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.  SUMMARY
!

Thélmain aim of this theaig has been to develop a reliable
method for fhe solution of the fhree-dimnnsiqnal Navier-Stokes
aquafions for internal viscous flows, In the sense that the methods
developed have always yielded solutions to the problems so far
attempted, then they are successful, At p:eaént, these results do
not always compare well with experiment, The author is optimistio
that the difficulties can be overcome by following the line of
research indicated at tﬂe end of dhaptér 6.'

The preaént quélifiad success is due to two innovations, The
first is a new method of deriving difference representations of"
- ordinary and partial differential operators, and forms the bulk of
| this thesis, The second is the construction of two metrix theorems,-
and their subsequent use to derive and'gnalyse stable difference _f
forms for the pressure and continuity terms of the Navier-Stokes
equations, These theoremﬂ_hppear to point-thp way_to novel and . .
! better! diffareno? forms for fhase pressure ‘and continuity temms,

Arising frOm tﬁe mein part of the work, the ihesia éoqsidara the
classification of certain difference operators into hyperbolic, /
elliptic or parabolic type, It is postulated that a strong connection
exists betwsen the stability of a difference representation to a
differential equation, and the preservation of the hyperbolio, ol14p- o
tic or parabolic proﬁertiesiof tﬁa différéntial oqqatipn,,in_the '

difference oduatioﬂ. ‘ :

L H -
15 (s . . .
vl iy IO FS o



"1,
2,

3

b

CONTENTS
1 . 9

A Discussion of the Problem

The Finité Difference Representations of Ordinary

. Differential Equations

The Partial Differential Equation and the Unified

- Difference Representations

The Wavier-Stokes Equations, their Difference B

Representationi: and the Stability of these Representations

S

11D

IV

into Hyperbolic, Elliptic, or Parabolic Type

bl |

The Method of Solution of the Difference Representations .

'Numerical Results - ) \

3 .

‘Derivation of the UDR for Partial Differential Operators
™

) ‘ - ) -
A Discussion of the Stability of some Taylor Series ¥ X,
Representations '

The Classification of Certein Difference Equations

The Possibilities of Deriving Exact Difference Schemes
for Hyperbolic and Elliptioc Operators

5 .

> A

Oertﬂinl"lijeqipg‘___Detailu of the Solution Procedure

L%
.
&




CHAPTER 1
- A DISCUSSION OF THE PROBLEM

141 | . Introduotionl

The main concern of this thesis is to provide a convenient and
reliable numerical method for the solution of the three dimensional
Navier-ﬂtokea equations for visaoua flows in curvilinear ducts; The
‘ original purpose was to Berivs auoh a method for compressible flows, |
but shortage of time allowed only the basic development to be completed

for incompressible flows,

| There is presented a quick, economical and reliable method for the -I
solution of the three dimensional equations in ourvilinear ducts psing
' laminar viscosity models, The method is a finite difference prodsdure .
operating on the primitive variable (pressure, velocity field) form of
-i:he Navier-Stokes equations, The method of aolution in' no way comp-
romises its exteﬁaion to compressible fiows, a.a does the 'artifiqial
compresaibility method' of .Chorin [51] or'to the use of the qua.ai.- )
laminar turbulent modelu, (1e, -the kinematio viscosity expressed as some
heuristic funotion of the veloocity field anﬁ space), Its extension to .
time dependent flows is envisaged, and the possibility of uning it to 3

test turbulent modala, eg, [2] is being oommeraa.

1.2 Background of the Problen
The completa set of equations governing flni.d flows are extremely |

intra.ctabla, aea for anmple [3] y .na it 15 fortunato that in many

i

situat:lom of prmtioal inportame, aubatantial a.pproximations can be

L . % fep ;
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”ﬁaﬂe without the introduction of an intolerable error, Perhaps the

most common such gpproximation is that of two dimensionality, This
aaaumptioﬁ is widely used in boundary layer caloulations, where the

crucial aigument is that tﬁa major éhangea in the flow occur normally

and parallel to the flow, The conaequenx approximaﬁions reduce the
equations to a set of parabolic type, and it becomes possible to apply
'marching' procedures tq the solution of the equations, see for | _
example [lp.], (5] or [6]_.. Other situations in which two dimensionality *":.
may be assumed include flows in.aeep, or wide, cﬁnnnela where again -
1ittle change occurs in:ons of the spatial dimensions (7], [8)).

Twé dimensionality can be invoked in an exact sense when a plane of
Qymmetry exists in a three dimensional flow, eg, flow in a straight
oircular pipe [9], '

If the two dimensional flows are considered to be incompressible oo
end inviscid (a reasonable assumption in high Reynolds number flows o
‘where viscous effects are confined to the regions near the boundaries)
then streamline curvature methods are often used, eg. [10], On the
other hand, if the noment;m terms do not dominate the flow, then the
two most widely tried methods are finite difference methods applied
to the primitive vari;ble form of the equations, eg, [11], or fin;to‘
differenéo methods applied to the stream function, vortioity form of
' the equations, Stream function vorticity methods have the advantage
that the pressure field does not occur explicitly in the equations, with
oonaéquent reduction in the number of dependent variables to solve |
for, The price paia for this advantage is that tha order of the egua-
tions ia raised. On the other hanﬂ, if numerioal lolution of the




primitive variable form of the'eéuations is attempted, then great
difficulties can arise in trying to obtain the pressure field,
Generally speakinéh'to date workers have preferred to use the utrum1
functiﬁn vorticity forﬁ of the two dimensional Navier-Stokes

equations,

g L
Situations that have been successfully modelled by two dimensional

finite difference/primary variable techniques have generally been
those in which viscous terms have dominated the flow, eg, slow
conveotion problems [121, and creeping flow problems [13],
Similarly, stream functioq/vortex function methods have been most
successful when applied to two dimensional flows in which viaéoua
terms have dominated the flow [14]) [15)(16)., The epparent limita-
tions of these methods to viscosity dominated.flowa is probably more
due to inadequate finite 3£ Parence approximations than to the

intrinsic unsuitability of these methods to high Rbyndlau number - £1lows,

Flows treated in the literature include slow convection, liquid flows,
and combinations of these [17], [18], [19], ‘

The application of finite element methods to fluid flow problems
ia'currently being energetically researched, hbut ihera exiata at
present little numerical information about thaaa methoda to provide
a comparative basis jith other methods, ¢« Ihl T
.

13 Disaussion of A ailable Mhthodu ‘
' The availahlo posaibilitiea briofly\introduoad abovo ares [“ '
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¢ )
Finite Element methods crae (1) o ’
Stream/vortex funotion methods .= .(41) -
: Btreamliiu Curvature methods , f(itl.)
. ‘ - Finite Differences méthoda - (4v)
Each of these will now be discussed,
1.4 + Finite Element -Methods
The finite element method traditionally operates by minimising a ..
certain function (the functional), end which funotion when minimised,
oompletoly charactoriaea the physical situation under study, A first
step in this procedure ia to express the problem in some variational
form, and for some systems, this is eanily done, For instance, systems
which are characterised by Laplaces equation are systems in which the
potential energy is minimised subject to certain conditions (the ‘\;'

boundary oon@itiona). In general, this step is perhaps the most dif-
ficult to make, Indeed, many systems do not possess a Variational |
" principle, and amongst tﬁesa are the Nhyier-ﬂtokaa.equationa [25],
However, if the Naviar-stpl;ea equations ax;o put in conaerntiqn form,
and a suiéablo orthogonalisation technique is applied, finite element
equations can be aeduoea without reference to any variational

principle [26],

Two and three ﬁiﬁensi:onal'potential flow caloulations bave been
oarfiod out by Argyris et al [27), Doctors [28] and Baker [29], and
:Baker'aiao ;;i..v;sl a computational théory for the calculation of two
dimemional oonpreasi.blo flows [30]), and three dimensional boundary

lnyer flows [31 ], gll theae uaing ﬂnito olemnti. Bohootnr [32]

13
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derives variational formulations for transport problems, and gi"fea
amongst other results, some results on tﬂo dimensional boundary

layer ca.l?ulatiori&s. Norris and de Vries [33] are currently preparing
a bool;c on the application of finite element techniques to fluid
dynamics, ' This selection of references gives an indication of the -
amount of work being applied to the problem of the application of
finite elements to fluid dynamics, However, in 1970 at the start of
this thesis, the finite element approach seemed a long shot from the
point of view of obtaining a numerical method within the three &yua.u,'
and .tha approach wasg thus discounted, r o S

1.5 Stream/Vortex Function Methods

Streem function/vortex function methods have been very successful B
in a wide number of applications for two dimensional flows, and |
naturally workers have anght to carry this success into a three |
dinensional setting, The vector potential method of Aziz and Hellums .
" [34]) can be viewed as a generalisation of stream/vortex function |
methods, since it collapses into these methods when applied to two
dimensional problems, They tran"sfom the complete Navier-Stokes
equations from primary variables and pressure into a vorticity and
a vector-potantial;r .and then apply a numerical method to_ the reaplt- .
ing equai.:ions. Unfortunately, unless the primitive 'raria:bls boundary _ N _ t
conditions are very simple, and the geometry Euclidean, then the '
boundary conditions for the veofor-potential '_anuna an extremely

4

. In two dinenaional ﬂon, thero 13 a wrtioity .nd a 8¢ ar
potent:lal FRRme, o . Wy Aty s




couplicated form - Hiraseki and Hellums [35] discuss the problem in
some detail, For present purposes, because the basic method is in a
very early stage 't:at development, and because there is a great deal of
umerfqin;y about the correct treatment of Houndary conditions [34),
veotor potential methods were considered to bo impractical,

1,6 + Streamline Curvature Methods

Two dimensional inviscid streamline curvature approach has long
been favoured by worksrs engaged in compressor and turbine design,
It was first proposed, for the purpose of compressor/turbine design,
by Wu and Wolfenstien [!36] in 1950, Compressibility presents no
difficulties, and the compressible formulation has been extended to
three dimensional flows by Stusrt [57), At the beginning of this
investigation the present author derived the viscous form of the
afreamli.ne curvature equations and found them to be exceedingly oom=
plex, especially in the three dimensional form, Apart from the
" possibility of numerical difficulties in treating these viscous °
equations, there is, in a viscous flow, always the possibility of
recirculation, see Fig, 1,6.1, | o e

Pigure 1,6,1




l ;
The streamline curvature method operates by effectively piold.ng'a
streamlins at the, inlet plane, and tracing it through the flow,
Clearly, there iélm possibility of doing this for a olosed streamline,
11ks O 4in Fig, 1,6,4, Thus, the streamline ourvature method in its
present form is incapsble of obtaining results within the contour C,
moreover there is no facility in the method for transmitting infc-:ma.-
tion from within, and across O to the main flow, Thus, boundary
information from the boundary adjacent to C oannot'trnlmmit to the main'
flow, Consequently, instability due to poor boundary ﬂa.;ta could result,
It may be possible to ::aaolve these difficulties, but it is certainly B
possible to say that streamline ourvature will not readily adapt to

the circumstance outlined above, For this reason, an extension of

streamline curvature to three dimensional viscous flows was dis-

counted, Further references are given at [21) and [22]), e

Y Finite Difference Methods L s

The finite difference techniqua has, in gemral, two main dis- RLE
"advantages. It is only wel]. suited to orthogonal co-ordinate systems :

in which the boundariea of the problem are constant co-ordinate lines,

p Ay
T A

There are two reasons for this, firstly that in co-ordinate systems

=

where the angle between co-ordinate lines differs much from /2

SEEDC L

large truncation errors can arise, and aecoﬁdly if boundaries are not
co-ordinate lines, then some form of interpolation has to be re_aort'ed " |
to in order- to insert boundary Ioonditions s and again large errors and '
:I.mtnbility om easily ensue [38], [39], Th.tl d:l.uﬁnnt.ga can always

bo rmoved sinoe if an nnalytio orthogonal oo-ordinato nysten oo.nnot ‘
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CHAPTER _ 2

i
THE FINITE DIFFERENCE REPRESENTATIONS OF

ORDINARY DIFFERENTIAL EQUATIONS

2.1

In this section, a brief discussion of the conventional finite
difference representations is given, together with a criticism of their
main failing, The three main methods of deriving finite difference

representations aere:

(1) The replacement of each term of the differential operator

directly by a Taylor series approximation [44],

(41) The integration of the differential equation over a
finite difference block and the subsequent replacement

of each term by a Taylor series approximation [45],

(444) Formulation of the problem in variational form and the
subsequent replacement of each term of the variational

formulation by a Taylor series approximation, [46],

These methods, and related methods share a common defect, namely
that the individual terms of the analytical operator are approximated
in isolation from the remaining terms of the operator, Conseguently,
the interactions between the terms of operator are ignored,

It will be seen that this is a fundamental cause for the existence of
instability in both ordinary end partial differential equations, In
Appendix II it is shown that for method (1), conditions for stability

require step lengths of the order T ’

%
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where T:Hax (Ax Ay, Az) .é- ox ( u'f. i .(2n1n1)

where P 1is the k:l.nemtio viscoaity and u, v, ware the velocity

oompoqents. For our appliocation, ie, of air flowing subsonically in

ducts, 'T: (o s 10-7. Clearly, such a resiriction is prohibitive,

Similar conditions cen be found to hold for the other representations,

L]

2,2 " Unified Finite Difference Representations

In this section it i3 shom how to derive representations which
include term/term interactions of the differential operator, Such

representations will be denoted the 'unified difference representations'

(uDR), )

The starting point is a homogenous, second order, ordinary, con-
stant coefficient differential equation with arbitrary boundary
oonditioha; It will be shown, how.on an arbitrary mesh (non-constant
spacing) it is possible to derive a difference equation whose solution
is identical to that of the differential equation, Clearly, in this
simple situation term/term interactions are included, and no |
poasibility of instabilit&',’can exist, The application to ordinary

@ifferential equations is of little praotical interest, but it will be "

shown (Section 3,2 ommrd) that in their extension to seoohd order

' partial operators the representations hava man,y &eairable propertiea,

£

in particular that they preserve the alliptioity, or hy'per-
bolicity of the ‘__origin_a:'L partia.l dirfegontinl opag;to;-:r

&

Consider

e Ve ¥ . :5(:) L (z2a)

-~

For the fom of parabolic equn.tion oomidered, :lt in shom 1n appandix
LIV that the UDR 1.3 mt uniqualy detomimd. by 5 et e

0 “""“L k-
'l

* '.-'1,'

l'.'

10, .
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where r,, and 1'2 are arbitrary constants, Assume thﬁt approprint:c
b,o's, are specified, The solution is

| ! mx n1(x)

¥(x) = .Aoé- * Ao + fh‘x) . (2.2,2)
where A aﬁd A, are arbitrary constants and rhﬁx) is a particular
integral, m, and m, satisfy the auriliary equation of (2.2,4), It
is well known that the stability of a difference equation is generally
decided by its homogenous solution (48], Aoaord“iﬁgly,_ there is now
constructed an hombgenoﬁs difference aquatioql whose Qolution is the

homogenous solution of (2,2,1) ie,

V() = a,6° +A,':‘(x) (2.2.3)

Suppose that it is wished to solve the difference equation on the non-
uniform net in Fig, 2,2,1 '

Figure é.Z;i | | | |
Oi i ) e | ° \ ‘ S 7 ' l . .! 1
IENE N NN W R
Defina s
:i - 31_1 = hi . “_ (2.2.L)
1 £ 41 £k AR \
L

Thus, whensver x = :;, 1ﬁ:|.£ k, then 5,

P

t
g o e S 5
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'Thus, the difference form of (2.'2.3) is given by : T
‘ | e 2t TR 4
W) - el En) sy emla B by
.|y h’ i m, h. ’ B
= - e e . (202.6)
A, ﬁ1 o Tl

Thus, we require the differenoa equation whose solution is given by
(2,2,6), Now, it is kmm, eg, Milne-Thomson [1..9], that a second

order difference operator har.l.ng as 11;; aolution space (a5 v ) is

defined by the equs.tion LA ¥ PR Y i Sl
: Vi U1-1_ __-71-1 . I | :
*1. U:Ll .vi . w " 0 . | ' .(2.2;7)
Vit Ui Vay
Thus, setting '
N i l-h \
Ui = ﬂ e 0O B
8=1 _ i
-:l. ; 'n h ~ '
Y = 7l i (2.2.8)
Bz |

A

and using (2,2,7) it is found upon simplifiocation, that

“m, b, m_ h my(h, , +h)  m(h ,+h)
o1t _ige 1)_&(;1. W P ot T

1 )
h_‘,,(n +m)h m, h m h o
S AROL AL Chhads ."f,-*° =l+1) = 0 (2.2, 9)

:I.a the roquirod difference oqutton. Thus, u' the bonnﬂary oonﬂition;

.-'__. l Aoy i 'l' ”-.-‘ .-i‘_ ; ', # Vi i
i . i S I . .
» L ek » e
-, T
... . : .
o ¥ .
.. : .’- A - .
, e i die ™ 7 ;
s ! . . e
L o T ey T 1 S
b 1 LR, Y oo R
E PR v
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of (2,2,9) are appropriately set, then (2.2,9) end (2:2,1) with
:3(:) = 0, have iﬁentioal solutions, OA a uniform grid of ntep h,

{2 2.9) collapaea to L = e
h m, h (m +mn)h :
"m - ¥ (’e 61 ) 4 A LS (2.2410) |
If the exponontiala in (2,2,10) are expanded to the firat three torms, | )
thnn thera is obtained tho result: -}:k;- -
o “2¥ et ) e (- ) . |
AL 2 7, fy it Y,
. 2 ;T . o
| f ' v !
- (m +n 2) (¥, - v, ) | o ' (2_.2.11)_ g
Alternatively, multiplying (2,2,10) through by oxp [-(u +m, )h), o £ 0 e
tollowa the result. . ['_ - '7r13'mf.-x ‘ y
e 2¥ et e (=) . f
R = prY»
n® :
Hultiply:l.ng (2 2.10) thxoush by exp [ (——!l)h] :10163 _ = B r

hz 2h I‘:-r:\-‘I';'L"'& a \ ¥ oo

"le o ?’ | R . , T
; -l-{\';“.'?'(i;:‘;,}; 2 fops ot DO T

T
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The terms on the right of these 'oq'uations represent the truncati'.on
errors erising from the truncation of the a.xponentia.h. It has thus
been damonstratodl bhow, to within a truncation error, the normal Taylor
series forwerd, bde and olentu;l. difference formilas may be . |
obtained, | |

The non-uniform grid formulation is given because a non-uniform

grid is often used in Boundary layer caloulations,

2,3 11_1,';_95!@_5_!.3(12 £.0, f,, £, Non-Constant | ‘
(i)' £, = constant, £, = constant, f, =, _ constant (non-zero)
In this case, the aolution of (2,2,1) is giwn by ‘

* (x) = AO B ; & 11 U : kS f2 | - ; (203|1) :

L 1

where f}/:!'2 is oonatant.

If we suppose that (2,3.1), in its differenno form is the noluti.un
of tho modified (2,2.9)

*i + 013 '1_1) .. f .‘_ | _ (203c2)

= Cy4p R

B Oy ¥y,
'-mu o“, 012, Oy are the coefficients of ¥ _1, Yy *m in
(2.2.9), then we £ind upon aubsti.tuting (2.3.1) into (2.3.2) th.t

fe g

x,f

(2.3.3)

A Fo o T o
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"‘ v . 3 f
B 2 P
: m +8)h = h & B (2.3.4)

.1+a'? 17 w4?® -Io‘_"--. LA

-

: | )
it f2 = 0, then a similar caloulation yields
_B° Cm = £, & . , | _(2.3.5)
h(1=0 ' ) .

e \

(4)  £,, £, and £, known functions of (¥, x)

Consider the representation given at (2,3,2), where B, is given at
- (2,3,3) and Oy, Cpyy Cyy given ab (2 2.9). The ooefficients in °
(2,3.2) are functions of m, and n, nhero n, ond n1 n’ci'ry .

'1(:‘_. 5 .-_. '-“;"‘f-':'..i"‘"ﬁ'. .: .. atseat?

-r1 sVl nt, :
m, = . —
F-—---——-—--2 ' (20306)
I:II’ = -f‘| -"'.t12 =& fa. l
1 .
2

.\-

from the auriliary equation of the differential equation (2,2.1).
It f1 and fz are funotions of (f, x) then in the difference rapreuxrita- ‘
tion acting at a pivotal point i, we evaluate m_ and m, at the pivotal
point i and use these values in the representations given at (2.3.2), *
This proocedure means that the difference representation does not have

an homogenous aolution which is identionl to that of the orisinal
differential equation, but 1n a va.niahingly amll region about any: .

k_point x = ih, for arbitrary h, _tha aolutiona of the homogenous aifferanco

----- b —— ki

.eguation behave exa.otly a.s the solutions ‘of 'l;he correspondi.ng di.ffarential

R «.« —, T ———

s ¥ . T,
A ‘f, P R S ; o - . '




. equation, This is opposed to the situation with Taylor series when
solutions of the ho:noganoua difference and differential equations only
coi.ncida tor Vaniahingly small h, Th:la property of the UDR's atrongly
suggesta that thaj are inherently more stable than the correaponding

Taylor schemes, ' ¢ -ihe L e

2,4 Boundary Conditions for 2nd Order Equations
In this section the possibility of 1mproving the treatment of

mixed enél point conditions is discuaaad. For a linear differential

aquation (ordinary and partial), the boundary conditions ere essen- -

;16.‘I.2I

tially statements about linear combinations of functions of the solution

space of the differential equation at a point in the domain of the
ao:-l.ution. However, when derivative conditions are specified at end
points, or boundary points, it is common practice to treat these
conditions as differential equations valid'in a region about the end
point, or boundary point, in the sense that the difference representa- |
tions used to represent them are identical to those used for a

similar differ;nfial equation valid over an a:}.'bitrary ‘region.

Intuitively, we .can see that such an approach can only be reasonable

when the solution and its first derivatives do not change repidly in .

the region of the bcundary.’ Quite olaariy, the prﬁtioe is at odds
with the realities of the situation and unless the mesh size can be
sufficliently reduoaa.to 1imif the truncation erro:;, large errors can
ensue, A procedure will now be suggeated based on the principles of
previous aeotions, and to test the .effectiveneaa of the above sugges=-
tion, [ mn-comtant ooefrioian‘k oquation with mixed onﬂ point |

._ oonditions 15 aolvea and oomparuons o.re ginn wi.th the stmdm:d

"".‘ [ a‘ ,.,J' \‘_ : _; 1 A Ig_';:;.. N ._'._._“_ ; ..r“_““ "_ v : jiiae =
prooeduro. RO e ’ R '

P L T P
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'Consider equation (2,2,1) where f1, fz and f3 are all constant,
The solution is given by e o
’ A e, o
' - omoXx m x 5 o o ;
Vi) = A0 +a0" 4 n o o (2441)
' : L
Suppose that the given oonﬂition? are
g—} +e¥ = a, x =0 '
E.*. + & f ‘ - .g.l’ 'Ix = ﬂ (20‘}02)

dc 1
and that (2.4.2) will uniquely specify ¥(x) of (2.4.1). Let the
disoretisation of the interval [0, 1] be O, Xy xz", ses X 4, X and
of ¥(x) on the interval of ¥, Vo ¥op aas ¥ ne1? f . The question L
posed is 'Can linear combinations of *o’ §1 , and 'n-‘!' .*n be found which |
are equivalent to (2,4,2)7?' ' '

Apply the first of (2..1;.2) to (2.4.1) a.ndll apply (2.1...1_) at
x = 0, x = x, respectively to obtain the thré_e equations :

Ao'I‘o""i“H""o'*o" , %o T T
L ) _
. - woom
.l°+‘:l1+r2 Y, ,.. 0 | : ;
N MRLE L ‘
Ao ° * ‘1 ’ r2 1. (2011'03)

If A, and A, are elininatod between tho thua aquationn of (2.1..3)

there 1s obto.inod tha rolationahip o

) o

« Taam



DR i 5 3 ind ) AN =1 . el S PO . B oLk o Ry e W g T o gl . .
Ve ! O o ¥ N Teme mEAR : -~
. . » » . = . - .

. -
. . '
P . T :
. ‘. ' = . "

. . » .

[+]

*D + I.h-o '1 = b : | ¢ . s . (2'&-01&)

where } andb nlreknownfumtionaofn,n1,c°, 8 Xy and

t}/r " In a sinilar fashion ‘we may derive

'I'n + .11‘ ¥

+

In the situation of (2,2,1) having f,, £, f, as constants and

(2,4,2) as boundary condttions, then (2,4,4) and (2,4,5) together

with the UDR will ensure that an identical solution is obteined, In |
the situation of f,, fz,: f5 being functions of (¥, x) then an identical
procedure to fhe oomtaﬁt case is followed, with the non-constant

ot M» b and by of
(2.1...4) and (2,4.5) are funotions of (¥, x), The author finds it a

satisfying result that if (2,2 .1) is non-linaar, and (2.4,2) are the

v.alues being substituted at the end, Hence < A

specified conditions, then the derived equivalent conditions (2.ked)
and (2.&-.'5) are non-linear, (not oonventent‘,‘ bnt_agtiufying'.)

- .

2,5 A Numerical Exgmple
The equation considered is S " g
2 . ¥ ' - : -
_ﬂ__% - g (.12—. - 3) %:i = 0 : . (205.1)
ax“ . ' : & n

on the interval [0, 1), If the condi tions t(o) = 0, ¥(1) = 1 a0

s l-l"_'

speoifiod then the analyticsl solution is

...‘. el B o = [
.}_-.‘;_.'-..!;'.' ty T ma ‘;

) e LA o AT aRty
Al h“'. T s o = ; :
% s b 4 (1 ) (. b o fl,.- s wtw owmon g o
RTINS o Mg R A B -
t(x) = - ST hl 9 5, 0)
j i ‘ : (1 - :) a ".'__-,'I'T"I“.'.' I:i"-':‘._- wt .:"n;_'.'_ .‘.v: J"'? T "4 ;% .
: ":n'.. -: . . . . ‘ : L
by ',..“— o0 ) ‘_' R : o '
‘_“. . ‘_ ) :
r_<‘._'. ’.”» -‘-'. -
¥ Ty bid .
" ¢ o Sl A e
E ? L e ' :
. - Ft R TR

1 = B | —(2-4-5_)
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The equation (2,5,1) has been ohoaon, since on [0, 1], the ratio '
. of the coefficienta of the 1st and 2nd deriva.tive terms changes aign, -
and this condition, for large value of €, can be expected to cause |
trouble for conventional difrereme representations (see Appendix II). |
It is of interest to note that as e-» 00, then #(x).-yﬂ (x = %), the
unit step function at x = %,

Results of two nmerioal_oxperiments are gifen._ In the first,
the DR will be oompared agn.imt three standard difference representa- ;
tions for the simple form of the boundary conditions ¥(o) = 0, ‘
*(1_)'= 1. The second experiment compares standard Taylor uariea ‘
representations of d\narivativa end conditionghnith representations

derived according to the ideas of seotion 2,4,

For the experiment, the equation (2,5,1) is used with mixed end

oonditiom oontrived to yield the analytio lolntion ; '

¥ (I) ~ L'.) i‘ & ! (1 o x)a x _:;.‘._ , 4 A ..(20503)
Appropriate end oondition;! ‘are | 5! ; I
ST s
(%:t) T L | ST

This partiocular example is perhaps not the best for the purpose, sinoe
for mderate ‘values of c, the gradientu of i(x) in the ‘region of the
end po:l.nts do not axhibit rapid ohanaes - a. oiromtanoe 1n wh:toh 11:

W,
b S

LA Wl T g R == ¥ 5 . v .
- T e g am ot ; ‘ -, A i
.{‘ = Y “% . £ & -".‘ "" “ o ‘)_ L LS 2
e (5 o . o S 1 i
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can be expected that Taylor representations become more inaccurate,
Both of these experiments will be performed with several values ’

A
of €,

The First Exmriment.
Write h as the step length and T

-

- 20,

w(.x) 5 s(%-x)‘ ' : (_2.5.5) -

The four difference schemes considered are -

The Unified Difference Representation (UDR)

ey e (s

-~

The Central Difference Representation (CDR) e i 5 r Kl y, §

(2=w(x) b) ¥, , =4V + (2 + W) b) V. ..H_-_- o . . (257) o

¥

" Phe Forwerd Difference Representation (FDR) .

(=) W) ¥y, AE=WD W) h ey, = O (258

The Backward Difference Representation (BDR)

m«:o" (2 + w(x) h). Le(ada)p) vy, = 0 - (2.5.9?-. I

. With h = 0,1, (2,5,1) wes solved for ;igi;é‘cger valuss of € for

| 0<¢ L 175@ uning each of the four uohelﬁes above, with the simple
bounﬂary oondiﬁ.om ¥(0) = 0, ¥(1) = 1. !l'ho ruultn sre presonted in
!'13. 2.1 - 2.3 for c :,._5"\1m 750,1‘0:' tho case c = 0 oa.ch of the
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schemes collapse into the same i’epreaentation, and gives a straight

1line solution,
i

For € =5, it can be seen that there is not a great deal of
discrepancy between the schemes, the error in each scheme being about
the same over the whole interval [0, 1), For e =750, it can be seen
that the UDR iz'very accur;\te over the whole interval [0, 1], The
CDR exhibi.ta a Gibbs type oscillation (although not
shown, this feature inorea.eeu dramatically as & increases) on both
'legs' of the step function, The BIR is good on (0,0,5) and very bad
‘on (0,5,1), The FIR is very bad on (0,0,5) and very good on (0,5,1)s
Fo‘r € =J00, the results are midway between the two extreme cases, = ™

.
o

These results are to be expected from ths quantative analysis of

Appendix II,

The Second Experiment

(1) Equivalent Boundary Conditions for (2,5.3) '

Write equaition (24541). a8

“:—x-%-n(x)%x! s 0 R (2,5,10)

) I__If w8 solfp (2,5.,10) in a small region about x = 0 say 04£x Lh, a.nd
assume that w(x) -~ w(h/z)_'in this region, we get | a

AR {1;_,".'(5/2)’ | (2511)

-
¥l

for 0£ x 4h, Suppose that this small region contains x,, the first

Tk
)
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point in the discretisation of [o 1 then (2.5.11) ginn |
&, & ,‘(VE)I - 1 . 0 .
Aytay =¥ = 0 S | (2.5.12)

If the first of (2,5.4) is applied with (2,5,11), then the equation

A ;(n/g) + (&) + 11) -1 : ‘ o (2.5.13)

is obtained, Eliminating A, and A, betwoen (2.5, 11), (2.5 12) and (2.5 13)

e

the e lationship

s (.’1'(“/2)
0

.

W2 = 1) o, nwa . & '“’”

(2.5.14)

is obtained, 'A similar caloulation in a small region nbou‘l: xm= 1 yields |
the relationship

% (2 =w=20" )+w# s g™ o (2,5,15) |
'where w=wi-=- h/z) . _
Relationships (2,5.,1)) and. (2.5.15) are considered to bo ‘the ﬁ:ﬂ.h
‘d:l.fforome equivalants of oconditions (2.5.!..) %l % - {, 2
- (44) Taylor Series Boundary Conditions for (2,5.,3) - "
Forward and ba.okward diﬂorenoeu for at/a; .t x= 0,1 are uaod. to
GE e, (2.5.16)
..-.,. ‘I".- J,";._ ; .- \' ...; <.« { J \ .
r g )




23,

BBl . g - (2.5,16)

"~

L % ad. - N . | (2.5,17)
The numerical experiment was performed for s = (1, 2, 3, 5, 10,
20, 50, 100), In Fig, 2,4, the results for e = 100 are depicted,
A ltn}ga soale has been used, Clearly, the new end point conditions give
much better answers than the Taylor conditions, The forward/backward
forms for the end conditions were.consistently poor for all values of ™
e, whilst the central difference forms for these oonﬂit.ions mr& very
" good for 1 £ ¢ £10, but for :anraui.ug values of € the central

differenoe forms grow progressively worsa.

Although in later ohapteru, the applications of the UIB‘; 1'1111 be
extended and shown to be very effective, no more will be said on these
ideas for boundary condition formulations, mainly because for the
applications that are contemplated in this thesis the boundary oondi-
tions are very simple, Whilst nothing conolusive has been demonstrated,
the boundar:r omﬂition exunples o:ltod suggaat that tho idn.s might be

f "3“'\
L

worth inwuti.gating ftn'thor. L * R
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2,6 Local Truncation Error of UDR
The local truncation error is of order hlz, as will now be shown
for a constant mesh,
The differential operator of (2,2,1) may be written
T = DPef,Des, - 0 (2.649)

The constant mesh UDR operator is

\

2%,

/931 = Ly (B- (6% 4o e’ ) + (mm ' ‘u)l; (2.6.2)
' pams . 2,6,2 o
(1 + .(moj_ - mﬁ)h‘ ] °|nmh - ::uh). - ,

where E is the forward shift operator (Eg_= gm)
Using the relationship E = ehD in (2,6,2) yields

o _ (."‘oa.h 11 ) o~ID ("O:L . )h)
+°n01+n1i}h_:bih -ﬂ;h-

£

Note the relationships, for the auxiliary egquation of (2,6.1) ‘

3.0l
At

Moy * ™y T iy .
| (26
Hos TR | : T

/
Expmd tha exponential tems of (2. o3) to obtain

S E 2
A i
-_._Tj_- 1‘ (1+bn"'h% + oee)
",--(2'*!01'“’ 2 2' 20 ) s
. ' . oy '..:.-4
v ! .-}I‘\_l }.'{ r'::"‘ c\
Pt o ‘ i

'.(206.3)



(1-hD+h292 +coo)(1+ﬂ°1«+ll h+:0’+lll hz ooo))/

2%
: 2‘ 2

—;_— ' h
(141 +mg 11 ’“"01 2y

+es=1-1-myh-nh
2 2

h” 2 h
R R (2.6.5)

W F

If wo neglect terms of higher order than h"’, and collect term§ then

(2,6,5) becomes ' | '

(n2 + 5, D+2,) (1 - £, W2) + 0 (nY
b gy (1= £y W2) 4 O ()

- D +£1in+fa+0(h2) C (2,6.6)

3T -

T '?
9 T = Ti.+ 0 (h ) (2.6.7)
and the res_u]:t il pfovpd. ~ The result is .also true for the variable mesh,’
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CHAPTER 3

{ .
THE PARTIAL DIFFERENTIAL EQUATION AND
THE UNIFIED DIFFERENCE REPRESENTATIONS

LI Ty

341 .~ The Problem o . ' o7

Consider the partial differential equation with constant coeffi-

cients
aﬁ[ +b§1+o'_0_2_1+&'21+ﬂ = g (3.1.1)
¥x? d¥x 'byz _ dy R S

with ¥ (bounﬂary) specifiad. The poaaibiiity of mixed darivatives
is ignored, since they do not fall naturally into what follows, and

they do not normally arise in the situations that are to be con- = /°

sidered, Furthermore, if they do arise, they can always be trans-
formed away by a suitable co-ordinate transformation, The solution
of a linear ordinary differential eguation is a linear wmbination of
"a finite number of independent _functions,_\(‘eg. "o + B°m1x for ‘a
second order constant coeffioient ordinary differential equation),
and it is precisely this property whioh allows the explicit construc-
tion of a difference operator with an identical solution, However, |
the solution of (3.1,1) is generally a linsar combination of an
Anfinite number of independent funotions, and it is thus by no ‘means

clear that the technique of Chapter 2 (e, the direct formation of the

auxiliary equation of the required differenc&.-gquation from the known

solution) can be applied to (3.1 1.1) to obtn.in a UDR whose solution is.
identioal to that of (3,441), 'However, in the particular cese of
(3. .1) boing olliptio, 11: s sbomn u: menaix Iv th.at a polymminl

uv-«»u g w? g gt s
. -' . .- S L,

e . o £ g 0
GAYAER S e v it e Tl




difference representation (one with a finite number of terms) does not

exist, : ,
A

A .certain approach, necessary for elliptic equations, is develioped
and the remifications of the approach applied to elliptic, parabolic
and hyperbolic equa:tions is studied,

write (3,1.1) as

-I-

TLV+2 ¥ = g | | (341.2)

It_i;s proposed to derive the representatioﬁs for !l'x and '.ry independently

of each other ‘and then to assume that these are additive to obtain the
. /
representation for T_ + T,. This representation will be termed the UDR

of (3.1.1)s

In a sense this is a retrogrea?iw approach, since the equation is
split into distinet components which are to bn tr;a.ted independently,
| and this approach, in a more extreme form has been criticised eerlier,
However, it is one step removed from previous practice and as will be
seen in later Sections of this Chapter it is sufficiently refined to

guarantee a large measure of stability in the representations,

- ) - - . I,
Having seid this, the question arises, 'How should the term £¥ - .

of (3.1.1) be split between T, and I 7' To attempt an answer of

this question, suppose that given ¥ (bounda.ry) 0% solution of .
(3.141) can be written as

27,

¥(x,5) = & r, (x) G, (y) + Particular Integral T (34143) |

l. - -

T and T’ are tho : .ma y difforentinl operatorn roapeotivaly
tn (3. .1). L A

L PR o v T il ' iy ’

oty )



where ri(x) Gi(y) is a separable solution of (.3.'1.1). Putting -

¥, = F, G, 4n (3.1,1) and perforning the usual algebra yields

[t |
ad2, bav, - ,. ; S .
! Lw Lt v (£=2) ¥, = 0. o
2 2 . TR ? iy ele
dx". oodx , G o
W A T € R,
i + 7 4 «+ 31 'i = 0 "
a-y° dy h ]
; J A

these give

2 2
(a4, , b3 * + (t 7\1) i) +(°.b by, ady 7‘1*1) = 0
D x% 'Ux R y2 dy '

' (3.1.5)

Thus we see the solution ¥(x, y) is a linear combination of components
F, G,, each of which is essociated by (3.,4.5) with a partiocular split-
ting of ¥ between T, and Ty. Thus, in general it is not possible to
attach any particular significance to a partioular splitting of £y

_between T, and Ty consequently the teri 'ﬁ' is truted independautly

of T ¥and T 1‘. Aouordingly, (3. .1) is uritten as

Tx*,"" '.I!’,i + £¥ - g L :
where ‘ : o ' e

T, = Y Y v - (341.6)
ana . " ) ‘ ‘ o ’I, | ‘ i ) . ‘ .. X

2,0 2 CO , . ,

.Ty = o'b/by +.d'6/by ‘ :

To derive the UDR of (3,1.6) T, end fy are traatdd as ordinary -
differential opera.tors mﬂ the prOo.odure of Ghaptar 2 “is applied, 2 4

p .,n':._.' — r—"ﬂ' T
W i

\Thus, the hmogenous solutions o:t
Ve e W . i,

g b ST ';'*-f

4 e




T ¥V = O0° . ; 'I (3-_107)-

are ‘given by & + Do T8 i 0o D0, respectively, Thus the

ropreaantatiom of (3.1,7) are found to be

Yiag = "13 (Are) ¥ yge = 0

L] 1 7 N ) i . - o . P

where : S E ’ _
=bh/a - e T : '
& ® ° TR = oxex, o (30.8)

and

where

= O-Wo; k =

62 yd - 3.1-1. , ,

e DR of (3.1,6) is now defined iu- i I
M ("’ma"*ia (1+0) 49 50 o
+ 12 “UH (1 + 02) + 113_1 2)
+ 2,8 ‘1’1; - sh. | v “ ' | (3‘?‘9)

where 11, A, and 7\3 are chosen moording to ocertain ariteriu. Dotails
are given in Appendix I ’ mﬂ they nro toand to bo gi.ven by o

.;..! | % z 1 a\}" g
1 . ﬁ' Pl E q . o -
1 ;h"h-;' g
1‘ g TS I sF i Pha “'s:’ e e e gl
2 " E{i=e) o AR (341410)
I 2 ' : '; i 3 ‘ ‘ S . o : I_’ el ".' ; = . "’_ X s ,. ! - p & .-
; 1] 2 " . 5 watl
LA, = A9 Rk g
XL a3 et .
PR - g ' e b .
! W . s S S b i
~ i . | 5 . F L , I -
¥ ? N Vi »7 .',' 3 “
S L) M by ot oy
5, y e e': : _.-:( . .
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A uniform mesh has been assumed, For notational simplicity, the

(1, J§) suffices ha:.u been omitted from a, b, o, a, £ and g,"

At this juncture, an interesting observation may be made about
(3.1,9), with (5\1) defined at (3.1.10), Suppose that + b/a becomes

'

large end positive, thbn

Lim [l (*1‘_13"*13 (1 +°1)+t’. -13 1] - ""( 1&13 13)
;"00 : , ..

(341011)
q%_;ob i s P : L

ie, a8 b/a —» + 00, forward Aifference schemes result, and as b/a —>

- 00, backward difference schemes result, Thus, 4n liniting situations,
the UDR's as defined, contain the mixed forward/ backward difference - .
representations first proposed by Lelevier [50], in 1953, and others

.ilm.aa I I ! ” h ' : i I

. The representation given at (3.1.9) forms the basis for our
approximations of the velooity terms in the Navier-Stokes momentum

equation!.
3,2 Properties of the Unified Difference Representations
Property 1 The transformation from the second order partial s
di.fforentinl oporatar to its WR luvu 1nva.rinnt the : h’yperboli.o ;
3 YRR ._' PR RIS xSRI ROt - AU O PN 5 L1 -T-:T‘ ;
_ O e o et e O v e o e
- L"-SE:? ok _'m}h" =T r "i.~l1\" :-: P 4 e " __'m ..‘_”'7’ .._ ; " -grﬂ-' *‘
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or elliptic nature of the operator, in that it satisfies the
necessary oonditipn (A3.2,7) for hyperbolicity or the sufficient
condition for ellipticity, (A3,2.8), as the original operator is
hyperbolic or elliptio respectivaly.-r

It is plausible to assume that the invariance of operator -
‘type under the transformation to finite difference form is a
naceas;ry condition for the stability of the difference represent&tton. '
With this assumption, Pr.operty 11is gwry useful property, As a

counter example, consider the hyperbolic equation . = |

22y ¥y 3y
d x% > y? dy

- 0 | L (3a24)

this can be represented in Taylor series form as

| (3.2,2)

" The mtation is self-explanatory. In order to classify the diffarenoa
equation (3,2,2), (see Appendiz III), it is re-arranged in the form

2 2 : : '
a 61' *ij"" o 5.1 *_i.'l + G(*i.'!) a 0. L (3.2.3)
where 61' and & j are first order central difference operators a and o

are coefficients, and G is a certain function of firat__"";o'ragr

differences, Hence (3,2,2) is written as

T Paxabolio equations are not considered since as shown in
. b Appenﬂi.x III their WR' 5 arg‘not umquaiy ﬂeﬁmﬂ

:.1:« (l
. -ni:.:‘ -

= .D_ ]

.




. ‘ 32,

Yy = 2 Yy iJ..i - (1 -2 1,/2)_.1+1 -2 *1,1__" Yia-q R
x A T T ' |
[ | EE ‘ e

=g - ¥ ”.*i"”) + (*i-'i\d - ",13-1?]“ .= 0 (3.2.4)

Thus defining o o
: i i '
61 Ui .:‘:gs = h. ; Vo . ' ; (3.215)

eta, than'(j.Z.&) may be written as

2 2 . ' N ,
6y *13 ( - 1) 6 13 = 3[(*:1_34.1 1-13_)’ (*1-1.1 - *13"1)] . oo
- (3.2.6) - ]

which is the required form, Thun, uaing the olaaaifioatinna giVan in

Appendix IIT, (3. 2.6) is hyperbolic if e, | Cooo
ahﬂ‘ollipﬁio if : B '

(}2-1-:- - 1) > 0 (3-208) )

Thus, with the assumption of the previous page, (3.2,7) 18 a nacesaary |
condition for the stability of the hyperbolic equation.

Property 2 If the differential operator has Dirichlet boundary
conditions and is nagaxive-definitejf then all of the eigenvalues of
the DR lie in the left hand half complex plane, Thus, for any

negative-definite differential operator,‘we are assured unconditional
woss . . / S

e fLOinoqua.ti.on (31.1), w:l.tha)O o>o. S T

.J-I‘ ':" lH’l\qn“ o, .
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Before discussing the second property of the UDR, it is

necessary to expand on the nature of the operator in (3,1.1).

Assume that the set of all eigenfunctions ("’i) of the
opergtor of (3.1,1) that are zero on the boundary of a region

(x, y) = [0, 1] x [0, 1] together with a scalar product defined
by '

, Yot
<ﬂ; III> = 6‘.01. ﬁ‘ﬁ'ﬁxdy forﬂ: Ve -jlé (3.2.89.)

is a Hilbert space, 74— say,

. Then if, in (3.1,1), a 30, c >0 and £ L 0 (a, b, ¢, @, £
all constants) then the operator of (3.1.1) over %"L is the sum of

a negative definite operator snd a skew-adjoint operator,

Proof

In (3.1.1) let

L +L. = L = (‘a:?-?-aj+c;’£-+f)+(b-'?-+d;:-)—)
y + Ty E B YRR : oy
where
(3.2.8b)
2 :)2
L1 = a3 + =y + f
Ox QY
L = b—;)— + d-?—'



It L‘l is negative definite then it is also self=-adjoint and so

L, + L, is the sum of self-adjoint and skew-adjoint operators if

1 2
Z(L'l * LZ) #’ lI"> & <ﬁ’ (L‘I = Lz) l}‘>. (302080)

L‘I over f'{’ is well-known to be negative definite and hence self-.

adjoint, thus we only need to prove that

<L2 2, 1'7 - = @l I'2 ‘l’> | (3.2,8a)
ve have
1
<1,8, V7 = ! g v (32, d%%) ax dy

n
Oc—*

(1]
SHENE

1P 1 .
= %{(b.w);-gbpg—za} ay «

-

1{(“;6)‘-
0
1 9%
3 bﬂﬁ—idy} dx
5 = :)f 1p(bi’-“i+a?-i)axay

(3.2,8e)

S
Nb‘
Y



and thus L2 is skew=-adjoint,

Hence L = L, + L, is the sum of positive definite and skew=

1 2
adjoint operators, This leads to the main result that

Theorem

Every eigenvalue of L lies in the 1eft'ha.nd complex plane,

Proof
Let M be an eigenvalus of L and let ¥ be a corresponding

eigenfunction, then

(L, +L) ¥ = 2 ¥ (3.2.8¢)

therefore

L, + L) 4 ¥ = LAy, v> (3.2.8g)
therefore <I‘1 ¥, 1]'> +<L2 ¥, ¥ = 7\(1]!, dr> (3.2.8h.)

Since L, is negative definits, then LI, ¥, V> = = o® for some

real w, and since Lz

real x thus, (/3,2,8h) can be vritten as

is skew=adjoint then <L2 ¥, ¢> = Jjx for some

- e gx = A <Y, w? | (3,2.81)
therefore Real (M) = Z-l,';'““%, < 0 ‘ ' - (3.2.8))

the result is therefore proven,

A ey

e A,
T e

e e .
T e e gt i 8

24

LT

e e

e

[}
=

AN Ay et 2

- -
At ALY i h b e
R R LR e e

3 FT P e - L
44
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i Property 2
i &
li B The matrix of the UDR of (3.1,1) for Dirichlet boundary
i * conditions; and for a >0, ¢ >0, £< 0 has all of its eigenvalues
' in the left hand complex plane, as they are for L, This property
Vo holds for all step lengths and all values of b and d, Such a
1 R
1 property is highly desirable from a numerical viewpoint, since it
¢ ;
‘ virtually assures us that the numerical problem will be well _
Lo conditioned, e
i "-'II
P
' % Proof of Property 1
* Consgider the differential equation ‘g
¥
§ 5
:f: .t
1‘ +* e i
. _! I‘I ,-’F
i b
i .
I E
§ ik
] & %
: ' e
g
: d
- Lo
5 -k
2
i
’: 20
; J 8208
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i SEIE
% i
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1
A
1
I
1
1)
)
;
i
3 13
i
i
]
)

© III, write (3.2,11) in the form of (A3.2;5), =~ . -

. To this end, notice that

330

——! R ,2.10) 4_
d x2 'o::_ Y 32 3,"3 (Gizag)

BN

where a # 0, ¢ ,(6.
The UDR representation of (3.2,10) is

Ty (g =Ygy (Fp e 1) e ¥y g7,

+ 8, (*134-1"' Vyg (e ) + ¥y, 8,)
s . II i:
+gV¥yy = £ : (342411)
vhere . " S N AT gy |

exp (=b (h:l +h )/a) =1 ")"

(h ’ ) By b) J
i i+1 exp (-bhi/n) T3 CRN

L

g s e, o, P R Bk

- . . J b O i i -
Ty (Byy Bypgy 8, B) = - ‘, o }l
g ; ¥ !
; 4
b

; . ik ; - :
Bt e e e T T, o R S s K1 e W B DR S 2 S BB A e S

(hyyq ° hi r) .

S 10
8, = T, (k » kg0 3 o) - ‘ ) - "_*-

v
-
g o E
mt'-ts_r.u
o sy, ey

L I JU- L Ve~ LN Vs T
T -
- > ““"l‘“' - *

81 = ( 3 12 , .o) ‘ . Iﬂi:

1

For notational aimplioity, the (4, J) suffices on a, b, o, 4,

)
1?
Ty 8y and 8, 91‘0 left out, Datailﬂ of the derivations a,rg giwn in - Fhgg

Appendix I, To classify (3. 2.11) according to the nathod of Appendix R

v W e o
b R e R e 6

-

'*i-r‘l.‘l u(‘l+r)+r '_1.-13

N R P
i ___g_ ” % LSl o -

“(3,213)




--and by- j J=*J i’ J-%O-r"“’v"\ e

W
Ky .-_. -

-
! ?

i
Thua, equation (3,2,11) may be written g ' ‘

LN “u”“,ns,m-m

2 . iy
o) TR T -
("’ma 1-1.1? =5 ( _ 2) “134»1 ¥i3-1)

2 AETEE T e
'_f : (3e2444)

PRI TE A TR

..

"fg*

J

5,.and 6.‘) are central diffe;'once operatornj- (3 2 15) 1s now in the

required form, . e T s

Following the prooedure of A3*2, e 3

it SRS S e
N (1 + rz)

. '. 2 L
%nd -r‘ ‘__. Iﬁ.{_‘_ ' /

% = 31 (1 i 32) : o &

2 | '(3 2,16)

Sa then to prove the resul'l: it ia auffioien’c to prove tha.t whan o
-\"-H___A _ﬂwﬁ‘w—rﬁ- ...,...,.,. -»-...-.»..-.-,".'":’

‘A . '
a8 > Othenao > ' (3.2417)

LN A ¢ | ' i
aoc <0thena.c-<.0 - - . wom
s L I = b o' e

It 1s aufficient e ok 120 >< 0 then & % o, since if . -rr’
this is true then beonuso 6'is.similar to- a,»it is-also true that |¥F

%
A»
- - s N, e —— 2 ~ . et Y
»=f “w—.' ......!. B E —, e e l. . TR e o e "'"", 3
T s el T PORI LTS -"*"‘1 L3 ™ SASY T R

aa s e -..«m‘--""'\___f*r‘-—- ..----—---f..-J"“,._J e o
T The differenca oparn.tora 6 and 6 3! are nmr defined by 5 * =¥, 1}“*1 _&

I T .'-:L'-"' J':-.‘Ds Lr ,_ ,‘"fﬁ"“" ,,.,5,1 g !- e
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K

(1) Prove that B(c) has a zero at o = 0

(11) ‘Prove that B(c) is monotonic in o and therefore that
= 0 is the only zero of B(c)

(i41) Note from (ii) that o/B(c) must be a:l.ngle aignoa, and

‘-.
“ . o ._h 5 et

"I:han prova that tha aign :Ln mgativa

-’ A
-':i.;~__

(17) Hama (3 2.19) will follow

o 74 0 implies o 2 0 and hence (3.2, 17) follows, By (3.2, 12)
7 0, for all q. and b, hence by. (5 2 16), it is possibla  Em oy
to work in ‘I:erms of r.' rather 'I'.ha.n 4@, Consider then ’
N e Wl e h e S
=y = bbb = =1)] . (3.2.18)
_ D ki bhi/a. _ 3
. .": - 1
. / P ‘ 'I ! : ] \ '
where a £ O, . |
"It is 'to be proved that
o '
Sign(d) = sign(a) : | (3.2.19)
For simplicity writo--b/a._z o,“'wh_ore the subscripts are imp.:l.iad. Then
1# B(o) is defined a's‘__tﬁo denoninator Br;('J.IZ'JB) then ¥ - '
) N """_';r'l"-._,l. " . ; - ..' 4 .._' ; _‘ ‘.“.';“ I-..:-' .- I.,.“II i . - . * X ‘
m '_ L Wt o= : 5 \ - .3.2- - :
or ; ?.J' e
e B e C L (3e2,21)
B(g) : =3 _ ~ ) ) (3 )
The proof of (3,2,19) will have the structure - - .



36,
. ‘
+ch +°h1+1 .
Proof fLimB(c) = Iimlh,,, =h, .+ (&= .2,
o> 070{ iad 2k e "'for.hi Y ) (3 22.)
1 h T A T :
i1 N AN v,
by L'Hopitals rule, Hanoo | v
Lim B(o) = 0 R P S (3.2,24)
60 - LR S =
Thus (1) is proved,
|
(44) B(c) is monotonio in ¢ - .
Proof  The result is immediate if h1 =h, = h5 S

Now B(c) is monotonio in o 4f B(c) defined by

% .

~ ~ B(o) = b, : l

is monotonic in ¢, It is round oonvenient to oonaidor tha mnotonio
" nature of B(c), Frem (3.2.25) \ 2
+o(h, + h, ,) »
o 1 =1 -

+ch ]
e "-1

B(o) =

+ 4 W, | (3.2;_.25)'._' ;

 ° / . (342,26)

o+ok ’ b |
B(o) -+Tk1-"—1—3k> k>0 - (5,2.2‘?)'.

e -1 y
B(o) nay be oconsidered as the quotiant of two poaitiva functions, sinoe
the nnnorator _.nd donminator axe poaitin anﬂ mga.ti‘n togother. _

e TR

fa
5



Use is now made of the following result:

If I, and L, pre positive functions, and SL, and 8L, are positive

{norements, then e "
L, + 8L L oL, _ L - SH '
Bis - M e | (3.2,28)
LZ & 5I|2 .Ilz . 51':2 ) 112 ; o

l

This is eesily verified, It follows from (3,2,28) and (3,2,27) that

B(o + 50)- .:._-.%'(c), " $o >0 . ‘ o L (3.2,29)

15 - TR -
k ok N , .

ke®F8a > 0% -4

T : s A

k, e o . - : Ya TP
(3.2.30) reduces to the requirement that - . it .

“wgle 1 ;. . b . ’-_' , E ;
L@ Hal(t-0c™), oxo0: . ¢
X, v E - s T ey
m : i ‘. ) I .
= (s Ml 2 L (e, o0 (3.2,31)
i ST e S

L]

It suffices to' prove the first of (3.2,31),
Certainly, equality holds when k = k‘l'
A8 E-—) 00, then the inequality oortai:nly holds, gince k> "I -

Thus, :h‘;' +the RHS of the inoqual:lty is nnnotonio in k, then the
.tm:;uality il true for nll k > ki’ nnd hence ai.noo o0 s

37,



. { |
arbitrary, for all o 0, ‘ CT
To prove monqi:onicity of
AK) = -(1 -o"*) ' Mo e __ o (3.2.32)

ul - -15 %k (o '-ok) - (1 -‘e-ck),. : l _ \

1 + ck 3
) 1':15[ ok "} s g 53.2.33)_

therefore, since 1% {1 foroc >0, then
. . e T U

lel !

dk | SR
for all k k1'. Similarly, the second 01,_(3.2.31) oan be proven,

Hence B(o) is monotonic in o,

| (i41) It follows rrﬁn (1), (11) and (:l:li.) that q/B(u) nust b. single -

- -

signed, It will now ba proved that K

B(c) SO e e _fs.z.ss)

It suffiots to demonstrate the truth of (3,2,35) for one value of o,

| i
Thus, consider

- b eco TS Gasm

¢ =00 3( J ' C-'v-oo

using def:lnl.tion of B(c) given. .t (3.2.22)

B U TR
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g ‘ 39.

-

L .. . .
. . ' P
1 A Ll b
R - . . g 2 =

‘Hence (3.2,35) is true, and from (3.,2,21) there follows

sign (A) = Sign (a) ‘(5 2,38)

and (3,2,19) has been proved, Thuu, 'the conditions of (3. 2.13) are -

satisfied and therefore Property 1 is utabliahed. :

Proof of Elro rt _ ‘
. If the differential equation has the general form

a'g__t+b‘o_1+o1>_j_+a’b_1-ri'- 0

. 2.39)
b 22 T Y Yy (3 .39)_

where a $ 0, c > 0, and £ > O with ¥ speciﬁod on the boundary, then

........

.4t 18 peqative-definite, To prove Property 2, it is suffiotent to . -

or ¢ I‘EduCuu
. prove that the matrix of the WDR is utriotly/ﬂiagonally dominant and

that avery diagonal elalnont has the Bams sign. Tho T.I)R of (3 2,39) i.l,
from (3, 2.11) | : ' |

.8, uu 1 "13 (s, + 1) + ¥y 32) -2 '1:!. o .'.','  (3.2.40)

L &)v

where, since .“»__o, o___j>*9 using (3.2.19_)_

Ad-

=3
FREELT g A

ey, M



40,

also
. =b hi/.lﬂ- e-b hi-!-‘l/a -1 ;
r2‘ = Ile -b hi/a _ (3-2|I+2)
e - 1

and thus S,, is positive,

2

S, is defined in a similar fashion, Clearly r 29

2!

The sum of the diagonal terms is, from (3.2.40), given by
sy = =(r, (Aax)es (1+8)+10). | (3.2.43)

and of the off-diagonal terms by

o o6 . : \ E _'.{f
Syp = Tyt Ty T, + 8 +8 8, - SN ¢33 EE
Now either f = 0 or £ 7 0. In the case f = 0, we have £
SD = -SOD ’ . ! (3.2.1{5.)- '.

for all matrix rows corresponding to points not adjoining a boundary, and
: 1

S5 7 S N .' (3.2.46)

for all matrix rows corresponding to points adjecent to a boundary, .

{

Tﬁus,. the matrix is diagonally dominant with all the dia,gohal elements
negative, and all off-diagonal elements positive, and with strict ‘ o
diagonal dominance in at iea.at one row, The matrix is irred;mible ‘ |
since it represents an elliptic operator, The matrix is therefore
irreducibly diagonally dominant,



40 (a)

1
If £ 0, the strict diagonal dominance of the matrix is
immediate, Thus, ,the matrix of the UDR of (3,2,39) has all of its
. | :
eigenvalues with non-zero positive real parts, Property 2 is

proven,

weoa



CHAPTER &

THE NANIER-ST6KES EQUATIONS, THEIR DIFFERENCE REPRESENT&EIONB
. THE STABILITY OF THESE REPRESENTATIONS = |

L1 Cartesian Equations

The equations considered represent the three dimensional equl;.tiom
with a laminar viscous model, Initially, the Cartesian fom .on an
orthogcnnl bo: will be wmiﬂerad. These are 3i.'un by

i

T 0 | 0 R/ox u v,
0 T 0 W ' ke g '
| s /dy A 07 T (hetet)
0 o T | /35 w .o g " ‘
DPx Dy Bds 60 . \ P
where | | o o . o '
1 =_€v2 tugs bove v C (het2)

: (notgtion is explained in the Glossary, but unless stated in the text,
standard notations have been used),

Dirichlet conditions on u, v and w are assumed, The eguations
will be discretised on a uniform mesh so that (x, y, s)=> (1A x, J 4y,
k A z), The representation of T is the UDR derived in Lpp;ndix I, In
the case of the Navier-Stokes equations, the coefficients of the first -
derivatives of the velocities are also velooities, and are therefore
unknown, Thus, the ooefﬁ.oianta in the dirrerence equations will also
be tnknown functions of ulooi.tiu. In the iterative solution procedure
to bo deaoribed in Oha.ptor 5, theae runoti.ons will bo a.uumed hnm froa "




L2,
; ' A& l g
the previous iteration, Let the representation of T be T, ;
) ' =
Thus, T is defined by
A 2 € S | ok
4 "uk = Ax(1- h_(uidk, Ax)) { *1+113 - *:L;uc (1+n (Uijk’ ""5))
+ ¥ héU Ax) | + | "141; i o
i-1dk © M4k’ Ay (1 =0 (Vg0 &))" |
{*um: - *uk (1 +n(v 131:' Ay)) + *11 AL h( 15K Ay)} '
. | wi-'eg . - . | " ‘[-'
42(1 - h wi.‘jk' bz)) ' .o , ;
[ Vi =~ Yage (14 h (Wygpo 82)) + ¥y 4 B ( Va0 “"')}
where h (a, b) = .exp (( ab/g ) (ht3) / ,
It is known, from the form of (4.1,2) and from Property 2 of Chapter 3, ::
. that the matrix corresponding to T will be strictly diagonally dominant "
forall p o p , b, by and b, (»= ple) | P
The question now arises ' How are the operators b/dx, d/dy and B/dz by
oorresponding to the pressure derivatives and continuity equation to | 4
be reprose'lnted?' Suppoae‘ t;hat central differences defined by
3 oy o .:.1:.1_:._".4.-.‘1. W ' R
are gppmpr:lato for use :Ln (h. .1). Thoir use will aubaequantly be

TR TR
O P




4. w "'i+1.15 = ¥y
1 TiJk 20x
¥ -V, |
I 15 ) S P ) -
Hy Yyge = 2hy
ﬁ'*ik+1-*k'- R B
By ¥ e = T 2Bz . (4e1.5)

then if 1,, H» B 3 are the matrioes of the difference operators then -

the rapresentation of (441.1) boociss

~ i = 't.'._‘.'. .

L 0 | 0 e H, u b,

o .- 0o & A4 h, "
; " x _ = (4.1.8)
00 I g = |n,

i & & 0 B/igic \%/  voundary

where T is defined at (4,1,3), and O indicates an empty matrix, In

what follows it will be assumed that the right hand side of (41.6) is
knowﬂ. This is not entirely true of p on the boundary since although
_the velooity field entirely determines .the_ préusum_fielﬂ (to within a
constant), pressure is not known on the boundaries until the full solution

has beeh obtained,

k2 Stability of the Representations of the
. Navier-Stokes Equations

The linearised system (4.1 .6) is stable, if the oigonvalues of the

matrix of (4.1.6) all lie 4in the right ha.nd % oanplax plam. It will
be shown in Chapter 5 that (4e1.6), with m defined at (4.1.3), is
aatiarantory troln tho point of v:l.ew or obtntning numerioal aolutions.
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Unfortmmtely,- the present author has not been able to make any ;:ate-
gorical statements. about the stability of (4,1.6) with T defined at
(%.1.3), However;l by slightly modifying the definition of 'f, it has
been possible to assert that the subseque_ntlj modified version of
(4.1.6) is unconditionally stable (given the stated asstmptions’of

linearisation, and of p (boundary) known),

Two results are required,

Theorem 4.,2,1
I‘f.-a matrix A is such that

LA

(1) aijéoalli¥d

1 ) 1

(1) &

", then A may

be written as Asy k’ where Aa is a positi.ve Bumi—defizﬁ.te symmetric

l..'l 2

matrix, and ‘&sk is some skew-symmetric matrix, \ .

Proof _
Any matrix can be written as the sum of a symmetric and a.. skew=

sy‘n‘metric'.ma.trix, therefore write

A= A+ Ay | - (Ba2a)
It follows tha‘b z -' - B "'_:L,_"" 2 :
' A .‘ -2 Lﬂy - Aak, ’ (4.202)

T

In the sense that every eigenvalua of‘ th
. B poait:!.ve vedl Pty " F oo sesall ° T: Ttrix Ihas“

;



Equations (4.2,1) and (4.2,2) gi've

1

£ o da l 'I . :
Agy z(4+ L) (4.2.3) |

Since aﬁ £0,1i43 by condition (1), then the sum of the moduli

" of the off-diagonal elements of Aa of the’ i-th row is given by

n
S = =% ‘_?}J (agy +ayy ) (4e2,4)
#J
The i-th diegonal element of ABy is a;4, and therefore by condition
(ii), the matrix 4. is'disgonally dominant, By (i) and (11),
8y é 0 for all 1,;43 and e, > 0 for all 4, Hence A is ptositive _ \.
semi~definite, ' ' T

Corollary
If A of the previous theorem is - _ .

(1) | such that a, ,éouanaonlyifai,éo:'ori,éa(ieia

Mis: = . - .. -
_—- Ak anrl A .

symmetric wrt, the displacemant of its off-diagonal elements) -

(i1)  dirreducible = - -
(iii)  such that the strict inequality of condition (ii) of the

previous theorem holds at least once,

then As v is irredudibly disgonally dominant, It will then follow that ¥

AB is positive definite.. _ e @ - . . : i

Let Al= (254)s Agy = (o 1302 Age = (3;), G (B) = the directed :
graph of a matrix B, [46], i | ;

O e



L6,

§
The proof will then have the following structure

(a) prove thdt ﬁ'iJ;GOifanﬂonly if aiJ;EOfor 143
(b) ~  hence G (Asy)‘?{(:} (A)
(o) note that since A is irreducible, then G (A) is strongly

connected, and therefore G (A, ) is also strongly connected,
* and therefore, As is irreduoible [46] gj CoﬂJ& {"M GMJ ASJ

IS ”I.M ;h‘@duc, Lb d'“j(?*‘"’& dom:l‘la.dt aned - Pc'?:t'l/e Je]au !e

Proof
(a)  From the previous theorem
-l e‘ij &= aij + a.ij ‘ ) (4.2.5)

Suppose that a, 4 = 0 for i# J, then by statement of the corollary
= 0, Thllﬂ, by (h.205)

844
-';id +By = 0, LA | (4.2.6)
~ ~ I '
ayg-y = 0 . 1Ay (4e2.7)

~ ~ N ~F
(this last comes from T T aid)

A 2
Equations (4.2,6) and (4.2,7) give ay=0 "’:id' Thus, if

: A
agy = 0, then ayy = O for iAd.

"~ ; N
 Now consider a, 5° 0 ft?r i £ J, Symmetry of ’I'a:f gives 8y = o,

Equation (4,2,5) then gives



"
. e .

46 fé)

a3~y = 0 LAy o (4.2.8)
and t |

ayy + G‘Ii;] a 0 14 | ('14._.2.9) |
Hence |

Byt oy * 0 143 | (4.2,10)

Since A is such that aij'é 0, 1 £ J (from the conditions of theorem

A
4.2,1), then (4,2,10) gives a;4 = 04f a4 = 0, Thus, we have obtained
y ;
that a4 = 0 if and only if 84 = 0 for i £ J, which is equivalent to

N
aij,é 0 if and only if aiJ;EQfor iZ3.

?he result now follows from (b) and (o) of the proof structure,

Theorem L,2,2 _ ‘.’.;.c.l'riv
If P1 is an nxn positive/definite/mntrix and P . is a kxk (k)n) \

matrix having the form (:51 g) and S is a kxk skew-symmetrioc matrix

having the fom (_gi (3)1) (note that 31 is not necessarily aquara.),
' 1

such that P + S is non-singular, then every eigenvalue of P 4+ S has a

positive real part,

Proof
x * * ) ; . ;
Suppose that x = (:_c,‘, ;_2) is a normalised eigenvector of P + S
with corresponding _aigenvalue N + Jw, Then

N+ Jw =\£*(P+S)£

. * \ = - "



: : Y A
) (1]
Thus, | ‘ . ' |
’ '
MoEoxy Y .
Jw = 5*' S X > : (10-02012)
For A7 0, we require only that x ,é 0, since P1 is poaitive/
definite, But, Af x _4‘ 0, then jw = 0 since '
e ' » . . b ; » :
_ dw = x '8x = -x, 8 4+ S, %,
N U Gzt
Thus, since ( P + 8) is non-singular, 'a.ll”_:laigaziy_all.uqs‘_laro_ _npn-ﬁaro and
therefore x, 4 0 giving . NI |
» = =¥ P xS0 o [XE
to establish the result, , _
ﬁaving established these two results, it is possible to consider . L
the atabi]iity of a modified forn of (4.1.,6) From (4,1 .3), w:l.th an
obvious notation, it is possible to write
T Yope = T3 Vo ("1 +f8) Vg v 8 Yy
+ (Siniler terus for J, k differences) . . - (4u2.15) .
T is wdiﬁ.ad :_to T, where T is defined by oir e Tl . o
- =E'1+1 Viag ~ % (fs. 1} ’,'1 2008 ¢ By 81) Mg
K*Jfa. 1 Byug WK -
bR .(a:l.milar 'Eam) a8
m-.rﬁ o : K



o ~ ' Fa
Intuitively, T is not an unreasonable redefinition of T,

~ Ld
Now split T imto the three mamtrices corresponding to x, y and z

derivatives respectively,

Thus

~ ~
T T

A e :

s T, + TJ + T (4e2,17)

Each of these is a tri-disgonai matrix, and in Fig 4,2,1 a section of

%’i is illustrated, From the definitions of f,, g and from (3.2.41) of

Property 2 in Chapter 3, it is known that condition (i) of Theorem

L2.1 is satisfied, Consideration of Fig 4,2,1 shows that condition (ii)
of Theorem L.é.1 is also aati.afieﬂ. By symmetry, these conditions are

‘ ) ~ ~
also satisfied by TJ and Tk’T Thus, by Theorem 4,2,1 and, i;_ta ‘cy_xlollary
' 4% is possible to write o | -
~ ~ ~
T = Tsy + Tsk

(1..2‘.18)

»

where Tay is positive definite, The modified matrix of (4.1.6) can

thus be written

gsy 0 o  0Of - Esk 0.5 0% a 10 0 0 H—‘l
o~ P

o T_o of o T, o o |o o o =

o o 'T ol |Jo o T, 0o |0 o o K

_O 0 0 0‘ LO- 0 0 (i L_H_1 §2 % 0—

But aince H,, H, and H; are skew-symmetric by definition (gee (4.1,5))

-\— Also since ".”\L"represents an elliptic differential operator, it is
Airreducible, ¥ satisfies cond ition (iii) of the corollary at a
boundary point, This cen be seen from figure 4,2,1, '
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'and that bounﬂary pressures are explicitly known,

b3 Generalised Orthogonal

- equations les.da 1;0 a difference repreaenta.tion which can be expreaaed

'

then the third matrix of (h.2.19) is also uken-a;m&trio, This la

"

easily seen by wri.tirig domn a few elements éf this matrix, Thus

1
(2,.2.19) has the general form
P + 8 _ - (422.20)

where P is a symmetric positive semi-definite matrix, and 8 is a skew-

e T

symetric matrix, each having the fom of P and 3 in Theorem 4,2,2, _ -".L‘

e

Thus, (P + S) has all of* its eigenvalues lying wholly :Ln the right hand :
complex plana. Thua, the modified aquations ’ _‘- e E

o . - ¢ -

H - 5\ .

 ~0: O H u b\ - . L :
-1 @ E’ 0 i) ¥ h, e "'—;-

o o % o |2t |n ey

8 & 0 13k

are unconﬂitionally stable, subject to the assumption of 1i.neariuti.on,

Co-ordinates Systems

It w:l.ll be shown how a proper treatnent‘ of the Navier-Stokes

aa the sum of positive doi‘inite anﬂ skew-symetric matriaes. , By ),
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50,

(a) Treatment of the Momentum Terms for Orthogonal
_Co-ordinate Systems,

Let g 3 be the pomponenta of the metrio ‘tensor, and (x ) be curvi-

linear coordinates and. (yt) be cartesian coordinates, Defining

’

st '5-;;'.
=& - : . (4e331)

then the incompressible Navier-Stokes momentum equations in general

orthogonal coordinates are

(sta -%%xi(fggu:x stg)) ¥ {tgn = 0
' (4.3.2)

. The summation convention is appiied to i, j, and s, In orthogonal
i3

'syatams, gY =0 forijfJ, and 80 mixed derivatives do not appear,

In this situation, the velocity terms of (l...3.2) have the general form

52

i bxz (h ) + Bi ( st El) I ‘ ' (lhBa})

where the Ai are negative functions of geometry and physical parameters,
and the Bi ara. functions of geometry and velocity components, Thus if the
operand of (4.3.3) is considered to be h;tvs , then for Dirichlet
boundary conditions on velocity, Property 2 of Chapter 3 assures us that
the mtriz'lrepresantation of the UDR of (4.3.3) is diagonally dominant,
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ey E— ( 1/'8 ‘Va; ) = E"‘ (\fg hit haf‘ v'a) r.'. 0 . _ (&.5.5) 2

ahtE
2

Ny

This is not necessarily the case if the opl'o"x_-mﬂ is chosen to be v , for

‘then (4,3,3) becomes - : ] S
b2v ' ’ l _ _ | "
8 . _ dh L
AIi. _hat bxz b . Bi -8t Ve (hJ-h) G 1
, _ . xi ‘ P
Thus, whenéver Bi bhat beoomas negative then the 'I.IDR of (!.. 3.1,) is . o
sthi : ' S 8 . v

not diagonally dominant, | o R - 

S e

(b)  Treatment of Pressure Derivatives and the
Continuity Equation

‘It is shown how to treat the pressure terms and the continuity : ”
equation to ansure that ths matrix representation corroapondin.g- to these k:
tarms is skew-aymnetria, as it is for thu Oaretenian case. The ounaerv- o '_:-}__:'

ative fom of tha continuity equation is given by | PRI A _ ¢

Tha i.dentity v1 = hi hat is employed for oonvaxﬂ.ance, as, wi.ll soon ."Ilf?::

becone alear,Fron (e3,2) ana (h3.5) aeﬁm't CogeE

L g, e

Y
s ]
';“ - o
v ]
G <
- i iy
D Y
AL . )
i ! a3
i
b 3 ] ol - Lods
5 £ . iy B
Ly e
P . . ‘ A
; | o
r 6 "
l;-o 3- It

) -.q‘.. I
Y TR L Ny ,..- - — s s Ll T

The aeoond of (443,6) is from the preaaura'

-is fmn the omtinuity equo.tion (1,, 3.5)';,_“,
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. # o
Then (4e3.2) and (4.3.5) may be written as ‘ .

TO0 0 D he s ¥ g B : _

o T o0 ,D h,.. v o -

o 1 152 h“"‘ Ll = o *(4e347)
° 3 (L R :

D By B Of \p
®

we now observe fhnt D, " 4s the aﬂ;]oint operator of 5 for
B = 1;"'.2,' 3.1 (Tha '1(' superfix :Lndioa.ten the aﬂjoint) _Comoquently

1£ - .. »I ¥ }‘ _:--. N .\
0 ._ 1 o _! : __- 0, :'. 1 _‘P'.'LI. ‘_";' -
C © 0 - 0.. D S
A = . o) (43:9)
0o 0 0 D, i
A R 3
I.‘r1 Dz D3 0
then ' - ) ‘ '-.Zf .
. * I . L
A = - A ' : . (4‘5'.9)
To see this transpose (4.3.8), and take the adjoints of the separate
elements, . It 13 therefore possible to fi.nd a difference ropreaentltion
of 4 whioh in skew-symotrio. Suppoae that th:la repruontation is
3 given by - .'_f- *” ‘ ' '
0 0: 0 H1 A e
A o 0 o0 &E | :
b = ok s ‘ (4.3.10)
0 0 0 H * y .
Y3 .
H_'- H2 35 0 | | “
/ For given s, this is : easily proven by uonaidor funotions ¥ (I ), vl et
T— ¥, (I’) 8.t *1 (0),- * (0) =0= i “and ahoving"t e
7 »' ‘,,_' i _\.6\ .
;" 1 - ! : A ¥ e s b ,_‘- A
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with the obvious corraapondeme botwoen Di. Di. und H ’ J. 8 ‘-'* :-- '
then, by definition TN -‘ 1
& P ;_ : I 5
i o= A (ha3e11) o0
(o) The Complete Representation . :
In section k.3 (a), it was shown how to write the general
orthogc;nal curvilinear momentum operator T, so that its UDR, &?, is ":
. diagonally dominant, Tl;e general form is given at (4,2,15), 'If the - .
modified UDR, T defined at (1....2."16) F i:t used then "I‘foan”be ex;lii'euod;" _
.as a sun of a positive.definite,.and s!ﬁgf_qygnetrié Im_ajl;rio_es. T
From the definitions of , and ni,* ft follows that the mtri.x of :
hthe ounplete raprosentation : .:;- | 3 o & :
: T oo &)\ [hx)fe, '
o T 0  H |[hv)[b ;-;;.'-
- = | : (1..5.12)
’ 0 0 T H} h,'i} ‘ 123 (
B oH o oo/ \p By ‘
(whara !:l. are bﬁundary oonﬂitiona)oa.n be expressed as a sum of‘positivo ‘
7 Bemi;defhﬂ.te and skew-symetric matrices, and thernfora bj Theorem iﬁ . ‘ *
‘44242, avery eigenvalus of the matrix lies in the right hand half i
T- complox plans, and the ropronantation is tharefore unconditionally | :
ato.blo, aubjeot to the”‘boundary preunres bci.ng oona.{derad ' a

e




) : She
The 'Finite Difference Forms used for the -' L B
b Pressure Derivatives and the Continuity Equation s
’ We.are oconcerred with representations for D, and ﬁtl defined Iby Lo
',J » - - ' hﬂt Q.- p . - ; . i ; v
s > dx, | | l ‘
s . - t=1,23 (li-o‘h‘i)
o B, = 3 (0w ) | L
: dx, J | ' Y _7.3
2 % .“_, . Suppose that central differsnces are used for Dt and 51-. so that if '
- .-' . y I
‘ :.1 = :I.A1,_x2 a’;‘j_Az, and Xy = l:«éu3 and if 31'. Ez and 33 are romrd shift |
s operators in ths i, J and k directions respectively then tjrpically L el .
e gy o o
hﬁ; -1 = H, . = ( 1 )
. [ . 2A1 - ,
. v W N (hakia2)
e 3—’— ) = H ‘= By B W2l By :
2 : ) 631 4 ' : 2A . - .
", + . The approximations of h2t LS LR NI B (ha“ ) and 3 (1°%,)
e bxz bx Bx : d¥x ,-,‘
;2" are similarly defined giVinG H,, HJ: Hy a.mi H} raupantivaly . .
, From figo lhlh "B. anﬂ figt boliid ""b it 15 016&1‘ tha't H'| 5 _ﬁ a.nd 80 | : }I‘ I-.




3 lnia-_ The:]i‘initg Difference Forms used for the : N i : .
| Pressure Derivatives and the Continuity Equation N
' We are concerred with representations for D and 51;. defined by .. -
. D ' o hat 9.& 3 ) ' * : ; 2 X ln
3 X . R Gt
|b~ t=1,23 (Lolied) v :
g b @ B Wt ) . B
o dx, J - ' e
Buppoaa that central differences are used for D, and’ ﬁ 80 that if :
%1=ib1,x2=3A2,uﬂ:3akAjuﬁifE,E nndEja.refomrds!ﬂ.ft‘
i operators in the i, J and k directions respectively then typically .'.
Y O R e 1 9
4 F g ¥, H1- & i'jk ( ) - . ‘
L. (h“‘ ) = B = ane® W5 E :
. e -- 1 . - J ] ‘
The approximations of hzt El- ™~ t% X (th.) and (h3 t )

bx2 bx3 x, X
o " are similarly defined giving H2, Hj, H, md }15 rospeot:lvely.

From fig. a.z.. -a a.n& f:!.g. hikid -b it is ulaa.z‘ that H = -ﬂ ma 80
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E : CHAPTER 5 |

3 con 8 ; .
THE METHOD OF SOLUIION"O]'!‘ THE DIFFERENCE EQUATIONS

- LR LAt vl a1, afAs

N,

5.1  Summary " . o
In a.ny orthogonal co-ordinate system, the matrix ropresantatian of | |
the Naviar-ﬂtokes equations has the form

~ ! ‘~
, ~s — 5
0 I 0 4 X hy ' : o
' ~ | - b = . . I (50101) ‘ o " T_.":-
o o T 4 » b, N
“, tH, .1}1_15 o/ . P “h, p o

where h , h , h_and l:u are the vectors of boundary conditions for the '
u-momentum, V-momentum, w-momentium’ and continuity equations respectively, :

E, E:L and Ei are the matrix representations of the difference operators

— = ~ . o
"%, B, end H, defined in Chapter 4, If T is the modified form of the ' . ..

momentum difference operator defined at (442.16), then it is known,
from the previous chapter that the eigenvalues of the matrix of | |
(5,1,1) all lie in the right hﬁnd half complex plans, It foiloivs, that -
given T fixed, and a auita.ble treatment of boundary pressures then

~<, -

(5.1 1) is amenabla tq/SOR (suooeaaive over-ralaxation) type or aolu- i _.' _' >

tion prooedure. Tha equatiom of (5.1 .1) are manipulated



(Ot 2 ’ il ' = Ce k

e . § o L , " T \
' v ) \ 57,

i

The_General Method g T . LR

e Consider a .ménj.ﬁé::';df the first equation of (5.1.1) at a point e

* b '|. :1
i, J, k written for an SOR solution procedure, " - = _ et

o L] n R o e
Y43 ® i.'!k + &g (T 1 b 8y Pijk) _ (5._2.1)

. T S
where ¢ 13k ‘ia a space dependent positive relaxati.on parameter, '

- . The reason for expressing Py o the (n 3 1)th :I.taro.t:lon will clarify it

: A
soon, Defins a vector uiak

4 n ~ n

. S owl U ® gt Sy T8

e f oW e

Equations (5,2,1) and (5.2.2) give

R ™

Y T Mgt S b "1k

= . »
C .- :
£ " * 3 i v o .
L ) S ey :\ . =
} Iy o
% ‘\I" §

A prooiao defin:ltion of €, ‘-1a g:lven in Appond.‘..x V.

A 4k
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i .o — o o ‘ e _

P 'j "1.11: = Vit Sage HJ PL gk / :

: 8 . From ( 5, 1,4) the raproaenta.tion of thc continuity oqua;tion is o £ ‘
o R 1, “:;::._* 1.11: * H) 13& -0 _I" ._" | | (.5 2'6)_ | j
: _ Subatitution £rom (542, 3) and (5 2.5) for “131:' 'w‘ a-!ﬂ e into E ’
| ( 5.2,6) y.i.elda A ' &0 o '
-t 'iak?‘i * 5 s..*..11: B2 * T Cuge “3) "iah S -
s P LI AT L WL L Gan)

Th:ls is an equation, in tems of pidk’ deri'faﬂ from and equivalent o . - . .

- §he continuity equation, Chorin [18) makes use of a similar device

T R N G

for time dependent problemg. ' ’
: : ' S Al ned Al ) ' L ',
‘ " It follows that Ei‘rﬂn -uiﬂk' vijk and wijk then (5.,2,7) may be ,. ‘ ‘
e a n LB B m DR
. solved exactly for Py I Vige "4 and w, , aTe then found using ' .- i

)
- g A B

{

_.
S
N

3 (5 2.3) m& (5 2,5), then the new velooity fi.ald u

v
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.
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""JI. T
: i3 ;
(u) caloula'q _g 3,5 from (5,2,2) and (5.2.4), T B P

TR (111) Calou;ate P from (5.2.7).- ' |
: (iv) _ alcula.te a, v, w from (5.2.3) and (5.2.5) The . L
continnity equation is exantly satisfied, T e g - - ~§
A ' Repeat steps (ii)j (i11) and (iv) until convergence, in some -»--55 ‘E
‘%~ pense, is obtained, ' - - ' e L ‘
. 3 : s 7 ‘.’.
2 | f 5,3  Treatment of Boundary Conditions | R
;glflail' ' The boundary conditions on the vqlocitias'réquired to olose the -7 . 7;
: momentum equations present no difficulties since either velocities, ;;
or gradients are specified on all boundaries, The treatment of the ~ . 3
T - pressure field at a boundary poses a more difficult problem since L

ot
Pt

&=

e i ,. because the velocity field determines the pressure field at all pointa, N ;ﬂ

Fh I

el W

" including the boundaries, to within an arbitrary constant, then no 'wé;l f;;f

£

1ndependant presaure information is available, Therefore suitable

: £ conditions to close the pressure equation (5.,2,7) have to be deduced
ij',' ' -from the momentum equationa. To simplify the diacusaion, the equa~ - ;
s .I\~. A

tions will ba considarea defined on a two dimensional roctangulnr <




€3-13 (Pyy =

6149 (Pyypy = Pyy) -
: 2

| £ . | -
+ EEJ+1 (?idiz ',?in) = 31171 (pid-- piﬂ'g) -
2

- (a4 -

E points A independently of B, C and D points, all B points independently
‘of A, C and D points, all C points independently of A, B and D points,
Thus, (5.3.1)

“over the region may be considered as representing four independent sets .

* and all D points independently of A, B and C points,

of second order difference equations, In three dimensions, there will

'be eight sets of independent equations, Suppose that in Fig 5.3.1, the.

: set cormecting the A-points is considered, Lot the solid boundary

WX Y Z be the physical boundary of the problem, and let the dotted

. ‘bounﬂa.r'y exterior to W X Y Z represent a fictitious boundary, To close
(5.3.1) on the A-points, it can be seen that on Z W and W X either

_pressures on Z W and W X e;.ro required or pressure differences between
points on Z W and W X and interior points are required, whilst on X xl

~and Y Z either pressure differences across points on X Y and Y Z or

presaure'a on the exterior bounda:riea' to X b 4 and X z are requima.

In Figure 5.,3.1, it can be seen that the eqﬂ (5.3+1) connects all the

-
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, 4
e Case (1) Pressure differences prescribed between W X Y Z points -
3 T;"f . and interior points, and pressure differences prescribed across U " d
£ _l . :
2 W X Y 2 points between fictitious points and interior points,
; A ‘ ; ; ,
i ~ Qasme (ii) Pressures prescribed on W X Y 2 with pressure differences
-j,' ‘ p::escribed across W X Y Z betwsen fiotitious points and internal points,
Case giii.! Pressures ‘prescribed on the fictitious boundary and " _ !
pressures prescribed on W X Y Z points, ' :
N ) ' : ’ B s -_1
i ' ' . . Q’I*’ "y @ i
Case (iv) = Pressures prescribed on the fictitious boundary and O
pressure differences presoribed between W X Y Z points and interior v ‘.ii'j
pomtu. I e - b : | ; -h-'” : ’ f o ':r\« -I I: n r"\é:
~i.-% case (v Combinations of the previous four cases, o
8 Each case will be briefly discussed, SEEI

Case (1) This is the case used in practice for the numerical
";__'. it experiments of Chapter 6, The discussion is continued in a éan;rd

geometry, Diagrams are represented in a Cartesian geometry, but

With Poisson equation¥’¥ = k, with b¥/bn specified on the boundary
it is requirad that j Qf_ ds = J'kdB‘, and a uimila.r condition

l.f..

holds with the &ifference equation (5,3, 1) when differences are

prescribed over all the boundary, as in Case (1), It will later

" be shown that the conditions dorivad for Oue (15 are conaiutant
with tho equation (5.3.1) . _




_ 62. _.f“.
. a 'I" 2
(A) Pressure’ a1 fPerences between fictitious and internal points .
' Consider I-‘ig 5.3.2. Tho preaaura.differamo - | . |
, . ’- ’ ‘_ ) _

APE = pH - pB . b (5«302) .
. 4is Tequired, Applying the normal momentum equation to D E F at ‘
the point B gives 4 ' ‘ S T ' :

BB = G (4 g s U vy Ty < (533) -

' where u and "]. are the curvilinear velocity components, Of the '-

Applying the cont:i.mity__ equation at E gives ' .. ’ e

o . {EH “ﬂ fgﬂ uB {ED D {35' F = | 0 T (5 3 'f) “
i 28 o 285 - : R

a7 \

This equation determines u;. Repeated ..‘pplzl.catlioh of (5.3.3) and

'(5.3.!.) all around the boundary provides fhe raqui;-ed information,.

L

- 'y

T ‘This is the discretised fom of (h.j 1), 1In (5,1.1) thia conserva= ’
'tive form is used, The aymbo].},'F' Pis Igi J,whero gi are  components
_.uf .the_ mtr:lo elamnt. : P Mo 3 4 e .
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Le: % (B) The pressure difference between W X Y 2 points
i 5 and internal points )

o A ?‘I Thi.a quqntity is used to ensure tho comervation of total mass ', -.-'f}
ek with:ln the flow. ; L : : N T

, ' * Consider Fig 5¢3.3, then at every point (-.l. 3) on AD, the form of

i, the continuity équation used is ’ |

’1' = e ‘.—' 3 ;

o WY " 19 ‘r‘i 14__1,1 .'.rfi.ﬂ 1141 .fglJﬂ LA | o
Solof met T2 2 Ax . - i

A 1, | e (5:3,8) - -« =4

: N . ) - Y
- ::‘; .- and-it is known that satisfaction of this equation everywhere is not

i k sufficient to guarantee conservation of mass, A condition will be e

;5: . derived, which together with (5.3,5) everywhere will ensure the total ',il-l

S <."."‘conaarvation of ma.aa.' Define the notation U = fgia 1 .1

-3 ."JJ

13 = vfg“-:vﬁ. Summation of (5.5.5) over 2{-_- JLT=4 (3 =1, J are

pointa on the phyataal boundariaa) yields .

o, a4
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. This resrranges into ’ :
- T ' L . | |
' Uiy = Uiy = -(U*“.‘ <) s

Jj=2

- . ’ ~

i e e (Vg g - 1—10‘) ( 1411 * 2 71 * 1] 11J

S (v $2V, 4V )

. < s ‘
. Vip = (vi+11 * v:l.-‘l‘l) U:l+‘i1‘ - U1-11 ) R " :nf_ i
g o g S0 24x, . U P AT

0 g [ Ty 13 * Vietg) = 2 Vagy o i3 =Yg )

e S 24k, : 2 &x,

(5.3.9)

Clearly, as A;1, Ax, -}0 then the lhs of (5.3.9) te.nds to the oontinuity
oquat:l.on o (1,1) and the rhs. tends to the_oontimity equat:lon .t (1,.1),
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9 .";—;_ T A - . |‘: LN T’a‘. ) ‘ 5 ,x L iy ,M = ry
a 8 . : t‘l ‘sr Pl
i ¥ ' . -';::”..i'_; ‘ ! § 65.
el !
i L : ’
" e __
. . 'I"Il'.':\,ll A ‘
- - (vi+11 * vg-ﬁ) + “E‘-‘.-rﬁ " _?1-11 = 0 -’ : = A
B R 2 'Az2‘ : i | .2 &x"‘ . P Ly
BT DL e - ..l . . “ . ..,‘ . “.
T (Ve a W, )=2 Y Ueu E 3
L oengretn Mg * Ve 4 1447 = Yigg £
AR L = ¥ = . o - (543410)

Upon writing U, , = Ve 4y ugy and Vig® fsi'a‘;vu“__ﬁhase yield

' : v = £ (wall veiocitieu) SR 3

= g (wall velocities) (5.3.11)

%y The equations (5,3,11) are the conditions, which together with the .
_ continuity equation (5,3,5) everywhere, guarantee the conservation of e, A

0% messin the region M N P Q M of Fig 5,3.3, Ir-‘equatior'u (5.3.11) are

2ok = uaod to oalculato vy, and vu. -1? then the ¥ ¥ no:nontm aqlu:bions nt the
. I l\ e -

_' points (4, 2) and (i., J-1) ney be used % caloulata CeE e P

U by m o Byg ey, I T
8Py = Py " Pyye | - (5.302)

- By following a similar procedure over all the boundary ror all 1 .1 G
I than total mass conserva:b:lon is ensured foz' all blooks similar to : .I .
Npqnbounaea by3.1.na3..r mﬂall blocks uimilar to\ e




‘.1ine AD'to obtain an expression between
3‘.,. U=-velocities on MN and QP and Y—velocitiea g
v “‘at A, B, D' and E, . The application of the. -
b " trapezium rule for mass conservation over «:
"' MNPQM- then ¢liminates all internal velocitiea -
U axcept for Vg and, Vos Conditions are theny.i: '

: Vo and v whinh% togethar_ mith.]
-__.qbntzl.nu:l.ty evarywhara on .AE, anaure ﬁa}éiﬁ‘ s
rvd.tton ‘bver mIPQ_ll. : o

ot B s 4 .
9\ .’pllf'«.‘. ?‘? s 5‘ “w. . s, tI:_

ER

‘.‘;.
STl
e el b

e

TRET L It
g
SR W e
i e

B 5yt eve ¥y
'S,i!. Tl 1.‘-:‘:_‘-.._




In three dimensions, .an identical a.rgumen'l: ia followed, with

ot

‘'more involved algebra. to derive oonﬂ:l.tinm which ensure that between

.. 2 any pair olf alternate parallel plama, takan from boundary to boundary s

total mass flow 13 conserved,

. . h ' ! ‘
- Case_(i4) -
;..i ‘ (A). Pressure difference between fictitious and intern ints |
The procedure for Case (i)(A) may be followed, - .
: | \
<% - 25 (B) Pressures on W.XY 2 ‘
* _ o The suggeation is to integrate the tangential momentum equation
: ‘ along the physical boundaries to determine 8 suitable pressure distri=-
bution, The Cartesian tangential momentum eguation at D of Fig 5.3,3 is
Ba,vas,d% | % Yy
9 b ox dy ( dx ¥3x By .

" It is clear that the tem ’Gau/byz will require Ugs Up and ug for its

s approximation, But E is a fictitious point, and although it is possible
to estimate vg at E by applying tha continuity equation at D, a similar
o procedure is not available for calculating g The only possibility is

e o . results aupport such an arbitrary procedure, ' Harlow and Welch (17).

Fl

ha.va used preoiaely this condition at a no-alip wall and have obtaimd

% e

g8 for their am-burati.ng problems reasonable renultu,ffrom a: qumtktive

bo tha.t i.n_ detn,iled cnlculattona of amll ragiom,

to guess a value of u;i: for instance, g = =Wy and hope that mmarical -

e g2

L e




(A) Pressure differences between W X Y 2 points
and interior points e

The comments of Case (i) (B) are applicable,

i (B) PEressures on fictitious points ' ';'.! s
* . The comments of Case (ii) (B) are applicable, e o .'.;:'-“‘
; _’Uaae (v) The comments of the previous four cases apply,
s 5l Consistency of the Case (i) Boundary Conditions ‘ LR

with the Pressure Equation

HLiakeidenis

Pesetrde
o e

Cy e In the numerical experiments of Oha.pter 6, uae is maﬂe of the Case

(i) boundary oonditiona, and it is naoesnry to prove thui.r oomintamy

..-\‘.;i'

_'f_uith the pressure eguation (542,7)s The situation to be dincuuag is
C gilrectly analogous to the fo;ioﬂmg:

s

e
e




‘ Vg = My B

" . , - . ol

':fffztflfl What conditions must apply to maks 1‘3, 113, 111 ,na.miJ oonsintent _m“

. : ﬂth (5-4.1)? Vo e : : A : . )

LATEE T o ganmakion of (Bukod) cver 224 5 1, 2 4347 -1 ylelas

s _I o ‘-‘II L ° . - * U . & - .

I VA AR S L T = S r. ¥y =¥

| o N : - | + i i .

T e T2 I Tyt 2 ( 4472 * Ty T Yyge A wl
& {.. ‘_ .. * . i -“: '_:‘ ‘ :“ ‘ R .3 ) _fél\':

%
U L ase

g Substitution from (5.4,2) into (5.4,3) yields ‘ii
1 J;I ( 2, L) 1 I-1 ( ) ( | ) §:
Wi et B (Mg =Ny g) 4 B (N a (I =2)(J -2 ohis ]

S wE i hrg " Mgkt 172, Pus r‘.l'l (. ) x (5 btd) ‘

77 This equation is the condition that the bounﬂary conditions (5,4.2) must i
- ?j;ff- uatisfy to be oonsiatent with (5. .1) The Pruasure .quation iﬂ
-}f s . f% .

L G
BPog m
S - b IR




(s
.- with boundery conditions |
: 5" H1 .Pitak .|-:) T l.l.‘th : ; t._--'. 1" 2, 1-1 » I -. .'_‘:
. over all - 55 . t -
' . values of 1’ ., n :
- 4 : i _ . n# ~ N . 8
:_‘._."_J:I H} pidt = T 'ijt ; t = 1’ 2, K-1, x J
. iﬁ ~ conditions above

v The / are Just the momentum equations applied at the appropriate

A
s

703 1 Vg Gt e, Y

points, The velocities u, . 32 vitk gt given in (5,4.6) are 5 0%
: a,saumed found by the application of the conditions derived in Section W

Y I o PSS

5,3 to ensure mass conservation over all boundary to boundary blocks,

- i70. The operators H1; H, and Hy of (5.4.5) are conservatively defined

";"-_-;';,-“__, at equs.tion (L.Mé) » and therefore ‘may be summed over zL i A I,

g
ianil

e e Ht 1’1,11:’ (t =1, 2, 3) and (i 130 Vg 'iak) at, the points (1,

LK), (2, 3,.%), (I, 3, ¥), (I, 3, ¥), (4, 1, Xx), (4, 2, ¥), |
(1, J-1, 1:) (1, J, 1:), (1, 35 1), (&, 3, 2), (1 _.1, x-1) and (1, 3y

soais;

- ;;;‘;-lvrrl!-f"”” &

"' (5:4e7)

-
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define, for an arbitrary "’131:

! 1ir1;)1: - X “1.11:)
Hy Yy = By (Vg (5.4.8) 4

I
k
Z
k B
z
k

o1 1 B
it S a1

24 141132434713 24k &K~

and since H,, Hé, qs gro‘aonaervatively defined, then typically

L, (V,,,) = = (ay ¥po0)
1Ak tad,2,I,14 =tk (504e9)
) b, ¥,,,) + I ¥
* £1,2,3, 34 (by ¥ygp te1,2,K,KA (o 13¢)

$hus, only values of tidk on boundaries, and adjacent to boundaries

). oocur, With this notation, summation of (5.,4.5) over i, J, k yields

- N - i - e
= (1 (oyge By pyg) + 1y (ey g By Bygy) & Ly (e Hyopyy))

A+l A1 Al
= Ly (ugy) + Ly (Vi) + Iy (wyp0) | (544410)

This equation represents the conbiutonoy condition to be satisfied
by the boundary conditions (5.446), The continuity equation 18

n n n , _
S TR BTl BT : (504011)

Summing over (5.4.11) yields

n n n ' L2
L, (“i:ll_:> + Ly (vyg) + 1y (vm.:)p, =0 S (504412)

g : L4 ' TR
. ' il o . s tad

o

PR R ——
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Adaing (5.4.12) o (5.4.10) and using the linearity of L, L, and

I‘j gives an equivalent consistency condition T
. ’ \

= bt o on
Ly (g Hy Pygpe t Uy g = Uy

- - w1l A n
+ Ly (&g Hy Pygy t Vg = Vg

- D PR I
+ Ly (egg By Pygpe # Wy =wyg) = O (544413)

It will be shomn that (5.4.13) is identically satisfied{ Consider in -

particular the first boundary condition of (5.4,6) multiplied through

by-_ &3 Ik

- ~ I
o Bge By Py m o eqye T Uiy

A+ n ;
from (5.2.2) 2 -uijk uiak (50#-1"-) ;

- M Amd n |
I e:ﬂk H1 p‘Uk ‘!’ ut‘l.‘)k - ll“k = 0 ‘(5.1&015)

((5.4415) assumes that uj 4 is iterated, but this is irrelevant), A '
similar result holds for the remaining eleven conditions of (5.4.6). -
Now notice that the lhs of (5,4.13).1is merely a linear combination of
the twelve equations similar to (5,4.15) derived from (5,4.6), and
thus the condition (5,4.13) is identically satisfied, and thus the
boundary conditions (5.4,6) are consistent with the pressure equaticn
(5ek45)s | o

LT




72,

: CHAPTER 6

NUMERTICAL RESULTS

6.1 Summary

Three problems are preaentad:

(a) ForV = 1, there is an analytio solution ayeilable for a

two dimensional rectangular geometry, Comparisons are given between
solutions obtained by the presented method, and the analytic results .

on a two dimensional region,

(b) Comparisons are given for a three dimensional test prob-
lem between the presented method and a method based on the vector
potential as developed by Aregbosola [52), This test problem has
a Reynolds number of unity and a rectangular gooﬁetry with a step
" function inlet profile and a Poisson solution outlet profile,

(c) Comparisons are given between the present method, and a

¢
physical experiment performed by Joy [54], The Reynolds number is (
of the order 5 x 105 + The geometry is the complex ons of Pig 6.4.4, o

-

6,2 The Two Dimensional Probl(m:

 Comparisons between an Analytic
Solution and Roscoe

The two dimensional Navier-Stokes equations are:

i ' ’ L

'.‘éo) : . R ' Ir



uux-rmyq-é-p: = '9(un+uyy) g

u me+ w;-* é— Pyo= Y (vy + 'nj " (6,241)

u¥ + va . | = 0 - . R -
For V =1, a ao.lutitm is given by

U = = Co8 x Sin ¥y

v = Sin x Cos y | | (6.2,2)

Following Chapter 4, the finite difference representation of ‘
(6.2..1) is given by '

Tui.j + H1 Py 0 q¥ .
Tv +Hyp, = 0 p | (6.2.3)
H, gy + H, Vi = 0 J i
where T, H, and H2 are difference operafors defined by
T s E%‘-‘Tul)h (B, - (1 +8) + e, B )
& v
+3 5(:‘1‘& °v) [EJ -(1+ °v) +e ?3-1 ! (ﬁ,z,i‘;)l

where lﬂul = exp (e “1‘1 ﬂ_x/)?) -

07. : o ’,up(evijrf’{”) i | J

=



T4y

B, = (8 =87/ (24x)
' -1
B, = (B4-8")/(24y) (642,4)
Ei and EJ are the normally defined forward shift operators in the

i and ) directions respectively, Note that the stability analysis of
Chapter 4 used the modified momentum difference operator of (4,2,16).
In pran.tiue it was discovered that the simpler original form of
(4s2.15) i8 effective, T, definod above, has this simple original

form,

. The problem was solved on the région
0,1 4£x & 0,35

0,1 £y £ 0,35 (6,2,5)

and boundary velocities at the boundaries of this region are specified
by the application of (6,2,2) there, A 10 x 10 mesh was used, The
boundary conditions on pressure are those discussed in Case (1),

=3

Chaptﬂr 5 ®

Resulta

Figure 6,2,1 gives egqui-velocity contours for u (x, y)_. as pre=-
dicted by the present method, On the scale used, there is no visual
discrepancy between these results and the analytic results, henoce
;:nly the single diegrem is presented,

Figures 6,242 and 6,2,3 give tabulated values for u (x, y) on the
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Figgr;s 6,2,2

TABLE 1, y = 0,554
x " u (enalytioc) u (numerical)
0,1000 0,857 0,857
0,1277 1,08, 1,089
0,1554 1,302 1,322
0,1831 1.511 1,518
0,2108 1,708 1,715
0,2385 1.892 1,888
0,2662 2,061 2,059
0,2939 2,215 2,203
0,3216 2,352 2,345
0,3500 2,472 2,472
TABIE 2, y = 0,2108
x u (analytic) u (numeriocal)
0,000 0,765 0,765
0,1277 0,967 0,978
0,1831 . 1,348 1,362
0,2108 1,52 1,531
0,2385 1,688 1,681
0,2662° 1,840 1,829
0,2939 1.977 1.959
0,3216 . 2,099 2,090
0,3500 2,206 2,206




Figure 6,2,3

TABLE 3, y = 0,2662
x u (analytic) u (nunerical)
0,1000 0,650 0,650
0,1277 0,821 0,828
0,1554 0,987 0,996
0,1831 1,145 1,157
0,2108 1.294 1.294
0,2385 1,434 1.436
0,2662 1,562 1.552
0.2939 1,679 1,670
0,3216 1,783 1,780
0,3500 1.873 1.873
TABLE 4, y = 0,3216
x "|' "u (analytic) u (numerical)
0,1000 0,514 0,514
0.1277 0,651 0,643
- 0,1554 0,782 0,748
0,1831 0,907 0,912
0,2108 1,025 1,013
0,2385 1,135 1,152
0,2662 1,237 1,234
0,2939 1,330 1,366
0,3216 1.412 1,423
0,3500 1.483 1.483
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constant lines y = 0,155k, ¥ = 0,2108, y = 0,2662 and y = 0,3216,

The largest error is 2 per cent,
ib

6.3 A Test Problem in a Simplé Three
Dimensional Geometrys:
Comparisons between Aregbesola and Roscoe

The geometry is shown in Fig 6,3,1 and represents a straight .auot
of square cross section, and of dimensions 1 x 1 x 2,5, The equations
are the three dimensional form of (6,2,1), and their representations
the three dimensional generalisations of (6.2,3) and (6,2.4).

The inlet profile is the step input defined by

u(x, y, 0) 1,04 x « 0,5, 0 £y £ 1
u (I, ¥ 0) = 25 0,5 £ x < 1.0’ 0 £ y £ 4
u (1’ ¥ 0) = 0 onx = 0,'1] Y= 0’ 1 (6.3.1)

v(x,y,0 = 0 £ 1

L -
o
N
]

'(::Y:O) = 03053'51

On 2 = 2,5 the Poisson solution was specified (ie, the equivalent of

Poiseuills flow in a two dimensional straight channel),

Both'the present author and Aregbesola used a 14 x 14 x 16 mesh
for the problem, Direct oomparisons were difficult because Aregbesola
defines his physical boundaries half way between boundary mesh points
end adjacent internal mesh points, whilat the present author defines
his physical boundaries to coinoide with mesh points, Apart from the

&
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obvious difficulty of there being no dixjectiy comparable points’
between the two discretisations, it was necessary for the two authors
to define their uita.as flows in different fashions, The present
author's results uaac‘l‘tha conditions on boundary pressure derived for

Case (1) in Chapter 5,

Results

Figs 6,3.2, = 6,3.4, give normal velocity contour plots for the
planes 2, 3 and 4 = most of the change in the flow occurs over these
three planes, The preqent author's ralsulta are given at the top of
each figure and Aregbesola's at the bottom of each figure,

There is excellent sgreement in the prediction of the rate at
which profile develops over the three planes with the two profiles
of each figure being qualitatively similar, In each figure there is
good quantative agreement for low value velocities, dih only a

moderate agréement for the high value velocities,

6.i|. Comparisons of the Present Method

with a Physical Experiment

The pre;asnt method has been used in an attempt to reproduce the

results of a wind tunnel experiment performed by Joy [51), The
geometry and dimensions of the wind tunnel are given in Fig 6,4.1,
Stuatt [37) applied his 3-D inviscid streamline curvature method to’
the same _‘axperimn’c and has predicted the main features of the flow,

Fig 6.!...21 shows the total pressure contours on the inlet plane of

~
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the duct, It ocan be seen that the flow is approximately symmetrical
about the line XX', TFigs 6,4,3 = 6,4,5 give comparisons between
Joy's measured to:al pressure contours and Stuart's predicted total
pressure contours in the top half of each plane at 300, 60° ana 90°
respectively, (Because of the 'symmetry' of the inlet data, the
total pressure plots for the bottom half of each plane are similar),

For the initial deve%opment, the present author chose to neglect
the straight inlet and outlet sections of the duct in order to
simplify the programming details, Whilst this will clearly alter the
quantative nature of any results, the qualatative effects of the duct
geometry on the flow should still be visible, These effects are
11lustrated in Figs 6,4,3 = 6,4,5, and the main effect after 90°,
in Fig 6,4,5, is a twisting of the total pressure contours,

This twisting gives rise to increasing total pressures towards
the outside of the bend, along OX,, and towards the top of the plans,

along 012-

el
General Difference form of T, the Momentum Operator

Initially, finite difference equations of the form (4.3.12) were
derived with‘E haying the original UDR form, in which the coefficients
of an equation at (i, J, k) were all evaluated at (i, J, k), Following
the solution procedures given in Chapter 5, converged solutions uere 
obtained for a variety of boundary conditions, but all such solutions

were very poor in comparison with experiment,

1
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The numerical experiments were repeated with the modifiad?f’
whose general form is given at (4.,2,16) (ie the form for which
stability of the i:omplate difference representation was proved),

The results were, again, very poor, Finally it was decided to define
~

T in a conéervative form based on the original UDR form, Thus,
expressing the original UDR form as

.y
Thge = fyVyagem (v £ 8) Vi + £ 8 Yy,

4+ (similar terms for j, k differences) ~(6.441) -

then the conservative T is defined as

I
TV = fygq Voapem (Bt 8 8) Vg v £y Yy

+ (similar terms for J, k differences) (604e2)

1

The coeffiolents £, and g, are the coefficients in (441.3), With
the boundary conditions outlined below, this conservative form of T

proved to be partially successful,

Boundary Conditions

(1) For_ the Momentum Equations
4
On the inlet plana,?the solid boundaries, velocities were specified,

On the exit plane, since the straight exit section was discarded, it
was felt that specifying parallel flow would be too restrictive, Thus,
the conditions assumed were that swirl was constant (ie the 'in-plane'

velocities rqn@in constant over the last two planes) and that the
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second normal derivative of the normal velocity was zero on exit

(b2 uhx® = 0),. These exit conditions include the parallel flow
K}

conditions, but allow more freedom in the final solution,

(i1) For the Pressure Equation

On the inlet plane, zero static pressure was assumed, On the solid
boundaries, praa'sure was obtained by integrating the wall=-tangential
momentun equations along the solid boundaries from inlet to exit
planes, At the walls, the second normal derivatives of the wall=-
tangential velocities were approximated by forward and backward
differences into the flow, thus avoiding the arbitrary estimation of
velocity components at fiotitious points, To complete the pressure
information on the inlet plane, and the solid boundaries, pressure
differences gcross these boundaries were prescribed using the method
of Case (1)(A)conditions explained on p.62, Thus, on the inlet plane
and the solid boundaries, :Case (ii) conditions have been employed,

On the exit plane, Case (i) conditions are employed, To use
Case (i) conditions we need to make a statement about the normal
velocity near the exit planes, in addition to that already made; We
say that baq/'bxz = 0 on the plane prior to the exit plans,

Thesé cbnditions close the equations, and allow a solution to be

obtained, '

Results
These are given in Figs 6,4,6 = 6,4,8 for 30°, 60° and 90°

‘regpeotivoly.

=
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The 30" results appear quite good, although the total pressure
seems to decrease.more than should towards the outer boundary, The
'dip' in the contours at about the mid-plane agrees with observation,

and the inner boundary results seem very good,

The 60° results bear only a slight resemblance to the experimental
results at 600,'but they are similar to the 30P results,

The 90° results bear-only a slight fesemblance to the experimental
results, except that there is agreement on the rise in total pressure
towards tﬂe outside of fhe bend, and in a sense, the 90° results are
quite similar to the 60° experimental results insofar as the 'high'
total pressure contours tend to pass from the line of symmetry to the

outer wall of the pipe,

In the author's view, these results represent a limited success,
and are sufficiently good to indicate that further work could well be

worthwhile,

Parameters of the Flow

Gas Mediumi- Air
Density = 0,07 lbs/ft’
Kinematio viscosity = 0,000143 £t%/sec

6.5 - Possible Defects of the Model
and a Suggested Remedy

From the point of view of calculating high Reynolds number flows,

the present author feels that the main defect in his model is in the
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manner of representing the preasura/oon‘l:_inuity terma, ie by uing

central difference formulae,
i

Figure 6, 55, j

—>ud>» 0

{ —>x,u
i1

e+

i-1

Ax
< >

Consider the one dimensional diagram Fig 6.5.1, then in the limit of
infinite Reynolds numbers (ie Kinematic viscosity tending to zero),
at the point i, the UR for (u Su_ -3—2-'3-) tends to ! (v, = u, ,)

’ ox T 42 TR e B

and the corresponding pressure gradient in our model is
and

(pi+1 - Pi—1 ). . Thus the momentum /pressure terms are centred at
2Ax |
different points, Intuitively, we can see that the'correct' form of

the pressure gradient :l.a(pi - pi—d ). In physical terms, we can
Ax

equate this with the statement that for an inviscid fluid, the
'pressure force' accelerating a fluid partiocle from (i-1) to i arises

from the pressure difference between i and (i-1),

Extrapolating this intuitive view to a high Reynolds number 3:D
flow, we see that at a point (x, y, z) = (1ax, Jay, kAz) then dp/¥x;
¥p/dy and ¥p/Bz are best approximated by.'upwind' differences,ie are
best backward differenced relative to the respeative directions of the

b

-

~ IFrIR e



velocity components u, v

¢ d
Thus if u, > 0, phen g&

g

if u; <0, then

ete,
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and w
o T Py
- Ax

(6,5,1)
I Py =Py

This naturally begs the question of .how to approximate the

continuity equation, Theorem 4,2,2 supplies the answer to this question,

Suppose that

'R < %E
3
Dy = T

11

P

~

I& u+ 4 ¥Y+D we

R

- k -—

! ' (6-502)

du
X

oﬁlo’
SR E]

+

@Id
<l<

Then, if T represents the UDR of the momentum operator, the eguations

of motion become

T 0 0
0 T 0
0 0 r 2
D1 : DJ Dk

where b is the vector of

D, u
k . b (6' )
Dk ¥ = L 95.3
0 B

boundary infordation, For stability,

e?

J
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Theorem 4,2,2 implies that S defined by _

{ /0 0 0 D1
0 0 0 D '
8 = J (6-504)
0 0 0 Dk
~ ~ ~
Di Dj ch 0

should be skew-symmetric, Thus, since we have deduced from physical

considerations, forms for Di’

symmetry of S defines D:I.’ IJI‘1 mﬂfk. We find the interesting result,

D 3 and Dk' the requirement of skew=

that. broadly speaking 'upwind' differences for the pressure derivatives
implies 'downwind' differences for the continuity terms, More

T
precisely, defining
+1 if u, Y 0

N, = 8ign (“i) 5 (645.5)
- if ui < 0 "y

then the approximations for ®p/8x and dy/3x of the continuity equation

are given by

;‘;’ff:-;};[u L) by + Ny 7y - SLLAEWS N

and

1 =N,
% 1 fx‘[(_J') e Ty i {endad 44l )

> (6,5.6)

T The treatment of N.t when u, = 0 is complicated, and since the

above ideas are not fully developed, no attempt will be made
to explain this proocedure,

L
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The pressure equation arising out of these schemes turns out to be

of second order only, and thus requires only one piece of pressure
A

information at each point of the boundary, From this point of view,

the schemes are more satisfactory than those already discussed,

The author is currently attempting to apply these schemes to the
wind tunnel expefimant discussed in 6,4,

/

P e
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APPENDIX I
1 .

Al Derivation of UDR for Partial
: Differential Opargtora

_ Consider

2 2 '
2 . = a.b—z' b2, 022, a2, . o (A1.1.1)
ax? ¥x 'Oy dy
The UDR will be derived on a uniform mesh, The extension to a non-

uniform mesh will be obvious,

" (A141.1) is partitioned into three bits, The procedure will be %o
develop a ]representation for each bit, and to take the WDR of (A1.1.1)
as being a certain linear combination of these three reﬁreaentatiom.

~ To this end consider

2
d‘z-pbﬂz u 0
dx’ dx
c‘d_zg"l' dé"z" = 0 (11.102)
& o ¥ . ea

The homogenous solutions are respectively
Z = 4 and a-ln/a
Z = 1 anae | C(Ati1a3)

The corresponding finite difference solutions are
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z, = ‘lan.rl(e"“'f"/“‘)i

i

z, = 1anxi'd(et"d'_!‘y/"):J | . (11.1':1«-)

It follows that the auxiliary equations of the difference equations
having (A1,1,4) as solutions are, respectively

(i1 o = e &

(a=1) (n=e"®/%) . o | (A1,1.5)
éiﬂ.ng immediately, the difference equations |

- -bAx/a -bAx/a -
Zy 04 (1 +0 . )Zi-u-a - Zy g

By, = (1 + e"d{w/o) by* °-déy/.a z = 0 Wetefl

J=1

Accordingly, there is chosen, for the UDR of (A1,1.1)

-(1+ e-bl-b:/-a) Zi.1 + a-‘b{k/l A

A
T2 , = ko [z 1_1‘1]

iJ ).

\

+ k, [z:l.‘!+1 -(1+ afd‘,_&y/c) Zyy+ e-dz_\y/o ziJ-‘I]
+ 22, = O o (A1.4,7)

for some'k  and lc1. It remains to choose ko and k1. The procedure
of section 2,3 cannot be followed, sime_- as proven in Appendix IV, no
elliptic difference equation with a finite number of terms, like
(A1,1,7) can be an exact representation of an elliptic differential
equation, Thus, k and k, are required such that (A1,1,7) is a 'good’

R

O g
e



87.

‘representation of (A1.1,1) in some limited sense,

It will be shown, that the k and k, turn out exactly as would
k, and k1 for the corresponding ordinary differential equations ‘
following the procedure of Section 2,3, Define

¥(x,y) = lay+lxs+1lys+ 1 (A1.1,8)
henoé, the difference form of (A1.1.8) with obvious notation is
¥y = (Loax 8y) 43 + (14ax) 4+ (187) 3 + 15 o (A141,9)

' ' A
The oriteria chosen for k and k1 of 72, 48 that T and T (the

i
operators of (A1.1,7) and (A1,1,1) are to be identical in their actions

on’ i“ and ir(x,y) respectively, Thus

™ (x,y) = b 1y + dlox + b 1‘| + dlz-pﬂ (x,¥)

i ) ;
= (b 1°Ay) J+(alax)i+bl +4dl,+ ﬁid (a1,1.10)

Substitution of (A1,1.9) into (A1.1,7) yields
?t“ = k [(14x Ay) J+11Ax] (L4+14)-(1+ e‘b‘_”/‘) i
. o bix/a (1= 1))+ Kk [(1°§x by) 1 + 1,8y) [(3 + 1)

T i o FE T R AR} PR CHE YO NE

+1,4c) [1 - ;bf;/‘] +k [(1axa8y) 44+ 18y) [1 - a'd‘?y{"] {

+ ‘*13 | (A1.1.11)

-":
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Comparing coefficients of i and J between (A1,1 +10) and (A1.1 .11')

yields , ) '
i
kK = b
o Ax (1 = e-b&r/a.)
k = d '
! Ay (1 - ,-d{W °) (A1.1,12)

Comparison of (A1,1,12) with (2,3,5) shows that k, end k, sre

essentially identical,

oy,

T IED -
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LPPENDII II

A DISCUSSION ON THE STABILITY OF SOME TAYIOR SERTES
REPRESENTATIONS )

A2, An Exsmple
To illustrate one aspeot of the stability problem, consider the

simple system
Q_zg + 2dZ = O (A2.1.1)
ax? dx |

Three Taylor series representations of A21,1, are

A’—::E (2,4 =22, +2,4) + _a (24 -Zi_1) = 0 (A2,1.2)
2Ax . .

L (z 22, +2,,) + -2 (2 ) = 0 (A2.1,3)

sz i+1 i=-1 Ax i~ N *

2 22,42, )+-2(2 . =2) = O (A2.1.4)

TS I T LA I L .

'Now the true solution of (A2,1,1) is given by
- 2(x) = A+ A 9-“_ - (A2,4,5)

Each of the thres representations (A2,1,2)-(A2,1.4) has A, as a solution, ‘
so the question is, how close are the non-constant oomponents of their

solutions to. ,-ax?

The behaviour of the exponential term of (A2,1, 5) is illustrated in

Fige A2,1,14°

o R Tl



Fi ur; 1.4

For positive 4 the function decays, and for
negative a, the function increases,

X ¥
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The very least that should be expected of the finite differencs

solutions is that they behave monotonically as e > for a > 0 and
A L

a < O.

Each solution is considered in turn,

(1) (A2,1,2) yields the solution
1
2 = a,Ax
Z, = A_+ S B A2,1,6
i e A.I (2 + a,Ax ) ( )

If the behaviour of the exponential term of (A2,1,6) is analysed, it is
seen that it only displays the correct monotonic behaviour for a > O
and a < 0 if the condition

Ax < ,f, (A2.1.7)

is satisfied, If condition (A2,1.7) is contravensd by equality, then

‘the only solution of the difference equation is a constant, and thus
two independent boundary conditions could not be fitted, The system is
overdetermined, If (A2,1,7) is contravened by the opposite insquality,

the‘n the solution becomes oscillatory, and then although a solution

cen be found it is useless, Hence (A2,1,7) is the condition for stability »
of the difference equation,

(11) (A2,1,3) yields the solution

z, = A +A (1 - a0t (A2.1.8)
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‘Analysis of the exponential term yields that if

a>0 - |
then
i<t (A2.1.9)

for the stability, and that if a < O there is no condition on Ax and

proper ‘behaviour is guaranteed for all Ax,

Again if Ax = 1/a, a 5 0, then the system has only a constant

as a solution,

(411)  (A2.,1.4) yields the solution

2
1
Z, = A +A (1 +an) (A2,1,10)

Analysis of the exponential term yields that if

a0
then
Ax <"'31' : (A2,1,11)

for stability, and that if a > 0O, there is no condition on Ax and
proper behaviour is guaranteed for all Ax, Ax = 1/a is the &egemrat;"

case,

To summarise these results thsre is

(1) A condition for stability always exists on the central
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difference scheme,and if 'a' becomes very large, then the condition
(12.1.7) would make a central difference scheme computationally
infeasible,

(1) The backward difference scheme is unconditionally stable if
a £ 0, but a restrictive condition holds if a > 0, Again if 't;.'
becomes very large and positive, then a backward difference scheme
becomes infeasible,

(1441) .  The forward difference scheme is unconditionally stable if
a > 0, but a restrictive conditions holds if a < 0, If 'a' beacomes
very large and negative, then a forward differemce scheme becomes

infeasible,

From these conclusions, it is reasonable to infer that if an

equation like

2
d_g +28x) 2 = o (A2,1,12)
dx ax .

where f£(x) takes both large positive and large negative values, is to
be solved using one of the above achemes, then a stability condition

= < M | -

must be applied, In the Navier-Stokes equations this precise situatigﬂ
holds where |

-



ox) = 2 (A2.1.18)

q being a flow velocity and 9 being the kinematic viscosity, Thus,
the condition (A2,1,13) gives the approximate requirement for a 3-D

flow

Y,

Max (Ax, Ay, Az) (A2.1.15)

L9 ] gux

In many situations (gas flows), y z_\_MO-G

, thus the condition (A2,1,15)
.makes the application of ordinary difference representations to many

fluid flows problems completely infeasible,

A2,2 High Order Approximations to Derivatives

It often seems desirable to employ high order approximations in
derivatives in order to reduce local truncation error, Such second
order differences approximations to first order derivatives have been
~employed in this thesis at boundary points (See Chapter 5), However,
care must be taken in their use, The reason is that an n-th order 11.1_1__431-
homogenous differential eguation has n independent fundtions in its
solution space, and any solution to the differential equation is made
up as a linsar combination of these n functions, Ideally, an n-th
order difference representation is used because this also has n indepen=
dent functions in its solution space, and if each of these n functions
approximates one of the n functions of the differential equation and
vioe versa, then the difference solut:l.onlwill be a good approximation

'.to the true solution,



e

However, suppose than an (n + 1)th order difference repreaafxtation
is used, then this will have (n + 1) functions in its solution space,
and clearly, a 1:'!| correspondence cannot be t_na.de between these functions,
and those of the difi‘érential equation, If a correspondence between
n of the functions can be made, and if fhe axt;:'a function decreases to
zero as the solution proceeds, then the higher order scheme will‘be
stable, In any other circumstance, eg the extra function increases as

the solution proceeds, then the higher order scheme will be unstable,

Exg.t_glzle | .
- Consider the simple eguation

2 - o ‘ (A2,2,1)
then
Z(x) = ax + A, ‘ : (A2,2,2)

-A'o is the solution space of the homogenous form of (A2,2,1), The

simplest approximation to (A2,2,1) is g '
2y =2y, = abx (a2,2,3)
therefores
Zi = ailx + AO ' ) (‘2.201&)

Thus, (A2,2,3) is in fact exact, However, a naive viewpoint might lead
to a high order representation of (A2,2,1) being used, eg
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= -} (‘-2'2.5)

therefore

igp = Whyyq + 32y = =2ehx (A2,2,6)
The homogenous solution of (A2,2,6) is

Z, = A +a 3t o (42.2,7)

1 Tk T | rEe

The component ‘b corresponds to the homogenous solution of (52.2.1),
but ﬁ1 3i has no counterpar£ and renders the representation (A2.2.5)

unstable,

The above is an exaggerated example, but it does illustrate a
general principle:=- it is good practice to only use schemes of
order equal to that of the problem, and where this rule is not

adhered to, extreme care must be taken,
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, APPENDIX III

THE CLASSIFICATION OF CERTAIN DIFFERENCE EQUATIONS INTO
HYPERBOLIC, ELLIPTIC OR PARABOLIG TYPE

A3.1 Classification of a Prototype Equation T

A second order difference equation based on the central difference |

ﬁperator's 5:!. and & 3 defined by

¥ - ¥
1 4
8 "13 = - h
(A3.1.1)
- *i .} — fi_} !
5. ¥ I 3 J
J i) k

is considered, h and k represent the distances between grid points of
the mesh in the i and J direotions respectively, The arguments to
follow in no way exclude the treatment of equations based on other

difference operators,

The p:.-o"cotypo equation to be studied is

" .
Vo

3512*1.1*?’6153 1'3»,3532;-” “ 0 (A344.2)

For simplicity 3, D and G are treated as oonstants, Consider the

1inéar combination of differences

m 8, *1.1 +n 53 *1.‘] = 84 (A3.1,3)

where m and n are to be determined (and assumed constants), From this ' ”

last equation operating through by 51 and 6, in turn, there are

J
obtained the relations
+ S0 far as the present author is aware the ideas of this section are

mw. . ‘q ¥ . ]

| ' 3

4 '
ot . o
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m5i2t13+n6 8. V.. w @

134 21
o, (A34144)
méi 63 *ij -|-_l.115.1 *1.1 = 05y
where the commutivity of 61 and 6J has been used in the last of
(A3.1.4), and where e 4 = 8, ®114* %344 © 5J JPPD
Equations (A3,1,2) and (A3.1.4) toguther-. give
A B ~ 2
a b o 6,% - *1.1 0
m n o 8y 5J .?13 =| %3] (43.1.5)
5 !
© m n 5.1 . i“ 0513
Thus if m and n satisfy
&% G
m n (] = 0 ‘ 4 (D.‘l 06)
o m n |
ie, if
n G
B 5 (A3.1.7)
n - 28

then equation (A3.1,2) can be expressed as a linear combination of the

equations of (A3.1.4), If 2

- 4352 0, then this linear combination
is real, Before interpreting this result, notice that (A3.,1.3) may be

rearranged as

011‘ I(% t‘fl‘i‘d +%"-J+i‘) “ (E’ *i_a_d +‘E*u_i_) (5.1.8)
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or as
m n m -3
®13 © (h ﬁm}a k "'13—&) - (h 1-4 " k "'13»}) (45.1,9)
In either case, ‘113 is expressed as a sum of two linear functionals
along mesh diagonals, as indicated in Fig A3.1.1,

Hence, since (A3.1,4) is derived from linear operations on
(A3.1.8) or (A3.1.,9), then if (A3,1,7) holds, then (A3.1,2) can be
considered as linear combinations of 4 j ovaluated at various points

of the difference mesh,

« - In equation (A3.1,7), three cases arise, e.a.oh of which will now
be interpreted in turn,

" case (1) %2-1&3.50

In this case, there are two real values of n/m which allow

11)
various mesh points,  Suppose that the % interval points like

(A3.1.2) to be written as linear combinations of e,,, defined .at
(L+% 3-%), (4 3+ 2), etc, ocour explicitly as mesh points, and
that therefore by implication the corresponding function values ocour
explicitly in the difference equation, (the procedure in the opposite
cese will be explained shortly) then 0,44 0an be considered as a depen-

dant variable transformation for "'1.-)’ It follows that (A3.,1,2) can

To ensure consistency with the hyperbolic differential equation
analysis, notice that depending on the sign of n/m, an appropriate
choice of either (A3,1,8) or (A3.1,9) will ensure that e, , is
defined in terms of weighted differences along mesh diaguiﬂln, rather
than weighted sums, These two values of n/m will be seen to corres-
-pond to the two characteristic directions obtained in the analysis
of the second order hyperbolic differential equation,



The RHS of equation (A3,1,8) is the sum of two lineax fumtiona. '
one on AB and the other on CD, Likewise, the mﬂ of (5.1.9) is
tho sum of linear functions o:nBO and DA. o o
"o T Vo I‘ . i S YT,
' '.‘. _ x L ) I',"_- :s‘. -...
: -..“I > . (4 ) IM. -;r.ll- . ,-;‘:"
h‘.:.‘t o - . I.:
R o ' T
A et I, i i ¥
. lg\"” s et ERT g ey \
s g  o¥ ‘ L s ?
S U et g lf et ;
_'.5 . ‘ !_‘:- .‘ . E ." v . ‘-'.-.__: v
. -u. . e s: 'CJ J :
) ( '.';. "“: ' - 1
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"then be solved for o, 13 everywhere, Thus, suppose that e:1 13 is‘
known over the whole difference domain, and that n/m 20 80 that
€413 is arranged in the form (A3.1.9), ie in terms differences along
mesh diagonala rising from left to right, as in Fig A3.,1.2).  Let
the sense of Fig A3.1,2 be in the sense of Fig A3.1,1, then albng

XX' of Fig A3,1.2, ®114 has the form

I m n n 2 @
© %y "-('ﬁ"’n 'E‘_’Ao) '[('E""Bo'i*31) |
| - (43,1,10)
«(B2¥, -2y
%1443+ ( h'a2 "k u)

°"i'{+“.|' J+ '( (

=18
a‘ﬂ-
|
iz
B‘ﬂ-
e
1
=B
m“'
N
]
Kis
.
&
S’
L.

Rising along the diagonal XX', the eguations of (A3,1,10) can be used
to form an equation in which the explicit appearance of ¥agr Yios oo
¥4 18 eliminated to obtain a relationship of the form .

N

I W = A (A3.1.41)

s* ¥
ANi:O:I.Bi

where 4 is known, ie an explicit relationship between function values
on a known line on the finite difference mesh is obtained, It followa
that such a line camot be considered as a phyaicﬁ boundary along which
arbitrary function values may be specified, Such a condition typifies
the hyperbolic differential equation, and consequently a difference |
equation of the form (A3,1,2) for which < 42d > 0 is oclassified as

a HYPERBOLIC DIFFERENCE EQUATION, Notioe that if |

'y



J
< :.
i j " - g
5 TN CEYS
s # |
\
L
Ce Ay

»: L) T e
- o = .

By |.
whivs /B> _
l‘.‘ ' B] L d{

In the case.of q/m real, it s ahom that the.difference

the line A

the line as 'a bounda.ry on which a.rbi.tra.rg function valuas L e

requations yield a rela.tionship between function values along

o By Ay and this 1t is not possible to consider - - o

can be preaoribed.

™
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% = (A3.1,12)

Bl
-
His
vV
o

then (A3.1,9) is'a relationship of exact differences along mesh

diagonals, so that (53.1.11) reduces to a relationship of the form

*AO + ey

& Yt Pt t M ey = 8 (43.1343)
ie a relationship between end-point values on the two lines 5‘1 AN and

By Bye This is the result obtained along the characteristics of the
difforentia.l eguation analogous to the difference equation (A3,1.2), If
n/m £0,and if k/h = -n/m, then use of (A3,1,8) achieves the sane renauit.
Thus it is reasonable to aﬂsqaia.to the mesh diagonals on the two dis=-

tinot meshes given by

he. . o8
and _5 |
k. l?’ = V(6% - #ﬁ_all : (A341.14)

along which ®413 is a relationship between differences,
with the distinoct characteristics obtained from the hyperbolic

differential equation that is analogous to the difference equation
(”11 |1 2)'

Suppose that no #-interval function values occur in the difference
equation (A3.,1,12), then the set of equations represented by this
difference equation can be coﬁsi&erod a8 an incomplete set, the set
being completed by the addition of an arbitrary, but independent,

set of equations in the function e at i-interval mesh points,

11

T Where if n/m £ O, the diagonal associated with the oha.rnnteristi.o
goes from left to ‘right, and vice versa if n/n > 0,



The above remarks will then apply,

Ggge(ii) _ 32-51.33=0

In this situation, one real value olf n/m exists which allows
(A3.142) to be written as a linear combination of (A3,1.4), and the
differen@ equat:.ton is therefore classified as a PARABOLIC DMGE
EQUATION, The interpretation is similar to that of the hyperbolic °°
case, and sgain the main result is that it is impossible to choose
an arbitrary olosed line on which erbitrary function values can be
obtained,
Case (111) B2 - 438¢ 0 |

In this situation, no real values of n/m exist which enablc;
(A3.142) to be written as linear combinations of (A3.1,4), The main
consequence is that it is possible to define an arbitrary closed
line containing the difference mesh on which arbitrary function
‘values may be specified, In this situation, the difference eguation
is classified as an ELLIPTIC DIFFERENCE EQUATION,

|

A3.2 The Inclusion of Certain Firgt
Having analysed the situation for the prototype equation, (A3,1,2)

a partiouiar difference equation will be considered, whose form can
be identified with the UDR of a differential equation of ths form ' -

2 2 .
a E—-qu- b w +0'-3J2’+ d w = 0 (53-2.1)
x ¥x ¥y dy _

where ac £ O, Consider the equation

‘1
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ab ¥y +082¥,-a, = 0 (83.2.2)

where 31‘1 is a fuheotion of (*‘.’.J - *1_1‘1): (*id - *13_1)3 (*i-l-";, - *13)

and (*13...1 = “’;J)- For the purposes of development, suppose that

Rl AT il TR (15.2.3)
h k ' '

Now it is clear that di 3 cannot be represented as any linear combina-
tion of e, 4, &5 defined at (A341.3), and so it follows that (53.2_:2)
can never be written as any linear combination of elements e 143 a.f
points in the mesh and consequently, (A3.2,2) cannot be classified as
hyperbolic for any a, o, h or k in the manner of the previous section,
However, it will be shomn how (A3.2,2) can, in a certain sense, be

classified as hyperbolic or elliptic,
Write

_ Vg = Vg = = F (g =2 ¥+ Yy + 3 (V- Y1)

(A3.2.8)
FRAPFEEILE CPWLEL PR FRIRE ALPIILE WY

then using (A3.2,4) in (A3,2,3) and subsequently in (5.2.2) then
(A3,2,2) becomes ‘

2a + Ah 512 *ij" 2c + ek 52'*,

2 2. J 4
. S R S
R T I L F L (Vygq = ¥yyy) = O (43.2,5)

It follows immediately that if
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2a + Ah 20 + ek ;
2h 2k? |

then t?w expl'i'cit'lappqarance of *:I. 3 in (A3.2,5) is eliminated, and
(A3.2,5) can then be expressed as a linear combination of function
values along the mesh diagonals depicted in Fig A3,2,1, and thua,l as
in the case of the hyperbolic equation of the previous section, lines
exist on the difference mesh along which arbitrary function values
cannot be specified, le the equation has a hyperbolic nature,

Certainly, if (A3,2,6) is true, then
“ L2 4 MhY . /20 4+ ck |

and thus, a necessary condition for a difference equation of the type
(A3.2,2) to be hyperbolio is that (A3,2,7) is true-.r Conversely, a
suffiocient condition for equation (5.2.2) to be elliptic in nature
is that |

(Q-l- ‘Ah)_ (20 + sk‘) > 0 (A3.2,8)

2 2

Referring to the WDR's of equations of the type (A3.2,1), it is shown
in Chapter III that if

ac > 0, then (.g.é + 7‘11). (.20 + ek) >0 .
2 2
and if L
0 2a + M) [ 20 +ek _
ac < ’ then ( 2,_ 2. < 0 . -. (”.2.9)
- )
| J

T The equation may be considered as hyperbolic to within a truncation
error, | -

2




Figure

2,1

‘Equation (55;2.5) ca.n“ be c'o‘n'side.ra&,a;a.‘ sum oc?l
1inear functions on DA and CB, or on AB and CD,
In either cage, the equation hes a hyperbolic
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for all values of h and k, and thus if the original differential
equation is elliptio in nature, then the UDR is guaranteed to be
elliptio, and if the original differential equation is hyperbolic
then a necessary condition for the UDR to be hyperbolic is satisfied,
and in fact in this situation, an appropriate choice of h and k will
meke the UDR hyperbolic in the sense of Section A3,2,

An interesting result follows, Suppose that (A3,2,6) is true,

then use of (A3,2,6) allows (A3.2.5) to be written in the form

Y=[(2a + A h) (20 + ek)] ) (*1"'11 + *1'1,1 - *144-1 - *i,j-d)
L 2 \
L4 [T ) hk

= O {(¥qy = Yagg)s (g = ¥yyy)] (43.2,10)

Now identify co-ordinates ( s ,4 ) with the diagonal directions, and -
express (h, k) in tems of (4§, a) ), and write |

- ¥

(*1+1a 1-13) = (*i+1a - *1a+1) +(¥yg0q - *1-13)

(¥

1ger " Vga) = Oy = hgy) (f1-13 = Viga) | (RBe2a1)

then (A3,2,10) may be considered as a difference form of

2
¥ . oy, | (A3.2,12)
3§34 aj ﬂ
This is the standard form of the hyperbolic equation, We consequently /

would expeot that if the orginating equation was elliptic, then a
naoeuary oondition for the stubility of the difference equation is

L .

.‘.o?
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'(A3.2,8), and similarly, if the original equation was hyperbolic,
then a necessary condition for the stability of the difference

{
equation is (A3.2,7).

By (A3,2,8), the UDR's for hyperbolic and elliptic equatioﬁa
guarantee the satisfaction of these conditions, A quantative study
of these outline ideas may be fruitful,

The Parabolic Equation

Consider

U LY 2 " . .
‘o—-—-*+ dz’—t = 0 . _ (u,a,u)
¥x® dy

and a difference approximation to it

2 ¥ -y
8, ¥y, + @ (S iy . o (A3.2.11)
J Kk )
. Writing
Vg =Yy e Juae T2 ¢ Mgy | age ” Ve,
2
g A 2 (A3.2,15)
then (A3,2,14) becomes
- K 52 a y
8y Wiy + 238, 0+ 5 (Vg - "13-1) e 0 (A3,2,16)
If d {0, then by choosing
k. o Yedk |
a2 ] (A3.2,17)

ve¥
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‘the equation (A3.2,16) cen be written in tems of linear combinations of 'Yij
along mesh diagonals, and the solution can be propagated along the
diagonals, in the‘lmamer of a hyperbolic equation, If d > 0, then
this cannot be done, and (A3,2,16) has no preferred direction, If

in (A3.2,14), ¥¥/dy were approximated using backward differences, then
the opposite results on 'd' are true, Now, on a given y = conat:;nt,

the solution of (A3,2,13) behaves as the solution of a two point
boundary value problem, in the sense that on y = constant, the solution
at any point depends on the solution at every other point, and the
solution does not propagate along preferred directions in the hyperbolic
ma.nn.ur. Thus, the condition (A3,2,17) must never be true, It follows
that if @ > 0, then forward differences on d¥/dy should be used, and
if @ £ O, the backward differences on d¥/8y should be used, For
example, in the eguation ‘

. 2 J ; , -
:l‘; = ;—% - (M.Z. 18)
X

d £ 0, and the above analysis implies the difference scheme

Vg m Vg Mgt Mgt Ny

At Ax

'ie,tl'm implicit scheme whose stability is well-known,

When a term ¥¥/8y occurs by itself in the differential equation;
the UWDR method will not assign a unique differencing to dD¥/dy, sinoce it
doss not distinguish between “1.14-1 - i”) and “13 - *iJ-'i)’
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Oonsequently, parabolic equations are not considered in the DR

a.na.lyaia o

L L L

|:f~.'
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APPENDIX IV

[
THE POSSIBILITIES OF DERIVING EXACT DIFFERENCE SCHEMES FOR HYPERBOLIC
- AND_ELLTPTIC OFERATORS

Al Hyperbolic Operators

In this section it is proved (by example) for certain simple
hyperbolic differential operators, it is possible to make the solution
space of the difference bperator coincide with the solution space of

the differential operator, Two exasmples are considered

(Ak1,1)

once differentiable
The solution space of (AL,].1) is given by al}/fumtiona of the type

ﬁ(:-}'). By stipulating that the difference equation has as its solu-
tion space the difference analogue of H(x=y), there will be derived
the exact representation of (Ah.1.1), .

In general, the solution space of a difference equation can be

B - ..'\“----...v,\,_.-.).-_.‘,___‘ BT LT
. 0o

\written'a;s"'_ | .

‘‘‘‘‘‘‘

8) = [(at3d) - (Aht o2)

where A and B are arbitrary constants; Let h,k be the step lengths such
that x, = ih and 3, = Jk, | ’

Suppose that



where t is some number, then a typical solution of the difference

equation is, from (A4.1,2) of the fom
: i :

Ai+t.1 ;

zid = (A4etot)
therefore

Li-bt.'] . 'ﬁx-y

Al 4-ic/m) (M41.5)
A Ah
by oonatrﬁd.nt for some A, Hence, if A = A" then
“aat, = 4-KEg - (Ab1.6)
J : h ) eloe

and therefore

t = - % (M-1.7)
Thus, from (A4,1,3) there is

N AP - (A4o1.8)

(441,8) defines the aurilisry squation of the difference equation and
gives immediately |

k/h | -
(2, By =1)2,y, = 0 ' - (8.1.9)
where
E

325 = Zig

By By .= Ty (Ak.1,10)

¥
1
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These give from (A4.1,9) the difference equation

Bivi/nyget "%y = O | (Mhat411)
. .
A precise interpretation to (A4.1,11) can only be given when k/h is

integer, In this circumstance, for the appropriate boundary conditions,
(Ahe1,1) and (A4s1,11) have identical solutions,

That this is true is simple to see if k/h = 1 for then (Ah.1.11)

becomes

CIRIT R TE (aa.12)

L LC AN S

where the mesh is square, Now the charaoteristios of (AL.1,1) are given

by

d

< = 1 (ALa1,13)
and along these

2 = O (Akot.14)

ie moving on a straight line of gradient unity, 2 is a constant, This
is preciaeiy the statement made at (A4,41,12),

(14) 3.’355-3’.2_3. = 0 (Aka1,15)
0  dy

twice differentiable
The solution space of (Ak.1,15) is the set of all/functions of the

form h(:f- ¥)e Following the previous example, solutions of the required
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;iiffareme equation have the typical form
ol
2 13 = Ai_l B

4t)

= A (A4.1.16)
using B = At. Thus by constraint
Aid-t.‘l = | ey
i/ (1)

for some A such that A = ih. Hence, comparing powers of A and lh

t = t.% (A4.1,18)
t
Hence, using B = A
B . atWh
or
B = A..vh (uh1019)

The equations (A4,1,19) give the auxiliary equation of the difference

equation

(m"'/h - 1\) (BA“/“ -4) = 0 (M.1.20)'
Honce o

(5, n;k'_/h - 1) (5, x:k(h -1z, = 0O | (u‘;.‘1'.21)

therefore
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k/h  -k/h -1 :
(EJ - (B, + x:/_ ) + E; ) 2y = O (Ak.1,22)

In partiocular, ifik/h = 1 (ie a square mesh) then (A4.1.22) yields
Zi+13 - zij.'.‘l @ zid—" + 21-13 = 0 (M.‘hﬂ)

as the difference equation which exactly solves the differential
equation (A4.1.15) on a square mesh, On the square mesh (A4.1.23) is

identical to the standard Taylor series form of_(Ah.1.15).

Now suppose that k/h = 2, ie the aspect ratio of the mesh is two,
then (A4,1,22) yields

wre .

Ziget " O4408 " Bypgt Py = O (Abeto2s)

as the difference equation which exactly solves the differential equation
on a mesh with aspect ratio, k/h = 2, Equation (A4.1.24) will not

naturally arise from a Taylor series approach,

Thus, in simple situations it is certainly possible to construct
a difference equation having the desired property, It would possibly
be a fruitful avenue of research to see if an approximation of this
principle could be applied to produce good schemes for hyperbolic

equations of a practical relevance, .

Ai,2 ~ Elliptic Operators

. It will be proved for the simplest elliptic differential operator,
that it is impossible to write down a polynomial difference operator
(ie one with a finite number of terms) whose solution coincides with
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‘the differential operator,

Congider i

_3_2_3_.._@_2_2_. = ‘0

Nio 2.1
x? vyl ( )

The solutions of (.M..Z.‘l) are combinations of all functions of the type
H(x4/=1y) (ignoring the simple polynomial solutions), The correspon-

ding solutions of the required difference operator are all functions of

the type
, 1.3
v.Jgy = A'B
= AMH (A42,2)

using B = At for some ¢, Thus, by constraint, it is required that

A5.4-’5.1 - ix:_{ﬂ?
A -
A1/t k/n) (M42.3)
A Ah : s Ah
for some A such that A = A", Hence comparing powers of A and A
v :
t = pVetg ~ (Ab.2.4)
Using B = A°, there are the relationships
B o/ Wh
B B.AJ-‘l Vh ) _ (Mo205)

These give the auxiliary equation of the difference equation

-
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A Wh Ly @M Whoy) . o . (Ala2.6)
Hence ; |
o4 /b V¥ k/h .
(5, By =) (By By -1) 2y = O (A%e2,7)
After suitab\le manipulation, this yields
Y- k/h -1 k/h -

Using the relationship E:l. = ehD where D = d/dx, (A4.2,8) yields

wrs &

Thus the difference equation whose exact solution is that of (A4,2,1)

is
Zygyg - 2008 (£108 (B))) 2y 4235, = O (A442,10)

8ince (A4.2,10) contains an infinite number of terms, the original

statement is proven,

To show that (AL.2,10) yields the standard approximation, use

Ey = am therefore
- b Al \
By 4, = 2 Cos (1:. 55) Yy ¥4 = O (A4e2,11)

therefore

z 2 (1 - 222
g T BT ;é)fuﬂm-, ~ 0 (M4e2.12)
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(Byqg =2%,, +3,,,) 2 . B
e +:2 Z,, &2 0 - (Mh243)
K ) 4

for the result, '

Since the result is true for the simplest of elliptic differential

operators, it is reasonable to suppose that it is true for all elliptic

differential operators, Consequently, so far as elliptic equations are

concerned, some form of partitioning in the differential operator has to be

resorted to (eg Chapter 3)‘- .'\ ,

L S
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APPENDIX V

CERTAIN PRECISE DETAIIS OF THE SOLUTION PROCEDURE
i

A5, A Typical Cartesian Momentum Equation
ecluaf on

In full, a typical 3-D (x,u) momentmﬁn given by
' rt
h(t,t) = o P
*eUs g ‘ {(Um:u: = Upge (1 + B (U gy, 82)) + Ty qpes
oix (1 - h (uuk, Ax)) ' ' 2 ~

h (Uhk',hx?}

B L

T+ R Vi {Uidﬂk Ugge (1 # B (Vg ")) * Uy gk
by (1 = b (Vg ., 7))
iJk' AY)}

+o W
€ Wik Uyges = Uy (1 4 1 ('uk' b))+ L
bz (1 = h ("1.1!:’ Ag))

h (!uk, fs)}

+ - P . -
(Pm'& M'E) = 0 (85.141)
‘'2Ax :
For simplicity, now define
h, = .h (Uidk, Ax)
+ U (-&5.1.2)
c, = € Ui gk . A
ax (1 - h)

and similarly for h', h', () . and 0'.

From (A5,1,1) a successive over-relaxation (SOR) soheme can be defined,vis
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. vt
, Uf;k = 1.11:*’){0 (U pqge = (1 +B) Ty + B Ty )

+ 0y (Uygqp = (1 + b)) Uy + by ULI-1K)

I
: P v

# 0, (Uygq = (1 +B) Uyy + b Uy y) ( 1+1Jk2 Ai_d_—1 k)} /
. b <

{cu (1 + hu) +C (14 h‘) + 0 (1 + h')} _ (A5.1,3)

where the relaxation faotor is given by

£

‘jK

- ?/(c:u (j +h)+0 (1+h)+0 (14 h'i) (A5.1,4)

The denominator of E‘ih“ Just the coefficient of the disgonal term U, 3K
and can therefore be viewed as a scaling factor for the equations to make the
coefficient of all diagonal terms unity and of all off-diagonal terms less

than unit\j.

From (A5.,1.3) there is now defined

At

U = Ui *7\{0 (Vg g = (1 + 1) Uyge * Pu LAY
+ 0, (Uyg = (14 b)) Ty + b0y ,,) 3

+ 0 (Tygppq = (1 +B) Ty + by U:l.:)k-‘l)}/

{‘cu (1+1h)+0 (4 ; h)+0 (14 h‘)}' | | (454145)
and .. |
0111311: = 131: | )(M')/
: 24 x : ' :
{cu(1+hu)+c'(1+h')_+6'(1+h')} . (4541,6)

Equations (A5.1,5) and (A5,1.,6) are typical of those used in practice,
'I'ypioally ? ='0.5
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GLOSSa2Y OF THXLS

kinematic viscosity

the Laplacian
the velocity vector
static pressure
incremeats in x, y, z directions, respectively,
conjuzate transpose or arbitrary matrix
o+ % (u? X v2 " wz)

\' ; .
covariant components of the metric tensor
contravarisnt components of the metric tensor
determinant of the matrix_(gij)

contravariant velocity compenents in curvilinear

- - . ; i
co-orainates (standard notaticn is v7)



