Aston University

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

Product cipher negotiation with
on-line evaluation for private
communication over computer

networks

VASILIOS KATOS
Doctor of Philosophy

ASTON UNIVERSITY
February 1999

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Product cipher negotiation with
on-line evaluation for private
communication over computer

networks

VASILIOS KATOS
Doctor of Philosophy, 1999

Thesis Summary

A method is proposed to offer privacy in computer communications, using symmetric
product block ciphers. The security protocol involves a cipher negotiation stage, in
which two communicating parties select privately a cipher from a public cipher space.
The cipher negotiation process includes an on-line cipher evaluation stage, in which
the cryptographic strength of the proposed cipher is estimated.

The cryptographic strength of the ciphers is measured by confusion and diffusion.
A method is proposed to describe quantitatively these two properties. For the cal-
culation of confusion and diffusion a number of parameters are defined, such as the
confusion and diffusion matrices and the marginal diffusion. These parameters involve
computationally intensive calculations that are performed off-line, before any commu-
nication takes place. Once they are calculated, they are used to obtain estimation
equations, which are used for on-line, fast evaluation of the confusion and diffusion of
the negotiated cipher. A technique proposed in this thesis describes how to calculate
the parameters and how to use the results for fast estimation of confusion and diffusion
for any cipher instance within the defined cipher space.

Keywords: confusion, marginal diffusion, diffusion/confusion matrix, cryptographic
algorithm negotiation protocols, cryptographic strength

to my parents, 1Tasos and Elenas,

to my sister Anastasia

Acknowledgements

I wish to thank my supervisor, Bernard Doherty, for his continued support and guid-
ance throughout the research and writing of the thesis.

I also wish to thank Tony Beaumont, for his excellent technical support.

Finally, I wish to thank the staff of the Department for making my stay enjoyable
and interesting.

Contents

I Introduction

1 Introduction

1.1
1.2
1.3

1.4
1.5

Research methodology
1.3.1 Literature review
1.3.2 Analysis and investigation
1.3.3 Prototyping
1.3.4 Testsused L
1.3.5 Interpretation of results
Novel features of the thesis
Outline of thesis

IT Literature Review

2 Theoretical Background

2.1
2.2

2.6

2.7

2.8

Introduction Lo
Terminology and definitions L.
2.2.1 Representationso
2.2.2 Stream and block ciphers oL
2.2.3 Cryptographic strength
Symmetric cryptography oL
2.3.1 Block ciphers
2.3.2 Other symmetric algorithms
Cryptographic primitiveso
Substitution Boxes L
2.5.1 Evaluation criteria Lo
2.5.2 Substitution-Permutation Networks
One-way functions oL
2.6.1 Backgroundo
2.6.2 Trapdoor and hash one-way functions
Feedback Shift Registers
2.7.1 Linear Feedback Shift Registers
Feistel Networks
2.8.1 Luby & Rackoff
Cryptanalysis

(@)

16

17
17
20
26
26
26
26
27
27
28
29

30

31
31
31
32

CONTENTS

2.10
2.11

2.12

(8]
—

2.14
2.15
2.16
2.17

2.18

Classes of attacks o 0 i e
Cryptanalysis of product ciphers
2.11.1 Differential cryptanalysis oo
2.11.2 Linear cryptanalysis« oo
2.11.3 Differential Fault Analysiso
Cryptanalysis of modes of operation
Tests for randomnesso oo
2.13.1 The frequency testo
2132 Theserial test oo
2.13.3 The autocorrelation testo oo
2.13.4 The block cipher testo
Computer network security« ..o
SECUTILY SEIVICES . o« v v v v v e e
Classes of attacks in communications« . .« o
Security protocolso
2.17.1 Representations
92.17.2 Key distribution - negotiationo
2.17.3 The Secure Sockets Layer protocol
2.17.4 S/MIME: Cryptographic security services for MIME
CONCLUSIONS .+ + o v o e e e e e e e e

III Proposed Method

3 Description and Analysis of the Proposed Method

3.1
3.2
3.3
3.4

3.5

3.6
3.7

Introduction . . . o o . o e e
Security frameworko
Design objectives of the proposed cryptosystem
Description of the proposed cryptosystemo
3.4.1 Outline of the cryptosystemo
3.4.2 Description of the cryptosystem
Analysis and definition of measures
351 The total search space« . e
359 Feistel Networks o o o v v oo v e
3.5.3 The key schedule
3.5.4 The confusion matrix
3.5.5 The diffusion matrix
3.5.6 The autocorrelation testo
3.5.7 Thedepth test o o
3.5.8 The diffusion distinguisher
3.5.9 The Cryptographic Block Profile
The feedback blocks o . . oo
Concluding remarks« .

66
67
67
69
71
72
74
75
75
75
76
77
78
79
80
81
81
85
88
89

CONTENTS

4 Prototype of ABSENT (ABSolute ENcrypTion) 127
41 IntrodUCtiOn . . .« o v o e e e 127
4.9 OULLINE . . o o o e 127
4.3 The cryptographic primitives. oo 129

4.3.1 Encryption blocks e 130
432 TFeedback blockso 139
4.4 The key schedule o 140
4.5 The teStSUILE . .« o o v o o e o e e e 141
4.5.1 Statistical tests oo 142
4.6 The cryptographic block profileo 148
4.7 Security specifications 149
4.8 Internetworkingo 151
481 Talk . o o e e 151
4.8.2 The cryptographic protocolo e 153
483 THE SEIVET . o o o v v v e oo e 156
484 Theclient o oo oo 157
4.9 Concluding remarkso 158

5 FExperimental results 160
51 Introduction . . . o o v v e e 160
5.2 Cryptographic Block Profile 161
5.3 Homogeneous Ciphers 164

5.3.1 The DES encryption steps o« oo 164
5.3.2 The Blowfish encryption steps« . .o oo 164
5.3.3 The Balanced Feistel Network stepso 165
5.3.4 The Unbalanced Feistel Network steps« o oo 166
54 Regression analysis oo 167
5.4.1 Linear regression of DES oo e 169
5.4.2 Heterogeneous product ciphers. e 170
5.5 Graphical representation of confusion and diffusion 180
551 The round functiono 181
56 Diffusion distinguisher 185
56.1 DES .« o e 186
57 Bvaluation performanceo 189
58 Concluding remarks 190

6 Conclusions 192
6.1 Introduction o o 192
6.2 AImMS Of LhESIS . « o o o v o 192
6.3 BEvalUatiOn . . o o o o oo oo 193

6.3.1 Literature o oo oo 193
6.3.2 Analysis and definition of measureso 196
6.3.3 Prototype . . .« o o oo 198
6.4 TESES « o o e e e 198
6.5 Recommendations for future researcho oo 200
6.6 ConclUSION . - « v v v v 202

CONTENTS

IV Appendices
A Matrix multiplication

B Summary of experimental results

B.1 Homogeneous product cipherso
B.2 Heterogeneous product cipherso
B.3 Regression analySis« . . oo
B.4 Diffusion matrices o o o e e e e e e
B.5 Cryptographic Block Profileso e
B.6 Data used in the regression analysis of heterogeneous product ciphers .

Description of the ABSENT testsuite environment
C.1 The list of available commands« oo

C.3 Cipher teSting . « . o o o v o s
C4 ABSENT SCIPE © o v v v oo oo e e e e

Listings

D1 Makefile . o v o
D2 fStUffh o o o e
D.3 CAGAES.C .« o o oo e
D4 CAESCI2.C « « « v o o oo e
D5 TSAN . o e e e e
DB TSAC . o e e e e e
D7 SEIVEL.C . « o o e e e e
D8 CHENE.C « o v v oo e e e e e
D9 Pl o v
D10 CHDC « o o v e e e e
DT EESESUIEE.C o o o o o oo e
D.12 DES implementation - README o oo oo
D.13 rmd128.c header oo

List of Tables

3.1 The Cryptographic Block Profile, CBP. 122
5.1 The product of one-round DES encryption steps 164
5.2 The product of the two Blowfish encryption steps 165
5.3 The product of the Feistel #1 encryption steps. 165
5.4 The product of the Feistel #2 encryption steps. 165
5.5 The product of the target heavy 16:48 UFN encryption steps 166
5.6 The product of the source heavy 40:24 UFN encryption steps 166
5.7 Linearisable functions with corresponding transformations (source: Chat-
terjee & Price 1977). 168
5.8 Ordinary Least Squares estimation of the DES. 169
5.9 Confusion of two round heterogeneous product ciphers. 171
5.10 Regression results for heterogeneous product cipher with source/target
difference equal to 16 (eq. 5.3). 175
5.11 Diagnostic tests foreq. (5.3). oL 177
5.12 Regression results for heterogeneous product cipher with source/target
difference equal to 8 (eq. 5.4). 178
5.13 Diagnostic tests foreq. (5.4). L 178
5.14 Regression results for heterogeneous product cipher with source/target
difference equal to 0 (eq. 5.5).o 179
5.15 Diagnostic tests foreq. (5.5). oL 179
5.16 Regression results for marginal diffusion for equation (5.6). 180
B.1 The product of one-round DES encryption steps 221
B.2 The product of the two Blowfish encryption steps 222
B.3 The product of the Feistel #1 encryption steps. 222
B.4 The product of the Feistel #2 encryption steps. 222
B.5 The product of the target heavy 16:48 UFN encryption steps 223
B.6 The product of the source heavy 40:24 UFN encryption steps 223
B.7 The product of the LFSR #1 encryption steps 223
B.8 The product of the LESR #2 encryption steps 224
B.9 Confusion of two round heterogeneous product cipher 224
B.10 Marginal diffusion of two round heterogeneous product cipher 225
B.11 Target/source comparison between the encryption steps 225
B.12 Confusion of two round heterogeneous balanced Feistel Networks 226
B.13 Ordinary Least Squares estimation of the DES. 226
B.14 Ordinary Least Squares estimation of Feistel #1. 227
B.15 Ordinary Least Squares estimation of Feistel #2. 227

LIST OF TABLES

B.16 Ordinary Least Squares estimation of Blow LLR. 228
B.17 Ordinary Least Squares estimation of UFN 16:48. 228
B.18 Ordinary Least Squares estimation of UFN 40:24. 229
B.19 CBPs of the encryption steps 232
B.20 Data produced from compare_ st(A,B) =0. 233
B.21 Data produced from |compare_st(A, B)| = abs(8). 234
B.22 Data produced from |compare_st(A, B)| = abs(16). 235

10

List of Figures

I\D[\DL\D
W O —

2.4

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

2.1

5.2

5.3

The Data Encryption Standard, DES. 41
Cipher Block Chaining, CBC., 42
Cipher Feedback, CFB. 43
Output Feedback, OFB., 44
The International Data Encryption Algorithm, IDEA 47
SPN with N =16, R = 4 and n = 4 (source: Heys & Tavares 1996). . . 54
A Feedback Shift Register 58
A Feedback Shift Register used in a stream cipher 59
A Feistel block, 60
Relation of F% P and DES space, 63
The round function of the DES. 68
Standard modes of operation., 73
Distribution of w(co @ ¢;). 76
Distribution of e(). 77
A conventional symmetric cryptographic algorithm 98
A private symmetric algorithm L. 99
The secret structure and key symmetric algorithm 99
Block diagram of the encryption algorithm 101
Block diagram of the decryption algorithm 102
The ABSENT framework. 128
The round function of Blowfish. 134
The Blowfish L (a) and Blowfish R (b) encryption steps. 135
The target heavy 16:48 UFN (a) and its round function (b). 136
The source heavy 40:24 UFN (a) and its round function (b). 137
The LESR #1 encryption step. 138
The hash function used in the feedback block. 140
Format of the results for the first 16 output bits for a frequency test. . 144
Format of the results for the diffusion distinguisher test. 148
The ABSENTtalk menu 152
The protocol for the setup session. 154
The client/server communication of a talk session. 159

Scatter plot of y;, against y,_; for 1 <t < 16 for the DES encryption step.168
Scatter plot of confusion of two round balanced heterogeneous Feistel

Networks. 172
Surface plot of (py +p2 — pip2)®, forn=10. 173

11

LIST OF FIGURES

5.4 Confusion matrix of the full DES algorithm. 181
9.5 ¥ matrix distribution of diffusion of the full DES algorithm. 182
5.6 Confusion matrix of a one round Luby-Rackoff construction. 183
5.7 Confusion matrix of a two round Luby-Rackoff construction. 183
5.8 Confusion matrix of a one round DES. 184
5.9 Confusion matrix of a five round DES. 185
5.10 Performance evaluation(). 190
B.1 A heterogeneous (A # B) two round product cipher. 224

Glossary of symbols and

abbreviations

BFN Balanced Feistel Network

C Ciphertext

C Confusion matrix

CBC Cipher Block Chaining mode of operation

CPB Cryptographic Block Profile

CFB Cipher Feedback mode of operation

D Diffusion matrix

Dk (X) Decryption transformation of X with key K

DES Data Encryption Standard

AX Bitwise exclusive-OR difference of two values of variable X
Ex (X) Encryption transformation of X with key K

E:V* — W* Encryption mapping transformation of plaintext space to

ciphertext space

ECB Electronic Codebook mode of operation

GF(2)" Binary words of length n (bits)

IDEA International Data Encryption Algorithm

v Initialisation Vector

LAN Local Area Network

13

LIST OF FIGURES

LFSR Linear Feedback Shift Register

M = {x;...z5} Encryption system with encryption steps x;,j = 1..0

MAC Message Authentication Code

MDC Manipulation Detection Code

Mp Marginal diffusion

O() Big-O notation, measure of complexity

OFB Output Feedback mode of operation

P Plaintext

PKC Public Key Cryptosystem

R? Determination coefficient

R? Determination coefficient corrected for the degrees of freedom
RSA Rivest Shamir Adelman public key cryptosystem
S-Box Substitution Box

S/MIME Secure/Multipurpose Internet Mail Extensions
SPN Substitution Permutation Network

SSL Secure Sockets Layer protocol

UFN Unbalanced Feistel Network

1% The set of plaintext symbols

V* Plaintext space

Y Finite set of plaintexts length n

Yy Finite set of plaintexts length up to 7

w The set of ciphertext symbols

wr Ciphertext space

ym Finite set of ciphertexts length m

pim) Finite set of ciphertexts length up to m

¥ matrix The matrices used for computation of the diffusion and

confusion matrices

XOR, & Exclusive-OR. boolean operation

14

LIST OF FIGURES

V1
a€B
22

O]
<L<Lm
>>> M

S1 @52

For all 2

« is a member of set B

Integer addition modulo 2"

Integer multiplication modulo 2" + 1
Left circular shift of m bits

Right circular shift of m bits

Concatenation of strings s and sz

Graphic symbols

Ljoapo

Functions:
different symbols allow separation
of function types in diagrams

data block

n-bit data bus

Part 1

Introduction

16

Chapter 1

Introduction

Civilization is the progress toward a society of privacy.
The savage’s whole existence is public, ruled by the
laws of his tribe. Civilization is the process of setting
man free from men.

Ayn Rand - The Fountainhead (1943)

With the fast growth of computer networks and their introduction to many environ-
ments ranging from domestic to organisational, the need for privacy and more generally
security has become apparent, and cryptography, which plays a primary role in com-
munications security, has become a science rather an art.

The Internet user community seeks a high standard of security, and the underly-
ing research community, the Internet Engineering Task Force, is striving to develop
and standardise a number of security protocols to encourage many types of electronic

transactions, ranging from a routine email to on-line purchases.

1.1 Motivation

The motivation for this work can be explained with the following example. Consider
the scenario where two companies which have never communicated in the past wish

to start doing business via the Internet. The need for security for their transactions

17

CHAPTER 1. INTRODUCTION

1s assumed. Secure transactions require agreement of security protocols, agreement on
cryptographic algorithm(s) to be used and possibly a password. In some protocols such
as the RSA (Rivest et al., 1978) and Diffie Hellman (1976) key agreeement, the cipher
is integral to the protocol. These cryptographic algorithm dependent protocols will
not be considered in this work, since this thesis focues on cipher independent protocols
which can support a number of ciphers.

In the case of a protocol which does not specify the algorithm, the problem of
selecting a suitable cipher remains. The term ’suitable’ may be application specific
and may include properties such as cryptographic strength, speed and key length.

A common approach is to choose a standard!, published cipher such as the DES
or IDEA. In some protocols the use of more than one standard cipher is allowed (eg.
Netscape’s SSL protocol, and S/MIME, the cryptographic services for MIME). Such
protocols include a negotiation stage in which the cipher for each communication session
is nominated from the set list of available ciphers.

An alternative approach is to use a fully private cipher. This approach contains
serious flaws which may render the communication insecure. More specifically, it has
been well established that the security of a private cipher is unknown, due to the fact
that it has not been extensively analysed and tested, and even if it resists all known
cryptanalytic attacks, it could be attacked by reverse engineering methods.

A standard, published cipher on the other hand, will have been widely analysed
and its estimated security may be close to its actual security. However, standard
ciphers have ’expiration dates’ which relate to their key length and the feasibility of
an exhaustive search.

Instead of increasing the key length to improve security, the approach of selecting
one standard cipher from a set has been employed, as mentioned earlier. This approach
serves to increment the search space, assuming that the selection of the standard ci-
pher is kept secret. Using the cipher selection approach does not however result in a

substantial increase in search space (The SSL for instance uses four symmetric ciphers

1T, the contect of this thesis, a standard cipher is a cipher which is well known and widely accepted.

18

CHAPTER 1. INTRODUCTION

resulting in an approximate increase of four times the search space, if the negotiation
is private).

This thesis proposes an alternative approach to increasing the search space. The
approach is to define a large set of ciphers and to use one cipher from the set for
each communication session. The large set of ciphers is generated by composition of
a number of standard ciphers. The set of all ciphers which form the cipher space 1s
public information. The selection of a specific cipher from the cipher space becomes
part of the private information shared between the two communicating parties.

A cipher is described by its structure, and during session setup negotiation a pro-
posed structure is passed as secret information and is evaluated by the parties to
determine its acceptability.

More analytically, the constructed (composed) ciphers result from the sequential
combination (cryptographic composition) of the public ciphers, combined further with

feedback blocks.

This thesis investigates the hypothesis that the composed algorithm has in most
cases greater strength than its constituent standard ciphers alone. The constructed
ciphers can be of differing complexity, and have different cryptographic strength. If
the cipher is to be acceptable to both parties it is necessary to provide a way to measure
strength and thus distinguish weak from strong cipher instances.

An evaluation method is developed in this thesis, proposing measures that allow
strength of the composed cipher to be related to strength of the individual standard

ciphers.

In cipher negotiation there is an additional restriction: the evaluation of the cryp-
tographic strength of the negotiated cipher has to be completed within acceptable time
limits for effective on-line communications.

The approach outlined for evaluating the strength of a cipher is a direct consequence

19

CHAPTER 1. INTRODUCTION

of the large cipher space. It is demonstrated that the cardinality of the cipher space 1s
exponentially related to the cryptographic transformations used. Hence, it is infeasible
to evaluate every instance, but a method to predict the cryptographic strength for
every instance is required.

It is proposed by this thesis to store results of off-line testing of the encryption steps,
and to estimate quickly the cryptographic strength of the negotiated cipher from these
results. This thesis proposes suitable measures of strength and provides rules on use
of these measures for “quick” evaluation of strength of a composed cipher proposed in

negotiation.

1.2 Aims of thesis

The main aims of this thesis are:

1. to define a family of symmetric block ciphers constructed (composed) from a set

of publicly known encryption steps,

9. to develop a framework for evaluating the cryptographic strength of the cipher

instances from the family of composed ciphers, and

3. to develop a fast? on-line cipher evaluation method to be embedded in the cryp-
tographic algorithm negotiation protocol and to give an indicative measure of the

cipher evaluation speeds in relation to the algorithm

with the supporting alm:
4. to develop a prototype system for experiment and testing.
Subsidiary aims are:

1. (a) offer practical security against a known plaintext attack.

(b) offer the option of trade-off between complexity over speed.

2The term fast should be interpreted as acceptable delay in setting up a $e8S107

20

CHAPTER 1. INTRODUCTION

(c) use and allow standardisation.

(d) accommodate evolution of cryptographic technology.

2. (a) analyse confusion and diffusion by investigating contributing parameters
and describing them with quantitative means and relate the strength of the

cipher to these values.

(b) offer rules to filter out known weak instantiations.

3. (a) develop a method in which the results of long term computations are sum-
marised, stored and utilised in the algorithm negotiation protocol, in order

to speed the negotiation.

(b) develop a message forwarding utility to test the algorithm negotiation pro-

tocol.
Some secondary aims are:

A. it should be feasible that the method for selecting and constructing any of the
cipher instances of the family, is the same function call. This is a practical
requirement; if there were billions of cipher instances and each cipher needed a

different implementation, the method would not be practical.

B. calculate the total search space, which is the product of the key space and the

cipher space.

More analytically, the definition of a family of ciphers defines also a cipher space.
The cardinality of this space is equal to the number of all possible composed ciphers.
The secrecy on the selection of the composed cipher increases the total search space,
which becomes the product of this cipher space and the key space. This is calculated
later in the thesis.

The reseach focuses only on block ciphers. Stream ciphers are not included be-

cause the proposed measures involve confusion and diffusion, and stream ciphers have

21

CHAPTER 1. INTRODUCTION

inherently low confusion and diffusion and therefore the selected measures are not
appropriate.

It was also required to provide a measure of cryptographic strength of the ciphers,
in order to distinguish the cryptographically weak compositions from the strong com-
positions. The measures of cryptographic strength used are confusion and diffusion.
These well known measures give good indication of the ability of the cipher to with-
stand a known plaintext attack. This thesis offers some theoretical results on diffusion
and some experimental results and some calculation rules for confusion when applied
to composed systems. Diffusion and confusion are also shown to be related.

The cipher space proposed in this thesis consists of the set of ciphers produced by
cryptographic composition of publicly known encryption steps, optionally combined
with feedbacks.

At this point it would be useful to draw the distinction between an ‘encryption
step’, an ‘encryption block’ and a ‘feedback block’ - terms which are used throughout

the thesis:

e An encryption step is an encryption function which could be used to construct the

cipher. In this thesis, an encryption step is a publicly known ‘standard’ cipher.

e When the encryption step participates in the structure of a specific composed

cipher instance, then it is considered to be an encryption block.

o If an encryption step is used in a feedback configuration, it would be referred as
a feedback block. The feedback blocks operate on the intermediate results of the

o
encryption steps.

Restating the work in this terminology: the proposed method specifies a set of
encryption steps to define a cipher space. The cipher space consists of cryptographically
composed encryption blocks combined with feedback blocks. Communication setup
negotiation involves selection of one of the composed ciphers of the cipher space. The

communicated information for this selection is the secure exchange of the identifiers of

22

CHAPTER 1. INTRODUCTION

the standard encryption steps which are used as encryption blocks.

Since the information communicated during negotiation is the identifiers, the need
for standardisation is apparent. It should be noted that the term ‘standardisation’ is
used with the meaning of ‘agreed and accepted between communicating parties’. That
is, both parties should have knowledge on the encryption steps and also their iden-
tifiers. In the proposed method standardisation involves also prior agreement on the
cryptographic strength and evaluation methods. This suggests that security measures
of one party should provide the same results as the security measures of the other
party, otherwise the proposed method could not be applied.

Security of a cryptosystem can be assessed theoretically and/or practically. The-
oretical security, in which the provable security of a cryptosystem 1s investigated by
mathematical proofs, is beneficial in the long-run and may provide conclusions which
may be generalised and used for further cryptographic development. Practical security
takes a more empirical view: the cryptosystem is assessed by taking into considera-
tion the practical capabilities of the attacker, determining the attack alternatives, and
assessing the security of the cryptosystem against these alternative attacks.

The security measures were selected in this thesis to offer practical security against a
known plaintext attack, in which the attacker has access to all communicated ciphertext
and some plaintext/ciphertext pairs.

The proposed method of constructing ciphers should also permit evolution of cryp-
tographic technology. That is, it should be feasible for the proposed cryptosystem to
incorporate advances in cryptography which may enhance the security of the cryp-
tosystem. This can be done in the proposed cryptosystem by allowing updating or

modification of the encryption steps by standardised agreement.
Turning to the second aim of the thesis, once the cipher space had been defined,

there was a need to develop a framework for evaluating cryptographic strength of the

composed ciphers. Since the communication scenario 1s assumed in which an attacker

23

CHAPTER 1. INTRODUCTION

would be an eavesdropper gathering the ciphertext communicated between two parties
and the attacker also knows the set of encryption steps (but not the details of the
composed cipher), the strength of the cipher would be defined as its ability to conceal
the information of the plaintext within its corresponding ciphertext. This ability 1s
measured by the diffusion and confusion properties of a cipher.

Confusion and diffusion are investigated in terms of contributing parameters and
described quantitatively. When a cipher consists of two or more encryption steps, the
relation between the overall confusion (and diffusion) and the confusion (and diffusion)
of the underlying encryption steps was investigated. A number of additional parameters
were introduced in order to establish this relation for confusion with an adequate
confidence level. One of these parameters is the marginal diffusion, which is introduced
and defined in this thesis.

The cryptographic strength of the composed cipher is related to confusion and
diffusion and, in extension, to the contributing parameter values. More specifically,
after developing a way to measure the confusion and diffusion of a composed cipher,
the confusion and diffusion of the composed cipher are related to the contributing
parameters of the underlying encryption blocks (i.e. steps).

The proposition that the confusion and diffusion of a product cipher can be de-
seribed from the parameters of the underlying encryption steps was investigated and
confirmed.

In product ciphers, the (cryptographic) composition of a number of encryption steps
results in increased values of confusion and diffusion (the term “avalanche” is used In
the literature to address this property of product ciphers). This is proven in this thesis
by a theoretical proof for diffusion and an experimental proof for confusion.

The confusion was modelled by applying linear regression techniques to the con-
tributing parameters. Consequently, the strength of the composed cipher was able to

be described using parameters from the underlying encryption steps.

24

CHAPTER 1. INTRODUCTION

The last of the aims was to develop a cipher evaluation method to be embedded in a
cryptographic algorithm negotiation protocol. The main requirement for this evalua-
tion was high speed, to allow it to be used in on-line negotiations.

As discussed above, when a composed cipher is proposed, the publicly known param-
eter values of each encryption step can be used to compute the cryptographic strength
of the proposed cipher. These parameters are the confusion and diffusion of the en-
cryption steps and also those additional parameters which contribute to calculation of
confusion and diffusion of the composed cipher.

Once again the need to keep the encryption steps public is apparent, as the com-
putations involving the estimation of the security parameters of the encryption steps
need to be completed off-line, before any communication takes place. A “cryptographic
block profile”, CBP, of every encryption step was created in order to store the param-
eter values from the long-run tests of the encryption steps and the CBP becomes part
of the public information on the cipher set.

Another requirement for the tests was invariability of the measurements, meaning
that two parties independently performing the tests should obtain results that are sta-

tistically the same.

Finally, a message forwarding application between two users was developed in order
to test the performance of the algorithm negotiation protocol.

In conclusion, these aims lead to a complete negotiation protocol with fast on-line
cipher evaluation embedded, to allow two communicating users to set up 2 communi-
cation session with the level of security they agree, extending to significantly enhanced

search space compared to current techniques.

CHAPTER 1. INTRODUCTION

1.3 Research methodology

1.3.1 Literature review

The literature review covers two main areas:

e Cryptology. In the area of cryptography, emphasis is given on symmetric cryp-
tography and more precisely, in symmetric block ciphers, since the proposed
method is concerned with such ciphers. The advances of cryptanalysis are also
investigated, since cryptanalysis influences the design objectives of the ciphers.
Furthermore, an indication of a cipher’s strength is its resistance to known crypt-
analytic attacks. Measures of the strength of ciphers which relate to statistical

properties such as tests for randomness are also reviewed.

e Network Security. Security architectures in networks are investigated. This
would give an insight to the trends of secure systems as well as the needs for

security in internetworking environments.

1.3.2 Analysis and investigation

Analysis focuses on the properties of product ciphers - mainly Feistel transformations
which are the main cryptographic transformations used in product ciphers - and mul-
tiple modes of operation. Conclusions found in the literature were used to develop
new methods and then to evaluate these methods by confirming and extending pub-
lished results. Investigations by experimental means contribute further to the results

provided by this research.

1.3.3 Prototyping

A prototype was implemented to carry out the proposed tests. The prototype was

implemented in the C language. This was due to the following reasons:

26

CHAPTER 1. INTRODUCTION

e the available libraries for client/server programming in a UNIX environment are

mainly in C.

e Cryptographic material published in the literature was in C, so any published
code could be incorporated in the prototype and tested and compared against

other cryptographic components.

e To make coding practical for a large number of ciphers, it is useful to have a

language with good pointer manipulation.

1.3.4 Tests used

In the project, randomness and statistical tests were used to investigate the confusion
and diffusion properties of the block ciphers. Consequently, quantitative definitions for
confusion and diffusion were proposed in order to support the evaluation methods of
the developed ciphers.

The construction of the diffusion and confusion matrices also proposed in this
project are the basis for computing the confusion and diffusion of the composed ci-
pher instances. Furthermore, a property of the diffusion matrix was discovered which
allows fast computation of the diffusion of a cryptographic composition of two or more
encryption steps. Additionally, the quantity of marginal diffusion also proposed in this
thesis has been shown to be highly related to the confusion.

Finally, the information in the confusion and diffusion matrices was utilised in two
additional new tests which were proposed, namely the depth test and the diffusion

distinguisher test.

1.3.5 Interpretation of results

After using the prototype to perform the tests, several classes of cipher instances were
tested, allowing investigation of the number of rounds needed to achieve complete

diffusion on a product cipher, and modelling the confusion, as defined in the thesis.

CHAPTER 1. INTRODUCTION

The modelling of confusion in terms of its contributing parameters was performed
with regression analysis, in which the regression coefficients were examined to determine
the proportion in which an equation described the experimental data. Furthermore,
diagnostic tests were performed on the estimation equation, to determine its predictive
power. The diffusion was derived directly from the diffusion matrices and therefore
required 1o regression techniques.

Graphical representations of some parameters was used to aid visualising the ex-

perimental data.

1.4 Novel features of the thesis

The novel aspects of this thesis are:

e the definition of parameters related to the cryptographic strength of a product

cipher:

_ the definition of diffusion and confusion matrices,

— the quantitative definition of diffusion and confusion related to the matrices
above,

_ the definition of the marginal diffusion,

o the evaluation of the cipher in terms of its encryption steps, resulting from:

_ the establishment of the multiplicative property of the diffusion matrices in

product encryption which allowed modelling of diffusion,

_ the modelling of confusion with linear regression techniques,
e the on-line cipher evaluation approach, supported by:

_ the summary of the parameters of the encryption tests in the Cryptographic

Block Profile introduced here,

28

CHAPTER 1. INTRODUCTION

e the description of the composed cipher for communication purposes,
e the depth test, and

e the diffusion distinguisher test.

1.5 Outline of thesis

The thesis is organised as follows. Chapter 2 presents a review of the relevant back-
ground literature. This involves description of the symmetric block ciphers, the crypto-
graphic primitives which can be used as building blocks of these ciphers, their strength
against certain cryptanalytic techniques, as well as their use in network security.
Chapters 3 and on describe the proposed method. Chapter 3 is a description and
analysis of the proposed method, where the security framework and design objectives
are also set. The chapter includes also a presentation and analysis of the developed
methods - mainly statistical tests - which would be used to assess the cryptographic
blocks. Chapter 4 describes the prototype developed to perform the long-run statis-
tical tests, as well as the client/server application to examine the effectiveness of the
short-run tests. Chapter 5 summarises the experimental results, followed by the inter-
pretation of the results. The interpretation concludes with a regression analysis of the
estimated parameters. Finally the conclusions and proposals for further research are

presented at Chapter 6.

29

Ban

Part 11

Literature Rev iew

30

Chapter 2

Theoretical Background

2.1 Introduction

Cryptography', the practice of using encryption to conceal information, studies ways
of encrypting (or enciphering) data by transforming it into apparent unintelligible
forms, called ciphertexts. The description of such transformation process is called a
cipher. The known history of codes and ciphers date back to 2000 B.C., when the
Egyptians used a hieroglyphic code for inscription in tombs. Kahn (1976) presents a

comprehensive historic survey of the use of cryptography throughout the years.

2.9 Terminology and definitions

The original form of a message is called a plaintext, whereas the encrypted form 1s
called a ciphertext. Transformation from plaintext to ciphertext is called encryption
or enciphering. The Inverse process of transforming the ciphertext back to the plaintext,
is called decryption or deciphering. A complete description of the encryption and
decryption processes, 1s called a cryptosystem.

In a cryptosystem there is an extra piece of information which is needed for the

encryption and decryption of the message. This information is the key.

LCryptography, from the Greek kpumTés (kryptos) and ypadr (graphy) which means hidden writ-
ing, is attributed to Thomas Browne in 1658, an English physician and writer (Bauer 1997).

31

.’

CHAPTER 2. THEORETICAL BACKGROUND

There are two main categories of cryptosystems, the symmetric and asymmetric
cryptosystems. A symmetric cryptosystem uses the same key both for encryption
and decryption. The key is known only to the two parties which wish to communicate
securely, and is called a secret key. An asymmetric cryptosystem employs two
different keys, one for encryption and one for decryption. The sender of the message
has knowledge only of one of the keys which is the public key. The public key is available
to everyone; decryption though is not feasible with it. The second key is the private
key and is known only to the intended recipient of the message. Only the private
key is suitable for the decryption of the ciphertext. Such an arrangement has solved
some important problems in modern communications, such as the key distribution and

N-Square problem (Davies & Price, 1984).

2.2.1 Representations

The following representations were adopted from Bauer (1997) and will be used through-
out the thesis.

Let V denote the set of symbols (characters) which may form a plaintext P. That
is, P=[pipa...], where p; €V, 1=1,.... Similarly, let YW denote the set of symbols
which may form a ciphertext C, where C=lac...],aeW, i=1....V and W
can be different, overlapping, or identical sets.

If V* and W* denote the sets of plaintext and cryptotext words (i.e. strings of
symbols) constructed from V and W respectively, then V* is the plaintext space and
W+ is the ciphertext space. If V and W are nonempty finite sets, then V* and W* would
be nonempty infinite sets. It would be assumed that V and W are nonempty finite
sets. The cryptotext words are also called cryptograms. If a cryptogram consists of
two ciphertext symbols, then it is called a bigram, if it consists of three symbols, then
it is a trigram and so on.

In computing, the plaintext and ciphertext space usually consist of strings of binary

digits. The set of symbols is {0,1} and denoted as GF(2). A string of length n of

4‘

CHAPTER 2. THEORETICAL BACKGROUND

binary digits is denoted as GF(2)" or {0,1}".

Let V" (W™) denote the finite set of plaintext (ciphertext) words length n (m).
Let ¢ denote the empty word. Then, if Y ig the set of all words of length up to n,
it would be Y™ = {} UV UV?U---UV", where . U. denotes the union of two sets.
Similarly, W™ = {JUWUW?* U - - UW™

An encryption E would be defined as a relation E : V* — W*, where E specifies a
mapping from set V* to set W= If the converse relation B! : W* — V* exists, then
E-'is a decryption. The decryption exists, if the relation V* — W* is unambiguous
from right to left.

A rule finite set M = {xo0, X1, ,xo—1} of relations x; : Yo 5 W) s the
encryption system, with x; the encryption step with 6 denoting the cardinal number of
the system. x; may be nondeterministic. If all encryption steps are injective?, then a
corresponding decryption system exists. Both encryption and decryption systems form
a cryptosystem.

Let X denote a generated encryption [X,-I,xiz,xis,...], where Xi,, Xigs Xigy - - - L€
encryption steps selected from M. The encryption X is called finitely generated, if it is
induced by a sequence (Xi, s Xigs Xia» - - .) of encryption steps in M, under concatenation.
It should be highlighted that a finitely generated encryption is not necessarily injective,
even if the encryption steps are.

A key is used to select an encryption step from M. Similar to V and W, let K be

the finite key space, with elements k. € K, forming a key sequence [kykoks . k).

9.9.2 Stream and block ciphers

Stream ciphers operate on one plaintext symbol at a time. In computers, the plaintext
symbols are bits.

The independence of the symbols is a disadvantage from a security perspective.
Because each symbol is separately encrypted, all information of a plaintext symbol is

2 A transformation has an injective property, if it may be inverted without any ambiguities.

33

CHAPTER 2. THEORETICAL BACKGROUND

contained within one ciphertext symbol. Hence, the diffusion?® is very low. Another
disadvantage is that an intruder may insert a previous segment of the ciphertext, which
may still look authentic.

Block ciphers operate on blocks of the plaintext, by grouping the plaintext symbols
in the message and producing blocks of ciphertext, i.e. groups of ciphertext symbols.
Plaintext and ciphertext blocks may have same or different length. It is generally
required though (Shannon 1949) that the ciphertext blocks have the same length as
the plaintext blocks.

In contrast to the stream ciphers, block ciphers may offer diffusion of a plaintext
symbol within a block, in a way that 1t affects all ciphertext symbols of the generated
block. This also makes it immune to insertions or modifications of ciphertext symbols

in a given block.

2.2.3 Cryptographic strength

A well established approach to measuring the cryptographic strength of a cipher uses
the concepts of confusion and diffusion. Confusion is the characteristic of the cipher,
where changes in the plaintext result in unpredictable changes in the ciphertext. Dif-
fusion is the characteristic, where changes in the plaintext can affect many parts of
the ciphertext (Pfleeger 1989).

Confusion and diffusion have more meaning in block ciphers, which will be described
in the next section. However stream ciphers lack high confusion and diffusion, which
is an important disadvantage regarding cryptographic strength.

This thesis will be focusing on block ciphers, with binary strings used as plaintexts
and ciphertexts, using 64-bit input and output blocks. Therefore, it would be useful
to specify confusion and diffusion with respect to these parameters.

When mapping a 64-bit plaintext [pop1pe - - - s3] to a 64-bit ciphertext [cocica - . - cas);

diffusion is defined as the relation of every input bit with every output bit, i.e.

3Diffusion is the characteristic which measures the extent to which a change in the plaintext
affects many parts of the ciphertext, as explained at section 2.2.3.

34

CHAPTER 2. THEORETICAL BACKGROUND

¢ = fii(p;), »J= 0,1,...,63
whereas the confusion implies that output bit ¢; has 50% probability of being inverted,
if bit p; is inverted, for every 1 and 7, 1.e.
problc; @1 = fij(p; ®1)) = L 4,5=01,... ,63
where @ denotes the bitwise XOR operation.

Confusion and diffusion are properties of the cipher and high values should be
displayed for every key. However, it is not feasible to examine such a proposition
in practice, since 1n principle the search space is large. Consequently, experimental
measurement of these two characteristics could only be performed by statistical means,
because measuring the whole space would require an effort greater than a brute force
attack?. Another alternative would be to investigate the existence of properties of the
underlying functions. Such properties, could be associativity, distributivity, isotopism,
etc. If these properties do not hold, confusion would be high, since the existence of
any additional property would make the relation between the input and output more
apparent.

A method to measure confusion and diffusion is described in Chapter 3. Apart
from these two measures, additional measures have been proposed in the literature
which are mainly related to the underlying attacks and types of ciphers. For example
differential characteristics are used in differential cryptanalysis and apply to product

ciphers. These are described in Section 2.9.

2.3 Symmetric cryptography

As mentioned in Chapter 1, this thesis 1s more concerned with symmetric rather than
asymmetric cryptography, because the proposed method uses a symmetric block cryp-
tographic algorithm, with asymmetric cryptography used only to send structures and

keys. Therefore secret key cryptosystems and more specifically block ciphers are pre-

sented.

1A prute force or ezhaustive search is the most common and obvious attack, where all possible
keys are tested until the correct key is obtained (Section 2.9)

35

CHAPTER 2. THEORETICAL BACKGROUND

2.3.1 Block ciphers

A block encryption is an encryption [Xi,, Xiz» Xis» - - -] where the mapping:

v V= W
holds for all y; € M. A word from V" is an encryption block. In todays computer
technology, block encryption algorithms are mainly designed for encrypting GF(2)" —
GF(2)", i.e. n—bit words. The set V" is usually 64—Dbit words.

A block cipher may consist of permutations, substitutions and other functions which
operate on the whole block or on a sub-block. If the block cipher consists of an
encryption step applied more than one time, then the encryption step is the round
function and the number of it being applied is the number of rounds of the algorithm.
A block cipher which consist of many rounds belongs to the family of product ciphers,
as described in the next section. In every round the encryption step may have same
or different key values and operate on different segments of the block, i.e. on the sub-
blocks. If different key values are used, then there is a part of the block cipher deals
with the generation of these values from the main secret key. The process is called key
schedule.

The importance of a key schedule was reported by Knudsen (1994a), as a distinction
between weak and strong key schedules was made. According to Knudsen, a key
schedule is strong if no simple relations could be found and weak in the opposite case.
The following definition of a simple relation is adopted from Knudsen (1994D):
Definition Let E be a block cipher s.t. Ex(.) denotes the encryption function using
the key K and let f, 01,92 be ‘simple’ functions such that the total complexity of one
evaluation of each of f,g1,92 is smaller than one evaluation of E (one encryption).
Then if

Ex(P) = C = Epue(a1 (P, K)) = 62(C, K)
F is said to contain a simple relation between the encryption functions Fx(.) and

Erua ()

The well known complementation property of the DES for example (Davies & Price

36

CHAPTER 2. THEORETICAL BACKGROUND

1984), is a simple relation with f(K) = K and gi(X, K) = X.
An effective way to construct strong key schedules is to use a one-way> hash func-
tion, so the structure of the key would not be apparent at the end side of the schedule
and therefore it would be very difficult to identify simple relations (Knudsen 1994a).
The main characteristic of a block cipher in terms of its security, is the high dif-
fusion and confusion potential. Diffusion is offered mainly by permutations, whereas
confusion is offered by substitutions. Usually a round’s contribution in confusion and
diffusion is trivial, but the iteration may produce substantially larger amounts of these
two characteristics. There are various theorems and principles which investigate the
conditions under which this desired phenomenon appears (Lai 1992); conditions which
relate to this work are examined in this thesis. In general, security through multiple
encryption depends on many parameters, ranging from the design principles of the sub-
stitution boxes, to the ways these primitives are combined with the key and plaintext
information and the properties of the composition of the encryption steps. The proper-
ties and design principles of the cryptographic primitives are explained in Section 2.4.
In this Section, some findings on cryptographic composition are presented, followed by

the description of some block ciphers found in the literature.

Cryptographic composition

Ciphers which consist of composition of encryption steps are called product ciphers.
It is necessary that the ciphertext space of the i-th encryption step coincides with the
plaintext space of the (¢ + 1)—th step. Bauer (1997) uses the term “superencryption”
as a synonym of product encryption.

There are several requirements concerning the cryptographic strength of product
ciphers. The result of cryptographic composition is not necessarily a stronger cipher.
In some cases, cryptographic composition may result to a weaker system because one

encryption step may counterbalance the effect of another step. In other cases, the

5(One-wayness is the property in which it is relatively easy to evaluate a function, but computa-
tionally demanding to evaluate its inverse. One-way functions are presented in Section 2.6.

37

CHAPTER 2. THEORETICAL BACKGROUND

security of a cipher may be equal to that of the least secure encryption step. Desmedt
(1991) for example demonstrated that if the encryption steps are homomorphisms the
security of certain ciphers would not be strengthened.

In some cases it may be useful to examine whether a cryptosystem M forms a
group (Bauer 1997), since if the group property holds, the effective key space would be
reduced. The group property would hold for a cryptosystem if the composition of two
encryption steps of M would be an encryption step in M. If a cryptosystem forms a
group, then for two encryption steps X; and yx;, there is an encryption step Xk, such
as for a plaintext p, xi(x;(p)) = xx(p). Thus, the key space forms a key group, i.e.
k =ioj, with .o. denoting the composition rule for the two keys. Another property a
cryptosystem may have, is that 1t may be pure. A cryptosystem 1s called pure (Beker
& Piper 1982), if for keys ki, ko, k3 and k4, the relation X, (ka,zl(xkg (p))) = Xk, (p) holds.
A pure cryptosystem 1is a group, but a group is not necessarily pure.

Concerning a block cipher, the group property is an undesired characteristic, be-
cause not only does it provide the cryptanalyst more valuable relations to work with,
but double or triple encryption does not influence the strength of a group cipher by
any means. Consequently, there is a limit to the cardinality of the key space (and
M) and it is related to the plaintext and ciphertext spaces. If the key space is large
enough (comparable to the size of permutation mappings) to include all permutations
of V* — V7" then the cryptosystem is a group. However, a well designed cryptosystem
would exclude the cases where the permutations reveal significant statistical relations
hetween the plaintext and ciphertext.

Clommutation® is also useful for examining the group properties of product ciphers;
if two ciphers commute and each cipher forms a group, then their composition would
also form a group (Shannon 1949). Consequently, to destroy the group property of a
cipher, it 1s enough to find another cipher which does not commute with the first one

and compose the latter with the former.

6 Two encryption steps x1 and xo commute if x1 (x2(m)) = x2(x1(m)) for any plaintext m.

38

CHAPTER 2. THEORETICAL BACKGROUND
The Data Encryption Standard

The Data Encryption Standard, DES (Meyer & Matyas 1982), is a widely researched
block cipher. Since its introduction to the public at 1977, the DES has been extensively
analysed in order to establish its cryptographic strength. In the attempts to cryptanal-
yse it, many paradigms have been developed which contribute to block cipher design.

Although the actual design criteria for the DES have never been publicised (Schneier
1996), four years prior to the introduction of the DES, the following design criteria a
cryptographic algorithm may fulfil were specified by the Federal Register (Schneier

1996):

The algorithm must provide a high level of security.

The algorithm must be completely specified and easy to understand.

e The security of the algorithm must reside in the key: the security should not

depend on the secrecy of the algorithm.

The algorithm must be available to all users.

The algorithm must be adaptable for use in diverse applications.

The algorithm must be economically implementable in electronic devices.

The algorithm must be efficient to use.

e The algorithm must be able to be validated.

The algorithm must be exportable.

However, the design criteria of the DES were not actually reported, until 1994.
Probably this triggered the interest of various researchers to examine extensively the
DES and try to identify its design principles. The design criteria of the DES involved
the substitution and permutation boxes (S-boxes and P-boxes) (Section 2.5).

More specific, the criteria were as follows (Coppersmith 1994):

39

CHAPTER 2. THEORETICAL BACKGROUND
e Fach S-box has a 6—bit input and a 4—bit output.

e No output bit of an S-box should be too close to a linear function of the input

bits.

o If the two left-most and two right-most bits of an S-box are constant and the

middle bits vary, each possible output should be attained only once.

e If the Hamming distance’ of two inputs to an S-box is one, the Hamming distance

of their outputs should be at least two.

e If two inputs to an S-box differ in the two middle bits, the output must differ in

at least two bits.

e If two inputs to an S-box differ in the first two bits and are identical in the last

two bits, the two outputs must not be the same.

e For any non-zero 6-bit difference between inputs, no more than 8 of the 32 pairs

of inputs exhibiting that difference may result in the same output difference.
e Same as above, but for three S-boxes.

It is interesting to note that the criteria have a hint of making the S-boxes resistant
to differential and linear cryptanalysis (Sections 2.11.1 & 2.11.2). However, these
types of attacks where developed in the 90s, whereas the DES was designed in the 70s.
Nevertheless, in today’s state-of-the-art, more consistent criteria have been developed
for S-box design. These are presented at Section 2.4.

The DES algorithm is shown in Figure 9.1. Tt operates on V%' = GF(2)% producing
ciphertext words in V%, using a 64—Dbit secret key. The actual size of the key is 56
bits, because every 8th bit is used for parity check. After being applied with an initial
permutation P, the block is divided into to sub-blocks of equal length, Lo and Ro. The

round function f : GF(2)*2 = GF(2)* operates on the right sub-block and the output

-
7The Hamming distance between two binary strings is the number of positions of bits these strings
differ.

40

CHAPTER 2. THEORETICAL BACKGROUND

Plaintext

64

)

IP
32 /]L 64 32

&

R,

L =R, R, = L® fRy.K))
-

L,=R, R,=L,® IR, .K,)
T e - - = = I R
I ! i
v v |
e
1”::::_‘:::::‘1
v v

Lism Ryg R;5= [, ® TR oKy 5

Ry 6= L s®IR 5K ¢

~Cipherext]

s

Figure 2.1: The Data Encryption Standard, DES.

Permutation

Data block
n-bit bus

round function

XOR

is XORed with the left part. The round is complete by swapping the two sub-blocks.

This process is repeated 16 times and finally the concatenated sub-blocks are applied

with the inverse initial permutation, P! to produce the ciphertext.

The round function f includes eight substitutions s; : V6 — V1. The 48—bit input

CHAPTER 2. THEORETICAL BACKGROUND

results from a 48—bit subkey XORed with the- ezpanded from 32 to 48 bits- sub-
block R;_), where ¢ denotes the round of the algorithm. The expansion is simply some
specific input bits being repeated. The sub-keys K, Ko, ..., K\ are derived from the
56—bit secret key. For decryption the same algorithm is applied, but the subkeys are

used in reverse order.

Modes of operation. The are four standard modes of operation specified for the

DES, but they could be used for any block cipher:

Electronic Codebook mode, ECB. This is a straight-forward implementation
of the DES. Each 64-bit plaintext word is processed separately, producing a 1-to-1
mapping between plaintext and ciphertext blocks. In ECB mode, an error in one bit
of a ciphertext message, affects only the specific block. The disadvantage of the ECB
mode is that it does not conceal repeated structures. If a plaintext block is repeated
niore than once, the resulting ciphertext blocks will be identical. This is a very common
scenario in computer communications; packets constructed by the TCP/IP protocols
have repeated patterns. Several forms, such as bank statements, use the same field
names. It is relatively easy for an eavesdropper to identify in a bank statement the
fixed fields, such as “Surname”, “Initials”, etc. and isolate them from the remaining
blocks which contain more valuable information. In networks, encryption in ECB mode
is not suggested for encrypting packets, since they have the “stereotyped beginning”,

such as “source”, “destination”, etc. (Davies & Price 1984).

Cipher Block Chaining mode,

64-bit buffer J~=—

CBC. The CBC mode, as shown in

Figure 2.2, includes the previous cryp-

Pj ——=@—— DES - G

togram to encrypt the proceeding plain-

text: ¢; = DES(¢ci-1®pi), and ¢o =1V,

Figure 2.2: Cipher Block Chaining, CBC.
an initialisation vector, agreed between

42

CHAPTER 2. THEORETICAL BACKGROUND

the communicating parties. The decryption would then be: p; = DES(¢;)®ci—1). The
feedback in the encryption is replaced by a feedforward in the decryption. The CBC
mode has the property of being self-healing. If an error occurs in one or more bits
in the ciphertext c;, only the plaintext p; and the corresponding bit in p;+1 would be
wrongly decrypted. The existence of the XOR function cancels the errors, and pi+2
would be decrypted correctly. The CBC mode conceals the plaintext patterns, thus

overcoming the weakness of the ECB mode.

Cipher Feedback, CFB. In some

applications it may be unacceptable to @]«
wait for a whole 64—bit block to be re-
K —> S
ceived in order to perform encryption; en-
/
cryption should be performed at a byte leftmost b.‘z’te
level. The CFB mode performs such en- b ~——>@————*L->ei

cryption (Figure 2.3). The CFB mode is Figure 2.3: Cipher Feedback, CI'B.
similar to a self-synchronising stream ci-

pher. Any block less than 64—Dits could be selected for CFB encryption, but in com-
puters bytes (and more specifically octets) are most likely to be used. Encryption in
CFB would be: ¢; = b;@B(DES(c;)), where B selects the leftmost byte of its input and
discards the rest. In every encryption, the input to the DES is ¢; = (cio1 << 8)Vei-1,
with ¢o = IV. Similarly, decryption is defined as: b; = ¢; ® B(DES(¢;)), with the same
¢;. It should be noted that in CFB mode both encryption and decryption apply the
DES for encryption. As in CBC mode, in CFB patterns in the plaintext are concealed.
Concerning error propagation, if there is an error in a byte, then the following seven

bytes would be affected, until the wrong byte is discarded by the shift register.

43

CHAPTER 2. THEORETICAL BACKGROUND

Output Feedback, OFB. In the [shift register | =
OFB mode, the encryption is basically \
a stream cipher. From a publicly or K — DES
privately agreed initialisation vector IV, [eftmost byte |

a bytestream (or bitstream) is generated [
bi — ¢

and XORed with the plaintext byt g
plaintext bytes (o1 Figure 2.4: Output Feedback, OFB.

bits). This mode has all advantages and
disadvantages of a stream cipher, i.e. low propagation of errors, but also low diffusion.
Patterns are also concealed in OFB, since every byte is XORed with a different pseu-

dorandom output value.

From the four standard® modes of operation described, only CFB can recover from
synchronisation errors. Additionally, in ECB the least and most increment in ciphertext
length is zero and 63 bits respectively, whereas in CBC these values are 64 and 127,
because of the initialisation vector. Assuming that the plaintext arrives in a rate which
is larger than the encryption rate of the ECB, then the fastest encryption of the four
is ECB, but it is equal to the speed of CBC after a large number of encryptions. CFB
and OFB are eight times slower, because to encrypt the same amount of plaintext
eight times more encryptions should be performed. However, in OFB there could be

preprocessing, making it the fastest mode of all four.

Non-standard modes of operation. There are numerous configurations for differ-
ent modes of operations of DES-like cryptosystems found in the literature (Davies &
Price 1984; Jansen & Boekee 1988). Some are derived from the four standard modes of
operation, by interchanging the roles of the plaintext and ciphertext, or by combining
the modes. Similar to CBC and CFB, plaintext block chaining, PBC and plaintext feed-
back, PFB, could be constructed. In the former, encryption would be defined as ¢; =
DES(m;)&mi_1, with mo = IV, whereas decryption would be p; = DES(c;®mi-1). In

[
8Tt should be highlighted that ‘standard’ refers to the modes of operation.

44

CHAPTER 2. THEORETICAL BACKGROUND

PFB, the encryption is specified from the equation e, = b, ®B(DES((c; << 8)Vbi-1))
and the decryption would be b, =€, ® B(DES((¢; << 8)V bi—1).

Although the general conclusions and properties of the standard operating modes
could be applied in non-standard modes, in some cases an apparently insignificant
change in the structure of the mode in a strong cryptosystem - a modification of the
placement of a hot wire which connects a certain output with a certain input for
instance - may lead to a very weak cryptosystent. Consequently, non-standard modes

should be used with caution, since they have not been analysed extensively.

Security of the DES. A lot of research has been carried out concerning the security
of the DES. Starting from the most obvious attack, the exhaustive search is likely to be
economically feasible in the coming years. Garon and Outerbridge (1991) extrapolated
that by the year 2000 the DES could be broken in a day for an investment cost of
$ 3,580,000.

The main concern throughout this thesis is the cryptographic strength rather the
economics of exhaustive search. Generally, a cipher is considered to be secure, if there
are no alternatives other than exhaustive search. If exhaustive search is feasible, this
implies bad selection of key length. However, securing a cipher from alternative at-
tacks is not straightforward, because it is not possible to consider all potential attacks
- i.e. both published and new state of the art cryptanalytic techniques. Confidence
in security against standard types of attacks, such as frequency distribution, differen-
tial and linear cryptanalysis, requires that the cipher has been analysed extensively.
Yet, a slight modification of an attack scenario, may break the cipher. If the cipher
is publicised and not broken, it is more likely that it is secure. This is stated in Ker-
choff’s principle (Schneier 1996), which suggests that a cipher can be considered to be
cryptographically strong only if it is publicised and still not broken.

Attempts to analyse the DES have resulted in more general conclusions concerning
block ciphers. The tools of mathematics were used to asymptotically analyse the DES.

Luby and Rackoff (1986) adopted this theoretic approach, and concluded that the

CHAPTER 2. THEORETICAL BACKGROUND

security of DES-like cryptosystems is related to the existence of pseudorandom bit
generators. The DES did not fulfil this property, therefore it was considered insecure.

Concerning its algebraic structure, after a series of attempts by different researchers
it was finally proven than DES does not form a group (Campbell & Wiener 1993). That
is, that given two keys k; and ko, there is no key k3 such that Er, (B, (p)) = Eiy(p)-
If this relation held, then triple encryption would not strengthen the security of the
cryptosystem.

The key schedule was also found to have weaknesses. If the key is all 1s, all Os, or
half of it 1s and the other half Os, then the generated subkeys are all identical. These
are the weak keys. There are also six pairs of semi-weak keys that select the same
DES permutation. However, the number of these problematic keys is trivially small,
and does not have any significant impact on the security of the cryptosystem.

The round function of the DES introduces the subkey by XORing it with the
(expanded) right sub-block, before performing the non-linear substitution. This con-
figurations results to a complementation property of the cipher: if Ex(p) = ¢, then
E_i(=p) = —c, where =k, =p and —c denote the complements of k, p and c respectively.
This suggests that one has to test half the possible keys, 996 /9 = 2% (Pfleeger 1989).
It has not yet been determined whether the complementation property is a weakness
(Schneier 1996).

The success of Biham and Shamir’s (1991) differential cryptanalysis was found to
be related to the number of rounds of the DES. More specific, it was shown that
differential cryptanalysis is more efficient than exhaustive search, if the number of
rounds of the DES is less than 16. Before this result, DES with reduced number of
rounds was successfully cryptanalysed; Andelman and Reeds (1982) cryptanalysed a
three and four-round DES; Chaum and Evertse (1986) broke a six-round DES.

Matsui (1994) who developed the linear cryptanalysis, described in the same paper
how to linearly approximate the S-boxes. With this technique, an 8-round DES could

be broken in 40 seconds, a 19-round DES in 50 hours, and a full 16-round DES is

46

CHAPTER 2. THEORETICAL BACKGROUND

breakable with an effort smaller than exhaustive search.

The International Data Encryption Algorithm, IDEA

The IDEA? cipher by Lai (1992), was an improvement of the Proposed Encryption
Standard, PES, (Lai & Massey 1991) which was broken with differential cryptanalysis
(Lai et al. 1991). In the same paper a minor modification was suggested, and the cipher
was then the Improved PES, but finally it was named IDEA.

As in DES, IDEA operates on G F(2)% plaintext blocks, and maps them to GF(2)%
ciphertext blocks, but the key length is 128 bits, much larger than the 56—bit DES
key. The blocks are divided into 16—bit sub-blocks, and encryption is completed in

eight rounds, plus a final output transformation (Figure 2.5).

Xy X, X5 X,
Y Y y Y
Z,0)=® = Z,m Z,n =t O=-2Z,01)
(1)
Y (1)~
multiplication = ;
addition) A L
transformation IR EERT . ZS(I) _»Q o :
SRR f one
B round
y ':
M N
y st f?fz()(l) Y
1) ® —(F
® Y \) Y
P —
v ! 1 | seven
' : ! : more
| |
l >< l rounds
Z,9 —-—? %4—22(9) 23(9) —»% ~Z) output ’
transformation
Y 1 Y2 Y3 Y4

Figure 2.5: The International Data Encryption Algorithm, IDEA

As shown in Figure 2.5, IDEA consists only of operations; there are no substitution

IIDEA is a registered trade mark

47

CHAPTER 2. THEORETICAL BACKGROUND

boxes. More specifically, three algebraic groups are being mixed, namely:

e bitwise XOR, denoted as @;

e integer addition modulo 2'%, where the 16-bit sub-block is treated as the radix-two

representation of an integer; the operation is denoted as 85,

e integer multiplication modulo 2'° + 1, where the 16-bit sub-block is is treated as
the radix-two representation of an integer, except that the zero is represented by

216: the operation is denoted as ©.

The multiplication operation could be viewed as a substitution block. The same
algorithm is used both for encryption and decryption. The subkeys are generated as
follows. For the encryption, the key is divided in the eight 16-bit subkeys. The first
six are used for round one, and the remaining two are used in round two, as keys Z,(2)
and Z,(2). Then the key is rotated to the left by 25 bits and is divided again into
eight subkeys and four of them are used in round two as keys Z,(2),n = 3,4,5,6.
The remaining four are used in round three, etc. The decryption uses the additive or
multiplicative inverses of the keys in reversed order. More specifically, subkeys one,
four five and six in round ¢ of the decryption, are the multiplicative inverses of the
respective keys in round (9 — i) of the encryption. The remaining two, are the additive

INVErses.

Security of IDEA. The IDEA is of particular interest, because its design was based
on theoretical foundations. Although that it was designed to withstand differential
cryptanalysis, this was not proven finally, but the designer gave evidence that the
cipher is immune to such attack, after four rounds (Lai 1992).

On its analysis, Lai considers diffusion and confusion and describes how these are
offered by arithmetical operations. The first requirement for confusion was that the
output of one type of operation should never be used as an input to an operation of
the same type. The notion of incompatibility between operations was defined. Three

operations @, ©,H are incompatible if:

48

CHAPTER 2. THEORETICAL BACKGROUND

e 10 pair of the three operations satisfies a distributive law. For instance there

exist a,b, c € GF(2)% such that afB(b ® ¢) # (afEh) © (aBHc);

e 10 pair of three operations satisfies a generalised associative law. For instance,

there exist a,b, ¢ € GF(2)% such that aB(b & c) # (abb) ® c;

e 10 group of (GF(2)', @), (GF(2)',8), (GF(2)'°,0) is an isotopism with any
of the other two under the direct bijective mapping. For instance, the groups
(GF(2)',®) and (GF(2)',®), are not isotopic for the direct mapping o which
is used, i.e. 6(z) O 8(y) # 6z y), Va,y € GF(2)";

e under the mapping 6, a linear- or generally an affine- function corresponds to a

non-linear function,;

Lai (1992) demonstrated through a series of theorems that the proposed algorithm
satisfied all above conditions of incompatibility. Concerning the diffusion, it is provided
by the multiplication addition structure, as shown in Figure 2.5. The multiplication

addition transformation has the following characteristics (Lai 1992):
e the transformation is reversible for any choice of subkeys or input sub-blocks;
e it offers complete diffusion, i.e. every output bit is related to ever input bit;

o the structure uses the minimum number of operations required to offer complete

diffusion;

Again these characteristics where proven to exist in this structure, through a series of
theorems.

The impressive theoretical foundation behind the design of this cipher provides a
formal indication of security. Additionally, any known attempt to cryptanalyze it has
failed (Meier 1994). A class of weak keys were found, but this was a minuscule defect,
since the probability on using one of these keys is one in 29 (Daemen et al. 1994).

However, IDEA is a relatively new algorithm and it has not been analysed extensively;

49

CHAPTER 2. THEORETICAL BACKGROUND

it has not been determined for example, whether IDEA forms a group. But generally

it is deemed as one of the strongest algorithms (Schneier 1996).

2.3.2 Other symmetric algorithms

There is a plethora of symmetric algorithms found in the literature. The design criteria
are not always public, because on the one hand such action was considered to jeopardise
the strength of the cipher and on the other hand the designer may have included a
trapdoor, so the algorithm is penetrated relatively easily. The DES took such an
approach, although a number of criteria were published about a decade after it was
available to the public.

Generally, developing a cipher was an art rather a science. One of the reasons was
that there where no actual theoretical foundations concerning the security properties
of certain classes of functions. However, a very complex cryptosystem may appear
to be secure, but too much complexity could be illusionary (Bauer 1997). This was
a common mistake many cryptographers made; numerous examples in the literature
prove it (Kahn 1976). Yet, today much has been done on the theoretical side and
a number of lemmas could assist in determining the security level of a cryptosysten.
Such an approach was adopted for the design of IDIEA as shown at the previous section.

The DES and IDEA have been presented particularly, because the DES, being the
most popular algorithm, was the main drive in cryptanalytic research for the last 20
years and the IDEA is one of the best and effective instances of theoretic background
applied to cipher design.

Some other of the symmetric algorithms found in the literature are RC4 (Schneier
1996), RC5 (Rivest 1994), FEAL (Shimizu & Miyaguchi, 1988; den Boer 1988; Gilbert
& Chase 1991; Tardy & Gilbert, 1992), BEAR and LION (Anderson & Biham, 1996b),
NewDES (Scott 1985), REDOC I1 (Cusick & Wood, 1991; Biham & Shamir, 1992).

CHAPTER 2. THEORETICAL BACKGROUND

2.4 Cryptographic primitives

In this section, the cryptographic primitives which are used mainly in block ciphers are
presented. There are different views in the literature concerning what a cryptographic
primitive is. In this thesis, a cryptographic primitive is considered any component that

may perform a cryptographic transformation.

2.5 Substitution Boxes

Usually the substitution boxes (S-boxes) are the only non-linear step in an algorithm,
and are the main contributors in a cipher’s cryptographic strength. An S-box is a
mapping of n input bits to m output bits. This is implemented efficiently in most of
the programming languages with a one-dimensional array of n elements of m-bits each.

The relative sizes of m and n are very important to the cryptographic strength of
the S-box. If m > 2" —n, then there would be a linear relation of the input and output
bits, and the S-box would not be resistant to linear cryptanalysis (Section 2.11.2).
However, if n > 2™, then there is a linear relation between the output bits (Biham
1995).

The orthodox method of S-box design (Adams & Tavares 1990) is to first determine
the evaluation criteria. This ensures that an S-box will satisfy predetermined proper-
ties. The main advantage is that S-boxes generated in this way are resistant to known
attacks, such as differential and linear cryptanalysis. However, such an approach does

not ensure that the S-boxes produced are invulnerable to other attacks.

2.5.1 Evaluation criteria

An S-box generally is likely to be found in a one-way function, when used in a cryp-
tographic algorithm. Adams and Tavares (1990), have specified the criteria a S-box

must fulfil in order to be “cryptographically desirable”:

e bijection

CHAPTER 2. THEORETICAL BACKGROUND

e nonlinearity
e strict avalanche

e independence of output bits

Bijection implies that the S-box is a permutation of the integers 2" — 1. This
property is desirable in structures where the inverse of the S-box is also required. In
cases such as one-way functions, bijection is not required.

Nonlinearity is a very desirable characteristic, because it is directly linked with the
overall security of the structure. If the non-linearity property does not hold, the entire
cryptosystem would be easily breakable.

The strict avalanche criterion, SAC defined by Webster and Tavares (1986) relates
to confusion and diffusion. The SAC property requires that for every input bit 1,
inverting bit i causes output bit j to be inverted with a probability of 50%, for all j.

Independence of output bits ensures that no relation between two or more output
bits could be determined, suggesting a strong cipher. The presence of correlation
between two bits reduces the search space.

The design of an S-box usually involves the study of boolean functions. These func-
tions could be constructed to satisfy certain properties. The most important property
they should have is non-linearity. The perfect nonlinear boolean functions are called
bent functions (Seberry et al. 1995).

Finding bent functions is a complicated task and they seem to be rare (Carlet 1993).
Carlet (1993) defined a class of functions which are partially bent.

In general there is a trend towards systematic design of S-boxes (Pieprzyk 1996),
rather than generating random ones. O’Connor (1994a,b) studied a class of random
S-boxes and concluded that for relatively small sizes, such an approach is not effective.
According to O’Connor (1994b), if the S-Boxes are large enough, the prediction prob-
abilities of the differential characteristics are expected to be low, even if the S-Boxes

have random values and not derived by some method to produce high non-linearity.

CHAPTER 2. THEORETICAL BACKGROUND

The relevant investigation of Biham and Shamir (1992), where the “good” S-Boxes
of the DES were replaced by random ones concluded that the resulting cryptosystem
was far weaker than the original one and the conclusion was that random S-Boxes
are not a good practice. However O’Connor demonstrated that Biham’s and Shamir’s
conclusion is only true for small S-Boxes. On the other hand, strong S-boxes could be
useful for constructing families of cryptographic algorithms, and the characteristics of
the S-boxes may determine security parameters of instantiations of these algorithms

(Pieprzyk 1996).

2.5.2 Substitution-Permutation Networks

SPNs are based on Shannon’s principles of a mizing transformation which consists
of a number of rounds, where each round contributes a small amount of confusion
and diffusion, but the combination results to higher values of confusion and diffusion
(Shannon 1949). Based on Shannon’s ideas, the SPNs were introduced by Feistel et al.
(1975), with a network structure defined by a number of rounds. Each round has a series
of small substitutions, followed by a permutation. The nonlinear substitutions offer
confusion, whereas the permutations with their linear mixing, contribute to diffusion.

The parameters in a SPN are the number of input (output) bits N, the number of
rounds R, the size of the S-boxes n x n, and the number of S-boxes per round which

would be M = N/n. Figure 2.6 presents an SPN for N = 16, R =4and n =4

Heys and Tavares (1996) set the evaluation criteria for an SPN to be the strength
against linear and differential cryptanalysis. Their design criteria focused on diffusion
and nonlinearity. The upper bounds on the probability of a differential characteristic
and the deviation of the probability of a linear approximation from the ideal value of
% where specified. The differential and linear characteristics are used in cryptanalysis

and in general the higher their values, the more efficient the cryptanalytic attack, as

presented in more detall in Sections 2.11.1 and 2.11.2.

CHAPTER 2. THEORETICAL BACKGROUND

plaintext
P, B
N O I I I T R I
Sy S S 13 S 14
S S S o3 S04
S3 S 3 S 33 Sa4
S Si Sus S 44
1T [R F T
G ciphertext G

Figure 2.6: SPN with N =16, R = 4 and n = 4 (source: Heys & Tavares 1996).

2.6 One-way functions

2.6.1 Background

A one-way function f(z) =y is a function where it is relatively easy to compute in one
direction, but significantly harder to inverse, l.e. for a given x one can easily compute
f(z), but for a given f(z), it is hard to find z. The term “hard” though, adds an
arbitrary description to the definition above. The term “computationally infeasible” 1s
used formally in complexity theory; a problem is regarded as computationally infeasible,
when the fastest known algorithm for finding the solution using the best available
computer technology would require a significantly large time (comparable to the age
of the Universe, say).

However, it has not been proved that one-way functions do or do not exist (Brassard

1979 Garey & Johnson 1979; Schneier 1996). There is no guarantee that a function

CHAPTER 2. THEORETICAL BACKGROUND

which is perceived to have one-way properties, will still be perceived so after a month,
a year, a decade, or a hundred years. Advances in technology affect the one-way status
of a function. That is, in order for a function to exhibit useful one-way properties for
a forseable time ahead, larger values must be used.

Advances in technology are broadly predictable: numerous extrapolations have been
published regarding the computing power versus cost for the following years (Garon &
Outerbridge 1991; Schneier 1995). The involvement of theoretical and applied mathe-
matics has however introduced an extra uncertainty. A breakthrough in mathematics
may result in development of new and highly efficient algorithms, to solve classes of
problems in a “computationally feasible” manner. The conclusion is that since the
existence of one-way functions has not been proved, a cryptographer must always be
alert and constantly assess the one-way functions which are used in their cryptosystem.

Yet, most of the scenarios, particularly those in public key cryptography, rely on
the existence of one-way functions. Goldwasser et al. (1988) demonstrated that digital
signatures are equivalent to the existence of one-way functions. Furthermore, zero-
knowledge protocols (Section 2.17.2) rely on the properties of one-way functions (Os-
trovsky & Wigderson 1993). Blum & Micali (1982) have shown that pseudo-random
generators are equivalent to the existence of one-way functions. In fact, the existence
of pseudo-random generators - and more specifically of pseudo-random bit generators

_is essential for provably secure symmetric cryptosystems (Luby & Rackoff 1986).

2.6.2 Trapdoor and hash one-way functions

There are two categories of one-way functions which are widely used in cryptography,
namely the trapdoor one-way functions and the one-way hash functions.

A trapdoor one-way function fi(M) is a one-way function which can be inverted,
given some extra information, k. This extra information is called the trapdoor (Menezes
1993). A one-way hash function h(M) = H is a one-way function which operates

on an arbitrary-length input M, to produce a fixed-length output A (Schneier 1996).

[
(WX

CHAPTER 2. THEORETICAL BACKGROUND

[t should be highlighted that a hash function is not necessarily a one-way function.
Merkle (1979) lists the additional characteristics a hash function must have, in order

to be a one-way:
e Given M, it is easy to compute H.
e Given H, it is hard to compute M such that h(M) = H.
e Given M, it is hard to find another message M’, such that H(M) = H(M').

The first two characteristics ensure the one-wayness of the function. However, in
some applications the last characteristic is required. There are cases where different
messages hash to the same value, because the space of input messages could have an
arbitrary size, whereas the space of the hashed values has always a fixed length. When
two different messages hash to the same value, we have a collision. Therefore, the third
characteristic ensures the collision-resistance of the function.

Collision resistance one-way hash functions are suitable for digital signatures; if an
intruder could find collisions, they could forge digital signatures. Some functions have
been shown not to be collision resistant. The FFT-Hash for instance, was proposed by
Schnorr (1992) and it was shown that collisions could be found by performing only 2
computations of the main function of FFT (Baritaud et al. 1993). The next version,
FET-Hash-1I was proposed after a year (Schnorr 1993), but Vaudenay (1992) proved
still other collisions. Vaudenay (1996) describes also a method to find collisions on the
Digital Signature Standard (DSS), by forging the public parameter.

However, there are some additional characteristics for a one-way hash function:

e The one-way hash function must be multiplication-free (Anderson & Biham

1996a).

e It is not feasible to find X and Y such that the Hamming weight of h(X) & h(Y)
is less than one would expect to get from random chance if we calculated h(M)

for a large number of M (Anderson 1995a).

CHAPTER 2. THEORETICAL BACKGROUND

If the function has the multiplicative homomorphism property, it could be exploited
by an attacker (Anderson 1995a). This characteristic is not required in all functions,
but should be present in cryptosystems such as RSA, since it involves modular multi-
plication. The last characteristic implies correlation freedom. Okamoto (1993), argues
that correlation freedom is a stronger property than collision-freedom and Anderson
proved this conjecture (1995a).

There is also a special category of one-way hash functions which are present in
many security protocols, the keyed one-way hash functions. A keyed one-way hash
function is obtained when a message M is hashed together with a secret key. Such
functions are used for message authentication (Johnson et al.1991; Tsudik 1992; Rivest
1991, 1992a, 1992b; RACE 1992).

Other known one-way hash functions include SHA which is used in the Digital
Signature Standard, DSS (Federal Register, 1992), Tiger (Anderson & Biham, 1996a),
Haval (Zheng et al., 1993) and Snerfu (Merkle, 1990). Furthermore, one-way hash func-
tions based on non-standard modes of operation of block ciphers were also proposed,
such as MDC-2 and MDC-4 (Meyer & Schilling, 1988), LOKI (Brown et al., 1990, Lai,
1992) and AR Hash (ISO 1992, Damgard & Knudsen, 1994).

2.7 Feedback Shift Registers

Shift registers have been studied extensively for the last five decades. The areas of
application range from cryptography and error correcting codes, to prescribed property
generators and mathematical modelling (Golomb 1967). Shift registers are finite state
machines. By definition, a finite state machine is a device which consists of a finite
number of states, and accepts sequentially inputs from a finite set, and produces a
sequence of outputs from a finite set. Such devices can efficiently be implemented in

hardware.

CHAPTER 2. THEORETICAL BACKGROUND

2.7.1 Linear Feedback Shift Registers

A Feedback Shift Register, FSR, is represented at Figure 2.7. As it can be seen,
it consists of a shift register and a feedback function. Each of the boxes labelled z; is a
binary storage element. These are n in total and are called stages of the shift register
(Golomb 1967). At periodic intervals, each of the components x;, passes its contents
into z;_,. The feedback function is some boolean function f(zy, 29, ..., z,) of the terms

2; and specifies the new value for z,,.

e i

feedback
function

Figure 2.7: A Feedback Shift Register

If a feedback function can be expressed in the form
f(z1, T2,y Tn) = C121 B 220 D ... B CpZy

where each of the constants ¢; are either 0 or 1, then this function is called a linear,
and the underlying FSR is called a Linear Feedback Shift Register, LFSR. LF5R
are the most common type of shift registers used in cryptography, mainly because they
have been consistently analysed and they could have certain prescribed properties,
such as a specified period. On the other hand, non-linear functions are generally
avoided, because non-linearity may lead to very short periods, i.e. the lenghts of the
bit sequences (Bauer 1997). In fact, Siegenthaler (1986) showed that non-linearity not
only is insufficient to prevent cryptanalysis, but may actually aid it.

It is mostly desired in cryptography that a LESR had a maximum period. That is,
given any initialisation values to z;’s - except the vector (0,0, ...,0) - the LESR would
again obtain those values after visiting all 2® — 1 states. Maximum period is very
important in cases where LFSRs are used as stream ciphers and they produce key bits

which are XORed with the plaintext, to produce the ciphertext (Figure 2.8). In those

o8

CHAPTER 2. THEORETICAL BACKGROUND

cases, the secret key would be the initial state of the z; buffers (i.e. an n-bit key).
The “maximum period” property can ensure that the produced key stream length is

comparable with that of the plaintext, so that certain cryptanalytic attacks will not

succeed.
Key (I1V) LFSR
plaintext l ciphertext
bits bits

Figure 2.8: A Feedback Shift Register used in a stream cipher

Fortunately, there is a way to determine whether a LFSR has a maximum period.
It is related with the feedback function and the constant coefficients ¢;. These select
which register bits are to be XORed in order to produce the boolean output. A list
of these ¢; is a tap sequence or a Fibonacci configuration (Schneier 1996). Every tap
sequence could be represented as a characteristic polynomial mod 2. For instance the
sequence:

1100101
would form the polynomial:
'+ +at o+l

The degree of the polynomial is its highest power of z with non-zero coefficient, and
in the case of an LFSR, it is the length of the shift register. In order for a particular
LFSR to have a maximum period, the tap sequence must form an premitive polynomial.
A primitive polynomial of degree n, is a polynomial which is an irreducible factor of
227"t 4+ 1 over GF(2) (Berlekamp 1984).

Constructions which combine several LFSRs in a variety of ways in a nonlinear man-
ner include the Geffe generator (Geffe, 1973), the Jennings generator (Jennings, 1980),
then MSR-generator (Mund et al., 1988) the stop-and-go generator (Beth & Piper,
1984), the alternating step generator (Giinther, 1987) and Rueppel’s self-decimated

generator (Rueppel, 1988).

CHAPTER 2. THEORETICAL BACKGROUND

Input block

4

Output block

Figure 2.9: A Feistel block

2.8 Feistel Networks

Feistel networks (Feistel 1974) are the most common constructions used in block algo-
rithms. They have great value in cryptography, because they enable a cryptosystem
which employs it to be provably secure, as will be demonstrated at section 2.8.1. A
Feistel block is presented at Figure 2.9. The input message block of length n is broken
into two sub-blocks L and R, with length n;, and np respectively. If n;, = ng, which
is normally the case, then the encryption block is called balanced. The function H is
a strong keyed one-way hash function, with input np bits, and output ny bits. The

output of the function is XORed with block L, and the final two blocks are swapped:

L=R

R=L& Hy(R)

A Feistel network is a construction which consists of a number of rounds of a

Feistel block. In each round, a different key is used in the function H. In a symmetric

60

CHAPTER 2. THEORETICAL BACKGROUND

block cipher, the key for each round is generated by the secret key. Such process
1s called key scheduling (Davies & Price 1984). Most of the block ciphers use key
scheduling, including the DES. In particular, the DES is a 16-round balanced Feistel
network, with an initial permutation at the beginning, and its inverse permutation
at the end of the 16th round. The 56-bit key is scheduled to generate sixteen 48-bit

subkeys. Consequently, the block cipher could be described as follows:
Li = R
Ri=1Li.y ® Hi, (Ri—)

where 7 denotes the ith round of the block cipher.

The Feistel network described is a Balanced Feistel Network, BFN since the left and
right blocks are of equal size. An Unbalanced Feistel Network, UFN is a Feistel network
where the two blocks do not have equal sizes. Most standard block ciphers which are
based on Feistel networks are BFNs. Furthermore, if the same round function is used
in every round with different sub-key, the Feistel network is called homogeneous. If
different round functions are used, the Feistel network would be heterogeneous.

In terms of cryptographic strength, Schneier & Kelsey (1996) conjecture that het-
erogeneous UFNs should be more resistant to some cryptanalytic attacks such as linear
and differential cryptanalysis (Section 2.11.1).

Unfortunately there is not much systematic research in UFNs, because there were
not many standard ciphers based on UFNs. Furthermore, more attention was drawn to
the round function rather than the topology of the Feistel network. Schneier & Kelsey
(1996) described an approach for a systematic description of all Feistel network-based
block ciphers. Their paper is presented in Chapter 3 (description of the proposed
method) because the definitions are used throughout the proposed method.

The Feistel networks are interesting in symmetric block cipher design mainly for

three reasons:

e The same configuration is used both for encryption and decryption. This means

that there is no need to implement two different algorithms. The only difference

61

CHAPTER 2. THEORETICAL BACKGROUND

is that the keys should be scheduled in reverse in the case of decryption to that

of encryption.

e There are virtually no restrictions for the function H. A one-way hash function
is preferable, but any hash function could be used. This does not affect the
invertibility of the block cipher, but its cryptographic strength. That is because
the structure of a Feistel block always passes the same inputs to the function
at a given round at the encryption to that of the corresponding round at the

decryption.

e Under certain conditions, the symmetric block cipher can be provably secure, as

it is presented at the next section.

2.8.1 Luby & Rackoff

Luby and Rackoff (1986) in an attempt to analyse the DES and determine its security by
quantitative means, have drawn several conclusions which initiated a burst of research
activities based on their results (Schnorr 1988; Pieprzyk 1991; Anderson & Biham
1996b). Initially, Luby and Rackoft demonstrated that the existence of pseudoran-
dom function generators (Goldreich et al. 1984), yields the existence of pseudorandom
permutation generators. Then, they used these conclusions to construct a provably
secure block cipher and derived the properties where generally a block cipher can be
secure (Luby & Rackoff 1988). The relevant papers involve complexity-theoretic and
information-theoretic (Maurer 1993) analysis and are beyond the scope of this thesis,
but the main steps and conclusions will be outlined, since these conclusions justify the
cryptographic method proposed in this thesis.

Let {0,1}" be the set of all 2" strings of length n. Let F" denote the set of all
9n2" functions mapping {0, 1}" into {0, 1}". The subset of 7" which are invertible and
one-to-one, are the permutations and let P™ denote this set. The cardinality of P"

would be (27!), substantially smaller than that of F*. Let hZ" be a function in P"

62

CHAPTER 2. THEORETICAL BACKGROUND

indexed by a key & of a given length. Apparently, to address all elements of P", the

key must have length log,(2™!) bits.

7:64

DES
space

Figure 2.10: Relation of F% P and DES space

If the above notations are applied in the case of DES, then n = 64, k = 56. With
a smaller key, not all permutations could be selected, but only the 2°°, a number
substantially smaller compared to the size of P, (2°41) (Figure 2.10). The question
is whether the permutations that can be selected are cryptographically strong - or
in other words, whether the permutations which yield structure and non-randomness
are excluded. Informally, this statement is the black box test, which was suggested by
Turing (Hodges 1985) and for the case of DES is as follows (Luby & Rackoft 1988):

“Say that we have two black boxes, one of which computes a fixed randomly
chosen function from F® and the other computes h$* for a fixed randomly
chosen k. Then no algorithm which examines the boxes by feeding inputs
to them and looking at the outputs can obtain, in a “reasonable” time, any
“significant” idea about which box is which.”

The terms “reasonable” and “significant” introduce ambiguities in the black box
test. Luby and Rackoff (1988) used the tools of mathematics and computer science to
asymptotically analyse the DES and introduced the notion of asymptotic security. By
doing this, “reasonable” was replaced with “computationally infeasible” and “signifi-

cant” was related to the probability of distinguishing the functions of the two black

63

CHAPTER 2. THEORETICAL BACKGROUND

boxes.

Let L e R denote the concatenation of the two n-bit binary strings, L and R. For

any permutation f € F", an invertible permutation f € P> can be defined as:
f(LeR)=Re[L& f(I?)

i.e. the left and right parts are swapped and the right part is unchanged, whereas
the left part is XORed with f(R). This corresponds to one DES step. More particular,
the DES could be defined as a permutation which is the composition of 16 such steps:

Y(f1, far oy fis) = fl szo"'oﬁs

Luby and Rackoff (1988) motivated by the structure of the DES, defined a mapping:

H:F"x F* x F* — P* which is a three round DES:
H(f1, f2, f3) = ¥(f1, [2, [3)

An oracle circuit'® Cs, was considered for distinguishing a function randomly cho-

sen from F?" from a function chosen from a much smaller set ¢ (F™, F", F"). Let
p1 = PlCou(f) =1: f €r (7™, 7", F")]

denote the probability that Cs, outputs 1 if the oracle gates are evaluated for a

function chosen randomly from (F", F*, F"), and
py = P[Con(f) =1: f € F*"]

the probability that Cy, outputs 1 if the oracle gates are evaluated for a function
chosen randomly from F?*. Luby and Rackoff demonstrated the following lemma
(Maurer 1993).

Lemma: Let Co, be an oracle circuit with k oracle gates such that no input value is
repeated to an oracle gate. Then
Ip1 — pa| < K?/2"

Luby and Rackoff proved that composition of shightly weak functions may result to
very strong ones, but the condition is true only if pseudorandom function generators
exist, since they can construct pseudorandom permutation generators, as presented
above. In turn, pseudorandom function generators can be constructed from pseudo-

random bit generators. Consequently, the validity of the above lemma by Luby and

10 A oracle circuit Copn is a circuit with oracle gates, i.e. gates with 2n-bit input and 2n-bit output
and all oracle gates evaluate the same fixed function in Fm,

64

CHAPTER 2. THEORETICAL BACKGROUND

Rackoff, rests on the existence of pseudorandom bit generators, as described by Gol-
dreich et al. (1984).

In practice however, it is infeasible to construct ¥ (f1, fo, f3), due to memory limita-
tions. For n = 32 for instance, the number of required bits would be 3-32-23% ~ 410,
In general, provable security is a trade off between generalisation and efficiency.

The work of Luby and Rackoff triggered the interest of many researchers concerning
the provable security of ciphers and more specifically, of Feistel transformations . Zheng
et al. (1990) provided a practical alternative modifying the Feistel transformation by
introducing several types of transformations which would result to provably secure
ciphers but would also be possible to implement them with the current technology. The
same researchers described a way to construct a distinguisher for any transformation of
the form (f?, f7, f!) where f¥ = fofo...(ktimes)...of, proving that it is impossible
to construct a three round Feistel transformation with only one function. Pieprzyk
(1991) proved that a four round Feistel ¥(f, f, f, f*) with 4 > 2 is pseudorandom, if f
is a pseudorandom function.

Yet, in a recent paper by Aiello and Venkatesan (1996), a distinguisher was sug-
gested, which could distinguish a four-round Feistel from a random permutation on
9n-bit messages, given O(2"?) chosen plaintexts. Furthermore, Coppersmith (1996)
motivated by this work, developed an attack to deduce the actual contents of the round
functions in a Feistel configuration, with O(n2") chosen plaintexts.

In conclusion, four rounds of a Feistel cipher is not enough, if a chosen plaintext
attack is mounted, because the required information for distinguishing and breaking
the cipher is leaked, in a relatively low number of computational steps (Coppersmith
1996). In practice most ciphers have more than eight rounds, but this is due to the

fact that the round functions used are far from pseudorandom bit generators.

CHAPTER 2. THEORETICAL BACKGROUND

2.9 Cryptanalysis

Cryptanalysis is the study and development of methods to deduce plaintext from
ciphertext without prior knowledge of the decryption key and in some cases, without
knowledge of the cipher. In some cryptanalytic methods this is achieved by recovering
the decryption key, whereas in other methods there is no need to do so.

The most obvious attack on a given cryptosystem is the brute force or the ex-
haustive search, where different keys are tested until the correct key is found. This
attack applies to all ciphers. The question is whether such attack is feasible. If the cost
to break the cipher is greater than the gain one has from breaking it, then exhaustive
search is not worthwhile. In this case, the task of cryptanalysis is to develop a method

which requires less effort to break the cipher.

2.10 Classes of attacks

Depending the information available, a cryptanalyst may mount one of the following

attacks:

e Ciphertext only attack. In this type of attack, the cryptanalyst has only the
ciphertext and the publicly available knowledge, such as frequency distribution
of letters in a language. The cryptanalyst’s task would be to deduce the plaintext

and /or the key used to encrypt the messages.

e Known plaintext attack. In this case, the cryptanalyst has a number of plain-
text and ciphertext pairs. The task would be to identify the encryption or de-

cryption algorithm and deduce the key, to use it for decrypting future messages.

e Chosen plaintext attack. In this case, the cryptanalyst has the ability to
chose the plaintexts that the system would encrypt and has also access to the

corresponding ciphertexts. The task would be to deduce the secret key.

66

CHAPTER 2. THEORETICAL BACKGROUND

e Chosen ciphertext attack. In a chosen ciphertext attack the cryptanalyst has
access to the decryption algorithm and may test large amounts of ciphertext and

by observing the plaintext, the task is to deduce the decryption key.

The attacks which in general attract the interest of cryptographers are the chosen
plaintext and chosen ciphertext attack because they are the strongest type of attacks,
especially the latter. Many cryptographic algorithms fall for chosen ciphertext attacks.
The chosen plaintext and ciphertext attacks are oracle-like attacks, because the crypt-
analyst queries the cryptosystem (oracle) which in turn responds with the ciphertext

or plaintext (answer).

2.11 Cryptanalysis of product ciphers

Ciphers which result from composition of classes of encryption steps are more secure
because they can hide any characteristics such as patterns or redundancy of a language.
Therefore, the cryptanalytic methods described so far are not applicable to product
ciphers. Two other cryptanalytic attacks overcome the weaknesses of the attacks pre-

sented so far. These are the differential and the linear cryptanalysis.

2.11.1 Differential cryptanalysis

Differential cryptanalysis, introduced by Biham and Shamir (1991) is a very powerful
cryptanalytic tool for breaking block ciphers and more precisely DES-like cryptosys-
tems, i.e. cryptosystems which consist of an iteration of a weak function in a Feistel
network. Their research was initiated by an attempt to cryptanalyze the DES but it
was discovered that many published block ciphers fall to this attack.

The method was based on the fact that the possible output values of the substitution
boxes were not uniformly distributed. This is done by examining the resulting differ-
ences of ciphertext pairs, caused by respective input plaintext pair difference. More

analytically, differential cryptanalysis operates as follows (Biham & Shamir 1993a):

67

CHAPTER 2. THEORETICAL BACKGROUND

First, for the round function of the DES, two inputs X and X’ produce the outputs
Y and Y’ respectively. Since all these values are known, their XORs are also known,
XX =AX and Y &Y' = AY. Additionally, AA and AC (Figure 2.11) are also

known.

input (32 bits)

AX=XaX
Y
E subkey
48 bits 48 bits
(-
AA AB
Y
S, S, Sy S, S S¢ S, Sq

AC
AY =YY’

output (32 bits)

Figure 2.11: The round function of the DES.

The lack of uniformal distribution of the S-Boxes, results in having some pairs of
AA and AC appearing more times than others. This leaks information about the
key bits; since AA may generate only a limited number of distinct ACs, the possible
keys would be found by the set determined by A XOR K; and A’ XOR K;, where
K; denotes the ith candidate key.

In differential cryptanalysis the notion of a characteristic is introduced. A n-round
characteristic is a pair of given ciphertext difference produced by a plaintext differ-
ence by a n-round algorithm, associated by the probability of occurrence of these two

differences. The characteristic is represented as (2. The interesting property of char-

68

CHAPTER 2. THEORETICAL BACKGROUND

acteristics, is that in many rounds the overall characteristic would be the product of
all one-round characteristics, under the assumption that the rounds are independent.
This assumption implies that the subkeys are independent; in the case of the DES this
is not true, but the assumption was needed to simplify the analysis.

A plaintext pair which satisfies a last round characteristic is a right pair, whereas
in the opposite case it is a wrong pair. When a right pair is found, the suggested key
is the correct one. On the contrast, a wrong pair would suggest a random value for
the key. Since the subkey is 48 bits long for the DES, the remaining 8 bits could be
recovered by exhaustive search.

From a practical point of view, a large number of runs is needed in order to find
many right pairs. A sufficient amount of information must be accumulated until the
correct key can be separated from the noise. Biham and Shamir (1991) successfully
applied the method to a reduced number of rounds, but the full 16 round DES would

need a large effort, but smaller than a brute force.

2.11.2 Linear cryptanalysis

Linear cryptanalysis introduced by Matsui (1994) is a known plaintext attack in which
the cryptanalyst searches for linear relations between certain plaintext, ciphertext and
key bits, requiring that the probabilities of these relations being satisfied, are other
than 50%. Such relations are linear approzimations and could be constructed for
various number of rounds for a block cipher. If a block cipher with a block input
[p1p2 - - - pa), block output [c1cy ... o] and an m—bit key [kiky ... ky) is considered, in

linear cryptanalysis the attacker would derive an expression such as:
Piy & P, D ... D, @le EBCjZ @...CjbEB = kll ®kl2 S5, ...k[c

which holds for probability pr, # % over all keys. It is required that [py, — %\ is maximal,
since this will require the lowest complexity for a successful attack.
Obviously, its easier to find one-round linear approximations. As with differential

cryptanalysis, the weakness of the round function for the case of the DES rests on the

69

CHAPTER 2. THEORETICAL BACKGROUND

S-Boxes. The best linearly approximated S-Box is S5, where the four bit outputs have
the same parity of the second input bit for 12 of the 64 inputs. This property could
be utilised to construct the best linear approximation in the DES which holds with a
probability of 12/64 = 0.19

Linear approximations for different rounds could be composed in a similar manner
as the round characteristics are composed in differential cryptanalysis. For a reduced
three round DES, the best relation could be applied on the first and third round, and

the combination would give the linear approximation:
3
D7 D P18 D Payg D Py D Par © 7 D 18 D Coa D C29 D Ca7 = Aélg) ® kéQ)

which would hold with a probability of (12/64)% + (1 —12/64)* = 0.70. In the above
equation, k§n) represents the ith bit of the nth subkey.

The basic method of linear cryptanalysis can recover only one bit of the key, but
further processing and additional techniques could be applied in order to recover more
key bits. These techniques reduce the number of rounds of the linear approximations
by eliminating the first and last rounds, and counting all the key bits which affect the
data (Biham 1995).

Biham (1995) studied linear cryptanalysis in contrast to differential cryptanalysis
and showed that although these two methods differ, they are similar at the structural
level. In both methods round characteristics are defined but the concatenation rule
for each method is different. The DES is broken with linear cryptanalysis with 247
known plaintexts (Matsui 1994) and with differential cryptanalysis by mounting a 2%7
chosen plaintexts (Biham & Shamir 1993b). The latter attack was a refined version
of the original method. Since linear cryptanalysis can break the DES with a known
plaintext attack, it could be conjectured that the cipher is weaker in linear than in
differential cryptanalysis. The design criteria of the DES (Coppersmith 1994) do not

provide evidence that the cipher was designed to withstand this type of attack.

70

CHAPTER 2. THEORETICAL BACKGROUND

2.11.3 Differential Fault Analysis

Differential fault analysis, DFA (Biham & Shamir 1997) is a relatively new and com-
pletely different approach in cryptanalysis. This method was inspired by a similar
approach of Boneh et al. (1997) for public key cryptosystems, where a computational
error could leak information by using certain algebraic properties of modular arith-
metic.

In their paper, Biham and Shamir first described a potential attack on the DES. The
attack consisted of two parts. On the first part the round where the error occurred was
identified. A software implementation of the DES was used in order permit insertion
of errors at desired instances. The actual place of the error was not necessarily known,
but could be determined. One-bit errors were also assumed. The method encrypted a
plaintext two times and the two corresponding ciphertexts where compared. If there
was a difference, then one of the encryptions had an error. Assuming that the error
was always on the left input sub-block to the round, if the difference was one bit, then
the error was at the last round. If the difference was more bits, then depending on the
number of differences, the round where the error occurred could be determined. On
the second part, the positions of the differences are examined and compared with the
distributions of the S-Boxes - the same tables used in differential cryptanalysis. The
process could reveal the key bits. It is interesting to note that if the attacker can cause
faults to appear in the last two, three or four rounds, this analysis requires only about
10 ciphertexts (Biham & Shamir 1997).

However, such attack requires that the attacker is able to pose some kind of strain
on the device and also requires that the strain produces faults in a controllable way.
In practice and especially In computer networks this is an unrealistic scenario.

However, DFA could be particularly useful when the cryptographic algorithm is
unknown, and it is contained in a tamper resistant device. The SKIPJACK algorithm
of the Clipper chip (Brickell et al. 1993) is one example of such device. Smart cards are

also tamper resistant devices, with applications ranging from phone cards to electronic

71

CHAPTER 2. THEORETICAL BACKGROUND

wallets. Assume that a tamper resistant device contains a secret key stored in an
EPROM. Assume that the device allows only writing to the EPROM. Even if the
cipher is unknown, the key could be deduced as follows. The EPROM is gradually
exposed in ultraviolet light. Eventually the key bits which have a logical "1’ value
should be erased, i.e. set to logical ’0’. By controlling the intensity of the UV light,
one can cause the resetting of the key bits one by one. During the process of erasure,
a constant plaintext is encrypted and the ciphertexts are recorded. Eventually, the
encryption will produce the same ciphertexts. All the key bits would be zeroes. The
number of different ciphertexts would be equal to the number of ones in the key. By
working backwards, at most n bits should be tested for every '1’, where n is the length

of the key. On average the correct key would be determined after O(n?) encryptions,

2.12 Cryptanalysis of modes of operation

The modes of operation are usually used for hiding patterns, protection against cho-
sen plaintext attacks and are designed in a way that the error propagation is low and
data synchronisation would be feasible (Biham 1994). Therefore, it was assumed that
a cryptosystem would be more secure if the underlying cipher is used in a mode of
operation. Furthermore, a combination of multiple modes of operation should increase
considerably the security of the cryptosystem. Yet Biham (1993, 1994, 1996) demon-
strated that certain combinations of multiple modes of operation are not as strong as
they ought to be.

The approach used the layout of the modes as shown in Figure 2.12. By doing this,
one can easily trace the paths which the data follow and draw conclusions about the
strength of the cryptosystem. It is important to note that the cryptosystem would
not be less secure than its strongest single mode component, only if the subkeys are
independent and only if the attacker has knowledge of the plaintexts. The same result
was proven by Even and Goldreich (1985) but only for cascade ciphers.

In general, Biham (1994, 1996) described several cryptanalytic techniques for the

72

CHAPTER 2. THEORETICAL BACKGROUND

v
ECB CBC CFB OFB

Figure 2.12: Standard modes of operation.

various standard modes of operation and for the combination of modes by cascading
the different configurations. The outcome was that the cascade of standard modes of
operation of the DES were more secure than the strongest of the participating ciphers
only if the subkeys to every cipher were independent. However, the whole construction
was not significantly more secure than the strongest cipher. Additionally, if the subkeys
were not independent, the security of the underlying cryptosystem, would be equal to
the security of the least secure component. For instance, if a configuration of three
cascaded ciphers would be used and the first cipher had the same key as the third
cipher, a cryptanalyst would attempt to obtain the key from the weaker of the two,
and automatically he would have the secret key of the strongest cipher.

The attacks require knowledge of the configuration of the cascade and modes of
operation of each step. If the configuration is known, then the general objective would
be to select plaintext and ciphertext values, so that the required data for differential
cryptanalysis is fed to the desired block for cryptanalysis. Biham conjectured that
if the mode is built around the whole configuration instead of cascading the modes
together, the cryptosystem would be more secure, since it would be more difficult to
control and access the intermediate values.

The triple standard modes of operation were not much more secure than single
modes, so Biham (1996) suggested non-standard modes, which they are conjectured to

be more secure. More specifically, the configuration ‘M1 — M2’ was defined, where

73

CHAPTER 2. THEORETICAL BACKGROUND

M1 is any stream mode generating a plaintext-independent stream and encrypting it
under any mode M2 and finally XORing the result with the plaintext. Also, another
configuration ‘M1[M2]’ was defined as a stream mode M1 where the output is XORed
before and after any mode M2. An extension would be to use cascade modes and
XORing the same value of M1 to all intermediate points. This extension is denoted
by ‘M1[M2M3... Mn). Under these notations, the secure modes were conjectured
to be OFB—-CBC—CBC and OFB—CFB—CFB similar to an OFB mode and the
modes OFB[CBC,CBC™!], OFB|CFB,CFB~!], OFB[CBC,CBC] and OFB[CFB,CFB]
as secure chaining/feedback modes (Biham 1996). CBC~! and CFB~' denote the

decryption in CBC and CFB modes respectively.

2.13 Tests for randomness

As mentioned in Section 2.2.3, a “good” cipher is one which maintains high levels of
diffusion and confusion. Statistical tests for randomness examine ciphertext with its
respective plaintext and key. The purpose for the series of these tests is to determine
whether a cipher is capable of causing unpredictable changes to a ciphertext, when
known changes occur either in the plaintext or the key. If the cipher fails to pass the
tests, then its is generally considered weak, because it leaks information about the key
or the plaintext.

Unfortunately, the opposite is not necessarily true. That is, if the cipher passes
the tests, this does not guarantee a secure cipher. It may be a candidate for a strong
cipher, but it should be made public so it may be extensively analysed. Statistical tests
may show that a given sequence is random, but this does not suggest anything about
the unpredictability of the sequence- a highly desirable characteristic in cryptography.

In general, tests for randomness apply to the output of the stream ciphers, before
they are mixed (usually XORed) with the plaintext. Tests of randomness also apply
to block ciphers to measure the confusion and diffusion.

In the following sections the tests which are used in the evaluation of the instanti-

74

CHAPTER 2. THEORETICAL BACKGROUND

ations of the classes of ciphers proposed in this thesis are presented.

2.13.1 The frequency test

The most common test is the frequency or equidistribution test (Knuth 1981). It would
be reasonable to expect that given a stream of bits, half of them would be zeroes and
half of them would be ones. For a sequence of bits of length n, let ny and n; be the
number of zeroes and ones respectively. Then, the chi-square is computed to test the

hypothesis that ng = n; for one degree of freedom (Beker & Piper 1982):

2 _ (no—mni1)?
X = n

2.13.2 The serial test

The serial test checks the transitional probabilities, i.e. from 1 to 1, from 1 to 0 from

0 to 1 and from 0 to 0. If 11 occurs n;; times, 10 nyg times, 01 ny; times and 00 ngg

times, it would be desirable that n;, = nyg = ng1 = nge ~ ”4_1 (Beker & Piper 1982).

It has been shown that (Good 1957):

4 1 1) 9 1
n_lzznfj—;Z'ﬂg+1

i=0 j=0 i=0

approximates the x? distribution for two degrees of freedom. Consequently, the above

formula could be used for performing the serial test.

2.13.3 The autocorrelation test

The autocorrelation test examines whether the number of zeros and ones are randomly
distributed within the sequence. If the sequence is ajay ..., and A(d) is defined as

(Beker & Piper 1982):
n—d
A(d) = Z (6716 78w}
i=1

then if the sequence has ng zeros and n; ones randomly distributed, the expected value

of A(d) for d # 0 would be:

CHAPTER 2. THEORETICAL BACKGROUND

_ ni(n—d)
H= =3

Again, hypothesis testing should be used to test whether A(d) = p.

2.13.4 The block cipher test

Consider a block cipher operating on a n—bit plaintext with a m—Dbit key to produce
an n—bit ciphertext (Piper 1998). It is not necessary that the plaintext and ciphertext
blocks have the same length, but this is usually the case.

Let w(z) denote the weight of the binary string 2. A random plaintext is selected py
and encrypted using a randomly selected key ky. Let py, ps, ... , pn denote the plaintexts
which w(py®p;) =1, ¢ = 1,... ,n and for each 7, 1 — 1 would denote the position where
the difference occurred. Let ¢g, ¢, ... , ¢, be the corresponding ciphertexts. We would
expect the distribution of w(cg @ ¢;) to be as in Figure 2.13, for all 1 = 1,2,... ,n.

4

| .
! =

n/2

Figure 2.13: Distribution of w(co @ ¢;).

The cipher would pass the test if the variance is between certain values. It would
be unrealistic to expect zero variance and larger values imply un-balancedness.

With the same data the confusion could also be measured. Simply, if:

T

e(i) =) (co®)

i=1

where 7 denotes the number of encryptions (r = cn) for all 4 = 1,2,...,n and (b)y

76

CHAPTER 2. THEORETICAL BACKGROUND

denotes selection of the i—th bit of a string b, it would be desirable for a cipher to have

a distribution of e(7) as in Figure 2.14.

I./21F'~0~"°"~° ©

.
o

output
bit

0 n
Figure 2.14: Distribution of e().

The same tests should be performed considering the key as the variable and changing

with the same manner as the plaintext.

2.14 Computer network security

Existing major operating systems and networking protocols were not developed with
high levels of communications security in mind. Widespread growth of networking
encouraged a wide range of users, many of whom required high level of security in
their communications. High levels of interconnection allow many people to access
systems from anywhere, which increases likelihood of malicious or accidental damage.
In addition, the trend towards client/server architecture, especially in open systers,
makes security vital.

Client-server networks can be attacked by service requests, where no password or
other security protocol is necessary. The client-server approach enables users to make
requests such as a database query and use such request to initiate unauthorised pro-

cesses. Users may start processes in different systems and each process may initiate

7

CHAPTER 2. THEORETICAL BACKGROUND

a new one on behalf of the user (Kaufman 1993). Control messages are exchanged
between users and processes, so the reliability of the system relies on the integrity of
these control messages (Janson & Tsudik 1993). Thus, the validity (integrity and au-
thenticity) of information in a communication channel relies on the secure and certified
exchange of sensitive information. The secure exchange of information in a network is

the foundation of network security.

2.15 Security services

Although different networking environments require different approaches to security

implementations, the following primary security services are desirable at most cases:

e confidentiality, i.e. information is not disclosed to unauthorised individuals,

parties or processes,

e integrity, i.e. data have not been destroyed or generally modified in an unau-

thorised manner,

e authentication (of host/user/data), which is a service that provides a proof that
the received data is from the source it claims to be (data origin authentication)

or - in a case of peer association - a peer entity is the one that claims to be, and
e non-repudiation, which offers either a proof of origin, or a proof of delivery.

The primary services are desired in most networking environments, whereas the sec-
ondary security services such as access control, selective field confidentiality, integrity
with or without recovery, traffic flow control, etc., should be described by the policy. It
should be emphasised that authentication and integrity are mutually dependent, and
lack of one of the two, would result to failure of providing the other. For instance,
if the integrity of the authentication data is not offered, an intruder may modify the

data without being noticed, and authentication would fail. Similarly, one should not

78

CHAPTER 2. THEORETICAL BACKGROUND

expect to receive data which pass - say an integrity checksum test - but the origin is

not confirmed, since the messages may be transmitted from an unauthorised origin.

2.16 Classes of attacks in communications

There are two main categories of attacks in communications, namely passive and ac-
tive eavesdropping. Passive eavesdropping- or interception- is when the eavesdropper
is situated at some position in a communication channel and reads data as it passes
through this channel. In most cases it is impossible to detect a passive eavesdrop-
per. Today, a lot of sensitive information such as passwords flows unencrypted on the
Internet. Passive eavesdropping programmes called sniffers could easily log the first
messages of initialisation of communication sessions, which contain information about
user names and passwords. With the use of encryption, the passive eavesdropper is
forced to decrypt the captured ciphertext.

Active eavesdropping though could be categorised into four different classes:

Interruption. An attacker may cause interruption of communications in a network
by flooding the channel with a large number of packets. This would result to a
communications failure. A serious problem caused by interruption is the denial

of service of a legitimate user (Needham 1994).

e Modification. If there is no authentication and integrity, the eavesdropper may
capture the packets, modify some of the contents to suit his personal benefit and

transmit them.

e Fabrication. An eavesdropper may also send his own packets but also modify the

headers, so all the packets may appear to be sent by another (legitimate) source.

e Replay. An eavesdropper may retransmit packets he captured some time in the

past.

79

CHAPTER 2. THEORETICAL BACKGROUND

Active eavesdropping is the so called man-in-the-middle attack (Schneier 1996).
According to this attack, an eavesdropper may be placed between the communicating
parties and impersonate each party to the other. The legitimate parties may believe
that they are communicating directly, but in practice, the attacker would control the
data. Straightforward implementations of some public key cryptosystems, such as the

RSA, are vulnerable to this attack.

2.17 Security protocols

A security protocol is an orderly sequence of steps taken by two or more parties in
order to enjoy the security services. Pfleeger (1989) lists the characteristics a protocol

must have:
e Established in advance. The protocol is completely designed before it is used.
e Mutually subscribed. All parties to the protocol agree to follow its steps, in order.

e Unambiguous. No party can fail to follow a step properly because the party

misunderstood the step.

e Complete. For every situation that can occur, there is a prescribed action to be

taken.

Specifications of security protocols are considered also for the different layers, such
as the network layer (Atkinson 1995a, 1995b, 1995¢; Kumar & Crowcroft 1993; Ioan-
nindis & Blaze 1994; Cheng et al.1995), the transport layer (Mirhakkak 1993; O’Higgins
& Schnider 1990; Katsavanos & Varadaharajan 1993) and the application layer (Win-
field & Wolman 1993), as well as certain networking protocols such as the file transfer

protocol (Postel & Reynolds 1985) and the network time protocol (Mills 1992; Bishop

1992).

80

CHAPTER 2. THEORETICAL BACKGROUND
2.17.1 Representations

It is a common practice to use names for the participating parties for convenience,
when describing a security protocol. The same approach is adopted in this thesis. The

parties are as follows:

Alice Alice is the sender of a message, or initiates a communication.
Bob Bob is the intended recipient Alice wishes to communicate with.
Eve Eve is the eavesdropper.

Trent Trent is the trusted third party.

Victor Victor is a third party verifier.

The format;:
Alice—Bob: X

implies that Alice has sent Bob the message X.

2.17.2 Key distribution - negotiation

The key distribution is probably the most critical part for secure communications.
Public key cryptography has boosted the use of cryptography in open systems, and
its contribution to key distribution is remarkable. There are many approaches for key
agreement in practice, but because of the different ways Internet users can connect and
interact, the use of public key cryptography is the most flexible and efficient way for the
users to obtain the needed keys (Maugham et al. 1995). Yet, there are issues such as
key management; a public key directory is helpful for avoiding the man-in-the-middle
attack, for instance.

Another desirable characteristic a protocol must have, is that it must provide per-
fect forward secrecy. That is, if a long-term master key is disclosed, an attacker
would not be able to deduce the session short-term keys which were derived from the
master key (Giinther 1990). Krawczyk (1996) proposed a key distribution scheme for

the Internet, focusing on perfect forward secrecy.

81

CHAPTER 2. THEORETICAL BACKGROUND

No matter how mathematically complicated a key agreement protocol is, it is based

on one of the following scenarios:

e Alice generates a random key and encrypts it using a public key algorithm, such

as RSA, with Bob’s public key. The encrypted random key is sent to Bob.

e Alice and Bob use a public key algorithm to exchange public information. Once
the exchange has taken place, they use each other’s public information along with

their own secret keys to produce a common value and produce a secret key.

The complexity of key distribution- and generally security protocols- cannot be
arbitrarily high. The protocols are subject to environmental restrictions (e.g. small
packet headers, limited processing power, etc.). Under this consideration, a family of
light weight protocols was proposed by Bird et al. (1995). The first stage of these
protocols is strong two-way authentication performed before the key distribution or

exchange.

Third party key distribution

Key distribution may also involve a trusted third party. A paper by Davis and Swick
(1990) describes private key certificates which are administered and used as public
key certificates; the protocol offers the advantage that users can communicate securely
while sharing neither an encryption key or a network connection. Briefly the protocol
is as follows. Suppose that Alice and Bob wish to communicate securely. Instead of
sharing a private key to exchange messages, they could use Trent as an intermediary.
Trent shares a key between Alice and Bob separately. Bob sends a message to Alice,
encrypted with the common key he shares with Trent. If Alice wants to read the
message, she sends it to Trent, who translates it into her key. Such approach is scalable,
allowing multiple users to communicate.

Scalability is mostly needed in open systems. The work of Davis and Swick agrees

with the work by Chikazawa et al. (1990), where a key-sharing system for global

82

CHAPTER 2. THEORETICAL BACKGROUND

telecommunications is proposed for multiple user participation and a trusted third
party. The latter approach has some advantage over the former, since the proposed
scheme prevents the conspiracy among users and employs one-way communications,
which are more desirable in high rate networks. According to Chikazawa et al., a
distribution centre generates a n-dimensional vector, where n is the number of partic-

3

Ipating users, and a common key is based on this vector; each user has its “view” of
the key, where it is combined with his secret information.

A protocol for electronic cash on the Internet was proposed by Brands (1994). The
system involved also tamper-resistant devices (smart cards) where the user’s secret key,
balance and certificate of the public key were stored. The certificate of the public key
is a value which results from a keyed hash function computed by an issuing authority
(e.g. a bank). For performing payments, the user (buyer) issues an electronic cheque
which would consist of his/her public key certificate and an electronic signature of the
user to the amount and identity of the service provider. The service provider sends the
payment transcript of the electronic cheque to the bank, and its amount is credited.

The third party key distribution protocols, have addressed the man-in-the-middle
problem described above (Section 2.16), but are practically more difficult to be included
in open architectures. A typical example is the X.500 authentication system (Kille
1991), which was designed for the Internet but is not widely used, because the Internet
was developed in an ad-hoc fashion and no specified authority was responsible for this
open system.

A protocol based on Diffie-Hellman key exchange but involving a trusted third
party, was proposed by Diffie et al. (1992) and is called the station-to-station, STS
protocol. According to the STS protocol, Alice and Bob have public key certificates
which consist of their name and public key, sealed electronically with Trent’s signature.

The protocol performs key exchange with authentication in three rounds.

83

CHAPTER 2. THEORETICAL BACKGROUND
Secret sharing

Secret sharing involves the scenario where a group of people are shared a piece of a
secret and a certain number of them is required to collaborate, in order to construct
this secret. If m people are involved and at least n are needed to construct the secret,
then they are involved in a (m, n)-threshold scheme (Shamir 1979).

The main principle behind a threshold scheme is that a trusted third party which
has knowledge of a secret, can compute shadows of it and distribute it to the members.
More analytically, a message in a (m, n)-threshold scheme is one of the variables in a
n vector solution of an equation in a finite field. The shadows are instances of this
equation. Therefore to solve an equation of n unknowns, n points would be needed
(Blakley 1979). It should be highlighted that even if (n — 1) shadows are put together,
the respective people wouldn’t have any more information cornpared to what they knew
before they exchanged the shadows.

There are several variations and types of secret sharing schemes found in the liter-
ature. These may involve secret sharing with the ability to prevent cheaters, i.e. when
one or more users disclose a fake shadow (Brickell & Stinson 1990, Benaloh 1987). Other
schemes may allow construction of the secret without revealing the shares (Desmedt &
Frankel 1990, 1992), without a trusted third party (Ingemasson & Simmons 1991), or

with the ability to disenrol a member (Martin 1993).

Zero knowledge protocols

Zero knowledge protocols, which appear to have a great theoretical interest, are authen-
tication protocols, but could also be used for key exchange. The term zero knowledge is
used because no secret information is revealed during the conversation. Compared to
public key protocols, zero knowledge systems require smaller computational resources
(Aronsson 1995). Thus, zero knowledge protocols are attractive in smart card applica-
tions (Schnorr 1991).

According to zero knowledge theory, Alice can authenticate herself to Victor by

84

CHAPTER 2. THEORETICAL BACKGROUND

proving that she knows a solution to a difficult problem. More formally, a problem
must be NP-complete (Naor et al. 1992) and Alice must prove that she can solve it in a
polynomial time. A problem could be a proof of knowledge of factoring a large number
(Rabin 1979; Feige et al. 1987), or finding a Hamiltonian cycle in a graph. The zero
knowledge protocols involve interaction between Alice and Victor, where Victor may

request as many rounds of proofs he wants, in order to be convinced.

Message authentication

Authentication of messages could be performed with digital signatures. A digital
signature involves the sender’s private key over the message. If Alice encrypts a message
with her private key, Bob could use Alice’s public key to decrypt it. Confidentiality
would not be offered in this approach, since the decryption process could be performed
by any user who knows Alice’s public key.

However, this method has the problem that Eve may record two or more messages
and concatenate them together; the resulting signature would also be valid. In some
public key cryptosystems this is feasible. One solution would be to sign the hashed
value of the message.

Message authentication could also be performed by symmetric encryption. Since
only Alice and Bob share the secret key, one would know if the incoming messages
originated from its peer. However, with symmetric encryption it is not possible to

prove to a third party the ownership to a message.

2.17.3 The Secure Sockets Layer protocol

The Secure Sockets Layer, SSL protocol (Freier et al. 1996) was developed by Netscape
Communications Corporation and aims to provide communications privacy over the
Internet. The protocol is designed for client/server applications in a way to prevent
eavesdropping, tampering and message forgery. The protocol consists of two layers,

namely the SSL Record Protocol and the SSL. Handshake Protocol. The SSL

CHAPTER 2. THEORETICAL BACKGROUND

Record Protocol, is layered on the top of the network or TCP layer and is used for
encapsulation of higher level protocols, such as the SSI. Handshake Protocol. The latter
allows the client and the server to authenticate to each other and exchange security
relevant information, such as an encryption algorithm negotiation and cryptographic
keys. The encryption algorithms supported by the SSL protocol are the DES, RSA,

RC4 and DSS. Formally, the goals of the SSL were the specific four:

1. cryptographic security, i.e. to establish a secure connection between two

parties,

2. interoperability, i.e. the SSL should describe the basic cryptographic require-
ments via specifications so that independent programmers could develop appli-

cations compatible with th SSL,

3. extensibility, i.e. allow import of new cryptographic techniques in the existing

protocol, and

4. relative efficiency, which includes a session caching scheme in order to avoid

repeating cryptographic operations of a previous session.

The SSL is application protocol independent, i.e. a higher level protocol enjoys
transparency of the SSL layers. As a result, the SSL is proposed to co-operate with
several applications including ftp, telnet, http. From an efficiency perspective, little
priority has been allocated to performance. In contrast, the protocol’s main goal is
cryptographic security; cryptographic operations are highly CPU intensive and the
network activity increases substantially due to the handshake orientation of the proto-
col.

Wagner and Schneier (1996) presented an analysis of the security of the latest
version (3.0) of the SSL protocol. Version 3.0 of the SSL has considerably increased
the security by correcting major problems which existed at its predecessor, SSL 2.0.

According to Wagner and Schneier, the SSL provides a lot of known plaintext to an

86

CHAPTER 2. THEORETICAL BACKGROUND

eavesdropper, but as long as the ciphers are secure, confidentiality would be offered.
However, the SSL does not prevent traffic analysis. Since the SSL is mainly used in
the Web, one would expect to have confidentiality when downloading web pages. This
1s not the case. Since the source and destination information is not encrypted, an
eavesdropper may record the volume of data being passed between the client and the
server. It is easy then to compare the amount of data transferred with the web pages
on a server. The length of the URL request is also useful for revealing which particular
pages a client would visit. In general, an attacker could determine which parties are
communicating and what type of services are being used. If block ciphers are used,
then it is expected that the encrypted information would be slightly larger than the
plaintext, due to padding. In stream ciphers though, padding is not performed.

Concerning active eavesdropping, the SSL provides security, since it is resistant to
certain attacks, such as the cut-and-paste and the short-block attack (Bellovin 1996).
In addition, replay attacks are prevented, since the message authentication includes
also an implicit sequence number. Yet, the security could be improved if a stronger
MAC is used.

The messages for changing cipher specification are not protected by authentication.
Consequently, an attacker may control and send forged messages.

The major security flaw though is in the key exchange, and more precisely, in the
specification of the server key exchange message. The problem is that the key algorithm
is not signed. Consequently, an attacker may choose the key exchange algorithm, and
the security of the protocol would be equal to the security of the weakest algorithm
used for the exchange of keys.

Finally, the SSL is criticised because it uses keys with short lengths. This is un-

avoidable and it is caused due to export restrictions.

87

CHAPTER 2. THEORETICAL BACKGROUND

2.17.4 S/MIME: Cryptographic security services for MIME

MIME (Multipurpose Internet Mail Extensions), is a popular Internet standard, used
for exchanging various file formats by electronic mail (Freed & Borenstein 1996). The
Secure MIME (S/MIME) specification provides the following cryptographic security
services to applications supporting MIME (Dusse et al. 1998): authentication, message
integrity, non-repudiation of origin and privacy and data security.

MIME is based on mail user agents, which are servers running on hosts and 1imple-
ment the mail related protocols to handle the mail messages. In this section the term
agent is used instead of party which is used throughout the thesis.

This thesis is mainly interested in the process in the decision procedure on which
encryption method is to be used between a sending and receiving agent. Fach agent
constructs a capabilities list which consists of the encryption ciphers it supports. This
information is “announced”, among other information, to agents who wish to communi-
cate. Therefore, the decision process involves selection of a cipher from the capabilities
list of the receiving agent.

The sending agent has to decide on which encryption is to be used depending on the
secrecy of the data and the capabilities of the receiving agent. However, it is possible
that the sending agent may not have the capabilities list of the receiving agent. In
such case, the sending agent may use either a weak encryption (RC2 with 40-bit key)
which its implementation is mandatory for all agents, or use a strong encryption such
as triple DES, but is also willing to risk that the recipient may not be able to decrypt
the message.

Consequently, although S/MIME may be algorithm independent and support very
strong encryption, it cannot be applied in all instances and the sending agent has to

take decisions on the tradeoff between level of security and risk of failed decryption.

88

CHAPTER 2. THEORETICAL BACKGROUND

2.18 Conclusions

The theoretical background has focused on symmetric cryptography and more specifi-
cally on symmetric product block ciphers, considering their design principles, measures
of cryptographic strength, their vulnerabilities against cryptanalytic attacks, and their
use 11 cryptographic protocols for secure communication.

To provide a vehicle for investigation of the construction and security of ciphers,
two well known ciphers, DES and IDEA, were discussed in some detail. The DES
was described for its historical value and contribution to the research community.
Many cryptanalytic methods as well as theoretic findings were developed in an attempt
to analyse the DES. Most of these methods have general applications to DES-like
cryptosystems, i.e. ciphers which are based on Feistel networks. The IDEA cipher was
presented because confusion and diffusion were considered in its analysis. Furthermore,
the IDEA cipher was a cipher based on theoretical foundations demonstrating that
high confusion and diffusion could be offered by combining operations which belong to

different algebraic groups.

The following aspects of product block ciphers were reviewed:
e the cryptographic primitives and more specifically the Feistel trans-

formations,

the key schedule,

the properties related to cryptographic composition, such as the

avalanche effect and the group property,

the cryptographic modes of operation,

their strength against cryptanalytic attacks.

Feistel transformations are widely used in symmetric block ciphers and are the main

components in product ciphers. Since the proposed project focuses on product ciphers,

89

CHAPTER 2. THEORETICAL BACKGROUND

theoretical papers concerning Feistel Networks were reviewed and the results included
in the survey. An influential paper published by Luby and Rackoff (1986) focused on
analysing the DES in terms of provable security, clarifying the idea of a distinguisher
in the context of cryptography.

The first attempts to provide a systematic approach to heterogeneous and unbal-
anced Feistel networks were by Schneier & Kelsey (1996), resulting in some useful
definitions of heterogeneous and unbalanced Feistel networks. Schneier and Kelsey
concluded explicitly there was need for further research in heterogeneous and unbal-

anced Feistel networks, and part of the work described in this thesis addresses this.

A product cipher consists of the round function(s) and the key schedule. The key
schedule is the process which generates the subkeys from a master key. Every subkey
is assigned to a round of the product cipher. Knudsen (1994b) defined the strength of
a key schedule and proposed an effective method using one-way functions to generate

an arbitrary number of subkeys from a strong key schedule.

Composition of ciphers can strengthen security, but can also introduce weaknesses.
The avalanche effect (Pfleeger 1989) is a characteristic which is linked directly to the
cryptographic strength of a product cipher. The avalanche effect states that the cryp-
tographic composition of two ciphers (or two rounds) may result in a cipher which is
much stronger than the two individual ciphers. On the other hand, the group property
(Beker & Piper 1984) is an undesirable characteristic which can limit the effectiveness
of the avalanche. It became apparent from the literature that establishing the existence
of a group property in a cipher is not always a simple process (Campbell & Wiener

1993).

Concerning cryptographic modes of operation, two classes were distinguished in the
literature, the standard modes of operation and the non-standard modes of operation.
The standard cryptographic modes of operation were described for the DES, but are

also used for any block cipher. The relevant papers (Biham 1993, 1996) revealed that

90

CHAPTER 2. THEORETICAL BACKGROUND

the combination of standard modes of operation in general (referred as multiple modes
of operation) may reduce the cryptographic strength of the construction: the overall
strength of the cryptosystem would be equal to the strength of the least secure cipher
used. This is because the weakest component can be attacked by the cryptanalyst
planting differential values in some points in the structure of the cipher in order to
mount a chosen ciphertext attack (Biham 1996). A chosen ciphertext is the strongest
attack on a cryptosystem supporting multiple modes of operation (Schneier, 1996).
Therefore when designing a system there is a need to identify whether an attacker can
mount such an attack. In the case where a chosen ciphertext cannot be mounted, then
multiple modes of operations are preferred because of its advantages when used for
secret communication. Thus, the attack scenarios influence the design objectives of a

cryptosystem.

The question of cryptographic strength is one of the central issues in the proposed
cryptosystem. Knowledge of the attack methods and the requirements of each at-
tack, enabled the identification of measures of cryptographic strength which are most
appropriate to the work of this thesis.

Measures of strength described in the literature include confusion, diffusion, differ-
ential (Biham & Shamir 1991) and linear characteristics (Matsui 1994), statistical tests
for randomness (Beker & Piper 1982), information theoretic and complexity measures
(Dai & Yang 1991). The well known concepts of confusion and diffusion were selected to
be measures of cryptographic strength in this thesis, as they could be applied to block
ciphers. Differential and linear characteristics were not applicable, as the design aims
set in the thesis require practical security to be offered to a system in which oracle-like

attacks are not permitted, making differential and linear cryptanalysis infeasible.

The literature survey concludes with a brief review on security protocols which are
used to offer security in computer networks, as the proposed cryptosystem is intended

to be used in communication over computer networks.

91

CHAPTER 2. THEORETICAL BACKGROUND

To establish secure communication, a security protocol is required. A security
protocol usually consists of a setup session in which security related information is ex-
changed, for example keys, their lifetime, authentication information, and a session for
the information communication. Conventional protocols were briefly reviewed (RSA,
Diffie-Hellman key exchange, Station to station). Key exchange protocols were not
part of this research but were required for the prototype.

The literature has extensive description of the use of a single publicly known cipher
in security protocols. More recently alternatives have been proposed, such as to include
more than one cipher in a protocol, with the communicating parties selecting privately
one cipher from the list of available ones (Kaliski 1998). Furthermore, a class of cipher
independent protocols are developed and are used in the Internet for Web or e-mail
transactions (such as the SSL protocol and S/MIME respectively); the advantages are
described in the literature.

The proposed project is based on the idea of a security protocol supporting multiple
ciphers. The proposed project uses the RSA protocol (Rivest et al.1978) as part of the
setup session, but with the addition of the symmetric composed cipher as extra secret

information.

92

Part 111

Proposed Method

93

Chapter 3

Description and Analysis of the
Proposed Method

3.1 Introduction

This project describes a method to enable two communicating parties to negotiate a
private symmetric block cipher to be used for a private communication session. The
method requires evaluation of the strength of the cipher, and that it should be com-
pleted in an acceptable time for setting up communication.

This chapter is dedicated to the description and analysis of the proposed method
for secure cryptographic communication in a client/server oriented environment. The
proposed method is concerned with communications between a client and a server,
through an untrusted network. The host and operating system are assumed secure in
this project. Although not part of the scope of the work of this thesis, the security
framework is outlined and the requirements of the underlying system are described
for completeness. Assuming that the specific requirements are met, the cryptosystem
should perform as expected.

The design objectives of the cryptosystem are specified, followed by a proposal for
implementing a cryptosystem which fulfils these objectives.

Finally, some conclusions regarding the security of the cryptosystem are given.

94

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

3.2 Security framework

The proposed cryptosystem was designed to operate in environments where two trusted
hosts communicate via an untrusted network!, to perform a secure session. Two alter-

natives could be accepted:

e only the host is trusted, i.e. communications within the LAN are susceptible to

eavesdropping,
e the LAN is trusted.

Both scenarios are acceptable in the cryptosystem’s context. For the first scenario,
it should be assumed that an attacker - which would more likely be another unautho-
rised but legitimate user - has access to the host, but would not be able to eavesdrop
the communication sessions of other users in the same host. This also raises more
considerations if a certain graphic user interface is included, since windows environ-
ments cause the user to be more remote from the operating system, resulting to a
smaller degree of control. It should be assumed that security is offered in the windows

environment, in a sense that the key strokes or windows could not be scanned.

3.3 Design objectives of the proposed cryptosystem

The proposed cryptosystem aims to develop an effective method for constructing a
number of ciphers, where every cipher instantiation may be evaluated in terms of
its cryptographic strength. To meet this aim, the design objectives of the proposed

cryptosystem are as follows:

e practical security, which consists of providing evidence that the ciphers are secure

against known plaintext attacks

e ability to integrate into cryptographic algorithm independent security protocols

IHowever, according to the DoD Trusted Computer System Evaluation Criteria (DoD 1985), a
computer could not be considered as a trusted one, if it is connected to a network.

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD
e permit evolution of cryptographic technology
e allow standardisation

e effective control of complexity over speed

The first design objective aims to make the cryptosystem suitable for different
types of communications requirements. For example, in video-conferencing applica-
tions, large time overheads are not accepted, but usually video does not require a high
degree of security. Often the accompanying audio contains more information than the
video, and so may require a more secure cipher, so higher complexity could be used
in encryption. For sensitive data, it is preferable to use ciphers with components of
standard algorithms, which are known to be more likely to be secure.

Practical security is desirable for all ciphers. Depending on the type of application,
the opportunities and the computational requirements of the attacker are considered
in assessing the strength of the cipher. In the specific context, it is assumed that
the attacker has complete access to the communicated ciphertext and to some plain-
text/ciphertext pairs. The ciphertext space is public and therefore the attacker has
knowledge of all cipher instances, but does not know which specific instance is used in
each communication session.

In the context of this thesis, a non standard cryptographic algorithm is an algorithm
which is well known and widely accepted. Since non standard cryptographic algorithms
are used for the cryptosystem, strength against chosen plaintext or ciphertext attack
would be a difficult requirement and is the first item proposed for further work. Al-
though a number of principles and conditions for provably secure cryptosystems have
been described in the literature, it is generally accepted by authors in the field that
in most cases it is hard to apply these principles and produce practical secure ciphers.
In terms of practical security, the proposed method aims to distinguish potentially
secure from proven insecure ciphers, provided that an attacker is not in a position to

mount a chosen ciphertext attack, although more stringent rules may lead to ciphers

96

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

which maintain their strength against such attack. However this proposition should
be taken with a high degree of caution and it is strongly suggested in this thesis that
the cryptosystem should be extensively analysed. Because the ciphers used are non-
standard ciphers (although built from standard ciphers), they should not be embedded
in protocols which allow unlimited-queries-oracle-like attack scenarios.

History has proven that totally secret algorithms were not a good approach, because
they had not been extensively analysed; instead, they were broken by reverse engineer-
ing. Furthermore, there is an international interest in establishing security standards,
such as quality standards (eg. ISO 900X). Security standards are inherent requirement
for organisations who wish to communicate in an internetworking environment. Com-
panies can be confident in secure communication with other companies who conform
to accepted security standards. In contrast, a company’s private algorithm would be
of unknown strength, and furthermore it may have trapdoors or Trojan horses for es-
pionage purposes. The proposed cryptosystem allows evolution of ciphers, since it is
open for enhancing or updating the set of encryption steps, and also any party could
assess the strength of another party’s ciphers.

In order to meet the fourth objective, standardisation is the main leverage in mod-
ern communications since all communication devices need standards to operate with
success. In cryptography though there is a debate on the need for, and feasibility of a
cryptographic standard. Although Devargas (1993) suggests that an encryption algo-
rithm need not be standardised, because of the uncertainty regarding its strength in
the future, standardisation is unavoidable in cryptography used in communications. It
also provides assurance to all parties.

According to Kaliski (1998) most protocols defined recently are algorithm inde-
pendent supporting a variety of encryption algorithms, signature algorithms, and key
management techniques. The S/MIME secure mail protocol being developed by the
Internet Engineering Task Force (IETF) is likely to take this form. As another ex-

ample, RSA Laboratories’ revision of PKCS #7 (RSA 1993), currently in progress,

97

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

will be algorithm-independent. Algorithm independence is helpful because algorithms
have a variety of properties, including speed, security, implementation complexity, and
patent coverage. A protocol that gives flexibility in algorithm choice will simplify
overall system design® and accommodate a wide range of applications. Of course, in-
teroperability is a problem if people choose different algorithms, so in many cases a

“mandatory” algorithm choice is specified which all implementations must support.

3.4 Description of the proposed cryptosystem

3.4.1 Outline of the cryptosystem

A conventional symmetric algorithm could be represented as in Figure 3.1. The algo-
rithm is considered to consist of the encryption steps, the structure, and the key. For
a conventional algorithm, the encryption steps are public and so is the structure of the
algorithm, whereas the key is secret. It is public knowledge in the case of the DES for
example, that a one-way keyed function which involves substitutions and permutations,

is applied 16 times to form the structure of the DES algorithm.

public secret

encryption

structure ? key
steps '

Figure 3.1: A conventional symmetric cryptographic algorithm

It is possible for the entire cryptographic algorithm to be private, in the sense that
it is known in a limited domain - for example within an organisation. This is illustrated
in Figure 3.2.

For wider communication the “fully” private algorithm is inefficient and vulnerable,
especially between parties who have not communicated previously. Moreover, there is

no plausible reason to accept and employ someone else’s code, with unknown properties.

2K aliski is referring to the systems analysis level rather than implementation.

98

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

secret

steps

_ structure

Figure 3.2: A private symmetric algorithm

A novel mid-way approach is to use well known encryption steps, but to keep the

structure of their combination secret, as shown in Figure 3.3.

public secret

encryption structure: 8 key

steps

Figure 3.3: The secret structure and key symmetric algorithm

Encryption and decryption speeds depend on the algorithm complexity. In order
to enhance the security of a system, larger keys may be introduced, which in most
cases result in increased complexity and therefore increased computational costs. For
example, use of the triple DES scheme, employing two keys, results in an algorithm
which consists of 16x3=48 rounds of the DES primitive. However, in applications
where computational time is non-negligible, such an approach is not feasible in terms
of computational time. Cryptographic algorithms are CPU intensive (Koblitz 1987),
the complexity of these algorithms can add large time overheads, reducing the over-
all throughput of a communication channel. In many applications there is need for
higher speed with lower security, for example in the case of video-conferencing men-
tioned earlier. Current approaches in using algorithms favour a fixed composition and
consequently a fixed complexity.

To provide higher security than is available using a conventional algorithm (Figure
3.1) there is a growing practice in the design of security protocols, of selecting one
algorithm from a number of available algorithms for each session (Freirer et al. 1996;
Atkinson 1995a). Conventionally the choice is one from four algorithms. This linearly

increases the search space for an intruder, who must first guess the algorithm used, then

99

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

mount a conventional attack. There is a 25% probability that the correct algorithm
will be chosen. This approach offers some of the benefits of a fully private symmetric
cryptographic algorithm (Figure 3.2), but overcomes the uncertainties by retaining use
of publicly known algorithm.

This project proposes to use the secret structure and key symmetric algorithm
introduced in Figure 3.3 to significantly reduce the probability of an intruder guessing
the correct algorithm.

The proposed cryptosystem selects from a potentially large number of different
algorithms. The algorithms are constructed from encryption steps. These encryption
steps may be complex or simple, but the preferred underlying primitives are simple
for fast computation. The encryption steps should be public knowledge, whilst the

structure 1s secret.

3.4.2 Description of the cryptosystem
The cryptosystem consists of the following parts:
e the cryptographic algorithm generator (CAG), and

e the cryptographic algorithm negotiation (CAN)

Structure of the cryptographic algorithm

In the proposed method, a number of encryption steps and other classes of functions
- simple modular additions, multiplications, hash functions, etc. - are interconnected
to produce a final encryption function. The construction is negotiated between the
two parties to establish the cryptographic algorithm to be used in one session. The
knowledge of the encryption configuration together with the key allows the decryption
of the message. The two parties who wish to communicate securely could publicly
agree on the set of the encryption steps, but the way these steps are structured to form
the encryption (and decryption) algorithm is secret.

The cryptographic algorithm is implemented by the following components:

100

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

e Blocks,
e Summing units.

Blocks and summing units can be interconnected in series/parallel combinations.

Blocks and summing units are linked by data flows. Summing units are placed
whenever the encryption block is supported by one or more feedback blocks. The
feedback blocks operate on the output of the underlying encryption block and their
outputs are summed to be fed to the input of the encryption block. It should be noted
that the summing units perform a bit-wise XOR operation.

The data flows are made up of (message) data, and initialisation values and are
64—Dbit blocks.

The block diagrams of the encryption and decryption functions are presented in
Figure 3.4 and Figure 3.5 respectively. It should be noted that the difference between
the encryption and decryption functions is the bottom row, where the encryption func-
tions, F, are replaced by the decryption functions, D,. The rest of the functions, E,
could also include encryption functions, but they should not be replaced by their de-
cryption functions at the decryption algorithm. Another difference is that the feedback
structure of the encrypting algorithm is replaced by the feedforward in the case of the
decryption algorithm.

~—{Ful
; e

§r><~ ¢ [T |~
LR RN S
1

plaintext S, ciphertext

Figure 3.4: Block diagram of the encryption algorithm

The encryption steps may consist of one-way functions, substitutions, permutations,
random number generators or one round Feistel ciphers - such as a DES step. One-way

functions play a important role to the algorithm’s cryptographic strength. From a

101

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

ciphertext S plaintext

Figure 3.5: Block diagram of the decryption algorithm

cryptographer’s perspective, one way functions have been shown to be necessary and
sufficient for many cryptographic primitives (Chapter 2.4 of the literature review).

A set of substitution boxes (S-boxes) will also be included to. As highlighted by
Seberry et al. (1994), S-boxes are likely to be vulnerable to differential cryptanalysis.
However, current state-of-the art has shown that S-boxes could be designed to be
resistant to such attacks (Heys & Tavares 1996).

The Feistel ciphers (Luby & Rackoff 1998) can be found in several encryption algo-
rithms and are the most popular configurations in block product ciphers, as described
in Chapter 2.4 of the literature review.

All of the above encryption are finally cryptographically composed in a random
manner, in order to produce the final encryption algorithm. The latter could be con-
sidered as a series of composed algorithms, where each one of them is operating in a
non-standard chaining mode (Davis & Price 1984). The difference is that more than

one feedback operations may exist.

Generating the encryption/ decryption algorithm

The purpose for the following description of the generation of the encryption and
decryption algorithm is to develop an approach in which the cipher instance is com-
municated between two parties.

As stated above, the cryptographic algorithm is a random combination of encryption

and feedback blocks. The combined algorithm is generated as follows:

102

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

1. A random number of columns (layers) is selected between a lower and an upper
value. The lower value ensures that feedback blocks are included if required so,

whereas the upper value is a rough indication of the maximum costs.

2. For each layer, a random height is selected, similar to (1), i.e. between a lower and
an upper value. The height specifies the number of feedback blocks(functions) at

each layer.

3. Given Fp = {f1, f2,.-, [m} & set of transformations, and &, = {ey,e9,...,en} @
set of encryption steps, the blocks can be assigned with the elements of these sets.
More specifically, the blocks of the bottom row of the cryptographic algorithm
(Figure 3.4) are assigned with the cryptographic functions from &, which are
selected randomly, whereas the rest of the blocks could include randomly selected

elements from both sets F,, and &,.

This encryption structure allows the reverse transformation of the data. The de-
cryption algorithm is the encryption algorithm mirrored with the encryption functions

on the bottom row replaced with their respective decryption functions. More formally:

S i e e

1. The encryption algorithm’s block structure is mirrored, so all feedbacks change

to feedforwards.

9. It D,, = {di,ds, ...,dn} 1s the set of decryption functions with respect to &,, then

ecach e; block at the bottom row becomes d;.

The input to the encryption and decryption algorithms (Figures 3.4 and 3.5) consists

of the plaintext or ciphertext data and initialisation values. The F blocks, could be a
transformation of the data, or a pseudorandom number generator (for operation as a
stream cipher). Transformation of the data may involve hash functions, logical shifts,
permutations. The E (and D) blocks may range from permutations and substitutions,

to single rounds of Feistel ciphers. The F' functions may also include the E and D

103

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

functions and could be one-way. However, the F functions must be reversible, i.e. for
each E, function, a D, must exist.
Once the algorithm has been constructed, it would be handed over to the security

protocol, which is responsible for its transmission.

Formal description of the algorithm

Let KeGF(2)% a 64-bit key which is used to encrypt a (64 x t)-length plaintext
Pipa ... Py to its corresponding ciphertext cica. .. ¢ The initial values of the sums
are derived from Figure 3.3:

S=5" fim(B1(K)

m=1

Sy = Z fom (B2 (Er(K)))

m=1

Suo =Y fum(Bu(Ens(- (B1(E)) .)))

m=1

where " denotes the bit-wise modulo 2 addition (XOR).

Some of the functions f may also have as input a portion of the key K. In the
actual implementation this infers that the key is a global variable where all functions
may access it. Some functions may access the key only during the initialisation round,

whereas some others may access it at each round.

The second round involves encryption of the first block of the message:

c1 = En(Sno @ En1(- @ Ea(S20 @ E1(S1o@®p)) -)

104

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

and the sums of the second round are computed:

511 = Z flm(El(SIO @pl))

m=1

So1 = Z Fom(E2(S20 @ E1(S10 ® p1)))

m=1

Snl - Z fmn(En(SnO @ En—~1(~ .. (El(SIO @ pl)) e)))

m=1

In general, the encryption of the j-th block of the plaintext is obtained by:
Ci = En(Snj-1) ® En_1(- -+ @ E2(S2(-1) @ Ey(SiG-1) ®pj))---))

where:

Sig-1) =) fim(Er(SiG-2) © pj-1))

m=1

J
So(j-1) = Z fom(Ba2(Sagj—2) ® E1(S10 @ pj-1)))

m=1

k
Sn(j—~1) = Z fnm(En(SnO D En»l(- - (El (SIO D pj—l)) s)))
m=1

Decryption is performed in a similar way.

Representation of the composed ciphers

The encryption and decryption algorithms were described by two matrices, where all
elements apart from the bottom row are identical. At the bottom row in particular,
the elements of the one matrix are the cryptographic complements of the other. Due

to the various sizes of the columns, a n x m size matrix was selected, where n is the

105

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

maximum of the columns, and the elements which are not used were set to zero. The
representation of the algorithms with these two matrices was completed by indexing
each transform and storing the index value in the respective element in the matrix. It
was the cryptosystem’s task to interpret the indexes and construct the encryption and

decryption algorithms from such information. This is described 1n Chapter 4.

3.5 Analysis and definition of measures

The construction of the cryptographic algorithms is a twofold problem. First, the com-
bination of the encryption steps alone without feedback must offer practical security.
Second, the feedback blocks must not cancel any cryptographic transformation of the
primitives they are supporting.

There has been extensive theoretic work in product ciphers and especially in iter-
ative Feistel transformations. However, there has not been much work in combination
of different cryptographic primitives and in addition there are several open problems
‘1 unbalanced Feistel networks (Schneier & Kelsey 1996). Moreover there is no formal
description for combination of primitives. In this section some theoretic requirements
which support the proposed method will be presented. These requirements together
with experimental results in Chapter 5 lead to the novel concept of the Cryptographic
Block Profile, CBP which describes the properties of the underlying cryptographic
block, such as topology, potential cryptographic strength and so on. The theoretic
and experimental rules for filtering out subsets of weak instantiations are described in

terms of the CBPs of the blocks.

3.5.1 The total search space

The calculation of the search space (secondary Alm B.) gives an insight to the order
of magnitude of the search space.

The total search space is the product of the key space and the algorithm space:

106

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

Stotal =<k> * <a>.
Since a 64-bit key is used, the key space is: <k>= 264 Let:
n the number of encryption steps,
m the number of feedback functions.
Since the encryption steps are allowed to be placed in the feedback blocks, the total
number of feedback functions would be n + m.
Assume an algorithm which consists of one stage. Bach encryption step - which becomes
an encryption block once placed in the structure of the composed cipher - 18 combined
with any 0,1,...,n+m feedback blocks. The latter yields a space of:
n-4+m n+m n—4+m
(" >+() (+n>
An equivalent form can be derived by using Newton’s binomial equation:
v AN 0 e v
(a+0b)" = <0>a” + <1>a D+ + <U B 1>ab L4 <U>b“
where a, b, v are integers. For a = b =1 we have:

()00

Therefore the algorithm space for all one-stage algorithms would be:

n-+m n—+m n-+m \
= et = n2"
su=a (5" (1) e G =

and its total search space (i.e. combined with the key) is:
S, = 28pontm
For an algorithm of [stages, the algorithm space 1s:
S = [n2n+m]l
The total space is the sum of all possible algorithms from 1 to [stages:

Sl = S1+Sat ..+ S =<k> 24 <k> (2" 4 A <k> [n2" ™)

— <]€> ([n2n+m] + [n2n+m]2 4o+ [n2n+m]l)

N
geomelric series

1 — [nQn—i—m]i

1 — n2mtn

= <k> (n2™m

107

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

In our particular case we have:
1 < n2mt"
Therefore:
Siotal =<k> (77,2’"+”)l

However, this search space includes weak instantiations, such as ciphers which con-
sist of transpositions and/or a small number of Feistel rounds, not offering full diffusion

and maximum confusion. In the rest of this Chapter there is some analysis in order to:
e identify weak structures so they can be excluded, or

e establish rules where only potentially strong ciphers could by generated.

3.5.2 Feistel Networks

As presented at Chapter 2.4, Luby and Rackoft (1988) demonstrated that for a balanced
Feistel network three rounds are needed so that the distinguishing probability of the
Feistel transformation from a random one is low.

With the introduction of differential cryptanalysis, the security of a cryptosystem
was described by the probability of its differential characteristic, i.e. certain plain-
text /ciphertext differences which occur with non-negligible probabilities. The higher
the probability of a differential characteristic, the higher the probability of breaking
the cryptosystem. In general though finding a differential characteristic with high

probability requires extensive analysis of the round function of the cipher.

Definitions and terminology

The definitions and terminology mainly focus on Feistel transformations. The defini-
tions and terminology from the literature are presented, extended by the definitions and
notions proposed in this thesis. Some definitions are not directly used in the proposed

method, but aid on deriving both proposed and referenced ones.

108

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

The definitions and lemmas in this section are adopted from Schneier and Kelsey
(1996). Let n be the length of the input and output block (in bits) of a Feistel network.
The round function F of a conventional Feistel network would then be expressed as:

F {0,132 x {0,1}% — {0,1}"2

where k is the length of the subkey in bits.

Definition 1. A Feistel transformation would be defined as:

Xig1 = (Fr,(msby2(X;) @ Lsby2(X5)) @ msby 2 (X5)
where X; is the input to round, X;;; is the output of the round, k; is the subkey used
in the round and lsby(z) and msb,(z) select the least significant and most significant

u bits of z respectively.

Definition 2. A j-round balanced Feistel network is defined as:
Xis1 = (Fx,(msbnjo(X;) @ Lsby/2(X5)) o msby j2(X5)
for 0 < i < j— 1. X, would be the plaintext, and X; would be the corresponding
ciphertext.
An Unbalanced Feistel Network, UFN is a Feistel network where the “left half” and

“right half” are not of equal size.

Definition 3. A one round of an s : ¢t UFN is defined as:
Xiv1 = (Fy,(msby(X;) @ 1sh, (X)) @ msby(X5)
where msby(X;) is the source block and Isb,(X;) is the target block. If s > t, the UFN

is called source heavy, whereas in the opposite case it is called target heavy.
Definition 4. A UFN is homogeneous if the round function is identical in each round,

except for the round keys. A UFN is heterogeneous if the round function is not always

identical for different rounds, except the round keys.

109

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

Definition 5. A UFN is complete when in each round every bit is part either of the
source block or the target block, i.e. s+¢=n. If s+t < n, then the UFN is incomplete

and the unparticipating block z = n — s — t is the null block.

Definition 6. A UFN is consistent when s,¢ and z remain constant for the entire

cipher. In the opposite case, the UFN is inconsistent.

Definition 7. A cycle is the number of rounds for each bit in a block to appear in

both source and target at least once.

Lemma 8. A cycle C of an s:t UFN is

n

c= (3.1)

min(s,t)
Definition 9. A rotation is the number of rounds needed for a bit to return to its

starting position.

Lemma 10. A rotation G of an s: ¢t UFN is

n
G= ged(s, t)
Definition 11. A UFN is even if C = G, odd if C # G and prime if G =n.

(3.2)

Definition 12. The rate of confusion, R, of a consistent UFN is the minimum number

of times per cycle that any bit can occur in the target block.

Lemma 13. For an s : ¢t UFN, the rate of confusion is:

t
Rc_<__
n

Definition 14. The rate of diffusion, Rq is the minimum number of times per cycle

that a given bit can have the chance to affect other bits.

110

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

Lemma 15. For an s : ¢t UFN, the rate of diffusion is:
s
Ry < —
n
Schneier and Kelsey (1996) argue that the effectiveness of linear and differential
cryptanalysis is related to the rate of confusion and diffusion respectively. More specific,
if p the bias of the best possible linear approximation in a target block in one round, it
was demonstrated that the output bias of any nontrivial characteristic after C rounds
would be at most 2€F~1pCRe This relation holds for even complete UFNs with cycle C'.
Concerning differential cryptanalysis, an increase in the diffusion rate may result in
higher resistance to differential cryptanalysis. Similarly, in the case of even UFNs, if p
‘s 2 nontrivial one round differential characteristic, the probability of its propagation
through C rounds, would be at most p«*.
In practice though, it would be useful to have indication of the actual values of
the confusion and diffusion rate. The confusion and diffusion matrices, presented at

sections 3.5.4 and 3.5.5 respectively, could be used to determine the rates, as well as

the resulting rates of the overall ciphers.

Number of rounds

Most of the work in the literature concerning the required number of rounds in Feistel
networks is directed to balanced Feistel networks. That is because the most popular
ciphers - such as the DES - are balanced, so the questions regarding cryptographic
strength addressed those ciphers.

Luby and Rackoff (1988) suggested that the minimal number of rounds for a bal-
anced Feistel network is three. However, in the case of the DES this is not true. The
reason is that three rounds would be enough given that the round function has certain
properties. The minimal requirement would be that after three rounds, every input
but should have the chance to affect every output bit. In the case of the DES this is
not true.

Yet, Aiello and Venkatesan (1996) developed a chosen plaintext attack with only

111

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

O(2"/?) chosen plaintexts to distinguish between a four round Feistel network and
a random permutation on messages in {0,1}?. Furthermore, Coppersmith (1996)
developed a similar attack with O(2") chosen plaintexts which may recover the actual
contents of the round function with high probability. Unless an adversary is not in a
position to mount a chosen plaintext attack, four rounds of a Feistel Network is not
enough.

One should expect that for UFN, more rounds would be needed. If the UFN is
target heavy (Def. 3), this implies that there are linear relations between some input
bits and some output bits on each round. If the UFN is source heavy (Def. 3), more

rounds would be needed, so that every bit will appear in the target block.

3.5.3 The key schedule

Knudsen (1994a) pointed out the importance on the design of the key schedule and
demonstrated how in some ciphers a strong key schedule may improve the security
considerably. The main result is that a key schedule is considered strong if given
a subkey, one could not obtain information about the master key in a polynomial
time. Such a property suggests that the implementation of a key schedule should
involve one way functions (Damgard & Knudsen 1996). More precisely, since in a key
schedule a master key is involved, the underlying one way functions should be keyed,
or alternatively a standard block cipher could be used. It is important for the latter
to be a standard publicised cipher, in order to be more assured that the only attack 1s
exhaustive search.

The following key schedule procedure is adopted by Damgard and Knudsen (1996).
Let Hi() denote a one way keyed hash function, or a standard block cipher, operating
with the master key k. The key schedule Ky = {ki, ko, ... ,k;} for an l-round cipher is
defined as:

ki = Hy(C +14), 1 <1<

where C is some constant.

112

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD
3.5.4 The confusion matrix

The confusion matrix proposed in this thesis is a matrix which summarises the proba-
bilistic relation of every input with every output bit. The confusion matrix is used to
calculate the confusion of a cipher.

The confusion matrix is constructed by the method described in section 2.13.4 1n
Chapter 2.9. Given a random plaintext py €v GF(2)", n — 1 plaintexts are generated,
such that the Hamming distance between p; and po for 1 < i < nis one and p; # p;
for all i # j. Furthermore, ¢ — 1 denotes the position where the difference occurs.

For example, if n = 4 and po = 1101, p;, 0 < i < n would be:

i\ pi | Po® D

0| 1101 | 0000
110101 { 1000
2| 1001 | 0100
311111 | 0010

411100 | 0001

Next, the corresponding ciphertexts are obtained:
¢ =Ep(p), 0<1<n
and the XORs 1); = ¢;® ¢, 1 < j < nare also computed. If a[k] denotes the k-th bit

of the binary string a, then matrix ¥ is defined as:

w0l Gl . =1

’L/)Q [0] 1/)2[1] Ce ’lpg['f?, — 1]
U =
f'/)”[()] Yall] ... aln— 1]_
Definition 16. If the above process is run L times for distinct random pg’s, and the
corresponding ¥ matrices are U, Ws,, ..., ¥y, the confusion matriz C 1s defined as:
1

C:EX(\I’1+‘I’2+...+\I’L)

where all operations are performed in the domain of rational numbers.

113

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

The confusion matrix describes the probability of an output bit changing, given that
an input bit changes, for all pairs of input and output bits. The actual confusion matrix
should require that all possible input values are tested, which is equal to n2™~! distinct
pairs of Hamming distance one. For 64-bit messages, the number of distinct pairs is
64 x 263 = 9269 Hence, in practice the computation of the actual C is infeasible, so it is
assumed that the confusion matrix approaches the actual values while L increases.

It would be desirable for a secure cipher to have a confusion matrix with all entries
equal to 0.5. This would mean that a change of any one bit in the input, would have
a 50% change of the output bits.

Definition 17. A confusion matrix where all entries are equal to 0.5, is a perfect
confusion matriz.

However, it is also required that not only the output bits have a 50% change prob-
ability, but the changes between the output bits should not be related, i.e.

Pr(v;[i]|w;lk], k #4,1 <k <n)=051<j<mn
This property is not examined by the confusion matrix. For instance, in a perfect
confusion matrix, output bit c[¢] and output bit ¢[4] have a 0.5 probability of change

for any one-bit change in the input, but one of the following could also be true:

The ¥ matrices though maintain enough information for examining the distribution
of the changes. One test could be constructed as follows. As more W matrices contribute
to the confusion matrix, some or all entries should start converging to 0.5. If two or
more entries ¥o[i), ¥ylj], a # b1 # J exist such that 9a[i] = ¥uly] or Yali] =1 — Pyl7]
for L = 2,3,..., then there is a linear relation between these two entries. This is the
proposed ¥ matrix depth test which is described later on (section 3.5.7).

The random distribution of ones within every ¥ matrix should also be assessed.

More precisely, autocorrelation tests on the U matrices investigate whether the changes

114

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

are distributed randomly between the input and the output. The process is described
later on.

Following the definition of the confusion matrix, we have the following lemma:

Lemma 18. There exists no Feistel network with less than three rounds and a perfect
confusion madtrix.

The proof follows from the main lemma of Luby & Rackoff (section 2.8.1).

It would be useful to investigate the conditions under the combination of the cryp-
tographic blocks may result in - or approach - perfect confusion matrices. The diffusion

matrix presented below, can provide such information.

3.5.5 The diffusion matrix

In this section the diffusion matrix is proposed. The diffusion matrix is used for cal-
culating the diffusion of a cipher.

The 8(-) : N — {0,1} operator is defined as:

1, ifn#0;

Bln) =
0, ifn=0.
Definition 19. The diffusion matriz is defined as:
D = B(C)
The diffusion matrix shows if a pairwise relation exists between input and output
bits. That is, if a change of a particular input bit has the chance to affect a particular

output bit. The diffusion matrix is very helpful, because it has the following property:

Lemma 20. Let C a product cipher with j encryption steps. The diffusion matrix of
the cryptosystem is equal to:
De=fB(Dy-Dy-...-Dj)

where D; is the diffusion matrix of the ith encryption step.

115

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

Proof. The case for a two round product cipher is shown, that is D = B(D; - Dy). Let
[] be a boolean evaluation, which evaluates the expression within the brackets to one
£ 1t is true and to zero is it is false, such as [p is prime]. The elements of D, D, and
D, are denoted by d;;, 6j; and d}; respectively. Note that the output of round one 1s

equal to the input of round two. For the first leftmost input bit it is:

[input bit 1 is related with round-1 output bit j] = 4

jp1<isn (3.3)

from the definition of the diffusion matrix. Similarly, for the first leftmost output bit:

[output bit 1 is related with round-2 input bit j] = 07,

1<j<n (34)
Combining (3.3) and (3.4) we obtain:

[input bit 1 is related with output bit 1) =6, -8 + 81y 05y + .o+ 0, o

where the right-hand-side is a boolean expression, l.e. .+ . denotes the boolean OR
and . - . denotes the boolean AND. If this is repeated for all input and output bits it
gives:

[input 4 is related with output j] = 0i; = 8ty Oy 4 g 05+ i - Opjy 1< 8,5 S 10

or equivalently,

D = B(D, - D).

Q.E.D.

Application in cryptographic blocks

Balanced Feistel networks. Let O¢ denote the ¢ x t zero matrix, Iy the ¢ x ¢ identity
matrix and A¢(p) a t x t matrix with p X 100% omnes and 100 — p x 100% zeros. A
diffusion matrix for a one round balanced Feistel network where the round function

operates on the left input sub-block would then be:

116

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

On/z In/2
In/2 An/2(p)

D=

The larger the p in Apnj2(p), the greater diffusion the round function offers. If the
round function can relate all of its input bits, to all of its output bits, then it offers

complete diffusion for the round, and the diffusion matrix would be:

On/2 In/2

In/2 An/Z(l)

D =

Note that the diffusion of the round function is different from the diffusion of the
cipher and it concerns the diffusion between the input block to the round function and
the output block of that function, which are respectively the source and target sub-
blocks. The diffusion of the round function is the submatrix Ap/2(p). It is desirable
to have round functions with complete diffusion, because in practice less rounds would
be needed to achieve complete diffusion of the cipher.

The diffusion matrix for a two round homogeneous balanced Feistel network would

be:

On/Z In/Z 0n/2 In/2 In/2 An/z(p)
D= X =

L2 An/z(P) Lh/2 An/Z([)) An/Z(/)) An/Z(pl)
where p < p. For a two round heterogeneous balanced Feistel network, the resulting

diffusion matrix would be:

On/2 In/2 On/2 In/2 In/2 An/z(Pz)
D e X -

L2 An/z(/)l) L2 An/Z(PZ) An/Z(Pl) An/Z(PI)

For instance, if a two round balanced Feistel network with n = 4 is considered, the

diffusion of the cipher would be the product of the diffusions of each round:

117

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

i 1 T 1T T

0 010 0 010 1 011

0 0 01 0 001 01 11
D'—"ﬁ(X):

1 01 1 1 011 1 1 11

0111 01 11 L1 1 1 1

For a one round balanced Feistel operating on the right input sub-block, the diffu-

sion matrix would be:

D= An/2(p) In/2

In/2 011/2

Consequently, if a left-oriented Feistel is combined with a right-oriented Feistel
(that means that the swapping between the left and the right part are cancelled), the

resulting diffusion would be:

0r1/2 I11/2 An/2(p2) I11/2 I11/2 On/2
D = X =

Li2 Anj2(p1) Lz Oup Anj2(ps) Toj2

i.e. no increase in the diffusion.

Unbalanced Feistel networks. The diffusion matrix is very helpful for describing
the diffusion of a cryptosystem which could consist of any kind of UFNs, such as
consistent, inconsistent, homogeneous, heterogeneous and so on.

A diffusion matrix for an s : ¢t UFN would be:

D= O(n—s)x(n—t) It.

I Ay (p)

where 0(p—s)x(n-t) 1 & Z€T0 (n — s) x (n —t) matrix and Agyx((p) i a matrix with
p % 100% ones.

It is expected that for an incomplete UFN, p is smaller than that from a complete
one. In fact, in the case of an incomplete UFN, a zero matrix Ogs)x(z) would be a

submatrix of Ags)x(t)-

It could be realised from the diffusion matrices that for s : t UFNs with varying

118

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

values of s and t, different number of rounds are required in order to obtain complete
diffusion. The lowest number of rounds is that of a balanced Feistel network which is
equal to 3.

Based on the properties of matrix multiplication, it could be observed that the least
number of rounds for a homogeneous UFN for complete diffusion is equal to C + 1,
where C is the cycle of the UFN. The constraint though is that in order to assure
complete diffusion after the required rounds, the submatrix A(s)x(t)(p) which is merely
determined by the round function should have p = 1. For an incomplete UFN it 1s
always p < 1 and more rounds are required. The DES for example, although being
4 balanced Feistel network, needs five rounds to obtain complete diffusion, as will be

shown in Chapter 5.

3.5.6 The autocorrelation test

The autocorrelation test (Beker & Piper, 1982) checks whether the ones and zeros have
a random distribution in a binary sequence. Autocorrelation is performed on the rows
and vectors of the U matrices.

More analytically, a row of a W matrix indicates the relation between one input
bit with every output bit. For a potentially strong block cipher a row should have
50% ones and 50% zeros. The same 1s required for the columns, which represents the
relation of an output bit with every input bit. The autocorrelation test should run for
each of the ¥ matrices and all matrices should pass the test.

However, this test has some limitations. First, it is not able to detect the similarities
of the matrices i.e. if certain or all entries are the same or complement. Second, in
most instances it could not run for single encryption steps, because 1t would fail in all
runs. In one round balanced Feistel networks for instance, autocorrelation tests would
fail, since randomness appears only in one quadrant, due to the effect of its round
function. If it is accepted though that there is an inherent 100% failure rate for one

round ciphers, for a product cipher the decrease in the failure rate could be examined,

119

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

as the product cipher starts with one round and gradually the rounds Increase until

the specified limit.

3.5.7 The depth test

The depth test proposed in this thesis deals with the matrix similarity problem, as
presented in section 3.5.6. If the sequence W,, Uy, ..., ¥ of the ¥ matrices used for
the evaluation of the confusion matrix is considered, the intermediate values of the

confusion matrix are evaluated:

Clz\pl
1
sz 5(\111+\I}2)
1
CL———C—_—E<\I/1+\I/2++\I/L)

Eventually all entries should converge to 0.5. If the elements of Cy are denoted by

¢k, the depth matrix H is constructed as:

%nxn - {hij = 1215‘1)2”(}61([62 = Cfm] \ [1 - Ci'cj = Cfm]) A

(= Ivil—ci =am DA
(v #m
where [-] evaluates the expression and returns a boolean value, as introduced in section
3.5.5, and A and V denote the boolean AND and OR operators. The smaller the

values of H the smaller the similarity between the ¥ matrices. In the extreme where

h;; = L, then input bit 4 has a linear relation with output bit j.

3.5.8 The diffusion distinguisher

The diffusion distinguisher proposed also in this project deals also with the similarities

of the ¥ matrices. It is demonstrated in Appendix A that if two square matrices A

120

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

and B have p, and p, densities of zeros respectively (pa, po € (0,1}), then if C = AX B,
the expected number of zeros would be:

pe = (Pa + Do — DaPb)"
where 7 is the dimension of the matrices. Such relation is derived with the assumption
that the zeros are randomly distributed in the matrix. For the products A? and B2,

the expected densities would be:

7
(2n? — 2z, — 1)z,

n?(n? — 1)

Paa —

and

n

(2n% — 2z, — 1)z

n?(n? —1)

Pob =

where z, and z, is the actual number of zeros in A and B respectively, i.e. z, = pan?
2
and z, = ppyn”.
By comparing the actual and estimated values, the diffusion distinguisher tests

whether a cipher behaves as a random source when generating the ¥ matrices.

3.5.9 The Cryptographic Block Profile

The Cryptographic Block Profile CBP of a cryptographic block, summarises the struc-
ture and cryptographic properties of this block. The fields of a CBP are presented at
Table 3.1. Once the CBP of all cryptographic blocks of the cryptosystem are deter-
mined, their behaviour could be evaluated when used as encryption steps in a product
encryption.

The name field is the name of the encryption block. It could have any name, but it is
useful when the underlying cipher is a round of a standard symmetric block algorithm,
such as DES, Blowfish, etc. In this case, standard ciphers could be examined in the
proposed context and furthermore, their combinations could also be assessed.

The type field indicates the type of the cryptographic block. According to the type

of the cryptographic block, very general rules such as “product of two permutations

121

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

Table 3.1: The Cryptographic Block Profile, CBP.

name

type

source

target

total diffusion rate

marginal diffusion

confusion

has equivalent cryptographic strength of one permutation” could be applied. This field
could be one of the following: Permutation, Substitution, Feistel, Benes, Misty.

The source field is an integer where when represented in a binary format, the ones
specify the length as well as the position of the input to the round function within the
input block. The Hamming weight of the source would be the length of the source.
This field as well as the target field have no particular meaning in some cipher types
such as permutations or simple substitutions and usually are set to their maximum
value 2™.

Similar to the source field, the target field represents the portion and the position
of the sub-block where the output of the round function is applied. Given the source
and target numbers, it is easy to realise that a block of a balanced Feistel for a 16-
bit symmetric cipher would have either the pair (source = 255,target = 255) or
(source = 65280, target = 65280).

The total diffusion rate differs from the diffusion rate and is computed directly from
the diffusion matrix.

Definition 21. The total diffusion rate of a diffusion matrix (or a U-matrix) is defined
as:

. Z:,il:] Z;LZI 5"3

2n

(D)

122

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

where &;; denotes the element of the ith row and the jth column of the diffusion matrix.
The difference between the proposed novel quantity of the total diffusion rate and the
diffusion rate is that the total diffusion rate of a product cipher could be calculated and
is not restricted only to Feistel networks. For a transposition for example, the total
diffusion rate would be n/2", since every input bit would relate to only one output bit.
This value is the lowest bound for the total diffusion for a bijective cipher.

It should be noted that for convenience, the total diffusion rate would also be
referenced as diffusion.

The marginal diffusion is also a novel quantity and demonstrates the capacity of a
cipher to achieve its total diffusion rate.
Definition 22. Let U}, Uy, ..., ¥ the ¥-matrices which were generated from different

inputs. The marginal diffusion is then defined as:
]\4D = mean{R’D(\Ifi \% ‘1’_7) - RID<\I}1)} 1 7é j

The marginal diffusion considers the number of rounds required for a cipher. In
general, the higher the marginal diffusion, the less rounds are needed for a cipher. The
reason is that if ¥; and W, are less similar, and having in mind that for a “good” cipher
half of the entries should be ones and half zero, it should be expected that R (0, v ¥5)
should be considerably higher than R, (¥;) for most of the cases. Therefore, less rounds
are needed. On the contrary, small marginal diffusion implies need for increasing the
avalanche, which yields more rounds.

The confusion is defined in this thesis as follows. The contusion is determined as
the deviation from the perfect confusion (i.e. 1). That is, given the confusion matrix
C, The deviation from the ideal 0.5 would be the error (0.5 — ¢;;)? for all elements of
C. The sum of errors then would be subtracted from the expected value, normalised:

confusion = 1 — 22(0.6 — ¢;5)%/1024

=1 j=1

123

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

3.6 The feedback blocks

The feedback blocks do not increase the security in terms other than exhaustive search.
More specifically, if the underlying product cipher - without the feedback - falls to a
differential or linear cryptanalytic attack, the security of the whole cryptosystem could
be compromised, since the feedbacks do not affect the performance of such attack; in
fact, they may support it in some cases.

The feedback blocks are employed for two main properties. First, they increase the
search space, so that an exhaustive search could not be feasible, since not only the key
should be searched, but also the cipher space. Although this is achieved partly by the
secret structure of the encryption blocks, with the use of the feedback blocks this space
1s increased by many orders of magnitude.

Second, in internetworking environments pattern repetition in a ciphertext may
be undesirable. This is the main problem overcome by modes of operation based on
feedbacks.

However the feedback blocks are an option; the project mainly focuses on the com-
bination of the encryption. Theoretically a large number of feedback blocks could be
used for construction, but in practice such extreme is not necessary, since it results
into very high computational costs without significant benefits.

Another problem is that the analysis of a cryptosystem with multiple modes of
operation is very difficult. Therefore, the more feedback blocks in a cryptosystem, the
more likely cancellations of cryptographic transformations may occur. It is generally
accepted that a very high degree of complexity could be illusionary and a cryptosystem
may not be as strong as it seems. Yet the feedback option should be included in order
to enable further research.

The use of confusion and diffusion as measures of cryptographic strength, are focus-
ing on the product cipher, rather than the feedback blocks. Therefore, the calculated
values of confusion and diffusion for a cipher are independent to the existence of feed-

back blocks, since there are differential calculations involved, in which the feedback

124

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

outputs are regarded as constants and cancelled.

3.7 Concluding remarks

This chapter has presented a method for combining encryption steps and has described
a number of evaluation measures, in order to generate and evaluate ciphers which are
likely to be practically secure. A cipher instance is described as a number of layers,
where at the bottom layer the encryption blocks are placed to form the product cipher.
The feedback blocks may exist and are placed above the encryption blocks. The security
is offered at the bottom layer of the non-standard cipher where the encryption steps
are placed, whereas the feedback blocks increase the total search space. Moreover, the
feedback blocks characterise the cryptosystem as a cryptosystem with multiple non-
standard cryptographic modes of operation, offering the advantages and disadvantages
multiple modes of operation have, which were presented in the literature review.

In order to describe information concerning the cryptographic strength of a product
cipher, the cryptographic block profile, CBP was presented. The CBP summarises the
properties of each underlying encryption step. The information obtained from a CBP
indicates the number of rounds which are needed for an encryption step to obtain
complete diffusion, as well as if a combination of two or more encryption steps may
result to an actual increase of cryptographic strength. Accordingly, a number of rules
for the product of the encryption steps are described.

By using a scheme where a cryptographic algorithm is constructed by publicly
agreed encryption steps, the evaluation is feasible and timely. There are no threats due
to the alien code, because the encryption steps and feedback transformations could be
developed by both parties independently, following the publicised specifications. The
evaluation is concluded with the use of the CBPs which although they could be public,
they could also be verified.

The definition of the confusion and diffusion matrices also contribute to the de-

termination of the potential security of a cipher. It is generally accepted that for the

125

CHAPTER 3. DESCRIPTION AND ANALYSIS OF THE PROPOSED METHOD

unpublished algorithms their actual security 1s not necessarily equal to the security set
by their inventors. An experimental analysis may involve a series of statistical tests,
which may help in separating a weak cipher from a potentially strong one. However,
it is easier to establish whether a cipher is weak - when it fails to pass a test - than
determining that the cipher is strong, since it may fail other tests. The confusion ma-
trix reveals some information about the behaviour of a cryptosystem concerning the
relation between the ciphertext and the plaintext.

The diffusion matrix is very helpful because it can determine how the encryption
steps of a product encryption contribute to the diffusion of the cryptosystem. It was
demonstrated that the diffusion matrix of a product cipher is equal to the product of the
diffusion matrices of the underlying encryption steps. This has two advantages. First,
one knows which types of encryption steps to use in order to obtain a desired result
(diffusion). Second, there is no need to test a whole product cipher in order to determine
its diffusion; determining the diffusion by computational means is a costly process. The
diffusion matrices of the individual blocks could have been already computed so they
could be used for different combinations (products).

The next chapter describes the prototype which was used to run the tests in order
to determine the experimental part of the CBP and to test several cipher instances, in

order to generate information and embed it in a client/server talk utility.

126

Chapter 4

Prototype of ABSENT (ABSolute

ENcrypTion)

4.1 Introduction

One of the aims of this thesis is to provide a framework for effective evaluation of non
standard cryptographic algorithms which are product ciphers with complex modes of

operations (Aim 2.). The effectiveness of the evaluation is related to:

1. The capability of the underlying evaluation methods to distinguish weak in-
stantiations of the proposed cryptosystem from potentially strong ones (Aims

2.(a),(b)).

2. The speed of the evaluation, so it could be performed on line and during a
communication setup session between two communicating parties (Aim 3.), such

as a client and a server in an internetworking environment.

4.2 Outline

This chapter describes the development of the prototype which is presented in Fig-

ure 4.1.

127

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

encryption steps \

(> shared information
L [1 program
testsuite () participants
i | \
| Party A | < Cryptographic Block Party B | <
] Profile (CBP) > ;

y

>| Security specifications|™

Figure 4.1: The ABSENT framework.

Once a number of encryption steps which form the encryption blocks and the feed-
back blocks have been selected, they are fed to the test suite in order to investigate
their statistical properties not only as stand alone blocks, but as combination of blocks
in particular. State of the art methods such as techniques for generating S-boxes resis-
tant to differential cryptanalysis could be employed, or existing publicised encryption
steps could be used. The cryptographic block profile is completed by testing each
cryptographic primitive separately, and updating the respective fields.

The combination of the cryptographic blocks raises doubts on the security of the
resulting ciphers. To provide a measure of security an existing standard cryptosystem
with accepted security as a reference, its statistical properties could be assessed with
the testsuite and be used for comparison with alternative non standard cryptographic
algorithms.

By determining the CBP of the involved encryption steps, the security specifications
would be explicitly defined by a set of rules which would use the resources of the CBP
fields. That is, the information stored in a CBP should be capable to apply every

rule developed or obtained from the literature (which are mainly lemmas) which would

128

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

contribute in the establishment of the cryptographic strength of a cipher instance. The
security specifications should be in such a form, in order to facilitate updates and
effective control over the security level.

The client and the server and in general any communicating party should share
the cryptographic primitives, the CBPs and the security specifications, providing the
standardisation aspect which is required for effective communication. The client could
implement independently the cryptographic algorithm generator for developing product
ciphers.

Prior to a client’s service request, the client should check whether the non standard
algorithm reach the negotiated security level. Once this condition is met, the algorithm
is sent to the server. The latter would again check the security of the received algorithm

and accept or reject the client’s service request.

4.3 The cryptographic primitives

The module cag.c shown in Appendix D implements the encryption steps which form
the encryption and decryption blocks. In the same module the feedback blocks are
implemented.

Arrays of pointers to functions were used for calling the cryptographic blocks as well
as the feedback blocks, in order to call them dynamically from the description matrix
of the cryptographic algorithm which is described later on. Encryption, decryption
and feedback blocks would be referred as transformation blocks. The declaration of a
transformation block function is as follows:

static unsigned char *name(unsigned char *);
where name represents the name of the transtormation block. The function requests
an 8-byte block and returns the result at the same address.

All transformations x; are permutations of the alphabet V = {0, 1354 1e.

129

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Three arrays of pointers to functions were defined, in order to call the functions
indicated by the description matrix:

unsigned char *(snfunct[NUM_FUNCT+1])();

unsigned char *(*nefunctNUM_CFUNCT+1])();

unsigned char *(sxndfunct NUM_CFUNCT+1])();
where nfunct is the array which holds the addresses of the feedback transtormation
functions, and nefunct and ndfunct hold the addresses of the encryption and decryp-
tion functions. NUM_FUNCT and NUM_CFUNCT are the number of feedback
functions and encryption steps implemented in the prototype. These constants are

defined in fstuff.h.

4.3.1 Encryption blocks

The test cryptosystem consists of 15 encryption steps. They range from simple monoal-
phabetic substitutions to Unbalanced Feistel Networks with the round function offering
complete diffusion between the respective input and output bits.

The encryption steps which are selected for a product cipher instantiation form the
cryptographic blocks which are cascaded and some or all of them may be combined with
feedback blocks. More precisely, every encryption step which is included in the cipher
instance is called an encryption block, since this term is more appropriate to describe a
structure. In terms of standard cryptographic algorithms, the DES round is included,
as well as the initial and inverse initial DES permutations. The S-boxes which are used
in some encryption steps are those specified for the blowfish block algorithm. These
are four S-boxes (blow0[] — blow3[])which require a byte and produce a 32—bit

output.

Permutations (transpositions)

There are four permutation primitives defined in the prototype. Two of the permuta-

tions operate on a byte level, whereas the other two are the DES initial permutation

130

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

(IP) and inverse initial permutation (IP~') which permute the individual input bits.

More analytically, the two permutations are the following:

Permute #1: (207364 15)

Permute #2: (703156 2 4)

It should be noticed that the above permutations are key independent similar to the
DES initial permutation. For the first permutation for instance, if the input abede fgh

is applied, the output would be cahdgebf.

Vigenere substitution

One polyalphabetic substitution is implemented, by applying 8 Caesar additions to the
8 input bytes respectively. Such substitution is actually a Vigenere encryption step.
The subkey is considered as the keyword which is used in such encryption and every

character (i.e. byte) is added to the respective plaintext byte mod 256.

Balanced Feistel Networks

1-round DES, 2-round DES. The most popular balanced Feistel network is the
DES and is included in the prototype. The actual code used in the prototype for the
DES is due to Eric Young and appears in Appendix D. There are two encryption steps
which call the DES round. One encryption step is a one round DES and the other is
a two round DES. The use of two round DES reduces the calls to the encryption and
decryption functions by a factor of two, so the DES could be implemented with ten
blocks (including the initial and final permutation) instead of 18. However, the one
round DES step should also be included for analysing the statistical properties of the
DES round function as well as the reduced steps.

It should be highlighted that the subkeys which are used in the DES rounds are
different from those in the rest of the transformation blocks. That is, there are two
key schedules - one is the standard DES key schedule and the second is the strong key

schedule which was described in Chapter 3.

131

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Feistel #1. This balanced Feistel network uses iterative transformations which are
defined by the RIPE hash function, as a round function. All specified rounds of the 128-
bit version of the hash function are used as a key schedule for generation of the round
keys. The underlying Feistel uses the sequence of transformations determined by round
1 and parallel round 3 of the RMD hash transformation. Such combination appeared
to produce a function where its output provided good random properties. That is, the
output sequence which was generated by this function passed the statistical tests for
local randommess (serial and frequency tests).

Feistel #1 accepts the right half of the input (least significant bits) to the round
function and applies its output to the left half (most significant bits). The round

function is defined as:

aa = aaa= 0x67452301U0L; /* constants defined for the RMD hash. */
bb = bbb= 0xefcdab89UL;

cc = ccc= 0x98badcfelUL;

dd = ddd= 0x10325476UL;

tl = right_input_half; /* copy the 32 least significant input bits.

FF(aa, bb, cc, dd, t1, 11); /*round 1 of RMD */
FF(dd, aa, bb, cc, ti, 14);
FF(cc, dd, aa, bb, t1, 15);
FF(bb, cc, dd, aa, til, 12);
FF(aa, bb, cc, dd, tl, ©5);
FF(dd, aa, bb, cc, tl, 8);
FF(cc, dd, aa, bb, tl, 7);
FF(bb, cc, dd, aa, tl, 9);
FF(aa, bb, cc, dd, t1, 11);
FF(dd, aa, bb, cc, t1, 13);
FF(cc, dd, aa, bb, tl, 14);
FF(bb, cc, dd, aa, t1, 15);
FF(aa, bb, cc, dd, tl, 6);
FF(dd, aa, bb, cc, tl, 7);
FF(cc, dd, aa, bb, ti, 9);
FF(bb, cc, dd, aa, tl, 8);

GGG(aaa, bbb, ccc, ddd, til, 9); /* parallel round 3 of RMD */
GGG(ddd, aaa, bbb, ccc, tl, 7);
GGG(ccc, ddd, aaa, bbb, tl, 15);
GGG (bbb, ccc, ddd, aaa, ti, 11);
GGG (aaa, bbb, ccc, ddd, tl, 8);
¢GG(ddd, aaa, bbb, ccc, til, 6);

132

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

GGG(ccc, ddd, aaa, bbb, tl, 6);
GGG(bbb, ccc, ddd, aaa, ti, 14);
GGG (aaa, bbb, ccc, ddd, ti, 12);
GGG(ddd, aaa, bbb, ccc, ti1, 13);
GGG(ccc, ddd, aaa, bbb, ti, 5);
GGG(bbb, ccc, ddd, aaa, ti, 14);
GGG(aaa, bbb, ccc, ddd, ti, 13);
GGG(ddd, aaa, bbb, ccc, ti1, 13);
GGG(ccc, ddd, aaa, bbb, ti, 7);
GGG (bbb, ccc, ddd, aaa, tl, 5);

where the function FF() and the operation GGG() are transformations defined in

rmd128.h (Bosselaers 1996).

Feistel #2. Similar to the previous encryption step, Feistel #2 adopted some rounds
from the RIPE hash function. More specifically, the round function consists of round 2
and parallel round 4 of the hash function. Again, the combination of these two rounds
were found to produce a good locally random sequence.

The round function of Feistel #2 operates on the right half of the input and is

defined as follows:

t1 = left_input_half; /* copy the 32 most significant input bits. *,
II(aa, bb, cc, dd, t1, 11); /*round 4 of RMD */
II(dd, aa, bb, cc, til, 12);

II(cc, dd, aa, bb, t1, 14);

II(bb, cc, dd, aa, ti1, 15);

II(aa, bb, cc, dd, ti, 14);

11(dd, aa, bb, cc, ti, 15);

II(cc, dd, aa, bb, ti, 9);

II(bb, cc, dd, aa, til, 8);

II(aa, bb, cc, dd, ti, 9);

II(dd, aa, bb, cc, til, 14);

II(cc, dd, aa, bb, ti, 5);

II(bb, cc, dd, aa, til, 6);

II(aa, bb, cc, dd, ti, 8);

II1(dd, aa, bb, cc, til, 6);

II(cc, dd, aa, bb, ti1, 5);

II(bb, cc, dd, aa, tl, 12);

HHH(aaa, bbb, ccc, ddd, t1l, 9); /* parallel round 2 of RMD */

HHH(ddd, aaa, bbb, ccc, til, 13);
HHH(ccc, ddd, aaa, bbb, tl, 15);

133

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

HHH (bbb, ccc, ddd, aaa, ti, 7);
HHH(aaa, bbb, ccc, ddd, ti, 12);
HHH(ddd, aaa, bbb, ccc, ti, 8);
HHH(ccc, ddd, aaa, bbb, ti, 9);
HHH(bbb, ccc, ddd, aaa, ti1, 11);
HHH (aaa, bbb, ccc, ddd, ti, 7);
HHH(ddd, aaa, bbb, ccc, ti, 7);
HHH(ccc, ddd, aaa, bbb, ti, 12);
HHH (bbb, ccc, ddd, aaa, ti, 7);
HHH (aaa, bbb, ccc, ddd, tl, 6);
HHH(ddd, aaa, bbb, ccc, ti, 15);
HHH(ccc, ddd, aaa, bbb, t1, 13);
HHH(bbb, ccc, ddd, aaa, ti, 11);

where II() and HHH() are defined in rmdi28.h and aa...ccc are initialised as in

Feistel #1.

Blowfish L. This encryption step is a balanced Feistel cipher with the round function
presented at Figure 4.2. The round function is the one used for the Blowfish encryption
algorithm. However, the key schedule employed is generated differently from the one
described for the original algorithm. Since the subkeys are generated using a strong
key schedule, i.e. they are generated by a one way hash function and they provide no
significant information about the master key, the strength of the cipher should be at

least the same as that of the original algorithm.

L —
% 8 E 32 '
B
8 l—S;l 32 ‘?_1
@____
3 E 32 ! E")
8 E 32 4

Figure 4.2: The round function of Blowfish.

134

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Blowfish R. The Blowfish R encryption step has the same round function as the
previous one, but the difference is that the right half of the input is applied to the
round function, i.e. the 32 least significant input bits, instead of the 32 most significant
input bits. Blowfish R and Blowfish L (Figure 4.3) allows to study iterative ciphers
where there is no swapping between the left and right part of the output, such as the

proposal by Koyama and Terada (1993) which was applied on the DES.

L R

-
=

32 32 32 32

target source source target

(a) (b)
Figure 4.3: The Blowfish L (a) and Blowfish R (b) encryption steps.

Unbalanced Feistel Networks

The prototype implements two UFNs, one which is target-heavy, and one which is

source-heavy. More particularly, the two UFNs are the following:

UFN 16:48. This target heavy UFN is presented at Figure 4.4. The round function
accepts the 16 least significant input bits and cyclically rotates them by six and eight
bits. The rotation increases the diffusion of the involved input bits. The eight most
significant bits from the first rotation are XORed with the third subkey, whereas the
eight most significant bits from the second rotation are XORed with the fifth subkey.
These two blocks of eight bits are fed in the blowfish S-boxes Sy and 5 respectively
and their outputs are XORed. The latter output consists of the 32 most significant

bits of the output to the round function.

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

63...16 15..0

*
]

|

48

2N
]

]
~

A

A

A

o¢]

source target 32 l ::/3_,4@
b %

(a) (b)
Figure 4.4: The target heavy 16:48 UFN (a) and its round function (b).

Similarly, the eight least significant bits of the first rotation are XORed with the
fourth subkey and the eight least significant bits of the second rotation are XORed
with the sixth subkey. The two results are fed to the S-boxes S; and S3 and the outputs
are XORed. The 16 least significant bits of this operation form the remaining 16 lest

significant bits of the round function.

UFN 40:24. The round function of the source heavy UFN is merely a hash function
(Figure 4.5). Once again the four S-boxes are used, but their outputs are added in
modulo 232 and XORed as shown in the figure and the 24 least significant bits are
selected as the output of the round function.

Since there were 40 (=5x80) input bits and only four S-boxes, Sy was repeated
in order to transform the remaining eight bits. The round function is similar to the
round function of the Blowfish. The difference is that the third and fourth S-box are
combined by addition modulo 232, before being XORed with the first two S-boxes and

the last S-box (S) is added modulo 2** to the previous result.

136

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

39..0
40
32 | i 8
| 63..40 | [39...0 1 7 PO
1:24 40 i k,
b3] 8
A F = : B~
i 5 Y 32 [| k28
0 24 _EA} T—EVH B N
— LS
source | | target] Ry) — 8
_ K,
s, & 3

(a) (b)
Figure 4.5: The source heavy 40:24 UFN (a) and its round function (b).

Linear Feedback Shift Registers

In general, LE'SRs could be effectively cryptanalysed, given a small amount of the gen-
erated sequence. Therefore it is suggested that when they are used as a cryptographic
primitive, their output should not be combined directly with the ciphertext, but should
pass through another transformation, preferably a one way function. Two encryption
steps which involve LFSRs are included in the prototype. It should be noted all LESRs

consist of 32—Dbit shift registers.

LFSR #1. There are actually five 32-bit LFSRs specified and they are selected by
some of the bits of the round keys. That is, there is a 32-bit register, and the feedback
function is a primitive polynomial which is selected among five polynomials. The
number of available primitive polynomials could be easily extended if required.

The initial state of the shift register consists of the key bytes 7, 3,4, 5, XORed with
the fourth input byte. The latter is concatenated four times in order to form a 32-bit
block, for the bitwise XOR operation. The first 32 shifts of the LFSR are discarded,
since they form the initial state. The following 56 generated bits are XORed with all

input bits excluding those which form the fourth input bit, because such information

137

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

is required for decryption. This process is illustrated in Figure 4.6. For simplicity, the

clock signal is omitted.

input bits 63...40 39...32 31..0
‘ l |
) buffer
kllj a

l——»@\r —| LFSR 1 —

5-to-1 Y
Rt
: MUX
= LFSR 5 —
k1k2k6
buffer ~
p—
output bits 63...40 39...32 31..0

Figure 4.6: The LESR #1 encryption step.

In general, this encryption step as well as LFESR #2 are relatively slow, compared
to the other encryption steps, since it 1s required to perform many cycles and the first

ones are redundant. The same function is called for the decryption.

LFSR #2. The previous encryption step is very weak since the output of the LFSR is
applied directly to the input bits. LFSR #2 is stronger, because the output sequence
'« accumulated in a buffer 7 and the quantity 7 mod(232?) is applied to the input
bits instead. Additionally, the initial state of the LESR is specified by the 16 least
significant bits, i.e. the two Jast bytes of the input block, combined with keys ko and
ks by a bitwise XOR. The key bits ko, k3 and ks are involved in the selection of the

LEFSR.

138

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

4.3.2 Feedback blocks

A very important consideration when using feedback blocks is that direct wirings should
not be used, because they construct a short path where the differential characteristics
could be back-propagated (Biham 1994). It is conjectured that a feedback block should
maintain properties of uniformly differential mappings, different to the cryptographic
block they are supporting. This would mean that the output value of the feedback
would appear to be pseudorandom.

Theoretically any function could serve as a feedback block. This is because it need
not be inverted during decryption. This is due to the fact that when the feedback
in encryption is a feedforward in decryption and produces the same value in both
configurations.

The proposed model could support stream cipher modes, if the feedback blocks
are modified in a way that their input is discarded and the underlying primitive is a
random number generator. However, such blocks are not considered in order to avoid
synchronisation issues between the sender and the recelver.

In addition to the encryption steps which are also available as feedback blocks, the

following were also implemented:

Rotate left and right. These two key dependent rotations operate separately on
the two input halves. The left rotation rotates the right half by ky mod(32) bits and
the left half by k; mod(32) bits. The right rotation operates accordingly by applying
the subkey k, on the left half and the subkey ko on the right half of the input block.
It should be noted that rotations are very weak transformations and should be not

used alone in a feedback, because they preserve linearity between input and output.

Hash #1. This is a one way hash function based on a Benes network(Aiello &
Venkatesan, 1996) as presented in Figure 4.7. The entries to the S-boxes are the
product of k3 x R mod(2%) and ks x L mod(28), where R and L are the right and left

half respectively. The left and right input halves are added with the respective outputs

139

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

of the S-boxes.

Figure 4.7: The hash function used in the feedback block.

Plus and times mod 2%2. These are two weak transformations, where the input is
cither added or multiplied with key schedule bytes. For the multiplication, the sixth
and seventh key bytes are used, whereas for the addition the seventh and eight bytes
are used. These operations should not be used alone in a feedback, but supported by

other feedback blocks.

4.4 The key schedule

As mentioned in a previous section, two key schedules were implemented, the DES key
schedule and a stronger key schedule based on a one way hash function. The DES key
schedule was required in order to enable the model to implement the DES encryption
algorithm. The DES subkeys were defined in Young’s C code (Appendix D), where the

following type was declared:

typedef struct des_ks_struct

{

union {
des_cblock _;
/* make sure things are correct size on machines with

140

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

* 8 byte longs */
unsigned long pad[2];
+ ks;
#define _ ks._
} des_key_schedule[16];

Since the model should be capable of handling cryptographic algorithms of variable
lengths, the key schedule was modified to:

des_key_schedule[(MAX_LAYERS> 16) ? MAX_LAYERS : 16];
where MAX_LAYERS is the maximum allowed length of the cryptographic algo-
rithm, defined in fstuff.h.

4.5 The testsuite

The testsuite.c module which is listed in the Appendix D can be used interactively or

it can execute a script. Once testsuite runs, it enters the interactive command mode:

Welcome to ABSOLUTE ENCRYPTION test suite
Type 7 for help.

ABSENT>_

The list of available commands is displayed by typing 7:

ABSENT>?

seed - create an algorithm by giving a seed

random - create automatically a random algorithm
define - construct an algorithm manually

edit - edit the current algorithm

list - list of cryptographic primitives

display - display the current algorithm

graph - draw the current algorithm

show - demonstrate the transformation of a cryptographic primitive
key[bin] - display or change the key [in binary format]
encrypt - encrypt a string

run - run encryption/decryption sequences

speed - perform a time trial on the current algorithm
test - measure confusion/diffusion

ciphertext - encrypt a file

141

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

plaintext - decrypt a file

save - save the current algorithm

load - load an algorithm

script - execute an ABSENT script (? script for help).
quit - quit ABSOLUTE ENCRYPTION

ABSENT>_

The description of the commands is at the Appendix C. This chapter focuses on

the commands regarding the tests which assist in the evaluation of a block cipher.

4.5.1 Statistical tests

The available statistical tests are specified in the test () function. Since most of the
tests are computationally intensive, they are all specified in the same function in order
to minimise the number of calls to other functions and thus reduce the additional
overheads. The only calls to other functions are those to encrypt and decrypt the data,
which could not be avoided. Consequently, some code is repeated for different tests.
Such an approach is favourable because the variables which are involved in most of
the computations are declared as register variables, increasing the overall speed of the

tests.

Tests for randomness

There are three tests for randomness which are applied on the ciphertext, namely the
frequency test, the serial test and the autocorrelation test (Chapter 2.9). The first
two tests consider each output bit as a separate source of bit generator, whereas the

autocorrelation test examines the distribution of ones and zeros in the 64-bit output.

The frequency test. The frequency test examines the appearance of ones and zeros

of each of the 64 output sequences when the input is one of the following:
1. Linear (whole input)
2. Linear per byte

142

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

3. Random
4. Linear byte - constant others

. Structured input

Ut

Input of type (1) starts with a random value and then increases the input with a
given increment step. Input of type (2) is similar to (1), but in addition a byte (0 —7)
should be selected. That byte would increase linearly with a given increment step, but
the other bytes would be updated with random values.

Input of type (3) would cause the whole input to have random values in every run.
This test is useful to investigate whether the cipher introduces any bias towards ones or
seros. Tt should be mentioned that the random number generator for the input should
produce ones and zeros with a uniformal distribution.

Tnput of type (4) is as (2) with the difference that once a byte is selected to increase
linearly, the remaining bytes have a constant value. The test should run for at most
256 loops, given that the increment step is one, since after that number of loops it
would pass from the same values and it would not provide any additional information.

Finally the structured input runs for a fixed number of loops and the input is
assigned the values from an array which is defined as a constant. This type examines
whether the cipher is able of taking a structured plaintext and producing randomness

from it. The structured input consists of the following:

const unsigned char struct_in[]={
0x00,0x00,0x00,0x00,0%00,0x00,0x00,0x00,
0xff,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0xff,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0xff,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0xff,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xff,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0xff,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x 11,
0x00,0xff ,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0x00,0xff,0xff,0xff,0xff,0xff,0xEL,

143

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Oxff,0xff,0x00,0xff,0xff,0xff,0xff,0xft,
Oxff,0xff,0xff,0x00,0xff,0xff,0xff,0xftf,
Oxff,0xff,0xff,0xff,0x00,0xff,0xff,0xff,
Oxff,0xff,Oxff,0xff,0xff,0x00,0xff,0xftf,
Oxff,0xff,Oxff,0xff, 0xff,0xff,0x00,0xff,
Oxff,0xff,Oxff,0xff,0xff,0xff,0xff,0x00,
Oxff,0xff,0xff,0xff,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xff,0xff,0xff,0xff,
0x00,0xff,0x00,0xff,0x00,0xff,0x00,0xff,
Oxaa,Oxaa,Oxaa,Oxaa,Oxaa,Oxaa,Oxaa,Oxaa};

The above array consists of 22 lines. This means that the test would run for 22

loops. The array can be easily extended to consider more inputs. This type is more

applicable in the autocorrelation test where the output block is considered a random

sequence. Actually, a structured sequence is defined as a sequence which fails to pass

the autocorrelation test.

For the frequency test hypothesis testing is used with a significance level of 5%.

Figure 4.8 shows a sample of the results of the test. The ‘X’s under the respective

output bit indicate if that bit has passed or not the frequency test.

Qutput bit | 0 | 1 121314151617

Figure 4.8: Format of the results for the first 16 output bits for a frequency test.

The serial test. The input conditions for the serial test are those described for the

frequency test. The output of the test has the same format as the frequency test.

The autocorrelation test.

The autocorrelation test is applied on the output block

which is considered a binary sequence and is examined to check whether the ones and

144

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

zeros are randomly distributed. There is only one input type for the autocorrelation
test, namely the structured input, (5). By applying a structured input to the cipher,
it is expected that the cipher would destroy any symmetries. The output would be a
percentage of the number of success runs to the total number of attempts which in this

case is equal to 22. The hypothesis is again on a 5% significance level.

The differences tests

Once the cipher succeeds in passing the required tests for randomness, the tests based
on the differences between input and output pairs could be performed. The reason
for these following the randomness tests is that most of the difference tests are more
computationally intensive than the statistical tests. Consequently, when a cipher fails
to pass the tests for randomness, there is no need to continue with the differences tests.
These series of tests are the more important than the randomness tests in this project,
because the provide more specific information including the computation of confusion
and diffusion

However, when evaluating the encryption steps separately in order to update their
cryptographic block profiles, the difference tests are only needed, so there is no partic-
ular reason to run the tests for randomness, since it is expected that they would fail

to pass most of them.

The block cipher test (confusion/diffusion). This test provides information
about the state of confusion and diffusion. In the ideal case for a cipher, for each
one-bit change in the input or the key, all output bits are able to change with a prob-
ability of 0.5.

After completion of every input or key bit test, two graphs are produced. The first
graph is the plot of the frequency of the changes and the second graph is the plot of the
Hamming weight (i.e. the number of ones in a binary string) of every output difference.

There is an option to store the data produced in a file, which can be read from Matlab'

IMATLAB is an integrated technical computing environment developed by “The MathWorks Inc.”

145

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

to display the frequencies and the weights as two surface plots. The graphs are plotted
by a function call to plot () which is called a total of 128 times, 64 for the frequency
plots and 64 for the weight plots. Hence, there are no substantial overheads in this
case, since all computations other than the plots are much more intensive than those
needed for plots.

In every run there are two encryptions. The first is performed on a random input
(or key) and for the second input bit (or key bit) b; is inverted. The two ciphertexts are
XORed and the result is used to update the frequency and Hamming weight tables.
The same process is run for all input (or key) bits, 0 < j < 63.

The number of runs L is required for the bit tests. The total number of encryptions
would then be:

(number of encryptions)= 2 x 64 x L

Diffusion matrix. The diffusion matrix is produced with procedure similar to the
block cipher test. Every difference produced is ORed with the previous difference.
The result of these binary operations is to have an increasing number of ones as the

number of these tests increase because of the property of the binary OR involved.

Confusion matrix/depth analysis. The calculation of the depth matrix is the
most computationally expensive test because a pairwise comparison between all ele-
ments of the 64 x 64 matrix. The same information is used for the generation of the
confusion matrix. The depth matrix could be saved to a file for Matlab or any other
data processing package.

Although the diffusion matrix could be obtained from the confusion matrix, the for-
mer is generated by another process as the computational requirements for computing

only the diffusion matrix are much lower than the other matrices.

Total diffusion/marginal diffusion. The only input conditions for the total and

marginal diffusion are the requests to compute these values based on the plaintext

146

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

input or the key. Once the variable has been selected, the diffusion matrix starts being
constructed and the total diffusion is recorded on every run. The marginal diffusion is
the difference between the total diffusion of the current run minus the total diffusion
of the previous run.

The process terminates when either complete diffusion has been reached, or the
marginal diffusion is zero for more than four consecutive runs. In both cases the
number of runs is also recorded. If there is a point where the marginal diffusion is
zero, this would mean that the cipher is not capable of increasing the total diffusion
towards its maximum, 1.00. However, the test must allow the cipher to run at least four
times even when the marginal diffusion is zero, since that value may occur because of
a certain random input sequence. After four zeros it would be unlikely that the failure
to diffusion increment is due to the poor selection of the random inputs.

The expected marginal diffusion for a good cipher for the first run is 0.5, since half
of the inputs have changed, 0.25 for the second run, since half of the remaining zeros

have changed, and so on.

The diffusion distinguisher. The diffusion distinguisher test runs on the ¥ matri-

ces. The four quadrants of the matrix are labelled as follows:

Q1 Q2
Qs Qq

J =

and the results are summarised as in Figure 4.9. Once the number of zeroes are
calculated from all matrices involved, they are used for the calculation of the expected
values. All values refer to the densities of zeroes in the products @Q; x Q4,7 =1...4,

where Q; are the row labels and @; are the column labels.

147

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Zeros in product:0.042236
expected zeros in prod:0.000000

Expected
Q1 Q2 Q3 Q4
Q1 0.970138 0.595806 0.888356 0.613196
Q2 0.595806 0.000000 0.134826 0.000103
Q3 0.888356 0.134826 0.002534 0.151077
Q4 0.613196 0.000103 0.151077 0.000000
Actual
Q1 Q2 Q3 Q4
Q1 0.968750 0.486328 0.881836 0.514648
Q2 0.486328 0.000000 0.075195 0.000000
Q3 0.881836 0.090820 0.586914 0.122070
Q4 0.514648 0.000000 0.103516 0.000977

o

Figure 4.9: Format of the results for the diffusion distinguisher test.
4.6 The cryptographic block profile

The CBPs of the encryption steps are summarised in the module ¢pb.c. Some of the
values of the fields were obtained after performing the tests, as presented in Chapter
5, whereas some of the values where easily determined by observing the respective
encryption step.

More specifically, the structure defined to hold the CPB information was as follows:

typedef struct cbp_struct {

char *name; /* name of the encryption step */
enum cipher_type f_type; /* type of the encryption step */
unsigned long source_msb; /* 32 msb of the source */
unsigned long source_lsb; /* 32 1sb of the source */

unsigned long target_msb; /* 32 msb of the target */
unsigned long target_lsb; /* 32 1sb of the target */

float totdiff; /* total diffusion */
float margdiff; /* marginal diffusion */
float conf; /* confusion */

Ycbp;

Some of the above fields were updated during the design stage of the encryption steps,

148

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

but some needed tests to be run. More analytically, the name and type values were
defined in the design stage of the encryption steps. The source and target field values
can also be determined during the design stage, but they were verified by the diffusion
matrices of the encryption steps; it is feasible to assign the values of the source and
target fields without any tests since this is merely done in the design stage. However,
the round function would not be considered and although for a given source block
the round function may have a certain length, not necessarily all source bits may be
susceptible to transformation. This may result in having a hidden null block in the
source block.

The total diffusion and marginal diffusion were calculated in testsuite.c. The total
diffusion is expected to be constant for every trial, but the marginal diffusion should
vary with a small variance. Therefore the marginal diffusion would be the mean of a

number of measured marginal diffusions.

4.7 Security specifications

A list of security specifications were used in order to evaluate a block cipher instance.
The security specifications were obtained either from the literature or after interpreta-
tion of the experimental results. Consequently, the security specifications described at
this point would not be complete.

The security specifications consist of rules which are applied when examining the
combination of the encryption steps. Function evaluate () in cbp.c s the main function
for the assessment of the properties of the block cipher under consideration.

The first check is the compatibility between two combined encryption steps. More
analytically, there should be some indication whether the confusion and diffusion is
increased by a super-encryption of two encryption steps. The condition (rule) which
accepts that the confusion and diffusion and thus the statistical behaviour of a product

cipher is increased, is described by:

149

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

e the target of the previous block should be equal to the source of the next block.

This means that if block A is combined with block B in a way that the output of A is
the input of B, then it is expected that the diffusion and confusion of the product would
be greater than each of the two blocks alone, if the target of A is equal to the source of B.
However, if the two values are not the same, they may differ but still their difference may
permit a considerable improvement of confusion and diffusion. Function compare_st O
compares the source and the target between two consecutive encryption blocks and
returns the Hamming weight of their difference, i.e. the Hamming weight between
(target) s ® (source)p. In addition, a sign was appended to this value to indicate
whether the source is greater than the target (positive), or the opposite (negative).
Perfect match between two encryption steps is when compare_st (A,B)=0.

The well known DES algorithm was used as reference point in terms of the statistical
properties of the cipher. Starting from a single round DES and gradually increasing the
number of rounds, the tests summarise the confusion and diffusion, so some conclusions
can be drawn about the number of rounds. The results were also checked for the
Blowfish algorithm because its round function is much more stronger than the DES
(Appendix B.4). This category of tests assist in determining the minimum number
of rounds for a required level of security. Since it is impossible to investigate every
possible outcome due to the vast search space, it would be more feasible to accept that
the level of security is related to the statistical properties of the block ciphers.

Against this background, a rule concerning the number of rounds is as follows:

e for a homogeneous balanced Feistel network, the minimum number of rounds

should be five, given that the total diffusion of a one round is more than 0.25.

This security specification follows from Coppersmith’s paper (1996), where an at-
tack could not only distinguish the round function from a random permutation, but it
could derive the actual contents of the round function. However, the complexity of the
attack is relatively high and it is feasible only for a chosen ciphertext attack. Resistance

against such attack was not one of the design objectives of the cryptosystem.

150

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Function evaluate () also estimates the confusion of the block cipher instance and
revises a weak cipher according to rules which consist of both theoretical findings
and experimental conclusions. Therefore, the complete specification of the function is

described in Chapter 5 (experimental results).

4.8 Internetworking

A talk utility was developed for a communication between a client end a server, in order
to implement the security protocol which involves algorithm negotiation. A talk utility
is a simple utility for forwarding messages between two users. With the talk utility the
overheads due to the negotiation protocol can be measured. A TCP connection was

supported and the port assigned to the connection was 5000:
#define MYPORT 5000

The main module is the absenttalk.c which calls either tsrver () from server.c or

tclient () from client.c (Appendix D).

4.8.1 Talk

The talk framework is required for manipulation of the text screen of a terminal. The
library for screen handling used was curses. It should be mentioned that the talk utility
which is used in UNIX platforms is different from the one developed in this project.
In the UNIX version there is a talk daemon which sleeps and waits for a talk request;
once there is a request from a client, a child process is created with fork () in order to
handle the communication between the two users.

The talk developed in this project does not include a talk daemon, but once the
programme is executed the user has to launch the server in order to open the port and
wait for the TCP connection request. Another user should run the client and specify

the username and Internet address of the user which has launched the server.

151

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

Among executing the server and client processes, the talk framework provides a
menu to also generate RSA keys and to construct a symmetric block cipher (Figure

4.10).

Generates/refresh RSA pair

Construct symmetric cryptographic algorithm
Call a user {launch client?

Stand-by mode {(launch server?

Exith

(SN NN AV
P

Userikatosv Status:

Figure 4.10: The ABSENTtalk menu

Screen handling

The terminal window is divided into two windows. When there is no communication
session, the upper window displays the menu and the lower window is used for any
generated messages. The variable type which is specified in curses is WINDOW and it is

a pointer to a window structure:
WINDOW *win_a,*win_b,*win_c;

In order to switch to the curses mode, the initialisation function must be called.
win_a was used for the whole X-terminal window, which was later divided into the
upper and lower windows, represented by the variables win_b and win_a respectively,
while the last line of the upper window (win_b) was a status bar represented by a third

window win_c:

152

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

win_a=initscr();

win_b=newwin(LINES/2-2,C0LS-2,1,1);
win_a=newwin(LINES/2-2,C0LS-2,LINES/2+1, 1);
win_c=newwin(1,COLS-2,LINES/2-1,1);

where LINES and COLS are updated with the dimensions of the X-terminal window

when initscr() is called.

4.8.2 The cryptographic protocol

A public key protocol was required for the exchange of the symmetric block ciphers
which would be used during a communication session between the server and the client.
More precisely, the protocol consisted of two main parts, namely the setup session and
the data exchange session.

During the setup session, the symmetric cipher which was generated by the client,
is sent to the server. During this particular stage, the information concerning the
structure of the cipher is considered to be as sensitive - in terms of security - as a
secret key of a symmetric cryptosystem. The most common scenario for exchanging
secret keys is to employ some public key protocol. In this project, the RSA public key
cryptosystem was used.

Once the client requests connection with the server by sending the username, the
server sends its public key. The client encrypts the symmetric cipher with its private
key and then with the server’s public key and sends the server the result. The server
performs the necessary decryptions and evaluates the proposed symmetric block cipher.
If the cipher fulfils the security requirements, the setup session ends and both client
and server enter the data exchange session. If the cipher fails to fulfil the server’s
security requirements, the server refines the cipher and sends it back to the client. The
client updates to the revised version of the cipher and both the client and the server
enter the data exchange session.

In general there should be no particular reason for the client to reject the revised

153

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

cipher, since it should be more secure than the previous. If the client was willing to
communicate with the server using the previous version in the first place, by default the
revised cipher should be of a higher security and thus fulfil the security requirements
of the client. If a server rejects the proposed cipher, one should expect that the revised
version should have a greater security than the first one. The setup session is presented
in Figure 4.11.

There is an obvious need for fast evaluation of the cryptographic strength of a cipher
since the evaluation needed to be performed no-line. Moreover, the evaluation criteria
must not vary between the participating parties. That is, both parties must accept the

same measures of security to correspond to the same cryptographic strength.

A— B:A Py

B — A:B,Pp

A — B Ep,(xc)
B :if evaluate(xc)
then

B — A: “accept”
else

x¢ = f(xc)

B — A: Ep, (%)

Figure 4.11: The protocol for the setup session.

RSA key pair generation

The two modules related to computation of large integers and generation of large primes
where modifications of the programmes developed by Cooke (1995). More specifically,
LargeOp.c consists of functions to add, subtract, multiply, divide, shift left or right,

raise to a power mod some integer, calculate square root or compare two large integers.

154

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

PrimeTools.c use the previous functions in order to generate large primes, with the
function LargePrimeHunt ().

According to Cooke (1995), the algorithm for finding a large prime consists of two
types of tests. During the first test, an array of small primes is generated. This array
holds the values of the first 1000 primes starting from 3. A random odd number is
generated as a candidate prime (Seed) and the small prime array is also updated with
a counter equal to the difference between the candidate prime and the closest multiple
of the small prime greater than Seed, for all 100 primes.

If any of the counters is zero, then Seed is not prime and it is increased by two and
the first step runs again. If Seed passes the first test, then it is subjected to the second
test which is the Solovay and Strassen method for primality testing.

More specifically, the Solovay and Strassen primality test is as follows. Let by, ba, ..., b
be k randomly selected integers. For each of those integers b, j = 1,2,... kit s checked

whether

b.
m-1)/2 _ | 7
b; = [-T;] (mod n)
If any of the congruences fail then n is composite. If all congruences hold, then the prob-
ability than n is not composite 1s 1/2F. In PrimeTools.h k is the constant SOLOVAY_ITER
which is assigned with the value 20. This value means that if the primality test passes,

the probability that the candidate integer is not prime is less than (3)*°, which is very

low. The right hand side of the congruence is the Jacobi symbol, defined as:

a 2 2 _
ry-1 RL_1=1 Ry—1Ry—1 Ry _n—1 Ry —1

where R; are the intermediate steps of the Euler division algorithm and s; are the
respective highest powers of 2 which divide the remainder in every step. Setting Ry = a
and R, = b, the first step of the division algorithm would be:

Ry = Riqy + 2" Ry

The two modules were used in the module 7sa.c for generating RSA key pairs and

for performing RSA encryptions and decryptions. The function GenerateRSAPair()

155

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

accepts two large primes p and ¢ and the public value e and attempts to find a suitable
secret decryption key d. If it fails, it finds different large primes and the process is
repeated until a random message is successfully encrypted and decrypted with the
RSA pair e,d. Since the encryption and decryption procedures are identical for a
public key cryptosystem, only one function was required for the RSA transformation,
namely RSA(Q). This function accepts a message, the key and the modulus, and the
message 1s updated as:

(message) = (message)**¥ mod n

4.8.3 The server

The server may create an endpoint for communication, by calling the socket () func-
tion:

sock = socket(AF_INET, SOCK_STREAM, 0); /* create a socket */
where an Internet (TCP) connection is specified with the AF_INET family and SOCK_STREAM
type of connection is used, since two-way connection byte streams were required.

Once the socket is created, the bind () system call binds an address to the local end
of the connection, in order to assign a process to that end. Finally, the server waits for
a connection request from a client, by the listen() and accept() system calls.

The server enters the setup protocol as presented in Figure 4.11 when a client
connects and the user on the server end agrees to talk with the user on the client end.
If the user on the server side refuses to talk to the requesting user on the client side,
the request would be rejected and the server would return to the wait state, while the
client would be informed that his peer has refused to talk.

After the setup protocol is completed successfully, the server creates two parallel
processes which share the created socket- one for sending and one for receiving data.
The data read from the standard input would be copied to win_b which is the upper
half of the X-terminal window and then encrypted using the symmetrical block cipher

before they are written to the socket, so that the client could read them. Similarly, the

156

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

data read from the socket, are decrypted and displayed on win_a which would be the

bottom half of the X-terminal window.

4.8.4 The client

The implementation of the talk client is function tclient() in client.c. Before this
function is called, a symmetric block cipher should have been created. The block
cipher information together with the remote user information (remote username and
remote host) and the local user are passed to ctclient (). The client sends a request
to the server by sending the local username and the remote username and waits for
confirmation. The client establishes communication with the following steps. First,

the Internet address of the server is found:
address = inet_addr(host); /* if host is in the Internet notation */

where inet_addr() is specified in arpa/inet.h and returns the Internet address as a
long integer, given that host is a string containing the address in Internet standard
notation. In the case where host is a DNS entry, gethostbyname () defined in netdb.h
is called instead. If the name is found, then address would be a positive integer and
socket () is called to create a socket. Furthermore the following function is called, in

order to enable local reuse of the socket:
setsockopt (s,SOL_SOCKET,SO_REUSEADDR, (char x)&on, sizeof(on));
where on=1. Finally, the connection with the server is established with:
connect (s, (struct sockaddr *) &sin, sizeof(sin);

which would return a positive integer if the connection was successfully established. It
should be noticed that sin is a structure which would have the information about the
host where the server runs; such information was obtained from either inet_addr()

or gethostbyname () as presented above:

157

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

struct sockaddr_in {

short sin_family; /* address family */
u_short sin_port; /* 2 octet port number */
struct in_addr sin_addr; /* 4 octet IP address */
char sin_zero[8]; /% not used */
}sin;

Once the server agrees to start the talk service, the client enters the setup protocol,
by accepting the server’s public key and sending the symmetric algorithm encrypted
with his private key and the server’s public key. The client then waits for the server’s
reply which would either be a new symmetric block cipher, or an indication that the
symmetric block cipher is accepted.

Once any block cipher is agreed by the two peers, the client creates two parallel
processes- one for the incoming data and one for the outgoing data. Similar to the
server, the data from the standard input are copied to win_b which handles the upper
window of the X-terminal and encrypts them for transmission. The incoming data
from the server are read from the socket, decrypted and displayed at the lower half
window of the X-terminal, which is described by the WINDOW variable win_a.

The communication between the client and the server is shown at Figure 4.12.

4.9 Concluding remarks

This chapter has described the components used in the prototype. More specifically,
the prototype consisted of a number of encryption steps and feedback transformations.
For the encryption steps both weak and strong primitives were included, whereas for
the feedbacks simple functions were selected. It should be noted that ciphers with
feedbacks (i.e. modes of operations) are not examined in depth and are mainly for
enabling further research and to increase the search space.

The testsuite is the component of the prototype in which the encryption steps as
well as the cipher instances are tested. The tests involve tests for randomness and

calculations on the diffusion and confusion matrices in order to measure the confusion

CHAPTER 4. PROTOTYPE OF ABSENT (ABSOLUTE ENCRYPTION)

xterm xterm
S
betlo katosy hello, T have some confidential information
—
Uscr:doheribs Status:tatking to katosy User:katosv Statusialking to dohertbs

hetlo katosv

helio, 1 have some confidentisl information

encrypt() encrypt()

\

e

i

decrypt()

Figure 4.12: The client/server communication of a talk session.

and diffusion respectively. It was also shown that the diffusion and confusion matrices
can be used to generate more results and two new tests - the depth and the diffusion
distinguisher test (Chapter 3) - were also developed. The tests performed on a cipher
instance measure its security mainly in terms of the confusion and diffusion as defined
in Chapter 3, whereas the tests performed on an encryption step provide information
for its CBP.

Finally the talk utility was developed to provide experimental evidence on the
speed on the cryptographic algorithm negotiation protocol, in which the proposed
cryptosystem is intended to be used in. The evaluation step in the protocol would
make use of the CBP data which would make the negotiation possible in a short time

as required in a communication protocol.

159

Chapter 5

Experimental results

5.1 Introduction

The sequence of the experiments was as follows:

e First the characteristics needed for the CBPs were computed. That is, each en-
cryption step was examined individually, by constructing block ciphers consisting

of only one step.

e Second, homogeneous block ciphers were examined. Starting from one round and
gradually increasing the number of rounds using the same encryption step, the

parameters were computed.

e Third, combinations between the different encryption steps were examined. The
compatibility between two cascading blocks was the comparison between the
target and source fields of these two blocks in their respective CBPs, as described

in Chapter 4.

e Finally, the results between the different product ciphers, combined with the
compatibility between the source and target for every product was summarised
and compared in order to derive an approximation function for the confusion and

diffusion. This forms the evaluation algorithm implemented by the evaluate()

160

CHAPTER 5. EXPERIMENTAL RESULTS

function in cbp.c.

5.2 Cryptographic Block Profile

A CBP summarises some parameters of the underlying encryption step. Some of them
were updated without any tests, whereas some require experimental results. The name
and type fields were updated without any computation involved. The source and target

fields were obtained from the diffusion matrix as follows:

for each encryption step N do

¢ 4

if type of N is not ‘‘permutation’’ or ‘‘vigenere’’ then
define cipher:=name.N

D:=diffusion matrix

source:=rows of D where no. of ones >1

target:=columns of D where no.of ones >1

end

The positions of rows and columuns are represented by the bits of the large integers,
where element dy of the matrix is mapped to the most significant bit of the source

and target _msb integers.

In the case of the DES encryption step, the diffusion matrix would be:

032 Is2
D =

132 A52(019)

where:

161

CHAPTER 5. EXPERIMENTAL RESULTS

A32(0.19) =

The number in the brackets denotes the density of ones of the matrix (i.e. the ratio
of total number of ones over the total number of entries), which is characteristic of the

DES round function. The diffusion matrices of all the encryption steps are presented

in Appendix B.4.

The total diffusion was invariant for every encryption step since the final value
converged after 12 encryption steps on average. Yet the marginal diffusion inherently
depended on the first two encryptions hence on the random input values, so a mean

was calculated. More specifically, the marginal diffusion was the mean value of a set of

00000100001000000000010000010000]
00000100001000000000010000010000
00000100001000101000011010010000
00000100001000101000011010010000
00000000000000101000001010000000
00000000000000101000001010000000
00100000100000101010001010001000
00100000100000101010001010001000
00000010000001000001000000000100
00000010000001000001000000000100
01000010000001000001000101000101
01000010000001000001000101000101
01000000000000000000000101000001
01000000000000000000000101000001
01000100001000000000010101010001
01000100001000000000010101010001
00010000000010000000100000100000
00010000000010000000100000100000
00011000010010010000100000100010
00011000010010010000100000100010
00001000010000010000000000000010
00001000010000010000000000000010
00001010010001010001000000000110
00001010010001010001000000000110
00100000100000000010000000001000
00100000100000000010000000001000
10100001100100000110000000001000
10100001100100000110000000001000
10000001000100000100000000000000
10000001000100000100000000000000
10010001000110000100100000100000

10010001000110000100100000100000

162

CHAPTER 5. EXPERIMENTAL RESULTS

300 marginal diffusions. In all cases the variance was sufficiently small (ezp(—5)); this
denotes that for every independent test with uniformly random inputs would produce
values which are likely to pass the hypothesis Hy : my; = my, where my and m; are
any two marginal diffusions calculated with uniformly distributed random inputs. The

following testsuite script was executed in order to assess the marginal diffusion:

edit +1 4 Y%construct a one round DES

matlab=desone. Jopen output file for raw data

repeat=300 %300 loops
margdiff %icompute marginal (and total) diffusion
next %close loop

which generated 300 files containing total diffusion and marginal diffusion values. All
files were concatenated into one file, producing a 300 x 2 array, with the first column
a constant (diffusion) and the second column the marginal diffusion values. The mean
of the latter would be the marginal diffusion assigned to the CBP of the underlying
encryption step.

The confusion was determined after 8000 encryptions; the following script was ex-

ecuted:

matlab=desone. Y%open output file for raw data

input=plain %assign plaintext as random input
loops=8000 Jnumber of encryptions
block Yicompute probabilities of input/output bit pairs

The results for all tests for the encryption steps are summarised at Appendix B.5.

163

CHAPTER 5. EXPERIMENTAL RESULTS

5.3 Homogeneous ciphers

5.3.1 The DES encryption steps

Firstly, the parameters and statistical properties of the full DES were computed, in

order to provide an insight of what values a “good” cipher should have.

Table 5.1: The product of one-round DES encryption steps

No. of total marginal

rounds | diffusion | diffusion | variance | confusion
1 0.0625 0.0104 | 1.7970e~° 0.0415
2 0.3206 0.0728 | 3.5784¢™° 0.2906
3 0.7349 0.1760 | 8.5010e¢™° 0.7062
4 0.9690 0.2394 | 6.6771e™° 0.9568
5 1 0.2502 | 4.7094¢~° 0.9996
6 1 0.2498 | 4.4160e7° 0.9999
7 1 0.2497 | 4.2048¢7° 0.9999
8 1 0.25 4.5161e5 0.9999

For more than eight rounds, the results are similar to those of the sixth round.
The confusion is actually the mean value of 8000 trials. It should be also noticed
that the variance of the marginal diffusion is very small. This would imply that one
could independently measure the diffusion and obtain results close to those presented

at Table 5.1.

5.3.2 The Blowfish encryption steps

Blowfish L and Blowfish R produce the same values for diffusion and confusion.
Their differences are the source and target values which are complementary. Therefore
in a product cipher the impact of these values to the confusion and diffusion of the

cipher could be examined.

164

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.2: The product of the two Blowfish encryption steps

No. of | total | marginal

rounds | diffusion | diffusion | variance | confusion
1 0.2656 0.0623 1.7290e~° 0.2492
2 0.7578 0.1864 | 5.1442¢7° 0.7454
3 1 0.2498 | 8.2240e™° | 0.9960
4 1 0.2506 | 4.4845¢7° | 0.9998
5 1 0.2501 | 4.9253¢™° | 0.9999
6 1 0.2499 | 4.5010e=° | 0.9999

5.3.3 The Balanced Feistel Network steps

Due to the source-target symmetry, it is expected that one round affected one quadrant
of the confusion matrix, two rounds should affect three quadrants and three rounds all

quadrants.

Table 5.3: The product of the Feistel #1 encryption steps

No. of total marginal

rounds | diffusion | diffusion | variance | confusion
1 0.2656 0.0624 | 1.0545¢7° 0.2500
2 0.7578 0.1875 | 3.6743¢7° 0.7499
3 1 0.2505 | 4.7070e™° 0.9999
4 1 0.2498 | 4.8624e7° 0.9999
5 1 0.2505 | 4.5241e™° 0.9999
6 1 0.2492 | 4.4861e™® 0.9999

Table 5.4: The product of the Feistel #2 encryption steps

No. of total marginal

rounds | diffusion | diffusion | variance | confusion
1 0.2656 0.0623 |1.1523¢7% | 0.2500
2 0.7578 0.1872 | 3.3162e~> | 0.7499
3 1 0.2498 | 4.3145e7° 0.9999
4 1 0.2505 | 4.8620e7° | 0.9999
5 1 0.2502 | 4.4710e~° 0.9999
6 1 0.2501 4.7126e7° 0.9999

The results confirm that indeed one round affected one quadrant (confusion equal

to 25%), two rounds affected three quadrants (confusion equal to 74.9% =~ 75%) and

165

CHAPTER 5. EXPERIMENTAL RESULTS

three rounds affected all quadrants (confusion equal to 99.99% = 100%).

5.3.4 The Unbalanced Feistel Network steps

The target heavy and source heavy encryption steps defined produce similar results,
i.e. gradual increase of the diffusion and confusion values. An additional column has
been added, which is the comparison between the target and source of two consecutive
encryption blocks which are the same encryption step (homogeneous case). The com-
parison values are also used later on the regression analysis. It should be noted that
the comparison is non zero; this was expected since the Feistel is not balanced, so the
output target could not match with the input source. This resulted in requiring more

rounds to achieve complete diffusion.

Table 5.5: The product of the target heavy 16:48 UFN encryption steps

No. of total marginal

rounds | diffusion | diffusion | variance | confusion | comp.
1 0.2031 0.0462 | 1.5329¢7% | 0.1858 -
2 0.4492 0.1092 | 2.5695¢7° | 0.4355 -32
3 0.6953 0.1716 | 3.4261e™> | 0.6853 -32
4 0.9414 0.2347 | 4.2756e7° | 0.9354 -32
5 1 0.2505 | 5.0069¢7° | 0.9994 -32
6 1 0.2499 | 5.0990e~° | 0.9999 -32
7 1 0.2502 | 4.6150e™> | 0.9999 -32
8 1 0.2498 | 4.6139¢7° | 0.9999 -32

Table 5.6: The product of the source heavy 40:24 UFN encryption steps

No. of total marginal

rounds | diffusion | diffusion | variance | confusion | comp.
1 0.2500 | 0.0586 | 1.1486e ¢ | 0.2337 -
2 0.6191 0.1518 | 2.8222¢7° | 0.6082 16
3 0.9102 0.2262 | 4.2726e7° | 0.9053 16
4 1 0.2500 | 4.3462¢7° | 0.9996 16
5 1 0.2505 | 4.2442¢=° | 0.9999 16
6 1 0.2495 | 4.3668¢7° | 0.9999 16
7 1 0.2498 | 5.2079¢7° | 0.9999 16
8 1 0.2497 | 5.0140e7° | 0.9999 16

166

CHAPTER 5. EXPERIMENTAL RESULTS

It can be seen from these two tables that the greater the absolute value of the

comparison, the more rounds are needed to obtain maximum diffusion.

5.4 Regression analysis

Regression analysis is extensively used to model experimental data, in order to identify
trends and influence of parameters. In this thesis the relation between the diffusion of a
product cipher and the encryption blocks has been established theoretically. However,
for the confusion a relation is calculated from the experimental results. This is done
by applying linear regression techniques.

Three approaches were tested, depending on the type of the product cipher. The
first approach considered homogeneous product ciphers. The second approach applied
linear regression to heterogeneous product ciphers with two rounds. The third approach
consisted of data from heterogeneous product ciphers with two or more rounds.

For the first approach, it is assumed that in a product cipher, every round con-
tributes to the confusion by taking the value from the previous block and increasing
the confusion towards one by its characteristic elasticity (Chatterjee & Price 1977).
The increment of confusion is due to cryptographic composition and the slope of its
‘nerement is related to the round function and the topology of the blocks of bits (elas-
ticity) in which they are combined with the round function.

Since we are dealing with product encryption, it would be reasonable to attempt to
establish a relation between the consecutive blocks. Starting with the DES encryption
steps, if 7, denotes the confusion after ¢ DES steps, a scatter plot between y; and y;1
is as shown in Figure 5.1.

It can be seen that the relation is not linear. Yet a standard assumption in regres-
sion analysis is that a model describing the data is linear (Chatterjee & Price 1977).
Therefore it is required to apply transformations in order to linearise the data. A
number of transformations are available in the literature and could be tested against

the experimental data in order to establish which of the functions fits better to these

167

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: Scatter plot of y, against y,— for 1 <t < 16 for the DES encryption step.

data. These transformations are used extensively in Econometrics (Chatterjee & Price
1977); several alternatives are presented in Table 5.7, where for each function, the
transformation which linearises it is also shown.

Table 5.7: Linearisable functions with corresponding transformations (source: Chat-
terjee & Price 1977).

Function Transformation Linear form
y = o’ y =logy,z’ =logz ¢ =loga + B’
y = ceP? y =lIny y =Ina+ px
y=a+ flogz ' =logz y=a+ pa’
z 1 1
" y’z;ﬂﬁ':; y =a - pa
po+fe y
yzm y’:ln(l_y) '=a+ fz

168

CHAPTER 5. EXPERIMENTAL RESULTS
5.4.1 Linear regression of DES

An Ordinary Least Squares estimation was performed for the above functions using
the confusion values for different number of steps and the results are summarised in

Table 5.8. It should be noted that all logarithms were on base e and that y = y, and

T =1Yi-1
Table 5.8: Ordinary Least Squares estimation of the DES.
) Probability
Function o Jé) 'R o g
v = oyl 1.01 0.37675 0.98588 0.290 0.000
y, = aefVi 2.62 0.98756 0.82209 0.000 0.000
y, = a+ Blogyi— 1.0022 0.22471 0.99705 0.000 0.000
Yi—1
Yp = —— 0.90405 -0.10593 0.99581 0.000 0.000
ay—1 — B
ea+ﬂyt—1
Yy 22,9721 11.2593 0.94863 0.005 0.000

- 1 + e tByt-1

Teoefficient of determination

The quantity R? is the coefficient of determination which is a measure of “goodness
of fit”, measures the proportion or percentage of the total variation in the dependent
variable explained by the regression model (Gujarati 1988).

The probabilities presented on the last two columns of the table, present the sig-
nificance in which the independent variable influences the dependent variable. More

analytically, for every coefficient the probability presents whether the underlying coef-

ficient passed the hypothesis test of being equal to zero (t test):

Hy: = 0: the corresponding independent variable does not explain some of the

variation of the dependent variable [p > 0.05]

H,: B # 0: the corresponding independent variable explains some of the variation of

the dependent variable [p < 0.05]

169

CHAPTER 5. EXPERIMENTAL RESULTS

In terms of interpretation, if the probability is less than 0.05, the coefficient of the
underlying independent variable is not zero and thus influences the dependent variable.
In the opposite case, when the probability is greater than 0.05, the independent variable
does not influence the dependent variable and should be excluded from the model.
Therefore the objective in a regression analysis is to obtain high R? and zero - or less
than 0.05 - probabilities.

From the above results it could be seen that y, = a + flogy,— provided the best
fit, since this model would be capable of explaining 99.7% of the experimental data.
The remaining functions were also good candidates for modelling the confusion, since
the probabilities were low or zero. Although the probability for the first equation
(ye = ayf_l) was high (29%), it remains a good candidate since that probability refers
to the constant.

The DES is an example of a homogeneous balanced Feistel network. The regres-
sions of the remaining homogeneous Feistel networks implemented in this project are
described in Appendix B.3. The relations derived for DES and general Feistel networks
show ability to estimate confusion.

Because the cipher space contains more heterogeneous than homogeneous Feistel
networks, it would be more useful to establish a confusion model for heterogeneous
Feistel networks. By doing this, one would be able to estimate the confusion of a

product cipher of two or more encryption steps. This is addressed in the next section.

5.4.2 Heterogeneous product ciphers

The equations presented above are useful for homogeneous ciphers or homogeneous
parts of a heterogeneous cipher. That is because the elasticity was determined using
the same encryption step. However, one could not determine with the same experi-
mental approach the elasticities for all combinations, first because it is computationally
infeasible and second, if all tests could be performed, there would be no reason to model

the confusion since one would have the actual values.

170

CHAPTER 5. EXPERIMENTAL RESULTS

The problem for using the homogeneous models for the heterogeneous case can be

seen by reference to Table 5.9.

Table 5.9: Confusion of two round heterogeneous product ciphers.

first round second round result
0.0415 (DES) 0.2500 (Feistel 1) 0.5415
0.0415 (DES) 0.2492 (Blowfish R) | 0.5377
0.2500 (Feistel 1) 0.0415 (DES) 0.5415
0.2492 (Blowfish R) | 0.0415 (DES) 0.5407
0.2500 (Feistel 1) 0.2492 (Blowfish R) | 0.7461
0.2492 (Blowfish R) | 0.2500 (Feistel 1) 0.7492

Consider for example the third combination, the Feistel 1 with DES. If it is as-
sumed that the final confusion is the confusion produced by the Feistel and influenced
by the last block which is DES, it should be:

ye = a+ flogyi
where a = 1.0022, § = 0.22471 (Table 5.8) and y,_1 = yo = 0.0415. However, this
function would estimate that the confusion after the two rounds should be y; = 0.69,
which is quite different from the experimental 0.5415.

Table B.12 in Appendix B summarises all tests for encryption steps with confusions
ranging from 0.03 to 0.25. These tests where performed on balanced Feistel Networks
with compare_st(s1,s2)=0. To determine the relation between the confusion of the
product cipher and its encryption blocks, a three dimensional plot is constructed. More
specifically, a scatter plot of the triples (z,y,7) where z is the confusion of the first
encryption step, y is the confusion of the second and z is the resulting confusion would

appear as in Figure 9.2.

171

CHAPTER 5. EXPERIMENTAL RESULTS

O‘BW
0.6

05 Lt o . [

0.4 ; ' o

Figure 5.2: Scatter plot of confusion of two round balanced heterogeneous Feistel
Networks.

It can be seen that a pattern emerges with two main characteristics:
e there is a symmetry of the distribution of points around the vertical plane z = y.

e the surface in which the points lie resembles the density of zeros of a product

matrix (Appendix A), see Figure 5.3.

The second observed characteristic is very crucial in determining the approximation
function of the confusion. More specifically, the number of expected zeros of a matrix
resulting from a product of two (square) matrices with densities of zeros (uniformly

distributed) p; and p, respectively is (Appendix A):
E(p) = (pr + p2 — p1p2)” (5.1)

where 7 is the dimension of the matrix. A plot of the surface defined by equation (5.1)
is presented in Figure 5.3.

Indeed the correlation between the actual and expected confusion was found to be
equal to 0.9833, for n = 1. A regression of the following equation:

p3 = m + apy + bpa + ;P2

172

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.3: Surface plot of (p) + p2 — pip2)", for n = 10.

provided the results below:

[prob] [000) [.000] [.000] [.003]

R? = 0.96286

It should be noted that equation (5.2) of the confusion is valid only where there is
perfect match, i.e. compare_st (A,B)=0.

However, the compare_st(A,B) rule can not be applied on encryption steps other
than Feistel steps, because confusion and diffusion may decrease. This is illustrated
with the following example where a permutation (transposition) is inserted between
two perfect matching (Feistel) blocks. This is a typical example where increment of

complexity may lower the strength. Consider the following cipher instance:
DES->Feistel#1->DES

which has confusion and diffusion of 0.9998 and 1 respectively. If an extra round is

added between the first two blocks, 1.e.:

173

CHAPTER 5. EXPERIMENTAL RESULTS
DES->Permute#1->Feistel#1->DES,

the confusion and diffusion would be 0.8854 and 0.8887 respectively. However, if the
diffusion was 1 at the beginning of the permutation block, there would be no decrease,
since every entry in the diffusion matrix would be equal to one. This observation

generated the following rule:

o If diffusion is less than one and greater than zero, only “feistel-type” of encryption

blocks are allowed.

The “greater than zero” implies that the cipher may begin with any type of en-
cryption step.

However, for more than two rounds equation (5.2) fails to estimate the confusion.
Therefore more parameters were considered, introduced and examined. More specif-
ically, the marginal diffusion was considered, which is an indication of the ability of
an encryption step to change (increase) its diffusion. Marginal diffusion is inherently
related to the confusion, since the latter is also a measure of change of output bits with
respect to the input bits.

After a series of trial and error selection of parameters, the best approximation

function found was of the form:

p3 =a + bpy + cpg + dpripe + epimy + fpimg + gpame + hpamy, +1zymy, +
jdg/?ﬂg + kplpszl (53)

for block ciphers with more than two rounds and with |compare_st(A,B) |=abs(16)
between the last two rounds. The coefficients as well as their probabilities are presented
at Table 5.10. Since there are more than one independent variables, the parameter
which denotes the level in % by which the regression equation explains the variability
of the dependent variable, is the R?, which is the determination coefficient corrected
for the degrees of freedom.

Equation (5.3) was a result of a trial-and-error approach. Econometrics suggest

that when adopting such an approach, diagnostic tests should be also performed in

174

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.10: Regression results for heterogeneous product cipher with source/target

difference equal to 16 (eq. 5.3).

coefficient | value | [probability]
a T54.4435 | [0.000]
b -5.9836 (0.002]
c 176.8139 | [0.000]
d -408.512 | [0.000]
e -3.2549 0.000]
f 1796.0 0.000]
g -1486.1 0.000]
h -14.8299 | [0.011]
i 168.3958 | [0.000]
j 7.9446 0.000]
k -879.9524 [0.000]

R? = 97398 R? = .95952

order to establish whether the equation can be used for further estimations. In these

tests it is required that the probabilities are greater than 0.05.

More specifically, in evaluating the estimated functions, the following diagnostic

tests - hypotheses - were employed (Green 1993):

I. Specification of function (I test)

H, : Correct functional form

H, : Incorrect functional form

II: Normality of the error term (x? test)

Hy : Error term is distributed

normally

H, : Error term is not distributed normally

I11: Heteroscedasticity (Gujarati 1988) of the error term variance (F test)

H, : Error term variance 1s homoscedastic

H, : Error term variance is heteroscedastic

IV: Stability of regression coefficients (I test)

175

[p > 0.05]

[p < 0.05]

[p > 0.05]

[p < 0.05]

[p > 0.05]

[p < 0.05]

CHAPTER 5. EXPERIMENTAL RESULTS

Hy : Regression coefficients are stable with an increase in the number of obser-
vations [p > 0.09]
H, : Regression coefficients are not stable with an increase in the number of

observations [p < 0.05]

V: Multicollinearity (correlation coefficients among independent variables and com-
parison with R)
Hy : The independent variables are not collinear [p > 0.05]
H, : The independent variables are collinear [p < 0.05]
VI: Goodness of fit of regression equation (F test)
Hy: R? =0 {the relationship is not linear} [p > 0.05]
H, : R? > 0 {the relationship is linear} [p < 0.09]

[instead for the coefficient of multiple determination R2 the adjusted for degrees

of freedom R2 is also used. Closer to 1 means better fit.|
VII: Predictive power of the regression equation (Theil’s indexes) (Theil 1971)

— ME = Mean error (should be close to 0)

— RC = Regression coefficient of actual on predicted values (should be close

to 1)

— U = Theil’s inequality coefficient (should be close to 0; 0 = perfect predic-

tion, 1 = completely bad prediction)
— UM = Fraction of error due to bias (should be close to 0)
— US = Fraction of error due to different variation (should be close to 0)

— UC = Fraction of error due to difference covariation (should be close to 1)

The diagnostic tests of (5.3) are summarised in Table 5.11.

176

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.11: Diagnostic tests for eq. (5.3).

L F(1,17) = 0.13974 (0.713]
I x%(2) = 0.62062 [0.733]
1. F(1,27) = 0.85379 (0.364]
IV. F(2,16) = 0.47508 (0.630]
V. No correlation coefficient of independent variables greater than R
VI. F(10,18) = 67.3755 [0.000]
VI ME = 0.00022 RC =1.00035 U =0.017754

UM = 0.00005 US =0.00695 UC = 0.99300

Note: Figures in parentheses are degrees of freedom and
figures in brackets are probabilities.

From the diagnostic tests above it seems that equation (5.3) is correctly specified
and it has very high predictive power.
For the case of the product cipher where the comparison for the last two blocks was

equal to abs(8), the following approximation function provided the best results:

p3 =a + bpy + cpz + dp1p2 +epima + fpima + gpame + hpymy, +
ipamy, + jdi/my (5.4)
where the coefficients as well as the probabilities are summarised at Table 5.12.
The results from the diagnostic tests are presented in Table 5.13.
From the diagnostic tests above it seems that equation (5.4) is correctly specified

and it has very high predictive power.

177

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.12: Regression results for heterogeneous product cipher with source/target
difference equal to 8 (eq. 5.4).

coefficient value [probability]
a 20.000831 | [0.744]
b 0.99873 (0.000]
c -13.7654 | [0.001]
d _146.1946 | [0.004]
e -1.0970 0.001]
f 585.1066 | [0.004]
g 173.6688 | [0.003]
h -5.4003 (0.000]
i 93.6309 (0.000]
j 0.27484 [0.000]

R? = 99269 R? = .98831

Table 5.13: Diagnostic tests for eq. (5.4).

I F(1,17) = 2.4914 0.137)
I y3(2) = 1.1162 0.572]
1. F(1,27) = 0.00859 [0.927)
V. F(2,16) = 0.67755 [0.525)
V. No correlation coefficient of independent variables greater than R
V1. F(9,15) = 226.4509 (0.000]
VL ME = 0.00000 RC =1.00001 U = 0.005245

UM = 0.00000 US =0.00184 UC = 0.99816

Finally, for the case of the product cipher where the comparison for the last two

blocks was equal to 0, the following approximation function provided the best results:

ps =a + bpy + cmy, + dmymg + epamy + fdomo + gpimy, +

hd; + idyds (5.5)

The coefficient values as well as the probabilities are presented in Table 5.14. The
diagnostic tests are summarised in Table 5.15. From the diagnostic tests it seems that

equation (5.5) is correctly specified and it has very high predictive power.

178

CHAPTER 5.

Table 5.14: Regression results for heterogeneous product cipher with source/target

EXPERIMENTAL RESULTS

difference equal to 0 (eq. 5.5).

coefficient | value | [probability]

a 427047 | [0.015]
b 13017 | [0.014]
c 11.2914 | (0.0001)
d 94341.9 | [0.019]
e 26035.2 | [0.020)
f 170269 | [0.014]
g 118173 | [0.001]
h 0.76361 | [0.010]
i -10.5354 | [0.052]
R? = .96195 R* = .92812

Table 5.15: Diagnostic tests for eq. (5.5).

IL.
I1I.
V.
V.
VL

VIIL

F(1,8) = 3.5868 [0.095]

2 (2) = 0.78064 0.677)
F(1,16) = 7.9856 Shows some heteroscedasticity: [0.012]
F(2,9) = 4.4038 [0.046)
No correlation coefficient of independent variables greater than R
F(8,9) = 28.4375 (0.000]
ME = 0.00420 RC =1.00244 U = 0.015539

UM =0.02279 US =0.01207 UC = 0.96513

Regression of the marginal diffusion

In the above relations for the estimation of confusion, the marginal diffusion is also
required. It was found that the marginal diffusion followed a linear relation with log(ps),

i.e. the corresponding confusion, for all three classes of target-source comparisons.

That is, the relation of mz and p; was defined by

Table 5.16 summarises the coefficients as well as the significance levels, for the three

comparison classes. It can be seen that the coefficients increase with the increment of

ms = a + blog(ps)

179

CHAPTER 5. EXPERIMENTAL RESULTS

the comparison value. Therefore, for intermediate values of comparison, the value of

the marginal diffusion could be derived by interpolation.

Table 5.16: Regression results for marginal diffusion for equation (5.6).

| compare_st () | | coefficient | value | [probability] R?
0 2 0.24722 | [0.000]
b 0.19418 [0.000] 0.98624
8 2 0.24743 | [0.000]
b 0.19645 [0.000] 0.99056
16 2 0.24824 | [0.000]
b 0.22469 [0.000] 0.97697

5.5 Graphical representation of confusion and dif-
fusion

The confusion matrix was described in a previous chapter as a square 64 x 64 matrix
with the entries describing the number of the output bits changing given that the
corresponding input bit has changed, normalised to the range [0,1]. The actual value
of confusion was the deviation from the ideal 1, due to the sum of errors which in turn
were the squares of differences between the actual values and 0.5, the expected value.

For a statistically good cipher, the confusion should be equal to or greater than
0.9999, for all keys. If the confusion had such a value for a cipher, then it would be
likely to resist linear cryptanalysis. Confusion of 0.9999 would imply that if any input
bit changed, then all output bits would change with a probability of 0.5. Such value of
confusion would restrict the diffusion to be equal to 1 since in any other case- i.e. if the
diffusion was lower than 1- there would be at least one pair of input/output bits which
would not be related, so the value of confusion would be at most 1 — 0.0002 = 0.9998.

Thus, a linear relationship with higher probability would emerge.

180

CHAPTER 5. EXPERIMENTAL RESULTS

LN
0.8
0.6

0.4

confusion

0.2

60
60

40

30

20 ok \3'\‘(,

10 0\1\;’\)

Figure 5.4: Confusion matrix of the full DES algorithm.

The confusion matrix is represented as a surface as shown in Figure 5.4 which is a
plot of the values of the matrix. The sixteen round DES would produce a confusion of
0.9999 so any linear relation would not be apparent. Yet it is known from the literature
that after extensive analysis, a linear relation was found. Consequently, although this
approach may safely conclude that a cipher is wealk, the opposite is not necessarily
true.

Similarly, the U matrices used for the calculation of the diffusion matrix would
produce a surface as in Figure 5.5. Again, this is the desired surface for a potentially

strong cipher; the 64 Gaussian distributions should all have mean equal to 32.

5.5.1 The round function

It has been argued by Luby and Rackoff that a round function should have properties
of a pseudorandom bit generator. In that case, three rounds of such construction would

have a small distinguishing probability from a random permutation generator.

181

CHAPTER 5. EXPERIMENTAL RESULTS

: - -
= o ----fif
i 200 (//
ol L 0&%%%%}%%%#&\&\\}\\\
,,'(,@,/'”/r:!z;;% i S\ = 70
t{o\ltl\‘)“

Figure 5.5: ¥ matrix distribution of diffusion of the full DES algorithm.

Assuming that the above is applied for a balanced 64 bit (homogeneous) Feistel
Network, the confusion matrix graph for the desired function should appear as in
Figure 5.6. The linear regions and the region where the round function (the surface on
average height of 0.5) is applied could be clearly distinguished. If a function behaves as
a random bit generator, then for every input to that function, all outputs should have
the chance to be affected. The confusion would then be equal to 0.25, which is due to
the first quadrant- i.e. the quadrant where the round function operates- whereas there
linear regions (the second and fourth quadrants) do not offer any ambiguity, since the
relations defined hold with probability 1. The total diffusion would be more than 0.25;
in fact, it would be equal to 0.2656. That is the result of the 0.25 due to the first
quadrant, plus the two sets of 32 bits of the linear relations.

If one more round is added, the resulting confusion matrix would be as in Figure
5.7. The confusion would now jump to 0.75, whereas the total diffusion would be equal

to 0.76. For a three round cipher, the result would be to have a surface with a mean

182

CHAPTER 5. EXPERIMENTAL RESULTS

0.8

0.6) =

0.4

confusion

0.2

60
40

30

112[305 b 20
0

40

30
Q\X‘(»Q\)t

v

20

Figure 5.6: Confusion matrix of a one round Luby-Rackoff construction.

o
SEEYST
o LA sl
oI
SR S
XGRS
SANE N NI IS
D e e P o
RS ES

SXZC
T8

confusion

Figure 5.7: Confusion matrix of a two round Luby-Rackoff construction.

183

CHAPTER 5. EXPERIMENTAL RESULTS

of 0.5, as in Figure 5.4, in the case of the full DES algorithm.
Luby and Rackoff concluded that the round function of the DES was not a random
function. This could be seen from the graph of a one round DES (Figure 5.8). The

confusion is very low, equal to 0.0415 and the total diffusion is equal to 0.0625.

0.5

3553
% 3I35SIIEIS
SO, RES5SE808282S
s a e s e eees:
e s eTesese

32 33

70

Figure 5.8: Confusion matrix of a one round DES.

In order to achieve total diffusion, five rounds of the DES step are needed, whereas
for full confusion six rounds are required. The five round DES is interesting, because
although the total diffusion has its maximum value (1), the confusion is 0.9996. This
could be seen in Figure 5.9 where a reglon on the third quadrant reveals that five

iterations of the DES step are inadequate and therefore this bias could be exploited.

184

CHAPTER 5. EXPERIMENTAL RESULTS

0.6

0.4

2338

SR
B v':‘- ‘__«w.w

confusion

XD
SSA N ,3‘.: :‘_
“"o«\z;;',-f&
R S
R

EESZS
NS “"":‘:";
LX)

\\\1‘7;

N7
"l'
"o

0.2

VA .:"‘.-

60
60
40

30

20
10 \1\@“& D

Figure 5.9: Confusion matrix of a five round DES.

5.6 Diffusion distinguisher

It is argued in this thesis that the confusion, diffusion and ¥ matrices contain more

information than the confusion and diffusion levels of a cipher. The diffusion distin-

guisher described in this thesis demonstrates how to extract information from the W

matrices, which can be used for distinguishing a cipher from a pseudorandom permu-

tation generator.

The distinguisher runs on the ¥ matrices (section 3.5.4) which are generated for

the computation of the confusion and diffusion. The three properties the ¥ matrices

must have for a potentially strong cipher, are:

e the number of ones should be equal to the number of zeroes,
e the ones (and zeroes) should be randomly distributed in the matrix,

e U; and U; should not be similar for i # 7

CHAPTER 5. EXPERIMENTAL RESULTS

The first and partly the second requirements are dealt with a series of autocorre-
lation tests which are applied on the rows and columns of the matrix. The third re-
quirement which involves comparison of the tables, is partly examined with the depth
test as described in Chapter 3.

The diffusion distinguisher complements the tests for the second and third require-
ments. After obtaining the equations for the expected number of zeroes in a product of
two matrices (Appendix A), the random distribution of the zeroes (and ones) could be
assessed, given that the equations hold for random distribution of zeroes (and ones).

As described in Chapter 3, the matrix is split into its four quadrants which are

compared through the distinguisher. This was done in order to overcome two problems:

e for a square matrix of a relatively large dimension n (in this case n = 64), the
expected number of zeroes in the product saturates to zero for a low density
of ones in the original matrices, approximately equal to 0.33. For n = 32, the

expected density of zeroes is zero at approximately 0.52 density of ones.

o Since there is an inherent structure in a one-round Feistel block, where there is
at least a zero sub-matrix, two identity sub-matrices and a matrix related to the
round function, the distinguisher trial would not provide any further information.
However, the distribution of ones and zeroes in the sub-matrix which corresponds
to the round function could be assessed for randomness on the distribution of ones
and zeroes. The same applies for a two-round Feistel block or more, if the block

is unbalanced.

Consequently, to examine an encryption step with the distinguisher one could start
by constructing one block with that step and add the same block until the distinguisher

fails to distinguish structure in the output of the cipher.

5.6.1 DES

For a one-round DES, the distinguisher trial provided the following results:

186

CHAPTER 5. EXPERIMENTAL RESULTS

Zeros in product:0.807861
expected zeros in prod:0.090274

Expected
Q1 Q2 Q3 Q4
Q1 1.000000 1.000000 1.000000 1.000000
Q2 1.000000 0.970138 0.969218 0.881416
Q3 1.000000 0.969218 0.970138 0.881416
Q4 1.000000 0.881416 0.881416 0.000266
Actual
Q1 Q2 Q3 Q4

Q1 1.000000 1.000000 1.000000 1.000000
Q2 1.000000 0.968750 0.968750 0.874023
Q3 1.000000 0.968750 0.968750 0.874023
Q4 1.000000 0.874023 0.874023 0.523438

The actual and expected zeroes in the product of the whole matrix differ about
70%(= (0.807861 — 0.090274) x 100%), which was expected, since there is a structure
in the matrix. The figures which are of great interest are the expected and actual
values (Q4, @4), which relate to the DES round function. Since there is a big difference
(0.523438 — 0.000266 = 0.52), we conclude that the output of the round function is far
from random. For convenience E(Q;, @;) would represent the element of the ith-row-
jth-column of the expected values table andA (Q;, @) would represent similarly the
element in the actual values table.

For a two-round DES, the distinguisher trial generated the following results:

Zeros in product:0.242188
expected zeros in prod:0.000000

Expected
Q1 G2 Q3 Q4
Ql 0.970138 0.889227 0.889227 0.688485
Q2 0.889227 0.003239 0.642429 0.241046
Q3 0.889227 0.642429 0.002456 0.241046
Q4 0.688485 0.241046 0.241046 0.000000

187

CHAPTER 5. EXPERIMENTAL RESULTS

Actual

Q1 0.968750 0.882812 0.882812 0.628906
Q2 0.882812 0.594727 0.600586 0.208984
Q3 0.882812 0.596680 0.585938 0.173828
Q4 0.628906 0.189453 0.187500 0.009766

Since Q, is the identity matrix, A(Q1, @;) (and A(Q;, @1)) would be the densities of
zeroes in Q;, for i = 1,...,4. Moreover, since Q2 = 3, it is verified that A(Q;, @) =
A(Qy, Qy), for 4,5, k,1=2,3.

The actual weakness of the DES round function can be apparent on a three-round
DES:

Zeros in product:0.004150
expected zeros in prod:0.000000

Expected

Q1 Q2 Q3 Q4
Ql 0.003994 0.241739 0.204115 0.126188
Q2 0.241739 0.000000 0.006472 0.001255
Q3 0.204115 0.006472 0.000000 0.000523
Q4 0.126188 0.001255 0.000523 0.000000

Actual

Q1 42 Q3 Q4

Q1 0.601562 0.246094 0.192383 0.088867

Q3 0.179688 0.023438 0.014648 0.000000

0 0 0
Q2 0.216797 0.033203 0.013672 0.003906
0 0 0
Q4 0.077148 0.003906 0.001953 0.000000

A balanced Feistel network completes a cycle after three rounds. This would mean
that every bit involved participated in both source and target of the cipher. It would
be therefore expected that the round function would offer adequate level of random-
ness. However, in the case of the DES in every product in which @, is involved, the
actual value differs from the expected. The difference is significant in (@1, @), where
IE(Q), Q1)—A(Q1,Q1)| = 0.60. The differences in the remaining products are less

significant, yet high enough for the distinguisher to succeed.

188

CHAPTER 5. EXPERIMENTAL RESULTS

The problem remaining though is the lower limit of the differences where the dis-
tinguisher could successfully distinguish a cipher from a random source. If the distin-
guisher runs on the whole DES cipher or any other cipher which is considered to be
strong, the results could be accepted as the lowest differences. However, since this test
performs only on a sample of input blocks, one could accept the lower limit to be as
the maximum of the values that may occur after a large number of trials.

The highest difference between expected and actual value was found to be equal to
0.000295, after 10 trials. For a cipher which produces repeatedly values greater than
2.95 x 10%, it could be argued that the distinguisher can successfully distinguish the

cipher from a random source.

5.7 Evaluation performance

Equations 5.3, 5.4, 5.5 and 5.6 participate in the evaluation() function, where a cipher
instance is evaluated by estimating the confusion and marginal diffusion, and applying
the evaluation rules. Computation of the evaluation speed is required in order to
determine whether the evaluation function can participate in a communication session
without causing significant overheads (Aim 3).

The speed of evaluation was measured on a SUN Ultra Sparc 10, for cipher instances
ranging from 2 to 10 layers. It can be seen from Figure 5.10 that the evaluation speed
follows a linear relation with the number of layers. Linear regression provided the
following relation:

t = —0.01389 + 0.079167 x (layers) msec.
with R? = 0.9962

The time overheads are in the order of a fraction of a msec and therefore, the

evaluation can be indeed performed on-line (Aim 3). It is expected as a rough guide

that the delay due to the cipher evaluation stage will be between 1 and 2 msec.

189

CHAPTER 5. EXPERIMENTAL RESULTS

08

0.7 o

0.6

0.5+

time(ms)

0.4 o

0.3 o

0.2f o}

0.1 ! | i L 1 ! 1 ! 3
2 3 4 5 6 7 8 9 10 11

layers

Figure 5.10: Performance evaluation().
5.8 Concluding remarks

This chapter presented the two stages of the tests, followed by additional proposals for
graphic representation of the results as well as the diffusion distinguisher test.

During the first stage, the tests were performed on the encryption steps, in order
to determine the values stored in the CBPs. The tests involved calculation of the
diffusion and confusion, as well as the marginal diffusion. The diffusion and marginal
diffusion were calculated from the diffusion matrix and the W matrices respectively.
The confusion was calculated from the confusion matrix.

The second stage of the results consisted of three categories of tests. All three
categories involved regression analysis techniques. The purpose for applying linear
regression was to develop a model for estimating the confusion for any cipher instance
of the defined cipher space. The first category of tests focused on homogeneous Feistel
networks. It was shown that in homogeneous Feistel networks, the confusion can be

estimated only by using the confusion of the underlying step.

190

CHAPTER 5. EXPERIMENTAL RESULTS

The first category failed to estimate the confusion of a heterogeneous Feistel net-
work. Hence, the second category of tests examined two round heterogeneous Feistel
networks. A relation with high R? was found, in which the confusion of the two round
Feistel network was dependent on the confusions of the two underlying encryption
blocks.

The third category of the tests considered more than two rounds of heterogeneous
Feistel networks and after a number of attempts, more parameters were introduced
in order to obtain a high R?. More specifically, different equations were calculated
according to the comparison of the target and source of two consecutive encryption
blocks. The different equations revealed the significance of the influence of the topology
of a Feistel network. It should be also noted, that since we were dealing with more
than one independent variables, the quantity R? is observed instead of R?, since the
latter is not appropriate to equations with more than one independent variables.

The results for the heterogeneous Feistel networks apart from the CBP values of
confusion, diffusion, target, source and marginal diffusion, included the marginal diffu-
sion of the n — 1 sub-product of the n—round product cipher. A regression provided a
logarithmic relation between marginal diffusion and confusion with high coefficient of
determination R?, and thus the marginal diffusion can be calculated from the confusion
of a cipher.

Graphical representation of the confusion and diffusion matrices help identify weak-
nesses of a cipher regarding the relations between input and output bits. Moreover,
if the graphical representation is used on one encryption step, it could be seen how
close the round function is to a pseudorandom permutation generator, since the area
in which the round function applies should have confusion values of 0.5 for a random
source.

Finally, the diffusion distinguisher test demonstrated that the information stored in

the matrices can be used for developing further tests which may advance cryptanalysis.

191

Chapter 6

Conclusions

6.1 Introduction

This chapter summarises the findings of the thesis. These consist of evaluation, con-

clusions and observations, followed by suggestions for further research.

6.2 Aims of thesis

The aims of this thesis were:
1. to define a family of symmetric block ciphers composed from a set of publicly
known encryption steps;
(a) offer practical security against a known plaintext attack.
(b) offer the option of trade-off between complexity over speed.
(¢) use and allow standardisation.

(d) accommodate evolution of cryptographic technology.
9. to develop a framework for evaluating their cryptographic strength;

(a) analyse confusion and diffusion by investigating contributing parameters
and describing them with quantitative means and relate the strength of the

cipher to these values.
192

CHAPTER 6. CONCLUSIONS

(b) offer rules to filter out known weak instantiations.

3. to develop a fast on-line cipher evaluation method to be embedded in the crypto-
graphic algorithm negotiation protocol and to give an indicative measure of the

cipher evaluation speeds in relation to the algorithm;

(a) develop a method in which the results from the long term computations are
summarised and utilised in the algorithm negotiation protocol, in order to

speed the negotiation.

(b) develop a message forwarding utility to test the algorithm negotiation pro-

tocol.

6.3 Evaluation

6.3.1 Literature

The literature involved investigating various sources, such as journals, indexed search
on electronic libraries, as well as sources on the Internet. These provided an extensive
source of relevant information. In addition, personal communication with authors
in the field of cryptography and network security was useful. Cross-references from
bibliographies and references in sources were also investigated.

An extensive literature survey was completed which revealed a large body of current
literature in some areas and also showed that some areas covered in this thesis have

not yet been much reported.

Cryptography

The literature in cryptographic composition suggests that by combining weak encryp-
tion steps the result would be a cipher much more secure than its components, due to
the avalanche effect. The most common structure used in the literature to observe this

effect were product ciphers which consisted of Feistel networks.

193

CHAPTER 6. CONCLUSIONS

Another issue in the literature on product ciphers, was the design of a key schedule,
which generates the subkeys used in every round. The distinction and definition of
a strong and weak key schedule by Knudsen (1994b), combined with a method for
generating an arbitrary number of sub keys developed by the same researcher, simplified
the design of the proposed cryptosystem.

On the use of cryptographic modes of operation, the two main conclusions in the
literature were that modes of operation should be used to hide patterns of the plaintext
within the ciphertext and that every mode of operation should be extensively studied.
For this reason the literature in this area was studied although the project described
in this thesis has done little on ciphers with feedbacks. A full investigation on ciphers
with feedbacks would require extensive work beyond the scope of this project.

The literature on cryptography provided:
e combination of weak steps to produce a stronger cipher,
e information on weak and strong key schedules,

e importance of cryptographic modes of operation in hiding patterns.

Cryptographic primitives

The literature in this area was studied because the proposed system was built on
cryptographic primitives.

Feistel transformations are widely used in symmetric block ciphers and were the
main components in product ciphers. The proposed project focuses on product ciphers,
and it became apparent from the literature that most product ciphers were built on
Feistel networks, so theoretical papers concerning Feistel Networks were reviewed and
the results included in the survey. The theoretic work reported by Luby and Rackoff on
the analysis of the security of the DES round function led to the idea of a distinguisher.
The distinguisher was based on the concept in which the output of a cipher should be

“indistinguishable” from the output of a random function generator. The conditions

194

CHAPTER 6. CONCLUSIONS

under which a three round Feistel transformation performs is provably secure were
demonstrated by Luby and Rackoff.

Zheng et al.(1990) discussed practical implementation of a Luby and Rackoff con-
struction and also showed that a distinguisher can be constructed for a three round
Feistel transformation using the same function.

The work in this thesis is aimed to be a practical implementation of a Luby and
Rackoff construction but took note of Coppersmith’s results which showed that more
than four Feistel rounds were needed. The provable security aspects were not addressed
in this thesis which aimed at effective practical security. Investigation of the provable
security aspects is proposed for further work.

In the proposed method heterogeneous Feistel transformations account for the
largest part of the defined cipher space.

However, unbalanced Feistel and heterogeneous networks have not been reported
extensively in the literature. A plausible reason is that most standard product ci-
phers are based on balanced homogeneous Feistel transformations and there was no
motivation for such research.

The literature on cryptographic primitives provided:
e what classes of primitives are used in existing ciphers,
e the widespread of Feistel transformations in product ciphers,
e conditions on provable security in Feistel transformations, provided many lemmas
and conlcusions used to guide the tests.
Cryptanalysis

Following the review of cryptanalytic attacks, it became apparent from the litera-
ture that the practical security of the proposed cryptosystem could be defined as the
requirement to conceal plaintext information during a communications session. Con-

sequently, the properties of confusion and diffusion became of primary interest in the

CHAPTER 6. CONCLUSIONS

project. The evaluation techniques which were developed in this thesis followed the
tests for randomness found in the literature.

The literature on cryptanalysis provided:
e the idea of practical security,

e use of confusion and diffusion as measures of security.

Computer network security

Network security issues were not studied in depth. However, the common approaches
were described in order to identify the current trends in network security, and more
specifically in cipher negotiation.

The literature on computer network security provided:
e implementation considerations,

e information on use of multiple ciphers.

6.3.2 Analysis and definition of measures

The design objectives of the proposed cipher were constructed by close mapping from
the aims related to the cipher to the individual design objectives.

The proposed cryptosystem was outlined and described to provide a basis for the
representation of the cipher instances in the negotiation protocol. This representation
and description proved satisfactory for this purpose, since the implementation of the
negotiation was completed using only the content of the representation and description.

The analysis and definition of measures covered a number of issues. The calculation
of the total search space (secondary aim B.) demonstrated its non-polynomial nature
and proved to be a major advance over the search space of current ciphers. For example,
for a cipher with eight blocks, the search space was calculated to be equal to 10112

approximately.

196

CHAPTER 6. CONCLUSIONS

The key schedule provided a source of strong sub-keys suitable for use with a
variable-length product cipher. The algorithm used was based on a strong hash function
which provided a convenient balance between computational speed and cryptographic
strength. Although the key schedule is not part of the evaluation of the prototype, it
is recommended for a working system:.

The definition of the confusion and diffusion matrices provided an effective way to
measure confusion and diffusion. Furthermore, the theoretical proof on the multiplica-
tive property of the diffusion matrix verified Luby’s and Rackoff’s requirement for the
round function being a random permutation generator for a provably secure cipher.

The versions of confusion and diffusion described in the literature were structure
dependent and therefore unsuitable for the proposed cipher, which has a variable struc-
ture. The definitions of confusion and diffusion were therefore generalised to take ac-
count of the variable structure while remaining applicable to existing block ciphers.
These prove to be very effective measures, which confirmed theoretical results in the
literature and also proved to be internally consistent in predicting the confusion would
always be less than diffusion, which was confirmed by experiment.

There appears, to the writer of this thesis, to be a considerable amount of infor-
mation in the U matrices. Some methods were proposed to produce measures based
on information extracted from the matrices: the autocorrelation test, depth test and
diffusion distinguisher test were proposed, and while not providing a complete test of
cryptographic strength, gave a first indication of whether or not a proposed cipher
contained a sufficient number of rounds.

The confusion and diffusion values of an encryption step are stored in the CBP,
along with other values which are needed for the estimation of confusion and diffusion,

and are described below.

197

CHAPTER 6. CONCLUSIONS

6.3.3 Prototype

The prototype was constructed in the C programming language making use of publicly
available code for the various ciphers. The flexible pointer handling provided by C
allowed development of compact functions to implement any cipher instance in the
cipher space.

The prototype was able to generate all required results. The flexible construction of
the prototype would allow it to be easily adapted to further development, by allowing

more tests and encryption steps to be embedded.

6.4 Tests

There were two series of tests in this thesis. The first series were tests on the encryption
steps, in order to update their CBP fields. The second series were on cipher instances:
confusion, diffusion and marginal diffusion were measured and recorded, and the results
were used in the regression analysis, which determined parameters influencing confusion
and diffusion, and stored them in the CBP.

The concept of the Cryptographic Block Profile, CBP, was introduced in order
to summarise parameters of the encryption steps which were derived from long-run
tests. These parameters are used in the evaluation function which was included in the
algorithm negotiation protocol. Consequently the purpose of the CBP was to make
on-line evaluation the cipher feasible in terms of soft time constraints (Aim 3.(a)).
It has been shown in this thesis that the confusion is always less than the diffusion
of a cipher. So to test the strength of a cipher it is sufficient to test the confusion.
The cipher can be considered secure when the confusion reaches its maximum. More
accurate information could be obtained if the diffusion is also calculated, but the CBP
should be kept small, so the use of the diffusion matrix is optional.

The use of regression analysis on the experimental results provided evidence that

indeed the confusion increases with cryptographic composition and the parameters

198

CHAPTER 6. CONCLUSIONS

which influence this increment were identified. The results from the regression form the
estimation equations for the confusion which were embedded in the on-line evaluation
process. The regression analysis provided fits to experimental data which showed a
high level of correlation (in excess of 90%). Hypothesis testing further supported the
quality of the fit which gives high level of confidence of the estimation equations created
for the on-line evaluation. Hypothesis testing on the estimation equations confirmed
their high predictive power.

The limitation of this method is that the approximation function can be applied
only to Feistel-type encryption steps.

The definition of the marginal diffusion was useful in the approximation of confu-
sion and its use as a parameter increased the coefficient of determination (R) of the
regression. It should be also noted that calculation of marginal diffusion is not time
consuming: since the variance is small (exp(—5)), only a small number of trials are
needed.

The graphical representation of the confusion and diffusion matrices was an alter-
native way to qualitatively determine how close a round function is to a pseudorandom
permutation generator and identify any linear relations or biases between input and
output bits.

The graphical representations proved very helpful by highlighting weaknesses which
suggested areas for formal investigation.

The diffusion distinguisher relates theoretical (expected) with actual results on den-
sity of zeroes in the product of two matrices, and tests showed that it could successfully
distinguish a cipher with a small number of rounds from a random permutation gen-
erator. The success of the diffusion distinguisher in distinguishing a cipher from a
random permutation generator, depended on the number of rounds and was different
for different ciphers. It is conjectured in this thesis that by dividing a ¥ matrix into
smaller segments the distinguisher would improve its ability to distinguish. This is

supported by preliminary testing in which the distinguisher was more effective when

199

CHAPTER 6. CONCLUSIONS

the matrix was segmented into four quadrants.

Finally, a simple security protocol was used to demonstrate the effectiveness of the
on-line evaluation of the cipher instances (Aim 3.(b)). Features such as time-stamps,
certificates, participation of a trusted third party, etc. were not included. In real

applications they would be added to the security protocol described in this thesis.

6.5 Recommendations for future research

These recommendations are set out in the order of importance, with the most important
first.

The work described in this thesis excluded differential and linear cryptanalysis. It
is proposed that further work should investigate these aspects. Fields in the CBP could
be added to include characteristics related to differential and linear cryptanalysis. For
example, a field in the CBP could hold the value of the best differential characteris-
tic so that in the product encryption of any of the encryption steps, the differential
characteristic would be the product the respective characteristics and the resistance
of the product cipher to differential cryptanalysis could be obtained. The relations of
differential characteristics in product ciphers in terms of the encryption blocks have
been established in the literature (Chapter 3). The introduction of resistance to these
attacks would be a major issue in this work, since the cryptosystem would then be

resistant to a chosen ciphertext attaclk, which is considered as the strongest attack.

This thesis has developed a relationship between the diffusion matrix of a prod-
uct cipher and the diffusion matrices of the encryption steps. The relation between
the confusion matrix of a product cipher and the confusion matrices of the underlying
encryption blocks could be investigated. This may result in finding a more accurate
function for the confusion to replace the estimating equations derived from linear re-

gression.

200

CHAPTER 6. CONCLUSIONS

The determination of the set of encryption steps to be used in the cryptosystem
is an important issue. The set used by this thesis is not necessarily the best. The
encryption steps were selected to fit the specific research purposes, which were mainly

to model parameters rather than to find the best combination of encryption steps.

Another limitation of the proposed method is that the complexity could be arbi-
trarily high, and there may be a composition where the strength of the cipher may
decrease. This is possible if the cipher space forms a group under the cryptographic
composition of the steps, or if the composition of certain steps may be the decryption
of another step (or composition of steps), without necessarily forming a group. Find-
ing such instances may be a difficult problem, similar to finding collisions in one-way
functions. Therefore the cryptosystem needs to be extensively analysed. However this
is a difficult task and if the design objectives are updated to prohibit such relations, it
is suggested that the encryption steps should be designed with systematic methods to

avoid such occurrences.

Despite the possibility of the composed cipher being arbitrarily large, 1t is possible
that not all permutation mappings from plaintext to ciphertext could be generated.
The proposed cryptosystem could be modified to include encryption steps which gen-
erate the missing mappings (alternating group). It has been shown in the literature

that Feistel networks can generate this group.

The diffusion and confusion matrices as well as the ¥ matrices, contain useful in-
formation concerning both the topology and the round function of the cipher. Further
tests, other than the depth and the diffusion distinguisher test described in this thesis,

could be investigated.

Furthermore, tests on the cryptographic primitives making up the encryption steps

201

CHAPTER 6. CONCLUSIONS

could also be integrated in the testsuite environment. Currently testsuite includes
tests which are applied to the encryption steps which are treated as transformation
blocks, rather than tests on the underlying primitive. For example, the environment

could include tests for S-box resistance to differential and linear cryptanalysis.

Provable security provides information which is generally useful in the long run
and guides the design of ciphers. Although the proposed cryptosystem is not provably
secure, it is possible to convert it by changing the cryptographic algorithm generator
to allow only instances which were provable secure. The proposed structure by Ander-
son and Biham (1996b) for example, specified a three round cipher by using a keyed
hash function and a stream cipher. If the encryption steps consist of stream ciphers
and hash functions, and a combination rule of TYPE:hash-TYPE:stream-TYPE:hash is

used, then every instance would be a provably secure cipher.

A protocol specification based on the IPSec specifications could be developed. Since
the IPSec suite is the current internetworking standard, the efficiency of the proposed

method would increase once integrated in the IP infrastructure.

6.6 Conclusion

Overall the research has achieved its aims, providing a method for product cipher ne-
gotiation using on-line evaluation for private communications over computer networks.
The use of a variable cipher space generates a large total space to enhance security. The
need for on-line validation of proposed cipher structures arises because it 1s infeasible
to evaluate cryptographic strength over all instances in a time acceptable to on-line
negotiation.

In this work measures of confusion and diffusion are used to evaluate cryptographic
strength. In order to provide fast on-line evaluation, estimation equations for confusion

based on parameters of the encryption steps, are generated for experimental testing

202

CHAPTER 6. CONCLUSIONS

of some composed ciphers. These estimating equations allow fast evaluation of any
proposed cipher.

The measures for the cryptographic strength proposed in this thesis agreed with
theoretical results in the literature. This increased the reliability of the definitions and
more particularly of the confusion and diffusion. However, as in all issues related to
cryptographic strength, the proposed methods should be exposed to public scrutiny,
to establish their real value.

The definition of the confusion and diffusion matrix were used to calculated the
measures of confusion, diffusion and marginal diffusion also proposed in this thesis.
The theoretic proof of the multiplicative property of the diffusion matrix and the
modelling of the confusion were also performed in this thesis.

Furthermore, two new tests were described - the depth test and the diffusion dis-
tinguisher - which, although not part of the aims of this thesis, may encourage further
research.

Finally, the introduction of the CBP, combined with successful application of re-
gression analysis techniques made fast evaluation feasible.

It has been shown that it is feasible to produce fast on-line evaluation from a sound

basis and to incorporate this in a working protocol.

203

References

Adams, C. & Tavares, S. (1990). “The Structured Design of Cryptographically Good
S-Boxes”, Journal of Cryptology 3(1): 27-41.

Aiello, W. & Venkatesan, R. (1996). “Benes: A Non-Reversible Alternative to Feistel”,
EUROCRYPT 96, Vol. LNCS 1070 of Advances in Cryptology, Springer-Verlag,
Espoo, Finland, May 31 - June 4, pp. 307-320.

Andelman, D. & Reeds, J. (1982). “On the Cryptanalysis, of Rotor Machines and
Substitution-Permutation Networks”, IEEE Trans. Inf. Theory IT 28(4): 578-
584.

Anderson, R. (1995a). “The Classification of Hash Functions”, Cryptography and coding
IV, Springer-Verlag, pp. 83-93.

Anderson, R. (1995b). “Searching for the Optimum Correlation Attack”, K. U. Leuven
Workshop on Cryptographic Algorithms, Springer-Verlag.

Anderson, R. & Biham, E. (1996a). “Tiger: A Fast New Hash Function”,
http://www.cl.cam.ac.uk/users/rjal4/.

Anderson, R. & Biham, E. (1996b). “Two Practical and Provably Secure Block Ciphers:
Bear and LION”. Fast Software Encryption, Vol. LNCS 1039, Springer-Verlag,
pp. 113-120.

Aronsson, H. (1995). “Zero Knowledge Protocols and Small Systems”, http://www.

niksula.cs.hut.fi/haa/study/zeroknowledge.html.
Atkinson, R. (1995a). “Security Architecture for the Internet Protocol”, RFC1825.

Atkinson, R. (1995b). “IP Authentication Header”, RFC1826.

204

REFERENCES

Atkinson, R. (1995¢). “IP Encapsulating Security Payload (ESP)”, RFC1827.

Baritaud, T., Gilbert, H., Girault, M. (1993). “FFT Hashing is not Collision-Free”,
EUROCRYPT 92, Vol. LNCS 658 of Advances in Cryptology, Springer-Verlag,
Balatonfured, Hungary,May 24-28.

Bauer, F. (1997). Decrypted Secrets: Methods and Maxims of Cryptology, Springer-
Verlag.

Beker, H. & Piper, F. (1982). Cipher Systems: The Protection of Communications,
Northwood.

Bell, D. & LaPadula, E. (1974). “Secure Computer Systems: Mathematical Founda-
tions and Model”, MITRE corp.

Bellovin, S. (1996). “Problem Areas for the IP Security Protocols”, Proc, of the 6th
USENIX Security Symposium, USENIX assoc., pp. 205-214.

Benaloh, J. (1987). “Secret Sharing Homomorphisms: Keeping Shares of a Secret”,
CRYPTO 86, Vol. LNCS 263 of Advances in Cryptology, Springer-Verlag, pp. 213-
222.

Berlekamp, E. (1984). Algebraic Coding Theory, Aegean Park Press.

Beth, T. & Piper, F. (1984). “The Stop-and-Go Generator”, EFEUROCRYPT 84, Vol.
LNCS 209, Springer-Verlag, Paris, France, April 9-11, pp. 88-92.

Biham, E. (1993). “On Modes of Operation”, Fast Software Encryption, Vol. LNCS
809, Springer-Verlag, Cambridge, U.K., December 9-11.

Biham, E. (1994). “Cryptanalysis of Multiple Modes of Operation”, ASIACRYPT 94,
Vol. LNCS 917, Springer-Verlag, Wollongong, Australia, November 28 - December
1.

Biham, E. (1995). “On Matsui’s Linear Cryptanalysis”, EUROCRYPT 94, Vol. LNCS
950, Springer-Verlag, Paris, France, April 9-11, pp. 398-412.

Biham, E. (1996). “Cryptanalysis of Triple-Modes of Operation”, Technical Report
50885, Technion Israel Institute of Technology.

205

REFERENCES

Bilam, E. & Shamir, A. (1991). “Differential Cryptanalysis of DES-like Cryptosys-
tems”, CRYPTO 90, Vol. LNCS 537 of Advances in Cryptology, Springer-Verlag,
Santa Barbara, California, USA, August 11-15, pp. 2-21.

Biham, E. & Shamir, A. (1992). “Differential Cryptanalysis of Snefru, Khafre, REDOC-
11, LOKI and LUCIFER”, CRYPTO 91, Vol. LNCS 576 of Advances in Cryptology,

Springer-Verlag, Santa Barbara, California, USA, August 11-15, pp. 156-171.

Biham, E. & Shamir, A. (1993a). Differential Cryptanalysis of the Data Encryption
Standard, Springer-Verlag.

Biham, B. & Shamir, A. (1993b). “Differential Cryptanalysis of the Full 16-round
DES”, CRYPTO 92, Vol. LNCS 740 of Advances in Cryptology, Springer-Verlag,
Santa Barbara, California, USA, August 16-20, pp. 487-511.

Biham, E. & Shamir, A. (1997). “Differential Fault Analysis of Secret Key Cryptosys-
tems”, CRYPTO 97, Vol. LNCS 1294 of Advances in Cryptology, Springer-Verlag,
Santa Barbara, California, USA, August 17-21, pp. 513-525.

Bird, R., Gopal, L., Herzberg, A., Janson, P., Kutten 5., Molva, R., Yung, M. (1995).
“The KryptoKnight Family of Light-Weight Protocols for Authentication and Key
Distribution”, IEEE/ACM Transactions on Networking 3(1): 31-41.

Bishop, M. (1992). “Security Analyses of Network Time Services”, ftp://ftp.funet.fi
/pub/unix/security /docs/papers/nts-security.ps.gz.

Blakeley, G. (1979). “Safeguarding Cryptographic Keys”, Proc. of the National
Computer Conference, American Federation of Information Processing Societies,
pp. 242-268.

Blum, M. & Micali S. (1984). “How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits”, SIAM J. on Computing 13: 850-64.

Boneh, D., Demilio, R., Lipton, R. (1997). “On the Importance of Checking Crypto-
graphic Protocols for Faults”, EUROCRYPT 97, Vol. LNCS 1233 of Advances in

Cryptology, Springer-Verlag, Konstanz, Germany, May 11-15, pp. 37-51.

Brands, S. (1994). “Untraceable Off-Line Cash in Wallet with Observers”, CRYPTO

206

REFERENCES

93, Vol. LNCS 773 of Advances in Cryptology, Springer-Verlag, Santa Barbara,
California, USA, August 16-20, pp. 302-318.

Brassard, G. (1979). “A Note on the Complexity of Cryptography”, IEEE Trans. on
Information Theory IT-25(2): 232-33.

Brickell, E. & Stinson, D. (1990). “The Detection of Cheaters in Threshold Schemes”,
CRYPTO 88, Vol. LNCS 403 of Advances in Cryptology, Springer-Verlag, Santa
Barbara, California, USA, August 21-25, pp. 564-577.

Brickell, E., Denning, D., Kent, S., Maher, D., Tuchman, W. (1993). “The SKIP-
JACK Algorithm”, http://www.alw.nih.gov/Security /FIRST /papers/crypto
/skipjack.txt.

Brown, L., Pieprzyk, J., Seberry, J. (1990). “LOKI: A Cryptographic Primitive for Au-
thentication and Secrecy Applications”, AUSCRYPT 90, Advances in Cryptology,
Springer-Verlag, pp. 229-236.

Campbell, K. & Wiener, M. (1993). “DES is not a Group”, CRYPTO 92, Vol. LNCS
740 of Advances in Cryptology, Springer-Verlag, Santa Barbara, California, USA,
August 16-20, pp. 512-520.

Carlet, C. (1993). “Partially-Bent Functions”, CRYPTO 92, Vol. LNCS 740 of Ad-
vances in Cryptology, Springer-Verlag, Santa Barbara, California, USA, August
16-20, pp. 280-91.

Chatterjee S. & Price, B. (1977). Regression Analysis by FEzample, Wiley.

Chaum, D. & Evertse, J. (1986). “Cryptanalysis of DES with a Reduced Number of
Rounds; Sequences of Linear Factors in Block Ciphers”, CRYPTO 85, Vol. LNCS
918 of Advances in Cryptology, Santa Barbara, California, USA, August 18-22,
pp. 192-211.

Cheng, P, Garay, J., Herzberg, A., Krawczyk, H. (1995). “Design and Implementation
of Modular Key Management Protocol and IP Secure Tunnel on AIX.”, Proc. 5th
USENIX UNIX Security Symposium, Salt Lake City, Utah.

Chikazawa, T. & Inove, T. (1990). “A New Key Sharing System for Global Telecom-
munications”, GLOBECOM °90, IEEE Global Telecommunications Conference,

207

REFERENCES

pp. 1069-72.

Cooke, C. (1995). “Cryptographic Techniques for Personal Communication Systems
Security”, PhD thesis, Aston University.

Coppersmith, D. (1994). “The Data Encryption Standard and its Strength Against
Asttacks”, IBM Journal of Research and Development 38(3): 243-250.

Coppersmith, D. (1996). “Luby-Rackoff: Four Rounds is not Enough”, IBM Research
Report, RC 20674.

Cusick, T. & Wood, M. (1991). “The REDOC II Cryptosystem”, CRYPTO 90, Vol.
LNCS 537 of Advances in Cryptology, Springer-Verlag, Santa Barbara, California,
USA, August 11-15, pp. 545-563.

Daemen, J., Govaerts, R., Vandewalle, J. (1994). “Weak Keys for IDEA”, CRYPTO
93, Vol. LNCS 773 of Advances in Cryptology, Springer-Verlag, Santa Barbara,
California, USA, August 16-20, pp. 224-230.

Dai, Z & Yang, J. (1991). “Linear Complexity of Periodically Repeated Random Se-
quences”, EUROCRYPT 91, Vol. LNCS 547 of Advances in Cryptology, Springer-
Verlag, Brighton, UK, April 8-11, pp. 168-175.

Damgard., I. & Knudsen, L. (1994). “The Breaking of the AR Hash Function”, EURO-
CRYPT 93, Vol. LNCS 765 of Advances in Cryptology, Springer-Verlag, Lofthus,
Norway, May 23-27, pp. 286-292.

Damgard., I. & Knudsen, L. (1996). “Multiple Encryption with Minimum Key”, Vol.
LNCS 1029, Springer-Verlag, pp. 156-164.

Davies, D. & Price, W. (1984). Security for Computer Networks, Wiley.

Davis, D. & Swick, R. (1990). “Network Security via Private-Key Certificates”, MIT
Project Athena.

den Boer, B. (1988). “Cryptanalysis of FEAL”, EUROCRYPT 88, Advances in Cryp-

tology, Springer-Verlag, pp. 293-300.

den Boer, B. & Bosselaers, A. (1994). “Collisions for the Compression Function of

208

REFERENCES
MD5”, FEUROCRYPT 98, Vol. LNCS 765 of Advances in Cryptology, Springer-
Verlag, Lofthus, Norway, May 23-27, pp. 293-304.

Desmedt, Y. (1991). “The *A’ Cipher Does Not Necessarily Strengthen Security”, Cryp-
tologia 15(3): 203-6.

Desmeds, Y. & Frankel, Y. (1990). “Threshold Cryptosystems”, CRYPTO 89, Vol.
LNCS 435 of Advances in Cryptography, Springer-Verlag, Santa Barbara, Califor-
nia, USA, August 20-24, pp. 307-315.

Desmedt, Y. & Frankel, Y. (1992). “Shared Generation of Authentication and Sig-
natures”, CRYPTO 91, Vol. LNCS 576 of Advances in Cryptography, Springer-
Verlag, Santa Barbara, California, USA, August 11-15, pp. 457-469.

Devargas, M. (1993). “Network Security, NCC Blackwell.

Diffie, W. & Hellman, M. (1976). “New Directions in Cryptography”, IEEE Trans. Inf.
theory IT-22(6): 644-654.

Diffie, W., Van Oorschot, Wiener, M. (1992). “Authentication and Authenticated Key
Exchanges”, Designs, Codes and Cryptography 2: 107-125.

DoD Computer Security Center (1985). “DoD Trusted Computer System Evaluation
Criteria”.

Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., Repka, L. (1998). “S/MIME
Version 2 Message Specification”, RFC2311.

Even, S. & Goldreich, O. (1985). “On the Power of Cascaded Ciphers”, ACM Trans.
on Computer Systems 3(2): 108-116.

Feige, U., Fiat, A., Shamir, A. (1987). “Zero-Knowledge Proofs of ldentity”, Proc. of
the 19th ACM Symposium on Theory of Computing, pp. 210-217.

Feistel, H. (1974). “Block Cipher Cryptographic System”, U.S. Patent #3,798,359.

Feistel, H., Notz, W., Smith, J. (1975). “Some Cryptographic Techniques for Machine-
to-Machine Data Communications”, Proc. of the IEEE 63(11): 1545-1554.

Freed, N. & Borenstein, N. (1996). “MIME Part 1: Format of Internet Message Bodies”,
RFC2045.

209

REFERENCES

Freirer, A., Karlton P., Kocher, P. (1996). “The SSL Protocol Version 3.0”, Internet
Draft.

Garey., M. & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman.

Garon, G. & Outerbridge, R. (1991). “DES Watch: An Examination of the Sufficiency
of the Data Encryption Standard for Financial Institution Information Security in
the 1990’s”, Cryptologia 15(3): 177-93.

Geffe, P. (1973). “How to Protect Data with Ciphers that are Really Hard to Break”,
FElectronics 46(1): 99-101.

Gilbert, H. & Chase, G. (1991). “A Statistical Attack on the FEAL-8 Cryptosystem”,
CRYPTO 90, Vol. LNCS 537 of Advances in Cryptology, Springer-Verlag, Santa

Barbara, California, USA, August 11-15, pp. 22-33.

Coldreich, O., Goldwasser, S., Micali, S. (1984). “How to Construct Random Func-
tions”, Proceedings of the 25th Annual Symposium on Foundations of Computer

Science.

Goldwasser, S.,Micali, S., Rivest, S. (1988). “A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attacks”, SIAM J. in Computing 17: 281-308.

Golomb, S. (1967). Shift register sequences, Holden-Day.

Good, J. (1957). “On the Serial Test for Random Sequences”, Ann. Math. Statistics
28: 262-264.

Greene, W. (1993). Econometric Analysis, Macmillan.

Gujarati, D. (1988). Basic Econometrics, McGraw-Hill.

Giinther, C. (1988). “Alternating Step Generators Controlled by De Bruijn Sequences”,

EUROCRYPT 87, Vol. LNCS 304 of Advances in Cryptology, Springer-Verlag,

pp. o-14.

Giinther, C. (1990). “An Identity-Based Key-Exchange Protocol”, EUROCRYPT 89,
Vol. LNCS 434 of Advances in Cryptology, pp. 29-37.

210

REFERENCES

Heys, H. & Tavares, S. (1996). “Substitution-Permutation Networks Resistant to Dif-

ferential and Linear Cryptanalysis”, Journal of Cryptology 9(1): 1-19.

Ingemasson, 1. & Simmons, G. (1991). “A Protocol to Set Up Shared Secret Schemes
without the Assistance of a Mutually Trusted Party”, EUROCRYPT 90, Vol.
LNCS 473 of Advances in Cryptology, Springer-Verlag, Aarhus, Denmark, May
21-24, pp. 266-282.

Toannidis, J. & Blaze, M. (1994). “The Architecture and Implementation of Network-
Layer Security Under Unix”, http://hightop.nrl.navy.mil /docs/ps_files/swipe.ps.

ISO N179 (1992). “AR Fingerprint Function”, draft, ISO-IEC/JTC1/SC27/WG2.

ISO/IEC 9796 (1991). “Information Technology- Security Techniques- Digital Signa-
ture Scheme Giving Message Recovery”.

Jansen, C. & Boekee, D. (1988). “Modes of Blockcipher Algorithms and their Protection
Against Active Eavesdropping”, EUROCRYPT 87, Vol. LNCS 304 of Advances in
Cryptology, Springer-Verlag, pp. 281-280.

Janson, P. & Tsudik, G. (1993). “Secure and Minimal Protocols for Authen-
ticated Key Distribution”, http://www.ccs.neu.edu/home/thigpen/docs /Secu-
rity_Papers/misc/protocols/braided.ps.

Jennings, S. (1980). “A Special Class of Binary Sequences”, PhD thesis, University of
London.

Johnson, D., Dolan, G., Kelly, M., Le, A., Matyas, S. (1991). “Common Cryptographic
Architecture Programming Interface”, IBM Systems Journal 30(2): 130-49.

Kahn, D. (1976). The Codebrakers, McMillan.

Kaliski, B. (1998). “personal communication”.

Katsavanos, P. & Varadharajan, V. (1993). “Security Protocol for Frame Relay”, Com-
puter Communication Review 23(5): 17-35.

Kaufman, C. (1993). “DASS: Distributed Authentication Security Service”, RFC1507.

Kille, S. (1991). Implementing X.400 and X.500: The PP and QUIPU Systems, Artech

House.

211

REFERENCES

Knudsen, L. (1994a). “Block Ciphers - Analysis, Designs, Applications”, PhD thesis,
Aarhus University.

Knudsen, L. (1994b). “Practically Secure Feistel Ciphers”, Fast Software Encryption
93, Vol. LNCS 809, Springer-Verlag, Cambridge, U.K., December 9-11, pp. 211~
221.

Knuth, D. (1981). The Art of Computer Programming, Vol. 2, Addison-Wesley.

Koblitz, N. (1987). A Course in Number Theory and Cryptography, Springer-Verlag.

Koyama, K. & Terada, R. (1993). “How to Strengthen DES-like Cryptosystems Against
Differential Cryptanalysis”, IEICE Trans. Fundamentals E76-A(1): 63-69.

Krawczyk, H. (1996). “SKEME: A Versatile Secure Key Exchange Mechanism for In-
ternet”, IEEE, Proceedings of the 1996 Symposium on Network and Distributed
Systems Security.

Kumar, B. & Crowcroft, J. (1993). “Integrating Security in Inter-Domain Routing
Protocols”, Computer Communication Review 23(5): 36-52.

Lai, X. (1992). On the Design and Security of Block Ciphers, Vol. 1 of ETH Series in
Information Processing, Konstanz: Hartung-Gorre Verlag.

Lai, X., & Massey, J. (1991). “A proposal for a New Block Encryption Standard”,
EUROCRYPT 90, Vol. LNCS 473 of Advances in Cryptology, Springer-Verlag,
Aarhus, Denmark, May 21-24, pp. 389-404.

Lai, X., Massey, J., Murphy S. (1991). “Markov Ciphers and Differential Cryptanaly-
sis”, EUROCRYPT 91, Vol. LNCS 547 of Advances in Cryptology, Springer-Verlag,
Brighton, UK, April 8-11, pp. 17-38.

Luby, M. & Rackoff, C. (1986). “Pseudo-random Permutation Generators and Cryp-

tographic Composition”, Proc. 18th Annual Symposium on Theory of Computing,

pp. 356-63.

Luby, M. & Rackoff, C. (1988). “How to Construct Pseudorandom Permutations from
Pseudorandom Functions”, SIAM J. Computing 17(2): 373-86.

212

REFERENCES

Martin, K. (1993). “Untrustworthy Participants in Perfect Secret Sharing Schemes”,
in M. Ganley (ed.), Cryptography and Coding III, Clarendon Press, pp. 255-264.

Matsui, M. (1994). “Linear Cryptanalysis Method for DES Cipher”, EUROCRYPT
93, Vol. LNCS 765 of Advances in Cryptology, Springer-Verlag, Lofthus, Norway,
May 23-27, pp. 386-397.

Maugham, D., Patrick, B., Schertler M. (1995). “Internet Security Association &
Key Management Protocol (ISAKMP)”, Internet-daft @nic.nordu.net, draft-nsa-
isakmp-00.ps.

Maurer, U. (1993). “A Simplified and Generalized Treatment of Luby-Rackoft Pseudo-
random Permutation Generators”, EUROCRYPT 92, Vol. LNCS 658 of Advances
in Cryptology, Springer-Verlag, Balatonfiired, Hungary,May 24-28, pp. 239-255.

Meier, W. (1994). “On the Security of the IDEA Block Cipher”, EUROCRYPT 93,
Vol. LNCS 765 of Advances in Cryptology, Springer-Verlag, Lofthus, Norway, May
93-97, pp. 371-385.

Menezes, A. (1993). Elliptic Curve Public Key Cryptosystems, Kluwer.

Merkle, R. (1979). “Secrecy, Authentication, and Public Key Systems”, PhD thesis,
Stanford University.

Merkle, R. (1990). “A Fast Software One-Way Hash Function”, J. of Cryptology
3(1): 43-58.

Meyer, C. & Matyas, M. (1982). Cryptography: A New Dimension In Computer Data
Security, Willey.

Meyer, C. & Schilling, M. (1988). “Secure Program Load with Manipulation Detection
Code”, SECURICOM 88, pp. 111-130.

Mills, D. (1992). “Network Time Protocol (Version 3)- Specifications, Implementation
and Analysis”, RFC1305.

Mirhakkak, M. (1993). “A Distributed System Security Architecture: Applying the
Transprot Layer Security Protocol”, Computer Communication Review 23(5): 6-

16.

213

REFERENCES

Mund, S., Gollman, D., Beth, T. (1988). “Some Remarks on the Cross Correlation
Analysis of Pseudorandom Generators”, EUROCRYPT 87, Vol. LNCS 304 of Ad-
vances in Cryptology, Springer-Verlag, pp. 25-35.

Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M. (1992). “Perfect Zero-Knowledge
Arguments for NP Can Be Based on General Complexity Assumptions”,
ftp:/ /ftp.icsi. Berkeley.edu/pub/techreports/1992/tr-92-082.ps.Z.

National Institute of Standards & Technology (1992). “Proposed Federal Informa-
tion Processing Standard for Secure Hash Standard (DSS)”, Federal Register
57(21): 29-40.

Needham, R. (1994). “Denial of Service: An Example”, Communications of the ACM
37(11): 42-46.

O’Connor (1994a). “An Analysis of a Class of Algorithms for S-box Construction”, J.
of Cryptology 7(3): 133-152.

O’Connor (1994b). “On the Distribution of Characteristics in Bijective Mappings”,
EUROCRYPT 93, Vol. LNCS 765 of Advances in Cryptology, Springer-Verlag,
Lofthus, Norway, May 23-27, pp. 360-70.

O’Higgins, B. & Schnider, S. (1990). “Securing Information in X.25 Networks”,
GLOBECOM 90, IEEE Global Telecommunications Conference, pp. 1073-8.
Okamoto, T. (1993). “Provably Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes”, CRYPTO 92, Vol. LNCS 740 of Advances in Cryp-
tology, Springer-Verlag, Santa Barbara, California, USA, August 16-20, pp. “1-15

to 1-257.

Ostrovsky, R. & Wigderson, A. (1993). “One-Way Functions are Essential for Non-
Trivial Zero Knowledge”, Proc. of the 2nd Israel Symposium on Theory of Com-
puting and Systems (1STCS93).

Pfieeger, C. (1989). Security in Computing, Prentice.

Pieprzyk, J. (1991). “How to construct Pseudorandom Permutations, from Single Pseu-
dorandom Functions”, EUROCRYPT 90, Vol. LNCS 473 of Advances in Cryptol-
ogy, Springer-Verlag, Aarhus, Denmark, May 21-24, pp. 140-150.

214

REFERENCES

Pieprzyk, J. (1996). “Cryptographic Algorithms: Properties, Design and Analysis”,
Invited lecture PRAGOCRYPT 96.

Piper, F. (1998). “Personal communication”.

Postel, J. & Reynolds, J. (1985). “File Transfer Protocol”, RFC959.

Rabin, M. (1979). “Digitalised Signatures and Public-Key Functions as Intractable as
Factorisation”, “Laboratory of Computer Science, MIT, MIT/LCS/TR-212”.
RACE, Research and Development in Advanced Communication Technologies in Eu-
rope (1992). “RIPE Integrity Primitives: Final Report of RACE Integrity Primi-

tives Evaluation”, R1040.

Rivest, R. (1991). “The MD4 Message Digest Algorithm”, CRYPTO 90, Vol. LNCS
537 of Advances in Cryptology, Springer-Verlag, Santa Barbara, California, USA,
August 11-15, pp. 303-311.

Rivest, R. (1992a). “The MD4 Message Digest Algorithm”, RFC1320.

Rivest, R. (1992b). “The MD5 Message Digest Algorithm”, RFC1321.

Rivest, R. (1994). “The RC5 Encryption Algorithm”, Fast Software Encryption, Vol.
LNCS 1008, Springer, pp. 86-96.

Rivest, R., Shamir, A., Adleman, M. (1978). “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems”, Communications of the ACM 21(2): 120~
126.

RSA Laboratories (1993). “PKCS #T7: Cryptographic Message Syntax Standard”,
Technical note 003-903022-150-000-000.

Rueppel, R. (1988). “When Shift Registers Clock Themselves”, EUROCRYPT 87, Vol.
LNCS 304 of Advances in Cryptology, Springer-Verlag, pp. 53-64.

Schneier, B. (1995). E-Mail Security, Wiley.

Schneier, B. (1996). Applied Cryptography, 2nd edn, Wiley.

Schneier, B. & Kelsey, J. (1996). “Unbalanced Feistel Networks and Block Cipher De-

sign”, Fast Software Encryption, Third International Workshop, Springer-Verlag,
pp. 121-144.

215

REFERENCES

Schnorr, C. (1991). “Method for Identifying Subscribers and for Generating and Veri-
fying Electronic Signatures In A Data Exchange System”, US PAT No.4,995,082.

Scott, R. (1985). “Wide Open Encryption Design Offers Flexible Implementations”,
Cryptologia 9(1): 75-90.

Seberry, J., Zhang, X., Zheng, Y. (1995). “Pitfalls in Designing Substitution Boxes”,
CRYPTO 9/4,, Vol. LNCS 839 of Advances in Cryptology, Springer-Verlag, Santa
Barbara, California, USA, August 21-25, pp. 383-396.

Seigenthaler, T. (1986). “Cryptanalysts Representation of Non-linearly Filtered ML-
Sequences”, EROCRYPT 85, Advances in Cryptology, Springer-Verlag, pp. 103-
110.

Shamir, A. (1979). “How to Share a Secret”, Communications of the ACM 24(11): 612~
613.

Shannon, C. (1949). “Communication Theory of Secrecy Systems”, Bell System Tech-
nical Journal, 28: 656-715.

Shimizu, A. & Miyaguchi, S.Z (1988). “Fast Data Encipherment Algorithm, FEAL”,
EUROCRYPT 87, Vol. LNCS 304 of Advances in Cryptology, Springer-Verlag,
pp. 267-278.

Tardy-Corfdir, A. & Gilber, H. (1992). “A Known Plaintext Attack of FEAL-4 and
FEAL-6", CRYPTO 91, Vol. LNCS 576 of Advances in Cryptology, Springer-
Verlag, Santa Barbara, California, USA, August 11-15, pp. 172-182.

Theil, H. (1971). “Principles of Economelrics”, Wiley.

Tsudik, G. (1992). “Message Authentication with One-Way Hash Functions”, Com-
puter Communication Review 22(5): 29-38.

Vaudenay, S. (1992). “FFT-Hash-II Is Not Yet Collision-Free”, ftp://ftp.ens.fr/pub/
reports/liens/liens-92-17.A4.ps.

Vaudenay, S. (1996). “Hidden Collisions on DSS”, ftp://ftp.ens.fr/pub/reports/
liens/liens-96-9.A4.ps.Z.

216

REFERENCES

Wagner, D. & Schneier, B. (1996). “Analysis of the SSL 3.0 Protocol”, 2nd USENIX
Workshop on FElectronics Commerce, USENIX Press, pp. 29-40.

Webster, A. & Tavares, S. (1986). “On the Design of S-Boxes”, CRYPTO &5, Vol.

LNCS 403 of Advances in Cryptology, Springer-Verlag, Santa Barbara, California,
USA, August 21-25, pp. 523-534.

Winfield, G. & Wolman, A. (1993). “X Through the Firewall and Other Ap-

plication Relays”, http://www.ccs.neu.edu/home/thigpen/docs/Security _Papers

/treese/93.10.ps.

Zheng, Y., Matsumoto, T., Imai, H. (1990). “On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses”, CRYPTO 89,
Vol. LNCS 435 of Advances in Cryptology, Springer-Verlag, Santa Barbara, Cali-
fornia, USA, August 20-24, pp. 461-480.

Zheng,Y., Pieprzyk, J, Seberry, J. (1993). “HAVAL- A One-Way Hashing Algorithm
with Variable Length of Output”, AUSCRYPT 92, Advances in Cryptology,
Springer-Verlag, pp. 83-104.

217

Part 1V

Appendices

218

Matrix mult

of two square matrices A and B wi
aSsumed t‘hat\ the z,erjos in the two’ ~matrice,

‘\ = P(azk —— 0) — #(ZGI'OS Hl)
Similarly, for B:

k=1

(Do + D0 — PaPb)"

Summary of

. Table B_.\lz The \p\\ro,duéfty of,lo\ne-round DES enc v

rounds

’ Appeﬂdlx

. total | mgygin'al
diffusion

1

© 0 1 O Ol = W D

I R s e
Y UU R N O

0.0625
0.3206
0.7349 | 0.1760
0.9690 | 0.23

ME IR N L e O

APPENDIX B. |

» No of
rounds

total
diffusion

marglnal
dxffusmn

1

OO0 =3O Ul QO IND

02656 |
0.7578 |

1
i

1

1

1

0.0624 | 1. e
,‘0.17875:‘ 5

Table B.4: The product of the Fe1stel #2 encryptlon Steps “

No. of
rounds

tQtal
diffusion

margmal
diffusion

1

o~ O Ut = W N

0.2656
0.7578
1

[N e

0.0623
01872 | 3.
10.2498 | 4.314
10.2505 | 4.8620
102502 | 4.
02501 | 4.7126e=° | 0.
0.2500 | 4.4618¢7° |

0.2501 | 4.8760e° |

222

APPENDIX B. SUMMARY O

Table B.6: The product of the source heavy 40:24 UFN encryption ste:p,s\\: 3

No. of
rounds

total
diffusion

marginal
diffusion

~variance

confusion

comp.

1

CO 3 O Ut i W N

0.2500

0.6191

0.9102
1

1
1
1
1

0.0586
0.1518
0.2262
0.2500

1.1486¢7°

12.8222¢° |

4.2726€75

0.2505 | 4.2

02495 |4

0.2498 | 5.2079¢

0.2337
0.6082
0.9053

| oosoo |-

No. of
rounds

total
diffusion

marginal:
diffusion

variance

Table B.7: The product of the LESR #1 encryptio

_confusion

O 00~ Oy UL s W b

—
(@]

0.0293
0.0430
0.0723
0.0820
0.0757
0.0801
0.0781
0.0713
0.0737
0.0723

OO DO OO OO oo

coococoocoo oo

0l

ol = o = o ol =«

16

n

comp. ‘

2

23

APPENDIX B. SUMMARY OF

Table B.8: The pro,duc% of the LES

No. of | total _marginal
rounds | diffusion | diffusion

1 0.1462 | 0.0¢
0.1890
0.1890
0.1899
0.1899
0.1899
0.1899
0.1904 1 ,
0.1892 | 7:337ed | 0.
0.1892 | 0.0424 | 7.9165¢®| 0.1

variance
23237

O 0~ O Uk W N

—
o

B.2 Heterogeneous product ciphers

Tables B.9 to B.11 refer to two round product ciphérs as shown in Figure B.1.

plaintext ——>| A B —— ciphertext

Figure B.1: A heterogeneous (A # B) two round product cipher.

Table B.9: Confusion of two round hétérégeﬁéohis pr :ﬁc»t é_i‘p‘her

Al & o
S &

DES 5415 2500 0831 .1662 2493 5407 2903 5424|
Feistel#t1 | .5415 2500 .3125 .2840 .2500 .7492 4988 .7336
Feistel#2 | .2500 .2500 2500 .4682 .7492 .2500 .3120 .2967
LFSR#1 | .0415 .2500 .4999 2499 4988 2492 .2482 .2337
LFSR#2 | .5228 .6611 .3124 .2484 3120 6608 4111 .7852
Blow L | .2466 .2500 .7461 .2463 .4643 2496 .3116 2951
Blow R | .5377 .7461 .2500 .3086 .2805 .2496 4949 7330
UFN 16:48 | 5750 .6859 .3120 .2797 .1870 .3116 .6856 8104
UFN 40:24 | 4159 .6243 .2941 .2337 .2966 .2939 .6236 .4797

Table B.12 summarises the confusion r/eéulting from two round heterogeneous prod-

uct ciphers with various values of confusion.

224

APPENDIX B. SUMMARY OF B

A o)
&
B
DES
Feistel#1 | .1353 {
Feistel#2 | .0626 .0628 .0626
LFSR#1 | .0105 .0625 .1241
LFSR#2 | .1305 .1658 .0781 .0619
Blow L 0615 .0628 .1863 .0624
Blow R | .1347 .1868 .0623 .0771
UFN 16:48 | .1442 .1710 .0781 .0699
UFN 40:24 | .1039 .1559 .0737 .0587

Alg &7
O & &

B
DES 0 0 -64
Feistel#1 0 0 -64
Feistel#2 | 64 64 O
LFSR#1 | 40 40 -24
LFSR#2 |-16 -16 -48
Blow L 64 64 O
Blow R 0 0 -64
UFN 16:48 | -16 -16 -48
UFN 40:24 | 8 8 -56

APPENDIX B. SUMMARY OF E

Table B.12: Confusion of two round heterogeneous balancedFelst Networks

A B

result

A

5

0.0370 0.0415
0.0370 - 0.2500
0.0370 0.2492
0.0415 0.0370
0.2500 0.0370
0.2492 0.0370
0.1249 0.0415
0.1249 0.2500
0.1249 0.2492
0.0415 0.1249
0.2500 0.1249
0.2492 0.1249
0.1012 0.0415
0.1012 0.2500
0.1012 0.1272
0.0415 0.1012

0.1575

0.5369
0.5318

0.2649

0.5369

0.5362
0.3778
0.6250
0.6212
0.4116
0.6249
0.6242
0.3439
0.6012
0.4809
0.3778

09500

0.2492
0.0415
0.0367
0.0367
0.0367
0.0415
0.2500
0.1012
0.0415
0.2492

01272
10.0415
0.2500
0.2500

ol 0
- 0.1012 | 0.
- 0.2500 | 0.5
0.0415
0.2492 | 0
0.2500 |

0.0415

0:0415

0.2500
0.1012
0.0367
0.0367
0.0367
0.2492
0.0415

B.3 Regression analysis

Table B.13: Ordinary Least Squares estimafion’ of the DES.

Probability
Function o' 5} R? a 0
v = ay’ | 1.01 0.37675 0.98583 0.290 0.000
Yy = aebyi-1 2.62 0.98756 0.82209 0.000 0.000
v = o+ Blogyr 1.0022 0.22471 0.99705 0.000 0.000
Yt—1
Y= —7 0.90405 -0.10593 0.99581 0.000 0.000
QY1 —
ea+ﬁy:—1
Yy = ————— -2.2721 11.2593 0.94863 0.005 0.000
1 + eatPye-

226

APPENDIX B. SUMMARY OF EX

Table B.14: Ordinary Least Squares estimation of Feistel #1.

Probability

Function « ¢ R2 / @ B
Yy = ayf_l 1.00 0.20293 0.95742 0.465 0.000
y, = aePv- 0.71 0.35509 0.89465 0.000 0.000
v, =a+ Blogy,.; 1.0040 0.17633 0.95742 0.000 0.000
Yt-1
Yy = P 0.88576 -0.11100 0.9865 0.000 0.000
e tByt-1
Y= T et A -0.62799 10.0118 0.89465 0.572 0.000

Table B.15: Ordinary Least Squares estimation of Feistel #2.

Probability
Function a Jéj R? a B
Yy = aytﬁwl 1.00 0.20293 0.95742 0.465 0.000
Y = aePyi-1 0.71 0.35509 0.89465 0.000 0.000
y, = a+ flogy;—r 1.0040 0.17633 0.95742 0.000 0.000
Yt—1
Yp = 0.88576 -0.11100 0.9865 0.000 0.000
aYi-1 —
6a+ﬁyz—1
Yy = —————— -0.62799 10.0118 0.89465 0.572 0.000
1+ eatByi—1

227

APPENDIX B. SUMMARY OF EXPE

Table B.16: Ordinary Least Squares estimation of Blow L,R.

Probability

Function a Jé] R? a B
Y = ayf_l 1.00 0.20568 0.96150 0.458 0.000
Yy = aePyi-1 0.70 0.35949 0.90098 0.000 0.000
y, = a+ Blogy,—; 1.0027 0.17826 0.96227 0.000 0.000
Ye—1
Y= ————— 0.88499 -0.11286 0.98964 0.000 0.000
ayi1 — B
ea+Byt-1
Y = ————— -1.9548 11.0766 0.98428 0.000 0.000
1 + ea+ﬁyz—1

Table B.17: Ordinary Least Squares estimation of UFN 16:48.

Probability
Function a R? o B
yo= oyl | 1.01 0.48524 0.98092 0.296 0.000
y, = aefy 0.43 0.87987 0.90150 0.000 0.000
y, = oo+ Blogy,-; 1.0060 0.34157 0.98442 0.000 0.000
Yi—1
Y= — 0.69684 -0.29989 0.99354 0.000 0.000
Qyi—1 —
e&+ﬂyt—1
Yy = —————— -4.0988 13.0041 0.94241 0.002 0.000
1+ eatByi—1

228

APPENDIX B. SUMMARY OF EXPE]

Table B.18: Ordinary Least Square‘sjés/’élmation of UFN 40:24.

Probability =~
Function a B R? a B .
s 1.00768 0.33245 0.97796 0.348 0.000
vy = Pt 0.56653 0.57997 0.90847 0.000 0.000

i = o+ Blogy,1 1.0050 0.26448 0.98718 0.000 0.000

Yi—1
Y = —————— 0.79991 -0.19635 0.99805 0.000 0.000
ayi—1 —
ea+[3yt—1
yt:w -3.4807 12.5682 0.95299 0.003 0.000

B.4 Diffusion matrices

0s Ig 0g 0g 0g 0Og 0g Osg
Ogs O0g Og 0g Os 0g Ig Og
Is 0g 0g 0g O0g O0g 0g Osg
Os 0g 0g Ig 0 0Og 0Og Og
Og O0g O0g 0g 0 Ig 0Og Og
Og 0g Og O Og 0g O Ig

1. permute #1. D =

2. vigenere. D =

[10000000]
11000000
11100000
11110000
11111000
11111100
11111110
(11111111}

where Ag(0.62) =

229

APPENDIX B. SUMMARY OF EXPERIMF

3. permute #2. D =

4. 1-round DES (Chapter 5).

i _032 Iso
5. Feistel #1. D =
e _I32 A32(1)—

6 Feistel #2. D — |"u2(l) Is2
132 032_
I24 02440

7. LFSR #1. D = A8x24(0-69) IS B8x32(0.31)
032 I32

110111110111011011010111]
111010101110101110101001
1111010111110101110101060
111110100111101001101010
111110000110110101110111§°
111111001011011010111011
011111101101101101011101
101111111110110110101110

where A8x24(0-69) -

11000100100011000000010110000001]
01100010010000101100001010000000
00110001001000010110000101000000
100110001001000000110000101000060
01001100110011000101100000010000
00100110011001100010110000001000
00010011001100110001011000000100
10001001000110010000101100000010

B8x32(0~31) =

I48 048 x16

8 LFSR #2. D =
A16(0.68) Bigxao(l) i

230

APPENDIX B. SUMMARY OF EXPERIM!I

1111110011111111]

1111101011111111
1111111111111111
0000000011111000
0000000011111000
0000000011111100
0000000011111110
0000000011111111
where A16(0.68) =11 40 0000011111111
1100000011111111
1110000011111111
1111000011111111
1111100011111111
1111110011111111
1111101011111111
1111111111111111]

9. Blow RandBlow L have the same diffusion matrices as Feistel #1 and Feistel #2
respectively.

04816 Iss
10. UFN 16:48. D =
L Aiexas(1)]

024 x40 I24

11. UFN 40:24. D =
Lo Asoxaa(1)

231

APPENDIX B. SUMMARY OF EXPERIMENT L RESULTS 7

B.5 Cryptographic Block Profiles

Table B.19: CBPs of the encryption steps

Name: || permute #1 | vigenere permute#2 | 1-round DES | Feistel #1
Type: || permutation | substitution | permutation | feistel feistel
Source(msb): || 0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 | 0x00000000
Source(Isb): || 0x00000000 | 0x00000000 | 0x00000000 | OxfHifHt OxfrHttt
Target(msb): || 0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 | 0x00000000
Target(Isb): | 0x00000000 | 0x00000000 | 0x00000000 | OxfHHif Ox It
Tot.diffusion: || 0.0156 0.0588 0.0156 0.0625 0.2656
Marg.diffusion: || 0.0 0.0054 0.0 0.0104 0.1876
Confusion: || 0.0 0.0219 0.0 0.0415 0.2499
Name: || Feistel #2 | LFSR #1 LEFSR #2 Blowfish L | Blowfish R
Type: || feistel other other feistel feistel
Source(msb): || OxfHifift 0x000000ff | 0x00000000 | OxfHHT 0x00000000
Source(lsb): || 0x00000000 | 0x00000000 | 0x0000fff | 0x00000000 OxfTT
Target(msb): || OxfHiff OxftHt00 Ox Ox Tt 0x00000000
Target(Isb): || 0x00000000 | OxfEffff 0xfFf0000 | 0x00000000 | OxfHiff
Tot.diffusion: || 0.2656 0.0293 0.0457 0.2656 0.2656
Marg.diffusion: || 0.0613 0.0 0.0061 0.0552 0.0645
Confusion: || 0.2499 0.0 0.1621 0.2492 0.2492
Name: || Des.IP Des.IP~! 2-round DES | UFN 16:48 | UFN 40:24
Type: || permutation | permutation | feistel feistel feistel
Source(msb): || 0x00000000 | 0x00000000 | 0x00000000 0x00000000 | 0x000000fF
Source(lsb): || 0x00000000 | 0x00000000 | OxfHfftt 0x0000fHFf | OxfIfEtitt
Target(msb): | 0x00000000 | 0x00000000 | 0x00000000 0x0000ffff | 0x00000000
Target(Isb): | 0x00000000 | 0x00000000 | OxfifHitE Ox It OxO0O0ftttf
Tot.diffusion: || 0.0156 0.0156 0.3206 0.0498 0.2500
Marg.diffusion: || 0.0 0.0 0.0671 0.0498 0.0530
Confusion: || 0.0 0.0 0.2905 0.1755 0.2336

232

APPENDIX B. SUMMARY OF EXPERIMI

B.6 Data used in the regfessijd’ﬁ analysis of hetero-
geneous product ciphers .

Table B.20: Data produced from compare_st(A, B) = 0.

o Co my Mo dy dsy C3 my,
0.2906 0.25 0.0728 0.0624 0.3206 0.2656 0.749 0.0104
0.749 0.2492 0.185 0.0623 0.7659 0.2656 0.7489 0.0104
0.5377 0.0415 0.1347 0.0104 1.0 0.0625 0.995 0.0623
0.995 0.2492 0.2465 0.0623 1.0 0.2656 0.9987 0.0104
0.995 0.25 0.2465 0.0624 1.0 0.2656 0.9987 0.0104
0.995 0.0415 0.2465 0.0104 1.0 0.0625 0.9986 0.0104
0.5415 0.0415 0.1353 0.0104 0.5547 0.0625 0.9999 0.0624
0.9999 0.2492 0.2514 0.0623 1.0 0.2656 0.9999 0.0624
0.9999 0.25 0.2514 0.0624 1.0 0.2656 0.9999 0.0624
0.7627 0.25 0.1915 0.0624 0.7734 0.2656 0.8935 0.0104
0.7627 0.0415 0.1915 0.0104 0.7734 0.0625 0.8718 0.0104
0.8689 0.0415 0.2128 0.0104 0.875 0.0625 0.9999 0.0624
0.8689 0.25 0.2128 0.0624 0.875 0.2656 0.9999 0.0624
0.5415 0.0415 0.1357 0.0104 0.5547 0.0625 0.749 0.0104
0.7643 0.0415 0.1871 0.0104 0.7734 0.0625 0.8745 0.0104
0.7643 0.25 0.1871 0.0624 0.7734 0.2656 0.8955 0.0104
0.2903 0.25 0.0727 0.0624 0.3086 0.2656 0.6664 0.0104
0.2903 0.0415 0.0727 0.0104 0.3086 0.0625 0.5197 0.0104

233

APPENDIX B. SUMMARY OF EXPERIMEN

Table B.21: Data produced from |compare_st(A, B)| = abs(8).

C1

Co

my

mao dy

da

C3

mfl

0.4159
0.4159
0.8534
0.9686
0.9686
0.6243
0.6243
0.9103
0.9731
0.9731
0.2906
0.7062
0.5415
0.9999
0.5415
0.749

0.5424
0.7616
0.7616
0.2903
0.5721
0.5721
0.7336
0.9009
0.916

0.0415
0.25

0.2337
0.0415
0.25

0.0415
0.25

0.2337
0.0415
0.25

0.2337
0.2337
0.2337
0.2337
0.2337
0.2337
0.2337
0.0415
0.25

0.2337
0.0415
0.25

0.2337
0.2337
0.2337

0.1039
0.1039
0.2125
0.2406
0.2406
0.1559
0.1559
0.2271
0.2458
0.2458
0.0728
0.176

0.1353
0.2512
0.1357
0.1864
0.1356
0.1912
0.1912
0.0727
0.1449
0.1449
0.184

0.2265
0.2314

0.0104 0.4316
0.0624 0.4316
0.0586 0.8613
0.0104 0.9727
0.0624 0.9727
0.0104 0.6348
0.0624 0.6348
0.0586 0.915

0.0104 0.9756
0.0624 0.9756
0.0586 0.3206
0.0586 0.7349
0.0586 0.5547
0.0586 1.0000
0.0586 0.5547
0.0586 0.7639
0.0586 0.5576
0.0104 0.7705
0.0624 0.7705
0.0586 0.3086
0.0104 0.584

0.0624 0.584

0.0586 0.7422
0.0586 0.9075
0.0586 0.9199

0.0625
0.2656
0.25
0.0625
0.2656
0.0625
0.2656
0.25
0.0625
0.2656
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.0625
0.2656
0.25
0.0625
0.2656
0.25
0.25
0.25

0.8534
0.8845
0.9686
0.9924
0.9924
0.9103
0.9368
0.9731
0.9933
0.9932
0.6341
0.8941
0.885

0.9999
0.7289
0.9051
0.7616
0.949

0.9521
0.5721
0.9009
0.916

0.9527
0.9847
0.9998

0.0586
0.0586
0.0104
0.0586
0.0586
0.0586
0.0586
0.0104
0.0586
0.0586
0.0104
0.0104
0.0624
0.0104
0.0104
0.0104
0.0104
0.0586
0.0586
0.0104
0.0586
0.0586
0.0624
0.0586
0.0586

234

APPENDIX B. SUMMARY OF EXPERIMENTAL RESULTS

Table B.22: Data produced from |compare_st(A, B)| = abs(16).

Cy

)

mh

mo

dy

da

C3

my

0.2337
0.6082
0.9053
0.9996
0.0415
0.25
0.1858
0.1858
0.1858
0.2492
0.2906
0.8674
0.575
0.7627
0.936
0.936
0.575
0.862
0.9998
0.9998
0.2903
0.8106
0.8106
0.6859
0.8689
0.9998
0.6859
0.7643
0.4988

0.2337
0.2337
0.2337
0.2337
0.1858
0.1858
0.0415
0.025
0.2492
0.1858
0.1858
0.25
0.0415
0.1858
0.0415
0.25
0.25
0.1858
0.0415
0.25
0.1858
0.0415
0.25
0.25
0.1858
0.0415
0.0415
0.1858
0.1858

0.0586
0.1518
0.2262
0.25
0.0104
0.0624
0.0462
0.0462
0.0462
0.0623
0.0728
0.229
0.1442
0.1915
0.2306
0.23
0.1442
0.2175
0.2431
0.2431
0.0727
0.1981
0.1981
0.171
0.2128
0.25
0.171
0.1871
0.1243

0.0586
0.0586
0.0586
0.0586
0.0462
0.0462
0.0104
0.0624
0.0623
0.0462
0.0462
0.0624
0.0104
0.0462
0.0104
0.0624
0.0624
0.0462
0.0104
0.0624
0.0462
0.0104
0.0624
0.0624
0.0462
0.0104
0.0104
0.0462
0.0462

0.025
0.6191
0.9102
1.0
0.0625
0.2656
0.2031
0.2031
0.2031
0.2656
0.3206
0.8831
0.5859
0.7734
0.9463
0.9463
0.5859
0.875
1.0
1.0
0.3047
0.832
0.832
0.6875
0.875
1.0
0.6875
0.7734
0.5078

0.25

0.25

0.25

0.25

0.2031
0.2031
0.0625
0.2656
0.2656
0.2031
0.2031
0.2656
0.0625
0.2031
0.0625
0.2656
0.2656
0.2031
0.0625
0.2656
0.2031
0.0625
0.2656
0.2656
0.2031
0.0625
0.0625
0.2031
0.2031

0.6082
0.9053
0.9996
0.9999
0.575

0.6859
0.2903
0.4988
0.4949
0.6856
0.8674
0.9952
0.7627
0.936

0.9936
0.9952
0.8626
0.9998
0.9998
0.9998
0.8106
0.9848
0.9875
0.8689
0.9998
0.9998
0.7643
0.9375
0.9254

0.0586
0.0586
0.0586
0.0586
0.0104
0.0624
0.0462
0.0462
0.0462
0.0623
0.0104
0.0462
0.0462
0.0104
0.0462
0.0462
0.0462
0.0624
0.0462
0.0462
0.0104
0.0462
0.0462
0.0462
0.0624
0.0462
0.0462
0.0104
0.0624

235

Appendix C

Description of the ABSEN'T

testsulte environment

C.1 The list of available commands

Once the testsuite is run, the user enters the ABSENT command mode, where the

prompt would be ABSENT>. By typing 7, a list of all available commands are displayed:

Welcome to ABSOLUTE ENCRYPTION test suite

Type 7 for help.

ABSENT>?
seed
random
define
edit

list
display
graph
show

key [bin]
encrypt
run

speed
test
ciphertext
plaintext
save

create an algorithm by giving a seed

create automatically a random algorithm
construct an algorithm manually

edit the current algorithm

list of cryptographic primitives

display the current algorithm

draw the current algorithm

demonstrate the transformation of a cryptographic primitive
display or change the key [in binary format]
encrypt a string

run encryption/decryption sequences

perform a time trial on the current algorithm
measure confusion/diffusion

encrypt a file

decrypt a file

save the current algorithm

236

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

load - load an algorithm

script - execute an ABSENT script (? script for help).
quit -~ quit ABSOLUTE ENCRYPTION

ABSENT> |

The commands could be divided into three categories, one for the construction of a
symmetric block cipher instance, one for testing, and a category for batch processing,
which is handled by a script interpreter.

C.2 Cipher development

list The list command display all available encryption steps usually named after
the cryptographic primitive and the feedback blocks:

ABSENT>1ist

Cryptographic primitives:
1.permute #1 2.vigenere
3.permute #2 4.1-round DES
5.Feistel #1 6.Feistel #2

7.LFSR #1 8 .LFSR #2

9.Blowfish L 10.Blowfish R
11.Des.IP 12.Des.IP"-1
13.2-round DES 14.UFN 16:48
15.UFN 40:24

Feedback blocks:

1.rotate left 2.rotate right
3.hash #1 4 .times mod 2732
5.plus mod 2732 6.permute #1
7.permute #2 8.inv. permute #1
9.vigenere 10.inv. vigenere
11.inv. permute?2 12.1-round DES
13.inv.1-round DES 14 .Feistel #1
15.inv. Feistel #1 16.Feistel #2
17.inv. Feistel #2 18.LFSR #1
19.LFSR #2 20.Blowfish L

21.Blowfish R

show The show command demonstrates a particular encryption step, using a pre-
selected key. It should be noted that when testsuite is initiated, the key by
default has the value abcdefgh:

237

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

ABSENT>show 1
Demonstrating cryptographic primitive permute #1
Input:abcdefgh

Key:abcdefgh
Output:cahdgebf

define The define command is used to construct the cipher by selecting the encryption
steps as the blocks of the product cipher, and to combine any optional feedback
blocks. The number of layers should be entered after the define command and for
every layer a sequence of numbers separated by spaces should be entered. The
first number denotes the encryption step and the remaining the feedback blocks,
if any. The system would finally respond with the constructed cipher using the
identification numbers of the blocks:

ABSENT>define

Number of layers (max 11):3

Layer 1:1

Layer 2:6 3

Layer 3:2

Layers selected:3
1. 1:

2. 6:3-

3. 2:

display At any time the user could check which cipher has been constructed with the
display command:

ABSENT>display
Layers selected:3
1. 1:

2. 6:3-

3. 2:

graph For a better visual presentation of the algorithm, the graph command draws the

current cipher in text mode. It should be noted that the terminal should have
enough columns for a correct representation of a large cipher:

238

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

ABSENT>graph
[=mmmm e \
! !
___lhash #1 | <-
o [
| A N /|
fmmmmmmmm e N R v
| v b
->---->| permute #1 |-==>(+)->] Feistel #2 |-—->...-> ciphertext
l | l |
N\ / N\ /

random To select a random instance from the space of all possible ciphers, the random
command could be used. The command uses the system clock to initialise a
random number generator. It should be noted that the same cipher could not be
selected in the future, since the seed is not apparent to the user.

seed This command behaves like the random command, with the difference that the
initialisation value of the random number generator is selected by the user and
not by the system clock. If the user records the seed of a given cipher, the latter
could be reconstructed at any time.

edit The edit command could be used for modifying the current algorithm. The
system responds by asking the layer which should be edited. If the number of
layer is selected, the new layer then should be entered with the same way as in
the definition of the cipher. In addition a layer could be removed with the minus
sign (—) followed by the number of the layer, or a new layer could be inserted,
with the plus sign (+), followed by the number of layer.

save This command saves the current cipher. The format of the file is the header
“ABSENT cryptographic algorithm structure”, followed by the indexes of the
involved blocks.

load This command loads a cipher for testing. It should be noted that if there is any
current cipher, it would be lost.

C.3 Cipher testing

encrypt The encrypt command requires a string and uses the current cipher for encrypt-
ing 1t.

run When the run command is typed, the “ABSENT>” prompt changes to “Input 7
Every string which is typed is encrypted and decrypted. The string is also dis-
played in binary format. To return to the “ABSENT>” prompt, the input string
should be “exit”.

239

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

ciphertext

plaintext

speed

test

This command is for encrypting a file. The program prompts for input filename
and destination filename. The latter would be the encrypted version of the former,
using the current cipher and key.

This command is the reverse of the previous. In order to restore the original file,
the key as well as the defined cipher should be identical to the one used when
running the ciphertext command.

The speed command performs a speed trial test of the current cipher, by en-
crypting and decrypting 10,000 characters. If the command is run more than
once, the change of speed from the previous test is also produced.

This command is the core command of the test suite. by typing test, the fol-
lowing options would appear:

ABSENT>test
Test to run:
. Frequency
. Serial
. Confusion-diffusion
. Autocorrelation

1

2

3

4

5. Diffusion matrix
6. Confusion matrix/depth analysis

7. Total diffusion/marginal diffusion
8. Diffusion distinguisher

I

Select test:

The first two tests consider every output bit as a sequence generator, independent
of the other output bits. The input could be one of the following:

Input:

Linear (whole input)

Linear per byte

. Random

. Linear byte - constant others

g W N

. Structured input
Select input: |

Selection (1) considers an input which is increased linearly. Selection (2) considers
an input byte to be changed linearly, while the rest of the inputs are random.
In selection (3) all input bit values are randomly selected, in a uniformal way.
Selection (4) is as (2) with the difference that the remaining bytes are not random

but remain constant. Finally, selection (5) provides preselected values which are
mainly used for the Autocorrelation test. The default values were the following:

OxO0,0xO0,0xO0,0xO0,0XO0,0XO0,0XO0,0XOO
0xff,0x00,0x00,0x00,0x00,0x00,0x00,0x00

240

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

0x00,0xff,0x00,0x00,0x00,0x00,0x00,0x00
0x00,0x00,0xff,0x00,0x00,0x00,0x00,0x00
0x00,0x00,0x00,0xff,0x00,0x00,0x00,0x00
0x00,0x00,0x00,0x00,0xff,0x00,0x00,0x00
0x00,0x00,0x00,0x00,0x00,0xff,0x00,0x00
0x00,0x00,0x00,0x00,0x00,0x00, 0xff,0x00
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff
Oxff,0xff,O0xff,Oxff,Oxff,0xff,0xff,0xff
0x00,0xff,0xff,0xff,0xff,0xff,0xff,0xff
Oxff,0x00,0xff,0xff,0xff,Oxff,Oxff,0xft
Oxff,0xff,0x00,0xff,0xff,0xff,0xff,0xff
Oxff,O0xff,Oxff,0x00,0xff,0xff,0xff,Oxff
Oxff,Oxff,Oxff,0xff,0x00,0xff,0xff,O0xff
Oxff,0xff,Oxff,O0xff,0xff,0x00,0xff,0xff
Oxff,0xff,0xff,Oxff,0xff,0xff,0x00,0xff
Oxff,0xff,Oxff,0xff,0xff,0xff,0xff,0x00
Oxff,0xff,0xff,0xff,0x00,0x00,0x00,0x00
0x00,0x00,0x00,0x00,0xff,0xff,0xff,0xff
0x00,0xff,0x00,0xff,0x00,0xff,0x00,0xff
Oxaa,Oxaa,Oxaa,0Oxaa,0Oxaa,0xaa,0Oxaa,0xaa

On the above data there is an obvious structure. The autocorrelation test uses
these data to examine whether this structure is destroyed by the application of
the cipher.

For the confusion-diffusion tests, the parameter which could be the key or the
plaintext is selected and the change in every output bit is examined, given the
change in every input bit (confusion), as well as the weight of the change vector
(diffusion), as described in 2.13.4. The data could also be written in an output
file.

If the fast generation of the diffusion matrix is required, option (5) could be
selected. For most of the ciphers, the number of loops could be equal to 40; even
if more loops are needed for the determination of the actual diffusion matrix,
the generated matrix with 40 loops could be considered since the probability to
gain more information for an additional test would be less than (1/2)'. The
first matrix generated for the computation of the diffusion matrix runs through
the autocorrelation test, were the distribution of ones and zeroes of the rows and
columns is assessed. The results are produced after the diffusion matrix.

The data generated for the depth analysis, could be also used to estimate the
entries of the confusion matrix. The depth analysis investigates whether likely
relationships exist between input and output bit pairs (section 3.5.7).

A relatively fast test is the estimation of total and marginal diffusion. The
maximum number of encryptions is set to 100, since the probability of having an
actual different state after those rounds is very low. In practice, for a strong cipher
around 12 encryptions should be expected. The marginal diffusion which was
stored in the cryptographic block profile was the second element of the marginal
diffusion values.

241

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

key

keybin

The diffusion distinguisher test calculates the actual and expected densities of
zeroes in the diffusion matrix as well as the respective quadrants it consists of.
The expected densities are calculated on the products of the combination of the
diffusion matrix and the submatrices.

The key could be presented or modified with the key command. By typing key,
the current value of the key would be produced, and the system would prompt
for a new one. If nothing is typed, the key would maintain its old value. Every
character beyond the eight one would be ignored, whereas if a shorter string than
eight characters is typed, the remaining key values would be filled with the space
character.

This command is similar to key, but the key is produced and should be entered
in a binary format.

C.4 ABSENT script

The script interpreter accepts the following commands:

outfile

matlab

repeat..next

random

seed

load

Specify an output file for the results. The format is:

outfile=<filename>

Specify an output file to write only the results as raw data, without any header
information. The format 1s:

matlab=<filename>

Depending on the test, .X is appended to the filename, where X is mt, cd or
depth, for the marginal and total diffusion, block and depth test respectively.
The repeat. .next is equivalent to a FOR loop, where every command within the
keywords repeat and next is repeated for n times. The format is:

repeat=n

command 1

command 2

command k
next

It should be noted that nested loops are not allowed.
Create randomly an algorithm.

Create randomly an algorithm using a seed s. The format is:

seed=<s>

Load a previously saved cipher. The format is:

load <filename>

242

APPENDIX C. DESCRIPTION OF THE ABSENT TESTSUITE ENVIRONMENT

edit

speed

loops

key

keybin

input

freq
seratil
autocor
diffusion

block

This command is edits the product cipher by modifying, adding or removing a
layer, as in the interactive mode. The difference is that the information is not
inputted interactively, but has to be in the following format:

edit <1> <new>

where <1> is the layer to be edited, and <new> are the new values.
Performs a time trial of the current cipher.

Specify the number of loops for some tests. The format is:

loops=n

Change the value of the key. The format 1s:
key=<key_value>

where <key_value> is a string.

As above but <key_value> should be in a binary format.
Specify the desired input parameters. The format is:
input=<par>

where <par> is one of the following:

1in for a linear input,

1in for a linear byte b=0,1,\1dots,7,

linct for a linear byte b=0,1,\1dots,7 and other bytes constant,
rand for a random input,

struct for a structured predefined input,

plain to select the plaintext as the parameter and

key to select the key as the parameter.
Run the frequency test.

Run the serial test.

Run the autocorrelation test.
Calculate diffusion matrix.

Run the block cipher test (confusion/diffusion).

margdiff Calculate marginal and total diffusion.

depth

newtest

Calculate depth matrix.

Close all output files.

243

Appendix D

Listings

D.1 Makefile

SRC=cagscr2.c cagdes.c ecb_enc.c set_key.c scr.c rmd128.c rsa.c¢ PrimeTools.c LargeOp.c server.c client.c cbp.c
0BJS=cagscr2.o0 cagdes.o ecb_enc.o set_key.o scr.o rmdi28.o0 rsa.o PrimeTools.o LargeUp.o server.o client.o cbp.o
CC=gce

CFLAGS=-g ~-fpic -I/usr/openvin/include

LIBS=-1lcurses -lm -lnsl -lsocket

TESTSRC=testsuite.c cagdes.c ecb_enc.c set_key.c rmdl28.c
TESTOBJS=testsuite.o cagdes.o ecb_enc.o set_key.o rmd128.0
TESTLIBS=~1m

main: $(0BJS)
$(CC) -o absent $(CFLAGS) $(0BJS) $(LIBS)
/bin/rm -f *.o

tests: $(TESTDBJS)
$(CC) -o testsuite $(CFLAGS) $(TESTOBS) $(TESTLIBS)

/bin/rm -f testsuite.o

cagscr2.c: fstuff.h
rmd128.c: rmd128.h

rsa.c: LargeOp.h PrimeTools.h rsa.h
LargeOp.c: LargeOp.h
PrimeTools: LargeOp.h PrimeTools.h

clean:
/bin/rm -f client.o server.o

D.2 fstuff.h

/» This header contains information about the number of functions used to built the cryptographic algorithm »/

#define NUM_FUNCT 2% /+* Humber of normal functions */
#define NUM_CFUNCT 15 /+ Humber of cryptographic functions =/
#define MIN_HEIGHT 1 /* Minimum height of layer */

#define MAX_HEIGHT 7 /% Maximum height of layer #/

#define MIN_LAYERS 5 /= Minimum number of layers =/

¢define MAX_LAYERS 11 /= Maximum number of layers #/
#define MSG 8 /% Message length ./

#define END_OF_CIPHER OxFF /# terminator for the exchange protocol */

D.3 cagdes.c

/*
cagdes.c, Yasilios Katos, 1998.
the cryptographic algorithm generator =/

#include <stdio.h>
#include <string.h>
ginclude <stdlib.h>
#include <limits.h>
#include “fstuff.h"
#include “rmd128.h"
#include <math.h>

244

APPENDIX D. LISTINGS

tinclude <sys/time.h>

#include “des_locl.h"

#include “spr.h"

/% convert a byte to unsigned long+/
#define BYTE_TO_UL(stpt) \

(((unsigned long) *((stpt)+3) << 24) | \
((unsigned long) *((stpt)+2) << 16) | \
((unsigned long) =((stpt)+1) << 8) |\
((unsigned long) *(stpt)))

/* convert a byte to unsigned inte/
#define BYTE_TO_UI(stpt) \
(((unsigned int) »({stpt)+1) << 8) | \
((unsigned int) s(stpt}))

/% cyclically rotate x by n bits to the right. ROL(x,n) is defined in rmd128.h */
sdefine ROR(x,n) (((x) > (@) | ((x) << (32-(n))))

#define ROL16(x,n) (((x) << (n)) I ((x)} > (16-{(n))))

#define ROR16(x,n) (((x) >> (n)) | ((x) << (16-(n)))}

t#define RMOsize 128

extern void encrypt();

extern void decrypt();

extern void cag();

extern void copyarr();

extern void initcag();

extern void generate_round_keys{);

/* Declaration of pointers to feedback transformation functions #/
static unsigned char scrl(unsigned char *);

static unsigned char -crr(unsigned char *);

static unsigned char *hashi(unsigned char),

static unsigned char *modmul(unsigned char *);

static unsigned char *modadd(unsigned char *);

/% Declaration of pointers to encryption and decryption steps ~/
static unsigned char *permutei{unsigned char =);
static unsigned char *ipermutel{unsigned char *);
static unsigned char »permute2(unsigned char *);
static unsigned char *ipermute2(unsigned char »};
static unsigned char svigenere(unsigned char *);
static unsigned char *ivigenere(unsigned char)
static unsigned char *desl(unsigned char ¥);
static unsigned char »ddesi{unsigned char *);
static unsigned char *elr2{unsigned char *);
static unsigned char »d1lr2(unsigned char)
static unsigned char »elr3(unsigned char *);
static unsigned char »dlr3(unsigned char *);
static unsigned char *elr4{unsigned char *);
static unsigned char »dlr4(unsigned char *);
static unsigned char *1fsrl(unsigned char *);
static unsigned char *1fsr2(unsigned char *);

/+ Arrays of pointers to the functions above =/
unsigned char *(*nfunct[NUM_FUNCT+1])();
unsigned char *(*nefunct[NUM_CFUNCT+1])();
unsigned char *(=ndfunct(NUM_CFUNCT+11)(};

char *namef [NUM_FUNCT+1};
char *namec(NUM_CFUNCT+1];

extern char key[]; /% Master key */
static char kay_schedule[HAX_LAYERS+1][E]; /+ key schedule =/
static des_koy_schadule ks; /* key schedule for a DES round */

static unsigned char vhashkey;
int iround; /* round of algorithm, is global, so blocks know their position ¥/

static const unsigned int primitive_poly(l={ /+ primitive polynomials for */
31,3,0,0, /* use in LFSRs =/
31,6,0,0,
31,7,0,0,
31,13,0,0,
32,7,6,2};

static const int prim_pol_num = 5;

static const unsigned long blow0[] = { /* blouw0-3: Blowfish S-boxes */
0xd1310ba6, Ox9BdfbSac, 0x2ffd72db, 0xd0ladfb7?, Oxb8elafed, 0xba2674¢96,
Oxba7c9045, Oxfi2cTf99, O0x24a19947, 0xb3916cf7, 0x0801f2e2, 0x858efci6,
0x636920d8, 0x71574e69, Oxa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
0x718bcd58, 0xB21i54aee, Ox7bb4asid, 0xc25a59b5, 0x9c30d539, 0x2af26013,
0xc5d1b023, 0x286085f0, Oxca417918, Oxb8db3Bef, 0x8e79dcb0, 0x603a180e,
0x6c9e0e8b, OxbOleBa3e, O0xd71577cl, Oxbd314b27, 0x78af2fda, 0x55605c60,
0xe65525f3, Oxaa55ab94, 0x57489862, 0x63e81440, 0x55ca396a, 0x2aabiObé,
Oxb4cc5c34, OxildleBce, Oxaib4B6af, 0x7c72e993, Oxb3ee1411, O0x636fbc2a,
0x2ba9c55d, Ox741831f6, Oxcebc3elf, 029b87931e, 0xafd6ba33, OxBc24cfbc,
0%7a325381, 0x28958677, 0x3b8f4898, Ox6Eb4bboaf, Oxc4bfe8lb, 0266282193,
0x61d809cc, Oxfb21a991, 0x487cac60, Ox5dec8032, Oxef845d5d, 0xe98575b1,
0xdc262302, Oxeb651b88, 0x23893e81, 0xd396acch, 0x0£f6d6ff3, 0x83f44239,
0x2e0b4482, 0xa4842004, 0x69c8f04a, 0x9eif9bbe, 0x21c66842, 0xf6e96c9a,
0x670c9c61, Oxabd388f0, Ox6a51a0d2, O0xd8542f68, 0x960fa728, Oxab5133a3,
Ox6eefOb6c, O0x137a3be4, Oxba3bf050, 0x7efb2a98, Oxailf1651id, 0x39af0176,
0x66ca593e, 0x82430e88, OxBceeB619, Ox456f9fb4, 0x7d84a5c3, 0x3b8bSebe,
0%e06£75d8, 0x85c12073, 0x401a449f, 0x56cl6aab, Ox4ed3aab2, 0x363£7706,
Oxibfedf72, 0x429b023d, 0x37d0d724, 0xd00a1248, OxdbOfead3, 0x49f1c09b,
0X075372C9, 0x80991b7b, 0x25d479d8, Oxf6e8def7, Oxe3fe50ia, Oxb6794c3b,

245

APPENDIX D. LISTINGS

0x976ce0bd, 0x04c006ba, Oxcla94fb6, 0x409f60cd, O0xSebcSec2,
0x68fb6faf, Ox3e6c53b5, 0x1339b2eb, Ox3b52ectf, 0x6dfcSiif,
OxccB14544, Oxaf5ebd09, Oxbee3d004, Oxde334afd, Ox660f2807,
OxcOcbaB857, 0x45c8740f, 0xd20b5f39, O0xb9d3fbdb, 0x5579c0Obd,
0xd6a100c6, 0x402c7279, 0x679f25fe, Oxfbifadcc, OxBea5e9f8,
0x3c7516df, Oxfd616b15, Ox2f501ec8, Oxad0552ab, 0x323dbSfa,
0x53317b48, 0x3e00df82, 0x9e5cS57bb, OxcabfBcald, 0x1a87562a,
0xd542a8f6, 0x287effc3, Oxac6732c6, Ox8c4f5573, 0x695b27b0,
Oxelffa35d, Oxb8f011ald, 0x10fa3d9B, 0xfd2183b8, OxsafcbSée,
0x9a53e479, OxbBf84565, Oxd28e49bc, Ox4bfb9790, Oxelddf2da,
0x62fb1341, Oxceedc6e8, Oxef20cada, 0x36774c0i, OxdO7e9efa,
0x95dbdadd, 0xae909198, OxeaadBe7i, 0x6b93d5a0, 0xd08ed1do,
Ox8e3c5b2f, 0x8e7594b7, 0x8ff6e2fb, 0xf2122b64, 0x8888b812,
0Ox4fadbeal, Ox688fc3lc, Oxdlcffi9i, Oxb3aBclad, O0x2f2f2218,
Oxea752dfe, Ox8b02ifal, OxaeS5aldccOf, Oxb56f74e8, Ox18acr3df,
Oxb4aB4fed, Oxfdi3eOb7, O0x7cc43b81, Oxd2ada8d9, 0x165fa266,
0x93cc7314, 0x211a1477, Oxe6ad2065, Ox77b5fa86, Oxc75442f5,
OxebcdafOc, 0x7b3e89a0, Oxd6411bd3, Oxaele7ed9, 0x00250e2d,
0x226800bb, Ox57b8e0af, 0x2464369b, O0xf009b%1le, Ox5563911d,
0x78c14389, 0xd95a537f, 0x207d5ba2, Ox02e5b9c5, 0x83260376,
0x11c81968, Ox4e734a41, 0xb3472dca, Ox7bl4a94a, 0x1b510052,
0xd60f573f, OxbcYbcBed, 0x2b60ad76, Ox81e67400, Ox08babibs,
0xf296ec6b, 0x2a0dd9i5, 0xb6636521, Oxe7b9df9b6, 0xff34052e,
0x53502d5d, Oxa99r8fal, Ox08baq799, 0x6e85076a };

static const unsigned long blowi[l = {

0x4b7a70e9, 0xb5b32944, 0xdb75092e, 0xc4192623, Oxadbeabbo,
0x9cee60b8, 0x8fedb266, OxecaaBc7l, 0x699a17ff, 0x5664526¢,
0x193602a5, 0x75094c29, 0xa0591340, Oxe4183a3e, 0x3f54989a,
0x6b8fedd6, 0x99f73fd6, Oxa1d29c07, Oxefe830f5, 0x4d2d38e6,
0x4cdd2086, 0x8470eb26, 0x6382e9c6, Ox02leccSe, 0x09686b3f,
0x3c971814, Ox6b6a70al, 0x687f3584, 0x52a0e286, Oxb79c5305,
0x3e07841c, Ox7fdeaeSc, OxBe7d4ddec, Ox5716f2b8, Oxb03adald?,
0xf01c1f04, 0x0200b3ff, OxaeOcf5ia, Ox3cb574b2, 0x25837a58,
0xd19113£9, Ox7ca92ff6, 0x94324773, 0x22f54701, Ox3aeSe581,
0xc8b57634, O0x9af3dda’, 0xad446146, 0x0fd0030e, Oxecc8ci3e,
0Oxe238cd99, Ox3beale2f, 0x3280bbal, 0x183eb331, Ox4e548b38,
0x6£420d03, 0xf60a04bf, Ox2cb81290, 0x24977c79, 0x5679b072,
Oxde9a771f, 0xd9930810, Oxb38bael2, Oxdccf3f2e, 0x5512721f,
0x501adde6, 0x9f84cd87, 0x7a584718, 0x7408dai7, Oxbc9f9abc,
Oxec7aec3a, Oxdb85idfa, O0x63094366, Oxc464c3d2, Oxeflcl847,
0xdd433b37, 0x24c2balf, 0x12a14d43, O0x2a65c451, 0x50940002,
0x71dff89%e, 0x10314e55, Ox81ac77d6, 0x5f11199b, 0x043556f1,
0x3c11183b, 0x5924a509, Oxf28fo6ed, Ox97fifbfa, OxJebabflc,
0x86e34570, Oxeae96fbl, 0x860ebeda, Ox5al3e2ab3, Ox771fe7ic

0x2965dcb9, 0x99ae71d0f, Ox803e89d6, 0x5266c825, O0x2e4cc978,
0xc6150eba, 0x94e2ea?8, Oxa5fc3cb3, OxleOa2df4, Oxf2f74ea?,
0x1939260f, 0x19c27960, 0x5223a708, Oxf71312b6, Oxebadfebe,
0xe3bc4595, 0xa67bc883, Oxb17f37d1, O0x018cff28, Oxc332ddef,
0x65582185, 0x68ab9802, Oxeeceab0f, Oxdb2f953b, Ox2aef7dad,
0x1521b628, 0x29076170, Oxecdd4775, 0x619f1510, Ox13ccaB30,
0x0334feie, 0xaa0363cf, 0xb5735c90, 0x4c70a239, 0xd59e9elb,
Oxeecc86bc, 0x60622ca7, Ox9cabScab, 0xb2f3846e, Ox648bleaf,
0xa02369b9, 0x655abb50, 0x40685a32, 0x3c2ab4b3, 0x319eeddS,
0x9b540b19, 0x875fa099, Ox95f7997ae, O0x623d7da8, Oxf837889a,
Ox11ed935f, 0x16681281, O0x0e358829, Oxc7e61fd6, Ox96dedfal,
0xST£584a5, 0x1b227263, 0x9b83c3ff, Ox1ac24696, Oxcdb3Daeb,
0x8fd948a4, 0x6dbc3128, 0x58ebf2ef, O0x34c6ffea, Oxfe28Bedbi,
0x5d4a14d9, OxeB64b7e3, 0x42105d14, 0x203e13e0, Ox45eqe2b6,
0xdbBcdfi5, Oxfacb4fd0, Oxc742f442, Oxef6abbbb, 0x654f3bid,
0xd81e799%e, 0x86854dc7, Oxe44b476a, 0x3d816250, Oxcf62a1f2,
Oxfc8883a0, Oxclc7b6a3, Ox7f1524c3, 0x69cb7492, Ox47848alb,
0x095bbf00, Oxad19489d, 0x1462b174, 0x23820e00, 0x58428d2a

Oxidadf43e, 0x233f7061, O0x3372f092, 0x8d937e4l, Oxd65fecfl,
0x7cde3759, Oxcbee7460, 0x4085f2a7, Oxce77326e, 0xa6078084,
OxeBefdB855, 0x61d99735, Oxa969a7aa, O0xc50cO6c2, OxSaldabfc

0Ox9ed447a2e, Oxc3453484, 0xfdd56705, OxOele9ecH, 0xdb73dbd3,
0x675fda79, Oxe3674340, Oxc5c43465, 0x713e38d8, 0x3d28f89e,
0x153e21a7, 0x8fb03d4a, Oxe6e39f2b, Oxdb83adf7 };

static const unsigned long blow2[] = {

0xe93d5a68, Ox948140f7, Oxf64c261c, 0x94692934, 0x411520f7,
Oxbcf46b2e, 0xd2a20068, 0xd4082471, O0x3320f46a, 0x43b7d4b7,
0x1e39f62e, 0x97244546, 0x14214f74, Oxbf8b8840, 0x4d95fcid,
0x70f4ddd3, 0x66a02f45, Oxbfbc0Yec, 0x03bd9785, Ox7fac6dd0,
0x96eb27b3, 0x55fd3941, Oxda2547e6, Oxabcalada, 0x28507625,
0x0a2c86da, Oxe9b66dfb, 0x68dc1462, 0xd7486900, 0x680ecla4,
0x4f3ffea2, Oxe887ad8c, 0xb58ce006, Ox7afadbbé, Oxaacele’c

Oxce78a399, 0x406b2a42, Ox20fe9e35, 0xd9f385b9, Oxee39d7ab,
0xidc9faf7, Ox4b6d1856, 0x26a36631, Oxeael39Tb2, 0x3a6efa74,
0x6841e7f7, Oxcal820fb, OxfbOaf54e, O0xd8feb397, 0x454056ac,
0x55533a3a, 0x20838d87, Oxfe6ba9b7, 0xd096954b, 0x55a867bc,
Oxcca92963, 0x99e1db33, Oxaba4a56, 0x3f3125f9, Oxbef47elc,
0xfdf8e802, 0x04272f70, 0x80bbi5S5¢, 0x05282ce3, 0x95c11548,
0x48c1133f, Oxc70f86dc, 0x07f9cYee, Ox41041f0f, 0240477924,
0x325f51eb, 0xd59bc0di, Oxf2bccl8f, 0x41113564, 0x257b7834,
OxdffBe8a3, Ox1f636c1b, OxOel2b4c2, 0x02e1329%, Oxaf664fd1,
0x6b2395e0, 0x333e92el, 0x3b240b62, Oxeebeb9d22, 0x85b2a20e,
Oxde720c8c, 0x2da2f728, 0xd0127845, 0x95b794fd, O0x647d0862,
075449a36f, 0x877d48fa, 0xc39dfd27, Oxf33e8dle, 0x0a476341,
0Ox3a6f6eab, 0xf4f8fd37, OxaB12dc60, Oxalebddf8, Ox991beléc,
0xc67b5510, 0x6d672¢37, 0x2765d43b, Oxdcd0e804, 0x£1290dc7,
0xb5390£92, 0x690fedOb, 0x667b9ffb, Oxcedb7d9c, 0xa091cfOb,
Oxbb132f88, Ox5i5bad24, Ox7b9479bf, Ox763bd6eb, O0x37392eb3,
0x8026¢297, 0xf42e312d, Ox6842adal, 0xc66a2b3b, 0x12754ccc,
0x6a124237, 0xb7925ie7, OxO6aibbe6, Ox4bfb6350, 0x1a6bi018,

0x196a2463,
0x9b30952¢,
0x192e4bb3,
0x1a60320a,
0xdb322218,
0xfd238760,
0xdf1769db,
Oxbbcab58c§,
0x2dd1d35b,
Oxa4cb7e33,
0x2bf11fb4,
Oxafc7256e0,
0x900df01c,
0xbelet 777,
Oxce89e299,
0x80957705,
0xfb9d35ct,
0x2071b35e,
0x59dfabaa,
0x6295cfa9,
0x9a532915,
0x571be91f,
0xc5855664,

0x49a7df7d,
Oxc2bi9eol,
0x5b429d65,
0xf0255dct,
Ox3ebacfc9,
0xaab00737,
0x£0500¢0d,
0xdc0921bd,
0x37c2dadc,
Oxa4751e41,
0x4£6db908,
Oxbcaf89af,
0x2e6b7124,
0xe94b7d8c,
0x3215d908,
0x133aeddd,
0xd7a3c76b,
Ox1e153cbe,
Ox4e3d06fa,
0x9c10b36a,
0x361d2b3d,
Oxeac31f66,
Oxbe6c5aab,
0x5b6e2f84,
Oxeb61bd96,
Oxcbaadeid,
0x19bdfOca,
0xc021b8f7,
0x97e32d77,
0x7858bag9,
0x532e3054,
Oxee7c3c73,
Oxa3aasabea,
0x41c¢d2106,
0x5b8d2646,
0x5692b285,
0x0c55f5ea,
0x6c223bdb,
0x19f8509¢,
0x800bcadc,
0x105588cd,
0xf16dff20,

0x7602d4f7,
0x500061af,
0x96b591af,
0x31cb8504,
0253042914,
0x27al8dee,
0xd3375fec,
0x3b124e8b,
0xdd5b4332,
0xba489527,
0xal1159a58,
0x9029317¢,
0xe4c66d22,
0x5d886e17,
0x602a9c60,
Oxcad18i15,
0xe6ba0d99,
Oxe7ccf5£0,
0x992eff74,
0xdb6e6b0d,
OxccO0ffa3,
0xd9155ea3,
Oxcc115979,
0x782eflic,
Oxilcaedfa,

246

APPENDIX D. LISTINGS

0x3d25bdd8, Oxe2eic3c9, Ox44421659, 0x0a121386, 0xd90cecbe, OxdSabeala,
Ox64af674e, Oxda86a85f, Oxbebfe988, Ox64e4c3fe, 0x9dbc8057, 0xf0£7c086,
0x60787bf8, 0x6003604d, O0xd1fd8346, 0xf6381fb0, 0x7745ae04, Oxd736fccc,
0x83426b33, OxfOleab71, 0xb0804187, 0x3c005e5f, 0x77a057be, OxbdeBae24,
0x55464299, Oxbf582e61, Ox4e58f48f, Oxf2ddfda2, Oxf474ef38, Ox8789bdc2,
0x5366f9c3, Oxc8b38e74, Oxb475f255, O0x46fcd9b9, Ox7aeb2661, Ox8b1ddfs4,
0x846a0e79, 0x915f95e2, O0x466e598e, Ox20b45770, 0x8cd55591, Oxc902dedc,
0xb90bacel, Oxbb8205d0, 0x11a86248, Ox7574a99%e, Oxb77f19b6, Oxe0ad9dc09,
0x662d0%al, 0xc4324633, Oxe85a1f02, O0x09fObe8c, 0x4a99a025, Oxld6efeil,
0x1ab93did, OxObaSa4df, Oxai86f20f, 0x2868f169, Oxdcb7dad3, O0x573906fe,
Oxale2ce9b, 0x4fcd7f52, Ox50115e01, Oxa70683fa, 0xa002b5c4, 0x0de6d027,
0x9af88c27, Ox773f8641, 0xc3604c06, 0x61a806b5, 0xf0177a28, 0xc0f586e0,
0x006058aa, 0x30dc7d62, Oxlia69ed7, 0x2338ea63, 0x53c2dd94, Oxc2c21634,
Oxbbcbee56, 0x90bcbbde, Oxebfc7dal, Oxce591d76, Ox6f05e409, 0x4b7c0188,
0x39720a3d, Ox7c927c24, Ox86e3725f, 0x724d9db9, OxlaciSbb4, 0xd3%eb8fc,
0xed545578, 0x08fcabb5, 0xd83d7cd3, Ox4dadOfcd, OxieS50efSe, Oxbi6lelf8,
0xa28514d9, 0x6c51133c, O0x6fd5¢c7e7, Ox56el4ecd, Ox362abfce, Oxddc6c837,
0xd79a3234, 0x92638212, 0x670efaBe, 0x406000e0 };

static const unsigned long blow3{] = {

0x3a39ce37, Oxd3faf5cf, 0xabc27737, Oxbac52dlb, Ox5cb0679e, Ox4fal33742,
0xd3822740, 0x99bc9bbe, Oxd5118e9d, OxbfOf7315, Oxd62dic7e, Oxc700c47b,
0xb78c1b6b, 0x21a19045, Oxb26ebibe, Ox6a366eb4, 0x5748ab2f, Oxbc946e79,
0xc6a376d42, 0x6549c2c8, 0x530ffB8ee, Ox468dde7d, 0xd5730aid, Ox4cd04dc6,
0x2939bbdb, 0Oxad9ba4650, Oxac9526e8, Oxbebee302, Oxaifad5f0, 0x6a2d519a,
Ox63ef8ce2, 0x9a86ee22, 0xc089c2b8, 0x43242ef6, OxaSiel3aa, 0x9cf2d0ad,
0x83c061ba, 0x9be96add, 0x8fe51550, Oxba645bd6, 0x2826a2f9, Oxa7l3a3ael,
0x4ba99586, Oxef5562e9, Oxc72fefd3, Oxf752f7da, Ox3f046f69, 0x77falab9,
0x80e4a915, 0x87b08601, O0x9b09ebad, Ox3b3eeb93, 0x0990fdSa, 0x9e34d797,
0x2cf0b7d9, 0x022b8b51, 0x96d5ac3a, 0x017da67d, Oxdicf3ed6, 0x7c7d2d28,
0x1f9f25cf, Oxadf2b89b, 0x5ad6b472, 0x5a88f54c, Oxe029ac7?1, Oxe0i9abe6,
0x47bOacfd, Oxed93fad9b, OxeB8d3c48d, 0x283b57cc, Oxf8d56629, 0x79132e28,
0x785f0191, Oxed756055, O0xf7960e44, Oxe3d35e8c, 0x15056dd4, Ox88f46dba,
0x03a16125, 0x0564f0bd, Oxc3eb9el5, 0x3c9057a2, 0x97271aec, O0xad3ald72a,
0Ox1b3f6d9b, Ox1e6321f5, 0xf59c¢66fb, 0x26dcf319, 0x7533d928, Oxb155fdfS,
0x03563482, Ox8aba3cbb, 0x28517711, 0xc20ad9f8, Oxabccb5167, Oxccad925f,
0Ox4de81751, 0x3830dc8e, 0x379d5862, 0x9320f991, Oxea7a90c2, Oxfb3e7bce,
0x5121ce64, O0x774fbe32, OxaBb6e37e, 0xc3293d46, Ox48de5369, 0x64136680,
0xa2ae0810, Oxdd6db224, Ox69852dfd, 0x09072166, Oxb39a460a, 0x6445c¢0dd,
0x586cdecf, Ox1c20c8ae, Ox5bbef7dd, Ox1b588d40, 0Oxccd2017f, Ox6bbde3bb,
Oxdda26a7e, 0x3a59ff45, 0x3e350m44, Oxbcb4cdd5, Ox72eacea8, Oxfab484bb,
0x8d6612ae, Oxbf3c6f47, 0xd29bed63, 0x542f5d9e, Oxaec2771b, O0xf64e6370,
0x740e0d8d, Oxe75b1357, O0xf8721671, Oxaf537d5d, 0x4040cb08, Ox4ebde2cc,
0x34d2466a, 0x0115af84, Oxe1b00428, 0x95983ald, Ox06b89fb4, Oxcebead48,
Ox6f3f3b82, 0x3520ab82, OxOllaid4b, 0x277227f8, 0x611560b1, Oxe7933fdc,
0xbb3a792b, 0x344525bd, 0xa08839el, Ox5ice794b, 0x2f32c¢9b7, Oxallfbac9,
0xe0l1ccB7e, Oxbcc7d1f6, Oxcf0iile3, OxaleBaac?, 0x1a908749, 0xd44fbdYa,
OxdOdadech, Oxd50ada38, 0x0339c32a, 0xc6913667, 0x8df9317c, OxeObi2b4f,
Oxf79e59b7, 0x43fSbb3a, Oxf2d519ff, 0x27d945%c, Oxbfg7222c, Oxibebfc2a,
0x0f91fc71, Ox9b941525, Oxfae59361, Oxcebb9ceb, 0xc2a86459, Ox12baasddl,
0xb6c1075e, 0xa3056a0c, 0x10d25065, Oxcb03ad442, Oxelecfele, 0x1698db3b,
0x4c98a0be, 0x3278e964, 0x9f1f9532, Oxe0d392df, 0xd3a0342b, 0x8971f2le,
Ox1b0a7441, Ox4ba3348c, Oxc5be7120, 0xc37632d8, Oxdf359f8d, 0x9b992f2e,
Oxe60b6f47, 0xOfe3fiid, OxeS4cda54, Oxledad891, Oxce6279cf, Oxcd3elebf,
0x1618b166, Oxfd2c1d05, Ox848fd2c5, Oxf6fb2299, Oxf523r357, O0xa6327623,
0x93a83531, Ox56cccd02, Oxacf08162, 0x5a75aebb5, 0x6e163697, 0x88d273cc,
0xde966292, 0x81b949d0, 0x4¢50901b, 0x71c65614, Oxe6c6c7bd, 0x327a140s,
0x45e1d006, Oxc3f27b9a, Oxc9aaS3fd, Ox62a80£00, Oxbb25bfe2, 0x35bdd2f6,
0x71126905, 0xb2040222, Oxb6cbcf7c, Oxcd769c2b, 0x53113ecO, 0x164003d3,
0x38abbd60, 0x2547adf0, Oxba38209c, Oxf746ce76, Ox77afalcH, 0x20756060,
0x85cbfede, OxBae88dd8, Ox7aaaf9b0, Ox4cfYaa7e, Ox1948c2bc, 0x02fb8a8c,
0x01c36aed, Oxd6ebelf9, 0x9044f869, Oxabbcdead, Ox3£09252d, Oxc208e69f,
Oxb74e6132, Oxce77e25b, Ox578fdfe3, 0x3ac372e¢6 };

/+ RMD hash function. This function is adopted from Antoon Bosseluers (1996)
ftp://ftp.funet.fi/pub/crypt/hash/ripemd/ */

unsigned char sRMD(unsigned char *message)
/x
* returns RMD(message)
= message should be a string terminated by ’\0’

«/

{
unsigned long MDbuf [RMDsize/32]; /* contains (A, B, €, D{, E)) /
static unsigned char hashcode(RMDsize/8); /+ for final hash-value «/
dword X[16]; /* current 16-word chunk -/
int i; /= counter */
unsigned int length; /* length in bytes of message */
unsigned int nbytes; /* # of bytes not yet processed +/

/* initialize =/
MDinit (MDbuf);
length = (dvord)strlen({char *)message);

/* process message in 16-word chunks =/

for (nbytes=length; nbytes > 63; nbytes-=64) {
for (i=0; i<16; i++) {
X[i] = BYTES_TC_DWORD(message);
message += §&;
}
compress(MDbuf, X);
} /* length mod 64 bytes left </

/= finish: =/
MDfinish(MDbuf, message, length, 0)

247

APPENDIX D. LISTINGS

for (i=0; i<RMDsize/8; i+=4) {

hashcode[i] = MDbuf[i>>2]); /% implicit cast to byte </
hashcode[i+1] = (MDbuf[i>>2] >> 8); /» extracts tho 8 least %/
hashcode(1+2) = (MDbuf(i>>2) >> 16); /¢ significant bits. =/

hashcode{i+3] = (MDbuf(i>>2} >> 24);
}

return (byte *)hashcode;
}

/% End code from Bosselaers =/

/+ feedback functions =/
static unsigned char *crl{unsigned char *mi) /+ rotate left */
{
register unsigned long biti,bit2;
int i;
unsigned char <tm;
tm=mi;
bit1=BYTE_ TO_UL(m1);
bit2=BYTE_TO_UL(m1+4);
RDL(bit1,key_schedule[iround] [0]%32);
ROL(bit2,key_schedule[iround] [11%32);
mi=tm;
for{i=0;i<=3;i++)
{
s{mi++)=bit1;
bit1>>=8;
}
for(i=0;i<=3;i++)
{
*(mit+)=bit2;
bit2>>=8;

mi=tm;
return{(mi);

}

static unsigned char scrr(unsigned char *mi) /+ rotate right »/
{
register unsigned long biti,bit?2;
int i;
unsigned char »tm;
tm=mi;
bit1=BYTE_TO.UL(m1);
bit2=BYTE_TO_UL(m1+4);
ROR(bit1,key_schedulel[iround] [1]%32);
ROR{bit2,key_schedule[iround] [2]%32});
mi=tm;
for(i=0;i<=3;i++)
{
*(ml++)=bitl;
bit1>>=B;
}
for(i=0;i<=3;i++)
{
«(mi++)=bit2;
bit2>>=8;
}
mi=tm;
return{mt);

}

static unsigned char whashi(unsigned char *m1) /= Benes-based hash </
{
register unsigned long tbitl,bitl,bit2;
int i;
unsigned char <tm;
tm=mi;
thiti=bit1=BYTE_TO_UL(mi);
bit2=BYTE_TO_UL(m1+4);
biti+=blow0[((unsigned long)key.schedule[iround]}(3}=bit2)%0xff];
bit2+=blow2{{{unsigned long)key_schedule[iround][4]*tbit1)%0xff];
mistm;
for(i=0;i<=3;i++)
{
={mi++)=bitl;
bit1>>=8;

}
for(i=0;i<=3;i++)
{
*{m1++)=bit?2;
bit2>>=8;
}
mi=tm;
return{mi);

}

static unsigned char ¢modmul(unsigned char «mi) /+multiplication mod(2732)+/
{

register unsigned long biti,bit?2;

int i;

unsigned char ¢tm;

tm=ml;

bit1=BYTE_TO_UL(m1);

bit2=BYTE_TD_UL(mi+4);

bit1==BYTE_TO_UL{&key_schedule[ircund] [5]);

248

APPENDIX D. LISTINGS

bit2*=BYTE_TO_UL(&key_schedule[iround] [6]);
ml=tm;
for(i=0;i<=3;1++)

*(mi++)=bit1;

bit1>>=8;
}
for(i=0;i<=3;i++)
{
*{mi++)=bit2;
bit2>>=8;
}
mi=tm;
return(mi);
}
static unsigned char *modadd{unsigned char *m1) /* addition mod(2732)+/
{
register unsigned long bitl,bit2;
int i;
unsigned char *tm;
tm=ml;

bit1=BYTE_TO_UL(m1);
bit2=BYTE_TO_UL(mi+4);
bit1+=BYTE_TO_UL(&key_schedule[iroundl [6]);
bit2+=BYTE_TO_UL{&key_schedule[iround} [7]);
mi=tm;
for(i=0;i<=3;i++)
{
=(mi++)=bitl;
bit1>>=8;
}

for(i=0;i<=3;i++)

*(ml++)=bit2;
bit2>>=8;
}
mi=tm;
return(mi);

/* encryption steps %/

static unsigned char spermutel(unsigned char *mi) /* permutation on byte lovel*/
{

register int i;

unsigned char *tm;

unsigned char tmap[7];

unsigned char map[] = {2, 0, 7, 3, 6, 4, 1, 5};

tm=ml;
for{(i=0;i¢=7;1i++)
{
tmap[il=+(mi+map[i]);
ml=tm;
}
for(i=0;i<=7;i++)
«(mi++)=tmap[il;
mi=tm;
return(ml);

}

static unsigned char =ipermutei(unsigned char *m1) /¥ decryption step */
{

register int i;

unsigned char =tm;

unsigned char tmap(7};

unsigned char map(] = {1, 6, 0, 3, 5, 7, 4, 2}

tm=ml;

for(i=0;i<=7;i++)

tmap(iJ==(m1+map(il);

mi=tm;
}
for{i=0;i<=7;i++)
«{mt++)=tmap[i];
mi=tm;
return(mi);

}

static unsigned char wpermute2(unsigned char *mi) /+ another permutation =/
{

register int i;

unsigned char *tm;

unsigned char tmap[7];

unsigned char map(} = {7, 0, 3, 1, 6, 6, 2, 4}

tm=mi;
for(i=0;i<=7;i++)
{
tmap[i)=*(mi+map{il);
mi=tm;
}
for(i=0;i<=7;i++)
=(mi++)=tmap[i);
mi=tm;
return(mi);

249

APPENDIX D. LISTINGS

static unsigned char *ipermute2(unsigned char *mi) /¥ decryption step ¢/
{
register int i;
unsigned char *tm;
unsigned char tmap[7];
unsigned char map[] = {1, 3, 6, 2, 7, 4, 5, 0}
tm=mi;
for(i=0;i¢=7;i++)
{
tmap[i)=x(mt+map{il);
mi=tm;
}
for{i=0;i<=7;i++)
«(mi++)=tmap[i];
mi=tm;
return(mi};

}

static unsigned char svigenere{unsigned char *ml) /» vigenere substitution «/
{
register int i;
unsigned char =tm;
tm=mi;
for(i=0;i<=7;i++)
{
»mi={*mi+key_schedule[iround][i])%256;
m]#?;
}
mi=tm;
return(mi);

}

static unsigned char *ivigenere(unsigned char *mi) /« decryption stop «/
{
register int i;
unsigned char =tm;
tm=mi;
for(i=0;i<=7;i++)
{
=mi=(*mi-key_schedule[iround][i])%256;
mi++;
}
mi=tm;
return(mi);

}

static unsigned char *desi(unsigned char »ml) /+ one-round DES step «/
{
registar int i;
register unsigned long w,u,t;
static unsigned long *s;
static unsigned char *tm;
register unsigned long bitl,bit2;
tm=ml;
s=(unsigned long *)ks;
bit2=BYTE_TO_UL(m1);
bit1=BYTE_TO_UL(m1+4);
D_ENCRYPT(bit2,bitl,iround); /* call to Young’s code*/
mi=tm;
for(i=0;i<=3;i++)
{
*(mi++)=bitl;
bit1>>=8;

for(i=0;i<=3;i++)

s (m14++)=bit2;
bit2>>=8;
}
mi=tm;
return(mi);

}

static unsigned char =ddesi(unsigned char *m1) /# decryption step */
{
register int i
register unsigned long w¥,*s,u,t
unsigned char »tm;
register unsigned long bitl,bit2;
tm=mi;
s=(unsigned long =)ks;
bit2=BYTE_TO_UL(m1};
bit1=BYTE_TO_UL(mi+4};
D_ENCRYPT(bit1,bit2,iround);

mi=tm;
for(i=0;i¢=3;i++)

{

*(mi++)=bitl;
bit1>>=8;

;1¢=35144)

*(mi4+)=bit2;
bit2>>=8;

250

APPENDIX D. LISTINGS

ml=tm;
raturn(mi);

}

static unsigned char selri(unsigned char smi)
{
int i;
unsigned long int w=0;
static unsigned char *tm;
unsigned long thiti,tbit2,bitl,bit?2;
register unsigned long ti;

/% Feistel #1i =/

/=set up values according to RIPEM Hash function »/

register unsigned long aa,bb,cc,dd;
register unsigned long aaa,bbb,ccc,ddd;
unsigned long MDbuf[4];

MDbuf [0] = 0x67452301UL;
MDbuf[1] = Oxefcdab89UL;
MDbuf [2] = 0x98badcfelL;
MDbuf[3] = 0x10325476UL;

aa=aaa=MDbuf [0];
bb=bbb=MDbuf [1];
cc=ccc=MDbuf [2];
dd=ddd=MDbuf [3];

tm=ml;
tbit2=bit1=BYTE_TO_UL(m1i);
t1=tbit1=bit2=BYTE_TO_UL(m1+4);

/xround 1 of RMD */

FF(aa, bb, cc, dd, ti, 11);
FF(dd, aa, bb, cc, ti, 14);
FF(cc, dd, aa, bb, ti, 15);
FF(bb, cc, dd, aa, t1, 12);
FF(aa, bb, cc, dd, t1, 5);
FF(dd, aa, bb, cc, t1, 8);
FF(cc, dd, aa, bb, ti, 7);
FF(bb, cc, d4d, aa, ti, 9);
FF{aa, bb, cc, dd, ti, 11);
FF(dd, aa, bb, cc, t1, 13);
FF{cc, dd, aa, bb, ti, 14);
FF(bb, cc, dd, aa, ti, 15);
FF(aa, bb, cc, dd, t1, &);
FF(dd, aa, bb, cc, t1, 7}
FF(cc, dd, aa, bb, t1, 9);
FF(bb, cc, dd, aa, ti, B);

/% parallel round 3 of RMD »/

GGG(aaa, bbb, ccc, ddd, ti, 9);
GGG(ddd, ama, bbb, ccc, tl, 7);
GGG(cce, ddd, aaa, bbb, ti, 15);
GGG(bbb, ccc, ddd, ama, ti, 11};
GGG(aaa, bbb, ccc, ddd, ti, 8);
GGG (ddd, aaa, bbb, ccc, t1, 6);
GGG{ccc, ddd, aaa, bbb, tl, 6);
GGG (bbb, ccc, ddd, aaa, ti, 14);
GGG(aaa, bbb, ccc, ddd, ti, 12)
GGG(ddd, aaa, bbb, ccc, t1, 13);
6GG{cce, ddd, aaa, bbb, ti, 5);
GGG (bbb, ccc, ddd, aaa, tl, 14);
GGG(aaa, bbb, ccc, ddd, ti, 13);
6GG(ddd, aaa, bbb, ccc, t1, 13)
GGG(ccc, ddd, aaa, bbb, ti, 7);
GGG (bbb, ccc, ddd, aaa, ti, 5);

ddd += cc + MDbuf[1]; /+ final result for MDbuf[0] </

MDbuf {1] = MDbuf[2) + dd + aaa;
MDbuf [2) = MDbuf[3] + aa + bbb;
MDbuf (3] = MDbuf[0] + bb + ccc;
MDbuf [0] = ddd;

t1=MDbuf [0] +MDbuf [1]+HDbuf [2]+MDbuf [3];
bit2=(t1) thit2;
biti=tbitl;
mi=tm;
for(i=0;i<=3;i++)
{
s (mi++)=bitl;
bit1>>=8;

for(i=0;i<=3;i++)
{
*(ml++)=bit?2;
bit2>>=8;
}
mi=tm;
return(ml);

}

static unsigned char *dlri(unsigned char *m1) /= decryption step */

{
int i;
unsigned int ¥

251

APPENDIX D. LISTINGS

unsigned char *tm;
unsigned long tbiti,tbit2,bitl,bit2;
register unsigned long t1;

/+set up values according to RIPEM Rash function +/

register unsigned long aa,bb,cc,dd;
register unsigned long aaa,bbb,ccc,ddd;
unsigned long MDbuf(4];

MDbuf [0) = 0x67452301UL;

HDbuf[1] = Oxefcdab8SUL;

MDbuf 2] = Ox98badcfeUl;

MDbuf [3] = 0x10325476UL;

aa=aaa=MDbuf [0];

bb=bbb=MDbuf [1];
cc=ccc=MDbuf (2] ;

dd=ddd=HDbuf [3];

tm=mi;
t1=tbit2=bit1=BYTE_TO_UL(m1);
tbiti=bit2=BYTE_TO_ UL(m1+4);

/*round 1 of RMD */

FF(aa, bb, cc, dd, ti, 11);
FF(dd, aa, bb, cc, ti, 14);
FF(cc, dd, aa, bb, t1, 15);
FF(bb, cc, dd, aa, t1, 12);
FF{aa, bb, cc, dd, ti, 5);
FF(dd, aa, bb, cc, ti, 8);
FF{cc, dd, aa, bb, t1, 7);
FF(bb, cc, dd, aa, ti, 9);
FF(aa, bb, cc, dd, ti, 11);
FF(dd, aa, bb, cc, ti, 13);
FF(cc, dd, aa, bb, ti, 14);
FF(bb, cc, dd, aa, t1, 15);
FF(aa, bb, cc, dd, ti, 6);
FF(dd, aa, bb, cc, ti, 7);
FF(cc, dd, aa, bb, t1, 9);
FF(bb, cc, dd, aa, ti, B8);

/» parallel round 3 of RMD */
GGG(aaa, bbb, ccc, ddd, ti, 9);
GGG(ddd, aaa, bbb, ccc, t1, 7);
GGG(ccc, ddd, aaa, bbb, ti, 15);
GGG (bbb, ccc, ddd, aaa, tl1, 11);
GGG(aaa, bbb, ccc, ddd, tl, 8);
GGG(ddd, aaa, bbb, ccc, tl, 6);
GGG(ccc, ddd, aaa, bbb, ti, &)
GGG(bbb, ccc, ddd, aaa, t1, 14);
GGG (aaa, bbb, ccc, ddd, ti, 12);
GGG(ddd, aaa, bbb, ccc, tl, 13)
GGG(ccc, ddd, aaa, bbb, ti, 5);
GGG(bbb, ccc, ddd, aaa, ti, 14);
GGG(aaa, bbb, ccc, ddd, t1, 13);
GGG(ddd, aaa, bbb, ccc, ti, 13);
GGG(ccc, ddd, aaa, bbb, tl, 7);
GGG (bbb, ccc, ddd, ama, ti, 5);

ddd += cc + MDbuf[1]; /+ final result for MDbuf(0] =/

MDbuf [1] = MDbuf(2] + dd + aas;
MDbuf [2] = MDbuf[3] + aa + bbb;
MDbuf 3] = MDbuf[0] + bb + ccc;
¥Dbuf (0] = ddd;

t1=MDbuf (0] +MDbuf [1]+MDbuf [2] +MDbuf [3];
bitl=tbiti~(t1);
bit2=tbit2;
mi=tm;
for{i=0;i<=3;1++)
{
#{mi++)=bitl;
big1>>=8;
}
for(i=0;i<=3;i++)
{
»(mi++)=bit2;
bit2>>=8;
}
mi=tm;
return{mi};

}
static unsigned char *elr2(unsigned char smi) /% Feistel #2
{
int i;
unsigned
unsigned
unsigned
register

long int ==0;

char »im;

long tbiti,tbit2,bitl,bit2;
unsigned long 11

/= set up values according to RIPEM Hash function */
register unsigned long aa,bb,cc,dd;
register unsigned long aaa,bbb,ccc,ddd;
unsigned long MDbuf[4];

KDbuf [0] = 0x67452301UL;

252

APPENDIX D.

3

static unsigned char *dlr2(unsigned char *mi) /=

{

LISTINGS

MDbuf {1] = Oxefcdab89UL;

MDbuf [2]
MDbuf {3]

0x98badcfell;
0x10325476UL;

aa=aaa=MDbuf [0} ;
bb=bbb=MDbuf [1];
ce=ccc=MDbuf [2] ;
dd=ddd=HDbuf [3];

tm=ml;

t1=tbit2=bit1=BYTE_TO_UL(m1);
tbit1=bit2=BYTE_TO_UL(m1+4);

/*round 4 of RMD */

11(aa, bb, cc, dd, ti, 11);
11(dd, aa, bb, cc, t1, 12);
1I(cc, dd, aa, bb, ti, 14);
11(bb, cc, dd, aa, ti, 1B);
11(aa, bb, cc, dd, ti, 14);
11(dd, aa, bb, cc, tl, 15);
11(cc, dd, aa, bb, ti, 9);
11(bb, cc, dd, aa, ti, 8);
11(aa, bb, cc, dd, ti, 9);
11(dd, aa, bb, cc, ti, 14);
I1(cc, dd, aa, bb, ti, 5);
11(bb, cc, dd, aa, t1, 6);
11(aa, bb, cc, dd, ti, 8);
11(dd, aa, bb, cc, t1, 6);
11{cc, dd, aa, bb, ti, 5);
I1(bb, cc, dd, aa, ti, 12);

/# parallel round 2 of RMD */
HHH (asa, bbb, ccc, ddd, ti, 9);
HHH(ddd, maa, bbb, ccc, ti, 13);
HHH(ccc, ddd, aaa, bbb, ti, 15)
HHH (bbb, ccc, ddd, aaa, ti, 7);
HHH (aaa, bbb, ccc, ddd, ti, 12);
HHH(ddd, aaa, bbb, ccc, ti, 8);
HHH(ccc, ddd, aaa, bbb, ti, 9);
HHH(bbb, ccc, ddd, aaa, ti, 11);
HHH(saa, bbb, ccc, ddd, ti,)
HHH(ddd, aaa, bbb, ccc, ti, 7);
HHH(ccc, ddd, aaa, bbb, ti, 12);
HHH{bbb, ccc, ddd, aaa, tl, 7);
HHH(aaa, bbb, ccc, ddd, ti, 6);
HHH (ddd, aaa, bbb, ccc, tl, 15);
HHH{ccc, ddd, aama, bbb, ti, 13});
HHH(bbb, ccc, ddd, aaa, ti, 11);

ddd += cc + MDbuf(1];

/* final result for MDbuf{0] =/

MDbuf[1] = MDbuf[2) + dd + aaa;
MDbuf [2} = MDbuf[3] + aa + bbb;
MDbuf[3] = MDbuf[0] + bb + ccc;

MDbuf [0] = ddd;

t£1=MDbuf (0] +MDbuf [1]+MDbuf (2] +HDbuf {3];

biti=(t1) tbitl;
bit2=tbit?2;
mi=tm;
for(i=0;1¢=3;i++)
{
«(ml+4+)=bit1;
bit1>>=8;
}
for(i=0;i<=3;i++)
{
*{m1++)=bit2;
bit2>>=8;
}
mi=tm;
return{mi);

int i;

unsigned
unsigned
unsigned
register

int w=0;
char *tm;

long tbiti,tbit2,bitl,bit2;

unsigned long ti;

decryption step */

/xset up values according to RIPEM Hash function </

register unsigned long aa,bb,cc,dd;
register unsigned long aza,bbb,ccc,ddd;

unsigned

MDbuf {0]
Mbbuf [1]
MDbuf 2]
HDbuf [3]

long MDbuf [4);

= 0x67452301UL;
= Oxefcdab89UL;
= 0x98badcfeUL;
= 0x10325476UL;

aa=aaa=MDbuf [0] ;
bb=bbb=MDbuf [1];
cc=ccc=MDbuf (2]
dd=ddd=MDbuf [3];

2

3

P
i
:
i

APPENDIX D. LISTINGS

tm=ml;
tbit2=bit1=BYTE_TO_UL(m1);
t1=tbiti=bit2=BYTE_TO UL(mi+4);

/% round 4 of RMD */

11(aa, bb, cc, d4d, ti, 11);
11(dd, aa, bb, cc, ti, 12);
II{cc, dd, =a, bb, t1, 14);
IT(bb, cc, dd, aa, t1, 15);
11{as, bb, cc, dd, ti, 14);
11(dd, aa, bb, cc, ti, 15);
1l(cc, dd, as, bb, ti, 9); |
I11(bb, cc, d4d, aa, ti, 8);
TI(aa, bdb, cc, dd, ti, 9); !
11(dd, aa, bb, cc, t1, 14);

1I1(cc, dd, aa, bb, ti, 5);

11(bb, cc, dd, aa, ti, 6);

II(aa, bb, cc, dd, ti, 8);

11(dd, aa, bb, cc, ti, 6);

1i{cc, dd, aa, bb, t1, 5);

11(bb, cc, dd, aa, ti1, 12);

/% parallel round 2 of RMD =/

HHH(aaa, bbb, ccc, ddd, ti, 9);
HHH(ddd, aaa, bbb, ccc, t1, 13);
HHH(ccc, ddd, aaa, bbb, ti, 15);
HHR (bbb, ccc, ddd, aaa, ti, Ty
HHH(ama, bbb, ccc, ddd, t1, 12);
HHH(ddd, aaa, bbb, ccc, ti, B8);
HHH(ccc, ddd, aaa, bbb, ti, 9);
HHH (bbb, ccc, ddd, aaa, ti, 11);
HHH(aaa, bbb, ccc, ddd, ti, 7);
HHH(ddd, aaa, bbb, ccc, ti, T);
HHH(ccc, ddd, aaa, bbb, ti, 12);
HHH(bbb, cce, ddd, aaa, tl, 7);
HHH(aaa, bbb, ccc, ddd, ti, 6);
HHH(ddd, aaa, bbb, ccc, t1, 15);
HHH(ccc, ddd, aaa, bbb, ti, 13);
HHH(bbb, ccc, ddd, aaa, t1, 11);

=3

o

ddd += cc + MDbuf{1l; /» final result for MDbuf{0] =/
MDbuf{1] = MDbuf[2) + dd + aaa;

MDbuf [2] = MDbuf[3] + aa + bbb;

MDbuf[3] = MDbuf[0] + bb + ccc;

HDbuf [0] = ddd;

tl=MDbuf[O]+MDbuf[1]+MDbuf[2]+HDbuf[3];
bit2=tbit2 (t1);
biti=tbiti;
mi=tm;
for(i=0;i¢<=3;i++)
{
w{mi++)=bit?;
biti>>=8;
}
for{i=0;i<=3;i++)
{
w(m1++)=bit2;
bit2>>=8;
}
mi=tm;
return{mt);

}
static unsigned char seblou_r(unsigned char «mi) /« Blowfish R */

int i;

unsigned char »tm;

unsigned long tbitl,tbit2,bitl,bit2;
unsigned long t1;

tm=mi;
tbit2=bit1=BYTE_TO_UL{m1);
t1=tbit1=bit2=BYTE_TO_UL(mi+4);

t1=(blou0[key_schedule[iround][0]'(‘(m1+4))]+blou1[key.schedule[iround][1]"(5(m1f5))])’
blouZ[key_schedule[iround][2]”(-(m1+6))]4blou3[key_schedule[iround}(3]”(t(m1+7))];

bit2=(t1) tbit2;
biti=tbiti;
mi=tm;
for(i=0;i<=3;i++)
{
s (mi++)=bitl;
bit1>>=8;
}
for{i=0;i¢=3;i++)
{
*(mi++)=bit2;
bit2>>=8;
}
mi=tm;
return(mi);

APPENDIX D. LISTINGS

static unsigned char *dblow_r(unsigned char *m1) /¥ decryption step */

{

}

int i;

unsigned char «tm;

unsigned long tbitl,tbit2,bitl,bit2;
unsigned long t1;

tm=ml;
t1=tbit2=bit1=BYTE_TO_UL{m1);
thit1=bit2=BYTE_TO_UL(m1+4);

t1=(blovo[keyﬁschedule[iround][0]‘(‘m))]+blou1[kay_schedu)a[ironnd][1]‘(‘(m1*l))])’
blouz[key_schedule[iround][2]‘(:(mx+2))]+blou3[key,schuduxa[iround][3]‘(~(m1e3))];

biti=tbit1~(t1};
bit2=tbit2;
mi=tm;
for(i=0;i<=3;i++)
{
*(mi++)=bitl;
biti>>=8;
}
for(i=0;i<=3;i++)
{
¥(mit+)=bit2;
bit2>>=8;
}
mi=tm;
return{mi);

static unsigned char *eufn(unsigned char «m1) /+ encryption of UFN 16:48 =/

{

int i;

unsigned int w=0;

unsigned char stm;

unsigned int source,tbiti,bit2; /* the target would be biti o bit2 =/
unsigned long tbit2,bitl;
unsigned long t1,t2;
unsigned int s1,82;
tm=mi; /estore address of mi */
tbit2=bit1=8YTE_TO_UL(m1);

tbit1=bit2=BYTE_TO_UI(mi+4);

source=BYTE_TO_UI{m1+6);

s1=ROL16(source,6); /x the two rotations by G and 8 bits increase */
s2=ROL16(s1,8); /+ diffusion of the input to the round function */
t1=(bloud[key_schadule[iround] [2]" (unsigned char)sil)” (blowi(key_schedule(iround] (4]~ (unsigned char)s2]};
t2=(blcw2[key_schedule[iround][3]"(unsignud char)(sl))B)])'(blou3[koy_scheduln[iround][5]”(unsignad char) (82>>8)1);
biti"=tl;
bit27=t2;
mi=tm;
for(i=0;i<=1;i++)
{
«(mi++)=source;
source>>=8;
}
for(i=0;i<=3;i++)
{
»(mi++)=bitl;
bit1>>=8;

for(i=0;i<=1;it++)
{
»(mi++)=bit2;
bit2>>=8;
}
mi=tm;
return{ml);

}

static unsigned char *dufn(unsigned char «mi) /+ decryption step */
{
int i;
unsigned int w=0;
unsigned char *tm;
unsigned int source,tbitl,bit2;
unsigned long tbit2,biti;
unsigned long t1,t2;
unsigned int 51,82

/+ the target would be bitl o bit2 */

tm=ml; /sstore address of mi #/
bit1=BYTE_TO.UL(m1+2);

bit2=BYTE_TO_UI(m1+46);

source=BYTE_TO_UI(mi);

s1=ROL16(source,6);

s2=R0L16(s1,8);
t1=(blou0[key_schedule[iround][2]"(unaigned char)sl])"(blowi[key_schcdule[iround][4]"(unsigned char)s2]);

t2=(blou2[key_schedule[iruund][3]"(unsigned char)(sl>>8)])'(b10v3[key,schedulc[iround)[5]'(unsigned char) (82>>8)1);

biti"=tl;

bit27=t2;

mi=tm;

for(i=0;i<=3;i++)
{

#(mi++)=biti;

T —

APPENDIX D. LISTINGS

bit1>>=5;
}

for(i=0;i<=1;i++)

*(mi++)=bit2;
bit2>>=8;
}
for(i=0;ic=1;i++)
{
«(mi++)=source;
source>>=8;
}
mi=tm;
return{mi);

}

static unsigned char *eufn40_24(unsigned char sm1)/% ancryption of UFN 40:24 +/
{

int i;

unsigned int biti;

unsigned char *tm;

unsigned char bit2,bit3;

unsigned long bit4;

unsigned long t%;

unsigned char hash_input(8);

tm=mi;

bit1=BYTE_TO_UI(m1);

bit2=+(mi+2);

bit3=#(m1+3);

bit4=BYTE_T0O_UL(m1+4);
hash_input [0]=bit3;

for(i=0;i<4;i++)
hash_input [i+1]=bit4>>(8*i);

t1=(blow0[key_schedule[iround] (0] hash_input(01]+
blowt[key_schedule[iround) [1] hash_input[1]3)~
(blou?[key_schedule[iround][2]"hash,input[2]]*
blow3[key_schedule[iround] [3} hash_input{3}1)+
blow2[key_schedule(iround] {4] hash_input[41];

bit2"=(unsigned char) ti;
t1>>=8;
bit1"=(unsigned int) ti1;
mi=tm;

=(mi++)=bit3;
for(i=0;i<=3;i++)
{
*{ml++)=bit4;
bit4>>=8;
}
for(i=0;i<=1;i++)
{
*(mi++)=bitl;
bit1>>=8;
}
*(mi++)=bit2;
mi=tm;
return{m1};

}

static unsigned char xdufn40_24(unsigned char ¥m1) /¥ decryption step «/
{

int i;

unsigned int bitl;

unsigned char *tm;

unsigned char bit2,bit3;

unsigned long bité4;

unsigned long t1;

unsigned char hash_input[5];

tm=ml;
bit1=BYTE_TO_UI(m1+5);
bit2=s{mi+7);
bit3==(m1);
bit4=BYTE_TO_ UL(m1+1);

hash_input [0)=bit3;

for(i=0;ic4;i++)
hash,input[i+1]=bit4>>(8ti);

t1=(blow0 [key_schedule{iround] [0]~hash_input[0]]+
blout [key_schedule[iround] [1] “hash_input[1]])"
(blow2[key_schedule[iround] [2] “hash_input[2]]+
blow3(key_schedule[iround] [3]"hash_input[3]])+
blow2[key_schedule[iround] (4] hash_input[4]];

pit2”=(unsigned char) ti;
ti1>>=8;
biti~=(unsigned int) ti;
mi=tm;
for(i=0;ic=1;i++)
{
=(mi++)=bitl;
bit1>>=8;
}
“(mi++)=bit2;
= (mi++)=bit3;

APPENDIX D. LISTINGS

for(i=0;i<=3;i+4+)
{
*(mi++)=bit4;
bit4d>>=8;
¥
mi=tm;
return{(ml);

static unsignad char seblow_l{unsigned char wmi) /% Bloufish Ls/
{

int 1;

unsigned long w=0;

unsigned char *im;

unsigned long tbiti,tbit2,bit1,bit2;

unsigned long ti;

tm=ml;

tbit2=biti=BYTE_TO_UL(m1);

t1=tbit1=bit2=BYTE_TD_UL(m1+4};

t1=(blouo[key,schedule[iround][O]’(tmk)]+bloul[key_schadulu[iround][1]'(*(ml+l))])‘
blow2[key_schedule[iround] (2]~ (x(m1+2)))+blou3[key_schedule(iround] [3]~ (*(m1+3))]1;

bit1=(t1) tbitl;

bit2=tbit2;
mi=tm;
for{(i=0;i¢=3;i++)
{
#(mi++)=bitl;
biti1>>=8;
}
for{i=0;i<=3;i++)
{
*(mi++)=bit2;
bit2>>=8;
}
mi=tm;
return(mi);
}
static unsigned char *dblow_l(unsigned char *mi}/* encryption of UFN 16:48 »/
{
int i;

unsigned int w=0;

unsigned char »tm;

unsigned long tbitt,tbit2,bitl,bit2;
unsigned long t1;

tm=mi;
t1=tbit2=bit1=BYTE_TO_UL(mi};
tbit1=bit2=BYTE_TO_UL(m