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Thesis Summary

Amongst all the objectives in the study of time series, uncovering the dynamic law of its
generation is probably the most important. When the underlying dynamics are not avail-
able, time series modelling consists of developing a model which best explains a sequence of
observations.

In this thesis, we consider hidden space models for analysing and describing time series.
We first provide an introduction to the principal concepts of hidden state models and draw
an analogy between hidden Markov models and state space models. Central ideas such as
hidden state inference or parameter estimation are reviewed in detail.

A key part of multivariate time series analysis is identifying the delay between different
variables. We present a novel approach for time delay estimating in a non-stationary environ-
ment. The technique makes use of hidden Markov models and we demonstrate its application
for estimating a crucial parameter in the oil industry.

We then focus on hybrid models that we call dynamical local models. These models
combine and generalise hidden Markov models and state space models. Probabilistic in-
ference is unfortunately computationally intractable and we show how to make use of varia-
tional techniques for approximating the posterior distribution over the hidden state variables.
Experimental simulations on synthetic and real-world data demonstrate the application of
dynamical local models for segmenting a time series into regimes and providing predictive
distributions.

Keywords: Time series, hidden Markov models, state space models, variational techniques
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Chapter 1

Introduction

From physics to econometrics, our desire to predict the future motivates the search for laws
that govern the dynamics of observed phenomena. Observations have been always recorded
over time in order to help us understand the changing of our world. Examples range from
weather forecasting to financial markets prediction.

A time series is a series of observations taken sequentially over time. In formal terms, a
time series is a sequence of vectors y;, depending on time ¢. The components of the vector
can be any observable variable, such as the temperature of the air, the price of a certain
commodity, the daily electricity load demand, efc. In contrast to a standard regression
problem where the order of the observations is irrelevant, it is this order property that is
crucial and that distinguishes time series from non time series data.

In theory, it may possible for a time series to be purely deterministic, which means that
it can be described by some deterministic equations governing the dynamics of an under-
lying state vector 8; which will regenerate the past and predict the future values without
discrepancies. Unfortunately, it is often the case that the underlying theory is absent and we
are left with the data themselves. Moreover, it is important to understand that an observed
time series include components that are both deterministic as well as probabilistic in nature.
Due to measuring errors, unknown or uncontrollable factors, hardly anything that happens
in the real world is deterministic and one almost always has to assume that time series are
stochastic in nature.

There are many reasons for wishing to model a time series. Forecasting is probably the
most wide-spread application. There are many real-world problems where the aim is to
accurately predict the value of a variable. From business to energy planning, investigators
try to accurately predict future values in order to decide upon a trading strategy or optimise
production.

The other motivation is to provide a description of a time series in terms of its components
of interest. Time series analysis is a description of the long-term properties of a process. One

may, for example, wish to examine the trend in order to see the main movements which have
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CHAPTER 1. INTRODUCTION

taken place in the series.

A third motivation concerns the characterisation of a time series. One may wish to
determine the fundamental properties of a time series, such as the number of degrees of
freedom of a process or the amount of randomness.

These three goals often overlap. A model which has been developed on observed data
points can be used as a description of the time series, its parameters being viewed as a
kind of feature set of the series. A model used for description can also be used as the basis
for forecasting. However these goals can differ: understanding the long-term behaviour of
a process may not be the most reliable way for estimating the parameters of a model for
short-term predictions.

Modern time series has been for many years dominated by the so-called linear Gaussian
models. Yule (1927) developed the autoregressive models (AR) for predicting sunspots: the

value of the observation at time ¢ is a weighted sum of previous observations:

p
Yy = Z AilYi—i + € (1.1)
i=1

where A; are constant, p is the order of the model and ¢ is a zero-mean, uncorrelated random
variable, also called white noise. A more general case is the family of autoregressive moving
average models ARMA((p,q), which consists of replacing the ¢; term by a weighted average

of €ty .o €ty

P q
SNy =D bier (1.2)
i=0 =0

Linear Gaussian models have been successful for two main reasons. First, the linearity
assurnption allows a nice mathematical development and the theoretical properties of these
models are now well understood. The traditional time series paradigm in which it is assumed
that a time series can be reduced to stationarity' by differencing or detrending is another
important motivation for considering ARMA models.

However, there are many real-world problems for which the assumptions of linearity and
stationarity are not valid. For instance, one of the obstacles to the prediction of exchange
rates in the capital markets is a non-constant conditional variance, known as heteroscedastic-
ity. Many industrial plant exhibit also multiple discrete modes of behaviour under different
operating conditions.

The development of powerful computers and the desire of uncovering the underlying
dynamics of a time series have been essential in the last two decades. The state-space recon-
struction by time-delay embedding provides a technique for recognising when a time series

has been generated by deterministic equations. The simplest procedure consists of creating

'The essential feature of a stationary process is that its properties do not change over time. For example, a
second-order stationary stochastic process y; is one for which the mean and the variance are time independent.
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CHAPTER 1. INTRODUCTION

delay vectors y&_ x = [Wt—ks---»yt] from a scalar time series y;. Having reconstructed-a vector
time series, investigators try to develop a model which explains the scalar time series y; In
term of the delay vector dynamics. Viewed this way, time series modelling becomes a problem
of function approximation and the emergence of adaptive models such as neural networks has
been crucial in this sense.

There is actually a strong connection between delay vectors and underlying dynamics.
This connection was originally proposed for noise free non-linear dynamical systems (Packard
et al., 1980). Tt turns out that the dynamics of the underlying state-space variable s; are
related to the dynamics of delay vectors. Takens (1981) gave the conditions for such a
mapping between s; and yg_k.

While the framework of embedology was formulated in the limit of infinite amounts of
noise free data, hidden state space models have been developed from the desire of mod-
elling hidden state stochastic dynamics P(s; | s:_,) and noisy observations P(y; | st). Hidden
Markov models and state space models assume explicitly the existence of a discrete or a
continuous hidden state, whose dynamics are governed by a Markov process. In the last
decade, several descendant models have been suggested. Examples range from speech recog-
nition, control, machine learning and finance. The need to account for non-linearity and
non-stationarity has been the main motivation for considering hybrid models.

In this thesis, we consider hidden state models for modelling processes that exhibit a
sequential changing behaviour. The underlying generator is believed to switch between dif-
ferent regimes. Within each regime, the time series satisfies (almost) the requirernent of
stationarity, but between them, it might have different noise level or different dynarnics.

Chapter 2 presents the oil well drilling process. This process exhibits complex relation-
ships between different time series and a highly non-stationary behaviour. A significant
difficulty during exploration drilling is ensuring the drilling debris is removed from the bore.
We present standard filtering techniques for time series and show how a description of the
long-term properties of the process can be obtained.

Chapter 3 provides an introduction to the principal concepts of hidden state models. By
drawing an analogy between hidden Markov models and state space models, the chapter
introduces many of the central ideas, such as hidden state inference, parameter estimation
and probability density prediction.

Chapter 4 deals with the problem of time delay estimation which represents an important
task in time series analysis. We present a novel approach for estimating the lag or delay
between two time series. The approach is based on using hidden Markov models and we
show how to estimate a crucial parameter in the oil industry.

Chapter 5 presents variational techniques for probabilistic inference. For complex prob-
abilistic models, inferring the value of some hidden variables is computationally intractable.

Variational techniques provide a principled framework for solving this problem.

12



CHAPTER 1. INTRODUCTION

Chapter 6 introduces dynamical local models. These models combine and generalise
hidden Markov models and state space models and therefore are capable of modelling discrete
and continuous dynamics. We also present a new extension which incorporates local non-
linearity. We demonstrate the application of these models for segmenting a time series into
regimes and for providing predictive distributions.

Chapter 7 summarises the work presented in this thesis and provides some future direc-

tions of research.
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Chapter 2

Monitoring the oil well drilling

process

2.1 Introduction

0il well drilling is a complex and highly skilled process. One significant and expensive aspect
of exploration drilling is that of ensuring the drilling debris is effectively removed from the
bore. In the case of vertical wells, an adequate velocity of the drilling fluid is generally
sufficient to guarantee that most debris is brought to the surface. Current practice within
the industry is to drill more ‘high angle’ or ‘horizontally deviated’ wells and offsets of several
kilometres are quite common. These types of wells include angled or even near liorizontal
sections, in which gravity settlement of particles in the drilling fluid can occur and create
stationary cuttings beds. This significantly increases the operating problem of ‘hole cleaning’.

During the past two decades, many laboratory studies as well as field observations have
been directed at the cuttings transport problem. These have resulted in a better understand-
ing of the subject. Several models have also been developed which give a tool to improve the
specification of the hydraulic requirements to clean the hole. However, due to the cornplexity
of the problem, at present, no comprehensive and proven model exists to act as a monitor
of hole cleaning status and the process still relies heavily on the experience of the drilling
engineers.

Although several fluid mechanics based predictive models are used in the oil industry, a
hole cleaning monitoring system needs to be developed that receives all the available and
relevant data in real time for determining the hole status. As discussed in (Pilehvari et al.,
1996), it is indeed not prudent to rely only on predictions of such models, because of our
poor understanding of downhole conditions.

A new device, the PD-50, developed by Thule Rigtech, is capable of monitoring on-line

and in real time the fine particles of rock in drilling fluid. Our proposed approach to improving
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CHAPTER 2. MONITORING THE OIL WELL DRILLING PROCESS

the assessment of hole cleaning quality is to take advantage of downhole data and to develop
suitable techniques to monitor the distributions of drilled solids. By following their trends
and relating them to parameters that can be monitored at the surface, our goal is to obtain
a better picture of downhole conditions.

In this chapter, we first describe the drilling process and present the different parameters
that are collected for our purposes. In section 2.3, we review the hole cleaning problem
and discuss several techniques that have been suggested in the literature. We then present
in section 2.4 standard filtering techniques and show how they can be applied in a simple
algorithm for stuck pipe detection. Our algorithm follows the trend of low gravity solids and

is able to alert the user in advance of a future problem in the hole.

2.2 0Oil well drilling

Drilling for oil and gas is a complex and highly skilled operation. If the find is promising, a
field will be developed and brought into production. The drilling industry engages the services
of thousands of men and a complicated array of machinery and materials and requires a vast
network of transportation facilities. On-the-spot decisions which must be made in the course
of drilling a well invariably concern the many thousands of pounds invested in the hole already
drilled and in the drilling equipment.

Wells are drilled with rotary drilling tools. The cutting tool is the drilling bit which has
tough metal, or sometimes diamond, teeth that can bore through the hardest rock. The bit is
suspended on a drilling string consisting of lengths of pipe, which are added to as the bit goes
deeper. The bit is turned either by a rotary table or, increasingly, by a downhole motor. In
time, the bit gets worn and has to be replaced. The whole drilling string, sometimes weighing
over 100 tons, must then be hauled to the surface and dismantled section by section as it
emerges. The new bit is fitted and slowly lowered as the drill pipe sections are re-agssermbled.

One of the essential supplies for the drilling crew is mud, or drilling fluid. This is a special
mixture of clay, various chernicals and water, which is constantly pumped down through the
drill pipe and comes out through nozzles in the drilling bit. The stream of mud returns
upwards through the space between the drilling string and the borehole, carrying with it rock
fragments cut away by the bit. At the top, the returned mud is sieved and then recirculated
through a pump. The cuttings left on the sieve indicate the kind of rock the drill is passing
through and they may show traces of oil as the bit nears an oil-bearing formation. The
drilling mud also keeps the bit cool and prevents the escape of gas or oil when the bit enters
an oil trap. Figure 2.1 is a diagrammatic view of a drilling rig with its different elements and
shows the circulation of the mud.

The rate of drilling or rate of progress (ROP) varies with the hardness of the rock.

Sometimes the bit may cut through as much as 200 feet per hour, but in a very hard layer
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Content has been removed for copyright reasons

Figure 2.1: A rig and its elements.

progress may be as little as 1 foot per hour. Most oil wells are between 3,000 and 16,500 feet
deep but wells as deep as four or five miles are sometimes drilled.

Whenever possible, wells are drilled vertically, but sometimes, especially offshore, it is
necessary to deviate from vertical in order to reach a wide spread of targets from a single
platform. This is known as ‘directional drilling’. Recent developments have made it possi-
ble to deviate as much as 90 degrees from the vertical. Known as horizontal drilling, this

technique can, in some instances, increase the productivity of a well.

2.3 Hole cleaning

Ensuring that the drilling cuttings are effectively removed from the bore is a significant and
expensive aspect of exploration drilling. The problem is more complicated when drilling
deviated wells: the drill string can be lying eccentrically and gravity settlement can occur.
The gradual build up of low gravity solids (LGS) increases the torque required to turn the
drill string. In extreme cases, the drill pipe may get stuck or even fracture off. Retrieving a
stuck pipe is a difficult and expensive operation. Costs of remedial treatment are always high,
and may amount to many hundreds of thousands of pounds (Rabia, 1985). In near horizontal
wells, the drilling fluid exhibits little or no velocity component in the vertical plane. The

hole cleaning problem is more complicated when drilling relatively deviated wells (40° to 80°
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CHAPTER 2. MONITORING THE OIL WELL DRILLING PROCESS

from vertical) where the vertical velocity component becomes increasingly important.

Current operational methods for monitoring the drilling process are based on the experi-
ence of key personnel using subjective judgments of the appearance and volume of cuttings.
Mathematical models have been also developed in order to predict the torque and drag antic-
ipated at various depths of the well. A plot is usually kept to compare the actual figures with
the predicted ones and significant variations, when they occur, are used to signal a developing
problem.

Guild et al. (1995) proposed a hole cleaning program so as to improve drilling perfor-
mance: in order to estimate the total amount of solids coming to the surface, a record is kept
of the time taken to fill a viscosity cup with cuttings. This recording is made from the same
place on one of the mud cleaning units, known as ‘shale shakers’, and requires a full time
dedicated engineer to make manual measurements every 20 minutes.

Kenny et al. (1996) emphasize the drilling fluid properties and the relationships between
the fluid rheology and the particle-settling velocity: for highly deviated wells, a balance must
be struck between minimising particle-settling velocity and promotion of fluid velocity. The
hole cleaning problem can be alleviated by identifying and adjusting the relevant rheological
pararmeters of the drilling fluids.

Rasi (1994) focuses on hole problems resulting from accumulation of cuttings or cavings
on the low side of wellbores with high inclination and large holes. In such wellbores, tall
and stationary cuttings beds often form. Such beds do not usually cause problems while the
drill bit is being rotated. Problems arise when the drill string is moved axially in or out the
hole. They propose a hole cleaning design tool based on fluid mechanics first principles. This
qualitative approach enables the optimisation of fluid rheology selection, drill string design
and wellbore profile.

Zamora and Hanson (1991), based on laboratory observations and field experience, com-
piled 28 rules of thumb to improve high-angle hole cleaning.

Pilehvari et al. (1996) review in detail all the experimental and qualitative solutions
that have been suggested in the literature of cuttings transport in horizontal wellbores. The
authors point out the lack of quantitative statistical models and the deficiencies of fluid
mechanics models. They conclude that an efficient hole cleaning monitoring system should
take advantage of the relevant data in real time.

During drilling operations, valuable information about the field at various depths is col-
lected by a procedure known as ‘logging’. Drill cuttings which are returned to the surface are
examined for traces of hydrocarbons and for their fossil content. Wireline logs measure the
electrical, acoustic and radioactive properties of the rocks which give clues as to the rock type,
its porosity and how much fluid it contains. Other quantitative parameters are measured at
the surface. It is possible to collect and track a wide variety of drilling parameters, as the

rate of progress, the drill string torque (ZTorque) and pressure (STPP), the bit depth, etc.
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CHAPTER 2. MONITORING THE OIL WELL DRILLING PROCESS

Statistical analysis of drilling data has been conducted by Sifferman and Becker (1992)
who examined the effect of different parameters on cuttings transport. It was shown that
there are interactions between various parameters, and thus a simple relationship could not
be derived.

Thule Rigtech has recently developed a new device, the PD-50, which is capable of de-
tecting and monitoring fine particles in drilling fluid. The principle of the PD is ultra sonic,
supported by complex electronic processing. It operates in real time, on-line. The device is
sensitive enough to detect material as small as 30 microns across. The operation of the device
relies on the exchange of energy which occurs when a small particle impacts the sensor face
at speed. The energy of the particle is proportional to the product of its mass and the square
of its velocity. The energy lost by the particle on impact is converted by the sensor into an
electrical discharge. Thus, a small particle travelling at high speed might produce a similar
discharge to a larger particle travelling at a lower speed. To use the device as a measure of
size, one of the variables needs to be fixed and it is easier to control the velocity. The PD-50
mud stream is accelerated by a positive displacement pump towards the sensor face. The
pressure in the stream is monitored, and used as a proxy for flowrate. By tracking changes
in the circulating volumes of fine LGS during active drilling, the PD-50 is also able to detect
changes in the rate of progress (ROP). For a complete description of the PD-50, see (Thule
Rigtech, 1995).

Using the PD-50, we can follow the trends in the volumes of drilled solids in order to
obtain a better picture of downhole conditions with regard to drilled solids than has ever
been possible before. Preliminary trials showed that there are empirical relationships between
events in drilling and the particle size measurements and volumes (Thule Rigtech, 1995). If
a nurmerical relationship can be developed between levels of fine LGS expected in normal
drilling for a given ROP and levels circulating in a known ‘clean hole’, a numerically based
specification of what constitutes a clean hole could be defined.

Other relationships might be explored: for example, where there is excess fine LGS relative
to known ROP together perhaps with small fluid losses, this might suggest possible hole wash
out! or steady reductions in LGS of a certain specification, which might map deteriorations
in bit condition.

To improve the assessment of hole cleaning quality, Thule Rigtech gathered on-line in-
formation about the changes in LGS volumes in the drilling mud in order to analyse this
information for correlations with other drilling parameters, for example, ROP and Torque.
It has been decided to measure each parameter every 30 seconds. There are reasons to think

that the resulting time series may be oversampled. The drilling process manifests a sequen-

' Alternating hard and soft formations cause offset ledges. Soft bands are easily drilled and may be washed
out by the drilling fluid, an oversize hole being produced. Unwanted deviations are produced with the potential
of a severe dog-leg.
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tially changing behaviour and the properties of the process are usually held steady, for a
certain period of time, and then, at certain instances, change to another set of properties.
Using such a small sampling rate can produce highly autocorrelated time series, because of
this period of time where the parameters do not fluctuate. It was however important to
specify a reasonably small sample rate as data are gathered on-line. It was only possible to
take measurements at a well site once; hence in order to avoid missing important information,
it was better to oversample the time series.

The data have been collected on a rig in Holland. Unfortunately it often happens that
some sensors are ‘off’ and therefore no measurement is possible for a certain time. These
problems occur for example when the drilling fluid pumps have been switched off. Several
drilling parameters are directly affected by such an event. Another significant problem occurs
when the whole drilling string has to be hauled to the surface. In this case, a new section
is added to the string and the whole string is then lowered. These events are quite common
during a day and precautions must be taken in order to assess the quality of the collected
data. The knowledge of an expert is thus required and fortunately a drilling engineer has
produced a quality data control and has identified sections of relevant data. These sections
of data points cannot be simply re-assembled in order to create a big dataset: the resulting
time series would represent different drilling situations and the temporal dependencies would
be destroyed.

For these reasons, it is difficult to have a reasonably large dataset and our statistical
analysis has been affected by this problem. For example, it is often the case that the size of
the time series is not larger than 400 points. Moreover, electrical certification requirements

led to a redesign of equipment and several months were lost because of this.

2.4 Noise reduction and smoothing techniques

One of the major features of the data is the high level of noise and it is worth to distinguish
here white noise (also called random or Gaussian noise) which occurs with similar amplitudes
and impulse noise which is a momentary perturbation of the signal. It is also important to
note that the relatively small sample rate of 30 seconds can produce a high level of correlated

noise although no statistical investigation of it has been carried out in our work.

2.4.1 Removing outliers

Tt often happens that data points are affected by electrical noise. This is particularly signif-
icant for the ROP time series: several outliers can be identified, since a lot of these values
are greater than 100 ft/hr (an ROP of 45-50 ft/hr is considered to be very good).

In order to remove outliers, a basic and robust approach is based on a median filter. If X

denotes a random variable, then the median of the probability density function P(z) is the
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Figure 2.2: The first line shows how median and mean filters perform on a noisy step function. The
second line shows the importance of the window size: a window of 3 points is not able to remove the
outliers.

value Zpeq for which larger and smaller values of z are equally probable:

—00

/d Plz)dz = é - /  P(2)da. (2.1)

med

In other words, the median of a distribution is estimated from a sample of values z1,...,Zn
by finding that value z; which has equal numbers of values above it and below it. One
useful characteristic of median filtering is its ability to preserve signal edges while filtering
out impulses. Thus, instead of using the mean, which fails as an estimator of the central
value for values drawn from a probability distribution with very broad ‘tails’, we can use the
median of the distribution to estimate the central value. This is particularly useful when the
sample contains a lot of outliers: the median will not take into account the values that are
very far from the central value, contrary to the mean.

In practice, a median filter consists of sliding a window of an odd number NV of elements
along the signal, replacing the centre sample by the median of the samples in the window.
Figure 2.2 shows how filters based on the mean and the median perform on a simple example.
The first line represents a noisy step function and the outputs we can obtain with a window
size of 3 points. The median filter preserves the edge of the function whereas the mean
filter smooths it completely. The second line shows a noisy straight line with two significant
outliers and how a correct choice of the window size is important for the median filter to
perform well.

In order to filter out impulse noise, we therefore have performed a median filter on the
different time series. As said previously, the value of N is important: a large value for N will
give a very smooth time series, and in extreme cases the shape of the original time series will

be lost. On the contrary, a small value for N will not help to remove outliers.
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2.4.2 Moving averages

A moving average (MA) is a simple technique for calculating the average value of a time
series. The term moving implies that the average changes or moves, There are many different
types of moving averages: arithmetic, exponential and weighted. The only difference between
these various types is the weight assigned to the recent data. We describe here the weighted
MA which is the most common moving averaging technique.

When applying weighted moving averages, we basically fit a polynomial to the first set
of terms, say 2m + 1, and use the polynomial to determine the trend value at the (m + 1)th
point, the middle of the range of that set. We then fit the same order of polynomial to
the 2nd, 3rd, ... ,(2m + 2)th observations and determine the trend value at the (m + 2)th
point and so on. It can be shown that the procedure is simply equivalent to taking linear
combinations of the observations with coefficients or weights which can be tabulated n a

standard form:
m
= Y Tty (2.2)
j=—-m

This technique of averaging a time series is often used in econometrics in order to get the
trend of a time series. We will see in the next section how to use this technique for monitoring

the oil well drilling process.

2.5 Stuck pipe detection

The main motivation for the project was to use the PD-50 to measure the fine particles of
rock and thus monitor downhole conditions. In particular, we hoped that analysis of PD-50
data would indicate when a stuck pipe is likely to occur. Figure 2.3 plots the LGS time series
(total amount of low gravity solids) over one day. At 17h50, the rig was stuck in the hole
and at 18h00 circulating operations started. It can be seen that the build up is gradual till

the rig is stuck.

We propose a simple algorithm in order to detect such a crucial problem. As a significant
and long lasting increase of the amount of low gravity solids is the key indicator of this
fault, we propose to extract the trend from the data and apply elementary rules to determine
if the trend is significant. The quality data control made by Thule Rigtech enables us to
slice the data and remove sections of invalid data. A median filter is then used in order to
remove outliers. We then apply moving averages to get the trend of the time series. In this

work. we implemented a simple unweighted moving average (a; = ~4—-2) The algorithm
; g g j Al )

2The value of m should be chosen in order to reflect the major trends in the time series. In this work, we
chose m = % hr although bigger values such as m = 1 hr or = 2 hr gave simular results.
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Figure 2.3: Trend of LGS before and after a stuck pipe. Sections of invalid data have been removed.

is essentially based on computing the fractional increase of low gravity solids over a certain
period (algorithm 1).

The variable occurrences is used to detect 2 consecutive significant increasing trends
of LGS. The rule based on the fractional increase allows an increase between the range
[min, max]® over 2 hours. When applied on the data we have collected, it is possible to detect
substantial problems. We have tested our algorithm on the whole database. This represents
twenty days of collection. Amongst all the data, the algorithm has detected precisely two
significant increasing trends of LGS. For the first event, the code detects 2 consecutive gradual
increases of LGS of 23% and 25% (i.e. 54% over 4 hours), informing the user at 15h00 (i.e.
3 hours before the fault) that the pipe may get stuck (see Figure 2.3). For the second event,
although the pipe was not stuck at the end of the day, the code has detected an increase of
87% over 4 hours, which could have resulted in a stuck rig. More data are obviously needed
for properly assessing the performance of the algorithm.

Finally, it should be noticed that the on-line implementation of this algorithm is straight-
forward and is computationally efficient. Also, although this algorithm gives good results on
our database, an improved version can be obtained by using a smoother version of the frac-
tional increase: instead of computing the fractional increase every 2 hours, we can compute

the gradient at each time and average it over 2 hour.

3As we remove sections of invalid data, big jumps of PD-50 data can happen from one period to another
one. Such an upper bound is meant to ignore them. In this work, we used min = 20% and max = 50% as
suggested by a drilling engineer.
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Algorithm 1 Stuck Pipe Detection
occurrences = 0
loop
Filter the data using a median filter.
Smooth the time series using moving averages.

Compute the fractional increase every 2 hour:
A(i’ ) — Ty—Tpy
t Ty
if A(#;) > min and A(Z;) < max then
occurrences = occurrences + 1

else

occurrences =0
end if
if occurrences = 2 then
Stop drilling: detecting a forthcoming problem!!!
end if
end loop

2.6 Discussion

We have outlined some of the problems raised by the analysis of oil well drilling data. Drilling
is a complex real-world process and many aspects of the hole cleaning need to be carefully
studied and researched. In this chapter, we have presented the process and standard tech-
niques for filtering the different time series. One of the main goals for the project was the
stuck pipe detection and we have shown how to design a simple and efficient algorithm which
can help the engineers on the rig for monitoring the drilling process.

Collecting oil well drilling data is a difficult operation. Because the data are collected
during drilling operations, it is often the case that portions of the data are missing simply
because the devices are not running or because the process is stopped for a specific reason.
The amount of data used in our studies was very small and, as we saw, it is difficult to assess

properly the performance of the algorithm we proposed.
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Chapter 3

Hidden state models for time series

3.1 Introduction

A multivariate time series is a sequence of continuous d-dimensional random vectors ¥ in-
dexed by a time variable t. Suppose that at time T° we have seen a sequence of observations
VI = [yg,- -, Ys -, yr)' and that we wish to build a model from the sequence VT that
enables us to predict the value of Y at time 7 + 1. Unfortunately, in most realistic cases, the
observations are not deterministically related. Moreover, because of the finite and limited size
of the data, there will be undoubtedly a mismatch between our model and the true process.

Probability theory is a powerful tool for expressing uncertainty and randomness in our
model. A statistical model is based on certain probabilistic assumptions that attempt to
capture the essential characteristics of the data generation process. We do not believe that
a model will represent exactly the true process but we hope we will be able to develop tools
that enable us to make decisions for new data points. Given a model and a sequence of
observations, the main goal of time series modelling is to estimate the parameters of the
model by a statistical procedure, such as mazimum likelihood, make point predictions and
define error bars for unseen data. Other goals are possible: for example if the underlying
generator is believed to switch between different regimes, it is quite important to develop
techniques that segment the time series in order to identify which regime was responsible at
a certain time t.

The classical theory of maximum likelihood estimation assumes that the observations

Y., ...,yp are independently and identically distributed, which allows us to write the joint

'Throughout this thesis, a sequence of observations will be denoted Vi= (Y Yigrs- -y, We will use
the notation P(y;) to denote both the probability density function for a continuous random vector and the
probability P(Y'; = y,) that the discrete random variable Y, takes the value of y, at time ¢.
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distribution as:

T

PT) =[] Plys): (3.1)

t=1
By definition, the main characteristic of a predictable time series is that the observations are
not independent. Hence Equation (3.1) is not applicable. We can however always factorise
the joint probability as:

T

POT) =Py [ Pl 1977, (3.2)

t=2
which makes explicit the relationship between the observation y, at time ¢ and the history of
the sequence. The intractability of such a general model is clear: it is in general impossible
to develop a model which takes into account the whole history of the time series.
In order to circumvent this problem, one must assume that the influence of the past

observations is summarised by some function of previous observations:

Py, | V7Y = Plye | F(ViZe), (3.3)

which tells that the probability of observing y; is a function of k previous observations
Ye1s-- s Ytk

The technique of embedology is inspired by non-linear dynamical system theory (Packard
et al., 1980). In this framework, we assume that the data are generated from a finite dimen-
sional system whose dynamics are described in a d-dimensional manifold. d is the effective
degree of freedom of the system. Unfortunately the whole variables describing the system are
often not accessible; only one variable represented by a time series is observable. However,
Takens’ theorem allows us to reconstruct the underlying dynamical system or more precisely
an embedding space where the variables exhibit a behaviour similar to the original ones. The
technique is based on constructing delay vectors [y;_y, ... ,Y¢—j] and Takens’ theorem gives
the conditions for this to be an embedding (Takens, 1981). It is then possible to describe
the observation y, with respect to the previous observations y;_,... ,Y;_. For example, an
autoregressive (AR) model of order k assumes that the observation y; is a linear function of

k previous observations,

k
ye=> A+ (3.4)
1=1

where € is a white noise term (e ~ N (0,0%)).
This technique has been successfully applied in non-linear dynamical systems and neural

networks (Lowe and Webb, 1994). There are however several practical problems that need
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to be addressed. First, the theory has been developed for deterministic dynamical systems,
while most real-world data contain a high level of noise. Moreover, the number of delays
that must be taken into account in order to describe the dynamics of the system is often
not known a priori. Techniques have been however developed to circumvent this problem
and estimate the intrinsic dimension of the system (Broomhead and King, 1986; Lowe and
Hazarika, 1997).

A more general approach assumes that the past sequence can be summarised in a state

variable which carries all the information contained in y{*l:

Py, | YY) = Py, | s0)- (3.5)

The state variable s; is often called hidden because it is not visible. In this framework,
we believe that the dynamics of the data generating process are described by the hidden
state variable. We do not assume that the observed data points y, follow the conditional
independence property given by Equation (3.3); however another, unobserved variable is
assumed to exist and to have this property.

In the simplest case of k& = 1, the state variable follows a first-order Markov process?,
P(sy| s = P(s¢ |81, (3.6)

and is completely defined by the initial probability P(s;) and the state iransition probability
P(s;]8;_1). When the state variable is discrete, the model is called an hidden Markov model

HMM). In the case of a continuous variable, the model is known as a state space model

(
(SSM).

Due to their flexibility and to the simplicity and efficiency of their parameter estimation
algorithms, HMMs and SSMs have proven to be the most widely used tools for learning
probabilistic models of time series data. In this chapter, we review both models, describe

how they can be trained in a maximum likelihood approach and show their use for time series

modelling.

3.2 Hidden Markov models

Given an observation sequence le, our goal is to model the probabilistic distribution from
which the time series was generated. Let S be a discrete random variable taking values in the

set {g1,...,gn} and assume that the system at any time ¢ is in one and only one of the N

2Markov models quickly become intractable for large values of k. A k-order Markov model where the state
s: is a multinomial variable s; € {g1,... ,gn} would require NE+! transition probabilities.
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states g1, ..., gn. The random variable Y; can be considered to be a probabilistic function of
the underlying states, i.e. y, is an observed measurement from the system but the underlying
states are not themselves directly observable. Assuming that the state variable St is a sta-
tionary discrete-time first-order Markov process, the resulting model is a doubly stochastic
process and is called a first-order hidden Markov model (HMM). It is called hidden because
the state of the underlying process is not observable, but can only be inferred indirectly
through another set of stochastic processes that produce the sequence of observations. Thus
the model assumes two sets of conditional independence relations: that Y is independent of
all other random variables given S; and that S; is independent of 51, ..., S—2 given Si_1 (the
Markov property). Using these independence relations, the joint probability for the sequence
of states and observations can be written as
T
P(ST, ) = P(s1)P(yy | s1) [ Pselse-1) Py s2)- (3.7)
t=2

To illustrate the concept of a hidden Markov model, let us consider the following example
ingpired from the speech recognition community: given a sequence of acoustic features (which
have been obtained by preprocessing the speech signal), a speech recognition model attempts
to recover the sequence of words that the speaker intended to pronounce. The usual approach
is to define a language model which specifies the structural dependencies of the sequence of
symbols. This is often defined by a graphical model which represents the structural relation-
ships between the words and phonemes of the language. A simple Markovian interpretation
can then be derived from this graphical model, namely by defining the transition probability
from one word to another. Each word or phoneme (i.e. each hidden state) is characterised
by a probability distribution of its acoustics features.

HMMSs have been successfully applied in speech recognition (Bahl et al., 1983; Rabiner,
1989), cryptography and more recently in other areas such protein classification, sequence
alignment (Baldi et al., 1993) and fault detection (Smyth, 1994).

In general, the parameters of a specific model are referred as w = {4, B,II}, where
A = {a;;} denotes the state transition matrix, B = {b;(y,)} the observation probability

distribution in each state and IT = {m;} the initial state distribution:

aij = P(S¢=g;j|Se-1=a), (3.8a)
bily,) = Ply;lS: = a), (3.8b)
m = P51 =q) (3.8¢)

The matrix A defines the structure or the topology of the model and is often summarised in
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Figure 3.1: A Markov chain with 3 states. Each node represents a hidden state. The structure of the
model is represented by the edges which specify the probability transition from one state to another.

a graph as the one in Figure 3.2. In this example, the states are interconnected is such a way
that every state can be reached from any other state.

For time series modelling, the observation probability distributions B are often chosen to
be a mixture of Gaussians, as such models can approximate, arbitrarily closely, any finite,

continuous density function, provided that enough components are used:

P
bi(yy) = D cipN (Yei Bips Bin)s (3.9)
p=1

where v, is the multivariate observation to be modelled, ¢;p is the mixture coeflicient for the
p-th mixture in state i and A is a Gaussian density function with mean p;, and covariance

matrix X;,.

1
N (Wi iy Bip) = ——— €x (—~ — i) By, — )> 3.10
(Vi3 i Hiip) RIS P =5y = pip) Bip (U Bip) (3.10)

So far, we have presented the model without reviewing the main problems that must be
solved for the model to be useful in real-world application. Because state space models are
similar models, we prefer to present them in the next section. In section 3.4 and section 3.5,
we will review the inference and parameter estimation problems for both models and show

how these problems can been tackled in a similar framework.

3.3 State space models

The major difference between a hidden Markov model and a state space model relies on the
property of the hidden state variable. Whereas the hidden state is discrete in an HMM, the
variable s; in a state space model belongs to a continuous space.

A state space model (SSM), also known as a linear dynamical system (LDS), is described
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by the equations:

st = Fysi—1+ug, (3.11)

Yy = Gisi+y, (3.12)

where s; is an unobserved state vector, s; € R™, v, is the observed vector, y; € R¢ and uy
and v, are uncorrelated zero-mean Gaussian vector processes with covariances @, and R;.

These equations can be rewritten as:

P(St ] 3t~1) = N(St; Ftst_l, Qt)') (313)

P(yt ! St) = N(yt; GtSt, Rt) (314)

The initial state is also assumed to be a Gaussian random variable, P(s)) = N (g, ). Ex-
ogenous inputs can be included in the state equation but we shall omit such terms for the
sake of simplicity as they are of the same form as the noise term.

The major motivation for such a model comes from the desire to model separately the un-
certainties in the model defined by the noise @, and the uncertainties in the measurements ex-
pressed by the output noise matrix Ry. In order to illustrate where a state space model might
be used, consider the autoregressive (AR) model of second order, y; = AMYi—1 + Aayi—2 + €.

A simple transformation allows us to rewrite it as:

1

s
Yy = (/\1 /\2) + (3.15)
&2
t
st NP S _
, = ) + V-1, (3.16)
s? 1 0 52
t t—1

by introducing a 2-dimensional state vector s; and assuming vy = uy = €. It can be shown
actually that any ARMA model 2 \yi—; = Z?:o ¢jer—j, where €; is a noise term, can be
expressed in an equivalent state space form with constant matrices F and G. In the reminder
of this thesis, we will consider models where the transition and output matrices F; and G
are time invariant. Noise covariance matrices will also be considered as not depending on i.

There are many examples from econometrics (Pole et al., 1994) to engineering (Anderson
and Moore, 1979) where the state space model has been successfully applied. A good example
comes from surveillance systems, where the goal is to track a large number of objects using
measurement data from many diverse sensors. The goal of a typical tracking system is to

estimate the current state of an object from noisy measurements. Here the state is the velocity
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or the acceleration of the target. The measurements are noise-corrupted observations such
as the position, the azimuth or signals from several sensors (Bar-Shalom and Li, 1993).

In these applications, the parameters of the model w = {F,G,Q,R,u, 2} are often
known in advance. For instance, in the tracking problem, the system equation (Equation
(3.11)) represents the dynamics of a physical phenomenon: the trajectory of an object. In
this case, the goal is not to learn these parameters but rather to estimate the trajectory of
the hidden state, which is known in control and engineering as filtering. This problem is
very similar to the problem of recovering the sequence of hidden states in HMMs. In the
next section, we will see how to solve this inference problem. We will also see that making
predictions is a special case of this problem. We will then concentrate on the learning problem
for both models and show how parameter estimation can be obtained in the same framework,
i.e. by using the EM (Expectation-Maximisation) algorithm (Dempster et al., 1977) which is

a powerful algorithm for models involving missing variables.

3.4 Inference

Given a model with known parameters w and a sequence of observations y?, the inference
problem consists of estimating the posterior probabilities of the hidden variables.

For HMMs, two algorithms are commonly used to solve two different forms of the inference
problem (Rabiner, 1989). The first computes the posterior probabilities of the hidden states
P(s;|YT), for t < T using a recursive algorithm known as the forward-backward algorithm.
The other inference problem is to find a sequence of hidden states which ‘best’ explains
the observation sequence. The most widely used criterion is to find the single most likely
path, i.e. to maximise P(SIT | YT, w) which is equivalent to maximising the joint probability
P(ST, YT |w). For this purpose, the Viterbi algorithm (Viterbi, 1967), a particular case of
dynamic programming, offers an efficient solution. Typical uses might be to learn about the
structure of the model and to segment the time series into different regimes if we believe that
the system operates in multiple modes and switches its dynamics.

For SSMs, the inference problem is usually divided into special cases in the engineering
literature: filtering, smoothing and prediction (Anderson and Moore, 1979). The aim of
filtering is to compute the probability of the hidden state given the observations sequence up
to time t, i.e. to compute P(s;| Y}, w). In the case of a linear dynamical system with Gaussian
assurnption there exists an optimal recursive algorithm: the Kalman filter (Kalman and Bucy,

1961). Smoothing differs from filtering in that the information made available after time ¢
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is used for estimation the hidden state. Here we are interested in estimating P(s;| ), for
¢ < T. There exists also a recursive algorithm similar to the forward-backward algorithm for
HMM which is called the Kalman smoother, also known as the Rauch-Tung-Streibel smoother
(Rauch, 1963). Finally, the goal of prediction is to compute the probability P(s.|YT), for
¢t > T. Here measurements up to time ¢ can be used and the model is simulated in the forward
direction.

Because HMMs and SSMs belong to the same family of probabilistic models, it 1s worth
mentioning that the forward-backward and Kalman smoothing algorithms are special cases
of exact inference for more general graphical probabilistic models (Pearl, 1988; Smyth et al.,
1997).

Recall that for a first-order Markov model the joint probability can be factored as:

T

P(ST,VT) = P(s1)P(y, | s1) [ ] Ps¢]s:-1)P(ys | s0)- (3.17)
t=2

By marginalising the distribution® P(yy,...,yr), we see that
PO = /P(st,yf)dst. (3.18)

The inference algorithm is based on a recursive equation over the probability P(st,y?),
instead of P(s;|yT). This latter conditional probability can immediately be obtained by

using the fact that:

_ P(St,y?)
[ P(s;, YF)ds;

Equation (3.18) and Equation (3.19) show that the joint distribution P(s, VT is all we need

P(s;| V) (3.19)

to solve the inference problem. Moreover, as we will see, the likelihood of the observation
sequence y! can straightforwardly be computed as well. At each time ¢, because of the

Markov property, we first note that the variable s; separates the chain into three parts.
P(3t7yr) = P f_l,St)P(ytlst)P(ygrhst)
= PO}, s)P(Vi | st)

S at(st)ﬁt(st), (320)

where we have defined the parameters a;(s;) = P(V¥, 8) and fi(s¢) = P(Y},, | s¢), borrowing

the notation from (Rabiner, 1989). Forward recursive equations for o can be obtained by

3In order to keep the development as general as possible, the random variable S; is taken to be continuous.
The framework applies for HMMs by simply replacing the integral () by a sum (3°) over the hidden states.
Theoretical arguments for mixing discrete and continuous random variables can be derived by introducing
Lebesque-Stieltjes integrals (Grimmett and Stirzaker, 1982).
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observing that:

ay(sy) = P, s:)
= Py, |s) PV, s¢)

= P(ytk-‘-‘t)/P(yihl,st—l,st)dst—l

= P(yt!3t)/P(St|3t-l)at~l(3t—l)d3t—l7 (3.21)

where again we have used the first-order Markov property. Similarly, backward recursive

equations are obtained for j:

5t—1(3t—1) = P(y3|3t—1)
_ /P(stlsg_l)P(y?\st)dst

- /'P<stlst~1>P<yt|stw.st)dst. (3.22)

These recursive equations are initialised in the following way:

a1(s1) = P(s1)P(y1]81)s (3.23)

Br(st) = 1L (3.24)

The « and B parameters contain all the information we need to compute the statistics of
any order. For example, in the learning problem, we will see that we need the statistics of
the second order &_,(i,7) = P(84-1,8¢| VI ), i.e. the probability of being in state ¢ at time
t — 1 and moving to state j at time ¢ given the whole sequence y{" This can be computed

by observing that:

P(si1,8: | V7)) = P(y]’“"yt_l}’}z;én.).’yTISt_I’St)
PV, su-1)P(s¢] s1-1) Py, | 80) P(yl, | 8¢)
POT)
o—1(8¢—1)P(8¢ | 84-1) Py, | 8¢)Be(st)
POT) '

(3.25)

3.4.1 Inference for HMMs

In the case of an HMM, the hidden variable s; is discrete and takes values from a set

{(]1-,--- ~,(JN}~
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The forward-backward algorithm

The recursive equations for the o and § parameters are immediately obtained by:

N
a(t) = Pyg|St= Qi)zajiat—l(j): (3.26)
N "
Bioi(i) = > ayPys| S = q5)B:(9)- (3.27)
7=1

Defining (i) = P(S; = ¢;|VT) and &-1(4,5) = P(Se-1 = 4, St = ¢;| V), and using
Equation (3.19), Equation (3.20) and Equation (3.25), we get:

. ot (3) B ()
() > a(9)Be(5) (8.28)
Erlig) = a—1(1)ai;bj(y:)Be(7) (3.29)

> -1 (8)aibi () Be(s)
It is also worth noticing that the likelihood P (ycf) can be easily computed via the o param-

eters:
N
PRI = ar(i). (3.30)

Predictions

Given an observation sequence y?, the goal of the one-step ahead prediction is to estimate
the predictive distribution P(yr | VT). This can be done by first estimating the predictive
probability pr1(i) = P(St41 = ¢ | Y]) of reaching each state ¢ at time 7"+ 1:

P(Sri = ¢, V] )

prail) = P(y?) (3.31)
PYT)
o 2or(dag
a Z_j Zl aT(j)aJ‘i- (3.33)

The predictive density distribution P(yp | VT is then a weighted sum of each individual

output density P(yr, | Sr+1 = ¢i):
N
Plyr o |Y1) =D pra(@)PYri1 | ST = ). (3.34)
1=1

The Viterbi algorithm

Finally we mention another important inference problem for HMMs. In some applications,

the hidden state is associated with a particular meaning (e.g. words or phonemes in speech
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recognition). Here the goal is to infer the most likely sequence. This is done by finding the
sequence ST of hidden states which maximises P(S], V] ):
ST* = argmax P(ST,Y7T). (3.35)
st
The Viterbi algorithm (Viterbi, 1967) offers an efficient solution for this problem. The algo-
rithm is very similar to the forward procedure; the difference is the maximisation over the
previous states instead of the sum in Equation (3.26). The most likely sequence is obtained

by backtracking at each time t the ‘best’ state. This is done by first defining:

6:(i) = max P(S7™", 8¢ = ¢, V1), (3.36)
S
and recursively computing:
6(i) = Ply:|St = g) max fajid-1 ()] (3.37)
i(s) = argmax [azid1 (7). (3.38)

j

1;(t) records the ‘best’ previous state at time t and the optimal sequence of states is obtained

in a backward recursion with s} | = 1;(s}) starting from s7 = argmax ¢r(é). In the next
i

chapters, we will see how to use this algorithm for initialising HMMs and recovering a sequence

of states (see Chapter 4).

3.4.2 Inference for SSMs

When the hidden variable s; is continuous, the integral at each time step must be solved
analytically for a tractable algorithm. This leads to restrictions on the transition P(s;]8¢-1)
and output probability densities P(y; | 3¢). The linear-Gaussian assumption circumvents this

problem?.

The Kalman smoother

The forward procedure is known as the Kalman filter, which is the optimal estimator of the
state vector at each time step ¢ based on the information available at time ¢. It can be shown
that the mean of the conditional distribution P(s;|Y!) is an optimal estimator of s; in the
sense that it minimises the mean square error (Anderson and Moore, 1979). Moreover, when
the normality assumption is dropped®, the Kalman filter is still an optimal estimator in the

sense that it minimises the mean square error within the class of all linear estimators. Based

“ Actually, the recursive equations are still tractable for any distribution belonging to the exponential family.
5In that case, there is no guarantee that the Kalman filter will give the conditional mean of the state vector.
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on the assumption that the disturbances and the initial state are normally distributed, the
recursion equations of « allow us to estimate the mean and the covariance of the Gaussian
probability distribution P(s;| V1) = N(8; 84z, Pyje)-

The recursive equations decouple naturally into recursions for the mean s, and the covari-
ance Py;. Rewriting Equation (3.21) for the continuous case and taking the parameters « to
be Gaussian leads to the well known Kalman filter equations (Kalman and Bucy, 1961). De-
noting the prior P(s; | V1) = M(sy; 84j¢—1> Ptjs—1), the posterior P(s¢| V) = N (8¢5 841 Pje)
and the predictive distribution P(y, | Vi) = N (Y Yyge—1, W), we get:

Stit-1 = Fst—l}t—l (3.39)

Py = FP; 1y 1 F' +Q (3.40)

Ygi-1 = Gy (3.41)

W = GPtlt»—lGﬂ’ +R (3.42)

Sy = Selt—1 T Ke(Ye — Yoo (3.43)

Py, = (I - KiG)Py (3.44)

starting with sy9 = p and Pyo = Y. The matrix K; is known as the Kalman gain,

K, = Pt]t—l,Gl Q! and determines how much of the error is signal rather than noise. Equa-
tion (3.42) allows us to estimate the reliability of our predictions.

Note that, as the model converges to the optimal state, the prior will become more sharply
peaked around this optimum state estimate. The covariance Py will therefore become small,
W, will tend to R, and the prediction error, et = y; — Yyjp—1, also known as the innovation,
will converge toward the white noise v.

In Equation (3.43) the first term contains the information gained from previous data,
and can be thought of as representing the current model. The gecond term represents the
contribution from the new data point. If K; is small, then the new measurement will not
alter the state vector significantly, implying that the current model is adequate. If Ky is
large, then the new measurement will be making an important contribution, implying that
the current model requires a significant adjustient. Problems arise when the Kalman gain is
small, but the measurements contain important information. In this case, the filter is failing
to adapt to this new information, and is said to be diverging. When using the Kalman filter, it
is essential to check for divergence in order to determine the validity of the model (Anderson
and Moore, 1979; Bar-Shalom and Fortmann, 1988).

Similarly, backward recursions can be obtained using the § parameters. Combining for-
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ward and backward equations leads to equations known in the engineering community as the
Rauch-Tung-Steibel smoother or the Kalman smoother (Rauch, 1963), estimating the mean

and the covariance of the posterior distribution P(s;|V]) = N (st | syr, Pyr)-

Sty = St—1pp—1 + Jr-1(8yr — Fst1p-1), (3.45)

P, yr = Poypq+Je1(Pyr — Pye1)J et (3.46)
where J; 1 = Pt_llt_lF'(Pﬂt_l)"l is a matrix similar to the Kalman gain.
Predictions
One-step ahead predictions are given by Equation (3.41) and Equation (3.42):
P(yr | YT) = N(Gsryyr, GPryyrG' + R). (3.47)

Forecasting several steps ahead requires the prior information to be projected into the future
through repeated applications of the system equations. Given the prior at time t + 1, the
prior at time ¢ + 2 is indeed given by the system equation. Linearity ensures again that the

prior will be normal:

sponr = FN7lspyyr, (3.48)
T+ N-1
_ 1! At n !
Pronge = FY 7' PPV >0 FYTTQEYRL, (3.49)
i=T+1

where sp. |7 is the one step ahead prediction and is given by Equation (3.39). sy T is the
N step ahead estimate. Note however that if each eigenvalue of F' is less than 1, sy yp — 0

as N — oo, irrespective to sy . The output predictive distribution is easily obtained by:

Plyrynr | VD) = N(Gsrinr, GPrynrG' + R). (3.50)

3.5 Parameter estimation

Given a sequence of observations y{’, the goal of parameter estirnation or learning® is to

estimate the parameters w of a model. We concentrate here on a maximum likelihood (ML)

approach and show how both HMMs and SSMs can be trained in the same frarmework.
Direct maxirnum likelihood approaches like the Newton-Raphson technique or the method

of scoring involve the use of non-linear optimisation techniques. These numerical techniques

®In the engineering community, this problem is known as system identification.
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make use of the derivatives of the log-likelihood and estimate iteratively the parameter’s
vector w according to the equation:

_10L(wy)

Wiyl = wi — MMy I

(3.51)

2
where M = —8—'52(:“5—*) for the Newton-Raphson technique and My, = I(wy) for the method of

oL (wy) OL(wy)'

scoring. I{wy) =E [ ] is the Fisher information matrix and 7 is a scalar step
size chosen in order to ensure an increase of the likelihood at each step.

For example, for a state space model, the (predictive) log-likelihood can be obtained by
considering the predictive distributions P(y; | Vi1 from time step 1 to T

T

T
1 T 1
L(w) =—5 (Y, — Gst]t—l)lwt—l(yt - G33|t—1) ~ = log(2m) — 5 log |Wy|, (3.52)
2 t=1 2 2

where 8431 and Wy = GPy;_, G'+ R are given by the Kalman filter equations. By taking the
derivatives of Equation (3.52) with respect to the parameter’s vector w = {F,G,Q,R,p,L},
it is possible to derive an iterative algorithm which maximises the likelihood.

These techniques have been shown to work for several cases (Goodrich and Caines, 1979).
Gupta and Melira (1974) review also these techniques for linear dynamical systems. The au-
thors note however that the Newton-Raphson method should not be used for several reasons.
Firstly, this technique fails to converge whenever M has negative eigenvalues. Secondly,
there might be numerical problems inverting My when this matrix is nearly singular and
finally, the computation is very expensive especially if the number of parameters is signifi-
cant. They propose methods for improving the method of scoring though they note that this
technique can also run into several problems: for example, the step size may not lead to an
increase of the likelihood. A monotonic increase of the likelihood is indeed not guaranteed.

The Expectation-Maximisation (EM) algorithm (Baum et al., 1970; Dempster et al., 1977)
ensures, however, at each step an increase of the likelihood and convergence to a local maxi-
mum is always guaranteed. The algorithm is simpler to implement than second order methods
and is often used when dealing with missing variables. Both HMMs and SSMs can be trained
in this framework because the hidden state variables can be treated as missing variables. By
integrating out all the hidden variables, the log-likelihood for a Markov model can be written

as:

L(w) = log /P(S}",yﬁw) ds,...dsr. (3.53)
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If we introduce now a distribution @ over the hidden variables, we obtain a lower bound:

N T T
tog [ PIST, 0T [w)asT = tog [ QTyEEL2) s

Q(ST)
PST, T’
> [asTos (b(ﬁ?)‘w) asT
= (log P(ST, T |w))g — (log Q(S]))q (3.54)
= F(Q,w) (3.55)

where we have used Jensen’s inequality’. The EM algorithm alternates between maximising

the lower bound F(Q,w) with respect to () and w, respectively, holding the other fixed.

E-step Qry1 = argmax F(Q,wy) (3.56)
Q

M-step Wiy = argmax F(Qp41,w) (3.57)
w

As the E-step does not change w, the likelihood after each combined EM step does not
decrease. The rmaximum in the M-step is obtained by maximising the first term in Equation
(3.54) since the entropy term —(log Q(ST))g does not depend on w. It can be easily shown
that for arbitrary () the maximum in the E-step occurs when Q(ST) = P(ST | VT, w), at
which point the bound becomes an equality. The M-step holds this distribution fixed and re-
estimates the parameters w to maximise F(Q,w). This process is iterated until convergence
to a local maximum is reached. Whereas the direct maximum likelihood techniques perform
the optimisation in the marginal parameter space, the EM separates the optimisation in two
spaces: the hidden variables and the model parameters spaces.

It is also worth noting that the algorithm can be partially implemented: in the generalised
EM algorithm, the new estimate w increases the likelihood but does not necessarily maximises
it. This is particularly useful when the M-step involves non-linear equations. In that case,
we must resort to gradient based techniques. We will use this version for training HMMs in
a maximum mutual information approach (Chapter 4).

For Markov models, we see that the E-step is nothing else than the inference problem
where we have to estimate P(s; | Y1, w). An efficient algorithm for computing this has been
described in section 3.4 for both HMMs and SSMs. The M-step is straightforward as it simply
involves linear equations. Appendix A solves these equations and gives the re-estimation
formulae for HMMs and SSMs.

The EM algorithm has found applications in several and different real-world problems:

its version for HMMs, the Baum- Welch algorithm (Baum et al., 1970) is the most commonly

"We use the notation (f) » to denote the expectation of the function f under the distribution P, i.e. (fHip=

[ fz)P(z)dz.
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used algorithm in speech recognition. Vermaak et al. (1998) compare the EM algorithm
and numerical techniques for speech enhancement. Shumway and Stoffer (1982), Pole et al.
(1994) suggest also the use of the EM algorithm for parameter estimation in state space
modelling. Because of its efficiency and simplicity, the algorithm is also used in other fields
like mixture models (Titterington et al., 1985).

However, the EM algorithm is highly sensitive to initial values of the parameters. This
is a common problem for mixture models because of the existence of a large number of
local minima. It is therefore important to develop good initialisation techniques in order to
obtain fast convergence to a good optimum. In Chapter 4 and Chapter 6, we will present
such procedures. Unfortunately, another disadvantage of the EM is its slow convergence in
the latter stages of training: it is often the case to notice a plateau in the likelihood after
920 iterations of the algorithm. Shumway and Stoffer (1982) suggest to switch to another

algorithm like the second order methods at this stage.

3.6 Examples

In this section, we give two simple examples of how hidden state models can be used for

analysing and forecasting time series.

3.6.1 Physiological data

In order to illustrate an important application of HMMs, namely the segmentation of a time
series, we consider physiological data recorded from a patient who was tentatively diagnosed
as suffering from sleep apnoea, which is a condition in which the subject temporarily stops
breathing during sleep. This data has been taken from the repository of time series data
sets of the Santa Fe Time Series Analysis and Prediction Competition (Weigend and Ger-
shenfeld, 1993). The whole data set is actually a multivariate time series containing several
physiological variables such as heart rate and blood oxygen saturation. We focus here on the
univariate time series of the respiration of the patient. More details about this data are given
in (Rigney et al., 1994).

The dataset consists of 1000 data points®. Assuming that periods of apnoea are charac-
terised by a relatively small activity of the chest, we train a simple 2-state HMM. The output

probability density P(y,|s:) is a single Gaussian, although this assumption may not be ap-

Asin (Chahramani and Hinton, 1998), we used samples 6201-7200 for training. The dataset can be found
in http://www.cs.colorada.edu/~andreas/Time-Series/SantaFe. . html#5etB.
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Figure 3.2: Segmentation of the chest volume data with the Viterbi algorithm. The sections of low
activity, corresponding to periods of apnoea, are easily identifiable.

propriate for such physiological data. We used this data as a simple segmentation problem
only, being aware that other models, such as autoregressive HMMS may fit the time series
more accurately.

In no more than 10 iterations the EM algorithm converges. Figure 3.2 plots the chest
volume and the segmentation obtained by applying the Viterbi algorithm. Although this
example is quite simple, it shows how hidden Markov models can be applied for identifying
underlying regimes. In many problems, it is indeed quite interesting to develop techniques
that allow us to segment a time series. A simple predictive model, often linear, can then be

fitted on each segment.

3.6.2 Sunspot data

Figure 3.3 plots the annual average® of sunspots from 1700 to 1920. The time series shows
a strong seasonality with a time varying amplitude and has served as a benchmark in the
statistical literature (Tong, 1995) namely because the underlying generator is not exactly
known. The average time between maxima is 11 years and to date no principled theory exists
for describing this behaviour, although it is known that sunspots are related to other activity
of the sun. Our goal here is not to present a model that outperforms other techniques. We
want to show how a simple linear dynamical system can be used and emphasize the dimension
of the hidden state.

The training set contains 200 points from 1700 to 1920. We use the data from 1921

9The data are daily, monthly and annually reported by the Royal Observatory of Belgium and can be found
at http://www.oma.be/KSB-0RB/SIDC/sidc_txt.html.
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Figure 3.3: Annual average of sunspots from 1700 to 1920.

to 1998 for testing the models. In order to illustrate the importance of the dimension of
the hidden state, we trained two linear dynamical systems with the EM algorithm: the
difference between these two models is simply the dimension of the hidden state space. The
one-dimensional SSM(1) (s; € R) is not capable of predicting the data: the one-step ahead
predictions are a delayed version of the target. On the contrary, the second model, SSM(2),
which contains a two-dimensional hidden state, performs quite well (Figure 3.4). This is
confirmed by comparing the root mean squared errors'? for these two models: RMSE(1) =
0.362 and RM SE(2) = 0.155. Furthermore, it is interesting to note that higher dimensional
hidden state space models do not outperform the results obtained with SSM(2), suggesting

that the state space may lie in R?.

3.7 Discussion

In this chapter, we have reviewed two powerful tools for modelling time series in a proba-
bilistic fraxnework. We have shown how first-order Markov models can be viewed in the same
framework. Because of the Markov property, the inference problem is exactly the same for
both hidden state models and we derived recursive equations that enable us to estimate at
each time the hidden variables.

We also reviewed the learning problem in a maximum likelihood framework and described
the Expectation-Maximisation algorithm. As mentioned previously, the main disadvantage

of the EM is its slow convergence. It is indeed important to have good starting values for the

19For assessing the performance of a model on a test set, it is common to define the root mean squared

I o — 2 ~ 3 B . —_ . .

error: RMS = —%—,EJ—H—:% where ¢, is the prediction of the model and g, is the mean of the target. This
t=1 t

value does not grow with the size of the test dataset and has a value of unity when the model is predicting

the mean of the test data.
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Figure 3.4: Predictions of state space models on the test set: the one-dimensional SSM(1) (top) does
not manage to capture the dynamics of the time series and produces a prediction which is delayed
with respect to target. The second SSM(2) (bottom) performs better.

parameters as it increases both the speed of convergence and the probability of converging to
a good local optimum. We believe that this initialisation is crucial for any real-world problem.
In the next chapters, we present initialisation techniques that alleviate this problem.

A Bayesian treatment of Markov models represents a challenging and promising field of
research. Recently, MacKay (1998) suggested using techniques known as ensemble learning
(Hinton and Van Camp, 1993) for discrete HMMs (discrete output probabilities). Whereas
the maximum likelihood approach optimises a point estimate in the parameter space, the
ensemble learning approach considers an ensemble in order to approximate the posterior
probability of the parameters. At this stage no results have been presented. The extension
to continuous HMMs is also promising, especially when dealing with a small amount of
observations, where the ML approach may be susceptible to over-fitting. An important
application of the Bayesian approach for HMMs would be to identify the relative importance
of the hidden states. This could be carried out using techniques similar to autornatic relevance

determination (Neal, 1996; MacKay, 1995). For a real-world problem, it is often particularly
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difficult to know in advance the number of hidden states the model should contain.

The same approach of ensemble learning can be applied in the field of linear dynamical
systems. A full Bayesian treatment of state space models is impractical but approximations
like the ensemble learning may give a better representation of the posterior distribution than
its mode.

In our work, we use HMMs and SSMs for two important issues. The first one concerns
segmentation: for example, the oil well drilling process is essentially characterised by different
regimes: the properties of the process are usually held relatively steady, except for minor
fluctuations, for a certain period of time, and then, at certain instances, change to another
set of properties. Because the dynamics of the process are different from one regime to
another, we show in Chapter 4 how to use a hidden Markov model for modelling this process.
The second application concerns prediction. Because the Kalman Filter enables us to predict
not only the mean of the time series but also to provide confidence intervals for unseen data
points, we show in Chapter 6 how to combine HMMs and SSMs in models that we call
dynamical local models.

There are several extensions of HMMs and SSMs. In Chapter 6, we will review in detail
several hybrid models that have been proposed in different fields like econometrics, engineer-

ing and machine learning.
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Chapter 4

Time delay estimation with hidden

Markov models

4.1 Introduction

A key part of multivariate time series analysis 1s identifying the lags or delays between
different variables. This differs from characterising the order or degree of freedom of a single
time series, where the goal is to estimate the intrinsic dimensionality of the data in order
to model the deterministic component of the data generator (Broomhead and King, 1986).
In the latter case, the correlation of past values usually tails off gradually, so that the most
recent samples have the largest impact on the current value. This is not the case where two
time series X; and Y; are related by a lag A. There will be no relationship between X;_; and
Yi for I < A

Under the assumption of stationarity, cross-correlation is a powerful tool for measuring
and modelling linear relationships between variables (Kendall and Ord, 1990). The cross-
correlation can then be used in linear model identification procedures; it is often used as the
basis for identifying the order of non-linear models, as it is fast to compute. However, in
many real-world applications the assumptions of linear dependencies and stationarity are not
valid.

In this chapter, we consider the problern of modelling processes which manifest a sequen-
tially changing behaviour: the parameters of the data generator usually remain constant,
except for minor fluctuations, and then, at certain times, change to another set of values.

Our approach is based on using hidden Markov models to model the distribution of the

time series. More precisely, given two time series X; and Y;, related by a lag A and generated
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from a non-stationary underlying process which exhibits different regimes, we show how
HMMs can be used to estimate the value of \. An HMM is essentially a mixture model, in
which information about the past is conveyed through a single discrete variable, the hidden
state. In certain circumstances, this state can be viewed as a switching variable between
different process regimes.

To estimate parameters for an HMM within a maximum likelihood framework, one can
use the Baum-Welch algorithm (Baum et al., 1970), which is the relevant version of the
EM algorithm (Dempster et al., 1977) (see Chapter 3). In section 4.2, we develop a novel
procedure for training HMMSs to maximise the mutual information (MMI) between two time
series X; and Y; and compare it with maximum likelihood (ML) estimation. The Baum-
Welch algorithm is a hill-climbing algorithm which does not require the cost function gradient.
Unfortunately, no such method is known for MMI estimation and we must therefore resort
to the use of traditional maximisation techniques that do use the cost function gradient.

We apply this approach to the analysis of the oil well drilling process. The process exhibits
both complex time relationships between variables and highly non-stationary behaviour. A
fluid called ‘mud’ carries the drilling cuttings up the hole to the surface. The time it takes for
the cuttings to come up to the surface is called the lag for return and is a crucial parameter
for modelling and understanding the process. This time-varying parameter depends not only
on the depth of the hole and the pressure of the drilling fluid, but also on the geology of the
surrounding rock formation and the drilling mode. In section 4.3 we analyse drilling data
and compare our results with cross-correlations and the numerical models based on fluid

mechanics which are currently used operationally.

4.2 Delay estimation

Consider the following problem: a sequence of observations 25 =1{(z1,n),-.-, (@7, yr)] is
being generated by an underlying system. Unfortunately, we do not see the true sequence
2T but a modified version where one variable is delayed: 2T ) = zi-am1)s-- -5 (e, yr)l-
Our task is to estimate the value of A. Given a delayed two-dimensional time series vector
ZT()\) = (X¢_»x, Yi)t=1..7, we say that Y; leads X; by an unknown lag A\. For convenience
and clarity, we define X' = XTIy =[X\_y,...,Xr_y] to be the time series X; delayed by !
steps, omitting time indexes and Z! = (XY .

Let S be a discrete random variable taking values in a set {qi,...,¢n} and assume that

the system at any time is in one and only one of the N states, such that the observation z;
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Figure 4.1: The synchronisation problem: we assume an underlying true state sequence Sirye. This
sequence is not observable but can be recovered by identifying the corresponding observation sequence
Z*, i.e. when the observations z; and y; are properly synchronised.

is a measurement from the system but the underlying states are not observable. Under this
assumption, the problem of delay estimation can be viewed as a synchronisation problem,
where the goal is to recover the correct sequence of hidden states. Figure 4.1 shows the
underlying sequence S(l) corresponding to different delayed time series (in this example, the
system can switch between two states g1 and g2). The value A corresponds to a true sequence
of hidden states and the task is to recover this sequence by identifying the corresponding

observation sequence Z*.

4.2.1 Maximum likelihood

As mentioned in Chapter 3, the usual procedure for training HMMs is to find the parameter

values of w that maximise the likelihood or the log-likelihood of the observed sequence 2zl
w* = arg max log P(ZT |w). (4.1)
w

The standard approach for doing this is to use the Baum-Welch algorithm, which is the
relevant version of the EM algorithm (Baum et al., 1970) (see Appendix A).

For a multivariate time series Z = (X,Y), the ML estimation procedure will maximise
the joint distribution P(X,Y |w). Using this approach, training an HMM denoted by w'
will allow us to obtain the most likely model parameters that describe the delayed sequence
Z!. Assuming the existence of a true value [ = X that relates ¢ and v, we propose the
following delay estimation procedure based on maximumn likelihood. First, an HMM w' is

trained with the delayed sequence z' and the likelihood of each model w' is estimated. The
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lag is then obtained by finding the most likely model, z.e.

A = argmax log L}, (4.2)
l

where £/ = P(2'|w) denotes the likelihood of the delayed sequence Z' given the model
w!. The approach is motivated by the fact that the sequence 2! corresponds to a specific
sequence of hidden states representing the dynamics of the process (Figure 4.1). Intuitively,
we expect that £' will always be less than £* (I # A). Indeed, assuming that for each time
step t, z;_» and y; have been generated by a specific state ¢}, the system will not be able to

enter that true state if z; and y; are not properly synchronised.

4.2.2 Maximum mutual information

There are many very important properties of the maximum likelihood estimate but most of
them stem from an implicit assumption of model correctness. The justifications for using ML
to estimate the mean and the variance of a Gaussian distribution, for example, assume that
the sample has indeed been generated by a Gaussian distribution. If, however, we do not
know the ‘correct’ model which has generated the data and if there is no reason to believe
that the sample has been generated from any particular model, then we can ask ourselves
whether the use of ML is appropriate.

Tn previous work (Brown, 1987), the maximum mutual information (MMI) criterion for
discriminative training of multiple HMMs has been introduced in order to alleviate problems
that may occur when several HMMs are to be designed at the same time. This leads to an
algorithm where the goal is to choose a correct model m amongst a set of M models that

maximises the following expression:

_ P(Zﬂwm)
(Z,wy) = |log Zﬁ/{__l P w) . (4.3)

In contrast, the motivation of our approach is not to maximise the mutual information be-
tween the observation sequence and a complete set of models w = (w1, - .- ,wpy); instead we
are trying to estimate the parameters of a single HMM that maximises the mutual information
between two random variables.

In order to measure the amount of information with respect to ¥ that we may expect to ob-
tain by observing X', it is useful to introduce the concept of mutual information I(X LY |w)

between X! and Y:

IXLY)=HXY +HY) = H(XLY), (4.4)
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where 7(X) = —(log P(X))p(x) is the entropy of the random variable X. As the joint
probability P(X!,Y) can be rewritten as P(X',Y) = P(Y | X")P(X'), we have

IXLY)=HY) - HY | XY. (4.5)

In our problem, the goal is to maximise the information with respect to ¥ we may get by
observing a delayed time series X'. We notice however that the first term of Equation (4.5)
does not depend on ! and can be discarded in the optimisation procedure. Indeed, for two
different values of I, i.e. for two different time series X' and X%, the entropy of ¥ does
not affect the change in the mutual information I(X",Y) — I(X 2 ¥). Thus, maximising
the conditional distribution P(Y | X!) is equivalent to maximising the mutual information

between Y and X'.
arg max I(X',Y) = arg max log P(Y | xh. (4.6)
l l

Comparing Equation (4.6) to Equation (4.2), we see that ML, and MMI estimations differ in
the objective function. In ML, we are interested in estimating parameters that maximise the
joint probability. The MMI approach leads to maximising the conditional probability.

In terms of previous work, our approach resembles that of (Viola and Wells, 1995) who
used mutual information for image matching. It is also interesting to point out the link
between supervised learning and discriminant learning. One of the major drawbacks of
HMDMs is their poor discriminant power due to unsupervised learning. That is why the MMI
approach has been introduced for improving discrimination (Bahl et al., 1983; Brown, 1987).
Bridle (1989) showed that supervised and discriminant learning are strongly related. In our
work, we suggest to model the output time series Y as a function of the delayed input time
series X! instead of modelling the joint distribution. That leads to a discriminant supervised
learning algorithm. This approach is very similar to the Input-Output HMM of (Bengio and
Frasconi, 1995), although in that work the hidden state is also a function of the input time
series X.

The Baum-Welch algorithmn is a hill-climbing algorithm for ML estimation which does
not require the model gradient. Unfortunately, the exact M-step for MMI estimation is not

possible. Suppose that the sample vector z; is comnposed of two multi-dimensional vectors

Y B
z¢ = (@1, y,) with mean p = (@1, 4o) and covariance matrix & = then the
Bop Do
conditional density P(y,|z:) is Gaussian with mean p,y + £, 57 (2 — py) and covariance

EQQ — 22121_11212, i.€.

Py, @) = Ny pg + 22121_;}' (Tt — p1), 202 — 22121—11212)~ (4.7)
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For an HMM with Gaussian observation densities, the output density of each hidden state
i is parameterised by a mean vector g and a covariance matrix . For example, taking the
derivatives of the expected log-likelihood (log P(ST, YT | XT,w))q with respect to the means
@, and po and setting them to zero leads to ‘inter-related’ equations involving both means.
This implies that re-estimation formulae cannot be obtained for the parameters of the HMM.

In Chapter 3 however we saw that a generalised EM algorithm can be derived by using
traditional gradient-based minimisation techniques: at each M-step, a new estimate w is ob-
tained by taking the derivatives of the expected log-likelihood with respect to w = {A, B,1I}.
These derivatives involve the forward-backward equations (E-step) and can be used either in
a simple gradient descent algorithm or a nonlinear optimisation algorithm such as conjugate
gradients (Press et al., 1992), which uses the gradient of the objective function. Each forward
and backward recursion requires on the order of N2T' calculations, where N is the number
of hidden states and T is the length of the sequence. This can lead to a computationally
expensive algorithm, especially if the HMM contains a large number of parameters. This is
not a big issue for the problem we are interested in, as the size of the HMM we consider is
relatively small (the models in our simulations do not contain more than 3 hidden states).
It should also be noticed that contrary to the ML approach where the constraints of the
mode]! are satisfied at each iteration, the implementation of the MMI approach requires a
re-parameterisation of the model to ensure that the constraints are satisfied. Appendix B

reviews the derivations and the technical points of the MMI procedure.

4.3 Initialisation

As mentioned in Chapter 3, the choice of initial conditions is crucial for the EM algorithm
since the re-estimation equations give values of the HMM parameters which correspond to
a local maximum of the likelihood. Good initial conditions will increase the speed of con-
vergence. For this reason, it is important to develop good initialisation procedures. Rabiner
et al. (1985) emphasized the strong sensitivity of the Baum-Welch algorithm to the initial
model parameters. The authors clearly showed that the accuracy of the estimates depends
on the initial conditions from which the iterative procedure starts. In particular, a good
initialisation of the means of a mixture of Gaussians can lead to significant improvement in

the convergence speed and enhances the quality of the local maximum found.

At each iteration, we must ensure that the new estimates a;; can be interpreted as transition probabilities.
Another constraint concerns the output probabilities b;(y,): if we consider a Gaussian distribution for example,
a symmetric positive definite covariance matrix is required at each step.
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Depending on the application, prior knowledge will of course allow the investigator to
specify initial estimates. For example, a knowledge about the average state duration is
important since it permits us to initialise the transition matrix A. Rabiner (1989) notes that
either random or uniform initial estimates for II and A parameters can lead to good results.
The most important parameters are the output density probabilities B, especially when
dealing with a mixture of components. For this purpose, a segmental K-means algorithm
has been derived in the speech recognition community in order to initialise hidden Markov
models. This procedure is a variant of the well-known K-means algorithm. Starting from
an initial estimate of the HMM parameters, the observation sequence is segmented into N
states. This segmentation is obtained by finding the most likely state sequence given the
current model and can be carried out with the Viterbi algorithm (Viterbi, 1967) (see Chapter
3). The parameters of each hidden state are then updated via a K-means clustering procedure.
This results in a maximum likelihood estimate of the data that occur within each state of
the model. This procedure is particular useful when dealing with high-dimensional data
space and when the output density probabilities B are modelled by a mixture of Gaussians.
Moreover, it is possible to obtain good initial estimates for the transition probabilities a;; by
simply enumerating the number of transitions from state g; to state g;.

In our simulations, however, we noticed that a simple K-means algorithm without per-
forming a segmentation via the Viterbi algorithm is sufficient, because the size of our models
is small and because each hidden state is associated with a single Gaussian distribution. This
allows us to iimplernent a fast initialisation procedure which leads to rapid convergence of the
EM algorithm. We illustrate the efficiency of the procedure by training HMMs on synthetic
data. We first generate two sequences of 1000 observations (training and test sequences) from
an HMM containing N = 3 hidden states. The observation sequence is a two-dimensional

timne series and the parameters of the HMM are as follows:

0.95 0.03 0.02 p, = (05,00) 2 = diag(1.0,1.0)
A=1002 095 0.03 py= (=1.0,05) By = diag(2.0,0.5) (4.8)
0.03 0.02 0.95 py = (20,20) 3= diag(0.5,0.2)

We trained 100 models with different initial conditions on the first observation sequence.
Each model is then evaluated on the test set. Table 4.1 summarises the performance of the
initialisation procedure and compares it to a simple random initialisation.

The convergence is faster on average when the model has been initialised with the K-

means algorithm. Moreover, the standard deviation is significantly lower than the random
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Technique | # iterations Letrain Ltest
random 29+ 16 —~2.7154+0.04 | —2.752 £ 0.12
K-means 18+3 —2.7024+0.01 | —2.739+0.04

Table 4.1: Performance of the K-means algorithm as an initialisation procedure for HMMs.

initialisation. This suggests that different initial estimates will lead to a similar model after a
small number of iterations. On the contrary, we see that a model with a random initialisation
may need several iterations of the EM before converging. The likelihood per datum on the test
set of the true model is —2.722 and both techniques lead to models with good generalisation
capabilities. Concerning the maximum likelihood estimates, we give here the mean of the

transition matrix over the 100 models for both initialisation procedures:

0.92 0.04 0.04 0.95 0.03 0.02
Arana = 1 0.05 0.91 0.04 AK means = | 0.02 0.95 0.03 (4.9)
0.04 0.04 0.92 0.03 0.02 0.95

Compared to the true parameters, we see that the K-means procedure leads to better esti-

madtes.

4.4 FExperimental results

In this section, we first present the results of the maximum likelihood approach on synthetic
data in order to demonstrate the HMM approach and show that it is more general than the
classic standard linear techniques for lag detection. We then introduce the drilling process
and demonstrate the application of our methods for estimating a crucial parameter in the oil

industry.

4.4.1 Synthetic Data

In order to illustrate our approach, we consider the following problem: we generated a syn-
thetic two dimensional sequence of 1000 observations z* = (z¢,yt)i=1..7 from a two state
continuous HMM denoted by w* = {A*, B*,II*}. In this case A = 0. We then train two
state continuous HMMs ©! with delayed sequences 2t = (@41, Yt)e=1..7, —L < | < L using
the ML approach. We choose a transition matrix A* which allows balanced transitions {rom
one state to another, s.e. al, = a;fi(: 0.6). The output probability density associated with
each state is a Gaussian with a diagonal covariance matrix and does not affect the simulations

significantly.
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Figure 4.2: The left hand plot shows the cross-correlogram of the two time series generated by the 2
state continuous HMM ©*. The right hand plot shows the log-likelihood against the lag when training
HMMs with ML approach. A significant peak appears for [ = 0, which corresponds to the true lag

A=0.

The results are shown in Figure 4.2. It can be seen that the cross-correlogram is not
capable of detecting any relationship between the two time series, even though they are
generated by the same HMM. This is simply because we chose a diagonal covariance matrix,
which means that there is no linear relation between the two time series. On the other hand,
plotting the log-likelihood of each model ©! against [ shows a significant peak for [ = 0,
which corresponds to ©*, 4.e. the true model which was used to generate the time series.
The sharpness of the peak shows that we cannot use the shape of the likelihood curve to

search for an optimal value of [, as the curve is practically flat for |I| > 1.

4.4.2 Drilling data

A significant difficulty during exploration drilling is ensuring the drilling debris is effectively
removed from the bore; this is known as the ‘hole cleaning’ problem (Pilehvari et al., 1996).
At present, no equipment exists to act as a monitor of hole cleaning status. In the case of
vertical wells, an adequate velocity in the mud circulation is generally sufficient to guarantee
that most debris are brought to the surface. The problem is more complicated when drilling
deviated wells since gravity settlement can occur. The gradual build up of low gravity solids
(LGS) increases the torque required to turn the drill string. In extreme cases, the drill
pipe may get stuck or even fracture off. Retrieving a stuck pipe is a difficult and expensive
operation: if the pipe breaks and cannot be recovered, the well may even be abandoned.
The time it takes for the cuttings to come to the surface is called the lag for return

and is a crucial parameter in early stuck pipe detection and modelling the drilling process.
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Indeed this parameter depends not only on the depth of the hole; but also on the geology
of the surrounding rock formation and the rheology? of the mud. The current algorithms
used on rigs to compute the lag for return are physical models based on fluid mechanics
but are believed to have an accuracy in the order of several minutes, mainly because of
assumptions on the nature of the fluid and the flow. Fluids are divided into two general
classes, namely the Newtonian and non-Newtonian fluids®. Generally speaking, there are
two types of flow: laminar flow and turbulent flow®. During drilling operations, numerical
models take into account non-Newtonian nature of drilling mud, but do assume that the flow
is laminar, because of the poor understanding of downhole conditions.

Recently a new device, capable of detecting fine particulate solids in drilling fluids, has
been developed by Thule Rigtech Ltd. (Thule Rigtech, 1995). A drilling engineer has gathered
a large dataset of drilling variables and low gravity solid information from a rig in Holland.
As all the data are collected on the surface, if A represents the lag for return, then Y3, which
is the quantity of low gravity solids (LGS) measured at time t, is effectively the amount of
solids that has been generated by the bit at time ¢ — A. Thus, assuming that Y; is related
to other drilling parameters X;_», we propose to compute the lag of return by using hidden
Markov models and the procedures described in Section 4.2.

Our motivation is essentially based on the fact that the drilling process is actually a
process that manifests a sequentially changing behaviour: the properties of the process are
usually held steady, except for minor fluctuations, for a certain period of time, and then,
at certain instances, change to another set of properties (caused by action of the drilling
engineers anticipating a problem, change of geology, etc). The opportunity for more efficient
modelling can be exploited if we can first identify these periods of rather steady behaviour,
and then are willing to assume that the temporal variations within each of these steady
periods are stochastic. A more efficient representation may then be obtained by using a
common short time model for each of the steady, or well-behaved parts of the model, along
with some characterisation of how one such period evolves to the next.

Even if the process cannot be considered as stationary, tlere are strong reasons to believe
that ) remains relatively constant over a 2 hour time scale. Typically, X¢ represents one

relevant drilling parameter (although we have also considered models with more than one

2The term rheology defines the chemical properties of the mud: the most important rheological properties
of mud are its plastic viscosity, its yield point and its gel strength (Rabia, 1985).

3A Newtonian Fluid is defined by a constant viscosity, which is only influenced by changes in temperature
and pressure.

*In turbulent flow, the flow pattern is random in both time and place. The chaotic and disordered motion
of fluid particles results in two components of velocity: a longitudinal and a transverse component.
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parameter): for instance, the pressure of the circulating fluid inside the pipe (STPP) or the
torque of the pipe (Torgue). The total force applied on the drilling system in order to hold
the drill pipe in the rig (Hook Load) and the rate of progress (ROP) are other important

parameters.

Normal drilling conditions

This data set represents the ‘mormal’ drilling conditions as no special event was identified
by the drilling engineers. The data set contains 450 data points and represents a period of
4 hours of drilling (each time step corresponding to 30s). Figure 4.3 plots the original LGS
and Hook Load time series. It is very difficult to estimate the value of A by a simple visual

inspection of the time series and the numerical models suggest a value of 31 min for the lag

for returmn.
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Figure 4.3: LGS and Hook Load time series for normal drilling conditions.

Figure 4.4(top) plots the cross-correlogram between LGS and two important drilling
parameters, namely STPP and Hook Lood. No correlation significantly different from zero

can be detected.
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Figure 4.4: Cross-correlogram (top) and log-likelihood of the observation sequences Z given the
model HMM! for ML (middle) and MMI (bottom) approaches.

For each value of {, 100 HMMs with different initial parameters have been trained using
ML and MMI approaches. A K-means procedure was used to initialise each model. Figure
4.4(middle) and Figure 4.4(bottom) plot the mean and the two standard deviation error bars.
The ML approach suggests a value between 36 and 40 min whereas the MMI approach is
more confident and suggests a sharper peak at 37 min, which is statistically significant.

The results reported here have been obtained by training 3 state HMMs using Hook Load
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parameter for the time series X;. Simulations with other drilling parameters did not give
significant results. As we shall see later, depending on the drilling conditions, selecting the
correct variable X; is a key problem with this approach. However, when using other data
sets corresponding to normal drilling conditions, we have found that Hook Load always gives
good results.

It 1s also important to note that, for our problem, there is no automatic technique to
specify in advance the number of states the model should contain. The major drawback of
HMMs is the significance of hidden states and without any prior knowledge, the investigator
needs to run several simulations with different topologies. In our application, we could
speculate that each hidden state is associated to a specific formation or rock structure but
this knowledge can hardly be used in advance.

Thus, other simulations with different numbers of states have been carried out in order to
assess the results obtained with an HMM containing 3 states. The same training procedure
was applied to models containing from 1 to 10 hidden states. For example, Figure 4.5 plots
the results obtained by the ML approach with HMMs containing 2 and 4 states. It can be
seen that the peak is less pronounced for an HMM containing 2 states® (Figure 4.5a). By
increasing the number of hidden states, we have noticed that the global shape of the plot
remained similar to the one obtained with 3 states. This can be seen in Figure 4.5b which
plots the results obtained with 4 states: the figure is very similar to Figure 4.4(middle) and
also suggests a peak around 35 min. It is however important to note that higher complexity
in the model increases the number of local minima and this is reflected in the error bars. The

same conclusions were drawn from models containing a greater number of states.

5The same remark applies to an HMM containing only one state, namely a simple Gaussian distribution
for which, no lag could be detected.
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Figure 4.5: ML results obtained with 2 and 4 state HMMSs on normal drilling conditions time
series.

Formation change

When exploring different types of rock structure, it is sometimes possible to estimate the lag
for return by visually monitoring relevant time series where a transition occurs between two
geological formations.

Figure 4.6 plots the rate of progress and the quantity of low gravity solids for a specific
event. At 08h04 the formation changed from soft to hard rock, which can be easily seen in
the first plot where the rate of progress decreases suddenly.

The second figure plots the quantity of solids and shows a significant regime transition
at 08h27: the amount of particles decreases as well. Note the noisy signal for LGS. For this
day, the numerical models based on fluid mechanics suggested a value of A of 43 min, which
seems to be wrong as visual inspection of the graphs gives a value of 23 min.

Figure 4.7 shows our results: we trained 2 state continuous HMMs with ZV = (24—, yt)t=1..T
where z; and vy, denote respectively LGS and STPP®. Again, the cross-correlogram of the
two time series shows clearly that this approach does not suggest any value for A. The sec-
ond figure plots the results obtained with the maximum likelihood approach. A reasonably
significant peak around 23 min can be seen. Moreover, by applying the Viterbi algorithm to
the sequence Z' = (zy_;,v;) with { = 23 min, we can see that the HMM stays in one state
before the event, jumps to the other state precisely when the formation change occurs and
then remains in the second state. Such a clear sequence could not be obtained with other
HMM's trained with a different value for [, confirming the computed value for A. The third

figure plots the results obtained with the maximum mutual information approach. Again,

8The hook load parameter does not give good results for this data set.
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Figure 4.6: Evolution of ROP and LGS for a particular event in drilling operations. The formation
changes from soft to hard rock at a certain time. The lag of return is visually identifiable in such a

situation.

this method suggests a sharper peak and confirms the value of A = 23 min.
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Figure 4.7: Formation change: cross-correlogram (top) and log-likelihood of the observation sequences
Z! given the model HMM! for ML (middle) and MMI (bottom) approaches.

To conclude this section, Table 4.2 reports the results of our simulations on 4 different
data sets and shows how they differ from the ones obtained from the fluid mechanics models.

In no case was it possible to identify the lag from the cross-correlogram.
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Technique Dataset A | Dataset B | Dataset C | Dataset D
Fluid Mech. 68 min 31 min 36 min 43 min
ML 72-75 min | 36-40 min | 40-43 min | 22-25 min
MMI 74 min 37 min 42 min 23 min

Table 4.2: Our results compared to the ones obtained by fluid mechanics models.
4.5 Discussion

In this chapter, we have shown how hidden Markov models can be used for identifying rela-
tionships between variables in a non-stationary environment. We proposed two approaches
for training the models for this application. The first one uses the usual maximum likeli-
hood estimation and consists of maximising the joint probability of the two variables. The
second approach uses a novel mutual information estimation approach, which maximises the
conditional probability of one variable with respect to the other.

We tested both techniques on data from a real-world process and clearly demonstrated
their ability to outperform traditional cross-correlation methods. We focussed on the esti-
mation of a crucial parameter of the drilling process and obtained better results than the
numerical models based on fluid mechanics used in the oil industry. When comparing the
ML and the MMI approaches, the latter seems consistently to estimate the lag more precisely.

Whereas the ML estimation can be implemented with an exact EM algorithm, the MMI
needs gradient information of the expected log-likelihood which leads to a generalised EM
algorithm. As indicated in Section 4.2, the MMI implemnentation can be time consuming and
we have noticed that it is more sensitive to initialisation than the ML.

We also showed how a fast and efficient K-means procedure can be used in order to
initialise hidden Markov models. This technique was applied to a simple synthetic problem
and gave significant results compared to random initialisation.

Concerning the estimation of the lag for return for the oil drilling data, as mentioned
above, we have noticed difficulties associated with the variable selection, as no general char-
acterisation of the most relevant drilling parameters is available at this stage. One way to
tackle this problem would be to use the qualitative relationships given by numerical models.

One direct and promising extension of this work would be to provide an on-line estimate
of the lag for return for the purposes of early stuck pipe detection. The current algorithmns
are batch algorithms. By considering only a forward pass in the forward-backward algorithm,

it is indeed possible to derive sequential learning algorithins.
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Chapter 5

Variational techniques for

probabilistic inference

5.1 Introduction

Probability theory provides a principled framework for quantifying uncertainty and its bene-
fits in many applied fields has become increasingly apparent (Pearl, 1988). However, proba-
bilistic solutions often require integrating over distributions of unobserved variables, and for
many models, these integrals are computationally intractable. One way of making further
progress is through the development of approximations.

A probabilistic model defines a joint distribution over a set of random variables. In many
models, such as hidden Markov models or linear dynamical systems, it is often the case that
some variables are not observed whereas others are visible. In that case, we need to compute
P(s,y|w)

Ply|w)

where w denotes the adaptive parameters of the model, S the set of hidden randoin variables

P(s|y,w) = (5.1)

and Y represents the set of observable random variables. The denominator P(y|w) =
[ P(s,y|w) ds is another important quantity known as the likelihood and is closely related
to the calculation of the posterior distribution P(s |y, w). Learning algorithms that maximise
the likelihood often make use of the calculation of P(s|y,w). For example, in Chapter 3
we saw how to train hidden state models with the EM algorithm: the E-step consists of
estimating the posterior probability P(s|y,w). The M-step makes use of this distribution
for maximising the expected log-likelihood with respect to the parameters w of the model.

For complex models, the integration over the hidden variables s is computationally not
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feasible. For such probabilistic models, it is necessary to develop approximation procedures
in order to render the inference problem tractable.

Variational techniques involve the introduction of an approximating distribution Q(s).

Consider the following expression
log Ply|w) = log [ P(s,y|w) ds

= log/Q(s)%@ ds

> [ Qoo™ ylw)
F(Q,w)

(s, .
o6 ¢

(5.2)

where we have used Jensen’s inequality. This forms a rigorous lower bound F(Q,w) on the
true log-likelihood. By choosing a judicious distribution Q(s), the computation of the lower
bound may be tractable. It is easy to see that the difference between the left hand side and
the right hand side of Equation (5.2) is nothing else than the KL-divergence between the

approximating distribution @(s) and the true posterior P(s|y,w):

log Ply | w) - F(Qw) = [ Qo) (1ogPly|w) —1og 212} g
Q)
_ . ,_P(S,y\'w) Q(S)
_ / Q(s)log Pla|y,w) Pls,y|w) ds
- e r
= KL(@QIIP), (5.3)

ds

The KL-divergence between () and P is a non-negative expression and is minimised if and
only if Q = P in which case it is zero and the bound becomes exact. However, this would
not lead to any simplification of the problem.

The goal of variational techniques is to choose a suitable form of the approximating dis-
tribution which is sufficiently simple to compute the lower bound on the true log-likelihood
and sufficiently flexible to keep this bound tight. For this purpose, one can consider a para-
metric family Q of distributions Q(s|®) governed by a set of wariational parameters ®.

From the family of distributions, we choose a particular one )(s|®*) which minimises the

KL-divergence:

o* = arg;nin KL (Q(s|®)||P(s |y, w)) - (5.4)

In section 5.2, we will see that graphical models provide a natural framework for choosing a

suitable parametric family.
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S5 )—()—>

Figure 5.1: A Bayesian network specifying the independence relations for a hidden Markov model.

As discussed in Neal and Hinton (1998), there is an interesting link between variational
techniques and the EM algorithm. Recall that the E-step consists of inferring the posterior
distribution P(s |y, w). The above derivations show that the E-step can still be applied when
the true posterior is not tractable. It is actually possible to generalise the E-step by using a
tractable distribution ¢) and minimise the KL-divergence with respect to this approximation.
In Chapter 6, we will make use of this remark for models where the E-step is computationally
intractable. Note also that it is not necessary to fully maximise F(Q, w) over () in the E-step.
A partial E-step, where the function F is locally optimised, can be implemented.

This chapter is intended to be a brief review of variational techniquse. A good overview
of these techniques can be found in (Jordan et al., 1998). Because we will make use of
variational techniques in the next chapter, we prefer to present the fundamental ideas in this
introductory chapter. In Chapter 6, we will see how to use variational methods for training

hybrid models that combine HMMs and SSMs.

5.2 Variational techniques in graphical models

Bayesian networks (Pearl, 1988) are graphical models for representing conditional dependen-
cies between a set of random variables. Figure 5.2 shows a Bayesian network for an HMM.
The figure shows a directed acyclic graph in which each node corresponds to a random vari-
able. A directed arc is drawn from node U to node V if V' is conditioned on U in the
factorisation of the joint distribution. U is a parent of V' and V' is a child of U. The absence
of an edge from node U to node V implies an unconditional independence between U and
V. For example we draw an arc between S; and Sy but not from ¥’ to Y.

A Bayesian network allows the user not only to understand the relationships between
the random variables but is also crucial for computing marginal and conditional probabilities

required in the inference and learning problems (Pearl, 1988; Heckerman, 95; Smyth et al.,
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1997; Jordan et al., 1998). Such models have been proven to be useful for modelling the
causal structure of complex systems involving several interacting variables. The problem of
probabilistic inference in graphical models is to compute the conditional probability distribu-
tion over the values of some of the random variables (represented as nodes) given the value
of other variables.

There are many cases where exact inference is not computationally feasible. A good
example is the QMR-DT database which is a large-scale probabilistic database intended to
be used as a diagnostic aid. The corresponding graphical model is bipartite in which the
upper layer nodes represent diseases and the lower layer nodes are symptoms. Because of the
huge number of variables, exact inference is not computationally feasible (Shwe et al., 1991).

The key question in variational techniques is how to pick a tractable parameterisation
for . Graphical models are actually of great help. The idea is to identify a simplified
structure in the graphical model which renders the inference problem tractable. This is done
by eliminating edges in the Bayesian network and choosing () from the family of distributions
defined by the simplified graph. Of course, the simplified graph must be rich enough to provide
an approximate distribution @ close to the true distribution P. The simplest approximation
consists of deleting all the existing edges of the graph. This leads to a completely factorised
distribution ) where all the variables are independent. This approximation, known as the
mean field approzimation, is often used in statistical mechanics (Parisi, 1988) and has been
applied in the neural computing community for the case of Boltzmann machine (Peterson and
Anderson, 1987) and sigmoid belief networks (Saul et al., 1996). Structured approximation
is another type of approximation where some but not all of the edges are removed. The
idea is to preserve substructures of the original graphical model for which exact inference is
computationally tractable (Saul and Jordan, 1996).

In order to illustrate these two approximations, consider the following example inspired
by (Ghahramani, 1997). Figure 5.2 shows a Bayesian network with 7" hidden variables and
one visible variable. The corresponding joint probability is given by:

T
P(sy,...,87,y|w) = P(s1|w) HP(st |81, w)P(yls,...,87,w). (5.5)

t=2

Consider the simple case where the hidden variables are discrete and let represent the variable
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Figure 5.2: A Bayesian network for which inference is not computationally feasible.

s; by a N-dimensional vector 8; = [s,...,s'] where s¢ € {0,1} so that
N i
P(sy|m) = ]]m=", (5.6)
i=1
N N o
P(s¢|se-1,4) = ] [](@) %, (5.7)
i=1j=1

where 7 represents the initial probabilities and A = {a;;} the transition probabilities matrix.
We will assume, for simplicity, that the output variable y is one-dimensional and normally

distributed with a mean specified by a linear combination of the hidden variables:

T N
P(ylsy,...,s7) =

1 o
= exp {——ﬁ(y _ Z szbi)z} . (5.8)

2mo t=1 i=1

In order to compute the posterior probability of a specific hidden variable, say s¢, given the
visible observation y, we need to sum over all the other hidden variables:

P(St)va) = Z P(Sl.a"'73T|yuw)

8140038t —1,8t4-15--4,87T
ZBlr--ast—l y8t4-1,-,8T P(SL’ s STHY | w)
281,..‘,87- P(31> 8Ty Y ' 'LU)

(5.9)

In the case of discrete variables with N possible values, the sum in the denominator contains
NT terms. In order to circumvent this problem, a simple approximation consists of defining

a distribution  where all the hidden variables g are independent given y, that is

Q815,87 |®) = Q(s1|$1) ... Qsr | 7). (5.10)

This approximation corresponds to the simple mean field approximation (Figure 5.3a) and a

vector of variational parameter @ is associated with ():

T N

Qsr,...,ar|®) = [T [T60)*%, (5.11)

t=11i=1
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CICICIENCINCECECEG

(@) (®)

Figure 5.3: a) The mean field approximation assumes that all the hidden states Sy are independent.
b) The structured approximation keeps the Markov chain.

in which the hidden variables s; appear as independent variables with adjustable means ¢.
The values of these variational parameters are obtained by minimising the KL-divergence
(Equation (5.3)), or similarly, maximising the lower bound on the log-likelihood (Equation

(5.2)). For our example, this gives:

.7:(@,’1.0) = <10gP(31, . ST)wa)> '—<10gQ)Q

— Z¢Z log7r1+z z i 1¢310gaij

t=2 4,5=1
T N N T N
__a y +Zzzwtwg¢r¢] +Zzwt ¢t“2JZZwt¢t
t=1 i=1 j#i t=1 =1 t=1 1=1
T N
- Z Z Pt log ¢ — log(27ror2), (5.12)

t=1 i=
where we have used the fact that under @, (si)g = ¢t and (sisl)g = ¢}. By taking the
derivatives of Equation (5.12) and setting them to zero, we get a set of fixed point equations

for the variational parameters:

N i N
; j ; w i Ly
¢ =0 | D (Al logasi + ¢ip logay) + —5y = > widl — swi) | (5.13)
i=1 i
where p(z;) = ex(pﬁ(;li is the softmax function. We see that the equation couples the

variational parameter of each node with the parameters of its predecessor and successor.
Starting with some initial values for the mean field parameters ¢, the fixed point equations
are iterated until convergence of the KL-divergence.

A structured variational approximation is an approximation in which the variables are
not completely factorised and is obtained by removing some edges of the graph and keeping
others. In this example, we can keep the structure amongst the hidden variables as these
variables define a Markov chain and an exact algorithm exists for solving the corresponding

inference problem (see Chapter 3). In this case, the corresponding variational approximation
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18:
T

Qssy..,57|®) = ZLQQ(sl 160 [] Qlst | s1-1, 1), (5.14)

t=2
where we have introduced a variational parameters vector @ which scales the probabilities of

the hidden variables. Zg is a normalisation factor ensuring that @ integrates to one.

N .
Qs1|¢) = H(mgbi)si, (5.15)
| 7,;1 . N |
Q(sttst_l,gbt) = HH((IU(]}:)S%—IS%_ (516)
i=1j5=1

Figure 5.3b shows the corresponding graphical model. Comparing Equation (5.14)-(5.16)
to Equation (5.5), we see that each variational parameter ¢¢ plays the role of a probability
P(y|si): we have indeed replaced the interaction of N hidden variables by N identical visible

variables Y. When expressing the lower bound on the log-likelihood, several terms disappear

to give
f . TN N o . TN L T N
FQw) = —g | +2°> > wiwl(shelshlo+ 3D wilsde -2 > wilsil
t=1i=1 j#i t=1 i=1 t=1 =1
N ’ i
- Z (sp)olog ¢f +log Zg — élog(%rorz). (5.17)
t=1 1=1

Taking the derivatives of Equation (5.17) with respect to ¢t and setting them to zero gives a

set of fixed point equations for the variational parameters:

; N
#hocexpd Sy~ > wilshe ~ sui) (5.18)

i
The equations make use of the expectations (s'ﬁ)Q‘ These expectations are obtained by
running the forward-backward algorithm on an HMM where the output probability P is
associated to each hidden state. In section 3.4, we saw how to compute v,(i) = (s})g. This
defines an iterative procedure where the forward-backward algorithm is used as a subroutine

for estimating (s})q-

5.3 Discussion

In this chapter we have briefly reviewed the general framework of variational techniques for

probabilistic inference and shown its application in graphical models. Variational methods
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provide a rigorous lower bound on the likelihood and lead to optimising the KL divergence
between the approximation and the true posterior distribution.

As discussed in (Jordan et al., 1998), a key issue of variational techniques concerns the
accuracy of the approximation. The choice of the approximation is often a matter of judge-
ment and the tightness of the resulting bound is obviously affected by this choice. It is also
important to note that, while the distribution @(s) might be easy to compute, the likelihood
Q(y | s,®) under this distribution might still be intractable. As in Equation (5.14), the ap-
proximation often introduces a normalisation factor which renders the computation of the
likelihood intractable. This can represent a problem for model comparison.

Other interesting problems concern the development of upper bounds on the log-likelihood
and mixture models as approximating distributions. Research in variational techniques is

recent and there are many open problems.
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Chapter 6

Dynamical local models for time

series

6.1 Introduction

Most forecasting approaches try to predict the next value of a time series by assuming station-
arity: i.e. the underlying generator of the data is globally time invariant. In many real world
applications, this assumption is not valid. Even non-linear regressors like neural networks are
not effective in modelling changing temporal structure in the time series. I'or instance, one
of the obstacles to the prediction of exchange rates in the capital markets is a non-constant
conditional variance, known as heteroscedasticity. GARCH models have been developed to
estimate a time-dependent variance (Bollerslev, 1986).

A special form of non-stationarity, where the underlying generator switches between (ap-
proximately) stationary regimes, seems a reasonable assumption for many practical problems.
In the last decade, hybrid approaches have been developed in order to model this behaviour.
One example is the mixture of experts (Jacobs et al., 1991; Cacciatore and Nowlan, 1994;
Weigend et al., 1995) which decomposes the global model into several (linear or non-linear)
local models known as ezperts, as each specialises in modelling a small region of input space.
One limitation of these models for time series analysis is that the gating network which com-
bines the local models has no dynamics. Tt i controlled only by the current value of the time
series.

One way to address this limitation is to use a hidden Markov model (which does have dy-
namics) to switch between local models. For example, autoregressive hidden Markov models

(ARHMMSs) switch between autoregressive models, where the predictions are a linear com-
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bination of past values (Poritz, 1982). ARHMMs have been reintroduced in the machine
learning community under the name of hidden filler HMMs (Fraser and Dimitriadis, 1994)
and have been recently applied to financial engineering in order to model high frequency
foreign exchange data (Shi and Weigend, 1997).

From econometrics to control, several similar hybrid models have been proposed. Their
main characteristic is the mixing of discrete and continuous hidden variables (Chang and
Athans, 1977; Hamilton, 1989; Shumway and Stoffer, 1991; Bar-Shalom and Li, 1993). A
linear system with Markovian coefficients, also called a jump-linear system, assumes the

existence of a linear dynamical system of the general form:

zy = F(s)zi—1 +uy (6.1)

Yy = G(sg)ze+ v (6.2)

where x; is the state vector, y, the measurement vector, and s; the unknown time-varying
parameter. 8; is restricted to take values from a finite set {g1,...,gn}. In the simplest case,
this parameter follows a first-order Markov process. The transition matrix governing the
Markov chain and the parameters of the model are usually assumed to be known. The main
problem consists thus of estimating the hidden state ;.

Chang and Athans (1977) focus on the state estimation problem for a system where the
output matrix G is time independent. They show that estimation of the exact distribution
of the state requires a bank of elemental estimators whose size grows exponentially in time.
Mazor et al. (1998) review the state estimation problem for the most general case where both
F and G are allowed to depend on a switch variable s;. They also show why an optimal solu-
tion is not computationally tractable and present techniques known as ‘interacting multiple
models’ that consist of a bank of cooperating Kalman filters: at each time step ¢ the state
estimate is computed under each possible current model, with each filter using a different
combination of the previous model-conditioned estimates (see also (Blom and Bar-Shalom,
1988; Bar-Shalom and Li, 1993)).

Shumway and Stoffer (1991) consider the problem of learning the parameters of a state
space model with a switching output matrix G(s;) which is known in advance. They pro-
posed an approximate EM algorithm where the E-step, which would require the computation
of a mixture of Gaussians with an exponentially increasing number of components, is approx-
imated at each time step ¢ by a single Gaussian.

In this chapter, we investigate switching state space models (SSSMs). These models

consist of N multiple linear/non-linear state space models controlled by a dynamic switch
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and, in this sense are a generalisation of jump-linear systems. They assume that the behaviour
of the system can be characterised by a finite number of dynamical systems with hidden states,
each of which tracks the data in a different regime. As discussed in (Ghahramani and Hinton,
1998), SSSMs can also be seen as a generalisation of the mixture of experts model.

A long-standing limitation for training these models is that the complexity of the exact
training algorithm grows exponentially with order N7, where N is the number of models
and T is the length of the time sequence. Various ad hoc and not completely satisfactory ap-
proximations have been proposed, e.g. (Shumway and Stoffer, 1991). Recently, Ghahramani
and Hinton (1998) reintroduced linear switching state space models in the machine learning
community and proposed an efficient and principled approximate algorithm for training these
models in a maximum likelihood framework.

In section 6.2 we first present linear switching state space models (SSSMs) and show how
to train these models using variational techniques. In section 6.3 we present a new extension
which incorporates non-linear state space models using radial basis function (RBF') networks.
Although linear SSSMs enable us to model piece-wise stationarity, they may have difficulties
in modelling non-linear dependencies in the time series. As the initialisation step is crucial
for training mixture models due to the large number of local minima, we present a novel
algorithm which addresses this problem in section 6.4. We then show how to use these
models for time series segmentation and probabilistic density prediction. The models are
finally tested on different datasets and we compare their performance with other standard

techniques.

6.2 Linear switching state space models

In Chapter 3, we reviewed two probabilistic models for time series: hidden Markov models
and state space models. A linear switching state space model (linear SSSM) is a model that
combines HMMs and SSMs. More precisely, N different linear dynamical systems cornpete
in order to describe the observation y, € R, Each real-valued state vector a:gi) € R™ evolves

between time steps according to the system equation:
mﬁz) = Fiazgi_)l + u;, (6.3)

where F; is the state transition matrix and u; ~ N (0, Q;) is a zero mean Gaussian noise asso-
. ., . - - )
ciated to model i. The initial state vector is also assumed to be Gaussian: P(m(f’) = N(p;,55).

A discrete variable S; € {q1,...,¢n}, also represented by a vector S; = [St(l), e SﬁN)],
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Figure 6.1: Graphical representation of a switching state space model. All the hidden variables have
Markovian dynamics. At each time ¢, N real-valued hidden variables compete in order to explain the
observation y, and the discrete variable s; plays the role of a gate.

where St(i) € {0,1}, plays the role of a gate. When the system enters a specific state 1,

i.e. Sy = q; (or St(i) = 1), the observation is Gaussian and is given by:

y, = Giz!) +v;, (6.4)

where G; is the output matrix which maps the hidden state to the observation. The random
variable v; ~ N(0, R;) is also a zero mean Gaussian noise. The discrete state variable S;
evolves according to Markovian dynamics that can be represented by a discrete transition

matrix 4 = {ai;},

aij = P(S¢ = ¢; | Se-1 = qi). (6.5)

Therefore, an SSSM is essentially a mixture model, in which information about the past
is captured in two types of random variables: one continuous and one discrete. Using the
Markov dependence relations, the joint probability for the sequence of states and observations

can be written as

T N T
1) N 7 7 7
p(sT,xrM L am™ yTy = P(soHP(sast_])H(P(a:S))HP(a:&)ixﬁ_’o)
t=2

i=1 t=2

T
HP(yt!:cgl),..‘,mgN),st). (6.6)
t=1
The corresponding graphical model is shown in Figure 6.1.
Given a sequence of observations Y7, the learning problem consists of estimating the
parameters w = {F;, Q;, G4, Ry, pt;, B3} <i<n of each Kalman filter and the transition matrix
A of the discrete state Markov process in order to maximise the likelihood of the observations.

An exact procedure to solve this maximum likelihood estimation could be derived from the
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Expectation-Maximisation algorithm (Dempster et al., 1977). As discussed in Chapter 3,
the E-step consists of computing the posterior probabilities P(ST, X{F(l), . ,XlT(N){y;[,w)
of the hidden states. The M-step uses the expected values to re-estimate the parameters of
the model.

Unfortunately, it can be shown that exact inference is not computationally tractable, since
it scales as NT. Even if P(a:@ lyy, w) is Gaussian, then P(wgi) |y, w) is in general a mixture of
Gaussians with an exponentially increasing number of terms. Like the other models described
in section 6.1, the posterior distribution of the state variables azgi) is a mixture of Gaussians
with N? components. Although these variables are marginally independent, they become
conditionally dependent when the variable v, is observed, namely because of the discrete
variable §; which couples all the real-valued state variables mgl), ey a:gi) at time step t.

Several approximations have been proposed to circumvent this difficulty. For example, in
(Shumway and Stoffer, 1991), a pseudo-EM algorithm is derived for learning a single hidden
state space model with switching output matrices: at each step, the mixture of Gaussians
is approximated by a single Gaussian. Recently Ghahramani and Hinton (1998) proposed a
principled generalised EM algorithm. The idea is to make use of variational techniques in

order to approximate the intractable true posterior distribution by a tractable distribution

(), and to maximise the lower bound on the log-likelihood (see Chapter 5):

' o P XDV w)
F(Q,w) = /Q(ST,X7)log Lol ol g, (6.7)
2 | @i QT an
where X7 denotes the whole sequence of hidden states: xr=[af S ) . ,XJ_T(N)].

Using a judicious structured variational approximation, the inference step can become
tractable (Saul and Jordan, 1996). Because linear SSSMs are hybrid models combining HMMs
and SSMs for which the E-step can be solved exactly, it is best to use an approximation that
makes use of the forward-backward and Kalman smoother algorithms (see Chapter 3). The
authors suggest the following approximation:

T N

i 1
Q(sT,aTW L aT) = Za(s) ] @(sir,80) [[ 2(a
=1

% a:t 13 a:t (6.8)
t=2

ir Eﬂ

which corresponds to the graphical model shown in Figure 6.2. Z is a normalisation factor
ensuring that () integrates to one.
The motivation of such an approximation is to destroy the interaction between the hidden

variables which makes the inference problem computationally intractable. Each deleted edge
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D@

Figure 6.2: Structured variational approximation of a switching state space model. We have uncou-
pled the state space models but kept the Markov chain for each hidden variables. Exact inference for
each hidden variable is now tractable.

in the graph is replaced by a variational parameter:

o(s”) = P(s\)gl! (6.9)
o5, s) = P(s(? |57 (6.10)
; i R
2@) = P@) [Pr e, s)]" (6.11)
, . . . . ; A
o@?,el) = P e?) [Pyl s (6.12)

By introducing these variational parameters, we decouple the state space models but keep
the Markov chain assumnption for each of them.

The variational parameters qfi) and hgi) are obtained by minimising the KL-divergence
between P and (), which corresponds to the E-step. Ghahramani and Hinton (1998) derived
the fixed point equations for these parameters. The parameters qt(i) play exactly the same
role as the output probabilities P(y, | wgi)) would play in a regular hidden Markov model,

and are obtained by computing the expected error under the distribution Q if state space

model 7 were used to generate the observation y:

i ]_ AN 7 v
g :exp{wz—«yt - Giz’) Ri(y, -Giwi’»a} (6.13)
We can see that this parameter is a function of :z:%, = (.’Bti)m and ng% = (wﬁz)w?) )Q-

These expectations can be computed by running the Kalman smoother on state space model

¢ with the observation y, weighted by hgi) (see Equation (6.11) and Equation (6.12)). The

)

parameters hgi can be viewed as being the responsibility assigned to state space model 7 at

time ¢, and are obtained by computing the expected probability of being in state ¢ at time ¢

under the approximating distribution ().

hY = (sP)g (6.14)
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They have exactly the same interpretation as the parameters v;(¢) in a regular HMM (see
section 3.4).

We therefore see that the variational parameters are inter-related: the calculation of qgi)
needs hgi) and vice-versa. Starting from some initial values for ¢ and h, the E-step consists
of running a Kalman smoother for each state space model with the output noise covariance
matrix R; weighted by 1/ hgi). This allows us to compute qﬁi) according to Equation (6.13)
and the required expectations of each real-valued variable :z:,(:i) needed in the M-step. The hgi)
parameters are obtained by running a forward-backward algorithm, where each hidden state
is associated to the output probability density qti). The process is iterated until convergence
of the KL-divergence. In practice, this is achieved in no more than 10 iterations.

The M-step consists of re-estimating the parameters w of the model and is straightfor-
ward. Like in HMMs and SSMs, the parameters can be re-estimated analytically. Appendix
C gives the re-estimation equations.

The whole process (E and M steps) is iterated until convergence of the lower bound on

the log-likelihood. This bound is a function of the variational parameters (see Appendix C):

T N
F(Q,w) = zz h,ff) logqu) +log Z. (6.15)

t=1 i=1

Note that the normalisation factor Z is intractable to compute.

6.3 Non-linear switching state space models

Although linear SSSMs are capable of modelling multi-modality, they may have difficulties
in modelling non-linear dependencies in the time series. We present here a new extension of

dynamical local models which takes into account non-linearity in the output:
= (@ ‘ 6.16
Ye = 9i(@, ") + v, (6.16)

where g; denotes now a non-linear function from the hidden state space to the observation
space. By introducing this non-linearity, the posterior P(wgz)ly{) 18 no longer Gaussian and
optimal smoothing cannot be achieved analytically.

In order to circumvent this problem, one solution could be derived from sequential Monte
Carlo integration techniques (Kitagawa, 1987; Gordon et al., 1993; Kitagawa, 1996). These
techniques have been applied for the inference problem in non-linear state space models, and

the extension to the case of non-linear switching state space models could be investigated. In
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these methods also known as bootstrap filter or sequential important sampling, arbitrary non-
Gaussian densities are approximated by many particles that can be considered realisations
from the distribution. It is then possible to derive a learning algorithm which makes use of
these particles to fit the non-linear functions. However, these techniques are computationally
expensive as a huge number of particles are needed at each time step ¢ to be representative
of the posterior distribution.

If the function g; is sufficiently smooth, a suboptimal smoothing algorithm can be derived
by considering the linearisation of the non-linear system. At every point 29 the function

tT>
g; is expanded as a first-order Taylor series:

0i(@) ~ gi(xpr) + Vaoi (2R (@ — 2. (6.17)

This approximate solution through linearisation around the current state estimate recovers
the Gaussian structure and leads to the first-order eztended Kalman smoother which is the
exact Kalman smoother for the linearised model: the equations of the Kalman smoother
derived in section 3.5 are still valid except those involving the output matrix &; which is
replaced by the Jacobian matrix '*7t(|%1)“ = Vmgz(mg%,)

The second complication arises in the M-step. In the case of a linear model, it is easy to
obtain an exact re-estimation formulae for the parameters. If the functions g, are not linear,
it may be computationally difficult to re-estimate exactly the parameters of the function. For
example, if ¢; is represented by a multilayer neural network, exact re-estimation cannot be
done and we must resort to non-linear optimisation methods.

To solve these two problems, we propose to model each non-linear function with a radial

basis function network:

K
= 3o = O o
k=1
where W) = [wgih . ws,?] are the weights (including the bias) and {"/);(j)}'zgkg[( denote

the (K — 1) Gaussian basis functions associated to model ¢ (the bias is associated to a basis

function whose activation is equal to 1):

i) (D)2
N, G z, —m
’l/)g)(mg )) = exp % ) (6.19)
20rkz

Note that non-Gaussian basis functions could be used although we did not investigate their

implementation in this work.

In that case, with fixed basis functions, the M-step is still tractable since the output

function is linear with respect to the weight matrix W®. A good initialisation enables us
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to keep the centres and widths of the basis functions fixed during the learning algorithm and
to re-estimate only the weights, for which a fast and efficient algorithm exists’. Appendix C
gives the re-estimation formulae for the weight matrix w,

The number of basis functions K controls the smoothness of the output function g; for
each state space model. It is therefore possible to implement a non-linear SSSM with a
number of basis functions that are different from one state space model to another. This can
be quite useful if we believe, for example, that the underlying system is switching from a
piecewise linear regime to a highly non-linear regime.

In terms of previous work, our model resembles that of (Kadirkamanathan and Kadirka-
manathan, 1996), where the authors used modular RBF networks for learning multiple modes.
Given input-output observations z{ = {w?,y({}, their algorithm uses the Kalman filter for
supervised recursive estimation of the weight vectors W@ which plays the role of the real-

valued hidden state:

wi = w4 (6.20)

ye = WI(w) + i (6.21)

It is assumed that each model ¢ has an associated score of being the current underlying model
for the given observation y,. The parameters of the global model, for example the output
noise covariance matrices R; or the transition matrix A, are not learned but are assumed
to be known in advance. Our non-linear model differs from the modular RBF network on
two major points. Firstly, in our approach, the parameters of each expert are learned in a
maximum likelihood framework. Secondly, whereas the weight vectors W play the role of
the hidden states in their model, they are considered as proper adaptive pararmeters of each
RBF network in our work. This leads to a system where the hidden state is an input to the
RBF network and therefore keeps its intuitive interpretation of representing the underlying

dynamics we are trying to recover.

6.4 Initialisation

Mixture models trained using the EM algorithm are guaranteed to reach a local maximum
likelihood solution. Because there are many local maxima, experience has shown that SSSMs

are particularly sensitive to the initialisation. Therefore, the choice of initial conditions is

'If we want to learn these parameters, a generalised EM can be implemented.
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crucial and we prefer to initialise the model carefully rather than a simple random initialisa-
tiom.

For switching state space models, the initialisation is an important part of the learning
algorithm, as both the HMM and the dynamical systems must be initialised. The key point is
to start with a good segmentation of the data set, where by segmentation we mean a partition
of the data, with each part modelled by a dynamical system. To address this problem, we
have developed an efficient initialisation procedure.

For the linear case, we quickly? train a continuous hidden Markov model with as many
discrete states as our SSSM on the data set and run the Viterbi algorithm in order to obtain
the most likely path, i.e. the sequence of hidden states which ‘best’ explains the observation
sequence (see section 3.4). Each data point is assigned to the most probable hidden state
and thus gives us a segmentation of the data. A simple linear dynamical system is then
initialised for each segment. This second phase can be done by estimating the covariance of
the observations which allows us to initialise the output covariance R;. The system noise
covariance @, can be, without any restriction, considered as a diagonal matrix and is simply
initialised to the identity matrix. Values for F; and G; are then obtained by inverting the
system.

For the non-linear case, it is crucial to initialise properly the centres and the widths of each
radial basis function, as these parameters will not be learned during the training algorithm.
We first perform the initialisation for a linear SSSM. For each segment of the data where a
linear dynamical system has been initialised, a corresponding sequence of hidden continuous
states x; can be recovered by running the Kalman filter. A Gaussian Mixture Model is fitted
to each sequence, which enables us to initialise the centres and the widths of each RBF
network.

The parameters a;; of the discrete transition matrix A can also be initialised by counting
the number of transitions from state i to state 5 and dividing it by the number of transitions
from state 1 to any other state.

We have noticed that such an initialisation procedure alleviates problems occurring dur-
ing the E-step. The KL-divergence can have several local minima corresponding to different
values of the variational parameters. This means that two significantly different segmenta-
tions can lead to a similar lower bound on the log-likelihood. Ghahramani and Hinton (1998)
addressed this problem and modified the training algorithm by using the technique of deter-

ministic annealing (Ueda and Nakano, 1995): the approximation distribution ¢ is broadened

’In practice, 5 iterations of the EM algorithm are sufficient.
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with a temperature parameter that is annealed over time. However, with this method a large
portion of training runs still converge to poor local minima.
In order to illustrate how our procedure can lead to a significant improvement, we consider

the following synthetic problem involving a 2-state linear switching state space model:

Y = 099z 4wy, w ~N(0,1) (6.22)

o2 = 0902, +us,  uz ~ N(0,10) (6.23)

The probability transition matrix A is such that a;; = 0.99 and az = 0.98. The output

observation is identical for each model:
=2 +v,  v~N(0,01) Vi (6.24)

We generate a sequence of T' = 1000 points from this model and train linear SSSMs with
the EM algorithm, considering three different learning techniques: our initialisation proce-
dure, random initialisation without deterministic annealing and, random initialisation with
deterministic annealing. For the deterministic annealing version, we follow Ueda and Nakano
(1995): the variational parameters ¢ and h are weighted by a decreasing temperature 7:
starting with a relatively big value for 7, say 7 = 100, the temperature is iteratively up-
dated, T; = %Ti_l + %, during the E-step. For each teclmique, 20 linear SSSMs corresponding
to different random initial conditions were trained. We then evaluated the average mutual
information between the true segmentation and the one obtained by each technique. Because
the variational parameters h are real (hgi) € [0, 1]), we first need to place a threshold on these
values to obtain a hard segmentation®.

Table 6.1 reports the results. Comparing the two random initialisations, on average, the
deterministic annealing procedure performs slightly better. Our initialisation significantly
outperforms both methods. We also report the average log-likelihood (lower bound) per data
point for each technique. Compared to the likelihood obtained with the true model, each
technique performs reasonably well. This shows the difficulty of comparing models when the
exact computation of the likelihood is not tractable.

Figure 6.3 plots the time series and typical segmentations we obtain with the three ap-
proaches. Finding the true segmentation is actually very difficult. Even when the inference
is performed with the true model, an underestimation of the switching can occur, leading to

a segmentation where only one state space model is activated.

3h{) = 1if hy > 0.5, A = 0 otherwise.
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Technique Mutual Info | Log-likelihood
No annealing 0.42 —2.26
Annealing 0.49 —2.26
Initialisation 0.77 -2.21
True model 1.73 -2.17

Table 6.1: Average mutual information and log-likelihood (lower bound) per data point when training
linear dynamical model with and without initialisation. For information, we report the results obtained
with the true model: the entropy of the true segmentation is 1.73.

40 ? i ; ; T T T T :

0 100 200 300 400 500 600 700 800 900 1000

Figure 6.3: Synthetic time series (top) and segmentations (bottom) obtained with linear SSSMs
compared to the true one (solid line): random initialisation without annealing (dotted line), random
initialisation with annealing (dash dotted line) and initialisation (dashed line).

6.5 Predictions and on-line model selection

In this section we show how to make one-step ahead predictions with dynamical local models.
The algorithm makes use of Bayes’ theorem at each time step ¢ and is known as the multiple
model approach (Bar-Shalom and Li, 1993).

At each time step ¢, we note that each model contributes to the explanation of the

observation y, in the following way:

N

'f: s(i) [

Ply,lsial,. .. 2™y = [Py, =) (6.25)
=1

Unfortunately the value of the switching variable is not known in advance, but an expected

value can be derived by using Bayes’ theorem:
P(ytlyﬁ'l,& = ¢;)P (S = Qi‘yi_])
Ply,| -ylt_l)

The first term in the numerator is given by Equation (6.4). The second term represents the

B[S; = ¢ | V] = (6.26)

predicted probability of model i at time ¢ given all the earlier observations. As the discrete
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state Sy is a first-order Markov process, this probability is given by:
N
pe(i) = P(Sp =g | V1) =D aiP(Se-1 = g5 |95 (6.27)
j=1
The initial prior probabilities are assigned to be equal to 1/N. The denominator is the

normalising term (also known as the evidence) and is given by:

N’
Py | V) = pi(@)Pys | V17 S = i) (6.28)

=1
Thus on-line estimations for each model decouple naturally. The Kalman filter recursive equa-
tions hold for each model ¢ with the only modification that the likelihood of the observation
y, is weighted by p¢(1)-

Depending on the context, hard and soft competition can be implemented (Kadirka-
manathan and Kadirkamanathan, 1996). In hard competition, it is believed that only one
model is responsible for describing the observation at time ¢. This is done by considering only
the model ¢ with the highest predicted probability p;(¢). In that case, p;(¢) = 1 and ps(j) =0
for the other models. In soft competition, p:(i) = P(S: = ¢; | yi™!) and each model is allowed
to adapt its parameters. This obviously leads to two different types of segmentations.

Thus the rnodel inherits the properties from both HMMs and SSMs: the first-order Markov
assumption for the discrete variable allows us to do on-line model selection. The state space
model plays the role of the predictive model within each regime. As the mean and the
covariance of the hidden states are updated on-line, the models allow us to obtain a full

description of the predictive distribution.

6.6 Experimental results

We have assessed the performance of dynamical local models on different problems. We first
show how linear switching state space models can be useful for modelling some time serles
relevant to the oil well drilling process. We then run simulations on synthetic data in order
to evaluate and compare the performances of linear and non-linear local dynamical models
on data which exhibit local non-linearity. We finally show promising results of both models

for modelling financial time series.

6.6.1 Drilling data

Figure 6.4 (top) plots the low gravity solids time series (LGS) over a period of two and a

half hours (350 points). This time series corresponds to normal drilling conditions. The data
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Figure 6.4: Low gravity solids time series (top) corresponding to typical normal conditions (the data
have been normalised to zero mean and unit covariance). Below, segmentation performed by the
variational inference.

exhibits interesting time scale effects such as a variability in the amplitude and the mean.
Also note the noise signal. We propose to model such a time series with a linear switching
model. By tracking the trends in the volumes of drilled solids, we might obtain a better
picture of downhole conditions. For example, if relationships between the regimes found by
the model and events in drilling can be found, a specification of what constitutes a clean hole
could be defined. In a simplistic view, each regime could represent the type of formation
currently drilled. Within each regime, the state space model could represent the physical
dynamics of the drilling process.

In order to illustrate how dynamical local models can be used for monitoring the drilling
process, we present here some interesting results obtained on this small dataset. As mentioned
previously (Chapter 2), data collection is a difficult task and we do not possess a reasonable
number of data points for assessing properly the performances of our approach. The time
windows are very small, representing no more than 500 non-continuous valid data points over
one day.

We trained different linear SSSMs, varying the dimension of the hidden state space and the
number of local models. We present in this section results obtained with a model containing
N = 2 state space models, each being of dimension m = 2. Figure 6.4 (bottom) plots a typical
segmentation obtained with variational inference on the training set. The picture shows how
each local model is specialised: one local rmodels seems to take care of low variability and
the second tracks high variability. We have noticed that an increase of the number of hidden

states leads to a similar segmentation. For example, an added state is only activated when a
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90 100

Figure 6.5: Contour plot (top) of the predictive distribution P(y:|Y;—1) and segmentation of low
gravity solids (bottom) with linear switching state space models. Note how the the model switches
and how the confidence is affected by these transitions. Note also sections where soft competition
takes place. The targets are represented by circles in the contour plot.

transition occurs between the two other states.

One of the major advantages of dynamical local models is their capability of providing
a full predictive distribution. Whereas autoregressive hidden Markov models assume a local
constant variance, dynamical local models provide a time dependent probability density.
Figure 6.5 plots the contour plot of the predictive distribution for a small time window of
100 points. Soft competition was used and the picture shows how the distribution varies with
time. Bach regime is associated to a Gaussian with a specific variance. It can be seen that
the model switches from regions of high predictive probability P(y;|Y;—1) to low probability.
This is particularly significant in the last section (last 20 points of this window) where the
first state is being activated: the contour plot is sparser, reflecting a low confidence in the
prediction compared to sections where the second state (corresponding to a smaller variance)

is responsible for predicting the output.

6.6.2 Synthetic data

We generated data from a bimodal process (Weigend et al., 1995):

2(1 —y2) -1 if 8, =0,
Y41 = (6.29)
tanh(—1.2y; +¢€) if sy = 1.
where ¢ ~ A (0,0.1). The first mode is a deterministic chaotic process whereas the second

mode is a noisy non-chaotic process. The switching obeys a first order Markov process with

diagonal entries a;; = 0.98. Both training and test datasets contain 500 points.
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Figure 6.6: Test data and model probabilities for true (solid), linear SSSM of dimension 1 (dash
dotted), linear SSSM of dimension 3 (dashed) and non-linear SSSM (dotted).

In order to obtain a valid comparison between linear and non-linear SSSMs, we trained
two linear SSSMs of different hidden state dimension and a non-linear SSSM on this data.
The dimensions of the hidden states :cgi) for the linear models have been taken to be m =1
and m = 3. The dimension of the hidden state for the non-linear model is m = 1 and a RBF
network with K = 3 hidden units has been used.

Figure 6.6 plots the test dataset and the corresponding SGgmentatiohs obtained by the
three models. Compared to the true segmentation, we can see that all three models capture
the underlying regime well, but that the linear SSSM of dimension 3 and the non-linear SSSM
are slightly more successful than the simple linear SSSM. Indeed, the correlations between
the true segmentation and the ones obtained by the two linear SSSMs are respectively 0.78
and 0.81. The non-linear SSSMs outperform the linear models and gives rise to a correlation
of 0.85.

Figure 6.7 plots the accuracy of the linear SSSM of hidden state dimension 3 and the
non-linear SSSM under the deterministic chaotic regime. Although the linear SSSM is able
to capture the non-linearity, the non-linear SSSM seemns to be more accuratel. This is par-
ticularly significant in the central region where there is a perfect match between the true

underlying function and the output of the non-linear model.

“This is more obvious in the next table which reports the log-likelihood and the normalised mean squared
error on the test dataset.
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Figure 6.7: Accuracy of the linear (a) and the non-linear (b) SSSMs in the chaotic regime. The solid
line is the true function.

We have also trained linear and non-linear dynamical systems on this dataset and we
end this section by comparing linear and non-linear SSSMs with these single mode systems.
The hidden state dimension of the linear models and the mumber of RBF units for non-
linear models have been taken to be 3. Table 6.6.2 reports the log-likelihood per datum
and the normalised mean squared error (NMSE) on the test set and shows the significant
improvement of the switching models. For each model, we report the average and the spread
over 10 different initial conditions. It is interesting to note that an LDS of hidden state
dimension 3 does not outperform the simple LDS with an hidden state of dimension 1. This
remark does not apply to linear switching state space models: a linear SSSM of hidden state

dimension 1 gives rise on average to a likelihood of —0.60 and a NMSE of 0.025.

Log-likelihood NMSE
Model y
mean \ std mean l std J
} LDS —0.8601 | 0.0001 | 0.0339 | 0.0001
} NLDS —0.8020 | 0.0040 | 0.0292 | 0.0003
l LSSSM —0.5667 | 0.0107 | 0.0228 | 0.0004
@LSSSM [ —0.4523 | 0.0221 | 0.0183 | 0.0013 |

Table 6.2: Average log-likelihood and NMSE on the test set for a simple linear dynamical system
(LDS), a non-linear dynamical system (NLDS), a 2-state linear SSSM (m = 3) and a 2-state non-linear
SSSM.
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6.6.3 Financial data

Because of the capability of state space models for tracking quasi-stationarity and the power of
HMMs for uncovering the hidden switching between regimes, we investigate their performance
on financial data. An advantage of viewing the model in a probabilistic framework is that
we can also attach confidence intervals to the predictions, as the covariance matrix of the
random variable X, is also estimated at each time step ¢. One immediate and important
application in financial engineering is risk estimation. In addition, the value of the discrete
hidden variable S; can be viewed as indicating the regime that the market is in at time i:
this gives us a segmentation of the data, which is of value in its own right.

We present here results of our simulations on DEM /USD and GBP /USD foreign exchange
rate daily returns:

Pt Pi-1
Pt—-1

ry = logpy — log ps—1 = (6.30)

where p; is the closing daily exchange rate at time 1. This quantity can be seen as the loga-
rithim of the geometric growths and is known in finance as continuous compounded returns.

Figure 6.8 plots the datasets. The DEM/USD training set contains 3000 points from
29/09/1977 to 15/09/1989. The test set contains 1164 points from 16/09/1989 to 05/11/1994.
The GBP/USD training set contains 2000 points from 01/06/73 to 29/01/81 and the test set
contains 1164 from 30/01/81 to 21/05/87.

The first application of the model is to uncover underlying regimes. As an example,
Figure 6.9 plots the segmentation obtained on the DEM/USD test set with a simple 3-state
non-linear SSSM (N = 2). The dimension of each state space has simply been taken to
m = 1 and the number of radial basis functions is K = 5. The figure shows how the model
is capable of detecting abrupt changes in the time series. It is however difficult for us to
give an interpretation of such a segmentation. The knowledge of an expert would be of great
help. In a simplistic view, we could imagine that the underlying regimes are related to some
macro-economical variables.

Another important application of dynamical local models in finance is the possibility of
obtaining on-line estimates of the covariance of our prediction. Figure 6.10a shows a time
window of 60 points where a regime transition occurred at time t = 35. Figure 6.10b is the
corresponding contour plot. The model moves progressively from a high volatility region to
a relatively low volatility region and the predictions are affected by this change. We clearly

see how the predictive distribution P(y;|Yt-1) is sensitive to this transition.
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Figure 6.8: DEM/USD and GBP/USD training and test datasets used for evaluating dynamical local
models.

Figure 6.10c shows the contour plot obtained by running a Kalman filter with adaptive
state noise covariance matrix. Rather then learning the state noise covariance matrix €@,
from the data (see Chapter 3) and keep it fixed on unseen data, it is possible to estimate
it on-line. This technique is due to (Jazwinski, 1969) and is useful for detecting transitions
from a stationary regime to another. Assuming a diagonal state noise covariance maftrix,
Q, = q:, an update of the coefficients g; can take the following form:

2

62 — W
gy = &qp—1 + (l - C\{)}L(iﬁ?g

) (6.31)
where « is a parameter which controls the smoothness of the update, e = vy — Ygje—1 18
the prediction error and wy = I + FPt_l‘t_lF' is the estimated prediction variance. This
technique relies heavily on the parameter®. Figure 6.10c shows how the predictive distri-
bution is affected by such an on-line update of @ (in this simulation, we used o = 0.1).
It is interesting to note the similarity of both techniques: the distribution becomes more

sharply peaked after t = 35 and confirms the regime transition obtained by our dynamical

local models. Note however that the predictive distribution obtained with switching state

SMore details on this technique can be found in (Penny and Roberts, 1999).
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Figure 6.9: Predictive model probabilities P(s;| Y¥™!) obtained by a non-linear dynamical local
model on the DEM/USD test set.

space models is smoother.

We end this section by evaluating the performance of dynamical local models using ob-
jective measures and compared them with other models. We trained autoregressive models
(AR), GARCH models, MLP neural networks (NN) and autoregressive hidden Markov mod-
els (ARHMM) on the same data sets. A GARCH model (Bollerslev, 1986) consists of a linear
AR model for the conditional mean and an exponential AR model for the conditional vari-
ance. They are very often used in finance engineering for modelling quasi-stationarity. For
AR, NN and ARHMM models, the input dimension has been simply taken to be 5 lagged
values of the observations (which represent the history of the previous week), although no
careful analysis of the input dimension has been carried out. Similarly, the neural network
contains 10 hidden non-linear nodes and the ARHMM contains, like our models, 3 hidden
states.

We have computed the log-likelihood per datum and the normal mean squared error
(NMSE). For each model, we report the average and the spread over 10 different initial
conditions. Dynamical local models have been initialised by the procedure we presented in
Section 6.4.

Table 6.3 reports the results. On average, the NLSSSM seems to be the best model
to describe the data, as the likelihood suggests it. When comparing the NMSE, we see that
none of these models seem to outperform the naive prediction, which would consist of making
predictions based on the mean of the training set. Note, for example, that the log-likelihood

for such a naive model is equal to —1.1575 on the DEM/USD dataset.
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DEM/USD
Log-likelihood NMSE
Model mean | std mean | std
AR —2.3957 e 1.0002 e
GARCH | —1.1488 — 1.0000 —
NN —1.1950 | 0.0149 | 1.0190 | 0.0094
ARHMM | —1.0456 | 0.0020 | 0.9998 | 0.0000
LDS —~1.1574 | 0.0000 | 0.9997 | 0.0000
NLDS —1.1366 | 0.0030 | 0.9997 | 0.0001
LSSSM —1.1045 | 0.0154 | 0.9995 | 0.0004
NLSSSM | —1.0361 | 0.0111 | 0.9995 | 0.0003
GBP/USD
likelihood NMSE
(MOdel mean | std mean | std |

AR 95268 | — | 1.0020 | —
GARCH | —12174 | — |00994 | —
NN 19191 | 0.0316 | 1.0720 | 0.0188
AROMM | —1.0730 | 0.0000 | 1.0030 | 0.0000
DS ~1.9500 | 0.0000 | 0.9999 | 0.0000
NIDS | —1.9214 | 0.0020 | 0.9999 | 0.0001
TSSSM | —L.1362 | 0.0283 | 0.9996 | 0.0002
NTSSSM | —1.0581 | 0.0121 | 0.9996 | 0.0002

Table 6.3: Average log-likelihood and normalised mean squared errors on the DEM/USD and
GBP/USD test sets over 10 runs corresponding to different initial conditions.

These simulations were intended to compare dynamical local models with other stan-
dard techniques used in computational finance and confirm the fact that predicting the daily
return is a very difficult task. A better understanding of financial markets could be ob-
tained by considering high frequency data. For example, Shi and Weigend (1997) modelled
high frequency foreign exchange data with autoregressive hidden Markov models and showed

promising results.

6.7 Discussion

In this chapter we have reviewed hybrid models that combine hidden Markov models and
state space models. These models have emerged from different scientific communities because
of the necessity of modelling processes where the assumption of global stationarity does not
hold.

We reviewed linear switching state space models and proposed a new extension which

incorporates local non-linearity. This is done by using a local RBF network which maps the
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hidden state space to the observation space®. The structured variational approach allows us
to perform a principled approximate maximum likelihood estimation of the parameters. The
inference decouples nicely into the inference algorithms for HMMs and SSMs. In the case
of non-linear dynamical models, a linearisation of the local function leads to the extended
Kalman filter.

We also proposed an efficient and fast initialisation algorithm which alleviates problems of
multiple local minima during the variational inference. This procedure leads to a significant
improvement in the reliability of training compared to the deterministic version.

In contrast to other hybrid models such as mixture of experts or autoregressive HMMs,
dynamic local models provide a full description of the predictive distribution. This is an
important issue, especially in finance where robust error bars need to be developed.

We evaluated the performance of the models on different data sets and compared them
to other standard techniques. This was done by evaluating the log-likelihood per datum
over a test set, as this measure allows direct comparisons between different models. Another
evaluation of the density forecasts, based on the cumulative probability distribution, could
complement our comparisons. This technique was proposed by Diebold et al. (1998) and

consists of estimating the following random variable:

+1
‘}H

Zorr = / P(n| %) dn. (6.32)

In order to assess the quality of the prediction, the random variable is tested against the
hypothesis of a uniform distribution, which would correspond to a good model for the true
predictive distribution P*(yi41 | V4). To test whether Z is uniformly distributed, Diebold
et al. (1998) points out standard techniques. The simplest one consists of plotting the
histogram.

The variational inference approach maximises a lower bound on the log-likelihood. An
interesting problem concerns the quality of this bound which is a current open question.
Empirical simulations could be done to evaluate this quality. This could be done by consid-
ering a dynamical local model containing a relatively small number of state space models,
say N = 2 for example and a short time series. In that case, the exact estimation of the true
posterior distribution of the hidden states can be performed and cornpared to the variational
approximation.

Another comparison could be done by considering Monte Carlo integration techmniques,

67t must be emphasized that a Radial Basis Function network can be hardly seen as a ‘true’ generative
model.
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such as Gibbs sampling, which provide a more accurate representation of the true posterior.
This would also help us to evaluate the performance of the extended Kalman filter for highly
local non-linear dynamics.

Obviously, our models can be extended into several directions. In our work we did not
consider exogenous variables as only a single time series 1s modelled. An immediate and
straightforward extension consists of considering previous values of the time series as inputs

in the dynamics of the hidden states:
:cﬁ” = cmcgz_)l + Hiyi:é + us, (6.33)

where the vector yi:(ll = [Yt—g- - - ,Ye—1] contains, for example, the last ¢ — 1 observations.
We also did not consider non-linearities for the system equation. This is also an immediate
extension of the non-linear dynamical local models, although we believe that the resulting
algorithm would be too cumbersome for practical application.

In this work, we assumed local stationarity in the variances. This was done by assum-
ing that both output covariance and state noise covariance matrices are locally constant,
which allows us to estimate these parameters through a maximum likelihood approach by
segmenting the data. An alternative procedure for detecting non-stationarity is to use, as we
mentioned it in Section 6.6, a single model with adaptive output and state noise covariances.
Penny and Roberts (1999) mentioned the problems that may arise from such an approach,
as an on-line update of both covariance matrices may be redundant for explaining the error
in the predictions. The authors suggest a on-line estimate of either the state noise covariance
or the output covariance, the other being learned from the data. These techniques rely on
some parameters that control the smoothness of the on-line covariance estimates and the
user has to specify them in advance. Our models take into account the non-stationarity in
the covariances by specifying the regimes and allocating a model to each regime. The seg-
mentation on unseen data arises naturally and does not require the user to specify threshold
values for non-stationarity detection. Moreover, as we saw in our simulations, the predictive
distribution obtained by dynamical local models is smoother and is not sensitive to some

irrelevant abrupt changes.
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Figure 6.10: Contour plot of the predictive distribution P(y,|Vi-1) for a dynamical local model (b)
and a Kalman filter with adaptive noise variance (c).
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Chapter 7

Conclusions

From econometrics to engineering, time series analysis and forecasting is an important issue
since many problems are concerned with predicting the value of a variable in the future.
Probably, the most important objective in the study of time series is to uncover the dynamic
law of its generation. When the underlying dynamics are not available, time series modelling
consists of developing a model which best explains a set of data points. This thesis tried to
give a unified view of hidden state models for time series. We presented several probabilistic
models and algorithms and demonstrated their application on several synthetic and real-world
datasets.

In Chapter 3, we presented hidden Markov models and state space models and showed
how these probabilistic models can be viewed In the same framework. Both models assume
explicitly the existence of hidden state variables which describe the underlying dynamics.
The inference problem consists of uncovering the underlying dynamics and we showed how
the Markov property allows us to treat these two models in a unified way. The parameter
estimation problem has been also presented within a maximum likelihood framework and
we mentioned how a Bayesian treatment of Markov models could be carried out using the
ensermnble learning technique. This represents a promising field of research especialty when the
data is relatively sparse compared to the number of parameters in the model. For example,
an important application of the Bayesian framework for hidden Markov models would be to
determine automatically which of the hidden states are relevant.

Time delay estimation is an important part of time series analysis. In Chapter 4, we
suggested the use of hidden Markov models for identifying relationships between two time
series. We derived two algorithms; one based on a maximum likelihood approach, the second

on a maximura mutual information framework. Both techniques were successfully applied on
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real-world data and we demonstrated their usefulness by estimating a crucial parameter for
the oil industry. The mutual information approach seems to be more accurate while more
computationally expensive and sensitive to initial conditions. Although the latter method-
ology is similar to what has been used previously for discriminant learning in the speech
community, to our knowledge, this is the first time that hidden Markov models have been
used for identifying relationships between two time series in a non-stationary environment
within an information-theoretic approach. A further step in this work should carry out the
on-line estimation of the delay when dealing with sequential data. This is an important issue
for several monitoring applications, like the oil industry, where the goal is to prevent a major
problem.

Variational techniques for probabilistic inference are new tools and we tried to demon-
strate their application for modelling time series within a probabilistic framework. Varia-
tional techniques can be regarded as a principled and more controlled approximation than
that provided by other solutions. One drawback is their computational cost.

Perhaps the key issue is the accuracy of the approximation. Although there are some
well-studied cases where the properties of the variational approximation can be examined,
there are many other graphical models for which such an evaluation is not possible.

In Chapter 6, we concentrated on the issue of modelling time series that exhibit a quasi-
stationary behaviour. We reviewed several hybrid models that have been suggested in dif-
ferent communities and focussed the parameter estimation problem of switching state space
models. We showed how variational techniques allow us to perform a principled maxirnum
likelihood estimation which leads to a rigorous lower bound on the likelihood of the data
given the model. For problems in which we have a prior belief that the underlying generator
switches between stationary regime, dynamical local models are a natural tool.

In order to model non-linearity, we suggested the use of a dynamical model which combines
4 hidden Markov model and a non-linear dynamical system. We modelled the non-linearity
with a radial basis function network and made use of the extended Kalman filter for the
inference problem. Monte Carlo simulations should be however carried out for assessing the
accuracy of this approximation.

We also proposed an efficient initialisation algorithm in order to alleviate problems of
multiple local minima during the variational inference. This initialisation procedure was
tested on synthetic data and we demonstrated a significant improvement in the variational

inference compared to the deterministic annealing technique.
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The models were tested on both synthetic and real-word data and we showed promising
results compared to other standard techniques. More simulations should be carried out in
order to compare non-linear dynamical model with other non-linear models such as Markovian
mixture of experts. We focussed on the difficult task of forecasting financial time series
and showed how interesting features such as segmentation and error bars for prediction are
embedded within the framework. These two features are the major advantages of dynamical
local models and can be of great help in financial applications.

Further works concern time delay estimation with hidden Markov models using other out-
put distributions than the Gaussian distribution!. By making use of variational techniques, it
is indeed possible to model other distributions. For example, the maximum mutual informa-
tion approach, as it stands, cannot be applied for a mixture of Gaussians. In (Lawrence and
Azzouzi, 2000), the authors show how to make use of a mixture of Gaussians for a Bayesian
treatment of neural networks. A similar framework can be derived for hidden Markov models.

Another related promising field of research concerns the application of variational tech-
niques for non-Gaussian switching state space models. This represents an interesting direction
for future research and an exciting application in finance where the Gaussian assumption is

far from being valid.

T am grateful to Stephen J. Roberts for suggesting me this idea.
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Appendix A

Maximum likelihood estimation for

HMM and SSM

A.1 The Baum-Welch algorithm

The E-step

We represent the variable s; as a N-dimensional vector 8; = [s, .-, sM], where st € {0,1}.
For example 8, = [0,1,0,...,0] means that at time ¢t = 1, the system is in state 2. Using
this representation, each term of the joint probability P(ST, YT (Equation (3.7)) can be

rewritten as:

=
S

P(s,) = (A.1)
1=1
N N
P(silse) = [][](ei), (A.2)
=1 j=1
N .
Plyls) = [[IPw,shI, (A.3)
=1
where, again, we represent the initial state probabilities as a vector m = [r1,-..,7n). This
allows us to write each term of the logarithm of Equation (3.7) as
T N N T N
log P(ST, V1) Zs log7rz+ZZZst lbtloaau ZZS log Py, |st).  (A.4)
t=2 1=1 j=1 t=1 =1

The function to be evaluated in the E-step is Q@ = {log P(ST, YT, |©))@, i-e. the expectation
of Equation (A.4) under the posterior distribution of the hidden states QSTy = P(ST | Y, w).
This expectation is a function of (s1) and (st_ 13t> The first term represents the posterior

probability of being in state ¢ at time ¢ given the current parameters and the observation
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sequence. This is therefore equal to v:(2) (Equation (3.28)). The second term is the posterior
probability of being in state 4 at time ¢—1 and in state 4 at time ¢: this is §—1(¢,7) (Equation

(3.29)). We therefore get:

T-1 N N
Q= Zw Dlogmi+ > > > &lisg) IOgazg+ZZ%(2)logP (el sb)- (A.5)
t=1 i=1 j=1 t=1 1=1

The M-step

A typical initial probability " is the solution of

, N
Ew—i’ﬁ Q- X\ Z a1 — = 0, (A.6)
(A7)
where ); is a Lagrange multiplier. This gives:
¢ = y1(4). (A.8)
Similarly, for a typical transition a7, we get the re-estimation formula:
Qe = Z ft(i J) (A.Q)

T ()

Depending on the parametrisation of the output observation distribution P(y, | st), re-estimates
can be easily found. We give here the re-estimation equations for a full covariance Gausslan

density function P(y, | st) = N (1;, Bi):

prer = Z?:l Ve ()Y, (A]O&)
' Ztrzl 71(1') ’

Zry,(:'u) — ZT:J ’YL(Z)(yt - p"gww)(yt I“Iéu/w) (A ]Ob)
’ Sty 7e()

A.2 The EM algorithm for state space models

The E-step

For a linear dynamical system, the joint log-likelihood is given by:

P ] AT 1 T7-1 T
o (5T =~ gy - iog ) E5 D iog i) - S iog ]
1 B
—5(81—#)’2 Hs1 —p)
1 T
—52(.%—FSt_l),Q_l(St—Fst_l)
t=2
1 T
—5 2 (v =~ Ga) Ry, = Gsu). (A.11)
t=1
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If all the variables were observed, then the ML parameters could be easily solved by taking
the derivatives of Equation (A.11). Since the state vectors s; are not observable, we use
expected values wherever we do not have access to the actual observed values. We therefore
require the expectation of si, s} and s;8,_; with respect to the posterior distribution

QST) = P(ST |V, w):

syr = (s1)q (A.12)
Vir = (s8d)0 (A.13)
Vitar = (3t8t~1')Q (A.14)

As seen in Chapter 3, the Kalman smoother computes Sy and Pyr = cov([s | YT recur-
sively. What we need is Vyr = Pyr + 3t{T3tlT] and Vi = Py ar + 3t1T3t—liTla
where P,y = cov[8, 8¢-1 | VT). The latter can be calculated with the backward recursion

(Shumway and Stoffer, 1982):
Py_y o =Praprdio’ + Tt (Priyr — FP, )2 (A.15)
Starting Wlth PT,T—HT = (I — KTG>FPt—l‘t—-1'

The M-step

By taking the derivatives of the expected log-likelihood (Equation (A.11)) with respect to
each parameter, we have immediately the re-estimation equations (Shumway and Stoffer,

1982; Ghahramani and Hiuton, 1996):

T T -1
Frev - (Z Vt,t~l|’]‘> (Z Vt—l|’T> (Al6)

GTLEU) (A17>

I
oA
gl

<
r*m\
3
N’
N/--.’\
ngle
=
=
N’
|

- -
ew l TLew -
Q = 77 (Z Pyp — F™° Z Vt~1.,t17"> (A.18)

t=1 t=2
1 T
RV = ?Z(yty’t_‘anewstlTylt) (A.lg)
t=1
s — P (A.21)




Appendix B

Maximum Mutual Information

Estimation

In this appendix we derive the equations used in the maximum mutual information estimation

procedure. For simplicity, we consider a 9.dimensional Gaussian distribution P(zt,v:) =

N (g, =) with mean and covariance matrix

po= (p1,p2),
2
o o1-
1 12
o=
2
g12 Ty

In this case, the conditional density is also Gaussian

012 9 012
Pl 0 =N (1a + Bptee = m).of = 77 ).
g g
Setting
12
my = /i2+~‘—(iEL~]il),
o11
92 012
g = 02_~'_2’
gy

it is straightforward to calculate the derivatives with respect to m; and o

0 Yg — Ty

———1 TP €T = ——

o og P(yt| zt) P
d 1 y — 1)
do 20 o
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Derivatives of the expected log-likelihood

Given an observation sequence 2T = (X, YT), we need to compute the derivatives of the

expected log-likelihood (Equation (A.5))

T-1 N
Q= Z% 10%+ZZZ&(Z 7) logaw+ZZ%(Z)10gP(ytlst,zt (B.7)
t=1 i1=1 j=1 t=1 =1

with respect to 6, a component of w. For clarity, we will omit the term z, as for each hidden

state i we model the conditional probability density b;(z;) = P(yz|x:). We get immediately:
0Q 71@)

o - (B8
Oasj az]

o vtm('ﬂ%@, (B.10)
mt o

90 _(y—m%V)

dot 20" (1 o ) (B-11)

Parameterisation

For ML we incorporated Lagrange multipliers in the M-step in order to ensure constraint
satisfaction. For MMI, we use general unconstrained optimisation algorithms. For instance,
in order to ensure that the parameters a;; can be interpreted as transition probabilities, they

must satisfy

N
> ai =1, (B.12a)
j=1
0<ay <L (B.12b)

Tlhese constraints can be satisfied by choosing a;; to be a softmaz version of an unconstrained
variable w;; (Bridle, 1990)
Wi
eWii
eWik
k=1

Differentiating Equation (B.13) and using the chain rule, we have

da;;
awzjk = bk — GijQik, (B.14)
dQ 8aik
. B.15
8ww Z 8aik Bwij ( O)

Substitution in Equation (B.9) gives the gradient of the expected log-likelihood with respect

to the new parameters wijl.

A similar constraint applies also for the initial probabilities 7.
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We must also ensure that the covariance matrix ¥ is positive definite and symmetric.

This can be done by defining an upper triangular matrix U which represents the Cholesky

decomposition of £. U must have positive diagonal entries, but upper triangular entries are

arbitrary.

So, writing ¥ = U'U, we obtain

¥y =

62u1

ugehs

uze™d ug + g2u2

(B.16)

(B.17)

Again using the chain rule in Equation (B.5) and Equation (B.6), we can easily compute the

derivatives of the output probabilities b;(2;) with respect to the new parameters and therefore

the derivatives of Q:

0Q
ouy

0Q
Aty
0Q
auﬁ

0Q
Oué
0Q

dul

e oy =)
= —uge Z%(z)—~.—~
t=1

O—’L

Ly —mi)
= Z%(Z)i*—’t“

t=1

O—I.

T

e (2

iy = ) = )

O-’L

T . )
- e — b )y —
—¢ Uy Z’Yt(z)( L !)(.Jt f,)

=1

O—'L

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

These derivatives can then be used with a nonlinear optimisation algorithin, such as conjugate

gradients, in order to minimise the objective function.
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Appendix C

Implementation of dynamical local

models

In this appendix we first derive the lower bound on the log-likelihood which is maximised with
variational parameters in the generalised EM algorithm for dynamical local models. We then

give the equations needed for training linear and non-linear switching state space models.

C.1 Lower bound on the log-likelihood

We represent the N-valued discrete randorn variable S; at time ¢ as a N-dimensional vector

Sy = [Stm, .. ,St(N)} where Sgi) € {0,1}. The variational techniques approach consists of

maximising the following quantity:

P(S?ﬂ’ ’YIF> y17 ‘ w)
Q(S,}T’ ‘/Y]I )

FQw) =Y [ st A og a7, (1)
SE

This quantity is useful for comparing different models ag it represents the lower bound on

the log-likelihood. It is also important for assessing convergence of the EM algorithm. Recall

that each state space model is defined by the following equations:

Py = N@\iu, D), (C.2)
P2 = N Fiel), Q) (C.3)
Ply|z)) = N(y;Giz\),Ry), (C.4)

where :z:gi) € R™ and y, € R%.
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The true joint log-likelihood is:

log P(ST, 2T, 37 |w)

T N
Zsl logm+ZZZSt ISt logjaJz
t=2 i=1 y=1
N
-—~——Jy~log27r——210g{2{
i=1

N
1 i 1 G
—5 > (@ =) (2) 7 (= - )

=1
N
mN(T — 1) (T -1) ]
- logar - ;1%1@{
(TN _
-5 22 @ - Pl ) (@) e’ - Fial))
t=2 1=1
PR T N
——§ZZs log 2m — ZZst log | R;]
t=1 =1 t 1 i=1
(TN . ‘
=320 05y~ Giel?) (R) T (y, — G,

Similarly, the logarithm of the variational approximating distribution is given by:

N

log Q(ST
1=1
T

T N N

Zél 10{3”1+ZZZ% 15t logaﬂ
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log 27 —

@ - FizY(Q) =l - Fial?)

i

W log2m — = Zthz’logU{[

1 tlzl

WD (y, — Gz DY (R) ™y, — Gim) = log 2,

(C.6)

where Z is a normalisation factor. By taking the difference between (log P(ST, X7, VT |w))q
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and (log Q(sT, 2T)) ¢, several terms disappear. We get:

T N ) )
= Z Z hﬁ’) log qu) + log Z. (C.7)

t=1 =1
This corresponds to the lower bound on the log-likelihood that should be computed at each
iteration of the EM algorithm in order to assess convergence. Unfortunately, because of the
presence of the normalisation factor Z which is intractable to compute, it may happen that

this bound decreases from one iteration to the next one.

C.2 The EM algorithm for linear switching state space models

The E-step

The E-step involves the Kalman smoother for each state space model ¢ where the output
covariance matrix R; is weighted by 1 /hgi) at each time step t. This allows to compute
the variational parameters qt(i) (Equation (6.13)). These parameters are then used in the
forward-backward algorithm as output density probabilities, and this enables us to estimate
the responsibility /'L&i) of each model. The whole process is repeated until convergence of the

KL divergence, or similarly convergence of the lower bound (Equation (C.7)).

The M-step

For the M-step, we make use of the re-estimations formulae given in Appendix A for HMMs
and SSMs. The re-estimation equations for the transition matrix A and the initial probabili-
ties IT are exactly the same as those obtained for an HMM (see section A.1). Concerning the
re-estimation equations of each linear dynamical filter (see section A.2), the equations are
also the same except for the output matrices &; and the output noise covariance matrices
R;. We must indeed take into account the responsibility of each state space model. This
responsibility is given by the value of the variational parameters hgi). It is easy to obtain:

1

G;L(:‘U) — (Z ht ytmti']‘ > (Zl,(’t Vt|T> (08)
Zhii) (yewi — Frvelpt) / Z e (C.9)
t=1

I

new
R;

(i i . .
where a:t!z)T and V§|1)T are obtained by running the Kalman smoother on each state space

model.
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C.3 The EM algorithm for non-linear switching state space
models
The E-step

The E-step involves the linearisation of each output function g;. This function is approximated

by an RBF network:

where W) = [wgi), e ,w&?] are the weights (including the bias) and o) = [z/)gi), .- ,z,b(i)]

are the basis. By linearising each basis function z/;s), we get:

(@O (D) = TD(2l))

Tyr
@O O e = 2Ol ¥O @) + TPur )
. (¢)
where J. t(‘f} = ag " is the Jacoblan matrix.
2 (i)

The M-step

By taking the derivatives of the expected log-likelihood and setting them to zero, re-estimation
formulae for the parameters are easily obtained. Because we just introduce non-linearity in
the output function, the equations are the same as the ones for a linear switching state space

model, except the output covariance matrix R;. We get:

e (Z IRETR 5,’3)>A{ ‘
=1
T
Rev = Z[ ) (- WO O ) yt]/znf

with A; = 23:1 hgi) [‘I’(i)( (;) )‘I’(z)( tiT) jtﬁfznga’j(l) ]
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