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Thesis Synopsis

This thesis explores translating well-written sequential programs in a subset of the Eiffel
programming language - without syntactic or semantic extensions - into parallelised programs
for execution on a distributed architecture. The main focus is on constructing two object-
oriented models: a theoretical self-contained model of concurrency which enables a simplified
second model for implementing the compiling process. There is a further presentation of
principles that, if followed, maximise the potential levels of parallelism.

Model of Concurrency

The concurrency model is designed to be a straightforward target for mapping sequential
programs onto, thus making them parallel. It aids the compilation process by providing a
high level of abstraction, including a useful model of parallel behaviour which enables easy
incorporation of message interchange, locking, and synchronization of objects. Further, the
model is sufficient such that a compiler can and has been practically built.

Model of Compilation

The compilation-model’s structure is based upon an object-oriented view of grammar de-
scriptions and capitalises on both a recursive-descent, style of processing and abstract syntax
trees to perform the parsing. A composite-object view with an attribute grammar style
of processing is used to extract sufficient semantic information for the parallelisation (i.e.
code-generation) phase.

Programming Principles

The set of principles presented are based upon information hiding, sharing and contain-
ment of objects and the dividing up of methods on the basis of a command/query division.
When followed, the level of potential parallelism within the presented concurrency model is
maximised. Further, these principles naturally arise from good programming practice.

Summary

In summary this thesis shows that it is possible to compile well-written programs, written in
a subset of Eiffel, into parallel programs without any syntactic additions or semantic alter-
ations to Eiffel: i.e. no parallel primitives are added, and the parallel program is modelled to
execute with equivalent semantics to the sequential version. If the programming principles
are followed, a parallelised program achieves the maximum level of potential parallelisation
within the concurrency model.
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Introduction to part I

Part one introduces the basic thesis upon which this document is based. Chapter 1
presents the thesis and includes a discussion of the perceived problem and a possible solution.
Chapters 2, 3 and 4 present the theoretical background material. Chapter 5, given the

previous chapters as a base, presents the thesis objectives.

14



Chapter 1

Introduction

1.1 Object-oriented Parallelism: a Solution?

In computing there is an ever-increasing quest for more powerful computers which can be used
to make existing software execute faster or provide sufficient power to execute more complex
pieces of software that are impractical on current hardware platforms. This quest however
has boundaries based upon the current level of technology and processor performance at any
time. However, if a number of processors are combined to work upon a problem the outcome
should be a generally more powerful computer. This increase in power is only noticeable
if a problem is successfully partitioned into a number of subprograms which can be placed
upon different processors and coordinated towards the production of a solution. It is this
partitioning and the consequent management of the executing parts that gives rise to the
problems of parallelism that many programmers find hard. Therefore an ideal aim would be
the full automation of the parallelisation® of sequential programs suitable for execution on a
parallel computer.

It is suggested by the title and throughout this thesis that object-oriented modelling is a
useful technique for tackling this problem and that it is possible to fulfil the total automation

of the translation process. It might be reasonably asked
1. why automatic parallelisation?
2. why object-oriented modelling?

The rest of this chapter and indeed the rest of the thesis address these two questions.

T«Parallelisation” is used throughout the thesis to mean the translating of a sequential description of an
algorithm or program into an equivalent parallel version.



1.1.1 Why Automatic Parallelisation?

One of the main justifications for this work is the difficulty involved in the programming of
parallel systems. Even for “capable” programmers the harnessing of multiple processors is
not easy. One of the main problems is that extra levels of difficulty are involved in the visu-
alisation of the processes of computation, particularly in comparison with the development
of sequential programs. Consequently, there is a greater possibility for the introduction of
errors.

For example, consider the problem of memory management: some programmers need to
deal explicitly with memory management, thinking about what portion of memory to use for
a particular task, or what is the exact size of a particular data structure. They may need to
keep explicit track of memory usage. However, many programmers these days, using their
C or C++ programming skills and the operating system upon which they are developing,
only need to consider “new-ing” and “free-ing” areas of memory and not explicit locations.
Memory management is easier still for the normal Eiffel or Smalltalk programmer. They can
forget all about such issues as allocation and deallocation and rely instead on the underlying
language framework and garbage collector.

It would be beneficial if parallel programming could be moved along an analogous path
to that of memory management. Instead of most programmers needing to explicitly manage
processes, they should be able to leave it to the compiler and the operating system in use.
Some programmers will always need to state explicitly that process 2 must go on processor b
and thread 7 must have priority over thread k. However, for the vast majority of applications,

this precise level of control is neither necessary nor warranted.

1.1.2 Why Object-Oriented Modelling?

The “fundamental model” can help or hinder implementation, enhancement and efficiency (a
good model may not necessarily be good in terms of speed) (Brunskill, Rann & Turner 1995).
Consequently, the modelling technique chosen must enable effective reasoning about what
ultimately is a complex system.

Given my background in formal techniques (Rann, Turner & Whitworth 1994) the first
approach considered was that of “formality”. Formal models, whilst very precise, are prob-
lematic in this domain. The approach of CSP and CCS with their fundamental operators
leads to a description technique which seems unsuited to systems as inherently complex as
that described in this thesis. Equally a Z or VDM based approach, whilst effective at de-
scribing various entities, is not an effective approach for describing concurrent object-oriented

systems. There are other formal modelling techniques - Process algebras, Petri Nets etc - but

16



fundamentally the abstraction mechanisms supported are too detailed for useful reasoning
and modelling. Therefore a formal approach, in the mathematical sense, was not deemed
practical, as deriving the vital set of axioms or constructive mathematical model would be
too time-consuming and would move the research objectives away from the parallelisation of
sequential programs, to a mathematical modelling of object-oriented concurrency.

The modelling technique chosen needed to support a variety of levels of reasoning, to
help in the handling of the complexity inherent in the system. Alan Kay once stated in a
seminar® that there are three main approaches to reasoning. The first and simplest taken
by a young child is that of mimicry, where a child achieves a purpose by acting it out - e.g.
drawing a circle. A young child can think of the process involved by standing at a point and
then taking a step and turning a bit and then another step and turning a bit etc, until a
circle is drawn. A slightly older child can take an approach based upon irnages. They know
that a circle is drawn with all its points equidistant from some centre, so they stand in the
middle and walk to the outside draw a point come back to the centre turn a bit, go to the
outside draw a point and then come back to the centre etc, until the circle is drawn. The
final stage, and not one achieved by everybody is the symbolic level. For example a teenager
may know that a circle is described by » = 2° + 3? and may also know that this can be
plotted and how. These three levels of reasoning - mimery, imagery, symbolism - are each
effective in their own right, but the ones attained by the older children become increasingly
more powerful as tools for manipulation and succinct reasoning, hence my original wish to
use mathematical modelling.

Object-oriented software development supports the aforementioned three levels of reason-
ing. In this work’s design of a system to support concurrency, a lot of emphasis has been
placed on the soundness of the model and overloading of ideas and names so that others can
pick this up and hopefully read and comprehend it. Refinements of this model at a later date
would enable efficiency gains, but refinement of a initial model which, for whatever reason,
i1s weak, would be much more difficult. Hence the carlier aim to show the reasonableness of
the approach and not necessarily its immediate effectiveness with respect to speed of code
and optimum usage of given hardware.

Therefore, in trying to derive/produce an effective model of concurrency into which an
object-oriented language can be mapped, all three levels of reasoning are called upon. In
places this gives rise to naming conventions that may initially be thought pretentious or mis-
leading, but they have been deliberately chosen for the purpose of helping in the visualisation

of the system and the approach used.

2from The Distinguished Lecture Series: Doing with Images makes Symbols: Communicating with
Computers

17



1.2 The Problem and a Solution

1.2.1 Summary of the Problem

The basic idea which underlies the investigation of the application of object-oriented tech-

niques to the automatic parallelisation of sequential programs can be summarised as follows:

It should be possible to write a program in a “good” object-oriented programming
language, ignoring issues resulting from a possibility of execution in a parallel en-
vironment. The derivation of this concurrency should instead be automatic, free-
ing a programmer to concentrate upon problem solving instead of the difficulties
of implementing parallel solutions. The programs written in this language, now
able to utilise a parallel architecture, should be easier to write and less prone to
errors, because of the decrease in complexity when compared with constructing
a parallel solution. The automatic parallelisation of programs should inevitably

lead to improved programmer productivity for multi-processor architectures.

1.2.2 Approach

The approach taken to the above problem in this thesis is to construct two theoretical models:
a theoretical self-contained model of concurrency which will enable a simplified second model
for implementing the compilation process. Also consideration will be given to the style of
programming that should be applied; this style is summarised by programming principles
which, if followed, will maximise the potential levels of parallelism.

The concurrency model will be designed to be a straightforward target onto which to map
sequential programs, thus making them parallel. It will be expected to aid the compilation
process by providing a high level of abstraction, including a useful model of parallel behaviour
which enables easy incorporation of message interchange, locking, and synchronization of
objects. Further, the model will be expected to be sufficient such that a compiler can be
practically built.

The compilation-model’s structure will be based upon an object-oriented view of grammar
descriptions and will capitalise on both a recursive-descent style of processing and abstract
syntax trees to perform the parsing. An alternative composite-object view with an attribute
grammar style of processing will be used to extract sufficient semantic information for the
parallelisation (i.e. code-generation) phase.

The set of programming principles should arise naturally from some widely accepted
precepts of ‘good’ programming practice (see section 5.2); they will be based upon information

hiding, sharing and containment of objects and the division of methods on a command/query
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basis.
The programs to be parallelised will be written in a subset of Eiffel. A parallelised
program is expected to have the same semantic effect as its sequential equivalent. The target

architecture is to be a distributed computer formed from a network of UNIX workstations.

1.2.3 Summary

The compilation strategy will make use of the inherent logical structuring and message passing
found in object-oriented programs. Attaining the optimum speed of execution is unlikely and
not one of the aims. More efficient solutions could be produced by good programmers with
machine-specific knowledge and hardware-specific concurrent programming languages. This
situation is not too different from that of using general-purpose high-level programming
languages on normal sequential architectures as opposed to capable low-level languages. On
a sequential machine a good programmer familiar with the hardware and possessing a flexible
machine-specific (usually low-level) language could produce quicker, more space-efficient code.
This is not a sensible practice when developing (portable) sequential programs. Equally,
explicit handling of parallelism should not be the norm in the concurrent world.

In summary the application of the above approach, within this thesis, will show that it is
possible to compile well-written programs, written in a subset of Eiffel, into parallel programs
without any syntactic additions or semantic alterations to Eiffel: i.e. no parallel primitives
are added, and the parallel program is modelled to execute with equivalent semantics to the
sequential version on the chosen target architecture: a network of UNIX workstations. If the
programming principles are followed, a parallelised program will achieve the maximum level

of potential parallelisation within the concurrency model.

1.3 The Thesis

Having outlined the problems and the approach to their solution, this section presents the
thesis that all of this work is based upon. It also makes clear what is not involved in this

work and clarifies what is. At its most general level this thesis might be expressed as:

A model of concurrency can be derived which as a target for a compilation process

will enable the automatic parallelisation of a sequential object-oriented prograr.

With the above expression of the thesis and the approach of section 1.2.2; it should be

clearly stated that this thesis is not expected to

e derive a new object-oriented programming language;
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e derive a concurrency model, described as a new abstract machine, which will enable

any or all programmers to more easily program parallelism;

e derive a compilation model which will be totally applicable to all object-oriented pro-

gramming languages.

The language which will be compiled is Eiffel, chosen specifically for its clear well-defined
semantics and pure approach to object-oriented software, which is missing from languages
such as C++.

The concurrent model and consequent parallel implementation will not necessarily demon-
strate any performance improvements over the direct execution of the sequential version, in
the current implementation; in fact, if execution were possible, it might demonstrate a degra-
dation in performance® because of the inherently inefficient operating system tools used to
make the demonstration of the ideas practical. However the model should be amenable to
refinement in post-thesis work such that it can be made to be an effective target for the
compilation process where performance gains are important. The type of parallel systems
specifically considered within this thesis are those that exhibit a MIMD? style architecture.

The compilation model will contain techniques and ideas which are not immediately
amenable to use on Smalltalk (Goldberg & Robson 1989), or CLOS (De Michael & Gabriel
1987), or on many other object-oriented programming languages. Indeed the ideas may not
be amenable to use on C++, probably the most widely used object-oriented programming
language. Instead it should deal with well-written programs (see section 5.2) in Eiffel, and
even then because of flaws (see section 5.1.2) in the design of Eiflel’s semantics, some Eiffel
programs (though not those following the programming principles) will not benefit from the

possible levels of parallelisation.

1.3.1 Summary and Contributions

This work will demonstrate that a theoretical concurrent model of execution can be derived
such that an automatic parallelisation process is possible enabling future execution of the
parallel program upon a parallel systern, specifically one with a MIMD style architecture.
The actual implementation, however, and even some of the basic ideas, will be open to
refinement and improvement by the incorporation and use of industry-wide standards, tools

and operating system extensions that have arisen within the past six years.

3Inherent with simulated parallelism on a single machine, but this is with reference to a distributed
computer.

“Multiple instruction streams and multiple data streams, i.e. multiple independent processes (Andrews
1991, p 133).
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The contributions of this thesis within this area are to demonstrate that given a good
basic model of concurrency which is designed to avoid deadlock and issues such as starvation
it is possible to automatically parallelise a well-defined sequential programming language.
The theoretical concurrency model presented has been shown to be sufficient to make such
a parallelisation possible, using a purely object-oriented approach to the modelling and im-

plementation.

1.3.2 My thesis

This leads to the following fuller restatement of the thesis:

“A theoretical concurrent model of execution can be derived such that an auto-
matic parallelisation process of a useful subset of Eiffel programs, written using
certain programming principles, is possible. The parallelised program and con-
current model are unlikely to be optimal, but with sufficient refinement - post
thesis study - will achieve a potential performance improvement over that of a

sequential system.”

1.4 Document structure

This thesis is broken up into 5 main parts:

Part I Introduction

o Chapter 1 discusses the topic to be tackled including the perceived problem and a

possible solution.

¢ Chapter 2, 3, 4 presents the necessary theoretical background to the work. This includes
discussion of object-oriented concepts, parallelism and the combination of parallelism

with object-oriented in the area of programming languages.

e Chapter 5 presents the objective for this thesis and outlines the approach taken.

Part II Design

This part follows the structure of a compiler from parsing and semantic analysis through to
code generation. It presents and develops the two models central to this thesis, the model of

concurrency and of the compilation process.

e Chapter 6 presents the issues involved in analysing an object-oriented program to ex-

tract sufficient information to produce an equivalent parallel program.
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e Chapter 7 presents an abstract machine providing a sufficient base to map a concurrent

object-oriented program onto to gain parallelism.

e Chapter 8 looks at concurrency issues and argues that deadlock has been designed out,

without losing all the parallelism in execution.

e Chapter 9 presents the code generation phase of the translator.

The model of compilation can be followed through this part as the parsing and semantic
anlysis are presented and discussed in chapter 6 with the code-generation phase discussed in
chapter 9. The concurrency model is first introduced in chapter 7; it is extended within 8
by the discussion of how deadlock should be avoided, and is then further expanded within
chapter 9 with a discussion of message handling (section 9.2), locking (section 9.4), and finally

the implementation of early returns (section 9.5)
Part IIT Implementation
e Chapter 10 presents the overall implementation and issues involved in implementing
the solution.

Part V Conclusions

e Chapter 11 evaluates the models of concurrency and compilation presented earlier in

the thesis.

e Chapter 12 presents related work that has taken place during the time that this thesis

has been under development and also looks at the contributions made within this thesis.

o Chapter 13 outlines future work to bring the ideas presented in the thesis up to a more

commercial level of quality.

e Chapter 14 discusses the conclusions arising from the work within the thesis, and the

main contributions made.
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Chapter 2

Object-oriented Concepts

This chapter describes the terminology and ideas from the area of object-oriented which have
been the basis for this work. The ideas presented are closely related to works by Meyer (1988)
and Wegner (1987, 1990).

Applying object-oriented techniques and principles to the development of parallel systems
requires agreement on what the term “object-oriented” means. This chapter preseuts a view
of what this term means and some of the ideas and tools associated with it. “Object-
orientation” as an idea is suffering from increasing devaluation through excessive use in the
marketing of the latest piece of software. It also has subtly different meanings depending on
the area of computing in which a person is working and the papers and books read in learning
about the idea. The view, therefore, put forward in this chapter is not the marketing view,
which tends to compound an already confusing plethora of terms and ideas. If anything the
presented view is influenced by my background in software engineering; in the wish to build
very large software systems with measurably high levels of quality.

“Object-oriented” as a term describes a specific technology. It results from the work done
in developing the Simula-67 (Dahl & Nygaard 1966, Nygaard & Dahl 1978) programming
language and later work done by Xerox in their Palo-Alto laboratories with the programming
language Smalltalk (Goldberg & Robson 1989). When used to prefix other terms (program-
ming, design, and analysis) it evokes a collection of ideas and tools.

Meyer’s (1988, pp 60-62) text on constructing object-oriented systems summarises seven
levels that, he believes, if met classify a programming language as object-oriented (see section
2.2).

Wegner (1990) describes object-oriented programming as a robust component-based mod-
elling paradigm that is both effective and fundamental.

Snyder’s (1987) paper on inheritance and the development of encapsulated software, de-
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scribes object-oriented programming as a practical and useful programming methodology. He
states that it aids the construction and reuse of software components because of its support
for data abstraction, generic operations and inheritance.

Wegner (1987, 1990) in two papers presents a useful measure of the “object-orientedness”
of a programming language. He classifies programming languages, which as a minimum

support objects, as object-based, class-based, or object-oriented.

Object-based programming languages support implementation of an object-based de-
sign. Objects in this context combine encapsulated data structures with routines for
affecting the data. Object-based languages support objects and their function (see

section 2.1), but not their higher-order manipulation.

Class-based languages form a subset of the object-based languages; they require all ob-
jects to belong to a class. These languages not only support objects, but also their

manipulation and management.

Object-oriented languages are a subset of the class-based languages; these languages
support class inheritance. Class inheritance enables the language to manipulate and

manage classes.

OBJECT-BASED

Ada, Actors

CLASS-BASED

OBIECT-ORIENTED ]

Simula, Smalltalk,
Eiffel, Objective C, C++

Figure 2.1: Object-based, Class-based and Object-oriented languages

As figure 2.1 (Wegner 1990, with additions) indicates, languages classed as object-oriented
include Smalltalk, Simula-67 and according to Wegner’s definitions languages such as Eiffel,
C++, and Objective C.

Object-orientation is not just about programming languages and their features, it is a total
way of viewing and developing systems from initiation to delivery and maintenance. Section
2.3 describes the building blocks of the object-oriented paradigm; it follows the structure
of Meyer’s (1988, chapter 4) “Seven Steps Towards Object-based Happiness”, presented in
section 2.2. However - given the centrality of the idea of objects - a definition of objects is

presented first.
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2.1 Objects

Objects are central to any object-oriented system; it is around them that any approach to,
or definition of, object-oriented must be built. Therefore a working-definition of this term is
presented here, and refined in section 2.3.7. The three quotations below summarise the main
points of view on what an object is.

* “OBJECT” is a run-time notion; any object is an instance of a certain class,
created at execution time and made of a number of fields.’ (Meyer 1988, page 76)

Aston University

Content has been removed for copyright reasons

2.2  “Seven steps towards Object-based happiness”

Each of the following levels is taken verbatim from Object-oriented Software Construction

(Meyer 1988).

Aston University

Content has been removed for
copyright reasons




Aston University
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2.3 Object-Oriented Terminology

The following sub-sections discuss the terms most relevant to this thesis.

2.3.1 Attributes or Instance Variables

An attribute is a field of an object, also called an instance variable in Smalltalk terminology.
“Instance variable” is the most descriptive term: any object that exists at run-time must be
an instance of a class, thus a variable contained inside an object is a variable of that instance
or an “instance variable”. Attributes can be made visible, external to an object. However,
they should be available on a read-only basis, i.e. it should not be possible for an external
object to change their state by either assignment or applying methods directly to them (a

subject of discussion in section 5.2).

2.3.2 Operations or Methods

An operation or method is a series of actions that can modify the state (set of current,

attribute values) of, and/or request information about, an object.

2.3.3 Features

The features of an object are the sum of its attribute’s states and its operations.

2.3.4 Visibility

An object is a mixture of internally and externally visible features. Declaring features as
internally visible means that they are accessible only by that object. Declaring features as
externally visible means that they are usable by any object that knows this object and can

send messages to it.

2.3.5 Clients

A client is another object capable of sending messages to this object.
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2.3.6 Messages

In an object-oriented system the only way for two objects to communicate is by using message
passing. One object would send a request to another object by sending a message. If an
object expects a response the called object, or some delegate, should send a message back.
The enforced use of message passing with restricted visibility of some features gives rise to
the possibility of building highly encapsulated objects, as then the only access one object has

to another is by message passing.

2.3.7 Definition of an Object

The definition of an object used in this work is an amalgamation of the ideas presented above:

An object is a run-time entity, with a set of attributes and methods collectively
known as its features. An object can be modified only through the execution
of its defined methods. Objects have internally and externally visible features.
The object itself can use both its internal and externally visible features when
performing a method. The client of an object may only access it through its

externally visible features. All attributes are exported in read-only mode.?

This definition, whilst in the spirit of information hiding and encapsulation, is difficult
to achieve and costly in compilation time as a high level of semantic analysis is necessary,
particularly in achieving read-only attributes.

The definition above conflicts with some people’s views of objects. Some of the litera-
ture, specifically Wirfs-Brock & Wilkerson (1989), suggest that an object’s attributes should
not be directly accessible to clients, but only accessed through explicit, programmer-defined
operations. This limited approach can lead to unnecessary extra coding, if the program-
ming language does not automatically generate a read operation for each attribute. On the
other hand the features of some languages such as Smalltalk allow unrestricted access to the
attributes, thus enabling programmers to manipulate the state as they wish.

It is necessary to avoid unrestricted access to attributes, as it compromises an object’s
encapsulation and impedes reusability (Wirfs-Brock & Wilkerson 1989). The implication of
unrestricted access inside objects also affects the level of achievable concurrency. The level
of concurrency decreases with increased object coupling and with the consequent increases
in the amount of dependency between objects, discussed in section 5.2.2.

A balance can be struck between the opposing views of no occess versus unrestricted

access, a balance that does not compromise the integrity of an object’s encapsulation: i.e.

2The idea of read-only attributes is presented in Meyer’s (1988, pp 212) book, but even Eiffel, the language
designed by Meyer, does not achieve this in actuality, see section 5.1.2.
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restrict all attributes which have been declared as visible to read-only. However, this strategy
is problematic in most programming languages when it becomes necessary to reflect the

sharing of objects in a model, see section 5.2.1.

2.3.8 Classes

The three quotations below give a general impression of what the term “class” means.

Aston University

Content has been removed for
copyright reasons

As the quotatironsi ;uggest, the most bdsic use for a class is as a t(-':implate (,hescril:)ing groups
of related objects. A class is a description of the run-time behaviour of an object, which is
an instance of that class. They are the “type-description” of objects, where “type” is the
operations performable.

The description given by Blair et al. (1989) does not stress the idea put forward by Meyer
(1988) that a class should be considered a static entity. In practice, different object-oriented
languages use classes in a range of ways, {rom dynamic to totally static entities.

Smalltalk represents classes as dynamic entities with a behaviour at run-time. A Smalltalk
class can contain class-methods, these can affect class-variables at run-time. Modifying, at
run-time, the values held in a class’s class-variables enables changes in behaviour in the
instances of that class.

Eiffel is at the static end of the spectrum for representing classes. Eiffel classes are purely
static entities. They describe groups of related objects, which can be instantiated at run-time.
They do not contain either class-variables or class-methods. The lack of class variables does
not weaken the static class languages as it is possible to simulate the effect of class variables
by sharing an object, or using Eiffel’s “once” feature, see Meyer’s (1988, pp 309-314) book.

This thesis deals only with the view of classes as static entities.
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2.3.9 Genericity

Meyer’s seven levels (section 2.2) mention genericity implicitly in level 6, as it is an implemen-
tation of parametric polymorphism (see 2.3.11). Genericity (in object-oriented programming
languages) is usually associated with the module-level description of objects within program-
ming languages. Its use is not purely an implementation consideration, it can greatly aid in
the description of an object-oriented system and also in reusability.

There is some support for the explicit use of genericity in some object-oriented pro-
gramming languages; e.g. Eiffel and C++. In practice, useful as the support for generic
descriptions is, its support is a pure syutactic sugaring in any programming language that
also supports multiple inheritance. The full descriptive power of genericity is a proper subset
of that found in multiple inheritance. For a convincing argument on this topic refer to the

book by B.Meyer (1988, pp 399-422).

2.3.10 Inheritance

The two quotations below by Micallef and Wegner outline the idea of inheritance.

Aston

Content

University

has been removed for copyright reasons

Inheritance is a mechanism by which subclasses can be written which reuse, specialise,
generalise, or form a subtype of a superclass. Snyder (1987) suggests that the four uses for
an inheritance hierarchy are not totally complementary; indeed this clash of uses has led to
some authors suggesting the limiting of its use to one or two of the four uses. In at least
one approach {taken with the language Duo-Talk) multiple hierarchies enable use of both
specialization and code reuse (Lunau 1989). Duo-Talk creates this separation by using one
hierarchy for the interfaces to an object and a further one for the implementations of an
object.

There are two forms of inheritance - single and multiple. Single inheritance is less flexible
than multiple as it allows a class to inherit from only one immediate superclass. Multiple

inheritance allows a class to inherit from multiple superclasses.
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Multiple inheritance appears in most of the object-oriented languages due to its flexibility.
For example, given a class that represents a “temporary-worker” and another class that
represents a “secretary” a subclass “temporary-secretary” could be generated, quickly and
easily. The “temporary-secretary” class then inherits its features from both of its superclasses.

There are difficulties in the use of inheritance:

e What happens when a class inherits from two classes with features of the same name

(name clashes)?
e What happens if you wish to redefine some of an inherited class’s features?
e How do you redefine a feature, but keep a copy of it for alternate use?

These problems are soluble; a simple solution lies in the ability to rename inherited
features. If a name clash is to be avoided then rename the feature. If a feature is to be
redefined then simply redefine it. If a feature is to be redefined and a copy kept for use, then
firstly rename it (for use) and then redefine the original.

Micallef’s definition earlier does not refer to the possibility of a class making visible
features which are hidden in the superclass. This is convenient when a programmer needs
to define a new visible interface, but can cause problems in the breakdown of a class’s
encapsulation.

Throughout, this document I will use the more descriptive terms descendant (subclass)
and ancestor (superclass). Two other useful terms are parents (the immediate superclasses

of a class) and children (the immediate subclasses of a class).

2.3.11 Polymorphism

Polymorphism of a routine or module (class in object-oriented) is the ability for that routine
or module to take on different forms. When a routine is polymorphic, it can handle different
types of input. When a module is polymorphic, it can act as a holder for different types of

data - e.g., a stack which holds integers, or records, or strings, etc.
There are various forms of Polymorphism.

Figure 2.2 shows a refinement of C. Strachy’s categories of polymorphism as presented in
Wegner’s (1987) paper on object-oriented classification. Wegner breaks polymorphism into
two main forms: Universal and Ad hoc.

Universal polymorphism can be recognised by the same routine being usable on different
but semantically-related structures. Universal polymorphism can be further broken down

into parametric (e.g., see ML) and inheritance polymorphism.
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Parametric
Universal
Inheritance
Polymorphism =
Overloading
Adhoc
Coercion

Figure 2.2: Varieties of Polymorphism

Parametrically polymorphic routines, or modules, require the type of the parameters to
be supplied as a parameter: for example, a routine that counts the number of elements in a
list where the elements are all the same type. Supplying the parametric type to this counting
routine enables the derivation of the actual type.

Inheritance polymorphism is the result of using an inheritance hierarchy. In the use of
the inheritance hierarchy an algorithm may be written, for example, to search a sequenced
structure. This search routine could be written at a very general level and held in the
class representing sequences. Defining the necessary routines such as Nezt-Element in all
the descendant classes of a sequenced structure specializes the search routine to work on
any sequenced structures. Selecting the appropriate routine is then done at run-time using
dynamic binding (see section 2.3.12), which searches the inheritance hierarchy for the specific
routine to execute.

Ad hoc polymorphism can be recognised by the repeated use of a name to perform the
same basic operation, on semantically-unrelated types. Ad hoc polymorphism is made up of
two types - overloading and coercion.

A Print operation is an example of an overloaded operation. It might take various struc-
tures and produce visual representations. The structures supplied as a parameter might range
from simple types to trees to even more complex entities. Printing then uses the appropriate
procedure for the given type. FEach type requires the writing of a different routine and the
language system must select the appropriate one at either compile or run-time.

Coercion can occur when a routine requires a particular type of parameter and the sup-
plied object’s type is not of that type. To enable execution a supplied parameter’s type is
converted, by a suitable routine, into the required type and the converted value supplied to
the routine.

An example of coercion can be seen in a routine that adds two real numbers: add_two_reals.
Such a routine might expect two real numbers for its parameters. Supplying an integer and

a real number to this routine results in the need to convert the integer into a real number.
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This conversion could be done using a float routine, which given an integer returns the real
number equivalent. At execution time, convert the integer to a real number, supply the
resulting real number as a parameter and execute the add_two_reals routine.

Ad hoc polymorphism is also available in an inheritance hierarchy. A routine with the
same name may be used often on semantically unrelated types. To choose the appropriate
routine it is necessary to search through the inheritance hierarchy starting at the class of
the current object. The search continues up the inheritance hierarchy until it finds the
required routine, or reaches the top of the hierarchy, i.e., an undefined routine. Defining a
print routine in all classes, or one of their ancestors, makes it possible to overload the print
operation as described previously. It is therefore possible with inheritance to get the effect

of both universal and ad hoc polymorphism.

2.3.12 Dynamic Binding

Dynamic binding is the ability to choose, at run-time, the most specific operation for ap-
plication to an object. Consider the specialization that should occur in a well constructed
inheritance hierarchy. A procedure written for a general structure - usually held at the top
of the hierarchy - is typically less specific and less efficient than the same procedure written
specifically for an object of a descendant class. For example, a search routine for a general
ordered sequence would search through the sequence’s elements one after another to find the
required element. However a specific descendant class that holds extra information about
the position of element’s values could contain a very specific and much more efficient, routine.
These benefits come with dynamic binding.

Dynamic binding causes the selection of the best procedure available; this assumes that
a specialized procedure is better than a general procedure. If there is no specialized routine

then the general one is always there for use.

2.3.13 Cluster

A cluster is a set of conceptually related classes. B. Meyer first proposed the cluster (Meyer
1990, Meyer 1989b) as the basis of an object-oriented life-cycle. In a typical object-oriented
language the biggest building block is the class and classes cannot be nested. When building
systems it is beneficial to group related classes from particularly interesting subsystems; the
name for such a group is a cluster. For example it may be useful to have a windowing
cluster that contains all the classes used for the handling of windows on the local UNIX
workstation. See (Henderson-Sellers & Edwards 1990) for a discussion of clusters and the

idea of an object-oriented life-cycle.
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2.4 Summary

An “ideal” object-oriented development system is a system that supports the use of clusters
to organise related classes. A class is a modular implementation of an abstract data type.
Classes can be generic. Each class defines attributes, and the methods that may be performed
on the attributes. Features are the combination of attributes and methods contained in a
class. It is possible to declare features to be externally visible; these features are then
accessible by other objects in the system. Alternatively, declaring features to be private, or
internal, limits access to them to the object itself. A class can inherit features from one or
more ancestors; in turn it can choose to make those features visible to clients. When using
inheritance a class may rename or redefine any of its ancestor’s features.

An object is a run-time instance of a class. To request the performing of an object’s
methods or the supply of information, it is necessary to send a message to the object. As-
signment to an object is possible by another object if the object’s type (the one on the right
of the assignment statement) is that of a descendant class - this is allowed through support
for polymorphism. The particular operation applied to a polymorphic entity derives from
the entity’s type and, logically, a routine search through the inheritance hierarchy - this is

dynamic binding.
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Chapter 3

Parallelism Concepts

This chapter presents the ideas found in programming-language level support for parallelism.
It does not, and neither does this work as a whole, look at hardware issues.

This section summarises the main techniques used in programming languages to achieve
parallelism: the basic building block of the object-oriented paradigm is the object; the basic

building block of parallelism is the process.

Parallelism is the execution of two or more processes at the same instant in time; con-
currency is the possibility of executing two or more processes at the same instant in

time.!

A Process is the sequential execution of a sequence of statements from a program.

Processes must communicate and synchronize during execution of a concurrent program,
unless the processes are totally disjoint. Communication is necessary so that processes can
exchange information and influence each other’s actions. Synchronization enables the delay-
ing of one process by another, enabling communication to take place or the performance of
some coordinated action. There are three main issues underlying the design and expression

of concurrent computations:
1. How are processes specified and created?
2. How is interprocess communication performed?
3. How is synchronization of processes obtained?

The rest of this chapter’s discussion revolves around these three main issues: process

specification, interprocess communication, and process synchronization.

I"This distinction is convenient and I have atternpted to adhere to it, however “concurrency” is used s0
extensively within the literature to mean the same as “parallelism” that there will probably be occurrences
of such usage within this document.
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3.1 Specifying Cooperating/Concurrent Processes

There are several notations in use which can denote concurrent execution (i.e., indicate the
initiation or resumption of multiple processes): Co-routines with the Resume statement; Fork
and Join statements; Cobegin Coend blocks; and Process declarations using syntactic-level

structuring to indicate processes.

3.1.1 Co-routines

Co-routines are similar to subroutines as found in Fortran; they are sequential blocks of code.
The analogy breaks down when considering the relationship between a caller and the called
routine. Subroutines exhibit an asymmetric relationship with the caller; when a caller calls
a subroutine, the subroutine executes from start to finish and returns to the caller. The
relationship between co-routines, however, is symmetrical. Co-routines, when first called,
start executing from the start of their code; they then transfer control explicitly to other
co-routines as necessary. When subsequently called, a co-routine resumes from the point
where it left off, and not at the start of its block of code.

Co-routines, then, indicate explicit transfer of control between cooperating sequential
processes by executing a Resume statement - explicitly naming the other co-routine. Co-
routines are designed to be used on single processor machines, and do not capture the idea of
parallelism - allowing, as they do, the logical execution of only one process at a time. Each
co-routine represents one process. (Example usage can be found in Simula-67 (Nygaard &

Dahl 1978), Modula-2 (Wirth 1982) and in BLISS and SL5 (Andrews & Schneider 1983))

3.1.2 Fork and Join statements

The Fork statement initiates a new independent process; it can be used to initiate, dynam-
ically, any number of processes. The Join statement causes the synchronization of one
process with another, usually used when the forked process has completed and is ready to
rejoin with the initiator.

The difficulty with this approach is in separating out the concurrently executable processes
from the executable code, as fork and join are so tightly bound up in the code. (Used in

PL/I; Mesa; and UNIX where join is implemented by the system call wait.)
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3.1.3 Cobegin and Coend

Cobegin with its corresponding Coend, was introduced as a proposed extension to Algol-60 by
Dijkstra (1965).2 this was the earliest “structured” approach applied to concurrent process
Initiation.

The statements between a Cobegin Coend block are executed concurrently; the block
finishes when all the enclosed statements are finished. Programs with this approach are
in general much easier to follow than the equivalent using fork and join, thanks to the
systematic method for denoting concurrency. The Cobegin Coend approach, however, is less
powerful than the unrestricted use of fork and join; it lacks the ability to generate processes
dynamically. It is, however, sufficient for capturing most forms of concurrency. (Used in
variant forms in Communicating Sequential Processes (Hoare 1985, see CSP’s concurrency
operator (a || b) and pp 225,226), Argus (Liskov & Scheifler 1983) and Edison (Brinch
Hansen 19815, Brinch Hansen 1981a).

3.1.4 Process Declarations

The processes in a system can be declared syntactically within a program’s code in a similar
way to that of a module or procedure, using a keyword such as Process or Task and the
language’s name scoping rules. Given this method of declaring a process there are three
notable approaches to initiating processes. These three approaches have an impact on the

number of processes at run-time:

1. A program has a fixed number of processes; these start simultancously. The program
terminates when all the processes have finished. Two examples of this approach, “Dis-
tributed Processes” (Brinch Hansen 1978) and “Synchronizing Resources” (Andrews
& Schneider 1983), treat the program description as a single Cobegin-Coend block.
The main disadvantage with this approach is the fixed number of processes, defined at

compile time.

2. A program has a fixed number of processes, but it is possible to have multiple instances
of any process. Two languages, Brinch Hansen’s (1975) Concurrent Pascal and Wirth’s
(1977) Modula, achieve this mechanism by providing what amounts to a fork facility.
This fork mechanism is only usable during program initialisation. The main disadvan-
tage to this approach is the inability to create dynamically a completely new process

at run-time.

Zthe terms in Dijkstra’s (1965) paper were parbegin and parend respectively. However, Cobegin and Coend
appear to be more extensively used in current literature.
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3. A program declares the required process types and then creates instances of these
processes whenever necessary during execution, thus enabling a dynamic number of
processes (e.g. discussed in Wegner & Smotlka’s (1983) paper with respect to Ada) with
a possible limitation on the number specified syntactically as in Occam (May 1983,

May 1987).

3.1.5 Summary

The process declaration approach, in practice, is more elegant than Co-routines, Fork, or
Cobegin. Programs written using this technique are easier to read and understand, partic-
ularly in their initiation and management of concurrency. A language designed to support
the explicit description of concurrent solutions should at least have this syntactic approach
to process description and creation.

The approach taken in this thesis avoids the explicit description and initiation of pro-
cesses; if concurrency is possible it is automatically initiated. However, the deriving of
processes makes use of the lexical boundaries contained in an object-oriented program to
choose processes.

Further to the above approaches, threads are another useful concept for capturing coop-
erating/concurrent behaviour. Via various implementation and declaration strategies, they

)

give rise to what can be termed “lightweight processes.” They are processes in the sense
of potentially multiple processes executing in parallel but differ in that a thread shares the

same address space as the thread from which it was launched.

3.2 Shared Variables

This section looks at techniques of communication and synchronization based on shared
variables.

Shared variables are data structures to which more than one process has access. Commu-
nication between processes can take place by each of the processes referencing these variables
when necessary.

The access to a shared variable must be managed, specifically when multiple processes
can access the variable simultaneously. There is a classic example contained in most of the
literature; the incrementing of a variable by one.

If z is a shared variable and more than one process attempts to increment it simultane-
ously, the outcome is unpredictable. It is possible that two increments result in the addition
of one to z, instead of two. This inappropriate behaviour is a result of the method of im-

plementation of the increment operation: load regy; add 1; store regy. It is a result of the
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interleaving of the lower-level instructions. To avoid this behaviour exclusive access to z
must be ensured for the critical code, termed the critical region. Mutual Exclusion is the
name given to the synchronization required to stop multiple critical regions executing simul-
taneously. One other type of synchronization is required in concurrent systems - managing
operations that must be performed in a specific order. This type of synchronization is termed
Condition Synchronization. An example of condition synchronization can be found in the
typical producer-consumer problem. One process (the producer) produces data, storing it in
a finite buffer; another process (the consumer) reads data from the buffer and processes it.
This requires at least two conditions to be met: a producer cannot put data into the buffer
if the buffer is full; a consumer cannot take data out of the buffer if the buffer is empty.
Thus condition synchronization must manage these two conditions. With this problem it is
also necessary to ensure mutual exclusion as well, so that the producer and consumer do not
inadvertantly deposit and consume data simultaneously leading to possible corruptions.
The following section outlines the main techniques used for controlling access to shared

variables, such that the above problems and ideas are dealt with.

3.2.1 Busy-Waiting

Synchronization between processes can be gained by the processes setting and testing flags. It
is effective for implementing synchronization, but complex when trying to implement mutual
exclusion. The implementation of condition synchronization is achieved by processes setting
flags. To wait for a particular condition a process repeatedly tests the value of the associated
flag until it is at the required setting - hence the term busy-waiting or spanning; these flags
are also termed “spin locks”.

Mutual exclusion is much more difficult to produce by the method of setting, clearing
and testing flags. It is achievable using a combination of 3 variables and a strict entry and
exit protocol (Andrews & Schneider 1983). The variables are a combination of 2 flags and a
turn variable indicating which process can go into its critical region. However as stated by
Andrews & Schneider (1983), synchronization protocols based upon a busy-waiting strategy
are difficult to design, understand and prove correct. Also, protocols that use a busy-waiting

strategy waste large quantities of processing time checking on the status of flags and variables.

3.2.2 Semaphores

Semaphores, first presented by Dijkstra (1968), were the first high-level mechanism for han-
dling both condition synchronization and mutual exclusion. Semaphores consist of a counter
and two primitives that can alter the counter’s value. The two primitives are called P and V;

the first letter in Dutch for wait and signal respectively. The semantics of these primitives
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are as follows: wait(s) decrements the value of the semaphore s if it is greater than zero,
otherwise it waits until s is greater than zero and then decrements it; signal(s) increments
the value of the semaphore s by one. Wait and signal are usually implemented as indivisible
operations in hardware or an operating system’s kernel. They do not require busy-waiting
loops and thus do not, waste processor time as do the busy-waiting strategies.

These two primitives - wait and signal - are effective for ensuring mutual exclusion by
initially setting the semaphore value to one and wrapping critical sections up in a wait signal
pair. They are also effective in the handling of simple condition synchronization: set a
semaphore, initially, to zero; the process needing the condition to be satisfied executes a
wait; the process satisfying the condition then performs a signal on the condition semaphore.

More complex condition synchronization can be seen with the problem of a finite buffer,
discussed in the introduction to this section on shared variables. Modelling of the condition
synchronization is easy with two semaphores (Ben-Ari 1982), one per condition: a producer
cannot put data into the buffer if the buffer is full - some_space; a consumer cannot take data
out of the buffer if the buffer is empty - some_data. The mutual exclusion can be ensured by
using a further semaphore, ezclusive_access.

The flexibility possible in the use of semaphores is the basis for their major weakness: it
1s easy to write several processes that deadlock because the wait and signals are in the wrong

order, or have been inadvertently omitted. Consequently, semaphores require careful use.

3.2.3 Conditional Critical Regions

The Conditional Critical Region, attributed separately to Hoare and Hansen (Andrews &
Schneider 1983), overcomes the problem of erroneous ordering of semaphores by using a
more structured notation.

Mutual exclusion is achieved by encapsulating variables that require exclusive access
into regions (the variables are termed resources). The language system ensures the mutual
exclusion of any resource by not simultancously executing two regions that share a resource.

Condition Synchronization extends the simple critical region, adequate for mutual exclu-
sion, to include a condition; for the critical-code to execute, the condition must be satisfied.
The conditional critical region removes the inaccuracy of semaphore usage, putting the work
upon the compiler implementor. Although the conditional critical region enables a higher
level description of concurrent behaviour it is a technique that is expensive to execute: every
time the critical code in any region finishes, all processes that are waiting to use the released
resource(s) must re-evaluate their conditions. A further disadvantage is that the code con-
trolling a resource can be scattered throughout a large program and does not need to be held

lexically together; this increases the difficulty of comprehension.
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B.Hansen implemented a version of the conditional critical regions in the programming
language Edison (Andrews & Schneider 1983). This avoided the problem of the cost associ-

ated with re-evaluating conditions by placing each process on its own processor.

3.2.4 Monitors

The idea of monitors is credited to Brinch Hansen in 1973 within his book “Operating System

Principles” (Brinch Hansen 1978). These ideas were later extended by Hoare (1974).

Aston University
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Monitors are a combination of local variables (which hold the state of the resource that the
monitor is controlling) and several procedures that manipulate the variables and any resources
under the monitor’s control. A monitor holds the control code for any resource lexically
together in a module; thus, the control of any resource should be easier to comprehend.

Externally, the monitor’s variables are hidden; the only access to the monitor is through
any visible monitor procedures. Mutual exclusion is ensured as only one monitor procedure
can be executing at any instant. Condition synchronization is far less elegantly managed;
the main synchronization technique involves using a combination of wait and signal with
condition variables. Wait in this instance always blocks, causing the process to be suspended
and queued and the exclusive access to the monitor to be relinquished. This leads to the
scattering of control code through various procedures and risks inducing similar errors to
those found in the use of semaphores for managing condition synchronization. There are a
number of variants possible, a good recent reference is Bahr (1995).

Monitors are a useful structuring idea; they are very effective in managing mutual exclu-
sion and are effective but possibly error-prone in the management of condition synchroniza-

tion. Example monitor-based languages include Concurrent Pascal and Modula.

3.2.5 Path Expressions

Path expressions extend the ability of monitors (the automatic handling of mutual exclu-

sion) to incorporate condition synchronization. An expression contained in the body of a

40



concurrent module specifies the sequencing and execution information required to manage a
concurrent, system.
There are several techniques for writing path expressions, one of which is given in the

quotation below.

Aston University
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The language compiler sorts out all internal synchronizations. This results in a flexible
module description for managing resources suitable for concurrent access. When compared
with monitors, the localisation of the condition synchronization information ensures that the

access procedures are simpler and the whole writing technique is less prone to error.

3.3 Message passing

This section looks at message passing and techniques for communication and synchronization.

Message-passing systems usually use the single mechanism of message interchange for
process communication and synchronization (SR includes more mechanisms (Andrews 1991,
pp 577-578)). There are several possible variations in the semantics of any message-passing
primitives; this has resulted in various approaches and techniques for handling concurrency.

Message-passing systems are built, with added variations, upon two basic primitives:
send and receive. The send primitive transmits a message to another process. The receive
primitive accepts a transmitted message from another process. Gentleman (1981) outlines

three main issues which arise when designing message-passing primitives:
e How do processes specify the source and destination for a communication?
e How do processes synchronize using the communication primitives?
e How do processes structure the message?

The following sub-sections outline the ideas associated with these three points. A more
detailed discussion of the possible approaches can be found in chapter 7 on the Concurrent
Object Machine.

Message-passing primitives, when combined, provide flexible high level constructs, which
makes programming easier. The most used construct is the Remote Procedure Call (see

section 3.3.3).
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3.3.1 Specifying the Source and Destination

There are three points to consider when deciding between different, message-passing imple-

mentation techniques:
1. Is the process naming direct or indirect?
2. Is the naming relationship symmetric or anti-symmetric?
3. Are names static or dynamic?
The two approaches of process naming are as follows:

Direct naming: (Andrews & Schneider 1983) the explicit naming of the destination process
in the send primitive’s parameters, and explicit naming of the source in the receive
primitive’s parameters. Direct naming gives a one-to-one communication channelling.
This method of identifying communicating processes is both easy to use and easy to
implement. It enables flexibility in selecting when and with which other processes each

process communicates.

Indirect naming: An intermediate structure forms a repository of messages - often called a
mailbox. A send puts messages into an appropriate mailbox and receive gets messages
out of the mailbox. Indirect naming thus enables a many-to-many form of commu-
nication. This method of communicating is more Hexible than direct naming, but
can result in poor control over the access to messages and imprecise synchronization

between processes.

The second question of naming symmetry arises when considering problems found in
client/server architectures. A server process will not necessarily be aware of the different
client processes accessing it during its lifetime or the order in which clients expect to use it.
The result is that an explicit statement of the expected source of a request, in a receive, is

not possible. This results in the need for anti-symmetric naming in a message-passing model.

Symmetric naming: the identity of the source and destination of any message is explicitly

contained in the parameters of the message-passing primitives.

Anti-symmetric naming: the receive primitive is allowed to receive from any process, (or
mailbox). This solves the problem above in client-server architectures - a server using
this approach does not necessarily need to know which processes are going to send it

requests.
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A further problem, worth considering, is exemplified by a client needing to use one of
several available resources, e.g. a printer. If there are several equally functional printers,
a client would want the printer that can handle the request first to print it. Initially this
does not seem modellable using an explicit send with direct anti-symmetric naming - a
client would need to send its request to each printer’s queue, thus printing it several times.
However, there is a solution that enables this one-to-many request and it is in the idea
of a mailbox, discussed earlier. It is possible and relatively easy to construct a mailbox
abstraction if a programming language supports direct anti-symmetric naming primitives
and an effective abstraction mechanism. Thus, using direct anti-symmetric naming message-
passing primitives, it is possible to obtain the effect of indirect (symmetric or anti-symmetric)
message-passing primitives, obtaining the flexibility of the mailboxes and the preciseness of
a direct naming system.

The third point to consider when choosing naming conventions is whether the names used
in the primitives to indicate destinations and sources are static or dynamic. Static names
are entirely specified at compile-time. This causes problems of inflexibility in executing the
compiled program; channels of communication not known about at compile time are unusable
at run-time. Dynamic naming uses names that are derived at run-time. Dynamic naming is
in practice more difficult to implement than static naming but it results in a far more flexible

system.

3.3.2 Synchronization of Processes

There are two main approaches to the synchronizing of processes using message-passing

primitives, Asynchronous and Synchronous:

Asynchronous or non-blocking primitives are defined such that when executed they
never cause the sender or receiver to wait. When a process uses a non-blocking send
the message is sent to the receiver and the sending process carries on executing; this
is irrespective of whether the message was butfered or even received. Equally with a
non-blocking receive, a less useful primitive, a receiver performs a receive: if no message
Is present it continues executing; if a message is present it accepts it and then continues

executing (e.g. PLITS).

Synchronous or blocking primitives cause a process which is performing a message-
passing primitive to wait until the process with which it wishes to communicate reaches
the point where it is performing a reciprocal primitive. When the two processes have
reached their reciprocal primitives, i.e. the processes are synchronized, the message

is exchanged. This point of synchronization is also called a rendezvous. (Example
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languages: CSP, Occam and Ada).

Between the Asynchronous and Synchronous primitives are the buffered message-passing

primitives (Andrews & Schneider 1983).

Buffered message-passing primitives associate a finite buffer with each process. This
buffer fills up as messages are sent to it, causing a sender to become blocked until some
of the information is removed. Buffered primitives, therefore, behave like asynchronous
primitives until the buffer becomes full, at which point they behave synchronously and

block.

Frequently, when presenting asynchronous and synchronous communication, the literature
uses the idea of sending a letter and making a phone call respectively.

Consider the idea of sending a letter: a person sends a letter to another person and
then continues with their life. The letter meanwhile is, hopefully, carried by the postal
service towards its destination. The sender does not know whether the receiver has received
the letter, unless the receiver sends a reply which is in turn received. The receiver gains
information through the receipt of the letter, but the information, on receipt, is possibly out
of date. This is like asynchronous communication.

Consider the second idea of making a phone call, which is like synchronous communication.
A caller rings another individual (the receiver), and must wait until the receiver answers their
phone before sending their message. When the receiver answers the two people (processes)
are synchronized and the sender can now deliver the message. This synchronization is called
a rendezvous. The telephone analogy can be taken further: if the sender makes a request
of the receiver and the receiver attempts to answer the request, whilst keeping the caller

walting, then they are exhibiting an extended rendezvous or Remote Procedure Call.

3.3.3 Message Structure

The message format, often considered to be syntactic in nature, has implications on the
efficiency of implementation, code readability and semantic implications in the way that the
message-passing primitives are viewed and hence used (Gentleman 1981).

There are two possibilities the messages could exhibit: either fixed or variable formats.

Fixed format messages have several advantages: they are efficient at transferring messages
(quickly); they are relatively easy to implement; and it is easy to ensure the atomicity
of a communication. Their disadvantages include that they are inelegant when used
to send messages larger in size than the fixed format, and they force implementation

problems onto a user, e.g. how do I send longer messages?
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Variable format messages also have several advantages: they are elegant in use, and single
messages do not need to be broken up into multiple packets; consequently they are
easier to understand and use. The disadvantages with using variable format messages
include: they are harder to implement than the fixed format; they exhibit efficiency
problems because of the varying message lengths; and ensuring atomicity of a message

exchange is a much more complex task.

The message-passing primitives described in the previous sections are flexible enough to
program any form of process interaction. However in a client/server architecture there is a
noticeable pattern of interactions. A client will often send a request to a client and then wait
for a result, and a server will often wait for a request, do some processing, and send a result.
This pattern of interactions is known as a remote procedure call.

The idea of a remote procedure call is attributable to Brinch Hansen (1978), in his paper

on “Distributed Processes”: an extract from the naver’s abstract is eiven below.
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idea that has the semantic ability to capture and model many of the various ideas relating
to concurrency and parallelism.

Syntactic-level support for RPC is provided by some modern programming languages
(e.g., Ada, DP (Welsh & Lister 1981) and SR (Andrews 1991)); it forms a very effective

syntactic-sugaring that aids programming and the construction of higher level abstractions.

3.3.4 Summary

The form of message passing that appears to be the most reliable and effective in the de-
scription of processes is a combination: using direct (symmetric and anti-symmetric) naming
with synchronous communication and variable format message structures; this enables the
simulation of any of the other ideas described in this section. It is not necegsarily the most
efficient approach, but is undoubtedly the most elegant.

Message passing tends to be a very expensive process in the amount of processor time used.
The consequence of this is that, often, interprocess communication with message passing on
a single machine uses semaphores and monitors, but when there is no shared memory proper
message passing is used. This can be seen in the approach found in Xerox’s work with ILU

(Jansen, Severson & Spreitzer 1995).



Chapter 4

Object-oriented Handling of

Parallelism

This chapter looks at current programming language based object-oriented solutions to the
handling of parallelism.

There are two main approaches to the incorporation of parallelism into object-oriented
languages: Actor or object-based models.

Actors, a calculus for describing concurrent activities, have been used as the basis for con-
structing object-oriented languages (e.g., Act 1 (Liecberman 1987), and ABCL/1 (Yonezawa,
Briot & Shibayama 1986)). This secemed a very eflective approach; however, after further
study its applicability was felt to be too limited for this particular work. Actor systems
work best on architectures with large numbers of processors exhibiting very low communi-
cation latency. Also the programming languages need ideally to tend towards the functional
paradigm of description, as opposed to a state-based model. However, as discussed in section
4.1, some work has been done to distribute the Actor-based language ABCL/1 (Actor Based
Concurrent, Language).

The other main option is constructing and compiling object-oriented programming lan-
guages on top of object-based models defined originally for object-based languages. Current
programming languages following this approach, whilst producing powerful programming
languages for describing parallel systems, inevitably did not fulfil the thesis objectives: the
languages make no effort to hide the parallelism, and this seems reasonable as it was not
one of the objectives for the language designers. The object-based approach probably offers
the best base for implementing a distributed concurrent object-oriented language. The main

task then is to design a solid base model (see 1.1.2) which hides the concurrency but copes
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with greater latency! in inter-processor communication.

4.1 Actor-based strategies

Actor as a term, according to Hewitt (1977), was first introduced in his thesis in the early
70’s to describe the idea of a reasoning agent. Actors are based upon computation; they
model objects as a function of incoming communication. This view of objects conflicts with
the more traditional view of objects as a state-based combination of data structures and
methods. Their behaviour is one of self-replacement in response to a message. They perform
the appropriate action and generate a successor which is a modified copy of the object that
received the asynchronous communication. They are very much computational units, being
based around computation rather than data structures and associated function. High-level
Actor languages may circumvent this problem, but the framework is not ideal for a concurrent
state-based system with variable levels of granularity (Agha & Hewitt 1987).

Actors can model states (as indeed can pure functional programming languages) but as
with functional languages the technique is awkward. So, although history-sensitivity can be
incorporated into an Actor system, it is not an ideal framework for the description of any
large concurrent state-based systems. Further state-based problems are found when a state
must be shared between processes. Although state sharing is possible, Actors appear to
be inefficient as regards implementation - state sharing requires a lot of copying and Actor
replication. This problem arises because of the expected behaviour of Actors: when an Actor
accepts a request and performs some action, it does not modify its state but “becomes” a
new Actor. The new Actor is the result of the specified Actor behaviour for a given input.
The old Actor is maintained.

Actor systems can dynamically distribute work, creating intermediate customers for the
results of computations, thus making them seemingly ideal for implementation on parallel
systems. However an Actor system is a combination of many very fine-grained processes. This
means that a parallel system must be able to cope with a lot of context switches, necessary
for the control of the executing threads; for exammple, computers that have tens of thousands
of relatively small processors with low communication latency (Agha & Hewitt 1987). Having
said this, some work has been done to implement ABCL/1 as a distributed language (Briot
& Ratuld 1989).

Actor languages would appear to free the programmer from the worry of considering how
the concurrency happens. This is not necessarily the case, though: the mapping of a program

to its Actor image appears to be a one-way process (as mentioned earlier); it is not clear,

1Because of the target architecture, which is a network of UNIX workstations (see section 1.2.2).
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when executing an Actor image of a program, which Actors are related to which program
objects. This has an impact on debugging; the Actor “assembly language”-level description of
concurrency may not reflect the mapping of objects and strict encapsulation in the high-level
language. Indeed, whilst Actors maintain encapsulation of themselves, the encapsulation
of the high level language could be compromised by the Actor structure. So, to debug an
Actor-based program may require intricate knowledge of the concurrency implementation
strategy.

The one-way mapping problem, above, is even more problematic when considering the
process of distributing Actors across a system. In a typical network of processes, interpro-
cessor communication overheads can be extremely costly. However, with the lack of mapping
knowledge, distributing Actors and trying to produce a low level of interprocessor communi-
cation appears very difficult. As mentioned previously, this means Actors should be executed
on networks of processors with very low levels of communication latency.

To summarise, whilst Actors seem an excellent model of concurrency for certain types of
object-oriented language, they do not form a good base for implementing programming lan-
guages that use large state-based models. The ideal architecture for executing Actor systems
should have many processors with fast context switching and a low interprocessor commu-
nication latency. The Actors themselves must be inherently small or the communication
overheads will become overwhelming.

Consequently, Actors are not ideal when constructing software for networks of computers
where context switching and interprocess communication is (comparatively) slow. In this
context large grained parallelism and heavier weight, processes? are better. Therefore, Actors
do not offer a solution to the implementation of more typical object-oriented languages,
in a concurrent format, executable on networks of workstations or processors with a high

communication latency.

4.2 Object-based strategies

Object-based concurrent programming combines both concurrent and object-based program-
ming approaches into one paradigm. It includes the ideas of encapsulation, classes and
inheritance (in object-oriented languages) with the ideas of threads, synchronization, and
communication (Peter Wegner 1990).

The run-time support for an object-based programming system needs to provide for

e Object management;

21t should be remembered that the target architecture is a distributed computer formed from a network
of UNIX workstations (see section 1.2.2).
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e Object interaction management;

¢ Resource management.

Distributed object-based programming systems as suggested by R.S. Chin and Samuel
T.Chanson (1991}, exhibit all the characteristics of an object-based programming system
as well as supporting a distributed computing environment. Example distributed object-
based programming systems include Amoeba (Tanenbaum & Mullender 1989/90), Clouds
(Dasgupta 1986), CHORUS (Campbell, Russo & Johnston 1987), Emerald (Black, Hutchin-
son, Levy & Carter 1987). Typically, distributed object-based programming systems have

the following characteristics: 3

e A technique for distributing objects;
e A transparency of location so that programs can be made more general;

e Maintenance of data integrity, such that a persistent object is always in a valid state

before it performs an action;
e Fault tolerance;
e Maximised availability of objects irrespective of a node failure;
e Recoverability of an object state if a node fails;
e Object autonomy - the ability for an object to state which objects can be clients;

e Program Concurrency - multiple objects should be assignable to multiple processors

for concurrent execution;

e Object Concurrency in that an object should be able to service more than one request

at a time;

e Improved performance in that a program, if well designed, should perform better on a

distributed object-based programming system than on a conventional system.

Some of the object-based solutions (e.g. Emerald) are close to providing an object-
oriented solution. However, Emerald does not support inheritance in the object-oriented
sense. Instead Emerald supports a type hierarchy and a compositional model of construction
to enable sharing. The compositional model facilitates the construction of objects from

components, enabling encapsulation of the items as a single entity.

3For more detail relating to this list, which is a paraphrase of the original, see the original paper by Chin
& Chanson (1991).
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In practice, all the object-based solutions looked at put the concurrency control into the
hands of the programmer. Implementing the automatic handling of concurrency uses some
of the ideas and technology of the distributed object-based programming system paradigms;
however, the technology is hidden below the level that a programmer normally deals with.

An effective approach for the base of any large object-based system has now become
available from Xerox Parc, termed ILU (Jansen et al. 1995). This enables packaging of ob-
jects and deals with inter-object communication, performing optimisations for local machine
interactions. However, it was unavailable as a core tool at the start of this work and thus is

not used for implementation of the basic execution framework (see chapter 7).

4.3 Object-oriented Languages with Concurrency

There are several object-oriented languages, other than the Actor-based languages discussed
earlier, that support concurrency. They (mostly) use a process declaration approach to
introducing processes. Consequently, all of these languages force any concurrency control
into the hands of the programmer, thus making a possibly difficult development job even
more complex.

Solutions include direct extensions of “standard” languages - i.e. classes built to incor-
porate process management primitives; this has been done with C++ (e.g.Ishikawa, Tokuda
& Mercer’s (90) work on RTC+4, an extension of C++ supporting real-time active entities)
and can be seen on top of Eiffel (Magnusson 1990, Caromel 1989, Caromel 1990). Smalltalk
too has had its share of work to extend it for concurrent work in for example ConcurrentS-
malltalle (Yokote & Tokoro 1987). The solutions are effective for concurrency but do not
address automatic concurrency management.

Other solutions to the handling of concurrency include new purpose-designed languages
that require novel (to object-oriented languages) syntactic extensions in the language e.g.
Hybrid (Nierstrasz 1987). Hybrid brings together a mixture of all the possible constructs
that one could imagine for handling concurrency and thus provides a multitude of different
ways to tackle problems.

One of the best solutions in this category of purpose-designed programming languages is
America & van der Linden’s (1990) programming language POOL (Parallel Object-Oriented
Language). As a language it has been characterised as a simple version of Ada (Eliens
1994). It supports the notion of active objects (Eliens 1994); active objects have their own
thread of control in parallel with threads in other active objects. POOL objects handle
messages explicitly by interrupting their activity using an accept statement, as in Ada. The

real strength in POOL is the extensive work done in laying a strong theoretical foundation
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describing the semantics for a parallel object-oriented computing (America & Rutten 1990).
With respect to this work, the two major weaknesses with the POOL model are that it

allows for only one thread inside an object thus limiting the potential level of parallelism,

and the handling of parallelism is in the hands of the programmer and is not automatic.

Active objects have also led to the ability to distribute the objects across different
machines, giving rise to another extension to Smalltalk called Distributed Smalltalk with
its prozy objects that deal with communications between objects on different machines
(Steel 1991). These prozy objects are similar in nature to the couriers in the model pre-
sented in chapter 7.

Further solutions include DRAGOON (Atkinson, Goldsack, Di Maio & Banyan 1991),
an object-oriented extension to Ada; Ada 95, the new standard for Ada (Adae 95 Refer-
ence Manual n.d.); and COOL (Lea & Weightman 91), a kernel support, for object-oriented
environments (based on CHORUS (Zimmermann, Banino, Caristan, Guillemont & Morisset
1981)). There are other solutions including languages such as CLOS - a form of lisp; Orient-K
- a knowledge-based language etc, but none of them address the problem of enabling concur-
rency without forcing the programmer to control it. All of the solutions in this section rely

on the skill of the programmer for the tackling and handling of parallelism.



Chapter 5

Thesis Objective

The objective of this thesis as outlined in chapter 1 is to provide a self-contained, adequate
theoretical object-oriented model for concurrency such that a model for implementation of a
compiler for an object-oriented programming language can be produced, without extensions
to the syntax or semantics of the language. Thus it will be shown that it is possible to
automatically translate a sequential program into a parallelised program.

The theoretical model of concurrency will be called a “Concurrent Object Machine”
(COM). The model is not expected to be optimal in either speed or space usage, but is
expected to provide a good target for the model of a parallelising compiler for an object-
oriented programming language, making the construction of such a compiler practical. The
model for the compiler’s implementation will, as with the COM-model, be based upon an
object-oriented view of the problem. It will utilise the inherent logical structure and message
passing found in object-oriented programs. This use of object-oriented ideas will enable an
elegant and practical approach to the automatic parallelisation of a useful subset of object-
oriented programs. These two models will be built using the Eiffel programming language
and will use a subset of Eiffel as the language to be implemented. The generated code will
be written to utilise a network of UNIX workstations as a parallel computer.

The rest of this chapter looks at the ideas to be implemented; it looks at the Eiffel
programs that such a compiler should deal with including highlighting an apparent weakness
in the current implementation of Eiffel compilers with respect to definitions given by Meyer
(1988); it discusses the principles which, when applied to object-oriented programs, improve
the effectiveness of such a compiler. Consideration is given to the view of executing object-
oriented programs and how an alternate execution-model view from the “normal-execution”
model in Eiffel has been adopted. Finally a brief overview is given to the approach applied

within this thesis including a description of the Eiffel subset which will be dealt with.



5.1 The Starting Point: An Eiffel Program

Translating from Eiffel into a parallelised form starts with an Eiffel program. Eiffel programs
are described using classes. There is one class - the root-class - which forms the glue that
joins a collection of classes together into a program. This class has a main routine called
Create!, called to effect the start of the program, as main would typically be called to start
a C program.

Eiffel classes (see chapter 2) contain definitions of attributes and methods. The attributes
may be of a simple type - INTEGER, CHARACTER, REAL or BOOLEAN:; or a type
described by an Eiffel class (even a class of which it is a member, i.e. recursive definitions
which can be either directly or indirectly mutually recursive). Methods can be categorised
as one of two types: those that return a value and those that do not, termed queries and
commands respectively. A query can return a value which is either a simple type or a type
described by a class.? A class can be related to one or more parent classes by inheritance;
the inheritance however cannot be recursive.

The recursive relationships, outlined in figure 5.1, lead to an interesting algorithmic prob-
lem which is discussed in section 10.1.3. The problem arises because of the recursiveness in
the class relationships and the necessity for the Eiffel compiler to derive all class relationships

and decide which classes must be (re-)compiled.

5.1.1 Good Eiffel Program = Potential Parallelism

To achieve programs that actually execute in parallel, instead of as a collection of “sub-
routines”, it is necessary to write reasonably good Eiffel. This measure of “goodness”, in the
form of programming principles, is presented in section 5.2; the principles should be adhered
to if maximum parallelism is desired. If a programmer chooses not to adhere to the principles

then the level of potential parallelism will be reduced.

5.1.2 A Semantic flaw in the implementation of Eiffel?

It is stated by Meyer (1988), the originator of Eiffel, that:

“...exporting an attribute entitles clients to access its value (in read mode), but
not to modify (write onto) it.” (Meyer 1988, pp 212)

I'The restriction of calling the main routine Create has been removed in Eiffel v3,

2NOTE: The view presented is simplified to bring out the most salient features of an object-oriented
programming language. For example Eiffel supports a concept, called “expanded types”, which are flattened
classes, i.e. they can be treated as one might expect 10 treat simple-types. Indeed STRINGS, for the purpose
of this work, are treated as simple-type entities.
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Figure 5.1: Class relationships in Eiffel

This is not the case with standard Eiffel implementations: whilst all objects exported
cannot be assigned to, the read-only mode is easily broken if an exported attribute is a
“non-simple” type - any method exported by the class describing the exported object can be
applied to that object, including state change methods.

Figure 5.2 epitomises this apparent flaw: the object b in class A which is exported can
be altered by the following statement a.b.c.d.change_d_method(...); where a is of type
class A, thus allowing an external program to access not only inside instances of class A,
for manipulative purposes - compromising encapsulation - but also down multiple layers.
Thus a programmer using class A can make assumptions about how the program has been
written, causing a loss of information hiding and a possible loss of continuity (i.e. the idea
that small changes in specification should lead to correspondingly small changes within an
implementation (Meyer 1988)).

It is possible to avoid such poor programming practice by choice and self-imposed disci-
pline; even better, Eiffel has sufficiently well-defined semantics such that semantic analysis
can highlight such errant programming style, though obviously at the expense of longer

compilation times.



class A export
b

feature
b: B;

)

end; — class A

class B export,
4
feature

c: G

end; - class B

class C export
d

feature
d: D;

end; — class C

Figure 5.2: Weakly-encapsulated attributes

5.2 Programming Principles

The principles discussed are presented from two points of view: sound programming practice,
so that it can be demonstrated that the assumptions made within this thesis do not lead to
strange techniques for software development; and how such principles increase the potential
parallelism. The principles all relate to accessing the interior of objects, and consequently to
the style of programming used in classes, particularly the interface provided to instances.

5.2.1 Sharing: Multiple objects utilising a shared object

Modelling the sharing of objects is something that is necessary for both modelling the real-
world, and also (from the point of view of understandability) when reflecting an abstract
concept (e.g. a linked list) within a model. However, most object-oriented languages do
not have a syntax or semantics to support the clear modelling of sharing; instead, sharing
semantics must be contrived by the use of some feature within the programming language -
typically exported references within objects.

For example, consider two objects of type PERSON and an object of type TELEVISION,
both of whom wish to be able to utilise this TELEVISION. Somchow in an object-oriented
system it is required that the potential interaction can be modelled. The two people might be
expected to interact with the television, TV for short. From the perspective of information
hiding it seems to be a poor design decision, particularly given section 5.1.2, to put an
attribute of type TELEVISION inside an Eiffel class PERSON - people do not generally
contain TVs. However, the most convenient way to model sharing is to incorporate in the
class PERSON a reference to a TV, by defining an attribute of that type. This attribute
can then be assigned to by a “setting-operation”, which PERSON exports. The creation of
the TV object should be external to the people, possibly in some greater class which brings

together the idea of these people and TVs.
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Figure 5.3: Poor object sharing
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a single, shared, TV
Figure 5.4: Better object sharing

To model a shared object in an object-oriented programming language such as Eiffel, due
to the lack of a good syntactic-sugaring with suitably defined semantics to reflect the concept
of sharing, it is necessary to nominally break encapsulation, and to write a class which seems
to be “nonsense” from a modelling point of view, e.g. PERSON containing a TV. Indeed,
because of the need for sharing, the semantic-flaw of section 5.1.2 becomes a virtue. The
way to perceive this type of class is not as figure 5.3 but as 5.4, even though the code reflects
figure 5.3 (section 5.3 looks in more detail at the perception of execution in the execution
models).

Consider, however, a teletext decoder defined within the TELEVISION class: it is an
object that is contained within another object, the TV. It would not be expected that a
PERSON would access the decoder, instead they would use it by manipulating the TV’s
defined interface. Therefore this item should not be exported, even though it would give a
quick convenient coding technique.

This use of encapsulation, called containment from now on (if the encapsulated object, is
externally inaccessible), is the fundamental structuring mechanism that, along with commu-

nication via message passing only, enables the automatic generation of parallelism.
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5.2.2 Containment

The containment of an object within another object should be a central theme when building
large object-oriented software systems. Support for containment, meaning the ability to
strongly encapsulate a contained object, helps not only to maximise parallelism but also to
maximise the achievement of the criteria for design put forward by Meyer (1988, chapter
2) - modular decomposability, composability, understandability, continuity, protection - and
four of the five corresponding principles - few, small, explicit interfaces with maximised

information hiding.

5.2.3 Ideal: Accessor/Method division

Meyer (1988) discusses a query/command division: a query, as might be suggested by the
term, is a method that returns information about the object receiving the request; a command
causes a change of state in the receiving object. A query, it is suggested by Meyer, should
be restricted such that it does not cause a state change within the object that receives the
request.?

This division between queries and commands is not rigorously enforced in object-oriented
programming languages. However, given the level of semantic analysis possible it could be
done in Eiffel. This would be beneficial, particularly in the context of this work, as it ensures

maximum parallelism because of the reduced side-effects.

5.2.4 Summary

To summarize, if a programmer attempts to maximise fulfilment of the criteria put forward
in chapter 2 in Meyer’s (1988) book, then they inherently maximise the potential for par-
allelism. Certain aspects are not emphasized in the book, but as argued are relevant to
Meyer’s own criteria: ensuring containment of objects (minimising inter-relationships thus
increasing potential parallelism; exporting objects only if they are shared objects) which also
minimises inter-relationships; and enforcing a query/command division - giving the potential

for reader/writer divisions in operations such that they can be run in parallel.

3This is a slight oversimplification, as Meyer (1988, pp 135-139) suggests that state change is acceptable
in the concrete state as long as the abstract state is not altered. The distinction between abstract and
concrete state appears artificial and unnecessary; no example is given beyond that of complex numbers -
which could easily have been implemented using an alternative strategy without the increase in complexity.
There is however a possible efficiency question, e.g. wasteful conversions inside queries, between polar and
cartesian representations of complex numbers, which are not reflected in the object’s abstract state even if
the next method call would also require this translation - complex in polar form; request z means conversion
to cartesian form; next operation if a command to add would also require to do this conversion.

w
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Figure 5.5: “Normal-model” view

5.3 The Execution Model

The “normal-execution” model (Meyer 1988) is an inadequate base-model for this work on
parallelism. It does not clearly model the concept of encapsulation, which is central to this
work.

As discussed briefly in section 1.1.2 and in more detail by Brunskill et al. (1995) the
basic model’s effectiveness is important if reasoning, refinement and implementation are to be
effective. The “normal-model” view is presented in the following section, with an explanation
of why it is problematic; this is followed by a section on an alternate view that better reflects
aspects of encapsulation and information hiding and enables world-views to be mapped with

greater clarity onto an execution-model.

5.3.1 The “Normal-Execution” Model

Figure 5.5 presents the “normal-execution” model view.? It depicts five arbitrary objects

and inter- and intra-relationships between those objects by using references. Although it is

4The diagram is semantically equivalent to that found on page 70 of Meyer’s (1988) book, but for conve-
nience of generation the ellipses, circles and lines vary in size and placement.



an inference based on the diagram and reading this book, the model does not reflect the idea
of containment. Simple objects, here including STRINGS, are represented as being contained
within an object, but entities described by a class are drawn outside of the relevant ellipse;
hence it is not clear whether an object is conceptually contained within an object, or is shared
between a number of objects.

This means that one of the tenets® of object-oriented software development, encapsulation,
1s missing from the execution model. This absence can lead to a “lazy” programming style
that does not maintain containment of entities, with strong encapsulation, but instead enables
programmers to ignore the concepts of information hiding (see section 5.2.2). In short it can
lead to the criteria and principles outlined in chapter 2 of Meyer’s boolk being broken, and

consequently to poorer quality software systems (see also section 5.2.2).

5.3.2 An Alternate Model View

An alternative execution-model view to that outlined in section 5.3.1 might attempt to in-
corporate any needed features that the “normal” view does not possess, but it must not be
a semantically weaker model, otherwise it may become a hindrance in the implementation of
Eiffel. The alteration made is to explicitly reflect the idea of containment and sharing in the
execution model.

To aid parallelisation, when considering Eiffel programming style and classes, only export
an object from an Eiffel class if it is supposed to be shared, especially if the item is “non-
simple”. This is necessary (see section 5.2.2) as any exported entity, whilst semantically read-
only, is in practice, when “non-simple”, alterable using any routines that are exported from
the contained object’s class description. If an entity is not exported then it is viewed as being
an object fully contained within an instance of that class. This alteration to the execution-
model view, if carried through to programming and semantically to implementation, will

maximise information hiding and increase the potential for parallelisation.

5.3.3 The Concurrent Object Machine

The alternate-execution-model view used in this thesis will form the basis for the abstract
machine onto which the parallelised Eiffel programs are to be mapped. The machine is termed
a Concurrent Object Machine, or COM for short (see chapter 7). This abstract machine

brings together Gentleman’s (1981) ideas of workers and communication, with a view of

5The tenet that encapsulation is irnportant is not universally held in the diverse object-oriented community.
It is however beneficial if encapsulation is enforced (Meyer 1988, chapter 2) when writing large high-quality
object-oriented systems.



object-orientation that makes enforced encapsulation a necessary virtue, and incorporates

the ideas of client-server architectures from operating systems.

5.4 Overview of Approach

As mentioned at the start of this chapter the programming language to be implemented is
a subset of Eiffel. The architecture on which the implementation is to be executed is that
of twenty VAXstation 3100s running UNIX and connected with TCP/IP over ethernet. The

implementation language is Eiffel v2.2.

5.4.1 Language to be implemented: Eiffel

Eiffel was chosen as a suitable programming language to implement because it has reasonably
well-defined semantics (Meyer 1989a, Meyer 1992). The particular version of Eiffel looked at
is 2.2, as version 3 was not available for most of the period of this work. Although the work
is focused on version 2.2 Eiffel, in practice the ideas should translate with little change to
version 3, as the majority of alterations between the versions are syntactic.

The implementation of Eiffel is a non-trival task when compared with a lot of program-
ming languages partly due to its size, its features, and those aspects incorporated to aid in
building large systems (e.g. unlike C systems no make file is required). This has led to a
subset being chosen for investigation. Those features of Eiffel not, implemented include para-
metric polymorphism or genericity; assertions and the associated pre- and post-conditions,
invariants and loop invariants; low level manipulations such as mterfacing for C; and once
routines. Consequently the features found in most object-oriented programming languages
have been considered and investigated, particularly objects, attributes, methods, message

passing, classes and inheritance.

5.4.2 Implementation Architecture

The architecture on which the implementation was done is that of a set of diskless “VAXs-
tation 3100”7 workstations, with 25 megabytes of RAM, running UNIX. The workstations
are connected by an ethernet backbone and supported by a common server which holds the
file-system.

The advantages of this are that with the memory not being common the ideas presented
will map onto shared memory multi-processor machines as well as non-shared memory multi-
processor machines.

A major disadvantage of this strategy is that true empirical measurements of effectiveness

are not really possible. These workstations are on a backbone common to many computers
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and thus have to deal with a great deal of background “noise” as well as any communications

that might be necessary to a parallelised program.

5.4.3 Host Operating System: UNIX

The operating system used both for implementing and for the execution of an implemen-
tation is UNIX. The main features that have been used are Berkeley sockets, the fork call
and processes. This means that it should be possible, given a suitable compiler, to map the
ideas onto any operating system supporting these features. As will be discussed, this is not
an ideal set of features but should include: threads, unsupported at time of development
on this version of UNIX; fast interprocess communications such as system V message pass-
ing, or shared memory for fast local machine inter-object communications. Another ideal
feature unavailable on this version of UNIX would be a means to automatically distribute
and load balance threads and/or processes - an area of research at present (e.g. Blumfore,
Joerg, Kuszmaul, Leirerson, Randall & Zhou’s (1995) multi-threaded parallel programming

on Connection Machine CM5 and other machines).®

5.4.4 Implementation Language: Eiffel

Eiffel is the implementation vehicle for the thesis along with C as required. Eiffel was chosen
because the standard Eiffel libraries provide extensive tools for creating parsers, it has the
ability to interface with C for low-level manipulations, and it supports a useful level of

abstraction when implementing solutions with its support for object-orientation.
5.4.5 Program Analysis

Parsing

The parsing is very much as for standard compilers. The basic technique is similar to the
effect achieved with recursive descent, with the associated building of symbol tables and

abstract syntax trees (AST) which are annotated with the source program’s information.

Semantic Analysis

This involves the usual ideas of analysing code to build up a picture of the algorithm involved,
particularly to help in optimisation. However, it also incorporates what is basically a process
of taking the transitive closure of all possible paths and relations to work out as much

information as possible to facilitate transformation into a parallelised program. For example,

SThe research nature of distribution and load-balancing algorithms makes their study in this area a major
research in its own right and means that it is necessary to leave this to future work.
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it checks if an object supplies a method to fulfil a request, or whether the application of a

number of methods causes a state change.

Code Generation

This uses the tables and ASTs built in the previous phases of parsing and semantic analysis
and generates a class to represent each method and each class, as required by the execution
model. The classes become descendants of classes which provide inter- and intra-object
communication, and form the basis for the abstract machine onto which the parallel model

is mapped.

5.4.6 User’s View

Compilation: Eiffel code to Parallel programs

When the system has been built, a user who would normally type es to compile a complete
Eiffel system will now type build_all and everything will happen automatically from parsing

through to final compilation of the code-generated Eiffel.

Execution of the Parallelised Eiffel Program

The execution method, as with the compilation strategy, will be straightforward. A user,
as if running a normally-compiled Eiffel program, will type the name of the root class and
the system will automatically execute associated programs on local or remote machines, as

required, to effect the creation of objects and the execution of the original algorithm.
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Introduction to part II

This part looks at the design of a solution to deal with translating a sequential object-
oriented program in Eiffel into a parallelised program. Chapter 6 looks at the design of
the translator with chapter 7 presenting the design of the abstract machine onto which
the translation maps. Chapter 8, looks at issues such as deadlock. It suggests that it is
possible to remove the problem by a priori design decisions within the code-generation of the
compiler. The final chapter in this part, chapter 9, looks at the code-generation phase of
the compiler, detailing how some of an object-oriented programming language’s constructs
would be translated.

The work in this and subsequent parts is that of the author. Chapter 7 as it suggests is
influenced by (Gentleman 1981, Burkowski, Cormack & Dueck 1989) but the idea of a COM
is mine. The work in chapter 8 benefited from useful discussions and work with Prof. Colin

J. Theaker but again is my own work.
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Chapter 6

The Translator

This chapter examines the design of a translator, which as with all of the suggested approaches
within this work is object-oriented, and its necessary features such that sufficient semantic
information can be produced, via semantic analysis, to enable code generation of a parallelised

form of the input program.

6.1 The Translator: an overview

The process to be used is typical of that found in most, if not all, translators; it passes through
various phases from parsing to code generation (see figure 6.1). The expected input, for this
translator, is an Eiffel program! combined with the standard description file (see section
6.1.1). The generated code will be, for this work, a parallelised form of Eiffel, where each
class is rewritten in the process of translation as multiple classes, made to inherit pre-written
classes which provide run-time support for parallelism.

The objective of the parsing and semantic analysis stages is to produce suflicient semantic
information to support the automatic construction of a parallelised version of the input
program.

The translator is object-based in its structure. The organisation of this structure is based

upon the structure of an Eiffel program:

An Eiffel program is a collection of classes; one of the classes is termed the
root-class, its creation routine? starts and controls the program’s processing. An
Eiffel class is a composite of feature definitions, both attributes and methods,

and various clauses describing relationships with other classes and the external

!The program is limited to a subset of Eiffel, as mentioned in section 5.4.1: i.e. no genericity, assertions,
low-level manipulations, or once routines.
2Version 2 Eiffel classes define only a single creation method; version 3 classes can have multiple.
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interface of objects which are instances of these classes. Features are composed

of a number of parts which define the feature, and so on.

If the grammar describing an Eiffel class is considered, a class - the right-hand side of a
grammar production - is describable by a composite of ever finer constructs, with well-defined
semantics. Given this view of an Eiffel class (and correspondingly an Eiffel program), the
parser as it parses a class will produce an hierarchical structure of constructs which are an
abstraction of the input program, assuming there were no syntax errors. This hierarchy is

conceptually viewable in two ways:

1. As an abstract syntax tree (AST) where the constructs are objects and form the nodes

and leaves.

2. As a construct which is a composite object, where the parts are the expected constructs

within the construct being parsed.

These two views will be examined in section 6.2 and 6.3 respectively.

Once the parser has built the above structure the semantic analysis phase takes place.
This phase, discussed further in section 6.5, basically takes the transitive closure of most of
the program’s relationships, evaluating any types that are still unevaluated, and assessing
any state change activity: i.e. whether a variable’s state is changed in an expression or

through being a parameter to a method’s application to another object.

6.1.1 Standard Description File

An SDF (standard description file) provides the starting point for the compiler. It indicates
the name of the root-class and consequently, in version 2 Eiffel, the name of the file which
should contain the root class’s definition - i.e. if the root class is named TEXT the file is
named text.e. This file provides directives to an Eiffel compiler including, amongst other
things, the following:

ROOT: the root class name;

SOURCE: list of source directories;

EXTERNAL: list of external files;

There are other elements in an SDF, including directives about whether to include asser-
tion checking, debugging, optimisation and/or garbage collection in the compiled program.

For the purpose of this work these options are ignored.
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The SDF, along with the file containing the root. class, provides no explicit information to
the compiler about dependencies between classes; these must all be derived by the compiler

from analysis of the program text.

6.2 Abstract Syntax Tree

One view of the structure produced by the parser is that of an abstract syntax tree (AST)-like
structure. ASTs are parse trees with the syntactic elements eliminated (Fischer & LeBlanc
1988); they can be used as an intermediate form, and annotated, to aid the analytic process.
Example diagrams of a parse tree and an AST taken from Fischer & LeBlanc (1988, p 533)
depicting a simple if statement (S — if E then L end if) are presented as figures 6.2 and
6.3. The parser produces these ASTs as a result of following a recursive descent, style process
(Davie & Morrison 1981). The parser follows the grammar description coded into the classes
which make up the parser, looking for the next expected construct and placing upon the tree
the recognised construct as an object - which is that construct minus syntactic information.

Once produced, the AST can be progressively tagged with attributes that incorporate
information about the program being compiled, as might be expected when using attribute
grammars® (for a discussion of attribute grammars see Fischer & LeBlanc’s (1988) book on
crafting a compiler where they are attributed to Knuth (1968)). The process of tagging the
syntax tree uses the common depth-first left-to-right traversal tree-walk algorithm associated
with attribute grammars and syntax trees (Fischer & LeBlanc 1988, pp 514-519). In the

terminology of attribute grammars some elements of the objects, representing a construct,

3NOTE: No attribute grammar has been written for this work, but the combination of the Riffel parse
libraries and the implementation strategy chosen has the effect of looking like an implementation of an
attribute grammar.
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are tagged as a result of the synthesis* of information from member elements of the construct;
whilst other elements become tagged as a result of inherited® attributes from constructs of
which this construct is a member.

Within this view the AST’s nodes are objects which are annotated with inherited and
synthesised pieces of information, which differs from the text book description using the

language entity alone, as in figure 6.3.

6.3 A Composite Object

Given an object-based approach to structuring the translator there are a number of essential
objects which give the translator its shape - these include objects which represent the whole
program, classes within a program, features within classes, variables, constants, and the
constructs within the program. These objects, created and organised during the parsing
phase as a result of the input text, hold information about the specific construct or symbol
from which they map. Therefore there are five main types of object which give shape to the

translator:
program: holds information about all of the classes used within a program.

construct: there are a variety of these, including if-statements, expressions, sequences etc.
They hold semantic information about the programming language construct of which

they are an instance.

class: holds all the information about the current class, including what features are exported,
what inter-class relationships are used, etc. This is also a construct and therefore

inherits the attributes and features of “construct” above.

feature: holds information about features including whether they are attributes, commands,
queries, state changers, etc. This is also a construct and therefore inherits the attributes

and features of “construct” above.

symbol: holds information about symbols used within features, i.e. variables, types, con-
stants, etc. This is also a construct and therefore inherits the attributes and features

of “construct” above.

4Synthesis of attributes is the building up of information about a construct using information derived by
constituent constructs.
SInherited attributes are those provided to a construct by the construct of which it is a part.
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6.3.1 Program Object

The “program object” after parsing contains all the information about the program including
class names and associated class information; 1ts visible external behaviour will be similar to

that expected from a hash-table.

root_class_name C::)

program_info class_name — class\

class_name ——=  class
class_name —=  class
class_name —> class
N _
is_com(class_name) BOOLEAN

kexporlable_type(class_name) : BOOLEAN J

Figure 6.4: Idealised program object

As can be seen in figure 6.4 a program object 1s made up of at least five elements: the name
of the file which holds the main class for this program, the root-class; the name contained
within that file, the root_class-name; the collection of classes mapped to by their names; and
two methods used exclusively in the semantic analysis phase, (sce section 6.5) is-com and
exportable_type. 1t is the creation of this object, and the consequent running of Create - not
shown on the diagrams as all classes in Eiffel v2 have a Create routine - which starts the
translation process.

The translation begins, in the Creste routine, with the program object locating and
loading the required root-class, and filling in the appropriate fields. The compilation of the
class will be achieved by the creation of a class object; this includes the clags-object placing

itself into the program_info.

6.3.2 Construct Objects

As mentioned previously, the translator is organised around objects. Once below the level
of the program-object - i.e. the class objects and their internals - the translator’s structure
results from the creation of a language construct and its subsequent recognition. All of these
constructs inherit attributes and methods of the construct-object discussed in this section.
The set of objects which make up a construct-object are derived from the Eiffel parse

libraries (Meyer & Nerson 1990a). A construct can be one of three derived forms - se-
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quence, choice and iteration. Using these constructs the translator can define the structure
of the language, mapping a grammar production into Eiffel classes, one class per produc-
tion in the language’s grammar. In any construct-object there are at least thirteen fea-
tures: parse, production, semantics, pre_action, in_action, post_action, do_print, child_print,

pre_print, in_print, post_print, children_print. These are defined as follows:

parse: as its name suggests, parse attempts to parse the current construct defined in the

feature production. Upon success the “parsed” attribute is set to true.
parsed: true, if this construct was successfully recognised.

production: indicates what elements are expected to successfully recognise a current con-
struct. This is redefined in each construct to be an enumeration of the elements on the

right-hand-side of the grammar production that describes this construct.

semantics: only called if the construct was successfully parsed, it is defined to perform three
methods - pre_action, in_action, and post_action, which are redefined as required within
particular construct definitions to achieve a construct’s semantic analysis. These three

methods, combined, synthesize all the required semantic information.

do_print: if parsing is successful and the semantics are satisfactory then this method per-
forms three methods pre_, post_ and in_print which will be defined as required in the

current construct. These three methods form the basis of the code generation of the

parallelised Eiffel programs.

child_print, children_print: given the hierarchical structure used in the translator, these
two features simplify the code generation phase providing useful methods to help code-

generate a particular child construct or range of child constructs regpectively.

6.3.3 Class Object

A “class object”, depicted in figure 6.5,0 will take as a parameter to its creation routine
the name of the class it is supposed to compile, and the currently held program_info. A class
on being asked to compile itself will check if it has already been entered into the program_info
table; if it has it can terminate. This effectively avoids cycles in the compilation, which are
possible in Eiffel.

The creation parameter program_info will be required by the class object as it compiles
itself so that it can look up information about parents or clients as required. When a class

needs to know about another class it will inspect program_info, which will be a hash-table, and

6 Construct features are not depicted in the figure but are part of a class object.
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class_name (:)

class_symbol_table

feature_name — feature
feature_name —> feature

feature_name —>= feature

feature_name —>> feature
N Y,

—

inherit_list ) o )
class_name —> inherit_information
class_name —> inherit_information

class_name — > inherit_information

class_name —> inherit_information
N J

client_list [C ) ( ) C ) C:)]
export_list [( ) C ) ( ) @j

file_exists : BOOLEAN
standard_eiffel : BOOLEAN
1s_com : BOOLEAN

parsed : BOOLEAN
has(key,program_info) : BOOLEAN

item(key,program_info)
wrilten_create : BOOLEAN
compiled : BOOLEAN

message_out(strl,str2)

Figure 6.5: Idealised class object,
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if the class has not yet been compiled, will instigate a compilation, as was seen in the discus-
sion of the program object. It is the passing down of program_information, class_information,
feature_information, etc. as parameters to creation, semantic and code-generation routines
that achieves the tagging of inherited (in the attribute grammar sense) attributes.

A class that needs to be parsed will set up its output files, set up its instance variables,
place itself into the program_info and then commence analysis.

The analysis of a class will begin with the setting of a state variable to indicate that
the class has been or is being parsed; this will be followed by the parsing of the class.
After parsing the semantic analysis phase will annotate the class’s information including
recording the list of inherited classes, repeated export clauses,” and exported features. This
will include instigating the analysis of any inherited and/or client files which have not already
been analysed. The analysis of parent classes will enable completion of a class’s export list,
as the set of exported features will have now been derived with the expansion of any repeat
clauses. The analysis of parent and client files follows the same process as for the current

class.

analyse_file is
do
set_parsed; -- avoid re-parsing classes
parse;
if successfully_parsed then
semantics;
set_inherit_list(class_inherit_list);
set_export_list(class_export_list);
set_repeat_list(class_repeat_list);
analyse_parent_files;
analyse_client_files;
complete_export_list;
code_generate;
end; -- if
end; -- analyse_file

Figure 6.6: Analyse a file

The semantic analysis phase consists of finding out all possible relevant semantic infor-
mation about the features within the current class. This, in turn (as will be discussed in
later sections) involves the features in extracting all the relevant semantic information from
their elements, providing “synthesised attributes” (Fischer & LeBlanc 1988) to the class.

Code generation is subsequently handled by a class’s member features and elements pro-

"In Eiffel a short way of saying “export everything that was exported in parent class X7 is to say “repeat
X7,




ducing their converted code and by the class object adding an extra routine to deal with
message-handling (see section 9.1).

One other aspect that the class object supports, which saves processing time on sub-
sequent runs, is that upon completion of its compilation sufficient information is stored in
a “stats” file - i.e. text.s - for later reloading, assuming the text of a class has remained

unchanged between program compilations.

6.3.4 Feature Object

(feature level information) i (internal feature information)

uses_externals : BOOLEAN  formal parameters

exportable_feature (program_info,class_info) : BOOLEAN

is_create : BOOLEAN | ———=  para_name
T %? 2 por.sume
like_current : BOOLEAN 3 ————>  para_name

is_infix_method : BOOLEAN

is_attribute : BOOLEAN n para_name

is_constant : BOOLEAN J

is_method : BOOLEAN

accessed_vars
is_query : BOOLEAN :

(affect state?)

is_state_changer {program_info, class_info) : BOOLEAN symbol_name ——>= BOOLEAN

state_formal_parameters symbol_name —> BOOLEAN
5 N
| ——>  BOOLEAN symbol_name — BOOLEAN

5 5 BOOLEAN

symbol_name — BOOLEAN
3 —> BOOLEAN

(.

n—— > BOOLEAN feature_symbol_table

~

symbol_name —> symbol
external_accessed_vars

i symbol_name ——> gsymbol
(affect stare?) ) n Y
symbol_name —> BOOLEAN | = symbol_name — symbol

symbol_name — BOOLEAN

symbol_name — BOOLEAN symbol_name ——> symbol

symbol_name —> BOOLEAN has (symbol_name) : BOOLEAN

item (symbol_name) : SYMBOL

“all_types

[(type_name) (type_name ) J

s_local_var (symbol_name) : BOOLEAN

s_formal_parameter (symbol_name) : BOOLEAN

Figure 6.7: Idealised feature object
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Features are of one of two categories: either methods or attributes. The compiler treats
all features similarly with respect to their names, and upon the parsing of their corresponding
definitions constructs a feature-object, populating the object’s attributes. The basic structure
of a feature object can be seen in figure 6.7. All of the methods and attributes depicted within
figure 6.7 are exported by all instances of a feature-object, and are thus made accessible. The
feature-object has been depicted as consisting of two parts - feature-level and internal-feature
information. This artificial division into two parts highlights the two main uses for a feature-

object. The two parts are summarised as follows:

feature level information: information relevant to class level reasoning, synthesised by

the analysis process within the feature definition.

internal feature information: information relevant to semantic analysis and code gener-

ation when implementing the feature’s internal behaviour.

Feature level information

In figure 6.7 the information tagged feature level information provides information to the
class’s objects enabling evaluation of feature properties and interdependencies. For example,
state_formal_parameters indicates if any formal parameters have their state changed within
their corresponding feature definition.® The rest of these features are presented in the ap-

pendix in section A.1.

Internal Feature Information

In figure 6.7 the information tagged internal feature information provides information en-
abling the feature writing methods to perform semantic analysis and code generation. These
features are used by construct-objects nested within a feature, for example various constructs
will be able to derive necessary information for code generation from that recorded in these
fields - i.e. inherited (attribute grammar sense) attributes. These features are presented in

the appendix in section A.2

6.3.5 Symbol Object

The “symbol object” is used within feature objects (specifically within a feature-object’s
feature_symbol_table) as a container for assimilated information about a symbol and its asso-
ciated meaning. As can be seen in figure 6.8 it contains a number of attributes, which are

used to derive dependencies and whether or not an object associated with a symbol (in the

8This is not ideal, but as with exported features, see section 5.1.2, passing an object as a parameter to a
method enables state change of that object if its class exports routines that support write access.
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is_written : BOOLEAN

is_read : BOOLEAN

is_external : BOOLEAN
is_associated : BOOLEAN
associate >
is_assigned : BOOLEAN

is_local : BOOLEAN
is_formal_parameter : BOOLEAN
is_actual_parameter : BOOLEAN
symbol_type C—
is_type : BOOLEAN
exportable_type : BOOLEAN
like_current : BOOLEAN

merge (symbol-object)

(N -

Figure 6.8: Idealised symbol object

rest of this section symbol will be overloaded to mean the name and/or the object associated
with the name) will need locking during the running of a parallelised expression, etc. For
example is_written is set if the symbol is the subject of an assignment, or a state-changing
method is applied to it. There is a corresponding attribute is_read which if true indicates
that the symbol has been used in an expression or as a parameter to a method. The other

features are defined in the appendix in section A.3.

6.4 Parsing Phase

The parsing phase - i.e. going from the class text to an abstract syntax tree (AST)-like
structure - is achieved by the creation of construct-objects, as discussed in section 6.3.2. The
“production” feature of a construct object enumerates the expected clements of a particular
construct; an example of this can be seen in figure 6.9, which is the implementation of the
production for an assignment statement.

The production’s return type - LINKED_LIST [CONSTRUCT] - is defined by the parse
libraries that have been used within Eiffel. The “once” in the definition means that this
method should only be executed once per class (i.e. not once per instance of a class). The
execution of this routine builds a parser for this construct which expects an ENTITY followed
by the symbol “:=” followed by an EXPRESSION. The “commit” statement within the
definition means that having recognised an ENTITY and a “:=" then an EXPRESSION
must be next, otherwise a syntax error has occurred. This use of “commit” cuts down on

the amount of backtracking necessary: if it has been executed, no other pattern of constructs
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production : LINKED_LIST [CONSTRUCT] is
local
ent : ENTITY;
expr: EXPRESSION;
once
Result.Create;
ent.Create; put(ent);
keyword(":=");
commit;
expr.Create; put(expr);
end; -- production

Figure 6.9: Example production for an assignment statement

can match the pattern read so far within the current context.

Given an AST-like view, upon execution of parse - a member method of any construct-
object - and subsequent recognition of the construct, a sub-tree with two children is grafted
into the AST: in the example used in this section, an ENTITY and an EXPRESSION (see

figure 6.10). The “:=” is syntactic sugaring and thus need not be in the tree.

ASSIGNMENT_STATEMENT

ENTITY EXPRESSION

Figure 6.10: Assignment Statement

6.5 Semantic Analysis

The semantic analysis phase begins with the structure resulting from the parsing phase,
which is an hierarchically organised entity, viewable as either an abstract syntax tree or as
a composite object (see 6.2 and 6.3 respectively). The AST view was a useful perspective
for discussion and reasoning about the parsing phase, but for the semantic analysis and
subsequent phases the composite-object view aids explanation and comprehension better
and thus is used.

The objective of the semantic analysis phase, as mentioned in section 6.1, is to obtain
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sufficient information about a program to enable parallelisation. The routines which build
up this information are called by “semantics” and are termed pre_, in_ and post.action (see
section 6.3.2). Put simply, these routines try to extract all of the information they can from
the member elements of the construct such that attributes can be tagged in the construct of
which they are a member. This includes following through any relationships and aggregating
the results, for example to decide whether or not an expression changes the state of an
object. The approach of applying a “recursive descent” process to the semantics follows all
the way down the construct hierarchy; inherited attributes (attribute grammar sense) are
passed down the hierarchy using the technique of “pass by reference” passing program-info,
class_info, and feature_info as appropriate. The synthesised attributes, upon derivation, are
made externally available to the construct of which this construct is a member, to be made
available for analysis and processing for that construct and the tagging of that construct’s

attributes.

Methods is_com and is_exportable

Two routines are made available from program_objects, and at various levels below throughout
the translator, these are used to ensure the soundness of exportable features with respect to
the parallelised implementation. The implementation has inherent limitations on what it can
deal with across multiple machines, with respect to inter-machine accessing and information
interchange; is_com tests that an entity is a concurrent object machine (see chapter 7) and
is_exportable helps enforce any restrictions upon inter-machine exchange of objects and/or

the structure of messages which can be passed between machines.

6.6 Summary

The translator is object-based in structure, viewable from two perspectives as an abstract
syntax tree - which helps when discussing parsing issues - and as a composite object built from
construct-objects which are in turn built from further construct-objects. The technique used
throughout is similar in style to that seen with “recursive descent” compilation techniques
with a process of looking in more and more detail at a construct, until recognised or rejected.

The recursiveness of process is continued into the semantic analysis phase where infor-
mation is passed down to constructs from parent constructs (i.e. inherited attributes), and
other information is passed up the hierarchy to parents from child constructs (i.e. synthe-
sised attributes) - as mentioned throughout the chapter this is similar to the ideas of attribute

grammars, and would effectively be an operational semantics for such a grammar.
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Chapter 7

The Concurrent Object Machine

This chapter presents the design of an abstract machine. The machine provides an abstraction
layer above that of a distributed architecture, enabling a straightforward mapping from
an object-oriented programming language to the distributed architecture. The machine is
designed to provide support for the concurrent execution of programs described in “well
written” Eiffel (see section 5.2) and a simple framework for a translator to map onto (see
chapter 6).

In this chapter the necessary and sufficient forms of message-passing primitives, which
enable utilisation of a general distributed architecture, are discussed. This discussion cen-
tres around object-oriented ideas, with these primitives as the only means of inter-object
communication.

The ideas presented are based on those put forward in two papers by Gentleman (1981)
and Burkowski et al. (1989). The abstract machine described uses the modelling ideas from
these papers - specifically Gentleman’s (1981) administrator/worker concept - within the
paradigm of object-oriented programming.

The abstract machine, developed in this thesis for mapping concurrent object-oriented

languages onto, is termed a Concurrent Object Machine (COM).

7.1 An Object

7.1.1 A Reductionist view

Reductionism is the apparent reducing of the complex into simpler independent elements.

Taking this reductionist approach to the viewing of an object,’ a composite-object (i.e. the

lsee section 2.3.7 for a “standard” definition of “object”.
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object being viewed) is viewable as an ordered summation (or combination) of a number
of independent component-objects which, in combination, working together, give rise to
the expected behaviour and properties of the composite-object. For example, a car can be
viewed as being a random collection of an engine, wheels, doors, body panels, etc., which
when combined produce a concept which is commonly called a car. However, if an object 1s
to be recognisable as a composite-object (e.g. a car) it is necessary that it be “more than the
sum of its parts.”? A simple synergetic view of an object as a collection of parts which in
combination, working together, give rise to an expected behaviour is however insufficient; such
a view would not incorporate ordering. Without ordering an engine, wheels, doors, body-
panels, etc., lying in a heap on the ground would be a car - even though a heap of components
lying on the ground cannot usefully function as a car. Therefore to be a recognisably useful
composite-object there must be a combination of all the required component-objects, working
together, in a prescriptive order - i.e. with some overriding sense of relationship between the

objects and some overriding level of control.

7.1.2 Implementing a Reductionist view

To implement the above reductionist view in software the composite-object is conceptually
viewed as being a networlk of communicating component-objects (Concurrent Object Machine
(COM)). The combination of the communicating component-objects with the addition of an
overarching control forms the data and functional space of the composite-object.

The required overall control within an object is achieved by adding an extra component-
object to the implementation of the composite-object, termed a controller® The controller
is expected to manage the process of ordering actions, the access to and the locating of
component-objects. The controller is an integral part of any object implemented as a COM
and, as suggested by its name, it controls the behaviour of the composite-object’s other
component-objects. The full behaviour of a composite-object’s controller is defined during
code-generation by the compilation of the source code for the class describing the composite-
object, of which the COM is an instance. The controller “knows” the instance variables
and methods for this class and controls method invocation, locking of internal objects for
mutual exclusion and external communications. This view of a composite-object as being a
combination of a number of component-objects plus a controller is depicted in 7.1.

Within a COM, encapsulation is always maintained. Each component-object is told by

the controller - using message passing - which actions it is to perform. Whilst the controller

2Synergism n. the working together of two or more drugs, muscles, etc., to produce an effect greater
than the sum of their individual effects. Also called: synergy. (The Collins Concise Dictionary)

31t is possible that control could be distributed to a composite-object’s component-members; this however
may prove complex to manage and is not dealt with in this work.
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Figure 7.1: A COM

“knows” what messages it can send to the component-objects which together comprise the
COM, it does not “know” anything about the internals of those component-objects.

Within a COM each component-object, with the exception of the controller, is itself
viewed as a COM, controlled by a controller. However, at the very lowest level of detail objects
are not amenable to being described as COMs, because of efficiency or other considerations
(e.g. integers).*

Objects at the lowest level are, instead, viewed as being made up of sequential blocks of
code (the methods) with an associated data area (the attributes).

Communication at all levels is achieved using messages; these messages are passed exclu-
sively by message-passing primitives. Great care is required in the derivation of the primitives;
they should be both simple to use and theoretically elegant. Ill-thought-out semantics for the
primitives, the process structuring forms and the features of the abstract machine can lead to
poor functionality, unnecessary restrictions on the achievable parallelism, and possible pro-
hibition of useful programming constructs within a chosen programming language (Brunskill
et al. 1995). The primitives and associated model should therefore possess certain qualities;
these qualities will affect the ease with which a COM can be used and therefore the ease
of implementation of the translator’s code-generation algorithms. Qualities required of the
primitives include their ease of use; their amenability to efficient implementation, enabling a
useful increase in performance by the use of parallelism; and their limited error-proneness in
implementation and/or use.

The rest of this chapter looks at the design of these primitives and the abstract machine

such that the above qualities are achieved.

4 As will be discussed in section 9.2.3 a limitation is introduced to make the demonstration of the thesis
practical: “every object is implemented as either a COM or is of simple object type e.g. integer, real, boolean,
character, or string. This makes the implementation less efficient but does not weaken the demonstration of
the thesis.”
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7.2 The Message-Passing Primitives

The implementation of the message-passing primitives should be such that the design and
implementation of the code-generator algorithms in the translator (see chapter 9) are as
simple as possible, so that it is easy to reason, debug and refine the models used. The

following four concepts must, as a minimum, be supported:

1. Object identification, for objects involved in communication: i.e. the convenience and
preciseness of direct naming without the need for mailbox-based implementations (see

section 3.3.1).
2. Movement of composite data (i.e. objects) between objects.
3. Synchronization of actions between objects.

4. Multiple threads of control, executing simultaneously, thus achieving concurrency at

least.

The message-passing primitives use direct naming synchronous semantics (see section
3.3). The blocking nature of the primitives (Gentleman 1981) provides a straightforward and

elegant way to combine message passing with synchronization.

7.2.1 The Blocking Message-Passing Primitives

Object-A Object-B

- SEND msg ———— Megsupe —————> RECEIVE msg
© TO Object-B | <——— Unblock ———— FROM Object-A

cle cle

Figure 7.2: Possible blocking sychronization

A send primitive is termed “blocking” if it causes the sender to wait, at least until the
receiver is ready to receive from it. The receive primitive is termed “blocking” if the receiver
is required to wait until a message is sent to it. The primitives send and receive would be
termed “non-blocking” if they did not cause a wait until a sent message was accepted, or
until a message was sent, respectively.

An example of blocking semantics is depicted in figure 7.2. It shows two objects, Object-

A and Object-B, which execute in parallel until Object-B reaches its receive, or Object-A
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/ Obj2 0Obj2
Obj3 Obj3
Objl < Objl <
\ Obj4 Obj4
Objs Obj5
Figure 7.3: Multiple receives Figure 7.4: Multiple sends

reaches its send; the object reaching this point first blocks, waiting for the other. When the
two objects reach their point of rendezvous the message is transferred and both objects can
continue.

The use of a blocking send and receive can lead to a very limited level of parallelism since
an object blocked performing either send or receive cannot continue usefully. The suggested
semantics for receive also make it impossible to wait for several messages from different
objects; as can be seen in figure 7.2, receive is depicted as requiring a definite sender’s name
upon which it must wait. This is dealt with in section 7.2.2, where a receive primitive with
“receive-from-anything” semantics is presented.

Further, the immediate release of the sender, upon synchronization during the rendezvous,
may not provide enough control for the implementor of the code-generation routines in the
translator. It may be necessary to cause a sender object to wait until released by the receiver
5o that an effective implementation can be achieved, e.g. for mutual exclusion, or setting up
of some common entity, or indeed to obtain a remote-procedure call semantics (see section
3.3.3). Section 7.2.3 introduces an extra primitive - reply - to help deal with this situation.

A problem hitherto not mentioned - the potential for deadlock - will be addressed in

chapter 8.

7.2.2 Semantics of the Message-Passing Primitives

In an object-oriented system an object could logically be sending messages to one or more
objects, or awaiting messages from one or more objects, which could arrive in an undefined
order. The COM’s message-passing system should support this logical view of communica-
tions; it is depicted in figures 7.3 and 7.4. The operations send and receive could thus be

defined as follows:

send: sends a message msg to an object given by obj and blocks, waiting until a “reply”

(see section 7.2.3) is received:




reply := msg.send(obj)

receive: blocks, waiting for a message msg from the object indicated by obj:

msg := receive(obj)

The above semantics are however too restrictive; it is not possible to model multiple
receives in an undefined order as suggested by Figure 7.3. Further, it is not possible for an
object to receive from an object it does not know about, thus inhibiting dynamic creation

and use of objects at run-time.

The simulation of multiple receives

To enable the system shown in Figure 7.3 to be realised, the receive-specific semantics require

extending to include “receive-from-anything”:

msg := receive(any)

The receive, with any for its identifier, blocks waiting for a message from any object that
might send a message to it. The receive-any semantics give the benefit of permitting non-
determinism in the ordering in which messages can be accepted, thus avoiding an ordering
which retards the flow of control inside an object which would be restrictive to the parallelism.
The object doing a receive-any can be treated like a library subroutine, i.¢., anyone can use its
services. The enabling of a receive-any type of semantics conforms with information hiding
principles; even though an object can receive from any other object, objects can only send

to it if they “know” of its existence, i.e. it is in scope within the program’s source code.

The simulation of multiple sends

The introduction of support for a receive-any primitive raises the question of whether a
send-to-all primitive is required. In practice, a send-to-all primitive would add nothing to
the semantics of the model as the same result can be arrived at using multiple sends. It
should be noted, however, that implementation of a send-to-all would have a positive effect
on both execution speed and orthogonality of the semantics. A form of send-to-all is included
in the model’s implementation with a limitation on what send-to-all means. It is restricted
to mean all objects that the sender “knows” about, which also helps to maintain conformity

with information-hiding principles.
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7.2.3 Reply - a useful non-blocking primitive

The form of the reply primitive discussed here is as suggested by Gentleman (1981), Cheriton,
Malcom, Melen & Sager (1979), and Burkowski et al. (1989). It enables a greater level of
control of the concurrency between two inter-related object processes; i.e. it is possible to
receive a message and to do somie necessary processing before releasing the sender to execute

in parallel, e.g. easy implementation of remote-procedure calls (Brinch Hansen 1978).

The Reply Primitive defined

The incorporation of reply, a non-blocking primitive that sends messages to other objects,
improves the abstraction. Its introduction does not bring the disadvantages of non-blocking

primitives, if its usage is restricted.

Object-A Object-B
©Sendmsg ————— Message — S RECEIVEmsg
© TO Object-B ! FROM Object-A

Unblock

ete
ctc

Figure 7.5: The reply primitive

The reply primitive works as depicted in figure 7.5. The figure shows two objects, Object-
A and Object-B, which execute in parallel until Object-B reaches its receive, or Object-A
reaches its send. The object reaching this point first blocks, waiting for the other. When
both objects reach their respective points the message is transferred and Object-B continues.
Object-A now remains blocked, until Object-B sends it a non-blocking reply. On receiving
this reply Object-A and Object-B can continue executing in parallel.

The reply primitive gives a COM user - L.e. the writer of the code-generator phase in the
translator of chapter 6 - more explicit control of the objects they have created. The sender
will remain blocked until a sensible time can be found for releasing it and then it is explicitly

released by sending a reply.

msg.reply(obj)




The reply primitive sends a non-blocking message t0 the object indicated by obj. On
receipt, the object receiving a reply should be blocked, having performed a send operation.

The reply primitive does not return a value to the thread executing the primitive.

7.2.4 Identity and the Servicing of Multiple Methods

There are two main issues raised by the incorporation of the reply primitive:

Restrictive reply ordering: poor design of the reply and message-passing system may

cause an interaction which reduces the potential amount of parallelism;

Object identity too visible: the identity of an object is “power”; given the identity of an
object, other objects are free to access and manipulate it, even if this is inappropriate.

This could lead to errors not being detected in the writing of the code-generation phase.

Restrictive reply ordering

When a message, which forms a request, is sent to an object, the identity of the requester
forms an integral part of the sent request. This loss of anonymity is necessary because it
is possible that an object will be performing multiple methods at any instant, thus possibly
servicing more than one object at once.”

Assuming the simplest of approaches to the servicing of multiple concurrent methods, the
replies could be sent in the order that the requests were recetved, i.e., the object identifier
is hidden in a queue, below the level of abstraction of the primitives, so that the reply
primitive can obtain the object identifier to reply to. This implementation strategy forces an
unnecessary restriction onto the system: the ordering of the replies must be the same as the
order in which the requests were received.

Consider an object receiving two requests: request, followed by request;. The requests are
being serviced simultaneously; request, finishes first, because request; is a time-consuming
request. The result is that the reply for requesty is held up until the servicing of requesty 1s
finished and the appropriate reply sent.

The automatic inclusion of the identity of the requester inside a message, makes the
identity available to the servicing object; this removes the artificial need to order the replies.
If the identity of the requester is “known” to an object, a message which is a reply can be
sent when the servicing has finished: there is no need for an object to wait to perform its

reply until an appropriate place is reached in its queue. So, the reply for request; can be

5 Although the multiple servicing of the messages is supported by an object, a COM, for this version of the
translator a simpler strategy has been followed giving rise Lo concurrency through the concurrent execution
of member objects only (see chapter 8).
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sent, followed eventually by the reply for request;. The time between the end of the servicing
of requesty and request; is no longer wasted, as a request similar to request, can be serviced

immediately.

Object identity too visible

The automatic inclusion of a requester’s identity could produce a problem. The knowledge
of an object’s identity is the basic rule for another object to be able to send to it. So any
well-defined network could become less secure as identities are passed around at will and
unintentionally. The problem is that a rogue object could be written which would “know”
too much about the structure and could thus damage the system. Therefore, identities should
be made available very much on a “need to know” basis only - thus maintaining the principles
of information hiding.

This security problem and maintenance of the network’s topology is achieved by a slight
alteration in how the message is treated. The identity of a sender is automatically included
in any message by the send primitive. When a reply is performed, the reply primitive uses
the extracted identifier for the object to be replied to within the original request message.

It is still possible to change the topology of the network, but it has to be done deliberately
with a standard creation routine in the source language or by explicitly passing the object
as a parameter to another object. This strategy gives flexibility, allowing for the dynamic

creation of objects and a dynamic network.

7.2.5 Summary

The send primitive is a function; it sends a message, msg, to the object given by obj and
; B¢, 9, . g ] ]

blocks, waiting for a reply. There is an automatic private (i.e. only accessible to the message-

passing primitives) inclusion of the identity of the sender within the sent message, for use by

the reply primitive. The message returned as a reply will be the result of the send function.

reply:=msg.send(obj)

The receive primitive is a function which, when called, blocks, waiting for a message from
the object indicated by obj. The identity of the sender will be part of the received message.

Semantics to support receive-any are obtained by substituting any for the object obj.

msg:=receive (obj)

87




The reply primitive is a command; it sends a reply, msg, to the object indicated by the

identifier which is a hidden part of the originally received message.

msg.reply (original-msg)

7.3 Message Format

Although the actual message format is syntactic in nature, it does have implications on the
efficiency of implementation, code readability (implementation of the COM) and semantic
implications in the way the synchronizing and communicating primitives are viewed and
hence used (Gentleman 1981) - see section 3.3.3.
There are two major possibilities - fixed or variable format messages.
Fixed format messages
e Advantages:
— Efficient implementation (quick in the transfer of messages);
— Easy implementation;
— Easy maintenance of the atomicity of the communicating primitives.

e Disadvantages:
— Conceptually inelegant in use;
— Forces implementation problems onto the user of the COM; e.g. how are longer

messages sent”?
Variable format messages

e Advantages:
— Conceptually elegant in use;
— Easy to understand how to send various messages.

e Disadvantages:

— Harder to implement than the fixed format;
— Efficiency problems may accrue from the varying lengths;

— Ensuring atomicity of primitives is a complex task.

88




The message format chosen for use in the COM is that of variable format due to its more
general applicability. Also integral to the message is a field which contains the identity of a
sender as required for the reply primitive. This identifier is only accessible to the primitives

and is not usable by other routines and objects, see 7.2.4.

7.4 Idealised View of a COM-Controller’s Objects

7.4.1 The Controller

The COM’s (Concurrent Object Machine) controller, termed controller, is itself a component-
object, (not a COM) which “knows” the identity, location and abilities of all the objects in
its COM. Its main purpose is to control the behaviour of the COM’s objects, filtering and
distributing messages and tasks to the appropriate component-objects. The controller also
sets up communication links between member component-objects (objects local to the COM)
and external objects (COMs) when necessary.

The controller is itself composed of several objects (termed controller-objects from here
to clarify the difference from all the other objects involved within the system), all under the
control of a controller-object called the brain. In order that the controller may keep efficient
and responsive control of the component-objects of the COM in a concurrent environment,
it is necessary that the brain should never be blocked waiting on a send or a recemve-specific
primitive. Equally, any chance for delegation of tasks should be taken. The effect of these
two constraints ensures the maximum availability of the controller.

Figure 7.6 shows an idealised view of a COM with the controller depicted as an entity
with connections to all the component-objects in the COM. Inside the controller three types
of controller-objects are depicted; brain, courier and method objects. The courier objects
form a group of objects used for communication. They are used by the brain to communicate
with other objects both internal and external to the COM. The method objects correspond
with the methods found in the original source code for the compiled program and can each
have a thread of control at any moment. The limitations on threads are those necessary to

“avoid” deadlock (see chapter 8).

7.4.2 The Brain

The brain is the controller-object that coordinates the behaviour of the controller. As men-
tioned previously, blocking of the brain is to be avoided as much as possible - with respect
to sends to anything and receives from specific objects - the purpose being to maximise the

availability of the controller and thus control of its component-objects. The brain’s non-
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Figure 7.6: A COM

blocking when sending a message is achieved by a variant on the normal communication
protocol used within this system:® the brain uses an asynchronous send to achieve all of its
sends implying no waiting for a reply, and a receive-any to do all receives implying no block-
ing on a wait for a response from a particular object. This use of an asynchronous send and
receive-any ensures that the brain does not become blocked to the point of ineffectiveness.
This protocol does not actually require any new primitives as the reply primitive of section
7.2.3 is in practice a non-blocking send, and the receive-any has already been discussed in
section 7.2.2. This “inversion” of the normal communication protocol is restricted to being
used only within the controller; all external communications are achieved with the “normal”
blocking-based semantics.

The brain sets up its communications firstly by creating the COM’s component-objects,
as required by a class’s creation routine. The process of creating a COM-based component-
object involves asking a “remote-execute-courier” to perform a “remote execute” of the re-
quired object on the required machine, supplying as parameters at least the name and address
of the creator. The created object then reconnects back and subsequent communications are,
from the point of view of the brain, non-blocking, but from the point of view of the courier
and external viewers of the COM, blocking.

The connection from a created component-object effectively states “I am available for
action,” the process of connection causes it to block, waiting for the creator to supply it with
some action to perform. On receiving a reply from the broin an object performs its task in

parallel to the execution of the brain that requested it. On completion of its task, an object,

6The normal communication protocol as described in the earlier parts of this chapter is synchronous; the
send- and receive-primitives block awaiting each other.
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using a blocking send to the brain, signals completion of the task and its readiness for a new
task.

The need to handle dynamic numbers of component-objects within a COM, and set up ar-
bitrary numbers of communication links between component-objects at run-time, impossible
to derive at compile time, means that the controller-communication-objects in the controller
must also be created dynamically, as a restricted number will become a “bottle-neck” on the
behaviour of the brain, and will thus cause blocking. The controller-communication-objects
are grouped under the name couriers; there are basically two similar forms: the first is just a
communication channel from a controller enabling external blocking behaviour whilst main-
taining non-blocking behaviour internally in the controller; the second initially creates a new
component-object, for a COM, on a remote machine - which could in practice be the same

machine - and then behaves as a communication channel.

typical BRAIN

begin
initialise_BRAIN -- set up so that BRAIN can accept
-- connections from objects
initialise_network -- Set up component objects
-- e.g. Method objects, couriers
-- etc.
repeat
request:= receive(any)
update_state (request) -- records dependencies
~- and method requests
issue_possible_replies -- initiate methods etc.
forever

end -- typical_BRAIN.

7.4.3 Couriers

Couriers are a mechanism for achieving the external appearance of blocking message-passing
semantics, whilst internally, to a controller, permitting asynchronous behaviour. There are
two forms: the first causes the remote creation of an object and then behaves as a commu-
nication channel; the other just behaves as a communication channel.

All messages are sent to, and received from, component-objects or other COMs by the
brain’s use of couriers, which, local to the controller, are used to communicate exclusively
with objects outside of the controller (all controller internal communications are done in a
pseudo-asynchronous mode using the reply primitive). A courier upon creation connects to

the remote component-object, creating it if it is required to, and then connects to the brain

91




that created it by performing a send stating its availability; it then waits for a reply from
the brain or a message from the remote object for forwarding. Upon receipt of a message
it forwards it synchronously to the appropriate object. Couriers are created and destroyed

dynamically as required.
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typical COURIER
-- simplified view of courier algorithm

begin
-- initialise
create_remote_object -- if required
connect_to_remote_object;
connect_to_brain; -- supply information about remote
repeat
message := receive_any;

if message.from_remote then
reply := message.reply(brain)
reply.reply(remote)

else
reply := message.reply(remote)
reply.reply(brain)
end; -- if
forever

end -~ typical_COURIER

7.4.4 Method-objects

Method-objects are themselves controller-objects and are the implementations of each of a
class’s methods - i.e. one method-object per method listed in a class. The main reason that
a class’s methods are broken off as separate controller-objects is the need to maintain the
non-blocking nature of the controller. Incorporation of the original method code within the
brain would mean that the brain would be preoccupied with things other than controlling
overall behaviour.

Method-objects fit into the system by being requested to execute themselves given ap-
propriate parameters which are encoded in the message to execute. They incorporate as
an attribute the current message received, which is decoded by a routine pre_method and
then used as the parameters for the actual method (in do_method), rewritten to utilise the
reorganised object which is implemented as a COM. Finally a routine post_method will pass
back relevant pieces of information - e.g. results - in the required format. Necessary locking

will be requested by the pre_method, and unlocking by the post_method.

7.4.5 Summary - The Controller Objects

An object (in the general sense of the word) is viewed, for the purpose of implementing it
as a COM, as a composite-object, made up of a number of component-objects which are the
instance variables of that object’s class, plus a controller. The controller is itself a composite-
object (but not a COM); it controls the component-objects under the control of the brain.
The controller contains several courier objects which ensure an almost constant interface

with the outside world (couriers are used by the brain to send messages external to the

93




controller and to await messages and connect objects into graphs, semi-permanently), and
method-objects which are the implementation of a class’s methods.

All component-objects within a COM can execute concurrently. The controller with its
control code should ensure the avoidance of deadlock (see chapter 8).

The couriers are necessitated by the need for the brain to remain unblocked and available
for administration purposes. They are also necessary to achieve any form of pipelining of
objects, whilst maintaining encapsulation of individual objects being connected.

The method-objects are necessitated by the need for the brain to remain unblocked and
available for administrative purposes. They are the implementation of the methods in the
original class description, rewritten to deal with the structure of the object as implemented

in the form of a COM.
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Chapter 8

Deadlock

8.1 Deadlock Avoidance

This chapter! looks specifically at the issue of deadlock, in relation to hierarchically composed
concurrent object-oriented systems as would be seen using the idea of COMs (see chapter 7).
It looks at the issues arising from the use of reductionism and how deadlock can be avoided
within this area of automatic parallelism management.

The use of Reductionism - the apparent reducing of the sophisticated and complex into
simpler independent elements - aids in the avoidance of deadlock in hierarchically composed
concurrent object-oriented systems. That is, the systems of interest are organised and dis-
tributed across processors, based upon the compositional nature of objects, and executed in

parallel, based upon the concurrency that thus arises.

8.2 The Reductionist View

In science a system is often viewed as a “network” of entities, interacting via various forces
and energies. A system can be viewed as being composed of interacting entities. At a
further level of detail each of the entities in a system are themselves composed of a system
of interacting entities.

This reductionist view of the world, where discrete entities can be investigated and under-
stood in isolation and then recombined to understand the whole, is the basis of much work
during the past 200 years of science. Whilst it is clearly flawed when one starts to investigate
extremely complex dynamic systems such as the weather (Gleick 1987, Tilby 1992), it has

been and still remains a useful tool.

' As highlighted in the introduction to this part (page 64) this chapter is as a result of joint work between
myself and Prof. C.J.Theaker on an as yet unpublished paper.
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This same tool has increasingly become the bedrock of software engineering as software
systems are broken into “simple” interacting modules. Indeed, the object-oriented approach
may be viewed as an implementation of the reductionist view in the construction of software
systems.

This leads to an object-oriented view which puts very rigid boundaries around objects. If
formal reasoning is to be both straightforward and valid, a level of encapsulation is required
which cannot be broken, where the only means of affecting the behaviour/state of an object is
to pass it a message requesting information or telling it to do something - Query or Command

(Meyer 1988) - and the object may choose how and if to respond to such requests.

8.3 Hierarchical View of a System

Software systems which are built in a purely reductionist fashion may be pictured using the
tree-like structure seen in various methods - Yourdon, Jackson, Rumbaugh, etc. The trees

are purely representative of the compositional nature of the system.

Figure 8.1: A compositional hierarchy

The figure 8.1 indicates that the system (or object) a is composed of objects b, f and g,
which communicate by message-passing and are held together by the code of the class which
describes the behaviour of class . However, in knowing a’s composition, a will not - and
should not - know the composition of b, for g. Neither should b know about for fabout g,

unless that information has been deliberately passed to them.

8.4 A “Pure” Hierarchy or Not?

A hierarchy might be said to be pure if there are no communications across levels, or between

sub-trees. This is best seen by two contra-examples:
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Figure 8.2: Links between subtrees Figure 8.3: Links across levels

1. A link from one sub-tree to another, as ¢ to u in figure 8.2, puts an extra path into
the hierarchy and destroys the tree giving instead a cyclic graph. (The edges, on the

graph, indicate the ability for direct communication between objects)

2. A link across levels in a tree puts cycles into a system, as s to 2 in figure 8.3, also giving

rise to an cyclic graph.

Both of the contra-examples above give rise to the potential for deadlock and break with
the reductionist ideas and techniques, with the consequent detrimental effects on effective
reasoning. This of course assumes that any required interactions between ¢ and u of figure
8.2 are achieved by behaviour encoded in s.

Therefore a “pure” hierarchically composed system is one that does not logically have in
the composition structure either cycles due to “hooks” of communication between levels, or

across sub-trees - i.e. a “proper” Tree.

8.5 Deadlock

Given a tree structure to a system’s communications and composition, i is possible to render
deadlock impossible. Standard texts on operating systems and distribution by Theaker &
Brookes (1993) and Raynal (1988) etc.,? list four conditions for deadlock, all of which must

be true for deadlock to occur:

Aston University

Content has been removed for copyright reasons

2Deadlock as a concept was formally introduced by Dijkstra (1968) in his paper on “Cooperating Sequential
Processes,” the concept’s name used in the paper was “Deadly Embrace”. However, a one page discussion by
Dijkstra (1965) introduced the concept three years earlier with the idea of n processes all trying to access a
storage location; suggesting that an invalid solution was one that led to each of the processes saying “After
you.”
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Aston University

Content has been removed for copyright reasons

If deadlock is to be dealt with, it is necessary to either avoid it (by design or dynamically)
or alternatively to detect and deal with its potential or actual occurrence.

In systems of any size the detection of deadlock at run-time, whether potential or actual,
must be dealt with by an algorithm which looks for cycles in a graph and behaves appro-
priately. Clearly this strategy costs, in terms of resource usage, and could be the cause of
problems if the algorithm is not completely correct. When distribution of the elements in
a system becomes involved the problem also increases in actual complexity as the shared
memory and single processor is lost, with the consequence of an algorithm which is even
more expensive in resource terms.

Deadlock prevention can be achieved by ensuring, by design, that at least one of the
four conditions for deadlock is not true, i.e. by designing the problem out of the system -
the approach used in this thesis. This is a desirable alternative with a parallel hierarchical
object-oriented system. The structure of the system with respect to composition is the means
by which concurrency is achieved. With suitable source code analysis tools, one can detect
if the hierarchy is “pure” and advise of potential deadlock accordingly, and indeed advise
on pure design and programming style from the point of view of encapsulation, as this will
be the root cause of the hierarchy being broken. This is possible within the Eiffel compiler
written for this work. However, it 1s still necessary to come up with a locking model which is
demonstrably (by argument) free from deadlock. The remainder of this chapter devises such

a model, resulting in the breaking of deadlock condition 4 above.

8.6 Single-threaded Objects

Figure 8.4: Single threading

Each object has a thread of control (“thread” in the operating system sense), such that
object, ¢ in figure 8.4 can run through its algorithm and by means of RPC with early returns

(Gentleman 1981, Burkowski et al. 1989) cause v, w and/or z to perform actions. These
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actions in v, w and/or x execute in parallel with the thread in ¢ The same divisionary
behaviour then occurs within v, w and z with successive delegation of tasks to component-
objects. The thread in object ¢t would only wait if certain information was required from one
of its components without which it could not proceed - i.e. a Query; and similarly for objects

v, z, w, if any of them required information from a component. For example:

f := w.some_value_request; -- (1)

io.putvalue(f); -=- (2)

The statement numbered 2 cannot, proceed until 7 has finished because it requires the
result of the computation in 1. So, the set of statements between I and 2 can be executed
in parallel with I - assuming f is not referenced within them. When statement 2 is reached
the object must block and wait, for the result of 1.

Given this single threaded delegatory strategy the problem of deadlock does not exist. The
second condition for deadlock can never be true in this system. Resources, in this instance
objects, are owned and accessed directly by one and only one object with no potential for
access by any other threads of processing.

The weakness is that the level of parallelism is not as high as it might be. Objects service
multiple and different messages by performing methods. In some cases two or more methods
could be executed concurrently, still avoiding deadlock. This leads onto an organisation and
distribution of objects based upon composition (see section 5.2.2) but with multi-threaded

objects.

8.7 Multi-threaded Objects

Single-threaded objects achieve a level of parallelism but can waste some of the potential
parallelism. Therefore there is a need, if parallelism is to be maximised, to allow multiple
threads of control in an object, but it is still necessary to ensure that deadlock is designed out.
In a multi-threaded object, there would be the concurrency resulting from the compositional
structure and RPCs (Remote Procedure Calls) with early returns of the single-threaded
objects, but there would also be extra potential parallelism resulting from the simultaneous
execution of multiple methods within objects.

Due to the pure hierarchical system structure it is possible to reason conveniently about
one arbitrary level of the system, with confidence that the conclusions are valid for the whole

system.
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Exclusive-rule: No two methods from an object z are allowed access concurrently to a

component-object of z.

The exclusive-rule is probably stronger than required. It is possible this could be weakened
by the judicious use of a Readers/Writers locking strategy that ensures appropriate ordering,
fairness and no starvation of methods; allowing at least that multiple methods which only
need to do a query could access an object concurrently, assuming no method is writing to it
at that moment.

A corollary of the above rule is that no object is free for use until it has finished servicing
a message, thus deadlock condition 1 is unbroken (the exclusive assumption). Consequently,
objects only become free to service other messages when the methods relating to the current

message have finished, so deadlock condition 3 is also unbroken.

Figure 8.5: A simple compositional structure

Given an object t inside of s, condition 2 states that ¢ is not going to be receiving any
further requests from the thread(s) running inside of s until it has finished the original request;
given a pure hierarchy, it is only s that can request message servicing. So, the execution of
multiple methods with an object cannot occur as a result of external influence.

Given the exclusive-rule above, an obvious question is: how is any extra concurrency
over that of single-threaded objects achieved? Multiple concurrent methods can only occur
as a result of the internal workings of an object, and not due to multiple external requests.
Therefore a multiplicity of threads arises as a result of methods internal to an object invoking
other internal methods.

In single-threaded objects (see section 8.6), an object’s thread runs through, following
the normal sequential behaviour found in procedural programs: it starts at the request of a
message and any subsequent internal method (procedure) calls are performed by a method
call followed by a suspension of the original method until the called method has finished
and performed a return - i.e. a subroutine. However, greater parallelism can be achieved if
this is modified such that the invocation of a method causes an extra thread to be initiated,
which instead of blocking the caller, performs an early-reply (see section 7.2.3) and executes

concurrently with the caller.
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The result of incorporating the ability to have multiple threads within an object along
with the concurrency of single-threaded objects (where parallelism is gained by the delegation
of tasks to individual internal objects) increases the level of potential parallelism. However,
having stated how extra levels of potential concurrency are to be achieved, it is still not clear
how deadlock is to be avoided.

As was stated earlier, neither condition 1 or 3 can be broken therefore either or both of

deadlock conditions 2 or 4 must be negated to ensure prevention of deadlock.

8.8 Deadlock Avoidance in Multi-threaded Hierarchical
Objects

This section presents one solution to the avoidance of deadlock in a hierarchically composed
system of objects supporting multiple threads of execution. The avoidance must be achieved

by breaking either of conditions 2 or 4 (see page 97), reiterated below:

condition 2 certain resources are held by processes that are halted, waiting for other re-

sources to become available;

condition 4 there is a cycle in the “wait-for” graphs: this condition implies the three pre-

ceding.

The key used to break one of the conditions 2 or 4, above, is the technique used for

managing the needed resources (i.e. compositional objects) and their locking for access.

8.8.1 A Method’s Resource Requirements

The total of all the objects that a method will need are those it explicitly accesses in its
code plus those accessed through the transitive closure of method calls. This is not as large
a data set as it may initially appear: it is not necessary to try to lock all of the variables
in a component-object that a method is to be applied to because as stated earlier as a
corollary to the ezclusive-rule, an object can only service one external call at a time, thus
the component-object would be locked for exclusive access by that method call only (or any
methods to which it passed the access lock). The required data can be derived at compile time
through the semantic analysis of an object-oriented program, given a suitable programming
language (e.g. Eiffel). Notice, however, that this data is not necessarily static. Object-
oriented programming involves the dynamic creation of objects during the life of a program,

information which may not always be totally dealt with by semantic analysis at compile time,
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therefore some processing is required at compile time to ensure that the resource requirements
are accurate and up to date.

For each method the resource-access data logically forms a table of objects accessed
during execution. It is the use of this information that ensures deadlock avoidance in a

multi-threaded object system.

8.8.2 Breaking Deadlock Condition 2 in Multi-threaded Objects

Deadlock condition 2 can be broken by ensuring that a method cannot lock any objects
until all of its required objects are free and available for locking. This ensures that deadlock
condition 2 is broken: a method cannot hold any objects until it can hold all of them. Thus
before any method is executed a check is made as to whether it can run along with others
currently executing, i.e. none of the other methods are using objects that it needs. If a
method can have exclusive access to all its required objects it will lock them and execute
through to completion. This approach ensures the breaking of condition 2 and means that
if a method cannot gain at least one of its needed objects, it holds exclusive access to none
of them and waits until all become free. The implementation of this strategy for acquiring
resources could theoretically be a lookup in tables, checking if each item is unlocked, followed
by a locking of all required objects if all are available. It would be necessary that the lookup
and locking was atomic as interleaved lookups could lead once more to deadlock condition 2.

However this strategy, whilst effectively presenting a solution to the avoidance of deadlock,
introduces other problems. It is necessary to ensure that a method does not starve because
of the way in which resources are acquired. If a method needs to lock a number of items this
strategy could cycle around giving the lock to various other methods that only need a subset
of the objects - effectively locking out (or starving) a process.

A further issue is that the exclusivity of access must be passed to methods that this
method calls and this method must correspondingly suspend (This is achievable and is dis-
cussed in the next subsection).

In practice, because of the need to have atomicity of the checks for all the objects required
and the subsequent locking, plus the awkwardness of the required code-generation in building

these tables and the need to deal with dynamically created objects, this approach is not taken.

8.8.3 Breaking Deadlock Condition 4 in Multi-threaded Objects

This condition can be broken by ensuring no cycles are present, in the “wait-for” graphs.
The data of resource usage is used here to ensure exclusive access to objects in a pre-

specified order based upon ordered unique object identifiers. Thus any method always gains

all resources, before starting, in a system-defined order. Therefore a method cannot hold
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an object that is required by another method that is executing, as it could not have started
without exclusive access. A thread that has exclusive access to all its resources can execute
through to completion as it has all the objects that it needs. This is a strategy first proposed
by Havender (1968) in his pioneering work on deadlock avoidance. Dietel (1990) whilst dis-
cussing this approach states: “ .. all resources are uniquely numbered, and because processes
must request resources in linear ascending order, a circular wait cannot develop.” Thus this
method guarantees the breaking of condition 4 above.

The unique ordering of objects is achieved by making use of the way that the COMs of
chapter 7 are implemented.® In a running COM-based system each object that is a COM
is located at a unique position in the computing space: i.e. each object is on a particular
machine (the host) and is connected to via a specific network port (an acceptance port in
socket, terminology). The pairing of these two pieces of information gives rise to a unique
reference for each COM-based object. The ordering is a function which combines the host
address with an object’s acceptance port (i.e. the place to which another object initially
connects in order to achieve a communication link). These references are inherently unique
and do not require auto-generating by a numbering program.

The above does not however break deadlock condition 2; for example, it is possible that a
method requires objects identified by objects, objects, and object,y. Currently object;q is in
use by a different, method but objects and objectg are free, therefore it gains exclusive access
to objects and objecty and waits for object)g to become free. This causes no problems for
executing threads as they would have gained exclusive access. However, a further method
requires objecty, objectg and objecty; objects objecty and objecty are free but the previous
method has already grabbed objecty; therefore it gets exclusive access to objects but cannot
gain objectg and must halt upon another process that has its needed resource which is itself
halted (deadlock condition 2). Incidentally, this later thread does not get exclusive access to
objecty until it has first gained access to objects.

This strategy, whilst ineffective with respect to deadlock conditions 1, 2 and 3, is effective
in negating the possibility of condition 4. Due to the ordering in which objects are grabbed
and the inability to start until all items are gained, loops cannot occur in the wait-for graphs.

This method, whilst giving an elegantly simple solution for breaking deadlock condition
4, may introduce problems of holding resources for excessive periods of time, whilst executing
through an algorithm. Consider a method: it may require access to three objects, requiring
a certain amount of time-consuming processing that involves iterating with two of the three

objects. The third object may only be needed at the end of the method’s processing but,

3The implementation of which is discussed in more detail in later chapters, but to clarify the uniqueness
of object reference is briefly introduced here.

103




given the strategy, must be obtained at the start. Thus, objects is held for an excessive period
of time, precluding access by other objects, which leads to possible problems of response time
in executing systems. However, accepting this limitation of a lack of timeliness of resource
reservation, the method effectively handles deadlock condition 4.

There still remains a problem of how to deal with those methods that should be happening
concurrently. The main thread of a hierarchy of threads starts by getting all of its necessary
resource requirements; this includes the transitive closure of method call’s requirements.
Therefore in theory a method called from this thread, which should itself become a new
thread, cannot start as it cannot gain access to its required resources until the main method
has finished. This is clearly a point of deadlock, as the main method may ultimately need
information from the called method. A solution, however, involves passing the right to

exclusive access to the called method, as discussed below.

8.8.4 Exclusivity in an Acyclic System

If two methods need to access a common object, they clearly cannot be run concurrently as
the coherency of an object’s state may be broken, in the ineffective atomicity that may occur
if they are both permitted to access the object simultaneously.

Thus if a method m, calls (through a transitive closure over calls) a method m,, which re-
quires access to object z, which m; has exclusive access to, then m; must pass the exclusivity
of access to m,, and wait for the exclusivity of access to object z to be returned before it can
access object z again; clearly this is when m,, has finished its thread. This does not mean
that m; and m, are forced into a subroutining relationship, as m, can continue to execute
and need only stop and wait when the needed object is currently locked in a descendant
thread.

By implication m; had exclusive access to everything m,, nceded, as m,, forms part of
the transitive closure of m,’s calls; also m; knows from the table what objects m,, will need
and thus knows which exclusive access tokens must be passed to the method. So, regardless
of the nesting and structuring of the non-recursive, recursive, or mutually recursive calls,

multiple threads can be launched, exclusive access handled correctly and deadlock avoided.

8.9 Summary

This chapter has shown how deadlock can be designed-out of an object-oriented system built
purely on reductionist principles. These ideas correspond well with standard Software Engi-
neering practices. It has been argued that it is possible to have deadlock-free behaviour in

both single-threaded or multi-threaded objects, if the source programming language encour-
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ages good programming style (i.e. encourages the use of these reductionist principles, and is
open to straightforward semantic analysis, e.g. Eiffel).

The technique for avoiding deadlock is a standard approach for operating systems, sug-
gested initially by Havender (1968). It relies on breaking one of the four necessary conditions
for deadlock; objects (resources in Havender’s (1968) work) are locked in a linear fashion
based on a system-wide ordering of objects. This locking strategy breaks the possibility of
circular chains of objects holding other objects which are in turn needed by other objects in
the chain. The system-wide object ordering is inherent to the model and its implementation;
it is the quantification of an object’s point in “computing space.” This number is inherent
to all COM-based objects and is inherently unique as only one object can occupy a single
point in this “computing space” at any time. The numeric value of the point is defined to
be a function from the host-machine upon which the object resides combined with the port
at which initial connection is made to enable communication.

The main weakness with the above multi-threaded solution is the amount of message
passing that is required. Therefore, future work after this thesis may include determining
how some of the theoretical elegancies of reductionism can be broken during the execution
phase without compromising the design of the object-oriented system, or indeed its execution
- particularly with respect to deadlock.

Another aspect that could be improved in future work is the potential level of parallelism.
The strategy outlined in this chapter permits parallelism as a result of internal parallelism
within an object, but does not allow for dealing with multiple external requests simultane-
ously. This would be a beneficial extension as will be seen clearly in the simulation of the

standard producer-consumer problem in section 11.4.




Chapter 9

Code Generation

Code generation begins with the data produced by the parsing and semantic analysis phases -
l.e. the composite object of section 6.3 tagged with sufficient semantic information to enable
parallelisation through code generation. The output of this phase is a rewritten version of
the original program able to utilise a distributed architecture.

The chosen code-generation process is “recursive descent” in style with some necessary
variations at three specific levels within the translator: class, feature, and expression gen-
eration (see section 9.1). The “recursive descent” process applies a method do_print to a
construct which in turn applies it to its constituent constructs (i.e. the right-hand side of
the grammar production describing the construct).

The routine do_print is itself made up of three parts: pre_, in_ and posi_print. The
routine pre_print, given the parameters of program_info, class_info and feature_info, outputs
any information or extra code required before the output of the parallelised version of the
construct; this may include unpacking a method’s received message. In a corresponding
fashion post_print, given the same parameters as pre_print, outputs necessary code to finish
off the code for a construct; for example it will pack the results of a computation and
place them into a message for sending back to the caller. The routine in_print outputs the

construct, including any necessary internal behaviour modifications required for parallelism.

9.1 Variations from “recursive descent” generation

Three of the constructs within Eiffel cannot simply follow the “recursive descent” model of
code-generation (at least not when parallelising). These constructs include class, feature and
expression. They of necessity incorporate extra code and at least at their respective levels,

must, redirect the code-generation behaviour. The reason for the deviation from a “recursive
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descent” style approach is that for each of these three constructs extra information must be
added; i.e. it is not a case of simply translating the member constructs® with minor additions:

with each of these there are non-straightforward additions and/or rewrites involved.

9.1.1 Class code generation

The translation of a class deviates from “recursive descent” in that a number of extra routines
must be incorporated in the code-generated class to enable communication between objects
running in parallel. As discussed in chapters 2 and 7, the communication mechanism of
objects is that of message-passing; that mechanism, of necessity, was redesigned to allow for
parallelisation and distribution of objects across multiple machines. The result of changing
the message-passing mechanism between objects is that methods are required within a run-
time object to accept and handle these messages. Also within a COM there are other types of
message from those specified in the source program; these must be dealt with by the run-time
support system. They include exceptions, signals and system status messages. The resulting
methods required to aid class code generation include: produce_class-message_handler, han-
dle_message, and uncode_paras. These three methods together write into the generated class
a routine called process_command which handles all incoming messages (including internal
messages e.g. current.do_z(a,b)) on behalf of a COM-based object. This extra routine must
be generated before the class-code-generation code closes off the class with class invariants
and “end-clauses”: i.e. not in the post_print code-generation phase for the class construct as
would be done if it was pure “recursive descent”.

The structure of the process_command routine is shown in figure 9.1. Placed within a
COM-based object, this routine is called every time a message is received; its parameters are
the message that was received and the connection from which the request came. The routine
checks to see if this is a message (i.e. what might be expected in a normal object-oriented
system); if it is, it will initiate the execution of the associated method. If the received message
is not a request for execution of a method, but is a reply, or a signal, or an exception then the
process.command method will pass the message to the standard message-handler for a COM
to deal with it (called c_process_command in figure 9.1). This standard message-handler for
a COM is obtained by making all classes that are supposed to he COM-based descriptions

inherit, from a class called COM (see section 10.2.1).

!Member constructs are those terminals and non-terminals that together form the right-hand side of a
grammar production.
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process_command(cmd : like last_command; conn:COM_CONNECTION) is

local
local_msg : MESSAGE;
cstr : CODED_STRING;
-~ any temporary variables required by the
-- message handling
do

cstr.Create;
if cmd.is_a_message then
local_msg 7= cmd.the_message;
if local_msg.method_name.equal ("METHOD1") then
-~ methodl behaviour...
elsif local_msg.method_name.equal ("METHOD2") then
-- method2 behaviour

else
-- behaviour for undefined message
end; -- if
else
c_process_command (cmd,conn); -- i.e. COM’s predefined
-- process_command
end; -- if
end; -- process_command

Figure 9.1: A Process Command

9.1.2 Feature code generation

The code-generation for a method requires a greater deviation from the “recursive descent”
approach than is required for class. As discussed in section 7.4.4, methods including the
constructor routine Create become objects at run-time. This means that a class wrapper
must be generated and a code-generated version of the original feature placed inside, along
with any extra routines to enable remote calling and execution of the method. Within the
code-generated version of the source class a suitable message handler must be incorporated,
and appropriate definitions placed such that the code-generated class of which this method
was a member can call this new method and receive any results from it.

The structure of the code-generated class for a method is shown in figure 9.2. The class-
name is that of the feature being code-generated. As can be seen it is broken down into three
main routines that get redefined: pre. and post.method and do_method.

The pre_method routine unpacks a received method request? (the message format being
that required to send it across a network - see section 10.2.2) into some of the method-

object’s attributes; these attributes are the formal parameters of the feature’s source code.

2Method request has been used here to highlight that pre_method deals only with requests for method
execution; other messages for locking, unlocking etc., are dealt with by the process_cornmand routine described
in section 9.1.1.
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class A_METHOD export
repeat COMMAND

inherit
COMMAND
rename Create as c_create
redefine do_method, pre_method, post_method
feature

-- local variables from the source feature
-~ formal parameters from the source feature

-— attributes of the source class that this feature
~-- requires access to

Create is
do
c_create("A_METHOD");
end; -- Create

pre_method is
do
-=- unpack message sent to this method
-- including actual parameters into formal
-- parameters.

-~ Set up local variables, i.e. those local
-~ to the source feature code

-- request class attributes and lock objects
—-- in an ordered way

~- perform Early Return
end; -- pre_method

do_method is
do
-- code-generated version of the source
-- feature, allowing for parameters and
-- local variables that are now attributes
-- of this class.

-~ Reply with value of Result if query
end; -- do_method

post_method is

do
-- pack up and return changed global scalars
-~ unlock all objects locked by this method
end; -- post_method
end; -- class A_METHOD

Figure 9.2: Class for a Method
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As well as the feature’s formal parameters being made attributes of a feature-class, so also
are the locals from the source code for a feature. Also, the attributes from the original class
which contained this feature are made attributes of this class, and are initialised during the
execution of the pre_method. One further part of the pre_method is the locking of all the
required entities that this feature expects to access; this must be performed in a specific
order to avoid deadlock (see section 8.8.3, this is further explained in section 9.4).

The do_method routine is a translation of the source feature; it is rewritten to deal with
the different environment it is required to execute in, i.e. a COM instead of a sequential
object.

The post_method packs up any results into a network-transmittable form and sends them
back to the caller of this feature. It also must send back any modified entities of simple-data
type that are class attributes in the original source code, and unlock any objects that it
currently has locked.

The Create method from a source class is code-generated in a similar way to other meth-
ods, the exception being that because Create is a restricted keyword in Eiffel (v2), it cannot
become the name of the code-generated class. Consequently the code-generated class which
is the parallelised implementation of the source-class’s Create routine is given the name
MK _class_name, with class_name replaced by the name of the class of which the Create is

the constructor.

9.1.3 Expression code generation

Expression code-generation abandons the “recursive descent” style completely. Having tagged
all attributes during parsing and semantic analysis, within the appropriate objects, and built
comprehensive descriptions of any and all expressions, the expressions are rewritten during
code generation. Expressions require the addition of a number of extra expression-assignment,
pairs which are written to deal with method calls within an expression. All method calls are
evaluated and the result stored in a local variable before the code-generated version of the
source expression is evaluated; the local variable is then substituted for the method call in
the code-generated expression. This pre-evaluation of method calls is necessary because of
the way in which COMs handle messages (discussed in section 9.2). For example, given an
expression:

e:=a+ 2 *bflc*dyg)

if bis a COM then the message f(c*d.g) must be formed into a message such that it can
be passed over a network to b. Unless the implemented language includes an interpretive
element at run-time (within b) for interpreting and evaluating f(c*d.g) it is necessary to

pre-evaluate it. Thus a local-variable is generated and an expression to evaluate and hold
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the result of ¢*d.¢g, and another local-variable to hold the result of b.f(prev_temp_var); at
run-time the result in this final local variable is inserted into the modified expression (see

figure 9.3 for an example of how this expression may be translated).

method_being_compiled (....) is
local
10astype : ASTYPE;
libstype : BSTYPE;
12fstype : FSTYPE;
13cstype : CSTYPE;
l4dstype : DSTYPE;
lbgstype : GSTYPE;

do

10astype := a;

llbstype := b;

13cstype := c;

l4dstype := d;

lbgstype := l4dstype.g;

12fstype := lilbstype.f(13cstype * lbgstype);
e := 10astype + 2 * 12fstype;

end; -- method_being_compiled
Figure 9.3: Expression Compilation

The generated local variables, as depicted in figure 9.3, are generated using the derived

((l))

types of the variables and methods: is concatenated with a count of the local variables

used (ensuring unique variables) and with the derived type of the variable or method.

9.2 The Handling of Messages

The execution framework - multiple distributed COMSs interacting by message passing alone
with multiple non-COM objects embedded within the COMs - leads to a need to design a
mechanism to ensure the successful passing of messages and values between objects at run-
time. One of the first problems that this section deals with is how a message such as b.c.d.e.f
is treated, assuming b is an object: is c.d.e.f a single message to the object b, or is it the
message ¢ only followed by an application of d to the result and then e to that result etc?
When sending messages around the system to achieve execution, particularly where ob-
jects are logically embedded inside each other (see section 5.2.2), there arises a problem
due to the poor support for object integrity provided by most object-oriented programming

languages. It is possible in some object-oriented languages (e.g. Eiffel) to do the following:
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j := e.c.d.set_local_var(z);

This is permitting access to and change of an object internal to another object, without
“explicit permission” to do so (see figure 9.4); i.e. the export of ¢, an object in e, is supposed
to be available in a read-only mode (at least in Eiffel). However, the above code goes
on to read an internal attribute of ¢ and change its state using a method set_local war.
Therefore a programmer has broken the “read-onlyness” of the read-only exported attribute.
This is against the ideal of information hiding, as indeed is the access to the inside of ¢
which now cannot be safely changed because of possible encoded dependencies in classes
that use the class which describes e, due to assumptions that could have been made by
the programmer in their decision to implement the above statement. It is however time
consuming (in compilation terms) to stop such poor programming practice (this problem of
programmer access was also discussed in section 5.2).

It is possible to detect and stop all side-effects in queries (see section 5.2.3) regardless
of whether they are at a concrete or abstract level (Meyer 1988). This does not put a
semantic limitation upon object-oriented programming languages but forces programmers
into a “better” programming style helping them in the localisation of errors, etc. Read-only
exported attributes could also be treated as queries within a compiler checking that there were
no state changes performed upon the attribute directly or through some transitive closure

over message applications, as seen in the above assignment statement.

COM b

¢ refers 10 COM B

[

object d (a Non-COM)

Figure 9.4: Referring to a non-COM from inside a COM

However, given the nature of current object-oriented programming languages, this thesis
must consider how to deal with poor integrity of containment in objects; given the theme of
the thesis, it is necessary to consider this problem specifically within the context of COMs.
There are three possible approaches, each with merit and each with problems. The following
three subsections look at the approaches as applied to the above code fragment. The solutions

include the splitting/not splitting of a message with extensions to locking and message-
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handling within a COM, or the limiting of what can be exported from a COM.

9.2.1 Split the Message

Consider again the statement:

j := e.c.d.set_local_var(z);

It is possible to split a message into its constituent parts and explicitly manage every-
thing that happens. Assuming that temporary variables are generated for each of the parts
of the message (of the form [_(objects name)(objects_type)) and that request_c.mmsg and
request_d_msg are encoded requests for elements ¢ and d respectively, then the following

code fragment could be generated:

l_estype := e;

1_cstype := request_c_msg.send(l_estype);

1_dstype := request_d_msg.send(l_cstype);
1_set_local_varstype := 1_dstype.set_local_var(z);

j := l_set_local_varstype;

The problem with the above code is that [_dstype is the object d, possibly a non-COM (ie.
a linked list, record, string, etc.) inside of COM c¢ (refer to figure 9.4) which in turn is inside
COM b. Ignoring issues raised by information hiding, COM a, COM b and COM ¢ could
all be on different machines and therefore the simple request to set_local_var is problematic:
the method containing the above code, running inside COM q, cannot see the variable d.
Consequently, it must work on a copy, which is not the expected behaviour in Eiffel. Also,
whilst working on d, d must be locked from access within COM ¢, otherwise problems of
interleaving may cause its value to be inappropriately read and/or modified.

A solution to the above problem is to ensure that any object implemented as a COM
which exports a non-COM must trap all requests to that non-COM and deal with them.
This implies that a COM’s message-handler must trap and deal with state-changing requests
that refer to the internal (possibly non-COM) d, as well as its own expected message requests.
It should only be necessary to do this trapping of method calls for state-changing methods,
as a “good” query will not change an object’s state and thus will give the same result when
working upon a copy of the original object. This leads to an awkward compilation process:
code must be generated to achieve locking within another object at some arbitrary level of
nesting, i.e. embedded in as many layers of object as required; the message-handler code
must become incredibly detailed and complex, enumerating all possible message applications

to component-objects and their component-objects, and so on.
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9.2.2 Do Not Split the Message

Consider again the statement:

j := e.c.d.set_local_var(z);

It is possible to achieve the expected semantics by delegating the handling of messages to
those objects that “know” how to deal with them. The whole of the message is packaged and
sent on to the first object. It in turn will extract what it is to do and process accordingly.

Given the above expression the code would be of the form given below:

-- set m to the packaged up form of "c.d.set_local_var(z)"
l_c := e.com_send(m);

The process through which the packed message will go is to be sent to object e; e will
unpack it and extract the request for ¢; the packed message, without the request for ¢, will
then be sent to ¢ - i.e. the packed message now represents d.set_local-var(z). The object c
will receive the packed message, unpack it and because d is a non-COM and thus contained
within ¢ and accessable, will apply the set_local_var(z) to d.

Inside the class describing the COM ¢, as with the last approach, it is required that all
possible requests to object d are dealt with by the message handler. So in generating the
code for COM ¢ the compiler must also incorporate code to deal with all of the possible
message requests for any embedded objects that are both exported and non-COMs. This
implies again a necessity of knowing all messages that an embedded non-COM object can
receive at code generation time, as in the last example. The locking is simplified in that an
object that contains a non-COM object can more easily manage the locking and unlocking
of its attributes than could an external object.

There is a problem that results from this approach: the actual parameters used in the
method application, set_local_var, i.e. z, may be an arbitrary expression the result of which
must be passed through to the object d. Because z is referenced in the class describing
the COM aq, the variables used will only be in scope within that class, specifically within
this feature. The consequence of this is that, as was discussed in the code-generation of
expressions (see section 9.1.3), the parameter will be totally evaluated before the message is
packed for sending; the resultant value held in a temporary variable will become the item
packed for sending as the parameter to set_local-var.

The complexity of the locking has been simplified for this approach, but the message
handler is required to be as complex as with the previous solution. All possible messages

must be enumerated within the message handler so that access to non-COM component
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objects is dealt with; this includes enumerating all possible transitive closures over method
calls of non-COM objects embedded within non-COM objects etc. For example, imagine the
set of messages possible for an object which is a linked list containing arrays which contain

strings - the enumeration would be extremely large and wasteful.

9.2.3 A “Draconian” Approach

The third solution considered for dealing with the problems generated by statements such
as the one referred to throughout this section is to disallow the export. of non-COMs except
for simple typed objects such as integers, characters, strings, etc. This may seem a little
drastic at first, but in practice it does not put any limitations upon the sort of code that
can be written. This decision does have an impact on efficiency, i.e. implementing some
smaller objects which have no inherent concurrency as normal Eiffel objects would provide
performance benefits.

The restriction is that “all exported attributes must be either a COM or of a simple type.”

It may seem odd to have a restriction and state that it is not a limitation upon the
language. It should however be observed that it would be possible to implement every single
object that is not of simple type - i.e. character, integer, real etc. - as a COM: 1.e. every
object within a parallelised Eiffel system is either a COM or a simple type. The implication
of this is that instead of allowing classes to be of mixed types (i.e. some concurrent and some
sequential) all classes are compiled into a description for a COM-based object.

This is by far the easiest solution from the point of view of code generation as there is
no need to extend any message-handling code to deal with non-COM objects (except simple
types), as would have been required in the two previous solutions. Instead, as simple values
are exportable and easily encoded in network-transmittable messages they can be dealt with
by encoding their handling within the standard message handling and locking of a COM.
The message format with respect to the e.c.d.set_local_var(z) is that of the previous section

(i.e. packaging up the transitive closure of a method application).

9.2.4 Summary

The “draconian” approach is used because of its simplicity and indeed adequacy for demon-

strating the ideas discussed in this thesis.

9.3 Eiffel Constructs

This section outlines each of the structures supported within the compiler and the sort of

code that should be expected after code generation.
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Note in the following descriptions an operation eval has been introduced as a shorthand;
it implies the breaking up of an expression into all the statements and intermediate local
variables that would be required to evaluate an expression - as outlined in section 9.1.3 - i.e.

it is not part of the code-generated code but a shorthand for what should be there.

9.3.1 Method application

Consider the method application objl.op(el,...,en); a method op is applied to a COM-based
object objl. The parameters are all expected to be expressions and therefore, as discussed in
section 9.1.3, they will each be evaluated and the results stored in local variables which are
then packaged up into a message suitable for transmission across a network. The packaged
message 1s then sent to object objl. Example resultant code for this method application is

given below:

a_method (...) is
local
1l0elstype : E1STYPE;

Inenstype : ENSTYPE;
local_msg : MESSAGE;

do
10elstype := eval(el);
lnenstype := eval(en);
local_msg := packaged-up-"op(1l0elstype,...,lnenstype)";
local_msg.send(objl);
end; -- a_method

9.3.2 If statement

if condl then
actionsl
elsif cond2 then
actions?2
elsif

elsif condn
actionsn

else
action-else

end; -- if

Using the general if-statement above, the code-generation phase initially will generate

code to calculate the result of the expression which forms the cond! (the generation is as for
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expressions (see section 9.1.3)). The result is held in a local variable which is used as the
condition in the code-generated code, see below. The compilation of the elsif parts follows
a similar behaviour: pre-evaluation of the condition the result of which is stored in a local
variable which is then used as the condition in the if-statement. It should be noted, however,
that it is necessary to be careful where the evaluation of the conditions is placed: they cannot
all be pre-evaluated before the if-statement starts; some early conditions being true may be
supposed to stop the execution of a later condition which would crash the program because
of the current state, as is normal practice in programming. Below, the resultant structure
is indicated clearly, with the nesting of the elsifs one inside the other as if-statements with
else-clauses which contain the next condition’s evaluation and storage in a local variable,
and so on. Any else part in the source code is simply the last else-clause in the nested

if-statements.

lcondistype := eval(condl);
if lcondistype then
actionsl
else
lcond2stype := eval(cond?2);
if lcond2stype then
actions?2
else
if
else
lcondnstype := eval(condn);
if lcondnstype then
actionsn
else
action-else
end; -- if

end; -- if
end; -- if

9.3.3 Loop statement

from
initialisation
until
cond
loop
actions
end; -- loop

Above is an example loop as might be used in Eiffel. Once more it is the evaluation of
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expressions that causes deviation from what might be expected. For example the condition
tested for termination of the loop is pre-evaluated at the end of the initialisation section and
stored in a local variable, and also re-revaluated at the end of the loop body. This is shown

in the code-generated fragment below:

from
initialisation
lcondstype := eval(cond);
until
lconstype

loop

actions

lcondstype := eval(cond);
end; -- loop

9.4 Locking Generation

Chapter 8 outlined the strategy to be applied to achieving mutual-exclusion by locking and
how deadlock has been designed out of this COM-based model of concurrency. This section
details how the locking can be implemented within this framework. As discussed in section
7.4.4 and depicted in figure 9.2, locking is requested by the pre_method of a method-object
which is an instance of a feature-class, and unlocking is requested by the corresponding
post.method. The locking and unlocking must, as required by section 8.8.3, be in a specific
order to ensure the breaking of what was termed deadlock-condition 4 - “there is a cycle in
the ‘wait-for’ graphs” - i.e. there must not be any cycles. These give rise to a number of
questions: where is the lock held and what manages it; how is a lock actuated; how is a lock

released, and how is a lock passed on?

9.4.1 Lock location and control

The managing of the locks is of necessity placed with the object that is to be locked, i.e. an
object deals with its own locking. Upon creation the owner of the lock is the object that
created it.

LOCK When a method requests exclusive access to an object, the object will verify whether
the request is valid (i.e. the object is not already locked); if the request is valid the
lock will be given to the requester; if however the object is already locked the request
will be queued and thus the requester will block.

PASS_LOCK Locks are passed on during calls of methods: a method-object moy has a

lock on an object; it calls another method-object mo; that needs the locked object;
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mos 1s passed the lock by sending a request of o, in its pre_method asking for the lock
to be passed to itself; thus, gaining the lock, it can proceed. This is achieved by the
currently locked object receiving a request to “pass-lock” - i.e. to pass the lock on to
another object - the locked object checks if the originator of the request has the right
to do this (i.e. it has the locking object’s ‘key’). If so it will pass the lock, stacking the

previous locking object mo; so that on release by moy mo, is given the lock back.

UNLOCK When a method is finished with an object that it has locked it simply sends an
unlock to the object. The object checks first in its stack for an object that passed the
lock to this one and gives the lock back to that object, if present; if the stack is empty
the lock is given to the next request, held in a queue. If both the stack and the queue

are empty then the object is unlocked.

This implementation strategy achieves the requirements of chapter 8 of no deadlock and

as will be seen in sections 11.5 and 11.4, does not, suffer from starvation.

9.5 EFEarly Return

One aspect of the calling of a method, which has not been discussed, depends upon the
previous section 9.4, that is, how early returns fit into the execution model. An early return
is needed to enable a called and calling method to continue in parallel, the early return
releasing the caller to continue. It can be seen in section 9.1.2 that a method gains exclusive
access within the code-generated pre_method to all of the entities that it needs exclusive
access to. This locking is done in a specific order to avoid deadlock and the method cannot
continue to execute until it has gained all of the required locks. Therefore once the locks are
gained there is no reason for the caller to remain blocked, it cannot after all read or alter
any of the objects it shares with the called method as they are locked by this called method.
Consequently an early return can be performed at this stage releasing the caller to execute
in parallel.

This approach is reasonable even for queries, as long as the subject of any assignment

involving a query is locked. Consider the following code fragment from a caller of a query ¢:

y := q(a,b);
-- code which does not access y

if y = z then
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In the above code y is the subject of an assignment, the result of executing the query
g. However y is not accessed in between the initial query request and the if-statement;
consequently the caller could execute in parallel with the query calculation, as long as the
value is placed into y when returned and the if-statement does not proceed until y has that

value. This is easily achieved by locking y as though query ¢ requires exclusive access to it,

placing in a table a record of the assignment which is performed along with the unlocking of
y when the result is returned. This stops any accessing of y until the required value has been

assigned and thus helps ensure the expected sequential semantics, with parallel execution.

9.6 Inheritance

The simple analysis of code-generated files is handled by the parser, as shown in figure 6.6. A
class, “realising” that it inherits another class will initiate the analysis of that class. However,
classes must be made to reliably inherit from the COM class (of section 10.2.1; also see the
end of section 9.1.1) either directly or indirectly. This requirement is because all objects
described by classes must be COM-based, i.e. must inherit from the COM classes, as the
only supported objects are of simple type or COM-based (see section 9.2.3).

Consequently, the top class in an inheritance hierarchy must be made to derive from
the COM class. Also the code-generated Create routine for any class must call the code-
generated Create of its parent, ensuring that all class attributes have been appropriately
initialised. This ensures that all classes have access to the appropriate COM-based routines.

As a result of making the top class in an inheritance hierarchy inherit from class cCoM
there is another problem to solve. If a class uses multiple inheritance, and cach of the parent
classes in turn inherit from the COM class, there arises a problem of name clashes in the
class which is doing the multiple inheritance. In practice this is quite casily resolved: within
a code-generated class that is using multiple inheritance, within the inheritance clause of all
but the first class (all classes inherit from a COM class) code-generate a complete rename
set, renaming all name clashes away.

One further issue that needs to be addressed is the potential clash between inheritance
and concurrency, initially referred to in the literature as an inheritance anomaly (see Mat-
suoka, Wakita & Yonezawa’s (1993) original paper on the subject). This inheritance anomaly
was initially described as a conflict between synchronization and inheritance. It has how-
ever been suggested through McHale’s (1994) PhD thesis that the apparent conflict is not
actually a conflict between synchronization and inheritance, as much of the literature in this
area suggests, but is because of the conflict between inheriting a mixture of sequential and

concurrent code (i.e. code with synchronization properties). Given either explanation for
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the apparent anomaly, the implementation within this thesis was thought to circumvent the
problem.® If Matsuoka et al. (1993) and the derived literature are right then the implemen-
tation here avoids such a problem because a programmer cannot modify the synchronization
mechanisms and behaviour as it is out of their control and consistent across a program. If
McHale (1994) is right then, given the restriction of section 9.2.3, all code-generated classes
are in essence concurrent and there is no mixing of approach within the inheritance hierar-
chy. However McHale goes on to state that the problem is insoluble and that all one can
do is minimise the symptoms. Given the complexity of the semantics involved and McHale’s
(1994) work it cannot be stated with any confidence that there is not an inherent problem.

The investigation of this is therefore left to be a post-thesis activity.

9.7 Summary

Code generation, as with other processes within the compiler, follows a “recursive descent”-
style process; this arises from the structure of the trees which resulted from the translation
of programming language constructs. This simple recursiveness of process is broken by three
language constructs: classes, features and expressions, where extra routines are required, or
extra classes, or extra statements and local variables are required respectively.

The handling of messages, given the distributed nature of the resultant implementation,
requires thought as to how a message such as % .= e.c.d.set_local_var(z);” should be compiled.

The two main solutions are:

1. break up the message and send the first part to the first object (i.e. send ¢ to object e);
wait for the result; then send the next message d to lestype, i.e. the result of sending

¢ to e; wait for the result and so on until the final result is obtained.

9. send the transitive closure over message calls, as a packaged message to the first object,

le. e.

The second approach implies simpler mechanisms with respect to variable locking inside
COMs. However, as was observed within section 9.2.3, it would be reasonable to suggest
that all objects must be one of only two formats: either COM-based or of simple type. This
does not decrease the power of the language and is sufficient for demonstrating the thesis (as
pointed out it does however have efficiency implications). One obvious implication is that
a COM object can only export COMs or simple-typed objects. The consequent message-

passing and handling mechanisms are thus much simpler.

3An area of future work: demonstrate by proof, using a semantics for inheritance, that there is or is not
an anomaly with the use of inheritance within the implementation used for this thesis.
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Part 111

Implementation
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Introduction to part III
This part looks at the implementation of the solution presented in part II to deal with
translating a sequential object-oriented program in Eiffel into a parallelised program. Chapter

10 presents an overall look at the implementation.
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Chapter 10

Overall Implementation

This chapter discusses briefly the work done in implementing the ideas contained within this
thesis.

The structure of the compiler arose because of a view of constructs as composite-objects
(see section 6.1) which have components, the components being the non-terminals and ter-
minals that would appear on the right-hand side of a grammar production describing a
construct. It is this structure that leads to a “recursive descent” style of processing in each
of the phases: a method is applied to the top construct (a class) and then (whether parsing,

analysing semantics or code-generating) recursively within its component constructs.

10.1 The Translator

The implementation of the translation process made use of the “lex” and “parse” clusters of
ISE Eiffel and also the standard data-structure cluster. This minimised the amount of code
that needed writing from scratch, enabling concentration on the more awkward aspects of
compilation in relation to parallelism.

The two clusters “lex” and “parse” provide a framework for building scanners and parsers
for LL! grammars. The parse cluster provides support for backtracking and a routine called
commat. The commit routine avoids the need for exhaustive searches when syntax errors
occur, i.e. if a compiler writer knows at a certain point in a production’s description that
no other production is of a similar pattern then they can incorporate a call to commit; this
call implies that if any part of the remaining construct is not found, a syntax error has been

detected. An example of commit’s usage was shown in figure 6.9.
I g

'LL : Left context, leftmost non-terminal expanded first, no left, recursion.
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10.1.1 Scanner Implementation

U0atiaé

Figure 10.1: Lexical class structure

A simplified structure of the classes for the lexical analysis part is presented in figure
10.1; the lexical analyser implemented for this thesis inherits from the L_INTERFACE and
enumerates all of Eiffel’s keywords supplying a token type for later recognition by the parser,
and the expressions that describe all possible token constructs - e.g. for integer constants,
characters, strings, keywords, etc. - again with a token type for later recognition and use by
the parser. None of the above classes in figure 10.1 needed any modification to implement

the lexical analyser.

10.1.2 Parser Implementation

TERMINAL

KEYWORD

Figure 10.2: Parse class structure

The supplied parse classes provided a solid base upon which to write the parser (see figure
10.2). Given the chosen method of implementation (see chapter 6) the ideas presented in

CHOICE, SEQUENCE, and AGGREGATE were, in the course of implementation, each ex-
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tended by the use of inheritance - the new classes were called C.CHOICE, S_SSEQUENCE, and
A_AGGREGATE respectively. The extensions included incorporating basic routines to sim-
plify code generation, i.e. for most of the Eiffel constructs the code generation routines added
to these classes could be used directly, as inherited, with no modification. S_SEQUENCE was
further extended to incorporate the idea of allowing a separator to be used as a terminator,
see the description for this class, called SE_SEQUENCE.

The four classes and their equivalent grammatical ideas are:

C_CHOICE is used if there is an option on the right-hand side of a production, e.g. A is b

orcord, “A ::=b | c | 4"

A_AGGREGATE is used if there is a requirement for one construct to follow another, e.g.
B is the construct E followed by F followed by G, “B ::= E F G”.

S_SEQUENCE is used if there is a requirement for iteration, but the seperator indicates

that another element of the construct must follow, e.g. “H ::= h ";" H | h”.

W

SE_SEQUENCE is used if there is a requirement for repetition and the separator, 7, is

. S}

allowed to terminate the sequence, e.g. “J ::= 3 ";" [J] | j

Each of the constructs within the compiler inherit from one of these classes, adding their

specific production descriptions (see section 6.4) and refining any methods as necessary.

10.1.3 Recursive Class Relationships and Compilation

As outlined in figure 5.1 it is possible to have recursive relationships between classes; thus
there is a need to be able to handle this within the compiler. Unlike C which typically, at least
on UNIX, uses a make file (an algorithm to tell the system how to compile the programs),
Eiffel compilers need to obtain the relationships between classes by derivation.

The request for compilation of a class, whether it is a client or is inherited, goes through

the following process:

if not program_object.has(class_to_compile) then
a_class_object.Create(class_to_compile,program_object);
end; -- if

The above pseudo-code checks whether or not program-object, as in section 6.3.1, currently
holds a class-object for class_to.compile, i.e. if present, it has already been compiled or is in
the process of being compiled. This neatly avoids any infinitely recursive compiles resulting

from classes which refer to themselves as clients either directly or via mutual-recursion. Also,
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this avoids constant recompilation of classes used throughout the program. Note also, it is
the responsibility of a class-object to “place” itself into the program-object.
The compiling of a class within a class-object, which results in the code-generated code,

follows the process below:

parse; -- This is performed inside the class-object
set_parsed; -- Indicate for any following attempts at

-- compilation that it has been parsed
if parsed then

-= if it successfully parsed

semantics; -- attribute the abstract syntax trees

analyse_inherited_files;
analyse_client_files;

code_generate;

else
raise_syntax_error ("FILE UNPARSED") ;
end; -- if
The process of analysing each of the inherited and client classes follows through the

process of checking if each class has been compiled and if it has not, compiling it.

10.2 Concurrent Object Machine

The implementation of the Concurrent Object Machine (COM) (see chapter 7) made use
of the “network” cluster designed for network programming within Eiffel (Hillman 1990).
Hillman’s (1990) classes are organised around an inheritance hierarchy which provide a
client-server abstraction for network programming with objects. The simplest object, a
client, described in the class NET_NODE is able to connect to “server” objects and ex-
change messages; inheriting from this class, NET_ACCEPTOR objects can both connect
to “server” objects and accept connections from other objects; descendent from this class
NET_CMD.PROCESSOR provides an abstraction for connecting and accepting connections
and also support for the provision of a service, as would be required by any “server” object.

As well as providing a set of clusters to model the type of objects required in a client-server
environment, the network cluster also includes a class, NET_-CAPABLE, which provides an
abstraction for messages that pass between network objects. A further class discussed in
Hillman’s (1990) paper, FORKABLE, provided support for forking processes; however, this
class was removed from the distribution because Hillman (1990) realised that non-blocking

input/output on UNIX’s stdin/stdout respectively could be achieved without forking separate
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processes. Two other classes were provided, NET_CONNECTION and NET.CONN_LIST,
which respectively provide an abstraction for connections between objects and a connection
holder for a collection of connections.

The ideas presented within Hillman’s (1990) paper, specifically the organisation of the
classes within this “network” cluster, together provided a good base for implementing the
concept of a COM. However with the exception of two classes (NET_-NODE and NET-
_ACCEPTOR) all of the classes needed to be completely rewritten. The resultant COM
classes are (as divided up in Hillman’s (1990) paper) split into three groups: net-nodes, clients
and servers; net-capable, objects that can be passed over a network; and net-connections,

which models the connection of one net-node to another.

10.2.1 Net Nodes

FORKABLE

COURIER_GENERATOR

@ R_OBJECT_COURIER

Figure 10.3: Net-node inheritance hierarchy

The classes in the system are as follows:
NET_NODE: Abstraction for implementing client-server type architectures, it provides the
idea of a client object able to connect to and communicate with a server object.

NET-ACCEPTOR: Descendent from NET_NODE, it is the abstraction for implementing
server type objects; instances can make connections to server objects as well as being

able to accept connections from either server or client objects.

BRAIN: Descendent from NET_-ACCEPTOR, it is similar in architecture to Hillman’s
(1990) NET-COMMAND_PROCESSOR, except it also incorporates the ability to fork
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processes, which is a requirement with COMs. Descendent from this is the COM class

which encompasses the whole idea of a COM-based object.

COMMAND: Descendent from COM, it is inherited by all method-objects (the implemen-

tations of a class’s methods within a COM, see section 7.4.4). It provides the required

structure for the classes which implement each of the method-objects including execute,
Create and process_command. Also the COMMAND class specifies, using deferred rou-
tines, that a class implementing a method-object should define do_method, post_accept
(specifies what should be done if an object connects to this method to use its service),

pre_ and post_method.

FORKABLE: This class provides the ability for an object’s thread of execution to split

into two processes.?

COURIER: Descendent from NET_NODE and thus able to exchange messages and connect
to objects capable of accepting connections. In practice a COURIER is created by either
a COURIER.GENERATOR or a R_.OBJECT-GENERATOR (see below). A courier
once created will, if it is an R.OBJECT-COURIER create the remote object requested
by the BRAIN. It will expect to receive from the remote object its acceptance port
and will then connect to it, providing the identity of the BRAIN. After successfully
creating and connecting with the remote object the courier connects to the BRAIN,
providing the identity of the remote object. After this is done the courier goes to sleep
until either the BRAIN needs to send a message to the remote object, or the remote

object needs to send a message to the BRAIN.

COURIER_GENERATOR and R_.OBJECT_GENERATOR: Descendent from class
FORKABLE, instances of these two classes, when asked for a new courier, will fork
into two processes; one process produces either a new courier or a remote-object-courier
respectively, and the other process returns control immediately to the caller. The
BRAIN within a COM contains one instance each of COURIER_.GENERATOR and
R_OBJECT.GENERATOR; each time it requires either a new courier or a new object

on a remote machine it requests the item from the appropriate generator.”

2Threads, which as light-weight processes would be more appropriate, were not supported in the imple-
mentation environment for most of the developrnent time of thig thesis and hence are not used.
3“Remote” includes both proper remote machines and the same machine.
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10.2.2 Net Capable

NET_CAPABLE
CODED_STRING

OBJECT_PORT

COMPOUND_CODED_STRING

MESSAGE

Figure 10.4: Net-capable inheritance hierarchy

NET_.CAPABLE: An abstraction for implementing objects that can be passed over a net-
work, NET_.CAPABLE is used within the NET_NODE class hierarchy when informa-
tion is to be exchanged between COM-based objects. As with the NET_-COMMAND-
_PROCESSOR of Hillman’s (1990) NET-NODE hierarchy, this class did not incorpo-
rate the right level of abstraction, i.e. it did not provide enough flexibility to support
the message structuring required in this thesis, hence it was rewritten. All of the classes

descendent from this class can be passed across a network.

CODED _STRING: Descendent from NET_-CAPABLE, it incorporates the data items that
can be passed across a network. Instances of it can contain simple integers, charac-
ters, booleans, strings, etc., or suitably encoded instances of classes descendent from
NET.CAPABLE:; this implies that all the classes within this hierarchy, with the excep-
tion of NET_.CAPABLE, require an exported routine coded_string which provides the

CODED_STRING form of the class.

OBJECT_PORT: Transmittable across a network as a CODED_STRING, it is used to
represent a distributed pointer, i.e. a machine and port number providing a unique

address for an object, to which other objects can connect.

COMPOUND_CODED STRING: An aggregation of CODED_STRING, enabling com-

pound messages to be exchanged between objects.

NEW _OBJECT: An aggregation of the OBJECT_PORT class and an object name, the
name being the identity of the object. This name is useful in the debugging of paral-

lelised programs; at run-time status messages (if turned on) will indicate the originator
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of a signal, message, or exception, providing traceability in the execution behaviour of

a parallel program.

MESSAGE: Abstraction of the types of message that one object sends to another within

a standard Eiffel program.

MESSAGES: An aggregation of a number of MESSAGEs. It provides support for the
passing around of a compound of MESSAGEs like: “c.d.set_local_var(z);” from

section 9.2.

10.2.3 Net Connections

NET_CONNECTION

COM_CONNECTION

Figure 10.5: Net-connection inheritance hierarchy

NET_CONNECTION: A complete reimplementation of Hillman’s (1990) class. It has
been rewritten to provide a more file-like abstraction to the ends of a connection.
Instances of this class appear at either end of a connection and contain indicators
of whether or not the connection is “special” (i.e. reserved for some purpose such as
accepting connections) or a generally usable connection. As indicated by the inheritance

hierarchy in figure 10.5, it is descended from SOCKET_FILE.

SOCKET_FILE: An abstraction over the implementation of sockets, providing various rou-
tines: to connect to an object on a specified computer using a specified port number;
to accept connections from another object; to indicate the presence or absence of wait-
Ing messages; to transmit and receive various items of data including integers, reals,

characters, booleans, strings, etc., and of course coded_strings.

COM_CONNECTION: Specialised NET_-CONNECTION adding features to provide di-
rect support for the types of connection required within the implementation of a COM.

It includes the name of the remote object, the name of the owner of the connection,
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the specific OBJECT-PORT used on the remote object, and send, receive, and reply

routines to enable sending of objects across a connection.

10.3 Locking Objects

Chapter 8 implied a need for the ability to lock an object, whether it is COM-based or of
simple-type. Further, associated with locking is the idea of early-returns (see section 8.6).
This section outlines a viable implementation strategy. It is based around the use of a
class LOCKABLE which provides the required locking facilities for an object, including the
features lock, unlock, pass_lock and identity of the locking object. This is inherited by any

classes describing objects that may require locking at run-time.

10.3.1 Locking

Each object that can be locked is required to inherit from the class LOCKABLE. This is
achieved by making the COM class (see section 10.2.1) inherit from the class LOCKABLE.
This enables a COM-based object to maintain an exclusive lock upon itself. An object
requiring to use any object must request a lock of that object, the object in turn on permitting
the lock must ensure that no other object is allowed to execute any of the object’s methods
- this method is called lock.

As discussed in chapter 8 and section 9.4 the lock must be passed along the call path,
ie. it must be possible for a method that has a lock upon an object to release that lock
to any method it calls that also needs the lock, thus removing its own access and giving
preference to methods it calls. This is achieved with the routine called pass_lock which takes
as parameters the object that is to receive the exclusive access and an indication of the object
that currently has it locked. This routine if permitted stacks the identity of the old locking
object and sets the owner of the lock to the new object. When a method-object finishes it
calls unlock; the locked object unstacks the previous locker passing exclusive-access back to
that object.

Whilst an object is locked a request may come in to provide exclusive access to another
object; this request is queued and serviced only when the object is unlocked by the method-

objects currently using it.

10.3.2 Early Return

The implementation of early returns (see section 9.5) relies on the blocking provided above so

that all shared entities are locked; indeed, any objects which are the subject of an assignment




involving a query must also be locked. A specific message is used to indicate to the caller

that an early return is being performed, so that the caller can take the appropriate action.

10.4 Code Generation

As discussed in chapter 9 the implementation is based upon a “recursive descent”-style pro-
cess, where, to reiterate, a do_print routine is requested of the top construct, which in turn

requests a do_print action of its component-constructs.

10.5 Actual Execution

The execution framework used to implement the ideas within this thesis makes use of an
NFS-based! file system. After compilation, the binaries for each of the generated classes are
held in a common place within the filing system. The launching of a program is achieved
by pulling the appropriate binary from the file-system and starting it. Clearly this does not

lead to very high performance levels but it is adequate for demonstrating the thesis.’

10.6 End Notes

It should be noted that examples of code generation as discussed in this thesis can be seen
in the examples presented in chapter 11 with the associated generated code in appendices
C and D. It is however the case that the full locking strategy and its code generation is
not yet complete within the implementation; however, it is clear looking at the thesis and
the generated results that sufficient semantic information has been obtained from the source
program and that there is sufficient infra-structure within the generated code into which such

a locking strategy can be inserted.

4Network File Systemn
°See section 13.3 for a discussion of future improvements in this framework.

133




Part IV

Evaluation and Conclusions




Introduction to part IV

Chapter 11 evaluates the models presented in parts 2 and 3 - design and implementation.
It also relates what has actually been achieved compared with what was originally intended -
outlined in chapter 5. This is followed by chapter 12, a discussion of related work (specifically
work done during the time of this thesis) and outlines the contributions made in this thesis.
This is followed by chapter 13 which discusses how the models and implementation techniques
used within this thesis may be refined to achieve a more effective system and the final chapter

(14) which presents the conclusion.




Chapter 11

Model Evaluation

This chapter is an evaluation of the models introduced within this thesis; models both for
concurrency and for compiler implementation. To discuss the compiler model an exam-
ple is given which contains some indicative code (see section 11.2) which is discussed and
can be compared with the parallel version in appendix B. The compiler model is further
exercised in the evaluation of the COM-based concurrency model, where two specific con-
currency problems are discussed, the “producer-consumer” problem (see section 11.4) and
“dining philosophers” (see section 11.5), both of which can be found in Ben-Ari (1982); these
problems were chosen with respect to the evaluation of the concurrency model as, in their
parallelised form, they demonstrate the sorts of problems inherent within a parallel system.
The compilation model is shown to be demonstrably reasonable by observing the successful

translation of the problems above, from their sequential form into their parallelised form; the

concurrency model requires further discussion and evaluation and thus is the main focus of

this chapter.

With the evaluation of the concurrency model using “producer-consumer” and “dining
philosophers” problems it is not immediately obvious how such problems can be simulated
in a sequential programming language. The sequential program, which can be parallelised
to simulate these problems, must be a valid executable program if the parallelised version is
also to be valid. In its sequential form it is clearly not a true simulation of the two problems
as they are defined within a parallel domain. Thus the gimulation is only manifest in the
parallelised version. To reliably achieve such simulations the programs must be written with
knowledge of the mechanisms used to achieve parallelisation and subsequent, execution.!

It is observed in the simulation of the producer-consumer and dining philosopher prob-

1This knowledge requirement is not a weakness in either of the models, but arises because of a wish to
use the compiler in a way that it is not meant to be used (i.e. trying to control how the system does the
parallelisation).
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Jems that standard “good” object-oriented programming gives rise to a maximised level of
parallelism for this COM-based model of concurrency (not necessarily the maximum possible
under other models), while poor programming which does not fulfil the principles of section
5.2 will reduce the potential level of parallelism.

It should be noted throughout this chapter that most of the code-generated output from
the examples is, due to its lengthiness, incorporated in three appendices (B, C and D) rather
than in the body of the chapter. Also, as this output is generated by the code-generator

within the compiler, it is not always presented tidily or in an aesthetically appealing fashion.

11.1 Compilation Model

11.1.1 Parsing and Analysis

The parsing phase, implemented using classes within the Eiffel parsing cluster, capitalised
upon an object-oriented view placed upon Eiffel’s grammar and an input program’s struc-
ture. The resulting object-based structure of the compiler made it possible to conveniently
pass synthesised and inherited (attribute grammar sense) information around; particularly
inherited information, to constructs that required information about objects of which they
are components, to be able to synthesise their own attributes ready for code-generation.
The construction of the model for compilation and the analysis performed to achieve
parallelisation of an input program highlighted the poor way in which many object-oriented
programs are written with respect to information hiding and that this has an impact on the
degree of potential parallelism. This gave rise to the programming principles of section 5.2.
The successful code-generation of parallelised versions with the “producer-consumer” and
“dining philosophers” problem demonstrates that an Eiffel program provides enough semantic
information to enable automatic parallelisation. The discussion in sections 11.4 and 11.5 will
demonstrate the sufficiency of the synthesised semantic information, such that it is clear that
there is at least one automatable path from a sequential Eiffel program to a parallel program.
The demonstration of the correctness of the parallelised code, due to the unfinished nature
of the code-generator with respect to the locking algorithms, must of necessity be based on
discussion of the theoretical reasonableness of the mapping of parallelised code onto the
COM-based model of concurrency; and indeed much of the rest of this chapter looks at this

problem.

137




11.2 Translation Mappings

This section looks at the mapping of constructs from their source to their parallelised version.
It includes discussion of if statements, loop statements, method applications, expressions,
message handling and the message-passing primitives. These are evaluated in the context of
a demonstration class (CONSTRUCT) given below and compared with translation extracts
in the subsequent subsections.? The class’s only purpose is as a basis for discussion within

this section.

class CONSTRUCT export
methl, meth2, meth3, n, set_to, cons
feature

Create is

local
i : INTEGER;

do
if_statement;
loop_statement;
method_application;

end; -- Create

n : INTEGER;
cons : CONSTRUCT;

if_statement is
local
i : INTEGER;
do
i:=0;
if i - methl.n < 1 then
i=1i+ 1;
elsif i + meth2.n > 2 then
1 =1 % 2;
elsif i * meth3.n = 1 then
i =1 -10;
else
i:=1;
end; -- if
end; -- if_statement

loop_statement is

local

i : INTEGER;
do

from

2Due to the lengthiness of the generated source code the complete parallelised listings for CONSTRUCT
are in appendix B with extracts discussed in this section.
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i:=1;

until

i = methl.meth2.meth3.n
loop

i:=1+1;

end; -- loop
end; -- loop_statement

method_application is
do
cons.methl.meth2.meth3.set_to(4);
end; -- method_application

methl : CONSTRUCT is
do
Result := cons;
end; -- methi

meth?2 : CONSTRUCT is
do
Result := cons;
end; -- meth?2

meth3 : CONSTRUCT is
do
Result := cons;
end; -- meth3

set_to(i : INTEGER) is
do
n = i;
end; -- set_to

end; -- class CONSTRUCT

11.2.1 If Statement

Within the class CONSTRUCT the method if_statement was included to demonstrate the
translation of a general if statement, including elsif clauses. It can be seen that, as required,
a code-generated version of the condition is pre-evaluated before the actual result of the
condition is placed into the resulting if statement’s conditional part, and that subsequent
“if condition then” parts are nested deeper and deeper inside, with the deepest else clause
holding the statements that implement the else part of the source code. This is as expected
and as described within section 9.3.2. Further examples of translated if statements can be
seen in the “producer-consumer” and “dining philosophers” examples in sections 11.4 and

11.5.

local_comp.clear;




local_msg.clear;

local _msg.set_method_name("meth1");

local_comp.extend(local_msg.coded_string);

local_msg.set_method_name("n");

local_comp.extend(local_msg.coded_string);

if i - master_connection.send_msg(local_comp.coded_string).the_integer < 1 then
i :=1+1;

else

local_comp.clear;

local_msg.clear;

local_msg.set_method_name("meth2");

local_comp.extend(local_msg.coded_string);

local_msg.set_method_name("n");

local _comp.extend(local_msg.coded_string);

if i + master_connection.send_msg(local_comp.coded_string).the_integer > 2 then
i:=1 % 2;

else
local_comp.clear;
local_msg.clear;
local_msg.set_method_name("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("n");
local_comp.extend(local_msg.coded_string);
if 1 % master_connection.send_msg(local_comp.coded_string).the_integer =1

i:=1i - 10;
else
i:=1;
end; -- if
end; -- if
end;

11.2.2 Loop Statement

Within the class CONSTRUCT the method loop_statement was included to demonstrate the 5
translation of a general loop statement. It can be seen that, as required, a code-generated
version of the condition is pre-evaluated before the actual result of the condition is used in
the loop condition, both between the “from” and “loop” keywords and at the end of the loop
body, once more before the result is used as a loop condition. This is as expected and as
described within section 9.3.3. Further examples of translated loop statements can be seen

in the “producer-consumer” and “dining philosophers” examples in sections 11.4 and 11.5.

from
i=1;
-- eXtra assignments to support pre-evaluation of condition
local_comp.clear;
local_msg.clear;
local_msg.set_method_name("meth3");
local_comp.extend(local_msg.coded_string) ;
local_msg.set_method_name("n");
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local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("meth2");
local_comp.extend(local_msg.coded_string);
local _msg.set_method_name ("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name('"n");
local_comp.extend(local _msg.coded_string);
local_msg.set_method_name("methi");
local_comp.extend(local _msg.coded_string);
local_msg.set_method_name ("meth2");
local_comp.extend(local _msg.coded_string);
local_msg.set_method_name("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name(“n");
local_comp.extend(local_msg.coded_string);

until

i = master_connection.send_msg(local_comp.coded_string).the_integer
loop

=1+ 153

-- extra assignments to support pre-evaluation of condition
local_comp.clear;

local_msg.clear;
1oca1_msg.set_method_name("methS");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name('"n");
local_comp.extend(local_msg.coded_string);
local _msg.set_method_name("meth2");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name ("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("n");
local_comp.extend(local_msg.coded_string);
1oca1_msg.set_method_name(”methl");
1oca1_comp.extend(local_msg.coded_string); I
local_msg.set_method_name("meth2");
local_comp.extend(local _msg.coded_string);
local_msg.set_method_name("meth3");
local_comp.extend(local_msg.coded_string);
local _msg.set_method_name("n");
local_comp.extend(local_msg.coded_string);

end; -- loop

11.2.3 Method Application

Within the class CONSTRUCT the method method_application was included to demonstrate
the translation of a compound method application. It can be seen that, as required, the
message is built up as a compound message of all of the required method applications, then
that compound message is forwarded to the appropriate object, in this case cons. This

demonstrates the sending of a command. A further example can be seen in the compilation
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of the loop condition in section 11.2.2 where a query is translated. These translations are
as expected and as described within sections 9.3.1 and 9.2.3. There are no examples of
compound message applications within the “producer-consumer” and “dining philosophers”

examples.

local_comp.clear;

local_msg.clear;
local_msg.set_method_name("meth3");
local_comp.extend(local _msg.coded_string);
local_msg.set_method_name("set_to");
local_code.set_integer(4);
local_msg.extend(local_code);
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("meth2");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("set_to");
local_code.set_integer(4);
local_msg.extend(local_code);
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("methl");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("meth2");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name ("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("setﬁto");
local_code.set_integer(4);
local_msg.extend(local_code);
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("methl");
local_comp.extend(local_msg.coded_string);
1oca1_msg.set_method_name(”methQ”);
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name ("meth3");
local_comp.extend(local_msg.coded_string);
local_msg.set_method_name("set_to");
local_code.set_integer(4);
local_msg.extend(local_code);
local_comp.extend(local_msg.coded_string);
cons.send_command(local_comp.coded_string);

11.2.4 Expression

Examples of expression translation can be seen with the evaluation of the conditions in
the loop (section 11.2.2), and in the if statement (section 11.2.1). In both of these cases
method applications are involved. Simpler expression translation can be seen within the body

of the aforementioned loop and in the statements to be executed within the if statement.
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Further examples of expression translation can be seen in the “producer-consumer” and
“dining-philosopher” examples. In all cases the expression translations are as specified within
section 9.1.3 with all temporary local variables generated and declared within the appropriate

generated methods as required.

11.2.5 Message Handling and Primitives

The primitives are logically what was described in section 7.2, however, during implementa-
tion they are also wrapped up inside other calls, which do not change what was stated i sec-
tion 7.2 but do make code-generation quicker and easier. Specifically a COM_CONNECTION
exports send_msg, receive_msg and reply_msg which take the message as parameters and for-
ward or receive them along the COM_CONNECTION. Also a NET_CAPABLE (i.e. any
network transmittable message) exports com_send, com_receive and com_reply which fulfil
directly the semantics of section 7.2. The receive-from-anything semantics are achieved in
that a COM listens for any messages and, given a “message detect”, calls receive on the

appropriate connection.

11.2.6 Features

The translation of features as outlined in section 9.1.2 requires that the generated class inherit
from the class COMMAND and implements a number of routines, pre, post_and do_method.
As can be seen in the appendix for each of the features of CONSTRUCT this has been
achieved. A further requirement was that the pre_method locked any necessary variables
based on a system-wide ordering. As stated in section 10.6 the locking is not completely
implemented at this stage, therefore it is shown by some code-generation (look at the calls
using set_give_me) that the pre_method “knows” which attributes it needs to ask its controller
for, and indeed checks whether a reconnection is required to any COM-based objects because
they have moved ports (i.e. the alias in a program which refers to an object now refers to a
different object, possibly by assignment). Correspondingly post_method is required to release
the objects in a system-wide ordering, and again because of the non-completion of locking
it has been shown (look at the calls using set_object_res) that the method implementation
“knows” which objects it must “give back” (i.e. unlock and/or pass any changed attribute
values back). The do_method routines, as can be seen, are translations (with the expectation
of using COM-based semantics) of their corresponding source code.

Methods are made up of either queries or commands; queries return a result and thus if
the translation of any of methi, meth2, or methd are inspected in appendix B, it can be seen

that a reply is generated and sent back to the caller. Also associated with both commands




and queries is the idea of early returns (see section 10.3.2); these can be seen clearly generated
in the pre_methods of all of the code-generated methods.
Further examples can be seen in the “producer-consumer” and “dining philosophers”

problems.

11.2.7 Classes

The largest construct that the compiler is expected to deal with is that of a class. Tt is
anticipated (see section 9.1.1) that a code-generated version of a class will contain definitions
for pre_loop, method_connect, mk.class_name, process_command and attributes which are
COM-connections to each of the code-generated methods. As can be seen by inspection of
the parallelised code in appendix B, each of these routines have been generated and a method-
class describing how to do the create - MK_CONSTRUCT - has been code-generated. The
method_connect contains the necessary code to allow the generated methods to connect to
their controller for use, and the process_cormand contains the appropriate code to handle
all the method requests that a CONSTRUCT might expect, with a forwarding of any other
messages to the BRAIN’s process_command methods such that any COM-system messages
or UNIX signals can be appropriately dealt with. Further examples of class parallelisation

can be seen in the “producer-consumer” and “dining philosophers” problems.

11.2.8 Inheritance

The section 9.6 outlined the requirement placed upon the inheritance of making a class inherit
from the class COM with some redefinitions required. This can be seen in the translation of
the CONSTRUCT class (see appendix B) where the generated class has been made to inherit
from COM. However, as stated in section 9.6, there is a known problem with the mixing of
inheritance and concurrency and therefore none of the example’s sources use inheritance;
consequently, these programs do not exhibit the aforementioned problem. Obviously as it
hecomes clearer how such a problem can be resolved, it should be incorporated within the

code-generation system of this compiler.

11.3 Concurrent Object Machine

At the heart of the execution environment is an implementation of the Concurrent Object
Machine (COM) of chapter 7. The COM was designed to fulfil the purpose of providing a
level of abstraction above that of hardware and operating system, upon which the parallelised
program must run, and to help simplify the code-generator. It was not designed for optimality

but to be a tool for demonstrating the thesis. However, much thought has gone into the
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structure of the machine, the message-passing mechanisms and the type of addressing to use
(i.e. symmetric or anti-symmetric and whether the naming should be direct or indirect etc.).
It has been designed using as “natural” a model as possible such that future refinements can
be incorporated that will improve any weaknesses in its optimality.

It should be noted that the message-passing within the models appears high. The models
defined achieve much of their behaviour by exchanging messages to effect method execution,
request status information or enact locking. There are of course optimisations possible for
intra-machine message-passing (e.g. use of shared variables). However, the overhead of inter-
machine message-passing may not optimise sufficiently well to make the approach presented
within this thesis generally applicable.® It is therefore probable that refinements and opti-
misations will make COM-based solutions usefully applicable on a limited range of problems
only.

The COM executes on a network of UNIX workstations using Berkeley sockets and the
UNIX fork call. It has been exercised by the execution of some very simple programs written
to enable communication of information and remote starting of objects on both the same
machine and across machine boundaries.

Although not the objective, it is usable by any programmer who wishes to do any explicitly
controlled general network programming in Eiffel, and provides a useful abstraction for that
task. This usefulness means that the model fulfils the necessary objective placed upon it - 1ts
case of use and ability to work across networks means that the writing of the code-generation
code was simplified when compared with code-generating down to the operating system and

directly manipulating sockets and forks throughout the code-gencrated programs.

11.4 Producer-Consumer Problem

11.4.1 The Problem

The producer-consumer problem, or more specifically the bounded-buffer variant as discussed
here, is an abstraction of an aspect of applications that arises when one or more processes
produce data that must be stored until another process (or processes) is ready to consume it
(i.e. utilise the data in some way). Clearly resources are finite so the buffer, where the data
is stored, must in practical terms be limited in size (clearly if this bounded buffer version of

the problem is demonstrable then so also is the simpler version which uses an infinite buffer).

3This problem is discussed further in section 12.2.4




11.4.2 A Sequential Description

One object-oriented solution to the producer-consumer problem would incorporate buffer,

producer and consumer objects. The resultant source classes are described below:

BOUND: this class encapsulates the program which pulls together the buffer, producer and

consumer objects into a solution.
PRODUCER: this class models the object that produces the data.
CONSUMER: this class models the object that consumes the data.

BUFFER: this class models the object where intermediate results are stored; this must be

of a limited size to reflect the “bounded buffer” aspect of the problem.

The solution follows the ideals of information hiding, query/command divisions, sharing
and containment (see section 5.2). In designing a solution a question arises: should the
producer and consumer objects have direct access to the buffer? It is suggested that the
solution should maintain a divorcing of these objects; a producer should not need to know
where its results are going, a consumer should not need to know where its input is coming
from; the buffer is independent of both the producer and consumer ideas. If the buffer is
incorporated into both the producer and consumer classes and then exported, then it is being
modelled as a shared object (see section 5.2.1). This however is both unnecessary and poor
design as it puts too much dependency between the producer and consumer objects, thus
reducing extendability and reusability. Therefore the “glue” which pulls together these three
reusable components is the BOUND class which provides the algorithmic solution to the

problem.

BOUND

The algorithm provided in the class below provides the sequential solution to the producer-
consumer problem on a bounded buffer which, when parallelised, will give rise to a simulation
of the producer-consumer problem in a COM-based model. In practice the parallelised version
does not possess the levels of parallelism of an explicitly parallel solution (see section 11.4.4),
but it does give rise to a level of parallelism inherently absent from execution of the sequential

version of the program.

class BOUND
feature

b : BUFFER;




producer : PRODUCER;
consumer : CONSUMER;

Create 1is

do
producer.Create;
consumer .(Create;
from
producer.produce;
b.append (producer.lastprod);
until
False
loop
if not b.isempty then
consumer .consume (b.item) ;
b.take;
end; -- if
if not b.isfull then
producer.produce;
b.append (producer.lastprod);
end; -- if
end; -- loop
end; -- Create

end; -- BOUND

PRODUCER

The producer object needs at least two features: one to produce a value (a command) and
one to return the most recently produced value (a query). This division into two opera-
tions, instead of a single produce operation which produces and returns a value, maintains a

command/query division with side-effect-free queries (see 5.2.3).

class PRODUCER export
produce, lastprod
feature

produce is
-- does whatever is required to produce

do
-- generate data and put it into
-- lastprod

end; -- produce

lastprod : INTEGER;

end; -- class PRODUCER




CONSUMER

The consumer object needs at least one feature: a routine to make use of a supplied value.

class CONSUMER export

consume
feature
consume (v : INTEGER) is
do
—-- code to make use of value v
end; -- consume

end; -- class CONSUME

BUFFER

The buffer has been implemented using a number of comments to indicate where certain
commands would be placed. These comments appear in the parallelised version of the code?
at the points where, if they had been statements, their code-generated output would have
been placed. ®

If an item is to be inserted into the buffer, the required pre-condition is that the buffer
is not full; before an item is removed from the buffer the required pre-condition is that the
buffer is not empty.%

As might be expected, none of the internal variables have been exported and the in-
terface has been made independent of the strategy used to implement the buffer. Also the
query/command division has been maintained with the separation of the inspection of a value

and its removal from the buffer.

class BUFFER export
isempty, isfull, append, item, take
feature
BUFFERSIZE : INTEGER is 100; -- size of bounded buffer

in, next_out : INTEGER;
n : INTEGER; -- number in array

Create is
do
-~ Allocate(O,BUFFERSIZE); -- sets up buffer

4As may be observed, comments are maintained in the parallelised version, thus aiding both traceability
and readability.

5This has been done because an array implementation has not been written to fit in with this work, and
it is not advisable to mix the standard Eiffel libraries in with the source code which is being parallelised by
this compiler, specifically because they will include pre-conditions, generics, etc., which are not supported.

8In a standard Eiffel compiler these conditions could be specified with the use of assertions, but this work
does not included their implementation.
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isempty :

isfull

put (in,

append (

get(pla

item :

take is

end; --

end; -- Create;

BOOLEAN is
do

Result
end; -- isempty

1
=]

i}
(@]

BOOLEAN is
do

Result := n=BUFFERSIZE;
end; -- isfull

v : INTEGER) is

do
-- code to actually put value in the buffer
end; —-- put
v : INTEGER) is
do
put (in,v);
in := in + 1;
if in = BUFFERSIZE then
in := 1; -- Eiffel arrays start at 1
end; -- if
n:=n + 1;
end; -- append
ce : INTEGER) : INTEGER is
do
-- selects the item at point in the array
end; -- get
INTEGER is
-- returns the value the next_out item
do
Result := get(next_out);
end; -- item

-—- remove next_out item

do
next_out := next_out + 1;
if next_out = BUFFERSIZE + 1 then
next_out := 1;
end; -- if
n:=n - 1;
end; -- take
BUFFER




11.4.3 The Parallelised Version

The parallelised version of the above sequential description should give rise to method-objects
for each of the methods, message handlers in each of the objects which have been turned into
COMSs (i.e. the instance of BUFFER and of BOUND) and all code modified to fit within
this new environment. This is the case, as can be observed by inspecting the source code
above and the corresponding code-generated classes in appendix C. The parallelised version

has been placed in the appendix due to its length.

11.4.4 FEvaluation of Potential Parallelism

Analysis of the code outlined in the BOUND class may suggest that it is a little contrived
to have wrapped the consuming part with a test for buffer emptiness and the producer part
with a test for buffer fullness, even given the stated pre-conditions (see section 11.4.2) for
extraction or insertion of values. A programmer writing a sequential program could justifiably
avoid such tests as it is clear that the buffer’s insertion and extraction of values alternates
within the program. In practice, whether or not the conditions are included, the parallelised
code executes in a similar fashion; the resulting parallelised code will typically only alternate
the consuming of a single value and production of the next value. This alternation within
the parallelised program is because of the requests for locking upon the buffer and the need
to maintain the semantics expected from executing the program sequentially.

Looking in more detail at locking, the body of class BOUND (see the Creale routine)
contains three objects that must be locked at different points: the consumer, producer and
buffer. The methods applied to each require access to only one object at a time e.g. buffer’s
methods append, isempty and isfull only require access to the buffer, the append routine
which is parameterised is not called until the result of producer.lastprod * has been evaluated.
Thus one of the requirements for deadlock is absent. None of the methods in this example
require more than one object to be locked and the calling pattern does not in this case form
a circle of methods requesting each other and requiring access to another method’s locked
objects.® The lock alternates between the application of various of the buffer’s exported
routines applied within the BOUND class e.g. the append routine gains the buffer from the
BOUND object; during this time the BOUND class continues to execute (assuming an early
return from the append routine); thus it will then apply the isempty routine, because the

COM-based strategy only permits one external method request to be serviced at a time and

" producer.lastprod in turn is not executed until producer.produce has completed, for two reasons: producer’s
lastprod will have been locked by the producer’s produce method; and more significantly COM-based objects
can only deal with one external method request at a time.

8Given the technique for locking if a method meth; called a methy which required access to an object
locked by rnethod methy then methy would have obtained the lock from meth; (see section 8.8.4).




indeed if append is currently executing then the buffer is locked by one of its own routines;
the code in the BOUND class must await the return of the lock. Having gained the lock
once more it can check for emptiness and proceed. If the buffer is not empty it will consume
a value by asking the buffer for the next item. Having gained the item the consumer object
can proceed (again presuming an early return from consume); meanwhile the lock of the
buffer will once more be with the BOUND object and thus it can apply b.take and so on. As
can be seen the lock of the buffer will pass from the BOUND class to the buffer itself as it
applies one of its own methods and back, suspending execution in the BOUND object. The
consumer and producer object, having gained the information they need, can proceed with
consuming or producing in parallel (as they require no access to the buffer). Thus we have
the parallelism achieved by interleaving the produce and consume methods but because of
the encoded locking strategy the producer cannot proceed ahead of the consumer producing
say ten items whilst the consumer manages to consume say two or three.

There is, therefore, with this solution, an increase in the potential parallelism over the
sequential program, but it does not reach the levels that might be expected from a more
typical solution to the producer-consumer problem; in fact a large buffer is redundant in
that there can be at most one extra value awaiting consumption. This highlights an area
of potential future work: extend the current locking strategy. The current approach means
that alternating method calls, when sharing an object, if repeated cannot progress far beyond
each other. To avoid this would require a different locking techinique such that a common
object (e.g. a bufler) could be shared but because the producer and consumer operations are
referring to different parts they could be parallelised. This was proposed as an arca of future
work in section 8.9, such that an object could handle multiple external requests simultane-
ously; this assumes that it can be decided practically that the two methods do not interfere

with each other, and that the original program’s sequential semantics are maintained.

11.5 Dining Philosophers

11.5.1 The Problem

The dining philosopher problem demonstrates in a vividly graphical situation the pitfalls of

concurrent programming research (Ben-Ari 1982).

The problem is set in a monastery whose five monks are dedicated philoso-
phers. Each philosopher would be happy to engage only in thinking were it not
occasionally necessary to eat. Thus the life of a philosopher is an endless cycle:
repeat think; eot forever.




Aston University

Content has been removed for copyright reasons

Figure 11.1: Dining Philosophers

The communal dining arrangement is shown in Fig.11.1.% In the center of
the table is a bowl of spaghetti that is endlessly replenished; there are five plates
and five forks. A philosopher wishing to eat enters the dining room, takes a seat,
eats and then returns to his cell to think. However, the spaghetti is so hopelessly
entangled that the two forks are needed simultancously in order to eat. ...

The problem is to devise a ritual (protocol) that will allow the philosophers
to eat. Each philosopher may use only the two forks adjacent to his plate. The
protocol must satisfy the usual requirements: mutual exclusion (no two philoso-
phers try to use the same fork simultancously) and freedom from deadlock and
lockout (absence of starvation - literally!) An additional safety property is that if
a philosopher is eating then he actually has two forks. (Ben-Ari 1982, pp 109-110)

11.5.2 A Sequential Description

One object-oriented solution to the dining philosopher problem would incorporate fork and

philosopher objects. The resultant source classes are described below:

DINING: this class encapsulates the program which pulls together the philosophers and

forks into a solution.
PHILOSOPHER: this class models a philosopher.
FORK: this class models a fork.

The solution, as with that for the producer-consumer problem of section 11.4, maintains

the ideals of information hiding, query/command divisions, sharing and containment (see

9Figure number modified to fit in with thesis figure numbering
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section 5.2). This problem, however, is a little more awkward to simulate using sequential
code and object-oriented ideas. It is normal for the philosopher, in solutions to this problem,
to have a “repeat-forever” loop as outlined in the earlier quote. However, such an infinite
loop placed into a sequential program would mean that the first philosopher that was told
to “live” ie. think and eat, would never return control to the caller. Therefore to try to get
some way towards a solution that will map to a parallel form of the dining philosophers it
is necessary to avoid such loops. Instead within the class DINING there is a control loop
which, based on whether or not a philosopher is hungry, tells the philosopher to eat or think
appropriately. Clearly the sequential program given below cannot suffer from deadlock when
executed sequentially but more importantly neither does the parallelised program; also, the
pmabh%dpmgamdmmHMSm%rﬁmndﬂwr&%do&or%mvmmnmmdmtheage%m

level of potential parallelism (see section 11.5.4).

DINING

The algorithm provided in the class below provides a sequential simulation of the dining
philosopher problem. Clearly when running sequentially there is no problem of contention
for forks, etc., as only one philosopher can be thinking or eating at a time. However when
this code is parallelised there arises the potential for deadlock and starvation which must be

(and is) avoided by the concurrency model presented within this thesis.

class DINING

feature
phili, phil2, phil3, phil4, philb : PHILOSOPHER;
f1,f2,£3,f4,f5 : FORK;

Create is

do
phill.Create;
phil2.Create;
phil3.Create;
phil4d.Create;
phil5.Create;
f1.Create;
f2.Create;
f3.Create;
f4 .Create;
f5.Create;
live;

end; -- Create




live 1is

do
from
until
False
loop
if phill.hungry then
phill.eat(£f1,£2);
else
phill.think;
end; -- if
if phil2.hungry then
phil2.eat (£2,£3);
else
phil2.think;
end; -- if
if phil3.hungry then
phil3.eat (£3,f4);
else
phil3.think;
end; -- if
if phil4.hungry then
phild.eat(f4,£5);
else
phil4.think;
end; -- if
if philb.hungry then
phil5.eat(f5,f1);
else
phil5.think;
end; -- 1if
end; -- loop
end; -- live
end; -- class DINING

FORK

The FORK class below exports three routines, one to pick a fork up for use, one to use the

fork, and another to put the fork down, called pickup, use, and putdown respectively.

class FORK export
pickup, putdown, use

feature
pickup is
do
-~ code to pickup fork
end; -- pickup
use 1is
do

-- code to actually use the fork
end; -- use




putdown 1is
do
-- code to putdown fork
end; -- putdown

end; -- class FORK

PHILOSOPHER

As was discussed in section 11.5.2, infinite loops cannot be used in sequential programs where
control must be returned from a routine containing an infinite loop. This means that they
cannot be used in the source code of the programs being parallelised for the same reason,
as the parallelised version tries to produce a semantically equivalent simulation, hence the
effect of an infinite loop in a sequential program will also be seen within the parallelised
version; specifically, it will permanently lock shared variables. Consequently the eat and
think methods which a philosopher is expected to perform are separated into two routines,
called by the control part in class DINING based upon the PHILOSOPHER exported feature

hungry which indicates when a philosopher wishes to eat.

class PHILOSOPHER export
eat, think, hungry
feature
hungry : BOOLEAN;

eat(f1,f2 : FORK) is

local
ate : INTEGER;
do
f1.pickup;
£2.pickup;
from
until
not hungry
loop
-- do some eating using forks
fl.use;
£2.use;
ate := ate + 1;

-- set hungry to False when full, e.g.
if ate > 10000 then

hungry := False;
end; -- if

end; -- loop
£2.putdown;
f1.putdown;




end; -- eat

think is
local
thunk : INTEGER;
do
from
until
hungry
loop
-- do some thinking
thunk := thunk + 1;
-- set hungry to True when hungry, e.g.
if thunk > 10000 then
hungry := True;
end; -- if
end; -- loop
end; -- think

end -- class PHILOSOPHER

11.5.3 The Parallelised Version

The parallelised version of the above sequential description should give rise to method-objects
for each of the methods, message handlers in each of the objects which have been turned into
COMs (i.e. the instance of BUFFER and of BOUND) and all code modified to fit within this
new environment. As with the producer-consumer problem, all of the expect »d classes and
translations were performed. The parallelised produced code is again quite long, therefore

the full translation is placed in appendix D.

11.5.4 Evaluation of Potential Parallelism

The solution outlined for simulating the dining philosopher problem using the model of
concurrency presented within this thesis gives rise to a high level of parallelism. As discussed
in section 11.5.3, the source classes led to the expected classes.

The philosophers and forks are all created within DINING and then the routine live is
called. The infinite loop within live then tests whether each philosopher is hungry; if any are,
the algorithm in DINING sends the message eot, with the appropriate forks as parameters;
any philosophers that are not hungry it instructs to think.

The solution enables total parallelism between all of the philosophers if they are thinking;
as there are no common objects between these routines, there is nothing that prevents the
progress of the think methods. If only one of the philosophers becomes hungry then total
parallelism is still possible, as the eat of the one philosopher will not have any conflicts over

forks with any other philosopher. It is when more than one philosopher requires to eat that
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‘ssues of deadlock and starvation (both literally and in the deadlock sense) arise.

It can be seen that because of the requirement that objects must be locked in an order
based on a system-wide ordering of objects (see section 8.8.3 for the reasoning) that no
deadlock will occur, and because the activities are finite that starvation will also be avoided.

Consider for example plmﬁllm has fork, and forks. Philosopher phil, wishes to eat,
however, as phil,; has forky locked, phily’s request, will be queued within fork; and phily
will be forced to wait. If meantime phily decides that he wishes to eat then he will lock
forks, as it must be free because phil, is trying to gain a lock on the fork which comes
earlier in the system wide ordering of forks. Now phils can request forks which he may or
may not immediately get depending on whether phily is cating. Assuming that phals does
get forks, the current situation is that phily and philg are eating thus using both of phily’s
forks. The philosopher phils has a request queued for fork; and consequently will not starve
because ultimately phil; will stop eating, as eating is a finite activity, and thus phily will
gain fork, then he will request forks and regardless of whether phily currently has it locked
will eventually gain forks because of the finite nature of cating. Thus it can be seen that a
philosopher does not starve. It can also be seen that the gaining of forks is as fair as first
come first served mechanisms can be.

Consider a different scenario: all of the philosophers decide at the same instant to eat.
As they must lock their forks based on a system-wide ordering of objects the following worst

case scenario may occur:

phil, asks for and locks f ork,

phily asks for and locks fork;

phils asks for and locks f orks;

e phily asks for and locks forky

phils asks for fork

As can be seen phils will try to lock fork; first and not forks as fork; comes before

forks in the ordering of objects. At this point phily, phily and phily have their first forks but
cannot proceed; their requests for their other required fork will cause them to be placed on
a queue for the use of the appropriate fork and they will block. Neither can phils proceed as
his first required fork is locked by phil; and he has been placed in a gueue to use that fork.

However phils can proceed, his next required fork, forks, is free as phils will not have tried

0phil, and forkn are used as specified in the DINING class, also it is assumed that the gystem-wide
ordering makes forkn come after fork(,-1)




to lock it yet, again because of the ordering on objects. So phily eats, and because of the
finite nature of eating he will ultimately release both of his forks, this will mean phils can
eat and phily can think; all other philosophers are still blocked waiting. This will proceed
backwards through the fork ordering, releasing a further philosopher to eat, and another to
think, until ultimately phils gets to eat.

Consider however, at the point in this scenario when phal, starts to eat (say), phily may
be a very hungry philosopher and want to eat again; as phils is still locked out and assuming
phils is still thinking then phils can eat again immediately causing phils to wait even longer
even if phil; finally finishes eating thus releasing phils’s first, fork. However phils cannot be
made to starve as phily will ultimately finish, but he might not be as quick to eat as he may
have been if he had had the ability to lock forks as soon as phily had finished.

This is the worst possible case scenario and yet it can be seen that the model is devoid
of both deadlock and starvation and is reasonably fair in that even with phily’s big appetite
phils will not be locked out indefinitely. This model is similar to standard solutions presented

by Ben-Ari (1982) with respect to deadlock, starvation and fairness.

11.6 Summary

It has been shown that the model used to implement the compiler derives sufficient semantic
information from the sequential Eiffel program such that an increase in potential parallelism
is gained over that of the sequentially executed program. It has also been argued that the use
of a good programming style, as discussed in section 5.2, which simply encourages the use of
sound software development practice, leads to a greater level of potential parallelism in the
COM-based model of concurrency described within this thesis. It has also been shown that
the compiler, given the derived semantic information, produces all of the appropriate classes
with the attributes, expressions, messages, methods and classes appropriately generated for
a COM-based implementation.

It has been further argued that it is possible to have a locking system that enables
reliable locking which avoids deadlock and starvation and also provides the necessary support
for mutual exclusion. The construction of the compiler demonstrated that the COM does
provide an effective and useful abstraction layer for parallel programming on a distributed

system, at least as the target of a code-gencrator.




Chapter 12

Related Work and Contributions

This chapter outlines related work (specifically work that has taken place during the later
part of the work on this thesis) and summarises the contributions made by this thesis. The

areas discussed include compiler implementation, parallelising Eiffel and inheritance.

12.1 Compiler Implementation

The use of object-oriented techniques for writing parsers was at the start of this work an
area which was beginning to be investigated. There was Meyer & Nerson’s (1990b) work
with their construction of classes to help write scanners and parsers. This, as stated in the
thesis, has formed the base for much of the compiler-writing work. Also around the time
that this work was started (i.c. September 1989) there was a preliminary paper by Hucklesy
& Meyer (1989) which discussed an extension to the Eiffel parsing libraries in very general
terms which would provide a tool similar to the yacc parser generator for generating object-
oriented parsers. This idea of a parser generator has within recent years been substantially
extended: the work of Avotins, Mingins & Schmidt (1995) in presenting YOOCC (Yes! an
Object-Oriented Compiler Compiler) has achieved some level of maturity, providing a tool
which generates Eiffel code describing a parser from grammar descriptions. However, these
works, at present, concentrate on trying to present an object-oriented parser; they do not
provide the same level of support for semantic analysis and subsequent code-generation.
Other work that has been going on, once more during the work for this thesis, is that of
a compiler-compiler tool called Cocktail (Grosch & Emmelmann 1990); this tool provides a
complete compiler-compiler tool for dealing with all aspects of compiler generation including

dealing with semantic analysis and code-generation. It can be used to describe and compile

object-oriented programming languages; it is however not itself object-oriented. Apart from




the lack of general availability until 1992 (see ftp://ftp.karlsruhe.gmd.de/pub/cocktail) for
both documentation and the tool, it was not suitable for the level of control needed in order
to write the compiler for this work. The table-based approach of LR parsers, with the need to
formalise the grammar and semantic analysis etc., would not have fitted in well with the need
to gradually develop phases and experimentally work out if there was sufficient, information.

So to summarise this thesis’s contribution in this area: an object-oriented discipline is ap-
plied to the process of compiler construction, using recursive descent processing; this of itself
has been done in the work above, particularly with YOOCC. However, the demonstration
of how to incorporate an attribute grammar style approach with synthesis and inheritance
of attribute values within the context of an object-oriented recursive-descent processor is, as
far as the author is aware, new. The published work discussed above, with YOOCC and the
Eiffel parse libraries, focuses on scanning and parsing and says little about semantic analysis
and code generation.

Also whilst writing this compiler a number of things were noticed about Eiffel. There is an
apparent semantic flaw within Eiffel, giving rise to the fact that attributes which are exported
from a class can be altered even though they are supposedly made available on a read-only
basis. It has been demonstrated, through the use of the semantic analysis techniques used
within this thesis, that it is in practice possible to detect and either warn about or disallow
the use of such a semantic action. The required analysis is not too time-consuming when
compared with the benefits of detecting such an errant programming style.

Further, it was demonstrated that with the application of simple principles (suggested
in section 5.2) with a “good object-oriented software development” practice - maximising
an appropriate use of containment and sharing, with a rigid distinction between queries and
commands - that the potential for automatically derived concurrency is increased. Also the

consequent cost and complexity of the deadlocking strategy can be minimised.

12.2 Parallelising Eiffel

During the development of this thesis a number of papers have been published detailing
approaches to the parallelisation of Eiffel (Gunaseelan & LeBlanc, Jr 1992, Meyer 1993,
Wolff 1995, Caromel 1989, Caromel 1990, Jezequel 1993, etc.). Most of the work published,
however, specifically the works on Distributed Eiffel by Gunaseelan & LeBlanc, Jr (1992)
and the works by Caromel and Meyer (1993) do not address the thesis discussed within this
document. The works with EPEE (see section 12.2.1) and Heron (see section 12.2.2) do
however fall within the scope of the thesis. Also, although Meyer’s (1993) paper does not

directly relate to the thesis, it does have implications on how Eiffel may move, in the form
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of a standard, towards parallelism given the author’s original presentation of the language.

EPEE, Heron and Meyer’s (1993) paper are discussed below.

12.2.1 The Eiffel Parallel Execution Environment (EPEE)

EPEE is an approach to achieving parallelism for the “normal” programmer whilst hiding
the intricacies inherent in the problem. It succeeds for a limited set of problems, but fails for
general object-oriented programming. It appears to be an approach that gives an excellent
vehicle for implementing matrix style manipulations but it does not appear that it would
be quite so effective on a program that did not involve aggregate data structures containing
information of the same type.

EPEE provides a set of methods to access, redistribute, and perform methods on elements
of parallelised-aggregate-data structures. The suggested development method appears to
require two levels of programmer. The first is the library developer who constructs the
parallelised versions of standard classes, such as arrays, sets, lists, trees, etc., providing a
sequential-style interface. The second programmer is the “normal” programmer who writes
the application program that utilises the parallel classes.

This seems a reasonable approach if the applications programiner is able to utilise the
standard data-structures without needing to make small changes to them via inheritance to
fit in with their application. It would appear from the presentation in one of the EPEE
papers (Jezequel 1993) that because of the way in which the parallelised classes arc imple-
mented a client usage (i.e. attributes using an EPEE type) in a program is okay, but an
inheritance based usage would imply a need to know about the parallelisim mechanisms used
or alternatively the programmer would have to adhere to some very stringent restrictions
on what they could change, if unpredictable crashes and conflicts between inheritance and
synchronization were to be avoided.

Given a restricted approach to the use of the parallel classes this method seems to of-
fer a very useful mechanism to achieve a good level of parallelism on problems that one
may typically have written in FORTRAN and expected a parallelising compiler to optimise
(i.e. a data parallel type problem such as array or matrix manipulations). Jezequel’s (1993)
paper demonstrates a level of scalability beyond that achieved by parallelising FORTRAN
compilers (which it is claimed very rarely scale past 10 processors); the graphs in the paper
demonstrate scalability up to 32 processors. It does not, however, appear to be a general solu-
tion; its applicability to a general object-oriented program seems minimal. Clearly, therefore,
EPEE does not resolve the main thesis of this work. The normal programmer cannot use
the full object-oriented philosophy (re: inheritance) without knowledge of the parallelising

mechanisms involved.
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Two interesting conclusions from this paper were that, because of the underlying models
(my opinion), dynamic binding was expensive and exception handling did not emulate the
normal sequential behaviour. Neither of these are problems within the models presented
within this thesis as, like ISE (Interactive Software Engineering) compilers, dynamic binding
is achieved by a parallel equivalent of a direct procedure call and the models maintain the
original program’s call paths and thus exceptions are propagated and dealt with as expected
in the sequential program.

It is clear, however, that the models used to implement EPEE do achieve a greater level
of parallelism than the models presented within this thesis (at least while the COM-models
in the thesis lack the refinements suggest in chapter 13) and indeed their models have direct
support for distribution.

In summary, the EPEE approach should achieve greater performance levels on data par-
allel problems but the approach suffers from not being completely compatible with the ex-
pected object-oriented development approach (at least in Eiffel), inherently restricting how

the parallel classes can be used and making safe extensions via inheritance difficult.

12.2.2 Heron

Heron, described as “Transparent heterogenous distribution of high-level object-oriented pro-
grams” (Wolff 1995) is an approach to parallelising object-oriented programs in Eiffel, which
has very similar objectives to those within this thesis. They try to maintain the syntax and
semantics of Eiffel once parallelised and also reuse the original inheritance structure. Wolff
(1995) outlines the system design and implementation used in the Heron project. Unlike the
work within this thesis, they are working in the later Eiffel v3 as opposed to Eiffel v2.

The Heron approach is transformational in nature, as in this thesis. However, the im-
plementation takes a different perspective: the work in this thesis uses the COM-model and
constructs all parallelised objects around instances of it; the approach in the Heron project
is to provide a manager upon each machine which manages all of their generated objects and
the communications between them. This thesis’s approach has totally self-contained objects
that control their own behaviour, protection and locking; the Heron approach has objects
that are controlled by an external run-time environment. The difference in approach pos-
sibly arises because of the different perspectives on the problem. Inspecting the references
attached to Wolff’s (1995) paper, he has spent a number of years looking at the problems of
programming and managing distributed systems. This has arguably led to a raising of the
object management in the modelling to a level above the objects; the objects are treated as
things to be controlled. My work in comparison, with respect to this thesis, has been focused

on object-oriented modelling and compiler construction and consequently (perceiving the
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objects as entities that should manage themselves) placed all control within the appropriate
objects. Both models ultimately achieve the same objectives and are equally valid. However,
Wolf’s model may ultimately be more difficult to reason formally about if the approach of
“Design by Contract” (Meyer 1988) can be applied to object-oriented parallelism (see section
12.2.3), and indeed it is arguably less “natural” a model. Wolff (1995), however, has been
able to utilise PVM for the underlying communication mechanism rather than having to
implement his own; thus any improvements in PVM will inherently realise improvements in
his implementation.

The biggest problem with Heron is that it is unclear from Wolff’s (1995) paper whether
Heron deals with the management of deadlock or any other parallel system properties, and
it 1s equally unclear how these could be cleanly incorporated into his model. Further, his
inheritance, as with EPEE above, is dealt with purely at run-time and is not optimised into
a single call; this leads to inherent inefficiency in a distributed environment. As with this
work (see chapter 13), Heron does not properly support “once” operations yet, something

Wolfl’s (1995) paper describes as Eiffel’s ‘hidden module’.

12.2.3 Bertrand Meyer’s Work

A discussion of related work would not be complete without discussion of contributions
made by B. Meyer within the period of this thesis, specifically as he is the originator of
Eiffel. There is an ongoing discussion of how to put explicit parallelism into Biffel; how with
minimal changes (one extra keyword, and some semantic modifications) it should be possible
to come up with a concurrent Eiffel. This would not solve the problems presented in the
thesis, as the discussed mechanisms encourage explicit parallel management, but there are a
number of related issues that arise.

Meyer’s (1993) paper looks (amongst other things) at the use of assertions, specifically
within the domain of a concurrent programming language. It looks at the notion of “Design
by Contract” (Meyer 1988) and the benefits that accrue from the use of the assertion mech-
anisms. He claims that this idea of “Design by Contract” provides the starting point for a
potential formal approach to object-oriented computation, assuming that proof rules were
available for the inner details of an object-oriented programming language. The paper goes
on to discuss the need to try to preserve the command-query distinction within concurrent
programming and indeed produces a BOUNDED_<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>