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INTRODUCTION

Many years after 'blemishes' were first observed on the solar disc
by Galileo, Fabricius and Scheiner 1in 1610, it was realised that the
number of such 'sunspots' was not constant, but varied in a cyclic
manner with a mean period of about eleven years (Schwabe, 1844). In
addition it was established that, in each hemisphere, the average
latitude of the groups of sunspots was found to exhibit a linked
periodic variation. Modern techniques have revealed the existence of
intense local magnetic fields, of which the sunspots are but one
manifestation (e.g. Lust, 1965; White, 1977); these and other related M
features are now monitored regularly.

A major constraint on research in this field is the finite length
of the sunspot records. In 1848,'Wo1f devised a formula for estimating
the fraction of the sun's disc obscured by spots at any time, the
relative sunspot number, R. Following this, a careful correlation of
all available sunspot data by Wolf (1868) and more recently by
Waldmeier (1961) has yielded a systematic index of solar activity from
1700 onwards. The low early counts, and the long interval between the
discovery of sunspots and the identification of their cyclic pattern
of activity, have been attributed by Maunder (1907) to a real dearth of
sunspots between 1645 and 1715. The existence of this 'Maunder Minimum'
is at present under debate (Eddy, Gilman, and Trotter, 1976; 1977; Eddy,
19775 Hindley, 1977; Ding and Chang, 1978; Weiss and Weiss, 1979; Cullen,
1980).

Because of the paucity of early sunspot records (Wittmann, 1978) there

is much interest in connecting the cycle with other Earth based recorded
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events (Cole, 19755 Willis, 1976; Pittock, 1978) ranging from aurorae
(Schove, 1955; Link, 1977; 1978) to tree rings (Fritts, 1972; 1976;
Epstein and Yapp, 1976; Mitchell, Stockton and Meko, 1978; Sonett and
Suess, 1984), glacial deposits (Agterber, 1969; Fairbridge and Hillaire-
Marcel, 1977; Hibler, 1979) and others (Mock, 1976; Povinets, 1977;
Lo and Li, 1978). The most widely accepted correlation is with records
of aurorae, but there are conflicting interpretations of the data;
Schove (1955) and others find support for the existence of the Maunder
Minimum whereas Ding and Chang (1978) and Schroder (1979) do not.

The most comprehensive series of solar observations presently
available is that of Waldmeier (1961). Many statistical analyses
of these numbers have been undertaken (e.g. Yule, 1927; Cohen and Lintz,
1974; Lomb and Anderson, 1980). Periodicities other than the eleven
year variation have been identified in the Waldmeier sunspot series by
most of the more recent analyses (e.g. Cole, 1973; Lomb and Anderson,
1980) although the resulting estimates of these periods vary considerably.

There is intense controversy over possible mechanisms governing the
variation. Simple dynamo models first developed for magnetic 'A' stars-
(Babcock and Babcock, 1955; Babcock, 1961) and refined into sophisticated
models of the solar interior (e.g. Leighton, 1969; Parker, 1964) still
do not adequately predict solar activity (Stix, 1981; de Csada, 1981).
With an increase in number and type of solar observations, new problems
associated with the use of existing dynamo theories have arisen; this
has led to the development of 'flux tube models' as an alternative
explanation of solar magnetism (e.g. Meyer et al., 1974; Balligooijen,
1982).

Because of the importance of predicting the sunspot cycle,
statisticians have evolved several empirical approaches to the problem

in an attempt to forecast sunspot behaviour and, by finding a good
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numerical approach,to cast light on the physical cause of the sunspot
cycle. Some authors have favoured a model in which no true periodic
variation is present, each cycle being regarded as a fresh outburst
starting at a time To of the order of eleven years, and described by

one member of a specified family of curves f(t), t < Ty (e.g. Stewart
and Eggleston, 1940; Morris, 1977); the resulting impulse model consists
of the superposition of independent pulses. Examination of the sunspot
cycle by Dicke (1978; 1979) did not reveal the large random walk
predicted on the basis of an outburst model; hence the possibility was
suggested of an 'internal clock' within the sun, correcting at intervals
the free-runningsolar cycle (Dicke, 1977; 1979; Lomb and Anderson,

1980; Bray 1980).  Autoregressive models basing future activity on
functions of past behaviour are also often considered by those favourfhg
a true cycle (e.g. Yule, 1927; Morris, 1977). Limited forecasting
success results from these several approaches; to date, statistical
forecasting of the sunspot cycle does not accurately predict the variation
(de Meyer, 1981).

Because of the fairly close period match of Jupiter (11.86 years)
to that of the solar cycle ( ~11.1 years) there has been interest in
connecting parameters of motion of the giant planets with sunspot
activity for some time (e.g. Brown, 1900; Anderson, 1954; Ferns, 1969;
Kozhevnikov, 1976A; B; C). Sets of periodicities detected in the
sunspot cycle by statistical analyses are frequently used for comparison,
and good correlations have been obtained with various synodic periods
of the outer planets. The motion of the centre of mass of the solar
system with respect to the sun has also been investigated (e.g. José,
1965; Dauvillier 1976) and a periodicity of about 180 years is
generally reported and identified with a similar long sunspot period

(e.g. Jose, 1965; Cole, 1973).
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Another possibility which has been considered is the contribution
of the inner planets by means of tidal action at the sun surface, with
tidal force envisaged as a trigger to sunspot activity (e.g. Schuster,
19115 Smythe and Eddy, 1977 Hantzche, 1978). Among the several
approaches to this problem, tidal effects at sequences of planetary
conjunctions have yielded very close period matches with the eleven
year cycle (Wood, 1972; Wood, 1975). The magnitude of tidal forces
at the sun surface caused by three or four planets have also correlated
well with sunspot and flare appearance (e.q. Blizard, 1968; Ambroz, 1971).
The Maunder Minimum is also suggested as a test for planetary theories,
with the cessation of solar activity in this period seen as refuting
the possibility of a connection (e.g. Smythe and Eddy, 1976).

A number of problems thus exist with respect to the sunspot cycle’
itself. Before being able to investigate possible planetary influence
on the sunspot cycle, it is necessary to establish the reliability of
the various sunspot and auroral databases. Of particular interest is
the time around the Maunder Minimum; it must be determined whether there
is sufficient evidence of activity during this period to regard the
cycle as continuous throughout this time. If this were so, then the
possibility of long term effects (not necessarily periodic in
character) modulating in amplitude the eleven year cycle could not be
excluded.

Because the only direct indicator of solar activity available for
a considerable timespan is the Waldmeier sunspot series, the reliability
of this index must be assessed, with particular reference to the early
sunspot counts. A number of statistical analyses have reported the
existence of periodicities in the Waldmeier sunspot records other than
the eleven year variation; however, comparison of source literature

reveals that different statistical techniques often yield conflicting
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values. One common factor is the use by researchers of smoothed
sunspot numbers, with the precision of the output data often quoted
as greater than the accuracy of the input information. It will thus be
necessary critically to assess existing research, and if possible
conduct a more rigorous statistical examination of the available data
than has previously been undertaken, using spectral analysis techniques.
The results of such an analysis could then be used to evaluate the
significance of research connecting frequencies of planetary motion to
short period sunspot variations.

Existing research concerning a possible planetary origin for the
sunspot cycle has generally been restricted to the three or four
planets with greatest effect; Jupiter, Earth, Venus and Mercury for
tidal work, and the giant planets for motion of the solar system centre
of gravity. As, particularly in the case of tidal motion, other planets
can exert an appreciable effect, it must be determined what level of
precision can be associated with existing approaches to the problem.
One direction of improvement is the use of an accurate nine planet solar
system model, removing the common assumptions of coplanar motion, and
improving on the first order approximations universally applied in_
existing work to the tidal equations. Since in some of the existing
research it is difficult to assess the sensitivity of generated
patterns to the actual parameters of planetary motion, and hence to
determine the Tikelihood of a 'real' connection with the sunspot cycle,
it may be useful to introduce a control system with a similar but not
jdentical planetary configuration. It is intended to consider several
different approaches, particularly those positive results outlined
previously. Because researchers in this field have generally employed
subjective criteria for evaluation of results, it is also intended to

develop statistical analysis techniques to avoid the possibility of
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unconscious bias.

If a possible connection is established, it must be considered
in what way such a mechanism could operate on the birth and development
of sunspots. Of interest in this context might be the recently
detected solar oscillations, with their implications for the traditional
dynamo theories of a quiet sun and the alternative flux tube theories.
Finally, comprehensive comparison tests of any planetary theory against
observation are necessary to complete such an investigation, although
it 1s realised that such a Targe task may be outside the scope of

this research project.



SECTION 1

INVESTIGATION OF LONG-TERM SUNSPOT

AND AURORAL RECORDS

Before proceeding to examine the detailed sunspot records of Waldmeier
(1961), it was thought necessary to establish the reliability of the various
databases available, and if practicable to utilise suitable methods of
analysis to search for periodic effects in the long - running auroral and

sunspot records.

I.I Sunspot Databases

Since the first compilation of sunspot records (Wolf, 1868) there has
been interest in detecting patterns in the data other than the clearly
visible eleven year 'sunspot cycle'. Gleissberg, in 1944, proposed that
the eleven year variation was governed by an eighty year cycle, and numerous
subsequent papers have supported the existence of such an effect (Gleissberg,
19625 19735 Brown, 19765 Vitinsky, 1978; Kopecky, 1978; Gleissberg and
Damboldt, 1979).

More recently, detailed analyses of the Waldmeier sunspot numbers have
indicated the presence of a number of different periodicities which are
suggested to have modulated the amplitude of the eleven year cycle; for
example application of Time Series Analysis (Cole, 1973) indicated that the
'seven cycle variation' was in reality a composite of an 88 and a 59 year
periodicity. This conclusion was supported by Berdichevskaya (1976) and
Lomb and Anderson (1980) who found ninety and fifty-five year cycles using

a similar technique.



The small amount of sunspot data available limits the detection of
longer period variations, Wevertheless, Jose (1965) proposed a 179
year period,subsequently found by Cohen and Lintz (1974). with the
addition to the sunspot records of auroral and other data, other research-
ers have suggested the existence of an 180 to 200 year cycle (Bonov, 1973;
Bray, 1980). Also, an 'ultralong cycle' of about a thousand years, first
proposed by Gleissberg (1962) as modulating the eighty to ninety year cycle,
has been found by Henkel (1972) as a periodicity of nine hundred years, and
by Vitinsky (1978) as a six hundred year cycle.

Several other indices of sunspot activity exist. Heliographic
observations at the Royal Greenwich Observatory have yielded estimates of
that aree of the solar disc covered by spots, from 1874 to 1976. Other
related solar phenomena such as flares and prominences are now monitored
daily, but such information is only available over the last few cycles
(Legrand and Simon, 1981).

Comparison of the Waldmeier series with these more detailed obser-
vations indicates that it is quite a good indicator of the level of solar
activity (Xanthakis, 1973; Mayaud, 1977; Vitinsky, 1979; Kopecky and Kuklin,
1980), although peak numbers may be underestimated (Xanthakis, 1973).
However, fnhomogeneities are found to exist between the various series
examined (Vitinsky, 1979; Kopecky and Kuklin, 1980). Mayaud (1977) advises
caution in estimating Tong term periodicities using Waldmeier's early data.
This conclusion is supported by Vitinsky (1979).

Clearly, the most reliable long term record of the level of solar
activity is the Waldmeier sunspot series. Whilst the Greenwich data is
more comprehensive, the limited timespan curtails its usefulness in
investigating the long-term behaviour of the sunspot cycle. However, it
is evidently worth examining the auroral and giant sunspot records for
additional information about possible long period variations in solar

activity.



1.2 Auroral Databases

Due to the highly significant correlation known to exist between solar
activity and auroral frequency ( Xanthakis, 1965; Eddy, 1978) it is
possible to use the latter for the determination of solar cycles. Whilst
solar observations were until recently restricted to a limited number of
astronomers, auroral observations were accessible to a large part of the
population of Europe and the Orient, and consequently were reported in
numerous publications (Link, 1962; 1964). Various catalogues have been
compiled ( Fritz , 1928; Kanda, 1933; Seydl, 1954 ) the most comprehensive
and widely used being that of Schove (1955). Combining auroral records
with 'naked-eye' sunspot observations and the Waldmeier sunspot tables he
produced a list of projected maxima and minima dates and estimated inten-
sities, from 649 BC to the present day. His main assumptions in deduc%ng
the pattern of sunspot activity on the basis of Waldmeier's records over
2% centuries, were that the time between successive maxima lay always in
the interval of 8 to 16 years, and that there were nine maxima in every
hundred years. Of neccessity, many dates of minima were interpolated,
according to the strength of the neighbouring maxima, using characteristics
of sunspot curves deduced from Waldmeier's sunspot series.

From this data Schove inferred a number of empirical formulae for the
Toose predigction of the long term behaviour of solar activity. Further,
the existence of the 80 year period postulated by Gleissberg (1944) was
confirmed by him as a 78 year cycle, and a longer cycle of 160 to 170 years
was suggested to have been affecting activity for the years since 1510.

The mean length of the principal sunspot cycle was determined by Schove as
11.1 years.

This work is widely referenced as a database for many aspects of the

solar variation. However, it is often not appreciated that many assump-

tions were made prior to the compilation of the tables, affecting the
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validity of Schove's conclusions. In particular, the estimate of an

11.7 year period, whilst possibly correct, arises inevitably from the
assumption of nine cycles per century; and whilst an effect modulating

the intensity of maxima over seven cycles may tentatively be traced in

the data, evidence for the existence of a Tonger term periodicity of 160 to
170 years must be regarded as slight.

Recently, further work has been undertaken in this area. Bray (1980)
has published a 'Solar Index' from 522 BC to AD 1968, a compilation of
several earlier papers, recombining the sunspot and auroral data of Schove
(1955; 1962) to give an estimate similar to the 'sunspot-relative' number
of Waldmeier. This is compared with data from other sources, including
the recently completed oriental catalogue of Keimatsu (1976). The results
of this study support the hypothesis of an 'internal clock' (Dicke, 1978;
1979), and indicate the persistence of solar activity through the Maunder
Minimum, and the earlier minima indicated by Eddy (1977).

Considerable research into 16th and 17th century records of sunspots
and aurora by Link (19623 1964; 1977A; 1977B; 1978) has led to a compre-
hensive index of solar activity in this period. Over 400 auroral
observations are tabled (Link,1962; 1964; 1977A; 1977B),indicating,in
contrast to Eddy et al.(1976; 1977),that reports of aurora persisted
throughout the period AD 1550 to AE170Q. This conclusion is strengthened by
the sunspot records collected by Wolf between 1856 and 1883, which include
series of observations of the 'newly discovered phenomenon' by Galileo
and Hevelius. Whilst cautious interpretation of such early records is
necessary (Eddy, 1977; Link, 1978), the sources collated by Wolf (1868; 1883)
do indicate intermittent observations of sunspots throughout the 17th

century (c.f. Weiss and Weiss, 1979).
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1.3 Giant Sunspots and Other Databases

Using several hundred observations (mainly Chinese) of giant sunspots,
Wittmann (1978) has traced the phase of the 11 year sunspot cycle back to
466 5C, deducing a mean period of 11,135 years. Auroral observations are
discarded as 'uncertain! and the results are noted to disagree with those
of Schove, being 180° out of phase around the epochs AD 1300 and AD 1080.
However, it is known that giant sunspots occur occasionally near to sunspot
minima, and frequently in the years surrounding dates of maxima (Smith and
Smith, 1963; Lust, 1965) . This limits the effectiveness of the method
in determining dates for 'ancient' sunspot cycles. This, together with
the Timited amount of data involved,reduces the accuracy of the giant sun-
spot database.

As has previously been mentioned, many other earth-based phenomena
have been cited as Tinked to the sunspot cycle. Several such 'indicators'
have been used to trace epochs of high and Tow activity for thousands of
years, in geological ( Fairbridge et al., 1977), climatological
(Mitchell et al.,1978) and biological (.Epstein and Yapn, 1976) data.

A1l such correlations involve many assumptions about the 1inks between
sunspots and atmospheric weather conditions, which are known to be complex
(Roberts, 1978; Larson and Kelly, 1978). Disparities exist between these
various 'sunspot epoch' studies (Eddy, 1977; Pittock, 1978) ,even those
utilizing similar techniques, for example in tree ring analysis (Fritts,
1976; Epstein and Yapp, 19765 Eddy, 1977). 1In addition, at present such
research is only able to indicate parameters of the solar activity sustained
over hundreds of years. Because of the tenuous nature of such indices, it
does not appear possible at present to deduce useful information about the
solar cycle. Future work may enable such methods to be used, which would
allow the solar activity to be traced back reliably over a far longer

timespan than is possible at present.
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1.4 Investigation of the Maunder Minimum

A good period for the comparison of various data sources is that
immediately preceding the start of Waldmeier's tables and bracketing the
Maunder Minimum,i.:. the 17th century. Here, we have not only the long-
running sunspot and auroral series (e.g. Schove, 1955; Wittmann, 1978;
Bray, 1980), naturally more comprehensive in this comparatively modern
period, but also results of work specifically undertaken to explore the
existence of the Maunder minimum ( Eddy, 1976 ; 1977; Link, 1978;
Gleissberg, 1979; Weiss and Weiss, 1979) together with the first telescopic
sunspot observations (Waldmeier, 1961).

Figure 1.41 shows a comparison of 5 such sources for the period
AD 1500 to AD 1700.

a) Schove's auroral series, with his estimates of time and level of
maximum activity in each cycle, and his times of minima.

b) Link's auroral series, with his 'Spectral Index' normalized to the
Wolf Sunspot No. R (S.I. =1 at R =50, S.I. = 2 at R= 100, etc. ).

c) Bray's combined sunspot and auroral series, using the 'mean times of
maxima' rather than his original S.I. dates,which were adopted from
Schove (1955).

d) Waldmeier dates of maxima and minima from 1600 onwards.

e) Wittmann dates of maxima.

Note that the dates of maxima given by Bray and Waldmeier are linearly

interpolated from accompanying minima dates, also that from AD 1600 Wittmann

has adopted the results of Waldmeier, slightly smoothed.

The most comprehensive source of auroral data is clearly that of Link
(1978). If a 'missing cycle' ié assumed to exist with maximum around M)71560-
1595, following the general pattern of sunspot cycle duration of 8 to 16
years (Schove, 1955; Waldmeier, 1961) then the mean period present is 10.54

years (c.f. 11.1 years assumed by Schove). Figure 1.41. shows the effect of
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this assumption, as cycles (a) and (b) shift into phase at AD 1580 -
AD 1660. Link has not made any a przorz assumptions about existing

periodicities, and uses a wide pool of data, thus his series must be
regarded as more reliable than that of Schove for this period. The

postulated existence of an 80 year periodicity, however, is not well
supported by the data.

It is evident from figure 1.41 that there is disparity between the
auroral series of Link (1978) and the sunspot number series since AD 1675.
It is suggested (Eddy, 1977; Link, 1978) that a low level of solar
activity combined with a lack of systematic observations of the sun renders
the early sunspot records unreliable. Whilst this is evidently so, it
should also be noted that the relationship between the sunspot and the
incidence of aurora 1is complex. In particular, it is generally undefétood
that the cycles of activity may not be in phase, and that a lag of 2-4
years can occur between the dates of sunspot and auroral maxima (Smith and
Smith, 1963; Xanthakis, 1965; Eddy, 1978). It would thus appear best to
regard the mean cycle length as relevant, rather than actual times of
maxima, in all auroral records. Similarly, the records of giant sunspots,
assigning dates of sunspot maxima to times of greatest incidence of giant
spots, must be interpreted with care, as previously mentioned.

The hypothesis that the Maunder minimum representsa <essation of the
sunspot cycle rather than a period of fairly Tow activity restson the absence
of auroral and sunspot observations during the years £D 1645 -1715 (Maunder,
1907; Eddy et al.,1976; 1977; Weiss and Weiss, 1979). Whilst the conflict-
ing data renders it difficult to define epochs of high and Tow activity
with any precision, there is sufficient data available to show continued
sunspot activity through the period of the Maunder minimum, and to
establish that the sunspot cycle continued uninterrupted, probably at a
fairly Tow level. Hence the possibility must be investigated that long-

term effects (not necessarily periodic) are modulating the overall Tevel
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of activity.

1.5 Methods of Analysis for long-term databases

For an initial examination of such records, a graph similar to
figure 1.41 was drawn for
a) Schove auroral data
b) Bray original S.I. and mean dates of maxima
c) Wittmann dates of maxima.

The results are presented in figure 1.51, and it is clear that the
series are not in agreement. Whilst the eye tentatively superimposes long-
term variations on the data within each series, no overall pattern is clear .
For better examination and comparison there is recourse to statistical
methods.

The difficulty in applying statistical methods to data of this type is
that the function 'R' is sampled at irregular intervals. Techniques such
as spectral analysis assume regular sampling. In many cases, the data can
be interpolated by various techniques ( Percy, 1977; Meisel, 1978) to
equidistant time points for analysis. The alternatives are folding and
sorting analyses, cumbersome procedures foruse when searching for an unknown
periodicity (Jenkins and Watts, 1978).

As the character of individual sunspot cycles is not known for this
data, interpolation is not feasible. Hence, previous examinations of the
data of Schove (1955) have used only simple techniques, often with sub-
jective criteria ( 'Henke1, 19725 Gleissberg, 1973). Recently, however,

a technique has been developed for fitting Fourier components to randomly
spaced data, for use in x-ray astronomy where regular sampling is not easily
achieved (Ponman, 1981; 1982A; 1982B). Several approximations are made in
tnis approach, with only one frequency fitted at a time and the components
themselves being fitted separately. However, the effect of this is minimal

except at very low frequencies. As the spectral estimate is produced
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Figure 1.51
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piecewise,it is not a fit as a whole to the data, and so cannot be used to
reconstruct input information.

Consider a set in time t of N stationary data points f(t), of zero
mean, comprising a random noise term N(t) plus a periodic signal of

frequency v ':

f(t) = N(t) + 5 [?mc(m>(t) + Bms(m)(t{} 1.5(1)

m=1

where ¢{M () = cos(2rv (M (1))

I}

1l

oMty = sin(zrv (M(z))
and the s B (m=1 ... «) are constants.

Consider also, the function A(v) = % fncn/gcn2 ; 1.5(11)
if N is large and Vb’<< t, -t then %cnz = N/2 .
Terms in A(v) of the form L sin(a) cos(b) and z cos(a) cos(b) will be
small when compared with N/2, as will the noise term. Thus, A(v) will be
small unless the frequency v is present in the data, when a large term
)
n

amcn(mcn(m> occurs,and A, = o Thus A(v) may be used to estimate the

o
cosine amplitude. Similarly, a function B(v) = % fnsn/%sn2 will approxi-
mately estimate the sine amplitude.

How closely the resulting power spectrum P(v) = A*(v)+ B?(v)
approximates the true spectrum will depend on the data spacing and nature
of the power spectrum.

The standard deviation of P(v) due to noise from data weighted by

factor 1/gn2 may be found from

2 2

g(v):zj’\(v)JrB(V)— —3:— -—;— 1.5(111)
Cy Su v? v?

where ¢, = & cn2/0n2, Sy = % s2/0,2-

However, the bias b and variance Gp introduced into the spectral estimate

by imperfect cancellation of cross terms are given by
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z 4 % 4 2
- AL 1/02 L 16 & 1/0, P P(v) 15(1V)
(% ]/On )2 f L) p A (% ]/Onz)z .

which for randomly spaced data may be greater than the error introduced
in (II1).
Ponman (1981; 1982A; 1982B) indicates that, for semi-regular sampling

interval At the bias and variance of (IV) are reduced by a factor of ~N/4,

and thus €(v) is the greater, if certain conditions are fulfilled,
e if s BER Vot oo 1 g
PN - n -

% 1/on2 f N n

The main problem with any such method is aliasing. However, whilst
reflection about the Nyquist frequency occurs as for conventional Fourier
analysis, the height of the reflected peak is reduced. Similarly, smaller
satel1ite peaks may still be observed around a major peak in the spectrum,
but their heights will be diminished more than in a 'normal' Fourier
spectrum. Peaks will have a finite width, as a frequency close to V'

may still give quite a good fit to the data. A1l these point must be

considered in the application of such an analyzing tool.

1.6 Analysis of Schove Auroral Data

Initially, data was selected from 220BC, at which point the series is
fairly continuous and most maxima have an estimated R, to AD 1700 after which
time Schove adopted data from Waldmeier (1961), thus giving about 1920 years
of data. Hence the Tongest period which could realistically be detected
(Ponman, 1981) is 480 years. For a reliable estimate, the limit was set at
v = .003c/yr, a period of just over 300 years, as it was considered that,
given uncertainties in the early data, summing over only four cycles was
insufficient. A typical sampling interval was effectively imposed by
Schove (1955) as 11.1 years, thus the Nyquist frequency v, = .045c¢c/yr.

Accordingly, the high frequency 1imit was set at .040c/yr. Peak width 1/T
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Figure 1.62 Alias Peaks for Schove data
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is .0005¢c/yr, and consequently the frequency interval was chosen to be
.000Tc/yr.

The resulting power spectrum for Schove auroral data is shown in
figure 1.61. A pronounced peak is observed at v ~ :005c/yr, with lesser
peaks at v = .0067c/yr, v = .023c/yr, and periodicities of about 200 years,
" 150 years and 44 years respectively. As nine cycles of 200 year duration
are included in the data, this peak is well within the theoretical limits
and thus must be considered actually to be present in the spectrum,
rather than an artefact of the analysis. However, the neighbouring peak
at .0067c/yr could be due to aliasing. There is no significant power
present at or around .0125c/yr, corresponding to the 80 year cycle.

To estimate the effects of aliasing, it was decided to input a pure
cosine wave at the frequencies of interest, and to sample and weight it in
the same way as was the original data. This is advisable as the pattern of
aliases produced at a single frequency is not frequency invariant as for
conventional Fourier analysis (Ponman, 1981; 1982A; 1982B). With an input
wave SG(t) = cos(2mv't), the spectrum PG(v) = AZG(v) + BZG(v) may be

estimated from

1 : | 2
A (o) = % cos(2mv tn) Ch sinc(v Tn)/On
G L ?/g 2
n n’“n
and
L cos(2mv't ) s sinc (\)'Tn)/on2
Bg(v) =0 Y
n Sn ' On

where sinc(x) = sin(mx)/mx

T is integration time of data.
In this case, data is effectively 'integrated' over one year. Asa typical
sampling interval At is 11.11 years, T << At and may be set to zero, there-

by simplifying the equations.

Power spectra were calculated for the frequencies of interest, but in
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all cases almost all the power was found to be concentrated in the peak
(figure 1.62). To determine the significance of the peaks, a 'noise’
spectrum was calculated. It was found that use of formula 1.5(III) was
not really necessary, as the errors approximated well to

2. 8 P(V)z (see Appendix 4/1)

/o
p % n

The application of criteria for errors due to the imperfect cancellation

of cross-terms indicated that there would be some bias and variance in the
spectrum from this cause. The bias was computed, but unfortunately no
formula is presently available for computation of variance in this case,

the only procedure possible being to set an upper bound on possible variance

using the full relation

o ? 16 2
0 < PQ_(\)) < N (Of - %‘Pn)
where N* = (é—}igﬂi)z (see Appendix 4/2)
n “n P

This gives a variance so great that no spectral peak could be significant
unless it contained most of the power in the spectrum. Use was therefore
made of the semi-regular sampling, which reduces this bias and variance

by a factor = N/4 (Ponman, 1981; 1982A; 1982B). Using this criterion, the
peak at .005c/yr is seen to be significant by a small margin, and therefore
is probably real.

As categories  rather than actual sunspot numbers are associated with
times of maxima in Schove's data, it was decided to rework his tables,
associating a Tevel of uncertainty with each data point according to the
width of the category, rather than simply adopting the median values
suggested by Schove (1955). The spectrum was then recalculated for
weighted data (figure 1.63).

The general noise in the spectrum is increased, with the peak at
.005¢/yr a little more prominent, and that at .0067c/yr still present.

The overall characteristics of the spectrum are as before, and
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Figure 1.72 Alias peaks for Bray data
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recalculation of error terms yields similar results; the 200 year
periodicity is probably real, but other peaks are too low to be considered
significant.

As the early Schove data contains several 'unknown' peaks, the data
interval was restricted to AD290 - 1700 and the spectrum for weighted
data was recalculated (figure 1.64). This spectrum was seen to display
marked differences from the previous two; note the disappearance of a peak
at .0067c/yr, and the clear peak at .023c/yr. Calculation of error terms
indicated that the smaller sample size increased the probable variance
such that the large 200 year peak was only marginally significant. For
frequencies of interest, aliasing was estimated as before, the chief
effect of weighted data being to increase the 'noise' around the critical
frequency.

Overall, the only peak shown to be of significance in the spectra of
Schove weighted and unweighted data is that at ~.005¢/yr. It is concluded

that a periodicity of ~200 + 20 years exists in Schove's data.

1.7 Analysis of Bray auroral data

Bray (1980) gave precise estimates of R, with no indication of"
possible error. The number of observations used in the determination of
each cycle is, however, listed. The heights of the maxima Tisted were
therefore checked against the numbers of observations, but the resulting
distribution was found to be random.

The data in the period 522BC - AD1600 was then analysed in the same

way as 1in section 1.6. Peak width was found to be .00047 c/y, and so the same

frequency interval as before was employed, and the same restrictions were
imposed on frequency range. The resulting spectrum is shown in figure 1.71
with alias estimates (figure 1.72). A group of peaks is observed in the

region .005 - .008 c/yr, but the noise present is evidently too high.
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to distinguish any period present. The data range was thus restricted from
AD 290, and extended after AD 1600, (previously determined as a suitable end-
point.,as several of Bray's source auroral catalogues terminate at this date ),
to AD 1700 where his 'Solar Index' ends.

Spectra were then calculated for the restricted range AD 290 - AD 1700
(figure 1.73),and for the full range 522 BC - AD 1700 (figure 1.74). The
latter shows a pronounced peak at ~ .005 c/y, with numerous lesser peaks.
Although this spectrum displays considerable noise, calculation of the
contribution to peak height of noise gave a value of ~.1P(v). Again, the
probable variance is close to the peak height, thus the 200 year peak is
only marginally significant. Figure 1.73 shows a very large peak at
~ .005¢c/y, with minor activity elsewhere. However, the reduced data sample
increases the probable error, so that again this peak is only just signifi-
cant.

From this analysis, it is evident that a 200 year periodicity exists in
the data. It must be noted, however, that much of the data utilized by Bray
(1980) was derived from that of Schove (1955), and thus the two estimates
of solar activity are not independent; in fact the similar characters of
the power spectra indicate considerable similarities between the two data-

bases.

1.8 Discussion

The reality of the 'Maunder Minimum' as an extended interval of low
solar activity is clearly established. However, examination of sunspot
and auroral data from the period 1650 to 1715 reveals the existence of both
phenomena throughout the interval in question. Whilst the sporadic sunspot
observations are not sufficient in themselves to show the presence of
periodic variations in the solar activity, when combined with the more
extensive auroral records it is clear that a cycle of activity was present,

operating at a fairly Tow level. It appears 1ikely that the widely accepted
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supposition of the cessation of the solar cycle during this time ( Eddy

et al.,1976; 1977; Weiss and Weiss, 1979) results from limitations in the
data sources used, together with the assumption of a mean cycle length of
just over eleven years. It is thought that a value of about 10.5 years is
more appropriate.

The auroral records indicate that the present century has an unusually
high level of solar activity, and there is evidence of earlier epochs of
high and low activity ( Kanda, 1933; Seydl, 1954; Henkel, 1972; Pittock,
1978). Hence it appears that the overall level of activity is changing on
a longer timescale than eleven years. It is here suggested that the mean
length of a solar cycle may also not be constant, but may vary in a non-
random manner, with a period of about 10.5 years associated with very low
activity, and a period of about 11.1 years, with comparably high activity.
The interpretation of this result may require knowledge of the short period
variations variously reported within the eleven year sunspot cycle
( Currie, 1973; Holff, 1276; de Meyer, 1961).

Whilst a previously unknown periodic variation of about two hundred
years is identified using statistical techniques, in the sunspot and
auroral databases of Schove (1955) and Bray (1980),no evidence is found for
the presence in this data of the eighty year 'Gleissberg period' generally
reported ( Gleissberg,1962; 1973; Brown, 19765 Vitinsky, 1978; Gleissberc
and Damboldt, 1979).

The existence of this effect as a long-term periodic modulation of the
sunspot cycle cannot, therefore, be accepted. However, as a similar
periodicity has been detected in the Waldmeier sunspot numbers ( Cole,

1973; Wolff, 1976; Kopecky, 1978),the possibility cannot be excluded that

it may be operating as a quasi-periodic effect over a few hundred years.
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Section 2

Analysis of the Waldmeier Sunspot Series

A number of previous publications have reported the existence of
periodicities in the Waldmeier sunspot numbers other than the 11 year
variation. These papers are often subsequently referenced as the
starting point for investigations into planetary influence on sunspots.
It is argued that, to prove a connection between the two phenomena,
periodicities inherent in various planetary configurations must match
precisely those determined from sunspot analysis. However, comparisoh
of source literature reveals that different statistical techniques
often yield conflicting results for the value of sunspot periods
involved.

One factor common to much research in this area is the use of
yearly averaged data; the precision to which periodicities are quoted
is often greater than the accuracy of the input information. Thus it
was thought necessary to perform a critical evaluation of existing
research, and if possible to conduct a more rigorous statistical
examination of the sunspot data then has previously been undertaken.
It was also considered desirable to examine the character of the 11 year
variation itself; there is controversy over whether early recorded
sunspot cycles display the same statistical structure as more recent
data. Differences between these data sets would indicate that the
nature of the 11 year sunspot cycle is changing with time, possibly

reflecting long period variations modulating this 'sunspot cycle'.




2.1 Choice of Method of Analysis

Detailed statistical analyses of the sunspot records have been
performed by several researchers (Cole, 1973; Currie, 19735 Cohen and
Lintz, 19743 Hill, 1977; Wittmann, 1978; Lomb and Anderson, 1980;
de Meyer, 1981),and many periodicities other than that of the eleven
year cycle have been detected in the data. Both the statistical
techniques adopted and the periodicities obtained vary considerably.

Methods of power spectrum analysis (taken from Blackman and Tukey,
1959) have been applied (Cole, 1973) to the Waldmeier yearly mean
sunspot numbers from AD 1700 to AD 1969, yielding a spectrum from
which were identified periodicities at 88, 10.45 and 5.75 years.
Extending the sunspot database with the addition of information from
Schove (1955), re-analysis yielded periodicities of 196, 94.5 and
78.5 years.

Techniques of maximum entropy spectral analysis (MESA) have also
been applied to the Waldmeier sunspot numbers (Currie, 1973; Cohen and
Lintz, 1974; Wittmann, 1978). This method estimates the spectrum of
a time series based on an autoregressive description of the data to
be analysed. Applied to monthly sunspot numbers from AD 1749 to AD 1957,
this method revealed 18 periodicities in the sunspot data (Currie, 1973).
Analyzing annual sunspot numbers in the interval AD 1750 to AD 1963,
Cohen and Lintz (1974) reported the presence of periodicities of 11.0,
9.8 and 8.3 years, and combined these results with figures from Cole
(1973) to identify a longer term variation of 160 - 190 years.
Wittmann, in 1978, computed a MESA spectrum of yearly sunspot data
from the period AD 1701 to AD 1970. The results obtained were compared
with these of Cohen and Lintz (1974) and were found to be somewhat
similar, with periods of 92.42, 54.91, 11.11 and 9.96 years identified

in the spectrum. However, these 'quasi-periodic variations' were
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regarded with some sceptiscism by the author (Wittmann, 1978).

Both Cole (1973) and Cohen and Lintz (1974) were cited in a short
paper (Hi11, 1977) on the application of Fourier Analysis techniques
to the Vitinsky (1962) sunspot numbers, with the numbers adjusted to
display alternate positive and negative signs for the assumed reversal
of magnetic polarity. No details of method or results were given, but
40 spectral 'lines' were used to construct a mode1 indicated as giving
a good fit to the sunspot data.

Frequency analysis has been applied to the Waldmeier yearly mean
sunspot numbers in the interval AD 1700 to AD 1964 (Lomb and Anderson,
1980). This relatively slow method involves repeated least squares
fitting of sine waves to the data, plotting the reduction in the sum
of squares of the residuals as a function of frequency. The greatest
power in the sunspot data was identified in peaks at 11.00, 10.74,
9.96, 90.3, 11.9 and 55.4 years, with a total of 14 peaks identified,
and a model was presented to explain these periodicities as a
modulation in amplitude and phase of the 11 year cycle by two cycles
of 55 and 90 years.

Application of periodogram analysis (de Meyer, 1981) to the annual
sunspot numbers from AD 1749 to AD 1977 has also yielded a series of
periodicities, in very good agreement with those of Cole (1973).

Of the methods previously applied to the sunspot data, the
relative insensitivity of MESA techniques has been indicated by several
researchers (Wittmann, 1978; Lomb and Anderson, 1980; de Meyer, 1981).
The comparatively sophisticated analysis of Cole (1973) based on
statistical methods widely used in communications engineering (BTlackmann
and Tukey, 1959; Anderson, 1971) employed a basic weighting function,
since superseded by a range of more intricate smoothing techniques.

Periodogram analysis, though straightforward, is 1iable to give




unstable estimates of the true power spectrum of input data (Anderson,
1971), and the avowedly simple method of Lomb and Anderson (1980) is
very slow; only one frequency is subtracted at each stage of
calculation and the repeated prewhitening of the data set may cause
difficulties (Box and Jenkins, 1970). Thus none of the methods
previously employed is ideal for the purpose.

It is evident that the records of sunspot counts, particularly
those early values which were assigned retrospectively, will be
subject to random fluctuations resulting both from observer errors
and from incorrect transcription (Izenman, 1982). This element may
be compounded by random convection effects within the photosphere
(de Meyer, 1974; Piddington, 1982) affecting the precise time of
appearance of sunspots on the solar surface.

Accordingly, it is necessary that the statistical method utilized
for analysis of the Wolf numbers is able to provide criteria for
distinguishing between ‘real' periodicities and transitory effects
resulting from random components in the data set. The finite length
of the Wolf sunspot series is clearly a further restriction on the
determination of short term periodicities.

As the quantity and quality of the sunspot data available for
analysis is very limited, a powerful statistical technique is required.
A very effective method for the examination of such noisy data is that
of spectral analysis (Wilson, pers. comm.) an early version of which

was employed in Cole (1973).
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2.2 Spectral Analysis

Before proceeding to apply the methods of spectral analysis to a
data set such as the sunspot series, it is necessary to examine the
theoretical background; it is essential that the techniques are used
with an appreciation of the inbuilt constraints of this powerful
statistical tool. In particular, it will be seen that the importance

of the distinction between deterministic and stochastic processes,

cannot be too agreatly stressed.
The following section contains a brief outline of techniques of

spectral analysis; rmiore detailed information is given in Appendix 5.

The Autocovariance Function

Of the moments used to describe the dependence between values
X(t1), X(t2) of an infinite continuous time series at time points t,
and t,, the most widely used is the autocovariance function

Ty (tis tp) = E X(t,) - u(t)} {X(t,) - b (t,)Y] (see Appendix 5/1)

where E [ J denotes the expectation value, and p(t) the mean value
at time t. As this function is dependent on the scale of measurement
of X(t)sthe normalised 'autocorrelation coefficient'
Yyy (tis t2)

oxx (tis t2) = SETY O
is defined, where o? (t,) and o? (t,) are the variances of X (t,) and
X (t2) respectively.

If process X(t) is in a state of equilibrium the mean and
variance of X(t) will be constant; then YXX(tl, t,) will be a function

of lagu = t, - t; only;
Yyx (U) = E [(X(t) - w)(X (t +u) -u)] =cov(X(t), X(t + u)).

Thus pyy (u) = Yyy (W) /gy (0)




is a function only of lag u for stationary processes. In practice,
only records x(t) of finite length T are available, and so the
theoretical autocovariance function YXX(u) must be estimated. The

most generally accepted estimator cxx(u) is given by

1 (1-
cxw)=% Hl”(uw-ixut+mn-§)ﬁ O<| |<T

=0 lu| >T

where x denotes the mean value of series x(t).
If the observations Xi;, X2, ... Xy are taken from a discrete time

series, the corresponding discrete estimator cxx(k) will be given by

N-k
.] - - I\
Cxx(k) =W t§1 (xt - x)(xt+k - X) k=0, 1, ... N-1

=2

- _1 ¥ .
where x = t2] %t 1S the sample mean.

The stationarity conditions will, in general, be fulfilled over a
Jimited timespan. In practise, therefore, the mean and variance are
only required to be constant over the period of interest. In the case

of sunspot activity, the series is stationary over many centuries.

Sample Spectrum

The variance or average power of a signal x(t),- T/2 < t<T/2 can be
decomposed into contributions at harmonics fm =m/T, m integer, of

fundamental frequency f, = 1/T according to

s - 4 JT/Z x2(t)dt = & |X |2
T T 7/2 m2-c "'m

where Km is the complex amplitude at frequency f, = m/T,
dt where i=/-1.

~

T/2 .
. :% J_T/Z X(t) e-]zﬂmt/T

Similarly, for a discrete signal observed at times t = -nA, - (n - 1A,

., 0, ...o(n - 1)A, the average power can be split into contributions
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at a finite number of harmonics of the fundamental frequency

f, = 1/nA (N =2n) and
, ] n-1 , n-1
- - v 2
STT SN tEn XL T meln Il
~ 1 nzl -i2mmt/N
where X, = T x, e ,

the contribution [X |*being the intensity at frequency fp,.

The variance of the infinite record is

2 _ 11ml T/Z X?‘(t) dt = 11m OZO (T[ lz)]
O T e T J-T1/2 " T e (1115
= J I(f) df.

where T(f) is the Fourier 'power spectrum'.

T/2 o
1lJ X(t)e-12ﬂft

T2 =C . (f) ==
Lml XX T 12

nNO
—~

—
~—

dt|? 2.

Cxx(f) will usually tend to a well-defined limit I'(f). For deterministic

signals, the convergence of C.x(f) to T(f) is smooth; function Cox(f)

obtained by increasing record length T to new length T' will be a

smoother version of function CXX(f) based on a record of length T.
However, for a stochastic process, it is found that the plot of

Cix(f) obtained from a record of length T' > T is just as erratic as

that obtained from a record of length T ie. Cxx(f) does not converge

in any statistical sense to a limiting value as T + o,

Using equation 2.2(1} transformation u =t - t', v = t' and definition

of CXX(U) yields

I
-i2mfu .
Cox(f) = J—T C, .y lu)e ! du - < f <o (see Appendix 5/2)

i.e. the sample spectrum is the Fourier transform of the sample auto-

covariance function.

” +i2nf
Thus Coy(U) = J Coy(f)e Temilye -T<usx<T

-"0-




= - < 2 -
For u =0, ¢, (0) = S; J C (F) df ,

and so the sample spectrum describes how the variance of x(t) is

distributed over frequency.

For discrete processes, C__(f) =2 = el o~ 12nfka
. k=-(N-1) *¥

-1/2A ¢ T < 1/2A

k)

The mean of CXX(f), E[ CXX(f) ] is given by

T .
ELCoy(F) ] = | EL cyylu) T8 au
ot
T .
- [ vy [1 li—L] 127Uy 2.2(1n)

o1

XX(f> = }12 E[ CXx(f) ] = [ Yxx(u)é_iZqu

- 00

Now, T du (see Appendix 5/2)

It is often argued that, since cxx(u) tends to YXX(u) as T then

1im 1im
Tow Oxx(f) = J Tow  Cxx(U)E
T

—12wfudu

” -i2nfu
= [ vy (U)e Temdqu = Tyy (f)

Whilst it is true that the mean square error of cxx(u) is of order 1/T
and hence its distribution clusters around YXX(u) as T » =, rendering
cxx(u) a consistent estimator of YXX(g), this does not imply that the
same is true of the Fourier transform of cxx(u).

From 2.2(I1) it is seen that the mean of the sample spectrum estimator 1is

the Fourier transform of the product of YXX(u) and the function
T-lul /T lul T
wluy =1 g uf > T

oo . 2
Hence E[ Cyy () ] = { T[ﬂ‘—?—g] ryy(f - 9)dg .
LT

So the sample spectrum estimator has an expected value corresponding to

Tooking at the theoretical spectrum YXX(f) through a 'spectral window'
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3 T£32
W(f) =T {i%%%lf] (Blackman and Tukey, 1959)

Spectral Windows

Now 1M E [Ty (F1] = Tyy(F)

50 CXX(f) is an asymptotically unbiased estimator of FXX(f). But for
finite record length, Cy,(f) is biased, with bias B(f) = E [fxx(f)]~
T'yy (f) . For large T, as w(f) is a s1it of width ~ 1/T, it may be
assumed that FXX(f) is constant over the s1it. Then

E [CXX('FUx Tyy (F)
and thus bias will be small if T is large.

Dividing the time series into k sub-series each of length M yields

estimates
. v . .
(:)((3]() (f) = LMCXX(‘” (u)e 12T gy i=1,2, ..k

Hence the smoothed estimator

_ ko (3) M -
1 - -12nfu
= — .L =
Ot ) = g g2 G (F) {_M Exx(v) au
_ 1 k 1 jM-u
where cXX(u) =% 35 {M'J(J-1)M X(t)X(t+u)dt } uz0

Taking expectation values:

.t

E [Ty ()] = r Py (F = )M [S_;%@"_}z dg.

~00

Thus subdividing the record of length T into k sections of Tength
M = T/k and forming a smoothed spectral estimate is equivalent to

smoothing the sample spectrum by window

s 2
W(F) = M [s;r;ﬂfM]

The base width of the spectal window is 2/M; thus, by controlling the
length M of the sub-series it is possible to regulate the base width

of the spectral window. By reducing M, it will later be shown that

-1~




the variance is reduced. However, this corresponds to increasing the
base width, and so smoothing over a wide range of frequencies, so that
bias B(f) may be large. Hence the necessary smoothing of a spectral
estimator to yield an approximation to the true spectrum YXX(f)
renders necessary a compromise between variance and bias.

Many different smoothing procedures have been suggested (Bartlett,

1953; Blackman and Tukey, 1958; Parzen, 1961) of the form

Cyy (F) = Jw w(u)CXX(u).e-iZqudu

—~Q00

_ - u).e_12qudu

for continuous data, with similar expressions for discrete data.
Those lag windows most widely used in spectral analysis (Bartlett, 1966;

Anderson, 1971; Jenkins and Watts, 1978) are given in Table 2.20.

Variance and Bias

As the requirements for base width of a window with small variance
and low bias are diametrically opposed, it is necessary to derive
expressions for both variance and bias for all spectral windows of

interest. Now bias

B(f) = E [Jw w(u)cXX(u)e'izﬂfu a - JwYXX(“)e_izﬂfudu

elee]

-i2nfu

y Jm (6(u) = 1) vyy(u).e du

-0

and so it is possible to obtain the following approximate expressions

for the bias of a spectral window: (see Appendix 5/-)

Bp(f) = g | - Jul vyelu). e

-C0

—12ﬂfudu’

N A _i2rfu
B (f) = %MZJ -uZy,y (u)e Tdu + 0(1/M*)

-=Co

- =063 () + 0(1/M)
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where Fix (f) denotes the second derivative of the spectrum at

frequency f.

N -i2nfu 3
Bp(f) = W2 j u YXX(u).e du + 0(1/M°)
.0152 0
=S - r XX(f) + 0 (1/1%).

The above equations indicate that peak heights will generally be
underestimated, and troughs overestimated due to bias; also,narrow
peaks will have large bias. For the same truncation point M, the
Tukey window will have the smallest bias, and the Bartlett window,
the greatest bias. The rectangular window included in Table 2.20
compares so poorly with the other windows available that it is
excluded from further consideration here.

The calculations for esimation of variance are tedious. It may
be shown (Jenkins and Watts, 1978) that the covariance between two
estimators at a sufficiently wide frequency spacing is almost zero;
hence independent confidence intervals may be constructed at this
frequency separation. For any normal stochastic process X(t) it is
found that

Cov (CXX(fl), Cyy(F,)) is of order (1/7%) fi # f2
and Var (Cyy(f)) = Iy ()

For smoothed spectral estimators, the equivalent result is:

Cov (Eyy (F1) Exy(FD=T | Tyla) MRy = 0). (4(F2 + 9) + H(F2 - 9))g

where W(f) denotes the Fourier transform of spectral window w(u).

ThUS, for fl = fz = f:

Var (Cyy(f)) FX# W2(g) dg
T2, (f) J°° 2 2 I
XX w?(u) du = Tou(f). =
N XX T




where 1 = J w? (u)du

-CO

Thus it is possible to derive equations for the variance of different
spectral windows (Appendix 5/3). Clearly, the variance of the smoothed
spectral estimator may be reduced by making truncation point M of the Tag
window small, as previously indicated; the correct choice of M is thus

of critical importance.

Confidence Limits

The sample CXX(f) is the Fourier Transform of covariance function
estimator cXX(u), which is assumed zero outside the interval - T<usT.

If cXX(u) is represented over this interval by periodic function

C;X (u) (= C;X (u + 2T))then C;X(U) has a Fourier series
representation:

p = P (2) +i(2miu/2T).

Cxx(U) = p 2o Cxy {?T] ¢
Since w(u) =0 lul = M, functions EXX(u) = CXX(U). w(u)

and EXX(u) = cXX(u). w(u) are identical over all u, so that

Co(F) = [ U - 9) Cyyla)dg

=00

® p
and Tyy(f) = 2 W(f - 2—’@T> Coy (R/2T).

But

Cyy (2/2T)

2T

P
XX

Cyx(F) = é% zi_m Cyy (2/2T) W(f - 2/2T) |

= Cy, (2/2T) and hence

Thus CXX(f) is a weighted sum of random variables CXX(Q/ZT) at
subharmonic frequencies £/2T. These r.v.'s will be distributed as

a XWZ, hence distribution of CXX(f) may be approximated by asza with

. 2(E[CXX(f)])2 )
v VarEE;;(¥7j and a ~ E LCXX(f)]/v. 2.2(1V)




If the spectrum is smooth with respect to the window,
E [Cyy(F)] = Tyy ()

and Var [Cyy(f)] =

4
>x< N
>
—
—
~
S——,
8
€
[N
—
-
~
(e
e

Hence v = ZI_ a=
1° v

Thus the random variable 'vCXX(f)/FXX(f)‘

is distributed as a sz with degrees of freedom v; the degrees of

freedom of the smoothed spectral estimator depend on the window w(u).

Cyx (f
So probability Py {x, P%] <v Fiigf; s x (1-%1 =1-0

where Pp { sz < X, (a/2)} = a/2 .

Thus the interval bet o (9 ety
us the interval between < (0 “@/?)) ’xv(a/Z)

is a 100(1 - a)% confidence interval for FXX(f).

The confidence interval is frequency dependent; thus it may be
convenient to plot the spectral estimates on a logarithmic scale, when
the confidence interval for the spectrum is simply represented by a
constant interval on the graph.

It is found that, to obtain a good estimate of a peak in a spectrum,
the 'width' of the spectral window must be of the same order as the
'width' of the peak. This 'width' is defined by considering the

bandpass spectral window

1 h h
w(f)=ﬁ —-Z-Sfﬁ—z—

which is rectangular in the frequency domain and has unique width h.

The variance of the corresponding smoothed spectral estimator is

Iyy (f)
Var [Cxx(f)lz #%b




where b denotes bandwidth. The bandwidth of a given spectral window
is then defined as the width of a rectangular window yielding the
same variance 1i.e.

. (f)
Var CXX(f) - A

b 1
Thus b = T ° }ETEF?(?YE%

0]

Values of corresponding bandwidths for the Parzen, Tukey and Bartlett
spectral windows are given in Appendix 5/3.

With formulae for the autocovariance function and a smoothed
spectral estimator, it is now possible to apply spectral analysis to
a time series. It is clearly imperative that estimatss of variance
and bandwidth accompany every analysis, and that the nature of the

series in question, deterministic or stochastic, is known.

Practical Procedure

In general, it is not possible to compute cxx(u) for all lags u;
thus a cut-off point must be adopted beyond which it may be assumed
that cxx(u) =0 ,u < Uy In practice, a limiting value of
u < N/4 is adequate. It is also necessary to determine a suitable
spectral window; then the smoothing of an estimator is completely
determined by the shape and the bandwidth (or truncation point) of the
window used. Normal procedure is to compute a series of smoothed
spectral estimates, procressively reducing the initially nich bandwidth.
This 'window closing' process should, ideally, be continued until the
window width is less than the width of the narrowest significant detail
in the spectrum. However, at some stage the instability of the record
will prevent more detail being revealed; the amount of information
accessible will depend on to what degree it is possible to discriminate

between 'real' detail and sampling fluctuations due to instability.
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2.3 Choice of Parameters of Sunspot Analysis

From prior knowledge of the sunspot cycle, the presence of an
approximately eleven year periodicity is suspected; this may be
expected to produce a narrow peak in the spectrum of the spectral

windows available (Table 2.20). W has very large sidelobes 1i.e.

rect
it permits values ofFXX(g) at frequencies g distant from frequency f
to make large contributions to the bias at f, an effect known as
leakage (Blackman and Tukey, 1959). This may be troublesome if a

narrow peak is present in the spectrum. W f) also has quite

BART
high leakage; thus wp(f) or WT(f) are more suitable spectral windows
for an analysis of this type. As, for a given bandwidth, the Parzen
window requires ~40% more lags than the Tukey window, the latter
spectral window was chosen for initial analysis of the sunspot

data.

With regard to the sunspot database itself, it will be necessary
to select the most appropriate of the several sets of Wolf sunspot
numbers. Additional smoothing is often introduced in statistical
mode11ing of the sunspot numbers, by the use of averaged sunspot
data from Waldmeier (1961). These 'smoothed monthly sunspot numbers'
are obtained by fitting a six month running mean through the
unsmoothed data. Whilst this is of considerable use for modelling
techniques such as autoregression analysis, because it reduces
short-term and random fluctuations, it may lead to the suppressicn
of information useful for the method outlined in section 2.2. Thus
for power spectral analysis of the sunspot numbers it is more

appropriate to use values derived from unsmoothed data.
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The maximum data spacing permissible is A = 1/2f, where fo 1is
the Nyquist frequency; the spectrum may be estimated for A < f < fy,
and thus the use of yearly sunspot data will permit detection,
theoretically, of any periodicities of greater length than two years.
However, very little prior knowledge of FXX(f) is available; it is not
known that TXX(f) is zero for f >1/2A. It must therefore be assumed
that fo is much less than that frequency beyond which TXX(f) is zero,
and so it may be necessary to sample much more frequently than the
Nyquist condition requires.

Using the yearly averaged sunspot numbers (Waldmeier, 1961) from
1750 to 1950, the correlation coefficient cxx(u) was calculated for
lags u < 90.  The result, similar to that in Craddock (1967), confirms
that a truncation point of U ~ N/4 is suitable for this data set; thus
a limiting lag value of u = 60 was adopted. With a frequency spacing
of .01 c/yr .and lags L = 20, 40, and 60, a pilot spectrum was
calculated for the frequency range 0.001 < f < 0.500 c/yr (figure 2.31).

It is evident that, for L = 20, the spectrum is oversmoothed. As window

1}

closing is applied at L = 40, a peak is apparent which is more
prominent at L = 60. However, a side-lobe of this peak is also
apparent at L = 60. Because of this, the analysis was repeated using
the Parzen window, which has very Tow leakage.

The Parzen window proved to be the optimal window for analyses
of the sunspot data, with Tow Teakage and variance. Because Np is a
wider window than Wy, when window closing is applied the estimate
requires more lags to settle down to a steady value; hence greater
computing time is required when using the Parzen window. However,

analyses using this smoothing technique show no appreciable leakage,

and the slightly greater bias is not of critical importance,
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2.4 Initial Analysis

It was intially intended that the work of Cole (1973) should be
investigated and possibly extended with the use of more data, and the
better smoothing techniques now available. Accordingly, six-month mean
sunspot numbers were calculated from the unsmoothed monthly sunspot
numbers (Waldmeier, 1961) for the period 1749 to 1960 inclusive.

The autocorrelation coefficient was initially obtained for lags up to

L

150, and a series of spectra computed for varying lags L from

L

20 to L =100. Figure 2.41 shows power spectra for lags 50 and 100.
Using results from Table 2,20 bandwidths and 80% confidence 1imits

were calculated. It is seen that very smooth spectra are obtained

for these lag values, but that the 80% confidence limit is already
close to the peak height at L = 100.

These spectra are dissimilar to those obtained by Cole (1973);
there is no indication in his work of calculations of variance or bias,
and it would appear that the importance of distinguishing between
stochastic and deterministic processes was not then well understood.

To investigate this possibility, after recalculating the autocorre-
lation function for lags up to 350, spectra were obtained for lags
L = 200 (figure 2.42) and L = 350 (figure 2.43) with corresponding
estimates of bandwidth and variance. It is seen that, as smoothing
is reduced, the spectrum becomes more similar to that of Cole (1973),
and it is clear that a further reduction in width of the spectral
window beyond L = 350 would yield a spectrum virtually identical to
that of Cole (1973). The 80% confidence limit for L = 200 at peak
frequency .085 c/yr is 37.6 c.f. peak height 23.2, and for L = 350
the 80% C.I. is 48.1 c.f. peak height 31.3.

Thus, it is apparent that the numerous peaks observed in figure

2.43 may not be assumed to indicate the existence of periodicities

-6]-
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in the data at these frequencies. With the Timited amount of data
presently available for analysis, to discriminate at this Tevel
between 'real' peaks and sampling fluctuations due to instability is

not possible.

2.5 Further Analysis of the Waldmeier Sunspot Series

It was decided to conduct a detailed analysis of the Waldmeier
sunspot numbers in order to obtain the greatest possible amount of
information about the eleven year sunspot cycle. Previous statistical
analyses of the sunspot series have utilized yearly averaged sunspot
data (Cole, 1973; Cohen and Lintz, 1974; Wittmann, 1978; Lomb and
Anderson, 1980; de Meyer, 1981). As this involves considerable
smoothing of the data, reducing the information originally present, it
was considered useful to ascertain the effect on an output power
spectrum of such alterations to the input sunspot numbers.

Most statistical analysis of the Waldmeier sunspot series has been
performed using the yearly mean sunspot numbers, i.e. using smoothed
data. This can be regarded as filtering the initial 'raw' data before
use. If we denote the actual unsmoothed data by an input precess {Ut}
to a filter with transfer function w(B), then output {Xg} is related
to {Ur} by{X1}= ¢(B).{UT}

We can express the transformation {X7}-{Ur} in terms of its effect
on the autocovariance generating function cxx(z):

cxx(2) = w(z). w(z™h). cyy(2)

The power spectra of {X7} and {Ur} are clearly not identical; they are
related by Gyy(w) = F(w). Gyy(w)

where F(w) = w(el®).y(e1®)

This 'filter factor' F(w) summarises the information on how a particular

filter changes the distribution of variance over the frequency range.

-65~



06

08

5580014 88eJ8ny SUTAOL JUTO4 gl J04 J030B4 I83TT4 |G*Z 8IN3T

(s88a38p) 379NV
0E 0

dANT LV 1 3HY

d d MO0 d

-66-



saaguny jodsung ues| ATaeaj 40 ardweg [eotdAl U0 (|G°z 8IN8T4 ) J030e4 I817T4 40 308443 2G*z 8IN3T4

elep ueaw
ATaesaA 1oy Jojoe4d J831T4
(,1e8A) A3 N3NO3Y A

: 90"

178

g0

-67-

(MOpUTM Asynt0p=1) .
p G'0

43I MO0 o

*sou jodsuns ueaw ATaesaA (Qgz 40 wnajoadg Jsmod




Thus, filtering data can create or remove peaks and troughs from an
input spectrum.
Consider the effect of averaging the monthly sunspot data to obtain

the widely used yearly mean numbers. The operator y(z) will be given by

11
v(z) = '%Z nZo 2"

which yields a filter factor F(w):

Flw) = '%Z [;6 + 1lcosw + 10c0s2w + 9cos3w + 8cosdw + 7co0sbw + 6COSbw
+ 5cos7w + 4cos8w  + 3cos9w + 2cos10w + COS]]U)]

shown in Figure 2.51. Clearly this filter factor 'boosts' the Tow

frequencies with respect to the high freguencies, which are virtually

eliminated as one would expect, but the effect is not uniform. Hence, *

it is important to be aware that the inevitable level of prefiltering

with the sunspot data (daily numbers are subject to large random errors

necessitating some level of smoothing) affects the resulting power

spectrum in a non-uniform manner, and it is important to ensure that

periodicities detected are much greater than the smoothing interval.
Figure 2.52 shows a typical power spectrum of 260 yearly sunspot

numbers, with log power versus frequency. As Qn(GXX) = an(F) + Qn(Guu)

the use of logarithmic plots enables the effect of the filter factor

to be subtracted from the spectrum of the smoothed data. At frequencies

as low as .1 c/year there is clearly a significant Toss of power due

to the effect of prefiltering, an effect which is appreciable at frequencies

as low as .07 c/year. This effect is particularly important in series such

as the sunspot series, where the accuracy of the technique is pushed

as far as possible to gain the maximum amount of information with very

limited data and where, as shown, the height required for a peak to

be considered real (here to 80% confidence) is only just attained.
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2.6, Detailed Analysis

Much statistical work model1ing the sunspot cycle is done using
the smoothed monthly sunspot number tabulated by Waldmeier (1961).
Because of the 'Filter Factor' effect, these figures are of limited
use for time series analysis, as they are calculated using a 6 month
running mean. Thus it is best to use the unsmoothed monthly sunspot
numbers (Waldmeier, 1961),and construct an appropriate level of
smoothing as required.

Accordingly, 3-month-mean sunspot numbers were calculated for the
interval 1790-1960, as it was considered that this was the highest
level of data pre-smoothing compatible with the above conditions. As
the sunspot numbers prior to 1800 are known to be approximate,
involving appreciable amounts of interpolation (Eddy, 1977; Morris,
1977),this early data was excluded from the analysis. The remaining
data set, estimated as fairly reliable (Eddy, 1977) was then divided
into two groups of 80 years, to see if any statistical differences
could be detected between early and more recent sunspot cycles.

After computing the autocovariance function and checking for
convergence, power spectra were calculated for the 3-month-mean sunspot
numbers 1799-1878, for lag windows at L = 40 and L = 80 (figure 2.61),and
for frequency range .001 < f < .3 ¢/yr. Intermediate spectra were
then produced for L = 60 and L = 70 (figure 2.62), as lag value
L = 80 was found to be the highest lag value yielding meaningful
results. A1l the curves obtained are of necessity considerably
smoothed, with only one significant peak at ~ .09 c/yr. Considerable
power is present at Tow frequencies and on the peak, with very little
present towards the high-frequency end of the spectrum; this lack of

power can not be ascribed to the filter factor effect.
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Plots were then drawn of log (power) vs frequency, so that the
confidence interval could be simply represented for all frequencies,
but these were not found to be helpful for such smooth power spectra.

In a similar manner, the sunspot data from 1878-1957 was
analysed, and spectra calculated for a range of window widths, over
the same frequency interval as before (figures 2.63, 2.64). These
spectra have little power at low frequencies, with the majority of
the power in the spectra contained in the large peak at ~.10 cy/yr.
Again, activity at high frequencies is not apparent.

Comparison of the two sets of spectra indicates significant
differences between the curve shapes and power distributions, with the
'early' data showing considerable power at low frequencies, and a
broader peak. However, the difference in the frequency of peak power
is not significant.

In order to use the greatest amount of available information it
was decided to repeat the entire analysis using less smoothed data.
Because of the large random fluctuations inherent in daily sunspot
numbers, and the enormous amount of data involved, it was not considered
practicable to analyse this sunspot data in raw form. It was
found that a smoothing interval of one month was sufficient
to average out these random effects, and so analyses were performed
on the monthly sunspot numbers from 1799-1878 and 1878-1957, for a
frequency interval 0.03 < f < 0.40 c¢/yr, and a range of lag windows
from L = 150 to L = 200.

Spectra from the 'early' data are plotted in figures 2.65 and
2.66. The greater precision of the data used is seen to result in
better definition of the peak at ~ .09 c/yr; the overall structure
is similar to that previously obtained, with considerable power

contained at low frequencies. The spectra of the 'recent' sunspot
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numbers are also similar to those previously obtained (figures 2.67,
2.68); comparison of the two series of spectra calculated from monthly
sunspot numbers indicates that the differences observed from analysis
of the 3 month mean sunspot numbers are still present.

The autocorrelation function was then computed for the entire
data interval 1800-1960 for the monthly sunspot numbers, and several
series of spectra were obtained; very little additional information
was gained, the resulting graphs being an amalgam of the previous
results. A better definition of the peak was evident (figure 2.69)
but, for all lag windows considered, there was no indication of any

peak in the spectrum at any frequency other than .01 c/yr.

2.7 Discussion

The results of this study of the Waldmeier sunspot numbers call
into question the reality of 'periodicities' previously reported within
the eleven year sunspot cycle (Cole, 1973; Currie, 1973; Cohen and Lintz,
1974, Hi11, 1977; Wittmann, 1978;Lomb and Anderson, 1980; de Meyer, 1981)
particularly as the results obtained by Cole (1973) formed a basis
for subsequent research (e.g. Cohen and Lintz, 1974; Wolff, 1976; Lomb
and Anderson, 1980; de Meyer, 1981). Results obtained using the method
of Maximum Entropy Spectral Analysis (Currie, 1973; Cohen and Lintz,
1974; Wittmann, 1978) are weakened by the observed dependence of
periodicities detected on the sample size used (Smythe and Eddy, 1977;
Wittmann, 1978; de Meyer, 1981). This observation may be explained if
the 'peaks' are caused by random components in the sunspot data. The
negative results from an analysis of Russian sunspot numbers by Hill
(1977) support this hypothesis.

In the work of Lomb and Anderson (1980) the fitting of high
order sine waves results in the identification of ten closely spaced

peaks around the frequency 0.1 cycles/year, an effect easily
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produced by this method when the 'true' power is, in reality, spread
over a wide frequency interval, generating a broad peak in the actual
power spectrum. It is also noted that in the analysis of Lomb and
Anderson (1980) the spectrum of 'residual power' remaining after the
removal of all 'significant' periodicities contains peaks of a height
comparable to peak heights assigned to 'real' effects. It is thus
difficult to attribute real significance to most of the features in
the spectra obtained, and, as no calculations for the considerable
effects of aliasing (Bracewell, 1965) are reported, further work in
this area is required before the existence of any of the periodicities
reported can be accepted. It is here suggested that all the many
short 'periodicities' detected to date within the eleven year
variation are illusory, and can be attributed to the often cursory
and conflicting interpretation of the results obtained, the Tlack of
proper statistical tests for significance throughout, and the use of
unsuitable highly smoothed sunspot numbers. To analyse such data
effectively requires both a critical evaluation of 'peaks' in the
power spectra, and an awareness that the use of any mathematical
algorithm to derive hidden periodicities from data invokes the
possibility that the generated periodicities are introduced either by
the particular numerical method used or by the time interval analysed.
It is clear that the Timiting factor in statistical analysis of
the Waldmeier sunspot numbers is the restricted amount of 'noisy' data
avaiable. However, the detailed examination of 160 years of monthly

unsmoothed sunspot numbers does reveal differences between ‘early’

and 'recent' data, evidence which supports the general arguments of
McNish and Lincoln (1949) and STutz (1970), and is in agreement with
the results in Section 1. The results of this section thus support

the hypothesis that Tong term effects are modulating the sunspot cycle.
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One interpretation of the variation in mean period discussed in
Section 1 is to assume the existence of two discrete solar cycles of

1.7 yr and 10.5 yr. Simple sinusoidal models of the form

R* = Acos(2nw;t) + Bcos(2mw,)
with w; = 11.08 years
and various values of A and B
wy = 10.05 years

give quite a good facsimile of the sunspot cycle for ratio A : B of

10 @ 4, and the sunspot 'number' R* normalized to the scale of the Wolf
number. The beat period of R* is then about 200 years, in agreement
with the periodicity detected in auroral data in Section 1. Clearly,

a more complex and realistic model is required in this area; with the
limited amount of noisy data available, it is difficult to test such

a model against observation adequately; however, it is possible that
the 'sunspot cycle' consists in reality of two discrete cycles, at

~11.1 years and ~10.5 years.
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SECTION 3
Databases for Planetary Motion

In order to evaluate possible connections between the planets and
the sunspot cycle, it is essential to have access to accurate planetary
coordinates, which may be required over an extended period of time. Such
information is readily available for only a limited period, for example
in magnetic tape form from 1800 AD to 2000 AD (Greenwich Observatory).

For the inner planets, over a few hundred years.analytic techniques
are accurate to well within one degree (Sinclair, pers. comm). Use of.a
numerical integration process for the inner planets necessitates a short
step-length, rendering the computing time required prohibitive, especially
if Mercury is included in the calculation (Schubart and Stumpff, 1966).
Whilst an algorithm for the positions of Jupiter and Saturn is presently
available which is accurate to 1' in angle and .001 AU in distance over a
period of a few hundred years (Emerson,1981), a requirement for the co-
ordinates of all the giant planets necessitates the use of another method.

It was thus decided to consider methods for numerical integration of
the differential equations of planetary motion both to provide an extended
database of planet positions if required, and to enable the construction of
an 'alternate solar system' with slightly different orbital elements. This
database could then be used as a 'control system' to help assess the
validity of any correlations found between sunspots and parameters of
planetary motion.

[t was not expected that Pluto would exert sufficient effect on any

such parameters to justify its inclusion; whilst numerical integration of
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the equations of motion for the planets Jupiter, Saturn, Uranus and
Neptune excluding the effect of Pluto would produce errors in the resulting
coordinates, these errors should be small over the timescale considered
(Schubart and Stumpff, 1966).

As preliminary calculation indicated that Mars would not make a
significant contribution to the solar system models under consideration,
it was decided to omit Mars from the initial calculations, with the option
of including the planet at a Tater stage if required.

To integrate the differential equations of motion for the outer planets,
a predictor-corrector method was chosen because of the small number of
derivative evaluationsrequired at each step; the restrictions on variation
of step length being unimportant in this context (Merson, 1975; Johnson,
1982). The Gauss-Jackson eighth order method (Jackson, 1624; Herrick,‘1972;
Merson, 1975) was chosen because other applications of the method indicated
that it would be efficient at integrating orbital equations of this type

(Merson, 1975; Sinclair, pers. comm.).

3.1 The Gauss-Jackson Integrator

In order to use an 8th order predictor-corrector method for integrating

the system of equations
91 = fi(t’ Yis Yaoeee¥ys Yis Jos v yn) i=1,2, ... n

where t is time,
the starting values yi,k’ yi,k’ )/1.’k k=0,1, ... 8
must be available and a difference table obtained to 8th order.

From the starting values, it is first necessary to determine the first
and second sums of the f; at the first point at which they may be calculated
to 8th order.

. J — 2 _
Since D yi,k = fi,k and D yi,k = fi,k

where D = d/dt then (assuming integration constants zero)



-1 1 -1

= nhy - - (T
Vo s (hD) )i 3.1(I)
and
-2 -2
Voo T T i
= po? -2 -2
= h 7yt (8 (hD)™*)f; 3.1(11)

where V is the backward difference operator,
§ is the central difference operator

and h = t, - t, is the tabular interval.
kK+1 k

Substituting to obtain the above relations in terms of central difference

§ using the relations

- 1
vlo= 3 4us , p= (1 + 362)2, hD

2sinh™' (8/2)
1

- - -1 - -
yields v 1f1. U TR PR T {6'1 - 3(1 + 18%) 2(sinh '8/2) l}fi,k

and
vo2f = h72y, o+ {672 - % (sinhTle/2) F L FL
'i,k-] 'i,k 4 J 'I,k
. . . -1 B §2 38"
Consider the expansion sinh "§/2 = &§/2 1 -3 t ey T e
Now (sinh™'6/2)7% = 4677 (1 + 2x + 3x2 + ...)
§? 38"

where = 73 T3 e

x

_ _ 2 N 6
Hence 1 (sinh™' 6/2)7% = 6 ’ [] + ??'- %HU'+ 6%%%0'— 3@?%%%@ 8°
+ 317 510
22809600
Thus v-2f L P D I B £ 3.1(111)
ke Yi T2 7240 ° ) Tkt :
Similarly, (sinh™' §/2)7" = [1 T v ] 267
and hence
v-lf - h_l' + ] + ] 6 - ]] 63 + f . 3 ](IV)
(PSS IS VA S i IR '

For convenience, the above relations are often expressed in terms of backward

differences, so that 3.1(IV) becomes
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-1 =h ° 3 - 2 3
V f1’k - h \)li’k Aofi,k —AIVfi,k-]-] —sz f‘i,k‘*’] "A3V fi,k+2

- Ay V' F,

1,k+2 T e e e e 3.1(\/)

where coefficients Ay to Ag are tabled in Table 3.11 . 3.1(VI)
Similarly 3.1(III) may be written

VAR = h™%y

- - 2 _ 4 - 6
i k-1 ik 7 Bofy o BaVT g iy - BT Fy i 7 BeVT T s

_ 8
BsV" T 1ig

where coefficients By, to Bg are given in Table 3.11.

The pattern for this 8th order process is shown in Table 3.12. It is
clearly possible to use equations 3.1(V), 31.(VI) to calculate the first
and second sums V~* fi," V'zfi

J »J”
To continue the table, a predictor of Y; is required. Rewriting equation

3.17(I) for fi  yields

. _ -1 -1 -1
Vi ke =HV fy +h [(hD)'E - ¥ ]f].’k 3.1(VII)

and from equation 3.1(II), the relation

-2 _ -2 -2 -2
v fi,k = h Yi kel t (8 -(hD) “) E fi,k

) -2 -2 -2
Hence, y; | 4q = (R hz [(hD)™* - §"°]E fip - 3.1(VIII)

Transforming to backward differences

1

-1 -1 - -1 .
Yi kel = hv fi,k + h{(-&n(] -v)) (1 -v) -V }fi,k 3.1(IX)

-2

29”2 21/ -
Vi) = DIVOF  h [( an(l - v))

(1 -v)"" - v‘z] fip 310

-1 -1, v _ v?

NoWw =) =" -2 T @
and (1 -9) '=1+V+792+ ...

Thus expanding equation 3.1(IX) yields

. _ -1 5 9 2 25] 3

Vi1 =N i P Ay Vg Vot g Tt

.. _ -1 8 J

fe Fiar =N Ty 0t Fofy o ® g Ty 705 0 3.1(x1)

-86-



Table 3.11

Coefficients for an eighth order Gauss-Jackson process

A; B Fs
- 172 1/12 1/2
- 1/12 0 5/12
1/24 - 1/240 3/8
11/720 0 251/720
- 11/1440 31/60480 95/288
- 191/60480 0 19087/60480
191/120960 | - 289/3628800 5257/17280
2497/3628800 0 1070017/3628800
- 2497/7257600 | 317/22809600 25713/89600
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where the coefficients Fi are given in Table 3.71. Similarly, expanding
(-2n (1 - v))7° =V_2p —V+¥%-?%jvq+ “.]

and substituting expansions into equation 3.1(XI) yields, after reduction,

- h2 g2 2 |1 Vv 19 18 _3 4315 4
Yije1 Vo +h [TZ+TZ+?7LU Vit o Yt goago U

4125 ys 4 237671 ve 4 229124 5 - 9751299 sl ¢
60480 3628800 3628800 159667200 i,k
8 :
i . = h? (V2. z J
1€ Y5 h [V ikt Cofi,k + 551 ij 1,k] 3.1(XIT)

where coefficients Cj are given in Table 3.13.

: S s - e . -
Thus, using V fi, g 1= 2y .... 8, yi,9 and y1,9 may be found; sub
stitution in the acceleration formulae then yields f1’9‘ A new row of
differences sti IE =-2, ... 8 are then calculated.

In many applications, the accuracy and stability of this sytem may be

improved by the use of a corrector formula for &i Kt and Y5 ka1t From

equation 3.1(VII),

. 3 -1 -1 -1 _-1
i ka1 = 0 Fy 0 [(hD) VBT fi
=1 -1 -1
= hv fi,k+h[(' en (1 -9)) " -v + 1] fi ke
This after expansion yields
' = h(VF, o+ Af - f SV f )
Yik+1 T sk TNkl T U7 kel T 28 Tkl o
. 8 3 3.1(XIIT)
= h(V fi,k + EOfi,k+1 + jé] Ej v fi,k+1)
where coefficients Ej are given in Table 3.13.
Similarly, from equation 3.T(VIII)
-1 2 -2 -2 -1
which after expansion yields
C2o-1 1 e o1 s 221 w190 s
Vi1 =MV Fi v 12 om0 Y T 7o VT sogso VT w0480 Y
9829 e _ 8547 _, _ 330157 _s
3628800 '~ 3628800 ' Ve T e
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Table 3.12

Pattern of Differences for an Eighth Order Gauss-Jackson Process

-2
i,9
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Table 3.13

Coefficients for an eighth order Gauss-Jackson process

Cj Ej Gj
1/12 1/2 1/12
1/12 - 1/12 0
19/240 - 1/24 - 1/240
3/40 - 19/720 - 1/240
863/12096 - 3/160 - 221/60480
275/4032 - 863/60480 - 19/6048
33953/518400 - 275/24192 - 9829/3628800
8183/129600 - 33953/3628800 - 407/172800
3250433/53222400 - 8183/1036800 | - 330157/159667200
- - - 24377/13305600
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or

- h2(y2 ¢ ]
Yike1 = NEOTEL v Gy Fiken ¥ gl 65 ©UF

; 3.1(XIV)

i, k1) 9
where constants Gi are given in table 3.12 and the term of ninth order
(not calculated here) is retained for error estimation.

At this stage, it is often of use (Merson, 1975; Johnson, 1981) to
reapply the corrector formulae 3LT(XIIT), 3.1(XIV) to the output values
of yi,k+] and 91,k+]. For the purpose of further integration, however,
the once-corrected values are used. It should be noted that Herrick (1972)
recommends a modification to the system which effectively dispenses with the

corrector altogether.

3.2 Program Development

As a preliminary stage of development, it was decided to apply the
Gauss-Jackson method to a system with known solution, both as a check on
the numerical integrator itself and to enable estimation of the stability
of the numerical solution. Calculation of the first few coefficients of
each series and comparison with Merson (1975) had revealed a typing error
in the sign for coefficient E,, with the possibility (Merson, pers. comm.)
of other trivial errors in the higher order terms. An independent
calculation of all coefficients required for an eighth order process
yielded fractions which reduced to those of Merson (1975); however, this
additional check was considered useful.

The system chosen was of one 'planet' in undisturbed circular motion.
Since this numerical process was to be applied to the outer planets only,
the interval of integration required for Jupiter would determine the step-
length required for the system; thus the hypothetical planet was given a
mass and distance from the sun similar to those of Jupiter. For this simple
model, the integrator was started directly, as analytic calculation of

position and velocity components waseasily achieved. Thus the Gauss-Jackson
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process was initially set to solve the 3 equations

. . 1
qEz T cyrls 1=1,2,3,r = (Zy;%)%, u constant of gravitation.

Circular motion was established by specifying the relationship

. . dr" s ey .
rirs = 0 where i = gg' Detween initial values.

The system was run for varying numbers of iterations and step lengths.
Good agreement was found with the theoretical solution, and with the orbit
modified to an ellipse, a value for h of 40 days was confirmed as easily
adequate for this simple case. As numerical solutions using predictor-
corrector methods eventually spin away from the theoretical solution, the
system was run for a period of 50 years. No such effect was discernable.
It was thus decided to proceed to integrate the equations of motion of a
system of planets.

For this procedure, a starting table is required; it is necessary to
use another numerical technique to generate data yi, yi, i=1,2, ... 8,
J=1,2, ... n from initial conditions Yo yi’o. It was decided
initially to use a 4th order Runge-Kutta process, and to modify this later
1f necessary either to a non-standard R-K process (Merson, 1972) or to a i

Tinear multistep method (Johnson et al.,1982). To integrate a system of n

first order equations !

the function evaluations for a 4th order R-K process may be written

K50 = 0F5 Wy, - Ynye)s

Ki? = hfi ( - yj,l + ap; Kjl, R

Ky, = 0fy Gy o v asn Ky +aaaKye o),

Kiy = 0fy (v yy o e Koy 4 aus Ky #aus Kiss ol ),
and Yi, o041 " Yin T2 wsKis’

S



Table 3.21

Coefficients for Fourth Order Runge- lutta Processes

Using Butcher notation 0
Caf az;
Csf as dsz2

Cu | au, dy2 ay 3

Cn 41 ., s nm-1
w, Wy wn
the classical 4th order R-K
is denoted by 0
1 1
2 | 2
10 3 :

S S T
5§ 3 5 & i
g
c.f. the Merson 4th order R-K
0.22524 0.22524
0.35201 0.17174 0.18026
1 1.63559 -5.93444 5.29884
0.33761 -1.11494 1.58366 0.179366
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where 3> Wy are constants and h = t2+1- t2 is the constant tabular
interval. Coefficients for a standard 4th order process are given in
Table 3.21. The x component of accderation of a planet of mass m at
heliocentric coordinates (x, y, z), relative to the centre of mass of the

‘sun and inner planets' mass Mg» 1S given by

N
. X X3 - X X 2
= - + =3+ Lo k? m, AN
X kz(mS m) < Ly ke = ?%J
J J
where r? = x2 + y2 + z2 , rj2___ Xj2*‘ sz" ,2

m = 1.00000597682 Mo 2

k? is the gravitational constant

d Co= .= X .

an Py = (x5 = %) j .
with hetiocentric coordinates of the jt“ planet denoted by (xj, Yo zj).

Similar equations exist for the y and z components of acceleration. The

values for planet masses used are given in Appendix 1.

3.3 Generation of Data

Having rewritten each set of three equations as six first order
equations, a program was constructed to evaluate position and velocity
components for planets Jupiter to Meptune,in double precision. A table
of positions and velocities was generated for each planet, using a step
Tength of one day, and initial data from Oesterwinter and Cohen (1972).
This information was output in machine form for 10 day intervals, to
form the database for the Gauss-Jackson program, which was then run to
evaluate the above equations, in double precision, using a 10 day integration
interval. Integrating over various periods from 1 vear to 50 years, final
values of position were output, and the generated results compared with
Eckert et al. (1953). Minor differences were observed in some coordinates.

The program was then run from JD 2420000.5 to JD 2441200.5. The
output coordinates were checked with Oesterwinter and Cohen (1975) and very

good agreement was obtained. It was thus decided that the minor differences
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previously observed in comparisons with A.P.A.E. XI could be attributed

to the sTightly different input information.

3.4 Choice of Starter Procedure

For a Runge-Kutta process of even order v and integration interval h,
truncation errors in position have linear agrowth components proportional
to hvt,and quadratic growth components proportional to WV t2 IF the
Runge-Kutta process is to be used only as a starting procedure, the Tow
order error terms will predominate; thus Merson (1972) has calculated a
non-standard 4th order Runge-Kutta process to minimise the linear error
term. A trial run of the sytem was thus carried out using this starting
procedure; however, no significant improvement was observed over the 1imited
timescale considered.

For integration over a long period of time, it was decided to replace
the starter with a 6th order Runge-Kutta process (Butcher, 1964; Merson, 1972)
to improve the precision of the starting table, and it was thought that

should a greatly extended database be required, consideration must be given

to the use of a multistep starting procedure, (e.g. Johnscn, 1982).

3.5 Further Evaluation

The Gauss-Jackson numerical integrator showed no appreciable Toss of
accuracy through the timespan considered, the accuracy of the starting table
being of prime importance. Thus it was decided that, with an improved set
of initial data, this program was adequate to integrate the planetary
equations of motion over a considerably Tonger time if required. However,
it was thought that the modification suggested by Herrick (1972) was not
appropriate in this situation, since its use could increase the accuracy

required of the starting table (Merson, 1972).
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Further runs checking the values of predictor and corrector
supported this view, and confirmed that a step-length of 40 days was
adequate for this sytem. The integration interval was altered accordingly,
and the systemset to provide an extended database of Jupiter, Saturn,
Uranus and Neptune coordinates if required.

For the purpose of constructing an 'alternate' solar system, the step-

Tength of 10 days in the Gauss-Jackson program and 1 day in the Runge-Kutta

program was retained.

3.6 An Alternate Solar System

Following numerical integration of simulated planetary systems,
Ovenden (1972) proposed a hypothesis of 'Least Interaction Action' which,
applied to the satellite systems of Jupiter and Saturn, gave good resﬁ]ts for
the satellite orbits. Applying this criterion to the solar system,the
author deduced a model for a previous configuration of planets, with a
planet mass of about 90 Mearth at the present distance of the asteroid belt,
this mass to have dissipated suddenly 1.6 x 107 years ago. N
As an alternate solar system was required, it was decided to :adopt X
this possible past configuraion of the solar system. Whilst the author
indicates the possibility of the existence of a ring of matter at 2.79 AU i
from the sun, the sudden dispersal of matter required by the model seems
more difficult to explain on the basis of a ring than of a single mass
(Ovenden, 1972). Thus it was decided to model the system under the latter
assumption, calculating initial position and velocity components from the

approximate figures suggested by Ovenden (1972), reproduced in Table 3.51.

3.7 Initial Conditions

In order to calculate the motion of a system of bodies by the Gauss-

Jackson technique, a set of starting values is required. Whilst, following
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TabTe 3.61

Orbital Parameters for Ovenden System

Planet a Planet a
Mercury 0.394 A.U. Jupiter 5.201 A.U.
Venus 0.719 A.U. Saturn 9.509 A.U.
Earth 1.00 Uranus 19.46 A.U.
Mars 1.49 Neptune 29.71 A.U.
A 2.794

where'a denotes the semi-major axis of orbit
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Ovenden (1972) the calculations could initially be made on the basis of
circular coplanar orbits, this is of limited value in constructing a
‘realistic' model; however, it is clearly not feasible to form a
definitive set of orbital elements for the Qvenden system. Consequently,
the planets Jupiter, Saturn, Uranus and Neptune (JSUN) were arbitrarily
given the orbital elements of epoch 1900.0, and were each placed at the
perihelion distance calculated from Table 3.61. This configuration allows
considerable angular separation between the planets, and thus it may
reasonably be assumed that the mutual perturbing forces are not too great.
Thus, if planet A is initially given a suitable position, with values of

@ (longitude of perhelion) of about 230°, @ (Tongitude of the ascending
node) of about 909, and inclination i = 0, then initial velocity components
may reasonably be calculated on the basis of undisturbed elliptic motion.
Because of the considerable perturbing force of Jupiter, planet A was
initially given a low value of eccentricity, similar to that of Venus.
Velocity V will thus be given for each planet by

V3 = {% - %} where a is semi-major axis of orbit

and r is the instantaneous radius of the orbit.

The normal to the orbit plane, n , will be given by

3>

= (sinf sin Q, - sing cos Q, cos %)
and ¢ = (x, y, 2)/ /XZ +yT 2%,

Thus V = (n x r) V
Y=

35>

where heliocentric ecliptic coordinates (x, y, z) for each planet are

obtained from

x = r [cosQ cos(w + v) - sin@ sin (w + v) cos i] ,
y =r [sin® cos(w + v) + cos sin (w + v) cosi]
Z =r sin (w + v)sin i

where w = o - Q.

For this case, |r| = a(l - e)
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3.8 Generation of Data for an 'Gvenden’ System

Position and velocity components were calculated (Table 3.61). Using
the standard 4th order Runge-Kutta program modified for this program, a
starting table was generated using a step-length of I day. The Gauss-
Jackson program modified for this system was then run using an integration
time of 10 days, initially for a period of 1 year. It was found that, as
expected, a 10 day step-Tengthwas adequate. The Runge-Kutta program was
then run over the same period, but with a step-length of 1 day, and a
random selection of .coordinates was output. These were found to be in
perfect agreement with the results of the Gauss-Jackson program, to the
accuracy of the input data, indicating the internal consistency of the model.
Several comparison runs over longer timescales yielded similar results.

The Gauss-Jacksen program was then run for the maximum number of
iterations permitted by constraints on computer time. Random sampling of
the output gave expected results. However, over a long period of time it
was observed that the radius of Neptune's orbit was oscillating below the
perihelion 1imit, to 29.44 AU ¢.f. 29.45 AU from theory. Restarting the
integration using the final sets of difference tables, positions and
velocity components, gave coordinates for a total of 110 years, with the
possibility of further integration,the practical limit on the system being
the stability of the integrating program. Checks on aphelion and perihelion
distances, on planet periods and on random selections of output coordinates
showed no evidence of spiralling of the numerical solution; as before, the
predominate factor determining the accuracy of the output data appeared to
be the accuracy of input conditions.

The numerical integration was then repeated for differing initial
configurations of all planets at aphelion. The resulting coordinates showed,
in the first 1000 iterations, variations in R larger than expected; however,
this did not appear to be due to a limitation in stability of the numerical

integrator. It is suggested that this behaviour is due to non-optimal



starting conditions, and it seems likely that the set of starting values
with all planets at perihelion lies closer to the optimal solution for this
particular system. Rerunning the system with starting conditions based
on this assumption, all distances set to the minimum of the distance
interval suggested by Ovenden, reduced the amount of oscillation
considerably. Initial conditions are given in Appendix III.

Starting data for the runs were then stored, and calculations were
made of various parameters of motion. The results are given in Section 4.

For these trial runs of an 'Ovenden' system, values for parameters
of elliptic orbits have been assumed. These may not be the optimal
choices, but do provide 'realistic'sets of data, with the additional bonus
that they may indeed represent a past configuration of the solar system.
Integration over a somewhat longer timescale is possible for this sytém,
with the reduced accuracy that is associated with the method of
calculation of the input data.

Itvwas expected that coordinates for the inner planets would be

generated analytically, snuulu they be required in later sections.

3.9 Discussion

The Gauss-Jackson nuherica] integration procedure is found to be highly
efficient and accurate for integration of planetary equations of motion, no
appreciable loss of accuracy being observed over 4000 iterations. However,
the critical importance df accurate starting conditions is very clearly
demonstrated; thus the use ofahigh order Runge-Kutta or multistep method
as a starting procedure is appropriate for long-period integration, and will
be used if an extended database is required. The model for an alternate
solar system based on a possible past configuration of planets(Ovenden, 1972)
is, with an appropriate set of initial conditions, generating a suitable

‘control system' database. Thus the planetary coordinates generated for
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this Ovenden system can be retained for the investigation into possible

links between the sunspot cycle and parameters of planetary motion.
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SECTION 4
Motion of the Solar System Centre of Mass

Because the orbital period of Jupiter (11.862 years) is close to that
attributed to the sunspot cycle (~11.1 years) there has been interest in
linking one with the other for a considerable time (e.g. Brown, 1900;
Pocock, 1918; José, 1965; Prokudina, 1978). The significant difference
between the two values has led to consideration being given to possible
modulating influences of the other outer planets, particularly Saturn
(Romanchuk, 1975A; 1976; 1977). Good correlations have been obtained |
(Bureau and Craine,1970; Sleeper, 1972; Morth and Schlamminger, 1979;
de Meyer, 1980). between various synodic periods of the four giant planets
and sets of periodicities detected in the sunspot cycle by other researchers
(e.g. Anderson, 1954; Cohen and Lintz, 1974; de Meyer, 1980).

Due to the importance of the outer planets in determining the motion
of the mass centre of the solar system, several authors have sought to relate
the sunspot cycle to parameters of this motion (Jos€, 1965; Wood and Wood,
1965; Dauvillier, 1970; 1975; 1976; 1977; 1978; Petrova, 1979). Whilst
few connections are made with the 11 year solar cycle (c.f. Wood and Wood,
1965) a long term periodicity in the motion of the centre of gravity of
160-180 years is generally reported (eg. José&, 1965; Dauvillier,1976; 1977;
Petrova, 1979) and identified with a long-term sunspot period.

The extent of the support given by several of the above papers (Jose,
1965; Bureau and Craine, 1970; Sleeper, 1972; Morth and Schlamminger, 1979;
Petrova, 1979; de Meyer, 1980) to the hypothesis of a connection between

planetary motion and the sunspot cycle,is reduced by their employing for
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comparison periodicities in the sunspot cycle whose existence is not proven
(see Sections 1 and 2). Similarly, the results obtained by Dauvillier ( 19763
1977; 1978) are limited by the small sample size used (Meeus, 1978).

However, interesting preliminary curves of motion are obtained by José (1965)
and an 11 year period is reported by Wood and Wood (1965). Hence it was
decided to investigate parameters of the motion of the solar system centre

of gravity around the sun, initially repeating the study of José (1965).

The intention was to broaden the scope of the analysis by using an accurate
model of the solar system; to remove the approximation of planar motion
imposed by the author; and to employ statistical analysis of generated data
in place of the more subjective criteria utilized by previous researchers
(e.g. Jose, 1965; Wood and Wood, 1965; Dauvillier, 1970; 1976 1977,

Petrova, 1979). It was intended further to use this more comprehensivé
system to examine other parameters of motion, and to investigate the results

of other authors, particularly Wood and Wood (1965).

4.1 Planetary Database

In order to investigate parameters of the motion of the sun with
respect to the centre of gravity of the solar system, an accurate database
of planet positions is required. For the initial research, magnetic tapes
of planet coordinates supplied by B.D. Yallop (Greenwich Observatory) were
utilized; these tapes contain the heliocentric equatorial rectangular
coordinates of the planets referred to epoch 1950.0. Data for the 5 outer
planets is taken from Astronomical Papers vol. XII, tabled at 40 day inter-
vals from JD 2378500.5 to JD 2451880.5. For Venus, Mars, and the centre of
mass of the Earth-Moon system, data is tabled at 10 day intervals over the
same period; for Mercury, data is supplied at 2 day intervals from
JD 2415416.5 to JD 2452048.5. Values for planetary masses are adopted from

Astronomical Papers vol. XIII, part II.

-102-



Simple calculation of the relative contributions of the planets
yields the result in table 4.11. As the relative contribution of the
inner planets is small, it was decided that initially, only the five
outer planets should be included in the calculations; thus the motion
studied was that of the centre of mass of the 'sun and inner planets’

with respect to the solar system centre of gravity.

4,2 Choice of Reference Plane

Let the masses of the outer planets be denoted by mey =1, 2, ... 53

their heliocentric rectangular equatorial co-ordinates by Xis Yis 255 1 =1,

. 5 and let the sum of the masses of the inner planets be Mg-

Then the X co-ordinate of the centre of the solar system is given by

m; X . . .
Xep = ——1=— with similar equations for Y.., Z...
EQ 21 1+mo+i§] m. EQ> “EQ

111

For a set of n planets, radius vectors Ri from an unaccelerated point

0, and mutual radius vectors rij = Rj - Ri
mimj ..
1 rjj ~i1]

ie~1=

m:R. = G.

i~1 J J £

where G is the gravitational constant.

n
Hence .Z m.R. = at + b a,b constant vectors

=1 i ~

From 0, the system centre of mass has a radius vector R, where

n
- Ry - SN
MR = .%; mR. , M m

So R = (at + b)/M; R=am .
S0, by taking vector products of R, Ei for each planet and summing:
n n Mimy

) ) .
= _— . P 1
iy MR R TG e R .

and hence

[[Rngi)

MRy x By =L

1=

iL1 MRy x By = 054

where constant C defines the 'invariable plane' of Laplace.
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ReTative contributions of planets

Planet H Planet H
Mercury 0.000 000 06 Jupiter 0.005
Venus 0.000 001 8 Saturn 0.003
Earth 0.000 003 0 Uranus 0.009
Mars 0.000 000 5 Neptune 0.0016
Pluto ~0.000T

Here, H = mass x mean distance from sun

where mass is in unit of the sun's mass
distance is in astronomical units.
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4,3 Initial Examination

The heliocentric rectangular equatorial co-ordinates of the solar
system centre of mass were calculated for the period JD 2378500.5 to
JD 2451880.5 and were checked by comparison with those obtained by
Eckert et al. (1950). It was decided to yse the 'invariable plane' as
the reference plane for the investigation, in order to minimize the
z-component of motion, and thus permit 2-dimensiona] representation of
the path of the sun with minimum distortion. The transformation
equations used are tabled in fppendixII, together with elements for the
invariable plane adopted from Astrophysical Quantities (1950).

The co-ordinates (X, Y, Z) of the sun with respect to the centre
of gravity of the solar system were calculated for the 200 years of data
available. As it was found that the Z co-ordinate was of order ]O'S;Ié.f.
the X, Y co-ordinates of order ]O'é, projected distance D on the XY plane,
and angle 9 = tan_l(Y/X) were computed, and plots were drawn of the path
of the sun in the invariable plane (figure 4.31). These spiral motion
polar plots were found to be in good agreement with those reported
previously (Jose,1965; Dauvillier,1977; 1978). It is seen that the
distance D may vary from 0.0] Ro to 2.19 Ro'

In order to investigate the spiral motion more fully, further

parameters were considered:

Distance R = /XZ Y2t 72
and

L7 L) L] l
Velocity vV = (X* + V2 + 72)2 ;

The instantaneous radius of curvature of the sun's path;

p=V3/A
. o PR 1

where A = [(?i - IY)?% + (ZX - ki)z + (Xf - ?X)Z]é;

angular momentum L of the sun about the centre of mass:
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Figure 4.31
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L = [(YZ - IV (ZX - XIY+ (XY - YX)Z} 2

and the angular momentum about the instantaneous centre of curvature

P = pV. The changes with time of P and L were also computed. Samples
of the data obtained are plotted in figures 4.32 and 4.33 (with full
200 year plots of R and p graphed in Appendix II]). It is clear from
these graphs that quasi-periodic variations are present, but no single
periodic effect can be isolated by eye from the data. Hence it was

decided to examine the above parameters for an 'Ovenden' system, for

comparison.

4.4 Motion of an 'Ovenden' System

Using the data previously obtained for an 'Ovenden' system (Section
3), co-ordinates for the centre of mass of this solar system relative ~
to the 'suﬁ and inner planets' were computed for a period of 100 years.
Initially, the 'perihelion' set of data was used to calculated the
distance R. As before, the z-component of motion was found to be small
c.f. the x and y components; thus distance D and angle © were calculated,
and a polar plot for the 2-dimensional motion was drawn (figure 4.47).
The resulting curve was found to be very similar to figure 4,31, the
effect of planet 'A' being apparent as a slight distortion of the
spiral pattern.

Reworking the above analysis for several other sets of 'Ovenden'
data yielded co-ordinates for the system centre of mass not appreciably
different from those previously obtained, and so only a single data set
was retained for futher work. A graph of the variation of R with
time was drawn (figure 4.42). Comparison with figures 4.32 shows that
planet 'A' exerts an appreciable effect on the distance parameter D.

This perihelion set of data, for a period of 100 years of coordinates
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Figure 4.41 Path of the sun in the invariable plane

for an 'Ovenden' system
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for the centre of mass of an 'Ovenden: system was thus retained for use

as a control system.

4.5 Detailed Investigation

[t was decided to conduct a thorough investigation into parameters
of the sun's motion, including in the calculations the effect of the
inner planets as previous researchers, (Wood and Wood, 1965; Dauvillier,
1977), had indicated that these might have an appreciable effect. Also,
rather than use the subjective methods of data inspection previously
employed (e.g. Jose, 1965; Wood and Wood, 1965; Dauvillier, 1977) it
was decided to use power spectrum analysis to search for periodic
effects.

The parameters previously studied were computed using all p]aneté;
for the hundred years of Mercury data available, at time interval 10
days. Samples of the resulting curves were compared with those
previously obtained, and slight effects of the inclusion of the inner
planets were observed (a sample of curves of R is given in figure 4.57).
The other parameters studied showed similar slight oscillations.
Recalculating all parameters, excluding Mercury, yielded curves with
no discernable difference from those previously obtained, and so all
parameters were recalculated for the interval 1800 January 4.5 to
2000 December 2.0, using b]anets Venus to Pluto.

Using a modification of the statistical technique previously
outlined in Section 1, the variation in R was examined for the 39 year
periodicity reported by Dauvillier (19765 1977). Using a frequency
spacing of .001 c¢/yr with Tower frequency limit set at .01 ¢/yr, a power
spectrum was generated from data sampled at 40 day intervals (figure
4.52). It is clear from this spectrum that two sharp peaks exist at

.f_‘

1

.050+ 001 ¢/yr and f = .078 = .001 c/yr. A minor peak is observed
at .072 c/yr.
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Table 4.53

Synodic Periods of the Quter Planets

Planets Frequency Planets  Frequency
J-S 0.05035 c/yr S-Uu 0.02204 c/yr
J - U 0.07240 c/yr S-N 0.0279 c/yr
J-N 0.0782 c/yr U-N 0.0058 c/yr

Here, J denotes Jupiter U denotes Uranus
S denotes Saturn N denotes Neptune

and - denotes alignment.
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This almost completely deterministic data contains very Tittle
noise, the planet co-ordinates being highly accurate (Brouwer and
Clemence, 1950). The regular sampling reduces the errors due to
imperfect cancellation of cross terms (Ponman ,1981) and so the errors
due to noise (eqn. 1.5(I1]) and variance (egn. 1.Z5(N)are small. An error bar
for the Towest significant peak is drawn in figure 4.52, and it is seen
that there are 3 peaks of interest.

Calculation of various planetary synodic periods yields the results
in Table 4.53. From these figures it is clear that the appreciable
power in the spectrum is contained in peaks which represent various
synodic periods of the outer planets. It is noted that the J-N alignment
exerts a stronger influence than the J-U alignment, a result indicated
by Table 4.53.

No evidence is seen of the reported 39 year variation in R (Dauviller,
19765 1977) and no pefiodicity compatible with that of the sunspot cycle
is detected. Thus the preliminary analysis of Dauvillier (1977) and
Sleeper (1972) are not borne out by more comprehensive examination.

Using the same frequency range, spectra were obtained for V, L
and p (figures 4.54, 4.55, 4.56 respectively), error bars being given
for the lowest peak of interest in each case. Peaks identified with
planetary synodic or sidereal periods are so marked. It is seen that
the spectra for V and p reveal only 1 significant peak, at the J-S
synodic frequency. The distribution for L is more complex, with
slightly broader peaks; however, the only appreciable peaks correspond
to J-S, J-U, J-N synodic periods, with a marginal peak at .085 c/yr
tentatively attributed to the sidereal period of Jupiter. Spectra were
2150 obtained of P (figure 4.57) and L (figure 4.58). That of b

indicates only the influence of the J-S synodic period; that of L has
peaks at J-S, J-U, J-N synodic periods.
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4.6  Further Analysis

It was decided to investigate further parameters of motion.
Because motion at right angles to the invariable plane had been

ignored previously, the variation of the 7 co-ordinate of the sun's

position was analysed, a sample of the curve being given in figure 4.61.

The effect of Mercury on this co-ordinate was again found to be
negligible, and so a spectrum of al] 200 years of data was produced
(figure 4.62). It is seen that the frequency distribution of this
spectrum differs markedly from those previously obtained; the two
high peaks may be identified with the sidereal period of Jupiter and
Saturn. Some residual power is observed at the Timiting low frequency
.01 ¢/yr, indicating the presence of longer-period components, possibly
corresponding to sidereal periods of Uranus and Neptune. Examination
of the variation in Z for an Ovenden system (figure 4.64) revealed
very little influence of A on parameter Z due to the choice of its
plane of orbit.

The acceleration of the Sun with respect to the centre of gravity
of the solar system was then computed. It was again found that Fercury
had no observable effect, and so using data from AD 1800 to AD 2000, a

spectrum was calculated for acceleration 'a', where

The resulting frequency distribution (figure. 4.63) has 2 high peaks,
identified with the J-S synodic period and the sideral period of Jupiter.
No effect is discemnible ator around a frequency of .09 c/yr in

contrast to the results of Wood and Wood (1965).

4.7 Constraints on Resolution

The components of acceleration'a'were derived using numerical
differencing; this process inevitably reduced the precision of the out-
Put data. When the small magnitude of the numbers concerned was
considered ([ and P are of order 107°) it was not thought practicable
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to difference yet again in order tg examine directly parameters of the

'jerk force' investigated by Wood ang Wood (1965), and defined as

the change of acceleration. However, it is possible, using the power

spectrum already obtained for acceleration A, to predict the structure

of a power spectrum of 'jerk force' using the filter factor (section 2).

Applying the difference filter

to input data is equivalent to a filter factor of

Fv(w) =2 (1 - cosw)
where w is frequency and Z = relf,
The effect of passing data through this filter (figure 4.71) is to reduce
the power at low frequencies. This effect may be observed in the
spectra of angular momentum L, and that of [ (see figure 4.56); in thé
spectrum of L, where L was obtained by Tinear differencing from L, the
relative power of J-U and J-N frequencies is boosted with respect to the
power at the J-S frequency. The height of the J-N peak is also boosted
with respect to the peak height at the J-U frequency.

This method permits prediction of information which is present in
the spectrum of the 'jerk force' from the spectrum for acceleration a.
However, it is found that although power at low frequencies is reduced
c.f. higher frequencies, there is no peak at a frequency of 0.09 c/yr
which could be 'amplified' by the differencing process. It was not
considered practicable to attempt an evaluation of the 'rate of change
of jerk force' considered by Wood and Wood (1965) for the reasons

already stated.

4.8 Analysis of a Control System

As the influence of the inner planets on the motion of the solar

system centre of mass was known to be small (section 4.5) it was
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Table 487

Planetary Synodic Periods for an Ovenden System

Planets

Period Planets Period
A-1J 7.69 years J-U 13.81 years
A-S 5.55 years J - N 12.84 years
A-U 4.94 years S-U 44 .54 years
A-N 4.81 years S -N 35.81 years
J - S 20.01 years U-N 182.7 years
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decided that the result already obtained for motion of the outer planets

. 1 i
in an 'Ovenden’ system were adequate for analysis. Various synodic

periods of the system were therefore calculated (table 4.81). With a

lower frequency limit of 0.02 c¢/yr and a spacing of 0.001 c/yr, the

variation in R with time was analysed. A sharp peak was observed at a

frequency of 0.050 c¢/yr, identified with the J-S synodic period, with
a smaller peak at 0.078 c/yr corresponding to the J-N alignment. Two
marginal peaks were also observed, at the J-U and J-A synodic frequencies.
No other synodic frequency of 'A' was found. An analysis of the Z
co-ordinate motion of the centre of mass revealed only the sidereal
periods of Jupiter and Saturn, as expected.

It was not considered relevant to continue with this analysis, as
the power spectra for R and Z were so very similar to those obtained fbr

our present solar system (figure 4.52) that the behaviour of other

parameters of motion was predictable.

4.9  Discussion

[t is apparent from the analyses in this section that the use of
any arithmetic operator on input data can alter the character of the
output information, for example by creating 'artificial' periodicities
Or suppressing those already present. Hence it is important to ensure
that sufficient physical justification exists for any functions
employed in such an analysis. For the 'jerk force' considered by
Wood and Wood (1965) ,this condition would not appear to be met, as the

authors themselves acknowledge.

From the analysis of the various parameters computed in this section,

the importance of the sidereal periods of the outer planets in determin-

ing the motion of the sun around the centre of gravity of the solar

system is evident. Thus it is not surprising that both Jose (1965)
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and Petrova (1979) report a 179 year ‘periodicity' in various

parameters of the motion studied. Consideration of planetary orbits

indicates that approximate 4-planet alignments occur at ~ 180 year
intervals. Whilst this is a quasi-periodic effect rather than a true
repeating pattern it is maintained over a considerable timescale.

With the detection of an approximately 200 year variation in sunspot

and auroral records (section 1), the possibility of a connection between

the sunspot cycle and the motion of the sun around the centre of
gravity of the solar system cannot be entirely excluded; however, no
correlation is found between the eleven year sunspot cycle and any
parameter of motion of the system centre of mass. With the limited
amount of sunspot data available, it would seem to be more practicable
to search for planetary effects on the sun which might be apparent
over a shorter timescale, such as the tidal influence exerted by

planets at the sun surface.
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SECTION 5
Tidal Influence of Planets on the Sun

Several researchers seeking to connect planetary motion with the
sunspot cycle have considered the motion of the inner planets, matching
various synodic periods (Sleeper, 1972) and combinations of the inner
and outer planet 'synodic resonances' (Romanchuk, 1981) to the 11 year
sunspot period. Also, Bigg (1967) has examined the sunspot numbers for
periods of inner planets. However, the majority of research involving
the inner planets is directed towards the effect of tidal forces raised
at the sun surface. Although the actual 'tidal heights' involved are
of small amplitude, it has often been suggested (e.g. Wood, 1972; 1975;
Dauvillier, 19763 1977; Romanchuk, 1981) that a small periodic tidal
component could act as a 'trigger' to sunspot activity, and several
qualitative approaches, advancing general arguments (Brown, 19003
Anderscn, 1954; Dauvillier, 1970; 19763 1977; 1978; Prokudina, 1978;
Krymsky, Petikhov and Nikolaev, 1978) have given widely differing
opinions on the subject. Some authors have favoured a direct approach
to the tidal problem, comparing heliocentric longitudes of two or three
principal tide-raising planets with sunspot or flare appearances (e.q.
Schuster, 1911; Dingle, van Hoven and Sturrock, 1973). Others have
considered sequences of tidal planet conjunctions, with direct

comparison to times of appearance Of sunspots or flares (Blizard, 1968)

or by matching periodic variations in tide amplitude rased at a series

of planet conjunctions with the 11 year sunspot period (Wood, 1972

Condon and Schmidt, 1975; Wood and Wood, 1975). Several numerical
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evaluations of functions of tida] height rajsed by three or four

planets on the sun surface have been performed (Okal and Anderson, 1975:

Smythe and Eddy, 1977; Krymsky, Petikhov and Nikolaev, 1978), and the

results analysed for both the 11 year variation (Smythe and Eddy, 1977)

and the multiple periodicities of Cohen and Lintz (1974) with negative
results. However, direct comparisons of similar tidal height functions
with active centre appearances (Trellis, 1966 A; B; C; Ambroz, 1971)
yielded tentative positive results,

Of the approaches outlined above, there is naturally a degree of
uncertainty abdut the validity of the simplest methods (e.g. Dingle et
al.,1973). The planetary conjunction work of Wood (1972) and of
Wood (1975) yields tidal functions with impressively close period
matches to the sunspot cycle length (11.08 years, 11.14 years c.f.

11.08 +.02 years). The negative results of Okal and Anderson (1975)
and Smythe and Eddy (1977) are also of considerable interest, and it
appears likely that any attempt to correlate 'solar tides' with the
sunspot cycle must be able to explain these papers.

Since only four planets were considered by previous researchers, it
was decided to utilize a full nine planet solar system model to calculate
functions of the tidal height, and, as in the previous section, to
employ statistical techniques of analysis to avoid the possibility of
unconscious bias of results, and to search the tidal functions for
periodicities.

Initially, it was decided to investigate the work of Wood (1972)

and, if appropriate, to extend the scope of the analysis and seek a

physical basis for the tidal function considered.
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5.1 Tidal Equation

Consider the system of a sun, mass M, disturbed by one planet P.

Taking P to be a point mass m, the undisturbed potential at some

point C on the solar surface, radius ro from the sun centre, will be

given, inspherical polar coordinates, origin sun centre, by
kM .
V, (r, 6, ¢) = - T where k® is the constant of gravitation.

0
The planet P effectively increases the sun radius by a tide height h;
thus the new potential will be

V, (R, 8, ¢)+.V, (R, 68, ¢) = constant; R=vry,+h

Defining the polar system of reference such that & is the heliocentric
angle between P and C, the disturbing potential at C may be expressed

in terms of the tidal height:

2 _L2
V2 (Rs ea ¢)) = - kdm - k m}n? Cose\

if h<<r,

where r is the distance of P from the sun centre

and d is the distance of P from C.

Expanding in a series of Legendre polynomials, the tidal height at C

due to planet P may be written as

- kzm 4R2 2 4R3 3 _
h(t, ¢) = B [-7;3 (3p® - 1) + e (5p 3p)
R* 5.1(1
+ 75(35p% + 30p% + 3) + ....] (1)
where p = AR
P = cosH and g = 37,

Truncating to first order, and setting 8 = 0 to evaluate the maximum

contribution from planet P;
(o) = KR eR* (), 10D

= )_‘ 3

rig = g

. . ) tion t
Denoting the maximum height by Hyp» the first order approximation to

the tidal height at any time may be written as
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M(0) = 2 iy (05”0 - ) 5.1( 111)

5.2 Initial Evaluation

Using orbital elements taken from Astrophysical Quantities (1955),

the maximum relative tidal 'height' Him was evaluated for each planet

(Table 5.21) together with minimum and mean 'height'. It is evident

that the major "tide-raising' planets are Jupiter, Venus, Earth and
Mercurys; also that the greatest variation in tida] effect Hig 1S that
of Mercury, with a difference ratio of over 3:1 between highest and
Towest possible values.

If it is assumed that planetary orbits are essentially coplanar,
equation 5.1(711) indicates that the tidal heights raised on the sun
surface by two planets may be added numerically at all points on the
surface when the planets are at conjunction or opposition. In the
case of Earth and Venus, this combined tidal height Hy, is found to
vary between successive alignments by a maximum of 6%. Thus,
assuming this value to be a constant, Htmv the change in tidal height
in the direction of Jupiter between successive alignments of Earth
and Venus will be given by
Mt = Hip (cos?gpe - cos®dpo) 5.2()
when ¢, = o5 - opy and ¢ denotes E-V conjunction;

¢rc denotes E-V opposition;
denoting the true longitude of Jupiter by ¢ and that of Earth and
Venus at conjunction or opposition by ¢py.

Hence a dimensionless tidal function may be defined (Wood, 1972)
by
BHY = cos® b " cos? b0 5-2(1h)

It should be noted that this function has physical reality only at
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e e e

Relative Maximum Tidal Heights

Planet Him Planet Him

Mercury 1.17 = .66D Jupiter 2.29 + .33D

Venus 2.16 + ,05D Saturn 0.07 + .02D

Earth 1.00 = .05D Uranus 0.010 = .008D

Mars 0.03 + .01D Neptune 0.00064 + .00001D
Pluto 0.00002 + .00001D

where D = KR x (A.U.77)

R
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times of Earth-Venus alignment, and that it is assumed implicitly

that the tidal height equation 5.1(i) is sti1] reasonably accurate

when truncated to first order.

A basic solar system model was constructed to evaluate AHy  for

all dates of E-V alignment from AD 1800 to AD 2000: The results,
together with the smoothed monthly sunspot numbers for the same
period, are graphed in figures 5.21a, 5.22a and 5.23a. Good agreement

is obtained with the results of Wood (1972), with an approximately

eleven year variation present in AHg.  However, the calculations for
AHt' indicated that the value obtained was critically dependent on the
precise time of E-V alignment; thus it was decided to compute the first
order tidal height raised by the planets at the sub-Jupiter point

(from equation 5.1(111)) for times of E-V conjunction and opposition.
The results were found to be similar to those already obtained

(figures 5.21b, 5.22b, and 5.23b).

Because of the considerable tide-raising effect of Mercury, it
was not thought valid to exclude the planet from calculations on the
basis of its short period (c.f. Wood, 1972; Wood, 1975). The change
in combined tidal heights between dates of E-V conjunction and
opposition was thus recalculated for four planets; the results
(figures 5.21c, 5.22c, 5.23c) indicate that the contribution of
Mercury to this tidal function is considerable. For this reason,
the combined tidal heights were calculated for series of times
between those of E-V alignment. It was found that the tidal 'height'
at the sub-Jupiter point varied widely between successive alignments
and that the function 5.2(ii) did not describe in any meaningful
sense the varjation with time of the tidal effect of planets on the

sun.  However, the close agreement obtained between AHy and curves

of sunspot activity (figures 5.21d, 5.22d, 5.23d) renders necessary



Figures 5.21 Tidal functions for period 1800-1850
5.22 Tidal functions for period 1850-1900

5.23 Tidal functions for period 1900-1950

. . 20 2
Tidal function a) cos Qrc cos ﬂro

b) Tide (JEV)gy - Tide (JEV) g,
C

0

EV

¢) Tide (JEVM)g, - Tide (JEVM)
C 0

d) Smoothed monthly sunspot number Ngs
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Figure 5.23
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some explanation of the presence of this eleven year 'tidal variation’

5.3 Effects of Aliasing

The sampling interval utilized in the preceding work is effect-
ively 0.8 years, an unusually large time interval to employ when
searching for an eleven year variation. As the value of the tidal
periodicity obtained (11.08 years) is very nearly an integral number
of sampling intervals, it is possible that aliasing could be affecting
the result.

Assuming planetary orbits to be circular and coplanar, V-E
alignments will occur precisely at time t = NTa, where T, is constant.

Thus, equation 5.2(1) may be expressed more generally;

Ay = 1.5(Hy  + H { cos? 8,9 (t+1)) - cos?6._,(t)} .

Me ) val
For circular orbits, eVJ(t + 13) = evd(t) + GVJ(Ta),
and substitution yields

By = =1.5 (Hy, + Hye) sin (26, 5(t) + 8,5 (15)) sinby(ta), ... 5.3(i)

ME ° HMV are assumed constant, only one component 1is varying;

thus the period of AH

As Ty H

T is that of Zevd(t) ie. 2(v, - vJ) where v, v

are the frequencies of the orbits of Venus and Jupiter respectively.
The critical sampling frequency (Nyquist frequency) V. is here
given by

ve = (2 )7,

Thus the actual periodicity obtained is a solution of

' = + 3 etc.
V1 = |M(\)V - ) - 2(v, - vJ)l M==x1,2

Smoothing selects the lowest frequency beat note, corresponding to

M=+ 5. This gives a value of \)_i_ = .04519 c/yr or a period of 22.13

(Bracewell, 1965) has
(1).

years. Hence it is evident that undersampling

artificially lengthened the periodicity of the tidal equation 5.2
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It is clearly possible to derive similar equations for other
combinations of planets. As it is evident that the Tong period
variation produced by equation 5.3(i) arises because the tern
IVV - VE' is small, it is of interest to examine the tidal height
produced in the direction of Mercury by successive E-V alignments.
The solution

\)‘=1O\)V—8\)E-2v

T M
yields a periodicity of 20.4 years, indicating that short planetary
periods are able to produce long period effects, and confirming that
it is not valid to omit the contribution from Mercury on the grounds
that its period is too short to exert appreciable Tong-term influence.
In an 'Ovenden' system, the tidal effect of A is dominant, its
influence being twice as great as that of Jupiter; thus the three
major tide-raising planets are A, Jupiter and Venus. A similar

analysis for the tide at the sub-A point raised by Venus and Jupiter
yields

v% =|M<vv'vJ)"2 Wy 'VAH
with a lowest beat frequency of M = 2 corresponding to a period of
3.816 years. A longer periodicity of 20.4 years may be observed in
the tidal function variation under Venus caused by alignments of J

and A;
ViE M vy - vg) - 20 vyl

The existence of a class of such functions with widely varying

characteristic periods further reduces the significance of the Tow

frequency variation of 5.2(i). It appears probable that the very good

period match obtained between 'Wood's function’ and the sunspot cycle

is wholly due to the effects of aliasing. HWhilst broadening the

analysis to include the effects of elliptic orbits does produce a
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variation in the resulting period comparable to that inherent in the

eleven year sunspot cycle, there does not appear to be sufficient

physical basis for this function to regard it as other than an

interesting coincidence.

5.4  Further Investigation

It was decided to conduct a thorough three dimensional evaluation
of the tidal effect of planets on the sun, including in the ‘calculation
all planets. Preliminary evaluation of the tida] height h(s, ¢) for
the four major tide-raising planets indicated that the truncation of
the tidal equation to first order was not justifiable. It was sub-
sequently determined that terms up to fifth order in cos(8) were
necessary to obtain an accurate estimation of tidal height.
Accordingly, a computer model was constructed to evaluate the 'relative
tidal height' at a point on the sun surface due to all nine planets.
Data for planet positions was taken from the Greenwich tapes previously
used, and a point C was initially selected on the solar equator as
close as possible to the sub-Jupiter point. However, there did not
appear to be a valid physical reason for considering this point to be
of special significance; the sub-Mercury point might be of more
importance, since Mercury has the slowest rotation rate relative to
a point on the surface of the rotating sun, and its orbit is inclined
to within 10 of the inclination of the solar equator. After some
preliminary evaluations it was decided to examine the tidal effect at
a point C rotating on and with the solar equator.

The tidal 'height' was calculated from JD 2415420.5 to JD 2451880.5,

initially at 10 day intervals. As the variation between successive

i to
values was found to be considerable, 1t Was found to be necessary

interpolate the planet co-ordinates to enable generation of daily
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values of (0, ¢) in order to produce a smooth curve; with more data

it became evident that sampling at two day intervals just sufficed

to describe the variation. A sample of the tidal curve generated is

given in figure 5.41.

5.5 Analysis of Tidal Effect at Sun Equator

Because of the large quantity of data involved, simple statistical
methods were not found to be practicable. Some analyses were under-
taken scanning the data for times of maximum/minimum tidal height,
but these were not considered to be adequate. An attempt was made to
use the spectral analysis techniques outlined in Section 2, as the
input data is reduced to a correlation function, requiring less storage
space in the computer. However, the correlation function did not damp
out, indicating the presence of strong periodic components in the data,
and attempts to filter the data werenot successful. Consequently,
although the volume of data involved rendered the calculations more
tedious, a least-squares fit Fourier analysis technique was employed,
similar to that used in Section 1.

Previous analyses of a 'tidal function' had detected sidereal
and synodic planetary periods in the tidal data (Okal and Anderson,
1975; Smythe and Eddy, 1975). Accordingly, various synodic frequencies
of tide-raising planets were calculated, and are given (Table 5.51)
for reference. Because of the deterministic nature of the data, it
was found to be practicable to analyse to the theoretical Tower
frequency 1imit, and so the data was initially analysed over the
frequency range f = .02 c/yr to f = .50 ¢/yr. The resulting

spectrum is shown in figure 5.52. It is evident that there exists

: i dic or
N0 appreciable power at frequencies corresponding to synodi

sidereal planetary periods, and that a single significant peak 1is



Planet

Synodic Frequencies of Principal

Tide-Raising Planets

Mercury Venus Earth
Venus 2.527 c/yr
Earth 3.152 c/yr 0.625 c/yr
Jupiter 4.068 c/yr 1.541 ¢/yr 0.916 c/yr
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present at a frequency of .115 ¢/yr,

The spectrum was then calculated for frequencies up to 8 c/yr.
No appreCiab]evpower was observed below 4 c/yr, but a high peak was
detected at a frequency of 4.15 c/yr, corresponding to the sidereal
period of Mercury. It is suggested that contributing to this large
periodic effect is the 3:1 variation in tidal height raised by the
planet, which is not distorted by the inclination of the orbita]
plane of the planet. No other peaks which could be attributed to
planet periodicities were present in the spectrum, although the

presence of residual power at low frequencies was noted.

5.6 Analysis of Tidal Effect for Control System

As previous research had indicated the presence of planet synodic
and sidereal periods in the simple tidal functions considered (Ckal
and Anderson, 1975; Smythe and Eddy, 1977; Krymsky et al.,1978) it
was decided to repeat the above analysis for a control system.
Accordingly, a data set for an Ovenden system was generated at ten
day intervals for a period of fifty years. The considerable
contribution to the tidal effect of the inner planets necessitated
their inclusion in the control system; for the intial evaluation
actual coordinates for planets Mercury, Venus and Earth were
arbitrarily chosen from epoch 1900.0, and the tidal effect at a point
on the solar equator was calculated (a sample of the curve obtained

is given in figure 5.61). A power spectrum was then generated for the

frequency range 0.004c/yr to 4.0 c/yr, and a significant peak was

observed at the low frequency end of the spectrum (figure 5.62), at a

frequency of .43+ .005 c/yr. A low, broad feature at ~ .17 ¢/yr was

not found to be significant, and no effect was discernable at 115 ¢/yr.

'ri ! tral
The reduced sample size is apparent from the 'ripple' on the spectra
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curve. The peak at .43 c/yr was identified with the frequency 2vy

and the feature at ~ .17 c¢/yr was tentatively ascribed to the effect

of Jupiter. Subsequent spectral analysis at frequencies up to 8 c/yr

revealed a very high peak at the frequency of the orbit of Mercury.
The analysis was repeated using coordinates for the inner planets

generated analytically from standard formulae, using values for semi-

major axes given in Table 3.61, and with the eccentricity and plane of

each orbit retaining their present values. The generated curves were

found to have a similar character to those already obtained, and spect-
ral analysis of the data yielded significant peaks at .43 ¢/yr and

4.15 c¢/yr, as before. However, it was observed that the noise in the
high frequency range was somewhat lower than that in the spectrum
previously obtained. Examination of both spectra in the high frequency

range revealed only harmonics of the rotation frequency, with no

significant effect at or around the frequency 2y

5.7 Effects of Smoothing

The rapidly changing value of the tidal effect at a point rotating
on the solar equator invites the use of smoothing techniques to produce
a more manageable set of data whilst retaining a good description of the
overall variation. Calculation of monthly averaged values did not
yield a smoothly varying function, and so it was determined to fit a
series of moving average curves to the tidal data, and to assess the
effect of this process on the tidal power spectra. It was realised
that spectra for such smoothed data could be predicted analytically
from the original spectral analysis results using the Filter Factor
technique, thus avoiding the tedious computing otherwise required.
d from fifteen

Consider the moving average tidal height average

2-day interval values for each point.
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Here, ¥ (Z) = 1/15 (1 + 2+ 7% 4+ 73 4y 7+, + 79
where Z = et

yielding a filter factor F(w)

Flw) = 2/225 (7.5 + cos 14w + 2cos13y + 3cos 12w

+ 4cosllw + 5c0s10w + 6cos9w + 7cos8y + 8cosTw

+ 9cosbw + 10cosbw + 11cosbw + 12cos3y + 13cos2w + coslduw)
where w 1S frequency.

This filter factor was calculated for values of w from 0 to 2m, and
the resulting spectrum is shown in figure 5.71. It is seen that there
is a rapid fall to zero at just over .436 ¢/ unit time with much
smaller ripples at higher frequencies. Since the new output system
gyx (w) may be obtained from the relation

In gyyx = In F + 1In gy,
where g, is the original spectrum, it is clear that the effect of this
filter is to eliminate high frequency peaks in the original spectrum,
allowing a Tittle power through at some frequencies.

A type of smoothing often used to 'damp out' very short-term
fluctuations is a Recentred Moving Average technique. A simple four
point recentred M.A.,

Y(Z) = 3(1 + 22 + 27% + 27° + I%)
has a filter factor

F(w) = 1/32 (7 + 12cosw + 8cos2w + 4cosdw + cosdw)

From figure 5.71, it is seen that the effect of this type of smoothing
is greatly to reduce the 'ripple effects' of the standard M.A. process,
and hence to eliminate high frequency response almost entirely.

Thus it is clear that the effect of prefﬂtering the tidal data,

either simply by averaging over a time interval, or by using more

Sophisticated smoothing functions, is to eliminate high frequency peaks

in the original spectrum, and selectively to Doost those at Tower
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frequencies. Any of the above processes applied to the equator tidal

data will yield a spectrum with only one significant peak, at ~8.7

years. However, it is also apparent that no new peaks will be created

by the application to this data of such M.A. processes.

5.8 Discussion

It is evident that the tidal effect experienced by a 'sunspot!
rotating on and with the solar equator alters on a timescale of days;
thus functions evaluated only at times of planetary alignments
(Blizard, 1368; Dingle et al.,1973; Dauvillier, 1976; 1977; Prokudina,
1978; Krymsky et.al.,1978; Romanchuk, 1981) are not able to trace the
variation in a meaningful way. Some additional physical justification
for the use of such functions is thus required. Also, the consider-
able periodic effect of Mercury on any parameter of tidal action
implies that reults obtained from models which exclude the planet are
inherently inaccurate.

The analyses previously undertaken of tidal height at a point on
the solar surface (Okal and Anderson, 1975; Smythe and Eddy, 1977) have
identified various planetary synodic and sidereal periods from power
spectra of the tidal data, with no other periodic term detected.
However, the results of this investigation are not in accord with
previous research; no evidence is found for any periodic component of
the motion of Venus or Earth being expressed in the overall tidal

height at the solar surface. This is also found to be the case for

the tidal forces within an'Ovenden' system. MWhilst the control system

displays a possible slight influence of Jupiter, no such influence

s observable in analysis of the tactual' system, although it 1s

i nasked
feasible that a very slight effect of Jupiter could be present, maske

by the residual Tow frequency power.



It appears probable that the Principal reason for the recovery
essentially of onlyinput information in previous work, is the

truncation of the tidal height €quation to first order. In al] the

research papers considered, the tidal equation quoted s 5.1(i11); no
consideration appears to have been given to the significance of higher
order terms, although terms of up to order (cosB8)® are found to be
significant for some values of 8.

The comparatively high tidal potential of A is apparent from
figure 5.62. It is evident that the Tow eccentricity of the orbit
assigned to the planet causes the frequency 2vy to (t;gx;:’pressed; it
is seen that there is no discernible power at frequency Vp.  Contrast-
ing this behaviour with that of Mercury in both actual and contro]
systems, it is clear that the ellipticity of the planetary orbit is of
critical importance in determining whether the fundamental frequency
of orbit, or the first harmonic, is expressed in the tidal effect.

It is,therefore, possible to predict the effect on the control system
tidal variation of an increase in the ellipticity of orbit assigned to
A. Of more immediate import, it is apparent from the behaviour of the
control system that the dominant frequencies which would be observed
in the tidal data, if Venus or Jupiter were exerting an appreciable
periodic effect, would be 2vy and 2v, rather than the fundamental

frequencies of orbit indicated by previous research (Smythe and Eddy,

1977; Krymsky et al., 1978). No higher harmonics of orbital frequencies

are observed in any of the poWer spectra generated (c.f. Okal and

Anderson, 1975).

The one unexpected, significant feature of the tidal variation at

the solar equator is the periodic variation in tidal effect at a

frequency of .115 ¢/yr. This effect is not identified with planetary

inati ' ve reveals
synodic or sidereal periods, and examination of the tidal cur



modulation of the amplitude of the short period tidal variation with

a mean period of ~ 8.7 years. This intriguing long-period effect

clearly merits further investigation.
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Section 6

Latitude Distribution of Tidal Variation

Very little work has previously been undertaken to evaluate
possible Tinks between the distribution over the sun surface of sunspots
and parameters of planetary motion, although a connection between
sunspot births and a parameter of planetary tidal effect has been
suggested (Trellis, 1966A, B, C). Series of planetary conjunctions of
the four major tide-raising planets have also been correlated with
short-term flare occurrence(Blizard, 1968), and occurence of calcium
flocculi has been linked to the tidal effect of the six innermost
planets (Ambroz, 1971).

On the basis of the results from Section 5, the results of Blizard
are discounted, because of the use of planetary conjunctions as a
tracer of tidal action. Whilst the general arguments of Trellis and
Ambroz are of interest, their use of a first order approximation to the
tidal function, together with the several averaging processes applied and
the infrequent data sampling, greatly reduce the accuracy of the
numerical calculations. Hence it is not possible to derive useful
information about a possible tidal latitude effect from previous

research.

6.1  Initial Investigation

i d
It was decided to sample the instantaneous tidal effect encountere

reridian at
by a 'sunspot' rotating with the sun surface froma rest meridian

i Tue of
the injtial epoch t_, for a series of solar latitudes ¢. A va
O’



O . . .
o = 4 was initially selected, and the tidal effect calculated at tuo

day intervals from JD 2415420 to JD 2451850. A sample of the variation

with time is given in figure 6.11a. It is clear that the tidal effect

encountered by a sunspot rotating at 49 latitude has a short-term
periodicity of ~ 12.5 days; this is ascribed to half the spot rotation
period. The magnitude of the tidal effect at successive peaks is seen
to vary greatly and non-randomly with time, with atypical features
occurring at ~120 day intervals.

The tidal effect at ¢ = 12° was then computed for the same 100
year period, and for a similar imaginary 'sunspot', set rotating
from the same rest meridian at the initial epoch. A sample of the
tidal variation is given in figure 6.11b. Comparison of curves 6.17a
and 6.11b reveals the gradual shift out of phase of the short-period °
variations, due to solar differential rotation. It is evident that,
as indicated from equation 5.1(i) the solar rotation frequency 2vg
is expressed in the tidal curve in preference to vg.

Using a technique for generation of power spectra similar to that
utilized in Section 5, an analysis was performed of the data set for
¢ = 49, The lower frequency limit was set at .02 c/yr, with a
frequency spacing of .001 c/yr. Two regions of interest were
identified, the low frequency end of the spectrum (figure 6.12a)
and the region v = 1.4 c/yr to 1.6 c¢/yr (figure 6.12b). A single
sharp peak is evident in figure 6.12a, at v = .089 c/yr, close to
the orbital frequency of Jupiter. However, as no effect was

observed at or around the freguenCy Vv = 19 c/yrs which the results

of Section 5 would indicate as the predominate tidal frequency of

s the dominant
Jupiter, no positive jdentification was made. However,

e ien
peak in figure 6.12b, at v = 4.15 ¢/yr, was identified with the

orbital frequency of Mercury.
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RELATIVE POWER

Figure 6.12

Power spectra for tidal effect at latitude @ =
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Analysis of the data set for ¢ = 790 revealed a single sharp

- uency peak at =
Jow-freq Yy p vV =12 ¢/yr. The frequency vy was also

identified. Examination of very high frequencies above 6 c/yr indicated
considerable power at frequencies associated with harmonics of the

rotation frequency Vye

. : . o
The tidal effect at latitudes ¢ = 89 ang 6 = 169 was generated;

samples of the first section of the resulting curves are given in
figures 6.13a and 6.13b respectively. Statistical analysis revealed
sharp peaks at 4.15 c/yr as before. No low frequency peak was identified

for ¢ = 8%, but for ¢ = 16° a significant effect was observed at

v =0.3 c/yr. As no effect at these latitudes was apparent near

R

v = .089 c/yr, it was decided that the peak in figure 6.12a was not
attributable to the effect of Jupiter.

The tidal variation encountered by a spot rotating with the sun
surface was calculated for a series of latitudes. Samples of the

O, 300, 359 and 40° are given in figures 6.14

variation at ¢ = 20
and 6.15. Statistical analysis of the data indicated the presence of

a strong periodic effect of Mercury at all latitudes considered. High

© and

frequency effects similar to those already detected in the ¢ =4
9 = 129 data, were also present. Also apparent in most data analysed

was a single low-freguency peak.

6.2 Further Investigation

It was decided to compare the results with the behaviour of

) . ted at a
an 'Ovenden' system. Accordingly, tidal curves were generd

i trol
series of Tatitudes for fifty years of planetary data,using the contro
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system coordinates utilized in Section 5. Samples of the variation for

0 o . .
9 =8, ¢ = 167 are given in figure 6.21, and for higher latitudes

= 300, in fi i
9 = 24% and ¢ = 307, in figure 6.22. 1t is evident that the character

of the variation is appreciably different frop that in section 6.1,
Statistical analysis of the data at al] latitudes revealed a high

No effect

was found at any latitude corresponding to the frequency Vs in

peak at around .43 c/yr, identified with the frequency 2vp.

accordance with the predictions from Section 5. A broad low peak of
marginal significance was observed in all these spectra, similar to
that in figure 5.62. As before, this feature of the spectrum was
tentatively attributed to the effect of Jupiter. No low frequency
effect comparable to that detected in 'our' solar system tidal effect

was discernible at any solar latitude in the 'Ovenden’ system.

6.3 Examination of Low Frequency Effect

It was decided to examine the variation with solar latitude of the
low frequency effect, whose presence in the tidal data is manifest as
a modulation of peak heights. Examination of the distribution of
frequency with latitude (figure 6.31) revealed a considerable frequency
span in the tidal data from latitudes ¢= 00 to¢= 400, A graph was
produced (figure 6.32) of the variation of period with latitude, and it
Was observed that the upper part of the resulting distribution exhibited

marked similarity to the curve of distribution of sunspots over the sun

Surface during a typical cycle. If it were assumed that all the low

_ i 6.32 would
frequency effects were in phase at some epoch t =0, figure

. imum. Hence
show for each latitude the time of the first subsequent maxim

i as indicat-
the upper portion of this distribution could be interpreted

| ; itudes, of a
g the progression, through successively Tower Tatitu

face.
maximum in the planetary tidal effect at the sun sur
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6.4 Planetary tidal ef

fect and Sunsgot Distribution

The hypothesis was formulated tpat extreme tidal values occurring
as a result of this Tong-period variatiop were acting as a

"trigger!

to sunspot formation. A mechanism controlling the duration of sunspot

cycles was envisaged as 'latching on' to the tida] effect at high

latitudes at the commencement of each cycle, with sunspot formation
triggered at successively lower latitudes as the cycle progressed.
It was expected that there would be a time lag between sunspot

formation and the subsequent appearance of spots on the solar disc,with

some degree of scattering due to random convection effects in the solar

photosphere.

6.5 Upper Latitude Bound

In such a model, it is reasonable to assume that some minimum
period will exist,below which successive maxima and minima of the tidal
effect follow one another so closely that sunspot formation is not
triggered. Consideration of the frequency associated with the orbit
of Mercury suggests a possible upper bound of ~ 4 c/yr on such a
frequency; however, it has been suggested that the frequency of orbit
of Mercury exists in the Waldmeier sunspot numbers (Bigg, 1967).
Consideration of the diminishing power associated with the long period
tidal effect with increasing latitude suggests a possible turning
point in the region of 2 c/yr. This gives a maximum-iinimum tine of

. e ,
around three months, corresponding to a latitude of 40~. However

this tentative definition of a possible boundary by no means excludes
the possibility of tidal triggering of active centres at higher

latitudes.
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6.6 Testing Model Against Observations

In view of the large random components inherent in the existing

sunspot data, it was decided to utilige for comparison characteristics

averaged over many solar cycles. Accordingly, the mean sunspot

distribution with Tatitude over a typical sunspot cycle (taken

from Allen, 1955) was plotted. Arbitrarily starting all 'tide

cycles' in phase at time to, the distribution of tidal maxima was
superimposed on the sunspot distribution (figure 6.61). It is
clear that a close correlation may be drawn between the two
phenomena.

In an attempt to assess the longer-term behaviour of the tidal
function, the 'tide cycles' were set to run freely, and at time
intervals ti, corresponding to actual sunspot cycle lengths, a
'‘new' sunspot cycle was arbitrarily started. Typical curves are
given in figure 6.62, and it is seen that the variations between
curves are quite consistent with the actual variations observed
between successive sunspot distributions.

The very good correlation observed between the two distributions
led to the hypothesis of a planetary tidal trigger influencing sunspot

genesis being accepted.

6.7 Further Consideration of Tidal Effect

Having determined a connection between the overall distribution

of sunspots with latitude, and long period variation in the tidal

effect of planets at the sun surface, it was decided to examine the

. ious 1
fine structure of the tidal oscillations. From the data previous1y

. . hosen, and
computed, an arbitrary relative high tide Tevel of 6.0 was ¢

: ] nge of
the data was examined for times of high maxima, for a rang
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. 0
latitudes 0 < ¢ < 607 and for the pepigg of time 1968-1980

The

resulting distribution is given in figure 6.71. 1t s seen that th
. a ere

is a tencency for Tocal maxima to occyr simuTtaneously at different

latitudes, and that two successive maxima sometimes occur at the sa
me
latitude with a separation of ~90 days; potp these effects are

attributed to the influence of Mercury, However, althouah it is found

that higher numbers of maxima appeared in the data in the intervals
1969 to 1972, and 1976 to 1979, than in the period 1972 to 1975, no
clear pattern is observed. Raising the limit for high maxima and
repeating the procedure, led to a successively more random distribution.
A similar series of results was obtained from examination of tidal
minima.

Breaking the sample into 3 categories; single maxima, maxima -
sustained over 2 successive sample dates, and maxima recurring after
88 days, yielded some information; whilst the distribution of single
and sustained maxima was found to be random, that of recurring
maxima followed a distribution with Tatitude broadly similar to that
of a sunspot distribution, with most recurring maxima occurring
between ¢ = 16° and ¢ = 220,

It was realized from the above results that the sampling interval
of 2 days employed in the data was too great to estimate the fine
structure of the tidal variations accurately. In order to eliminate
the selection effect of the sampling interval, which allows only those
maxima or minima occurring ator near a sampling time to be detected,

: ad
tidal data must be generated at intervals of about .1 day. Sustaine

i i hilst
maxima are clearly also randomly chosen by the sampling times, wni

. . . tpye' extremes of the
recurring maxima are more likely to represent tru

' ated b
tidal variation, especially as these recurrences are separ Yy

ng i i11 still
Unusually deep minima. However, the sampling interval Wi
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affect these preliminary results, causing many recurring maxima to b
ma to be

onitted from the above data.

6.8 Discussion

Comparison of the proposed model with observations was shown to
give very favourable results, and i thus appears probable that the
distribution of sunspots over the solar disc is influenced, and even
possibly caused, by planetary tidal action. From the model, predictions
can be made regarding several aspects of sunspot appearance. A
fundamental consequence of the tidal equation 5.1(1) is that the form-
ation of solar activity regions would be triggered simultaneously at
Tongitudes 180° apart.

In section 6.5, arguments have been examined relating to the
cessation of the triggering effect at latitudes above ~ 409. Whilst
a case can be made for this proposed cessation, firm evidence for
the existence of such a turning point is not apparent. Therefore, it
is suggested that a tidal hypothesis will favour the genesis of solar
active regions at latitudes greater than 40°; by inference, this
suggests the appearance of high-latitude features prior to the
commencement of the new cycle.

The report of a 12.2 day oscillation of the solar photosphere
(Dicke, 1976A; B), later reinterpreted (Chapman, 19755 Hi1l and
Stebbins, 1975) as a non-uniform brightness of the solar disc,
together with a similar variation observed in Doppler line-of-sight
velocity (Claverie etal.,1982) has recently generated interest in the

: ace as a
short-term distribution of active centres on the sun surf

: N “nati recent solar
Possible cause of this apparent variation. Examination of

- 1active longitudes’
data has led to confirmation of the existence of solar 'actiV 9

discovery that
(Chapman, 1975; Bogart, 1982; Vitinsky, 1982),and to the ais
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these centres of activity tend to develop simultaneously at longityq
ongitudes

1800 apart (Durrant and Schroter, 19g3, Edmonds and Goygh 1983

Nyborg and Maltby, 1983). These 'active longitudes' ape detected at
L

all levels of solar activity, Possibly longer-Tived at times of high

activity (Durrant and Schroter, 1983). In addition, research into polar
'wind holes' (Bohlin, 1978; Hunchausen, 1978; Broussard et al., 1978).

Sime and Rickett, 1978; Simon, 1979) and of velocity patterns at the sun

surface (Severny et al., 1976; Howard and LaBonte, 1980) has led to
the suggestion that the basic physical Process of each solar cycle
begins a few years after the previous sunspot maximum,and at the
time of formation it is a high latitude phenomenon (Legrand and Simon,
19815 Dimitrov, 1982; Howard and LaBonte, 1982 A; B; C). Two success-
ive cycles with unrelated levels of activity are thus envisaged as
evolving simultaneously at different latitudes and phases of
development (Legrand and Simon, 1981).

Both these recent developments give strong support for the

involvement of the planetary tidal trigger mechanism outlined in this

section in the formation of solar active regions.
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General Discussion

Many facets have been examined of the solar cycle and its possible

planetary origin.

Statistical analysis of the auroral series of Schove (1955) and

Bray (1980) reveals the existence of a periodicity of about 200 years
in both data sets. Analysis does not show the 80 year period generally
referred to in literature; it is suggested that whilst the eye
tentatively traces a pattern over seven cycles, this pattern is too
irreqular to appear as a true periodicity in the data. The possible
existence of such an effect over a few centuries is not excluded, but
is not considered to be a strong influence on the level of sunspot
activity as such.

From an examination of the available historical records for the
period 1650-1715, it is concluded that the Maunder Minimum was indeed
a time of exceptionally low solar activity, and that this interval does
not represent a cessation of the solar activity cycle. This result
gives additonal support to the results of Section 2, where comprehensive
statistical analysis of the Waldmeier sunspot series have revealed

differences in the overall character of the data between early and recent

sunspot records, indicating that the 11 year cycle may be modulated in

amplitude by long period effects. It is suggested that the mean

; - manner,
period of the 'sunspot cycle' itself may vary ina non random

: i i of high
05C111at1ng between about 11.1 years (aSSOC1ated with times g

ctivity.
aCtivity) and about 10.5 years at periods of unusually Tow a

: bers has
The statistical analysis of the Waldmeier sunspot num

. :ngq information from
demonstrated the difficulties inherent 1n extracting 1n
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this 1imited amount of stochastic data. Many 'pem’odicit'
Tes!
detected by researchers in the sunspot series are demonstrated t
0

arise from improper use of analytica] techniques, often yitp curso
> ry

and conflicting interpretation of results, a lack of proper statistica]
a

tests for significance and the frequent use of unsuitable highly

smoothed sunspot data. Thus, the varigys attempts to establish the

existence of a link between planetary motion and solar activity on
the basis of matching different synodic and sideral periods to these
sets of data are not well founded.

The examination of parameters of Planetary motion over an extended
timescale requires a method for the generation of planetary co-ordinates.
The Gauss-Jackson numerical integration process utilized for this
purpose was found to be highly efficient and accurate for the 1ntegration
of planetary equations of motion. However, the accuracy of the initial
data was determined to be critical to the precision of the output
information; thus the use of a high order starting procedure is advised
if the Gauss-Jackson process is to be used for integrating equations
of this type. It was also found practicable to use this numerical
integrator for the generation of sets of planetary co-ordinates for
an 'alternate' solar system using the approximate orbital parameters
Suggested in'Ovenden'(1972). This formed a basis for work in sub-
séquent sections.

The possibility of a connection between the sunspot cycle and the
Motion of the sun around the centre of gravity of the solar systen has

i is found to
been considered. However, none of the parameters examined 1

tistical
“orrelate in any way with the eleven year sunspot cycle. 3ta

iodicities
Malysis of the data does not reveal any of the several per

114 although
Previousy reported (Wood and Wood, 1965; Dauvillier, 1977)

i lanets does
“Onsideration of various synodic periods of the outer p
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indicate the presence of a roughly 180 yesy quasi-periodic eff t,
ect, in
accordance with earlier work (Jose,

1965, Petrova, 1979). Both for

the solar system and for the contro] system, various Planetary

sidereal and synodic frequencies of orpit Were recovered from th
e

output data. No effects attributable to the inner planets were

observed; however, whilst a 200 year variation was found to exist in

sunspot and auroral records (Section 1), it is difficult to associate

this variation with the motion of the sun, relative to the mass centre

of the solar system, in any meaningful way, bearing in mind that

accuracy in determining such long sunspot periods is severly curtailed
by the lTimited amount of reliable sunspot data.
The eleven year tidal functions of Wood (1972) and Wood (1975),
although yielding an excellent period match with the sunspot cycle,
are found to be affected by aliasing;the large sampling interval
artificially lengthening the innate planetary synodic periods. It is
found that a class of such functions exists with a wide range of output
periodicities. Further, examination of the tidal variation reveals that
it is not possible to trace the rapidly changing tidal effect in any
meaningful way by the use of planetary alignments. The use of a
first order approximation to the tidal height equation is shown greatly
to reduce the accuracy of the result obtained, and it is found that
terms to fifth order in (cbs 8) are required for some values of 6.
Analysis of the tide-raising effect of all planets encountered by

2 'sunspot' rotating with the solar equator, revealed the previously

her
Unsuspected dominant planetary tidal influence of Mercury. No ot

. i trast to
D]anetary sidereal or synodic frequency 15 detected, 1n cOn

: i haviour of
the results of previous researchers. Comparison with the be

- A" was
the control system, irf which half the period of planet

indicates

b

\Y
etecteq in the tidal data in addition to the frequency Vj
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that those frequencies of orbit which Would be expressaq in th
. _ € overall
ridal effect (if Jupiter or Venus Were exerting a strong period;
¢ iodic

influence) would be 2\)J and 2\)\/ rather than the fundamenta

generaﬂy considered as dominant.

frequencies
This 1§
15 1S a consequence of the critical

dependence found to exist between the dominant orpita] frequency

expressed in the tidal variation, and the eccentricity of the planetary

orbit.
A latitude-dependent periodic variation was found to modulate the
anplitude of the tidal effect encountered by a 'sunspot’ rotating with

the solar photosphere, over a period of 100 years. A solar model was

discussed in which a mechanism governing the magnetic cycle began as a
polar phenomenon, latching on to the tidal effect at high Tlatitudes,
sunspot formation being triggered at successively lower latitudes by
the planetary tidal effect. The variation in period of this effect
with lTatitude was found to correlate well with the time-latitude

distribution of a typical sunspot cycle. A fundamental consequence

of such a tidal mechanism is the tendenicy of centres of activity to

develop simultaneously at Tongitudes 180% apart. The recent observational

confirmation of this prediction gives support for a tidal mechanism.
The existence of global oscillations on the 'quiet sun' (Brookes,
Isaac and vander Raay, 1976; Claverie et al., 1979; Grec et al., 1980;

Scherrer et al., 1982) has called into question much accepted theory

O the structure and stability of the solar interior (Deubner, 1981

fough, 1981; Endel and Twigg, 1982). In particular, the possibility

Hill,
92 rapidly rotating solar core has affected many solar models (H

uentl
1978, ChriStensen—Dalsgaard and Gough, 1981). 0One argument freg y

. : influence
ddvanceq against hypotheses of planetary tidal action as an i

i hyed the sun
o the solar cycle, has been this perfect equilibriun of

: f solar
(Smythe and Eddy, 1977; Eddy, 1978). With the detection 0
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A

sscillations, the possibility of 4 résonant response of the so1
e solar
photogphere to a small but periodic tidal effect cannot be excluded
ude

(de Csada, 1981), although at present the timescale of observationa]

work is an order of magnitude less than that required forp detection
0

of such long period solar oscillations (Deubner, 19g7. Gough, 1981)

In addition , the increasing amount of observational evidence in conflict

with the classic dynamo models (Isaak, 1982) has focussed interest on

the various flux-tube models available (Meyer et al., 1974. Piddington

1978), these being inherently more favourable to the hypothesis of a
tidal influence.

It is not suggested that a single, fundamenta] cause exists as the
origin of the complex phenomenon of the 'sunspot cycle', in the form
of a tidal influence of planets on the solar photosphere. It does,
however, appear probable that the planets, particularly Mercury, have
some influence on the birth and developm ient of sunspots. In this
context, the recent observation (de Ta Rosa, 1981) of two distinct
spot group populations on the sun may be important. One possible
explanation for this is the operation on flux-tube generated sunspot
groups of a planetary tidal effect.

By modulating the small rising velocities of such groups
(Schussler, 1977; Parker, 1979) such a trigger may affect the overall
Sunspot distribution on the sun surface, causing the appearance of
transient 'active Tongitudes'.

A promising area for future research thus Tiesin the detailed

. r correlations
&Xamination of actual sunspot appearances, and a search fo

i i j nd with
o with local peaks in the rapidly varying tide function, a
o It is suggested that the

17 and

Ong period amplitude modification.

initi i and 'sma
nitia) separation of sunspots into 'large and stable’ an

fstable: groups may be a useful initial step.
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CONCLUSION

[t is concluded that a 200 year periodicity exists in the Tlong-
term auroral and sunspot records. Statistical differences were shown
to exist between early and more recent sunspot data, thereby confirming
the suggestions of Tong term effects modulating the sunspot cycle.

None of the short-term periodicities reported by researchers quoted in
this thesis have been found to exist within the eleven year cycle. An
alternate solar system model was established as a basis for later studies.
A comparison was made between solar motion with respect to the centre

of gravity of the solar system and sunspot cycle periodicities. No
verifiable correlation between the two was found.

[t has been shown that series of planetary alignments cannot be
Justified as tracers for tidal effects of planets at the solar surface.
The use of a first order approximation to the tidal height equation has
been demonstrated to involve significant inaccuracies. Whilst previous
researchers have recovered many planetary synodic and sidereal planetary
periods, examination of the daily tidal effect of all planets at the
solar surface recovered only the sidereal period of Mercury. A
1at1tude—dependent tidal effect, modulating the amplitude of the
variation, was shown to have a distribution similar to the time-Tatitude
curve of a typical sunspot cycle. It was found that results of recent
observational work give support to a hypothesis of tidal action. The
possibility thus exists that planetary tidal effects are an influence

on the birth and/or developient of sunspots.
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APENDIX 1

Reciprocals of planetary masses.

Planet Mass ™!
Mercury 6000000
Venus 408000
Earth+Moon 329390
Mars 3093500
Jupiter 1047.35
Saturn 3501.6
Uranus 22869
Neptune 19314
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APPEND IX  II

Sets of starting values for numerical integration

of an 'Ovenden' system.

-184-



£€8¢1v€5000°0-
v580/8%000°0
9v0L8LELCO 0~
6546£€6000° 0~
00

LE0SEPS000°0

G6215€5000°0-

9G/82¥8€20°0
vS9G2€€010°0

N

26€£0£406¢6°0
6¥8LL8EELL 0~
LevEE6ELIL"0
GE9EG9GYCL 0

0°0

L625050€L6°0-
v62¥88¥2°0
SLELLOEYYL 0~
v1E€88LOELL 0~

00

¥99996952¢°0-
2L112I89¢€"0
21962€6600°0
£€85¥€¢800L° 0~
9861986959°0

6€52859622°0
GG/9.62101°0-
607060LLL0"0-
SEGYe/8LLL0

8E€¥88Y2999 0~
K

9625957702~

9€LLLYBEE €~
v¢2LeLe070L-
6/¥99/10¢" L~
LZvOLESSLE

26L.8E°0¢
£€6€092¢¢6°¢
9%v/595/6°8
66126418071

LL8SYESCL "¢~
K

99€09/991¢°0
26828v61L0°0
005€¥02.5°0
LELLEYOBSLTO
¥299596¢28L 0~

6.826/¥022° 0~
LYS9v¥9LL0°0-
905€97¥685° 0~
90€8LECVLL 0~
£¢5vv00v6.L°0-

X

ELEY0LO9" L2~

27692886761
9€E€Y969561°0

9€16G/2€°6G-
2¢2024808" L

XA XAN XA
10221902 8L
€1998L6v/L1°0-
78282 19€8° ¥
Lv69LEEBL" L~

X

v

jaue|d

NOIT3IHdY

NOIT3HIY3d

-185-




APPEND IX 111

Curves of Distance R and Radjus -
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APPENDIX 4
Derivation of ng and upper bounds on possible

variance, defined in Section I.
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Appendix 4/1

I

When a reasonable amount of source power is present, the first two terms

. . v .
in the expression for €(v) dominate; hence

2
ORI S ST
L c /o s /o
p non ponon
Now E[c ©] = EBnﬁ = 1
and so
2 2
::'(\)) v 2A% (v) + SB (v) .
T ]/cn
Thus
’b2 n 8P(\))
e “(v) ® —
P z 1o,
n
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Appendix 4/2

Throughout this derivation expectation values will be denoted by < > for
simplicity.
For the case of unweighted data, the estimated cosine coefficient for a

signal with a periodic component is given by

1
Alv = Ty + 1 n
() %?' .nCn ZOL-ICn Cn+ZOL2Cn Cn
r C n n n
n
n
+ +ZB8;s 'c +
n 1 °n n

For rardomly distributed sampling times tn’ and if vT >> 1, the following

approximations hold:

<o s o s (o ¢ ()5 (M, o
<o M My o s ()5 (M 1 o
< e 2(2) o 2(m) o o< 2(8) _2(m) _
“n “n 7= n n ( 7= } * % Glm
R I VR

It is clear by inspection that < A(v) > = 0 unless v = v(m)’ where v(

is a frequency present in the data, when < A(v) > = a_.

. 2 _ (m) AL L
Consider A(v) evaluated at v = v\""/, As <> =0,

2, (m) _ 1 N 2 N 2 2
< AT(vV) > = —oy +t— I (a;” +B8.7)
22 |2 N TG g T
n

+ amz <(;z] CnZ(m))> + Bm2 <(§ cn(m) sn(m))\/Z}

where 0N2 is the variation of the noise component;
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Now A L 10 .S

Using this approximation and evaluating the other two expectation values

in the expression for Az(v(m)) yields

<A2(V(m))> T2 N—oNZ Ny p,
AR 4 ifm !
2
+ amz N + N + Bm2 N
4 8 8
p
2 2 m
= +_O -
m f oN
_ 2 2
where Pm = o + Bm and
2 1 2 2 15
Of _E%fn —-ON +E1.P1.

is the total data variance.

2

Evaluating <B (v(m))> similarly and combining the two gives

<P(\)(m))> = <A2(\)(m))> + <Bz(v(m))>

i.e. a bias of (4/N)of2 - (1/N)Pm is present in the spectral estimate of

a peak at V(m). Elsewhere, the bias is (4/N)of2.

Evaluation of <P2(v)> is necessary to evaluate the variance.
Clearly, however,
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0 < var(a + b) g 2(var(a) + var(b)). Hence

Substitution yields the condition
2

0 < °p 16 sz B l'Pm
Top TN 4

For the case of weighted data, a parallel analysis gives

2
O\<Op 16 02_lp
P S nx | T gm
where
N* = n n
21/04
n n
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APPENDIX 5
Additional theoretical development of the spectral

analysis technique of Section 2.
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Appendix 5

Time Series Analysis

A time series can be described by an ordered set of random variables
X(t) (-~ < ts<=); an observed time series x(t) is regarded as one

realization of an infinite ensemble of functions which might have been

observed.

A5.1 Expectation Values

Given a random variable X(k) in the range -» to +», the 'mean’
or 'expected' value of X(k) is obtained by an appropriate Timiting
operation when each value assumed by X(k) is multiplied by its probabiiity

of occurrence, p(X)
ie. E[X(K)] = r X()p(X)dX =y

where E[ ] represents the expected value over the index k of the term
within the brackets. Similarly the expected value of any real single-

valued continuous function g(X) is given by

FN T = [ ap00s

where p(X) is the probability density function associated with X(k). 1In

particular, for g(X) = X2, the 'mean square value' of X(k) is given by

EMX”(K) ] - r X p(X)dx = v,

and the variance of X(k) is defined by the mean square value of X(k)

about its mean value My :

LK) - w® = [ O p0oex



For the case of two random variables X(k), Y(k), where k represents

point in a suitable sample space,

E[9(X,Y)]

1l

me[ g(X,Y) p(X,Y) dXdy

where p(X,Y) dXdy

H

Prob[ X < X(k) < X + dX and Y < Y(k) < Y + dY] .
If g(X,Y) = (X(k) - uy ) (Y(k) = uy) where ny and uy are the mean values

of X(k) and Y(k), then the 'cross covariance function' Yyy is defined by

Yxy E[(X(k) - Ux)(Y(k) - Uy)]

E[X(k) Y(K)] - E[X(K)] E[Y(K)]

[ J (X - Hy ) (Y = my) p(X,Y) dxdy
If X(k) and Y(k) are independent random variables, then

EX(k) Y(k)] = E[X(k)] E[Y(K)]

and so Yyy = 0 and the variables are termed 'uncorrelated'.
Given a continuous series of random variables in time, the dependence
between values at times t] and t2 may be described using the autocovariance

function Yy

YXX(t1’t2) = E[(X(t]) = U(t1))(x(t2) - U(tg))]

where vy, (t1,t,) = of(t))

To normalise Yyy > the autocorreiation function

YXX (t], tz)

‘/o(t]ioitzi

Pxx(trsta) =

is defined.
It is necessary to assume that the fundamental statistical properties
of the time series, i.e. n(t) and oz(t) are approximately constant with

time; this assumption of stationarity is true for most series over a
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Timited timespan.

Then
YXX(t]’tZ) = E[(X(t]) - UX)(X(tz) - “X)]
= E[(X(t) - Ux)(x(t+u) - Ux):l
= cov[X(t), X(t+u)]

where u = t, - t] is termed the 'lag'.
For an observed time series x(t), the theoretical autocovariance

function YXX(u) must be estimated; the most widely used estimator

cxx(u) is given by

T-]ul |
. (u) = J (x(t) - X)(x(t+]u]) - X)dt 0< |uj T

— =

= O [UI >T

where T is the length of the observed series.

If the observations x(t) are taken from a discrete time series,

X1 Xos e X the estimator will be expressed as

1
Cxx(k) - N

where

x|
I

1 N (t)
N X
tZ]

denotes the sample mean.
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A5.2 The Spectrum

A stationary stochastic process is described by its autocovariance
function. An equivalent description is found to be the 'power spectrum'
of the process, which is the Fourier transform of the autocovariance
function,

The variance of a signal x(t) (-T/2 < t < T/2) can be decomposed
inte contributions at harmonics fm = m/T of fundamental frequency

f] = 1/T according to

T/2 ™
.2 = 1 J (t) dt = J |2 Se)

T Mm==c
-T/2

where l‘m is the complex amplitude at frequency fm =m/T;
1 T/2
.[\. = —
m T x(t)
-T/2

e—12ﬂmt/T dt

and x(t) may be written in Fourier form:

K(t) = v erizmt/T

m==c !

Similar equations are found for a discrete signal.
The contribution liimlz to the average power at frequency f, is termed
the intensity at that frequency.

From (1), the variance of the infinite record is

T/2 ®
¢ = Tlim 1 x°(t) dt = Tim L (T IZ) -
T—)oo T T._)oo m: -C0 m T
-T/2
- J r(f) df
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where T(f) = Tim Tlﬁ[mlz s the Fourier power spectrum of infinite time
Tow '

series x(t).
From (2),
5 1 T/2 2
TS = ¢ (f) - ;l
-T/2
where Cxx(f), defined for a continuous range of frequencies -= < f < =,
is termed the ‘sample spectrum'.
Using the definition of Cyy(U) and equation (3),
T/2 . |
£y = 1 x(tye et 4y x(t ettt i

T
-T/2 -T/2

CXX(

from 2.2(1).

Transforming with u= t - t', v = t' yields

T T/2-u .
Co () = f [-l [ x(v)x(v+u)dv:J e 12mfu 4,
o LT 1.1/

T T/2 )
+ j 1 J x(v)x(v+u)dvi} e 1orfu 4
o LT ) 7/00

Substituting for cxx(u),

.

() = J cxx(u)e']Z”fu du o g g
-T

and

C (U) = I Xx(f)e12”fu df TsusgT

Now sample spectrum Cxx(f) is a realization of random variable CXX(f);

T :
ELCyy(F) ] = J E[ cyy(u) ]e'12“fu du .
T
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1 (Tl ~
E[cXX(u)] = E[-J X()X(t+u)dt
voeT .
0
]JT'iul
T,
= YXX(U) {] - J'_L;—L] 0 < Iul <T
0 luf > T
Hence
T .
e[ Cyy()) ] - [ Yy () [1 -l%]e"z“f“ du
-T
So
] T -iZ2nfu
Tyy(f) = }1m E[Cyy (F)] = [ vy (U) e du
-7

and the mean of the sample spectrum estimator, E[CXX(f)], is seen to be

the Fourier transform of the product of YXX(u) and the 'window function

1 - |ul/T [u| < T
w(u) = [
0 ]u] > T
Hence
il - [T g o

A5.3 Spectral Windows

i

Although 1im E[Cy, (f)]

T

Tyy(f), with finite record Tength, C,,(f)
will have a bias

B(f) = E[Cyy(f)] - Tyy(F)
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Dividing the finite time series into k sub-series each of length M yields

estimates
M . )
B = [l et P2,k

1 j XX
Setting
k

= 1
CXX(U) = E z C>((\>]() (U)

J=1

'] k '] JH"‘U
- E'.Z] { i J X(t) X(t+u) dt uszo
. (3-1)M

Smoothed estimator Ty (f) [ " Cyy(U) -i2mfu g,
M
Now
E[ T ] = vyy(W) [1 J%L]
and .
E[Tyy ()] = J” {1 - HYXX( Jemiznfu g
) -M

i.e. the sample spectrum is smoothed by window
2

_ y[sin mgM)©
wg) - n[XLsdl
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A5.4 Variance and Bias

The bias of a time series will be given by

-i2nfu du

B(f) = EU w(u) cyy(u) e 12mfu du] - J Yyy(U) e
X J(mo (w(u)-T) Yxx(u)e-i&rfu du
X u
a) For Bartlett window, wa(u) = 1 - iML lul < M
0 lu] > M
1 -i2nf
By(f) & M[ = Jul vyy(u)e 1enfu g,
b)  For Tukey window, wT(u) = %{1 + COS %#1 lul <M
0 |u] > M

1l
—_—
1

8 8
[}
—
nNo
=]
<
=2
><
>
—~
e
~
9]
[}
-
N
=]
-+
fs
(oN
<



n 2 2
r Xx(f) = J 4r”=u YXX(U)
o
Thus B-(f) « . .
T a? ol
.0625

.152 1)
= Tyy(f) + 0|—
MZ XX (M3
2
— Y Txx(f) {
Now Var (Cyy (1)) -
2
Pyx () @
- M wz(u) du
T -0
2 I
= Tyy(f) .-;

For the Bartlett window,

Fh Ll

—
i

M 2
2 J (] --%g + %mgdu =
0

- 205
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For the Tukey window,

M

] —

¢
I. = J o

2
[1 + Cos Iﬂq du
M

_ 3
= M

For the Parzen window,

M/2 u2 u3 2 M U 6
= 2[ {1 - 6-—7 + 6 ——} du + 8[ {1 - —} du
M M

0 3 M/2

0.53 M

The width of a spectral window is defined from the bandpass spectral
window
_ 1 'h h
W(f) ——H—-ZS'FS?
and the variance of the corresponding smoothed spectral estimator is
rxx(f)
T.b

Var[CXX(f)] ~

where bandwidth b is simply defined by b =-%
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