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This thesis is about the study of relationships between experimental dynamical systems. The basic approach
is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that
under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine
whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the
distribution of errors may provide information about the lack of equivalence between the two.

The method has applications wherever two or more sensors are used to measure a single system, or
where a single sensor can respond on more than one time scale: their respective time series can be tested to
determine whether or not they are coupled, and to what degree. One application which we have explored
is the determination of a minimum embedding dimension for dynamical system reconstruction. In this
special case the diffeomorphism in question is closely related to the predictor for the time series itself.

Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses
under the right conditions, and we have used radial basis functions to approximate these inverse maps in a
variety of contexts. This method is particularly useful when the linear transformation corresponds to the
delay embedding of a finite impulse response filtered time series. One applicdtion of fitting an inverse to
this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This
method has also been used to separate signals with known bandwidths from deterministic noise, by tuning
a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have
applications to the cancellation of noise generated by mechanical or electrical systems.

In the course of this research a sophisticated piece of software has been developed. The program
allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The
embedded objects can be analysed graphically, and radial basis function maps can be fitted between them
asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the
program can be driven by a batch mode command language, incorporating the concept of parallel and
sequential instruction groups and enabling complex sequences of experiments to be performed in parallel

in a resource-efficient manner.
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Chapter 1

introduction

When analysing an experimental system, the experimenter does not have direct access to the state space
of the system itself, but is instead forced to rely solely on the output of one or more probes, or sensors,
incorporated into that system. Such probes might measure, for instance, the temperature somewhere in a
human body, the rate of flow at a certain point in a hydrodynamic system or the current at a particular place
in an electronic circuit. If the system under investigation is a stochastic one then a statistical approach is
clearly indicated. If, on the other hand, it is a deterministic process then we are dealing with a dynamical
system, whose evolution is uniquely determined, for all time, by its state at any given instant. As a
consequence of dissipation in non-Hamiltonian systems, a dynamical system evolves asymptotically—and
frequently chaotically, if the system is a nonlinear one—on a ‘differentiable manifold’, a topological space
which is usually only locally Euclidean.

The output of a given probe is typically sampled to produce a scalar time series. If the probe in
question is sufficiently responsive to the dynamics it is measuring, and the sampling rate is sufficiently
fast, then it turns out to be generically possible (in a sense to be defined) to recover all of the important
dynamical information in the system under investigation from that single time series, using what is known
as the ‘method of delays’ [39]. This astounding result is achieved in practice by passing the time series
through a ‘tapped delay line’ to obtain, with m taps, a sequence of vectors in R which 1s a ‘differentiably
equivalent’ copy M, of the manifold M on which the state evolves, meaning that the topological and
differentiable structure is preserved. We say that we have ‘embedded’ this system; the relationship between
M andits embedding M is knownas a ‘diffeomorphism’, a continuous, invertible and, in both directions,

differentiable map.

Having obtained a reconstructed state space in this manner we are free to analyse it in place of the

(inaccessible) original system, for instance to calculate dynamical or topological invariants [29], or to
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construct predictive models for the time series itself [32]. This approach depends crucially on the fact
that M, is embedded in R™, but it is often not clear, a priori, whether or not this is the case. In this
thesis we attempt to answer this, and related questions by describing a methodology for determining
whether or not a particular relationship f: M, — M, between two submanifolds M,, C R™ and
M, C R* is a diffeomorphism. (It is important to note that we are concerned here only with that
particular f which relates specific points in M, and M, , for instance by a common time index, and not
with the more general question of whether or not M, and M, are diffeomorphic to each other.) This is
a desirable test to be able to make, as it applies not only to delay reconstructions of dynamical systems
but to diffeomorphisms between arbitrary submanifolds of Euclidean space. For instance, M, and M
might be delay reconstructions obtained using time series measured from two different probes in some
experimental system, such as the rate of flow at two separate locations in a hydrodynamic system, and
we might wish to know whether or not those two time series contain mutually independent information
about the system in question: this could be thought of as a form of ‘nonlinear correlation’. Alternatively,
we might be investigating a family of experimental systems by varying some control parameter, with
M, and M_ the embeddings of two different members of that family. We might then try to reveal
the presence of a bifurcation at some critical value of that parameter by looking for a breakdown in the
diffeomorphism between the two delay reconstructions. (Strictly speaking, this would only work if the
particular bifurcation created a difference in the topological or differentiable structure of M and M, ;
moreover, for the approach adopted in this thesis, we would require additional information to aliow us to
index the two time series in a consistent way.) Finally, we might use such a test to establish whether or
not applying a given filtering operation to a time series effects a qualitative change in the dynamics of the
reconstructed system.

A statistical approach to this problem has been described by Pecora, Carroll and Heagy [31]. They
propose separate tests for continuity and differentiability, which they apply to both f and its inverse. The
test for continuity (for example, in the forward direction) consists of obtaining a set of data points sampled
from M, and M, defining an open ball B, C R" of radius ¢, centered at some y,, € R, then calculating
the largest radius 6 of the open ball B; C R™, centered at z; = £~ (y,), such that every data point within
By is mapped under f to a point inside B,. For each ¢, the number of points found inside By and B, is
incorporated into a statistic, averaged over a random set of open balls in R", which reflects the likelihood
that the data set is randomly distributed over M and M . A somewhat more complicated statistic for
differentiability is based on the construction of linear approximations to the restriction of f to an open ball
in R™. The authors find that their statistics yield positive results, but note that the success of the statistic
for continuity depends upon a sensible choice of €, so as to avoid complications due to the curvature of
M., and that the statistic for differentiability depends on prior knowledge of the topological dimension d

of the manifold itself.

In contrast to this statistical technique, our approach is to construct empirical models f: R™ — R of
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f and f—\l: R™ — R™ of its inverse, optimised over a set of data pairs sampled from M, and M, such
that the restriction of fto M., is as good an approximation as possible (in the mean squared sense) to f,
and the restriction of f/—\l to M, is a similarly good approximation to f~1.We then base our decision
on whether or not f is a diffeomorphism on an analysis of those models. The class of nonlinear models
which we consider are the radial basis function (RBF) maps [6]. These maps can be shown, under certain
conditions, to be universal approximators [33]. We will also show in this thesis that, under the appropriate
conditions, RBF maps are generically diffeomorphisms—a result which has important consequences for
the use to which we wish to put them. Although RBF maps can be implemented in the form of ‘feed-
forward neural networks’, they also possess, over other such models, the significant adyantage of being
extremely easy to optimise, comprising an adaptive linear transformation composed with a fixed nonlinear
one. (Strictly speaking, the nonlinear part can also be adapted—a process which consists of selecting a
set of ‘centers’ from the domain—but this is usually not part of the optimisation process.) The RBF map
is usually optimised by minimising the least squares (LS) error, but we will also investigate the solution
obtained by minimising the total least squares (TLS) error. The former results in a model which simply
approximates its range, on average, as well as possible. The latter, implemented in a more symmetrical
form, ignores the distinction between domain and range. Both have their advantages and disadvantages,

and will be compared in the experiments to follow.

1.1 Overview

We will now give a brief overview of the structure of the thesis, which divides basically into two parts, cach
containing two chapters. The first part describes the theoretical results, chapter 2 introducing dynamical
systems, diffeomorphisms and embeddings and chapter 3 approximation theory, as applied to the RBF
map. The second part describes the application of these results to some experimental data sets, consisting
in chapter 4 of simple submanifolds of Euclidean space and in chapter 5 of delay embedded dynamical
systems. The conclusions form chapter 6. In addition, there are two appendices: appendix A contains a
proof of the invertibility of the nonlinear part of the RBF map and appendix B describes a sophisticated

time series analysis software package, written in the course of this work.

In chapter 2 we summarise the relevant theory behind the fields of dynamical systems analysis and
time delay embedding. We begin by stating a few basic theorems, culminating in the definitions of the
diffeomorphism and the differentiable manifold. We then use these definitions to define the dynamical
system, in both discrete and continuous form, and in particular define the Ikeda [20], Hénon [17] and
Lorenz [24] systems, all of which will be used extensively in the experiments Lo be described in chapters 4
and 5. We also describe an experimental system, a far infra-red NH,, laser [19]. After discussing the role

of dissipation in restricting the dynamics under observation to the manifolds in which we are interested,

— 14 —




we introduce the time delay embedding and define the differentiable equivalence which makes it such an
important tool in the analysis of experimental systems. Finally, we establish the conditions under which a
linear transformation can be an embedding of submanifolds of Euclidean space. We then use this result to
justify the projection of such manifolds onto principal component, and other, bases as a valid, and useful,
experimental technique.

Chapter 3 formally introduces the RBF map, briefly discussing an ad hoc method for the selection of
centers from training data and establishing the necessary results on universal approximation and diffeomor-
phism. We then go on to consider the ways in which a given map can fail to be a diffeomorphism, and how
we might go about detecting such a case, either directly, through the LS error, or by composing RBF maps
as an approximation to the identity map, finding Lipschitz constants with which to bound the resulting
per-point errors. The LS solution is derived from geometrical considerations, for both the standard case
of a fixed nonlinear transformation and the more specialised case known as ‘forward selection’, in which
a more nearly optimal set of centers is chosen from the training set during adaptation. These two methods
are justified experimentally by comparison with a random choice of centers. We then consider the problem
of over-fitting, and its control through rank-reduction methods. We also introduce a novel re-ordering of
the basis functions designed to achieve an optimal error with the smallest possible rank. This method is
again compared with the standard methods on an experimental data set. Finally, we define the symmetrical
variant of the RBF map used to calculate the TLS solution, again from geometrical considerations, and
make analytic comparisons between the forward and inverse LS errors and both the TLS error and the
condition numbers of the TLS submatrices.

In chapter 4 we describe the results of applying LS and TLS RBF maps to the detection of diffeo-
morphisms between subsets of Euclidean space without any intrinsic dynamical structure. The chapter
contains two distinct, but similar experiments, which act as a simple test bed for the techniques involved.
The first of these concerns maps between a family of projections into the plane of a topological circle in
R3. The images of these projections vary continuously with a control parameter between a circle and a
figure-of-eight. The task which we set ourselves is to determine whether or not two such projections are
diffeomorphic to cach other, and hence to establish a critical value of the control parameter separating
circles from figures-of-eight. In the LS case we investigate not only the LS error, as a measure of diffeo-
morphism, but also the distribution of errors arising from the approximation to the identity discussed in
chapter 3. The second experiment concerns maps between a family of 2-tori in R* and R?, obtained by
varying the ratio of the two radii. Once again, we attempt to establish the parameter range within which
these tori are diffeomorphic to each other, using LS and TL.S RBF maps.

Finally, in chapler 5 we begin applying the test for diffeomorphism to maps on delay reconstructed
dynamical systems. The chapter deals with three related experiments, variously carried out on manifolds
obtained from the numerically simulated Ikeda, Hénon and Lorenz systems introduced in chapter 2, and

also from a time series of intensities measured in the laser experiment, all of which concern the effect
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of a linear transformation on the manifold in question. The first of these experiments is an investigation
into whether or not we can determine a minimum embedding dimension for a given system, based on
fitting maps between reconstructions at ever-increasing delay lengths. The second examines the result of
projecting an embedded manifold onto a lower-dimensional principal component basis, and again tries to
determine a minimum value for the dimension of this basis. The third experiment introduces the concept
of a linear transformation which corresponds to an embedding of a finite impulse respon.se (FIR) filtered
copy of the original time series, and uses this approach to look for periodic orbits in embedded attractors.
Finally, the same technique is applied to the separation of chaotic ‘noise’ from a transmitted signal; the
two experiments in this last section were performed in collaboration with David Broomhead and Jerry
Huke at the Defence Research Agency, and the results have been independently reported in Broomhead,
Huke and Potts [4].

Appendix A presents a proof that the nonlinear transformation from which the RBF map inherits its
powerful approximation properties is, under certain circumstances, an embedding of compact subsets of
its domain. This result is relied on heavily throughout the thesis, as it enableslus to show that RBF maps
are generically diffeomorphisms. Having shown that the transformation is invertible, this appendix then
briefly goes on to discuss the implementational issues concerned with obtaining a LS approximation to
this inverse.

Carrying out the investigations described in this thesis has entailed the implementation of a large, and
fairly powerful, time series analysis package, described in some detail in appendix B. This program allows
the user to load in one or more (multi-dimensional) time series and, from each one, make any number
of delay reconstructions of the underlying system, incorporating variable lags and principal component
subspaces. These data sets can then be related by fitting LS and TLS RBF maps between them. The
program has an X Window front end for real-time data analysis, but can also be run in batch mode, using
a full-featured, purpose-built scripting language. Combined with a sophisticated scheduling system, this
batch mode of operation allows the program to make efficient use of its computing resources through the
fitting of multiple RBF maps in parallel as subprocesses on multi-processor Unix workstations.

In the remainder of this thesis, where it will aid understanding, figures depicting three-dimensional
objects will be displayed as stereo pairs. These can be viewed, without any external apparatus, by holding
the figure at arm’s length and allowing the lines of sight from both eyes to converge in a plane a little
distance behind the plane of the figure, so that the two images are fused stereoscopically. We will also

make use of colour in certain figures, for which we apologise if this copy of the thesis i1s in black and white.
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Chapter 2

Dynamical systems and embeddings

Although we will assume that the reader has a passing familiarity with analysis and differential topology
(good introductions may be found in Chillingworth [10], Hirsch [18] and Milnor [28]), for the sake
of completeness we begin by briefly stating a few of the more important definitions. Consider a map
£: M — N between subsets M C R™ and N C R™, not necessarily open. We say that f is differentiable
if it is the restriction to M of some differentiable map on an open set in R™ containing M. We call f a
homeomorphism if f is invertible and both f and £~ are continuous. We say that f is a diffeomorphism
if f is a homeomorphism and both f and f~! are differentiable. As already mentioned, we will be
particularly interested in diffeomorphisms of differentiable manifolds. We say that M C R™ is a d-
dimensional differentiable manifold if it is locally diffeomorphic to R loosely speaking, M is locally,
differentiably parameterised by open subsets of RZ. From now on we will take the differentiability of M
as read, and just call it a manifold.

Another useful map on manifolds, on which we rely strongly, is the embedding. We are interested
in embeddings because if f is an embedding then f: M = fM is a diffeomorphism and its image f M
is itself a manifold. In order to define an embedding we must first make the following definition: f is
an immersion if f is differentiable and its derivative D is everywhere injective. We say that fisan
embedding if it is an immersive homeomorphism. Indeed, for an arbitrary subset M of R” we can say,
as above, that f is an embedding if it is the restriction to M of some embedding on a manifold in R™
containing M. In factit turns out thatif we restrict our attention to compact subsets then f is an embedding

if it is an injective immersion. We make usc of this latter result in appendix A.

In the rest of this chapter we define pairs of diffeomorphisms and manifolds which together constitute
nonlinear dynamical systems. These will arise frequently in the following chapters. We then go on to

introduce the method of delays, with which we can construct empirical models of these systems directly
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from scalar time series of measurements made on them. Finally, we discuss linear transformations of

embedded manifolds, and the conditions under which they are diffeomorphisms.

2.1 The dynamical system

A discrete dynamical system is the pair (M, 1)), consisting of a differentiable manifold M which is
mapped onto itself by a diffeomorphism 1: M — M. The elements of M are called the states of the
system; they evolve as £ — € or, more generally, under p iterations as £p =o€, = PPE,. We
therefore call M the state, or phase space. Examples of discrete dynamical systems which we will make
use of in this thesis are the Ikeda system [20] and the Hénon system [17]. The Ikeda system evolves under

a family of diffeomorphisms 1: R> — R? defined by

1 — (& cosf — &, sinf)
< < (& Slinl9+§2 cf)se) ) (2.1)

where § = o — /(1 + ||€]|?) and «, B, i+ € R are control parameters. We select a particular Ikeda map by
taking & = 0.4, 8 = 6 and p = 0.7 in all of the experiments described in this thesis. The Hénon system

evolves, also in R?, under the tamily of diffeomorphisms

1—af?+¢
& ( bfll 2) 2.2)

with control parameters a, b € R. We select the Hénon map defined by @ = 1.4 and b = 0.3 in this thesis.

We will also consider continuous dynamical systems, in which M is mapped under a flow {), }, o,
which is a group of diffeomorphisms ¢,: M — M with v 1h, = b, and identity 1p;. In this case
the state describes a continuous trajectory £: IR — M parameterised by £, so that £(t) = ,£(0). In
numerical simulations a particular member 1) = 1, of {1, } is typically selected by integrating a set of
differential equations with a fixed step size ¢, for instance by the Runge Kutta method [34], to obtain a
set of discrete values &, = £€(it) sampling the continuous trajectory £. We say that the continuous system
induces a discrete system (M, 1)), and we notionally work directly with this induced system. In physical
systems, this sampling is usually imposed by the act of measurement, to be described in the next section.
An example of a continuous dynamical system which we will make use of later is the Lorenz system [24].
This may be thought of as a family of flows on the manifold M = R* obtained by solving the ordinary

differential equations

. _U(fl - 52)
£= & — 52 - 5153 (2.3)
§& — by

with parameters r, 0,b € R, whereé is the derivative of € with respect to t. We take 0 = 10, b = % and

r = 28 in this thesis.
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2.1.1 The role of dissipation

Since 1 is a diffeomorphism, &, , is uniquely determined by &; (and vice versa), and the state evolves
through a set of points in M called a trajectory. The trajectories obtained from these systems by iteration
or integration do not, in general, occupy their entire state space M but instead evolve asymptotically on
subsets of M called attractors. This contraction of state space is often, in physical systems, the result of so-
called dissipative forces, such as friction. To illustrate this principle, we show the attractors corresponding
to equations (2.1) and (2.2) in figure 2.1, and that of equation (2.3) in figure 2.2, the latter having been
integrated with a step size of 0.01. Figures 2.1(a) and (b) are plotted using separate points, since they are
attractors of discrete maps, but figure 2.2 is plotted with lines joining consecutive points to illustrate the

continuous nature of the Lorenz flow.

(a) (b)

Figure 2.1 Attractors of discrete dynamical systems. Obtained with 1000 iterations each of (a) the lkeda map and
(b) the Hénon map.

Figure 2.2 Continuous attractor of the Lorenz system. Obtained by integrating the Lorenz system in R? for 1000
steps of size 0.01; plotted as a stereo pair.
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We categorise nonlinear dynamical systems by the manner in which small displacements in the state
vector propagate under 1. In many systems, within certain parameter ranges almost any small error in
initial position on M grows exponentially on small scales. This sensitive dependence on initial conditions
is a defining property of chaotic dynamical systems. The multiplicative ergodic theorem of Oseledec [30)
establishes the existence, for almost every & € M, of a set of constant ‘characteristic exponents’. The
largest of these is an upper bound for the asymptotic, exponential growth rate of tangent vectors under
repeated applications of D1p, and so quantifies approximately the growth rate of small errors as 1 is
iterated. Oseledec’s theorem is discussed by Eckmann and Ruelle in their review paper [12]; in Potts and
Broomhead [32] the characteristic exponents, and their local analogues, of an experimental system are

estimated using the techniques to be described in the chapters to follow.

2.2 The delay embedding

Although in numerical simulations, such as the ones discussed above, we can clearly measure the state
of a system directly, under experimental conditions we would usually expect only to have available the
output of one or more probes or sensors incorporated into that system. The output of one of these probes
will be assumed to take the form of a smooth and, in general, nonlinear measurement function v: M — R.
By sampling this measurement function we obtain a time series {v, } of values v, = v(§;). In this thesis
we will use time series constructed from the numerically simulated Ikeda, Hénon and Lorenz systems.
For simplicity, we shall use measurement functions which correspond to (linear combinations of) single
components of the state vectors £;. Examples of time series obtained from the first component of the Ikeda
and Hénon maps are shown in parts (a) and (b), respectively, of figure 2.3.

The effect of the sampling interval on time series obtained from continuous systems is illustrated
in figure 2.4, which plots, in parts (a) and (b), the time series obtained from the numerically integrated
Lorenz map for integration steps of 0.01 and 0.1, respectively, the latter interval clearly under-sampling
the map quite severely. Although it is tempting to think of these time series merely as two measurements
on a single system, differing only in their sampling intervals, it is important to note that a process such as
Runge Kutta necessarily imposes its own dynamical structure on the system being integrated, so the two

time series do not, in fact, correspond to the same Lorenz system.

We will also make use of an experimentally obtained time series of fluctuations in the intensity of a
single-mode, far infra-red NH3 laser, described in Hubner, Weiss, Abraham and Tang [ 19] and featured in
the Santa Fe time series prediction competition [42]. Hubner shows how the semiclassical laser equations
can be transformed into the Lorenz model, in which form the intensity can be regarded as the square of the
first component of the Lorenz map. We illustrate this correspondence in figure 2.5, plotting the time series

of intensity fluctuations in part (a) and the squared Lorenz time series (integration step 0.01) in part (b).
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Figure 2.4 Time series from the first component of the numerically integrated Lorenz system. Obtained by integrating
the Lorenz map for (a) 1000 samples with a step size of 0.01 and (b) 300 samples with a step size of 0.1.
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Figure 2.5 Comparing the intensity time series measured from a laser experiment with a time series measured on
the Lorenz system. Part (a) plots 300 samples from the square of the first component of the Lorenz system, integrated
with a step size of 0.01, and can be seen to be similar in form to the laser intensity time series, in part (b), obtained
by Hubner, shown here renormalised with zero mean.
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These time series are, by definition, a function of the dynamical system on which they are measured,

but they represent a bottleneck in the flow of information. Is it possible that such a function might, under

suitably general conditions, contain enough dynamical information to enable us in some way to reconstruct
the system under observation? Takens [39] has shown that this is indeed possible: his work provides us
with a method which underpins the entire field of experimental dynamical systems analysis. Following

Takens, we defineamap & : M — R™ by

v,m’

U(gi) Ui
v(p—1E. v;_
T =9,,,(&) = UW): W - (2.4)
U("/)_(Tn_l)&i) lUi-(nL—l)

>

so that each component of ; is a delayed element of the time series {v;}, that is

(xi)j =Y (-1) (2.5)

From an operational viewpoint, this map is constructed by passing the time series through a so-called
delay window—specifically, an m-delay window-—also known as a tapped delay line, whose contents are
the elements of the z, € R™. We call the x, delay vectors. Takens showed that, for generic choices

of manifold M and measurement function v, & is an embedding of M, provided that the number of

v,Mm

delays m > 2d, where d is the dimension of M. (In certain simple cases it may be possible to embed M

forsomed <m < 2d.) Thatis, @, M — & M isadiffeomorphism. We call M, =&,  Mithe

v,m v,

pseudo-phase space and call @ a delay map, or a delay reconstruction; if @ is an embedding then

v,m 0

we call it a delay embedding. The process by which & is constructed is called the method of delays,

and a more thorough analysis may be found in Sauer, Yorke and Casdagli [36].

The delay structure in the co-domain of @, , becomes clear when we form the N by m trajectory
matrix X, whose rows are the x,, fori = 1,..., N, with which we perform the experiments in later
chapters: the j-th column of X is just a shifted copy of the time series, with elements {»/Uj»l-(N—l)’ e ,’uj}.
Matrices of this form are called Hankel. As a trivial consequence of equation (2.5) a sequence of delay

vectlors &, can be seen to obey the relationship

(mi)j = ($i+k)j+k (2.6)

which we call the shift property of delay embeddings. This constraint becomes an important consideration

when we consider approximating diffeomorphisms on delay embeddings in chapter 5.

24 __




2.2.1 Differentiable equivalence

Suppose we have a delay embedding ¢ so that @, M — M_ is a diffeomorphism. We can

v,m’ v,m’
with ¢ = =

compose P .

with ¥: M — M to induce a new diffeomorphism 4, : M = — M

v, m m’ m’

=& _oypPod ! sothatx

D —
m v, m v,m? i1 m

(‘ﬁv,‘ln o o @1 or by composition, 1!

v,m x,. (The subscript

on 1, is not to be confused with its earlier use in denoting the flow 1p,.). The usefulness of the method of

delays is a consequence of the following result: it can be shown [16] that the original system (M, 4)) and
its delay embedding (M, ., %, ) are differentiably equivalent. For instance, since M is homeomorphic to
M, itinherits the same topology, which means that topological features such as periodic (and hence also

fixed) points are invariant under @, Thus, if §; = ¥P(§,) is a periodic pointof 9 thenxy = &, . (&)

v,m’
is a periodic point of %, , since
5;1(:1:0) = ('pv,m o 1’{]])(60) = gpv,m(go) = xO (2‘7)
That @v,vn is a diffeomorphism implies more, however: by differentiating 4> o® =&  ow)? to get
) —1
Dwﬁl(mo) = Ddsv,m(g())le (50) [‘D@v,m(go)] (28)

we see that DP (x,) and DP(£,) are similar matrices and therefore have the same cigenvalues. In
other words, fﬁv’m preserves the eigenvalues at periodic points. This result can seem almost magical at
first sight: by recording the rate of flow at a single location in our hypothetical fluid system we have
used Takens’ theorem to recover a differentiably equivalent copy of this system, simply by constructing
delay vectors from a scalar time series. We will show in later chapters how we can build models of this
embedded system with which to analyse or predict the original.

Figures 2.6(a) and (b) show a three-delay reconstruction of the lkeda attractor and a two-delay
reconstruction of the Hénon attractor, obtained from the time series in figures 2.3(a) and (b), respectively.
These may be compared (o the attractors shown in figures 2.1(a) and (b) in the previous section. The lkeda
attractor turns out to be impossible to embed with less than four delays, due to self-intersections, but the
Hénon attractor is clearly embedded in R2. The reason for this distinction between the two maps is that

the latter may be written as

(Eip1), = 1—a(€)? +b(E,_)), (2.9)

by eliminating &, from equation (2.2), and hence is completely determined by two delays.
Figure 2.7(a) shows a three-delay reconstruction of the Lorenz attractor from the 0.01-step time series

of figure 2.4(a), to be compared with the attractor shown in figure 2.2. It is a consequence of the 0.01 step

size that this reconstructed attractor is nearly one-dimensional: the components of any given delay vector
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Figure 2.6 Embedding the Ikeda and Henon systems. Showing in (a) a stereo plot of the first three components of a
delay embedding from a time series of 1000 samples of the first component of the Ikeda map and in (b) the attractor

corresponding to a delay embedding from a time series of 1000 samples of the first component of the Hénon map.
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(a)

()

Figure 2.7 Embedding the Lorenz and laser systems. Parts (a) and (b) were obtained from the first component of
the Lorenz map, integrated (a) for 1000 steps of size 0.01, and (b) for 300 steps of size 0.1, and reconstructed in R,
The overly small integration step which characterises (a) is revealed by the narrowness of the reconstructed object.
Part (¢) was obtained with a three-delay reconstruction from 300 samples of the laser intensity time series, illustrating

the ‘folding over’ of the laser attractor in comparison to the Lorenz attractor. Plotted in stereo.
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are almost equal, so the reconstructed trajectory lies close to the diagonal in R®. In order to combat this
effect we may wish to adopt the filtered embedding strategy described in the next section to sub-sample
or otherwise transform the time series. In contrast, the attractor in figure 2.7(b), which is a three-delay
embedding of the Lorenz attractor obtained with an integration step of 0.1, is far better resolved in R?,
but at the price of a very sparse trajectory. In figure 2.7(c) we show a three-delay reconstruction of
the attractor corresponding to the time series of laser intensities plotted in figure 2.5(b). Owing to the
relationship between the laser and the Lorenz systems it is useful to compare figure 2.7(¢) with the attractor
in figure 2.7(b). The fact that these two reconstructed attractors seem topologically distinct leads us to the
conclusion that intensity is not a generic measurement, in the sense of Takens, for the laser system: the
effect of using intensity is to identify the two unstable foci in figure 2.7(b).

There are some practicalities to be taken into account when using the method of delays: most
obviously, we would not usually expect to have prior knowledge of d, the manifold dimension. Various
methods for empirically determining a minimum embedding dimension m from time series have been
proposed [21, 22, 5], and a method based on approximating v, , for various values of m will be described

in section 5.1.

2.3 Filtered embedding

We will also make use in this thesis of linear transformations of embedded manifolds. The Whitney
embedding theorem states that a d-dimensional manifold M can be embedded in R" provided that
n > 2d. In proving this theorem, Hirsch [18] shows that given a d-dimensional submanifold M, ~C R'™
(which in our case will be a delay embedding M, =~ = <I),U’1”M) then, generically, a (not nccessarily

orthogonal) projection F: R™ — R™, with 2d < n < m, is an embedding on M. We define

F(x)=c,+ F(zx—-c,) (2.10)

where ¢, € R™ and ¢,, € R™ are translations and F' is an n by yn matrix, and write M, = FM_ .= We
can generalise this result by writing F' in terms of the n by n matrices U and 37 and the m by n matrix V'

making up its singular value decomposition (SVD), defined by

F=Uxv? 2.11)

where the columns of U are left singular vectors of F'—an orthonormal basis for R* —the columns of V'
are right singular vectors of F'—an orthonormal basis for the row space of F—and X is a diagonal matrix
whose diagonal elements are the singular values o, € R of F, ordered such that 0; 2054y 2 0. (Wewill

make extensive use of the SVD, in a more general form, in chapter 3.) Decomposed in this manner we see
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that F' just consists of a projection V' which, according to Hirsch, is generically an embedding, followed

by a scaling by the singular values in %, which is clearly an embedding provided that all &, > 0, and

j
finally multiplication by U, which is just a change of basis. So the only further condition on F' necessary

for it to be an embedding of M is that rank F' = n. This is, of course, a generic argument, and we must
be careful when carrying it over into the case of specific projections F' to check that it still applies in each
case. We can extend the argument in section 2.2.1 to accommodate a linear transformation of this form by

composing F with the delay embedding & to define a new embedding G = F o @ which induces

v,m v, m?

the differentiably equivalent dynamical system (M, 4, ), with¢p, = Gotpo G and M, = GM.
Itis instructive to write the image y, = Fx; of the delay vector ¢, € M, in terms of the time series

elements Vi (m—1)- 1Y from which it is constructed. We write

m

(yi)j = (Cn)j + Z ij[(mi)k = ()]
k=1 (2.12)

m

=(c,); + Z Fopvi_ g1 — Z Fi(en)y
k=1

k=1

from which, neglecting contributions from the constant terms, we see that the j-th component of y,
(9)

generates a time series {uz(.])}, with u;”" = (y;),, which we can view as the output of one of . finite

impulse response (FIR) filters applied to the original time series {v;}. We can express this relationship in

a more conventional form by making the definition agc]ll = ij, so that
) m—1 )
u? o S v, (2.13)
k=0
where a[()"), . >a$7]1)~1 are the coefficients of the j-th FIR filter. For this reason F is frequently referred to

as a filter bank when applied to a sequence of delay vectors; if F embeds M, then we call it a filtered
embedding. In general, each generated time series {ui”} is the output of a distinct FIR filter, with the
result that the NV by n matrix Y = F X, whose rows are the y,, is not Hankel and hence F is not a delay

map. Its inverse F~1: M_ — M__, on the other hand, is a delay map, since its co-domain is in the image

m?

of ¢ _ . We therefore write = F~1 where w: M, — R is the ‘measurement function’ induced

by the delay structure in M_, and is defined by w(y,) = v, or, if G is invertible, w = v o G~!. We

m’

will make use of this definition in chapter 5 when we consider fitting maps between embedded dynamical

systems.

2.3.1 Sampling

We have already referred to the use of Hirsch’s result in the previous section, where we discussed the

construction of a delay embedding év)m: M — R™, with m > 2d, from a finely-sampled time series.
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A method which is used to combat the near-redundancy of neighbouring elements in the resulting delay
vectors z; € R™ is to make the definition F' = (e, e, ,,...,e )T, where e; € R™ is the unit vector

*Tm

which picks out the j-th dimension of R™ and 7 > 0 is an integer number of samples called the ‘lag’; c,,,
and ¢,, are just set to the zero vector in R™ and R™, respectively. We can now extend the definition of the

delay map, writing the lagged analogue of equation (2.5) as

(¥:); = e1ponyr T = Vi o1y (2.14)

and the corresponding lagged shift property as

W:); = Witkr) 1 (2.15)

This projection does not simply sub-sample the time series, as can be seen from an examination of the
trajectory matrix Y, whose j-th column is once more just a shifted copy of the time series, with elements
{UN+(j~1)T, e ,’UH_(J-MI)T}, Instead, we have sub-sampled the m-delay window itself, maintaining its
overall width whilst reducing the number of delays within it. We will refer to this new window as an
(m, 7)-delay window. It can be shown that Takens’ theorem still holds for lagged delay vectors of this

form, so as F preserves the shift property we are able to write G in the form of a lagged delay map

gpv,n,r =g=Fo éu,m by defining
’U(Ei) U,
v(p77E;) Vi_g ,
Vi = P (8) = : - : (2.16)
1)(¢—(m—1)r£i) Vi (m—1)r

which is an embedding of M provided that n > 2d. Indeed, the theorem holds even if’ we allow the lag
to vary between consecutive delays, forming F' from some arbitrary subset of {ej}. By composition,
therefore, we see that this specialised form of projection F embeds M. We will make cxplicit use of this
result in section 5.1, when we come to consider the determination of a minimum embedding dimension
for M.

As an illustration of the effect of incorporating lags into a delay embedding, consider the reconstructed
Lorenz system illustrated in figure 2.8(a), obtained by sub-sampling the 0.01-step Lorenz time series of
figure 2.4(a) with a lag of 7 = 10. Comparing this plot with the un-lagged reconstruction in figure
2.7(a), the sub-sampling is seen to successfully combat the one-dimensional nature of the un-lagged
reconstruction, in a manner almost identical to that of the 10-delay embedding of the 0.1-step time series
of figure 2.4(b) but without the inevitable sparseness of the latter. Indeed, if we were to throw away (the
appropriate) nine out of every ten points along this new trajectory we would, in fact, be left with almost
precisely the trajectory shown in figure 2.4(b); that they are not identical (the difference being due to

the latter time series having been generated with an integration step of 0.1, rather than 0.1, as discussed
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(a)

(b)
Figure 2.8 Filtered embedding of the Lorenz and laser systems. Part (a) was obtained by sub-sampling the first

component of the Lorenz map, integrated with a step size of 0.01, and (b) was obtained by projecting a ten-delay
embedding of the laser systems onto its principal components. Plotted in stereo.
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earlier), of course means that in this case the two trajectories correspond to completely different dynamical

systems.

2.3.2 Singular subspaces

In order to improve on this arbitrary choice of projection, Broomhead and King [7] proposed choosing
F so as to reduce the impact on the delay reconstruction of stochastic noise present in the time series.
This is achieved by calculating the SVD of the zero-mean trajectory matrix X — 1Z" = UXV™", where
1 € RY has elements identically equal to one and & € R™ is the mean of the distribution ofz, € R™, for
¢t =1,...,N. The column vectors v, of V are principal components of this distribution, and the singular
values o, have the interpretation that O’Z, is IV times the variance of the projection of X onto v,. This
decomposition allows us to define a linear ‘singular’ subspace of R™ by the n-element subset of principal
components whose associated singular values o, are greater than some predetermined or empirically
calculated level; we call this level the ‘noise floor’. We then make the definition F' = (v,,. .. ,v“)T,
setting ¢,, = T and ¢, = 0 in equation (2.10), to define a projection F whose null-space is the linear
subspace of R™ spanned by those v, in whose directions the variance lies below this floor. (As an
implementational note, for large N the calculation of T can be avoided—neglecting end effects—by
arranging for the time series {vl, . ,UN+m_1} itself to have zero mean.) In this case, however, F does
not, in general, preserve the shift property, as each of the n FIR filters of equation (2.12) has as coefficients
the m elements of the singular vector v;, SO We cannot write G in the form of a delay map.

In figure 2.8(b) we illustrate a projection of this form, based on the laser system whose time serics is
shown in figure 2.5(b). In this figure we project the 10-delay reconstruction, whose first three dimensions
are shown in figure 2.7(c), into a singular subspace spanned by the first three singular vectors obtained
from an SVD of the trajectory in R'®. On comparing the two figures we find, not surprisingly, that the
principal component projection does a much better job of embedding the attractor in question than does the
arbitrary projection shown in the previous figure, although in practice we are, of course, free to make use
of all ten dimensions of the latter. Nevertheless, it seems clear that by using a singular basis we should be
able to produce an embedded attractor with substantially fewer delays than would otherwise be the case.

In chapter 5 we will analyse this claim in some detail for both the Lorenz and laser systems.

2.3.3 Time series filtering

The third, and final, class of linear transformations which we consider in this chapter is rather more

specific: up ull now, with the trivial exception of the sampling matrix of section 2.3.1, we have been

dealing with filtering operations F which generically do not impose a delay structure on their images
(3)

M, = FM_, because each row of F' contains the coefficients a;’”, of a distinct FIR filter. In signal
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processing applications, however, we are often interested in the effect of a particular FIR filter on the time
series under investigation—for instance we might expect some form of linear filtering to be unavoidably
performed in the process of measurement. In other words, we wish to work with a single time series {u; }

which we obtain from {v,} by applying the FIR filter

c—1
u; = Z U (2.17)
k=0

with ¢ coefficients ag,...a,_; € R

It is not immediately obvious that a delay reconstruction of the form (2.4), using the output {u,} of
such a filter, will generically be diffeomorphic to a delay embedding of the system on which the unfiltered
time series {vi} was measured, but Broomhead, Huke and Muldoon have shown [3] that this is generically

the case: if @ : M — R™ is a delay embedding of M then we can also embed M with the delay

v,m

map @, . M — K", provided that n. > 2d as usual, where u: M — R is the measurement function

‘induced’ by the FIR filter. It is easy to show, by analogy with equation (2.12), that M, = &, M and
M, =@

M are related by the linear transformation F: R"™ — R" defined, with ¢ and ¢ set to
wu,mn y m n

zero, by the n = m — ¢ + 1 by m matrix

ay a, a, a,_, 0 0 0
0 ay a - a._5 a,._, 0 0

F = 0 0 ) Qo3 Qe g Qe g 0 (218)
0 0 0 . ao al ag e (1,(:_1

suchthat®, =G = F o, . the banding in F imposing the necessary delay structure in R"*. We
will make use of this form of filtered embedding in sections 5.3 and 5.4 to come.
It is perhaps worth mentioning that the FIR filter (2.17) can be thought of as a special case of the

more general infinite impulse response (1IR) filter,

c—1 d~1
u; = Zakvi_k + Zbkuwk (2.19)
k=0 k=0

which incorporates delays of both unfiltered and filtered time series. An IIR filter therefore constitutes a
linear dynamical system in its own right; Badii and Politi have shown [1] that the system obtained from
a delay reconstruction using a filtered time series of this form is not, in general, a diffeomorphism of the

underlying system, and so we do not consider such filters here.
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Chapter 3

Approximation

We now come to the central problem of this thesis: given two compact subsets M C R™ and A/ C R”
and a map f: M — A through which they are related, is f a diffeomorphism? In chapters 4 and 5 we
will investigate this question by considering empirical models of f and f~!. The models which we adopt
are based upon the radial basis function (RBF) map fz R™ — R™, described in Broomhead and Lowe [6]
and Powell [33], and are derived by fitting data from a ‘training’ set of N vector pairs {(x;,y,)} sampled
from f so thaty;, = f(x,), fori = 1,...,N. Although fis defined on R™ our task is to make fas
‘good’ a fit to f on M as possible, in a sense which will shortly be defined.

The ‘classical’ RBF map is a linear combination of p nonlinear basis functions P R™ = R
These basis functions are defined with respect to p distinct points ¢; € R™, known as ‘centers’, by
p,(x) = oz — ¢;|l), where ¢ R* — R is a nonlinear function and || - || denotes the vector 2-norm.
Treated as components of a map ¢: R™ — R, together with the linear transformation W: RP — R™, the

®; form the RBF map

o~

f=Woop (3.h

Powell also includes polynomial basis functions, for instance a zeroth order term Ppi (x) =1
and first order terms ¢ .(x) = z,_;, for j = 1,...,7n, and so on, in his models. Although we do
not explicitly incorporate such terms into ¢ we do implicitly include the zeroth order term by writing
W(p) =7 + W7 (p — ), where W is a p by n matrix which we refer to as the ‘weight matrix” or just

the ‘weights’ and y and 1, the latter defined by
1 N
=5 o) (3.2)
=1
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denote a mean over the N element training set (from now on, the precise definition of a training set mean,

denoted by an overbar, will be understood from its context).

The question of how good a fit to f is achieved on M by the RBF approximation f is usually
answered in terms of the error function e: R™ — R", defined by ¢ = f — f. This function enables us to

define a normalised mean squared error € € R by

N N
=02 lle(@)IP =072 11, — u,l (3.3)
i=1

=1

~

where ¥ = f(x) is the RBF estimate of y. The normalising scalar ¢ is defined (for purely notational

convenience in the discussion to come) by

N

o® = lly; — Il (3.4)

=1

so that o2 is N times the variance of the training set in R” (the precise definition of a given normaliser
will also be understood from its context in future usage.) Normalisation of this form ensures that ¢ = 1
when fAﬁts the mean in R”—that is, ]?(.TL) = 7 for all +—a sure sign that f is completely unamenable
to RBF approximation. The error is normalised in this fashion, rather than by incorporating a diagonal
matrix of individual variances into the norm, to avoid scaling each dimension independently: if the y, are
delay vectors then their associated noise components are necessarily isotropic.

In order to approximate a given f we usually fix ¢ by choosing p centers from the training set and use
a fixed nonlinearity ¢. This restricts the optimisation ()fffl() the weight matrix W, and so avoids the need
for time-consuming nonlinear optimisation techniques. A common ad hoc approach is to choose the centers
from the training set at random or, in the case of a delay embedded dynamical system, at regular intervals in
the time variable. However, for reasons to be explained in section 3.2.1 we define an alternative selection
method which consists of choosing the first center ¢; (which we will refer (o as the ‘seed”) from the training

set, either at random or following some arbitrary criterion (such as maximising |

x,]]), then choosing as the
7-th center the training set element x; which maximises the expression min, ;. |z, — c; [|. We therefore
call this method ‘repulsive selection’. This approach is similar to one proposed by Smith [37], which
consists of choosing centers uniformly on M, subject to the constraint that no two centers should be closer
together than a given distance; a suitable value for this inter-center distance is iteratively determined by
decreasing its value from an initial maximum, until a sufficient number of centers have Been so obtained.

We will also investigate the nonlinear ‘forward selection” method in section 3.2.2, for use in circumstances

where we are willing to wait a long time for a particularly good fit.
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3.1 Characteristics of the RBF map

In an appendix to Powell {33], Brown shows that f is capable of universal approximation, under the
uniform norm, on the space of continuous real-valued maps on compact subsets of R (such as the

manifolds we consider in this thesis). That is, supg ¢ 4, || f(z) — f(x)|| can be made arbitrarily small on

M by taking p large enough, provided that ¢ obeys certain constraints. Specifically, either ¢(r) = e™""

or ¢(r) = 7 must hold, or D¢(r1/2) must exist and be strictly completely monotonic. Another way of
stating this result is that given enough basis functions the relationship between @ M and A/ can be made
as close to linear as required. Although the existence of an argument such as this is clearly desirable, in
practice—working with finite p—we choose the cubic ¢(r) = 7%, which has the considerable advantage
of being paramelterless and yet is of comparable performance on experimental data sets to suitably tuned
gaussians or other functions admissible by Brown.

Brown’s result, and empirical observations, lead us to expect to be able to achieve a reasonably good
approximation ]?to £, in terms of a small ¢, with a finite number of centers. We might, therefore, naively
assume that if f is a diffeomorphism then fwill also be a diffeomorphism, and conversely, if f is not a
diffeomorphism then neither is f If so, we could clearly establish strong evidence for whether or not f is
a diffeomorphism by analysing the injectivity and immersivity of f This approach, however, turns out Lo
be a little too naive. In appendix A we show that, under certain mild conditions on the choice of ¢ and the
positions of the centers, ¢ is an embedding of compact subsets of R'™, provided that p > m. (In fact, itcan
be shown that with a monotonic increasing basis function, such as a cubic, ¢ embeds R™ itself, although
this is clearly not the case with a decreasing function, such as a gaussian). From section 2.3 we know that
a d-dimensional submanifold @y M C R” is embedded by a generic choice of W, provided that n. > 2d. It
follows, by composition, that fls generically an embedding of compact M if p > m and n > 2d, where
d is the dimension of M, if a manifold, or of the lowest-dimensional manifold containing M, if not. (In
fact, a finite set of points sampled from M is, by its very nature, a compact subset of R™, irrespective of
whether or not M is a manifold.) In other words, f: M — fM 1s generically a diffeomorphism.

As we can now expect to find, under the appropriate conditions, a diffeomorphism farbilrarily close
to f, we must modify the naive test, described above, to reflect this situation. Specifically, we must now
attempt lo determine whether or not f is a diffeomorphism by measuring how close, in a sense 1o be
discussed, fis to a map which fails to be a diffeomorphism. To this end, we have investigated two distinct
varieties of RBF model, each with its own strategy for the optimisation of W, minimising the least squares
(LS) and total least squares (TLS) errors. These two methods are described in sections 3.2 and 3.3 below.

It is important to note that—practically speaking—a particular error will often only be significant, as
an indicator of the existence of a (differentiable) map, when compared with an error calculated for some
other map, whose injectivity and immersivity may already have been established by some other means.

For the experiments (o be described later in this thesis, we will usually consider a family of maps {fu}’
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where p 1s some experimental parameter, and examine the variation of LS and TLS errors as a function of
(. Within a given family of maps the mean squares and/or distributions of these errors will then be used
to establish those values of i for which f# is a diffeomorphism, but between different families there may

be no realistic comparison.

3.2 The method of least squares

In order to investigate this problem further it is useful to consider the manner in which f itself may fail to
be a diffeomorphism by examining its inverse f~! and the conditions under which it can exist. The LS
solution is to attempt to model f and f~1 separately with RBF maps f: R™ — R™ and f/_\l: R" — R,
respectively. (Note that even when f has no inverse we can still obtain such an approximation to the
relationship y — x, optimised over the training set, which we call f—\l for convenience.) To keep our
notation consistent we label fand f-\l with their respective domains by rewriting (3.1) as f =W, 000
where @ i R™ — RP and W,,: RP — R", and similarly ]7:1 = Wy 0@y, where @, R" — R is
composed of g basis functions (we will usually just take ¢ = p) and W),: R? — R™. The linear maps
are then implemented by W, (¢) = 5+ WL (o — @) and W, (9) = T + W(¢ — @r). With
error functions € ,: R™ — R™ and €,,: R" — R™ defined by €, = f~ fande, = f—\l — f~! the

corresponding normalised LS errors €, , and €, are
M N

N N
53\4 = (7/:/2 Z ly; — yin, Ejz\f = ‘7/_\/;2 Z lz; — =,

1=1 i=1]

| (3.5)

where & = f—\l (y) is the RBF estimate of  and the normalisers o ,, and o, are calculated on M C R™
and NV C R"™ in the usual way. The procedure whereby these errors are minimised with respect to a
particular training set is described in section 3.2.1 below.

So how do we use these models in practice? For the sake of argument we will phrase our discussion
in terms of the relationship « + y, although we could just as well consider the map in the other direction.
If £ is a diffeomorphism then so, trivially, is £~*. Provided that f is close, in the LS sense, (o the space
of functions spanned by the components (QDM)J. of ¢ 44, then we can clearly expect fto be a good fit to
£, with uniformly small per-point errors ||€ , , ()| giving rise to a similarly small mean squared error ¢ , ;.
We can apply the same criteria to £, in terms of the basis functions (t,oN)j, yielding similarly small
errors ||€,(y)]] and €.

In considering how f may fail to be a diffeomorphism we will first examine the case in which f is
injective but not immersive. This will occur when there is some subset &f C M for which D f fails to
be injective, mapping tangent vectors Vo € R™ (o the zero vector in K", with the result that D £~ is

not defined on ¥V = fiU/. Now, although we may be able to find an fas close to f as we wish, we might

reasonably expect to obtain a higher error ¢ ,, in fitting f~! than would otherwise be the case, since we will
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be approximating with smooth ((pN)j a map with infinite derivative on V. This is, however, a marginal
effect at best, particularly when we consider the fact that the training set is merely sampled from M x N
and may not even incorporate those points at which the derivative breaks down.

Alternatively, f may fail to be injective on some subset &{ C M, whose image under f is a self-
intersecting set ¥V C A, in which case f~! will not even be defined. For instance, f might be a delay
map with insufficient delays to embed M. It is instructive to view the loss of immersivity as a limiting
case of the loss of injectivity—a transitory state through which f must pass on the way to becoming a
many-to-one map. In attempting to model such a one-to-many relationship on V the method of LS will
result in an RBF map f/_\1 where 7! itself does not exist, taking each y € V to a weighted average
of those « € U which lie in its pre-image under f. Given the finite nature of the training sel, this will
typically involve the incorporation of highly oscillatory basis functions, in an attempt to interpolate what
is in reality a many-valued relationship. We may now be fairly confident of a large error €, particularly
if we use the techniques described in section 3.2.3, below, to constrain f/:1

It is worth noting that there is another way in which f can fail to be an immersion, which we would
not expect to be able to detect with a LS RBF fit, and that is where D f approaches different limits from
different directions on some subset of M. Given the discrete nature of the training set, such points are
unlikely to have any effect on the LS error. Indeed, a breakdown of differentiability of this type would also
defeat the error distribution analysis to be described in section 3.2.4. Happily, this situation is unlikely to
occur when M is the image of a delay map, given the assumptions made by Takens on the smoothness of

both dynamical system and measurement function.

3.2.1 The least squares solution

In this section we will briefly describe the method by which we solve the LS fitting p4r0blcm. For the
time being we will drop the subscripts on ¢, W and W for notational convenience. We wish o find
the linear map W: R? — R, realised by the p by ¢ matrix W, which takes cach point @ € R” onto its
image b € R?. This map might complete the RBF approximation f = W, o ¢, in which case we
seta = @ () — P, b=y —7yand g = n, or the inverse f“\] = W, o @, in which case we sel
a = @u(y) Py, b=z ~=and ¢ = m. Regardless of its interpretation, we optimise this map by

minimising the LS error €, defined over the training set by

N
=073 b, - b,|I* (3.6)

=1

where b = WTa is the LS RBF estimate of b and either o = > 1n the case of solving for f—in which

case € = €, —Or, when solving for f~1, 0 = O and € = €,/
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We first recast this error in matrix form, defining an IV by p matrix A whose rows are the transposed
a; and an N by ¢ matrix B whose rows are the transposed b,. Then the N by ¢ matrix B of estimates

37: = WTa, is defined by B = AW and the LS error becomes

2 =07?||B - B|? (3.7)

where || - || is the Frobenius norm (the squared Frobenius norm || B||3 of a matrix B is equal to the trace
of BT B or, equivalently, the sum of the squares of the elements of B). If we write 3, E € RV for the
column vectors of B and B respectively then we see that the minimum is achieved when each E is the
orthogonal projection of the corresponding 3 into the column space R (A) C RY . In other words, each
component ]?] R™ — R of the multi-dimensional LS solution fAiS found independently of the rest (this
is just a restatement of the linearity of fin terms of its basis functions). To write down this solution it is
convenient to find an orthogonal basis for ®(A), spanned by the column vectors & € RY . One useful
decomposition for this purpose is the SVD, which we first defined in section 2.3. The SVD of A is written

in full as

A= (U;0) (ﬁ) vt (3.8)

where the N by N matrix (U;U) is partitioned into an N by p submatrix U, whose column vectors
u, € RN are singular vectors of the distribution of & € R, and an N by (N — p) matrix U, whose
columns span the orthogonal complement of R(A). Written more concisely, as in equation (2.11) of the
preceding chapter, this becomes A = UX VT The u, are, as usual, ordered so that their corresponding
singular values ,, > 0, which appear as elements of the p by p diagonal matrix 3, satisfy o, > o, _,.
In this basis the orthogonal projection of 3 into R(A) is given by B, e UUTﬁj or, collectively,

B = UUT" B, and the solution can be found with

AW =B
= Uxv'w=vuU"B (3.9)
= w=vyx'Uu'B

The matrix VX~ UT is the pseudo-inverse At of A in the special case that the rank of A is p, that 1s,
when X! exists. In this case AT is more usually written as (AT A)~1 AT,

Another method of obtaining an orthogonal basis for R (A) is the QR decomposition [38], written as

A=@a)(]) (3.10)

where the N by N orthogonal matrix (@Q; Q), with N by p submatrix @ and N by (N — p) submatrix Q,

is chosen so that the p by p matrix R is upper-triangular. Written more concisely as A = QR, with the
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normalised error

columns of @ an orthogonal basis for K (A4), this decomposition is unique if A is full rank, and can be

used in exactly the same manner as we used the SVD to find a LS projection B = QQT B and solution

AW =B
= QRW =QQ'B (3.11)
= W =R 'Q'B

Both of these decompositions necessarily lead to the same solution, assuming that X~! and R™!
exist, but we will generally use the SVD approach in this thesis as its interpretation in terms of the singular
spectrum of A provides a useful method for controlling ill-conditioning and over-fitting, to be described in
section 3.2.3. However we note that, from the operation counts for QR and singular value decompositions
given by Lawson and Hanson [23], in the case that N > gp, rather than find the SVD of the IV by p matrix
A directly it is computationally more efficient to first write 4 in the form of equation (3.10) and then find

the SVD of the p by p matrix R, say R = LYV, so that we can make the straightforward identification

A=QLxvT =Uuxv! (3.12)
and hence U = QL.
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Figure 3.1 Comparing the repulsive and forward selection methods. Plotting the expected value (ep), and standard
deviation (denoted by error bars), of the fitting error ¢, versus p, for a function on a five component singular subspace
of a ten-delay embedding of the laser system, trained using both randomly-seeded repulsive and purely random center
selection methods, with sample sizes of 500 and 1000 centers sets, respectively, together with the error €, obtained
from a single set of centers selected by forward selection. The error bars on the purely random selection error have

been lightened for clarity.
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To demonstrate the characteristics of the LS solution, we will briefly investigate the laser system
of figure 2.8(b), in a five-dimensional singular subspace A of a ten-delay embedding obtained from the
time series in figure 2.5(b). The function f: ¥ — R which we approximate in this experiment is the
one-step generator for the time series; it will be described in more detail in chapter 5, where the choice
of embedding dimension will also be explained. In figure 3.1 we plot the fitting error €, as a function of
p = 5,10,...,200 centers chosen using the repulsive selection method from a training set of N = 2000
vectors in R®. In order to eliminate—as much as possible—the dependence of €, on Lhe. particular set of
centers chosen in this manner, the value plotted is actually the mean error <6p>, obtained by averaging €,
for each p, over 500 sets of centers obtained by selecting the seed for the repulsive selection algorithm
at random (without replacement) from the training set. (We will make use of this procedure—averaging
over the model—in most of the experiments to come, so we adopt the notation (-) of statistical expectation
in order to distinguish this form of expectation from the average incorporated into the calculation of ¢,
itself.) For the sake of comparison, we also plot the mean error obtained by fitting the same function with
1000 sets of purely random centers selected (also without replacement) from the training set. (It is worth
noting that the number of distinct sets of repulsive centers obtainable through random selection of initial
center is necessarily no greater than N.) The error bars in both cases represent one standard deviation in
each direction. The additional curve, corresponding to the method of forward selection, will be discussed
in the following section.

It is clear from this figure that for p > 20 the method of repulsive selection achieves, on average,
an error value several standard deviations below that obtained by purely random selection. An appealing
explanation of this effect is that the repulsive method avoids choosing any two centers closer together than
necessary in R, which is not generally the case in random selection: in the limit that one such inter-center
distance goes to zero there will be two corresponding identical column vectors o € R™ | resulting in an
ill-conditioned data matrix A. Nevertheless, we see also that the random selection method itself achieves

a respectably small error on average, provided that p is sufficiently large.
3.2.2 Forward selection

Having shown how the optimisation of an RBF map may be restricted to a linear LS problem by first
fixing the centers in an ad hoc manner, as discussed above—and indeed that the choice of a particular
set of centers is not necessarily of crucial importance, provided that an adequate number are chosen—we
will now describe an exception to this approach. In (9] Chen, Cowan and Grant describe a method which
they call ‘orthogonal least squares’, in which centers are selected from the training set in an incremental
fashion, using a recursive form of the QR decomposition.

We will assume that we have already identified p distinct training vectors x; € R™ as centers, each

of which gives rise to a vector a; € RY in the usual way, where 1 < j < p, forming the columns of the
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data matrix Ap. We write the QR decomposition of Ap, by analogy with (3.10), as

4,- Q@) () .13

leading to a LS solution W, = Q R;' B and fitting error ¢, = cr“QHAPWP — B||%, by analogy with
equations (3.9) and (3.7), respectively. It is easily shown [38] that (Qp; ap) can be written as a product of
p ‘elementary reflectors’ Pp, so that (Qp; @p) =PP,. .. PP. Then, for a new center, and hence column

, N . - el _ el , -
vector e, € RV, wecanfind Q. from (Q,, 5Q,1,) = (Q,;Q,) P, and R, from

R —
< ]())H) = Q13 @) Ay
=P, (Q, Q) A, (3.14)

o R —
= 137?—{—1(( 0p> ) (Qp; Qp)a;H—I)

Chen’s method consists of choosing, at each iteration, that element of the training set the inclusion

of whose corresponding column vector e, ; minimises €, , over the set of all remaining candidates.

P+ p+

Of course, this technique will not generally choose the best possible set of p centers, in the sense of a
minimum error e, since each new center candidate is only considered in the context of the centers already
chosen. Moreover, it should be noted that this combinatorial technique has been found to be substantially
more computationally intensive than the ad hoc method and direct decomposition techniques combined on
the experiments described in this thesis.

The forward selection method is also illustrated in figure 3.1, in which we plot the fitting error ¢,
versus p = 1,2, ..., 200 for the laser prediction experiment. (The curve obtained in this case is necessarily
unique, so we plot it with a continuous line for the sake of clarity.) We see in this figure that the forward
selection error is substantially smaller than both the mean error obtained through both random selection and
randomly-seeded repulsive selection, typically achieving an error some three or four sla'ndard deviations
below either error. In particular—and in contrast with repulsive selection—there is no value of p for which
the model trained by forward selection produces a higher error than the mean error arising from the random

selection method.
3.2.3 Control of over-fitting

Although we might, given a suitable choice of ¢, invoke Brown and Powell [33] to argue that we can
make €, arbitrarily small by taking p large enough, it is important not to lose sight of the fact that fhas
been chosen by minimising €, on a single training set of vector pairs {(x,,y,)}, sampled from a joint
distribution in RPTY whose elements satisty y, = f(z,;). When f is a map between delay embedded

manifolds, this sampling notionally takes place in both space and time: the sampling in space is a result
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Figure 3.2 Over-fitting on the laser system prediction problem, for two individual sets of centers, selected by both
repulsive and forward selection, respectively. Plotting €, versus p, we see that at p = 200, in part (a), using repulsive
centers, the test error has clearly begun to saturate, as the fitting error continues its monotonic decrease, while in part

(b), using forward selection, the test error not only saturates, but actually begins (o rise again.
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of the quantisation, and any other sources of measurement error arising from the particular measurement
function (for the numerically simulated time series in this thesis, these contributions can be assumed to
be negligible); the sampling in time corresponds to the sampling interval (or integration step) with which
the time series in question was obtained. As a consequence of this sampling process, a particular training
set i1s necessarily consistent, not only with f itself, but also with any number of other functions whose
values coincide with those of f on the x; in question. It is therefore quite likely that a model which is
sufficiently powerful (has sufficiently many degrees of freedom) to achieve a small error on the training set
may nevertheless give rise to a disproportionately large error on another, unseen ‘test’ set of vector pairs
sampled from the same distribution; we call this phenomenon ‘over-fitting’.

To illustrate this point, in figure 3.2 we plot the errors calculated on both the training set and a non-
overlapping test set of 2000 vectors for the laser time series prediction problem discussed above, using
centers selected by both repulsive and forward selection (the errors in the former case now correspond to a
single set of centers whose seed is arbitrarily chosen to maximise ||, || over the training set). Over-fitting
appears on these plots as a systematic divergence of fitting and test errors (due to the tendency of the test
error to saturate) with increasing p. In part (a), which shows the errors arising from the repulsive center
selection method, although this saturation has clearly begun at p = 200, both fitting and test errors are still
apparently decreasing. In contrast, in part (b), which corresponds to the forward selection method, the test
error appears to saturate quite early and even—if anything—to rise slightly as p approaches its Iimit. The
fitting error in both cases decreases monotonically as expected.

We notice, in figure 3.2, that although the fitting error falls monotonically with increasing p, as it
must, it does not fall particularly smoothly. Instead, it appears to approach a series of platecaus, within
which the addition of each subsequent center makes relatively little difference to the error, bul between
which the error can drop significantly. However, it is important to remember that the particularly large
decrease in fitting error resulting from the inclusion of a given center is a function of the entire basis set thus
far selected, and not merely of that center alone. Certain linear combinations of centers, in other words,
are particularly effective in ‘explaining’ the variance in B. The effect is most evident for the repulsive
selection method illustrated in figure 3.2(a), with € exhibitling a substantial decrease over a short interval
near p = 20, but it is observable even in the forward selection error of 3.2(b).

In a process analogous to that described in section 2.3.2, this observation is commonly exploited
in terms of the SVD of A, by eliminating those singular vectors v, of A whose corresponding singular
values o, lie below the noise floor defined by some Orsp This solution is implemented by defining
K =1{1,2,...,r}, so as to make a partition of U by forming an N by r submatrix U,- whose columns
u,, indexed by k£ € K, span an r-dimensional subspace of & (A). Corresponding to Uy there is a p by 7
submatrix V. of V, with columns v, and an r by 7 submatrix 3 of 3, with diagonal elements ;.. We
are thus able to define the rank-r truncated pseudo-inverse A;'C = Vi Xg'UE, which we use to form a

new weight matrix W = A,TCB, Clearly, if r = p then W,- = W . If A is rank-deficient, however—or
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merely ill-conditioned—then by restricting the rank of AL to 7 < p we obtain a truncated solution which
(we assume) more concisely expresses the relationship between A and B.

Truncating the pseudo-inverse in the manner outlined above corresponds to constraining the LS
problem to use the fullest available representation (in terms of variance) of the basis set {aj}, for a
given rank 7. But it makes no use whatsoever of the information contained in the columns of B, the
approximation of which is the sole purpose for which we constructed W, in the first place. To explore
this situation in more detail, we can use the Frobenius norm (as defined in section 3.2.1) to rewrite the
error ¢, for a given p, in terms of the projections (I — UU )3 of the column vectors 3 into the orthogonal

complement of R(A), where I is the N by N identity matrix, giving

¢ = o72|(I - UUM)BIk = 72| BJl2 - o 2|UT B2 (3.15)

and then define a truncated error ¢, by

ex = o 2B - o2 UEBIE (3.16)

We can now take advantage of the orthogonality of the u,, to expand W as
W, = Z AW, (3.17)
kek
where AW, = 0;1 (uEB)Uk, and similarly,
6;‘%:6(2)~—ZA6£ (3.18)
kek

where ¢, = 07 }||Bl|y and A¢;, = o7} [ul BY|.

It is immediately clear that equation (3.18) provides us with an alternative—and perhaps more
effective—truncation criterion: choose K so as to exclude those u,, which result in the smallest contribu-
tions A€, 10 €,. By thus making use of the information contained in B, we are now solving the restricted
rank LS problem subject to the potentially more useful constraint that the representation embodied by K
results in the smallest possible error in approximating f on the training set. For notational convenience,
we will therefore call the former (o,,) criterion ‘blind’ truncation, and the latter (A¢,.) criterion will be
called ‘targeted’ truncation.

In figures 3.3(a) and (b) we plot the result of truncating the rank of laser system predictors trained
with p = 200 centers chosen, respectively, by the repulsive and forward selection methods. In both figures
we plot the errors €, versus the rank r = card K, for K ordered according to both truncation criteria and

card X = 1,...,p. We also plot, on the same axes, the error €_, versus p = 1, ..., 200, arising from the

P
un-truncated model trained with p centers obtained by both center selection methods (naturally, in both
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Figure 3.3 The effects of rank truncation on the laser time series prediction problem with centers selected by both
repulsive and forward selection methods. Plotting the fitting errors ¢, versus r = card K, for both blind and targeted
truncations of a p = 200 center model, superimposed on the error ¢, versus p = 1, ..., 200, for comparison. (a) With
repulsive centers, although for a given rank both criteria can be seen to substantially out-perform the error obtained
without truncation for a corresponding number of centers, the advantage of using the latter criterion is clear; (b) with

centers obtained by forward selection it is difficult to choose between a targeted truncation and the corresponding
un-truncated error.
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reordered index

plots all three curves intersect at p = 200). In examining figure 3.3(a), corresponding to the repulsive
selection method, we see that both truncated p = 200 models consistently achieve a smaller error ¢, for
a given rank 7 = card K, than that of the un-truncated model corresponding to p = 7. In the case of
the blind truncation criterion, this result follows naturally from the ad hoc method by which the centers
were chosen. By construction, the targeted truncation criterion provides, for a given rank 7, a lower
bound for all possible truncations of that rank in the SVD basis, and this can be seen in the figure. In
contrast, in part (b) of figure 3.3 we see that blind truncation results in a error which is consistently larger
than that of the corresponding un-truncated model, while the error for the targeted truncation criterion,
although necessarily everywhere lower than the blind truncation error, is virtually indistinguishable from
its un-truncated equivalent. In fact, the targeted truncation error can actually be seen to be higher than the
un-truncated error for some values of r, in an effective demonstration of the power of the forward selection
method.

Having demonstrated the usefulness—at least in the case of a model trained with repulsive centers—of
the rank truncation method, it is also interesting to observe its effect on generalisation. To this end we
compare, in figures 3.4 and 3.5, the fitting and test errors resulting from each of the four models considered
above, figure 3.4 illustrating the repulsive model and figure 3.5 the forward selection case. In both figures,
we plot the errors arising from the blind truncation criterion in part (b) and the targeted truncation criterion
in part (¢), duplicating in part (a) the un-truncated error curves of figure 3.2, for the purposes of comparison.
Happily, in the case of all four truncated rank models, we see test error follow fitting error as closely as in

the corresponding un-truncated cases.
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Figure 3.6  Scatter plot of the reordering map relating the blind and targeted rank selection criteria. Centers chosen
by (a) repulsive selection and (b) forward selection.

Another way in which to compare the two truncation criteria is to plot the one-to-one mapping between
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Figure 3.4 Improving generalisation with repulsive centers by rank truncation. Comparing the fitting and test errors
€, plotted versus r = card K, for the laser system prediction problem, showing the corresponding un-truncated
errors in part (a) as a baseline. In comparison, part (b) shows the effect on generalisation of the blind truncation
criterion and part (c) shows the effect of targeted truncation.
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Figure 3.5 Improving generalisation with forward selection by rank truncation. Comparing the fitting and test errors
€, plotted versus r = card K, for the laser system prediction problem, showing the full-rank errors in part (a) as a
baseline. In comparison, part (b) shows the effect on generalisation of the blind truncation criterion and part (c¢) shows

the effect of targeted truncation.
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the elements of the set X chosen by blind truncation and those of the set chosen by targeted truncation.
A scatter plot of this relationship is shown in figures 3.6(a) and (b), for repulsive and forward selection
methods, respectively, labelling the x-axis by the index of the singular values, in the standard o, ordering,
and the y-axis by the index of the same singular value after re-ordering by Ae,.. The clearly discernible
structure in both figures, a ‘spreading out’ of the diagonal with increasing k&, may best be thought of as a
measure of the closeness of the ‘natural’ o, ordering to the reordering by Ae,..

Despite the evident desirability of the rank-reduced models based on targeted truncation we do not
make extensive use of this technique in later chapters. This is because we will usually be interested in
analysing the variation of the error €,, Or per-point errors ]|e“(m)f| with some parameter g, for a fixed RBF

map architecture, and it is deemed inappropriate to allow the map itself to vary with this parameter.

3.2.4 Detecting non-invertible maps with least squares

Since the LS error (3.6) is an average, over the training or test set on which it is calculated, it is by
definition quite insensitive to infrequently occurring per-point errors of large magnitude (as opposed (o
the supremum error, for instance). If f fails to be a diffeomorphism, through loss of cither injectivity or
immersivity, on a subset YV C A of relatively low weight in A/ then the method of LS is entirely capable
of suffering a relatively large |\ (y)[|, for y € V, if it is enabled thereby to offset that contribution to
€5 by achieving a correspondingly better fit elsewhere on N In other words, the scalar quantity €5, may
not convey sufficient information about the distribution of per-point errors arising from ]T“\I (o establish
whether or not f is injective, let alone immersive. Furthermore, since such a model must approximate
on V a map which at best is non-differentiable and at worst plain does not exist, a direct analysis of the
per-point errors ||€ o, (y)|| may not even be appropriate.

To overcome this potential limitation we need a measurce which is sensitive to the local behaviour of
f. The approach which we propose is o attempt to bound the errors associated with f by establishing the

existence of constants L and U such that

I f(z + Az) — f(z)|l ]
L< Taal <U (3.19)

forall x, Az € M. Clearly if f is injective then this expression can equivalently be written as

Ty + Ay) - )
- 1Ayl

where y = f(a). For convenience, we make equations (3.19) and (3.20) concrete by finding a lower

U <L (3.20)

bound for U and an upper bound for L such that

] R I:77

x k]
y=f(z) ||Az]| y=F(=) ||Az||

i

(321
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where Ay = f(z + Az) — f(z). If f fails to be a diffeomorphism—through either non-immersivity
or non-injectivity on some U C M—then, trivially, L = 0 in equation (3.21). Similarly, the case where
1 exists, but is not a diffeomorphism, will result in a value of U — oo. If a finite lower bound U can
be found then we say that f is Lipschitz, with Lipschitz constant U, and if an L > 0 can be found then
we can also say that £ ! is Lipschitz, with Lipschitz constant I, =!. The existence of Lipschitz constants
1s a necessary, but not sufficient, condition for the existence of a diffeomorphism, so if we can show that
a finite upper bound for one or both of L™} and U cannot be found then we have ruled out the possibility
that f is a diffeomorphism.

To estimate these bounds we assume that ]?is a good fit to f on M, and find an expression for the
inverse J?_l of J?(as distinct from f/"\l, the RBF approximation of f~'). Although J?is generically a
diffeomorphism, given the appropriate conditions, it may be very close to an f which is not a diffeomor-
phism. If this is the case, the estimate L of L, calculated from f should be noticeably small if L = 0, and
similarly U should be correspondingly large if U itself is infinite.

It turns out that we can calculate these bounds if we examine the compositions fM = f/‘\J o fand
fN = fo f_\l which we treat as approximations to the identity maps I,,: M — M and I N = N.
(These should not be confused with the direct approximations to I, and I,,, which would be trivial to
construct but of no practical use.) To this end, we define two new error functions, 77, ,: R™ — R™ and
Ny R = R, byn,, = fM ~ I, and ny = fN — I, respectively, and their corresponding error

measures, 7,,,%, € R, by

N N
Mot = 05t 2 Nmpe@)I* = o3 D11, — (3.22)
i=1 i=1
and
N N )
77/2\/ = UXfZ Z ||77N(yi)||2 = UX/Z Z ”T/}? - yin (3.23)
i=1 p=1

where Z = IAM (z)and gy = fN(y) are the LS RBF identity estimates of  and vy, respectively. Then by

noting that £~ = f~! + € v and substituting f for f we can expand 17, acting on the pointz € M, as

e~ —~

Nl(x)=F1of(z) -z
= (f ey oflz) -z

~(f' +ep)oflz) -z

(3.24)

=€, 0 f(x)

The equivalent expression for 1,/ is less simple, with 7/, acting on the pointy = f(x), written as
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ny(y) = fo i) -y

=fo(f 7 +e)¥) —y
R (3.25)
= flz+eyoflx)) - flo)
~ fz+np(z) - f2)
Assuming that f_l exists, we can also express this relationship as
(@) ~ FH Y+ ) — F1 () (3.26)
We can now rearrange these equations to get, in analogy to equations (3.19) and (3.20),
~ 74 ()] ~
and
o1 MWy @) - @l o 528)

()]

In practice, given a finite training set, we replace the inequalities in equations (3.27) and (3.28) with

definitions analogous to those of equation (3.21),

B 12 ) R S P O)l

y=1(=) [[mp ()] y=F(x) ||7 ()]

()

(3.29)

If L is sufficiently large then, to the extent that our assumption that f and farc interchangeable is justified,
we can now claim that f'l is Lipschitz, with Lipschitz constant L~ and if U is sufficiently small we
can similarly claim that ]?is Lipschitz, with Lipschitz constant U. If cither of these constants is outside of
acceptable parameters then we have established that fappr()ximalcs an f which is not a diffeomorphism.
We will investigate the use of this method, as an adjunct to the analysis of the potentially less sensitive LS

errors, in the following chapter.

3.3 The method of total least squares

In the previous section we concentrated on an analysis of the errors arising from the LS approximations of
f and £7!, individually and in composition, as indicators of how nearly f fails to be a diffeomorphism.
Returning to the discussion in section 3.1, we will now consider a slightly different approach, in which we
attempt to answer the same question—is f a diffecomorphism—in terms of a single, ‘symimetrical’ model

f: R™ — R". (By symmetrical, we mean that if g: R™ — R™ is a model of f, and h: R* — R™ is a
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model of f~1, then h = g~1.) With fdeﬁned as in equation (3.1), this task is made particularly hard
by the fact that ¢ is a nonlinear transformation. But we show, in appendix A, that ¢ is generically an
embedding of compact sets: we can therefore restrict our attention to the linear part WW of f, tor which
the properties of injectivity and immersivity are equivalent (ie. an immersive linear map is injective onto
its image). This is a reasonable approach because, as we have already stated, with enough centers we can
make the relationship between o M and A/ as nearly linear as we wish: this is precisely the source of the
approximating power of the RBF map.

In general, of course, W™! (if it exists) is itself a nonlincar map. For this reason, and also from
general considerations of symmetry, we now adapt the classical RBF map, incorporating two nonlinear

transformations @ ,.: R — RP and @ ,,: R" — R”, and writing

F=proWop,, (3.30)

with the caveat that goxfl is only defined—by virtue of the analysis in appendix A—on the image,
under @ ,,, of compact subsets of R*. We define W:RP — R by W(p) = o, + W (e -7,
with W a p by p matrix. In this symmetrical form the inverse of W is itself a linear map, with
W) = G + W-T(p - @), wWhere W T represents the transpose of W™, Assuming that
W ! exists—that is, rank W = p—we can now invert (3.30) directly, asserting ]?‘1 = f~1, 1o get

i :(p*ioW_logoN (3.31)

. ., .- .. o 1

with the appropriate condition on the existence of ¢ ;.
For notational convenience, since we are now interested solely in the invertibility of W, we make the
definitions A = ¢y, M and B = @ N, and write @ = @\ (z) — P oy and b = ¢\, (y) — @, We also

define two new error terms, € 4, €5 € R, with

N N
=05 o Il =P eg=03) N - al? (3.32)

=1 i=1

where b = WTa, a = W=Tb and the normalisers o 4 and o are calculated on A, B C IRP, respectively.
We work with these errors, calculated in R, rather than with ¢, and EArs because we are specifically
interested in the linear part of the symmetrical RBF map: the latter two errors now suffer from the effects
induced by transformation through an inverted RBF nonlinearity, and are therefore no longer suitable for
our purposes.

Having defined the symmetrical RBF map we must now reconsider the manner in which the weight
matrix W —now common to both fand f?lmis calculated from a particular set of training data. Clearly,
if we were to use the method of LS we could minimise either the forward error, ¢ 4, or the inverse error,

€3, but not both together: each would be minimised at the expense of the other. We therefore need to find
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a new method, one which ignores the distinction between mapping in the forward and inverse directions.
For this purpose, it will prove useful to rewrite (3.32) in terms of a norm calculated in the ‘product’ space

’ a
R?? = RP x RP, whose elements are the vectors (b > , to get

N N —~
Gl (5)- (5 a=mu(3)- () e

i=1 1 3 i=1 l i
From a geometrical standpoint, W is defined by the p-dimensional hyperplane H C R*P containing the
points (%) and (Z’) . We could clearly specify this hyperplane by independently minimising either € ,
or €y, as discussed above, but this would result in a distinct hyperplane—and hence RBF map—in each
case. To retain the symmetrical aspect of this new model we must instead find that single hyperplane H
which (in some sense) best captures the linear relationship embodied in the joint distribution of data pairs

a . - . .
< b> € R?P. This interpretation suggests a new error, €|, defined by

¢l = a‘zi\éli (%) - (‘;?) I? | (3.34)

3

and normalised by
ol a
o?=oh+op=> | <b?> II? (3.35)
i=1 i

where <%> € R? is the image of <Z> under normal projection into H. We call ¢ | the total least
squares (TLS) error: its minimisation defines a p-plane H which is the best rank-p linear approximation
to the joint distribution in R?”. It is to the TLS error that we look when we wish to know how well we
have modelled a particular training set: if ¢, is large then we can only state that f 1s not a particularly
good model of f—in other words, ¢,/ o f o tp;{j 1s not sufficiently close to a lincar map—and continue
no further; if, on the other hand, ¢, is deemed to be acceptably small then the determination of whether or
not fis a diffeomorphism boils down to the linear relationship represented by H.

[t is important to note that in choosing to minimise ¢ |, rather than the ‘directional” errors ¢ 4 and
€g, we are no longer able (o assume the existence of either YW or W™}, based purely on the direction
of the RBF map in question: whether or not H represents an invertible map W between the a,b € RP
depends solely on the orientation of H in R?”. Our labelling of W and W~ as forward and inverse
maps is completely arbitrary in this symmetrical model, and will be effectively circumvented in section
3.3.1 below. In section 3.3.2 we discuss the means by which we investigate the invertibility of W, using
either the directional errors or an equivalent measure of the ill-conditioning of W. Then, in section 3.3.3,
we discuss the origin of a numerical instability which has been observed, in practice, to detract from the
overall usability of the TLS methodology. First, however, we describe the method by which we minimise

€ ., and hence obtain an analytic expression for W. For a more comprehensive description of TLS, see
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Van Huffel and Vandewalle [41]; a definitive, but concise treatment can also be found in Golub and Van

Loan [15].
3.3.1 The total least squares solution

To find an analytic expression for W we rely once more on the SVD, writing the composite matrix (A; B)
as UXV'T. This decomposition provides us with a basis for the approximating hyperplane , obtained
by further decomposing the 2p by 2p matrix V' of right singular vectors into V' = (V;); V;)) where V;), —‘71)

have p columns each. In this basis, H is spanned by the columns of V_, and its orthogonal complement in

R?? by those of V. The projection of (Z’) into A is thus <%) = VpV;F (Z) and equation (3.34)

can be rewritten as

N
. e - a. .
=03l () 1
i=1 '
N = a
o NIA GG
i=1 N
N a
== ()
=1 ?
N

=072 [IPTa; +Q b,

i=1

(3.36)

where the last line follows from a further partitioning of VP into p by p submatrices P and @, with

V,= (g) . The variance o2 /N of the distribution in R?” can also be expressed dircctly in terms of the

singular values o ; comprising the diagonal elements of 3, with

2p
o’ =3 "0a? (3.37)
Jj=1
and the TLS error can be similarly written as
2p
e =07 o (3.38)
Jj=p+1

This form is used, in practice, to detect the onset of numerical error in the calculation of W and W1 by

comparing the resulting value with that calculated according to equation (3.36).

To find an expression for W we notice that we can now write, for (Z) € H C R,
A <Z> =Pa+Q"b=0 (3.39)
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and hence b = —Q~TPTa, assuming that Q! exists, and @ = —P~TQTb, assuming that P~ exists
(bear in mind that P and @ are not, in general, orthonormal matrices), enabling us to make—in each

case—the definitions

W =-pPQ"! 3.40)

and, equivalently,

wl=—-Qp! (3.41)

We write @~ and P~! in equations (3.40) and (3.41) as inverses, rather than pseudo-inverses,
because P and Q are square and (by assumption) invertible matrices. Nevertheless, in order to calculate
W and/or W ! for a given training set we use the familiar SVD to get P = LSTT, where the p by p
matrices L, S and T have the usual interpretation. Noticing that T/;FVP = PTP+Q"Q =1, and hence

QTQ =TI — PTP, we now write

QTQT =(I-P"P)T =T -TS* =TC"? (3.42)
where

ct=1-8* (3.43)
allowing us to relate the decompositions of @ and P with Q = RCT", with the understanding that the
singular values ¢;, which appear as diagonal elements of C, arc ordered with respect to increasing value,
rather than decreasing as is conventional in the SVD. To make this relationship explicit we note that (3.43)
allows us o write the diagonal elements of S and C—the singular values of P and Q—as 5; = sin Hj
and ¢; = cos Hj, respectively, for 0 < 6j+1 < ﬁj < Z. By combining these two decompositions we can

now write down an SVD of the TLS weight matrix (3.40) as

W = —LAR" (3.44)

with singular values A, = tan Qj forming the diagonal elements of A = SC~*.
3.3.2 Detecting non-invertible maps with total least squares

We are now in a position (o establish a definitive test for the existence (or not) of an invertible linear

relationship in R?P. We base this test, naturally enough, on the directional errors € 4 and €, on the
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grounds that (assuming € , is sufficiently small) a large € 4 or €3 is indicative of a rank-deficiency in W or

W1, respectively. To investigate this mechanism we make the additional partitions U = (U ; Up) and

P
> 0 — —
X = ( P > sothat (A; B)V, = AP+ BQ =U_X_, and write
0 X, P p<p

¢ = o5 [|AW ~ Bl

o5 (AP + BQ)Q I3

(3.45)
P pp— o
=05 HU])E])TC IRIHIZT
= 052|]prC“] II%
and
eg =0 |IBW™ — A}
=03 I(AP + BQ)P[[
N s (3.46)
= UZ“]IUPZ’;)TS_ R ||;
=0 2IIZ, TS}
If we denote by € € RP the columns of :"jpT, and write €; = Hej ||, then (3.45) and (3.46) become
P2 P2
2 -2 J 2 -2 J
= = 3.47
A= JZ:I cos? )’ ‘=% jz_:l sin® 0, G4D

revealing their dependence on the reciprocals of the singular values sin ()j and cos ()7.. As an aside, it is

interesting (o note that we can also rewrite (3.38) in terms of €, to get

(3.48)

from which we see, in the (for cur purposes) unlikely case that p = 1, that € |, € 4 and ¢ obey the simple

reciprocal relationship

1 1 1

= + ——
2.2 2 2 2 2
ooel OB€Q  OLER

(3.49)

A commonly used measure of the rank deficiency of a matrix is the condition number «(-), defined as
the ratio of the highest to lowest singular values of that matrix; for our purposes, an ill-conditioned matrix
is one whose smallest singular value approaches the lower limit of numerical precision. The condition
numbers of P and @ are

sin 8,

R(P) =t K(Q) =

sin Hp cosf,

cos 91)

(3.50)
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A large error € 4 or €5 is symptomatic of an ill-conditioned submatrix @ or P, respectively, so we will
examine both errors and condition numbers in the experiments to follow. It is interesting to note, from

equation (3.44), that the condition number of W is

_ tan 8,

K(W) — x(P) K(Q) (3.51)

tan 6 b

although this is not true for matrix products in general.
It turns out that we can relate these condition numbers directly to € 4 and €y if we consider what

happens at small singular values, as §, approaches § or ()p approaches zero: in the former case we get

€ €,
~ ~ K 3.52
A cos;  cosf, @) G2
and in the latter,
€ €
€~ — ~ —2— K(P) (3.53)

sin Hp sin 6,

so in other words we expect to see (in the limit) a lincar relationship between € 4 and k(Q), and between

¢ and £(P). This prediction will be confirmed in the experiments which follow in chapter 4.

3.3.3 Numerical instability in the total least squares solution

Implicit in the TLS model is the assumption that the rank of (A; B) is exactly p—that is, the relationship
betweena and b = ¢, 0 fo <p/_\/1I (a) is a linear one. If this were truly the case, then we would necessarily
find a TLS error ¢, = 0. In practice, however, with finite p we will invariably find that ¢, > 0, and
determining an appropriate value for r = rank(A; B) will become a somewhat qualitative endeavour.
Nevertheless, provided that > p, and €, is acceptably low, we might reasonably expect the method of
TLS to be a valid technique. However, if 7 < p a new problem arises: by insisting on a p-dimensional
hyperplane H we are forced to construct the projector —V;J from a degenerate subspace of dimension
2p — 7 > pin R?P. Itis then possible for a small change in (say) a single element of the training set in IR?P
toresult in a large change to the critical matrix T/;, simply because a different subset of the set of degenerate
basis vectors happened (o be selected on that occasion. This change, propagated to the submatrices I? and
Q, is likely to become extremely noticeable when either P or Q is ill-conditioned—which is precisely
the case in which we are interested. To see how such a rank deficiency might come about, we define

s = rank A and t = rank B, and write

max(s,t)

(A

r< s+t (3.54)
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We can therefore expect to see this situation arise when both s, ¢ < p—in other words, when there are linear
dependencies within both 4 and B. Experience has shown that this is indeed often the case; particularly
when p must be sufficiently high for W to be made as nearly linear as possible through the transformations
¢ 4 and . This is the case in the experiments to be described in the following chapters, in which we
will find that small variations in the experimental parameter under observation do indeed give rise 1o large

fluctuations in the condition numbers £(Q) and £(P), and hence in the errors € 4, and €.
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Chapter 4

Maps on manifolds

In this chapter we apply the fitting techniques described in the previous section to a search for diffeomor-
phisms between subsets of Euclidean space. We describe two experiments, each of which comprises a
family of maps {fp}ueux’ where p is a control parameter determining whether or not fﬂ is a diffeomor-
phism, to which we fit RBF maps ?; and, where appropriate, ]7”‘\1 , using training and test sets generated
by sampling f”. In the first experiment the maps in question will be defined on projections into the plane
of a circle in R?, and in the second they will be on 2-tori, also in R3. Since neither the domain or range of
these maps are delay embeddings of dynamical systems, they do not exhibit the shift property described in
section 2.2, so we do not impose any additional constraints on their RBF approximations. We investigate
both LS and TLS RBF maps, for purposes of comparison. In the LS case, we will see that in both the
circle and torus experiments we are able to write down f” explicitly, and hence expect to be able to find
an arbitrarily good LS approximation 3‘; to fu’ as discussed in the previous chapter. This expectation will

be borne out in this chapter.

4.1 Embedding a circle in the plane

We start by describing a simple experiment in fitting maps between projections into the plane of the circle

S! embedded in R®. The data was generated by the map @: S' — R* defined by

sin 6
P(f) = | cosl (4.1)
sin 26

which has the effect of drawing a sinusoid around a cylinder in R?, producing a manifold S = {#(#):0 <
P g <

6 < 27} which is a topological circle. (We use the symbol ‘@’ to denote this map to indicate that it is
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(a)

(b) (¢) (d)
Figure 4.1 The circle embedded in R® and its projections in the plane. Part (a) is a stereoscopic projection of

S c R%: examples of its topologically distinct images, under projection into R?, are (b) the circle Sy and (d) the
figure of eight Sgq, and are separated by (c) a cusp which occurs at ¢ = 26.57 degrees.
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an embedding—although not a delay embedding—of S'.) A stereoscopic projection of S is illustrated in
figure 4.1(a). This circle is then mapped under a one-parameter family of projections F,: S C R® — R?
(the symbol ¢ is not to be confused here with its earlier usage as an RBF nonlinearity) realised by matrices

of the form

_[cos¢p O sing
e (500

The result is the composite map G, = F, o & written

cost

G,(6) = <sin€cosqb+sin‘2951n¢) 4.3)

We write Sd) = 7:(’,)8, and confine our interest to values of ¢ in the range 0 < ¢ < . Values of ¢ outside
of this range produce projections Sd) which can be obtained by reflecting those obtained with ¢ inside that
range about the horizontal axis in R?. A sequence of projections was performed, with ¢ increasing in one
degree increments. The form of .7-'(» was chosen so that there is a critical parameter value ¢* such that
F 4 is an embedding on S if ¢ < ¢*. Al values of ¢ above this critical value the image ‘S«/) contains a
self-intersection; we call such a set a figure-of-eight. This behaviour is illustrated in figure 4.1(b) through
(d), which shows the sets Sy, Sy and Sy, where the subscripts are written in degrees for convenience.
At the critical value, the onset of self-intersection manifests itself as a cusp in F ., as indicated in
figure 4.1(c). Self-intersections occur when two points in S are projected to the same point in &5 the

occurrence of a cusp corresponds to a projection in the direction of the gradient V&(8), given by

cosf
Vo (0) = | —sinf (4.4)
2 cos 20
In other words, F . is the projection which maps V&(0) to the zero vector for some . We can thus
determine ¢* analytically by solving the system of equations
cos @ cos ¢* + 2cos20sin ¢p* = 0
(4.5)
—sinfl =0
which has solutions ¢* = tan™! :t%. We disregard the negative solution to keep ¢ in the appropriate
range, leaving ¢* ~ (.46, or approximately 26.57 degrees.
What we would like to do with this data i1s identify those sets S(/} which contain self-intersections—
that is, for which ¢ > ¢*—by i1dentifying those projections ‘7:4) which fail to be a diffeomorphism on S.
We could attempt to solve this problem by approximating the inverse, if it exists, to each F, acting on
Sé, directly, but since the circle S is clearly topologically equivalent to S we instead assert that F 1s

a diffeomorphism, then simply approximate the map f,: Sy — Sy, defined by f, = Fy o 0‘1 |5, for
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each ¢ to be considered. We have tackled this problem with both the LS and TLS RBF methods described
in chapter 3. In order to keep the number of variables to a minimum, in all the experiments described
in this section we will obtain the necessary error curves by constructing RBF maps with p = 200 (and,
in the case of TLS, also ¢ = 200) repulsive centers, selected from a training set of N = 2000 points
n Sd), uniformly distributed in #, and using cubic basis functions. Unless otherwise specified, in order
to reduce the dependency of these results on the particular sets of centers so obtained we will follow
the procedure adopted in the previous chapter in actually plotting the means (and, where appropriate, the
standard deviations) of the errors arising from a collection of 500 distinct sets of centers, chosen by random

selection (without replacement) of the repulsive seed.
4.1.1 The circle and least squares

We will begin by applying the method of least squares to the problem, 9eparately modelling the relationships
Sp = Sy and 5 = S, with RBF '1pp10x1mdtlom f(,) S, C R? - R? and f 1Sy CRZ = R? (bearing
in mind that for ¢ > ¢* the label f(ﬁ_ is merely a notational convenience). In order to determine whether

or not the 1mages fq.)SO and f(/)—ls(p are sufficiently close to their targets, respectively S(p and &, we

adapt the notation introduced in chapter 3.2, defining a forward error function 58/) = f,— 4 anda

o

. . 4] —
corresponding inverse error 65,} ) = & - f{) where the subscript on each function denotes its domain

and the superscript denotes its co-domain. In analogy with equation (3.5), for z € S, and y € S(/) we

. ; malised fittine (: e appropriate. test) errors ¢'?) (CHI
write the corresponding normalised fitting (and, where appropriate, test) errors ¢ and €y A

=0y Z I @, ) = op Z leg” (wpl? (4.6)
i=1 i=1
with normalisers o, and o, calculated on S, C R* and S, C IR? in the usual manner.

Since f¢ is, by definition, single-valued for all ¢ we expect to find a good approximation }’A(/) in
terms of a small fitting/test error e(()(/)), regardless of the value of ¢. For values of ¢ < ¢* we should also
find a good approximation to its inverse, but beyond that critical value the presence of a self-intersecting
set in Sc'ﬁ will force the RBF map to attempt to map points which are close together, in the region of the
self-intersection, to points which are far apart in S;. We therefore expect (o see a large inverse error r:f/?)
for ¢ > o¢.

To verify these predictions we plot, in figure 4.2, the expected values of the normalised errors cé(’/))
and eg)), calculated over the test set, as a function of ¢ in the range 0 < ¢ < 7. (The ¢-axis is calibrated
in units of degrees for convenience.) The fitting errors are virtually indistinguishable from the test errors,
even before averaging over RBF models, and are therefore not plotted. On a linear scale the forward error

E(()¢>) ()

is undiscernible, being practically constant at e, ~ 1077 for all choices of repulsive seed, so in

part (a) we plot only the inverse error: it clearly bears out our expectations, rising sharply at around the
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Figure 4.2 Comparing the mean, normalised test errors (cé’i’)) and (ef,)o)), versus ¢, for the LS approximations E

and f(;l on the projected circles Sy and S, (a) On a linear scale both 5(()4') and e((,f))

are negligible, on average,
for ¢ < ¢*, but while the forward error (not plotted) remains so over the entire range of ¢, the inverse error rises
steeply at the critical value to saturate at (6;0)) = 0.08 for ¢ > ¢*; (b) a log-linear scale reveals a practically constant
forward error, at 6(0")) ~ 1077. On both scales the separation of fitting and test errors is virtually impossible to
distinguish—even before averaging—so only the latter are plotted. Error bars denote one standard deviation in each

direction.
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o 0 _ . ~ -
critical value from the same floor of (6; )) ~ 1077 to a ceiling of ((g))) =~ 0.08 for ¢ > ¢*. The standard
L. 0 . . ;. .. . .
deviation of egﬁ) also grows significantly as ¢ increases beyond the critical value, but remains small in

(0)

comparison to €, itself. In part (b) we adopt a log-linear scale, which also demonstrates the virtual

independence on ¢ of the forward error e(()d’). That the inverse error increases gradually as it approaches
¢* from below, rather than making a discontinuous step at ¢ = ¢*, we ascribe to an inability of the LS

RBF map to resolve separate points as they become increasingly closer together in S¢.

4.1.1.1 Analysis of the least squares solution

The results obtained from figure 4.2 appear to be satisfactory, in as much as they reveal—to a good
approximation—the presence and extent of the interval ¢ > ¢* within which f(/) fails to be a diffeomor-
phism. But this might not always be the case: as discussed in section 3.2.4, we feel that it could be

0
dangerous to rely purely on the LS error measure efp)

to detect the presence of a self-intersection which
may occur on a set of small, maybe vanishing measure in S(/,>(/)* and hence be effectively averaged out by
the LS error minimisation algorithm. To better understand this process it will be instructive to examine the

J——

and f;’ directly, for values of ¢ on cither side of the

—~

images of S, and S, under specific RBF maps f
: /

e

critical value. To this end we plot in figure 4.3 the approximating set f(;JS(/), superimposed on the circle
Sg» and also the set 3‘;50, superimposed on the projected circle S{p, where E) and f/(/)“\J are now obtained
from a single set of repulsive centers, seeded so as to maximise ||z, || over the training set (as previously
described in section 3.2.3). Parts (a) and (b) correspond to the case ¢ = 20 degrees and parts (c¢) and (d)
to ¢ = 40 degrees.

The injectivity of f(f) is demonstrated in parts (b) and (d) of this figure by the close correspondence
between the approximating set ;‘;SO and the co-domain S(/I of f, in each casc. In part (a) we sce an

—

equally close correspondence between the set of f‘z_o]S'zu and its target S, confirming our conclusion that
fap is adiffeomorphism. In comparison, however, it is clear from part (¢) that for ¢ = 40 degrees we have
been unable to find a good approximation f:? 10 the one-to-many relationship S,y = §;. As anticipated,
although the source of this non-injectivity—a co-dimension-two self-intersecting subset of S,5—is of
vanishing measure, its effects are seen to be global in &, giving rise not only to a large oscillation in the
vicinity of those points which map to the same point in Sy, but also to a noticeably worse fit elsewhere in
the figure, as the LS RBF map f/[(\)l sacrifices the closeness of its fit over the rest of 5 in an attempt (o
reduce the errors in those affected regions.

In figure 4.4 we show the corresponding plots for the cases ¢ = 26 and ¢ = 27 degrees, closely
straddling the critical value. Despite their proximity in ¢ these plots illustrate the effect, on the RBF
map ]TO,’\I, of the transition from the diffeomorphic relationship illustrated in parts (a) and (b) to the non-

invertible one illustrated in parts (c) and (d). In particular, the breakdown in the injectivity of f, above its

¢

critical value results, in part (c), in an approximating set f2_71$27 which is clearly distinct from its target
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(b)

(©) (d)

Figure 4.3 Approximating the map f{l.):SU — S(i) and its inverse, for ¢ = 20,40 degrees. Part (a) shows the
image f{olSQO, visually indistinguishable from S (dashed), and in part (b), f'\zoso is similarly close to Sy, in

correspondence with our foreknowledge that f,, is a diffeomorphism. Conversely, in part (¢) we see the image of

——

E@ under fq_ol diverge markedly from S, in the region of those points which map together under f,,,, while in (d)
F40S, sits neatly on top of Sy, in a vivid demonstration of the result of attempting to approximate the inverse of a
many-to-one map.

— 66 —




(@) (b)

R e

(c) (d)

Figure 4.4 Approximating the map f,: Sy — ‘Sd» and its inverse, for ¢ = 26,27 degrees. Despite the proximity
of ¢ to the critical value, part (a), showing the image )‘2_61526 of 8,4, reveals an almost negligible difference
from S, (dashed) near the bottom of the plot, while in part (b) the image Fa6S, is indistinguishable from Sy, as

expected. In part (c), however, the image ]‘2_71 S, is just beginning to diverge from S, corresponding to the onset of
self-intersection in S,,, which is again indistinguishable from f,, S in (d), as expected.
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(a) (b)

(¢) (d)

Figure 4.5 Colour-coding the projected circles S, for ¢ = 20, 26,27,40 degrees, by the relative magnitudes of
the per-point errors efﬂo)(y) to which they give rise under f(;]. Part (a), with ¢ = 20 degrees, does not exhibil a
significant amount of deviation in colour-coding, which is to be expected below the critical value; part (b), on the
other hand, with ¢ = 40 degrees, reveals a strong, localised peak in error near the self-intersecting set, and parts (¢)

and (d), for ¢ = 26 and 27 degrees, respectively, also show a significant concentration of large errors near the cusp.
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S, in the affected region. It is worth noting, in part (a), that the image of S, under )?2'? also exhibits a
slight ‘ripple’ in this region, even though f,4 is known to be a diffeomorphism. As previously remarked,
we ascribe this behaviour to the finite dimensionality of the basis set on which these RBF maps have been
defined.

Another useful way in which to view the onset of non-injectivity in f, is illustrated in figure 4.5,
in which we replot the projections Sd) for ¢ = 20,26,27 and 40 degrees. In this case, however, we

colour-code the individual points y € S, to reflect the per-point error magnitudes Hef,?) ()] to which they

giverise under )?@"\ . These scalars index a linear colour map traversing a diagonal of the RGB colour cube,
from blue to red, scaled so that points attaining a minimum error are plotted in blue and those attaining a
maximum are plotted in red. (This scaling has been carried out individually for each RBF map, with the
result that colour-codes cannot easily be compared between distinct plots; it should also be borne in mind
that some points may be obscured by others, as they have been plotted according to the natural ordering of
the data sets involved.) The colour-coding by eé%) of Sy, in part (a) of this figure, is difficult to discern,
but it is possible to make out a region near the bottom of the curve in which the error magnitudes are
slightly larger than elsewhere. In part (b), however, which illustrates the errors arising from an attempt to
fit the one-to-many relationship S, = S, with the RBF map ja'(\)l we see a very definite, and strongly
localised peak in colour-coding near the region of self-intersection in Sy, confirming our analysis of the

corresponding plot in figure 4.3(c). We sec a similar effect in S, and S,,, plotted in parts (¢) and (d),

respectively, with the peak in error magnitudes now concentrated in the vicinity of the cusp in each case.
4.1.1.2 Approximating the identity map

We would now like to perform the local error analysis, described in section 3.2.4, and attempt to establish the

existence of Lipschitz constants U, and L{;l for f(/) and its inverse (if it exists) by calculating experimental

upper and lower bounds Uy, and L for the growth of errors under f,. In order to carry out this procedure
. N = PR =(C -~ 7 .

we must first make the definitions I(()d’) = fd> Lo f(/) and If/))) =f,0 f(/) ' where the subscripts denote

the domain as usual, but the superscripts now indicate the ‘route’ taken by the composition. These maps

approximate the identity maps I;: S, — S, and give rise (o the identity error functions n((){/’) = I((;/)) -1,

(0) _
6 =

@
andn ff/)o) - I(/). We also define normalised identity errors n(()(/') and 'r/((/lo), following (3.22) and (3.23),

with
()2 AN (0)? )
- - -2
Tloq’ =0y 2 Z lmo (%)Hz Mg ~ 9% Z H77¢, (%‘)“2 4.7)
i=1 i=1

The expected values of these errors, calculated over the test set, are plotted in figure 4.6, on a linear scale
in part (a) and a log-linear scale in part (b). The first thing we notice in this figure is that the mean identity

error calculated on S, is almost identical to the mean inverse error calculated on S, as plotted in figure
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Figure 4.6 Comparing the mean, normalised test set errors (n(()"’)) and (7;((!,0)), versus ¢, arising from the LS identity

approximations f(om and IAET,)O) on the projected circles S and 34)' (a) On a linear scale the identity error '17((/1),

0
calculated on S, is virtually identical, on average, to the inverse error e,(f) calculated on S, while the fact that (7]<0>)

¢
—

is consistently smaller than (77(()"’)) indicates that f is contractive in the region of f(;lSq.); (b) the same plot, on a
log-linear scale, is included for the sake of completeness. Error bars denote one standard deviation in each direction.
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(a) (b)

/ I"‘d ?

(c) (d)

Figure 4.7 Approximating the identity maps between So and S¢, for ¢ = 20,40 degrees. Part (a) shows that
IAE)QO)SO is a good fit to &, (dashed), and part (b) shows that f,g%)SQO is a similarly good fit to S, justifying the
claim that fyq: Sg — Sy is a diffeomorphism. In contrast, in part (¢), Jarge crrors in fém)SU are clearly visible with
respect to S, in those regions which map through the self-intersection in 8, and, in part (d), errors in fg?Sw are
also visible with respect 1o S, leading us to the desired conclusion that f,,: S, — Sy, is not a diffeomorphism.
It is interesting to note that the relatively small errors in (d) indicate that E; is contractive in the neighbourhood of
those points in Sy which map together under f, .
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(a) (b)

et P e e

(0) (d)

Figure 4.8 Approximating the identity maps between Sy, and Sd»’ for ¢p = 26,27 degrees. Part (a) plots the image
fé%)SO of §, on Sy, itself (dashed), revealing negligible errors, and part (b) plots fg%)SQG over S, again with very
small errors. As expected, this leads us to conclude that foq is a diffeomorphism, although the RBF approximations
in question are clearly beginning to break down due to the proximity of ¢ to ¢”. In parts (¢), showing f((]w)SU plotted
over S, and (d), showing fg‘?sw over S,,, the errors are noticeably larger, as we expect, since f,, just fails to be a
diffeomorphism.
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4.2; so similar, in fact, that we do not bother to replot the latter curve here for comparison. This observation
is merely a restatement of the relationship 77(()05) ~ eff) o f, which follows from equation (3.24), and holds
even before the calculation of expectation values. It confirms that ]/c; is an excellent approximation to
f, and hence serves to validate the application of the Lipschitz analysis to this experiment. The mean
identity error (77;0)), calculated in Sd), is also plotted in figures 4.6(a) and (b). Interestingly, this error is
consistently less than or equal to (77(()d’)), indicating that }‘; is a contractive map, at least on the image of
S, under ]7;\1

For the sake of completeness we will examine some of these fits in more detail by superimposing
fg‘”so on S, and fgbo)Sd) on S¢, again using a single set of repulsive centers. Figures 4.7 and 4.8 show
examples of approximating these identity maps for ¢ = 20,40, 26 and 27 degrees, respectively. These
figures clearly differ from their analogues of figures 4.3 and 4.4 in that for ¢ > ¢* we can now see errors
induced by both ﬂ)qs) and f(rﬁo), arising from the poor fit of ]:(/:\l o f{;l in this parameter range. In figures
4.9 and 4.10 we colour-code each point in Sy and S5 by the magnitude of the identity error n(()(’)) (z) and
775,,,0) (y) to which it gives rise under fg‘/)) and f(d)o), respectively, as in figure 4.5. Due to the action of ;(;\1
we see, in parts (a) and (c) of both figures, a significant concentration of large per-point errors n(()d’) (x)
around those elements of S, which are mapped close together under E In parts (b) and (d) of each figure,
the distribution of errors appears to be more evenly spread across S(/) than was the case in figure 4.5; this

is due, for ¢ > ¢, to the fact that f(/), on composition with an approximation fq;” to a one-to-many map

f(;l, is being applied to a subset of R? sparsely represented in its training set.
4.1.1.3 Analytical calculation of Lipschitz constants

Before making use of these identity errors for the calculation of U(/, and L(/), cstimating U{/, and L(/,, we lake

advantage of the fact that we can—in this example—write down f, explicitly, which means that we can

calculate Ud> and L, analytically. (In general, of course, this will not be the case.) Thus, if we consider
(

the points z,, z, € S, where z; = #(,) and z, = $(0,) then, since f, = F 0 ot |5, we can express

equation (3.21) as

F.(z,)— F, (= F . (z,)—F, (2
U, = max 174 (21) = Fyl z)li’ L,= min |F4(z,) = Fy(z,)ll 4.8)
T EmES ”'7:0(Z1) - ]:()(Z‘z)H z1,22€5 H}_o(zj) - f()(zz)n
If we now make the substitutions & = 1(8, +6,) and § = (6, — 6,), and the definition
R;(a.,[j) = (cos ¢ cos o + 2 sin ¢ cos 2a cos B6)* + sin o (4.9)
then it can be shown [2], via the standard trigonometric identities, that
U, = TE%X Ry(a,B), L= r(rlulg Ry(a, ) (4.10)
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Finally, with the further definitions

2 A .
Rf;t) () = (cos ¢ cos e £ 2sin ¢ cos 2a)* + sin® & (4.11)

and a little more algebraic manipulation we arrive, from geometrical considerations, at

R((;)(a), if cos 2 < 0
U, = max (4.12)

Rgf)(a), if cos2a > 0.

and

. Rgr)(a), il cos2a < 0;
L, = min (4.13)
& o R((j“)

(a), ifcos2a > 0.

Empirical estimates of U, and L, obtained by varying a in a numerical simulation of (4.12) and
(4.13) over the range 0 < o < 27, in steps of £55, are plotted in figure 4.11(a), for the full range of ¢
under investigation. This figure provides a graphic illustration of the breakdown in injectivity suffered by
f(/, at the critical angle ¢*, as the lower bound L¢ drops almost linearly from L, = 1 towards L, = 0 as ¢
approaches ¢* from above (note that L is not defined for ¢ > ¢*). The fact that fq.) remains single-valued
over the entire range is similarly illustrated by the U, curve, which peaks at the relatively low value of
Uy~ 2al ¢ =~ %; the apparent discontinuity shortly above this value is simply a consequence of equation

(4.12). That both curves meet at L, = U, = 1 is, of course, attributable to fo being the identity map.
4.1.1.4 Approximation of the Lipschitz constants

We are finally ready to find upper and lower bounds (7(/) and f,(/) for the ratio of per-point error magnitudes

Heg@(z)n and Heff)o)(y)H over all pairs x, y such thaty = f,(x). We therefore rewrite equations (3.25)

and (3.26), relating 77(()4)) (z) and ns,’o)(y) with

0 " ) o
1 (y) = F,(z + 0 (@) = Fy(x) (4.14)
. /\\—] .
and, assuming that f,  exists,
b ——1 o ——1
@)~ F, wAny W) -f, W) 4.15)

and calculate, following equation (3.29),

. B L 1 . e )]
V= e P T e [P (@) (10
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Figure 4.11 Numerically simulated, and empirically estimated, upper and lower bounds for the growth of errors
under fd): Sy — Sd) and, where appropriate, its inverse. (a) The upper bound U, clearly indicates a Lipschitz f;
the lower bound L, reaches a terminal value of L, = 0 at the critical value ¢ = ¢, since f{; 1 is not defined for

& > ¢*. (b) On alog-linear scale, the mean upper and lower bounds ((74)) and <E¢»> for error growth under ﬁ exhibit

an unexpectedly reciprocal relationship. Error bars denote one standard deviation in cach direction.
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If a sufficiently small value of Uc') can be found, then it will be taken to approximate a Lipschitz constant
U, of the Lipschitz map f,, and if a sufficiently large E¢ can be found then we will assume that f(p_]‘
exists, and is Lipschitz, with Lipschitz constant L;l approximated by qul (The term ‘sufficiently’ will
be interpreted in the context of the variation of l’]q) and 2¢ with ¢, as in the preceding error analyses.) If
one or both of these conditions can not be met for a given value of ¢ then we have ruled out the possibility
that fcb is a diffeomorphism; we can make no statement stronger than this because, as already stated,
finding Lipschitz constants for both f«ﬁ and its inverse is not a sufficient condition to show that fq,.) s a
diffeomorphism. In fact, since we already know that fj is Lipschitz throughout the entire considered
range of ¢, we expect (o find evidence for the existence of a finite upper bound U¢ forall 0 < ¢ < 55 we
also know that f, does not have an inverse for ¢ > ¢*, so we expect E¢ to achieve a distinct minimum
over that range.

We plot the expected values of these bounds, calculated over the test set, in figure 4.1 I(b), on a
Jog-linear scale. Interestingly, the curves obtained in this manner vary somewhat from their (numerically
simulated) analytic analogues of figure 4.11(a) in exhibiting a roughly reciprocal relationship: both ((7(/))
and <E;1) rise swiftly from a value of (170), (E&l) ~ 10 to a ceiling of ((7(/)), (E(/jl) ~ 10,000 at the
critical value which would appear to indicate that neither E nor ]:(;\i are Lipschitz for ¢ > ¢*. The
significantly increased variability indicated by the error bars in figure 4.1 I(b)—compared to that of the
error curves of figures 4.2 and 4.6—we assume (o be a consequence of the fact that the assumption
underlying our Lipschitz analysis—that ]; = f(/) for all ¢—is not true in practice.

It is clear that the two sets of bounds—analytical and empirical—plotted in figure 4.11 demonstrate
unexpectedly, and significantly different characteristics. The mechanism behind this somewhat disap-
pointing disparity becomes a little clearer when we examine the behaviour of some specific RBF maps
3”;) and ):(7)*\1 more closely. We do this by constructing scatter plots of the per-point errors ||'r)(/) o f,/,(@”
versus ||77(()¢) (x)]|, averaged over 500 random seeds as usual. These plots are shown in figures 4.1 2 and
4.13. Where appropriate, on each of these graphs we have also plotted the analytically calculated Lipschitz
constants, in the form of lines through the origin with gradients U, and L,. Naturally, an upper bound
exists (with finite gradient Ud)) for 0 < ¢ < Z. Within the parameter range 0 < ¢ < ¢* alower bound
also exists (with gradient L, > 0), and we would like to see the experimental points stay as nearly between
these two bounds as possible; for ¢ > ¢*, we expect only to see evidence for a finite upper bound.

The first of these figures, 4.12(a), shows the scatter plot corresponding to the RBF approximations
to f,q and its inverse, chosen so that the value of ¢ = 20 degrees is inside the interval in ¢ within which
foisa diffeomorphism. In this plot we can plainly see a concentration of points along the directions
corresponding to both analytic bounds U,y and L,; indeed, there is virtually no data anywhere but along
those two lines. In contrast, the case ¢ = 40 degrees is illustrated in 4.12(b) and, in close-up, in 4.12(c).
Once again, the existence, and approximate value of a finite upper bound is firmly indicated by a distinct

clustering of points immediately below (and also slightly above) the line Hcg%) o fao()ll = U40||e((-)40) (@)]].
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Figure 4.12  Scatter plot of per-point identity errors ||n((/,0)(y)|] versus ||n(()'/'

)(w)ll for ¢ = 20, 40 degrees, averaged
over 500 sets of randomly-seeded repulsive centers. Part (a) plots the errors arising from f,,, in which both upper
and lower bounds are clearly visible and agree closely with their analytical versions. Part (b) plots the errors arising
from f,, for which we expect a lower bound of zero, but the data does not appear to directly support this conclusion.
We investigate a restricted portion of this plot in part (¢), which again gives clear empirical evidence for the analytical
upper bound but provides little additional evidence for the expected lower bound other than the fact that the distribution

of data points approaches the line Hegg) o f4o(x)]| = 0 substantially more closely than it does the line 6640)(26)“ = 0.
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Figure 4.13  Scatter plot of per-point identity errors ]!17((/)0) (y)]] versus ||n(()¢)(w)ll for ¢p = 26, 27 degrees, averaged
over 500 sets of randomly-seeded repulsive centers. Parts (a) and (b) plot the errors arising from fo, ostensibly a

diffeomorphism, the latter on an expanded scale. Again we can clearly see an empirical upper bound which agrees

closely with its analytical equivalent. The existence of a small, but non-zero lower bound is trivially indicated in (b),

but it is difficult to see any clear numerical distinction between this bound and the one indicated by parts (¢) and (d),

which show the corresponding plots for f,.
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error ratio

Although we do not, in this case, expect to find a non-zero lower bound, we can clearly draw an empirical
one, so it is not entirely clear that we have established the non-invertibility of fq;l in this case.

In figure 4.13 we examine the behaviour of f at either side of the critical value ¢*, with ¢ = 26
degrees in parts (a) and (b) and ¢ = 27 degrees in (c) and (d). In close-up, in both cases, we again see a
characteristic concentration of data points almost directly along, and largely below, the lines corresponding
to upper bounds U,4 and U,,. The distinction between the existence of a non-zero lower bound U, in

parts (a) and (b), and of U,, = 0, in parts (¢) and (d), is rather more difficult to determine.

3 T T T T T T T H T T
angle = 26.57

25 F =
2+ 4
1.5 F .
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Y simulated upper bound —
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projection angle (degrees)
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! - A, At >, i o S (> ST 3
pand L, obtained by moving the average over random

seeds inside the calculation of extrema, superimposed on the numerically simulated analytical bounds U,, and L,

Figured4.14 Empirically estimated upper and lower bounds U

to which they correspond. These estimates are clearly substantially closer to their analytical analogues than were
the estimates U, and L, previously calculated: the lower bound, in particular, is closely shadowed by ij) over a
region shortly before the critical value ¢*, which also exhibits an interesting increase immediately above this value,

presumably due to the non-transversal nature of the intersection in §,. .

As already mentioned, it is fairly immediate that a significant disparity exists between the distributions
plotted in figures 4.12 and 4.13 and the estimated upper and lower bounds plotted in figure 4.11(b): the
values of U, and Lq.) estimated by the latter are (respectively) substantially greater, and substantially
smaller, than the estimates which could clearly be obtained from the scatter plots themselves; the scalar
measures <ﬁd)> and (./i(p) appear insufficient to adequately convey the information contained in the the
distributions of mean per-point error ratios. This is almost certainly due to the fact that in estimating U,
and L ; according to equation (4.16) we are calculating minima and maxima of error ratios which have not
yet been smoothed by averaging over the model. It seems likely, therefore, that more reliable estimates

of U, and L, might be obtained by moving the average over random seeds inside the calculation of both
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minima and maxima, so as to replace equation (4.16) with the corresponding formulae

~ Wl A el
Ué*yf}i?m><—“—”né¢><m)“ B TG 17

0

These new estimates are plotted in figure 4.14. As hoped, [A](’p and Eip are substantally closer to
U, and L than are the estimates plotted in figure 4.11(b). In particular, Egp appears to coincide almost
exactly with the analytical lower bound over the (degree) range 15 ¢ < ¢*, although it exhibits an
interestingly localised increase immediately after the critical value, followed by a decay towards (0 zero
as ¢ — 5, which would appear to indicate that the composition of RBF maps f(b_\l and ;‘(\/) is actually
somewhat more sensitive to the non-differentiability of f¢.—which is injective, but not immersive—than
it is to the non-injectivity of f¢>d),. This is almost certainly due to the fact that the cusp in S(/,* actually
results in more points which are close together in ., but whose pre-images in S, are comparatively far

apart, than do the transversal intersections which occur in S(p as ¢ increases beyond ¢*.
4.1.2 The circle and total least squares

Now that we have demonstrated that we can successfully use the method of LS to find the critical
value ¢* it is time to apply the method of TLS to the same problem. We will now be approximating
fy with the symmetrical RBF map f, = cpd)_l oW, 0 gy, in analogy with equation (3.30), where
Y5y C R? — R?90 and <p¢:8¢ C R? — [R290 have the usual form, with repulsive centers and cubic
nonlinearities, as already established.

As discussed in section 3.3, having fixed the nonlinear maps ¢, and ¢, for a given ¢, we now
concentrate our attention on the linear map W: 200 — R2%Y, defined by Wy (@) =9, + Wi (o —%).
R?‘O()

. . / 0 . . .
We adapt the forward and inverse errors ef;’)) and cf/ ), calculated in the co-domain | of ¢, and @,
h ¢ 0O

respectively, from equation (3.32) to get

N i N
2 . 2 . _ ,
7 =022 ST IWla) - blE ) =0 SO IW ) - el (@.18)
=1

i=1
where @ = @ () — P, and b = cp(/)(y) — g the normalising constants o, and o, (not to be confused
with the o4 and o, calculated on Sy and S, of the previous section) are calculated on ¢S, C IR290 and
cpq,)Sd) C R?99 respectively. The TLS error e(f), calculated in the product space R, follows similarly

from (3.36) as

N
) -2 - .
P =P ST IP e, + Qb7 (4.19)

=1

where o) = 0y + 0,4 and the 200 by 200 matrices P, and Q, satisty w, = —P)Q(;1 as usual, in

analogy with (3.40).
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Figure 4.15 Comparing the mean, normalised forward and inverse errors and condition numbers for the TLS
approximation to f,: Sg — S, calculated over the test set. (a) On a log-linear scale the TLS error, at (EEC”) ~ 1077,

g”)) are negligible compared to the inverse error

indicates a uniformly good fit: both it and the forward error (¢
(e((jo))A However, the distinction between ng)) and (6;0)) is less clear-cut than in the LS case due to the extreme
sensitivity characteristic of the TLS algorithm. The fitting and test errors are all but indistinguishable, even before
averaging, and hence only the latter are plotted. (b) The condition numbers (%(Q,,)) and (k(P,)) exhibit the expected
(()¢)> (0)

correspondence to (¢ and (e.,”’), before and after averaging over the random seeds. Error bars denote a one-sided

®
standard deviation in both directions; those on the forward test error and condition number have been lightened for

clarity.
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We plot the expected values of these errors, calculated over the test set, in figure 4.15(a), for ¢ in the
range 0 < ¢ < 5 as usual; owing to the presence of significantly large outliers associated with many of the
random repulsive seeds, each of the error bars plotted in this figure actually corresponds to two one-sided
standard deviations (obtained by restricting the variance summation to points respectively above, or below,
the mean). The fitting errors are virtually indistinguishable from their test set analogues, and therefore
not plotted. On a log-linear scale we see an appreciable amount of variation in the mean inverse error
(eg))), against which the forward error <6(()¢)> is negligibly small, while the product space error (5&“) is

(#)

almost constant at (€ ') ~ 1077, independent of ¢. Recalling the definition (3.38) of the TLS error, we
conclude that the relationship in R*%° between ¢, () and <p¢(y) in the training set is extremely close to
a linear one. Despite the large standard deviations associated with these curves, it is clear that while the
forward error remains (relatively) low over the entire range plotted, the inverse error rises, for ¢ &~ ¢*, o
a substantially higher level. This leads us to conclude that the linear map W, and hence also f(’,), is not
invertible for ¢ above the critical value, and hence—once again—that f . is no not a diffeomorphism.
The characteristic instability referred to in section 3.3.3 is clearly visible in this plot: although there is an
easily discernible separation between forward and inverse error for ¢ > ¢*, itis significantly less clear-cut
than in the corresponding LS case. In part (b) we plot the expected values of the condition numbers

(¢) (0)
0

n(Qd)) and n(P(/)), corresponding closely, on a log-linear scale, to their equivalent errors ¢ and €, ",
respectively. (In fact this correspondence holds for individual RBF maps, before the averaging process
has taken place.) This experimental result confirms the analysis in 3.3.2, and demonstrates that (at least in
this case) we can use condition numbers and fitting errors interchangeably for the purpose of determining

whether or not a given map f¢ is a diffeomorphism.

Finally, in figure 4.16, we illustrate the result of mapping S, and S(/) through the symmetrical RBF
maps 3"-; and )?(b_\l for ¢ = 20 degrees, using in each case a single repulsive center seed chosen by
maximising ||z, || and ||y,|| over the training set in S and S, respectively. Although we are specifically
interested in the images of these sets in the 200-dimensional co-domain of ¢, and ¢, we actually plot,
in cach case, the resulting of inverting the appropriate nonlinear map, so as (o obtain a two-dimensional
image. We must therefore be aware that any visible errors are likely to be due, in part, to the incvitable
approximation made in attempting to invert a given @ or ¢, for data not in the image of a compact subset
of B2, as discussed in appendix A. In the case of the RBF approximation (o fy this additional source of
error is necessarily small: we already know from figure 4.15(b) that P, is a (relatively) well-conditioned
matrix on average, and hence the result—shown in part (a)—of transforming the non self-intersecting set
S, through Wy is a good approximation to the circle S;. The condition number (r(Qy)) is even
lower, as can be seen from the image of S, which coincides exactly with S, in part (b). Corresponding
plots for f,, are not shown, because although the image of S, under W, is equally close 1o 5y, the
ill-conditioning of P, results in a transformed set ;4? which appears hopelessly ‘tangled’, and in no way

resembles the circle S; which it attempts to approximate. The results of approximating the maps f,; and
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Figure 4.16 Approximating the map f;: S5 — S, and its inverse, for ¢ = 20, with a symmetrical RBF map.

Part (a) shows the image f‘z—ol S, superimposed over S, (dashed); the errors visible in this plot are due to the
approximation involved in inverting the nonlinearity . The image of Sg under f, in (b) is indistinguishable from

S, in agreement with the low inverse error observed for this value.

fy; are similarly messy, and we also do not bother to plot them.

4.2 Embedding a torus in three dimensions

As a brief, further test of this technique, in a somewhat more complicated domain, we have also examined
the behaviour of a family of 2-tori in R* under a fixed projection into K3, The 2-torus T2 is casily

embedded in RY with the map @_: T2 — R*, defined by

cos

sin 6
7 8in ¢
T COS @

F_(6,0) = (4.20)

where 7 € R is a control parameter; we write T, , = {@.(0,4): 0 <0, <2} & isanembedding
provided that 7 > 0, but at the critical value 7* = 0 the image of 72 under &, is a topological circle.
Tt is a little trickier to embed a 2-torus in R?: for instance, the result of projecting out one component of
Tor
defined for some z = @ (6, ¢) by

is a 2-cylinder in R®. To achieve the desired effect we use the nonlinear transformation F: RY = R?,

z
Flz)=| (14 24)2, 421
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Figure 4.17 Illustrating the 2-tori 7, forr = 0.8,1 and 1.2. The sets in parts (a), (b) and (¢) were generated by
mapping a joint random distribution in § and ¢ under the maps G, 4. G, and G, ,, respectively. In part (a) we see that
T3‘0_8 is embedded in R?, but in part (b) the set T“ is not embedded, owing to a co-dimension two self-intersection
at the origin, and the set 7, ; 5 in part () fails to embed at a co-dimension one self-intersecting set centered at the
origin. Plotted in stereo.
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and resulling in a composite map G, = F o & _ with

(1 + 7 cos¢)cosb
G,.(0,6)=| (1+rcos¢)sind (4.22)
7 sin ¢

We write T, . = {z,(6,¢) : 0 < 8,¢ < 27}. This set is embedded in R* provided that 0 < 7 < 1. At
r = 0 it is again a topological circle, and for 7 > 1 it contains a self-intersecting subset near the origin.
Figure 4.17 depicts the images T3 o5, T3, and T3, 0f T2, showing how the self-intersection arises at
7 = 1 when the circle of points of minimal radius about the origin in 75 | collapses to a point at the origin.
The experiment which we wish to perform is to detect the onset of this self-intersection in T, .. This

task is subtly different from that of the previous section in that F is a fixed function, independent of the
control parameter r, and it is its restriction }_IT‘,‘,,ZEJ- — 7’17 and, if it exists, F ! |Ti T37 — T,lﬂ, to
the particular domain 7, and range 7; . which we must investigate for a given 7. For simplicity, we will
write f, = fqu_,. and f71 = F! |7, .- Clearly, f, isa function for all values of 7 to be considered, but
f~! only exists forr < 1. Once again, we will attempt to confirm the existence of this critical value r* = 1
by fitting LS and TLS RBF approximations to f,. As in the previous experiment, these approximations
will be constructed by selecting 500 sets of randomly-sceded repulsive centers (with p and/or ¢ = 200),
from training sets of N = 2000 points in each of 75 , and 7, ., and plotting means and standard deviations
of the errors so obtained. We will obtain these data sets by mapping a joint random distribution in # and ¢

through @ and G, respectively, with r in the range 0 < 7 < 2, incremented in steps of 0.02.
4.2.1 The torus and least squares

We begin again by constructing LS RBF approximations f,.: T, . C R? — R® and fh Ty, C R? — R?
to the maps f,:T,, = T, and 71T, — T, .. We define error functions €, . "= f, — f, and
€3, = - fT‘J’ giving rise to normalised fitting and/or test errors ¢, and €, following equation

(3.5), by

N N
& =023 ey @2, =oal D e, )l (4.23)

i=1 =1

»

where © € T4’r, Y € T)T Normalisers o4, and 0y, arc calculated on 'T,“ C IK* and T,, C IR3, as usual.
As in the previous example (section 4.1.1), we expect f,. to be readily amenable to LS approximation,
and hence €, . to be uniformly small, for all values of r to be considered. Owing o the presence of a
self-intersecting set in 7, | for 7 > r*, however, we only expect to be able to find a good approximation
to the relationship 7, — T,  forr <r".

We plot the expected values of ¢, . and €; ., calculated over both training and test sets, in figure

4.18. In part (a), on a linear scale, the forward error ¢, . is negligible for both sets; for this reason we
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Figure 4.18 Comparing the mean, normalised errors (e,“) and (63,1_), versus , for the LS approximations }: and
f/r\"l on the tori T _ and 7, , calculated over training and test sets. (a) On a linear scale both (¢4 ) and (e, )
are negligible for 7 < r* but while the forward error (not plotted) remains so over the entire range of r, the mean
inverse error rises steeply at the critical value to saturate at (e, ,.) ~ 0.8 for r > 7*; on this scale the fitting and test
errors diverge slightly beyond this critical value. (b) A log-linear scale reveals a practically constant forward error, at
(64,r> ~ 1077 on this scale the separation of fitting and test errors is virtually impossible to distinguish, so only the
test error is plotted. Error bars denote one standard deviation in each direction; those on the inverse test error have
been lightened for clarity.
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do not bother to plot it. The inverse error is also small for 7 < 0.8, but grows to a relatively large peak
value of <63)r> ~ 0.3 at 7 &~ 1. This behaviour once again confirms our conclusion that, although f, is
a diffeomorphism for 7 < 1, for 7 > 1 there is no functional relationship taking 75 . to 7'“ There is a
noticeable separation between fitting and test errors for 7 > 7* on this scale, indicating that a small degree
of over-fitting is taking place. In part (b) we plot both (64‘1,) and (63)1) on a log-linear scale (on this scale
it is virtually impossible to distinguish between fitting and test errors, so only the latter is plotted); we now
see a nearly uniform forward error <€4"1,> ~ 107°, as expected. Also revealed by this plot, a dip in both
forward and inverse errors at 77 = 0 10 (€, 4) ~ {€30) ~ 10~% occurs when both tori are collapsed to their
respective origins in R and R3, respectively.

Curiously, having reached its peak at 7 & 1, the mean inverse error then actually decreases by several
standard deviations from this value as r increases further. To understand this behaviour it is necessary
to refer back to the tori T“ and 7—3,1.2 illustrated in parts (b) and (¢) of figure 4.17 and consider the
nature of the self-intersection which occurs in each case. For 7 > 1, as demonstrated by part (c¢), this
intersection takes place transversally, on a two-point set in k3. In contrast, for » = 1, part (b) shows that
the self-intersecting set contains a single point in R3 and, in particular, is non-transversal, with a single
tangent vector aligned with the axis of the torus. It therefore seems reasonable to assume that the region
within which the self-intersection in T3,1 has a significant effect on the approximating map f/,“\l is greater
in extent than in the 7 > 1 case; we would expect this effect to be most noticeable for r = 1 and become

steadily less significant as r increases beyond 1, as seen in figure 4.18.

4.2.1.1 Analysis of the least squares solution

The image of 7, . under f turns out to be indistinguishable from 7, | for all 7, as expected. Furthermore,
as already noted, any projection of 7, . onto three of it basis vectors gives rise Lo a cylinder in IR®. This,
coupled with the random nature of the training and test sets, makes a visual comparison of Tif,'r with its
image under £ of limited use. Suffice it to say that for 7 < 1 there is no discernible difference between
the two, while for r > 1 the difference is considerable. More appealing, from a visual point of view, is a
plot of 7, ., colour-coded by the per-point error magnitudes [le; || to which it gives rise under £ asin
figures 4.9 and 4.10. We therefore plot these in figure 4.19, for r = 0.8, 1 and 1.2, this time constructing
ﬁ,jl from a single set of repulsive centersin 73 . C R*, whose seed maximises ||y, || over the training set.
(Again, we neglect to make the corresponding plots for f, applied to 'T,“ since the errors in each such
case are negligible and the manifolds in question are poorly represented in three dimensions.) Since the
area of interest is localised to the ‘hub’ of each of these tori we actually plot a close-up, cross-sectional
view of each object (enabling a particularly vivid illustration of the distinction between transversal and

non-transversal intersections discussed above). When studying this figure it should again be borne in mind
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that the colour-coding is normalised for each individual transformation, making a comparison of colour-
codes between different plots unhelpful. In particular, the errors in part (a), for r = 0.8, are negligible;
this plot is included for the purposes of geometrical comparison with parts (b) and (c¢), whose errors can be
seen to be localised to the region(s) of self-intersection in each case, as expected. In particular, in 4. 19(c),
we actually see two distinct regions of locally large error, centered at the self-intersecting point-sets in

7310 alsoas expected.
4.2.1.2 Approximating the identity map

Once again it is instructive to examine the approximations to the identity maps I, ,.:7,, = T, and
I, :T,, — T, constructed with I = = frlof,and I, = f, o 1. With identity error functions
Ny, =14, — 1y, andny . = I, — I, the normalised identity errors 1, ,,7; , € R follow from

equations (3.22) and (3.23) as

N N
2 —: 2 2 —~ 2
T}Z,r = 04,7% Z Hm,r(%)”), 77;;,4) = 03,1% Z lIm5 ()l (4.24)
i=1

=1

We plot the expected values of these errors, calculated over the test set as usual, in figure 4.20. We
immediately notice—in analogy with equation (3.24)—the relationship 14 . & €5, © f,» which again
holds well enough that the difference between the two curves is impossible to perceive (and therefore not
shown) even on the linear scale of 4.20(a), and even before the averaging takes place. Application of the
Lipschitz analysis of section 3.2.4 is thereby justified once more. Unlike the previous example, however,
the identity error (7, ), calculated on T .., is not consistently smaller than (7, ), so we cannot claim in
this case that f, is contractive on f,,.”l Tg - Pueto the reasons discussed above, we do not plot the actual

images of T -and T, ., under f:m and f:m, in this instance.
4.2.1.3 Analytical calculation of Lipschitz constants

In this, as in the previous example, we can derive U, and L, analytically. We therefore consider the points
x,, Ty € Ty, andy,,y, € 7, and write (3.21) as

U, = max iy, = vyl L, = min lly, =,

; ; , T (4.25)
y=Ff.(=) [z, — z,]| y=f.(e) [Ty — |

Writing @ and y directly in terms of § and ¢, following equation (4.22), and making the substitutions

a=1L(p,+)).8=45(py—¢)andy = 5(6, — 6,) this becomes

U.=max R (a,8,7), L. = min R (o, f3,7) (4.26)

-
o3, o, B
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Figure 4.20 Comparing the mean, normalised test sel errors (n4 ) and (n, .y versus r for the LS identity approx-

imations I, . and I . on T4, and T, (a) On a lincar scale we once again see an identily error ('r,,",,,) nearly
identical to (€5 ), while (n, ) exhibits a sensilive dependence on the choice of repulsive seed. (b) A log-linear scale
is included for completeness. Error bars denote one standard deviation in each direction; those on I, . have been

lightened for clarity.
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where

5 r2sin® B + [1 + 2r cosacos B + r2(cos a + cos® B — 1)] sin® y
R, B,7) =

- - - 4.27)
72 sin® B + sin® v

With a fair amount of further analysis it can now be shown [2] that (4.27) is maximised, independently
of v, when @ = 3 = 0, with the result that U, = 1 + 7. A similar analysis results in a minimum of
L =1 -7, with the understanding that L is only defined for r < 1. These values have been verified by
numerical simulation, as in the previous example, but for reasons of scale, they are not plotted until figure

4.23.
4.2.1.4 Approximation of the Lipschitz constants

The Lipschitz constants of;‘: and, 1f it exists, ]77?1 follow from equation (3.29) with

AT = max M, AT = min M)—H (4.28)
y=F(=) [|ny (@] y=f.() |10, (@)l
since, in analogy with (3.25) and (3.26),
(@)~ o+, (@) - fl@) (4.29)
and
—1 —~
M (@) = f, (y+ng, ) - f (@) (4.30)

In this case, we expect to find that [A]T is finite, irrespective of r, but ZT_‘ should become effectively
infinite (up to the limit of numerical precision)as 7 — 1. The expected values of (A],,_ and ZT calculated over
the test set as usual, are plotted in figure 4.21, and are clearly substantially larger that the analytical values
which they are intended to estimate; they also exhibit a relationship similar to the somewhat reciprocal
one we saw in figure 4.11(b).

In figure 4.22 we plot the analytic bounds U, and, where appropriate, L_, superimposed on scatter
plots of [|n, .o £, (x)|] versus [|n, ()|}, averaged over 500 random repulsive seeds as usual, forr = 0.8, 1
and 1.2. In all three of these plots the data appears to agree quite closely with the analytic upper bound
(although the upper bound U, 4 is noticeably underestimated), so it seems likely that it might again be
useful to bring the average over models inside the extremum calculation, as in the previous experiment.

We therefore define the quantities lA],ﬁ and f,; in analogy with equation (4.17), by
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Figure 4.21 Empirically estimated upper and lower bounds for the growth of errors under f,: Ty, = Ty, On

3
a log-linear scale we see the same reciprocal relationship between the mean upper bound (U,.) and the mean lower
bound (L,) that we saw in the previous example, with a mean upper bound substantially greater than anticipated.

Error bars denote one standard deviation in each direction.

~ I, (Wl -, . lin;, ()]

U = max (———), .= min
' y=fo(=) \ 1, (@)l

(431
y=r-(z) \ |0, ()l ' :

The result of calculating these alternative estimates is plotted in figure 4.23. Atr = 0, both ij’, and
E; appear to coincide almost exactly with Uy = L = 1, as might be expected. However, both estimates
then surprisingly jump in value, the upper bound to 177’ ~ 100, and the fower bound to Ij’, ~ 10, as soon
as 7 increases past zero (or in other words, as soon as the tori in K" and R® acquire a non-zero width),
before asymploting back towards their analytical analogues as 7 — 7. This behaviour is presumably
symptomatic of the resolving power of the RBF algorithm. Beyond the critical value r* = 1, the estimated
upper bound follows U, very closely, while the lower bound (which in this region should theoretically

approach zero) appears to reach a floor substantially higher than that observed in the previous experiment.
4.2.2 The torus and total least squares

A similar analysis applies to the TLS case as it did in the previous section. We write (3.30) in this case as
3‘: = <p3_3 oW, 0p, ., withp, T, C R' = R*® and ¢, =T, C K3 — R?% defined as usual and
W:R200 5 R290 defined by W, (@) = @, + W, (¢ — @, ). Forward and inverse errors follow from

equation (3.32) as
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Figure 4.22  Scatter plot of per-point identity errors [, . ()| versus llny ()| for v = 0.8,1 and 1.2, averaged

over 500 sets of randomly-seeded repulsive centers. (a) For 7 = 0.8, the upper bound Uy , = 1.8 and lower bound

Ly ¢ = 0.2 seem to bracket the data fairly well, with the exception of a little ‘leakage’ above Uy, &; (b) for v =1, the

upper bound U, = 2 and (¢) the upper bound U, , = 2.2 also appear to be a good fit to the data.
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Figure4.23 Empirically estimated upper and lower bounds lA]; and f,; obtained by moving the average over random
seeds inside the calculation of extrema, superimposed on the analytical bounds U, and L, to which they correspond.
(a) Both lA]; and Z; jump from the expected values of (A}(') = ]j{) ~ 1 to initial peaks of (77’ ~ 100 (not visible on
this truncated linear scale) and f,; ~ 10, before asymptoting down towards U, and L., respectively. Forr > 1, the
estimated upper bound is very close to its analytical value, while the estimated lower bound reaches a floor of ]/;', ~ L
(b) The peak value of U; is revealed by a log-linear scale.
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Figure 4.24 Comparing the mean, normalised forward and inverse errors and condition numbers for the TLS
approximation to f.: T, = — T3 .. calculated over the test set. (a) On a log-linear scale, the inverse crror (e, )
is small throughout the expected interval but becomes large for r > r*, lending some evidence for our theoretical
knowledge that 7, _ is only diffeomorphic to Ty, forr < 7* In comparison, the product space and forward errors
(EY)> and (e, ,.) are negligibly small. Both forward and inverse errors exhibit the characteristic TLS instability. The
fitting and test errors are all but indistinguishable, even on a log-linear scale, and hence only the latter arc plotted. (b)
The condition numbers, respectively (£(Q,)) and (£(P,)), correspond closely to (¢4 ) and (e, ) as expected. Error
bars denote a one-sided standard deviation in both directions; those on the forward test error and condition number
have been lightened for clarity.
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=03, Z IW,(a;) - bl°,  €&4s=0i2 ZHW”(b — a,|)? (4.32)

1=1 i=1

where a = @, 7(9:) ~p, andb = 903’1,(y) — @5, with normalisation constants o, , and o5 . calculated
onw, T, C R?°0 and ¢, T34 C R200  respectively (again, these should not be confused with their

LS analogues). Finally, the TLS error of (3.36) is defined as

N
€ =025 |IP e + Q10,1 (4.33)
i=1
where 0, =0, . + 03, and, from (3.40), W_ = —PTQ:I.

The expected values of these errors are plotted in figure 4.24, for 0 < r < 2; once again, the error bars
cach correspond to two one-sided standard deviations (as described in scction 4.1 .2). The errors measured
on training and test sets are once again indistinguishable so we only plot the latter here. On a log-linear
scale in part (a) we again see <E3‘7,> oscillating wildly, although on this scale (63’1,<1,‘) is negligible, as is
<€4,7,> for all r. However, (63’7,> does indeed rise significantly at about the critical value 7, while <64)7.>
relatively small throughout, indicating—as expected—that f, is a diffeomorphism only forr < r*. Both,
however, suffer from the characteristic instability discussed in section 3.3.3. The product error (e(f)), on
the other hand, is small and smooth, rising from (E( )) ~ 107® to an asymptotic value of ( ) 1071
Not surprisingly, all three curves meet at 7 = 0, where both T, o and Tzo become diffeomorphic to the
circle S'. The expected values of the condition numbers 5(Q,.) and k(P ) are illustrated in figure 4.24(b);
once again, before and after averaging, these closely mirror the corresponding errors, respectively €, and

€3, A8 predicted by the analysis in section 3.3.2.
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Chapter 5

Maps on dynamical systems

We now consider the application of RBF maps to the detection of diffeomorphisms between embedded
dynamical systems. We will be interested in maps of the form f: M, — M,,, where the compact subsel
M, C R™ isthe image of adelay embedding®,, .., obtained from a measurement functionv: M — Ron
the dynamical system (M, 1), and f is the restriction to M, , of the linear transformation F: R™ — R,
as described in section 2.3, with M, = FM, . Our task will be to determine whether or not f is a
is a ‘filtered’” embedding on (M, 1)), as also defined

diffeomorphism—that is, whether or not Fo &

in section 2.3.

Since F is a linear map we already know that f is a function, so we expect to find—as demonstrated

in the previous chapter—an arbitrarily good LS RBF approximation fl() f. This being the case, we will
not usually attempt to fit f explicitly but concentrate instead on the properties of an RBF approximation
(o its inverse. As a consequence of the delay structure induced by @, ., in the domain of f, it will not be
necessary to construct an explicil approximator ]T*\’ in the examples to follow. Indeed, such a procedure
may not even be physically appropriate, as it will not generally exhibit the shift property itself. Instead,
in the interest of computational efficiency, we will fit one or more individual components (£ )} of 71,
any of which could be used, in principle, to construct an inverse for f with delay structure intact. We will
therefore rely solely on the LS RBF map in the experiments to follow. Our usc of prior knowledge about
the structure of f and its inverse to restrict our attention to individual compdnents of £~ rules out the
use of the Lipschitz analysis of section 3.2.4, and also of the somewhat less reliable TLS method, in the
experiments described in this chapter.

In the remainder of this chapter we describe four related applications of this constrained form of
diffeomorphism detection. The first involves the determination of a minimum embedding dimension

for a dynamical system of unknown topological dimension, and requires the construction of a time series
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predictor. The second deals with projections of an embedded system into a singular subspace, and attempts
to similarly identify the minimum basis set required for such a projection to be a filtered embedding. The
final two incorporate the more general form of filtered embedding in which a FIR filter is applied to the
measurement function before embedding the system under investigation. Two applications of this form
are studied: the first in detecting the existence of periodic orbits in the system’s state space and the second

in applying the results of this procedure Lo the separation of encoded messages from additive chaos.

5.1 Determination of a minimum embedding dimension

In section 2.2 we defined the method of delays in terms of the topological dimension d of the manifold M on
which the state of the dynamical system (M, 1) evolves under ¢p: M — M, namely that @, | : M — R™
is generically an embedding if m > 2d. In practice, however, d will generally be an unknown quantity, so
how can we be sure that we have chosen m large enough to embed M in the first place?.We clearly need
an experimental method, involving no prior knowledge of the topology of M, with which to determine the

minimum value of m—say m = m*-—necessary for &, 10 be an embedding on M.

Several solutions to this problem have been suggested in the literature. One such approach, by
Broomhead, Jones and King [5], relies on a ‘local’ analysis of the manifold M, = <15v)mM to estimate
d directly (M, is assumed to have been reconstructed in a sufficiently high-dimensional space Rm>d
fore, ., tobean embedding on M). In this approach, the singular spectrum of a set of points contained
within an open ball B, in M, is calculated (via SVD) as the radius 7 of B, is increased from zero.
For r small enough, the authors find that a subset of the singular spectrum scales linearly with 7, while
the remaining singular values stay roughly constant within the noise floor identified by a global SVD of
M., Asrincreases beyond alocal, critical value these latter singular values begin (o grow as well, as the
curvature of M, makes its effect felt within B,.. The number of singular values which scale linearly below
that critical value of 7 is taken to be an estimate of d, and a suitable value for m* follows directly from
Takens’ theorem. (Strictly speaking, of course, the value of m.* so calculated is a sufficient, rather than a
minimum embedding dimension, and it may actually be possible to embed (M, 1h) with d < m < m”, as
previously noted.)

In another approach, related to that of Pecora et al which we described in chapter 1, Kennel, Brown
and Abarbanel [22] apply the method of ‘false nearest neighbours’, in which they attempt to successively
‘unfold’ the reconstructed attractor M, € R™ until it is determined to be embedded in R™ for a large
enoughm. In order to make this determination, the distance between each point & and its nearest neighbour
in M, is calculated for increasing values of m. This process is continued for as long as one or more
of these nearest neighbour distances continues (o grow, by a sufficiently large factor, with the addition of

each successive dimension, yielding a direct, empirical estimate of m*. A similar method, espoused by
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Kaplan [21), consists of calculating an equivalent distance measure between neighbouring points solely mn

the additional dimension: in other words, between the scalar elements of the time series itself.

These approaches are based on a direct analysis (via delay map) of the time series itself. The
empirical solution which we explore in this section relies instead on the analysis of successive LS RBF
approximations to maps between the images M, C R™ and M, ., C R+ of the delay maps P,
and &

for increasing 7. We make use of the fact that if &, and &, ., both embed M then

v,m+1° M

; , . 3 — -1 -1 A RCAT
the composite map f, : M, ., — M, defined by fon = dsv,m o ' o 451)}“1+12MM_1, is necessarily

a diffeomorphism. (Our motive for incorporating an inverse iterate of ¥ will shortly be made clear.)

Conversely, if we can find some m* such that f

is a diffeomorphism for all m > m*, but not for
m < m*, then we can infer that m* is the minimum reconstruction dimension necessary to embed M,
using the time series in question. We must, in principle, consider all values of m > m™ because it is

conceivable that a particular f, , so defined, might be a diffeomorphism even though neither &, ,, nor

m
P, o actually embed M. Consider, for example, the experiment described in section 4.2, in which
we examined the effect of the parameter 7 on whether or not a 2-torus was embedded in three or four
dimensions: for » = 0 the image of this torus was a circle in both R3 and R*, neither of which were
diffeomorphic to the torus, but both of which were unarguably diffeomorphic to each other.

For implementational purposes, we can view f, as the restriction to M, . of the linear transfor-
mation F_: R+l 5 R™ defined, following section 2.3.1, by the m by (m + 1) matrix F, formed by

removing the first row from the (m + 1) by (m + 1) identity matrix I, ;. We certainly do not need to

find a LS RBF approximation to f, in order to determine that it is a one-to-one map. Its inverse, on the

m

other hand—if it exists—is a map taking each y, € M

o o, ) T
e With components y; = (v, V(1))

toanx;, ; € M, . definedby x| = (Vg1 >"’1‘,—(77,~|))T‘ All but one component of this map
is present in its domain, so it is unnecessary (o construct an explicit RBF approximation (o j’;,,' . Instead,
we concentrate on the first component w,,, = (fy;v’)], and investigate the question of whether or not f, |
is a diffeomorphism by constructing its RBF approximation w,,: M, C R™ — IR, which is a one-step
predictor for the time series itself, with v, | = w_ (y,)- In other words, we are asking whether or not we
can predict the next element of the time series from a delay reconstruction using the previous m, elements.
(If f,, had been defined withoutan inverseiterate of 1) then we would be fitting a one-step-behind predictor
instead.)

Although we could, in principle, treat w,, as an induced measurement function on M, , using the
delay structure in M_ . to construct the approximation f/\rjll = F“IL + e,w,, 1o b where e =
(1,0,...,0)T is an (m + 1)-dimensional unit vector, we do not actually need to take this final step
in order to determine whether or not f, is a diffeomorphism. We do, however, take this approach In
Potts and Broomhead [32], in which we use the first 7 components of fii, so defined, to construct
an approximator ;ﬂ:: R™ — R™ for %, and then investigate the stability of {b: under iteration by

calculating its characteristic exponents [12, 30}.
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In the following sections we attempt to calculate minimum embedding dimensions for the the Ikeda
and Hénon systems, the Lorenz system (integrated with step sizes of 0.1 and 0.01) and the laser system.

In analogy with equation (3.5) we write the normalised fitting (or test) error €, as

N
2 =02 oy () = v ll? (5.1)
=1

where the normalisation constant or;z) is N times the variance of the time series itself, calculated over the
training set. As usual, in order to eliminate as many sources of uncertainty as possible, in each experiment
we will be plotting the expected value (€,,) of the error obtained from 500 sets of p = 200 repulsive
centers, with cubic basis functions, and with repulsive seeds selected at random, without replacement,
from a training set of N = 2000 points in M.

In analysing the results of these experiments we must keep in mind the fact that there are other
contributions to the LS error than whether or not the underlying manifold has been embedded in R™.
An obvious example is that, as the dimensionality m of the domain of w,,, increases, so the ‘coverage’
of that space by a fixed number of centers decreases, leading us to expect both fitting and test errors (o
asymptote to 1 in the limit of m — oo. More generally still, we have no a priori reason even to believe
that—neglecting this asymptotic effect—the error will vary monotonically for a given choice of manifold,
or training and test sets (although the dependence on a specific RBF model, at least, has hopefully been
taken into account by the average over random repulsive seeds). For instance, the presence of periodicities
in {v;} may adversely affect the fitting error for some values of m more than others. In certain case,

therefore, the precise identification of a suitable value for m* may require an clement of judgement.
5.1.1 Embedding the lkeda system

We begin with the Tkeda map (2.1), for which Takens predicts an embedding dimension of m™ = 5. In
figure 5.1 we plot, versus m, the mean error (¢, ) calculated over both training and test sets, for a delay
reconstruction from the time series plotted in figure 2.3(a). In part (a) of this figure, for 1 < m < 100,
we illustrate the asymptotic behaviour of these errors, both of which rise steadily with increasing 1 and
appear almost saturated at {€,,,) =~ 0.7 and 0.8, respectively. We attribute this upwards trend to the result
of constructing an RBF map with a fixed number of centers in an increasingly high-dimension domain,
as discussed above. We plot the first twenty values of (¢, ) on a log-linear scale in part (b), in which we
see strong empirical evidence for a minimum embedding dimension of m* = 4. The (relatively) large
error at m = 3 is probably due to the presence of a self-intersecting point-set, visible toward the lower
half of figure 2.6(a), in the reconstructed attractor; this self-intersection 1s eliminated by the inclusion of
a fourth delay. Despite the fact that the errors under analysis were obtained from a full-rank LS RBF

approximation, no significant over-fitting is revealed in figure 5.1. That the minimum occurs at m = 4,
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Figure 5.1 Establishing a minimum embedding dimension for the Ikeda system by plotting the mean time series
prediction error (e, ), versus m, calculated over both training and test sets. (a) With 1 < m < 100 both curves
achieve an early minimum before presumably asymptoting to 1; (b) on a log-linear scale, a close up of the interval
1 < m < 20 provides an estimated minimum cmbedding dimension of m” = 4. A comparison of fitting and test

errors reveals no significant over-fitting. Error bars denote one standard deviation in cach direction.
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and not m = 5, as we might expect from Takens, is of no great consequence: as already noted, Takens’

theorem applies generically, not specifically.

5.1.2 Embedding the Hénon system

The same approach, applied to the Hénon map (2.2), via the time series illustrated in figure 2.3(b), yields
the error curves plotted in figure 5.2. Once again, in part (a), we see the expected asymptotic behaviour,
but in part (b), showing a close-up of the interval 1 < m < 20 ona log-lincar scale, we now see a more
clearly indicated minimum embedding dimension of m* = 2. The attractor embedded in R? has already
been plotted, in figure 2.6(b). This result supports the analytical discussion of section 2.2.1, in which we
showed, through equation (2.9), that the evolution of the Hénon map is exactly determined by two delays.

Once again, no significant over-fitting is observed.

5.1.3 Embedding the Lorenz system

The errors arising from the 0.01-step Lorenz system, reconstructed from the time series of figure 2.4(a),
are plotted in figure 5.3. In part (a) of this figure both errors remain relatively small, compared to those
calculated on the Ikeda and Hénon systems, as a result of the extremely short integration step (ie. sampling
interval) 7 = 0.01 with which the time series in question was obtained: the function w,,: M, — Ris
nearly linear at this scale. It is, however, over-fitting the time serics in question 1o a correspondingly larger
degree. Because the predictor in this case is such a simple one, the minimum embedding dimension of
m* = 2 indicated by part (b) is significantly smaller than the value of 7. > 5 suggested by Takens (based
on the fractal dimension of 2.06 estimated by Lorenz [24]): the ‘true’ minimum is effectively hidden by
local fluctuations in error between individual RBF fits. Interestingly, these fluctuations appear to be driven,
to a limited extent, by one or more unstable periodic orbits in the Lorenz attractor.

That we can so easily embed the 0.01-step Lorenz system is largely duc to the fact that the time
series in question is noise-free (neglecting quantisation errors). This will not usually be true in practice,
so we have also examined the time series obtained by ‘corrupting’ the original with an additive stochastic
component, normally distributed with a standard deviation approximately one tenth that of the uncorrupted
time series. Referring back to figure 2.7(a), it is clear that a noise component of this size must make a
unit-lag embedding impossible, due to the tendency of the reconstructed attractor 10 ‘hug’ the diagonal
in R™. We plot the errors in figure 5.4. In part (a) of this figure we immediately notice that both are
substantially larger than their noise-free equivalents of figure 5.3; part (b) is similarly inconclusive. It is
interesting to note that the degree of over-fitting exhibited by figure 5.3 is substantially larger than in the
noise-free case; this is because the LS RBF map, given enough degrees of freedom, will model variations

due 1o noise in the training set and hence fail to generalise well on the test set; this time series would be a
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Figure 5.2 Establishing a minimum embedding dimension for the Hénon system by plotting the mean, normalised
prediction error (em), versus 7, over training and test sets. (a) Variation of the reconstruction dimension in the
interval 1 < m < 100 reveals properties similar (o those of the Ikeda system, such as the asymptotic convergence to
{€,,) ~ 1; (byaclose up of 1 < m < 20, on a log-linear scale, clearly indicates a minjmum embedding dimension

of m* = 2. No significant over-fitting is observed; error bars denote one standard deviation in each direction.
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Figure 5.3 Establishing a minimum embedding dimension for the 0.01-step Lorenz system by ploting the mean,
normalised prediction error {€_, ), versus m, over training and test sets. (a) Atm = 100, on a log-linear scale, neither
fitting nor test error has begun to salurate, but both reveal an interesting periodicity of extremely small amplitude; (b)
in close-up an embedding dimension of m* = 2 is clearly indicated by both errors. Error bars denote one standard

deviation in each direction.
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Figure 5.4 Establishing a minimum embedding dimension for the 0.01-step Lorenz system, generated from a noisy
time series, by plotting the mean, normalised prediction error (¢, ), versus m, over training and test sets. (a) Neither
train nor test error appears to reach a sufficient minimum, and it is not clear that the system is embedded for any m;

(b) a close-up merely confirms this impression. Error bars denote one standard deviation in cach direction.
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good candidate for the rank-reduction methods described in section 3.2.3.

One way in which to avoid the situation in which the variance of the reconstructed attractor is
concentrated along the diagonal is (o sub-sample the time series in question with the lagged delay map

el : M — R defined in equation (2.16); we have already illustrated, in figure 2.8(a), the result of

v,M, T

embedding the 0.01-step Lorenz system in three dimensions with a lag of 7 = 10 samples. In figure 5.5
we plot the errors arising from an RBF approximation to the Lorenz time series obtained in this manner.
In part (a) of this figure we once again see the test error asymptote to (€, ) ~ 1, although the fitting error
remains relatively small over the interval plotted, indicating that some over-fitting is going on. A close-up,
in part (b), strongly indicates a minimum embedding dimension of m* = 4, although we might argue that
m* = 3 is sufficient. Again, we have come up with an estimate substantially smaller than the value of
m* = 5 suggested by Takens’ theorem; this is merely an indication that the first component of the Lorenz
map is a relatively benign measurement function—for the purposes of delay reconstruction—preserving
intact the two unstable fixed points and their nearby orbits, as demonstrated by a comparison of figure
2.8(a) with the original attractor in 2.2.

On duplicating this experiment with the noise-corrupted time series already described we obtained
the errors plotted in figure 5.6. We are once more unable to identify a minimum embedding dimension, as
the fitting and test errors are nowhere sufficiently small to indicate a good predictor for the time series; the
over-fitting is severe. Although we might expect the trajectory obtained from a lagged delay embedding
to be less susceptible to the presence of stochastic noise than a lagged embedding, because it ocecupies a
larger volume in pscudo-phase space, the errors obtained in this experiment are of the same order as those
obtained with a sample lag of 7 = 1. We ascribe this result to a trade-off between that effect and the

extreme predictability of the finely-sampled time series.

5.1.4 Embedding the laser system

Finally, in figure 5.7, we consider the experimental time series of figure 2.5(b). As discussed in section
2.2, this measurement function is thought to correspond to the square of the first component of the Lorenz
map, and therefore results in a reconstructed attractor whose unstable fixed points are superimposed, and
we therefore do not expect to be able to embed this system. Nevertheless, the time series does possess
a significant degree of predictability, as indicated by the relatively small test error at m = 9. Compared
to the 0.1-step Lorenz system, however—as illustrated in figure 5.5—we see that both fitting and test
errors are some two orders of magnitude larger than might otherwise be expected were the delay map truly
an embedding. This result illustrates the potential pitfalls of the predictive approach to establishing the
existence of a minimum delay embedding, in that it is not entirely clear how well we must approximate

the induced measurement function w,, in order to justify the claim that f, is a diffeomorphism.
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Figure 5.5 Establishing a minimum embedding dimension for the 0.01-step Lorenz system, reconstructed with a
lag of 7 = 10, by plotting the mean, normalised prediction error (e,,), versus m, over training and test sets. (a) On
a log-linear scale there is a marked separation of fitting and test errors as m — 100; (b) in a close-up of this plot the
test error appears to indicate an embedding dimension of 7n” = 4, although the decrease in error between m = 3 and

m = 4 is arguably small. Error bars denote one standard deviation in each direction.
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Figure 5.6 Establishing a minimum embedding dimension for the 0.01-step Lorenz system, reconstructed with a lag
of 7 = 10 from a noisy time series, by plotting the mean, normalised prediction error (e, ), versus m, over training
and test sets. (a) In this case we again see an increasing separation of fitting and test errors with m > 8, with serious
over-fitting clearly visible; (b) in close-up we might set 7* anywhere in the interval 2 < m™ < 8. Error bars denote
one standard deviation in each direction.
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Figure 5.7 Establishing a minimum embedding dimension for the laser system by plotting the mean, normalised
prediction error (e, ), versus m, over training and test sets. (a) The fitting and test errors are just beginning Lo saturate
at m = 100, with no significant over-fitting in evidence; (b) a close-up appears to indicate that m* = 9isaminimum
dimension for successful reconstruction of this system, although in actual fact we already know that the measurement
function in question is not generic, in the sense of Takens’ theorem. Error bars denote one standard deviation in each
direction.
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5.2 Constructing a singular subspace

In attempting (o predict the Lorenz time series in the previous section we found that the presence of

stochastic noise affected not only our ability to embed the system in the first place, but also the generalisation

ability of the predictor. Insection 2.3.2 we discussed the use of a linear transformation 7, : R"™ — R™, in
o - : _ T o A e m ireial o - s
the form of an n by m matrix me = (vy,...,v,) ofsingularvectorsv, € R™, principal components of

the distribution in R™, in reducing the impact of stochastic noise on a delay embedding &, , : M — R™.
:

If M, =&, M is diffeomorphic to M then provided 7 > 2d, and for generic choices of F we

v,Mm m,n’

also expect M =F_ _od M tobe diffeomorphic to M.

m,n m,n v,mMm

We will now attempt 1o test the viability of this method by constructing the map f, ,,: M, — Mo

_ -1 -1 - an s A1 there exisls 4 mini ¥ ar
defined by fm)n =F, 0P, ,° P~ o 451]’"1|Mm. If we can show that there exists a minimum singular

subspace dimension n* < m such that f,, ,, is a diffeomorphism for n > n*, but not for n. < n*, then

we will consider the test to have succeeded. As before, since F,

o 18 @ linear map we already know that

fon o 18 a function, so we can restrict our analysis (0 its inverse. Although in principle—thanks to the

delay structure in M, —we could construct an approximation (o f!

-, from an RBF model of any one

—1

of its components, in this case such a procedure would not be sufficient to ensure that f-° s itself a

function: the projection F_, . might preserve one or more components of its domain more or less intact

in R, making the task of estimating that component an artificially simple one (as, trivially, applies to

—1

all but the first component of f

in the previous section). Rather than build an explicit model of f7 L
however, we have once more incorporated a single inverse iterate of #p into the definition of f,, , so that

P PN _ -1
its first component w,, . = (f

77%71)1 is again the one-step Lime series generator v, = w, (y,), where

IR

Y, = }"m)”(:n,i). Since v, is not an element of ; we can rely on its RBF approximation to determine

whether or not f_  is a diffeomorphism.

m,n
We model w,, ,, with the LS RBF approximation w,, .- M, . C R* = R, constructed once again
from p = 200 repulsive centers selected from a training set of N' = 2000 points in M, . and using cubic

basis functions. We evaluate the success of this approximation via the expected values of the normalised

fitting and test errors

N
(:‘TZTI,H = 0'172 Z ””fn\,n(yz) - Ui—{—] “Z (52)

=]

calculated over the standard 500 random choices of repulsive seed; the normalisation constant 0';2} Is
unchanged from the previous section. As before, due to the vagaries of fitting individual RBF maps (albeit
mediated by the average over random repulsive seeds), and the expected increase in fitting error with
increasing dimensionality n for a constant number of centers, we do not necessarily expect a monotonic

decrease in €, , as n increases towards the critical value n*. What we are looking for is a region

n* < n < m within which (e, ) = (€,,), where ¢, is the prediction error on M., defined in (5.1),
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indicating that those singular vectors Vjspe which are missing from F, . contribute negligibly to the fit.
For this reason, in each of the following experiments, we plot the mean m-delay prediction error (€, ), over
the range 1 < m < 50, then superimpose the mean singular subspace prediction errors <em’n), obtained
by fixing m at 10, 20 and 50 delays, respectively, and varying 1 < n < m in each case. Naturally, we must
find €, ., = ¢,,. (Due to our choice of random seeds, the same need not be strictly true of (6”1_’”) and

(e,.), although the differences will turn out to be negligible.). If the noise is sufficiently pathological we

might even hope to find € < ¢, for some values of n > n*, as components containing noise-induced

m,n

self-intersections are eliminated from the image of F, .

5.2.1 Singular subspaces of the embedded Lorenz system

For our initial investigation we again choose to embed the 0.01-step Lorenz system by sub-sampling the
time series of figure 2.4(a) with a lag of 7 = 10, to get the relatively smooth trajectory pictured in figure
2.8(a). In figure 5.8(a) we replot, versus m, the first 50 values of (¢,,,) from figure 5.5. Superimposed on
this curve we plot the expected values of the fitting errors €5 ,,, €5, and € obtained via projection into
singular subspaces of [R50 R20 and RO, respectively, versus the appropriate interval in n; the test errors
are plotied separately in figure 5.8(b). (Of course, if we were really concerned with obtaining the best
possible predictor for a delay window of length 507, and we had sufficient processing power available, we
could eliminate 7 completely, and simply apply a 500-delay window directly to the un-lagged time series.)
As the time series in this example was generated by numerical simulation the reconstructed trajectories in
M, are effectively noisc-free, so for a given choice of centers we do not expect ¢

to display any

e, 1<

significant improvement over its bascline value ¢, due to the elimination of noise-dominated dimensions

o>
in M. We might hope, however, to find an n* < m such thate, =~ ¢, for n* < n < m. Figure
5.8 confirms these tentative expectations: for example, the mean fitting crror <(-T50,“> remains within an
order of magnitude of (e;,) over the interval 3 < n < 50, even dropping below that value for certain n.
This is presumably due in part to the bencficial effect on the RBF map resulting from a reduction in the
dimensionality of its domain. For m = 20 and mn = 10 the advantage of singular subspace projection is
less obvious, although it is clear that a few dimensions may be safely ‘shaved off” the pseudo-phase space
even for m on the order of the minimum embedding dimension, m* = 4, of the unfiltered system. Not
surprisingly, however, given the exceptionally low noise floor associated with this time series, the best
prediction for {v,} is still that obtained from w,: M, — R, as defined in the previous section.

A slightly more appropriate problem domain is the noisy version of this time series. We plot the
usual errors, (€., ) and (€, ), for filtered and unfiltered delay reconstructions, in figure 5.9. Although, as
shown in the previous section, the Lorenz system cannot actually be embedded from this time series—the

noise compenent is too large—this example still demonstrates the effectiveness of F,

m,n

at climinating

noise-dominated dimensions in M __, with all three singular subspace prediction errors, calculated over

m’
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Figure 5.8 Comparing the mean, normalised prediction errors (fm,n) for the (.01-step Lorenz system, reconstructed
in singular subspaces of R, R? and R with a lag-10 delay map. (a) Mean values of the fitting errors €50.m> €20,n
and €, , are plotted, versus the appropriate interval of n, on top of a replot of the corresponding error (e, ) obtained
from the unfiltered embedding, for 1 < m < 50. Although a given level of error can clearly be maintained (up to an
order of magnitude) through projection into an appropriately lower-dimensional subspace (particularly in the case of
m = 50), we still find that (e, ) > (e,,) almost everywhere. (b) The corresponding test errors tell a similar story.

Error bars denote one standard deviation in each direction.
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Figure 5.9 Comparing the mean, normalised prediction errors (¢, ), obtained with m = 10,20 and 50, for the
0.01-step Lorenz system, generated with a lag-10 delay map from a noisy time series. (a) The fitting errors in this
case all achieve a minimum of approximately Lthe same value as that of the unfiltered reconstruction error {e, ), which

occurs at m = 10.

In particular, at n = 4, the minimum of (e, ) indicates that brojcclion of the image M,
of &, o into a singular subspace of only four dimensions has a negligible effect on the resulting predictor, whilst
reducing the complexity of the RBF map in question by a factor of more than two. (b) This conclusion is confirmed
by the corresponding test error (also hard-limited) although a value of n = 5 is more firmly indicated. These results
serve as a proof of concept only, as we have already established that the Lorenz system cannot be embedded from this

particular time series. Error bars denote one standard deviation in each direction.
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the training sel, reaching minimum values in figure 5.6(a) of (€5 10) (€0 7), (€10,4) = (€15)- As before,

we see a significant degree of over-fitting in this experiment.

5.2.2 Singular subspaces of the embedded laser system

We see a similar effect in our final example, in which we apply the singular subspace technique o the
laser time series of figure 2.5(b), plotting the errors in figure 5.10. We have already suggested, both by
analogy with the Lorenz map (section 2.2) and by experiment (section 5.1.4) that this time series does
not represent a suitable measurement function for delay reconstruction of M. Nevertheless, in part (a)
of figure 5.10, for both m = 10 and m = 20 we can (approximately) achieve the minimum fitting error,
arising from an unfiltered 10-delay reconstruction, with (e, 5), (520,]4) ~ (€,,); the corresponding test
errors in part (b) are once more in rough agreement. With 50 delays, on the other hand, we can merely
maintain the relatively large error of (650771> ~ (€50), for 4 < m < 50, on training and test sets alike. The
filtered attractor obtained with the projection F, 5 has already been plotted, in figure 2.8(b).

Performing rank-reducing projections into singular subspaces in this manner is, of course, highly
reminiscent of the RBF generalisation techniques described in section 3.2.3. Itis, in fact, exactly equivalent
to the blind truncation criterion, where the order in which individual principal components are incorporated
into the model takes no account of the ensuing errors. Taking this analogy a little further, we could clearly
attempt 1o use some other, less ad hoc criterion, such as the targeted truncation method of section 3.2.3.
This is, however, impractical for the purposes to which we would put it, as it would nccessarily involve
some form of nonlinear optimisation strategy-—such as error gradient descent—owing to the presence of

e~

the nonlinear transformation : R* — RP inw ", so we do not pursuc that idea here.

5.3 Detecting unstable periodic orbits

We will now consider the class of linear transformations, introduced by Broomhead, Huke and Muldoon
[3] and described in section 2.3.3, which relates the images of M under the delay maps @, | : M — R™
and &, : M — R*, where the time series {u,} is obtained from {v;} through the ¢-coefficient FIR
filter defined in equation (2.17), and n = m — ¢ + 1. As discussed in section 2.3.3, the transformation
P, .0 45;171 is generically a diffeomorphism on M, provided that n > 2d, so provided that {v,} is
a generic measurement function (in the sense of Takens) on M then Takens’ theorem applies equally
well—or equally badly—to the time series obtained from {v, } through almost any FIR filter as it does to
{v,} itself: either may be used to construct a diffeomorphic copy of M in a sufficiently high-dimensional

Euclidean space.

Non-generic filters, on the other hand, give rise to delay maps @, . which do not embed M, no matter
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Figure 5.10 Comparing the mean, normalised prediction errors (€, ,,

), obtained with m = 10, 20 and 50, for the
laser system. (a) In this case, we find that a delay reconstruction with both m = 10 and m = 20 provides the
opportunity for a singular subspace projection to achieve the minimum fitting error of (¢, ) with, respectively, n = 5
and n = 14, although at m = 50 we can maintain, but not reduce, the value of <fso,n> = (eg) ford < mn < 50. (b)

The corresponding test errors allow a similar analysis. Error bars denote one standard deviation in cach direction,
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how large n is chosen to be. We will now exploit this non-genericity, in the form of the single-parameter
family of FIR filters with coefficients (1, —2 cos 27v, 1); it can be shown [26] that a three-coefficient filter
of this form has a zero response at the frequency v in {v, }. For fixed m, such that n = m — 2 is sufficiently

large for & toembed M, and writing M, =&, Mand M, = & M (at therisk of some slight

v,n m v,m v

confusion, we will use the subscripts v and u interchangeably to identify a particular FIR filter), a useful

effect of the corresponding linear transformation 7, : M — M

o is 1o ‘collapse’ any orbits of period

n,v

11_/ samples in M onto a fixed point in M (Such orbits will be a fundamental characteristic of (M, ),

n, e
so a filter of this form will persist in its non-genericity independently of the choice of measurement

function v.) Thus, if we can establish that f, M — M

n,ue

o _ -1 .
definedby f, , =@, ,© 45”‘771}/\,[1”, is a

n,? T,

diffeomorphism for generic vatues of v, but not for a particular value ¥, then we can conclude that b,
collapses an orbit of period 7/1— in M.

As usual, we know that £, is a function since it is the restriction to M, of the linear map F,

n,v n,?

so we base our decision on whether or not f, , is a diffeomorphism on an RBF analysis of its inverse.

(We assume that the orbit in question is visited often enough for its presence to show up in a LS RBF

fit.) Although the delay structure in M enables us, in principle, to construct an approximation Lo fj':f,
from any one of its components, we must ensure that every component is amenable to RBF approximation

before we can claim that f

184 diffeomorphism. In this case, however, rather than incorporate a forward

——

or inverse iterate of % into f_ we explicitly fit an RBF map w.,(l])),,: M_  — R to each component

n,v T,V
wflj’), = (f;,l/)?, of fn_‘,l, mapping y; = (1, ... ,'u,,i_M_l)T Vv, 4 = w,,(f’z,(y,i). We define the resulting
errors 657])” by
‘ N
‘51}),2 = ”v.(;”_z Z Hw,(ﬁ;f,(yl) T Vil I (5.3)

=1

where the normalisers or,f)j) are calculated over the appropriate interval in {v;} (neglecting end cffects,
these constants are cffectively identical). In each of the figures to follow we will superimpose these errors,
for1 < j < 7, on a single set of axes, but for practicality we will not visually distinguish them from cach
other: (we will also not make use of the average over models in this section, nor in the next one). Since
the RBF map is linear in its basis functions the error which would have arisen on fitting all 7n. components
of fvzf, simultaneously is easily obtained as

T

T

) (5.4)
=1 '

Each estimator wsﬂ, represents a nonlincar inverse to the effect on M of the FIR filter through
which M has been constructed. That we are able to construct such an inverse is a consequence of the
deterministic nature of {v,}. In particular, chaotic time series generally exhibit broad-band power spectra,

as a result of the broad spread of unstable periodic orbits embedded in the attractors of their generating
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normalised error

systems. For this reason, even though we have removed all of the power at the target frequency v, we
expecl to retain sufficient power at other frequencies with which to reconstruct (up to a certain point) a

diffeomorphism of the original attractor; we will see examples of this behaviour in section 5.4.
5.3.1 Filtering the lkeda attractor

We begin with the Ikeda system, constructing filtered delay maps ¢, .: M — ®5 from the time series
g Y g y maps €, s

plotted in figure 2.3(a) by sweeping the middle coefficient a; = —2cos 2w through the interval —1 <

a, < 1. Infigure 5.11 we plot the seven error curves eéj,),

wé];,),: M

obtained (over the test set) from a LS RBF fit to
sy R, for j = 1,...,7. For convenience, we use a,, rather than v, to index the z-axis in this,
and subsequent plots. Although all seven errors are small over most of the interval, they all peak sharply
at o} = 0. The FIR filter (1,0, 1) has a zero response at the frequency vt o= lx leading us to deduce
the existence of a period-4 orbit in the Ikeda attractor; careful examination of figure 2.3(a) confirms this
conclusion. Before attaching any significance to this result, however, we must ensure that M is an
embedding of M for generic v. In fact, the mean error level €, turns out to be on the same order of

magnitude as the prediction error €, which we measured in section 5.1.1.
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Figure 5.11 Detecling periodic orbits in the Ikeda attractor by plotting the test error obtained by approximating the
inverse to a family of FIR filtered delay embeddings into R®. A non-diffeomorphic relationship is clearly indicated at
a, = 0, which corresponds to a period of 4 samples.

In figure 5.12 we illustrate the images of the filtered delay maps @, ., for specific values of filter
coefficient a,, colour-coding each point by the relative magnitude of the per-point error to which it gives

(1)

rise under the zero-offset predictor w; ,, as in the previous chapter. For the purposes of comparison, in
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part (a) of this figure we plot the first three components of the attractor in M, = 5151))7/\/[, which we
estimated in section 5.1.1 to be embedded in R*. In part (b) we show the attractor obtained from the
filtered embedding corresponding (o a coefficient of a; = —1, which appears more convoluted than that
of M. but is also known 1o be an embedding of M. In part (c), however, the filtered object My . is
not embedded in R® (and certainly not in R®), and as a result we see that the per-point errors are strongly

localised to a self-intersecting set of relatively small measure in M ..
5.3.2 Filtering the Hénon attractor

We now move on (o examine the Hénon system, using the time series of figure 2.3(b) to construct an
embedding of M in R® which is then projected into R* by the linear map Fy4,- The test errors (g],),
resulting from the approximations wﬁ{?,: M,L,, - R forj=1,...,6 and =1 < @, < 1, are plotted in
figure 5.13, and tell a remarkably similar story to those in the previous example. Once again, although it
appears that both FIR filter and reconstruction dimension are suitable for a successful embedding of the
Hénon system provided that |a,| > 0, at the critical value a] = 0, corresponding to v* = lx we arc again

unable to find a diffeomorphism f, ,.: Mg = M, .. A period-4 orbit is visible in the unfiltered time

series, although not as frequently occurring as in the previous example.
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Figure 5.13 Prediction error for a FIR filtered delay embedding of the Hénon attractor into R". Once again, a

period-4 orbit is identified by a peak at a; = 0.

We illustrate the attractors obtained from these filtered delay maps in figure 5.14, plotting only the

first three components of each, as usual. In part (a), for comparison purposes, we show a direct, three-delay
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embedding of the Hénon system, although the time series {v,} actually enables us to embed this attractor
in R2, as we already know. The filtered embedding obtained from the FIR filter (1, —1,1) is shown in
part (b), colour-coded by its fairly uniformly small per-point errors. In part (¢), however, the image of
the period-4 orbit in M is clearly visible as a self-intersection in M, ., highlighted by an appropriately

strong peak in per-point error.
5.3.3 Filtering the Lorenz attractor

Finally, we come (o the Lorenz system, which we embed using the 0.1-step time series illustrated in figure
2.4(b). Because this time series was generated with an integration step of 0.1, rather than 0.01 as in
the corresponding time series of figure 2.4(a), we do not need to use a lagged delay map in this case.
With a filtered embedding @ ,, into R?, we obtain the prediction errors cgj,), plotted in figure 5.15, for
7=1,...,11. Inthiscase we vary 0 < v < % to get a filter coefficient —2 < a, < 2, and see two distinct
peaks, at a; = —2 and —1.2. The former of these corresponds to a filter with coefficients (1, -2, 1),
which maps fixed points in R™ to the origin in R™=2 It is no surprise that this filter is non-generic with
respect to the time series under investigation, as we have already seen that the Lorenz attractor has two
such unstable fixed points. The latter picks out orbits of frequency approximately 0.17, or period 6.8,

which is roughly the orbital period close to each of the two fixed points.

025 T T T T T 1 T

o
&

o

normalised error

0.05

Y
0 i i 1 H i ‘r “—\k‘r‘/m
-2 -1.5 -1 -0.5 0 0.5 I 1.5 2

middle filter coefficient

Figure 5.15 Prediction error obtained from a 9-delay filtered embedding of the 0.1-step Lorenz attractor. This plot
reveals two peaks: one, at a; = —2, corresponds 1o a filter which maps the two fixed points onto the origin; the other,
atay ~ —1.2, collapses periodic orbits near those fixed points.
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(a)

(b)

(©)

(d)

Figure 5.16 Delay reconstructions of the 0.1-step Lorenz system, obtained with various FIR filter coefficients. (a)
A direct embedding of M into R? is compared with the reconstructed attractors obtained with (b) the fixed-point
collapsing filter (1, —2, 1), (¢) the equally non-generic filter (1, —1.2,1) and (d) the generic filter (1,0,1). Plotted in
stereo.
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In figure 5.16 we illustrate the attractors obtained from these filtered embeddings. To achieve the
greatest possible clarity, we use lines to join consecutive points in these plots, and postpone the colour-
coding exercise until the next figure. In part (a) we once again plot the attractor embedded directly into IR?
using the unfiltered time series. Then, in part (b), we show the first three components of the reconstruction
obtained with the filter (1, —2, 1), illustrating the superimposition of the two unstable fixed points. Part {c)
corresponds to the filter (1, 1.2, 1), which adversely affects the reconstructed trajectory in the vicinity
of each fixed point in the anticipated manner. The attractor of part (d), however, which corresponds to
the now generic filter (1,0, 1), appears diffeomorphic to M3, as it should be. The attractors of higures
5.16(b), (¢) and (d) are replotted in figure 5.17, this time as points, colour-coded by the per-point errors
to which they give rise in the usual manner. Part (a), with fixed points mapped onto the origin, does not
actually reveal any strongly localised errors: this is most probably due to the fact that the collapse of the
fixed points has resulted in a self-intersecting set which comprises a large proportion of the reconstructed
object (bearing in mind that the trajectory does not actually pass through these fixed points, only nearby).
Part (b), on the other hand, graphically illustrates the way in which the orbits of period approximately 6.8
are collapsed by the FIR filter (1, —1.2, 1), with a region of large error clearly visible at each end of the
reconstructed object. In part (¢), however, the errors are more uniformly spread along the trajectory in R?,

reflecting the genericity of the filter (1,0, 1) in this case.

5.4 Signal separation

In section 5.2 we examined a linear approach to controlling the effect of stochastic noise on a delay
embedding (M, %) of the dynamical system (M, 2h). This statistical approach—projectionof M€
R™ onto a singular subspace of reduced dimensionality defined with respect o a noise floor in the variance
in R™—is necessary because stochastic noise is, by definition, unpredictable. But what if a significant
component of the ‘noise’ in question only appears (o be statistically random, but is actually the output of
a chaotic dynamical system: might we not then exploit this determinism and model the ‘noise process’
explicitly? Unfortunately, this will not be possible unless we can somehow separate the dynamics of the

noise process from those of the system under observation.

To put this problem into a more convenient context we consider the situation in which a signal (the
‘message’), which may or may not be deterministic, becomes corrupted—for instance, during transmission

down some channel—by additive ‘noise’ of a deterministic origin (the ‘chaos’), and it is our task Lo separate

(msg

i

vl(msg) + 'Ul((:hs)

these two components. We will write v; = , where v ) represents the message and

vfcw) is obtained from a measurement function v,,,: M — K on the noise process (M, 1p). We now
make one further assumption: the message must be band-limited to a known frequency interval. This need

not be too onerous an assumption, as it merely requires the message to be encoded in an appropriale fashion
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before transmission. We can now design a c-coefficient FIR filter, using the techniques described in section
5.3, to eliminate as much of the power in this interval as possible, ideally zeroing the message component
of the time series entirely. This operation results in a time series {u;} which is, to an approximation

. . < (chs
dependent on how successfully the message was removed, a filtered copy of {1)EC “)} only. In other words,
(chs)

if we write u; = (nsq + u; , where
c—1 ¢
(msg) _ (msg) (cha) (chs)
u; = E agv;_7 E Qv (5.5)
k=0

(msg)

then the coefficients a; through a,_, should be chosen so that u; is everywhere as small as possible.

Assuming that this filter does a sufficiently good job of removing the message from {u,}, we should
now be able to find a value n sufficiently large that the delay map &, M — R" is an embedding
on M (provided that the filter turns out to be a generic one, in the sense of Broomhead, Huke and

Muldoon), writing M =& M. (We will assume that the message has been encoded so that it can

n,v w,n

be removed with a filter with a spectral null at the frequency v.) What we would like to do now is follow
the procedure described in the previous section and approximate the inverse f ! of the diffeomorphism

Fopi My o M where M_ is the image of M under the delay embedding ¢ ‘M o RmEntes]

n, v v 777

and f, , is the restriction to M, of the linear transformation F,, , defined as in equation (2.18). Since

we have already assumed that f

n,v

is a diffeomorphism, we need only construct an RBF approximation

to a single component of f~L. In the examples to follow we choose the zero-step time serics generator

T hes
o 1)1(-( )

v

w

o = 'w,,,,,,(y,;)‘, although any component

(f;,,l/)l, which maps y; = (u;, .., 4,4,

should sufhce.
We quantify the degree of success with which the zero-step predictor w,, , approximates w,, with

the error

chs)yy .
GTL v (IL‘;' Z Hl’vn 14 U7 'Uf' “‘)”z (56)

1=1

where 2

Z,,¢ 1s calculated over the appropriate interval i in { u )} as usual. As we have ddmcd the signal

(clis)

separation problem, however, we do not actually have access to the chaos v; alone, but only as a

T
Ulgmqg) + Ul(p L‘l)'

component of the composite signal v, We therefore have no means by which to

construct ¢ and hence a direct approximation of w by minimising equation (5.6), is not possible.

»
and 111(“ 1)

v, m T,

, .
(msg) arc uncorrelated with each

To overcome this limitation we note that, to the extent that v,
other, the effect of the former component on an RBF approximation to the relationship y; = v, will tend
to average out over a sufficiently large training set, resulting in a misleadingly large fitting error which
does not fully reflect the success with which w,, , may actually have been approximated. We call this type

of fitting ‘blind’ prediction, and when we describe its application to the experiments below we will quote

the errors defined by equation (5.6), rather than the error which was actually minimised.
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The other potential source of error in this scenario arises when the message is not completely
eliminated by the filter: the presence of residual message components in M, is likely to enable the RBF
map 1@ to model the unfiltered message components in {v;} to a greater degree than might otherwise
be the case. This situation could be made to work to our advantage, in that if we did not know, a priori, the
frequency at which the message was encoded, we might be able to locate it experimentally by sweeping v
through an appropriate interval, as in the previous section, and looking for a particularly large peak in the
resulting error curve(s) as evidence that the message component had been successfully eliminated in {u, }

for a given frequency v.

In actual fact, it is not entirely out of the question that we might gain access to the chaos alone,
most likely by arranging for a constant message (o be transmitted for a given length of time. Access
to a ‘reference signal’ of this nature would enable us to construct a predictor for ’11,_5"‘]”) by minimising
(5.6) directly; this could be used more successfully to predict the chaos component in later messages. We
therefore call this method ‘targeted’ prediction. Although the presence of a non-zero residual message inu,
will still cause some degradation in the resulting RBF fit, it is unlikely that this effect will be as noticeable
as in the case of fitting a blind predictor. Of course, in order to apply an targeted predictor to an incoming

( «
i

. . . . - . . ~(chs
signal we must have previously trained that predictor on a reference signal, so all estimates v ) thus

obtained will be out-of-sample estimates by definition. However, since w,, ,, does notincorporate an ilerate

of 1) it would be entirely possible, should we choose to model 'u_l("'hs) with a blind predictor, to retrain that
predictor on each successive portion of signal as it arrives; the only cost incurred by this procedure would
be the requirement that prediction be performed offline, unless a sufficiently fast method of optimising the
RBF map was available. (One such candidate is the systolic array proposed by McWhirter, Broomhead

and Shepherd [27].)

We have now effectively separated message from chaos, with a degree of success dependent on the

. N . . . . . ~(¢h: ——
accuracy of the RBF fit: our estimate of the chaos is dircctly obtained as 'I)E( - n,, ,(y;), and the
" . < e lmsg) ~(chs) o : : : ,
message follows as v; = v, — . This approach (o signal separation has been documented

separately in Broomhead, Huke and Potts [4]. In the subsection immediately below we will describe the
result of applying this technique, using both blind and targeted predictive methods, (o the extraction of
a sinusoidal message from a chaotic time series generated from the Ikeda map. We will then explore a
slightly more complicated example, in which the message is generated from a binary sequence by phase
modulation and the chaos is generated by the Lorenz system. Although we will be making cxtensive use
of Fourier power spectra, to illustrate the effects of the FIR filters and their nonlinear inverses in the figures
to follow, it should be borne in mind that spectral analysis is of limited use in characterising nonlincar
systems, as the decomposition of a signal into a superposition of independent spectral modes is a purely
linear concept. On a more practical note, the frequency scale in all such plots will be labelled in units of

the sampling rate, so that a normalised frequency of 0.5 corresponds to the Nyquist rate.
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5.4.1 Isolating a sinusoidal message from lkeda chaos

For this first example we adopt the Ikeda system as the noise process, using the time series plotted in
figure 2.3(a) to form {1)5“”}. The message {vi('mg)} is a sinusoid with an amplitude approximately

equal to the standard deviation of the Ikeda time series, at 0.19, and a frequency equal to the deliberately

non-commensurate fraction v* =

9
32

of the Ikeda sampling interval (or a period of approximately 3.56
samples). This frequency is stopped by the FIR filter (1,0.3902,1), and was chosen so as to be some

distance (in terms of the middle coefficient a, ) from the non-generic filter (1,0, 1) revealed by figure 5.11.
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Figure 5.18 Coarsely sampled sinusoid with additive deterministic noise generated from the Tkeda map, superim-

posed on the sinusoid itself. The addition of the chaos, at a slightly higher standard deviation than the sinusoid,
effectively hides the message.

A portion of this message is plotted in figure 5.18, along with the composite time series {v,;}. Itis
clear from this figure that the message component is significantly degraded by the presence of the chaos.
In figure 5.19(a) we plot the corresponding power spectra, obtained by Fourier decomposition, of both
message and composite time series. Not surprisingly, the power in the message componentis concentrated
entirely in a narrow peak, centered at the expected frequency. When added to the Ikedal time series, this
peak emerges from what is otherwise a typically broadband chaotic power spectrum. In figure 5.1 9(b) we
plot the power spectrum obtained from the filtered time series {u,}, from which it is immediately evident
that the message component has been almost completely removed. A comparison with figure 5.19(a) also
illustrates the inevitable fact that the effect of the FIR filter is by no means limited to the vicinity of its

target frequency, but extends throughout the entire spectrum.

We now construct the filtered embedding &, .: M — IR . In the first instance, we use the composite
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Figure 5.19 Power spectra for a sinusoid with additive lkeda chaos, before and after filtering. (a) Superimposing
the corrupted sinusoid on the sinusoid itself, the combined power spectrum is unchanged, other than at the frequency
v o= %, and exhibits the broadband nature Lypical of chaotic time series; (b) after filtering to remove the sinusoid, the

spectrum has a large hole at the expected frequency, and is somewhat altered from its unfiltered form throughout the

frequency range.
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Figure 5.20 Isolated chaotic signal obtained through blind prediction from the filtered time series. The estimated
time series is a reasonably good approximation to the chaos.

—

. . . . chs
time series {v,} to construct a blind predictor w (eles)

for the chaotic component v; = Wy e (y,). The

5,p*
errors, calculated from equation (5.6) on training and test sets, of ¢; . =~ 0.23 and 0.25, respectively,
(chs)

are reflected in the reconstructed values v; = 'ug;. (y;), plotted in figure 5.20 on top of their target

values over part of the test set. Compared to the original, corrupted time serics of figure 5.18, this estimate

: . : - :hs . . .
is relatively close to its target value of 'ul(-‘ ) almost everywhere, although certain regions in M, .

apparently give rise to significantly larger errors than others. Nevertheless, this is an encouraging result,

particularly as it represents the blind approach to signal separation, which relies on the averaging aspect

of the LS RBF algorithm to counteract the presence of the v,ﬁm””) component in v, and is illustrated by an

out-of-sample data set.

The corresponding estimates 1)5"”‘{’) =v, - ';)I(L ) of vﬁ""'”) are plotted in figure 5.21(a), superim-

posed on the message itself: blind prediction has apparently succeeded in isolating the message (o a fair

degree of accuracy. This is because the unnormalised prediction error o, €, ., in this experiment, is
small compared to T g where r;fmg is N times the variance of the message. If these terms had been on

the same order of magnitude then we would have been unable (o extract a useful estimate of 'uE“"SW from
v, with the predictor in question. In other words, in any experiment of this nature, the ratio of 7, ¢, ,, 10

O nsq TEPTESENLS the limiting factor in our ability to reconstruct the message by modelling the chaos. On

the other hand, for the purposes of predicting the chaos itself, the value of o, is immaterial, provided that

_ (msg)

we are able consistently to achieve a filtered value of u; <<l

T

. We also plot, in figure 5.21(b),
the power spectra of original and predicted message. A comparison of this plot with that of the original

and corrupted messages, in figure 5.19(a), reveals a decrease in power of one or two orders of magnitude
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Figure 5.21 Isolating a sinusoidal message by subtracting the blind predicted chaos from the corrupted signal,
plotted in both time and frequency domains. (a) the recovered message is comfortably close to the original; (b) its
power spectrum now has a ‘noise floor” an order of magnitude below the level of the chaotic power spectrum obtained

from the unfiltered signal.
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everywhere other than at v = v*. Blind prediction has effectively lowered the ‘noise floor’ by removing a

substantial part of the chaos from the composite signal.
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Figure 5.22 Isolated chaotic signal obtained through targeted prediction from a filtered time series. The estimated

time series is now an excellent approximation to the chaos.

For the sake of completeness, we have also applied the targeted prediction technique to this same
. . 18 . P - —— N . .
data set, replacing v. with 'ugc va) in the training set for the w. .. The resulting errors, now obtained b
2 1 E D8 25‘

direct minimisation of equation (5.6), are ¢ ,. & 0.0066 and 0.0074, on training and (est st respectively.

(chs)

Given the small size of these errors, it is not surprising that the image v; ol y, € Mg ., plotted
in figure 5.22, is indistinguishable from the the chaos itself, confirming that the effect of the FIR filter
(1,0.3902, 1) on the delay embedded Tkeda system is trivial to undo with an RBF inverse o fy .. Once
again, in figures 5.23(a) and (b) we plot the corresponding actual and estimated message values and power
spectra, respectively; naturally, these exhibit the same degree of accuracy as does the previous figure. In
part (b), in particular, we notice that the effective (chaotic) noise floor has heen substantially reduced from

its original level in {v;} by this method.
5.4.2 lIsolating a phase modulated message from Lorenz chaos

We explore this approach further by attempting to recover a phase modulated message from the chaotic
time series {vfC 5)}, plotted in figure 2.4(b), obtained by integrating the Lorenz system with a step size
of 0.1. Our first step is to construct the time series {s; = £1}, where the sign of s; is allowed to

change randomly once every 30 samples. This sequence is used to modulate a sinusoidal carrier wave,
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Figure 5.23 Isolating a sinusoidal message by subtracting the targeted prediction of the chaos from the corrupted
signal, plotted in both time and frequency domains. (a) the recovered message is indistinguishable from the original;

(b} its power spectrum has a true noise floor at the level of numerical precision.
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with frequency v* =~ 0.17, to give v1-7 59) = s, cos 2mrv*4, which is the message we will be attempting
to reconstruct in this example. This method of encoding is known as phase shift keying (PSK), as each
change of sign in the binary sequence {s,} gives rise to a corresponding phase change of 7 radians n the
modulated waveform {vfmsm}, and is commonly used in the transmission of binary information. The
demodulation process consists of a second multiplication of v; by the carrier wave, followed by a low-pass
filter with » < v*. It should be noted that a waveform encoded in this manner will necessarily lose some
of its high frequency components as a result of the demodulation process. However, as it is the binary
sequence itself in which we are interested, we can clearly accept any degree of smoothing provided the
recovered signal exhibits the necessary zero-crossings. The PSK process is described in more detail in

Taub and Schilling [40].
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Figure 5.24 A phasc modulated message corrupted by additive Lorenz chaos is superimposed on both its indi-
vidual message and chaos components. Owing to the large amplitude difference, the corrupted signal is ncarly

indistinguishable from the chaos in this case.

The carrier frequency v* was chosen so that the FIR filter (1, —=1.007, 1), with a spectral null at 0.17,
also removes a significant amount of power at v & 0.15, whose corresponding filter has already been
shown to be non-generic with respect to the Lorenz system. This should make the task of inverting its

effect on a delay embedding of the Lorenz system a little harder than might otherwise be the case. A

further complication is due to the artificially high frequencies generated by the phase changes in {'U,E"”Sg) 1
(msg)

which will not be zeroed by the chosen FIR filter. The amplitude of v; was chosen to be one tenth the

standard deviation 7.92 of the chaos, which should also have a negative effect on our ability Lo recover it

by predicting the chaos, as previously noted. We plot the composite time series elements v;, superimposed
(¢

i

(rnsg
i

on both the message v!™*9” and the chaos v\"*) in figure 5.24.
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Figure 5.25 Power spectra for a phase modulated message with additive Lorenz chaos, before and after filtering.
(a) Superimposing the corrupted message on the message itself, we see that the message is at least an order of
magnitude below the chaos, whose spectrum is virtually unchanged by the addition of the message; (b) the filter leaves

a hole at the expected frequency, removing the carrier along with a substantial proportion of the overall power from

the signal.
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In figure 5.25(a) we plot the power spectra obtained from both original (phase ‘modulated) and
corrupted messages. In contrast to the corresponding spectra calculated in the previous experiment (figure
5.19(a)), the contribution of the message component is hardly noticeable in the combined spectrum, which
exhibits a roughly exponential fall-off with increasing frequency. Even atits peak, the power in the message
is an order of magnitude lower than that in the chaos. The power spectrum of the filtered time series {u;}
is shown in figure 5.25(b). As expected, in addition to completely cancelling the carrier frequency, this

filter also removes a substantial proportion of the power at v = 0.15.
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Figure 5.26 Chaotic time series estimated by blind prediction, superimposed on the original. The predicted curve is
observably close to its target. '

We now construct a filtered embedding of M in R? and, using the time series {v, } as target, train the
g g i g
(chs

bhind prediclorw@, to reproduce the chaotic component v; ) = Wy . (y,), relying on the LS algorithm
to take care of the message component of v, assuming that it is uncorrelated with the chaos. The resulting
errors, calculated over training and test sets from equation (5.6), of €, . &~ 0.058 and 0.060, respectively,

. . . J0 -
are reflected in figure 5.26, which superimposes ﬁgf “) on 7)§L )

over a portion of the training sel (there is
no over-fitling, to speak of, so a similar picture is obtained from the test set).
As this figure, and the small error values demonstrate, we have succeeded in fitting the chaos o a

reasonable approximation, despite having deliberately chosen a FIR filter close, in frequency space, to

the non-generic filter (1, —=1.2,1). However, when the errors visible in this plot are compared with those

due to the presence of the message component in 5.24, it is not obvious that this blind estimate of ’uﬁcus}
. . . ; < ~(7 ~{chs ’ .
is sufficiently accurate to provide as good a fit 5™ = v, — 5L 10 0™ as was obtained in the

previous example. We plot these time series in part (a) of figure 5.27, which reveals a substantially worse
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amplitude

fit than was evident in the Ikeda experiment. Message and blind estimate are nevertheless recognizably
close, over most of the figure. Furthermore, the power spectrum of {59} plotted in part (b), is similar
o l 1 p [
~ ns ~ . —— . . . .
to that of {v§7 'q)}, confirming that 1y . has succeeded in bringing the chaotic background well below

the level of the carrier frequency »*, although the harmonics are effectively buried.
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blind estimated message
04 message -0 -

-04 F i

-0.5 L . :
500 550 600 650 700
time

Figure 5.28 Result of demodulating the original and recovered messages. Demodulation of both messages causes
a loss of high-frequency information, but despite the large errors incurred in the blind prediction process we have

succeeded in recovering the binary sequence to a good approximation.

To complete our analysis of the blind predictor we plot, in figure 5.28, the result of demodulating
both the original message and its estimate. This figure provides a useful illustration of the low-pass
filtering which is an inevitable consequence of the demodulation process. The demodulated estimate
largely preserves the gross structure of the binary sequence it is intended to approximate, although it is
subject to rather more high-frequency oscillation. If we were to merely concern ourselves with the sign of
the reconstructed signal, however—tracking only the zero-crossings, in other words—we would find that
it was a relatively faithful copy of the original sequence. (Assuming that we had access to some common
time frame of reference for the changes in sign we might go even further, in this particular application,
using our prior knowledge of the 30-sample delay between sign changes to eliminate a percentage of any
spurious zero-crossings which might arise.)

In the case of the targeted predictor, trained by direct minimisation of equation (5.6), we oblain only a

. . (ch - (chs
marginally better estimate UEC 1) of vfc H

) than in the blind case, with normalised fitting and test errors of
€g - =~ 0.055and 0.059, respectively; any improvementin the estimated time series is virtually impossible
to discern. It is, of course, no surprise that as the message component becomes smaller (with respect to

the chaos) the advantages of having access to the chaotic signal on its own decrease in proportion; in any




case, it is the blind predictive method on which we would typically be forced to rely in practice, and we

feel that its usefulness has been successfully demonstrated by this, and the previous example.
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Chapter 6

Conclusions

We set out in this thesis to investigate the application of radial basis function maps to the detection of
diffeomorphisms between delay embedded dynamical systems. To thisend, we defined the diffeomorphism
as an invertible, differentiable map whose inverse is also differentiable, using it in turn to define the d-
dimensional (differentiable) manifold as a topological space locally diffeomorphic to R?. We then defined
the dynamical system (M, ), consisting of a manifold M and a diffeomorphism p: M — M, and
explained how, through the use of a time series {v,} obtained from almost any measurement function
v: M — R, Takens’ theorem allows us to construct a differentiably equivalent copy (M, 4, ) of
(M, 2h) in R™ with the delay embedding @, : M — R™, provided that m > 2d. With this framework
in place, we went on to discuss the construction of filtered embeddings, where a lincar transformation
F:R™ — R" is applied to (M

1P, ) to obtain a further copy (M., 9, ) of (M, ). If F embeds M|

m> m
then its restriction f: M, — M, to M is necessarily a diffeomorphism. Conversely, therefore, iff we
could show that f, so defined, is a diffeomorphism then we would have established the existence of a
differentiable equivalence between (M, v, ) and (M, ,4p,,). (Because we are specifically interested in
dynamical systems, we insisted that the correspondence between z, € M, and y, € M, be determined
by a common time index i.) Of course, establishing that F embeds M~ does not necessarily tell us

anything about @ but we overcame this issue with appropriately designed experiments.

v,m

In order to develop a tool with which to determine whether or not a given f is a diffeomorphism
we introduced the RBF map, a powerful nonlinear model, linear in its basis functions, which we use to
construct approximations f: R™ — R™ and f/—\lz k™ — R™ to f and its inverse. We showed that in its
classical form f is generically an embedding of compact sets, provided that p > m, which means that
even if f is not a diffeomorphism, its RBF model, optimised by LS error minimisation, almost certainly

will be. We therefore formulated a test for diffeomorphism which consists of examining the errors arising
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in fitting both fand f—\l suitably optimised by the method of LS, to determine whether or not either
approximates a map which is nor an injective immersion. We also considered the possibility that the LS
error might prove insufficiently sensitive to the self-intersections in R” or R™ responsible for a loss of
diffeomorphism. To detect such cases, we described an analysis of the distribution of per-point errors,
through which estimates of the Lipschitz constants of f and its inverse—if they exist—might be oblained.

Before proceeding further, we analysed the method of LS in some detail, deriving its solution in terms
of a fixed set of centers and also through Chen’s adaptive algorithm, known as forward selection. For
the former case, we introduced a compelling ad hoc center selection method, which we called repulsive
selection, and evaluated its performance on a particular function approximation problem by comparing
the errors resulting from a straightforward linear LS minimisation, using distributions of both randomly-
seeded repulsive and purely random centers, with those resulting from forward selection of an equivalent
number of centers. The results clearly showed that the repulsive method outperforms random selection (on
average) by a substantial margin, although the forward selection method achieved a similar improvement
over repulsive selection. The implementation of forward selection is, however, substantially more time-
consuming than that of linear LS, so we decided to concentrate on repulsive selection for the purposes of
this thesis.

We then investigated the phenomenon of over-fitting in LS maps, in which the model fits relationships
in the training set but not the test set, typically due to the presence of noise in the former. The hallmark
of over-fitling is a systematic divergence of training and test errors with increasing numbers of centers
(degrees of freedom), and a traditional approach (o its elimination is to restrict the rank of the lincar part of
the RBF map through projection out of singular subspaces whose variance is below some predetermined
noise floor. We described an enhancement to this technique which consists of reordering the basis vectors
by their contribution to the overall fitting error before climinating those with the smallest contribution. We
compared the result of applying both methods to a particular map, and found that the enhanced version
consistently produced the smallest error, for a given rank, on both training and test sets. Despite this
success, however, we did not attempt to constrain the rank of the RBF models used in later experiments,
as we would be more concerned with the variation in error with some experimental parameter, and rank
truncation would introduce an unnecessary level of complication at that stage.

As an alternative to the potential shortcomings of the LS error as indicator of a non-diffeomorphic
relationship, we also considered a symmetrical form of the RBF map, trained by minimising Van Huffel’s
TLS error. In this form, we showed how the question of whether or not f is a diffeomorphism can
be reduced lo an analysis of the degree of ill-conditioning exhibited by two square matrices which, in
composition, form the linear part of the symmetrical RBF map. We noted, however, that the TLS method
was likely to suffer from numerical instability brought on by rank deficiencies in either its domain or range.

Having discussed the LS and TLS approaches to RBF approximation we went on to compare their

usefulness in detecting diffeomorphisms between manifolds not obtained by delay embedding. These




experiments consisted of fitting RBF approximations to maps f,, between projections of a circle into R?,
for different angles of projection, and between projections of a 2-torus into R® and R*, for various ratios
of radii. In both cases, the problem domain was designed around a critical parameter value p* so that the
map in question was a diffeomorphism only for g < p*, and when the diffeomorphism broke down it was
through loss of immersivity (at ¢ = p*) or loss of injectivity (for g > p*) in the forward direction. We
theretore hoped to find good approximations to both fﬂ and its inverse for g < p*, but for g > p* we
hoped to find fﬂ—\l observably unable to find a good fit to its training set. In both of these experiments
we found that the LS error, calculated in both forward and inverse directions, was actually an extremely
good indicator of diffeomorphism: the forward error was consistently small, while the inverse made the
expected, clearly defined transition from small to large error as u increased through its critical value. Our
expectation that a LS RBF map should be able to approximate a map f,, which, although not necessarily
a diffeomorphism itself, is nevertheless a function, was confirmed by the uniformly small forward error.
That the inverse error should be so successful at detecting the non-invertibility of fﬂZ/L" however, was
less expected, but is clearly the result of attempting to approximate a one-to-many relationship with the
RBF map f,j\l The success of this approach—using a scalar LS error to detect non-diffeomorphic maps
of this kind—is very encouraging, and stems from our decision to construct independent approximations
3”; and ]?;\1 to the relationship in question. It is also a little surprising, as we had been concerned that the
averaging process inherent in the LS error calculation might make it insensitive to large per-point errors
occurring on a self-intersecting set of limited extent. That this turns out not to be the case (at least in
these two examples) is apparently due to the fact that a small LS error can not generically be found by
constructing an RBF ‘approximation’ (in the limited sense of chapter 4) to a non-injective, or even merely
non-immersive f“.

On the assumption that insensitivity of the LS error measure to localised per-point errors might
become an issue in future experiments, we applied the Lipschitz analysis to the maps between both circles
and tori. The upper and lower bounds, calculated in this manner from individual RBF approximations ]/’;
and f/j\l were unfortunately extremely noisy when plotted versus ji. As a result, in neither experiment
could we clearly discern the behaviour predicted by the corresponding analytical calculations (although
to a very rough approximation the curves exhibited similar trends). This is, however, 1o be expected on
moving from an average (the LS error) to an upper or lower bound; however, when we examined the error
distributions, averaged over several RBF models, we saw fairly strong—if subjective—evidence for the
predicted bounds; this led us to move the average over random repulsive center seeds inside the extremum
calculation, to obtain new empirical bounds more closely resembling their analytical analogues.

The symmetrical RBF map, trained by minimising the TLS error and applied to both circles and
tori, exhibited a similarly large variance with respect to the choice of centers, presumed to be due to
the sensitivity to rank deficiency noted earlier. As predicted, the condition numbers mirrored the errors

closely, and could clearly be used in their place. The overall form of these curves, however, was roughly
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as expected in both experiments, so the method certainly deserves further investigation.

Having found that the LS error, calculated in both forward and inverse directions, actually produced
the best quantitative results in both circle and torus problem domains, we finally applied this technique
to detecting diffeomorphisms between delay embedded dynamical systems. Using both numerically
simulated and experimentally generated time series {v,}, we looked at four families of maps f, each the
restriction to M, = @, M of a linear transformation F: R™ — R . By virtue of the linearity of F,
these experiments were once again designed so that a loss of diffeomorphism between M and FM_ |
would occur only through a loss of injectivity in f, so we were able to use this prior knowledge to avoid
constructing an explicit RBF approximation to f. And, as a consequence of the delay structure in M,
we were able further to restrict our task to fitting one or more individual components of f~!.

In the first such experiment we attempted to determine a minimum embedding dimension m* for
the system (M, ¢)) by fitting a predictor for the time series generator w,,,: M, — R. This experiment
was quite successful: in the case of the noise-free, numerically simulated Ikeda and Hénon systems, and
the 0.1-step Lorenz system, we were able (o find—in each case—a clearly defined estimate of m™* which
agreed closely with that predicted by Takens (bearing in mind that Takens essentially establishes an upper
bound for the minimum embedding dimension). In the case of the 0.01-step Lorenz system, however, we
were unable (o determine a suitable value for rn* due to the limited size of the delay window used. In the
presence of noise, we found that the Lorenz systems integrated with both 0.01 and 0.1 step sizes gave rise
to an error substantially larger than in the noise-free cases, leading us to pose the open question of just
how small such an error should be before we ascribe it to the approximation of a diffeomorphism between
embedded dynamical systems.

7

When we applied the same procedure to the projection of M into singular subspaces of R™ we

found that for m large enough we could indeed determine a minimum subspace dimension n* such that
the predictor ur__ .

. R™ — R achieved approximately the same error for . > n* as did the corresponding

——

predictor w,: K™ — R on the unfiltered manifold. However, we did not see w,, ., < w,, for any of
the three systems examined, indicating that dealing with the variance in the orthogonal complement of
R™ did not—at least in these examples—improve the predictive ability of the resulting map, although it
undeniably resulted in a simpler map (in the sense of fewer degrees of freedom). The smallest error was
always obtained from the unfiltered delay reconstruction, but in only onc of the experiments performed
was M actually embedded in R™ to begin with (the noisy Lorenz time serics and laser intensity time
series have already been shown (o be non-generic observations, in the sense of Takens), so it is not unlikely
that further experiments might reveal a more positive result for the singular suBspacc projective method.
The third experiment was a little more complex, involving a linear transformation which implemented
a delay reconstruction from a FIR filtered copy {w,} of the original time series {v; }. Our aim was to detect

periodic orbits in (M, 1)) by tuning the FIR filter to kill a particular frequency in {v, }, then looking for a

significantly large error in predicting the original time series as a function of the filtered delay vectors in the
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image of & The rational was that a FIR filter generically preserves the dynamical information in {v; }

u,n’

necessary for @, to be an embedding on M, so if we find that f = &, | o P

wn © Py oy is not adiffeomorphism

only for a filter designed to kill the frequency ©* then we can assume that there is an orbit of period l—}— in
M visited often enough to influence the RBF approximation under investigation. This approach proved
successful in the analysis of the Ikeda, Hénon and Lorenz systems, identifying orbital periods which were
manifestly present in their respective attractors.

Having established that we could generically ‘undo’ the effect of a FIR filter on a delay embedding
by constructing an approximator for {v, } in this manner, we went on to examine an interesting application
of the technique, in the form of the separation of deterministic noise, in the forﬁ] of a time series {'UE"/”) 1,
from an encoded message {vl(msg)}. Relying solely on the requirement that the message be encoded in
such a way that it could be largely eliminated by a FIR filter tuned to stop the frequency ©*, we found that
we were able (o successfully ‘invert’ the filter, and hence reconstruct the chaotic component, with the RBF

pu—

approximation w, . to the time series generated by w,, .. The degree of accuracy to which we were

thereby able to extract the message itself, by subtracting the estimated chaos, was scen to depend on the

ratio of its standard deviation to that of the residual {81(:("}"5) - 1)5”113) }. In constructing w,__,

e Werelied on
the incoherence of chaos and message to take account of the presence of the latter in the RBF training set,
but we noted also that by arranging for periodic interruptions in the message broadcast we could reduce
the residual further by approximating the chaos directly. This approach turned out be very successful,
in terms of predicting the chaotic component, for both a sine wave corrupted with Ikeda noise and for a
phase-modulated signal corrupted with Lorenz noise. In the former example, the extracted message was
also extremely close to the original, using both blind and targeted predictive methods, and in the latter it
was somewhat less successful, due to the relatively small message amplitude, but still recognizably intact.

In conclusion, then, we have shown that the radial basis function map may successfully be used to
detect the existence, or not, of diffeomorphic relationships between delay embedded dynamical systems,
despite having also shown that it is itsell generically an embedding of compact sets, and therefore at
first sight unsuited for such a purpose. We overcame this apparent limitation by fitting LS RBF maps
in both forward and inverse directions, yielding an crror measure which we have demonstrated (o be
sensitive to those self-intersections, possibly of small measure, which may occur as the resuit of (for
instance) a failed delay embedding. We have investigated several applications of this method to maps
between delay embedded manifolds, and achieved encouraging results in all cases. These experiments are
of more than academic interest, as they deal with issues commonly raised in the course of experimental
time series analysis, such as the determination of a minimum embedding dimension and the choice of a
singular subspace for removal of stochastic noise. The final experimentin deterministic noise cancellation,
combining the results of Takens on delay embedding with those of Broomhead, Huke and Muldoon on
FIR filtering, is of particular interest, as it has potential application to the more general field of signal

processing.
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Appendix A

Inverting radial basis functions

In this appendix we prove that the nonlinear transformation ¢: R — RP, introduced in chapter 3, is an
injective immersion for p > m and hence, by the result stated in chapter 2, an embedding of compact
subsets M C R™. We then go on to discuss the implementational aspects of calculating the inverse of

®| o4 by the method of least squares.

A.1 Proof that ¢ is an injective immersion

To show that ¢ is immersive we must show that it is differentiable and that its derivative Dg: R™ — RP is
injective. The differentiability is easy: each component w;(x) = ¢(l|lz - c,;|l) is differentiable provided
that ¢ itself is differentiable on R* and ¢'(0) = 0. For p > m we can show that D is injective by

showing that it has full rank. We therefore write, for some z € R™,

. (r))
e @ (r,) Lk (A1)
Jz, 7o
where 7, = —c; andr; = ||r ]|. We can thus decompose D as the matrix product
@' (ry) 0 0 T,
0 @ (ry) - 0 T,
Dp=| 2 . ? (A2)
0 0 e (/)'('rp) ’;‘\,,)

where 7; = 7, /r; denotes a unit vector in the direction of ;. We now require the p by m matrix of unit

veclors Fj Lo have rank m, which means that p > m and at least m of the "A'J/; must be linearly independent;
the condition on p is a strict inequalily to take into account the situation when ?i =0, thatis z = ¢\

J
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for some ¢;. Now consider the diagonal matrix of derivatives @'(r;). The case when ¢'(0) = 0 does not
concern us since it only occurs, by definition, when Fj = 0. However, we can clearly not let d)’(r].) =0
anywhere else because that would zero a non-zero unit vector and might reduce the rank of Dp. So, a
sufficient condition for immersive ¢ is that ¢ be strictly monotonic on R* .

It only remains to show that ¢ is injective. To do this we must show that if @ = w(x) then z is

unique. We therefore write the components of a as

a; = d(llz - ¢,

= ¢ (a)) = |lz - ¢,

) ) (A3)
= lz[]” - 2¢; - x+ ”C_;Hd
1.
= hy=c¢; o~ 5”3’”“
where
ho= L P A4
b = 5[”%” —¢ (”’j)] (A.4)

The solution to this set of equations (7 = 1,...,p) is the intersection of p distinct (m — 1)-spheres
in R, with widths (/)_E(aj) and centered at the c;. However, the intersection of two (m — 1)-spheres in
R™ lies in an (m — 1)-plane, so we if subtract any one of these equations from the rest, notionally ‘fixing’

acenter, ¢,, we gel p — 1 linear equations of the form

(¢;—¢p) x=h; =Ny 4 (A.5)

forj =1,...,p, where j # k, the solution to which is the intersection of p — 1 distinet (m, — 1)-planes in

R™. Then, provided that the ¢; — ¢, span R™, z is uniquely determined if p — 1 > m, that is, tfp > m.
p 7 K SP ] y I il

A.2 Approximating the inverse of ¢

[t is clear that the solution for © = @™ (a) given above only exists if @ € @R™. In practice this may
often not be the case: for instance, @ may be the image of a linear transformation in a symmetric RBF
map. If this is the case then a fairly arbitrary, but intuitively appealing course of action is to make the
smallest possible adjustment to @ such that it lies in the image of K™, and then find that € R which is
the inverse image under ¢ of that adjusted point. We will denote this point by @ € IR”. We therefore wish
to find @ so that [|a — al is a minimum, and hence find x = ¢~ (@).

This is a nonlinear optimisation problem, so we cast it in the form of equation (A.5) to make it linear.
We therefore define the p by m matrix C, whose rows are the transposed centers ¢; and the p-vector h,

whose elements are given by equation (A.4), enabling us to recast (A.5) as
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Cyx = h, (A.6)

where C,, = C — 1c¢} and h;, = h — 1h,, with 1 standing for a p-vector of ones. We now define the

p-vector h, whose elements h,j are given by

h,]- =

lle; I” - ¢2(@,)] (A7)

| =

as the LS approximation to h, written

C.x=h, (A.8)

and found by minimising ||k — h||?. This equation holds for any value of k, so rather than choose a single

value, we write

P P
g C.z= E h,
k=1 k=1

T ~ P (A9)
= (pC — Ich):n =ph — IZ}%
k=1 k=1
= (C—1ch)z = (h - 11)
where ¢, and lAz,O represent the means of the distributions of {cj} and {Z,} respectively, and thus
Coz =h, (A.10)
The solution then follows as
z =Clh, (A.11)

where C’J is the pseudo-inverse of Cy, as defined in section 3.2,
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Appendix B

Implementation

All of the experiments described in this thesis have been carried out using a piece of soltware designed
specifically for that purpose. The software comprises four separate programs: a ‘parent’ program and
three subprograms which are run under the parent’s control when required. A fair amount of time and
effort has gone into the development of these programs, which are written in C and run on a network of
multi-processor Unix workstations. Various subroutines have been adapted from Numerical Recipes in C
[34]. In addition to this set of programs, a number of other programs have been written. These produce
time series data by numerically iterating or integrating the maps described in section 2 and perform various
transformations on those time series. In this appendix we will describe in some detail the structure and
operation of the suite of programs which make up the main picce of sofiware.

There are two available interfaces to the parent program: an X Window interface and a text-only
batch interface, both of which allow the user to manipulate the same set of underlying data objects. The
relationships between these objects will be discussed in the next scction, and the two interfaces will
be described in the following sections. To take advantage of this dual functionality, the parent may be
compiled into two distinct forms: the first, called s, is compiled with both interfaces; the second, called
1sb for no satisfactorily explored reason, is compiled with only the batch interface, resulting in a much

smaller binary.

B.1 Structure

The structure of the program takes the form of a hierarchy of objects, implemented as linked lists of C
structures. This hierarchy descends from a single base object. The base serves primarily as an anchor for

its descendants, an arbitrarily long list of root objects. Each root contains a distinct time series (which
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may be multi-valued). It also stores variously calculated estimates of that time series, along with their

associated per-point error magnitudes (see section 3.2.4) and power spectra (if required).

Descended from each roor is an arbitrarily long list of trajectory objects. Each of these holds the
trajectory resulting from the application of an n, 7-delay window (o the (possibly FIR filtered) time series
stored by its parent, with the added wrinkle that if the time series in question is multi-valued then the
resulting delay vectors are formed by concatenating the vectors arising from cach individual time series—
this latter feature also enables us to work with general multi-valued data sets, such as the circle and torus
data of chapter 4, merely by setting n = 1. A trajectory may also store a f)l‘inuipﬂl component basis,
calculated from a segment of its own trajectory, as a PCA object. This trajectory may then be further
modified by projection onto a PCA basis subset stored either locally or, given the appropriate dimensions,
in any other frajectory object. (As an implementational nicety, to minimise storage requirements, if no
projection has been made, the time series is single-valued and unfiltered, andn = 7 = 1, then the trajectory
merely references, with the appropriate offsets, the time series stored in its parent roor.) A trajectory may

also store various trajectory estimates, along with their per-point error magnitudes.

Descended, in their turn, from each trajectory, are two lists of phi and RBF objects, respectively.
Each phi implements the nonlinear part of an RBF map, storing the appropriate centers and basis function
parameters (if any). Each RBF implements a general form of the RBF map, storing the linear part locally
and referencing zero, one or two phi objects as required. That is, an RBF may be cither a lincar map
or a composition of one or two nonlinear maps with a lincar one, following chapter 3. 1f no phi’s are
referenced then the RBF is linear. If a single phi is referenced, either from the RBF’s parent trajectory
or from any other, then it is applied to the domain, or range, respectively, resulting in the ‘classical” RBF
of section 3.2. If a phi is referenced from both the parent and another (possibly the same) trajectory
then we have the ‘symmetrical’ RBF of section 3.3. These RBF’s can be trained 1o approximate the
relationship between trajectory segments in any two frajectory objects, between any two segments of the
same trajectory, or between a trajectory and any root time series segment, with a variable prediction offset.
Trajectory segments may then be mapped through a trained RBF 1o any other trajectory or root data set of

the appropriate dimension, thus encompassing all of the fitting tasks required for this thesis.

These objects form the primary structure of the program. With the exception of the base, objects
may be created or deleted at will during the program’s execution: if an object is deleted then so are all of
its descendants. Deletion of the buse terminates the program. Certain classes of object—specifically, the
PCA, phi and RBF—may also be saved and loaded between runs, to eliminate unnecessary repetition of

time-consuming calculations.
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B.2 Process control

Among the various functions built into the parent program, there are three which deserve a special mention:
these are the three which are sufficiently complex and time consuming to be implemented as subprograms,
rather than subroutines. All three are controlled from a trajectory. The first is called pca and returns the
principal components, in the form of a PCA, of the distribution of delay vectors in a specified interval of
the trajectory. The second is called fir and returns an RBF, fitted between the specified interval of the delay
reconstruction and a (possibly different) interval in another trajectory or the time series in a root. The
last is called iterate and, not surprisingly, iterates an RBF with a one-dimensional range as a time series
predictor.

Each of these subprograms is run by ‘forking’ a copy of the parent program onto another (or the
same) processor and then replacing that copy with the appropriate subprogram. The necessary data is then
sent to the subprogram via a Unix ‘pipe’ and operation in the parent program is free to continue while the
subprogram finishes its calculations. On return, the results are piped back to the parent, which interrupts
whatever it’s currently doing to take the appropriate action and allow the subprogram to exit.

For simplicity, the pca and iterate processes are just forked onto the same processor as the parent,
and only one is allowed to run at a time from a given trajectory. However, the fit process is implemented
in a more flexible manner, so that several may be run in parallel by the same rrajectory. To this end, a
list of ‘virtual” processors is specified by the user and maintained by the parent. Each element of this list
can represent a physically distinct processor, or several elements can refer o the same physical processor.
While a fif process is running on one of these virtual processors, that element of the list is flagged as busy.
When the user requests a new fir process the list is checked: if all of the elements are busy then the parent

goes into a ‘wail’ state until one becomes free; otherwise the process is forked onto the first free element.

B.3 The batch interface

In batch mode, the program is driven by a list of commands contained in an ASCII file. Every program
function is accessible as a unique command, usually followed by a list of optional parameters and a
matching End keyword. Default values for these parameters can be set from within the batch file and from
the command line. The flow of execution within the batch file can be controlled by grouping adjacent
commands together using the keywords Loop, Seq and Par, each of which also has a matching End.

The Loop .. . End construction takes paramelters which define an integer loop variable with a specific
range: the group of commands within this construction is repeated for each value of the loop variable.
The variable itself may be substituted within the loop for any parameter, cither directly or mapped onto a

real-valued range specified by a further pair of parameters after the Loop command.
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The Seq ... End and Par . .. End constructions, conceptually borrowed from the OCCAM language,
determine the mode of execution for certain commands within those groups: commands immediately
enclosed by Seq . .. End are executed sequentially; those immediately enclosed by Par . . . End are executed
in parallel. At present, this distinction is only valid for the forking of a fir process. Within a sequential
group, once a fir process has been forked, execution continues from the next peﬁding command outside that
group, returning only after the relevant process has exited. Within a parallel group, multiple fir processes
are forked in parallel as long as there are free virtual processors available for them to run on.

All three of these group types can be nested indefinitely, so that it is the innermost group which
affects the mode of execution at a given level. However, a sequential group cannot be nested inside another
sequential group unless there is an intervening parallel group, and vice versa. Inside a sequential group, a
parallel group and its subgroups are just treated as a single sequential command; inside a parallel group, a
sequential group is similarly treated as a parallel command. By default, the batch file itself is treated as an
outer sequential group. Sensible use of these constructions allows efficient use (o be made of a list of virtual
processors in batch mode: commands which depend on the results of fir processes can be grouped with
them inside sequential groups, while the use of outer loop and parallel groups enables multiple instances
of these processes to run in parallel, making good use of the available resources.

An example batch file is illustrated in figure B.1. This particular file was used to generate one of
the error curves in figure 5.1, used in the detection of periodic orbits in the Ikeda system. The first
command, “"Root", results in the creation of a new roof object, containing the first 5000 clements of
the one-dimensional time series specified by the "name" variable; the "Traj" command causes a single
trajectory object 10 be derived from the root object. There follows a parallel group, enclosing a loop
whose (scaled) variable is varied from —1 10 1, in steps of 0.02. A sequential group is defined inside this
loop because each subsequent, enclosed command depends on the outcome of its predecessor. The first
of this sequence is the "Window" command, which operates on the specified Irajectory object Lo construct
a trajectory from a S-delay, unit-lag filtered reconstruction, through the FIR filter (1, a,, 1), where a; is
substituted by the (scaled) loop variable. The "Phi" command then constructs a phi object, comprising
200 centers selected from the specified portion of trajectory and the "Fit" command forks a fit process,
returning an RBF object trained to relate first 2000 elements of trajectory, transformed through the phi
indicated by the (unscaled) loop variable, o the corresponding portion of time series in the roor object; the
errors and other indicators of the quality of the fit are Jabelled by the scaled loop variable and stored in a
log file. Finally, the "Test" command applies that RBF to the specified test set, logging the resulting crrors
in a similar fashion. Although only a subset of the applicable parameters have actually been specified in
this file, the remainder are taken from an optional "Default” command, otherwise defaulting to hard-wired
values.

Once it has finished executing a batch file the tsb version of the parent program will exit automatically,

but the 5 version can be instructed to switch then into window mode, described in the next section, whilst
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Root
name "/masp/data/ikeda/20000/x"
length 5000
dimension 1
End
Traj 1
Par
Loop 1 101 range -1 1
Seq
Window 1 1
embed 5
lag 1
coeffs 3
filter 1 #1 1
End
Phi 1 1
number 200
start 1
stop 2000
End
Fit 1 1
label #1
offset 0O
start 1
stop 2000
target 1 0
phi X $1
id 1
End
Test 1 1
label #1
start 2001
stop 4000
target 1 0
rbf 111
End
End
End
End

Figure B.1 Example command file for batch-mode time series analysis. Generates error curves for the detection of
periodic orbits in the Tkeda system by executing 101 parallel copies of a sequence of commands comprising a filtered

embedding followed by the construction and testing of an RBF map.
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retaining its current state. In this way a baich file can be used to bring the program into a particular
state automatically, at which time the user is able to continue to operate the program through the window

interface.

B.4 The graphical user interface

The graphical user interface is for real-time operation of the program, with immediate visual feedback. In
this mode, the base and each of the root and trajectory objects have a display window associated with them.
In the case of the base this just contains a single button, which creates a new root containing the time series
specified in its associated input field. However, the windows associated with root and frajectory objects
also display the data associated with those objects in graphical form. Operations on this data are initiated
with the appropriate menu buttons and other controls, and any necessary parameters can be specified on
their associated pop-up property windows.

A root window displays the entire time series contained in that root. A specific portion of the time
series can also be displayed in close-up, in a graphical subwindow of the roor window. The contents of
this window can be altered by selecting an interval of the time series in the root window, and defines the
default portion of time series on which any subsequent operations, carried out by descendants of that root,
are performed. In addition, a roor window has a second graphical subwindow in which the FFT of that
portion of the time series can be displayed.

A trajectory window displays a perspective view of the path described by the delay vectors corre-
sponding to its particular delay reconstruction of the portion of time series currently displayed in close-up;
the viewpoint can be varied at will. The view is represented either as a single two-dimensional projection
or as a stereo pair. It also has graphical subwindows displaying the singular spectra obtained from SVD
of the distribution of delay vectors before and after transformation through phi transformations, the latter

being useful for examining the rank of the linear part of an RBF.






