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Thesis Summary

In this thesis we use statistical physics techniques to study the typical performance of four families
of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes,
MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin sys-
tem with many-spins interactions. We then employ the replica method to calculate averages over
the quenched disorder represented by the code constructions, the arbitrary messages and the random
noise vectors. We find, as the noise level increases, a phase transition between successful decoding
and failure phases. This phase transition coincides with upper bounds derived in the information
theory literature in most of the cases. We connect the practical decoding algorithm known as prob-
ability propagation with the task of finding local minima of the related Bethe free-energy. We show
that the practical decoding thresholds correspond to noise levels where suboptimal minima of the
free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree
with theoretical predictions of the replica symmetric theory. The typical performance predicted by
the thermodynamic phase transitions is shown to be attainable in computation times that grow ex-
ponentially with the system size. We use the insights obtained to design a method to calculate the
performance and optimise parameters of the high performance codes proposed by Kanter and Saad.
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Chapter 1

Introduction

1.1 FError-correction

The way we communicate has been deeply transformed during the twentieth century. Telegraph,
telephone, radio and television technologies have brought to reality instantaneous long distance com-
munication. Satellite and digital technologies have made global high-fidelity communication passibile.

Two obvious common features of modern digital communication systems are that usually the
messages to be transmitied (e.g. images, English text, computer programs) arve redundant and the
media used for transmission (e.g. deep-space, atmosphere, optical fibres, etc...) are noisy. The key
issues are to save space and time by eliminating redundancies (source coding or compression) and to
make transmissions reliable by error correction (ciiannel coding). Shannon was the first to identify
these key issues in his very influential 1948 papers [Sha48]. He did not solve the practical problems
but was able to prove general results showing the natural limits of compression and error-correction,
he also set up a new framework that gave birth to the information theory.

The surprising fact that error-free communication is possible if the message is encoded to include
a minimum amount of redundancy is the content of Shannon’s channel coding theorem. He proved
that a message encoded at rates R (message information content/code-word length) up to the channel
capacity Cenanner can be decoded with a probability of error that decays exponentially with the message
length. His proof was non-constructive and assumed encoding with unstructured random codes and
impractical (non-polynomial time) [CT91] decoding schemes. After Shannan’s papers the issue of
finding practical codes capable of reaching the theoretical limit became a central problem in coding
theory.

To illustrate the difficulties that may arise when trying to construct high performance codes from
first principles we can use a simple geometric idea. On the top left of Fig. 1.1 we represent the space
of words (a message is a sequence of words), each circle represents one sequence of hinary bits. The
word to be sent is represented by a black circle in the left side figure. Corruption hy noise in ithe

channel is represented in the top right figure as a drift in the original waord location. The circles
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without
errar-correction

noisy channetf

o o ©
o
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noisy channel ; error-correction
o o o

Figure 1.1: Geometry of error-correction. In the top figure we represent what happens with a word
transmitted without error-correction. White circles represent possible word vectors, the black civcle
represents the word to be sent. The channel noise causes corruption of the original word that is
represented by a drift in the top right picture. The dashed circles indicate decision boundaries in the
receiver, in the case depicted, noise corruption leads to a transmission error. In the bottom figure we
show the action of an error-correcting code. The redundant information changes the space geometry,
increasing the distance between words. The same drift of the top figure is not sufficient to cause a
transmission error.

around each word represent spheres that provide a decision boundary for each particular word, any
signal inside a particular decision region is recognised as representing the word in the center of the
sphere. In the case depicted in Fig. 1.1 the drift caused by noise places the received word within
the decision boundary of another word vector, causing a transmission error. Frror-correction codes
are based on mapping the original space of words onto a higher dimensional space in a way that the
typical distances between encoded words (codewords) increase. Note that the code rate R measures
the size of the codewords space. In the bottom figure we show what happens if the original space is
transformed. In this case the same drift by noise shown in the top of Fig. 1.1 is not sufficient to push
the received signal outside the decision boundary of the transmitted codeword.

Based on this geometrical picture we can formulate general designing criteria for good error-
correcting codes. Codewords must be short sequences of binary digits (for fast transmission), the
code must allow a large number of codewords (for a large variety of words) and decision spheres must
be as large as possible (for large error-correction capability). Therefore, the general coding problem
consists of optimising one of these conflicting requirements given the other twa. So, for example, if
the dimension of the lattice and diameter of decision spheres are fixed, the problem is finding the
lattice geometry that allows the densest sphere packing. This sphere packing problem is part of the
famous list of problems created by Hilbert (it is actually part of the 18th problem). This problem
can be solved for a very limited number of dimensions [CS98], but it is very difficult in general. As a
consequence, there are constructive procedures only for a limited number of small codes.

For a long time the hest practical codes were Reed-Solomon codes (RS) operating in comhination

with convolutional codes (concatenated codes). RS codes, proposed in 1960, are the current ischno-

—
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logical standard being found almost everywhere, from compact disks to mobile phones and digital
television. Cooncatenated codes are the present standard in deep-space scientific missions (e.g. Galileo
mission) [MS77, 0079]. Recently, Turbo codes [BGT93] have been proven to outperform concatenated
codes and are becoming increasingly more common. These codes are composed of two convolutional
codes working in parallel and show practical performance close to Shannon’s bound when decaded
with iterative methods known as probability propagation, first studied in the context of coding by
Wiberg [Wib96]. A brief description convolutional and Turbo codes is provided in Appendix A.
Despite the success of concatenated and Turbo codes the current practical performance record
is owned by the conceptually much simpler Gallager codes [Davd9, Dav98] that ironically are linear
block codes, the first family of codes ever proposed. More specifically, they are low-density parity-
check codes. Gallager codes were first proposed in 1962 [Gal62, Gal63] and then were all but forgotten
soon after due to computational limitations of the time and due to the success of convolutional codes.
To give a first idea of how parity-check codes operate, we exemplify with the simplest code of this
type known as Hamming code [Ham50] . A (7,4) Hamming code, where (7,4) stands for the number
of bits in the output and input respectively, operates by adding 3 extra bits for each 4 message hits,

this is done by a linear transformation G, called the generator matrix, represented by:

1000
01 00
00 1 0
G=|00 01 (L.1)
01 1 1
101 1
1101

When the generator matrix G is applied to a digital message 8 = (s1, 82, $3, s4), we get an encoded
message defined by t = Gs composed of 4 message bits plus redundant information (parity-check)
contained in 3 extra bits {5 = 8o @ $3 @ 54, tg = 51 D 53 D 84 and L7 = 51 O 9 @ 84 (B indicates binary
sums). One interesting point to note is that the transmitted message is such that {5 @ s2 ©s3 D54 =0
and similarly for ¢g and t7, what allows direct check of single corrupted bits. The decoding procedure
relies in a second operator, known as parity-check matrix, with the property HG = 0. For the

generator (1.1) the parity check matrix has the following form:

0 001 1 11

Il
o]
—
o
o
—
—

—_
™o
=

The decoding procedure follows from the observation that the received message is corrnpled hy noise
as 7 = (Gs @ n. By applying the parity-check matrix we get the syndrome Hr = Hn = z. ITn the
(7,4) Hamming code the syndrome vector gives the binary representation for the position of the hit

where an error has occurred (e.g. if m = (0,0,1,0,0,0,0), z = (0,1,1)). Due to this nice properly
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decoding is trivial and this code is known as a perfect single-error-correcting code [Hil86].

Codes in the low-density parity-check family work along the same principles as the simple Hamming
code above, the differences are that they are much larger, the parity-check matrix is very sparse and
more than a single error can be corrected. As they are not perfect codes, the decoding problem is
much more difficult, but the sparseness of the matrix allows decoding by probability propagation
methods similar to those employed in Turbo codes. In this thesis we will concentrate in low-density
parity-check codes (LDPC) that are state-of-the art-codes in terms of their performance and, at the
same time, operate along simple principles. We will study four variations of LDPCs known as Sourlas

codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes.

1.2 Statistical physics of coding

The history of application of statistical physics to error-correcting codes started in 1989 with a paper
in Nature by Sourlas relating error-correcting codes to spin glass models [SouBd]. e showed that
the Random Energy model [Der81b, Saad8, DW99] can be thought of as an ideal code capable of
saturating Shannon’s bound at vanishing code rates. He also showed that the 5K model [IKS78] could
operate as a practical code.

In 1995 convolutional codes were analysed by employing the transfer-matrix formalism and power
series expansions [ALIS].

In 1998 Sourlas work was extended for the case of finite code rates [KS99a, VSK99] by employing
the replica method. Recently also Turbo codes were analysed using the replica method [MS99, Mon00].

In this thesis we present the extension of Sourlas work together with analysis of other codes in
the low-density parity-check family. We rely on replica calculations [KMS00, MKSV00, VSK00¢] as
well as mean-field methods [KS98, VSK00a]. The main idea is to develop the application of statistical
physics tools to analyse error-correcting codes. Many of the results obtained are rederivations of well
known results of information theory, while others put, known results into a new perspective.

The main differences between statistical physics analysis and traditional results in coding theory
are: the emphasis on very large systems from the start (thermodynamic limit) and the calculation of
ensemble typical performances instead of worst case bounds. In this sense statistical physics techniques
are complementary to traditional methods. As a byproduct of our analysis we are able to connect,
the iterative decoding methods of probability propagation with well known mean-field techniques,

presenting a framework that might allow a systematic improvement of decoding techniqgues.

1.3 Outline

In the next chapter we provide an overview of resulis and ideas from information theary ihat are
relevant for the understanding of the forthcoming chapters. We also discuss more deeply linsar en-

coding and parity-check decoding. We present the probabilily propagation algarithm for compiiting
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approximate marginal probabilities efficiently and finish by introducing the statistical physics point
of view of the decoding problem.

In Chapter 3, we investigate the performance of error-correcting codes based on sparse generator
matrices proposed by Sourlas. We employ replica calculations to present the phase diagram for the
system at finite code rates. We then discuss the decoding dynamics of the probability propagation
algorithmi. We regard Sourlas codes as a first step towards developing techniques to analyse other
more practical codes.

Chapter 4 provides a statistical physics analysis for Gallager codes. These codes use a dense
generator and a sparse parity-check matrix. The code is mapped onto a K-body interaction spin
system and the typical performance is obtained using the replica method. A mean-field solution
is also provided by mapping the problem onto a Bethe-like lattice (Husimi cactus), recavering, in
the thermodynamic limit, the replica symmetric results and providing a very good approximation
for finite systems of moderate size. We show that the probability propagation decoding algorithm
emerges naturally from the analysis and its performance can be predicted by studying the free-energy
landscape. A simple technique is introduced to provide upper bounds for the practical performance.

Tn Chapter 5 we investigate MacKay-Neal codes that are a variation of Gallager codes. In thess
codes, decoding involves two very sparse parity-check matrices, one for the signal with & non-zera
elements in each row and a second for the noise with L non-zero elements. We map MN codes onla
a spin system with K + L interacting spins. The typical performance is again obtained by using a
replica symmetric theory.

A statistical description for the typical PP decoding process for the codes proposed by Kanter and
Saad is provided in Chapter 6. We use this description to optimise the construction parameters of a
simple code of this type.

Conclusions and perspectives for future work are discussed in Chapter 7.

Five appendices with technical details on the material presented are provided in the end of this

thesis.




Chapter 2

Coding and Statistical Physics

In this chapter we provide an overview of resulis and ideas from information theory ihal are relevant

7

for the following chapters. We iniroduce linear encoding and pavity-check decoding. We present the
4q it g ! ¥ g i

probability propagation algorithm for efficiently computing approzimale marginal posterior probabilities

and discuss the relationship belween statistical physics and the decoding problem.

- = o= . < 3

2.1 Mathematical model for a communication systei

In his 1948 papers [Sha48] Shannon introduced a mathematical model (pictorially represented in Fig.
2.1) describing the common features present in communication systems, he also identified key problems
and proved general results about them. Among Shannon’s most celebrated results are the source and

channel coding theorems. In the following subsections we will introduce the components of Shannon’s

communication model as well as the mathematical objects and related general theorems.

2.1.1 Data source and sink

A data source can be discrete or continuous. A discrete source is defined by the pair (S, ), where
S is a set of m symbols (alphabet) and 7 is a probability measure over the space of sequences of
symbols with any length (messages). For example, a discrete source transmitting texts in Portuguese
can be described by an alphabet containing about 76 symbols with a probability measure defined
by the Portuguese semantics and grammatical rules. Genomes can be described as discrete sources
with alphabet {4,G,C, T} and probability measure defined by biochemical functions. In general any
discrete alphabet can be mapped onto sequences of [logm| Boolean digits {0,1}. Continuous sources
can always be made discrete at the expense of introducing some distortion to the signal [CTO1]. A
source is memoryless if each symbol in the sequence is independent of the preceding and sncceeding

symbols. The data sink is simply the receiver of decoded messages.

4
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T T

DATA DATA
SOURCE SINK
SOURCE SOURCE
ENCODER DECODER
CHANNEL CHANNEL
ENCODER DECODER

——+  NOISY CHANNEL |—

Figure 2.1: Mathematical model for a communication system. The role of each of the components ia
discussed in the text.

2.1.2 Sowurce encoder and decoder

Data sources usually generate redundant messages that can be compressed to vectors of shorter averags
length. Source encoding, also known as data compression, is the process of mapping sequences of
symbols from an alphabet S onto a more economical representation .A.

In his seminal 1948 paper, Claude Shannon borrowed the idea of entropy from statistical physics
and defined a quantity that can measure the essential information content of a message. As enunciated

by Khinchin [Khi57}, the entropy of Shannon is defined as follows:

Definition 1 (Entropy) Let

ay Qg+ O
P Pz 0 Pm

be a finite scheme, where a; are mulually exclusive events and p; are associated probabilities with

Z;n:l p; = 1. The entropy of the scheme in bits (or shannons) is defined as

Hy(A) == p; log, p;. (2.1)

j=1

The entropy is usually interpreted as the amount of information gained by removing the uncertainty
and determining which event actually occurs.

Shannon [Shad8] was able to pose and prove a theorem that establishes what is the maximal
shortening of a message hy compression as a function of the entropy. The compression coefficient can

length of compressed messages. As presented by Khinchin [Khif7] the thearem siates:
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Theorem 1 (Source compression) Given a discrete source with m symbols and entropy of H bits,
for any possible compression code the compression coefficient is such that
H

log, m

SH

and there exists a code such that
H+e¢
log, m

p<
for arbitrarily small €

A compression scheme that yields a coefficient p within these bounds, given that the statistical
structure 7 of the source is known, was found in 1952 by Huffman [Huf62]. Several practical algorithms
are currently known and the design of more efficient and robust schemes still is a very active area

[NGO5].

2.1.3 Noisy channels

Message corruption during transmission can be described by a probabilistic model defined by the

conditional probability P(r | £) where ¢ and 7 represent. transmitted and received messages respec-
tively. One can assume that in each channel use only one component 2, j = 1,--- , M of the original
message is sent, if there is no interference effects between different. components, the channel is called
memoryless and the conditional probability factorises as P(r | ) = [1“1 Pry | t5).

A memoryless channel model is specified by (7, P(r | t),R), where 7 and R are input and output
alphabets and P(r | t) transition probabilities. The information needed to specify ¢ given the received
signal r is the conditional entropy:

Hy(T | R)=>_ P(r) {Zm;m%([)(;m)} (2.2)

rER teT
The information on the original signal ¢ conveyed by the received signal r is given by the mutual
information /(T R) = Ho(T) — Hy(T | R), where Hy(T) is defined in (2.1). The maximal information
that the channel can retain defines the channel capacity [CT91].
Definition 2 (Channel capacity)

Cehannel = Max ](T) R))
Plt)

where I(T; R) is understood as a functional of the transmitted bils distribution P(1). Thus, for ezam-

ple, if Cohannel = 1/2, in the best case, 2 bils must be transmalled for each bil sent.

In this thesis we will be interested in the following channel models (see [Mac89, Mac(a)):

Definition 3 (Binary symmetric channel) The memoryless binary symmelric channel (BSC) 1a

defined by binary input and output alphabets T =R = {0,1} and by the conditional

Plr#t|l)=p Plr=1|ty=1-p (3.9)

no
ey
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The channel capacity of a BSC 1s given by

Cpsc = 1— Hy(p)

1+p log (p) + (1 —p) log (1 —p) (2.4)

il

Definition 4 (Gaussian channel) Input and output alphabets are the real numbers T = R = R

and the channel is described by

P(rit) = L exp —(r= t—j— (2.5)
l dro® 202 '
The channel capacity s
1 S -
CGaussian = § log (] + 'TN‘:) y (26)
where S/N = (12)/0* is the signal to noise ratio and (1*) = [ di P(1) t*.
Definition § (Binary Gaussian channel) The input alphabel is binary T = {~ta,to} and the

output alphabet are the real numbers R = R.

Pl | 1) = ——ee eap [‘_(’_j:_.’:)f] . 27)

The channel capacity is

Comary = = [[dr P} log P+ [ dr Plr (1= 10) lag Plr | 1= t), (24
where
Py = 11 [e(r-—tg)g/(Zo‘z)_{_6(1‘-14,0)2/(20'2)]' (2.9)
2/ 2ro?

2.1.4 Channel encoder and decoder

Shannon was the first to show the surprising fact that highly reliable communication is possible even
through noisy channels. He showed that it is possible to protect a message by adding redundant

information into the transmission, the operation is carried out by the channel encoder defined as:

Definition 6 ((2V, M) Code) A code of rate R = N/M is an indezed list (codebook) of 2N code-
words t(i) € T each of length M that are inpuls of the noisy channel. Each index i in lhe codebook

corresponds to a possible sequence of message bils.

In a digital system, a code can be regarded as a map of N bits Boolean representations of 2N symbals
onto Boolean sequences of M bits. In Fig. 2.2 we show the codebook for the Hamming code defined
by (1.1) that is a (2%,7) code. Each sequence of N = 4 message bits is indexed and converted in a
codeword with M = 7 hits.

A decoding function g is a map of a channel autput 7 € R back into a codeward. The prohability

that a symbol 1 is decoded incorrectly is given by the probabilily of block errar:

Pricc = Plg(=) # 1|t = () }. (2.10)

i
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message index codeword | message index codeword

bits bits

0000 0 0000000 1000 8 1000011
0001 1 0001111 1001 9 1061100
0010 2 0010110 1010 70 1010101
0011 3 0011001 1011 17 10110610
0100 4 0100101 1100 i2 1100110
0101 5 0101010 1101 13 1161101
0110 6 0110011 1110 i4 1110010
0111 7 0111100 1111 15 ARRERRR

Figure 2.2: Codebook for the (7,4) Hamming code defined by (1.1).

The average probability that a decoded bit §; = g;(r) fails to reproduce the original message bils

is the probability of bit error:

., N
1 ~
P = ]—\/ E .P{Sj ;f/- S]‘}. (2]])

=1

Shannon’s coding theorem can be enunciated as follows [CT91, MacO0a]:

Theorem 2 (Channel coding) The affirmative part of the lheorem slates:

For every rate B < Cepannei, there exists a sequence of (‘ZMR',M) codes with mazimum prohability
of block error p&,j,wcz — 0. Conversely, any sequence of (2M% M) codes with pe,fwz — 0 musi have
R < Cenanner-

The negative part of the theorem is actually a corollary of the affirmalive part and stales:

Error free communication above the capacily Cepanner 15 impossible. It 1s not possible Lo achieve a

rate R with probability of bit error smaller than

po(R) = Hy' (1 - QJR"—”) . (2.12)

This theorem is non-constructive, it is obtained by assuming ensembles of random codes and non-
practical decoding schemes. No practical coding scheme (i.e. that can be encoded and decoded in
polynomial time) that saturates the channel capacity is known to date. In fact, as Shannon’s proof

does not deal with complexity issues, there is no guarantee that such practical scheme exists at all.

2.2 Linear error-correcting codes and the decoding problem

Digital linear error-correction codes operate by adding redundancy to the original message a € {0, 'i,]»N

through a linear map like:
t = Gs (mod 2), (2.13)
where & is an M x N Boolean matrix. The received message v = -+ 1 i8 a version of the tranamitied

message corrupted by the noise vector n. In the simplest form, optimal decoding congists of finding
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an optimal estimate 8(r) assuming a model for the noisy channel P(r | ¢) and a prior distribution for
the message source P(s).
The definition of the optimal estimator depends on the particular task and loss function assumed.

An optimal estimator is defined in general as follows (see [Iba99] and references therein):

Definition 7 (Optimal estimator) An optimal estimator 3(r) for a loss function L(s,5(r)) is an

estimator that minimises the average of L in relation to the posterior distribution P(s | ).

A posterior probability of messages, given the corrupted message received can be easily found by
applying Bayes theorem:
P(r | t) 6 (t;Ge) P(a)

Plalm) = 5011y 5 (,Gs) P(s)’ (2.14)

where 6(z;y) = 1 if z = y and §(z;y) = 0, otherwise.

If in our task we only can accept messages that are totally correct (i.e. we are interested in
minimising the probability of block error ppige) we have to assume a loss function that indicates
single bit mismatches as an error measure:

Y

L(s,3(r)) = 1= [] é(s5555). (4.15)

j=1

An optimal estimator for this loss function must minimise the following:

(s, 5 per = 5. Pla|r)L(s,3(r))

M
1= P(s|r) ][ 6(s55)
8 j=1

1- P3| 7). (2.16)

i

Clearly, the optimal estimator in this case is 3 = argmaxgP(s | 7). This estimator is often called the
Mazimum a Posteriori estimator or simply MAP.
If we can tolerate a certain degree of error in the decoded message (i.e. we are instead interested

in minimising the probability of bit error p;), the loss function has to be an error counter like:
M
L(s,3(r)) = = > 85, (2.17)
j=1

where we assume for simplicity the binary alphabet 8 € {£1}". The optimal estimator must minimise

the following:

M
(L(s,8(r)) pajry = "”Z(Sﬂmsmgj- (2.18)

je=

—

An obvious choice for the estimator is

= (8)einy

‘,_, | (85) pajry |
= sgn((s;) p(sjr))

= argmax,, P(s; | 1), (410

e
e



CHAPTER 2. CODING AND STATISTICAL PHYSICS

where P(s; | r) =3 P(s | r) is the marginal posterior distribution. As it is suggested by Eq.

{sk:k#j}
(2.19), this estimator is often called the Marginal Posterior Mazimiser or MPM for short.

Decoding, namely, the computation of estimators, in general becomes a hard task very quickly as
the message size increases. The MAP estimator requires finding a global maximuny of the posterior
over a space with 2V possible solutions and the MPM estimator requires to compute long summations
of 21 terms for finding the two valued marginal posterior. The exponential scaling males the task
quickly impractical, at least in a naive brute force evaluation. An alternative is to use approximate
methods to evaluate posteriors, popular methods are Monte-Carlo sampling and the computationally

more efficient probability propagation. In the sequence we will discuss the laiter.

2.3 Probability propagation algorithm

The probabilistic dependencies existing in a code can be graphically represented as a bipariite graph
[Lau96] where nodes in one layer correspond to the M received bits r, and nodes in the other layer
to the N message bits s;. The connections between the two layers are specified by the gensrator
matrix &. Decoding requires evaluation of posterior probabilities when the received biis v are known

(evidence).

The evaluation of the MPM estimator requires the computation of the following marginal joint

distribution:

P(sjr) = ), Pls|r)P(r)

{si1i5})
= Y P(r|s)P(s)
{sivistg}
M N
= S [ Prulsa-si) [T Plsy), (2.20)
{siigtg) n=1 j=1

where s;, - - 8, are message bits composing the transmitted bit 1, = (Gs), = 8;, @ -+ B 85, and r
is the distorted message received, or the evidence. Equation (2.20) shows a complex partial factori-
sation that depends on the structure of the generator matrix &G. We can encode this complex partial
factorisation on a directed graph known as a Bayesian network [Pea88, CGH97, Jen96, KI'98, AMOO,
Fred8, KFLIY8]. As an example, we show in Fig. 2.3 a simple directed bipartite graph encoding the

following joint distribution:

P(s1,- 84,71, ,re) = P(ri|si,82,83)P(ra]s3)Pra| s, 82)P(rq | s3,84)

x  P(rs | s3)P(r | SB)P(”"J)P(SZ)P(SS)P(SU (2.21)

e
Ln
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PARENTS

Figure 2.3: Bayesian Network representing a linear code of rate 2/3. If there is an arrow from a vertex
$; to a vertex 7, s; is said to be a parent and 7, is said to be a child.

The generator matrix specifying the code in Fig. 2.3 is:

11 10

0 100

110 0 .
G = . (2.22)

0 0 1 1

0 0 1 0

00 1 0

Given the received evidence r, an exact evaluation of the marginal joint distribution (2.20) in
a space of binary variables s € {+1}" would require (N + M)2V~! operations. In the eighties
Pearl [Pea88] proposed an iterative algorithm that requires O(N) time to calculate approximate
marginal probabilities using Bayesian networks. This algorithm is known as belief propagation [Pea88],
probability propagation [KF98], generalised distributive law [AMOO] or sum-product algorithm [Fre98,
KFLI8| (see also [SOJ).

The probability propagation algorithm is exact when the Bayesian network associated to the
particular problem is free of loops (i.e. it is a tree). To introduce the probability propagation algorithm

we start with the simple chain in Fig. 2.4, which represents the following joint distribution:

p(s1, 82,93, 84, 85) = p(s1)p(s2 | 61)p(sa | s2)p(s4 | 83)p(ss | 84). (2.23)

Suppose now that we would like to compute p(s3), to say we have to compute:

plss) = S plsi)plsz | s1)p(sa | se)plss | sa)p(ss | a). (2.24)

81,82,84,85
A brute force evaluation of (2.24) would take 5x (2) = 80 operations in a binary field. The probahility
propagation algorithm reduces significantly the number of operations needed by rationalising the order
in which they are performed. For Fig. 2.4 we can start by marginalising out vertex sg and writing:

]{54(54) = }:}J(Jb I .’5‘4). (22{5)

&5
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Ry Ry
Q%‘%“*@*”. R.
Q 12 st

Figure 2.4: Marginal probabilities can be calculated exactly in a Bayesian chain. R-messages flow
from a child to a parent and §Q-messages flow from a parent to a child.

The function Rs4(s4) can be regarded as a vector (a message) carrying information about veriex

s5. In a similar way we can write:

—
jaNe]
e
ez}

Nus

Raa(ss) = > plsa | s5)Rss(sa).

Again R43(s3) can be seen as a message carrying information about veriices s4 and s5. Note that

we can write (2.25) in the same form as (2.26) by assuming that Hs(ss) = 1 if 85 is not given ar
Rs(ss) = 6{s5;5%) if s5 = s*, where §{z;y) = 1 if z = y and §(z;y) = 0 otherwise.

We can also gather information from vertices in the left side of s5. Firstly, we marginalise s; by

introducing:
G12(s1) = pls1). (2.27)
We then propagate the message Qy2(s1) to sp producing a new message:
Q23(s2) ZQJZ s1)p(s2 | s1). (2.28)
The marginal probability p(s3) can be finally computed by :

p(ss) = ZQ23(32)R43(53)P(33|32)

l

ZZQIZ s1)p(s2 | 61) TP(M | 83)Rsq(s 4)p(83 | 52)

82 51
= 3> p(s1)p(sa | s1) ZPS4|53)> (s5 | 84)
82 q1

= > pls)plss | s1)p(ss | s2)p(sa | s3)p(ss

81,82,84,85

84). (2.29)

The evaluation of p(s3) using probability propagation is exact and requires only 16 operations, much
less than the 61 operations required for the brute force calculation.
A slightly more complex situation is shown in Fig. 2.5 representing the following joint distrihution:
p(s1,.812) = p(ss)p(ss)plso)p(s10)p(s11)plsi2)p(sr | s10)p(ss | 811, 812)
% plss | 81,82,80)p(84 | 93, 88)p(85 | 83, 85)p(s7 | 44). (2.30)

Suppose that the variables are binary, s7 and s5 are given evidence vertices and we waould like to

compute the marginal p(s3). A brute force evaluation would require 12 x 2% = 6144 operations,

a7
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Figure 2.5: Marginal probabilities also can be calculated exactly in a Bayesian tree.

In general we can just initialise the messages with random values or malke use of the prior knowladge
that may be available and update the vertices in a random order, but this may require several iteralions
for convergence to the correct values. In the particular case of trees there is an obvious optimal
scheduling that takes only one iteration per vertex to converge, to say start at the leaves (vertices
with a single edge connected to them) and proceed to the next internal level until the intended vertex.

For the tree in Fig. 2.5 the optimal schedule would be as follows:

o Q112,Q12,2,Q10,1,@es5, Qo3, Qa1 and Ryy

e (13,023 and Ry3, Rs3

The Q-messages from parents to children are just the prior probabilities:

Qinls;) = p(s;), (2.31)
where j = 6,8,9,10,11,12.
The R-message between s7 and s4 is:
Rra(sq) =Y Ra(s7)p(sr | sa), (2.32)
87

where Ry(s7) = 8(s7,s%) and s3 is the value fixed by the evidence.

k)

“ollowing the schedule we have the following (Q-messages:

Qis(s1) = ZP(""I [ 610)Q10,1(810) (2.33)
10

(a3(s2) = Z pls2 | s11,812)Q11.2(811)@02,3(812). (2.34)
11,852
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Figure 2.6: Left side: forward (Q) message from parent to child. Right side: backward (R) message
from child to parent.

The remaining R-messages are:

Raz(ss) = E P(s4 | 83,88)Qua(s8) Rra(s4) (2.35)
54,88
Rss(sg) = >: p(ss | s3, 86)Qes(s6) Rs(85), (2.36)
86,85
where Rs(s5) = 8(ss, 85) and s§ is the value fixed by the evidence.
Finally we can fuse all the messages in the vertex s3 as follows:
p(ss) = Z p(sa | 51,52, 80)@Q13(81)Qas(52) Ras(s3) Rsa(s3)Qaa(s0). (2.37)

91,82,89
By substituting the expressions for the messages in (2.37) it is relatively straightforward to verify that
this expression gives the exact value for the marginal of (2.30). In this case the probability propagation
algorithm requires only 432 operations against 6144 operations required by the brute force evaluation.

We can now summarise the rules for calculating the message that flows through a particular edge:

e Multiply all incoming messages by the local probability table (for example: p(ss | $1, 82, 8g) for

vertex s3) and sum over all vertices not contained in the edge that carries the outgoing message.

¢ Both Q and R messages must be only functions of the parent in the edge through which the

message is flowing.

Probability propagation is only exact if the Bayesian network associated is a tree (has no cycles).
However, we can blindly apply the same algorithm in a general graph hoping that convergence to a
good approximation is attained. In this kind of application there is no ohvious optimal schedule and
nodes can be updated serially, in parallel or randomly.

Before writing the probability propagation equations for a general graph let us first fix some
definitions. T'wo vertices s; and 7, are adjacent if there is a line connecting them. If there is an arrow
from s; to r,, s; is said to be a parent and r, a child. The children of s; are denated by M(j) and
the parents of 7, are £(z). Linear codes are specified by bipartite graphs (like in Fig. 2.3) where
all parents are in one layer and all children in the other layer. A measage is a probability veciar

Q = (Q°, Q") with Q"+ @' = 1. The probahility propagation algorithm in a hipartite graph nperates
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by passing messages between the two layers through the connection edges, first forwards from the top
layer (parents) to the bottom layer (children), then backwards, and so on iteratively. Child-to-parent
messages (backward messages in Fig. 2.3) are R-messages denoted R, ;, while parent-to-child messages
(forward messages) are Q-messages denoted by Q;,.

With the help of Fig. 2.6 using the algorithm above the forward (Q) messages between a parent

s; and child r,, are just (see also [Dav99)):

f. = P(Sj=al{d,:veM(Gph (2.38)
ovuip(si=a) ] R (2.39)
vEM()\ i

where a,; is a required normalization, M(7) \ y stands for all elements in the set M(j) except p.
Similarly we can get the expression for the hackward (R) messages hetween child r, and parent

:;)

o= > Plulsy=ad{sice()\i)) [[ Qb (2.40)

{e€L(p)\d} iEL(P\J
An approximation for the marginal posterior can he obtained by iterating Fquations (2.38) and
(2.40) until convergence or some stopping criteria is attained, and fusing all incoming information fo

a parent node by calculating:

Q? =0 p(sj = a,) H sz, (241)
veM(])

where o is a normalisation )} is an approximation for the marginal posterior P(s; | v). Initial
conditions can be set to the prior probabilities @3, = p(s).

It is clear (see also [Pea88]) that the probability propagation (PP) algorithm is exact if the associ-
ated graph is a tree and that the convergence for the exact marginal posterior occurs within a number
of iterations proportional to the diameter of the tree. However, graphs defining error-correcting codes
always have cycles and it is observed empirically that decoding with the PP algorithm also yields
good results [FM98, Che97] in spite of that.

There are a limited number of studies of probability propagation in loopy graphs with a single
cycle [Wei97] and describing Gaussian joint distributions [Fre99] but no definite explanation for its

good performance in this case is know to date.

2.4 Low-density parity check codes

Marginal posteriors can be calculated in O(NK) steps, where K is the average connsctivity of a
child node, by using probability propagation. Therefore, the use of very sparse generatar matrices
(32,; Guj = O(N)) seems favourable. Moreover, it is possible to prave that the probability of a
cycle-free path of length { in a random graph decays with O(K'/N) (see Appendix T whai indicates

that small cycles are harder to find if the generator matrix is very sparse and PP decoding Is expecied

a0
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to provide better approximates for the marginal posterior (no proof is known for this statement) .
Encoding is also faster if very sparse matrices are used, requiring O(N) operations. Despite the advan-
tages, the use of very sparse matrices for encoding has the serious drawback of producing codewords
that differ in only O(K) bits from each other, what leads to a high probability of undetectable errors.
Codes with sparse generator matrices are known as Sourlas codes and will be our first object of study
in Chapter 3.

A solution for the bad distance properties of sparse generator codes is to use a dense malrix
for encoding (providing a minimum distance between codewords of O(N)), while decoding is done
in a very sparse graph, allowing efficient use of PP decoding. The method known as parity-check
decoding [Hil8G, 0079 is suitable in this situation, as encoding is performed by a generator matrix
&, while decoding is done by transforming the corrupted received vector » = G's + n (mod 2) with
a suitable parity check matrix H with the property HG (mod 2) = 0, yielding the syndrome vector
z = Hn (mod 2) .

Decoding reduces to finding n when the syndrome vector z is known, namely, MPM estimates
involve the calculation of the marginal posterior P(n; | z). In [Mac99] MacKay was able to prove
that this decoding method can attain vanishing block error probabilities up to the channel capacity
if optimally decoded (not necessarily practically decoded).

This type of decoding is the basis for the three families of codes (Gallager, MacKay-Neal and

Kanter-Saad) we study in Chapters 4, 5 and 6.

2.5 Decoding and statistical physics

The connection between spin systems in statistical physics and digital error correcting codes was first
noted by Sourlas [Sou89]. This connection is based on the existence of a simple isomorphism between

the additive Boolean group ({0,1}, ®) and the multiplicative binary group ({+1, -1}, ) defined by:
S-X = (-1)*%, (2.42)

where S, X € {+1,—1} and s,z € {0,1}. Trough this isomorphism every addition on the Boolean
group corresponds to an unique product on the binary group and wice-versa. A parity-check hit in a
linear code is usually formed by a Boolean sum of K bits of the form E{Bj{:] s; what can he mapped
onto a K-spin coupling I_[jil S;. The same type of mapping can be applied to other ervor-correcting
codes as convolutional codes [Sou94b, AL95] and Turbo cades [MS99, Mon(Q0] (see Appendix A).

The decoding problem depends on posteriors like P(S | J), where J is the evidence (received
message or syndrome vector). By applying Bayes’ theaorem this posterior can in general he written in
the form:

J) = —— expln Pa(d | §) +In Py(8)], (2.43)

P81 = 7159

where o and v are hyper-parameters assumed to describe features like the sncading scheme, source
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distribution and noise level. This form suggests the following family of Gibbs measures:

Papn(S17) = exp[~BHan(S: ) (2.44)

Hay(S;J) = —In Po(J | S) —1In Py(S), (2.45)

where J can be regarded as quenched disorder in the system. It is not difficult to see that the MAP
estimator is represented by the ground state of the Hamiltonian (2.44), i.e. by the sign of thermal
TMAP
Sj

averages = 5gn{(5;)8—00) at zero temperature. On the other hand the MPM estimator is

provided by the sign of thermal averages @MPM = sgn((5;)p=1) at temperature one. We have seen
in Section 2.2 that if we are concerned with the probability of bit error p. the optimal choice for an
estimator is MPM, that is equivalent to decoding at finite temperature 8 = 1, known as the Nishimori
temperature [Nis80, Nis93, Nis00, Ruj93].

The evaluation of typical quantities involves the calculation of averages over the quenched disorder

(evidence) J, namely, averages over:
)= ParlJ | )Py (S), (2.46)
s

where o* and v* represent the “real” hyper-parameters, in other words, the hyper-parameters actually
used for generating the evidence J. Those “real” hyper-parameters are, in general, not known hy the
receiver, but can be estimated from the data. To calculate these estimales we can start by writing

free-energy like negative log-likelihoods for the hyper-parameters:
(Fles)p,.,. == (I Py (T))p - (2.47)

This log-likelihood can be regarded as measuring the typical plausibility of @ and -y, given the data J
[Ber93]. This function can be minimised to find the most plausible hyper-parameters (known as type
II mazimum likelihood hyper-parameters or just ML-II hyper-parameters) [Ber93].

The ML-IT hyper-parameters correspond in this cagse to o = a* and v = v*, i.e. the “real” hyper-
parameters must be used in the posterior for decoding. This fact is a consequence of the following

inequality:
(Fla*\ 7"V, < (Floy g, .. (2.48)

The proof of (2.48) follows directly from the information inequality [Tba99, CT91], i.e. the non-

negativity of the KL-divergence :

e llPay) > 0
()
< In Pfi T (‘] ru y S - ( ]'ﬂ P"”(J»Pw—,* (?49)

When “real” and assumed hyper-parameters agree, we say that we are at the Nishimort condilion
[Tha89, Nis00]. At the Nishimori condition many caleulations simplify and can he dane exactly (ses
Appendix C.3 for an example). Through this thesis we will he, most of the time, assuming the

Nishimori candition.

jor]
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Chapter 3

Sourlas Codes

In this chapter we investigate the performance of error-correcting codes based on sparse generator
malrices using the mapping onto Ising spin systems proposed by Sourlas. We study codes where each
parity-check comprises products of K bits selected from ihe original digilal message with exactly
checks per message bit. We show, using the replica method, that these codes salurate Shannon’s coding
bound for K — oo when the code rate K/C is finite. We then examine the finite temperaturve cose
to assess the use of simulated annealing methods for decoding, we study the performance of the finite
K case and extend the analysis to accommodate different lypes of noisy channels. The conneclion
between statistical physics and probability propagation decoders is discussed and the dynamics of the
decoding itself is analysed. Further insight into new approaches for improving the code performance is

given. The content of this chapter appeared in [VSK99]

3.1 Introduction

The code of Sourlas is based on the simple idea of using a linear operation G (generator matriz)
to transform a message vector 8 € {0,1}" onto a higher dimensional vector ¢ € {0,1}™. The
encoded vector is then t = Ga (mod 2), each bit t; being the Boolean sum of K message bits (parity
check). This vector is then corrupted when transmitted through a noisy channel and a corrupted M
dimensional vector r is received.

Decoding consists of producing an estimate 3 of the original message. This estimate can he
generated by considering a probabilistic madel for the encoding/corruption /decoding system. Reduced
(order N) time/space requirements {or the encoding process and the existence of fast (polynomial time)
decoding algorithms are guaranteed by choosing sparse generator matrices, namely, a matrix & with
exactly K nonzero elements per row and C nanzero elements per column, where K and ' are of arder
1. The rate of such a code is evidently B = N/M, as the total number of nonzero elements in & is
MK = NC the rate is also R = K/C.

In 1989 Sourlas [Sou89, Sou94a] proposed that, die to the equivalence hetween addition aver the

33
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field {0, 1} and multiplication over {£1}, many error-correcting codes can be mapped onto many-body
spin-glasses with appropriately defined couplings. This observation opened the possibility of applying
techniques from statistical physics to study coding systems.

In the mapping proposed by Sourlas, a message is represented by a binary vector £ € {£1}V
= £, &, . Eiy, where M

sets of K indices are randomly chosen. A corrupted version J of the encoded message J° has to

encoded to a higher dimensional vector J® € {£1}* defined as J(}1 iaixe)
be decoded for retrieving the original message. The decoding process can be viewed as a statistical
process [Iba99] (see Fig.3.1), where an estimate E to the original message that minimises a given
expected loss ((L(£, E))p (J|€)) P(¢) averaged over the indicated probability distributions is produced.
The definition of the loss depends on the particular task; the averlap L£(¢, { Z g)‘fj can he used
for decoding binary messages. As discussed in Section 2.2, an optimal estimator for this particular
loss function is fj = sign(5;) p(s,y [1ba99], where S is an N dimensional hinary vector representing
the dynamical variables of the decoding process and P(S; | J) = 3 g ... P(S | J) is the marginal

posterior probability. Using Bayes theorem, the posterior probability can be writlen as:
In P(S|J)=1In P(J|8)+1In P(S) -+ const. (3.1)
The likelihood P(J | §) has the form:

PJ8S) = n S Py | 0 ay) PUGL iy | S). (3.2)

chosen sate J?, )
i1ipe

The term P(J?ilmix> | S) models the deterministie encoding process being:

P(']?ilmil() 1 S) = 6(‘1?21 Si] ”'Sin’)' (33)

i)

The noisy channel is modelled by the term P(Jy,..i\) | J(“ )). For the simple case of a
memoryless binary symmetric channel (BSC), J is a corrupted version of the transmitted message J°

where each bit is independently flipped with probability p during transmission, in this case [Sou94al:

In P(Jiyiney | 0 i) (1+J(n i) 10 Py iy | +1)

2
1
t+ 5( J(H 1!()) In P (J(h “ixc) | -1)
= constant —}—1111 1zp Jiiroine) iy iney- (3.4)
2 p (hin) iy g

Putting everything together one obtains a Hamiltonian for the code of Scurlas as:

I

In P(S|J) ~Bn H(S) (3.5)

B S Auds [ 5 fﬁN?sJ, (3.6)

iEL()

I

where a set of indices is denoted L(p) = (i1,...1x) and A is a tensor with the properties Ay €
{0,1} and 3>, Ax = C Vi, which determines the M components of the cadeword J". The
temperature of the interaction term nsed here is Sy = & sln (71) known as the Nishimori temperature
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£ ENCODER = NOISY CHANNEL }~—>| DECODER «ﬂg

- P(J | 10)
(J°1 &) PS{I)

Figure 3.1: The encoding, message corruption in the noisy channel and decoding can be represented
as a Markovian process. The aim is to obtain a good estimate £ for the original message ¢.

[Nis80, Iba99, Ruj93, Nis93}, and S = %ln (%i) is the message prior temperature, namely, the prior
distribution of message bits is assumed to be P(S; = +1) = 1 — p; and P(S; = ~1) = p¢.

The decoding procedure translates to finding the thermodynamic spin averages for the system
defined by the Hamiltonian (3.5) at a certain temperature (Nishimori temperature for optimal de-
coding); as the original message is binary, the retrieved message bits are given by the signs of the
corresponding averages.

In the statistical physics framework the performance of the error-correcting process can he mea-
sured by the overlap between actual message and estimate for a given scenario characterised by a cade
rate, corruption process and information content of the message. To assess the typical properties wa
average this overlap over all possible codes A and noise realisations (possible corrupted vectors J)
given the message € and then over all possible messages:

N
T Je—~. ,. .. 0
P=N <Z_1 £i <83En('5i>>/z,j|5> (3.7)

14
Here sign(5;) is the sign of the spins thermal average corresponding to the Bayesian optimal decoding.
The average error per bit is then given by p, = (1 — p)/2.

From the statistical physics point of view, the number of checks per bit is analogous to the spin
system connectivity and the number of bits in each check is analogous to the number of spins per
interaction. The code of Sourlas has been studied in the case of extensive connectivity, where the
number of bonds C' ~ < N1 > scales with the system size. In this case it can be mapped onto known
problems in statistical physics such as the SK [KS78] (K=2) and Random Energy (REM) [Der81a)
(K —00) models. Tt has been shown that the REM saturates Shannon’s bound [ScuB9]. However,
it has a rather limited practical relevance as the choice of extensive connectivity corresponds to a
vanishingly small code rate.

Here we present the analysis for the code of Sourlas in the case of finite connectivity where the
code rate is finite, extending the analysis in [KS98, KS99a]. We show that Shannon’s bound can also
be attained at finite code rates. We study the decoding dynamics and discuss the connections hetween
statistical physics and the methods of probability propagation.

This chapter is organised as follows: in Section 3.2 we present a lower hound far the probability
of bit error, in Section 3.3 we discuss a naive mean field approximation that yields unphysical resulls.
Section 3.4 describes the statistical physics treatment of the code of Sourlas shawing that Shannon's

bound can be attained for finite code rates if K — oco. The finite K case and the Gaussian nnige are
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also discussed in Section 3.4. The decoding dynamics is analysed in Section 3.5. Concluding remarks

are given in Section 3.6. Appendices with the detailed calculations are also provided.

3.2 Lower bound for the probability of bit error

It was observed in [MS99] that a sparse generator code can only attain vanishing probability of bit
error if K — oco. This fact alone does not rule out the practical use of such codes as they can still be
used if a controlled probability of error is allowed or as part of a concatenated code.

Before engaging in a relatively complex analysis it is of theoretical interest to establish a detailed
picture of how the minimum bit error attainable decays with K. This can be done in quite a simple
manner suggested in [MS99]. Let us suppose that messages are unbiased and random and that the
channel is a BSC of noise level p. Assume, without loss of generality, that the message £; = 1 for all j
is sent. The bit error probability can he expressed as the sum p, = Z,:i (1), wheve py(I) represents
the probability of decoding incorrectly any | bits. Clearly py > py(1).

The probability of decoding incorrectly a single bit can be easily evaluated. A hit j engages
in exactly C interactions with different groups of K bits in a way thaf their contribution to the
Hamiltonian is:

W= -8, I (3.8)

NLMU) iC/'(Il)\.I
where M(7) is the set of all index sets that contain 7. If all bits but 7 are set to S; = 1, an error in j
only can be detected if its contribution to the Hamiltonian is positive; if Z/LGM(]’) A,J, <0 the error

is undetectable. The probability of error in a single bit is therefore

= P{ Z Jh S 0}1 (39)

HEM(F)
where A, = 1 for exactly C' terms and J, can be simply regarded as a random variable taking values
+1 and —1 with probabilities 1 ~ p and p respectivé]y. Regarding the sequence {Ji, - ,Jc} as a
random walk we find:

1<c

Ct . - .
Py > Z m(l ~-p)“tp (3.10)

1EN,C-21<0
A lower bound for for p, in the large C regime can be abtained by using the DeMoivre-Laplace

limit theorem [Fel50], writing:

1 (1-p)C 4p (1= p)c? o
> 2 e : D S :
oy > Zerfc ( & ) T - p)cexp ( 5 , (3.11)

f du exp(—u?®) and the asymptotic behaviour is given in [GRO4] (page 940).

2

where erfc(z
This bound Imphes that K — oo is a necessary condition for a vanishing bit errar probahility in

sparse generator codes at finite rates R = /(.
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3.3 Naive mean field

As a very simple start, we consider a message & = 1 for all j (so m = 1 corresponds to perfect
decoding and we can identify the overlap p with the magnetisation m ), and perform a naive mean
field theory as a first approximation.
Let us start by writing the Hamiltonian of the system for unbiased messages with 8y = 0 as:
H{SH == 4 ] S (3.12)
n i€L(p)
where 3° (...) represents a sum over M randomly chosen index sets and £(p) represents K indices in
a particular index set p.
Omitting the dependency on the quenched disorder J, we can write:
e—BH({S51)

Z

P{S;}]) = (3.13)

We would like to approximate the above distribution with a more tractable distribution @({5;}) which
is factorisable. The most general totally factorisable distribution in the space of binary vectord {1}

is as follows:

QSN = HQJ‘(%)
Il Q_L;ﬂz) (3.14)
j

It is clear that the parameters of the approximating distribution are such that m; = (5;)q. An even
simpler approximation assumes only one parameter to describe the approximating distribution:

aus;p = [, (3.15)

J
The framework for selecting appropriate parameters in the approximation consists in projecting the
original distribution P in the space of approximating distributions ¢ by minimising the KL-divergence

between these distributions defined as [SO]:

. QS;})
DIP) = QUSY) In | 75
S a5
= In(Z) + Z QUS; ) m[QUS; V] + B E QUS;HH{S; Y
{55} {55}
= In(Z) - §[Q] + pUIQ], (3.16)

where S[Q] = — 336, Q({5}) In [Q({S})] is the entropy of the appraximating distribution and U[@] =
2.(s} Q({S1YH({5;}) is the energy averaged over the approximating distribution.

The approximating distribution Q* is such that D(Q*||P) < D(Q||P) for all Q. irstly we intro-
duce the free-energy functional as SF[Q] = U[Q)]—S[Q]. Therefore, the KL-divergence can minimised

by imposing:

ST 0, (3.17)
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Figure 3.2: Coexistence line in the plane rate versus noise level for the Weiss approximation with
K =10 (dashed line) and Shannon’s bound for the BSC.

as the term In(Z) involving the partition function does not depend an the distribution Q.
By plugging the approximating distribution (3.15) into the expression for the free-energy functional

Q] we get:

UiQ] = Z QUS;DHHSY

_ZH119’FLJM 1— s,

{55} 7 2 i€L(1)
— _Z‘]“m (3.18)
I
and
SR = =35 QUS;H m[QUS;))]
{85}
. 1+ Sjm 1+ Sj !
= -2 l—=mll—
{85} 7 J
N _ZEH]+STH (] ’%xg[ﬂ‘L}
Lo{s;) 3 2
1+m 1+m 1—-m I —-m .
C ([t 5]y am
The free-energy quenched average over the disorder {J,} is therefore:
(BF{m; 1))y = —BM (1-2p)mX
G fl+m, Tl 4+m I-m._ [l-m
+ N( 5 h:{ 5 }%— 5 m[ 5 ]) (3.20)

The extremisation (3.17) finally gives:

m = tanh [CA(1 - 2p)m ‘] . {3.941)
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The intensive free-energy of the paramagnetic state fpara = In 2 can be equated to the free-
energy frerro Of the state of maximum magnetisation to find the coexistence line. In Fig. 3.2
we show the coexistence line for large K and optimal decoding temperature and compare with the
Shannon bound. Evidently this coexistence line in inconsistent with the channel coding theorem as
it predicts the possibility of errorless (for K — oo) communication beyond channel capacity. In the

following sections we will discuss a less naive approach to the problem.

3.4 Equilibrium

3.4.1 Replica theory

In the following subsections we will develop the replica symmetric theory for Sourlas codes and show
that, in addition to providing a good description of the equilibrium, it describes the typical decoding
dynamics using probability propagation methods.

The previous naive “all ones” messages assumption can be formally translated to the gauge trans-
formation [FHST78] S;=+S5:&; and Jii, iy Jii, iy €iy - - i that maps any general message to the
ferromagnetic configuration defined as £ = 1 Vi. By introducing the exiernal field F' = 3,/ ane can

rewrite the Hamiltonian in the form:

N
H(S) =~ E A(ii~--ii() j(ir--ix) Sip oSy = F }_: €55, (3.22)
(‘il“'il\’) g=1
With the gauge transformation, the bits of the uncorrupted encoded message became J&..,i,{) =1
and, for the BSC, the corrupted bits can be described as random variables with probability:
P(Jy=Q1=-p)6(J-1)+pds(J+1), (3.23)

where p is the channel flip rate. For deriving the typical properties we have to obtain an expression
for the free-energy by invoking the replica technique where the free-energy is calculated using the
identity:

1108 .

=0

where (Z™) 4 s represents an analytical continuation in the interval n € [0,1] of the replicated

partition function:

(2™ a0 = Tryse <eﬂpzﬂ»hik‘95>£ <exp B> Apyigy Ty S 52 >
A

o (i i) §
(3.25)
The overlap p can be rewritten using gauged variables as :
1
p== 3 {684 ), (3.36)
i=] s
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where £* denotes the transformation of a message £ into the ferromagnetic configuration.
To compute the replicated partition function we closely follow [WS87a]. We average uniformly

over all codes A such that Z(ilziiz-»m) Ay iy = C Vi to find:

c C [ :
(2™ aeg = exps N Extry; C“if(_JrI_( Z/ﬁ z (Jiy(;‘.‘m
1=0  {a1...00)
- C Z (}al‘.u,z]\(,yl...m
1=0 {cvq...001)
C

n

+ 1nmga}<eﬂf?52n5“>g SOOS Garea ST S . @327

1=0 (o)

where 77 = (tanh'(8J)), as in [VB85], and g = 1. We give details of this calculation in the Appendix

B.1. At the extremum of (3.27) the order parameters acquire a form similar to those of [WS87a:

. _ K1
oy, = 7; Aoy,

i T
Gay,nor = <<H>a> ST Gmoa 55 > . (3.28)

i=1 I=0 (ovy...00p) ¥
where

[
7

)f:<eﬁF52a’5"‘>6 5505 GuwSM ST (3.29)

1=0 (a1..au)

and <>X = Tr{Sa} [()X] /Tr{sa} [()}

3.4.2 Replica symmetric solution

The replica symmetric (RS) ansatz can be introduced via the auxiliary fields #(z) and 7 (y) in the

following way (see also [WS87a]):

Il

s o / dy 7(y) tanh' (By),

Gor = / dz n(z) tanh' (Bz) (3.30)

forl=1,2,....

Plugging (3.30) into the replicated partition function (3.27), taking the limit n — 0 and using
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Eq.(3.24) (see Appendix B.2 for details) one obtains:

1
f = —E Eztr, 7 {aIlncosh 3 (3.31)
K K
+ oz/ Hdml W(ml)} <1n 1+ tanh 5J H tanh Bz >
I=1 g=1 J

- C/da: dy m(z) 7(y) In[l + tanh Sz tanh Sy]

~ C/dy 7(y) Incosh By

c c
/ [H dy; ?f(yl)} <ln 2cosh Z'gj + F¢ > ,
¢ =1 .

i=1 ¢

where @ = C//K. The saddle-point equations, obtained by varying Eq. (3.31) with respect to the

probability distributions, provide a closed set of relations between 7(z) and 7(y)

-1 c-1
m(z) = / 11 ﬁ(?/z)} <5 33—2:%‘“-]75 > (3.32)

Li=1 3
S

-1 i . i1

~ ; LN N

(y) = / H dx; 71'(37[)} <A Y- B»a,(;a,nh tanh 8J }_I] tanh Gx; > .
L = B d= _ J

Later we will show that this self-consistent pair of equations can be seen as a macrascopic version far
the probability propagation decoding.
Using the RS ansatz one can find that the local field distribution is (see Appendix B.3) :

c C
P = | [dez %(yc)J <5 h=S - Fe > , (3.33)
=1 ]:1

4
where 7(y) is given by the saddle-point equations (3.32).

The overlap (3.7) can then be calculated using:

p= /dh sign(h) P(h). (3.34)

The code performance can be assessed by assuming a particular prior distribution for the message
bits, solving the saddle-point equations (3.32) numerically and then computing the averlap.

The replica symmetric solution is expected to he stable at the Nishimori temperature Gy as is
shown for K = 2 in [NS00].

The stability of the fix points defining the replica symmetric free-energy can he probed looking
at second functional derivatives of (3.31). The simplest necessary condition for stability is having

non-negative second functional derivatives in relation to n(z) (and 7(y)) :

; K-2 ion
l . J 2 i - 7o
—ﬁ—/ LI_I dz; 7["(:1:,)} <]n 1+ tanh AJ tanh® Bz }];]; tanh Az > >0, (3.35)

J
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The solutions may be unstable for sufficiently low temperatures (large ). For high temperatures

we can expand the above expression around small 3 values to find the stability condition:

(J)s(@)F 220 (3.36)
The average (z), = [dzn(z)z vanishes in the paramagnetic phase and is positive (non-zero when

K is even) in the ferromagnetic phase, satisfying the stability condition. This result is still generally
inconclusive, but provides some evidence that can be examined numerically. In Section 3.4.5 we will
test, the stability of the solutions using the condition (3.35).

In the next sections we restrict our study to the unbiased case (F' = 0), which is of practical

relevance, since it is always possible to compress a biased message to an unbiased one.

3.4.3 Case K — oo, C =aK

For this case we can obtain solutions to the saddle-point equations at arbitrary temperatures. The
first saddle-point equation (3.32) can be approximated by:

C-1

T = Z y = (C -1z =(C-1) / dy y 7(y). (3.47)

1=1
It means that if (y)7 = 0 (paramagnetic phase) then 7(x) must be concentrated at @ = 0 implying
that n(z) = §(z) and 7(y) = d(y) are the anly possible solutions. Mareaver, q.(3.37) implies that in
the ferromagnetic phase one can expect z ~ O(K).

Using Eq.(3.37) and the second saddle-point equation (3.32) one can find a self-consistent equation
for the mean field (y)z:

()7 = <% atanh [tanh(,BJ) [tanh(B(C — 1)(y);)]1(_‘1]> i (3.38)

J
For the BSC the above average is over the distribution (3.23). Computing the average, using C = aK

and rescaling the temperature 8 = S(InK)/K, we obtain in the limit K — oo:
» _ K
()7 ~ (1 - 2p) [tanh(Ba(y) n(K))] ", (3.39)

where p is the channel flip probability. The mean field (y)7 = 0 is always a solution to this equation
(paramagnetic solution); at A, = In(K)/(2aK (1 — 2p)) an exira non-trivial ferromagnetic solution
emerges with (y)7 = 1 — 2p. As the connection with the overlap p is given by Fgs. (3.33) and (3.34);
it is not difficult to see that it implies that p = 1 for the ferromagnetic solution. It is remarkahle
that the temperature were the ferromagnetic solution emerges is . ~ O(In(K)/I); it means that
in a simulated annealing process paramagnetic-ferromagnetic barriers emerge al high temperatures,
implying metastability and, consequently, a very slow convergence. It ssems to advacate the uss of
small K values in practical applications. This case is analysed in Section 3.4.6. For A > A, hath
paramagnetic and ferromagnetic solutions exist.

The ferromagnetic free-energy can he obtained from Eq.(3.31) using Bq.(3.37), resulting in fegnpo =

—a(1 = 2p). The corresponding entropy i8 spgrpo = 0. The paramagnetic free-energy is ohiained hy
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plugging 7 (z) = &(z) and 7(y) = &(y) into Equation (3.31):

Il

M%(a In(cosh B) + In 2), (3.40)
a(In(cosh B8) — B tanh 8) + In 2. (3.41)

fPARA

t

SPARA

Paramagnetic solutions are unphysical for & > (In 2)/[8 tanh 8 — In (cosh B)], since the correspond-
ing entropy is negative. To complete the picture of the phase diagram we have to introduce a replica

symmetry breaking scenario that yields sensible physics.

3.4.4 Replica symmetry breaking: the frozen spins scenario

We have seen in Section 3.4.3 that the replica symmetric paramagnetic solution for X' — oo is
unphysical for & > (In 2)/ [ tanh 8 — In (cosh #)]. In order to construct a solution with non-negative
entropy one has to break the replica symmetry. In general, it is a difficult task to implement a
symmetry breaking scheme in finite connectivity systems (see [Mon98b]). Here we choose as a first
candidate a very simple one-step replica symmetry breaking scheme that yields exact resulis for the
REM [GM84, Par80].

This simple one-step replica symmietry breaking solution is known as the frozen spins solution. The
idea consists in assuming that the ergodicity breaks in such a way that the space of confignrations
is divided in n/m islands. Inside each of these islands there are m identical configurations, implying
that the system can freeze in any of n/m microstates. Therefore, in the space of replicas we have the

following situation:

N

1

i Z S]?‘Sf = 1,if o and # are in the same island
j=1

1

N Z S;'Sf = g, otherwise. (3.42)
i=1

By assuming the above structure the replicated partition function has the form:

<Tr{5;x}exp (~—[)' Z H(S™ )) >
=1 A

I

(ZRsp) Ag.J

n/m
- < (1, g0/ XD -Bm Z’)—l(S’“) >
=1 AJE
n/m
= <1T Trissyexp (—pAm H(8* ))>
A
= (ZpE™ g, (3.43)

where in the first step we have used the ansatz with n/m islands with m identical configurationa in

each and in the last step we have used that the overlap hetween any twa different islands is q. From
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(3.43) we have:

0
(In Zrsp(B))acs = an (Zhsp(B)) A
nn:O

= ;%(111 ZRS(le))A,é,J~ (344)

The number of configurations per island m must extremise the free-energy, therefore, we have:

0
B (In Zrsp(B))acs =0, (3.45)
what is equivalent to
50 O 1 - 3
sas(By) = B EY AR = (In Zas(B)) s
IB ﬂ:ﬁg
= 0, (3.46)

where we introduced § = 8 m. In this way m = f3,//3, with B, being a root of the replica symmetric

paramagnetic entropy (3.40), satisfying:
a(ln(cosh By) — By tanh B,) -+1n 2 =0 (3.47)

The N5B-spin glass free-energy is given by fpana (3.40) at temperature [

i . o
frRspsa = 5 (a In (cosh fg) 4 Tn 2), (3.48)
g

consequently the entropy is sgss.sg = 0. In Fig.3.3 we show the phase diagram for a given code rate

R in the temperature T versus noise level p plane.

3.4.5 Shannon’s bound

The channel coding theorem asserts that up to a critical code rate R, which equals the channel
capacity (Shannon’s bound), it is possible to recover information with arbitrarily small probability of

error. For the BSC :
R, = E} =1+ plog, p+ (1 —p) log, (1 — p). (3.49)

¢

The code of Sourlas, in the case where K — oo and C' ~ O(N) can be mapped onta the REM and
has heen shown to be capable of saturating channel capacity in the limit R — 0 [Sou89]. Tn this section
we extend the analysis to show that Shannon’s bound can be attained by the Sourlas cade at zera
temperature also for K —+ co but with connectivity €' = oK. In this limit the model is analogous ta
the diluted REM analysed by Saakian in [Saa98]. The errorless phase is manifested in a ferramagnetic
phase with total alignment (p = 1) (condition that is only possible for infinite K, see Section 3.2) up
to a certain critical noise level; a further noise level increase produces ergodicity hreaking leading to a
spin glass phase where the misalignment is maximal (p = 0). The ferromagnetic-spin glass lransition

corresponds to the transition from errorless decading to decoding with errors described hy the channal
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Figure 3.3: Phase diagram in the plane temperature T' versus noise level p for i - co and O = alff,
with a = 4. The dotted line indicates the Nishimori temperature Ty . Full lines represent coexistence.
The critical noise level is p.. The necessary condition for stability of the fixed point defining the replica
symmetric ferromagnetic state is satisfied above the dashed line.

coding theorem. A paramagnetic phase is also present when the transmitted information is insufficient
to recover the original message (R > 1).

At zero temperature saddle-point equations (3.32) can be rewritten as:

c-1 -1
@) = [ [H dy ﬂyl)} 5o =S v (3.50)
I=1 J=1
K-1 K—-1
7ly) = / [H dz) w(m,)} <(5 {y — sign(J H zy)min(] J |, ..., | Tr—1 ])}> ,
1=1 1= J

The solutions for these saddle-point equations mély, in general, result in probability distributions
with singular and regular parts. As a first approximation we choose the simplest self-consistent family

of solutions which are, since J = %1, given by:

T(y) = psd(y—1)+pod(y) +p-b(y+1) (3.51)
c-1
me) = > Ty pec-u) 8z =1),
I=1-C
with
/
~ (C-=1 o .
Tips popso-1(1) = W P oo P, (3.52)
{k.h,m} o ’

where the prime indicates that k, h,m are such that k = h =1; k4 h+m = C ~ 1. Evidences for this
simple ansatz comes from Monte-Carlo integration of Fq. (3.32) ai very low temperaturves, that shows

solutions comprising three dominant peaks and a relatively weal regular part. Having empioyed a
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Pigure 3.4: Histogram representing the mean field distribution 7(y) obtained by Monte-Catlo inte-
gration at low temperature (4 = 10, K = 3, C = 6 and p = 0.1). Datted lines represeni solutions
obtained by iterating self-consistent equations both with five peak and three peak ansitzs. Insef:
detailed view of the weak regular part arising in the Monte-Carlo integration.

more complex singular solution inside the ferromagnetic and the paramagnetic phases, comprising five
peaks T(y) = p420(y — 1) + p+6(y — 0.5) + pod(y) + p—0(y + 0.5) + p_28(y + 1); we have observed
that it collapses back to the simpler three peak solution. In Fig.3.4 we show a typical result of a
Monte-Carlo integration for the field 7(y). The two peaks that emerge by using either the three peak
ansatz or the five peak ansatz are shown as dotted lines. In the inset we show the weak regular part
of the Monte-Carlo solution.

Plugging the ansatz (3.51) in the saddle-point equations one can write a closed set, of equations in
p+ and pg that can be solved numerically (see Appendix B.4 for details).

The three peaks solution can be of three types: ferromagnetic (py > p-), paramagnetic (pp = 1)
and replica symmetric spin glass (p— = p.). Computing free-energies and entropies enables one to
construct the phage diagram. At zero temperature the paramagnetic free-energy is fpapa = —o and
the entropy is spara = (1 — &) In 2, this phase is physical only for a < 1, what is expacted since it
corresponds exactly to the regime where the transmitted information is not sufficient to recover the
actual message (R > 1).

The ferromagnetic free-energy does not depend on the temperature, having the form frgapn =
—~a(1 — 2p) with entropy speprro = 0. We can find the ferromagnetic-spin glass coexistence line that
corresponds to the maximum performance of a Sourlas code by equating Kq. (3.48) and ferEpna.
Observing that B, = fAn(pc) (a8 seen in Fig. 3.3) we find that this transition caincides with the
channel capacity (3.49). It is interesting to note that in the large K regime hoth RS-ferromagnetic

and RSB-spin glass free-energies (for T < T,) do not depend on the temperature, it meana thal
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Figure 3.5: Phase diagram in the plane code rate R versus noise level p for K — oo and € = ad( al
zero temperature. The ferromagnetic-spin glass coexistence line corresponds to the Shannon baund.

Shannon’s bound is valid also for finite temperatures up to T,. In Fig. 3.5 we give the complete zera
temperature phase diagram.
The bound obtained depends on the stability of the extrema defining the ferromagnetic and para-

magnetic solutions at zero temperature. This stability can be checked by using Eq.(3.35) at zero

temperature:
lim l/ fﬁzdmz W(mz)} <}n 1+ tanh 8J tanhzﬁmji:ftanh Pz, > >0 (3.53)
oo f ) | 11 - o ’ '
for all .

For the paramagnetic sclutions the above integral vanishes, trivially satisfying the condition, while
for the ferromagnetic solution in the large K regime, z; ~ O(K) and the integral becomes
“2p[(1-0+1)+|z|(Oz+1)-0(z—1)) + 0O (z~1)], (3.54)
where O(z) = 1 for z > 0 and 0 otherwise, indicating instability for p > 0. For the noiseless case
p = 0 the stability condition is satisfied. The instability of the ferromagnetic state may imply that
the ferromagnetic-spin glass transition saturating Shannon’s bound is actually unphysical. However,
it was shown in Sec. 3.4.2 that this instability vanishes for large temperatures, which supparts ihe
ferromagnetic-spin glass transition line obtained and the saturation of the hound in some region.

For finite temperatures the stability condition for the ferromagnetic solution can be vewritten as:
. N 2 y(1-p) . TV NN q e
(1 + tanh(8)tanh®(fz)) (1 — tanh(A)tanh*(Az))" > 1 Va. (3.55)
For p = 0 the condition is clearly satisfied. Tor finite p, a critical temperature above which the

stahility condition is fulfilled can be found numerically. The accurrence of instahilities imply that
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Ifigure 3.6: Top: zero temperature overlap p as a function of the noise level p for various I values
at code rate R = 1/2, as obtained by the iterative method. Bottom: RS-ferromagnetic free-energies

(white circles for K = 2 and from the left: K = 3,4,5 and 6) and RSB-spin glass free-energy (dotied
line) as functions of the noise level p. The arrow indicates the region where the RSB-spin glass phase
starts to dominate. Inset: a detailed view of the RS-R8R transition region.

another stable replica symmetric state may exist or that the replica symmetric ansatz is unphysical,
a complete explanation for this is still an open problem.
In Fig. 3.3 we show this temperature in the phase diagram; one can see that there is a considerable

region in which our result that Sourlas code can saturate Shannon’s bound is supported.

3.4.6 Finite K case

Although Shannon’s bound only can be attained in the limit K ~— oo, it was shown in Section 3.4.3
that there are some possible drawbacks, mainly in the decoding of messages encoded by large K cades,
due to large barriers which are expected to occur between the paramagnetic and ferromagnetic phases.
In this section we consider the finite K case, for which we can solve the RS saddle-point equations
(3.32) for arbitrary temperatures using Monte-Carlo integration. We can also obtain solutions for the
zero temperature case using the simple iterative method described in Section 3.4.5.

It has been shown that K > 2 extensively connected models [GM84] exhibit Parisi-type order
functions with similar discontinuous structure as found in the K — oo case; it was also shown that
the one-step RSB frozen spins solution, employed to describe the spin glass phase, is locally stahle
within the complete replica space and zero field (unbiased messages case) at all temperatures. We,
therefore, assume that the ferromagnetic-spin glass transition for K > 2 is described hy the frozen
spins RSH solution.

Al the top of Fig.3.6 we show the zero temperature averlap p as a function of the naisa lavel 5 af
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code rate R = 1/2. These curves were obtained by using the three peak ansatz of the Section 3.4.5.
Note that the RSB spin glass phase dominates for p > p. (see bottom of Fig.3.6). In the bottom figure
we plot RS free-energies and RSB frozen spins free-energy, from which we determine the noise level p,
for coexistence of ferromagnetic and spin-glass phases (pointed by an arrow). Above tle transition, the
system enters in a paramagnetic or RS spin glass phase with free-energies for K = 3,4, 5 and 6 that are
lower than the RSB spin glass free-energy; nevertheless, the entropy is negative and these free-energies
are therefore unphysical. It is remarkable that the coexistence value does not change significantly for
finite K in comparison to infinite K. Observe that Shannon’s bound cannot be attained for finite /i,
since p — 1 (pp — 0) only if K — oo (Section 3.2).

It is known that the K = 2 model with extensive connectivity (SK) requires a full Parisi solution
to recover the concavity of the free-energy [MPV87]. Na stable solution is known for the intensively
connected model (Viana-Bray model). We will see that probability propagation only solves the decod-
ing problem approximately, the approximated solutions are the same obtained by supposing replica
symmetry. Thus, we measure the theoretical relevance of the RS vesults for K = 2 by comparison

with simulations of probability propagation decoding.

3.4.7 Gaussian noise

Using the replica symmetric free-energy (3.31) and the frozen spins RSH free-energy (3.48) one can
easily extend the analysis to other noise types. The general paramagnetic frec-energy and entropy

can be written:

frara = —% (a (hl (COSh ﬁJ))] +In 2)

spara = « ((In(cosh BJ)); — B(J tanh (B8J))s) + In 2. (3.56)
The spin glass-RSB free-energy is given by :
fsarsp = wﬁ]—;(, (a (In (cosh BgJ)) s + In 2), (3.57)
with f, defined as the solution of
a ((In (cosh ByJ)); — By(J tanh (B, J))s) +1In 2 =10. (3.58)
The ferromagnetic free-energy is in general given by (see Appendix B.5)
JrErro = —a (J)y = —a (J tanh (B J))s. (3.59)
The maximum performance of the code iz defined by the coexistence line :
o ((In(cosh fyJ)) 5 — By(J tanh(By J))s) +1n 2 = 0, (3.60)
ohtained by equating free-energies in the RSB spin glass and ferromagnetic phases. Camparing this

expression with entropy (3.58) it can he seen that A, = fn at the coexistence line; the same hehaviouy
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Figure 3.7: Critical code rate R, and channel capacity for a binary Gaussian channel as a funciion of
the signal to noise rate S/N (solid line). The code of Sourlas saturates Shannon’s bound. Channel
capacity of the unconstrained Gaussian channel (dashed line).

observed in the BSC case. Trom Eq. (3.60) one can write:

1

0

(log, cosh(ﬂJ))J] , (3.61)
B=pANn

that can be used to compute the performance of the code for arbitrary symmetric noise.

Supposing that the encoded bits can acquire totally unconstrained values Shannon’s bound for
Gaussian noise is given by R, = § logy(1 + S/N), where S/N is the signal to noise ratio, defined as
the ratio of source energy per bit (squared amplitude) divided by the spectral density of the noise
(variance). However, if one constrains the encoded bits to binary values {41} the capacity of a

Gaussian channel becomes:

R, = /dJ P(J | 1) log,P(J | 1) — /dJ P(J) log, P(J), (3.62)

where P(J | J°) = ﬂ;az exp(-”;gj;)z),

In Fig. 3.7 we show the performance of Sourlas code in a Gaussian channel together with the
capacities of the unconstrained and binary Gaussian channels. We show that X — oo, € = alf
Sourlas’ code saturates Shannon’s bound for the binary Gaussian channel as well. The significantly

lower performance with respect to the unconstrained Gaussian channel is due to the hinary coding

scheme while signal and noise are allowed to acquire real values.
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3.5 Decoding with probability propagation

3.5.1 Probability propagation and statistical physics

The probability propagation algorithm was shown in [Mac99] to outperform other methods such
as simulated annealing in decoding tasks. In [KS98] it was proposed that this framework can he
reinterpreted using statistical physics.

The decoding task consists in the evaluation of estimates of the kind {J = sign(S;)p(s;s). The
marginal posterior P(S; | J) = 25;,1#3‘ P(S§ | J) can in principle be calculated simply by using Bayes
theorem and a proper model for the encoding and corruption processes (namely, coding by a sparse

generator matrix with K bits long parity-checks and a memoryless BSC channel) to write:

N
P(S;|J) = Z [T PO iy 1 8i - Sie) [T P(SI (3.63)
i1

S, I#3 checks

where P(J) is a normalisation dependent on J only. A brute force evaluation of the ahove marginal
on a space of hinary vectors § € {£:1}" with M checks would take (M + N + 1)2" aperations what
becomes infeasible very quickly. As an illustration of how dramatically the computational requirements
increase, assume a code with rate B = 1/2,if N = 10 the number of operations required is 31744, if
one increases the message size to N = 1000, 3 x 103% operations are required! Monte-Carlo sampling
is an alternative to brute force evaluation that consists in generating a number (much less than 2V)
of typical vectors § and using this to estimate the marginal posterior, however the sample size can
prove to be equally prohibitive.

As a solution to these resource problems, one can explore the structure of (3.63) to devise an algo-
rithm that produces an approximation to P(S; | J) in order N aperations. We start by concentrating
on one particular site Sj, this site interacts directly with a number of other sites through €' couplings
denoted by Jii, ..y and {J,} = J,a), -, Ju(c-1)- Suppose now that we isolate only the interaction
via coupling Jy;,...i). When the bipartite graph representing the dependencies in the problem is a

tree it is always possible to write:

P(S;) K-
PS5 1 Sty iny) = 75(_7(“2—* Z P(Jiy gy | 95, 8y -+ S, H P(Si, [{du s e M3i)}).

“‘““‘>){<;. S =1

Sty Sig oy}

(3.64)
Terms like P(S5;, | {J,}) can be interpreted simply like updated priors for S;,. In a tree these

terms factorise like P(5;, | {J.}) = HC "P(S;, | Ju) and a recursive relation can be abtained hy

introducing:
v =P = [ {Jype MG\ v} (3.66)
and
Ry = 5., PU S {Siecw\ih) [] @ (3.66)
{S:ieL(v)\j} ieL(v\j
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where M (7) is the set of couplings linked to site j and L£(v) is the set of sites linked to coupling v.

Equation (3.64) can be rewritten as:

Q% =a,PS;=x) ] R (3.67)
vEM()\u

Equations (3.66) and (3.67) can be solved iteratively, requiring (2% KC +2C?)NT operations with
T being the (order 1) number of steps needed for convergence. These computational requirements can
be further reduced by using Markov chain Monte-Carlo methods [Mac99).

An approximation to the marginal posterior (3.63) is obtained by counting the influence of all

interactions over each site j and using the assumed factorisation property to write:

vEM(F)

This is an approximation in the sense that the recursion obtained from (3.64) is only guaranteed to
converge to the correct posterior if the system has a tree structure, i.e., every coupling appears only
once as one goes backwards in the recursive chain.

-1

By taking advantage of the normalisation conditions for the distributions Q,‘U’ + @, = 1and

RY} + R} =1 one can change variables and reduce the number of equations hy a factor of twa

oy ol Lsas - pl o opl
My = Q; —Q,; and my; = R; — R

The analogy with statistical physics can be exposed by first observing that :

P(Ju| 85, {Sii€ Lw)\i}) ~exp [ BT, [] Si). (3.69)

i€L(p)
That can be also written in the more convenient form:
_ : 1 :
P(J | 85, {S:i i € L)\ 3}) ~ geosh(BJ,) | 1 + tanh(B.,) IT s |- (3.70)
JEL(1)
Plugging Eq. (3.70) for the likelihood in equations (3.67), using the fact that the prior probability

is given by P(S;) = 1 (1 + tanh(f) S;)) and computing m,,; and ,; (see Appendix B.6):

My; = tanh(BJ,) H Ml
leL(p)\d

my; = tanh Z atanh(m,;) + Oy | - (3.71)
vEMU\ 1

The pseudo-posterior can then be calculated:

m; = tanh Z atanh(f,;) + Oy |, (3.72)
vEM(I}

providing Bayes optimal decoding e,?] = sign(m;).
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Figure 3.8: Overlap as a function of the flip probability p for decading using TAP equations for
K = 2. From the bottom: Monte-Carlo solution of the RS saddle-point equations for unbiased
messages (pg = 0.5) at T = 0.26 (line) and 10 independent runs of TAP decoding for each flip
probability (plus signs), 7' = 0.26 and hiased messages (p; = 0.1) at the Nishimori temperature T.

Equations (3.71) depend on the particular received message J. In order to make the analysis

message independent, one can use a gauge transformation m,; — §;m,; and m,; — &;m,; to write:

M, = tanh(8J) [[ mu
LeL(p)\]

my,; = tanh Z tanh ™" (M) + BNE; | - (3.73)
veEM()\p

In this form, a success in the decoding process correspond to 7i,; > 0 and m,; = 1 for all y and
7. For a large number of iterations, one can expect the ensemble of probability networks to converge
to an equilibrium distribution where m and m are random variables sampled from distributions (Z(y)
and ¢(z) respectively. By transforming these variables as . = tanh(By) and m = tanh(fz) and

considering the actual message and noise as quenched disorder, Egs. (3.73) can be rewritten as:

:::
I

K-1
%<tanh_] tanh(5J) H tanh(fz;) >
j=1

J

c-1

z = <Zyj+§1?> . (3.74)
Jj=1 £

The above relations lead to a dynamics an the distributions i(y) and ¢(x), that is exactly the same

obtained when solving iteratively RS saddle-point equations (3.32). The prahahility distributions dA)(y)

and ¢(z) can be, therefore, identified with 7(y) and n(z) respectively and the RS salutions correrpond
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Figure 3.9: Overlap as a function of the flip probability p for decading using TAP equations for & = &.
The dotted line is the replica symmetric saddle-point equations Monte-Carlo integration for unbiagsd
messages (p¢ = 0.5) at the Nishimori temperature T. The bottam error bars correspond o 10
simulations using the TAP decoding. The decoding perfarms badly on average in this scenario. The

upper curves are for biased messages (pe = 0.1) at the Nishimori temperature Tn. The simulations
agree with results obtained using the replica symmetric ansatz and Monte-Carlo integration.

to decoding a generic message using probability propagation averaged over an ensemble of different
codes, noise and signals.

Equations (3.71) are now used to show the agreement between the simulated decoding and ana-
lytical calculations. For each run, a fixed code is used to generate 20000 bit codewords from 10000
bit messages, corrupted versions of the codewords are then decoded using (3.71). Numerical solutions
for 10 individual runs are presented in Figs. 3.8 and 3.9, initial conditions are chosen as 7, = 0
and my = tanh(B)) reflecting the prior beliefs. In Fig. 3.8 we show results for K = 2 and C' = 4
in the unbiased case, at code rate R = 1/2 (prior probability P(5; = +1) = p; = 0.5) and low
temperature 7' = 0.26 (we avoided 7' = 0 due to numerical difficulties). Solving the saddle-point
equations (3.32) numerically using Monte-Carlo integration methods we obtain solutions with good
agreement to simulated decoding. In the same figure we show the performance lor the case of hiased
messages (P(S; = +1) = pe = 0.1), at code rate B = 1/4. Also here the agreement with Mante-Carlo
integrations is rather convincing. The third curve in Fig. 3.8 shows the performance far hiased mes-
sages at the Nishimori temperature Ty, as expected, it is far superior compared to low temperaturs
performance and the agreement with Monte-Carlo resulis is even hetter.

In Fig.3.9 we show the results obtained for K =5 and C = 10. For unhiased messages the system
is extremely sensitive to the choice of initial conditions and does not perform well in average aven af

the Nishimori temperature. For hiased messages (p; = 0.1, B = 1/4) results are far hetter and in
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Figure 3.10: Maximum initial overlap A for decoding. Top: X as function of the number of interactions
K. Circles are averages over 10 different codes with N = 300, R = 1/3 and noise level p = 0.1. Symhal
sizes are larger than the error bars. Bottom: X as function of the connectivity £, Circles are avayages
aver 10 codes with N = 300, K = 3 and noise level p = 0.1. Lines and x’s correspond to the RS
dynamics described by the saddle-point equations.

agreement with Monte-Carlo integration of the RS saddle-point equations.
The experiments show that probability propagation methods may be used successfully for decod-
ing Sourlas-type codes in practice, and provide solutions that are consistent with the RS analytical

solutions.

3.5.2 Basin of attraction

To assess the size of the basin of attraction we consider the decoding process as a dynamics with m,,;

as dynamical variables. In gauged transformed equations (3.73) , the perfect decoding of a message

*

%; = 1. To analyse the basin of attraction we start with random initial values with

correspond to m

a given normalised overlap from the perfect decoding A =1 — w7z 55 mi, m;,;.

In Fig. 3.10 we show the maximal overlap in initial conditions required for successful decoding. The
top figure shows an average over 10 different experiments with N = 300 (circles) for a fixed cade rate
R =1/3, fixed noise level p = 0.1 and increasing K. The hottom figure shows the maximal averlap in
initial conditions for a fixed number of spins per interaction K = 3, noise level p = 0.1 and increasing
C'. We confirm the accuracy of the RS description by comparing the experimental resulis with the
basin of attraction predicted by saddle-point equations (3.32). We can interpret these equations ag
dynamics in the space of distributions 7(z). Performing the transformation X = tanh(fz), one can
move to the space of distributions TT(X') with support aver [—1,-+1]. The initial conditions can then

he described simply as 9(X) = (1 — $)8(X = 1) + 36(X + 1). In Fig. 3.10 we show the hasin of
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attraction of this dynamics as lines and x’s.

The K = 2 case is the only practical code from a dynamical point of view, since it has the largest
basin of attraction and no prior knowledge on the message is necessary for decoding. Nevertheless,
the code performance degrades faster than the K > 2 case as shown in Section 3.4, which points to a
compromise between good dynamical properties on the one hand and good performance on the other.
One idea could be having a code with changing K, starting with X = 2 to guarantee convergence and
progressively increasing its values to improve the performance [KS339b].

On the other hand, the basin of attraction increases with C. Again it points to a trade off hetween
good equilibrium properties (small C and large code rates) and good dynamical properties (large C,
large basin of attraction). Mixing small and large C values in the same code seems to be a way to

take advantage of this trade-off [LMSS98, MWD99, VSK00c].

3.6 Conclusion

In this chapter we studied, using the replica approach, a finite connectivity many-hody apin glass
that corresponds to the code of Sourlas for finite code rates. We have shown, using a simplified one
step RSB solution for spin glass phase, that for ' — oo and C = ol regime at low tempseraiures
the system exhibits a ferromagnetic-spin glass phase transition that corresponds to Shannon's hound.
However, we have also shawn that the decoding problem for large & has pooy convergence propertisg
when simulated annealing methods are used.

We were able to find replica symmeitric solutions for finite K and found good agreement with
practical decoding performance using probability propagation. Moreover, we have shown that the RS
saddle-point equations describe the typical behaviour of probability propagation algorithms.

We studied the dynamical properties of probability propagation and compared to statistical physies
predictions, confirming the validity of the description. The basin of attraction was shown to depend

on K and C. Strategies for improving the performance were briefly mentioned.
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Chapter 4

Gallager Codes

In this chapter we provide a statistical physics treatmeni for the encoding/decoding scheme proposed
by Gallager. In this scheme the generator of the encoding process is a dense matriz while the decoding
malric 15 sparse. The code is mapped onto a I -bodies inleraction spin sysiem and the typical perfor-
mance i obtained by using the replica method. A phase transition between the decoding success and
fatlure phases 1s found lo coincide with the information-theoretic upper bound. Channel capacily is
shown to be atlainable in the K — oo limil. A solution is also provided by mapping the prablem onto
a Husimi caclus, obloining resulls that, in the thermodynamic limil, recover the veplica symmetric
results and prouvide a very good approzimation for finite systems of moderate size. The probability
propagation decoding algorithm emerges naturally from the analysis and its performance can be pre-
dicted by studying the free-energy landscape. A simple technique is introduced to provide upper bounds

for the practical performance. Part of the content in this chapter appeared in [VSK00a, VSKO00b].

4.1 Introduction

In 1962 Gallager [Gal62] proposed a coding scheme which involves sparse linear transformations of
binary messages in the decoding stage, while encoding uses a dense matrix. His proposal was over-
shadowed soon after by the emergency of convolutional codes due to computational limitations of the
time. In fact, the hest computer available to Gallager in 1962 was an IBM 7080, the first transistorised
computer, costing US$ 3 million and with only 1 Megabyte of discl Convolutional codes only needed
a simple system of shilt registers to process one byte at a time.

Recently, Gallager codes have been rediscovered by MacKay and Neal that proposed a closely relat-
ed code [MNI5] to be discussed in Chapter 5. Curiously, this almast coincided with the hreakthrough
discovery of the high performance Turbo codes [BGT3]. Variations of Gallager codes have displayed
performance comparable (and sometimes superior) to Turbo codes [Davi8, Dav0d], qualifying them
as state-of-the-art codes.

In Chapter 3 we have used statistical physice for discussing simple errar-correcting codes hased on

%
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binary sparse generator matrices first introduced by Sourlas [Sou89]. In the limit of infinite number
of nonzero elements in each row of the generator matrix the codes of Sourlas are equivalent to the
Random Energy Model [Der81b, Saa98, DW99] and can be thought of as an ideal code capable of
saturating Shannon’s bound at vanishing code rates. In Chapter 3 we showed that they are ideal
codes at finite code rates as well [KS99a, VSK99].

In this chapter we analyse the performance of Gallager error-correcting codes first by using a replica
calculation and then by using a generalisation of a Bethe lattice known as Husimi cactus [RK92]. We
show that both methods lead to the same results for the typical performance, yielding the threshold
noise level that corresponds to the phase transition between perfect decoding and decoding failure
phases, this appears to coincide with existing information-thearetic upper bounds.

We also shiow that the probability propagation (PP) decoding algorithm emerges naturally from the
treatment based on a Husimi cactus, allowing for the analysis of the practical performance employing
PP decoding. We connect this practical performance to the emergence of metastahle states in the
replica symmetric free-energy landscape.

We concentrate on analysing a simple communication model wlereby messages are represented by
binary vectors and are communicated through a Binary Symmetric Channel (BSC) where uncorvelatad
bit flips appear with probability p. The extension to different channel models is not expected 1o he
difficult as was shown in Section 3.4.7 for a Gaussian chanuel.

This chapter is organised as follows: Section 4.2 describes the cade of Gallager. An upper haund
based on information theoretic considerations is discussed in Section 4.3. Section 4.4 presents the
statistical physics formulation for Gallager codes. The replica theory is discussed in Section 4.5.
Section 4.6 provides an alternative derivation for the probability propagation decoding algorithm
based on a tree-like (or cactus-like) approximation for the lattice. In Section 4.7 we introduce a simple
method for estimating the practical performance based on the statistical physics picture. Conclusions

are given in Section 4.8. Appendices with technical details are also provided.

4.2 The code of Gallager

A Gallager code is defined by a binary matrix 4 = [C; | C3], concatenating two very sparse matrices
known to both sender and receiver, with Cy (of dimensionality (M — N) x (M — N)) being invertible
and C; of dimensionality (M — N) x N. A non-gsystematic Gallager cade is defined by a random
matrix A of dimensionality (M — N) x M. This matrix can, in general, be organised in a systematic
form by eliminating a number ¢ ~ O(1) of rows and columns.

Encoding refers to the generation of an M dimensional binary vector ¢ € {0, 1}M (M > N) from

the original message € € {0,1}" by
t =GT¢ (mod 2), (4.1)

where all operations are performed in the field {0, 1} and are indicated by (mod 2). The generator
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matrix is
G = [I| C;'C1] (mod 2), (4.2)

where I is the N x N identity matrix, implying that AGT (mod 2) = 0 and that the first N hits of ¢
are set to the message £&. Note that the generator matrix is dense and each transmitted parity-check
carries information about an O(N) number of message bits. In regular Gallager codes the number of
non-zero elements in each row of A is chosen to be exactly K. The number of elements per column is
then C = (1 — R)K, where the code rate is R = N/M (for unbiased messages). The encaded vector
t is then corrupted by noise represented by the vector ¢ € {0, 1} with components independently

drawn from P(¢) = (1 — p)d(¢) + pd(¢ — 1). The received vector takes the form
r=GT¢+ ¢ (mod 2). (4.3)

Decoding is carried out by multiplying the received message by the matrix A to produce the

syndrome vector
z = Ar = A (mod 2), (4.4)

from which an estimate 7 for the noise vector can be praduced. An estimate for the original message
is then obtained as the first N bits of v -+ 7 (imod 2). The Bayes optimal estimator (also cnown
as marginal posterior mazimiser, MPM) for the noise is defined as 7; = argmax, F(7; | z). T

performance of this estimator can be measured by the bit error probability p, = 1-1/M Zj\il JGHEE
where 4[;] is the Kronecker delta. Knowing the matrices Cz and C1y, the syndrome vector z and the

noise level p it is possible to apply Bayes theorem and compute the posterior probability
1
P(r|z)= EX[Z = A7 (mod 2)] P(r), (4.5)

where x[X] is an indicator function providing 1 if X is true and 0 otherwise. To compute the MPM one
has to compute the marginal posterior P(7; | z) = > , .. P(7 | z), which in general requires O2M)
operations, thus becoming impractical for long messages. To solve this problem we can take advantage
of the sparseness of A and use probability propagation for decoding, requiring (M) operations to

perform the same task.

4.3 Upper bound on achievable rates

It was pointed by MacKay in [Mac99] that an upper bound for rates achievahle for Gallager cades can
be found by an information theoretic argument. This upper bound is based on the fact that sach hit
of the syndrome vector z = A (mod 2) is a sum of J noise hits independently drawn from a himodal
delta distribution P(() with P(¢ = 0) = 1 - p. The prohability of z; = 1 is pL(K) = § — (1 — 2p)¥
(see Appendix D.1 for details). Therefore, the maximal information content in the ayndvome vecior

is (M — N)YH(pL(K)) (in bits or shannons), where Hy(z) is the binary entropy. In the decoding

iYe]
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Figure 4.1: (a) Bounds for the rate R as a function of the noise level p for several values of K. From
bottom to top: K = 2 to 10,20 and Shannon limit. (b) Bounds for several values of C'. From bottom
to top C = 2,3,4,5 and Shannon limit.

process one has to extract information from the syndrome vector in order o reconstiuct a noise
vector ¢ which has an information content of M Hy(p). Tt clearly means that a necessary condition

for successful decoding is:

(M — NYHy (pL(K)) > MH(p)
(1 — RYHa(pl(K)) Ha(p)
R

v

Hy(p)
Hz(Pi(K))-

IN

(4.6)

In Fig. 4.1a we plot this bound by fixing K and finding the minimum value for C such that R =
1 — C/K verifies (4.6). Observe that as K — oo, pL(K) — 1/2 and R < 1 — H3(p) that corresponds
to Shannon limit.

In Fig. 4.1h we plot the bound by fixing C and finding the maximum K such that R =1 - C/K
verifies (4.6), recovering the curves presented in [Mac99]. Note that K — oo implies C' — oo and
vice-versa. Gallager codes only can attain the Shanﬁon limit asymptotically in the limit of large K

or, equivalently, large C.

4.4 Statistical physics formulation

The connection to statistical physics becomes clear when the field {0, 1} is replaced by Teing spina {41}
and mod 2 sums by products [Sou89]. The syndrome vector acquires the form of a multi-spin coupling
Ty = I—[jeﬁ(“) (jwherej=1,-- ,Mand p=1,---,(M - N). The K indices of nanzero elaments in

the row pof A aregiven by L(u) = {j1, - ,Jx }, and in a column [ are given by M(I) = {1, -, pc}
1 / /
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The following family of posterior probabilities can be introduced:

1 .
Po(r | T) = Zexp[-BHy(7;T)] (4.7)
M-N
HolrpJ) = =y > (3 J] m-1 —FZTJ.
p=1 JEL(p)

The Hamiltonian depends on hyper-parameters v and F. For optimal decoding, v and F' have to be
set to specific values that best represent how the encoding process and corruption were performed
(Nishimori condition [Iba99]). Therefore, v must be taken to infinity to reflect the hard constraints
in Eq. (4.5) and F = atanh(1 — 2p), reflecting the channel noise level p. The temperature § must
simultaneously be chosen to be the Nishimori temperature Sy = 1, that will keep the hyper-parameters
in the correct scale.

The disorder in (4.7) is trivial and can be gauged to 7, + 1 by using 7; = 7;(;. The resulting
Hamiltonian is a multi-spin ferromagnet with finite connectivity in a random field (; F:

M~-N

M
HEWE(7: () = — Z H -1 - FZQT:)“ (4.8)
i=1

n=1 JEL())
At the Nishimori condition v = co the model is even simpler, corresponding to a paramagnet with

resiricted configuration space on a non-uniform external field:

Hgﬁu;,(’(,r = ﬂ Q e ~FZCJ7J’ (4{,})
where
H =1,u=1,---,M - N} (4.10)
JEL(p)

The optimal decoding process simply corresponds to finding local magnetisations at the Nishimori
temperature m; = (1), and calculating Bayesian estimates as 7; = sgn(m;).

In the {1} representation the probability of bit error, acquires the form

1 1
Py = —2‘ — m;i’;j sgn(mj), (4]1)

connecting the code performance with the computation of local magnetisations.

4.5 FEquilibrium theory

4.5.1 Replica theory

In this section we use the replica theory for analysing the typical performance of Gallager cades along
the same lines discussed in Chapter 3 for Sourlas codes. We start by rewriting the gauged Hamiltanian

(4.8) in a form more suitable for computing averages over different cades:

M
%gdug(". C - L A(n iK) (Tﬂ o Tig T ]) - FZQ‘J'T_?) (4'5)

( ‘!()
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where A, ..ip) € {0,1} is a random symmetric tensor with the properties:

> Ayeigy =M =N > Afiy iy = C VL, (4.13)

(iv-ix) (iv,e =l ik)

that selects M — N sets of indices (construction). The construction {A,..iy)} and the noise vector

ix)

¢ are to be regarded as quenched disorder. As usual, the aim is to compute the free-energy:

f= _E lim Al/j_(lu 2 ac, (4.14)

M —00
from which the typical macroscopic (thermodynamic) behaviour can be obtained.

The partition function Z is:

Z = Trrexp (—fHE"(;()) . (4.15)

The replica method is based on in using

| G

F==3 0™ % an

to evaluate the free-energy, what requires computing the averaged replicated partition function:

M n
Eac= 1 <p (19"([7’}:75*’» < 11 H exp [BY Ay iy (TS ::rif->i!>
T, (-

(2™ ac (4.16)

n=0

oo g=1 =1 AR ) o A
(4.17)
The average over constructions ((---))4 takes the form:
: M
(- Na = L H Z Aty =g, iy = C ()
{A} (t1=7J,i2, ,ix)
1 n {t dz; 1 b A
— —ZH \%‘——_‘7_ L Z (iy=jiin, i) (!'1'—“]',-.»,1'1()} (”‘). (418)
; 7C4+1 77
A/{A}jzl 2t Z;
The average ((---))¢ over the noise is:
(- Ne= D, (L=p)s(C—1) + ps(C+1)(---). (4.19)

(=—1,+1

By computing the averages above and introducing auxiliary variables through the identity

M
1 = o
/dqal-”amé <qa1...am — M LZiTial .. .7—{ ¥ ) = ] (420)

one finds, after using standard techniques (see Appendix C.1 for details), the following expression for

the replicated partition function:

) 1 /[ dgodi L dgadia o
Zn — —_— - ———— I 4.2,,
(27)ag N ( 21 r;];[] 21 (4.21)

M]{ i K ‘ 7}_‘
X GXP W E Z 77’T£(J(11~-am - jV[ L E (Im.um,, qt,n”-r.xm
T om=0 (o) m=0 (g m)
M n
X H Trize) <exp {F'ﬁc L 'r”’} >
7=1 a=l ¢

hs

~7i = ¥,y ]
d7 e*p [Z ~m=0 (in"'arn) oy o 770000 ']
o 7041 '
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where 7., = e~ ™87 cosh™(87y) tanh™(B7y). Comparing this expression with that obtained for the code
of Sourlas in Eq. (B.7), one can see that the differences are the dimensionality M for Gallager codes
instead of N for Sourlas (reflecting the fact that in the former the noise vector of dimension M is the
dynamical variable) and the absence of disorder in the couplings, yielding a slightly modified definition

for the constants 7.

4.5.2 Replica symmetric solution

The replica symmetric ansatz consists in assuming;:

G = / Ao m(5) 3™ Gy, = / 45 7(F) 7. (4.22)

By performing the limit v — oo, plugging (4.22) into (4.21), computing the normalisation constant

N, integrating in the complex variable Z and computing the trace (see Appendix C.2) one finds:

(EMac = “Extrmg{exp [—-MC (/ dedz w(2) 7(@) (1 + «2)" — 1) (4.23)

o
ji
R
Y
_S‘
-%
/\
™
k|
A
Lo, g
I Q
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-
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he
ol
(-—\O
\/’
X
[N —

By using (4.16), one finally finds:

;o= %Extw{% In2 + C / dod3 7 (z) 7(3) In(1 + 23)
C, K K
- / H dz; m(xy) In(1 + H ;)
j=1 i=1
c c !
/Hd@ a(aj)<1n ef”“C]_’I 1+8;) + ] -5y > . (4.24)
j=1 J=1 j=1

¢
The extremisation above yields a pair of saddle-paint equations:

K—1 K—1

7(z) = / H dzj n(z;) 6 |T - H zj (4.25)
Jj=1

. C~1 C—1
m(z) = / H dz; 7(Z)) <6 {z — tanh (,HFC + Z atanh ?1>}> ,

=1 1=1 ¢

where 8 = 1 (Nishimori temperature) and F' = § In (L'Pl’) for optimal decoding.
Following the derivation of Appendix B.3 very closely, the typical overlap p = <7«L/f }:jv_i, CiTidae

hetween the estimate 7; = sgn((7;)5) and the actual noise (; is given by:

p = /hfh sgn(h) (4.26)

c c
P(h) = /H < {h—tan (ﬁfC + Latm h mﬂ>

=1

P

¢
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Figure 4.2: Suboptimal ferromagnetic solution mnrrruo(z) for the saddle-point equations (4.28) ab-
tained numerically. Parameters are K = 4, C' = 3 and p = 0.20. Circles correspond to an experimental
histogram obtained by decoding with probability propagation in 100 runs with 10 different random
congtriictions.

4.5.3 Thermodynamic quantities and typical performance

The typical performance of a code as predicted hy ihe replica symmetric theory can be assessed by
solving (4.25) numerically and computing the overlap p using (4.26). The numerical calculation can
be done by representing distributions = and 7 with histograms (we have used representations with
20000 bins), and performing Monte-Carlo integrations in an iterative fashion until a solution is found.
Overlaps can be obtained by plugging the distribution 7 that is a solution for (4.25) into (4.26).
Numerical calculations show the emergence of two solution types, the first corresponds to a totally

aligned (ferromagnetic) state with p = 1 described by:
Tperno () = 8z — 1] Trerro (Z) = 8[Z — 1]. (4.27)

The ferromagnetic solution is the only stable solution up to a specific noise level p,. Above p, another
stable solution with p < 1 (suboptimal ferromagnetic) can be numerically obtained. This solution
is depicted in Fig. 4.2 for K =4, ¢ = 3 and p = 0.20. The ferromagnetic state is always a stable
solution for (4.25) and is present for all choices of noise level or construction parameters C and K.
The stability can be verified by introducing small perturbations to the solution and observing that
the solution is recovered after a number of iterations of (4.25).

The free-energy for the ferromagnetic state at Nishimori's temperature is simply [frapne = —F (1 —
2p). In Fig. 4.3 we show free-energies for ' = 4 and R = 1/4, p. indicates the noise level where
coexistence between the ferromagnetic and suboptimal ferromagnetic phases acenrs. This cosxistence
noise level coincides, within the numerical precision, with the information theoretic upper hownd in

Section 4.3. In Fig. 4.4 we show pictorially how the replica symmetric free-energy landscape changes
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Figure 4.3: Iree-energies for K =4, C'=3 and R = 1/4. The {ull line corresponds to the free-energy
of thermodynamic states. Up to ps; only the ferromagnetic state is present. The ferromagnetic state
then dominates the thermodynamics up to p,, where thermadynamic coexistence with suboptimal
ferromagnetic states takes place. Dashed lines correspond to free-energies of non-dominant metastable
gtates.

F’

0 p P p

Figure 4.4: Pictorial representation of the replica symmetric free-energy landscape changing with the
noise level p. Up to p, there is only one stable state I corresponding to the ferromagnetic state with
p = 1. At p,, a second stable suboptimal ferromagnetic state ' emerges with p < 1, as the noise
level increases coexistence is attained at p.. Above p., I/ hecomes the global minimum dominating
the system thermodynamics.
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0.4

0.2 . .

Figure 4.5: Overlaps for K = 4, C = 3 and R = 1/4. The full line carresponds to the averlaps
predicted by thermodynamics. Up to p, only the ferromagnetic p = 1 state is present, it then
dominates the thermodynamics up to p., where coexistence with suboptimal ferromagnetic states
takes place. Dashed lines correspond to overlaps of non-dominant staies.

with the noise level p.

In Fig. 4.5 we show the overlap as a function of the noise level as obtained for K = 4 and
R = 1/4 (therefore C = 3). Full lines indicate values corresponding to states of minimum free-energy
that are predicted thermodynamically. The general idea is that the macroscopic behaviour of the
system is dominated by the global minimum of the free-energy (thermodynamic equilibrium state).
After a sufficiently long time the system eventually visits configurations consistent with the minimum
free-energy state staying there almost all of the time. The whole dynamics is ignored and only the
stable equilibrium, in a thermodynamic sense, is taken into account. Also in Fig. 4.5 we show results
obtained by simulating probability propagation decoding (black circles). The practical decoding stays
in a meta-stable (in the thermodynamic sense) state between p, and p, and the practical maximum
noise level corrected is actually given by p,. Returning to the pictorial representation in Fig. 4.4, the
noise level p, that provides the practical threshold is signalled by the appearance of spinodal points in
the replica symmetric free-energy, defined as points separating (meta)stable and unstable regions in
the space of thermodynamical configurations (p). The noise level p, may, therefore, be called spinodal
noise level.

The solutions obtained must produce non-negative entropies to be physically meaningful. The

entropy can be computed from the frec-energy (4.24) as s = ﬂ“%/g yielding:

w
i

plu(B) — f) 4.38)
C AFC 77C LS L AR TC s

- / H dz; 7 (3;) <F‘:ej | _j:](] ;) e nj:](} 7J)> |
j=1 4

eAFCTIL (4 8) + e PP (1 - 7))

u(f)

Il

where 7* {8 a solution for the saddle-point equations (4.25) and w(f) corresponds to the internal
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Figure 4.6: Tntropy for K = 4, C = 3 and R = 1/4. Negative values imply unphysical behaviour of
the metastable replica symmetric state between p, and p..

Figure 4.7: Internal energy density for K = 4, ¢ = 3 and R = 1/4 for hoth ferromagnetic and
suboptimal ferromagnetic states. The equality is a consequence of using the Nishimori condition (sea
Appendix C.3).
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energy density at temperature §. For the ferromagnetic state spgrro = 0 what indicates that the
replica symmetric ferromagnetic solution is physical and that the number of micro-states consistent
with the ferromagnetic state is at most of polynomial order in N. The entropy of the suboptimal
ferromagnetic state can be obtained numerically. In Fig. 4.6 we plot the entropy as a function of the
noise level for K = 4, C = 3 and R = 1/4. Up to the spinodal noise level p; the entropy vanishes
as only the ferromagnetic state is stable. Above p, the entropy of the replica symmetric suboptimal
ferromagnetic state is negative and, therefore, unphysical. At p, the entropy of the suboptimal
ferromagnetic state becomes positive. The internal energy density obtained numerically is depicted
in I'ig. 4.7 being u = —F(1 — 2p) for both ferromagnetic and suboptimal ferromagnetic states, what
can be justified by assuming the Nishimori condition v = oo, § = 1 and F' = atanh(1 — 2p) [Tba99)
(see Appendix C.3).

The unphysical behaviour of the suboptimal ferromagnetic solution between p, and p. indicates
that the replica symmetric ansatz does not provide the correct physical description for the system.
The construction of a complete one-step replica symmetry breaking theory turns out to be a difficult
task in the family of models we focus on here [WS88, Mon98h, Man88a]. Awn alternative is to consider
a frozen spins solution as discussed in Section 3.4.4 for Sourlas codes. In this case the entropy in the
interval p, < p < p is corrected to szs5 = 0 and the free-energy and internal energy are frozen to the
values al p,.

Any candidate to a physical description for the system would have to be compared with simulations
to be validated. Nevertheless, our aim here is predicting the behaviour of a particular decoding
algorithm, namely, probability propagation. In the next section we will show that, to this end, the

replica symmetric theory will be sufficient.

4.6 Code on a cactus

In this section we present a statistical physics treatment of Gallager codes by employing a mean-field
approximation hased on the use of a generalised tree structure (Bethe lattice [WS87b]) known as
Husimi cactus that is exactly solvable [Guj95, BL82, RK92, Gol91].

There are many different ways of building mean-field theories. One can make a perturbative
expansion around a tractable model [Ple82, Tan00] or assume a tractable structure and variationally
determine the model parameters [SJ98]. In the approximation we employ, the tractable structure is
tree-like and the couplings 7, are just assumed to be those of a model with cycles. In this framewark
the probability propagation decoding algorithm (PP) emerges naturally providing an alternative view
to the relationship hetween PP decoding and mean-field approximations already observed in [KS08].
Moreover, this approach has the advantage of being slightly more contralled and easier to understand

than replica calculations.

8
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Figure 4.8: First step in the construction of Husimi cactus with K = 3 and connectivity C' = 4.

4.6.1 The Husimi cactus

A Husimi cactus with connectivity C' is generated starting with a polygon of K vertices with one
Ising spin in each vertex (generation 0). All spins in a polygon interact through a single coupling J,
and one of them is called the base spin. In Fig. 4.8 we show the first step in the consatruction of a
Husimi cactus, in a generic step the base spins of the (C — 1)(/ — 1) polygons in generation n — 1
are attached to K — 1 vertices of a polygon in the next generation n. This process is iterated nntil
a maximum generation nmax is reached, the graph is then completed by attaching C uncorrelatad
branches of nmax generations at their base spins. In this way each spin inside the graph is connected
to U paolygons exactly. The local magnetisation at the centre m; can be oblained by fixing houndary
(initial) conditions in the 0-th generation and iterating the related vecursion equations until generation
nmax 18 reached. Carrying out the calculation in the thermodynamic limil corvesponds to having
Nnmax ~ In M generations and M — co.

The Hamiltonian of the model has the form (4.7) where £(p) denotes the polygon p of the lattice.
Due to the tree-like structure, local quantities far from the boundary can be calculated recursively by
specifying boundary conditions. The typical decoding performance can therefore be computed exactly

without resorting to replica calculations [Guj95].

4.6.2 Recursion relations: probability propagation

We adopt the approach presented in [RK92] for obtaining recursion relations. The probability distri-
bution P, (7)) for the base spin of the polygon u is connected to (C' —1)(K — 1) distributions P, ;(7;),

with v € M(5) \ p (all polygons linked to j but p) of polygons in the previous generation:

A 1 ) ‘
Pur(me) = 57 Trgmyexp | By | Tume [[ m = 1) + BFm, II I Pita),  (429)

FEL(W\K vEM(\B TEL(INE
where the trace is over the spins 7; such that j € L(p) \ k.

The effective field Z,; on a base spin j due to neighbours in polygon v can be written as :

N

@

2041 IT‘),,]'(—‘) 4.9 \
Tt .40
Py () (4.40)

exp (—2%,;) =
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Combining (4.29) and (4.30) one finds the recursion relation (see Appendix C.4 for details):

Trir,y exp [_57"7;1 Hjez:(u)\k T+ Ejet:(/x)\)c(ﬂF + EueM(j)\;z E"J)Tj]

exp (—2% k) = — . (4.31)
Trir;y exp [+ﬁ7"7u iecoow i+ 2jecewBF + 2emi mva‘)Tj}
By computing the traces and taking y — oo and [ = 1 one obtains:
Zuo =atanh |7, [ tanh(F+ Y &) (4.32)

JEL(pI\E vEM(§)\p
The effective local magnetisation due to interactions with the nearest neighbours in one branch is
given by m,; = tanh(Z,;). The effective local field on a base spin j of a polygon i due to C ~ 1
branches in the previous generation and due to the external field is x,; = F -+ 2,,61\,,(]-)\” Ty the
effective local magnetisation is, therefore, m,; = tanh(z,;). Equation (4.32) can then be rewritten in

terms of Mm,; and m,; and the PP equations [Mac99, K598, KI*98] can he recovered:

myy = tanh | F + Z atanh (7,) Mk = Ty H My (4.33)
veM(k)\je JEL{\k

Once the magnetisations on the boundary (0-th generation) are assigned, the local magnetisation

my in the central site is determined by iterating (4.33) and computing :
m; = tanh | '+ Z atanh (M,;) (4.34)
vEM(J)

A free-energy can be obtained by integration of (4.33) [MKSV00, VSK00c, BL.82]. The equations

(4.33) describing PP decoding represent extrema of the following free-energy:

M—-N M-N
Fllmu ) = Y > Wml+muiu) — > W1+ 7, [] mu) (4.35)

n=1 deL(p) n=1 i€L(p)

M
- Zln e¥ H (1+ yy) +e " H (1 — M)
g=1

HEM(J) neM(j)
The iteration of the maps (4.33) is actually one out of many different methods of finding stable extrema

of this free-energy.

4.6.3 Macroscopic description and replica symmetric solution

The decoding process can be performed by iterating the multidimensional map (4.33) using some

defined scheduling. Assume that the iterations are performed in parallel using the following procedure:
1. Effective local magnetisations are initialised as m,, = 1 — 2p, reflecting prior prohahilities.

2. Conjugate magnetisations 7, are updated.

o

Magnetisations m are computed.

4. If convergence or a maximal number of iterations is attained, stap. Otherwise go to step 4.
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Figure 4.9: Transitions for Gallager codes with K = 6 (left) and K = 10 (vight). Shannon’s hound
(dashed line), information theory upper bound (full line) and thermodynamic transition obtained
numerically (o). Transitions obtained by Monte-carlo integration of Eq. (4.38) (<) and by simulations
of PP decoding (-, M = 5000 averaged over 20 runs) are also shown. Black squares are estimates for
practical thresholds based on Sec . 4.7. In both figures, symbols are chosen larger than the error bars.

Equations (4.33) have fixed points that are inconveniently dependent on the particular noise vector
¢. By applying the gauge transformation J,, = 1 and 7; — 7;(; we get a map with noise independent.

fixed points that has the following form:

myur = tanh [ (o F + Z atanh (7,) Mpuk = H M- (4.36)
vEME)\p FEL(m\K

In terms of effective fields z,x and Z,; we have:

Ty = G F + Z Ty Z,r = atanh ]]: tanh(z,;) | . (4.37)
vEM(k)\p JEL(\k

The above equations provide a microscopic description for the dynamics of a probability propagation
decoder, a macroscopic description can be constructed by retaining only statistical information about
the system, namely by describing the evolution of histograms of variables z,; and Z,;.

Assume that the effective fields z,; and Z,;, are random variables independently sampled from
distributions P(z) and }3(2) respectively, in the same way assume that (; is sampled from P(() =
(1-p) 8(¢C—1) + 6(C+1). From Eq. (4.37) a recursion relation in the space of probability distrihutions
[BL82] can be found:

-1
Py(z) = /dCP /Hd‘ﬂlpnl(fl) {J—fﬁ*y }
I=]
R K-1 ' K-
Pooa (@) = /dej %uo1(z;) 6 |Z — atanh ] tanh(z;) | |, (4.38)
F=1 :“—I

where P, (z) is the distribution of effective fields at the n-th generation due to the previous generations

and exiernal fields, in the thermadynamic limit the distribution far fram the houndary will he Paa(®)
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Figure 4.10: Mean normalised overlap p between the actual noise vector ¢ and decaded noise 7 for
a Gallager code with K = 4 and C = 3 (therefore R = 1/4). Theoretical values () obtained by
Monte-carlo integration of £q.(4.38) and averages of 20 simulations of PP decoding for code word
lengths M = 5000 (¢) and M = 100 (full line). Symbols are chosen larger than the error hars.

(generation n — oo). The local field distribution at the central site is computed by replacing O — |
by €' in the first equation (4.38), taking into account C polygons in the generation just hefore the

central site, and inserting the distribution Puo(z):

C N c
P(h) = /dc P(¢) /dec‘, Poo(T) 6 [z - ¢ - Z@} : (4.39)
=1 =1

Equations (4.38) are identical to equations (4.25) obtained by the replica symmetric theory [KMS00,
MKSV00, VSKO00c] if the variables describing fields are transformed to those of local magnetisations
through z — tanh(8z).

In Fig. 4.2 we show empirical histograms obtained by performing 100 runs of PP decoding for
10 different codes of size M = 5000 and compare with a distribution obtained by solving equations
like (4.38). The practical PP decoding is performed by setting initial conditions as m,; = 1 — 2p
to correspond to the prior probabilities and iterating (4.33) until stationarity or a maximum number
of iterations is attained [Mac99]. The estimate for the noise vector is then produced by computing
7; = sign{m;). At each decoding step the system can be described by histograms of variables (4.33),
this is equivalent to iterating (4.38) (a similar idea was presented in [Mac99, Dav8|).

In Fig. 4.9 we summarise the transitions obtained for X = 6 and K = 10. A dashed line indicates

the Shannon limit, the full line represents the information theoretic upper hound of Section 4.3, white

circles stand for the coexistence line obtained numerically. Diamonds represent spinadal noise levels
obtained by solving (4.38) numerically and (4) are results obtained by performing 20 runs using
PP decoding. Tt is interesting to observe that the practical performance tends to get worse as K
grows large, what agrees with the general helief that decoding gets harder as the Shannon limit ia

approached.
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Figure 4.11: PP decoding convergence time as a function of the code size (M — N) far K =4 C = §
and p = 0.05, therefore, well below the threshold. The convergence time clearly does not scale with
the system size.

4.6.4 Tree-like approximation and the thermodynamic limit

The geametrical structure of a Gallager code defined by the matrix A can be represented by a bipartite
graph as represented in IFig. (4.12) (Tanner graph) [IKF98] with bit and check nodes. Bach column j of
A represents a bit node and each row p represents a check node, A,; = 1 means that there is an edge
linking bit j to check u. It is possible to show [RU98] that for a random ensemble of regular codes,
the probability of completing a cycle after walking [ edges starting from an arbitrary node is upper
bounded by P[l; K,C, M] < I?K'/M (see Appendix F). It implies that for very large M only cycles
of at least order In M survive. In the thermodynamic limit M — oo the probability P[l; K,C, M] — 0
for any finite [ and the bulk of the system is effectively tree-like. By mapping each check node to
a polygon with K bit nodes as vertices, one can map a Tanner graph into a Husimi lattice that is
effectively a tree for any number of generations of order less than In M. In Fig. 4.11 we show that the
number of iterations of (4.33) required for convergence far from the threshold does not scale with the
system size, therefore, it is expected that the interior of a tree-like lattice approximates a Gallager
code with increasing accuracy as the system size increases. Figure 4.10 shows that the approximation
is fairly good even for sizes as small as M = 100 when compared to theoretical results and simulations
for size M = 5000. Nevertheless, the difference increases as the spinodal naise level approaches, what
seems to indicate the breakdown of the approximation. A possible explanation is that convergence
times larger than O(InM) may be required in this region. An interesting analysis of the convergencs
properties of probability propagation algorithms for some specific graphical madels can he found in

(Weid7].

73




CHAPTER 4. GALLAGER CODES

Figure 4.12: Tanner graph representing the neighbourhood of a bit node in an irregular MN code.
Black circles represent checks and white circles represent bits.

4.7 Estimating spinodal noise levels

In this section we use insights provided in Section 4.5 to estimate the threshold noise level p,. For

that we introduce a measure for the number of parity-checks vialated by a bit 7

Ei== 5 |\Zm [ »-1] (4.40)

HEM(D) JeEL(pN

By using gauged variables:

Bi== 3 Ao Il =»-1] (4.41)

HEM(L) FEL(I\L

Suppose that random guesses are generated by sampling the prior distribution, their typical overlap
will be p = 1 — 2p. Assume now that the vectors sampled are corrected by flipping 7, a bit if £, = C.
If the landscape has a single dominant minimum we expect that this procedure will tend to increase
the overlap p between T and the actual noise vector ¢ in the first step up to the noise level p,, where
suboptimal microscopic configurations are expected to emerge. Above p, there is a large number of
suboptimal ferromagnetic micro-states with overlap around p = 1 — 2p (see Fig. 4.10) and we expect
that if a single bit, of a randomly guessed vector, is corrected the overlap will either increase or
decrease, staying unchanged on average. A vanishing variation in the mean overlap would, therefore,
be the signature of the emergence of suboptimal micro-states at p,.

The probability that a bit 7, = +1 ig corrected is:

PE,=Cln=+1)= [[ PS¢ J] m=-1}. (4.42)

pEM(D) JELNI

Foraabitn = —1:

PE=C|n=-1)= ]_I 1-P H T = ~~'J} . (4.43)

HEM(I) JEL{NI

Considering vectors sampled from a prior P(7) = (1 = p) 8(7 ~ 1) -+ pd(r + 1) we have:

f M - } (1 - 2p)%1, (4.44)

lJEE (NI

=¥
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The gauged overlap is defined as p = Zﬁl S; and the variation on the overlap after flipping a bit
lis Ap=py — po = S} — SP. The mean variation in the overlap due to a flip in a bit 7, with E; = C

is therefore:

%—(Ap) Pln=+1|E=C) ~ Pln=~1|B =C) (4.45)

P(El =C x T = +1)P(Tl = +]A) - P(El = l T = —I)P(TI = ‘1)
P(E[ =C t T = +1)),P(T1 = -{-—1) + P(Eg =C I T = -I)P(‘T) = '1),

where we applied the Bayes theorem to obtain the last line.

By plugging the prior probability, (4.42) and (4.44) into the above expression we get:

. - . o\ F—11C
Liagy = 1-0=29" N7a-p) = L0207 (4.46)
2 1= -2p)K-1% 0 =p) + [1+1-2p)K-11p
At p; we have (Ap) =0 and:
- 9. K-
Ps 1 —(1-2p,) (4.47)

T—py |14 (1= 2p,)f-T
The above equation can be solved numerically yielding reasonably accurate estimates for practical
thresholds ps; as can be seen in Fig. 4.9.

MacKay [Mac99] and Gallager [Gal62, Gal63] introduced probabilistic decoding algorithms whose
performance analysis is essentially the same those as presented here. However, the results abtained in
Section 4.5 put the analysis into a broader perspective: algorithis that generate decoding solutions
in polynomial time, as it is the case of probabilistic decoding or prehability propagation seem o he
bounded by the practical threshold p; due to the presence of suboptimal solutions. On other hand,
decoding in exponential time is always possible up to the thermodynamic transition at p, (with p,
attaining channel capacity if K — oo, by performing an exhaustive search for the global minimum of

the free-energy (4.35).

4.8 Conclusion

We mapped a Gallager code onto a multi-sping interaction Ising system. We then computed the typical
performance of a Gallager code by using the replica symmetric theory. A thermodynamic transition
between a decodable (ferromagnetic) and an undecodable (suboptimal ferromagnetic) phase at a noise
level p. is found to coincide with information theory based arguments. The Shannon limit is ghown
to he attainable in the limit K — co. The emergence of suboptimal solutions at p, < p. ssparates
regions that are decodable in polynomial time and exponential time.

We also introduce a mean-field approximation that transforms the lattice onto a tree-like geametry
known as a Husimi cactus. We show that this approximation allows an exact solution withaut resarting
to the replica method. We use this approach to recover the replica symmeiric solutions and show thal
the predictions made are in agreement with numerical experiments carried out in systems of moderate
size. The probability propagation algorithm emerges naturally from this mean-field analysis. A simple
procedure for computing reasonably accurate estimates [or the practical threshalding noise levels p,

is also presented.
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Chapter 5

MacKay-Neal Codes

In this chapter we study the statistical physics of the family of codes proposed by MacKay and Neal
(MN). The encoding process is performed by a dense matriz while decoding imvolves two very sparse
parity-check matrices, one for the signal with K non-zera elements in each row and the second wilh
L non-zero elements for the noise. We map MN codes onlo a spin system with K + L-bodies per
interaction. The typical performance is then obtained by using a veplica symmetric theory. We show
thal codes with K, L > 2 can atlain channel capacily in ezponenlial lime, while K = L =2 and K = 1,
L = 2 codes can be decoded successfully by a probabilily propagation decoder, being more prociical.
The thermodynamic transitions predicted by the replica symmetric theory coincides with information
theoretic upper bounds for all cases but K = L = 2. We also introduce irregular construclions and
show that they improve the spinodal noise level p, and, consequently, the practical performance. Parl

of the content of this chapter appeared in [KMS00, KMSV00, MKSV00, VSK00c].

5.1 Introduction

MacKay-Neal (MN) codes were introduced [MN85] as a variation on Gallager codes. As Gallager
codes (see Chapter 4), MN codes are defined by two very sparse matrices, but with the difference
that information on both noise and signal is incorporated to the syndrome vector. MN codes are also
decoded using sparse matrices while encoding uses a dense matrix, what yields good distance properties
and a decoding problem solvable in linear time by using the methods of probability propagation.

A class of constructions inside the MN family was recently proposed by Kanter and Saad [IK590D,
KS00b, KS00a] and shown to be capable of outperforming not only Gallager codes but also the eutting-
edge Turbo codes. We will discuss Kanter-Saad codes in the next chapter, but this fact alone justifies
a thorough study of MN codes.

A number of theorems showing the asymptotic goodness of the MN family has hesn proved in
[Mac99]. By assuming that equal message and noise biases (for a BSC), it was proved that the

probability of error vanishes as the message length increases and that it is possible Lo get as cloge as
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desired to channel capacity by increasing the number of non-zero elements in a column of the very
sparse matrices defining the code.

It can also be shown by a simple upper bound that MN codes, unlike Gallager codes (see Section
4.3), might as well attain Shannon’s bound for a finite number of non-zero elements in the columns of
the very sparse matrices, given that unbiased messages are used. This upper bound does not guarantee
that channel capacity can be attained in polynomial time or even that it can be attained at all.
However, results obtained using statistical physics techniques [KMS00, MKSV00, VSK00c¢, VSK00a]
seem to indicate that Shannon’s bound can actually be approached asympiotically with exponential
time decoding. This feature is considered to be new and somewhat surprising [Mac00b].

Statistical physics has been applied to analyse MN codes and its variants in [KMS00, MIKSVOO0,
VSK00c]. Tlhe analysis follows along the same lines of Chapter 4, namely, we use the replica symmetric
theory to obtain all relevant thermodynamic quantities and to caleulate coexistence lines. The theory
also yields a noise level where suboptimal solutions emerge that is in connection with the practical
thresholds observed when prabability propagation decoding is used.

This Chapter is organised as follows: Section 5.2 describes MN codes in detail. Section 6.3 derives
an information theoretic upper bound. The statistical physics formulation and the replica theory
are developed in Sections 5.4 and 5.5 respectively. Section 5.6 hriefly discusses the prabability (FI)
decoding algorithm as applied to MN codes. The PP decoding performance for several families of
construction parameters is presented in Section 5.7. Sections 5.8 and 5.9 analyse the improvement
in the practical performance attained by the introduction of irregular constructions. Conclusions are

given in the final Section 5.10. Appendices with the technical details are also provided.

5.2 MN codes

Assuming that a message is represented by a binary vector £ € {0,1}" sampled independently from
the distribution P(§) = (1 — p¢) 6(&) + pe 8(¢ — 1), the MN encoding process consists of producing a
binary vector t € {0,1}" defined by

t = G¢ (mod 2), (5.1)

where all operations are performed in the field {0, 1} and are indicated by (mod 2). The code rate is,
therefore, R = N/M.

The generator matrix G is an M x N dense matrix defined by
G=C7'C, (mod 2), (K.

with O, being an M x M binary invertible sparse matrix and C, an M x N binary sparse matrix.
The transmitted vector ¢ is then corrupted by noise. We here will assume a memoryless hinary
symmetric channel (BSC), namely, noise is represented by a hinary vecior ¢ € {0, 1}M with compao-

nents independently drawn from the distribution P(() = (1 ~ p) 8(() + p 8(¢ ~ 1). Ths exiension

-3
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for other types of noise is expected to be relatively straightforward as was shown for Sourlas codes in
Section 3.4.7.

The received vector takes the form
r = G¢ + ¢ (mod 2). (5.3)

Decoding is performed by pre-processing the received message with the matrix C, and producing

the syndrome vector
z2=Chr = Cs€ + Cr (mod 2), (5.4)

from which an estimate E for the message can be directly obtained.

An MN code is called regular if the number of elements set to one in each row of C, is chosen
to be K and the number of elements in each column is set to be C. Tor the square matrix O, the
number of elements in each row (or column) is set to L. Tn this case the total number of ones in the
matrix O is MK = NC, yielding that the rate can aliernatively be expressed as R = K/C.

In contrast, an MN code is called srregular if a row m in C, and C,, contains Ky, and L., non-zero
elements respectively. Tn the same way, each column j of C, contains € non-zero elements and each
column [ of &, contains D; non-zero elements.

Counting the number of non-zero elements in the maltrices leads to the following relations:

%1 M 173
Cj = Z [{Il ZDl = ZLIM (
p=1

7=1 pn=1 =1

N

o
[
Nty

The code rate is, therefore, R = K /C, where:

K= S K, C-= %ch. (5.6)

p=1 j=1

The Bayes optimal estima,torg for the message £ is é:, = argmaxg, P(S; | z). The performance of
this estimator is measured by the probability of bit error p, = 1 — 1/N ZJN:] A{EJ, £;], where 6[;] is
the Kronecker delta. Knowing the matrices C, and C,,, the syndrome vector z, the noise level p and
the message bias p¢; the posterior probability is computed by applying the Bayes theorem:

. 1 .
P(S,7|2z)= —7-)({2 = Cp8 + Cp7 (mod 2)] P(8)FP(r), (5.7)
where x[X] is an indicator function providing 1 if X is true and 0 otherwise.

To obtain the estimate one has to compute the marginal posterior

P(Sjlz)= 3, » P& T]2), (5.8)

{Siej} T
which requires O(2V) operations and is impractical for long messages. Again we can use the sparseness
of [C, | Cy] and the methods of prohability propagation for decoding, what requires anly (J(N)

aperations,
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When p = p¢, MN and Gallager codes are equivalent under a certain transformation of parameters,
as the code rate is R = N/M for MN codes and R = 1 — N/M for Gallager codes. The main difference
between the codes is in the syndrome vector z. For MN codes the syndrome vector incorporates
information on both message and noise while for Gallager codes only information on the noise is
present (see £q.(4.4)). This feature opens the possibility of adjusting the code behaviour by contralling
the message bias p¢.

An MN code can be thought as a non-linear code [Mac00c]. Redundancy in the ariginal message
could be removed (introduced) by using a source (de)compressor defined by some non-linear function
& = g(€oipe) - Encoding would then be ¢t = Gg(€q;pe) (mod 2). In the next section we show that

some new features emerge due to the introduction of the parameter p;.

5.3 Upper bound on achievable rates

The same kind of information theoretic argument discussed in Section 4.3 can be applied 1o MN
codes. Tor a regular code the syndrome vector z = C,8 + Crr (inod 2) is a sum of K message
hits drawn from the distribution P(£) = (1 — pg) 6(€) + pe 8(6 — 1) and L noise hits drawn {rom
P =01 —=p)8(0) +ps(C—1).

The probability of z; = 1 is (see Appendix D.1)

, i1 K )
Py (K, L) = 5 — 5 (1= 2pe)" (1 - 2p)". (5.9)

o |

The maximum information content in the syndrome vector is M Hy(pl(K, L)) (in bits or shannons),
where Hy(z) is the binary entropy. The amount of information needed to reconstruct both the message
vector £ and the noise vector ¢ is NHy(pe) + M Hy(p) (in bits or shannons). Thus, it is a necessary

condition for successful decoding that:

M Hy(pl(K,L)) > N Ha(p¢) + M Ha(p)
Ha(p! (K, L)) = Hy(p) > R Hy(pe)
H(pL(K, L)) — Ha(p) ’
R < T (0] . (5.10)

For the case p¢ = p and L = C, we can recover bounds (4.6) for Gallager codes with sizes and
parameters redefined as M’ = M + N, N' = N and K’ = K + L. In [Mac99] a theorem stating that
channel capacity can be attained when K — co was proved for this particular case.

If unbiased (pe = 1/2) messages are used, Ha(pg) = 1, Ho(pL(K, L)) = 1 and the hound (5.10)

becomes
R<1 — Hi(p), (5.11)

i.e., MN codes might be capable of attaining channel capacity even for finite & and L, given that

unbiased messages are used.
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5.4 Statistical physics formulation

The statistical physics formulation for MN codes is a straightforward extension of the formulation
presented in Section 4.4 for Gallager codes. The field ({0,1},+ (mod 2)) is replaced by ({1}, x)
[Sou89] and the syndrome vector acquires the form :
IT & II ¢ (5.12)
JEL: (1) 1eLn{n)
where j=1,--- N, I=1,.- Mand p=1,---, M.

The K, indices of nonzero elements in the row u of the signal matriz C, are given by Ly(p) =
{1, ,Jk,}, and in a column j are given by M,(j) = {u1,--- , e, }. In the same way, for the noise
matriz Cy, the L, indices of nonzero elements in the row u are given by L, () = {51,---,Jr, }, and
in a column ! are given by M, () = {p1, -, p, I

Under the assumption that priors P(S) and P(r) are completely factorisable, the posterior (5.7)

corresponds to the limit v — oo and 8 = 1 (Nishimori temperature) of:

) 1 v N
PSS, T T) = 5 exp[=fHy (S, 7iT)] (6.14)
M ] ) N
Ha(S,mT) = =v> T I S JI n=1] -3 8- ,,‘}
p=1 JEL (i) HELL(p) J=1

FESCR TR TR RPN A g d o 1
with F, = & d\»&ﬁh(‘z—);—i) and F, = % atdnll(

%) (Nishimori condition [Ibad0]).

By applying the gauge transform S5; — Sjﬁj and 7, — 1(; the couplings can be transformed as
Ju — 1, eliminating the disorder. The model is free of frustration (as in [Tou77], the model is flat)
. Similarly to Gallager codes, the resulting Hamiltonian consists of two sub-lattices interacting via

multi-spin ferromagnetic iterations with finite connectivity in random fields &; ¥y and (| Fy,:

N M
HEWE(S,75€,C) = —”)/z I s I n-1)-F> &S -Fy an (5.14)
j=1 [==1

w=1 \jeLs(p)  1ELn (1)
At the Nishimori condition v — oo the model also can be regarded as a paramagnet with restricted

configuration space on a non-uniform external field:

M
HEE (S, 7) € 0;6,0) = ~F, Zé} ~Fuy G, (5.15)
I=1

where
Q={(s,7: [] s H n=1l,u=1---,M}. (5.16)
JEL (1) lfﬁ i)
Optimal decoding consists of finding local magnetisations at the Nishimori terperature in the
signal sub-lattice m; = (5;)g, and calculating Bayesian estimates z;; = sgn(m;).
The probability of bit error is
I A
PE S gy Lgi sgn(m;), (5.17)
j=1

connecting the code performance with the computation of local magnetisations,
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5.5 KEquilibrium theory

5.5.1 Replica theory

The replica theory for MN codes is a straightforward extension of the theory constructed for Gallager
codes in Section 4.5.1, with the introduction of extra dynamical variables §. The gauged Hamiltonian

(5.14) is written as:

N M
HEWE(S, 7€, () = — E Aty (Siy - Sy oy, = 1) = Fy > 68 - Fy Z Gm,  (5.18)
j=1 I=1
where (5I) is a shorthand for (5 -+ jxl -~ 1L).
The code construction is described by the tensor Agy, € {0,1} that specifies a set of indices
C. | Cyl.

To cope with non-invertible C,, matrices one can start by considering an ensemble with uniformly

(1 +Jrlh -+ 1) corresponding to non-zero elements in a particular row of the matrix

generated M x M matrices. The non-invertible instances can then be made invertible by eliminaling
a € ~ (1) number of rows and columns, resulting in an ensemble of (M — €) X (M — €} invertible C
matrices and (M — ¢€) x (N — ¢) C, matrices. As we are interested in the thermaodynamic limit we
can neglect O(1) differences and compute the averages in the original space of M x M wmatrices. The

averages are then performed over an ensemble of codes generated as follows:

1. Sets of numbers {C;}1L, and {D;} 1, are sampled independently from distributions Po and Pp

respectively;

2. Tensors A(jl) are generated such that

2_ Ay =M
(ah
>, Ay =6 . Agy =D
(Ji=jJrli--lL) (Gr-drchi=l-1p)

The free-energy is computed by the replica method as:

I .. 1 0
==z

N n .
Jé] lvh—iréo N On (Z")akq (5.18)

n=0
The replicated partition function is:

n M " .
(Face = ? 2 H<“(EWZ%0>HGWOM@5WD
¢ ¢

Sr 7‘1 T j=1 x==] ¢ $e= =i

<H [T exp |Bv Ay (S5, Sporiz iy - z)]> 4 (5.20)

b= A
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The average over constructions ((---)).4 is:

N M
1
(CNa = 3 [TPeC ]I Podn) 76 Yoo Ay -G
(€5, Di}g=1 =1 Gy=diiz, o dxc D)
) Z Aty =Di | ()
(jh::l,lg,--»,i;g)
N M N -
- . 1 dz; 1 >“'(=‘ =g, igl A =gk
- 5 TPl [T7oto0 3 ST | 4 by o st s ot
(€D} i=1 I=1 {A)} j=1 Z;
M T —
r ay; 1 L(jl;:l.lg,---,l‘)A(jl =1 ip) ,
x H[j[ 72715{}/}D1+1Y1 ! ' ) (5.21)

where the first sum is over profiles {C}, D;} composed by N numbers drawn independently from
Pe(C) and M numbers drawn from Pp (D). The second sum is over constructions A consistent with
the profile {C;, D;}.
The signal average ((---))¢ has the form:
(C-Ne= D> (1=p) (6 ~1) + pe 6(E+1) (). (5.22)
£=—1,41
Shmilarly, the noise average ((---))¢ is:

(- Ne= 3 =P8~ + psC+1) (). (5.23

{=-—1,41

o7
s
—

Along the same steps described for Gallager codes, we can compute the averages above and intro-

duce auxiliary variables via

N
1
/dqm.,.am § (q -5 S zisp 9“) =1 (5.24)

) M
1
/dT(JI“‘Qm ) (TQI'“L\’"I - 7\;]-5 YiTl-u‘ .. "I',iam> == ] (525)

Using the same type of techniques employed in the case of Gallager codes (see Appendix D.2 for

details), we obtain the following expression for the replicated partition function:
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™

g

2

1l
P

M
Y Pe(C) 1D Po(Dr)
C.

j=1 ; =1 Dy
v dqo d(’fO ﬁ erxd@_ o drodrg f[ dr, ngx_ o
271 271 271 -1 2
a=1 a=1
MLENE n B
X €exp R Z 7;7;1};(1...(,,“ T‘éjl..“m

m=0 {ay - -am)

n ks
- N % § an---mmqax'-'um“/"jE ? ToyamTaram

m=0 {a; o) m==0 (ery oty )

. N n
1 N
X WH Trise) <GXP [Fsﬁf )3 5;;}>
j=1 i a=1 ¢

N et - ~ gL, gom |
f dZJ exp ZJ Zm:ﬁ L(”)""Ym) Qevy v SJ S'j ]
y .
2 AGAR
ZJ’
M " 1
e T Y
X H ],‘I‘{lez} exp | B¢ E TI‘
I=1 i 3 o=l g
. , [, —n —\ P~ f‘“l...»“"-
" dY; 8¥P Vi Zaim=0 L(f\‘]"‘ﬂ“zn) Toayanm T T T
< g i S L (5.26)
— S
! Y,

where 7, = e~ ™7 cosh™(Bv) tanh™(Bv). Note that the above expression is an extension of Eq.

(4.21).

5.5.2 Replica symmetric solution

The replica symmetry assumption is enforced by using the ansitze:

Gor e = / o m(5) 2™ Gyoe, = /d:? #(E) 7™ (5.27)
and
Toy o = /dy ¢(‘J) y™ 'Fm~am = / d?}\ (f)(@\) ?jm‘ (5-28)

By plugging the above ansitze, using the limit v - oo and standard techniques (see Appendix
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D.3 for details) the following expression for the free-energy:

1
f = 5 EX”{F,W,&;,M{Q In 2 (5.29)

+ E/d:c m(z) dZ7(2) In (1 +28)+ a D /dy B(y) dj ¢(¥) In (1 + y)
K L K
- a/ Hda:jw(a:j) [de!qﬁ(y;)} In 1+H7:,Hug
7=1 I=1
c o} o '
- ZPC( / H dz; 7(z;) <ln Pt ]_II+LLJ ) e ER H >
C 7=1 j=1 i=1

- 4
D ] D D i
—a2%</mmml@kmmmemﬂmmD}
D =1 i i=1 I=] R ¢

where C =Y, C Pe(C), D=3, DPp(D)and a = M/N =C/K.

By performing the extremisation above, restricted to the space of normalised functions, we find

the following saddle-point equations:

K -1 L K-
7(Z) = / H de; m(z;) ﬂ dy; ply) 6 |z — ‘[] 1]}}; (5.30)
Y=l i=1 j=1 .
m(z) = Z C Pc(C) / n dz; 7(z;) < x — tanh ([N'} }_d tanh T,>]> .
R -1 K
¢@::/HW¢WH@J%55_HMH%
=1 j=1
1 - R D~1
oly) = 5 Z D Pp(D) / H dyr o) <(5 {iy ~ tanh (ﬁFn( + Z atanh §z>}> .
D I=1 I=1 ¢

The typical overlap p = (5 Z;\Ll QEJ-)A,C,g between the estimate EJ = sgn((5;)py) and the actual
signal ; is given by (see Appendix B.3):

p = /dh,P(h) sgn(h) (5.31)
C (,
P(h) = ZPC(C)/HdEEI 7(7) <5 [h,~tanh (ﬂFg& + Y atanh 5«*,N> .
C =1 I=1 . £

The intensive entropy is simply s = 5221 5 yielding:

s = PuB) - ) (5.32)

AP E 5 ~
(Jﬁ[ ¢ Il F]) - e /j]at. ]Ij.::] (] - m]

() ( F, {0

wp) = _E’PC ./de] " < gq'm‘{” (1 T}) '(3"/1'17’55]“1.2:]“
(1
(

= ij 4 + - @ ~fAF. T(1 -~
““ZPWD/H@W@%F 21+ 5) ”w
D j;::]

/JI‘(”J ! | q_yj) 4+ g B ]1 ] J

where starred distributions are solutions for (5.30) and w(f) is the internal energy density.

=)

IBRS
1 i
\/.
N &
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For optimal decoding the temperature must be chosen to be § = 1 (Nishimori temperature) and

- ] 1 -
In <1 Pg) F, = 1 In < p> .
Pe 2 p

5.6 Probability propagation decoding

the fields are

b —

In Chapters 3 and 4 we derived probability propagation equations firstly by assuming a set of factori-
sation properties and writing a closed set of equations that allowed the iterative computation of the
(approximate) marginal posterior and secondly by computing local magnetisations on the interior of a
Husimi cactus (Bethe approximation). The two methods are equivalent as the factorisation properties
assumed in the former are encoded in the geometry of the lattice assumed in the second derivation.
Here we use the insights provided in the last chapters to directly build a decoding algorithm for MN
codes. Irom the replica symmetric free-energy (5.29) we can write the following Bethe free-energy:

1

Flm,m) = .].‘...“]2_{#___‘;‘ g“\ In (14 mm) - NZ >;4 In (1 -+ m, m;f7)
r=14EL, (1) H=gELy ()
_—}“‘m T I mi 1] miy
p=1 €L (1) JEL ()
IR
”ﬁ Eln el H (1 + mm) e P H (1 - mfn)
i=1 BEM, (3) REM, (i)

M
1 : -F .
——NE In |ef H (L+mpn) +e ™ H (1= (5.33)
J=1

HEM. (5) REM (J)

The variables mj; (m);) are cavity effective magnetisations of signal (noise) bits interacting

through the coupling p, obtained by removing one of the C' couplings in M,(j) (M,(3)) from the

M) correspond to effective magnetisations of signal (noise) bits due to

X
system. The variables m;,; ( i

the coupling p only.

The decoding solutions are fixed points of the free-energy (5.33) given by :

; m )

o0F(m,m) _, ortmm) (5.34)
anLZj am

0F(m,m) _ Qﬂigﬂl ~0 (5.35)
amy,; oy,

The solutions for the above equations are the equations heing solved by the probability propagation

decoding algorithm:

my,; = tanh Z atanh(m®)) + F, sy = J, ]T Il iy, (5.36)
vEM,(H\n ] €L, (p)\J !ccn(u)
. s ~ — . e
mfy, = tanh L atanh(m?) + F, ml =T, “’ me, II m. (5.47)
vEMa (D\h i el () feL, (g
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The estimate for the message is {; = sgn(mj), where m} is the local magnetisation due to all

couplings linked to the site j can be computed as:

m; = tanh Z atanh(m,,) + Fy (5.38)
veM,(7)

One possibility for a decoding dynamics is to update Egs. (5.36) and (5.37) until a certain halting
criteria is reached, and then computing the estimate for the message using equation (5.38). The
initial conditions are set to reflect the prior knowledge about the message 77’Lftj(0) = 1 - 2p; and noise
miy(0) =1~ 2p.

As the prior information is fairly limited, a polynomial time decoding algorithm (like PP) will
work only if the solution is unique or the initial conditions are inside the correct basin of attraction.
In this case the 2(NK + M (') equations (5.34) only need to be iterated a (1) number of times to get
a successful decoding. In other hand, when there are many solutions, it is possible to obtain improved
decoding in exponential time by choosing random initial conditions and comparing [ree-energies of
the solutions obtained, selecting a global minimum.

Observe that the free-energy described here is not equivalent to the variational mean-field free-
energy introduced in [Mac95, Mac39]. Here no essential correlations except those related to he
presence af loops are disregarded.

In the next section we will analyse the landscape of the veplica symmetric lree-energy for three

families of parameters and will be able to predict the practical performance of a PP decoding algorithm.

5.7 Equilibrium results and décoding performance

The saddle-point equations (5.30) can be solved by using Monte-Carlo integration iteratively. In
this section we show, that in terms of the typical performance, MN codes can be divided into three
parameter groups: K >3 (or L > 3) and K > 1, K =2 and L = 2 and K = 1. We, therefore, treat

each these cases separately in the following.

5.7.1 Analytical solution: the case of K >3 or L > 3 and K > 1

Replica symmetric results for the cases of K > 3 or L > 3, K > 1 can he obtained analytically,
therefore we focus first on this simple case. For unbiased messages (F, = 0), we can easily verily that

the ferromagnetic state, characterised by p = 1, and the probability distributions
m(z) = d(z ~ 1), 7(7) = 8(F — 1), dly) =8y~ 1), (7)) = 6(7 ~ 1) ; (5.36)

and the paramagnetic state of p = 0 with the probability distributions

n(z) = &(x), 7(7) = 6(3), B(7) = (D), (£.40)
I+ tanh(F,) . 1= tanh(F, __
py) = I ) ¢ LRI S e,
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satisfy replica symmetric saddle-point equations (5.30). Other solutions could be obtained numerically.
To check for that, we represented the distributions with histograms of 20000 bins and iterated Eqs.
(5.30) 100 — 500 times with 2 x 10° Monte-Carlo sampling steps for each iteration. No solutions other
than ferromagnetic and paramagnetic have been observed.

The thermodynamically dominant state is found by evaluating the free-energy of the two solutions

using Eq. (5.29), which yields

C A
frERRO = % Iy tanh(F,), (5.41)
for the ferromagnetic solution and
C C .
frara = 72 102 =10 2= = In (2 cosh(I7)), (5.42)

for the paramagnetic solution.
Migure 5.1(a) describes schematically the nature of the solutions for this case, in terms of the
replica symmetric free-energy and overlap obtained, for various noise levels p and unhiased messages

pe = 1/2. The coexistence line in the code rate versus noise level is given by

In2 .
femrno = feana = 5= (e = 1+ Ha(p)] = 0. (6.43)

This can be rewritten as
R, =1- Hy(p) = 1+ plogy(p) + (1 — p) log, (1 - p), (5.44)

which coincides with Shannon’s channel capacity and is represented in Fig. 5.2(a) together with the
overlap p as a function of the noise level p.

Equation (5.44) seems to indicate that all constructions with either K > 3 or L > 3 (and K > 1)
might attain error-free data transmission for £ < R, in the limit where both message and codeword
lengths N and M become infinite, thus saturating Shannon’s bound. However, as it is described in
Fig. 5.1(a), the paramagnetic state is also stable for any noise level what has dynamical implications
if a replica symmetric free-energy is to be used for decoding (as is the case in probability propagation
decoding).

To validate the solutions obtained we have to make sure that the entropy is positive. The entropies
can be computed by simply plugging distributions (5.39) and ( 5.41) into Eq. (5.32). The energy
densities for the unbiased case are u = upapnas = urgrpo = ~a F, (1 — 2p), since the Nishimori
condition is employed (see Appendix C.3). The ferromagnetic entropies are sppano = u—freppo = 0

and

spARA = U~ fPARA
] 1

C N C
~a Fy (1 - 2p) — W In 2+ 1n 2+ I In (2 cosh(Fy)) . (R.45)

i

It can be seen by using a simple argument that spapa s negative helow p.. For p < pg, fpana >

JrERRo and U = SPARA > U~ SFERRO -

»

-3
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This indicates that the distribution (5.41) is non-physical below p., despite being a solution of
replica symmetric saddle-point equations. This result seems to indicate that the replica symmetric
free-energy do not provide the right description below p.. A simple alternative is to use a frozen spins
solution as the formulation of a theory with replica symmetry breaking for highly diluted systems is
a difficult task (see, for example, [WS88, Mon98b]).

Nevertheless, the practical performance of the probability propagation decoding is described by
the replica symmetric theory, the presence of paramagnetic stable states implies the failure of PP
decoding at any noise level. Moreover, even without knowing the correct physics helow p,, it is
possible in this case use an exhaustive search of the global minimum of the free-energy in Section 5.6

to attain Shannon’s bound in exponential time.

57.2 Thecaseof K =2 and L =2

All codes with either X' = 3 or L = 3, K > 1 potentially saturate Shannon’s hound and are char-
acterised by a first order phase transition between the ferromagnetic and paramagnetic solutions.
Solutions for the case with K = L = 2 can be obtained numerically, yielding significantly different
physical behaviour as shown in Fig.5.1(h).

At very large noise levels, the paramagnetic solution (5.41) gives the unique extremum of the
free-energy until the noise level reaches p;, at which the ferromagnetic solution (5.39) of higher free-
energy becomes locally stable. As the noise level decreases to pe the paramagnetic solution becomes
unstable and a sub-optimal ferromagnetic solution and its mirror image emerge. Those solutions
have lower free-energy than the ferromagnetic solution until the noise level reaches p;. Below pj,
the ferromagnetic solution becomes the global minimum of the free-energy, while the sub-optimal
ferromagnetic solutions remain locally stable. However, the sub-optimal solutions disappear at the
spinodal noise level p, and the ferromagnetic solution (and its mirror image) becomes the unique
stable solution of the saddle-point Egs.(5.30).

The analysis implies that ps, the critical noise level below which the ferromagnetic solution becomes
thermodynamically dominant, is lower than p, = H; ' (1~ R) which corresponds to Shannon’s bound.
Namely, X = L = 2 does not saturate Shannon’s bound in contrast to K > 3 codes even if decoded in
exponential time. Nevertheless, il turns out that the free-energy landscape, with an unique minimum
for noise levels 0 < p < py, offers significant advantages in the decoding dynamics comparing to that
of codes with K > 3 or L > 3, K > 1, allowing the successful use of the polynamial time prabahility

propagation decoding.

5.7.3 The case of K =1 and general L

The choice of K =1, independently of the value chosen for L, exhibits a different hehaviour presented

schematically in Fig.5.1(c); also in this case there are no simple analytical solutions and all solutions in

this scenario but the ferromagnetic one have been obtained numerically. The first. important difference
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Figure 5.1: Figures in the left side show schematic representations free-energy landscapes while figures
on the right show overlaps p a function of the noise level p; thiclk and thin lines denote stable solutions
of lower and higher free energies respectively, dashed lines correspond to unstable golutions. (a) K > 3
or L > 3, K > 1. The solid line in the horizontal axis represents the phase where the (erromagnetic
solution (I, p = 1) is thermodynamically dominant. The paramagnetic solution (P, p = 0) becomes
dominant at p., that coincides with the channel capacity. (b) K = 2 and L = 2; the ferromagnetic
solution and its mirror image are the only minima of the free-energy up to p, (solid line). Above p,
sub-optimal ferromagnetic solutions (I, p < 1) emerge. The thermodynamic transition occurs at py
is below the maximum noise level given by the channel capacity, which implies that these codes do
not saturate Shannon’s bound even if optimally decoded. (¢) K = I; the solid line in the horizonial
axis represents the range of noise levels where the ferromagnetic state (F) is the only minimum of the
[ree-energy. The sub-optimal ferromagnetic state (') appears in the region represented hy the dashed
line. The dynamical transition is denoted by p,, where [ first appears. For higher noise levels, the
system becomes bistable and an additional unstable solution for the saddle paint equations necessarily
appears. The thermodynamic transition occurs at the noise level p; where I hecames dominant.
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R H(fs)

GH‘E

Figure 5.2: Transition lines in the plane rate R versus the flip rate p, obtained from numerical solutions
and the TAP approach (N = 10%), and averaged over 10 different initial conditions with error bars
much smaller than the symbols size. (a) Numerical solutions for K = L =3, C =6 and varying input
bias f, (O) and TAP solutions for both unbiased (4) and biased (©) messages; initial conditions were
chosen close to the analytical ones. The critical rate is multiplied by the source information content
to obtain the maximal information transmission rate, which clearly does not go beyond R =3/6 in
the case of biased messages; for unbiased patterns Hy(f,)=1. (b) For the unbiased case of K =L =12:
initial conditions for the TAP (+4) and the numerical solutions (C) were chosen ta he of almost zern
magnetisation. (c) For the case of K = 1, L = 2 and unbiased messages. We show numerical solutions
of the analytical equations (O) and those ohbtained by the TAP approach (+). The dashed line
indicates the performance of K = L = 2 codes for comparison. Codes with X =1, L = 2 outperfarm
K = L =2 for code rates R < 1/3.
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Figure §.3: Number teqny of iterations needed for convergence of the probability propagation algorithm
versus noise level p. The system size is N = 5000, rate R = 1/5, K = 2 codes are represented by black
triangles while K =1 codes are represented by white squares. averages are over 2 random codes and
10 runs for each code.

to be noted is that the paramagnetic state (5.41) is no langer a solution of the saddle-point equatinng
(5.30) and is being replaced by a sub-optimal ferromagnetic state, very much like Gallager codes.
Convergence to p = 1 solution can only be guaranteed for noise levels p < p, , where anly the
ferromagnetic solution is present.

The K = 1 codes do not saturate Shannon’s bound in practice, however, we have found that at
rates B < 1/3 they outperform the K = L = 2 code (see Fig. 5.2) while offering improved decoding
times when probability propagation is used (Fig. 5.3). Studying the replica symmetric free-energy in
this case shows that as the corruption rate increases, sub-optimal ferromagnetic solutions (stable and
unstable) emerge at the spinodal point p,. When the noise increases further this sub-optimal state
becomes the global minimum at p;, dominating the system’s thermodynamics. The transition at p,
must occur at noise levels lower or equal to the value predicted by Shannon’s bound.

In Fig.5.4 we show [ree-energy values computed for a given code rate and several values of L,
pointing Shannon’s bound by a dashed line; the thermodynamic transition abserved numerically (i.e.
the point where the ferromagnetic free-energy equals the sub-optimal ferromagnetic free-energy) coin-
cides with Shannon’s bound within the numerical precision used. Spinodal noise levels are indicated
by arrows. In Fig. 5.5 we show spinodal noise levels as a function of L as predicted by the replica
symmetric theory (circles) and obtained by running PP decading of codes with size 10%. The optimal
parameter choice is L = 2.

Due to the simplicity of the saddle-point equations (5.30) we can deduce the asymptotic hehaviour
of K =1 and L = 2 codes for small rates (large C') by computing the two first commulants of the
distributions w, 7, ¢ and (:/; (Gaussian approximation). A decoding failure correspands to (h) ~ (1)

and o} ~ O(1). It implies that (z) ~ O(1/C) and oz ~ O(1/C). For that y must he small and we
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[Pigure 5.4: I'ree-energies obtained by solving the analytical equations using Monte-Carlo integrations
for i = 1, B = 1/6 and several values of L. Tull lines represent the ferromagnetic free-energy
(FERRO, higher on the right) and the suboptimal ferromagnetic [ree-energy (higher on the lsft) for
values of I = 1,...,7. The dashed line indicates Shannon’s bound and the arrows represent the

spinodal point values p; for L = 2,...,7. The thermodynamic transition coincides with Shannon’s
bound.
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Figure 5.5: Spinodal point noise level p, for X = 1, & = 1/6 and several choices of L. Numerical
golutions are denoted by eircles and PP decading solutions (10 runs with size N = 10%) hy hiack
triangles. Symbols are larger than the error bars.
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Figure 5.6: Asymptotic behaviour of the transition for small rates. The (ull line represents Shan-
non’s bound, circles represent transitions obtained by using only the first cammulants and squares
correspond to the Gaussian approximation.

can use atanh(tanh(y;)tanh(ys)) ~ y1y2 and write

() ~ O1) ¢i~00) (6.46)
@ =~ (y° (5.47)
oz =~ () - (y)* (5.48)
) = @ + (1-2p)F, o) =02+ Af(1L - p)F? (5.49)
() =~ (tanh(z))(y) (5.50)
o2 ~ (tanh®(z))(y*) — (tanh(z))*(y)? (5.51)

To simplify further we can assume that p — 0.5. Therefore F}, =~ (1 —2p) . The critical observation
is that in order to have (h) ~ O(1) we need that & ~ O(1/C) and consequently () ~ O(1/VC).
Manipulating the set of equations above :

() ~ (tanha)(y) + (1 - 2f)?
By imposing the condition over (y):C /2 ~ (1 — 2p)?(1 — (tanhz))~!

In terms of the code rate R = 1/C"

1 —2p)t
U Gl (5.52)
(1 — (tanhz))?
The asymptotic behaviour of the Shannon bound is given by :
(1 -2p)? I
R~ = i L. (t).()x.i)

Thus, the K = 1 and L = 2 codes are not asymptotically optimal. In Fig. 5.6 we verily (5.52) hy
iterating equations for first cummulants (delta approximation) and hy first and second enmmiulanis

(GGaussian approximation).
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Figure 5.7: (a) Overlap as a function of the noise level p for codes with K = L = 3 and C = 15 with
message bias p; = 0.3. Analytical RS solutions for the regular code are denoted as © and for the
irregular code; with C, = 4 and C, = 30 denoted as [1. Results are averages over 10 runs of the PP
algorithim in an irregular code of size N = 6000 starting from fixed initial conditions (see the text) ;
they are plotted as e in the rightmost curve for comparison. PP results for the regular case agree with
the theoretical solutions and have been omitted to avoid overloading the figure. (b) Iree-energies for
the ferromagnetic state (full line) and for the failure state (line with o). The transitions ohserved in
(a) are indicated by the dashed lines. Arrows indicate the thermodynamic (T) iransition, the upper
bound (u.b.) of Section 5.3 and Shannon’s limit.

5.8 Error-correction: regular vs. irregular codes

Irregularity can improve the practical performance of MN codes. This fact has been already reported
in the information theory literature (see for example [Dav99, Dav98, LMSS98]). Here we analyse this
problem by using the language and tools of statistical physics. We now use the simplest irregular
constructions as an illustration, to say, the connectivities of the signal matrix C, are described by a

simple bimodal probability distribution:

Pe(C) = (1 - 0) 6(C ~ Cy) + 66(C ~C.). (5.54)

The mean connectivity is C = (1-68)C, + 0 C, and C, < C < C,; hitsina group with connectivity
C, will be referred as ordinary bits and bits in a group with connectivity C, as elite bits. The noise
matrix C,, is chosen to be regular.

To gain some insight on the effect of irregularity on solving the PP equations (5.36) and (5.37) we
performed several runs starting from the fixed initial conditions m;,;(0) = 1 —2p¢ and 'm/’j,(()) = ] -4p
as prescribed in the last section. [For comparison we also iterated the saddle-point equations (5.30)
obtained in the replica symmetric (RS) theory, setting the initial conditions to be mo(z) = (1 -
p) 6y = my(0)) + pdly + mj(0), as

suggested from the interpretation of the fields n(z) and p(y) in the last section.

pai) 8(z — m;(0)) + pgi 6(z + my;(0)) and po(y) = (1 -

In Fig. 5.7 (a) we show a typical curve for the overlap p as a function of the noise leval p. The

(a2

RS theory agrees very well with PP decoding results. The addition of irregularity improves the per-
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Figure 5.8: Overlap monitored during the PP decoding process as a function of the number ol iterations

for N = 4000. Ilite nodes overlap is represented by A. Ordinary nodes overlap is represented by
' , I i \ , » I l

V- The overall overlap is represented by ©. The long dashed line shows the dynamics of the regular

noise level is p = 0.065 and the message bias is p; = 0.3.

formance considerably. In Fig. 5.7 (b) we show the free-energies of the two emerging states. The
free-energy for the ferromagnetic state with averlap p = 1 is shown as a full line, the failure suhop-
timal ferromagnetic state (in Fig. 5.7 (a) with overlap p = 0.4) is shown as a line marked with o.
The transitions seen in Fig. 5.7(a) are denoted by dashed lines. It is clear that they are far below
the thermodynamic (T) transition, indicating that the system becomes trapped in suboptimal ferro-
magnetic states for noise levels p between the observed transitions and the thermodynamic transition.
The thermodynamic transition coincides with the upper bound (u.h.) in Section 5.3 and is very close
to, but below, Shannon’s limit which is shown for comparison. Similar hehaviour was observed in

regular MN codes with K =1 in Section 5.7.3.

It is instructive to look how the overlap of elite (m,) and ordinary (m,) nodes evolve throughout
the iterative decoding process. In Fig. 5.8 we show this dynamics for a regular and an irregular code
at a noise level where the irregular code converges to the ferromagnetic state while the regular code
fails (long-dashed lines). One can see that the overlap of ordinary nodes follow that of the regular code
in the first iterations, elite nodes are then corrected quickly achieving high overlaps. These highly
reliable nodes then lead the correction of ordinary nodes, producing successful decoding. Fram the
decoding dynamics point of view the typical performance of irregular MN codes can be qualitatively
regarded as a mixture of low and highly connected regular codes where elite nodes can tolerate higher

noise levels while ordinary nodes allow for higher code rates.
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5.9 The spinodal noise level

In the last section we gained some insight into how irregularity affects the practical performance of
codes. The dynamical decoding process shown in Figure 5.8 only provides a qualitative explanation
and does not seem to allow some simple analysis.

A possible alternative is to relate the observation that the system gets trapped in suboptimal
states to global properties of the free-energy. The PP algorithm can be regarded as an iterative
solution of fixed point equations for the free-energy (5.33), which is sensitive to the presence of local
minima in the system. One can expect convergence to the global minimum of the free-energy from all
initial conditions when there is a single minimum or when the landscape is dominated by the basin of
attraction of this minimum when random initial conditions are used.

To analyse this point we rerun the decoding experiments starting from initial conditions 'mf‘j(ﬂ)

and m},(0) that are random perturbations of the ferromagnetic solution drawn from the following

distributions:

P (m?,;(0)) = (1~ A,) 6(my; (0) — &) -+ Ay 8(m};(0) -+ &) (5.65)
and

P (m(0) = (1-A,) 6(mp(0) = 71) + An 8(m](0) + ), (5.56)

where for convenience we choose 0 < Ay = A,, = A < 0.5.

We performed PP decoding several times for different values of A and noise level p. For A < 0.026
we observed that the system converges to the ferromagnetic state for all constructions, message biases
pe and noise levels p examined. It implies that this state is always stable. The convergence occurs for
any A for noise levels below the transition observed in practice.

These observations suggest that the ferromagnetic basin of attraction dominates the landscape
up to some noise level p,. The fact that no other solution is ever observed in this region suggests
that p; is the noise level where suboptimal solutions actually appear, namely, it is the noise level that
corresponds to the appearance of spinodal points in the free-energy. This behaviour have already heen
observed for regular MN codes with K = 1 or K = L = 2 in Sections 5.7.3 and 5.7.2.

We have shown that MN codes can be divided into three categories with different equilibrium
properties: (i) ' > 3 or L > 3, (ii) K > 1, K = L = 2 and (iil) general L, K = 1. In the next two

subsections we will discuss these cases separately.

5.9.1 DBiased messages: K >3 or L >3

To show how irregularity affects codes with this choice of parameters we choose K, L = &, {J, = 4,
€ = 30 and biased messages with p¢ = 0.3. These choices are arbitrary but illugtrate what happens
with the practical decoding performance. In ['ig. 5.9 we show the transition (rom the decoding phase

10 the failure phase as a function of the noise level p for several rates 1 in both regular and irregilar
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Pigure 5.9: Spinodal noise level p, for regular and irregular codes. In both constructions paraimeters
are set as K = L = 3. Irregular codes with €, = 4 and C, = 30 are used. PP decoding is carried out
with N = 5000 and a maximum of 500 iterations; they are denoted by -+ (regular) and * (irregular).
Numerical solutions for the RS saddle-point equations are denoted by O (rvegular) and o (irregular).
Shannon’s limit is representied by a full line and the upper bound of Section 5.3 is represented by a
dashed line. The symbols are chosen to be larger than the actual error bars.
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Figure 5.10: Spinodal noise level p, for irregular codes as a function of the message bias p,. The
construction is parameterised by K = L = 3, C, = 4 and C, = 30 with C' = 5. PP decoding is
carried out with N = 5000 and a maximum of 500 iterations, and is represented hy -+, while theoraiical
RS solutions are represented by ©. The full line indicates Shannon’s limit. Symbals are larger than
the actual error bars
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Figure 5.11: Pictorial representation of the free-energy landscape for codes with K > 3 or L > §,
K > 1 and biased messages p; < 0.5 as a function of the noise level p. Up to the spinodal naise
level p, there is only the ferromagnetic state I'. At p; another state I appears , dominating the
decoding dynamics. The critical noise level p, indicates the point where the state # becomes the
global minimum (thermodynamic transition).

cades. Practical decoding (O an o) results are obtained for systems of size N = 5000 with a maximum
number of iterations set to 500. Random initial conditions are chosen and the whale process repeated
20 times. The practical transition point is found when the number of failures equals the number of
§UCCesses.

These experiments were compared with the theoretical values for p, obtained by solving the RS
saddle-point equations (5.30) (represented as + and * in Fig. 5.9) and finding the noise level for which
a second solution appears. For comparison the coding limit is represented in the same figure by a full
line.

As the constructions used are chosen arbitrarily one can expect that these transitions can be
further improved, even though the improvement shown in Figure 5.9 is already fairly significant.

The analytical solution obtained in Section 5.7.1, for K > 3 or L > 3, K > 1 and unbiased
messages p¢ = 1/2, implies that the system is bistable for arbitrary code constructions when these
parameters are chosen. The spinodal noise level is then p, = 0 in this case and cannot be improved hy
adding irregularity to the construction. Up to the noise level p, the ferromagnetic solution is the global
minimum of the free-energy, and therefore Shannon’s limit is achievable in exponential time, however,
the bistability makes these constructions unsuitable for practical decoding with a PP algorithm when
unbiased messages are considered.

The situation improves when biased messages are used. TFixing the matrices C,, and C, ons
can determine how the spinadal noise level p, depends on the bias pe. In Pigure 5.10 we compare
simulation results with the theoretical predictions of p, as a function of pe. The spinodal noise level
ps collapses to zero as pg increases towards the unbiased case. It ohviously suggests the use of hiased
messages for practical use of MN codes with parameters K > 3 or L > 3, I > 1 under PP decading.

For biased messages with I’ > 3 or L > 3, K > | the qualitative picture of the energy landscaps

differs from the unbiased coding presented in Section 5.7.1. In Fig. 6.11 this landscape is skeiched
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Figure 5.12: Spinodal noise level p, for regular and irregular codes. The constructions are of & =1
and L = 2, irregular codes are parameterised by C, = 4 and C, = 10. PP decoding is carvied out
with N = 5000 and a maximum of 500 iterations ; they are denoted by + (vegular) and # (irvegular).
Numerical solutions for RS equations are denoted by O (vegular) and o (irregular). The coding limit
is represented by a line. Symbaols are larger than the actual ervor bars.

as a function of the noise level p for a given bias. Up to the spinodal noise level p, the landscaps ia
totally dominated by the ferromagnetic state F'. At the spinodal noise level another suhoptimal state
F' emerges, dominating the decoding dynamics. At p. the suboptimal state F' becomes the global
minimum. The bold horizontal line represents the region where the ferromagnetic solution with p =1
dominates the decoding dynamics. In the region represented by the dashed line decoding dynamics is

dominated by suboptimal ferromagnetic p < 1 solutions.

5.9.2 TUnbiased messages

For the remaining parameter choices, namely general L, K = 1 and K = L = 2, it was shown in
Sections 5.7.2 and 5.7.3 that unbiased coding is generally possible yielding close to Shannon’s limit
performance.

In the same way as in the K > 3 case the practical performance is defined by the spinodal noise
level ps. The addition of irregularity also changes p, in these cases.

In the general L, K = 1 family we illustrate the effect of irregularity by the choiceof L = 2, =4
and C, = 10. In Fig. 5.12 we show the transitions obsgerved by performing 20 decoding experiments
with messages of length N = 5000 and a maximal number of iterations set to 500 (< for reguiar and
 for irregular). We compare the experimental results with theoretical predictions based on the RS
saddle-point equations (5.30) (< for regular and o for irregular). Shannon’s limit is represented by a
full line. The improvement is modest, as expected, since regular codes already present close to aptimal

performance. Discrepancies between the theoretical and numerical results are due ta finite size sffocts.
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[figure 5.13: Spinodal noise level values py for regular and irregular codes. Constructions are of K = 2
and L = 2, irregular codes are parameterised by C, = 3 and C. = 8. PP decoding is carvied oul
with N = 5000 and a maximum of 500 iterations; they are denoted by - (vegular) and * (irregular).
Theoretical predictions are denoted by & (regular) and o (irregular). The coding limit is represented

by a line. Symbols are larger than the actual error bars.

system gize N = 5000 and maximal number of decoding iterations 500. The transitions oliained

experimentally and predicted by theory are shown in Fig. 5.13.

5.10 Conclusion

We mapped a general irregular MN codes onto a multi-spins systems and employed the replica theory to
compute their typical performance. We divided the codes in terms of performance to three categories:
(i) K>2o0r L>2, K >1;(ii) K=1L=2and (iii) X = 1. For unbiased messages (p¢), we obtained
an analytical replica symmetric solution for the first case, showing that the thermodynamic transition
coincides with the channel capacity and with an information theoretic upper bound. For the second
case, we obtained numerical solutions and a transition below the information theoretic upper bound.
For K = 1 codes we numerically obtained a transition that coincides with the channel capacity within
the numerical precision used.

The probability propagation algorithm was linked directly to the replica symmetric free-energy.
We discussed the connection between the noise level where spinodal points emerge in the fres-energy
(ps) and the performance of PP decoding. We showed that, since unbiased K > 2 or L > 2, I{ > 1
codes have a bistable free-energy, only K = L = 2 and K = 1 are suitable for PP decoding, unless
hiased messages are used. K =1 codes were shown to attain hetter decoding times.

We also introduced simple irregular constructions, we analysed each one of the three parameter

groups, discussing the practical use of hiased messages with K > 2 or L > 2, K > | and of unhiaged
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messages with the other two groups. We showed that irregularity changes the free-energy global

topology and can easily improve the practical performance threshold p;.
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Chapter 6

Kanter-Saad Codes

In this chapler we obtain a stalistical description for the lypical PP decoding process of the codes
presented by Kanler and Saad, a variation of MN codes. We use this description lo oplimnise Lhe

construction of a simple Kanter-Saad code.

6.1 Introduction

Kanter and Saad (KS) recently proposed a variation of MN codes thal has heen shown Lo he capable
of attaining close to channel capacity performance and outperforming Turbo codes [K599b, KS00b,
KS00a]. The central idea is to explore the superior dynamical properties (i.g. large basin of attraction)
of MN codes with K = 1,2 and the potential for attaining channel capacity of MN codes with
K > 2 by introducing constructions with intermediate properties. This is done by employing irregular
constructions like the one depicted in Fig. 6.2, with the number of non-zero elements per row set to
several different values Ky, -+, K,,.

In Fig. 6.1 we show a performance comparigson (presented in [KS00b]) of Turbo, XS and Gallager
codes with optimised irregular constructions [RSU99] for a memoryless Gaussian channel . The bit
error probability p, is plotted against the signal to noise ratio in decibels (10 log,,(S/N)) for codes
of sizes N = 1000 and N = 10000.

The introduction of multi-spin interactions of several different orders and of more structured ma-
trices makes the statistical physics of the problem harder to solve. In this chapter we, therefore,
adopt a different approach. We first write the probability propagation equations and find an appro-
priate macroseopic description of them in terms of field distributions. We then solve saddle-paint like
equations for the fleld distributions to find the typical performance.

This chapter is organised as follows. Section 6.2 presents the KS constructions in detail. Tn Section
fi.3 a macroscopic description for the decoding process in terms of field distributions is provided. In
Section 6.4 we use the macroscopic description to optimise a simple KS construction. Conclusions

are provided in Section 6.5. An appendix on the use of cumulant expansions for aptimisation is alan
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represent KS codes, dashed lines represent Turbo codes and dotied lines represent aptimised irregular

Gallager codes of similar sizes. This figure was extracted from [IK500b]

provided.

6.2 KS codes

KS codes are specific constructions of MN codes. The signal matrix Cy is defined by m random sub-
matrices with Ky, K, -, K, non-zero elements per row respectively. The matrix C,, is composed

(2)

by two sub-matrices: Cnf;) =6ij + bijra and Cpjy’ = 6; 5. The inverse C 7' used in the encoding
process is easily obtainable. In Fig. 6.2 we represent a KS code with three signal sub-matrices, the
non-zero elements in the noise matrix C,, are denoted by lines, we also represent the inverse of the
noise matrix C71.

The signal matrix C, is subdivided onto M; x N sub-matrices, with j = 1,.-- ,m. The tatal
number of non-zero elements is given by N C = 331 M; K; what yields C' = 5" a; K, where
a; = M;/N. The code construction is, therefore, parametrised by the set {(ay, ;) }. If we fix {K;},
the parameters {a,} completely specify the construction. A further constraint to the parameters set
{a;} is provided by the choice of a code rate, as the inverse code rate is & = M /N = Z:":] Q.

Encoding and decoding using KS codes are performed in exactly the same fashion as described in

Section 5.2 for MN codes. A binary vector ¢ € {0, 1}* defined by
i = GE (mod 2), (6.1)

is produced, where all operations are performed in the field {0,1} and are indicated hy (mad 2). The
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Figure 6.2: KS construction with three signal sub-matrices with K, K3 and K3 non-zero elements per
row, respectively. The number of non-zero elements per column is kept fixed to C'. The noise matrix
., is composed by two sub-matrices, the non-zero elements are denoted by lines. The inverse C';;j
is also represented.
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code rate is R = N/M. The generator matrix G is a M x N dense matrix defined by
G =C'C, (mod 2). (6.2)

The transmitted vector r is then corrupted by noise. Assuming a memoryless binary symmetric
channel (BSC), noise is represented by a binary vector ¢ € {0, 1} with components independently

drawn from the distribution P(¢) = (1 — p) 6(¢) +p §(¢ = 1).

The received vector is
r = GE&+ ( (mod 2). (6.3)
Decoding is performed by computing the syndrome vector
z = Chr = C,€ + Cr¢ (mod 2), (6.4)

from which an estimate £ for the message can be obtained.

6.3 Typical PP decoding and saddle-point like equations

In this section we show how a statistical description for the typical PP decoding can be construct-
ed without using replica calculations. To keep the analysis as simple as passible we exemplify the
procedure with a KS code with two signal matrices denoted 1s and 2Zs and two noise sub-malrices
denoted in and 2n. The channel is chosen 1o be a memoryless hinary symmeiric channel (B8CG). The
number of non-zero elements per row is K; and K5, respectively, and the inverse rate is & = a; + as.
Therefore, for a fixed code rate, the code construction is specified by a single parameter a;. We
represent a code in this family in Fig.6.3.

The PP decoding dynamics for these codes is described by Eqs.(5.37). However, due to the irreg-
ular character of the construction, sites inside each one of the sub-matrices are connected differently.
Reminding the statistical physics formulation of MN codes presented in Section 5.4, non-zero row
elements in the matrices depicted in Fig.6.3 correspond to sites taking part in one multi-spin inter-
action. Therefore, signal sites in the sub-matrix 1s interact with other K — 1 signal sites in 1s and
exactly two noise sites in 1n. Moreover, the same site takes part in other oy Ky + ay Ky — 1 multi-spin
couplings in both 1s and 2s. Sites in sub-matrix 2s interact with one noise site in Zn and Ky — 1
signal sites in 28, taking part in other oy K7 + ap Ky — 1 multi-spin interaction. Noise sites in the
sub-matrix 1n interact with another noise site and with Ky signal sites in 1g. Finally, noise sites in

2n interact with K3 sites in 2s. Thus, the Hamiltonian for a KS code takes the following form:

M, M M N
i u . 1 ~ % f 1 f al nl -
Ho= -y ?J(‘Zz 511 e "Si;g1 TuTu+n — l) - E (»711 '-()i) ""Si.‘(g Ty — ]) - I, % T F 54 rgjs
=1 == Myl I=1 7=1

(6.5)
where J, = &, - iy, QuCuiay for p=1,- My and Ty = &, Ly, G for o= My 4+ 1, | M.
Additionally, the Nishimori condition requires that v — co, I, = atanh(1 - 2p¢) and F, = atanh(l ~

2p), where the prior probabilities are defined as in the previous chapters,
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is

28

Figure 6.3: K8 code with two signal matrices with parameters K; and Ky. Note that noise sites inside
the shaded regions take part in a different number of interactions than the ordinary sites.

We can write PP decoding equations for each one of the sub-matrices s, 28, Tw and 2. The
shaded regions in Fig. 6.3 have to be described by different equations, but can be disregard if the
width A is of O(1), implying A/N — 0 for N — co.

ffor the sub-matrix 1s we have:

m‘(}js) = tanh Z atanh(fﬁf,l;))+ z atanh(ﬁ%f?js)) + I (6.6)
vEMi, (G)\n vEMa,(j)
~ (1 1 (1s
7n§1j5) = ‘7/‘ Tn'l(lll?)m/(u:i&)»A H m}i!")’ (67)
LELy, (p)\J

where the second equation represents interactions with two noise sites and and Ky — 1 signal sites.
The first equation represents the oy K7 + a3 K5 — 1 multi-spin interactions the gite j belongs to.

Similarly, for the sub-matrix 2s we have:

mfjs) = tanh Z atanh(ﬁLf,]ja))+ Z a.mn}‘x(ﬁf;,fz”)) + Iy (6.8)
VEMi1,(5) vEMz, (G)\v
Al = Zum [T mlY (6.9)

te Lo (p)\d

For the sub-matrix In we have:

A0 () .

m,; = tanh {at(xnh(m”j )+ Ifﬂ] (.10)

~ {1 {1 . (13 .

"”mn) = Ju m“im II m“f), (6.11)
IEL ()

where either j =, i =p+Aorj=p+A 1= pu
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Finally, for sub-matrix 2n we have:

mff”) = tanh[F,] (6.12)

=~ (2n 2s

e = g [ md (6.13)
Ieﬁh(p)

The pseudo-posterior and decoded message are given by :

m; = tanh | S atanh(@Y)+ ST atanh(im) (6.14)
vEM1:(j) vEMa,(j)

sgn(m;). (6.15)

3

The above equations provide a microscopic description for the PP decoding process, we can pro-
duce a macroscopic description for the typical decoding process by writing equations for probahility
distributions related to the dynamical variables. It is important to stress that the equations describing
the PP decoding are entirely deterministic when couplings J,, and initial conditions are given. The
randommness comes into the problem when quenched averages over messages, noise and constructions
are introduced.

By performing the gauge transformation

(as)

- (as) .
my o Emys mf,, ~ g,m“”f’ (6.16)
___{an) . - _{an) A(clﬂ) ~ (u?) .
“’l/lj ...... 4 CJ l’“/l-j IJ,J ﬁ c] l (0. L /)
Ju = 1 (a=1,2), (6.18)

introducing effective fields z,,; = atanh(m,;), Z,; = atanh(,;) and assuming that = f;j”), ’I‘ﬁ}”, yl([;"),
3753”) arc independently drawn from distributions P, (z), Pu(), Raly), Ra(), respectively, we get the
following saddle-point like equations (for simplicity, we restrict the treatment to the case of unbiased
messages Fy = 0).

For the sub-matrix 1s:

a1 Kp—-1 o Ko @y Ky =1 ay Kg

P (z) = / H d:T‘_, (Z5) H iy Py () 6 |z Z ;- L 1wy (6.19)
=1 = 1=1
Ky ~1 =1
Pi(z) = / H da; Py (z;)dy Ry (g1 )dya Ry (y2) 6 | Z — atanh(tanh(y, )tanh(y2) H tanh
j=1
For 2s
oy Ky ay Ka— o K iy Iy -1 )
Py(z) = / H dz; Pl ;) I—[ diby Py (D)) 6 | o — d @y z w (6.20)
j=t =1 i =1 1=1
~ Kz-1 K21
Py(z) = / I[ de; Po(z)dyRo(y) 6 | Z — atanh(tanh(y) f[ tanh(e;))
j=1 Gzl
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Figure 6.4: Monte-Carlo integration of field distributions and simulations for a KS code with two
signal matrices (K; = 1 and Ky = 3) , @ = 5 (R = 1/5) and «; = 3. Circles: full statistics (4000
bins). Squares: simulations N = 5000

Ffor 1n we have:

R = [ diRG) 6l -7 - (R, (6.21)
R K, K,
Ri(m) = / H dz;Pi(z;)dyR:(y) 6 |T — atanh(tanh(y) H tanh(z;))
J=1 j=1
Finally, for sub-matrix 2n:
Ray) = (6ly — CFal), (6.22)
" I(g [(2
R(y) = / H dz;Py(zj) 6 [T — atanh(H tanh(z;))
vooge=1 j=1
The typical overlap can then be obtained as in the case of MN codes by computing:
po= /dh P(h) sgn(h) (6.23)
N {)11}(1 = x) l{g . (1‘1_[(1 (s3] ](2
P(h) = / [[ @& Pi@;) [] doiPa(@) 6 (h= 5" o5 > w (6.24)
j=1 I=1 j=1 I==1

The numerical solution of these equations provides the typical overlap for KS codes with two signal
matrices parametrised by a; (a2 = a ~ al). In Fig 6.4 we compare results obtained hy solving the

above equations numerically (Monte-Carlo integration with 4000 bins) and PP decading simulations

(10 runs, N = 5000) with R = 1/5 and o

supports the assumptions employed to obtain the saddle-point like equations.

3. The agreement between theory and experiments
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Figure 6.5: Spinodal noise level p, as a function of a; for a KS code with Ky = 1, Ky = 3 and

R = 1/5 (a = 5). Circles: Monte-Carlo integrations of saddle-point equations (4000 bins). Seuares:
PP decoding simulations (10 runs with size N = 5000). The best performance is reached for oy = 3
and is close to the channel capacity for a BSC (indicated by a dashed line).

6.4 Optimising construction parameters

Equations (6.19) to (6.24) can be used to optiniise code constructions within a given family. For the
family introduced in Fig. 6.3 with parameters K, and K fixed the optimisation reduces to finding the
value of ) that produces the highest threshold p,. In Fig. 6.4 we show the threshold (spinodal noise
level) p, for a KS code with K} =1, Ky = 3 and rate R = 1/5 (o = 5). The optimal performance is

obtained by selecting oy = 3 and is very close to the channel capacity.

6.5 Conclusion

We introduced a high performance construction of MN codes named KS codes. A macroscopic de-
scription for the typical PP decoding was obtained by writing saddle-point like equations for effective
fields. Numerical simulations were shown to agree with the theory. We then used the macroscopic
description in terms of effective fields distributions to optimise a single parameter family of KS codes.

The optimised construction was shown to attain close to channel capacity performance in a BSC.
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Chapter 7
Conclusions and Perspectives

7.1 Overview

Tn this thesis we analysed error-correcting codes based on very sparse matrices by mapping them
onto spin systems of the statistical physics. The equivalence between coding concepls and statistical

physics is summarised in the following table.

Coding Theory Statistical Physics

imessage bits s spins &

received bits r multi-spin disordered couplings J (Sourlas)
syndrome bits z multi-spin couplings J (Gallager, MN, K§S)

bit error probability p. | gauged magnetisation p (overlap)

posterior probability Boltzmann weight
MAP estimator ground state
MPM estimator thermal average at Nishimori’s temperature

In the statistical physics framework random parity-check matrices (or generator matrices as in the
case of Sourlas codes), random messages and noise are treated as quenched disorder and the replica
method is employed to compute the {rec-energy. Under the assumption of replica symmetry we found
in most of the cases that two phases emerge: a successful decoding (p = 1) and failure (p < 1) phases.
For MN codes with K = L = 2 three phases emerge representing successful decoding, failure and
catastrophic failure.

The general picture that emerges shows a phase transition between successful and failure states
that coincides with the information theory upper bounds in most cases, the exception being MN codes
with K = L = 2 where the transition is bellow the upper hound.

A careful analysis of replica symmetric quantities reveals unphysical behaviour for low noise levels
with the appearance of negative entropies. This question is resolved in the case of Sourlas codes with

K — oo by the introduction of a simple frozen spins first-step replica symmetry hrealing ansate.
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Despite the difficulties of the replica symmetric theory, threshold noise values observed in simulations
of probability propagation (PP) decoding agree with the noise level where meta-stable states (or
spinodal points) appear in the replica symmetric free-energy.

A mean-field (Bethe) theory based on the use of a tree-like lattice (Husimi cactus) exposes the
relationship between PP decoding and statistical physics and justifies the agreement between theory
and simulations as PP decoding can be reinterpreted as a method for finding local minima of a. Bethe
free-energy. Those minima can be described by distributions of cavity local fields that are solutions
of the replica symmetric saddle-point equations.

The performance of the decoding process with probability propagation can be abtained by looking
at the Bethe free-energy landscape (or the replica symmetric landscape), in this way we can show
thiat information theoretic upper bounds can be attained by looking for glohal minima of the Bethe
free-energy, which may take time that grows exponentially with the system size. In practical time
scales, simple decoding procedures that simply find minima become trapped in meta-stable states.
That is the reason why practical thresholds are linked to the appearance of spinadal poinis in the
Bethe free-energy.

For K8 codes we adopted a different approach for the analysis. Using the insights obiained in the
analysis of the other codes we started by writing down the PP decoding equalions and writing the
Bethe free-energy and the saddle-point like equations for distributions of cavity fields. The transi-
tions predicted by these saddle-point like equations were shown to agree with experiments. We then
employed this procedure to optimise parameters of one simple family of KS codes.

By studying the replica symmetric landscape we classified the various codes by their construction
parameters, we also showed that modifications in code constructions, like the use of irregular con-
structions, can improve the performance by changing the way the free-energy landscape evolves with

the noise level. We summarise the results obtained in the following table.

Channel capacily | Practical decoding of

unbiased messages

Sourlas K — oo K =2

Gallager K- oo any K

MacKay-Neal | K, L > 2 K=1any Lor K =L =%
Kanter-Saad | still unclear K = 1,2 for some j

7.2 Some future directions

A tentative list of possible future research directions and open problems suggested by the research

presented in this thesis is the following:

¢ Optimisation of irregular constructions: Is it possible Lo use statistical physics to aptimise

general irregular constructions from first principles 7
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¢ KS codes and Shannon’s bound: Are KS codes capable of attaining Shannon’s bound in

some region of the parameter space ?

s Enhanced decoding algorithms: Probability propagation decoding is based on a mean-field
approximation that assumes a tree-like lattice; is it possible to design better decoding algorithms

by using methods of statistical physics (e.g. Kikuchi approximations or variational methods) ?

e Calculating the typical probability of block error: The framework presented in this thesis
: N = . .

used the overlap p = ]N )_—_:].21 £;€; between message and estimate as an order parameter. This is

equivalent to calculate the typical probability of bit error as a performance measure. The same
calculation using the typical probability of block error as a performance measure is still an open

problem.

¢ Replica symmetry breaking: The role of replica symmetry breaking is still unclear in the

low noise region. What are the practical implications of breaking the replica aymmetry 7

¢ Phase diagram outside Nishimori’s condition: Most of the calculations in this thesis were
performed using Nishimori’s condition, that is equivalent to consider that real and assumed
parameters (temperature, noise level, message biag) match. It would be interesting to determine
the complete phase diagram by analysing the situation where real and assumed parameters do

not match.

e Replica symmetry breaking and Nishimori’s condition: It has been recently shown that
replica symmetry breaking is not expected to occur over the Nishimori line in the SK model
[NS00, Nis00]. However it is still unclear the same arguments can be extended to the somewhat
pathological models describing Gallager and MN codes. If the argument can be extended, how

to explain the negative entropies emerging in the low noise level region ?

¢ Concatenated K = L = 2 codes: We have demosntrated that MN codes with K = L = 2
are practical but have performance far below ‘Shannon’s bound. s that possible to produce
practical codes with near Shannon’s bound performance by combining two K = L = 2 codes in

a concatenated code as internal and external codes 7

p—
—
-]




Appendix A

Convolutional and Turbo Codes

In this appendix we briefly present convolutional and Turbo codes.

A.1 Convolutional codes

Convolutional codes operate by storing I message bits at a time in a set of shift registers D", D1, ..., D
(I is known as the range) and a number of bits is produced from these I bits. The shifl vegisters are
initialised with D7 = 0. At each time step the content of the registers is updated as DV 1) = DI(1)
for j =1,...,K — 1, the next message bit is then stored in D”. A simple convolutional code with rate

R =1/2 is represented in Figure A.1.

NV O

Figure A.1: Schematic representation of a convolutional code with rate £ = 1/2. At each step four
message bits are stored in the shift register and two bits are produced, the registers are then shifted
to the right and a new message bit is stored in D?.

Ti is interesting to observe that a convolutional code can be represented as linear code. For the

code represented in Figure A.1 the generator matrix ¢ has the following form:
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—
—
—
o

o o O

G = Lo . Lo [ . (A_I)
1 60 1 0 0 0 ..
0160 1 060
001 00 1 0
00 0 1 0 01

The decoding can proceed as described in this thesis.

A.2 Turbo codes

Turbo codes [BGTI3] are made of two convolutional codes operating in parallel, the fivst receiving mes-
sage bits and the second receiving a random permutation of the message produced by the interleaver.

In Figure A.2 a Turbo code with rate R = 1/3 is represented.

A<M AT~ Z—

Figure A.2: Schematic representation of a Turbo code with rate R = 1/3. The interleaver produces
a random permutation of the original block of message hits. the bits are then processed for each
convolutional code.

Turbo codes can also be represented in the form of a generator matrix 7, the cade in Figure A.2
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has the following representation:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

0 0 1 1 1 ] ]

o= , (A.2)
0 0 0 1 ] ] 1
0 0 0 0 1 i i

Iy, Tiys Ty Thg Ty g 1lyg
Moy Mo Tlag oy Tas Tl Tl
Mar g2 Tlaa Thag Tlgs Thag Tar
My Mg Tlgg Tlyq Tlys Thag Ty

Tsy Tea Tsy Hsq Tlss Tlgg Tls7

where II is a submatrix obtained by permutation of columns of the submatrix in the middle.




Appendix B

Sourlas Codes: Technical Details

B.1 Free-energy

In order to compute free-energies we need to calculate the replicated partition function (3.27). We

can start from Equation (3.25):

.<M (- (s }))}/LJJ , (1t.1)

<Zﬂ>_A)E,‘] = 11\1{53

where #(™ ({5%}) represents the replicated Hamiltonian and « the replica indices. First we average
over the parity-check tensors A4; for that an appropriate distribution has to be introduced, denoting

u = (11, ..., ik ) for a specific set of indices:

(%) ‘<NZH5 DA -C ’I‘usmexp(—/m“‘)({sa}))> , (B.2)

{A} ¢ m\i J¢

where the § distribution imposes a restriction on the connectivity per spin, A is a normalisation
coefficient and the notation g\ 7 means the set p except the element 7. Using integral representations

for the delta functions and rearranging:
(27) = Tr(se <*~ (H f 5 4-5—H> TIAT 20" | exp (~~ﬂH“”({S""}))> . (B3)
{_A} o€ n Je

Remembering that A € {0,1}, and using the expresgion (3.5) for the Hamiltonian we can change the

order of the summation and the product above and sum over A:

(Z7) = Try < (Hf o /C } 1> SR

I[ HZ exp [”"LHSM) > : (13.4)
H A0 e

[ o it
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Using the identity exp(8J, Hie“ S5¢) = cosh(fB) [1 + (H,EH Sy ) tanh(g8 I“)] we can perform the prod-

uct over « to write:

(27 = Tr{sn};g (Hj{ o Z‘é}*l) ef““iim-’5=‘5s“>é (B.5)
X H 1+ H Z; } cosh™(B) | 14 (tanh(B8J)), EH S
"

[N o iCp

+ (tanh*(8J)); > HS;\'I H 5% 4

(eyas) t€p JER

Defining (g1, p2, ..., tu) as an ordered set of sets, and observing that for large N, Z(/n--~/u)('") =

!
& (Z“()) we can perform the product over the sets pu and replace the energy series by an expo-

nential:

(2") = Trisey 7 (l‘[ [ 5 zf”“) AT 2wl S“>E (B.6)
xexp |cosh” Ti Z) A+ (tanh(AJ)) L} IT zp 9

Il = x 1T

+ (tanh®( y Z ]_I Z;50 5%

(xyas) B 1€Ej

Observing that 35, = 1/K!>7, ., defining 7; = (cosh™(BJ)tanh' (B8J)); and introducing auxil-
iary variables go,..a,, = 3 2; ZiSf” LS we find:

n dz; 1 dqodqy dqadq,, .
([ ) (4) (1 55) oo

NK
xexp | = | Toag' ”’un + T2 Y af et

(aryaeg)

Xexp -N [I[)[I() + L(]a[]a + Z ({aq(u‘}‘mr“ 4

(yas)

<6/jF Za,.‘ £ S8? >E GXPZ (@)Z, + Eﬁazis‘f’ 4. ):‘ '
i @

The normaligation constant is given by:

X TT{S? }

N=3 11615 A -¢, (R.8)

{A} ¢ p\i

and can be computed using exactly the same methods ag above, resulting in:

- [dZ; ] “dgodgn\ N’ e~

i
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Computing the integrals over Z;’s and using Laplace method to compute the integrals over gy and

W

go we obtain:
TK

N
N = exp Extre, g | o7
' K!

SIEN

0 — Ngoqo + Nln <
The extremum point is given by
— NO-RVE[(¢ - o) E
and
o = (C NYE-YE) (g — 1y~ Ve,

Replacing the auxiliary variables in Eq.(B.7) using ga, . .am /90 = Qoy.cccn 80 Jaq o ans /00 = Tovr oo s
computing the integrals over Z; and using Laplace method to evaluaie the integrals we finally find

IBq. (3.27).

B.2 Replica symmetric solution

The replica symmetric free-energy (3.31) can be obtained by plugging the ansatz (3.30) into Bq.

(B.7).Using Laplace method we obtain:

1 C
(2™ ag0 = N &P {N Extr, 7 [EGI - CGy + Q;}J } , (B.11)
where:
K
Gi=To+T Z / H (dzj 7 (z;) tanh(Bz;))
+Ts Z /l—[ da 7(z;) tanh®(Bz;)) + ..., (B.12)
(yap)
Gy =1+ Z/ dz dy m(z) 7 (y) tanhk(Bz) tanh(SBy)
+ Z / dz dy 7(z) 7 (y) tanh®(Bz) tanh®(By) + ... (B.13)
(exiay)
and

§ 1 .’ de 1 ‘ e . InR A iy
Gs = 7 In (H}[ 3 E?‘tﬁ) Ir(se) <Exp PFY LGS, >
i 4

i

xexp G < S i+ S S Sy / dy 7 (y)tanh(By)
DI c"”S“/ dy 7 (y)tanh” (By) + } (1.14)

{ayagy b
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The equation for G; can be worked out by using the definition of 7, and the fact that (‘ZW1 o) 1) =

n .
to write:
{
i

K
G = < 1 (BJ) / H dejm(z;) 1 + tanh(8J) [[ tanh(Bz;) > . (B.15)
Jj=1

J
Following exactly the same steps we obtain:
Gy = / dz dym(z) 7(y) (1 + tanh(Bz) tanh(By))", (13.16)

and

Gz = In < Trigey <exp ([J’F{ZS”>>
13

dz 1 e 7 u
8 7{27.zzcne"" (’7“7/"11’“/ H + S%tanh( ﬂy)))'}- (B.17)

Computing the integral over Z; and the trace we finally find:

{Go /deﬁ ur) irz <(1INQ> n (I + otanh /Uz))

o=::1

} ‘ (B.18)

Putting everything together, using Eq. (3.24) and some simple manipulation we find B (4.31).

B.3 Local field distribution

In this appendix we derive explicitly Eq. (3.33). The gauge transformed overlap can be written as

1 \
P=N > (sign(ma)) 4 (B.19)

1=
introducing the notation m, = (S;), where (---) is a gauged average.

For an arbitrary natural number p, one can compute p-th moment of m;

(‘miTJ)A"]i - 711],2% < Z
gl

Sl 82 PP iun ’H»‘“’> : (B.20)
A, g

where H(®) denotes the gauged Hamiltonian of the a-th replica. By performing the same steps

described in the Appendices B.1 and B.2, introducing the auxiliary functions w(z) and 7(y) defined

in Egs. (3.30), one obtains

. C c
(M) 4 5e = / rI dy;7(y;) <Lanh” BFE 'f’ﬁ}_:]j]‘ > . (B.21)
g j=1
’ 4

Employing the identity

1

o AL 2n! I A A A
sign(z) = —1 + 2“1_1_?{; 2_‘4 (n = )il ( 5 ) ('--;)-—') (13.23)

m=0
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which holds for any arbitrary real number z € [—1,1] and Eqs. (B.21) and (B.22) one obtains

- B ol 1 + h 2n—m 1—h m
(Mgn(7ni)>A,J,5 - ~1+2/dh ,Si’;ofz (2n — tmg< 2 ) < 2 )

/dh P(h) sign(h), (B.23)

I

where we introduced the local fields distribution

cC C
P(h) = /H dy; 7 (v;) <5(h,-1«*g_zyj)> , (B.24)
<= j=1

4
thus reproducing Eq. (3.33).
B.4 Zero temperature self-consistent equations

In this appendix we describe how one can write a set of self-consistent equations to solve the zero

temperature saddle-point equations (3.50). Supposing a three peaks ansatz given by:

T(y) = pidly — 1) +padly) +p-5y + 1) (11.25)
C-1
w(z) = > Ty pec-1j(l) 8z 1), (1R.26)
1=1-C
with
(C, _ ])‘ 3 LT
T{p.}. ,pg,p_;C}(l) = Z m Pfi., pé) PML~ (1327)

{k.,h,m ; k—h=l; k+h+m=C~1}
We can consider the problem as a random walk, where 7(y) describes the probability of one step
of length y (y > 0 means one step to the right) and w(z) describes the probability of being at dis-
tance z from the origin after C — 1 steps. With this idea in mind it is relatively easy to understand
Tips po.p-;0-1)(1) as the probability of walking the distance { after ' — 1 steps with the probabilities
p., p— and pg of respectively moving right, left and staying at the same position. We define the prob-
abilities of walking right/left as ¢4 = ZICI Tip porp-ic—11(FL). Using second saddle-point equations

(3.50):

K1 K-1
Py = / {H dx, ﬁ(mt)} <(5 {1 — sign(J H ) min(} J ||z |y -oo ] TR ]]> (13.28)
=1 5 - J

1=1
The right side of the above equality can be read as the probability of making & — 1 independent
walks, such that after C - 1 steps: none is at origin and an even (for J = 4+1) or odd (for J = ~1)

number of walks is at the left side.
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Using this reasoning for p_ and py we can finally write :

e = (070 b 53?(%{5%533?‘*’3’@’5”3"1 (B.29)
j=0
Tr [%l:—l 2+ 1(){21: EE Ve T T eyt edd(K - )
p
oo ‘2: (i - -zi]‘iéﬁﬁéj Ty e (B.30)
p .
+ pt%ul 0 EIT;J:I11)'--5_‘75?1&?”2"‘1 + (1= p) "t odd(J - 1),
P 27 — 1)1z

where odd(2) = 1(0) if = is odd (even). Using that py -+ p— -+ py = 1 one can obtain pg. A similar
set of equations can be obtained for a five peaks ansatz leading to the same set of solutions for the
ferromagnetic and paramagnetic phases. The paramagnetic solution py = 1 is always a solution, for

C > K a ferromagnetic solution with pp > p_ > 0 emerges.

B.5 (J); = (J tanh(BnJ)),

in this appendix we establish the identity (J); = (J tanh(8nJ))s for syinmelric channals. 1t was
shown in [Sou94a] that :
1 p(J11) v
BnJ =-1In (—-— , (B.31)
2 p(J ] —-1)
where By is the Nishimori temperature and p(J | J°) are the probabilities that a transmitted bit J°

is received as J. From this we can easily find:

. _p(J 1) —p(J | -1)
anh (Pn J) = p(J | 1) +p(J] 1)

(B.32)

In a symmetric channel (p(J | —=J°) = p(—J | J°)), it is also represented as

pJ 1) -p(=J]1)

tanh (Bn J) = p(J [ D) +p(=J| 1)

(B.33)
Therefore,

Jp(J | 1)
P10+ p(—T 1)
")
- T T T
a1 e

(Jtanh (By J))y = Tryp(J|1)

= TryJp(J]1)

= (). (R.24)
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B.6 Probability propagation equations

In this section we derive the probability propagation equations (2.40) and (2.38) in the form (3.71).

We start by introducing the following representation for the variables Qit and R

]}lk
s =10 S RS = 1 (14,8 3.35
Q“k = E ( + My k.) ik ‘2‘( A My k) . (] <3<))
We can now put (3.66), (3.70) and (B.35) together to write:
1 1
s
R = - E 3 cosh(BJ,) | 1 + tanh(8J,) H S ri LA mySi),
B{ske(\i) JELp keL(p)\]
11 i
= Ko E cosh(BJ,) | 1 + tanh(8J,) 1] 5
HSkeL(n)\s} JEL(p)
X 1+ Z Mk Sk + E Tk Myt Sk Sy -
keL(p)\J kgte L(p)\j
11 _ N o
= SR cosh(BJ,) | 1 + tanh(BJ,) 5; H Tk
" kEL(O\I
1 _— T .
= 3 1 + tanh(8J,) S Il Mk | - (1R.36)
- keL{p)\j
To obtain the last line we used that the normalisation constant is a, = 5«,;1;-,-»—1- cash(fJ,). Writing the

above equation in terms of the new variable m,; we obtain the first equation (3.71):
~ { S{—)
My = R“k) R“k) (B37)

1 1
= 3 1 + tanh(8J,) H Tk ~ 3 1 — tanh(8J,) H o

keL(p)\J EEL(p)\J

= tanh(8J,) H M-

ke L()\7
To obtain the second equation (3.71), we write:
. 1 1
s : D~ G L
Qut = auk‘i (] + ta‘nh(ﬂ}\/s}i)) H § (] + T”’A/}G‘Sk) . (1338)
vEME\pu

In terms of the new variables m,; we have:

M = a,m;ﬁ,« (1+tanh(By)) [ O +awe) = (0 —tanh(By))  [] (1= )

vEM(k\p vEMI{E\p
By using the identity e”* = cosh(z)(1 + otanh(z)) we can write:

exp {ZVEM“;)\H atanh(m,g) + ﬂ}\,] ~ BXD [~ Yove mip danh(my) - ﬁN]

a;,j 25 cosh(By) [1,e ppen, cosh(atanh(m,y))

Mk

(R.30)
Computing the normalisation a,; along the same lines gives:

. exp [Z%M(M\“ atanh(m,g) + /jfw] 4 exp [ §:V€:M€,C)\}‘ atanh(m,g) — [Jj\,] -
a.; = * p : . # 441
1k 25 cosh(By) TT,e iy, cosh(atanh(m,.)) (H-40)
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Inserting (B.40) into (B.39) gives:

my, = tanh Z atanh(m,i) + By | - (B.41)
vEM(R)\p




Appendix C

Gallager Codes: Technical Details

C.1 Replica theory

The replica theory for Gallager codes is very similar to the theory obtained for Sourlas cades (see

Appendix B). We start with Bq. (4.17):

M )
#ae= 5 T {oo(reaSSar)) {1 ool st 1)
g1, =l = ¢ M

‘rfx (1 =3

The average over constructions A is then introduced using Eq. (4.18) :

M 1
(Z™) A Z H <exp (FCB Z T}f’) >
: ¢

,_1,..)-,—nj:1 =1

M . ' -
H iZ.i 1 ZE<‘1=J'-*'2-"'J:{)A“l*l’-'”v"lf)
2113 Z};’va—l J

™ ==

{A) j=1
x [ exp {MA mZ T Tl - )}. (C.2)
(iy-ig) =1 |
After observing that
M
> iy = iy Ay =g ‘
HZ}'MH»':Z- ey =g rl (Ziy - Zi) (¢,....,\,>’
7=1 ( 11(,

we can compute the summation over Ay ...y € {0,1}
[ (i1} I

2 = 5 5 (03 )) 11| f

7l rnj=1 I e ’}].

Tl { o BB T ”('rff'-"f{;)l}

{iy- v”{') . ==
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We can now use the identity e®® = cosh(z)(1 + otanh(z)), where o = %1, to write:
@ne = 3 © M{m(rafa)) Sl|ffa] o0
T ¢

. cosh™(By) : o
X H {l + —rBr (Ziy - Ziy) H 1+ T Ti tanh(ﬁ'y)] } .

{11 -ix) =1

By following Appendix B.1 from Eq. (B.5) we can finally find Eq. (4.21).

C.2 Replica symmetric solution

As in the code of Sourlas (Appendix B.2) the replicated partition function can be put into the form:

~

1 " C
(ZM A = I exp {M]Ext,i‘ﬂﬂ {

[,9; — CGs + GxJ} (C.5)

Introducing the replica symmetric ansatz (4.22) into the functions Gy, Ga and Gy we obtain:

Gi(n) = To+TY a5 +T > afa,+ (C.6)
¢4 {xy v2)
cosh™ ((v) o nl o i
— mjm—m / | d‘L':)‘ 71(1113‘) [EEE (n**‘*—]‘)“! tanh (/J’Y) iT T
j=1 i F=i
+ (~*~2—)@ tcmh (B7) JII zj +-

cosh™

= e’”ﬁ /H dz; m(z;) |1+ tanh(By)

:ﬁ»ﬁ

1

)

J
n

. K K
¥ 0O ! ;
- 2—n/Hd.Ej7T($j) i-i-HfL'j s
j=1 j=1
where we use the Nishimori condition v — 0o, # = 1 to obtain the last line.

1+ Z QQQ(X = Z qlr]a’gq{qﬂz +

(et xn)

/ dzd? 7(2)7(E)[1 + 25]" . (C.7)

H

Go(n)
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and

Gs(n) = —]n Trrey <ka {Fﬁfz "}>

. i ~ ay L. X
dZz exp "Z Zm:ﬂ Z(fh‘»»ﬂm) Jay-am T T

* Jom 70+
1 12
= % In Tri ay <exp {Fﬂg’ Z T‘*l >
i L a= U
f exp [Z [dzw(Z) [[ho, (1 +7 )]]
X —
omi 701

EjC’ 9 C— 7l
- g & [lm560 | wwnirsc; [lovrsa] o

By using Eq. (4.16) we can write

1 c 0
= ——[xtry 7
/ i} Xiw® [l( 07:

what yields the [ree-energy (4.24).

Q] (ny - C g

on |,

C.3 Energy density at the Nishimori condition

In general the average internal energy is evaluated as:

i

U {HO S F ) g (C.10)
= 3 2o Prp{Tu} 1) Pral(C) 55, H(y*, F*) Pyep- ({Tu} | 7) Prepe (1)

S 5.6 Pus({Tu} 1) Prs(C) 2oi Pyep ({ T} | 7) Prepe () ’

where the hyper-parameters v*, F* are used in the Hamiltonian % and * is the temperature, while
v, F and B are the actual parameters of the encoding and corruption processes.

The Nishimori condition is defined by setting the temperature and all hyper-parameters of the
Hamiltonian to the values in the encoding and corruption processes. If this is done, the expression for
the energy can be rewritten:

g, HOWE) Pyl {J/L}IT ) Prp(T)

V= g Pus{Tu} | 7) Prpl)

(C.11)

By plugging (4.7) for the likelihood P,g({J,} | 7) and for the prior Ppg((); setting the hyperparam-
eters to vy — oo, B = 1 and F' = atanh(1 — 2p) and performing the summation over J first, we easily
get:

U A e
1 o= I‘}]r’rzx A/] R ([ - 2P) ((‘iz)

Note that this expression is independent of the macroscopic state of the system.
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C.4 Recursion relations

We start by introducing the effective field z,; :

P, i(+)e AF — P, (—)ethr
Pyi(+)ePF & Pyy(=)etAT

tanh(8%,;) = (C.13)

Equation (4.30) can be easily obtained from the equation above. Equation(4.31) is then obtained
by introducing Eq. (4.29) into Eq. (4.30) and performing a straightforward manipulation we obtain

Eq. (4.32):

T,y xp [By (=T, T1, 75 = V)| TL T 77 exp (8205 ~ 1)

— , (C.14)
Ty exp [By (+7me T15 7 = 1) TIL T 277 exp (8505 (73 = 1)

exp(—20% ) =

where

~ Pi(r)e
exp (BF,;(1; ~ 1)) = i
villj ])1/)( )c AE

and the products H and '] are over ¥ € M(g)\ pand j € L{p) \ k respectively.

The above equation can be rewritten as:

T, }H exp K/jf‘ + X{/? > TJ} {{::)3%}(/37) (l - T ﬂ ritanh(fy) )

exp(—20%,k) = i — - - ! (C.16)
Triry []j exp [(/ﬂ' + LV a?,,j> 'rj] [cﬂsl‘x(/:l*y) ( +J, H Titanhi(Ay) H
By introducing the Nishimori condition § = 1 and v = oo and computing traces:
-  ecqpe =21 €7 = Tu e pguk 2orma 77
exp(—QﬁfEuk) - Tt ToT
HjE[l(/t)\k ZT:j:l eFui’ + ‘jﬂ HJG[,(/L)\L Zn— 41 7€ =
- 1 = Ju Hjcﬁ(u \k tanh(z,;) (C.16)

1+ J, HJCC (\k tanh(z,;)’

where we have introduced

Ty = F+ E Ty

veM(I)\1

A brief manipulation of the equation ahove yields Fq. (4.32).




Appendix D
MN codes: technical details

D.1 Distribution of syndrome bits

In this section we evaluate probabilities p® associated to syndronie bits in MN and Gallager codes.

In the case of Gallager codes a syndrome bit p has the form
2 =0, @ B Gy (1.1)

where ¢ € {0,1} and @ denotes mod 2 sums. Fach bit ¢ is randomly drawn with probabilities
P(( =1) =pand P(¢ =0) =1 —p. The probability p}(K) of z, = 0 equates with the probability of
having an even number of (; = 1 in the summation, therefore:
K )
K!
0 1 -1
K) = — (1 —
RO = Y o PP

L even
K t

= > Y gy A (D.2)

i even

Consequently

1 = K! I K-l
p(K) = Z Tk (1-p)
odd o

K

K!
_ Z (1)) (1 = ), D.3
| odd ) (e =i ( | -

il

From Equations (D.2) and (D.3) above we can write:

K
— K! ,
1-2py(K) = (~1)! e (1= p)
) :%Ed (K ="
= (-p-p)f=(-2p)" (D.4)
From what we find:
i ! I 5,3\ K .
p.() =5 - 5(1-2p)". (D.5)
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For MN codes syndrome bits have the form:

~li=£J1@"'€B£j1( GECHGB"'@C!L) (DG)

where signal bits &; are randomly drawn with probability P(§ = 1) = p¢ and noise bits (; are drawn
with probability P(( = 1) =

The probability pd (K, L) of z, = 0 is, therefore:

P, L) = pL(H)pS(D) + pa(K)p, (L)

L= ph(K) = pL(L) + 2 pL(K)pL(L). (D.7)

where p%(K) and p2 (L) stand for probabilities involving the I signal bits and L noise bits, respectively.

By plugging Equation (D.5) into Equation (D.7) we get:

pL(I,L) = 1—p2(K, L)
1o : .
= 5 §(1 —2pe)® (1 - 2p) " (D.8)

D.2 Replica theory

For MN codes the replicated partition function has the following form:

N n
(M) aec = 2 L [ <exp (Fsﬁﬁ Z S;") > II <(‘Xp (I‘rxgﬁ L > >
S S" Ty, j=1 a=1 ¢ l=1 ¢
<H H [ﬁMJl (85, SGemiy o7y, — '1)]> : (D.9)

ghe=t A

By introducing averages over constructions (4.18) as described in Appendix C.1 we find:

M
(ZMage = Z b H<cxp</«xmzsa)> H<exp (mm}j >>
Sn Ty, T =1 ==l 53‘::1 =] ¢
<y HPC'(C'j)HPIJ(Dl)
(€, D} 5=1 l=1
Lo [ £dZ; 1 S msa s Aims gt
* W%E%%z};ﬁ?ﬁé“ T }

(D.10)

X
.
—
=
|
=
-2
/\hbh
W,
=
5
m
il 3
S*p
Bl
=~ &
—
=
| S—
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Computing the sum over A we get:

M n
(ZMqec = 2 Z H <exp (F B Z S“>> H <exp (Fn(j,@ Z Tf)>
L8 T T =l ¢ a=1 a=1 ¢
\ ! av,_1
A %%.} I
Ziy - Zig Vi, Y . « go Lo o N1
x H{l + T He\cp By(SE - SE - m)]}~ (D.11)
)

We use the identity " = cosh(z)(1 + otanh(z)), where o = %1, to write:

N i M 7
(EMacc = >, oo 1l <exp (115/3 > sj>> 11 <exp (w > r%*) >
' ¢

SI> _,)S" T, 7 g=1 =z Ej;::] =1
N M ;
. 1 dZ 1 dy;
<X e Mmoo i f 35 (013
{C;. Dy} i=1 =1 N ] amig i Yo

=]

“ l " Iy r Y Y 2 ¥ g
% H {vl + _('_(_)_S}%ﬁ(gj_)(/”) o 11( R h H [l -} f)i] .. 4“)1.1( T ‘TI";‘ilaﬂh([j')’)} } .

The product in the replica index o yields:

Ti

II [1 -0 8882t tanh(By)] = Z {Lﬂ.nh’“ (Av) (11.13)

=1 riv={d |

K g h h

o Qyn o s 5% Yo X Ky
x Z Sillu'six S S TII'“T TK,J]' Ty }v
(@1, ,00m)
where (), ,am) = {a1,  ,am:a; < - < ap}
The product in the multi-indices (il) can be computed by observing that the following relation

holds in the thermodynamic limit:

mimaer
H (1 + w(ll)) = Z Z 1/)(‘”}1 . ~‘l/)(.“>m
(aly m=0 ((il)y, - ,(il)m)
N o0
—F  exp Z?’/}(”) , (D.14)
(il

with mmaz ~ (N ML) /KL
We find Eq. (5.26) by putting Egs. (D.14) and (D.13) into (D.12) and using the following identities

to introduce auxiliary variables:

: <N ‘
/ dqcn el 5 Qexy ey ]:V > ZJ S}“ oo ,‘)’;’”‘ = ]
=1
‘ o
/ dr(“ T 5 l}"(“ Gm }1—/]: E._.d YITI’” e 7-;""‘ = l (‘) ‘ F’)
l=1 .
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D.3 Replica symmetric free-energy

We first compute the normalisation A/ for a given :

dgoda dradr MLINK ~ ~

N = /( ‘iﬁw—f0> / (_é%;ﬂ> exp{ T 7?)1]({( rf,‘ — Naohy — Mrofo
dZ e}(p ]qﬁ d}/[ e}{p 1’]() A
H f 2mi : H% I YD‘H (D.16)

By using Cauchy’s integrals to integrate in Z; and Y; and Laplace's method we get:
g g g j P g

- MENK R R
N = GXP{lmtrqo,&o,rn,ﬂ)[ Togs v6 = NagoGo — Mroio

KL
N ac)- M =
0 0 e
+ Zin <‘Eﬁ) + Y I (Fﬁ) , (D.17)
j=1 I=1 |
The extremisation above yields the following equations
1N
Wi = ) Ci=C (13.18)
j=1
| M
"I"()’IA‘() = M L L; = (D]U)
1=1
KL = (K — IL! .
qf) 70 = i NI( ] ]‘/IAL“ (')A“)
The variables can be normalised as:
Joawom Gay o Toa e Ty otem - (D.21)
do 7o

By plugging Eqs. (D.17), (D.18), the above transformation into (5.26) and by using Laplace’s

method we obtain:

(Zn>_A,5,C = Extrq,r,?/‘,? exp N]{ Z Z qual e (“ lm

m== 1(01 0x, l)

n
Vai -~ o~
- NC E E Qoy oo oy 00 ™ ML E E oyt oy g,

m=1 (ay ) m=1 (o, )

N M
X H ZPC(Cj) H ZPI)(DI)

=1 C; =1 Dy

c
N
ity
X H(ZCJ‘T> Ir(sy} <e‘xp
j=1t \%0 !

[

3

a=1

l {/ Zm -0 4({” . n) qﬂ‘l Cryn blti s ‘(j'r)‘m }
X ) _ . ;
'27ri / s+l
M . i
: Dty P oA $ a
% I'I (:DT 'IT(T,"} exp | . 3¢ \ZJ T/
i=1 \"0 : a=l ¢
1l _\ . 1
dY €xp |:Y1 Eam =) Ld(u] ) !(11 Oan TH 7"*::«] Py 96
b o | R
1
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where T,, = e~ ™7 cosh™(By) tanh™(8y).

We can rewrite the replicated partition function as:

C ,
(Z™) agc =exp {NEXtr{;,r,a,,- [], Gi — CGy ~ LG3 + Gq + (’r] } (D.23)

Introducing the replica symmetric ansétze:

Gouyan = /drc m(z) 2™ Joy vy, = /d’i T(Z) T (D.24)
and
o = [ Faran = [ 75T (D.25)

By introducing the Nishimori condition v — oo and f = 1, we can work each term on (13.23) out

and find:

Gin) = Tt Ty ek it Y aartie (B-20)
«@ {evy )
cosh ' !
— ———;;[T—~ / [I f]l H (l'lj[ (/)(yj 1+ ({,—j‘“ """" dll]](/j”)‘ ]] g i\i i
J=1 ‘ =

cosh™(87)
= /Hdl? n(z; Hdﬂ d(y) |1+ tanh(8y) HJJH@/I
J=1 =

T

= 211/Hdm1 m(z;) Hdﬂd)l«’i 1—!—T_[%Hm ,
Jj=1

gz(n) - anqu -+ Z f]a,u,%,nz A
({)(1()2/
- /rzm ()7 @) [1 + 23" . (D.27)
Similarly,
Gs(n) =

3 — Y e
I+ ;;_m‘ Tale E TayanTaymg T 000
[¢3

(v cen)

/d'ud'ﬂ S (1 + vl (1D.28)

o
Lo
(3
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e

- c;! "
I Yo Pe(Cy) (41 ) Trisa) <exp {Fsﬁﬁ ZSJD
Cy ¢

=1 qo a=]

f‘ dZ EXP [Z] Z:;:U Z(Q’}“‘Q’,n) Z}\a!“,am Sﬂl . Sﬂ ﬂjl
X

57—5 76it1
J =

1 N ] i )

v Z In E Pe(C ( ) ’I‘t{ga} <exp {Fbﬁ& L S5 >

Tog=1 C; q() a=1  1/¢
y 74 dz; exp [2; | 477 (%) [[aey (1+ 855 >]}
» 5o C' +1

J o 2%

O] k3

/HJT, T(Z)) E exp [F,8£5]), IT(I + 5%;) (D.28)

=] i1

"D/

In the same way:

) i
Gs(n) = ~~~Lln S“PD Dy) (1’)») e <(—3)(p FuBCY D
M I1=1 A - a=1 J/ ¢

oy ~X /«‘Y:n‘
/ d}/ exp [‘ Ltn ={} .—4 Yo ) Taey e Ty P Ty l

s D
211 }l

X

ay, exp [Yi [ did(@) [Ther (1 + 775)|
% % YID'+1

Dy Dy "
= In Y Pe(D) / 11 4 6 [Z (exp [FpCr)) [0+ 7)} (D.30)
Dy I=1 i=1

r=x1]

By using Eq. (5.19) we can write

1 c 9 9 -
— __E ) N P . - T 7 —- ], = 2
/ 3 xtr, -, 2 [K il Gi(n) C b Ga(n) L gl Gy (n)
0 5} o
(7)-7;’ =0 g4(n) " EE n=0 gr)(ﬂ)jl , (Dg])

what yields free-energy (5.29).

D.4 Viana-Bray model: Poisson constructions

The Viana-Bray (VB) model is a multi-spin system with random couplings and strong dilution [VB8E].
We can introduce a VB version of our statistical mechanical formulation for MN cades. The Hamil-
tonian for a VB-like code is identical to Eq. (5.13):

N M
HENE (S, 1 €,¢) = 7‘} Aty (Siy - Siemy my = 1) = ]",,szj.‘ﬁ", - /,f} Gm. (12.43)
3l =
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The variables A(jl) are independently drawn from the distribution:

LIK! . LIK! .
P(A) = <] - W) O(A) + W 5(./4 - .]). (DBS)

The above distribution will yield the following averages:

<z A<ﬂ>> = M (D.34)

b A

<< > A<jl)> = C (D.35)

h=jixliln) A
< S A<ﬂ>> = L. (1D.36)
(Gidrhi=l-ly) A

In the thermodynamic limit the above summations are random variabels with a Poisson distributions:

. ) M*®
— — - M o o
P E Ay == = e (13.37)
)
P ‘> A(]t) = = e (‘17‘17 (i)d&)

(Ji=3gwli--ir)
. —~ | -
P >_4 A gh =Ty = e (13.38)
(i hi=l-dp)
Since the variance of a Poisson distribution is given by the square root of the mean in the thermody-

namic limit:

PSS Ay =ap "6 - M), (D.40)
b
The Poisson distribution for the construction variables C' and L will imply that a fraction Ne=C of
the signal bits and Me~L of the noise bits will be decoupled from the system. These unchecked bits
have to be estimate by randomly sampling the prior probability P(S;), implying that the overlap p is
upper bounded by:

] Vsl -~ o R
— [N = Ne™© 4+ Ne™©(1 ~ 2p)

)
FANN VAN
Qf
+
ey
|
b
3
)

IN

—
!

[

—
=)

~
oD

(D.41)

Therefore, a VB-like code has necessarily an error-floor that decays exponentially with the C chosen.




Appendix E

S codes: cumulant expansion

In this appendix we propose to expand Eqs. (6.19) to (6.24) into cumulants and truncate the series,
speeding up the optimisation of constructions and avoiding multi-dimensional Monte-Carlo integra-
tions. To exemplify the procedure, the same family of codes with two signal sub-matrices presenied
in Section 6.3 is analysed and equations for first (delta approximation) and second order (Gaussian
approximation) cumulant expansions are ohtained.

A n-order curnulant [z],, of a probability distribution P(x) is definad aa:

. on o
(2], = ;d;—(;«-infi’(w = (), (1. 1)
where FP(w) = [ dz e™*** P(z) is the Fourier transform of P(z).

Equations (6.19) to (6.24) can be expanded in series of cumulants by observing the following

relationships:
71 n . 4)
(%)ﬂln}"Pj(w =0)= (o K; - ].)W]“f])j( 0) 4+ (e K;) ?—]n}P( = (). (I5.2)
In the same way:
o a" —iw( i
(") py nTR] (w = 0) = '(,_)- D.TR1 (w = 0) <(‘ > |w:() (Ih.d)
an an il N
5o InFRy(w=0) = ol (e U">c lw=0 (F2.4)
For the conjugate distributions we have:
0“ dn -1
L nF P =0) = 5in / TT o Py oy e R (o ey P () (15)
g=1
- Lw[atan hitanhotanhiy) 1152, tanh(z;)))
we=()
;lrjy_lﬂfp( =Y )3“1 / H daj Po(z;)dyRa(y) f—iuiat,a.nh(i,a,nh(y)[‘"[f‘_j, Hanhe,) (T.6)
s ! )

sz}
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an K,

I3} 5" —iwfatanh(tanh(y) [T, tanh(z;))
SR (w =0) = 5—In /Hdijl z;)dy R, (y) e W Tz 2l , (B.7)
w=0

gn Lt K

T InF Ro(w = 0) = / qu Py(n;) e~ wlatanh(ll;2, tanh(z;)) (I2.8)
Jwn B
w=0

The equations for the first order (n = 1) cumulant expansion are:

21 = (1 Ky — DZ + asKaZs @y = (1 K)Ty + (ea K3 — 1) 29 (1.9)

Z; = atanh [tzmhz(y] ytanh ™ 7 () Ta = atanh { anh(yy)tanh 2 (;‘1?2)] (12.10)
Yy = ?’/\1 - (I il 2])) F” Ya = (] - 2[)) I‘.~ (El i)
71 = atanh [t;anll(y})ta,nh'"" (n:])‘ 72 = atanh lmnh““( )} . (I5.12)
The field generating the decoded message is given by:
h = vy ](15] -+ vy f\’gﬁ\_g ( 5.1 3’)

The first-order approximation is equivalent to assuming that the probability distributions in Egs.
(6.19) to (6.24) are delta distributions.

Eliminating the equations for the section 2n, the second order (Gaussian, n = 2) expansion gives:

<l‘1> = (01[(1 had 1)(1’17\1> + (azf(g)(i\g) Ji) = (a,_[(; - ])O’%] +- ((,1%2](2)0‘,%2 (]‘4‘14)
(12) = (K1)(@) + (2 Ky = 1)(Z2) 02, = (0 Ky — D)ok, + (a2 Ky — 1)o%,  (E.15)
) = @+ -2)F, o) =0%+4f(1-p)F? (.16)
@ = <atzanh tanh(y) H tanh(z; ;) (E.17)
i=1,0, 0 )
I
’71% = <at,emh2 tanh(y1) H tanh(z ;) ~ (p)* (E.18)
J=1,0, K ,
Vis€a,j
(z,) = <atanh tanh(y; 1 )tanh(1n 2) H tanh(zy ;) (15.19)
j=1,..., K1 i N
Vi ,2%y,;
of = <5n,a,nh2 tanh(y: .1 )tanh(y1 2) II tanh(z ;) — (@)% (1.20)
G=1, K o
V1,13 Vi,2,%1
(z2) = (1-2p) <ai,a,nh tanh(f,) I_I tanh(zs ;) (F.21)
J=l K-
ol = <as;anh? tanh(#,) [ tanh(aa,) > — (F)? (F.22)
J=1, Kz-1

136

€2, 5




APPENDIX E. KS CODES: CUMULANT EXPANSION

0.3 | T T T

e e e I
| e channel capacity
it d ity S e T T T T T T T ]
O 2 - V ”."/ “Q"‘ o
4 -’

i i {

2 3 4 5
o,
Pigure E.1: Threshold p, as a function of oy for a K8 code with K = 1, Ky = 3 and R = 1/6

1

(@ = 5). Circles: Monte-Carlo integrations of saddle-point equations (4000 hins). Squares: PP
decoding simulations (10 runs with size N = 5000). Triangles: Ganssian approximation. Stara: delia
approximation.

The decoding field is then :

(hy = (a1 Ki)(@1) + (@2 K2)(32) (18.23)
or = (aKi)ok + (aaKr)o3, (E.24)

In the above equations (---) indicates Gaussian means and ¢? variances. This approximation is,
therefore, equivalent to assuming that distributions in Eqgs. (6.19) to (6.24) are Gaussians.

In Fig. E we show thresholds p, obtained by the delta and Gaussian approximations and compare
with simulations and results obtained by Monte-Carlo integration of [gqs. (6.19) to (6.24). The
approximations considerably overestimate the performance and generate poor optimisations (o; = 2

for the Gaussian approximation and «; = 3,4 or 5 for the delta approximation).
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Appendix F

Path lengths on random graphs

In this appendix we evaluate the probability distribution of lengths of paths starting in a vrandomly
selected node.

A regular Gallager code of rate R = N/M can be represented by a bipartite graph G(M, M — N)
with M nodes in the signal class and M — N nodes in the check class. The degree of each signal nodea
is ' and the degree of each check node is K. A path is a subgraph with no cycles.

[L.ets organise the graph in generations such that in generation 0 (go) we have ane randomly chosen
signal nodes and the C check nodes connected to it. The following generations g; are then recursively
produced from this initial generation.

A subgraph with n generations is denoted by G™. If this subgraph G" has a tree structure, to say
g Ngn=0for0<l,m<nl#m,onecan denote G* € T™. Suppose that one has G™ € 7™. What
is then the probability that the addition of the generation g,41 produces a cycle of any gize ?

The total number of signal nodes is M, the total number of check nodes is M — N. The number

of signal nodes in G" is

N, = Z(C’ ~ 1) (K = 1)7, (F.1)
7=0
The number of check nodes in G" is
ﬂ;*] )
My=1+ (C=1)Y (C~1) (K ~1). (7.2)
j=0

The probability of cycle not emerging in the generation g, is then :

Mgy~ Ma . Ny~ Ny . \
; . , , o M+ -1 ¥ Ny +35-1 .
it - gtl ) on - gny - L. 3
PLGMT e T |G e T - ]]1 (J T ) 7”1 (l - ) (F.3)
The probability that a cycle emerges in generation g, is then:
‘/‘L ] )
Pln)=P{G" ¢ T (¢ e T} [[P{¢7eT7 |G P eT! 1) (F.4)
b
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R 0 s T TR T T
Figure I.1: P(l) for K =6, M = 5000, M — N = 2000.

A simpler lower bound for Fquation (F.3) is:

/[ ‘ \ > .

ol | b1

n+41 - gntl R T > _ _‘E__~___‘_
PLGTT e TG €T —l[ (1 M-N )

ag My — My, < My and Ny — Ny < Ny
Simplifying further:

2 My \ M 2 N\ V!
PG e TG T} > (1 - “,) <1 ~ 4--_‘—’—> (¥.5)

M- N M
9 M2“ 9 N2 =M, g1 d=Na g . 2 M N K 2 N”A_ i
N Vi Ay v 2 Obairg Ot (=17 <M —;\;> < W ]> ’
FH>1

Where C'ar,,,; is a combinatorial factor. Observing that the series in the left hand side has
positive sign ( an order M number of terms is needed to cancel the sign of the leading order positive

term, but only an order 1 number of terms ig available in the whole summation) one can write:

QM,ZL“ + (yN

n+4-1 141 i ny ~
P{G eTGreT > 1~ - e .

(1.6)

where @ = 1 — M/N =1- R = C/K. The probability that a cycle of any size emerges in the g,

generation is then:

C,K,n
fP{QTHI ¢ Trul | (vﬂ € 7:1} < {Z)L"M':"M)v (]77)
where
H(C, K, n) =2 el (M2, +aNZ, ). (F.8)

Since n, C, K are of O(1), ¢(C, K,n) is also of O(1) and the probability that a cycle emerges vanishes

in the thermodynamical limit.
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Figure I*.2: Mean cycle-free length (I) as a function of the size M

Another upper bound can be obtained by using that
Nm A/f” < (1 - ]‘a)nnﬁ,g“’

resulting in

2 (1~ R)*"n2 K4 (1 + o)
a M

P{gn—&—l ¢ Tn+1 ‘gn c Tn} g (]“‘9)

It can be deduced from (F.4) P(n) < P{G" ¢ T™ | G"~! € T™ '} and one can find the upper
bound:

An® K"
< —_

P(n) i

(F.10)

For large M one has P(n) =~ P{G" ¢ 7" | G"~' € T""'}. It can be seen in (I".10) that for large
M only paths with length of at least order InM can have finite probability.
The length of a path crossing n generations is [ = 4n, the upper bound becomes:
12K

(F.11)

Fquation (F.4) can be computed numerically. In Figure .1 the distribution of path lengths
obtained for a system of size M = 5000 with K = 5 and N = 3000 is shown. In Figure I".2 we show

the mean path length (I) as a function of the size M.
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Appendix G

Publications related to this thesis

The research reported in this thesis vesulted in the following publications:

e Vicente, R., Saad, D. and Kabashima, Y., Finile-connectivity systems as error-correcting codes,

Phys. Rev. I 60 (1999), 532-5366.

e Kabaghima, Y., Murayama, T., Saad, D. and Vicente, R., Regular and ireeguiar Guallager-type
error-correcting codes, in Advances in Neural Information Processing Systems 12, aedited hy 8.

A. Solla, T. K. Leen and K. R. Miiler (MIT Press, Cambridge, MA) (1999), pp. 271-278.

e Murayama, T., Kabashima, Y., Saad, D. and Vicente, R., Statistical physics of regular low-

density parity-check error-correcting codes, Phys. Rev E 62, (2000) 1577-1591.

s Vicente, R., Saad, D. and Kabashima, Y., Statistical mechanics of irregular low-density parity-

check codes, J. Phys . A 33, (2000) 6527-6542.

e Vicente, R., Saad, D. and Kabashima, Y., Error-correcting code on a cactus: a solvable model,

Europhys. Lett. 51, (2000) 698-704.

e Vicente, R., Saad, D. and Kabashima, Y., Error-correcting codes on a Belhe-like lattice, to

appear in Advances in Neural Information Processing Systems 13.

e Saad, D., Kabashima, Y. and Vicente, R., TAP for parily-check error-correcting codes, to appear

in Saad, D. and Opper, M. (eds.) Advanced Mean [Field Methads. MIT Press.
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