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Thesis Summary

The subject of this thesis is the n-tuple network (RAMnuet). The major advantage of RAMnets is
their speed and the simplicity with which they can be implemented in parallel hardware. On the
other hand, this method is not a universal approximator and the training procedure does not involve
the minimisation of a cost function. Hence RAMnets are potentially sub-optimal. It is important
to understand the source of this sub-optimality and to develop the analytical tools that allow us to
quantify the generalisation cost of using this model for any given data. We view RAMnets as classifiers
and function approximators and try to determine how critical their lack of universality and optimality
3.

In order to understand better the inherent restrictions of the model, we review RAMnets showing
their relationship to a number of well established general models such as: Associative Memories,
Kanerva’s Sparse Distributed Memory, Radial Basis Functions, General Regression Networks and
Bayesian Classifiers.

We then benchmark binary RAMnet model against 23 other algorithms using real-world data from
the StatLog Project. This large scale experimental study indicates that RAMnets are often capable of
delivering results which are competitive with those obtained by more sophisticated, computationally
expensive models.

The Frequency Weighted version is also benchmarked and shown to perform worse than the binary
RAMnet for large values of the tuple size n. We demonstrate that the main issue in the Frequency
Weighted RAMuets is adequate probability estimation and propose Good-Turing estimates in place
of the more commonly used Maximum Likelihood estimates.

Having established the viability of the method numerically, we focus on providing an analytical
framework that allows us to quantify the generalisation cost of RAMnets for a given dataset. For the
classification network we provide a semi-quantitative argunment which is based on the notion of Tuple
distance. It gives a good indication of whether the network will fail for the given data. A rigorous
Bayesian framework with Gaussian process prior assumptions is given for the regression n-tuple net.
We show how to calculate the generalisation cost of this net and verify the results numerically for one
dimensional noisy interpolation problems.

We conclude that the n-tuple method of classification based on memorisation of random features
can be a powerful alternative to slower cost driven models. The speed of the method is at the expense
of its optimality. RAMnets will fail for certain datasets but the cases when they do so are relatively
easy to determine with the analytical tools we provide.

Keywords: n-tuple classifier, RAMnets, generalisation cost, Bayesian inference, Gaussian process
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Chapter 1

General Introduction

1.1 Pattern Recognition and Classification

Pattern recognition and classification are tasks that humans perform routinely and apparently without
effort. The invention of a digital computer initiated numerous attempts to automate and accelerate
solutions of practical problems in these domains. Representative examples of applications imvolving
pattern classification include, for example, signature verification, speech recognition, medical images
analysis or customer credit authorisation.

One of the most fruitful approaches to pattern recognition has been by statistical methods. Statis-
tical pattern recognition (Bishop, 1995: Ripley, 1996) provides a rigorous unifying lramework, which
allows us to describe formally the process of classification.

The raw data z is given in terms of measurements (features) «;(a), which may be written as a
T-dimensional vector o« = {avy, an, . .. yaop ). The feature vector « is a function a(a) of the pattern
z belonging to class ¢ which is an element of the finite set of ¢lasses {1,2,...,C). A classifier
can be viewed as a function g(a) that assigns an unlabeled pattern r to a class, on the basis of
the measurements a. A correct classification corresponds to () = ¢ while a missclassification
corresponds to any other classification, ie., g(«) # c¢. The structure of the classifier is learned
from the data, which is regarded as a sample from a population of patterns. The function ¢ can
be constructed by estimating the class probability distributions of features and applying a statistical
decision theory to arrive at an optimal decision.

Bayesian statistical inference (Berger, 1993: Gelman el al., 1995) enables us to make decisions
about ¢ in terms of probability statements so as to minimise the probability of error. Before any
data is observed our prior belief about ¢ is specified by the probability distribution plc). When the

measurement a becomes available we condition ¢ on the known value of « using the Bayes’ rule
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plcla) = Thus, in the Bayesian approach, the pattern x is assigned to the class ¢ which
yields the maximum posterior class density plelar). We use Bayesian statistical methods extensively
in chapter 6.

Pattern recognition and classification is very much an mterdisciplinary field. There exists a plethora
of algorithms contributed from such diverse areas as physics and psychology. However, there is a

number of desirable features that every classification method should exhibit. Some of them are listed

below:
e Accuracy. The method should be accurate regardless of the data it is applied to.
e Speed of operation. The algorithm should process the data as fast as possible.

e Comprehensibility. It is important to understand the principles under which the method oper-

ates. Otherwise it may be not implemented correctly or the results may be misinterpreted.

e Learning time. In the real-world environment, it is essential that the classification rule be learned

quickly.

The ideal classification method would score highly on all the above features. In practice, however,
one has to trade-off speed and learning time for accuracy. It is difficult to answer the question “Is a
method A better than method B?” because the answer will depend on the dataset used for evaluation
and the importance that we attach to cach of the factors. It may happen, for certain data, that a
fast, but potentially sub-optimal model will outperforn a slower but niore accurate method.

I this thesis we discuss a classification method which belongs to the wider class of models called
artificial neural networks (Haykin, 1994; Zurada, 1992). These models were inspired by psychological
and biological studies of humans performing pattern recognition tasks but quickly evolved into rich
mathematical structures having little or no resemblance to biological neural nets.

An artificial neural network consists of a large number of processing elements (neurons) connected
by weighted links (synapses). Each processing element has the same simple non-linear functionality
and the power of the network comes from its massively parallel structure.

Neural networks have a number of attractive features. They have the ability to adapt to changes in
the surrounding environment by adjusting their weights or the activations of the processing elements.
It 1s often claimed, that they are inherently fault tolerant because the processing is distributed among
a large number of elements and the failure of one unit little affects the performance of the entire
ensemble. Furthermore, neural nets can compute non-lincar mapping functions, which is important
due to the inherent non-linearity of many physical processes. All these features make neural networks

well suited for the purpose of pattern recognition.
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Figure 1.1: Structure of digital and analogue neurons. The digital neuron (RAM node) samples at
random n components of the binary input vector x. This n-tu ple of bits ), x5, ... 2, can be viewed
as an address «(x). The output of the RAM node is equal to the contents of the ml(heswd memory
cell. The analog neuron with linear threshold @ calculates the weighted sum of the inputs. If the sum
15 greater than the threshold 0 the output is 1 and 0 otherwise.

1.2 Motivation for Researching RAMnets

RAMnets (Random Access Memory networks) are networks of simple processing elements operating
on binary data. Unlike other neural networks, the processing element is a RAM node performing a
simple decoding and look-up operations. Each RAM node has n mputs sampled at random from the
input vector x. The n-tuple of bits Xy, To, ..., 2, can be viewed as an address a(x). The output of
the RAM node is equal to the contents of the addressed memory cell.

The analog neuron with a threshold 0 calculates the weighted sum of the inputs. If the sum is
greater than the threshold # the output is 1 and (0 otherwise (The thresholding function fy(z) = 1 if
z > 0 and 0 otherwise.) The structure of the digital and analog node is shown in figure 1.1.

The RAM nodes are usually arranged into a one-layer structure and their outputs are added
order to provide an overall output (score). Because of the summation involved, one can argue that
the structure is essentially two layer with the second layer performing the addition. However, in the
n-tuple community the former view prevails, i.e., only the layers of RAM nodes are counted.

It is interesting, that due to the nonlinear processing carried out by each RAM node, one layered
RAMnets can cope with problems that cannot be solved by a single layer of linear threshold units
(LTU). It has been demonstrated (Al-Alawi & Stonham, 1992) that the functional capacity (defined
as the number of Boolean [unctions that can be computed by a node) of RAM nodes far exceeds that
of LTUs.

One layer RAMnets, unlike analog neural networks, possess a number of features which jointly

contribute to their short training times and operational speed:
o The cost function is not used for training.

o Nonlinear processing is accomplished using one layer of nodes.

10
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e There are no weights to be adjusted®.

e There is no pattern credit assignment problem.

Lack of the cost function. The training algorithm for RAMnets does not involve a cost function.
It is non-iterative and each pattern is presented to the network just once. The n-tuple sampling
process involves basic operations such as decoding, addressing and storing in the memory which are
low level, fast operations well suited for implementation in binary hardware.

RAMnets can be compared with the Multilayer Perceptrons and Radial Basis Function (Hertz
el al., 1991; Bishop, 1995), models in which the training algorithm is cost driven. MLPs are notorious
for their slow training. The generalised delta rule and its derivatives (scaled conjugate gradient, quasi
Newton methods) minimise the cost function iteratively. Calculation of the first or second order
derivatives is required to facilitate this task. The training data has to be presented many times to the
network so that the algorithm can carry out a search for the minimum of the error function using the
gradient information.

RBE models in which the basis functions ¢; are combined linearly using weights w; to provide the
network output y = W& can be trained much faster than MLPs. For the quadratic cost function,
the weights W can be {ound by calculating the pseudo-inverse &' and multiplying it by the matrix
T of the target outputs, ie., W' = &'T.

It is obvious, that the matrix inversion or the gradient descent are computationally more expensive

than the memorisation of simple input data features.

RAMnets are weightless one layer networks  One layer RAMnets can be viewed as networks
with all weights set to one (which amounts to no weights at all, hence RAMnets are also known as
weightless neural networks). Each node performs a simple decoding operation and the output of the
network is just a sum of the contents of memory locations addressed by the test patiern.

MLPs as well as RBFs contain the nodes which implement complicated non-linear functions (e.g.,
Gaussian, sigmoid, hyperbolic tangent) of the inputs. In RBFs there is one and in MLPs two or more
layers of adjustable weights on the connections between the nodes. Consequently, propagating the
mput pattern through the network is more time consuming than in weightless systems with simple

units.

Pattern credit assignment Pattern credit assignment problem is concerned with the ability to

determine appropriate parameters of the network for the given training data. In MLPs information
o o

'In the principle, the memory contents m, could be viewed as weights but because m, are binary they have
traditionally been viewed as RAM node’s activation values. Hence the term “weightless neural networks”.

11
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acquired from the data is di‘st.ribut‘ed across the real-valued weights as the result of back-propagating
the derivatives of the cost function with respeci to the network parameters. It is not possible to
determine, for a given training pattern, the contribution it has made to the weight matrix. Therefore,
if some patterns are removed from the training set, we have to retrain the system in order to determine
the new weights.

This type of problem does not occur in RAMnuets. For any training pattern we know exactly what
memory locations have been updated. Consequently, given the memory contents of a RAMnet trained
with dataset of size N we can infer the state of the system trained on N — & patterns (but we need to
keep a &k + 1 integer tally). One of the benefits of this property is, for example, the ability to perform

cross-validation (a method for calculating the error of the network) at recognition time.

There are two main one layer RAMnet architectures: WISARD (Wilkie, Stoneham and Aleksander’s
Recognition Device) and ADAM (Advanced Distributed Associative Memory). The former was orig-
mally proposed by Bledsoe and Browning (Bledsoe & Browning, 1959) and further researched by
Aleksander and Stonham (Aleksander & Stonham, 1979) in the context of pattern recognition. 1t has
been successfully applied to inspection and quality assurance, identification and sorting, movement
and change detection and robot vision (see chapter 3 for full review). Recently, modified one layer
RAMnets have been shown (Allinson & Kolez, 1995b) to perform well in solving regression problems.

The Associative Neural Architecture ADAM (Austin, 1989a) can be viewed as an extension of the
binary RAMnet. It found its application in infra-red image processing (Austin ¢l al., 1993), analysis
of document fax images (O’Keefe & Austin, 1994), uncertain reasoning (Austin, 1992; Lees el al.,
1995) and in knowledge based systems (Austin, 1991). It can be, as most binary RAMnets, casily
implemented in parallel hardware (Austin ¢l al., 1991). Unlike WISARD, ADAM features two stage
processing which increases the capacity of the system at a cost of a slight increase in the amount of
computation. The first stage associates an n-tuple processed input with a randomly generated class
vector (in WISARD this class vector is a deterministic l-out-of-C pattern class code) and the second
stage associates this class vector with the desired output.

It should be kept in mind that the appealing features of one layer RAMnets tend to disappear if
the functionality of the RAM node is modified or the units are arranged in multiple layers. There
1s, in fact, a number of weightless neural network architectures which modify the basic RAM node
to extend the functionality of the system. Probabilistic Logic Node (PLN) (Aleksander & Morton,
1995) can store three states: 0, 1 and u (uncertain). If the cell in an uncertain state is addressed, the
node outputs 1 with probability 0.5. Other derivatives include probabilistic RAM (pRAM) (Gorse &

Taylor, 1993) and the Goal Seeking Neuron (GSN) (Filho el al., 1991). They all can be arranged in
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multiple layers and trained using reinforcement algorithms. However, the additional functionality of
these systems comes at the cost of the time to learn.

Let us consider as an example a multi-layer PLN network (Al-Alawi & Stonham, 1992) in which the
outputs of one layer are tuple sampled by the next one. We note that this architecture (RAM pyramid)
cannot be trained with the sim‘ple one pass algorithm used in WISARD because the output of the
net depends on the activations in the hidden layers. The training algorithm is iterative and requires
a repeated presentation of the training data. Initially, all nodes are in the uncertain (probabilistic)
state. The training vector is presented to the net and the activations propagated towards the output.
If the output of a node in the final layer agrees with the teaching activation, the RAM cells addressed
by the teaching input retain their randomly generated values, i.e., they assume deterministic states (
or 1. If the activation of the output node is different from the teaching output the procedure is more
complicated. Essentially, the algorithm tries to match the actual response to the teaching output.
This may be achieved by considering all possible output combinations of the uncertain RAM nodes
in the previous layers. If this fails, the whole network is punished by putting all the RAM nodes into
an uncertain state, the training data is randomly permuted and the algorithm restarted.

Consequently, the RAMnets with an extended architecture are much slower thain ADAM or WIS-
ARD which implement a one pass training algorithm. In this thesis we will focus on the fast, most
basic one-layer WISARD architecture. Although very good results have been reported i a number
of applications (Roliwer & Tarling, 1993: Rohwer & Lamb, 1993; Ullmann & Kidd, 1969; Ullmann,
1969) very few studies exist that compare the performance of WISARD with other methods (Ro-
hwer & Cressy, 1989). In fact, Austin ends his review of RAMnets (Austin, 1995) with the following
statement:

“The most useful addition to the future research in RAM based systems would be a
comparison of the methods against a set of standard benchmark problems.”
In order to fill this gap, we conduct a large scale experimental study of the binary RAMnet using the
StatLog data (Michie el al., 1994). The StatLog project was launched to compare 23 classification al-
gorithms, testing them on large-scale and commercially important problems. Building on this research
work allows us to compare the performance of the n-tuple classifier with well established models such
as Radial Basis Functions, Multilayer Perceptrons or k-Nearest Neighbours.

[t 1s well known that one-layer RAMnets are not universal approximators. This was demonstrated
for the intra ex-or function (Austin, 1995). Inability of the net to represent the best solution can be
viewed as a model error. Another potential source of the sub-optimality of WISARD architectures is
the training algorithm which does not minimise an expected generalisation cost. This can be viewed

as an estimation error. Because these two sources of error exist in RAMnets, it is difficult to predict,

[
N
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for a given dataset, if the method will fail or succeed.
We reexamine the issue of the accuracy/speed trade-off in the n-tuple classifier both experimentally
and analytically. We point out the factors determining the speed and sub-optimality of the method.
A fast but sub-optimal method can be competitive for a certain class of problems. It is highly
desirable to identify quickly whether a given dataset belongs to this class or not. We develop formal
tools that explain why RAMnets perform better on certain datasets than on others and propose a

Bayesian framework that allows one to calculate the generalisation cost of regression RAMnets.

1.3 Overview of the Thesis

Chapter 2 contains the definition of the n-tuple method and an overview of the fundamental prop-
erties of this model. Alternative RAMnet models as well as algorithms for mapping real valued vectors

into bit strings are presented. The issue of saturation in binary RAMnets is also discussed.

Chapter 3 reviews RAMnets and the theoretical tools that can be used to analyse them. RAM-
nets are compared with well-established models such as Associative Memories, Bayesian Classifiers,
and General Regression Networks. A connection to the Walsh expansion and discrete probability

estimators is also outlined.

Chapter 4 presents the experimental evidence of the feasibility of RAMuets. The method is tested
on 11 real-world datasets used in the StatLog project and the results are compared with other classi-
fication methods. A semi-quantitative method is developed which gives a good indication of whether

a RAMnet will perform well on the given dataset or not.

Chapter 5 discusses the Frequency Weighted version of the n-tuple classifier and compares its
performance with that of the binary RAMnet. The underlying “zero tally problem” is identified and

an alternative probability estimation method proposed.

Chapter 6 introduces a Bayesian framework for estimation of the expected cost of using regression
RAMnets for noisy interpolation problems. The approach taken can cater for any method and is

especially useful for reasoning about models that do not use an explicit cost function during training.

Chapter 7 concludes the thesis with a surmmary of the results and suggests directions for future

research.

14
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1.4 Publications

The content of this thesis represents original research. The work within has nol previously appeared
elsewhere. with the exceplion of those research papers produced during the normal course of ils prepa-

ration.

Material from chapters 3.4,5 was presented at the Weightless Neural Network Workshop 1995. The
research work described in chapter 6 is to be presented at the NIPS 96 Conference in December 1996.

The following research papers have been published or have been accepted for the publication:

e Rohwer, R., & Morciniec, M. 1995a. Benchmarking the N-Tuple Classifier with StatLog Datasets.
Pages 29 = 34 of: Bisset, D. (ed), Proceedings of the Weightless Neural Network Workshop 1995,

Computing with Logical Neurons.

e Rohwer, R., & Morciniec, M. 1995b. Good-Turing Estimation for the Frequentist N-Tuple
Classifier. Pages 93 - 98 of: Bisset, D. (ed), Proceedings of the Weightless Newral Nelwork

Workshop 1995, Compuling with Logical Neurons.

e Rohwer, R., & Morciniee, M. 1996a. A Theoretical and Experimental Account of the N-Tuple

Classifier Performance. Neural Computation, 8(3), 657-670.

e Rohwer, R., & Morciniee, M. 1996b. The Theoretical and Experimental Status of the N-Tuple

Classifier. Neural Networks. To appear.

e Rohwer, R., & Morciniee, M. 1997. The Generalisation Cost. of RAMnets. /n: Jordan, M.C.
Mozer M1, & Petsche, T'. (eds), Advances in Neural Information Processing Systems, vol. 9.

Morgan Kaufman. To appear.

1.5 Notation

I have tried to develop a consistent notation following gencrally approved conventions. [ use bold face
to denote vectors (lower case) and matrices (upper case). All vectors are considered to be column
vectors so that, for example, xt = (zy,29,...,z4). In general, I use a subscript to denote components
of a more complex object and a superscript to list a number of objects of the same type. The element
of a matrix A will thus be denoted as A;; (with the first subscript referring to a row) whereas a set
of training vectors will be {xl X2 ,x’N}. The Euclidean length of a vector x will be referred to as
[[x]], the Hamming length of a binary vector x will be symbolised with |x|, (the Hamming distance

between two vectors as H (u,v)) in order to distinguish it from the Manhattan distance |x|,, (also
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denoted as M (x,y)). I use det[A] to stand for a determinant of a matrix A and tr [A] to denote
the trace of a matrix A. The Kronecker delta symbol appears quite often and has the usual meaning
60ij = 1if i = J. & ; = 0 otherwise. The letter P denotes discrete probability while p is reserved for

continuous probability density. The expectation of a random variable y is denoted as & [y] and the

GENERAL INTRODUCTION

variance as var [y].

\

‘The most important objects and the corresponding notation are gathered in the table below.

Symbol | Meaning

n The size of a tuple

T The number tuples

d The dimension of the original input space

R The dimension of the discretised input space

apfu) The address generated by the k-th tuple for a pattern u

nik, ) The input vector’s component corressponding to the j-th bit in the k-th tuple
Meio The memory contents at discriminator ¢, i-th RAM node, address « in that node
ptr The number of training patterns

Do The number of training patterns of class ¢

prrn The training dataset

Dt The number of test patterns

2 The testing dataset

x! The i-th input vector

1:; The j-th components of the i-th input vector

Yy The i-th teaching output

Ye The output of the ¢-th discriminator

p The Tuple distance

Pt The Kanerva distance

a Bit resclution of the CMAC code substrings

K CMAC code threshold of Hamming-Manhattan distance proportionality

Table 1.1: Notation
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Chapter 2

N-Tuple Classification Method

2.1 Introduction

This short chapter introduces the n-tuple method of classification. Firstly, an informal description of
how it operates is given, then a suitable notation is developed in order to allow us to reason about
this model in a more formal way. In section 2.4 we present two tuple mapping schemes: random and
exclusive and discuss their suitability for the classification RAMnets.

Various extensions to the basic binary RAMnet can be easily obtained by manipulating the tally
mformation in different ways. A number of WISARD based architectures is briefly presented in section
2.5.

RAMnets process binary valued data. If the inputs are real-valued vectors they must be t(rans-
formed into the binary domain. Suitable mapping algorithms are presented in section 2.4.

An important issue in the binary RAMnets is the memory saturation which occurs for small values
of the parameter n. In section 2.7, we give upper and lower bounds on the expected saturation level

for an arbitrary n, given the saturation of the system comprising one-tuples.

2.2 Informal Description of RAMnets

N-tuple models have been originally developed for image classification (Bledsoe & Browning, 1959;
Ullmann & Kidd, 1969). Let us consider, as an example, a simple image recognition task of distin-
guishing uppercase letters. Suppose that the images of letters have somehow been captured, rescaled
to fit into a rectangular area of size K and binarised. The data is then divided into two datasets: one
used for training and the other for testing the model’s performance. Images in the training set are

hand labeled with the correct class, whereas the classifier is expected to provide a correct label for
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Figure 2.1: The Architecture of the Binary RAMnet.

the patterns in the test set.

In order to accomplish this task, RAMnet system makes a number, say 7', of measurements «a(v) =
{a(v), ... a;(v),...,ap(v)} of the unknown pattern v. The measurements are randomly chosen
subsets of n pixels. The value of the i-th measurement (feature), «;(v), is a positive integer in range
[0,27 — 1]. The original binary pattern v of length % is therefore represented by a 1" dimensional
feature vector a(v).

The RAMnet stores information about which components of the feature vector occurred in the
training sample (which requires only 2" x 7" bits per class). Consequently, the storage requirements
for the system are substantially reduced (naive lookup table of patters would call for as much as

L

2% bits per class). On the other hand, because the capacity of this “feature space” is smaller than
that of the original binary space, a number of different input patierns will have exactly the same
representation in the feature space and it will not be possible to reconstruct the original patterns from
the information available. This can, however, be an advantage if similar patterns are mapped into the
same (or a similar) feature vector. (This procedure imposes a sioothness in the tuple space.) When

frr- )
Yoo uPTT Y the system should be able to generalise

trained with a set D" of training vectors {u
and classify correctly a set D! of test vectors {v', ... ,VDM] larger than the traimning set.
RAMnets store the information about the components of the feature vector a(u) separately for
each pattern class ¢ in the memory blocks called discriminators. The i-th component «;(u) is stored
in the i-th RAM node within the given discriminator. Broadly speaking, trained discriminators
contain templates of the patterns representative for a given class. The classification is accomplished

by selecting the best fitting template for a given test pattern v.
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The architecture of the RAMnet 1s extremely simple. As shown on figure 2.1 it consists of the
retina (binary array of the size of the images), tuples, memory and a comparator. Before the training
commences T tuples of size n are attached to the retina. The number of tuples is usually selected so
as to ensure a good coverage of the retina. A tuple is simply a subset of n pixels selected at random
from the retina.

The ordered set of pixels can be viewed as a feature of the pattern or an address ranging from 0 to
2™ — 1 (there are 2" possible arrangements of black and white pixels). The address, with a value say
a, can then be used to access a memory node (comprising 2" cells) in order to store some information
about the observed feature. Two 2-tuples are shown in figure 2.1. One of them samples a black and a
white pixel and has the corresponding tuple address o = 2(,5) = 10(4). The other tuple samples two
white pixels and generates the address ap = 010y = 002).

For each i-th n-tuple there are as many memory nodes, say ¢, as there are classes of patterns to
be distinguished (in our example ¢ = 26). These RAM nodes are supplied with the same address o
by the i-th tuple. A collection of RAM nodes associated with the same class is often referred to as
a discriminator because after training it contains information that allows us to discriminate between
pattern classes. In total 27 x ¢ x T memory cells are allocated for a RAMnet with 7" n-tuples. The
memory 1s reset (all cells contain a 0) just before the training commences. Note, that once the tuple
mapping to the retina is established 1t is not changed during the operation of the classifier (a new
mapping would require retraining of the system).

RAMunets are adaptive systems and have the ability to learn, given the teaching input (e.g., image
of a letter) and output (a class label, for example, “A™). Training requires only one pass through the
data set. Patterns are projected (copied) onto the retina and processed by n-tuples in parallel. The set
of addresses {ay, ..., aq, ..., ap} is generated and supplied only to the discriminator corresponding
to the teaching output. All addressed memory cells are set to 1.

Suppose that the RAMnet pictured in figure 2.1 is in the training mode. The first tuple sampled
the training pattern u representing a letter “A” and genecrated an address o) = 10¢,. This address
is used to set a 1 in the first RAM node within the discriminator A. The memory contents in other
discriminators is not affected.

The process of tuple address generation and memory updating is carried out for all the training
patterns. If a memory cell is selected more than once it does not change its contents’ and retains a 1.

Intuition tells us that patterns from the same class will tend to “overlap on tuples”, ie., they
will share a significant proportion of the addresses generated for them. Therefore, we expect that a

pattern “A” will access more cells containing a 1 in the discriminator associated with the correct class

Other RAMnet architectures store a full tally of cell’s acce
probabilities of features. We discuss such models in section 2.5.

sses made during training allowing one to estimate the
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than with any other.

Similarity of the patterns to the class templates stored in discriminators is determined during
the test phase. The patterns with unknown class assignment are processed by n-tuples. This time,
however, tuple addresses are supplied to all discriminaiors. For each one of them the number of
non-zero cells addressed is caleulated. The resulting numbers ranging from 0 to 7', the class scores,

can then be compared and the pattern is assigned to the class with the highest score.

2.3 Formal Description of RAMnets

The informal description given above will now be formalised. Introducing a suitable notation will allow
us to reason about the model in a more organised and principled manner. We will also generalise
the original binary n-tuple method to other RAMnet architectures such as the Frequency Weighted
version.

The n-tuple recognition method is used to classify patterns, which are bit strings of a given length
R. If the inputs are real-valued vectors, say x € B¢ they must be mapped onto a binary hypercube
i,

Efficient methods exists (see section 2.6) for converting real scalars into bit strings in a way that
preserves the metric properties likely to be relevant to generalisation for pattern vectors over the reals.
Therefore, no essential limitation is introduced by the requirement that patterns must be bit strings.

Several (let us say 7') sets of n distinet? bit locations are selected randonily. ‘These are the n-tuples.
The restriction of a pattern to an n-tuple can be regarded as an n-bit number « which, together with
the identity of the n-tuple, constitutes a feature of the pattern. The standard n-tuple recogniser
operates simply as follows:

A pattern s classified as belonging lo the class for which il has the most fealures in common

with a union of fealures generaled by lhe lraining patierns of thal class.

Precisely, the class assigned to unclassified patiern v is

"
argmax Z@” Z bur (uhions(v) (2.1)

i=1 ugDinn

where D™ is the set of training patterns in class ¢,

w
<
IN

z <0

0 if z>0,

?Relaxing the requirement that a given n-tuple has n different bit locations amounts to introducing a mixture of
differently sized n-tuples. Note the restriction does not disallow a single pattern component from being shared by more
than one n-tuple.



CHAPTER 2. N-TUPLE CLASSIFICATION METHOD

6i j is the Kronecker delta (6;; = 1 if i = j and 0 otherwise) and «;(u) is the #-th feature of pattern

u:
n—1
ai(u) = g i 2 (2.2)
71=0
Here uy is the k-th bit of w and n(7, j) is the bit position in u corresponding to j-th bit location of
the 7-th n-tuple. The system discussed in section 2.2 corresponds to the version with 0 = 1.
With ¢ classes to distinguish, the system can be implemented as a network of 7¢ RAM nodes. As
a result of the training procedure, the memory content mgio at address o of the i-th node allocated
to class ¢ 1s set to
Meio = Oy § b(\,n,(u) . (2.3)
‘IE‘D‘(VV‘H
Thus, mgiq 1$ set to a non-zero value if any pattern of 'D,’_,"” has feature o and set to zero otherwise.
Recognition is accomplished by tallying the set bits in the nodes of each discriminator at the
addresses given by the features of the pattern to be classified. The output y of the classifier is a ¢

dimensional integer-valued vector with components
T

Ye = Z"lcia,(vr (21)

i=]

Finally, the pattern v is assigned to class with the highest output y,.

argmax Y. (2.5)

I

2.4 Tuple Mapping

During the construction of the n-tuple network, the subsets of n bits are randomly selected. For
the i-th tuple we have a positive integer-valued mapping function 5(i, j) which returns the number
(between 1 and R) of a bit in an input bit string u which corresponds to the j-th bit of the i-th tuple,
Uy ) = a;-(u)‘V’i,j, Here o' is the binary vector representation of the i-th positive-integer-valued
component &; of the address vector «.

Let i denote a vector with 7" components, so that the i-th component is equal to the i-th tuple
mapping function 7(7,-). The function’s vector 1 will be referred Lo as a tuple mapping. Once the
mapping has been selected, it becomes permanent for the entire life of the n-tuple classifier.

There are two main types of random mappings used in RAMnets: exclusive and random. In the
former mapping type, each bit of the retina is sampled at most once. This constrains the number of
tuples to at most [ft/n|. Up to n — 1 bits may not be sampled at all, depending on the retina size R
and tuple size n. A possible theoretical advantage of an exclusive mapping is that the tuples can be

treated as independent assuming that the pixels in the retina are uncorrelated.
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Random mapping allows a retina bit to be sampled by more than one tuple. The number of tuples
T is practically unlimited, but there are at most (f) different tuples. It is possible that an n-tuple
samples just one bit n times (becoming I-tuple), or that two n-tuples sample the same subset of
n pixels (making one of them redundant). Clearly, this sampling procedure introduces correlations
between tuples. Therefore, even assuming that the pixels are uncorrelated (which is clearly implausible
m reality) one could not trivially calculate the distribution of the tuple score.

The advantage of a random mapping is that a large number of tuples can be taken even for a
moderate retina size R delivering a better statistic. Furthermore, because all the pixels are sampled
uniformly for each tuple, the analytical form of the statistic is simpler than for the exclusive mapping.

Therefore, the use of an exclusive mapping in RAMuets applied to pattern recognition appears to
be guided more by a tradition than the theoretical considerations. The reason for this can be traced
back to the paper by Bledsoe and Browning (Bledsoe & Browning, 1959) in which they state the
following:

“Some experiments were made in which non-exclusive n-tupling was used for the photo-
cells. [...] non-exclusive pairing resulted in some improvement in the percent of characters
recognized. But this improvement was at the expense of more storage space and longer
computing time. We feel that a larger gain in percent recognized can be realized, for the
same amount of storage and same length of computing time, by increasing the number of
photocells (N) and continuing to use exclusive n-tuples. In other words, we see no real
advantages in non-exclusive grouping.”
This statement is inaccurate as the exclusive mapping captures much less pixel correlation information

than random sampling and the benefits of the simplified formal analysis for the latter mapping are

significant as will be demonstrated in section 3.3.2.

2.5 Modifications of the Original RAMnet Architecture

A number of extensions to the original method have been proposed.  All of them allow frequencies
of tallies to be stored. They differ in the way that the tally information is manipulated. One of the
earliest modifications introduced was the so called Frequency Weighted n-tuple system where instead
of bimary information, frequencies of features are stored. This procedure amounts to setting the tally
truncation variable 0 to infinity in equations 2.1 and 2.3. We review this version in sections 3.2 and
3.4.2.

It is tempting to use normalised tallies so that the memory contents can be viewed as an estimate
of the probability. For example, the ratio Myio /Y Mg 15 a Maximum Likelihood estimate of the
Cx

probability P (aj|c) of the i-th feature «; conditioned on class c.

Assuming that features are independent, the output of the classifier can be related to the condi-

o
N
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tional class probability P (c|ex):

P (aqle)

P(a;) (2.6)

Pela)~ P(e)]]

This RAMnet version is interesting because of its relationship to the well understood Bayes Classifier
(see section 3.4.2). Normalised Frequency Weighted RAMnets can employ other methods of estimation
than Maximum Likelihood. We discuss this issue in chapter 5.

Yet another interesting modification makes it possible to apply RAMnets to regression problems
or as a function interpolator. For such problems we require two sets of tallies: weights myq, g0y that
accumulate the teaching outputs y' at the addresses generated by the training inputs u’ and tallies
Prag(w) Which are incremented if training input u’ generates address a for the k-th tuple.

The network’s output y(v) for an input test vector v is calculated as a ratio

-
2 Mkay(v)

y(v) & Eyiv] = S5 ——r (2.7)

Z TPhag(v)

k=1
which can be shown to approximate the conditional regression Elylv] of the output given an unknown
input v. This RAMnet is known as the n-tuple regression network and is reviewed in detail in section

3.5. We calculate the expected generalisation cost of this method in chapter 6.

2.6 Input Encoding

In many practical applications the input data is real-valued rather than binary. Because a RAMnet
can process only binary vectors w € H, the original vectors x € B4 must somchow be encoded using
a suitable mapping function M : B4 — H A (x) = u. The mapping should ideally preserve the
metric properties of the original space (Allinson & Kolcz, 1994h), because the distances between the
inputs are likely to affect the generalisation properties of the classifier. (We use Manhattan distance
as the the original metric because it can be computed elficiently.) On the other hand, it is desirable 10
keep the dimensionality £ of the binary input vector u low, so that it can be sampled with relatively
few tuples. Amongst the encoding schemes discussed, only the thermometer code (see seclion 2.6.1)
ensures that the Hamming distance is proportional to the Manhattan distance for all the mputs.
Other mapping schemes such as CMAC (Allinson & Kolez, 1994a) provide a limited proportionality

of distances in the x and u space, but they lead 1o shorter codes.

2.6.1 Thermometer Code

One of the simplest mapping schemes is the thermometer code. The idea is to quantise uniformly the

dynamic range of the attribute domain into a number, say R/d, of bins and assign to each component

[\
Lo
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Figure 2.2: Hamming distance H (u,v) between two CMAC/Gray-transformed integers vs. their
Manhattan distance M (z,y) , for 3 x 10* randomly chosen pairs of mtegers. N = 8 and a = 5. The
relationship is linear for Hamming distances up to A", and the transformed distance is bounded below
by I for greater Hamming distances.

;1:} of the 7-th input vector x* a bit string v/ with the first #‘1‘}7 bits set Lo one and those remaining
X

set to zero. The 12 dimensional binary vector u is obtained |'>;' concatenating together the d bit strings

w . The advantage of this coding scheme is that Hamming distances between the binary vectors u are

proportional to the Manhattan distances between the inputs x within a given quantisation resolution

R/d. However, if the dynamic range or dimensionality of the imputs is large, the code length may

become impractical.

2.6.2 CMAC Code

A memory-efficient method tailored to the Hamming distance underlying RAMnet generalisation (see
section 3.3.1) exists (Allinson & Kolez, 1993; Allinson & Kolez, 1994a), that constitutes a mixture of
CMAC (Albus, 1975) and Gray coding techniques.

This encoding scheme operates on positive integers so the components z; of the input vector x
must first be rescaled appropriately. Each component is encoded separately and the resulting binary
strings u; are concatenated together to yield the pattern vector u. The prescription for encoding one
component with integer value z is to concatenate K bit strings, the k-th of which (counting from 1) is
%‘4 rounded down and expressed as a Gray code. The Gray code of an integer i can be obtained
as the bitwise exclusive-or of 7 (expressed as an ordinary base 2 number) with i/2 (rounded down).
This provides a representation in a K" bits of the integers between 0 and (2¢ — 1)K inclusive, such that
if integers x and y differ arithmetically by K or less, their codes u(z) and v(y) differ by Hamming
distance H (u(z) — v(y)), and if their Manhattan distance is K or more, their corresponding Hamming

distance is at least K .

O
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(a=3. K=4) || k=1 k=2 k=3 k=4

=26 ‘2(+41—1 —§ 26{»312—1 - '_’6143—[ -7 L’Gj:.‘;l~1 — 7
=927 273&:‘1—1 —§ | 2=t _ ‘37#.;';*1 =72l 7
=98 QSi;;I—‘ —7 38:t4‘~’—1 — 7| 2 i:l:}_] -7 ‘28%‘5-—1 =7
=29 '39+41—1 -6 :’9+4‘3—1 -5 293::;}—1 — 7| SR

Table 2.1: Hlustration of the CMAC encoding for the parameter values @ = 3 and A = 4. The valid
integer range is (2° — [)A" = 28 and the code word for the integer & comprises 4 substrings of length
3. The total code length is a A" = 12 bits. The entries of the table are integer values of ﬂ’,‘\—_i rounded
down. These values are then Gray encoded and concatenated. For the out of range value @ = 29 the
code word is 101 101 100 100. This is because the Gray code of an imteger @ = 8 is 1100 and after
truncation to 3 bits we have 100. The consequence of the Gray coding and truncation is that the
increasing out of range integer values get mapped into decreasing in range values, l.e., z = 8 has the
same truncated Gray string as = 7, x = 9 has exactly the same code as ¢ = 6 and so on.

The fact that the code preserves the Manhattan distance values up to A is illustrated in figure 2.2.
An example of the CMAC code calculation appears in table 2.1. More comprehensive illustrations are
given by (Allinson & Kolez, 1993).

The size of the subspace where the Hamming distance is proportional to the Manhattan distance
can be adjusted by changing the parameter K. For a = | the CMAC code is equivalent to a ther-
mometer code with the resolution of N bits. Increasing the value of the parameter « for the constant
dynamic range (2¢ — 1)\ results in fewer code bits per attribute (if @ increases, K must be reduced
dramatically, hence the smaller overall code length /¢ = aN'd) at the expense of reducing the region

of distance proportionality.

2.6.3 Minchinton Cells Code

Minchinton cells (Bishop el al, 1990) were originally invented for processing gray level images with
n-tuple networks. The Minchinton encoding scheme is suitable for high dimensional mput data. The
idea is to use [ digital comparators (cells) which sample randomly a number (in the simplest case
two) of components of the input patiern x and provide an output uj. An arbitrary Boolean relation is
then introduced, for example z; > 2y, to describe the activity of the cell. The binary activity pattern
u of all & Minchinton cells is a code for the input x.

Research into the Minchinton encoding has been limited to the case of very high dimensional mputs
(gray level images) and uniform Boolean relations of order two in the form of inequalities. Clearly, low
dimensional data requires a number of different boolean relations because the number of Minchinton

cells with different samplings is limited (((f) for cells sampling two components).
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Random Thresholds Code
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Figure 2.3: Hamming distance H (u,v) between two random threshold encoded integers vs. their
Manhattan distance M (x,y), for 3 x 103 randomly chosen pairs of integers. d = | and a = 50. The
relationship is quasi-linear. Given that the Manhattan distance is M the expected Hamming distance
is £[H] = aM with the standard deviation § 4 = + aM(l—AM). The ellipse denotes the region
within 3 standard deviations.

2.6.4 Gray N-Tuple Processing

A different scheme for processing gray level images was proposed by Austin. Instead of mapping
integer pixel intensities into binary strings and using a binary n-tuple process defined in section 2.3
he proposed (Austin, 1988) an entirely new n-tuple technique (gray tuples). As it is very diflerent

from the binary RAMnet which we study and because it cannot be applied to lower dimensional data

(most of the datasets we use have dimensionality of order 9-57) we will not elaborate on it and direct

the reader to the above paper.

2.6.5 Random Thresholds Code

This new encoding scheme is a version of Minchinton cells code for low dimensional data. It introduces
a set of thresholds {{y,... 4, ... La}, for each component x; of the input vector x. The thresholds
are chosen at random and cover the dynamic range of the component z;. The actual value of the
component is then compared with « thresholds vielding a bit string w; of length a with bits denoting
the relation ¢4 > z;. The bit strings u; are concatenated together yielding the pattern code vector
u of length R = da. This encoding scheme is equivalent to a thermometer code if the thresholds are
placed at monotonically increasing intervals. With random thresholds the relationship between the
Manhattan distance and Hamming distance is quasi-lincar throughout the dynamic range of the input.
Given that the Manhattan distance of the J-th components of x and y is M; = |x; — yila, the expected
Hamming distance between the resulting bit strings u(x) and v(y) is £[H (u,v)] = «a Zj M; with

standard deviation 6/ (u,v) = + Zj. VaM;(1 = M;). (Consider just one attribute rescaled into the
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real line [0, 1] and two attribute values » and y. The Manhattan distance M — [& — yly corresponds
to the length of the line segment, which can also be interpreted geometrically as probability. If a
threshold ¢, falls onto the line segment, the k-th bit in the Hamming vector u(x) & v(y) will be one,
otherwise it will be zero. If the thresholds are chosen at random this procedure is a binomial trial
with the probability A/, sample size @ and number of “successes” H. If more than one attribute is
processed with a independently selected thresholds, this procedure generalises as indicated above).

This relationship is illustrated for one attribute case on figure 2.3.

2.7 Memory Saturation in Binary RAMnets

A well known phenomenon (Bledsoe & Browning, 1959; Rohwer & Tarling, 1993) occurring in the
binary RAMnet systems is memory saturation. It occurs because the bits are never reset and for
small enough n and a large number of training vectors all memory cells will eventually be filled out.
This results in the loss of the discrimination power and consequently worsened performance of the
recogniser.

The saturation level can be changed in two ways: by varying the amount of training data or the
tuple size n. By increasing the latter we are able to decrease the saturation level for a given training
set. The issue of saturation is interesting because it affects the performance of the classifier. High
saturation levels decrease the ability of the system to discriminate between patterns, whereas very
low saturation impairs the generalisation properties of the reCOENISCr,

We will now give a bound on the average saturation as a function of the tuple size n. ‘T'he saturation
se(n) of e-th discriminator is defined as the ratio of non-zero RAM locations to the total number of

cells

ot
l o
sc(n) = T Z Z Meig (2.8)

=] a=0

The average saturation s(n) for the whole RAMnet, as a function of n, is defined as
s(n) =" P(c)sa(n). (2.9)

Let us assume that the saturation level for n = | is known. We would like to extrapolate s(n) for any
n. Note, that the RAM nodes associated with I-tuples can have either all the cells set or one zero
and one non-zero cell. If all the cells of the node are set it means that the pixel sampled by this tuple
changed its value during training. A node with just one zero location corresponds to a pixel that did
not change its value at all. The latter pixels will be called stationary and the former non-stationary

pixels.

A
-
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Stationary pixels cause 50% saturation in the tuple’s RAM node as opposed to 100% saturation
induced by a non-stationary pixel. Given the saturation se(1) caused by patterns from class ¢, we can
calculate the number of stationary pixels sampled by T one-tuples as 27°(1 — s.(1)). The maximum
likelihood estimate ¢. of the probability that a randomly selected pixel in patterns of class ¢ will be

a stationary one is
ge = 2(1 = so(1)) (2.10)
and the average probability for all the discriminators is defined as

4=y P()q.. (2.11)

The probability that an n-tuple samples & stationary points is determined by the binomial distribution
with the parameters k,n, ¢ (If we do not let the tuple to sample the same pixel more than once the

distribution is hypergeometrical.)

P(n, k)= <A’> (L —q)" =k, (2.12)

Parameter & induces a partition of the set of all tuples into n + | subsets. Each n-tuple in the k-th
partition samples k stationary pixels. For the non-exclusive tuple mapping (binomial sampling) the
expected number 7'(n, k) of tuples in the k-th partition is equal to
T(n, k)= Z,( ,>i’(n,k)' (L= P, k)" = TP (n, k) (2.13)
i=0 !
Given the average saturation s(n, k) of a tuple from the k-th partition the total average saturation
can be expressed as

s(n) = ,—l—,‘Z'/’(n,i (1, k) Z/’(n k) s, k). (2.14)

k=0 k=0
The major problem is thus the estimation of s(n, k). As we increase n, it is clearly impossible to
determine the number of stationary pixels that a given n-tuple will sample, without knowing pixel
correlations. However, upper and lower bounds for this quantity can be given. Let us first consider
the upper bound on the saturation in a tuple sampling k stationary pixels. We observe that if k
pixels do not change their value during training then £ bits in the tuple address « are fixed, reducing
the number of cells that can be addressed to at most 2% which gives the upper saturation bound
on s(n, k) equal to 1/2¥. The lower bound can also be easily found. If all n pixels happen to be
stationary then only one RAM cell will have a non-zero valu giving the lower bound of 1/2". On the
other hand, if k pixels are stationary and the remaining fully correlated than at most two cells can be
addressed by the training data and this bound is increased to 1/2"=1. Consequently, the bounds on

the total saturation s'“(n) < s(n) < : s"(n) can be found to be

A
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2— P(n,n) J,, AR p
(n) D T S —27
h=(

(n, k)

Saturation is equal to the lower bound il the pixels are fully correlated, i.c., non-stationary pixel
changes are synchronised or if all of them are stationary. High saturation occurs for uncorrelated
pixels because they give rise to different tuple addresses.

Figure 2.4 shows upper and lower bounds as well as the actual saturation level as a function of the
tuple size n for a number of datasets (these will be discussed in chapter 4). In most cases the actual
saturation value for a moderate n lies in the middle of the bounding curves indicating moderate pixel
correlation. However, the individual bits for the given tuple addresses of patterns in DNA dataset
appear to be uncorrelated. The Technical set is even more interesting because the upper and lower
bounds almost overlap. This is because almost all the pixels sampled by the n-tuples are stationary
(the measured 1-tuple saturation is close to 50%). In this case P(n,n)is close to I and both bounds
approach the 1/2" curve. We also observe that as n increases the actual saturation curve approaches
the lower bound curve. This effect is due to the finite amount of the traming data.

We note that the bounds are tight for fully correlated pixels and diverge with increasing pixel
decorrelation indicating that the correlation information is required to infer the saturation level. In
other words, knowing the saturation level is as difficult as predicting the system’s performance.

Figure 2.5 demonstrates how the performance of the classifier depends on saturation (and the tuple
size n). The prevailing tendency is that the performance improves as the saturation decreases (which
corresponds to the increase in the tuple size n). Morcover, the error-bars on all the curves decrease

with saturation, i.c., systems performance becomies consistent with n mereasing.

2.8 Summary

We have introduced the main ideas behind the n-tuple method of classification. The architecture of
the system was explained and a suitable notation allowing its formal description was introduced.

RAMnets can implement two main types of mapping: random and exclusive. The first type of
mapping is preferred because, as will become apparent in the next chapter, the underlying pixel
sampling process is binomial and the number of tuples is not limited. This simplifies considerably the
analysis of the statistical properties of the systern.

RAMnets can be applied to classification problems involving real-valued inputs. The mapping of
reals into the binary space should ideally ensure the proportionality of the Manhattan distances of
mnputs to the Hamming distances of their binary codes. On the other hand, the code strings should be
as short as possible. These two properties can usually be traded-off using a parameter (K for CMAC,

a for random thresholds code).
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line) as a function of n computed for a number of datasets. The one standard deviation error-bars
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Saturation occurs in binary RAMnets for small values of the parameter n. It affects the perfor-
mance of the system in a negative way. For a given dataset it can be reduced by increasing the tuple
size. Although it is difficult to predict the exact saturation level for a given n, upper and lower bounds
on this quantity can be given. The saturation level is related to the amount of correlation in the bits

that constitute an n-tuple. Low saturation levels indicate correlated pixels.



Chapter 3

Review of the N-Tuple Networks

3.1 Introduction

In this chapter we review the research on the n-tuple method and show how RAMnets relate to well
established methods and models. We focus here on the one-layer (WISARD) architecture.

Early research work (section 3.2) tended to be experimental. Its main subject was the determina-
tion of classification performance as a function of tuple size n, tuple number 7" and type (random or

exclusive) of tuple mapping 7. In most cases the datasets used were small and not available to other

scientists.

Contemporary research is analytical (section 3.3) and concentrates on the theoretical aspects of
n-tuple classification. We discuss in detail two theoretical developments which shed some light on how
RAMnets operate: Hamming distance and Tuple distance analysis.

N-tuple systems have been poorly understood (Highleyman & Kamentsky, 1960; Bledsoe, 1961)
from their very beginning. One of the possible reasons why this method fell into a relative obscurity
is that there is no theory that would compare with the sophisticated statistical techniques available
(MacKay, 1992a; MacKay, 1992b) with optimisation-based methods.

By relating RAMnets to well established methods and models such as probability estimation and
the Bayes Classifier (section 3.4), regression estimation and Regression Networks (section 3.5), Radial
Basis Functions (section 3.6) and finally Kanerva’s Distributed Memory and Associative Memory
(section 3.7), we try to bridge the gap in our understanding of n-tuple systems or at least provide a

way of viewing them form different perspectives.

()
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3.2 Early Exploratory Research

Bledsoe et. al The n-tuple method was invented by Browning and Bledsoe (Bledsoe & Browning,
1959) in the context of character recognition. They analysed the influence of the tuple size n on
classification error rate and pointed out that saturation of the memory can occur for n = 1 and is less
likely as n increases. Because at that time storage was scarce and expensive, attention was paid to
the calculation of the memory requirements (7' x 2" x ¢) for the recogniser.

The classification rate was measured for a number of different exclusive tuple mappings which
were found to have no significant effect on the number of errors made by the recogniser. Furthermore,
exclusive mappings were compared with random mappings. The RAMunet performed better for random
mappings but Browning and Bledsoe concluded that the sane miprovement could be achieved by using
an exclusive mapping and larger values of n (which is not necessarily true, as discussed in section 2.4).
Consequently, in all the experiments exclusive mapping was used.

Two scoring methods were investigated: “maximum score” and “distribution processing”. In the
first scheme an unknown pattern u was assigned to the class ¢ with the maximum discriminator output
Yo The latter utilised the entire score vector y. The trained RAMnet was tested on a validation subset
DY of the data. For each validation vector u generated by the class ¢, the score distribution y(u;e)
was normalised by the number of tuples 77 so that 0 < yelu;e) <1 Ve, !, The validation score
distributions y(u’, ¢) were then averaged over the number of test patterns in class ¢ yielding a typical

jyval
=]

score vector y**#)(c) with components 3" (¢) = I):_l 5 yer (', e). For an unknown test pattern
v the score vector y(v) was calculated and subtracted off from ¢ class score distributions yee(e).
Pattern v was then assigned to the class ¢ vielding the mimmum distance from the typical score
distribution over ¢ classes: avrgé’nin P (y,y(v) - y(r_}w")(c)y

Distribution score processing was reported to perform better than the maximum score scheme,
especially for the handwritten data.

A simple modification of the original system was also proposed in the paper. Instead of storing a

bit of information in the memory cell me,, it would hold a tally of features a; found in the training

vectors. This modification was termed a Maximum Likelihood version and was rescarched by Bledsoe

ghted version with Maximum

o

and Bison (Bledsoe & Bisson, 1962). (Here we call it the Frequency Wei

Likelihood estimation as other estimation methods can be used for RA Mnets.)

When the address frequencies are normalised by the number of training samples, they can be
viewed as the estimates of the probability P (ei]e) of address «; conditioned on the pattern class
¢. Assuming that tuples are independent, the joint conditional address vector probability P («c)
1s a product of marginal probabilities P (a;|e¢). Minirnum classification error will be obtained il we

assign an unknown pattern u to the class with the maximum posterior £ (c|ex). For a flat prior P (¢),
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choosing a class with the maximum likelihood P (a|c) is exactly equivalent.
Instead of computationally expensive products of marginal probabilities, Bledsoe and Bison calcu-

i=1 log P (avi]e). If a memory content

lated their logarithms and added them up, using log P («|c) = Z}‘
Meia 15 zero, this poses a technical problem (the zero tally problem - we formalise it in section 5.3).
In the experiments log 0 was replaced with a small negative number ¢ chosen arbitrarily. The authors
varied the tuple size n between 1 and 6 and reported better results for the Maximum Likelihood sys-
tem than for the binary one. (This is not very surprising because for small n, binary RAMnets suffer
from saturation.) They reported that the tuples’ independence assumption, although theoretically
implausible, worked well in practice.

They also proposed a way of finding an optimal mapping. The pixels of the retina were ordered
according to their probability of being inked. Then 7" < R/n tuples were formed using pixels with
high probabilities. Again, increased system’s performance was reported. The database used was small

and comprised 500 images of handwritten numerals.

Ullmann et. al Experiments on a larger scale were conducted by Ullmann (Ullmann, 1969) who
gathered 6500 numerals written by 650 dilferent subjects. He was interested in the performance of a
binary RAMnet and its Maximum Likelihood version as a function of the tuple size n. He carried out
his study for a wider range of tuple size than Bledsoe and Bisson (I < n < 24) and found that the
binary system outperformed the Maximum Likelihood method.

He gathered the statistics of n-tuple states and noted that with a fixed amount of training data
the probability of a particular tuple address a; occuring decreases rapidly with increasing n. In most
of the RAM cells m, o = 0 and those which are non zero hold insufficient statistics to be used asg
probability estimates in the Maximum Likelihood systen. Consequently, an increase of the tuple size
beyond certain threshold will result in a worse performance of the systerin. Ullmann observed that the
binary version, which does not rely on probability estimates, although suffering from saturation for
small values of n, maintained better classification rates with n increasing than Maximum Likelihood
system.

The problem of supplying enough of the training data when n is large was also mentioned by the
author in the context of typed numeral recognition (Ullmann & Kidd, 1969). Memory was expensive
in those days and a considerable research effort was put into finding storage efficient architecture
modifications (Ullmann, 1971). Ullmann investigated the use of random superimposed coding (zato-
coding) and hash arrays in n-tuple systems. It turns out that the former leads to an increase of
classification errors and the latter, which involves storing the addresses of non zero cells is efficient

only for large values of n. Hash arrays are used in n-tuple regression networks (see section 3.5).

w
&



CHAPTER 3. REVIEW OF THE N-TUPLE NETWORKS

Aleksander et al. A RAMnet has the ability to generalise from the training samples. This property
has been analysed (Aleksander & Stonham, 1979) for the binary version of the classifier. Let us assume
that the vectors to be classified have length R = 9. The universe set i containing all the vectors
comprises 28 = 512 distinct patterns. Suppose the RAMnet consists of three tuples of size three
(T"=mn = 3) arranged in an exclusive mapping. After training with a set of patterns D™ each tuple 7
records occurrences of features «; by setting bits at locations Mia,. A generalisation set Gy is defined

to contain vectors v which yield the tuple score y at least equal to the threshold 0, ie., y(v) > 6.

For @ = T any test pattern v composed of a combination of substrings «; for which all addressed
RAM cells m;o, = 1,Vi belongs to Gp. The total number of patterns in the generalisation set can

9 T 2" -1 e . e .
be calculated as Gop = HT» > n.=p Mia,- This formula can be understood by imagining 7' bins, with
0, =

nn

w,=0 Mia, objects in i-th bin. If one is allowed to select only one object from each bin in order to
produce a sequence of 7" objects then G gives the total number of these sequences.

Aleksander noted, that generalisation! is alfected by the diversity of the patterns in the training
set, because the greater the diversity the lower the number of zero RAM cells. In general, Gy C U,
however, if n is small enough the memory will saturate and Gy = . The generalisation set can be
increased by lowering the threshold 0, allowing the vectors v € Gy 1o have up to 7' — 0 subpatterns o,
corresponding to m,, = 0. If a random mapping is used, the size of Gy can be reduced due to tuple
- overlap.

Trained RAMnets can be used as window operators for mage processing (Aleksander & Wilson,
1985) much in the same way as Gaussian operators are applied in machine vision (Marr, 1982). If a
RAMunet window is trained on just one bit string u of length [t its output from an input vector v can
be easily calculated. A tuple will contribute to the score only il it samples the pixels that u and v
have in common. The probability of this event happening when the tuple mapping ) is randomly

chosen is

H(u, v)

P(X) = (1~ T :

where // is the Hamming distance. With 7" tuples the expected window output is

T

H(u,v)

=71~ —%

(3.2)

For a window trained with more than one pattern, one has to consider the Hamming distances between
training vectors u’ as well and the formula gets complicated (this issue is discussed in detail in
section 3.3.1).

Aleksander considered the response of a RAMnet window trained to detect patches and noted the

exponential decrease of the window’s response as a function of its displacement from the origin. He was

*In the RAMnet literature the term generalisation refers to the generalisation set of patterns as defined earlier.
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also aware that sharper response can be obtained by increasing the tuple size n. He investigated image
processing with n-tuple windows trained to detect oriented edges and concluded that this scheme is
comparable to that employing classical Laplace and Sobel transforms.

Igor Aleksander revived interest in RAMnets by publishing the details of a successful industrial
application (Aleksander et al, 1984) of the n-tuple method to image recognition. The WISARD
vision system was implemented in purpose built hardware based on the Motorola 63000 processor.
The retina of size 512 x 512 was sampled exclusively with n-tuples. The n-tuple address space was
mapped directly onto the system’s VME bus with 16Mb address space allowing fast processing. The
tuple size n could be programmed in the range 4 < n < 8. hmages were captured into the 8 bit deep
frame store of the size of the retina. Up to 16 discriminators could be supported. The system operates

within 40ms which is sufficient to process images in real time.

3.3 Analytical Work on RAMnets

I review the main tools for understanding the standard n-tuple network: Hamming distance and Tuple
distance. The former approach is mainly of theoretical value and is important because it reveals the
combinatorial nature of RAMnets. The latter has a wide range of practical applications to the analysis
ol n-tuple systems and allows us to show later the relationship of the model to kernel regression and

regression networks.

3.3.1 Hamming Distance Analysis

Hamming distance is a foundation of a principled method that allows us to calculate the expected
output & [y] of the RAMnet. The original framework (Aleksander, 1970) which was based on the
knowledge of the Hamming distance from the test vector v to all the training vectors u' was later
improved and extended (Stonham, 1977) whence it turned out that the network’s output y also
depends on the distances between training vectors u' alone.

Let v denote a binary test vector of length /2 and D™ = (w'}, 1 <i< pirog training set of
vectors. Letl us assume initially that i = 1 and that the network consisting of T" n-tuples was trained
with just one vector u. A binary Hamming vector i can be obtained by performing an XOR operation
on the test and training vectors so that h = h(u,v)=ugv.

The Hamming vector h denotes the similarity of the test vector v to the training vector u. Note,
that any n-tuple will output 1 provided that all components v; that are sampled by it have a corre-
sponding zero component in the Hamming vector, i.e., Vj : by j;=0= Mego,vy = 1,k Let P (X;)

denote the probability of the event “an n-tuple will fire for a bit string v due to training with the i-th

o
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bit string u'”. Assuming that the tuple mapping is exclusive for each one tuple, this probability can

== (55 (b))

where the Hamming distance operator /1 is understood to return the number of non-zero components
R , i
of the binary vector: in symbols, / (h’:) =5 11;- = H (v,u').
Jj=1
To understand this formula imagine that n different pixels are connected to an n-tuple. The

be calculated as

components h; corresponding to this n-tuple must be equal to zero so that the tuple will fire. The
remaining bits of the Hamming vector h can be either 0 or 1. If the patterns w and v are ff bits
apart then there are (R[,_[”) ways ol arranging H 1s on R — n positions. The numerator in equation
3.3 gives the total number of Hamming vectors h' with /1 out of R bits set to .

Note, that this formula assumes exclusive sampling within one tuple but still allows different tuples

to overlap. It can be rewritten by expanding binomial coefficients and simplifying as

sxy= (1 T NN :
I(‘\’)‘<l R-71.+1><l 1?.-71.—1—2) (l 13) (34)

and differs from the formula 3.1 given earlier for a random mapping.
The expected scalar output y of the network with 7" n-tuples presented with a test pattern v could
then be computed as £y] = TP (\;).

uf ,u")”n}

However, if a set of DU patterns D™ = fu' w u* . 15 used to train the network,
the probability of an n-tuple firing depends on the overlap of zero components in the corresponding

i I)lv‘u
Jh

Hamming vectors Inv*, v h*, ... . In order to quantify the notion of overlap let us introduce a

binary vector e ¥+ which represents this overlap due to training with patterns u', v, uf,
v i o l ¥ bl

The overlap vector can be easily obtained by performing an OR operation on the Hamming vectors

e = hivI vhE VL A zero component in the overlap vector implies corresponding zero

1.k,

components in all Hamming vectors, i.e., e =0=Vijk ..:hf=hl =hf=..=0. The

probability of an n-tuple sampling zero components in the overlap vector can be caleulated as

. R—mn R - ,
P(‘\’j"‘xrj!l\'l:v") =P ((:I'J'A""') —_ <H (d.j,l:,..)){(/[ (e'/,',j,k,..‘)>} . (3.5)

The event X' “any one tuple is firing after training” is a union of events X; “any one tuple is firing
after training with the i-th training pattern u™> so that X = X, U X, U .. U Xptrn.

To determine the composite probability P (X) we must consider all possible overlaps between
events. In other words for every pair [4, j], every triple [, j, k], etc., we must know the probability of

composite events occuring simultaneously, i.e., P(X:), P(X;, X)), P(X, X, Xg).
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. . - . ptrn e . . .
Let us define S, as the sum of all ) probability terms involving r composite events:
, ) g |

(7"
S, = > PN, NG N, ). (3.6)

ijk,..=1. . Dtrn

trn

In the sum above each combination of subscripts appears just once; hence S, has (Dr } probability
terms. The probability P (.\') of the realisation of at least one among events N, No, ..., Npirn is

given by

P (l\) = 51 — S_) + 53 - S; = = 5[)(;-,. (;
(D ‘l" n ) ( D '3" ") (D ’3"”)
PG+ > PN, ) —

i=1..Dtrn i, y=1..Dtrn» i, 7,k=1...Dtrn

~1
~—

I
<
=

|

+ > PN, N, X, ).

ik, =1 Dtrn

Finally, the expected output y of a system employing T' tuples can be computed
El =TP (). (3.8)

Consequently, to evaluate the probability P (X)) of an n-tuple firing after the system was trained with

trn

- . . . I trn )Iy'n - tra .

DU patterns, we face the task of calculating (D] )+ ( )2 Y+ (5)‘) =207 1 probability
terms which is clearly not practical. Stonham could verify equation 3.8 using al most 15 (raining
patterns before the computing requirements became excessive. In general, exact caleulation of the

expected network output based on the Harnming distance analysis is not possible due to combinatorial

explosion demonstrated by equation 3.7.

3.3.2 Tuple Distance and Effective Kernel Function

The most productive theoretical concept for understanding the n-tuple method has been Tuple dis-
tance (Allimson & Kolcz, 1995a; Tattersall ¢t al., 1991) and its nonlinear statistical relationship with
Hamming distance which is relevant to the network’s generalisation properties. The Tuple distance
analysis, although restricted to RAMnets trained with just one pattern, leads Lo the discovery of the
effective kernel function which has numerous practical applications. It allows us to understand RAM-
nets as kernel smoothing methods In particular, regression RAMnet (see section 3.5) can be easily
obtained by modifying the original n-tuple network architecture.

The Tuple distance p(u,v) between patterns u and v is the number of tuples (of a given input

mapping) on which the patterns disagree:

[)(1,1, v)=1T - 6111:(").'»«1((V)‘ (39)

T
c=1

k

39



CHAPTER 3. REVIEW OF THE N-TUPLE NETWORKS

1000 v - '
900+t 1
8001 v tsetse (T=1000, n=8) 1
700r N
600 Xy

500 \3\%

400+

T—p (v,u’)

3001
2001

100

0 50 100 150 200 250 ’ 300

H (v,n')

Figure 3.1: Tuple score vs. Hamming distance for a fixed test pattern v and training patterns
DU = {u'} 1 <i< D" The score of v was computed for the system trained on just one pattern
u'. Distances between patterns of the same class as v are marked #, and o is used for different classes.
Functions (3.11) and (3.13) are plotted as 3 standard deviation error curves. The total number of
patterns of the correct class (dotted line) and incorrect classes (solid line) are plotted in the margins
as functions of Hamming distance (top) and tuple score (right). The means of these distributions are
indicated by * and o marks. The “generalisation distance” I/n is indicated by a vertical dotted line.

The number on which they agree, y = 7' — p(u, v), can? be called the tuple score or network output.
The discussion below considers expected tuple distance (where the randommess is due to a tuple
mapping) as a function of Hamming distance between a train vector u and test vector v, e, plu,v) s
Elp(H (u,v)] = Elp(H)]. By writing p (/) we mean here the expected”? tuple distance given that
the Hamming distance between two vectors is H. Note, that in contrast to the Hamming analysis, this
approach is concerned with just one training patiern so that the tuple overlap of training patterns in
the discriminator is not an issue.

An elementary argument based on the random selection of the n-tuple inputs from the 12 bits
available shows that patterns u which lie a fixed Hamming distance /1 = H (u,v) from any one

pattern v are distributed binomially in tuple distance:

Plp(H)) = —0" AR I R (3.10
PUD) = S R it ‘ 5-10)

More complicated expressions are available for more constrained n-tuple sampling procedures (Allinson

& Kolez, 1994c¢). Distribution (3.10) gives an expectation value for p of

H\" ,

2This is true only if the RAMnet was trained with one pattern u.
*knowing the tuple mapping 7 and the Hamming distance H is not sufficient to calculate the actual tuple distance

p(u.v). Knowledge of 7 and the Hamming vector h, however, is sufficient to obtain p (u,v).
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Figure 3.2: Dependence of the effective tuple kernel A on the tuple size and number. The panels
show the kernel shapes (solid line) for 7" = 10,30, 100 and n = 4,8, 16. The dotted line indicates
the analytical approximation according to equation 3.16. Real numbers 0 < a < | were thermometer
encoded with resolution 256 bits yielding a test set {vi} I <@ <256, The RAMnet was trained on
a bit string u corresponding to # = (.5.

and the expected score y of

. H\" )
5[;(/]:7'(1——/—?‘) , (3.12)

and indicates that p typically strays from this value by the standard deviation

. Iy \"\1*% -
f)p(l‘/):{’/ (1_7E> (1—(1ﬁﬁ) )J . (3.13)

This is illustrated in figure 3.1. If the patterns are nearby (/1 < It), then a convenient approximation

is
p(li)x’]'(l —e-“%), (3.14)

The n-tuple sampling variations then make p () uncertain by about \/p(//).

It is clear from (3.14) that proximity in Hamming distance plays a role in the generalisation
behaviour of n-tuple networks. Consider a network trained on Just one example u' of class ¢, and
tested on a pattern v Hamming distance f/ from u’. Classifications are based on the network response

I g I
r o ) i T 7, —n L formatl . e
Dok Mepay(v) Lo pattern u’, which will be about Te™"7% . Alternatively, one could then say that the
network generalises from a training pattern u to all test patterns v' within a Hamming distance of
about R/n of u.

Hence, we can view the n-tuple network as a kernel smoother performing a mapping from the

R-dimensional hypercube populated by test patterns v¥ to positive integer space Z*. The unnor-
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malised effective kernel function K™ (u,v') : HY — Z* of two bit-strings (with the training pattern u

viewed as a centre) is defined to be a function of their Hamming distance H (u,v):

K™ (u,v) = N (H (W V) = K*(H) =T — p(H) ~ Te~" % (3.15)

It can be normalised by dividing by the number of tuples 7',

: ING: H
K v')=N(H)= ;(~7—) =1~ p(’l' ) ~ T (3.16)

The kernel function (/) is called an “effective” kernel function because it involves the expectation
of p(H) and equation 3.16 holds on average. The instances of kernels are plotted in figure 3.2 for
various numbers of tuples and tuple sizes. The input range x € [0, 1] was quantised into 256 bins and
thermometer encoded. The RAMnet was trained with one vector u being the thermometer code of
- . ; ey - . . . . : p(H{nav!
the value 0.5 with resolution R = 256 bits. Then, the kernel function K(u,vi) = | — gl—l was
. . i . . . . H{u,v") .
calculated for all 256 vectors vi and plotted against its approximation exp | —n———= | for various
values of parameters n and 7". As expected, the approximation is very good around the maximum of

the kernel (where the condition H <« R holds) and gets better as the number of tuples increases. The

width of the kernel can be controlled by changing the tuple size 7 and decreases as n goes up.

3.4 RAMnet and Probability Estimation

The relationship of RAMnets to probability estimators is interesting because a principled statistical
framework could be applied to analyse their properties. In particular, we would like to be able to
demonstrate that the output of the n-tuple classifier is somehow related to the posterior probability
P (clex) of the class given a feature vector a(u), because this would allow us to compare RAMnets
with the optimal Bayesian classifier (Hughes, 1968).

We show the relationship of the binary n-tuple system to the Walsh Expansion, which is the
classical method for approximating discrete probability functions. We also demonstrate that the
unnormalised Frequency Weighted RAMnets (with parameter § = oo} can be interpreted, under
the feature independence assumption, as class likelihood estimators and upon introducing certain

modifications, related to a Bayesian classifier.

3.4.1 Binary RAMnet and the Walsh Expansion

The relationship between the n-tuple method and the Radernacher-Walsh expansion (Beauchamp,
1975) is rather intricate but reveals several interesting points. Therefore, we present the Walsh

expansion, discuss its motivation and finally show how it compares with binary RAMnets.
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Walsh Functions in Rademacher Order
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Figure 3.3: Set of Walsh functions {¢;} in Rademacher order for n = 3. X-axis is u, regarded as a
single binary number.

Suppose that we are facing a problem of estimating a discrete probability function P (u = vy)
of a binary vector u taking a value vi. In principle, we just have to observe, using a large sample,
the frequencies of vi. However, if vector u has a large number 12 of components then we would
have to estimate 27 probabilities, which is not practical. The solution to this problem (Duda &
Hart, 1973) is to expand the function P (u) and approximate it as a partial sum. Walsh functions
¢i (the Rademacher ordering (Hurst et al., 1985) of the expansion is used here) form a complete set
of orthogonal polynomials, i.e., they have the property zl— Y di(u)gi(u) = 6; ; which allows us to

{n)
expand any function P (u) as

2y

P(u) = Z cidi(n) (3.17)

1=0
where 2" is the number of functions used. Values of coefficients ¢; can be caleulated as ¢ =

,:,-1; > P(u)e;(u). Walsh polynomials are plotted in figure 3.3 for .= 3. It is easy to verify that they
{u}

form an orthonormal set of functions with respect to the weight . We can samiple this set discretely

at 2" points and arrange the result in the form of a transformation matrix @:
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Truncation at m = 1
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Figure 3.4: Truncated Rademacher-Walsh approximation to a Gaussian mixture probability density
function. Approximation P (u) improves with increasing m. The coellicients were estimated from a
sample of size 10° and the approximation calculated according to the equation 3.18. The real valued
input « was thermometer encoded into a bit-string w.

If we also represent discrete probability function P () with a vector P, the coelficient vector ¢ can
be calculated as ¢ = P and the probability function recovered from the relation P = L,—',I—(I'/"‘(:.

If the function to be expanded is a probability function the coefficients can be written as ¢, =
(_71,767 [@: (). Consequently, we can estimate them from the data ¢; = 7},—’~ Z]D:ll .:)]7(,'/),;(11]‘) where

D™ is the sample size. Of course we do not, want to estimate all 2 coefficients, but we would

truncate the expansion after 2 terms so that

Plu)=Pu)=3" éin) (3.18)
1=0

Truncated approximations to a Gaussian mixture probability function are plotied on figure 3.4. The

approximation is improving with increasing . Writing the Walsh functions in the analytical form
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! i=0

(1= 2uy) i

(l - 211.,,‘) ) — (;l))

(1 — '2‘11.1)(1 - Qll.f_;) ;= (r{.) 4 1
ij(ll) =

(=2modi=2w) = ()4 ()

(1= 2w)(1 = 2u2)(1 = 2u5) i = (3) +(}) +1

(1—2'11.1)“.(1—2'11,’1) = 9n |

reveals the relationship of RAMnets to this expansion.

We note that the complete Walsh expansion includes all tuples of components of u of sizes from
1 to n. The components have been encoded using values [—1, 1] rather than [0, 1] used in the n-tuple
system. Furthermore, the RAMnet contains only a limited number 7" of tuples of the chosen size. It
is clear that we cannot hope to be able to recover the shape of the probability function P (u) using
RAMuet inits original form. However, we can view the binary n-tuple system as a discrete probability
approximation system in which the probability function is projected onto a set of T non-orthogonal

functions ¢/t (u).

The tuple “eigenfunctions” ¢/*" can be seen in two ways: either as a set of 72" binary valued or
a set of T positive integer valued functions. In the first interpretation

am ’ E=T a=2"—1 b
{,) mm(‘l)} = {‘(’a.“k(u)} ('3-19)

ko k=1, a=0

and the coefficients of the expansion are given by the memory contents my,. In the second view it is
not the coefficients of the expansion that are estimated during the training procedure (they are all 1)

but the basis functions themselves. There are as many functions as tuples
c Ram \ § =T <
{0, (u)} = {ia, () }i2) (3.20)

and the values of the i-th function are tabulated in the i-th RAM node.

As a mmnor point, we note that given the contents m;, of the i-th RAM node defining a RAMnet
3 o Xy o
basis function ¢/ (u; n) in the n-tuple system we can reconstruct (") functions q')]’-“’”(u; n’) corre-

/

sponding to smaller tuple size n’. We obtain them by integrating out n — n’ bits from the addresses

«; and adding and thresholding corresponding locations m.;,. From one n-tuple we can recover (;?‘)
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n’-tuple functions. Thus an n-tuple net contains a similar amount of information as a truncated Walsh
expansion with terms involving up to n components of u. As no integration is ever performed, only a
part of this information is utilised in RAMnets, which allows them to reduce the memory requirements
(a table of size T"x 2" is required as opposed to 27 entries needed by the Walsh expansion) at a cost
of the lack of universality.

The fact that RAMnets are not universal approximators has been noted (Roy & Sherman, 1967)
in the aspect of ®-learning machines. A ®-machine (Nilsson, 1965) is any pattern classifying machine
employing a ®-function, i.e., a function ®(u;w) which depends linearly on the parameters w so that

T
d(n) = wy + Z'w,'q’),:(u) (3.21)

i=1
where linearly independent, real, single valued functions ¢; are independent of the weights w*. It
can easily be noted that an n-tuple system is equivalent to a n-th order polynomial d-processor with
all parameters w; = 1 only if all pattern vector component n-tuples are taken. Because in practical
applications one selects a fixed number, 7', of tuples rather than all (':f) of them, certain terms in the
expansion will be missing. Therefore, the original binary RAMnet is nof a universal approximator
and potentially introduces a model error. Furthermore, the estimation error can occur as a result of

the training procedure.

3.4.2 Frequency Weighted RAMnet as a Crude Likelihood Estimator

With 0 = oo, expression 2.3 for the memory content mq;o can be interpreted as an estimate of the
| ) |

probability P (a;|e) (up to a normalisation factor) that a data point from a given class ¢ will have

subpattern a in the i-th n-tuple. Assuming these distributions for different n-tuples to be independent

of each other, the joint distribution over all the sub-patterns taken together is
Plale)= ] Paile).
;

This can be used for Maximum Likelihood classification, or converted to posterior class probabilities
using Bayes’ rule with class priors P (¢), if they are available. The independence assumption lacks
plausibility, because it would be remarkable for the correlations required to make the classes distin-
guishable not to be reflected in correlations between the n-tuples, but never the less, good results have
been reported with this formulation (see section 3.2), which has been re-invented from time to time
(Sixsmith et al, 1990; Badr, 1993). Aside from its implausibility, its main practical problem is that

factors of zero appear if a naive estimate of P(a;lc) is used for subpatterns which never appear in

*specific examples of ¢ function families include for example linear, quadric, n-th order polynomial functions or

RBFs
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Tally Truncation
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Figure 3.5: =B truncated to 0 for tally values less than ¢ (dark lines) for ¢ = 0.25,0.05,0.005

—-Iogs
and 0.0001 (connt,ing from the top of the figure), and ©g(m.io) (light lines) for § = 1,2 and 3

(counting from the bottom of the figure), as functions of the tally value. This shows that (3.22) can
be a reasonable approximation at integral values of m,;, in some circumstances, particularly for € — 0
with § = 1.
the training data. In practice these are replaced with a small ad hoe positive constant, say ¢, leaving
scope for more principled approaches to estimating these probabilities (see chapter 5).

The n-tuple method with finite threshold can be seen as a scaled and translated approximation
to the logarithm of the class conditional probability in equation 3.22. Suppose that pattern u has
sub-patterns a(u), and the DI training patterns from class ¢ supply the tallics m., = 2 Baaiv)

veD,
used to estimate P(wg|c) by mg, /DU 13‘111‘1,11ex'n|or<:, the number of tuples in the system is 7. We

can translate and scale outputs y, by T + lou(l)“” /~ log ¢ and ? respectively so that the

network’s output is equal to

Y. =1 =
Ye - log e —log ¢ —log ¢

Py losDET) | log (P afu)le)) i(u log DI + log /)((.»'i(ll)l")>

=]

Tl
3™
o
~—

T
- Z < On IH”(,> ( F
o —loge
For suitable choices of ¢ and 0, the network responses in (2.5) will approximately satisfy an expression
> Oa(meia). As illustrated by figure 3.5, for integer tallies, the approximation becomes arbitrarily
1=1
accurate for § = 1 as ¢ — 0. Hence the standard n-tuple method could be justified this way if the

independence assumption were acceptable and the absence of sub-patterns in the training data could

be taken as strong evidence that the corresponding probabilities are tiny. Essentially, the method
& & T 3

47



CHAPTER 3. REVIEW OF THE N-TUPLE NETWORKS

counts the number of factors of ¢ in (3.22).

3.5 N-tuple Method as a Regression Network

A view of the n-tuple method that provides a consistent statistical {ramework has been recently
proposed by Allinson and Kolcz. They show that a slightly modified standard RAM net can be
interpreted as a regression network with tuples collectively acting as kernel functions approximating
the expectation [ylx] of a scalar output y for a given input vector x. This architecture can be used
not only for pattern classification but any regression problem such as plant control or time series

prediction. Before we discuss that important paper, in the following subsection, we review General

Regression Networks which constitute a basis of n-tuple regression networks.

3.5.1 General Regression Network

A General Regression Neural Network (Specht, 1990; Specht, 1991)is a memory based method utilising
a one-pass learning algorithm. The network’s output converges to the (nonlinear in general) regression
surface.

The inputs are d-dimensional real-valued vectors x whereas the output is a real-valued scalar Y
(the architecture can be easily extended to accommodate multidimensional outputs). The random
variable y and random vector x are distributed according to the density function p(y, X).

The relationship between the input and output variables of the modelled process can be described
in terms of the regression of the dependent variable y on mput variable x. The regression & [y]x]
18 simply the mean value of y for cach value of x based on a finite sample of data points D" =
{x', '}, 1<i< DU For the known probability density function p(y, x) it is defined as

+o0
|y ply,x)dy

g(x) = Elylx] = ==

I ply.x)dy

— 0T

(3.23)

In general the analytical form of ply.x) 1s not known and one has to approximate it. The regres-

sion network uses non-parametric density estimation method (Parzen, 1962; Cacoullos, 1966) with

separable kernel function K (y,x) = K (x)K (y). The density estimator ply,x) in general is given by
] pre ) , )

Myx) = 5o K (x=x') K (y— o). (3.24)

=1

If a Gaussian kernel is used this estimate becomes

pire 2 2
iy, x) = 1 ! ZCX’) _lx =i exp _-y) (3.25)
o= (2mg?)ld+1)/2 pirn * 20 - 20 o

i=1
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where d is the dimensionality of the input vector x. This estimate can now be substituted into the

regression equation 3.23 instead of p(y, x) to obtain an estimator g(x) of the regression function:

ptrn L2y oo ) L
> exp (—JL’%{L) J yoexp (—w—;f—_)—) dy
N i=1 -0 PR
g( Dorn NS - (3.26)
S exp (—“—"%—lL) [ exp (—(lt—f;—t) dy
=1 - -0 -

Because the (d+ 1)-variate Gaussian kernel function K (y,x) 1s normalised and separable with respect
to variables x and y integration over y can be accomplished analytically yielding

pirn -
S oytexp (— o )
CO 20

- _i=

9(x) = — -
> exp (_ﬁx_—x_’u;)

202

(3.27)
i=1

This estimate is essentially a weighted average of all of the training outputs y'. The weight decreases

exponentially with the Euclidean distance of the input x from the training input x°.

The determination of the optimal value of the smoothing parameter o is important for obtaining
a good approximation to the true density. For a very large o, j(x) becomes the sample mean of the
training outputs y'. As o approaches 0, g(x) equals the value of 4 associated with the x closest to
x. For an intermediate value of o all training points y' are taken into account but those closer to x
are given more weight.

Specht suggests the determination of the optimal kernel width o by the hold out method. In this
method one training sample at a time is excluded from the training set D" The network uses the
held out sample to evaluate its output. Repeating this process for each training sample enables one to
calculate the mean squared error between the actual outputs y' and their estimates. The procedure
can be repeated for different values of the parameter o and the optimal one, in terms of the error
function, can be selected.

Various other Parzen window functions can be used in equation 3.25 estimating the joint density
p(y, x). Specht suggests a number of them (Specht, 1990) that can be computed more efficiently than
the Gaussian kernel. In particular a multivariate, separable kernel

I & :
K (x,x') :exp(wgz;xj —zi]y) (3.28)
1=1

results in the regression estimator

pirn Dl L ,
T JK (x, x') Z:] yexp | —L Z} |z, — 5] as
. _ i=1 _ 1= 1= o ey
9(x) = N T , (3.29)
i; K (x,x) Z:l exp | —= Zn |z, — LHM
= i= j=

that involves Manhattan distance rather than Euclidean distance.

The properties of the General Regression Network can be surmmarised as follows
P g
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L. Learning is fast because it only requires storing the training set in the memory,

2. The network is suitable for sparse datasets as the regression surface is defined even with one

sample,
3. The smoothing parameter ¢ can be easily determined from the data.

The major problem with this technique is that the amount of computation required to estimate new
output is proportional the size of the training set. Consequently if the training set is large, clustering
has to be performed (Sebastyen, 1966). As discussed in the next section, the n-tuple regression network
overcomes this problem by representing the data in terms of features. The amount of calculations
in this network is independent of the training set size and depends on the number of tuples used to

sample the input space.

3.5.2 N-tuple Regression Network

A simple modification (Allinson & Kolcz, 1995b) of a binary RAMuet architecture allows it to op-
erate as a kernel regression estimator. The modification consists of adding an integer tally r.., (a
normalisation factor) for each real-valued memory location m.., (a weight). The resulting network
has just one “discriminator”, therefore we drop the subscript e in the discussion below.

Before training commences all weights and tallies are set to zero. For each data point {x', y'} €
D™ the real-valued input vector x' is transformed into a corresponding binary vector u' using a
suitable encoding technique (these are discussed in section 2.6). Bit string w' is then processed by
a set of 7" n-tuples and a tuple (an address) vector afu') is generated. For each memory location
addressed by the k-th tuple with the value ap(u’), the corresponding output value 3 is added to the
cell Mg, () and tally Thay(ut) 18 Incremented

. s N7 — i . — s
Yi=1,2,...D"", Myptnry = May(uy + ¥y Por(u) = Tap(uy + 1

The network’s output y(v) for a test vector v is calculated as a ratio of Lhe sum of the weights Moy iv)

and the sum of corresponding tallies For(v)

T
Z Miap(v)
ylv) = S—u. (3.30)

Thak(v)
1

k=
If the denominator in equation 3.30 is zero the output is set to zero as well. The notion of Tuple
distance (discussed in detail in section 3.3.2) allows us to derive a number of relationships thai can

be used to show the connection of this model with Regression Networks. The following equations
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describe the memory contenis Phax(v) Mra,(v) and tuple proximity as a function of the training data

T
- . p{u,v) a
z hcx'k.(n),mk(v) =1 (l - ,(\’;_‘v_) B (3~H)
b=1
pirn N A 7
Miay(v) = Z yzhok(v),:\k(lx') Yk = 1‘2» s aT! (3‘}‘2)
i=1
[)trn i ) )
rl;nk(v) - Z bak(v),ak(u') Vhk = 132\ R \’/1 (;;'3)

1=
We use these relationships to expand the numerator and denominator of equation 3.30 as functions
of the tuple distances p (v, u’) between the test vector v and the training vectors w'. The numerator

can be rewritten as

T T Dt ptre T
Z”U‘cxk(v) = Z Z I/’ hok(v Yax{ut) = Z I/’ Z(’(u(v)nk (ut) = (;;4)
k=1 k=1 =1 = k=1
plvow)
v, u
= 7T — _*
; y .

and the denominator as

T Topten ptra p
Zrknk(v) = Z Z (Su,\(v)a;\(u ry Z Zécu(v ), pe u’) - (353)
k=1 k=1 1=1 i=1 k=1
p (v, 11)
= 7T -
; —

yielding

Eo(-2)

= T
=
vlv) = =

L (1)

When a thermometer code is used for encoding the input vector’s components, the Hamming distance

(3.36)

can be replaced by Manhattan distance distance (ignoring quantisation effects). The effective kernel
function K (v, u') approximated by equation 3.16 which involves Hamming distance is then equivalent

to the kernel K (x, x") operating on the original real valued input x and using the Manhattan distance:

_ v — 1yt nlx — xi _
K(v,u) = exp —u = exp _'_’}}__X—lm =K (x,x'). (3.37)
I It
Plugging this expression into equation 3.36 yields
I)Irn - )
2~ ¥ K (x,x')
y(v) = yx) = S (3.38)
2 K (x,x7)
i=1

which is equivalent to the regression equation 3.29 of the General Regression Network. Consequently
the output of the n-tuple regression network y(v), is on average approximately equal to the estimate

of the regression g(x) =~ &£[y|x].
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a) N-tuple Regression Network (n = 30) b) General Regression Network (o = 0.05)
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Figure 3.6: a) Performance of the n-tuple regression network with n = 30, 7" = 100 on a simple
regression problem. The lower graph shows the effective tuple kernel K (x,27) centered on a bit, string

corresponding to w = 0.5. Training and test data is shown by circles and crosses respectively. b)
Performance of the Specht’s regression network with a Craussian kernel for parameter o = 0.05 on the
same data. The shape of the kernel is shown on the lower plot.

The choice of the kernel width R/n depends on the data and the optimum value can be deterniined
using a cross-validation technique discussed in section 3.5.1. (Note, that it can be carried out very fast
with RAMnets because, unlike MLPs, they do not sulfer from the credit assignment problem. Instead
of holding out one of the training vectors u and retraining the system with the rest of the dataset we
can use the entire dataset for training then compute a(u), decrement the tallics in the cells addressed
by u and compute the network’s response y(u). After the caleulation of y(u) the tallies are restored
allowing us to process another vector. Thus, the time required to perform a cross-validation will be
only about twice the test time. Also note, that if k-fold cross-validation is to be performed, we only
need integer tallies with the maximum value & + 1 in order to determine if a feature will remain set
alter removing k patterns from the training set.)

The retina size It is determined by the dimensionality of the input vector x, quantisation ol its
components and the encoding technique selected. The free parameter 1 can become large (500 is not
unusual) for bigger datasets or data localised in the input space. Therefore, the use of hash-tables
(Knuth, 1973; Rohwer & Lamb, 1993) to realize efficient storage of weights and counters is necessary.

The properties of the n-tuple regression network are the following:

I. The response time of the RAMnet is mdependent of the training set size and the clustering
techniques, that were needed for Specht’s network, are not necessary.

2. The distances between the test point and the training points are computed implicitly by tuple

sampling, which accounts for the operational speed of the system.

3. As in the case of the general regression network training requires one pass through the dataset.

The determination of the parameter o can be done quickly and does not require retraining of

\=Y
()
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the system.

The disadvantage of this modification of binary RAMnet is, however, an increased storage requirement.
A floating point number and an integer value must be recorded as opposed to [ bit for the standard

method.

3.6 RAMnets and Radial Basis Functions

The output of the binary RAMnet given by equation 2.4 can expanded in terms of all the memory

cells as
T T oano
) - o6
Yo = L Mekay(v) = § § 7"'4?lt<)b(xr,<}k(v)~ (55())
k=1 k=1 a=0

This form can be regarded as a linear transformation applied to the output of unusual basis functions
L Ram — .
Pk a (V) = 5<‘x¢1k(v)-

The alternative expression for the RAMnet’s output can be given in terms of the training data.

Using equation 3.33 and approximating 3.9 with 3.14 we obtain

T I)K{rn I)({rn !):rr)
- . - H(v.u') - H(v.u') . i
Y. = E E (S(Yk(v),ﬁlk(‘l') ~ ] E e Xt = E we e © (3.40)
k=1 i=1 i=1 i=1

Equations 3.39 and 3.40 are equivalent provided that we can find the training patterns v’ and the
weights w,; such that

1)(1::-:'.

Mefa = Z U)Cién,ak(u')' ('541)

iz
One way to arrange this is to choose all the patterns u’ so they are separated from each other by
tuple distance 7', i.e, none of the patterns u' match each other in any n-tuple. ("This is possible if and
only if the number of these patterns is no more than 2".) In this situation there is al most one i for
any given n-tuple £ and address oy such that ar(ul) = o, which may be called i(k, o) when it exists.

Then the choice

Weitk,ay ik, o) is deflined,

Mepo = (3.42)

0 otherwise.
satisfies (3.41). Such a network acts like the radial basis function network (3.10) with a Hamming
spherically symmetric local basis function of radius roughly R/n centred on each pattern u’, even
though the patterns u’ do not appear in the implementation (3.39), and to the benefit of computation

speed, no distance calculations H(u’, v) are ever performed.
If the training patterns meet the separation condition, they can be identified with the basis function

centres u'. To see this, observe that the assumed one-to-one correspondence between pattern ¢ and

£y
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address ay(u') in the k-th n-tuple memory implies that the set of memory locations corresponding
to one pattern is disjoint from the set addressed by any other. Therefore, for each i and ¢ one can
meaningfully define m,; = Mekag(ury. As DI <27 the network response to a test pattern v (3.39)
can then be re-written by replacing the sum over addresses with a sum over training patterns:

T D‘{' n

Yo = Z Z 777ckak(11’)6ak(11'),ok(u)> (;43)
k

c=1 i=1
Then it is clear from the equation 3.40 that one can identify m.; = w,;.

The interpretation of an n-tuple regression network as an effective radial basis function network
with a function centre on each training pattern requires the patterns w' to be tuple-separated by T
This condition would be valid at least to a good approximation if their Hamming separation were
large compared to R/n.

It may not be easy to arrange this and ensure good coverage of the pattern space by the local
effective basis functions. To ensure good coverage, the data needs to just happen to be arranged so
that each training pattern of a class is about R/n bits away from it’s nearest neighbour. To do as well
as possible on the separability condition as well, all other neighbours should be much further away,

but the triangle inequality requires the next nearest neighbour to be within 2R/n bits.

3.7 RAMnets and Other Memory Models

N-tuple method is a memory based method. The training phase can be viewed as storing information
about features pertinent to a given class and recoguition as a retrieval of this information. Note, that
a RAMnet implements a distributed storage mechanism because, unlike conventional memories, one
training pattern u can change the contents of many cells.

It is natural to compare RAMnets with Kanerva's sparse distributed memory because both of
them address the issue of information storage in the form of distributed activity patterns and use
an “overlap” measure to determine similarity of the input vectors. The main idea behind Kanerva’s
model is that a number of “hard” locations € in the space A is chosen randomly (in a similar manner
to selecting n-tuples). In order to store a bit string u we find a set of hard locations which are within
a radius r from u and update their contents. Reading at an address v is accomplished by averaging
the contents of hard locations within » bits of v.

We also demonstrate that RAMnets can be viewed as an Associative Memory i we consider the

original binary vectors in the enhanced tuple space for the Frequency Weighted version of the classifier.
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3.7.1 The Kanerva Model

Kanerva’'s Sparse Distributed Memory model (Kanerva, 1988), has been developed theoretically using
an “overlap”™ measure similar to that defined by equation (3.14). Although intended mainly as an asso-
clative memory, it is easily generalised for classification problems or function interpolation problems.
The interpolation version will be presented here.

Instead of n-tuples, a set of 7" bit strings of length R is randomly selected from a uniform distri-
bution. These are used as centres €, of k-th hard-sphere radial basis functions

Loaf H(E,u) < »r
or(uir) = (3.44)

0 if H(&,u)>r
of a somewhat carefully chosen radius r. Memory space for a vector in the range of the function to
be approximated is associated with each centre. The memory at centre & is set to

])irn

, >y ee(aisr)

(k) _ i=1 B
m = (3.15)

ST gr(ut;r)
i=1
during training with a set of vectors D" = W'} 1< i< DT Here y' s the training output
corresponding to the pattern u'. The output Yy (v) and merory m(k‘” can belong to any space in
which a weighted average can be defined. For classification problems, ¥ is an indicator function, and
for an associative memory, ¥ = y' = u’ is a bit, string.
The network response to test pattern v is
"
Z lll(L,K)(]')k(V; )
k=1

T
> br(vir)
k=1

v (v) =

, (3.46)

which is

Ijtrn ) I‘ )
¥t dr(alyr)pr(v;r)
k=i

S|

g (v) = - (3.47)

p—
br(u';r)de(v;r)
=1 k=1

in terms of the training data. (A further thresholding operation is required if a the output is to be a

bit string.) Each training pattern u’ contributes its desired output y(v) to an average weighted by

Lo Pt (v, i) ,
Do orlutir)er(vir) (1 - — (3.48)
k=1

the number of centres within Hamming distance » of both the training pattern u' and the test pattern

W
W1
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v. Plugging identity 3.48 into equation 3.47 we obtain

trn R
DZ y' (l - ——_"s"'\)ﬂ.v""))
) oy i=1 ! .
yoiv) = 7 — (3.49)
])(L (l p\'\)(\’.ll‘.))
i=1 r

which is resembles n-tuple regression network output defined earlier by equation 3.36.

Evidently, pﬁ.“")(v,u") plays a role similar to the tuple distance, with centres within distance r
of both patterns being counted instead of n-tuples. Due to the random placement of centres, the
expectation of pﬁvm(v, u') is also a function /)&K)(]‘[) of the Hamming distance H = /I (v,u?), although

it 1s more complicated than (3.11) or (3.14). The exact form

det

P E T =N gt ) (v (3.50)
A.

is a sum of products of binomial coefficients which can be approximated (Kanerva, 1988) by

1 T r—rif2)?
/)£~K)(H) ~T |1 —/ —ﬁ{h’ (;r_( H[/‘z) fEry
H/R 2T\/2(l —2)

for 0 H < R.
To carry the comparison even (urther we observe that the mterpolative n-tuple network can be
regarded as a special case of the Kanerva network (3.45), (3.46), if the tuple distance in 3.36 is replaced

with a Hamming distance restricted to a tuple. Specifically, a Kanerva centre &, can be associated
with each memory location a at each n-tuple i by defining all bits of &, arbitrarily except for those
n—1 .
involved in the i-th input mapping. These bits must form subpattern o 3" €, 0% = «, Vi, This
)

7=t
gives a total of 72" hard locations. The Hamming distance in space H* is replaced by a Hamming
distance in the i-th subspace HI' (different for each tuple) defined by a mapping 5 of the i-th tuple:

n—1

2(1—65

j=0

u ). The radius » = 0 which ensures that out of the total 72" locations exactly T of
) M)
them having a feature o; will be updated. Furthermore, the tuple distance p equals Kanerva distance

K . . o . . E R .
pg) " as defined by equation 3.50. Note that approximation 3.51 cannot be used in this case because

it was derived for a different similarity measure and space (Hamming distance in hypercube H/).

3.7.2 RAMnets and the Associative Memory

There is a connection between RAMnets, especially a Frequency Weighted version, and the Associative
Memories (Pao, 1989; Kohonen, 1978). Let x; be the i-th binary pattern vector in E-dimensional

space and let a; be a binary key vector in e-dimensional space associated with x;. The storage of the

1’:!)“‘“

assoclation pairs {x;, a; }:=4 is achieved by the superposition of the outer-products

M = Zaix;r. (3.52)
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The recall of the key a; upon the presentation of the pattern x; occurs by a simple matrix multipli-
cation. The perfect recall is in general not possible because of the “cross-talk” between the different
association pairs. In general,

Mx, = Zaix;;r Xp (3.53)

i

= xkx“q + E x X1\<l}
JEk

but if the patterns are orthogonal (x x] = &; ;) the recall is perfect and Mx; = a;.

The n-tuple sampling can be viewed a mapping HY — H"T between the binary mput vector x
m R-dimensional space and the tuple vector u(x) in an enhanced 2"7-dimensional space (Austin,
1989b; Austin & Stonham, 1987). The vectors in the enhanced space are increasingly orthogonal as
the tuple size increases. This is demonstrated in figure 3.7 where we plotted the angle (calculated
as ¥ = acos (ll‘_l‘xl{fh>) between every pair {u;, u;} of the tuple vectors. The dimensionality of the
original input vector x was R = 5. The z and y axis are labelled with input vectors {x;} (there
are 27 = 32 of them) sorted in the Gray order. The angle v between the pairs of the tuple vectors
approaches 90° as n increases, i.e., the vectors in the enhanced space can be made more orthogonal than
mn the original space. Consequently, if the n-tuple sampling is used, the cross-talk term Zj# xkaaj
in equation 3.53 can be reduced improving the recall from the memory.

Note the similarity of the storage equation 3.52 (expressed in terms of the correlation matrix M)
with the training equation 2.3 (expressed a RAM node or partition of M) for the RAMnets. If the
tally truncation threshold ¢ in 2.3 is set to mfinity (which yields the Frequency Weighted RAMnet
version) and if the key vector a in 3.52 is a l-out-of-¢ code if the pattern class then the columns of the
matrix M are equivalent to the discriminators of the RAMnet. Morcover, il we maintain the above
constraint on a it is obvious that the binary RAMnet is equivalent to the Willshaw’s Associative

Memory (Beale & Jackson, 1990) and the first stage correlation matrix in ADAM (Austin, 1989a).

3.7.3  Other Work Viewing RAMnets as Memory Models

Kanerva’s sparse distributed memory had been used in n-tuple networks (Guoging el al., 1992)

order to reduce the storage cost and allow large values of the parameter n. This sparse RAMnet
was applied to Chinese handwriting recognition, and good results reported in experiments on a small
(3000 patterns) scale. The architecture is identical with the binary RAMnet but cach RAM node is
implemented as a Kanerva memory. During traming the é-th tuple address «; is compared with 7'
hard locations &' and the contents of the locations within Hamming radius 7 is set. When an unknown
pattern v is input, the contents of all selected hard locations in each discriminator is accumulated to

form a score vector y. The pattern is assigned to a class ¢ with the maximum score component y,..

<N
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Vectors in the original space Vector aorthogonalization n = 2

100
80 \ \Q ‘ WS
VRPN Y : “
80 N \\\'a
- AV
40 4 g \
v
20 A“ ‘
A e L
e
S &
5
0 o
(x,} tx,) (u,}) {u,}
Vector orthogonalization n = 4 Vector orthogonalization n = 8

{u,} {u,) {ujl) ()

Figure 3.7: Orthogonalization of the tuple vectors w; in the enhanced space for different tuple sizes 1.
The original inputs x; are binary vectors in 5-dimensional space. They were Gray sorted. For each of
the 27" = 32 input vectors we obtained a corresponding tuple vector u; by n-tuple sampling all x; with

50 tuples. The angle v between all the pairs of the tuple vectors was calculated as v = acos (HT:;‘L;—I]—’;;'-I-IT)
The orthogonality of the tuple vectors in the enhanced space increases with the parameter n.

The propertics of RAMnets viewed as an associative memory have also been studied (Wong &
Sherrington, 1988). In the limit of many nodes and under the assumption that the patterns to be
stored are uncorrelated the storage capacity, retrieval error and radius of attraction can be determined.
It turns out that RAM nets have lower retrieval error rates than Hopfield networks of the same capacity
indicating their potential as neural memories.

Geometrical properties of the n-dimensional boolean space, which are relevant to RAMnets (pat-
tern overlap) have been recently studied (Braga, 1995) and an improved approximation for the Kan-

erva’s distance has been proposed.
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3.8 Summary

The early exploratory work on RAMuets investigated the system’s performance as a function of its
parameters n, 7" and 7. The major contributions include the calculation of the generalisation set Gg
and identification of a zero tally problem in the Frequency Weighted version of the classifier. The
research in the 1960s and early 1970s was somewhat limited by the lack of cheap storage. Bledsoe
and Browning, for example, were strongly in favour of the Frequency Weighted version because it
performed better than a binary RAMunet for the values of parameter n (n < 6) that they were able
to implement. In fact, ten years later, the work of Ullmann demonstrated that for larger tuple sizes
binary RAMnets outperform the former model, which suffers form the lack of data and poor probability
estimates.

RAMnets can be understood by Hammingor Tuple distance analysis. The first method allows us to
caleulate the expected output € [y] given the Hamming distance from the test vector v to the training
vectors u’ and the Hamming inter-distances within the training set itself. It turns out, however, that
the formula is not tractable due to its combinatorial complexity.

The Tuple distance approach, on the other hand, sidesteps this problem by considering a RA Mnet
trained on just one training bit string u. It allows one to calculate the response y to the test vector
v and view the system as a kernel smoother. This idea can be traced back to Aleksander’s work on
RAMnet windows (compare equations 3.2 and 3.12).

The discovery of an effective kernel function in RAMnets led directly to n-tuple regression networks.
Their significant advantage over Specht’s regression networks with an explicitly computed Gaussian
kernel is twofold. The tuple kernel never needs to be caleulated and the network’s response does not
depend on the size of the training set but on the number of tuples employed.

Itis well known that the Bayesian approach of assigning an unknown pattern v to the class ¢ with
maximum posterior /> (cla) yields minimum classification error. The Frequency Weighted version of
the classifier can be made look like a Bayesian classifier if we introduce class priors P (¢), assume
mdependence of tuple addresses in order to compute the likelihood P («e¢) and invert it to obtain the
posterior. The independence assumption, however, lacks plausibility and there are further technical
problems (zero tally problemn) that make those modifications ad hoc and unprincipled.

A closer look at the relationship of a binary RAMnet to the Walsh expansion, the latter being
a principled method for discrete probability estimation, shows that there is a serious problem with
the method itself. It leaves out a number of terms in the expansion and we cannot hope to view
the output y. of a binary RAMnet as a conditional class probability estimate. The potential lack of
universality of RAMnets is confirmed by viewing them as a ®-machine with n-th order polynomial

functions. Again, certain terms of the expansion will be missing and in some cases the discrimination

[l
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surface will not be able to separate patterns into their respective classes.

N-tuple system can be related to Kanerva's Sparse Distributed Memory. The selection of hard
centres &; in RAMnets is not entirely random, as n biis of the centre must correspond to the tuple
address a;. Furthermore, the metric used to calculate the similarity of patterns is Hamming distance
restricted to the n-tuple. These arbitrary modifications allow Kanerva's Memory to operate as a
RAMnet.

The Frequency Weighted version of the classifier is equivalent to the Associative Memory storing
the input vectors mapped into the larger tuple space. The tuple vectors are more orthogonal and
therefore during the retrieval phase the cross-talk (tuple overlap) error term is significantly reduced.

N-Tuple pre-processing is used in ADAM which, as the Willshaw’s Associative Menory, 1s closely

related to binary RAMnets.

3.9 Conclusions

The review uncovers a number of issues and problems that should be investigated. 1t determined the
direction of my research work and consequently the shape of the chapters to follow.

Most of the experimental work on RAMnets used small datasets of binary data coming almost
entirely from the domain of image recognition. This data did not allow an ohjective comparison of the
n-tuple systent’s performance with other methods. With efficient preprocessing algorithms available
(section 2.6) real valued vectors can be mapped into the binary space and allow one to use larger
number of datasets for benchmarking. Chapter 1 is devoted to a large scale experiment with StatLog
datasets and the comparison of binary RAMnets’ performance to other well established methods.

The Frequency Weighted version of the method is interesting because it can be related to the well
researched Bayesian classifier. A number of improvements can be introduced so that it resembles it
more closely. One should take class priors into account and propose a principled way of calculating
probability estimates for zero tallies. These issues and the relationship of the Frequency Weighted
version to the binary RAMunet are covered in chapter 5.

It is clear, that there is no theoretical framework for RAMnets on the scale available to other, well
established models. It is possible to show how these well understood methods can be made to operate
as an n-tuple system but it is more difficult to modify RAMnets so that they are equivalent to them.
On the one hand, a slightly modified Kanerva's Memory can be made to operate as a binary RAMnet
i we make some requirements on the metric space and the placement of centres. On the other hand,
the same RAMnet cannot be shown to perform probability estimation and the modifications and

assumptions made to link of the Frequency Weighted n-tuple network to the Bayesian classifier can
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be difficult to justify.

[t has been demonstrated that n-tuple networks are not universal approximators. Furthermore,
they use a training regime which does not minimise a cost function. Knowing that there are sources
of potential sub-optimality of the model, we would like to be able to quantily how well (or badly) a
RAMnet with given parameters will perform on a given dataset. Chapter 6 is concerned with efforts

to quantify the cost of sub-optimality that one has to pay for the speed of the model.
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Chapter 4

Benchmarking RAMnets

4.1 Introduction

The n-tuple method of classification is based on memorising randomly selected features. The amount of
computation involved is minimal, especially when iterative cost driven miethods are used in comparison.
The operational speed and ease of hardware mmplementation are the features of RAMnets that make
them an attractive alternative to more sophisticated algorithms.

However, is prudent to suspect that relatively poor performance will accompany the speed and
simplicity of the n-tuple algorithm. There are many reports of satisfactory results with the method
(see section 3.2) but few studies involving comparisons with other models (Rohwer & Cressy, 1989).
Furthermore, most studies use Just one or two small data sets. Clearly, there is a need for an exhaustive,
comparative benchmarking analysis of RAMnets’ performance that would prove or disprove their
viability.

Therefore, a large experiment was carried out, in which the n-tuple method was tested on 11 large
real-world data sets which had been previously used by the European Community ESPRIT StatLog
project (Michie el al., 1994) to test 23 other classification algorithms including the most. popular neural
network methods. The significant advantage of the StatLog data is the diversity of the algorithms
studied and the fact that most of it is in the public domain (available via ftp from ftp.strath.ac.uk
or ics.uci.edu).

The results, presented in section 4.7.2, show no systematic performance gap between the n-tuple
method and the others, on 7 of the 11 data sets tested. [t js casy to recognise the other 4, without
referring to any competing methods, because the n-tuple method performed no better than random
guessing. The experiments therefore suggest, that in most cases the n-tuple method gives competitive

performance, and the cases when it does not are clearly recognisable.
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When a fast and simple method proves to be a competitive performer in a large set of experiments,
one would like to know why. Although, the n-tuple method has not yet yielded to theoretical analysis
as well as the optimisation-based approaches which can be embedded in Bayesian statistical theory
(MacKay, 1992b), the theoretical tools reviewed and discussed in the previous chapter prove helpful
in developing a semi-quantitative account of why the method failed on 4 of the 11 datasets. The main

theoretical stumbling blocks are also indicated.

4.2 Description of the Classification Procedures

The classification algorithms used in the StatLog project are deseribed in detail in (Michie et al.,
1994). They fall into the three categories: discriminants, decision trees ancd rule-based methods and
density estimators.

Linear discriminants divide the sample space with a number of hyperplanes so that they (ide-
ally) separate the data points generated by different classes. The orientation of the hyperplanes is
determined by the shape of the data clusters.

The discriminant models come in a number of flavours depending on the type of the (nonlinear)
transformation applied to the data vectors. The following methods belong to this type: linear, logistic
and quadratic discriminants, multi-layer perceptrons and projection pursuit. In general, this group
consists of statistical methods.

Decision trees and rule-based methods come from the area of Machine Learning. This type of
classification procedure is based on a recursive partitioning of the sample space into hyper-rectangles.
Each one of them may be split further into a number of smaller volumes. The boundaries between
the hyper-rectangles are usually parallel to the attribute axis.

Density estimation methods are concerned with local probability estimation al each training point,
A number of statistical models are of this type: naive Bayes, kernel density estimator, probabilistic
decision tree and k-nearest neighbours. Neural network methods such as LVQ and the Kohonen map
also belong to this group.

The n-tuple method was reviewed but not used in the StatLog experiments, presumably because
most of the datasets comprised real-valued, high dimensional data and suitable pre-processing tech-
niques geared towards RAMunets were not available at the time of the project. Section 1.4 describes

the details of these techniques and their effect on generalisation properties of the system.
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4.3 Description of the Datasets

Originally, 20 commercial and scientific datasets were used in the StatLog project. Each of the larger
data sets (with many more than 1000 samples) was randomly split into training and testing partitions.
Different methodologies (cross-validation and bootstrap) were applied to the smaller data sets.
There were two constraints that determined the final selection of the datasets for our benchmarking
study involving RAMnets: the dataset availability and size. Most of the StatLog data can be down-
loaded via ftp and is either free or the permission to use it in the rescarch can be easily arranged.
Large data sets had been selected to demonstrate the speed advantage of RAMuets, and to facilitate
an extensive test of the method. Furthermore, the data could be split into training and testing parti-
tions avoiding practical complications of bootstrap and cross-validation. These considerations led to

the selection of the following datasets:

Shuttle This data originated [rom NASA and concerns the position of radiators within the Space
Shuttle. It was split into a train and a test set with 13500 and 14500 patterns respectively. There are
7 classes but almost 80% of the examples belong just to class 1. On the other hand, the training set
contains only 6 patterns generated by class 6. Each pattern is described by 9 real-valued attributes.
The data is noise free and arbitrarily small error rates can be obtained given enough of the train-
ing data. Furthermore, the data-points form multiple non overlapping clusters containing examples
coming only from one class and the boundaries between clusters are parallel to the coordinate axis

(labelled with the attributes). This makes the decision trees ideal for this dataset,

DNA  The DNA dataset is concerned with a partitioning problem. Given asequence of the DNA, the
task is to find the boundaries between exons and introns. Exons are the part of the DNA retained and
introns are the DNA sequence which is not copied, during protein creation. Extensive preprocessing
has been carried out on this data. Each pattern originally consisted of 60 nucleotides, each represented
by one of four symbolic attributes (a,c.g,t). The attribute sequence was binary encoded resulting in
180 binary attributes. The training set and the test set contains 2000 and 1186 examples respectively.
The class proportions are not equal: there are 3 classes (intron-extron, extron-intron junction and
neither of them) and 52% of the data belongs just to one class. Decision tree procedures as well as

the statistical algorithms performed well on this dataset.

Technical This dataset is confidential and was supplied by Daimler~Benz AG. It contains an un-
usually high number of classes (91) and real valued atiributes (56), most of which have value zero.
The data apparently has been processed by a decision tree process before it was handed over to Stat-

Log participants for evaluation. By considering the four most frequent classes (cgy, c79, c77, ¢rg) and
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tabulating the value of the attribute xi, it becomes apparent that the correct classifications can be
made by placing the decision boundaries at values +0.055 and £0.085. The classes in this dataset are

thus defined by the values of the attributes and good results can be obtained with the decision trees.

BelgianI This dataset was confidential and concerned with stability determination for power sys-
tems. The state of the system is described by a 28 component real vector of voltages, power flows and
injections which is labelled either stable or unstable. The t raining and test set contain 1250 patterns
cach. Classes | and 2 appear to have two clusters each, indicating that there may be two types of

“stable” state. The statistical algorithms SMART and Logdisc produced best results for this dataset.

BelgianIT This data describes the same problem as Belgianl but was generated by a larger simula-
tion. The number of attributes was increased to 57. The training and test data sets comprise 2000 and
1000 patterns respectively. The SMART algorithm again performed well as did the machine learning
algorithms: IndCART, NewlD and AC?. Naive Bayes, Kohonen and I'Trule gave results worse than

the default error rate.

Tsetse The Tsetse dataset is concerned with the distribution of tsetse flies in Zimbabwe. The
environmental conditions of the regions in which this insect is present. were encoded into 14 real-
valued attributes. The two classes (tsetse’s presence or absence) are equally well represented in the
sample. The training set has 3500 examples whereas the test set contains 1199 patterns. The machine
learning algorithms based on decision trees performed best, followed by modern statistical algorithms.

The MLP, LVQ and k-nearest neighbours obtained comparable results on this dataset.

Cut20, Cut50 The problem to be solved here is segmentation of words into letters. Each example
in the data set contains 50 (20 in Cut20) attributes describing some measurements made on the text
along a potential segmentation point. Cut20 was obtained from the original data by selecting the
most informative 20 attributes using stepwise regression on the entire dataset. Both versions contain
11220 training patterns and 7480 test examples. The class priors are highly skewed and 94% of the
data describes just one class. The attributes are continuous with little correlation, which is suitable

for the k-nearest neighbours method which performed very well in this case.

SatIm  The data was gathered by a Landsat satellite recording images in four spectral bands from
the green to infra-red. The pixelated image of size 82 x 100 corresponds Lo an actual area of 80 x 80m.
Because the information given by the neighbouring pixels may help the classification, the data pattern
was constructed using a 3 x 3 pixel area for each spectral range, which yielded 36 integer-valued

attributes. The task was to classify each pixel into one of the seven classes corresponding to the

o
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Name Largest Prior Training Patterns Description
Classes Attributes Testing Patterns
Classify measurements on simulated large
Belgianll 2 0.924 57 real 2000 1000 | scale power system as leading to stable or
unstable behaviour.
50 measurements from a candidate seg-
Cutso 5 0.941 50 real 11920 | 7480 m(-:nl.a.t;i()n .Poinl. i‘n joined lm'ndwrit,t‘en
text. Classify as suitable cut point or not.
Commercially confidential data.
Cut20 5 0.941 20 real 11220 7480 Best 2}) attributes (by stepwise regression)
from Cuts0.
Commercially confidential. Appears to be
Technical | 91 | 0.230 56 4500 2580 | generated by a decision tree. Most at-
tribute values are 0.
DN A 3 0595 180 Boolean 2000 1186 S(?('lllf’??l(f(fb: ofl(i() nud'czot,idcs (4-valued)
classificd into 3 categories.
3x3 pixel regions of Landsat images. Inten-
Satln 6 0.242 36 integer 4435 2000 | sities in 4 spectral bands. Classified into 6
land uses at central pixel,
Chromo 24 0.044 16 20000 | 20000 Images of Chromosomes, reduced to 16 fea-
tures.
As Belgian 11 with a smaller simulation.
Belgianl 2 ] 0.5664 28 real 1250 1250 | Attributes thought to be least informative
omitted from simulation.
Tsetse 9 0.508 14 real 3500 1499 Clas.\“ify’(:nviron1411(:111.&] attributes for pres-
ence of Tsetse flies.
Images of typed capital letters, described
Letter 26 0.045 16 16-valued | 15000 5000 by 16 real numbers discretised into 16 in-
tegers.
Classification problem concerning position
Shuttle 7 0.784 9 real 435001 14500 | of radiators on the Space Shuttle. Noise-
free data.

Table 4.1: Descriptions of Datasets Used.

type of the soil of the area represented by the pixel. The training set contains 4435 examples and
the test set 2000 patterns. For this data k-nearest neighbours obtained the best results. Algorithms
like RBFs that perform local feature extraction also did well on this data scl. However, because the
attributes are highly correlated (as we expect from neighbouring pixels), statistical methods assuming

independence, like Naive Bayes, were not successful.

Chromo This data was obtained from the MRC Human Genetics Unit, Edinburgh. There are
40000 examples of chromosomes belonging to 24 classes. The data is split evenly into the training
and the test set. Each chromosome is described by 16 attributes (features measured directly from
the chromosome image, e.g., axis, length). The discriminant algorithms performed best here with the
quadratic discriminant being the best. All other methods follow closely with three (NewlD, AC?, and
ALLOCS80) lagging behind. The probable reason why ALLOCS( (a kernel density estimator) failed,

is the non-normality of the distribution of attributes.
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Performance of different codes for Cut20 dataset
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Figure 4.1: RAMnet’s performance on Cut20 as a function of tuple size n for CMAC code with ¢ = 5,
KN =8 and « = 3, K = 16 , Thermometer code with resolution 100 bits and Random Thresholds

code with 100 thresholds. The error bars of size + | standard deviation are centred around the mean
performance measured for 10 runs. The Random Thresholds code and Thermometer code curves
overlap.

The 11 datasets described above were used to benchmark the RAMnet against other algorithms.

The summary of the datasets appears in table 4.1.

4.4 Preprocessing of Scalar Attributes

The RAMnet classifies bit strings, but the attributes of the patterns in the StatLog data sets are mostly
real numbers or integers. Given that generalisation in RAMnets is related to Hamming distances,
it is Important to transform numbers into bit strings in such a way that the Manhattan distance is
proportionally transformed into the Hamiming distance. As discussed in section 2.6.1 the thermometer
code preserves exactly the topology of the data points. However, a number of StatLog datasets has
high dimensional pattern vectors (50 atiributes is not uncommon), which after conversion would lead
to large retina sizes [t and would call for an impractical number of n-tuples to ensure a generous
oversampling of the input. (The comparison of RAMnet with Walsh expansion in section 3.4.1 made
it plain that the more terms (tuples) are taken, the better approximation to the underlying class
probability density and consequently the better discrimination between the pattern classes.)
Therefore, the CMAC preprocessing scheme was used. 1t has a number of advantages. It can handle

binary, integer or real-valued attributes so it can be applied uniformly to all datasets. Furthermore,
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by selecting the parameters a and N, one can trade off the code length R against the size of the
subspace where the distance relationships are preserved.

The CMAC code expects positive integers in range [0, (2° — )R], Consequently, all the data
was rescaled into this range and rounded down. Each attribuie was rescaled separately. The scaling
coefficients were calculated using the training data and used for rescaling of the training and test
vectors. If, after scaling, the test atiribute value was found to be outside the valid range, it was
assigned to the nearest valid integer value. After rescaling of the A atiributes the pattern vector was
CMAC encoded resulting in a bit string of length R = AN a.

The preprocessing scheme and the choice of parameters @ and A has an influence on the perfor-
mance of the classifier. Figure 4.1 shows the test set classification accuracy as a function of n for a
100-bit thermometer code, a 48-bit (¢ = 3, K = 16) and a 40-bit (¢ = 5, N = 8) CMAC code and
a 100-bit random thresholds code for one of the datasets studied. For small values of n, the longer
codes perform better, presumably because they are linear over a larger fraction of the dynamic range.
But with increasing n, the generalisation set shrinks, so more and more of the linear region of the
longer codes is ignored by the RAMuet, eliminating their advantage. Mcanwhile, accuracy improves
with n, eventually levelling out. This is probably due to making higher-order correlations avatlable,
as well as reducing saturation eflects. It see;ns that the parameters a and K have no significant effect
on the system’s performance if n is increased high enough to take advantage of the bit correlation
mformation.

For all the datasets, the parameter values chosen were @ = 5, and N = &. In the Letter data set,
(see table 4.1), where the atiributes can take on only 16 values, it would be more reasonable to use a
one-out-of-N encoding with strings of 16 bits, but the CMAC/Gray procedure was used anyway for
the convenience of uniformity.

The maximum code length R = 2280 is reached for the Belgianll dataset. This corresponds

approximately to the four-fold oversampling of the retina assuming that 1000 &-tuples are used.

4.5 Generalisation Distance and CMAC Constraint

Because tuple score decays exponentially with Hamming distance 3.14, there should be relatively
httle ill effect if a training pattern further than /2/n bits away from a test pattern is replaced by
another training pattern further than R/n bits away (although figure 3.1 indicates that R/nis a very
approximate estimate). Thus if there are A scalar attributes, one can expect the non-linearity of

1t/ A

n

the CMAC/Gray mapping to do little harm if K > There are aA bits per attribute, so this
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condition is
a < n. (4.1)

Scalar differences up to £ A" fall within the linear region of the mapping. This represents a fraction

kN i = o i N 7 @ R N
r?-——I\zW or about 2'7% of the largest separation allowed. With «a < n, the “generalisation Hamming

s R/A : - a i S . . 2, 0 ol—a
%/}— = %‘— corresponds to a scalar separation of:t%, which is the fraction —:,”_—l) =~ 52’ @

distance’
n{2

(for @ > 1) of the largest possible scalar separation.

For a = 1, the mapping becomes the “thermometer code™, i which integer » is mapped to a bit
string with the last @ bits set and the remaining A —.x /KN unset. If K is adjusted to preserve the input
mterval, then larger a values give shorter codes, which should be similarly effective as long as a < n
and scalar attributes separated by more than fraction 2!=¢ of their dynamic range can be regarded
as dissimilar as far as generalisation is concerned. Note, that if the constraint 4.1 is to be met for the

o

values of @ and A selected (a = 5, I = 8), the tuple size n should have a value n > 5.

4.6 Practical Experience for Setting n and T

Simple theoretical considerations and practical experience provide fairly strong guidance for setting
the architectural parameters, n, 7, and 0. To begin with, the fact that the network response to an
arbitrary pattern is essentially an average over the n-tuples (sec equations 2.4, 2.5) means that the
results should become increasingly consistent with mereasing 7' Because the n-tuple method can
process an entire dataset within seconds, there is little need for any data analysis method other than
explicit measurement of the variation of performance as the input mapping is re-randomised a few
times for a given 7. T'is increased if the variation is unacceptably high. Practical experience indicates
that 7" should be large enough to ensure a generous oversampling of the retina. Usually, values of 100
to 1000 turn out to be adequate. It is commonly observed that the network’s output for the winning
class exceeds that of the second runner up by an uncomfortably small margin, such as 3 n-tuples out of
1000, but that the correct class nevertheless wins consistently. Perhaps most n-tuples give a constant
response to most patterns, so effectively only a fraction of those in the network are contributing to the
decisions. This suggests that many n-tuples could be trimmed from the network, but such variations
on the method are vulnerable to over-training and complicate the theory.

Practical experience tends 1o favour small values of the threshold 0, particularly 0 = 1. A possible
rationale for this was given in section 3.4.2.

Many considerations apply to the choice of n-tuple size n. Experimentally it usually turns out
that bigger is better, up to an impractically large size (Rohwer & Lamb, 1993), which requires an

unreasonable amount of training data, but n = 8§ is usually enough, and n = 3 is sometimes adequate.
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This can be explained qualitatively by observing that information about the correlations among up to
n bits is available to the classifier. It never hurts to take account of higher-order correlations, but it
is plausible that 8-th order correlations contain all that is needed for most binary data sets. Another
mtuition is that the training process should write to neither too small nor too great a proportion of
the 2" addresses at each node. If n is too large, the sub-patterns occuring in the training data will be
unlikely to recur in the test data, whereas if 7 is too small, the memory can saturate, in which case
Meie = 0 for most memory locations, so most discriminative power is lost (see section 2.7).

Moreover, results of the previous section indicate that for real valued datasets processed with the
CMAC algorithm the constraint 4.1 should be satisfied by choosing n > a.

These issues are further complicated if the class priors are highly skewed, so that one class has far
more training data than another. Although a precise theory is not available, there are strong enough
theoretical tools to gain considerable insight, as is demonstrated in the discussion of the experimental

results.

4.7 The Experiments

The threshold 4 was set to 1 in all the experiments reported here, the n-tuple size n was set to 8,
and T" was set to 1000 n-tuples. These parameter values yield good classification results for all the
datasets and have been determined experimentally. They are also supported by the arguments given
in section 4.6. The results reported are averages over 10 different randorm input mappings 7. Plots of
the binary RAMnet’s performance as a function of the tuple size nappear in figure 4.2, The solid line
indicates the percentage of correct classifications. Ties were counted as misclassifications. The dotted
line shows the RAMnet’s performance with class prior information used to resolve the score ties. The
latter procedure yields improved performance for small values of . ‘T'his advantage tends 1o disappear
as n Increases because the saturation drops down and the score ties are less likely. The results for the
comparison with other algorithms include ties resolution which makes a significant difference only for
the Technical dataset.

The advantage of the random mapping over the excusive sampling scheme is demonstrated by
the lack of a drop off in recognition performance for large n. Exclusive mapping severly reduces the
number of tuples as the tuple size n increases, whereas the random mapping does not impose any
constraint on 7.

As a technical point, we note that the experirental procedure for determining n involves using
test data to set an architectural parameter. However, the subsequent re-randomisation of the input

mapping 1 completely scrambles the network connectivity, re-defining ihe random features used for
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discrimination. Thus, the experiments do demonstrate generalisation from one input mapping to
another, for a given n, and it is difficult to argue that new test data randomly drawn from the same
distribution will have a more severe effect than selecting new features randomly from the same data.

Hence this procedural expedient was felt Justified.

4.7.1 Time and Memory Requirements

Computation time requirements were significant in these experiments, which were carried out with
a C+4+ program on a SUN Sparc workstation. For example, an 8-tuple network can be trained on
the 2000 57-attribute training patterns of the Belgianll data set in about 49 seconds. Sixteen of
these seconds are needed just to read in the data; another 4 to do the ¢:M AC/Gray conversion of the
floating point attributes; and the final 29 to train the RAMuet itself. Testing the same 2000 patterns
takes slightly longer, 37 seconds instead of 29, because a loop over classes is needed within the loop
over n-tuples. Detailed timing statistics are not published for the algorithms used in the StatlLog
project, but it is clear that popular neural network algorithms such as Back Propagation and even the
relatively fast Radial Basis Functions are slow by comparison. The algorithm is highly parallelisable,
so if it were important for the RAMnet to be even faster, special purpose parallel hardware could
be designed or purchased (Aleksander et al., 1984). 1t would be feasible for a biological system to
mnplement a highly parallel but otherwise trivial caleulation along these lines.

The storage requirements for a fixed 7 and 7" are determined by the number of classes (we need as
many discriminators as classes). For the parameters chosen the highest memory requirement oceured

for the Technical dataset, calling for 2% x 1000 x 91 bits which is 2.8Mbytes of RAM.

4.7.2 Results

The classification results for cach algorithm attempted with cach data set are presented in figure 4.3,
Table 4.2 gives a brief description of each algorithm with the symbol used to represent it in the figure.
The classification error rates increase from left to right, and are scaled separately for each data set, so
that they equal 1 at the error rate of the trivial method of always guessing the class with the highest
prior probability, ignoring the input pattern.

As remarked in section 4.7, the results plotted for the n-tuple recognition algorithm are averages
over 10 randomly selected input mappings. If the corresponding standard deviations were plotted as

error bars in figure 4.3, they would be obscured by the dots representing the means.
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RAMnets.
(@) n-tuple recogniser.
Discriminators.

(&) Back Propagation in a I-hidden-layer MLP.
(&) Radial Basis Functions.
(V) Cascade Correlation.

(8) SMART (Projection pursuit).

(©®) Dipol92 (based on pairwise linear discriminators).
() Logistic discriminant.
(©) Quadratic discriminant.

(®) Linear discriminant.
Methods related to density estimation.
Y

(o) CASTLE (Probabilistic decision tree).

(8) k-NN (k nearest neighbours).

(v) LVQ (Learning Vector Quantisation).

(6) Kohonen topographic map.

(€) Naive-Bayes (Estimate assuming independent attributes).

(¢) ALLOCS0 (Kernel function density estimator)
Decision trees.

(a) NewlD (Decision Tree)

(b) AC? (Decision Tree)

(¢) Cal5 (Decision Tree)

(d) CN2 (Decision Tree)

(e) C4.5 (Decision Tree)

(1) CART (Decision Tree)

(g) IndCART (CART variation)
(h) BayesTree (Decision Tree)

(1) ITrule (Decision Tree)

Table 4.2: Synopsis of Algorithms with symbols used in Figure 4.3.
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4.8 Analysis of Results

The n-tuple method delivered competitive accuracy on 6 of the data sets tested (Shuttle, Letter,
Tsetse, Belgianl, Chromo, Satlm), performed modestly on I (DNA) and failed entirely on the other 4
(Belgian I1. Cut50, Cut20, Technical). Further experimental and theoretical analysis was carried out
to explain the failures.

The available tuple distance theory is not amenable to treating overlap effects, even though they
determine the actual outputs y. of the RAMnet. Subsection 4.8.1 discusses the role of overlap in the
classification decision made by the system and sheds some light on the failure of the method for the
datasets with highly skewed priors.

The tuple distance theory indicates that the classification of an unknown pattern v is influenced
by the class identity of its nearest neighbours u’. With the CMAC preprocessing scheme this leads to
the idea of “generalisation hypercubes™ centered on the training data points u'. From this viewpoint,
presented in subsection 4.8.2, the datasets which the RAMnet failed to process correctly do not contain

enough training examples to let the n-tuple network generalise correctly.

4.8.1 Training Data Overlap on Tuples

A network trained on a set of patterns {vi} could respond 1o a test pattern u by any amount be-
Hiu.v,) » Hiu.v )

tween T'min(l, max; e 77 ) and Tmin(l, 37 e 777, depending on the correlations between
the training patterns, as manifest in “overlap effects™. Unfortunately, this circumstance limits the
usefulness of the Tuple distance for explaming the standard n-tuple method. Because of a combinato-
rial explosion, there is no feasible method of measuring tuple correlations. Similar problems crippling
an attempt of full formal analysis of the method (see section 3.3. 1) for datasets of arbitrary size have
been reported. However, some insight into the mechanism of the RAMnet can he gained by analysis
of the experimental data.

Overlap effects are displayed in figure 4.4, Figures 4.4a and 1.4h show the network output for a
test pattern as training patterns are added in Hamming distance order from the test pattern. For
figure 4.4a, the plots show the actual tuple score, and for figure 1.4b it is accumulated for all the
training patterns, effectively ignoring the overlap.

Figure 4.4b shows that distant patterns of the incorrect class match the test pattern on many n-
tuples, but figure 4.4a shows that most of these subpatterns had already turned up in closer training
patterns.  Figure 4.4c shows the number of new RAM locations accessed as training patterns are
accumulated, regardless of whether these are accessed by the test pattern. One class is disadvantaged

by a smaller prior probability, and correspondingly fewer training samples, but it has the advantage
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Figure 4.4: a) actual network response to a test pattern u; b) accumulated network response (as
though patterns never overlapped on any tuples) and ¢) the number of new RAM cells addressed as
a function of training patterns. Light lines are used to indicate the discriminator associated with the
class that generated w, dark lines denote the other class. The training data is sorted hy the Hamming
distance to the test pattern.

that it populates new RAM locations more rapidly. Whereas the more probable class is showing
signs of levelling off in this respect, the less probable class is not, so it seems likely that if more data
were available (in the same proportions), then the test pattern would be more likely to be classified
correctly with the less probable class. This scenario was frequently observed in datasets with skewed

priors, and motivates the hypothesis that errors would have been reduced if more data were available.

4.8.2 The Generalisation Hypercubes

The tuple distance theory assumes that only one training vector u was used and thus ignores the
overlap effects which affect the RAMnet’s output.

In order to gain some insight into classification decisions made by a network trained with many
training patterns u', many detailed Hamming distance vs. tuple score plots like Figure 3.1 were

generated and inspected.
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Ignoring overlap effects, a test pattern should be assigned to the class of most of the training
patterns that lie nearer to it, in Hamming distance, than about R/n. A glance at figure 4.5 shows
that the distribution of tuple distances bears no systematic relationship to R/n, but nevertheless it
was found that the closest patterns did tend to determine the decision, at least when the class priors
were roughly equal. Figures 4.5a and 4.5b show examples of this, which was by far the most common
situation encountered. Figure 4.5¢ shows an error due to overlap effects, abetted by a highly skewed
prior (this is the same type of error as illustrated previously in figures 4.4a-c). The 4 troublesome
datasets had highly skewed priors and predominately showed this pattern, although the very easy
Shuttle dataset also had highly skewed priors. Figure 4.5 shows a relatively rare situation in which
overlap effects rescued a pattern which would have been misclassified, judging by its Hamming-near
neighbours. It would appear that although overlap effects are quantitatively important, they tend not
to alter the conclusion that the near neighbours determine the decision, at least when the priors are
relatively uniform.

Given that Hamming neighbours tend to determine the classification outcome, it seems sensible
to suspect that test patterns in the 4 problematic data sets have a shortage of good neighbours. It
turns out that they simply don’t have enough neighbours at all, within the distance scales relevant to
RAMnet generalisation. To generalise properly, a test pattern must have at least | training pattern
within a Hamming distance of about ft/n. Distributed evenly over A CMAC/Gray-mapped scalar
atiributes, this is a scalar difference of about ,(—12'““, with the attributes scaled to lie between 0 and
I, as explained in section 4.5, Therefore, each training pattern can provide information about any
test pattern which falls within a hypercube of volume roughly (%‘2"“)'4, The number of such cubes
required to cover the region of attribute space where test data is likely to appear can be crudely esti-
mated by approximating this region as a hyper-rectangle with edge lengths given by the cigenvalues
of the sample covariance matrix of the training data. Any eigenvalues snialler than 42' =% should be
rounded up to this value, because the covering cubes must be at least this thick. The number of “gen-

. . N . . . . A
eralisation hypercubes” required to cover the data region is therefore roughly I

=

max(1, A; % a=1
for I < a <n, where the A; are the eigenvalues. Figure 4.6 shows this lower bound on the number of
training samples required, for each dataset studied, taking ¢« =5 and n = 8 as in the experiments.
Aside from Technical and DNA, the problematic datasets stand out as several orders of magnitude
more deficient in training data than the others, some of which are mildly deficient according to this
crude estimate. DNA is special in that its Boolean attributes were treated as integers, so it’s data
distribution will be highly non-Gaussian and thercfore poorly described by the covariance matrix.
The Technical data set turned out to be coverable by just 1 hypercube, according to this estimate.

Presumably then, each of its patterns looks the same to the RAMnet, and this accounts for its failure.
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It 1s not possible to address the data deficiencies by supplying more data, especially when several
orders of magnitude more samples are needed, but it is possible to tweak the RAMnet parameters
to enlarge the “generalisation cubes”. However, there is less room to maneuver than one would like.
To enlarge the cubes, n must be decreased, but this risks degradation of performance due to loss of
high-order correlation information, as indicated in figure 4.1. Decreasing n also requires decreasing «,
if the constraint a < n is to be respected, keeping R2/n within the linear region of the CMAC/Gray
mapping. Low a values give less memory-efficient representations of scalars, at any given resolution.
Systematic experiments varying the parameters did not produce significant improvements on the 4

problematic data sets (or the others). A more far-reaching improvement in the algorithm is required.

4.9 Summary

Extensive experimental trials, on a scale uncommon for any algorithm, were carried out with the
n-tuple classifier. The fact that this was possible at all testifies to the method’s impressive speed,
which derives from its simple principle of learning by I-shot memorisation of random features. In 6
of the 11 datasets tested, this speed and simplicity can be enjoyed without sacrificing classification
accuracy relative to 23 other slower methods, including the most popular neural network methods.

Most of the StatLog data is real-valued and had to be pre-processed in order Lo obtain binary
inputs. The CMAC mapping scheme was used for this purpose because it yields compact codes.

In order to explain what went wrong on the 1 data sets which gave poor results the theoretical
tools (presented in section 3.3.2) were used to understand the generalisation properties of the n-tuple
classifier (which are defined in the Hamming space of the CMAC code words) in the original real
valued attribute space. It turns out that the requirement of proportionality between the Manhattan
distance and the Hamming distance imposes a constraint on the CMAC parameter ¢ and the tuple
size n.

These considerations were then used to develop the idea of gencralisation hypercubes, which give
a crude estimate of the number of training samples required for a RAMnet to generalise properly.

An analysis of the experimental data also provided some insight into why skewed class priors pose
a problem to the classifier. Training patterns generated by a more probable class populate more
memory cells and are more hkely to be winners in the simple scoring scheme implemented by the

binary RAMnet.



CHAPTER 4. BENCHMARKING RAMNETS
4.10 Conclusions

In spite of its imperfections, the n-tuple method demonstrates that its underlying principle, learning
by memorisation of random features, is a powerful one. Competitive results can be obtained for a
number of datasets indicating that RAMnets are a viable classification method.

However, because the output of the binary RAMuet is related to the likelihood P (ae) (see section
3.4.2) rather than to the class posterior P (c|a), it has problems with datasets in which the class priors
are skewed. This problem is addressed by the Frequency Weighted RAMnets which we discuss and
compare with the binary version in the next chapter.

Furthermore, it turns out that one parameter, the n-tuple size n, controls both the distance-
scales associated with generalisation behaviour, and the complexity of the random features used to
discriminate classes. For some data sets it is not possible to find one setting suitable for both of these
considerations.

Therefore, there is a need for a theoretical framework that would allow one to predict, for a given

data set, the classification performance of the system. Such framework is proposed in chapter 6.
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Chapter 5

Frequency Weighted RA Mnets

5.1 Introduction

We recall (see section 3.4), that the I'requency Weighted n-tuple system can be obtained from the
original, binary system by setting the tally truncation threshold @ to oo instead of the more usual 1.
This allows one to use full tallies to estimate low-order conditional feature probabilities and apply a
Bayesian framework to the classification problem (Liu, 1964; Duda & Hart, 1973).

The material presented here is an extension ol chapter 4. It Is discussed separately because
the Frequency Weighted RAMnets are viewed from a different perspective than the binary model.
Consequently, the theoretical considerations involved are quite different from those of the binary
Version.

Because the score in the Frequency Weighted n-tuple system can be interpreted as a conditional
probability estimate, two fundamental problems arise: how should we use the tallies m.;, to calculate
the corresponding probability estimates PP (a;]¢) and how should we combine these estimates in order
to obtain the joint conditional class probability P (clea).

We propose a theoretical solution to the first problem, introducing in the place of the commonly
applied Maximum Likelihood estimation an alternative approach proposed by Turing and Good. We
do not attempt to attack the second problent, i.e., to provide a theoretical explanation of the apparent
lack of correlations between tuple addresses which would justify the independence assumptions used
below.

We show that the Good-Turing estimation method (G'TE) can, to a certain extent, rectify the Zero
frequency problem (see section 5.3) by providing, within a formal framework, improved estimates of
small tallies. It is also demonstrated that it leads to better tuple systemn performance than Maximum

Likelihood estimation (MLE).
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9.2 Frequency Weighted RAMnet with MLE

The Maximum Likelihood estimation has been routinely (Bledsoe & Bisson, 1962; Sixsmith et al.,
1990; Ullmann & Kidd, 1969) applied for the Frequency Weighted n-tuple systems. In this approach
the training set D" can be viewed as a sample of tuple addresses o;. Given P (clex), the probability
of class ¢ conditioned on a feature vector « (the set of all memory locations addressed by an unknown
pattern), optimal classification results can be obtained by assigning the unknown patiern to the most
probable class.

The following Maximum Likelihood estimates of probabilities arise naturally in the n-tuple system:

Mo

Plajle) = Dirn where DI = Z Meia (5.1)

27”-(::'(\
5] . — 3 . trn __ .
Pla;) = P where DU = g g Meia
[ [a3

> Meia
(43

) = 'l)lrn. ’ Vi

@

P

o

Bayes’ rule can be applied to obtain class probabilities. The likelihood /2 (ex|e) and evidence P () for
the full feature vector are impossible to compute directly, but these can be estimated from low order
probabilities P (a;lc) and P (a;) using independence assumptions.

The most common approach (Sixsmith el al., 1990) assumes that Paile) as well as P (o) are
independent!, where a; is the address of the pattern in n-tuple 7. The conditional class probability

can then be approximated by

. . P(ew;le )
Pela)~ P(o)]] —13% (5.2)

To simplify the computations, it is convenient to use the logarithms of the probabilities. The class

posterior can then be approximated with a sum rather than a product:
log P (cla) = log P (¢) + Y (log P (evi]e) — log P (1)) . (5.3)
i

However implausible the independence assumption may appear, there have been reports of reasonable
results obtained with this method (see section 3.2). The major advantage of the Frequency Weighted
system is that it does not suffer from saturation. This makes it superior for small tuple sizes n, but
the advantage tends to disappear as 7 is increased, due to worsening probability estimates based on
diminishing tallies in each of the increasingly numerous memory locations (Ullrnann, 1969). 1t would
be desirable to modify the Frequency Weighted systern in such a way as to retain its robustness for

any tuple size n.

"It often goes unnoticed that it turns out to be highly restrictive to demand both of these conditions to sether, a
o o g
difficulty we presume to be dwarfed by the inaccuracy of each assumption individually.
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5.3 Weakness of the MLE and the Zero Tally Problem

In the Maximum Likelihood approach, an estimate P of the true probability P of an event is approx-

imated as the ratio of the event’s tally r to the sample size N; P = £. Under the assumption that

each tally value is binomially distributed (with unknown probability P that the feature is present in

LR
A

a pattern of class ¢ and 1 — P that it is not) the ratio % is the Maximum Likelihood estimate of P.

The uncertainty of the tally can be defined as its standard deviation, which can be estimated as

br = /NP1 = P)x\/r(l - P). (5.4)

In a tuple with n inputs, P is one of 2" — 1 other multinomial parameters which sum to 1. Thercfore,

P is typically much less than 1, so

or & \/l_ (H.:

Al
Zt
~

Equation 5.5 shows that the accuracy of MLE is limited for the events with small tallies. The relative
tally uncertainty ",—’, grows with diminishing tallies and becomes undefined for zero tally.

[t should be noted that the fact that a tally » = 0 for some event doesn’t imply that the probability
of the event is also zero. It merely states that the event has not taken place in a finite sample of size
N. Moreover, because the probabilities assigned to all events are normalised, the assertion that the

it

zero tally probability is non zero requires that the “excess probability mass™ contained in the other
estimates should be somehow redistributed. This problem is known in the literature (Witten & Bell,
1991} as the Zero Tally Problem.

Various unprincipled, ad hoc techniques exist which try to rectify it. The most conmmon one is
to add an arbitrary small constant ¢ to each zero tally. However, the choice of a particular constant
is difficult to justify formally. We make some experimental observations concerning this Maximum

Likelthood system with zero tally correction (MLZ) in section 5.6.

5.4 Good-Turing Estimate (GTE)

An alternative method of probability estimation was originally proposed by Turing and researched
in detail by Good (Good, 1953) in the context of species frequencies i a mixed population. It has
also been applied in linguistics for n-gram probability estimation (Church & Gale, 1991), statistical
text compression (Witten & Bell, 1991) and speech recognition (Katz, 1987). The advantage of GTE
over MLE is improvement of the accuracy of the probability estimates derived from non-zero tallies.
Moreover, an estimate for objects not present in the sample can also be provided.

Suppose we draw a random sample of size N from the population of objects. For each object we

set up a tally. We record n,, the number of distinct objects that were represented exactly » times in

2
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the sample, so that

[ew)

N = Zrn,n (5.6)

re=l
Let PYT denote the Good-Turing estimate of the population probability of an arbitrary object that
occured r times in the sample. This entails the assumption that all events which occured » times have

the same probability P.. The Good-Turing theorem states that the expected value of P for an event

with tally 7 in one particular sample is »¢7 /N where the smoothed tally #7 can be approximated as

YT (4 I)M r > 0. (7

[

o
-1
~—

The uncertainty of the smoothed tally is defined as its standard deviation o(r¢7) and can be approx-

imated by

6T = () x (1) [T (L >0, .
13 ny

a3
oo
~

Note that unlike the uncertainty given by equation 5.4, the uncertainty of the smoothed tally is low
for small tallies r. 1t 15 also defined for zero tallies, because the sample of size N is typically much
smaller than the population from which it is drawn.
The derivation of the formula 5.7 1s essentially Bayesian with a uniform prior. Let the number of
Y 3 ]
distinct objects (features, species) in the population be s, which is supposed to be finite. For cach
object we set up a tally m, (I < p < s). We draw a sample of size N from the infinite population
of object instances and for all objecis record the tally m, ol its occurrence in the sample. Assume
J J Yy my |
that we are given the true population probabilities 2y, ..., P,, ..., P of the objects. Good’s proof is
based on the quantity ST which is the probability of an object that occured » times in the sample
| Yo | ) J |
of size N. It is defined as the expected value of the probability £, of the j-th object, given that it’s
tally holds a value r:
8
GT et . .
Py = En[Pymy, = 7] = E PP (p |y = r) (5.9)
pl=1
We note that because the objects are selected at random, the prior probability of an object heing a
p-th one 1s 1/5. Furthermore, the likelihood that the p-th object will occur = times in the sample of

size N is given by

/
7

, N’ /
P(m, =rlp) = ( )P;(} — PN (5.10)

assuming that the tally m, is binomially distributed. The posterior can now be calculated using the
Bayes™ rule and the uniform prior assumption as
Pr(l—p)N=r
v = ) — “ o &
Pplm, =r) = — (5.11)
Dr > A\N-—-r
Z I/Al(] - ll") !

=1
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1o a) Distribution of n, JB) Distribution of zp with a smoothing polyline
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Figure 5.1:  a) Original distribution of frequencies of tallies in class 0 of the Tsetse database. b)
distribution after averaging transform has been applied. The solid line denotes the polynomial curve
fitted. Note the logarithmic scale of the axis.

and used in equation 5.9 to obtain

S

Z 1)/11‘+I(l - ])“)N*r

pu=1

SGT
II‘ S
Sy — P AN =1
2 Prl= P
=1
Observing that the expected frequency of tallies with a value » is of the form
R
NN ¢
~ N . s Ne—r Ko
Enin,] = (r E Pl =P (5.13)
=1
(The random variable n, is a sum of variables with a value r. The expectation of a sun of variables
is equal to a sum of expectations of the variables with a value », which in turn are assumed to be

binomially distributed.) we can express equation 5.12 in terms of En(n,] and Eny[n.41) obtaining

]')GT _ =+ 1 g,’\’-l—l[”r-}-l] ~ (7' -+ ])'ll,~+] o 'I’(;”I‘ (!3 14)
TN+ Enlne] T Nn, N >

where the expectations were replaced with observables and it was assumed that N =~ N + 1.

Various other derivations (Nadds, 1985) of this theorem exist.

5.5 Smoothing GTEs

In the derivation of the Good~Turing estimate we replaced the expectation of n, with the observables.
Typically, ny is large and is the best measured of the n, values. However, with r imcreasing this
substitution is difficult to justify. Let us consider an example of the frequency distribution of tuple
addresses in one discriminator for Tsetse dataset. Part of this distribution appears in table 5.1.

There are 924 distinct tuple addresses that occured just once in the training set, 563 that appeared

twice, etc. Note, that small tallies » have larger values of n,. As » increases it is more probable that

e}
N
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frequency r frequency of frequency n,
1 924
2 563
3 350
4 253
5 207
6 171
7 155
3 130

928 i
979 1
1237 !

Table 5.1: The distribution of feature’s frequencies for the Tsetse database.

a given value of » cannot be found in any of the RAM cells. The distribution {ny,na,n, ) tends to
be increasingly noisy and requires smoothing.

Moreover, for large values of » there are “gaps” in the distribution of n,. This suggests that we
should average a non-zero n, value with the zero n, values surrounding it. We use the transform

proposed by Church and Gale (Church & Gale, 1991) given by

2n,

=
where £, », ¢ are the successive indices of non-zero n, . Averaging occurs for larger values of » only,
because if there are no “gaps™ the transformation has no effect.

After averaging we still have to smooth the z,. This is accomplished by fitting a log polynomial
onto the data. Unlike Gale who used a polynomial of order one (Gale, 1993) we found that polynomials
of higher orders are required to obtain a satisfactory fit to the data. Congequently, tally frequency

distributions z, were smoothed with polynomials of order 4, giving a new smoothed tally »5¢7

3

4
v Z(z.lu':,‘.'—'
,I,,SC:I :(’,_*__ l)l';.:l 7

v

(5.16)

with parameters ay,as, ..., a4 determined from the averaged distribution z.. Figure 5.1 shows the
original n,, and averaged z,. distributions with the fitted polynomial curve.

The smoothed Good-Turing estimate (SGTE) may be quite different from the original Good-
Turing estimate (G'TE) for small values of 7. We would therefore prefer to use GTE for small » and
then switch 1o SGTE and keep on using this estimate for the remaining tally values.

The new, composite smoothed tally 7~ is equal to #“7 if [»5¢7 — 9T > 165 % o7y e il
the difference between the Good-Turing tally and its smoothed version is significant, (exceeds 90%
confidence interval on 7)) we use GTE. Otherwise we use SGTE for the remaining tallies.

The probability estimates computed using the corrected tallies have 1o be normalised because two

different methods (GTE and SGTE) of estimation are employed. The normalised probability ]"),T”"’"
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a) Relative combined smoothed tally b) Combined smoothed tally
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Figure 5.2: a) Relative adjusted tally »* for class 0 of the Tsetse dataset. b) Hlustration of the

smoothed tally 7= combined from tallies »¢7 and »°¢T. The error-bars on 7 are 1.65 x o(#7).

The switch from GTLE to SGTE takes place at » = 3.

for the tally » is computed using the unnormalised probabilities P = & as
- . P . .
DNOrm _ oy r a onorm . _n
o # 0 [r - (l N ) Z I ,_:I)l./. ! Z l’ [0 T ngN
2 (5.17)

ng=0 Pro= Z—’ oozl
5.6 Application of GTE for the Frequency Weighted RA Mnet

Most of the memory contents in the Frequency Weighted RAMunet hold zero tallies. Their existence
poses difficulties when the logarithm of joint probability log P> («l¢) is approximated with a sum
> i log P(ajle) and a typical ad hoc solution is to use a small negative constant, ¢ instead of log 0.
Good-Turing estimation readjusts the tallies in a principled way replacing zero tallies with a ratio

7

DnTng

The tuple addresses o; and «j are considered to be different objects even if o; = o, unless their
mappings are also identical, 1.e. if n(i, k) = 5(j, k) Yk. Thercfore, the total number of objects s is
2" x T and the sample size N is D™ x T because each training pattern of class ¢ is broken down into
T tuple addresses. The value n, is simply the number of memory locations with a tally ».

In order to obtain probabilities P(«;|c) normalised within a tuple node one would have to apply
Good-Turing estimation for each tuple in each class ¢ separately. This is hardly possible because
the distribution n, 1s very sparse, especially for small tuple sizes n. Therefore, the estimation has
been carried out collectively for all 7" tuples within a class ¢, i.e., for the population of T2" features.
Consequently, the probabilities P(a;|c) are normalised within each discriminator ¢ and each zero tally

is snoothed by the same amount regardless of the tuple which generated it.
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Figure 5.3: The MLE and GTE RAMnet’s performance compared to that of binary n-tuple system
for various values of tuple size n. All systems comprised of 100 tuples. The error-bars are of size one
standard deviation computed for 10 random tuple mappings.
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tuple mappings.
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Figure 5.2a shows the relative composite smoothed tally r/r computed for the first discriminator
of the n-tuple system trained on the Tsetse dataset. The construction of the combined smoothed tally
™ as given in figure 5.2b. We observe that for the first three tallies GTE was chosen whereas SGTE
was used for the remaining tallies. The adjusted zero tally was ry = 0.0452.

The performance of the three versions of the n-tuple classifier: binary, Maximum Likelihood (ML)
and Good-Turing (GT) were compared using a number of StatLog datasets. The Maximum Likelihood
version contained the original non-smoothed tallies which were used to compute probabilities (given
by equation 5.1) and the scores (given by equation 5.3). All zero tallies were ignored when calculating
the score. If the i-th memory location Mej,(n) addressed by a test patiern u contained a zero value,
the probability estimate P (a;|c) was not caleulated and did not enter the sum of the logarithms of
P(ai]c) and P (ay) over i features. This procedure corresponds to replacing a zero tally with the
sample size, so that the corresponding probability estimate equals 1.

Figure 5.3 shows the performance of the binary, ML and G'T' RAMunets on 6 StatLog datasets
(Belgianl, Belgianll, Cut20, Cut50, Dna and Tsetse) for different values of the parameter n. The
plots show the mean performance for 10 random tuple mappings 1 and the error bars equal to one
standard deviation. All systems comprised 100 tuples. This is considerably less than the 1000 tuples
used in the benchmarking study described in chapter 4 because of the inereased memory requirements
for the Frequency Weighted versions which store floating point numbers rather than bits.

Both ML and GT systems perform better than the binary version for simall values of n, hecause
they do not suffer from saturation. Unlike the Frequency Weighted system with MLE, the G'T' version
retains the performance with increasing n. However, it eventually becomes inferior to the binary
system. It seems that for n large enough, any technique other than zero tally counting (which is
equivalent to setting the tally truncation threshold 0 to one) 18 less effective.

We also compared the performance of the GT system to that of MLZ, which is technically an M1,
system with zero tallies substituted by an arbitrarily chosen, small positive constant ¢. The zero tally
probability estimates result, after taking their logarithms, in large negative values that tend Lo cancel
out the contributions from the non-zero tally estimates to the sums in the equation 5.3. The amount
of cancellations increases exponentially with n increasing (because the saturation drops down at this
rate) and logarithmically with ¢ decreasing.

The experimental results plotted in Figure 5.4 suggest that if ¢ is small enough then MLZ will
outperform the G system, especially for large n. This can be explained by observing that MLZ
with ¢ — 0 will make exactly the same classification decision as the binary system (because of the
cancellations mentioned earlier), except for the patterns that are tied (have the same score) in the

binary version. For large n, the saturation is very low, as is the probability of a tie. Consequently, the
N g J | Y 3
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; . . . . tred
verformance of MLZ must be equal to the performance of a binary system within a marein +2
J S Di

where D' is test set size and D'*¢ number of tied patterns.

5.7 Summary

The Frequency Weighted version of the n-tuple classifier was examined and two major problems
concerning this RAMnet type were identified: joint probability approximation and the estimation of
low order probabilities.

The major weakness of Maximum Likelihood estimate for the n-tuple system 1s that it is not
accurate for small tallies. A principled approach to tally smoothing using the Good-Turing formula
leads to an improved system performance for larger values of n. However, experiments suggest that
replacing zero tallies with a small constant and using a Maximum Likelihood estimate yields even

better results.

5.8 Conclusions

The bulk of the experimental evidence seems to indicate, that the binary system will yield better per-
formance that the Frequency Weighted version for large values of the parameter n. With n increasing
the amount of data required to consiruct reasonably accurate probability estimates quickly becomes
excessive.

The Maximum Likelihood system is inferior to a version which uses Good Turing estimates because
it delivers inaccurate estimates for low tallies which are most often recorded in Lhe memory. The Good -
Turing estimate constitutes a theoretical improvement but it turns out to be inferior to the simple
binary RAMnet. There maybe two reasons for the lack of performance: correlations between the tuple
addresses and insufficient statistics of the n, distribution (the lack of data).

The MLZ system in which zero tallies are replaced with a constant lacks a firm theoretical ground-
ing. In practice, however, this system combines the strengths of the Frequenecy Weighted and binary
versions. For small values of n, the MLZ systemn operates as the former because there are relatively
few zero tallies and the constant ¢ does not contribute to the score. Because the number of zero tallies
increases exponentially with n for a fixed training set size. the score of the MLZ system will be mostly
determined by the contribution from ¢ values for large n. Thus, the MLZ n-tuple system becomes
equivalent to the original, binary RAMnet.

The binary system is not concerned with probability estimation and is free from the problems
associated with the Frequency Weighted versions. It appears that if the input data is binary and the

preprocessing extracts features in a random fashion from the input, then a simple memorisation is
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superior to the techniques attempting to approximate a Joint class probability based on the estimation

of the marginals and an independence assumption.



Chapter 6

Generalisation Cost of RAMnets

6.1 Introduction

In order to predict quantitatively the performance of methods such as the ultra-fast RA Muet, which
are not trained by minimising a cost function, we develop a Bayesian formalism for estimating the
generalisation cost of a wide class of algorithms. We focus our attention on the generalisation cost for
one dimensional problems.

We show (section 6.2), that the regression RAMnet’s output is linear in the training output data
yiny and is completely determined by a matrix J and the vector Yiny- This observation allows us to
express the expected cost as a function of J and point out explicitly the analytical difficulties that
arise for this class of models.

Section 6.3 introduces stochastic processes and their basic properties. We then show how a Gaus-
sian process can be used to make inferences about an unknown function based on a traiming sample
of inputs x(n; and noisy teaching outputs Yy (section 6.4).

We build on this formalism and calculate (section 6.5) the expected cost and its variance. We
verify the analytical derivation numerically and apply the formalisin to two one dimensional regression

problems using regression RAMnets as models.
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6.2 Regression RAMnet as a Linear Basis Function Model

In this chapter we will focus on the regression RAMnets. We recall from section 3.5.2 that after
training with a sample {x( vy, y(x)} = {o' ¥y }iEY this model outputs

N 1 N

ST o2 . i
Z U Z 5ok{v )()k(xx) Z !f Z Z hc’x‘(.\;,.(\x)bn,<\'k(v')

_ =1 k= _i=l k=1 a=0 )
ylo) =, = N7 = TN T oo ] n (6.1)
Z h(\k(v‘)‘(\k(lx) Z Z Z b(.\\ak(u)b(x‘n;\.(v }
=1 k=1 =l k=1 a=0
NoT amoy N ‘
Sy T elreefe ) Ly Ke)
_ 1= =1 a= _ o=l
o NoTo2n-1 N
Z Z Z éi\‘<;rr)( )C)I?(‘l}”)(w ) Z IN ( !
=1 k=1 a=0 =1
where the tuple eigenfunctions q')f"{f)”’(‘z:) = 6(,’(%(“) (see section 3.4.1), u is the binary code corre-

sponding to the input x, v' is the binary code corresponding to the input @', and the kernel function
o T 2"—1 , Ram N ARam g,
! )_ ZA‘:IZ(.:(J q)kﬁ (L)C L (‘I* )
Let us now define an infinite dimensional matrix J with elements

INE )
'].1,'1:’ — #ﬁi‘ (()Z)

Z]\.I.I

=]
If a RAMnet was trained with the dataset vy yony ) = Lot g 1SN then its response 1o a test vecetor
X(py comprising P inputs is linear in the data Y~y

e

f = J(pi\l)y(;\:) (()3)

m

where £ denotes the model’s output vector of length P, Jipny denotes the P x N submatrix of J with
elements given by equation 6.2.

We indicate in section 6.5.1 that for RAMnets, the expression for the expected generalisation cost
involves integrals over Jipny. These had to be evaluated numerically. Details of the cost derivation

for RAMnets can be found in Appendix A 4.

6.3 Definition of the Stochastic Process

Let us introduce stochastic processes and deline their basic properties following the formalism of
(Papoulis, 1984).

Let ¢ denote the outcome of a random experiment. A stochastic process is a rule for assigning to
the variable ¢ a function f(z,¢). Usually, ¢ is omitted in the notation. Therefore, f(z) has a number
of interpretations depending on which variable is allowed to vary and which one is assumed to be

constant:
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Three samples from a stochastic process
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Figure 6.1: Tustration of a stochastic process.
o f(x)is a family of functions of @ which depend on the parameter ¢.
o I ¢ is fixed, f(x) depends only on & and is called a sample of the gIVen process.

o I v is fixed and ¢ is allowed to vary then f(x) is a random variable.

If both ¢ and x are fixed, f(2) is a number.

The domain of ¢ is the set of infinitely many experimental outcomes S = {Ci,Cuyv ot Cao) and the
domain of x 1s a set of real numbers . If » is discrete then the values of J(x) are countable and the
process is discrete-state rather than continuous. These concepts are illustrated on figure 6.1 which
shows three samples of a stochastic process.

A stochastic process is an infinity of random variables, because for cach x there are mfinitely many

values of the function f(x). For a fixed r the random variable S(x) has the distribution function
F(fiz)=P(f(z) < [) (6.4)

and the density

_ 5/"([,1)'

p(f.2) T,

The second order distribution of the process f(z) is the joint distribution
F(h Joiey as) = P(f() < fi, fzg) < fa) (6.6)

of the random variables f(z,) and f(z,). The corresponding second order density is given by

5)2/;'(f11fy;’131,v"«‘2)
9fydf, ‘

P(fl»./.fzél’l,.?,"_;) =
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The mean f(r) of the stochastic process is the expected value of the random variable fl2)
ﬂwzfuun:/JMme (6.8)

The autocovariance V(. z2) of the stochastic process is the covariance of two random variables f(x,)

and f(x»)

Vlenea) = E(f(e1) = f(e0) (flr2) = [(22))] (6.9)

= E[fe)f(e)] = fle)f(rse)

+00 40
= [ [ St S e~ Fen e
-0 — 00
F'or the discrete stochastic processes the mean J(x) can be represented by a vector £ with components

= f(x r) and the covariance function V(1 @) can be represented by a matrix 'V with elements
Vi, = V(2 22). For continuous processes the mean vector £ and the covariance matrix 'V are
mfinite dimensional.

Gaussian processes are a particular type of stochastic processes where 1t is assumed that the random
variables f(x1), f(x2), ..., f(xn) have a joint normal distribution for any N oand xy, 09, ... xn. A

Gaussian Process GP(f, V) is completely determined by its mean f(z) and the covariance function

V(QL‘I s .L.g)

6.4 Prediction with a Gaussian Process

In the discussion below we use a matrix notation. We write an infinite dimensional vector £ Lo denote
the function [ and replace f(x) with £,. The domain of inputs x is represented by a vector x. We
can visualise the covariance function V (x, 2') of the inputs x and 2’ as an infinite dimensional matrix
Vowith elements Vi, = V(x, 2'). The terms on the diagonal of 'V denote the variance of the function
f(x).

Let us imagine that we are given a sample of N input variables x vy and possibly noisy output
variables y(n), generated by a system that implements a true function t, which is unknown to us.
Our task is to infer f using the information provided by the sample X(ny yny)

We use Bayesian Inference with a Gaussian Process (O’'Hagan, 1991) to specify the optimal ap-
proximation ;‘ Firstly, we specify our beliefs about the unknown function £ and define a prior prob-
ability distribution P (f) over all possible functions. Secondly, we calculate the joint distribution
P(f.x(~n). y(n)) of the function £ and the sample of observations {x(n),¥(n;}. Finally, we obtain a
formula for the posterior distribution P (f|x, Ny Y(ny) of the function £ given the sample {xvy vy}

The mean of this distribution becornes our optirmal estimate f.
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GP(0.V/~) forv = 0.5 and or = 0.1 GP(0,V/y) fory = 2 and ¢ = 0.1
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Figure 6.2: Samples from the Gaussian process prior GP(0, V/v) with the covariance matrix of the
3 - r—r N . . .
form Vip = exp <~;(%01f)> for various choices of the parameters v and oy,

1

6.4.1 Prior Distribution

We would like to formulate a prior belief about an unknown function . We may helieve, that the prior
expectation (mean) of this function is . Furthermore, we can specify a prior covariance function V.
(tabulated in the form of the matrix V) between the values of the function at the points = and »/. We
introduce the hyperparameter v which controls the overall scale of the variation of the function. Fach
element ol the covariance matrix V is divided by . If we also assume that the function values have
joint normal distribution, then this procedure defines a Gaussian process prior distribution GP(f, V/v)
of the unknown lunction f.
The prior probability of f, with mean f and scaled covariance V /v is defined by

P(t)=(1/Z)exp (—' —f6)'vIig - i‘)) (6.10)

Y

where 7, = det [—'V]
N N - . - . - :_,‘,/ 3
Let us choose, as an illustration, the covariance function of the form V., = exp <»—‘—(—J—-r;f——’—> and
1

define a prior Gaussian process GP(0,V /%) with zero mean and covariance matrix V. A number of
y

samples taken from this process for various values of the parameters v and o¢ appears on figure 6.2.
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We note that the correlation length of the function can be controlled by the variable o¢. The overall
scale of variation of f is controlled by 5 so that the standard deviation of the function values is equal
to 1/ /7.

More comprehensive illustrations of samples of the functions generated from various choices of

covariance are given in (Zhu & Rohwer, 1996).

6.4.2 The Joint and the Posterior Distribution

Our prior beliefs about £ will be updated if we are given a sample of noisy observations yi) of the
function f evaluated at N inputs x(yy.

We assume that the observed outputs Y~y are the sum of the values of the true function fivy
evaluated at x(y) and a noise signal e, i.e., yvy = fiay + e We also assume the noise € has a
Gaussian distribution with zero mean and covariance matrix Q/7 where 3 controls the overall noise
magnitude. (In general, noise may be added in such a way that the outputs are correlated and Q is
a general positive definite matrix, but for the cost caleulation we will define the noise to be position
independent and the outputs to be uncorrelated. This assumption simplifies analytical derivations

m
and will be used in the definition of the cost functional C'(f,1£) and all the experimental work below.)
Hence, we will use a diagonal matrix Q =1 so that o, = 1/\/5).

These assumptions define the likelihood of the outputs Yvy given the function £ and inputs x, N

: . . s Tl .
Pynyxny £) = (1/25) exp <—§(1(N;“)’(N))‘Q I(f(N)'"y(N))) (G.11)

op—

where Zgz = det [T’Q}

We would like to derive the posterior distribution P (f|x(N)‘y(N,) of the function f, given the
sample of input and outputs. However, we first consider a Joint distribution P (£, y(nylxny) of the
function £ and the sample outputs Y(ny given the inputs x(n,. Because the likelihood P (yinvilxon, £)
and the prior P (f) are Gaussian distributions, (f,y(n)lxay) is also a Ganssian distribution.

Let us write the input vector x as a composition of two vectors: the sample inputs x(y) and the
test mnputs x(p). In general, x(p) can be equal to x and contain X(ny, but in practical applications
the number P of the test inputs is limited and we arc only interested in the values fip of the
function at certain specified inputs X(py. Because the noise € has zero mean the joint distribution
P (fipy. ynlx(n)) has a mean

{.) f 5.
el =" (6.12)

Y(nNy fin )
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The covariance matrix is given by

1
o f(P) _)—V(})p) %V(PN)
cov

i

(6.13)
YN TVivey K= TVivn + 5Q

where Viyyy = Vix(vy x(ay) is a ¥ x N covariance matrix mvolving only the sample inputs X(N)
and Vipp) = V(x(py.x(py) is a P x P in the general case) matrix involving only the test points X p.
The covariance matrices Vine) = V(x(ny.x(p)) of size N x P and Vipn) = V(INH mvolve a mixture
of training and test points.
The conditional distribution P (f(,))lx(.,y),y(j\:,) can be found using the following result proved in
(von Mises, 1964):
Theorem 1
L fey | : fir) , ,
If the joint distribution of 1s normal with the mean and the covariance matrix
YN f(N;
) 1
;V(/)IJ) ;V(]);‘V)

. the conditional distribution of fipy given y ny is normal with mean

1
Vine) K

R’

1
. S -1 . .
:f(/))—}— :V(’{)I\;)K [y(‘,\/)—i(‘,\r)] (()1/1)
Y
and covariance matrix

| | _ .
A = V(pp) - —QV(I"i\')K lV(Np), (()]5)

-~ ~
Y
i

In general, any element A, of the posterior covariance matrix can be found by evaluating
o o J

I ! . ‘
Appr = =V — —v(2) 'K V() (6.16)
v

where the vector v(z) = Vi(x(ny, ) of length N, describes the covariance hetween a test, point a and
the training points x(y.

The posterior distribution P (flx(n), Y(n)) can be written as

PfIx(ny, ying) = det [QTI’A]_% «i-xp_%‘f_”.rA_l(f_” . (6.17)

#

and the optimal estimate of the unknown function f given a sample {x(y, Y~} is the mean £ of this
distribution.

Note, that f depends on prior mean f, the functional form of the prior covariance 'V (including
the correlation length oy and the scalar 7) and on the noise covariance Q and scalar 3.

Let us illustrate the formalism described above with an example. The true function, taken from

(Neal, 1993) is given by

f: =03 +042405sin(2.72) + 1.1/(1 + 2%) + ¢ (6.18)
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.
Test and Training data and f for oy = 0.2
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Figure 6.3: The panels on the left show the training sample {x(n), ¥in)) (circles) and the test sam ple
{x(py,¥(py} (crosses) generated from the underlying true function £ plotted with a dotted line. The

=

approximation [, for various choices of the parameters oy, is shown with a solid line. Panels on the

right show the corresponding samples form the Gaussian process posterior GP(f, A) with the mean £
and the covariance matrix A.

where the Gaussian noise variable ¢ has mean p, = 0 and a diagonal covariance noise matrix Q =1
where the standard deviation o, = /1/8 = 0.1. The training set {x(n), y(n)} and test set {x(ry, yiry)

cach comprise 100 data-points. The inputs were generated by the standard normal distribution (p, =

The true function f is shown by the dotted line in the left panels of figure 6.3. The training and
test sei are plotted with circles and crosses respectively.

We follow the procedure described in the section 6.4.1 and select a prior GP(0,V) with zero

mean (The observed values y(n, vary about 1 and a choice of the prior mean £ = 1 would also be
justified, but we choose £ = 0 to simplify the calculations.) and a covaritance matrix of the form
,—JT’ 2
Vigpr = exp (—‘—(—I—F:)— .
1

We calculate the posterior mean { according to equation 6.14 which is our approximation to the
unknown function f. This approximation is plotted with a solid line for two values of the hyperpa-

rameter o¢ in the lefl panels of figure 6.3. The right panels show a number of samples fp generated
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from the posterior Gaussian process Q'P(;'. A). We note that the smoothness of the approximation f
is controlled by the parameter o¢. Its correct setting yields a good approximation even for the inputs
¢ far away from the training inputs x( ). For small values of o¢ (smaller correlation length), the prior
prevails more strongly in places where no data is available and consequently ;' drops to zero (the prior
mean) faster.

The hyperparameters can also be selected so as to maximise the logarithm of the likelihood of the

data P (x(n), Yyl o¢) which is defined (Williams, 1995) for the zero mean prior as
. N .
log P (x(ny Yy lv. o) = =L logdet [K] — %y(]_,\,)K_Iy(f\r) - log 2. (6.19)

However, we will set o¢ and 5 using only our prior knowledge of the function f.

/

6.5 The Expected Cost and Variance for Regression Problems

The framework developed in section 6.4 allows us to calculate the optimal model £ for the noisy
interpolation problem in which the output data points y n, result from adding noise € to the result
fivy = f(x(n)) of applying unknown function f to input data points x(y,, which are generated
~ m

from a distribution P (x). Consequently, for a suboptimal model with a prediction function f, we
can calculate the expected generalisation cost under the posterior. We present the derivation of the
formulae for this cost and its errorbars in section 6.5.1. In order to verily the analytical results we
carry out a numerical experiment (see section 6.5.2). We choose a true function £ by selecting it rom
the prior GP(0, V) and use an n-tuple regression network to calculate the suboptimal approximation
mn -

f. We then calculate the posterior GP(f, A) and generate a number of posterior function samples

s

fp. For each one of them we evaluate the cost of using the model function £. This results in a cost

distribution whose mean and variance agrees excellently with the expressions derived analytically.
g |

6.5.1 Derivation of the Expected Cost and its Variance

me
Let us define the cost of associating an output £, of the model with an input z that actually produced

an output y (containing the noise) as

T T m

Clte,y) = Lf: — y)w. (£ —y) (6.20)

The average of this cost, over all the inputs x and noisy outputs y, defines a cost functional given by
1t m ~ § )
cf )= /C(fr,y)/’ (z) P (ylz,f) dzdy, (6.21)
for the true function is f. This form is obtained by noting that the function £ carries no information
about the input density z, i.e., f and z are independent. Furthermore, the input data z supplies no

information about y beyond that supplied by f.
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The knowledge of x is affected by the presence of the training inputs X(ny 80 P () can be replaced
by P (x]x(n,) vielding

m

C(f flxny) = | ClE p)P (2lxny) P (yle, £) dedy. (6.22)

The distributions in (6.22) are unchanged by further conditioning on y(~y and therefore we could

m m

write C(f f]xny) = O fxn). yiny). With the independence assumptions meuntioned earlier, this
(N (N Y(N) 1 |

allows us to write the joint posterior P (.1?‘_1;‘f|x(_..\r)‘y(.,\:)) as a product

P (1 !/»f|X(.e\")‘ )'(N)) = r (-Iflxu\'%)’(f\")‘f) r (!/|-If‘fax(:\')y)'(f\')) P (fix(s\»"), )'(;\f)) (6.23)

= P (.I?‘X(;\!)) P{yle £) P (f]xny, Y(Ny)

m
The cost functional C'(f ., f]x(n)) has the expectation value under the posterior /2 (F]x(n), Y(v)) given

by

<(:;7'|X(x\’)»Y(:\’)> = / (,i'(’i"],flx(,\:,)/)(f]x(,\:),y(,\v))(‘/f (6.21)
= /((f: ylxn)) P (2, y, flx vy yony) dedydf
and variance
var [C(?:f|xmw)] = / (4"(,flj»f|x(.’\-'))2/) (Flxen ) yony) df — <(r’"ix<w),yw)>2- (6.25)

These expressions are exact and hold for any model. Regression RAMuets, described by the matrix
Jipny and the training outputs 7y, belong to the particular class of models lincar in the training

(PN) Y(ny g &
outputs. We can rewrite 6.24 in terms of Jpy; and yn) and obtain (sce appendix A1) an exact

analytical form for this model class:

, 1 S el - : .
(Clx(npyny) = 5 / Z Y Vor Ver, N3Ny P (el ) wada (6.26)
Y uvls
I/ -
- - / Z Yudor Vir N2y P (x]x(n)) wede
/ uvs

-+
e

/ Z Yud sz, Jer, o P (2]X(n) wpde

Uy

I/ 1
+ 2—7 ‘ ‘/JTJT P (J:IX(N}) 7”1:11-15 - _272 / Z V,_-_',;’ xl\-l—;—l1 VJ;“J; I? (.II|X(NJ) ’ll)l-(/.'l,'

Lt

I/ )
+ 7 / grwy P (zlx(n,) da.
.

It turns out that the integration over z is not tractable. Consequently, we resort to the numerical
approximations in the experimental work reported below. If we plug in the prior, likelihood and
posterior distributions given by equations 6.10, 6.11, 6.17 into 6.24 then after some calculations (sce
appendix A.2) we obtain the following approximation of the posterior cost:

s e o [QR o
(Clxny yiny) = dr[AR] + 3(f — £)TR(f - 1) + "'“{2%3'“] (6.27)
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Figure 6.4: Samples from the Gaussian process prior GP(0, V/~v) with the covariance matrix of the

—J’?'!

form Vi, = exp (‘7“—{;—) for various choices of the parameters v and oy,

e

and the z domain was quantised into M bins.

Similar calculations (see appendix A.3) lead to the expression for the variance

T
var |C(F flxn), yiny) | = Ltr [ARAR] + tr [ARRFF). (6.28)
. m : . . .
where the elements of F are /7., = (f; — £.)b, . The above approximations become arbitrarily

accurate as M — oo, In practice M as little as 50 yields sufliciently good results. See the Appendix

for further details.

6.5.2 Numerical Verification of the Formulae

In order to facilitate a verification of the formulae 6.27 and 6.28 which involve approximations of the
integrals over z (see appendix A.2) we have to quantize the z domain. We approximate the infinite-
dimensional space of functions by a finite-dimensional space of discretised functions, so that function
[ 1s replaced by high-dimensional vector £, and f(x) is replaced by £, with f(z) =~ f, within a volume

Az around r.
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Let the mnput and output variables be one dimensional real numbers. Let the input distribution
P (z|x(x)) be a Gaussian with mean p, = 0 and standard deviation o, = 0.2. Nearly all inputs then
fall within the range [—1, 1], which we uniformly quantise into 41 bins. The true function f is generated

o=ty
from the prior distribution GP(0, V) with 41 x41 covariance matrix V with elements Vi, = e~ or

(We chose this covariance function in order to illustrate the influence of the covariance function on the
shape of f. Because the true function is generated from the prior it does not matter what covariance
function is selected). A number of sample functions f generated for this choice of covariance function
15 plotted on figure 6.4. The hyperparameters ¥, op were chosen to have the same values as in the
plots on figure 6.2.

50 training inputs x were generated from the input distribution and assigned corresponding outputs
y =1, 4+ ¢ where ¢ is Gaussian noise with zero mean and standard deviation \/1/8 = 0.01. The cost
weight w, = 1 and the hyper parameters v = op = 1.

The inputs were thermometer encoded over 256 bits, from which 100 tuples of size 30 were randomly
selected. 50 training data points were used to train an n-tuple regression network. The response of

m 1 *

the RAMnet £ was then calculated for all the inputs. The input distribution and functions £, £, f
are plotted in figure 6.5a.

A Gaussian distribution with mean E and posterior covariance matrix A was then used to generate
107 functions fp (recollect figure 6.3). Note, that because the input distribution I? () is known and
the entire input domain quantised, we do not need to generate the test input sample in order to
compute the test outputs and the model’s responses, for each choice of fp. Instead, for each such

function fp we calculate the generalisation cost for the entire input domain as

m

C=3> Plelxy) (fp, — £2)% (6.29)

i

A histogram of these costs appears in figure 6.5b, together with the theoretical and numerically

computed average generalisation cost and its variance. Good agreement is evident.

6.5.3 Cost Prediction for Two Regression Problems

We now illustrate the use of the formalism developed in section 6.5.1 with two examples of predicting
the generalisation performance of a regression RAMnet when the prior over functions can only be

guessed.

In both cases we choose a Gaussian process prior GP(0,V/5). The covariance function also

1.2

_llzme)
has a Gaussian form V,.» = ¢ ~ 7t where o¢ is the correlation length of the function. The

hyperparameter v controls the scale of variation of the function values. The standard deviation of

i

the function is equal to 1/,/7. The model used throughout the experiments is an n-tuple regression
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a) True, optimal and suboptimal functions b) Distribution of the cost €
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Figure 6.5: a) The lower figure shows the nput distribution. The upper figure shows the true function
f generated from a Gaussian prior with covariance matrix V (dotted line), the optimal function f (solid

m
line) and the suboptimal solution f (dashed line). b) The distribution of the cost function obtained

by generating functions from the posterior Gaussian with covariance matrix A and calculating the
cost according to equation 6.29. The mean and one standard deviation calculated analytically and
numerically are shown by the lower and upper error bars respectively.

network with 100 30-tuples.
For each problem we calculate the actual cost using the test set according to the formula
m

C=1Y (4 — )% (6.30)

1
In order to verify the prior settings of the hyperparameters, we iterate over o and v and plot a
family of cost curves that depend on the hyperparameter values. We expect that the actual cost line
(constant and independent of o¢ and v) will intersect the predicted cost curve for the values of oy and
v which agree with our prior assumptions.

The first example is Neal's Regression Problem which was previously used to illustrate the calcu-
lation of the posterior mean ; (see section 6.4.2, equation 6.18). We recall that the training and test
set, each comprised 100 data-points. The inputs were generated by the standard normal distribution
(pr = 0, 0, = 1). The input range [—3, 3] was quantised into 61 uniform bins. The bin centres were
assigned a 256 bit thermometer code.

The outputs were contaminated with the Gaussian noise with mean 1, = 0 and a diagonal noise
covariance matrix Q = I3 where the standard deviation /1/7 = 0.1. The cost weight w, = 1.

mox

The training set and the functions £, f, f are shown on figure 6.6a for v = 0.1. The correlation

length of the functions, o¢, appears 1o be of order 1 and the overall scale of variation of the function

1/\/7. is about 3, so 7 should be about 1/9. Figure 6.6b shows the expected cost as a function of

~

/
for various choices of og, with error bars on the op = 1.0 curve. The actual cost (equation 6.30) is
plotied with a dashed line. There is good agreement around the sensible values of v and o¢.

The second experiment was concerned with another one-dimensional regression problem due to
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a) Neal’s regression problem b) Mean cost <(-'fx( Ny Y ;\’)> as a function of op and v
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Figure 6.6: a,c) Neal’s and Wahba Regression problems. The true function £ is indicated by a dotted
. m
line, the optimal function £ is denoted by a solid line and the suboptimal solution f is indicated by a

dashed line. Circles indicate the training data. b,d) Dependence of the cost prediction on the values
of parameters o and og. The cost evaluated from the test set is plotted as a dashed line, predicted
cost is shown as a solid line with one standard deviation indicated by a dotted line.

Wahba (Wahba & Wold, 1975). The true function, is given by
£, = 426677 —4e™%" 4 367 4 ¢ (6.31)

where the Gaussian noise variable ¢ has mean 1, = 0 and a diagonal covariance noise matrix Q=17
where the standard deviation o, = \/1/4 = 0.2. The training and test sct comprised 100 data-points
each. Unlike in Neal’s problem, the inputs were generated from the uniform distribution. The input
range [0,3.2] was quantised into 65 bins. The centre of each bin was assigned a 256 bit thermormeter
code.
m b

The training set and the functions £, £, f are shown on figure 6.6¢ for v = 0.45. The correlation
length oy, judging from figure 6.6¢ is somewhere between 0.4 and 1.5 (‘The function mitially changes
its value on the small scale, reaching its minimum and then its values are similar for large intervals
Az.).

The overall scale of variation of the function values 1/\/7 is about 1.5, indicating that the value

for 7 should be about 0.45. We carried out the search in o¢ and v space plotting the expected cost.
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Figure 6.6d shows the expected cost as a function of vy for various choices of o¢, with error bars on
the op = 0.45 curve. The actual cost computed from the test set is plotted with a dashed line. We

note again a good agreement around the sensible values of v and oy.

6.6 Summary

We provide, for the first time, the means to analyse the generalisation properties of RAMunets in
a Bayesian framework. The formalism using Bayesian inference with Gaussian process priors over
functions allows us to caleulate the expected cost of using a particular model (e.g. n-tuple regression
network) for one dimensional regression problems.

We verified the analytical calculations with a numerical experiment and applicd the framework in
two regression problems using RAMnets as a model. We demonstrated experimentally that for the
appropriate choice of the prior hyperparameters op and v we can predict the generalisation cost of an

n-tuple regression network for the one dimensional noisy interpolation problen.

6.7 Conclusions

Ultra-fast methods such as RAMnets, which are not trained by directly optimising a cost function, can
be analysed mn a Bayesian {ramework to determine their generalisation cost. Because the formalism
is constructed in terms of distributions over function space rather than distributions over model
parameters, it can be used for model comparison, and in particular 1o select RAMnet parameiers.
The main drawback with this technique, as it stands, is the need to numerically integrate the
expression {or the expected cost and variance. This difficulty intensifies rapidly as the input dimension
increases. Therefore, an interesting research direction would be to search for RAMnet feature sets

which allow these integrals to be performed analytically.
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Chapter 7

Conclusions and Directions for

Further Research

7.1 Conclusions

Our research focused on the one layer n-tuple network applied to classification and regression problems.
We introduced a suitable formalism in chapter 2 and showed that efficient mapping algorithms exist
for converting reals into bit-strings which allow real-valued data to be processed by RAMuets.

An extensive review was carried oul in chapter 3 and indicated that previous rescarch work was rel-
atively self-contained and rarely compared the analytical and experimental results with other models.
We validated the Hamming and Tuple distance theories illustrating them with numerical experiments
and proceeded to use these analytical tools to show how RAMunets relate Lo other well established
methods. We demonstrated that when the data or model parameters are appropriately constrained
binary RAMnet can be directly compared with Bayesian Classifiers, Sparse Distributed Memories and
Radial Basis Functions. One reason why the constraints arise is because RAMnels are not univer-
sal approximators. We demonstrated this fact viewing n-tuple processing as a projection onto the
set of non-orthogonal tuple eigenfunctions making a comparison with the projection onto the Walsh
functions. The sub-optimality of the n-tuple network is caused by the tuple mapping which does not
admit all terms of the general function expansion and the training procedure which does not estimate
the coefficients of the expansion so as to minimise the expected generalisation cost.

In order to determine how this affects the performance of RAMnets, we carried out in chapter 4
a large experimental study of the method benchmarking it against 23 other methods. The StatLog
data used in this study is easily accessible allowing other weightless models to be compared in the

future. We found that there is no systematic performance gap on 6 out of 11 datasets tested. The
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results were modest {or one dataset and the method failed entirely on the remaining four. The fact
that RAMnets delivered a competitive performance for a considerable proportion of the datasets and
that its failures were equally decisive motivated our further efforts to provide an explanation for this
behaviour. Limited as it is, we found the Tuple distance tool valuable in developing a semi-quantitive
argument based on the Generalisation Hypercubes. We argue, that that the problematic datasets
do not have enough of the training data to ensure the correct generalisation. The calculation of the
Generalisation Hypercubes is casy and can give a good indication of whether the RAMnets can be
expected to perform well on the given data or not.

Because the generalisation in RAMnets is determined by the parameter n which at the same time
controls the complexity of the features, it is not possible to eliminate this problem without a serious
modification of the method. As the output of the n-tuple network is a crude approximation of the
likelihood P («xe), skewed class priors can also pose a difliculty for the classifier. 'This depends on the
overlap effects on tuples which are difficult to quantify and which we studied experimentally.

We studied the Frequency Weighted classification networks which approximate class posterior
P (cla) in chapter 5. We identified two theoretical stumbling blocks: derivation of the marginal
probability estimates form the tally distribution and combining the marginals to obtain the joint
feature distribution. The latter is very difficult without further knowledge of the correlations between
tuples. We therefore assumed tuple independence and tackled only the former problem demonstrating
that the routinely used Maximum Likelihood estimation is inaccurate for small tallies which appear
most often in RAMnets. We proposed an alternative Good Turing method which solves the zero tally
problem in a principled manner and improves the performance of the Frequency Weighted model.
However, because the training set is finite, the binary version outperforms the Frequency Weighted
methods, for large values of n, regardless of the probability estimation technique employed. This
is because all probabilistic models are based on the unlikely independence assumption and hecause
the estimates become increasingly noisy as n increases. We also showed that the system with the
unprincipled zero tally correction (MLZ) is equivalent to the binary system for large n and to the
Frequency Weighted system with Maximum Likelihood estimation for the small n combining the
strengths of the two versions.

The main source of sub-optimality (and speed) in RAMnets is the training algorithm which does
not minimise the expected generalisation cost.  We pursued this issue further in chapter 6. We
concentrated on the regression RAMnets and a simple noisy interpolation problem. In order to
calculate the expected generalisation cost of the method it is necessary to provide a point of reference,
1.e., the optimal solution. We computed this optimum using a Bayesian framework with Gaussian

process prior assumptions introducing a quadratic cost function to measure the accuracy of the model
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for the given dataset.

This approach can be used to determine the optimal parameters of the regression RAMnet for one
dimensional interpolation problems. Because RAMnets use feature sets which have a form that cannot
be easily integrated analytically under a Gaussian input distribution, numerical approximations have
to be used which is the main drawback of the approach.

Our experimental work verified that RAMnets are capable of delivering competitive results for a
considerable proportion of the datasets, although since the method is potentially suboptimal, 1t may
not be applicable for certain problems. We are able, however, to caleulate analytically the generali-
sation cost of applying RAMnets to one dimensional regression problems and can semi-quantitatively
obtain an indication if the method is likely to fail to classify given data.

The speed of the method means that, in the practical applications, the limited scope of analytical
tools for quantifying the generalisation cost of RAMnets is not a major obstacle. The performance of
the network can be determined numerically with little computational overhead.

We are of the opinion that, with all their inherent limitations, RAMnets are a powerful method for
solving classification and regression problems. Taking into account their simplicity and speed, they

should always be considered before more complicated models are applicd.

7.1.1 Summary of the Contributions

The research contributions can be summarised as follows:

Pointing out the relationship of RAMnuets to other well established Neural Network Models.

o Verification of the effective tuple kernel theory and numerical work in the review which confirms

earlier theories.

e Large scale experimental work that establishes the viability of the method and allows one to

compare its performance with 23 other algorithms.

e Introduction of the Good-~Turing method of estimation for RAMnets and comparison of the
binary n-tuple model with Frequency Weighted versions showing the superiority of the former

method over the later for large values of the parameter n.

e Introduction of the Generalisation Hypercubes which allows one to argue semi-quantitatively

about the RAMnets performance on the data encoded by CMAC technique.

o Development of the Bayesian framework for the analytical calculation of the generalisation cost,

of the Regression RA Mnets.
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7.2  Suggestions for Further Research

Cost Distribution and the \? Distribution. It would be beneficial to have an analytical formula
for the generalisation cost distribution rather than to know only its mean and variance. The expected
cost distribution is related to the \? distribution as is apparent {rom the figure 6.5 and equation 6.29
which involves a sum of squares of Gaussian distributed variables f,. The relation to the 2 distribution
is nontrivial due to the fact that the variables are correlated, i.e., the posterior covarlance matrix A is
not diagonal, and that each variable is weighted by the input distribution. Althongh we can cope with
the former by diagonalising A and standardising the variables the latter is more awkward. However,
it should be possible to derive the probability density function of the cost functional for certain classes

of weight functions, e.g., a Gaussian.

Stochastic Processes and Classification.  We introduced a Bayesian framework (see chapter 6)
for the calculation of generalisation cost of the regression RAMnets. Further work could extend our
approach to n-tuple classification networks. It is relatively recently that Gaussian processes have
been proposed for Bayesian classification (Barber & Williams, 1997). ‘The main complication of this
setting is that the function values have to fall in range [0, 1] (imposing a constraint on the form of
the covariance function) and that the prior has to be specified on the transformed, activation function
space. Because the integration over the hyperparameters is intractable, Monte Carlo methods have

to be used to obtain approximations.

Tuple Kernel. In section 3.3.2 we introduced the tuple kernel function A (x, &) of two inputs 2 and
2" encoded with bit-strings u and v which can be approximated (see equation 3.16) by an exponential
function of the Hamming distance between the vectors wand v. This functional form, useful fortunate
is not necessarily the most suitable one. It would be interesting to be able to find feature sets that give
rise to other kernel functions (e.g. a Gaussian) while still preserving the simplicity of the n-tupling

process.

Eigenfunction Expansion and Regularisation Theory. ‘The Tuple kernel function can be

viewed (see section 6.2) as an expansion in terms of the binary valued Kronecker delta functions.

It is interesting to note that there is a familiar way (Riley, 1974) to expand a kernel into the form

Nz z')y =3 or(x)dr(z’), at least when N(z, z') = K(z — 2'), if the range of ¢ is not restricted to
%

1}an eigenfunction expansion. Indeed, principal component analysis! applied to a Gaussian with

0.1 genfunct :xpansion. Indeed, principal component analysis! applied to a ( o witl

covariance matrix K shows that the smallest feature set for a given generalisation cost consists of the

(real-valued) projections onto the leading eigenfunctions of K.

'K~ needs to be a compact operator for this to work in the infinite-dimensional limit.
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In physics. the function (matrix) which is usually expanded is K™! (with Ny = N(x,2")), ie.
the differential operator whose corresponding Green’s function is XK. Because K~! can be viewed
as a differential operator of a certain differential equation there exists a link with the theory of
regularisation (Poggio & Girosi, 1990: Girosi et al., 1995). 1t would be interesting to view regression
RAMnets from the point of view of this theory.

The main problem is that the mathematical tools of the calculus are suited for the continuous rather
than binary-valued functions. The theory which could help to deal with the latter was introduced by
Gibbs (Gibbs, 1970; Harmuth, 1972). He defined the concept of logical derivatives (based on the Walsh
expansion) and proposed methods for solution of logical differential equations. It seems, however, that
logical differential calculus is still in its infancy. Developments in this area could provide us with the
analytical tools applicable to RAMnets in a more natural way than statistical methods used in this

work.
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Appendix A

Mathematical Calculations

This appendix is concerned with the integration of the expressions for the expected cost and variance.

In section A1 we consider Gaussian integrals of certain forms that repeatedly appear in the
calculations. We carry out the integration of the expected cost (equation 6.24) and obtain the ap-
proximation 6.27 in section A.2. The cost variance (equation 6.25) is integrated in section A.3 and its
approximation 6.28 obtained. We note, that the approximations 6.28 and 6.27 are model independent.

Section A.4 contains further details of the expected cost integration. We consider there a class of
models linear in the output training data which, as demonstrated in section 6.2, includes the regression

RAMnets.

A.1 Gaussian Integrals Involving Quadratic Forms

Let R be an arbitrary matrix and 'V denote the (symmetric) covariance matrix. We are concerned
with the Gaussian integrals involving powers of a quadratic form @ = (x"Rx)" for n = | and n = 2.

For n = 1 the Gaussian integral of () has the form

7, = /e-"?*”‘v"xx"‘n.x (A1)
Note, that we can rewrite it as
d i —ixT(vTlouyR)x ¢
1, =57 v =0 (A.2)
d I's -1 ¢ -1 }Z
= det [2n(VTI = 29R)7'] |y =0

The differentiation of the determinant is possible if we rewrite it using the identity In det [A] = tr [In Al.

We also note that (V™! = 29R)™" = V(I = 29VR)~'. This allows us to evaluate the derivative at



APPENDIX A, MATHEMATICAL CALCULATIONS
v = 0 as follows

T, = det [27V]* ﬁd— det [(I = 29VR)~1)? ly=0 (A.3)
=4 det[27V]? det [(T— 29VR)™!]? %p‘*‘[“‘((‘—‘-“"“-"‘ N =0
= det [22V]F det [(I = 29RV)~!] 7 trlin((-20 Vi)™
tr [(I-27VR)™'VR] Iy =0

1
=det[27V]? tr[VR] (A1)
The integrals involving higher powers of the quadratic form Q can be treated in a similar way by a

repeated differentiation of equation A.2. In particular, the Gaussian mtegral of Q for n = 2 can be

calculated as

I, = / em XV x (x'rRx)z (A.5)
: 5 d* ‘ —IxT(vT oo R)x
=det [27V]? = [ e 3 ik b =0
dy®

= det [’erv]% {— det [(I — QW'VR.)—I]_% (= VR) =]

tr [(I-29VR)™'VR]" +

20 (= VI (0 9y VR)H(VR)? ) [y =0
=det [27V])? {2t [(VR)?] — ur? [VR]}. (A.6)

Therefore, if the random variable x has a Gaussian distribution with zero mean and the covariance

matrix 'V then following identities hold:

£[xRx] = r[VR] (A7)
El(xRx)’] = 2t [(VR)Y] — tr*[VR] (A.8)
var[xRx] = 2(ur [(VR)?] = t+*[VR]) (A.9)
ERX"] = 0 forodd n. (A.10)

A.2 Integration of the Expected Cost

n
We first consider the integration ( over y and then over z) of the cost functional Cif flxny). Itis
i

given by equation 6.22 which with C'(f,.y) expanded yields

C-'(if’"ffxw)) = // %(fr;r - ,?j)wg-(f,; —y)P (z|xn,) P (ylz, £) dedy. (A.11)

[
()
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We assume that the Gaussian noise is uniform and position independent with variance ¢, /3. In this

case, the likelihood of an output y for a given input x and a function f has the form

— L . —lg
> (yla,f) = det [22¢,] 72 e FUe =y )T (fe=y) (A.12)

Plugging the likelihood distribution A.12 into A.11 we have

C'(Yf~f|x(.-'\')) = //dt’ -*(/1 T em Bemyiy ey (A 13)

m m

(ir y)u\ (f_r — l/ ( |x(,\ ,) (11(11/

.4»

ram

substituting : = y —f,, dz = dy

= // 220, ) Tem3hrts s — £ — D)w (£, = £, — )P (e]x(n)) ded=
cxpa.nding the square and using A 10
—,’—, “ it AN AR .
= Zege) FemERE L — £ )w (£ —£) A+ 2wz | P (2]x(ny) dedz=

i1'1b<>g:'a,l,ix1g out z and using A.7T

- %/(f;.—f,,)m,,.(f,._ti,.)z) (Axf|x(fx,))(1.1;+%/%/) (rxn,) du (A.14)

r..]-—-

g

The second integral involves the cost weight w, and noise variance ¢,.. If w, and ¢ are untform and
the imput distribution is Gaussian then this integral could be evaluated analytically. The first integral,
m

however, involves an output of a model £, which in general can be a complicated function of .

Therefore, we will have to approximate the integral over » with a discrete sum, which nmplies
quantisation of the input domain. There are at least two ways of doing this. One is to have variable
width bins centered on the test inputs and the other is to use a fixed number, M of bins with a
constnt width Ax. The first approach is data dependent and has the disadvantage that in the areas
where there are few inputs the approximation will be terrible. The later method is data independent,
and the quality of the approximation can be controled by the parameter M. We feel that the second
approach gives us more flexibility and we impose a uniform quantisation of the imput domain. Ohserve
that the consequence of this approach is that any function of 2 is assumed 1o be constant within Az
Therefore, if the we are given P test points for which the expected cost should be calculated, in the
resulting approximation we will actually use at most M points. This results in a numerical error but,
we verified experimetally that, for reasonable choices of M, it is not significant.

We define a diagonal M x M matrix R holding the maximum likelihood estimates of the mput

distribution P (z|x(x)) and the cost weights w,:

i} .
Ry = W;” (.’I,'I)((N)) 'U),;(‘)J.'l./ (A]’))

and a diagonal M x M matrix Q with elements Q. = By wrtgse.
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m
When the integrals over r are replaced with the sums over A bins, the cost functional C'(f, flx(ny)

becomes
m ) m = m tr [QR.
C'(f,f[x(,\,)):g(f—f)lﬂ.(i'~f')+ [[2{ J (A.16)
3
We note. that the factor 1/A in R, plays the role of dx in the mtegration:
£ -6 R(F—£) = S (- £ )l — £)P (o L [d ey — )P (o I
(f =)' R(f —f) = Z( e = Lt — 1)) (J,{x(,\z)) 7 (fe = t)w,e (£ —£) P (2]x(n)) du.

T

1
Having caleulated C'(f, f]x ) we are ready to compute its posterior expectation given by the equation

6.24:

(Clxxyyn) = /C’(f,f|x(,\:))1’(f]x(,\-,,y(,\r,)(lf (A17)

; BT A g m T [QR,
(det [ZTTAD—E/e—%(t—lle(t~l)%(f —OR(E - )t + t [zi ]

2

substituting z = £ — ', dz = df

= (det[2rA])"* /()—%”"A*g('i’ — o OR(T = = Pyar 4 QT

203
integrating out z and using A.7, A.10
m * e * tr[ORR .
= Hr[AR]+ (f - f)R(f —f)+l—[l—]. (A 18)

2/
We note, that this expression can be evalnated for any model. It is not exact becanse we approximated
the integrals over & with sums. In section A4 we carry out the analysis of the expression AL 18 further.

it
We focus there on the regression RAMnets and express £, in terms of the J matrix (see section 6.2).

A.3 Integration of the Cost Variance

The analytical expression for the cost variance (equation 6.25) is a difference of two terms: the posterior
expectation of the square of the cost and the square of the expected cost which was calculated in Lhe

previous section. We deal with the former term first:

/C(f,f!xm):’z) (F1xny yon) df = (A.19)

using A.16 and expanding the square

2

/' P (£l i) {%d"‘ —)"R(Y - f)} L

tr[QR]

m

//f) (Elxin) yiny) 2 = £)TR(E — £)df

7
tr[QR)77
- [ 25 }
= z}+”[ffn‘]zg+{”gim}_ (A.20)
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We expand the posterior P (flx(',\r),y“\r)) and the first integral Z, becomes

“

I, = det [ZTFA]_% /6—%(f~_f)'1“A-l(f_f~) [%('i _ f)lR(YfT _ 1)} df

substituting z = £ — 1, dz = df and expanding the square

/F_%Z'LA_[z{ [%('t)‘) _ ;)IR(ri” _ ;)} i (A.21)

m * 1233 *

+ 4(f —)"R(f —f) 2 "Rz + [12"Ra)’

1ape

= det[27A]”

4]

— JR(F 1) {g('f CETR(E - )+ z"‘R.z] + {z"\R,('f' - f')} }df

We integrate each term of the sum in the curly brackets separately and use results A7, A8 and A 10

to obtain

©
m m m mn

I = [%(f ~ ) R(f ~ f)}” +5(f =) 'R(f —£) - 1r [AR] (A.22)
+ w[ARRFF] + 1tr[ARAR] + [Ltr [AR]]

mn »
where the diagonal matrix F with elements /7,0 = (£, — £)é, .+ was introduced in order to carry out

o

m - =
the mtegration of the term mvolving a quadratic form [z' R(f - f)J .

Integral 7, was calculated before (see equation AIT) and is simiply

m . m
I, = str[AR] 4 1(f =)' R(f — 1) (A.23)
Plugging in the equations A.22, A. 23 into A.20 we finally obtain an expression for the second posterior

m
moment of the cost functional C(f, fixn)):

/(,'( t‘f|X(,\'J)21“ (f’X(N)‘y(N)) df (/\2/1)
- [%('? —£)"R(Y — f)] o (f — £)"R(f —£) - 1r [AR] (A.25)

+ Ut [ARRFF] 4 3ur [ARAR] + [4tr[AR])®
‘_‘.{%ﬂ <%u [AR] + 1(f — £)"R(T — [‘))

{u [QR]} :

2/3

The square of the expected cost can easily be found using A.18

(Clxiny yin,) (A.26)
= {z—,u [AR] + 5(f - ) "R(f - T) + = [ff,n]]
_ [}?(i' ~BYTR(E - ?)] L J(f— £)R(F - f) - ir[AR] (A.27)
u [gn,] (.x:u [AR] + :(f — £)"R(f - f))
RN REC
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After the subtraction of A.27 from A.25 of most of the terms disappear and the expression for variance
is simply

ne

var |C(f £]x(x ) y(v))| = $tr [ARAR] + tr [ARRFF]. (A.28)

A.4 More Details of the Cost Expression

We recall from the section A.2 that in the expression for the expected cost A 14 the integrals over 2 had
to be approximated with sums and that a matrix R was introduced to that purpose. In this section
we consider again the expected cost for the models linear in the training outputs y ). We start of
e

with the approximate form given by equation ALL8, substitute Jpa)yny for the model output £ and
work backwards replacing approximate terms involving the matrix R with the appropriate integrals
over . As a result of this procedure we arrive at an exact expression for the expected cost for hinear
models.

. ~ m x

The approximation A.18 involves the model output £ and the optimal approximation £. If the

Gaussian process prior has zero mean and if the model is linear then using 6.14 and 6.3 we can write

their difference in terms of the training outputs yn, and matrices K, J and 'V as

5o 1 -
t—f = -VipyK 'yivy = Joen)yin (A.29)
!

i _ B
= (:V(P:\-’)K : M‘I”')N)> Yiny
/

Consequently,

L = £)'R(F = £) = 4y /v, Ly(w) (A.30)
where the matrix L
1 T
L= (rv(,mx—’ - J(,,NJ R (:V(PMK*‘ - J(,;N)> (A.31)
i Y
has elements Ly,
1 , L 1 , . e
[/uu — ;zl: L’J;J;l [\,u} - '/_’]:_L‘u [{_{"l'l ; Z ".’l,".l},, [\,,Ul - '/JJ'J.',, (/\'52)

where the indices z,. xy, z, and z, select the components of the training input vector x(uy, indices
{, u, v and s vary between 1 and the number of training samples N and indices z and 2 select the

test inputs.
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We can now expand equation A.30 in terms of L,, yielding

%yz\')Ly(:\") — 'it Z Yu Lu v v

Uuv

plugging in A.32

1 L , 1 o
- % Z Yu : Z \/J‘J'g [\gul - Jﬁ.r,, ]‘)»Jnr’ - Z \‘l\r’.rs I\
i r N

uy

expanding R, using A.15

= 1> %le’;_v,/\’;,‘—z
! t

uv

1

2 : ; -1
o~ Vere Ny = Toie, | Yo
Py

|

Y]

multiplying and recovering the integrals over x

! ' el e !
= ;‘_, / Z Yu V,xr.xr, "".r.x‘; 1\31,1 I\ [“l Yo I’ (J:ix( N )) wyde

uvls

L/ .
- / Z Yu J N “'{r.rﬁ N .,»_;,l o PP (.ITlX( N )) Wy da

uvs

+ % / Z Yu ']J'_r,,, '],r,r WY I (.L'lx( N )) “’f‘hf

uv

sv

P (J?IX(;\I)) ll’.x~5.z',.x"

- J.r ‘r,

Yo

(A.33)

(A.34)

where we used the fact that K is symmetric and the order of summation and integration is irrelevant.

These integrals cannot in general be calculated because they involve the elements of the matrix J py,

and mverse of K which are complicated functions of z.
The remaining terms of the equation A.18 are

| i
ir[AR] = AT ‘A,.,.r/)(x:]x(,\.v))'u)J;(ZuJ

/ A P (2|x(n)) wpde

expanding A, with 6.16

!

|
ot

. L N
= — [ Vi P(z|xn,)) wede — 5z / vie)" K v(x) P (2lx(n)) wpda

27

expanding the vector v in terms of V..

1 ' 1 ’ -
= 2—7- / Vir P (.‘1:1)((,/\/)) wedr — o / L Vie, IV

tu
and
L QR] = =S Eb P (o Bpr =
Lr [Q ] = V —; 7t Wt (.L IX(,'\,!)) .zt = 7
{ > F .
A

-
— /r/l.w,, P (x]xin,) de.

(A.35)

Vo P (2x(n)) wedz (A36)

(A.37)

Equation A.37 could be easily integrated if ¢, and r,. were uniform and the covariance matrix as well

as the inputs density P (z]x(n)) had a Gaussian form. The integration of A.36 again poses a difficulty

because of the inverse of K appearing in the integrand.

Gathering together the results given by A.34, A.36 and A.37 we obtain an expression for the

126
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expected cost for the models linear in the output data:

, 1 e -
<C'lx(f\r'), Y(N’)> = el / Z Yu Vor, Ver, K sUl ]\mlva (.r:[x('f\r)) Wy dx (A.38)
! uvts
1 o
— ; Z Yu J_l»lfu 1»/471»5 IN “,l Yu ID (.IT[X(N}) Wy ({l‘
uHus
+ 1 /Z Vador, Jre, Yo P (.zrlx(;\:)) wedr
h uv
! NN ) . ! 7 =1y SIN N,
g [ Ve P (i) wsde = o [ 3 Ve K Ve P (o)) i ds

tu

1 i
+ 5 / qewye P (2]x(n)) dr.

In general, this exact form it is not tractable analytically. It is, however, plausible that for certain

non trivial forms of J, V and P (z|x(y)) the integration could be accomplished.

A.5 Conclusions

The analysis of the expression for the expected generalisation cost shows that the closed form cannot

1
be obtained. The major problem concerns the integration of terms involving the model output f,
which in general is a complicated function of .

We also considered a class of models which are linear in the output training data. It turns out that
for this class, which includes the regression RAMnet, the integration over inputs is also not possible
in general.

Therefore, we approximate the integrals over the input domain with discrete sums, i.e., we impose
a quantisation on z. Although numerical approximations can be easily obtained (with equation A.18)
for one dimensional inputs, the problem becomes intractable as the input dimensionality increases.
Monte Carlo methods (Press et al., 1992) evaluate the difficult integrals in A.38 could be applied but
they are bound to be time consuming for large datasets because the integrand scales badly with the
training set size. However, similar integrals have been carried out in the thermodynamic limit (high
input dimension) (Sollich, 1994), so the investigation of these techniques in the current setting could
be a promising research direction. An alternative possibility would be to find such feature sets (tuple

eigenfunctions) that yield forms of J that could be integrated under a given input distribution.






