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SUMMARY

The present investigation is concerned with the determination of the
magnetic field distribution in magnetic electron lenses by means of
the finite element method. A critical comparison is made of the
available finite element camputer programs. Necessary modifications
have been made in certain programs, useful comments and general data
format were written for two recently developed programs.

Special attention has been paid to those factors that affect the
efficiency of the finite element method in camputer aided design of
magnetic electron lenses. These include the correct choice of
boundary conditions. Another important factor investigated is the
influence of mesh layout for the subsequent finite element
calculations.

By recomputing several examples of lenses found in the literature,
discrepancies of up to 30% were reduced, resulting in excellent
agreement with the associated experimental results, simply by
rearranging the mesh layout in a more convenient way. Through a more
systematic application of the finite element method, several
misleading conclusions to be found in the literature were detected.
Some of these conclusions arose from the finite element method itself,
as previously mentioned. Other misleading conclusions were also
discovered that were not due to the finite element method but to
design errors in the lens itself.

A study has been made of the errors in lens design including the
inadequate thickness of iron shrouds etc.
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Biot Savart law, the difference between 3 and 4

due to boundary loss is (14%) in 3.

- 13 -



Fiﬂe
4.19

4.20

4.21

4,22

Title

Recalculation axial field distributions of
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D,/D; = 1.88, S/Dy, = 0.347,

S = 26mm. Note: Appreciable external leakage
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Variation of axial field distribution with
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Axial flux density distribution for

spherical single pole lens shown above at
different lens excitation using (26x23mm2) coil
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Recalculation of the variation of axial field
distribution with lens excitation using the
original magnetic circuit (A) Christofides’ (1582)
zero bore lens Hermes). The external flux
leakage is indicated at Bpf higher than 1.5 Tesla
Variation of axial field distribution with
lens excitation. Same lens of figure (4.23)
recomputed with thicker magnetic circuit (B)
designed to reduce external leakage
Variation of By and Bp, at pole face with
lens excitation for (A) original magnetic
circuit; (B) thicker magnetic circuit see
Figure (4.23) and Figure (4.24). B coil at pf
is shown for reference.
Axial flux density distribution of the
rectangular double pole (test) lens shown
above after surrounding the boundary with
(5mm) high permeability iron sheet to
overcome boundary loss in excitation (eese for
long solenoid (b) and xxx for short solenoid
(a)). Note the external flux leakage which
is larger in case of coil (b).
Axial flux density distribution in
rectangular double pole lens at different
lens excitations with thin coil (D2/Dl = 31,
S/Dp = 0.094) the coil position -3 to 3mm.
The shrouds are very large (70mm, 50mm), i.e.
there is no leakage up to (9) Tesla at the
peak
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Axial flux density distribution for double
pole test lens shown using sufficient shrouds
(70,50mm) (i.e. no leakage) with solenoid
(Dy/D; = 1.107, S/D, = 0.508) at different
lens excitations

Rectangular double pole test lens with thin
magnetic circuit (A) and thick magnetic
circuit (B). The lens exciting coils a and b
have the same cross section.

Variation of Bp, at pole face with magnetic
field strength (H) of double polepiece test
lens shown above. 1 (xxx) Bpe value at pf
when the lens excited by coil (a) (short
solencid) using magnetic circuit thickness
15 mm. (&) 2. (eose) Bpe Values when the
lens excited by coil (b) using previous
magnetic circuit (A). 3 (oo0) B, values
when the lens is excited with coil (b) using
thicker magnetic circuit (B). Note: the
change of Bp, value for coil (b) when the
magnetic circuit is thicker in 3
Recalculation of the axial flux density
distribution for A;-E(llashab(l‘BBS)

spherical single pole lens at different lens
excitations using coil of S/D_ = 0.019,
Dy/D; = 1289, S = lmm. DNote the external

leakage problems appear at 13x10% A-t, i.e.

at Bpf 6.35 Tesla
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(1) Variation of the magnetization of the
polepiece tip and (2) the variation of the
half-width of rectangular double polepiece
test lens as a function of magnetic field
strength (H) excited: with b (e—e—e) long
solenoid coil; a (o0—0—©) short solenoid coil
For coil position a - d as a function Bg, at
the pole face pg and the axial field half
width (dy) with coil positions lens
excitation in a spherical single pole lens.
Full diagram shown in fiqure (4.21)

(1) Variation of the magnetization of
polepiece tip and (2) the variation of the
half-width of spherical single pole lens as a
function of the lens excitation by thin coil
(D2/Dl = 9.8, S/D, = 0.0185) a (00-0) thin
coil position (-0.5 to 0.5mm), b (e-e—e) thin
coil position (0.5 to 1.5mm), ¢ (%%x)

thick coil surrounding the polepiece
Variation of (1) Bpe values at pf and (2)
half width with lens excitation of spherical
single pole lens excited with different S/D
coils placed at same distance from the pole
face

Axial flux density distribution for spherical
single pole lens at different lens excitation

with coil (DZ/Dl = 1.88, S/Dm = 0.347). The
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lens is improved by very large shrouds and
D
shielding from the open side ( 6 mm), el 0

Dout

(Vanishingly small bore).
Variation of the By, value at pf tip, as
function of field strength (H A/m), with coil
size and position, for the redesigned spherical
single polepiece lens, shown in figure (4.34)
Comparison between the axial flux density
distribution (keeping the current density
constant) of rectangular double pole piece
lens shown in figure (4.27a): excited with
(1) short solenoid placed in the gap between
the two polepieces (2) combination of short
solenoid placed in the gap and two coils (of
total area = 360rnm2) as shown above. Note
the cross-section of lens. (2) is half of
lens (1). There is no significant difference
in peak flux value or the half width between
two cases

Comparison between the axial flux density
distribution (keeping the current density
constant) of the spherical single pole lens
shown in figure (4.34) excited with (1) a
coil (D2/Dl = 24, S/Dy; =0.26, S =13 mm
placed outside the pole face (solid line)

(2) a combination of a thick coil

surrounding the polepiece and a thin coil of

the same cross secticn placed outside the
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polepiece (dotted line). Note the cross-
section of lens (2) is half that of lens

(1). Case 2 has a slightly lower peak and
lower half-width than case 1

Contribution (Bcoil} of the exciting coil and
of the iron (BFE) to the total axial flux
density BT in the single polepiece lens shown
in Pig. 2.5.

Note The positive and negative parts of the
Bpe Curve balance within 1% indicating low

camputational error.

The variation of Cs with the current density
for four different double pole lenses at 2000
KV at Z = 0 mode, log/log scale. Lens 1 as
shown above (quarter section) is a rectangular
double pole test lens computed with Sg/D = o
and Sg/D = 2 (dashed line). Lens 2 is similar
to lens 1, but with smaller axial pole

piece radius with Sg/D =®, Iens 3 is a

spherical double pole lens Sg/D = 2.
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Polepiece axial radius

Radial acceleration

Coil width

Gap width of the dcuble pole

Relativistically corrected accelerating voltage
V, = V (140.978 x 107°V) where V is the applied
accelerating voltage of electrons

Stored magnetic energy per unit volume

Axial acceleration

Electron charge to mass ratio e/m
Permeability of the magnetic material U = Hj H,
Relative permeability of the magnetic material

The differential permeability Mg — 9B /Mg
oH

Permeability of free space (4 T x 107 Henry/m)
Magnetic susceptibility

Magnetic flux

Current density in the lens coil

Angular velocity
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CHAPTER ONE

INTRODUCTICON

1.1 The Magnetic Electron Lens

Busch (1926) was the first to explain the theory of focusing electrons
by means of rotationally symmetric magnetic fields in a way analogous
to the focusing of light beams by glass lenses. A magnetic electron
lens can be defined as an axially symmetric magnetic field which can
be described by its axial flux density B(z) The simplest lens is an
axially symmetric iron-free coil but most magnetic lenses usually
consist of double polepiece lenses or more recently a single
polepiece. The arrangement of lenses can be either "symmetrical" or
"asymmetrical" depending on the design of their respective magnetic
circuits. A lens is symmetrical when a plane of symmetry Z=0 exists
so that B(z) = B(-z). This is achieved when both polepiece bores have
the same diameter. When the two bore diameters Din, and Din, differ
from each other, the lenses are asymmetric. One common reascn for
constructing asymmetric lenses is the need for providing access for
introducing the specimen. Thus the bore is made larger fér this
reason. However, the specimen may also be introduced sideways through
the polepiece gap. There is no need, in this case, to make one bore

wider than the other.

Distincticn is also made between "saturated" and "unsaturated" lenses.
A lens is considered unsaturated if the axial flux density
distribution Bz created by a coil with I ampere-turns is proportional

to L.

- 23



152 Forms of Magnetic Electron Lenses

Many kinds of magnetic lenses have been devised ard investigated by

different research workers. The most cammonly known are:

T2 Iron-free Coils

The simplest form of an iron-free magnetic lens is a solenoid
consisting of either a wire or tape wound around a non-magnetic core.
Basset and Mulvey (1969) have shown that this kind of lens has an
appreciably lower spherical aberration. The well-known Biot-Savart

Law is used in calculating the axial flux density for these lenses.

Marai (1977) surveyed the iron-free lenses and showed that optimum

designs for them do in fact exist.

1.2.2 Single Polepiece Lenses

Figure 1.1 shows a single polepiece lens converging a beam of

OPTICAL AXIS

| | ELECTRON | | OPTIONAL

|| BEAM | | MAGNETIC

I | | screen
I

L

| | SPECIMEN et

I coir | | IRON

| PLATE

(NN AN N

Fig. 1.1 Single polepiece lens

electrons onto a solid specimen. The lens consists, essentially, of a
narrow flat coil winding placed cver a singlc polepiece. The axial
flux density distribution is asymmetrical and is created outside the
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lens structure. The peak position of the field is located a few
millimeters from the poleface (snout). This provides more space for
manipulating the specimen as well as reducing the effects, of any

imperfecticons in the iron circuit or the coil, on the lens properties.

Due to the highly asymmetrical field distribution characteristics, the
focal properties of single polepiece lenses differ appreciably from
those of conventional double polepiece lenses. The increased axial
flux density at the tip of the polepiece as well as the reduced half-

width of the field distribution lead to lower abberations.

A single polepiece lens may be used as an cbjective lens in TEM and
STEM (Mulvey, 1974). The asymmetrical field distribution gives the
possibility of using it in two different modes of operation. In a
projector lens, Marai and Mulvey (1976) have shown that the lens has
a lower distortion coefficient by a factor of about 2.5 when the
polepiece of the lens is facing the incoming electron beam (preferred
direction), than when it is used facing the screen (non-preferred
direction). Al Hilly (1982), has demonstrated the advantages of this
in the correction of distortions in the electron microscope. Hill and
Smith (1982) used the single polc lens as a scanning electron

microscopy objective.

Mulvey (1982) has reviewed the present stage of iron polepiece lenses
development with particular emphasis on improved imaging achieved in
transmission electron microscopes when using a single polepiece lens
as projector lens plus another single polepiece- lens as spiral

distortion corrector.
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1.2.3 Double Polepiece Lenses

Double polepiece lenses are more commonly used than single polepiece
lenses. Figure 1.2 illustrates a typical configuration of double

polepiece systems which can be either symmetric or asymmetric.
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Fig. 1.2 Double polepiece lens (a) Symmetrical (b) Asymmetrical

In the symmetrical system, two identical pairs of truncated ccnes are
separated by a gap of width Sg which allows the electron beam to pass.
In the assymetric system one of the truncated cones is replaced by a
flat extended polepiece, which is usually part of one of the lens
casing flanges. The macgretic field of a double polepiece is non-
uniform near the lens axis, where the axial hole is located. This

gives rise to the refractive action of the lens. The ratio of gap

width to inner diameter (Sg/D) determines the lens properties.
Mulvey and Wallington (1969) have published a comprehensive review of

double polepiece lenses. The unique properties of asymmetrical double

polepiece lenses were discussed by Yanaka and Watanabe (1966).
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1.2.4 Cther Lenses including Superconducting and Miniature Lenses

Recent advances in electron microscopy have led to the introduction of
unconventional and miniaturised lenses. The most interesting of these
are the superconducting lenses the origin of which goes back to the
late fifties when the discovery of high field superconductors
stimulated research in their main attractions which are electro-
magnetic stability, compact construction and high magnetic field

gradients (Lefranc, Knapek and Dietrich, 1982).

Miniature lenses were developed at the University of Aston in
Birmingham by Mulvey and his collaborators. One form of these is the
highly campact coil with forced cooling (Mulvey and Newman, 1972),
which seems to be on the brink of being introduced into commercial
electron optical instrument design on a larger scale (Riecke, 1982).
Another, 'rotation-free', magnetic electron lens doublet of high
magnification is described by Juma and Mulvey (1978). This lens is
some two orders of magnitude smaller in volume and weight than those

of a camparable conventional lens unit.

1.3 Computer Aided Design of Electron Optical Systems

Digital computers are extensively used in designing electron optical
systems. Computer utilisation is particularly needed in the following
three steps. (i) Field Calculations, (ii) determination of electron
trajectories and (iii) determination of imaging properties and
aberrations. In this study emphasis will be made in the field

calculations.
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22301 Field Calculations

A number of methods are available for computing the electric or
magnetic fields from given initial or boundary conditions. The most
common of these methcods, used in computer aided design, are the finite
difference and the finite element methods. These methods are based on
the well known mathematical technique of finding approximate numerical
solutions for analytically unsolvable differential equations. This
involves replacement of a continuous partial differential equation by
a system of ordinary linear equations which are solved by standard

mathematical techniques.

1.3.1.1 The Finite Difference Methocd (FDM)

In the finite difference method (FDM) the entire region of the problem

is covered by a discrete mesh network.

Mesh formulae in the finite difference method can be derived using
either a Taylor series or the integral method, both of which are well
explained in the mathematical literature ((Ames, 1969), (Forsythe et

al., 1960) and (Varga, 1962)).

Kasper and Lenz (1980), have suggested that better accuracies can be
achieved for a given number of meshes using the finite difference
method, especially for axial field distributions than is possible with

the differential finite element method.

There is no suitable general program for calculating magnetic and
electric fields by the finite difference method. This makes a

comparison between the finite difference and other numerical methods
o 00 =



such as the finite element method very difficult. Denegri et al.
(1976) developed a finite difference method that employs a similar
mesh distribution to that of differential finite element method, but

the method has not yet been fully implemented.

The finite difference method becomes very complicated when the
material coefficients are discontinuocus e.g. at the interface
conditions like those for the magnetic field at surface of ydkes with
finite permeability. For the computation of such fields, the finite
element method (FEM) is more convenient. The FEM uses triangular mesh
grids instead of rectangular ones used in FDM. The FEM was applied,
originally, in structural and electrical engineering (Zienkiewicz and

Cheung, 1965).

1.3.1.2.1 The Integral Finite Element Method

Newman et al. (1972) applied the finite element method in its integral
form to the computation of magnetic field strength. Division into
finite elements is carried out for the magnetic material only. The
magnetisation is assumed constant over each element. The field
strength (H,) due to the current in the windings is found directly

from Biot-Savart Law,

adv (1.1)

e o]
i
o | o
[}
G

J is the current density in the coil windings and v is the volume of

" the coil windings.
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The field (Hm) due to magnetisation in the iron elements is given by,
g gradfi_'a_ifi (1.2)
4t T
where M is the magnetisation at each element and is given by,
M=Mr - 1)H= XH (1.3)

where X = % oo 1= susceptibility of the magnetic material

Magnetisation (M) is given in terms of the flux density as follows,

M=_u§ (1 - _uy (1.4)
o g

where B = L&__ U
Also the total field strength H is given Dby,
H = H, + Hy (1.5)

substituting for H from equation 1.2

H = H, - 1 grad [ M. av (1.6)
am 3
r

If the magnetic material is divided into N finite elements we get N

similar equations which have the general form

N
Hi = HCi + KI%H]‘ where 1 = 1, 2o wwiaae N (lc?)
J=1
and Kij are factors that depend on the field points geometry. Since

each element of the coefficient Kij will have two components, 2N
simultaneous equations are generated for N finite elements. If (Xj)

the susceptibility of the jth element were known, the equation
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equation could be solved directly to obtain the two components of (H)
which are H;, and Hiy‘ If Xj values are not known, then an iteration
process must be used in which the initial values of }(3 are assumed.
Then the equations are adjusted using a table of X/H values and the
process is repeated until a prescribed degree of convergence is
achieved. This will depend on the number of iron elements which are
involved and the degree of saturation. The two components of
magnetisation M, and My are calculated from the field strength
components H;, and Hiy
at any point from equation (1.2) and added to the field H, from the

and the field B, due to the iron is calculated

coil windings to give the total field H.

Calculation of Axial Flux Density Distribution

The total axial flux density distribution B(z) of a magnetic lens, at
any point on the axis, is a function of the current in the coil
windings and the known magnetisation value M, in the iron

elements.
So B(z) = B, + Bpg (1.8)

where B, is the axial flux density due to the coil windings, Bre is

the axial flux density due to the magnetisation in the iron elements.

I.3.0e232 The Differential Finite Element Method

Munro introduced the FEM to electron optics (Munro, 1971). He used
the FEM in its differential form to design a set of programs to
calculate the flux density in all parts of the lens including parts
where it would be difficult to measure the flux density
experimentally. Munro's programs are popular with research workers,

in the field of electromagnetic field calculations, due to
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availability of a very clear manual (Munro, 1975) containing all the
necessary information about the programs as well as prints of the

original programs.

Munro's programs reduced the efforts needed in construction and
experimental testing of the trial lenses to a minimum. With the help
of these programs the shape of the polepiece and other parts of the
magnetic circuit can be easily dlax';ged in order to reach a
satisfactory design for the specific application of the lens.

The differential finite element method is convenient for structures
with different permeability since the permeability of the magnetic
material is specified at all parts of the structure, while in other
methods like the finite difference method, it is often difficult to
satisfy boundary conditions, e.g. between the coil, free space and
magnetic circuit. The finite element method used by Munro is most
convenient for dealing with saturation conditions where Mr has to be
calculated for each element in each iteration process. This method
can be used also for calculating the field distribution in
superconducting lenses. The superconducting material is simply

characterised by relative permeability LJIr = 0.

Mulvey and Nasr (1980a) pointed out that the finite element methcd,
used in Munro's programs, can be limited by the fact that the vector
potential at the boundary has to be set to zero. Nasr maintained that
this cannot be true unless there was an infinite radius or when the
flux ¢ = 0. This will make Munro's programs work well and with high
accuracy for conventional magr-metic electron lenses. For open
structures or other types of magnetic lenses, e.g. single polepiece
lerses., there will be boundary losses in the excitation. This is
elaborated further in Chapter 2. Nasr reduced the effect of this
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developing Munro's programs into a set of improved vector potential
programs, which made the increase in the number of meshes used

possible, taking into account the computer store requirement.

Lencova (1984) designed a new program which is based on differential
finite elements like the previous programs. Lencova's program deals
with both linear and non-linear computations. A very large number of
mesh points can be used by this program up to 6500 points, including

the points on the boundary with A = O.

Details of all the above programs are explained in later sections.

1.3.2 Electron Trajectories

Electron trajectories in magnetic lenses can be defined in the simple

form of three equations, given by Goddard and Klemperer (1944).

= 2

Z = - (%) Ag_*z (1.9)
- e 2 dA :

-~ A (ﬁ) A_d}_ (1.10)

i __% % (1.11)

The essential features of these equations are their linearity in which

first order derivatives z, r do not appear.

To calculate the electron trajectories, the values of dA and dA are
. dr dz

calculated from the variation of the vector potential A over each

quadrilateral given by Munro (1975) or Nasr (1981). Al Hilly (1982)

has elaborated the inputting of these values into a special program to
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arrive at trajectory path calculations. Modifications of Nasr's
program and combination with Al Hilly's work lead to a general program

for trajectory calculations.

1.3:3 Imaging Properties and Aberrations

If an electron passing through a magnetic electron lens forms a
perfect image, then this image is called 'Gaussian' and the
corresponding electrons are called Gaussian rays or Gaussian

trajectories. The Gaussian path is described by the paraxial equation

n, 7 2
! =0 .
Y ; B r (1.32)

where V. is the relativistic accelerating voltage. B is the axial

flux density and 'l is the charge to mass ratio of the electron.

Departure from Gaussian images are called aberrations which are
expressed in terms of coefficients. A number of aberrations can
affect the functioning of magnetic electron lenses. The importance of

each depend on the magnetic lens function.

Aberrations, in magnetic electron lenses, are generally of two types.
Those which are due to the electrons travelling far from the lens
axis or along paths that are inclined at a steep slope to it, are
known as geonmetrical aberrations; the most important of which are
spherical aberrations and distortions. On the other hand, aberrations
caused by wavelength spread of the incident beam are known as
chromatic aberrations. These aberrations arise due to the varictions
in the accelerating voltage or fluctuations in the current. Energy

loss in the specimen can also cause aberrations.

- 3t =



Various numerical methods are available for calculating the aberration
coefficients of electron lenses. Munro (1975) computed the spherical
and chromatic aberration coefficients, by using Simpson's rule to

evaluate the aberration integrals

i
cg = _1 31 8% f+e82:l -2 r2) az (1.13)
128V, Vp
%o
24
Co =1 B2 dz (1.14)
Svr
ZO

where r,(z) is the solution of the paraxial ray equation with initial
conditions ny(zo) = 0 and r;X (zo) = 1 if the aberration coefficients
are referred to zc') or r,(zi) = 0 and rEI (z4) = -1 if the aberration
coefficients are referred to z;. For low or high magnification
conditions, the magnification is calculated fraom the formula My = 2_9
where ®o and ¥ are the convergence angles of the trajectory at z, ;nd

z; respectively.

The paraxial electron trajectories are computed, using a fourth-order
Runge-Kutta formula to solve the paraxial ray equation (Eq. 1.12).
Marai (1977) developed an asymptotic program for the calculation of
distortion coefficients which was restricted.to parallel inccming
rays. However, Munro and Marai's programs can determine the
aberration coefficients for one lens field distribution only, which

render them inconvenient for calculating multi-lens systems.
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1.4 The Computer Programs used for Calculating Magnetic

Field using the Finite Element Method

All the programs used in this work are based on the finite element
method and the same basic theory. This is elaborated in Chapter 2.
However, these programs are different in their capacity and the input
data and output result formats as explained in Chapter 3, which deals
with data preparation for each program for both linear and saturated
cases. Extensive comments are presented in several programs as part

of this wark.

1.4.1 Munro's Programs

Two programs are available in Munro's Manual (Munro 1975). First the
M12 program is designed for dealing with unsaturated magnetic lenses
(linear conditions), where the magnetic material has constant
permeability. A set of linear equations in terms of vector potential
coefficients is obtained and the matrix equation is solved by Gaussian

elimination.

The second program M13 is for saturated magnetic lenses (non-linear
condition), where the magnetic naterial permeability varies with the
flux density. Here the data input allows for the magnetisation curve
(Figure 1.3) in the form of tables of H and B of each magnetic
material (Table 1l.1). A set of non-linear equations in terms of
vector potential coefficients similar to the linear case equation is
obtained and solved by Newton-Raphson iteration, and the resulting

matrix is solved by Gaussian elimination.
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Figure 1.3 Typical magnetisation curve for soft iron.

TABLE 1.1 MAGNETISATION CURVE FOR SOFT IRON (Munro 1975)

50.0 0.400
100.0 0.680
150.0 0.880
200.0 1.020
344.0 1.224
560.0 1,282
807.7 1325

1040.1 15351
1344 .1 1,377
2720.0 1.442
4716.6 1.529
8880.8 1.589
11124.9 1,623
15613.1 1.679
27509.9 1.790
44157.6 1.840
60940.5 1.866
T7421.0 1.898
92469.1 1.919
106713.4 1.937
156847.3 2.000
236424 .8 2.100
395579.8 2.300
634312.3 2.600
873044 .8 2.900
1032199.8 3.100
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1.4.2 Nasr's Programs

Nasr developed his programs for calculating magnetic fields during his
research work at the University of Aston in Birmingham. The
theoretical bases for these programs are fully explained in his PhD
Thesis (Nasr, 198l). However, no manuals, similar to those developed
by Munro (1975) are available on Nasr's programs. These programs were
mostly stored at the University of Aston in Birmingham computers
without instructions or comments. As part of this study, Nasr's
programs have been explained and modified in some instances, in co-
operation with the author. As a result, Nasr's programs are available

now in a form similar to those of Munro.

Two programs were developed by Nasr, the first designated VPLIN deals
with field calculations throughout the magnetic circuits of
unsaturated (linear) magnetic lenses. Nasr's VPLIN like Munro's M12
program, assumes the magnetic circuit has constant and finite
permeability. The main advantage of the VPLIN program over the M12
program is that with the former it is possible to use more meshes than
is possible with the later, utilising the same or marginally higher
camputer memory store. This is achieved by introducing two inner
boundaries which divide the lens into selected areas. This yields a
better overall field distribution than is possible with M12 program.
This, however, requires more computer time. This subject is explained

further in both Chapters 2 and 3.

The second program developed by Nasr is called the VPSAT. This deals
with saturated magnetic lenses like Munro's M13, and the basic

difference, recognised by applying this program and M13 to several
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designs, was the extra number of meshes this program enables us to use

in the axial direction. The camparison is shown in Chapter 3.

The VPSAT program, after some modifications carried out in cooperation
with Nasr, can deal with both linear and saturated lenses under all
conditions and can substitute for M12 and M13 as well as VPLIN. This
together with the possibility of using a higher number of meshes, for
the same memory size, are advantages of this program. Copies of both

VPLIN and VPSAT programs are included with the appendices.

1.4.3 Lencova's Program (AMAG)

Lencova (1984) devised her program (AMAG) in Fortran 4 at the Institute
of Scientific Instruments, Czechoslovakia. Aston University was
supplied with a copy of this program, as part of scientific exchange
between the two institutions. The program was adapted to Fortran 77
and compiled in the Harris 800 system by the help of University electron
microscopy group (Mrs. I. Al-Nakeshli and Mrs. H.C. Yin). Comments

were provided on the program and a copy is included in the appendices.

AMAG is based on the same theory but utilises different algorithms
from the previous programs, for both linear and saturation cases, it
uses the Cholesky decomposition method combined with the conjugate
gradient method (or the preconditioned conjugate gradient method) of
Mejerink and Van der Vorst, (Lencova 1984) for solving the linear

equations.

Several applications of the AMAG program were made and a full
description of it is given in Chapter 2. Chapter 3 gives the data
preparation and comparison between the output results of this program

and the previous ones.
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1.5 Application of the Finite Element Method for Designing

Electron Magnetic Lenses

The finite element method has been the base for most electron magnetic
lens design work, since Munro introduced this method to electron
optics (Munro, 1973). Designers were motivated to use this method
since experimental methods take more time and effort. Literature
reviews show that finite element programs are dominant in magnetic
lens design work. This situation is acceptable if the method is used
in moderation i.e. not with blind faith. Unfortunately this is not
the case in much of the published work. This situation was, perhaps,
natural. At the beginning, when any new scientific method is invented
or a new application of an established method is devised, the authors
tend to point out the advantages of their inventions and, whether
consciously or unconsciously, gloss over the difficulties and
limitations. This is what seems to have happened to the application of
the finite element method to magnetic lens design. Mulvey and Nasr
(1980a) pointed out some of the limitations of this method. Nasr
concentrated on the boundary loss in excitation and overcame this
problem to some extent by improving Munro's programs so that more
meshes can be used. Nasr believed that the main source of procblems
was the boundary setting. In the present work, limitations in Nasr's
programs were also discovered. Lencova's program has the added
advantage of high capacity and ease of application. The user,
however, is likely to encounter some difficulties similar to those of
the previous programs, if he is not aware of the inherent limitations

cf these programs.

A comparison is made in chapter 3 between the three programs under
both linear and non-linear conditions. The programs were applied to
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the design of the same electron magnetic lens and the same number of
meshes were used. The difference between the results was recorded in
terms of computer time, memory size and the output results as well as

the number of iterations performed in case of the non-linear programs.

1.5.1 Aims of the present wark

A major objective of the present investigation is to throw light on
the various factors that affect the accuracy of the finite element
method, when applied to electromagnetic field calculations. The aim
was not to invent new magnetic electron lens designs (although this
was partly done in some instances) but to review and comment on the
available programs. By applying these programs to some existing
designs, it was hoped to detect possible design problems and point out
any misleading conclusions drawn in the literature. Chapter 4, for
example, pinpoints the main difficulties associated with these
programs. The improvements made in several existing designs and the

relevant conclusions are also presented.

1.5.2 Difficulties in using finite element programs

This study agrees with previous work about the boundary problems, in
both open and partially open structures. However during the course of
this work it was found that boundary problems arise in closed
structures at high excitation (saturation condition) i.e. in saturated

conventional, and double pole lenses. This is shown in Chapter 4.

Computation wark carried out in this study indicated that changing the

mesh distribution of the data may significantly change the overall
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results. This effect was found to be more pronounced in non-
cylindrical and sharp angle pole face profiles. To show this effect a
lens of known field distribution was chosen. Since in unsaturated
symmetrical double polepiece lenses, the maximum flux density Bhax at
the centre of the air gap is known, for a given gap Sg and axial bore
diameter D, according to the following equation see (Mulvey and

Wallington, 1969):

Brisx w Hoax (Fert and Durandeau (1.15)
L equation) assuming very
high Pe

whers L = I S4° + 0.45D°

Equation (1.15) was applied to Munro's symmetrical double polepiece
lens shown in chapter 4. It was discovered that Munro's computed

value was 3.6% higher than the value calculated from Eq. 1.15.

By rearranging the mesh distribution in the radial direction,
increasing the meshes defining the pole face profile and using more
meshes for defining the coil region, the computed value came into good

agreement with the expected value.

The second difficulty associated with the finite element method is the
number of meshes to be used. Nasr attributed the improvements,
obtained through his programs, to the increased mesh numbers. This
study proved Nasr's hypothesis to be true to some extent. However,
Nasr's programs use more meshes in the axial direction only, by
increasing the number of runs performed. The number of meshes in both
axial and radial directions cannot be increased. This fact can limit

the advantages of Nasr's programs especially for complicated designs

where more meshes are necessary in both directions.
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To show the effect of the number of meshes used a rectangular single
polepiece lens was computed with the above mentioned three programs
i.e. Munro's, Nasr's 4 run program and Lencova's. Results are

presented in chapter 3.

Arother important practical factor is the thickness of the iron casing
(i.e. the lens shroud), especially under saturation conditions. This
study has indicated that some of the published results of lens designs
indicate that these designs had boundary prcblems and in addition the
thickness of the iron casing was quite inadequate. This is discussed

further in Chapter 4.

The boundary loss in excitation and also the leakage effect was also
studied in double pole lenses, with solenoid or other thick coils. A

rectangular double pole lens was designed to illustrate this effect.

The leakage effect manifests itself also in the external lens flux.
Chapter 4 includes plots of these lines throughout the magnetic
circuit of single pole lenses. A computer graphics program, designed
by Munro (1975) and referred to as M3l, was utilised in these
evaluations. Lencova's AMAG program produce several graphic outputs
which show the material distribution on the mesh, and the flux density

distribution in the magnetic circuit.

The shielding (surrounding the lens by magnetic material of infinitely
high permeability) is another important factor, in comnection with the
application of the finite element method in lens design to minimise
the boundary problems. This factor is important if good accuracy is
desired in the design. This study has indicated that the shielding is

not important in double pole lenses under linear conditicn, since the
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double poles actually act as a shielding. On the other hand, bocth
boundary problems and leakage effect is significant in double pole
lenses under saturation conditions (i.e. at high excitation). The
boundary and shielding is very important to minimise boundary problems
with reasonable computer core size in open structures like single pole
lenses, iron free lenses, and simple coils with iron rings under both
linear and saturation condition while for a double pole lens this
study proved it is effective under saturation condition anly.

Examples of this effect are shown in chapter 4.

1.5.3 Possible misleading conclusions in the design of

magnetic lenses

As mentioned earlier, faults in a lens design caused by any of the
previously mentioned factors may lead to false conclusions and
misleading judgments. This is especially likely to happen if the
computer programs are relied upon unduly for comparing two or mare
configurations for the purpcose of chcosing the best design. Examples
of such conclusions are mentioned in chapter 4, e.g. Cleaver's double
pole lens (Cleaver 1978); Cleaver's computation gave 8.4% higher
value for maximum flux density in the gap than the value expected from

equation (1.15), under linear conditions.

Al-Khashab (1983) has carried out a study about the best size and
position of the coil, dcncluding that thinner coils were better than
thicker ones for magnetisation behaviour of the polepiece. This study
has shown these conclusions to be erroneous, since there were two
serious problems in these lenses, due to both boundary lcss in
excitation and leakage problems affecting the performance of the lens,

as discussed in Chapter 4.
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Arother investigation was made at Aston University on lenses designed
by Christofides. These lenses are designated Hermes, Hermes II and
Hermes III. The computed values of peak axial flux density of Hermes
II were 26% higher than the experimentally measured values
(Christofides' 1982). The discrepancy between the computed and
measured distributions were explained by Christofides in terms of the
"inherent errors" in the computer program M13, "experimental errors"
caused by the finite size of the Hall probe, and finally possible
variations between the magnetisation properties of the magnetic
material (Swedish iron) used in the experimental lens and those of the
soft iron assumed in computing. Christofides thesis shows these
discrepancies for both the total field at the peak and the iron
contribution (BFe) to the peak value. Since the mesh data used by
Christofides were not reported in his thesis, the lens was recomputed
with the same dimensions and with a convenient mesh distribution using
limited mesh numbers (25,50) and large mesh numbers (54,100). It was
found that, for example, at 10800 A-t. Hermes II gave a peak in very
good agreement with the experimental results. Ancther fact worth
mentioning is that for higher excitations boundary problems arise and
the iron casing is inadequate. In a further calculation by the present
author, with correct boundary and a redesigned iion casing the loss in
excitation due to boundary and leakage effects disappeared. In
Christofides original computations of the flux density distribution,
at excitations higher than 16000 A-t., three sources of error were at
work i.e. the inadequate mesh layout which gave high peak value,
insufficient boundary which caused loss in excitation and

insufficient iron casing thickness which gave inadequate flux

distribution.
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1.5.4 Elimination of difficulties encountered in finite element

programs

Throughout this work, application of all the available programs was
made initiallly with a limited number of meshes, then with
progressively larger numbers so that comparisons could be made at
every stage of the calculation. The effect of each of the previously
mentiocned factors was studied separately and several lenses were used
including single and double polepieces, iron-free lenses, coils with
rings as well as symmetrical ring lenses. Sufficient information was
gained from these applications to outline a method taking into
consideration all the above mentioned factors, for designing electron
magnetic lenses by the finite element programs. The method starts by
setting the correct boundary and a suitable mesh layout, as outlined
in this study. This method proved its usefulness in pinpointing and

rectifying certain errors in lens design.
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CHAPTER TWO

COMPUTER PROGRAMS FOR CALCULATING MAGNETIC FIELDS

25l The Basic Theory

The energy functional E for a rotationally symmetric circuits, can be

expressed as (Munro 1971, Nasr 1981, Lencova 1984),

E=2‘ITI[(W-JA)rdrdz (2.1)
Total Area
Where
B B
W=f_li.d§=_.:h _B ap (2.2)
DR
(o] (@]

where A(r,z) is the angular component of the vector potential, A=0 at
the lens axis and at infinity. J(r,z) describes the distribution of

the current density in the excitation coil.

The flux density B is given by

] 2
B =¥(B +B)
o z
2Z
and B, - 1 2(rA)
: 5 °or

The field intensity H = B/ W K, where U is the relative
permeability which can, in the magnetic material, depend on the value
of the flux density. For non-linear magnetic material, W is given by

equation 2.2.
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If H is a linear function of B, it holds that,

W=i_ (2.4)

Ho Hro

where W is the stored magnetic energy per unit volume, i.e. the work
per unit volume required to produce a final magnetic flux density B.
Hr, is the relative permeability from the beginning of the

magnetization curve. “ro = 1 in non-magnetic parts.

Integration of equation (2.1) should be over an infinite area. But
for magnetically shielded lenses, the boundary with A=0 can be put
close to the lens. For axially symmetric problems equation 2.1

becames

2
E=27rff (_B._—-JA)rdzd.r (2.5)
2”o”r i
Total Area

It can also be shown (Munro 1971) that the minimization of equation

(2.5) is equivalent to solving the three sets of equations, given by,

§==mrl§

H=1lB (2.6)
u

curl H=J

which the vector potential A (x,y,z) is required to satisfy at every

point within a surface S. Hence:

E:zu?j:[ ( 1 curl A.curl A -J.A)r dz dr (2.7)
ZHGH

Total Area
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In the case of rotationally-symmetric magnetic lenses, the only
components of A and J which are non-zero are the circumferential
components Ag and Jg. In this case equation (2.7) can be rewritten

as:

=
|

fj %/"9""[(_8?)2 + (928 ;A%)%- Jo 8g}27 rdrdz (2.8)
Z ar
Total Area

The minimization of equation (2.8) can be carried out by the finite
element method. The magnetic structure, including the current
carrying coil, the magnetic material and the space around it, as
defined by the outer boundary (for which the vector potential A .must
be known and is equal to O at infinity, is divided into a grid of
quadrilaterals. Each quadrilateral is divided, in turn, into two
triangles. This can be done in two alternative ways as shown in
figures 2.l1a and 2.1b. In each case the vertices of six triangular
elements meet at a lattice. Combination of arrangements 2.la and
2.1b, as shown in 2.lc, gives twelve triangles in contact with each

node, thereby improving the accuracy of calculation.

A
4G P 1S \\ I g
“ /1 AN I o 3
"1: 7 ,: 3 \ ‘\'6\\

— Te : e '\‘\.:; \:\‘ - A‘. AT
2’ (3 'f’ \3\\\ Ty e ——
Py e 7 . R 5 AC
v ".é:"\‘ Aa

- e = 118
As
q b C

Figure 2.1 Subdivision of quadrilaterals into finite elements
(a) cne possible way, (b) alternative way,

(c) cambination of (a) and (b) for better accuracy
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With this arrangement Munro (1973) derived a nine point equation for
each node in terms of the vector potentials at the nodes and the eight
vector potential values at the other vertices of the triangles in
contact with the node, as shown in figure 2.l1c. In this case the
values of known vector potentials at the boundary are substituted and
the equations solved for the unknown vector potentials at each ncde.
This will lead to the determination of the flux density over each
element. The flux values can also be calculated and the axial flux

density determined from the vector potential values near the axis.

The axial flux density B(z) is given by:

B(z) = 2(3) 1% - A 1)?) (2.9)

r) 1y (5?2 - 1y?)

where A, and A, are the vector potential at distances r; and r, from
the axis respectively. Ea. (2.9) determines B(z) from the vector
potential values on the two lines closest to the axis. According to
Lencova (1984), her program AMAG determines B(z) values based on two
lines as well as one line. In the latter case B(z) = 23y

1

Boundary loss in excitation

The values of the vector potential at the outer boundary must be known
so that the finite element equations can be solved for the unknown
vector potentials. Because of axial symmetry, the vector potential
along the axis is zero (A=0). However, the vector potential at the
other three bourdaries cannot be zero unless they are at infinity.
This, in practice, means if the boundary is taken at a far distance
and the value of (A) is assumed zero; the results will be reasonably

accurate. This, of course, necessitates increased computer memory store.
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The boundary problem can be elaborated as follows:

The field strength H is given by,

- B(z)

For a path (1) that encloses the coil windings,

i 4 B(z) .dl =NI (2.11)
Lfan

A finite boundary must be specified Qhere A=0. Thus the boundary
problem arises in the differential finite element method. The
boundary loss must be minimised, otherwise the lens excitation
calculated by the differential finite element method will be less than

the excitation found from the Biot-Savart Law.

Nasr (1981) calculated the boundary loss in excitation as shown in

figqure (2.2).

S e
= 1H(A/m)
2 .03 !
= !
e tr___ A=Q —
. @2r

roil

.alr

8
\

-2¢ -15 -i@ -5 @

Figure 2.2 Boundary lcss in a magnetic lens
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The shaded area represents the excitation (lost) from the axial field
distribution and transferred to the boundary. The excitation of an
iron free coil was calculated with the Biot-Savart Law and the
differential finite element method for a finite boundary. The
calculations were repeated after surrounding the lens firstly by a
superconducting sheet A=0 within the specified boundary, and secondly
by an iron sheet of infinite permeability. Results showed a boundary
loss in the case of the superconducting sheet. But no loss was
apparent in the iron sheet case. The boundary loss causes errors in
the calculated field which are highest near the boundary. The
calculated axial field distribution in the central region of the

structure, remote from the finite boundary, has good accuracy.

In the case of closed magnetic circuits, for example in conventional
lenses, which were the basis of Munro's research work, the
differential finite element methcod is satisfactory. The case is
similar to the case of a lens surrounded with an iron sheet where
there is no boundary loss. This study proved that is correct for
linear conditions where the magnetic circuit has high relative

permeability, and will not apply in saturation conditions.

On the other hand for open circuits, like iron free coils, or partly
open circuits, like single-polepiece lenses, the differential finite
element method may lead to unacceptable errors in the axial field

distribution due to the loss at the boundary. These errors can be

avoided or minimised by using cbmputers with very large core stores.
However, such computers are not always avaiiable, especially for the
initial design work of magnetic lenses where research workers need to

change data repeatedly and get results quickly. Thus the need arises
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for a method which can guarantee reasonable accuracy for magnetic lens
design work, using mini or micro computers. Nasr's programs (Nasr,
1981) as will be illustrated later, are designed to cater for such
work. These programs give adequately smooth curves for axial field

distribution. This guarantees the accuracy of the derivatives.

2.1.1 The differential finite element method

A number of programs are available utilising the differential finite
element method for computing the vector potential distribution and

flux density distribution of magnetic structures.

2.1.1.1 Munro's programs

Two programs are available in Munro's mamals (Munro, 1975) for
calculating the field distribution characteristics namely M12 for the
unsaturated magnetic lenses (linear condition), where the magnetic
material has constant permeability, and M13 for the saturated magnetic
lenses (non-linear condition), where the magnetic material

permeability varies with the flux density.

2.1.1.1.1 Munro's program for unsaturated magnetic lenses (M12)

Munro's program M12 computes the vector potential distribution and the
flux density distribution throughout the magnetic circuit and coil
windings of unsaturated rotationally-symmetric lenses, where the
magnetic material has constant permeability. The calculations involve

minimising the energy functional represented by equation (2.8).
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Figure 2.3 Triangular finite element. The vertices numbered counter
clockwise, A(z,r) is the vector potential assumed to vary

linearly with z and r.

By considering a triangular finite element mesh as shown in figuré

2.3 assuming that A(z,r) varies linearly across the triangle, thus the
contribution from the triangle to the value of the functional can be
put in equation 2.8 if the area of the triangle is sufficiently small.
Then the values of A and r at the centroid can represent the triangle.
For the functional to be minimized %j—f = 0. At the three vertices

of the triangle represented by figure 2.3 , a matrix equation is

formed,

DAE _ [D;4] . (A;] - [0;1] (2.12)

oAl

i=1,2,3; j=1,2,3
Because of symmetry Dij requires the calculation of 6 elements only.
The finite element equations for this program are obtained as follows:
Considering O as the general node in contact with twelve finite
element triangles (figure 2.4), a nodal equation is obtained at point
0 where the value of the vector potential AO is affected by the eight
neighbouring vector potentials at the other vertices of the twelve
triangles in contact.
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Figure 2.4 A node 0 in contact with twelve right angled, overlapping,

triangular finite elements.

At any node (n) the change in energy functional is given as the total
change from twelve triangles (T, Ty, T3, Tgsee...Typ) in contact with
node n. By expressing this change in functional at node n in matrix
form given by ecuation (2.12) a nine point equation for the node (n) is

obtained:

PrAn 11 t PoRn 1 + Pafy 14 * PaBy ) + Pohy + Plingy + Polnr
PeBnt+r + PolPnir+l = Gn (2.13)
where C, = Q) + Qy + Q3 + cveeee Q9 {2+14)

P1s Py ceeenencPg are the coefficients of nodal equations for node n

which can be expressed in matrix form as follows:

g [ S

T Az~ C'
N. J / = J 211
eq P ‘421*, ? ! CZH"I' ? (2-15)

4L

\_.411-! +1 ) \ C.U'-H'! )

where 1 = 0 for asymmetrical problems and 1 = | for symmetrical

pProblems.
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The matrix eguation (2.15) has some important properties:- (a) It is a
sparse matrix since each nodal equation can be expressed in terms of
the vector potential at the node and the eight neighbouring vector
potential values, (b) It has the properties of a banded matrix with
half band width equal to I and (¢) it is symmetrical about the
diagonal. Hence only the coefficients of the banded matrix in the
upper triangle of the matrix need be stored. The matrix equation
(2.15) is solved by the Gaussian elimination, to give the vector

potential at each mesh-point.

The axial flux density distribution is obtained by numerical
differentiation of the computed vector potentials at the mesh points
near the axis. Flux values throughout the magnetic circuit are
obtained at the centre of each finite element by numerical
differentiation of the mesh point potentials at the vertices of the

element.

M12 program consists of the main program and twelve subroutines. It
permits of a maximum mesh size of JM = 50 mesh points in the axial
direction by IM = 25 mesh points in the radial direction. If more
than 25 x 50 mesh points are required then the dimensions of the array
variables must be increased accordingly. This requires a larger
computer store and mcore time. Munro found that the execution time is

roughly proportional to I3J and the store required is roughly in .

2.1.1.1.2 Munro's programs for saturated magnetic lenses (M13)

Munro's program (M13) deals with saturated magnetic lenses, in which
the lens excitation is so high that non-linear magnetisation curves

must be considered. The program is designed to handle magnetic
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circuits of up to five different magnetic materials. Data input
allows for magnetisation curves in form of tables B and H of each
magnetic material as shown in table (l.1). For H values which are
lower than those in the table, i.e. those which represent the linear
part of the magnetic material, the program assumes that the
magnetisation curve has a constant slope. For H values greater than

those provided in the data, the curve is assumed to have a constant

slope equal to the free space permeability (M .).

As in the case of unsaturated magnetic lenses program M12, the
saturation program M13 computes the axial flux density. Assuming
linear variations of A across a finite element triangle, the values of
radial and axial flux density (Br) and (Bz) and (B) are calculated
from equation (2.3). The corresponding values of Hp and the

; incremental permeability (ur‘:i_m:r) are found from the magnetisation
characteristics. The finite elements equation for the general node
(equation 2.13) applies. Hence a set of nine point non-linear
equations are generated at each node. These non-linear equations are

solved by the Newton-Raphson iteration, by calculating the matrix

equation,

Uym! ( 485) = Ep- (2.16)

where J is the Jacobian matrix of the non-linear equations, AAL is
the difference in vector potential at the mth node between two

consecutive iterations k and k+1 and is given by,

(AAL) = (A)K - (k] (2.17)

E, is the matrix of the residuals. AA, is calculated from equation

(2.16). After each iteration, the new value of Jnm is obtained and
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the resulting matrix is solved by Gaussian elimination and a new

approximation for the vector potential values is calculated from,

(A)k*L = (aK) + (aa)k (2.18)
This process is repeated until the change in ( AA)k is within a

certain accuracy limit.

This program like M12 consists of a main program and extra subroutines
to deal with iteration processes. In general for a mesh with J points
in the axial direction and I points in the radial direction, the
execution time is roughly proportional to NI3J and the store required
is roughly proportional to NIZJ » Where N is the number of iterations

required to achieve adequate convergence.

2.1.1.2 Nasr's Programs

Nasr's programs were present in Aston University's ICL 1905 computer
system, with several trial versions for each program. Unfortunately
no manuals and no comments on how the programs functioned were

available.

At the early stages of this work, applications of all the available
versions were performed to find the best copy. As a result of these
applications it was discovered that the saturation program (VPSAT) had
not been applied for symmetrical cases, and in case of saturation the
program was erroneously repeating the llnear procedure. With Nasr's
collaboration, several major modifications were made in the main
program and in the saturation subroutine. The present VPSAT program,
which is now fully documented by the present author, now deals with
both symmetrical and asymmetrical lenses as well as linear and

saturation conditions.

a BR.



As part of this study comments were written on both of Nasr's
programs, VPLIN and VPSAT. Both programs together with comments are

listed in Appendices 3 and 4 for reference purpcses.

2.1.1.2.1 Nasr's improved wvector potential program VPLIN for magnetic

structures under linear conditions

Nasr's program VPLIN, like Munro's program M12, computes the vector
potential distribution and the flux density distribution throughout
the magnetic circuit and coil windings of unsaturated rotationally
symmetric magnetic lenses. The magnetic circuit is assumed to have
constant, finite permeability. The algorithim of program VPLIN like
that of M12 involves minimising the energy functional represented by
equation (2.8). This minimisation is performed mumerically using the
finite element method. The regicn to be analysed is divided into
small quadrilaterals which are subdivided further into small
triangular finite elements, within which the vector potential A is

assumed to vary linearly.

There are important differences between Munro's program M12 and Nasr's
program VPLIN which make the latter produce results of the same
or better accuracies with the same computer core size. This can be

explained as follows:

Figure 2.5 shows a rectangular single pole lens. The outer boundary

is represented by CDEF.

Both M12 and VPLIN programs assume that the vector potential at the

boundaries CF, (D, EF and DE (the axis) is zero. This will naturally

affect the results since A 0 at CF, CD and EF.  The region within
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Figure 2.5 Rectangular single polepiece lens with mesh
distributions in Z and R directions and two
inner boundaries, ZLB and ZRB to be used in
Nasr's programs for further runs.
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the finite boundary CDEF is divided into a grid of quadrilaterals,
which includes the magnetic material, the coil and the free space.
Edges of the quadrilateral are chosen perpendicular or parallel to the
axis. Major mesh lines define the geometry of the structure and
change the mesh size. The programs will subdivide the large
quadrilaterals into smaller cnes and finally to triangles representing

the finite elements.

With M12 program, the only way to improve accuracy is to increase the
major mesh line numbers which will increase the computer core
requirement. VPLIN program achieves improved accuracy with the same
core size by introducing two inner boundaries ZIB and ZRB, remote from
the other boundaries CD and FE, so that a finer mesh size is obtained.
The inner boundaries ZLB and ZRB divide the structure into three
regions which correspond to RUN 2, RUN 3 and RUN 4 calculations on the
computer. The whole structure CDEF is used for the first calculation
(RUN 1) which will give similar results to those obtained from M12
program if the same mesh line numbers are used. When RUN 1 is
completed, the vector potential values along the inner boundaries ZLB

and ZRB are saved to be used in subsequent runs.

RUN 2 region, shown in figure 2.6 , has boundaries CD, GH and the
axis DH with vector potential values set along them to zero. The
fight hand side boundary is ZLB with vector potential values saved
from RUN 1. The region is divided by mesh lines in both axial and

radial directions and the camputations are done as for RUN 1.

For RUN 3, shown in figure 2.7 , the vector potential values at the
axis HM and boundary GL are set to zero. The values at the left hand
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side boundary ZLB and right hand side boundary ZRB are those saved
from RUN 1. The region is again divided by mesh lines as explained

for RUNS 1 and 2 ard the computations are carried out.

For RUN 4, shown in figure 2.8 , the left hand side boundary (ZRB)
vector potential values are those saved from RUN 1, while the values
for boundaries LF, FE and ME (the axis) are set to zero. Division by

mesh lines and computations are carried out again.
The three RINS 2, 3 and 4 yield the final distribution of the vector
potential throughout the magnetic lens. These results are more

accurate than RUN 1 results, as shown in figure 2.9 .

2.1.1.2.2 Nasr's improved vector potential program under non-linear

conditions (VPSAT)

This program, like Munro's program (M13), is based on the minimisation
of the energy functional representated by equation (2.1) where W is
defined by equation (2.2). However, in addition to minimising the
boundary problems associated with Munro's program, there are other

differences which will be explained below.

The boundary problems associated with Munro's programs (M12) and (M13)
have been explained previously. In order to get accurate results with
these programs, the boundaries have to be set at relatively far

distances. This requires very large core store.

VPSAT program overcomes the boundary problems, associated with Munro's
‘M13) program, by locating two inner boundaries in a way similar to

(VPLIN) program. The whole structure is used in the first run
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Figure 2.1@ Relation between the relative permeability ;Mr} of
magnetic material and the flux density B.

TABLE 2.1 A TYPICAL RELATION BETWEEN THE RELATIVE PERMEABILITY
AND THE FLUX DENSITY OF A MAGNETIC MATERIAL (Nasr 1981)

40 6366.2
.4 6366.2
.68 Sh1E3
.88 4668.5
1.02 4058.
1.224 2831.4
1.325 1735.
1.351 1033.6
1.377 815.3
1.442 521.9
1.5 253.1
1.589 142.4
1.623 1116..1
1.679 85.6
1.79 51.8
1.84 33.2
1.866 24.4
1.898 19.5
1.919 1645
1.937 14.4
2. 10.1
2. Tisil
2.3 4.6
2.6 3.3
2.9 2.6
3a 1 2.4
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As in Munro's M13 program, the contribution to the functional at
any node (m) comes from the twelve triangles in contact with the
node, a set of nine-point non-linear equations are generated at

each node of finite element grid, similar to equation (2.13).

These non-linear equations are solved by Newton-Raphson iteration by
calculating the matrix eguation (2.16). The value of the Jacobian
matrix (Jnm) and the sum of residuals E, is calculated by determining
the values of B, Jr and DMU where DMU is the incremental relative
permeability and is determined from figure 2.10 or table (2.1). AR
as previously mentioned, is the difference in vector potential at the
mth node between the iterations k and k+l1 and is calculated from
equation (2.17). After each iteration a new value of J,. is obtained
and the resulting matrix, like in Munro's (M13), is solved by Gaussian
elimination and a new approximation for the vector potential values is
calculated according to equation (2.18). This cycle of operations is

repeated until the change ( ﬂA)k is within a certain accuracy limit.

The VPSAT program can ke used for linear cases as well as non-linear
ones, i.e. it can substitute for the VPLIN program. This is ancther
advantage of this program as one program, suitable for both linear and

non-linear conditions, needs to be stored.

2Rl R Lencova's Program (AMAG)

Lencova's AMAG program has the same theoretical basis as Munro's and
Nasr's programs, since it utilises the finite element method for

calculating the vector potential and flux density distribution in the
magnetic circuit of a rotaticnally symmetric magnetic electron lens.

The stored energy is expressed by equation (2.1). Program AMAG is
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arranged in two stages, the first stage deals with the linear
approximation with constant iron relative permeability Heg? which is
relative initial permeability. The second step is the non-linear
computation of the vector potential. In this stage, account is taken
of the dependence of iron permeability on flux density in each part of
the magnetic material, as is the case in Munro's M13 and Nasr's VPSAT
programs. Additionally program AMAG deals with cases when the
magnetic material is on the axis (eg. boreless lenses) by a special
subroutine designated 'AMULV'. In this case B(z) value from equation
(2,9) will be divided by the relative permeabilities obtained from the
magnetisation curves or from the beginning of the magnetisation curve
in the linear case i.e. the flux density is determined in an infinite-

simally small bore along the axis.

In Lencov;'s program, as in all the previous finite element programs,
the whole area is divided into quadrilaterals which are subdivided
into triangles; each small triangle contains only one type of medium
(iron, coil or rnon-magnetic material). The vertices of each triangle
are numbered counter-clockwise from 1 to 3 as shown in figure 2.3.
Where A(z,r) is a linear function of the r and z coordinates in the
triangle; the flux density at each triangle can be evaluated from
equation (2.3). If the triangle lies in the magnetic material and a
first approximation of the non-linear method is required, the value of

the two permeabilities l‘11.' and ”'d can be determined from the

magnetization curve to a linear approximation given by e = Mg =
Hro. Where "4 is the differential permeability and is given by
i

3B ; . H M
d = B-I;/ ko, For the non-linear computation "r and "d are
evaluated from the magnetization curve with the help of the following

formulae:
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(1) I£ BC ¢ BM (1,I), then Mr= M= Mo
(2) If BC > BM (J,I) where J = IH(I), then *d =1 and Mr is defined
under 3 below

(3) If &M (J,I) < BC < BM (J + 1,I), then

BM(J+1,I) - BM(J,I)
Po(H(J+1,I) - H(J,I))

(2.19)

- Bc :
Yr Yo H(J,I) + (BC-BM(J,I))/Md 2:20)

where BC and BM are the axial flux density distribution from the
computation process and the tables respectively. H is the field

strength.

Up to two kinds of iron may be handled (as opposed to five in Munro's
program) represented by two magnetization curves, or B/H tables . In
the case of saturated lenses the lens excitation may be progressively
increased by giving a series of current densities in the coil. For
the first step i.e. the lowest coil excitation, the computation of the
lens is performed by linear approximation. Then in each non-linear
approximation a correction to the vector potential at the mesh nodes
is obtained and added to the previous vector potential. A maximum of
7 approximations is allowed for each excitation, typical values being
2 to 3 while in certain cases this was increased to higher than 7
approximations. If the range of the absolute value of these
corrections is smaller than 3%, camputation is stopped and the results

are printed out.

For the next excitation the resulting vector potential from *he

previous excitation is used. Since in saturation, a 50% increase in

- 68 -



lens excitation will not produce a 50% increase in the flux density,
the new starting vector potential will be multiplied by a lower
value of (1 + a)/2 where a is the ratio of the new and the last

excitations.

For the solution of the linear equation (2.18) the AMAG program uses
the Cholesky decomposition, combined with the conjugate gradient
method (or pre-conditioned conjugate method of Meijerink and Vandar

Vost (Lencova 1984) )e

Program AMAG gives almost the same results for the axial field
distribution as Munro and Nasr's programs if the same rumber and
distribution of meshes is used. However, this program deals with

several excitations with the same data.

2.2 Axial flux density distribution due to the current windings

in the coil by Biot-Savart Law

Nasr (1981), derived the axial flux density B, at a point P of axial
coordinates z due to the current in a circular loop of radius r

carrying a current I., from Biot-Savart Law. Nasr's (198l) program
‘Biot" has been used by the present author and listed in Appendix 2

for reference purposes. From Bict-Savart Law,

2
1 <

[B.(z)] = M c (2.21)
o i 3 3.3/2
2(r + z7)

For a coil of rectangular cross section and excitation NI ampere

turmns (Fig. 2.11), Bo becomes,

e



B, =_Hp M [2, InX) - ZylnX,] (2.22)
4A(ry - 1)

i
In this case A = 5 (coil width)

(r2—rl) = the difference between the outer and inner radii

W the permeability of free space = 1.256637 10~°

0

Z, =72 +A

where (Z) is the axial distance of the point (p)

2, =2 ~A
x;=__ 22 1 (2.23)
170
tan é.(j.+ Sl)
X, = 2 2 (2.24)
1 &
tan—zh(EJ'BO)

O‘L C‘O’ 81’ 80 are shown in figure 2.11 .

If the coil dimensions and the excitation are known then @y O, 31

and 30 can be calculated.

For a coil of arbitrary shape, the field at the axis can be calculated
as the contribution of several current loops by dividing the coil into
a number of circular elements whose cross-section form a grid of

quadrilateral elements. The current for each element is given by,
s = (J)i-(area)i (2.25)

where (Ic)i = the current in ith element, (J); is the current'density

of the ith element.

i 0
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Figure 2.11 Axial flux density BC(zJ from

cross-section at a point P on the axis

a coil of rectangular

The axial flux density [Bc] at the point P is derived according to

equation (2.21).

The total contribution from the coil to the flux density at axial

point p is then given by

= i [B.J4
i
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CHAPTER THREE

INPUT DATA AND OUTPUT RESULTS OF COMPUTER PROGRAMS FOR

CALCULATING MAGNETIC FIELD DISTRIBUTICN

3.1 Introduction

The first step in the application of computers to magnetic field
distribution for lens design is the choice of a convenient program
compatible with available computer memory store and time. Once that
is done, there are procedures to be followed, in the input data
preparation, which are often specific to each program ard a full
understanding of them will save the user much time and effort. In the
following sections, special attention is drawn to the input data and
output results of Munro (1975), Nasr (1981) and Lencova's (1984)

programs.

7
3.2 Data Preparation for Munro, Nasr and Lencova's camputer

programs

This study has shown that the choice of the correct boundary, a good
mesh layout and careful mesh distribution are prerequisites of
successful computer aided design. To prepare data, for the
calculation of the axially symmetric magnetic field distribution in
magnetic lenses the lens cross section is shown later for example

in figure 3.3a. Symmetrical lenses require only a quarter secticn,
with symmetry plane on the right; asymmetrical lenses require a half
cross section as shown in fig. 2.5 since they do not have a plane of

symmetry in the middle of the lens.
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The next step is to chose a suitable boundary to surround the magnetic
circuit, at such a distance that the flux density can be assumed
negligibly small at the boundary. This can be done, for example by
calculating the axial flux density produced by the coil, directly,
from the application of the well known Biot-Savart Law with a suitable

computer program, like the one mentioned in section (2.1.2).

The whole region of the magnetic circuit, surrounded by the chosen
boundary, is then divided into quadrilaterals in such a way that all
the outlines of the magnetic circuit and the coil windings lie along
the quadrilateral's edges. It is advisable that these edges are drawn
as near as possible parallel to or perpendicular to the lens axis.

The axial and radial coordinates, for the mesh points, are written in

millimeters with decimal points.

The original, quadrilaterals are subdivided into smaller ones to
provide fine mesh which is of utmost importance in finite element
analysis. This is performed automatically by the computer, in

accordance with the mesh numbers specified.

Careful mesh distribution is required in all parts of the lens, with
particular attention for the polepiece gap, region defining the

polepiece and the coil windings. However, this should not be done at
the expense of the other parts of the lens. The best approach is to

change the mesh length gradually and avoid abrupt changes.

Standard R-Z Coordinates are used; R=0 on the lens axis. For

asymmetrical lenses, the origin of the Z coordinate can be chosen at

any convenient position; for symmetrical lenses, the origin is
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conveniently chosen at the plane of symmetry. This is the case for
the Munro, Nasr, and Lencova programs. Note however in the Lencova
program the Z coordinate is considered positive; in the Munro and Nasr
program the Z coordinate is considered to be negative (see Figures

3.3a and 3.3b).

Data writing formats are of course specific to each program. Munro,
has provided a comprehensive manual on his programs, which give a
detailed account of input data formats. A brief description of these
is given in the following paragraphs largely for comparison with the
other program formats. However, Nasr and Lencova have not yet
published similar manuals for their programs. A considerable effort
has therefore been made in this thesis to analyse in detail Nasr's
program, to correct programming errors and to provide an authoritative
manual for future use. In addition Lencova's program, in
collaboration with the author, has been adapted for the Harris 800

computer and tested out on critical problems.

3.2.1 Data Preparation for Munro's Programs

Data preparation will vary according to whether the computation is
performed for linear or non-linear conditions. Munro's program M12
deals with linear cases (unsaturated magnetic lenses), while program

M13 deals with non-linear cases (saturated magnetic lenses).

3.2.1.1 Program M12

Table (3.1) illustrates the general data format for program M12, and

gives full explahation of the symbols used.
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3sded 2 Program M13

Program M13 deals with saturated magnetic lenses, in which the lens
excitation is so high that non-linear magnetisation curves of the
magnetic material must be taken into consideration. The program can
deal with up to five different materials compared with only cne in
Nasr's program and two in Lencovd's. Table (3.2) shows the general

data format for this program, with the symbol's explanations.

3.2.2 Data Preparation for Nasr's Programs

Nasr's programs VPLIN and VPSAT as mentioned above had no user manual
or operator instructions. Therefore, general formats for data inputs

were developed for these programs during the course of this study.

3.2.2.1 Program VPLIN

The essential steps, in the data preparation for Nasr's VPLIN program,
are similar to that of Munro's M12 program. However, in case of the
VPLIN program, two extra mesh lines are chosen as inner boundaries as
explained in section (2.1.1.2.1). These inner boundaries divide the
whole data region used for RUN1 into three parts representing RUN2,
RUN3 and RUN4, for asymmetrical cases; and into two parts for
symmetrical cases representing RUN2 and RUN3. The inner boundaries
are chosen from the axial mesh lines i.e. perpendicular to the lens

axis.

Table (3.3) illustrates the general data format for program VPLIN,

with the symbol's explanations.
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3.2.2.2 Program VPSAT

This program was developed, in its general form, to deal with both
saturated and unsaturated magnetic lenses. For the saturation case,
the non-linear relation between the relative permeability *r of the
magnetic material and the flux density B (Table 2.1) is introduced in

the iteration process.

The general data format, prepared for program VPSAT, is shown in Table

(3.4), with the symbol's explanations.

3.2.3 Data Preparation for Lencova's Program AMAG

This program deals with both linear and saturation cases and can

compute data of several excitations ror the same run.

Through information provided by Mrs Lencova, and after repeated trials
at the University of Aston's computers, sufficient experience was
gained to draw up a general data format shown in Table (3.5), with the

synbol 's explanations.

3.4 Comparison of the Output Results of Computer Programs used

in Calculation of Magnetic Field Distribution

In order to make a critical comparison of the capability of the above
mentioned computer programs, special model lenses were devised for the
purpose of revealing any inherent errors in the programs. Data
inputs, for all the programs, were compiled with the same boundary
conditions, and the same mesh layocuts and mesh numbers were

used.
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The relevant flux density was computed, under non-saturation
conditions, with the three programs M12, VPLIN and AMAG. The
computation was repeated for the same lenses, under saturation
conditions, utilising programs M13, VPSAT and AMAG. Furthermore, both

cases of symmetry and asymmetry were considered in each comparison.

Feded Asymmetrical Lens under Linear Condition

The rectangular single polepiece lens shown in figure 3.1 was one of
the lenses used for these comparisons. The data was compiled from
this lens with the same mesh layouts for the linear programs M12,
VPLIN and AMAG according to tables 3.1, 3.3 and 3.5 respectively. In
addition to the usual data, program VPLIN requires the inner

boundaries to be fixed, as indicated in figure 3.1 .

The output results from the three programs are shown in figure 3.2
which indicates that for the same conditions and mesh layouts i.e.
limited computer memory size, programs M12, AMAG as well as VPLIN with
only one run produce almost identical results. However the VPLIN
program, with four runs, provides for more meshes in the axial
direction by introducing the inner boundaries, as explained in section
(2.1.1.2.1), with only marginally more memory size. Consequently
program VPLIN, produces a smoother curve with better overall results

than the other two programs.

3.4.2 Symmetrical Lens under Linear Condition

Figure 3.3a shows the boreless double polepiece test lens (quarter
section) designed for comparison purposes. In this figure, the
Symmetry plane is on the right i.e. the negative quarter is shown.
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in the figure.

o, FH

90-

S &

=IN

5SS S
R(mm)



068 (2) Tesla

o
uM
|

0L
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Z(mm)

m Axial field distribution B, Calculated with M12,
Vplin and AMAG programs TES X 25) meshes 14.8% loss in NI

g Axizl field distribution BT Calculated with Vplin
(25 x 25) 4 runs

e Axial field distribution BT Calculated with AMAG (69 x 90)
13.86% loss in NI
0 B coil calculated with Biot Savart program

Figure 3.2 Comparison between the output results of axial
flux density distribution (B.) shown above of
the single pole test lens shown in figure 3.1
with same mesh distribution and mesh number
(25,25) M12, Vplin and AMAG give the same results,
while Vplin with 4~runs gives a smoother curve
but the same peak value. AMAG with the larger
number of meshes (69 x 90) gives a much lower
peak and smcother curve (since the number of
meshes is increased in both Z and R dixzecticns)
Tnis boundary condition give a boundary loss in
excitation. This loss had been overcome by
surrounding the open boundary by Smm thick
high permeability iron sheet.

' TG



The boundaries are set just outside the lens, since the two poles can

act like boundaries.

The data used for programs M12, VPLIN and AMAG are written according

to tables 3.1, 3.3 and 3.5 respectively.

The output results are shown in figure 3.4 . As with the
asymmetrical lens, the results obtained for the same mesh layouts with
programs M12, AMAG and VPLIN (one run) are identical, while program
VPLIN produces a smoother curve (with three runs). The three
programs, with more mesh numbers, are expected to produce lower axial
peak flux density values which are in better agreement with results

predicted from equation (1.15). This was tested with AMAG program.

3.4.3 Asymmetrical Lens under Non-linear Condition

Al-Khashab's spherical single pole lens shown in figure 3.5 was used
for the computation of magnetic field distribution under saturation
condition. The lens was recomputed with correct boundary and
redesigned with thick shrouds, to avoid boundary loss and leakage

problems, as explained in section (4.4.1).

The data compiled from this lens, with the same mesh layouts,
excitation and boundary conditions for non-linear programs M13, VPSAT
and AMAG according to tables 3.2, 3.4 and 3.5 respectively. The

corresponding output results are shown in figures 3.5 and 3.6.

The results, cbtained from programs M13, VPSAT with only one run and
AMAG, are almost identical. Program VPSAT with four runs prcduced

better values, as shown in figure 3.5. This makes program VPSAT and
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The axial flux density distribution of the rectangular
double pole (test) lens under linear conditions using
xxx (27 * 44) meshes for Mi12, VPLIN, AMAG and see using
67 * 90 meshes for AMAG.

Note there is no difference in the output result of M12
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the corresponding linear program VPLIN more suitable for research
laboratories with small store computers where the computer time is not
as important as the memory store. Figure 3.6 shows the axial flux
density distribution obtained by applying the three programs (M13,
VPSAT, AMAG), (1) at given excitations .of 1 x 10% A-t and (2) at given
excitations of 1 x 10° A-t. A difference in the flux distribution
behaviour is noticed inside the iron circuit at (1 x 105 A-t) between

both M13, VPSAT and AMAG.

Experience shows that it is advisable for VPSAT program to choose the
two inner boundaries remote from the coil region (i.e. remote from
the region of high flux density) in asymmetric cases, ar exclude the

coil region fraom the final run.
Increasing the number of meshes, other things being equal, is expected
to result in better values from all the programs. This was tested

with AMAG program only.

3.4.4 Symmetrical Lens under Non-linear Condition

When the rectangular double pole test lens (quarter section) shown in
figure 3.3a was used for the symmetrical lens under non-linear
condition, it was noticed that the lens had 14% boundary loss in
excitation and flux leakage at 1 x 10° A-t. The lens was redesigned
with a correct boundary and very thick shrouds to show the behaviour

of each program inside the magnetic circuit.
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The data used with non-linear programs M13, VPSAT and AMAG were
prepared according to tables(3.2),(3.4) and (3.5)respectively, while
figures 3.7 and 3.8 indicate the corresponding outputs. It is
advisable for VPSAT program data to choose the first inner boundary
correctly; avoiding regions of high flux density, such as the regions
which are close to the coil winding or the magnetic circuit otherwise
wrong field results at that region will be obtained, or as has been

advised by Nasr (1981) to exclude the coil region from the final run.

As with the previous cases, results obtained from programs M13, VPSAT
with only one run, are almost identical except the field distribution
inside the magnetic circuit is different in certain regions as shown
in fig. 3.8 at 1 x 10° A-t, while this is not noticed in fig. 3.7 at

1 x 104 A-t. Program VPSAT with three runs produced a smoother curve.
Also, increasing the number of meshes, keeping other conditions
constant, is expected to result in better results from all the

programs. Only AMAG program was tested with more meshes.

= Computer core store and time required for running each program

Compilation of all the above programs has been made in Harris 800,
and a critical comparison was not possible between Munro, Nasr and
I_encovg's program AMAG since the latter is designed originally for
large capacity meshes using double procession technique. Table (3.6)

shows the comparison.
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Table (3.6 ) The computer core store and time required for compilation

and running each program, and the number of iterations

required under saturation condition

PROGRAM COMPUTATION  STORE REQUIRED THE NO. NO. CF
TIME OF MESHES ITERATICNS
(SECS) (KILO BYTES)
M12 8.17 94 27*44 —
VPLIN 28.48 123 27*44 i
AMAG (LIN.) 64.30 236 27%44 w=e
M13 118.60 104 27%44 14
VPSAT 214.33 144 27%44 14
AMAG (SAT.) 600.24 236 27%44 %)
3.6 Graphic Outputs

Figures 3.9 and 3.10 show the graphic outputs of Munro's M31

program.

The method used for this program is that the program finds, by linear
interpolation between the computed flux values at points on the finite
element mesh, a set of points with the required flux value. The flux
line is then plotted by joining these points together with a series of

straight-line segments.

To run program M31, data is required specifying the scale of plot and
values of the flux lines to be plotted. The program also uses as data
the mesh laycut and polepiece geometry (as previously set for running

program Ml2, ML3 or the first run data from Vplin or VPSAT).

The above mentioned figures show the distribution of flux lines
throughout the magnetic circuit for Al-Kashab's(1983) spherical single
pole lens recomputed with the original shrouds (magnetic circuit) at

an excitation of 10° A-t as shown in Figure 3.9. There is noticeable
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Figure 3.9 Distribution of flux lines throughout
the magnetic circuit of Al-Khashab's
(1983) spherical single pole lens,
recomputed with original magnetic circuit.
Note the excessive external leakage.
Lens excitdtionis 10° a-t
X plotting error

Figure 3.10 Distribution of flux lines throughout the
- magnetic circuit of the lens shown in

figure 3.9 but redesigned with a thicker
magnetic circuit leading to reduced axternal

leakage field.
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external flux leakage. Figure 3.10 shows how the leakage was reduced
by thicker magnetic circuit (shroud) using the same mesh layout and

the same excitation.

Figures 3.11, 3.12, 3.13 and 3.14 are graphic outputs for program
AMAG. These outputs are given in form of 1J (indices) map, the
indices I (in the radial direction) and J (in the axial direction)

refer to the lower right-hand corner of the small quadrilateral.

The first map shown in figures 3.11 and 3.13, prints the type of
material in each small quadrilateral which are 0 for air, 1 for the
magnetic material and 3 for the coil. This map is useful for checking
the input data, and checking that the position of each material is in

its place.

Figure 3.11 and 3.13 show the distribution of material in the mesh for
the recomputed Al-Fhashab snmherical single pole lens with the original

shroud and with a thicker shroud.

Similarly the flux density map shown in figures 3.12 and 3.14 prints
the coded value of iron flux density in each zmall quadrilaterial
lying in the magnetic material, the flux density is coded into numbers

and letters in ascending order from O to 9 and A to Z.

The coding table is written below the flux map, as shown in figure
3.12. The iron flux density in the shroud reaches higher than 2.5
Tesla (P) and reaches 2.8 Tesla (S) in certain parts, while the
polepiece tip is 2.6 Tesla (Q). Figure 3.14 shows that with the

thicker shroud, the iron flux density is reduced in most parts of the

- Q] -



*# PARAMETERS OF THE MESH: Ii= 25, Jl= 50, IRZ= 1250
++ OF F.E.M. SYSTEM: 12= 23, J2= 48, IS= 1104
*# FURTHER PARAMETERS: MAPMAT= 0. MAPPSI= 0, LISTIR= 0, LISTFD= 0, IDISC= o]

##uauduuss DISTRIBUTION OF MATERIALS IN MESH

INDEX J -

INDEX I 5 10 15 20 25 30 as 40 45 S0
2 -OOOOOOOOOOGODOOOOOGGOOOOOOOO000000000000000000000

3 -00011111111111I1111!11111111111111111111100000000

4 —0001111111111111111111111111111111111111100000000

S -0001i1lOOO000000O000000OO000000000000000000000000

& -OOOI11100000OOOO00000000OOOOOOOOOOOOOOOOOOOOOOOOO

7 —000111100000000D0000OOOOO000000000000000000000000

8 —0001111033333333333333333333333333333300000000000

9 —0001111033333333333333333333333333333300000000000

10 -000111IO33333333333333333333333333333300000000000
11 —0001111OGOOOOOOOOOO000000000000000000000000000000
12 -0001I11OOGOOOOOOOOOOOOOOGDOOOOOOOOOOOOOOOODOOOOOO
13 —000111111111111111111111l111111111000000000000000
14 —0001111111111111111111111111111111000000000000000
15 —0001111111111111111111111111111111000000000000000
16 —000111111111I111111111111111111111000000000000000
17 -0001111111111111111111111111111111000000000000000
18 -000111111111I1111111111l1111111111000000000000000
i9 —00011111111l11i1111111111111111111000000000000000
20 -000!111111111111111111111111111111000000000000000
21 -0001111111111111111111111111111111000000000000000
22 -0001111111111111111111111111111111000000000000000
23 —0001111111111111111111111111111111000000000000000
249 —0001111111111111111111I11111111111000000000000000
25 -0001111111111111111111111111111111000000000000000

LINEAR APPROXIMATION

CURRENT DENSITY IN COIL= 1, &72E+01 A/MMER2
AREA OF EXCITATION COIL 578. 000 MM=#2

Figure 3.11 AMAG IJ graphic output of Al-Khashab's (1983)
. spherical single pole lens recomputed with
original magnetic circuit; the output shows

the distribution of the materials in the mesh
(0 = vacuum, 1 = iron, 3 = coil) .
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##% PARAMETERS OF .THE MESH: Il= 23, Jil= 50, IRZI= 1250

+4+

## FURTHER PARAMETERS: MAPMAT= 0, MAPPSI= O, LISTIR= 0, LISTFD= O,

OF F.E. M. SYSTEM: I2= 23, J2= 48, IS= 1104

#agpdnnnii DISTRIBUTION OF MATERIALS IN MESH

INDEX

I
2
3
4
S
&
7
8

INDEX J

S5 10 15 20 25 30 35 40 45 50
-0000000000000000000000000000000000000000000000000
-0111111111111111111111111111111111111111100000000
-0111111111111111111111111111111111111111100000000
-0111111111111111111111111111111111111111100000000
-0111111111111111111111111111111111111111100000000
-0111111000000000000000000000000000000000000000000
-0111111033333333333333333333333333323300000000000
-0111111033333333333333333333333333333300000000000
=0111111033333333333333333333333333333300000000000
=0111111000000000000000000000000000000000000000000
=0111111000000000000000000000000000000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111110111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-01111111112111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111%11111000000000000000
-0111111111111111111111111111111111000000000000000
-0111111111111111111111111111111111000000000000000

LINEAR APPROXIMATION

CURRENT DENSITY IN COIL= 1. 672E+01 A/MM#*x2
AREA OF EXCITATION COIL 598. 000 MM##2

Figure 3.13

AMAG IJ graphic output of the distribution of

materials in the mesh for Al-Khashab's spherical

single pole lens but redesigned with thicker
magnetic circuit (shrouds) to reduce external
leakage
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shroud to a value between 0.13 Tesla (0) and 1.7 Tesla (D), while in
the polepiece tip it is increased to 3.08 tesla (N). The iron flux

density map is also very useful to detect the IJ position of - S—

In figure 3.12 B is equal to 3.34 Tesla (X) while in figure 3.14

B ax 1S equal to 3.89 Tesla (T).

This study is showing that both M31 graphic output and AMAG maps can
be used in complementary basis since in the first case the plots are
related to r and z coordinates, therefore they give the actual
polepiece shape and give a general idea about flux behaviour, while in
the second case the maps are related to IJ indices and give more
specific and quantitative information about the iron flux density
(keeping in mind that this useful information can be obtained even in

the absence of plotting facilities).
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CHAPTER FOUR

DIFFICULTIES WITH THE FINITE ELEMENT METHOD

CALCULATIONS

4.1 General difficulties

During the course of this study, it was possible to pinpoint some
common errors in computer aided magnetic lens design. These errors
can be, generally, classified under two different headings; the first
can be ascribed to factors inherent in the finite element method
itself, while the second is related to factors inherent in the process
of lens design which has, in some instances, led research workers into

erroneous conclusions.

4.2 Factors Affecting the Accuracy of the FEM

Previous research workers have drawn attention to some of the
limitation of FEM, when applied to magnetic field calculations. Thus
Hill and Smith (1980) have pointed out that, for a single pole lens,
the mesh layout is critical. They showed that for the same lens
geometry, different mesh layouts give widely varying resﬁlts for the

same excitation.

Craven and Scott (1985) have also shown that large discrepancies in
optical properties may be caused by what appear to be small variations
in the axial field calculation, due to inherent limitations of Munro's
programs. These errors are almost certainly due to the use of an

unfavourable mesh distribution.

w @ om



The effects of the boundary and mesh numbers were also discussed by
Nasr (1981). Nasr minimised the boundary problems associated with the
FEM programs designed earlier by Munro (1971). Nasr attributed the
improvements, obtained through his improved programs, to the increased
mesh numbers used. However, as explained earlier in section

2.1.1.2.1, Nasr's programs use more meshes in the axial direction
only. This study has shown that the boundary effect is greater in
open structures like iron free coils and partially open structures,
like single pole lenses under linear conditions. However the boundary
effect is not serious in conventional double pole lenses under linear
condition, since the magnetic circuit has high permeability under

linear condition and A=0 outside the magnetic circuit.

Urder saturation condition the boundary setting is important in all
cases i.e. even in double pole lenses, since the external leakage flux
can be often high under saturation conditions. If this is the case,
setting the boundary too close to the iron casing may cause boundary

loss in excitation.

4.2.1 The Effect of Mesh Distribution

To show specifically the effect of mesh distribution, a lens of known
field distribution, shown in Figure 4.1, was chosen. This lens is an
unsaturated symmetrical double polepiece lens. The maximum flux

density, By, at the centre of the air gap Sg, separating the parallel

faces of the two polepieces is given by equation (1.15).

When equation (1.15) was applied to Munro's double pole lens (quarter
section) shown in figure 4.1 , (Sg = 10 mm, D = 10 mm), B, was 0.0500

Tesla at 480 A-t. Munro (1975) has computed B, according to the mesh

ST
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22

plane of symmetry

wmFE N

Figure 4.1 Munro's (1975) double
pole Iens (quarter section) with

original mesh distribution. This

figure shows that the meshes
are concentrated at the pole-

piece gap region and
insufficient number of
meshes defining the pole-
piece profile and coil
winding

1«

Figure 4.3 Two axial

Figure 4.2 New mesh
distribution for figure (4.

The number of radial meshes

efining the pole piece
B, (TF

profile and coil winding
increased keeping the
original distribution of

the other parts constant

0;923%

005+ —2

The calculated value
of Bm according to

Munro's results equation (1.15) is
(B = 0.05197T) 0.05T
. Results according to the mesh N f ?ggog_t
arrangement of figure (4.2) I ==
(By = 0.0501T)
| ] |
-20 -10 0 r 10 20 Z(mm)
Poleface

field distribution for Munro's lens note

the difference in the Bm value when the mesh arrangement is
slightly changed.

- 99 -

3. 67T nEne 3 &1 N7O %
=g 0 1 » T
- — : ] % 2 | — ] 90
M s .y
-4 — 75 5 -—-7—' —
AT~ ZINN
jﬁfj ' } §§§§ f
///// : ;;jjj i
::'74' S 10 =155 E =4S
N W
i Y- 20 5 R 12
20 -
I I : 1Y ‘? lens . { f j j = .?
] ! ! 1 axis— ] ] ]
80 ‘0 550 <25 -15 -50 Pom B0 m 50

1)



distribution shown in the figure and obtained a result of 0.0519 Tesla
which is about 3.6% higher. A further step, taken in this study, was
to rearrange the mesh distribution of Munro's lens in the R direction
and Z direction as shown in figure 4.2. When B, Was recomputed,
according to the new mesh arrangement, a result of 0.0501 Tesla was
obtained which is in agreement with the value obtained from equation

(1.15).

The results of the axial field computations for the two cases are
shown in figure 4.3 i.e. that of Munro's original mesh distribution as
well as the new mesh arrangement suggested in this study. Notice the
effect of the mesh distribution is shown in the maximum flux density

in the gap between the two poles only.

The same procedure was applied to the symmetrical double polepiece
lens designed by Cleaver (1978). This lens, shown in figure (4.4),
(quarter section) has an air gap Sg of 10 mm, an axial bore diameter D
of 5 mm and is excited by a solenoid. Cleaver used Munro's programs
for computing the lens field distribution under both saturation and
non-saturation conditions. The mesh distribution used for the
computations is, unfortunately, not indicated in Cleaver's published
results. The B value obtained by Cleaver, under non-saturation
conditions at 104 A-t was 1.20 Tesla which is 8.4% higher than the
value of 1.19 Tesla calculated from equation (1.15). The computations
were repeated, in this study, at the same excitation and according to
the mesh distribution shown in figure 4.5. The same program used by
Cleaver was applied. The B, value thus obtained was 1.20 Tesla which
is only 0.8% higher than the calculated value. Thus the error was

reduced to an almost negligible amount, by using a convenient wesh

distribution.
- 100 -



[/ 7 7 7 7 7 7+ Shrouds
/ Coil  Coil width
L > S = 100mm

ﬁ
> = g
5 7
o g .
2 =

\ Polepiece
lens axis
0.

Figure 4.4

Cleaver's (1978) double pole lens (quarter section only) lens
with high permeability shroud and permendur polepieces
(Sg = 10mm, D = Smm)
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Figure 4.5

New mesh distribution for Cleaver's (1978) lens. It can be
noticed that the mesh distribution is changing gradually, and
special attention has been paid to define the polepiece
profile
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Figure 4.6 indicates the axial field distribution computed by
Cleaver and that computed for the same lens, but according to the mesh
distribution suggested in this study. It can be noticed in figure

4.6 that the mesh distribution have effect on the B value at the

gap while there is not significant effect in other regions.

The above two examples, of field calculations under non-saturation
conditions, indicate that the distribution of the meshes, apart from
their numbers, have a significant effect on the computed flux density
at the peak region. To obtain high accuracy, the mesh length should
change gradually. Abrupt changing of the mesh length should be
avoided, bearing in mind that more mesh points are needed near the two

polepieces.

The errors detected in the Munro and Cleaver's computations referred
to above are due to their mesh arrangements, because meshes have been
concentrated at the polepiece region, at the expense of other lens

parts.

The effect of the mesh arrangement, on field calculations under
saturation caonditions, was also studied. Cleaver's lens, shown in
figure 4.4  was again utilised for this purpose. The lens has a
shroud of very high permeability, as suggested by Cleaver. Figure

4.7 shows the axial field distribution results, computed at 90 x 103
A-t using Munro's saturation program. Cleaver's results, using the
same computer program, are also shown. In the non-critical region,
cutside the air gap region, there is excellent agreement. However in
the critical air region the difference between the two sets of results

is obvious. Thus B is 3.58 acccrding to Cleaver's computation which
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1.297 ///’

21.19T |

B_ value calculated according
t8 equation (1.15)

1) Cleaver's results
(Bm = 1.297)

2) Results obtained in this1'0__
study according to mesh
arrangement of Figure (4.5)
B = 1.20T '

m

3) Computation results using

steps method (1.185T)

0-5+

Figure 4.6

The axial field distribution for

Cleaver's lens shown in Figure
(4.4)

1) Cleaver's results

2) Results obtained according
to the new mesh arrangement
shown in Figure (4.5)

3) Computation results using

steps method

.

N

NI

B(z) (T)

1 x 10"
1 % 10°
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\ 1 Cleaver's (1978) results
3.4 \

2 Results obtained according to mesh
arrangement of Figure (4.5)

3+ The area under curve (1) is 1.7%
~ higher than the applied A-t

While the area under curve (2) is
within 1% of applied A-t

L ’

|
0 T 0N N V- K 0 W
Poleface Z (mm)

Figure 4.7

The axial field distribution for Cleaver's lens
(Figure 4.4) under saturation condition (9 x 10* A-t)
showing (1) Cleaver's results (2) results obtained in
this study according to the mesh arrangement shown in
Figure (4.5)
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is about 5.4% higher than the B, value of 3.4 Tesla computed from the
mesh distribution shown in figure '4.5. When the computation was
carried out using step method (changing the polepiece shape into an
artificial shape which will give rectangular meshes), the results were

in a good agreement with the results obtained in this study.

The area under Cleaver's axial field distribution curve is 1.7% higher
than the corresponding A-t applied, while the area under the new mesh
arrangement curve is within 1% of A-t applied, i.e. the main influence

is in the B value in the gap region.

Ancther example of the mesh distribution effect on magnetic field
calculations, under saturation conditions, was revealed in
Christofides' (1982) single pole lens shown in figure 4.8 .
According to Christofides' (1982), the peak axial flux density of the
lens, computed by Munro's saturation program M13, is 263 higher than
the experimentally measured value. Christofides in his thesis thought
that Munro's program had some "inherent inaccuracies" and these,
combined with "possible experimental errors, caused by the finite size
of the Hall probe as well as possible variations between the magnetic
properties of the material used in the experimental lens (Swedish
iron) and the soft iron assumed in computing”, have caused the large

discrepancy between the experimental and computed values.

This study has shown that Christofides' postulations were not correct
and his experimental results are in fact compatible with computations,
correctly carried out, by Munro's program M13. The problem had
arisen, puiely and simply, from the inadequate mesh layout used by

Christofides. When a convenient mesh layout was used, results are
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shown in figure 4.8 the computed peak flux density value was in
very good agreement with the experimental results as shown in figure

4.9 -

The effect of mesh laycut on calculated results is also clear in
figures (4.10a and 4.10b) which shows, for the same number of mesh
points, but different mesh arrangements the total (BT) axial field
distribution and that due to iron magnetisation Bpe at different lens
excitations. Figure 4.10a shows the experimental values for the total
field By, and those calculated by Christofides (1982) and by the
present author. The differences between the experimental and
Christofides computed values are clear, while the values computed from
this study are in a good agreement with Christofices experimental
values. Figure 4.10b shows a comparison between Bpe (experimental)
and (By~B,;i;) calculated by Christofides and by the present author.
The calculations by the present author are in excellent agreement with
experimental values. This indicates strongly that Christofides used
an unsuitable mesh arrangement and probably assumed that the choice of
mesh was not a significant parameter. The computation was carried out
in this study with M13 program, 25, 50 meshes and with AMAG program,
32, 70 meshes and finally with AMAG, 54, 100; the results were in good

agreement in the three cases.

It therefore is advisable to pay sufficient attention to the mesh
distribution especially in this case, where both the polepiece and the
coil have irregular profiles, and more meshes are required to define

them.
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Figure 4.9 Axial field distribution for Christofides lens

(figure 4.8). Comparison between experimentally
determined, computed values of Christofides and

recomputed values in this study.
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4.2.2 The Effect of Mesh Numbers

The effect of the number of meshes on the accuracy of the results was
also studied, by the application of the FEM programs to the analysis
of the same lens but with increasing mesh numbers, all other
parameters being kept constant. The effect on the results was
noticeable in all lens designs. However, the influence of number of
meshes was more cbvious in acute-angled pole faces and open
structures, since more meshes are needed to define the pole face
adequately in the former case, while in the latter case the boundary
must be set as remote as possible from the coil to overcome boundary
problems as explained in section (2.1). Open structures are

particularly sensitive to the number of meshes employed.

As an example of the influence of mesh numbers, different programs
were applied to the spherical single pole lens shown in figure 4.11.
The axial flux density was first computed with three programmes
(Munro, Nasr and AMAG) for (25 x 50) meshes. It was noticed that at %
= =34, and +0, an unusual field shape appeared. It was therefore
decided to run the AMAG program with 66 x 96 meshes which is not
possible at the moment with the other programs. The same figure shows
the resulting axial flux density distribution in which these anomalies

disappear.

By plotting the peak flux density for the lens shown later in figure
4.29 .for constant excitation against 1/n, as shown in figure 4.12
where 1/n is reciprocal of the mesh numbers it is possible to
extrapolate to an infinitely fine mesh. The results shown in this
figure were cbtained when the meshes were conveniently distributed

between all the lens parts including the pole face and coil windings,
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avoiding abrupt steps as explained in section (3.1). However, when
the mesh numbers were increased, without proper attention to their
distribution, the accuracy still improves but not to the same extent.
It seems therefore that the choice of mesh layout is as significant as

the choice of mesh number.

A second example of the mesh number effect was demonstrated from the
cleaver's double pole lens shown in figure 4.4 but without bore.
The error in the peak flux density value for this lens, computed with
(25 x 50) meshes, and an arbitrary but reasonable arrangement of the
mesh distribution, was 30%. Without changing the mesh arrangement the
error dropped to 4%, when the number of meshes was increased to (60 x
90) as shown in figure 4.12. When the mesh was optimised fig. 4.5
this error dropped to 0.8% for (25 x 50) meshes. It is shown in
figure 4.12 also that using the step method always give good agreement

with the expected value although slightly lower.

4.2.3 The Polepiece Shape Effect

The application of the FEM to various test lenses of constant gap
width has indicated that, with the same mesh numbers and distribution,
the accuracy of the results can change if the polepiece profile is
changed, even for high permeability iron. An example is shown in
figure '4.13 with four test lenses of constant gap width Sg = 10 mm
but with different polepiece taper angle of 0°, 45°, 60° and 90°
respectively. The permeability of the iron is high (/ui_ =5 x 10%).
The results, of maximum flux density values B at the air gap between
the two polepieces shown in figure 4.14 indicate errors of Letween

0.3% and 1.8% according to the degree of the profile when compared to

B value, dbtained from equation 1.15, using the same optimiced mesh
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7 ~ Br at the peak Tesla

(2)
6.28T 63T 633“T 2) (the By at peak for spherical
6.26T single pole lens shown in
o 2 figure 4.29 using convenient
mesh arrangement and different
number of meshes (25,50),
(50,100), (70,90) and (X)
(using steps). Computation
2 is carried out at 130000
A-t.
A
3}
2 F (1) 3
(4% higher) 1.64T (30% higher) B_ at peak of Cleaver's
1.315T ddouble pole lens with
G arbitrary mesh arrange-
1E @ 1.248 ment. Computed with'
(0.68% lower) different mesh numbers
(25,50), (50,100) and
D :
. EEl % 0 D bore) ;ggg?polated to fine
| | ! jout __ 9 Using steps method
0 " i ® the calculated value
4x10 8x10 according to equation
1/n (1.15) 5

Figure 4.12 %

Variation of the peak axial flux density value with
the reciprocal of the mesh numbers 1/n

1) in double pole lens using arbitrary mesh arrangement
2) in single pole lens with convenient mesh arrangement

It can be noticed in the figure,that in the first case
when the mesh arrangement is not correct there is
higher error and it is improving with larger number
of meshes. While in second case the error is low

and the change is small with increasing the nuuber

of meshes.
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distribution and numbers. This suggests that with 45° and 60° taper
angles larger errors in maximum flux density values B are expected
when an arbitrary mesh distribution or insufficient mesh numker are

used.

4.2.4 The Boundary Effects

As explained in section (2.1), if the boundary is not chosen
correctly, there may be loss in excitation leading to large errors in
the axial field distribution. These errors can be reduced by setting
the boundary at a place where the flux density is negligible.
Alternatively one can place an iron sheet of infinite permeability
close to the boundary. Note however that this may distort the field

distribution near the iron sheet.

For reasonably accurate axial field distribution results with FEM, a
useful rule of thumb is to set the boundary at a distance of about
five times the mean coil diameter (D). This applies especially for

iron free coils and also to single pole lenses under linear conditions

and to all lenses under saturation conditions.

To show the effect of boundary setting and the number of meshes used,
the axial flux density of a simple asymmetrical test lens consisting
of a thin coil, shown in figure 4.15 backed by an annular iron ring
of the same shape and size as the coil was computed with three
different programs, M12, VPLIN and AMAG. Figure 4.16 shows the
results. When the Z boundaries were at (=65 mm and 75 mm), the axial
flux densities from the three programs agreed within 1%; however the
loss in excitation with each program, with same mesh numbers (25 x

25), was about 8%. The boundary loss in excitation was reduced to
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about 1% when the boundaries were set at (=100 and 150 mm), )er =
50,000 or alternatively the open boundary was replaced by a 5 mm thick
iron sheet of high permeability. When the mesh numbers were increased
to (61 x 96) with the same Z boundary -65 and 75 mm, the lcss in
excitation due to the boundary remained at 8%, but the peak flux Bq
density value was reduced by 7% (see figure 4.16). When the boundary
was extended at five times the mean coil diameter i.e. at -100 and 150
mm, the loss in excitation was reduced to 1% when either (25 x 25) or
(61 x 96) mesh arrangements were used. However, the corresponding
peak flux density value was not affected. This means that a too-near
boundary causes excitation loss, and substantially reduces the effects
of the axial flux density distribution clocse to the boundary, but does
not necessarily reduce the peak value. However insufficient mesh
numbers do not of themselves cause a loss in excitation, hut may well

affect peak flux density values.

Another example of a lens, tested for boundary loss, is shown in
figure 4.17 . This lens was designed according to the idea of Huang
(1981). It consists of an energising coil in the form of a long
solenoid of rectangular cross-section, partly surrounded by a thick
iron casing (A). Inside the coil are placed six field-shaping rings
co-axial with the optical axis. Under saturation conditions a further
external casing (dashed line) could be added. The axial field
distribution, for the coil in free space (1) and the coil with rings
only (3), were obtained. The loss in excitation in the absence of the
iron casing was (21)%, when the Z boundary was set at +80 mm and the R
poundary at 80 mm. To overcome the loss, the boundary had to be set
at 260 mm i.e. five times the coil mean diameter, this required more
meshes i.e. more computer memory étore. The loss disappeared when the

outer casing was placed in position. These results are shown in
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The second z
0-07 (-boundary

oB., computed with (25x25) -
006 Melshes
= _ nBT computed with (51x96)
Meshes
& B coil calculated with
0-05 Biot Savart Law
The R boundary is
chosen at 65mm for ok
0-04 first trial and 150mm | & >
for second trial =
== - =
2 g s
= coil width s = 10mm Q
0-03 - B /"'p = 5x10" S
3 NI = 1000 A-t[ @
N
+3 i Q
2 . E
0-02 e 2 5
Q = .
: ‘U
= =
9
0-01 o
/5]
15}
=
Fe
e = -~ SR
“100- -60-  -40 -20- 0 20- 40- 60 190-

Z(mm)

Figure 4.16
The total axial flux density distribution computed with (25x25)
meshes using /12, VPLIN, AMAG.
O The total axial field distribution using AMAG (51x96) meshes
on the asymmetrical test lens shown in figure 4.15 S8 = 0.033,
Un
Using the different boundary setting.
The first boundary -60 and 7Smm cause 8% loss in excitation when
either 25, 25 or 51, 96 meshes are used.
The second and correct boundary reduce the boundary loss in excitation
to within 1%. The flux values near the boundary will be affected while
the peak value will stand for either mesh number the same as it

was for first boundary

- 118 =



B(z)Tesla

A Using thincasing

(8,8 MM)
o B Using thickcasing
T I (32,28 MM)
oD 3
- - q. -D.E — 1 .36
lens excitati 5= 1.5
o ation Dn

NI =. 1000 A-t
o Coil width § = 60mm

a,b,c,d,e,f are iron rings

/u% =5 x 10%

R or S

| =

0 20 0 & 80
Z(mm)

Figure 4.17 .

The axial field distribution. 1. B(z) coil calculated
with Biot Savart program with infinite boundary, 2. B(z)
coil calculated with AMAG program using finite boundary
(80mm), 3. B(z) for coil + iron rings with AMAG program
using finite boundary (80mm) and finally 4. B(z) for mini
ring lens after surrounding the coil + iron rings with
(A) 8mm thick iron casing and (B) (32,28mm) thick iron
casing.
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Figure 4.18

Axial flux density distribution in mini ring lens shown in
Figure 4.17 under non linear condition 1.{00) with thin
iron casing 8mm 2.(e#-8) with thicker iron casing (32 from
side and 28 from up) to prevent leakage.

Note

The difference between 1 and 2 is due to both boundary loss (7.4%)
and leakage flux which have effect gon the peak value equal to
(8%) loss in 1.

3@s#) the axial flux density distribution of iron free coil
computed as in previous cases 1 and 2 with 71*73 meshes
using AMAG program. '

4boo) the axial flux density distribution of iron free coil

calculated by Biot Savart law. The difference between 3
and 4 | due to boundary loss is (14%) in 3.
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figure 4.17. When the lens with the narrow casing (8 mm) was
camputed under saturation conditions, external leakage problems arcse,
therefore an extra casing (B) was added to overcome the leakage

effects, as shown in figure 4.18.

4.3 Faults and Misinterpretations in Lens Design

The limitations of FEM, in magnetic lens design, have been set out in
Section 4.2. However, it should be borne in mind that not all errors
in FEM computation results are due to the FEM itself. Some of the
errors are inherent in the lens design and have led some research
workers into wrong conclusions. Prominent amongst factors causing
such misleading conclusicns is the influence of insufficient iron
casing (shroud) thickness or external leakage effects, which in turn

are influenced by the coil size and position.

4.3.1 External Leakage due to Insufficient Magnetic Circuit

(shroud) Thickness

External leakage can be significant in both single and double pole
lenses under saturation conditions; where the excitation is high
producing a correspondingly high lens flux. A portion of this flux
will appear outside the iron casing if its thickness is not

sufficient. .

Examples of this kind of leakage effect are noticeable, with
hindsight in the saturated single pole lenses studied by Al-khashab
(1983). Figure 4.19 shows the recalculated B(z) curves of the
original spherical polepiece lens of Al-khashab (1983), with spherical

polepiece and coil surrounding the polepiece. The figure shows tha+
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11 ~B (z) Tesla

NI (A-T)

© 10000

® 16445
O 47840

g 191360
< 239200
- 525600
Din = 0

Dout

-8 -60  -40-  -20: 0 20 4L0- 60- . 80
Z(mm)

Figure 4.19

Recalculation of axial field distributions of the Al-Khashab's
(1983) lens. i.e. Spherical single pole lens with coil
surrounding the polepiece.

02/01 = 1.88, S/Dm = 0.347, s = 26 mm.

Note: Appreciable external leakage occurs at excitations higher
than 16445 A-t, i.e. at Bpf higher than 1.5 Tesla.
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there is appreciable external leakage flux in the axial region between
Z =-38 and Z = -68 mm for excitations greater than 16,000 A-t. The
associated loss of amper-turns increases rapidly with increasing
excitation amounts to some 32% at an excitation of 625,600 A-t,

thereby reducing the polepiece flux density Bpf.

When the magnetic circuit is thickened as shown in figure 4.20, this

loss is substantially reduced.

This figure shows the B(z) curve of the redesigned spherical polepiece
lens. As shown in this figure the external leakage is greatly
reduced. At an excitation of 625,600 A-t, now a 7.5% increase in the
Bpf value occurs.

If the magnetic circuit is further thickened as shown in figure 4.21,
the external leakage is negligible, the Bpf value at an excitation of

625,600 A-t has increased by 15.8%.

Figure 4.22 summarizes these results. The total field Bp and the Bpg
values at the pole face are shown for different thickness of the

shroud.

When the magnetic circuit thickness is equal or less than R/2 i.e.
half the axial polepiece radius, appreciable external leakage flux
occurs, this reduces the Bpe value at the pole face and causes the

progressive reduction of Bp,.

This explains some of the curious results obtained by Al-khashab (1983).
This external leakage effect is also noticeabie in the single pole

lens (Hermes) studied by Christofides (1982).
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1 b
10
% NI (A-t)
o 10000
8l ® 6LL5
O 47840
B 191360
7L < 239200
- 625600
6 =
5 b
L
3 =
2 =
‘] IR
|

68 -60- -40- -20- 0 20- 40 &0- 80 100-

Figure 4.20
Variation of axial field distribution with excitation for spherical

single pole lens shown above, with larger iron circuit than in figure 4.19,
The external leakage occurs at excitation higher than 230,000 A-t

i.e. pole face flux density (Bpf) nigner than 4 Tesla.
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B (z) Tesla |
Ll 3|2
o Br af pf
5— S ‘ ‘piec &-lens axis
-77 -68 -506 -38 -25 ( 1
Lr .
il at of
3
- . 4
: i -“/—I— 2 a3
oy - ‘ —e2
T /‘/ I ' e ——)
o Bre Qf Pf
i ' ' Fe
r | ! !
3 3 2
1010 60x10°  100x10° 150x10°  190x10°  240x10°
NI (A-t)
The BT and Bpe values at the pf
1 0 Using original shrouds (13,10)
2 @ Using shrouds of thickness (25,20)
3 m Using shrouds of thickness (43,35)
4 ® (Using shrouds of thickness (52,46)
X B coil at pf with Biot Savart Law

Figure 4.22
The total axial flux density distribution and the Bre values

{BT-BFe) at the pole face tip of spherical single pole lens
shown in Figure 4.19 at different lens excitation. (Calculated
for féhr different thicknesses (1-4) of the lens shell).

Note The value of both B, and B, at the pole face increase

with increasing shell thickness.
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Figure 4.23 shows recalculated B(z) curves of the lens with its
original magnetic circuit (shroud); external leakage is noticeable at
excitations higher than 1.5 x 10% A-t, i.e. at B g higher than 1.5

Tesla.

Figure 4.24 shows lens Hermes redesigned by the present writer, with a
thicker magnetic circuit, it can be noticed from the same figure that

there is no external leakage even up to 10° A-t.

There is also a useful increase in the total field at the pole face
(Bpf) of 7% (for a lens excitation of 10° A-t) compared with Bpf with

the original design of magnetic circuit.

The situation is summarized in figure 4.25 which shows the By and Bpg
at the pole face for different lens excitation for the original

magnetic circuit (A) and with the thicker magnetic circuit (B).

It can be noticed from the figure that By and Bp, are almost the same
in the linear region up to 1.6 x 104 A-t; above this value external
leakage starts to occur and tends to reduce By and Bp, values, as
indicated by their increasing values as the thicker magnetic circuit

is made.

External leakage was also noticed in the double pole (test) lens, with
rectangular section polepieces shown in figure 4.26 which shows the
B(z) curve at an excitation of 2 x 10° A-t when the lens is excited

by (a) a short solenoid and (b) a long solenoid.
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x

l ~ e =
-&0- -L40- -20- 0 20- 40 60- 80 100
Z(mm)
Recalculation of the variation of axial field distribution

with lens excitation using the original magnetic circuit (A)

(Christofides' (1982) zero bore lens Hermes) .
The external flux leakage is indicated at Bof higher

than 1.5 Tesla
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Figure 4.24 Variation of axial field distribution with lens excitation.
Same lens of figure (4.23) recomputed with thicker magnetic

circuit (B) designed te reduce external leakage.
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[ Lens Hermes (Din/Dout =0)

(1) Bp, Or Bj at pole face

k for original magnetic

v ' circuit. (2) Bp, or By at
pole face for thicker
magnetic circuit B Fe @
= o Bra @
R i
‘| o
§ <
<
[ 8
>
0 = I | |
10 x10° 40x10°  €0x10° 100x10°
NI (A-t)

Figure 4.25 Variation of By and e 2t pole face with Tlens
excitation for (A) original magnetic circuit; (B)
thicker magnetic circuit, see Figure: 4.23 -and Figure

4.24 . B coil at pf is shown for reference.
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Figure 4.26

Axial flux density distribution of the rectengular
double pole (test) lens shown above after surrounding
the boundary with (5mm) high permeability iron sheet
to overcome boundary loss in excitation (eee For long
solenoid (b) and x%x for short solenoid (a). Note the
exter?a; flux leakage which is larger in the case of
coil (b).
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The lens itself is surrounded by a sheet of high permeability iron, in

order to eliminate the effect of boundary loss.

External leakage can be noticed with both coils, but with the long
solenoid the external leakage is much higher. Figure 4.27a shows a
set of B(z) curves at different lens excitation for the double
polepiece lens shown in figure 4.28a, when the lens is excited by
the short solenoid. Figure 4.27b shows the B(z) curve at different
lens excitation when the lens is excited by the long solenoid (b),

using thick magnetic circuit to prevent leakage in both cases.

Figure 4.28b shows how thicker magnetic circuit can improve the Bp,

value at pole face especially when long solenoid is excited.

4.3.2 Influence of Coil Size and Position

The influence of coil size and position on external leakage can be
illustrated from the two lenses studied by Al-khashab (1983). These
are the lenses already discussed (see figure 4.19). The second lens
studied by Al-khashab is shown in figure 4.29. This has an identical
iron circuit; however it has a thin flat coil of 1 mm width placed 0.5

mm away fram the pole tip.

Figure 4.29 shows that there is no significant loss in excitation and

no appreciable leakage up to about 10° A-t.

Moreover the loss in excitation at 6.25 x 10° A-t is only 7% compared
with the value of 32% mentioned previously (figure 4.19). This .
remarkable improvement in lens performance seems to be due to tiwe fact

that the thin coil in the vicinity of the polepiece produces a high
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e el R
1.576 1.556 1 8
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3.92  3.576 4 8.5
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9.168 7.878 8 14.5 3 m 40000
4 < 60000
6= 5 « 80000
6 4 100000
7 A& 150000
8 v 200000
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L= Dout P 0
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1 E
LAl fls
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Figure 4.27a

Axial flux density distribution in rectangular double pole lens at
different lens excitations with thin coil (DZ/D1 =31, S/Dm = 0.094)
the coil position is -3 to 3 mm. The shrouds are very large (70mm,

50mm) i.e. there is no leakage up to (9) Tesla at the peak.
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Figure 4.28a

Rectangular double pole test lens with thin maanetic circuit (A)

and thick magnetic circuit (B). The lens exciting coils a and b have
the same Cross section.

2..
]
p—)
0n
b}
=
e
D..1_
2 coil(&)short solenoid Dp /D1 = 31 S/Dp = 0.094
& 5z 6mm
= coil(b) long solenoiq D2 /D1 = 1.107 S/Dp= 0.508

= 60mm
0 1 | 1 & J
00x10° 500 x10° 10¢ 15108

H (A/m)
Figure 4.28 Variation of BF at pole face with magnetic field strength
(H) of double polepiece test lens shown above

1 xxx Bpg value at pf when the lens is excited by coil (a)
(short solenoid) using magnetic circuit thickness

15mm (A)

2 eee Bfpe values when the lens 1is excited by coil (b) using
previous magnetic circuit (A)

3 ooco Bpe values when the lens is excited with coil (b)
' using thicker magnetic circuit (B)

Note: the change of Bre value for coil (b)when the magnetic
circuit is thicker in 3 :
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field in the lens gap but a low field strength in more distant parts
of the magnetic circuit as rewvealed by the flux density distributicns
of figure 4.29. On the other hand, the coil shown in figure 4.19
produces a higher field strength in the body of the iron polepiece
especially where it joins the backing plate of the lens, as indicated

by the B(z) curves in figure 4.19.

This means that for a given external leakage flux density a thicker
backing plate will be needed for a thick coil surrounding the
polepiece than for a thin coil placed near the polepiece tip. Thus
the design of the iron casing is strongly influenced by the choice of
coil position, when the polepiece operates at saturaion flux
densities. If the lens casing is not (sufficient) thick, premature
saturation will occur in the casing itself, leading to anomalous

behaviour of the magnetization of polepiece as mentioned previously

(Figure 4.22).
4.4 Systematic Investigation of Possible Lens Designs
4.4.1 Important parameters of double pole lenses

An example of a double pole test lens is shown in figure 4.30. The
lens has two coils (a and b) of the same cross-section, but of
different shape and position. The lens has sufficiently thick shrouds
to prevent external leakage. The lens is excited first with coil a
(short solenoid of S/Dm= 0.094), placed between the two poles and
secondly with coil b (long solencid) (S/D, 0.508). The relevant set

of B(z) curves were shown previously (figs. 4.27a and b).
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Figure 4.30 also shows the variatin of the pole face tip magnetization
Bpe and the half width &, as functions of the magnetic field strength

(H).

Up to 7 x 10° A/m, the half width does not depend on the coil shape
or position this means that the half-width is determined by the iron

polepieces.

Above this excitation the half-width increases sharply when the long
solenoid is excited. With the short solenoid the half-width does not
increase with saturation since the half-width of this is much smaller

than that of the long solenoid.

The Bp, values for a given value of H are higher in case of the long

solenoid; this means it is a better magnetiser for the pole face tip.

The relevant advantages and disadvantages of thick and thin coils are

explained in the next section.

4.4.2 Important parameters in single pole lenses

In previous sections the importance of the lens casing of a single
pole lens has been discussed. In the present section it is assumed
that this aspect of the design has been taken care of. This means
that the design of the exciting coils must now be considered in more
detail. It must be borne in mind that the performance of any lens can
be improved by making it smaller. This is particularly important in a
single polepiece lens where the field produced by the coil itself
plays a more important role than in the case of a double pole lens.

Hence in the final design stage a decision has to be taken akout the
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maximum allowable current density in the windings. Hence in comparing
different designs of lens, it is highly desirable to compare them at

the same current density.

Figure 4.31 shows the results of a series of calculations on the
single-pole lens already shown in Figure 4.21. The cbject of the
calculations was to find the effect of coil positions on the
magnetisation field Bg, due to the iron at the pole face, ard in
particular to see under what conditions it reached the saturation
value. The other important parameter is the half-width 4. The
results of this calculation are shown in Figure 4.31. The figure
shows that when the coil face is in contact with the back plate of the
lens (position a) the polepiece magnetisation is greatest, for a given
value of NI. However, as saturation flux density is approached i.e.

at higher excitations, the position of the coil is not important.

Concerning the half-width d,,, at low excitations and hence low iron
polepiece magnetisation, the half width does not depend on the
excitation. This is to be expected since in this region the field
distribution is largely controlled by the iron polepiece. However the
position of the coil does affect the half-width. The half-width is a
miminum for coil position a. At low values of NI, the half-width is
independent of excitation since it is strongly influenced by the iron
circuit. However as the iron begins to approach saturation the half-
width of the coil itself becomes important and finally dominates as
the iron reachos its full saturation value. It might seem therefore
that an ideal coil arrangement would be a thin coil placed near the

pole tip of similar lens, as shown in Figure 4.32. This figure shows

that for a given excitation, the thin coil is a slightly better
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magnetiser i.e. By, value at the pole tip is somewhat higher than with
a thick coil. In addition the half-width (d;) is also smaller and
does not increase greatly at the polepiece saturation. However, other
factors, such as the current density in the windings have not yet been
taken into consideration, and these factors could be of decisive
significance. Similar remarks also apply to the Bp, and d, values for
the test lens shown in Figure 4.33, in which the coil a is a thin

flat solenoid, and coil b is a much thicker solenocid of the same inner
and outer diameter. The thin solenoid results in a significantly
lower half-width and a stronger pole tip magnetisation for a given

lens excitation.

Since in an electron lens operating at a given accelerating voltage,
the excitation NI is specified in advance, rather than the field
strength H, it appears that the thin flat solenoid of large outer to
inner diameter is the ideal design for the exciting coil. The coil

should ideally be in contact with the poletip.

4.4.2.1 Camparison of Bp,-H curves for single-pole lenses

In order to obtain an overview of the magnetic behaviour of a single-
polepiece lens under well-defined magnetic conditions, figure 4.34
shows a single polepiece test lens with a spherical polepiece and
completely surrounded by a substantial iror. casing. The irén is a
typical soft iron [B-H curve from Table 1.1 of Munro's Ph.D. thesis].
The thick iron casing in the polepiece region was designed to ensure
negligible external leakage, so as to eliminate boundary errors in the
calculation and also to eliminate anomalous magnetic behaviour
(unwanted saturation effects) in the casing. The iron boundary that
crosses the axis at a point remote from the polepiece was positioned
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sufficiently far away as not to influence the magnetisation of the

polepiece itself.

In order to avoid computational difficulties caused by the presence of
a bore, the axial flux densities were first calculated for the lens
with zero bore. In presenting the results it was assumed that there
was a bore of negligibly small diameter so that the calculated B(z)
values in the iron were simply divided by the relative permeability
/‘1’, at the corresponding point on the axis. This means that the area
under B(z) - curves in the figure is a measure of the ampere turns

expended in the lens as a whole.

The maximum axial flux density in the axis on this series of
calculations reached about 10 Tesla. The maximum flux density shown
in Figure 4.34 is about 5.5 Tesla with the coil shown in the figure.
Other distributions were obtained for a variety of coil arrangements.
From these results it was possible to plot the B-H characteristics of
the polepiece tip as shown in Figure 4.35. Here curve 1 is the
magnetisation (B-H/H) curve of the soft iron of the lens. The other
curves show the B/H curves of the pole tip with different coil
arrangements stated in the figure. It can be seen that the best B/H
curve is obtained for coils (2-5) completely surrounding the

polepiece.

The coils (8-10) are thin flat solenoid types. This group does not
produce such good B/H curves. However it should be remembered that
coils in this position make a bigger contribution to the useful axial

field distribution of the lens.
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We can therefore conclude that the criterion of producing the best B/H
curve at the pole-tip is not as critical a parameter as might be

thought at first sight.

4.4.3 Effect of current density in lens windings

Since the thin flat coil in contact with the polepiece appears to be a
favourable design, it is necessary to think about the effect of
current density in the windings, since this increases rapidly as the
coil is made thinner. If the current density is restricted, the main
effect will be to make such a coil larger. The lens itself will be
larger and so its focal properties and aberrations will also increase.
This criterion will be relevant for double pole and single pole
lenses. This is illustrated in Figure 4.36 which shows a double
polepiece lens (1) with a thin flat solenoid placed between the
polepieces of rectangular cross-section. The polepieces have a bore
of negligible but not zero diameter. The axial flux density
distribution is shown in the solid curve of Figure 4.36. The peak

axial flux density is 7.34 Tesla and the half-width &, = 13 mm.

If now a second coil in the form of a long solenoid of the same cross-
sectional area is added (lens 2) and operating at the same current
density the lens cross-section must clearly be reduced by a factor of
two in order to maintain the same value of excitation NI. The
resulting axial field distribution shown in Figure 4.36 is not
significantly changed. A similar result is shown in Figure 4.37 for a
single polepiece lens. The coils of lens (l) aid lens (2) cperate at
the same excitation NI and the same current density. The relevant

part of the field distribution i.e. for Z @ 9 is nearly the same in

both lenses. In fact the iron losses in lens (2) are somewhat greater
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Figure 4.36 Comparison between the axial flux density distribution
(keeping the current density constant) of rectangular double pole
piece lens shown in figure 4.27a : excited with

(1) Short solenoid placed in the gap between the two polepieces

(2) Combination of short solenoid piaced in the gap and two coils
(of total area = 360mm?) as shown above. Note the cross-section

of lens. (2) is half of lens (1). There is no significant
difference in peak flux value or the half width between two cases.
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Figure 4.37
Comparison between the axial flux density distribution (keeping

the current density constant) of the spherical single pole lens
shown in figure 4.34 excited with (1) a coil (DZ/D1 = 24),

SXDm = 0.26, s = 13mm) placed outside the pole face (solid line)

(2) a combination of a thick coil surrounding the polepiece and a
thin coil of the same cross section placed outside the polepiece
(dotted 1ine).

Note the .ross-section of lens (2) is half that of lens (1).

Case 2 has a slightly lower peak and lower half-width than case 1.
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than in lens 1. Thus if extra excitation were applied to lens 2, to
bring the peak flux to that of lens 1, the resulting axial field

distribution for Z > 1 would be approximately the same.

We can therefore conclude that the current density criterion is

probably the most significant parameter in the design of saturated

magnetic lenses.

- 151 -



CHAPTER FIVE

CONCLUSIONS AND DISCUSSION

The main purpose of the present investigation was to throw light on
the application of the finite element method to the determination of
the magnetic field distribution in magnetic electron lenses and
especially to the development of criteria for judging the finally
calculated results. Attention has been concentrated on two aspects
of this subject; first the efficiency and limitation of existing
programs and secondly on some unexpected lens design problems that
arise when highly saturated polepieces are incorporated into the
objective lens. These are partly connected with the programs
themselves (boundary conditions) and partly with the electron optical

design itself.

Munro's original programs are, justifiably, still very popular with
research workers. The.only subsequent programs which now seem to

have achieved equal status are those of Nasr (1981) and Lencova (1984).
The original program written by Nasr was unreliable for practical use
but once the program errors were put right, it was possible to analyse
it in detail. These two programs offer certain operational advantages
which the present investigation has highlighted. It has been found
extremely useful, for example to have a "second opinion" of doubtful
output calculations during the present investigations. However, it
may be concluded that, in the hands of experienced operators, no
serious errors have been detected in any of these programs. However,
if reliance is placed entirely in one program, the chances of making
an undetectable error are greatly increased., Useful savings in

computer memory can be achieved when Nasr's programs are used.
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These programs are thus very convenient for small research
laboratories where mini or micro computers are available, and
computer time is not of the same importance as that of memory store.
It is also possible to produce smooth axial field distributions of

an initially obtained trial distribution at the early design stages.

The present investigation has confirmed previous work by Nasr on the
importance of boundary settings and numbers of meshes. It would
appear however, that many research workers have not paid enough
attention to boundary problems in saturated lenses which produce high
external leakage flux, in both conventional and unconventional lenses.
It also seems that sufficient attention has not been paid in the past
to the importance of mesh layout. It is a wise precaution to
calculate a completely new type of lens with two different mesh
layouts. Alternatively the number of meshes can be increased in a

second calculation and the results extrapolated to zero mesh size.

This study has shown that single polepiece lenses, which have been
computed under linear conditions with an adequate boundary setting,
may exhibit large boundary loss under saturation conditions. This
can be checked by calculating the flux density near the boundary.
Conventional and double pole lenses usually have no boundary problems
under linear conditions, since the high permeability iron casing on

all sides of the lens will act as shielding for the lens field.

When such lenses are computed at high lens excitation (under
saturation condition), there may be a large external field. If the
boundary A = 0 is too close to the lens, this high external flux

density will lead to an apparent loss of turns at the boundary.
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This occurence should draw the designers attention to faulty design

of the lens casing. Some useful rules of thumb have emerged from

this study; in iron-free coils, for example, the boundary should be

set at a distance of about five times the mean coil diameter from

the lens centre. In single pole lenses under linear condition, this

is also appropriate for the open side, but less so on the side shielded

by the magnetic circuit.

These rules also apply to a well designed magnetic lens under
saturation conditions. Only if the lens is badly designed will the
external flux values be very high resulting in loss of excitation at
the boundary. The facility of calculating the excitation contributing
to the axial flux distribution built into the Lencova program has

proved to be an enormous advantage in designing new lenses.

In addition, the Lencova printout map of flux density distribution in
the iron circuit is also a usefﬁl diagnostic aid in such cases, and
is automatically available as part of the regular print-out. Another
useful checking facility is the evalution of the Bp, values in the
magnetic circuit. Since the magnetic circuit will not add any extra
ampere-turns to that provided by the coil, this check can be made by
calculating the Bp, values as (Bp — B.yi1). If the field computation
has been made correctly, the integraldﬁfgpe dz should be zero. A
discrepancy in this quantity indicates some form of computational
error Figure 5.1 shows the total axial flux density distribution,

the axial flux density of the coil calculated with the Biot program,
and also the iron contribution to the field distribution Bp.= (Brp

- Beoil) for the rectangular single pole lens shown in figure

2.5. Here the lens is surrounded by a 5mm thick high permeability
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iron sheet to prevent any boundary loss in excitation, also large
number of meshes (69 x 90) were used to prevent any computational

errors due to insufficient number of meshes.

In connection with the calculation of B.yi] it may be remarked that
the calculating of the axial flux density distriubtion by the Biot-
Savart law is a very good staring point for any lens computation,
‘especially for choosing the correct boundary. It is perhaps
unfortunate that B.,y; is not qalculated routinely in any of the
above programs. Appendix 2 lists a program Biot which can be used
in connection with the above programs., It would therefore be useful

to add Biot and a Bpe facility to the existing programs.

A crucially important factor in FEM calculations is the choice of
mesh distribution. This investigation has shown that different mesh
arrangements set up even by experienced operators can sometimes lead
to large discrepancies in the computed flux density values. For
example, the initial coarse mesh layout must be chosen carefully,
giving special attention not only to the polepiece gap region, but
also to the complete polepiece and the coil. The mesh concentration

must decrease gradually; sudden and abrupt changes must be avoided.

It is usually possible to find by trial and error a mesh layout that
gives good agreement between experimental and calculated results
even with limited mesh numbers. Experience shows that to optimise
the mesh distrbution for a new and unknown design, two or perhaps
three different mesh layouts should be tried, especially if the
number of meshes is restricted. The effect of changing mesh

distribution is to alter the shape of the axial computed field
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distribution, especially near the peak value. The effect of
insufficient mesh numbers will almost certainly result in a change

in the shape of the axial field distribution but possibly accompanied
by an apparent loss of excitation. In all cases in this investigation,
it was possible to find a mesh distribution that led to good agreement
with experimental values. It is in any case advisable to check that
the mesh distribution finally adopted is not sensitive to small
variations, For example, one can extrapolate the calculated peak

flux value for three limited mesh sizes to that for mesh of infinitely
small size. The aﬁthor is grateful to B. Lencova for this suggestion,
(private communication), which has been found extremely helpful in

checking for correct mesh layout.

Another conclusion of the investigation concerns the actual design of
lenses, Although this was not the central issue of the investigation,
it was realised that if one can be sure that all computational errors
have been removed it would be possible to investigate difficult design

questions concerning highly saturated magnetic electron lenses.

These include the effectiveness of the exciting coil in magnetising
the pole face tip, the direct contribution of the coil itself to the
field in the lens gap and the effect of a limiting coil current
density on the maximum axial flux density for a given half-width

that can be produced in a magnetic polepiece lens.

Concerning the magnetising of the polepiece, from the point of view

of the relevant B/H curves of the iron polepiece tip, a coil
surrounding the polepiece is superior to a thin flat coil placed in

the gap. However, in electron optical systems, the total lens
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excitation NI is fixed in advance. Under these conditions the B/NI
curves are similar for both types of coils. From the point of view
of the contribution of the coil to the field in the lens gap, a thin

flat coil is superior to a coil surrounding the polepiece.

However, if we specify in advance the maximum current denmsity in the
coil the use of such a thin coil will mean that the size of the
lens and hence the aberrations will increase compared with the use

of a thicker coil surrounding the polepiece.

If a thick coil and a thin coil are incorporated in the lens at
constant current density the overall size of the lens decrease. 1In
a single pole lens as shown in Figure 4.37 the half width also
decreases. Since the shape of the effective field distribution in
the air gap space is not appreciably changed this leads to lower
spherical aberration. On the other hand when different combined
coils were used in a rectangular double pole lens at constant current
density, although the size of the lens with combined coils is smaller
as before, the spherical aberration for combined coils was always
larger than that for a lens with a thin coil placed in the lens

gap. This suggests that the best performance of a double polepiece
lens can be obtained with short solenoid placed in the gap between

two poles.

Spherical abberation characteristics of objective lenses with thin

exciting coils placed in the air gap between two poles.

Figure 5.2 shows the variation of Cg with current density O for four

different lenses operating at 2000 Kv in the Z = 0 mode. Lens 1 is a
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rectangular double polepiece test lens shown in Figure 4,36 computed

with vanishingly small bore i.e Sg/D = «.

It can be seen from the Figure that the spherical aberration coeffi-
cient of this lens is very high at low current density. Cg = 16.35
mm at 1.1 x 103 A/em2. At higher current densities, the Cq value
decreases sharply reaching CS = 1.39 mm at 2.57 x 104 A/cm2 as

the pole tip reaches saturation (Bpe = 1.84 T). The lens diameter
decreases as O increases: at the above current density the diameter
is 145 mm, still a practical value. The dashed line in Figure 5.2
shows the Cg values for lens 1 but with Sg/D = 2. At a value of ©
= 1.1 x 103 A/cm2 the Cq value is now 5.5 mm, compared with the
previous 16.35 mm i.e a decrease in Cg value of 667 on changing

the Sg/D ratio. This means that in double polepiece lens the Sg/D
ratio will mainly influence the lens behaviour at low current density,
while at high current density (polepiece saturated) this ratio will

have only a minor influence on the spherical aberration.

Lens 2 is a rectangular double polepiece lens with Sg/D =4< also shown
in Figure 5.2. 1Its design is similar to that of lems 1, but the axial
length of the polepieces is shorter by a factor of 15/26 than those

1.1 x 103

]

of lens 1. The computed Cg, values for lens 2 at ©

is 6.5mm compared with 16.35mm for lens 1. AtO = 2.57 x 104 A/cm?

the (polepiece Bp, = 1.8T) Cg value for lens 2 ig 1,22 mm,

Lens 3 is a dobule spherical polepiece lens designed by the authors
colleague H.C. Yin. The author is grateful to her for providing
these unpublished results (private communication) for comparison

purposes. The details of the lens are shown in the insert in
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Figure 5.2. This lens has several important refinements. The pole
piece have spherical ends that reduce the leakage flux compared with
simple cylinders, and improve the shape of the axial field dis-
tribution. In addition the coil of lens 3 has a ratio Dy/D;

(outer to inner diameter) of 58.5 compared with Dy/D; = 21.0 for

lens 2. This means that the Cg values of lens 3 are consistently

lower than those of lens 2. In both cases the C; values decrease
steadily as O is increased. Further calculations also showed that

at high values of 0 , the effect of the lens bore is small.

Experience shows that log/log scale is the best, to compare the Cgq
hehaviour of different lenses at any current density, since correct
be

analysis can'made even for minor differences, which are confusing

by ordinary comparison.

The main conclusion in this investigation is that computer aided
design unassisted by experiment, can indeed be made successfully by
applying FEM if the designers are aware of all the factors affecting

the accuracy of the method and has enough experience to analyse the

results correctly.
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Figure 5.1

Contribution (Bcoi1) of the exciting coil and of the iron

(BFe) to the total axial flux density B; in the ging?e-poiepiece
lens shown in Fig. 2.5.

Note The positive and negative parts of the BFe curve balance

within 1% indicating low computaticnal error.
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The variation of Cg with the current density for four different
double pole lenses at 2000 KV at Z = 0 mode, log/log scale-lens 1
as shown above (quarter section) is a rectangular double pole test
lens computed with S /D = @ and S /D = 2 (dashed line). Iens 2

is similar to lens 19 but with smiller axial rolepiece radius
with Sg/D = x . Iens 3 is a spherical double pole lens Sg/D = 2,
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Table (3.1) General format of the data for program M12

Data Format

1) Title 2074

2) N NSYM (215)

3) Blank line

4) Jl J2 J3e¢eesadn (5%, nI5)
T A1 212 Z3i...70 (I5, nF5.x)

12 221 722 Z23....Z2n (I5, nF5.x)

I3 Z31 232 Z33....Z23n (I5, nF5.x)
Im 2Zml Zn2 Zm3....Zmn (I5, nF5.x)

5) Blank line

6) Jl J2 f xc (NP, (5%, nI5)
I1 RI1 R2 Rl3....Rln (I5, nF5.x)
I2 R21 R22 R23....R2n (I5, nF5.x)
I3 R1 R332 R33....Ran (I5, nF5.x)
Im Rml Rm2 Rm3....Rm (I5, nF5.x)

7) Blank line

8) JAl JB1 IA1 IBl Aury (415, F10.x)

JAl JB2 IA2 IB2 Ajr, (4I5, F10.x)

JAn JBn IAn IBn  Aur, (415, F10.x)

9) Blank line

10) JCl Jpl ICl IDL AJl (415, F10.x)
JC2 JD2 IC2 ID2 AJ2 (415, F10.x)
JCn JDn ICn IDn AJn (415, Fl10.x)

11) Blank line
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Explanation of symbols in Table 3.1

1)

2)

4 & 6)

10)

Title of up to 80 characters

N specifies what output is required (N=0 gives only the
axial flux density distribution, N=l gives also the flux
value at each mesh point, N=2 gives the flux density values
in the magnetic circuit as well). NSYM specifies whether
the magnetic circuit is symmetric or asymmetric. NSYM=0

signifies it is asymmetric; while NSYM=1l is symmetric.

J1l, J2, J3.«..Jn = mesh point numbers in the axial direction.

I1, I2, I3«..In = mesh point numbers in the radial direction.

Zij Z - coordinate values (millimeters).

RiJ = R - coordinate values (millimeters).

JAi, JBi, IAi, IBi = mesh point numbers defining a portion
of magnetic circuit. Au,; = relative permeability of that

portion of magnetic circuit (dimensionless).

JCi, JDi, ICi, IDi = mesh point numbers defining a portion
of coil winding, AJi = current density of that portion of

coil winding (ampturns/sq.cm).

3, 5, 7, 9, 11 are blank lines.
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Table (3.2) General format of the data for program M13

Data Format

1) Title 2084

2) N NSYM (215)

3) Blank line

4) Jl J2 J3esnns Jn (5x, nI5)
I1 211 212 Z13....Z2n (15, nF5.x)
12 @21 28 2.0 (I5, nF5.x)
I3 231 232 Z33....23n (I5, nF5.x)
Im Zml Zn2 Zm3....Zm (15, nF5.x)

5) Blank line

6) J1 J2 % 1 PN Jn (5%, nI5)
I1 Rl1 RI2 R13....Rln (I5, nF5.x)
I2 R R2 RRY....R2n (I5, nF5.x)
I3 R31 R32 R33....R3n (I5, nF5.x)
Im Rnl Rn2 Rm3....Rmn (15, nF5.x)

) Blank line

8) JAl JBlL IAl IBl AN1 (415, F10.x)
JAl JB2 IA2 IB2 = AN2 (415, F10.x)
J2n JBn IAn IBn ANn (415, F10.x)

9) Blank line

10) JCl Jbl1 IC1 IDl AJ1 (415, F10.x)
JC2 Jp2 IC2 ID2 AJ2 (415, F10.x)
Jcn JDn ICn  IDn AJn (415, F10.x)

11) Blank line

12) HL Bl (2 F10.x)
H2 B2 (2 F10.x)
Hﬁ Bn (2 F10.x)
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13)

14)

15)

Data Format
Blank line
HL Bl (2 F10.x)
H2 B2 (2 F10.x)
Hn Bn (2 F10.x)
Blank line

Explanation of symbols in Table 3.2

1)

4 & 6)

8)

10)

Title of up to 80 characters

N specifies what output is required (N=0 gives only the
axial flux density distribution, N=1 gives the flux

value at each mesh point, N=2 gives the flux density values
in the magnetic circuit as well). NSYM specifies whether
the magnetic circuit is symmetric or asymmetric. NSYM=0

signifies it is asymmetric; while NSYM=1l is symmetric.

J1l, J2, J3....Jn = mesh point numbers in the axial direction.
I1, I2, I3...In = mesh point numbers in the radial direction.
Zij = Z - coordinate values (millimeters).

RiJ = R - coordinate values (millimeters).

JAi, JBi, IAi, IBi = mesh point numbers defining a portion
of magnetic circuit. ANi = identification number of

magnetic circuit material (1,2,3,4 or 5).
JCi, JDi, ICi, IDi = mesh point numbers defining a portion
of coil winding; AJi = current density of that portion of

coil winding (ampturns/sq.cm).
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12) Hl, H2, H3....Hn = field strength values for magnetization
curve (A/m). Bl, B2, B3....Bn = corresponding flux density
values for magnetizarion curves (TESLA).

3,5, 7, 9, 11, 13 are blank lines.

14) If another magnetization curve is requested then step 12 is

repeated.
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Table (3.3)

General format of the data for program VPLIN

10)

11)

12)

13)

14)

15)

Blank Line
ZLB ZRB
Blank Line
Title

NBFE NFlux
Blank Line

Jg  J2
1> 211 Z2
I2 2721 222
I3 281 232
Im Zml Zm2
Blank Line
Jl  J2

I1 Rl1 Ri12
I2 R21 R22
I3 R31 R32
Im Rml Rm2
Blank Line
JAlL JBl1 IAl
JA2 JB2 1IA2
J%n JBn IAn

Blank'Line

J3e¢sea.dn

Z13.4+.21n
2234444220
Z33+44423n

Zns.ll.zm

J3 e ss ssdil
Rl3.ss«Rln
R23 . s eB2N

R33-000R3n

R‘I}S....Rm'l :

IBl Aurl
IB2 Aurl

IBn Aurl

A7

Format
20A4
I5

415
2I5

20A4

2I5

(5%, nI5)

(I5, nF5.x)
(I5, nF5.x)
(IS5, nF5.x)

(I5, nF5.x)

(5%, nIS5)

(I5, nF5.x)
(I5, nF5.x)
(IS5, nF5.x)

(I5, nF5.x)

(415, F10.x)
(415, F10.x)

(415, F10.x)



16)

17)

18)

Data Format

JCl Jpl IC1 IDl AJ1 (415, F10.x)
Jc2 Jp2 IC2 ID2  AJ2 (415, F10.x)
JCn Jbn ICn IDn  AJn (415, F10.x)
Blank Line

Title 20 A4

Explanation of symbols in Table 3.3

1)

2)

8)

10 & 12)

Title of up to 80 characters

NSYM specifies whether the magnetic circuit is symmetric or
asymmetric. NSYM=0 signifies it is asymmetric; while NSYM=1

is symmetric.

NR1 the number of runs to be performed.

ZLB, ZRB are the two inner boundaries.

Title of up to 80 characters is written for run 1.

NBFE, NFLUX are output of flux density in magnetic circuit
and the flux values in every mesh point respectively, NBFE

and NFLUX take values of O or 1, O = no and 1 = yes.

Jl, J2, J3....Jn = mesh point numbers in the axial direction.
I1, I2, I3....In = mesh point numbers in the radial direction.
Zij = Z - coordinate values (millimeters)

Rij = R - coordinate values (millimeters)
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14) JAi, JBi, IAi, IBi = mesh point numbers defining a portion
of magnetic circuit, Aur; = relative permeability of that

portion of magnetic circuit (dimensionless).

16) JCi, Jpi, ICi, IDi = mesh point mumbers defining a portion
of coil winding, AJi = current density of that portion of
coil winding (ampturns/sq.cm).

4, 6, 9, 11, 13, 15, 17 are blank lines.

18) If more than one run is requested then same steps from 7 to

17 are repeated for Run 2, Run 3 and Run 4.
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Table (3.4) General format of the data for program VPSAT

Data Format

14 Title 20A4

2) : NSYM  NSAT 215

3) NRI 415

4) Blank Line

5) TB (IBM), ™ (IBM) (2 F 0.0)
-999 End of Table

6) Blank Line

7) ZIB ZRB 2I5

8) Blank Line

9) Title (2024)

10) NBFE N Flux 215

11) Blank Line

12) Jl J2 JBaises Jn (5%, nI5)
B zll 212 Z13....Z1n (15, nF5.x)
12 Z21 Z22 2Z223....Z22n (15, nF5.x)
I3 Z31 232 Z33....Z3n (I5, nF5.x)
Im Zml 2Zm2 2Zm3....2mn (I5, nF5.x)

13) Blank Line

14) Jl J2 J3.ce.s Jn (5%, nI5)
I1 Rl11 R12 R13....Rln (I5, nF5.x)
I2 R21 R22 R23....R2n (I5, nF5.x)
I3 R31 R32 R33....R3n (15, nF5.x)
Im Rml Rm2 Rm3....Rm (I5, nF5.x)

15) Blank Line
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16)

17)

18)

19)

20)

Data Format

JAL JBL IAl IBl  Ayrl (415, F10.x)
JA2 JB2 IA2 1IB2 Aurl (415, F10.x)
JAn JBn IAn IBn Aurl (415, F10.x)
Blank Line

JC1 Jpl IC1 ID1 AJl (415, F10.x)
JC2 JD2 IC2 1ID2 AJ2 (415, F10.x)
JCn JDn ICn IDn AJn (415, F10.x)
Blank Line

If more than one run is requested then same steps from 9 to 19

are repeated for Run 2, Run 3 and Run 4.

Explanation of symbols in Table 3.4

1)

3)

5)

Title of up to 80 characters

NSYM specifies whether the magnetic circuit is symmetric or
asymmetric. NSYM=0 signifies it is asymmetric; while NSYM=1
is symmetric. NSAT specifies whether the magnetic circuit
is under linear or non-linear (saturation condition).

NSAT=0 mean linear, and NSAT=1 mean saturation condition.
NR1 the number of runs to be performed.

Table representing typical relation of B and Hr when
computing saturation case. (i.e. NSAT=1) the table is ended

with -999.

ZI.B, ZRB are the two inner boundaries.
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9)

10)

12 & 14)

16)

18)

Title of up to 80 characters is written for Run 1.

NBFE, NFLUX are output of flux density in magnetic circuit
and the flux values in every mesh point respectively. NBFE

and NFLUX take values of O or 1, 0=NO and 1=YES.

Jl, J2, J3....Jn = mesh point numbers in the axial
direction.

I1, I2, I3.....In = mesh point numbers in the radial
direction.

Zij = Z - coordinate values (millimeters).

Rij = R - coordinate values (millimeters).

JAi, JBi, IAi, IBi = mesh point numbers defining a
portion of magnetic circuit, Moy o relative permeability

of that portion of magnetic circuit (dimensionless).

JCi, JDi, ICi, IDi = mesh point numbers defining a portion
of coil winding, AJi = current density of that portion of

coil winding (ampturns/sq.cm).

4# 6: 8: ll' 131 15; 17: 19 are blank ]ims-
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Table 3.5 General format of the data for program AMAG

Data Format
1) Title (20R4)
2) NZ, NR, IM, IMl, ISYM, (2014)

ICURR, IH1l, IH2, IPRINT, IDISC

3) IZ(1)+....IZ(NZ) (2014)
4) IR(1) «+...IR(NR) (2014)
5) cz (12) (13 F6.0)
6) CR (IR) (13 F6.0)
7) MM(2*I-1), MM (2*I), (514)

NM (2*I-1) WM (2*I), MI(I)

8) CURR (I).....CURR (I CURR) (13 F6.0)
9) B (T, 1), B (I, 1) (12 F6.0)
10)

11) MAP MAT, MAPPSI, LISTIR, LISTED (20I4)
12) JMIN, JMAX, IMIN, IMAX (2014)

Explanation of symbols in table 3.5

1) The information about the lens is given which is printed as
a heading.
2) This line contains a maximum of 20 integer numbers. The

first two integers NZ and NR represent the numbers of the

coarse mesh lines in Z and R direction respectively.

IM represents the number of areas specified as magnetic
material or coil (maximum of 20). IMI specifies the number
of magnetization curves (IMI=0 if there is no magnetic

material in the lens or if standard magnetization curves
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4)

provided in program are used). A maximum of two

magnetization curves can be used.

ISYM determines whether the lens is symmetric or not.

ISYM>O for symmetric lenses and ISYM=0 for asymmtric

lenses. The symmetry plane, for program AMAG, coincides
with the left hand boundary line i.e. for symmetrical lenses,

the positive part only of the lens input data is given.

ICURR represents the current density numbers in the coil
i.e. the numbers of excitations to be computed. Far

CURR=0, a linear approximation is done.

IH]l and IH2 are the numbers of points on the first and

second magnetization curves when IMI>O.

IPRINT guides the output print. If IPRINT>0, the flux is
printed. If IPRINT>2, the Z and R coordinates of the fine

mesh are also printed.

IDISC guides flux density output. If IDISC>0 output of flux

density on the axis is performed to the disc file.

This line indicates the coarse mesh lines in the Z direction

(maximum of 20).
Same as above for the radial directio.

This line determines the Z cocrdinates of the coarse mesh in

millimeters. If NZ>13, the coordinates will be in two lines.
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6)
7)
8)
9 & 10)
11 & 12)

Same as above for the Z coordinates.

The indices indicated limit the Ith region in the axial
direction from left to right (MM), in the radial direction
from top and bottom (NM), and the type of material (MI): 1

or 2 for iron, 3 for coil. Other regions are not specified.

This data line represents the current density in the
excitation coil for the Ith lens excitation in A/mm2. A
maximum of 10 excitations are allowed. If ICURR=0, one

nunber only is read.

These lines contain the magnetization curves data (when
IMI>0). The first line (IHI) contains BM(I,1); H(I,1)
values. The second curve data starts on a new line and
contains BM(I,2); H(I,2) values. The flux density, BM, is

in tesla and the field intensity, H, is in A/m.

The parameters in these lines are usually set to zero. If
some of them have to be changed, then the respective values
are inputed. If no output of material, PSI or iron flux

density are desired; negative values are ascribed to them.

If LISTED>O, the listiﬁg of flux density is performed in the
region bounded in the axial direction, by the line JMIN-1
from the left and the line JMAX from the right; and in the
radial direction by IMIN-1 and IMIN from the top and bottom

respectively.
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CALCULATING THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO THE CURRENT
WINDINGS IN THE COIL BY BIOT-SAVART LAW
PROGRAM LOOP1
REAL I,N
Rl =THE INNER RADIUS OF THE COIL IN METRES
Rl=.002
R2 =THE OUTER RADIUS OF THE COIL IN METRES
R2=.062
A=9.5*COIL WIDTH
=.003
I= THE CURRENT DENSITY
I=100.
THE NUMBER OF TURNS
N=100.
RZ=(R1+R2)/2.
WRITE(2,44)
K REPRESENTS THE NUMBER OF Z POINTS REQUIRED (HERE IT STARTS FROM
1 AT THE CENTRE OF THE OOIL AND IT END AT 25¢0MM AT THE LAST POINT
DO 11 K=1,25@
Z=.001* (FLOAT(K)-1.)
IF (Z.EQ.A) GOTO 11
ZP=Z+A
ZM=Z-A
THETA1=ATAN(ZP/R1)
THETA2=ATAN (ZP/R2)
THETA3=ATAN(ZM/R1)
THETA4=ATAN (ZM/R2)
C=I*N*1.256637*.000001
CF=C/(4.*A*(R2-R1))
X1=TAN( .S*THETAL ) /TAN( . 5*THETA2)
X2=TAN( .5*THETA3) /TAN( . 5*THETA4)
BB=.5*C*RO*RJ/ (RO*RO+Z*Z)**1 .5
B=CF* ( ZP*ALOG (X1 )=ZM*ALOG(X2) )
Z1=7*1003 .
B IS THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO CURRENT WINDINGS
‘OF A RECTANGULAR CROSS SECTION COIL
WRITE(2,34)21,B,BB
BB IS THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO CURRENT WINDINGS
OF AN ARBITRARY SHAPE COIL (WHICH IS TAKEN AS THE TOTAL AXIAL FLUX
FROM SEVERAL LOOPS)
CONTINUE
STOP
THE OUTPUT FORMATS

30 FORMAT(1X,F14.5,5X,F14.5,5X,F14.5)

THE OUTPUT OF Z IN MM,AND B AND BB, IN TESLA

44 FORMAT(1X,' z(mM) ', B(TESLA) ', ' BB(TESLA) ')

END
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VPLIN PROGRAM

FINITE ELEMENT PROGRAM FOR COMPUTING AXIAL FLUX DENSITY
DISTRIBUTION AND VECTOR POTENTIAL THROUGHOUT THE MAGNET

-IC CIRCUIT OF USATURATED MAGNETIC LENSES
THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS:
Z(IM,JM)=Z-COORDINATES OF EACH MESH POINT
R(IM,JM)=R-COORDINATES OF EACH MESH POINT
IM=NUMBER OF MESH POINT IN THE R-~DIRECTION
Z-DIRECTION

JM=NUMBER OF MESH POINT IN THE

OTHER PROGRAMS PREVIOUS TO THIS PROGRAM UTILISE DIFFERE
-NT MESH NUMBERS DEPENDING ON THE COMPUTER MEMORY SIZE .
FOR SUCH PROGRAMS TYPICAL MESH POINTS NUMBERS ARE IN THE
ORDER OF (32,70) TO (40,80) WHEN UTILIZING LARGE COMPUTERS
FOR SMALLER COMPUTERS (20,40) TO (25,50) MESH POINTS ARE
USED IN MINI COMPUTERS THE NUMBERS ARE REDUCED TO (12,25)
FOR SUCH PROGRAMS THE HIGHER THE MESH POINTS NUMBERS THE
MORE ACCURATE THE RESULTS ARE -
THIS NECESSITATES LARGE COMPUTERS FOR ACCURATE RESULTS.
THE PRESENT PROGRAM OVERCOMES THE INHERENT INACCURACIES
WHEN UTILISING MINI COMPUTERS BY INCREASING THE NUMBER

OF RUNS AS EXPLAINED LATER.

AMUR(IM,JM)=RELATIVE PERMEABILITY OF EACH QUADRILATERAL
AJ(IM,JM)=CURRENT DENSITY WITHIN EACH QUADRILATERAL
A(IM,JM)=NON ZERO ELEMENTS OF SYMMETRIC BAND MATRIX
C(IM,JM)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATIONS
V(IM,JM)=COMPUTED VECTOR POTENTIAL AT EACH MESH POINT
P(IM*JM, IM)=COEFFICIENTS OF THE FINITE ELEMENT EQUATIONS

AZLB(IM)=FIRST INNER BOUNDARY IN R-DIRECTION
AZRB(IM)=SECOND INNER BOUNDARY IN R-DIRECTION
NR=NUMBER OF RUNS DESIRED (1 TO 4)
TITLE(20) IS ANY TITLE UP TO 80 CHARACTERS

IIM=IM*JM

THE DIMENSION STATEMENTS ARE SET AS FOLLOWS :

COMMON/ONE/Z(IM,JM) ,R(IM,JM) ,AMUR(IM,JM) ,AJ(IM,JIM)

COMMON/TWO/A(IJM) ,C(IJM) ,V(IM,JIM) ,P(IIM,IM

DIMENSION AZLB(IM) , AZRB(IM)

+NR(4)

,TITLE(20)

ZZ (Z-COORDINATES OF AXIAL MESH POINTS)
ABZ(COMPUTED AXIAL FLUX DENSITY DISTRIBUTION)

COMMON/ONE/ Z(25,50),R(25,50),AMUR(25,50),AJ(25,50)
COMMON/TWO/ A(1250),C(1250),Vv(25,50),P(1250,25)

DIMENSION AZLB(25),AZRB(25),NR(4),TITLE(20)

DIMENSION ZZ(210),ABZ(210)
IM=25
JM=50
IJM=IM*JM
LBZ=JM*3
X=0.
DO 10 J=1,LBZ
ZzZ(J)=X
ABZ(J)=X

10 CONTINUE
LBZ=0

THE PROGRAM WILL READ THE FIRST LINE OF DATA WHICH
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INDICATE WHETHER THE ENTIRE MESH IS SPECIFIED IN THE
DATA (I.E ASYMMETRIC CASE),OR THE PORTION OF THE MESH
IN THE NEGATIVE HALF PIECE ONLY IS SPECIFIED IN THE DATA
( SYMMETRIC CASE).
NSYM CAN TAKE VALUES OF 1 OR 0 ,0 INDICATES ASYMMETRY
READ (1,1) NSYM1
WHILE 1 INDICATES SYMMETRY
1 FORMAT (1I5)
THE PROGRAM EXPECTS IN THE SECOND LINE OF DATA FOUR
INTEGERS WHICH WILL SPECIFY THE NUMBERS OF RUNS
REQUIRED TO BE PERFORMED
THESE ARE FROM 1 TO 4 .THUS FOR ONE RUN NR=1,0,0,0
FOR TWO RUNS NR=1,2,0,0 FOR THREE RUNS NR=1,2,3,0
FOR FOUR RUNS NR=1,2,3,4
READ (1,2) (NR(I),I=1,4)
2 FORMAT (415)
A BLANK LINE IS LEFT
READ (1,1111)
FOR SYMMETRICAL CASE (NSYM=1),UP TO 3 RUNS ARE PERFORMED.
FOR ASYMMETRICAL CASE (NSYM=0),UP TO 4 RUNS ARE DONE
IF (NSYM1.EQ.1) GOTO 20
IF (NR(4).EQ.4) GOTO 24

20 IF (NR(3).EQ.3) GOTO 23

IF (NR(2).EQ.2) GOTO 22

IF (NR(1).EQ.1) GOTO 21
WARNING IF NUMBER OF RUNS HAVE NOT BEEN SPECIFIED THE
PROGRAM WILL STOP IN THIS CASE

WRITE (2,3)
3 FORMAT (1X,' RUNS NOT SPECIFIED')

STOP ’
THE PROGRAM WILL NOTE THE NUMBER OF RUNS AND CONTINUE
DATA READING ACCORDINGLY

21 NRUN=1

GOTO 25

22 NRUN=2

GOTO 25

23 NRUN=3

GOTO 25

24 NRUN=4

THE PROGRAM WILL NOW READ THE TWO INNER BOUNDARIES

25 READ (1,111) JLB,JRB
111 FORMAT (3I5)

ABLANK LINE IS LEFT
READ (1,1111)

1111 FORMAT (1X)

DO LOOPS ACCORDING TO SPECIFIED NUMBER OF RUNS
DO 112 IRUN=1,NRUN
IF (IRUN.EQ.1) GOTO 2111
IF (NR(IRUN).EQ.0) GOTO 112

READ ANY TITLE OF UP TO 80 CHARECTERS

2111 READ (1,1121) (TITLE(I),I=1,20)

c

1121 FORMAT (20A4)

THE OUTPUT IS SPECIFIED ACCORDING TO THE REQUIREMENTS
READ (1,1122) NBFE,NFLUX
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1122 FORMAT (2I5)
2 A BLANK LINE IS LEFT
READ (1,1111)

c THE SUBROUTINE MESH ,READING AND SETTING AXIAL AND
Cc RADIAL COORDINATS OF THE MAJOR MESH LINES NODES IS
c CALLED TWICE,FOR Z AND R COORDINATES
CALL MESH (Z,I1,J1,IM,JdM)
CALL MESH (R,I1,J1,IM,JM)
c SET VARIOUS CONSTANTS
C I1=NUMBER OF MESH-POINTS IN THE RADIAL DIRECTION
C I2=I1-1=NUMBER OF QUADRILATERALS IN THE RADIAL
c DIRECTION
& J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION
c J2=J1=1=NUMBER OF QUADRILATERALS IN THE AXIAL
c I3,J3 ARE USED FOR FINDING NO. OF EQNS. TO BE SOLVED
I2=11-1
I3=I1-2
J2=J1-=1
J3=J1=2

C DO LOOP TO SET OUTER BOUNDARY VECTOR POTENTIALS
C TO ZERO FOR BOTH Z AND R DIRECTIONS
DO 1124 J=1,JM
DO 1124 I=1,IM
1124 v(I,J)=0.
C THE SUBROUTINE AJMUR FOR READING THE DATA SPECIFYING
C THE POSITION AND PERMEABILITY OF THE MAGNETIC CIRCUIT
C IS CALLED
CALL AJMUR (AMUR,AJ,I1,J1,IM,JM)
C THE INITIAL LENS EXCITATION IS SET TO ZERO FOR ASYM
C  LENS
1123 ANI=0.
NSYM=0
C THE NEXT TWO STATEMENTS GUIDE THE PROGRAM TO EXECUTE
C  THE APPROPRIATE COMPUTATIONS FOR 1,2,3,4 RUNS
C  RESPECTIVELY
1126 IF (IRUN.EQ.1) GOTO 113
IF (NR(IRUN)=-3) 114,115,116
C AN ITERATION COUNTER IS SET TO ZERO AND THE COORDINATES
C THE MESH NODES IN Z AND R DIRECTIONS ARE SET BY LINEAR
C  INTERPOLATION
113 K1=0
DO 130 J=1,J1
DO 130 I=1,I1
K1=K1+1
C C(K1)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATION
C(K1)=0.
130 A(K1)=0.
NSYM=NSYM1
GOTO 131
C THE SAME PROCDURE IS NOW REPEATED FOR RUN 2
114 K1=0
K2=0
DO 117 J=1,J1
DO 117 I=1,I1
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K1=K1+1
A(X1)=0.
C(K1)=0.

L THE DATA IS TESTED FOR TERMINATION

1171

IF (J.EQ.J1) GOTO 1171
GOTO 117
K2=K2+1

c THE VECTOR POTENTIAL AT THE INNER BOUNDARY (AZLB)
¢ IS STORED FOR RUN 2 FROM RUN 1

Y17

A(K1)=RAZLB(K2)
V(I,J)=A(K1)
CONTINUE

C THE PROGRAM IS NOW DIRECTED TO SET THE RELATIVE
c PERMEABILITY OF THE FREE SPACE

115

1151

GOTO 131

K1=0

K2=0

K3=0

IF (NRUN.EQ.3) NSYM=NSYM1
DO 118 J=1,J1

DO 118 I1I=1,I1

K1=K1+1

A(XK1)=0.

C(K1)=0.

IF (J.EQ.1) GOTO 1151
GOTO 1152

K2=K2+1
A(K1)=AZLB(K2)
V(I,J)=A(K1)

c THE DATA IS TESTED FOR SYMMETRY AND THE PROGRAM
Cc DIRECTED ACCORDINGLY

1152

1153

IF (NSYM.EQ.1) GOTO 118
IF (J.EQ.J1) GOTO 1153
GOTO 118

K3=K3+1

C THE COMPUTED VECTOR POTENTIAL AT THE SECOND INNER
Cc BOUNDARY (AZRB) IS STORED

118

A(K1)=AZRB(K3)
V(I,J)=A(K1)
CONTINUE

GOTO 131

C THE PROCEDURE IS NOW REPEATED FOR RUN 4

116

1191

K1=0
K2=0

DO 119 J=1,J1
DO 119 I=1,I1
K1=K1+1
A(K1)=0.
C(K1)=0.

IF (J.EQ.1) GOTO 1191
GOTO 119
K2=K2+1
A(K1)=AZRB(K2)
V(I,J)=A(K1)
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119 CONTINUE
C THE VALUE OF FREE SPACE PERMEABILITY AMUO IS SET
131 AMUO=1.2566371E-6
C THE ARRAY WHICH HOLDS THE LEFT HAND COEFFICIENTS
C OF THE EQUATIONS IS INITIALISED
DO 1131 I=1,IJM
DO 1131 J=1,IM
1131 P(I,J)=0.
K=I2
K1=0
C THE DATA IS TESTED FOR SYMMETRY AND THE COORDINATES
C ARE SET ACCORDINGLY
IF (NSYM.EQ.1) GOTO 8
J5=J3
Js=0
C IS=THE NUMBER OF EQNS TO BE SOLVED
IS=I3*J3
GOTO 9
8 J5=J2
Js=J5
IS=I3*J2
9 IT=IS-K
THE SUBROUTINE"PCLIN" WHICH SETS THE FINITE ELEMENT
COEFFICIENTS FOR EVERY QUADRILATERAL MESH AREA IS
CALLED
CALL PCLIN(Z,R,AMUR,AJ,P,A,C,I1,J1,IM,JM,IJM,NSYM,ANI)
C  FOR SYMMETRICAL CASE ,THE LENS EXCITATION IS DOUBLED
IF (NSYM.EQ.1) ANI=2.*ANI
SUBROUTINE "EQNS" IS CALLED ,THIS SUBROUTINE SOLVES
THE EQUATIONS BY GAUSSIAN ELIMINATION AND BACKWARD SUBSTITUTION
A2=V(I3,J)
B=(A1*R2*R2*R2-A2*R1*R1*R1)/(.5*R1*R2*(R2*R2-R1*R1))
THE OUTPUT OF Z-COORDINAT OF AXIAL MESH POINT AND
THE AXIAL FLUX DENSITY AT EACH MESH POINT IS WRITTEN
ouT
IF NUMBER OF RUNS IS MORE THAN 1,THE Z AND B OUTPUT
OF ALL THE RUNS IS OUTPUTED
WRITE (2,95) z1,B
IF (IRUN.EQ.1) GOTO 94
LBZ=LBZ+1
ZZ(LBZ)=21
ABZ(LBZ)=B
94 CONTINUE
C FOR SYMMETRIC CASE,THE VALUES OF Z(MM) COORDINATES
C AND B(TESLA) FOR POSITIVE HALF PLANE IS CALCULATED
IF (NRUN.NE.1.0R.NSYM.EQ.0) GOTO 79
DO 971 JI=1,J2 '
J=J2+1-JJ
Z1=-2Z(I1,J)*1000.
R1=R(I12,J)
R2=R(I3,J)
A1=V(I2,J)
A2=V(13,J)
B=(A1*R2*R2*R2-A2*R1*R1*R1)/(.5*R1*R2* (R2*R2-R1*R1))

a O QOnn
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WRITE (2,95) 21,B
971 CONTINUE
FOR 1 RUN OR 4 RUNS THE PROGRAM IS DIRECTED TO
WRITE THE EXCITATION.THIS ALSO HAPPENS IN CASE
C OF SYMMETRY AND 3 RUNS
79 IF (IRUN.EQ.1.0R.NR(IRUN).EQ.4) GOTO 941
IF (NR(IRUN).EQ.3.AND.NSYM.EQ.1) GOTO 941
IF (NR(IRUN).EQ.NR(IRUN-1)+1) LBZ=LBZ-1
95 FORMAT (1X,F10.2,6X,F15.6)
C THE LENS EXCITATION IS WRITTEN OUT
941 WRITE (2,96) ANI
IF (IRUN.EQ.1) EXCIT=ANI
96 FORMAT (1X/' EXCITATION GIVEN (NI) = ',F10.2,
+ ' AMPERETURNS'/)
IF FLUX DENSITY THROUGOUT THE MAGNETIC CIRCUIT
(NBFE) IS REQUIRED TO BE OUTPUTED,THE PROGRAM IS
DIRECTED TO ASUBROUTINE (BVALUES) TO DO SO
IF (NBFE.EQ.0) GOTO 1102
CALL BVALUES (Z,R,V,AMUR,I1,J1,IM,JM,NBFE)
(& IF FLUX VALUES AT EACH MESH POINT ARE REQUIRED,THE
Q PROGRAM IS DIRECTED TO ASUBROUTINE (FLUX) TO DO SO
1102 IF (NFLUX.EQ.0) GOTO 112
CALL FLUX (V,I1,J1,IM,JM)
112 CONTINUE
e IF 1 RUN IS REQUIRED THE PROGRAM IS TERMINATED,OTHERWISE
c TITLES ARE WRITTEN
IF (NRUN.EQ.1) STOP
WRITE(2,942)
942 FORMAT (/1X,'TOTAL DISTRIBUTION FOR SPECIFIED REGION'/)
WRITE (2,936)
WRITE (2,9351)
THE Z COORDINATES OF MESH POINTS FOR SPECIFIED REGION
AND AXIAL FLUX DENSITY VALUES FOR THE SPECIFIED REGION
C IS QUTPUTED
DO 944 J=1,LBZ
WRITE (2,95) 2Z(J),ABZ(J)
944 CONTINUE

o0

aa0an

Q6

C FOR ASYMMETRIC CASE ,THE EXCITATION IS OUTPUTED.WHILE
C FOR SYMMETRIC CASE ,THE Z AND B VALUES ARE CALCULATED
& FOR POSITIVE HALF PLANE

IF (NSYM.EQ.0) GOTO 946

LBZ=LBZ-1

DO 948 K=1,LBZ

J=LBZ+1-K

Z1==2Z(J)

WRITE (2,95) 21,ABZ(J)
948 CONTINUE
946 WRITE (2,96) EXCIT
STOP
C END OF THE MAIN PROGRAM
END

SUBROUTINE (MESH) FOR SETTING COORDINATES OF EACH POINT ON THE
FINITE ELEMENT MESH

oo
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C

Z(IM,JM)=ARRAY OF COORDINATES TO BE SET
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION
IM=MAXIMUM PERMISSIBLE VALUE OF I1
JM=MAXIMUM PERMISSIBLE VALUE OF J1
SUBROUTINE MESH(Z,I1,J1,IM,JM)
DIMENSION Z(IM,JM),TITLE(20)
DIMENSION NC(15),NR(15),XA(15,15)
THE SUBROUTINE READS THE MESH-POINT NUMBERS IN AXIAL
DIRECTION
READ (1,1)(NC(L),L=1,15)
1 FORMAT (5X, 15I5)
DO 2 L=1,15
IF(NC(L).EQ.0)GOTO 3

2 CONTINUE

CALCULATE VALUES OF JJ AND J1
JJ=NUMBER OF COLUMNS OF COORDINATES SPECIFIED IN THE
DATA
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION
JJ=15
GOTO 4

3 JJ=L-1
4 J1=NC(JJ)

READ THE COORDINATES VALUES
DO 5 I=1,15
READ(1,6)NR(I), (XA(I,J),J=1,3T)

6 FORMAT(I5,15F5.0)

TEST FOR END OF DATA
IF (NR(I).EQ.0)GOTO 7

5 CONTINUE

GOTO 8

7 II=I-1
8 I1=NR(II)

SET COORDINATE VALUES BY LINEAR INTERPOLATION
DO 9 I=2,II
DO 9 J=2,JJ
L1=NR(I-1)
L2=NR(I)
M1=NC(J-1)
M2=NC(J)
DO 9 LL=L1,L2
DO 9 MM=M1,M2
KL=L2-L1
KM=M2-M1
D1=(XA(I-1,J)-XA(I-1,J3-1))/FLOAT(KM)
D2=(XA(I,J)=-XA(I,J=-1))/FLOAT(XM)
D1=D1*FLOAT (MM-M1)+XA(I-1,J-1)
D2=D2*FLOAT (MM-M1)+XA(I,J-1)

9 2Z(LL,MM)=(D2-D1)*FLOAT(LL-L1)/FLOAT(KL)+D1
THE COORDINATE VALUES WHICH HAVE BEEN SPECIFIED IN
MM ARE CONVERTED TO METRES

DO 10 I=1,I1
Do 10 J=1,J1
10 2(1,J3)=%(I1,J)/1000.
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RETURN
THE END OF SUBROUTINE MESH
END

SUBROUTINE (AJMUR) FOR SETTING EACH ELEMENT OF THE ARRY
AMUR(IM,JM) TO THE VALUE OF THE RELATIVE PERMEABILITY
OF CORRESPONDING QUADRILATTERAL OF THE FINITE ELEMENT
MESH, AND EACH ELEMENT OF THE ARRY AJ(IM,JM) TO THE VALUE
OF THE CURRENT DENSITY. AMUR(IM,JM)=RELATIVE PERMEABILITY
VALUES FOR EACH QUADRILATERAL.
AJ(IM,JM)=CURRENT DENSITY VALUES FOR EACH QUADRILATERAL
(IN AMPTURNS/ SQUARE METRE)
IM=NUMBER OF QUADRELATERAL AREAS IN THE RADIAL DIRECCTION
JM=NUMBER OF QUADRELATERAL AREAS IN THE AXIAL DIRECTION

SUBROUTINE AJMUR (AMUR,AJ,I1,J1,IM,JM)

DIMENSION AMUR(IM,JM),AJ(IM,JM)
INITALISE ALL ELEMENTS OF AMUR TO 1. AND ALL ELEMENTS OF
AJ TO 0.

DO 1 I=1,I1

po 1 J=1,J1

AMUR(I,J)=1.

AJ(I,J)=0.
1 CONTINUE
READ VALUES OF JA,JB,IA,IB,XJ
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION
IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION
XJ=THE RELATIVE PERMEABLITY OF THAT PORTION OF THE
MAGNETIC CIRCUIT (DIMENSIONLESS)
2 READ (1,3) JA,JB,IA,IB,XJ
3 FORMAT (41I5,F10.0)
TEST FOR END OF MAGNETIC CIRCUIT DATA

IF (JA.EQ.0) GOTO 5
RESET APPROPRIATE ELEMENTS OF AMUR TO THE VALUE OF XJ

IB1=IB~-1

JB1=JB-1

DO 4 I=IA,IB1

DO 4 J=JA,JB1
4 AMUR(I,J)=XJ
GO TO 2 TO READ NEXT LINE OF MAGNETIC CIRCUIT DATA

GOTO 2
READ NEXT LINE OF VALUES OF JA,JB,IA,IB,XJ,WHICH ARE
MESH-POINT NUMBERS SPECIFYING THE POSITION OF APORTION OF
THE COIL WINDINGS AND THE CURRENT DENSITY IN THAT PORTION
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION
IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION
XJ=THE CURRENT DENSITY IN THAT PORTION OF THE COIL WINDINGS
(XJ IS IN AMPTURNS/SQUARE CM)
5 READ (1,3) JA,JB,IA,IB,XJ
TEST FOR END OF DATA SPECIFYING COIL WINDINGS

IF (JA.EQ.0) RETURN
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C RESET APPROPRIATE ELEMENTS OF AJ TO THE VALUE OF XJ
IB1=IB-1
JB1=JB-1
DO 6 I=IA,IB1
DO 6 J=JA,JB1
C CNVERT CURRENT DENSITY XJ TO UNITS OF AMPTURNS/SQUARE
c METRE
6 AJ(I,J)=XJ*10000.
c GO TO 5 TO READ NEXT LINE OF COIL WINDINGS DATA
GOTO 5
c TO 140
IF (NN.GT.1) GOTO 140
N3=0
IC=1
JC=J
GOTO 141
140 IF (NN=-3) 1402,1403,1404
1402 N3=6
IC=I+1
JC=J
GOTO 141
1403 N3=12
IC=I
JC=J+1
GOTO 141
1404 N3=18
IC=I+1
JC=J+1
C DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS
141 DO 16 NO=1,3
N=N+1
ND1=ND (NN)
IF (NO.EQ.1) NDI1=0
IF (NO.EQ.3) N3=N3+1
C SET Z2 AND R COORDINATES OF VERTICES OF TRIANGULAR
Cc ELEMENTS
N3=N3+1
Z1=F(N3)
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c

c

e
C

Z2=F(N3+1)
Z3=F(N3+2)
R1=G(N3)
R2=G(N3+1)
R3=G(N3+2)
THE COEFFICIENTS OF NODAL EQUATIONS REPRESENTING
THE VECTOR POTENTIAL OVER EACH ELEMENT ARE FOUND
B1=R2-R3
B2=R3-R1
B3=R1-R2
T1=2Z3-22
T2=21-23
T3=22-21
DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE
DET=B1*T2-B2*T1
RO=(R1+R2+R3)/3.
X=DET/(3.*R0)
T1=T1+X
T2=T2+X
T3=T3+X
X=R0/(2.*AMUQ*AR(IC,JC)*DET)
IF (N.EQ.2.0R.N.EQ.5.0R.N.EQ.8.0R.N.EQ.11) GOTO 162
IF (N.EQ.3.0R.N.EQ.6.0R.N.EQ.9.0R.N.EQ.12) GOTO 163
161 D(M1)=(B2*B1+T2*T1)*X
D(M1+1)=(B2*B2+T2*T2) *X
D(M1+2)=(B2*B3+T2*T3)*X
M1=M1+9
GOTO 17
162 D(M2)=(B1*B1+T1*T1)*X
D(M2+1)=(B1*B2+T1*T2)*X
D(M2+2)=(B1*B3+T1*T3)*X
M2=M2+9
GOTO 17
163 D(M3)=(B3*B1+T3*T1)*X
D(M3+1)=(B3*B2+T3*T2)*X
D(M3+2)=(B3*B3+T3*T3)*X
M3=M3+9
17 BNI=ANI+.5*DET*AJ(IC,JC)*FLOAT(ND1)
Q(N)=AJ(IC,JC)*RO*DET/6.
16 CONTINUE
14 CONTINUE
SET FINITE ELEMENT COEFFICIENTS FOR QUADRILATERAL
AREA TO OBTAIN NINE-POINT EQUATION FOR EACH NODE
L=L+1
L2=L2+1
P(L,1)=0.
P(L,2)=0.
P(L,I3)=0.
P(L,K)=0.
P(L,I1)=0.
P1=D(6)+C!7)
P2=D(1)+D(8)+D(12)+D(14)
P3=D(15)+D(16)
P4=D(3)+D(5)

A28



o000 00n

P5=D(2)+D(4)+D(9)+D(11)+D(13)+D(18)

P6=D(10)+D(17)

C(L)=Q(1)+Q(2)+Q(3)+Q(4)+Q(5)+Q(6)

Q1=P1*A(L2)
Q2=P2*A(L2+1)
Q3=P3*A(L2+2)
Q4=P4*A(L2+I1)
Q6=P6*A(L2+I11+2)

IF (J.EQ.JS) GOTO 18
P4=P4+D(19)+D(26)

P5=P5+D(20)+D(22)+D(27)+D(29)+D(31)+D(36)

P6=P6+D(30)+D(32)
P7=D(24)+D(25)
P8=D(21)+D(23)+D(28)+D(35)
P9=D(33)+D(34)

C(L)=C(L)+Q(7)+Q(8)+Q(9)+Q(10)+Q(11)+Q(12)

Q7=P7*A(L2+2*I1)
Q8=P8*A(L2+2*I1+1)
Q9=P9*A(L2+2*I1+2)

EACH NODAL EQUATION IS EXPRESSED IN TERMS OF THE VECTOR
POTENTIAL AT THE NODE AND THE EIGHT NEIGHBOURING VECTOR

POTENTIAL VALUES.
ABOUT THE DIAGONAL.

THE RESULTING MATRIX IS SYMMETRICAL
HENCE ONLY THE COEFFICIENTS OF THE

BANDED MATRIX IN THE UPPER TRIANGLE OF THE MATRIX NEED
TO BE STORED. THE MATRIX EQUATION IS SOLVED BY GAUSSIAN

ELIMINATION IN

18

50

60

40

IF (J.EQ.JS) GOTO 20

IF (J.EQ.J5) GOTO 30

IF (J.NE.1) GOTO 40

IF (I.EQ.1) GOTO 50

IF (I.EQ.I3) GOTO 60
C(L)=C(L)-(Q1+02+0Q3)
P(L,1)=P5

P(L,2)=P6

P(L,1I3)=P7

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)-(Q1+Q2+Q3+Q4+Q7)
P{L:1)=P5

P(L,2)=P6

P(L:KJ=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)=(Q1+Q2+Q3+Q6+Q9)
P{L:1]=P5

P(L,I3)=P7
P(L:K)=P8
GOTO 11

IF (I.EQ.1) GOTO 401
IF (I.EQ.I3) GOTO 402

P(L,1)=P5
P(L,2)=P6
P(L,I3)=P7

ANOTHER SUBROUTINE
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P(L,K)=P8
P(L,I1)=P9
GOTO 11
401 C(L)=C(L)=-(Q1+Q4+Q7)
P(L:1)=P5
P(L,2)=P6
P(L,K)=P8
P(L,I1)=P9
GOTO 11
402 C(L)=C(L)=-(Q3+Q6+Q9)
P(L,1)=P5
P(L,I3)=P7
P(L,K)=P8
GOTO 11
30 IF (I.EQ.1) GOTO 301
IF (I.EQ.I3) GOTO 302
C(L)=C(L)=(Q7+Q8+Q9)
P{Lt1}=P5
P(L,2)=P6
GOTO 11
301 C(L)=C(L)=-(Q1+Q4+Q7+Q8+Q9)
P(L,1)=P5
P(L,2)=P6
GOTO 11
302 C(L)=C(L)=(Q3+Q6+Q7+Q8+Q9)
P(L,1)=P5
GOTO 11
20 IF (I.EQ.1) GOTO 201
IF (I.EQ.I3) GOTO 202
P(L,1)=P5
P(L,2)=P6
GOTO 11
207 C(L)=C(L)=-(Q1+Q4)
P(L,1)=P5
P(L,2)=P6
GOTO 11
202 C(L)=C(L)=-(Q3+Q6)
P(L,1)=P5
11 CONTINUE
10 CONTINUE
RETURN
THE END OF THIS SUBROUTINE
END

SUBROUTINE (EQNS) FOR EQUATION SOLVING BY GAUSSIAN
ELIMINATION AND BACKWARD SUBSTITUTION
I1=NUMBER OF RADIAL NODES IN THE FINITE ELEMENT GRID
IS=NUMBER OF EQUATIONS TO BE SOLVED
C=ARRY WHICH HOLDS THE RIGHTHAND SIDE COEFFICIENTS OF
THE EQUATIONS
P=ARRY WHICH HOLDS THE LEFTHAND SIDE COEFFICIENTS OF
THE MATRIX EQUATION

SUBROUTINE EQNS (C,IT,IS,P,I1,IM,IJM)

DIMENSION C(IJM),P(IJM,IM)
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SET VARIOUS CONSTANTS
NC=1I1
IS1=IS-1
STEP 1-GAUSSIAN ELIMINATION
DO LOOP FOR EACH ROW OF BAND MATRIX
DO 70 NT=1,IS?
IF (NT.GT.IT) NC=IS-NT+1
DO LOOP FOR EACH COLUMN OF SUB-MATRIX
DO 71 I=2,NC
IC=NT+I-1
RC=P(NT,I)/P(NT,1)
RESET APPROPRIATE ELEMENTS OF RIGHT-HAND SIDE
C(IC)=C(IC)=RC*C(NT)
II11=I1=-I+1
DO LOOP FOR EACH ROW OF SUB-MATRIX
Do 72 J=1,II11
RESET APPROPRIATE ELEMENT OF BAND MATRIX
P(IC,J)=P(IC,J)=RC*P(NT,I+J-1)
72 CONTINUE
71 CONTINUE
70 CONTINUE
STEP 2-BACKWARD SUBSTITUTION
BACKWARD SUBSTITUTION FOR ROW IS
C(Is)=C(1Is)/P(Is,1)
DO LOOP FOR BACKWARD SUBSTITUTION FOR EACH ROW OF MATRIX
IS1=IS-1
DO 80 I=1,IS1
II=IS-1
NC=I1
IF (II.GT.IT) NC=IS-II+1
s=0.
DO LOOP FOR SUMMING PRODUCTS OF (APPROPRIATE ELEMENTS OF
C) * (APPROPRIATE ELEMENTS OF P)
DO 81 J=2,NC
JJI=NC+2-J
S=S+P(II1,JJ)*C(II+JJ-1)
81 CONTINUE
RESET APPROPRIATE ELEMENT OF C TO STORE THE SOLUTION
C(II)=(C(II)-8)/P(II,1)
80 CONTINUE
RETURN
END OF SUBROUTINE EQNS
END

SUBROUTINE (VPOT) FOR COPYING THE SOLUTION OF THE
FINITE ELEMENT EQUATIONS INTO THE ARRY V(IM,JM)
WHICH STORES THE COMPUTED VECTOR POTENTIAL AT EACH
MESH POINT .
THE VARIABLES ARE DEFINED IN THE MAIN PROGRAM

SUBROUTINE VPOT (V,C,I2,IM,JM,IJM,J5)

DIMENSION V(IM,JM),C(IJM)

J6=J5+1

L=0

DO 1 J=2,J6
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DO 2 I1=2,I2
L=L+1
V(I,J)=C(L)
2 CONTINUE
1 CONTINUE
RETURN
END OF SUBROUTINE VPOT
END

SUBROUTINE (BVALUES) FOR CALCULATING THE FLUX DENSITY AT
POINTS THROUGHOUT THE MAGNETIG CIRCUIT AND FOR WRITING OUT
THE PEAK FLUX DENSITY.

THE VARIABLES ARE DEFINED IN THE MAIN PROGRAM
SUBROUTINE BVALUES(Z,R,V,AMUR,I1,J1,IM,JM,NBFE)
DIMENSION Z(IM,JM),R(IM,JM),V(IM,JM),AMUR(IM,JM)

INITALIZE THE VALUE AND POSITION OF THE PEAK FLUX DENSITY

IN THE MAGNETIC CIRCUIT
AMUO=1.2566371E-6

=0. '
ZMAX=0.
RMAX=0.

IF (FLUX DENSITY IN MAGNETIG CIRCUIT) IS REQUIRED AS

QUTPUT, THE PROGRAM IS DIRECTED TO WRITE HEADING FOR THAT
IF (NBFE.EQ.1) WRITE (2,10)

10 FORMAT (/1X,'FLUX DENSITY VALUES IN MAGNETIC CIRCUIT'/)

DO LOOPS FOR EVEKY QUADRILATERAL AREA OF MESH
I2=I1-1
J2=J1-1
DO 1 J=1,J2
DO 1 I=1,I2

TEST WHETHER THE QUADRILATERAL IS IN FREE SPACE OR IN

THE MAGNETIC CIRCUIT
IF (AMUR(I,J).EQ.1) GOTO 1

SET Z AND R COORDINATES AND VECTOR POTENTIAL VALUES AT

CORNER POINTS OF QUADRILATERAL
Z1=%(I1,J)

Z2=Z(I+1,J)
Z23=Z(I+1,J+1)
Z4=7(I,J+1)
R1=R(I,J)
R2=R(I+1,J)
R3=R(I+1 :J+1 )
R4=R(I,J+1)
V1=V(I:J)
v2=v(1I+1,J)
V3=V(I+1,d+1)
V4=V (I,J+1)

CALCULATE COORDINATES OF CENTRE POINT OF QUADRILATERAL
ZC=(Z1+Z2+Z3+Z4)*,25
RC=(R1+R2+R3+R4)*.25

CALCULATE FLUX DENSITY COMPONENT BZ AND BR AT CENTRE

POINT OF QUADRILATERAL
X1=(Z1-22)*R1*R2
X2=(Z1-23)*R1*R3
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X3=(Z21-24)*R1*R4
X4=(Z2-Z3)*R2*R3
X5=(Z2-Z4)*R2*R4
X6=(Z3-Z4)*R3*R4
Y1=(R1=R2)*Z1*Z2
Y2=(R1-R3)*Z21*Z3
¥3=(R1-R4)*Z1*Z4
Y4=(R2-R3)*2Z22*Z3
Y5=(R2-R4)*Z2*Z4
Y6=(R3-R4)*23*24
P1=X4-X5+X6
P2=-X2+X3-X6
P3=X1-X3+X5
P4=-X 1+X2-X4
Q1=R1*Z2-Z1*R2
Q2=R1*Z3=Z1*R3
Q3=R1*Z4-Z1*R4
Q4=R2*Z3-Z2*R3
Q5=R2*Z4-Z2*R4
Q6=R3*Z4-Z3*R4
DET=Z1*P1+Z22*P2+23*P3+Z4*P4
F=V1*(-Z4*X4+Z3*X5=-22%X6 )+V2* (Z4*X2-23*X3+Z1*X6)
F=F+V3*(=24*X14+Z2*X3-Z1%X5)+V4* (Z3*X1-Z2*X2+Z1*X4)
G=V1*P1+V2*P2+V3*P3+V4*P4
H=V1*(-Y4+Y5-Y6 )+V2*(Y2-Y3+Y6)+V3*(-Y1+¥3-Y5)+V4*(Y1~-Y2+Y4)
AI=V1*(Q4~Q5+0Q6)+V2*(=Q2+Q3=06 )+V3*(Q1-Q3+Q5)+V4*(-Q01+02-04)
F=F/DET
G=G/DET
H=H/DET
AI=AI/DET
VC=F+G*ZC+H*RC+AIL*ZC*RC
BZ=H+AI*ZC+VC/RC
BR==G-AI*RC
CALCULATE THE FLUX DENSITY B AT CENTRE POINT OF QUADRI-
LATERAL
B=SQRT (BZ*BZ+BR*BR)
CNVERT COORDINATES OF MAX. FLUX DENSITY POSITION FROM
METRES TO MM '
ZC=ZC*1000.
RC=RC*1000. ]
WRITE LOCATION AND VALUES OF AXIAL (BZ) AND RADIAL(BR)
COMPONENTS OF THE FLUX DENSITY AND THE RESULTANT FLUX
DENSITY THROUGHOUT THE MAGNETIC CIRCUIT
IF (NBFE.EQ.1) WRITE(2,8) I,J,2C,RC,BZ,BR,B
8 FORMAT (1X,2I5,2F15.3,3F15.6)
TEST IF MAX. FLUX DENSITY HAS BEEN REACHED
IF (B.LT.BMAX) GOTO 1
BMAX=B
ZMAX=ZC
RMAX=RC
1 CONTINUE
WRITE POSITION AND VALUES OF MAX. FLUX DENSITY IN THE
MAGNETIC CIRCUIT
WRITE(2,3)ZMAX,RMAX ,BMAX
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3 FORMAT(1X,'MAXIMAM FLUX DENSITY IN MAGNETIC CIRCUIT'//
+ 1X,2F10.5,F15.6,"(TESLA)"')

RETURN
END OF SUBROUTINE BVALUES

END

SUBROUTINE (FLUX) FOR CONVERTING THE VALUES OF VECTOR

POTENTIAL AT EACH MESH POINT TO THE CORESPONDING MAGNETIC

FLUX VALUE V(I,J)=ARRAY WHICH HOLDS VALUES OF THE VECTOR

POTENTIAL AT ENTRY TO THE ROUTINE AND WHICH HOLDS THE

THE MAGNETIC FLUX VALUE AT EACH MESH POINT ON RETURN TO

TO THE MAIN PROGRAM
SUBROUTINE FLUX (V,I1,J1,IM,JM)
DIMENSION V(IM,JM)

SET VALUE 2.*PYE
PI=6.28318531

CONVERT EACH ELEMENT OF V(IM,JM) FROM VECTOR POTENTIAL

TO MAGNETIC FLUX VALUE AT EACH MESH POINT
DO 2 J=1,J1
DO 2 I=],I7
V{I:J)=PI*V(I:J)

2 CONTINUE

WRITE HEADING
WRITE (2,5)

5 FORMAT (/1X,'FLUX VALUES AT EACH MESH POINT'/)

J,JF,JS ARE MESH POINT NUMBERS IN THE AXIAL DIRECTION
Js=1
JD=4

20 JF=JS+JD
WRITE (2,4) (J,J=JS,JF)

4 FORMAT (1X,5X,5I15)

DO LOQP FOR WRITING MESH POINT NUMBERS IN THE RADIAL

DIRECTION AND THE FLUX VALUES.
DO & I=1,1I1

I IS THE MESH POINT NUMBER IN THE RADIAL DIRECTION
WRITE (2,8) I1,(V(I1,J),d=JS,JF)

8 FORMAT (1X,I5,5E15.5)

6 CONTINUE
WRITE (2,10)

10 FORMAT (1X)

TEST FOR END OF SET OF VALUES
IF (JF.EQ.J1) GOTO 12
JS=JF+1
IF ((JS+JD).GT.J1) JD=J1-JS
GOTO 20

12 WRITE (2,10)
RETURN

END OF SUBROUTINE FLUX
END
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VPSAT PROGRAM
FINITE ELEMENT PROGRAM FOR COMPUTING AXIAL FLUX DENSITY
DISTRIBUTION AND VECTOR POTENTIAL THROUGHOUT THE MAGNET
-IC CIRCUIT OF SATURATED AND USATURATED MAGNETIC LENSES
THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS:
Z(IM,JM)=Z-COORDINATES OF EACH MESH POINT
R(IM,JM)=R-COORDINATES OF EACH MESH POINT
IM=NUMBER OF MESH POINT IN THE R-DIRECTION
JM=NUMBER OF MESH POINT IN THE Z-DIRECTION
OTHER PROGRAMS PREVIOUS TO THIS PROGRAM UTILISE DIFFERE
-NT MESH NUMBERS DEPENDING ON THE COMPUTER MEMORY SIZE .
FOR SUCH PROGRAMS TYPICAL MESH POINTS NUMBERS ARE IN THE
ORDER OF (32,70) TO (40,80) WHEN UTILIZING LARGE COMPUTERS
FOR SMALLER COMPUTERS (20,40) TO (25,50) MESH POINTS ARE
USED IN MINI COMPUTERS THE NUMBERS ARE REDUCED TO (12,25) .
FOR SUCH PROGRAMS THE HIGHER THE MESH POINTS NUMBERS THE
MORE ACCURATE THE RESULTS ARE .

THIS NECESSITATES LARGE COMPUTERS FOR ACCURATE RESULTS.
THE PRESENT PROGRAM OVERCOMES THE INHERENT INACCURACIES
WHEN UTILISING MINI COMPUTERS BY INCREASING THE NUMBER
OF RUNS AS EXPLAINED LATER AMUR(IM,JM)=RELATIVE PERMEAB
-ILITY OF EACH QUADRILATERAL

AJ(IM,JM)=CURRENT DENSITY WITHIN EACH QUADRILATERAL
A(IM,JM)=NON ZERO ELEMENTS OF SYMMETRIC BAND MATRIX
C(IM,JM)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATIONS
V(IM,JM)=COMPUTED VECTOR POTENTIAL AT EACH MESH POINT
P(IM*JM, IM)=COEFFICIENTS OF THE FINITE ELEMENT EQUATIONS
AZLB(IM)=FIRST INNER BOUNDARY IN R=DIRECTION
AZRB(IM)=SECOND INNER BOUNDARY IN R-DIRECTION

NR=NUMBER OF RUNS DESIRED (1 TO 4)

TITLE(20) IS ANY TITLE UP TO 80 CHARACTERS

IJM=IM*JM

NSAT=THE SATURATION CONDITON .NSAT TAKES THE VALUE OF 0
FOR UNSATURATED LENSE AND 1 FOR SATURATED LENSE I.E THE
PROGRAM WILL FUNCTION FOR BOTH LINEAR AND NONLINEAR
CONDITIONS

TB(IBM),TM(IBM) REPRESENT TABLE OF TYPICAL RELATION
BETWEEN FLUX DENSITY AND RELATIVE PERMEABILITY .

THE DIMENSION STATEMENTS ARE SET AS FOLLOWS :
COMMON/ONE/Z(IM,JM),R(IM,JM) ,AMUR(IM,JM) ,AJ(IM,JTM)
COMMON/TWO/A(IJM) ,C(IJM) ,V(IM,IM),ZR1(IM,IM),TMUR(IM,JIM)
COMMON/THREE/ P(IJM,IM)

DIMENSION AZLB(IM) , AZRB{iM; ,NR(4) ,TITLE(20)

COMMON TB(IBM) ,TM(IBM) ,IBM ,NSAT ~

ZZ (Z-COORDINATES OF AXIAL MESH POINTS)

ABZ (COMPUTED AXIAL FLUX DENSITY DISTRIBUTION)

COMMON/ONE/ Z(25,50),R(25,50) ,AMUR(25,50) ,AJ(25,50)
COMMON/TWO/ A(1250),C(1250),v(25,50),ZR1(25,50),TMUR(25,50)
COMMON/THREE/ P(1250,25)

DIMENSION AZLB(25),AZRB(25),NR(4),TITLE(20)

COMMON TB(100),TM(100) ,IBM,NSAT

DIMENSION ZZ(210) ,ABZ(210)
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IM=25
JM=50
IIM=IM*IM
LBZ=JM*3
X=0.
DO 10 J=1,LBZ
ZZ(J)=X
ABZ(J)=X
10 CONTINUE
LBZ=0
THE PROGRAM WILL READ THE FIRST LINE OF DATA WHICH
CONSIST OF TWO INTEGERS THE FIRST INDICATE WHETHER
THE ENTIRE MESH IS SPECIFIED IN THE DATA I.E ASYMM
-ETRIC CASE ,OR THE PORTION OF THE MESH IN THE NEG
-ATIVE HALF OF THE LENS IS SPECEFIED (SYMMETRIC
-CASE)
THE SECOND INTEGER IDICATE WHETHER THE MAGNETIC
STRUCTURE IS UNDER LINEAR (UNSATURATED) OR NON
LINEAR (SATURATED) CONDITION .
NSYM CAN TAKE VALUES OF 1 OR 0 . 1 INDICATES
SYMMETRY
READ (1,1) NSYM1,NSAT
1 FORMAT (2I5)
THE PROGRAM EXPECTS IN THE SECOND LINE OF DATA
FOUR INTEGERS WHICH WILL SPECIFY THE NUMBER OF
REQUIRED TO BE PERFORMED (FROM 1 TO 4). THUS FOR
ONE RUN NR=1,0,0,0,FOR TWO RUNS NR=1,2,0,0, FOR
THREE RUNS NR=1,2,3,0, AND FINALL FOR FOUR RUNS
NR=1,2,3,4,
READ (1,2) (NR(I),I=1,4)
2 FORMAT (415)
A BLANK LINE IS LEFT
READ (1,1111)
FOR SYMMETRICAL CASE (NSYM1=1),UP TO 3 RUNS ARE
PERFORMED. FOR ASYMMETRIC CASE(NSYM1=0)UP TO FOUR
RUNS ARE DONE
IF (NSYM1.EQ.1) GOTO 20
IF (NR(4).EQ.4) GOTO 24
20 IF (NR(3).EQ.3) GOTO 23
IF (NR(2).EQ.2) GOTO 22
IF (NR(1).EQ.1) GOTO 21
WARNING IF NUMBER OF RUNS HAVE NOT BEEN SPECIFIED
THE PROGRAM WILL STOP IN THIS CASE
WRITE (2,3)
3 FORMAT (1X,' RUNS NOT SPECIFIED')
STOP
21 NRUN=1
GOTO 25
22 NRUN=2
GOTO 25
23 NRUN=3
GOTO 25
24 NRUN=4
THE PROGRAM WILL TEST WHETHER THE LENS IS UNDER
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LINEAR CONDITION (NSAT=0) OR UNDER SATURATION. IF
NSAT=0 THE PROGRAM IS DIRECTED TO READ THE TWO
INNER BOUNDARIES (JLB,JRB).OTHERWISE(SATURATION
CONDITIONS) THE PROGRAM WILL READ ATABLE OF TYPICAL
RELATION BETWEEN FLUX DENSITY AND RELATIVE PERMEA
-BILITY OF THE MAGNETIG MATERIAL.

25 IF (NSAT.EQ.0) GOTO 4
IBM=0

98 IBM=IBM+!
READ(1,100)TB(IBM),TM(IBM)

100 FORMAT(2F10.0)

THE PROGRAM WILL TEST FOR END OF TABLE
IF (TM(IBM).EQ.(-999.)) GOTO 1001
GOTO 98

1001 IBM=IBM=-1

FOR FLUX DENSITY VALUES NOT SPECIFIED IN TABLE
AFACTOR IS CALCULATED WHICH IS USED FOR DERIVING
RELATIVE PERMEABILTY
AMAG=TB(IBM)*(1.-1./TM(IBM))
A BLANK LINE IS LEFT
THE VALUES OF TWO INNER BOUNDARIES ARE READ
READ (1,1111)
4 READ (1,111) JLB,JRB

111 FORMAT (2I5)

A BLANK LINE IS LEFT
READ (1,1111)

1111 FORMAT (1X)

INITALISE NUMBER OF COMPLETED ITERATIONS TO ZERO
NIT=0
DO LOOPS ACORDING TO SPECIFIED NUMBER OF RUNS
DO 112 IRUN=1,NRUN
IF (IRUN.EQ.1) GOTO 2111
IF (NR(IRUN).EQ.0) GOTO 112
READ ANY TITLE UP TO 80 CHARACTERS

2111 READ (1,1121) (TITLE(I),I=1,20)

c

c

oo

000666 6

1121 FORMAT (20A4)

THE OUTPUT IS SPECIFIED ACCORDING TO REQUIREMENTS
READ (1,1122) NBFE,NFLUX

1122 FORMAT (2I5)

A BLANK LINE IS LEFT
READ (1,1111)
THE SUS<OUTINE MESH ,FOR READING AND SETTING AXIAL
AND RADIAL COORDINATES OF THE MAJOR MESH LINES
THE SUBROUTINE IS CALLED TWICE,FOR Z AND R COORDINATES
CALL MESH (Z,I11,J1,IM,JM)
CALL MESH (R,I1,J1,IM,JdM)
SET VARIOUS CONSTANTS
I1=NUMBER OF MESHES IN THE RADIAL DIRECTION
I2=I1-1 =NUMBER OF QUADRILATERALS IN THE RADIAL
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION
J2=J1=1 =NUMBER OF QUADRILATERALS IN THE AXIAL
DIRECTION
I2=I1-1
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I3=I1-2
J2=J1-1
J3=J1-2
DO LOOP TO SET OUTER BOUNDARY VECTOR POTENTIALS
TO ZERO FOR BOTH Z AND R DIRECTIONS
DO 1124 J=1,JM
DO 1124 I=1,IM
1124 v(1,J)=0.

THE SUBROUTINE READING THE DATA SPECIFING THE POSITION
AND PERMEABILTY OF THE MAGNETIC CIRCUIT IS CALLED
CALL AJMUR (AMUR,AJ,I1,J1,IM,JM,MS,MC)
THE DATA IS TESTED FOR SATURATION AND SUBROUTINE
SETMUR IS CALLED
IF (IRUN.EQ.1.0R.NSAT.EQ.0.0R.MS.EQ.0) GOTO 1123
CALL SETMUR (Z,AMUR,ZR1Y,TMUR,I2,J2,IM,JM)
THE INITIAL LENS EXCITATION(AMPERTURNS) IS SET TO
ZERO FOR ASYMMETRIC LENS
1123 ANI=0.
NSYM=0
THE NEXT TWO STATEMENTS GUIDE THE PROGRAM TO
EXECUTE THE APPROPRIATE COMPUTATIONS FOR 1,2,3,4
RUNS RESPECTIVELY

1126 IF (IRUN.EQ.1) GOTO 113
IF (NR(IRUN)=-3) 114,115,116
AN ITERATION COUNTER IS SET TO ZERO AND THE COORDINATES
OF THE MESH NODES IN Z AND R DIRECTIONS ARE SET BY
LINEAR INTERPOLATION
113 K1=0
DO 130 J=1,d1
DO 130 I=1,I1
K1=K1+1

THE RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATION
IS SET
C(K1)=0.
130 CONTINUE
K1=0
THE DATA IS TESTED FOR LINEARITY AND THE PROGRAM IS
DIRECTED ACCORDINGLY
IF (NIT.GT.0) GOTO 1304
FOR LINEAR CASE THE COORDINATES OF THE MESH NODES
IN Z AND R DIRECTION ARE SET BY LINEAR INTERPOLATION
IN Z AND R DIRECTIONS ARE SET BY LINEAR INTERPOLATION

DO 1302 J=1,J1
DO 1302 I=1,I1
K1=K1+1
A(K1)=0.

1302 CONTINUE

1304 NSYM=NSYM1
GOTO 131

114 X1=0

K2=0
Dol 117 T=1,3)
DO 117 I=1,I1
K1=K1+1

A39



A(X1)=0.
C(K))=0.
IF (J.EQ.J1) GOTO 1171
GoTO 117
1171 K2=K2+1
C THE VECTOR POTENTIAL AT FIRST INNER BOUNDARY IS STORED FOR
C RUN2 FROM RUN1
A(K1)=AZLB(K2)
V(I,J)=A(K1)
117 CONTINUE
GOTO 131
115 K1=0
K2=0
K3=0
C UP TO THREE RUNS CAN BE DONE FOR SYMMETRIC CASES
IF (NRUN.EQ.3) NSYM=NSYM1
po 118 J=1,J1
DO 118 I=1,I)
K1=K1+1
A(K1)=0.
c(K1)=0.
IF (J.EQ.1) GOTO 1151
GOTO 1152
1151 K2=K2+1
C THE VECTOR POTENTIAL AT THE INNER BOUNDARIES ARE
C STORED FOR LATER USE IN OTHER RUNS
A(X1)=AZLB(K2)
V(I,J)=A(K1)
1152 IF (NSYM.EQ.1) GOTO 118
IF (J.EQ.J1) GOTO 1153
GOTO 118
1153 K3=K3+1
C THE VECTOR POTENTIAL IN SECOND INNER BOUNDARY IS STORED FOR
C  RUN3 AND RUN4
A(K1)=AZRB(K3)
V(I,J)=A(K1)
118 CONTINUE
GOTO 131
116 K1=0
K2=0
NSYM=NSYM1
DO 119 J=1,J1
DO 119 I=1,I1
K1=K1+1
A(K1)=0.
C(X1)=0.
IF (J.EQ.1) GOTO 1191
GOTO 119
1191 K2=K2+1
A(K1)=AZRB(K2)
V(I,J)=A(K1)
119 CONTINUE
C THE RELATIVE PERMEABILITY OF FREE SPACE IS SETED
131 AMU0=1.2566371E-6
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DO 1131 I=1,IJM
DO 1131 J=1,IM
1131 P(1,J)=0.
K=12
K1=0
IF (NSYM.EQ.1) GOTO 8
J5=J3
Js=0
IS=I3*J3
GOTO 9
8 J5=J2
JS=J5
IS=13*J2
9 IT=IS-K
NM=NSYM
IF ONLY ONE RUN IS REQUESTED THEAND IN SATURATION CASE
THE PROGRAM IS DIRECTED ACORDINGLY
IF (IRUN.EQ.1.AND.NSAT.EQ.1.AND.MS.GT.0) GOTO 82
IN CASE OF UNSATURATION THE PROGRAM WILL CALL SUBROUTINE
PCLIN OTHERWISE (SATURATION) PCSAT IS CALLED
CALL PCLIN(Z,R,AMUR,AJ,P,A,C,I1,J1,IM,JM,IJM,NM,ANI)
GOTO 84
82 CALL PCSAT(Z,R,V,AMUR,AJ,P,A,C,AMAG,I1,J1,IM,JM,IJM,NM,ANI)
FOR SYMMETRIC LENSES ,TO TAKE ACCOUNT OF THE FACT THAT
ONLY HALF OF THE COIL IS SPECIFIED IN THE DATA, THE
EXCITATION IS DOUBLED
84 IF (NSYM.EQ.1) ANI=2,*ANI
SUBROUTINE "EQNS" IS CALLED . THIS SUBROUTINE SOLVES
EQUATIONS BY GAUSSIAN ELIMINATION AND BACKWARD SUBST-
~ITUTION
CALL EQNS (C,IT,IS,P,I1,IM,IJM)
SUBROUTINE "VPLUSDV" IS CALLED . THIS SUBROUTINE ADDS
THE COMPUTED CHANGES IN THE MESH-POINT POTENTIALS TO
CURRENT POTENTIAL VALUES TO OBTAIN AN IMPROVED APPRO-
-XIMATTION TO THE TRUE POTENTIAL DISTRIBUTION AND TEST
WHETHER CONVERGENCE HAS BEEN ACHIEVED
93 CALL VPLUSDV (V,C,I2,IM,JM,IJM,J5,VMAX,DVMAX,6NTEST)

FOR RUN NUMERS GREATER THAN 1 AND LINEAR CONDITION,
THE PROGRAM IS DIRECTED TO WRITE OUTPUT TITLES.
OTHERWISE IT WILL STORE THE VECTOR POTENTIAL OF INNER
BOUNDARIES

IF (IRUN.GT.1.0R.NSAT.EQ.0.OR.MS.EQ.0) GOTO 931
L1=J3

IF (NSYM.EQ.1) L1=J2

L=I2

K1=0

DO 842 J=1,L1

L=L+2

DO 842 I=1,I3

L=L+1

K1=K1+1

A(L)=V(I+1,J+1)
842 CONTINUE
NIT=NIT+1
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C WRITE TITLES IN CASE OF SATURATION WHEN NUMBER OF
Cc ITERATIONS IS MORE THAN 1

IF (NIT.EQ.1) WRITE(2,222)
222 FORMAT (1X,'ITERATIONS',5X,'MAX VECTOR',5X,'MAX CHANGE IN'
-/1X, 'COMPLETED ',5X,'POTENTIAL ',4X,'VECTOR POTENTIAL'/)
WRITE (2,1125) NIT,VMAX,DVMAX
1125 FORMAT (1X,15,5X,E15.5,3X,E15.5)
C TEST WHETHER CONVERGENCE HAS BEEN ACHIEVED IF SO
C THE TITLES ARE WRITTEN.OTHERWISE MORE ITERATIONS
C ARE PERFORMED
IF (NTEST.EQ.1) GOTO 930
GOTO 1123
930 WRITE (2,9301)
9301 FORMAT (/1X,'CONVERGENCE ACHIEVED'/)
931 IF (IRUN.GT.1) GOTO 934
DO 932 I1=1,I1 .
C THE VECTOR POTENTIAL IN FIRST INNER BOUNDARY IS STORED
AZLB(I)=V(I,JLB)
IF (NSYM.EQ.1) GOTO 932
C THE VECTOR POTENTIAL IN SECOND INNER BOUNDARY IS STORED
AZRB(I)=V(I,JRB)
932 CONTINUE
C WRITE TITELS
934 WRITE (2,935) (TITLE(I),I=1,20)
935 FORMAT (/1X,2024/)
WRITE (2,936)
936 FORMAT (/1X,'AXIAL FLUK DENSITY DISTRIBUTION'/)
WRITE (2,9351)
C FOR EACH MESH-POINT ON THE AXIS WRITE THE Z-COORDINATES
C OF AXIAL MESH-PT(IN MM) AND AXIAL FLUX DENSITY AT MESH-
C POINT (IN TESLAS)
9351 FORMAT (1X,'Z (MILLIMETRES) B (TESLAS)'/)

DO 94 J=1,J1
Z1=Z(I1,J)*1000.
R1=R(I2:J)
R2=R(I13,J)
A=V (I2,J)
A2=V(I3,J)

C THE AXIAL FLUX DENSITY IS CALCULATED
B=(A1*R2*R2*R2-A2*R1*R1*R1)/( .5*R1*R2* (R2*R2-R1*R1))
WRITE (2,95) 21,B

c IF ONLY ONE RUN IS REQUIRED THEN
IF (IRUN.EQ.1) GOTO 94
LBZ=LBZ+1
ZZ(LBZ)=21
ABZ(LBZ)=B

94 CONTINUE

c IF NUMBER OF RUNS IS MORE THAN 1,THE Z AND B OUTPUTED
IF (NRUN.NE.1.0R.NSYM.EQ.0) GOTO 79
DO 971 JJ=1,J2
J=J2+1=-JJ7
Z1=-2Z2(11,J3)*1000.
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R1=R(I2,J)
R2=R(I3,J)
A1=V(I2,J)
A2=V(I13,J)
B=(A1*R2*R2*R2-A2*R1*R1*R1)/(.5*R1*R2*(R2*R2-R1*R1))
WRITE (2,95) 21,B
971 CONTINUE
C FOR SYMMETRIC CASE THE VALUES OF Z(MM)COORDINATES AND
C  B(AXIAL FLUX DENSITY) FOR THE POSITIVE HALF PLANE IS
C  CALCULATED
79 IF (IRUN.EQ.1.OR.NR(IRUN).EQ.4) GOTO 941
C FOR ' RUN OR 4 RUNS THE PROGRAM IS DIRECTED TO WRITE
C THE LENS EXCITATION . THIS ALSO HAPPENS IN CASE OF
C  SYMMETRY AND 3 RUNS
IF (NR(IRUN).EQ.3.AND.NSYM.EQ.1) GOTO 941
IF (NR(IRUN).EQ.NR(IRUN=1)+1) LBZ=LBZ-1
95 FORMAT (1X,F10.2,6X,F15.6)
C  LENS EXCITATION IS WRITEN OUT
941 WRITE (2,96) ANI
IF (IRUN.EQ.1) EXCIT=ANI
96 FORMAT (1X/' EXCITATION GIVEN (NI) = ',F10.2,
+ ' AMPERETURNS'/)
IF (MS.EQ.0) GOTO 112
IR=IRUN
C THE PROGRAM IS DIRECTED TO SUBROUTINE "BVALUES"
CALL BVALUES (Z,R,V,AMUR,AMAG,I1,J1,IM,JM,NSAT,NBFE,IR)
IF (NSAT.EQ.0.OR.IRUN.GT.1) GOTO 1102
C IN CASE OF SATURATION (NON LINEAR) SUBROUTINE "TRZRMU"
C IS CALLED
CALL TRZRMU (Z,AMUR,ZR1,TMUR,I1,J1,IM,JM)
C IF FLUX VALUES AT EACH MESH POINT ARE NOT REQUIRED
C  THE PROGRAM IS
1102 IF (NFLUX.EQ.0) GOTO 112
C IF FLUX VALUES AT EACH MESH POINT ARE REQUIRED,THE
C. PROGRAM IS DIRECTED TO SUBROUTINE “FLUX"
CALL FLUX (V,R,I1,J31,IM,JM)
112 CONTINUE
C IF ONLY ONE RUN IS REQUIRED ,THE PROGRAM WILL STOP
C  OTHERWISE IT IS DIRECTED TO OUTPUT THE TOTAL AXIAL
C  FLUX DENSITY DISTRIBUTION FOR THE SPECIFIED REGION
IF (NRUN.EQ.1) STOP
WRITE(2,942)
942 FORMAT (/1X,'TOTAL DISTRIBUTION FOR SPECIFIED REGION'/)
WRITE (2,936)
WRITE (2,9351)
DO 944 J=1,LBZ
WRITE (2,95) 2Z(J),ABZ(J)
944 CONTINUE
C IN SYMMETRIC CASE THE Z AND B VALUES FOR THE POSITIVE
C  HALF ARE OUTPUTED
IF (NSYM.EQ.0) GOTO 946
LBZ=LBZ~1
DO 948 K=1,LBZ
J=LBZ+1-K
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Z1==2Z(J)
WRITE (2,95) Z1,ABZ(J)
948 CONTINUE
THE LENS EXCITATION IS OQUTPUTED (IN AMPERTURNS)
946 WRITE (2,96) EXCIT
THE MAIN PROGRAM ENDS
STOP
END

SUBROUTINE (MESH) FOR SETTING COORDINATES OF EACH POINT ON THE
FINITE ELEMENT MESH
Z(IM,JM)=ARRAY OF COORDINATES TO BE SET
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION
IM=MAXIMUM PERMISSIBLE VALUE OF I1
JM=MAXIMUM PERMISSIBLE VALUE OF J1
SUBROUTINE MESH(Z,I1,J1,IM,JM)
DIMENSION Z(IM,JM),TITLE(20)
DIMENSION NC(15),NR(15),XA(15,15)
THE SUBROUTINE READS THE MESH-POINT NUMBERS IN AXIAL
DIRECTION
READ (1,1)(NC(L),L=1,15)
1 FORMAT(5X, 151I5)
DO 2 L=1,15
IF(NC(L).EQ.0)GOTO 3
2 CONTINUE

CALCULATE VALUES OF JJ AND J1
JJ=NUMBER OF COLUMNS OF COORDINATES SPECIFIED IN THE
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION
JJ=15
GOTO 4
3 JJ=L-1

4 J1=NC(JJ)

READ THE COORDINATES VALUES
DO 5 I1=1,15
READ(1,6)NR(I),(XA(I,J),J=1,JJ)

6 FORMAT (15, 15F5.0)
TEST FOR END OF DATA
IF (NR(I).EQ.0)GOTO 7
5 CONTINUE
GOTO 8
II=I-1
8 I1=NR(II)

SET COORDINATE VALUES BY LINEAR INTERPOLATION
DO 9 I=2,II
DO 9 J=2,JJ7
L1=NR(I-1)

L2=NR(I)
M1=NC(J=1)
M2=NC(J)

DO 9 LL=L1,L2
DO 9 MM=M1,M2
KL=L2-L1
KM=M2=M1

~J
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D1=(XA(I-1,J)=-XA(I-1,J-1))/FLOAT(KM)
D2=(XA(I,J)=-XA(I,J-1))/FLOAT(XM)
D1=D1*FLOAT (MM-M1)+XA(I=1,J=1)
D2=D2*FLOAT (MM-M1)+XA(I,J=1)
Z(LL,MM)=(D2~D1)*FLOAT (LL~L17)/FLOAT (KL)+D1
THE COORDINATE VALUES WHICH HAVE BEEN SPECIFIED IN
MM ARE CONVERTED TO METRES
DO 10 I=1,I1
DO 10 J=1,J1

10 2z(1,J)=2%2(1I,J3)/1000,.

RETURN
THE END OF SUBROUTINE MESH
END

SUBROUTINE (AJMUR) FOR SETTING EACH ELEMENT OF THE ARRY
AMUR(IM,JM) TO THE VALUE OF THE RELATIVE PERMEABILITY
OF CORRESPONDING QUADRILATTERAL OF THE FINITE ELEMENT
MESH, AND EACH ELEMENT OF THE ARRY AJ(IM,JM) TO THE VALUE
OF THE CURRENT DENSITY. AMUR(IM,JM)=RELATIVE PERMEABILITY
VALUES FOR EACH QUADRILATERAL.
AJ(IM,JM)=CURRENT DENSITY VALUES FOR EACH QUADRILATERAL
(IN AMPTURNS/ SQUARE METER)
IM=NUMBER OF QUADRELATERAL AREAS IN THE RADIAL DIRECCTION
JM=NUMBER OF QUADRELATERAL AREAS IN THE AXIAL DIRECTION

SUBROUTINE AJMUR (AMUR,AJ,I1,J1,IM,JM,MS,MC)

DIMENSION AMUR(IM,JM) ,AJ(IM,JM)
INITALISE ALL ELEMENTS OF AMUR TO 1. AND ALL ELEMENTS OF
AJ TO 0.

Do 1 1I=%,I1

Do 1 J=1,J1

AMUR(I,J)=1.

AJ(I,J)=0.
1 CONTINUE

MS=0
READ VALUES OF JA,JB,IA,IB,XJ
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION
IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION
XJ=THE RELATIVE PERMEABLITY OF THAT PORTION OF THE
MAGNETIC CIRCUIT (DIMENSIONLESS)
2 READ (1,3) JA,JB,IA,IB,XJ
3 FORMAT (4I15,F10.0)
TEST FOR END OF MAGNETIC CIRCUIT DATA

IF (JA.EQ.0) GOTO 5
RESET APPROPRITE ELEMENTS OF AMUR TO THE VALUE OF XJ

IB1=IB-1

JB1=JB=-1

DO 4 I=IA,IB1

DO 4 J=JA,JB1
4 AMUR(I,J)=XJ

MS=MS+1
GO TO 2 TO READ NEXT LINE OF MAGNETIC CIRCUIT DATA

GOTO 2
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5 MC=0
READ NEXT LINE OF VALUES OF JA,JB,IA,IB,XJ,WHICH ARE
MESH-POINT NUMBERS SPECIFYING THE POSITION OF APORTION OF
THE COIL WINDINGS
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION
IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION
XJ=THE CURRENT DENSITY IN THAT PORTION OF THE COIL WINDINGS
(XJ IS IN AMPTURNS/SQUARE CM)
6 READ (1,3) JA,JB,IA,IB,XJ
TEST FOR END OF DATA SPECIFYING COIL WINDINGS

IF (JA.EQ.0) RETURN
RESET APPROPRIATE ELEMENTS OF AJ TO THE VALUE OF XJ

IB1=IB-1

JB1=JB-1

DO 7 I=IA,IB1

DO 7 J=JA,JB1
CONVERT CURRENT DENSITY XJ TO UNITS OF AMPTURNS/SQUARE
METRE
7 AJ(I,J)=XJ*10000.

MC=MC+1
GO TO 6 TO READ NEXT LINE OF COIL WINDINGS DATA

GOTO 6

END

SUBROUTINE (PCLIN) FOR SETTING THE FINITE ELEMENT COEFFICIENTS
F AND G FOR EVERY QUADRILATERAL AREA OF THE FINITE ELEMENT

MESH

Z(IM,JM)=Z-COORDINATES OF EVERY MESH-POINT
R(IM,JM)=R-COORDINATES OF EVERY MESH-POINT

AJ(IM,JM)=CURRENT DENSITY OF EVERY QUADRILATERAL
AR(IM,JM)RELATIVE PERMEABILITY OF EVERY QUADRILATERAL

F(24) FINITE ELEMENT F-COEFFICENTS FOR EVERY QUADRILATERAL
G(24)=FINITE ELEMENT G-COEFFICIENTS FOR EVERY QUADRILATERAL

" I1=NUMBER OF MESH-POINTS IN THE R-DIRECTION

J1=NUMBER OF MESH-POINTS IN THE Z-DIRECTION
SUBROUTINE PCLIN(Z,R,AR,AJ,P,A,C,I1,J1,IM,JM,IJM,NM,ANI)
DIMENSION Z(IM,JM),R(IM,JM),C(IJM),P(IJM,IM)
DIMENSION AR(IM,JM),AJ(IM,JM),A(IJM)

DIMENSION F(24),G(24)
DIMENSION D(36),0(12),ND(4)

SET AMUO=PERMEABILITY OF FREE SPACE (IN HENRY.METRE)
AMUO0=1.2566371E-6
I2=I1-1
I3=I11-2
J2=J1-1
J3=J1=2
K=I2

THE DATA 1S TESTED FOR SYMMETRY
IF (NM.EQ.1) GOTO 8
J5=J3
Js=0

IS=NUMBER OF FINITE ELEMENT EQUATIONS TO BE SOLVED
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IS=I3*J3
GOTO 9
8 J5=J2

Js5=J5
IS=I3*J2

C SET VARIOUS CONSTANTS

9 IT=IS-K

NC=4
L=0
L2==-2

c DO LOOPS FOR EVERY QUADRILATRAL AREA OF MESH
DO 10 J=1,J35
L2=L2+2
DO 11 I=1,1I3

e SET Z AND R COORDINATES OF CORNER POINTS OF QUADRILATRAL
F(1)=2(I+1,J)
F(2)=2(I+1,J3+1)
F(3)=2(I1,J+1)
F(4)=2(I,J)
F(5)=F(1)
F(6)=F(2)
F(7)=2(I+2,J+1)
F(8)=F(2)
F(9)=F(1)
F(10)=2(1I+2,J)
F(11)=F(7)
F(12)=F(8)
F(13)=F(3)
F(14)=F(2)
F(17)=F(3)
F(18)=F(2)
F(20)=F(2)
F(21)=F(7)
F(24)=F(2)
G(1)=R(I+1,J)
G(2)=R(I+1,J+1)
G(3)=R(I,J+1)
G(4)=R(I,J)
G(5)=G(1)
G(6)=G(2)
G(7)=R(I+2,J+1)
G(8)=G(2)
G(9)=G(1)
G(10)=R(I+2,J)
Gl 11)=C(7)
G(12)=G(8)
G(13)=G(3)
G(14)=G(2)
G(17)=G(3)
G(18)=G(2)
G(20)=G(2)
G(21)=G(7)
G(24)=G(2)

C TEST FOR ASYMMETRY
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IF (J.EQ.JS) GOTO 12
F(15)=2(I+1,3+2)
F(16)=2(I,J+2)
F(19)=F(15)
F(22)=2(I+2,3+2)
F(23)=F(15)
G(15)=R(I+1,J+2)
G(16)=R(I,J+2)
G(19)=G(15)
G(22)=R(I+2,J+2)
G(23)=G(15)
GOTO 13
12 NC=2
13 M1=1
M2=4
M3=7
C INITIALIASATION FOR NUMBER OF RUNS
DO 121 NN=1,NC
121 ND(NN)=0
c SETTING REFERENCE NUMBERS FOR THE RUNS FROM 1 TO 4
IF (I.EQ.I3.AND.J.EQ.J5) GOTO 1211
IF (J.EQ.J5) GOTO 1212
IF (I.EQ.I3) GOTO 1213
ND(1)=1
GOTO 1214
1211 DO 122 NN=1,4
122 ND(NN)=1
GOTO 1214
1212 ND(1)=1
ND(3)=1
GOTO 1214
1213 ND(1)=1
ND(2)=1
1214 N=0
c DO LOOP CALCULATING Z,R AND FINITE ELEMENT COEFFICIENTS
C ACCORDING TO RUN NUMBERS FROM 1 TO 4

DO 14 NN=1,NC
&4 IF NUMBER OF RUNS IS GREATER THAN 1 THE PROGRAM IS DIRECTED
c TO 140
IF (NN.GT.1) GOTO 140
N3=0
IC=I
JC=J
GOTO 141
140 IF (NN-3) 1402,1403,1404
1402 N3=6
IC=I+1
JC=J
GOTO 141
1403 N3=12
IC=I
Jc=J+1
GOTO 141
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1404 N3=18
IC=I+1
JC=J+1
DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS
141 DO 16 NO0=1,3
N=N+1
ND1=ND (NN )
IF (NO.EQ.1) ND1=0
IF (NO.EQ.3) N3=N3+1
SET Z AND R COORDINATES OF VERTICES OF TRIANGULAR
ELEMENTS
N3=N3+1
Z1=F(N3)
Z2=F(N3+1)
Z3=F(N3+2)
R1=G(N3)
R2=G(N3+1)
R3=G(N3+2)
THE COEFFICIENTS OF NODAL EQUATIONS REPRESENTING
THE VECTOR POTENTIAL OVER EACH ELEMENT ARE FOUND
B1=R2-R3
B2=R3-R1
B3=R1=-R2
T1=Z3-22
T2=21-23
T3=Z2-21
DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE
DET=B1*T2=-B2*T1
RO=(R1+R2+R3)/3.
X=DET/(3.*R0)
T1=T 1+X
T2=T2+X
T3=T3+X
X=R0/(2.*AMUO*AR(IC,JC)*DET)
IF (N.EQ.2.0R.N.EQ.5.0R.N.EQ.8.0R.N.EQ.11) GOTO 162
IF (N.EQ.3.0R.N.EQ.6.0R.N.EQ.9.0R.N.EQ.12) GOTO 163
161 D(M1)=(B2*B1+T2*T1)*X
D(M1+1)=(B2*B2+T2*T2) *X
D(M1+2)=(B2*B3+T2*T3)*X
M1=M1+9
GOTO 17
162 D(M2)=(B1*B1+T1*T1)*X
D(M2+1)=(B1*B2+T1*T2) *X
D(M2+2)=(B1*B3+T1*T3)*X
M2=M2+9
GOTO 17
163 D(M3)=(B3*B1+T3*T1)*X
D(M3+1)=(B3*B2+T3*T2)*X
D(M3+2)=(B3*B3+T3*T3)*X
M3=M3+9
17 ANI=ANI+.5*DET*AJ(IC,JC)*FLOAT(ND1)
Q(N)=AJ(IC,JC)*RO*DET/6.
16 CONTINUE
14 CONTINUE
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SET FINITE ELEMENT COEFFICIENTS FOR QUADRILATERAL
AREA TO OBTAIN NINE-POINT EQUATION FOR EACH NODE

=L+1
L2=L2+1

P(L,1)=0.

P(L,2)=0.

P(L,I3)=0.

P(L,K)=0.

P(L,I1)=0.

P1=D(6)+D(7)
P2=D(1)+D(8)+D(12)+D(14)
P3=D(15)+D(16)

P4=D(3)+D(5)
P5=D(2)+D(4)+D(9)+D(11)+D(13)+D(18)
P6=D(10)+D(17)
C(L)=Q(1)+Q(2)+Q(3)+Q(4)+Q(5)+Q(6)
Q1=P1*A(L2)

Q2=P2*A(L2+1)

Q3=P3*A(L2+2)

Q4=P4*A(L2+I1)

Q6=P6*A(L2+I1+2)

IF (J.EQ.JS) GOTO 18
P4=P4+D(19)+D(26)

P5=P5+D(20)+D(22)+D(27)+D(29)+D(31)+D(36)

P6=P6+D(30)+D(32)

P7=D(24)+D(25)
P8=D(21)+D(23)+D(28)+D(35)
P9=D(33)+D(34)
C(L)=C(L)+Q(7)+Q(8)+Q(9)+Q(10)+Q(11)+Q(12)
Q7=P7*A(L2+2*11)

Q8=P8*A(L2+2*I1+1)

Q9=P9*A (L2+2*I1+2)

EACH NODAL EQUATION IS EXPRESSED IN TERMS OF THE VECTOR
POTENTIAL AT THE NODE AND THE EIGHT NEIGHBOURING VECTOR
POTENTIAL VALUES. THE RESULTING MATRIX IS SYMMETRICAL
ABOUT THE DIAGONAL. HENCE ONLY THE COEFFICIENTS OF THE
BANDED MATRIX IN THE UPPER TRIANGLE OF THE MATRIX NEED
TO BE STORED. THE MATRIX EQUATION IS SOLVED BY GAUSSIAN
ELIMINATION IN ANOTHER SUBROUTINE

18

50

IF (J.EQ.JS) GOTO 20

IF (J.EQ.J5) GOTO 30

IF (J.NE.1) GOTO 40

IF (I.EQ.1) GOTO 50

IF (I.EQ.I3) GOTO 60
C(L)=C(L)=-(Q1+Q2+Q3)
P(L,1)=P5 .
P(L,2)=Pb

P(L,I3)=P7

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)-(Q1+02+03+Q4+Q7)
P(L,1)=P5
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60

40

401

402

30

301

302

20

201

202

11
10

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)=-(Q1+Q2+Q3+06+Q9)
P(L,1)=P5

P(L,I3)=pP7

P(L,K)=P8

GOTO 11

IF (I.EQ.1) GOTO 401
IF (I.EQ.I3) GOTO 402
P(L,1)=P5

P(L,2)=P6

P(L,I3)=P7

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)=-(Q1+04+Q7)
P(L,1)=P5

P(L,2)=P6

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)=(Q3+Q6+Q9)
P(L,I3)=P7

P{L:K}=PS

GOTO 11

IF (I.EQ.17) GOTO 301
IF (I.EQ.I3) GOTO 302
C(L)=C(L)=(Q7+Q8+Q9)
P(L,1)=P5

P(L,2)=P6

GOTO 11
C(L)=C(L)=-(Q1+Q4+Q7+Q8+Q9)
P(L,1)=P5

P(L,2)=P6

GOTO 11
C(L)=C(L)-(Q3+Q6+Q7+Q8+Q9)
P(L:1)=P5

GOTO 11

IF (I.EQ.1) GOTO 201
IF (I.EQ.I3) GOTO 202
P(L:1)=P5

P(L,2)=P6

GOTO 11
C(L)=C(L)=(Q1+Q4)
P(L,1)=P5 *
P(L,2)=P6

GOTO 11
C(L)=C(L)=-(Q3+Q6)
P(L,1)=P5

CONTINUE

CONTINUE

RETURN
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THE END OF THIS SUBROUTINE
END

SUBROUTINE (PCSAT) FOR DERIVATION OF NODAL EQUATIONS FOR
AXIAL FLUX DENSITY DISTRIBUTION THROUGHOUT THE MAGNETIC
CIRCUIT OF SATURATED MAGNETIC LENSES.
THE NODAL EQUATIONS WHICH ARE NON-LINEAR ARE SOLVED
BY NEWTON-RAPHSON ITERATION AND THE MATRIX EQUATION
IS SOLVED BY GAUSSIAN ELIMINATION.
Z(IM,JM)=Z~COORDINATES OF EVERY MESH POINT
R(IM,JM)=R~-COORDINATES OF EVERY MESH POINT
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION
AMAG=FACTOR FOR DERIVING RELATIVE PERMEABILITY
AR(IM,JM)=RELATIVE PERMEABILITY AT EVERY
QUADRILATERAL
F(24)=FINITE ELEMENT F-COEFFICIENTS FOR EVERY
QUADRILATERAL
G(24)=FINITE ELEMENT G-COEFFICIENTS FOR EVERY
QUADRILATERAL

SUBROUTINE PCSAT(Z,R,V,AR,AJ,P,A,C,AMAG,I1,J1,IM,JM,IJM,NM,ANT)

DIMENSION Z(IM,JM),R(IM,JM),C(IJM),P{(IJM,IM)

DIMENSION AR(IM,JM),AJ(IM,JM),A(IJM),V(IM,JM)

DIMENSION F(24),G(24),VP(24)

DIMENSION D(36),Q(12),ND(4)

COMMON TB(100),TM(100) ,IBM,NSAT
SET AMUO=PERMEABILITY OF FREE SPACE (IN HENRY/METRE)

AMUO=1.2566371E-6
INITALISE VECTOR POTENTIAL VALUES AT VERTICES OF
THE TRIANGULAR ELEMENT
DMU IS THE INCREMENTAL PERMEABILITY

A1=0.

A2=0.

A3=0.

TMU=1.

DMU=0.
I2=NUMBER OF QUADRILATERALS IN THE RADIAL DIRECTION
J2=NUMBER OF QUADRILATERALS IN THE AXIAL DIRECTION
I3,J3 ARE USED FOR FINDING NO. OF EQNS. TO BE SOLVED

I2=I1-1

I3=I1-2

J2=J1-1

J3=J1-2

K=I2 .
THE DATA IS TESTED FOR SYMMETRY

IF (NM.EQ.1) GOTO 8

J5=J3

Js=0
IS=NUMBER OF FINITE ELEMENT EQNS. TO BE SOLVED

IS=I3*J3

GOTO 9
8 J5=J2

JS=J5

IS=I3*J2
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9 IT=IS-K
NC=4
L=0
L2==2
DO LOOPS FOR EVERY QUADRILATERAL AREA OF MESH
DO 10 J=1,J5
L2=L2+2
po 11 I=1,13
SET Z AND R COORDINATES OF VERTICES AND THE VECTOR
POTENTIAL VALUES AT EACH POINT OF THE QUADRILATERAL
I=NUMBER OF RADIAL NODES
J=NUMBER OF AXIAL NODES
F(1)=2Z(I+1,J)
F(2)=2(I+1,J+1)
F(3)=2(I,J+1)
F(4)=2(I,J)
F(5)=F(1)
F(6)=F(2)
F(7)=2(1I+2,J+1)
F(8)=F(2)
F(9)=F(1)
F(10)=2(1I+2,J)
F(11)=F(7)
F(12)=F(8)
F(13)=F(3)
F(14)=F(2)
F(17)=F(3)
F(18)=F(2)
F(20)=F(2)
F(21)=F(7)
F(24)=F(2)
G(1)=R(I+1,J)
G(2)=R(I+1,J+1)
G(3)=R(I,J+1)
G(4)=R(I,J)
G(5)=G(1)
G(6)=G(2)
G(7)=R(I+2,J+1)
G(8)=G(2)
G(9)=G(1)
G(10)=R(I1I+2,J)
G(11)=G(7)
G(12)=G(8)
G(13)=G(3)
G(14)=G(2)
G(J7)=G(3)
G(18)=G(2)
G(20)=G(2)
G(21)=G(7)
G(24)=G(2)
VP(1)=V(I+1,J)
VB(2)=V(I+1,J+1)
VB(3)=V(T,J+1)
VP(4)=V(I,J)
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VP(5)=VP(1)
VP(6)=VP(2)
VP(7)=V(I+2,J+1)
VP(8)=VP(2)
VP(9)=VP(1)
VP(10)=V(I+2,J)
VP(11)=VP(7)
VP(12)=VP(8)
VP(13)=VP(3)
VP(14)=VP(2)
VP(17)=VP(3)
VP(18)=VP(2)
VP(20)=VP(2)
VP(21)=VP(7)
VP(24)=VP(2)
IF (J.EQ.JS) GOTO 12
F(15)=2(I+1,J+2)
F(16)=2(1,J+2)
F(19)=F(15)
F(22)=2(I+2,J+2)
F(23)=F(15)
G(15)=R(I+1,J+2)
G(16)=R(I,J+2)
G(19)=G(15)
G(22)=R(I+2,J+2)
G(23)=G(15)
VP(15)=V(I+1,J+2)
VP(16)=V(I,J+2)
VP(19)=VP(15)
VP(22)=V(I+2,J+2)
VP(23)=VP(15)
GOTO 13
12 NC=2
13 M1=1
M2=4
M3=7
DO 121 NN=1,NC
121 ND(NN)=0
IF (I.EQ.I3.AND.J.EQ.J5) GOTO 1211
IF (J.EQ.J5) GOTO 1212
IF (I.EQ.I3) GOTO 1213
ND(1)=1
GOTO 1214
C  SETTING REFERENCE NUMBERS FOR THE RUNS FROM 1 TO 4
1211 DO 122 NN=1,4
122 ND(NN)=1
GOTO 1214
1212 ND(1)=1
ND(3)=1
GOTO 1214
1213 ND(1)=1
ND(2)=1
1214 N=0
C DO LOOP CALCULATING Z,R AND FINITE ELEMENT COEFEICIENTS
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C ACCORDING TO RUN NUMBERS FROM 1 TO 4

DO 14 NN=1,NC
IF (NN.GT.1) GOTO 140
N3=0
IC=1
Jc=J
GOTO 141

140 IF (NN-3) 1402,1403,1404

1402 N3=6
IC=I+1
Jc=J
GOTO 141

1403 N3=12
Ic=I
JC=J+1
GOTO 141

1404 N3=18
IC=I+1
JC=J+1

C DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS
141 DO 16 NO=1,3

N=N+1
ND1=ND (NN )
IF (NO.EQ.1) ND1=0
IF (NO.EQ.3) N3=N3+1
N3=N3+1

C SET Z AND R COORDINATES OF VERTICES OF TRIANGULAR

Cc ELEMENTS
Z1=F(N3)
Z22=F(N3+1)
Z3=F(N3+2)
R1=G(N3)
R2=G(N3+1)
R3=G(N3+2)
V1=VP(N3)
V2=VP(N3+1)
V3=VP(N3+2)
B1=R2-R3
B2=R3-R1
B3=R1-R2
T1=Z3-22
T2=Z1-23
T3=Z2-21

C DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE=2*AREA

DET=B1*T2-B2*T1

& RO=VALUE OF R AT THE CENTROID
RO=(R1+R2+R3)/3.
X=1./(3.*R0O)

B1=-B1/DET
B2=-B2/DET
B3=-B3/DET

T1=T1/DET+X
T2=T2/DET+X
T3=T3/DET+X

A55



(& THE FLUX DENSITY AT EACH TRIANGLE IS CALCULATED
c BR=RADIAL COMPONENT OF MAGNETIC FLUX DENSITY
2] BZ=AXIAL COMPONENT OF MAGNETIC FLUX DENSITY
Cc B=MAGNETIG FLUX DENSITY
BR=B1*V1+B2*V2+B3*V3
BZ=T1*V1+T2*V2+T3*V3

B=SQRT (BR*BR+BZ*BZ)

A1=B1*BR+T1*BZ

A2=B2*BR+T2*BZ

A3=B3*BR+T3*BZ
Cc TMU=THE RELATIVE PERMEABILITY OF FREE SPACE
C DMU=THE INCREMENTAL PERMEABILITY

T™MU=1.

DMU=0.
C IF THE FINITE ELEMENT TRIANGLE IS IN THE FREE SPACE
c THE PROGRAM IS DIRECTED TO 15

IF (AR(IC,JC).EQ.1.) GOTO 15

(4 IF THE FINITE ELEMENT TRIANGLE IS PART OF MAGNETIC
C CIRCUIT THE MAGNETISATION CURVE OF THE MAGNETIC MATERIAL
C  MUST BE ACCOUNTED (ATABLE OF MR AND B MUST BE CONSIDERED)
IF (NSAT.EQ.1) GOTO 70
TMU=AR(IC,JC)
GOTO 15
C THE PROGRAM IS DIRECTED ACORDING TO THE OCCURANCE OF
C THE CALCULATED VALUE QOF B WITH RESPECT TO THE GIVEN
C VALUES OF B,MR IN THE TABLE
70 1B=0
160 IB=IB+1
C IF THE CALCULATED B IS LARGER THAN THE MAXMIUM B
C GIVEN IN THE TABLE THE PROGRAM IS DIRECTED TO
C 80 TO CALCULATE DMU

IF (IB.GE.IBM.OR.B.GT.TB(IBM)) GOTO 80
c IF B CALCULATED VALUE LIES IN THE LINEAR PART OF
C THE MAGNETIG CURVE THE PROGRAM IS DIRECTED TO CALCULATE DMU
IF (B.LE.TB(IB+1).AND.B.GE.TB(IB)) GOTO 1602
c THE PROGRAM IS DIRECTED TO RECOGNISE THE FIRST AND
C FURTHER NON LINEAR PARTS OF THE MAGNETIG CURVE
GOTO 160
1602 ZM=TB(IB+1)-B
ZL=B-TB(IB)
TMU=TM(IB)+(TM(IB+1)-TM(IB))/(ZM+ZL)*ZL
C IF B CALCULATED=0. THE PROGRAM IS DIRECTED TO 15
IF (B.EQ.0.) GOTO 15
DMU=(TM(IB)=-TM(IB+1))/(TB(IB)=TB(IB+1))
DMU=DMU/ (B*TMU)
GOTO 15
80 TMU=B/(B-AMAG)
IF (B.EQ.0.) GOTO 15
DMU=(1.0001*B/(1.0001*B-AMAG)-TMU)/B*10000.
DMU=DMU/ ( B*TMU )
15 X=RO*DET/(TMU*AMUO)
AJD=AJ(IC,JC)/3.*TMU*AMUO
e SETTING NINE POINT NON LINEAR EQUATION TO BE SOLVED
& WITH NEWTON ITERATION
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IF (N.EQ.2.0R.N.EQ.5.0R.N.EQ.8.0R.N.EQ.11) GOTO 162
IF (N.EQ.3.0R.N.EQ.6.0R.N.EQ.9.0R.N.EQ.12) GOTO 163
161 D(M1)=(B2*B1+T2*T1=A2*A 1*DMU) *X
D(M1+1)=(B2*B2+T2*T2-A2*A2*DMU) *X
D(M1+2)=(B2*B3+T2*T3-A2*A3*DMU) *X
Q(N)=(AJD=-A2)*X
M1=M1+9
GOTO 17
162 D(M2)=(B1*B1+T1*T1-A1*A1*DMU) *X
D(M2+1)=(B1*B2+T1*T2=A1*A2*DMU) *X
D(M2+2)=(B1*B3+T1*T3-A1*A3*DMU) *X
Q(N)=(AJD=A1)*X
M2=M2+9
GOTO 17
163 D(M3)=(B3*B1+T3*T1=A3*A1*DMU) *X
D(M3+1)=(B3*B2+T3*T2=-A3*A2*DMU ) *X
D(M3+2)=(B3*B3+T3*T3~-A3*A3*DMU) *X
Q(N)=(AJD=-A3)*X
M3=M3+9
17 ANI=ANI+.S5*DET*AJ(IC,JC)*FLOAT(ND1)
16 CONTINUE
14 CONTINUE
L=L+1
L2=L2+1
c SETTING THE VECTOR POTENTIAL IN THE AXIS AND THE BOUDARIES
C TO 0.
P(L,1)=0.
P(L,2)=0.
P(L,I3)=0.
P(L,K)=0.
P(L,I1)=0.

o) STORING THE NON ZERO VECTOR POTENTIALS
P1=D(6)+D(7)
P2=D(1)+D(8)+D(12)+D(14)
P3=D(15)+D(16)

P4=D(3)+D(5)
P5=D(2)+D(4)+D(9)+D(11)+D(13)+D(18)
P6=D(10)+D(17)
C(L)=Q(1)+0(2)+Q(3)+Q(4)+Q(5)+Q(6)
Q1=P1*A(L2)

Q2=P2*A(L2+1)

Q3=P3*A(L2+2)

Q4=P4*A(L2+I1)

Q6=P6*A(L2+I1+2)

IF (J.EQ.JS) GOTO 18

P4=P4+D(19)+D(26)
P5=P5+D(20)+D(22)+D(27)+D(29)+D(31)+D(36)
P6=P6+D(30)+D(32)

P7=D(24)+D(25)

P8=D(21)+D(23)+D(28)+D(35)

P9=D(33)+D(34)
C(L)=C(L)+Q(7)+Q(8)+Q(2)+Q(10)+Q(11)+Q(12)
Q7=P7*A(L2+2*I1)

Q8=P8*A(L2+2*I1+1)
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50

60

40

401

402

30

301

302

QO9=PO*A(L2+2*I1+2)

IF (J.EQ.JS) GOTO 20
IF (J.EQ.J5) GOTO 30
IF (J.NE.1) GOTO 40
IF (I.EQ.1) GOTO 50
IF (I.EQ.I3) GOTO 60
C(L)=C(L)=(Q1+Q2+0Q3)
P(L,1)=P5

P(L,2)=P6

P(L,I3)=P7

P(L,I1)=P9

GOTO 11
C(L)=C(L)=(Q1+Q2+03+04+Q7)
P(L,2)=P6

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)~=(Q1+Q2+Q3+Q6+Q9)
P(L,1)=P5

P(L,I3)=P7

P(L,K)=P8

GOTO 11

IF (I.EQ.1) GOTO 401
IF (I.EQ.I3) GOTO 402
P(L,1)=P5

P(L,2)=P6

P(L,I3)=P7

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)=(Q1+Q4+Q7)
P(L,1)=P5

P(L,2)=P6

P(L,K)=P8

P(L,I1)=P9

GOTO 11
C(L)=C(L)-(Q3+Q6+Q9)
P(L,I3)=P7

P(L,K)=P8

GOTO 11

IF (I.EQ.1) GOTO 301
IF (I.EQ.I3) GOTO 302
C(L)=C(L)=-(Q7+08+Q9)
P(L,1)=P5

P(L,2)=P6

GOTO 11
C(L)=C(L)-(Q1+Q4+Q7+Q8+Q9)
P(L,1)=P5

P(L,2)=P6

GOTO 11
C(L)=C(L)=(Q3+Q6+Q7+Q8+Q9)
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P(L,1)=P5
GOTO 11

20 IF (I.EQ.1) GOTO 201
IF (I.EQ.I3) GOTO 202
P(L,1)=P5
P(L,2)=P6
GOTO 11

201 C(L)=C(L)=(Q1+Q4)

P(L,1)=P5
P(L,2)=P6
GoTO 11

202 C(L)=C(L)=-(Q3+06)

P(L,1)=P5
11 CONTINUE
10 CONTINUE
RETURN
THE END OF PCSAT SUBROUTINE WHICH IS DEALING WITH SATURATION
CASE
END

SUBROUTINE (EQNS) FOR EQUATION SOLVING BY GAUSSIAN ELIMINATION
AND BACKWARD SUBSTITUTION
I1=NUMBER OF RADIAL NODES IN THE FINITE ELEMENT GRID
IS=NUMBER OF EQUATIONS TO BE SOLVED
C=ARRY WHICH HOLDS THE RIGHTHAND SIDE COEFFICIENTS OF
THE EQUATIONS
P=ARRY WHICH HOLDS THE LEFTHAND SIDE COEFFICIENTS OF
THE MATRIX EQUATION
SUBROUTINE EQNS (C,IT,IS,P,I1,IM,IJM)
DIMENSION C(IJM),P(IJM,IM)
SET VARIOUS CONSTANTS
NC=I1
IS1=IS~-1
STEP 1-GAUSSIAN ELIMINATION
DO LOOP FOR EACH ROW OF BAND MATRIX
DO 70 NT=1,IS1
IF (NT.GT.IT) NC=IS=-NT+1
DO LOOP FOR EACH COLUMN OF SUB=MATRIX
DO 71 I=2,NC
IC=NT+I-1
RC=P(NT,I)/P(NT,1)
RESET APPROPRIATE ELEMENTS OF RIGHT-HAND SIDE
C(IC)=C(IC)=-RC*C(NT)
IIV11=I1=I+1
DO LOOP FOR EACH ROW OF SUB-MATRIX
DO 72 J=1,II11
RESET APPROPRIATE ELEMENT OF BAND MATRIX
P(IC,J)=P(IC,J)-RC*P(NT,I+J-1)
72 CONTINUE
71 CONTINUE
70 CONTINUE
STEP 2-BACKWARD SUBSTITUTION
BACKWARD SUBSTITUTION FOR ROW IS
C(IS)=C(IS)/P(IS,1)
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DO LOOP FOR BACKWARD SUBSTITUTION FOR EACH ROW OF MATRIX
IS1=1s-1
DO 80 I=1,IS?
II=IsS-I
NC=I1
IF (II.GT.IT) NC=IS-II+}
s=0.
DO LOOP FOR SUMMING PRODUCTS OF (APPROPRIATE ELEMENTS OF
C) * (APPROPRIATE ELEMENTS OF P)
DO 81 J=2,NC
JJ=NC+2-J
=S+P(II,JJ)*C(II+JJ=1)
81 CONTINUE
RESET APPROPRIATE ELEMENT OF C TO STORE THE SOLUTION
C(II)=(C(II)-8)/P(I1I,1)
80 CONTINUE
RETURN
END OF SUBROUTINE EQNS
END

SUBROUTINE (VPLUSDV) TO SET ALIMIT TO THE CYCLE OF ITERATION
PROCESS THIS LIMIT IS DETERMINED WHEN THE VALUE OF THE
DIFFERENCE IN VECTOR POTENTIAL BETWEEN TWO CONSECUTIVE
ITERATIONS IS WITHIN ACERTAIN ACCURACY LIMIT

SUBROUTINE VPLUSDV (V,C,I2,IM,JdM,IJM,J5,X1,¥1,NTEST)
DIMENSION V(IM,JdM),C(IJM)
NTEST IS INITALIZED TO ZERO
NTEST=0
X1=THE ABSOLUTE VALUE OF THE MAXIMUM VECTOR POTENTIAL
IN ANY MATERIAL AFTER THE NTH NEWTON'S ITERATION.
X1=0.
Y 1=THE MAXIMUM CHANGE IN VECTOR POTENTIAL
Y1=0.
J6=J5+1
L=0
DO 1 J=2,J6
DO 2 I=2,I2
L=L+1
IF (ABS(C(L)).GT.Y1) Y1=ABS(C(L))
V(I,J)=V(I,J)+C(L)
IF (ABS(V(I,J)).GT.X1) X1=ABS(V(I,J))
2 CONTINUE
1 CONTINUE
ERR=THE LARGEST PERMISSIBLE CHANGE IN ANY MATERIAL
ERR=,001*X1
NTEST=THE LIMIT WHERE THE ITERATION PROCESS IS REACHED
I.E NTEST=1 WHEN Y1 IS LESS THAN ERR.
IF (Y1.LE.ERR) NTEST=1
RETURN
THE END OF SUBROUTINE VPLUSDV
END

SUBROUTINE (BVALUES) FOR CALCULATING THE FLUX DENSITY AT POINTS
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C  THROUGHOUT THE MAGNETIG CIRCUIT AND FOR WRITING OUT THE
g PEAK FLUX DENSITY.

SUBROUTINE BVALUES(Z,R,V,AMUR,AMAG,I1,J1,IM,JM,NSAT,NBFE, IR)

DIMENSION Z(IM,JM),R(IM,JM),V(IM,JIM),AMUR(IM,JM)

COMMON TB(100),TM(100),IBM
e INITALIZE THE VALUE OF RELATIVE PERMEABILITY IN FREE
o] SPACE

AMUO=1.2566371E-6
C INITALIZE THE VALUE AND POSITION OF THE PEAK FLUX DENSITY
(@ IN THE MAGNETIG CIRCUIT

BMAX=0.

ZMAX=0.

RMAX=0.
(e IF NBFE (FLUX DENSITY IN MAGNETIC CIRCUIT) IS REQUIRED AS
c OUTPUT, THE PROGRAM IS DIRECTED TO WRITE HEADING

IF (NBFE.EQ.1) WRITE (2,10)

10 FORMAT (/1X,'FLUX DENSITY VALUES IN MAGNETIC CIRCUIT'/)

e DO LOOP FOR EVERY QUADRILATERAL AREA OF MESH

I2=I1-1

J2=J1-1
C DO LOOPS FOR EVERY QUADRILATERAL AREA OF MESH

DO 1 J=1,J2

DO 1 I=1,I2
C TEST WHETHER THE QUADRILATERAL IS IN FREE SPACE OR IN THE
C  MAGNETIG CIRCUIT

IF (AMUR(I,J).EQ.7) GOTO 1
C SET Z AND R COORDINATES AND VECTOR POTENTIAL VALUES AT
c CORNER POINTS OF QUADRILATERAL

Z21=z(1,J)

22=Z(I+1 JJ)

Z3=Z(I+1,dJ+1)

Z4=2(I1,J3+1)

R1=R(I,J)

R2=R(I+1,J)

R3=R(I+1,J+1)

R4=R(I,J+1)

V1'—'V(I:J)

V2=V (I+1,J)

V3=V (I+1,J+1)

V4=v(I,J+1)
c CALCULATE COORDINATES OF CENTRE POINT OF QUADRILATERAL

ZC=(Z1+22+2Z3+Z4)*.25

RC=(R1+R2+R3+R4)*.25
C CALCULATE FLUX DENSITY COMPONENT BZ AND BR AT CENTRE POINT
e OF QUADRILATERAL

X1=(Z1-2Z2)*R1*R2

X2=(Z1=-23)*R1*R3

X3=(Z1-Z4)*R1*R4

X4=(22-23)*R2*R3

X5=(Z22-Z4)*R2*R4

X6=(Z3-Z4)*R3*R4

Y1=(R1-R2)*Z1*Z2

¥2=(R1-R3)*Z1*Z3

¥3=(R1-R4)*Z1*24
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Y4=(R2-R3 ) *Z2*Z3
¥Y5=(R2=-R4)*Z2*Z4
Y6=(R3—-R4)*Z3*Z4
P1=X4-X5+X6
P2=-X2+X3-X6
P3=X1-X3+X5
P4=-X1+X2-X4
Q1=R1*Z2=Z1*R2
Q2=R1*Z3-Z1*R3
Q3=R1*Z4-Z1*R4
Q4=R2*Z3-Z2*R3
Q5=R2*Z4-Z2*R4
Q6=R3*Z4-Z3*R4
DET=Z1*P1+Z2*P2+Z3*P3+Z24*P4
F=V1*(=Z24*X4+Z3*X5-22*%X6 )+V2*(Z4*X2-23*X3+Z1*X6)
F=F+V3*(-Z24*X1+Z2*X3-Z1*X5)+V4* (Z3*X1=-Z2*X2+Z1*X4)
G=V1*P1+V2*P2+V3*P3+V4*P4
H=V1*(=Y4+Y5=Y6)+V2* (¥Y2=-Y3+Y6 )+V3* (=Y 1+¥Y3-Y5)+V4*(¥Y1-Y2+Y4)
AI=V1*(Q4-0Q5+Q6 )+V2*( -Q2+Q3-06)+V3*(Q1-03+Q5)+V4*(-Q1+Q2-04 )
F=F/DET
G=G/DET
H=H/DET
AI=AI/DET
VC=F+G*ZC+H*RC+AI*ZC*RC
BZ=H+AI*ZC+VC/RC
BR=-G~-AI*RC
CALCULATE FLUX DENSITY B AT CENTRE POINT OF QUADRILATERAL
B=SQRT (BZ*BZ+BR*BR)
CONVERT COORDINATES OF MAXIMUM FLUX DENSITY POSITION FROM
METRES TO MM
ZC=2ZC*1000.
RC=RC*1000.
WRITE LOCATION AND VALUES OF AXIAL (BZ) AND RADIAL (BR)
COMPONENTS OF THE FLUX DENSITY AND THE RESULTANT FLUX
DENSITY THROUGHOUT THE MAGNETIC CIRCUIT
IF (NSAT.EQ.0.0OR.IR.GT.1) GOTO 7
IB=0
4 IB=IB+1
IF THE COPUTED FLUX DENSITY IS GREATER THAN THE FINAL
VALUE PRESENT IN THE B,MUR TABLE THE PROGRAM IS DIRECTED
ACCORDINGLY
IF (IB.GE.IBM.OR.B.GT.TB(IBM)) GOTO 5
IF THE COMPUTED FLUX DENSITY IS AT THE LINEAR PART OF
THE MAGNETIC CURVE (B,MUR) TABLE THE PROGRAM IS DIRECTED
ACCORDING TO THAT
IF (B.LE.TB(IB+1).AND.B.GE.TB(IB)) GOTO 6
GOTO 4
6 ZM=TB(IB+1)-B
ZL=B-TB(IB)
AMUR(I,J)=TM(IB)+(TM(IB+1)-TM(IB))/(2M+2ZL)*2ZL
GOTO 7
5 AMUR(I,J)=B/(B-AMAG)
TEST IF MAXIMUM FLUX DENSITY HAS BEEN REACHED
7 IF (B.LT.BMAX) GOTO 11
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=B
ZMAX=ZC
RMAX=RC
IF NBFE=1 IN THE DATA INPUT THE PROGRAM IS DIRECTED
TO WRITE THE HEADINGS (I,J,ZC,RC,BZ,BR,B)ACORDING
TO THE REQUIRED FORMAT
11 IF (NBFE.EQ.1) WRITE(2,8) I,J,2C,RC,BZ,BR,B,AMUR(I,J)
8 FORMAT (1X,2I5,2F15.3,4F15.6)
1 CONTINUE
WRITE THE VALUES AND POSITION OF MAXIMUM FLUX DENSITY
IN THE MAGNETIG CIRCUIT ACORDING TO THE REQUIRED FORMAT
WRITE(2,3)ZMAX,RMAX,BMAX
3 FORMAT(1X, 'MAXIMAM FLUX DENSITY IN MAGNETIC CIRCUIT'//
+ 1X,2F10.5,F15.6,'(TESLA) ')
RETURN
THE END OF SUBROUTINE BVALUES
END

SUBROUTINE (TRZRMU) TO TRANSFER THE CORECTED RELATIVE
PERMEABILITY WHICH HAVE BEEN CALCULATED IN SUBROUTINE
PCSAT FOR THE MESH NODES INTO THE Z ,R COORDINATES
SUBROUTINE TRZRMU (Z,AMUR,ZR1,TMUR,I1,J1,IM,JM)
DIMENSION Z(IM,JM),AMUR(IM,JM),ZR1(IM,JM),TMUR(IM,JM)
I12=I1-1
J2=J1-1
DO 2 J=1,31
DO 2 I=1,I1
2 ZR1(I,J)=2(I,J)
DO 4 J=1,J2
DO 4 I=1,I2
4 TMUR(I,J)=AMUR(I,J)
RETURN
END OF SUBROUTINE TRZMU
END

SUBROUTINE (SETMUR) FOR SETTING THE RELATIVE PERMEABILITY
AFTER CORECTING ACORDING TO THE GIVEN VALUES IN THE B,MUR
TABLE WHICH IS GIVEN WITH THE DATA INPUT
AND SETTING THE POSITION OF THE MAGNETIC MATERIAL
SUBROUTINE SETMUR (Z,AMUR,ZR1,TMUR,I2,J2,IM,JM)
DIMENSION Z(IM,JM),AMUR(IM,JM),ZR1(IM,JM),TMUR(IM,JIM)
II=1
JJ=1
I=11
J=JJ
6 IF (AMUR(II,JJ).EQ.1.) GOTO 2
Z21=%Z(II1,JJ)
10 X1=2ZR1(I,J)
X2=ZR1(I,J+1)
IF (21.GE.X1.AND.Z1.LE.X2) GOTO 8
12 J=J+1
GOTO 10
8 IF (TMUR(I,J).EQ.1.) GOTO 12
AMUR(II,JJ)=TMUR(I,J)
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2 JJ=JJ+1
IF (JJ.GT.J2) GOTO 4
GOTO 6

4 II=II+1
I=II
IF (II.GT.I2) RETURN
JJ=1
J=JJ
GOTO 6

END OF SUBROUTINE SETMUR
END

SUBROUTINE (FLUX) FOR CONVERTING THE VALUES OF VECTOR POTENTIAL
AT EACH MESH POINT TO THE CORRESPONDING MAGNETIC FLUX
VALUE
V(I,J)=ARRAY WHICH HOLDS VALUES OF THE VECTOR POTENTIAL
AT ENTRY TO THE ROUTINE AND WHICH HOLDS THE MAGNETIC FLUX
VALUE AT EACH MESH POINT ON RETURN TO THE MAIN PROGRAM
SUBROUTINE FLUX (V,R,I1,J1,IM,JM)
DIMENSION V(IM,JM),R(IM,JdM)
SET VALUE 2.*PYE
TPI=6.28318531
CONVERT EACH ELEMENT OF V(IM,JM) FROM VECTOR POTENTIAL
TO MAGNETIC FLUX VALUE AT EACH MESH POINT
DO 2 J=1,J1
DO 2 I=1,I1
V(I,J)=TPI*R(I,J)*V(I,J)
2 CONTINUE
WRITE HEADING FOR THE FLUX VALUES AT EACH MESH POINT
WRITE (2,5)
5 FORMAT (/1X,'FLUX VALUES AT EACH MESH POINT'/)
J,JF,JS ARE MESH POINT NUMBERS IN THE AXIAL DIRECTION
Js=1
JD=4
20 JF=JS+JD
WRITE (2,4) (J,J3=JS,JF)
4 FORMAT (1X,5X,5I15)
DO LOOP FOR WRITING MESH POINT NUMBERS IN THE RADIAL
DIRECTION AND THE FLUX VALUES AT EACH MESH
I=THE MESH POINT NUMBER IN THE RADIAL DIRECTION
DO 6 I=1,I1
WRITE (2,8) I,(V(I,J),J=JS,JF)
8 FORMAT (1X,I5,5E15.5)
6 CONTINUE
WRITE (2,10)
10 FORMAT (1X) .
TEST FOR END OF SET OF VALUES
IF (JF.EQ.J1) GOTO 12
JS=JF+1
IF ((JS+JD).GT.J1) JD=J1-JS
GOTO 20
LEAVE BLANK LINE
12 WRITE (2.32)
RETURN

——

—
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FINITE ELEMENT PROGRAM FOR COMUTING VECTOR POTENTIAL AND AXTIAL
FLUX DENSITY DISTRIBUTION THROUGHOUT THE MAGNETIG CIRCUIT OF
UNSATURATED AND SATURATED MAGNETIG LENSES.

THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS:

U=VECTOR POTENTIAL AT THE MESH POINTS INCLUDING THE BOUNDARY
MESH POINTS U(IRZ)

IRZ=TOTAL NUMBER OF POINTS IN THE MESH INCLUDING THE BOUNDARY
POINTS (IRZ=I1*J1)

I1,J1=ARE NUMBER OF MESH POINTS IN THE MESH IN RADIAL AND
AXTAL DIRECTION RESPECTIVELY (I1=IR(NR) J1=IZ(NZ))
B,P,Pl1,P2,P3,P4 -ARE RIGHT HAND SIDE AND THE COEFFICIENTS OF
THE SYSTEM OF LINEAR EQUATIONS (B(IS),P(IS),P1(IS),P2(IS),
P3(IS),P4(IS) WHERE (IS) IS THE TOTAL NUMBER OF POINTS WITH
UNKNOWN POTENTIAL , (IS=I2*J2)

I2,J2 - NUMBER OF MESH POINTS WITH UNKNOWN POTENTIAL IN RADIAL

AND AXTAL DIRECTION ,RESPECTIVELY (I2=I1-2 , J2=J1-2+ISYM)
R,Z = R AND Z OCORDINATES OF MESH POINTS , MAXIMUM OF 6504
MESH POINTS ALLOWED
0z(Jl) Z~COORDINATES OF THE AXIAL MESH POINTS
BM,H = FLUX DENSITY IN TESLA AND THE CORRESPONDING FIELD
INTENSITY IN A/M ON THE MAGNETIZATION CURVES,MAXIMUM OF TWO
CURVES EACH OF 20 VALUES FOR BM,H CAN BE USED
PSI(— VECTOR WHERE EITHER FLUX IS STORED OR USED AS AUXILIARY VECTOR
PSI(IRZ)
D,D1,D2,D3,D4 - COEFFICIENTS OF THE APPROXIMATELY DECOMPOSED
MATRIX ,DIMENSION IS
MAT(IRZ) - VECTOR STORING THE MATERIALS OF THE SMALL QUADRILATERALS

COMPUTATION OF VECTOR POTENTIAL IN ROTATIONALLY SYMMETRIC ELECTRON LENSES
BY FINITE ELEMENT METHOD AS INTRODUCED BY E. MUNRO
AUTHOR: B. LENCOVA, INST. SCI. INSTRUM., BRNO, CZECHOSLOVAKIA

[pHeNeNoNN oo NoNeNoNoRoRoNoNo oo el - i o R ool elo oo loRoloioNo el olo RO

IMPLICIT REAL*12 (A-H,0-Z)
INTEGER INFORM(20),MAT(6500),IBH(2)
DIMENSION U(6509),B(600W),P(6000),P1(6Wdd) ,P2(6wdd) ,P3(600d),

* P4(ow00) ,R(6500) ,Z(6500) ,0Z(120) ,BM(2¢4,2) ,H(29,2),
* X(6000) ,PSI(6500) ,Q(6000) ,Y(6001) ,RR(6000),
% S(6@we) ,D(6wud) ,D1(60Wd) ,D2 (60WW) ,D3 (600Y) , D4 (6080)

TWO DIFFERENT MAGNETIZATION CURVES DEFINING THE MAGNETIG MATERIAL
CAN BE USED THE FOLLOWING LINES GIVE SOFT IRON MAGNETIZATION CURVE
ANDPERMENDUR 7TH E FOLLOWING TABLES ARE OF STANDARD SOFT IRON AND
PERMENDUR

EACH TABLE HAVE MAXIMUM OF 2@ VALUES FOR EACH BM AND H

COMMON .

*/BLDAT/IM, IMI, ISYM, IH(2) ,MM(40) ,NM(44) ,MI (29) ,NP, ICURR, CURR(10)

* /BLCOOR/NZ, NR, I1Z(29) , IR(20) ,CZ(460) ,CR(440)

eReRelNoNeNe!
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*/BLU/U /BLARZ/R,Z,PSI /BLCOEF/B,P,Pl,P2,P3,P4
* /RLAUX1/D,D1,D2,D3,D4 /BLAUX2/Q,RR,S,X,Y
* /BPARAM/I2,J2,1S,11,J1,IRZ

TWO DIFFRENT MAGNETISATION CURVES CAN BRE USED BY THE PROGRAM
EACH WITH MAXIMUM OF 2¢ POINTS ,THESE POINTS REPRESENTS THE
FIELD INTENSITY IN A/M ,AND THE FLUX DENSITY IN TESLA

THE FOLLOWING TABLE CONTAIN STANDARD MAGNETISATION CURVES OF
BOTH SOFT IRON ,AND PERMENDUR. .

DATA MAPMAT,MAPPSI,LISTIR,LISTFD,NIT,TOL/9,0,4,9,150,1D-9/,
LETZ,LETR/1HZ, 1HR/ ,PI/3.14159265358979D¢/, IBH/ 24,29/,
BM/1.49D9,1.17D9,1.22D9,1.26Dd,1.29Dd, 1 .345D9, 1 .385D9, 1 .455D49,
1.4900,1.525D9,1.555D9,1.58Dd,1.6Dd, 1.63D9, 1.655D0,1.75D40,
1.8309,1.904,1.955D0,1.99D4,1D4,1.13D0,1.21D9,1.345D4, 1.45D4,
1.545D9,1.63D9,1.695D9,1.755D4, 1.805D@, 1.87Dd, 1 .92Dd, 2D9,
2.065D9,2.125D4, 2.19Dd,2.25D9, 2.3D90, 2.39D0, 2.48Dd/,
H/35D1,4D2,45D1, 5D2,55D1,65D1, 75D1, 1D3,12D2,15D2, 2D3, 25D2, 3D3,
4Dp3,5D3,1D4,15D3, 2D4,25D3, 3D4,6D2,75D1, 145D1 ,16D2,215D1,27D2,
32D2,36D2,4D3,44D2,5D3,55D2,65D2, 75D2,85D2,1D4,12D3, 14D3, 2D4, 3D4/
THE PROGRAM WILL CALL DIFFRENT SUBROUTINES

CALL OF NOUFLO=ICL COMMAND TO PREVENT UNDERFLOW IN AICCG!

CALL NOUFLO

* o % ¥ * * F * ¥

INPUT OF DATA
WRITE(6,194)

CALL AINPUT( INFORM, IPRINT, IDISC,MAPMAT,MAPPSI, LISTIR, LISTFD,

* JMIN,JMAX, IMIN, IMAX,LETZ, LETR, PI,BM, H, IBH)

COMPUTATION OF COORDINATES, MAPPING OF MATERIALS
I=NR*NZ

CALL AMESH(IRZ,NZ,NR,I1Z,IR,I,CZ,CR,R,Z)

I=2%*IM

CALL AMATER(IRZ,MAPMAT,IM,I,Il,J1,MM,NM,MI,MAT)
IF(IPRINT.LT.2)GOTO 1

WRITE(6,105)LETZ

CALL APRINT(Z,I1,J1,-1,IRZ)

WRITE(6,105)LETR

CALL APRINT(R,I1,J1,-1,IRZ)

WRITE(6,119)CURR(1)

MULVEY=0

DO 2 I=1,J1

IE=I*Il
IF(I.GT.1.AND.(MAT(IE).EQ.1.OR.MAT(IE).EQ.2))MULVEY=1
0z(1)=z(1IE)

DO 3 I=1,IRZ

u(1)=o0

ISTEP=0

GOTO 4

COMPUTATION OF AN APPROXIMATION ISTEP (ISTEP=0 FOR LINEAR APPROX.)
WRITE(6,113)ISTEP :

CALL AQOEF(ISTEP,MAT,AUX,PI,AREA,BM,H,B,P,Pl,P2,P3,P4,R,Z,U)
IF(ISTEP.EQ.J)WRITE(6,117)AREA
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IF(ICURR.GT.Z)WRITE(6,108)AUX

SOLUTION OF THE MATRIX EQUATION BY ICCG METHOD

IE=0

I=IS+l

CALL AICOG(NIT,IE,I,I2,IS,TOL,
* P,P1,P2,P3,P4,B,D,D1,D2,D3,D4,X,Q,RR,S,Y)
IF((IE.FQ.Y) .OR. (IE.EQ.2) )GOTO 6

WRITE(6,115)

STOP 1

a0

a.
C SOLUTION INTO POTENTIAL, EVALUATION OF AXIAL FLUX DENSITY AND ITS
CORRECT'ION
6 CALL ACORR(ISTEP,ISYM,Il1,J1,IRZ,I2,J2,IS,AUX,U,R,B,D,D1,D2)
IF(AUX.LT.3.)GOTO 7
ISTEP=ISTEP+1
= TEST ON MAXIMUM OF 7 APPROXIMATIONS ALLOWED
IF(ISTEP.LE.7)GOTO 5
WRITE(6,114)
STOP 7
END OF LOOP FOR VECTOR POTENTIAL COMPUTATION

FINAL PRINTS: EXCITATION AS AXIAL INTEGRAL OF B(Z), FLUX (NOT IF
IPRINT(d),

QYRR

AXTAL FLUX DENSITY, OUTPUT ON DISC

7 IF(MULVEY.GT.d)CALL AMULV(JL,Il,IRZ,ISTEP,MAT,PI,IH,EM,H,D2)

CALL ALINEI(ISYM,Jl1,IRZ,PSIMAX,PI,R,D2,0%Z,U,PSI)

IF(IPRINT.LT.1)GOTO 8

WRITE(6,111)

CALL APRINT(PSI,I1,Jl,ISTEP,IRZ)
8 WRITE(6,190 ) INFORM, ISYM

WRITE(6,199) (0z(1),D1(1),D2(I),I=1,J1)

IF(MULVEY.GT.9)WRITE(6,116)

IF(IDISC.LE.Q)GOTO 19

IF(ISTEP.NE.9)GOTO 9

WRITE(19,191) INFORM,J1

WRITE(19,192)(0z(I1),I=1,J1)
9 WRITE(19,103)(D2(1),I=1,J1)
C
c MAP OF PSI (IN 3¢ LEVELS) AND FLUX DENSITY IN IRON OR ITS LISTING
19 IF(MAPPSI.LT.U)GOTO 12

AUX=3333D-5*PSIMAX

Do 11 I=1,3¢
11 D3(I)=I*aAUX

WRITE(6,106)

CALL AMAP3D(I1,J1,IRZ,39,D3,PSI)
12 IF(IMI.EQ.Y)GOTO 15

IF(LISTIR.LT.9)GOTO 13

WRITE(6,107)

CALL AFLUXD(I1,J1,IRZ,IMIN,IMAX,JMIN,JMAX,1,

* MAT,R,Z,U,PSI,D4)
13 IF(LISTFD.EQ.Y)GOTO 14

CALL AFLUXD(I1,J1,IRZ,IMIN, IMAX,JMIN,JMAX,Q,

* MAT,R,Z,U,PSI,D4)
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R R R R R - FURTHER EXCITATION?
14 IFEIS'I‘EP.G’I‘.EJ%GOI‘D 15

IF(ICURR.EQ.@)STOP

GOTO 17

NEW CURRENT DENSITY IN THE COIL
15 NP=NP+1
IF(NP.GT.ICURR)STOP
AUX=CURR(NP) /CURR(NP-1)
IF(AUX.LE.4.9)STOP 2
VECTOR POTENTIAL IS SLIGHTLY INCREASED BEFORE THE NEXT EXCITATION
AUX=0.5%(1.+AUX)
DO 16 I=1,IRZ
16 U(I)=AUX*U(I)
17 ISTEP=1
AUX=AREA*CURR(NP)
WRITE(6,112)CURR(NP) ,AUX
GOTO 5

100 EORMAT(/////SX 'CASE=', 2X,20A3//11X, 'INPUT FOR TRAJECTORY',
CALCULATIONS —— SYMMETRY PARAME.‘I‘ER— 12//11x, Z (m)' 15x
* 'B(z) (TESLA)'/27X,'FROM 1ST LINE',7X,'FROM 2 LINES'/)
101 FORMAT(20A3/14)
192 FORMAT(5F16.9)
193 FORMAT (1P5E16.8)
104 E‘ORMAT(////IBX, VECTOR POTENTIAL COMPUTATION * A=0 ON BOUNDARY'
/1@X, ' PROGRAM AMAG —-— VERSION SEPTEMBER 1984 ***%'//)
105 FORMAT(//1¢X,'COORDINATES OF MESH LINES ',1Al//)
106 FORMAT(/////2X,28('*'),2X, '"MAP OF FLUX (MICROWERER)' /)
1J7 FORMAT(/////2X,20("'*'),2X, '"MAP OF IRON FLUX DENSITY (TESLA)')
108 FORMAT(//14X,'+++++ SUM OF RESIDUALS =',1PEll.4)
109 FORMAT (QPF18.6,1P2E23.6)
119 E‘ORD'M(////].E{X 'LINEAR APPROXIMATION'//1@X,'CURRENT DENSITY IN ',
'C0IL=',1PE19.3,"' A/MM**2')
111 Fomm(/////////wx 'FLUX ** MICROWEBER'//)
112 FORMAT(/////1@X, 'NONLINEAR COMPUTATION'//10X,
* 'CURRENT DENSITY IN EXCIT. COIL =',1PEl12.3,' A/MM**2'/
* 1¢X, 'LENS EXCITATION',@PF15.3,' A-TURNS'//)
113 FORMAT(//2X, ' **¥¥*%jppppkxksk' 15 1|  APPROXTMATION')
114 FORMAT(1@X, 'EXCEEDED 7 APPROXIMATIONS ALLOWEDILLL')
115 FORMAT(///10X,'IE = +1, CONVERGENCE IN ICCG-METHOD NOT REACHED')
116 FORMAT(//2X,20('*'),2X, 'B(Z) FROM 2 LINES CORRECTED FOR'
* ,' PERMEABILITY OF IRON ON THE AXIS')
117 FORMAT (10X, 'AREA OF EXCITATION COIL',Fl1@.3,' MM**2')

END

SUBROUTINE AINPUT (INFORM, IPRINT, IDISC,MAPMAT,MAPPSI,LISTIR,LISTFD,
* JMIN, JMAX, IMIN, IMAX, LETZ, LETR, PI,BM,H, IBH)

INPUT OF DATA FOR AMAG

IMPLICIT REAL*12 (A-H,0-Z)
DIMENSION INFORM(2@),BM(24,2),H(29,2),IBH(2)
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COMMON
* /BLDAT/IM, IMI, ISYM, IH(2) ,MM(4d) ,NM(40) ,MI (2¢) ,NP, ICURR, CURR(19)
* /BLOOOR/NZ, NR, 1Z(29) , IR(29) ,Cz(400) ,CR(40)

* /BPARAM/12,J2,1S,I1,J1,IRZ

**%%* TNPUT + PRINT OF THE COARSE MESH AND INDICES
READ(5, 190 ) INFORM

WRITE(6, 101 ) INFORM

READ(5,192)NZ,NR, IM, IMI, ISYM, ICURR, IH1, IH2, IPRINT, IDISC
READ(5,102) (12(J) ,J=1,NZ)

READ(5,102) (IR(J) ,J=1,NR)

J2=NR*NZ

DO 3 J=1,NR

READ(5,103) (cz(1),I=J,J2,NR)

DO 4 J=1,NR

4 READ(5,103)(CR(I),I=J,J2,NR)

WRITE(6,194)LETZ, (I1Z(J),J=1,NZ)

DO 5 J=1,NR
WRITE(6,165)IR(J),(Cz(1),I=7,J2,NR)
WRITE(6,104)LETR, (1Z(J),J=1,NZ)

DO 6 J=1,NR
WRITE(6,105)IR(J),(CR(I),I=J,J2,NR)

INPUT OF REGIONS WITH NONZERO MATERIAL, CURRENT DENSITY IN THE COIL
IF(IM.EQ.9.0R.IM.GT.20)STOP 20

J=U

DO 7 I=1,IM

READ(5, 162 )MM(2*I~1) ,MM(2*I) ,NM(2*I-1) ,NM(2*I) ,MI(I)
IF((MI(I).LT.3).AND.(MI(I).GT.J))J=MI(I)

CONTINUE

WRITE(6,166 ) (MM(2*I-1) ,MM(2*1),NM(2*I-1) ,NM(2*1),MI(I),I=1,IM)
IF(ICURR.GT.10)STOP 14

IF(ICURR.EQ.Q)THEN

READ(5, 999 )CURR(1)

WRITE(6,107)ICURR,CURR(1)

ELSE

READ(5,999) (CURR(I),I=1,ICURR)

WRITE(6,107)ICURR, (CURR(I),I=1,ICURR)

ENDIF

INPUT OF MAGNETIZATION CURVES

IF IMI=0 STANDARD SOFT IRON AND PERMENDUR CURVES ARE USED IN IRON PARTS

IF(IMI.GT.J)GOTO 8
IF(J.EQ.9)GOTO 12
IH(1)=IRH(1)
IF(J.BQ.2)IH(2)=IBH(2)
IMI=J

WRITE(6,112)
IF(J.BQ.2)WRITE(6,113)
GOTO 12

IH(1)=IHl
IF(IMI.GT.1)IH(2)=IH2
DO 9 I=1,IMI
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1l
12

13

14

15

1w
191
192
103
999
104
105
106

J=IH(I)
READ(5,114) (BM(K,I),H(K,I),K=1,J)
WRITE(6,115)
DO 11 I=1,IMI
=TH(I)
DO 14 J=1,K
B1=25D5/P1*BM(J,I)/H(J,I)
WRITE(6,116)J,H(J,I),BM(J,I),Bl
WRITE(6,117)
READ(5, 102, END=13 )MAPMAT , MAPPSI , LISTIR, LISTFD
IF(LISTFD.GT.J)READ(5,102)JMIN, JMAX, IMIN, IMAX

NP=1

J1=IZ(NZ)

I1=IR(NR)

J2=J1-2

IF(ISYM.LT.@)ISYM=0

IF(ISYM.GT.Q)ISYM=1

IF(ISYM.EQ.1)J2=J1~-1

I2=I1-2

IS=12*J2

IRZ=I1*J1

WRITE(6,198)11,J1,1IRZ,12,J2,IS

WRITE(6,109 )MAPMAT ,MAPPSI, LISTIR, LISTFD, IDISC
IF(LISTFD.GT.9)WRITE(6,119)JMIN,JMAX, IMIN, IMAX
TEST ON MAXIMUM DIMENSIONS ALIOWED
IF(IS.GT.60W0)STOP 6udd

IF(IRZ.GT.65Wd)STOP 650d

IF(J1.GT.120)STOP 120

TEST, IF THERE ARE POSITIVE AREAS IN THE COARSE MESH ONLY

DO 14 J=2,NZ

DO 14 I=2,NR

K=(J=1) *NR+I

L=K-NR

Al=(CR(K)=CR(L~1) ) *(CZ(L)-Cz(L~1) )-(CR(L~1)-CR(L) ) *(CZ(L~1)-CZ(K) )

A2=(CR(L~1)-CR(K) ) *(CZ(K-1)-CZ(K) )-(CR(K)-CR(K-1) ) *(CZ(K)=-CZ(L~1))

*A3-“-(CR(L)—CR(K-1))*(CZ(L—l)-CZ(K—l))-(CR(K-l)-CR(L-l))*(CZ(K—l)
-Cz(L))

A4=(CR(K~1)-CR(L) ) *(cz(K)=Cz (L) )=(CR(L)=CR(K) ) *(Cz(L)-CzZ(K-1))

IF(Al.LE.@DY .OR.A2.LE.9DJ .OR.A3.LE.ODJ .OR.A4.LE.ODY)GOTO 15

CONTINUE

RETURN

WRITE(6,111)I,J,A1,A2,A3,A4

STOP 15

FORMAT ( 24A3)

FORMAT(////1X,93("'*')/1X, ' INFORMATION: ',20A3/1X,93('*')//)
FORMAT (2014)

FORMAT(13F6.Y)

FORMAT(10F8.d)

FORMAT(//2X, ' INPUT COORDINATES ',Al//(5X,12I14))
FORMAT(I3,2X,12F19.3, (/5X,8F1@.3))

FORMAT(//2X, 'LINES LIMITING POSITION OF IRON(MAT.'
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* ,' 1 AND 2) AND COIL(MAT. 3)'/2X,'IN Z FROM-TO',3X,
*  'IN R FROM-TO',3X, 'TYPE OF MATERIAL'//(2(19,14),18))
147 FORMAT(//2X, 'NUMBER OF EXCITATIONS COMPUTED:',I2/
* 2X, "EXCITATION CURRENT DENSITY IN A/MM**2:',1P4E16.6/
* 8X,6E16.6)
108 FORMAT(//2X,'** PARAMETERS OF THE MESH: Il1=',bI3,', Jl=',I3,

*', IRZ=',15/2X,'++ OF F.E.M. SYSTEM: 12=',13,', J2=',I3,
® . I5='.15)
199 FORMAT(2X,'** FURTHER PARAMETERS: MAPMAT=',bI2,', MAPPSI=',I2,
* ', LISTIR=',12,', LISTFD=',I2,', IDISC=',6I2)
114 FORMAT(5X, 'MAPPING OF FLUX DENSITY: IN Z FROM J=',I3,' TO J=',I3,
* ‘, IN R FROM I=',I13,' TO I=',I3)

111 FORMAT(' ERROR DETECTED IN THE COARSE MESH: FOR I=',I2,
* ', J=',12,' ARE THE AREAS',61P4El1d.2)

112 FORMAT(//2X, 'MAGNET. CURVE 1: SOFT IRON(STANDARD)')

113 FORMAT(2X, '"MAGNET. CURVE 2: PERMENDUR(STANDARD)')

114 FORMAT(12F6.0)

115 FORMAT(//2X, 'MAGNETIZATION CURVE:'/' J',1¢X,'H (A/M)',5X,
* 'B (TESLA)',5X, '"MI RELATIVE'//)

116 FORMAT(I4,Fl4.1,F14.3,F14.1)

117 FORMAT(/* Whnhsens /)

END
SUBROUTINE AMESH(IRZ,NZ,NR,I1Z,IR,IDIM,CZ,CR,R,Z)

FROM THE COARSE MESH FORMS THE FINE MESH OF R AND Z COORDINATES
REAL*12 R(IRz),z(IRZ),CR(IDIM),CZ(IDIM),Z1,22,R1,R2,DK,DK],DL, DLl
INTEGER IZ(NZ),IR(NR)

I2=1
DO 1 J=2,NZ
K1=1Z(J)-1z(J-1)
DK=K1
IF(J.EQ.NZ)K1=Kl1+1
DO 1 K=1,Kl
DO 1 I=2,NR
IA=(J-2)*NR+I-1
ID=IA+NR
DK1=K-1
Z1=CZ(IA)+(CZ(ID)-CZ(IA))*DK1 /DK
R1=CR(IA)+(CR(ID)-CR(IA))*DK1/DK
Z2=CZ(IA+1)+(CZ(ID+1)~-CZ(IA+1) )*DK1 /DK
R2=CR(IA+l)+(CR(ID+1)-CR(IA+1))*DK1/DK
L1=IR(I)-IR(I-1)
DL=L1 .
IF(I.EQ.NR)L1=L1+1
n s 2 6 i
DL1=L-1
Z(I2)=z1+(z2-21)*DL1/DL
R(I2)=R1+(R2-R1)*DLl /DL
I2=I2+1

1 CONTINUE
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RETURN

END
SUBROUTINE AMATER(IRZ,MAPMAT,IM,IM2,I1,J1,MM,NM,MI,MAT)
INTO THE VECTOR MAT THE MATERIAL OF EACH QUADRILLATERAL WILL BE GIVEN
FOR MAPMAT>=0 A 2D MATERIAL DISTRIBUTION IN THE MESH IS PRINTED
DIMENSION MM(IM2),NM(IM2),MI(IM),MAT(IRZ)
IN VECTOR MAT ARE I AND J INDICES OF THE LOWER RIGHT-HAND CORNER OF
QUADRIL.
DO 1 I=1,IRZ
1 MAT(I)=0
Do 2 J=2,J1
DO 2 I=2,Il
DO 2 K=1,IM
IF(((J.GT.MM(2*K=1) ) .AND. (J.LE.MM(2*K) ) ) .AND.
* ((I.GT.NM(2*K-1)) .AND.(I.LE.NM(2*K))))MAT((J=1)*I1+I)=MI(K)
2 CONTINUE
IF(MAPMAT.LT.¥)RETURN
PRINT OF MAT

WRITE(6,10@) (I,1=5,J1,5)
1¢@ FORMAT(////1X,16('*'),"' DISTRIBUTION OF MATERIALS IN MESH'//

* 19X, 'INDEX J'/1X, 'INDEX I',I7,2315)
PO 3 I=2,11
WRITE(6,102)I, (MAT((J-1)*I1+I),J=2,J1)
3 CONTINUE
192 FORMAT(I8,' =',12¢I1)
RETURN
END

SUBROUTINE ACQOEF(ISTEP,MAT,SUM,PI,AREA,BM,H,B,P,Pl,P2,P3,P4,R,Z,U)

EVALUATES THE COEFFICIENTS OF THE F.E.M. BEQUATIONS IN LINEAR/NONLINEAR

EOO O

IMPLICIT REAL*12 (A-H,0-Z)
DIMENSION U(IRZ),B(IS),P(1S),Pl(1S),P2(IS),P3(IS),P4(IS),
" R(IRZ),Z(IRZ),F(24),Q(12) ,MAT(IRZ),BM(2d,2),H(20,2)

COMMON /BPARAM/12,J2,1IS,I1,J1,IRZ
*/ BLDAT/IM, IMI , ISYM, IH(2) ,MM(44) ,NM(40) ,MI (29) ,NP, ICURR, CURR(14)

DO 1 I=1,IS
P(I)=d.
P1(1I)=4.
P2(I)=v.
P3(I)=0.
P4(1)=0.
1 B(I)=0.9
IF(ISTEP.EQ.J)AREA=Y.
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RELATIVE PERMEABILITY IS USED
RMIV=PI*4D-7

COMPUTATION OF COEFFICIENTS
Ll=1
IF(ISYM.EQ.Q)L1=3-I1
Lo 3 J=2,J1

DO 4 1=2,Il
IK=(J=1)*I1+I
IMIV=MAT (IK)

ICOIL=Y
IF(IMIV.LT.3)GOTO 2
ICOIL~=NP

IMIV=0

2 IA=(J=-1)*I1+1
IB=IA-1
IC=IB-Il
ID=IC+l

CALL ATRIAN(IMIV,ICOIL,ISTEP,¥,d,AR1l,R(ID),R(IA),R(IC),Z(ID),
* z(1a),z(1c),u(1D),Uu(1A),U(IC),RMIV,BM,H, IH,F,Q,CURR(NP) )
CALL ATRIAN(IMIV,ICOIL,ISTEP,6,3,AR2,R(IB),R(IC),R(IA),Z(IB),
% z(1c),z(1a),u(1B),u(1IC),U(1A) ,RMIV,BM, H, IH,F,Q,CURR(NP) )
CALL ATRIAN(IMIV,ICOIL,ISTEP,12,6,AR3,R(IC),R(ID),R(IB),Z(IC),
* z(1p),z(1B),u(1C),u(1D),U(IB),RMIV,BM,H, IH,F,Q, CURR(NP) )
CALL ATRIAN(IMIV,ICOIL,ISTEP,18,9,AR4,R(IA),R(IB),R(ID),Z(1IA),
* z(1B),z(1D),u(1n),u(1B),u(ID),RMIV,BM,H, IH,F,Q,CURR(NP))
IF(ISTEP.EQ.d.AND.ICOIL.GT.d) AREA=AREA+(ARI+AR2+AR3+AR4) /4.

SUBSTITUTION INTO B, P...P4
IF(ISYM.EQ.d.AND.J.EQ.2)GOTO 6
IF(I.EQ.I1)GOTO 5
LOWER LEFT-HAND VERTEX OF THE QUADRILATERAL
IK=L1
B(IK)=B(IK)+Q(1)+Q(8)+Q(12)
P(IK)=P(IK)+F(1)+F(16)+F(24)
P2(IK)=P2(IK)+F(17)+F(23)
P3(IK)=P3(IK)+F(2)+F(21)

5 IF(I.BEQ.2)GOTO 6
UPPER LEFT-HAND VERTEX
IK=L1-1
B(IK)=B(IK)+Q(3)+Q(5)+Q(7)
P(IK)=P(IK)+F(6)+F(19)+F(13)
P1(IK)=Pl(IK)+F(3)+F(14)
P3 (IK)=P3(IK)+F(8)+F(15)
P4 (IK)=P4(IK)+F(5)+F(11)

6 IF(J.BEQ.J1)GOTO 4
IF(I.EQ.I1)GOTO 7
LOWER RIGHT-HAND VERTEX
IK=L1+I2
B(IK)=B(IK)+Q(2)+Q(6)+Q(10)
P(IK)=P(IK)+F(4)+F(12)+F(19)

7 IF(I.EQ.2)GOTO 4
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UPPER RIGHT-HAND VERTEX
IK=L1+I2~-1
B(IK)=B(IK)+Q(4)+Q(9)+Q(11)
P(IK)=P(IK)+F(7)+F(18)+F(22)
P1(IK)=Pl(IK)+F(9)+F(29)

4 L1=Ll+1

Ll=Ll-1
IF(ISTEP.EQ.J.AND.ISYM.GT.d)AREA=2 . *AREA

dekk ************************************i**********************

A=Y ON THE BOUNDARY (SOME COEFFICIENTS MUST BE PUT EQUAL TO ZERO)
DO 8 I=1,J2

IK=(I-1)*I2+1

P2(IK)=0.0

IK=I*I2

P1(IK)=4.9

8 P4(IK)=0.9

DO 9 I=1,I2
IK=IS+1-I
P2(IK)=0.0
P3(IK)=0.9

9 P4(IK)=0.0

SUM OF RIGHT-HAND SIDES = AN INDICATION OF THE VALUE OF RESIDUALS
SUM=d.
DO 19 1=1,IS

10 SUM=SUM+ABS (B(I))

RETURN
END

SUBROUTINE ATRIAN(IMIV,ICOIL, ISTEP, IK, IL,AR,R1,R2,R3,Z1,22,23,
* Ul,Uz,U3,RMIV;m;H,IH;F;Q:CURR)

REAL*12 BM(2@,2),H(2@,2),F(24),Q(lZ),CURR,RST,AR,BR,BZ,BC,Hl,
* He,H3,R1,R2,R3,21,22,23,B1,B2,B3,C1,C2,C3, RMI, RMI1 , RMIV

* ,AlX,Ul,U2,U3,PK

DIMENSION IH(2)

Bl=R2-R3
B2=R3-R1l
B3=R1-R2
RST=R1+R2+R3
Cl=2Z3-22
C2=21-73
AR=B1*C2-B2*Cl
AUX=AR/RST
C1=Cl+AUX
C2=C2+AUX
C3=Z2-Z1+AUX

RMI=1.0
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RMI1=@.0
IF(IMIV.GT.d)RMI=H(1,IMIV)/BM(1, IMIV)*RMIV
IF(ISTEP.EQ.Y)GOTO 3

BR=-(B1*U1+B2*U2+B3*U3) /AR
BZ=(C1l*U1+C2*U2+C3*U3) /AR

BC=SQRT (BR**2+BZ**2)

Hl=-Bl*BR+C1*BZ

H2=-B2*BR+C2*BZ

H3=-B3*BR+C3*RBZ

IF(IMIV.EQ.Q)GOTO 3

IF(BC.LE.BM(1,IMIV))GOTO 3

EVALUATION OF RELATIVE PERMEABILITY IN IRON
IP=IH(IMIV)

RMIl=1.

IF(BC.GT.BM(IP,IMIV))GOTO 2

RMI1=(H(IP, IMIV)-H(IP-1,IMIV))/(BM(IP, IMIV)-BM(IP-1,IMIV))*RMIV
IP=IP-1

GOTO 1
RMI=RMI1+(H(IP,IMIV)*RMIV-RMI1*BM(IP,IMIV))/BC

PK=RST*RMI /AR

F(IK+1)=PK*(B1*B1+Cl*Cl)
F(IK+2)=PK*(B1*B2+Cl1*C2)
F(IK+3)=PK*(BL*B3+C1*C3)
F(IK+4)=PK* (B2*B2+C2*C2)
F(IK+5)=PK*(B2*B3+C2*C3)
F(IK+6)=PK*(B3*B3+C3*C3)

IF(IOOIL.GT.Y)GOTO 4
Q(IL+1)=0.9
Q(IL+2)=0d.0
Q(IL+3)=0.9

GOTO 5

i PK=25D1*AR*CURR*RMIV
Q(IL+1)=PK*(RST+R1)
Q(IL+2)=PK*(RST+R2)
Q(IL+3)=PK*(RST+R3)

IF(ISTEP.EQ.Q)GOTO 6
PK=-RST*RMI
Q(IL+1)=Q(IL+1)+PK*Hl
Q(ILA42)=Q(IL+2)+PK*H2
Q(IL+3)=Q(IL+3)+PK*H3

IF(RMI1.EQ.9.0)RETURN
PK=(RMI1-RMI ) *RST/ (AR*BC**2)
F(IK+1)=F(IK+l)+PK*Hl*H1l
F(IK+2)=F(IK+2)+PK*H1*H2
F(IK+3)=F(IK+3)+PK*HL*H3
F(IK+4)=F(IK+4)+PK*H2*H2
F(IK+5)=F(IK+5)+PK*H2Z*H3
F(IK+6)=F(IK+6)+PK*H3*H3
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RETURN
END

SUBRCU’I‘INE ACORR(ISTEP, ISYM,I1,J1,IRZ,I12,J2,IS,AUX,
U,R,B, RELCOR,D1,D2)

REAL*12 AUX,RELCOR(J2),D1(J1),D2(J1),B(IS),U(IRZ),R(IRZ)

SOLUTION IN B SUBSTITUTED INTO VECTOR POTENTIAL U
AlUX=0.
IK=I1-1
IF(ISYM.GT.9)IK=-1
Do 1 J=1,J2
IK=IK+2
Do 2 I1=1,1I2
IL=I2*(J=-1)+I
IK=IK+1
2 U(IK)=U(IK)+B(IL)
IF(ISTEP.EQ.Y)GOTO 1
EVALUATION OF RELATIVE CORRECTION TO B(Z) ON THE AXIS
RELCOR(J)=1.
IF(U(IK) .NE.¥)RELCOR(J)=-B(IL)/U(IK)
IF U<Y, ONLY ONE THIRD OF THE CORRECTION IS CONSIDEREDI!!!
IF(U(IK) .LT.d)RELCOR(J)=RELCOR(J)/3.
AUX=AUX+ABS (RELCOR(J) )
1 CONTINUE
AUX=AUX/J2*100.

COMPUTATION OF AXIAL, FLUX DENSITY (FROM 1 OR 2 MESH LINES)
IK=I1-1
Do 3 I=1,J1
D1(I)=2.*U(IK)/R(IK)
D2(I)=2.*(U(IK)*R(IK=1)**3-U(IK~-1)*R(IK)**3)/

* (R(IK)*R(IK-1)*(R(IK-1)**2-R(IK)**2))

3 IK=IK+Il

PRINT OF THE CORRECTIONS
IF(ISTEP.EQ.Q)GOTO 4
WRITE(6, 163 )AUX

WRITE(6,199) (RELCOR(I),I=1,J2)
IF(AUX.GE.3.)GOTO 4
WRITE(6,101)(D2(1),I=1,J1)

161 EDRMAT(///MX, AXIAL FLUX DENSITY FROM 2ND LINE (TESLA)'//
. (1X,19F11.6))

160 EORMAT(///lkJX. RELATIVE CORRECTION OF B(Z) //(ldelZ 6))

143 FORMAT(/1@X, 'AVERAGE CORRECTION OF B(Z) =',Fl4.5,' %')

4 RETURN
END

SUBROUTINE APRINT(X,I1,J1,N,L)
REAL*12 X(L)
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SUBROUTINE FOR PRINTING A VECTOR X WITH DIMENSION L=I1*J1
TOGETHER J1 COLUMNS, Il LINES (MAX. 1@ ITEMS ON A LINE)
FORMAT ACCORDING TO N: FOR N<@ IN F FORMAT, N>@ EXPONENTIAL FORM
= TO PRINT COORDINATES, POTENTIAL AND FLUX DENSITIES
Do 1 J=1,J1,19
I3=(J-1)*I1+1l
I4=I3-1+10*I1
IF(I4.GT.L)I4=L
IF(N.GE.4)GOTO 3
DO 2 I=1,I1
WRITE(6,192) (X(K) ,K=I3,14,I1)
2 I3=I3+1
GOTO 1
3 D04 I=1,I1
WRITE(6,101) (X(K) ,K=13,1I4,I1)
4 I3=I3+1
1 WRITE(6,103)

10l FORMAT(1X,1PlwEl2.5)

142 FORMAT(1X,10F12.5)
193 FORMAT(//)

RETURN
END

SUBROUTINE AMULV(J1,Il,IRZ,ISTEP,MAT,PI,IH,BM,H,B)

DIVIDES VALUE OF AXIAIL, FLUX DENSITY BY RELATIVE PERMEABILITY OF IRON
INTEGER MAT(IRZ),IH(2)
REAL*12 B(J1),BM(24,2),H(29,2),BC,PI,RMI1,RMIL, RMIR, RMIV

RMIV=4D-7*PI
RMIR=2.

DO 4 I=2,J1

RMIL~=RMIR

RMIR=1.

IMIV=MAT(I*I1)

IF(IMIV.GE.3)IMIV=0

IF(IMIV.EQ.Q)GOIO 3
BC=0.5*B(I)+B(I~1)/RMIL
RMIR=H(1,IMIV)/BM(1, IMIV)*RMIV
IF((BC.LE.BM(1,IMIV)).OR. (ISTEP.EQ.J))GOTO 3
IP=IH(IMIV)

RMI1=1.

1 IF(BC.GT.BM(IP,IMIV))GOTO 2
RMI1=(H(IP,IMIV)-H(IP-1,IMIV))/(BM(IP, IMIV)~BM(IP~1,IMIV))*RMIV
IP=IP-1 -

GOTO 1
2 RMIR=RMI1+(H(IP,IMIV)*RMIV-RMI1*BM(IP,IMIV))/BC

3 IF(I.NE.2)GOTO 5
RMIL=RMIR
B(1)=B(1)*RMIL/2.

5 B(I)=B(I)*RMIR/2.
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B(I-1)=B(I~1)*(1.+RMIR/RMIL)
4 CONTINUE

RETURN
END

SUBROUTINE ALINEI(ISYM,J1,IRZ,PSIMAX,PI,R,BZ,0Z,U,PSI)

CALCULATES INTEGRAL OF BZ ON AXIS DIVIDED BY MUO BY TRAPEZ. RULE
EVALUATES THE FLUX PSI=2*PI*U*R AND FINDS PSIMAX
REAL*12 R(IRZ),0Z(Jl),U(IRZ),PSI(IRZ),BZ(J1),PSIMAX,SUM,PI

SUM=4.
Do 1 J=2,J1

1 SUM=SUM+(BZ(J)+BZ(J-1))*(0z(J)-0z(J-1))
SUM=25D2*SUM/PI
IF(ISYM.EQ.d)SUM=SUM/2DJ

WRITE(6,19)SUM
19 FORMAT(////1@X,'***** EXCITATION (INTEGRAL OF AXIAL FLUX',
*' DENSITY):',1PE14.6,' A-TURNS'/)

PSIMAX=0.
DO 2 J=1,IRZ
PSI(J)=2.*PI*R(J)*U(J)
IF(ABRS(PSI(J)) .LT.PSIMAX)GOTO 2
PSIMAX=ARS(PS1(J))
I=J

2 CONTINUE

J=I/(IRZ/J1)+1
I=I-(J-1)*(IRZ/J1)
WRITE(6, ll)PSIMAX,I J
11 EDRMAT(MX '++++ MAXIMUM VALUE OF FLUX =',61PEl6.6,
' MICROWEBER AT I—',13, , J=',13//)

RETURN
END

SUBROUTINE AMAP3D(I1,Jl,IRZ,NLEVEL,XF,FIELD)

3D MAP IN NLEVEL LEVELS OF GIVEN VECTOR FIELD

- TO MAP THE FLUX OR FLUX DENSITY DISTRIBUTION

DIMENSION LETTER(39),LINE(129)

REAL*12 XF(NLEVEL),FIELD(IRZ)

DATA LETTER/1H ,1H@,1H1,1H2,1H3,1H4, 1HS,1H6, 1H7, 1H8, 1H9, 1HA, 1HB,
* 1HC, 1HD, 1HE, 1HF, 1HG, 1HH, 1HI, 1HJ, 1HK, 1HL, 1HM, 1HN, 1HO, 1HP, 1HQ,

* 1HR, 1HS, 1HT, 1HU, 18V, 1HW, 1HX, 1HY, 1HZ, 1H-, 1H!/

PRINT OF FIRST 3 LINES OF THE MAP
Do 1 I=1,J1
LINE(I)=LETTER(38)
IF(MOD(I,5) .EQ.Q)LINE(I)=LETTER(39)
1 CONTINUE
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161

WRITE(6,190)(I,I=5,J1,5)

WRITE(6,141) (LINE(I),I=1,J1)

FORMAT (2¢X, 'INDEX J'/' INDEX I ',2415)
FORMAT (19X, 120A1)

PRINT OF Il LINES OF THE MAP
LINE(1)=LETTER(1)

Do 3 I=1,I1

po 2 J=1,J1

LINE(J)=LETTER(1)

DO 2 K=1,NLEVEL

INDEX=(J-1)*I1+I

IF(FIELD(INDEX) .GT.XF(K) ) LINE(J)=LETTER(K+1)

2 CONTINUE

K=LETTER(39)

IF(MOD(I,5) .BEQ.9)K=LETTER(38)
WRITE(6,102)I,K, (LINE(J),J=1,J1),K
FORMAT(I9,122A1)

PRINT OF FINAL LINE

DO 4 I=1,J1

LINE(I)=LETTER(38)

IF(MOD(I,5) .EQ.0)LINE(I)=LETTER(39)

4 CONTINUE

193

104

1

WRITE(6,191) (LINE(I),I=1,J1)

PRINT OF DESCRIPTION
WRITE(6,193)

FORMAT(//2X, 'MEANING OF LETTERS:')
K=(NLEVEL+4) /5

DO 5 I=1,K

L=5%I

IF(L.GT.NLEVEL ) L=NLEVEL
L1=5*(I-1)+1

WRITE(6,104) (LETTER(J) ,XF(J) ,J=L1,L),LETTER(L+1)

CONTINUE

.EURI“IAT(.?.X'S('I”'IAJ.;.'l<.'F1202'5X’|<l),'II|;lAl,I'I‘)

RETURN
END

SUBROUTINE AFLUXD(I1,Jl,IRZ, IMIN, IMAX,JMIN, JMAX,MAPIR, MAT,

*

R;Z;U]BB!XZ)

- PRINT OF FLUX DENSITY IN IRON OR GIVEN REGION

*kkkkkkkkkkkkkk*k* MADTR=] - ONLY IRON

by e L MAPIR=J - FLUX DENSITY FROM IMIN TO IMAX, JMIN TO JMAX

IMPLICIT REAL*12 (A~-H,0-Z)
REAL*12 R(IRZ),z(IRZ),U(IRZ),BB(IRZ),XZ(36)
INTEGER S,MAT(IRZ)

DO 1 I=1,IRZ
BB(I)=-1.
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IJK=1

JMI=JMIN

JMA=IMAX

IMI=IMIN

IMA=IMAX
IF(MAPIR.EQ.Q)GOTO 2
JMI=2

JMA=TL

IMI=2

IMA=I1

5 THE COMPUTATION OF FLUX DENSITY
2 BMAX=0.
BMIN=1E50
IF(IMI.LT.2)IMI=2
IF(IMA.GT.I1)IMA=I1
IF(JMI.LT.2)JMI=2
IF(JMA.GT.J1)JMA=J1

c % & ek ke e de e e de g g e e e g e de e ok e e e e ke ek

DO 3 J=JMI,JMA
DO 3 I=IMI,IMA
IA=(J=-1)*I1+I
IMIV=MAT(IA)
IF(((IMIV.EQ.9).OR. (IMIV.EQ.3)) .AND. (MAPIR.GT.d) )GOTO 3
4, IA,IB,IC,ID - INDICES OF QUADRILATERAL'S VERTICES IN R-Z MESH
IB=IA-1
IC=IB-Il
ID=IC+l
s=1
G=0.9
4 GO TO (5,6;7;8,9);5
C TRIANGLES T1, T2, T3 AND T4
5 IK1=ID
IK2=IA
IK3=IC
S=2
GOTO 19
6 IKL=IB
IK2=IC
IK3=IA
S=3
GOTO 19
7 IK1l=IC
IK2=ID
IK3=IB
S=4
GOTO 19
8 IK1=IA
IK2=IB
IK3=ID
s=5
C
19 R1=R(IK1)
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R2=R(IK2)

R3=R(IK3)

Z1=7(IK1)

72=Z(IK2)

73=7(IK3)

U1=U(IK1)

U2=U(IK2)

U3=U(IK3)

B1=R2-R3

B2=R3-R1

B3=R1-R2
RST=R1+R2+R3
Cl=23-22

C2=71-73
AR=B1*C2-B2*C1
XY=AR/RST

Cl=Cl+XY

C2=C2+XY
C3=22-Z1+XY
BR=-(B1*Ul+B2*U2+B3*U3) /AR
BZ=(C1l*Ul+C2*U2+C3*U3) /AR
BC=SQRT ( BR**2+RZ**2)
G=G+J.25*BC

GOTO 4

9 IF((ARS(G)-BMAX) .LT.d.)GOTO 11
BMAX=ARS (G)
IBMAX=(J=2)*I1+I

11 IF((BMIN-ABS(G)).LT.d.)GOTO 12
BMIN=ABS(G)
IBMIN=(J=-2)*I1+I

12 IF(MAPIR.EQ.Q)GOTO 13
BB((J-2)*I1+I)=G
GOTO 3

13 BB(IJK)=G
IJK=IJK+1

3 CONTINUE

C % e e e e e e T e e e de ke ke ek e ke e e e sk e e e e e ke e ke e e Y e e e e e v e e e vk e e ek

IF(MAPIR.EQ.Q)WRITE(6,10@) IMI, IMA, JMI ,JMA
J=IBMAX/I1+2
I=IBMIN/I1+2
IBMAX=IBMAX-(J=-2)*Il
IBMIN=IBMIN-(I-2)*Il
WRITE(6,101)BMAX,J, IBMAX, BMIN, I, IBMIN

191 FORMAT(//10X,'BMAX=',1PEll.4,' TESLA FOR J=',I3,' AND I=',
* 13/1@X, 'BMIN=',El1.4,"' TESLA FOR J=',bI3,' AND I=',I3/)
IF (MAPIR.EQ.9)GOTO 16

C
C 3D PLOT OF IRON FLUX DENSITY IN .1 TESLA STEPS (1<BMAX<3.6 T) OR IN 3¢
LEVELS

Xy=g.1

NZ=BMAX/XY+1

IF((NZ.LE.36) .AND.(NZ.GT.19) )GOTO 14
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NZ=30
XY=BMAX/NZ
14 DO 15 I=1,NzZ
15 XZ(I)=xy*(I1-1)
CALL AMAP3D(Il,J1,IRZ,NZ,XZ,BB)
RETURN

PRINT OF FLUX DENSITY IN GIVEN REGION
16 I=IMA-IMI+l
J=JMA=JMI+1
1990 FORMAT(////1@X,'FLUX DENSITY DISTRIBUTION FROM I=',6I4,' TO I=',
* T4/32X,'AND FROM J=',14,' TO J=',14)
IK=I*J
CALL APRINT(BB,I,J,-1,IK)

RETURN
END

SUBROUTINE AICOG(NIT,IE,ISl1,I2,IS,EPS,
* p,Pl,P2,P3,P4,B,D,D1,D2,D3,D4,X,Q,R,S,Y)

SUBROUTINE FOR THE SOLUTION OF THE F.E.M. SYSTEM OF LINEAR EQUATIONS
BY ICCG METHOD (ALSO PRECONDITIONED CONJUG. GRAD. METHOD)

REAL*12 X(1S),B(IS),P(18),P1(1IS),P2(1S),P3(1IS),P4(1S),
* p(1s),b1(1s),D2(1s),D3(1s),D4(18),Q(1S),R(IS),S(IS),¥(IS1),
* EPS, TOL, XMAX , DXMAX, SPROD, AA, BB

APPROXIMATE CHOLESKI DECOMPOSITION
CALL ADECOM(IS,I2,P,P1,P2,P3,P4,D,D1,D2,D3,D4)

INITIAL CONDITIONS: X=¢ = SOLUTION
R=B - RESIDUALS
S=Y=APPR.INVERSE*R - AUX. VECTORS
O=MATRIX*Y

Dol I=1,1Is
X(1)=9.
R(I)=B(I)
1 CONTINUE
Y(ISl)=0.
CALL ASOLVE(I12,1IS,D,Dl,D2,D3,D4,R,Y)
NCYCLE=-1
CALL AMULTI(Q,P,Pl,P2,P3,P4,Y,I2,IS,IS1)
SPROD=0.
DO 2 I1=1,18
S(I)=¥(I)
2 SPROD=SPRODHR(I)*S(I)

ALGORITHM OF THE ICOG METHOL ACCORDING TO J.A.MEIJERINK&H.A.VAN DER VORST
MATHEMATICS OF COMPUTATION 31(JAN.1977),148-162
*** FOR I-TH STEP: AA=(R,S)/(Y,Q)
X=X+AA*Y
R=R-AA*Q
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NEW S: S=APPROX.INVERSE*R
BB=(R,S NEW)/(R,S OLD)
Y=S+BB*Y

MAXIMUM NIT STEPS ALLOWED, ACCURACY REQUIRED DXMAX<TOL=EPS*XMAX
(FOR EPS=1@**(-N) ABOUT N-2 DIGITS VALID)
3 NCYCLE=NCYCLE+1
CALL ACYCLE(I2,IS,IS1,DXMAX,XMAX,SPROD,AA, BB,
Q,P,Pl p2,pP3,P4,Y,X,R,S,D,D1,D2,D3,D4)
IF(NCYCLE.GE.NIT)GO’I‘O 4
TOL=EPS*XMAX
IF(TOL.GT.DXMAX)GOTO 5
GOTO 3

CONVERGENCE NOT OBTAINED IN NIT ITERATIONS (IF THE ACCURACY IS ONLY 19
TIMES WORSE THAN REQUIRED BY EPS, RESULTS USED FOR FURTHER COMPUTATION,
OTHERWISE THE COMPUTATION STOPS!)
4 IE=1
TOL=10 . *ABS (EPS*XMAX)
IF(TOL.GT.DXMAX) IE=2
WRITE(6, 104 )NIT, EPS, TOL, DXMAX, XMAX, IE
104 FORMAT(///1¢X,'NIT=',I4,' STEPS OF ICCG, EPS=',b1PEl13.3/
*10X, 'ToL=',E14.5, "', DXMAX=',6El4.5,', XMAX=',El4.5,', IE=',12//)
GOTO 6

CONVERGENCE OBTAINED WITH REQUIRED ACCURACY
5 WRITE(6,143)EPS, NCYCLE, NIT
193 FORMAT(/1@X,'*** ICCG REACHED THE ACCURACY',1PE9.1,
*' IN STEP ',I4,' FROM',I4,' ALLOWED')

AFTER RETURN: SOLUTION IN B
ORIGINAL RIGHT-HAND SIDES IN Q
6 DO 7 1=1,1I8
Q(I)-—B(I)
7 B(I)=X(1)

RETURN
END

SUBROUTINE ADECOM(IS,I2,P,Pl,P2,P3,P4,D,D1,D2,D3,D4)

APPROXTMATE DECOMPOSITION OF THE FINITE ELEMENT MATRIX
REAL*12 pP(IS),Pl(1S),P2(1S),P3(1S),P4(IS),D(IS),D1(IS),D2(IS),
* D3(IS),D4(1IS),SUM

P,Pl,... = THE COEFFICIENTS OF THE F.E.M. MATRIX
D,Dl,... = THE COEFFICIENTS OF THE APPROX.DECOMPOSED UPPER TRIANG. MATRIX

FIRST I2 LINES (I2 - THE WIDTH OF THE BAND)
D(1)=1Dg/SQRT(P(1))

D1(1)=P1(1)*D(1)

D2(1)=P2(1)*D(1)

D3(1)=P3(1)*D(1)

D4(1)=P4(1)*D(1)
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DO 1 1=2,I2
D(I)=1DJ/SQRT(ARS(P(I)-D1(I~-1)%**2))
DL(I)=P1(I)*D(I)

D4(1)=P4(I)*D(I)

D3(I)=(P3(1)-D1(I~-1)*D4(I-1))*D(I)
D2(I)=(P2(I)=-D3(I-1)*D1(I~1))*D(I)

CONTINUE

LINE I2+1

D(I2+1)=1D0/SQRT(ABS (P(I2+1)=-D1(I2)**2-D3(1)**2-D2(2)**2))
D1(I2+1)=(P1(I2+1)-D3(1)*D4(1)=-D3(2)*D2(2))*D(12+1)
D4(I2+1)=P4(I2+1)*D(I2+1)
D3(12+1)=(P3(I2+1)=-D1(I12)*D4(12))*D(I12+1)
D2(12+1)=(P2(12+1)-D3(12)*D1(12))*D(12+1)

THE REST LINES —- I2+2 TO IS

J=I2+2

Do 2 I=J,IS

IK=I-I2 ]
SUM=DL (I-1)**24D2(IK+1 ) **2+4+D3 (IK) **24+D4 (IK~1) **2
D(I)=1Dg/SQRT(ARS(P(I)-SUM))
D1(I)=(P1(I)-D3(IK)*D4(IK)-D3(IK+1)*D2(IK+1))*D(I)
D2(I)=(P2(I)-D3(I-1)*D1(I~1))*D(I)
D3(I)=(P3(I)-D1(I-1)*D4(I-1))*D(I)
D4(I)=P4(I)*D(I)

CONTINUE

RETURN
END

SUBROUTINE ACYCLE(I2,IS,IS1,DXMAX,XMAX,
* SPROD, A, B,Q,P,P1,P2,P3,P4,Y,X,R,S,D,D1,D2,D3,D4)

PERFORMS ONE STEP OF ICQOG METHOD
REAL*12 Q(Is),Pl1(1S),P2(1S),P3(1S),P4(1S),X(1S),R(1IS),¥(1IS1),
*  p(1s),s(1s),p(1zs),p1(1s),D2(1S),D3(1S),D4(1S),A,B,SPROD,

*  DXMAX,XMAX,AUX

MAKE VECTOR Q

CcaLL amuLrI(q,p,Pl,P2,P3,P4,Y,I12,1S,1IS1)
MAKE A

AUX=0.

DO 1 I=1,1IS

AUX=AUX+Q(I)*Y(I)

WRITE (13,%*) SPROD,AUX

A=SPROD/AUX

FIND MAXIMUM CORRECTION TO X, NEW R AND X
DXMAX=0 .

XMAX=0 .

DO 2 I=i,IS

AUX=A*Y(I)

X(I)=X(I)+AUx

AUX=ABS (AUX)

IF(AUX.GT . DXMAX) DXMAX=AUX
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AUX=ABRS (X(I))

IF (AUX.GT . XMAX) XMAX=AUX
R(I)=R(I)=-A*Q(I)
CONTINUE

MAKE NEW S

CALL ASOLVE(I2,IS,D,D1,D2,D3,D4,R,S)
AUX=d.

Do 3 1=1,IS

AUX=AUX+R(I)*S(I)

MAKE B
B=AUX/SPROD

DO 4 I=1,1IS
Y(I)=s(1)+B*Y(I)
SPROD=AUX

RETURN
END

SUBROUTINE AMULTI(B,P,Pl1,P2,P3,P4,D,I12,1S,IS1)

PERFORMS MULTIPLICATION OF VECTOR D
BY THE F.E.M. MATRIX WITH COEFFICIENTS STORED IN P,Pl ... P4
wkdkkkkikiakt [ B,  B=MATRIX*D

REAL*12 B(IS),D(I1sl),P(1S),Pl(1S),P2(1S),P3(1S),P4(IS),SUM

B(1)=P(1)*D(1)+P1(1)*D(2)+P3(1)*D(12+1)+P4(1)*D(12+2)
DO 5 1=2,1S

SUM=P1(I-1)*D(I-1)

IL=I-I2-1

IK=I+I2

IF(IL)3,2,1

SUM=SUM+P4 (IL)*D(IL)

SUM=SUM+P2 (IL+2)*D(IL+2)+P3 (IL+1)*D(IL+1)
IF(IK.GT.IS)GOTO 4
SUM=SUM+P2(I)*D(IK=1)+P3(I)*D(IK)+P4(I)*D(IK+1)
B(I)=P(I)*D(I)+SUM+PL(I)*D(I+1)

CONTINUE

RETURN
END

SUBROUTINE ASOLVE(I2,I1S,D,D1,D2,D3,D4,P,V)
APPROXIMATE SOLUTION FOR ICCG

V=(L*LTRANS ) **-1*p
REAL*12 D(Is),D1(1s),D2(1s),D3(18s),D4(1S),P(IS),V(IS),SUM

FURWARD SUBSTITUTION kkkkhkkhhkhkhkhhkhkhkhkhkhkkdkhkdkkhkhkhkhhkikhkhhkkkkkik

LINES 1 TO I2+1
v(1)=P(1)*D(1)
DO 1 I=2,I2
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1 gé{%;if(l)—01(1—1)*v(1-1))*D(I)
V(IK)=(P(IK)-D1(I2)*V(I12)-D3(1)*Vv(1)=-D2(2)*V(2))*D(IK)

J=I2+2

DO 2 I=J,IS

IK=I-I2

SUM=D2 ( IK+1 ) *V( IK+1 )+D4 (IK=1) *V(IK=-1)+D3 (IK)*V(IK)
2 V(I)=(P(1)=-D1(I-1)*V(I~-1)=-SUM)*D(I)

BACKWARD SUBSTITUTION ***%kikdkkkkkkhkkkhhkhhkhkkhkhkkkhhhdhdhdhdhkhhik

LINES IS TO IS-I2-1
V(1IS)=V(IS)*D(1S)
DO 3 N=2,I2
I=IS+1-N
3 V(I)=(V(I)=-D1(I)*V(I+1))*D(I)
I=IS-I2
V(I)=(V(I)=-D1(I)*V(I+1)=-D3(I)*V(IS)-D2(I)*V(IS~1))*D(I)
J=I1S-12-1
DO 4 N=1,J
I=J+1-N
IK=I+I2
SUM=D2(I)*V(IK-1)+D3(I)*V(IK)+D4(I)*V(IK+1)
4 V(I)=(V(I)=-D1(I)*V(I+1)-SuM)*D(I)

RETURN
END
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