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THE PREFPARATION OF TAPES AD BOOKLETS SUITABLE FOR A
HREVISION COURGE IN PARTICLE DYUNAITICS.

SULIIARY

The work examines the problems which University
of Aston first year students heve in their ILynamics Course
and gives reasons for the choice of audio tapes and
booklets in the form of a progremmed lesrning course.

It demonstrates the necessity for developing these
programed units of the course in specific stazes. The
student is guided so that he uses the leerning hierarchy
of dynemic theory, demonstration of the method end then
given further guided practice lezding to the completion
of entire problems. Some conclusions arising from the
whole worlk ere noted, together with sorme favouresble
comnents by students. The completed course booklets
and tape scripts are given &s appendices 1 to 10.

Submitted by Kenneth A.H. Jackson for the
degree M. Phil, 1980.

PROGRANMIED LEARWING: PARTICLE DYNAMICS
REVISION.
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CHAPTER ONE

The Problem and Froposed osolubtion

Lyt The dynaries courue concerning us at the
University of Aston in Birminghem is & conventional one
which first year students study, as part of the Honoure
Legree Course in Eathematicé. For sbout two thirds of the
tire, they &are concerned with Particle Dynamics, and the
remaining third with Rigid Body Dynamiecs. The teaching
method has been for Kr. R.J. Clarke (R.J.C.) to conduct =
one hour class lecture, twice & week, together with
regular set work. These periods cover sescions on theory
and the working and explanation of examples. The set

work is returned weekly with necessary comments and &
approprizte score. R.J.C. is always available at the end
of the lecture, or in his office, - if students wish to
consult him. Students respond to this, and rendily ask for
help, and some for extra work. This is given in the form
of suggested exemples from texts, but is inevitebly limited
in scovpe as the students have a wide range of academic and

ethnic backgrounds.

ks Each year a small number of students are in
difficulties for one of three main reasons., First, some
of them take 'A' level courses vwhere the dynamics teaching
is weak. Second, some students have taken a statistics
option in the context of an 'A' level course. This is
becoming more popular tnd the number of these students will
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increczse. Third, there are thosge who are weak in
éynamics and need more time spent on this subject.

Other students, not necessarily in difficulties, ask

for some helpful revision material, especially towerdas
the end of the course. It is the object of this project
to decign a course in Particle Dynamics which will fulfil

the needs of 2ll these students.

L3 There is no doubt that Dynamics is a difficult
topic in mathematics, and if students are to be helped by
this meterial, they have to be shown how to break it dovm
into four essential stages:

i) They must be shown how to interpret a
dynamics auestion into diagrammatic form showing relevent
mathemsztical information. This gives a concrete source of
information.

ii) They must then avpply the relevant dynsmics
prineiples connecting the given material {o produce
eouagtions.

iii) They must use their knowledge of pure
mathenmatical technigues to manipulate these equations
successfully.

iv) They must be able to translate the
mathematics back into dynamic terms and make relevant

deductions.



t

1.4 In the preporation of material for thiws
rarpose, the following zssumptions have been nmade:

i) A1l the students have attended the series
of lectures by R.J.C., snd therefore have some prior
knowledge of the material.

ii) They find the subject difficult and lack
confidence in their own zbility.

iii) Some would be of poor ascsdemic ability.

iv) A number of them would be potentially
good, but have been hampered by their academic experiences.

v) They are willing to devote three or four
hours to repairing their shortcomings in a particular
topice.

With this in mind, I determined that a revision

course would be of most use.

e I envisage the materisl being used in three ways.

|

i) Where the lecturer discovers that a student
is weak, and suggests he should use it.

ii) VWhere a wenk student asks for help, and is
directed to use it.

iii) Where the body of students decides to use

the material for revision.

1.6 There are specific aims which need to be taken
into seccount in the structure of the schenme:

i) To consolidate the students knowledge of the
Aston University Particle Dynamics course.
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ii) To exvlain how to translate auestions into
diagremmatic forms

iii) To exnlain to studente the avplication of
dynamical »rinciples.

iv) To show them how to maniovulate the Pure
lFethenatiecs end to make sure they do it correctly.

v) To show them how to reinterpret mathematicel
resul ts into dynamical terms.

vi) To enable students to hear and read dynamics
at the same time, to familisrize them with the terminology.

vii) The students must be able to work through
the course without suvervision, to seve staff time.

viii) The meteriel must be self-correcting,
giving enswers and solutions to problems where needed.

ix) To improve a student's confidence in the

subject.

e These considerations all led me to the conclusion
thet the course must be presented in 'Progremmed Learning!
form. That is, the subject matter must be divided into
sequential 'fremes' of work, giving answers to previous
frames. In this way, students may be shown how to perform
processes, or check their owvn attempts minimizing errors.

Specific aim 1.5(vi) suggests the use of an audio tape.

1:8 My only previous experience in Progreammed
Learning (JACKSON 1966) had been in connection with booklet
/nachine presentation. I thought that this would be too
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limited in scope; students rapidly become bored by
booklets, and would resvond more readily to & voiece., 1
looked at three existing schemes to examine how the human
voice had already been used in thece circumstaénces.

The first of these wes a cassette tane
presentation in the Chenistry Lepertment at the University
of Aston, through the courtesy of lr. P.ll. Groves. These
were obviously effective, but covered the complete
presentation of & course. They were used in stead of
lectures and referred to booklets, films, slides, models
and the comouter. These tapes were too wide in scone
and not the answer to my problem.

The cecond scheme wzs a purchased set of
cassette tape / booklets from the University of Edinburgh
by Mr. J.W. Seare. I obtained these through the courtesy
of NMr. W.0. Storer of the Mathematics Devartment at Aston.
They concerned topics in pure mathematics, and were mainly
student paced exercises; the students were given rules
followed by a number of exercises. There seemed to be
very little interaction between the voice and the booklet
and thus it is not a particularly effective teaching azid.

The tkird scheme was an Cpen University tave /
booklet on gravh work by courtesy of IMr. R. Wilson, Crewe
College, Alsager. This was most effective, but assumed
no previous knowledge of the subject, which is of course
the task of the Open University (MELTON 1977).

A common feature of these schemes was the use

of 2 buzzer to indicate the command 'SWITCH OFR'. This
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Seemeqa imnersonsl and remote I had noticed thet

- . [¥] LY

Postlethwaite in his 'Audio Tutorizl Approzch' used
masic for this nurpose, but the type was not specified

(POSTLETEWAITE 1972).

fd

Fnowledge of these schenies confirmed my idex
of using a system of audio tapes and booklets for self
study, which are being tried out in some areas of science
teaching (BRIDGE 1976). liy proposal was therefore as
follows:

To produce & series of linked audio tapes and
booklets, based upon a 'lerge step' programmed learning
cporosch. The work would be in addition to the lecture
course and would enable the student to tcske it away and
work through it at his ovm pace (vide MACK '77). The
'fromes' would include those giving information,
demonstrated examples, practice exsmples with assistonce,
znd complete problems, each giving answers or solutions.
The tape should control the steps in working through
the booklets, giving helpful informetion and hints on

working.

1.10 There were four reasons why I wished to use
the voice as a method of instruction:

i) Aurasl contact is more versonal and friendly;
a student might obey the suggestions of a human, rather
then a booklet or buzzer.

ii) When listening to the voice, the student is
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in contact with an authoratitive guide on the subject.
(POSTLETHWAITE)

iii) The voice is flexible &nd cun be used to
emvhasize imnortant stages.

iv) The student would become more femiliar with

the terminology of dynamics, hecsring it used in the correcy

context.

2 N Before the use of speech, the oldest form of

instruction was by imitaetion, a laborious &nd unstructured
process. Subseguent methods using the voice have been
considered of great importence by many civilisations,

not least among these being the Greeks., In their system
of schooling, out of seven subjects studied, they had
three concerned with speech (the trivium - grammar,
rhetoric and diaslectie). This ha@ a profound influence

on the succeeding civilisations in Europe and Britain
(CLARKE '71).

The 0ld Testament contsins meny examples of
exhortations by The Prophets, end later, during the Roman
Civilisation, of Christ in His ministry - 'And He spake
meny things unto them in parables.' (Matt. III). Since
then ministers and priests have used the sermon as a
vehicle of teaching.

Barly British scholars relied heavily on help
from European centres of learning, and we hear of John
(en abbott) of Salisbury, wandering in France during the
years 1136 to '47, learning dialectic from Abelard et

Chartres University. (HA%iINS '63). This reliance on



speech is ealso emphasized by the ancient university

method of examination by disvutetion: 'A verbal battle

in whieh the student nits his wits egeinst the University
Chancellor or his senior representative (HASEINS). This
still remains in the form of oral exominations in connection
with the submission of theses for higher degrees!

With the foundetion of a national system of
education i1 the mid-nineteenth century, there &rose &€
need for short cuts, an aid to the unfortunate teachers
in their over large classes. A whole series of rhymes
were used, to be quoted when necessary, (not nececsarily
with understanding).

For exemnle, in mathematics:

'T"welve and eight

meke twenty straight.'!
ands 'A pint of water,

weighs a pound and a nﬁarter.' (Vide, my parents)

The acouisition of 'good' speech hes alweys
received close attention in schools, and even today, we
have nmany separate '0' level examinetions in English
‘grammer' and 'literature’.

The beginning of broadczsting in 1924 hes led,
among other matters to 2 tradition of 'talks' ebout a
tremendous variety of topics, keeping people aware of
current events, and widening their outlook. Since 1948,
when 'School Brozdcasts' began, the B.B.C. heg produced
vest amounts of helpful maeterisl, supplementing the
teachers' voice. JTuring the year 1974-5, 1004 hours of
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educetional radio materizl were broadcast at all levels,
from infant to Open University (ANNAN '76). Some: 905 of
schools are revorted as using these facilities.

At & conference of members of the Institute of
Mathematics and its applications (Education Section) on
26th November 1977 to censider teaching in Primary Schools,
the President, Dame Katherine Ollerenshaw remarked that

"Children need to sveak more mathematics."

1s12 In Higher Education, lectures are still a

very imvportant vehicle for tesching, but we must be
cereful that the ritual does not dull their impszct. Ve
still have & useful tradition whereby a newly apvointed
professor delivers en inaugurel lecture, which is of course
authoritative, and at a high level. Another considerable
method of teaching at a high level is by reading books.
These need self discipline to be used effectively by the
students, and since many books may be needed to understand
a single new topic, they can be enormously time consuming.
The tutorial is also an effective personal contact with
students, often providing useful dialogues, but if large
numbers are to work in this way, it is too demanding from

the staffing point of view.

1.1 These audio tepes and booklets are presented
as a help towards overcoming these difficulties, providing
an aural contact, and structure review tasks, available

on demand.



CHAPTER TWO

PROCEDURE AND ANALYSIS

2.1 Since I had little previous exnerience of
tape recording, I thought it prudent to mseke a trisl of
the material snd method. It wes also thought that it
would be wiser to try some topic other then Particle
Dynamics in case matters went awry. A 24 page booklet
end corresvonding tape, with 33 instructions, concerning
the Apollonius Theorem in geometry, was drafted and
recorded. In this, the student was shown how to prove
the theorem, asked to prove it himself, and then work
through four examples. This wes tried by R.J.C., and a
final year student from the mathematics department. The
student, who had not encountered the Apollonius Theorem
before, used it successfully, and commented favourably on
the self-pacing aspect. R.J.C. was also impressed by
its teaching, but thought that the book was too detailed,
and the voice overused. However, we were both of the

opinion thet similer material could be of considerable

benefit to the first yesr students in dynamics.

2o As a result of this trial, the following
decisions on format were made:

i) Each booklet should aim to include about
10 related examples covering some three to four hours

work.
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ii) Revision information would be included
in a booklet, where appropriate.

iii) The work was to be aivided into large
blocks or 'frames'. Some of these were to be 'directed'
i.e. demonstrated or assisted in some way. Others would
be for individual working with an occasional helping hint
(See Table 1

iv) To save naper, the separate fromes wounld
not be placed on successive peges to prevent cheating,
but produced continuously, and delineated by heavy lines
ecross the pege. Students would be encouraged to use
sheets of paper to cover material in advance of their
working. y
v) The tape should be used to give guidance
through the booklet, explaining or expanding particular
points in the work.

vi) A verbal 'switech off' would be used.

vii) A fairly brisk pace would be maintained

with & gep of 5 seconds between instructions.

23 As few students would have used this type of
material before, they would need some booklet instructions,
when no spervision was available, They should be included
in every booklet, so that a single topic could be used

in isolation from the whole scheme, and not lengthy

enough to be discouraging. The set, as given in Fig 1.

p 31 has proved effective. To save space in the
appendices, the instructions have only been placed in the
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front of Booklet 1 (See page 31).

Justificetions for these instruections are

given below:

Instruction 1: We have a concise statement of the method
of working.

Instruction 2: This is self-explanatory.

Instruction 3: This is an attempt to save 'cheating' in
some form, though I do not think thet
this is importsnt, provided the student
has made some effort to esnswer the
question himself.

Instruction 4: This was to save paper used in the booklet
to minimize expenditure by the departmpnt.

Instruction 5: Students will need the materiael for their
owvn revision, and it would be a waste of
time to hsve to copy out questions and
solutions.

Instruction 6: This is to let the students feel that they
have complete freedom with the tape.

Instruction 7: This is obvious, but mistakes are possible
with 10 packs of material.

2.4 Having reaed the syllabus in Particle Dynamics,

to see how it should be broken down into the booklets,

there appeared to be eight natural subdivisions of the

topies. However, having looked at the range of problems

which might occur under 'Motion in Two Dimensions', and

'‘Central Forces', it was decided that each of these
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warranted two booklets. Thus the total number is ten.
These are the booklet titles (a nuick guide

to content) and the parts of the syllabus covered within

them; -

l. 'Uniform Motions and Newton's Laws' - Descriptive

motion, uniform acceleration, Newton's Laws of MNotion.

2. 'Power, Energy and Hooke's Law' - Conservation of

energy, Conservative forces, Hooke's Law.

3. 'Momentum and Restitution' - Conservation of momentun,

impulse and restitution.

4, 'Notion in Two Dimensions' - Perpendicular acceler-

ation components, Projectiles above a horizontal plene

and an inclined plene.

5. 'Extension of Motion in Two Dimensions' - lore

complex examples on impulse, restitution and Newton's

Laws.

6. 'Variable Forces' -~ Motion under variable forces,

projectiles with resistance.

T. 'Oscillation' - Simple harmonic motion, damped

harmonic motion, foreed oscillations.

8. 'Restricted Motion' - Circular motion, normal and

tangential accelerations.

9. 'Central Forces' - Acceleration in polar coordinates,

central forces and plane motion. Differential equation

of the orbit.

10, 'Orbits' - Conics in polar form, inverse square law,

periodic time, velocity in orbit.

13



25 I tried to prepare the first tape and booklet
by my owvn efforts, based upon the syllabus for Booklet 1.
The result was unusable for three mein reasons. The
material &id not assume sufficient knowledge by the
students, the ouestions were of the wrong type in thet
they failed to test the students sufficiently, and the
overall standard was too low. As this had taken some

60 to 65 hours to write, I decided that it reguired more

discussion with R.J.C. of the material at several stages

in the production.

2.6 A more structured approach was detailed, which
would allow any material to be discussed and commented
upon a2t specific steges of development. These 5tages‘
were to be enforced, with broad agreement before passing
onto the next. It is worth listing these stages, as
they allowed R.J.C. zand myself to keep an accurate check
on the subsequent material, sometimes enabling the

simultaneous development of three booklets to proceed.

Stage 1. Agreement of outlines.

This was to ensure that we had the right
number and type of problems, and an outline of the
dynamical theory to be covered.

Stage 2. Stated examples.

This was to ensure that there was no overlap
with problems already used by R.J.C., and that they were

of the correct standard.

14



Stage 3. Revision statements and solutions.

That dynamic theory, which was intended for
use as & revision guide, was written out as it would be
appearing in the booklet. The problems were worked in
similar ways to those used by R.J.C. with his students,
end the solutions written out fully.

Stage 4. Draft Booklet and tapescript.

Using the Stocge 3 materials, the theory and
examples were converted into a programmed booklet and
accompanying script. This was a very lengthy process,
as the problem methods had to be demonstrated, practised
end tried by the user. The problems had to be cut into
workable pieces and the script varied for each function.
The whole draft was then edited, and examined for the :
pege layout, before making a fair copy for discussion
with R.J.C.. Initially these processes took in the order
of 110 to 120 hours, and even with practice the overall

time was considerable.

Stegce 5. Typing of the booklet.

This weas underteken by a secretary in the
Mathematics Devartment to ensure clerity and the incorp-
oration of all the necessary symbols. The disgrams were
then drawn by myself and subsequently lettered in type.

Stage 6. Recording of the scrivt.

A portable tape recorder was borrowed from
the Communication Media, and to ensure a quiet background
a room in the centre of the Modern Languages Dept. was
used.

15



otage 7. Testing the Material.

By allowing volunteer students to try it for
thenselves, I could assess any breckdown in the function
of the material.

Stage 8. MNodification of booklets or tapes.

This would allow for corrections as needed.

2.7 The selection of oguestions and revision materiels
used in the booklets are summarized in Table 1 (pp < — < ¢
This indicates how closely they are linked in each

booklet, apart from Booklets 5 and 6. Booklet 5 is an
extension of the work in No. 4, at a higher level and

No. 6 is concerned almost purely with practice in

integration, and uses the examples to demonstrate the

methods.

2.8 The great length of time involved in stage 4
(para 2.6), mey be explained by looking at some examples
of the structure of the booklets, which had to be
progressive. Where necessary, relevant revision inform-
ation wes given s a particular frame to be studied by
a student. This gave him sufficient basic material to be
able to start, by refreshing his memory. For example,
in Booklet 7 'Oscillations', there are frames on S.H.M.
(p 168), damped oscillations (p 180)and forced oscillations
(p 185).

The student is reguired to examine many
diagrams, in order to demonstrate their importance and use.

16



lMost of these are given with a problem, and are to be
studied as methods of recording information e.g. Booklet
4, example 2 (p 94), example 4 (p 98);Booklet 8, examvle

1 (p 199).

A student is &lso given practice in drawing
his own diagrems, and these have to be checked against the
answers, enabling him to insert omissions or correct
mistakes eig. Booklet 5, example 1 (p118);Booklet 7,
exemple 3 (p 203).

Introductory exempnles in each booklet are
demonstrated by using the combined voice and booklet 4o
give the appropriate approach énd solution e.g. Booklet 3
example 1 (p 72).When the student has absorbed the inform-
ation and diagram, he listens to Instruction No. 5 (p 56)
which gives the step by step processes, and then he has
to look at the complete working in the next frame. Or,
in a more complex exemple, he is given the eguations of
motion to check, and then the method of solution is given
in the next frame. e.g. Booklet 9, example 1 (p 228),
Instructions 2,3,4.(pp245-6).

Once the methods are demonstrated, the problems
are worked increasingly by the student himself, and for
this purpose, they are broken down into several stages.

At each stage, however, the correct procedures and answers
are shown e.g. Booklet 3, example 6 (p 78),Instructions
18,19,20,21 (pgg}; Booklet 8, example 3 (p203)Instructions
9, 110,41 A p2e1) .
It is important that a student is aware of

17



different dynamicel solutions to some problems, and

where possible, these are shown. e.g. Booklet 7,

example 4, last frame (pl76), Instruction 17 (pl92); Booklet 8,
example 7, last freme (p212)Instruction 24 {p224).

The student's attention ié also drawn to
alternative mathematical treatments in one or two
problems, which allows for some degree of choice in his
treatment of answers e.g. Booklet 8, example 6 (p208).

Problems conteining the derivation of mathemat-
ical statements from the working often prove too difficult
for the weaker student, and to alleviate this difficulty,
this type of proof is demonstrated in a number of
examples. e.g. Booklet 4, example 7 (pl02);Booklet 9,
exemple 2 (p230).

Finally, if the booklets are revising the
work satisfactorily, a student sﬁould be able to solve
complete questions himself. Such exercises are included,
as the last example in a booklet, or after completion
of a particular tqpic within it. The taped instructions
give broad hints towards the solution, and the complete
answer is given in the booklet, which is read through
as a check. It is hoped that successes gained in this
way will improve a student's self-confidence. e.g.
Booklet 2, example 6 (p79), Instruction 17 (m88);

Booklet 8, example 10 (p217),Instructi0n 35 (p226).

2.9 It was only possible to undertake a limited
amount of testing by the students for whom: they were

18



intended. Three of the first year course, who performed
badly in their Xmas test in Dynamics agreed to try out
the tapes end booklets. In case of difficulty during
the trial, they performed the work under supervision,
but in fact this was only needed on one occasion. They
were able to try the first three booklets, and one was
able to continue to the fourth end fifth. They were
questioned afterwards about the booklet contents and
layout, and the tape contents, and the cuality of the
voice.

Identifying a few errors, the students
thought the booklet layout and content satisfactory,
necessitating few changes in that part of the material.
However the portable tape recorder had produced some ‘
distortions in opening phrases, and loud clicks on
switching 'on' or 'off'. The students were not unduly
critical of these however, as the words were identifiable
after rewinding, and they said the overall cuality did
not interfere with their concentration. _

However, I thought that these distortions and
clicks would produce growing irritation in someone
unconnected with the development of the programme. To
obviate this I have subsequently recorded all the material
using a language laboratory in the Modern Languages Dept.
of Newcastle updn Tyne Polytechnic, which has produced
high quality tapes. Editing of errors was conducted
easily, and I have deliberately left a few minor ones in,

so that the &tudent may feel that 'the voice' has human

qualities.
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2.10 On completion of the booklets and their

recordings, Table 2 (p29) was compiled to allow for

some comparisons to be made. This shows that despite

the roughly constant number of guestions in the first

8 booklets, there is & steady increase in the number of
rages, frames, instructions, and the overell tape time.
This indicates the increasing difficulty of the meterial
making more steps necessary to help the student. The
number of fremes and instructions keep roughly in step

as the majority of frames concluded with the instruction
'SWITCH ON'., The last two booklets on 'Orbits' involved
guestions with much longer written answers, and this was
why the total number was reduced to 16. This is reflepted
by the shorter overall recording times. It must be
emphasized that the '"running times' listed are purely an
indication of the amount of tape used, and will bear
1itt1e.relation to the overall times taken by the student.
He must take as long as he needs to complete each element

of the course.

P 5 Looking at the overall project, the following

conclusions may be drawn.

1. The devising of the separate stages in the development
of the booklets/tapes have proved to be effective. It is
only by developing the stages in this way that one can
build up the material successfully in the least possible
time.

2. Throughout this development there must be a very close
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consultation with someone who tesches a group with whom
one has no direct connection. This was possible at this
particular time as I was able to attend the lectures for
the first year students as part of my overall course
programme, and these proved invaluable.

3. The students found the material most useful, and were
loath to criticize it using a guestionnaire. When asked
in a more relaxed atmosphere they were more willing and
the following points emerged:

i) They found the booklet instructions compre-
hensive,

ii) They 2ll used the tape rewind facility
a number of times.

iii) They liked the self-pacing with immediate
availebility of answers and methods. This is in agreement
with November in his Manchester trials (NOVEMBER '78).

iv) They found most of the 'hints' on the
tape to be useful in helping with problems.

v) The verbal command 'Switch off' was effective
eand not at all boring.

vi) My North East regional accent was not
found to be obtrusive once the students had heard my
voice several times.

vii) They did not favour using headphones,
even though they studied in a building with a great deal
of background traffic noise from a motorway.

4. It would aprear from the triels already conducted,
that the overall standard is corréct, but this needs to be
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verified with use. The students need to have some partic-
ular time limit within which to work so that the material
is not underused. The grouping of the work into 10
booklets is only a convenience in allocating tovics to
common bases.

Some of these units avpeared to nced severszl
hours to comnlete and thus it would be necessary to bresk
them down further if the ﬁarticipant students are not to
be discouraged. This could be carried out in three
separate ways.

i) Rewrite the work into 30 booklets; but
this would be too cumbersome.

ii) Include extra instructions on psge 1 of
each booklet advising the students about convenient
stopping places.

iii) The method I favour would use the tave
counter facility, so that students would be using this in
addition to the other instructions. The.tape could
tell & student that a particular counter number was a
convenient stopping place. In trying to start from a
particular topic, the counter numbers could also be given

on pzge 1.

AR A natural sequel to this work would be to

produce revision material for the Rigid Bodies Dynamics

syllabus used in the szme course.
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243 The programme that has been produced here is

not the only self instructional packaged materiel used

at the University of Aston, but the provision of such

is fairly sparse. Students using it will, I think,
appreciate these remarks made by Professor Goldschmid of
Lausanne: "It is likely that the trend towards indivicdual
instruction will increase and be intensified. If so,
instruction in higher education will be profoundly

altered and may enter a promising future." (GOLDSCHLID '76)
There is of course the problem of time in which to do the
tremendous amount of preparation resuired. This is
perhaps where people like myself could devote a comnplete °
sabbatical year to form small teams devoted slowly to‘

the work.
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TARLE 1. SUIMARY OF THE CONTENTS OF THE BOCKELETS
Booklet 1. Uniform motion and Newton's Laws
Tonics lio. of Revision No. of relsted
Franes ouegstions
Uniform acceleration. 3 4
Vertical motion under ‘ 2
gravity.
Newton's Laws of 3 2 on single pulleys
motion 2 on nmultiple "
e n te's Law
Tonics No, of Revision No. of related
Frenes nuestions
Power and energy 2 2
K.E. and conservation 2 | 2 on energy on
incline
Conservative forces i} 2 on energy end
momentume.
Hooke's Law i ! 2
Hooke's Law and P.E. I 2
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Joo0klet 3. lomentum and Restitution.

Topice No., of revision Ko. of reloted
frames auestions
Momentum, imnulse 2 2 immulse zlong

straight strings
Conservation of momentun 1 3

Coefficient of restitution 2 4

.

Booklet 4. lNotion in two dimensions

Tnniés No. of revision No. of related
fromes cuestions
Vectors 1 18
Relative velocities 1 2
Projectiles above B 3

horizontal vlane
Projectiles above 1 2
inclined plane
Inclined imnact 1 2
1 projectile with

impact
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Booklet 5. Ext-nsion of lMotion in Two Limensions

No. of related

Topice No. of Revision
Yotion on inelined i
planes.

Impulse along:inclined
strings

Gun barrel inclined

to ground.

Inpact spheres on

inelined paths

Booklet 6. Varicble Forces

Topics llo. of Revision

guestions

4

No. of relzted

fremes
Horizontsl motion
and resistance vroportion-

el ¥kv"
Vertical motion, resist

v

26
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Booklet 7. Oscillations

Topies No. of revision No. of related
frémas oguestions
9. H .M U 1 along strings

2 using apnrox.

2 using solution

of B, B,
Damped oscillations 1 3 (1 for eech
case)
Forced oscillations 1 1 stable,

1 unsteble motion

Booklet 8. Restricted Motion.

Tangential and normsl y 3 motion in circle
accelerstion 5 motion on
smooth curve
1l motion on rough
curve
1l single sided

restriction
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Booklet 9. Central Forces
Topics No. of revision lio. of related
frames duestions
Polar coordinates 1 3 string through
hole,
1 apse, elastic
string.
2 apses
1 elliptical
orbits
D.E. of én orbit 2 orbit from
given force
Booklet 10. Orbits
Tovics No. of revision No. of related
fremes cuestions
Orbits 3 more difficult
forces
Polar coordinates conics 5} 3 inverse
sguare law
Velocity in elliptiec 1 1 change of
orbit

veloeity, orbit



TABLE 2. COIPARISON OF THE BOOKLET FORNATS

Booklet No. of No. ol No..of No. of tape Tape runs

Number Ouestions Pages Frames Instructions (mins)

1 10 12 25 26 12
2 10 13 24 26 Y2
3 9 15 26 26 14
4 11 18 25 29 17
5 11 17 34 36 19
6 10 18 32 31 20
i 10 22 36 37 24
8 10 22 3 36 23
9 19 30 27 14
10" T 17 25 21 13
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- APPENDIX 1.

A REVISION COURSE IN PARTICLE DYNAMICS

by

Kenneth A, H.Jackson

BOOKLET 1 to be used with TAPE 1

"Uniform Motion, and Newton's Laws"

Read the instructions on page 1 thoroughly.
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PLEASE DO NOT OPEN THE BOOKLET ANY FURTHER YET.

1)

L)
5)

6)

7)

The work in this booklet is divided into sections bounded
by heavy lines across the page. You will be asked to work
through these in sequence by instructions on the appropriate
tape. Keep strictly to this sequence.

To save running a voiceless tape, you will be told to 'switch
off' at the end of every instruction,

The maximum benefit from the work will be obtained by not
looking ahead. Avoid this by covering the following work
with a piece of paper at each heavy line,

You will need paper for your own working.,

You may keep the booklet when you are finished as a
permanent record of the work.

If you miss, misunderstand, or forget any instruction, stop
the tape, and rewind it so that you are able to replay the
part you need. You may do that as often as you like,

Check that you have the correct tape, insert it into the

playing machine, and SWITCH ON,.
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Al e

J‘:...._—-—.——»-

The S.I, unit of length is the metre. (m)
When you are ready to go on, SWITCH ON the tape.
When you have written the two forms of velocity,

check your answer below,

d i, i
Velocity = at = X
The positive sense is the same as the positive sense of x.

The unit of velocity is metre per second. (m s~%)

When you are ready, SWITCH ON the tape,
When you have written the three forms of acceleration,

check your answer below.

a®x

Acceleration = i X = v-%%, and the positive sense of
acceleration is the same as the positive sense of x and v.
The unit of acceleration is metre per second per second (ms-a).

SWITCH ON

EXAMPLE 1.
A particle moves such that its distance from an origin
is given by x = t® - 6t® + 9t + 5.
i) Find when the particle is at rest.
-ii) What are their distances from the origin at these times?
iii) How far is the particle away from thé origin when the
acceleration is zero?
When you have finished this example, check your solution

on the next page.
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Solution to example 1,

dx

i) velocity = ¢ = X = 3t% - 12¢ + 9 = 3(t-3)(t-1)
;;:Owhentzjorl.'
ii) when t =1, x =9
when t = 3, x =5
i a®x -
iii) acceleration = =57 = x = 6t - 12 = 6(t-2)

X =0 when t = 2, and x = 7

SWLTCH ON

Consider the motion from A to B in time t

a

- x = distance AB
u v
— —p a = acceleration
i - u = initial velocity
A 5 B
v = final velocity
v = u+at x = ut + jat®
v?= u?+2ax % = vb~- 2at?

You should leam and remember these equations,

SWITCH ON
EXAMPLE 2
: dv _ d*x : =
i) Use a =3¢ = 3g¥ » to derive (2) v = u+at
(b) x =ut + Yat®
ii) Use a = % to derive v® =u? + 2ax

When you have finished,

SWITCH ON,

35



EXANMPLE 3.

Two particles P and Q move in the same straight line,
with Q initially 18m in front of P, Q starts from rest with an
acceleration of 3ms ?, and P starts in pursuit with a velocity 10 ms™*
and an acceleration_of 2 ms 2. Prova that P will overtake Q after
an interval of 2s, and that—Q will in tum overtake P after a

further interval of 16s.

When you have read this carefully, SWITCH ON

Initial conditions with P at A and Q at B.

—» vel = 10 ms * —p vel =0

—p» acc= 2 ng® —»» acc = 3 ms"?

P 3 Q y

A B

—~———————— 18m .

At time ©
x P Q

v -~ .‘-!_ =
A B o

-—— 18m . -

When you understand these diagrams,

SWITCH ON

x = 106t +t* andiy =%5+t*

nofn

For coincidence y + 18 = x
Hence t% - 2t + 36 = 0 = (t-2)(t-18)

a6t = 20018
So P overtakes Q after 2 seconds, and 16 seconds afterwards, Q
with its greater acceleration, overtakes P.

SWITCH ON
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EXAMPLE 4.

A pit cage goes down a mine shaft of depth D, in
time T. For the first quarter of the aistance, the cage is
accelerated uniformly, and during the last quarter, retarded
uniformly. The acceleration and retardation are equal. Find the
uniform speed of the cage whilst descending the centre portion

of the shaft.

SWITCH ON
Top 1 T lvelocity zero From T to E, use v = u+at,
*a % time t,4 V=0 +aty, >V = at,
TE l v From F to B, use v = u+at,
0 =V—a‘ta—bv=a‘bz
% time Hence ti= t2

[D-(ti+t2)]
Time from E to F is (T-2t4).

From T to E use X = /u+ +
x toRlv 2

D
time t5 L 2

+1o

7

From B to F, the speed is uniform witl

V ? E Blvelocity z2eT10

D

5 = V(T-2t4)
Substitute for &, to give V = 2
g 27
SWITCH ON
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B
The motion takes place in the
[F\ straight line AB, but the diagram
conveniently shows the motion up
g and down.
]H l Use x = ut + $at® from A back to A
0 = ut - 2gt®
positive Hence time of flight = 22
sense :
W T l Use v = u+at from A back to A
v
' -V =u=-=2g -—22- =N =1
A & s

Use v = u+at and v2=u®+2ax from A to B

2
time to highest point = Y and H =%
g ’g

SWITCH ON

EXAMPLE 5.
A particle is projected vertically upwards, and T seconds
later, another is projected up with the same initial velocity.

i) Show that the particles meet after a further time @ - %)

ii) Show that at that timé they will both have the same speed 3gT.

Let the particles collide at

After T at time
seconds of collision height H after a further time
t. Total time to the point of
contact is (t+T) after the first
launch. Use A and py for the
A C .
L | velocities of the particles
Z u |
|

at the time of collisian,

positive A |

sense
u u
SWITCH ON.
| Y




Apply x = ut + %ata for both particles to the point

of contact C. u(t+T) -1g(t+7)? = H = ut - 3gt®

SWITCH ON
A= 5,2 — A=$gT
_.'l}.'-g(g 2> A—'ﬁ'g
w T
p=u-g (g --§> —> p=%gtT
SWITCH ON
EXAMPLE 6.

A stone is thrown vertically upwards with a velocity
of p from the top of a tower which has a height 'H'. Find
i) The velocity with which the stone reaches the ground.
ii) The time of Tlight.

Do not look at this solution until you have f'inished the example.

P\ Consider a vertical axis with origin
at T and positive sense upwards.
e ¥ Aoply v?=u® + 2ax from T to G.
TP v = p? + 2(-g)(-H)
™ A V =p° + 2gH
e Apply v = u+at from T to G.
positive
sense -V =p - gt
H 1 1
t == [p + p® + 2gH
g J
{4 |
v
G
SWITCH ON

Newton's First Law.

A body will remain at rest or move with uniform velocity
in a straight line, until it is compelled to change its state by an

external force.
When you have studied this,
SWITCH ON.
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Newton's Second Law.

When a body is in motion the rate of change of momentum
is proportional to the external force, and takes place in the same
direction as the force,

Force &« Rateof change of momentum, When the mass is
constant, this reduces to

F=m %% = ma
with all the units in the S.I. system.
Force in newtons (N), mass in kilograms (kg)
Acceleration in metres per second per second (ms ?)
This equation is of fundamental importance in dyﬁamics and is called
the Equation of Motion,

SWITCH ON

Newton's Third Law.

To every action, there is an equal and opposite reaction,

A block resting A bead moving on
on a table a cirecular wire.
A = weight = action A

e

action of the bead on the wire

i
I

R = Reaction
of table

R = meéction of the wire on the bead

When you have studied this,

SWITCH ON
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EXAMPLE 7.

Tio masses mg and mg are connwcted by a light inextensible
string. my is placed on a smooth horizontal table and the string
passes over a light pulley at the end of the table, and ma is
hanging vertically. Find the acceleration of the particles when

they are released from rest.

R _» f = acceleration

T

Fah- el ;’ff"’”/”,/’f/@

mag

SWITCH ON 'mag

The two equations of motion are
mef =T and s S W
Notice that the positive sense of f defines the positive direction

of acceleration and force.

Ilig

Add the equations to eliminate T and give f =
me+ M)

Since my does not leave the table vertically, so R = msg

SWITCH ON

———— T W W W A e ————

EXANPLE E.

Two masses m and M are suspended from the ends of a
light string, which passes over a fixed smooth pulley. Show that,
if M > m, the acceleration of each mass is EH. Also find_ the

tension in the string.

Do not consult the solution until you have finished the question,
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10
. Let the common acceleration be f.
T T :
Y The equations of motion are
Mf =Mg - T
s if m = e
P g
T A Add to eliminate T and substitute
for f in the first equation to
oY
AT give:
_ 2mMg
m =
8 * ¢ U S (M+m)
M
) SWITCH ON
R
U
¥ -
ig
F = pyR = y myg, where y is the coefficient
of friction £
T8
Equation of motion for ma is
myf =T -~ F =T ~pmag T
SWITCH ON ¥ mag

EXAMPLE 9.
A light s tring ABCD has one end fixed at A, passes

under a movable pulley of mass M at B, and over a fixed pulley
at C. It carries a mass m at D. The parts of the string not
passing over the pulleys are vertical. Show that the pulley at B

: g - 2m\ .
descends with acceleration (ﬁ r lml);’lf M> 2m,

The diagram is overleaf

40.



vog

When you have studied these forces,

SWITCH ON

The length of the string is given by
x + (x-£) + y + distances round pulleys
i.e. 2x + y - € = a constant.
Differentiate wrt 't' twice to give, 2Xx +y =0
The equations of motion are
MX = Mg - 2T and m§ =mng - T
N.B. Always write mass x acceleration first and use this to specify
the positive sense.

- LLd M-
Eliminate T and y to give x = EM+E$

SWITCH ON,
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EXAMPLE 10.

A particle P, of mass m rests on a rough horizontal
table, with coefficient of friction p, and is attached at one end
to a 1light horizontal string, which passes over a smooth fixed
pulley A at the edge of the table. The string then passes under
a smooth movable pulley B of mass m, and over a smooth fixed
pulley C, at the same level as A. The other end of the string
is attached to a particle D, of mass m, which hangs vertically.
All the portions of the string not in contact with the pulleys are
horizontal or vertical. A ssuming that motion takes place, find

the tension in the string.

TWT
y
Sy © R R
Y _E)
AT
h e 7
Y mg

The equations of motion are:-

mx:pmg—‘l‘

mny

mg - 2T

mg - T

1

nz
Since the length of the s tring is constant

X + 2y + z = constant,

Continued overleaf- 42,



- 13.

-e .. e

Hence x + 2y + 2 =0

Substitute for X, y and z and show that

m +3

= ¢

SWITCH ON,
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APPERDIX 1 COLTINUEL

SCRIPT FOR TATE 1

UNIFORK NOTION AND NEWTON'S LAVS

1. This is the tape to be used with Booklet 1
of 'A Revision Course in Particle Dynamics' by Kenneth
A. Jackson. It is concerned with motion under constant
acceleration, and Newton's Laws.

A particle revresents a theoretical body which
is fundamental to dynamics. Its dimensions, though not
zero, are sufficiently small for the internal structure
to0 be unimvortant. You cen, then, counveniently locate
its centre of mass at a point. MNoreover, in later studies
of & rigid body, the centre of a mass moves as & particle.
In order to describe the motion of a particle, you need
.frames of reference, end the simplest of these occurs
for motion in a streight line. Turn to page two in the
booklet, where we shall consider this. SWITCH CFF.
= This dieagraem shows the position of a particle
P, measured in S.I. units, from e fixed origin 0, with
the arrow denoting the positive sense. The rate of change
of position slong this line is called the velocity.

Write the two caleulus notations which you know for this,
and a2lso indiccte the positive sense of velocity. SWITCH
OFF.

R Usually, the velocity is also changing, and
its rate of change is called acceleration. Write the\
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three calculus notetions for scceleration, and also
indicate the vositive sencse. SWITCH OFF.

L. When x is stated as a function of time,

it can be differentiated to give the velocity and sccel-
erstion, enagbling stetements to be made sbout the motion.
Exmmple one is a straightforward question of this type.
Read it carefully, and when you heve completed this,
check it overleaf. OSWITCH CFF.

5. An important type of straight line motion
occurs when the accelerstion is constant. In this ca.e,
it is convenient to have standard eguations ready for
use. These are listed for you below. OWITCH OFF.

64 It is important that you understznd how these
eouations have been derived, and examnle two revises
this for you. These three equstions are eech obtained
by direct integration, and the constents are found from
the initial conditions. Remember, when you do this quest-
ion that the velocity is u, when the time and distance
are both zero. SWITCH OFF.

Lo Exsmple three illustrates the use of these

constant acceleration eguations. Read this carefully.

SWITCH OFF.
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G Diegrams are very useful in dynamics, In this

cate, two are helnful, becesuse you =zre told about initial
conditions, and then guestioned about a2 later nart of the
mnotion. Study the two diagrams below. OSWITCH OFF.

3 Phe first diagrem clearly shows the initial
conditions and the second shows the position at time *.
The particles will be coincident when x and (y+18) are

2at?, ond

the same. Use the standard eguetion x = ut +
find expressions for x and y &t time t. When you have
done this, read the next section in the booklet. SWITCH
OF®, -
10, You should try an exemnle for yourself. Read
Number four carefully. SVWITCH OFF.

1. Pirst, draw a clear diagram, showing the
distonces involved, and introduce convenient symbols

for velocities, accelerations and time. You will need to
use the standard eguztion v = u + at, and the one using
avercge velocity. When you have comvleted this, or if

you run into difficulty, rezd the enswer in the booklet.
SWITCH OFF.

1z2. A perticle thrown vertically upwsrds, also
experiences uniform scceleration, which is called the
acceleration due to gravity. It is slwsys directed
dowvnwards and is given the symbol'g' for convenience.

It is approximately 9.8ms"2. Consider the motion of a
particle which is thrown vertically upwerds with a velocity
u, and returns to the same point. Find the time of flight,

and as much informetion about the motion as possible.
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Draw a diagram if you wish, VYhen you have finisheg
check your results in the booklet. SWITCH OFF.
T3 Example five is a more difficult one on
vertical motion, and we sheall work through part of this
together. Read the ocuestion carefully, and study the
diagram. USWITCH OFF.

;3_-__5_-. The upwarids and downwerds paths of the particles
have been sepnarsted for clerity. Using the information

on the diagrams, a relationship between height and time
can be found for the point C. Do this, and check your
enswer in the booklet. SWITCH OFF,

15, These two eaquations for H give a single enusii
for little t. Solve this epustion aund obtain your first
answer. To answer the second part, use the stanaard
eouation v = u + at for both particles, with the avpnro-
priate time. Check your answer afterwards in the booklet.
SWITCH OFF.

16, Now try example six by yourself. DIraw your
diegram showing the height, velocities and acceleration.
You will find it helpful to consider the top of the tower
as the origin of the motion. VWhen you have finished

this, check your answers below. SWITCH OFF.

17 So far you have been studying velocities and
accelerations without considering why these occur. The
three laws of Isaac Newton explain this. The first law
states that "A body will remain at rest, or move with
uniform velocity in a straight line, until it is comnelled

to change its state by an external force." Read this
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statement carefully in the booklet. OSBWITCH OFF.

s

s To illustrate this first law, concider a b:

=

which cen remain stationary on level ground, until it i
pushed along. Also, & billiard ball, once struck, will
remain on a straight, steady course. An externzl force
can change a state of motion, but the same force has
different effects on bodies with different masses; that
is the quantities of matter in the bodiec. The second
law provides a measure of the effect of a force, and
states that "When a body is in motion, the rate of cheange
of momentum is proportionzl to the external force, and
takes place in the same direction as the force". Consider
this statement carefully, in the booklet. SWITCH OFF.

1% Newton's Third Law states that "To every action
there is an eoual and opposite reocction". Read this
staetement carefully in the booklet, and study the
illustrative sketches, which show how rezctions can either
prevent motion, or constrain it slong a perticular path.
SWITCH OFF.

20 We shall now work together & problem involving
the eguations of motion. Read exemnle seven cerefully,
and study the disgram. SWITCH OFF.

v I The diagrem shows all the forces acting on the
perticle. Notice, that as the pulley is smooth, the
string has a uniform tension throughout. The two particles
will have the same acceleration, as the string is inexten-
sible. Let this be f. The two eouations of motion are
written for you in the section below. Check thece before
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vou uce them. OSWITCH COFTF,

3

22 You shouvld now attempt example eight yourself.

Read the question carefully. Remember, you must draw

g clear diagram showing 21l forces and masses; then find
the eouation of motion for each mass., Finally, use these
eau=tions to eliminate any unwented ouvantities, to find
vhatever is reouired. SWITCH OFF.

23. So far in all this work, you have considered
all motions to be without friction. ¥You will rememnber
that example seven concerned a smooth teble. Suprose
that the table were rough. MNotion would only occur if
the tension is greatcr than limiting friction. Assume
that this is so, and examine the new equation of motion
in the section below. SWITCH COFF.

24. Now consider examvle nine, which is more
difficult. We shall work through this example, s0 read
it carefully &nd study the diagram. SWITCH OFF.

25. The acceleration of the masses at B and D are
no longer the same, because B is not atteched to the )
string, but supported by it. To help in this situation,
it is useful to introduce the lengths x and ¥y into the
diagram. Notice that x is the distance of B from a fixed
level, and the pulley at B has an acceleration X downwards.
The connection between these accelerations is explained

in the booklet and the solution completed. Follow this
carefully. SWITCH OFF.

26 « You should now try example ten by yourself.

Read it carefully, draw the diagram, mark in 211 the forces,
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end introduce suitable displacements. Take care in the
problem that you obtazin the correct total length of
string. Do not read the solution below before you hove
finished your own. SWITCH OFF.

2. This comnletes the work about motion under
constant acceleration and Newton's laws. Please rewind
the tepe before you remove it from the machine.

Thenk you!
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APPUNDIX 2

A RRVISION COURSE IN PARTICLE DYINANMTCS
by

Kenneth A, H.Jackson

BOOKLET 2 to be used with TAPE 2

.. "Power,Energy and Hooke's Law™

3

Read the instructions on page 1 thoroughly.

(ommitted for convenience-)
' ' 51.



When a force moves ils point of application it is sail to perfor
work
x P
£ 2

Work done from A t2 B = F x x
If the displacement is not in the same line as the direction of the

force.

W.D. = (F cos@)x

F cos@ is c allsd the component of the force along AB,
Unit of work 1J0ULE = 1 newton metre 1] = Nm.
Whon you have studied this,

SWITCH ON

WER is the rate of doing work.

F e i -
————t Power =a+€im0 F-g-% = v
&x - =
Unit of power 1. WATT = 1 Jouls per second 1IW = 1Js™*

For constant velocity (vms™*)

P = F v watis
An accelerating body requires additional power to allow for the
accelerating force,

For constant accelerstion (a ms 2)

b
3

PRy , but F = ma(Newton's equation of motion)
i.e. P = (m) v
v is now chanzing, and the velccity must be taken at a particular tige,

SWITCH ON

—
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EXANPLE

with uniform acceleration for a time P.

of'f and th# vehicle comes to rest at B without the brakss being

1

A vehicle of mass M, starts from rest at A, and travels

The engine is then switched

sed., The distance from A to B is A, and the total time taken is T,

The resistance due to friction is K times the weight of ths vehicle.

Prove that

2A
(T-P) = KeT °

and the greatest rate of working of the motor during the journey is

Positive

LAZM

TP(T-P)*

sense
acceleration retardation
= a o]
—pb — .
locit velocity
i y KHg ¥ L KMg zero
zero
> G — —{3- SSRGS B o
A ; g
g d )
: time P ﬁ;glne
off
< 4 —
time T
When you are ready to proceed,
SWITCH ON
Eguations A to C C to B
F = ma p ¥~ Kng = Ma , Mr = - Klg
W NEIL R
v = u+at 5 V = aP 3 0 = V+ r(T-P)
Vs SWITCH ON

' From the second pair of cquaticns, show that V =

with the two equations involving r, to derive the first result.

»4;9

SWITCH ON_
53,
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Power = F v = (Ma + Klg)v
This will be maximum when v is mexdmum, iJe. at C.
So maximum poser = M{a+Kg)V
Substitute for a,V and Kg to derive the second resuls.

SWITCH ON

EXAMPLE 2,

A 1lift,of mass Mg moves in a vertical shaft against a
constant friction force K. Find the power of the motor which can
pull it up at a steady speed U . If this power is constant chow
that the accelaration of the 1ift would be (@) if the upward

velocity were U/2,

Po not read the solution until you have finished.

Use 'F =ma'y, Ma =T--MNg-K

AT
whzn a = U for steady spved,T = lg+¥

Power = '"Ty' i.e. Power = (Mg+K)U

K
D L When cpeed is U/2,
\ 4

Power = (Ma+Mg+K)U/2

Mg ice.(Mg4X)U = (Ma+lg+K)U/2
hence a8 = (M)
M
SWITCH ON

KINETIC ENZRGY of a body is the energy possesssd by virtus of its motion,
and is measured by the amount of work it does in coming to rest ug;:linst
a resistance,

A particle moving with speed v has kinetic encrgy imv®. Unit is the
Jjoule, as for work. If this particle has mass m, and is brousght to

¥
rest in a distance 4, with retardation a, by a constant foree F;

~continued overlszaf-
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B
o §
- T
i A 3

rest frele @

then F = ma

Use v? = u® &+ 2ax, 0 = v® - 2ad
ad = 5v°

Work done by the particle is Fd = mad

n(v®) = fav?

SWITCH CN

Conservation of Energy .
The kinetic energy at the end of a change in motion is the

sum of the initial kinetic energy and the work done en the particle.

(3 k- K.E '/END = Kb °/BEGINNING + Work done EXTERITAL
FORCES

This must be remembered.

SWITCH ON

EXAMPLE 3.
The foot of a rouzh inclined planze, of inclination a, is
joined to an equally rough horizontal surface. A particle is held
at rest at a distance 'd' up the inclined plans, and then released.
How fzr will it travel along the horizontal surface, if the coefficieut

of friction is u? [Assume there is a siwoth transition from one plane

to tha other.]

R
V=0
o e F
-
B y b '
| s
s % , SWITCH ON

e — -
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On the inclined plane,
resolved compenent of the weight
R

F

On the horizontal plans, F

Now K'E'/end

1

me sine

ng coses

PR = pg mg cOSe

p omg

K'E'/begi_n i W'D/i'orces

0 = 0 + mg sinw.d — g g CcOScxed - p mgl
by rearranging terms, ¢ = d(sine -y cosx)
u
SWITCH ON

At the foot of the incline, K.E = ZmV®

Use K.E. = K.E. + W.D,

END BEGIN FORCES

i

i.e. pmv®

Hence V J2gd (sine-pcosg

SWITCH ON

0 + mg sinx.d = g mg cCsx.d,

EXANPLE /4.

A particle of mass m, is projected up a plane cf inclination
el 3 prog I p

w, With 2 velocity V. How far does the particle move up the plane,

if the coefficient of friction is p?

Do not look at this solution until yours is complete,

K‘E'/END = K'E'/BEGIN +W’D'/BURCES

0 L %_mva - mg SiNcc.S — Yomg 005« S

¥
2g(sinac+ucose) .

heace S

56.
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Conservative ¥oiged.

If thz work done in bringing a body from one position
to another is independent of the path taken, then the forece is said
to be conservative., Gravity is such a force, but friction is not,

The POTEITIAL EJERGY of a body, is th= amount of work it can do in

moving from its actual position to some convenient standard positic..
For a particle 'm' at height 'h' above the earth's surface,
it is the work it can do in falling that distance. This is taking
the earth's surface as the zero or standard position.
P.E. = mgh Unit is also ths Jjoule,

The Principle of Conservation of Energy.

If a system of bodies is in motion under the action of a
conservative system of forces, the sum of the kinetic and potential
energiec is constant.

Briefly:- P.E. + K.E. = Constant.

SWITCH ON.

EXAVMPLE 5.

Masses of m and M are attached to the ends of a light
string which passes over a smooth pulley. Find the velocity of the

mass M when i% has fallen through a distance h.

System at rest After the specifi=zd
zero of initially with motion
Hole.. o m a distance L1 e 2
h below M v {'
i - v d
A d N
k- M mL o
h 3 h
570 ° |
SWIZCH ON Yiwd o~




8.

(K.E. + P.E,) = (K.E.4P.E

“end °)bCfgin

%jnvé + %MVS)q- [-m{;& - Mg(d+h)] =0 + [(-—Mgd-mg(d-t—h)]

m N—=m

N ( J4m

hence V =

SWITCH ON

EXAMPLE 6. :

A light s tring ABCD is fastensd at A to a mass m, free o
slide on a smooth horizontal table. It pzsses over a fixed smodth
pulley at B at the edge of the table, under a movable smooth pulley
C,of mass M, and is fixed D, vertically above C. All the sections
of the string are either horizontal or vertical. The system is allowed
to move under gravity. Show, that when the velocity of the pulley C

is V, it must have fallen through a distance h = (LmsM)VZ.

2lig
Do not look &t the solution until you have ccmpleted ths question,
iLgd .
D
a
é_ B
m £ £
> . - - g - zZerD ol BB
P s s e e
g |
= X =4 H
"-JL.__ Initial position of
| pulley
J
(K.L_?.+P.E.)t=0 = (KEA4P.E)y
0 -Mgh = 3mx® + BMy® - Ng(H+y)

~ As the string is of constant length,

x + 2(H+y) + 2 = Constant.
58.
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Dilff. W.r.b. time to give x + 2y = O
let y = Vwhen y = h, x = =2V
Substitube in th® energy equation,
~MgH = im(-2v)® + ZMV® - Mg(H+h).

hence h,

SWLITCH ON

Hooke's Law.
The tension in an elastiz string is proportional to its
extension,

i.e.T:_A}:
&

where A is a constant for a particular string. It is cslled the
Modulus of Elesticity and has units of force.
x is the extension beyond its natural length.
£ is the natural length.

N.B. 1. The law only appliss if a string is not stretched beyond

the elastic limit, after which there is permanent deformation.
2, It also applies to springs in extension and compression,
provided they have negligible weight.

SWITCH ON

EXAMPLE 7.

An elastic string of natural lensgth 2a, is found 1o extend
a distance 'b' when a particle of mass m is suspended from a free
end, The particle is then removed and attached to the midpoint of
the string, ths ends of which are then tisd to two points A and B in
the same vertical line at a distance apart greater than 2a. Assuming
that in the eguilibrium position, th: lower part Iof the string reraine
taut, show that-ths displacement of the particle is %_ from the midpo'in'h

£ AB.

59.
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10,
ea ' = i}':
Use T = 2
Z2a When the particls is hanging Trom one

end, tension T = mg = 22,

; . 2a
Y %I = _2.“115_

AT .

<o >

Vog WITCH ON
L AT
/; ol Let the displacemect te the midpoint be x
and AB = 2d.
Tension in the uppar string T = —MM

o

T
- For lower string T4 = A(d - x - a)
a

ok f - _x_ Midpoint In equilibrium T = mg + T4
x

¢JI Substitute for T,T4,A,
mg, d hence x = -1?: Check this yourself.
T,V
B

TS TR SWITCH ON

EXAMPLE 8.

The ends of an elastic string cdfnatural length 2a are fixed
in a horizontal line at a distance 2a apart. A particle of mess m is
attached to the midpoint and rests in equilibrium. If each half of

the s tring is inclined tc the vertical at an angle 6, show that thc

et os s IR mg s
modulus of' elasticity is 2{oot6 - cos8)

™

(Do not read the solution overleaf until yoﬁrs is complete).
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[

« gl _H_________"____*;’

If A = Modulus of Elasticity,

and x = extension of string =
For equilibrium, 2T cos@ = mg
M A(AM-2) Ala cosech - a)

"he = W g = —
wnare T Z - =

Substitute in above equ=tion, hence A

SWITCH ON

Consider a string, natural length £, stretched a distance
p. Work is done by the tension as it returns thz string to its

natural length.

< x

i
| T |
I < @ !
<g—— ¢ B P -——-~-'F4
Potential = Total = &m - "
energy work  &x=0 ] T.ox —fT.dx 5 5.[ (p-x)dx
Coe =0 9 °
P
‘&[p‘"?]o“e(p'2>“2f

SWITCH ON

A spring of negligible weight is compressed a distance
'a! by a L8S. M. Show that if the mass iz allowed to fall on to
the spring fﬁom'a height -ga abo.ve it, the maximum compression of

the spring in the motion which follows, is 3a.

THE DLAGRAMS ARE ON THE NSXT PAGE
61 -



asgion This dingram shows th= pos]

T ips
Mg ‘f

aptaniane ous res

LA P
For equilibrium

Mg = T4 = Aa
g - s f is the wmarimunm

A = Mgl T

a

Wl N
When you have studied these,

SWITCH ON

— —.zeXo of spring P.F,

compreassion of th-

— — 2zero of gJ‘ vity P.E,

spring

(KeEetP.BL) (K.E.+ P.E.)

full compression

0

i

Ok KBRS L Ba
2 Mgk\z e f)

Substitute for A, this reduces to
2 - 2aPia 3% = O

(£ . - 2&8)(f + a)

0, whicl is satisfizd

il

for £ = %a or - b., but f = ~ a has no physical meaning.,

SWITCH ON

F‘(&.a‘bh 10.

A mass is suspended from a fixed point O by an elastic
string of naturzl length a, and wh2a the mass is hanging freely,
the length of the string is 5a/3. Show, that if tae mass is allowed
to fall freely from rest at 0, the greatest iength of thz2 string
in the subsequent motion is 32. OJhow also, that the spzed with

b
i . . -y - ] L]
which the mass is moving when it is distance 2a from O, is E;& .

(Do not read the solution overleaf until yours is complete),

62.



. / o
e e e e 1%.

e e ZEPO OF Eruvity
T

; bﬁ‘_q ‘““’-CJ.'- ]It - ‘—‘ -
] P H
2, £ Tq

mng

TFor egquilibrium,

vl ae 2820 of string P.E,

L
S P 5
s i E:% Lo
A='§mg ¥ 3

v 15

Let L = length of maximum extension,

Energy equation

(K.E.+P.E}STAH = (K.E.+P.E.)MM
EXTENSTON
0 = 0 + 2L® - ng(a+l)
hence 0 = La® +2al;—aL i SO
0 = (2a - L)(22 + L)

which is satisfied when L = 2a, j.e. Total length = 3a.

2 " .
(L = - %2 has no physical mesning.)

Stiing in Metion

Pols A

2a

s R R of F.E. Let v = velocity of mass when
2a. from O
- - = natural length
T2 Energy equation
.E. = .E. - K.E.‘!’ .E-
é -
. 0 o= (%mva ~ mg.2at .3-.“—_")
1 2z
vm,g Substitute for A, gives v

SWITCH ON
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APPENDIA 2 CONTINUEL

SCRIPT FPOR TAPE 2

POWER, ENERGY AND HOOKE'S LAW

1. This is the tape to be used with Booklet 2
of 'A Revision Course in Perticle Dynamics' by Kenneth
A. Jackson. It is concerned with 'Power, Energy =nd
Hooke's Law,

We know that & force may czuse a body to move
:nd when a force moves its point of application in this
way, it is said to perform work. This depends upon the
nagnituide of the force snd its displacement. Turn to
page 2 in the booklet, where this is summarized for you.
WITCH OFF.

. The rate a2t which a force does work is celled

o g

power, which depends on the velocity. Look at the next
section of the booklet, where this is exvlained. SWITCH
OFF. _

3 Read the first exsmple carefully, =nd study

the diagram, which swmarizes the question. SWITCH OFF.

4. This example will involve eguations for counstant
accelerction, end the esuation of motion for the two parts:
of the Jjourney. ILook below at the next section to see

how these are used. OSWITCH OFF.

De In the right hand column, observe that the
retardation is negative, as the motion is ovpposed by Klig

in the negative sense. Now follow the instructions below

this. 64.



SWITCH OFF,

6. The greestest power will be obtained in the
first part of the journey as the engine only works fror
A to C. The rerainder of the solution is in the next
section. SWITCH OFF.

zs You should now attempt example tvwo yourself.
Read the ouestion, and draw a diagram showing forces,
velocities and sccelerztion. You will need to use the
equction of motion, and that for power. When you have
completed this, check the solution below the guestion.
SWITCH OFF.

G When a body is in motion, it can overcome
resistances, thus doing work on them. This capability
of working is called kinetic energy. Read the next
section about this. SWITCH OFF.

9. Energy may be converted from one form to
snother, without loss, under certain conditions. This
is conservation of energy and is of great importance in
dynamics. An example of this occurs if a body, which
has some kinetic energy, undergoes a change in veiocity.
The change in kinetic energy is then the work done. This
is summarized in the booklet. SWITCH CFF.

10. Example three illustrates this conservation of
energy. Read the guestion carefully and study the
diagram, SWITCH OFF.

iL. The diagram shows that the perticle has no
kinetic energy at the beginning or end of the motion,

as it is at rest. It gains energy as the resolved part

65.



of the weight pulls it down the slope to velocity V,
doing positive work. Throughout the motion it is onnosed
by friction, which eventually destroys it, by doing
negative work. The energy eguation for this motion is
given in the next section of the booklet. CWITCH OFF.
123 By using the energy equation for the appropriate
point in the nmotion, calculate the velocity when the
particle reaches the foot of the incline, yourself.

Check this afterwards. OSWITCH OFF.

13 Now try example four by yourself. Read the
ocuestion cerefully, draw a diagram, and only check your
solution when you have finished. SWITCH CFF.

l4. In example four, the motion up the plane was
limited, as friction destroyed the energy. Even without
friction, the particle comes to rest, but the kinetic
energy is replaced by votentisl energy. Forces which ere
associated with potential energy sre called conservative
forces, and throughout the motion, the sum of the kinetic
and potentisl energies is constant. Study this in the
next section., SWITCH OFF.

15. We shzsll work through example five to show how
this prineiple is used. Read the guestion, and study
the diagrams. SWITCH OFF.

16. In a potential energy problem it is essential
that a zero level for potentiel energy is selected,
through some fixed point in the system. MNasses placed
above this level have a positive potential energy. Ve
also need to show masses, distances, and velocities in

66.



the diagram. The string tension is sn internal force,
end does no work. The smooth pulley will not couse

loss of energy as it turns, and the light pulley has
negligible mass. The problem is solved by using the
conservation of energy equation at the beginning and end
of the motion. PFollow this in the next section. OLWITCH
OFF.

X7. Work through exemple six yourself. Read it
carefully, and draw a diesgrem indicating some convenient
zero of potential energy level. Remember thet the pulley
arrangencsnt will cause the masses to haove different
velocities. Vhen you have have finished, check your
working in the booklet. SWITCH OFF.

18. - In the work so fer, inextensible strings
hzve been used but now the study must include the
behzviour of elastic strings. The extension of these

is governed by Hooke's Law, nzmed after Robert Hooke,
their discoverer. He wes an active scientist who lived
at the same time as Newton, and is credited with the
aprlication of springs to the balence wheels of watches.
His law is steted in the booklet. SWITCH OFF.

1°%. We will work through example seven to demon-
strate the application of the law. Read the auestion
carefully and look at the first diagram. SWITCH CFF.
20. Notice in this question, that lamda is not
given directly, but may be calculated from the initiel
eauilibrium. This often occurs in spring problems.
Look, now, at the lower diagrem. Suspending the
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portiele from the mid-point is effectively cutiing the
string into two strings, of length 'a'y, but the modulus
reteins its value. Follow the remainder of the problenm
here. SWITCH CFF.

21, You should now answer example eight yourself.
Reed it, draw the diagrasm, and when the solution is
complete, check it overleaf. SWIT@H OFF,

22, When an elastic string is stretched, it stores
energy, Since it will jump back when released. This is
2 potential energy, as it is due to the position of the
end. The formula for this potentizl energy is revised

in the next section.SWITCH OFF.

23, Problems involving elastic strings and springs
can often be solved by using energy considerations, as is
shown in examrle nine. Read this carefully and study

the diagrems, SWITCH OFF.

24. Notice in the second diagrem that it is
necessary to show two zero levels of potential energy.

At the maximum displacement, the particle is instantaneously
at rest, and all the kinetic enerzy becomes potential
energy. The mess in this position has positive potential
energy with respect to the spring, but negative for
gravity. Because there is no kinetic energy, the
problem reduces to a balance of these two potential
energies. Look below at the energy eguation for this.
SWITCH OFF.

ok You should now attempt example ten by your
own efforts. Again you will need to consider the position

of instantaneous rest, and use the energy eaustion for



each part of the question. When you have finished this
check your working on the last page of the booklet.
SWITCH OFF,

26. This completes the work on Power, energy and
Hooke's Law. Please rewind the tape before you remove it

from the machine. Thank you!
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APPINDIX 3.

A REVISION COURSE IN PAPTICLE DYNANLCS

by

Kemnetn A.H.Jackson

BCOXIET 3 to pe used with TAPE 3
"Momentum and Restitution"

Real the instructions on page 1 thaoughly.

(Ommitted for convenienc.)
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The MOMENTUM of a particle is the product of the mass of the
particle and its velocity.
i.e., momentum = m x v
The units are Kg.ms™*, but have no spscial name,
NOTE. As this product has both magnitude and direction, momentump
is a vector quantity.

When you have studied this,

SWITCH ON

For a single particle,

dv = -
mag = and m dv = F dt
Va ta
/m.dv =mvg - m V1=J." F.dt.
Vy ta

Let tz » t4 with ths velocity changing abruptly from v, to vz, then,

t2
Ch e in momentum = o Fol A Rk
ang * s | = impulse,

When you have studied this,

SWLTCH ON

The Principle of Conservation of Momentum,

Total momentum |=]total momentum

before impact after impact.
Just before impact Just after impact
M4 ug Vi Va

—» —» : —5 —
) Q¢
2 i <15 E'niu,_ + mguE}: Eg_v:;, + mavnj

When you are ready to proceed,

SWITCH ON
1.




EXAMPLE 1,

A particle of mass m, moving with a velocity v, strikes
a stationary block of mass M, which is free to move in the
direction of the particle, and is embedded in it.

i) Find the common velocity of the bodies,

2
ii) Show that the loss in kinetic energy is %%%IE)

iii) Find the impulse exerted on the block by the particle.

Just before impact Just after impact
i
v positive
il sense of ¥ 5
momen tump
me M m+M

i

Let V be the common velocity,
When you are ready,

SWITCH ON

I

i) Total momentum before impact = total momentum after

mv = (m+M)V
hence, V = -(ﬁ)-
i1). Loss in K,E. =K, Beorprr = KBemp

11

Inv® - L(m+M)V?
Substitute for V to obtain the answer in terms of the given
velocity v,

iii) Impulse on the block = change in momentum

M(V-0)

Mmwv
m4+M

1]

When you have studied this,

SWITCH ON
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EXAMPLE 2,

Two masses m and M, are attached to the ends of a light
string, which passes over a fixed frictionless pulley. At the
moment when the particles are moving with velocity V, the lighter
mass, m, picks up a small ring, also of mass m, Find,

i) the velocity of ths string just after this event,
ii) the impulsive tension felt by the particle M.

Wher. you have drawn the diagrams, check them below,

Just before the pick up. Just after the pick up.
A i g
Positive - Positive
sense of : momentum
nomentut Positive Positive
sense of momentum
momentum

ol vlw

SWITCH ON

M‘

i) Use conservation of momentum,

then, mV+MV = v(M+2m) fat we fﬁf;ﬁ

ii) Impulse = change of momentum = M(V-v)= -Ilv —(-IIV)

Substitute for V in this, to obtain (EE:M)

SWIZ2CH ON

Newton's Law of Restitution.

When two particles collide directly, the relative velocity

after impact is in a fixed ratio to the relative velocity before impact.

velocity of separation e = constant
velocity of approach =~ ~ ©

1,68

73.
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The constant, e, is called the COKFFICIERT OF
RESTITUTION and it depends upon the materials of the two bodies,

Being dimensionless, it has no units, and is such that,

Qi< e e il
with e = 1 called perfectly elastic
and e =0 called inelastic,
Just before impact Just after impact
U4 Ug Vi Va2
— — — —»

velocity of separation WL R
velocity of approach ug-us

where us; and ug are known velocities, and v4 and vz have to be found.

SWLTCH ON,

Collison with a smooth perpendicular plane.

approach velocity = v -

ev 44—

O

Noticé that the speed after impact is less than the

]

velocity after impact

SRR

speed before, since e < 1.

SWITCH ON
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EXAMPLE 3.

The line Jjoining the centres of two equzl smooth balls
P and Q, which lie on a smooth table, is perpendicular to a smooth
vertical wall, The ball P, farthest from the wall, slides towards
Q, which is at rest, with velocity u. After the impact, Q moves
towards the wall, If e is the coefficient of restitution between the
balls, and e, that between Q and the wall, find
i) the velocities of P and Q after their second collision
ii) the impulse exerted by P on Q, and the wali on Q.
1st collision of P and Q

LS

Before u 0 —
i positive sense.

Assume masses m
to find V and v

After vl v ;

ST R

When you are ready to proceed,

SWITCH ON

i) Conservation of momentum,
mu = mv + mV ss0

Law of restitution,

velocity of separation _ i >
velocity of approach u
V- v=eu sen
These equations give ¥ = %u(l+e) cos
and v = 32-1.1(1—6) DR

As e <1, V and v are both positive, and therefore, directed

towards the wall, but V > v, since (l+e) > (1-e), so Q will move away
from P, and collide with the wall.

SWITCH ON

15.



Collision of O and the wall.

v ; Before

Positive v el V e« After
senss > = |7
%
4 % #

Q moves away from the wall, and must, therefore, have a
second collision with P, which is still moving towards the wall,

SWITCH ON

Second collision of P and Q.

v esV  Before ) N.B. Initial velocity of
> < / Q is negative, and
/ its momentum is
A U After negative,
positive ’ » ¢
sense ;
e

Use A and y as velocities of P and Q after impact, respectively,
Conservation of momentum, mv - mesV = mA + my
i.e. (7_911;) = (?\-+p) ase 5

Law of restitution

{-ﬁ} = e or (p—-h) = ('\;"-I-Bi.V)e cow 6

Equation 5 + eguation 6 will give p in terms of u and V.

Use 3 and 4 to give

u =% u(l-e-es+es6®) = Ju(1-e®)(1-e4)

e® ¢1 and o1 < 1, so y is positive. Q moves back towards the wall again.
Subtract 6 from 5 and obtain

A = zuf(1-e)® - es(1+e)?]

We do not know if es(l+e)® is greater or less than (1-e)?, so that

the direction of P cannot be determined, without a knowledge of the
relative magnitude of e and ej.

SWITCH ON.,
16,



3ii)

Impulse = Change in momentum
Impulse of P on Q = m(V-0) = 3mu(l+e)
Impulse of wall on Q = mV+mesV=m &3V —(-mV)

mV(1l+es) = zmu(l+e)(l+es)e.

SWITCH ON

EXAMPLE 4.

A particle is dropped from a height h onto a smooth horizontal
surface, and rebounds to a height € above it. Find the coefficient of
restitution, and show that the height of the next bounce will be £2/h.

Do not read this solution until yours is complete.

The motion is in one vertical line, but separate diagrams

illustrate it more clearly.

To first From 1st to From 2nd to
impact 2nd _impact 5rd impact.
A
A
A

Y Aj Al

B | d e evt] |l

ﬁet v initial velocity, then eV = 1lst rebound veldcity and e®V = 2nd

1

rebound velocity.

Use "v® = u® + 2ax" for first fall,
Vv? = 2gh i.e. V= J2gh

Use "v® = u® + 2ax" for first rebound to greatest height,
0 = (eV)® -2g¢

hence e =

et
3 B
.

Continued on next page



Use "v2® = u®? + 2ax" for second rebound to greatcst height,

0 = (e®V)?® - 2gd
hence d = €2/n

SWITCH ON

EXAMPLE 5.

Three spheres A,B and C of equal mass lie at rest in a
straight line. If the sphere A is given a velocity u, towards B and
C, show that the velocities of A,B and C after two impacts, are given
by : (1-e)u, F(1-e?)u, #(1+e)?u, respectively, where e is the coefficient
of restitution at all impacts. Find also the impulse between the spheres
at both impacts.

Do not look at the solution below until you have completed your own,

Collision between A and B,

u > 0 p Before

-
positive “ p After

o o.

Conservation of momentum, mu = mA + my

Law of Restitution, velocity of separation _ u=A
velocity of approach u-0

=8
From these equations, A = z(1-e)u ; u = 2(1l+e)u
g is obviously positive, andas e < 1, A is also positive. Both spheres
will proceed in the direction indicated by the arrows, but as
(1+¢) > (1-e), so u > A. B will move away from A and collide with C.
Impuls@ of A on'B =m'/.l'-0

' = my = sm(1l+e)u.

Collision between B and C

H > 0} Before

>
positive
S A ; v > w After

m
B

(Continued on the next page)




Conservation of momentum, my = mv + mw.

Law of restitution,
s, SR
a0

hence v = x(1-e?)u, and w = 3(1+e)?u.
As 1 > e?, both these velocities are positive and B and C move
in the direction of the arrows, C moving away from B, as

(1+e)® > (1-e®). Impulse between B and C = Change in momentum.

I

mw = %mu(l+e)=.

SWITCH ON

EXAMPLE 6.

Two particles A and B, of masses m and 2m respectively,
connected by an inextensible string of length a, are placea close
’ together on a.rough horizontal table. The coefficients of friction
between the particles and the table are p and %y respectively,

The particle A is projected along the table, away from B, with
velocity V. Find

i) the common velocity just after the string becomes taut,

ii) the acceleration of each particle.

By considering the distances which each particle would move before
coming to rest, show that B will overtake A if Vo> Dpuga. It is
given that V > J2uga.

The start of the motion

v
S - 4
[
While the string is slack.
Z
v
—1 uZ B
% —»
mg
p € a J*Q

Let v = p when d=a 79.

SWLTCH ON



iy
(h.E.)END = (K'E')BEGLNNING + (Work done by forces)

zuV?- mgd

LY
=]
=

1l

ietn VT V2 - 2ugd
when d = a, 50 v = p
i.e. p? = V® - 2uga
Given V > J(2uga), so p is positive.
18 b = J?’:EEEE
At this point the s tring will become taut, and A will jerk B into
motion via the string, causing them to have a common velocity,

say Ae

At the instant of the jerk.

<«
A g »T < o®
m
om
a2
p g
SWITCH ON

Conservation of momentum,

mp = (m+2m)A
g
3 A
Just past P and Q.
Z4 Zg
¢ A . ¢ A 2
A 2 B 3
P Q
g 2mg
Let R4 and Rz be the respective retardations.
SWITCH ON
For A, Fi = umg For B, Fa = %u(2mg) = umg
Use F = ma
umg = mRa ymg = Z2mRg
ug = Ra 80. ZHE = Ra

i.e, & > RQ

(Continued on the next pace)



As the retardation of A is greater than that of B, B will
approach A, and the string becomes slack.

The constant forces will allow B to continue to approach
A until the K,E, is destroyed in both particles.
Suppose particle A comes to rest at S5, after moving distance £;.
Suppose particle B comes to rest at T, after moving distance £;.

Remaining motion,

12,

< o
Rest Fa i szst __2___33_} i
S j o T
< L1 b - €2 —»
SWITCH ON
Conservation of En@l’@g
For A, For B,
0 = 3mA® - pmgls - 0 = Z(2m)A® - umges
A A
Ly = v s fg = —
&5 2up ’ 27 e

B will overtake A if £3 > £4 + 2

TN hagnd i
leCa LE > ng 4+ a

2 2
Substitute for A® —% = (1—"—;11-5?-)

hence V2 > 0uga.

SWITCH ON

EXAMP [e

Two particles of mass 2m, m, moving in opposifie senses with

speeds 2u, u respectively, collide, Half the kinetic energy is lost
at the collison, Find the velocities of the particles after this,
and the coefficient of restitution between them,

Do not look at this solution until you have completed your own,

81.
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2u u Z
= » &~ Before 15.

positive v
v
56 ’ )
nse

Conservation of momentum,

After

2m(2u) - mu = 20v + mV

ju = 2\1" + V e i |
=
K.E. on impact = (2m)(2u)? + Im® = EE%—
2
K.E. after impact = &(2m)v? + $nV® = %‘%‘)

t)-l-v2 + 2VQ = 9!.12 e e 2
Solvéd these for v,V, in terms of u,

to give (2v-u)(2v-3u) =0

; g A
with roots v = > or >

whenv:% , V=22
0

when v = o y N = the mass 2m cannot continue to the

2
right if m comes to rest, so this answer is not physically

possible, although algebraically correct. Thus v = % and V = 2u;
both in the original direction of the heavier mass.

velocity of separation = V=v_ _ 1

1
velocity of approach = Zutu =
SWITCH ON
EXAMPLE 8.

Four particles A,B,C,D, are joined by light inextensible
strings and lie in a straight line with the string just taut. The
masses of A,B,C, and D are 4m, 2m, m and 3m respectively. If A is
given an impulse I, away from B, find

i) the initial velocity of the particles,

ii) the impulsive tension which appears in the string BC.

82.
(The diagram is on the next page)



All the particlass will travel along DA with a conuon
velocity: let this be u.

SWITCH ON

Impulse = change in momcntum,

1]

fork, I = Iz 4mu

B, T~ %% = 2m
$ G T T =
" D, v Ta = 3]1!1.1

Adding all the equations to eliminate the impulsive tensions

g‘ive:s 10 = I , which is ‘simply the impulse equation for the

.whele systen,

IThus 0= om

Ta can be found from the equations for C and D

i.e-. fm = Tz = "%"

SWITCH ON

Three particles A,B,C have masses 4m, 2m and & respeclival)
ané are joined by two light inextensible strings. They lie in a
straight line and particle C is given a velocity u in the directior
BC by en impulse I, ‘Show that the ratio of the impulsive tenslons
in the strings is 2 : 3.

Do not look at this solution until you hLave finished your owr,

-

83.

(The sclution is on the nuxt page).

‘ s
positive f: T T4 B Ty T, C Ta T, )
sense € ¥ T_cime -4 ¢ v —dq +—) € p
l Ly
Lm Zm m 10
‘———-——- — ——— . rm———
u . u < u u



l_!) -

e
A Ty T, B Ty Ta ¢ positive
& » 4 . < Py T sense
4m 2 T,
p— —— ———
u u u

Impulse = change in momentum.,

For A, Ty, = L4mu
B B' Tg - T:_ = 2mu
AT, R SR SN

Add to eliminate the impulsive tensions gives I = 7mu.

é%. , Ta= &, hence the ratio 2:3.

7

SWITCH ON.

Hence T4 =

84.



APPENDIX 3 CONTINUED

SCRIPT FOR TAPE THREE

MONMENTUN, INPULSE AND RESTITUTION

1. This is the tape to be used with Booklet 3
of 'A Revision Course in Particle Dynamics' by Kenneth
A. Jackson, It is concerned with momentum, imvulse and
restitution.

Perticles in motion have the ability to transfer
this to others; that is, their velocities can be changed.
This property is associated with momentum, which depends
upon the mass and velocity of a particle. Turn to page 2
in the booklet, where this is defined for you. SWITCH OFF.
2. Particles moving in the same line often collide
and by Newton's third law, have egual &nd opposite inter-
actions at every collision. These interactions are celled
impulses, and they arise from very large forces acting
for a very short time. The change in momentum for one
particle, provides a measure of the impulise which acts
on it. Look below at the next section about this. SWITCH
OFF.

3. When two particles moving in the same straight
line, collide, there is an abrupt change in velocities,
and equal and opposite impulses are felt by the particles.
These cancel out, and the total momentum after the
cotlision equals the total momentum before. This is
celled the conservation of momentum, which is stated in
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the next section. OSWITCH CFF.

4. Although there is conservation of momentum
during an impact, there is always & loss of mechanical
energy, and the energy ecuation cannot be used. Rezad

the first example carefully and study the diagrams. We
shall work through this examvle together. SWITCH‘OFF.

D The varticle propels the block forward, and
they travel together with common velocity V. This
direction is convenient for the positive sense of momentum,
which is shown. The velocity is found from the conserv-
ation of momentum. The second part of the ocuestion invol-
ves the calculation of kinetic energy, before and after
impact, and shows that this is not conserved. In the
third part, the impulse on the block is the change in its
momentum. Look below at the next section for the complete
solution. SWITCH OFF,.

6. You should now try example two yourself.

Read it carefully, and draw the diagrsms, for before

and after impact, clearly showing the masses and velocities.
then you have done this, switch on the tape agsin. SWITCH
OFF.

1. The light string is considered to have
negligible weight, and together with the frictionless
pulley, have no effect on the motion. You see that one
mass is rising, and the other falling, but because of the
connecting string over the pulley, the momentum for each
mass is positive in the direction of trevel. The constent
gravitational forces acting on the perticles are finite,
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and have no other effect at the instant of imvulsive

change in motion. MNomentum is conserved at the imvoct.
Complete your working, and check this below. SWITCH CFF.
8. If colliding particles are elastic, they

rebound after an impact. This effect is called restitution.
It is another topic which Isaac Newton studied in his
researches, discovering a law which is stated in the

next section of the booklet. SWITCH OFF.

9. Notice that after the impact there are two
unknown velocities, vy and Voo The conservation of
momentvm only gives one eouation, and accordingly the

Law of Restitution is needed to give the second eguation.
When collisions occur between particles and planes, the
restitution law must be modified as explained in the

next section. SWITCH OFF.

10. Example three covers both aspects of the Law

of restitution. Read this, and study the diagram before

we work through this question. SWITCH OFF.

11. All the motion tekes place along the line
pefpendicular to the wall, as the smooth surfaces only
produce impulses along this line. Notice in the diagran,
that the masses and velocities before and after impact

are shown, as well as a designated positive sense. Ve

can now use the conservetion of momentum and the Law of
Restitution to find the unknovm velocities, as is showvm in
the next section. SWITCH OFF.

12. In problems involving collision, it is imvortant
to interpret the results to ascertain @irection and relative
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velocities, as is shown here. The velocityof ¢ towards
the wall is known., PFind the velocity after this collision
and then check this in the next section. SWITCH OFF.
13. In this second collision, P and 0 are moving
in opposite directions: thus the velocity and momentum of
Q are in the negative sense. We still assume lamda and
mu to be to the right, as is showm, and determine their
senses from the eguations. PFollow carefully their deter-
mination in the next section. SWITCH OFF.
14, The second part of the question is a straight-
forwerd determination of the changes in momentum for
each ball, in terms of the original velocity. Follow
this in the next section. SWITCH OFF.
15, You should try example four for yourself,
which is about restitution in vertical motion. It will
be helpful to separate the parts of the vertical path
into separate diagrams. Use the eguation for free fall
to find your incident velocity. On completion, check your
solution in the next section. SWITCH OFF.
16. Recd example five, which you should also
attempt yourself. Remember to draw enough diggrams for
the parts of the motion, and show all masses and velocities
in them. When this is finished, check your working
below. SWITCH OFF.
I Example six is a slightly harder question
which we will work through together. Read it through,
end study carefully all the information on the diagram.
SWITCH OFF.
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18. The overall motion is in three sections, which
~ust be considered separately. Study the pro jection of
A first. The lower diagram shows it having travelled

a distence d, ageinst the friction forces, with the
velocity v at this instant. This cen be found by using
the conservation of energy, and hence the velocity D
when the string is just taut. Carry out this process
and check your result in the next section. SWITCH OFF.
19, The jerk in the string, constitutes the
second part of the motion. The impulsive tensions are
internal to the system, and overall, the momentum is
conserved. Use this principle to find the common
velocity, lamde after the jerk. Check your answer in
the next section. SWITCH OFF.

20. In the third part of the motion, the
particles will come to rest as frictiom destroys their
kinetic energy. VWhether the retardations produced will
allow B to overteke A, or not, depends upon their
relative magnitudes. Use the information in this
diagram, and the equation of motioh to determine 31

and Rz, end compare these. Check this in the nextF
section. SWITCH OFF.

21. The distances travelled to rest, Ll and L,,
can be found in terms of lamda, by using conservation of
energy. Then form an ineguality for the three distances
concerned, to obtain the result. Assume that B may
overtake A without interfering with its motion. SWITCH

OFF.
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22, You should try example seven yourself. Read

it carefully, and insert symbols for the velocities after
impact in your disgraem. When you have finished, the
solution may be checked on the next page. SWITCE OFF.

€3s When spheres collide, the impulses are internal
to the system. An external impulse occurs when a particle
collides with a wall, and others cean occur as hammer
blows, kicks or jerks. The following exemple illustrates
impulsive tensions in inextensible strings. Read this

and study the diagram. SWITCH OFF,

24, The diagram shows the conditions at the moment
of impulse, and there are different impulsive tensions in
the string, of sigzes Tl’ T2 and T3. Since the strings

are inextensible, the particles begin to move with the
same velocity. ILet this be u. The impulse and momentum
change sre to the left, in this problem, and this is =
convenient direction for the vnositive sense. The tensions
are found by vwriting the impulse equation for each part-
icle separstely. Follow the complete proof in the next
section. SWITCH OFF,

25. Exzmple nine is a similar gquestion, which you
should try yourself. Remember to have clear disgrams
showing a1l masses, impulses, and velocities. Check

your solution afterwards. SWITCH OFF.

26. This completes the work on 'Momentum, impulse
end restitution.' Please rewind the tape before you remove

it from the machine. Thank you!
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APPENDIX L

A REVISION COURSE IN PARTICLE DYNAMICS

by

Kenneth A.H.Jackson

BOOKLET 4 to be used with TAPE /4

"Motion in Two Dimensions"

Read the instructions on page 1 thoroughly.

(Omitted for convenience)

91.



Addition of vectors.

If AB represents vector

D G

P, in magnitude and direction,
and BC represents Q, similarly,

then the diagonal of the

A

parallelogram ABCD represents their vector sum.
ie.P+Q =R
Thus AC represents R, which is called the resultant of P and Q.

SWITCH ON

EXAMPLE 1.

Anequilateral triangular course, of side length 'a',
is marked out by buoys in a broad straight reach of a river, the
buoy C being upstream. A motor launch follows the course ABCA,
where AB is perpendicular to the banks. If V is the spsed of the
launch in still water, and u is the speed of the current, show
that while the launch is moving along BC, it is pointed at an angle

u

6 to BC on the upstream side, where sing = . How long will

Pl

it take the launch to travelalong BC?

c
Triangle of velocities, with
Current R the resultant.
u u

uy
A B i
«— 2 —» S

1
R 6

When you are ready to proceed,

SWITCH ON
92.



o= - 5 u = v @ e = l'l-.
By Sine Rule, Sine " =m0V ? hence sing@ = T
and the right angled t=iangle : 5
\* 2v £ u
From the triangle of velocities, e
LI,
LV ==
R cos 30Y = Vcos(30°-8) - u, Y o
hence R =J47* - u® - w3
2
SWITCH ON
Tige v = & - 2lul3 + Jivtu”]
R 2(Ve—u®)

When you have checked this answer,

SWITCH ON

Rela tive Velocities,

To find the velocity of Q relative to P, reduce P

to rest, by imposing a back velocity ¥,on the system

iV

For Q, now add ¥z and ¥ vectorially, to give the relative velocity k-

I~
1
I<
+
o
[+

Va

Notice that the actual velocity of Q is the vector sum.
(velocity of Q relative to P) + (velocity of P)
ice. (¥a- ¥1) + ¥1 = ¥a
When you have studied this,

SWITCH ON.
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EXAMPLE 2.

A ship is moving due West at V km per hour, anu the

wind appears to blow from 223° West of South. The ship then steams

due south at the same speed, and the wind appears to blow from 22.°

East of south. Find the speed of the wind,and the true direction

from which it blows, assuming they remain constant. What course must

be steered, so that the ship may reach a port m km due west of its

present position, and how long will this take?

N
S
<
v / S
/ \
/ [ \
22% 208 °
e =
Apparent t /\) Apparent
Wind P wina
/ Vv \
/ ' \
f \
When you understand these diagrams, SWITCH ON.
S
—>
v VA
/
/
,a
Appa rent 4
Wind A
/ 5 \
3
\
Triangles of velocities )i.

Apparent
wind
Apparent
Wind

94.
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- : W \i
From 16ft hand triangle, ———=7~ = ——7Tr—==7%
SENE0s  Sin6nR° sin(6+225°)

From right hand triangle, ——“;T-— = :
5in22;° sin(6-22%")

By rearrangement of these we obtain

Vsin674° Vsin224°
A i e =
sin(6+225°) ~ sin(6-22%Y)

After simplification, this reduces to tan@ = 1.

SWITCH ON
Triangle of velocities.
| Resultant
S
P > g :
L5
| Wind
. Speed Ships
speed V
[ R

Stages in drawing this triangle are,
i) Draw the E-W line SP
ii) Mark in wind which blows towards P with speed V
iii) Hence QR for a meaingful triangle
As QR = V = PR so triangle PRQ is isosceles with
Fr = 150, PRe = v,
So QP is the resultant track and speed, which by Pythagoras

dist e A
speed w2

= V2. i.e., Time = hours

SWITCH ON

EXAMPLE 5.

A destroyer, steering N¢“E at D km hr'“, observes at noon,
a steamer which is steaming due north at S km hr *, and overtakes
it at T minutes past noon. Find the bearing and distance of the

steamer from the destroyer at noon.

95.
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Noon Position

Steamer

Destroyer

Reduce the steamer to rest, so that the destroyer needs
to move along AB.

Triangle of velocities

Notice that R is now the velocity of the

destroyer relative to the steamer,

By the Sine Rule, 222 = ﬂ%f;fﬂ)

Ssing

hence, tan@ = (D-Scosg)

From the diagram, R cos(6+¢) = Dcos¢ — S

and , R = SJ5%+D?-25Dcos¢ (directly by cosine rul),
! (T 5T mr—m——
thus, distance F{-éﬁa) = ?@JS +D* - 2S5Dcos¢

The bearing is N,(¢+6) E, where tan@ is as above,

SWITCH ON.

96.
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Components in perpendicular directions.

Let OX and OY be any convenient perpendicular directions

with unit vectors i and j

. /

P(X;Y)

Particle P has coordinates (x,y) and position vector OP.

—

O = r = i_.x + _jy
Velocity of P A A _i_;L + _iv
Acceleration of P a 5P wix i+ A

When you have studied these equations

SWITCH ON
PROJECTI LES If the particle is projected at
velocity V from O in a direction
LIS
making 6° with the ground.
For vertical motion
y = -g , one integration gives,
fr = Vsinb6-gt, a second integration
gives
v A Vsin&._‘t—%—gta
For horizontal motion
¢° : X = 05 one integration gives,
_’ -
0 X x = Vcos@, a second integration giv
x = Vcos@,t
Put y = O to obtain time of flight, T = %

Due to symmetry of vertical motion, maximum height is gained in

8. :.8
time X, h = 1_3_21_3_6_
V ?sin26
Horizontal range = time of flight x horizontal velocity, R = —g-—-
97.
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Maximum range for a given velocity is when sin26 = 1

f.e. 8 = 45°,

Any given range can be obtained with angles of projection 6 and

because sin28= Sin2<g - ),

When you have studied these,

SWITCH ON

i
(2

£ 9>,

EXAMPLE ).,

A body is projected so that on its upward path it passes

through a point, distant k horizontally and h vertically from the

point of projection. Show that, if R is the range on the horizontal

plane through the point of projection, the angle of projection 15,

X

- Rh
t Y r—
o)
'
A
(k,h)H
u h
usina
al:
0
ucosa'
< k >
< R

When you are ready to proceed,

SWITCH ON

Horizontal velocity = u cosa

. : 5 _ horizontal distance
teiue of tLipriod = horizontal velocity

Use 'x = ut + at®', vertically from O to H,

98.
(Continued on the next page)




then h

Ll

g / Sl £ k 2
MBLRG ( ucosgqg ) i ( Ucosq )

2
h = ktana - —gk——r—

22u cos“a 1
= . , .
Use Range R = u ;lnza = 2u Sl!gla.co.;a

Rewrite this as E%?Ea = ucosa, i.e. E%EHE = u®cos®q

Substitute in the equation for h, gives the result.
When you have checked this working,

SWITCH ON

A particle projected from a point O, meets the horizontal
plane through the point of projection after describing a horizontal
distance 'a', and in the course of its trajectory attains a greatest
height 'b' above the plane of projection. Find the velocity of pro-
jection in terms of a and b, Show, that when it has described a

horizontal distance d, it has attained a height, ﬁééé%:@l

Do not read this solution until you have finished.your own.

X
4 T
P
u h b
0 a’ i ik
«—i —p Ed
< a -+

99.
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10 .

' 2u®si )
2u” sina,cosa
Use range = L =a s s LS
i &
| 8 inid
) ; o u“sin“a
and maximum height = T = b,

The second equation gives verti€al component of velocity, usina = d2gb

a |g

Divide (1) by this equation gives ucosa = 5 o
2
s _ a L B [2Z+1607
hence u _ng"'h(% s and u S

24 |2b
Time to travel d horizontally = S = 2 F
a NG

242b

Use 'x = ut 4 2at®' vertically from O to P.

P S 8 E&}j@’ :
Simplify h = J2gb (a J_g-) “ 3 (a g) for the answer.

SWITCH ON

EXAMPLE 6.
Show that, if R be the maximum horizontal range for a given

velocity of projection, a particle can be projected with the same
velocity to pass through a point, whose horizontal and vertical
distances from the point of projection, are % and% respectively,
provided that the tangent of the angle of projection is eithor 1
or 3, and that in the second case the horizontal range is 2R.

Do not read the soltion yetl

’H!

< 3 > g
<4 0 >

: 100.
(Continued on the next page.)



V2 5in2g"
Range = _V___é{}__e s 18 maximum when sin26 = 1,
SaB e Qs YRR Tand R = gﬁ

Assume angle of projection 6, particle has to pass through A.

e _ distance S LRE v
Time to A = 3 rizontal velocity ~ Vcos8 ~  2gcos6

For vertical motion through A, use'x = ut<4 at®.'

- R "
LI Tt _ vgme(chosG) <2gc059)

which simplifies to tan?g - Ltang + 3 =
(tan@ - 1)(tan6-3)= 0.
S, tan® = 1 or 3, the particle passes through A.
When tan@ = 3 we have the triangle

and sin@ = —_'2-_, cos@ = -

4 10 410
Yisingy 3 At 3
Hence range = ———— == = = =R,
e HE g IE
SWITCH ON

%

Pro jectiles above an inclined plane.

Vsin 6 X
up plane

down plane

gsina geosa
Y &
Acceleration
components
For motion perpendicular to the plane.

;IS geosa integrate once with respect to time,

Y = Vsin@-gcosa(t) integrate again

Y = Vsin6(t) - & cosa(t)?

01 ¢
(continued on the next page)



For motion up the plane, i.e. parallel to it, gravity retards.

X = -gsina integrate once,
X = Vcos@-gsina(t) integrate again,
X = Vcosg(t) - %sina(t)’

For motion down the plane, parallel to it, gravity assists,

X = gsina » &ives
X = Vcos6+gsina(t)
and X = Vcoso(t) + %sina(t)“
. - * : _ 2Vsing@
For time of flight,put Y =0, gives T = e

Range,in each case, is found from the equation for X.

i.eo R = 2V2singecos(6+a) Rown = 2V2sin@cos (6-a)

g cos®a g cos"a
When you have studied this,

SWITCH ON

A particle is projected at an angle ¢ to the horizontal
on a plane inclined at 45° to the horizontal, Its path is in a
vertical plane containing the line of greatest slope. Prove that

the angle at which it meets the plane is a, where

_ (tang-1
tang = (5~tan¢;

At what angle must the particle be projected, so that it is travelling

horizontally at the instant when it meets the plane again?

(The diagram is overleaf.)
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geoshb®

When you are ready, SWITCH ON

At the point of impact, tana :%
1 = [ i o
Use time of flight = 2Vsing SieL 2V51ﬂ(¢h%5 )

For P (directed towards the plane),

use 'v = u+at' perpendicular to plans,

2Vsin{¢:ﬁ§”)

i.e. = P = Vsin(¢ -45°) -gcosy5°. gcoshh°

and P = Vsin(¢-45%)

For Q, use 'v = u+at' parallel to the plane,

i.e. Q = Vcos(¢-45°) -gsinL5@, 2Vséﬁégzggfl

Hence the ratio %’ which simplifies to the result.
When you have checked this working,

SWITCH ON.

o .+ o (tandg-1)
tanag must be tanib® = 1 = (3:%§§ED

hence tang¢g = 2.

SWITCH ON,
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EXAMPLE 8.

From a point on the side of a flat hillside, two particles
are projected in the vertical plane through the line of greatest
slope, with equal velocities but in directions at right angles to
each other. Show that the difference in their range, does not
depend upon the angle of projection.

Do not look at this solution until yours is complete,

1
2V2sin@cos (6+a)
[ t =
Use range up the plane RU gcos®q
| I
_ 2Vsin@cos(6-a)
and range down RD = gcos>a

But angle of projection.down the plane = (lg - )

Difference in ranges = BD - RU,which on simplication gives

2V"":3:’1.1:1-@2]r -8)cos (12r -6-a)

gcos*a

2V3sina

ey ol which is independent of @, the angle of projection.

SWITCH ON,
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Inclined impact with & smooth plane.

The component of velocity parallel to a smooth plane
unchanged after an impact. |

The normal component of velocity is reduced by e, as
shawn above.

The velocity after impact is v, where
v® =(eucosa)?+(usina)?® ; v = w (e®cos?a+sin®a).

If B is measured with respect to the normal then
tanf = gfﬁﬁzzzé'&ma.

When you have studied this,

SWITCH ON.

=
\n
.

is

is

EXAMPLE 9.

A sphere of mass m, moving with a velocity u, impinges on

a fixed smooth plane, the direction of motion making an angle a

with the plane. If e is the coefficient of restitution between the

sphere and the plane, find:

i) The mMagnitude and direction of the velocity of the sphere
after impact.

ii) The impulse on the sphere at the impact.

iii) The loss of K.E. u cosa, U _cosa
A

l eu sina

105,
When you are ready SWITCH ON.
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Normal component of velocity at A, before impact

Component after impact = eu sina

Component along the plane remains u cosa

V2 (eu sina)® + (ucosa)?

= using

e“sin“a+cos“a (magnitude)

and V = ule3sinca+cos a
tanf = 5%%%%2 = etana (direction)
ii) Impulse = change in momentum
I = meusina - (-musina) = musina(l+e).
iii) Loss of K.E. = K'E'START - KJE-END
= tm? - Zm Epa(easin°a+cosaa)].
= tm®?sin®a(1-e?).
SWITCH ON.
EXAMPLE 10.

A particle

is free to move on a smooth horizontal plane,

which is one of three mitually perpendicular planes, joined to form

an internal cormer,

Show that if the particle is projected in a

direction towards (but not directly into) the comer, it will emerge

in a direction parallel to the ingoing one. Assume a common coefficient

of restitution for the impacts.

Do not read this solution until you have tried your own.

u cosaq
A
~ B
a® B
B BAna eu sina
=t b C | eu sina
90
4 —-
eu cosa
v
1O

(Continued on the next page).



There will be two impacts at A and C. If a is the initial

inclination to AB, then the components of velocity will change as

shown in the diagram. If @ is the emergent angle, measured to

the normal at C,

velocity component along BC

then tané

velocity component perpendicular to BC

_  eusina = tana
~ eucosa o

i.e. velocities of u and v are parallel

SWITCH ON.

EXAMPLE 11.

A ball is projected from a point on smooth level ground. 1t

strikes a wall normally and returns to the starting point after

bouncing once on the ground. Show that the coefficient of restitution

is % for both impacts.

Do not look at this solution yet.

u = velocity of projection

6 = angle of projection 4
u eu sin@
A
u sin@
u sin@
() G
A {4
eu cos@
Normal impact at B, time of flight = us;ne
-
u“sinf.cosé@
AD:%range:T-

Since there is no change in the vertical motion at B,

108.
(Continued on the next page)
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18.
the time of flight from B to C = time from A to B.

Due to normal impact at B,horizontal velocity = eucos@

euasinﬂ. cos@
g

Then CD = (velocity)(time) =

Vertical component of veloecity at C = using
After impact this is eu sin@ upwards
Horizontal component is still eu cos#@
Then range CA = 26311’5:1.118.0056/.9; = 2(edsinB) (eucos)

g
Now AD = AC + CD, substitute and simplify, gives

2e®+e-1=0=(2e-1)(e+l), e = & or -1.
As e cannot have a value -1, it must be %.

SWLTCH ON,
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APPENDIX 4 CON'PINUED

SCRIPT FOR TAPE 4

MOTION IN TWO DINENSIONS

1. This is the tape to be used with Booklet 4 of
'A Revision Course in Particle Dynamics' by Kenneth
Jackson. It is concerned with motion in two dimensions.
Al]l motion which has been studied by you so far,
has been linear. Because of this, addition of acceleratim
or displacement has been straightforward summing of these.
You must now counsider two dimensional motion, for which
the vector guantities of velocity and acceleration,
add according to the parellelogram law. Look on pag
two, where this is revised for you. GSWITCH OFF.
Ze In practice, the parsllelogram is usually
replaced by the vector triangle ABC. Notice that arrows
on P and Q follow round, and that the arrow on R is in
oprosition. As these figures are scale drawings of the
vectors, they may be used for calculation of angles and
lengths directly. The first question is about triangles
of velocities, eand we shall work through this together.
Read this guestion carefully, and look at the disgrams.
SWITCH OFF.
3. The left hand diagram shows the course and
current flow. To travel along BC, the launch must be
steered upstream to allow for the current. The triangle
of velocities on the right, is drawn with the current
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and resultznt vectors parellel to their repuired directionu.

As the velocities of u and v are knowvn, they are dravm

to the same scele, and showvn as following vectors. Then
complete the triangle, giving R in opposition, to the

seme scale, and 6 as the renuired angle of deflection.
Check this method for drawing the triangle, and then use
the sine rule on it, to verify the answer for sin O.

Check this afterwards overleaf. SWITCH OFF.

4. As you see, we need to calculate R to determine
the time along BC. To avoid using the cosine rule, we
heve used the sum of the projections of the vectors onto
the line of the current, giving a vector result. Notice
thaet R involves a difference of sguare root cguantities
which must be rationalized by multiplication, before

we can divide by it. TFollow the last step in the next
section. SWITCH OFF.

De As well as needing to compound velocities, we
are often reguired to find the relative velocity of one
body with respect to another. For parallel velocities,
this is a straightforward subtraction, but for non

linear velocities we need a vector difference. This is
shovm in the next section of the booklet. GSWITCH OFF.

6. The second examnle is about relative velocities
and we shall work through the first pert of this together.
Read the question carefully and study the diagrems.

SWITCH OFF.

1. The diagrams represent the ships velocities,
showing the apparent winds. As these are directions
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relative to the ship, the ship must, in each case, be
reduced to rest, by reversing ite velocity. This enables
the appropriate triangles of velocities to be drawn, as
is shown in the next section. SWITCH OFF.

8. The left hend diagrams show the apparent wind
at 22% degrees to the North South line. In the triangle
the vectors have been arraenged so that the seouence of
arrows gives a sumnation of V and W, with the apparent
wind as the resultant. This gives a wind from between
east and south, which is labelled @ to the north line.
The same process has been carried out for the other
triengle. We may apply the Sine Rule to both of these.
Follow this in the next section. SWITCH COFF.

9. Did you notice that 45 degrees satisfies the
equation by inspection? Don't worry if you did not.

This means that the wind blows from the south east. Find
the wind speed by substitution in one of the enuations
above, and show that it eguals the ship's speed. When
you have done this, switch on the tape agsin. SWITCH OFF.
10. For the second part of the guestion, to follow
a track west, the ship rmust sail so that it is blowm onto
the direction reaguired. Construct the triangle of velocity
in this way, and look closely at the angles and sides.
Complete this yourself, and then check it in the next
section. SWITCH OFF. :

.il. Example three is gbout the relative motion of
a destroyer and a steamer. Read the question carefully

and attempt the cuestion yourself. You are advised to
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draw the noon nositions, and solve the problem by
reducing the stesmer to rest. When you have finished,
check your solution on the next page. SWITCH OFF.

12 In two dimensional motion it is often best

to work in terms of perpendicular components which are
completely independent. The vector ecuations for this
are listed in the next section. GSWITCH OFF,

13. The velocities and displacements resulting
from these, affect bodies simultesneously, producing
curved trajectories. The study of particles projected

at angles less than 90 degrees to the ground, is

revised for you in the next section. GSWITCH OFF.

14. Before you leave this, let me point out

that not all of this needs to be remembered. lNemerize
though, the methods and steps which lead towards the
results. In examinations, you should be able to deduce
everything you require, but to save time and spaoce, 1 sheall
be quotinglfrom these, and you may do so if you wish. Ve
shall work through question four together, so read this
and stvudy the diagram. SWITCH OFF.

15. We must assume an angle of projection, alvha
and later, find an expression for its tangent. The
assumption engbles us to write horizontal and vertical
components of velocity. The particle at the point H must
have taken the same time vertically as horizontally from
the origin. This can be used with the range ta obtain
the relation reguired. Follow this carefully in the solut-
ion, which is complete in the next section. SWITCH OFF.
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16. The next guestion is similar to this, and is
for your own working. Read it with care and draw g
diagrem showing the distances. You may use the ouvoted
expressions for maximum heights and range, which will
help you find velocity components. Check your solution
afterwards in the next section. ©SWITCH OFF.
17. You should now attempt question six yourself.
When you have read this carefully, eand drawn the diggren,
remember that the meximum range will be a function of
velocity only. When you have completed this, check your
solution in the next section. SWITCH OFF.
8. We must now extend the study, to involve
projectiles over inclined plenes. In this case, the
most convenient perpendicular axes are along, and
perpendicular to, the plane. This is summarized for you
in the next section. Again, note the methods for deriving
- results. I shall also quote these as reguired. Read
this section very carefully. WITCH OFF.
19. Now read guestion seven, which we shall work
through together, and study this diagram. SWITCH CFF.
20. For this question, you must remember that the
tangent of the angle of inclination of a curve at any
point, is given by the ratio of the perpendicular and
parallel velocities; that is, in the notation used here,
P divided by §. These are the velocities at the instant
of impact, in this'case, so they can be obtained by using
the time of flight in the equations. Follow this in the
section below. SWITCH OFF.
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21, For the projectile to land horizontally, the
angle slpha must be 45 degrees. You are now able to
convlete the remeinder of the cuestion yourself. Do
this and check your answer in the next section. GWITCH CFF.
22, You should now resd examnle 8, which is for
your ovn working. Your diagram should show all angles,
distances and velocities, and@ then ask yourself what thecse
perpendicular angles of projection tell you. When you

ave finished, check your method of working in the next
section. SWITCH OFF,.
23. You are now in a position to study the impact
of particles when they are no longer travelling normally
towards a plane. With the more complicated paths involved
it is often convenient to treat the particle as a point
on the path, rather than a sphere of significant size.
This type of impact is revised for you in the next section.
SWITCH OFF.
24. Do not try and remember these formulae, but
renember that you are compounding perpendicular velocities.
Exemple 9 is szbout this type of impact, and sgain, we shell
vork through it. Read it, and study the diagrem. OSWITCH
OFF.
£ The angles &lphe and theta are marked, as the
question refers to the plane for measurement. It slso
helps to show the normal and parallel components of
velocities, before and after impact. In part one, the
magnitude and direction are found in the usual wey. For
the second part, the change in momentum gives the impulse
on the sphere. The loss in kinetic energy is a straight-
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forward difference between the energy at the beginning
end end of the motion. Follow this working in the next
section. SWITCH OFF.

26. Example 10 is one for you to try yourself.
Read it carefully and in your diagram show the rerpend-
icular comnonents of velocity and two reference angles.
VVhen it is complete, check your working in the next
section, SWITCH OFF.

27. You should now try the last example. Read
this carefully, and draw a clear diagram showing the
component velocities throughout the motion, which will
help you to find ranges within it. Again, check your
working afterwards. SWITCH OFF

28. This completes the work about motion in two
dimensions. Would you plezse rewind the tape before

you remove it from the machine. Thank youd
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APPENDIX 5

A REVISION COURSE IN PARTICLE DYNAMICS

by

Kenneth A.H.Jackson

BOOKLET 5 to be used with TAPE 5

"Extension of Motion in Two Dimensions"

Read the instructions on page 1 thoroughly.

(Omitted for convenience.)

117,



2
.

EXAMPLE 1.

Two particles,of masses my and my (my; > my), rest on
the rough faces of a double inclined wedge with angles @ and f
to the horizontal respectively, (a > f), and are connected by a
light inextensible string, passing over a smooth pulley at the
vertex of the plane, If the faces of the wedge are equally rough,
with a coefficient of friction y, find
i) the common acceleration of the particles,
ii) the tension in the string.

Complete your own diagram before checking below,

‘< acceleration

®

If you have omitted anything, insert it into your diagram and,

SWITCH ON

Use 'F = ma' for my, along the plane,
mia = myg sing - T - Fy
with F4 = gy Ry = py msg cosa
and similarly for mg,
mg a =T - mgg sinf -~ Fg
with Fg = yRg = pu mgg cosf
When you agree with this,

118.
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e

i)  Add the equations, giving

e glmgsina = mysing - u(micosa + mpcosp)]
(H11+ Mg
ii) Substitute for'a' in ei‘her equation to give T

glsina + sing - y(cosa - cosp)]
(Ill_1+ -1

= m,mg

SWITCGH ON

The actual acceleration of a particle sliding on a moving wedge
is the vectorial addition of the acceleration of the wedge plus

the acceleration of the particle relative to thes wedge.

/&

\ Wedge } =B
acceleration
Particle acceleration i
A:[.relative to .
the wedge

Acceleration down the face = A - B cosa
Acceleration perpendicular to the face = B sina
When you have studied this,

SWITCH ON

EXANPLE 2,

A particle,of mass m, slides down the face of a rough wedge
of mass M and sldpe @ on a rough horizontal table. Find the
acceleration of the wedge, if they both start to move. Assume

that the coefficient of friction is the same for both surfaces,

(The diagram is on the next page)
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F = acceleration
of the wedge R

= acceleration
of the particle
relative to
the w edge

When you have studied the forces and accelerations,

SWITCH ON

When you have identified
3 forces acting on the particle,
5 forces acting on the wedge.

SWITCH ON

Use 'F = ma' for the particle,
down the plane, m(a - Fcosa) = mg sina —uR
perpendicular mFsing = mg cosa - R
for the wedge horizontally,
MF = R sina -uR cosa -uS
Vertically there is equilibrium and
S = Rcosa +uR sing + Mg
When you have checked these,

SWLTCH ON

ooce

s o0

(1)
(2)

(3)

(%)

From (3) and (&)
MF = R(sina - 2u cosa -p®sina)-Mg

_ glmcosafsina(1-u®)-2ucosal-uM]
[M+msina{sina(1-p®)-2y cosa}l

SWITCH ON
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EXANFLE 3.

Two particles, of masses my and mp (m, > mg),are placed

one on each of the smooth inclined faces of an isosceles wedge of

mass M, and base angles a, which is free to move on a smooth
horizontal plane. Show that when the particles are released from
rest, the acceleration of the wedge is

(mg-mz)g sina.cosa
M + (my+mz)sin®a

Find, also, the reaction of the wedge on the particle mj.

When you have drawn your diagrams, check them below,

Assume that the wedge accelerates to the right.

Ry Rz

Actual acceleration of mg Actual acceleration of mg

s @
a N

dg

SWITCH ON
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Use 'F = ma!
For the wedge horizontally, MA = (Ry-Rz)sina e (1)
There is vertical equilibrium,S = Mg+(Ri+Ra)cosa eos (2)
For my along the plane,
ms(24-A cosa) = myg sina SHb (3)
perpendicular to the planeg,
msA sing = myg cosa - Ry sa's (4)
For mp along the plane,
ma(2g + A cosa) = mpg sina oo m (5)
perpendicular to the plane,
mzA sing = Ry - mag cosa on's (6)
When you have checked these,

SWITCH ON

Use (4) and (6) in (1) to show that

(my-m sing.cosa
M+ (mg+ms)sin“a

S
Substitute A into (4) to obtain Ry = ¥ M+?;2Tm:?213 205“
1

SWITCH ON

=

EXAMPLE 4.

Two particles,of masses my and me (my > mp), rest on
the rough faces of a double inclined wedge, with angles a and f
to the horizontal respectively, (@ > ), and are connected by a
light inextensible string, passing over a smooth pulley at the
vertex of the plane. If the faces and base are equally rough, with
a coefficient of friction u, consider the effect on the motion if
the wedge also moves on a rough horizontal plane. [This is a
generalisation of EXAMPLE 1.]

When you have finished, check your diagrams on the next page.
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Assume that th= acceleration of thez wedge is A,

and that the acceleration of the particles relative to the

wedge is a.

us
——

Actual acceleration of m,

When you have identified 9 forces acting on thew edge,

SWITCH ON

Actual acceleration of mg*

For the wedge there is vertical equilibrium,
Rs(cosa+psine)+T(sina+sinB)+Racosp+llg = S+uRasing
'F = ma' horizontally
MA = Rq(sina-ucosa)+T(cosp-cosa)- Ra(ucosf+sing)-uS
For my along the plane,
ms(a -Acosa) = myg sina - T-pRs
perpendicular to the plane,

m4A sing = myg coso-Ry

123.

(Continued on next page)

(1)

(2)

(3)
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For ma along the plane,

mg(a-AcosB) = T-mag sinf — LRz .

perpendicular to the plane,

mgAsinfS = Rg- mgg cosf e

en you have checked these equations,

—id

SWITCH ON

~—
N
S

(6)

Stages required to find A,

1. Combine (1) and (2) to eliminate S, and collect terms in
Ri,Ra, and T.
2. Eliminate a from (3) and (5), which gives an expression for
T in terms of A, R4, and Ra.
i Substitute for T in stage 1, Collect terms in R,,R;, and A,
4. Use (4) and (6) to substitute for R; and Rz in stage 3. Hence A,
When you have agreed with this,
SWITCH ON
EXANPLE 5.

Four equal particles, of mass m,at the corners of a

square, are connected by light inextensible strings forming the

sides of a square. If one particle receives a blow P along the

diagonal outwards, show that its initial velocity is P/2m, and

find the initial velocities of the other particles.

The diagram shows the impulses at the instant P is applied and

also the initial velocities,

T

B L
Ty
h 4
5 4Ty If you are completely
puzzled,
W

SWITCH ON



This diagram shows the impulses &t the instant P is
applied and also the initial velocitics. Notice the great

simplification provided by the regularity of the square.

ATy T4

m

v u
‘T Ty T4 T

n'd—p ——»

c > D Y

When you have studied all the details,

SWITCH ON Y

Impulse = change in momentum

For A, along BA, P coshk5°-T = m L e
For B, along BA, T =m s u b Ge

along CB, mV = =Ty woin e {3)
For C, along CB, Ty = mV cen (4)

When you have checked these,

SWITCH ON

Add equations (1) and (2) to give u = —f-—_—:
om| 2
Resultant velocity of A = Ju*+u® = 2%1 along the diagonal,

Add equations (3) and (4) to give V =0

directed towards A,

Velocity of B and D is =
2m)] 2

The velocity of C is zero,

SWITCH ON.
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10,
EXAMPLYE 6.

Three particles A,B and C, each of mass m, lie at rest
on a smooth horizontal table, Lightinextensible strings connect
A tc B, and B to C. The strings are just taut with Aﬁc 2= 159
and an impulse J is applied to C, in the direction parallel to AB.
Prove that A begins to move with spsed J/7m, and find the impulsive
tension in the string BC.
The diagram shows the impulse at the instant J is applied and also

the initial velocities.

Q J
5
m C z
When you have studied these velocities,
SWITCH ON
Impulse = change in momentum,
For particle C, along BC, Jcosy5°-T = mP e ean (Y
" " B, along BC, T -T4cosl5°=mP Vov i)
perpendicular to BC Ticos45° = mR ise 1 £3)
i) it Aalong AB Ti = mS soe (}-l-)

SWITCH ON

At the moment of impact, because AB does not stretch,
Velocity of A along AB = velocity of B along AB

‘P cos4b® - Rcos,ih®

Il

je8s S

(P—R)J% . ese

126.
We begin solving overleaf,

or S
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Rewrite (5) as mS =m Pd% - mRJ%

Substitute from (3) in this,

- g2 N2\ _ 2 _ Ta
s = —%’l‘i - _mP"lz—z

2

SWITCH ON

Add (1) and (2)

J

E
J T ik >

Substitute above

R

JI‘?_(J"T:L)

SWITCH ON

(6)

Substitute from (4)

dy - SmS . 1 4
mS = '8 % i.e. S = as required.
also mS =T, = %
Substitute in (2) T = "-% (%) + mP

I

Substitute in (6)  uP Jf( < Q?-)

Hence T = A_!,ﬁ = tension in s tring BC,
SWLTCH ON

EXAMPLE 7.

Four equal particles A,B,C,D, each of mass m, are

connected by equal light inextensible strings. They lie at rest

A

on a smooth horizontal table with ABC = 120°, BCD = 150°. An

impulse I is applied to D at an angle of *0° to CD produced, and

directed away from A. Find the initial velocity of A,

When you have drawn the diagram and put in your component

velocities and impulsive tensions, check overleaf,

127.

Fis



The diagram shows the impulses at the instant that

is applied and also the initial velocities.

SWITCH ON

1

Impulse = change in momentum,

For D, along CD, I cos® - Ty = oP “eo
C, along CD, T4-Tac0s30° = mP
perpendicular to CD, Tacos60° = mR e

B, along AB, Tgcos60Y-Tg = mS ive
perﬁendicular to AB, Tocos30° = mV ok

A, along AB, Ts = mS vesn

Velocity of B along BC = velocity of C along BC

Scosf0® + Veos20° = Pcos3° — Recosb0® sea
Add (1) and (2) to eliminate T, “'—32-(1—'1!3) = 2mP
Subst. in (7) ZmS+ mVJ% = 'J-g - 'J-E(I-—Tg) ~5mR

Use (3) an (5) fms + '3 . 3 ma = drma)-tp,

dmS + 11 Tg = 31

Add (4) and (6) ir, = 2mS
Subst., above to give S8 = -1%5
128.
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(1)
(2)
(3)
(&)
(5)
(6)
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EXAMPLE 8.

A gun is mounted on a railway truck which is f'ree to
run without friction on a straight horizontal railway track. The
gun and truck together of Mass M, are moving along the track with
velocity u, when a shell of mass m (not included in M) is fired
from the gun with muzzle veloecity v, relative to the gun. If the
gun barrel and the track 1lis in the same vertical plane, and the
former is inclined at an angle a to the direction in which the gun

is moving, show that the shell has a horizontal range.

2vsina ( Mvcosﬁ)
—_—(u +
e M+m

After firing Velocity of the shell
relative to the gun,

Before firing

v sing
1
or [ ot n
R v S Vv cosa
m+M —> ' M e
S P AR ()
When you are ready to start
SWITCH ON

Total horizontal momentum before firing = (m+M)u
Horizontal momentum of gun and truck after firing = MV
Horizontal momentum of shell after firing = m(V+vcosa)

Horizontal momentum is conserved,

(m+M)u = MV + m(V+vcosa)

; _ (m+M)u - mvcosa
L0 W = (HH'M)

SWLTCH ON
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2vsix
Time of flight = ———2

Horizontal shell velocity after firing is (V+vcosa)

Mvcosa

Substitute for V and simplifying gives u + Vam

Range = (horizontal velocity x time) and hence result.

SWITCH ON,

EXAMPLE 9.

Two spheres,of masses my and mg, respectively, have
initial velocities uj; and ug,inclined at angles @ and B, in
the same sense, to the line of centres (&.of c), when they
collide, Show that the new velocity of mg along the line of
centres is given by,

_ mguq(1+e)cosatug (mg—em, ) cosp
- 36 (ma+ ma)

where e is the coefficient of restitution.

Just before impact

ussing ugsinf
Ug P "
which is
i {gquivalent}—_—z“"
to
e e il o, & of c.
uicOSa =,
my mg my Uzcosf

Just after impact.

uzsing ugsing

Lo

£,.,0f
LT

When you have studied these,

SWITCH ON.
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Conservation of momentum along the line of centres,
Mm4U4COSQ® + MaugcOSf = myVy + MaVaz
Law of restitution along the line of centres,
va - va4 = e(uscosa - uzcosp)
When you have checked these,

SWITCH ON,

EXAMPLE 10.

A smooth sphere of mass m, impinges on an equal sphere
at rest, Before impact the first sphere was moving in a direction
making an angle o with the line of centres at the moment of impact.

Show that the direction of the first sphere is turned through an

l+e)tana

angle B, where tang = T-af 2%an’s

Do not read the solution below until you have found the velocity

components of the first sphere after impact.

Just before impact Just after impact

using

usinaT
Rest

Vﬂ__’ vB__’
ucosa
~~ 222D et~ (DO

Conservation of momentum along the line of centres,
mu cos@ = mVa + MV

Law of restitution along the line of centres,
Va— V4 = €u COSQe

Eliminate va to give v = su cosa(l-e)

SWITCH ON.
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Before impact After impact
using
ucoso o
s U
5 T;sina
From the right hand diagram, tang = 2538¢ _ 2tana
Vi (l—e)

Angle of tum =8 =60 - &
Hence result.

SWITCH ON.

EXAMPLE 11.

In a certain game a ball is rolled along a horizontal °*
plane with velocity V, until it strikes an inclined plans, from
which it rebounds. The object of the games is to make the ball,
after rebounding, fall into a hole in the inclined plane. If 6
be the inclination of the plane, e the coefficient of restitution
between the ball and the plane, and if the hole be a distance d
away from the junction of the planes, show that the ball will enter

the: hole if,

V= cosech
" J2e(1 - etan®g)
When you have drawn your diagram,

SWITCH ON.
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17.

The particle
Just before impact Just alter impazct.

///ﬁiﬂ

V siné

eo

o

/4f/s:58

Inclined plane

\
/\A/
d
N
N Jg
\' ‘\\
; 0

The perpendicular velocity Vsin@ will be reversed and

reduced by a factor e, as shown. Use this velocity to find the

time of flight from the standard formula for an inclined plane,

L1} - " .
Use time of flight = 2Vsing P R 2(eV, sing)
gecosa geos@

For OA, use "Xx=ut + %ts“ parallel to the plane,

i.e. d = Vcosf.T - & sing(T)?
L 2eVsing _ gsing/2eVsing\®
Sa¥conds gcosh 2 _\ gcoso )

This gives the result on simplification,

SWITCH ON.
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APFENLIX § CONTIRUND

SCRIPT FOR TAPE 5

EXTENSION OF MOTICKN IN TWO DINENSIORS

1. This is the tape to be used with Booklet 5

of 'A Revision Course in Particle Dynamics' by Kenneth
Jackson. This is an extion of the work concerning motion
in two dimensions, with more difficult exemples. We
éhall, of course, work through some of thece together.
Part of the difficulty lies in the comnlexity of the
problems which should be read with very close attention.
Here, more than ever, clear diagrams are vital, to show
exactly which forces are applicable to the motion.

The first example concerns connected particles
on inclined planes, and we shall work through part of this
together. Read it and draw your diagram showing e11
forces. Remember the friction will be acting on both
faces. When you have finished, check your diagram below.
SWITCH OFF.

2. If you missed any features on this diagram,

try reading the question zgain, after you have drawvn a
diagram. Using F = ma, write down the eguations of motion
for the particles, and afterwards check them below.

SWITCH OFF.

3. To find the acceleration we need to eliminate
the tension which can be done by addition. To find the

tension, substitute in either of the equations. Find a
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eand T, and then check these on the next page. GWITCH COFF,
4. Another factor arises when & particle slides
dowvn a moving wedge, 2s it has two contributions to its
accleration, one dowvn the plene, and the acceleration of
the wedge itself. This is revised for you in the next
section. oSWITCH OFF.

D'a The actual acceleration is the vector sum of
A end B, and the most convenient perpendicular component
directions are along, and perpendicular to the plane. Ve
shall need these components in example 2, which we shall
work through together. Read this and study the forces
end sccelerations in the diagram. SWITCH OFF.

[ Remember that in this complicated situationy
we separate the moving parts, so that we may show more
clearly their interactions. So we show an upward force,
R, exerted by the plane on the perticle, and an eguel
force downwards, exerted by the particle on the wedge.
Simiiarly with the friction force. To check this, look
below in the next section. SWITCH OFF.

T We are now able to write the eguations of
motion using these groups of forces. VWrite these yourself
for the particle down the plene, and perpendicular to it,
and for the wedge, horizontally and vertically. Check
these afterwards in the next section. SWITCH OFF.

8. You are now able to find F, by eliminating

S and R between the equations 2, 3 and 4. Carry out
this process, and then check below. SWITCH OFF.

9. These equations could, of course, be used
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further to find R, or the acceleration of the bparticle
by cubstitution. The next example, number 3, is mainly
for your own working and concerns two psrticles on =&
moving wedge. Read this carefully, ané draw & disgran,
and ascceleration vector diagrams, similar to those in
the two previous examples. SWITCH OFF.

10. As all the forces and accelerations are now
snecified, we can write all the esuations of motion.

Do this and check them afterwards on the next page.
SWITCH OFF.

11. You should now find A by substituting for Rl
end R2 into the first ecuation, and then R1 by further

substitution. Check your answer for this below. SWITCH

12. The next auestion, 4, is even more comnlex,
and we shall look at the preliminary stazges together.
Read it and draw your diagrams very caréfully. Remember
there is a tension in the string, and this affects the
wedge at the pulley. When you have included 2ll the
forces and eccelerations, check on the next psge. SWITCH
OFF.

13. The action of the string through the pulley is
equivalent to an added force T, parallel to each face,

as shéwn, and these will have components horizontally

and vertically. Assuming'the accelerations as shovwn,
write the six equations of motion you would need to solve
this problem, and check then below, afterwards. SWITCH
OFF.
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14, As the algebra involved would be lengthy, &nd
the essential mechanics has now been covered, I shall not
ask you to find the scceleration of the wedge. However,
you should be able to list the steps vou would need.

Do this, and then see if we agree in the next section.
SWITCH OFF.

153 Some involved algebra also often occurs in

the next type of example sbout impulses in strings
connecting a number of particles together. Read example

5 and study the diagram carefully. WITCH OFF.

16. This is obviously not the diagrem, but it is
dravn as & contrast to example 5. ABCD is an irregular
figure, and P at some angle © to DA. To allow for the
varied directions of impulsive tensions and velocities,

we must insert a number of perpendicular components,

along and perpendicular to the strings. Only A and D

have a common velocity R, because particles at the end of
a streight string, mmust have the same component along it.
Now look at the correct dizgram on the next page. BWITCH
OFF.

b 47 4 Because P acts along the diagonal, we have equel
impulsive tensions and velocities on each side of it. ILook
at particlke A, which has egual component velocities along
BA and DA. B has a tension acting along BA, so also

has a velocity component u, as the string does not stretch.
The other component is denoted by V, which is also commun-
iedted through the string to particle C. Similarly for
ADC. Because of the symmetry, we only need two impulsive
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tensions instead of four. We only need to write the
impulse equations for A, B and C, for perpendicular
directions. These are written in the next section of the
booklet; verify them carefully. SWITCH OFPF.
18. By using eguations 1 and 2, :you can find u,
and then eguations 3 and 4 for V. Complete the guestion
and check your answers in the next section. SWITCH COFF.
19. The symmetry made this a straightforward
question, but notice that even though we inserted an
unneeded velocity component, the algebre showed this to be
zer. Now read exémple 6, which we shall analyse together,
eand look particularly at the comvponent velocities shown ;
in the diagram. SWITCH OFF.
20. Notice that the particles B and C have a
common velocity P atong the string BC, and as A is the
last particle in the system, we can irsert a single
velocity S, along AB. Ve can now write the impulse
equations, by resolving along, and perpendicular to the
strings. Check these in the next section. SWITCH OFF.
21. There are 5 unknowns in these four equations,
and so we need another relation. This is found from the
string AB, which remains taut, and this type of eguation
is often used as a basis for substitution from the others.
Follow this in the booklet, again. SWITCH OFF.
22, As the first substitution gives a term in T1,
s0 we need to substitute for P in the same terms. This
cen be done by eliminating T from egquations 1 and 2.
Follow this in the next section. SWITCH OFF.
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23. As we are finding S, we need to substitute for
Tl in terms of this, using eguation 4. To find the other
tension we need to substitute back in equations 2 and 6.
Finish this process, and check afterwards, below.

SWITCH OFF.

24. You will notice in this gquestion, that comp-
onent of velocity Q, wes not used at a2ll. However, it
could be found directly from the impulse J if renpuired.
Now attempt the next guestion yourself. Read it, and
draw your diagram showing the impulsive tensions and
component velocities. When you have done this, check
these on the next page. SWITCH OFF.

254 The components shovn, are not the only choice,
but they are very convenient. Notice the repeated
components, P and S. Remember that string BC remains
taut and inextensible. When you have finished the
working, check this in the section below. SWITCH OFF.
26, Another type of two dimensional examnle
involves the firing of a gun, which depends upon the
conservation of momentum, as in the next question. Read
example 8 carefully, and study the diagrams. SWITCH OFF.
27, This problem depends upon the conservation of
horizontal momentum, as there is no external impulse

in this direction. The two diagrams help us to compare
the momentum befére and after, firing. In the right hand
diagram, the shell and gun have a common horizontal
veloecity V, but because of the explosion, the shell is
moving forward with an additional velocity, and its
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actual velocity is the sum of these. Use this to w
the conservation eguatioj, and evaluate V. Check this
below. SWITCH OFF.
28, The vertical motion is not affected by horiz-
ontel variations, and this enzbles you to obtain the
time of flight of the shell. Remembering that the range
is the product of the actual horizontal velocity and
the time, you are now able to complete the auestion
yourself. When you have done this, check in the next
section. GSWITCH OFF.
29. The next example concerns svheres colliding
obliguely. Read this carefully, and study the diagram
which shows that only the velocity components along the
line of centres, change at the impact. SWITCH OFF.
30. Notice particularly, that there is no velocity
change perpendicular to the line of centres. To find vl
and v2, apply the conservation and momentun and restit-
ution laws along the line of centres. Follow this
carefully in the next section. OSWITCH OFF.
LI We are now able to eliminate vlbetween these
eauations. Do this yourself, to obtain the stated result,
and then switch on the tape again. SWITCH OFF.
=823 The next example is for your own working, and
should be broken into two stzges. Read example 10 care-
fully and draw your diasgrems to show the motion before
and after impact. Then find the two component velocities
of the first sphere after impact, and check your working
below. SWITCH OFF.
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B3, You should now draw a diagrem showing the

anglez to the line of centres, and the comvonent velocities

before and after impact. You should then be gble to
complete the question yourself, &end check it afterwardis.
SWITCH OFF.

34. You should now attempt the last question.

Read it carefully, and when you have drawvn e diagran,
switch on the tape again. SWITCH OFF.

35. - A ball travelling along the horizontal nlane
with velocity V, ean be considered to have two components
of velocity, one perpendicular to the inclined plane,

and the other directed up the plane. Use these components
in your selution, and when you have finished, check your
working overleaf. GSWITCH CFF. :
36. This completes the work on extended motion in
two dimensions. Would you please rewind the tape before

you remove it from the machine. Thank you!
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EAPPTNDIX 6

A REVISION COURSE IN PARTICLE DYNAMICS

by

Kenneth A.H.Jackson

BOOKLET 6 to be used with TAPE 6
"Variable Forces"

Read the instructions on page 1 thoroughly.,

(Omitted for convenience.)

142.



EXAMPLE 1.
A particle of mass m is free to move in a straight
line, under the action of force F(x), which is always directed

towards the origin, .

2
Egg—forx;a
x

m
= —{‘E- for x < a

If F(x)

Prove that the particle will reach the origin with velocity
J2ua, when it starts from rest at x = 2a. (y and a are both

constants),

v velocity = 0O
4+— 44—
m m@“
v - D
0 = A >
< a < a ——p

When you have studied the first section of the motion,

SWITCH ON.

Use 'F = ma' from B to A.

2
et mua
- mue

mx =
2 2
v% =-'Liz s 8ilving vdv= - ‘“—33 ax
2 2
‘% = ’ui + C
As v = 0 when x = 2a, C:".Eg_
3Lt e
2 x %

A‘bA,xza.a.nd';czvz-v

Hence V®= pa with V = Ju2

SWITCH ON
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2a

g =V a

v 4
- o g
V2 L a —
Y cwf-i] -2 v
SWITCH ON,
P v=-\‘ﬂ—a
<— <4—
myx
B =5

f e— i
0 X —Pp A

< a -2
mdv _ m |
e g » vdv = 5 G

-P o
st o 4
fvdv-— £|Ijxdx.
-~V a

llp2 _ s B Ne o ali e
2[‘3 “{[“ml} aJ“z

and P? = 2ya with P = J2pa.

SWITCH ON.

EXAMPLE 2.

A particle of mass m, moves along a straight line away
from the origin O, under the action of a force k®x, where x is the
distance from O, against a constant resistance kb, If the velocity
at 0 was °/Jm, find

i) the velocity as a function of distauce,

ii) the time it takes to travel a distance'b/Qk from O,

The diagram is on the next page.
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v

- —
¥ = b/Jm
—_——
‘ Kb o ; 5 K?x ;
0 &5
i > == 3k
When you are ready,
SWITCH ON,
Use 'F = ma' from O to A.
mx = k®x - kb

viv _ ¥ _ kb

= =X -

dx m m

a 2.3

T e R ¢ 4

ol o

ot i ba

when x =0, v = b/m s €=5
i ¥ _K'x? - 2kbx + b?
ence 3 =

Lo8e ¥ = %(kx - b)?, which can also be written = u%('t.ﬂ—-l-:_x)a

So v =0 when x = l}-, and this displacemcnt also gives zero
accéleration (see (1)). Hence the particle comes to permanent

rest at x = E. So throughout the motion x £ E, and the better

k k
form for v® is v® = %('b--kx)9 .. v =b:_kx .
m
SWITCH ON.
- - v - dt JE
dx . 4t
T b/2k b/2k
1 dx 1
e = = oem .e, —
.JE[ dt f s ) k[ n(b }cx):|
. 0 0 )

and T = "ri;i en(2)

SWITCH ON.
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EXAMFLE 3.

A car, of mass M, starts from rest and moves in a
straight line against a constant resistance P, The motive force
decreases linearly from 2P, initially, to P at ths end of ‘a'
seconds. At time t, with t < ay find,

i) the motive force,

ii) the velocity,

iii) the power developed by the engine, and show that the
16aP?
27M

maximum power is

Do not read this solution until you have finished your own,

t=0 t =

e V’ F =
Pq—-—)“ F

L -2

A B

i) Motive force = (ZP - % after t seconds,

ii) Use 'F = ma' from A to B.

(=5

P %
111_.13(1.. /a)

Mx

at
7=£—(t- /22) + C
when t =0, v=0 e o= )
Pt t
v:"ﬁ'(l*— /23)

iii) H = Power = Force x velocity

% k" t 3
s (1 - "/2a)

Continued on next page.
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For maximum power T 0

2

o1 SR T T £

dt M 2a 2a

SH _ 0 went =2aort=<2

O i ‘ i =

t = 2a is outside the permitted range,
2 : a?H :

so t = Sa should give Y noegative.

4

3 -2 [-30-8)- -4

2 2
when t=-—23a- %513:%{-—%(1—-%)}
i.e. negative

_ 16aP?
Hence me =

SWITCH ON.

EXAMPLE 4.,

An engine of mass m, works at a constant power h, and ,
moves in a straight line against a resistance f. Prove that if f
is constant, the time taken to gencrate a velocity V, from rest,
is

mh , / h oV
S T 5 f

and that if f is proportional to v, the time is
oV e/ B
2f, T \B-V§,

wnere f is the value of f, when v =V

i
v:O mn
4 constant:f(_,_p P
0 Q
x =4

SWITCH ON,
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-

Power = h = Pv 1.8, P =

Use 'F = ma' at Q

-fv—h
h—fv h—fv
3
T v
2k o h
E[dt hfj (1- ——-h__fv)dv
() (¢}

nh
SoT = 73 Lu(ﬁ-ir?)_

=
o
=
‘.‘14
Hy
<
1

Hence 4%
m

SWITCH ON.
v
—»
e k) -
f=kv‘ , _’P
0 Q
x b

f = kv, where k is the constant of proportionality.

Use 'F = ma' at Q

mx =m%%= %-kv: —}E';kﬁ
¥ dy. .. At
hkv® m
T A
e [myy . g ¢
e o

Use f,= kV to elinminate k.

SWITCH ON.
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EXAMPLE 5,

A particle is projected from point P towarus Q, along
a horizontal straight line, in a medium in which the resistance
varies as the cube of the velocity. The particle takes time t, to
travel from P to Q, which is a distance €. Prove that the
velacity at the middle point of PQ is &/to.

Do not look at the given solution until you have completed your

own.
i v t= 4%
t=0 _’ ’ 0
kv® M
P2, +——@ ’ {
& >
<« ¢/2 b
< ¢ >
Let the initial velocity at P be u.
Use 'F = ma' from P to Q.
V_(}I = a
e TehE
dv
- st gx
240 =k
v
! - 3
when x =0, v=u, i.e. C=-7
1_6_10(:3:_1
Y . okl
T Sk e @
e i medoE .
when x =35 , V = A as. 0 K2}
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From (1) v = 8% . L

at ukx+1
& to
f(ukx+l)d.x — u’/' at
o] (o]
VKOS L8 s kg e S (uksrd)
2 O
£ s
TS Tah T RN (2)
SWITCH ON.
EXAMPLE 6.

The power required to propel a steamer of mass M at the
maximum speed V, is H. If the resistance is proportional to the
square of the speed, and the engine exerts a constant thrust at

all speeds, show that the time taken from rest, to acquire a

velocity p is M2, (Vip
ZH V-p
¥
) o
v=0

o-

Let the engine thrust at all speeds be T, This can be calculated
from the power relationship when the speed is maximum,

Power

(thrust)(velocity)

™V dige, T = 5

2 v

I

When you have absorbed this information,

SWITCH ON.
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For zero acceleration

Rl e 9% - . It
kV® = D= v Eeae k= 73
Use 'F = ma' to give
Mx =Mdv =T - kv® = k(V® - v?)
dt
k4t - _4dw B 1 i -
M =R ZV[ Vv | Vv ] P

Let the stegmer reach ths velocity p in time t,.

P
Xta -.1.[ (,‘{ﬂ; e V4p
T [l e & 4\

Eliminate k, to obtain the given result.

SWITCH ON.

Emh IJE i-

A particle of mass m, falls from rest under gravity
in 2 medium whose resistance is proportionzl to the velocity.
If V is the terminal velocity in the medium, show that,

i) the particle is moving with velocity V/2 after time g én 2

ii) the distance moved in this time is V®(2én2-1)/2g.

The diagram is overleaf,
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g
When you have studied this,

SWITCH ON.

'F = ma' gives

mx = mg - kv

when x =0 _for terminal
velocity.
V = ng
k

then v=

Use 'F = ma' for the motion.

m%_% _mg-nkv:mg—%?v: H?(V—v)
dv -
i e
v/ T 1V/2
sty :..[ 3
j (7os =3 fdt en(V v)Jo
0 [

SWITCH ON,
Use mv = = Eﬁ(v—v)
dx v
o T () 7 (- o)

D
/dx
o

v
Hence-—f/z( -(%0&\:: §

and D = V?(2 ¢n2-1)/2g.

SWITGH ON,
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EXAMPLE 8.

A particle of mass m moves horizontally through a
medium which offers a resistance of mk(v+2v?®), where k is
constant, If this is the only force acting, and the initial
veloeity is u, show that the particle will come to rest after

travelling a distance = &n(1+42u), and that the velocity will

2k
u ) s 2(u+l)
be reduced to /2, after a time X 517-(211 > l)'

Do not look at the solution yet,

m v %
e iy —nrd
A m.‘ mk (v+2v?) Rest
0 " - A B
< D >

Use '"F = ma' from O to B.

nx = - nk(v+2v?®) = mv %_i:
0 D
[ li.;v 2 kf 9
a [
0
-kD = %[&n(l+2v)} = %{:- 6n(1+2u)]
u

hence D,

Use 'F = ma' again,

dv 2
= = = k(v+2v
8y = -k at
v(3+2v) [
u 0
2 u
B e /-/a d: . f‘/a 2dv X [6 _Ir
}+ 2v n( 1+2v _]
u u u
hence T,
153,
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EXAMPLE 9.
A particle of mass m, drops from rest under gravity
and is acted upon by a resistance of mkv® where v is the velocity

and k is a constant. Prove that the distancd fallen in time

t is

%cn[cosh AP ]
If k is small, this formula can be simplified by using the
Maclaurin expansion for £n(coshx). Show that, in this case, the

distance fallen is approximately gt? l_{%ta
0 0 2 ks
v =

When you are ready to proceed, SWITCH ON,

Use 'F = ma' for the descent from O,

- d
my :m-&%’*—'mg-—mkva

dv A
i B

Let the terminal velocity be V, then g = kV® =0
SR A dv
i.0s V° = e hence dt = W)

gy - =1/ Y
t"kV tanh <v>+C

when £t = 0, v =0 henca C =0,

SWITCH ON,
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kvt = t;:.nh”(%)
% = tanh(kVt)
ve=E - v tanh(kvt)
at
1
y = <= é&n cosh(kVt) +K

k
when t =0, y =0, hence K =0
Substitute for V, y = % én cOSh(tJEE)J

SWITCH ON.

Maclaurin expansion
let f(x) = €n(coshx )
i L 8 333 RNy
f(x) = £(0) + x fl(O) + 32:—1 £H0) + .3_;.1_ £0) + % rivigy +eo

By repeated differentiation

fi(x) = tanhx

fii(x) = sech®x ¢
fiii(x) = —2sech®x ,tanh x

fiv(x) = 2sech®x[2 tanh®x - sech®x]

3 2
Hence y = E;—- (1 - %t_)

SWITCH ON.
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EXAMPLE 10.

A particle moving in & vertical plane under g ravity,
was projected with velocity V, at an inclination a to the hori-
sontal in & uniform medium in which the resistance varies as the
velocity. If k is the msi;.stance per unit mass, when the body is
moving with unit velocity, show that,

i) The altitude is maximum at time

3 &(1 " szina)
k 4

ii) maximum height = H = Vsing - g 4n [l 3 szino::l

k k g
. Lim V3®sin®a
LR el Ri s o

-

iv) the horizontal distance covered at this time is

V2sina cosa

g + kV sina
v) What is the limiting valud of this as k »07?
Y A =
¥
'z R = - mky
ng
4 v
of

) : %

4

Particle at P(x,y) at time t, withOP = r = ix + jy

When you are ready, SWITCH ON.

From the d iagram, mr

- mgj - mkv

ey o= -el-kEx+ )
equating j components, y +ky =-g see .4 2)
equating i components, X + kx = O L L)
356,
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Rewrite (1) as ;

I

gy o
e e (g+kv)
dv '
(g+ky) a
[
t =% [-51’1(5-!-1(\")] + C
When t = 0, v = Vsina C = —l]z en(g+kVsina)
thir e &n<5—-———+wsm“‘>
k g+kv

At the maximum hsight, v =0 and t =T

. ey ) kVsina
Bl = k&r{1+-—-—-—-g )

- (5+iij;) with y = v

1G,.

(3)

SWITCH ON.
. -kt
Rewrite (3) as .g% = v = (g+szm;z)e -p
H T T
1 -kt
fd}' = E‘[ (g+kVsina)e  dt - ﬁ'[ at
- o

H = £, (g+kVsing)(1-e77) - &

Substituts for T and e—kT to give

_ Vsina _ g kVsing |
H = % B2 &n[l + ——-—-——g _J

SWITCH ON.

£im | Vsina B kVsing
k-.o{ k ‘k’en[l* g H

£im ( Vsina 59
e

k-0

=

k=0 k k 28 38"

¢imH _ V3sin®q
ko0 =~ 2g

KVsing _ X°V?sin®a | kK°Vsin’g
8 28" 3e°

4im [Vsino: Vsina 3 V2sin®q % kV3sinda ]

This is thes result for a projectile in a non resisting medium

SWITCH ON.
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¥ iok = 0 can be written as

- _ 4
D(D+k)x = O where D = Tt
and X = Ae-kt + B
whent =0, x=0 , A+B =0, B=- A
Hence x = A(e-kt - 1)
L dx
To find A, use S VY cosaq at t =0
ax -kt
e Ake
thus A = - XEEEE
VCOsa(l-e_k?)
X =
k
SWITCH ON

Substitute for e"kT, which you have already found, to give the
aistance

V3sina.cosa
g + kVsina

The denominator of this is g as k + o,

The distance is then Efﬁ&gE;EQEE y

which is half the horizontal range without resistance.

SWITCH ON.
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Projectile with resistance proportional to kv®

Ya
X
/p' R = —mkvg_g = - mkvv
4
i
b
i
A particle at P(x,y) at time t with OP = r = ix + Jjy 1

|-
ﬁ!

&
I

with v

—mgj-—-mkvg
- gi - kv(ix + jy)

,J;{’.,. 3;2

Compare the coefficients of i and j to give

e

<
1l

B R

R TR

SWITCH ON.
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APPENLIX 6 CONTINUEU

SCRIPT FOR TAPE 6

VARIABLE FORCES

1. This is the tape to be used with Booklet 6 of
'A Revision Course in Particle Dynamics' by Kenneth
Jackson, and is concerned with Variable Forces. The
problems will provide you with much useful revision of
calculus, as you will need to integrate the eouation of
motion to obtain other equations. Reading ouestions care-
fully will help you to decide which forms of the acceler-
ation you reguire. Read through the first ouestion and
study the diagram. We shall work through this examplé
together. SWITCH OFF.

2. As the particle moves to the origin under two
separate forces, the calculations must be separated.
Consider the motion from B to A. Using F = Ma, with the
acceleration in the form Ydy by dx gives a conneftion
between velocity and displacement. This may be integrated
using a constant of integretion, to find the velocity at
A, Cerry out this process, and check this below. SWITCH
OFF.

3. The introduction of the constant of integration
can be avoided by integreating between limits, the velocity
changing from O to -V, as x changes from 2a to a. Do not
be confused by the negative sign on the velocity, which

simply indicates that it is directed towards O. Follow
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this alternative integretion in the next section, carefully.
SWITCH OFF.
4. Remember that the limits for the displacement
integration must correspond to the position of the part-
icleée on the line. That is, the vpzrticle is distant 2a
from the origin when it is at rest, and this becomes the
lower limit of the integral. To finish this question
yourself, you will need another diagram. Draw this, using
P for the velocity of the particle at 0. Use a definite
integrel to find this, and check your working in the
next section. SWITCH OFF.
5. Integration between limits is usually shorter,’
end should be used wherever convenient. Now read the
second guestion, which introduces & resistance as well "as
a force. Study the diagrem cerefully, noting particularly
the directions of the forces.  SWITCH OFF
6. The diagram shows the resistance in opposition
to the driving force, and this must be allowed for in the
equetion of motion. Notvice that part one agein reguires
g velocity/displacement relationship, after integration.
As the question asks for velocity as a function of position,
it is better to use a constant in the integration. You
should now answer part one of this guestion, and when you
have finished, check your answer. SWITCH OFF.
T For the second part of the question, remember
that velocity is dx/dt. Separate the variables and complete
the question by using definite integration. Check this
below afterwards. SWITCH OFF.
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e The next ouestion also involves a resistance

against a driving force, and should be tried by your owm
efforts. Read it carefully, and summarize the given
information on a diagram. Notice that the guestion is
asking for velocity as a function of time, which means
that the acceleration should be teken as dv/dt. Remerber
that power equals force x velocity. Check your answer
afterwards in the next section. GSWITCH OFF.

9. As well as having constent resistances, some
motions involve a resistance pronortional to velocity.
Read example four, which contrasts the difference between
constant and variable resistance. Study the diagrem for .
the first part carefully. SWITCH OFF.

10. In this motion with constant power, remembe;
that it is the product of the thrust P, and velocity
which is constant. As we require the time for a given
velocity, V, we may use a definite integral. Complete
the first part of the gquestion, and then check it overleaf.
SWITCH OFF. |

113 For the second part of the question, we have
the resistance proportional to the velocity. Let the
constent of proportionality be small k. Notice that this
does not appear in the answer and must be eliminated. Now
complete the guestion, using a definite integral, and
then check your working. SWITCH OFF.

12. Now read example 5, which is concerned with
resistive force only, and draw a detailed diegram. You
will first need the acceleration in the velocity displeace

ment form, and then the velocity as dx/dt. You can then
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combine the two eauations to find the given relationshinp.

When you have finished, check your working below. SWITCH

OFF.

14. Notice that when the stecmer has meximum speed

the acceleration is zero, and the thrust is ejgualled by

the resistance. This gives a relationship for the constant

of proportionality in the resistance kv2. Solve the

problem by using the zcceleration as dv/dt, and check your

working afterwards. SWITCH OFF.

15. Falling bodies in a resistive medium also reach

a meximum speed when the acceleration is zero. This

maximum speed is called the Terminzl Velocity. Example 7.

is concerned with this, and we shall work through part

of the auestion together. Read it, and look at the diggram

closely. SWITCH OFF.

16. In this exanmple, we can simplify the work of

integration by using the terminel velocity V, to substitute

for ¥ in the eguation of motion. The resulting expression

is then easily integreated between limits. Follow this

working of part one carefully, in the next section. SWITCH

OFF.

17, Notice in this section how compact the working

was. You should now attempt the second part yourself.

Start with the same enuation of motion, but remember that

you are looking for a distence and velocity relation.

Again, integrate between limits. Check your working

below when you have finished. SWITCH OFF.

18. Attempt question 8 by yourself. It is about
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combined resistance but do not let this confuue you. The
first definite integral is a straightforward velocity/
distance one, and the second will reguire the use of
partial fractions. When you have finished, check your
working below. SWITCH OFF.

19, Question 9 concerns a vertical motion with the
resistance proportionel to the sgquare of the velocity.
Read it carefully end study the diagram. SWITCH CFF.

20. Write the eguation for the acceleration,
remembering that weight is a vertical force. This mass
must also have a terminal velocity, which you should use
for convenience. Us dv/dt, and then seperate the variables
repdy for integrstion. When you have recognised the type
of integral, adjust the constants as needed, integrate,
and find the constant of integration. Check your solution
in the section below. SWITCH OFF.

21. It only remains to obtain the distance, by
integrating the velocity. Rearrange your previous answer
to give the velocity and you should then be able to
complete the first section of the guestion. Check this
efterwards, overleaf. GSWITCH OFF.

22, Applied mathematics is always requiring speciel
results end technigues from mathematical methods, and in
this case we need the Maclaurin Expansion for log cosh Xx.
Derive the first two non-zero terms in this series, and
you will be able to finish the question. When you have
done this successfully, switch on the tape again. Other-
wise, you had better trace your error in the next section
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of the booklet. SWITCH OFF,

23 Notice that this last result has two terms,

——

the second one being a multiple of k., lake k = 0, and
we have y = %gtg, which agrees with the expected result
for free fall under gravity.

The tenth gquestion extends this work on resisted
motion into two dimensions, and it is convenient to
examine the motion in vectors. Read the question carefully,
and note the vector directions in the diagram. SWITCH
OFF.

24. Vie can now write the vector eguation of motion,
eand express it in component form, which gives two ordinsary
differential ecuations. Loock at the next section, where
these equations are obtained. SWITCH OFF.
25 To obtain the time to the greatest height, we
must use equation 1 for vertical motion. An expression
for velocity and time may be found, and we can then use
the fect that the vertical velocity is zero at the maximum
height. Do this for yourself, and then check your working
in the next section. OSWITCH OFF.
267, Rearrange equation 3 to give v as the subject.
A further integration between limits will give the maximum
value of y, using the value of large T already found.
Check this afterwards, below. SWITCH OFF.
27+ It is always useful in applied mathematics, to
consider limiting cases, as this helps to reveal possible
errors in the results for more complicated motions. In
this case, the log series will be useful. SWITCH OFF.
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28. For the final part of this question, we shall
have to uce eguation 2 for horigzontal motion. This could
be solved by using integral celculus, but it is more
quickly dezslt with, by treating it as a differential
equetion. Use the D operator, and when you have recognized
the form of the solution, evaluate the two constents, using
your initial conditions. Check your solution in the next
section afterwards. GSWITCH OFF.
29. This is, of course, the value of x for any t,
and you reguire the value for large T. TFor the limiting
value of the expression, consider the effect on the whole
denominator, of meking k small. Check your working
afterwards. SWITCH OFF.
30. It is interesting to consider the same approech
with the resistance proportional to the sgquare of the
velocity.l Sstudy this vproblem which is illustrated on the
next page. SWITCH OFF.
31 These look a particularly nasty pair of equations
don't they! In fact, little progress can be made with
them; and even if we eliminate the surd, it is not very
useful analytically. This is one of those occasions
when numerical methods are needed.

This is the ned of the work on 'Varisble Forces'
Would you please rewind the tape before you remove it

from the machine. Thank you!

166,



Appendix 7

A REVISION COURSE IN PARTICLE DYNAMICS

by

Kenneth A, H.Jackson

BOOKLET 7 to be used with TAPE 7
"Oscillations"

Read the instructions on page 1 thoroughly.

(Omitted for convenience)
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Simple Harmonic Motion,

The equation of motion is 3 S w®x

at*®
The solution of this differential equation is
x = Acoswt + Bsinwt = C cos(wt+a),
‘where the constants A and B, or C and « are evaluated from
known conditions, usually initial conditions,
Period of oscillations = 2

When you are ready,

SWITCH ON

EXAMPLE 1.

An elastic string is fixed at one end to a point O on a
horizontal table. It passes through a fixed smooth ring C on the
table, which is at a distance 'a' from O. The other end is fixed
to a ring B, of mass m, which is free to slide along a smooth
horizontal wire on the same level as the table. The inclination
of the wire is 6 to OC produced, and its perpgsndicular distance
from C is p. If the unstretched length of the string is 'a',
find the period of small oscillations of the ring about its

equilibrium position and show that it is independent of' p and

8. (The modulus of elasticity of the string is A).

(The diagram is on the next page.)
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When you have studied this,

SWLTCH ON.

Extension = BC = x seca.

Use M =2 & . ihan p o AR BECSE
£ a
Use 'F = ma!'
a®x
m (—1-%7 = =T cosa
** _ =Xx seca 4 T R .
o 95 ma el ma)x'

ma
A

This is S.H.M. of period 211J

This is independent of p or 8, i.e. the period of oscillation is
not affected by the distance, or orientation of the wire from C,

SWITCH ON.

EXAMPLE 2,

A particle of mass m is supported at C by two elastic
strings of modulus £ mg, which pass over smooth pegs M,N, and
are attached at their other ends to two fixed points A,B,
vertically below M,N and on the same level as C, MV is horizontal
and of length 2a, CM and CN'are inclined at 30° to the vertical
and the whole figure is symmetrical about the vertical through
C. If the particle is slightly disturbed in the direction of' the
vertical, prove that the period of oscillation will be approximately,

la(6-03)

b J 118

169,
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Equilibrium,

A= 5ng

ACMN is equilateral

When you have studied this,

SWITCH ON.

Let L = unstretched length of each string
e = extension of each string

From equilibrium, 2T c0s30°= mg = 2(% mg) % . "'g

And (L+e) = CN+NB = a(2+{3)
hence L = 2a and e = al3.

SWITCH ON,

When you have checksd this diagram,

SWITCH ON,

Using 'F = ma'

mx = mg - 2T4 cos@

I8
(Continued on the next page.)



By Cosine Rule.

m® = x®* + (2a)® = 2.%.2a cos 10°
DN = Jx® + 422 + 2[3ax = Jia® + 2[%ax (approx.)

Stretch of each string = DN + BN - 2a

Nia®2fZax - a(2-{3)]

1

Cos@ = DCDmNB < A add)
.|4a5+2,J'3 ax
Substitute in the equation of motion
5 - g - 2.8 ng WETEaE-a(2-{3)] (x183)
2a La2y2]3ax

. g[l _g((x;aqﬁl 0 (2—-13&15-;;}%1 ]

1 i 1o b
Now .@z,.a.“+2¢'§ax = 23(1 - 2&) = 2a(1 l;a)

by a binomial approximation, neglecting second and higher powers

of X

SWITCH ON,

R

- efy -3 [alD) . (=B)ePa anin) ]

]
|_I
N
w

= haisilils)

hence period

1]

, EED]

Jllg

SWITCH ON,
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EXAMPLE 3.

A,B, D are four points on a

=

)
smooth horizontal table,BAD = 90°,
AR = ad = BF = D, FC =21,

Light elastic s trings, each of natural

length £€(< a,)are fastened to A,B
and D. A string of length 2€ is
attached to C. All the other ends

of the strings are fastened to a

particle of mass m, Confirm that F
is the position of equilibrium, and
show that the period of small oscillation, if the particle is dis-
placed a small distance along the diagonal AC ;and releasedsis

27 ﬂ'%:ﬁ:-lz)' The strings do not become slack at any time in the

motion, and the common modulus of elasticity is A.

Do not look below until your two diagrams are completed,

Egquilibrium Position.

‘_a._.i‘_.a_p Use'T:—)?'
/r\ ¢ For aF , T, - Me=¢)
A 2
L TA\ a
S - For FC T 2aE)
pr i 5
 [OSREEPR L S }ri : ¢ £
pi i T
\ / = TA.
\ Y% !
. / i.e. F is equilibrium along AG
!
X I 2a
\ /
N

By symmetry, F is in equilibrium along B D.

(Continued on the next page.)
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Te

Small displacement at time t,

The tensions on botl: sides

44— 2 E.‘ a —Pp
N A of the diagonal AC are
2 Bt
4 . equal because of symmetry,
/ \
: A and there is no resultant
- A Ty b8
) force endicular to AC
s perpendicular to
" F S ¢
\%M
\ Ta 5 2 /
\ /
\ / Use 'F = ma' along AC
Y Ts /
\ /
\ / 2a
\ /
/
\ /
i
\
i e v
b Ta— 21‘33059 — Ti
SWITCH ON.
e A(2a-28~-x) ex(Ja%z® - £ X Ma+x-£)
2 28 £ JeTax % 3
A Ix 2xb (i Ix | 26x
g 2( = +-\la Boixs e i ol e

= - x)(-?gg—gEDN.B. 72 - 4¢ = 7(a - -@’i&),which is positive as a > &,

This is S.H.M, with period, 2174'_;‘(2?2_@)

SWITCH ON.
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EXAMPLE 4.

One end of an elastic string is attached to a fixed
point, and the other to a particle which hangs in equilibrium,
and causes an extension 'd' in the string. The particle is
given a vertical velocity &rg—d upwards. Prove that the string

becomes slack after a time —g& , and the particle first reaches

its lowest point after a total time &(%g + 2«!3) .

Equilibrium Position General Displacement
for the extended string.
A, ; T
2 A
£
£
I[Ig P e % .
a Ty
mgé  _
¥ A." d‘ A - _'&-
@
a AT a T
¢ A Lm_‘g_ 1 2lea

When you understand these diagrams,

SWITCH ON.

Ty -~ mg
_ mgl (&x) _ o,
JAAN | £

oS g
Bor = (d)x

hence, X = A COS\E .t + B sin\% =

=

174.
SWITCH ON,




When t =0, x =0, hence A =0

When t =0, gﬁ = s Hence B =
and x = 2d slnfé ot
SWLTCH ON.

2d

The string becomes slack at A.

5
@
8
™
1l

24 sin|% .ta

o
1

d , let the time be t4

i i & i d
1. szmjg.t,_ i s:.ng , Hence t4 = EE.

SWITCH ON,

o= %@.cos‘lg t

At A, t = t4 and Vg4

Tv:.
R

Total time

»
&

I

cosf = 3ed

Hence, there is some remaining energy,
and the particle will rise in the air
as the string b ecomes slack. It will
continue rising,until its speed is zero,
and then fall back to A. The

string begins to stretch ,and
eventually brings the particle
momentarily,to rest at its lowest

point,D.

(B to A)+(free flight)+(A to B)+(B to D)

2(B to A)+(free flight)+ (B to D).

When you are ready to continue,

SWITCH ON.




g—

g

Time of free flight = ?.g‘l _ 2{3gd

Time from B to D = % (period)

Total time = 2(% J%) + 2"54% 3 -;-T‘JE
= .J% % + 243)
SWITCH ON.

= 23/<

0

|d
Jg

P.E, Diagram,

Let the horizontal through
B,be the zero of gravity

potential energy.

The P.E. will consist of two
parts, that due to gravity,
and that of the string i.e.

P.E. and P.ES respectively.

0
A 7
£
Al
¥ da
a T — 3
2legd
zZero of _§ |g
gravity
potential
ensrgy
gD

(P.ES + P.Ey + KE)B £ (P.ES + P.E, + K.E,>

A

a .
Cf_s-g 2§+ 0 + tm(2lgD®) = (0 + mea + fov.*)

3gd = V4° as before,

SWITH ON,
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EXAMPLE 5.

A 1light. elastic string of natural length 2a,and modulus
8 mg,is stretched between two fixed points A and Byon a smooth
horizontal plane,with AB = La. A particle,of mass m,1s fastened
to the midpoint of the string. Show, that if it is projected from
the equilibrium position,towards B, with a velocity 2lThga, it will

just reach Bsin a time,

B ® e =10

Equilibrium Position (Particle at C with AC = 2a = CB).

L s i AT :
ArR E c D B
«— 2 —Ppe— 2 >¢— 2 —PeE¢—2 —>»

The mass is, effectively, dividing the string into two
strings, each of natural length a, and modulus 8 mg, fastened at
A and B. For the motion from C to D, there is tension in both
strings, but from D to B, the right hand string is slack.

When you agree that the motion is in two parts,

SWITCH ON.
Motion from C to D. e
nl
2| TN v,
C D
Al El ,? 1 .m 'l :El3
A —_ X - Ta
4— 8 —>

Use 'F = ma'

m%:Tg—T:,: %(3-2() —8—1;15 (a.+x) =——16—§E§

hence, x = A co_sh-% ot + B sinh-JE.t

177.

(Continued on the next page.)



]

When t = 0, x = 0, hence A = 0.

%XE = Z;BE cosl;.f' .t

dx
when t =0, at = 214ga , hence B = aE

% :aE sirﬂq.E ot

Let the particle reach D at time t = t4

then a = aj'g sink E e B

R e A7 *
ty = %J% s:i.n“:L |,_Z]> =% (E cosq.‘d% ) l: A.&z }
5

At D, time t4

V_J'"&JEE cosly=e t1 2J10ga

SWITCH ON,
Motion from D to B,
< a —pg & —>4 a >
A E C Ty D B
. : 2 < e AV AYAY
X 4

x:CcosZ%.t+Dsim2E.‘b

For convenience,measure time from position D, with t = O when

x = 2a, then C = 2a.

and x = 2a 0082E .t + D sin2 '2;1&. t

gﬁ:-qa lgﬁsinZF.t+2DFcosz.E—s.t
Ja a a Ja
dx. Vo sl

when t= 0 gf = 21088, hence D = a5

% = 23 cos 2 J%'t * E-:JE sin2 J%f. it

SWITCH ON.
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Rewrite x,as R cos(6-a) with, 8 = 21%? .t
i.e. Rcos@ cosa + Rsin@ sina = 22 cos@ + a5 sinf =
Compare the coefficients of cos@ and sin@, giving

= 3a cog(ZE.t - a) with o = cos"‘(% ) .

Let the particle reach B,at time t = t3 with x = 3a,

then 3a = 3a c05(2'§5 T2 - o:)
a
= ; 2 i .5'-_ L d- 5 2
ta2 2@.(1:2}55 cos (5>

The total time to Bsis (ti+ t2) which gives the required answer,

Let the velocity at B be Vi,when t = ta.

__6aj_ 51114—2‘: ta—a) 0

t=t2

dx
Vi At

i.e. The particle only just reaches B.

SWITCH ON,.

Potential energies of the strings,

' 1hga
2] 1lug , vy
A B C D B
L 1 3 1 _.

At the midpoint C, both strings are extended a distance a,

and thus have equal P.E. (N.B. there is no gravitational P.E.)

[P.E.+K.E..]G = [P.E. + K.E.]B

(3 @g—) + 3o (2fTiga)? = 188 (50)7 + Juv,?

0 =V4,y as befors.

SWITCH ON.
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Damped Oscillations,

LS
.0 mw?x @ < 2mkv
x >
Resistance = Zmkv
Then mx = -2mkx - mw®x
or (D®+ 2kD + 0®) x =0 where D = c%t'

The solution of this will depend upon the relative size of k

and w.

There are 3 cases,

Dampin Auxiliary equation
i) Heavy Real roots
ii) Light Complex roots :
iii) Critical Equal roots

When you have studied this,

SWITCH ON,

EXAMPLE 6.

A particle of mass m, moving in a straight line, is
subjected to a restoring force of 16m times the displacement,
and a resistance of 10 m times the velocity. Obtain the
differential equation of motion, and find the displacement and
velocity at any time, if, initially, the displacemert was 2m,and

1

the velocity was 6ém s *, directed away from the centre of the

restoring force,

At time t. & v=6 at t =0
— .
0 < 16mx m! ¢ 10mv JIL
& —p
< 2 —»

When you have studied the directions of the forces,
180.

SWITCH ON.

and velocities,




Use 'F =ma' to give

- 10 mv - 16 mx

e

X + 10x + 16x = 0O

Auxiliary equation is m® + 10m + 16 = 0
(m+2) (m+8) =0
m=-2or -8

These are real and distinct roots, and,therefore,

this represents a heavily damped oscillation,

x=Ae?t,p st
when