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Thesis summary

Regression problems are concerned with predicting the values of one or more continuous quantities,
given the values of a number of input variables. For virtually every application of regression, however,
it is also important to have an indication of the uncertainty in the predictions. Such uncertainties
are expressed in terms of the error bars, which specify the standard deviation of the distribution of
predictions about the mean. Accurate estimate of error bars is of practical importance especially when
safety and reliability is an issue.

The Bayesian view of regression leads naturally to two contributions to the the error bars. The first
arises from the intrinsic noise on the target data, while the second comes from the uncertainty in the
values of the model parameters which manifests itself in the finite width of the posterior distribution
over the space of these parameters.

The Hessian matrix which involves the second derivatives of the error function with respect to the
weights is needed for implementing the Bayesian formalism in general and estimating the error bars
in particular, A study of different methods for evaluating this matrix is given with special emphasis
on the outer product approximation method.

The contribution of the uncertainty in model parameters to the error bars is a finite data size effect,
which becomes negligible as the number of data points in the training set increases. A study of this
contribution is given in relation to the distribution of data in input space. It is shown that the addition
of data points to the training set can only reduce the local magnitude of the error bars or leave it
unchanged. Using the asymptotic limit of an infinite data set, it is shown that the error bars have an
approximate relation to the density of data in input space. .
Equally important is the contribution of the intrinsic noise on the targets to the error bars. A review of
various methods for estimating the variance of this random variable is given and a Bayesian technique
is formulated for estimating this quantity as a function of the inputs.

Keywords: Bayesian inference, Maximum likelihood, Hessian matrix, Error bars, Prediction
variance, Confidence variance, Noise variance
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i, labels data points
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t;, ith target vector
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p(t|z) conditional density of the targets

p(t, ) joint density of the data

w, regression weights

u, noise prediction weights

ky, number of components in the weight vector w
k., number of components in the weight vector u
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Chapter 1

Introduction

1.1 Bayesian theory of inference

Observation is the main source from which we acquire knowledge about the world we live in and the
problems we want to solve. Observation is either the result of designed experiments or accidental
events yielding information about the problem in hand. Either way the result of observation is the
acquisition of raw data which need to be processed and analysed in order to learn about the problem
of concern. It is often the case that data obtained from observation consists of random components,
generally known as noise, on which we have little or no control. Learning from noisy data lies in the
domain of that branch of science known as statistics.

To learn from data, statistics employs a tool known as model which contains a number of same
or different types of parameters which we collectively denote by @ which can be adjusted in the light
of the available data. For example, if we were to model an unknown density function by a Gaussian
distribution, then our model is the normal distribution with the parameters as mean p and variance
o2 of the distribution, i.e. @ = {u,0%}.

Main stream statistics can be divided into two schools of thought known as the frequentist and
Bayesian approaches, each having its own philosophy and methodology of problem solving. In the
frequentist approach one would usually be concerned with finding a single estimate of 8 which ex-
plains the data best. This is in contrast to the Bayesian approach where parameter estimation has

no meaning. Here the parameters are treated as random variables having probability distributions

14



1.1 : Bayesian theory of inference

quantifying the degree of belief in the values of @ in the light of the data. The probability distribution

over the space of parameters 8 is then used to make predictions.

To see the difference between the frequentist and Bayesian mechanisms of learning and how they
work let us consider the problem of predicting the value of the random variable z from a number N of
observed data X = z3,.....,zx. For both frequentist and Bayesian approaches the information stored
in the data can be captured by the so called likelihood function p(X|0), which is the probability of
the data X given the model parameters 8. Assuming that the data points are independently selected

then the likelihood can be written as
. N
p(x16) = [] p(z:l6) (11)
i=1

To make predictions the frequentist approach uses the most likely value 8 of the parameters which
is found from maximising the likelihood function (1.1) given the set of data X. This is known as
the frequentist mazimum likelihood approach. Given the estimated value of the parameters 0 the
prediction of the new data is based on the predictive distribution p(:c]@). Note that the dependency
of p(:c|§) on X is implicit in the estimate 8.

Contrary to the frequentist approach, prediction on the basis of a single parameter estimate has no
place in the Bayesian inference. As mentioned earlier, the Bayesian method is concerned with defining
a probability distribution over the space of parameters which is subsequently used for predictions.
Bayesian learning starts by recalling prior knowledge based on experience. For example if we were
to predict the outcome of throwing a die, then it is reasonable to assume that obtaining any one
of the outcomes {1,2,3,4,5,6} is equally likely. Such knowledge is incorporated into the Bayesian
formalism by defining a prior probability distribution p(8) over the space of parameters which embodies
our knowledge of the problem. Priors are at the heart of Bayesian statistics and also the source of
criticism of the Bayesian approach from the frequentists, since they are apparently arbitrary and it is
often difficult to decide what is the best prior. The next step is to combine the prior p(8) with the

likelihood p(X|0) to obtain the posterior probability distribution p(6|X) according to Bayes’ rule

p(X16)p(6)

p(0|X) = (%)

(1.2)

The posterior distribution in (1.2) therefore has two contributions: one is the data part which is just
the likelihood function p(X|6) which serves as a means of extracting information from the data. The
second part is the prior p(@) which quantifies our subjective beliefs. The likelihood and the prior are
competing parts of the posterior distribution. In the limit N — oo the prior will have little influence
and the posterior p(€|X) is mostly determined by the likelihood p(X|@), in which case Bayesian

prediction approaches that of the maximum likelihood. On the other hand, if a small number of
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1.1 Bayesian theory of inference

observations were available, then the posterior is significantly influenced by the prior p(6).

Having derived the posterior for the parameters & we can now make predictions of a datum z.
From a Bayesian point of view making predictions using the most probable value! 0 of the parameters
which explains the data best is not the right procedure to follow. In order to make sound predictions
we should allow all possible values of @ to influence the prediction of z according the value of the

posterior they achieve. The result is
p(alX) = [ plel6)p(61X) do - (1.3)

where p(z|X) is the Bayesian predictive distribution. Note that, unlike the maximum likelihood
predictive distribution p(z|8), p(z|X) is not conditioned on the parameters 6. This is a consequence
of marginalisation over these parameters as in (1.3). For sufficiently large N the posterior becomes

narrow and so the integral in (1.3) can be approximated by

p(elX) =~ p(z[B) f p(61X) do
= p(z|) (1.4)

Thus we see that the Bayesian approach includes parameter estimation, which is a maximum likelihood
procedure, as a limiting case. While the ability to produce predictive distributions of the form (1.3) is
a merit of Bayesian methods, it is also the source of difficulty in implementing this approach. Often
the posterior p(8|X) is of a complex nature rendering the integral (1.3) analytically intractable and so
indirect methods have to be used. The inability of modern mathematical techniques to tackle complex
integrations of this form analytically is a mathematical problem inherited by Bayesian methods. In
Section 1.6 we will review two different approaches to implementing the Bayesian formalism, one
based on approximate analytical integration of (1.3), and the other based on numerical integration

techniques.

Hierarchical models

It is often the case that in the Bayesian formalism the prior distribution for the parameters 6 is
conditioned on another parameter q, i.e. p(@]a), which itself is treated as a random variable having
a posterior probability distribution p(a]X). Since the parameter a controls the distribution of the
other parameters 8, it is called a hyperparameter. Such schemes are known as hierarchical models and

can be extended to any level. In this case, the unconditional prior p(6) can be obtained from

p(6) = f p(6la)p(a) da (15)

where p(a) is the prior over the hyperparameter a.

1This value can be obtained from maximising the posterior p(8]|X).

16



1.2 Data and the likelihood

1.2 Data and the likelihood

In real world problems data often comes in the form of a set of inputs X = z,,....,2x5 and a set
of targets T' = #y,.....,tx. So that for each vector of inputs z; = z},.....,z¢ belonging to the set X
there corresponds a target vector ¢; = t},.....,t* belonging to the set T. The inputs can be viewed as
the locations where measurements are made and the targets are the outcomes of those measurements.
The set of inputs and targets together form a data set D = {X, T} from which inference is made.
In classification problems the targets are binary data taking values zero or one and represent class
membership of the inputs. This is in contrast to regression where the targets are measurements of
continuous variables. The most general description of data of this form is given by the predictive
distribution? p(t|z). Assuming that the distribution of different targets are independent, then can

write

m
p(tle) = [] p(t'|) (1.6)
=1
The distributions p(t/|z) are not known a priori but one can attempt to model them. To see how,

let us consider a regression problem where it is assumed that the targets are related to the inputs

through some deterministic function f/(x) with added noise. Therefore,
t] = fi(=) +wi (1.7)
Assuming that the errors »; has a Gaussian distribution with true mean

(vi) =0, (1-8)

and variance®

(U,‘U,J} = 325'-'4 (1.9)

where §,; is the Kronecker delta, then ¢/ is a Gaussian distribution too with mean f7(z), which is
a function of the inputs, and variance* s2. A schematic illustration of data of this form is given in
Figure 1.1. Since the targets are noisy, repeated measurements at the same input z; will yield different

values of tf . In the limit of an infinite sample the mean of t;f will approach the true function f/(z;).

2A more complete description of the data is given by the joint distribution p(¢,z) = p(t|x)p(zx), where p(z) =
J p(t,x) dt is the density of the input data. However, since we want to model the targets ¢ conditioned on the inputs

« the density function p(z) has no significance here.
3For simplicity of notation we have assumed that the noise component v is the same for all targets. This assumption

can be relaxed in a straightforward way by introducing a diagonal covariance matrix with its elements consisting of the

variance of noise of different targets.
4Here we have assumed that the noise variance is independent of the inputs. Input-dependent noise variance will be

considered later in this chapter as well as in Chapter 4.
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1.2 Data and the likelihood

| Gaussian noise

inputs targets

(X )
f(x)

Figure 1.1: A schematic illustration of data for regression. The inputs are chosen according to some
distribution p(x). Due to the noise process, which is modelled as a Gaussian, the targets are
shifted from their true values f(z) to ¢ as in formula (1.7).

Functions of this form are called regression functions (Nadaraya 1964; Xu et al. 1994). For each target

we can write

p(|x) = (#)m exp(—M) (1.10)

252

Since (1.10) is a Gaussian distribution, it is often convenient to summarise it by its mean f7(z) and
variance s? which are not known a priori. Let y7(z;w) be the output of a model, e.g. polynomial
regression or neural network, with weights w modelling the regression function f(z). Likewise, let

o2 be the estimate of the true noise variance s2. Then we can write

p(¢le,w,0) = ()" exp(~2 (s (@i ) - ¢)?) (11)

where we have defined the noise level 8 = ¢ 2. Note that the predictive distribution in (1.11) is now
conditioned on the weights w and the estimate of the noise level 3, since different values of these
quantities yield different predictive distributions. Given (1.11) and assuming that the individual data

points (z;,¢;) are independently selected we can write the likelihood function as

o(T|X,w,) = p(D|w,p)
N

= []»(tilzi,w,B)
i=1
1 o~
= ——exp(— E: 1.12
7o) P~ 2 Fb) .
where Ef) is the so-called sum-of-squares error function for the jth output
) g K A2
Ep(w) =3 Z(y"(m.-;w) - ti) (1.13)
i=1

18



1.2 Data and the likelihood

and Zp(pB) is a normalising factor

Zp(B) = (%r)m# (1.14)

Note that the appearance of the sum-of-squares error in (1.12) is a consequence of assuming a Gaussian
noise on the targets. However, the use of sum-of-squares error does not require noise on the targets

to have a Gaussian distribution.

As mentioned earlier, in the Bayesian approach the likelihood function is combined with a prior
in order to obtain the posterior for the parameters @ = (w, 8) which is subsequently used for making
predictions. This is contrary to the frequentist _approach which makes predictions using the single
best estimate of the parameters 8 = (@, ﬁ) which are found from maximising the likelihood function

p(D|w,B). Alternatively, one can minimise the error function E(w, 8) defined as

E(w,f) = -Inp(Dlw)

B Z Ef)(w) — ﬂ In 3 + Constant (1.15)
i=1 2

These two procedures are equivalent since the negative logarithm is a monotonically decreasing func-
tion. Note that instead of minimising (1.15) we can find @ from minimising the sum-of-squares error
Ep(w) as in equation (1.13). Given the sum-of-squares error our best guess of the target t/ is given
by the output y(z; @) which is the mean of the predictive distribution p(tf|z, @, B).

Contrary to regression, in classification problems the targets T are class labels taking binary values
Oor1,e.g.t; = (00:- 1-- 00), where the jth component being 1 indicates that the attribute =; belongs
to class j. Assuming that the input vectors are independent then the probability of # belonging to

class 1, ...., m is given by

m

p(tlz,w) = H (y’ (z; w))ti (1.16)

i=1

Since the model outputs y(x; w) are viewed as the probabilities of  belonging to each of the classes,
it is necessary that they i) range from 0 to 1 and ii) they sum to unity. To fulfill these requirements
the outputs are chosen to be softmaz (Bridle 1990) functions of the form

exp(al (z; w))
Y7y exp(al (z;w))

¥ (z;w) = (1.17)

where a’ is some function of the inputs z and the weights w. Using (1.16) we can write the likelihood

as

p(T|X,w) = p(Dlw)

ﬁ ﬁ (v (s w))‘g (1.18)

i=1j=1

19



1.3 Adaptive models

As was the case for regression, the negative of the logarithm of the likelihood defines an error function,
which is known as the cross-entropy error.

For both the sum-of-squares and cross-entropy errors, the output y’(z;w) has a simple interpre-
tation at the minimum of the error function-— in the limit N — oo, it is the conditional average (ti|z)

of the targets (Bishop 1995a), i.e.

V(2 @) f tp(t!|z) did

= (tjlz) (1.19)
For regression problems we can write
V(o) = (F|z)
((f (=) +v)|z)
fi(z) (1.20)

Il

where we have used (1.7) and (1.8). Thus in the limit N — oo, the model will average over the noise
and learns the true underlying function. For classification problems the model outputs approach the

true probability of class membership.

1.3 Adaptive models

In the previous section we mentioned that the underlying function f(z) is modelled using a mathe-
matical function which is taken to be the output of an adaptive model with weights w which can be
adjusted in the light of the training data. Such models can be divided into three separate groups,
parametric, non-parametric and semi-parametric models. In the parametric case, the inputs-targets
relation is assumed to have a certain functional form. For example, if we believe that the relation
between a set of inputs-targets is linear then a first order polynomial would be the proper model
to use in the regression. Often, however, the input-target relation is a complex one and difficult to
guess. In such cases the choice of a parametric model might not be a good representative of the true
functional form. Contrary to this, non-parametric models aim to discover the inputs-targets relation
from the data alone. Such models, e.g. kernel regression (Scott 1992), typically grow in complexity in
proportion to the size of the data set which makes them computationally difficult to use. Other models
which aim to combine the advantages of both methods are known as semi-parametric models. Here
the number of parameters can be systematically increased independent of the size of the training data

giving ever more flexibility to the model. Examples of such models are generalised linear regression
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1.4 Penalised maximum likelihood

(GLR)® models and neural networks.

1.4 Penalised maximum likelihood

The problem with the maximum likelihood approach is that it makes use of a single estimate @ to make
predictions and thus not allowing other values of the weights which may explain the data reasonably
well to influence predictions. When the data set is small in relation to number of weights w the
estimate @ is poorly determined by the data. In this case the maximum likelihood solution y(z; W)
has the tendency of fine tuning to the data and hence discovering structure in the data which is due
to noise rather than the true regression function f(z), a problem which is known as overfitting. This
problem can be alleviated using early stopping in which training is stopped when the model error on
a validation data set reaches its minimum (Baldi and Chauvin 1991). Another technique for counter
overfitting is to supply extra information. This is known as regularization (Tikhonov and Arsenin
1977). One particular form of regularization is the weight decay (Horel and Kennard 1970) leading to
the so called ridge regression or penalised mazimum likelihood. In this case the sum-of-squares error®

Ep in (1.13) is replaced by the error function
P8
S(w) = BEp(w) + FWw (1.21)
and the error function (1.15) becomes
mN
E(w,p) = S(w) - n In B + Constant (1.22)

where a > 0 is a regularising constant whose value can be determined using, for example, cross-
validation methods (Stone 1974; Stone 1978; Wahba and Wold 1975). Note that the form of the
regularising term is chosen to discourage large value of weights and thus prevent the output y(z; w)
from fine tuning to noisy targets. It has been empirically shown that such forms of regularization can
lead to improvement in model generalisation (Hinton 1987). We will see in Section 1.6 that weight
decay has a simple and natural interpretation in the Bayesian framework, it arises from the prior

distribution of the weights.

S5GLR models are reviewed in Section 3.2.
®For simplicity of notation we shall consider regression with a single output from now onwards. Reference to multiple

outputs will be made when necessary.
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1.5 Regression error bars: an overview

As we have discussed in Section 1.2, in the limit of an infinite amount of data the outputs approaches
the conditional mean of the targets in which case the output y(z; @) learns the regression function
f(z) by averaging over noise. However, due to the existence of intrinsic noise on the targets, we can
not predict the outcome of ¢ with certainty. The uncertainty in the predicted value of a target given an
input is known as the predictive variance o} and o, is known as the predictive error bars or predictive
bands. In the limit of an infinite data 07 = o2. In reality, however, the number of data points in the
training set is limited, in which case the output y(z;w) can only approximate the true underlying
function f(z). This highlights the need for another from of uncertainty, which is the uncertainty in
the predicted value of the function f(z) given the input @. This is known as the confidence variance
o2 (z) and %o, (z) is known as the confidence error bars or ;:onﬁdence bands. As we shall see later,
the predictive variance is the sum of the noise and the confidence variances. In the rest of this chapter
we will review different methods of estimating the predictive variance and its error bars using both

Bayesian, maximum likelihood and bootstrap methods.

1.6 Bayesian framework for regression

In a regression problem the parameters are usually the weights w of the model which controls the
output y(z;w), the level of noise B = 0% on the targets and a hyperparameter a which controls,
through the conditional prior p(w|a), the range of values w can take. In other words, a determines
the strength of the prior on the weights w. Both # and o are also treated as random variables with

prior probability distributions p(8) and p(a). The predictive distribution is obtained from
p(t]z,D) = [ pltlz, w)p(uw|D) du (1.23)

where p(t|z, w) is the likelihood for the datum ¢ and p(w|D) is the joint posterior probability distri-

bution of the weights w which is obtained from
p(wlD) = [[ pwID,B,0)p(6,0ID) ds da (124)

where p(w|D,3,a) is the conditional posterior for w and p(8,a|D) is the posterior for # and a.
Depending on needs of the user, one might be interested in predicting the target ¢ given the input z.

For least-square error the best guess is to predict the mean of p(t|z, D)

¥(@) = [ y(ziwip(wlD) du (1.25)
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1.6 Bayesian framework for regression

The error bars of the best guess can then be obtained from
2 2 2
ot(z) = o2+ [ (v(@iw) - 4(@)) pwlD) dw (1.26)

In the last few years there has been considerable progress in techniques of applying the Bayesian
formalism to real world problems in the context of both regression and classification. Research into
this field has focussed on two different methods, one is based on approximate analytical integration
and the other is based on numerical integration techniques. In this section we will consider these two

approaches in the context of regression.

1.6.1 The evidence framework

Here we consider the evidence framework which has been applied by MacKay (1991, 1992a, 1992c,
1994a), to neural networks in the context of both regression and classification problems and its use-
fulness as a tool for tackling real-worlds problems has been demonstrated (MacKay 1995; Thodberg
1994, 1996). Here we review the method in the context of regression. The framework involves two
steps. In the first one the noise level § and the hyperparameter « are fixed to their most probable
values E and @, and the conditional posterior p(w|D, 5, @) is used to approximate the true posterior
p(w|D). This is known as the evidence approzimation. In the second step the posterior p(w|D, B, a)
is approximated by a Gaussian with mean located at w. This is known as the Gaussian or Laplace

approzimation (Morris 1988).

The evidence approximation

Our task is to make predictions and estimate the error bars using (1.23) (or (1.25) and (1.26)). For this
we need to know the posterior p(w|D) which can be evaluated from (1.24). However, if the posterior
p(B, a|D) is sharply peaked at the most probable values 3 and & and if p(w|D, 8, @) is a slow varying

function of 3 and a near that peak, then the unconditional posterior can be approximated by

pwlD) ~ pwlD,53) [[ pl6,aID) 48 da

= p(w|D,B,q) (1.27)
where
p(wlD, ,a) = EELHOPLIe) (128

where p(D|w, () is the likelihood (1.12) and p(D|B,a) is the evidence for B and a. Equation (1.27)
states that we should find the most probable values 3 and & which maximise the posterior p(8, a|D)

and then carry out the rest of the Bayesian formalism with the value of these parameters set to B
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1.6 Bayesian framework for regression

and @. These values can be obtained from maximising the posterior distribution for § and a which is

given by

_ p(D|B,a)p(B, a)
p(8,a|D) = 2(D) (1.29)

where p(8,a) = p(B)p(a) is the joint prior probability distribution for 8 and a, and p(D) is a

normalising constant. If we do not know what values 8 and a should take then we impose a vague
(flat) prior expression reflecting our lack of knowledge about the values of these parameters. Such
priors are non-informative (Berger 1985). For example, we may assume that all values of 8 and a are
equally likely in the range (0,00). Such priors are improper since they can not be normalised. In this

case the posterior coincides with the peak of the evidence p(D|B3, a), which can be evaluated from
p(DIB,0) = [ p(Dlw, B)p(wla) duw (1.30)

where p(D|w, ) is the likelihood as given by (1.12) and p(w]a) is the prior for the weights w. The
most probable values 3 and & are then found by maximising the evidence p(D|B,a), or minimising
the negative of its logarithm. The approach above to handling B and a is known as the evidence
approximation. It is based on techniques developed by Gull (1988, 1989) and Skilling (1991) and is

computationally equivalent to type II mazimum likelihood (Berger 1985).

Given the conditional posterior p(w|D, E,&') as an approximation to the true posterior p(w|D) we

can now make predictions from
p(t|z, D) / pltie, 0, Blp(w|D, B,&) dw (1.31)
Alternatively, we may use
v(@) = [vlaiw)pwlD,5,5) du (1.32)
and
2 2 e = o~
o) o+ [ (v(iw) - y(a)) p(wlD,F,&) du (1.33)

Therefore, in order to make predictions we need (i) to find the most probable values B and & and (ii)

to derive a formula for the posterior p(w|D, 3, ).

Prior probability distribution for the weights

In order to obtain an explicit expression for the posterior p(w|D, 8, a) we need to choose the form
of the prior p(w|a). Since we assumed that the targets are generated from a smooth function we

need a prior on the weights which encourages smoothness. The simplest way of incorporating this
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1.6 Bayesian framework for regression

requirement is to impose a weight decay prior of the form

pwle) = 5—— exp(~aLu(w)) (1.39)

1
Zy(a)

where E,,(w) is the weight decay regulariser
L
Ey(w) = Fww (1.35)

and Z,(a) is a normalising constant

Zu(a) = ()" (1.36)

and k is the number of weights of the model. The prior in (1.34) together with the quadratic choice of
E,(w) (1.35) implies that the distribution of the weights is a Gaussian with zero mean and variance
a~1, hence its is a Gaussian prior. However, the prior in (1.34) is over simplified since it does take
into account that the weights in multi-layer neural networks are divided into groups according to
their scaling properties (see Figure 1.2). A more elaborate from of prior which accounts for this fact
divides the weights into different groups (MacKay 1991, 1994a), such as the weights belonging to
different layers of a network, and assigns separate Gaussian priors to each group. Another motivation
for choosing different priors for different groups of weights is related to the problem of eliminating
irrelevant inputs, a procedure known as automatic relevance determination ARD (MacKay 1995; Neal
1996). Here a separate prior is given to the input-hidden weights. For those inputs which are irrelevant
the estimated value & is large forcing the weights to take values close to zero. Other forms of priors
include weight sharing (Nowlan and Hinton 1992) and Laplacian priors (Williams 1995). The latter is
particularly suitable for switching off silent weights in neural networks, a process known as pruning.

In this thesis only single Gaussian priors will be considered.

The Gaussian approximation

Given the choice of the Gaussian prior for the weights and the Gaussian noise model, we can now

rewrite the posterior probability distribution for the weights as

p(wlD,B,a) = Zr5—s exp(-S(w) (1.37)
Where

S(w) = BEp(w) + aE(w) a3
and

Zs(p,0) = [ exp(-5(w)) dw (1.39)
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hidden-output

hidden-output weights
bias _ _
hidden units
input-hidden
input-hidden weights
bias

Figure 1.2: A schematic illustration of a two-layer neural network with feed-forward connections.
The hidden units transforms the linear combination of the incoming inputs according
to a mathematical function, e.g. tanh and sigmoid, which are subsequently fed into
the output units. Likewise, the outputs transform the linear combination of its inputs
(hidden outputs) according to a mathematical function.

For linear models, evaluation of the integral in (1.39) is straight forward since S(w) is quadratic in
the weights w and so p(w|D,,a) is a Gaussian. For non-linear models such as neural networks
this is not the case, but we can attempt to approximate the posterior p(w|D, 3, @) by a multi-variate

Gaussian distribution with mean centred at the most probable value w. This is known as the Gaussian

approrimation (MacKay 1991, 1992¢; Buntine and Weigend 1991). Thus

1 1, _

pwID,f,0) = 5 exp(—S(®) - 5w — @) Aw - w}) (1.40)
and

Z5(8,a) = (2m)*/*|A| /2 exp( -5 () (141)

where |A| is the determinant of the Hessian matrix A

_9*S(w)

A=—3 (1.42)

The motivation behind the Gaussian approximation is i) probability distributions approach Gaussian

in the limit N — oo (Walker 1969) and ii) Gaussian distributions are analytically easy to handle.

Evaluating the evidence

In order to obtain an explicit formula for the evidence p(D|3, a) we need to integrate over the weights
w as in (1.30). Using (1.12), (1.34) and (1.38) in (1.30) we obtain the expression for the evidence

1
Z0(B) Z(a) f exp(~S(w)) dw
Zs(8,a)
ZD(JB)Zm(a)

p(D|B, )

(1.43)
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1.6 Bayesian framework for regression

where Zp (B, @) and Z,,(a) are given by (1.14) and (1.36), respectively. If we make use of the Gaussian
approximation for the weights, Zs(B,a) is then given by (1.41). Using formula (1.43), the most
probable values E and & are then found from maximising the evidence or from minimising the negative

of its logarithm. These values are then used in (1.31) for making predictions.

1.6.2 Criticism of the evidence approximation

Strictly speaking, the evidence approximation is not a fully Bayesian procedure since the conditional
posterior p(w|D, B, @) is just an approximation to the true posterior p(w|D) from which exact Bayesian
predictions are to be made. While this fact is not in dispute, the question of how good the evidence
is in approximating the Bayesian formalism has been a matter of heated debates. Wolpert (1993)
criticises the evidence approach on the grounds that, since it is possible to obtain the true posterior
p(w|D) by integrating over the hyperparameters a and § analytically in the manner of Buntine and
Weigend (1991), there is no need to go through approximation schemes. In this approach, which
MacKay (1994b) calls mazimum a posteriori MAP, the true posterior is given by

p(w|D) = f[ p(w,B,a|D) d da
TID) f 2(Dlw, B)p(B) dB f p(wla)p(a) da (1.44)

Since 3 and «a are scale parameters, i.e. control width of distributions, it is proper to impose improper

priors of the form p(In3) = 1 and p(lna) = 1 which mean

p(B) = % (1.45)
p(a) = é (1.46)
Using (1.45) and (1.46) in (1.44), we obtain the true posterior
_ p(Dw)p(w)
p(w|D) = (D)
I'(k/2) L'(N/2) (1.47)

(2rrEw(w))k/ * (2rEp(w)) e
where I' is the standard gamma function.

While such objections should be a matter of concern, what matters from a practical point of view
is how good the evidence framework approximates the full Bayesian predictions. This depends on
how well p(w|D, B,a) approximates the true posterior p(w|D). In this context, it turns out that
the evidence and Gaussian approximations are related. As MacKay (1994b) and Neal (1995) argued,

although integrating over B and a seems to be beneficial, it can sometimes magnify the error resulting
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Figure 1.3: A schematic example of a posterior distribution with ill-determined parameters for which
the MAP approach together with the Gaussian approximation can lead to significant error
in approximating the true posterior p(w|D). The MAP approach is capable of finding the
most probable value i which is subsequently used, together with the Hessian A™!, to define
the centre and covariance of a multi-variate Gaussian distribution for approximating the true
posterior. Such an approach can lead to an entirely wrong and yet confident model.
from the Gaussian approximation to the posterior. To get an idea how this could be, let us first consider
linear models. In this case integration over w can be carried exactly since the posterior p(w|D, 8, &)
is Gaussian. However, if we choose to integrate over # and « as in (1.44), then the resulting posterior
p(w|D) is no longer Gaussian. However, in order to carry out the rest of the Bayesian analysis we
have still to assume that p(w|D) can be approximated by a Gaussian distribution. Since predictions

are more sensitive to integration over w than integration over 8 and a, the MAP method can produce

results more in error than the evidence procedure.

The above justification to the evidence approximation seems to have no meaning in the context of
non-linear models such as neural networks since the posterior p(w|D, 8, a) is not a Gaussian anyway.
However, even for such models the evidence procedure can some times yield better results than the
MAP. The reason is that (MacKay 1994b) if there are many ill-determined parameters, which is typical
when the number of model parameters is large relative to the number of data, then p(w|D) will tend
to have a sharp peak favouring a small range of weights as shown in Figure 1.3. In this case the
Gaussian approximation is not a good representative of the posterior p(w|D). However, if we choose
to approximate the true posterior by p(w|D, 3, &) then the subsequent Gaussian approximation will

be a better representative of p(w|D) and so will be less in error.

1.6.3 Bayesian model comparison

So far we have restricted our discussion of the Bayesian analysis to the case of one model. It is
also possible to tackle the problem of ranking different models using the Bayesian framework. For
instance, we may wish to use linear models as well as neural networks of different architecture, type

and complexity to make predictions. Using Bayes’ rule, we assign preferences to alternative models
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according to the posterior they achieve

_ p(D|Hj)p(H;)

where p(Hj) is the prior for the jth model, p(D|H;) is called the model evidence. If we have no reason

(1.48)

to prefer one model over the others, which would be the case if the models explain the data well,
then we should assign equal priors p(Hj) to all models. In this case different models can be ranked

according to the evidence they achieve. The evidence itself can be obtained from
p(DIt;) = [[ p(DIB, . Hy)p(B,alHy) dB da (1.49)

where the evidence p(D|B, a, H;) and the prior p(83, a|H;) are now conditioned on the model H;. This
change will not affect our previous analysis of Bayesian inference since the probability distributions

we have considered are now only conditioned on the type of the model Hj in use.
The evidence p(D|H;) and the principle of Occam'’s razor are intimately related (MacKay 1992a).
This can be shown by writing the evidence p(D|Hj) in the form
p(DIH;) = [ p(Dlw, Hy)p(uwlH) duw (1.50)
where p(D|w, H;) is the likelihood and p(w|Hj) is the prior for the weights of the model Hj. For a
sharply peaked posterior (see Figure 1.4) around W we can approximate the integral by

p(D|Hy) = p(D|w, H;)p(w|Hj) Aw (1.51)

where Aw is the width of the posterior weight. Taking a uniform prior over a width Aw, we have

Aw
Aw,

»(D|H;) = p(D|w, Hj) (1.52)

where Aw, is the width of the prior. The likelihood p(D|w, H;) can be regarded as a measure of
how well the model fits the data. The second term Aw/Aw,(< 1) is the Occam factor. Generally
speaking, models with large number of weights achieve large values of the likelihood as they can finely
tune to the data but they also have small Occam factors. The model which makes the best trade off
between complexity and minimising the data misfit will achieve the best evidence. A similar result
can be obtained from consideration of the minimum description length (Rissanen 1978).

In the Bayesian framework, model comparison is a way of giving preferences to different models
rather than a means of selecting the model and discarding the others. In other words it is a discrete
form of marginalisation. In fact the correct Bayesian procedure requires that we use the complete
set of models for making predictions using the weighted average of the outputs of the models, with

weighting coefficients being the posterior probabilities of the models. Thus

y(z) =) yj()p(H;|D) (1.53)
j=1 -
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Figure 1.4: An illustration of the mechanism of Occam factor. The prior p(w) is taken to be flat for a
range of weights Aw,. The arrival of data results in a posterior p(w|D) with width Aw. The
ratio Aw/Aw, is the Occam factor which favours simpler models.
where y;(z) is the output of the jth member of the committee of models and is given by (1.32).
However, the Gaussian approximation of the posterior usually gives a poor estimation of the true

evidence. Such problems have led Thodberg (1994, 1996) to use the evidence only as a criterion for

selecting a committee of models whose members achieve the best evidence.

1.6.4 Non-equivalent multiple modes

So far we have considered the Gaussian approximation for the case of a single posterior mode. For
neural networks the posterior have many modes some are equivalent pertaining to the symmetry of
the network and some are non-equivalent modes pertaining to different solutions. In the evidence
procedure the existence of multiple modes is handled using an approach similar to model comparison
which involves partitioning (MacKay 1992c) the posterior space into sections each defined by the
domain of its own and then regarding each partition as a sub model within a model. Using the
Gaussian approximation we can approximate each model by fitting a multivariate Gaussian centred
at the most probable value of the mode with covariance given by the inverse of the Hessian matrix
A. In this way the rest of Bayesian inference applies. However, the success of such approach depends
on the assumption that the modes of the posterior are well separated so that the Gaussians do not

significantly overlap.

1.6.5 Three levels of inference

Thus we can distinguish between three levels of inference for implementing the Bayesian formalism
using the evidence framework:

i) In the first level we evaluate the weights w from minimising — Inp(w|D, 8, @) given the current

30
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values of the parameters 8 and a.
ii) In the second level we estimate the values of § and a from minimising the evidence — Inp(D|g, a).
The above steps are repeatedly applied until the most probable values w0, B and & are found.

iii) Finally, we can assess alternative models on the basis of the evidence p(D|H;) they achieve.

1.6.6 Predictions and error bars estimation

As mentioned earlier, evaluating the predictive distribution p(t|z, D) is the ultimate goal of the
Bayesian formalism. Assuming the evidence approximation p(w|D) ~ p(w|D,,3), the predictive
distribution is obtained by integrating over w as in (1.31). Given the Gaussian approximation for the
posterior p(w[D,E, @) and the assumption that the output depends linearly on the weights w in the

vicinity of w
y(z; w) = y(z; @) + (w - ) Tg(x) (1.54)

where g(z) = dy(z; w)/0w is the vector of derivatives of the output with respect to the weights
measured at i, then the distribution p(t|x, D) is a Gaussian with mean y(z; ) and variance o7 (z)

given by (MacKay 1994a)

o () = o + o4 () (1.55)
with

os=p"r= -2%_'_(—? (1.56)
and

o5 (z) = gT(z) A g(z) (1.57)

where A is the Hessian matrix measured at the most probable value of the weights w (see equation
(1.42)). The quantity v < k is the number of well determined weights (MacKay 1992a; Moody 1992)

and is evaluated from
v =k — a Trace(A™?) (1.58)
where the hyperparameter « is estimated from

s P
a= m (1'59)

Formulae (1.56) and (1.59) can be easily verified by minimising the negative logarithm of the evidence

p(D|B,a) with respect to 8 and a. The linearization of the outputs as given by (1.54) is exact for

linear models since the outputs depends linearly on the weights. For non-linear models such as neural
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networks, however, it is just an approximation which is valid only if the posterior width is narrow
enough. Note that formula (1.56) is similar to the type II maximum likelihood formula for estimating
the variance of NV independent Gaussian random variables with mean i and common variance o?, i.e.
o =55 Efv___l(z.- — 7i)%. However, in formula (1.56) we have the factor N — + rather than N -k,

since only 7y out of k parameters can suppress noise. We shall come back to this point in Section 4.4.

The prediction variance o (z) and its error bars +oy(z) is the centre of this thesis study. As
formula (1.55) shows, o?(x) receives contributions from two different sources. The first source is the
intrinsic noise on tl.le target data while the second source is the uncertainty in the weights due the
finite size of the training data. As the size N of the data grows larger the width of the posterior
becomes narrower. In the limit N = 00, 02 (z) — 0 and so the prediction variance is given by the
noise variance o2. As we shall see in Chapter 3, there is an intimate relation between the distribution

of data in input space and the confidence variance o2 (z).

1.6.7 Markov chain Monte Carlo methods

Although the evidence framework provides a practical way of applying the Bayesian formalism, it
suffers from the limitations of the evidence and Gaussian approximations. For non-linear models such
as multi-layer neural networks of sizes large compared to the number of training data, the Gaussian
approximation can be poor. An alternative approach for implementing the Bayesian formalism which
avoids making these approximations is offered by numerical integration. Here instead of attempting
to resort to analytical integration one can employ numerical integration techniques. However, given
the high dimensionality of the posterior distributions for neural networks, direct implementation of
ordinary numerical techniques is of no use given the computation overhead for implementing such
schemes. Instead, one can resort to sampling techniques known as Monte Carlo methods. In this
context, the task of implementing the Bayesian formalism is converted into the task of generating an
n sample of points in the parameter space drawn from the posterior probability distribution p(w|D)

and evaluate the outputs and error bars from

y(z) = j y(z; w)p(w|D) dw

~ %iy(m;wj) (1.60)
i=1
oia) ~ > (vt - (=)’ (161

where w; is the jth component of the random sample. Then the task of implementing the Bayesian

formalism reduces to the problem of generating a sample which is a true representative of the posterior
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p(w|D) in an affordable amount of time. There are several techniques for achieving this. For example,
one might resort to the so called importance sampling where one can consider a distribution, say g(w)
which is easy to sample from. This method, however, can be computationally prohibitive, since
for neural networks most of the posterior mass is confined to small regions of weight space and so
a large sample size is required to obtain a good approximation to the integrations in (1.60) and
(1.61). One particular technique which can overcome this difficulty to some extent is known as the
Markov chain Monte Carlo technique. Here the objective is to construct a Markov chain whose
equilibrium distribution is the required posterior distribution. Such a Markov chain can be obtained
using Metropolis algorithm and Gibbs sampling. One of the potential limitation of such algorithms
is that most of the samples might still come from low regions of posterior density space. Another
potential limitation is that such algorithms can end up sampling from a single mode of the posterior
distribution. Recently, a more elaborate form of sampling techniques known as hybrid Monte Carlo
developed by Duane et al. (1987) and applied by Neal (1995, 1992) to neural networks has shown
that numerical integration techniques can be a promising approach for implementing the Bayesian

formalism.

1.7 Other methods of error bars estimation

So far we have discussed error bars from a Bayesian point of view. Other approaches to error bar
estimation based on maximum likelihood and bootstrap methods are also possible. Here we review

these methods.

1.7.1 Maximum likelihood methods

As pointed out earlier in this chapter, in the Bayesian apj:roa.ch model parameters are treated as
random variables with probability distributions from which predictions are made. The posterior
probability distribution ovér the weights together with the intrinsic noise on the targets induces a
predictive probability distribution with variance o?(z) as given by formula (1.55). It is also possible
to obtain a similar result using the maximum likelihood approach, though one have to use a different
kind of reasoning which is as follows (Chryssolouris et al. 1996; Tibshirani 1996; Efron and Tibshirani
1993). Let us consider a regression model which is trained on a number of n samples of size N each.

Let w; be the estimate of the weights given the lth sample. We can write the predictive variance as

i () = ((t - y(=; ﬁ‘::))z) | (1.62)
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where (.) denotes expectation defined over the n samples. If we assume that the sample size N is

sufficiently large so that @; ~ w*, where w* is the estimate of the weights w at the limit N — oo,

then we have

y(z; @) ~ y(ziw*) + (@1 — w*)Tg(=) (1.63)
where g(z) = dy(; w}/awlw‘. Using (1.63) in (1.62), we have

oi(e)  {(t - vlesw) ) + 0(@) (@01 - w*) (@1 - w)7 Vo(a) (1.64)

The first term on the right hand side of (1.64) is precisely the value of the noise variance o2. The
quantity ( (W = w*)(w; - w‘)T> is the variance of the sample of w;. Therefore, the second term on
the right hand side of (1.64) is the variance the outputs of the model, i.e. it is the confidence variance.
Since in the limit N — oo, @; — w*, the second term in (1.64) vanishes and o7 = 2. Assuming that

w; — w* is normally distributed, then we can write

o (z) o, +04(2)

ol + ol g(z)T B g(x) (1.65)

where B = §2Ep [0w? is the data Hessian (see Chapter 2) measured at @. The maximum likelihood
formula (1.65) is similar in form to the Bayesian formula for evaluating the predictive variance. How-
ever, there is a significant difference in the way the estimate of the variance o2 is obtained using these

two different approaches. The maximum likelihood estimate of o2 is given by

3. 880 (1.66)

WEN

This can be easily verified from maximising (1.15) with respect to o2 with m = 1. It is a well known
fact that the maximum likelihood formula (1.66) for estimating the noise variance is biased since it
underestimates the noise variance while the Bayesian formula (1.56) is not. We will deal with this

matter in detail in Chapter 4.

Input-dependent noise variance

So far we have assumed that the intrinsic noise on the targets is generated from a Gaussian distribution
with a constant variance parameter. In practical applications this can be a too restrictive assumption
leading to a poor representation of the predictive distribution. Fortunately, one can extend the analysis
of this chapter to include the more general case of an input-dependent noise variance which varies as
a function of the inputs. As before, the true estimate of the noise variance s?(z) is not known but

one attempt to model it using the output of a model B(z; u) = o ?(z; u) with weights u. In this case
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predictive the distribution is given by
B(z; u)\1/2 B(z;u
p(tlz, w,u) = (T) exp (—(—2)-(y(z;w) - t)z) (1.67)
As before we interpret the negative of the logarithm of the likelihood function as an error function

E=

B -

N 1 N
2B w)(y(@iw) = t:)* = 53 In (i u) (1.68)
i=1 =1

The most likely values w and % are then obtained from minimising the error function in (1.68). Such
an approach has been used by Nix and Weigend (1994, 1995) for inferring an input-dependent noise
variance. The more general case of correlated noise for multiple outputs is also integrated into the
maximum likelihood formalism by Williams (1996).

Another maximum likelihood approach for estimating an input-dependent noise variance is based
on the residual error method (Satchwell 1994). Here a regression model is trained on the data set
using sum-of-squares error to obtain the outputs y(z;w). To obtain the variance a new data set is
created in the form (z;,r?), where r? = (y(a:.—;w) - t.-) 2. This new data set is then used to compute
the outputs o2(z) again using the sum-of-squares error. The justification behind such an approach
is based on the fact that since for the sum-of-squares error the outputs approximates the conditional
mean of the targets (see Section 1.2) then the second model gives, in the limit N — oo, the conditional
average of (t; - (tilm;))z = (t.- - 3,.!(:::;;:'?.#))2 (Bishop 1995a) which is the variance of the intrinsic
noise on the targets by definition.

Another approach for estimating an input-dependent noise variance is offered by the so called
mizture density model (Bishop 1994a; Ormoneit and Tresp 1996). Here the distribution of the targets
is modelled by a Gaussian mixture with means, variances and mixing coefficients as input-dependent
variables which are modelled using the outputs of a neural network. The advantage of such an approach
lies in the use of a mixture of Gaussians which, if given sufficient components, can approximate, at
least in principle, any distribution.

However it should be mentioned that the approaches we have considered in this Section for esti-
mating the noise variance are biased, since they are based on the maximum likelihood method, and

so they have the tendency to underestimate the noise variance and, hence, the error bars.

1.7.2 Bootstrapping

A different approach to error bar estimation is based on bootstrapping (Efron and Tibshirani 1993;
Tibshirani 1996). Here a number of n of data points are drawn randomly from the available dataset
with replacement. Then the process is repeated independently until a number of m samples are

obtained, each having n data points from the original dataset, some appearing zero times, some
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appearing once or more. Each sample is then used to train a regression model and the outputs are

averaged according to
1 m
y(2) = =3 y(ziw) (1.69)
=1

where y(z; w;) is the output of the model with weights w; estimated from the [th bootstrap sample.
Equation (1.69) is called the bagged (for bootstrap aggregated) estimator and disregards the perfor-
mance of the individual models. Another method to obtain the estimate y(x) is to use a bumping
estimator (Breiman 1994) in which one would throw away all the models except the one which achieves
minimum error on the complete data set. An alternative approach to the methods described above
is to strike a balance between bagging and bumping. This can be achieved by taking the weighted
average (Heskes 1996) of the outputs y(x; w;).

Recalling that the targets are generated from a deterministic function of the inputs f (x) which
is corrupted by the addition of Gaussian noise, and that the bootstrap outputs y(z;w;) are noisy
measurement of the true function f(z), then the estimate of the confidence variance is given by

(Tibshirani 1996, equation (3.1))

oi(@) = ——= > (vlesw) - y(=)) (1.70)
=1

Assuming an uncorrelated error v we have,

ai (z)

() + ((y(x; wy) - y())?)
o2 + o2 () (1.71)

where y(z) is given by (1.69). One of the advantages of bootstrap based methods for estimating the
error bars is that it is straight forward to implement and can avoid some of the symptoms of not
having sufficient data to make reliable predictions. On the other hand, a good estimate of error bars
requires a number of bootstrap samples which ranges between 25 to 200 samples (Tibshirani 1996).
For large neural networks this is a problem given the computation required to train the network on

the bootstrap samples.

1.8 The rest of this thesis

In this chapter we have reviewed the Bayesian mechanism of learning in the context of regression.
Here we saw that the error bars arise naturally from the existence of the intrinsic noise on the target
data and also from the finite width of the posterior. We also reviewed other methods of estimating

error bars using maximum likelihood and bootstrap based methods. In the rest of this thesis we will
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study and explore the behaviour of the prediction variance and its error bar. The plan of the rest of

this thesis is as follows:

Chapter2: Evaluation of the Hessian matrix

In this chapter we consider analytical, exact and approximate methods of evaluating the Hessian

matrix for implementing the evidence framework in general and evaluating the Bayesian error bars in

particular.

Chapter3: Error bars and the distribution of input data

This chapter deals with the error bars and their relation to the distribution of the input data, focusing
on the issue of whether the error bars are systematically larger in the regions of input space where
the density of the input data is low.

Chapter4: Inferring an input-dependent noise variance

In this chapter we will consider the case of noisy regression where the contribution of the intrinsic noise
on the targets is input-dependent. We compare Bayesian and the maximum likelihood treatments,

and show that the Bayesian approach overcomes a significant problem with the maximum likelihood.

Chapter5: Summary, conclusions and directions for future work

This chapter concludes the thesis with a summary of the results as well as suggestions for future work.

Finally, I declare that the contents of the rest of this thesis is original work and has not previously
appeared elsewhere with the exception of the research papers which are displayed in the list of publi-

cations.
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Chapter 2

The Hessian matrix

2.1 [Introduction

The elements of the Hessian matrix consists of the second partial derivatives of the error function with
respect to adaptive weights and biases (weights in short) in the network. Knowledge of the Hessian
is necessary for a wide range of tasks. It is needed, in the Bayesian framework, for estimation of the
effective number of weights (MacKay 1992c), for estimation of evidence for model hyperparameters
and for assigning error bars to network outputs. The Hessian matrix also plays an equally important
role in non-Bayesian methods such as minimising system complexity by pruning of low saliency weights
(Le Cun et al. 1990; Hassibi et al. 1994), second-order optimisation methods (Becker and LeCun 1989;
Ricotti et al. 1988) and fast network retraining after a small change in the training data (Bishop 1991).

For the error function S(w) given by (1.38) the Hessian can be written as the sum of two terms

8%S(w)
Ow?
BB +aC (2.1)

A

with

8*Ep

=5 (2.2)

B

and

62 Ew

C=Zur

(2.3)
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2.2 Evaluation of the Hessian Matrix

where 8 = o2 is the noise level and « is the regularising constant controlling the weights w of the
model. A common choice of E,, is the weight decay regulariser, i.e. E,, = %wTw, which in the
Bayesian formalism, corresponds to having a Gaussian prior distribution on the weights with zero
mean and variance a~!. In this case C = I, where I is the unit matrix. However, the data part B
of the Hessian is not so easy to evaluate as its computation requires forward and backward passes
through the network which is computationally demanding especially for large neural networks. The
assumption of a diagonal Hessian has been used as a means of avoiding the computational overhead
of evaluating and inverting this matrix. Such an approximation is not satisfactory as the Hessian
matrix is, in general, strongly non-diagonal and in many applications it is important that all the
elements of the Hessian matrix be evaluated accurately. MacKay (1991) found, for example, that the
diagonal approximation scheme of Le Cun (1990) was not sufficiently accurate and therefore included

the off-diagonal terms. Hassibi et al. (1993, 1994) also found it necessary to include the non-diagonal
terms of the Hessian for network pruning in order to switch off the right weights.

In this chapter we will consider both exact, approximate and numerical methods of evaluating the
data Hessian B, which we will refer to as the Hessian in short whenever this does not lead to any
confusion. We will consider in particular the so called outer product approximation and examine its

accuracy as well as its computational efficiency.

2.2 Evaluation of the Hessian Matrix

In this section we review various existing methods of evaluating the Hessian matrix. We start with

consideration of the exact methods.

2.2.1 Exact methods

In the recent years exact schemes for evaluating the Hessian matrix, which make use of the efficient
back-propagation technique, have been proposed (Bishop 1992; Buntine and Weigend 1993). These
methods use no approximations and so they provide accurate ways of computing the Hessian which
is necessary in many applications. They can be applied to networks of arbitrary topology and to
any differentiable error function. While having the same advantage, the more recent algorithm by
Pearlmutter (1994), called the R{.} operator method, also allows the product of the Hessian by
a vector to be computed directly without evaluation the Hessian itself. Implementing these exact
methods typically require a number of operations which scales like ©O(k?), where k is the number of

weights in the network. In this thesis the R{.} method will be used for exact evaluation of the Hessian
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2.2 Evaluation of the Hessian Matrix

matrix for multi-layer neural networks.

2.2.2 The outer product approximation method

For the least-square error!, the data Hessian B can be written as the sum of two matrices

B=G+H (2.4)
with
N .
G= Zgig:‘r (2:5)
i=1 '
and
89.

H= Z(y(z..w] t‘) (2.6)

where the vector g; = dy(zi;w)/0w is the first derivatives of the output y(z;; w) with respect to
the weights w and N is the number of data points in the training set. For linear models H is the
zero matrix, as the first derivative g; does not depend on the weights w, and so B = G. For neural
networks, however, H — 0 as N — oo, provided that the error is at a minimum. This can be seen

from the infinite data case where the matrix H can be written as (Bishop 1995a)

39( z;w

H = [(eiw) - (1) 2522 pio) da (2.7)

As mentioned Section 1.2, in the limit N — oo the output y(z; w) represents the conditional average
of the targets (t|z) = [ tp(t|z) dz, and so the quantity (y(z;w) — (t|z)) vanishes and H becomes
the zero matrix. Thus
N
B=Y g (2.8)
i=1
In reality, however, the data size is limited but equation (2.8) may still approximately hold (Levenberg
1944; Marquardt 1963). This is known as the outer product (or Levenberg-Marquardt) approximation.
One way for this to be true is when the outputs of the network passes through or close to the targets.
For noisy regression, however, this means over-fitting which is not desired. Instead we need the network
solution to average over noise which might require that the outputs to be appreciably different from the
targets in order to avoid fitting the noise. Fortunately, in cases like this G might still approximate the
Hessian B well. This can be seen from the fact that, since the outputs y(z;; w) of a trained network

approximates the true function f(z), the quantity (y(z;;w) — t;) is a Gaussian random variable

1With no loss of generality we restrict our analysis of the outer product approximation to the case of one output.

The results can easily be extended to networks with an arbitrary number of outputs.
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2.2 Evaluation of the Hessian Matrix

with zero mean, which is statistically independent of the derivative 8g(z;; w)/0w. Therefore, for a
sufficiently large number data points the right hand side of (2.6) becomes negligible.

One of the advantages of the outer product approximation is the simplicity of its implementation
as it involves evaluating the first derivatives only, which requires a number of operations scaling like
O(k) using standard back-propagation. The elements of the Hessian matrix can then be found in
O(k?) steps using simple multiplications, which is the same as the number of operations required for
evaluating the Hessian using exact methods. Beside this, the outer product approximation has the
interesting property of ensuring that the Hessian is positive definite. But the question that remains
is ‘How accurate is the outer product approximation for evaluating various quantities which depend

on the Hessian matrix?’. In the next section we will try to answer this question.

Accuracy of the outer product approximation

In many applications we need to compute the trace or determinant of the Hessian. The determinant
of the Hessian is needed, for example, to evaluate the evidence for the hyperparameters a and 3, and
its trace is needed for estimating the effective number of weights of the network. These quantities
can all be computed from the knowledge of the eigenvalues of the Hessian matrix. From a practical
view point, therefore, a comparison of the eigenvalues of the Hessian obtained by exact and outer
product methods can provide a good test of the accuracy of the outer product approximation. Since
in practice we deal with the full Hessian matrix A (see equation (2.1)), rather than the data Hessian
BB, we shall compare the eigenvalues of A with those of A = G + al, where we have taken C = I.
From equations (2.1)) and (2.4), we have

A = BG+pPH+al
= ;l-l-ﬁH (2.9)

Here we will show that there is a limit to the accuracy in computing the eigenvalues of the Hessian
matrix using the outer product method. Let {A\(A)}, {A(A)} and {BA(H)} be the eigenvalues of A,
A and BH. Since these matrices are real symmJeltric, they belong to the group of so called Hermitian
matrices which are characterised by having real eigenvalues which can, therefore, be arranged in
increasing order such that Apip = Ay < ... Ay -+ < Ap = Amax. According to Weyl’s theorem (Horn
and Johnson 1985) on the variational description of the eigenvalues of Hermitian matrices, for any

three matrices a, b and ¢, we have

Amin(€) < Xi(@) = () < Amax(c) (2.10)
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provided that @ = b+ c: Since the matrices A, A and BH satisfy this relation and that the Hessian

A is positive definite?, we can write

Brmin(H) _ M(4) = N(A) _ fmax(H)
MATSTN@ ST N@)

(2.11)

The quantity (A\;(A)~X\;(A))/\(A) is the relative error in computing the Ith eigenvalue of the Hessian
matrix using the outer product approximation. The inequality (2.11) shows that this error is at least

as large as (BAnin(H))/Ai(A) and that the smaller the eigenvalue \;(A) the larger this error may

become.

A demonstration of this discrepancy between the eigenvalues of the exact and outer product
Hessians is shown in Figure 2.1. Here a two-layer neural network with 4 hidden units is trained
on a toy data consisting of 30 data points with targets generated from sin(z) with the addition
of zero mean Gaussian noise of variance 62 = 0.01. A single Gaussian prior was imposed on the
weights w of the network and its hyperparameter a together with the noise level 8 = ;2 were both
estimated from the training data using the evidence framework (formulae (1.59) and (1.56)). At the
end of training the estimated value of a and 3 converged to 0.293 and 69.05, respectively. The use
of this weight decay regularization was to ensure that the outer product approximation does not
become trivially valid as a result of overfitting the data. Part (a) of the figure shows network error
at each training cycle which is performed using the BFGS algorithm (Polak 1971; Luenberger 1984).
As the training progresses the difference between the exact and outer product Hessians, defined as
E:mﬂ ((Aim — Aim) /A;m)z, decreases until it becomes negligible at the end of training. This is
shown in part (b) of the figure. While part (c) shows the difference in the eigenvalues of the Hessians,
defined as E,’;l (M(A) = M(A))/ N (A))z, during training, which remains significant even at the end
of training session. This error is due, largely, to the discrepancy in the small eigenvalues of the exact
and outer product Hessians which we expect according to (2.11). This fact is confirmed by the results
of part (d) of the figure which shows the logarithmic plot of the exact eigenvalues A\(A) against the
outer product eigenvalues A(A) of the Hessian matrix. Note the deviation of the plot of the small
eigenvalues from the line with unit slope. So how does this affect the trace and the determinant of
the full Hessian A? The error in computing the small eigenvalues of the Hessian using the outer
product approximation will have negligible effect on evaluation of the trace ZLI (BM + ), while
it could jeopardise the evaluation of the determinant ]‘[:‘=1 (BM + a) depending on how small the
hyperparameter « is. The reason is that the error in evaluating the small eigenvalues can affect the
product of eigenvalues more than the sum. This also implies that the trace and the determinant

of the inverse Hessian A™! may be significantly different from those of A7l A comparison of the

2Since BG and al are positive definite by design so is A.
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Figure 2.1: (a) Plot of the logarithm of training error against number of training cycles for a two layer
network with four hidden units. (b) Plot of the logarithm of the difference between the exact

and outer product Hessian, defined as Etm=l((‘4'm — Aim)/Aim)?, against training cycle.
Note that the outer product approximates the Hessian well once the network is sufficiently
trained. (c) Logarithm of the difference, defined as 3°F_, ((\(A) = Al(A))/A1(A))3?, between
the eigenvalues of the exact and outer product Hessians during training. (d) Plot of the
logarithm of the exact and outer product eigenvalues of the Hessian matrix.

determinant and trace of the exact Hessian matrix and its outer product approximation and their

inverses is given in Table 2.1.

2.2.3 Finite differences methods

The Hessian matrix can also be evaluated using the numerical method of finite differences. Here we
perturb the weight w;,, by a small amount +¢ and then approximate the first derivative 0E;/0wim
by

0E;

o 512 (Ei(wim +©) = Ei(wim — ) +O() (2.12)

where E;(w) = J(y(zi; w)—t;)? is the least square error for the ith data point. The central differences
formula (2.12) evaluates the first derivatives in a number of O(k?) operations with error O(e?). This

can be compared with the computational efficiency of the exact methods which scales like O(k). To
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vk A A™? At

trace 2.240x10* | 2.230x10% 4.432 10.460

determinant | 1.667x10% | 2.91x10%* | 5.9980x10~2* | 3.437x10~%

Table 2.1: A comparison of trace and determinant of the exact Hessian matrix A = 8B + al, where
a = 0.293 and B = 69.05, and its outer product approximation A = BG + aI together with
their inverses.

evaluate the second derivative 82 E; /0w, 0wyp, we re-apply formula (2.12) to E(wim % €), with wpp

begin the weight perturbed. This yields the result (Bishop 1995a)

8%E; 1
F N 13 (E(wlm + €, Wnp + €) = E(wim + €, Wnp — €)

—E(wim — €,Wnp + €) + E(wim — €, Wpp — c)) + 0(e?) (2.13)

Formula (2.13) ensures that the elements of the Hessian are evaluated with an accuracy of the order
O(€?). This residual error can not be made arbitrarily small as choosing too small a value for € might
causes machine round off error which could outweigh the residual error. To evaluate an element of
the Hessian four forward passes through the network are required each taking a number of operations
scaling like O(k). So the total number of operations necessary for evaluating the Hessian in this way
is O(k®). This can be compared with the exact and outer product methods where the number of

operations scales like O(k?). For large neural networks this difference is significant.
A more computationally efficient way of using central differences is to evaluate the first derivatives

by analytical means, i.e. backpropagation, and then apply central differences to the first derivatives

to obtain the elements of the Hessian matrix. This leads to

O’E; 1 | OE(wim +€) OE(wim —¢) 2
% - 2.
DO 25{ Wnp Owap +O(e*) (2.14)

In this way the Hessian matrix is evaluated with a number of operations scaling like O(k?). A
comparison of the amount of cpu time required for evaluating the Hessian matrix for multi-layer
neural networks of different sizes, using exact, outer product and central difference methods is shown

in Figure 2.2.

2.3 Summary and conclusions

The exact methods provide satisfactory means for computing the Hessian matrix in terms of accuracy
and speed. These methods require a number of operations which scales like O(k?). While the outer
product approximation is just as efficient as these methods, it produces significant error in computing

small eigenvalues of the Hessian. The effect of this error varies depending on what we need to evaluate.
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Figure 2.2: Logarithm of the cpu time taken for evaluating the Hessian matrix B for a two layer network,
plotted against number of weights of the network. For each network size the Hessian is
evaluated using the exact methods of Bishop and R{.}, the outer product approximation
and the numerical methods of equations (2.13) and (2.14). Every effort is made to make
the comparison a fair one: each implementation was written in C++ in a similar style and
the code was executed on the same type of machine. The plots corresponding to the exact
methods of Bishop and R{.} as well as the numerical method of (2.14) have slope ~ 2. This
can be compared to the slope of the line corresponding to the central differences method which
scales like ~ 3. This difference in scaling of the cpu time is significant for large networks.

For quantities depending on the sum of the eigenvalues the effect of this inaccuracy is negligible, while
it can be significant for quantities depending on the product of these eigenvalues. Furthermore, the
outer product is not a robust method as its validity depends on the number of data points and how
well the network is trained, i.e. how well the output y(z;w) averages over noise. Nevertheless, it
has the important property of ensuring that the Hessian is positive definite. It might be the case
sometimes that the training procedure yields a bad local minimum of the error. In situations like this
the exact Hessian may not be positive definite but has a number of negative eigenvalues which have
to be discarded using an arbitrary cut-off procedure. In cases like this the eigenvalues of the outer

product Hessian can be used as a means of avoiding this arbitrary cut-off.

As for the numerical methods they are highly inefficient in computing the Hessian as they require
a number of operations scaling like O(k®). In addition there is a round-off error O(e?) which can not
be made arbitrarily small due to machine precision. Nevertheless, they are useful as tools for checking
software for evaluating the Hessian using other methods.

In conclusion, the exact methods offer the best available way of evaluating the Hessian in terms of
both speed and accuracy of computation. In the rest of this thesis the R{.} method will be used for
evaluating the Hessian matrix of neural networks, while for linear models the outer product method

will be used since it is exact.

45



Chapter 3

Error bars and the distribution of input

data

3.1 Introduction

We saw in Chapter 1 that, in the Bayesian framework for regression, the uncertainty in predictions
o?(x) arises from two different sources. The first source is the intrinsic noise on the target data
o2, while the second arises from the uncertainty in the model weights o2 (z) as a consequence of
having a limited number of data in the training set. These distinct sources of uncertainty make
additive contributions to the prediction variance so that o?(z) = 02 + 02(z). In this chapter we will
investigate the behaviour of the contribution o2 (z) in relation to both individual data points and the
data set as a whole. One key result obtained is that, under certain circumstances, the magnitude of

o2 (z) exhibits an approximate inverse proportionality to the density of the input data p(z).

Since the analyses of this chapter are primarily made for the so-called generalised linear regression

GLR models a brief review of these models will be given first.
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3.2 Generalised linear regression models

A GLR model is specified by a set of weights w = {wy,.....,w;}%, and a set of basis functions

o(z) = {¢1(z), ...., ox (2)}T, and has outputs of the form

Y wigi(x)

=1

wT ¢(z) (3.1)

y(z; w)

Here the basis ¢;(z) are fixed non-linear continuous functions of the inputs x, with generally one of
them ¢; = 1, so that the corresponding parameter w; plays the role of a bias. Some examples of
basis functions used in GLR models are Gaussian, sigmoid, tanh and polynomials. Given a sufficient
number of weights and a suitable choice of basis functions, such models can approximate any function,
and they also have the advantage of being linear in the adaptive weights w. The principal limitation
of these models, however, is the exponential increase in the number of weights as the dimensionality
of the input is increased, a form of the curse of dimensionality (Bellman 1961; Bishop 1995a).

Depending on the type of the basis functions, a GLR model might also depend on parameters other
than w. In the case of Gaussian basis functions, for example, these extra parameters are the locations
and width of the Gaussian functions. Similarly, if sigmoid or tanh basis functions are used then the
parameters will be the locations and steepness of the basis functions. Here we use a simple approach
to fixing these parameters which involves placing the locations of the basis functions on a regular grid
defined by the data in input space. Then the width (or steepness) of the basis is set to Az/n, where
Az is defined in equation (A.2), n? is the number of the basis functions and d is the dimensionality
of input space. For the case of Gaussian basis functions this will ensure that the basis functions will
sufficiently overlap (neither too peaked or too flat) which is necessary for obtaining a smooth regression
function. For the cases of sigmoid and tanh basis functions this will ensure that the basis functions do
not significantly overlap in the regions of inputs where they have reached saturation. Further details
of this procedure for fixing the basis functions are given in Appendix A.1. Other methods of fixing
the locations and width of basis functions are also possible and will be considered in Chapter 4.

For models of the form (3.1) the posterior p(w|D, 8, a), given least-square error, is Gaussian with

mean centred at the most probable value W which can be found from minimising the error function
I 1
S(w) = 3 B _(wT(z:) - t:)* + ;wTCw (3.2)
i=1

The choice of C = al, where I is the unit matrix, corresponds to the having the standard weight

decay prior. The most probable weights w is the vector which minimises the error in (3.2). It is given
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3.2 Generalised linear regression models

by
W =pA"13T¢ (3.3)

where

¢1(z1)  da(z1) o0 Pi(z)

T T3) e x
&= ¢1(- 2) ¢2(‘ 2) ' ¢k(. 2) (3.4)
$1(zn) da(zn) -+ di(zN)
is the Nxk design matriz, t is the vector of the targets ¢;, and A is the Hessian matrix
A = pB+C
= p3Te+C (3.5)
At the most probable value w, the outputs of a GLR model is given by
y(z;@) = B ()
= BoT(x)A™ 3Tt
= kT (x)t (3.6)
where we have introduced the effective kernel k (Hastie and Tibshirani 1990)
KT (z) = Bo” (z) A~ &7 3.7

Equation (3.6) shows that the outputs of a GLR model can be written as a linear combination of the
targets with weighting coefficients determined by the components of the kernel k(z). Hence it is a
linear smoother. Note that if we omit the prior, i.e. C = 0, the kernel has the property
N
> ki(z)=1 (38)
i=1
where the sum is taken over the training data. To prove this result we note from (3.5) and (3.7) that

N
D k(@)¢T(@) = ¢7(z)(@T)'eTe

=1
= ¢'(z) (3.9)
If one of the basis functions is a bias, say ¢;(x) = 1, then taking the ! = 1 component of (3.9) we
obtain (3.8). Intuitively we would expect the effective kernels to be localised functions of the inputs,
giving most weights to the data points close to the vector of input . Experimental study of the

kernels will be considered later in this chapter.

48



3.3 Analysis in terms of discrete data

Given formula (3.1) for the outputs, we have g(z) = dy(z; w)/0w = ¢(x) and the so the predictive

variance is given by

oi(z) = of+aj(z)

ol +¢7 (z)A™ () (3.10)

which is exact for GLR models. Note that the expression for o?(z) is independent of the targets ¢;
and the weights w. For models with outputs which are non-linear in the weights this will no longer
be true since the Hessian A and the derivatives g(z) now depend on ¢; and the most probable value

of the weights .

3.3 Analysis in terms of discrete data

In order to understand the relationship between the magnitude of the error bars and the distribution
of data in input space, we consider two complementary approaches. In Section 3.4, we discuss a rep-
resentation in terms of continuous probability density functions. First, however, we consider discrete

data points. We shall see that this leads to an upper bound on the magnitude of the error bars.

3.3.1 Contributions from an isolated data point

Here we consider the change in the magnitude of the error bars after a single data point is observed.
We assume that the value of the noise variance 02 = §~! is known a priori. In the absence of data

the Hessian is A = C and the prediction variance is given by

oi(z) = ol+oi(z)

= o +¢"(z)C 7 ¢(z) (3.11)

The second term in (3.11) is the confidence variance o2 (z) due to prior uncertainty in the model
weights, and is typically much larger than the noise variance o2. If we now add a data point at the
input point &, then the Hessian becomes A = ¢(z)¢T (2) + C. Using the identity

(M Yv)(vTM™?)
1+vTM v

(M +voT)" =M1 - (3.12)

where v is a column vector, we compute A~ to obtain
Cl¢(@)¢"(z)C
o2+ ¢(2)TC™'¢()

Using (3.13) we can now consider the error bars at the point . From (3.10) we have

Al'=C '+ (3.13)

o}(z) = (1 s TE'E o2 (3.14)
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3.3 Analysis in terms of discrete data

where p is the ratio of the prior confidence variance to the noise variance, .i.e.

_ ¢T(z)C'¢(2)
e

= (3.15)

Since p is always positive, the ratio p/(1 + p) lies in the interval [0 1], and so the right hand side of
(3.14) is always smaller than 2 indicating that

0?(z) < 20 (3.16)

Formula (3.16) is a key result, which indicates that the prediction variance at the location of the input
point Z is no larger than twice the noise variance and the contribution of o2 () to the error bars is
always smaller than o2 at a data point. This effect is illustrated in Figure 3.1.

It is also possible to consider a total of N data points all located at the input Z. In this case we

have

@) = (1+ 55) o (3.17)

Thus even for a few number of data points located at the input Z the prediction error bars o7 (Z) = o2.

In the analysis above we have restricted ourselves to error bars measured at the input point where
the data was added. This can be extended to error bars measured at arbitrary points of the input
space. Using the matrix identity (3.12), in (3.10), we have

Vi (z:2)

of(z) = 02 + V,(z,z) — m

(3.18)

where we have defined the prior covariance function as V,(z;, z;) = ¢T(:c;)C"l¢(a:j), with the
property that V,(z;,z;) = Vo(xj, i), provided that C is symmetric. Note that for z; = x;, the
covariance function V,(z;, ;) is just the prior confidence variance o2 (x;) measured at the input
point z;. The first two terms on the right hand side of (3.18) are simply the prior prediction variance
o?(z) measured at . Since the third term in (3.18) is always positive, the effect of the addition of a
data point is to reduce the prediction variance from its prior value anywhere in the input space. The

scale of this reduction is related to the prior covariance function V,(z, Z).

The precise form of the covariance function depends on the choice of the prior Hessian C and the
choice of the basis functions ¢(z). We note, however, that a simple diagonal prior of the form C = aI
is inconsistent since if the type of the basis function is changed then the covariance nature of the prior
also changes. One implication of this is the manner in which the reduction in the error bars occurs
when a data point is added. To illustrate this, let us consider a GLR model with one basis function
only. It is easy to show that if we chose ¢(z) = z, as is the case in a linear regression problem, then
the reduction in the error bars is given by

a~2z23?

2 .
boile) =~y

(3.19)
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3.3 Analysis in terms of discrete data
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Figure 3.1: A simple example of prediction variance for a one-dimensional input space and a set of 30
equally spaced Gaussian basis functions. The prior variance is typically larger than the noise
variance. With the addition of a single data point at 2 = 0.3 (indicated by the cross) the
variance at the location of the data point itself is reduced to less than twice the noise variance.

We see that the reduction in prediction variance is large at and around 2 = 0.3. For distant
points, however, this reduction is negligible.
Formula (3.19) shows the decrease in the prediction variance depends, given Z, on z. Intuitively,
however, we may expect the addition of a data point to be more informative about the regression at
the vicinity of Z resulting in a larger reduction in the magnitude of the error bars at Z and nearby
points (see Figure 3.1). Logically, the weight prior should be chosen so as to specify a particular
prior covariance structure over the network outputs. One approach is to specify the prior covariance

structure directly (Williams 1997).

3.3.2 An upper bound on the error bars

The analysis of Section 3.3.1 can be extended to the more general case where a GLR model is trained
on a data set consisting of N data points. Then a single data point is added and the model is retrained
on the N + 1 data points. As we shall see, this will yield an upper bound on the error bars measured
at an arbitrary point = of the input space. Here we will relax the assumption that the noise variance
o2 is known a priori and instead we allow this quantity to be measured from the original data set
according to formula (1.56) (MacKay 1992a). However, we do need to assume that the addition of
a data point to the training set does not lead to any significant change in the estimated value of o2

after the model is retained on the N + 1 data points.

The addition of the new data point at Z will change the Hessian of the model to A, which can be
related to the old Hessian A through

A=A+po(z)p" (z) (3.20)

51



3.3 Analysis in terms of discrete data

Using the identity (3.12) we write A" in terms of A~}

o, A7) (@)A

A=A
o2+ ¢T(z) A p(2)

(3.21)

We now need to estimate the new confidence variance &2 (x) at an arbitrary input z. Using (3.21) in
(3.10), we obtain

V¥(x,z)

2 (z) = ﬁ(m)"m

(3.22)

where we have defined the posterior covariance function as V(z, ) = ¢7 (z) A~ ¢(&), with the prop-
erty V(z,Z) = V(Z, ), since A is symmetric. The posterior covariance V(Z,%) = ¢T(:'E)A‘1¢(i) is
the magnitude of the confidence variance 02 (Z) measured at the input location Z before the addition
of the new data point. Since the Hessian is positive definite so is its inverse, implying that the second

term on the right hand side of (3.22), is always positive. This yields the result
52 (x) < % (a) (3:23)

Thus the addition of a data point at an arbitrary point Z can only lead to a decrease in the magnitude
of the error bars anywhere in the input space or leave it unchanged. The reduction in the error bars
as a result of the addition of a new data point can be understood in a simple intuitive way — Since the
arrival of new data conveys some information about the regression function, the effect of this addition
can only reduce the uncertainty in the regression or leave it unchanged depending how relevant (how

informative) the new data is.

A further corollary of the result (3.23) is that, if we consider the error bars due to each of a set of
N data points individually, then the envelope of those error bars define an upper bound on the error

bars of the data set as a whole. This is illustrated in Figure 3.2.

3.3.3 Global Averages

g So far we have dealt with the local magnitude of the error bars measured at an arbitrary point z.
Useful insights can also be obtained by considering the global averages defined on the training data

set. It can be shown (see Appendix B.1 for the proof) that the global average (¢?(z)) defined as

N
(oh(@)) = = 3 b (ai) (3.24)

i=1

satisfies the relation
2 T 2
(ow (3)) = ﬁ ay, (3.25)

where 7 is the number of well determined weights (MacKay 1992a; Moody 1992), N is the number of

the data points in the training set and o2 is the variance of the intrinsic noise on the targets. Note

52



3.3 Analysis in terms of discrete data

0 02 0.4 0.6 08 1

Figure 3.2: Asin Figure 3.1 except that two data points are added this time at inputs £ = 0.3 and 2 = 0.4
as shown by the crosses. The top curve shows the prior prediction variance, the dashed curves
show the prediction variance resulting from taking one data point at a time, and the solid
curve shows the prediction variance due to the complete data set. The envelope of the dashed
curves constitutes an upper bound on the error bars while the noise level (shown by the lower
solid line) constitutes a lower bound.
that the size of the training data reduces the error bars by a factor of N=! implying that for N > 7,
02 (x) < 02 and so 0?(x) ~ 02 at the location of the input points . We have already seen this inverse
dependency (see formula (3.17)) on the number of the training data indicating that for large N o2 ()

is negligible. Using (3.25) we can write the average of the prediction error bars as

(@) = (1+7) o (3.26)

The appearance of 4 rather than the number of parameters k in the above formula is not a surprise.
Since only 7 out of k weights determine the regression, the contribution of the weights to the prediction
error bars depends on the factor 7y rather than k. However, for v > N, equation (3.26), seems to suggest
that (o?(z)) > 202. If so this will bring us to conflict with the findings of section (3.3.1) and the
inequality (3.16) in particular. However, this is not the case since we always have y < N. The reason

is if k > N, then BB will have at most N non-zero eigenvalues. Taking C = al, we have
7 = k—aTrace(A™?)

= Aj+ta

Aj

(3.27)

M=

+
R

17

.,
I

where J; is the jth eigenvalue of BB. Since A;/();+a) lies in the closed interval [0,1], v < N, yielding
(o7 (z)) < 202.
We have already commented on the appearance of v in formula (3.26), which shows that more

flexible models have larger error bars. While this is true for fixed 02 it may or may not hold otherwise,

53



3.4 Analysis in terms of continuous distributions

depending on the estimated values of ¥ and o2 which depend one on the another in a non-linear way.
In reality the noise variance is not known a priori and has to be estimated from the data according to
formula (1.56). For a model with an insufficient flexibility v is typically small but, due to data misfit,
o2 is large. On the other hand if we choose models which are too flexible, 7 is large while o2 is small
due to over fitting. The effect of the change in 7 on the estimated value of the prediction variance is

shown in Figure 3.3.

Average change in the error bars

In Section 3.3.1 we considered the change in the local magnitude of the error bars as a result of the
addition of a data point and we showed that the introduction of a new data point to the training set
cannot lead to any increase in the value of the error bars anywhere in the input space. We will now
consider the reduction in the global average of the error bars. Let (Ac?(z)) be this average defined

as
1 X
A ES DI CACHELACH) (3.28)
i=1
where 52 (:c;) is the prediction variance after the addition of the data point at Z. It can be shown

(see Appendix B.2 for the proof) that (Ac?(z)) is subject to the closed bound
o2 2
- < (Ao} (z)) <0 (3:29)

The upper bound can also be seen as a direct result of (3.23) that the addition of a new data can not
increase the error bars. The N~! factor in (3.29) indicates that the larger the size of the data set
on which the model is trained the smaller the difference the addition of a new data point will make.
Since in the limit N — oo the model learns perfectly about the regression, the addition of data will
become irrelevant conveying no further information about the regression. For fixed N, however, the
maximum reduction will be obtained if the data is maximally informative. Such data points usually

belong to regions of input space where the error bars are the largest (MacKay 1992b).

3.4 Analysis in terms of continuous distributions

So far we have studied the error bars based on a consideration of discrete data points in a data set
of finite size. In this section we turn to a complementary approach in which we consider continuous
probability distribution functions p(x) of data in the input space. It has been widely observed that
the error bars are small in the regions of input space where there is a lot of data, and relatively large

in regions of little data. This effect is illustrated in Figure 3.4. Such empirical observations led Bishop
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3.4 Analysis in terms of continuous distributions
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Figure 3.3: An illustration of the dependency of the average value of the prediction variance (o7 (z)) on
the number of well determined weights 4. Here a model with 49 Gaussian basis functions
(with specifications given in Table A.1) is used to fit a data set of size NV = 200 with targets
generated from sin(z) plus the addition of Gaussian noise with zero mean and variance 0.1.
The flexibility of the model, i.e. value of v, is controlled through the hyperparameter a. This
is shown in part (a) of the figure. Part (b) shows that as the flexibility of the model is
decreased (o3 (z)) becomes smaller. However, the decrease in the value of +y is accompanied
by an increase in the estimated value of o2, due to data misfit as shown in part (c). The overall
affect on the average value of the prediction variance (¢7(z)) is shown in part (d). Part (e)
of the figure shows the error function S = BEp + aEw (see equation (1.21)), also known as
total misfit, against the number of effective parameters of the model. At their most probable
values, « and S satisfy &@ = v/2E\, (equation (1.59)) and 8 = (N =7)/2Ep (equation (1.56)).
This implies that the optimum value of misfit is given by § = N/2 (MacKay 1991). It is
interesting to note that when the misfit reaches this optimum N/2 = 100 (indicated by the
circle in (e)), the average of the prediction variance is close to its minimum value (indicated
by the circle in (d)).
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3.4 Analysis in terms of continuous distributions

1
]
: \ O data
11i \ — outputs
\ = = error bars
L]

Figure 3.4: An example of confidence error bars for a simple one dimensional toy problem with 10 data
points. The result of fitting a GLR model with 20 Gaussian basis functions is shown by the
solid curve. %oy () (dashed curves) were evaluated from (g7 (z)A~'g(z))!/2. It is notable
that the error bars grow larger in the regions of input space away from the training data.

(1994b) to conjecture a relation of the form o2 (z) ox p~!(z). In this section we will attempt to show
analytically that, under certain circumstances, there is indeed an approximate inverse proportionality
relation between the magnitude of o2 () and the density of the input data p(z). To start with we
shall first consider a toy model with disjoint basis functions as this will provide useful insight into the

behaviour of error bars and its relation to the input data density.

3.4.1 A toy model

Here we consider the variance o?(z) for a simple GLR model in which the basis functions are disjoint.
For simplicity of expression we assume that the basis functions are arbitrary constants! within the
domain of support, so that for an input z;, the response of the basis function is ¢j(z;) = hjl;(:),
where h; is the hight of ¢;(z:) and I;(z;) is an indicator such that Ij(z;) = 1 if x; lies within the
domain of the jth basis function, and Ij(z;) = 0 otherwise. A schematic of this model is given in

Figure 3.5. If we choose the prior Hessian to be diagonal, C = alI, then the Hessian A also becomes

diagonal with elements given by
Ajt = (Bn;h] + a)on (3.30)

where n; is the number of the data points falling within the domain of the jth basis function, and &;;
is the Kronecker delta. The prediction variance for this model is then given by
o2 hf

2
oi(@) =0y + ola+n;h?

(3.31)

Again we see that the effect of adding data points is to reduce the magnitude of the error bars. If the

number of the data points n; in the domain of the jth basis function is large, the contribution from

1This analysis is also applicable to arbitrary non-constant basis functions so long as they remain disjoint.
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3.4 Analysis in terms of continuous distributions

X1

Figure 3.5: A schematic illustration of a toy model consisting of disjoint basis functions in a 2-dimensional
input space. The input space is divided into disjoint regions and one basis functions is defined
for each region such that each basis function ¢;(z) is zero except within its own region.

the prior a can be neglected. Then

oi(z) = o? % 32
. = o2+ = (3.32)
2
2 gy
%t VR (3.33)

where NV is the total number of training data, Vj is the volume of input space within the domain of the
Jjth basis function and p(z) is the normalised histogram estimate of the density inside V;. Note the
1/n; dependence of the variance o2 (z) as implied by (3.32), which shows that the reduction in 02 (z)
is a 1/n; effect. This can be understood in terms of the standard 1/n; dependence of the variance of
the mean of n; independent identically distributed variables with a common variance o2. Equation
(3.33) shows that the o2 (z) depends locally on the inverse of the density #(z) and globally on N~1.
As we shall see later, such dependencies will also occur in the case of more realistic GLR models. It
should also be noted from (3.32) that even when only a few data points fall within the domain of the

Jjth basis function the variance o2 of the intrinsic noise on the targets dominates (3.33).

3.4.2 The effective kernel

In Section 3.2 we expressed the output of a GLR model as a linear combination of the targets with
weighting coefficients defined by the effective kernel in its discrete from. It is also possible to obtain
a similar result for the continuous- case of N — oco. Here we consider representations in terms of
integrals over continuous input probability distribution functions. To this end we make use of the

approximation

N
¥ 206~ [ Qe)pla) dz (334
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3.4 Analysis in terms of continuous distributions

where Q(z) is an arbitrary function of the inputs z, and the points z; are independently selected from
the density p(x). Our goal is to express the outputs y(z; w) and the variance o?(z) in terms of the
effective kernels. As we shall see, the latter will lead us to an approximate inverse relationship between
o2 (x) and the density of the input data which we have already mentioned. In the limit N — oo, the

data part of the Hessian B overwhelms the prior part C, and the Hessian can be written as
A~ pN [ $()¢7 @)p(a) do (3.35)

We can now write the output in (3.6) in its continuous form

veid) ~ N [[ 567 @A 9p02)e) dt dz

[ Hlea il ide (3.36)

where the function h(z) and the effective kernel K(z;z) are defined as
hid)e / tp(t]z) dt (3.37)
K(z;z) = BN¢T () A~ ¢(2)p(2) (3.38)

where K(z;z) has the property
/K(z;m) dz=1 (3.39)

To prove result we note from (3.35) and (3.38) that

[K@a @) dz = #7@a[oN [ ()67 ()ola) o]

= ¢7(z) (3.40)
Taking the bias component of ¢(z), i.e. ¢1(x) = 1, in (3.40) we obtain (3.39). We now express the
prediction variance in terms of the effective kernel. To do this we make use of the result (3.39)
2

which is easily verified by substituting (3.38) into (3.41) and making use of (3.35). Using the general

form (3.10), we obtain the following result
2
A(a)mol+ L [ It "’) dz (3.42)

As functions of the inputs o we can expect the kernels to be localised around the input point z = .
If we assume that the kernels are indeed localised in this way, and if the density p(x) does not change
appreciably in the vicinity of z, then we can collapse the integral in (3.42) to obtain

si(@) = o)+0y(z)

g o 3.4
= 2 N 49
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3.4 Analysis in terms of continuous distributions

where we have defined
- /K’(z' z) dz (3.44)
Viz) ~ ’ '

We can interpret V(z) as the volume in input space of the effective kernel. For example, if K(z;x)
is approximated by a d-dimensional spherical Gaussian centred at « with standard deviation o, then
V(z) = n%/%(20)%. If V(z) is a reasonably slowly varying function of = then we see from (3.43) that

o () exhibits an approximate inverse proportionality relation with the density p(z) of the input data
ol (z) x p~(z) (3.45)

A relation of this kind was first conjectured by Bishop (1994b). In the next section we will make a

numerical study of this relationship.

3.4.3 Experimental resuits

In this section we explore experimentally the relationship between the confidence variance o2 (z) and
the density of the input data distribution p(x). Again we shall omit the prior part C of the Hessian
matrix since we are primarily interested in the high data density regions. We start will a numerical
study of the effective kernels. The specifications of the basis functions of some of the GLR models

used in the experiments of this section are given in Appendix A.

Numerical results show that in the regions of high input data density the effective kernels are
localised functions of the inputs and that further away from these regions they spread out. Accordingly,
we can expect that the confidence variance o2 (z) to have an inverse proportionality relation with the
density of the input data p(z) (provided that 1/V(zx) is constant) in the regions of high input data
density, while such a relation will not hold in the regions of low input data density. Some examples
of the effective kernels for GLR models with different types of basis function are shown in Figures 3.6
and 3.7. Experimental study of the kernels also show that as the number of weights k increases the
effective kernels become more tightly peaked. This is illustrated in Figure 3.8.

Numerical results also show that in the regions of high input data density 1/V(z) is roughly
constant but varies on a much larger scale outside those regions. Some example of 1/V(z) for GLR
models with different types of basis functions is shown in Figure 3.9. The experiments we have
performed so far have provided some evidence that in the regions of high input data density the
function 1/V/(z) is roughly constant and that the effective kernels are localised function of the inputs.
These findings indicate that the inverse proportionality formula (3.45) holds in the the regions of high
input data density. As a demonstration, Figure 3.10 displays the plot of the inverse of confidence

variance o2 (z) for GLR models with a range of basis functions along with the density of the input
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Analysis in terms of continuous distributions
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Figure 3.6: Some examples of the effective kernels (solid curves) for GLR models with Gaussian, sigmoid,
tanh and polynomial basis functions. Each model consisted of 7 basis functions and a bias
(8 weights in total). The effective kernels are centred at the input z = 0 which corresponds

to the regions of high input data density p(z) (dashed curves). We note that the effective
kernels are peaked functions around their centres at z = 0.
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Figure 3.7: As in Figure 3.6 except that the effective kernels (solid curves) are centred at z = 2 which

lies in the regions of low input data density p(z) (dashed curves). We note that the kernels
are no longer well localised functions of the inputs.
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Figure 3.8: Some examples of the effective kernels (solid curves) for GLR models with different number
of Gaussian basis functions. The effective kernels are centred at z = 0 which corresponds
to high input data density (dashed curves). We see that the width of the kernels become

narrower as the number of weights increases.
data p(x). The figures show that the inverse variance has the same general shape as the density
function despite the differences in the type of the basis functions of the GLR models. In order to
make the comparison of the density and the inverse variance clearer, we show in Figure 3.11 a log-log
plot of the density versus confidence variance for different types of GLR models. We see that at high
regidns of input data density there is an approximate inverse relation between the confidence variance
and the density and that this relation starts to break down in regions of low density.

The results discussed so far have been based on a finite data set drawn from a density function,
in which the Hessian is evaluated numerically as a finite sum. For the particular choice of Gaussian
basis functions, however, it is possible to evaluate the Hessian matrix analytically using the continuous
density representation of Section 3.4.2. In this case, expression (3.35) for the Hessian becomes the
convolution of Gaussian functions, provided that the density p(x) is Gaussian too, which is easily
evaluated. The average slope of Ino2 (z) versus Inp(x) curve is then calculated by taking 10 samples
of size 5000 each from the true distribution p(z). Linear regression is used to determine the slope,
taking into account only points for which p(z) > 0.1pmez(x). The reason for this arbitrary cut-off
is to reduce the influence of those data points which belong to low regions of input data density on

the measurement of the slope. This is done for two kinds of reasons. First, we are interested in the
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Figure 3.9: Plots of 1/V(z) = [ K?(z;z) dz (doted curves) against the inputs for a range of GLR models
with Gaussian, sigmoid, tanh and polynomial basis functions. Each model consisted of 7 basis
functions and a bias, giving 8 weights in total. The function 1/V/(z) was evaluated from the
numerical integration of formula (3.44) using Simpson’s rule (Press, Teukolsky, Vetterling,
and Flannery 1992). Note that 1/V/(z) is roughly constant in the regions of high input data
density p(z) (dashed curves), while varying on a much larger scale in the regions of lower
density.
regions of high input data density, and second the inclusion of these isolated data points make the
measurements of the slope noisy. This step is then repeated for various number of basis functions for
data sets of input dimensions 1 and 2, and the results are shown in Figure 3.12. We note that as the

number of basis functions increases the slope gets closer to —1.

3.5 Multi-layer neural networks

Although the theoretical analysis of this ché.pter has been performed for GLR models, many of the
results apply also to non-linear multi-layer neural networks if we make the Gaussian approximation
to the posterior weight distribution and linearise the outputs in the vicinity of the most probable
weights w. The inequality (3.23) we derived in Section 3.3.2 is also applicable to neural networks
provided we make the additional assumption that the addition of a new data point to the training
set will not lead to significant changes in the value of the weights. This assumption is used by Cohn
(1994, 1995) for deriving a formula similar to (3.22) for use in optimum ezperimental design OED,

also known as active learning. Given the same approximations, the inequality (3.29) of Section 3.3.3 is
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Figure 3.10: Plots of 1/02 (z) for GLR models with different types of basis functions against the inputs
for 5 data sets of size 1000 each with inputs selected from a Gaussian density function p(z)
(top figure). Despite the difference between the types of the basis functions we see that the
plots of 1/03 (z) have the same general shape as the density p(z).
also applicable to neural networks. Furthermore, if the outputs of the network have linear activation
functions then, for the least-square error, it is effectively a GLR model with adaptive basis functions.
It is therefore a linear smoother. Therefore, we can expect the inverse relation (3.45) between the
confidence variance and the density of the input data to approximately hold within the limitation of
the approximations made to obtain this formula which were discussed in the previous section. As a
numerical demonstration, Figure 3.13 shows the log-log plot of density versus the confidence variance
for a two-layer network with tanh hidden activation functions and linear output units. Again we
see that in the regions of high input data density there is an inverse relation between the confidence
variance and the density of the input data, while this relation breaks down in the regions of low

density.
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Figure 3.11: Plots of In ¢3,(z) versus In p(z) for GLR models with different types of basis functions.
The inputs are the same as in Figure 3.10. Each point corresponds to a data point in the
training set. Note that in the regions of high input data density the points lie close to the
line with slope —1, indicating an approximate inverse proportionality relationship between
o3 (z) and the density of input data p(z).
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Relation to optimal experimental design
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Figure 3.12: (a) Plot of the slope of In ¢3,(z) versus In p{x) curve in the regions of input space where
p(z) > 0.1pmaz(z), versus number of weights for a one-dimensional input data set. (b)
Same as part (a) but showing the results for a two-dimensional input data set. In this case
the basis functions are arranged on a regular two-dimensional grid in input space.
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Figure 3.13: Plot of In ¢3 (z) versus In p(z) for a two-layer neural network with 2 hidden units (7 weights)
having tanh activation functions and linear outputs. The network was trained on a data
set of size N = 100 with inputs chosen from the density function of Figure 3.10 and targets
generated from the sin function plus the addition of zero mean Gaussian noise. Each point
corresponds to a data point in the training set. Note that in the high density regions the
points lie close to the line of slope —~1.

3.6 Relation to optimal experimental design

In previous sections we have considered the effect of the addition of a single data point to the training
set and its effect on both local and average values of the error bars. The conclusion obtained has
been that the addition of a new datum can only reduce the magnitude of the error bars or leave it
unchanged anywhere in the input space. Furthermore, we obtained a bound on the magnitude of the
reduction in the value of the prediction variance o?(x) as the result of the addition of a data point
to the training set. However, the question which raises itself is how does the reduction in the error
bars depend on the location of the input where the new data is introduced. Ideally we would like to

choose the data at an input point which conveys maximum information about the regression. Such
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data points are said to be mazimally informative leading to improvement, at least in principle, in the

generalisation error. Selecting data in this manner is the subject of optimum experimental design.

Using an entropy based technique MacKay (1992b) found that data points located in regions of
input space where the variance o2 (z) is high are maximally informative. However, using such criteria
alone for active data selection requires searching outside the input space where data did not occur,
which is computationally infeasible. Fortunately, we can still use this approach coupled with the
constraint of limiting the search for maximally informative data in a certain region of input space.
This search can be conducted using random sampling in the input space. For high dimensional input
spaces one can instead use gradient information with a kind of constraint that limits the search for
maximally informative data in a limited region of input space (Cohn 1994; Cohn et al. 1995). This
is a reasonable approach since in regression problems we are primarily interested in a limited region
of input space anyway, namely the region (or regions) where the training data occurred. But can we
not apply formula (3.45) to conduct this search for maximally informative data? The answer is no.
The reason is that the inverse relationship between the variance o2 (z) and the density p(z) is valid
only in the regions of high density where the error bars are small while active data gathering based
on the magnitude of the error bars requires us to search outside such regions, in the domain of which
the error bars are determined mainly the prior, i.e. 02(x) ~ ¢” (z)C~'¢(x) which depends on the

properties of the model rather than the input data density.

3.7 Summary and conclusions

In this chapter we have studied the behaviour of the error bars both locally and globally. For the case
of a single isolated data point we have shown that the error bar is pulled down close to ¢,, and that
the length scale over which this effect occurs is characterised by the prior covariance function. We
have also provided theoretical and empirical evidence that, in regions of high input data density, the
variance o2 (z) exhibits an approximate inverse proportionality relationship with the density of input
data p(z). Also we have noted that this contribution, in the high input density regions, is insignificant
compared to the contribution arising from the variance of intrinsic noise on the targets. This highlights
the significance of accurate eva.lua..tion of the variance of noise on the targets for obtaining reliable

estimate of the error bars.
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Chapter 4

Inferring an input dependent noise

variance

4.1 Introduction

In Chapter 3 we studied the properties of the Bayesian error bars in relation with the distribution
of data in input space. One key result obtained was that the prediction variance o7 (z) is no larger
than than twice the noise variance at the location of the data points. This brought us about to the
conclusion that accurate measurement of the noise variance is essential in making reliable estimate of
prediction error bars. This conclusion is also supported by the fact that, since o2 (z) depends on the
noise variance o2(x), mis-estimating o2 (z) will lead to mis-estimating o2 (x) too.

Typically it is assumed that the noise variance is independent of the inputs. This assumption is
particularly restrictive as in many applications it will be more realistic to allow the noise variance
itself to vary as a function of the inputs. To see how, let us consider the situation in which there
is a lot of data in one region of input space and few isolated data points outside that region. If the
noise variance is modelled as a constant, then its estimate will be dominated by the data points in
the regions of high density. However, as we have seen, the error bars will be pulled down to less than
twice the noise variance in the location of the isolated data points and their neighbourhoods. The
model is therefore highly confident about the regression in these regions even though there are few

number of data points. If, however, we relax the assumption of a constant noise variance, then in the
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4.2 Regression with input-dependent noise

constant noise variance input-dependent noise variance
: . 3~ - . . . >

inputs _ inputs

Figure 4.1: Bayesian error bars for a GLR model consisting of 5 Gaussian basis functions and a bias (see
Table A.4 for the specifications of the basis functions). The data set consisted of 100 data
points with targets generated from a sin function plus the addition of Gaussian noise with true
variance 8%(z) = 0.05+0.2z2. In both parts of the figure the solid curve represents the model
outputs and the dashed curves represent the prediction error bars o¢(z) = (03 + o3 (2))!/3.
In the left part of the figure the noise variance is treated as a constant and whose estimate is
obtained using the evidence framework of Chapter 1. We see that the error bars are dominated
by the estimate of the average noise variance and as a result the model is particularly confident
about the regression in the regions of low density where the true noise variance is actually
large. This can be contrasted to the right part of the figure where the noise variance is allowed
to vary as a function of the inputs and its estimate was obtained using the evidence framework
formulated in this chapter. Here we see the error bars are small in the region of high density
where the noise variance is low and the further away from this region the error bars become
larger due to the increase in the magnitude of the noise variance.

regions of isolated data points there is little evidence to suggest a small value of the noise variance
and so we expect much larger error bars. An illustration of the difference in the estimate of the error
bars using constant and input-dependent noise variance is given in Figure 4.1.

In the rest of this chapter we will study regression with an input-dependent noise. To start with, we
will first consider the maximum likelihood view of the problem and show that it is a biased estimator of
noise variance. Then using the evidence procedure we will develop an approximate Bayesian formalism

for tackling regression problems with input-dependent noise variance, which includes constant noise

variance as a special case, and which overcomes the bias of the maximum likelihood.

4.2 Regression with input-dependent noise

The data set consists of N input-target pairs D = {x;,%;}, with the inputs independently selected
from some distribution function p(z). We assume that the targets {¢;} are related to the inputs
through a smooth function f(z) plus the addition of noise v(x). Thus, for the input x; the observed

target ¢; is given by

t; = f(a:) + v(z:) (41)
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4.3 The maximum likelihood approach

We further assume that the noise component v(zx) is generated from a random process having a
Gaussian distribution of zero mean and true variance s?(z) which varies as a function of the inputs.

Our aim is to predict the function f(z) and the noise variance s?(z). To this end we need two
outputs. The first output y(w;x), which represents the regression function, is governed by the set
of weights w and predicts f(x). The second output B(u;z) = o ?(u;z), which represents the noise
variance, is governed by the set of weights u and predicts s(z). This is illustrated in Figure 4.2. The
conditional distribution of the target ¢; given the input z; is then modelled by a normal distribution
p(ti|zi, w,u) = N(tilyi, B;7'), where y; = y(xi; w) and B; = B(zi;u). Assuming that the data points

are independently selected the likelihood function® can be written as

N
p(Dlw!u) — Hp(tilzivw:u)

i=1
1 N
W - B 4.2
where E; is the least-square error
1
Ei=5(yi - t;)? (43)

and the normalising factor Zp is given by?

ZD _ (211.)1\!/2
L, s

Having chosen the likelihood function we shall now consider the problem of regression with input-

(4.4)

dependent noise. We start with the maximum likelihood approach.

4.3 The maximum likelihood approach

Regression with input-dependent noise variance has been studied by Satchwell (1994) and Nix and
Weigend (1994, 1995) using the maximum likelihood method. More recently Williams (1996) has
extended this approach to the case of outputs with input-dependent correlations. We have already
discussed the maximum likelihood technique in Chapter 1 and highlighted its approach to making
predictions which is based on single best parameter estimates. In the context of regression with input-

dependent noise this means finding the most likely values @ and % by maximising of the likelihood

1In favour of a simpler notation, I choose to write the likelihood as p(D|w,u) which should be read as the probability
of the targets {t;} given the inputs {#;} and the weights w and u, i.e. p({t;}|{=:}, w,u). Similarly any distribution
appearing in this chapter having the form p(D]...) should be understood as p({t;}|{zi},...).

mN/f2
2For m outputs with identical noise components Zp = i('l%)ﬂ_':n
=14
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4.3 The maximum likelihood approach

inputs

Figure 4.2: Schematic of model architecture for solving regression problems with input-dependent noise
variance. The conditional mean of the targets are governed by the output y(x;w) which
is controlled by the weights w and the variance of noise on the targets is controlled by the
output o> (x;u) which is controlled by the weights u.

function (4.2) with respect to w and u. Equivalently, we may minimise the error function F(w,u),

which apart from some additive constants, can be written as

E(w,u) = —Inp(Dlw,u)
N 1 Y
= LB — = Y Ing; 4.5
It is common practice to add penalty terms to the error function (4.5). This will lead to the penalised
error
N | N
E(w, u) = ; Bils; — 5 ; InB; + ay By + auE, [46)
where
LI
Fu(w) = 5 ww (4.7)
and
1l 7
E,(u) = U U (4.8)

This regularization procedure, which leads to the so called ‘penalised maximum likelihood’, is known
to reduce over-fitting by encouraging small weight values and hence preventing large output curvature.
Note that, since the weights w and u have, in general, different scales, they have been assigned different
regularising constants o, and a,. The optimum values @, and &, can be estimated from the data
using cross-validation methods (Bishop 1995a). Given, however, the two dimensional nature of the
problem, finding these estimates are computationally expensive and also wasteful of data since the
available data set has to be partitioned. As we shall see later, in the Bayesian framework there is no

need for such a procedure.
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4.4 A toy problem

It is not satisfactory to minimise the error function (4.5) or (4.6) jointly with respect to w and
u. In the process of fitting the data, the weights w will unavoidably fit some of the noise because
some of the noise components are indistinguishable from the data. When the regression passes close
to a target point due to overfitting, the estimated residual error 2E;, on which the estimate of the
noise variance is based, becomes small giving rise to an under-estimate of noise variance. In extreme
cases, where the regression passes through a data point the corresponding estimate of noise variance
can go to zero corresponding to B(x; u) — co. In this case the likelihood diverges. However, it should
be mentioned that such cases can be avoided by controlling model complexity by using ,for example,

proper regularization procedures or early stopping.

The solution to this problem has already been mentioned in Section 1.7.1 and was first suggested in
this context by MacKay 1991. In order to obtain an unbiased estimate of the noise variance o2(z; u)
we must find the marginal distribution of o2(z;u) in which we have integrated out the dependence
on w. Equivalently, we may estimate u from its marginal distribution, in which we have integrated
out the dependence on w and then use u to find the estimate of 02(x;u). This leads, as we shall in

Section 4.7, to a hierarchical Bayesian analysis.

4.4 A toy problem

Before proceeding with developing the general Bayesian treatment of regression for the case of input-
dependent noise it is useful to consider a toy problem involving estimating the mean and variance of
a sample X = {zy,....,zx} of Gaussian random variables of unknown mean u and variance s?. As we
shall see, this will highlight the inadequacy of the maximum likelihood approach as a biased estimator
of the noise variance and also shows how marginalisation, which is a Bayesian concept, can correct
for this bias.

A maximum likelihood approach to finding the unknown parameters p and o? is to maximise the
the likelihood jointly with respect to u and o2, which corresponds to finding the most likely values i

and 5% which explain the data best. This yields the standard results

1 &
N i=1 E
and
1 N
5% =5 (@i—p) (4.10)
i=1

It is well known that the maximum likelihood estimate 52 in (4.10) is biased, since its average over
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4.4 : A toy problem

samples

y_ N-=1
(@)=~ | (4.11)

where (.) denotes average over samples of size N, is not equal to the true value s? unless N — oo.
By adopting the Bayesian approach this bias can be removed. Here we compute the estimate 02 of

the variance by integrating over the mean pu. Assuming a flat prior p(u) we obtain

p(DIe?) = [ p(Dlu?)ple) d

1 s -
% =i P (—5;;5 ‘_§=1:(-‘=f -B) ) Lo (4.12)
Maximising the above result with respect to o? yields
1 & ‘
~2_ T Y :
F =i él(a:; i) (4.13)

which is unbiased. The effect of marginalisation on the estimated value of the noise variance is
illustrated in Figure 4.3 which shows the contours of p(D|u, 0?) together with the marginal likelihood
p(D|o?) and the conditional likelihood p(D|fi, 02). Note that for large N the effect of marginalisation
is small. However, in the case of regression problems there is generally a much larger number of degreeé
of freedom, i.e. the number of weights, in relation to the size N of the training data, in which case
the effect of the bias of the maximum likelihood is significant. To see this let use recall the maximum

and Bayesian formulae for estimating the noise variance which we reviewed in Chapter 1, which are

2Ep _
N

Lo )
= = (yi—t; (4.14)
N‘;y )

a;

and

2 2ED
Nty

1 N
- e Z(y‘_ b t‘_)z (4.15)
i=1

respectively, where 7 is the number of well determined parameters and Ep = % 2?;1 (yi = t;)? is the
sum-of-squares error function. We note that the principal difference between the two formulae above
for estimating the noise variance is the presence of the term 4. This difference becomes significant
when 7 is comparable to the size of the training data N. We can understand the bias of the maximum
likelihood in estimating the noise variance in the context of regression to be the result of estimating the
noise variance directly from the residual errors (y; — ¢;)?, and not taking into account the uncertainty

in the weights and, hence, in the outputs y; on which this error depends. The implication of this is
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4.5 The evidence framework for regression with input-dependent noise

that when the regression passes through or close to a target due to overfitting, the contribution of
that data point to the estimate of the noise variance is zero or small, leading to an underestimation
of the noise variance. This bias is corrected by integrating over the weights and then estimating o2
by maximising the posterior p(8, a|D) (or the evidence p(D|B, a) if we impose a flat prior) of formula
(1.29). This leads to the result (4.15). The presence of + in this formula takes account of the fact that
only v out of k parameters are well-determined by the data and, therefore, only these weights can
suppress the noise as a result of over fitting. If we set the hyperparameter a = 0 then k will replace
7 in formula (4.15). In fact as it turns out, there is an intimate connection between the Bayesian
formula (4.15) for the estimate of the noise variance and the confidence variance o2 (z). It can be
shown that the Bayesian estimate of the noise variance can be written as (see Appendix C.2 for the

proof)

1:S 1 &
ot S 2 2
% =N i§=1:(yi t:)* + N ;_1: 0w (i) (4.16)

The second term on the right hand side of (4.16) is the average value of the confidence variance defined
over the training set. Thus the effect of marginalisation over the weights is to shift the estimated value
of the error bars by an amount equal to the magnitude of the average value of confidence variance.
Since the variance o2 (z) is relatively large in the regions of low density, the contribution of isolated
data points to the estimate of the noise variance does not vanish but may be significant even if
overfitting occurs. It should be noted that when the data set is large the contribution (aﬁ,(z)) to
the noise variance becomes negligible and the maximum likelihood estimate of o2 approaches that of
the Bayesian approach. However, in real-world problems such sufficiently large data sets are seldom
available in which case the results of Bayesian formalism are significantly different from those of the

maximum likelihood.

4.5 The evidence framework for regression with input-dependent

noise

In the rest of this chapter we will develop an approximate Bayesian formalism for regression with
input-dependent noise which is based on the evidence framework discussed in Chapter 1. The aim is

to make predictions and estimate error bars of those predictions from

(@) = [ ylaiwip(wlD) du (4.17)

o) = o(@) + [ (u(esw) ~ (@) plwlD) dw (418)
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Figure 4.3: The left hand plot shows the contours of the likelihood function p(D|u,o?) for a sample of
size N = 5 drawn from a Gaussian distribution having zero mean and true variance s? = 0.05.
The right hand plot shows the marginal likelihood function p(D]o?) (dashed curve) and the
conditional likelihood function p(D|f,o?) (solid curve), where /i is estimated from the data.
It can be seen that the skewed contours result in a value of 2 smaller than the estimated
value 72 which is estimated from the marginal likelihood function.
where y(z) is the marginal output of the model, o?(x) is the prediction variance and p(w|D) is the

posterior probability distribution for the weights w which is given by

p(w|D) = f f [ p(W]D, 4, 0)p()D, A, @) p{Ores @] D) dts dere dre (4.19)

where p(w|D,u,a,) is the conditional posterior for the weights w which control the regression,
p(u|D, ay, ay) is the posterior for the weights u which controls the noise variance and finally p(ay,, ay|D)
is the posterior distribution for the hyperparameters a,, and a, which control w and u, respectively.
Our task is to perform the integral in (4.17) and (4.18) analytically. To this end we need to approxi-
mate the integral in (4.19), for evaluating the true posterior p(w|D), which involves integration over
two types of parameters which are the weights 4 and the hyperparameters a,, and a,. We have
already discussed the evidence approximation to handling the hyperparameters in Chapter 1. If the
posterior p(a., ay|D) is sharply peaked around the most probable values @, and &, which would be
the case if a,, and a, are well determined by the data, then integration over these hyperparameters

is very much like estimating them from the data. As a result, we have
pwlD) % [ D1, 8)p(ulD,Gu50) s | [ pltesaulD) da |
= [ pwID, v, E)p(uID, 5o Gu) du (4:20)

Thus our task is to find the most probable values @&,, and &, which requires the knowledge of the
posterior p(ay,a,|D) which we will deal with later. For now let us assume that these values are

known.

Next step we need to handle the rest of the integral in (4.20) which involves integration over the
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4.5 The evidence framework for regression with input-dependent noise

weights u. There are two options. First is to integrate over the weights u analytically. In this case
we may assume that the posterior p(u|D, a,,@,) can be approximated by a multivariate Gaussian
with mean located at the most probable value u. This is just the Gaussian approximation discussed
in Chapter 1. The second option is to assume that the posterior p(u|D, &y, @,) is sharply peaked

around u and so the integral in (4.20) can be written as

p(wlD) ~ p(w|D,,5.,) [ Pl D e )

= p(w|D,%,au) (4.21)

This step is similar to handling the hyperparameters a,, and a, but not quite the same. The reason
is the weights u have the same status as w and can have as many components as w. Therefore, it
is doubtful that except for sufficiently large data sets, the approximation above is reasonably valid.
Thus we have to choose between these two options. Here we go for the latter for a number of reasons.
First, the posterior p(u|D,&,,a,) is not quadratic in the weights and this is true even for GLR
models, as we shall see later, and so the l:;est we can do is to represent it by a Gaussian which is
only an approximation. Second, for GLR models the posterior p(w|%, &) is a Gaussian enabling us
to integrate over w in an exact manner, while the posterior p(w|D,@,) is not. Since obtaining the
marginal output is more sensitive to integration over w than integration over u, it is more likely that
integration over u as in (4.20) be counterproductive. In this context, non-linear models such as neural
networks provide another reason for using the posterior p(w|#, &,,) rather than p(w|D) for making
predictions. As explained in Section 1.6.2, representing the true posterior p(w|D) by the Gaussian
approximation can sometimes lead to more prediction error than representing the conditional posterior
p(w|D,u,a,) using the same approximation.

Choosing p(w|D, %, @,) to represent the true posterior p(w|D) we can now make predictions and

estimate the error bars from

v(@) % [ y(eiwlp(wD,,5.) dw (422)
and

ot@) % oi(@) + [ (v(ziw) - y(a)) PlewID, ,E) du (429)

The above integrals are exact for GLR models, while for non-linear models such as neural networks
we need to make the Gaussian approximation to the posterior p(w|D, %, a&y). In Section 4.7 we will
formulate this approximate framework for the application of the Bayesian formalism to regression

with input-dependent noise variance,
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4.6 Choice of the model

So far we have not specified the outputs y(z;w) and B(zx;u), which can be either the outputs of a

GLR model or a neural network. Generally we can write
y(z;w) = a(z; w) (4.24)

where a(z;w) is a function of the inputs = and the weights w. For GLR models the expression
simplifies to a(z; w) = wT¢(x), where the vector of the basis functions ¢(z) has k,, components.
Since the noise variance o2(z) is always positive we choose it to be an exponential function of the

form
o5 (z; u) = exp(b(x; u)) (4.25)

This will prevent the noise variance from taking negative values. For GLR models b(z; w) = uT (),
where the vector of basis functions ¥ (x) has k, components. The use of the exponential function is
not uncommon and has been used by several authors (Jacobs et al. 1991; Nowlan and Hinton 1992;
Williams 1996) for modelling scale parameters, which are positive by definition, using a representation
of the form ¢ = exp(n). One particular way of choosing a prior for 7 is to impose a uniform prior
p(n) = ¢, where c is a constant. It is straightforward to show (Berger 1985) that such a prior on n will
induce a corresponding prior on ¢ which has the form p(¢) = ¢~!. More generally, we can work out

the form of the prior for ¢ given the prior for 7. Further discussion of this matter is given in Appendix
C.1.

4.7 Three levels of inference

4.7.1 First level

In this level of Bayesian inference we need to derive an expression for the posterior distribution
p(w|D,u,a,) from which we infer the most probable value #@. Our starting point is the likelihood
function, as given by (4.2), which we combine with the prior p(w|a,,), using Bayes’ rule to obtain

p(D|w, u)p(wlaw) (4.26)

The denominator p(D|u, ), which is the evidence for u and a,, acts as a normalising factor and

has no significance in this level of inference. If we choose a weight decay prior for w, we have

p(wlay) = K(law-) exp(—awEy(w)) (4.27)
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where Z,,(a,,) is the normalising constant

ku/2
Zu(ee) = (22) (4:28)
Oy
and E,, (w) is the weight decay regulariser of (4.7). Rewriting the posterior using (4.2) and (4.27), we
have
1
p(w|D,u,0y) = — 7, “P(=5(w)) (429)
where
N
S(w) =) BiEi+ ayEy (4.30)

i=1
where E; = 3(y; — t;)? is the least-square error, y; = y(z;; w), and B; = B(z;; u) and the normalising

factor Zg(u,a,,) is given by

Zs(u,ay) = [exp( - S(w)) dw (4.31)

For GLR models the posterior p(w|D,u,a,) is a Gaussian with mean centred at the most probable

weights @ which can be found from minimising the error S(w) in (4.30) to give
w=A"'8Tpt (4.32)

where 3 is an NxN diagonal matrix with elements B(z;, u), ® is the design matrix of equation (3.4),

t is the vector of the targets ¢; and A is the Hessian matrix

A

st(w)|~

ﬂwz

EﬁlBi + awI . (433)

i=1
where the matrix B; = 0?E;/0w? is the Hessian matrix for a the ith data point. Using Taylor

expansion of the error S(w),

S(w) = 5(@) + 3 (w — )7 A(w - @) (4.34)
in (4.31) we obtain

Zs(u, @) = (2m)*/?| A| 1/ exp(-S()) (4.35)

The expansion in (4.34) is exact for GLR models as the error function S(w) is quadratic in the weights,
i.e. p(w|D,u,a,) is Gaussian, while for neural networks it is an approximation. From now onwards,

all quantities depending on the weights w are measured at the most probable value w.
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4.7.2 Second level

In the first level of inference we obtained a formula for the conditional posterior distribution p(w|D, u, ay).
Now we are interested in p(w|D, %, &,,) which requires the knowledge of % and @,,. In this level of
inference we will infer %. We begin from the posterior p(u]D, ay,a,) which can be written, using
Bayes’ rule, as.

p(Dlu, ay)p(u|a.) (4.36)

D . =
Pl el = )

The evidence p(D|u,a,,) has already appeared in the previous level of inference as a normalising

factor in (4.26). It is given by

p(Dlu,an) = [ plw, Dlu,au) du

= f p(Dlw, u)p(w]ew) dw
ZS(“! Q‘m)
Zp(u)Zy(oaw)

where Zp(u), Z,(w) and Zs(u,a,,) are given by (4.4), (4.28) and (4.35), respectively. Note that

(4.37)

the posterior in (4.36) is not conditioned on the weights w. We have already explained that in order
to obtain an unbiased estimate of the variance we should integrate over the mean. In the context
of regression with input-dependent noise variance, this implies that we should estimate the noise
variance o2(z; u) irrespective of the regression function y(x; w). In other words, we should estimate
the weights u after we have integrated over w. This is why we could not optimise u simultaneously
with w as would be the case in the maximum likelihood approach.

To complete the current level of inference, we also need to choose a prior for the weights u. Since
inferring noise variance is essentially a regression problem we require the outputs 8(x;; u) = o2(z; u)

to be smooth, and so we choose a zero-mean Gaussian prior3

plislei,) = mexp(—auﬂ.(u)) B .. (4.38)

where E,(u) is given by (4.8) and the normalising constant can be written as
I 27\ ku/2
Zu(ew) = () (4.39)

Using (4.37) together with (4.38) in (4.36), we obtain

Zs(u,aw)
7o) Zu(00) Zutay) P(TuFu(v))

o« (aw) /3 (ay)k/? exp(—M(u)) (4.40)

3Further consideration to the prior over the space of weights u is given in Appendix C.1.

p(u|D,ay, ) X
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where we have defined the error function M(u) as
d 1& 1

M(u) = Eﬁ.-E.- +ay,E, - §§1n5i+-2-ln|A| (4.41)
The most probable value % is then found from minimising M (u). One of the interesting terms which
appear in (4.41) is the logarithm of the determinant of the Hessian matrix In|A|. The presence of this
term is due to marginalisation over the regression weights w. In fact this term is the only difference
between the error E(w,u) of (4.6) of the maximum likelihood and M(u) as far as estimation of u is
concerned. To gain a crude idea about the effect of this term on the inferred value of noise variance,

let us minimise M with respect to §;. From differentiating this error with respect to f;, and using

a
%:IHMI = Trace(A™1B;)
= g7 (z:)A™g(xi)
= oi(®) S
we obtain
op(xi) = 2E; + o2 (x:) (4.43)

The quantity 2FE; is the square of the residual regression error measured at the most probable value
of the weights @ and o2 (z;) is the confidence variance due to uncertainty in these weights measured
at the input point ;. Thus the noise variance at an input point ; is given by the sum of the residual
error 2E; and the error bars o2 (x;). We have already obtained a similar result (see formula (4.16))
for the case of a constant noise variance in Section 4.4. However, it must be mentioned here that in
the case of an input-dependent noise we estimate the noise variance by minimising M with respect to

the weights u rather than the §;’s directly.

4.7.3 Third level

The Bayesian formalism we have developed so far involves two levels of inference. In the first level
we derived a formula for the posterior p(w|D,u,a,,) which is conditioned on u, a,. Naturally we
choose this posterior to be measured at % and &,. Thus we are interested in p(w|%,d,). To find u
we needed a second level of inference in which we inferred % irrespective of w. This was accomplished
using marginalisation over the weights which led to the posterior p(u|D, oy, @,) from which & was
found. We can now proceed in a similar manner to implement the next level of inference in which
we infer the most probable value of the hyperparameters. Here we need to derive the posterior

p(aw, ay|D) which, using Bayes’ rule, can be written as

p(Dlay, aw)p(au, aw)
»(D)

play, ay|D) = (4.44)
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where p(D|ay, ) is the evidence for the hyperparameters and p(ay, ) is the prior. Since a,, and
ay are assumed to be independent, we can split the prior into the product of two independent terms,
i.e. p(ay,ay) = p(ay)p(ay). Note that the denominator p(D) has no role here as it does not depend
on the hyperparameters.

If we chose the priors p(a,,) and p(ay) to be flat, which corresponds to our lack of knowledge
about which range of values a,, and a,, can take, then we can estimate &,, and &, from the evidence

p(D|aw, ) alone. The evidence itself can be evaluated from the previous level of inference

p(Dlay,aw) = /p(u,Dla“,aw) du

/ P(Dut, aw)p(usla) du

1 zS(“} aw)
Zw(otw) Zy(ay) Zp(u)

exp(—ayEy(u)) du | (4.45)

where we have made use of (4.37) and (4.38). We now need t6 evaluate the integral in (4.45). By

using (4.41) together with some algebraic manipulations we can write

X ( r.nEw) -
b o FHEEL ] ({Tat)

exp (- 2 B:E; - aEn(u)) du]

exp(—awEy)

Toa)t (g J oM du Ll

We have already seen the error function M(u), given by (4.41), appearing in the second level of
inference. Being nonlinear in u implies that we can not perform the integral in (4.46) in an exact
manner. However, if we assume that the integrand exp(—M(u)) can be approximated by a Gaussian

centred at &, then using Taylor expansion of M (u)
M(u) = M(@) + 5 (u - )7 H(u - 5) (4.47)

where

BZM (u) I (4.48)

in (4.46) will give the approximate formula
P(D]ay, aw) o () /(ay)/? |H|7Y/? exp(—ayEw) exp(-M (%)) (4.49)

The matrix H (see Appendix C.3 for its evaluation) is the Hessian of the posterior p(u|D, ay,ay)
which involves the second derivatives of the error M(u) with respect to the weights u measured

at the most probable value #. To find the optimum value of the hyperparameters @, and &, we
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4.8 Adapting the formalism for the case of multiple modes

need to maximise the evidence. Alternatively we may choose to minimise the error W(ay,ay) =
—Inp(ayw, ay|D) which can be written , apart from additive constants, as
W(aw,ay) = - Inp(D|ay, aw)
k k
= auEy+ayEy ~ -E:-'llnaw - -2llna.,
1 1
=+ EIDIAH‘ Elanl (450)

The presence of In|A| and In|H| in (4.50) is due to marginalisation over w and u, respectively. At

the minimum of the error W(ay, ) the most probable values of the hyperparameters satisfy

Gy = 2—%"; (4.51)

G 2";“ (4.52)
where we have defined the effective number of w and u weights v,, and 7, as

Yo = ky—ayTrace(A™ - H-lgj—i) (4.53)

Yo = ku—a,Trace(H™?) (4.54)

The quantities v,, and 7, always lie in the intervals (0,k,) and (0, k), depending on how well the
weights are determined by the data. If the data set size is large relative to the size of the model, i.e.
N > ky (N > k), then oy, (a,) is negligible in which case the weights w (u) are well determined
by the data. Therefore v, = kyw (74 = ku), suggesting that .

o kw
Qy ~ E'E‘: (455)
Gy~ 2’2:“ (4.56)

Formulae (4.55) and (4.56) do not distinguish between the the actual number of parameters and
number of well determined parameters and they are particularly easy to implement as they do not
require evaluation of the Hessian H which is computationally demanding. However, these formulae
can be used only if the data size IV is sufficiently large. For small N these formulae will favour large

values of a,, and a, dragging w and u towards smaller values.

4.8 Adapting the formalism for the case of multiple modes

In the Bayesian formalism for noisy regression which we have developed so far we have assumed

that the posterior distribution p(w|D, %, @, @) is uni-modal. While this is correct for GLR models,
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4.9 Implementing the three levels of inference

the posterior for neural networks may well have many modes, some pertaining to the symmetry of
the network and some pertaining to unrelated maxima. So we have to handle the presence of these
multiple modes. One simple approach is to limit ourselves to only one mode and carry out the Bayesian
formalism for that mode, but one can also do better. In this case we chop the posterior space into
sections each dominated by its own mode (MacKay 1992c). To find these modes we train the same
network several times starting from different locations of weights w. After finding a number of modes
and their corresponding value W we can then apply the evidence framework. In this case the model

predictions is given by

o) = 3 [ (23 0)ps (10}, Buws ) d
j=1

% iw(z: ) (4.57)

j=1

where m is the number of modes found and p;(w|%, &w, &) is a Gaussian centred around wj of the
jth mode. Note that the evidence for the modes are approximated by 1/m in the above formula
since the Gaussian approximation leads to a poor estimate of this quantity as mentioned in Section
1.6.3. It must be mentioned, however, that the success of this approach to multiple modes depends
on the validity of the assumption that the modes of the posterior are well separated so that there is

no significant overlap between the Gaussian distributions used to approximate the modes.

4.9 Implementing the three levels of inference

Thus we can distinguish between three levels of inference for implementing the Bayesian formalism of
this chapter:

Stepl : Estimate the weights w for the current values of the weights u and the hyperparameter a.
by minimising the error function S(w) in equation (4.30).

Step2 : Estimate the weights u for the current values of the hyperparameters a,, and a, from min-
imising the error function M(u) in equation (4.41).

Step3 : Finally, estimate the value of the hyperparameters a,, and o, from minimising the error func-
tion W(ay,ay) in equation (4.50). Since, however, the most probable value of the hyperparameters
satisfy formulae (4.51) and (4.52) one can, instead of minimising W (a.w, @), apply these expressions
as re-estimation rules for updating the value of the hyperparameters during training. This can speed

up the convergence of the algorithm.

The above procedures are then repeated until convergence is obtained, at which point the estimates

of the weights and the hyperparameters should yield the most probable values i, %, Gy and @y.
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Since optimisation of the weights w for GLR models moves on a faster time scale than optimisation
of u, it would save appreciable computation overhead if u is updated from an outer loop within
which w is continuously re-estimated. Within this outer loop one might also choose to optimise the
hyperparameters which is easy to do if the approximate re-estimation formulae of (4.55) and (4.56)
are used. However, for neural networks this optimisation arrangement might not be the best since the
weights w are also to be optimised from an iterative procedure. One can instead update the weights
w and u for a few cycles each followed by updating the hyperparameters. Finally, it may speed up the
convergence of the algorithm if minimising the errors S(w) and M(u) is started from initial weights
values which are good representative of the scale of the targets and the noise variance. This can result
in appreciable time gain especially in optimising u since it involves evaluation of the Hessian A which

is computationally expensive.

4.10 Prediction error bars

As we saw before, in the Bayesian framework the model parameters are treated as random variables
with probability distributions. The distribution over the model parameters gives rise to distribution

over model outputs which can be written as

p(tlz,D) = /ffjp(tlz, w, u)p(w, u, oy, ay|D) dw du da,, da,

~ [ plle,w0,Dp(wlD, 5,50 dw (459)

where p(w, u, ay, ay|D) = p(w|D, u, ay)p(u|D, ay, ay)p(aw, ay| D). If we assume that the posterior
p(w|D,u,a,) is a Gaussian and that the outputs y(x;w) depends linearly on the weights in the

vicinity of W (these are just approximations for neural networks) so that
y(z;w) ~ y(z; ©) + (w - ©) g(z) (4.59)

then the integral (4.58) is easily performed to give a predictive distribution p(t|z, D) which is a

Gaussian with mean y(z) = y(x; w) and variance o?(x), where

oi(z) = oj(z)+0y(2)

= o2(z) +97(2)A"g(z) (4.60)

Again we see that the prediction variance o7 (z) is given by the sum of the noise variance o2 (), which

is now input-dependent, and the confidence variance o2 (z).
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y(x,w) _] [ B(x,u)

GLR @ L GLR

inputs

Figure 4.4: Model architecture for implementing regression with input-dependent noise variance using
maximum likelihood approach. The system consists of two GLR models one with output
y(z; w) predicting the regression and the other with output o2(z;u) predicting the noise
variance. Both the regression and the noise variance are predicted from the joint minimisation
of the error function E(w,u) (formula (4.6)) with respect to w and u.
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Figure 4.5: Model architecture for implementing regression with input-dependent noise variance using
the Bayesian approach. The system consists of two GLR models one with output y(z;w)
predicting the regression and the other with output 3(x;u) predicting the noise variance.
Contrary to the maximum likelihood, in the Bayesian approach the regression and noise
variance are inferred in two steps involving minimisation of S(w) (formula (4.30)) with respect
to w and minimisation of M(u) (formula (4.41)) with respect to u.

4.11 Experimental results

In this section we will test the theoretical results we have obtained using two experiments. The
first one is designed to compare the predicted noise variance of the Bayesian approach with that of
maximum likelihood, while the second experiment is designed to test whether modelling the noise
as input-dependent will improve the generalisation ability or not. These experiments are conducted

using the arrangements shown in Figures 4.4 and 4.5.
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4.11.1 Experiment 1 -

As a demonstration of the Bayesian treatment of regression with an input-dependent noise variance,
we consider an experiment involving toy data with one input and one output. Here, 1000 data points
are independently selected from a Gaussian distribution with zero mean and unit variance. The choice
of the input density as a Gaussian will allow to compare the estimates of the noise variance in regions
of low and high input densities. The targets are generated according to sin(0.357z) + v(z), where the
true noise variance is given by s?(z) = 0.05 + 0.05z2. Since an estimator is a random variable, its
merit should be judged by the quality of a population of its estimates. For this reason the data set
is divided into 100 sub-sets each containing 10 data points, and the model is trained on each sub-set
in turn and tested on the remaining 99 sub-sets. Both outputs y(z;w) and 8(x;u) have 4 uniformly
distributed Gaussian basis functions (and a bias) each with width chosen equal to the spacing of the

centres (see Appendix A.1 for further details).

As described above, the regression and the noise variance were estimated using both Bayesian
and the penalised maximum likelihood techniques and the results are shown in Fig 4.6. For the
Bayesian case training process involved an outer loop in which the most probable value @ is found by
minimisation of M(u) (4.41), using the scaled conjugate gradient algorithm (Williams 1991; Mgller
1993). While looking for % the weights w were continually updated. Then the same experiment is
repeated using the penalised maximum approach in which the error E(w,u) in (4.6) is minimised to
obtain the most likely estimates @ and % which are then used to make predictions. In both cases the
hyperparameters were given fixed values a,, = a, = 0.1 as this allows the maximum likelihood and

Bayesian approaches to be treated on an equal footing.

Figure 4.6 shows the results of this experiment averaged over the 100 trials. The reason for this
averaging is that this is the definition of bias and that is what we are interested in. It is clear that
the maximum likelihood approach systematically under-estimates the noise variance especially in the
regions of low input density, while the Bayesian results shows improved estimates of the noise vari-
ance. This is born out by evaluating the logarithm of the likelihood for the test data. The Bayesian
approach obtains —9.5 for the log likelihood per data point averaged over 100 runs. Due to overfitting
the maximum likelihood occasionally gives extremely large negative values of the log likelihood corre-
sponding to small estimates of the noise variance. Even omitting these extreme values, the maximum
likelihood still gives an average log likelihood per data point of —17.5 which is substantially smaller

than the Bayesian result.
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Maximum likelihood Maximum likelihood

Figure 4.6: The left plots show the sin(0.357z) function (dashed blue curves) from which the data was
generated, together with the regression function averaged over 100 training sets (solid red
curves) and the best fit (solid green curves) obtained from training the models on the entire
data set. The right hand plots show the true noise variance (dashed blue curves) together
with the estimated noise variance (solid red curves), again averaged over 100 data sets, and
the best fit (solid green curves). The reason for this averaging is to obtain the bias and that
is what we are interested in. The plots also show the variance of the regression and noise
(solid cyan curves). We note that in the case of the maximum likelihood the noise variance
o?2(z) is systematically underestimated while in the Bayesian case we see an improvement in
the estimate of this quantity when compared to the latter approach. We can also see that
the further away from the peak of the input density p(z) which is located at z = 0 both the
maximum likelihood and Bayesian estimates of the noise variance start to deviate from the
true variance as a result of overfitting the data points which is due to the small amount of
data present in these regions. However, in the Bayesian case this deviation is less compared
to the maximum likelihood. Contrary to the difference in the quality of the estimates of the
noise variance of the Bayesian and maximum likelihood approaches, we see from the left plots
that the performance of these approaches are similar in predicting the regression function.
This is because, unlike the estimate of the noise variance, the maximum likelihood estimate
of the mean is not biased.
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4.11.2 Experiment 2

In this section we will compare the performance of the Bayesi.-al.n fdrmalism which we have developed
in this chapter for input-dependent noise with that of the Bayesian formalism for constant noise. Qur
aim is to see whether modelling the noise variance as a function of the inputs can actually lead to
any improvement in the generalisation ability. To this end we shall use a data set arising from the
monitoring of multi-phase flows in oil pipelines (Bishop and James 1993). A brief description of this

data set is given next.

Oil flow data

Accurate determination of the flow of oil in pipelines is a matter of commercial interest to the oil
industry. One particular method which has been widely used is dual energy gamma densitometry
(Bishop and James 1993), which is based on the attenuation of gamma beams by oil, water and gas
passing through pipe lines. Here two beams of gamma rays of different frequencies are passed through
the same chord across the pipe and the intensity of the emerging beam is measured (see Figure 4.7).
Then this information is used to determine the path length of the gamma rays in oil, water and gas.
To determine the fraction of oil, water and gas, it is necessary to determine the configuration of these
three phases. This can be achieved by an extension of the dual gamma densitometry (Bishop and
James 1993). Here several dual gamma beams are sent through the pipeline in the manner shown in
Figure 4.8, and then the information is used to determine the configuration of the three phases. Thus

for each measure we have 2 x d inputs together with one 1 output consisting of the fraction of oil.

The data set used in this experiment is generated by computer simulation using the technique
described above and for a number of different phase configurations as shown in Figure 4.9. Attention
has been made to simulation of noise on the inputs which is due to photon statistics which is therefore
governed by a Poisson distribution. The noise process depends on the duration of time in which the
gamma ray was sent as well as on the path length of the beam inside the phase fractions. The latter
implies dependency of the noise level on the inputs. The noise on the inputs induces a noise on the
targets, i.e. measurement of oil fractions. This will shift the observed targets from their true values

according to
t= f@+e) +((z) - (461)

where {(z) represents other sources of noise which we assume to have a Gaussian distribution with

zero mean. From linear expansion of f around € to first order we have

of

tx f(z) +€T55:-

+{(x) (4.62)
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Figure 4.7: Cross section of a pipeline with oil, water and gas in a stratified configuration. Two gamma
rays of different wave lengths are passed along the same line and the intensity of the emerging
beams are measured from the photon counts. From the information obtained the path length
of the gamma rays z,, £w and z4 in oil, water and gas can then measured.

Assuming that the € is a Gaussian with zero mean then the total noise on the targets is also a Gaussian

with zero mean and variance o2(z) which depends on the inputs and so the Bayesian formalism of

this chapter applies.

The experiment

Here we compare the generalisation ability of two models, one trained using Bayesian methods with
constant noise variance and the other trained using the Bayesian formalism for input-dependent noise
variance. In both cases the regression is obtained using a GLR model with 100 Gaussian basis functions
with linear outputs? y(x;w) = wT¢(x). The locations of the basis functions were randomly chosen
from the data set (Lowe 1989) and the width of each basis is set equal to the average distance of the
data points from its centre. This ensures that each basis function has most of the data within its
domain of response. For the case of input-dependent noise, a GLR model with 100 basis Gaussian
functions is used and the noise level is taken to be an exponential function of its output, i.e. 8(z; u) =
exp(uT4(x)). The location and width of the basis functions are chosen in the same way described
above. To save programming effort and computational time the hyperparameters are estimated from

(4.55) and (4.56) which makes no distinction between the number of well determined and actual

4Since the targets are fractions of oil within the 3 phase configuration, it is proper to use softmax output activation
functions since it will ensure that the predicted oil fractions will remain within the closed interval [0,1] and also that
the 3 phase fractions sum to 1. However, such procedures are not necessary here since our objective is only to compare

the performance of two different methods under similar conditions.

88



4.11 Experimental results

s -
REHAT, (i
1 i
\i// > (4)

|
Y Y I Y
M @' @

Figure 4.8: Arrangement of 12 gamma beams (2 on each cord) from which the oil flow data set is created.
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Figure 4.9: Four different types phase configurations used in generating the oil flow data.
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Figure 4.10: Log-log of the predicted fraction of oil versus its true value for the case of constant (blue dots)
and input-dependent noise variance (red dots). The true values were obtained from long
photon integration time. The generalisation error for the case of constant noise variance is
4.477 which can be compared against the generalisation error of the case of input-dependent
noise variance which is 3.796 which shows a slight improvement.
number of parameters. The models were trained on a data set consisting of 1000 data points and
then tested on a data set of the same size. The regression results are shown in Figure 4.10. The
Bayesian approach of constant noise variance gives 2.755 for the log likelihood per test data point
and 4.477 for the test error. This can be compared with the Bayesian approach of input-dependent
noise variance which achieves 2.87 for the log likelihood per test data point and 3.796 for the test
error. The predicted fractions of oil for both methods are shown in Figure 4.10. Thus we note that

there is a small improvement in the generalisation ability of the model if noise variance is modelled

as input-dependent.

4.12 Conclusions

In this chapter we have studied regression with input-dependent noise and have developed an approx-
imate Bayesian formalism for tackling the problem. One particular motivation was the fact that the
maximum likelihood yields a biased estimate of the noise variance. We have shown this bias can be
compensated for using the Bayesian approach. The experiments which we have carried out in this
chapter provide some evidence that the Bayesian approach gives a better estimate of the noise variance
and hence yields a more reliable estimate of the error bars. Using the oil flow data we have provided
some numerical evidence that better generalisation can be gained if the noise variance is modelled as

input-dependent.
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Chapter 5

Summary, conclusions and directions

for future work

5.1 Summary of thesis and conclusions

Bayesian error bars for regression have been the focal point of this thesis. As we saw in Chapter 1,
the error bars arise naturally as a result of i) the existence of intrinsic noise on the targets and ii) the
uncertainty in the model parameters due to the finite amount of data in the training set.

As an important tool for implementing the Bayesian machinery in general and estimating the
error bars in particular, in Chapter 2 we reviewed and studied both exact and approximate ways of
evaluation of the Hessian matrix. Our key finding was that there can be appreciable differences between
the small eigenvalues of the exact Hessian matrix and its outer product approximation for neural
networks. From this we concluded that this approximation can give significant error in estimating
quantities which depend on the product of the eigenvalues. In conclusion we found that the best ways
of evaluating the Hessian matrix, both in terms of accuracy and computational efficiency, are offered
by exact methods.

In chapter 3 we studied the properties of the prediction variance o (z) in relation to the distribution
of input data using two complementary approaches, one based on consideration of discrete data sets
and the other based on continuous probability density functions. In the first approach we showed

that the prediction variance measured at the location of the data points cannot be larger than twice
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5.1 Summary of thesis and conclusions

the value of the variance of the intrinsic noise on the targets. This has led us to the conclusion that
accurate evaluation of the noise variance is important for obtaining reliable estimate of the error bars
(This result prompted the work of Chapter 4 on the Bayesian inference of an input-dependent noise
variance). More generally, we have also shown that the effect of the addition of a data point to the
training set can only reduce the magnitude of the error bars anywhere in the input space or leave it

unchanged.

Given the above results on the behaviour of the local value of the error bars, we have also studied
the global averages of the error bars. One finding was that the average value of the error bars depends
on the number of well determined parameters in the model. However, we have demonstrated that this
does not necessarily imply that more flexible models posses larger error bars. We have also derived a
bound on the change in the average value of the error bars as a result of the addition of a data point
to the training set. These findings, which were based on the discrete data set approach, also apply
to neural networks provided that we make the Gaussian approximation to the posterior and linearise

the outputs in the vicinity of the most probable value of the weights.

Based on a consideration of continuous probability distribution functions, we have provided both
theoretical and experimental evidence that for GLR models the confidence error bars exhibit an
approximate inverse relation of the form oy, (z)  p~1/2(z) , where p(z) is the density of the input
data, in regions of input space where the data density is high. We also provided some numerical
evidence that a similar relation holds for trained neural networks. However, it must be mentioned
that the inverse proportionality relation between the density of input data can hold only in the regions
of high density. In such regions, however, the prediction variance is dominated by the noise variance.

In Chapter 4 we developed a Bayesian formalism, using the evidence framework, for tackling
regression problems with input-dependent noise variance. Using a toy data set we have demonstrated
that this method can yield an improved estimate of noise variance compared to the maximum likelihood
approach. We have also shown, using the oil flow data, that improved generalisation error can be
gained if the noise variance is modelled as input-dependent. However, implementing this approach
has proven to be computationally more expensive than maximum likelihood as it requires evaluation of
the Hessian matrices A and H. However, this should not deter us from using this Bayesian formalism
if we have reason to believe that the noise variance depends significantly on the inputs values.

In the Bayesian formalism developed in Chapter 4 we fixed the weights u, as well as the hyperpa-
rameters a,, and a, and carried out the rest of Bayesian inference with these parameters fixed to their
most probable values. This was done on the grounds that integration over these parameters can render
the Gaussian approximation over w from being a good representative of the unconditional posterior

distribution p(w|D). However, it should be noted that fixing the weights u to the most probable
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52 What if the evidence framework fails?

value is not exactly like fixing the hyperparameters. The reason is that u is multi-dimensional vector
with possibly as many components as the regression weights w. Although such an approach can still
yield an unbiased estimate of the noise variance, it also excludes the posterior for 4 from influencing
predictions. The width of the posterior over u will make an additional contribution to the predictive
error bars. Similarly, there will also be contributions arising from the finite width of the posterior over
the hyperparameters a,, and a,. If desired these additional contributions could be evaluated using

the formalism of Chapter 4.

5.2 What if the evidence framework fails?

As mentioned in the introductory Chapter 1 what matters ultimately is how accurate are the pre-
dictions. Usually the evidence approximation is thought to give reasonable performance when the
size of the data set is large compared to the size of the model. However, it has been recently argued
by Neal (1995) that, except for computational reasons, we need not restrict the size of the model.
This is a point for concern when using the evidence procedure, as increase in the size of the model
will eventually lead to the breakdown of the Gaussian approximation. In cases like this one can use

Markov chain Monte Carlo techniques.

5.3 Directions for future work

There are many directions in which future work can be carried out.

1) On the issue of noise

The evidence framework of MacKay and its extension of Chapter 4 to the case of input-dependent
noise assumes Gaussian noise on the targets. It is also interesting to extend the evidence procedure to
cases where the noise is non-Gaussian. A parametric approach would be to model the noise variance
using a non-Gaussian exponential family distribution such as gamma or chi-square distributions.
Alternatively, one can use non-parametric methods such as Gaussian mixture models (Bishop 1994a)
which was mentioned in Section 1.7.1.

Another issue relates to the presence of noise on the input data. We have already seen an example
of a data set with noisy inputs in Section 4.11.2 where we dealt with the oil flow data. To tackle
this problem we used the approximation that the noise on the inputs induces an additive noise on the

targets which can be approximated by a Gaussian and so the standard Bayesian formalism can be
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53 Directions for future work

applied. However, such approximation will be in significant error if the magnitude of noise is large.
The problem of noisy inputs has already been investigated by some authors (Bishop 1995b; Matsuoka

1992) but a Bayesian treatment of this problem is yet to be carried out.

2) Multiple outputs with correlated noise

The evidence formalism of Chapter 4 is applicable to the case of m-dimensional outputs. In this
case the intrinsic noise on the targets will be, in general, different functions of the inputs and so m
auxiliary outputs are required to infer the noise variances as functions of the inputs, assuming that
the noise on the targets is not correlated. The more general case of correlated noise has been studied
by Williams (1996) using the maximum likelihood approach. It would be interesting to extend the

Bayesian formalism to this case.

3) Markov chain Monte Carlo methods

In this thesis we have used the formula g7 (z) A~ g(z) for evaluating the error bars, which is exact for
GLR models. For neural networks, however, it is an approximation depending on the assumptions that
i) the posterior weight distribution can be approximated by a Gaussian and ii) the outputs depend
linearly on the weights in the vicinity of @. The validity of these approximations is doubtful for neural
networks whose number of parameters is comparable to or larger than the size of the training data. It
would be interesting to study the property of the error bars using the full Bayesian formalism which

can be obtained using sampling methods.
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Appendix A

A.1 Experimental details

In this appendix we shall give further details of the experiments carried out in this thesis. The
experiments involving GLR models made use of Gaussian, sigmoid and tanh basis functions as well as
polynomials of various degrees. The procedure for fixing the centres of the basis functions made use
of a rectangular gridding system over the range of the input data, using the outermost data points to
define the coordinates of the rectangle. Once the rectangle was defined the basis functions were then
uniformly distributed (see Figure A.1) inside the rectangle and the width of the basis functions were

set equal to

Az
= — Al
o= (A1)
were n? is the number of basis functions, d is the dimensionality of input space and Az = (Azy, ..., AZ4)

is a vector with elements
Azj = |z — (A.2)

Note that |z}23% — x}“inl is the longest distance between the data points in the direction of the jth
input. In the case of sigmoid and tanh basis functions, which were used only in the experiments
involving 1-dimensional input data, & should be understood as the steepness of the basis functions.
The experiment of Section 4.11.2 used a different procedure for fixing the centres and width of the
basis functions. This will be discussed shortly. It should also be noted that in those experiments
which involved more than one data set, the basis functions were fixed separately for each data set.

With regard to the experiments of Section 3.4.3, the input data set was generated independently from

95



A.l Experimental details

|
Ax
o -
® e i o i @ i @
o e ! @ i @ °
: : ax
[ ] [ i ® E ® T ®
[ ] e ® ° [
ol
xgio <

Figure A.1: Schematic diagram for fixing the locations of the basis functions for a 2-dimensional input
data. The outermost data points where used to define the coordinates of the rectangle and
the vector Az = (Az1,Azz) (see equations (A.1) and (A.2)). The basis function were then
uniformly located (solid circles) on the regular grid.
a Gaussian probability density function with zero mean and unit standard deviation and the basis
functions were fixed according to the gridding procedure described above. The exact specifications of
the GLR basis functions used in the experiments of Figures 3.6 , 3.7 and 3.9 are displayed in Table
A.2. Specifications of the basis functions for the experiments of Figures 3.3, 3.8 and 4.1 are given in

Tables A.1, A.3 and A .4.

The experiments discussed so far have been based on a finite data set drawn from a density
function, in which the Hessian is evaluated numericaliy as a finite sum. For the particular choice
of Gaussian basis functions, however, it is possible to evaluate the Hessian matrix analytically using
the continuous density representation of Section 3.4.2. In this case, expression (3.35) for the Hessian
becomes the convolution of Gaussian functions, provided that the density p(z) is Gaussian too, which
is easily evaluated. Let p;, p; and p, be the means of the ith, jth basis functions and the density
p(x), respectively. Also let C;, Cj and C), be their variance matrices!. Using formula (3.35)%, we

can write a typical element of the Hessian as

I

Ay f p(z)$i(z)d5(z) dz

@W / [exp [—-21-(9»' -p,)'C (z - u,,)] exp [-—%(:c -p)TCi (= - ns)]

exp [—%(z - u,—)TCj"(a: - u,—]] d:c] (A.3)

1These matrices are diagonal with elements diag(03,....,03), where d is the dimensionality of the input space (see
equation (A.1)).
2Note that we have dropped the factor BN in the right hand side of this equation since it plays only the role of a

scaling factor.
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A.l Experimental details

where d is the dimensionality of the input vector . After some simple algebra we obtain

1 1 1 o
by = el o]} otd enlure] o 9
where
cl=c'+cit+ it (A.5)
p= C;lu, +C iy, + C;-'lpj (A.6)
a=pyColp, +ul C i+ ] Clp, (a9

By integrating (A.4) we obtain our final result

Aij = %1% exp[—% a] exp[% pTCp] (A.8)
Using (A.8) the average slope of In o2 (x) versus Inp(x) curve is then calculated by taking 10 samples
of size 5000 each from the true distribution p(x). Linear regression is used to determine the slope,
taking into account only points for which p(z) > 0.1pmaz(z). The reason for this arbitrary cut-off
is to reduce the influence of those data points which belong to low regions of input data density on
the measurement of the slope. This is done for two kinds of reasons. First, we are interested in the
regions of high input data density, and second the inclusion of these isolated data points make the
measurements of the slope noisy. This step is then repeated for various number of basis functions
and for data sets of input dimensions 1 and 2, and the results are shown in Figure 3.12. It should
also be mentioned that as the number of basis functions was increased the Hessian matrix started to
show ill-conditioning. This problem was solved by adding a regularising term to the Hessian with its
parameter « set equal to 10710,

In the experiments we have discussed so far the locations of the basis functions were fixed using
the gridding system described earlier in this appendix. This method is particularly suitable for data
sets with uncorrelated inputs and low input dimensionality. However, the experiment of Section 4.11.2
involved the oil flow data with 12 correlated inputs. In this case 100 data points where selected in
random from the training data and used to define the location of the 100 basis functions (Lowe 1989).
The width of each basis functions is then set equal to the average distance between its location and
the data points in the training set. An illustration of the location of the basis functions for this

experiment is shown in Figure A.2,
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Experimental details

pz = —2.8865 | pg = —2.7768 | pg = —2.6671 | ps = —2.5573 | pg = —2.4476 | p; = —2.3379
pg = —2.2281 | po = —2.1184 | yyp = —2.0087 | 1y = —1.8989 | py2 = —1.7892 | py3 = —1.6795
e = —1.5697 | py5 = —1.4600 | pyg = —1.3503 | py7 = —1.2405 | pyg = —1.1308 | py9 = —1.0211
p20 = —0.9113 | poy = —0.8016 | por = —0.6919 | pag = —0.5821 | paq = —0.4724 | pos = —0.3627
p2e = —0.2530 | poy = —0.1432 | pgg = —0.0335 | 29 = 0.0762 pao = 0.1860 | pu3; = 0.2957
paz = 0.4054 | pgzy =0.5152 | pgq = 0.6249 | s =0.7346 | pge =0.8444 | 3z = 0.9541
p3s = 1.0638 | pge = 1.1736 | g0 = 1.2833 | pay =1.3930 | pge =1.5028 | p43 = 1.6125
pag = 1.7222 pas = 1.8320 g = 1.9417 a7 = 2.0514 Hag = 2.1612 e = 2.2709
pso = 2.3806

Table A.1: Table of the locations of the basis functions of the experiments displayed in Figure 3.3. The
width of the basis functions were set equal to 0.1075.

Figure A.2: Scatter plot of two inputs of the training data together with the locations (indicated by the
circles) of the Gaussian basis functions used in the experiment of Section 4.11.2.
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Experimental details

B2

H3

H4

s

He

K7

Hs

-3.2263

-2.1474

-1.0686

0.0103

1.0892

2.1680

3.2469

Table A.2: Table of the locations of the basis functions of the experiments displayed in Figures 3.6, 3.7

and 3.9. The width of the basis functions were set equal to 0.9247.

k 5 8 11 14

p2 | —3.010 | —3.293 | —3.422 | -3.495
pa | =15 | —-2.349 [ -2.735 | —2.956
g | 0.010 | —1.405 | —2.049 | —2.417
ps | 1.520 | —0.461 | —1.362 | —1.877
pe | 3.031 | 0.482 | —0.676 | —1.338
Hr 1.426 | 0.010 | -0.798
I 2.370 | 0.693 | —0.259
) 3.314 | 1.383 | 0.280
H1o0 2.069 0.819
K11 2.756 | 1.358
M1z 3.443 1.898
H13 2.437
H14 2,977
H15 3.5£

o 1.208 0.;26 0.624 0.-5——

Table A.3: Table of the locations and width of the basis functions of the experiments displayed in Figure 3.8.

p2

K3

Ha

Hs

e

-2.4037

-1.3283

-0.2530

0.8224

1.8978

Table A.4: Table of the locations of the basis functions of the experiments displayed in Figure 4.1. The
width of the basis functions were set equal to 0.8603.
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Appendix B

B.1 Average value of the prediction variance

Here we derive an expression for the average value of the prediction variance o7 (z) defined over the

training data. Using formula (1.55) and (1.57) we have

5i(z) = ol +0i(2)

o, +97(x)A™ g(z) (B.1)

where g(x) = Oy(z;w)/0w is the derivatives of the outputs and A is the Hessian matrix, both
measured at the most probable value of the weights @w. For GLR models (B.1) is exact while for
neural networks it is just an approximation based on the Gaussian approximation for the posterior

and the linearization of the outputs in the vicinity of w. Taking the average of (B.1) we have

(di(z)) = az+l§ja*(a:-)
t v N‘,=1 w1

N
1 -
= o)+ 52 9" (@)A T g(z:) (B-2)
i=1
Using the rule
vT Mv = Trace(MwvT) (B.3)

where v is column vector, in (B.2) we obtain

I

N
o + % > ’Iiface(A"g(fce)gr(zs))

i=1

= o2+ }lv Trace (A‘l gg(ze)gT(zi))

(oF (=)

= B % Trace (A“B) (B.4)
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where B is the data Hessian matrix as given by the outer product approximation (2.8). We now make

use of the relation

B=0i(A-C) (B.5)
in (B.4) and take C = al, to obtain

(oi(z)) = o2+ ﬁ ’I‘ra.ce(I - aA'l))

N

o+ % (k - cc'I‘race(A'l))

2
2, 7Y B.6
03 4+ 2L (B.6)

where we have used the expression k —aTrace(A‘l) for the number of well determined parameters +.

B.2 Average change in the value of prediction variance

We will derive a closed bound on the average change in the value of the prediction variance as a result
of the addition of a data point at Z to the training set. Let o7(z) be the prediction variance for a
model trained on a data set of size N. Also let 7(z) be the prediction variance after the introduction

of the new data point. Then we can write the change in the prediction variance as
Ad(z) = 5} (z) ~ o} (x) (B.7)

From (3.23) we have the upper bound Ac?(z) < 0 for all z. If we take the average of (B.7) over the

training data and use (3.20), we have

(Adt(z)) = (9"(x)A7'g(z) — 9" (x) A g(z))

= (g7(x)(A+g(z)9"())"g(z) — g7 (x)A™"9()) (B.8)

where () = L SN . Using the matrix identity (3.12), we have

_{g"(x)A'g(2)g" (2)A"g())
1+97(2)A™g7(2)
_{9"(@)A"g(z)g" (x)A"g(z))
1+g7(2)A™'g7(2)
_g7(2)A(g(x)e™ (=) A9 ()
1+g7(z)A™'g(z)
_1 g"(®)A7BA™g(3)
N 1+g7(2)A™"g7(z)

(Adi(z)) =

(B.9)
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where we have used (g(z)g7(z)) = B/N. Using (B.5) in (B.9) we obtain

o; gT(8)A”I(A-C)A g ()

N 1+ g7 (z)A'gT(2)

a; 97(8)A™'g(z) - g"(2)AT'CA~ g7 (2)

N 1497 (z)A™ g7 ()

_o} o4(&) —gT(2)ATICA™ 9" (2)

= TN 1o @Ae®) i

(Adi(x))

Since gT(2)A"'CA~'gT (%) is positive semi-definite, we can omit it to obtain

2 2 (= . -
(Aci@) 2 -3 (Tl (B.11)

Finally, we note that o2 (z) is a positive quantity and so the ratio o2(z)/(1 + 02 (Z)) lies in the

interval (0,1). Hence, we can also obtain a simplified lower bound given by

(Ao?(@) = %% . (B.12)
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Appendix C

C.1 Prior probability distribution of u

In the Bayesian formalism of Chapter 4 for inferring an input-dependent noise we imposed a zero
mean Gaussian prior on the weights u. The motivation behind such a prior was due to the fact that
inferring noise is essentially a regression problem and so we require the outputs 8(z;; u) = o, %(z; u)
to be smooth. However, since the weights u do not have a direct physical meaning the quality of the
prior for these weights should be judged upon from considering the quality of the prior p(c?) that it
induces on the noise variance. It turns out that a zero mean Gaussian prior will result in a prior on
the noise variance that is not flexible enough in the sense that its mean and variance can only vary
in the range [1,00]. Ideally, however, we would like the prior p(02) to allow its mean and variance
assume any values in the interval [0, 00]. This problem can be overcome by introducing a Gaussian

prior with its mean centred at u,. Thus

o

p(ul|u,, ay) = (ﬁ)h{z exp (-—%—“ (u - uo)T(u - uo)) (C.1)

where k, is the length of the vector u. To see why (C.1) is a better prior let us evaluate the

corresponding prior for the noise variance. We write!
p(e2) = [ 6(0% - exp(-uTv(@)pluluo, ) du (C2)

where § is the Dirac delta function. Using the transformation of variables i = u — u, and v =

exp(—u,¥(z)) together with formula (C.1), we have

po?) = (m=) """ [ 5(o2 = vexp(-a"p(e)) exp(- % 373) da (©:3)

1This is applicable only to GLR models.
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C.1 Prior probability distribution of u

Note that the delta function argument depends on the scalar product ﬁT¢(z) which in turn depends

on the magnitude and relative orientation of the two vectors @’ and 9 (z). Thus without loss of

that @74(x) = T;|y(x)|. Note that @; is an arbitrary component of #%. This means that we can

integrate out the non-interacting components, after this coordinate transformation, to give
2y _ (Cu 13 3. 5 _Qu =2
o) = (52)" [ 6(c2 - rep(-aip(a))) exp(~ 5 @) (C4)
Using the transformation ¢ = yexp (—ﬁ.-|1,b(:c)|) in the above result we obtain

o) = (52)" 2| wtla:)l [ 502 1) %exp(wm(lnt ~In7)?) dt (C5)

which integrates to

pod) = (52)" s (- Zrey (nod +uT(a)?) (©6)

Formula (C.6) is the prior probability distribution for the noise variance 02 which has the form of a

log normal distribution. To compute the prior mean and variance of the noise we use

(a2) = f exp(~uT9(z))p(u|uo, o) du (.7

and

Il

((@3)?) - (o2)’
]exp(—2uT¢(:c))p(u]uo, a,) du
~([ expl-uT ¥ (@p(uluoau) du)’ (C8)

(CAXCA

Again using the transformation % = u — u, together with (C.1), it is straight forward to show that

the mean and variance satisfy

() = exp(-ulv(a)) exp('—"-[;i%i) (C.9)

((67 = (a2))?) =exp (—233'& (3)) [exp(g%”:) — exp (‘I"'“[’:—W)] (C.10)

Note that in the special case of a zero mean Gaussian prior p(u|e) the mean and variance of p(o?2)
ranges between [1,00] as a,, varies from [0,00]. This in contrast to the more general case of u, # 0

where the mean can assume any value in the range [0, ).

C.1.1 Fixing u,

While the introduction of a non-zero mean Gaussian prior leads to a more meaningful prior for the

noise variance it also introduces further complications into the evidence framework which we have
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C.1 Prior probability distribution of u

developed as we have now an extra vector of parameters which we need to fix. Here is a suggestion
for dealing with this complication.

Our task is to choose a value for u, which reflects our knowledge of the mean and variance of the
noise. We first note from (C.6) that the prior variance depends on the form of the basis functions.
This implies that different types of basis functions yield different priors. This is unfortunate since if
the basis functions of the model are changed so will the prior. Ideally we would prefer the prior to be
dictated by our prior knowledge rather than the type of the basis functions of the GLR model in use.
Unfortunately we can not make the prior independent of the basis functions but what we can do is
to make its mean and variance independent of the basis functions at selected points of input space.
One difficulty in setting the prior mean and variance of noise is due to the fact that u, does not have
a physical interpretation which makes it hard to be fixed by hand. These two complications can be

overcome in the following manner. If we use the transformation

¥(z) = I'J’Tlm)l ¥(z) (c.11)

then the new set of basis functions ¥(z) become normalised in the sense that |¢(z)|?> = 1. In this

case the prior mean and variance become

(02) = exp(~uTh(2)) exp(5,-) (C.12)
and

(02 = (o2))?) = exp(-20T(@)) [exp (=) —exp(5-)] (C.13)
Next we expand uT4(z) in terms of the normalised basis functions

wT(z5) =_z"1:si$"(=ea)$(m,-) =¢ (C.14)

where the &;’s are the coefficients of the expansion and c; is a constant which we assume that its value
is known as a priori. Note that the points &; need not be inputs from the training set but rather
are points from the input space where we want to impose a prior value for the mean and variance of

p(02). From (C.14) we have

=y T/ 7 - ~T A
Y(z1) & Y (z1)Y(z1) - (21)Y(z40) 1
@ ¢ |=]: : o
e )\ B (@) B(a) B (@n)P(@n) n
Solving (C.15) for £ we obtain
¢E=M"1c - (C.16)
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C.2 : Proof of formula (4.16)

By using (C.14) and (C.16), we have
o= [M clp(z:) , (C.17)
i=1
Using (C.14) in (C.12) and (C.13) we obtain the following expressions for the mean and variance of

prior noise variance

(o2); = exp(-c:) exp (%) (C.18)

u

((02 = (a2N?), = exp(—2q) [exp(:—u) — exp (a}:)] (C.19)

for all i = 1,....,n. Note that we can associate a physical meaning to the elements of the vector c.
They are the negative of the logarithm, up to a constant, of the mean prior variance at the z;'s input
points. Thus we see that the problem of fixing u, is now reduced to fixing the elements of the vector
c which have a direct physical interpretation. Now our task is choose suitable values for ¢;’s and ay
which reflects our prior knowledge of the noise variance. For example, if we choose to be particularly
vague about the noise variance we might then choose values for ¢;’s and a,? which yield large values
of {(02 — (¢2))?). Similarly, if we were to expect large values of noise on the targets at the input

point z; we may then fix the ¢; and a, which yield large values for the mean (o2).

C.2 Proof of formula (4.16)

In the evidence framework discussed in Section 1.6.1, the noise variance o7 is fixed to its most probable
value which is found from minimising the negative logarithm of the evidence p(D|B3, a) which is given

by (MacKay 1992a)
' N k 1
—Inp(D|B,a) = BEp + aE, — 2 nB- Elna+§1n|A| (C.20)

apart from some additive constants. Minimising the above with respect to o2 gives

2_2Ep 1 iy C.21
b=y +N'Ii'ace(A B) (C.21)

where B is the data Hessian matrix. By using the identity (B.3) and the outer product formula to

the data Hessian (2.8) in the above we obtain

N
2Ep 1 -

2 E: T 1

o, = .__+__.ilg'.A g'.

1 o 1 &
= FZ(vi—‘i)z‘PﬁZO’i(mi) (C.22)

i=1 i=1

2We may still choose to evaluate a, from the data (see Section 4.7.3). In this case we may update the values of ¢;

as we update the values of ay in a way that the prior mean and variance remain the same.
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C.3 Evaluation of the derivatives of M(u) with respect to u

Here we derive an expression for the first and second derivatives of the error function M(u) with
respect to u. These derivatives are needed for finding the most probable value % while the second
derivatives are needed for estimating the most probable values of the hyperparameters &, and ay.
We have

M(u) = Zﬁ.E +auE, - —Zlnﬁ‘ Lin)a) (C.23)

i=1 i=1
where B; = B(zi;u), E; = (y(zi; @) — t:)?, Eu(u) = 1uTu and the Hessian A is evaluated at the

most probable value of the weights w. By making use of

d _ L amn|A| 8
5o Inl4l Y o

i=1

N
> Trace(A™"g,g7) 5= aﬁ'

i=1

N
1, 0B
= TAlg, -2 .24
S gTA™g, o (C:24)

i=1

where g; = g(z;), in (C.23) we write the first derivatives as

3M(u) T -1 0B;
= Z(E, +-gTA g, - ﬁ-) + a,u (C.25)
with the property —(—l = 0 at u. Using the identity
-1
oM M+M"1?£ -0 (C.26)
da da

where a is a scalar, and

0A A 9p;
— 3 0-27
d E 9B: ou ( )
we can write the second derivatives of M(u) as
_ 0’M(u)
7= ou?
N N T
. 11\8%; 1 0p8; 98
- Tpa-1, _ YO0 1 T 4~1 obi 995
- g(E.+2g,A . 25)&;2 2i__1('A j‘) du Ou
1en 1 8B; 08T
=y = — = C.28
AP i i S (CG-28)

For GLR models g; = ¢;, where ¢; is the vector of basis functions measured at z;, and §; =
exp(uT,). In this case (C.28) simplifies to
0*M(u)

6:&3

= Zﬁ. (B+ L oTa 0wt -1 S 48y (67 4710,) wwT o (C20)

l,JI

H
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C.4 Evaluation of the derivatives of H with respect to oy,

We will now evaluate the first derivatives of the Hessian H with respect to the hyperparameters a,,.

By using the identity (B.7) and 8A/8ay, = I in (C.28) we obtain

8H 1< 82; p: 0B]

T T 4-2
fay = T3 29 ATy ’+,§1(9‘A '9;)(g7 A™%g;) 5 2 (C.30)

where A~ = (A‘l)2 For GLR models this formula simplifies to

N
2 e Zﬁ@u—zw vi + E BiBi(¢7 A7 ;) (87 A% vt} (C31)

Oow :..1 i,j:!.
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