model of Attacks of Malicious Hosts Against Mobile Agents, In 4th ECOOP
Workshop on Mobile Object Systems (M0OS’98): Secure Internet Mobile Computa-

tions, 1998b, http://mole.informatik.uni-stuttgart.de/papers.html.

Hohl, F., A Protocol to Detect Malicious Hosts Attacks by Using Reference States,
Tech. rep., Institute of Parallel and Distributed High-Performance Systems (IPVR),

University of Stuttgart, Germany, 1999.

Hohl, F., A Framework to Protect Mobile Agents by Using Reference States, in In:

Proceedings of the 20th international conference on distributed compulting systems

(ICDCS 2000), pp. 410 — 417, IEEE Computer Society, 2000.

Hughes, A., Is Remote Evaluation a realistic alternative to Remote Procedure Call in
a portable distributed application?, Computing Science Honors Degree Thesis, 2001,

http://citeseer.nj.nec.com/hughes0lis.html.

IBM, The Aglets Software Development Kit, Version 1.1 Beta 3, http://www.trl.ibm.

com/aglets/idoagreel1b.htm, 1998.

Ince, D., Developing Distributed and E-commerce Applications, Addison-Wesley,

United States, 2002.

Jansen, W., Countermeasures for mobile agent security, in Computer Comrmunications,

vol. 23, pp. 1667 — 1676, Elsevier Science, 2000.

Kotzanikolaou, P., M. Burmester, and V. Chrissikopoulos, Secure Transactions with
Mobile Agents in Hostile Environments, in Proceedings of the 5th Australasian Con-

ference (ACISP 2000), vol. 1841, pp. 289 — 297, Springer Verlag, 2000.

Krulwich, B., The BargainFinder agent: Comparison price shopping on the Internet, in
Bots and other Internet Beasties, pp. 257 — 263, Macmillan Computing Publishing,
1996.

Kun, Y., G. Xin, and L. Dayou, Security in Mobile Agent System: Problems and
Approaches, in Operating System Review, vol. 34, pp. 21 ~ 28, ACM, 2000.

BIBLIOGRAPHY

Lange, D., and M. Oshima, Programming and Deploying Java Mobile Agent with Aglets,
Addison Wesley, United States, 1998.

Lange, D., and M. Oshima, Seven good reasons for mobile agents, in Communication

of The ACM, vol. 42, pp. 88 — 89, ACM, 1999.

Luckham, D., The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems, Addison Wesley, 2002.

Maes, P., Artificial Intelligence meets Entertainment: Lifelike Autonomous Agents, in

Communication Of The ACM, vol. 38, pp. 108 — 114, ACM, 1995.

Mandry, T., G. Pernul, and A. Rohm, Mobile Agents in Electronic Markets: Oppor-
tunities, Risks, Agent Protection, in International Journal of Electronic Commerce,

pp. 47 — 60, M.E. Sharpe, 2001.

Marques, P. J., L. M. Silva, and J. G. Silva, Establishing a Secure Open-Environment
for Using Mobile Agents in Electronic Commerce, in First International Sympo-
sium on Agent Systems and Applications Third International Symposium on Mobile

Agents, pp. 268 — 269, IEEE, 1998.

Meadows, C., Detecting attacks on Mobile Agents, in Proceedings 1997
Foundations for Secure Mobile Code Workshop, pp. 64 - 65, 1997,

http://citeseer.nj.nec.com/meadows97detecting. html.

Minar, N., Designing an Ecology of Distributed Agents, Master’s thesis, Massachusetts

Institute of Technology, 1998.
Muller, P., Instant UML, Wrox Press Ltd., Canada, 2000.

Necula, G., and P. Lee, Safe, Untrusted Agents Using Proof-Carrying Code, in G.
Vigna(Ed.): Mobile Agents and Security, vol. 1419, pp. 61 — 91, Springer Verlag,
1998.

Ng, S. K., and K. W. Cheung, Protecting Mobile Agents against Malicious Hosts

by Intention Spreading, in In H. Arabnia (ed.), Proc. International Conference on

153

BIBLIOGRAPHY

Parallel and Distributed Processing Techniques and Applications (PDPTA’99), pp.
725 - 729, CSREA, 1999a.

Ng, 5. K., and K. W. Cheung, Intention Spreading: An extensible theme to protect
mobile agents from read attack hoisted by malicious hosts, in In Jimming Liu, Ning
Zhong(ed.), Intelligent Agent Technology: Systems, Methodologies and Tools, pp. 406
— 415, World Scientific, 1999b.

NIST, Secure Hash Standard (SHS), in National Institute of Standards and Technol-
ogy, Federal Information Processing Standards Publication (FIPS Pub 180), 1993,

http://www.itL.nist.gov /fipspubs/fip180-1.htm.

NIST, Announcement of Technical Correction To Secure Hash Standard, in National
Institute of Standards and Technology, 1994, http://www.nist.gov/public_affairs/re-

leases/hashstan.htm.

Noble, B., and M. Satyanarayanan, Experience with adaptive mobile applications in
Odyssey, in Mobile Networks and Applications, vol. 4, pp. 245 - 254, Baltzer Science,
1999.

Nwana, H., Software Agents: An Overview, in The Knowledge Engineering Review,

vol. 11, pp. 205 —~ 244, Cambridge University Press, 1996.
ObjectSpace, ObjectSpace Voyager Core Technology, 1st ed., ObjectSpace, Inc., 1997.

Oppliger, R., Security issues related to mobile code and agent-based systems, in Com-

puter Communication, vol. 22, pp. 1165 — 1170, Elsevier Science, 1999.

Ousterhout, J., Tcl and the Tk toolkit, Addison-Wesley, New Jersey, United States,
1994.

Perraju, T., Agents and Autonomous Distributed Systems, in Proceedings. Fourth In-
ternational Symposium on Autonomous Decentralized Systems - Integration of Het-

erogeneous System, pp. 264 — 266, IEEE Computer Society, 1999.

BIBLIOGRAPHY

Peterson, L., and B. Davie, Computer Networks: A Systems Approach, 3rd ed., Morgan
Kaufmann, 2003.

Pfleeger, C., Security in Computing, 2nd ed., Prentice-Hall Inc., New Jersey, United
States, 1997.

Reisner, J., and E. Donkor, Protecting Software Agents from Malicious Hosts using
Quantum Comiputing, in Proceedings of SPIE - The International Society for Optical
Engineering, pp. 50 - 57, IEE, 2000.

Riordan, J., and B. Schneier, Environmental Key Generation Towards Clueless Agents,
in In: G. Vigna (Ed.). Mobile Agent and Security. Lecture note in Computer Science,
vol. 1419, pp. 15 - 24, Springer Verlag, Berlin, 1998.

Rivest, R. L., A. Shamir, and L. M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, in Communication of The ACM , vol. 2, pp. 120 - 126,
ACM, 1998.

Roft, J. T., UML: A Beginner’s Guide, McGraw-Hill, United States, 2003.

Rus, D., R. Gray, and D. Kotz, Transportable Information Agents, in Proceedings of the
First ACM International Conference on Autonomous Agenls, pp. 228 — 236, ACM,
1997.

Russell, D., and G. Gangemi, Computer Security Basics, O’ Reilly & Associates, Inc.,
United States, 1991.

Sander, T, and C. Tschudin, Protecting Mobile Agent Against Malicious Hosts, in In:
G. Vigna (Ed.). Mobile Agent and Security. Lecture note in Computer Science, vol.
1419, pp. 44 — 60, Springer Verlag, Berlin, 1998a.

Sander, T., and C. Tschudin, Towards Mobile Cryptography, in Proceedings of the
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Oakland,
CA, USA, 1998b.

BIBLIOGRAPHY

Sander, T, and C. Tschudin, On Software Protection via Function Hiding, in Proceed-
ings of the Information Hiding. Second International Workshop, IH’98., pp. 111-123,

Springer Verlag, 1998c.

Schelderup, K., and J. Olnes, Mobile Agent Security: Issues and Directions, in Pro-
ceedings of ISESN’99, pp. 155 — 167, Springer Verlag, 1999.

Schneier, S., Applied Cryptography, 2nd ed., Wiley & Son, New York, United States,
1996.

Schoder, D.; and T. Eymann, The Real Challenges of Mobile Agents, in Communication
of The ACM, vol. 43, pp. 111 — 112, ACM, 2000.

Silva, L., G. Soares, P. Martins, V. Batista, and L. Santos, Comparing the performance
of mobile agent systems: a study of Benchmarking, in Computer Communication,

vol. 23, pp. 769 — 778, Elsevier Science, 2000.

Stallings, W., Cryptography and Network Security : Principle and Practice, 2nd ed.,

Prentice-Hall Inc., New Jersey, United States, 1999.

Stamos, J. W., and D. K. Gifford, Remote Evaluation, in ACM Transaction on Pro-
gramming Languages and Systems (TOPLAS), vol. 12, pp. 537 — 564, ACM Press,
1990.

Sun Microsystems, 1., Java 2 Platform Std. Ed. V1.3.1, http://java.sun.com/j2se/
1.3/docs/api/index.html, 2004.

Sundsted, T., An introduction to agents, JavaWorld, 1998, http://www.javaworld.

com /javaworld/jw-06-1998 /jw-06-howto.html.

Tai, H., The Aglets Project, in Communication of The ACM, vol. 42, pp. 100 - 101,
ACM, 1999.

Travelocity, http://www.travelocity.co.uk/, 2004.

BIBLIOGRAPHY

Tripathi, A., and N. Karnik, Protected Resource Access for Mobile Agent-based Dis-
tributed Computing, in Workshop on Architectural and Operation Systems Support

for Multimedia Applications, pp. 144 — 153, IEEE Computer Society, 1998.

Tripathi, A., N. Karnik, T. Ahmad, R. Singh, A. Prakash, V. Kakani, M. K. Vora,
and M. Pathak, Design of the Ajanta System for mobile agent programming, in The

Journal of Systems and Software, vol. 62, pp. 123 — 140, Elsevier Science, 2002.

Vigna, G., Cryptographic Traces for Mobile Agents, in In: G. Vigna (Ed.). Mobile
Agent and Security. Lecture note in Computer Science, vol. 1419, pp. 137 — 153,

Springer Verlag, Berlin, 1998.

Wang, T., S. Guan, and T. Chan, Integrity protection for Code-on-Demand mobile
agents in e-commerce, in The Journal of Systems and Software, vol. 60, pp. 211 —

221, Elsevier, 2002.

West, R., and J. Gloudon, User-Level Sandboxing: a Safe and Efficient Mechanism for
Extensibility, Tech. rep., Computer Science Department, Boston University, Boston,

2003.

Wong, D., N. Paciorek, and D. Moore, Java-based Mobile Agents, in Communication

of The ACM, vol. 42, pp. 92 - 102, ACM, 1999.

Yee, B. S., A Sanctuary for Mobile Agents, Tech. rep., University of California in San

Diego, 1997, http://www.cse.ucsd.edu/users/bsy /index.html.

Zhu, F., S. Guan, and Y. Yang, SAFER e-commerce: secure agent fabrication, evo-
lution and roaming for e-commerce., in Internet Commerce and Software Agents:
Cases, Technologies and Opportunities., pp. 190 — 206, IDEA Group Publishing,
2000.

157

Part VI

Appendices

158

Appendix A

The Aglets Software Development

Kit Configuration

This manual provides information on how to configure the Aglets Software Development
Kit (ASDK) version 2.0 that was used in developing the SecureFFAS prototype system in
this research. The content of this manual is based on the Aglets Software Development
Kit documentation version 1.1 Beta 3 released by the IBM Corporation (IBM, 1998)
with some modification to suit the configuration of the ASDK version 2.0.

There are five configuration steps to follow in configuring the Aglets Software De-

velopment Kit:
1. Downloaded the ASDK Installation Source
2. System Requirements
3. Configure Server Properties
4. Installation

5. Start Up The Tahiti Server

159

APPENDIX A. THE AGLETS SOFTWARE DEVELOPMENT KIT CONFIGURATION

A.1 Step 1. Downloaded the ASDK Installation

Source

The Aglets Software Development Kit version 2.0 installation source can be downloaded
from http://www.trl.ibm.com/aglets/. This installation source is licensed under the

IBM Public License and can be downloaded for free.

A.2 Step 2. System Requirements

There are two system requirements for the Aglets Software Development Kit version

2.0:

1. The Aglets Software Development Kit version 2.0 required Java Development Kit

(JDK) 1.2 or above to be installed, and

2. The ASDK with JDK 1.2 or above is available for SPARC/Solaris 2.5 or above,
Windows 95/98/2000/NT, AIX 4.1.4 and *OS/2 Warp 4.

A.3 Step 3: Configure Server Properties

The server properties filc can be created by manipulating the “sample_aglets.props”
file that was included in the ASDK version 2.0 distributed package. In the “sam-
ple_aglets.prop” file, user is required to specify the “aglets.home” property, while other
properties can be left unspecified because they have a default value. An example of

“aglets.home” property for Windows 95/98/2000/NT is presented as:

aglets.home=C:\\Aglets2.0

and for Unix as:

aglets.home=/home/username/Aglets2.0

160

APPENDIX A. THE AGLETS SOFTWARE DEVELOPMENT KIT CONFIGURATION

A.4 Step 4: Installation

Install the ASDK version 2.0 using the following installation steps:

For Windows 95/98/2000,NT, OS/2

1. Unzip the ASDK distribution package and extract the distribution into local

computer directory, for example “C:\Aglets2.0”
2. Open MS-DOS Prompt

3. Change directory to the directory that contains the ASDK script, for example
“C:\Aglets2.0\bin”

4. Set Java home, for example “C:\ >set JDK_HOME=C:\JDK1.3.1”
5. Set Aglet home, for example “C:\ > set AGLET _ HOME=C:\aglets2.0”

6. Run ANT script that was given in the ASDK distribution package by typing

“C:\ >ant”
7. Run ANT script again by typing “C:\ >ant install-home”
For Unix(csh,tcsh)

1. Unzip the ASDK distribution package and extract the distribution into local Unix

directory, for example “/usr/local/abubakak/Aglets2.0”

2. Change directory to the directory that contains the ASDK script, for example
“/usr/local Jabubakak /Aglets2.0/bin”

3. Set Java home, for example “% setenv JDK_ HOME /usr/local/abubakak /jdk1.3.1”
4. Set Aglet home, for example “% setenv AGLET _HOME /usr/local /abubakak / Aglets2.0”

5. Run ANT script that was given in the ASDK distribution package by typing

cc%antw

161

APPENDIX A. THE AGLETS SOFTWARE DEVELOPMENT KIT CONFIGURATION

6. Run ANT script again by typing “%ant install-home”
For Unix(sh,ksh,bash)

1. Unzip the ASDK distribution package and extract the distribution into local Unix

directory, for example “/usr/local/abubakak/Aglets2.0”

2. Change directory to the directory that contains the ASDK script, for example

“/usr/local /abubakak /Aglets2.0/bin”

3. Set Java home, for example “%JDK_HOME=/usr/local/abubakak/jdk1.3.1; ex-
port JDK_HOME”

4. Set Aglet home, for example “%AGLET_HOME= /usr/local /abubakak / Aglets2.0;
export AGLET_HOME”

(@21

Run ANT script that was given in the ASDK distribution package by typing

(l%ant”

6. Run ANT script again by typing “%ant install-home”

A.5 Step 5: Start Up The Tahiti Server

To start up the Tahiti Server, execute “agletsd” script, which is included in the ASDK

distribution package as the following:
For Windows 95/98,/2000,NT, OS/2

C:\ > %AGLET HOME % \bin\agletsd -f sample_aglets.prop
For Unix(csh,tesh)

% SAGLET_HOME/bin/agletsd -f sample_aglets.prop

162

APPENDIX A. THE AGLETS SOFTWARE DEVELOPMENT KIT CONFIGURATION

For Unix(sh,ksh,bash)

% $SAGLET _HOME/bin/agletsd -f sample_aglets.prop

Once the Tahiti server has been successfully started up, a Tahiti window will appear
as in figure A.1. This Tahiti server provides a user interface for monitoring, creating,
dispatching, and disposing of agents and for setting the agent access privileges for the

agent server.

Figure A.1: A Tahiti Window

163

Appendix B

SecureFAS User Manual

B.1 Introduction

This manual provides information on how to start up and use the SecureFAS prototype.

B.2 Start Up The SecureFAS Environment

There are three systems that need to be started up before the SecureFAS prototype

can be used:
e The Certificate Authority system,
e The Airline system, and

e The SecureFAS prototype system.

B.2.1 The Certificate Authority System

The Certificate Authority system can be started up using the following instructions:
1. Open MS-DOS Prompt
2. Run the Tahiti Server using the following commands:

2.1 C:\ >cd aglets2.0\bin <enter>

164

APPENDIX B. SECUREFAS USER MANUAL

2.2 C:\aglets2.0\bin>agletsd -f my_aglets.props -port 4444 <enter> (Port num-

ber can be changed to any number)
3. Start up the Certificate Authority System using the following steps:

3.1 Once the Tahiti Server is running (see Figure B.1), click the Create button

to start up the Certificate Authority system,

Figure B.1: A Tahiti Window |

3.2 When a create window appears as in Figure B.2, select CAAgent from the
Aglets List and click the Create button to start up the Certificate Authority
system. Figure B.3 shows the Certificate Authority system is running on

the Tahiti Server.

B.2.2 The Airline System

To start up the Airline System, follow the following instructions:

1. Open MS-DOS Prompt (New MS-DOS Prompt should be opened for each Airline

Systern)
2. Run the Tahiti Server using the following steps:

165

APPENDIX B. SECUREFAS USER MANUAL

i
P

Figure B.3: The Certificate Authority System running on the Tahiti Server

2.1 C:\ >cd aglets2.0\bin <enter>

2.2 C:\aglets2.0\bin>agletsd -f my_aglets.props -port 4434 <enter> (Port num-

ber can be changed to any number)

3. Start up the Airline System using the following steps:

166

APPENDIX B. SECUREFAS USER MANUAL

3.1 Once the Tahiti Server is running, a Tahiti window will appear as in Figure

B.4. The user then needs to click the Create button to start up the Airline

system.

Figure B.4: A Tahiti Window

3.2 When a create window appears as in Figure B.5, select AirlineAgent from
the Aglets List and click the Create button to start up the Airline system.
Figure B.6 shows the Airline system is running on the Tahiti Server.
B.2.3 The SecureFAS Prototype System

Once both the Certificate Authority system and the Airline system have been success-
fully started up, the SecureFAS prototype system then can be started up using the

following instruction:

1. Open MS-DOS Prompt (New MS-DOS Prompt should be opened for each Airline

System)
2. Run the Tahiti Server using the following steps:

2.1 C:\ >cd aglets2.0\bin <enter>

167

APPENDIX B. SECUREFAS USER MANUAL

Figure B.6: The Airline System running on the Tahiti Server
2.2 C:\aglets2.0\bin>agletsd -f my_aglets.props -port 5000 <enter> (Port num-
ber can be changed to any number)
3. Start up the SecureFAS Prototype System using the following steps:

3.1 Once a Tahiti Server window appear as in Figure B.7, click the Create

button to start up the SecureFAS.

168

APPENDIX B. SECUREFAS USER MANUAL

Figure B.7: A Tahiti Window

3.2 When a create window appear (see Figure B.8), select MasterAgent from
the Aglets List and then click the Create button to start up the SecureFAS

(see Figure B.9).

Figure B.8: A Create Window

169

APPENDIX B. SECUREFAS USER MANUAL

[ee

R o, ‘\w;ség;wwm\«%w&&wu e
e Agent owetp s ssenelUsston ol WK 4047

Figure B.9: The SecureFAS running on the Tahiti Server

B.3 The SecureFAS Operation

Once the SecureFAS has successfully been started up, a new window will appear as in
Figure B.10. This new window is a SecureFFAS Graphical User Interface (GUI) that
functions as an interface between the user and the SecurelFAS prototype system to

enable user interaction with the SecureFFAS prototype system.

| SEARCHING. |

Figure B.10: The SecureFAS GUI

170

APPENDIX B. SECUREFAS USER MANUAL

The SecureFAS GUI as in Figure B.10 is divided into six sections:
1. Travel information,

2. Travel date,

3. Passenger information,

4. User budget,

. Searching button, and

(@

6. SecureFAS result.

B.3.1 Travel Information

This section requires the user to key in information about the airport name where
the user starts their travel, and their destination. For example, if the user is going to
travel to Kuala Lumpur, Malaysia from Birmingham, United Kingdom, the entry for
“Leaving From:” should be “Birmingham” and the entry for “Going To:” is “Kuala

Lumpur”.

B.3.2 Travel Date

The travel date section requires the user to supply the date of travel to the SecureFAS
prototype system. The input of the date of travel must use the “ddmmyy” format to
represent the date of travel. For example, if the user want to travel on the 25 January

2004, the entry to the “Departure Date” is “250104”.

B.3.3 Passenger Information

This section requires the user to supply information about the number of passenger
who will be travelling according to three different categories: Adult, Child and Infant.
For example, if the user wants to travel with his wife and child aged less than two years

old, the entry for this section should be “Adult: 27, “Child: 0” and “Infant: 17.

171

APPENDIX B. SECUREFAS USER MANUAL

B.3.4 User Budget

This section requires the user to enter his/her own budget that he/she can afford to

pay for the travel. The entry should be any number such as 200, 300, or 500.

B.3.5 Searching Button

This section contains the button that starts the transaction phase of the SecureFAS
prototype system. Once the user clicks on this button, the SecureFAS prototype system

will start working to find the best offer among the virtual airline servers on the Internet.

B.3.6 SecureFAS Result

This section displays the result from the SecureFAS prototype system that was gathered
from the SecureFAS transaction. The results that will be displayed contain the best
offer and the address of the virtual airline server that made the best offer. For example,
consider the situation where the SecureFAS prototype system only visited three virtual

airline servers as below and searched for the best offer under 600 pound.

‘Best Offer : 560 Pouhd
.:Best Airline Address | atpJics-research(i.aston ac.uk 4434/

Figure B.11: SecureFAS GUI Display Results

1. Airline A (Address: atp://cs-research01.aston.ac.uk:4434/), makes an offer of 560

pound for Business Class,

172

APPENDIX B. SECUREFAS USER MANUAL

2. Airline B (Address: atp://cs-research0l.aston.ac.uk:4500/), makes an offer of 510

pound for Economic Class, and

3. Airline C (Address: atp://cs-research0l.aston.ac.uk:5000/), makes an offer of 499

pound for Economic Class.

In this situation, the SecureFAS will display “560 Pound” and “atp://cs-research01.

aston.ac.uk:4434/” as the best offer. Figure B.11 shows the SecureFAS GUI after the

transaction is completed.

173

Appendix C

SecureFAS Use Case and Sequence

Diagram

C.1 Introduction

This section describes the design of the SecureFAS prototype system model using the
Unified Modeling Language (UML) (Roff, 2003; Muller, 2000).

C.2 SecureFAS Prototype System Model

The SecureFAS prototype system model shown in Figure C.1 involves three different

actors:
e The SecureFAS User,
e The Certificate Authority Administrator, and
e The Virtual Airline Administrator.

The SecureFAS User is an actor that uses the SecureFAS prototype system in order
to find the best flight offer among Virtual Airline hosts on the Internet. This actor
is responsible to start up the SecureFAS prototype system and supplying the Secure-

FAS prototype system with its purchase requirement and Virtual Airline addresses to

174

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

Certificate Authority
Administrator

\
SccurcFAS Uscer

SecurcFAS Prototype System

NS

Virtual Airline
Administrator

Figure C.1: The SecureFAS Prototype System Main Model

enable the SecureFAS prototype system to find the best flight offer. The Certificate
Authority Administrator is an actor that is responsible for starting up and managing
the Certificate Authority system and host. The Virtual Airline Administrator is an

actor responsible for starting up and managing the Virtual Airline system and host.

Initialisation

Certificate Authority
Administrator

Virtual Airline

. . Administrator
Registration and

Public Key
Retricval

Find Flight Offer

SecureFAS User

Figure C.2: Use Case Diagram of the SecureFAS Prototype System

Figure C.2 shows the use case diagram of the SecureFAS prototype system model,

which contains three main processes:

e The Initialisation,

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM
e The Registration and Public Key Retrieval, and

e The Find Flight Offer.

C.2.1 [Initialisation Process

This section describes in detail the initialisation process of three different systems:
e Certificate Authority System,
e SecureFAS Prototype System, and

e Virtual Airline System.

Certificate Authority System Initialisation Process

Figure C.3 shows the use case diagram of the Certificate Authority System initialisa-
tion process. In this figure, the Certificate Authority Administrator is responsible for

starting the Certificate Authority System initialisation process.

Certificate Authority
Administrator

Figure C.3: Use Case Diagram of the Certificate Authority System Initialisation
Process

The detail initialisation process of the Certificate Authority system is shown by the
sequence diagram in Figure C.4. This figurc shows the way the Certificate Authority

Administrator starts up the Certificate Authority System.

SecureFAS Prototype System Initialisation Process

The SecureFAS prototype system initialisation process use case diagram is shown in
Figure C.5. This figure shows the SecureFAS user executing the initialisation process

of the SecureFAS prototype system.

176

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

X

Centificate Authority

L Certificate Authority System
Adnunistrator

(Centificate Authority Agent)

H
|
Start Up '
H

B,
o

1
1
t
0
'
i
i
t
t
t
i
1
1
(
t
'
1
1
(
(
:
¢
1
1
|
t
t
'
1
|
'
s
'
1
|
|

Figure C.4: Sequence Diagram of the Certificate Authority System Initialisation
Process

SecureFAS User

Figure C.5: Use Case Diagram of the SecureFAS Prototype System Initialisation
Process

The detail initialisation process of the SecureFAS prototype is shown by the se-
quence diagram in Figure C.6. This figure shows how the SecureFAS user starts the
initialisation process of the SecureFAS prototype system. Once the SecureFFAS proto-
type system is started, the SecureFAS prototype system starts generating cryptographic

keys to produce public and private key for the SecurelFAS prototype system used.

Virtual Airline System Initialisation Process

Figure C.7 shows the use case of the Virtual Airline System initialisation process. This
figure shows the Virtual Airline Administrator executes the initialisation process of the
Virtual Airline System.

Detail initialisation process of the Virtual Airline System is shown using sequence

177

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

% X

SocurcFAS User Sg:urcFA.\‘ }:mlmyp-c System
(SccurcFAS Master Agent)

) :
1
Start Up |

P

Generate
Cryplographic
Keys

I

P
'
1
(
i
'
i

| L

Figure C.6: Sequence Diagram of the SecureFAS Prototype System Initialisation
Process

§ =

Virtual Airline
Administrator

Figure C.7: Use Case Diagram of the Virtual Airline System Initialisation Process

diagram in Figure C.8. In this figure, once the Virtual Airline Administrator starts
up the Virtual Airline System, the system starts generating cryptographic keys. This
will produce public and private cryptographic key for the Virtual Airline System to
enable the Virtual Airline System to securely and privately exchange data through the

Internet.

C.2.2 Registration and Public Key Retrieval Process

This section describes the registration and public key retrieval process of two systems:
e SecureFAS Prototype System, and

e Virtual Airline System.

178

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

2 X

Virtal Airline System
Virtual Airline (Virtual Airline Agent)
Administrator

i

i
Swrt Up H
B

]

Generate
Cryptographic
Keys

— |

Figure C.8: Sequence Diagram of the Virtual Airline System Initialisation Process

SecureFAS Prototype System Registration and Public Key Retrieval Process

Figure C.9 shows the registration and public key retrieval process of the SecureFAS

prototype system using use case diagram.

Registration and
Public Key
Retricval

]

SceurclFAS User Cerificate Authority
Administrator

Figure C.9: Use Case Diagram of the SecureFAS Prototype System Registration and
Public Key Retrieval Process

Detail of the registration and public key retrieval process is shown using sequence

diagram in Figure C.10. There are two different processes exist in Figure C.10:
e the registration of SecureFFAS public key process, and

e the retrieval of the Virtual Airline public key process.

In the registration process, in order to register the SecureFAS public key to the

Certificate Authority system, the SecureFAS prototype system will create the Register

179

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

X X R X X

SocurcFAS User SecureFAS Protoype System Register Agent Request Agent Certificate Authority System
(SecurcFAS Master Agent) i (Centificate Authonity Agent)

Certificate Authority
Administmtor

H
:
' [—
Create nnd Dispach Register Agent H

'
Register Sucvfx\»lfz\s Public Key
5
H
|
'
Registrutipn completed
Retum 0 SecurelAS Host - T R e L BT
_____________________ i
' '
; '
Create and Dispatch Request Agent! H
B Request Vistuat Aidine Public Key
5

; Return requested Public Koy
Returs to SecuceFAS Host with n{quc.\‘u‘d Pubtic Key i it |

Figure C.10: Sequence Diagram of the SecureFAS Prototype System Registration and
Public Key Retrieval Process

Agent. Once created, the Register Agent will then be dispatched by the SecureFAS
prototype system to the Certificate Authority host to register the SecureFAS public
key. Once the registration process is done, the Register Agent returns to the SecureFAS
host.

In the retrieval process, the Request Agent will be created by the SecureFAS pro-
totype system in order to retrieve a particular Virtual Airline public key from the Cer-
tificate Authority system. This Request Agent will be dispatched by the SecureFAS
prototype system to request a particular Virtual Airline public key at the Certificate
Authority host. Once a particular Virtual Airline public key received, the Request

Agent returns to the SecureFAS host.

Virtual Airline System Registration and Public Key Retrieval Process

Figure C.11 shows the registration and public key retrieval process of the Virtual Airline
system using a use case diagram.

Detail of the registration and public key retrieval process for the Virtual Airline
system is shown by sequence diagram in Figure C.12. There are also two different

processes exist in Figure C.12:
e the registration of Virtual Airline public key process, and

180

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

Registration and
Public Key
Retricval

Virtual Airline Certificate Authority
Administrator Administrator

Figure C.11: Use Case Diagram of the Virtual Airline System Registration and Public
Key Retrieval Process

e the retrieval of the SecureFFAS public key process.

R S T P g

Virtuat Airline System Register A Request Age
Virtual Airline (Vittual Aistine Agent) cgister Agent oquest Agent l

Certificate Authority

Centificate Authority System Administator

(Certifieate Authority Agent)

As

'

.

I

'

'

Create and Dispatch Register Agent !
.

) Register Winual Airdine Public Key
'
' %
|
Return to Victual Airline Host S
hE mmm e

T
3
;
:
Create and Dispateh Request Agent
H
:
‘
'

i

Figure C.12: Sequence Diagram of the Virtual Airline System Registration and Public
Key Retrieval Process

In the registration process, the Register Agent will be created by the Virtual Airline
system. This Register Agent will then be dispatched by the Virtual Airline system to
the Certificate Authority host to register the Virtual Airline public key. Once the
registration is done, the Register Agent will be returned to the Virtual Airline host.

In the retrieval process, the Request Agent will be created by the Virtual Airline
system. This Request Agent will be used to retrieve the SecureFAS public key from
the Certificate Authority system by dispatching the Request Agent to the Certificate
Authority host. Once the Request Agent received the SecureFAS public key from the

Certificate Authority system, the Request Agent returns to the Virtual Airline host.

181

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

C.2.3 Find Flight Offer Process

Figure C.13 shows the use case diagram for the SecureFAS prototype system Find

Flight Offer process.

SecureFAS User

Virtual Airline
Administrator

Figure C.13: Use Case Diagram of the SecureFAS Prototype System Find Flight Offer

Process

X

: SeeurcFAS Prototype System Ditabase .
SecurcFAS Usce (SccurckAS Master Agent) SecurcFAS Wreapper SocurclAS
) Fvaluati Slave Agent
:.< Request User Purchase Requirements - Agent ' !
i and Vinual Airtine Addresses 1 H !
' i :
i 1 i H
——User Purchase Reguirements and—$ Gt Bad Addressos : :
; Virtat Airline Addresses & H
H Retum Bad Addresses VJ 1
H
T T EAN i
! Filter bad addfesses H H
E <! 2 :
; Oblluscatc and chierypt scr's data, and storc in '
I

H 4‘—} the 10uly Container '
: i o
: {
H Generateland Dispaich Stave Alent
1 ' i
' 1 H
H : :
) : H
; , :
: ! :
| : i
: H i
3 + ‘
H i '
1 1 H
H H |
: { }
i 1 H
, ' H
: . :

H
H Skave Agent lopeiher with the Recordfd State
)
i contamers miun\ 1o the SecurcFASHost
: A A -
H
! Store bud H H
! Apgot addroses met | !
s v s Night ofter ! !
| Returm ey '
) H
H cvaluation } i
¢ rosults oy :
: RO S ! '
: Get nﬂ;!’h)gh! Offers, H !
' 1 H
| Return aff Flight Gffers T J H
' MCrmmm e prmmm o H H
:) ') i
¢ Display the best Fhight Offer o the user t— Scloet the best Plight Offers : :
B e e e e e e e H
PSRREEEEEEE ' :

‘AS

) Reqquost (6 decrypl
5

Vidual Airline System
(Virtual Airline Agent)

[cturn decrypled daes
5

Virtu
Airli

Wrapy

wirl
ne

Database

per

%

Vinual Airline

cquest Plight Ofter

Fhight Offer

Digitat signature

Rocord all procosscs in
Recorded State containors

§ Flight
5

|

P 1

Roturn Reduested Flight |

|

v
Dat
+

5

Figure C.14: Sequence Diagram of the SecureFAS Prototype System Find Flight Offer

Process

Detail of the Find Flight Offer process is shown using a sequence diagram in Figure

C.14. The process of finding flight offer starts when the user of the SecureFAS prototype

system supplies the user purchase requirement and virtual airline addresses to the

SecureFAS prototype system. The execution of the SecureFAS prototype system then

executes the followings steps to find the best flight offer:

182

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

9.

10.

11.

12.

. Retrieve the malicious Virtual Airline addresses (bad addresses) from the Secure-

FAS database.

Filter the malicious Virtual Airline addresses from the user’s Virtual Airline

addresses.

. Obfuscate and encrypt user’s data, and then store the data into the Recorde-

dReadOnly container.

. Generate Slave Agent and dispatch it to a particular Virtual Airline system.

. On arrival at a particular Virtual Airline host, the Slave Agent request the Virtual

Airline system to decrypt its data.

The Slave Agent then makes a flight offer request based on its user purchase

requirement to the Virtual Airline system.

. The Virtual Airline system checks the Slave Agent request with its database and

return the result to the Slave Agent if available.

During the Slave Agent execution process inside the Virtual Airline host execution
environment, all of the Slave Agent activities are recorded into Recorded State

container.

Once received flight offer from the Virtual Airline system, the Slave Agent request

the Virtual Airline system to digitally signed all the Recorded State container.

The Slave Agent return to the SecureFAS host together with the Recorded State

container.

When the SecureFAS prototype system received the returning Slave Agent, the

SecureFAS prototype system starts the evaluation process.

During the evaluation process on the returning Slave Agent, all of the containers
carried by the Slave Agent will be verified. Any container that cannot be verified

will be removed and the address of the Virtual Airline host that the Slave Agent

183

APPENDIX C. SECUREFAS USE CASE AND SEQUENCE DIAGRAM

13.

14.

executed in will be stored in SecureFAS bad addresses database. On the other
hand, the SecureFAS prototype system will store the flight offer gathered into

the SecureFAS result database.

Once all the Slave Agent returned to the SecureFAS prototype system, the Se-
cureFAS prototype system starts the process of selecting the best flight offer from

its database.

The best flight offer found will then be displayed to the SecureFAS user for further

actions.

184

Appendix D

Listings

D.1 SecureFAS Prototype System (Master Agent.java)

import com.ibm.aglet.®;

import java.nct.URL;

import java.util.*;

import java.text.*;

import java.io.®;

import java.lang.reflect.®;

impor¢ java.util. Random;

import java.sql.®;

import java.util. Vector;

import java.util. Enumeration;
import java.util.List;

import iaik.security.provider JATK;
import java.security.®;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.Cipher;
import java.awt.®;

import java.awt.event.®;

import javax.swing.¥;

public class MasterAgent extends Aglet {
private AgletProxy Master_AgentProxy;
private AgletProxy Slave_AgentProxy;
private Agletinfo Master _Agentlnfo;
Vector serverAddress = new Vector();
Vector readOnly = new Vector(};
Vector exccuteOnly = new Vector();
Vector collectOnly = new Vector();
SccretKey secKey = nulh;
PrivateKey privKey = null;
PublicKey pubKey = null;
String(] userPurchaseReq = new String{10];
List SAdetails = new ArrayList();
List PubKeyList = new ArrayList();
long startTime;

long stopTime;

APPENDIX D. LISTINGS

long intervalTime;
JFrame MenuFrame;

JLabel MainLabel;

JLabel QuestlLabel, Quest2Label, Quest3Label, Quest4Label, QuestSLabel, Quest6Label, Quest7Label;

JPanel panell, panel2, panel3, paneld, panel5;

JTextField tempQuestl, tempQuest2, tempQuest3, tempQuestd, tempQuest5, tempQuest6, tempQuest7;

JTextArea textArea;

Random RN;

double UserBudget;

double ObfuscateValuel=0, ObfuscateValue2=0, ObfuscateValue3=0;
long tempTime;

String timeStr;

String Address;

String AirlincAddress=

BN

int index=0;
int indexIN=0;

int indexFail=0;

int actionStatus=0;

double bestOffer=99989999;

int RandN;

String StatusProcess;

String fromAddress;

public static final int MAXLEVEL

int NoiseNo=0;

static final String DB = “jdbciodbe:Blacklist Address”;
static final String USER = “7;

static final String PASSWORD = “7;

Connection conSelAdd;

static final String DB_Result = “jdbciodbe:Result”;
static final String USER_Result = “7;

static final String PASSWORD Result = 7

Connection conResult;

//Constructor MasterAgent
public MasterAgent() {

Security.insertProviderAt(new TATK(), 2);

// Method onCreation
public void onCreation(Object args) {
Master_Agentinfo = getAgletinfo();
Master.AgentProxy = getAgletContext().getAgletProxy(Master _Agentinfo.get AglotID());

Address = Master_Agentinfo.getOrigin{).toString();

try{

Class.forName(“sun.jdbe.odbe.JdbeOdbeDriver”);

conSelAdd = DriverManager.getConncetion{DB, USER, PASSWORD);
} catch (Exception e} {
e.printStackTrace(};

}

try{

Class. forName({ “sun.jdbc.odbe. JdbeOdbeDriver”);

conResult = DriverManager.getConnection(DB_Result, USER_Result, PASSWORD);
} catch (Exception ¢) {
e.printStackTrace();

}

186

APPENDIX D. LISTINGS

// Method onDisposing
public void onDisposing() {

)

// Method run
public void run{) {
URL servAddr;
URL remoteAddress;

index=0;

// Set the look and feel.

try {
UlManager.setLook AndFeel(
UlManager.getCrossPlatformLook AndFeelClassName());

} catch(Exception ¢) { }

MasterAgent Menu = new MasterAgent();

MenuFrame = new JFrame(*A Sccure Flight Finder Agent-Based System (SceurcFAS)”)
// Method create the frame and container

panell = new JPanel();

panell.sctLayout{new BoxLayout(panell, BoxLayout. X_AXIS});

// Add component to panel 1

addcomponent1();

// Add the panel to the frame.

MenuFrame.getContent Pane().add(panell, BordorLayout. NORTH);

panel2 = new JPanei();

panel2.setLayout{new GridLayout(1,1));

//Add component to panel 2

addcomponent2(});

// Add the panel to the frame.

MenuFrame.getContentPane().add(pancl2, Borderbayout. WEST);

paneld = new JPanel();

paneld.setLayout(new GridLayout(1,1));

//Add component Lo panel 3

addcomponent3();

// Add the panel to the frame.

MenuFrame.getContentPane().add(panei3, BorderLayout. CENTER);

paneld = ncew JPanel();

paneld.setLayout{new GridLayout(1,1});

//Add component Lo panel 4

addcomponentd();

// Add the panel to the frame.

MenuFrame.geiContentPane().add(pancld, BorderLayout. EAST);

paneld = new JPanel();

187

APPENDIX D. LISTINGS

paneld.setLayout(new BoxLayout(panels, BoxLayout. X_AXIS));

//Add component to panel 5

addcomponent5{);

// Add the panel to the frame.

MenuFrame.getContentPane().add(paneld, BorderLayout.SOUTH);

// Exit when the window is closed.

MenuFrame.setDefaultCloseOperation{JFrame. EXIT_ON_CLOSE);

// Show the Menu.
MenuFrame.pack(};

MenuFrame.setVisible(true);

// Wait until the user finished enter all the input
while (actionStatus == 0) {

b

generateKeys(); //gencrate erypto keys

//Register server address and public key to CA server
try {
URL CAServer = new URL(“atp://cs-researchQl.aston.ac.uk:4444/");
Object argf]=new Object{] { Address,pubKey} ;
AgletProxy RegisterAgentProxy = getAgletContext().createAglet{getCodeBase(), “RegisterAgent”, arg);
RegisterAgentProxy.dispatch(CAServer);
} catch(Exception ¢) { ;}

//Store Airline Address

try {
server Address.addElement(new URL(“atp://cs-resenrch0l.aston.ac.uk:4434/"));
serverAddress.addElement (new URL(“atp://cs-researchOl.aston.ac.uk:4454/"});
server Address.addElement(new URL(“atp://cs-researchQl.aston.ac.uk:4464/”));

} eatch (Bxception e) { ;)

//Removed blacklisted address
Iterator i=server Address.iterator(};
while (i.hasNext()) {

try {

remoteAddress = (URL)i.next();

String querySel = “Sclect servAdd From serverAddress " 4

“Where servAdd="" 4 remotcAddress 4 “;

Statement stmiSelAdd = conSelAdd.createStatement();

ResuitSet rsSelAdd = stmtSelAdd.exccuteQuery(querySel);

if(raSetAdd.next{)} {

i.remove(); // removed bad server address

conSeclAdd. close();
stmiSelAdd.close(};

catch {(Exception ¢ i
P b

//Request remote servers Public Key from CA Server
Iterator goodAddress=scrver Address.iterator();
while(good Address.hasNext(}) {

iry {

188

APPENDIX D. LISTINGS

URL Add = (URL)goodAddress.next();
String SerAdd = Add.toString();

URL CAServer = new URL(*atp://cs-research0l.aston.ac.uk:4444/");
Object argPK|[}=new Object{] { SerAdd,Master AgentProxy} ;
AgletProxy RequestAgentProxy = getAgletContext().createAglet(getCodeBase(), “Request Agent”, argPK);

RequestAgentProxy.dispateh(CAServer);

} catch (Exception e) { ;}

UserBudget= Double.parseDouble{tempQuest7.getText()); // user budget

long systemTime = System.currentl'imeMillis();

String timeSi = new

Long(systemTime).toString{);

RandN = Integer.parselnt(timeSt.substring(9,11));

while (RandN == 0) {

userPurchaseReq[0)=
userPurchaseReq(1]=

userPurchaseReq(2]=

userPurchaseReq{d]=

systemTime = System.currentTimeMillis();

timeSt = new Long(systemTime).toString();

RandN = Integer.parselnt(timeSt.substring(9,11));

//Dispatch Slave Agent to remote server
Enumeration enurm = serverAddress.clements();

while {enum.hasMoreElements()} {

try {

Object args]] = new Object|} { Master AgentProxy,pubKey,read Only,digitalSig} ;

Siave_AgentProxy = getAgletContext().createAglet(getCodeBane(), “SlaveAgent”, args);

servAddr = {URL)enum.nextElement(});

Slave_AgentProxy.dispatch(servAddr);

tempQuestl.getText(); //origin

tempQuest2.getText(); //destination

tempQuest3.getYext(); //depature date
uscerPurchaseReq|3}= tempQuestd.getText(); //passanger type
tempQuest5.getTexi{); //passanger type

userPurchaseReq{b}= tempQuest6.get'Text(); //passanger type

ObfuscateValuel=rs3(UserBudget,RandN); // true obfuscated value
ObfuscateValue2=rs3((UserBudget-RandN*10),RandN); // fake obfuscated value
ObfuscateValie3=rs3((UserBudget+4-RandN*10),RandN); // fake obfuscated value

- Adult
- Child

- infant

userPurchaseReq{6}=new Double(ObfuscateValuel).toString(}); //obfuscated user budget valuo
userPurchaselReql7)= new Double(ObfuscateValue2).toString(); //fake obfudcated value (Noise code)
userPurchaseReq|8]= new Double(ObfuseateValued).toString(); //fake obfuscated value (Noiwe codo)
userPurchaseReq[9)=new Integer(RandN).toString(); //RS3 First Random Number

byte[} digitalSig = genSignature(privKey, userPurchaseReq); //Generate digital signature

readOnly.addBlement (RSAencrypt(privKey,userPurchascReq)); //insert user’s ipecific purchase requirement

start’Time = System.current’TimeMillis(); //Timed the Slave Agent process

Agletinfo SlaveAgentinfo = Slave AgentProxy.getAgletinfo();

SAdetails.add(SlaveAgentinfo.getAgletiD().1oString());

SAdetails. add(Master _Agentinfo.getOrigin().toString());

SAdetails.add(servAddr.toString()});

SAdetails.add{new java.util.Date(SlaveAgentinfo.getCreationCime()).toString());

index++;

} catch (Exception ¢) { i}

189

APPENDIX D. LISTINGS

// Method message handling

public boolean handleMessage(Message msg) {

if (msg.sameKind(“PublicKey”)) {
String recvSerAdd = (String)msg.getArg(“argServerAddress” };

PublicKey recvPubKey = (PublicKey)msg.get Arg(“argPublicKey”);

PubKeylist.add{recvSerAdd);
PubKeyList.add(recvPubKey);
return true;

} else

if (msg.sameKind(“Process Fail”)) {
NoiseNo = ({Integer)msg.getArg(“argNoiseNo™)).intValue();
Vector recvES = (Vector)msg.getArg(“argES");

Vector recvCS = (Vector)msg.getArg(“argCS”);

if(NoiseNo==1) {
indexINA4-4-;
indexFail--+;
Enumecration ES = recvES.clements();
while(ES.hasMoreElements()) {
String ESData=ES.nextElement().toString();
if (ESData.cquals(“XFL"))

StatusProcess=“XFL";
f

if (ESData.equals(“XD1™))
StatusProcess="“XD1";
if (ESData.equals(*XF”)})

StatusProcess=“XI";

if((indexIN==index) && (indexFail==index)) {

textArca.append(“Requested Flight Is Not Available”);
if (StatusProcess.equals(“XD'T”))
text Area.append(“Requested Flight Date In Not Available”);
if (StatusProcess.cquals(“XF”})
textAren.append{ “Requested Flight Fare In Not Available”);
} else
if (indexIN==index) {
ury {
String queryllesult = “Select * From RedultData;
Statement stmtResult = conResult.createStatement();

ResultSet rsltesnlt = stmtResult.executeQuery(guery Result);

while (raResuit.nexi()) {
String slaveid = rsResult.getString(1);
fromAddress = raReanlt.getString(2);

double bOffer = Double.parseDouble(rsResult.gerString(3));

if{bestOffer > bOfer) {
bestOffer=bOffer;
AirlineAddress=fromAddress;

3
I

rsResult.close();

stmtResult.close();
} catch (Exception ¢) { ;}
textArca.append(“Best Offer @ 7 4 bhestOffer);

textArea.append(“Best Airline Address : 7 4 AirlineAddress);

190

APPENDIX D. LISTINGS

return true;

} else

if (msg.sameKind(“Recorded Staie”)) {
stopTime = System.currentTimeMillis();

intervalTime = (stopTime - startTime) /1000;

if(intervalTime < 60) {
NoiseNo = {(Integer)msg.getArg(“argNoiseNo™ }).intValue(});
String{] recvES = (String{])msg.getArg(“argES”);
byte[] recvES. Sig = (byte[})msg.get Arg(“argES_Sig"):
String|} reevCS = (String(})msg.get Arg(“argCS™);
byte[} recvCS_Sig = (byte[})msg.get Arg(*argCS_Sig”);

if{NoiseNo==1) {
ery {
//Master Agent creates Evaluation Agent
Object argsf]=new Object[] { Master . AgentProxy, recvES, recvES Sig, recvCs, recvCS Sig,
userPurchaseReq, SAdetails, privKey, PubKeylist,
new Double(UserBudget).toString()}
AgletProxy EvaluationAgentProxy = getAgletContext().createAglet(getCodeBase(),
“BvaluationAgent”, args);
} catch(Exception ¢) { ;}
}
} else {

try {
String queryResult = “Select * From ResultData”;

Statement stmtResult = conResult.createStatement();

ResultSet rsResult = stmtResult.excenteQuery(gueryResult);

while (rsResult.next()) {
String slaveid = rsResult.getString(1);
fromAddress = rsResult.getSiring(2);

double bOffer = Double.parseDouble(rsilesult.gotString(3));

if(bestOffer > LOffer) {
bestOHer=bOffer;

AirlineAddress=fromAddress;

}

rulResult.close();

stmtResuli.close();
} cateh (Exception e) { ;}
textArea.append(“Best Offer @ " 4 bestOffer);
textArea.append{“Best Airline Address : » 4 AirlincAddresn);
}

return true;

¥

elae

if {(msg.sameKind(“Finished™)} {
indexIN4-+;

if(indexIN==index} {

try {
String queryResult = “Select * From RenultData”;

Statement stmtResult = conResult.createStatement();

ResultSet rsResult = stmtResult.exccuteQuery(queryResuit);

while (rsResult.next(}) {

191

APPENDIX D. LISTINGS

String slaveid = rsResult.getString(1);
fromAddress = rsResult.getString(2);

double bOffer = Double.parseDouble(rsResult.getString(3));

if(bestOffer > bOffer) {
bestOffer=bOffer;

AirlinecAddress=fromAddress;

}

rsResult.close();

stmtResult.close();

} catch (Exception e) { ;}
}
textArea.append(“Best Offer @ ” 4 bestOffer):
textArca.append(“Best Airline Address : 7 + AirlincAddress);
return true;
} else

return false;

//Method create and add component to Panel 1
private void addcomponent1() {
Questilabel = new JLabel(“Leaving From:”);
tempQuestl = new JTextField(5);
Quesi2Label = new JLabel(“Going To:”);

tempQuest2 = new JTextField(5);

// Add component to panel
panell.add (QuestlLabel);
panell.add{tempQuest1);
panell.add(Quest2Label);

panell.add(lempQuest2);

QuestlLabel.setBorder(BorderFactory.createEBmpty Border{5,5,5,5
Quest2Label.setBorder(BorderFactory.createEmpty Border(5,5,5
pancll.sceBorder(BorderFactory.createCompoundBorder(

Borderfactory.creaieTitled Border(“Where Would You Like To Fly?"),

BorderFactory.createEmpty Border(5,5,5,5)));

// Method create and add component vo Panel 2
private void addcomponent2() {
Quest3label = new JLabel(“Departure Date:”);

tempQuest3 = new J'lextField(5);
// Add component to panel
panel2.sdd{Quest3Label);
pancl2.add (tempQuest3};

Quest3Label.setBorder{BorderFacrory.creaieEmpty Border(5,5,5,5));

panecl2.setBorder (BorderFactory.createCompound Border(

BorderFactory.createTitledBorder(“When Do You Prefer To Travel?”),

BorderFactory.createEmptyBorder(5,5,5,5)));

// Method create and add component to Panel 3

192

APPENDIX D. LISTINGS

private void addcomponent3() {
Quest4Label = new JLabel(“Adult:");
tempQuestd = new JTextField(2);
QuestsLlabel = new JLabel(“Child:");
tempQuestd = new JTextField(2);
QuestGLabel = new JLabel(“Infant:”);

tempQuestd = new JTextField(2);

// Add component to Panel 3
panel3.add(QuesedLabel);

panel3.add(tempQuest4);

panel3.add(QuestbSLabel);

paneld.add(tempQuestb);

pancl3.add(Questbl.abel);
paneid.add(tempQuest6);

QuestdLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5))
Q\msLsLabel.seLBordcr(BorderFm:wry.(:m;m:BmpLyBox-d(:r(S,S,G,s));
)

QuestGLabel.setBorder(BorderFactory.createEmpty Border(5,5,5,5

panel3.setBorder(BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder(“How Many Travellers?”),

BorderFactory.createcEmptyBorder(5,5,5,5)));

// Method create and add component to Panel 4

private void addcomponentd(} {

Quest7Label = new JLabel(“Budget:”

)i

tempQuest7 = new JTlextField(3);

// Add component 1o Pancl 4

paneld.add(Quest7Label);

pancid.add(tempQuest7);
Quest7Label.setBorder(BorderFactory.createEmpty Border(5,5,5,5))1
pancld.setBorder(BorderFactory.createCompound Border(
BorderFactory.createitled Border (“Your Budget”),

BorderFactory.creatcEmptyBorder(5,5,5,5)));

// Method create and add component Lo Panel 5
private void addcomponent5() {
JButton Buttonl = new JButton(“SEARCHING”);
Buttonl.addActionListener{new ActionListencr() {
public void actionPerformed(ActionEvent ¢) {

actionStatus=1;

b

textArea = new JlextArea(5, 20);
vextArea.setEditable(false);

JScroilPane scrollPane = new JScrollPane(textArea,
JScrollPane. VERTICAL SCROLLBAR_ALWAYS,
JScroliPane. HORIZONTAL SCROLLBAR-ALWAYS);

193

APPENDIX D. LISTINGS

scroliPane.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

// Add component to Panel 5
panel5.add(Buttonl);

panel5.add(scrollPane);

panel5.setBorder{BorderFactory.createCompound Border(
BorderFactory.createTitledBorder (),

BorderFactory.createEmptyBorder(5,5,5,5)));

// Method generate crypto keys
public void gencrateKeys{) {

try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getinstance(“RSA” “TATK”),

keyPairGen.initialize(1024);

KeyPair pair = keyPairGen.generateKeyPair();
privKey = pair.getPrivate();
pubKey = pair.getPublic();
} catch (Exception ¢) {
System.out.println(*[Generating RSA-PKI keypair error]” + c.toString());

}

// Method RSA encryption

public byte[][] RSAencrypt(PrivateKey pvKey, String]] text) {
bytef]{] ciphertext=new byteljava.iang.refiect. Array.get Lengih{text)]{];
byte[] textByte=muli;

or,

String tempSur =

try {
Cipher cipher = Cipher.getinstance(“RSA”, “IATK");
cipher.init(Cipher. ENCRY P'I.MODE,pvKey);
for(int i=0; i<java lung.reflect. Array.getLength(text); i4-4) {
tempStr = addValidStr(text(i]);
LextByte = tempStr.getBytes();
cipherPext(i]=cipher.doFinal (textByte);
}
} catch(Exception ¢) {
System.out.println(“[PKI encryption error] ” 4 e.toString());
}

return cipherfext;

// Method RSA decryption

public String[] RSAdecrypt{PublicKey pbKey, bytef}{] cipheriext) {
String{] plain’fext = new String[java.lang.reflect. Array.getLength(cipherfext)];
bytef] cipherByte=null;

wn

String tempStr = 7

Ly |
Cipher cipher = Cipher.getInstance(“RSA”, “IATK”);
cipher.init(Cipher. DECRYPT MODE,pbKey);
for (int i=0; i<java.lang.reflcct. Array.getLength(cipherText); i++) {
cipherByte = cipher.doFinal(cipherText(il);

194

APPENDIX D. LISTINGS

tempStr = new String(cipherByte);
plainText[i] = cutValidStr(tempStr);
}
} catch(Exception e) {
System.out.printin{ “{PKI decryption error] * + e.toString());
}

return plainText;

// Method add string
public String addValidStr(String rawSer){

int chrAdded,i,strLength;

if (rawStr == null)

rawStr = 7
strlength = rawStr.length()%8;

chrAdded = 8-strLength;

if (strLength > 0){

for (i=0; i<chrAdded; i+-+)

rawStr = rawStr 4 “X”;

rawStr = rawStr -+ “ADDCHAR” 4 String.valueOf(chrAdded);
} else{
if (rawStr.length()!=0)

rawStr = rawStr + String.valueOf(strLength);
eiseq

rawStr = “DATANULOQ”;

}
}

return rawSur;

// Method cut string
public String cutValidStr(String rawStr){
wn

Siring tempStr =

int i o= lm,tegczr.wslm:OI’(St,ring,vulm:Of(ruwSl,r,(;harA(,((r:stl,y:h:ngl,h())-l))).inLVul\m();

if (rawSur.dength()!=8)
tempStr = rawStr.substring(0,rawSer.dength()-(34-8));

return tempStr;

// Method generate digital signature
public byte[] genSignature(PrivateKey privKey, Stringl} plainText) {
bytef] sig=null;

bytef] cipherText;

try {
Signature genSig = Signature.getlnstance(“SHA1withRSA” };
genSig.initSign(privKey);
uy {
for (int i=0; i<java.lang.reflect. Array.getLengih(plainfext); i+ +) {
cipherfexy = plainText{i].getBytes();
genSig.update(cipherText); //add mag to be sign
}

} catch(Exception ¢){

APPENDIX D. LISTINGS

System.out.println(*{Updating signature error] ” 4 e.toString());:
}
sig = genSig.sign();

} catch{Exception ¢){

System.out.println(“{Generating signature error] » + e.toString());

¥

return sig;

// Method verify digital signature
public void verifySignature(PublicKey pubKey, byte[} inSig, String[} plainText) {
boolean verifies=false;

byte[} inCipher;

ry {
Signature verifySig = Signaturc.getinstance(“SHAIwithRSA”);
verifySig.initVerify(pubKey);
for (int i=0; i<java.lang.reficcl. Array.getLength(plainText); i) {
inCipher = plainText[i].getBytes();
verifySig.update(inCipher); // add msg that need to be verified
¥

verifi rerifySig.verify (inSig);

} catch(Exception ¢){
System.out.printin{“[Verifying signature crror} 7 4 c.toString());

3

//Method polynomial caleulation
public double polynomial(int a, double b, int ¢, int x) {

double result;

result=(a * Math.pow(x,2)) + (b * %} +

return result;

// Method Random Sequence 3-level obfuscation algorithm

public double rs3(double budget,int randomNumber) {
int branch;
int newRnd = randomNumber;
for (int i=0; i<MAXLEVEL; i++) {
branch = newllnd % MAXLEVEL;
Random selector = new Random{branch);

newRnd = (int) (selector.nextDouble(} * 1000000);

budget = polynomial(branch, budget, (newRnd % randomNumber), randomNamber);

}

return budget;

D.2 SecureFAS Slave Agent (SlaveAgent.java)

import com.ibm.aglet.*;

import com.ibm.aglet.event.®;

196

APPENDIX D. LISTINGS

import java.net.URL;
import java.io.*;
import java.util.®;
import java.security.¥;

import javax.crypto.Cipher;

import iaik.security.provider. JALK;
import java.lang.reflect.™;

import java.util. Random;

public class SlaveAgent extends Aglet {
private AgletProxy Master_AgentProxy;
private AgletInfo Slave_Agentinfo;
private AgletProxy Slave _AgentProxy;
Vector readOnly = new Vector();
Vector executeOnly = new Vector();
Vector collectOnly = new Vector();
PublicKey MApubKey=null;
byte[] digitalSig;
AgletProxy proxyAirlineAgent;
boolean verifies=-false:
String() userPurchascReq = new String[10];
Vector RO-Con = new Vector();
int xMatchCounter=0;
int rgstFareCount==0;
int. recvlarcCount=0;
double totalFare=0;
String classType="“";
String recvFlightNo="
int, recvDeparture=0;
int recvArrival=0;

boolean searchFlight=true;

int passanger=0,NoiseCount=0,StaveCount=0;

String[] exeState = new String|27};
Siring{] coiState = new String[14}];
Random RN;

public static final int MAXLEVEL = 3;

// Method onCreation
public void onCreation(Object args) {

Object init{] = (Object(})args;

Master_AgentProxy = (AgletProxy)init[0);

MApubKey = (PublicKey)init[1};
readQnly = (Vector)init{2};

digitalSig = (bytel])init[3];

Slave.Agentinfo = getAgletinfo();

Slave_AgentProxy = getAgletContext(} getAgletProxy(Slave Agentinfo.getAgletiD(});

try {

executeOnly.addElement (“E'T ™ + new D;u.t:(Sluv«:_AgenLInfu.g«:LCrcaLion’l‘imu()).(.()Strhlg(});

collectOnly.addElement{ “ET ” + new Date(Slave AgentInfo.getCreationT} me()).voString());

executeOnly.addElement (“OA 7 Slave_Agentinfo.getOrigin());

executeOnly.addElement(“1D 7 + Slave_Agentinfo.getAgletD());

collectOnly.addElement{(“ID ? 4 Slave_AgentInfo.getAgletID());

} catch (Exception e) {;}

addMobility Listener(

new MobilityAdapter() {

197

APPENDIX D. LISTINGS

public void onArrival(MobilityEvent me) {
Enumeration enum = genAgloLC()mext,().gotAgleLProxios();

int count = 1; //List counter

//Looking for AirlineAgent
while(enum. hasMoreElements()) {
// get the proxy in this current context

AgletProxy proxy = (AgleLProxy)cmumnchElcmcm.();

// checking for server AirlincAgent
try {
String agentName = proxy.get AgletClassName() . toString();
if(agentNamo.cq\mls(“AirlincAgenL”)) {
// keeping Airline_Agent’s proxy
proxyAirlineAgent = proxy;
Agletinfo AirlincAgentinfo = proxyAirlincAgen(‘..gctAgI(:!,Iufo();
exccuteOnly.addElement(“EA ™ 4 AirlineAgentInfo.getOrigin());
collectOnly.addElement(“EA 7 - AirlineAgentinfo.getOrigin());
}
}eatch(Exception ¢) {
System.out.println(e.getMessage());

}

// Method onDisposing

public void onDisposing() {

}

// Method run

public void run() {
byte(]() data;
Stringl] result;

Date d = new Date();
Security.insertProvider At(new IAIK(), 2);

//Sending readOnly container to Airline agent for decryption

vry {
Message msgDECRYPT = new Mensage(“DECRYPI™);
nngECRYP'l‘.m:t,Arg(“argS]:w«:mey", Slave_AgentProxy);
msgDECRY PT.set Arg(“argServerAddress”, Slave.Agentinfo.getOrigin().toString()):
msgDECRY PT.setArg{“argDigitalSig”, digitalSig);
msgDECRY PL et Arg(“argReadOnly”, readOnly);
proxy/\ir]im:Agem,.scndF\JLun‘:M(:HH:xgt:(mngDECRYP'!‘);

} catch (Exception e} {5}

// Mecthod message handling
public boolean handleMessage(Message mug) {
if (mﬁg,samnKind(“RO_CONTAINER")) {
RO.Con = (Vector)msg.getArg(“argRO_.CONTAINER”);

Enumeration enurmRO = RO_Con.clements();

198

APPENDIX D. LISTINGS

while (enumRO.hasMoreElements()) {
userPurchaseReq = (String{})enumRO.nextElement();
verifySignature(MApubKey, digitalSig, userPurchasoReq);
}
executeOnly.addElement(“SG ” + verifies);
for(int i=0; i< Array.getLength(userPurchaseReq); i4+4) {

exccuteOnly.addElement(*UD ” + userPurchaseReqli});

if (verifies) {
// Find available flight
try {
Message msgFIND_FLIGHT = new Message(“FIND_FLIGHT™);
msgFIND_FLIGHT setArg(“argOrigin”, userPurchaseReq[0});
msgFIND FLIGHT set Arg(“argDestination”, userPurchaseReq(1]);
msgFIND_FLIGHT set Arg(“argDeparture”, userPurchaseReq{2]);
pr()xyAirlincAgum,.sendF\n,umMcssngc(mngIND,FLIGHT);
} catch (Exception e) {i}
} else
System.out.printin(“Signature not verified”):
return true;
} else
if (msg.sameKind(“DATEXMATCH")) {
executeOnly.add Element (“XDT”);
collectOnly. addEBlement (“XDT");

// send recorded state to Master Agent
try {
Message msgRecordedState = new Message(“Process Fail”);
msgRecordedState.sctArg(“argNoiseNo™, NoiseCount);
msgRecordedState.setArg(“arg£8", exccuteOnly);
msglecordedState.sct Arg(“argCS”, collectOnly);
Master _AgentProxy.sendFut ureMessage{magRecordedState);
Slave_AgentProxy.dispose();
} catch (Exception ¢) {i}
return true;
} else
if (mag.rameKind(“FLIGHT XAVAILABLE")) {
executeOnly.addBlement (“XFL”);

collectOnly.addElement (“XFL");

// send recorded state to Master Agent
ury |{
Message megRecordedState = new Message(“Process Fail”);
mugRecordedState.set Arg(“argNoiseNo”, NoiseCount);
msgRecordedState.set Arg(“argES”, executeOnly);
msgRecordedState.set Arg{ “argCs”, collectOnly);
Master_AgentProxy.send FutureMessage(msgRecordedState);
Slave_AgentProxy.dispose();
} cateh (Exception ¢) {i}
return true;
} else
if (msg.sameKind(“FLIGHT.FOUND")) {
recvFlightNo = (String)msg.getArg{“argFlightNo”);
recvDeparture = ((InLeger)msg.gc:t/\rg(“argDeparLur(:”))intValue();
recvArrival = ((Integer)msg.getArg(“argArrival”)).intValue();
int fstSeats = ({Integer)msg.getArg(“argSecatal”)).int Value(};
int bizSeats = ((Integer)msg.getArg(“argSeats2”)).intValue();
int ecoSeals = ((InLeger)rnsg.gt:LArg(“argScatn.’i“)),int\/aluc();

passanger = (Integer.parseint(userPurchaseReq{3]) + Integer. parselnt(userPurchaseReq(4)) 4

199

APPENDIX D. LISTINGS

Integer.parselnt(userPurchaseReq(5}));

if(fstSeats >= passanger) {
classType = “Fst”;
fstSeats = [stSeats - passanger;
} else if{bizSeats >= passanger) {
classType = “Biz";
bizScats = bizSeats - passanger;
} else if(ecoSeats >= passanger) {
classType = “Eco”;

ecoSeats = ccoScats - passanger;

if(passanger > 0){
ury {
rqstFareCount+-;
Message msgFLIGHT FARE = new Message(“FLIGHT _FARE”);
mngLIGHT_*‘AR.E.s(:lu‘\rg(“urgFlighLNu", recvFlightNo);
msgFLIGHT_FARE sctArg(“argSceatClass”, class'l'ype);
msgFLIGH T FARE.sct Arg(“argNoPassAdult”, userPurchaseReq(3]);
mngLlGH'l‘_FARE.sur,Arg(“m'gNoPasthild”. userPurchaseReqfd]);
msgFLIGHT FARE. set Arg(“argNoPassInfant™, userPurchaseReq[5));
proxyAirlim:Agunt,,s(zndl’uLurt»Mtzssugu(mngLlCl'l'l‘_l‘“Al'lE);
} catch (Bxception ¢) {;}
}

return true;

} else

if (msg.smrml(ind(“FARE_RESUUI"’)) {

String statusSearch=“";
String resultFF=“";
double ObfscateUserBudget=0;

totalFare=0;

recviareCount 445

String recvSeatClass = (SLring)mng,gul.Ax'g(“nrgS(ml.Ciuﬂu");

String recvPassangert = (String)msg.get Arg(“argPassanger”);
double recvFarel = ((D(mhl(:)mﬁg.g«:LArg(“urngxr(:l")),dmnhI(:anun:();
String recvPassanger? = (String)msg.getArg(“argPassanger2”);
donble recvFare2 = ((Duuhl(:)nmg,gm,l\rg(“urgl’nn:’z”)).doubh:Vuhm();
String recviPassangerd = (SLring)nmg,g«:l,/\rg(“urgl’:mnuug(:rfi");
double recviared = ((I)(mbln)nmg.gm/\rg(“:xrgl’un:ii”)),douhloVquu();

totalFare = recvifarel + reeviFare2 4 recviared;

int exeCount,colCount;
int RandN::lnLtrgm‘,p:xrm:lnL(ns(:r["urt:ham!]{t:q[()]);

double ObfuscateFare=rs3(totalFare,RandN);

if(NoiseCount==0})

ObfuscateUserBudgei= Double.parse Double(uacrPurchaseReq{6]);

else

ObfuscateUserBudget= Double.parseDouble(userP urchaseReq[6+NoiseCount});

if(ObfuscateFare <= ObfuscareUserBudget) {
recvFareCount=0;
rastFareCount=0;
exceuteOnly.addElement (“STA”);
exceuteOnly.addElement (“FILFN 7 4 recvFlightNo);
coltectOnly.addElement (“FILFN » 4 recvFlightNo);
executeOnly.addElement (“FI.CC " 4 recvSeatClasn);
collectOnly.addElement (“FI.CC ” + reevSeatClass);

exccuteOnly.addElement (“FEDP " + recvDeparture);

200

APPENDIX D. LISTINGS

executeOnly.addElement (“FI_AR ” + recvArrival);
collectOnly.addElement (“FI_DP " + recvDeparture);
collectOnly.addElement (“FI_LAR ” + recvArrival);
executeOnly.addElement{ “FI.PA ™ userPurchaseReq{3} 4% "+ recvPassangerl);
collectOnly.addElement (“FI.PA * + userPurchaseReq{3] +% "+ recvPassangerl);
executeOnly.addElement (SFI_-FA » recvFarel);

collectOnly.addElement (“FI_FA " + recv Farel);

executeOnly.add Blement(“FIPC " + userPurchaseReq[4] +% "+ recvPassanger2);
collectOnly. addElement (“FI_PC ” + userPurchaseReqfd] +* "+ recvPassanger2);
executeOnly.addElement{“F1.FC * + recvFare2};

collectOnly.addElement(“FI_FC " + recvFare2);

exceuteOnly.addElement (“F1.P1 " + userPurchaseReq[5] +% 7+ recvPassanger3);
coliectOnly.addElement (“FI.PT” + userPurchaseReq{b} +% "+ rocvPassanger3);
exccuteOnly.addElement(“FIF1 " 4 recvFare3);

collectOnly.addElement(*F1_-F1 ” 4 recvFare3);

exccuteOnly. addBlement(“T'F ” 4 totalFare);

collectOnly.addElement(“T'F " + votalFare);

// send recorded state to Master Agent
try {
Iterator BO=exccuteOnly.iterator();
exeCount=0;
while(EO.hasNext()) {
try {
exeState[exeCount] = BO.next().toString();
excCount+4--;

}eatch (Exception e) {;}

Iterator CO=collectOnly.iterator();
colCount=0;
while(CO.hasNext{}) {
wry {
colStatefcolConnt] = CO.next{).to8tring();
colCount-4-4;

Jeatch (Excoption ¢) {i}

// send ExecuteSuate and CollectState to be sign by AirlincAgent
Message msgSignature = new Message(“Get Signature”);
msgSignatureset Arg(“argExecuteData”, exceState);
megSignature.sctArg(“argCollectData”, colState);
pmxyAir!inu/\gz:nt,m:ndl-‘uuumMunnaga(n'mgSignul.un:);

NoiseCount+-4-;

if(NoiseCount<3) {
if{passanger > 0){
try {
rgstFareCount++;
clasgType="“Fgt”;
Message msgFLIGHT FARE = new Message(“FLIGHT _FARE”");
magFLIGHT _FARE. set Arg{ “argFlightNo”, recvFlightNo);
msgFLIGHT_FARE setArg(“argSeatClass”, classType);
mag FLIGHT FARE. set Arg(“argNoPassAdult”, userPurchaseReq(3]);
msgFLIGHT_FARE set Arg(“argNoPassChild”, uscrPurchascReq(4]);
msgFLICHT FARE set Arg(“argNoPasslnfant”, userPurchaseReq(5]);
proxyAirlineAgent.send FutureMeausage(msgFLICHT FARE);

} catch (Exception ¢) {;}

201

APPENDIX D. LISTINGS

} catch (Bxception ¢) {i}

}

else

if(recvSeatClass.equals(“Fst")) {
classType=“Biz”;
statusSearch="“Again”;

}

else if(recvSeatClass.equals(“Biz")) {
classType="Eco”;

statusSearch="Again”;

else

statusSearch="Fail”;

if (statusSearch=="Again") {
statusSearch=";
rgstFareCount=0;

recvFareCount=0;

totalFare=0;

if(passanger > 0){
ury {
rgstFareCount++-;
Message msgFLIGHT FARE = new Message(“FLIGHT . FARE”);
msgFLIGHT FARE.setArg(“argFlightNo”, recvFlightNo);
msgFPLIGHT FARE. setArg(“argScatClass”, classType);
msgFLIGHT FARE . sctArg(“argNoPassAdult”, userPurchaseReq{3});
msgFLIGHT_FARE.sctArg(“argNoPassChild”, userPurchaseleql4]);
msgFLIGHT FARE setArg(“argNoPassInfant”, userPurchaseReq{5));
proxyAirlineAgtzm,.ﬁ(zndFut.urcMesﬁage(mngLlGH'l'_FARE);
} eatch (Exception e) {3}
} else {
NoiseCount+-+;
executeOnly.addElement (“XEF");

collectOnly.addElement (“XF”);

// send recorded state to Master Agent

try {
Message msglecordedState = new Message(“Procens Fail”);
msgRecordedState set Arg(“argNoiweNo”, NoiseCount);
maglRecordedState.set Arg(CargB8", executeOnly);
mugRecordedState. ket Arg(“argCS”, collectOnly);
M;m!,(:r._/\g(:m.l"ruxy.m:mll'-‘unnrcM«mm;gt:(mnglh:cnrdndSt,uu:);

} cateh (Exception ¢) {;}

if(NoiseConnt <3} {
if(passanger > 0){
ry {
rgatFareCount. 4+
clagiType=“Fst”;
Message msgFLICHT FARE = new Mesnage(“FLIGHT A RET);
msg FLIGHT _FARE sctArg(“argFlightNo”, recvPlightNo);
magFLICH T .FARE. sct Arg(“argSeatClass”, clasw’Type);
magFLIGH T _FARE setArg(“argNoPassAdult”, userPurchaseReq(3]);
magFLIGHT FARE. sctArg(“argNoPassChild”, userPurchaseReq(4]);
megFLIGHT _FARE setArg(“argNoPassInfant”, userPurchaseReq(5));
proxyAirlim:A;;(:nL,xendFuLurt:M(:uu:sgt:(mugFLIGHT_FARE);

} catch (Exception ¢) {;}

202

APPENDIX D. LISTINGS

}

} else if (statusSearch=="Fuail") {

} else

NoiseCount++-;
executeOnly.addElement (“XF”);

collectOnly.addElement { “XF”);

// send recorded state to Master Agent

oy {
ss Fail”);

Message msgRecordedState = new Message{ “Proc
msgRecordedState.setArg(“argNoiseNo”, NoiseCount);
msgRecordedState.set Arg(“argES”, executeOnly);
msgRecordedState.set Arg(“argC8”, collectOnly);
Maﬁccr,/\g(mLPr()x)vtrmndIﬁxt\xn:M(:s.sugu(mngm:()rdcdStam);

}eatch (Exception e) {i}

if(NoiseCount <3) {
if(passanger > 0){
try {
rgstFareCount++;
classType=“Fst";
Message msgFLIGHT FARE = new Message(“FLIGHT_FARE”);
msgFLIGHT FARE sct Arg(targFlightNo”, recvFlightNo);
msgFLIGHT FARE setArg(“argSeatClass”, class'ly pe);
msgFLIGHT FARE.sctArg(“argNoPassAdult”, userPurchaseReq(3]);
msgFLIGHT_FARE.sctArg(“argNoPassChild”, userPurchaseileqf4});
msgFLIGHT FARE set Arg(“argNoPassInfant”, userPurchaseReq(5]);
proxyAirlineAgent.sendFut urcMessage(msgFLIGHT FARE):

} catch (Exception e) {;}

return true;

if (msg.sameKind(“Signed State™)) {

} else

SiaveCount -4
byte}] ESdigitalSig = (byte[})mag.getArg(“argBS-Sig”);
byte]] CSdigitalSig = (byte[])msg.getArg(“argCS Sig")

// Send Recorded State Container to Master Agent

try {

Message msgRecordedState = new Message(*Recorded State”);
xnng(:cordudShm,u,H(:L/\rg(“:;rgNoiméN()”, NoiseCount);
msgRecordedState et Arg(“argllS”, oxeState);
msgRecordedState.set Arg(“arg S Sig”, ESdigitalSig);
msglecordedState set Arg{“argCs”, colState);
magRecordedState set Arg(“argCS Sig”, CSdigitalSig);

Master_AgentProxy.sendFut ureMessage{magiiecordedState);

} catch (Exception ¢) {3}

return true;

return false;

// Method RSA encryption

public byte(}{] RSAencrypi(PublicKey pubKey, String[] text) {

byref}[} cipherfext=new byte{java.lang.refleet. Ar ray.getLength(text)}{};

bytef] textByte=null;

String tempStr =

wn .

203

APPENDIX D. LISTINGS

ery {
Cipher cipher = Cipher.getinstance(“RSA”, “IAIK™);
(:ipher.iniL(CipherAENCR\’P'l‘_MODE,paney);
for(int i=0; i<javu.imlg.rcﬂucl,.An'nygctl;cngth(texn); i++) {
tempStr = addValidStr{textfi});
textByte = tempStr.getBytes();
cipherText[ij=cipher.doFinal(textByte);
}
} catch(Exception e) {
System.out.println(“[PKI encryption error] ¥ + e.toString()):
}

return cipherText;

// Method RSA decryption

public String(} RSAdecrypt(PrivateKey pvKey, byte(][] cipherText) {
Stringf] plainlext = new Sx.ring(Array.gel.L(mgth((;iph(:r’l‘exl.)];
byte|] cipherByte=null;

String tempStr = “";

ery {
Cipher cipher = Cipher.getinstance(“RSA”, “1AIK”");
(:iplmr.init,(Cipher.DECRYFT_MODE,vauy);
for {int i=0; i< Array.getLength(cipherText); i4-+4) {
cipherByte = cipher.doFinal(cipherlext{i});
tempStr = new String(cipherByte);
plainText[i} = cutValdStr(tempStr);
}
} catch{Exception) {
System.out.println(“(PKI decryption error] ” + e.toString());
}

return plainText;

// Method add string
public String addValidStr(String rawSur){

int chrAdded,i,strlLength;

if (rawStr == null)
rawStr = ‘;
strLength = rawStr.length()%8;

chrAdded = 8-strlLength;

if (strlength > 0){
for (i=0; i<chrAdded; i)
rawStr = rawStr 4+ “X7;
rawStr = rawStr + “ADDCHAR” + String.valueOf(chrAdded]);
jelse{
if (rawStr.Jength()i=0)
rawStr = rawStr + String.valueOf(striength);
else{

rawStr = “DATANULO”;

}

return rawStr;

204

APPENDIX D. LISTINGS

// Method cut string
public String cutValidStr(String rawStr){

String tempStr = |

int i = Inmgcr.\ral\mof(SLring.vnlueOf(m\vSanhur:\n((rn\vSLn!m\gth())-1)))Aim.\/nlue();

if (rawStr.length()!=8)
tempStr = rawStr.substring(0,rawStr.length()-(i48});

return tempStr;

// Method generate digital signature
public byte[] genSignature(PrivatcKey pvKey, String{] plainText) {
byte[] sig=nul};

byte[] cipherText;

try {
Signature genSig = Signai,nm,gcl.lns(,am:(:("‘SHAlwix.hlivSA”);
genSig.initSign(pvKey);
ery {
for (int i=0; i< Array.getLength(plainText); i) {
ciphertext = plainText[i}.getBytes();
genSig.update(cipherlext); //add msg to be sign
}
} catch(Exception e}{
System.out.printIn(“{Updating signature error] * -+ e.toString());
}
sig = genSig.sign();
} cateh{Exception e}{
System.out.printin{“|{Generating signature error] " 4+ e.toString());
}

return sig;

// Method verifying digital signature

public void verifySignature(PublicKey pubKey, byte]] inSig, Siring(] plainText) {

bytel] inCipher;

ury {
Signature verifySig = ‘Signzxtum,gutlnul.:mt:r:(“SliAlwiLM'(.SA");
verifySig.init Verify{pubKey);
for (int i=0; i< Array.getLength(plainlext); i4+) {
inCipher = plainTexti].getBytes();
verifySig.update(inCipher); // add msg that need Lo be verified
}

verifics verifySig.verify(inSig):
System.out.printin(“Verifies=" + verifies);

} catch(Exception e){

System.out.println(“[Verifying signature error} 7 + c.toString());

}

// Method polynomial calculation
public double polynomial(int a, double b, int ¢, int x) {

double result;

result=(a * Math.pow(x,2}) + (b ™ x) + ¢

APPENDIX D. LISTINGS

return result;

// Method Random Sequnce 3-level obfuscation algorithm

public double rs3{double budget,int randomNumber) {

int branch;

int newRnd = randomNumber;

for {int i=0; i<MAXLEVEL; i++) {
branch = newRnd % MAXLEVEL;

Random selector = new Random{branch);

noewRnd = (int) (sctector.nextDouble(} * 1000000);

budget = polynomial{branch, budget, (newRnd % randomNumber), randomNumber);

}

return budget;

D.3 Airline System (AirlineAgent.java)

import com.ibm.aglet.*;

import java.net.URL;

import iaik.security.provider. JAIK;
import javax.crypto.KeyGenerator;
import java.sccurity.®;

import java.lang.refleet.®;

import javax.crypto.Cipher;
import java.utib*;

import java.sql.®;

public class AirlineAgent extends Aglot {
PrivateKey privKey=null;
PublicKey pubKey=null;
PublicKey slavePubKey=null
byte|] digitalSig;
Vector readOnly = new Vector();
Vector RO.Con = new Vector();
boolean verifies=false;
AgletProxy proxySlaveAgent;
AgletProxy ReguestAgentProxy;
AgletProxy AirlincAgentProxy;

String RgstOrigin, RgsiDestination, RastDeparture, Rast'ripType, RgstReturn;

double discount=1;

AgletInfo AirlincAgentinfo;

String slaveOriginServer;

String Address;

static final String DB = ¥jdberodbe: Airline A™;
static final String USER = 75

static inal Siring PASSWORD = “7;
Conncction conSearch;

Connection conUpdate;

//Constructor AirlineAgent

public AirlineAgent() {

206

APPENDIX D. LISTINGS

Security.insertProviderAt(new TAIK(), 2);

// Method onCreation

public void onCreation{Object args) {

generateKeys(); //generate public and private key
AirlineAgentinfo = getAgletInfo();
AirlincAgentProxy = get,Agh:(,Conmxt().gm,AgluLProxy(Airlim:}\gcnl.lnf().gehAgl&:r,ID());

Address = AirlineAgentInfo.geiOrigin().toString(};

//Register server address and public key to CA server
ey {
URL CAServer = new URL(“aLp://(:s—msear(:h()l.nslv(m.uc.uk:4444/");
Object argfl=new Object] {Address,pubKey};
AgletProxy RegisterAgentProxy = gm,AglutC()nLuxt().cmaL(:Agl(:l»(g«:l,leeBnem(),“Rngim,ur/\gcm.”, arg);
R(:gist(:r.'\gcnt,Proxy.dispat.ch(CAScrvm’);

} catch(BException ¢) {;}

wry{
Class,foernu(“s\m,jdb(:,o(lI)(:..]db(:Odl>(:Driv<:r”);
conSearch = DriverManager.getConnection(DB, USER, PASSWORD);
conUpdate = DriverManager.getConnection(DB, USER, PASSWORD);
Yeateh (Bxception ¢) {
e.printStackTrace();

3

// Method onDisposing

public void onDisposing() {

// Method run

public void run() {

// Method message handling

public boolean handleMessage(Moessage mag) {

boolean notMatch={alse;

if (mﬁg.nmm:Kind(“DECRYP'I"’)) {
proxySlaveAgent = (Aglm.Pmxy)msg.gm,Arg(“nrgSl;quroxy");
slaveOriginServer = (SLring)xrmg,guL/\rg(“argScrw:rAddr(:m«“);
digitalSig = (byu:[])rrmg_,gm/\rg(“;ug!)igiLn]Sig”);
readOnly = (Vector)msg.getArg{ “argReadOnly”);

//Request Slave Origin Server Public Key from CA server
ry {
URL CAServer = new URL{“atp://ce-research0}.aston ac.uk:4444/" };
Object argReqfj=new Object(] {siaveOriginServer,AirlineAgentProxy }5
AgletProxy RequestAgentProxy = g(:tAg)etCnm.(:xt().(:rem,cAgleb(g(:t.CudeBas(:(),“I{c:qmash/\gan”, argReq);
chuest/\gcmProxy.dinaL(:h(C/\S(:err);
} catch(Exception e} {i}
return true;
} else
if (msg.sameKind(“PublicKey”)) {

byte{][] data;

207

APPENDIX D. LISTINGS

String(] result;

String serAdd = (String)msg.getArg(“argServerAddress”);
slavePubKey = (I’ublicKcy)msg.chArg("urgl’ubli(:l(ey”);
Enumeration enumRO = readOnly.clements();
while (uxmmRO.lmsMomElumcms()) {

data = (byte{]]))enumRO.nextBlement();

resutt = RSAdecrypt{stavePubKey,data);

verifySignature(slavePubKey, digitaiSig, result);

RO.Con.addElement{result);

if (verifies) {
//Sending readOnly container back to slave agent for further action
try {
Message msgRO_CONTAINER = new Message(“RO-CONTAINER”);
mngO_CON'I‘AINER.SetAx‘g(“nrgRO_CONT:\lNEl », RO.Con);
proxySlaveAg(mL.s(mdﬂxl.uruMcssag(‘.(mngO_CON'l‘/\lNEI{);
} catch (Exception ¢) {5}
}
regurn true;
} else
if (msg,s;uncKind(“F‘IND_I’LIGH'J"‘)) {
int FstSeats=0;
int BizSeats=0;

int EcoSeats=0;

RqutOrigin = (S(,ring)msg.ge\,Arg(“argOrigin”);
RgstDestination = (SLring)msg.gm,Arg(“urgDesLinaLion");
RgstDeparture = (S(,riug)xnsg.gcl,Arg(“ixrgDupnr(.ure”);

ery {
String queryFlight DB Depart = “Sclect FlightNo, Departure, Arrival, ™ 4

“Seatsl, Seats2, Seatsd " 4
“From Flightinfo ” -+

wm g

“Where Origin = "™ 4 RastOrigin +

W,
i

“and Destination = " 4 RagstDentination

Statement stmt = conSearch.createStatement();

ResultSet re = stmt.execnteQuery(query Flight DB _Depart);

if (re.next()) {
String FlightNo = ra.getString(1);
int. Departure = ra.getint(2);
int Arrival = ra.getlnt(3);
int Scatnl = rs.getint(4);
int Seats2 = ra.getint(5);

int Seats3 = ra.gatint(6);

if(Departure I= Integer.parselnt(RagstDeparture)) { |

notMatch=true;

}

clse {

// check seats availability

String querySeats = “Select SUM(Seatsl), SUM(Seats2), * 4
“QUM(Seatu3) From FlightReservation ” 4
“Where theFlightNo="" 4 FlightNo 4 “';

Staternent stmtl = conSearch.createStatement();

ResuliSet rsl = stmtl.executeQuery(querySeats);

208

APPENDIX D. LISTINGS

rsl.next();
ini ResSeatsl = rsl.getInt(1);
int ResSeats2 = rsl.getInt(2);

int ResSeats3 = rsl.getlnt(3);

FstSeats=Seatsl - ResSeatsl;
BizScats=Seats2 - ResSeats2;

EcoSeats=Scats3 - ResSeats3;

rsl.close();

stmel.close{);

try {
Message msgFLIGHT FOUND = new M essage(“FLIGHT _FOUND");
msgFLIGHT_FOUND .setArg(“argFlightNo” FlightNo);
msgFLIGHT_FOUND.sctArg(“argDeparture” Departure);
msgFLIGHT _FOUND.sct Arg(“argArrival” Arrival);
msgPLIGH T . FOUND set Arg(“argSeatsl” JFutSeats);
msgFPLIGHT_FOUND.set Arg(“argSeats2” BizScats);
msgFLIGHT FOUND. setArg(“argSeats3d” JEcoScats);
proxySlaveAgent.sendFut ureMessage(msgFPLIGHT _FOUND);

} cateh (Bxception ¢) {;}

}

} else {

try {
Message msgFLIGHT XAVAILABLE = new Message(“FLIGHT XAVAILABLE");
proxySlaveAgent.sendFut ur(zMessngu(nmgFLlGH'l.‘_XAVAILABL B);

} cateh (Exception ¢) {;}

rs.close();

stmt.close();

if(notMatch) {
ury {
Message msgDATEXMATCH = new Massagoe(“DATE_XMATCH");
pmxyS]aw:/\gunl,.mmdl-\ul,urel\"l(:kungo(umgl)/\'l‘lz‘-)\'MA'I‘CH);
} eatch (Exception ¢) {i}

}

Yeatch (Exception e) {

a.printStackTrace();

return true;

if (msg.sameKind(“FLIGHT_FARE" » A

int flightFare=0;

double AdujtFare=0;

double ChildFare=0;

double InfantFare=0;

String regstFlightNo = (SLring)mHg.g()LArg(“urgFlighLNn");

String regstSeatClasy = (St,ring)mng,g(:t/\rg(“argSeaLClaﬂn");

Siring regstNoPassAdult = (Snring)msg.geu\rg(“argNoPa}mAdull“);

String regstNoPassChild = (SLring)mHg.guLl\rg(“argNoPaﬂuChild");

String reqstNoPassinfant = (SLring)nmg.gctArg("argNoPaﬂHInfnnL”);

String queryFare = “Select theFare From FlightFare ” +
“Where theFlightNo = "7+ reqstFlightNo 4 w

Statement stmt = conSecarch.createStatement();

209

APPENDIX D. LISTINGS

ResultSet rs = stmt.executeQuery(queryFare);

rs.next();

flightFare = rs.getint(1);

if(reqstSeatClass= st) {
if{lnmgcr.parsclnn(mqscl\‘()I’nssf\duli.) > 0) {
AdultFare = discount * (flightFare * lnr,eg(:r.pnrﬁulm.(rcqsLNoPasm’\dult.));
}
if(Integer. parselnt (reqstNoPassChild) > 0) {
ChildFare = discount * ((flightFare * 0.75) * Integor.parselnt(reqstNoPassChild));
}
if(lnu:gcr.pnrsu]nL(mqst.NoPassInfnnc) > 0) {
InfantFare = discount * ({flightFare * 0.10) ¥ Integor.parselnt(reqstNoPassinfant));
}
} else if(regstSeatClass=="Biz") {
if(Intcgur.parselnt(r(:qsLNo]’ussAduh.) > 0) {
AdultFare = discount * {((HightFare * 0.65) * Integer. parselnt(reqstNoPass Adult))
}
if(In\.ogm‘,p:xrmﬂm:(r(zqs\,N()Pnsschild} > 0) {
ChildFare = discount * (((flightFare * 0.65) * 0.75) * Integer.parselnt(regstNoPassChild));
)
if(Integer. parselnt(reqstNoPassInfant) > 0) {
InfantFare = discount * ({(fightFare * 0.65) * 0.10) * Integer. parsclnt(regst NoPassInfant));
}

} else if(regstSeatClas

=“Feo”) {
if(Integer. parselnt{reqstNoPassAdult) > 0) {
AduitFarc = discount * {({HightFare * 0.2} * lnt.cgcr.pnrselm,(reqsi.NuPuus/\duh.)));
}
if(integer.parseint(regstNoPassChild) > 0) {
ChildFare = discount * ({{({flightFare ¥ 0.20) * 0.75) * Integer. parsolnt(rogstNoPassChild)});
}
if(Integer.parselnt(reqstNoPassinfant) > 0y {

infantFare = discount * {({(ftightFare * 0.20) * 0.10) * Inhzgur,pm'mxln(.(r(sqnl,N()P:wﬁIul'uut)));

}
rs.close();
stnt.close();

} cateh (Exception ¢) {i}

ury {
Message msgFPARE.RESULT = new Message(“FARE_RESULT")
mugFA RE_RESULT setArg(“argSeatClass”, regstSeat Class);
mngFARE.RI‘)SUI/]‘.AM,Arg(“nrg[’:muung(:rl", “Adult™};
megFARE_RESULT sctArg(“argFarel”, AduitFare);
nmgFARIE-I'{ESUL’]'.M:LArg(“hrgl)unsunger’z"‘ “Child™);
magFARE_RESULT . set Arg(“argFare2”, Child¥Fare);
msgFARE_RESULT

sctArg{ “argPassangerd”, “Infant”);
megFARE RESUL T .setArg(“argFare3”, InfantFare);
pmxySl;xvuAgenL.uendM(:Hnagc(magFAREJ’{ESUL’]‘);
} catch (Exception ¢} {3}
return true;
} else
if (msg.sameKind(“Get Signature®)) {
Stringl} excState = (String[}ymug.getArg(“argExccuteData”);

Stringf] colState = (SLring[])mh‘g.geLArg("‘argColle(:LD:xl.:x");

bytel] ESdigitalSig = genSignature(privKey, excState);

byte(] CSdigitalSig = genSignature(privKey, colState);

210

APPENDIX D. LISTINGS

// send signed state to slave agent

try {
Message msgSignedState = new Message(“Signed State”);
msgSignedState.set Arg(“argBS Sig”, BESdigitalSig);
msgSigmzdSLme.sanrg(“argCS_Sig", CSdigicalSig);
proxySlaveAguuL,scnndssagc(msgSigucdSnuLe);

} catch (Exception e) {;}

return true;

} else

return false;

// Method generate public and private key
public void generateKeys(} {
try {
KeyPairGenerator keyPairGen = K(:yPairGunarzu,ur.g(:l.lnsl.uncc(“RSA”,“IAU(”);

keyPairGen.initialize(1024);

KeyPair pair = kcyPnirGon.g(:m:r;n,ul(oy]’:xir();
privKey = pair.getPrivate();
pubKey = pair.getPublic();
} catch (Exception ¢) {
System.out.printIn{“[Generating RSA-PKI keypair error]”);
c.printStackTrace();

}

// Method RSA encryption

public byte{]{] RSAencrypt{PrivateKey pvKey, String(} text) {
bytefl{} cipherlext=new byl,equa.hmg.r(zilm:t,,/\rmy.gaLLenth(L(le.)][];
byte{} textByte=null;

ws L

String tempStr =

try {
Cipher cipher = Cipher.gotinstance(YRSAYTATKT)
c'xplmr.iniL(Ciphnr.ENCR,YP'l‘-MODE,vany);
for(int i=0; i<java lmng,lvﬂu('L.Ay1.';y.;_;m,Inmgth(l,exl,); i) |
tempStr = addValidSur(text[i]);
textByte = tempStr.getBytes();
(:iph(:r'l'ax(,[i]:(:iph(:r.dopinAl(u':xLBym:);
}
} catch(Exception ¢) {
Yystem.ont.printin(“{PKI encryption error] " 4 e.toString());

}

return cipherText;

// Method RSA decryption

public String]] RSAdecrypt{PublicKey pbKey, byte[}[} cipherfext) {
String{] plaintext = new SLring[jhvu.iung.rcﬁcm,/\rray.geLLcns_;th((:iphcr’l‘ext)];
byte{) cipherByte=null

wn .
i

String temnpStr =
try {

Cipher cipher = Cipher.getinstance(“RSA” “IAIK”);
cipher,iniL(Ciphcr.DECRYP'I‘.MODE‘pchy);

211

APPENDIX D. LISTINGS

for (int i=0; i<java.lang.reflect. Array.getLength(cipherText); i++) {
cipherByte = cipher.doFinal(cipherText(i]);
tempStr = new String(cipherByte);
plainText[i] = cutValidStr(tempStr);
}
} catch(Exception e) {
System.out.printin{ “{PK1 decryption crror} * + e.toString()):
}

return plainText;

//Method add string
public String addValidStr(String rawStr) {

int chrAdded,i,strLength;

if (rawStr == null)

rawStr =

strLength = rawStr.length()%8;

chrAdded = 8-strlLength;

if (strLength > 0){

for (i=0; i<chrAdded; i++)

rawStr = rawStr 4 “X”;

rawStr = rawStr 4+ “ADDCHAR"” + SLring.vlem:Of((;hrAddcd);
} olse{
if (rawStr.length()!=0)

rawStr = rawStr 4 String.valueOf{strLength);
else{

rawStr = “DATANULO";

}
H

return rawStr;

// Method cut string
public String cutValidSur(String rawStr){
String tempStr =

int i = lnu:gf:r,vn]ut:()f(SLrinK,vulnl:()f(mwS\,r,l:)mrAL((ruwS!,y:l(:uu,Lh())-l))).inLVuhm{);

if (rawStr.length()!=8)
tempStr = rawStr.subsiring(0,rawStr.dengeh()-(i+8));

revurn tempStr;

//Method generate digital signature
public byte[] genSignature(PrivateKey privKey, String]] plainText) {
bytel} sig=null;

bytef] cipherText;

vry {
Signature genSig = SignaLurc.g':Llnﬂmnca(“SHA}wiLhRSA");
genSig.initSign(privKey);
vy {
for (int i=0; i<java.ang.reflect Array.getLength(plainlext); i4-4) {
cipherText = plainText{i].getBytes();

genSig.update({cipherText); //add msg to be sign

212

APPENDIX D. LISTINGS

}
} catch(Exception e){
System.out.printIn(#[Updating signature error] * + e.toString());
}
sig = genSig.sign();
} catch(Exception e){
System.out.println(*{Generating signature orror} * + a.toString());

}

return sig;

//Method verify digital signature
public void verifySignature(PublicKey pubKey, bytef] inSig, String(} plainText) {

byte[] inCipher;

try {
Signature verifySig = SignaLure.gul.hxsl,an(:u(“SHA}\\rii.l:R,SA");

verifySig.init Verify(pubKey);

for (int i=0; i<_javu.hmg.rcﬂ(rct.An'uy,g(:r.L(znth(pluin'l‘cx‘.); i) {
inCipher = plainText|i].getBytes()i
verifySig.update(inCipher); // add msg that need to be verified
}
verifies=verifySig.verify (inSig);
} catch(Exception ¢){
System.out.printin{ “{Verifying signature error] ” 4 e.toString());

}

D.4 Certificate Authority System

import com.ibm.aglet.®;
import javanet. URL;
import java.security.®;
import java.util. Vector;
import java.util.*;

import inik.security. provider JATK;

public class CAAgent extends Aglet {
AgletProxy RequestServerProxy;
Vector Serverinfo = new Vector();
String serverAdd;

PublicKey pubKey;

//Constractor CAAgent
public CAAgent() {
Security.insertProviderAt(new IAIK(), 2);

//Method onCreation
public void onCreation(Object args) {

}

//Method onDisposing
public void onDisposing() {

{

//Method run

213

(CA Agent.java)

APPENDIX D. LISTINGS

public void run() {

{

//Method message handling

public boolean handleMes

age(Message msg) {

if (msg.sameKind({“Register™)) {

}

String recvServerAdd = (String)msg.gotArg(“argServerAddre: »)
PublicKey recvPublicKey = (PuhIi(:Ko.y)msgAgcr,Arg‘(“m’gPublicKey”);
Iterator srvinfo = Serverlnfo.iterator();
white(srvinfo.hasNext()){
serverAdd = srvinfo.next(}.toString(});
if(server Add .equals(recvServerAdd)) {
srvinfo.remove();
srvinfo.next();

srvinfo.remove();

Serverlnfo.addElement(recvServerAdd);

Serverlnfo.addElement (recvPublicKey);

return truc;

} else

if (msg.sameKind(“Request PublicKey™)) {

boolean result=false;
pubKey=null;
String recvServertemp = (SLring)msg,gcl./\rg(“argServer/\ddrcsa”);
RequestServerProxy = (/\g]eLProxy)msg.geLArg(“urgAg(:nLProxy");
String recvServerAdd = reevServerternp.toString();
Iterator S1 = Servernfo.iterator();
while(SLhasNext()) {

serverAdd = Sl.next().toString();

if(server Add .equals(recvServerAdd)) {

result=true;

pubKeys=(PublicKey)Slnext();

if(result) {
try {
Message msgREQSTPK = new Message(“Requested PK”),
msgREQS TP K. set Arg(“argPubKey™, pubKey);
Ih’:qut!nLServm‘Pmxy,mend)"m.nrA:Mm-muge(umg]i.l‘)QS’l‘l’K);
} eatch (Exception ¢) {1}
}

return true;

} else

return false;

}

D.5

Register Agent (RegisterAgent.java)

import com.ibm.aglet.®;

import com.ibm.aglet.event.®;

import java.net. URL;

import java.security.™:

import java,util.*;

import javax.crypto.Cipher;

214

APPENDIX D. LISTINGS

public class RegisterAgent extends Aglet {
AgletProxy proxyCAAgent;
String serverAdd;
PublicKey pubKey;

//Method onCreation

public void onCreation(Objoct args) {
Object init[] = {Object{]) args;
serverAdd = (String)init{0);
pubKey = (PublicKey)init[1];

addMobility Listener(
new Mobility Adapter(){
public void onArrival{Mobility Event me) {
Enumeration enum = gotAgletContext().gotAgletProxies();
int count = 1; //List counter
while{enum. hasMoreElements()){ //Looking for CAAgent
AgletProxy proxy = (Agl(:(,l’roxy)uuum.m:xl,El(:nmnl.();// get the proxy in this current context
// ¢hecking for server CA Agent
try {
String agentName = proxy.get AgletClassName() toString();
if(agentName.cquals(“CAAgent”)) {
// keeping CAAgent proxy
proxyCAAgent = proxy;
}
}eatch(Exception ¢) {
System.out.printin(e.getMessage());

}

//Method OnDisposing

public void onDisposing{}{

}

//Merhod run
public void ran{){
//send message to CAAgent for registration
try{
Message msgllegister = new Message{ “Register”);
mugRegister.set Arg(“argServer Address”, serverAdd);
mugRegister.setArg(“argPublicKey”, pubKey);
pmxyCAAg«:m..mzndl-‘u|.uruMtmsngn(nmglh:giuu'sr);
} catch{Exception ¢) {:}

dispose();

//Method message handling
public boolean handleMesgage(Message mag) {

return false;

APPENDIX D. LISTINGS

D.6 Request Agent(RequestAgent.java)

import com.ibm.aglet.¥;
import com.ibm.aglet.event.®;
import java.net.URL;

import java.security.™;

import java.util.*;

import javax.crypto.Cipher;

public class RequestAgent extends Aglet {
private AgletProxy proxyCAAgent;
private AgletProxy proxyRequestAgent;
private AgletProxy proxyRequestedServer;
Agletinfo RequestAgentlnfo;
String scrverAdd;

PublicKey pubKey;

//Method onCreation

public void onCreation(Object args) {
Object init]] = (Object{]) args;
serverAdd = (String)init[0);

proxyRequestedServer = (AgletProxy)init{l];

addMobilityListener(
new Mobility Adapter(){
public void onArrival(MobilityEvent me) {
Enumeration enum = getAgletContext().getAgletProxies();

int count = 1; //List counter

//Looking for CAAgent
while(enum.hasMoroElementn(}) {
// get the proxy in this current context

AgletProxy proxy = (AglotProxy)enum.noxtBlemont();

// checking for server CAAgent
ry {
String agentName = proxy.getAgletClassName() . toString();
if(agentName.equals(“CAAgent”)) {
// keeping CAAgent proxy
proxyCAAgent = proxy;
}
Yeatch(Exception ¢) {
Syktem.out. printin(e.getMessage());

}

//Mecthod OnDisposing
public void onDisposing() {

}

//Method run
public void run(} {
RequestAgentInfo = getAgletinfo();
proxyRequest Agent = chAchLConLex\.().gc‘.AgchI’roxy(Rx:qucutl\guntlnf(;.y,c.-l./\gh:t”)());
//Request PK from CAAgent
try{

Message msgRequestPK = new Message(“Request PublicKey”);

216

APPENDIX D. LISTINGS

}

msgRequestPK.setArg(“argServerAddress”, serverAdd);
msgRequestPK.set Arg(“argAgentProxy”, proxyRequestAgent);
proxyCAAgent.sendFutureMessage(msgRequestPK);

catch(Exception e} { ;}

//Method message handling

public

boolean handleMessage{Message msg) {

if {(msg.sameKind(*RequestedPK”)) {

)

r

D.7

import com

import java

import java.

import java
import java
import java
import iaik.
import java

import javal

public class

pubKey = (PublicKey)msg.get Arg(“argPubKey”);

//send PK to requested agent

ery{
Message msgReqPK = new Message(“PublicKey”);
msgReqPK.setArg(“argServerAddress”, serverAdd);
msgReqP K.setArg(“argPublicKey”, pubKey);
proxyRequestedServer.sendFutureMessage(msgReqPK);

} catch(Exception ¢) {;}

dispose();

return true;

clse

eturn false;

Evaluation Agent (EvaluationAgent.java)

ibm.aglet.¥;
.net. URL;
10.%;
catil ¥

Jang.reftect.™;

sl
security.provider JATK;
security.)

x.crypto.Cipher;

EvaliationAgent extends Agletd

private AgletProxy MasterAgentProxy;

private AgletInfo EvaluationAgentinfo,

private AgletProxy EvaluationAgentProxy;

String
bytel]
String
bytel]

[} recvES;
recvES _Sig;
ff reevCs;
recvCS_Sig;

Vector recvExecuteState = new Vector();

Vector reevCollectState = new Vector();

List recvSAdetails = new ArrayList(};

List re
String
String
String
String
String

Privat

:evPubKeyList = new ArrayList();
{} reccvMAdata;

remoteAddress;

rAddress;

bestOffer,

slavel D,

eKey MAprivKey;

PublicKey remoteServPK;

boolean verifies

alse;

double UserBudget;

static

final String DB = ®jdbcrodbe:Blacklist Address”;

217

APPENDIX D. LISTINGS

static final String USER = *";
static final String PASSWORD = “;

Connection conSel;

Connection conlns;

static final String DB_Result = “jdbc:odbe:Result”;
static final String USER _Result = *;

static final String PASSWORD Result = *;
Connection conResult _Sel;

Connection conResult Ins;

//Constructor EvaluationAgent
public EvalnationAgent() {

Security.insertProviderAt(new T1AIK(), 2);

// Method onCreation

public void onCreation(Object args) {
Object initf] = (Object|})args;
MasterAgentProxy = (AgletProxy)init[0};
reevES = (String[})init[i];
recvES_Sig = (byte|])init{2];
reevCS = (String(})init[3};
recvCS_Sig = (byte[])init[4];
recvMAdata = (String(}) init{5};
recvSAdetails = (List) init{G];
MAprivKey = (PrivateKey)init{7};
recvPubKeyList = (List)init{8};

String UB = (String)init{9];

UserBudget = Double.parseDouble(UB);
try{
Class. forName(“sun.jdbc.odbe. JdbeOdbeDriver”);
conSel = DriverManager.getConnection(DB, USER, PASSWORD);
conins = DriverManager.getConnection(DB3, USER, PASSWORD);
} catch (Exception e) {
e.printStackTrace();

}

ry{
Class.forName(“sun.jdbc.odbe. JdbeOdbelriver”);
conResult.Sel = DriverManager.gotConnection(DB e, USERRexalt, PASSWORD dtesult);
conResultlng = DriverManager.getConnection(DB Jtesult, USER Result, PASSWORD tenult);
} catch (Exception e) {
e.printStackfrace();

}

for(int z=0; zjjava lang.reflect. Array.getLengih(reevES); 24 4) {

recvExccuteState. addElement{recvES|z}};

for(int i=0; ijjava.lang.reflect. Array.getLength(recvCS); i++) {

reevCollectState.addElement (recvCS|[i});

Irerator PKlist = recvPubKeyList.iterator(};

Enumeration esElement = recvExecuteState.clements();

while (esElement.hasMoreElemnents()) {

218

APPENDIX D. LISTINGS

String data=esElement.nextElement().toString();
String indexData=data.substring(0,2);

String rdata=data.substring(3,data.length());

if (“EA" .equals{indexData)) {
rAddress=rdata;
while (PKlist.hasNext{)) {
try {
String Address = {String)PKlist.next{);
if(Address.equals(rAddress)) {
remoteServPK = (PublicKey)PKlist.next();
break;
}

} catch (Exception ¢) { ;}

verifySignature(remoteServPK, recvES Sig, recvES);

if(verifies) {

verifies=false;

verifySignature(remoteServPK, recvCS Sig, recvCS);
} else
if(tverifies) {

try {

String queryScl = “Select servAdd From serverAddress 7 4

wn,
i

“Where servAdd="" 4 remoteAddress +

String querylns = “Insert Into serverAddress (servAdd) ” 4

“Valuow("™ 4 remotoAddress + %) ™3

Statement stmtSel = conSel.createStatemaent();

ResultSet raSel = stmtSel.executeQuery(querySel);

if (IrsSebnext()) {

Statemoent stintins = conlns.createStatement();
stmtIng.execnteUpdate(querylins);
conins.close();

stmtlng.close();

conSel.close();
stintSel.clone();
} cateh (SQLException o) {
o.printStackTrace();
}
dispose();

}
EvaluationAgentinfo = getAgletInfo();
EvaluationAgentProxy = g(:LAgchCunLexL().gl:LAg](:LProxy(Evalual.ionAgt;-nLlnfu.geLAg!(:L!D());

// Method onDisposing
public void onDisposing() {
vy {

Message msgFinish = new N

sage(“Finished”);
Masl,(:rAgenLProxy.aendf“ul,nrt:Muesage(mag]“iniah);

} caich (Exception ¢} { i}

219

APPENDIX D. LISTINGS

// Method run

public void run() {

String rawData;

String realData;

String index;

String spclndex;

String statusSearch="Y";
int ackRecv=0;

boolean proceed=false;

Enumeration ¢S = recvExecuteState.clements();

while (eS.hasMoreElements()) {
rawData=ecS.next Element().toString():
index=rawData.substring(0,2);

spclndex=rawData.substring(0,3);

realData=rawData.substring(3,rawData.length());

//check user data

if(“UD” .equals(index)) {

for(int i=0; i(j:xv;x.hmg.mf‘lm:!./\rruy.;u:LLmu{L]\(rm:vM/\(lm,n); i) {

if(recvMAdatali].equals(reaiData)) {
ackRecv--+;

break;

}
} else H{#SG” .cquals(index)) {
H{“true”.cquals(realData)) {
ackRecv+ -

}

} else if (("OA”.cquals(index)) || (“1D” .equals(index)) || (“EA" squals(index))) {

if (“EA”.cquala(index))
remoteAddress=realData;
if (1D .equals{index))

sinvelD=realData;

Iterator SAdetails = recvSAdetails.iterator();

while(SAdetails hasNext()) {
if(SAdetailsnext().equalr(realData)) {
ackRecv4 4

break;

}
} else if(“ET .cqualk(index)) {

ackRecv4-+4;

} else H({(*XFL” equals(spcindex)) || (XD'1™ Lequals(spcindex))) {

statusSearch=“N";

i ({ackReov

= 15) && (statusScarch==4Y")) {
String rawElement;

String indexElement;

String headernfo;

String vodylInfo;

0;

ackRec

Enumeration ¢S = recvCollectState.clements();

Eaumeration eST = recvExecuteState.elements();

APPENDIX D. LISTINGS

while (cS.hasMoreElements()) {
rawElement=cS.nextElement().toString();
indexElement=rawElement.substring(0,2);
headerInfo=rawElement.substring(3,rawElement.length(}));
bodylnfo:ra\\rElem(znt..subsLring(S,ru\vE!emenLl(mgth());
H(“ET” .equals{indexElement)) {
ackRecv++;
} else if(“ID” .equals(indexBiement)}} {
while (eST.hasMoreElements()) {
rawData=eST nextElement().toString();
realData=rawData.substring(3,rawDasa longth());
if(headerinfo .equals{realData}} {
ackRecv+4-;

break;

}
} else if(“EA” .equals(indexElement)) {
while (eST.hasMoreBlements(}) {
rawData=eS T nextElement () .toString();
realData=rawData.substring(3,rawData.length());
if(headerinfo .cquals(realData)) {
ackRecv--;

break;

}
} else if(“TF” .equals(indexElement)) {
while (eST.hasMoreElements()) {
rawData=eST . nextElement().toString();
realData=rawData.substring(3,rawData.length(});
if(headerinfo .cquals(realData)) {
bestOffer=realData;
if(Double.parseDouble(bestOffer) < UserBudget)
ackRecv4-+;

break;

i
} etse if(4FI? .equals(indexBElement)) {
while (eS'1 . hasMoreElements()) {
rawData=oeST . nextElement () .LoString();
index=rawData.substring(0,2);

(1 Lequals(index)) {
reaiData=rawData.substring(5,rawData.length());
if(bodylnfo .cquals(realData)) {

ackRoecvy 4

break;
1
}
}
}
}
if(ackRecv==14}
proceed=true;
}
else if (ackRecv 1= 15) {
try {
String querySel = “Select servAdd From serverAddress o

“Where gervAdd="" +4 remoteAddress +

String querylns = “Insert Into server Address (servAdd) " +

“Values(’” + remoteAddress + “y s

221

wn,

APPENDIX D. LISTINGS

Statement stmtSel = conSel.createStatement();

ResultSet rsSel = stmtSel.executeQuery{querySol);

if (IrsSelmext()) {
Statement simtlns = conlns.createStatement();
stmtlns.executeUpdate(querylns);
conlns.close{);

stmtIns.close();

conSel.close();
stmtSel.close();
} catch (SQLException ¢) {
e.printStackTrace();
}

dispose();

if(proceed) {
ry {
String queryResult_Sel = “Select slavelD From ResultData ” o
“Where slavelD="" - slavelld - "
String queryResult Ins = “Insert Into ResultData (slavelD fromServer Address, Offer) ™ -

“Values(?” -Fslavel D4 fremoteAddress- “ o hestOffer+)"

Statement stmtResult Sel = conResult Sel.createStatement();
ResultSet rsResnlt_Sel = stmtResult Sel.executeQuery{queryResult Sel);
if(IrsResult _Selnext()) {
Statement rtmtResult Inr = conlesalt dnr.creatoStatament();
stintResult_Ins.oxecuteUpdate(queryResult Ing);
conResult ina.close();

sumtResult Ins.clore();

conResult Sel.close();
stmtResult _Sel.closo();
} catch (SQLException e} {
e.printStack’irace();
}
dispose();
} else

dispose();

//Method RSA decryption
public String(] RSAdecrypt{PrivateKey pvKey, byte[){] cipherText) {

String] plainText = new String[java.lang.refiecct Array.getLength(cipherPext)};
byte[} cipherByte=null

String temnpStr = 7,

try {
Cipher cipher = Cipher.getlnstance(“RSA” “IAIK”);
cipher.init(Cipher. DECRY T _MODE,pvKey);
for (inu i=0; ijjava.lang.reflect. Array.gethength(cipberText); i44) {
cipherByte = cipher.doFinal(cipherfextfi]);
tempStr = new String(cipherByte);

plainTexti] = cutValidStr(tempStr);

222

APPENDIX D. LISTINGS

System.out.printin(“PlainText :* + plainTextli]);
}
} catch(Exception e) {
System.out.println(“[PKI decryption error] ¥ + e.toString());
} :

return plainText;

//Method cut string
public String cutValidSer(Sering rawStr)}{

String tempStr = “7;

int i = Integer.valueQf(String.valueOf(rawStr.charAt{(rawStr.length())-1))}.int Value();

if {rawStr.length{)!=8)
tempStr = rawStr.substring(0,rawStr.lengih()-(i+8));

return tempStr;

//Method verify digital signature
public void verifySignature(PublicKey pubKey, byte[] inSig, String[] plain'lext) {
byte[] inCipher;

try {
Signature verifySig = Signature.getInstance(“SHA1withRSA”);
verifySig.initVerify (pubKey);
for (int i=0; ijjava.lang.reflect. Array.getLength{plainText); i) {
inCipher = plain'Text(i].getBytes();
veriflySig.update(inCipher); // add msg that need to be verified
}
verifies=verifySig.verify(inSig);
} catch{Exception e){
System.out.printin(“[Verifying signature error] * + e.toString(});

}

223

