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SUMMARY 

The present investigation is concerned with the determination of the 
magnetic field distribution in magnetic electron lenses by means of 
the finite element method. A critical comparison is made of the 
available finite element camputer programs. Necessary modifications 
have been made in certain programs, useful comments and general data 
format were written for two recently developed programs. 

Special attention has been paid to those factors that affect the 
efficiency of the finite element method in camputer aided design of 
magnetic electron lenses. These include the correct choice of 
boundary conditions. Another important factor investigated is the 
influence of mesh layout for the subsequent finite element 
calculations. 

By recomputing several examples of lenses found in the literature, 
discrepancies of up to 30% were reduced, resulting in excellent 
agreement with the associated experimental results, simply by 
rearranging the mesh layout in a more convenient way. Through a more 
systematic application of the finite element method, several 
misleading conclusions to be found in the literature were detected. 
Some of these conclusions arose from the finite element method itself, 
as previously mentioned. Other misleading conclusions were also 
discovered that were not due to the finite element method but to 
design errors in the lens itself. 

A study has been made of the errors in lens design including the 
inadequate thickness of iron shrouds etc. 
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26 x 23 mm?. (Munro, Nasr and AMAG programs) 

Note the improvement at Z = -34 and Z = 0 
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with convenient mesh arraiigement. It can be 
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Axial flux density distribution of lenses shown 114 

in figure (4.13). Lenses excited by a flat thin 
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distribution and number was used. 
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coil and an iron ring. The figure shows an 

outer boundary, mesh point numbers and two 

inner boundaries for use with the VPLIN 

program 
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computed with (25x25) meshes using M12, 

VPLIN, AMAG. & The total axial field 

distribution using AMAG (51x96) meshes on the 

asynmetrical test lens shown in figure 4.15 

S/Dy = 0.033. Using the different boundary 

setting. The first boundary setting at -60 

and 75mm cause 8% Loss in excitation when 

either 25, 25 or 51, 96 meshes are used. The 

second and correct boundary reduce the 

boundary loss in excitation to within 13. 

- 12 -



Figure 
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The flux values near the boundary will be 

affected while the peak value will stand for 

either mesh number the same as it was for 

first boundary. 

The axial field distributio . 1-B(z) coil 119 

calculated with Biot Savart program with 

infinite boundary 2.B(z) coil calculated with 

AMAG program using finite boundary (80mm) 

3-B(z) for coil + iron rings with AMAG program 

using finite boundary (80mm) and finally 4 B(z) 

for mini ring lens after surrounding the coil 

+ iron rings with (A) 8mm thick iron casing 

and (B) (32, 28mm) thick iron casing. 

Axial flux density distribution in mini ring 120 

lens shown in Figure 4.17 under non linear 

condition 1. (cco) with thin iron casing 8mm 

2. (eee) with thicker iron casing (32 from 

side and 28 fran up) to prevent leakage. 

Note: The difference between 1 and 2 is due 

to both boundary loss (7.4%) and leakage flux 

which have effect in the peak value equal to 

(8%) loss inl. 

3. (8m) the axial flux density distribution 

of iron free coil computed as in previous 

cases 1 and 2 with 71*73 meshes using AMAG 

Program. 4 (880) the axial flux density 

distribution of iron free coil calculated by 

Biot Savart law, the difference between 3 and 4 

Que to boundary loss is (14%) in 3. 
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4.19 Recalculation axial field distributions of 122 

the Al-Khashab's (1983) lens. i.e. Spherical 

single pole lens with coil surrounding the 

polepiece. 

Do/D, = 1.88, S/Dy = 0.347, 

S = 26mm Note: Appreciable external leakage 

eccurs at excitations higher than 16445 A-t, 

i.e. at Bor higher than 1.5 Tesla. 

4.20 Variation of axial field distribution with 124 

excitation for spherical single pole lens shown 

above, with larger iron circuit than in figure 

4.19. The external leakage occur at excitation 

higher than 200,000 At. i.e. pole face flux 

density (Bye) higher than 4 Tesla. 

4.21 Axial flux density distribution for 125 

spherical single pole lens shown above at : 

different lens excitation using (26x23mm?) coil 

surrounding the polepiece lens. (-24 to 2mm) 

after making the iron circuit large enough to 

prevent external leakage 

4,22 The total axial flux density distribution and the 126 

Boe values (B, B., 2) at the pole face tip of spherical 

single pole lens shown in Figure 4.19 at different 

lens excitation. (Calculated for four different 

thicknesses (1-4) of the lens shell). 

Note The value of both Bp and Boe at the pole face 

increase with increasing shell thickness. 
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Recalculation of the variation of axial field 

distribution with lens excitation using the 

original magnetic circuit (A) Christofides’ (1382) 

zero bore lens Hermes). The external flux 

leakage is indicated at Bor higher than 1.5 Tesla 

Variation of axial field distribution with 

lens excitation. Same lens of figure (4.23) 

recomputed with thicker magnetic circuit (B) 

designed to reduce external leakage 

Variation of Bp and Bp, at pole face with 

lens excitation for (A) original magnetic 

circuit; (B) thicker magnetic circuit see 

Figure (4.23) and Figure (4.24). Bcoilat pf 

is shown for reference. 

Axial flux density distribution of the 

rectangular double pole (test) lens shown 

above after surrounding the boundary with 

(5mm) high permeability iron sheet to 

overcome boundary loss in excitation (eee for 

long solenoid (b) and xxx for short solenoid 

(a)). Note the external flux leakage which 

is larger in case of coil (b). 

Axial flux density distribution in 

rectangular double pole lens at different 

lens excitations with thin coil (Do/D, ols 

S/D_ = 0.094) the coil position -3 to 3mm. 

The shrouds are very large (70mm, 50mm), i.e. 

there is no leakage up to (9) Tesla at the 

peak 
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4.28b 

4.29 
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Axial flux density distribution for double 134 

pole test lens shown using sufficient shrouds 

(70,50mm) (i.e. no leakage) with solenoid 

(D2/D, = 1.107, S/D, = 0.508) at different 

lens excitations 

Rectangular double pole test lens with thin 135 

magnetic circuit (A) and thick magnetic 

circuit (B). The lens exciting coils a and b 

have the same cross section. 

Variation of Bp, at pole face with magnetic 135 

field strength (H) of double polepiece test 

lens shown above. 1 (xxx) Bye value at pf 

when the lens excited by coil (a) (short 

solenoid) using magnetic circuit thickness 

15mm. (A) 2. (eee) Bre Values when the 

lens excited by coil (b) using previous 

magnetic circuit (A). 3 (cco) Bre values 

when the lens is excited with coil (b) using 

thicker magnetic circuit (B). Note: the 

change of Bp, value for coil (b) when the 

magnetic circuit is thicker in 3 

Recalculation of the axial flux density 137 

distribution for Al-Khashab/ 1983) 

spherical single pole lens at different lens 

excitations using coil of S/D,, = 0.019, 

D2/D, = 12.89, S=1mm. Note the external 

leakage problems appear at 13x104 A-t, i.e. 

at Bpf 6.35 Tesla 
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4.30 
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4.32 

4.33 

4.34 

Title 

(1) Variation of the magnetization of the 

polepiece tip and (2) the variation of the 

half-width of rectangular double polepiece 

test lens as a function of magnetic field 

strength (H) excited: with b (eee) long 

solenoid coil; a (o-o-o) short solenoid coil 

For coil position a - d as a function Bp, at 

the pole face pg and the axial field half 

width (d,) with coil positions lens 

excitation in a spherical single pole lens. 

Full diagram shown in figure (4.21) 

(1) Variation of the magnetization of 

polepiece tip and (2) the variation of the 

half-width of spherical single pole lens as a 

function of the lens excitation by thin coil 

(D2/D, = 9.8, S/D, = 0.0185) a (o-o-o) thin 

coil position (-0.5 to 0.5mm), b (#e@) thin 

coil position (0.5 to 1.5mm), c (xx) 

thick coil surrounding the polepiece 

Variation of (1) Bre values at pf and (2) 

half width with lens excitation of spherical 

single pole lens excited with different S/D, 

coils placed at same distance from the pole 

face 

Axial flux density distribution for spherical 

single pole lens at different lens excitation 

with coil (Dp/D, = 1.88, S/Dm = 0.347). The 
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lens is improved by very large shrouds and 
D; 

shielding from the open side ( 6 mm), ——- =0 
Pout 

(Vanishingly small bore). 

Variation of the B,, value at pf tip, as 147 

function of field strength (H A/m), with coil 

size and position, for the redesigned spherical 

single polepiece lens, shown in figure (4.34) 

Comparison between the axial flux density 149 

distribution (keeping the current density 

constant) of rectangular double pole piece 

lens shown in figure (4.27a): excited with 

(1) short solenoid placed in the gap between 

the two polepieces (2) combination of short 

solenoid placed in the gap and two coils (of 

total area = 360mm?) as shown above. Note 

the cross-section of lens. (2) is half of 

lens (1). There is no significant difference 

in peak flux value or the half width between 

two cases 

Comparison between the axial flux density 150 

distribution (keeping the current density 

constant) of the spherical single pole lens 

shown in figure (4.34) excited with (1) a 

coil (Do/D, = 24, S/D, =0-26, S=13 mm 

placed outside the pole face (solid line) 

(2) a combination of a thick coil 

surrounding the polepiece and a thin coil of 

the same cross section placed outside the 
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Figure 

5.2 

astts) Page 

polepiece (dotted line). Note the cross- 

section of lens (2) is half that of lens 

(1). Case 2 has a slightly lower peak and 

lower half-width than case 1 

Contribution (Booin) of the exciting coil and 160 

of the iron (Be) to the total axial flux 

density Bp in the single polepiece lens shown 

in-Fig. 2.5. 

Note The positive and negative parts of the 

Ble Curve balance within 1% indicating low 

computational error. 

The variation of Cs with the current density 161 

for four different double pole lenses at 2000 

KV at Z = 0 mode, log/log scale. Lens 1 as 

shown above (quarter section) is a rectangular 

double pole test lens computed with s,/D = 0 

and s,/p = 2 (dashed line). Lens 2 is similar 

to lens 1, but with smaller axial pole 

piece radius with s5/D =o, Iens3 isa 

spherical double pole lens s,/D 22. 
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Magnetic flux density 

B (coil) axial flux density at any point due to the coil 

windings 

B (iron) axial flux density at any point due to the 

magnetization of the iron 

Radial component of magnetic flux density 

Axial camponent of magnetic flux density 

Total axial flux density Bp = By t+ Bre 

The axial magnetic flux density at the pole face 

Peak value of the axial magnetic flux density 

Chramatic aberration coefficient 

Spherical aberration coefficient 

Determinant in triangle = 2 x Area 

Inner diameter of the lens bore 

Mean diameter of the coil windings D, =(D, + D2)/5 

Outer diameter of the lens polepiece 

Inner diameter of the coil 

Outer diameter of the coil 

Half-width of the axial magnetic flux density distribution 

Electron charge 

Energy functional 

Magnetic strength (A/m) 

Magnetic strength due to electric currents 
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Magnetic strength due to magnetic material 

Mass of the electron 

Magnetization of magnetic material 

Magnification M, = = where %o and “i are the convergence 

angles of the tra jentony at Zo and Zi 

Excitation of the lens (A-t) 

Excitation parameter 

Lens outer diameter (mm) 

Polepiece axial radius 

Radial acceleration 

Coil width 

Gap width of the double pole 

Relativistically corrected accelerating voltage 

V, = V (1+0.978 x 10~6v) where V is the applied 

accelerating voltage of electrons 

Stored magnetic energy per unit volume 

Axial acceleration 

Electron charge to mass ratio e/m 

Permeability of the magnetic material U = Uy Uy 

Relative permeability of the magnetic material 

The differential permeability Ug ~ 9B /Uy 
oH 

Permeability of free space (4 7 x 1077 Henry/m) 

Magnetic susceptibility 

Magnetic flux 

Current density in the lens coil 

Angular velocity 
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CHAPTER ONE 

INTRODUCTION 

el The Magnetic Electron Lens 

Busch (1926) was the first to explain the theory of focusing electrons 

by means of rotationally symmetric magnetic fields in a way analogous 

to the focusing of light beams by glass lenses. A magnetic electron 

lens can be defined as an axially symmetric magnetic field which can 

be described by its axial flux density B(z) The simplest lens is an 

axially symmetric iron-free coil but most magnetic lenses usually 

consist of double polepiece lenses or more recently a single 

polepiece. The arrangement of lenses can be either "symmetrical" or 

“asymmetrical" depending on the design of their respective magnetic 

circuits. A lens is symmetrical when a plane of symmetry Z=0 exists 

so that B(z) = B(-z). This is achieved when both polepiece bores have 

the same diameter. When the two bore diameters Din, and Din, differ 

from each other, the lenses are asymmetric. One common reason for 

constructing asymmetric lenses is the need for providing access for 

introducing the specimen. Thus the bore is made larger for this 

reason. However, the specimen may also be introduced sideways through 

the polepiece gap. There is no need, in this case, to make one bore 

wider than the other. 

Distinction is also made between "saturated" and "unsaturated" lenses. 

A lens is considered unsaturated if the axial flux density 

distribution Bz created by a coil with I ampere-turns is proportional 

to I. 
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1.2 Forms of Magnetic Electron Lenses 

Many kinds of magnetic lenses have been devised ard investigated by 

different research workers. The most cammonly known are: 

1.2.1 Iron-free Coils 

The simplest form of an iron-free magnetic lens is a solenoid 

consisting of either a wire or tape wound around a non-magnetic core. 

Basset and Mulvey (1969) have shown that this kind of lens has an 

appreciably lower spherical aberration. The well-known Biot-Savart 

Law is used in calculating the axial flux density for these lenses. 

Marai (1977) surveyed the iron-free lenses and showed that optimum 

designs for them do in fact exist. 

12.2 Single Polepiece Lenses 

Figure 1.1 shows a single polepiece lens converging a beam of 

OPTICAL AXIS 

  

  

Fig. 1.1 Single polepiece lens 

electrons onto a solid specimen. The lens consists, essentially, of a 

narrow flat coil winding placed over a single polepiece. The axial 

flux density distribution is asymmetrical and is created outside the 
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lens structure. The peak position of the field is located a few 

millimeters from the poleface (snout). This provides more space for 

manipulating the specimen as well as reducing the effects, of any 

imperfections in the iron circuit or the coil, on the lens properties. 

Due to the highly asymmetrical field distribution characteristics, the 

focal properties of single polepiece lenses differ appreciably from 

those of conventional double polepiece lenses. The increased axial 

flux density at the tip of the polepiece as well as the reduced half- 

width of the field distribution lead to lower abberations. 

A single polepiece lens may be used as an objective lens in TEM and 

STEM (Mulvey, 1974). The asymmetrical field distribution gives the 

possibility of using it in two different modes of operation. In a 

projector lens, Marai and Mulvey (1976) have shown that the lens has 

a lower distortion coefficient by a factor of about 2.5 when the 

polepiece of the lens is facing the incoming electron beam (preferred 

direction), than when it is used facing the screen (non-preferred 

direction). Al Hilly (1982), has demonstrated the advantages of this 

in the correction of distortions in the electron microscope. Hill and 

Smith (1982) used the single polc lens as a scanning electron 

microscopy objective. 

Mulvey (1982) has reviewed the present stage of iron polepiece lenses 

development with particular emphasis on improved imaging achieved in 

transmission electron microscopes when using a single polepiece lens 

as projector lens plus another single polepiece lens as spiral 

distortion corrector. 
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1.2.3 Double Polepiece Lenses 

Double polepiece lenses are more commonly used than single polepiece 

lenses. Figure 1.2 illustrates a typical configuration of double 

polepiece systems which can be either symmetric or asymmetric. 

  

  

  

        

    

  
              

  

D 

NSS 
NI SS 
SQ i___ Sq 
Tay! i F 

| | 

INS | 
Loe HoH | 

a Douty - | a OuE, | 

ae i 

a b 
Fig. 1.2 Double polepiece lens (a) Symmetrical (b) Asymmetrical 

In the symmetrical system, two identical pairs of truncated cones are 

separated by a gap of width Sg which allows the electron beam to pass. 

In the assymetric system one of the truncated cones is replaced by a 

flat extended polepiece, which is usually part of one of the lens 

casing flanges. The magnetic field of a double polepiece is non- 

uniform near the lens axis, where the axial hole is located. This 

gives rise to the refractive action of the lens. The ratio of gap 

width to inner diameter (S,/D) determines the lens properties. 

Mulvey and Wallington (1969) have published a comprehensive review of 

double polepiece lenses. The unique properties of asymmetrical double 

polepiece lenses were discussed by Yanaka and Watanabe (1966). 
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1.2.4 Other Lenses including Superconducting and Miniature Lenses 

Recent advances in electron microscopy have led to the introduction of 

unconventional and miniaturised lenses. The most interesting of these 

are the superconducting lenses the origin of which goes back to the 

late fifties when the discovery of high field superconductors 

stimulated research in their main attractions which are electro- 

magnetic stability, compact construction and high magnetic field 

gradients (Lefranc, Knapek and Dietrich, 1982). 

Miniature lenses were developed at the University of Aston in 

Birmingham by Mulvey and his collaborators. One form of these is the 

highly compact coil with forced cooling (Mulvey and Newman, 1972), 

which seems to be on the brink of being introduced into commercial 

electron optical instrument design on a larger scale (Riecke, 1982). 

Another, ‘rotation-free', magnetic electron lens doublet of high 

magnification is described by Juma and Mulvey (1978). This lens is 

some two orders of magnitude smaller in volume and weight than those 

of a comparable conventional lens unit. 

1.3 Computer Aided Design of Electron Optical Systems 

Digital computers are extensively used in designing electron optical 

systems. Computer utilisation is particularly needed in the following 

three steps. (i) Field Calculations, (ii) determination of electron 

trajectories and (iii) determination of imaging properties and 

aberrations. In this study emphasis will be made in the field 

calculations. 
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1.3.1 Field Calculations 

A number of methods are available for computing the electric or 

magnetic fields from given initial or boundary conditions. The most 

common of these methods, used in computer aided design, are the finite 

difference and the finite element methods. These methods are based on 

the well known mathematical technique of finding approximate numerical 

solutions for analytically unsolvable differential equations. This 

involves replacement of a continuous partial differential equation by 

a system of ordinary linear equations which are solved by standard 

mathematical techniques. 

1.3.1.1 The Finite Difference Method (FDM) 

In the finite difference method (FDM) the entire region of the problem 

is covered by a discrete mesh network. 

Mesh formulae in the finite difference method can be derived using 

either a Taylor series or the integral method, both of which are well 

explained in the mathematical literature ((Ames, 1969), (Forsythe et 

al., 1960) and (Varga, 1962)). 

Kasper and Lenz (1980), have suggested that better accuracies can be 

achieved for a given number of meshes using the finite difference 

method, especially for axial field distributions than is possible with 

the differential finite element method. 

There is no suitable general program for calculating magnetic and 

electric fields by the finite difference method. This makes a 

comparison between the finite difference and other numerical methods 
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such as the finite element method very difficult. Denegri et al. 

(1976) developed a finite difference method that employs a similar 

mesh distribution to that of differential finite element method, but 

the method has not yet been fully implemented. 

1.3.1.2 The Finite Element Method (FEM) 

The finite difference method becomes very complicated when the 

material coefficients are discontinuous eg. at the interface 

conditions like those for the magnetic field at surface of yokes with 

finite permeability. For the computation of such fields, the finite 

element method (FEM) is more convenient. The FEM uses triangular mesh 

grids instead of rectangular ones used in FDM. The FEM was applied, 

originally, in structural and electrical engineering (Zienkiewicz and 

Cheung, 1965). 

1.3.1.2.1 The Integral Finite Element Method 

Newman et al. (1972) applied the finite element method in its integral 

form to the computation of magnetic field strength, Division into 

finite elements is carried out for the magnetic material only. The 

magnetisation is assumed constant over each element. The field 

strength (H,) due to the current in the windings is found directly 

from Biot-Savart Law, 

dv (1-1) ae 
Ho = — 

4 sli
t 

J is the current density in the coil windings and v is the volume of 

* the coil windings. 
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The field (H) due to magnetisation in the iron elements is given by, 

ow graff +z ev (1.2) 
4n r 

where M is the magnetisation at each element and is given by, 

M=(4r = 1) H= XH (1.3) 

where X= Boe 1s susceptibility of the magnetic material 

Magnetisation (M) is given in terms of the flux density as follows, 

u- 8 GQ- D (1.4) 
° rc 

where B = ye uo 

Also the total field strength H is given py, 

H = H, + (1-5) 

substituting for from equation 1.2 ig 

H = Boos 4 (1.6) 

  

If the magnetic material is divided into N finite elements we get N 

similar equations which have the general form 

N 

Hy = Hy + Kj GH, where i= 1, 2, «4... (1.7) 

J=1 

and Kij are factors that depend on the field points geometry. Since 

each element of the coefficient Ki5 will have two components, 2N 

simultaneous equations are generated for N finite elements. If (x3) 

th the susceptibility of the j“? element were known, the equation 
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equation could be solved directly to obtain the two components of (H) 

which are Hy, and Hiy Tf x values are not known, then an iteration 

process must be used in which the initial values of %G are assumed. 

Then the equations are adjusted using a table of X/H values and the 

process is repeated until a prescribed degree of convergence is 

achieved. This will depend on the number of iron elements which are 

involved and the degree of saturation. The two components of 

magnetisation M, and My are calculated from the field strength 

components Hj, and Hiy 

at any point from equation (1.2) and added to the field H, from the 

and the field H, due to the iron is calculated 

coil windings to give the total field H. 

Calculation of Axial Flux Density Distribution 
  

The total axial flux density distribution B(z) of a magnetic lens, at 

any point on the axis, is a function of the current in the coil 

windings and the known magnetisation value M, in the iron 

elements. 

So B(z) = BL + Bre (1.8) 

where B, is the axial flux density due to the coil windings, Bp, is 

the axial flux density due to the magnetisation in the iron elements. 

1,3.1.2.2 The Differential Finite Element Method 

Munro introduced the FEM to electron optics (Munro, 1971). He used 

the FEM in its differential form to design a set of programs to 

calculate the flux density in all parts of the lens including parts 

where it would be difficult to measure the flux density 

experimentally. Munro's programs are popular with research workers, 

in the field of electromagnetic field calculations, due to 
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availability of a very clear manual (Munro, 1975) containing all the 

necessary information about the programs as well as prints of the 

original programs. 

Munro's programs reduced the efforts needed in constructiom and 

experimental testing of the trial lenses to a minimum With the help 

of these programs the shape of the polepiece and other parts of the 

magnetic circuit can be easily changed in order to reach a 

satisfactory design for the specific application of the lens. 

The differential finite element method is convenient for structures 

with different permeability since the permeability of the magnetic 

material is specified at all parts of the structure, while in other 

methods like the finite difference method, it is often difficult to 

satisfy boundary conditions, e.g. between the coil, free space and 

magnetic circuit. The finite element method used by Munro is most 

convenient for dealing with saturation conditions where Ur has to be 

calculated for each element in each iteration process. This method 

can be used also for calculating the field distribution in 

superconducting lenses. The superconducting material is simply 

characterised by relative permeability a =0. 

Mulvey and Nasr (1980a) pointed out that the finite element method, 

used in Munro's programs, can be limited by the fact that the vector 

potential at the boundary has to be set to zero. Nasr maintained that 

this cannot be true unless there was an infinite radius or when the 

flux ? = 0. This will make Munro's programs work well and with high 

accuracy for conventional magnetic electron lenses. For open 

structures or other types of magnetic lenses, e.g. single polepiece 

lenses, there will be boundary losses in the excitation. This is 

elaborated further in Chapter 2. Nasr reduced the effect of this 
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developing Munro's programs into a set of improved vector potential 

programs, which made the increase in the number of meshes used 

possible, taking into account the computer store requirement. 

Lencova (1984) designed a new program which is based on differential 

finite elements like the previous programs. Lencovd's program deals 

with both linear and non-linear computations. A very large number of 

mesh points can be used by this program up to 6500 points, including 

the points on the boundary with A= 0. 

Details of all the above programs are explained in later sections. 

1.3.2 Electron Trajectories 

Electron trajectories in magnetic lenses can be defined in the simple 

form of three equations, given by Goddard and Klemperer (1944). 

5 2 
z=-(s) aG (1.9) 

2 
r=- aS (1.10) 

6 iar 4 (1.11) 

The essential features of these equations are their linearity in which 

first order derivatives Z, r do not appear. 

To calculate the electron trajectories, the values of dA and dA are 
. dr dz 

calculated from the variation of the vector potential A over each 

quadrilateral given by Munro (1975) or Nasr (1981). Al Hilly (1982) 

has elaborated the inputting of these values into a special program to 
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arrive at trajectory path calculations. Modifications of Nasr's 

program and combination with Al Hilly's work lead to a general program 

for trajectory calculations. 

1.3.3 Imaging Properties and Aberrations 

If an electron passing through a magnetic electron lens forms a 

perfect image, then this image is called 'Gaussian’ and the 

corresponding electrons are called Gaussian rays or Gaussian 

trajectories. The Gaussian path is described by the paraxial equation 

Mm 2 yt Bgr=0 (1.12) 
8v,- 

where V,. is the relativistic accelerating voltage. B is the axial 

flux density and 1 is the charge to mass ratio of the electron. 

Departure from Gaussian images are called aberrations which are 

expressed in terms of coefficients. A number of aberrations can 

affect the functioning of magnetic electron lenses. The importance of 

each depend on the magnetic lens function. 

Aberrations, in magnetic electron lenses, are generally of two types. 

Those which are due to the electrons travelling far from the lens 

axis or along paths that are inclined at a steep slope to it, are 

known as geometrical aberrations; the most important of which are 

spherical aberrations and distortions. On the other hand, aberrations 

caused by wavelength spread of the incident beam are known as 

chromatic aberrations. These aberrations arise due to the varietions 

in the accelerating voltage or fluctuations in the current. Energy 

loss in the specimen can also cause aberrations. 
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Various numerical methods are available for calculating the aberration 

coefficients of electron lenses. Munro (1975) computed the spherical 

and chromatic aberration coefficients, by using Simpson's rule to 

evaluate the aberration integrals 

i 
cs =_1 am Bt rf + en? rf - opt? 1/2) az (1.13) 

T28V, Ve 

Zo 

=F 
c= Bar? dz (1.14) 

8v, 

Zo 

where 1,(z) is the solution of the paraxial ray equation with initial 

conditions my(zo) = 0 and ry (zg) = 1 if the aberration coefficients 

are referred to 25 or Ry (zi) = 0 and fey (z3) = -l if the aberration 

coefficients are referred to z;. For low or high magnification 

conditions, the magnification is calculated from the formula = ne 

where % and %i are the convergence angles of the trajectory at z, an 

Z, respectively. 

The paraxial electron trajectories are computed, using a fourth-order 

Runge-Kutta formula to solve the paraxial ray equation (Eq. 1.12). 

Marai (1977) developed an asymptotic program for the calculation of 

distortion coefficients which was restricted to parallel incoming 

rays. However, Munro and Marai's programs can determine the 

aberration coefficients for one lens field distribution mly, which 

render them inconvenient for calculating multi-lens systems. 
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1.4 The Computer Programs used for Calculating Magnetic 

Field using the Finite Element Method 

All the programs used in this work are based on the finite element 

method and the same basic theory. This is elaborated in Chapter 2. 

However, these programs are different in their capacity and the input 

data and output result formats as explained in Chapter 3, which deals 

with data preparation for each program for both linear and saturated 

cases. Extensive comments are presented in several programs as part 

of this work. 

1.4.1 Munro's Programs 

Two programs are available in Munro's Manual (Munro 1975). First the 

M12 program is designed for dealing with unsaturated magnetic lenses 

(linear conditions), where the magnetic material has constant 

permeability. A set of linear equations in terms of vector potential 

coefficients is obtained and the matrix equation is solved by Gaussian 

elimination. 

The second program M13 is for saturated magnetic lenses (non-linear 

condition), where the magnetic material permeability varies with the 

flux density. Here the data input allows for the magnetisation curve 

(Figure 1.3) in the form of tables of H and B of each magnetic 

material (Table 1.1). A set of non-linear equations in terms of 

vector potential coefficients similar to the linear case equation is 

obtained and solved by Newton-Raphson iter=tion, and the resulting 

matrix is solved by Gaussian elimination. 
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Figure 1.3 Typical magnetisation curve for soft iron. 

TABLE 1.1 MAGNETISATION CURVE FOR SOFT IRON (Munro 1975) 

50.0 0.400 
100.0 0.680 
150.0 0.880 
200.0 1.020 
344.0 1.224 
560.0 1.282 
807.7 15325 

1040.1 1.351 
1344.1 1.377 
2720.0 1.442 
4716.6 1.509 

8880.8 1.589 
11124.9 1.623 
15613.1 1.679 
27509.9 1.790 
44157.6 1.840 
60940.5 1.866 
77421 .0 1.898 
92469.1 1.919 

106713.4 1.937 
156847 .3 2.000 
236424 .8 2.100 

395579.8 2.300 
634312.3 2.600 
873044.8 2.900 
1032199.8 3.100 
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1.4.2 Nasr's Programs 

Nasr developed his programs for calculating magnetic fields during his 

research work at the University of Aston in Birmingham. The 

theoretical bases for these programs are fully explained in his PhD 

Thesis (Nasr, 1981). However, no manuals, similar to those developed 

by Munro (1975) are available on Nasr's programs. These programs were 

mostly stored at the University of Aston in Birmingham computers 

without instructions or comments. As part of this study, Nasr's 

programs have been explained and modified in some instances, in co- 

Operation with the author. As a result, Nasr’s programs are available 

now in a form similar to those of Munro. 

Two programs were developed by Nasr, the first designated VPLIN deals 

with field calculations throughout the magnetic circuits of 

unsaturated (linear) magnetic lenses. Nasr's VPLIN like Munro's M12 

program, assumes the magnetic circuit has constant and finite 

permeability. The main advantage of the VPLIN program over the M12 

program is that with the former it is possible to use more meshes than 

is possible with the later, utilising the same or marginally higher 

computer memory store. This is achieved by introducing two inner 

boundaries which divide the lens into selected areas. This yields a 

better overall field distribution than is possible with M12 program. 

This, however, requires more computer time. This subject is explained 

further in both Chapters 2 and 3. 

The second program developed by Nasr is called the VPSAT. This deals 

with saturated magnetic lenses like Munro's M13, and the basic 

difference, recognised by applying this program and M13 to several 
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designs, was the extra number of meshes this program enables us to use 

in the axial direction. The canparison is shown in Chapter 3. 

The VPSAT program, after some modifications carried out in cooperation 

with Nasr, can deal with both linear and saturated lenses under all 

conditions and can substitute for M12 and M13 as well as VPLIN. This 

together with the possibility of using a higher number of meshes, for 

the same memory size, are advantages of this program. Copies of both 

VPLIN and VPSAT programs are included with the appendices. 

1.4.3 Lencova's Program (AMAG) 

Lencova (1984) devised her program (AMAG) in Fortran 4 at the Institute 

of Scientific Instruments, Czechoslovakia. Aston University was 

supplied with a copy of this program, as part of scientific exchange 

between the two institutions. The program was adapted to Fortran 77 

and compiled in the Harris 800 system by the help of University electron 

microscopy group (Mrs. I. Al-Nakeshli and Mrs. H.C. Yin). Comments 

were provided on the program and a copy is included in the appendices. 

AMAG is based on the same theory but utilises different algorithms 

from the previous programs, for both linear and saturation cases, it 

uses the Cholesky decomposition method combined with the conjugate 

gradient method (or the preconditioned conjugate gradient method) of 

Mejerink and Van der Vorst, (Lencova 1984) for solving the linear 

equations. 

Several applications of the AMAG program were made and a full 

description of it is given in Chapter 2. Chapter 3 gives the data 

preparation and comparison between the output results of this program 

and the previous ones. 
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1.5 Application of the Finite Element Method for Designing 

Electron Magnetic Lenses 

The finite element method has been the base for most electron magnetic 

lens design work, since Munro introduced this method to electron 

optics (Munro, 1973). Designers were motivated to use this method 

since experimental methods take more time and effort. Literature 

reviews show that finite element programs are dominant in magnetic 

lens design work. This situation is acceptable if the method is used 

in moderation i.e. not with blind faith. Unfortunately this is not 

the case in much of the published work. This situation was, perhaps, 

natural. At the beginning, when any new scientific method is invented 

or a new application of an established method is devised, the authors 

tend to point out the advantages of their inventions and, whether 

consciously or unconsciously, gloss over the difficulties and 

limitations. This is what seems to have happened to the application of 

the finite element method to magnetic lens design. Mulvey and Nasr 

(1980a) pointed out some of the limitations of this method. Nasr 

concentrated on the boundary loss in excitation and overcame this 

problem to some extent by improving Munro's programs so that more 

meshes can be used. Nasr believed that the main source of problems 

was the boundary setting. In the present work, limitations in Nasr's 

programs were also discovered. Lencova's program has the added 

advantage of high capacity and ease of application. The user, 

however, is likely to encounter some difficulties similar to those of 

the previous programs, if he is not aware of the inherent limitations 

of these programs. 

A comparison is made in chapter 3 between the three programs under 

both linear and non-linear conditions. The programs were applied to 
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the design of the same electron magnetic lens and the same number of 

meshes were used. The difference between the results was recorded in 

terms of computer time, memory size and the output results as well as 

the number of iterations performed in case of the non-linear programs. 

1.5.1 Aims of the present work 

A major objective of the present investigation is to throw light on 

the various factors that affect the accuracy of the finite element 

method, when applied to electromagnetic field calculations. The aim 

was not to invent new magnetic electron lens designs (although this 

was partly done in some instances) but to review and comment on the 

available programs. By applying these programs to some existing 

designs, it was hoped to detect possible design problems and point out 

any misleading conclusions drawn in the literature. Chapter 4, for 

example, pinpoints the main difficulties associated with these 

programs. The improvements made in several existing designs and the 

relevant conclusions are also presented. 

1.5.2 Difficulties in using finite element programs 
  

This study agrees with previous work about the boundary problems, in 

both open and partially open structures. However during the course of 

this work it was found that boundary problems arise in closed 

structures at high excitation (saturation condition) i.e. in saturated 

conventional, and double pole lenses. This is shown in Chapter 4. 

Computation work carried out in this study indicated that changing the 

mesh distribution of the data may significantly change the overall 
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results. This effect was found to be more pronounced in non- 

cylindrical and sharp angle pole face profiles. To show this effect a 

lens of known field distribution was chosen. Since in unsaturated 

symmetrical double polepiece lenses, the maximum flux density Bmax 2t 

the centre of the air gap is known, for a given gap Sg and axial bore 

diameter D, according to the following equation see (Mulvey and 

Wallington, 1969): 

- Aaa (Fert and Durandeau Brax = “oul (1.15) 
L equation) assuming very 

high Py 

where L = y + 0.45D2 

Equation (1.15) was applied to Munro's symmetrical double polepiece 

lens shown in chapter 4. It was discovered that Munro's computed 

value was 3.6% higher than the value calculated fram Eq. 1.15. 

By rearranging the mesh distribution in the radial direction, 

increasing the meshes defining the pole face profile and using more 

meshes for defining the coil region, the computed value came into good 

agreement with the expected value. 

The second difficulty associated with the finite element method is the 

number of meshes to be used. Nasr attributed the improvements, 

obtained through his programs, to the increased mesh numbers. This 

study proved Nasr's hypothesis to be true to some extent. However, 

Nasr's programs use more meshes in the axial direction only, by 

increasing the number of runs performed. The number of meshes in both 

axial and radial directions cannot be increased. This fact can limit 

the advantages of Nasr's programs especially for complicated designs 

where more meshes are necessary in both directions. 

eat ee



To show the effect of the number of meshes used a rectangular single 

polepiece lens was computed with the above mentioned three programs 

i.e. Munro's, Nasr's 4 run program and Lencov’'s. Results are 

presented in chapter 3. 

Another important practical factor is the thickness of the iron casing 

(i.e. the lens shroud), especially under saturation conditions. This 

study has indicated that some of the published results of lens designs 

indicate that these designs had boundary problems and in addition the 

thickness of the iron casing was quite inadequate. This is discussed 

further in Chapter 4, 

The boundary loss in excitation and also the leakage effect was also 

studied in double pole lenses, with solenoid or other thick coils. A 

rectangular double pole lens was designed to illustrate this effect. 

The leakage effect manifests itself also in the external lens flux. 

Chapter 4 includes plots of these lines throughout the magnetic 

circuit of single pole lenses. A computer graphics program, designed 

by Munro (1975) and referred to as M31, was utilised in these 

evaluations. Lencova's AMAG program produce several graphic outputs 

which show the material distribution on the mesh, and the flux density 

distribution in the magnetic circuit. 

The shielding (surrounding the lens by magnetic material of infinitely 

high permeability) is another important factor, in connection with the 

application of the finite element method in lens design to minimise 

the boundary problems. This factor is important if good accuracy is 

desired in the design. This study has indicated that the shielding is 

not important in double pole lenses under linear condition, since the 
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double poles actually act as a shielding. On the other hand, both 

boundary problems and leakage effect is significant in double pole 

lenses under saturation conditions (i.e. at high excitation). The 

boundary and shielding is very important to minimise boundary problems 

with reasonable computer core size in open structures like single pole 

lenses, iron free lenses, and simple coils with iron rings under both 

linear and saturation condition while for a double pole lens this 

study proved it is effective under saturation condition oly. 

Examples of this effect are shown in chapter 4. 

1.5.3 Possible misleading conclusions in the design of 
  

magnetic lenses 

As mentioned earlier, faults in a lens design caused by any of the 

previously mentioned factors may lead to false conclusions and 

misleading judgments. This is especially likely to happen if the 

computer programs are relied upon unduly for comparing two or more 

configurations for the purpose of choosing the best design. Examples 

of such conclusions are mentioned in chapter 4, e.g. Cleaver's double 

pole lens (Cleaver 1978); Cleaver's computation gave 8.4% higher 

value for maximum flux density in the gap than the value expected from 

equation (1.15), under linear conditions. 

Al-Khashab (1983) has carried out a study about the best size and 

position of the coil, cmcluding that thinner coils were better than 

thicker ones for magnetisation behaviour of the polepiece. This study 

has shown these conclusions to be erroneous, since there were two 

serious problems in these lenses, due to both boundary loss in 

excitation and leakage problems affecting the performance of the lens, 

as discussed in Chapter 4. 
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Another investigation was made at Aston University on lenses designed 

by Christofides. These lenses are designated Hermes, Hermes II and 

Hermes III. The computed values of peak axial flux density of Hermes 

II were 26% higher than the experimentally measured values 

(Christofides' 1982). The discrepancy between the computed and 

measured distributions were explained by Christofides in terms of the 

“inherent errors" in the computer program M13, "experimental errors" 

caused by the finite size of the Hall probe, and finally possible 

variations between the magnetisation properties of the magnetic 

material (Swedish iron) used in the experimental lens and those of the 

soft iron assumed in computing. Christofides thesis shows these 

discrepancies for both the total field at the peak and the iron 

contribution (Bre) to the peak value. Since the mesh data used by 

Christofides were not reported in his thesis, the lens was recomputed 

with the same dimensions and with a covenient mesh distribution using 

limited mesh numbers (25,50) and large mesh numbers (54,100). It was 

found that, for example, at 10800 A-t. Hermes II gave a peak in very 

good agreement with the experimental results. Another fact worth 

mentioning is that for higher excitations boundary problems arise and 

the iron casing is inadequate. In a further calculation by the present 

author, with correct boundary and a redesigned iion casing the loss in 

excitation due to boundary and leakage effects disappeared. In 

Christofides original computations of the flux density distribution, 

at excitations higher than 16000 A-t., three sources of error were at 

work i.e. the inadequate mesh layout which gave high peak value, 

insufficient boundary which caused loss in excitation and 

insufficient iron casing thickness which gave inadequate flux 

distribution. 
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1.5.4 Elimination of difficulties encountered in finite element 
  

programs 

Throughout this work, application of all the available programs was 

made initiallly with a limited number of meshes, then with 

progressively larger numbers so that comparisons could be made at 

every stage of the calculation. The effect of each of the previously 

mentioned factors was studied separately and several lenses were used 

including single and double polepieces, iron-free lenses, coils with 

rings as well as symmetrical ring lenses. Sufficient information was 

gained from these applications to outline a method taking into 

consideration all the above mentioned factors, for designing electron 

magnetic lenses by the finite element programs. The method starts by 

setting the correct boundary and a suitable mesh layout, as outlined 

in this study. This method proved its usefulness in pinpointing and 

rectifying certain errors in lens design. 
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CHAPTER TWO 

COMPUTER PROGRAMS FOR CALCULATING MAGNETIC FIELDS 

2.1 The Basic Theory 

The energy functional E for a rotationally symmetric circuits, can be 

expressed as (Munro 1971, Nasr 1981, Lencova 1984), 

p= 2m |ftw- ane ar ae (2.1) 

Total Area 

Where 

B B 

w= f ne ne (2-2) 
° ° 

where A(r,z) is the angular component of the vector potential, A=0 at 

the lens axis and at infinity. J(r,z) describes the distribution of 

the current density in the excitation coil. 

The flux density B is given by 

ome? 
B =V(B +8) 

= Zz 

Be= 9A (2.3) 
Oz 

and BZ. 1 Or A) 
x Or 

The field intensity H = B/ Hy, Mo where wu, is the relative 

permeability which can, in the magnetic material, depend on the value 

of the flux density. For non-linear magnetic material, W is given by 

equation 2.2. 
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If H is a linear function of B, it holds that, 

We be (2.4) 
Ho Uro 

where W is the stored magnetic energy per unit volume, i.e. the work 

per unit volume required to produce a final magnetic flux density B. 

Hr is the relative permeability from the beginning of the 

magnetization curve. ire = 1 in non-magnetic parts. 

Integration of equation (2.1) should be over an infinite area. But 

for magnetically shielded lenses, the boundary with A=0 can be put 

close to the lens. For axially symmetric problems equation 2.1 

becomes 

B2 
E=27 (,———__. - JA)r dz ar (2.5) 2U our 

Total Area 

It can also be shown (Munro 1971) that the minimization of equation 

(2.5) is equivalent to solving the three sets of equations, given by, 

B=curlaA 

H=18B (2.6) 
u 

curlH=J 

which the vector potential A (x,y,z) is required to satisfy at every 

point within a surface S. Hence: 

s-am | f ( 1__ curl A.curl A - J.A)r dz dr (2.7) 
2U our 

Total Area 
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In the case of rotationally-symmetric magnetic lenses, the only 

components of A and J which are non-zero are the circumferential 

components Ag and Jg. In this case equation (2.7) can be rewritten 

as: 

nS lf th, (288)? 4 (382 4 28)4 _ Jo Agjom raraz (2.8) 
Pb 32 ax z Total Area 

The minimization of equation (2.8) can be carried out by the finite 

element method. The magnetic structure, including the current 

carrying coil, the magnetic material and the space around it, as 

defined by the outer boundary (for which the vector potential A ise 

be known and is equal to O at infinity, is divided into a grid of 

quadrilaterals. Each quadrilateral is divided, in turn, into two 

triangles. This can be done in two alternative ways as shown in 

figures 2.la and 2.lb. In each case the vertices of six triangular 

elements meet at a lattice. Combination of arrangements 2.la and 

2.1b, as shown in 2.lc, gives twelve triangles in contact with each 

node, thereby improving the accuracy of calculation. 
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Figure 2.1 Subdivision of quadrilaterals into finite elements 

(a) cne possible way, (b) alternative way, 

(c) cambination of (a) and (b) for better accuracy 
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With this arrangement Munro (1973) derived a nine point equation for 

each node in terms of the vector potentials at the nodes and the eight 

vector potential values at the other vertices of the triangles in 

contact with the ncde, as shown in figure 2.lc. In this case the 

values of known vector potentials at the boundary are substituted and 

the equations solved for the unknown vector potentials at each nade. 

This will lead to the determination of the flux density over each 

element. The flux values can also be calculated and the axial flux 

density determined from the vector potential values near the axis. 

The axial flux density B(z) is given by: 

B(z) = 2(Ay X99 - Ay ry°) (2.9) 

ry rp (x5? - rae) 

where A, and A, are the vector potential at distances Yr, and ry from 

the axis respectively. Eq. (2.9) determines B(z) from the vector 

potential values on the two lines closest to the axis. According to 

Lencova (1984), her program AMAG determines B(z) values based on two 

lines as well as one line. In the latter case B(z) = 2a) 

oy 

Boundary loss in excitation 

The values of the vector potential at the outer boundary must be known 

so that the finite element equations can be solved for the unknown 

vector potentials. Because of axial symmetry, the vector potential 

along the axis is zero (A=0). However, the vector potential at the 

other three boundaries cannot be zero unless they are at infinity. 

This, in practice, means if the boundary is taken at a far distance 

and the value of (A) is assumed zero; the results will be reasonably 

accurate. This, of course, necessitates increased computer memory store. 
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The boundary problem can be elaborated as follows: 

The field strength H is given by, 

= pS (2.10) 

For a path (1) that encloses the coil windings, 

  1} Bz) | a= (2a) 2 fe 

A finite boundary must be specified where A=0. Thus the boundary 

problem arises in the differential finite element method. The 

boundary loss must be minimised, otherwise the lens excitation 

calculated by the differential finite element method will be less than 

the excitation found fran the Biot-Savart Law. 

Nasr (1981) calculated the boundary loss in excitation as shown in 

figure (2.2). 
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Figure 2.2 Boundary loss in a magnetic lens 
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The shaded area represents the excitation (lost) from the axial field 

distribution and transferred to the boundary. The excitation of an 

iron free coil was calculated with the Biot-Savart Law and the 

differential finite element method for a finite boundary. The 

calculations were repeated after surrounding the lens firstly by a 

superconducting sheet A=0 within the specified boundary, and secondly 

by an iron sheet of infinite permeability. Results showed a boundary 

loss in the case of the superconducting sheet. But no loss was 

apparent in the iron sheet case. The boundary loss causes errors in 

the calculated field which are highest near the boundary. The 

calculated axial field distribution in the central region of the 

structure, remote from the finite boundary, has good accuracy. 

In the case of closed magnetic circuits, for example in conventional 

lenses, which were the basis of Munro's research work, the 

differential finite element method is satisfactory. The case is 

similar to the case of a lens surrounded with an iron sheet where 

there is no boundary loss. This study proved that is correct for 

linear conditions where the magnetic circuit has high relative 

permeability, and will not apply in saturation conditions. 

On the other hand for open circuits, like iron free coils, or partly 

open circuits, like single-polepiece lenses, the differential finite 

element method may lead to unacceptable errors in the axial field 

distribution due to the loss at the boundary. These errors can be 

avoided or minimised by using computers with very large core stores. 

However, such computers are not always available, especially for the 

initial design work of magnetic lenses where research workers need to 

Change data repeatedly and get results quickly. Thus the need arises 

aes



for a method which can guarantee reasonable accuracy for magnetic lens 

design work, using mini or micro computers. Nasr's programs (Nasr, 

1981) as will be illustrated later, are designed to cater for such 

work. These programs give adequately smooth curves for axial field 

distribution. This guarantees the accuracy of the derivatives. 

2-1-1 The differential finite element method 

A mimber of programs are available utilising the differential finite 

element method for computing the vector potential distribution and 

flux density distribution of magnetic structures. 

2.1.1.1 Munro's programs 

Two programs are available in Munro's mamals (Munro, 1975) for 

calculating the field distribution characteristics namely M12 for the 

unsaturated magnetic lenses (linear condition), where the magnetic 

material has constant permeability, and M13 for the saturated magnetic 

lenses (non-linear condition), where the magnetic material 

permeability varies with the flux density. 

2.1.1.1.1 Munro's program for unsaturated magnetic lenses (M12) 
  

Munro's program M12 computes the vector potential distribution and the 

flux density distribution throughout the magnetic circuit and coil 

windings of unsaturated rotationally-symmetric lenses, where the 

magnetic material has constant permeability. The calculations involve 

minimising the energy functional represented by equation (2.8). 
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Figure 2.3 Triangular finite element. The vertices numbered counter 

clockwise, A(z,r) is the vector potential assumed to vary 

linearly with z and r. 

By considering a triangular finite element mesh as shown in figure 

2.3 assuming that A(z,r) varies linearly across the triangle, thus the 

contribution from the triangle to the value of the functional can be 

put in equation 2.8 if the area of the triangle is sufficiently small. 

Then the values of A and r at the centroid can represent the triangle. 

For the functional to be minimized a = 0. At the three vertices 

of the triangle represented by figure 2.3, a matrix equation is 

formed, 

wae = (Di 5] + (Ay) - [Q\] (2.12) 

a = 152,3; j)= 1,2,3 

Because of symmetry Dig requires the calculation of 6 elements only. 

The finite element equations for this program are obtained as follows: 

Considering 0 as the general node in contact with twelve finite 

element triangles (figure 2.4), a nodal equation is obtained at point 

OQ where the value of the vector potential AO is affected by the eight 

neighbouring vector potentials at the other vertices of the twelve 

triangles in contact. 
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Figure 2.4 A node 0 in contact with twelve right angled, overlapping, 

triangular finite elements. 

At any node (n) the change in energy functional is given as the total 

change from twelve triangles (Tj, Tz, T3, Tyr-Tyg) in contact with 

node n. By expressing this change in functional at node n in matrix 

form given by equation (2.12) a nine point equation for the node (n) is 

obtained: 

PiAn-1-1 + PoAn-r + P3An-re1 + PaAn-1 + P5An + PeAnia + P7Antr-1 * 

PeAnet + PoAnttt1 = (2.13) 

where C, = Q) + Q) + Q3 t+ eres Qo (2.14) 

Py, Po errreeeePg are the coefficients of nodal equations for node n 

which can be expressed in matrix form as follows: 

Neg a oe 2 

An, _) Cary 

+ 

Neq| P = 
7 Amst Gu (2.15) 

Arr-1 +1 Chen 

where 1 = 0 for asymmetrical problems and 1 = |] for symmetrical 

problems. 
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The matrix equation (2.15) has some important properties:- (a) It isa 

sparse matrix since each nodal equation can be expressed in terms of 

the vector potential at the node and the eight neighbouring vector 

potential values, (b) It has the properties of a banded matrix with 

half band width equal to I and (c) it is symmetrical about the 

diagonal. Hence only the coefficients of the banded matrix in the 

upper triangle of the matrix need be stored. The matrix equation 

(2.15) is solved by the Gaussian elimination, to give the vector 

potential at each mesh-point. 

The axial flux density distribution is obtained by numerical 

differentiation of the computed vector potentials at the mesh points 

near the axis. Flux values throughout the magnetic circuit are 

obtained at the centre of each finite element by numerical 

differentiation of the mesh point potentials at the vertices of the 

element. 

M12 program consists of the main program and twelve subroutines. It 

permits of a maximum mesh size of JM = 50 mesh points in the axial 

direction by IM = 25 mesh points in the radial direction. If more 

than 25 x 50 mesh points are required then the dimensions of the array 

variables must be increased accordingly. This requires a larger 

computer store and more time. Munro found that the execution time is 

roughly proportional to 3g and the store required is roughly 123. 

2.1.1.1.2 Munro's programs for saturated magnetic lenses (M13) 

Munro's program (M13) deals with saturated magnetic lenses, in which 

the lens excitation is so high that non-linear magnetisation curves 

must be considered. The program is designed to handle magnetic 
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circuits of up to five different magnetic materials. Data input 

allows for magnetisation curves in form of tables B and H of each 

magnetic material as shown in table (1.1). For H values which are 

lower than those in the table, i.e. those which represent the linear 

part of the magnetic material, the program assumes that the 

magnetisation curve has a constant slope. For H values greater than 

those provided in the data, the curve is assumed to have a constant 

slope equal to the free space permeability (} oo 

As in the case of unsaturated magnetic lenses program M12, the 

saturation program M13 computes the axial flux density. Assuming 

linear variations of A across a finite element triangle, the values of 

radial and axial flux density (Br) and (Bz) and (B) are calculated 

from equation (2.3). The corresponding values of 4p and the 

Pincremencal permeability (Hiner) are found from the magnetisation 

characteristics. The finite elements equation for the general node 

(equation 2.13) applies. Hence a set of nine point non-linear 

equations are generated at each node. These non-linear equations are 

solved by the Newton-Raphson iteration, by calculating the matrix 

equation, 

(Sim) C4An) = Eas (2.16) 

where J,,, is the Jacobian matrix of the non-linear equations, AA, is 

the difference in vector potential at the mth node between two 

consecutive iterations k and k+l and is given by, 

(AA,) = (Ay)* - (AQ) ett (2:17) 

E, is the matrix of the residuals. AA, is calculated from equation 

(2.16). After each iteration, the new value of Jnm is obtained and 
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the resulting matrix is solved by Gaussian elimination and a new 

approximation for the vector potential values is calculated from, 

(ayetl = (ak) + ( aayk (2.18) 

This process is repeated until the change in ( aay is within a 

certain accuracy limit. 

This program like M12 consists of a main program and extra subroutines 

to deal with iteration processes. In general for a mesh with J points 

in the axial direction and I points in the radial direction, the 

execution time is roughly proportional to NI33 and the store required 

is roughly proportional to wig , where N is the number of iterations 

required to achieve adequate convergence. 

2.1.1.2  Nasr's Programs 

Nasr's programs were present in Aston University's ICL 1905 computer 

system, with several trial versions for each program. Unfortunately 

no manuals and no comments on how the programs functioned were 

available. 

At the early stages of this work, applications of all the available 

versions were performed to find the best copy. As a result of these 

applications it was discovered that the saturation program (VPSAT) had 

not been applied for symmetrical cases, and in case of saturation the 

program was erroneously repeating the linear procedure. With Nasr's 

collaboration, several major modifications were made in the main 

program and in the saturation subroutine. The present VPSAT program, 

which is now fully documented by the present author, now deals with 

both symmetrical and asymmetrical lenses as well as linear and 

saturation conditions. 
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As part of this study comments were written on both of Nasr's 

programs, VPLIN and VPSAT. Both programs together with comments are 

listed in Appendices 3 and 4 for reference purposes. 

2.1.1.2.1  Nasr's improved vector potential program VPLIN for magnetic 

structures under linear conditions 

Nasr's program VPLIN, like Munro's program M12, computes the vector 

potential distribution and the flux density distribution throughout 

the magnetic circuit and coil windings of unsaturated rotationally 

symmetric magnetic lenses. The magnetic circuit is assumed to have 

constant, finite permeability. The algorithim of program VPLIN like 

that of M12 involves minimising the energy functional represented by 

equation (2.8). This minimisation is performed mmerically using the 

finite element method. The regi to be analysed is divided into 

small quadrilaterals which are subdivided further into small 

triangular finite elements, within which the vector potential A is 

assumed to vary linearly. 

There are important differences between Munro's program M12 and Nasr's 

program VPLIN which make the latter produce results of the same 

or better accuracies with the same computer core size. This can be 

explained as follows: 

Figure 2.5 shows a rectangular single pole lens. The outer boundary 

is represented by CDEF. 

Both M12 and VPLIN programs assume that the vector potential at the 

boundaries CF, CD, EF and DE (the axis) is zero. This will naturally 

affect the results since A# 0 at CF, CD and EF, The region within 
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Figure 2.5 Rectangular single polepiece lens with mesh 

distributions in Z and R directions and two 
inner boundaries, ZLB and ZRB to be used in 
Nasr's programs for further runs. 
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the finite boundary CDEF is divided into a grid of quadrilaterals, 

which includes the magnetic material, the coil and the free space. 

Edges of the quadrilateral are chosen perpendicular or parallel to the 

axis. Major mesh lines define the geometry of the structure and 

change the mesh size. The programs will subdivide the large 

quadrilaterals into smaller ones and finally to triangles representing 

the finite elements. 

With M12 program, the only way to improve accuracy is to increase the 

major mesh line numbers which will increase the computer core 

requirement. VPLIN program achieves improved accuracy with the same 

core size by introducing two inner boundaries ZLB and ZRB, remote from 

the other boundaries CD and FE, so that a finer mesh size is obtained. 

The inner boundaries ZLB and ZRB divide the structure into three 

regions which correspond to RUN 2, RUN 3 and RUN 4 calculations on the 

computer. The whole structure CDEF is used for the first calculation 

(RUN 1) which will give similar results to those obtained from M12 

program if the same mesh line numbers are used. When RUN 1 is 

completed, the vector potential values along the inner boundaries ZLB 

and ZRB are saved to be used in subsequent runs. 

RUN 2 region, shown in figure 2.6, has boundaries CD, GH and the 

axis DH with vector potential values set along them to zero. The 

right hand side boundary is ZLB with vector potential values saved 

from RUN 1. The region is divided by mesh lines in both axial and 

radial directions and the computations are done as for RUN l. 

For RUN 3, shown in figure 2.7, the vector potential values at the 

axis HM and boundary GL are set to zero. The values at the left hand 
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side boundary ZLB and right hand side boundary ZRB are those saved 

from RUN 1. The region is again divided by mesh lines as explained 

for RUNS 1 and 2 and the computations are carried out. 

For RUN 4, shown in figure 2.8, the left hand side boundary (ZRB) 

vector potential values are those saved from RUN 1, while the values 

for boundaries LF, FE and ME (the axis) are set to zero. Division by 

mesh lines and computations are carried out again. 

The three RUNS 2, 3 and 4 yield the final distribution of the vector 

potential throughout the magnetic lens. These results are more 

accurate than RUN 1 results, as shown in figure 2.9. 

2.1.1.2.2 Nasr's improved vector potential program under non-linear 

conditions (VPSAT) 

This program, like Munro's program (M13), is based on the minimisation 

of the energy functional representated by equation (2.1) where W is 

defined by equation (2.2). However, in addition to minimising the 

boundary problems associated with Munro's program, there are other 

differences which will be explained below. 

The boundary problems associated with Munro's programs (M12) and (M13) 

have been explained previously. In order to get accurate results with 

these programs, the boundaries have to be set at relatively far 

distances. This requires very large core store. 

VPSAT program overcomes the boundary problems, associated with Munro's 

(M13) program, by locating two inner boundaries in a way similar to 

(VELIN) program. The whole structure is used in the first run 
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Figure 2.1@ Relation between the relative permeability YW.) of 
magnetic material and the flux density B. 

TABLE 2.{ A TYPICAL RELATION BETWEEN THE RELATIVE PERMEABILITY 
AND THE FLUX DENSITY OF A MAGNETIC MATERIAL (Nasr 1981) 
  

-0 6366.2 
4 6366.2 
-68 5411.3 
-88 4668.5 

1.02 4058. 
1.224 2831.4 
1.325 1735. 
1.351 1033.6 
1230 815.3 

1.442 521.9 
1.5 253.1 
1.589 142.4 
1.623 116.1 
1.679 85.6 
1.79 51.8 
1.84 33.2 
1.866 24.4 
1.898 19.5 
1.919 16.5 
1.937 14.4 

2. 10.1 
ol T.1 
2.3 4.6 
2.6 3.3 
2.9 2.6 
3.1 2.4 
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As in Munro's M13 program, the contribution to the functional at 

any node (m) comes from the twelve triangles in contact with the 

node, a set of nine-point non-linear equations are generated at 

each node of finite element grid, similar to equation (2.13). 

These non-linear equations are solved by Newton-Raphson iteration by 

calculating the matrix equation (2.16). The value of the Jacobian 

matrix (Taq) and the sum of residuals En is calculated by determining 

the values of B, J+ and DMU where DMU is the incremental relative 

permeability and is determined from figure 2.10 or table (2.1). 4A, 

as previously mentioned, is the difference in vector potential at the 

mth node between the iterations k and k+l and is calculated from 

equation (2.17). After each iteration a new value of ann is obtained 

and the resulting matrix, like in Munro's (M13), is solved by Gaussian 

elimination and a new approximation for the vector potential values is 

calculated according to equation (2.18). This cycle of operations is 

repeated until the change ( aa)k is within a certain accuracy limit. 

The VPSAT program can be used for linear cases as well as non-linear 

ones, i.e. it can substitute for the VPLIN program. This is another 

advantage of this program as one program, suitable for both linear and 

non-linear conditions, needs to be stored. 

261.163 Lencova 's Program (AMAG) 

Lencové's AMAG program has the same theoretical basis as Munro's and 

Nasr's programs, since it utilises the finite element method for 

calculating the vector potential and flux density distribution in the 

magnetic circuit of a rotationally symmetric magnetic electron lens. 

The stored energy is expressed by equation (2.1). Program AMAG is 

= 66 0-



arranged in two stages, the first stage deals with the linear 

approximation with constant iron relative permeability eg? which is 

relative initial permeability. The second step is the nm-linear 

computation of the vector potential. In this stage, account is taken 

of the dependence of iron permeability on flux density in each part of 

the magnetic material, as is the case in Munro's M13 and Nasr's VPSAT 

programs. Additionally program AMAG deals with cases when the 

magnetic material is on the axis (eg. boreless lenses) by a special 

subroutine designated 'AMULV'. In this case B(z) value from equation 

(2.9) will be divided by the relative permeabilities obtained from the 

magnetisation curves or from the beginning of the magnetisation curve 

in the linear case i.e. the flux density is determined in an infinite- 

simally small bore along the axis. 

In Lencova's program, as in all the previous finite element programs, 

the whole area is divided into quadrilaterals which are subdivided 

into triangles; each small triangle contains only one type of medium 

(iron, coil or non-magnetic material). The vertices of each triangle 

are numbered counter-clockwise from 1 to 3 as shown in figure 2.3. 

Where A(z,r) is a linear function of the r and z coordinates in the 

triangle; the flux density at each triangle can be evaluated from 

equation (2.3). If the triangle lies in the magnetic material and a 

first approximation of the non-linear method is required, the value of 

L 
the two permeabilities ‘r and Ma can be determined from the 

magnetization curve to a linear approximation given by Hre Has 

Yo. Where a is the differential permeability and is given by 

L B 
d= | Ho, For the non-linear computation r and 'd are 

evaluated from the magnetization curve with the help of the following 
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(1) If BC < EM (1,1), then Yr= Ma = ro 

(2) I£ BC > BM (J,I) where J = IH(I), then Ha =1 and Mr is defined 

under 3 below 

(3) I£ BM (J,I) < BC s EM (J + 1,1), then 

BM(J+1,I)__- BM(J,I) be i EA 
‘ }o(H(J+1,1) - H(J,I)) ee) 

Yr = Be (2.20) 
Yo HW. cs (BC-BM(J, 1))/Fa 

where BC and BM are the axial flux density distribution from the 

computation process and the tables respectively. H is the field 

strength. 

Up to two kinds of iron may be handled (as opposed to five in Munro's 

program) represented by two magnetization curves, or B/H tables. In 

the case of saturated lenses the lens excitation may be progressively 

increased by giving a series of current densities in the coil. For 

the first step i.e. the lowest coil excitation, the computation of the 

lens is performed by linear approximation. Then in each non-linear 

approximation a correction to the vector potential at the mesh nodes 

is obtained and added to the previous vector potential. A maximum of 

7 approximations is allowed for each excitation, typical values being 

2 to 3 while in certain cases this was increased to higher than 7 

approximations. If the range of the absolute value of these 

corrections is smaller than 3%, camputation is stopped and the results 

are printed out. 

For the next excitation the resulting vector potential from the 

previous excitation is used. Since in saturation, a 50% increase in 
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lens excitation will not produce a 50% increase in the flux density, 

the new starting vector potential will be multiplied by a lower 

value of (1 + a)/2 where a is the ratio of the new and the last 

excitations. 

For the solution of the linear equation (2.18) the AMAG program uses 

the Cholesky decomposition, combined with the conjugate gradient 

method (or pre-conditioned conjugate method of Meijerink and Vandar 

Vost (Lencova 1984)). 

Program AMAG gives almost the same results for the axial field 

distribution as Munro and Nasr's programs if the same number and 

distribution of meshes is used. However, this program deals with 

several excitations with the same data. 

2.2 Axial flux density distribution due to the current windings 

in_the coil by Biot-Savart Law 

Nasr (1981), derived the axial flux density B, at a point P of axial 

coordinates z due to the current in a circular loop of radius r 

carrying a current I,, from Biot-Savart Law. Nasr's (1981) program 

"Biot" has been used by the present author and listed in Appendix 2 

for reference purposes. From Biot-Savart Law, 

[Bo(2)Iicop = A ere (2.21) 
2(6 +z) 

For a coil of rectangular cross section and excitation NI ampere 

tums (Fig. 2.11), B, becomes, 
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(2.22) 

  

A 
In this case A = 5 (coil width) 

(r9-r)) = the difference between the outer and inner radii 

Uo = the permeability of free space = 1.256637 1076 

2 = Gt+A 

where (Z) is the axial distance of the point (p) 

Z,=Z-A 

1d 
tan = (~*+4)) 

m= 22 1 (2.23) 
1 fsa tan> G 0) 

tan = (2+ 8)) 
x= 22 (2.24) 

1 oso 

fans) (5 Ho) 

oT, oo, a By are shown in figure 2.11. 

If the coil dimensims and the excitation are known then or Oo) B 

and By can be calculated. 

For a coil of arbitrary shape, the field at the axis can be calculated 

as the contribution of several current loops by dividing the coil into 

a number of circular elements whose cross-section form a grid of 

quadrilateral elements. The current for each element is given by, 

(I = (J) ;+ (area); (2.25) oi 

where a = the current in ith element, (J); is the current’ density 

of the it? element. 
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Figure 2.11 Axial flux density BY(z) from a coil of rectangular 

cross-section at a point P on the axis 

The axial flux density [BQ] at the point P is derived according to 

equation (2.21). 

The total contribution from the coil to the flux density at axial 

point p is then given by 

B,(z) = Zz (Bl; 
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CHAPTER THREE 

INPUT DATA AND OUTPUT RESULTS OF COMPUTER PROGRAMS FOR 
  

CALCULATING MAGNETIC FIELD DISTRIBUTION 
  

3.1 Introduction 

The first step in the application of computers to magnetic field 

distribution for lens design is the choice of a convenient program 

compatible with available computer memory store and time. Once that 

is done, there are procedures to be followed, in the input data 

preparation, which are often specific to each program and a full 

understanding of them will save the user much time and effort. In the 

following sections, special attention is drawn to the input data and 

output results of Munro (1975), Nasr (1981) and Lencova's (1984) 

programs. 

7 
3.2 Data Preparation for Munro, Nasr and Lencova's canputer 
  

programs 

This study has shown that the choice of the correct boundary, a good 

mesh layout and careful mesh distribution are prerequisites of 

successful computer aided design. To prepare data, for the 

calculation of the axially symmetric magnetic field distribution in 

magnetic lenses the lens cross section is shown later for example 

in figure 3.3a. Symmetrical lenses require only a quarter section, 

with symmetry plane on the right; asymmetrical lenses require a half 

cross section as shown in fig. 2.5 since they do not have a plane of 

symmetry in the middle of the lens. 
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The next step is to chose a suitable boundary to surround the magnetic 

circuit, at such a distance that the flux density can be assumed 

negligibly small at the boundary. This can be done, for example by 

calculating the axial flux density produced by the coil, directly, 

from the application of the well known Biot-Savart Law with a suitable 

computer program, like the one mentioned in section (2.1.2). 

The whole region of the magnetic circuit, surrounded by the chosen 

boundary, is then divided into quadrilaterals in such a way that all 

the outlines of the magnetic circuit and the coil windings lie along 

the quadrilateral's edges. It is advisable that these edges are drawn 

as near as possible parallel to or perpendicular to the lens axis. 

The axial and radial coordinates, for the mesh points, are written in 

millimeters with decimal points. 

The original, quadrilaterals are subdivided into smaller ones to 

provide fine mesh which is of utmost importance in finite element 

analysis. This is performed automatically by the computer, in 

accordance with the mesh numbers specified. 

Careful mesh distribution is required in all parts of the lens, with 

particular attention for the polepiece gap, region defining the 

polepiece and the coil windings. However, this should not be done at 

the expense of the other parts of the lens. The best approach is to 

change the mesh length gradually and avoid abrupt changes. 

Standard R-Z Coordinates are used; R=O0 on the lens axis. For 

asymmetrical lenses, the origin of the Z coordinate can be chosen at 

any convenient position; for symmetrical lenses, the origin is 
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conveniently chosen at the plane of symmetry. This is the case for 

the Munro, Nasr, and Lencova programs. Note however in the Lencova 

program the Z coordinate is considered positive; in the Munro and Nasr 

Program the Z coordinate is considered to be negative (see Figures 

3.3a and 3.3b). 

Data writing formats are of course specific to each program. Munro, 

has provided a comprehensive manual on his programs, which give a 

detailed account of input data formats. A brief description of these 

is given in the following paragraphs largely for comparison with the 

other program formats. However, Nasr and Lencova have not yet 

published similar manuals for their programs. A considerable effort 

has therefore been made in this thesis to analyse in detail Nasr's 

program, to correct programming errors and to provide an authoritative 

manual for future use. In addition Lencova's program, in 

collaboration with the author, has been adapted for the Harris 800 

computer and tested out on critical problems. 

3.2.1 Data Preparation for Munro's Programs 

Data preparation will vary according to whether the computation is 

performed for linear or non-linear conditions. Munro's program M12 

deals with linear cases (unsaturated magnetic lenses), while program 

M13 deals with non-linear cases (saturated magnetic lenses). 

3.2.1.1 Program M12 

Table (3-1) illustrates the general data format for program M12, and 

gives full explanation of the symbols used. 
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3.2.1.2 Program M13 

Program M13 deals with saturated magnetic lenses, in which the lens 

excitation is so high that non-linear magnetisation curves of the 

magnetic material must be taken into consideration. The program can 

deal with up to five different materials compared with only one in 

Nasr's program and two in Lencova's. Table (3.2) shows the general 

data format for this program, with the symbol's explanations. 

3.2.2 Data Preparation for Nasr's Programs 

Nasr's programs VPLIN and VPSAT as mentioned above had no user manual 

or operator instructions. Therefore, general formats for data inputs 

were developed for these programs during the course of this study. 

3.2.2.1 Program VPLIN 

The essential steps, in the data preparation for Nasr's VPLIN program, 

are similar to that of Munro's M12 program. However, in case of the 

VPLIN program, two extra mesh lines are chosen as inner boundaries as 

explained in section (2.1.1.2.1). These inner boundaries divide the 

whole data region used for RUN1 into three parts representing RUN2, 

RUN3 and RUN4, for asymmetrical cases; and into two parts for 

symmetrical cases representing RUN2 and RUN3. The inner boundaries 

are chosen from the axial mesh lines i.e. perpendicular to the lens 

axis. 

Table (3.3) illustrates the general data format for program VPLIN, 

with the symbol's explanations. 
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3.2.2.2 Program VPSAT 

This program was developed, in its general form, to deal with both 

saturated and unsaturated magnetic lenses. For the saturation case, 

the non-linear relation between the relative permeability /r of the 

magnetic material and the flux density B (Table 2.1) is introduced in 

the iteration process. 

The general data format, prepared for program VPSAT, is shown in Table 

(3.4), with the symbol's explanations. 

3.2.3 Data Preparation for Lencova's Program AMAG 
  

This program deals with both linear and saturation cases and can 

compute data of several excitations for the same run. 

Through information provided by Mrs Lencova, and after repeated trials 

at the University of Aston's computers, sufficient experience was 

gained to draw up a general data format shown in Table (3.5), with the 

symbol's explanations. 

3.4 Comparison of the Output Results of Computer Programs used 
  

in Calculation of Magnetic Field Distribution 

In order to make a critical comparison of the capability of the above 

mentioned computer programs, special model lenses were devised for the 

purpose of revealing any inherent errors in the programs. Data 

inputs, for all the programs, were compiled with the same boundary 

conditions, and the same mesh layouts and mesh numbers were 

used. 

= 76s



The relevant flux density was computed, under non-saturation 

conditions, with the three programs M12, VPLIN and AMAG. The 

computation was repeated for the same lenses, under saturation 

conditions, utilising programs M13, VPSAT and AMAG. Furthermore, both 

cases of symmetry and asymmetry were considered in each comparison. 

Be4 ed Asymmetrical Lens under Linear Condition 

The rectangular single polepiece lens shown in figure 3.1 was one of 

the lenses used for these comparisons. The data was compiled from 

this lens with the same mesh layouts for the linear programs M12, 

VPLIN and AMAG according to tables 3.1, 3.3 and 3.5 respectively. In 

addition to the usual data, program VPLIN requires the inner 

boundaries to be fixed, as indicated in figure 3.1. 

The output results from the three programs are shown in figure 3.2 

which indicates that for the same conditions and mesh layouts i.e. 

limited computer memory size, programs M12, AMAG as well as VPLIN with 

only one run produce almost identical results. However the VPLIN 

program, with four runs, provides for more meshes in the axial 

direction by introducing the inner boundaries, as explained in section 

(2.1.1.2.1), with aly marginally more memory size. Consequently 

program VPLIN, produces a smoother curve with better overall results 

than the other two programs. 

3.4.2 Symmetrical Lens under Linear Condition 

Figure 3.3a shows the boreless double polepiece test lens (quarter 

section) designed for comparison purposes. In this figure, the 

Symmetry plane is on the right i.e. the negative quarter is shown. 
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Figure 3.1 Rectangular single polepiece test lens with mesh 
distribution in Z and R directions and two inner 
boundaries, ZLB and ZRB, to be used in Nasr's 
programs. 

The Regions for Runs 1, 2, 3 and 4 are also shown 
in the figure. 
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m Axial field distribution B, Calculated with M12, 
Vplin and AMAG programs fag x 25) meshes 14.8% loss in NI 

o Axial field distribution 5 Calculated with Vplin 
(25 x 25) 4 runs 

@ Axial field distribution 5, Calculated with AMAG (69 x 90) 

13.86% loss in NI 

© 8B coil calculated with Biot Savart program 

Figure 3.2 Comparison between the output results of axial 

flux density distribution (B_) shown above of 

the single pole test lens shown in figure 3.1 
with same mesh distribution and mesh number 

(25,25) M12, Vplin and AMAG give the same results, 
while Vplin with 4-runs gives a smoother curve 
but the same peak value. AMAG with the larger 

number of meshes (69 x 90) gives a much lower 
peak and smoother curve (since the number of 
meshes is increased in both Z and R directions) 

Tais boundary condition give a boundary loss in 

excitation. This loss had been overcome by 

surrounding the open boundary by Smm thick 
high permeability iron sheet. 
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The boundaries are set just outside the lens, since the two poles can 

act like boundaries. 

The data used for programs M12, VPLIN and AMAG are written according 

to tables 3.1, 3.3 and 3.5 respectively. 

The output results are shown in figure 3.4. As with the 

asymmetrical lens, the results obtained for the same mesh layouts with 

programs M12, AMAG and VPLIN (one run) are identical, while program 

VPLIN produces a smoother curve (with three runs). The three 

programs, with more mesh numbers, are expected to produce lower axial 

peak flux density values which are in better agreement with results 

predicted from equation (1.15). This was tested with AMAG program. 

3.4.3 Asymmetrical Lens under Non-linear Condition 

Al-Khashab's spherical single pole lens shown in figure 3.5 was used 

for the computation of magnetic field distribution under saturation 

condition. The lens was recomputed with correct boundary and 

redesigned with thick shrouds, to avoid boundary loss and leakage 

problems, as explained in section (4.4.1). 

The data compiled from this lens, with the same mesh layouts, 

excitation and boundary conditions for non-linear programs M13, VPSAT 

and AMAG according to tables 3.2, 3.4 and 3.5 respectively. The 

corresponding output results are shown in figures 3.5 and 3.6. 

The results, obtained from programs M13, VPSAT with only one run and 

AMAG, are almost identical. Program VPSAT with four runs p.oduced 

better values, as shown in figure 3.5. This makes program VPSAT and 

= 80 =



*
w
e
u
s
o
u
d
 

O
V
W
 

S,BA0oUa] 
yoy 

ejep 
se 

pasn 
aq 

04 
‘uoTqoaaTP 

Y 
puke 

Z 
UT 

UOTINGTa4STp 
Ysou 

pue 
f
u
e
p
u
n
o
g
 

ayy 
S
u
t
m
o
y
s
 

s
u
a
T
 

48984 
a
f
o
d
 
 
 

  

 
 

  
 
 

  

 
 

   
 

   
 

   
 

a
T
q
n
o
p
 

a
e
T
n
3
u
e
z
d
e
a
 

Jo 
u
o
T
y
d
e
s
 

YayueNns 
qe°e 

a
u
n
d
T
y
 

uotyoes 
8, 

+ 

SS 
SY 

“0€ 
ub 

£
0
 

. 
i
e
e
e
 

1
%
:
 

r 
6L 

pee 

oC 

2 
wg 

= 
§ 

YIPTA 
TToo 

8 
a
p
s
 

3 

qnog 
0 

= 
U
g
 

8 

ta 
es=0cd 

E 

cr 
62 

8L 
sv 

s
u
e
t
d
 

A
u
j
o
u
m
A
s
     

*Sund 
yayyany 

Joy 
sueaZoud 

s,usey 
ut 

pasn 
8q 

07 
Guz 

pue 
qTZ 

SeTuepunog 
seuulom, 

pue 
UoTZeJTpP 

Y 
pue 

Z 
UT 

UOT4INGQTAASTp 
YsamM 

pue 
A
a
e
p
u
n
o
q
 

S
u
t
m
o
y
s
 

s
u
e
a
g
o
u
d
 

S
,
a
s
e
y
 

pue 
o
u
u
n
y
 

Jos 
BVep 

se 
pasn 

aq 
07 

suaT 
4saq 

atod 
aTqnop 

u
e
t
n
g
u
e
z
d
a
a
 

Jo 
uotyoes 

u
a
q
u
e
n
d
 

0 

9
 

fe 
s
u
e
y
 
—
{
-
4
 

“Te, 
Z
L
 

  

&4- 
“Lt 

uotTyoes 
8A 

- 
-0€- 

“S4- 
aGGe 

 
 

   
 

w
D
 

 
 

 
   

 
 

“LL 

“SB 
  

 
 

  
auetd 

OL   
 
 

A
u
q
a
u
m
f
k
s
       

L 
uny 

lz 
7A 6L 

oO 

Auepunog 

 
 

e
e
e
 

a
u
n
d
t
y
 

- 81



B(z) Tesla 
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value 

- 1.575T(*) (0.3% higher) 
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ey DS 
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= S_ = 0.094 a = 

Dm 
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S NI =1x 10, A-t 
a Pre = 1 x 10 

Sg = 8mm 

15mm 

valculated Bmax 
value 

according to 
OS Pb NI 

= 1.5708 
, i Sg 

(am Coil —}|}}]]— Coil 

| o 
YU 

22am OS 
oy 
So 

0 L | 1 L ! 
=55 =45 ) -30 10-404 10 . EY) ES5' 55 

Figure 3.4 Z(mm) 

The axial flux density distribution of the rectangular 
double pole (test) lens under linear conditions using 
xxx (27 * 44) meshes for M12, VPLIN, AMAG and see using 
67 * 90 meshes for AMAG. 
Note there is no difference in the Output result of M12 
VPLIN and AMAG when same number of meshes (27 # 44) is 
used while there is improvement in peak value when more 
meshes are used. 
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the corresponding linear program VPLIN more suitable for research 

laboratories with small store computers where the computer time is not 

as important as the memory store. Figure 3.6 shows the axial flux 

density distribution obtained by applying the three programs (M13, 

VPSAT, AMAG), (1) at given excitations of 1 x 104 At and (2) at given 

excitations of 1 x 10° At. A difference in the flux distribution 

behaviour is noticed inside the iron circuit at (1 x 10° A-t) between 

both M13, VPSAT and AMAG. 

Experience shows that it is advisable for VPSAT Program to choose the 

two inner boundaries remote from the coil region (i.e. remote from 

the region of high flux density) in asymmetric cases, or exclude the 

coil region from the final run. 

Increasing the number of meshes, other things being equal, is expected 

to result in better values from all the programs. This was tested 

with AMAG program only. 

3.4.4 Symmetrical Lens under Non-linear Condition 

When the rectangular double pole test lens (quarter section) shown in 

figure 3.3a was used for the symmetrical lens under non-linear 

condition, it was noticed that the lens had 14% boundary loss in 

excitation and flux leakage at 1 x 105 A-t. The lens was redesigned 

with a correct boundary and very thick shrouds to show the behaviour 

of each program inside the magnetic circuit. 

=83.<



(percadut 
uotTyngTaqstp 

xnTJ 
eyq 

Jo 
adeys 

Tensnun 
ayy 

a
T
)
 

“saysell 
06 

X 
99 

UITM 
WesZoud 

OYWY 
UITM 

O 
= 

Z 
pUe 

HWE—= 
Z 

42 
YUaWEACUdUT 

944 
a70N 

*(suugoad 
pyWy 

pue 
usey 

‘ouuny) 
“zu 

86S 
JO 

THOS 
UITM 

*4-¥ 
OOOOL 

JO 
u
o
T
z
e
y
T
o
x
q
 

“
s
u
e
t
 

etTod 
e
T
Z
u
t
s
 

T
e
o
t
u
e
y
d
s
 

Jo 
u
o
T
y
n
q
t
T
a
i
s
t
p
 

A
y
t
s
u
a
p
 

xntjy 
T
e
r
x
y
 

( ww)zZ 
OOL 

@ 
09 

04 
0¢ 

0 
0e- 

07- 
09- 

G
e
 

aundtTy 

08 - 
 
 

T 
T 

T 

      

qnog 

(840q 
ON) 

0 
= 

UTg 
 
 

  
   
 

 
 

wuiz6, 
= 

‘7 
0
9
 

Lyeo 
= 

“ass 

92 
= § 

eet 
= 

'asea 

OVWV 
YIM 

06x99 
a 

SUNJ-4 
JOsd\ 

WIM 
© 

  
  

 
 

O
V
W
 

PUD 
UN 

au 
4DsdA, 

“ELW 
UYIM 

Saysaw 
0gxGz 

x 
  

  c-0 

40 

90 

8-0 

OL 

D)Sa (2)a 

- 84 -



*
(
s
u
e
u
s
o
u
d
 

o
y
w
y
 

pue 
u
s
e
y
 

f
o
u
u
n
y
)
 

“4-V 
0
0
0
‘
0
0
L
 

JO 
u
o
T
y
e
q
T
O
X
™
 

(2) 
*4-V 

000‘OL 
Jo 

u
o
T
q
e
A
T
O
X
|
 

(1) 
“(G°€) 

eunBTy 
ut 

umoys 
suet 

jo 
u
o
T
y
n
q
T
a
y
s
t
p
 

AqTsuap 
xnTJ 

TeTxy 
9°€ 

aunsty 

 
 

 
 

  
   
   

 
 

  
 
 

  
  (ww) 

Z 

O0L 
03) 

09 
07 

0¢ 
0 

02- 
072 

09- 
08- 

e 
T 

T 
T 

T 
T 

0 

x 

i
e
 

eg 
(
e
4
0
q
 

OU) 
0 

= 
UTg 

w = 
(yur 

‘ 
Fie 

W
V
 

O
t
 

X 
| 

UT 
p
a
o
t
y
o
u
 

you 
st 

s
o
u
e
u
e
z
J
J
T
p
 

S
t
u
y
 

8 
ES) 

gO! 
X 

| 
4@ 

(2) 
UT 

S¥WW 
PUB 

yesda 
‘ELW 

oy 
JO 

S
z
T
N
s
e
d
 

ayy 
u
s
e
M
J
e
q
 

4
Y
I
N
O
U
T
O
 

O
T
J
o
U
Z
e
W
 

ayy 
a
e
 

e
p
t
s
u
t
 

s
e
n
T
e
a
 

x
n
T
J
 

ay} 
JO 

a
o
u
a
u
a
z
T
J
T
p
 

ayy 
9
7
0
N
 

é 

(1) 
ur 

swouBoud 
1D 

Joy 
4)Nsey 

awog 
—
—
 

2 
: 

i
)
 

O
V
W
 

06% 
09 

© 

W
W
V
 

0S*SZ 
e 

und 
euo 

JosdA 
PUD 

ELW 
0G*xGZ 

x 
el 

J
O
 

s
q
—
t
n
s
e
a
 

y
n
d
q
n
o
 

- 65 -



The data used with non-linear programs M13, VPSAT and AMAG were 

Prepared according to tables(3.2),(3.4) and (3.5) respectively, while 

figures 3.7 and 3.8 indicate the corresponding outputs. It is 

advisable for VPSAT program data to choose the first inner boundary 

correctly; avoiding regions of high flux density, such as the regions 

which are close to the coil winding or the magnetic circuit otherwise 

wrong field results at that region will be obtained, or as has been 

advised by Nasr (1981) to exclude the coil region from the final run. 

As with the previous cases, results obtained from Programs M13, VPSAT 

with only one run, are almost identical except the field distribution 

inside the magnetic circuit is different in certain regims as shown 

in fig. 3.8 at lx 10° A-t, while this is not noticed in fig. 3.7 at 

1x 104 At. Program VPSAT with three runs produced a smoother curve. 

Also, increasing the number of meshes, keeping other conditions 

constant, is expected to result in better results from all the 

programs. Only AMAG program was tested with more meshes. 

3.5 Computer core store and time required for running each program 

Compilation of all the above programs has been made in Harris 800, 

and a critical comparison was not possible between Munro, Nasr and 

Lencova's program AMAG since the latter is designed originally for 

large capacity meshes using double procession technique. Table (3.6) 

shows the comparison. 

= $6 =



Table (3.6 ) The computer core store and time required for compilation 

and running each program, and the nunber of iterations 

required under saturation condition 

  

PROGRAM COMPUTATION STORE REQUIRED THE NO. NO. OF 
TIME OF MESHES ITERATIONS 
(SECS) (KILO BYTES) 

M12 8.17 94 27*44 = 
VPLIN 28.48 123 27*44 —_— 
AMAG (LIN.) 64.30 236 27*44 — 

M13 118.60 104 27*44 14 
VPSAT 214.33 144 27*44 14 
AMAG (SAT.) 600 .24 236 27*44 2) 

3.6 Graphic Outputs 

Figures 3.9 and 3.10 show the graphic outputs of Munro's M31 

program. 

The method used for this program is that the program finds, by linear 

interpolation between the computed flux values at points on the finite 

element mesh, a set of points with the required flux value. The flux 

line is then plotted by joining these points together with a series of 

straight-line segments. 

To run program M31, data is required specifying the scale of plot and 

values of the flux lines to be plotted. The program also uses as data 

the mesh layout and polepiece geometry (as previously set for running 

program M12, M13 or the first run data from Vplin or VPSAT). 

The above mentioned figures show the distribution of flux lines 

throughout the magnetic circuit for Al-Kashab's(1983) spherical single 

pole lens recomputed with the original shrouds (magnetic circuit) at 

an excitation of 10° A-t as shown in Figure 3.9. There is noticeable 
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Figure 3.9 Distribution of flux lines throughout 
the magnetic circuit of Al-Khashab's 
(1983) spherical single pole lens, 
recomputed with original magnetic circuit. 
Note the excessive external leakage. 
Lens excitationis 10° a-t 
x plotting error 

  

    

    

        
    

  
    

Figure 3.10 Distribution of flux lines throughout the 
~ magnetic circuit of the lens shown in 

figure 3.9 but redesigned with a thicker 
magnetic circuit leading to reduced external 
leakage field. 
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external flux leakage. Figure 3.10 shows how the leakage was reduced 

by thicker magnetic circuit (shroud) using the same mesh layout and 

the same excitation. 

Figures 3.11, 3.12, 3.13 and 3.14 are graphic outputs for program 

AMAG. These outputs are given in form of IJ (indices) map, the 

indices I (in the radial direction) and J (in the axial direction) 

refer to the lower right-hand corner of the small quadrilateral. 

The first map shown in figures 3.11 and 3.13, prints the type of 

material in each small quadrilateral which are 0 for air, 1 for the 

magnetic material and 3 for the coil. This map is useful for checking 

the input data, and checking that the position of each material is in 

its place. 

Figure 3.11 and 3.13 show the distribution of material in the mesh for 

the recomputed Al-Khashab spherical single pole lens with the original 

shroud and with a thicker shroud. 

Similarly the flux density map shown in figures 3.12 and 3.14 prints 

the coded value of iron flux density in each <mall quadrilaterial 

lying in the magnetic material, the flux density is coded into numbers 

and letters in ascending order from 0 to 9 and A to Z. 

The coding table is written below the flux map, as shown in figure 

3.12. The iron flux density in the shroud reaches higher than 2.5 

Tesla (P) and reaches 2.8 Tesla (S) in certain parts, while the 

polepiece tip is 2.6 Tesla (Q). Figure 3.14 shows that with the 

thicker shroud, the iron flux density is reduced in most parts of the 

eels



#* PARAMETERS OF THE MESH: I1= 25, vi= 50, IRZ= 1250 o OF F.E.M. SYSTEI 12= 23, J2= 48, IS= 1104 ## FURTHER PARAMETERS: MAPNAT= 0, MAPPSI= 0, LISTIR= 0, LISTFD= 0, IDISC= 0 

  

seeeeteeee DISTRIBUTION OF MATERIALS IN MESH 

INDEX J - 
Ss 10 15 20 25 30 35 40 4s so =0000000000000000000000000000000000000000000000000 TOOOLLILALTALLAL1L11111111111111111111111 100000000 ~OOOLTTLLL1L11111111111111111111111111111100000000 0001 111000000000000000000000000000000000000000000 
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20 TOOOLILLAL LAA 1111111111111111111111000000000000000 21 -OOOL111111111111111111111111111111000000000000000 22 TOOOLLLTA11441111411111111111111111000000000000000 
23 TOOOLLITILLAL1111111111111111111111000000000000000 24 -OOO1111111111111 Ji1i11111111111111000000000000000 
25 ~OOOLLL1L21411111111111111111111111000000000000000 

INDEX 

O
V
O
V
E
O
U
S
U
N
H
 

LINEAR APPROXIMATION 

CURRENT DENSITY IN COIL= 1. 672E+01 A/MMex2 
AREA OF EXCITATION COIL 598.000 MMx#2 

Figure 3.11 AMAG IJ graphic output of -Al-Khashab's (1983) 
spherical single pole lens recomputed with 
original magnetic circuit; the output shows 
the distribution of the materials in the mesh 
(0 = vacuum, 1 = iron, 3 = coil) * C 
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#* PARAMETERS OF -THE MESH: I1= 25, vi= SO, IRZ= 1250 
++ OF F.E.M. SYSTEM: I2= 23, v2= 48 IS= 1104 
## FURTHER PARAMETERS: MAPMAT= 0, MAPPSI= 0, LISTIR= 0, LISTFD= 0, 

#euneeeeee DISTRIBUTION OF MATERIALS IN MESH 
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Figure 3.13 AMAG IJ graphic output of the distribution of 

materials in the mesh for Al-Khashab's spherical 
single pole lens but redesigned with thicker 

magnetic circuit (shrouds) to reduce external 
leakage 
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shroud to a value between 0.13 Tesla (0) and 1.7 Tesla (D), while in 

the polepiece tip it is increased to 3.08 tesla (N). The iron flux 

density map is also very useful to detect the IJ position of Bae 

In figure 3.12 B,., is equal to 3.34 Tesla (X) while in figure 3.14 

Bax 1S equal to 3.89 Tesla (T). 

This study is showing that both M31 graphic output and AMAG maps can 

be used in complementary basis since in the first case the plots are 

related to r and z coordinates, therefore they give the actual 

polepiece shape and give a general idea about flux behaviour, while in 

the second case the maps are related to IJ indices and give more 

specific and quantitative information about the iron flux density 

(keeping in mind that this useful information can be obtained even in 

the absence of plotting facilities). 
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CHAPTER FOUR 

DIFFICULTIES WITH THE FINITE ELEMENT METHOD 
  

CALCULATIONS 

4.1 General difficulties 

During the course of this study, it was possible to pinpoint some 

common errors in computer aided magnetic lens design. These errors 

can be, generally, classified under two different headings; the first 

can be ascribed to factors inherent in the finite element method 

itself, while the second is related to factors inherent in the process 

of lens design which has, in some instances, led research workers into 

erroneous conclusions. 

4.2 Factors Affecting the Accuracy of the FEM 

Previous research workers have drawn attention to some of the 

limitation of FEM, when applied to magnetic field calculations. Thus 

Hill and Smith (1980) have pointed out that, for a single pole lens, 

the mesh layout is critical. They showed that for the same lens 

geometry, different mesh layouts give widely varying resnies for the 

same excitation. 

Craven and Scott (1985) have also shown that large discrepancies in 

optical properties may be caused by what appear to be small variations 

in the axial field calculation, due to inherent limitations of Munro's 

programs. These errors are almost certainly due to the use of an 

unfavourable mesh distribution. 

= O7n-



The effects of the boundary and mesh numbers were also discussed by 

Nasr (1981). Nasr minimised the boundary problems associated with the 

FEM programs designed earlier by Munro (1971). Nasr attributed the 

improvements, obtained through his improved programs, to the increased 

mesh numbers used. However, as explained earlier in section 

2.1.1.2.1, Nasr's programs use more meshes in the axial direction 

only. This study has shown that the boundary effect is greater in 

open structures like iron free coils and partially open structures, 

like single pole lenses under linear conditions. However the boundary 

effect is not serious in conventional double pole lenses under linear 

condition, since the magnetic circuit has high permeability under 

linear condition and A=0 outside the magnetic circuit. 

Under saturation condition the boundary setting is important in all 

cases i.e. even in double pole lenses, since the external leakage flux 

can be often high under saturation conditions. If this is the case, 

setting the boundary too close to the iron casing may cause boundary 

loss in excitation. 

4.2.1 The Effect of Mesh Distribution 

To show specifically the effect of mesh distribution, a lens of known 

field distribution, shown in Figure 4.1, was chosen. This lens is an 

unsaturated symmetrical double polepiece lens. The maximum flux 

density, B,,, at the centre of the air gap Sgr separating the parallel 

faces of the two polepieces is given by equation (1.15). 

When equation (1.15) was applied to Munro's double pole lens (quarter 

section) shownin figure 4.1, (Sg = 10 mm, D= 10 mm), B,, was 0.0500 

Tesla at 480 A-t. Munro (1975) has computed B,, according to the mesh 
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distribution shown in the figure and obtained a result of 0.0519 Tesla 

which is about 3.6% higher. A further step, taken in this study, was 

to rearrange the mesh distribution of Munro's lens in the R direction 

and Z direction as shown in figure 4.2. When B,, was recomputed, 

according to the new mesh arrangement, a result of 0.0501 Tesla was 

obtained which is in agreement with the value obtained from equation 

(1.15). 

The results of the axial field computations for the two cases are 

shown in figure 4.3 ice. that of Munro's original mesh distribution as 

well as the new mesh arrangement suggested in this study. Notice the 

effect of the mesh distribution is shown in the maximum flux density 

in the gap between the two poles only. 

The same procedure was applied to the symmetrical double polepiece 

lens designed by Cleaver (1978). This lens, shown in figure (4.4), 

(quarter section) has an air gap Sg of 10 mm, an axial bore diameter D 

of 5 mm and is excited by a solenoid. Cleaver used Munro's programs 

for computing the lens field distribution under both saturation and 

non-saturation conditions. The mesh distribution used for the 

computations is, unfortunately, not indicated in Cleaver's published 

results. The B, value obtained by Cleaver, under non-saturation 

conditions at 104 A-t was 1.29 Tesla which is 8.4% higher than the 

value of 1.19 Tesla calculated from equation (1.15). The computations 

were repeated, in this study, at the same excitation and according to 

the mesh distribution shown in figure 4.5.. The same program used by 

Cleaver was applied. The B, value thus obtained was 1.20 Tesla which 

is only 0.8% higher than the calculated value. Thus the error was 

reduced to an almost negligible amount, by using a convenient mesh 

distribution. 
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Figure 4.6 indicates the axial field distribution computed by 

Cleaver and that computed for the same lens, but according to the mesh 

distribution suggested in this study. It can be noticed in figure 

4.6 that the mesh distribution have effect on the B, value at the 

gap while there is not significant effect in other regions. 

The above two examples, of field calculations under non-saturation 

conditions, indicate that the distribution of the meshes, apart from 

their numbers, have a significant effect on the computed flux density 

at the peak regio. To obtain high accuracy, the mesh length should 

change gradually. Abrupt changing of the mesh length should be 

avoided, bearing in mind that more mesh points are needed near the two 

polepieces. 

The errors detected in the Munro and Cleaver's computations referred 

to above are due to their mesh arrangements, because meshes have been 

concentrated at the polepiece region, at the expense of other lens 

parts. 

The effect of the mesh arrangement, on field calculations under 

saturation conditions, was also studied. Cleaver's lens, shown in 

figure 4.4 was again utilised for this purpose. The lens has a 

shroud of very high permeability, as suggested by Cleaver. Figure 

4.7 shows the axial field distribution results, computed at 9 x 103 

A-t using Munro's saturation program. Cleaver's results, using the 

same computer program, are also shown. In the non-critical region, 

outside the air gap region, there is excellent agreement. However in 

the critical air region the difference between the two sets of results 

is obvious. Thus B, is 3.58 according to Cleaver's computation which 
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is about 5.4% higher than the B, value of 3.4 Tesla computed from the 

mesh distribution shown in figure ‘4.5. When the computation was 

carried out using step method (changing the polepiece shape into an 

artificial shape which will give rectangular meshes), the results were 

in a good agreement with the results obtained in this study. 

The area under Cleaver's axial field distribution curve is 1.7% higher 

than the corresponding A-t applied, while the area under the new mesh 

arrangement curve is within 1% of A-t applied, i.e. the main influence 

is in the B, value in the gap region. 

Another example of the mesh distribution effect on magnetic field 

calculations, under saturation conditions, was revealed in 

Christofides' (1982) single pole lens shown in figure 4.8 - 

According to Christofides' (1982), the peak axial flux density of the 

lens, computed by Munro's saturation program M13, is 26% higher than 

the experimentally measured value. Christofides in his thesis thought 

that Munro's program had some “inherent inaccuracies" and these, 

combined with "possible experimental errors, caused by the finite size 

of the Hall probe as well as possible variations between the magnetic 

properties of the material used in the experimental lens (Swedish 

iron) and the soft iron assumed in computing", have caused the large 

discrepancy between the experimental and computed values. 

This study has shown that Christofides’ postulations were not correct 

and his experimental results are in fact compatible with computations, 

correctly carried out, by Munro's program M13. The problem had 

arisen, ptiely and simply, from the inadequate mesh layout used by 

Christofides. When a convenient mesh layout was used, results are 
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shown in figure 4.8 the computed peak flux density value was in 

very good agreement with the experimental results as shown in figure 

4.9. 

The effect of mesh layout on calculated results is also clear in 

figures (4.10a and 4.10b) which shows, for the same number of mesh 

points, but different mesh arrangements the total (By) axial field 

distribution and that due to iron magnetisation Bre at different lens 

excitations. Figure 4.10a shows the experimental values for the total 

field By, and those calculated by Christofides (1982) and by the 

Present author. The differences between the experimental and 

Christofides computed values are clear, while the values computed from 

this study are in a good agreement with Christofides experimental 

values. Figure 4.10b shows a comparison between Bre (experimental) 

and (By-Booi 1) calculated by Christofides and by the present author. 

The calculations by the present author are in excellent agreement with 

experimental values. This indicates strongly that Christofides used 

an unsuitable mesh arrangement and probably assumed that the choice of 

mesh was not a significant parameter. The computation was carried out 

in this study with M13 program, 25, 50 meshes and with AMAG program, 

32, 70 meshes and finally with AMAG, 54, 100; the results were in good 

agreement in the three cases. 

It therefore is advisable to pay sufficient attention to the mesh 

distribution especially in this case, where both the polepiece and the 

coil have irregular profiles, and more meshes are required to define 

them. 
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4.2.2 The Effect of Mesh Numbers 

The effect of the number of meshes on the accuracy of the results was 

also studied, by the application of the FEM programs to the analysis 

of the same lens but with increasing mesh numbers, all other 

Parameters being kept constant. The effect on the results was 

noticeable in all lens designs. However, the influence of number of 

meshes was more obvious in acute-angled pole faces and open 

structures, since more meshes are needed to define the pole face 

adequately in the former case, while in the latter case the boundary 

must be set as remote as possible from the coil to overcome boundary 

problems as explained in section (2.1). Open structures are 

particularly sensitive to the number of meshes employed. 

As an example of the influence of mesh numbers, different programs 

were applied to the spherical single pole lens shown in figure 4.11. 

The axial flux density was first computed with three programmes 

(Munro, Nasr and AMAG) for (25 x 50) meshes. It was noticed that at Z 

= -34, and +0, an unusual field shape appeared. It was therefore 

decided to run the AMAG program with 66 x 96 meshes which is not 

possible at the moment with the other programs. The same figure shows 

the resulting axial flux density distribution in which these anomalies 

disappear. 

By plotting the peak flux density for the lens shown later in figure 

4.29 .for constant excitation against 1/n, as shown in figure 4.12 

where 1/n is reciprocal of the mesh numbers it is possible to 

extrapolate to an infinitely fine mesh. The results shown in this 

figure were cbtained when the meshes were conveniently distributed 

between all the lens parts including the pole face and coil windings, 
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avoiding abrupt steps as explained in section (3.1). However, when 

the mesh numbers were increased, without proper attention to their 

distribution, the accuracy still improves but not to the same extent. 

It seems therefore that the choice of mesh layout is as significant as 

the choice of mesh number. 

A second example of the mesh number effect was demonstrated from the 

cleaver's double pole lens shown in figure 4.4 but without bore. 

The error in the peak flux density value for this lens, computed with 

(25 x 50) meshes, and an arbitrary but reasonable arrangement of the 

mesh distribution, was 30%. Without changing the mesh arrangement the 

error dropped to 4%, when the number of meshes was increased to (60 x 

90) as shown in figure 4.12. When the mesh was optimised fig. 4.5 

this error dropped to 0.8% for (25 x 50) meshes. It is shown in 

figure 4.12 also that using the step method always give good agreement 

with the expected value although slightly lower. 

4.2.3 The Polepiece Shape Effect 

The application of the FEM to various test lenses of constant gap 

width has indicated that, with the same mesh numbers and distribution, 

the accuracy of the results can change if the polepiece profile is 

changed, even for high permeability iron. An example is shown in 

figure 4.13 with four test lenses of constant gap width Sg =10 mm 

but with different polepiece taper angle of 0°, 45°, 60° and 90° 

respectively. The permeability of the iron is high (= 5 x 104). 

The results, of maximum flux density values B, at the air gap between 

the two polepieces shown in figure 4.14 indicate errors of Letween 

0.3% and 1.8% according to the degree of the profile when compared to 

B, value, obtained from equation 1.15, using the same optimised mesh 
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distribution and numbers. This suggests that with 45° and 60° taper 

angles larger errors in maximum flux density values B, are expected 

when an arbitrary mesh distribution or insufficient mesh number are 

used. 

4.2.4 The Boundary Effects 

As explained in section (2.1), if the boundary is not chosen 

correctly, there may be loss in excitation leading to large errors in 

the axial field distribution. These errors can be reduced by setting 

the boundary at a place where the flux density is negligible. 

Alternatively one can place an iron sheet of infinite permeability 

close to the boundary. Note however that this may distort the field 

distribution near the iron sheet. 

For reasonably accurate axial field distribution results with FEM, a 

useful rule of thumb is to set the boundary at a distance of about 

five times the mean coil diameter (D,,). This applies especially for 

iron free coils and also to single pole lenses under linear conditions 

and to all lenses under saturation conditions. 

To show the effect of boundary setting and the number of meshes used, 

the axial flux density of a simple asymmetrical test lens consisting 

of a thin coil, shown in figure 4.15 backed by an anmular iron ring 

of the same shape and size as the coil was computed with three 

different programs, M12, VPLIN and AMAG. Figure 4.16 shows the 

results. When the Z boundaries were at (-65 mm and 75 mm), the axial 

flux densities from the three programs agreed within 1%; however the 

loss in excitation with each program, with same mesh numbers (25 x 

25), was about 8%. The boundary loss in excitation was reduced to 
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about 1% when the boundaries were set at (-100 and 150 mn), Me = 

50,000 or alternatively the open boundary was replaced by a 5 mm thick 

iron sheet of high permeability. When the mesh numbers were increased 

to (61 x 96) with the same Z boundary -65 and 75 mm, the loss in 

excitation due to the boundary remained at 8%, but the peak flux Bp 

density value was reduced by 7% (see figure 4.16). When the boundary 

was extended at five times the mean coil diameter i.e. at -100 and 150 

mm, the loss in excitation was reduced to 1% when either (25 x 25) or 

(61 x 96) mesh arrangements were used. However, the corresponding 

peak flux density value was not affected. This means that a too-near 

boundary causes excitation loss, and substantially reduces the effects 

of the axial flux density distribution close to the boundary, but does 

not necessarily reduce the peak value. However insufficient mesh 

numbers do not of themselves cause a loss in excitation, but may well 

affect peak flux density values. 

Another example of a lens, tested for boundary loss, is shown in 

figure 4.17. This lens was designed according to the idea of Huang 

(1981). It consists of an energising coil in the form of a long 

solenoid of rectangular cross-section, partly surrounded by a thick 

iron casing (A). Inside the coil are placed six field-shaping rings 

co-axial with the optical axis. Under saturation conditions a further 

external casing (dashed line) could be added. The axial field 

distribution, for the coil in free space (1) and the coil with rings 

only (3), were obtained. The loss in excitation in the absence of the 

iron casing was (21), when the Z boundary was set at +80 mm and the R 

boundary at 60 mm. To overcome the loss, the boundary had to be set 

at 260 mm i.e. five times the coil mean diameter, this required more 

meshes i.e. more computer memory store. The loss disappeared when the 

outer casing was placed in position. These results are shown in 
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Ss coil width s = 10mm 3 
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-100- 760; 40: =20: 0 20: 40- 60: TD: 
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Figure 4.16 

The total axial flux density distribution computed with (25x25) 

meshes using /4i2, VPLIN, AMAG. 
OG The total axial field distribution using AMAG (51x96) meshes 

on the asymmetrical test lens shown in figure 4.19 S = 0.033, 

Un 
Using the different boundary setting. 

The first boundary -60 and 75mm cause 8% loss in excitation when 

either 25, 25 or 51, 96 meshes are used. 

The second and correct boundary reduce the boundary loss in excitation 

to within 1%. The flux values near the boundary will be affected while 

the peak value will stand for either mesh number the same as it 

was for first boundary 
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The axial field distribution. 1. B(z) coil calculated 
with Biot Savart program with infinite boundary, 2. B(z) 
coil calculated with AMAG program using finite boundary 
(80mm), 3. B(z) for coil + iron rings with AMAG program 
using finite boundary (80mm) and finally 4. B(z) for mini 
ring lens after surrounding the coil + iron rings with 
(A) 8mm thick iron casing and (B) (32,28mm) thick iron 
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Figure 4.18 

Axial flux density distribution in mini ring lens shown in 
Figure 4.17 under non linear condition 1.00) with thin 
iron casing 8mm 2.(@@@) with thicker iron casing (32 from 
side and 28 from up) to prevent leakage. 

Note 

The difference between 1 and 2 is due to both boundary loss (7.4%) 
and leakage flux which have effect on the peak value equal to 
(8%) loss in 1. 

3(@#a) the axial flux density distribution of iron free coil 
computed as in previous cases 1 and 2 with 71*73 meshes 
using AMAG program. 

462-0) the axial flux density distribution of iron free coil 
calculated by Biot Savart law. The difference between 3 
and 4 , due to boundary loss is (14%) in 3. 
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figure 4.17. When the lens with the narrow casing (8 mm) was 

computed under saturation conditions, external leakage problems arose, 

therefore an extra casing (B) was added to overcome the leakage 

effects, as shown in figure 4.18. 

4.3 Faults and Misinterpretations in Lens Design 

The limitations of FEM, in magnetic lens design, have been set out in 

Section 4.2. However, it should be bome in mind that not all errors 

in FEM computation results are due to the FEM itself. Some of the 

errors are inherent in the lens design and have led some research 

workers into wrong conclusions. Prominent amongst factors causing 

such misleading conclusions is the influence of insufficient iron 

casing (shroud) thickness or external leakage effects, which in tum 

are influenced by the coil size and position. 

4.3.1 External Leakage due to Insufficient Magnetic Circuit 

(Shroud) Thickness 

External leakage can be significant in both single and double pole 

lenses under saturation conditions; where the excitation is high 

producing a correspondingly high lens flux. A portion of this flux 

will appear outside the iron casing if its thickness is not 

sufficient. R 

Examples of this kind of leakage effect are noticeable, with 

hindsight in the saturated single pole lenses studied by Al-khashab 

(1983). Figure 4.19 shows the recalculated B(z) curves of the 

original spherical polepiece lens of Al-khashab (1983), with spherical 

polepiece and coil surrounding the polepiece. The figure shows that 
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Figure 4.19 

Recalculation of axial field distributions of the Al-Khashab's 
(1983) lens. i.e. Spherical single pole lens with coil 
surrounding the polepiece. 

05/0, = 1.88, S/D, = 0.347, s = 26 mm. 

Note: Appreciable external leakage occurs at excitations higher 
than 16445 A-t, i.e. at BaF higher than 1.5 Tesla. 
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there is appreciable external leakage flux in the axial region between 

Z = -38 and Z = -68 mm for excitatims greater than 16,000 A-t. The 

associated loss of amper-turns increases rapidly with increasing 

excitation amounts to some 32% at an excitation of 625,600 A-t, 

thereby reducing the polepiece flux density Bore 

When the magnetic circuit is thickened as shown in figure 4.20, this 

loss is substantially reduced. 

This figure shows the B(z) curve of the redesigned spherical polepiece 

lens. As shown in this figure the external leakage is greatly 

reduced. At an excitation of 625,600 A-t, now a 7.5% increase in the 

Bor value occurs. 

If the magnetic circuit is further thickened as shown in figure 4.21, 

the external leakage is negligible, the Boe value at an excitation of 

625,600 A-t has increased by 15.8%. 

Figure 4.22 summarizes these results. The total field Bp and the Bre 

values at the pole face are shown for different thickness of the 

shroud. 

When the magnetic circuit thickness is equal or less than R/2 i.e. 

half the axial polepiece radius, appreciable external leakage flux 

occurs, this reduces the Bre value at the pole face and causes the 

progressive reduction of Bre: 

This explains some of the curious results obtained by Al-khashab (1983). 

This external leakage effect is also noticeabie in the single pole 

lens (Hermes) studied by Christofides (1982). 
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Figure 4.20 

Variation of axial field distribution with excitation for spherical 
single pole lens shown above, with larger iron circuit than in figure 4.19, 
The external leakage occurs at excitation higher than 200,000 A-t 
i.e. pole face flux density (Boe) higher than 4 Tesla. 
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Figure 4.22 

The total axial flux density distribution and the Boe values 

R
O
N
 

x 
B
o
e
o
 

(B.-By, a) at the pole face tip of spherical single pole lens 

shown “in Figure 4.19 at different lens excitation. (Calculated 

for four different thicknesses (1-4) of the lens shell). 

Note The value of both Ey and Boe at the pole face increase 

with increasing shell thickness. 
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Figure 4.23 shows recalculated B(z) curves of the lens with its 

original magnetic circuit (shroud); external leakage is noticeable at 

excitations higher than 1.5 x 104 At, i.e. at Bp¢ higher than 1.5 

Tesla. 

Figure 4.24 shows lens Hermes redesigned by the present writer, with a 

thicker magnetic circuit, it can be noticed from the same figure that 

there is no external leakage even up to 10° A-t. 

There is also a useful increase in the total field at the pole face 

(Boe) of 7% (for a lens excitation of 10° A-t) compared with Boe with 

the original design of magnetic circuit. 

The situation is summarized in figure 4.25 which shows the Bp and Bp, 

at the pole face for different lens excitation for the original 

magnetic circuit (A) and with the thicker magnetic circuit (B). 

It can be noticed from the figure that Bp and Bp, are almost the same 

in the linear region up to 1.6 x 10# A-t; above this value external 

leakage starts to occur and tends to reduce Bp and Bp, values, as 

indicated by their increasing values as the thicker magnetic circuit 

is made. 

External leakage was also noticed in the double pole (test) lens, with 

rectangular section polepieces shown in figure 4.26 which shows the 

B(z) curve at an excitation of 2 x 10° A-t when the lens is excited 

by (a) a short solenoid and (b) a long solenoid. 
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Figure 4.25 Variation of By and Bre at pole face with lens 

excitation for (A) original magnetic circuit; (B) 

thicker magnetic circuit, see Figure 4.23 -and Figure 

4.24 . B coil at pf is shown for reference. 
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The lens itself is surrounded by a sheet of high permeability iron, in 

order to eliminate the effect of boundary loss. 

External leakage can be noticed with both coils, but with the long 

solenoid the external leakage is much higher. Figure 4.27a shows a 

set of B(z) curves at different lens excitation for the double 

polepiece lens shown in figure 4.28a, when the lens is excited by 

the short solenoid. Figure 4.27b shows the B(z) curve at different 

lens excitation when the lens is excited by the long solenoid (b), 

using thick magnetic circuit to prevent leakage in both cases. 

Figure 4.28b shows how thicker magnetic circuit can improve the Bre 

value at pole face especially when long solenoid is excited. 

4.3.2 Influence of Coil Size and Position 

The influence of coil size and position on external leakage can be 

illustrated from the two lenses studied by Al-khashab (1983). These 

are the lenses already discussed (see figure 4.19). The second lens 

studied by Al-khashab is shown in figure 4.29. This has an identical 

iron circuit; however it has a thin flat coil of 1 mm width placed 0.5 

mm away from the pole tip. 

Figure 4.29 shows that there is no significant loss in excitation and 

no appreciable leakage up to about 10> aA-t. 

Moreover the loss in excitation at 6.25 x 10° A-t is only 7% compared 

with the value of 32% mentioned previously (figure 4.19). This 

remarkable improvement ‘in lens performance seems to be due to the fact 

that the thin coil in the vicinity of the polepiece produces a high 
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Figure 4.27a 

Axial flux density distribution in rectangular double pole lens at 

different lens excitations with thin coil (D,/D, = 31, S/Dm = 0.094) 

the coil position is -3 to 3 mm. The shrouds are very large (70mm, 

50mm) i.e. there is no leakage up to (9) Tesla at the peak. 
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Figure 4,28a 

Rectangular double pole test lens with thin maanetic circuit (A) 
and thick magnetic circuit (B). The lens exciting coils a and b have 
the same cross section. 
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Figure 4.28) Variation of Bee at pole face with magnetic field strength 

(H) of double polepiece test lens shown above 

1 xxx Bpe value at pf when the lens is excited by coil (a) 
(short solenoid) using magnetic circuit thickness 

15mm (A) 
2 eee Bre values when the lens is excited by coil (b) using 

previous magnetic circuit (A) 

3 000 Bre values when the lens is excited with coil (b) 
is using thicker magnetic circuit (8) 

Note: the change of Bre value For coil(b)when the magnetic 
circuit is thicker in 3 
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field in the lens gap but a low field strength in more distant parts 

of the magnetic circuit as revealed by the flux density distributions 

of figure 4.29. On the other hand, the coil shown in figure 4.19 

produces a higher field strength in the body of the iron polepiece 

especially where it joins the backing plate of the lens, as indicated 

by the B(z) curves in figure 4.19. 

This means that for a given external leakage flux density a thicker 

backing plate will be needed for a thick coil surrounding the 

polepiece than for a thin coil placed near the polepiece tip. Thus 

the design of the iron casing is strongly influenced by the choice of 

coil position, when the polepiece operates at saturaion flux 

densities. If the lens casing is not (sufficient) thick, premature 

saturation will occur in the casing itself, leading to anomalous 

behaviour of the magnetization of polepiece as mentioned previously 

  

(Figure 4.22). 

4.4 Systematic Investigation of Possible Lens Designs 

4.4.1 Important parameters of double pole lenses 
  

An example of a double pole test lens is shown in figure 4.30. The 

lens has two coils (a and b) of the same cross-section, but of 

different shape and position. The lens has sufficiently thick shrouds 

to prevent external leakage. The lens is excited first with coila 

(short solenoid of S/D,,= 0.094), placed between the two poles and 

secondly with coil b (long solenoid) (S/D, 0.508). The relevant set 

of B(z) curves were shown previously (figs. 4.27a and b). 
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Figure 4.30 also shows the variatin of the pole face tip magnetization 

Bre and the half width d, as functions of the magnetic field strength 

(H). 

Up to 7 x 10° A/m, the half width does not depend on the coil shape 

er position this means that the half-width is determined by the iron 

polepieces. 

Above this excitation the half-width increases sharply when the long 

solenoid is excited. With the short solenoid the half-width does not 

increase with saturation since the half-width of this is much smaller 

than that of the long solenoid. 

The By, values for a given value of H are higher in case of the long 

solenoid; this means it is a better magnetiser for the pole face tip. 

The relevant advantages and disadvantages of thick and thin coils are 

explained in the next section. 

4.4.2 Important parameters in single pole lenses 
  

In previous sections the importance of the lens casing of a single 

pole lens has been discussed. In the present section it is assumed 

that this aspect of the design has been taken care of. This means 

that the design of the exciting coils must now be considered in more 

detail. It must be borne in mind that the performance of any lens can 

be improved by making it smaller. This is particularly important in a 

single polepiece lens where the field produced by the coil itself 

plays a more important role than in the case of a double pole lens. 

Hence in the final design stage a decision has to be taken about the 
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field strength (H) excited: 
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maximum allowable current density in the windings. Hence in comparing 

different designs of lens, it is highly desirable to compare them at 

the same current density. 

Figure 4.31 shows the results of a series of calculations on the 

single-pole lens already shown in Figure 4.21. The object of the 

calculations was to find the effect of coil positions on the 

magnetisation field B,, due to the iron at the pole face, and in 

particular to see under what conditions it reached the saturation 

value. The other important parameter is the half-width d,. The 

results of this calculation are shown in Figure 4.31. The figure 

shows that when the coil face is in contact with the back plate of the 

lens (position a) the polepiece magnetisation is greatest, for a given 

value of NI. However, as saturation flux density is approached i.e. 

at higher excitations, the position of the coil is not important. 

Concerning the half-width d,, at low excitations and hence low iron 

polepiece magnetisation, the half width does not depend on the 

excitation. This is to be expected since in this region the field 

distribution is largely controlled by the iron polepiece. However the 

position of the coil does affect the half-width. The half-width is a 

miminum for coil position a. At low values of NI, the half-width is 

independent of excitation since it is strongly influenced by the iron 

circuit. However as the iron begins to approach saturation the half- 

width of the coil itself becomes important and finally dominates as 

the iron reaches its full saturation value. It might seem therefore 

that an ideal coil arrangement would be a thin coil placed near the 

pele tip of similar lens, as shown in Figure 4.32. This figure shows 

that for a given excitation, the thin coil is a slightly better 
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pole face pp and the axial field half width (d,) 

with coil positions lens excitation in a spherical 

single pole lens. Full diagram shown in figure 4.21 
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magnetiser i.e. Bz, value at the pole tip is somewhat higher than with 

a thick coil. In addition the half-width (dy) is also smaller and 

does not increase greatly at the polepiece saturation. However, other 

factors, such as the current density in the windings have not yet been 

taken into consideration, and these factors could be of decisive 

significance. Similar remarks also apply to the Bp, and d, values for 

the test lens shown in Figure 4.33, in which the coil a is a thin 

flat solenoid, and coil b is a much thicker solenoid of the same inner 

and outer diameter. The thin solenoid results in a significantly 

lower half-width and a stronger pole tip magnetisation for a given 

lens excitation. 

Since in an electron lens operating at a given accelerating voltage, 

the excitation NI is specified in advance, rather than the field 

strength H, it appears that the thin flat solenoid of large outer to 

inner diameter is the ideal design for the exciting coil. The coil 

should ideally be in contact with the poletip. 

4.4.2.1 Comparison of B,,-H curves for single-pole lenses 
  

In order to obtain an overview of the magnetic behaviour of a single- 

polepiece lens under well-defined magnetic conditions, figure 4.34 

shows a single polepiece test lens with a spherical polepiece and 

completely surrounded by a substantial iron casing. The iron is a 

typical soft iron [B-H curve from Table 1.1 of Munro's Ph.D. thesis]. 

The thick iron casing in the polepiece regim was designed to ensure 

negligible external leakage, so as to eliminate boundary errors in the 

calculation and also to eliminate anomalous magnetic behaviour 

(unwanted saturation effects) in the casing. The iron boundary that 

Crosses the axis at a point remote from the polepiece was positioned 
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sufficiently far away as not to influence the magnetisation of the 

polepiece itself. 

In order to avoid computational difficulties caused by the presence of 

a bore, the axial flux densities were first calculated for the lens 

with zero bore. In presenting the results it was assumed that there 

was a bore of negligibly small diameter so that the calculated B(z) 

values in the iron were simply divided by the relative permeability 

Jags at the corresponding point on the axis. This means that the area 

under B(z)- curves in the figure is a measure of the ampere turns 

expended in the lens as a whole. 

The maximum axial flux density in the axis on this series of 

calculations reached about 10 Tesla. The maximum flux density shown 

in Figure 4.34 is about 5.5 Tesla with the coil shown in the figure. 

Other distributions were obtained for a variety of coil arrangements. 

From these results it was possible to plot the B-H characteristics of 

the polepiece tip as shown in Figure 4.35. Here curve 1 is the 

magnetisation (B-H/H) curve of the soft iron of the lens. The other 

curves show the B/H curves of the pole tip with different coil 

arrangements stated in the figure. It can be seen that the best B/H 

curve is obtained for coils (2-5) completely surrounding the 

polepiece. 

The coils (8-10) are thin flat solenoid types. This group does not 

produce such good B/H curves. However it should be remembered that 

coils in this position make a bigger contribution to the useful axial 

field distribution of the lens. 
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We can therefore conclude that the criterion of producing the best B/H 

curve at the pole-tip is not as critical a parameter as might be 

thought at first sight. 

4.4.3 Effect of current density in lens windings 
  

Since the thin flat coil in contact with the polepiece appears to bea 

favourable design, it is necessary to think about the effect of 

current density in the windings, since this increases rapidly as the 

coil is made thinner. If the current density is restricted, the main 

effect will be to make such a coil larger. The lens itself will be 

larger and so its focal properties and aberrations will also increase. 

This criterion will be relevant for double pole and single pole 

lenses. This is illustrated in Figure 4.36 which shows a double 

polepiece lens (1) with a thin flat solenoid placed between the 

polepieces of rectangular cross-section. The polepieces have a bore 

of negligible but not zero diameter. The axial flux density 

distribution is shown in the solid curve of Figure 4.36. The peak 

axial flux density is 7.34 Tesla and the half-width d, = 13 m. 

If now a second coil in the form of a long solenoid of the same cross- 

sectional area is added (lens 2) and operating at the same current 

density the lens cross-section must clearly be reduced by a factor of 

two in order to maintain the same value of excitation NI. The 

resulting axial field distribution shown in Figure 4.36 is not 

significantly changed. A similar result is shown in Figure 4.37 for a 

single polepiece lens. The coils of lens (1) amd lens (2) operate at 

the same excitation NI and the same current density. The relevant 

part of the field distribution i.e. for Z > 9 is nearly the same in 

both lenses. In fact the iron losses in lens (2) are somewhat greater 
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Figure 4.36 Comparison between the axial flux density distribution (keeping the current density constant) of rectangular double pole 
piece lens shown in figure 4.27a : excited with 
(1) Short solenoid placed in the gap between the two polepieces 
(2) Combination of short solenoid piaced in the gap and two coils (of total area = 360mm?) as shown above. Note the cross-section of lens. (2) is half of lens (1). There is no significant 
difference in peak flux value or the half width between two cases. 
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Comparison between the axial flux density distribution (keeping 
the current density constant) of the spherical single pole lens 
shown in figure 4.34 excited with (1) a coil (05/0, = 24), 

$/D,, = 0.26, s = 13mm) placed outside the pole face (solid line) 

(2) a combination of a thick coil surrounding the polepiece and a 
thin coil of the same cross section placed outside the polepiece 
(dotted line). 
Note the cross-section of lens (2) is half that of lens (1). 
Case 2 has a slightly lower peak and lower half-width than case 1. 
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than in lens 1. Thus if extra excitation were applied to lens 2, to 

bring the peak flux to that of lens 1, the resulting axial field 

distribution for Z > 1 would be approximately the same. 

We can therefore conclude that the current density criterion is 

probably the most significant parameter in the design of saturated 

magnetic lenses. 
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CHAPTER FIVE 

CONCLUSIONS AND DISCUSSION 

The main purpose of the present investigation was to throw light on 

the application of the finite element method to the determination of 

the magnetic field distribution in magnetic electron lenses and 

especially to the development of criteria for judging the finally 

calculated results. Attention has been concentrated on two aspects 

of this subject; first the efficiency and limitation of existing 

programs and secondly on some unexpected lens design problems that 

arise when highly saturated polepieces are incorporated into the 

objective lens. These are partly connected with the programs 

themselves (boundary conditions) and partly with the electron optical 

design itself. 

Munro's original programs are, justifiably, still very popular with 

research workers. The only subsequent programs which now seem to 

have achieved equal status are those of Nasr (1981) and Lencova (1984). 

The original program written by Nasr was unreliable for practical use 

but once the program errors were put right, it was possible to analyse 

it in detail. These two programs offer certain operational advantages 

which the present investigation has highlighted. It has been found 

extremely useful, for example to have a "second opinion" of doubtful 

output calculations during the present investigations. However, it 

may be concluded that, in the hands of experienced operators, no 

serious errors have been detected in any of these programs. However, 

if reliance is placed entirely in one program, the chances of making 

an undetectable error are greatly increased. Useful savings in 

computer memory can be achieved when Nasr's programs are used. 

SiS 2h



These programs are thus very convenient for small research 

laboratories where mini or micro computers are available, and 

computer time is not of the same importance as that of memory store. 

It is also possible to produce smooth axial field distributions of 

an initially obtained trial distribution at the early design stages. 

The present investigation has confirmed previous work by Nasr on the 

importance of boundary settings and numbers of meshes. It would 

appear however, that many research workers have not paid enough 

attention to boundary problems in saturated lenses which produce high 

external leakage flux, in both conventional and unconventional lenses. 

It also seems that sufficient attention has not been paid in the past 

to the importance of mesh layout. It is a wise precaution to 

calculate a completely new type of lens with two different mesh 

layouts. Alternatively the number of meshes can be increased in a 

second calculation and the results extrapolated to zero mesh size. 

This study has shown that single polepiece lenses, which have been 

computed under linear conditions with an adequate boundary setting, 

may exhibit large boundary loss under saturation conditions. This 

can be checked by calculating the flux density near the boundary. 

Conventional and double pole lenses usually have no boundary problems 

under linear conditions, since the high permeability iron casing on 

all sides of the lens will act as shielding for the lens field. 

When such lenses are computed at high lens excitation (under 

saturation condition), there may be a large external field. If the 

boundary A = 0 is too close to the lens, this high external flux 

density will lead to an apparent loss of turns at the boundary. 
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This occurence should draw the designers attention to faulty design 

of the lens casing. Some useful rules of thumb have emerged from 

this study; in iron-free coils, for example, the boundary should be 

set at a distance of about five times the mean coil diameter from 

the lens centre. In single pole lenses under linear condition, this 

is also appropriate for the open side, but less so on the side shielded 

by the magnetic circuit. 

These rules also apply to a well designed magnetic lens under 

saturation conditions. Only if the lens is badly designed will the 

external flux values be very high resulting in loss of excitation at 

the boundary. The facility of calculating the excitation contributing 

to the axial flux distribution built into the Lencova program has 

proved to be an enormous advantage in designing new lenses. 

In addition, the Lencova printout map of flux density distribution in 

the iron circuit is also a meeeul diagnostic aid in such cases, and 

is automatically available as part of the regular print-out. Another 

useful checking facility is the evalution of the Bye values in the 

magnetic circuit. Since the magnetic circuit will not add any extra 

ampere-turns to that provided by the coil, this check can be made by 

calculating the Bpg values as (Br - Beooi1)- If the field computation 

has been made correctly, the integral_fBre dz should be zero. A 

discrepancy in this quantity indicates some form of computational 

error Figure 5.1 shows the total axial flux density distribution, 

the axial flux density of the coil calculated with the Biot program, 

and also the iron contribution to the field distribution By,= (Br 

- Beoil) for the rectangular single pole lens shown in figure 

2.5. Here the lens is surrounded by a 5mm thick high permeability 
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iron sheet to prevent any boundary loss in excitation, also large 

number of meshes (69 x 90) were used to prevent any computational 

errors due to insufficient number of meshes. 

In connection with the calculation of B,oj1 it may be remarked that 

the calculating of the axial flux density distriubtion by the Biot- 

Savart law is a very good staring point for any lens computation, 

especially for choosing the correct boundary. It is perhaps 

unfortunate that Boj, is not calculated routinely in any of the 

above programs. Appendix 2 lists a program Biot which can be used 

in connection with the above programs. It would therefore be useful 

to add Biot and a Bre facility to the existing programs. 

A crucially important factor in FEM calculations is the choice of 

mesh distribution. This investigation has shown that different mesh 

arrangements set up even by experienced operators can sometimes lead 

to large discrepancies in the computed flux density values. For 

example, the initial coarse mesh layout must be chosen carefully, 

giving special attention not only to the polepiece gap region, but 

also to the complete polepiece and the coil. The mesh concentration 

must decrease gradually; sudden and abrupt changes must be avoided. 

It is usually possible to find by trial and error a mesh layout that 

gives good agreement between experimental and calculated results 

even with limited mesh numbers. Experience shows that to optimise 

the mesh distrbution for a new and unknown design, two or perhaps 

three different mesh layouts should be tried, especially if the 

number of meshes is restricted. The effect of changing mesh 

distribution is to alter the shape of the axial computed field 
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distribution, especially near the peak value. The effect of 

insufficient mesh numbers will almost certainly result in a change 

in the shape of the axial field distribution but possibly accompanied 

by an apparent loss of excitation. In all cases in this investigation, 

it was possible to find a mesh distribution that led to good agreement 

with experimental values. It is in any case advisable to check that 

the mesh distribution finally adopted is not sensitive to small 

variations. For example, one can extrapolate the calculated peak 

flux value for three limited mesh sizes to that for mesh of infinitely 

small size, The author is grateful to B. Lencova for this suggestion, 

(private communication), which has been found extremely helpful in 

checking for correct mesh layout. 

Another conclusion of the investigation concerns the actual design of 

lenses. Although this was not the central issue of the investigation, 

it was realised that if one can be sure that all computational errors 

have been removed it would be possible to investigate difficult design 

questions concerning highly saturated magnetic electron lenses. 

These include the effectiveness of the exciting coil in magnetising 

the pole face tip, the direct contribution of the coil itself to the 

field in the lens gap and the effect of a limiting coil current 

density on the maximum axial flux density for a given half-width 

that can be produced in a magnetic polepiece lens. 

Concerning the magnetising of the polepiece, from the point of view 

of the relevant B/H curves of the iron polepiece tip, a coil 

surrounding the polepiece is superior to a thin flat coil placed in 

the gap. However, in electron optical systems, the total lens 
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excitation NI is fixed in advance. Under these conditions the B/NI 

curves are similar for both types of coils. From the point of view 

of the contribution of the coil to the field in the lens gap, a thin 

flat coil is superior to a coil surrounding the polepiece. 

However, if we specify in advance the maximum current density in the 

coil the use of such a thin coil will mean that the size of the 

lens and hence the aberrations will increase compared with the use 

of a thicker coil surrounding the polepiece. 

If a thick coil and a thin coil are incorporated in the lens at 

constant current density the overall size of the lens decrease. In 

a single pole lens as shown in Figure 4.37 the half width also 

decreases, Since the shape of the effective field distribution in 

the air gap space is not appreciably changed this leads to lower 

spherical aberration. On the other hand when different combined 

coils were used in a rectangular double pole lens at constant current 

density, although the size of the lens with combined coils is smaller 

as before, the spherical aberration for combined coils was always 

larger than that for a lens with a thin coil placed in the lens 

gap. This suggests that the best performance of a double polepiece 

lens can be obtained with short solenoid placed in the gap between 

two poles. 

Spherical abberation characteristics of objective lenses with thin 
  

exciting coils placed in the air gap between two poles. 
  

Figure 5.2 shows the variation of C, with current density 9 for four 

different lenses operating at 2000 Kv in the Z = 0 mode. Lens 1 is a 
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rectangular double polepiece test lens shown in Figure 4.36 computed 

with vanishingly small bore i.e Sg/D= &. 

It can be seen from the Figure that the spherical aberration coeffi- 

cient of this lens is very high at low current density. C, = 16.35 

mm at 1.1 x 103 A/em2, At higher current densities, the cy value 

decreases sharply reaching i = 1.39 mm at 2.57 x 104 A/cm2 as 

the pole tip reaches saturation (Bre = 1.84 T). The lens diameter 

decreases as 0 increases; at the above current density the diameter 

is 145 mm, still a practical value. The dashed line in Figure 5.2 

shows the C, values for lens 1 but with Sg/D = 2. At a value of o 

= 1.1 x 103 A/cm? the Cy value is now 5.5 mm, compared with the 

previous 16.35 mm i.e a decrease in C, value of 66% on changing 

the Sg/D ratio. This means that in double polepiece lens the Sg/D 

ratio will mainly influence the lens behaviour at low current density, 

while at high current density (polepiece saturated) this ratio will 

have only a minor influence on the spherical aberration. 

Lens 2 is a rectangular double polepiece lens with Sg/D =4 also shown 

in Figure 5.2. Its design is similar to that of lens 1, but the axial 

length of the polepieces is shorter by a factor of 15/26 than those 

of lens 1. The computed C, values for lens 2 at Oo = 1.1 x 103 

is 6.5mm compared with 16.35mm for lens 1. AtO = 2.57 x 104 A/cm2 

the (polepiece Bp, = 1.8T) C, value for lens 2 is 1.22 mm. 

Lens 3 is a dobule spherical polepiece lens designed by the authors 

colleague H.C. Yin. The author is grateful to her for providing 

these unpublished results (private communication) for comparison 

purposes. The details of the lens are shown in the insert in 
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Figure 5.2. This lens has several important refinements. The pole 

piece have spherical ends that reduce the leakage flux compared with 

simple cylinders, and improve the shape of the axial field dis- 

tribution. In addition the coil of lens 3 has a ratio D2/D, 

(outer to inner diameter) of 58.5 compared with D2/D, = 21.0 for 

lens 2. This means that the Cg values of lens 3 are consistently 

lower than those of lens 2. In both cases the C, values decrease 

steadily as 0 is increased. Further calculations also showed that 

at high values of o , the effect of the lens bore is small. 

Experience shows that log/log scale is the best, to compare the C, 

hehaviour of different lenses at any current density, since correct 
be 

analysis can! made even for minor differences, which are confusing 

by ordinary comparison. 

The main conclusion in this investigation is that computer aided 

design unassisted by experiment, can indeed be made successfully by 

applying FEM if the designers are aware of all the factors affecting 

the accuracy of the method and has enough experience to analyse the 

results correctly. 
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Figure 5.1 

Contribution (B D of the exciting coil and of the iron coi . 

(Be,) to the total axial flux density BL in the single polepiece 

Tens shown in Fig. 2.5. 

Note The positive and negative parts of the Bee curve balance 

within 1% indicating low computational error. 
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Figure 5.2 

The variation of C; with the current density for four different 
double pole lenses at 2000 KV at Z = 0 mode, log/log scale-lens 1 
as shown above (quarter section) is a rectangular double pole test 
lens computed with S_/D = » and § /D = 2 (dashed line). Lens 2 
is similar to lens 19 but with smiller axial polepiece radius 
with S/d =o. Lens 3 is a spherical double pole lens So/0 = 2. 
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Table (3.1) General format of the data for program M12 
  

Data Format 

1) Title 2004 

2) N NSYM (215) 

3) Blank line 

4) JL J2 J3.0+..dn (5x, nI5) 

Tl @l 212 2Z13....ZIn (15, nF5.x) 

I2 221 222 Z23....Z2n (15, nF5.x) 

I3 231 232 233....23n (15, nF5.x) 

Im @l @2 @3....Zm (15, nF5.x) 

5) Blank line 

6) Jl J2 Dies sis ct (5x, nI5) 

Il Ril R2 R13....Rin (15, nF5.x) 

I2 R21 R22 RQ3....R2n (15, nF5 x) 

I3. R31 R32 R33....R3n (15, nF5.x) 

Im Rml Rm RnG....Rm (15, nF5.x) 

7) Blank line 

8) JAL JBl1 TAL Bl Aur, (415, Fl0.x) 

JAL JB2 IA2 = IB2 Aur (415, F10.-x) 

Jan JBn An IBn Aur, (415, 710.x) 

9) Blank line 

10) JCl JDL Tcl IDl AJ1 (415, F10.x) 

Jc2 JD2 IC2 ID2 AJ2 (415, F10.x) 

JCn JDn Cn MIDn Agn (415, F1lO.x) 

11) Blank line 

A2



Explanation of symbols in Table 3.1 

1) 

2) 

4 & 6) 

10) 

Title of up to 80 characters 

N specifies what output is required (M—O gives only the 

axial flux density distribution, M~l gives also the flux 

value at each mesh point, N=2 gives the flux density values 

in the magnetic circuit as well). NSYM specifies whether 

the magnetic circuit is symmetric or asymmetric. NSYM=0 

signifies it is asymmetric; while NSYM1 is symmetric. 

J1, 32, J3....Jn = mesh point numbers in the axial direction. 

Il, 12, 13....In = mesh point numbers in the radial direction. 

Zij = Z - coordinate values (millimeters). 

RiJ = R - coordinate values (millimeters). 

JAi, JBi, IAi, IBi = mesh point numbers defining a portion 

of magnetic circuit. Au,; = relative permeability of that 

portion of magnetic circuit (dimensionless) . 

JCi, JDi, ICi, IDi = mesh point numbers defining a portion 

of coil winding, AJi = current density of that portion of 

coil winding (ampturns/sq.cn). 

3, 5, 7, 9, 11 are blank lines. 
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Table (3.2) General format of the data for program M13 
  

Data Format 

1) Title 20A4 

2) N NSYM (215) 

3) Blank line 

4) J1 J2 Secon! (5x, nI5) 

Ti Zl 212 213....%in (I5, nF5.x) 

T2 (@2l 222 723....Z2n (15, nF5.x) 

I3 231 232 233....23n (15, nF5.x) 

Im Zl @2 23....Zm (I5, nF5.x) 

5) Blank line 

6) NM 2  F.00.6H (5x, nI5) 

Il Rll R12 R13....Rin (I5, nF5.x) 

12 R21 R22 R23....R2n (I5, nF5.x) 

I3 R31 R32 R33....R3n (I5, nF5.x) 

Im Rnl Rn2~ Rn3....Rmn (I5, nF5.x) 

2) Blank line 

8) JAl JBl JIAl = IBl ANI (415, F10.x) 

JAl JB2 JA2 IB2~° AN2 (415, F10.x) 

Jan JBn An IBn-~ ANn (415, F10.x) 

9) Blank line 

10) JCl gD. ICl IDL AJL (415, F10.x) 

gc2 gb2 Ic2 D2 ag (415, F10.x) 

J& dDn ICn Im Amn (415, F10.x) 

11) Blank line 

12) Hl BL (2 F10.x) 

H2  B2 (2 Fl0.x) 

Hn En (2 F10.x) 

A4



13) 

14) 

15) 

Data Format 

Blank line 

Hl BL (2 F10.x) 

H2  B2 (2 F10.x) 

Hn Bn (2 F10.x) 

Blank line 

Explanation of symbols in Table 3.2 

1) 

4&6) 

8) 

10) 

Title of up to 80 characters 

N specifies what output is required (N=0 gives only the 

axial flux density distribution, N=l gives the flux 

value at each mesh point, N=2 gives the flux density values 

in the magnetic circuit as well). NSYM specifies whether 

the magnetic circuit is symmetric or asymmetric. NSYM=0 

signifies it is asymmetric; while NSYM=1 is symmetric. 

Jl, J2, J3....dJn = mesh point numbers in the axial direction. 

Il, 12, I3...In = mesh point numbers in the radial direction. 

Zij = Z - coordinate values (millimeters). 

Rid = R - coordinate values (millimeters). 

JAi, JBi, IAi, IBi = mesh point numbers defining a portion 

of magnetic circuit. ANi = identification number of 

magnetic circuit material (1,2,3,4 or 5). 

JCi, JDi, ICi, IDi = mesh point numbers defining a portion 

of coil winding, AJi = current density of that portion of 

coil winding (ampturns/sq.cn)- 

AS



12) Hl, H2, H3....Hn = field strength values for magnetization 

curve (A/m). Bl, B2, B3....Bn = corresponding flux density 

values for magnetizarion curves (TESLA). 

3, 5, 7, 9, 11, 13 are blank lines. 

14) If another magnetization curve is requested then step 12 is 

repeated. 

AG



Table (3.3) General format of the data for program VPLIN 
  

Data Format 

1) Title 20A4 

2) NSYM 2-5 

3) NRI 415 

4) Blank Line 

5) ZLB ZRB 215 

6) Blank Line 

7) Title 20A4 

8) NBFE NFlux 215 

9) Blank Line 

10) Jl J2 J3.....dn (5x, nI5) 

Il @Z11 @Z12 2Z13....Z1n (I5, nF5.x) 

I2 221 222 2Z23....Z2n (15, nF5.x) 

I3. 231 232 2Z33....Z3n (15, nF5.x) 

Im @l Zm2 @3....2m (15, nF5.x) 

aT): Blank Line 

12) SE) 02) 33%..-.0n (5x, nI5) 

Il Rll R12 R13....Rin (15, nF5.x) 

I2 R21 R22 R23....R2n (15, nF5.x) 

I3 R31 R32 R33....R3n (I5, nF5.x) 

Im Rml Rm2 RG....Rm - (15, nF5.x) 

13) Blank Line 

14) JAL JBL IAL IB = Aurl (415, F10.x) 

JA2 JB2 IA2 IB2 9 April (415, F1O.x) 

Jan JBn TAn IBn = Ayrl (415, F10.x) 

15) Blank Line 
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Data Format 

16) Jcl JDl Icl IbDl AJL (415, F10.x) 

gc2 JD2 Ic2 D2 AJ2 (415, F1O.x) 

gCn JIn IM IM AJn (415, F1O.x) 

17) Blank Line 

18) Title 20 A4 

Explanation of symbols in Table 3.3 

1) Title of up to 80 characters 

2) NSYM specifies whether the magnetic circuit is symmetric or 

asymmetric. NSYM=0 signifies it is asymmetric; while NSYM=1 

is symmetric. 

3) NR1 the number of runs to be performed. 

5) ZLB, ZRB are the two inner boundaries. 

7) Title of up to 80 characters is written for run l. 

8) NEFE, NFLUX are output of flux density in magnetic circuit 

and the flux values in every mesh point respectively, NBFE 

and NFLUX take values of 0 or 1, 0 = no and 1 = yes. 

10 & 12) Jl, J2, J3....J3n = mesh point numbers in the axial direction. 

Il, I2, 1I3....In = mesh point numbers in the radial direction. 

Zij = Z - coordinate values (millimeters) 

é a R - coordinate values (millimeters) 
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14) 

16) 

JAi, JBi, IAi, IBi = mesh point numbers defining a portion 

of magnetic circuit, Aur, = relative permeability of that 

portion of magnetic circuit (dimensionless) . 

JCi, JDi, ICi, IDi = mesh point mumbers defining a portion 

of coil winding, AJi = current density of that portion of 

coil winding (ampturns/sq.cn). 

4, 6, 9, 11, 13, 15, 17 are blank lines. 

18) If more than one run is requested then same steps from 7 to 

17 are repeated for Run 2, Run 3 and Run 4. 
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Table (3.4) 

1) 

2) 

3) 

4) 

5) 

6) 

a) 

8) 

10) 

11) 

12) 

13) 

14) 

15) 

Title 

NSYM NSAT 

RI 

Blank Line 

TB (IBM), T™ (IBM) 

-999 

Blank Line 

ZLB sZRB 

Blank Line 

Title 

NEFE N Flux 

Blank Line 

Jl J2  J3.....dn 

Il. Z1l 212 2Z13....Zl1n 

I2 221 222 223....Z2n 

I3. Z3l 232 2Z33....23n 

Blank Line 

Jl J2 J3.....dn 

Il Rll R12 R13....Rin 

I2 R21 R22 R23....R2n 

I3 R31 R32 R33....R3n 

Blank Line 

A10 

General format of the data for program VPSAT 

Format 

215 

415 

(2 F 0.0) 

End of Table 

215 

(2004) 

215 

(5x, nI5) 

(15, nF5.x) 

(15, nF5.x) 

(15, nF5.x) 

(I5, nF5.x) 

(5x, nI5) 

(I5, nF5.x) 

(I5, nF5.x) 

(15, nF5.x) 

(I5, nF5.x)



16) 

17) 

18) 

19) 

20) 

Data Format 

JAL JBl IAl IBL Aurl (415, F10.x) 

JA2 JB2 IA2 IB2 Ayrl (415, F10.x) 

JAn JBn IAn IBn Aurl (415, F10.x) 

Blank Line 

JCl JDL ICl IDl AJ1 (415, Fl0.x) 

gc2 gbd2 Ic2 Ib2 AJ2 (415, FLO-x) 

JCn JDn ICn IDn AJn (415, F10.x) 

Blank Line 

If more than one run is requested then same steps from 9 to 19 

are repeated for Run 2, Run 3 and Run 4. 

Explanation of symbols in Table 3.4 

3) 

5) 

Title of up to 80 characters 

NSYM specifies whether the magnetic circuit is symmetric or 

asymmetric. NSYM=0 signifies it is asymmetric; while NSYM=1 

is symmetric. NSAT specifies whether the magnetic circuit 

is under linear or non-linear (saturation condition). 

NSAT=0 mean linear, and NSAT=1 mean saturation condition. 

NRL the number of runs to be performed. 

Table representing typical relation of B and Ur when 

computing saturation case. (i.e. NSAT=1) the table is ended 

with -999. 

ZLB, ZRB are the two inner boundaries. 

Alt



9) 

10) 

12 & 14) 

16) 

18) 

Title of up to 8 characters is written for Rum l. 

NBFE, NFLUX are output of flux density in magnetic circuit 

and the flux values in every mesh point respectively. NBFE 

and NFLUX take values of 0 or 1, O=NO and 1=YES. 

Jl, J2, J3.....Jdn = mesh point numbers in the axial 

direction. 

Il, I2, I3.....In = mesh point numbers in the radial 

direction. 

Zij = Z - coordinate values (millimeters). 

Rij = R - coordinate values (millimeters). 

JAi, JBi, IAi, IBi = mesh point numbers defining a 

portion of magnetic circuit, Abe = relative permeability 

of that portion of magnetic circuit (dimensionless). 

JCi, JDi, ICi, IDi = mesh point mumbers defining a portion 

of coil winding, AJi = current density of that portion of 

coil winding (ampturms/sq.cn). 

4, 6, 8, 11, 13, 15, 17, 19 are blank lines. 

Al2



Table 3.5 General format of the data for program AMAG 

Data Format 

1) Title (2004) 

2) NZ, NR, IM, IM1, ISYM, (2014) 

ICURR, IH1, IH2, IPRINT, IDISC 

3) IZ(1).....1Z(NZ) (2014) 

4) IR(1).....IR(NR) (2014) 

5) cz (12) (13 F6.0) 

6) cR (IR) (13 F6.0) 

7) MM(2*I-1), MM (2*I), (514) 

NM (2*I-1) NM (2*I), MI(I) 

8) CURR (I).....CURR (I CURR) (13 F6.0) 

9) BM (I, 1), H (I, 1) (12 F6.0) 

10) 

11) MAP MAT, MAPPSI, LISTIR, LISTED (2014) 

12) JMIN, JMAX, IMIN, IMAX (2014) 

Explanation of symbols in table 3.5 

1) The information about the lens is given which is printed as 

a heading. 

2) This line contains a maximum of 20 integer numbers. The 

first two integers NZ and NR represent the numbers of the 

coarse mesh lines in Z and R direction respectively. 

IM represents the number of areas specified as magnetic 

material or coil (maximum of 20). IMI specifies the number 

of magnetization curves (IMI=0 if there is no magnetic 

material in the lens or if standard magnetization curves 

Al3



4) 

provided in program are used). A maximum of two 

magnetization curves can be used. 

ISYM determines whether the lens is symmetric or not. 

ISYM>O for symmetric lenses and ISYM=0 for asymmtric 

lenses. The symmetry plane, for program AMAG, coincides 

with the left hand boundary line i.e. for symmetrical lenses, 

the positive part only of the lens input data is given. 

ICURR represents the current density numbers in the coil 

ise. the numbers of excitations to be computed. For 

CURR=0, a linear approximation is done. 

IH1 and IH2 are the numbers of points on the first and 

second magnetization curves when IMI>0. 

IPRINT guides the output print. If IPRINT>0O, the flux is 

printed. If IPRINT>2, the Z and R coordinates of the fine 

mesh are also printed. 

IDISC guides flux density output. If IDISC>0 output of flux 

density on the axis is performed to the disc file. 

This line indicates the coarse mesh lines in the Z direction 

(maximum of 20). 

Same as above for the radial direction. 

This line determines the Z coordinates of the coarse mesh in 

millimeters. If NZ>13, the coordinates will be in two lines. 
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6) 

7) 

8) 

9 & 10) 

ll & 12) 

Same as above for the Z coordinates. 

The indices indicated limit the Ith region in the axial 

direction from left to right (MM), in the radial direction 

from top and bottom (NM), and the type of material (MI): 1 

or 2 for iron, 3 for coil. Other regions are not specified. 

This data line represents the current density in the 

excitation coil for the Ith lens excitation in A/mm. A 

maximum of 10 excitations are allowed. If ICURR=0, one 

number only is read. 

These lines contain the magnetization curves data (when 

IMI>0). The first line (IHI) contains BM(I,1); H(I,1) 

values. The second curve data starts on a new line and 

contains BM(I,2); H(I,2) values. The flux density, BM, is 

in tesla and the field intensity, H, is in A/m. 

The parameters in these lines are usually set to zero. If 

some of them have to be changed, then the respective values 

are inputed. If no output of material, PSI or iron flux 

density are desired; negative values are ascribed to them. 

If LISTED>O, the qeeing of flux density is performed in the 

region bounded in the axial direction, by the line JMIN-1 

from the left and the line JMAX from the right; and in the 

radial direction by IMIN-1 and IMIN from the top and bottom 

respectively. 
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CALCULATING THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO THE CURRENT 
WINDINGS IN THE COIL BY BIOT-SAVART LAW 
PROGRAM LOOPL 
REAL I,N 
Rl =THE INNER RADIUS OF THE COIL IN METRES 
R1=.062 
R2 =THE OUTER RADIUS OF THE COIL IN METRES 
R2=.062 
A=@.5*COIL WIDTH 

A=.003 
I= THE CURRENT DENSITY 

I=100. 
THE NUMBER OF TURNS 

N=100. 
RO=(R1+R2)/2. 
WRITE(2,44) 
K REPRESENTS THE NUMBER OF Z POINTS REQUIRED (HERE IT STARTS FROM 
1 AT THE CENTRE OF THE COIL AND IT END AT 250MM AT THE LAST POINT 

DO 11 K=1,250 
Z=.001*(FLOAT(K)-1.) 
IF (Z.EQ.A) GOTO 11 
ZP=Z+A 
ZM=2Z-A 
THETAI=ATAN(ZP/RL) 
THETA2=ATAN (ZP/R2) 
‘THETA3=ATAN (ZM/RL) 
THETA4=ATAN (ZM/R2) 
C=I*N*1.256637* 200001 
CF=C/(4.*A*(R2-RL) ) 

X1=TAN( .5*THETAL ) /TAN( .5*THETA2) 
X2=TAN( .5*THETA3) /TAN(.5*THETA4) 
BB=.5*C*RO*RO/ (RO*RO+Z*Z) **1 «5, 

B=CF* (ZP*ALOG(X1)-ZM*ALOG(X2) ) 
Z1=Z*1000. 
B IS THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO CURRENT WINDINGS 
‘OF A RECTANGULAR CROSS SECTION COIL 
WRITE(2, 30)Z1,B, BB 
BB IS THE AXIAL FLUX DENSITY DISTRIBUTION DUE TO CURRENT WINDINGS 
OF AN ARBITRARY SHAPE COIL (WHICH IS TAKEN AS THE TOTAL AXIAL FLUX 
FROM SEVERAL LOOPS) 

11 CONTINUE 

STOP 
THE OUTPUT FORMATS 

3@ FORMAT (1X,F10.5,5X,F14.5,5X,F14.5) 
THE OUTPUT OF Z IN MM,AND B AND BB, IN TESLA 

44 FORMAT(1X,' z(M™M) ',' B(TESLA)',' BB(TESLA) ') 
END 
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VPLIN PROGRAM 
FINITE ELEMENT PROGRAM FOR COMPUTING AXIAL FLUX DENSITY 
DISTRIBUTION AND VECTOR POTENTIAL THROUGHOUT THE MAGNET 
-IC CIRCUIT OF USATURATED MAGNETIC LENSES 
THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS: 
Z(IM,JM)=Z-COORDINATES OF EACH MESH POINT 
R(IM,JM)=R-COORDINATES OF EACH MESH POINT 
IM=NUMBER OF MESH POINT IN THE R-DIRECTION 
UM=NUMBER OF MESH POINT IN THE Z-DIRECTION 
OTHER PROGRAMS PREVIOUS TO THIS PROGRAM UTILISE DIFFERE 
-NT MESH NUMBERS DEPENDING ON THE COMPUTER MEMORY SIZE . 
FOR SUCH PROGRAMS TYPICAL MESH POINTS NUMBERS ARE IN THE 
ORDER OF (32,70) TO (40,80) WHEN UTILIZING LARGE COMPUTERS 
FOR SMALLER COMPUTERS (20,40) TO (25,50) MESH POINTS ARE 
USED IN MINI COMPUTERS THE NUMBERS ARE REDUCED TO (12,25) 
FOR SUCH PROGRAMS THE HIGHER THE MESH POINTS NUMBERS THE 
MORE ACCURATE THE RESULTS ARE 
THIS NECESSITATES LARGE COMPUTERS FOR ACCURATE RESULTS. 
THE PRESENT PROGRAM OVERCOMES THE INHERENT INACCURACIES 
WHEN UTILISING MINI COMPUTERS BY INCREASING THE NUMBER 
OF RUNS AS EXPLAINED LATER. 
AMUR(IM,JM)=RELATIVE PERMEABILITY OF EACH QUADRILATERAL 
AJ(IM,JM)=CURRENT DENSITY WITHIN EACH QUADRILATERAL 
A(IM,JM)=NON ZERO ELEMENTS OF SYMMETRIC BAND MATRIX 
C(IM,JM)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATIONS 
V(IM,JM)=COMPUTED VECTOR POTENTIAL AT EACH MESH POINT 
P(IM*JM, IM)=COEFFICIENTS OF THE FINITE ELEMENT EQUATIONS 
AZLB(IM)=FIRST INNER BOUNDARY IN R-DIRECTION 
AZRB(IM)=SECOND INNER BOUNDARY IN R-DIRECTION 
NR=NUMBER OF RUNS DESIRED (1 TO 4) 
TITLE(20) IS ANY TITLE UP TO 80 CHARACTERS 
IJM=IM*M 
THE DIMENSION STATEMENTS ARE SET AS FOLLOWS : 
COMMON/ONE/Z(IM,JM) ,R(IM,JM) ,AMUR(IM,JM) ,AJ(IM,JM) 
COMMON/TWO/A(IIM) ,C(IJM) ,V(IM,JM) ,P(IJM, IM 
DIMENSION AZLB(IM) , AZRB(IM) ,NR(4) ,TITLE(20) 
ZZ (Z-COORDINATES OF AXIAL MESH POINTS) 
ABZ(COMPUTED AXIAL FLUX DENSITY DISTRIBUTION) 

COMMON/ONE/ 2(25,50) ,R(25,50) ,AMUR(25,50) ,Ag(25,50) 
COMMON/TWO/ A(1250),C(1250),V(25,50) ,P(1250,25) 
DIMENSION AZLB(25),AZRB(25) ,NR(4) ,TITLE(20) 
DIMENSION 2Z(210) ,ABZ(210) 
IM=25 

oM=50 
IgM=IM*JM 
LBZ=JM*3 
x=0. 
DO 10 J=1,LBZ 
22(J)=X 
ABZ(J)=X 

10 CONTINUE 
LBZ=0 

THE PROGRAM WILL READ THE FIRST LINE OF DATA WHICH 
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Cc 

Cc 

INDICATE WHETHER THE ENTIRE MESH IS SPECIFIED IN THE 
DATA (I.E ASYMMETRIC CASE),OR THE PORTION OF THE MESH 
IN THE NEGATIVE HALF PIECE ONLY IS SPECIFIED IN THE DATA 
(SYMMETRIC CASE). 
NSYM CAN TAKE VALUES OF 1 OR 0 ,0 INDICATES ASYMMETRY 

READ (1,1) NSYM1 
WHILE 1 INDICATES SYMMETRY 
1 FORMAT (15) 
THE PROGRAM EXPECTS IN THE SECOND LINE OF DATA FOUR 
INTEGERS WHICH WILL SPECIFY THE NUMBERS OF RUNS 
REQUIRED TO BE PERFORMED 
THESE ARE FROM 1 TO 4 .THUS FOR ONE RUN NR=1,0,0,0 
FOR TWO RUNS NR=1,2,0,0 FOR THREE RUNS NR=1,2,3,0 
FOR FOUR RUNS NR=1,2,3,4 

READ (1,2) (NR(I),I=1,4) 

2 FORMAT (415) 
A BLANK LINE IS LEFT 

READ (1,1111) 
FOR SYMMETRICAL CASE (NSYM=1),UP TO 3 RUNS ARE PERFORMED. 
FOR ASYMMETRICAL CASE (NSYM=0),UP TO 4 RUNS ARE DONE 

IF (NSYM1.EQ.1) GOTO 20 
IF (NR(4).EQ.4) GOTO 24 

20 IF (NR(3).EQ.3) GOTO 23 
IF (NR(2).EQ.2) GOTO 22 
IF (NR(1)-EQ.1) GOTO 21 

WARNING IF NUMBER OF RUNS HAVE NOT BEEN SPECIFIED THE 
PROGRAM WILL STOP IN THIS CASE 

WRITE (2,3) 
3 FORMAT (1X,' RUNS NOT SPECIFIED') 

STOP si 
THE PROGRAM WILL NOTE THE NUMBER OF RUNS AND CONTINUE 
DATA READING ACCORDINGLY 

21 NRUN=1 
GoTO 25 

22 NRUN=2 
GoTo 25 

23 NRUN=3 
GoTo 25 

24 NRUN=4 
THE PROGRAM WILL NOW READ THE TWO INNER BOUNDARIES 

25 READ (1,111) JLB,JRB 

111 FORMAT (315) 
ABLANK LINE IS LEFT 

READ (1,1111) 
1111 FORMAT (1X) 

DO LOOPS ACCORDING TO SPECIFIED NUMBER OF RUNS 
DO 112 IRUN=1,NRUN 
IF (IRUN.EQ.1) GOTO 2111 
IF (NR(IRUN).EQ.0) GOTO 112 

READ ANY TITLE OF UP TO 80 CHARECTERS 
2111 READ (1,1121) (TITLE(I),I=1,20) 

Cc 
1121 FORMAT (20A4) 

THE OUTPUT IS SPECIFIED ACCORDING TO THE REQUIREMENTS 
READ (1,1122) NBFE,NFLUX 
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1122 FORMAT (215) 
C A BLANK LINE IS LEFT 

READ (1,1111) 
THE SUBROUTINE MESH ,READING AND SETTING AXIAL AND 
RADIAL COORDINATS OF THE MAJOR MESH LINES NODES IS 
CALLED TWICE,FOR Z AND R COORDINATES 

CALL MESH (Z,11,J1,IM,JM) 
CALL MESH (R,11,J1,IM,JM) 

SET VARIOUS CONSTANTS 
I1=NUMBER OF MESH-POINTS IN THE RADIAL DIRECTION 
I2=11-1=NUMBER OF QUADRILATERALS IN THE RADIAL 

a
a
a
 

  

DIRECTION 
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION 

J2=J1-1=NUMBER OF QUADRILATERALS IN THE AXIAL 
I3,J3 ARE USED FOR FINDING NO. OF EQNS. TO BE SOLVED 

t2=51=4: 

a
a
a
a
a
a
n
 

  

© DO LOOP TO SET OUTER BOUNDARY VECTOR POTENTIALS 
© 0 ZERO FOR BOTH Z AND R DIRECTIONS 

DO 1124 J=1,0M 
DO 1124 I=1,IM 

1124 V(I,J)=0. 
C THE SUBROUTINE AJMUR FOR READING THE DATA SPECIFYING 
C HE POSITION AND PERMEABILITY OF THE MAGNETIC CIRCUIT 
c IS CALLED 

CALL AJMUR (AMUR,AJ,I1,31,IM,JM) 
C HE INITIAL LENS EXCITATION IS SET TO ZERO FOR ASYM 
Cc LENS 
1123 ANI=0. 

NS¥M=0 
C THE NEXT TWO STATEMENTS GUIDE THE PROGRAM TO EXECUTE 
C HE APPROPRIATE COMPUTATIONS FOR 1,2,3,4 RUNS 
C RESPECTIVELY 
1126 IF (IRUN.EQ.1) GOTO 113 

IF (NR(IRUN)-3) 114,115,116 
AN ITERATION COUNTER IS SET TO ZERO AND THE COORDINATES 
THE MESH NODES IN Z AND R DIRECTIONS ARE SET BY LINEAR 
INTERPOLATION 

113 K1=0 
Do 130 J=1,31 
DO 130 I=1,11 
K1=K1+1 

C C(K1)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATION 
C(K1)=0. 

130 A(K1) 

NSYM=NSYM1 
GOTO 131 

C THE SAME PROCDURE IS NOW REPEATED FOR RUN 2 
114 K1=0 

K2=0 
DO 117 J=1,91 
DO 117 I=1,11 

a
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K1=K1+1 
A(K1)=0. 
C(K1)=0. 

c THE DATA IS TESTED FOR TERMINATION 

41171 

IF (J.EQ.d1) GOTO 1171 
GoTo 117 
K2=K2+1 

C THE VECTOR POTENTIAL AT THE INNER BOUNDARY (AZLB) 
c IS STORED FOR RUN 2 FROM RUN 1 

407, 

A(K1)=AZLB(K2) 
V(I,3)=A(K1) 
CONTINUE 

c THE PROGRAM IS NOW DIRECTED TO SET THE RELATIVE 
Cc PERMEABILITY OF THE FREE SPACE 

at) 

1151 

GOTO 131 
K1=0 
K2=0 
K3=0 
IF (NRUN.EQ.3) NSYM=NSYM1 
DO 118 J=1,01 
DO 118 I=1,11 
K1=K1+1 
A(K1)=0. 

C(K1)=0. 

IF (J.EQ.1) GOTO 1151 
GOTO 1152 
K2=K2+1 
A(K1)=AZLB(K2) 
V(I,d)=A(K1) 

c THE DATA IS TESTED FOR SYMMETRY AND THE PROGRAM 

S DIRECTED ACCORDINGLY 
1152 

1153 

IF (NSYM.EQ.1) GOTO 118 
IF (J.EQ.J1) GOTO 1153 
GoTo 118 
K3=K3+1 

c THE COMPUTED VECTOR POTENTIAL AT THE SECOND INNER 

c BOUNDARY (AZRB) IS STORED 

118 

A(K1)=AZRB(K3) 
V(I,J3)=A(K1) 
CONTINUE 
GOTO 131 

Cc THE PROCEDURE IS NOW REPEATED FOR RUN 4 

116 

1191 

K1=0 
K2=0 
po 119 g=1,31 
Do 119 1=1,11 
K1=K1+1 

A(K1)=0. 
c(K1)=0. 
IF (J.EQ.1) GOTO 1191 

GOTO 119 

K2=K2+1 

A(K1)=AZRB(K2) 
V(I,J)=a(K1) 
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119 CONTINUE 

THE VALUE OF FREE SPACE PERMEABILITY AMUO IS SET 
131 AMUO=1.2566371E-6 

THE ARRAY WHICH HOLDS THE LEFT HAND COEFFICIENTS 

OF THE EQUATIONS IS INITIALISED 

DO 1131 I=1,IJM 
DO 1131 J=1,IM 

1131 P(I,J)=0. 
K=I2 
K1=0 

THE DATA IS TESTED FOR SYMMETRY AND THE COORDINATES 
ARE SET ACCORDINGLY 

IF (NSYM.EQ.1) GOTO 8 
J5=53 
Js=0 

IS=THE NUMBER OF EQNS TO BE SOLVED 
Is=13*J3 

GOTO 9 
8 J5=J2 

  

9 IT=IS-K 
THE SUBROUTINE"PCLIN" WHICH SETS THE FINITE ELEMENT 
COEFFICIENTS FOR EVERY QUADRILATERAL MESH AREA IS 
CALLED 

CALL PCLIN(Z,R,AMUR,AJ,P,A,C,11,J31,IM,JM, IJM,NSYM, ANI) 
FOR SYMMETRICAL CASE ,THE LENS EXCITATION IS DOUBLED 

IF (NSYM.EQ.1) ANI=2.*ANI 
SUBROUTINE "EQNS" IS CALLED ,THIS SUBROUTINE SOLVES 
THE EQUATIONS BY GAUSSIAN ELIMINATION AND BACKWARD SUBSTITUTION 

A2=V(I3,I) 
B=(A1*R2*R2*R2-A2*R1*R1*R1)/( .5*R1*R2*(R2*R2-R1*R1)) 

THE OUTPUT OF Z-COORDINAT OF AXIAL MESH POINT AND 
THE AXIAL FLUX DENSITY AT EACH MESH POINT IS WRITTEN 
our 
IF NUMBER OF RUNS IS MORE THAN 1,THE Z AND B OUTPUT 
OF ALL THE RUNS IS OUTPUTED 

WRITE (2,95) Z1,B 
IF (IRUN.EQ.1) GOTO 94 
LBZ=LBZ+1 
22Z(LBZ)=21 
ABZ (LBZ)=B 

94 CONTINUE 
FOR SYMMETRIC CASE,THE VALUES OF Z(MM) COORDINATES 
AND B(TESLA) FOR POSITIVE HALF PLANE IS CALCULATED 

IF (NRUN.NE.1.OR.NSYM.EQ.0) GOTO 79 
DO 971 JJ=1,32 
J=32+1-T5 
Z1=-Z(1I1,5)*1000. 

(12,3) 
R2=R(13,7) 
A (12,0) 
A2=V(13,d) 
B=(A1*R2*R2*R2-A2*R1*R1*R1)/( .5*R1*R2*(R2*R2-R1*R1)) 
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WRITE (2,95) 21,B 
971 CONTINUE 

c FOR 1 RUN OR 4 RUNS THE PROGRAM IS DIRECTED TO 
c WRITE THE EXCITATION.THIS ALSO HAPPENS IN CASE 

cS OF SYMMETRY AND 3 RUNS 
79 IF (IRUN.EQ.1.OR.NR(IRUN).EQ.4) GOTO 941 

IF (NR(IRUN).EQ.3.AND.NSYM.EQ.1) GOTO 941 
IF (NR(IRUN).EQ.NR(IRUN-1)+1) LBZ=LBZ-1 

95 FORMAT (1X,F10.2,6X,F15.6) 
C THE LENS EXCITATION IS WRITTEN OUT 

941 WRITE (2,96) ANI 
IF (IRUN.EQ.1) EXCIT=ANI 

96 FORMAT (1X/' EXCITATION GIVEN (NI) = ',F10.2, 
+ ' AMPERETURNS'/) 

IF FLUX DENSITY THROUGOUT THE MAGNETIC CIRCUIT 
(NBFE) IS REQUIRED TO BE OUTPUTED,THE PROGRAM IS 
DIRECTED TO ASUBROUTINE (BVALUES) TO DO sO 

IF (NBFE.EQ.0) GOTO 1102 
CALL BVALUES (Z,R,V,AMUR,11,J1,IM,JM,NBFE) 

Cc IF FLUX VALUES AT EACH MESH POINT ARE REQUIRED, THE 
C PROGRAM IS DIRECTED TO ASUBROUTINE (FLUX) TO DO SO 
1102 IF (NFLUX.EQ.0) GOTO 112 

CALL FLUX (V,I1,31,IM,JM) 
112 CONTINUE 

IF 1 RUN IS REQUIRED THE PROGRAM IS TERMINATED, OTHERWISE 
TITLES ARE WRITTEN 

IF (NRUN.EQ.1) STOP 
WRITE (2,942) 

942 FORMAT (/1X,'TOTAL DISTRIBUTION FOR SPECIFIED REGION'/) 
WRITE (2,936) 
WRITE (2,9351) 

THE Z COORDINATES OF MESH POINTS FOR SPECIFIED REGION 
AND AXIAL FLUX DENSITY VALUES FOR THE SPECIFIED REGION 

c IS OUTPUTED 
DO 944 J=1,LBZ 
WRITE (2,95) 22(J),ABZ(J) 

944 CONTINUE 

a
a
a
 

a
a
 

a
a
 

c FOR ASYMMETRIC CASE ,THE EXCITATION IS OUTPUTED.WHILE 

c FOR SYMMETRIC CASE ,THE Z AND B VALUES ARE CALCULATED 

c FOR POSITIVE HALF PLANE 
IF (NSYM.EQ.0) GOTO 946 
LBZ=LBZ~1 

DO 948 K=1,LBZ 
J=LBZ+1-K 

Z1=-2Z (J) 

WRITE (2,95) Z1,ABZ(J) 
948 CONTINUE 
946 WRITE (2,96) EXCIT 

STOP 
C END OF THE MAIN PROGRAM 

END 

SUBROUTINE (MESH) FOR SETTING COORDINATES OF EACH POINT ON THE 

FINITE ELEMENT MESH a
a
a
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Cc 

Z(IM,JM)=ARRAY OF COORDINATES TO BE SET 
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION 
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION 
IM=MAXIMUM PERMISSIBLE VALUE OF 11 
JM=MAXIMUM PERMISSIBLE VALUE OF J1 

SUBROUTINE MESH(Z,11,J1,IM,JM) 
DIMENSION Z(IM,JM) , TITLE(20) 
DIMENSION NC(15),NR(15) ,XA(15,15) 

THE SUBROUTINE READS THE MESH-POINT NUMBERS IN AXIAL 
DIRECTION 

READ (1,1)(NC(L),L=1,15) 
1 FORMAT (5X, 1515) 

DO 2 L=1,15 
IF(NC(L).EQ.0)GOTO 3 

2 CONTINUE 
CALCULATE VALUES OF JJ AND J1 
JJ=NUMBER OF COLUMNS OF COORDINATES SPECIFIED IN THE 
DATA 
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION 

JJ=15 
GOTO 4 

3 Jd=L-1 
4  JI=NC(JT) 

READ THE COORDINATES VALUES 
po 5 1=1,15 
READ(1,6)NR(I),(XA(I,J) ,J=1,Jd) 

6 FORMAT(I5,15F5.0) 
TEST FOR END OF DATA 

IF (NR(I)-EQ.0)GOTO 7 
5 CONTINUE 

GOTO 8 
7 IsI-1 
8  I1=NR(II) 

SET COORDINATE VALUES BY LINEAR INTERPOLATION 
DO 9 I=2,II 
DO 9 J=2,JI 
L1=NR(I-1) 
L2=NR(I) 
M1=NC(J~1) 
M2=NC(J) 
DO 9 LL=L1,L2 
DO 9 MM=M1,M2 
KL=L2-L1 
KM=M2-M1 
D1=(XA(I-1,J)-XA(I-1,J-1) )/FLOAT(KM) 
D2=(XA(I,J)-KA(I,J-1))/FLOAT(KM) 
D1=D1*FLOAT (MM-M1)+XA(I-1,J-1) 
D2=D2*FLOAT (MM-M1)+XA(I,J-1) 

9  2(LL,MM)=(D2-D1)*FLOAT(LL-L1)/FLOAT(KL)+D1 
THE COORDINATE VALUES WHICH HAVE BEEN SPECIFIED IN 
MM ARE CONVERTED TO METRES 

Do 10 I=1,11 
DO 10 J=1,01 

10 2(I,3)=2Z(I,5)/1000. 
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RETURN 

THE END OF SUBROUTINE MESH 

END 

SUBROUTINE (AJMUR) FOR SETTING EACH ELEMENT OF THE ARRY 
AMUR(IM,JM) TO THE VALUE OF THE RELATIVE PERMEABILITY 
OF CORRESPONDING QUADRILATTERAL OF THE FINITE ELEMENT 
MESH, AND EACH ELEMENT OF THE ARRY AJ(IM,JM) TO THE VALUE 
OF THE CURRENT DENSITY. AMUR(IM,JM)=RELATIVE PERMEABILITY 
VALUES FOR EACH QUADRILATERAL. 
AJ(IM,JM)=CURRENT DENSITY VALUES FOR EACH QUADRILATERAL 
(IN AMPTURNS/ SQUARE METRE) 
IM=NUMBER OF QUADRELATERAL AREAS IN THE RADIAL DIRECCTION 
UJM=NUMBER OF QUADRELATERAL AREAS IN THE AXIAL DIRECTION 

SUBROUTINE AJMUR (AMUR,AJ,I1,J1,IM,JM) 
DIMENSION AMUR(IM,JM) ,Ad(IM,JM) 

INITALISE ALL ELEMENTS OF AMUR TO 1. AND ALL ELEMENTS OF 
Ag TO 0. 

DO 1 I=1,11 
DO 1 J=1,01 
AMUR(I,J)=1. 
Ad(I,J)=0. 

1 CONTINUE 
READ VALUES OF JA,JB,IA,IB, Xd 
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION 
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION 
IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION 
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION 
XJ=THE RELATIVE PERMEABLITY OF THAT PORTION OF THE 
MAGNETIC CIRCUIT (DIMENSIONLESS) 
2 READ. (1,3) JA,JB,IA,IB,XJ 
3 FORMAT (415,F10.0) 
TEST FOR END OF MAGNETIC CIRCUIT DATA 

IF (JA.EQ.0) GOTO 5 
RESET APPROPRIATE ELEMENTS OF AMUR TO THE VALUE OF XJ 

IB1=IB-1 
JB1=JB-1 
DO 4 I=IA,IB1 
DO 4 J=JA,JB1 

4 AMUR(I,J)=xo 
GO TO 2 TO READ NEXT LINE OF MAGNETIC CIRCUIT DATA 

GOTO 2 
READ NEXT LINE OF VALUES OF JA,JB,IA,IB,XJ,WHICH ARE 
MESH-POINT NUMBERS SPECIFYING THE POSITION OF APORTION OF 
THE COIL WINDINGS AND THE CURRENT DENSITY IN THAT PORTION 
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION 
JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION 
IASTHE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION 
IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION 
XJ=THE CURRENT DENSITY IN THAT PORTION OF THE COIL WINDINGS 
(XJ IS IN AMPTURNS/SQUARE CM) 
5 READ (1,3) JA,JB,IA,IB,Xd 
TEST FOR END OF DATA SPECIFYING COIL WINDINGS 

IF (JA.EQ.0) RETURN 
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RESET APPROPRIATE ELEMENTS OF AJ TO THE VALUE OF XJ 
IB1=IB-1 

1 

DO 6 I=IA,IB1 
DO 6 J=JA,JB1 

CNVERT CURRENT DENSITY XJ TO UNITS OF AMPTURNS/SQUARE 

METRE 
6 AJ(I,J)=xXd*10000. 
GO TO 5 TO READ NEXT LINE OF COIL WINDINGS DATA 

GoTo 5 
TO 140 

IF (NN.GT.1) GOTO 140 
N3=0 
Ic=r 

Jc=o 

GOTO 141 

  

140 IF (NN-3) 1402,1403,1404 
1402 N3=6 

Ic=I+1 

Jc=o 

GOTO 141 
1403 N3=12 

Ic=I 

JC=I+1 
GOTO 141 

1404 N3=18 
Ic=I+1 
JC=I+1 

DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS 

141 DO 16 NO=1,3 
N=N+1 

ND1=ND (NN) 

IF (NO.EQ.1) ND1=0 
IF (NO.EQ.3) N3=N3+1 

SET Z AND R COORDINATES OF VERTICES OF TRIANGULAR 

ELEMENTS 
N3=N3+1 

21=F(N3) 
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Z2=F (N3+1) 
Z3=F (N3+2) 
R1=G(N3) 
R2=G(N3+1) 
R3=G (N3+2) 

THE COEFFICIENTS OF NODAL EQUATIONS REPRESENTING 
THE VECTOR POTENTIAL OVER EACH ELEMENT ARE FOUND 

B1=R2-R3 
B2=R3-R1 
B3=R1-R2 

T1=Z3-Z2 

12=Z1-Z3 
T3=Z2-Z1 

DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE 
DET=B1*T2-B2*T1 
RO=(R1+R2+R3)/3. 
X=DET/(3.*RO) 
T1=T1+X 
T2=T2+x 
T3=T3+K 
X=RO/(2.*AMUO*AR(IC,JC)*DET) 
IF (N.EQ.2.OR.N.EQ.5.OR.N-EQ.8.OR.N.EQ.11) GOTO 162 
IF (N.EQ.3.OR.N.EQ.6.OR.N-EQ.9.OR.N.EQ.12) GOTO 163 

161 D(M1)=(B2*B1+T2*T1)*x 

D(M1+1)=(B2*B2+T2*T2)*xX 
D(M1+2)=(B2*B3+T2*T3 ) *X 

M1=M1+9 

GOTO 17 

162 D(M2)=(B1*B1+T1*T1)*X 
D(M2+1)=(B1*B2+T1*T2) *X 

D(M2+2)=(B1*B3+T1*T3)*x 

M2=M2+9 
GOTO 17 

163 D(M3)=(B3*B1+T3*T1)*xX 
D(M3+1)=(B3*B2+T3*T2)*xX 
D(M3+2)=(B3*B3+T3*T3) *x 
M3=M3+9 

17 ANI=ANI+.5*DET*AJ(IC,JC)*FLOAT(ND1) 

Q(N)=Ad(IC,5C)*RO*DET/6. 
16 CONTINUE 

14 CONTINUE 

SET FINITE ELEMENT COEFFICIENTS FOR QUADRILATERAL 
AREA TO OBTAIN NINE-POINT EQUATION FOR EACH NODE 

L=L+1 

L2=L2+1 
P(L,1)=0. 
P(L,2)=0. 
P(L,13)=0. 
P(L,K)= 
P(L,11)=0. 
P1=D(6)+o/7) 

P2=D(1)+D(8)+D(12)+D(14) 

P3=D(15)+D( 16) 

P4=D(3)+D(5) 
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P5=D(2)+D(4)+D(9)+D(11)+D(13)+D( 18) 
P6=D(10)+D(17) 
C(L)=Q(1)+9(2)+Q(3)+9(4)+0(5)+0(6) 
Q1=P1*A(L2) 
Q2=P2*A(L2+1) 
Q3=P3*A(L2+2) 
Q4=P4*A(L2+11) 
Q6=P6*A(L2+11+2) 
IF (J.EQ.JS) GOTO 18 
P4=P4+D(19)+D(26) 

P5=P5+D( 20) +D(22)+D( 27 )+D( 29) +D(31)+D( 36) 
P6=P6+D(30)+D(32) 
P7=D(24)+D(25) 
P8=D(21)+D(23)+D(28)+D(35) 
P9=D(33)+D(34) 
C(L)=C(L)+0(7)+Q(8)+Q(9)+Q( 10)+9( 11)+0( 12) 
Q7=P7*A(L2+2*11) 
Q8=P8*A(L2+2*11+1) 
Q9=PO*A(L2+2*11+2) 

EACH NODAL EQUATION IS EXPRESSED IN TERMS OF THE VECTOR 
POTENTIAL AT THE NODE AND THE EIGHT NEIGHBOURING VECTOR 
POTENTIAL VALUES. THE RESULTING MATRIX IS SYMMETRICAL 
ABOUT THE DIAGONAL. HENCE ONLY THE COEFFICIENTS OF THE 
BANDED MATRIX IN THE UPPER TRIANGLE OF THE MATRIX NEED 
TO BE STORED. THE MATRIX EQUATION IS SOLVED BY GAUSSIAN 
ELIMINATION IN ANOTHER SUBROUTINE 

18 IF (J.EQ.JS) GOTO 20 
IF (J.EQ.J5) GOTO 30 
IF (J.NE.1) GOTO 40 
IF (I.EQ.1) GOTO 50 
IF (I.EQ.1I3) GoTO 60 
C(L)=C(L)=(Q14+Q2+Q3) 
P(L,1)=P5 
P(L,2)=P6 
P(L,13)=P7 
P(L,K)=P8 
P(L,I1)=P9 
GOTO 11 

50 C(L)=C(L)-(Q1+Q2+93+04+07 ) 

P(L,1)=P5 
P(L,2)=P6 
P(L,K)=P8 
P(L,I1)=P9 
GoTo 11 

60 C(L)=C(L)-(Q1+Q2+Q3+Q6+99) 
P(L,1)=P5 
P(L,13)=P7 
P(L,K)=P8 
GOTO 11 

40 IF (I.EQ.1) GOTO 401 
IF (I.EQ.13) GOTO 402 
P(L,1)=P5 
P(L,2)=P6 
P(L,13)=P7 
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P(L,K)=P8 
P(L,11)=P9 
GoTO 11 

401 C(L)=C(L)-(Q1+94+97 ) 
P(L,1)=P5 
P(L,2)=P6 
P(L,K)=P8 

P(L,11)=P9 
GOTO 11 

402 C(L)=C(L)-(Q3+96+99 ) 
P(L,1)=P5 

P(L,1I3)=P7 
P(L,K)=P8 
GOTO 11 

30 IF (I.EQ.1) GOTO 301 
IF (I.EQ.13) GOTO 302 
C(L)=C(L)-(Q7+Q8+99) 
P(L,1)=P5 

P(L,2)=P6 
GOTO 11 

301 C(L)=C(L)-(Q1+04+97+98+99 ) 

P(L,1)=P5 
P(L,2)=P6 
GoTo 11 

302 C(L)=C(L)-(Q3+Q6+97+98+99 ) 
P(L,1)=P5 

GoTo 11 
20 IF (I.EQ.1) GOTO 201 

IF (I.EQ.13) GOTO 202 
P(L,1)=P5 
P(L,2)=P6 
GOTO 11 

201 C(L)=C(L)-(Q1+94) 
P(L,1)=P5 

P(L,2)=P6 

GoTo 11 
202 C(L)=C(L)-(Q3+96) 

P(L,1)=P5 

11 CONTINUE 
10 CONTINUE 

RETURN 
THE END OF THIS SUBROUTINE 

END 

SUBROUTINE (EQNS) FOR EQUATION SOLVING BY GAUSSIAN 

ELIMINATION AND BACKWARD SUBSTITUTION 

I1=NUMBER OF RADIAL NODES IN THE FINITE ELEMENT GRID 

IS=NUMBER OF EQUATIONS TO BE SOLVED 

C=ARRY WHICH HOLDS THE RIGHTHAND SIDE COEFFICIENTS OF 

THE EQUATIONS 

P=ARRY WHICH HOLDS THE LEFTHAND SIDE COEFFICIENTS OF 

THE MATRIX EQUATION 
SUBROUTINE EQNS (C,IT,IS,P,1I1,IM,IJM) 

DIMENSION C(IUM),P(1IJM, IM) 
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SET VARIOUS CONSTANTS 
NC=11 
Is1=IS-1 

STEP 1-GAUSSIAN ELIMINATION 
DO LOOP FOR EACH ROW OF BAND MATRIX 

DO 70 NT=1,1S1 
IF (NT.GT.IT) NC=IS-NT+1 

DO LOOP FOR EACH COLUMN OF SUB-MATRIX 
DO 71 I=2,NC 
IC=NT+I-1 
RC=P(NT,I)/P(NT,1) 

RESET APPROPRIATE ELEMENTS OF RIGHT-HAND SIDE 
C(IC)=C(IC)-RC*C(NT) 
II11=11-1+1 

DO LOOP FOR EACH ROW OF SUB-MATRIX 
DO 72 J=1,11I11 

RESET APPROPRIATE ELEMENT OF BAND MATRIX 
P(IC,J)=P(IC,J)-RC*P(NT, I+J~1) 

72 CONTINUE 
71 CONTINUE 
70 CONTINUE 
STEP 2-BACKWARD SUBSTITUTION 
BACKWARD SUBSTITUTION FOR ROW IS 

C(IS)=C(IS)/P(IS,1) 
DO LOOP FOR BACKWARD SUBSTITUTION FOR EACH ROW OF MATRIX 

Is1=Is-1 
pO 80 I=1,181 
II=IS-I 
NC=11 
IF (II.GT.IT) NC=IS-II+1 
s=0. 

DO LOOP FOR SUMMING PRODUCTS OF (APPROPRIATE ELEMENTS OF 
C) * (APPROPRIATE ELEMENTS OF P) 

DO 81 J=2,NC 
JJ=NC+2-T 
S=S+P(II,JJ)*C(II+dI-1) 

81 CONTINUE 
RESET APPROPRIATE ELEMENT OF C TO STORE THE SOLUTION 
C(II)=(C(II)-S)/P(II,1) 

80 CONTINUE 
RETURN 

END OF SUBROUTINE EQNS 
END 

SUBROUTINE (VPOT) FOR COPYING THE SOLUTION OF THE 
FINITE ELEMENT EQUATIONS INTO THE ARRY V(IM,JM) 
WHICH STORES THE COMPUTED VECTOR POTENTIAL AT EACH 
MESH POINT . 
THE VARIABLES ARE DEFINED IN THE MAIN PROGRAM 

SUBROUTINE VPOT (V,C,12,IM,JM,IdM,J5) 
DIMENSION V(IM,JM) ,C(IuM) 
J6=55+1 
L=0 
DO 1 J=2,J6 
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Cc 

DO 2 I=2,12 
L=L+1 

V(I,J)=C(L) 
2 CONTINUE 

1 CONTINUE 
RETURN 

END OF SUBROUTINE VPOT 

END 

SUBROUTINE (BVALUES) FOR CALCULATING THE FLUX DENSITY AT 
POINTS THROUGHOUT THE MAGNETIG CIRCUIT AND FOR WRITING OUT 
THE PEAK FLUX DENSITY. 
THE VARIABLES ARE DEFINED IN THE MAIN PROGRAM 

SUBROUTINE BVALUES(Z,R,V,AMUR,1I1,J31,IM,JM,NBFE) 

DIMENSION Z(IM,JM) ,R(IM,JM) ,V(IM,JM) ,AMUR(IM,JM) 
INITALIZE THE VALUE AND POSITION OF THE PEAK FLUX DENSITY 
IN THE MAGNETIC CIRCUIT 
AMUO=1.2566371E-6 

  

IF (FLUX DENSITY IN MAGNETIG CIRCUIT) IS REQUIRED AS 

OUTPUT,THE PROGRAM IS DIRECTED TO WRITE HEADING FOR THAT 

IF (NBFE.EQ.1) WRITE (2,10) 

10 FORMAT (/1X,'FLUX DENSITY VALUES IN MAGNETIC CIRCUIT'/) 

DO LOOPS FOR EVEKY QUADRILATERAL AREA OF MESH 

I2=1I1-1 
J2=J1-1 
DO 1 J=1,32 
DO 1 I=1,12 

TEST WHETHER THE QUADRILATERAL IS IN FREE SPACE OR IN 
THE MAGNETIC CIRCUIT 

IF (AMUR(I,J).EQ.1) GOTO 1 
SET Z AND R COORDINATES AND VECTOR POTENTIAL VALUES AT 
CORNER POINTS OF QUADRILATERAL 

Z1=Z(I,J) 
Z2=Z(I+1,7) 

23=Z(I+1,3+1) 
24=Z(I,J+1) 
RI=R(I,J) 
R2=R(I+1,J) 

(1+1,5+1) 
R4=R(I,J+1) 
vi=v(I,J) 

V2=V(I+1,7) 

V3=V(I+1,J+1) 
v4=v(I,J+1) 

CALCULATE COORDINATES OF CENTRE POINT OF QUADRILATERAL 
ZC=(Z1+Z2+Z3+Z4)*.25 
RC=(R1+R2+R3+R4)*.25 

CALCULATE FLUX DENSITY COMPONENT BZ AND BR AT CENTRE 
POINT OF QUADRILATERAL 

X1=(Z1-Z2)*R1*R2 

X2=(Z1-Z3)*R1*R3 
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X3=(Z1-Z4)*R1*R4 
X4=(Z2-Z3)*R2*R3 

X5=(Z2-Z4)*R2*R4 

X6=(Z3-Z4)*R3*R4 
¥1=(R1-R2)*Z1*Z2 
Y¥2=(R1-R3)*Z1*Z3 

Y¥3=(R1-R4)*Z1*Z4 

¥4=(R2-R3)*Z2*Z3 
Y¥5=(R2-R4)*Z2*Z4 

Y¥6=(R3-R4)*Z3*Z4 

P1=X4-X5+X6 
P2=-X2+X3-X6 
P3=X1-X3+X5 
P4=-X1+X2-x4 
Q1I=R1*Z2-Z1*R2 
Q2=R1*Z3-Z1*R3 

Q3=R1*Z4-Z1*R4 

Q4=R2*Z3-Z2*R3 

Q5=R2*Z4-Z2*R4 

Q6=R3*Z4-Z3*R4 
DET=Z1*P1+Z2*P2+Z3*P3+Z4*P4 
F=V1* (-Z4*X4+Z3*X5-Z2*X6 )+V2* (Z4*X2-Z3*X3+Z1*X6 ) 
PSF+V3* (-Z4*X1+Z2*X3-Z1*X5 )+V4* (Z3*X1-Z2*X2+Z1*X4) 
G=V1*P1+V2*P2+V3*P3+V4*P4 
H=V1* (-Y4+¥5-Y6 )+V2* ( ¥2-¥3+Y¥6 )+V3*(-¥1+¥3-Y5)+V4*(¥1-Y2+¥4) 
AL=V1* (Q4-95+06 )+V2* ( -Q2+93-96 )+V3* (Q1-Q3+05 )+V4*(-91492-04) 
F=F/DET 
G=G/DET 
H=H/DET 
AI=AL/DET 
VC=F+G*ZC+H* RC+AL*ZC*RC 
BZ=H+A1L*ZC+VC/RC 
BR=-G-AI*RC 

CALCULATE THE FLUX DENSITY B AT CENTRE POINT OF QUADRI- 
LATERAL 

B=SQRT (BZ*BZ+BR*BR) 
CNVERT COORDINATES OF MAX. FLUX DENSITY POSITION FROM 
METRES TO MM 

2C=ZC* 1000. 
RC=RC* 1000. : 

WRITE LOCATION AND VALUES OF AXIAL (BZ) AND RADIAL(BR) 
COMPONENTS OF THE FLUX DENSITY AND THE RESULTANT FLUX 
DENSITY THROUGHOUT THE MAGNETIC CIRCUIT 

IF (NBFE.EQ.1) WRITE(2,8) I,J,ZC,RC,BZ,BR,B 
8 FORMAT (1X,215,2F15.3,3F15.6) 
TEST IF MAX. FLUX DENSITY HAS BEEN REACHED 

IF (B.LT.BMAX) GOTO 1 
BMAX=B 
ZMAX=ZC 
RMAX=RC 

1 CONTINUE 
WRITE POSITION AND VALUES OF MAX. FLUX DENSITY IN THE 
MAGNETIC CIRCUIT 
WRITE (2,3) ZMAX, RMAX , BMAX 
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3 FORMAT(1X,'MAXIMAM FLUX DENSITY IN MAGNETIC CIRCUIT'// 
+ 1X,2F10.5,F15.6,'(TESLA)') 
RETURN 

END OF SUBROUTINE BVALUES 
END 

SUBROUTINE (FLUX) FOR CONVERTING THE VALUES OF VECTOR 
POTENTIAL AT EACH MESH POINT TO THE CORESPONDING MAGNETIC 
FLUX VALUE V(I,J)=ARRAY WHICH HOLDS VALUES OF THE VECTOR 
POTENTIAL AT ENTRY TO THE ROUTINE AND WHICH HOLDS THE 
THE MAGNETIC FLUX VALUE AT EACH MESH POINT ON RETURN TO 
TO THE MAIN PROGRAM 

SUBROUTINE FLUX (V,1I1,J1,IM,JM) 
DIMENSION V(IM,JM) 

SET VALUE 2.*PYE 
PI=6. 28318531 

CONVERT EACH ELEMENT OF V(IM,JM) FROM VECTOR POTENTIAL 
TO MAGNETIC FLUX VALUE AT EACH MESH POINT 

DO 2 J=1,71 
DO 2 aut 
V(I,d)=PI*V(I,J) 

2 CONTINUE 
WRITE HEADING 

WRITE (2,5) 
5 FORMAT (/1X,'FLUX VALUES AT EACH MESH POINT'/) 
J,JF,3S ARE MESH POINT NUMBERS IN THE AXIAL DIRECTION 

gs=1 
gp=4 

20 JF=3S+5D 
WRITE (2,4) (J,J=JS,JF) 

4 FORMAT (1X,5X,5115) 
DO LOOP FOR WRITING MESH POINT NUMBERS IN THE RADIAL 
DIRECTION AND THE FLUX VALUES. 

DO 6 I=1,11 
I IS THE MESH POINT NUMBER IN THE RADIAL DIRECTION 

WRITE (2,8) I,(V(I,d),J=dS,JF) 
8 FORMAT (1X,I5,5E15.5) 
6 CONTINUE 

WRITE (2,10) 
10 FORMAT (1X) 
TEST FOR END OF SET OF VALUES 

IF (JF.EQ.J1) GOTO 12 
JS=JF+1 
IF ((JS+JD).GT.J1) JD=J1-Js 
GOTO 20 

12 WRITE (2,10) 
RETURN 

END OF SUBROUTINE FLUX 
END 
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 VPSAT PROGRAM 

FINITE ELEMENT PROGRAM FOR COMPUTING AXIAL FLUX DENSITY 
DISTRIBUTION AND VECTOR POTENTIAL THROUGHOUT THE MAGNET 
-IC CIRCUIT OF SATURATED AND USATURATED MAGNETIC LENSES 
THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS: 
Z(IM,JM)=Z-COORDINATES OF EACH MESH POINT 
R(IM,JM)=R-COORDINATES OF EACH MESH POINT 
IM=NUMBER OF MESH POINT IN THE R-DIRECTION 
UJM=NUMBER OF MESH POINT IN THE Z-DIRECTION 
OTHER PROGRAMS PREVIOUS TO THIS PROGRAM UTILISE DIFFERE 
-NT MESH NUMBERS DEPENDING ON THE COMPUTER MEMORY SIZE . 
FOR SUCH PROGRAMS TYPICAL MESH POINTS NUMBERS ARE IN THE 
ORDER OF (32,70) TO (40,80) WHEN UTILIZING LARGE COMPUTERS 
FOR SMALLER COMPUTERS (20,40) TO (25,50) MESH POINTS ARE 
USED IN MINI COMPUTERS THE NUMBERS ARE REDUCED TO (12,25) . 
FOR SUCH PROGRAMS THE HIGHER THE MESH POINTS NUMBERS THE 
MORE ACCURATE THE RESULTS ARE .- 
THIS NECESSITATES LARGE COMPUTERS FOR ACCURATE RESULTS. 
THE PRESENT PROGRAM OVERCOMES THE INHERENT INACCURACIES 
WHEN UTILISING MINI COMPUTERS BY INCREASING THE NUMBER 
OF RUNS AS EXPLAINED LATER AMUR(IM,JM)=RELATIVE PERMEAB 
-ILITY OF EACH QUADRILATERAL 
AJ(IM,JM)=CURRENT DENSITY WITHIN EACH QUADRILATERAL 
A(IM,JM)=NON ZERO ELEMENTS OF SYMMETRIC BAND MATRIX 
C(IM,JM)=RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATIONS 
V(IM,JM)=COMPUTED VECTOR POTENTIAL AT EACH MESH POINT 
P(IM*JM,IM)=COEFFICIENTS OF THE FINITE ELEMENT EQUATIONS 
AZLB(IM)=FIRST INNER BOUNDARY IN R-DIRECTION 
AZRB(IM)=SECOND INNER BOUNDARY IN R-DIRECTION 
NR=NUMBER OF RUNS DESIRED (1 TO 4) 
TITLE(20) IS ANY TITLE UP TO 80 CHARACTERS 
IJM=IM*IM 
NSAT=THE SATURATION CONDITON .NSAT TAKES THE VALUE OF 0 
FOR UNSATURATED LENSE AND 1 FOR SATURATED LENSE I.E THE 
PROGRAM WILL FUNCTION FOR BOTH LINEAR AND NONLINEAR 
CONDITIONS 
TB(IBM),TM(IBM) REPRESENT TABLE OF TYPICAL RELATION 
BETWEEN FLUX DENSITY AND RELATIVE PERMEABILITY . 
THE DIMENSION STATEMENTS ARE SET AS FOLLOWS : 
COMMON/ONE/Z( IM, JM) ,R(IM,JM) ,AMUR(IM,JM) ,Ad(IM,JM) 
COMMON/TWO/A( ITM) ,C(IUM) ,V(IM,JM) ,2R1(IM,JM) , TMUR(IM,JM) 
COMMON/THREE/ P(IJM, IM) 
DIMENSION AZLB(IM) , AZRB(iM) ,NR(4) ,TITLE(20) 
COMMON TB(IBM) ,TM(IBM) ,IBM ,NSAT ~ 
ZZ (Z-COORDINATES OF AXIAL MESH POINTS) 
ABZ(COMPUTED AXIAL FLUX DENSITY DISTRIBUTION) 

COMMON/ONE/ 2Z(25,50),R(25,50) ,AMUR(25,50) ,AJ(25,50) 
COMMON/TWO/ A(1250),C(1250),V(25,50) ,2R1(25,50) , TMUR(25,50) 
COMMON/THREE/ P(1250,25) 
DIMENSION AZLB(25),AZRB(25),NR(4) ,TITLE(20) 
COMMON TB(100),TM(100),IBM,NSAT 

DIMENSION 2Z(210) ,ABZ(210) 
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IM=25 
oM=50 

IJM=IM*IM 
LBZ=JM*3 
X=0. 

DO 10 J=1,LBZ 
Z2Z(T)=xX 

ABZ(J)=X 

10 CONTINUE 
LBZ=0 

THE PROGRAM WILL READ THE FIRST LINE OF DATA WHICH 
CONSIST OF TWO INTEGERS THE FIRST INDICATE WHETHER 
THE ENTIRE MESH IS SPECIFIED IN THE DATA I.E ASYMM 
-ETRIC CASE ,OR THE PORTION OF THE MESH IN THE NEG 
“ATIVE HALF OF THE LENS IS SPECEFIED (SYMMETRIC 
-CASE) 
THE SECOND INTEGER IDICATE WHETHER THE MAGNETIC 
STRUCTURE IS UNDER LINEAR (UNSATURATED) OR NON 
LINEAR (SATURATED) CONDITION . 
NSYM CAN TAKE VALUES OF 1 OR 0 . 1 INDICATES 
SYMMETRY 

READ (1,1) NSYM1,NSAT 
1 FORMAT (215) 
THE PROGRAM EXPECTS IN THE SECOND LINE OF DATA 
FOUR INTEGERS WHICH WILL SPECIFY THE NUMBER OF 
REQUIRED TO BE PERFORMED (FROM 1 TO 4). THUS FOR 
ONE RUN NR=1,0,0,0,FOR TWO RUNS NR=1,2,0,0, FOR 
THREE RUNS NR=1,2,3,0, AND FINALL FOR FOUR RUNS 
NR=1,2,3,4, 

READ (1,2) (NR(I),I=1,4) 
2 FORMAT (415) 
A BLANK LINE IS LEFT 

READ (1,1111) 
FOR SYMMETRICAL CASE (NSYM1=1),UP TO 3 RUNS ARE 
PERFORMED. FOR ASYMMETRIC CASE(NSYM1=0)UP TO FOUR 
RUNS ARE DONE 

IF (NSYM1.EQ.1) GOTO 20 
IF (NR(4).EQ.4) GOTO 24 

20 IF (NR(3)-EQ.3) GOTO 23 
IF (NR(2).EQ.2) GOTO 22 
IF (NR(1).EQ.1) GOTO 21 

WARNING IF NUMBER OF RUNS HAVE NOT BEEN SPECIFIED 
THE PROGRAM WILL STOP IN THIS CASE 

WRITE (2,3) 
3 FORMAT (1X,' RUNS NOT SPECIFIED") 

STOP 
21 NRUN=1 

GOTO 25 
22 NRUN=2 

GOTO 25 
23 NRUN=3 

GoTo 25 
24 NRUN=4 
THE PROGRAM WILL TEST WHETHER THE LENS IS UNDER 
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25 IF (NSAT.EQ.0) GOTO 4 
IBM=0 

98 IBM=IBM+1 
READ( 1, 100)TB(IBM) ,TM(IBM) 

100 FORMAT(2F10.0) 
C THE PROGRAM WILL TEST FOR END OF TABLE 

IF (TM(IBM).EQ.(-999.)) GOTO 1001 
GOTO 98 

1001 IBM=IBM-1 
FOR FLUX DENSITY VALUES NOT SPECIFIED IN TABLE 
AFACTOR IS CALCULATED WHICH IS USED FOR DERIVING 
RELATIVE PERMEABILTY 
AMAG=TB (IBM)*(1.-1./TM(IBM) ) 

Cc A BLANK LINE IS LEFT 
C HE VALUES OF TWO INNER BOUNDARIES ARE READ 

READ (1,1111) 
4 READ (1,111) JLB,JRB 

111 FORMAT (215) 
C A BLANK LINE IS LEFT 

READ (1,1111) 
1111 FORMAT (1X) 

C  INITALISE NUMBER OF COMPLETED ITERATIONS TO ZERO 
NIT=0 

€ DO LOOPS ACORDING TO SPECIFIED NUMBER OF RUNS 
DO 112 IRUN=1,NRUN 
IF (IRUN.EQ.1) GOTO 2111 
IF (NR(IRUN).EQ.0) GOTO 112 

C READ ANY TITLE UP TO 80 CHARACTERS 
2111 READ (1,1121) (TITLE(I),I=1,20) 
1121 FORMAT (20A4) 

C THE OUTPUT IS SPECIFIED ACCORDING TO REQUIREMENTS 
READ (1,1122) NBFE,NFLUX 

1122 FORMAT (215) 
C A BLANK LINE IS LEFT 

READ (1,1111) 
C THE SUBxOUTINE MESH ,FOR READING AND SETTING AXIAL 

AND RADIAL COORDINATES OF THE MAJOR MESH LINES 
THE SUBROUTINE IS CALLED TWICE,FOR Z AND R COORDINATES 

CALL MESH (Z,11,J1,IM,JM) 
CALL MESH (R,1I1,J1,IM,JM) 

SET VARIOUS CONSTANTS 
I1=NUMBER OF MESHES IN THE RADIAL DIRECTION 
I2=11-1 =NUMBER OF QUADRILATERALS IN THE RADIAL 
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION 
J2=J1-1 =NUMBER OF QUADRILATERALS IN THE AXIAL 
DIRECTION 

2511-1 
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J3=J31-2 
c DO LOOP TO SET OUTER BOUNDARY VECTOR POTENTIALS 

Cc TO ZERO FOR BOTH Z AND R DIRECTIONS 

DO 1124 J=1,JM 
po 1124 I= 

1124 V(I,J)=0. 
C THE SUBROUTINE READING THE DATA SPECIFING THE POSITION 
C AND PERMEABILTY OF THE MAGNETIC CIRCUIT IS CALLED 

CALL AJMUR (AMUR,AJ,11,J1,IM,JM,MS,MC) 
C THE DATA IS TESTED FOR SATURATION AND SUBROUTINE 
C  SETMUR IS CALLED 

IF (IRUN.EQ.1.OR.NSAT.EQ.0.OR-MS.EQ.0) GOTO 1123 
CALL SETMUR (Z,AMUR,ZR1,TMUR,12,J2,IM,JM) 

C THE INITIAL LENS EXCITATION(AMPERTURNS) IS SET TO 
C ZERO FOR ASYMMETRIC LENS 
4123 ANI=0. 

NSYM=0 
C THE NEXT TWO STATEMENTS GUIDE THE PROGRAM TO 
C EXECUTE THE APPROPRIATE COMPUTATIONS FOR 1,2,3,4 
C RUNS RESPECTIVELY 
1126 IF (IRUN.EQ.1) GOTO 113 

IF (NR(IRUN)-3) 114,115,116 
C AN ITERATION COUNTER IS SET TO ZERO AND THE COORDINATES 
C OF THE MESH NODES IN Z AND R DIRECTIONS ARE SET BY 
C LINEAR INTERPOLATION 

113 K1=0 
DO 130 J=1,J1 
Do 130 I=1,11 
K1=K1+1 

THE RIGHT HAND SIDE OF THE FINITE ELEMENTS EQUATION 
IS SET 

C(K1)=0. 
130 CONTINUE 

K1=0 
C THE DATA IS TESTED FOR LINEARITY AND THE PROGRAM IS 
C DIRECTED ACCORDINGLY 

IF (NIT.GT.0) GOTO 1304 
C FOR LINEAR CASE THE COORDINATES OF THE MESH NODES 
Cc IN Z AND R DIRECTION ARE SET BY LINEAR INTERPOLATION 
Cc IN Z AND R DIRECTIONS ARE SET BY LINEAR INTERPOLATION 

DO 1302 J=1,J1 
DO 1302 I=1,11 
K1=K1+1 
A(K1)=0. 

1302 CONTINUE 
1304 NSYM=NSYM1 

GoTo 131 
114 K1=0 

K2=0 
DO 117 J=1,01 
DO 117 I=1,11 
K1=K1+1 

  

c 
¢ 
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A(K1)=0. 
C(K1)=0. 

IF (J.EQ.d1) GOTO 1171 
GOTO 117 

1171 K2=K2+1 
C THE VECTOR POTENTIAL AT FIRST INNER BOUNDARY IS STORED FOR 
C  RUN2 FROM RUN1 

A(K1)=AZLB(K2) 
V(I,d)=A(K1) 

117 CONTINUE 
GOTO 131 

115 K1=0 
K2=0 

K3=0 

C UP TO THREE RUNS CAN BE DONE FOR SYMMETRIC CASES 
IF (NRUN.EQ.3) NSYM=NSYM1 
DO 118 J=1,J1 
DO 118 I=1,11 
K1=K1+1 
A(K1)=0. 

C(K1)=0. 
IF (J.EQ.1) GOTO 1151 
GOTO 1152 

1151 K2=K2+1 
Cc THE VECTOR POTENTIAL AT THE INNER BOUNDARIES ARE 
c STORED FOR LATER USE IN OTHER RUNS 

A(K1)=AZLB(K2) 
V(I,J)=A(K1) 

1152 IF (NSYM.EQ.1) GOTO 118 
IF (J.EQ.J1) GOTO 1153 
GOTO 118 

1153 K3=K3+1 
© THE VECTOR POTENTIAL IN SECOND INNER BOUNDARY IS STORED FOR 
C  RUN3 AND RUN4 

A(K1)=AZRB(K3 ) 
V(I,J)=A(K1) 

118 CONTINUE 
GOTO 131 

116 K1=0 
K2=0 
NSYM=NSYM1 
DO 119 J=1,J1 
DO 119 I=1,11 
K1=K1+1 
A(K1)=0. 
C(K1) 

IF (J.EQ.1) GOTO 1191 
GOTO 119 

1191 K2=K2+1 
A(K1)=AZRB(K2) 
V(I,J)=A(K1) 

119 CONTINUE 
C THE RELATIVE PERMEABILITY OF FREE SPACE IS SETED 

131 AMUO=1.2566371E-6 
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DO 1131 I=1,IJM 

po 1131 J=1,IM 
1131 P(I,J)=0. 

K=I2 
K1=0 
IF (NSYM.EQ.1) GOTO 8 
J5=J3 
gs=0 
Is=13*J3 
GOTO 9 

8 J5=2 
Js=35 
Is=13*J2 

9 IT=IS-K 
NM=NSYM 

IF ONLY ONE RUN IS REQUESTED THEAND IN SATURATION CASE 
THE PROGRAM IS DIRECTED ACORDINGLY 

IF (IRUN.EQ.1.AND.NSAT.EQ.1.AND.MS.GT.0) GOTO 82 
IN CASE OF UNSATURATION THE PROGRAM WILL CALL SUBROUTINE 
PCLIN OTHERWISE (SATURATION) PCSAT IS CALLED 

CALL PCLIN(Z,R,AMUR,AJ,P,A,C,11,J31,IM,JM, IJM,NM,ANI) 
GOTO 84 

82 CALL PCSAT(Z,R,V,AMUR,Ad,P,A,C,AMAG,11,J1,IM,JM, IJM,NM,ANI) 
FOR SYMMETRIC LENSES ,TO TAKE ACCOUNT OF THE FACT THAT 
ONLY HALF OF THE COIL IS SPECIFIED IN THE DATA, THE 
EXCITATION IS DOUBLED 

84 IF (NSYM.EQ.1) ANI=2.*ANI 
SUBROUTINE "EQNS" IS CALLED . THIS SUBROUTINE SOLVES 
EQUATIONS BY GAUSSIAN ELIMINATION AND BACKWARD SUBST- 
-ITUTION 

CALL EQNS (C,IT,IS,P,11,IM, IdM) 
SUBROUTINE “VPLUSDV" IS CALLED . THIS SUBROUTINE ADDS 
THE COMPUTED CHANGES IN THE MESH-POINT POTENTIALS TO 
CURRENT POTENTIAL VALUES TO OBTAIN AN IMPROVED APPRO- 
-XIMATTION TO THE TRUE POTENTIAL DISTRIBUTION AND TEST 
WHETHER CONVERGENCE HAS BEEN ACHIEVED 

93 CALL VPLUSDV (V,C,12,IM,JM, IJM,J5 , VMAX ,DVMAX,NTEST) 
FOR RUN NUMERS GREATER THAN 1 AND LINEAR CONDITION, 
THE PROGRAM IS DIRECTED TO WRITE OUTPUT TITLES. 
OTHERWISE IT WILL STORE THE VECTOR POTENTIAL OF INNER 
BOUNDARIES 
IF (IRUN.GT.1.OR.NSAT.EQ.0.OR.MS.EQ.0) GOTO 931 
L1=33 
IF (NSYM.EQ.1) L1=J2 
L=12 
K1=0 
DO 842 J=1,L1 
L=L+2 
DO 842 I=1,13 

  

Ki=K1+1 

A(L)=V(I+1,5+1) 
842 CONTINUE 

NIT=NIT+1 

AM



c WRITE TITLES IN CASE OF SATURATION WHEN NUMBER OF 

c ITERATIONS IS MORE THAN 1 

IF (NIT.EQ.1) WRITE(2,222) 
222 FORMAT (1X,'ITERATIONS',5X,'MAX VECTOR',5X,'MAX CHANGE IN' 

-/1X,'COMPLETED ',5X,'POTENTIAL ',4X,'VECTOR POTENTIAL'/) 
WRITE (2,1125) NIT,VMAX,DVMAX 

1125 FORMAT (1X,15,5X,E15.5,3X,E15.5) 
C TEST WHETHER CONVERGENCE HAS BEEN ACHIEVED IF SO 
C THE TITLES ARE WRITTEN.OTHERWISE MORE ITERATIONS 
C ARE PERFORMED 

IF (NTEST.EQ.1) GOTO 930 
GOTO 1123 

930 WRITE (2,9301) 
9301 FORMAT (/1X,'CONVERGENCE ACHIEVED'/) 
931 IF (IRUN.GT.1) GOTO 934 

DO 932 I=1,11 . 
C THE VECTOR POTENTIAL IN FIRST INNER BOUNDARY IS STORED 

AZLB(1I)=V(I,JLB) 

IF (NSYM.EQ.1) GOTO 932 
C THE VECTOR POTENTIAL IN SECOND INNER BOUNDARY IS STORED 

AZRB(1I)=V(I,JRB) 
932 CONTINUE 

C WRITE TITELS 
934 WRITE (2,935) (TITLE(I),I=1,20) 
935 FORMAT (/1X,20A4/) 

WRITE (2,936) 
936 FORMAT (/1X,'AXIAL FLUA DENSITY DISTRIBUTION'/) 

WRITE (2,9351) 
C FOR EACH MESH-POINT ON THE AXIS WRITE THE Z-COORDINATES 
C OF AXIAL MESH-PT(IN MM) AND AXIAL FLUX DENSITY AT MESH- 
C POINT (IN TESLAS) 
9351 FORMAT (1X,'Z (MILLIMETRES) B (TESLAS) '/) 

DO 94 g=1,01 
Z1=Z(I1,3)*1000. 
RI=R(12,J) 
R2=R(I3,d) 

Al=V(12,) 
A2=V(I3,J) 

C THE AXIAL FLUX DENSITY IS CALCULATED 
B=(A1*R2*R2*R2-A2*R1*R1*R1)/( .5*R1*R2*(R2*R2-R1*R1) ) 

WRITE (2,95) Z1,B 
C IF ONLY ONE RUN IS REQUIRED THEN 

IF (IRUN.EQ.1) GOTO 94 
LBZ=LBZ+1 
Z2(LBZ)=21 
ABZ (LBZ)=B 

94 CONTINUE 
C IF NUMBER OF RUNS IS MORE THAN 1,THE Z AND B OUTPUTED 

IF (NRUN.NE.1.OR.NSYM.EQ.0) GOTO 79 
DO 971 JJ=1,J2 

J=I2+1-TIT 
Z1=-Z(11,5)*1000. 
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RI=R(12,J) 
R2=R(13,J) 
Al=V(12,J) 
A2=V(13,J) 
B=(A1*R2*R2*R2-A2*R1*R1*R1)/( .5*R1*R2*(R2*R2-R1*R1) ) 

WRITE (2,95) Z1,B 

971 CONTINUE 
C FOR SYMMETRIC CASE THE VALUES OF Z(MM)COORDINATES AND 
C B(AXIAL FLUX DENSITY) FOR THE POSITIVE HALF PLANE IS 
C CALCULATED 

79 IF (IRUN.EQ.1.OR.NR(IRUN).EQ.4) GOTO 941 
C FOR 1 RUN OR 4 RUNS THE PROGRAM IS DIRECTED TO WRITE 
C THE LENS EXCITATION . THIS ALSO HAPPENS IN CASE OF 
© SYMMETRY AND 3 RUNS 

IF (NR(IRUN).EQ.3.AND.NSYM.EQ.1) GOTO 941 
IF (NR(IRUN).EQ.NR(IRUN-1)+1) LBZ=LBZ-1 

95 FORMAT (1X,F10.2,6X,F15.6) 
C LENS EXCITATION IS WRITEN OUT 

941 WRITE (2,96) ANI 

IF (IRUN.EQ.1) EXCIT=ANI 
96 FORMAT (1X/' EXCITATION GIVEN (NI) = ',F10.2, 

+ ' AMPERETURNS'/) 
IF (MS.EQ.0) GOTO 112 
IR=IRUN 

C THE PROGRAM IS DIRECTED TO SUBROUTINE "BVALUES" 
CALL BVALUES (Z,R,V,AMUR,AMAG,1I1,J1,IM,JM,NSAT,NBFE, IR) 
IF (NSAT.EQ.0.OR.IRUN.GT.1) GOTO 1102 

¢ IN CASE OF SATURATION (NON LINEAR) SUBROUTINE "TRZRMU" 
c IS CALLED 

CALL TRZRMU (Z,AMUR,ZR1,TMUR,11,J1,IM,JM) 
Cc IF FLUX VALUES AT EACH MESH POINT ARE NOT REQUIRED 
C THE PROGRAM IS 
1102 IF (NFLUX.EQ.0) GOTO 112 

C IF FLUX VALUES AT EACH MESH POINT ARE REQUIRED,THE 
C, PROGRAM IS DIRECTED TO SUBROUTINE "FLUX" 

CALL FLUX (V,R,11,J1,IM,JM) 
112 CONTINUE 

C IF ONLY ONE RUN IS REQUIRED ,THE PROGRAM WILL STOP 
C OTHERWISE IT IS DIRECTED TO OUTPUT THE TOTAL AXIAL 
C FLUX DENSITY DISTRIBUTION FOR THE SPECIFIED REGION 

IF (NRUN.EQ.1) STOP 
WRITE (2,942) 

942 FORMAT (/1X,'TOTAL DISTRIBUTION FOR SPECIFIED REGION'/) 
WRITE (2,936) 
WRITE (2,9351) 
DO 944 J=1,LBZ 
WRITE (2,95) 22(J),ABZ(J) 

944 CONTINUE 
C IN SYMMETRIC CASE THE Z AND B VALUES FOR THE POSITIVE 
C HALF ARE OUTPUTED 

IF (NSYM.EQ.0) GOTO 946 
LBZ=LBZ-1 
DO 948 K=1,LBZ 
J=LBZ+1-K 
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Z1=-2Z(S) 
WRITE (2,95) 21,ABZ(J) 

948 CONTINUE 
THE LENS EXCITATION IS OUTPUTED (IN AMPERTURNS) 

946 WRITE (2,96) EXCIT 
THE MAIN PROGRAM ENDS 

STOP 
END 

SUBROUTINE (MESH) FOR SETTING COORDINATES OF EACH POINT ON THE 
FINITE ELEMENT MESH 
Z(IM,JM)=ARRAY OF COORDINATES TO BE SET 
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION 
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION 
IM=MAXIMUM PERMISSIBLE VALUE OF 11 
JM=MAXIMUM PERMISSIBLE VALUE OF J1 

SUBROUTINE MESH(Z,11,J1,IM,JM) 
DIMENSION Z(IM,JM) , TITLE(20) 
DIMENSION NC(15),NR(15),XA( 15,15) 

THE SUBROUTINE READS THE MESH-POINT NUMBERS IN AXIAL 
DIRECTION 

READ (1,1)(NC(L),L=1,15) 
1 FORMAT(5X, 1515) 

DO 2 L=1,15 
IF(NC(L).EQ.0)GOTO 3 

2 CONTINUE 
CALCULATE VALUES OF JJ AND J1 
JJ=NUMBER OF COLUMNS OF COORDINATES SPECIFIED IN THE 
J1=NUMBER OF MESH-POINTS IN THE AXIAL DIRECTION 

gg=15 
GOTO 4 

3. JJ=L-1 
4 J1=NC (JT) 

READ THE COORDINATES VALUES 
DO 5 1=1,15 
READ(1,6)NR(I),(XA(I,J3) ,J=1,Jd) 

6 FORMAT (I5,15F5.0) 
TEST FOR END OF DATA 

IF (NR(I).EQ.0)GOTO 7 
5 CONTINUE 

GOTO 8 
7 II=I-1 
8 I1=NR(II) 

SET COORDINATE VALUES BY LINEAR INTERPOLATION 
DO 9 I=2,II 
DO 9 J=2,JI 
L1=NR(I-1) 

L2=NR(I) 
M1=NC(J-1) 
M2=NC (J) 
DO 9 LL=L1,L2 
DO 9 MM=M1,M2 
KL=L2-L1 
KM=M2=M1 
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D1=(XA(I-1,3)-XA(I-1,J-1) )/FLOAT( KM) 
D2=(XA(I,J)-XA(I,J-1) )/FLOAT(KM) 
D1=D1*FLOAT (MM=M1)+XA(I-1,J-1) 
D2=D2*FLOAT(MM-M1)+XA(I,J-1) 

9 2Z(LL,MM)=(D2-D1)*FLOAT(LL-L1)/FLOAT(KL)+D1 
THE COORDINATE VALUES WHICH HAVE BEEN SPECIFIED IN 
MM ARE CONVERTED TO METRES 

DO 10 I=1,11 
DO 10 J=1,31 

10 2(I,3)=Z(I,J)/1000. 
RETURN 

THE END OF SUBROUTINE MESH 
END 

SUBROUTINE (AJMUR) FOR SETTING EACH ELEMENT OF THE ARRY 

AMUR(IM,JM) TO THE VALUE OF THE RELATIVE PERMEABILITY 

OF CORRESPONDING QUADRILATTERAL OF THE FINITE ELEMENT 

MESH, AND EACH ELEMENT OF THE ARRY AJ(IM,JM) TO THE VALUE 

OF THE CURRENT DENSITY. AMUR(IM,JM)=RELATIVE PERMEABILITY 

VALUES FOR EACH QUADRILATERAL. 

AJ(IM,JM)=CURRENT DENSITY VALUES FOR EACH QUADRILATERAL 

(IN AMPTURNS/ SQUARE METER) 

IM=NUMBER OF QUADRELATERAL AREAS IN THE RADIAL DIRECCTION 

JM=NUMBER OF QUADRELATERAL AREAS IN THE AXIAL DIRECTION 

SUBROUTINE AJMUR (AMUR,AJ,I1,J1,IM,JM,MS,MC) 

DIMENSION AMUR(IM,JM) ,AJ(IM,JM) 

INITALISE ALL ELEMENTS OF AMUR TO 1. AND ALL ELEMENTS OF 

AJ TO 0. 

DO 1 I=1,11 

DO 1 J=1,01 
AMUR(I,J3)=1. 

AJ(I,J)=0. 
CONTINUE 

MS=0 

READ VALUES OF JA,JB,IA,IB,XJ 
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION 

JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION 

IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION 

IB=THE LARGER MESH-POINT NUMBER IN THE RADIAL DIRECTION 

XJ=THE RELATIVE PERMEABLITY OF THAT PORTION OF THE 

MAGNETIC CIRCUIT (DIMENSIONLESS) 

2 READ (1,3) JA,dJB,IA,IB,Xd 
3 FORMAT (415,F10.0) 

TEST FOR END OF MAGNETIC CIRCUIT DATA 

IF (JA.EQ.0) GOTO 5 

RESET APPROPRITE ELEMENTS OF AMUR TO THE VALUE OF XJ 

IB1=IB-1 

JB1=JB-1 

DO 4 I=IA,IB1 
DO 4 J=JA,JB1 

4 AMUR(I,J)=xT 

MS=MS+1 

GO TO 2 TO READ NEXT LINE OF MAGNETIC CIRCUIT DATA 

GoTO 2 
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5 mMc=0 
READ NEXT LINE OF VALUES OF JA,JB,IA,IB,XJ,WHICH ARE 

MESH-POINT NUMBERS SPECIFYING THE POSITION OF APORTION OF 

THE COIL WINDINGS 
JA=THE SMALLER MESH-POINT NUMBER IN THE AXIAL DIRECTION 

JB=THE LARGER MESH-POINT NUMBER IN THE AXIAL DIRECTION 

IA=THE SMALLER MESH-POINT NUMBER IN THE RADIAL DIRECTION 

IB=THE LARGER MESH=POINT NUMBER IN THE RADIAL DIRECTION 

XJ=THE CURRENT DENSITY IN THAT PORTION OF THE COIL WINDINGS 
(XJ IS IN AMPTURNS/SQUARE CM) 
6 READ (1,3) JA,JB,IA,1B,Xd 
TEST FOR END OF DATA SPECIFYING COIL WINDINGS 

IF (JA.EQ.0) RETURN 
RESET APPROPRIATE ELEMENTS OF AJ TO THE VALUE OF XJ 

IB1=IB-1 

JB1=JB-1 
DO 7 I=IA,IB1 
DO 7 J=JA,JB1 

CONVERT CURRENT DENSITY XJ TO UNITS OF AMPTURNS/SQUARE 
METRE 

7 Ad(I,J)=xXI* 10000. 
MC=MC+1 

GO TO 6 TO READ NEXT LINE OF COIL WINDINGS DATA 

GOTO 6 
END 

SUBROUTINE (PCLIN) FOR SETTING THE FINITE ELEMENT COEFFICIENTS 

F AND G FOR EVERY QUADRILATERAL AREA OF THE FINITE ELEMENT 

MESH 

Z(IM,JM)=Z-COORDINATES OF EVERY MESH-POINT 

R(IM,JM)=R-COORDINATES OF EVERY MESH-POINT 
AJ(IM,JM)=CURRENT DENSITY OF EVERY QUADRILATERAL 

AR(IM,JM)RELATIVE PERMEABILITY OF EVERY QUADRILATERAL 
F(24) FINITE ELEMENT F-COEFFICENTS FOR EVERY QUADRILATERAL 

G(24)=FINITE ELEMENT G-COEFFICIENTS FOR EVERY QUADRILATERAL 
*I1=NUMBER OF MESH-POINTS IN THE R-DIRECTION 

J1=NUMBER OF MESH-POINTS IN THE Z-DIRECTION 
SUBROUTINE PCLIN(Z,R,AR,Ad,P,A,C,11,J1,IM,JM, IJM,NM,ANI) 
DIMENSION Z(IM,JM),R(IM,JM) ,C(IJM) ,P( IdM, IM) 
DIMENSION AR(IM,JM) ,AJ(IM,JM) ,A( IdM) 
DIMENSION F(24) ,G(24) 
DIMENSION D(36),Q(12),ND(4) 

SET AMUO=PERMEABILITY OF FREE SPACE (IN HENRY.METRE) 
AMUO=1.2566371E-6 
I2=11-1 
I3=11-2 
gJ2=31-1 
33=31-2 
K=12 

THE DATA IS TESTED FOR SYMMETRY 
IF (NM.EQ.1) GOTO 8 
J5=J3 

gJs=0 
IS=NUMBER OF FINITE ELEMENT EQUATIONS TO BE SOLVED 
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Is=13*J3 
GoTo 9 

8 J5=J2 
Js=J35 
Is=13*J2 

C SET VARIOUS CONSTANTS 
9 IT=IS-K 

Nc=4 
L=0 
L2=-2 

© DO LOOPS FOR EVERY QUADRILATRAL AREA OF MESH 
DO 10 J=1,g5 
L2=L2+2 
DO 11 I=1,13 

© SET Z AND R COORDINATES OF CORNER POINTS OF QUADRILATRAL 
F(1)=Z(I+1,7) 

F(2)=Z(I+1,0+1) 
F(3)=2(I,3+1) 
F(4)=2(1,7) 

F(5)=F(1) 

F(6)=F(2) 
F(7)=Z(I+2,J5+1) 

F(8)=F(2) 

F(9)"F(1) 

F(10)=2(1+2,J) 
F(11)=F(7) 
F(12)=F(8) 
F(13)=F(3) 

F(14)=F(2) 
F(17)=F(3) 
F(18)=F(2) 
F(20)=F(2) 
F(21)=F(7) 
F(24)=F(2) 
G(1)=R(I+1,) 
G(2)=R(I+1,5+1) 
G(3)=R(I,J+1) 
G(4)=R(I,d) 

G(5)=G(1) 

G(6)=G(2) 

G(7)=R(1I+2,5+1) 

G(8)=G(2) 

G(9)=G(1) 
G(10)=R(1+2,7) 
G(11)=6(7) 
G(12)=G(8) 

G(13)=G(3) 

G(14)=G6(2) 

G(17)=G(3) 

G(18)=G(2) 

G(20)=G(2) 

G(21)=G(7) 
G(24)=G(2) 

C TEST FOR ASYMMETRY 
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IF (J.EQ.JS) GOTO 12 

F(15)=Z(I+1,d+2) 

F(16)=Z(I,d+2) 

F(19)=F(15) 
F(22)=Z(1+2,5+2) 

F(23)=F(15) 
G(15)=R(I+1,5+2) 

G(16)=R(I,d+2) 
G(19)=G(15) 

G(22)=R(I+2,3+2) 

G(23)=G(15) 

GOTO 13 

12 NC=2 

13 M1=1 

M2=4 

M3=7 

C  INITIALIASATION FOR NUMBER OF RUNS 
DO 121 NN=1,NC 

121 ND(NN)=0 

C SETTING REFERENCE NUMBERS FOR THE RUNS FROM 1 TO 4 
IF (I.EQ.13.AND.J.EQ.J5) GOTO 1211 

IF (J.EQ.J5) GOTO 1212 

IF (I.EQ.I3) GOTO 1213 

ND(1)=1 
GOTO 1214 

1211 DO 122 NN=1,4 

122 ND(NN)=1 

GOTO 1214 

1212 ND(1)=1 

ND(3)=1 

GOTO 1214 

1213 ND(1)=1 

ND(2)=1 

1214 N=0 

C DO LOOP CALCULATING Z,R AND FINITE ELEMENT COEFFICIENTS 
C ACCORDING TO RUN NUMBERS FROM 1 TO 4 

DO 14 NN=1,NC 
C IF NUMBER OF RUNS IS GREATER THAN 1 THE PROGRAM IS DIRECTED 
c TO 140 

IF (NN.GT.1) GOTO 140 
N3=0 

Ic=I 
ge=s 
GoTo 141 

140 IF (NN-3) 1402, 1403,1404 
1402 N3=6 

Ic=I+1 
Je=o 
GoTo 141 

1403 N3=12 
Ic=I 
JC=I+1 
GoTo 141 
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1404 N3=18 
ICc=I+1 
JCc=I+1 

DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS 
141 DO 16 NO=1,3 

N=N+1 

ND1=ND (NN) 
IF (NO.EQ.1) ND1=0 
IF (NO.EQ.3) N3=N3+1 

SET Z AND R COORDINATES OF VERTICES OF TRIANGULAR 
ELEMENTS 

N3=N3+1 
Z1=F(N3) 
Z2=F (N3+1) 
23=F (N3+2) 
R1=G(N3) 

R2=G(N3+1) 
R3=G(N3+2) 

THE COEFFICIENTS OF NODAL EQUATIONS REPRESENTING 
THE VECTOR POTENTIAL OVER EACH ELEMENT ARE FOUND 

B1=R2-R3 
B2=R3-R1 

B3=R1-R2 

T1=Z3-Z2 
T2=Z1-Z3 

13=Z2-Z1 
DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE 

DET=B1*T2-B2*T1 
RO=(R1+R2+R3)/3. 
X=DET/(3.*RO) 
T1I=T1+X 
T2=T2+X 

T3=T3+X 
X=RO/(2.*AMUO*AR(IC,JC)*DET) 
IF (N-EQ.2.0OR.N.EQ.5.OR.N.EQ.8.OR-N-EQ.11) GOTO 162 
IF (N.EQ.3.OR.N.«EQ.6.OR.N-EQ.9.OR.N.EQ.12) GOTO 163 

161 D(M1)=(B2*B1+T2*71)*x 
D(M1+1)=(B2*B2+T2*T2) *xX 
D(M1+2)=(B2*B3+T2*T3)*X 
M1=M1+9 
GOTO 17 

162 D(M2)=(B1*B1+T1*T1) *X 
D(M2+1)=(B1*B2+T1*T2) *X 
D(M2+2)=(B1*B3+T1*T3) *xX 
M2=M2+9 
GOTO 17 

163 D(M3)=(B3*B1+T3*T1)*X 
D(M3+1)=(B3*B2+T3*T2) *xX 
D(M3+2 )=(B3*B3+T3*T3) *X 
M3=M3+9 

17 ANI=ANI+.5*DET*Ad(IC,JC)*FLOAT(ND1) 
Q(N)=AJ(IC,JC)*RO*DET/6. 

16 CONTINUE 
14 CONTINUE 
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SET FINITE ELEMENT COEFFICIENTS FOR QUADRILATERAL 
AREA TO OBTAIN NINE-POINT EQUATION FOR EACH NODE 

=Lt+1 

L2=L2+1 
P(L,1)=0. 
P(L,2) 
P(L,I3)=0. 
P(L,K)=0 
P(L,1I1)= 
P1=D(6)+D(7) 
P2=D(1)+D(8)+D( 12)+D( 14) 
P3=D(15)+D(16) 
P4=D(3)+D(5) 
P5=D(2)+D(4)+D(9)+D(11)+D( 13)+D( 18) 
P6=D( 10)+D(17) 
C(L)=Q( 1)+9(2)+9(3)+0(4)+9(5)4+9(6) 
Q1=P1*A(L2) 
Q2=P2*A(L2+1) 
Q3=P3*A(L2+2) 
Q4=P4*a(L2+11) 
Q6=P6*A(L2+11+2) 
IF (J.EQ.JS) GOTO 18 
P4=P4+D(19)+D( 26) 

P5=P5+D (20 )+D(22)+D(27)+D(29)+D(31)+D(36) 
P6=P6+D(30)+D(32) 
P7=D(24)+D(25) 
P8=D(21)+D(23)+D(28)+D(35) 
P9=D(33)+D(34) 
C(L)=C(L)+Q(7)+Q(8)+Q(9)+O( 10)+9( 11) +Q( 12) 
Q7=P7*A(L2+2*11) 
Q8=P8*A(L2+2*11+1) 
Q9=P9*A(L2+2*11+2) 

EACH NODAL EQUATION IS EXPRESSED IN TERMS OF THE VECTOR 
POTENTIAL AT THE NODE AND THE EIGHT NEIGHBOURING VECTOR 
POTENTIAL VALUES. THE RESULTING MATRIX IS SYMMETRICAL 
ABOUT THE DIAGONAL. HENCE ONLY THE COEFFICIENTS OF THE 
BANDED MATRIX IN THE UPPER TRIANGLE OF THE MATRIX NEED 
TO BE STORED. THE MATRIX EQUATION IS SOLVED BY GAUSSIAN 
ELIMINATION IN ANOTHER SUBROUTINE 

18 IF (J.EQ.JS) GOTO 20 
IF (J.EQ.J5) GOTO 30 
IF (J.NE.1) GOTO 40 
IF (I.EQ.1) GOTO 50 
IF (I.EQ.13) GOTO 60 
C(L)=C(L)-(Q1+92+93) 
P(L,1)=P5 . 
P(L,2)=P6 
P(L,I3)=P7 
P(L,K)=P8 
P(L,I1)=P9 
GOTO 11 

50 C(L)=C(L)-(Q14+Q2+93+04+07 ) 
P(L,1)=P5 
P(L,2)=P6 
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60 

40 

401 

402 

30 

302 

20 

202 

1 
10 

P(L,K)=P8 
P(L,11)=P9 
GoTo 11 
C(L)=C(L)=(Q1+Q2+93+06+09 ) 
P(L,1)=P5 
P(L,1I3)=P7 
P(L,K)=P8 
GoTo 11 
IF (I.EQ.1) GOTO 401 
IF (I-EQ.13) GOTO 402 
P(L,1)=P5 
P(L,2)=P6 
P(L,1I3)=P7 

P(L,K)=P8 

P(L,11)=P9 
GoTo 11 

C(L)=C(L)=(Q14+04+97 ) 
P(L,1)=P5 
P(L,2)=P6 
P(L,K)=P8 
P(L,11)=P9 
GoTo 11 
C(L)=C(L) -(Q3+Q6+99 ) 
P(L,1)=P5 
P(L,13)=P7 

P(L,K)=P8 
GOTO 11 

IF (I-EQ.1) GOTO 301 
IF (1.EQ.1I3) GOTO 302 
C(L)=C(L) =(Q7+98+99 ) 
P(L,1)=P5 
P(L,2)=P6 
GoTo 11 
C(L)=C(L) -(Q14+Q4+07+98+99 ) 
P(L,1)=P5 
P(L,2)=P6 
GOTO 11 

C(L)=C(L) =(Q3+Q6+97+98+Q9 ) 
P(L,1)=P5 
GoTo 11 

IF (I-EQ.1) GOTO 201 
IF (1I.EQ.I3) GOTO 202 

P(L,1)=P5 
P(L,2)=P6 
GOTO 11 
C(L)=C(L)-(Q1+Q4) 
P(L,1)=P5 . 
P(L,2)=P6 

GoTo 11 
C(L)=C(L)-(Q3+96 ) 
P(L,1)=P5 
CONTINUE 

CONTINUE 

RETURN 
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THE END OF THIS SUBROUTINE 
END 

SUBROUTINE (PCSAT) FOR DERIVATION OF NODAL EQUATIONS FOR 
AXIAL FLUX DENSITY DISTRIBUTION THROUGHOUT THE MAGNETIC 
CIRCUIT OF SATURATED MAGNETIC LENSES. 
THE NODAL EQUATIONS WHICH ARE NON-LINEAR ARE SOLVED 
BY NEWTON-RAPHSON ITERATION AND THE MATRIX EQUATION 
IS SOLVED BY GAUSSIAN ELIMINATION. 
Z(IM,JM)=Z-COORDINATES OF EVERY MESH POINT 
R(IM,JM)=R-COORDINATES OF EVERY MESH POINT 
I1=NUMBER OF MESH POINTS IN THE RADIAL DIRECTION 
J1=NUMBER OF MESH POINTS IN THE AXIAL DIRECTION 
AMAG=FACTOR FOR DERIVING RELATIVE PERMEABILITY 
AR(IM,JM)=RELATIVE PERMEABILITY AT EVERY 
QUADRILATERAL 
F(24)=FINITE ELEMENT F-COEFFICIENTS FOR EVERY 
QUADRILATERAL 
G(24)=FINITE ELEMENT G-COEFFICIENTS FOR EVERY 
QUADRILATERAL 

SUBROUTINE PCSAT(Z,R,V,AR,AJ,P,A,C,AMAG,11,J31,IM,JM, IJM,NM,ANI) 
DIMENSION Z(IM,JM) ,R(IM,JM) ,C(IJM) ,P(IJM, IM) 
DIMENSION AR(IM,JM) ,AJ(IM,JM) ,A(IJM) ,V(IM,JM) 
DIMENSION F(24),G(24) ,VP(24) 
DIMENSION D(36),Q(12),ND(4) 
COMMON 1TB(100),TM(100),IBM,NSAT 

SET AMUO=PERMEABILITY OF FREE SPACE (IN HENRY/METRE) 
AMUO= 1.256637 1E-6 

INITALISE VECTOR POTENTIAL VALUES AT VERTICES OF 
THE TRIANGULAR ELEMENT 
DMU IS THE INCREMENTAL PERMEABILITY 

A1=0. 

A2=0. 

A3=0. 
TMU=1. 
DMU=0. 

I2=NUMBER OF QUADRILATERALS IN THE RADIAL DIRECTION 
J2=NUMBER OF QUADRILATERALS IN THE AXIAL DIRECTION 
I3,J3 ARE USED FOR FINDING NO. OF EQNS. TO BE SOLVED 

I2=11-1 
1-2 

J2=31-1 
J3=51-2 
K=I2 . 

THE DATA IS TESTED FOR SYMMETRY 
IF (NM.EQ.1) GOTO 8 
J5=I3 
gs=0 

IS=NUMBER OF FINITE ELEMENT EQNS. TO BE SOLVED 
Is=13*33 
GoTo 9 

8 J5=32 
gq 5 

Is=13*J2 
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9 IT=IS-K 
Nc=4 
L=0 
L2=-2 

DO LOOPS FOR EVERY QUADRILATERAL AREA OF MESH 
DO 10 J=1,35 
L2=L2+2 
DO 11 I=1,13 

SET Z AND R COORDINATES OF VERTICES AND THE VECTOR 
POTENTIAL VALUES AT EACH POINT OF THE QUADRILATERAL 
I=NUMBER OF RADIAL NODES 
J=NUMBER OF AXIAL NODES 

F(1)=Z(I+1,0) 
F(2)=Z(I+1,J+1) 
F(3)=2Z(1,d+1) 

F(4)=2Z(I,d) 
F(5)=F(1) 
F(6)=F(2) 
F(7)=Z(1+2,d+1) 
F(8)=F(2) 
P(9)=F(1) 

F(10)=Z(I+2,3) 
B11 )=F (7) 
F(12)=F(8) 

F(13)=F(3) 

F(14)=F(2) 
F(17)=F(3) 
F(18)=F(2) 

F(20)=F(2) 
F(21)=F(7) 
F(24)=F(2) 

G(1)=R(I+1,d) 
G(2)=R(I+1,0+1) 
G(3)=R(I,J+1) 
G(4)=R(I,J) 

G(5)=G(1) 
G(6)=G(2) 
G(7)=R(I+2,5+1) 

G(8)=G(2) 
G(9)=G(1) 

G(10)=R(I+2,7) 

G6(11)=G6(7) 

G(12)=G(8) 

G(13)=G(3) 
G(14)=G(2) 

G(J7)=G(3) 
G(18)=G(2) 
G(20)=G(2) 

G(21)=G(7) 

G(24)=G(2) 
vP(1)=V(I+1,3) 
VP(2)=V(I+1,d+1) 
VP(3)=V(T,d+1) 

vP(4)=Vv(I,J) 
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VP(5)=VP(1) 
VP(6)=VP(2) 
VP(7)=V(I+2,0+1) 

VP(8)=VP(2) 

VP(9)=VP(1) 
vP(10)=V(I+2,7) 
VP(11)=VP(7) 
vP(12)=VP(8) 
VvP(13)=VP(3) 
VP(14)=VP(2) 
VP(17)=VP(3) 

VP(18)=VP(2) 
VP(20)=VP(2) 
VP(21)=VP(7) 

VP(24)=VP(2) 
IF (J-EQ.dS) GOTO 12 
F(15)=Z(I+1,d+2) 
F(16)=2(I,J+2) 
F(19 (15) 

F(22)=Z(1+2,J+2) 
F(23)=F(15) 
G(15)=R(I+1,3+2) 
G(16)=R(I,5+2) 
G(19)=G(15) 
G(22)=R(I+2,J+2) 
G(23)=G(15) 

VP(15)=V(I+1,3+2) 
VP(16)=V(I,J+2) 

VP(19)=VP(15) 
VP(22)=V(I+2,5+2) 

VP(23)=VP(15) 
GoTo 13 

12 NC=2 
43 M1=1 

M2=4 
M3=7 
DO 121 NN=1,NC 

121 ND(NN)=0 
IF (I-EQ.13.AND.J.EQ.J5) GOTO 1211 
IF (J.EQ.J5) GOTO 1212 
IF (I.EQ.13) GOTO 1213 
ND(1)=1 
GOTO 1214 

C SETTING REFERENCE NUMBERS FOR THE RUNS FROM 1 TO 4 
1211 DO 122 NN=1,4 
122 ND(NN)=1 

      

GOTO 1214 
1212 ND(1)=1 

ND(3)=1 
GOTO 1214 

1213 ND(1)=1 
ND(2)=1 

1274 N=0 

c DO LOOP CALCULATING Z,R AND FINITE ELEMENT COEFEICIENTS 
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C ACCORDING TO RUN NUMBERS FROM 1 TO 4 
DO 14 NN=1,NC 
IF (NN.GT.1) GOTO 140 

N3=0 

Ic=I 
Jc=7 

GoTO 141 

140 IF (NN-3) 1402,1403,1404 

1402 N3=6 

Ic=I+1 

sc=o 
GOTO 141 

1403 N3=12 

1Ce=I, 

JC=3+1 

GOTO 141 

1404 N3=18 
Ic=I+1 
JC=J+1 

c DO LOOP FOR EACH THREE TRIANGULAR ELEMENTS 

141 DO 16 NO=1,3 

N=N+1 
ND1=ND (NN) 

IF (NO.EQ.1) ND1=0 

IF (NO.EQ.3) N3=N3+1 
N3=N3+1 

C SET Z AND R COORDINATES OF VERTICES OF TRIANGULAR 
CS ELEMENTS 

Z1=F(N3) 

Z2=F (N3+1) 
23=F (N3+2) 

R1=G(N3) 
R2=G(N3+1) 

R3=G (N3+2) 

V1=VP(N3) 
V2=VP(N3+1) 

V3=VP (N3+2) 

B1=R2-R3 

B2=R3-R1 
B3=R1-R2 

T1=Z3-Z2 

T2=Z1-Z3 

T3=Z2-Z1 

C  DET=DETERMINANT OF THE FINITE ELEMENTS TRIANGLE=2*AREA 
DET=B1*T2-B2*T1 

C RO=VALUE OF R AT THE CENTROID 
RO=(R1+R2+R3)/3. 
X=1./(3.*RO) 
B1=-B1/DET 
B2=-B2/DET 
B3=-B3/DET 
T1=T1/DET+X 
T2=T2/DET+X 
T3=T3/DET+X 

ASS



a
a
a
q
a
a
 

a
a
a
 

a
a
a
 

a
a
a
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Cc 
c 

THE FLUX DENSITY AT EACH TRIANGLE IS CALCULATED 
BR=RADIAL COMPONENT OF MAGNETIC FLUX DENSITY 
BZ=AXIAL COMPONENT OF MAGNETIC FLUX DENSITY 
B=MAGNETIG FLUX DENSITY 

BR=B1*V1+B2*V2+B3*V3 
BZ=T1*V1+T2*V2+T3*V3 
B=SQRT( BR*BR+BZ*BZ) 
A1=B1*BR+T1*BZ 
A2=B2*BR+T2*BZ 
A3=B3*BR+T3*BZ 

TMU=THE RELATIVE PERMEABILITY OF FREE SPACE 
DMU=THE INCREMENTAL PERMEABILITY 

TMU=1. 
DMU=0 . 

IF THE FINITE ELEMENT TRIANGLE IS IN THE FREE SPACE 
THE PROGRAM IS DIRECTED TO 15 

IF (AR(IC,JC).EQ.1.) GOTO 15 
IF THE FINITE ELEMENT TRIANGLE IS PART OF MAGNETIC 
CIRCUIT THE MAGNETISATION CURVE OF THE MAGNETIC MATERIAL 
MUST BE ACCOUNTED (ATABLE OF MR AND B MUST BE CONSIDERED) 

IF (NSAT.EQ.1) GOTO 70 
TMU=AR(IC,JC) 
GOTO 15 

THE PROGRAM IS DIRECTED ACORDING TO THE OCCURANCE OF 
THE CALCULATED VALUE OF B WITH RESPECT TO THE GIVEN 
VALUES OF B,MR IN THE TABLE 

70 IB=0 
160 IB=IB+1 

IF THE CALCULATED B IS LARGER THAN THE MAXMIUM B 
GIVEN IN THE TABLE THE PROGRAM IS DIRECTED TO 
80 TO CALCULATE DMU 

IF (IB.GE.IBM.OR.B.GT.TB(IBM)) GOTO 80 
IF B CALCULATED VALUE LIES IN THE LINEAR PART OF 
THE MAGNETIG CURVE THE PROGRAM IS DIRECTED TO CALCULATE DMU 

IF (B.LE.TB(IB+1).AND.B.GE.TB(IB)) GOTO 1602 
THE PROGRAM IS DIRECTED TO RECOGNISE THE FIRST AND 
FURTHER NON LINEAR PARTS OF THE MAGNETIG CURVE 

GOTO 160 
1602 ZM=TB(IB+1)-B 

ZL=B-TB (IB) 
TMU=TM(IB)+(TM(IB+1)-TM(IB))/(ZM+ZL)*ZL 

IF B CALCULATED=0. THE PROGRAM IS DIRECTED TO 15 
IF (B.EQ.0.) GOTO 15 
DMU=(TM(IB)-TM(IB+1))/(TB(IB)-TB(IB+1)) 
DMU=DMU/(B*TMU) 
GOTO 15 

80 TMU=B/(B-AMAG) 
IF (B.EQ.0.) GOTO 15 
DMU=(1.0001*B/( 1.0001*B-AMAG)-TMU)/B* 10000. 
DMU=DMU/(B* TMU) 

15 X=RO*DET/(TMU*AMUO ) 
AJD=AJ (IC, JC)/3.*TMU*AMUO 

SETTING NINE POINT NON LINEAR EQUATION TO BE SOLVED 
WITH NEWTON ITERATION 
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IF (N.EQ.2.OR.N-EQ.5.OR.N.EQ.8-OR-N-EQ.11) GOTO 162 
IF (N.EQ.3.OR.N.EQ.6.OR.N.EQ.9.OR-N-EQ.12) GOTO 163 

161 D(M1)=(B2*B1+T2*T1-A2*A 1*DMU) *X 
D(M1+1)=(B2*B2+T2*T2-A2*A2*DMU) *X 
D(M1+2)=(B2*B3+T2*T3-A2*A3*DMU) *X 
Q(N)=(AJD-A2)*xX 
M1=M1+9 
GOTO 17 

162 D(M2)=(B1*B1+T1*T1-A1*A1*DMU) *X 
D(M2+1)=(B1*B2+T1*T2=A1*A2*DMU) *X 
D(M2+2)=(B1*B3+T1*T3-A1*A3*DMU) *X 
Q(N)=(AJD~A1) *xX 
M2=M2+9 

GOTO 17 
163 D(M3)=(B3*B1+7T3*T1-A3*A1*DMU) *X 

D(M3+1)=(B3*B2+T3*T2-A3*A2*DMU) *X 
D(M3+2 )=(B3*B3+T3*T3-A3*A3*DMU) *X 
Q(N)=(AID~A3) *xX 

M3=M3+9 
17 ANI=ANI+.5*DET*Ad(IC,JC)*FLOAT(ND1) 
16 CONTINUE 
14 CONTINUE 

L=L+1 

L2=L2+1 
C SETTING THE VECTOR POTENTIAL IN THE AXIS AND THE BOUDARIES 
© T050. 

P(L,1)=0. 

P(L,2)=0. 

P(L,I3)=0. 
P(L,K)=0. 

P(L,1I1)=0. 
C STORING THE NON ZERO VECTOR POTENTIALS 

P1=D(6)+D(7) 
P2=D(1)+D(8)+D(12)+D( 14) 
P3=D(15)+D(16) 
P4=D(3)+D(5) 
P5=D(2)+D(4)+D(9)+D(11)+D(13)+D( 18) 
P6=D(10)+D(17) 
C(L)=Q( 1)+Q(2)+0(3)+Q(4)+0(5)+0(6) 
Q1=P1*A(L2) 
Q2=P2*A(L2+1) 
Q3=P3*A(L2+2) 
Q4=P4*A(L2+11) 
Q6=P6*A(L2+11+2) 
IF (J.EQ.dS) GOTO 18 
P4=P4+D(19)+D( 26) 
P5=P5+D(20)+D(22)+D(27)+D(29)+D(31)+D(36) 
P6=P6+D(30)+D( 32) 

P7=D(24)+D(25) 
P8=D(21)+D(23)+D(28)+D(35) 
P9=D(33)+D(34) 
C(L)=C(L)+Q(7)+0(8)40(9)+0( 10)+Q(11)+Q( 12) 

Q7=P7*A(L2+2*11) 
Q8=P8*A(L2+2*11+1) 
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18 

50 

60 

40 

401 

402 

30 

301 

302 

Q9=P9*A(L2+2*11+2) 
IF (J.EQ.JS) GOTO 20 
IF (J.EQ.J5) GOTO 30 
IF (J.NE.1) GOTO 40 
IF (I-EQ.1) GOTO 50 
IF (I.EQ.I3) GOTO 60 
C(L)=C(L)-(Q1+Q2+93) 
P(L,1)=P5 

P(L,2)=P6 
P(L,13)=P7 
P(L,K)=P8 
P(L,1I1)=P9 
GOTO 11 
C(L)=C(L)-(Q14+Q2+93+04+97) 
P(L,1)=P5 

P(L,2)=P6 
P(L,K)=P8 
P(L,11)=P9 
GOTO 11 
C(L)=C(L) ~(Q1+Q2+93+96+Q9 ) 
P(L,1)=P5 
P(L,I3)=P7 
P(L,K)=P8 
GOTO 11 
IF (I.EQ.1) GOTO 401 
IF (I-EQ.1I3) GOTO 402 
P(L,1)=P5 

P(L,2)=P6 
P(L,I3)=P7 
P(L,K)=P8 
P(L,1I1)=P9 
GOTO 11 
C(L)=C(L)-(Q1+94+97) 
P(L,1)=P5 

P(L,2)=P6 
P(L,K)=P8 
P(L,11)=P9 
GoTo 11 
C(L)=C(L)-(Q3+Q6+99) 
P(L,1)=P5 
P(L,1I3)=P7 
P(L,K)=P8 
GOTO 11 
IF (I.EQ.1) GOTO 301 
IF (I.EQ.13) GOTO 302 
C(L)=C(L)-(Q7+98+99) 
P(L,1)=P5 

P(L,2)=P6 
GOTO 11 
C(L)=C(L)-(Q1+04+97+08+09 ) 
P(L,1)=P5 
P(L,2)=P6 

GOTO 11 
C(L)=C(L) -(Q3+Q6+07+08+09 ) 
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P(L,1)=P5 
GoTO 11 

20 IF (I.EQ.1) GOTO 201 
IF (I.EQ.I3) GOTO 202 
P(L,1)=P5 
P(L,2)=P6 
GoTO 11 

201 C(L)=C(L)-(Q1+94) 
P(L,1)=P5 
P(L,2)=P6 
GOTO 11 

202 C(L)=C(L)-(Q3+96) 
P(L,1)=P5 

11 CONTINUE 

10 CONTINUE 
RETURN 

THE END OF PCSAT SUBROUTINE WHICH IS DEALING WITH SATURATION 

CASE 

END 

SUBROUTINE (EQNS) FOR EQUATION SOLVING BY GAUSSIAN ELIMINATION 
AND BACKWARD SUBSTITUTION 
I1=NUMBER OF RADIAL NODES IN THE FINITE ELEMENT GRID 
IS=NUMBER OF EQUATIONS TO BE SOLVED 
C=ARRY WHICH HOLDS THE RIGHTHAND SIDE COEFFICIENTS OF 
THE EQUATIONS 
P=ARRY WHICH HOLDS THE LEFTHAND SIDE COEFFICIENTS OF 
THE MATRIX EQUATION 

SUBROUTINE EQNS (C,IT,IS,P,11,IM,IJM) 
DIMENSION C(IJM),P(IJM, IM) 

SET VARIOUS CONSTANTS 
NC=11 
Is1=Is-1 

STEP 1-GAUSSIAN ELIMINATION 
DO LOOP FOR EACH ROW OF BAND MATRIX 

DO 70 NT=1,IS1 
IF (NT.GI.IT) NC=IS-NT+1 

DO LOOP FOR EACH COLUMN OF SUB-MATRIX 
DO 71 I=2,NC 
IC=NT+I-1 
RC=P(NT,1)/P(NT, 1) 

RESET APPROPRIATE ELEMENTS OF RIGHT-HAND SIDE 
C(IC)=C(IC)-RC*C(NT) 
II11=11-1+1 

DO LOOP FOR EACH ROW OF SUB-MATRIX 
Do 72 J=1,1111 

RESET APPROPRIATE ELEMENT OF BAND MATRIX 
P(IC,J)=P(IC,J)-RC*P(NT, I+J-1) 

72 CONTINUE 
71 CONTINUE 
70 CONTINUE 
STEP 2-BACKWARD SUBSTITUTION 
BACKWARD SUBSTITUTION FOR ROW IS 

c(Is)=C(IS)/P(IS,1) 
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DO LOOP FOR BACKWARD SUBSTITUTION FOR EACH ROW OF MATRIX 
Isi=IS-1 
Do 80 I=1,IS1 
II=IS-I 
NC=11 
IF (II.GT.IT) NC=IS-II+1 
S=0. 

DO LOOP FOR SUMMING PRODUCTS OF (APPROPRIATE ELEMENTS OF 
C) * (APPROPRIATE ELEMENTS OF P) 

DO 81 J=2,NC 
JI=NC+2-T 
S=S+P(II,JJ)*C(II+dI-1) 

81 CONTINUE 
RESET APPROPRIATE ELEMENT OF C TO STORE THE SOLUTION 

C(II)=(C(II)-S)/P(II,1) 
80 CONTINUE 

RETURN 
END OF SUBROUTINE EQNS 

END 

SUBROUTINE (VPLUSDV) TO SET ALIMIT TO THE CYCLE OF ITERATION 

PROCESS THIS LIMIT IS DETERMINED WHEN THE VALUE OF THE 

DIFFERENCE IN VECTOR POTENTIAL BETWEEN TWO CONSECUTIVE 

ITERATIONS IS WITHIN ACERTAIN ACCURACY LIMIT 

SUBROUTINE VPLUSDV (V,C,12,IM,JM, IJM,J5,X1,¥1,NTEST) 
DIMENSION V(IM,JM) ,C(IJM) 

NTEST IS INITALIZED TO ZERO 
NTEST=0 

X1=THE ABSOLUTE VALUE OF THE MAXIMUM VECTOR POTENTIAL 
IN ANY MATERIAL AFTER THE NTH NEWTON'S ITERATION. 

X1=0. 
Y1=THE MAXIMUM CHANGE IN VECTOR POTENTIAL 

¥1=0. 
J6=55+1 
L=0 
DO 1 J=2,J6 
DO 2 1=2,12 
L=L+1 
IF (ABS(C(L)).GT.¥1) ¥1=ABS(C(L)) 
V(I,J)=V(I,d)+C(L) 
IF (ABS(V(I,J)).GT.X1) X1=ABS(V(I,J)) 

2 CONTINUE 
1 CONTINUE 
ERR=THE LARGEST PERMISSIBLE CHANGE IN ANY MATERIAL 

ERR=.001*X1 
NTEST=THE LIMIT WHERE THE ITERATION PROCESS IS REACHED 
I.E NYEST=1 WHEN Y¥1 IS LESS THAN ERR. 

IF (¥1.LE.ERR) NTEST=1 
RETURN 

THE END OF SUBROUTINE VPLUSDV 
END 

SUBROUTINE (BVALUES) FOR CALCULATING THE FLUX DENSITY AT POINTS 
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THROUGHOUT THE MAGNETIG CIRCUIT AND FOR WRITING OUT THE 
PEAK FLUX DENSITY. 

SUBROUTINE BVALUES(Z,R,V,AMUR,AMAG,1I1,J1,IM,JM,NSAT,NBFE, IR) 
DIMENSION Z(IM,JM) ,R(IM,JM) ,V(IM,JM) ,AMUR(IM,JM) 
COMMON 1TB(100),TM(100),IBM 

INITALIZE THE VALUE OF RELATIVE PERMEABILITY IN FREE 
SPACE 

AMUO=1.2566371E-6 
INITALIZE THE VALUE AND POSITION OF THE PEAK FLUX DENSITY 
IN THE MAGNETIG CIRCUIT 

BMAX=0. 
ZMAX=0. 
RMAX=0. 

IF NBFE (FLUX DENSITY IN MAGNETIC CIRCUIT) IS REQUIRED AS 
OUTPUT,THE PROGRAM IS DIRECTED TO WRITE HEADING 

IF (NBFE.EQ.1) WRITE (2,10) 

10 FORMAT (/1X,'FLUX DENSITY VALUES IN MAGNETIC CIRCUIT'/) 
DO LOOP FOR EVERY QUADRILATERAL AREA OF MESH 

I2=11-1 
J2=31-1 

DO LOOPS FOR EVERY QUADRILATERAL AREA OF MESH 
DO 1 J=1,32 
DO 1 I=1,12 

TEST WHETHER THE QUADRILATERAL IS IN FREE SPACE OR IN THE 
MAGNETIG CIRCUIT 

IF (AMUR(I,J).EQ.1) GOTO 1 
SET Z AND R COORDINATES AND VECTOR POTENTIAL VALUES AT 
CORNER POINTS OF QUADRILATERAL 

Z1=Z(I,d) 
Z2=Z(I+1,7) 
Z3=Z(I+1,J+1) 
24=Z(1,J+1) 
R1I=R(I,J) 
R2=R(I+1,J) 

R3=R(I+1,J+1) 
R4=R(I,J+1) 
vi=v(I,d) 

v2=v(I+1,J) 
V3=V(I+1,3+1) 

v4=Vv(1I,d+1) 
CALCULATE COORDINATES OF CENTRE POINT OF QUADRILATERAL 

ZC=(Z1+Z2+Z3+Z4)*.25 
RC=(R1+R2+R3+R4)*.25 

CALCULATE FLUX DENSITY COMPONENT BZ AND BR AT CENTRE POINT 
OF QUADRILATERAL 

X1=(Z1-Z2)*R1*R2 
X2=(Z1-Z3)*R1*R3 
X3=(Z1-Z4)*R1*R4 
X4=(Z2-Z3)*R2*R3 
X5=(Z2-Z4)*R2*R4 

X6=(Z3-Z4) *R3*R4 
¥1=(R1-R2)*Z1*Z2 
¥2=(R1-R3)*Z1*Z3 
¥3=(R1-R4)*Z1*24 
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Y4=(R2-R3)*Z2*Z3 

Y5=(R2-R4)*Z2*Z4 
R3-R4)*Z3*Z4 

4-K5+K6 
X2+X3-X6 

P3=X1-X3+K5 
P4=-X1+X2-X4 

1*Z2-Z1*R2 
Q2=R1*Z3-Z1*R3 

1*Z4-21*R4 
Q4=R2*Z3-Z2*R3 
Q5=R2*Z4-Z2*R4 
Q6=R3*Z4-Z3*R4 

DET=Z1*P1+Z2*P2+Z3*P3+Z4*P4 
P=V1* ( -Z4*X4+Z3*X5-Z2*X6 )+V2* ( Z4*X2-Z3*X3+Z1*X6 ) 
P=F+V3* (-Z4*X1+Z2*X3-Z1*X5 )+V4* (Z3*X1-Z2*X2+Z 1*X4) 
G=V1*P1+V2*P2+V3*P3+V4*P4 
H=V1* (-Y4+¥5-¥6 )+V2* (¥2-¥3+Y¥6 )+V3* (-¥1+¥3-Y5)+V4*(¥1-¥2+¥4) 
AI=V1* (Q4-05+06 )+V2* ( -Q2+03-06 )+V3* (Q1-03+05 )+V4*(-91+92-04) 

F=F/DET 
G=G/DET 
H=H/DET 
AI=AI/DET 
VC=F+G*ZC+H*RC+AI*ZC*RC 
BZ=H+AI*ZC+VC/RC 
BR=-G-AI*RC 

CALCULATE FLUX DENSITY B AT CENTRE POINT OF QUADRILATERAL 
B=SQRT (BZ*BZ+BR*BR) 

CONVERT COORDINATES OF MAXIMUM FLUX DENSITY POSITION FROM 
METRES TO MM 

ZC=ZC* 1000. 
RC=RC* 1000. 

WRITE LOCATION AND VALUES OF AXIAL (BZ) AND RADIAL (BR) 
COMPONENTS OF THE FLUX DENSITY AND THE RESULTANT FLUX 
DENSITY THROUGHOUT THE MAGNETIC CIRCUIT 

IF (NSAT.EQ.0.OR.IR.GT.1) GOTO 7 
IB=0 

4 IB=IB+1 
IF THE COPUTED FLUX DENSITY IS GREATER THAN THE FINAL 
VALUE PRESENT IN THE B,MUR TABLE THE PROGRAM IS DIRECTED 
ACCORDINGLY 

IF (IB.GE.IBM.OR.B.GT.TB(IBM)) GOTO 5 
IF THE COMPUTED FLUX DENSITY IS AT THE LINEAR PART OF 
THE MAGNETIC CURVE (B,MUR) TABLE THE PROGRAM IS DIRECTED 
ACCORDING TO THAT 

IF (B.LE.TB(IB+1).AND.B.GE.TB(IB)) GOTO 6 
GOTO 4 

6 ZM=TB(IB+1)-B 
ZL=B~TB (IB) 
AMUR(I,J)=TM(IB)+(TM(IB+1)-TM(IB))/(ZM+ZL)*ZL 
GOTO 7 

5 AMUR(I,J)=B/(B-AMAG) 
TEST IF MAXIMUM FLUX DENSITY HAS BEEN REACHED 
7 IF (B.LT.BMAX) GOTO 11 
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IF NBFE=1 IN THE DATA INPUT THE PROGRAM IS DIRECTED 
TO WRITE THE HEADINGS (I,J,ZC,RC,BZ,BR,B)ACORDING 
TO THE REQUIRED FORMAT 

11 IF (NBFE.EQ.1) WRITE(2,8) I,J,ZC,RC,BZ,BR,B,AMUR(I,J) 
8 FORMAT (1X,215,2F15.3,4F15.6) 
1 CONTINUE 
WRITE THE VALUES AND POSITION OF MAXIMUM FLUX DENSITY 
IN THE MAGNETIG CIRCUIT ACORDING TO THE REQUIRED FORMAT 

WRITE (2,3) ZMAX, RMAX, BMAX 
3 FORMAT(1X,'MAXIMAM FLUX DENSITY IN MAGNETIC CIRCUIT'// 

+ 1X,2F10.5,F15.6,'(TESLA)') 
RETURN 

THE END OF SUBROUTINE BVALUES 
END 

SUBROUTINE (TRZRMU) TO TRANSFER THE CORECTED RELATIVE 
PERMEABILITY WHICH HAVE BEEN CALCULATED IN SUBROUTINE 
PCSAT FOR THE MESH NODES INTO THE Z ,R COORDINATES 

SUBROUTINE TRZRMU (Z,AMUR,ZR1,TMUR,11,J1,IM,JM) 
DIMENSION Z(IM,JM) ,AMUR(IM,JM) ,ZR1(IM,JM) , TMUR(IM,JM) 
I2=11-1 
g2=J1-1 
DO 2 J=1,91 
DO 2 I=1,11 

2 ZR1(I,J)=Z(I,7) 
DO 4 J=1,J2 
DO 4 I=1,12 

4 TMUR(I,J)=AMUR(I,J) 
RETURN 

END OF SUBROUTINE TRZMU 
END 

SUBROUTINE (SETMUR) FOR SETTING THE RELATIVE PERMEABILITY 

AFTER CORECTING ACORDING TO THE GIVEN VALUES IN THE B,MUR 

TABLE WHICH IS GIVEN WITH THE DATA INPUT 

AND SETTING THE POSITION OF THE MAGNETIC MATERIAL 

SUBROUTINE SETMUR (Z,AMUR,ZR1,TMUR,1I2,J32,1IM,JM) 

DIMENSION Z(IM,JM) ,AMUR(IM,JM) ,ZR1(IM,JM) , TMUR(IM,JM) 

TiS 

JJ=1 
i=iL 

J=IT 
6 IF (AMUR(II,JJ).EQ.1.) GOTO 2 

Z1=Z(II,Jd) 

10 X1=ZR1(I,I) 

X2=ZR1(1I,J+1) 

IF (Z1.GE.X1.AND.Z1.LE.X2) GOTO 8 

12 J=I+1 

GOTO 10 

8 IF (TMUR(I,J).EQ.1.) GOTO 12 

AMUR(II,JJ)=TMUR(I,J) 
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2 JI=II+1 

IF (JJ.GT.J2) GoTo 4 
GOTO 6 

4 II=II+1 
I=sII 

IF (II.GT.I2) RETURN 
JJ=1 
J=IT 
GoTO 6 

END OF SUBROUTINE SETMUR 

END 

SUBROUTINE (FLUX) FOR CONVERTING THE VALUES OF VECTOR POTENTIAL 
AT EACH MESH POINT TO THE CORRESPONDING MAGNETIC FLUX 

VALUE 
V(I,J)=ARRAY WHICH HOLDS VALUES OF THE VECTOR POTENTIAL 
AT ENTRY TO THE ROUTINE AND WHICH HOLDS THE MAGNETIC FLUX 
VALUE AT EACH MESH POINT ON RETURN TO THE MAIN PROGRAM 

SUBROUTINE FLUX (V,R,1I1,J1,IM,JM) 

DIMENSION V(IM,JM) ,R(IM,JM) 
SET VALUE 2.*PYE 

TPI=6. 28318531 
CONVERT EACH ELEMENT OF V(IM,JM) FROM VECTOR POTENTIAL 

TO MAGNETIC FLUX VALUE AT EACH MESH POINT 

DO 2 J=1,01 
DO 2 I=1,11 

V(I,J)=TPI*R(I,J)*V(I,5) 
2 CONTINUE 

WRITE HEADING FOR THE FLUX VALUES AT EACH MESH POINT 

WRITE (2,5) 

5 FORMAT (/1X,'FLUX VALUES AT EACH MESH POINT'/) 

J,3F,JS ARE MESH POINT NUMBERS IN THE AXIAL DIRECTION 

Js=1 

JD=4 

20 JF=JS+JD 

WRITE (2,4) (J,J=JS,dF) 

4 FORMAT (1X,5X,5115) 
DO LOOP FOR WRITING MESH POINT NUMBERS IN THE RADIAL 
DIRECTION AND THE FLUX VALUES AT EACH MESH 

I=THE MESH POINT NUMBER IN THE RADIAL DIRECTION 

DO 6 I=1,11 
WRITE (2,8) I,(V(I,J) ,J=JS,JF) 

8 FORMAT (1X,1I5,5E15.5) 

6 CONTINUE 

WRITE (2,10) 
10 FORMAT (1X) . 
TEST FOR END OF SET OF VALUES 

IF (JF.EQ.J1) GOTO 12 
JS=3F+1 

IF ((JS+3D).GT.J1) JD=J1-3s 

GOTO 20 
LEAVE BLANK LINE 

12 WRITE (2,39) 
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FINITE ELEMENT PROGRAM FOR COMUTING VECTOR POTENTIAL AND AXIAL 
FLUX DENSITY DISTRIBUTION THROUGHOUT THE MAGNETIG CIRCUIT OF 
UNSATURATED AND SATURATED MAGNETIG LENSES. 
THE PRINCIPAL VARIABLES ARE DEFINED AS FOLLOWS: 
U=VECTOR POTENTIAL AT THE MESH POINTS INCLUDING THE BOUNDARY 
MESH POINTS U(IRZ) 
IRZ=TOTAL NUMBER OF POINTS IN THE MESH INCLUDING THE BOUNDARY 

POINTS (IRZ=I1*J1) 
I1,J1=ARE NUMBER OF MESH POINTS IN THE MESH IN RADIAL AND 
AXIAL DIRECTION RESPECTIVELY (I1=IR(NR) J1=1Z(NZ)) 
Be P1,P2,P3,P4 -ARE RIGHT HAND SIDE AND THE COEFFICIENTS OF 
HE SYSTEM OF LINEAR EQUATIONS (B(IS) , P(IS),P1(IS),P2(IS), 

pars), P4(IS) WHERE (IS) IS THE TOTAL NUMBER OF POINTS WITH 
UNKNOWN POTENTIAL , (IS=12*J2) 
12,32 - NUMBER OF MESH POINTS WITH UNKNOWN POTENTIAL IN RADIAL 

AND AXIAL DIRECTION ,RESPECTIVELY (I2=I1-2 , J2=J1-2+ISYM) 
R,Z — R AND Z COORDINATES OF MESH POINTS , MAXIMUM OF 650¥ 
MESH POINTS ALLOWED 

02Z(J1) Z-COORDINATES OF THE AXIAL MESH POINTS 
BM,H — FLUX DENSITY IN TESLA AND THE CORRESPONDING FIELD 
INTENSITY IN A/M ON THE MAGNETIZATION CURVES, MAXIMUM OF TWO 
CURVES EACH OF 2@ VALUES FOR BM,H CAN BE USED 
ae VECTOR WHERE EITHER FLUX IS STORED OR USED AS AUXILIARY VECTOR 
PSI(IRZ) 
D,D1,D2,D3,D4 - COEFFICIENTS OF THE APPROXIMATELY DECOMPOSED 
MATRIX ,DIMENSION IS 
MAT(IRZ) - VECTOR STORING THE MATERIALS OF THE SMALL QUADRILATERALS 

COMPUTATION OF VECTOR POTENTIAL IN ROTATIONALLY SYMMETRIC ELECTRON LENSES 
BY FINITE ELEMENT METHOD AS INTRODUCED BY E. MUNRO 
AUTHOR: B. LENCOVA, INST. SCI. INSTRUM., BRNO, CZECHOSLOVAKIA 

IMPLICIT REAL*12 (A-H,O-Z) 
INTEGER INFORM(20) ,MAT(6500) , IBH(2) 
DIMENSION U(65@@) ,B(6@@W) , P( GUO) , P1 (GUO) , P2(6WB) ,P3(6WDY), 

* P4 (6000) ,R(6500) ,Z(6500) ,0Z (12) ,BM(26, 2) ,H(20,2), 
s X (6008) , PSI (6500) ,Q(65uU) ,¥(6WG1) , RR(6Q00), 
* S(6000) ,D(6W04) ,D1 (60) ,D2(604W) , D3 (6000) ,D4(6000) 

TWO DIFFERENT MAGNETIZATION CURVES DEFINING THE MAGNETIG MATERIAL 
CAN BE USED THE FOLLOWING LINES GIVE SOFT IRON MAGNETIZATION CURVE 
ANDPERMENDUR THE FOLLOWING TABLES ARE OF STANDARD SOFT IRON AND 
PERMENDUR 
EACH TABLE HAVE MAXIMUM OF 20 VALUES FOR EACH BM AND H 
COMMON ; 
*/BLDAT/IM, IMI, ISYM, TH(2) , MM(4@) ,NM(4@) ,MI(20) ,NP, ICURR, CURR(19) 
*/BLOOOR/NZ, NR, 1Z(26) , IR(20) ,CZ(400) ,CR(40) 
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*/BLU/U /BLARZ/R,Z,PSI /BLCOEF/B,P,P1,P2,P3,P4 
*/BLAUX1/D,D1,D2,D3,D4 /BLAUX2/Q,RR,S,X,Y 
*/BPARAM/12,J2,1S,11,J1,1RZ 

TwO DIFFRENT MAGNETISATION CURVES CAN BE USED BY THE PROGRAM 
EACH WITH MAXIMUM OF 20 POINTS ,THESE POINTS REPRESENTS THE 
FIELD INTENSITY IN A/M ,AND THE FLUX DENSITY IN TESLA 
THE FOLLOWING TABLE CONTAIN STANDARD MAGNETISATION CURVES OF 
BOTH SOFT IRON ,AND PERMENDUR. . 

DATA MAPMAT, MAPPSI, LISTIR, LISTFD, NIT, TOL/0,9,9,0,150,1D-9/, 
* LETZ, LETR/1HZ, 1HR/,PI/3.14159265358979D6/, IBH/2¥, 29/, 
* BM/1.09D0,1.17D0,1.22D0,1.26D0,1.29D0,1.345D0,1.385D0,1.455D0, 
* 1.49D0,1.525D0,1.555D0,1.58D0,1.6D0,1.63D0,1.655D0,1.75D0, 

1.83D0,1.9D0,1.955D0,1.99D0, 1D9,1.13D0,1.21D0,1.345D0,1.45D4, 
1.545D0,1.63D4,1.695D0,1.755D,1.805D0,1.87D0,1.92D0, 2D0, 
2.@65D0, 2.125D0, 2.19D0, 2.25D0, 2.3DW, 2.39D0,2.48D0/, 
H/35D1,4D2,45D1,5D2,55D1,65D1, 75D1, 1D3,12D2,15D2, 2D3, 25D2, 3D3, 
4D3 , 5D3, 1D4, 15D3, 24, 25D3, 3D4, 6D2, 75D1, 105D1, 16D2, 215D1, 27D2, 
32D2, 36D2, 4D3 ,44D2, 5D3, 55D2, 65D2, 75D2,85D2, 1D4,12D3, 14D3, 2D4, 3D4/ 
THE PROGRAM WILL CALL DIFFRENT SUBROUTINES 

CALL OF NOUFLO=ICL COMMAND TO PREVENT UNDERFLOW IN AICCG! 
CALL NOUFLO 

a
 

INPUT OF DATA 
WRITE (6,164) 
CALL AINPUT( INFORM, IPRINT, IDISC,MAPMAT, MAPPSI, LISTIR, LISTED, 

* UMIN, JMAX, IMIN, IMAX, LETZ, LETR, PI, BM, H, IBH) 

COMPUTATION OF COORDINATES, MAPPING OF MATERIALS 
I=NR*NZ 
CALL AMESH(IRZ,NZ,NR,1Z,IR,I,CZ,CR,R,Z) 
I=2*IM 
CALL AMATER(IRZ,MAPMAT, IM,I,11,J1,MM,NM,MI,MAT) 
IF(IPRINT.LT.2)GOTO 1 

WRITE(6, 105) LETZ 
CALL APRINT(Z,I1,J1,-1,IRZ) 
WRITE(6,105)LETR 
CALL APRINT(R,I1,J1,-1,IRZ) 

1 WRITE(6,119)CURR(1) 
MULVEY=6 
DO 2 I=1,J1l 
IE=I*I1 

IF(I.GT.1.AND. (MAT(IE) .EQ.1.OR.MAT(IE) .EQ.2) )MULVEY=1 
2 02Z(I)=2(IE) 

DO 3 I=1,IRZ 
3 U(I)=3 

ISTEP=O 
Goro 4 

COMPUTATION OF AN APPROXIMATION ISTEP (ISTEP=@ FOR LINEAR APPROX.) 
5 WRITE(6,113) ISTEP 
4 CALL ACOEF( ISTEP, MAT, AUX, PL, AREA, BM,H,B,P,P1,P2,P3,P4,R,2Z,U) 
IF( ISTEP .EQ.@)WRITE(6,117)AREA 
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Cc 
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IF(ICURR.GT.)WRITE(6,108)AUX 

SOLUTION OF THE MATRIX EQUATION BY ICCG METHOD 
IE-@ 
I=IS+l 
CALL AICCG(NIT, IE,1I,12,IS,TOL, 

mi P,P1,P2,P3,P4,B,D,D1,D2,D3,D4,X,Q, RR, S, Y) 
IF((IE.HQ.) .OR. (IE.HQ.2) )GOTO 6 
WRITE(6,115) 
STOP 1 

SOLUTION INTO POTENTIAL, EVALUATION OF AXIAL FLUX DENSITY AND ITS 
CORRECTION 

a
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Cc 
Cc 

6 CALL AOCORR(ISTEP, ISYM,I1,J1,IRZ,12,J2,1S,AUX,U,R,B,D,D1,D2) 
IF(AUX.LT.3.)GOTO 7 
ISTEP=ISTEP+1 
TEST ON MAXIMUM OF 7 APPROXIMATIONS ALLOWED 
IF(ISTEP.LE.7)GOTO 5 
WRITE(6,114) 
STOP 7 
END OF LOOP FOR VECTOR POTENTIAL COMPUTATION 

FINAL PRINTS: EXCITATION AS AXIAL INTEGRAL OF B(Z), FLUX (NOT IF 
IPRINT(9), 

AXIAL FLUX DENSITY, OUTPUT ON DISC 
7 IF(MULVEY.GT.0)CALL AMULV(J1,11,IRZ,ISTEP,MAT, PI, IH, BM,H,D2) 

CALL ALINEI (ISYM,J1,IRZ,PSIMAX, PI,R,D2,0Z,U, PSI) 
IF(IPRINT.LT.1)GOTO 8 
WRITE(6,111) 
CALL APRINT(PSI,I1,J1, ISTEP, IRZ) 

8 WRITE(6, 100) INFORM, ISYM 
WRITE (6,109) (0Z(I),D1(I) ,D2(I),I=1,J1) 
IF (MULVEY .GT.@)WRITE(6,116) 
IF(IDISC.LE.@)GOTO 18 
IF(ISTEP.NE.@)GOTO 9 
WRITE(10, 101) INFORM, J1 
WRITE(10, 102) (0Z(I),I=1,J1) 

9 WRITE(10,103) (D2(I) ,I=1,J1) 

MAP OF PSI (IN 30 LEVELS) AND FLUX DENSITY IN IRON OR ITS LISTING 
16 IF(MAPPSI.LT.4)GOTO 12 

AUX=3333D-5*PSIMAX 
DO 11 I=1,36 

11 D3(I)=I*AUX 
WRITE(6, 106) 
CALL AMAP3D(I1,J1,IRZ,3,D3,PSI) 

12 IF(IMI.EQ.%)GOTO 15 
IF(LISTIR.LT.G)GOTO 13 

WRITE(6, 107) 
CALL AFLUXD(I1,J1,IRZ, IMIN, IMAX,JMIN, JMAX,1, 

* MAT, R, Z,U, PSI,D4) 
13 IF(LISTFD.BQ.0)GOTO 14 

CALL AFLUXD(I1,J1,IRZ, IMIN, IMAX, JMIN, JMAX,2, 
u MAT, R, Z,U,PSI,D4) 
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HHH * eet © FURTHER EXCITATION? 
14 pe et en Ae 5 

IF(ICURR.BQ.@)STOP 
GOTO 17 

NEW CURRENT DENSITY IN THE COIL 
15 NP=NP+1 
IF(NP.GT. ICURR)STOP 
AUX=CURR(NP) /CURR(NP-1) 
IF(AUX.LE.@.)STOP 2 
VECTOR POTENTIAL IS SLIGHTLY INCREASED BEFORE THE NEXT EXCITATION 

AUX=@ .5*(1.+AUX) 
Do 16 I=1,IRZ 

16 U(1)=AUX*U(I) 
17 ISTEP=L 

AUX=AREA*CURR(NP 
Buea, tojere), AUX 
GoTo 5 

100 FORMAT (/////5x, ' CASE", 2X, 20A3//11X, ‘INPUT FOR TRAJECTORY", 
CALCULATIO! SYMMETRY PARAMETER=' ee Z (mM), 15x, 

* 'B(Z) (TESLA)! /27%, ‘FROM 1ST LINE',7X,'FROM 2 LINES'/) 
101 FORMAT (20A3/14) 
192 FORMAT(5F16.9) 
193 FORMAT(1P5E16.8) 
104 FORMAT (////10x, ' VECTOR POTENTIAL COMPUTATION * A=@ ON BOUNDARY' 

/1@X,'PROGRAM AMAG ——- VERSION SEPTEMBER 1984 **#**'//) 
105 FORMAT(//10X,'COORDINATES OF MESH LINES ',1Al//) 
16 FORMAT(/////2x,20(**"),2X, "MAP OF FLUX (MICROWEBER) '/) 
107 FORMAT(/////2X,26('*'),2X,'MAP OF IRON FLUX DENSITY (TESLA) ') 
108 FORMAT(//10X,'+++++ SUM OF RESIDUALS =',1PE11.4) 
109 FORMAT (@PF18.6,1P2E20.6) 
11g  Forwar(////10x, ' LINEAR APPROXIMATION'//1@X,'CURRENT DENSITY IN ', 

‘COIL=',1PE10.3,' A/MM**2') 
111 “oraa(/7///7/]/ 0K, FLUX ** MICROWEBER'//) 
112 Forman (/////10x,* NONLINEAR COMPUTATION'//10X, 

‘CURRENT DENSITY IN EXCIT. COIL =',1PE12.3,' A/Mv**2'/ 
le 16X,'LENS EXCITATION' ,OPF15.3,' A-TURNS WAY 

113 FORMAT(//2Xx, '*#** HEPES, | APPROXIMATION’ ) 
114 FORMAT(1@X, 'EXCEEDED 7 APPROXIMATIONS ALLOWED! !11') 
115 FORMAT(///10X,'IE = +1, CONVERGENCE IN ICCG-METHOD NOT REACHED') 
116 FORMAT(//2X,20('*'),2X,'B(Z) FROM 2 LINES CORRECTED FOR' 

3 ,' PERMEABILITY OF IRON ON THE AXIS') 
117 FORMAT(10X, 'AREA OF EXCITATION COIL',F10.3,' MM**2') 

END 

pa AINPUT ( INFORM, IPRINT, IDISC, MAPMAT, MAPPSI, LISTIR, LISTFD, 
JMIN, JMAX, IMIN, IMAX, LETZ, LETR, PI, BM,H, IBH) 

INPUT OF DATA FOR AMAG 
IMPLICIT REAL*12 (A-H,O-Z) 
DIMENSION INFORM(2@) ,BM(20,2),H(20,2) , IBH(2) 
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COMMON 
*/BLDAT/IM, IMI, ISYM, IH(2) ,MM(4@) ,NM(4@) ,MI (20) ,NP, ICURR, CURR(10) 
*/BLCOOR/NZ, NR, 1Z(26) , IR(20) ,CZ(400) ,CR(400) 
*/BPARAM/12,J2,1S,I1,J1,IRZ 

***%** INPUT + PRINT OF THE COARSE MESH AND INDICES 
READ(5, 100) INFORM 
WRITE (6,101) INFORM 
READ(5,102)NZ,NR, IM, IML, ISYM, ICURR, IH1, IH2, IPRINT, IDISC 
READ(5, 102) (1Z(J) ,J=1,NZ) 
READ(5, 102) (IR(J) ,J=1,NR) 
J2=NR*NZ 
DO 3 J=1,NR 
READ(5, 103) (CZ(I) ,I=J,32,NR) 
DO 4 J=1,NR 

4 READ(5,103)(CR(I),I=J,J2,NR) 
WRITE(6,104)LETZ, (1Z(J) ,J=1,NZ) 
DO 5 J=1,NR 

5 WRITE(6,1@5)IR(J),(CZ(I),I=J3,J2,NR) 
WRITE (6,104) LETR, (IZ(J) ,J=1,NZ) 
DO 6 J=1,NR 
WRITE(6,185)IR(J), (CR(I),I=J,J2,NR) 

INPUT OF REGIONS WITH NONZERO MATERIAL, CURRENT DENSITY IN THE COIL 
IF(IM.EQ.@.OR.IM.GT.20)STOP 29 
J=@ 
DO 7 I=1,IM 
READ(5,192)MM(2*I-1) ,MM(2*I) ,NM(2*I-1) ,NM(2*I) ,MI(I) 
IF((MI(I) .LT.3) .AND. (MI(I) .GT.J))J=Mz (I) 
CONTINUE 
WRITE (6, 106) (MM(2*I-1) ,MM(2*I) ,NM(2*I-1) ,NM(2*I) ,MI(I) ,I=1,IM) 
IF(ICURR.GT.10)STOP 10 
IF (ICURR-EQ.@) THEN 
READ(5,999)CURR(1) 

WRITE (6,107) ICURR, CURR(1) 
ELSE 
READ(5, 999) (CURR(I) , I=1, ICURR) 
WRITE (6,107) ICURR, (CURR(I) ,I=1,ICURR) 
ENDIF 

INPUT OF MAGNETIZATION CURVES 
IF IMI=@ STANDARD SOFT IRON AND PERMENDUR CURVES ARE USED IN IRON PARTS 
IF(IMI.GT.)GOTO 8 
IF(J.EQ.@)GOTO 12 
TH(1)=IBH(1) 
IF(J.BQ.2)1H(2)=IBH(2) 
IMI=J 
WRITE(6,112) 
IF(J.—Q.2)WRITE(6,113) 
GOTO 12 
IH(1)=IH1 
IF(IMI.GT.1)IH(2)=1H2 
DO 9 I=1, IMI 
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J=IH(I) 
READ(5,114) (BM(K,1I),H(K,1) ,K=1,J) 
WRITE(6,115) 
DO 11 I=1,IMI 
K=IH(I) 
DO 18 J=1,K 
B1=25D5/PI*BM(J,1)/H(J,1) 
WRITE(6,116)J,H(J,1),BM(J,I),Bl 
WRITE(6,117) 
READ(5, 102, END=13 )MAPMAT, MAPPSI, LISTIR, LISTED 
IF(LISTFD .GT.@) READ(5, 102) JMIN, JMAX, IMIN, IMAX 

NP=1 
J1=1Z(NZ) 
I1=IR(NR) 
J2=J1-2 
IF(ISYM.LT.@) ISY¥M=O 
IF (ISYM.GT.9)ISYM=1 
IF(ISYM.EQ.1)J2=J1-1 
I2=11-2 
IS=12*J2 
IRZ=11*d1 
WRITE(6,198)I1,J1,IRZ,12,J2,1S 
WRITE (6, 109)MAPMAT, MAPPSI , LISTIR, LISTFD, IDISC 
IF(LISTFD.GT.0)WRITE(6,110)JMIN, JMAX, IMIN, IMAX 
TEST ON MAXIMUM DIMENSIONS ALLOWED 
IF(IS.GT.6@00)STOP 6000 
IF(IRZ.GT.6504)STOP 650 
IF(J1.GT.126)STOP 120 

TEST, IF THERE ARE POSITIVE AREAS IN THE COARSE MESH ONLY 

DO 14 J=2,NZ 
DO 14 I=2,NR 
K=(J-1) *NR+I 
L=K-NR 

Al=(CR(K)-CR(L-1) ) * (CZ(L)-CZ(L-1) )-(CR(L=1)-CR(L) )* (CZ(L-1L)-CZ(K) ) 
A2=(CR(L-1)-CR(K) ) * (CZ(K-1)-CZ(K) )—(CR(K)-CR(K-1) )* (CZ(K)-CZ(L-1) ) 
A3=(CR(L)-CR(K-1) )*(CZ(L-1)-CZ(K-1) )-(CR(K-1)-CR(L-1) ) * (CZ(K=1) 
* -CZ(L)) 

14 

15 

106 
11 
162 
193 
999 
194 
165 
106 

A4=(CR(K-1)-CR(L) )* (CZ(K)-CZ(L) )—(CR(L)-CR(K) )* (CZ(L)-CZ(K-1) ) 
IF(A1.LE.@D0.OR.A2.LE.@D0.OR.A3 .LE.2D0.OR.A4.LE.OD)GOTO 15 
CONTINUE 
RETURN 
WRITE(6,111)1,J,Al1,A2,A3,A4 
STOP 15 

FORMAT (2A3) 
ForMAT(////1X,93('*')/1X, ‘INFORMATION: ',20A3/1X,93('*')//) 
FORMAT (2014) 
FORMAT(13F6.¥) 
FORMAT(10F8.) 
FORMAT(//2X, ‘INPUT COORDINATES ',Al//(5X,12114)) 

FORMAT(I3, 2X,12F10.3, (/5X,8F10.3) ) 
FORMAT(//2X,'LINES LIMITING POSITION OF IRON(MAT.' 
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* ,' 1 AND 2) AND COIL(MAT. 3)'/2X,'IN Z FROM-10',3X, 
* ‘IN R FROM-TO', 3X, 'TYPE OF MATERIAL'//(2(19,14) ,18)) 

107 FORMAT(//2X, ‘NUMBER OF EXCITATIONS COMPUTED: ',12/ 
* 2X, ‘EXCITATION CURRENT DENSITY IN A/MM**2:',1P4E16.6/ 
* 8X, 6E16.6) 

108 FORMAT(//2X,'** PARAMETERS OF THE MESH: I1=',13,', Jl=',13, 
*', IRZ=',15/2X,'++ OF F.E.M. SYSTEM: 12=',13,', J2=',13, 
ny toe! 15) 

109 FORMAT(2X,'** FURTHER PARAMETERS: MAPMAT=',12,', MAPPSI=',12, 
* ', LISTIR=',12,', LISTFD=',12,', IDISC=',12) 

11 FORMAT(5X,'MAPPING OF FLUX DENSITY: IN Z FROM J=',13,' TO J=',13, 
2 ‘, IN R FROM I=',13,' TO I=',13) 

111 FORMAT(' ERROR DETECTED IN THE COARSE MESH: FOR I=',12, 
= ', J=',12,' ARE THE AREAS',1P4E10.2) 

112 FORMAT(//2X, 'MAGNET. CURVE 1: SOFT IRON(STANDARD) ') 
113 FORMAT(2X, 'MAGNET. CURVE 2: PERMENDUR(STANDARD) ') 
114 FORMAT(12F6.0) 
115 FORMAT(//2X, ‘MAGNETIZATION CURVE:'/' J',10X,'H (A/M)',5X, 

= 'B (TESLA) ',5X,'MI RELATIVE'//) 
116 FORMAT(14,F14.1,F14.3,F14.1) 
117 FORMAT (/' RREEKER' /) 

END 

SUBROUTINE AMESH(IRZ,NZ,NR,1Z,IR, IDIM,CZ,CR,R,Z) 

FROM THE COARSE MESH FORMS THE FINE MESH OF R AND Z COORDINATES 
REAL*12 R(IRZ),Z(IRZ),CR(IDIM) ,CZ(IDIM) ,Z1,Z2,R1,R2,DK,DK1,DL, DLL 
INTEGER 1Z(NZ),IR(NR) 

I2=1 
DO 1 J=2,NZ 
K1=1Z(J)-12Z(J-1) 
DK=K1 
IF(J.EQ.NZ)K1=K1+1 
DO 1 K=1,K1 
DO 1 I=2,NR 
IA=(J-2)*NR+I-1 
ID=IAWR 
DK1=K-1 
Z1=CZ (IA)+(CZ(ID)-C2 (IA) )*DK1/DK 

R1=CR(IA)+(CR(ID)-CR(IA) )*DK1/DK 
Z2=CZ (IA+1)+(CZ(ID+1)-CZ (IA+L) )*DK1/DK 
R2=CR(IA+1)+(CR(ID+1)-CR( IA+1) )*DK1/DK 
L1=IR(I)-IR(I-1) 
DL=LL , 
IF(I.BQ.NR)LI=L1+1 
DO 1 Lél,Ll 
DLI=L-1 
Z(12)=Z1+(Z2-21)*DL1/DL 
R(I2)=R1+(R2=R1L)*DL1/DL 
I2=I2+1 

1 CONTINUE 
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RETURN 
END 

SUBROUTINE AMATER(IRZ,MAPMAT, IM, IM2,11,J1,MM,NM,MI,MAT) 

INTO THE VECTOR MAT THE MATERIAL OF EACH QUADRILLATERAL WILL BE GIVEN 
FOR MAPMAT>=8 A 2D MATERIAL DISTRIBUTION IN THE MESH IS PRINTED 

DIMENSION MM(IM2) ,NM(IM2) ,MI(IM) ,MAT(IRZ) 

IN VECTOR MAT ARE I AND J INDICES OF THE LOWER RIGHT-HAND CORNER OF 
QUADRIL. 
DO 1 I=1,1IRzZ 

  

TF(((J.GT.MM(2*K-1) ) AND. (J-LE. MM(2*K) )) «AND 
* ((I.GP.NM(2*K-1)) «AND. (T.LE.NM(2*K) ) ) MAT( (J=L)*11+Z) =a (K) 

2 CONTINUE 
IF (MAPMAT.LT.@) RETURN 

PRINT OF MAT 
WRITE(6, 100) (I, I=5,J1,5) 

160 FORMAT (////1X, io('*"),* DISTRIBUTION OF MATERIALS IN MESH'// 

¢c 
1X, ‘INDEX J'/1X, ‘INDEX I',17,2315) 

DO 3 I=2,11 
WRITE(6,102)I, (MAT((J-1)*I1+I) ,J=2,J1) 

3 CONTINUE 
162 FORMAT(I8,' -',120I1) 

. 
Q 

RETURN 
END 

SUBROUTINE ACOEF( ISTEP, MAT, SUM, PI, AREA, BM,H,B,P,Pl,P2,P3,P4,R,Z,U) 

EVALUATES THE COEFFICIENTS OF THE F.E.M. EQUATIONS IN LINEAR/NONLINEAR 

IMPLICIT REAL*12 (A-H,O-Z) 
DIMENSION U(IRZ),B(IS),P(IS),P1(IS),P2(IS),P3(IS),P4(Is), 

* R(IRZ), Z(IRZ) , F(24) ,(12), MAT(IRZ), BM(22, 2) 7H(20, 2) 

COMMON /BPARAM/I2,J2,IS,I1,J1,IRZ 
*/BLDAT/IM, IMI, ISYM, IH(2) ,MM(40) ,NM(4@) ,MI (20) , NP, ICURR, CURR(10) 

Do 1 I=1,Is 
P(I)=%. 
P1(I)=¥. 
P2(I)=¥. 
P3(I)=0. 
P4(I)=0. 

1 B(I)=0.0 
IF(ISTEP.BQ.)AREA=. 
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RELATIVE PERMEABILITY IS USED 
RMIV=PI*4D-7 

COMPUTATION OF COEFFICIENTS 
L1=1 
IF(ISYM.HQ.9)L1=3-11 
DO 3 J=2,d1 
Do 4 I=2,11 
Ik=(J-1)*I1+1 
IMIV=MAT (IK) 
ICOIL=¥ 
IF(IMIV.LT.3)GOTO 2 
ICOIL=NP 
IMIV=6 

2 IA=(J-1)*I1+1 
IB=IA-1 
IC=IB-I1 
ID=IC+l 

CALL ATRIAN(IMIV, ICOIL, ISTEP, 4,9,AR1,R(ID),R(IA),R(IC),Z(ID), 
* — Z(TA),Z(IC) ,U(ID) ,U(IA) ,U(IC) , RMIV, BM, H, IH, F,Q,CURR(NP) ) 
CALL ATRIAN(IMIV, ICOIL, ISTEP, 6,3,AR2,R(IB),R(IC),R(IA),Z(IB), 

*  Z(IC),Z(IA) ,U(IB) ,U(IC) ,U( TA) , RMIV, BM, H, IH, F,Q, CURR(NP) ) 
CALL ATRIAN(IMIV, ICOIL, ISTEP, 12,6,AR3,R(IC),R(ID),R(IB),Z(IC), 

* — Z(ID),Z(1B) ,U(IC) ,U(ID) ,U( IB) , RMIV, BM,H, IH, F,Q, CURR(NP) ) 
CALL ATRIAN(IMIV, ICOIL, ISTEP, 18,9,AR4,R(IA),R(IB),R(ID),Z(IA), 

* — 2(1B),Z(ID) ,U(TA) ,U(IB) ,U(ID) , RMIV, BM, H, IH, F,Q,CURR(NP) ) 
IF( ISTEP .EQ.%.AND. ICOIL.GT.@) AREASAREA+(ARI+AR2+AR3+AR4) /4. 

SUBSTITUTION INTO B, P...P4 
IF(ISYM.EQ.@.AND.J.EQ.2)GOTO 6 
IF(I.EQ.11)GOTO 5 
LOWER LEFT-HAND VERTEX OF THE QUADRILATERAL 
IK=L1 
B(IK)=B(IK)+Q(1)+Q(8)+Q(12) 
P(IK)=P(IK)+F(1)+F(16)+#(24) 
P2(IK)=P2(IK)+F(17)+E(23) 
P3(IK)=P3(IK)+F(2)+F(21) 

> IF(I.EQ.2)GOTO 6 
UPPER LEFT-HAND VERTEX 
IK=L1-1 
B(IK)=B(IK)+Q(3)+Q(5)+Q(7) 
P(IK)=P(IK)+F(6)+F(19)+F(13) 
Pl (IK)=P1 (IK)+F(3)+F(14) 
P3 (IK)=P3(IK)+F(3)+F(15) 
P4(IK)=P4(IK)+F(5)+F(11) 

6 IF(J.BQ.J1)GoTO 4 
IF(I.EQ.11)GOTO 7 
LOWER RIGHT-HAND VERTEX 
IK=L1+12 
B(IK)=B(IK)+Q(2)+Q(6)+Q(10) 
P(IK)=P(IK)+F(4)+F(12)+F(19) 

7 IF(I.EQ.2)GOTO 4 
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UPPER RIGHT-HAND VERTEX 
IK=L1+12-1 
B(IK)=B(IK)+0(4)+0(9)+Q(11) 
P(IK)=P(IK)+F(7)+F(18)+F(22) 
P1(IK)=P1 (IK)+F(9)+F(20) 

L1=L1+1 
L1=L1-1 
IF(ISTEP.EQ.4.AND.ISYM.GT.@)AREA=2.*AREA. 
RRR KIRK RRA RIKER ER RR IERIE IO IRI II I OI IO I I III I 

A=~ ON THE BOUNDARY (SOME COEFFICIENTS MUST BE PUT EQUAL TO ZERO) 
DO 8 I=1,J2 
Ik=(I-1)*12+1 
P2(IK)=0.0 
IK=1*12 
P1(IK)=4.9 

8 P4(IK)=0.0 

DO 9 I=1,12 
IK=IS+1-I 
P2(IK)=0.6 
P3(IK)=0.9 

9 P4(IK)=0.6 

1g 

SUM OF RIGHT-HAND SIDES - AN INDICATION OF THE VALUE OF RESIDUALS SUM=O. 
DO 10 I=1,1S 

SUM=SUM+ABS (B(I) ) 

RETURN 
END 

SUBROUTINE ATRIAN(IMIV, ICOIL, ISTEP, IX, IL,AR,R1,R2,R3,Z1,Z2,23, * — U1,U2,U3, RMIV, BM,H, IH, F,Q, CURR) 

REAL*12 BM(20,2),H(20, 2), F(24) ,Q(12) ,CURR, RST, AR, BR, BZ, BC,H1, * H2,H3,R1,R2,R3,Z1,22,Z3,B1,B2,B3,Cl,C2,C3, RMI, RMI1,RMIV 
* ,AUX,UL,U2,U3,PK 
DIMENSION IH(2) 

B1=R2-R3 
B2=R3-RL 
B3=R1-R2 
RST=R1+R2+R3 
C1=Z3-Z2 
C2=Z1-Z3 
AR=B1*C2-B2*Cl 

C3=Z2-Z1+AUX 

RMI=1.8 
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RMI1=0.0 
IF(IMIV.GT.@) RMI=H(1, IMIV)/BM(1, IMIV)*RMIV 
IF(ISTEP.EQ.0)GOTO 3 

BR=-(B1*U1+B2*U2+B3*U3)/AR 
BZ=(C1*U1+C2*U2+C3*U3) /AR 
BC=SQRT (BR**2+BZ**2) 
H1=-B1*BR+C1*BZ 
H2=-B2*BR+C2*BZ 
H3=-B3*BR+C3*BZ 
IF(IMIV.HQ.9)GOTO 3 
IF(BC.LE.BM(1,IMIV) )GOTO 3 
EVALUATION OF RELATIVE PERMEABILITY IN IRON 
IP=IH(IMIV) 
RMI1=1. 
IF(BC.GT.BM(IP, IMIV) )GOTO 2 
RMI1=(H(IP, IMIV)-H(IP=1, IMIV) )/(BM(IP, IMIV)-BM(IP-1, IMIV) ) *RMIV 
IP=IP-1 
GoTo 1 
RMI=RMI1+(H(IP, IMIV) *RMIV-RMI1*BM(IP, IMIV) )/BC 

PK=RST*RMI/AR 
F(IK+1)=PK*(B1*B1+C1*C1) 
F( IK+2)=PK* (B1*B2+C1*C2) 
F(IK+3 )=PK* (B1*B3+C1*C3) 
F( IK+4)=PK* (B2*B2+C2*C2) 
F(IK+5 )=PK* (B2*B3+C2*C3) 
F(IK+6)=PK* (B3*B3+C3*C3) 

IF(ICOIL.GT.%)GOTO 4 
Q(IL+1)=9.6 
Q(IL+2)=9.0 
Q(IL43)=0.0 
Goto 5 

PK=25D1*AR*CURR*RMIV 
Q( IL+1)=PK*(RST+RL) 
Q( IL+2)=PK* (RST+R2) 
Q(IL+3)=PK* (RST+R3) 

IF(ISTEP.EQ.@)GOTO 6 
PK=-RST*RMI 
Q(IL+1)=Q(IL+1)+PK*HL 
Q(IL+2)=0(IL+2 )+PK*H2 
Q(IL+3)=Q(IL+3)+PK*H3 

IF(RMI1.EQ.0.9) RETURN 
PK=(RMI1-RMI)*RST/ (AR*BC**2) 
F( IK+1)=F(IK+1)+PK*H1*H1 
F( IK+2)=F ( IK+2)+PK*H1*H2 
F( IK+3)=F(IK+3)+PK*H1*H3 
F( IK+4)= ( IK+4)+PK*H2*H2 
F(IK+5) =F ( IK+5 )+PK*H2*H3 
F(IK+6)=F(IK+6)+PK*H3*H3 
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RETURN 
END 

|, SUBROUTINE ACORR( ISTEP, ISYM, I1,J1,IRZ,12,J2,1S,AUX, 
U,R,B, RELCOR, D1 ,D2) 

REAL*12 AUX, RELCOR(J2) ,D1(J1),D2(J1),B(IS) ,U(IRZ) ,R(IRZ) 

SOLUTION IN B SUBSTITUTED INTO VECTOR POTENTIAL U 
AUX=0. 
IK=I1-1 

IF (ISYM.GT.@) IK=-1 
DO 1 J=1,32 
IK=IK+2 
DO 2 I=1,12 
IL=I2*(J-1)+1 
IK=IK+1 

2 U(IK)=U(IK)+B(IL) 
IF(ISTEP.EQ.)GOTO 1 
EVALUATION OF RELATIVE CORRECTION TO B(Z) ON THE AXIS 
RELCOR(J)=1. 
IF(U(IK) .NE.@)RELCOR(J)=-B(IL)/U(IK) 
IF U<@, ONLY ONE THIRD OF THE CORRECTION IS CONSIDERED!!! 
IF(U(IK) .LT.@) RELCOR(J)=RELOOR(J)/3. 

AUX=AUX+ABS (RELCOR(J) ) 
1 CONTINUE 

AUX=AUX/J2*100. 

COMPUTATION OF AXIAL FLUX DENSITY (FROM 1 OR 2 MESH LINES) 
IK=I1-1 
Do 3 I=1,J1 
D1(I)=2.*U(IK)/R(IK) 
D2(I)=2.*(U(IK)*R( IK-1)**3-U(IK-1)*R(IK)**3) / 

es (R(IK) *R(IK-1)*(R( IK-1)**2-R( IK) **2)) 
3 IK=IK+I1 

PRINT OF THE CORRECTIONS 
IF(ISTEP.EQ.@)GOTO 4 
WRITE(6, 103) AUX 
WRITE(6, 100) (RELCOR(I) ,I=1,J32) 
IF(AUX.GE.3.)GOTO 4 

WRITE(6,101) (D2(I),I=1,J1) 

11 FORMAT (/// 10K, * AXIAL FLUX DENSITY FROM 2ND LINE (TESLA)'// 
(1X, 10F11.6) ) 

160 een / (i, | RELATIVE CORRECTION OF B(Z)'//(1F12.6)) 
103 FORMAT(/1@X, ‘AVERAGE CORRECTION OF B(Z) =',FlU.5,' %') 

4 RETURN 
END 

SUBROUTINE APRINT(X,I1,J1,N,L) 
REAL*12 X(L) 
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 SUBROUTINE FOR PRINTING A VECTOR X WITH DIMENSION L=I1*J1 

TOGETHER J1 COLUMNS, Il LINES (MAX. 10 ITEMS ON A LINE) 
FORMAT ACCORDING TO N: FOR N<@ IN F FORMAT, N>@ EXPONENTIAL FORM 
- TO PRINT COORDINATES, POTENTIAL AND FLUX DENSITIES 
DO 1 J=1,d1,1¥ 
13=(J-1)*I1+1 
I4=13-1+10*11 
IF(1I4.GT.L)14=L 
IF(N.GE.@)GOTO 3 
DO 2 I=1,I1 

WRITE (6,162) (X(K) ,K=13,14,11) 
I3=I3+1 
GOTO 1 
Do 4 I=1,I1 
WRITE(6, 101) (X(K) ,K=I3,14,11) 
I3=I3+1 
WRITE(6,13) 

101 FORMAT(1X,1P1E12.5) 
102 FORMAT(1X,10F12.5) 
103 FoRMAT(//) 

B
P
R
 

WwW
 

BD 

RETURN 
END 

SUBROUTINE AMULV(J1,1I1,IRZ, ISTEP,MAT, PI, IH, BM,H,B) 

DIVIDES VALUE OF AXIAL FLUX DENSITY BY RELATIVE PERMEABILITY OF IRON 
INTEGER MAT(IRZ) , IH(2) 
REAL*12 B(J1),BM(20,2),H(20,2),BC, PI, RMI1,RMIL, RMIR, RMIV 

RMIV=4D-7*PI 
RMIR=2. 
DO 4 I=2,J1 
RMIL=RMIR 
RMIR=1. 
IMIV=MAT(I*I1) 

IF( IMIV.GE.3) IMIV=0 
IF(IMIV.EQ.@)GOTO 3 
BC=0.5*B(I)+B(I-1)/RMIL 
RMIR=H(1, IMIV) /BM(1, IMIV) *RMIV 
IF((BC.LE.BM(1, IMIV) ) .OR. (ISTEP.EQ.9) )GOTO 3 
IP=IH(IMIV) 
RMI1=1. 

1 IF(BC.GT.BM(IP,IMIV) )GOTO 2 
RMI1=(H(IP, IMIV)-H(IP=1, IMIV) )/(BM(IP, IMIV)-BM(IP=1, IMIV) )*RMIV 
IP=IP-1 
GoTo 1 

2 RMIR=RMI1+(H(IP, IMIV)*RMIV-RMI1*BM(IP, IMIV) )/BC 

3 IF(I.NE.2)GOTO 5 
RMIL=RMIR 
B(1)=B(1)*RMIL/2. 

5 B(I)=B(I)*RMIR/2. 
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B(I-1)=B(I-1)*(1.+RMIR/RMIL) 
4 CONTINUE 

RETURN 
END 

SUBROUTINE ALINEI(ISYM,J1,IRZ,PSIMAX, PI,R,BZ,0Z,U, PSI) 

CALCULATES INTEGRAL OF BZ ON AXIS DIVIDED BY MUO BY TRAPEZ. RULE 
EVALUATES THE FLUX PSI=2*PI*U*R AND FINDS PSIMAX 
REAL*12 R(IRZ),0Z(J1) ,U(IRZ), PSI(IRZ) ,BZ(J1) , PSIMAX, SUM, PI 

SUMS. 
DO 1 J=2,d1 

1 SUMESUM+(BZ(J)+BZ(J-1) )*(0Z(J)-0Z(J=-1) ) 
SUM=25D2*SUM/PI 
IF(ISYM.EQ.@) SUM=SUM/2D6 

WRITE(6,16)SUM 
16 FoRMAT(////10x,'***** EXCITATION (INTEGRAL OF AXIAL FLUX', 

*' DENSITY):',1PE14.6,' A-TURNS'/) 

PSIMAX=3. 
DO 2 J=1,IRZ 
PSI(J}=2.*PI*R(J)*U(T) 
IF(ABS(PSI(J)) .LT.PSIMAX)GOTO 2 
PSIMAX=ABS (PS1 (J) ) 
I=J 

2 CONTINUE 

J=1/(IRZ/I1)+1 
I=I-(J-1)*(IRZ/J1) 

WRITE(6, 11)PSIMAX, I, a 
ll FORMAT (10x, ‘+++++ MAXIMUM VALUE OF FLUX =',1PE16.6, 

‘ MICROWEBER AT I=' ey , J=',13//) 

RETURN 
END 

SUBROUTINE AMAP3D(I1,J1,IRZ,NLEVEL, XF, FIELD) 

3D MAP IN NLEVEL LEVELS OF GIVEN VECTOR FIELD 
- TO MAP THE FLUX OR FLUX DENSITY DISTRIBUTION 
DIMENSION LETTER(39) , LINE(120) 
REAL*12 XF(NLEVEL) , FIELD(IRZ) 
DATA LETTER/1H ,1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8, 1H9,1HA, 1HB, 

* 1HC, 1HD, 1HE, 1HF, 1HG, 1HH, 1HT, 15J, 15K, 1HL, 14M, 1HN, 1HO, 1HP, 1HQ, 
* 15R, 1HS, 1HT, 1HU, 1HV, 1HW, 1X, 1HY, 1HZ,1H-,1H!/ 

PRINT OF FIRST 3 LINES OF THE MAP 
DO 1 I=1,J1 
LINE(I)=LETTER(38) 
IF(MOD(I,5) .EQ.0) LINE(I)=LETTER(39) 

1 CONTINUE 
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WRITE(6, 100) (I,I=5,J1,5) 
WRITE(6,101) (LINE(I) ,I=1,J1) 

10@ FORMAT(2UX, 'INDEX J'/' INDEX I ',2415) 
161 FORMAT(10X,126A1) 

PRINT OF Il LINES OF THE MAP 
LINE(1)=LETTER(1) 
peewee lyr, 
DO 2 J=1,J1 
LINE(J)=LETTER(1) 
DO 2 K=1,NLEVEL 
INDEX=(J-1)*I1+1 
IF (FIELD( INDEX) .GT.XF(K) )LINE(J)=LETTER(K+1) 

2 CONTINUE 
K=LETTER(39) 
IF(MOD(I,5) .BQ.6)K=LETTER (38) 

3 WRITE(6,192)I,K, (LINE(J) ,J=1,J1),K 
162 FORMAT(I9,122A1) 

PRINT OF FINAL LINE 
Do 4 I=1,d1 
LINE(I)=LETTER(38) 
IF(MOD(I,5) .BQ.@)LINE(I)=LETTER( 39) 

4 CONTINUE 
WRITE(6,101) (LINE(I) ,I=1,J1) 

PRINT OF DESCRIPTION 
WRITE (6,193) 

103 FORMAT(//2X, 'MEANING OF LETTERS: ') 
K=(NLEVEL+4) /5 
DO 5 I=1,K 
L=5*I 
IF(L.GT.NLEVEL) L=NLEVEL 
L1=5*(I-1)+1 

WRITE(6, 104) (LETTER(J) ,XF(J) ,J=L1,L) ,LETTER(L+1) 
5 CONTINUE 104 FORMAT(2x,5(1''', a1," '<" 812.2, 5K, "<"), "1! 2AL, 184) 

RETURN 
END 

SUBROUTINE AFLUXD(I1,J1,IRZ, IMIN, IMAX, JMIN, JMAX,MAPIR, MAT, * 
R,Z,U,BB,XZ) 

+H++H+++++++++ PRINT OF FLUX DENSITY IN IRON OR GIVEN REGION 
RRKRKRKEKRKKREKREKRER ERE MAPIR=1 - ONLY IRON 

* * * * * * * * * MAPIR=G — FLUX DENSITY FROM IMIN TO IMAX, JMIN TO JMAX 
IMPLICIT REAL*12 (A-H,O-Z) 
REAL*12 R(IRZ),2Z(IRZ) ,U(IRZ) ,BB(IRZ) ,XZ(36) 
INTEGER S,MAT(IRZ) 

DO 1 I=1,1RZ 
1 BB(I)=-1. 
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IJK=1 
JMI=JMIN 
JMA=JMAX 
IMI=IMIN 
IMA=IMAX 
IF(MAPIR.EQ.@)GOTO 2 
MI=2 
IMA=J1 
IMI=2 
IMA=I1 

c THE COMPUTATION OF FLUX DENSITY 
2 BMAX=9. 

BMIN=1E50 
IF(IMI.LT.2)IMI=2 
IF(IMA.GT.1I1)IMA=I1 
IF(JMI.LT.2)JMI=2 
IF(JMA.GT.J1)JMASJ1 

c HR KKK KK KERRIER EREKRERRRERER 

DO 3 J=JMI,JMA 
DO 3 I=IMI, IMA 
IA=(J-1)*I1+1 

IMIV=MAT (IA) 
IF(((IMIV.EQ.@) .OR. (IMIV.EQ.3)) AND. (MAPIR.GT.@) )GOTO 3 

c IA,1B,IC,ID - INDICES OF QUADRILATERAL'S VERTICES IN R-Z MESH 
IB=IA-1 
IC=IB-Il 
ID=IC+1 
S=1 
GO.0 

4 GO TO (5,6,7,8,9),S 
c TRIANGLES Tl, T2, T3 AND T4 

5 IK1=ID 
IK2=IA 
IK3=IC 
S=2 
GOTO 10 

6 IKI=IB 
IK2=IC 
IK3=IA 
S=3 
GOTO 18 

7 IK1=IC 
IK2=ID 
IK3=1B 
s=4 
GOTO 10 

8 IKI=IA 
IK2=1B 
IK3=ID 
Ss=5 

c 
19 RI=R(IK1) 
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C2=Z1-23 
AR=B1*C2-B2*Cl 
XY=AR/RST 
C1=C1+XY 
C2=C2+XY 
C3=Z2-Z1+KY 
BR=-(B1*U1+B2*U2+B3*U3) /AR 
BZ=(CL*U1+C2*U2+C3*U3) /AR 
BC=SORT ( BR**2+BZ**2) 
G=G+0.25*BC 
GoTo 4 

0 IF((ABS(G)—BMAX) .LT.@.)GOTO 11 
BMAX=ABS (G) 
IBMAX=(J-2)*I1+I 

11 IF((BMIN-ABS(G)) .LT.@.)GOTO 12 
BMIN=ABS (G) 
IBMIN=(J-2)*I1+I 

12 IF(MAPIR.EQ.9)GOTO 13 
BB( (J-2)*I1+I)=G 
GoTo 3 

13 BB(IJK)=<G 
IJK=IJK+1 

3 CONTINUE 

Cc HKRK KKK KK KEK KKK KKK EE IK ERK RE KER ERE ERE REE 

IF(MAPIR.EQ.9)WRITE(6, 100) IMI, IMA, JMI,JMA 
J=IBMAX/I1+2 
I=IBMIN/T1+2 
IBMAX=IBMAX—(J-2)*I1 
IBMIN=IBMIN-(I-2)*I1 

WRITE(6, 101) BMAX, J, IBMAX, BMIN, I, IBMIN 
101 FORMAT(//10X,'BMAX=',1PE11.4,' TESLA FOR J=',13,' AND I=', 

* 13/10X,'BMIN=',E11.4,' TESLA FOR J=',13,' AND I=',13/) 
IF(MAPIR.EQ.@)GOTO 16 

c 
c 3D PLOT OF IRON FLUX DENSITY IN .1 TESLA STEPS (1<BMAX<3.6 T) OR IN 30 
LEVELS 

XY=8.1 
NZ=BMAX/XY+1 
IF((NZ.LE.36) .AND.(NZ.GT.10))GoTO 14 
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NZ=36 
XY=BMAX/NZ 

14 po 15 I=1,Nz 
15 XZ(I)=xy*(I-1) 

CALL AMAP3D(I1,J1,IRZ,NZ,XZ,BB) 
RETURN 

PRINT OF FLUX DENSITY IN GIVEN REGION 
16 I=IMA-IMI+1 

J=IMA~JMI+1 
108 FoRMAT(////10X,'FLUX DENSITY DISTRIBUTION FROM I=',14,' TO I=", 

* 14/32X, AND FROM J=',14,' TO J=',14) 
IK=I*J 
CALL APRINT(BB,1I,J,-1, 1K) 

RETURN 
END 

SUBROUTINE AICOG(NIT, IE, 1S1,12,1S,EPS, 
* P,P1,P2,P3,P4,B,D,D1,D2,D3,D4,X,Q,R,S,Y) 

SUBROUTINE FOR THE SOLUTION OF THE F.E.M. SYSTEM OF LINEAR EQUATIONS 
BY ICCG METHOD (ALSO PRECONDITIONED CONJUG. GRAD. METHOD) 

REAL*12 X(IS),B(IS),P(IS),Pl(IS),P2(IS),P3(IS),P4(Is), 
* — D(Is) ,D1(IS) ,D2(IS) ,D3(IS) ,D4(IS) ,Q(IS) ,R(IS),S(IS),¥(IS1), 
* EPS, TOL, XMAX, DXMAX, SPROD, AA, BB 

APPROXIMATE CHOLESKI DECOMPOSITION 
CALL ADECOM(IS,12,P,P1,P2,P3,P4,D,D1,D2,D3,D4) 

INITIAL CONDITIONS: X=@ - SOLUTION 
R=B - RESIDUALS 
S=Y=APPR.INVERSE*R - AUX. VECTORS 
Q=MATRIX*Y 

Do 1 I=1,1S 
X(I)=8. 
R(I)=B(I) 
CONTINUE 
Y¥(IS1)=¥. 
CALL ASOLVE(I2,1S,D,D1,D2,D3,D4,R,Y) 
NCYCLE=-1 
CALL AMULTI(Q,P,P1,P2,P3,P4,Y,12,1S,IS1) 
SPROD=%. 
DO 2 I=1,1S 
s(I)=¥(I) 
SPROD=SPROD+R(I)*S(I) 

ALGORITHM OF THE ICOG METHOD ACCORDING TO J.A.MEIJERINK&H.A.VAN DER VORST. 
MATHEMATICS OF COMPUTATION 31(JAN.1977) , 148-162 

*** FOR I-TH STEP: AA=(R,S)/(¥,Q) 
X=X+AA*Y 
R=R-AA*Q 
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NEW S: S=APPROX.INVERSE*R 
BB=(R,S NEW)/(R,S OLD) 
Y=S+BB*Y 

MAXIMUM NIT STEPS ALLOWED, ACCURACY REQUIRED DXMAX<TOL=EPS*XMAX 
(FOR EPS=19**(-N) ABOUT N-2 DIGITS VALID) 

3 NCYCLE=NCYCLE+1 
a ACYCLE(I2, IS, ISL, DXMAX, XMAX, SPROD, AA, BB, 

Q,P,PL, P2,P3,P4,Y,X,R,S,D,D1,D2,D3,D4) 
ee 
TOL=EPS*XMAX 
IF(TOL.GT.DXMAX)GOTO 5 
GOTO 3 

CONVERGENCE NOT OBTAINED IN NIT ITERATIONS (IF THE ACCURACY IS ONLY 19 
TIMES WORSE THAN REQUIRED BY EPS, RESULTS USED FOR FURTHER COMPUTATION, 
OTHERWISE THE COMPUTATION STOPS!) 

4 IE=1 
TOL=19 .*ABS (EPS*XMAX) 
IF (TOL.GT.DXMAX) IE=2 
WRITE (6, 104)NIT, EPS, TOL, DXMAX, XMAX, IE 

164 FoRMAT(///10X,'NIT=',14,' STEPS OF ICOG, EPS=',1PE13.3/ 
*10X,'TOL=',E14.5,', DXMAX=',E14.5,', XMAX=',E14.5,', IE=',12//) 
GOTO 6 

CONVERGENCE OBTAINED WITH REQUIRED ACCURACY 
5 WRITE(6,103)EPS,NCYCLE,NIT 

193 FORMAT(/10x,'*** ICCOG REACHED THE ACCURACY',1PE9.1, 
*' IN STEP ',14,' FROM',14,' ALLOWED') 

AFTER RETURN: SOLUTION IN B 
ORIGINAL RIGHT-HAND SIDES IN Q 

6 DO 7 I=1,1s 
Q(I)=B(I) 

7 B(I)=x(I) 

RETURN 
END 

SUBROUTINE ADECOM(IS,12,P,P1,P2,P3,P4,D,D1,D2,D3,D4) 

APPROXIMATE DECOMPOSITION OF THE FINITE ELEMENT MATRIX 
_REAL*I2 P(IS),P1(IS),P2(IS),P3(IS),P4(IS) ,D(IS),D1(IS) ,D2(IS), 

D3(IS) ,D4(Is) ,SUM 

P,Pl,-.. — THE COEFFICIENTS OF THE F.E.M. MATRIX 
D,D1, ~ THE COEFFICIENTS OF THE APPROX.DECOMPOSED UPPER TRIANG. MATRIX 

  

FIRST I2 LINES (12 - THE WIDTH OF THE BAND) 
D(1)=1D@/sQRT(P(1) ) 
D1(1)=P1(1)*D(1) 
D2(1)=P2(1)*D(1) 
D3(1)=P3(1)*D(1) 
D4(1)=P4(1)*D(1) 
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DO 1 1=2,12 
D(I)=1D0/SQRT(ABS(P(I)-D1(I-1)**2)) 
D1(I)=P1(I)*D(I) 
D4(I)=P4(I)*D(I) 
D3(I)=(P3(I)-Dl(I-1)*D4(I-1) )*D(I) 
D2(I)=(P2(I)-D3(I-1)*D1 (1-1) )*D(Z) 
CONTINUE 
LINE I2+1 
D(I2+1)=1D0/SORT (ABS (P(I2+1)-D1 (12) **2-D3(1)**2-D2(2)**2) ) 
D1 (12+1)=(P1(12+1)-D3(1)*D4(1)-D3(2)*D2(2) )*D(I2+1) 
D4(I2+1)=P4(12+1)*D(12+1) 

D3 (12+1)=(P3(12+1)-D1(12)*D4(12) )*D(12+1) 
D2(I2+1)=(P2(12+1)-D3(1I2)*D1 (12) )*D(I2+1) 

THE REST LINES —- 12+2 TO IS 
J=12+2 
DO 2 I=J,IS 
IK=I-12 

SUM=D1 ( I-1) **2+D2 (IK+1 )**2+D3 (IK) **2+D4 (IK-1) **2 
D(I)=1D0/SQRT(ABS(P(I)-SUM) ) 
D1(I)=(P1(I)-D3(IK)*D4(IK)-D3 (IK+1)*D2(IK+1) )*D(I) 
D2(I)=(P2(I)-D3(I-1)*D1(I-1) )*D(I) 
D3(I)=(P3(I)-D1(I-1)*D4(I-1) )*D(I) 
D4(I)=P4(I)*D(I) 

2 CONTINUE 

RETURN 
END 

SUBROUTINE ACYCLE(I2,1S,1S1,DXMAX, XMAX, 
* SPROD,A,B,Q,P,P1,P2,P3,P4,¥,X,R,S,D,D1,D2,D3,D4) 

PERFORMS ONE STEP OF ICCG METHOD 
REAL*12 Q(IS),P1(IS),P2(IS),P3(IS),P4(IS),X(IS),R(IS),¥(IS1), 

*  P(IS),S(IS) ,D(IS),D1(IS) ,D2(IS) ,D3(IS) ,D4(IS),A,B,SPROD, 
* — -DXMAX, XMAX, AUX 

MAKE VECTOR Q 
CALL AMULTI(Q,P,P1,P2,P3,P4,Y¥,12,1S,IS1) 
MAKE A 
AUX=3. 
DO 1 I=1,1S 

1 AUX=AUX+Q(I)*¥(I) 
WRITE (13,*) SPROD,AUX 
A=SPROD/AUX 

FIND MAXIMUM CORRECTION TO X, NEW R AND X 
DXMAX=%. 
XMAX=O. 
DO 2 I=i,1S 
AUX=A*Y(I) 
X(I)=X(I)+AUX 
AUX=ABS (AUX) 
IF (AUX.GT.DXMAX) DXMAX=AUX 

A85



qa 
a
a
n
a
a
a
a
 

a 
a 

a
a
a
 

a
a
a
 

Ul
 
w
 

AUX=ABS (X(I) ) 
IF (AUX.GT.XMAX)XMAX=AUX 
R(I)=R(I)-A*Q(I) 
CONTINUE 

MAKE NEW S 
CALL ASOLVE(I2,IS,D,D1,D2,D3,D4,R,S) 
AUX=0. 
DO 3 I=1,1S 
AUX=AUX+R(I)*S(I) 

MAKE B 
B=AUX/SPROD 
DO 4 I=1,1S 
¥(I)=S(I)+B*Y(I) 
SPROD=AUX 

RETURN 
END 

SUBROUTINE AMULTI(B,P,P1,P2,P3,P4,D,12,1S,IS1) 

PERFORMS MULTIPLICATION OF VECTOR D 
BY THE F.E.M. MATRIX WITH COEFFICIENTS STORED IN P,Pl ... P4 
HHRKREEKREEEK TOR, B=MATRIX*D 

REAL*12 B(IS),D(IS1),P(IS),P1(IS),P2(IS),P3(IS) ,P4(IS),SUM 

B(1)=P(1)*D(1)+P1(1)*D(2)+P3(1)*D(12+1)+P4(1)*D(12+2) 
DO 5 I=2,1S 
SUM=P1(I-1)*D(I-1) 
IL=I-12-1 
IK=I+12 
IF(IL)3,2,1 
SUM=SUM+P4 (IL) *D( IL) 
SUM=SUM+P2 (IL+2)*D( IL+2)+P3 (IL+1)*D(IL+1) 
IF(IK.GT.IS)GOTO 4 

SUM=SUM+P2 (I) *D(IK-1)+P3(I) *D( IK)+P4(1)*D(IK+1) 
B(I)=P(L)*D(I)+SUM+P1(I)*D(I+1) 
CONTINUE 

RETURN 
END 

SUBROUTINE ASOLVE(I2,IS,D,D1,D2,D3,D4,P,V) 

APPROXIMATE SOLUTION FOR ICOG 
V=(L*LTRANS)**-1*P 

REAL*12 D(IS),D1(IS) ,D2(IS) ,D3(IS) ,D4(IS),P(IS) ,V(IS),SUM 

FURWARD SUBSTITUTION (3333 I III RRR RAIA RI III RI 

LINES 1 TO 12+1 
V(1)=P(1)*D(1) 
Do 1 1=2,12 
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A Mae ae) (rt) a) 
IK=12+: 
V(IK)=(P(IK)=-D1 (12) *v(12)-D3(1)*v(1)-D2(2)*v(2))*D( IK) 

J=12+2 
Do 2 I5J,IS 
IK=I-12 
SUM=D2 (IK+1 )*V(IK+1 )+D4 (IK-1)*V(IK-1)+D3 (IK) *v(IK) 

2 V(I)=(P(I)-D1 (I-1)*v(I-1)-sum)*D(I) 

BACKWARD SUBSTITUTION #4331 A I IIA IRI HII RR RRR KI IRR IR IR I 

LINES IS TO IS-I2-1 
V(IS)=V(Is)*D(Is) 
DO 3 N=2,12 
I=IS+1-N 

3 V(I)=(V(I)-D1(I)*V(I+1) )*D(I) 
I=IS-12 
V(I)= HAV (Z)-D1 (1) *v(T+1)-03 (1) *V(1s)-D2(1) *V(Is-L) )*D(Z) 
J=IS-12-1 
DO 4 Nel,J 
I=J+1-N 
IK=I+I2 

SUM=D2 (I) *V(IK-1)+D3(I)*V(IK)+D4(I)*V(IK+1) 
4 V(I)=(V(I)-D1 (I) *v(1+1)=-suM) *D(T) 

RETURN 
END 
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