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DHE PREPARATION OF TAPES AND BOOKLETS SUITABLE FOR A 

REVISION COURSE IN PARTICLE DYNAMICS. 
  

SULIIARY 

The work examines the problems which University 

of Aston first year students heave in their Dynamics Course 

and gives reasons for the choice of audio tapes and 

booklets in the form of a progremmed learning course. 

It demonstrates the necessity for developing these 

programmed units of the course in specific stases. The 

student is guided so that he uses the learning hierarchy 

of dynamic theory, demonstretion of the method end then 

given further guided practice leading to the completion 

of entire problems. Some conclusions arising from the 

whole work are noted, together with some favoureble 

coments by students. The completed course booklets 

and tape scripts are given as appendices 1 to 10. 

Submitted by Kenneth A.H. Jackson for the 

degree M. Phil, 1980. 

PROGRAMMED LEARNING: PARTICLE DYNAMICS 

REVISION.
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CHAPTER ONE 

The Problem and Proposed Solution 

ees ™he dynamics course concerning us at the 

University of Aston in Birmingham is a conventional one 

which first year students study, as part of the Honours 

legree Course in Mathematics. For about two thirds of the 

time, they are concerned with Particle Dynemics, and the 

remaining third with Rigid Body Dynamics. The teaching 

method has been for Mr. R.Jd. Clarke (R.J.C.) to conduct a 

one hour class lecture, twice a week, together with 

regular set work. These periods cover sessions on theory 

and the working and explanation of examples. ‘The set 

work is returned weekly with necessary comments and an 

appropriate score. #.J.C. is always available at the end 

of the lecture, or in his office,-if students wish to 

consult him. Students respond to this, and readily ask for 

help, and some for extra work. This is given in the form 

of suggested examples from texts, but is inevitably limited 

in scove as the students have a wide range of academic and 

ethnic backgrounds. 

eae Each year a small number of students are in 

difficulties for one of three main reasons. First, some 

of them take 'A' level courses where the dynamics teaching 

is weak. Second, some students have taken a statistics 

option in the context of an 'A' level course. This is 

becoming more popular end the number of these students will 
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incre 

  

- Third, there are those who are weak in 

Gynamies and need more time snent on this subject. 

Other students, not necessarily in difficulties, ask 

for some helpful revision material, especially toweras 

the end of the course. It is the object of this project 

to design a course in Particle Lynanics which will fulfil 

the needs of all these students. 

a3 There is no dovbt that Dynamics is a difficult 

topic in mathematics, and if students are to be helped by 

this meterial, they have to be shown how to break it down 

into four essential stages: 

i) They must be shown how to interpret a 

dynamics question into diagrammatic form showing relevant 

mathematical information. This gives a concrete source of 

information. 

ii) They must then apply the relevant dynamics 

principles connecting the given material to produce 

eouations. 

iii) They must use their knowledge of pure 

mathematical techniques to manipulate these equations 

successfully. 

iv) They must be able to translate the 

mathematics beck into dynamic terms and make relevant 

deductions.



  

1.4 In the preparation of material for 

  

parpose, the following essumptions have been x 

i) All the students have attended the « 

  

of lectures by R.d.C., and therefore have some prior 

knowledge of the material. 

ii) They find the subject difficult and lack 

confidence in their own ability. 

iii) Some would be of poor academic ability. 

iv) A number of them would be potentially 

good, but have been hampered by their academic experiences. 

v) They are willing to devote three or four 

hours to repairing their shortcomings in a particular 

tonic. 

With this in mind, I determined that a revision 

course would be of most use. 

es) I envisage the material being used in three ways. 

i) Where the lecturer discovers that a student 

is weak, and suggests he should use it. 

ii) Where a weak student asks for help, and is 

directed to use it. 

iii) Where the body of students decides to use 

the material for revision. 

1.6 There are specific aims which need to be taken 

into account in the structure of the scheme: 

i) To consolidate the students knowledge of the 

Aston University Particle Dynamics course. 
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ii) To explain how to translate questions into 

natie form. 

  

iii) To explain to students the application of 

dynamical principles. 

iv) To show them how to maninulate the Pure 

Wethenatics and to make sure they do it correctly. 

v) To show them how to reinterpret mathematical 

results into dynamical terms. 

vi) To enable students to hear and read dynamics 

at the same time, to familiarize them with the terminology. 

vii) The students must be able to work through 

the course without supervision, to seve staff time. 

viii) The materiel must be self-correcting, 

giving enswers and solutions to problems where needed. 

ix) To improve a student's confidence in the 

subject. 

1.7 These considerations all led me to the conclusion 

thet the course must be presented in ‘Programmed Learning' 

form. That is, the subject matter must be divided into 

sequential 'frames' of work, giving answers to previous 

frames. In this way, students may be shown how to perform 

processes, or check their own attempts minimizing errors. 

Specific aim 1.5(vi) suggests the use of an audio tape. 

18 My only previous experience in Programmed 

Learning (JACKSON 1966) had been in connection with booklet 

/machine presentation. I thought that this would be too 
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limited in scope; students rapidly become bored by 

booklets, and would respond more readily to a veice. I 

looked at three existing schemes to examine how the hunan 

voice had already been used in theze circumstances. 

fhe first of these wes a cassette tane 

presentation in the Chemistry Department at the University 

of Aston, through the courtesy of Mr. P.U. Groves. These 

were obviously effective, but covered the complete 

presentation of a course. They were used in stead of 

lectures and referred to booklets, films, slides, models 

and the commuter. These tapes were too wide in scope 

and not the answer to my problem. 

The second scheme was a purchased set of 

cassette tape / booklets from the University of Edinburgh 

by Mr. J.W. Seare. I obtained these through the courtesy 

of Mr. W.O. Storer of the Mathematics Department at Aston. 

They concerned topics in pure mathematics, and were mainly 

student paced exercises; the students were given rules 

followed by a number of exercises. There seemed to be 

very little interaction between the voice and the booklet 

and thus it is not ea particularly effective teaching aid. 

The third scheme was an Oven University tape / 

booklet on gravh work by courtesy of Mr. R. Wilson, Crewe 

College, Alsager. This was most effective, but assumed 

no previous knowledge of the subject, which is of course 

the task of the Open University (MELTON 1977). 

A common feature of these schemes was the use 

of a buzzer to indicate the command 'SWITCH OFF'. This 
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seemed impersonel and remote. I had noticed thet 

  

Postlethwaite in his 

  

Tatorial Approach’ used 

music for this vurpose, but the type was not specifice 

(POSTLETHWAITE 1972). 

1.9 Knowledge of these schenes 

  

of using a system of audio tanes and booklets for self 

G tudy, which are being tried out in some srees of science 

teaching (BRIDGE 1976). Wy proposal was therefore as 

follows: 

To produce ae series of linked audio tapes and 

booklets, based upon a ‘large step' programmed learning 

sporosch. The work would be in addition to the lecture 

course and would enable the student to tske it away and 

work through it at his ovm pace (vide MACK '77). The 

  

1es' would include those giving information, 

Gemonstrated examples, practice examples with assistance, 

and complete problems, each giving answers or solutions. 

The tape should control the stens in working through 

the booklets, giving helpful information and hints on 

working. 

diekO There were four reasons why I wished to use 

the voice as a method of instruction: 

i) Aurel contact is more versonal and friendly; 

a student might obey the suggestions of a human, rather 

than a booklet or buzzer. 

ii) When listening to the voice, the student is 
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in contect with an euthoratitive guide om the subject. 

  

(POSTLETHWAITE) 

iii) The voice is flexible end exn be vsed to 

emphasize important sta; 

    

iv) The student would become more 7 

  

the terminology of dynamics, hearing it used in the correct 

context. 

stented. Before the use of speech, the oldest form of 
  

instruction was by imitation, a laborious and unstructured 

process. Subsequent methods using the voice have been 

considered of great importance by many civilisations, 

not least among these being the Greeks. In their system 

of schooling, out of seven subjects studied, they had 

three concerned with speech (the trivium - gramnar, 

rhetoric and dialectic). This had a profound influence 

on the succeeding civilisations in Europe and Britain 

(CLARKE '71). 

The Old Testament contains many examples of 

Civilisation, of Christ in His ministry - ‘And He spake 

meny things unto them in parables.' (Matt. III). Since 

then ministers and priests have used the sermon as a 

vehicle of teaching. 

Early British scholars relied heavily on help 

from European centres of learning, and we hear of John 

(an abbott) of Salisbury, wandering in France during the 

years 1136 to '47, learning dialectic from Abelard at 

Chartres University. he '63). This reliance on



ch is aiso e 

  

ad by the ancient university 

      

method of examination by disputation: ‘A verbal battle 

in which the student pits his wits against the University 

Chancellor or his senior representative (HASHINS). ‘This 

still remains in the form of oral exeminations in connection 

with the submission of theses for higher derrees! 

  

With the foundetion of a national system of 

education ihn the mid-nineteenth century, there erose « 

need for short cuts, an aid to the unfortunate teachers 

in their over large classes. A whole series of rhymes 

were used, to be quoted when necessary, (not necessarily 

with understanding). 

For example, in mathematics: 

'Mwelve and eight 

meke twenty straight.' 

ands ‘A pint of water, 

weighs a pound and a quarter.' (Vide, my parents) 

The acouisition of 'good' speech hes alweys 

received close attention in schools, and even today, we 

have many separate 'O' level examinetions in English 

'gremmear' and ‘literature’. 

The beginning of broadcesting in 1924 has led, 

among other matters to a tradition of 'talks' about a 

tremendous variety of topics, keeping people aware of 

current events, and widening their outlook. Since 1948, 

when 'School Broadeests' began, the B.B.C. has produced 

vast amounts of helpful material, supplementing the 

teachers' voice. During the year 1974-5, 1004 hours of 
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educational radio material were broadcast at al] levels, 

  

from infant to Open University (ANNAN '76). Some 

schools are reported as using these facilities. 

At a conference of members of the Institute of 

Methematics and its applications (Edueation Section) on 

26th November 1977 to consider teaching in Primary Schools, 

the President, Dame Katherine Ollerenshaw remarked that 

"Children need to sveak more mathematics." 

1.12 In Higher Education, lectures are still a 
  

very important vehicle for tesching, but we must be 

careful that the ritvel does not dull their impact. We 

still have a useful tradition whereby a newly appointed 

professor delivers en inaugural lecture, which is of course 

authoritative, and at a high level. Another considerable 

method of teaching at a high level is by reading books. 

These need self discipline to be used effectively by the 

students, and since many books may be needed to understand 

a single new topic, they can be enormously time consuming. 

The tutorial is also an effective personal contact with 

students, often providing useful dialogues, but if large 

numbers are to work in this way, it is too demanding from 

the staffing point of view. 

ded, These audio tapes and booklets are presented 

as a help towards overcoming these difficulties, providing 

en aural contact, and structure review tasks, available 

on demand.



CHAPTER TWO 

PROCEDURE AND ANALYSIS 

Bed, Since I had little previous exnerience of 

tape recording, I thought it prudent to make a trial of 

the material and method. It wes also thought that it 

would be wiser to try some topic other than Particle 

Dynamics in case matters went awry. A 24 page booklet 

end corresponding tape, with 33 instructions, concerning 

the Apollonius Theorem in geometry, was drafted and 

recorded. In this, the student wes shown how to prove 

the theorem, asked to prove it himself, and then work 

through four examples. This was tried by R.J.C., and a 

final year student from the mathematics department. The 

student, who had not encountered the Apollonius Theorem 

before, used it successfully, and commented favourably on 

the self-pacing aspect. R.J.C. was also impressed by 

its teaching, but thought that the book was too detailed, 

and the voice overused. However, we were both of the 

opinion that similar material could be of considerable 

benefit to the first yesr students in dynamics. 

Zeek As a result of this trial, the following 

decisions on format were made: 

i) Each booklet shovld aim to include about 

10 related examples covering some three to four hours 

work. 
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ii) Revision information would be included 

in a booklet, where appropriate. 

iii) The work was to be divided into large 

blocks or 'frames'. Some of these were to be 'directed' 

i.e. demonstrated or assisted in some way. Others would 

be for individual working with an occasional helping hint 

(See Table 1 

iv) To save paper, the separate froemes would 

not be placed on successive pages to prevent cheating, 

but produced continuously, and delineated by heavy lines 

across the page. Students would be encouraged to use 

sheets of paper to cover material in advance of their 

working. g 

v) The tape should be used to give guidance 

through the booklet, explaining or expanding particular 

points in the work. 

vi) A verbal ‘switch off' would be used. 

vii) A fairly brisk pace would be maintained 

with a gep of 5 seconds between instructions. 

Zed As few students would have used this type of 

material before, they would need some booklet instructions, 

when no spervision was available. They shovld be included 

in every booklet, so that a single topic could be used 

in isolation from the whole scheme, and not lengthy 

enough to be discouraging. The set, as given in Fig 1. 

p31 has proved effective. To save space in the 

appendices, the instructions have only been placed in the 
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front of Booklet 1 (See page 31). 

given below:- 

Instruction 

Instruction 

Instruction 

Instruction 

Instruction 

Instruction 

Instruction 

2.4 

sis 

5s 

dustificetions for these instructions sre 

We have a concise statement of the method 

of working. 

This is self-explanatory. 

This is an attempt to save 'cheating' in 

some form, though I do not think thet 

this is importsnt, provided the student 

has made some effort to answer the 

question himself. 

This was to save paper used in the booklet 

to minimize expenditure by the department. 

Students will need the material for their 

own revision, and it would be a waste of 

time to have to copy out questions and 

solutions. 

This is to let the students feel that they 

heve complete freedom with the tape. 

This is obvious, but mistakes are possible 

with 10 packs of material. 

Having read the syllabus in Particle Dynamics, 

+o see how it should be broken dowm into the booklets, 

there appeared to be eight natural subdivisions of the 

topics. However, having looked at the range of problems 

which might occur under 'Motion in Two Dimensions', end 

‘Central Forces', it was decided that each of these 

12



warranted two booklets. Thus the total number is ten. 

These are the booklet titles (a quick guide 

to content) and the parts of the syllabus covered within 

them; - 

1. ‘Uniform Motions and Newton's Laws' - Descriptive 

motion, uniform acceleration, Newton's Laws of Motion. 

2. ‘Power, Energy and Hooke's Law' - Conservation of 

energy, Conservative forces, Hooke's Law. 

3. ‘Momentum and Restitution’ - Conservation of momentun, 

impulse and restitution. 

4. ‘Motion in Two Dimensions' —- Perpendicular acceler- 

ation components, Projectites above a horizontal plene 

and an inclined plane. 

5. ‘Extension of Motion in Two Dimensions' —- More 

complex examples on impulse, restitution and Newton's 

Laws. 

6. 'Variable Forces! - Motion under variable forces, 

projectiles with resistance. 

7. ‘Oscillation' - Simple harmonic motion, damped 

harmonic motion, foreed oscillations. 

8. ‘Restricted Motion' -— Circular motion, normal and 

tangential accelerations. 

9. ‘Central Forces' - Acceleration in polar coordinates, 

central forces and plane motion. Differential equation 

of the orbit. 

10. ‘Orbits' - Conics in polar form, inverse square law, 

periodic time, velocity in orbit. 

13



2.5 I tried to prepare the first tape and booklet 

by my own efforts, based upon the syllabus for Booklet 1. 

The result was unusable for three main reasons. The 

material did not assume sufficient knowledge by the 

students, the ouestions were of the wrong type in thet 

they failed to test the students sufficiently, and the 

overall standard was too low. As this had taken some 

60 to 65 hours to write, I decided that it required more 

discussion with R.J.C. of the material at several stages 

in the production. 

226 A more structured approach was detailed, which 

would allow any material to be discussed and commented 

upon at specific stages of development. These stages j 

were to be enforced, with broad agreement before passing 

onto the next. It is worth listing these stages, as 

they allowed R.J.C. and myself to keep an accurate check 

on the subsequent material, sometimes enabling the 

simultaneous development of three booklets to proceed. 

Stage 1. Agreement of outlines. 

This was to ensure that we had the right 

number and type of problems, and an outline of the 

dynamical theory to be covered. 

Stage 2. Stated examples. 

This was to ensure that there was no overlap 

with problems already used. by R.J.C., and that they were 

of the correct standard. 
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Stage 3. Revision statements and solutions. 

That dynamic theory, which was intended for 

use as a revision guide, was written out as it would be 

appearing in the booklet. The problems were worked in 

similar ways to those used by R.J.C. with his students, 

end the solutions written out fully. 

Stage 4. Draft Booklet and tapescript. 

Using the Stage 3 materials, the theory and 

examples were converted into a programmed booklet and 

accompanying script. This was a very lengthy process, 

as the problem methods had to be demonstrated, practised 

end tried by the user. The problems had to be cut into 

workable pieces and the script varied for each function. 

The whole draft was then edited, and examined for the : 

page layout, before making a fair copy for discussion 

with R.J.C.. Initially these processes took in the order 

of 110 to 120 hours, and even with practice the overall 

time was considerable. 

Stace 5. Typing of the booklet. 

This was underteken by a secretary in the 

Mathematics Devartment to ensure clerity and the incorp-— 

oration of all the necessary symbols. The diagrams were 

then drawn by myself and subsequently lettered in type. 

Stage 6. Recording of the scrivt. 

A portable tape recorder was borrowed from 

the Communication Media, and to ensure a quiet background 

a room in the centre of the Modern Languages Dept. was 

used. 
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Stage 7. Testing the Material. 

By allowing volunteer students to try it for 

themselves, I could assess any breakdown in the function 

of the material. 

Stage 8. Modification of booklets or tapes. 

This would allow for corrections as needed. 

2.7 The selection of ouestions and revision materiels 

used in the booklets are summarized in Table 1 (pp o4-Bé 

This indicates how closely they are linked in each 

booklet, apart from Booklets 5 and 6. Booklet 5 is an 

extension of the work in No. 4, at a higher level and 

No. 6 is concerned almost purely with practice in 

integration, and uses the examples to demonstrate the 

methods. 

200. The great length of time involved in stage 4 

(para 2.6), may be explained by looking at some examples 

of the structure of the booklets, which had to be 

progressive. Where necessary, relevant revision inform- 

ation was given as a particular frame to be studied by 

a student. This gave him sufficient basic material to be 

able to start, by refreshing his memory. For example, 

in Booklet 7 'Oscillations', there are frames on S.H.M. 

(p 168), damped oscillations (p 180)and forced oscillations 

(p 185). 

The student is required to examine many 

diagrams, in order to demonstrate their importance and use. 
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Most of these are given with a problem, and are to be 

studied as methods of recording information e.g. Booklet 

4, example 2 (p 94), example 4 (p 98);Booklet 8, example 

1 (p 199). 

A student is also given practice in drawing 

his own diagrems, and these have to be checked against the 

answers, enabling him to insert omissions or correct 

mistakes etg. Booklet 5, example 1 (118);Booklet 7, 

example 3 (p 203). 

Introductory examples in each booklet are 

demonstrated by using the combined voice and booklet to 

give the appropriate approach and solution e.g. Booklet 3 

example 1 (p 72).When the student has absorbed the inform— 

ation and diagram, he listens to Instruction No. 5 (p 86) 

which gives the step by step processes, and then he has 

to look at the complete working in the next frame. Or, 

in a more complex exemple, he is given the equations of 

motion to check, and then the method of solution is given 

in the next frame. e.g. Booklet 9, example 1 (p 228), 

Instructions 2, 3,4. (pp245-6). 

Once the methods are demonstrated, the problems 

are worked increasingly by the student himself, and for 

this purpose, they are broken down into several stages. 

At each stage, however, the correct procedures and answers 

are shown e.g. Booklet 3, example 6 (p 78) .Justructions 

18,19,20,21 (989); Booklet 8, example 3 (p203)Instructions 

9, d0;udl (pae7), 

It is important that a student is aware of 
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different dynamical solutions to some problems, and 

where possible, these are shown. e.g. Booklet 7, 

example 4, last frame (pl176),Instruction 17 (pl192); Booklet 8, 

example 7, last frame (p212)Instruction 24 {p224). 

The student's attention is also drawn to 

alternetive mathematical treatments in one or two 

problems, which allows for some degree of choice in his 

treatment of answers e.g. Booklet 8, example 6 (p208). 

Problems containing the derivation of mathemat— 

ical statements from the working often prove too difficult 

for the weaker student, and to alleviate this difficulty, 

this type of proof is demonstrated in a number of 

examples. e.g. Booklet 4, example 7 (102); Booklet 9, 

exemple 2 (p230). 

Finally, if the booklets are revising the 

work satisfactorily, a student shovld be able to solve 

complete questions himself. Such exercises are included, 

as the last example in a booklet, or after completion 

of a particular topic within it. The taped instructions 

give broad hints towards the solution, and the complete 

answer is given in the booklet, which is read through 

as a check. It is hoped that successes gained in this 

way will improve a student's self-confidence. e.g. 

Booklet 2, example 6 (p79), Instruction 17 (x68); 

Booklet 8, example 10 (p217), Instruction 35 (p226), 

2.9 It was only possible to undertake a limited 

amount of testing by the students for whom they were 

18



intended. Three of the first year course, who performed 

badly in their Xmas test in Dynamics agreed to try out 

the tapes and booklets. In case of difficulty during 

the trial, they performed the work under supervision, 

but in fact this was only needed on one occasion. They 

were able to try the first three booklets, and one was 

able to continue to the fourth and fifth. They were 

questioned afterwards about the booklet contents and 

layout, and the tape contents, and the quality of the 

voice. 

Identifying a few errors, the students 

thought the booklet layout and content satisfactory, 

necessitating few changes in that part of the material. 

However the portable tape recorder had produced some ‘ 

distortions in opening phrases, and loud clicks on 

switching ‘on' or 'off'. The students were not unduly 

eritical of these however, as the words were identifiable 

after rewinding, and they said the overall quality did 

not interfere with their concentration. 

However, I thought that these distortions and 

clicks would produce growing irritation in someone 

unconnected with the development of the programme. To 

obviate this I have subsequently recorded all the material 

using a language laboratory in the Modern Languages Dept. 

of Newcastle upon Tyne Polytechnic, which has produced 

high quality tapes. Editing of errors was conducted 

easily, and I have deliberately left a few minor ones in, 

so that the Student may feel that ‘the oven has human 

qualities. 
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2e10 On completion of the booklets and their 

recordings, Table 2 (p29) was compiled to allow for 

some comparisons to be made. This shows that despite 

the roughly constant number of questions in the first 

8 booklets, there is a steady increase in the number of 

pages, frames, instructions, and the overall tave time. 

This indicates the increasing difficulty of the material 

making more steps necessary to help the student. The 

number of frames and instructions keep roughly in step 

as the majority of frames concluded with the instruction 

‘SWITCH ON'. The last two booklets on 'Orbits' involved 

questions with much longer written answers, and this was 

why the total number was reduced to 16. This is reflected 

by the shorter overall recording times. It must be 

emphasized that the 'running times' listed are purely an 

indication of the amount of tape used, and will bear 

little relation to the overall times taken by the student. 

He must take as long as he needs to complete each element 

of the course. 

rae Looking at the overall project, the following 
  

conclusions may be drawn. 

1. The devising of the separate stages in the development 

of the booklets/tapes have proved to be effective. It is 

only by developing the stages in this way that one can 

build up the material successfully in the least possible 

time. 

2. Throughout this development there must be a very close 
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consultation with someone who teaches a group with 

one has no direct connection. This was possible at this 

particular time as I was able to attend the lectures for 

the first year students as part of my overall course 

programme, and these proved invaluable. 

3. The students found the material most useful, and were 

loath to criticize it using a questionnaire. When asked 

in a more relaxed atmosphere they were more willing and 

the following points emerged: 

i) They found the booklet instructions compre- 

hensive. 

ii) They all used the tape rewind facility 

a number of times. : 

iii) They liked the self-pacing with immediate 

availability of answers and methods. This is in agreement 

with November in his Manchester trials (NOVEMBER '78). 

iv) They found most of the "hints' on the 

tape to be useful in helping with problems. 

v) The verbal command 'Switch off' was effective 

and not at all boring. 

vi) My North East regional accent was not 

found to be obtrusive once the students had heard my 

voice several times. 

vii) They did not favour using headphones, 

even though they studied in a building with a great deal 

of background traffic noise from a motorway. 

4. It would appear from the trials already conducted, 

that the overall standard is correct, but this needs to be 
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verified with use. The students need to have some partic— 

uler time limit within which to work so that the material 

is not underused. The grouping of the work into 10 

booklets is only a convenience in allocating tovics to 

common bases. 

Some of these units appeared to need several 

hours to complete and thus it would be necessary to break 

them down further if the participant students are not to 

be discouraged. This could be carried out in three 

separate ways. 

i) Rewrite the work into 30 booklets; but 

this would be too cumbersome. 

ii) Include extra instructions on page 1 of 

each booklet advising the students about convenient 

stopping places. 

iii) The method I favour would use the tape 

counter facility, so that students would be using this in 

addition to the other instructions. The tape could 

tell a student that a particular counter number was a 

convenient stopping place. In trying to start from a 

particular topic, the counter numbers could also be given 

on page 1. 

Zola A natural sequel to this work would be to 
  

produce revision material for the Rigid Bodies Dynamics 

syllabus used in the same course. 
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2.13 The programme that has been produced here is 
  

not the only self instructional packaged materiel used 

at the University of Aston, but the provision of such 

is fairly sparse. Students using it will, I think, 

appreciate these remarks made by Professor Goldschmid of 

Lausanne: “It is likely that the trend towards individual 

instruction will increase and be intensified. If so, 

instruction in higher education will be profoundly 

altered and may enter a promising future." (GOLDSCHMID '76) 

There is of course the problem of time in which to do the 

tremendous amount of preparation reauired. This is 

perhaps where people like mys@élf could devote a complete ~ 

sabbatical year to form small teams devoted slowly to. 

the work. 
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TARLE 1. SUMMARY OF THE CONTENTS OF THE BOOKLETS 
  

Booklet 1. Uniform motion and Newton's Laws 

  

Tonics No. of Revision No. of rele 

Franes guestions 

Uniform acceleration. 3 4 

Vertical motion under i 2 

gravity. 

Newton's Laws of 3 2 on single pulleys 

motion 2onmnultiple " 

S n ke's Law 

Tonics No. of Revision No. of related 

Frenes questions 

Power and energy 2 2 

K.E. and conservation 2 2 on energy on 

incline 

Conservative forces a 2 on energy and 

nomentum. 

Hooke's Law a 2 

Hooke's Lew and P.E. 1 2 
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Booklet 3. Momentum and Restitution. 

    No. of revision No. of 

  

questions 

  

Momentum, imrvlse 2 2 impulse along 

straight strings 

  

  

Conservation of momentum a 3 

Coefficient of restitution 2 4 

Booklet 4. Motion in two dimensions 

Topics No. of revision No. of related 

£ ouestions 

Vectors 1 

Relative velocities 2 

Projectiles above S| 

horizontal vlane 

Projectiles above 1 2 

inclined plane 

Inclined impact ob 2 

  

1 projectile wi 

imvact 
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Booklet 5. Extension of Motion in Two Dimensions 

    - of rela Topics No. of Revision 

  

questions 

Motion on inclined a 4 

plenes. 

Impulse along:inclined 3 

strings 

Gun barrel inclined 1 

to ground. 

Impact spheres on 3 

inelined paths 

Booklet 6. Variable Forces 

Topics No. of Revision No. of related 

frames questions _ 

Horivontsl motion ‘4 

and resistance vroportion— 3 

21 kv” 

Vertical motion, resist 5 

kv" 
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Booklet 7. Oscillations 

Topies 

  

5.H.M. 1 

Damped oscillations a 

Forced oscillations L 

Booklet 8. Restricted Motion 

Tangential and normal a 

acceleration 

27 

revision 

  

No. of rel 

questions _ 

i along strings 

2 using apnrox. 

2 using solution 

3 (1 for eech 

case) 

1 stable, 

1 unstable motion 

3 motion in circle 

5 motion on 

smooth curve 

1 motion on rough 

curve 

1 single sided 

restriction



Booklet 9. Central Forces 

No. of revision 

  

  

  

frames 

Polar coordinates 1 

D.E. of an orbit 

Booklet 10. Orbits 

Bovics No. of revision 

fremes 

Orbits 

Polar coordinates conics is 

Velocity in elliptic XL 

orbit 

28 

No. of related 

3 string through 

hole. 

1 apse, elastic 

string. 

2 apses 

1 elliptical 

orbits 

2 orbit from 

given force 

No. of related 

questions 

3 more difficult 

forces 

3 inverse 

square law 

1 change of 

velocity, orbit



TABLE 2. COMPARISON OF THE BOOKLET FORMATS 

Booklet No. of No. of No. of No. of tave Tape runs 

Nunber Ouestions Pages 

  

Instructions (mins) 

1 10 12 25 26 12 

2 10 13 24 26 Le 

3 9 15 26 26 14 

4 ie 18 25 29 ag 

5 1 17 34 36 19 

6 10 18 32 31 20 

7 10 2 36 37 24 

8 10 22, as 36 23 

9 19 30 27 14 

10° a 17 25 21 13 
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- APPENDIX 1. 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 1 to be used with TAPE 1 

"Uniform Motion, and Newton's Laws" 

Read the instructions on page 1 thoroughly. 
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PLEASE DO NOT OPEN THE BOOKLET ANY FURTHER YET. 

1) 

2) 

4) 

5) 

6) 

1 

The work in this booklet is divided into sections bounded 

by heavy lines across the page. You will be asked to work 

through these in sequence by instructions on the appropriate 

tape. Keep strictly to this sequence. 

To save running a voiceless tape, you will be told to 'switch 

off' at the end of every instruction. 

The maximum benefit from the work will be obtained by not 

looking ahead. Avoid this by covering the following work 

with a piece of paper at each heavy line. 

You will need paper for your own working. 

You may keep the booklet when you are finished as a 

permanent record of the work. 

If you miss, misunderstand, or forget any instruction, stop 

the tape, and rewind it so that you are able to replay the 

part you need. You may do that as often as you like. 

Check that you have the correct tape, insert it into the 

playing machine, and SWITCH ON. 

an



0 P 2. 
—{—_ ‘ & 

Boe 
  

The 8.1. unit of length is the metre. (m) 

When you are ready to go on, SWITCH ON the tape. 

When you have written the two forms of velocity, 

check your answer below, 
  

Velocity = = x at 
The positive sense is the same as the positive sense of x. 

The unit of velocity is metre per second. (m s *) 

When you are ready, SWITCH ON the tape. 

When you have written the three forms of acceleration, 

check your answer below. 
  

Z d*x = dv enone 
Acceleration = aur = = V aye and the positive sense of 

acceleration is the same as the positive sense of x and v. 

The unit of acceleration is metre per second per second (ms ~*). 

SWITCH ON 
  

EXAMPLE 1. 

A particle moves such that its distance from an origin 

is given by x = t® - 6t? + 9t +5. 

i) Find when the particle is at rest. 

ii) What are their distances from the origin at these times? 

iii) How far is the particle away from thé origin when the 

acceleration is zero? 

When you have finished this example, check your solution 

on the next page. 
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Solution to example 1. 

i) velocity = += X = 3t2 = 12t + 9 = 3(t-3)(t-1) 

x =O wien t = 3 or 1. 

ii) when t = 1, x= 9 

when t = 3, x = 5 

ao + Cera et iii) acceleration = G7z = x = 6t - 12 = 6(t-2) 

% =O when t = 2, and x =7 

SWITCH ON 

  

Consider the motion from A to B in time t 

a 
SP x distance AB 

4 ¢ acceleration 

  

ul initial velocity 
  

final velocity 4 ti 
v =utat x ut + gat? 

vt - gat? U1 vez u?+2ax x 

x= (#) 

Yow should leam and remember these equations. 

  

SWITCH ON 

EXAMPLE 2 

i) Use a == = a » to derive (a) v =urat 

(b) x =ut + dat? 

ii) Use a = vt to derive v? =u? + 2ax 

When you have finished, 

SWITCH ON. 
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EXAMPLE 3. 

Two particles P and Q move in the same straight line, 

with Q initially 18m in front of P. Q starts from rest with an 

acceleration of 3ms~?, and P starts in pursuit with a velocity 10 ms * 

and an acceleration of 2 ms ?. Prova that P will overtake Q after 

an interval of 2s, and that Q will in tum overtake P after a 

further interval of 16s. 

When you have read this carefully, SWITCH ON 
  

  

  

  

  

Initial conditions with P at A and Q at B. 

——® vel = 10 ms * ——~e yel =0 

br acc™= 2 ms? —er ace” = 3 ms? 

o 5 Q - 

A B 

<—————_.1& ———__—__p» 

At time + 

x — Q 
= ° © 

5 y —e   

Cae ® CS ee ie 

When you understand these diagrams, 

SWITCH ON 
  

x= 1064 6° andy =5 t* 

n
l
y
 

For coincidence y + 18 = x 

Hence t? - Dt + 36 = 0 = (t-2)(t-18) 

igeest = 2orie 

So P overtakes Q after 2 seconds, and 16 seconds afterwards, Q 

with its greater acceleration, overtakes P. 

SWITCH ON 
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EXAMPLE 4. 

A pit cage goes down a mine shaft of depth D, in 

time T. For the first quarter of the aistance, the cage is 

accelerated uniformly, and during the last quarter, retarded 

uniformly, The acceleration and retardation are equal. Find the 

uniform speed of the cage whilst descending the centre portion 

of the shaft. 

  

SWITCH ON 

Top + 7? fretocity zero From T to E, use v = u+at, 

¥. 2 time t, V=0 tat, > V = aty 

rev From F to B, use v = u+at, 

0 =V- ate —+V = ate 

3 time Hence t4= ta 

[t-(ta+te)] 
Time from E to F is (T-2t.). 

From T to E use X= atv), 
e rv 2 

te: D 
2 earth —> t, = 5 

f. ? time tg 7 2% - 2v 

I Bf velocity zero   
From E to F, the speed is uniform with 

2 = v(t-2ts) 

Substitute for 4 to give V = 4 

SWITCH ON 
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The motion takes pla in 

  

| straight line AB, but the diagram 

conveniently shows the motion up 

g and down. 

H Use x = ut + fat? from A back to A 

O = ut - det? 

positive | | Hence time of flight = ee 

sense & 
a Use v = utat from A back to A 

Vv eur (@) seu 
A = 

Use v = utat and v?=u*+2ax from A to B 

time to highest point = 3 and H = es 8 Pp B 2B 

SWITCH ON 
  

EXAMPLE 5. 

A particle is projected vertically upwards, and f seconds 

later, another is projected up with the same initial velocity. 

i) Show that the particles meet after a further time G - 2) 

ii) Show that at that timd they will both have the same speed $eT. 

Let the particles collide at 
After T. at time 

Seconds of collision height H after a further time 

+. Total time to the point of 

contact is (t+P) after the first 

launch. Use A and yp for the 

velocities of the particles 

at the time of collision, 

positive H A 

sense 

a u 
SWITCH ON. 
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Apply x = ut + dat? for both particles to the point 

of contact C. u(t+?) -te(t+T)® = H = ut - det? 

  

SWITCH ON 

ou sen eG *3) — ~Aaz=igt 

i 
u=u-6 (2-3) —> w=zeEeT 

SWITCH ON 
  

EXAMPLE 6. 

A stone is thrown vertically upwards with a velocity 

of p from the top of a tower which has a height 'H'. Find 

i) The velocity with which the stone reaches the ground. 

ii) The time of flight. 

Do not look at this solution until you have finished the example. 
  

Consider a vertical axis with origin 

at T and positive sense upwards. 

g Apply v?= u® + 2ax from T to G. 

v? =p? + 2(-8)(-H) 
v =p? + 2¢8   

a
 

3 

postive Apply v = utat from T to G. 
¥ 

sense -~V =p - gt 

2 |p + dp? a oe | 

vd ; 

J 

SWITCH ON 

= 

t       
  

Newton's First Law. 

A body will remain at rest or move with uniform velocity 

in a straight line, until it is compelled to change its state by an 

external force. 

When you have studied this, 

SWITCH ON. 
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Newton's Second Law. 

When a body is in motion the rate of change of momentum 

  

is proportional to the external force, and takes place in the same 

direction as the force. 

Force « Rateof change of momentum. When the mass is 

constant, this reduces to 

Fem ff = ma 

with all the units in the S.I. system. 

Force in newtons (N), mass in kilograms (kg) 

Acceleration in metres per second per second (ms *) 

This equation is of fundamental importance in dynamics and is called 

the Equation of Motion. 

SWITCH ON 
  

Newton's Third Law. 
  

To every action, there is an equal and opposite reaction. 

A block resting A bead moving on 

on_a table a circular wire. 

A = weight = action A 

  

      
ashe, 

R = Reaction 

of table 

R=A 

> action of the bead on the wire   
R= weaction of the wire on the bead 

When you have studied this, 

SWITCH ON 
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EXAMPLE 7. 

Two masses mz and mg are connected by a light inextensible 

  

string. m, is placed on a smooth horizontal table and the string 

passes Over a light pulley at the end of the table, and mg is 

hanging vertically. Find the acceleration of the particles when 

they are released from rest. 

R > f = acceleration 

2 

pas ™ ee 

mag 

2 {. 

SWITCH ON M28 

  

  

The two equations of motion are 

mf =T and Nef s= Meee 

Notice that the positive sense of f defines the positive direction 

of acceleration and force. 

Add the equations to eliminate T and give f = ta 
Mi+ m2) 

Since m, does not leave the table vertically, so R= meg 

SWITCH ON 

EXAMPLE &. 

Two masses m and M are suspended from the ends of a 

light string, which passes over a fixed smooth pulley. Show that, 

if M> m, the acceleration of each mass is eas, Also find the 

tension in the string. 

Do not consult the solution until you have finished the question, 
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10, 

Let the common acceleration be f. 

The equations of motion are 

Mf =Mg-T 

f mf =T - mg 

Add to eliminate T and substitute 

for f in the first equation to 

give: 

p= oie 
~ (Mm, ) 

  

SWITCH ON 
  

R 

i 
F = pR =u mg, where p is the coefficient 

of friction 

       

  

  

Equation of motion for ma is 

myf =T- F =T -pmsg 

SWITCH ON maS 
  

EXAMPIE 9. 

A light string ABCD has one end fixedat A, passes 

under a movable pulley of mass M at B, and over a fixed pulley 

at C. It carries a mass mat D. The parts of the string not 

passing over the pulleys are vertical. Show that the pulley at B 

: ‘ = Pn\ s 
descends with acceleration (i a ia Pst M> 2m. 

The diagram is overleaf 

40.



  

  

When you have studied these forces, 

SWITCH ON 

  

The length of the string is given by 

x + (x-€) + y + distances round pulleys 

i.e. 2x+y- €= a constant. 

Differentiate wrt 't' twice to give, Erg y =0 

The equations of motion are 

Mx = Mg - 2T and my = mg -T 

N.B. Always write mass x acceleration first and use this to specify 

the positive sense. 

Eliminate T and y to give x = pee 

SWITCH ON. 

41.



Ww ny 

  

A particle P, of mass m rests on a rough horizontal 

table, with coefficient of friction p, and is attached at one end 

  

to a light horizontal string, which pesses over a smooth fixed 

pulley A at the edge of the table. The string then passes under 

a smooth movable pulley B of mass m, and over a smooth fixed 

pulley C, at the same level as A. The other end of the string 

is attached to a particle D, of mass m, which hangs vertically. 

All the portions of the string not in contact with the pulleys are 

horizontal or vertical. Assuming that motion takes place, find 

the tension in the string. 

  

  

  

  

  

Thé equations of motion are:- 

mx =pmg-T 

my ng - 2 

mz =m-T 

Since the length of the string is constant 

x + 2y + z = constant. 

Continued overleaf- 42%



Hence x + oy + 220 

Substitute for x, ¥ and 2 and show that 

mg (+3. fe ¢ 

43. 

SWITCH ON. 
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APPENDIX 1 CONTINUED 

SCRIPT FOR TAPE 1 

UNIFORM MOTION AND NEWTON'S LAWS 

1. This is the tape to be used with Booklet 1 

of ‘A Revision Course in Particle Dynamics' by Kenneth 

A. Jackson. It is concerned with motion under constant 

acceleration, and Newton's Laws. 

A particle represents a theoretical body which 

is fundamental to dynamics. Its dimensions, though not 

zero, are sufficiently small for the internal structure 

+o be unimportant. You can, then, conveniently locate 

its centre of mass at a point. Moreover, in later studies 

of a rigid body, the centre of a mass moves as a particle. 

In order to describe the motion of a particle, you need 

-fremes of reference, and the simplest of these occurs 

for motion in a straight line. Turn to page two in the 

pooklet, where we shall consider this. SWITCH OFF. 

De This diegrem shows the position of a perticle 

P, measured in S.I. units, from a fixed origin 0, with 

the arrow denoting the positive sense. The rate of change 

of position along this line is called the velocity. 

Write the two calculus notetions which you know for this, 

and also indiccte the positive sense of velocity. SWITCH 

OFF. 

3. Usually, the velocity is also changing, and 

its rate of change is called acceleration. Write the\ 
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three calculus notations for acceleration, and also 

indicate the positive sense. SWITCH OFF. 

4e When x is stated as a function of time, 

it can be differentiated to give the velocity and secel— 

eration, enabling statements to be made about the motion. 

Example one is a straightforward question of this type. 

Read it carefully, and when you heve completed this, 

check it overleaf. SWITCH OFF. 

5e An important type of straight line motion 

occurs when the acceleration is constant. In this cave, 

it is convenient to have standard equations ready for 

use. These are listed for you below. SWITCH OFF. 

be It is imvortant that you understcnd how these 

esuations have been derived, and examnle two revises 

this for you. These three equations are eech obtained 

by direct integration, and the constants are found from 

the initial conditions. Remember, when you do this quest- 

ion thet the velocity is u, when the time and distance 

are both zero. SWITCH OFF. 

ae. Example three illustrates the use of these 

constant acceleration equations. Read this carefully. 

SWITCH OFF. 
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Ge Diegr     are very useful in dynamics. In 

case, two are helvful, because you are told about initial 

conditions, and then questioned about a later part of the 

motion. Study the two diagrams below. SWITCH OFF. 

OL. The first a 

  

grem cleerly shows the initial 

conditions and the second shows the position at time t+. 

The particles will be coincident when x and (y+18) are 

the same. Use the standard enuetion x = ut + Bat®, and 

find exvressions for x and y at time t. When you have 

done this, read the next section in the booklet. SWITCH 

OFF. 

20; You should try an exemnle for yourself. Read 

Number four carefully. S\/ITCH OFF. 

a First, draw ea clear diagram, showing the 

distences involved, and introduce convenient symbols 

for velocities, accelerations and time. You will need to 

use the standard eauetion v = u + at, and the one using 

average velocity. When you have completed this, or if 

you run into difficulty, read the answer in the booklet. 

SWITCH OFF. 

plo. A particle thrown vertically upwerds, also 

experiences uniform acceleration, which is called the 

acceleration due to gravity. It is always directed 

dovnwards and is given the symbol'g' for convenience. 

It is approximately 9.8ms~°. Consider the motion of a 

particle which is thrown vertically upwerds with a velocity 

u, and returns to the same point. Find the time of flight, 

and as much information about the motion as possible. 
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Draw a diagram if you wish. When you have fi 

  

results in the booklet. SWITCH OFF. 

    

Example five is a more difficult one on 

  

vertical motion, and we shali work through part of t. 

  

together. Read the auestion carefuliy, and study the 

diagram. SWITCH OFF. 

a4. The upwards and downwards paths of the particles 

heve been senarated for clerity. Using the information 

on the diagrams, a relationship between height and time 

ean be found for the point C. Do this, and check your 

answer in the booklet. SWITCH OFF. 

a5. These two equations for H give a single equstin 

for little t. Solve this eouation and obtain your first 

answer. To answer the second part, use the standard 

eouation v = u + at for both particles, with the anvro- 

priate time. Check your answer afterwards in the booklet. 

SWITCH OFF. 

16. Now try example six by yourself. Draw your 

aiogram showing the height, velocities and acceleration. 

You will find it helpyful to consider the top of the tower 

as the origin of the motion. When you have finished 

this, check your answers below. SWITCH OFF. 

dhe So far you have been studying velocities and 

accelerations without considering why these occur. ‘The 

three laws of Isaac Newton explain this. The first law 

states that "A body will remain at rest, or move with 

uniform velocity in a straight line, until it is comnelled 

to change its state by an external force." Read this 

47.



statement carefully in the booklet. SWITCH OFF. 

16. To illustrate this first law, consider a bell 

which can remain stationary on level ground, until it is 

pushed along. Also, e billiard ball, once struck, will 

remain on a straight, steady course. An external force 

can change a state of motion, but the same force has 

different effects on bodies with different masses; that 

is the quantities of matter in the bodies. The second 

law provides a measure of the effect of a force, and 

states that "When a body is in motion, the rate of change 

of momentum is proportional to the external force, and 

takes place in the same direction as the force". Consider 

this statement carefully, in the booklet. SWITCH OFF. 

1% Newton's Third Law states that "To every action 

there is an eoual and opposite reaction". Read this 

statement carefully in the booklet, and study the 

illustrative sketches, which show how reections can either 

prevent motion, or constrain it along a particular path. 

SWITCH OFF. 

20 We shall now work together a problem involving 

the equations of motion. Read exemple seven cerefully, 

and study the diagram. SWITCH OFF. 

ai, The diagram shows all the forces acting on the 

particle. Notice, that as the pulley is smooth, the 

string has a uniform tension throughout. The two particles 

will have the same acceleration, as the string is inexten- 

sible. Let this be f. The two equations of motion are 

written for you in the section below. Check these before 
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you use them. SwITCH OFF, 

22. You shovld now attempt example eight yourself. 

Read the question carefully. Remember, you must draw 

a clear diagram showing 211 forces and masses; then find 

the eouation of motion for each mass. Finally, use these   

equations to eliminate any unwented quantities, to find 

whatever is reovired. SWITCH OFF. 

23. So far in all this work, you have considered 

all motions to be without friction. You will remember 

thet example seven concerned a smooth table. Suppose 

that the table were rough. Motion wovld only occur if 

the tension is greatcr than limiting friction. Assume 

that this is so, end examine the new equation of motion 

in the section below. SWITCH OFF. 

BAe Now consider example nine, which is more 

difficult. We shall work through this example, so rea 

it carefully and study the diagram. SWITCH OFF. 

25e The acceleration of the masses at B and D are. 

uo longer the same, because B is not atteched to the ' 

string, but supported by it. To help in this situation, 

it is useful to introduce the lengths x and y into the 

diagram. Notice that x is the distance of B from a fixed 

level, and the pulley at B has an acceleration x downwards. 

The connection between these accelerations is explained 

in the booklet and the solution completed. Follow this 

carefully. SWITCH OFF. 

26° You should now try example ten by yourself. 

Read it carefully, draw the diagram, mark in all the forces, 
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’ 
end introduce suitable displacements. Teke care in the 

problem that you obtain the correct total length of 

string. Do not read the solution below before you hove 

finished your own. SWITCH OFF. 

2. This completes the work about motion under 

constant acceleration and Newton's laws. Please rewind 

the tape before you remove it from the machine. 

Thank you! 
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APPENDIX 2. 

  

A REVISION COURSE IN PARTICLE DYNANTCS 

by 

Kenneth A.H.Jackson 

BOOKLET 2 to be used with TAPE 2 

, “Power,Energy and Hooke's Law 2 

Read the instructions on page 1 thoroughly. 

(Ommitted for. convenience.) 
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When a force moves its point of application it is said to perfor 

work 

Work Gone from Ato B=Fxx 

If the displacement is not in the same line as the direction of the 

force. 

W.D. = (F cos@)x 

F cos@ iscallsd the component of the force along AB. 

Unit of wrk AJOULE = 1 newton metre iJ = No. 

When you have studied this, 

SWITCH ON 
  

WER is the rate of doing work, 

  

F a fim Oe 
aan —_—_—r eo Power =. BS = Fv 

——__—__fx ——__> Be 

Unit of power 1 WATT = 1 Jovle per second iW = lJs°* 

For constant velocity (vas *) 

P =F v watts 

An accelerating body requires additional power to allow for the 

accelerating force, 

For constant acceleration (a ms~*) 
: x 
Pou v » but F = ma(Newton's equation of motion) 

i.e. P = (ma) v 

  

v is now changing, and the velocity must be taken at a particular th 

SWITCH ON 
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A vehicle of mass M, starts from rest at A, and travel ’ > 

with uniform acceleration for a time P, The engine is then switched 

  

off end the vehicle comesto rest at B without the bra being 

used. The distance from A to B is A, and the total time taken is T. 

The resistance due to friction is K times the weight of ths vehicle. 

  

  

  

Prove that 

2h 
(f-P) = Ker ? 

and the greatest rate of working of the motor during the journey is 

4AM 
TP(T-P)° 

Positive 
sense 

acceleration retardation 

=a =r 

—ppP ——+ 
locit, velocity 

a af Kilg 2 v Kg Zero zero SS <——e——+p- — > <4 ae 

A ¢ B 

<< _ 
time P Engine 

off 

< = he 
' 4 time T 

When you are ready to proceed, 

SWITCH ON 

Equations A to € C to B 

F ’ F-Kmg=Ma , Mr = ~ Kg 

ve aay 
“(2 > day ? A-a = 5 (T-P) 

v= utat ’ V = aP : 0 = V+ r(T-P) 
sg SWITCH ON 

oe . Use this resuls, ' From the fecond pair of equations, show that V = F 

with the two equations involving r, to derive the first result. 

SwurGH_ON 
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Power = F v = (Ma + Kilg)v 

This will be maximum when v is maximum, ive. at C. 

So maximum poser = M(a+Kg)V 

Substitute for a,V and Kg to derive the second result. 

SWITCH ON 
  

EXAMPLE 2. 

A lift,of mass M., moves in a vertical shaft against a 

constant friction force K. Find the power of the motor which can 

pull it up at a steady speed ‘U. If this power is constant show 

that the acceleration of the lift would be Cr) if the upward 

velocity were U/2. 

Do not read the solution until you have finished, 
  

Use 'F =ma', Ma =T - Ng -K 

" when 2 = 0 for steady spved,T = NgikK 

a |: Power = 'Tv' i.e. Power = (Mg+K)U 

When speed is U/2, 

Power = (Ma+Mg+K)U/2 

Ng i.e. (Mg+K)U = (Ma+tig+K)U/2 

hence a= (ues) 

SWITCH ON 

KINETIC ENERGY of a body is the energy possessed by virtua of its motion, 

and is measured by the anount of work it does in coming to rest against 

a resistance. 

A particle moving with speed v has kinetic energy dmv?. Unit is the 

joule, as for work, If this particle has mass m, and is brought to 

: 
rest in a distance d, with retardation a, by a constant force F; 

-contimed overleaf- 

54.



  

rest 

  

  

then F = ma 

Use v* =u* + 2ax, OQ = v? ~ 2ad 

ad = $v? 

Work done by the particle is Fd = mad 

  

SWITCH ON 
  

Conservation of Energy .- 

The kinetic energy at the end of a change in motion is the 

sum of tne initial kinetic energy and the work done on the particle. 

or: K.E “|x = Isso + Work done RX'MRNAL 

FORCES 

This mst be remembered. 

SWITCH ON 

EXAMPLE 3. 
The foot of a rough inclined plane, of inclination a, is 

joined to an equally rough horizontal surface. A particle is held 

at rest at a distance 'd' up the inclined plans, and then released. 

How far will it travel along the horizontal surface, if the coefficient 

of friction is yp? [Assume there is a smooth transition from one plane 

to the other] 

     

DD. 
SWITCH ON 

‘ 
‘ 
' 
'     
 



   
On the inclined plane, 

mg Since resolved component of the weight 

R = mg cose 

Fo = pR=yp mg cos« 

On the horizontal plans, F = p mg 

Now KB efona = KF hogin a Df orces 

oO = O +mg sin«d -— p mg coSeed ~ p mge 

by rearranging terms, £ = a(sine -y cose 
Hu 

SWITCH ON 
  

At the foot of the incline, K.E = $mv? 

Use K.E.. =K.E. + W.Do 

  

END BEGIN FORCES 

i.e. $nv®? == O + mg sinx.d - p mg cose.d. 

Hence V = J!2gd(sina-peosd 

SWITCH ON 

EXAMPLE 4. = 

A particle of mass m, is projected up a plane of inclination 

«, with 2 velocity V. How far does the particle move up the plane, 

iff the coefficient of friction is yp? 

Do not look at this solution until yours is complete. 

  

KBefaey a XB fppern + 1.0. /ronces 

0 =| duv? - mg sine.S - p mg 00s. 

B 

hence § = ~ — 
2g (Sinxtpco Sc) « 

56. 
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tion If the work done in bringing a body from ons 1 

    

to another is independent of the path taken, then the force i: 

to be conservative. Gravity is such a force, but frictiou is not, 

The POTENTIAL EJERGY of a body, is the amount of work it can do in 

moving from its actual position to some convenient standard positica. 

For a particle 'm' at height 'h' above the earth's surface, 

it is the work it can do in falling that distance. This is teking 

the carth's surface as the zero or standard position. 

P.E. = mgh Unit is also the joule. 

The Principle of Conservation of Bnergy. 

If a system of bodies is in motion under the action of a 

conservative system of forces, the sum of the kinetic and potential 

energies is constant. 

Briefly:- P.E. + K.&. = Constant. 

SWITCH ON. 
  

EXAMPLE 5. 

Masses of m and M are attached to the ends of a light 

string which passes over a smooth pulley. Find the velocity of the 

mass M when it has fallen through a distance h. 

System at rest After the specified 

zero of initially with motion 

Fees m_a_distance Si art 

rt h below M i 

a 5 Vv a 

fh ty ald 

h h 

| 57. wh | 
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8. 

(K.E. + PE.) = KBP Ein 

(fnv? + $uv?)+ [-mga - Mg(ath)] = 0 + [(-Mgd-mg(a+h)] 

hence V = 

SWITCH ON 

  

EXAMPLE 6. i 

A light string ABCD is fastened at A to a mass m, free to 

slide on a smooth horizontal table. It p2sses over a fixed smooth 

pulley at B at the edge of the table, under a movable smooth pulley 

C,of mass M, and is fixed D, vertically above C. All the sections 

of the string are either horizontal or vertical. The system is allowed 

to move under gravity. Show, that when the velocity of the pulley C 

is V, i+ mst have fallen through a distance h = dm+M)V?, 

2hig 

Do not look et the solution until you have completed the question. 

LA 
D 

2 

a — 2Or0 07 PBs 

  

  

  

EH 

= , _ Initial posit: 
pulley 

y 

(K.B4P.E.)p 9 = (K.E.+P.E.), 

0 -Meh = dmx? + Sy? - Mg(Hay) 

_ As the string is of constant length, 

x + 2(Hty) + a = Constant. 

58. 
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pitf., wer.t. time te give x + 2y = 0 

  

let y =Vx 

Substitute in the e,ersy equation, 

-MgH = 4m(-2v)? + gMv? - Mg(H+h). 

hence h, 

SWITCH ON 
  

Hooke's Laws 

The tension in an elastic string is proportional to its 

extension. 

i.e. T= AX 
£ 

where A is a constant for a particular string. It is celled the 

Modulus of Elasticity end has units of force. 

x is the extension beyond its natural length. 

£ is the natural length. 

NB. 1. The law only applies if a string is not stretched beyond 

the elastic limit, after which there is permanent deformation. 

2, It also applies to springs in extension ani compression, 

provided they have negligible weight. 

SWITCH ON 
  

EXAMPLE 7. 

An elastic string of natural length 2a, is found to extend 

a distance 'b' when a particle of mass m is suspended from a free 

end. The particle is then removed and attached to the midpoint of 

the string, the ends of which are then tied to two points A and B in 

the same vertical line at a distance apart greater than 2a. Assuming 

that in the equilibrium position, the lower part of the string remains 

taut, show that-the displacement of the particle is 2 from the midpoint 

of AB. 

59. 
DIAGRAM ON THS NEXT PAGE



   

  

Cone (SLE 

iO, 

Use f = t 

2a When the particle is ha from one 

end, tension T = mg =. 

— Sy = aes 
4 Ao i 

b 

¥ 

ie SWITCH ON 

LLL Let the displacement. to the midpoint be x 

and AB = 2d, 

a Tension in the upper string T = Afaexns) 

TA For lower string T4 = A(A- x- 2 
a 

_ t -|-Y Midpoint = tn equilibrium T = mg + Ts 
x 

  
  

i Substitute for 1,T.,A, 

me (ol hence x = 4 Check this yourself, 

TY 

B 

GPL LIFE SWITCH ON 

EXAMPLE 8. 

The ends of an elastic string @natural length 2a are fixed 

in a horizontal line at a distance 2a apart. A particle of mess m is 

attached to the midpoint and rests in equilibrium. If each half of 

the string is inclined to the vertical et an angle 6, show that the 

modulus of elasticity is D(cote - cos) 

. 

(Do not read the solution overleaf until yours is complete). 
60.



    If A = Modulus of Elasticity, 

and x = extension of string 

For equilibrium, 22 cos@ = mg 

ees & ACA 2 A(a_cosec@ - a) 

  

  

a a 

Substitute in above equation, hence A 

SWITCH ON 

Consider a string, natural length £, stretched a distance 

p. Work is done by the tension as it returns the string to its 

notural length. 

  

    

aD 
—< e 

_¢ pa =D e 

x=p p p 

Potential = Total = é5m a = 5 

energy work 6x30 / 1. oe = [ Box ef (p-x) dx 

Ce x0 2 ° 

A 27° Yeti dw? -B[e-F] 300-8) -R 

SWITCH ON 

EXAMPLE 9. 

A spring of negligible weight is compressed a distance 

‘a! by a mass. M. Show that if the mass is allowed to fall on to 

the spring from-a height 2 above it, the maximum compression of 

the spring in the motion which follows, is 3a. 

THE DIAGRAMS ARE ON THE NexT PAGE 
61.



    
f gravity PE.    aT —— = 26r0 Of spring P.E. 

GIT 
For equilibrium f 

Mg = Ts = Aa 4 g 2 : ie f is the maximum 

; Mg 
A = Mgeé T £ compression of th- spring 

a 

WSGe © 
When you have studied these, 

SWITCH ON 
  

(KeB4P.Bs) ot = (K.E.+ PEs) any compression 

a 

aN 

Substitute for A, this reduces to 

22 tape Sa2 = 0 

(f., =— 3a) (£ 22) 

for £)= 4a or = a, pat f =~ a has no physical meaning. 

OG; which 1s satisficd iW 

SWITCH ON 

A mass is suspended from a fixed point 0 by an elastic 

string of natural length a, ani whea the mass is hanging freely, 

the length of tho string is 5a/3. Show, that if the mass is allowed 

to fall freely from rest at 0, the greatest length of tne string 

in the subsequent motion is 3a. Show aiso, that the speed with 

which the feed is moving when it is distance 2a from 0, is Bee . 
J 2 

eaf until yours is complete). (Do not read the solution overt:



  

Posits     
ero 0; 

  

— is £620 of string P.E,. 

mg 

For equilibrium, 

he = Ta = A2a 
ad - 

3 
A= Bag Vv 

ng 

Let L = length of maximam extension, 

Energy equation 

(K.BAP.E) oyup = (KBP-Es) yyy 
EXTENSION 

0 = 0 + AL? - ne(ath) 
28 

hence 0 = ha* + haL - 31° 

0 = (2a - 1)(2a + 3) 

which is satisfied when L = 2a, i.e. Total length = 3a. 

(L = - 3 has no physical meaning.) 

String in Motion 

  

LLL eae 
0 zero of P.E. Let v = velocity of mass when 

2a from 0 

2a |__ _ natural length 

Te Energy equation 

} PE = (K.E.+ PE. i (K.E.4 PEs) page (K.E.+ P don 

0 = ee — mg.2at+ 22 

mg Substitute for A, gives v 

SWITCH 

  

  

6 

 



  

SCRIP? FOR TAPE 2 

  

ENERGY AND HOOKE'S LAW 

i. This is the tane to be used with Booklet 2 

of 'A Revision Course in Particle Dynamics' by Kenneth 

A. Jackson. It is concerned with 'Power, Energy end 

Hooke's Law. 

We know that eae force may cause a body to move 

nd when a force moves its point of application in this 

way, it is said to perform work. This depends upon the 

magnitude of the force and its displacement. Turn to 

page 2 in the booklet, where this is summarized for you. 

WITCH OFF. 

. The rate at which a force does work is celled I
m
 W

w 

power, which depends on the velocity. Look at the next 

section of the booklet, where this is expnlained. SWITCH 

OFF. , 

3. Read the first example carefully, and study 

the diagram, which summarizes the question. SWITCH OFF. 

4A. This example will involve equations for constant 

acceleretion, and the equation of motion for the two parts: 

of the journey. Look below et the next section to see 

how these are used. SWITCH OFF. 

De In the right hand column, observe that the 

retardation is negative, as the motion is opposed by KMg 

in the negative sense. Now follow the instructions below 

this. 64.



SWITCH OFF. 

6. The greatest power will be obtained in the 

first part of the journey as the engine only works from 

A to C. The remainder of the solution is in the next 

section. SWITCH OFF. 

7. You should now attempt example two yourself. 

Read the ovuestion, and draw a diagram showing forces, 

velocities and acceleration. You will need to use the 

equation of motion, and that for power. When you have 

completed this, check the solution below the question. 

SWITCH OFF. 

8. When a body is in motion, it can overcome 

resistances, thus doing work on them. This capability 

of working is called kinetic energy. Read the next 

section about this. SWITCH OFF. 

93. Energy may be converted from one form to 

another, without loss, under certain conditions. This 

is conservation of energy and is of great importance in 

dynamics. An example of this occurs if a body, which 

has some kinetic energy, undergoes a change in velocity. 

The change in kinetic energy is then the work done. This 

is summarized in the booklet. SWITCH OFF. 

10. Example three illustrates this conservation of 

energy. Read the question carefully and study the 

diagram. SWITCH OFF. 

iL. The diagram shows that the particle has no 

kinetic energy at the beginning or end of the motion, 

as it is at rest. It gains energy as the resolved part 

65.



of the weight pulls it down the slope to velocity V, 

going positive work. Throughout the motion it is opnosed 

by friction, which eventually destroys it, by doing 

negative work. The energy equation for this motion is 

given in the next section of the booklet. SWITCH OFF. 

i2. By using the energy equation for the appropriate 

point in the motion, calculate the velocity when the 

particle reaches the foot of the incline, yourself. 

Check this afterwards. SWITCH OFF. 

136 Now try example four by yourself. Read the 

question carefully, draw a diagram, and only check your 

solution when you have finished. SWITCH OFF. 

14. In examvle four, the motion up the plane was 

limited, as friction destroyed the energy. Even without 

friction, the particle comes to rest, but the kinetic 

energy is replaced by potential energy. Forces which ere 

associated with potential energy are celled conservative 

forces, and throughout the motion, the sum of the kinetic 

and potential energies is constant. Study this in the 

next section. SWITCH OFF. 

i5. We shall work through example five to show how 

this principle is used. Read the question, and study 

the diagrams. SWITCH OFF. 

16. In a potential energy problem it is essential 

that a zero level for potential energy is selected, 

through some fixed point in the system. Masses placed 

above this level have a positive potential energy. We 

also need to show masses, distances, and velocities in 

66.



  

The string tension is en internal force, 

end does no work. The smooth pulley will not cause 

loss of energy as it turns, and the light pulley has 

negligible mass. The problem is solved by using the 

conservation of energy equation at the beginning and end 

of the motion. Follow this in the next section. SWITCH 

OFF. 

ATs Work through exemple six yourself. Read it 

carefully, and draw a diegram indicating some convenient 

zero of potential energy level. Remember thet the pulley 

srrangement will cause the masses to have different 

velocities. hen you have have finished, check your 

working in the booklet. SWITCH OFF. 

318. - In the work so far, inextensible strings 

have been used but now the study must include the 

behaviour of elastic strings. The extension of these 

is governed by Hooke's Law, named after Robert Hooke, 

their discoverer. He was an active scientist who lived 

at the same time as Newton, and is credited with the 

application of springs to the balence wheels of watches. 

His law is steted in the booklet. SWITCH OFF. 

19. We will work through example seven to demon- 

strate the application of the law. Read the question 

carefully and look at the first diagram. SWITCH OFF. 

20. Notice in this question, that lamda is not 

given directly, but may be calculated from the initiel 

equilibrium. This often occurs in spring problems. 

Look, now, at the lower diagram. Suspending the 

67. 

 



perticle from the mid-point is effectively cutting the 

string into two strings, of length 'a', but the modvius 

retains its value. Follow the remainder of the problem 

here. SWITCH OFF. 

Cal You should now answer example eight yourself. 

Read it, draw the diagram, and when the solution is 

complete, check it overleaf. SWIT@H OFF. 

225 When an elastic string is stretched, it stores 

energy, Since it will jump back when released. This is 

a potential energy, as it is due to the position of the 

end. The formula for this potential energy is revised 

in the next section.SWITCH OFF. 

23. Problems involving elastic strings and springs 

can often be solved by using energy considerations, as is 

shown in example nine. Read this carefully and study 

the diagrams. SWITCH OFF. 

24. Notice in the second diagram that it is 

necessary to show two zero levels of potential energy. 

At the maximum displacement, the particle is instantaneously 

at rest, and all the kinetic energy becomes potential 

energy. The mass in this position has positive potential 

energy with respect to the spring, but negative for 

gravity. Because there is no kinetic energy, the 

problem reduces to a balance of these two potential 

energies. Look below at the energy equation for this. 

SWITCH OFF. 

25. You shovld now attempt example ten by your 

own efforts. Again you will need to consider the position 

of instantaneous rest, and use the energy enuetion for



each part of the question. When you have finished this 

check your working on the last page of the booklet. 

SWITCH OFF. 

26. This completes the work on Power, energy and 

Hooke's Law. Please rewind the tave before you remove it 

from the machine. Thank you! 
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APPENDIX 3. 

  

A REVISION COURSE IN 

by 

Kenneth A.H.dackson 

BOOKiST 5 to be used with TAPE 3 

"Momentum and Restitution" 

Reaj the instructions on page 1 thooughly. 

(Qmmitted for convenienc.) 
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The MOMENTUM of a particle is the product of the mass of the 

particle and its velocity. 

i.e. momentum = mx v 

The units are Kg.ms *, but have no spscial name, 

NOTE. As this product has both magnitude and direction, momentug 

is a vector quantity. 

When you have studied this, 

SWITCH ON 

  

For a single particle, 

dv _ = a = F and m dv = F dt 

Vo ta 

[ae =Mv2-m ve [ F.dt. 

Va ta 

Let tz + tz with the velocity changing abruptly from v4 to vVe2,then, 

ta 

Ch in momentum = at Fdt =i ise ange Ba es ba = impulse. 

ty 

When you have studied this, 

SWITCH ON 

The Principle of Conservation of Momentum. 

Total momentum |=|total momentum 

  

before impact after impact. 

Just before impact Just after impact 

M4 Ug Va Va 

> > > => 

10 [mms + mauak favs + mava ] 

When you are ready to proceed, 

SWITCH ON 

gf fiae



ta
 

EXAMPLE 1. 

A particle of mass m, moving with a velocity v, strikes 

a stationary block of mass M, which is free to move in the 

direction of the particle, and is embedded in it. 

i) Find the common velocity of the bodies. 

2 

ii) Show that the loss in kinetic energy is pil 

iii) Find the impulse exerted on the block by the particle. 

  

Just before impact Just after impact 

v positive 
=>. sense of vo» 

momentum 

7. M m+M 
      

Let V be the common velocity, 

When you are ready, 

SWITCH ON 

  

i) Total momentum before impact = total momentum after 

mv = (m+M)V 

hence, V = Taaily 

ii), Loss in KE. =K. Beooapp ~ K-Eepyp 

dmv? - $(m+M)V? u 

Substitute for V to obtain the answer in terms of the given 

velocity v. 

iii) Impulse on the block = change in momentum 

M(V-O) 

Mmv 
m+M, 

u 

When you have studied this, 

SWITCH ON 
  

Yias



EXAMPLE 2. 

Two masses m and M, are attached to the ends of a light 

string, which passes over a fixed frictionless pulley. At the 

moment when the particles are moving with velocity V, the lighter 

mass, m, picks up a smail ring, also of mass m, Find, 

i) the velocity of the string just after this event , 

ii) the impulsive tension felt by the particle M. 

When you have drawn the diagrams, check them below. 

  

Just before the pick up. Just after the pick up. 

a LE 

Positive 
Positive 

sense of hi momentum 

momentum Eoetelie Positive 
sense of momentum 

momentum 

SWITCH ON 

  

i) Use conservation of momentum, 

ii) Impulse = change of momentum = M(V-v)= —Iiv -(-1IV) 

Substitute for V in this, to obtain (2imeM) 

SWITCH ON 

  

Newton's Law of Restitution. 

  

When two particles collide directly, the relative velocity 

after impact is in a fixed ratio to the relative velocity before impact. 

5 velocity of separation _ _ Beane 

1+€* Velocity of approach ~ ~_— 

73. 
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The constant, e, is called the COBFFICIENT OF 

RESTITUTION and it depends upon the materials of the two bodies, 

Being dimensionless, it has no units, and is such that, 

O<e<l 

with e = 1 called perfectly elastic 

and e =O called inelastic. 

Just before impact dust _after impact 

ae ae, #4 ae 

velocity of separation _ Y-va 
velocity of approach Us-Ug 

where u, and ug are known velocities, and v, and vg have to be found. 

SWITCH ON. 
  

Collison with a smooth perpendicular plane. 
   

    

approach velocity v —* 

velocity after impact =ev <€—    

S
S
S
 

N
s
 

Ca 

Noticé that the speed after impact is less than the 

speed before, since e <1. 

SWITCH ON 
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EXAMPL2 3. 

The line joining the centres of two equs] smooth balls 

P an2 Q, which lie on a smooth table, is perpendicular to a smooth 

vertical wall. The ball P, farthest from the wall, slides towards 

Q, which is at rest, with velocity u. After the impact, Q moves 

towards the wall. If e is the coefficient of restitution between the 

balls, and e, that between Q and the wall, find 

i) the velocities of P and Q after their second collision 

ii) the impulse exerted by P on Q, and the wall on Q. 

ist collision of P and Q 

Before u 

  

on Sy positive sense. 

tetera Vy Coe aed 
/ 

CX) 
When you are ready to proceed, 

SWITCH ON 

i) Conservation of momentum, 

mo = mv + mV see fh 

Law of restitution, 

velocity of separation _Vov _, 
velocity of approach u 

V-v=eu eee Z 

These equations give v = du(1te) ej 2 

and v = fu(1-e) see a 

As e <1, V and v are both positive, and therefore, directed 

towards the wall, but V > v, since (1+te) > (1-e), so Q will move away 

from P, and collide with the wall. 

SWITCH ON 
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Collision of 0 and the wall. 

7 Before 

Positive v eaV After 
a tg 

sensy 

Q moves away from the wall, and must, therefore, have a 

second collision with P, which is still moving towards the wall. 

SWITCH ON 
  

Second collision of P and Q. 

  

v e1V Before y N.B. Initial velocity of 
=a Q is negative, and 

yy its momentum is 
a BL After negative 

positive > > ‘ z 
sense 

oan ee BANS 
Use A and yw as velocities of P and Q after impact, respectively. 

Conservation of momentum, mv - megV = mA + mp 

ise. (v-e1V) = (Atu) eae 5 

Law of restitution 

oa =e or (p-A) = (vteaV)e Bere 6 

Equation 5 + equation 6 will give p in terms of u and V. 

Use 3 and 4 to give 

u =X u(l-e-e,+e,6”) = fu(1-e”) (1-e1) 

e? <1 and e, <1, so yp is positive. Q moves back towards the wall again. 

Subtract 6 from 5 and obtain 

A = Zu[(1-e)? - e4(1+e)?] 

We do not know if ex(1+e)? is greater or less than (1-e)?, so that 

the direction of P cannot be determined, without a knowledge of the 

relative magnitude of e and e4. 

SWITCH ON. 

16.



5a) 

Impulse = Change in momentum 

Impulse of P on Q = m(V-O) = $m(l+e) 

Impulse of wall on Q = mV+meaV =m e1V -(-nV) 

mV(1+e,) = $mu(1+e)(1+e1). 

SWITCH ON 
  

EXAMPLE 4. 

A particle is dropped from a height h onto a smooth horizontal 

surface, and rebounds to a height £ above it. Find the coefficient of 

restitution, and show that the height of the next bounce will be ¢?/h. 

Do not read this solution until yours is complete. 
  

The motion is in one vertical line, but separate diagrams 

illustrate it more clearly. 

To first From 1st_to From 2nd to 

impact 2nd_ impact 

  

< tlh oowth ide wt die 
Let V = initial velocity, then eV = 1st rebound veldcity and e?V = 2nd 

rebound velocity. 

Use "y? =u? + 2ax" for first fall, 

v? = 2gh ise. Vi= 2gh 

Use "vy? =u? + 2ax" for first rebound to greatest height, 

0 = (ev)® -2¢e 

hence e€ = SES
 

2 
Fi
e 

Continued on next page



Use "vy? = u? + 2ax" for second rebound to greatest height, 

0 = (ev)? - 2g 

hence a = €#/n 

SWITCH ON 
  

EXAMPLE 5. 

Three spheres A,B and C of equal mass lie at rest in a 

straight line. If the sphere A is given a velocity u, towards B and 

C, show that the velocities of A,B and C after two impacts, are given 

by : £(1-e)u, £(1-0?)u, Z(1+e)*u, respectively, where e is the coefficient 

of restitution at all impacts. Find also the impulse between the spheres 

at both impacts. 

Do not look at the solution below until you have completed your own, 
  

Collision between A and B. 

a, BOS Before 

~ > 
positive After ay ee 

i G) 

Conservation of momentum, mu = mA + my 

Law of Restitution, velocity of separation _ pea _ 
car = 6 

velocity of approach u-0 

From these equations, A = $(1-e)u 3 = d(lee)u 

py is obviously positive, andas e <1, A is also positive. Both spheres 

will proceed in the direction indicated by the arrows, but as 

(l+e) > (l-e), so p> A. B will move away from A and collide with C. 

Impuls@” of A on’ B =mA~i-0 

= my = Zm(lte)u. 

Collision between B and C 

J =o Before 
SSS 

positive 
canes a > v w After 

m 

B 

(Continued on the next page)



Conservation of momentum, my = mv + mw. 

Law of restitution, 
w-v 

u-0~ * 
  

hence v = 4(1-e”)u, and w = 4(l+e)?u. 

As 1 > e*, both these velocities are positive and B and C move 

in the direction of the arrows, C moving away from B, as 

(1+e)? > (1-e?). Impulse between B and C = Change in momentum, 

" mw = 4mu(l+e)?. 

SWITCH ON 
  

EXAMPLE 6. 

Two particles A and B, of masses m and 2m respectively, 

connected by an inextensible string of length a, are placed close 

j together on a rough horizontal table. The coefficients of friction 

between the particles and the table are yp and Bu respectively. 

The particle A is projected along the table, away from B, with 

velocity V. Find 

i) the common velocity just after the string becomes taut, 

ii) the acceleration of each particle. 

By considering the distances which each particle would move before 

coming to rest, show that B will overtake A if Vv? > Ayga. It is 

given that V > Ad 2uga. 

The start of the motion 

Vv 

Ss AB 
ce 

While the string is slack. 

ey A B 

J, ——___—_—_p 
mg 

p¢ . 70) 
Let v = p when d=a 79. 

  

SWITCH ON



ls 

(K.E.) np = (Eee) Se INNING + (Work done by forces) 

gaV"— mgd ny = =z " 

gGee 0 V™ v? — 2uea 

when d = a, sO Vv =p 

i.e. p? = V? - 2uga 

Given V >j(2uga), so p is positive. 

1265p) = AV7=2uga 

At this point the string will become taut, and A will jerk B into 

motion via the string, causing them to have a common velocity, 

say A 

At the instant of the jerk, 

  

qua aon 
nN eu “i oF 

i 2m 
Sie ee a a 
P 

SWITCH ON 
  

Conservation of momentum, 

  

mp = (m+2m)A 

Be. 3 a 

Just past P and Q. 

Zs Zo 

<i_| , <_|, 
A 2 B z 

P {3 
mg ang 

Let Ry and Re be the respective retardations. 

  

SWITCH ON 

For A, Fy = pmg For B, Fa = 3u(2mg) = pmg 

Use F = ma 

yg = mRa yg = 2nRa 

we = Ra 80 Zug = Re 

i.e. R > Ra 

(Continued on the next pace).



As the retardation of A is greater than that of B, B will 

approach A, and the string becomes slack. 

The constant forces will allow B to continue to approach 

A until the K.E. is destroyed in both particles. 

Suppose particle A comes to rest at S, after moving distance £1. 

Suppose particle B comes to rest at T, after moving distance £3. 

Remaining motion, 

  

  

  

+ # ———_> 

A Fy BR Rest o> Rest _e—* > 
s ze ip Q 

< e4 > < ta > 

SWITCH ON 

Conservation of Energy 

For A, For B, 

0 = $ma? - pmges © = $(2m)a® - pmgte 
a? a 

= Dug ; es 
B will overtake A if fg >, +a 

2 2 
Aaa 
us 2ue 

2 2. 

Substitute for A? #8 = (weaguass) 

i.e. +a 

hence V* > 2ypga. 

SWITCH ON 
  

EXAMPLE 7. 

Two particles of mass 2m, m, moving in opposite senses with 

speeds 2u, u respectively, collide, Half the kinetic energy is lost 

at the collison, Find the velocities of the particles after this, 

and the coefficient of restitution between them, 

Do not look at this solution until you have completed your own, 

  

81. 
The solution is on the next pages



2u 
Se Before 

rd 
positive 

sense x V_ After 
> —> 

Conservation of momentum, 

  

2m(2u) - mu = 2mv + mV 

av +V eee 1 

2 Sumu* 
2 

ju " 

ma i+
 

K.E. on impact = $(2m)(2u)? + 

2 
K.E. after impact = $(2m)v? + dmv? = CP) 

hv? + 2v? = 9u? eae 2 

Solvd these for v,V, in terms of u, 

to give (2y-u)(2v-3u) =0 

i 2 Wee with roots v = 2 or 

when v =5 »V=a 

= 0 when v = o> Vr the mass 2m cannot continue to the ? 

right if m comes to rest, so this answer is not physically 

possible, although algebraically correct. Thus v = 5 and V = 2u, 

both in the original direction of the heavier mass. 

ae velocity of separation _ V-v__1 
a = ae 

  

  

velocity of approach 2udu 

SWITCH ON 

EXAMPLE 8. 

Four particles A,B,C,D, are joined by light inextensible 

strings and lie in a straight line with the string just taut. The 

masses of A,B,C, and D are 4m, 2m, m and 3m respectively. If A is 

given an impulse I, away from B, find 

i) the initial velocity of the particles, 

ii) the impulsive tension which appears in the string BC. 

82. 
(The diagram is on the next page)



ar a) 
positive A Ty Ty B Cc Ts D     

sense <——#———_»——4___¢ pig dg 
ts daa an Sa 

<— <—— <—- 4 
     

a u 

il] travel along DA with a connon   
All the particles 

velocity: let this be u. 

SWITCH ON 
  

Impulse = change in momentum. 

it for fh tists 4m 

Hoe, 0, = 25 = 2m 

Ray SPs u ma 

UES Ts = 3m 

Adding all the equations to eliminate the impulsive tensions 

gives 10m = I » which is ‘simply the impulse equation for the 

.whole system. 

as 
Thus u = T0n 

Tz can be found from the equations for C and D 

  

i.e, Iam = Ta = = 

SWITCH ON 

  

Three particles A,B,C have masses 4m, 2m and m respectiyaly 

ané are joined by two light inextensible strings. They lie in a 

straight line and particle C is given a velocity u in the direction 

BC by en impuise I. Show that the ratio of the impulsive tensions 

in the strings is 2: 3. 

Do not look at this solution unvil you have finished your own, 

83. 

(The sclution is on the next page).



  

  

Py, 

A T4 2, 3B To Te ¢ positive 
e > 4 > 24 L sense 

in Bn aaa 

eae ae a 
u u u 

Impulse = change in momentum, 

For A, T. = Am 

4 Bs ete a. ba een 

* (Op UT) Sits = ami 

Add to eliminate the impulsive tensions gives I = 7m. 

Hence Ta = = se eee S » hence the ratio 2:3. 

SWITCH ON. 
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APPENDIX 3 CONTINUED 

SCRIPT FOR TAPE THREE 

MOMENTUM, IMPULSE AND RESTITUTION 
  

als This is the tane to be used with Booklet 3 

of 'A Revision Course in Particle Dynamics' by Kenneth 

A. Jackson. It is concerned with momentum, impulse and 

restitution. 

Particles in motion have the ability to transfer 

this to others; that is, their velocities can be changed. 

This property is associated with momentum, which depends 

upon the mass and velocity of a particle. Turn to page 2 

in the booklet, where this is defined for you. SWITCH OFF. 

ee Particles moving in the same line often collide 

and by Newton's third law, have equal end opposite inter- 

actions at every collision. These interactions are celled 

impulses, and they arise from very large forces acting 

for a very short time. The change in momentum for one 

particle, provides a measure of the impuise which acts 

on it. Look below at the next section about this. SWITCH 

OFF. 

3: When two particles moving in the same straight 

line, collide, there is an abrupt change in velocities, 

and equal and opposite impulses are felt by the particles. 

These cancel out, and the tots] momentum after the 

cotlision equals the total momentum before. This is 

called the conservation of momentum, which is stated in 

85.



the next section. SWITCH OFF. 

4. Although there is conservation of momentum 

during an impact, there is always a loss of mechanical 

energy, and the energy eouation cannot be used. Rea 

the first example carefully and study the diagrams. We 

shall work through this example together. SWITCH OFF. 

5. The particle propels the block forward, and 

they travel together with common velocity V. This 

direction is convenient for the positive sense of momentum, 

which is shown. The velocity is found from the conserv- 

ation of momentum. The second part of the question invol- 

ves the calculation of kinetic energy, before and after 

impact, and shows that this is not conserved. In the 

third part, the impulse on the block is the change in its 

momentum. Look below at the next section for the complete 

solution. SWITCH OFF. 

G. You should now try example two yourself. 

Read it carefully, and draw the diagrams, for before 

and after impact, clearly showing the masses and velocities. 

hen you have done this, switch on the tapne again. SWITCH 

OFF. 

ato The light string is considered to heve 

negligible weight, and together with the frictionless 

pulley, have no effect on the motion. You see that one 

mass is rising, and the other falling, but because of the 

connecting string over the pulley, the momentum for each 

Mass is positive in the direction of trevel. The constant 

gravitational forces acting on the particles are finite, 

86.



and have no other effect at the instant of imnuisive 

change in motion. Momentum is conserved at the impact. 

Complete your working, and check this below. SWITCH OFF. 

8. If colliding particles are elastic, they 

rebound after an impact. This effect is called restitution. 

It is another topic which Isaac Newton studied in his 

researches, discovering a law which is stated in the 

next section of the booklet. SWITCH OFF. 

9. Notice that after the impact there are two 

unknown velocities, vy and Voe The conservation of 

momentum only gives one eouation, and accordingly the 

Law of Restitution is needed to give the second equation. 

When collisions occur between particles and planes, the 

restitution law must be modified as explained in the 

next section. SWITCH OFF. 

10. Example three covers both aspects of the Law 

of restitution. Read this, and study the diagram before 

we work through this question. SWITCH OFF. 

a, All the motion tekes place along the line 

pernendicular to the wall, as the smooth surfaces only 

produce impulses along this line. Notice in the diagran, 

that the masses and velocities before and after impact 

are shown, as well as a designated positive sense. We 

can now use the conservation of momentum and the Law of 

Restitution to find the unknown velocities, as is shovm in 

the next section. SWITCH OFF. 

aes In problems involving collision, it is important 

to intervret the results to ascertain direction and relative 

87.



velocities, as is shown here. The velocityof @ towards 

the wall is known. Find the velocity after this collision 

and then check this in the next section. SWITCH OFF. 

43. In this second collision, P and 0 are moving 

in opposite directions: thus the velocity and momentum of 

Q ere in the negative sense. We still assume lamda and 

mu to be to the right, as is shown, and determine their 

senses from the equations. Follow carefully their deter- 

mination in the next section. SWITCH OFF. 

14. The second part of the question is a straight- 

forward determination of the changes in momentum for 

each ball, in terms of the original velocity. Follow 

this in the next section. SWITCH OFF. 

15. You should try example four for yourself, 

which is about restitution in vertical motion. It will 

be helpful to separate the parts of the vertical path 

into separate diagrams. Use the eouation for free fall 

to find your incident velocity. On completion, check your 

solution in the next section. SWITCH OFF. 

16. Read example five, which you shovld also 

attempt yourself. Remember to draw enough diagrams for 

the parts of the motion, and show all masses and velocities 

in them. When this is finished, check your working 

below. SWITCH OFF. 

ays Example six is a slightly harder question 

which we will work through together. Read it through, 

end study carefully all the information on the diagram. 

SWITCH OFF. 
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18. The overall motion is in three sections, which 

must be considered separately. Study the projection of 

A first. The lower diagram shows it having travelled 

a distance a, ageinst the friction forces, with the 

velocity v at this instant. This can be found by using 

the conservation of energy, and hence the velocity Pp 

when the string is just taut. Carry out this process 

and check your result in the next section. SWITCH OFF. 

19. The jerk in the string, constitutes the 

second part of the motion. The impulsive tensions are 

internal to the system, and overall, the momentum is 

conserved. Use this principle to find the common 

velocity, lamde after the jerk. Check your answer in 

the next section. SWITCH OFF. 

20. In the third part of the motion, the 

particles will come to rest ae friction destroys their 

kinetic energy. Whether the retardations produced will 

allow B to overtake A, or not, depends upon their 

relative magnitudes. Use the information in this 

diagram, and the equation of motion to determine Ry 

end Ros and compare these. Check this in the next 

section. SWITCH OFF. 

el. The @istances travelled to rest, by and L,, 

can be found in terms of lamda, by using conservation of 

energy. Then form an inequality for the three distances 

concerned, to obtain the result. Assume that B may 

overtake A without interfering with its motion. SWITCH 

OFF. 
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° You should try example seven yourself. Read | 

it carefully, and insert symbols for the velocities after 

impact in your diagram. When you have finished, the 

solution may be checked on the next page. SWITCH OFF. 

23. When spheres collide, the impulses are internal 

to the system. An external impulse occurs when a particle 

collides with a wall, and others can occur as hammer 

blows, kicks or jerks. The following example illustrates 

impulsive tensions in inextensible strings. Read this 

and study the diagram. SWITCH OFF. 

24, The diagram shows the conditions at the moment 

of impulse, and there are different impulsive tensions in 

the string, of sizes Ty» tT, and T;- Since the strings 

are inextensible, the particles begin to move with the 

same velocity. Let this be u. The impulse and momentum 

change are to the left, in this problem, and this is a 

convenient direction for the positive sense. The tensions 

are found by writing the impulse equation for each part- 

icle separstely. Follow the complete proof in the next 

section. SWITCH OFF. 

25. Example nine is a similar question, which you 

should try yourself. Remember to heve clear diagrams 

showing e211 masses, impulses, and velocities. Check 

your solution afterwards. SWITCH OFF. 

26. This completes the work on ‘Momentum, impulse 

end restitution.' Please rewind the tape before you remove 

it from the machine. Thank you! 
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APPENDIX h 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 4 to be used with TAPE 4 

"Motion in Two Dimensions" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience) 

Oa.



  

D If AB represents vector 

P, in magnitude and direction, 

fo
 

and BC represents Q, similarly, 

i el CaaS then the diagonal of the 

parallelogram ABCD represents their vector sum. 

iwewgP+Q=R8 

Thus AC represents R, which is called the resultant of P and Q. 

SWITCH ON 
  

EXAMPLE 1. 

Anequilateral triangular course, of side length ‘a', 

is marked out by buoys in a broad straight reach of a river, the 

buoy C being upstream. A motor launch follows the course ABCA, 

where AB is perpendicular to the banks. If V is the speed of the 

launch in still water, and u is the speed of the current, show 

that while the launch is moving along BC, it is pointed at an angle 

@ to BC on the upstream side, where sin@ = ap How long will 

it take the launch to travelalong BC? 

c 
Triangle of velocities, with 

Current R the resultant. 

u u 

When you are ready to proceed, 

SWITCH ON 
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Sine Se eee Fa See 3 st = ale By Sine Rule, sing ~ sinisoe ” hence sing = Hy 

and the right angled txiangle ; Zs ee age 

6    From the triangle of velocities, 
T3722 
uve 

R cos 30% = Veos(°-6) - u, ge 

hence R = Juv? - u? - wl3 
2 

SWITCH ON 
    

Pat) Saluis liven 
ma t- § = eb 

When you have checked this answer, 

SWITCH ON 
  

Relative Velocities. 

To find the velocity of Q relative to P, reduce P 

to rest, by imposing a back velocity ¥,o0 the system 

me x 

For Q, now add Vg and wv vectorially, to give the relative velocity ae 

   
Ne 

Notice that the actual velocity of Q is the vector sum. 

(velocity of Q relative to P) + (velocity of P) 

ise. (ye- vi) + = Ve 

When you have studied this, 

SWITCH ON.



EXAMPLE 2. 

A ship is moving due West at V km per hour, ani the 

wind appears to blow from 225° West of South. The ship then steams 

due south at the same speed, and the wind appears to blow from 225° 

East of south. Find the speed of the wind, and the true direction 

from which it blows, assuming they remain constant. What course must 

be steered, so that the ship may reach a port m km due west of its 

present position, and how long will this take? 

a 

Appa rent 
Wind é 

  

Appa rent 
Wind 

Triangles of velocities    
Wind spe    

f 
\ 

Apparent 
wind 

Apparent 
Wind 

  
94. ~ 

When you have studied these, SWITCH ON.



‘ . W Vv 
From 16ft he PRLEnele, (= wocelor a) =), Grainne: im. and langle, sin67S° sin(@r205) 

From right hand triangle, me alee ee = V sin225° sin( 6-225”) 

By rearrangement of these we obtain 

Vsin673° Vsin225° SEES Cos a 
sin(@+224°) sin( 6-225") 

After simplification, this reduces to tan@ = 1. 

SWITCH ON 

Triangle of velocities. 

Resultant s 

  

Stages in drawing this triangle are, 

i) Draw the E-W line SP 

ii) Mark in wind which blows towards P with speed V 

iii) Hence QR fora meaingful triangle 

As QR = V = PR so triangle PRQ is isosceles with 

ea = 15°, Pho = 9. 
So QP is the resultant track and speed, which by Pythagoras 

=W2. i.e. Time = sant = — hours 
P we 

SWITCH ON 

A destroyer, steering N¢YE at D km hr*, observes at noon, 

a steamer which is steaming due north at S km hr*, and overtakes 

it at T minutes past noon. Find the bearing and distance of the 

steamer from the destroyer at noon. 

95. 
(The solution is on the next page)



6. 

Noon Position 

Steamer 

Destroyer 

  

Reduce the steamer to rest,so that the destroyer needs 

to move along AB. 

Triangle of velocities 

Notice that R is now the velocity of the 

destroyer relative to the steamer, 

By the Sine Rule, 28 = x 

Ssin 
hence, tan@ = (D-Scos) 

From the diagram, R cos(6+¢) = Dcos#- S 

and , R = S{S74D"-28Dcos$ (directly by cosine rub), 

thus, distance eo) = Fes - 28Dcos¢ 

The bearing is N,(¢+6@)“E, where tan@ is as above. 

SWITCH ON. 
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To 

Components in perpendicular directions. 

Let OX and OY be any convenisnt perpendicular directions 

with unit vectors i and j 

/ 
P(x,y) 

  

Particle P has coordinates (x,y) and position vector OP. 

  

oP =r =ix + jy 

Velocity of P vy =b six + 

Acceleration of P a= + Sv 

  

When you have studied these equations 

SWITCH ON 
  

PROJECTILES If the particle is projected at 

velocity V from 0 in a direction 

making @° with the ground. 

For vertical motion 

Sh By one integration gives, 

y = Vsin@é-gt, a second integration 
gives 

v y = Vsin@,t-tgt? 

For horizontal motion 

VAX x= oO, one integration gives, 

0 x ke Vecos@, a second integration giv 

Veos6@.t * u 

_ 2Vsing 
Put y = 0 to obtain time of flight, T zB 

Due to symmetry of vertical motion, maximum height is gained in 

i V2sin®@ 
time, h = 2g 

Horizontal range = time of flight x horizontal velocity, R eet 

976 
(Continued on the next page)



Maximum range for a given velocity is when sin2@ = 1 

ise. 6 = 45°. 

Any given range can be obtained with angles of projection @ and @ - °) 

because sin26= sina - . 

When you have studied these, 

SWITCH ON 

  

EXAMPLE 4. 

A body is projected so that on its upward path it passes 

through a point, distant k horizontally and h vertically from the 

point of projection. Show that, if R is the range on the horizontal 

plane through the point of projection, the angle of projection ig, 

~(den) 
x 

> X 

  

  < R > 

When you are ready to proceed, 

SWITCH ON 

  

Horizontal velocity = u cosa 

  

. 2 A _ horizontal distance _ k 
See Cee eno horizontal velocity ~ ucosa 

Use 'x = ut + fat?', vertically from 0 to H; 

98. 
(Continued on the next page)



3 aay k g 26 ? then h = using ( seéze-) 3 Ga) 

2 
h = ktana - foe 

cos"a@ 
aoi 1 2.: 4 

Use Range DN gc ai 

Rewrite this as ee = u*cosa, i.e. = u®cos*¢ 
2sina 2tana 

Substitute in the equation for h, gives the result. 

When you have checked this working, 

SWITCH ON 
  

A particle projected from a point 0, meets the horizontal 

plane through the point of projection after describing a horizontal 

distance 'a', and in the course of its trajectory attains a greatest 

height 'b' above the plane of projection. Find the velocity of pro- 

jection in terms of a and b, Show, that when it has described a 

horizontal distance d, it has attained a height, abd(g-a) 

Do not read this solution until you have finished. your own. 
  

  

  
  

oo; 

(Continued on the next page)



10+ 

  

Use , range = See ore = JG 

\ Gee 
+ : sy usin @ 

and maximum height = ao =b, 

The second equation gives verti¢al component of velocity, usina = A 2gb 

-4 Divide (1) by this equation gives ucosa = 5 Pb 

2 2a 16Gb? 6 Sate . a Pa hence u = +t(E EES 5h 2b 

2a |2b 
Time to travel d horizontally = aoe = Ea & 

2 Pune 
242b 

Use 'x = ut + 4$at?! vertically from 0 to P. 

Pee _ yop (2a (\_ gg 2a fe : 
Simplify h = J 2gb G =) =3 G e for the answer. 

SWITCH ON 
  

EXAMPLE 6. 
Show that, if R be the maximum horizontal range for a given 

velocity of projection, a particle can be projected with the same 

velocity to pass through a point, whose horizontal and vertical 

distances from the point of projection, are - and? respectively, 

provided that the tangent of the angle of projection is eithsr 1 

or 3, and that in the second case the horizontal range is 2R. 

Do not read the soltion yet! 

  

    EK 
tt ———5 — > 

2 
  

0. 
(Continued on the next page.)



ty? sin26! 
Range = aa , is maximum when sin2@ = 1 

i.e. @ = 45° and R = 2 

2 

Assume angle of projection 6, particle has to pass through A. 

  

is distance $R Vv ime _ SN SE C-r 2 
imo-vee horizontal velocity Veos@ 2gcos@ 

For vertical motion through A, use'x = ut+ dat?" 

’ ie Ve v Bay - 
SS as aie te vsind atos8) ane (sear) 

which simplifies to tan?@ - 4tan@ + 3 =0. 

(tan@ - 1)(tano-3)= 0. 

.. tan@ = 1or 3, the particle passes through A. 

When tan@ = 3 we have the triangle 

  

  

and sin@ = wu, cos@ = = 410 
110 10 A 3 

Ssin2e 3 (¥" : 
Hence range = eee eet et ee 3p, a: 

8 2.8 > 

‘ SWITCH ON 

Projectiles above an inclined plane. 

Vsin @ x 

up_plane 

    

  

down plane 

gsina gcosa 

& 
Acceleration 
components 

For motion perpendicular to the plane. 

as gceosa integrate once with respect to time, 

Y = Vsine-gcosa(t) integrate again 

Y = vVsino(t) - 8 cosa(t)? 

LOL, 

(continued on the next page)



For motion up the plane, i.e. parallel to it, gravity retards. 

X = -~gsina integrate once, 

X = Vcos6-gsina(t) integrate again, 

X = Veos@(t) - Ssina(t)? 

For motion down the plane, parallel to it, gravity assists, 

Xi = Sesing » Gives 

X = Veos@+gsina(t) 

and X = Veos@(t) + Ssina(t)? 

k * Z = _ 2Vsin@ 
For time of flight,put Y =0, gives T = meeaea 

Range,in each case, is found from the equation for X. 

i.e. Ryp = 2vV7sinécos(@+a) , Hom = 2V? singcos(@-a) 
g cosa @ cosa 

When you have studied this, 

SWITCH ON 
  

A particle is projected at an angle ¢ to the horizontal 

on a plane inclined at 45° to the horizontal. Its path is in a 

vertical plane containing the line of greatest slope. Prove that 

the angle at which it meets the plane is a, where 

{sans 
(3-tang, 

tana = 

At what angle must the particle be projected, so that it is travelling 

horizontally at the instant when it meets the plane again? 

(The diagram is overleaf.) 

102.



   

  

Ben 5° gcosh5° 

  

When you are ready, SWITCH ON 

At the point of impact, tang = 
o
l
y
 

/ ea *2veine? i.e, 2vsin(o45") Use time of flight = gcosa AoC 0 TF cosh 5? 

For P (directed towards the plane), 

use 'vy = u+at' perpendicular to plane, 

2Vsin(¢-45°) 
i.e. - P = Vsin(¢ -45°) -gcosl5°. eeoutse 

and P = Vsin(¢-45%) 

For Q, use 'v = ut+at' parallel to the plane, 

i.e. Q = Veos(¢-45°) -gsin45%. ete) 
& 

Hence the ratio E which simplifies to the result. 

When you have checked this working, 

SWITCH ON. 

o _ 4 2) (eang=2) tana must be tan45° =] = ea 

hence tang = 2, 

SWITCH ON. 
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14. 

EXAMPLE 8. 

From a point on the side of a flat hillside, two particles 

are projected in the vertical plane through the line of greatest 

slope, with equal velocities but in directions at right angles to 

each other, Show that the difference in their range, does not 

depend upon the angle of projection. 

Do _not look at this solution until yours is complete. 

   BESy 

Pa -9) 

    

  

2v®sin@cos é+a)' ma 1 2i"singcos (+a | Use range up the plane = gcos*a 

and range down i APsingcos(6-a oe a)! 
gcos*a 

But angle of projection..down the plane = @ - ) 

Ry = av? sintS -8)cos (5 -6-a) 

gcos*a 

Difference in ranges = Ry - Ry which on simplication gives 

2v*sing 
Secosta » Which is independent of 6, the angle of projection. 

SWITCH ON, 
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Inclined impact with a smooth plane. 

  

  

Sy
 

The component of velocity parallel to a smooth plane is 

unchanged after an impact. 

The normal component of velocity is reduced by e, as 

shawn above. 

The velocity after impact is v, where 

vy? =(eucosa)?+(usina)* ; v = uw (e?cos*a+sin?a) . 

If p is measured with respect to the normal then 

is 

  

_ -gisingss 2 
tanp = 2G tande 

When you have studied this, 

SWITCH ON. 

EXAMPLE 9. 

A sphere of mass m, moving with a velocity u, impinges on 

a fixed smooth plane, the direction of motion making an angle a 

with the plane. If e is the coefficient of restitution between the 

sphere and the plane, find: 

i) The tlagnitude and direction of the velocity of the sphere 

after impact. 

4i) The impulse on the sphere at the impact. 

iii) The loss of K.E. u cosa y U cosa y     

  
105. 

When you are ready SWITCH ON. 

| eu sing 

Positive 
sense for 
impulse 
on sphere



i) Normal component of velocity at A, before impact = usina 

Component after impact = eu sina 

Component along the plane remains u cosa 

2. V%= (eu sina)? + (ucosa)® 

3: a = Bes 
and V = wWe*sin*atcos*a (magnitude) 

tan@ = Susing _ etana (direction) 
ucosa 

ii) Impulse = change in momentum 

I = meusing - (-msina) = musina(lte). 

iii) Loss of K.E. = K.Beongpp ~ K-Eeayp 

= dm? - jm fu? (e?sin?a+cos*a)]. 

= dm?sin?a(1-e”). 

SWITCH ON. 
  

EXAMPLE 10. 

A particle is free to move on a smooth horizontal plane, 

which is one of three mtually perpendicular planes, joined to form 

an internal commer. Show that if the particle is projected in a 

direction towards (but not directly into) the comer, it will emerge 

in a direction parallel to the ingoing one. Assume a common coefficient 

of restitution for the impacts. 

Do not read this solution until you have tried your own. 

u cosa 
tb 
  

eu sing   LOT. (Continued on the next page).



There will be two impacts at A and C. If a is the initial 

inclination to AB, then the components of velocity will change as 

shown in the diagram. If @ is the emergent angle, measured to 

the normalat C, 

velocity component along BC 
  then tan@ = velocity component perpendicular to BC 

2 eusina _ tana. 

eucosa 

i.e. velocities of u and v are parallel 

SWITCH ON. 

  

EXAMPLE 11. 

A bali is projected froma point on smooth level ground. It 

strikes a wall normally and returms to the starting point after 

bouncing once on the ground. Show that the coefficient of restitution 

is $ for both impacts. 

Do not look at this solution yet. 

    velocity of projection 
angle of projection 

ec 

no
u 

u sing 

  

A 
eu cos@ 

Normal impact. at B, time of flight = ae 
Dos 

AD = 4 range = u ae 

Since there is no change in the vertical motion at B, 

108. 
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18. 

the time of flight from B to C = time from A to B, 

Due to normal impact at B,horizontal velocity = eucos@ 

eu®sind.cos@ 
& 

Then CD = (velocity)(time) = 

Vertical component of velocity at C = usin@ 

After impact this is eu sin@ upwards 

Horizontal component is still eu cosé 

Then range CA = 2e*u?sin@.cos@/g = 2( etisin@) (eucos@) 

Now AD = AC + CD, substitute and simplify, bises 

2e7+e-1-0=(2e-1)(e+1), e = $ or -1. 

As e cannot have a value -1, it must be 4. 

SWITCH ON. 
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)IX 4 CONPINUED 

SCRIPT FOR TAPE 4 

IN TWO DIK 

  

SIONS 

  

Le This is the tape to be used with Booklet 4 of 

‘A Revision Course in Particle Dynamics' by Kenneth 

Jackson. It is concerned with motion in two dimensions. 

All motion which has been studied by you so far, 

has been linear. Because of this, addition of acceleratin 

or displacement has been straightforward summing of these. 

You must now consider two dimensional motion, for which 

the vector quantities of velocity and acceleration, 

add according to the parallelogram law. Look on vage 

two, where this is revised for you. SWITCH OFF. 

sien In practice, the parallelogram is usually 

replaced by the vector triangle ABC. Notice that arrows 

on P and Q follow round, and that the arrow on R is in 

opposition. As these figures are scale drawings of the 

vectors, they may be used for calculation of angles and 

lengths directly. The first question is about triangles 

of velocities, and we shell work through this together. 

Read this question carefully, and look at the diagrams. 

SWITCH OFF. 

3. The left hand diagram shows the course and 

current flow. To travel along BC, the launch must be 

steered upstream to allow for the current. The triangle 

of velocities on the right, is drawn with the current 

110.



and resultant vectors parallel to their renuired directions. 

As the velocities of u and v are known, they are drayn 

to the same scale, and shovm as following vectors. ‘Then 

complete the triangle, giving R in opposition, to the 

same scale, and @ as the required angle of deflection. 

Check this method for drawing the triangle, and then use 

the sine rule on it, to verify the answer for sin 0. 

Check this afterwards overleaf. SWITCH OFF. 

4. As you see, we need to calculate R to determine 

the time along BC. To avoid using the cosine rule, we 

hseve used the sum of the projections of the vectors onto 

the line of the current, giving a vector result. Notice 

that R involves a difference of square root auantities 

which must be rationalized by multiplication, before 

we can divide by it. Follow the last step in the next 

section. SWITCH OFF. 

be As well as needing to compound velocities, we 

are often required to find the relative velocity of one 

body with respect to another. For parallel velocities, 

this is a straightforward subtraction, but for non 

linear velocities we need a vector difference. This is 

shovm in the next section of the booklet. SWITCH OFF. 

6. The second examnle is about relative velocities 

and we shall work through the first part of this together. 

Read the question carefully and study the diagrems. 

SWITCH OFF. 

se The diagrams represent the ships velocities, 

showing the apparent winds. As these are directions 

dds



relative to the ship, the ship must, in each case, be 

reduced to rest, by reversing its velocity. This enables 

the appropriate triangles of velocities to be drawn, as 

is shown in the next section. SWITCH OFF. 

3. The left hand diagrams show the apparent wind 

at 224 degrees to the North South line. In the triangle 

the vectors have been arranged so that the sequence of 

arrows gives a summation of V and W, with the apparent 

wind as the resultant. This gives a wind from between 

east end south, which is labelled © to the north line. 

The same process has been carried out for the other 

triangle. We may apply the Sine Rule to both of these. 

Follow this in the next section. SWITCH OFF. 

Qe Did you notice that 45 degrees satisfies the 

equation by inspection? Don't worry if you did not. 

This means that the wind blows from the south east. Find 

the wind speed by substitution in one of the equations 

above, and show that it equals the ship's speed. When 

you have done this, switch on the tape agein. SWITCH OFF. 

10. For the second part of the auestion, to follow 

a track west, the ship must sail so that it is blovm onto 

the direction required. Construct the triangle of velocity 

in this way, and look closely at the angles and sides. 

Complete this yourself, and then check it in the next 

section. SWITCH OFF. i 

i. Example three is about the relative motion of 

a destroyer and a steamer. Read the question carefully 

and attempt the avestion yourself. You are advised to 

112.



draw the noon nositions, and solve the problem by 

reduei 

  

g the steamer to rest. When you have finished, 

check your solution on the next page. SWITCH OFF. 

dee In two dimensional motion it is often best 

to work in terms of perpendicular components which are 

completely independent. The vector equations for this 

are listed in the next section. SWITCH OFF. 

13. The velocities and displacements resulting 

from these, affect bodies simultaneously, producing 

curved trajectories. The study of particles projected 

at angles less than 90 degrees to the ground, is 

revised for you in the next section. SWITCH OFF. 

14. Before you leave this, let me point out 

that not all of this needs to be remembered. Memorize 

though, the methods and steps which lead towards the 

results. In examinations, you should be able to deduce 

everything you require, but to save time and space, I shall 

be ouoting from these, and you may do so if you wish. We 

shall work through question four together, so read this 

and study the diagram. SWITCH OFF. 

15. We must assume an angle of projection, alpha 

and later, find an expression for its tangent. The 

assumption enebles us to write horizontal and vertical 

components of velocity. The particle at the point H must 

have taken the same time vertically as horizontally from 

the origin. This can be used with the range te obtain 

the relation required. Follow this carefully in the solut- 

ion, which is complete in the next section. SivITCH OFF. 
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16. The next question is similar to this, and is 

for your own working. Read it with care and drew a 

diagrem showing the distenccs. You may use the auoted 

expressions for maximum heights and range, which will 

help you find velocity components. Check your solution 

afterwards in the next section. SWITCH OFF. 

ghilte You should now attempt question six yourself. 

When you have read this carefully, and drawn the ad    BET AM y 

remember that the meximum range will be a function of 

velocity only. When you have completed this, check your 

solution in the next section. SWITCH OFF. 

18. We must now extend the study, to involve 

projectiles over inclined planes. In this case, the 

most convenient perpendicular axes are along, and 

perpendicular to, the plane. This is summarized for you 

in the next section. Again, note the methods for deriving 

results. I shall also quote these as required. Read 

this section very carefully. SWITCH OFF. 

age Now read question seven, which we shall work 

through together, and study this diagram. SWITCH OFF. 

20. For this question, you must remember that the 

tangent of the angle of inclination of a curve at any 

point, is given by the ratio of the perpendicular and 

parallel velocities; that is, in the notation used here, 

P divided by @. These are the velocities at the instant 

of impact, in this case, so they can be obtained by using 

the time of flight in the equations. Follow this in the 

Section below. SWITCH OFF. 
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1, For the projectile to land horizontally, 

  

angle alpha must be 45 degrees. You are now able to 

complete the remainder of the question yourself. Do 

this and check your answer in the next section. SWITCH OFF. 

eke You should now reed example 8, which is for 

your own working. Your diagram shovld show all angles, 

distances and velocities, and then ask yourself what these 

perpendicular angles of projection tell you. When you 

have finished, check your method of working in the next 

section. SWITCH OFF. 

23s You are now in a position to study the impact 

of particles when they are no longer travelling normally 

towards a plane. With the more complicated paths involved 

it is often convenient to treat the particle as a point 

on the path, rather than a sphere of significant size. 

This type of impact is revised for you in the next section. 

SWITCH OFF. 

24. Do not try and remember these formulae, but 

remember that you are compounding perpendicular velocities. 

Exemple 9 is about this type of impact, and egain, we shell 

work through it. Read it, and study the diagrem. SWITCH 

OFF. 

256 The angles alpha and theta are marked, as the 

guestion refers to the plene for measurement. It elso 

helps to show the normal and parallel components of 

velocities, before and after impact. In part one, the 

magnitude and direction are found in the usuel wey. For 

the second part, the change in momentum gives the impulse 

on the sphere. The loss in kinetic energy is a straight- 
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forward difference between the energy at the beginning 

end end of the motion. Follow this working in the next 

section. SWITCH OFF. 

26. Example 10 is one for you to try yourself. 

Read it carefully and in your diagram show the perpend— 

iculer components of velocity end two reference angles. 

When it is complete, check your working in the next 

section. SWITCH OFF. 

ie You should now try the last example. Read 

this carefully, and draw a clear diagran showing the 

component velocities throughout the motion, which will 

help you to find ranges within it. Again, check your 

working afterwards. SWITCH OFF 

28. This completes the work about motion in two 

dimensions. Would you please rewind the tape before 

you remove it from the machine. Thank youd 
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APPENDIX 5 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 5 to be used with TAPE 5 

"Extension of Motion in Two Dimensions" 

Read the instructions on page 1 thoroughly. © 

(Omitted for convenience.) 

ALT <



2 

EXAMPLE 1. 

Two particles,of masses m, and mg (m, > mg), rest on 

the rough faces of a double inclined wedge with angles a@ and B 

to the horizontal respectively, (a > 6), and are connected by a 

light inextensible string, passing over a smooth pulley at the 

vertex of the plane. If the faces of the wedge are equally rough, 

with a coefficient of friction yw, find 

i) the common acceleration of the particles, 

ii) the tension in the string. 

Complete your own diagram before checking below. 

  

sg acceleration 

     

  

If you have omitted anything, insert it into your diagram and, 

SWITCH ON 
  

Use 'F= mat for m,, along the plane, 

mz@ = mg sina-T - Fy 

with Fy = yw Ry = uw mg cosa 

and similarly for me, 

mg a2 =T - meg sing - Fg 

with Fg = pRe = p meg cosp 

When you agree with this, 

118. 
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Be 

i) Add the equations, giving 

_ glmysina - mysing - u(m,cosa + mecosp)] 
rs M+ Me 

a 

ii) Substitute for'a'in either equation to give T 

sing + sing ~y(cosa — cos, T = mma L x 
M4+ Me 

SWITCH ON 
  

The actual acceleration of a particle sliding on a moving wedge 

is the vectorial addition of the acceleration of the wedge plus 

the acceleration of the particle relative to the wedge. 

Z\ 
\ Wedge ] ean 

acceleration. 

Particle acceleration 4 
A= { relative to . 

the wedge 

Acceleration down the face = A - B cosa 

Acceleration perpendicular to the face = B sing 

When you have studied this, 

SWITCH ON 
  

EXAMPLE 2. 

A particle, of mass m, slides down the face of a rough wedge 

of mass M and sldpe @ on a rough horizontal table. Find the 

acceleration of the wedge, if they both start to move. Assume 

that the coefficient of friction is the same for both surfaces. 

(The diagram is on the next page) 
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F = acceleration 

of the wedge 
= acceleration 

of the particle 
relative to 
the wedge 

  

  

  

  

When you have studied the forces and accelerations, 

SWITCH ON 
  

When you have identified 

3 forces acting on the particle, 

5 forces acting on the wedge. 

SWITCH ON 
  

Use 'F = ma' for the particle, 

down the plane, m(a - Fcosa) = mg sina —p~R 

perpendicular mFsing = mg cosa - R 

for the wedge horizontally, 

MF = R sina -yR cosa —uS 

Vertically there is equilibrium and 

S = Reosa +yR sina + Mg 

When you have checked these, 

SWITCH ON 

(2) 

(2) 

(3) 

(4) 

  

From (3) and (4) 

MF = R(sina - 2u cosa —y?sina)—-pMg 

g ncosafsina(1-y?)-2ycosa}-uM 

[M+msina{sina(1-p?)-2y cosa}] 

SWITCH ON 
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EXANPLE 3. 

Two particles, of masses my and mg (my. > mg), are placed 

one on each of the smooth inclined faces of an isosceles wedge of 

mass M, and base angles a, which is free to move on a smooth 

horizontal plane. Show that when the particles are released from 

rest, the acceleration of the wedge is 

(acmg a stpascosa 
M + (mi+ma)sin*a 

Find, also, the reaction of the wedge on the particle mz. 

When you have drawn your diagrams, check them below. 
  

Assume that the wedge accelerates to the right. 

Ry Re         

  

    

  

Actual acceleration of my Actual acceleration of m: 

ia A 
- 

vie Ne] 
7 a 

A 

ag aa 

SWITCH ON 

aes



Use 'F = ma! 

For the wedge horizontally, MA = (R.-Re)sina ane CL) 

There is vertical equilibrium,S = Mg+(Ri+Re)cosa see (2) 

For mz along the plane, 

m4(a4-A cosa) = mg sing eee (3) 

perpendicular to the plane, 

mzA sina = mg cosa - Ry ove (4) 

For mg along the plane, 

mg (ag +A cosa) = Mg sing coe (5) 

perpendicular to the plane, 

mgA sina = Ra ~ mag cosa oes (6) 

When you have checked these, 

SWITCH ON 
  

Use (4) and (6) in (1) to show that 

(m,-m sina.cosa 
M + (mg+mg)sin*a@ 

2,2 

Substitute A into (4) to obtain R, = — ape dL 

SWITCH ON 

i= 

  

EXAMPLE 4. 

Two particles,of masses m, and mg (mz > mg), rest on 

the rough faces of a double inclined wedge, with angles q and f 

to the horizontal respectively, (a > f), and are connected by a 

light inextensible string, passing over a smooth pulley at the 

vertex of the plane. If the faces and base are equally rough, with 

a coefficient of friction yp, consider the effect on the motion if 

the wedge also moves on a rough horizontal plane. [This is a 

generalisation of EXAMPLE aol 

When you have finished, check your diagrams on the next page. 
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Assume that the acceleration of the wedge is A, 

  

and that the acceleration of the particles relative to the 

wedge is a. 

  

  

    us 
<< 

Actual acceleration of m, Actual acceleration of mg* 

: a 
‘ 

fe B 

When you have identified 9 forces acting on thew edge, 

SWITCH ON 
  

For the wedge there is vertical equilibrium, 

Ri (cosatysing)+T(sinatsing)+Racosf+Mg = S+pyResing es (1) 

'F = ma' horizontally 

MA = Ry (sine-pcosa) +1 (cosp-cosa)- Re (pcosp+sing)—yS ee (2) 

For mg along the plane, 

ma(a -Acosa) = mag sina - T-yR4 ooo (3) 

perpendicular to the plane, 

mA sing = mg cosa-Ry soe (4) 

123. 
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For mg along the plane, 8 

S me(a-Acosf®) = T-mag sing — pRe ue, ( 

perpendicular to the plane, 

mgAsing = Rg- mag cosp ae (6) 

When you have checked these equations, 

SWITCH ON 
  

Stages required to find A. 

1. Combine (1) and (2) to eliminate S, and collect terms in 

Ra,Ra, and T. 

2. Eliminate a from (3) and (5), which gives an expression for 

T in terms of A, R41, and Ra. 

3. Substitute for T in stage 1, Collect terms in R,,R,, and A. 

4. Use (4) and (6) to substitute for R, and Re in stage 3. Hence A. 

When you have agreed with this, 

SWITCH ON 
  

EXAMPLE 5. 

Four equal particles, of mass m,at the corners of a 

square, are connected by light inextensible strings forming the 

sides of a square. If one particle receives a blow P along the 

diagonal outwards, show that its initial velocity is P/2m, and 

find the initial velocities of the other particles. 

The diagram shows the impulses at the instant P is applied and 
R    

    

also the initial velocities. 

T 

   
If you are completely 

puzzled, 

SWITCH ON



This diagram shows the impulses at the instant P is 

applied and also the initial velocities. Notice the great 

simplification provided by the regularity of the square. 

  

When you have studied all the details, 

SWITCH ON 
  

Impulse = change in momentum 

For A, along BA, P cos45°-T = mu sea CL) 

For B, along BA, T =m seen C2) 

along CB, mV = -Ty coon) 

For C, along CB, 14 = nV eee et) 

When you have checked these, 

SWITCH ON 

  

es 
2nJ2 

Resultant velocity of A = Ju7+u? = z along the diagonal. 

Add equations (1) and (2) to give u = 

Add equations (3) and (4) to give V =0 

ig 

on] 2 

The velocity of C is zero. 

directed towards A,   Velocity of B and D is 

SWITCH ON. 
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10. 

  

Three particles A,B and C, each of mass m, lie at rest 

on a smooth horizontal table. Lightinextensible strings connect 

A to B, and B to C. The strings are just taut with ABC By 135509 

and an impulse J is applied to C,in the direction parallel to AB. 

Prove that A begins to move with spsed J/7m, and find the impulsive 

tension in the string BC. 

The diagram shows the impulse at the instant J is applied and also 

the initial velocities, 

  

When you have studied these velocities, 

SWITCH ON 
  

Impylse = change in momentum, 

For particle C, along BC, Tcosh5°-T = mP orem) 

" " B, along BC, T -T4cosh5°=mP Poca e)) 

perpendicular to BC Ticos45° = mR Pcp ke) 

" " Aalong AB T, = oS eas ace) 

WITCH ON 
  

At the moment of impact, because AB does not stretch, 

Velocity of A along AB = velocity of B along AB 

ise. S =P cosh5° - Rcosh5° 

or S= (w-2yZ : ses) (5) 

126. 
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TEs 

Rewrite (5) as mS =m we - ur! 

Substitute from (3) in this, 

= mp2 N2\ — ppV2 _ Ds mS = 3a 2) - we!Z - £ 

SWITCH ON 
  

Add (1) and (2) 

2 Ne aoe D5 aha = /eaP 

N25. T,) = mP Substi <(J-T4 = ubstitute above coo (6) 

= 12 T 2 A mS = (J- 2) 2 2 

us = 2 - ma($+8) 
SWITCH ON 
  

Substitute from (4) 

-2_ 308 } ol : 
mS = i 7 i.e. S ae as required. 

also mS = Ty, af E 

Substitute in (2) T= 12 G ae: 

Substitute in (6) uP = a - i) 

Hence T = oe = tension instring BC. 

SWITCH ON 
  

EXAMPLE 7. 

Four equal particles A,B,C,D, each of mass m, are 

connected by equal light inextensible strings. They lie at rest 

on a smooth horizontal table with ABC = 120°; BCD = e150 9s WAN: 

impulse I is applied to D at an angle of 30° to CD produced, and 

directed away from A. Find the initial velocity of A. 

When you have drawn the diagram and put in your component 

velocities and impulsive tensions, check overleaf, 

Le Ti



The shows the impulses at the instant that 1 

  

is applied and also the initial velocities. 

  

SWITCH ON 
  

Impulse = change in momentum, 

For D, along CD, I cos30° - Ty = oP eee Ly 

C, along CD, T4-Tacos30° = mP Fue 

perpendicular to CD, Tacos60° = mR ves BEKS) 

B, along AB, Tacos60°-Tg = mS cee) 

perpendicular to AB, Tecos30% = mV erie) 

A, along AB, Ts =m5 ae (6) 

Velocity of B along BC = velocity of C along BC 

Scos60° + Veos° = Pcos#° — Reos60° eet aL) 

Add (1) and (2) to eliminate T, ‘\3(r-m9) = 2nP 

Subst. in (7) dmS+ aw’ = ‘3 . "3(-9,) ~}mR 

Use (3) and (5) $mS + 13 re 3 gee 2(1-P2)-.40, 

4mS +1172 = 3L 

Add (4) ana (6) $f, = 2mS 

Subst. above to give 5 = = 

128. 
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EXAMPLE 8. 

A gun is mounted on a railway truck which is free to 

run without friction on a straight horizontal railway track. The 

gun and truck together of thass M, are moving along the track with 

velocity u, when a shell of mass m (not included in M) is fired 

from the gun with muzzle velocity v, relative to the gun. If the 

gun barrel and the track lie in the same vertical plane, and the 

former is inclined at an angle a to the direction in which the gun 

is moving, show that the shell has a horizontal range. 

2vsina Mvcosa@ 
& M+n. 

After firing Velocity of the shell 
relative to the gun. 

Before firing 

v sing 

s v cosa     

m+ }~-——> 

            

' 
' 
1 
‘ 
' 

1 
' 
' 

1 
' 

i 

| 
! O Oo 

When you are ready to start 

SWITCH ON 
  

Total horizontal momentum before firing = (m+M)u 

Horizontal momentum of gun and truck after firing = MV 

Horizontal momentum of shell after firing m(V+vcosa) 

Horizontal momentum is conserved, 

(m4M)u = MV + m(V+veosa) 

. _ (miM)u - mvcosa 
Los) = an 

SWITCH ON 
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14, 

Time of flight = 

  

Horizontal shell velocity after firing is (V+vcosa) 

Mvcosa@ 
Substitute for V and simplifying gives u + PE 

Range = (horizontal velocity x time) and hence result. 

SWITCH ON. 
  

EXAMPLE 9. 

Two spheres,of masses my and mg, respectively, have 

initial velocities u, and ug,inclined at angles q and f, in 

the same sense, to the line of centres (£.of c), when they 

collide. Show that the new velocity of mg along the line of 

centres is given by, 

_ mu 1+e) cosat+ug (Mz—em, ) cos 

a ma+ me 

where 6 is the coefficient of restitution. 

Just before impact 

   

ussing ugsing 

Ug ; ‘ 
which is 

me [egutvetent | 2—> 
to 

ake me ds, pene of 

acoee 
my Mg Mg Ugcosp 

Just after impact. 

ussing ugsing 

ual 
ge 

4 2 

When you have studied these, 

SWITCH ON. 
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Conservation of momentum along the line of centres, 

M4Uu,COS@ + MgugcOsh = Miva + Mave 

Law of restitution along the line of centres, 

Va - Va = e(uscosa — ugcosp) 

When you have checked these, 

SWITCH ON. 
  

EXAMPLE 10. 

A smooth sphere of mass m, impinges on an equal sphere 

at rest. Before impact the first sphere was moving in a direction 

making an angle a with the line of centres at the moment of impact. 

Show that the direction of the first sphere is tured through an 

angle B, where tang = —(ite)tana 
l-e+ 2tan*a 

Do not read the solution below until you have found the velocity 

components of the first sphere after impact. 

Just before impact Just_after impact 

u ra using 

Rest — 
ucosa “ = . =@-©-- + --O-O--- 
Conservation of momentum along the line of centres, 

ma cOsg@ = Mvg + Mva 

Law of restitution along the line of centres, 

Va- Va = eu cosa. 

Bliminate ve to give va = du cosa(1-e) 

SWITCH ON. 

13a.



Before impact After impact 

using 

oe
 

2 feos
 

  

. 3 J _ using  2tana 
From the right hand diagram, tan@ = inva: Ss (ise) 

Angle of tum =P =@-a 

Hence result. 

SWITCH ON. 
  

EXAMPLE 11. 

In a certain game a ball is rolled along a horizontal * 

plane with velocity V, until it strikes an inclined plane, from 

which it rebounds. The object of the game is to make the ball, 

after rebounding, fall into a hole in the inclined plane. If 6 

be the inclination of the plane, e the coefficient of restitution 

between the ball and the plane, and if the hole bea distance da 

away from the junction of the planes, show that the ball will enter 

the hole if, 

  
ae cosec@ 

~ j2e(1 - etan*@) 

When you have drawn your diagram, 

SWITCH ON. 
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17. 

Lhe particle 
Just before impact Just after impact. 

V siné eVsing es 

Ze) 

eee 
Inclined plane 

  

The perpendicular velocity Vsin@ will be reversed and 

reduced by a factor e, as shown. Use this velocity to find the 

time of flight from the standard formula for an inclined plane. 

"ovsine" 5 
eee rect cee eee 

gcosa gcos@ 

For OA, use "X= ut + ee parallel to the plane, 

ise. a = Veoso.T -8 sing(T)? 

a 2cVsing _ oe : 
eens a: gcos® 2 rose) 

This gives the result on simplification, 

SWITCH ON. 
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APPENDIX 5 CONTINUED 

SCRIPT FOR TAPE 5 

EXTENSION OF MOTION IN TWO DIMENSIONS 

alk This is the tape to be used with Booklet 5 

of 'A Revision Course in Particle Dynamics' by Kenneth 

Jackson. This is an extion of the work concerning motion 

in two dimensions, with more difficult exemples. We 

shall, of course, work through some of these together. 

Part of the difficulty lies in the complexity of the 

problems which should be read with very close attention. 

Here, more than ever, clear diagrams are vital, to shaw 

exactly which forces are applicable to the motion. 

The first example concerns connected particles 

on inclined planes, and we shall work through part of this 

together. Read it and draw your diagram showing ell 

forces. Remember the friction will be acting on both 

faces. When you have finished, check your diagram below. 

SWITCH OFF. 

2. If you missed any features on this diagran, 

try reading the question egain, after you have drawn a 

diasrem. Using F = ma, write down the equations of motion 

for the particles, and afterwards check them below. 

SWITCH OFF. 

3: To find the acceleration we need to eliminate 

the tension which can be done by addition. To find the 

tension, substitute in either of the equations. Find a 
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and T, and then check these on the next page. sWITCH OFF, 

4. Another factor arises when a particle slides 

down a moving wedge, as it has two contributions to its 

eaccleration, one down the plene, and the acceleration of 

the wedge itself. This is revised for you in the next 

section. sWITCH OFF. 

5. The actual acceleration is the vector sum of 

A and B, and the most convenient perpendicular component 

directions are along, and perpendicular to the plane. We 

shall need these components in example 2, which we shall 

work through together. Read this and study the forces 

end accelerations in the diagram. SWITCH OFF. 

6. Remember that in this complicated situation; 

we separate the moving parts, so that we may show more 

clearly their interactions. So we show an upward force, 

R, exerted by the plane on the particle, end an enuel 

force downwards, exerted by the particle on the wedge. 

Simi Vac dy. with the friction force. To check this, look 

below in the next section. SWITCH OFF. 

wi We are now able to write the equations of 

motion using these groups of forces. Write these yourself 

for the particle down the plane, and perpendicular to it, 

and for the wedge, horizontally and vertically. Check 

these afterwards in the next section. SWITCH OFF. 

82 You are now able to find F, by eliminating 

S and R between the equations 2, 3 and 4. Carry out 

this process, and then check below. SWITCH OFF. 

9. These equations could, of course, be used 
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further to find R, or the acceleration of the pnerticle 

by substitution. The next example, number 3, is mainly 

for your own working and concerns two particles on e 

moving wedge. Read this carefully, and draw a diagran, 

and acceleration vector diagrams, similar to those in 

the two previous examples. SWITCH OFF. 

10. As all the fortes and accelerations are now 

specified, we can write all the equations of motion. 

Do this and check them afterwards on the next page. 

SWITCH OFF. 

ellis: You should now find A by substituting for R1 

end R2 into the first equation, and then Rl by further 

substitution. Check your answer for this below. SWITCH 

12. The next question, 4, is even more complex, 

and we shall look at the preliminary stages together. 

Read it and draw your diagrams very carefully. Remember 

there is a tension in the string, and this affects the 

wedge at the pulley. When you have included all the 

forces and eccelerations, check on the next page. SWITCH 

OFF. 

136 The action of the string through the pulley is 

equivalent to an added force T, parallel to each face, 

as roe and these will have components horizontally 

and vertically. eee ae the accelerations as shown, 

write the six equations of motion you would need to solve 

this problem, and check then below, afterwards. SWITCH 

OFF. 
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end 

  

14. As the algebra involved would be lengti 

11 not 

  

the essential mechanics has now been covered, I 

ask you to find the acceleration of the wedge. However, 

you should be able to list the steps you would need. 

Do this, and then see if we agree in the next section. 

SWITCH OFF. 

ihe Some involved algebra also often occurs in 

the next type of example about impulses in strings 

connecting a number of particles together. Read example 

5 and study the diagram carefully. SWITCH OFF. 

26. This is obviously not the diagrem, but it is 

drawn as a contrast to example 5. ABCD is an irregular 

figure, and P at some angle © to DA. To allow for the, 

varied directions of impulsive tensions and velocities, 

we must insert a number of perpendicular components, 

along and perpendicular to the strings. Only A and D 

have a common velocity R, because particles at the end of 

a straight string, must have the same component along it. 

Now look at the correct diagram on the next page. SWITCH 

OFF. 

as: Because P acts along the diagonal, we have equal 

impulsive tensions and velocities on each side of it. Look 

at particke A, which has eaual component velocities along 

BA and DA. B has a tension acting along BA, so also 

has a velocity component u, as the string does not stretch. 

The other component is denoted by V, which is also commn- 

ieadted through the string to particle C. Similarly for 

ADC. Because of the symmetry, we only need two impulsive 
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tensions instead of four. We only need to write the 

impulse equations for A, B and C, for pernendicula 

directions. These are written in the next section of the 

booklet; verify them carefully. SWITCH OFF. 

18. By using equations 1 and 2, -you can find u, 

and then equations 3 and 4 for V. Complete the question 

and check your answers in the next section. SWITCH OFF. 

19. The symmetry made this a straightforward 

question, but notice that even though we inserted an 

unneeded velocity component, the algebra showed this to be 

zer. Now read example 6, which we shall analyse together, 

and look particularly at the comvonent velocities shown 

in the diagram. SWITCH OFF. . 

20. Notice that the particles B and C have a 

common velocity P atong the string BC, and as A is the 

last particle in the system, we can insert a single 

velocity S, along AB. We can now write the impulse 

eguations, by resolving along, and perpendicular to the 

strings. Check these in the next section. SWITCH OFF. 

2l. There are 5 unknowns in these four equations, 

and so we need another relation. This is found from the 

string AB, which remains taut, and this type of equation 

is often used as a basis for substitution from the others. 

Follow this in the booklet, again. SWITCH OFF. 

wee As the first substitution gives a term in Tl, 

so we need to substitute for P in the same terms. This 

ean be done by eliminating T from equations 1 and 2. 

Follow this in the next section. SWITCH OFF. 
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23. As we are finding S, we need to substitute for 

Tl in terms of this, using equation 4. To find the other 

tension we need to substitute back in equations 2 and 6. 

Finish this process, and check afterwards, below. 

SWITCH OFF. 

24, You will notice in this question, that comp- 

onent of velocity Q, wes not used at all. However, it 

could be found directly from the impulse J if reouired. 

Now attempt the next question yourself. Read it, and 

draw your diagram showing the impulsive tensions and 

component velocities. When you have done this, check 

these on the next page. SWITCH OFF. 

25.6 The components shown, are not the only choice, 

but they are very convenient. Notice the repeated 

components, P and S. Remember that string BC remains 

taut and inextensible. When you have finished the 

working, check this in the section below. SWITCH OFF. 

26. Another type of two dimensional examnle 

involves the firing of a gun, which depends upon the 

conservation of momentum, as in the next question. Read 

example 8 carefully, and study the diagrams. SWITCH OFF. 

27 This problem depends upon the conservation of 

horizontal momentum, as there is no external impulse 

in this direction. The two diagrams help us to compare 

the momentum before and after, firing. In the right hand 

diagram, the shell and gun have a common horizontal 

velocity V, but because of the explosion, the shell is 

moving forward with an additional velocity, and its 
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actual velocity is the sum of these. Use this to write 

the conservation eqguatioj, and evaluate V. Check this 

below. SWITCH OFF. 

28. The vertical motion is not affected by horiz- 

ontel variations, and this enables you to obtain the 

time of flight of the shell. Remembering that the range 

is the product of the actual horizontal velocity and 

the time, you are now able to complete the question 

yourself. When you have done this, check in the next 

section. SWITCH OFF. 

29. The next example concerns svheres colliding 

obliquely. Read this carefully, and study the diagram 

which shows that only the velocity components along the 

line of centres, change at the impact. SWITCH OFF. 

30. Notice particularly, that there is no velocity 

change perpendicular to the line of centres. To find vl 

and v2, apply the conservation and momentum and restit- 

ution laws along the line of centres. Follow this 

carefully in the next section. SWITCH OFF. 

Bis We are now able to eliminate vlbetween these 

equations. Do this yourself, to obtain the stated result, 

and then switch on the tape again. SWITCH OFF. 

mos The next example is for your own working, and 

should be broken into two stages. Read example 10 care- 

fully and draw your diagrams to show the motion before 

and after impact. Then find the two component velocities 

of the first sphere after impact, and check your working 

below. SWITCH OFF. 
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33. You should now draw a diagram showing the 

angles to the line of centres, and the component velocities, 

before and after impact. You should then be able to 

complete the question yourself, and check it afterwards. 

SWITCH OFF. 

34. You should now attempt the last question. 

Read it carefully, and when you have dravm a diagran, 

switch on the tape again. SWITCH OFF. 

35. A ball travelling along the horizontal plane 

with velocity V, ean be considered to have two components 

of velocity, one perpendicular to the inclined plane, 

and the other directed up the plane. Use these components 

in your salution, and when you have finished, check your 

working overleaf. SWITCH OFF. K 

36. This completes the work on extended motion in 

two dimensions. Would you please rewind the tape before 

you remove it from the machine. Thank you! 
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RAPPENDIX 6 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 6 to be used with TAPE 6 

"Variable Forces" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience.) 
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EXAMPLE 1. 

A particle of mass m is free to move in a straight 

line, under the action of force F(x), which is always directed 

towards the origin, : 

2 

If F(x) = “W3- for x>a 

BE for x <a 
a 

Prove that the particle will reach the origin with velocity 

42a, when it starts from rest at x = 2a. (y and a are both 

constants). 

v velocity =0 

  

  ¢ a >< B > 

When you have studied the first section of the motion, 

SWITCH ON. 
  

Use 'F = ma' from B to A. 

ag = - 2S 
x 

a 2 
3 » 6iving vdv= - ia dx 

2 2 

Q = CoeaeG 

As v = 0 when x = 2a, Care 

eae ee 
2 x 2 

At A, x =a and ¥ =v=-V 

Hence V?= ya with V = ya 

SWITCH ON 
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2a 

noe 
y ea 

[| “a E | 

¢ 2a 

ae — 
¥ -- ce ae ne 

SWITCH ON, 

: Vv = dua 
{= 

ane 
aT 

t o<——— i 

° Sane a A 
So ae eae 

nay = - Be , vav =-4x ax 

-P ° 

aad free a [xe 

nV a 

1 

ap - | --af-+] a 

and P® = 2ua with P = J2ua. 

SWITCH ON. 

  

EXAMPLE 2. 

A particle of mass m, moves along a straight line away 

from the origin 0, under the action of a force k®x, where x is the 

distance from 0, against a constant resistance kb. If the velocity 

at O was oa, find 

i) the velocity as a function of distance, 

ii) the time it takes to travel a distance ? ox from 0. 

The diagram is on the next page. 
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he 

v 

  

  

Ss oe 
vy = bln 
a 

: kb ¢ © pitx : 
0 xg 

x =——_ y= > ox 

When you are ready, 

SWITCH ON. 

Use 'F = ma' from O to A. 

mx = kx - kb oe a Clb, 

vay_ KW, _ 
dx on m 

2 22 ye eae ee tox 
2 Som ow ae" 

en a pb? 
when x = 0, v= b/Jm ae ORS 

- yw? _ x® - 2kbx + b? 
ence 5 a ae eae 

16.) = 2 (cx - b)*, which can also be written = 2(b-kex)# 

So v =O when x = 8, and this displacement also gives zero 

aecéleration (see (1)). Hence the particle comes to permanent 

rest at x = 2. So throughout the motion x < 2, and the better 

  

  

° 

form for v? is v® = 2 (b-kx)? ines =e 
jm 

SWITCH ON. 

suet v= gx _ bok 
ab ig 

ax__ at 
ea 

T b/2k b/2k 
& - ax a el 4 

es! at = rience eg Ae v0] 

° ° 

and T = * £n(2) 

SWITCH ON. 
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EXAMPLE 3. 

A car, of mass M, starts from rest and moves in a 

straight line against a constant resistance P. The motive force 

decreases linearly from 2P, initially, to P at the end of ‘a' 

seconds. At time t, with t <a, find, 

i) the motive force, 

ii) the velocity, 

iii) the power developed by the engine, and show that the 

16aP? 
27™M 
  maximum power is 

Do not read this solution until you have finished your own, 
  

  

  

t=0 tisva 

ees a F=P 
P< ¥ }F 

u into 

A B 
x —-—p 

i) Motive force = (@ - a after t seconds. 

ii) Use 'F = ma' from A to B, 

- Pt w= (2-28). 
# -Fa - *a) 
vs E(t = tea) + 

when t =0, v=0 we C= 0 

v = FE (a - */aa) 
iii) H = Power = Force x velocity 

= Ft (1 - */20)* 

Continued on next page. 

146.



s cae For maximum power oy = 

ist = t 2 
‘tal lo 

GH _ = eee at O when t = 2a ort 5 

t = 2a is outside the permitted range, 

2 3 a?H 5 
so t = §a should give ae nogative. 

Gen menue eet 3t 6 
ae? Ar 7 Bal? - 2) - a -4) | 

2; 2 

when t = 3B ee) 

2 
Hence Bax = of 

J i.e. negative 

  

SWITCH ON. 
  

EXAMPLE 4. 

An engine of mass m, works at a constant power h, and , 

moves in a straight line against a resistance f. Prove that if f 

is constant, the time taken to generate a velocity V, from rest, 

is 

mh mV ee a ston) - 
and that if f is proportional to v, the time is 

z= &=(aE) 

wnere fis the value of f, when v = V 

  

i> 
v=0 m 

constant = i <——6-— 2 

0 Q 
x ———_—__> 

SWITCH ON. 
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<
i
>
 

Power =h=Py i.e. P= 

Use 'F = ma‘ at Q 

  

m dv = h-fv 
at v : 

vdav _ at 
k= fy 

  

Wo e/petvehy h 
Now ify > 7 x iy) "ey x - ii) 

Hence at =- a = =) dv 

x Vv 

AL a h af --7 | Gq ety) & 
° ° 

mh sot = BP tf shy) 2 

  

  

SWITCH ON. 

evr 
v=0 m 

A f=kv ¢__@—->P 
0 Q 

ee 

f = kv, where k is the constant of proportionality. 

Use 'F = mat at Q 

vdv _ at 
bky ~ nm 

r Vv 

fe -[ 3s = & ( ar) 
° ° 

Use f,= KV to eliminate k. 

SWITCH ON. 
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A particle is projected from point P towarus Q, along 

a horizontal straight line, in a medium in which the resistance 

varies as the cube of the velocity. The particle takes time to to 

travel from P to Q, which is a ai stanee £, Prove that the 

velocity at the middle point of PQ is £/to. 

Do not look at the given solution until you have completed your 

  

  

  

own. 

Ti eee ae t=t 
6 =0 2 

ky? @ 

Baby i_e@ $ 
pecicecnmenis i 

_ €/2 > 

< é > 

Let the initial velocity at P be u. 

Use 'F = ma' from P to Q. 

vay =. 3 

ae ee 
dv 

Tegel =k dx 

Lac sie 
v 

“ ot, 
when x =0, v=u, i.e. C=-7 

eee 
Veni 

au 

Ve Ge ed ate 
ee a oe when x = 5, V= ake ad ee 1) 
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a ukx+L 

é to 

/ (ukx+1)ax = | at 

° ° 

  

a 
oS €=utyo = 2(uke+2) 

é pe 
to ~ uke+2 Nae con): 

SWETCH ON. 

EXAMPLE 6. 

The power required to propel a steamer of mass M at the 

maximum speed V, is H. If the resistance is proportional to the 

square of the speed, and the engine exerts a constant thrust at 

all speeds, show that the time taken fromrest, to acquire a 

velocity p is wv? ,, (VD 
2H V-p 

v 

if aa hg 
v=0 

of
 

  

Let the engine thrust at all speeds be T, This can be calculated 

from the power relationship when the speed is maximum, 

Power = (thrust)(velocity) 

H =TV ive. T =# 

When you have absorbed this information, 

SWITCH ON. 
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For zero acceleration 

oS Peak i aH KVE = Des v Asc Meas 

Use 'F = ma! to give 

Mx = May =T - ky® = k(v? - v?) 
at 

Kodte cos ovs. eo Via eis ae 
ete Var ala ii z | oes 

Let the steamer reach ths velocity p in time t,. 

Pp 

= 2, [en es | = 2 wm (Ve 
1 ue ee (V-v. ay V-p 

Eliminate k, to obtain the given result. 

SWITCH ON. 

  

EXAMPLE 7. 

A particle of mass m, falls from rest under gravity 

ina medium whose resistance is proportional to the velocity. 

If V is the terminal velocity in the medium, show that, 

i) the particle is moving with velocity V/2 after time 7 én 2 

ii) the distance moved in this time is V*(2én2-1)/2g. 

The diagram is overleaf, 
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Rest 

mg 
When you have studied this, 

SWITCH ON. 

il. 

'F = ma' gives 

mx = mg - kv 

when x =O | for terminal 
velocity. 

V=mg 
k 

then v= 

  

Use 'F = ma' for the motion, 

  

nay = mg - ky = og - “By = =p (v=v) 

dv “20g 
(v-v) ~~ OV oe 

Vio mn “ 
aye rk pa f a / aay 78 fe én(V. me 

° ° 

2 Vi 
F = a VV, 2) pee at Taeven( 2) 

SWITCH ON. 

Use mv x = “(v-v) 

vedv. 62) © 
(v-v) ~ vee 

  min (BE) -- ob) 
rene = [7 (= Glave § fia 

and D = V3(2 én2-1)/2g. 

SWITCH ON, 
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EXAMPLE 8. 

A particle of mass m moves horizontally through a 

medium which offers a resistance of mk(v+2v*), where k is 

constant, If this is the only force acting, and the initial 

velocity is u, show that the particle will come to rest after 

travelling a distance 2 én(1+2u), and that the velocity will 

be reduced to Yas after a time z oo 

  

Do not look at the solution yet. 
  

  

  

mn Vv 3 
oP <P oP 

i lac mk(v+2v?) Rest 

é eee A B 

+ D al   

Use 'F = ma' fromO to B. 

  

mx = - mk(v+2v?) = ov x 

° D 

/ us = x | S 
u ° 

° 

-kD = afencasey)} = 

  

u 

hence D. 

Use 'F = mat again, 

dv * aE aa k(v+2v?) 

/a 
Oe oe wae 

v(3+2v) 
a ° 

u u ¥ 
/2 av 2 2av is 

is a 2ave v 
cae a) x i fFQy = [+= ( xe) | 

u u u 
hence T, 
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'LE_9. 

A particle of mass m, drops from rest under gravity 

and is acted upon by a resistance of mkv® where v is the velocity 

and k is a constant. Prove that the distancd fallen in time 

t is & 

den[oosh tek J 

If k is small, this formula can be simplified by using the 

Maclaurin expansion for én(coshx). Show that, in this case, the 

distance fallen is approximately gt? gt 

0 0 FLAG v= 

mky? : 

mg 

When you are ready to proceed, SWITCH ON. 

Use 'F = ma' for the descent from 0. 

~ a my =m oy = mg ~ mkv? 

aig =a. 

Let the terminal velocity be V, then g - kv* =0 

dea Va ae hence dt = aw) 

= 2 tenri/e Se ary, tanh @)+° 

when t = 0, v =O henca C = 0. 

SWITCH ON, 
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KVt = tant *(F) 

= tanh(kvt) 
Vv 

5 eae: ve a V tanh(kVt) 

1 y = <= &n cosh(kVt) + K 
k 

when t = 0, y = 0, hence K =0 

Substitute for V, y = z én cosh( tek) | 

SWITCH ON. 
  

Maclaurin expansion 

let f(x) = ¢n(coshx ) 
; maa a oe ods 

f(x) = £00) +x #0) + FPO) + FH 0) + HM) Ho 

By repeated differentiation 

f*(x) = tanhx 

th (x) = sech®x 

st (x) =-2sech*x .tanh x 

£°¥(x) = 2sech*x[2 tanh®x - sech?x] 

2 2 
are ty £(x) = 5 @ é ) 

a 2 
Hence y = a (2 < 2) 

SWITCH ON. 
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EXAMPLE 10. 

A particle moving in a vertical plane under & ravity, 

was projected with velocity V, at an inclination a to the hori- 

zontal in a uniform medium in which the resistance varies as the 

velocity. If k is the Porites per unit mass, when the body is 

moving with unit velocity, show that, 

4) The altitude is maximum at time 

a tof a ) 

k & 

44) maximum height =H = Vsing -g én [2 * ising | 
k x & 

< fim Vsin*a 
iid) k+o eae 26 

iv) the horizontal distance covered at this time is 

V'sina cosa 
g + kV sina 

v) What is the limiting valud of this as k + 0? 

  

Particle at P(x,y) at time t, with OP = r= ix+ jy 

When you are ready, SWITCH ON. 
  

From the diagram, mr = - mgj - mkv 

ak+ Sy = - i - klix + 39) 

equating j components, y+thy =-6 ee Ch) 

0 woe (e) equating i components, x +k 
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Rewrite (1) as 5 - (e+ky) with y=v " 

see (g+kv) 

  

at 

dv ct 
(Cae ee 

-l tz [en(eske) +C 

When t = 0, v = Vsina C= 2 én(g+kVsina) 

thus t = to(Se os 
k etkv 

At the maximum height, v = 0 and t =T 

; a kVsing 
i.ew T= y toa + Migine ) 

  

(3) 

  

SWITCH ON. 

; =Kt 
Rewrite (3) as SY = v = (gtkVsina)e “" - 
H r Ko 
dy = z / (gtkvsina)e “*at = = i at 

° ° 

kK HS 2s (g+kVsina) (1-e7) ~ et 

Substitute for T and elie to give 

_ Wsing _ g kVsina | 
He= ans ea ena + nce | 

SWITCH ON. 
  

fim {Vsing  g kVsing 
ung k 7k tala + zB 

fim (Vsing _ g, /xVsing KV?sin®a , kev’sin®a | ) 
Be ce10} ek ii & eer) See Soe 

Ak to) ea ies = So Ra a 

€im (Vsina  Vsing , Vsin?¢  kV°sin®a 

k k 26 38" an 

  

éim H _ V?si 
ESO 2 

This is the result for a projectile in a non resisting medium 

SWITCH ON. 
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% +4kx = 0 can be written as 

d D(D+k)x = O where D = at 

and x = Kote +B 

when t = 0, x=0 ,AtB=0, B=- A 

Hence x = Ae - 1) 

To find A, use a =V cosa at t=0 

ax -kt 
ahomes Ake 

thus A = - Wose 

_ Veosa(1- YY 
ae xk 

SWITCH ON 
  

Substitute for co, which you have already found, to give the 

aistance 

V? sina.cosa 
g + kVsina 

The denominator of this is g as k +0. 

V?sing.cosa 
The distance is then ’ 

which is half the horizontal range without resistance. 

SWITCH ON. 
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Projectile with resistance proportional to kv? 

Ya 

  
  

geo 
A particle at P(x,y) at time t with OP = ms ix + uy 

me = - mgj - mkvy 

i xay = - ed - kv(ix + jy) 

Ax? with v 

Compare the coefficients of i and j to give 

= pels 

~e- We? 

  

  

   

Me
 

  

<t
 

u 

SWITCH ON. 
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% 6 CONTINUED 

SCRIPT FOR TAPE 6 

VARIABLE FORCES 

i. This is the tape to be used with Booklet 6 of 

‘A Revision Course in Particle Dynamics' by Kenneth 

Jackson, and is concerned with Variable Forces. ‘The 

problems will provide you with much useful revision of 

calculus, as you will need to integrate the eouation of 

motion to obtain other equations. Reading ouestions care— 

fully will help you to decide which forms of the acceler-— 

ation you require. Read through the first aouestion and 

study the diagram. We shell work through this a 

together. SWITCH OFF. 

‘oie As the particle moves to the origin under two 

separate forces, the calculations must be separated. 

Consider the motion from B to A. Using F = Ma, with the 

acceleration in the form Vdy by dx gives a connettion 

between velocity and displacement. This may be intecsrated 

using a constant of integretion, to find the velocity at 

A. Carry out this process, and check this below. SWITCH 

OFF. 

3 The introduction of the constant of integration 

can be avoided by integrating between limits, the velocity 

changing from 0 to -V, as x changes from 2a to a. Do not 

be confused by the negative sign on the velocity, which 

Simply indicates that it is directed towards 0. Follow 
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this alternative integretion in the next section, carefully. 

SWITCH OFF. 

4. Remember that the limits for the displacement 

integration must correspond to the position of the part— 

icié on the line. That is, the particle is distant 2a 

from the origin when it is at rest, and this becomes the 

lower limit of the integral. To finish this question 

yourself, you will need another diagram. Draw this, using 

P for the velocity of the particle at 0. Use a definite 

integral to find this, and check your working in the 

next section. SWITCH OFF. 

De Integration between limits is usually shorter,’ 

ena should be used wherever convenient. Now read the | 

second question, which introduces a resistance as well-as 

a force. Study the diagram carefully, noting particularly 

the directions of the forces. SWITCH OFF 

Gis The diagram shows the resistance in opposition 

to the driving force, and this must be allowed for in the 

equetion of motion. Notice that part one again requires 

a velocity/displacement relationship, after integration. 

As the question asks for velocity as a function of position, 

it is better to use a constant in the integration. You 

should now answer part one of this question, and when you 

have finished, check your answer. SWITCH OFF. 

7. For the second part of the question, remember 

thet velocity is dx/dt. Separate the variables and complete 

the question by using definite integration. Check this 

below afterwards. SWITCH OFF. 
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Ss The next question also involves a resistance 

against a driving force, and should be tried by your own 

efforts. Read it carefully, and summarize the given 

information on a diagram. Notice that the question is 

asking for velocity as a function of time, which means 

that the acceleration should be teken as dv/dt. Remember 

that power equals force x velocity. Check your answer 

afterwards in the next section. SWITCH OFF. 

Se As well as having constent resistances, some 

motions involve a resistance pronortional to velocity. 

Read example four, which contrasts the difference between 

constant and variable resistance. Study the diagram for 

the first part carefully. SWITCH OFF. 

10. In this motion with constant power, eeher 

that it is the product of the thrust P, and velocity 

which is constant. As we require the time for a given 

velocity, V, we may use a definite integral. Complete 

the first part of the question, and then check it overleaf. 

SWITCH OFF. 

ils For the second part of the question, we have 

the resistance proportional to the velocity. Let the 

constant of proportionality be small k. Notice that this 

does not appear in the answer and must be eliminated. Now 

complete the question, using a definite integral, and 

then check your working. SWITCH OFF. 

12. Now read example 5, which is concerned with 

resistive force only, and draw a detailed diagram. You 

will first need the acceleration in the velocity displace 

ment form, and then the velocity as dx/dt. You can then 
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combine the two equations to find the given relationship. 

  

When you have finished, check your working below. SWITCH 

OFF. 

14. Notice that when the steamer has maximum speed 

the acceleration is zero, and the thrust is equalled by 

the resistance. This gives a relationship for the constant 

of proportionality in the resistance xv’, Solve the 

problem by using the ecceleration as dv/dt, and check your 

working afterwards. SWITCH OFF. 

15. Falling bodies in a resistive medium also reach 

a meximum speed when the acceleration is zero. This 

maximum speed is called the Terminal Velocity. Example 7. 

is concerned with this, and we shall work through part 

of the auestion together. Read it, end look at the cieeren 

closely. SWITCH OFF. 

16. In this example, we can simplify the work of 

integration by using the terminal velocity V,. to substitute 

for k in the equation of motion. The resulting expression 

is then easily integrated between limits. Follow this 

working of part one carefully, in the next section. SWITCH 

OFF. 

ITs Notice in this section how compact the working 

was. You should now attempt the second part yourself. 

Start with the same enuation of motion, but remember that 

you are looking for a distence and velocity relation. 

Again, integrate between limits. Check your working 

below when you have finished. SWITCH OFF. 

a8. Attempt question 8 by yourself. It is about 
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combined resistance but do not let this confuse you. The 

first definite integral is a straightforward velocity/ 

distance one, and the second will reguire the use of 

partial fractions. When you have finished, check your 

working below. SWITCH OFF. 

ge Question 9 concerns a vertical motion with the 

resistance proportional to the square of the velocity. 

Read it carefully and study the diagram. SWITCH OFF. 

20. Write the equation for the acceleration, 

remembering that weight is a vertical force. This mass 

must also have a terminal velocity, which you should use 

for convenience. Us dv/at, and then seperate the variables 

ready for integration. When you have recognised the type 

of integral, adjust the constants as needed, integrate, 

and find the constant of integration. Check your solution 

in the section below. SWITCH OFF. 

2Le It only remains to obtain the distance, by 

integrating the velocity. Rearrange your previous answer 

to give the velocity and you should then be able to 

complete the first section of the question. Check this 

efterwards, overleaf. SWITCH OFF. 

22. Applied mathematics is always requiring special 

results and techniques from mathematical methods, and in 

this case we need the Maclaurin Expansion for log cosh x. 

Derive the first two non-zero terms in this series, and 

you will be able to finish the question. When you have 

done this successfully, switch on the tape again. Other- 

wise, you had better trace your error in the next section 
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of the booklet. SWITCH OFT. 

Notice that this last result has two terms, 

  

the second one being a multiple of k. Make k = 0, and 

we have y = Ret’, which agrees with the expected result 

for free fall under gravity. 

The tenth question extends this work on resisted 

motion into two dimensions, and it is convenient to 

examine the motion in vectors. Read the question carefully, 

and note the vector directions in the diagram. SWITCH 

OFF. 

24. We can now write the vector equation of motion, 

and express it in component form, which gives two ordinary 

differential equations. Look at the next section, where 

these equations are obtained. SWITCH OFF. 

256 To obtain the time to the greatest height, we 

must use equation 1 for vertical motion. An expression 

for velocity and time may be found, and we can then use 

the fect that the vertical vehocity is zero at the meximum 

height. Do this for yourself, and then check your working 

in the next section. SWITCH OFF. 

26. Rearrange equation 3 to give v as the subject. 

A further integration between limits will give the maximun 

value of y, using the value of large T already found. 

Check this afterwards, below. SWITCH OFF. 

2ls It is always useful in applied mathematics, to 

consider limiting cases, as this helps to reveal possible 

errors in the results for more complicated motions. In 

this case, the log series will be useful. SWITCH OFF. 
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28. For the final part of this question, we shell 

have to use equation 2 for horizontal motion. This could 

be solved by using integral calculus, but it is more 

quickly deslt with, by treating it as a differential 

eauetion. Use the D operator, and when you heve recognized 

the form of the solution, evaluate the two constants, using 

your initial conditions. Check your solution in the next 

section afterwards. SWITCH OFF. 

29. This is, of course, the value of x for any t, 

and you reouire the value for large T. For the limiting 

value of the expression, consider the effect on the whole 

denominator, of making k small. Check your working 

afterwards. SWITCH OFF. 

30. It is interesting to consider the same Eneon 

with the resistance proportional to the square of the 

velocity. Study this problem which is illustrated on the 

next page. SWITCH OFF. 

Shs These look a particularly nasty pair of equations 

don't they! In fact, little progress can be made with 

them, and even if we eliminate the surd, it is not very 

useful analytically. This is one of those occasions 

when numerical methods are needed. 

This is the ned of the work on ‘Variable Forces' 

Would you please rewind the tape before you remove it 

from the machine. Thank you! 
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Appendix 7 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A,H.Jackson 

BOOKLET 7 to be used with TAPE 7 

"Oscillations" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience) 
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Simple Harmonic Motion. 

m 
. my? _<¢——— 

0 ——__x —_______» 

atx 
at? 

The solution of this differential equation is 

The equation of motion is = - w*x 

x = Acoswt + Bsinwt = C cos(wt+a), 

where the constants A and B, or C and a are evaluated from 

lmown conditions, usually initial conditions. 

Period of oscillations = a 

When you are ready, 

SWITCH ON 
  

EXAMPLE 1. 

An elastic string is fixed at one end to a point 0 on a 

horizontal table. It passes through a fixed smooth ring C on the 

table, which is at a distance 'a' from 0. The other end is fixed 

to a ring B, of mass m, which is free to slide along a smooth 

horizontal wire on the same level as the table. The inclination 

of the wire is @ to OC produced, and its pergendicular distance 

from C is p. If the unstretched length of the string is ‘a', 

find the period of small oscillations of the ring about its 

equilibrium position and show that it is independent of p and 

@. (The modulus of elasticity of the string is A). 

(The diagram is on the next page.) 
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+ —_ 2 — pC 

When you have studied this, 

SWITCH ON. 
  

Extension = BC = x seca 

Use T= 22: , thon 7 = Ae sece 
£ a 

Use 'F = mat 

nae =-T cosa ay ee ee ee 
a Ax seca ees Kee 5 
x = Sa COs a) x. 

ma 
x This is S.H.M. of period 2| 

This is independent of p or @, i.e. the period of oscillation is 

not affected by the distance, or orientation of the wire from C. 

SWITCH ON. 
  

EXAMPLE 2. 

A particle of mass m is supported at C by two elastic 

strings of modulus £mg, which pass over smooth pegs M,N, and 

are attached at their other ends to two fixed points A,B, 

vertically below M,N and on the same level as C. MN is horizontal 

and of length 2a, CM and CNiare inclined at 30° to the vertical 

and the whole figure is symmetrical about the vertical through 

C, If the particle is slightly disturbed in the direction of the 

vertical, prove that the period of oscillation will be approximately, 

ee EDD 
w i lie 

169. 
(The diagram is overleaf.)



  

a= 3g 

ACMN is equilateral 

  

mg 

When you have studied this, 

SWITCH ON. 
  

Let L = unstretched length of each string 

e = extension of each string 

From equilibrium, 22 cos30°= mg = 2(3 mg) = : 13 

And (L+e) = CN+NB = a(2+J3) 

hence L = 2a and e = aJ3. 

SWITCH ON. 
  

  

When you have checked this diagram, 

SWITCH ON. 
  

Using 'F = ma! 

mx =mg —- 204 cos@ 

170. 
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By Cosine Rule. 

DN* = (x° + (22)" = 2.x. 2a cos) 2° 

pn = Jx® + fa® + 2fsax = Jha" + 2[5ax (approx.) 

Stretch of each string = DN + BN - 2a 

= [ha*s2Bex - 2(2-W3)] 

Cos@ = eee 
DN ai a+ 213 ax 

Substitute in the equation of motion 

oa [fja7+2fBax—a (2- x+4J 3) 
mx = mg - 2.9 mg 

P 2a dhia®s2]5ax 

1 = x+afZ) _ (2-3) (x+3a ] 

id ha s2Bax / 

es ra RE ea - alt y'- (2 + = 

by a binomial approximation, neglecting second and higher powers 

of x. 

SWITCH ON. 
  

Me
 

0 

o
h
 1 Gl
n 

st 
— E
 = (2-3) (x+43a) (ya-3x | 

, ETSY 
{ Leg 

hence period = 

lz 

=) ee 

SWITCH ON. 
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A,B,C,D are four points on a 

x smooth horizontal table, BAD =00ne 

AF =a =BF = FD. FC = 2a, 

Light elastic strings, each of natural 

length €(< a,)are fastened to A,B 

and D. A string of length 2@ is 

attached to C. All the other ends 

of the strings are fastened to a 

particle of mass m. Confirm that F 

is the position of equilibrium, and 

show that the period of small oscillation, if the particle is dis- 

placed a small distance along the diagonal AC ,and releasedsis 

Qn [ite sa)" The strings do not become slack at any time in the 

motion, and the common modulus of elasticity is A. 

Do not look below until your two diagrams are completed. 

  

Equilibrium Position. 

ae a Use =" 

‘ a-£ 
t For AF , T, = ) 

a 
7A 2a-28) 

x Hon FG, 1, = ong 

=Ty 

i.e. F is equilibrium along AG 

2a 

  

By symmetry, F is in equilibrium along B D. 

(Continued on the next page.) 
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Small displacement at time t.   

  

    

<q? Rane a——> 

4 

CaN. 
6 Se 

7 Ms a 

va AT. Ss 
SS 

mee F \D 

: \ Te 4 Ss ‘ 

\ /. 

\ / 

yits fe 
\ / 

\ / 28 
\ / 

/ 

\ / 
Z 

“ Yo v 
mx = T,- 2gcos6@ — Ty 

SWITCH ON. 

Te 

The tensions on both sides 

of the diagonal AC are 

equal because of symmetry, 

and there is no resultant 

force perpendicular to AC 

Use 'F = ma' along AC 

  
  

. A(2a-2£-x) _ 2X Beers jp: 

a 2e & latex 

    

Ngan ee eet) le Aan ex 
=) Vaan Jaa, FRE 2 a 

2ak 

ACatx-€ 
£ 

) approx. 

gs BH) x. Ja - 4e = 7(a - 40), which is positive as a > £, 

This is S.H.M, with period, onl we 

SWITCH ON. 
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EXAMPLE 4. 

One end of an elastic string is attached to a fixed 

point, and the other to a particle which hangs in equilibrium, 

and causes an extension 'd* in the string. The particle is 

given a vertical velocity 2fea upwards. Prove that the string 

becomes slack after a time ef » and the particle first reaches 

its lowest point after a total time fe a 213) . 

  

Equilibrium Position General Displacement 
for the extended string. 

| i; | 
£ 

& 

ng = 7 = 2 
TT 

ear 
re a mn -¥-4 

coe 4 t 
i x 

¢ = }s 1 | lea 

Ying 

When you understand these diagrams, 

SWITCH ON. 
  

mx =T4 - mg 

= Me (22) _ ng 
a 

decw ne 
aint ig (@)= 

hence, x =A cos ot +B sin et 

174. 
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When t = 0, x =0, hence A 

When t = 0, & = 2fed » Hence B = 

and x = 2d sin ot 

SWITCH ON. 

=0 

  

The string becoms slack at A. 

When x= 4 , let the time be ta 

" d = 24 sin/& ota 

i.e. sinfS-ts =t¢= sin % » Hence ty = ae 

SWITCH ON. 
  

ee alag a cos ot & 

At A, t = t, and Va = ag 

i= Ad 

Total time =   

cose = d3ga 

Hence, there is some remaining energys 

and the particle will rise in the air 

as the string becomes slack. It will 

continue rising,until its speed is zero, 

and then fall back to A. The 

string begins to stretch ,and 

eventually brings the particle 

momentarily, to rest at its lowest 

point, D. 

(B to A)+(free flight)+(A to B)+(B to D) 

2(B to A)+(free flight)+ (B to D). 

When you are ready to continue, 

SWITCH ON.



es 

  

10. 

rie oes Pio ee os Time of free flight = a = = Azie 

Time from B to D = % (period) 

ime = oft a,zf Total time = a &) + Al3 ie +15 fe 

@ fon 
= + 

de 23) 

SWITCH ON. 

P.E. Diagram, 
0 

] Let the horizontal through 

B,be the zero of gravity 

potential energy. 

£ 

Va The P.E. will consist of two 

parts, that due to gravity, 

4A and that of the string i.e. 

A a P.By and PE, respectively. 

Aled 
Zero of & B 
eraviey- 
potential 
energy 

id   
(85 + P.EQ + KB.) = (P85 + P.EQ + mee) 

2 on 
Fa. $ +04 n( 2168)” = ( + mgd + inv," 

3ga = Vz” as before. 

SWITH ON. 
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EXAMPLE 5. 

A light, elastic string, of natural length 2a,and modulus 

8 mg,is stretched between two fixed points A and B,on a smooth 

horizontal plane,with AB = 4a. A particle,of mass m,is fastened 

to the midpoint of the string. Show, that if it is projected from 

the equilibrium position, towards B, with a velocity alliage, it will 

just reach Bsin a time, 

thet@-#-)] 
Equilibrium Position (Particle at C with AC = 2a = CB). 

  

2 
> ‘ wv 

‘ 1 4 4 e 
D B 

a P< a > vt
 

  4— 2? —»>4 a 

The mass is, effectively, dividing the string into two 

strings, each of natural length a, and modulus 8 mg, fastened at 

A and B. For the motion from C to D, there is tension in both 

strings, but from D to B, the right hand string is slack. 

When you agree that the motion is in two parts, 

  

  

  

SWITCH ON. 

Motion from C_ to D. = 2; al Liss, Naan 

Cc D 4 q ee 2 
ia > Te 

<—+»—> 
Use 'F = ma! 

mn SE 2 tT = a (a-x) - 588 (aix) = - Last 

hence, x =A cos ot +B sink [Bt 

177. 
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uv When t = 0, x =0, hence A = 

ad = wef cosh & -t 

  

ax 
when t =0, at 2Jlaga » hence B= 

= afk einkff ot 

Let the particle reach D at time t = ta 

then a = aH sink [2 ~t 

nein a Gorthy | Za | 
45 

At D, time ta 

[Ze Ee V-he fE cost 8, co 21 10ga 

  

  

  

SWITCH ON. 

Motion from D to B. 

oh 4 2a —><——2 —_» : 
A E G de D B 

2 +9   

  

Use *F = mat 

a?x A 
m Ggt =~ Ts = 

2c cost PEt +p vine PE 

For convenience, measure time from position D, with t = 0 when 

x = 2a, then C = 2a. 

and x = 2a ea et + D sin2 [. t 

F-- 40 PS sine PEt + 20 PB cose. PB. 

when t= 0 2 = 2) 10ga, hence D = al5 

= 2a cos FE. + + ald sine |, t 

SWITCH ON. 

178.



Rewrite x,as R cos(@a) with,@ = ofe ob 

i.e. Rcos@ cosa + Rsin@ sina = 2a cos@ + aj5 sing = x 

Compare the coefficients of cos@ and sing, giving 

x= 3a cos( 22 - «) with @ = cos *(5 ) . 

Let the particle reach B,at time t = tg with x = 3a, 

then 3a = 3a vos 2f 2 ee “) 
a 

lE i law aye te== figs 2/2 2 2 2g a 2 2g cos 6) 

The total time to B,is (t+ te) which gives the required answer. 

Let the velocity at B be V4,when t = tg. 

-- 6 fe sin (4 sta - 2) 0 

t=te 

  

i.e. The particle only just reaches B, 

SWITCH ON. 
  

Potential energies of the strings. 

  

  

‘L A}liga , Vy 

A E Cc D B 
; i : z 3 
  

<— 2 —>e— 2 —pe— 2 —>4—-2 —> 

At the midpoint C, both strings are extended a distance a, 

and thus have equal P.E. (N.B. there is no gravitational P.E.) 

[P.E4K.E.], = [P.E. + K.E.], 

ae a + 4a (2jthga)® = 2 S88 (30)* + dav? 

0 =Vi1 as before. 

SWITCH ON. « 
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Damped Oscillations. 

0 my?x mkv 
——— 

  

Resistance = 2mkv 

Then mx = —-2mkx - my®x 

or (D?+ 2kD + w*) x =0 where D = &. 

The solution of this will depend upon the relative size of k 

and w. 

There are 3 cases. 

Dampin, Auxiliary equation 

i) Heavy Real roots 

ii) Light Complex roots = 

iii) Critical Equal roots 

When you have studied this, 

SWITCH ON. 
  

EXAMPLE 6. 

A particle of mass m, moving in a straight line, is 

subjected to a restoring force of 16m times the displacement, 

and a resistance of 10 m times the velocity. Obtain the 

differential equation of motion, and find the displacement and 

velocity at any time, if, initially, the displacemerb was 2m,and 

if the velocity was 6m s *, directed away from the centre of the 

restoring force. 

  

  

  

At time t. = v=6 at t =0 

ogee —>- a 
m 9 qlee pei 

a 
< 2 > 

When you have studied the directions of the forces, 

180. 
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and velocities,



Use 'F = ma' to give 

  

=- 10 mv - 16 m 

X + 10x + 16x =0 

" ° Auxiliary equation is m® + 10m + 16 

(m+2) (m+8) " ° 

m=-2o0r-8 

These are real and distinct roots, and,therefore, 

this represents a heavily damped oscillation. 

when t = 0, x= 2 Wh 4 B= 2 

ax ae =at st a 7 2h e 8B e 

arate) gee when t= 0, S$=6 3. =A 4B= 3 

Hence B =-2 anda = LL 
5 3 

x= Z(11_7#t - GD) ES gt p a él 

This quantity is never negative,and theoretically x never = 0, 

but notice the very rapid speed of decay, The motion is, in 

fact,non-oscillatory, nearly all directed towards O,and 

x should always be negative after the particle turns 

towards 0. 

ax _ 2e** [200° - a = 0 when t = - in(20) 
at FS . zz 

SWITCH ON. 
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EXAMPLE 7. 

A particle,of mass m, moves in a straight line,under 

a restoring force,mn®x,and a resistance of mkv, with 4m? > k?, 

where x is the distance from a point O, on the line, and v is 

the velocity. Investigate the motion, if the particle is pro- 

jected from 0,with speed vo, when t = 0. Show that, 

i) the time it first comes to rest is independent of vo, 

ii) if x = a when it first come to rest, vo = 24 sp [tent 2], 

  

  

when A = pl]a7=K*, 

  

  

VEY, Vv vO 

m 
4 qnky. 6 eo x . 

On A ES > 

< = —— ee   

When you have studied the forces and velocities, 

SWITCH ON. 
  

Use 'F = mat from 0 to A, 

X= - mkv - m?x 

(D? + kD + n°) x =0 when D= & 

auxiliary equation has roots ~$k + 3 yn? —k? 

These are complex, and the motion is lightly damped. 

4 

x = oy coshlin =k? .t + B sink|ia?-k*.t) 

Initially t = 0, x =O hence A =0. 

41 
. -okt 4 i.e. x = © © (Bsinot) where o = S{hn?-k*. 

(Continued on the next page). 
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; ee Baik 
oe =~ the ?**(B sinot) + ce 2 B cosot 

dx vi 
when t =O ZF = vo » hence B = 2° 

4 

x ee eet sin ot 

dx pant 
= = | ee (co cosot - oo) 

At rest, o cosot - $k sinot = 0 

for time core rest, take the smallest root of 

2o as A(given) tan ota = 

i.e. ty = + tan” +A, which is independent of vo- 

SWITCH ON. 
  

Substitute t = t, and x = a in the equation for x, 

a = 2 axe - = tanta | sinota 
o 20 

By manipulation ,k?+ 4o® = yn? 20° 

As tanots = = =X & i 7k 

= 2 

So sinots = 2. 

ZS oe Yaye Hence ae sxe z van. a) |. 

BI
O 

4 

i.e. vo = na sxp[ #223] 

SWITCH ON. 
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EXAMPLE 8. 

A particle,of mass m, moves in a straight line,under 

a restoring force,of 9mx newtons, and resistance,of 6mv N. If 

the displacement is 4a metres,when the particle starts fromrest, 

fina, 

i) an expression for x,in terms of t, 

ii) the velocity, after 2 seconds. 

Identify the type of damping, before you look below. 
  

At time t. 

  

  

  

  

v 
——_- 

4 A 0 ¢ nv e< Smx i 

i 

+ ha > 

'F = ma' gives 

ix = <€ny = omx 

2 2 - @ (D? + 6D + 9)x =0 where D= 5 

(D+3)?x = 0 

So the auxiliary equation has equal roots of -3. 

This represents a critically damped motion. 

x = (AsBt)e7 St 

SWITCH ON. 
  

i) when t =0, x = 4a, A = ha 

x = (4a + Bt) e7 St 

= 6 9t(p_-12a-3Bt) ox 
at 

dx 
When t = 0, a = 0, B= 12a 

ie. x = ha(1+3t)e St 

  

ii) at = 736 at e St 

when + = 2, v = -72ae © 

This is a very sml1l velocity, directed towards 0, 

SWITCH ON.
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Forced Oscillations . 

1. The differential equation is of the form 

ea 
= at (D? + 2kD + w®)x = f(t), where D 

and f(t) is oscillatory. 

2. The solution has two parts, 

i) transient, which comes from the complementary function, 

ii) steady state, which comes from the particular integral. 

When you have studied these, 

SWITCH ON. 
  

EXAMPLE 9. 

A mass of 3 kg moves in a straight line, and is acted 

upon by a restoring force of 192x newtons, a resistance of 24v N, 

and a periodic force 300 sinjtW. If the particle has an initial 

displacement of 2m, and a velocity of 3ms-* directed away from the 

origin, find, : 

i) an expression for the transient motion, 

ii) the steady state solution, and hence the amplitude and 

phase of the forced vibrations, 

iii) the complete solution for x, 

  

  

  

  

Time t. 

O0sinkt v ve a 

192x oO ‘ 2hv 9 A 

1 

2 

< a > 

When you have studied the diagram, 

SWITCH ON. 

i) Use 'F = mat 

3x = -2hv - 192x + 300 sinkt 

(D7+8D+64)x = 100 sinkt with D = S. 

The C.F. is given by 185. 

(D? + & + 64)x =0 
Dh ie rere om ea | ee sel ee ee



auxiliary equation has roots -4 + id} 

C.F..48 ev tt(g cosh 3.t + Bsink)3.t) 

  

SWITCH ON. 

4i) The P.I. is 

5a er. .100sinkt [Repiace "p? py -a®" i.e. by -16] 

piriemraiae Nee PO” Whe oi = Serene eke 100sin4t = Dee sinht. 

ee ey kt a te acon ss = 3 @'3¢ -sinkt = Ton66 D) sink€ 

25 (3sinkt - 2cosht) 
52 

(3sin4t-2cos4t) must be expressed in the form 

Rsin(4t-a) to give the steady state solution. 

Bape al) with a = tan +(3) 

Amplitude = 25h » Phase = tan™*(3) 

The period is x which is the same as that of the external 

force. : 

SWITCH ON. 
  

aii) x = 674+ (acosh|3.t+Bsin3.t) + $3 (5sinit-2eosit) 

When t = 0 eed hence a = 

x = 6 *t(H cophl3.t+Bsinl3.t)+ 28(3sinkt-2cosht) 

= = oe (8 = 484) cost 5.t—(4B + age) siniA3.+ | + 28(12cosit+8sinkt) 

when t = 0 a3 hence B = aes 

Complete solution 

x = ot (22 cosil3.t + sole sin \J3.t)+ 28 (3sinkt-2cosht) 

SWITCH ON. 
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EXAMPLE 10. 

A particle, moves in a straight line,in a medium 

which exerts a negligible resistance. The restoring force is 

four times the displacement,and the external forcing agent is 

8cos2t. Find the differential equation,and solve it completely, 

if, initially, the particle has zero speed,when the displacement 

is a. 

Do not read this solution yet. 

  

  

  

  

8Bcos2t v=o 
—____ Pp aaa 

o <> = 
rn 

<< a > 

Use 'F = ma! 

dex % 
apes 4x + Bcos2t 

% + 4x = Bcos2t 

(D?+,)x = 8cos2t where p = & 
= at 

oO i for C.F. (D? + 4)x 

i.e. x4 = Acos2t + Bsin2t 

for P.I., use Tray 8002. 

i.e. Real part of Ges Dry ° 

2it 

2it 

= 8R jee Xa = 6R (Ga i 

af - FB(cos2te. sin2t) | 

Se sin2t = 2t,sin2t 

" 
" 

general solution = x4+x2 = Acos2t + Bsin2t + 2t,sin2t 

(Continued on the next page.) 

187.



N nm 

when t =O, x=aand A=a 

x =a cos2t + (B+2t)sin2t 

& = 20 sin2t + 2sin2t + 2(Br2t)cos2t 

A ox 2 when t =0, ooo O hence B =0 

i.e. complete solution is x = a cos2t + 2t sin2t, 

This motion has increasing amplitude of oscillations as the 

time increases. This is an example of resonance. 

SWITCH ON. 
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APPANDIX 7 

  

SCRIP? FOR TAPE 7 

OSCILLATIONS. 

es This is the tape to be used with Booklet 7 

of ‘A Revision Course in Particle Dynamics' by Kenneth 

Jackson, and is concerned with oscillations. These 

include examples about Simple Harmonic Motion, end both 

damped and forced oscillations. 

You will remember that Simple Harmonic Motion 

of a particle moving in a straight line, in generated by. 

a force which is always directed towards a fixed point on 

the line, and proportional to the distance of the particle 

from the point. Read the first section where this is 

revised for you. SWITCH OFF. 

ee We shall start working through question one 

about Simple Harmonic Motion together. Read it carefully, 

and study the diagram. SWITCH OFF. 

3. The diagram shows that rest position of the 

ring at A, where the string has minimum tension, and the 

pull on the ring is perpendiculer to the wire. The disp— 

lacement through a small distance x to B, produces a 

restoring force, which is the component of the tension T, 

directed along BA. Using the angle ALPHA, you can now 

write the equation of motion of the ring. Do this, and 

complete the question, checking it afterwards below. 

SWITCH OFF. 
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4. The second example is a more difficult one on 

stretching strings and I shall work through most of this 

to demonstrate the mehod. First of all, read the question, 

end study the equilibrium diagram overleaf. SWITCH OFF. 

De Notice that we are not told the unstretched 

length of the strings, or the extensions in the diagran, 

but we cen use the equilibrium of the forces, and the over- 

all stretched Jength to give the relationships resuired. 

Write them dovm, and solve them to give these two unknovn 

quantities. Check these afterwards below. SWITCH OFF. 

6. In this situation we heve symmetry on both 

sides of the vertical line through C, which is critical 

in this question. Now consider the vertical disturbance 

to be made from C. We will meke it downwards for pone 

dence. Draw a diagrem of this for yourself, showing the 

displaced strings and their tensions. When this is complete 

check it with that in the booklet. SWITCH OFF. 

‘Te With the help of this diagram we are able to 

write the equation of motion in terms of T, and theta. 

Then, bu using the cosine rule, we can find the length DN, 

for which we shall require a binomial exnansion. The 

equation of motion is then expanded algebraically. Follow 

this closely in the next section of the booklet. SWITCH 

OFF. 

Ge This approximation must now be used in the 

equation of motion. Proceed with the algebraic reduction, 

neglecting x? end higher power terms. You should obtain 

the stendard differential equation for simple harmonic 
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motion, and hence the period can be found. You will need 

some further algebraic manipulation to obtain the given 

answer. When you have finisheé, check this in the booklet. 

SWITCH OFF. 

Q. The next example is also concerned with a 

combination of strings. Read this carefully, and draw 

two diagrems, one for the eovilibrium position, and 

another for the displaced particle. From the first you 

are able to confirm equilibrium, and from the second, 

write the outline equation of motion in terms of the 

tensions. Check your working below afterwards. SWITCH OFF. 

10. Substitute for the tensions, neglect terms 

in x? and you will be able to complete the question. 

Remember that # must heve a.restoring force proportional 

to x for S.H.M., ana you will need to consider the sign 

at a later stage. Check your working below again. SWITCH 

OFF. 

a. The fourth question concerns a time calculation. 

in a problem which is partly simple harmonic and needs to 

be worked in stages. Resd question four carefully, and 

look at the diagram for the first pert. SWITCH OFF. 

12. As the displacement x is specified positive 

inthe upward direction, so the tension Tt) must be the 

positive force in the equation of motion. Using this, 

write the equation of motion and find the general solution 

of the differential equation. Check this afterwards, 

below. SWITCH OFF. 

lise The constants A and B can now be found by 
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using the zero displacement, and given unwerds velocity 

at the start of the motion. Carry out this evaluation, 

and then check in the next section. SWITCH OFF. 

14. The string will become slack when the tension 

is zero, which occurs at the point A, with x = alpha. 

Use this condition in your solution to find the required 

time. When you have finished, check your working. SWITCH 

OFF. 

45. If the particle has any kinetic energy remaining 

after the string is slack, it will rise freely in the air, 

so we need to calculate the velocity at A, to check this. 

Calculate this velocity and check it below. S\VITCH OFF. ~ 

16. As you know the velocity Vy at A, you are able 

to calculate the time of flight from A, back toA. For the 

time from A to D, remember that B is the centre of the 

complete S.H.M., and AD is the amplitude downwards. By 

using the appropriate fraction of the period, you can 

now finish the question. Check your answer overleaf, 

when you have done so. SWITCH off. 

EVs Notice that it is vossible to find the velocity 

at A, without solving the differential equation. This can 

be done, using the conservation of energy. Follow this 

alternative method of working in the next section of the 

booklet. SWITCH OFF. 

a8. This energy method is a useful alternative when 

times are not required. Example 5 is also concerned with 

S.H.M. and is mainly for your own working. First read 

the question, and consider the diagram. SWITCH OFF. 
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io To consider the motion from C to D, you will 

need another diagram showing the displacements and 

tensions. Write your equation of motion, and you should 

then be able to find the time to ID, and the velocity at 

this point. When you heve done this, check your working 

in the next section. SWITCH OFF. 

20. For the remainder of the question, you will 

need another diagram for the motion from D to B. Remember 

that one string is now slack. Again, write the equation 

of motion, solve the differential equation, end find the 

constants. Do not go any further yet. Check«your answer 

in the next section of the booklet. SWITCH OFF. 

role This equation is easier to deal with if it is 

expressed in the form R cos theta minus alpha. Do this, 

and find the values of R and alpha. You can now finish 

the question. Do so, and then check your working overleaf. 

SWITCH OFF. 

eee s Again an alternative procedure is provided by 

the conservation of energy, and it can be shovm right at 

the beginning of the question, that the velocity at Bis 

zero. Follow this in the next section. SWITCH OFF. 

23. The next examples are about damped oscillations, 

which involves another term in the differential equation. 

Read the next section, which summarises this type of 

motion for you. SWITCH OFF. 

24. Read example 6, which is concerned with damped 

oscillations, and we shall begin working through it 

together. Study the forces and velocities shovm in the 
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diasrem carefully. SYITCH OFF. 

25. Notice the simplicity of the diagram with the 

particle, shown moving in the positive sense of x. This 

allows an easy formulation of the differential equation. 

The forces will, however, cause the perticle to move 

towerds O, for some of the time, and we expect the velocity 

v to be negative at such times. Write the equation of 

motion for this particle, identify the type of damping, 

end write out your solution, evaluating the constants 

from the initial conditions. Check this efterwards, 

overleaf. SWITCH OFF. 

26. For the next example on damned oscillations, 

read example seven, and study the disgram closely. 

Notice how this neatly summarizes all of the ave lable 

information. SWITCH OFF. 

els This example illustrates light damping. 

Confirm this, from the auxiliary equation of the differ-— 

entail equation. Find the general solution, and use the 

initial conditions to determine the constants. Complete 

the first vart of the question and check this efterwards 

below. SWITCH OFF. 

28. For the second vart of the question use t = ty 

where x = a in the equation for x. By manipulation, 

obtain the quoted answer and when you have finished, 

check this below. SWITCH OFF. 

29. Now read example 8, which should be tried 

mainly by your own efforts. When you have drawn the diag— 

rem written the equation of motion, identified the type of 
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demping, and found the general solution, check these in 

the booklet. SWITCH OFF. 

30. You are now able to use the given conditions 

to answer part one of the question, and then find dx/dt 

to answer the second vart. Check your solution below 

efterwards. SWITCH OFF. 

31. A more complicated motion occurs when a 

particle is also subjected to an external force, and 

this can lead to forced oscillations. The essential 

points are again summarized for you in the next section 

of the booklet. SWITCH OFF. 

32. Example 9 concerns forced oscillations, and we’ 

shall work through part of this question together. Read 

it and study the diagram below. SWITCH OFF. 

33. Remember that with this type of question, that 

the differential equation has two parts, and we have to 

find the Complementary Function and Particular Integral 

separately. Also you cannot determine the constants in 

the C.F. until al] the general solution has been found. 

You can now answer the first part of the question, which 

you should check afterwards. SWITCH OFF. 

34. The steady state is found from the Particular 

Integral, as the transient solution decays exponentially. 

By rewriting the particular integral in its most compact 

form, you will be able to obtain the smplitude and phase 

of the steady state motion. When you have done this, 

check it below. SWITCH OFF. 

35. The third part is a straightforward evaluation 

of the constants in the sum of the component solutions, 
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that is C.F. + P.I. The numbers will be a little ow. 

and it will help to write the P.I. in the first forms. 

Complete the question in this way, and then anetie your 

wolution. SWITCH OFF. 

36. Solutions to vroblems in forced oscillations 

need a good mantery of the techniques for finding partic— 

ular integrals. This is illustrated by the last example 

which concerns a forced motion without a resistance. 

Work this yourself, and check your solution afterwards. 

If you find you are unable to determine the P.1I. in this, 

then follow the given solution immediately. SWITCH OFF. 

37. _ This completes the work on oscillations. Would 

you rewind the tape before you remove it from the machine, 

plesse? Thank you! 
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AP}ETDIX 8 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 8 to be used with TAPE 8 

"Restricted Motion" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience.) 
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atial and      

    

of accslerati 

  

n for a 

  

Tangential acceleration = $ =<% =y a (s increasing) 

Normal acceleration = 4 (along the inward normal) 

with tany = 2, with - Zey cf 

Consider a particle of mass mM, moving on a given curve in 

a vertical plane. 

y=y(x) 

  

Use 'F = mat 

along the tangent $ = -mg sing 

2 
along the inward normal or =R- mg cos¢ 

p 

In the special case of circular motion, the acceleration 
. 3 2 

along the inward normal reduces to x » Where 'a' is the 

radius of the circle. 

When you have studied this, 

SWITCH ON. 
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EXAMPLE 1. 

A particle is free to move,in a thin, smooth,vertical, 

circular tube,of radius 'a', of which A is the lowest point, 

and AB,and CD,the vertical, and horizontal, diameters respectively. 

The particle is projected downwards from G with velocity u. If 

the pressure of the tube on the particle,changes from the out- 

side to the inside,as the particle passes the midpoint of arc 

DB, find u, and determine the speed when the particle reaches 

B, If the part of the tube between B and C has no outer surface, 

at what point will the particle leave the surface? 

Va. B Va     
Zero of 
PE. = ise” 

  
When you have studied the diagram, 

SWITCH ON 
  

Kinetic energy at C = constant = Kinetic energy at D, 

i.es V=u 

From D to B,'F = ma’ radially, 

  

2 

aS = Ry + mg.cos@ 

2 
i.e. Ra = we mg.cos@ 

a 

(Continued on the next page) :



By energy [K.E. + P.E.], = [K.E. + P.E.] P D 
2 

$mVa* + mg.a.cos@ 

y° 

$m? 

u? — 2ga. cose coe (1) 
2. 

hence Ry = WU Bs OS 8 ite cose + u?—3ga.cos@) 
a a 

Since Ra = 0 when 9 = 45° 
a: 

u® = 3garcosh5° i.e. u = @) 

Also, @ = 45° in (1) gives the critical velocity as a = eS 

1 

SWITCH ON. 

  

For velocity at B = Va, put @ = 0° in (1) 

ond Vox FACGEEEY 

Vi 

a 

R 

    

   

2 

4 
fl 

Zero: Of% Se et se 
P.E. 

  
Particle moves to Py at angle ¢ to OB, with velocity Vs 

By energy [K.E. + P.E.], = [K.E. + P.B.] Pa D 

$mVs? + mgascosd = ange 3 

mVs? 
a 
  'F = ma' radially = mg;cos¢ — R 

Put R =O and eliminate Vs", to give cosy = 4 

i.e. The particle will leave the surface vie midpoint of 

arc BC, This is only to be expected ,as it shows the 

symmetry of this circular motion about the vertical 

diameter, 

SWITCH ON. 
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EXAMPLE 2. 

A particle ,attached to a fixed point O,by an in- 

elastic string,of length 'a',is let fall,from a point in the 

horizontal through 0, at a distance 2 from 0. Find, 

i) The impulse along the string immediately after the free 

fall ceases, 

ii) the velocity of the particle when it is vertically 

below 0, 

iii) how far the particle rises vertically above this position. 

Zero of 
P.E. 

  

When you agree that the motion should be examined 

in three parts, 

  

SWITCH ON. 

By Sk i) Distance fallen. = AB = ja? - (3) =f 

For free fall, use 'v? = u® + 2ax! 

2 ha (2ga Va See. Site e iss 

ul
p “El
 

Momentum along OB, prior to the jerk = mV,sinag = 8 

Momentum along OB, after the jerk = 0 

(Continued on the next page.) 
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i) contd, 

Use ‘Impulse chang 

ey ee 

\ 
impulsive tension 

  

  

e in momentum’ 

_ fu FB) _ 80 as 
5A5 aS 

  

Component V2 is normal to the jerk in the string,and 

is not changed by the impulse. 

ii) Va = V1 cosa = $ a 

[K.E. + P.E.], = [k.z. + P.E.], 

6 [ega\? 
dnVs"— mga =2 Ge ee = 

hence Vs = 2 fiecea 
Dnt 

SWITCH ON. 

iii) 

Zero of — _ 

vV=0 Ko 

  

a 
Particle rises to D where DOE = ¢ 

[K.E. + P.Ee]) ik 

  

  

-—E. + PB), 
2 

= in (EF 4 p= tex oe = in (BFE) 5 mea 

6. hence cos¢ = oe 

Vertical distance CE =a-a cos¢ = $a 
it Tees 

SWITCH ON. 
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A particle hangs by an inelastic string,of length 

‘a', from a fixed point, and a second particle of the sams mass, 

hangs from the first,by an equal string. The whole moves with 

uniform angular velocity w, about the vertical through the point 

of suspension, the strings making angles a and P with the 

vertical through the fixed point of suspension. Show that, 

: aw* : c 
i) tana 2 (2sina + sing) 

" 

2 
ii) tang =" (sing + sing) 

& 

Hence show that if a and # are small, such a steady motion is 

only possible if B/a = 2s and when so, ag* has one of the 

values (24+ 4 2)g. 

  

When you understand this, 

SWITCH ON. 
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For rotation, use 'F = ma' radially 

at A, mw?a sina = T, sing - Tg sing ce 1a) 

at B, mw®a (sina+sing) = Tp sing ene (2) 

Vertical equilibrium, 

for A, Ts cOsa = mg + Ta cosp sao) 

for B, Ta cosp = mg coo (4) 

SWITCH ON. 
  

Use (3) and (4) Ts cosa = 2mg 

Rewrite (1) as 1 sina = mwa sina + Ta sing 

Use (2) to give Ts sina = mw*a (2sina+sing) 

Divide by T1 cosa to give the result 

tana = 32" (simatsing) eas) 

Divide (2) by (4) to give 

tanp = 2 (sinatsing) Pare 
SWITCH ON. 
  

If a,B are small angles, 

tana = sina = a and tanf8 = sinf =f 

Divide (6) by (5) 

B 2( at, a ; implifi B oss ere which simplifies to ac +2. 

This implies that @ and a may have the same sense for 

the positive sign, as shown in the diagram, but Pf could be in the 

opposite sense for the re gative sign, with B rotating in a 

smaller radius circle than A. 

(Continued on the next page). 
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rite (6) in the form 

  

  

By ss ae a cr ale = 42 
" Sinatsing ~ o4+f ey. Bays = 

a 1s] 2 

which gives the second result after rationalisation, 

SWITCH ON. 
  

EXAMPLE 4. 

A bead is threaded on a smooth parabolic wire with 

axis vertical and vertex upwards. If the bead is, slightly 

disturbed to the left from the vertex, find, 

i) the velocity of the bead in any position, 

ii) the reaction of the wire on the bead at a distance 2a 

vertically below the vertex, 

Zero of 
PiBy 

  

x? shay 

  

  
When you understand this diagram, 

SWITCH ON. 
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i) (K.B. + P.E], = [K.E. + P.E.]) 

gmv? - mgy = 0 

2 
v= 2gy 

ii) Use 'F = ma' along the inward normal, 

2 

ToT = BE cO8a- R= mgcosy ~ R 

10. 

  

SWITCH ON. 

= tayani Le 2, SY = 

2)3/2 

—= ‘ 

oF 
tany = x = s so that cos¢ = = 

dx? + dar 

Substitute in R = mg cosy - a 

to give R= 8 when y = 2a. 
AS 

SWITCH ON. 
  

EXAMPLE 5. 

A particle moves on a smooth curve with equation 

yee coa(g , which is fixed with its y axis directed vertically 

upwards. Initially the particle is at rest at (0,c), and is 

slightly disturbed. Show that in the subsequent motion, 

i) the velocity, v, is given by v? = hge sin") 

ii) the reaction between the particle and the curve is 

2nga(atte?) — wnen y = 
(4a? +307)°/? im nl

o 

(The diagram is on the next page.) 
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il. 

  

Y 
At time + T 

R 

Ay N.B. In this configuration 
i ative 

== a 

c 

Zero 
of P.E. 0 ; =   

When you have studied this, 

SWITCH ON. 
  

4) (K.E. + P.E.], = [K.BE. + P.E.], 

dmv? + mgy = O + mgc 

i.se.v? = 2¢(c-y) 

N.B. In this configuration y is positive. Substitute for 

iS Bin ae 
y to give v” = 4ge sin’ (3) 

ii) Use 'F = ma' at P along the inward normal, 

  

f) am ee = cos(= =-4, 

3/2 
[sreotein'( y 

= a 

ay 

i.e. 

-csin(x/a) 
a 

a 
  cosa = cos(-¢) = cosy = 

»B+0"sin™(x/a) 

(Continued on the next page.) 
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Substitute for cosa, lel and v? into 

2 
R= mg cosa - = 

lp 
4 SS 

Fovet ye. Rie cmee ene) | nen y = c 
(4224 302)9/2 2 

N.B. sin(x/a) = 13 when y =$ 

SWITCH ON. 
  

EXAMPLE 6. 

A particle is projected,with velocity V,from the cusp 

of a smooth,inverted cycloid, down the arc. The parametric 

equations of the curve are, : 

x = a(2y + sin2¢); y = a(1-cos2y) 

Show,that the time to reach the vertex is, 

ee) 

P
K
 

  

  

  

Vv 

2a 

oO e 

In this configuration, ¢ is positive 

x= a(2¢ + sin2y) ose (2) 

y = a(l - cos2y) eeone) 

The intrinsic equation of the cycloid is,S= 4a sing see (3) 

When you understand this information, 

SWITCH ON. 
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Use 'F = ma' tangentially, 

Se eee — — BES : m spe =~ m6 sing = - 7 (from 3) 

ov BS 
a ha 

vy? gs” 

Integrate, 2 =a, | * Cc 

At A, y =F and s = ha 

i.e. s = 4a when v = -V 

hence C = $V? + 2ag 

2 

and v?= V? + jag - ie 

SWITCH ON. 
  

2 
eye _ £8 fe + hag ia 4 " al

e 

5 ae De OR Sates 

Me E [eee Ts 

Tr . 

. [= at eeerh msieLsier ia te i 
[no + léa%z _ 

: aah 
| 

-T= fia pines aes = sin” Reso 
Je . Nbav¥16a%¢ | a WF hag, 

Fy ae Jv2+ 4ag 

n= 28 vanrt(alee 2fae fe ee AE v 
fs v 

SWITCH ON. 
  

at? ha 

8 = Asin ofS + B cos afb 

When t+ =0, 8 = 4a, hence B = 4a 

(Continued on the next page.) 
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ot aes re ject - 2a ip sing jar” 
‘at p

e
l
 

Q 

then t = 0, 8=~v, anda =~ ave 

hence s = -2v 

  

When 

i.e. O = -2V £ sins gE T + 4a cos$ Es 

hence T= 2 @ tant 212g 
Ne) ie Nav 

SWITCH ON. 
  

EXAMPLE 7. 

A smooth tube is in the shape of a catenary, 

y =.c cosh(), and is fixed in the vertical plane ,with its 

vertex downwards. A particle,of mass m moves in the tube under 

the action of gravity, and of an attractive force, towards the 

x axis gqual to mg/c times its distance from it. If the speed 

of the particle at the vertex is 2lee, show that it will come 

to instantaneous rest at points distant (2]2-1)c from the x axis. 

Find also ,the reaction of the tube on the particle at the 

vertex, 

Do not look at the diagram overleaf pntil you have tried to 

draw your own diagram ,and write the equations of motion, 
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N.B. ¢ is 
positive in 
this 

a configuration 

' 

1 

c 

' 

I 
Vv 7 - > 

The catenary y = c coah(@) has intrinsic equation 

s=c tangy 

Use 'F = ma' at P, 

tangentially ms =- ne(2 . A sing spout) 
my? . 

normally lah =R- ne( + ad oealse) 

SWITCH ON. 
  

from (1) Tage 2A te) 

sivas (135 

2 
= d- oy +5 

2 

d= HB + ae + So =Le 

n
l
 

2 2c 

since [nen ¥ = Cs¥ = alee | 

2 
Hence v? = Yee - 2e(y + 

x 

Let y = Y when v = 0, then 

74 oy = 7c? = 0 

Y = 0(s2!2 ~ 1) 
The negative sign is neglected, as y is always 

positive on this catenary, 

So Y = c(2/2 - 1) 

SWITCH ON. 
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[x.x.| = {x..| + |w.v. by forces| 

end beginning 

°o
 " 

a: 

luge) - me(t-e) + es 
a 

After integration and simplification, this leads to the same 

quadratic equation for Y. 

ise. Y7 + 2c¥ - 7c? = 0 

SWITCH ON. 
  

From (2) R= + mg coni{ 2 +3) 

yee cosh( a = sint(@) 3 ay = 4 coat() 

p-e@yy” 
g dx’ 

pS 

At the apex, y =c, # =0, v = Alge 

Re mae) 5 ne(a + $) = One 
c 

SWITCH ON. 
  

EXAMPLE 8. 

A smooth wire is bent into the form of an ellipse, 

and is fixed in a vertical plane,with the y axis vertical, 

(x =a cos6é, y=b sin@). A bead is threaded on the wire,and 

projected from the highest point, with speed u. Find the re- 

action between the bead and the wire in the ensuing motion, 

and show that it vanishes,when the bead reaches the point 

given by, (a?-b?)sin®6@ + 3b7sin@ - 2b7 = u®b/g assuming 

that a? > u*b/g. 

(The diagram is overleaf) 

ete,



At time t 4 

N.B. y is 
positive in 
this 
configuration. 

Zero of 
P.E. 
    

When you have studied this, 

SWITCH ON. 

  

  

Use 'F = mat along the inward normal, 

AE = me cosy - R ses QQ). 

kk.8. + P| = [x.z. + ay : 

dmv? + mgbsing = dm? + mgb 

vy? =u? + 2gb(1-sing) 

SWITCH ON. 
  

x =a cos@ = =-a sing 
ax 

CN) 

=> si oy y = bd sing a6 

  

  

= b cosé 

hc oy a F508 = ee i oS cote rr = qo cosec o. ax a2? mtg 

3/2 
‘ay\* 

fa Ha - 

i — . (atsintels b? cos%9) 9/2 
a any i ab i 

dx’ 

oo 2 tany = =o 3 cote 

positive 
is and hence tang must be positive, but as x = a cos@ , 

is negative, so @ is obtuse and hence tany does calculate to 

be positive. 

(Continued on the next page). 
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cosy = a which is positive for @ obtuso. 
aan OahtaoatA Ja“sin* 6+b"cos*@ 

ee eee Oe, 

a@ sin@ 

a 
Substitute in (1) R= mg cosy — TEL 

  

om mga sing e mlu® +2¢b(1-sing)] ab 

Jasin” 6+b"c0s"6 (a?sin® @4b®cos* 9)?! ? 

which simplifies to, 

R= 236 sin® @(a?-b? +3b*sin@-2b? ]-m*ab 

(a? sin? @rb?cos*@) 9/® 

SWITCH ON, 

Put R = 0 to give, 

(a? BY os y'8: 2. a _ ub a®-b®)sin°@ + 3b? sing - 2b =e 

At the start of the motion @ = : and R will be positive if, 

a ‘Db ices a? > 2 

e[(a?-v*)+ 3p? 2*|> u*b 

u? 

& 

N.B. at the x axis @ = 7 and R is negative. 

SWITCH ON. 
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EXAMPLE 90 

A rough, parabolic wire,x® = 4ay jis placed with its 

axis vertical, and its vertex downwards. A bead is projected 

along it ,from the vertex with velocity u. Show that the bead 

will first come to rest where, 

4 
iN 2: 

ol? seo = (1 + ee)   

2ga 

if wis the coefficient of friction, and @ the angle between 

the tangent at the point, and the x axis. 

x 

N.B. % is positive 
acute in this . 
configuration 

  

When you have studied this, 

SWITCH ON. 
  

Use 'F = mat 

tangentially, ms = mv s =-mg.sing - uR 

mv? 
inward normally, Tol =R- mg cosy 

arts dv v3 F 
eliminate R, va> + jal =- g(sing + p cosy) 

(Continued on the next page). 
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Now x? = hay, and x = a = tang 

>
 t 

a
 : 

e
e
 “ 

SE
 : 

u i 8 : @ % s
 

So p is positive and |p| = p = s 

l
a
 

Multiply through by p to give: 

ae uv® = - 2ag sec? y(sing + pcosp) 

  

ay 

SWITCH ON. 

dv qi tv? = a 2 = 2 put v p an ala ay 

oe 2up = - hag sec*¢(tang + 1) 

The I.F, = e@H 

any 
peo es oie (sec®y tany + p sec®y)dy 
hag 

SWITCH ON. 
  

Consider few sec*y.tany dy + wf 2 4# sco%y dy 

= / oth secy(secy.tany)dy + 1 forsook ay 

-| ah! secy d(secy y+ ufo BUY sec 24 dy. 

7 
~ [ert scot oe EB a eahy sec™y ai « mM ti eth sec*y dy + C 

FF sc0%y 
— 

SWITCH ON. 
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Hence Pe = — e7 secty + C, 
2 

2 

when y = 0, p = u® and C,= ae +% 

In the general position 

2 ,2uy 2 vo e u 
Par tee ee. Boots 

when v = 0 s0 ¢ =6 and 

Dae e2= 2? sec%@ 

4 
ue L ais oN 

i.e, e sec = @ + ag 

Take the positive root as the left hand side must be 

positive. 

SWITCH ON. 
  

EXAMPLE 10. 

A smooth wire in the shape of cycloidal arch 

(intrinsic equation, s = 4a sing), rests on its cusps with 

its axis of symmetry vertical. A particle is projected 

horizontally from the vertex, so that it is compelled to 

follow the arch internally. Show, that if the speed of 

projection is 28g, the speed of the particle while still 

in contact with the wire, is 

Jfesea + 2sinty)| 

and the particle will fall from the wire when it has des— 

cended a vertical distance fa. 

Do not read the solution overleaf until you have completed 

your own. 
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Zero << 

ax
 

  

N.B. ¢ is positive acute in the configuration and y is 

positive. 

Energy equation 

[K.B.+ PH.) = [K.E. + P.E.] 
P 0 

pmv?— mgy = $m.2ag + 0 

v 2g(aty) ’ 

For the cycloid y = a(1 - cos2#), hence 

2g[ata(1 - cos2¢)] = v? = 2ag(1 + 2siny). 

Use 'F = ma' at P. along the inward normal, 

2 

Wl = mg cosy +R 

The particle will lose contact with the wire when R =0 

; mv i.e. = cos: pee 

oe 4a cos¢ and hence cosy = 43 and y = & ey 2 2 

Notice how easy it is to find p from the intrinsic 

equation » 

SWITCH ON. 
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APPENDIX 8 CONTINUED 

  

SCRIP? FOR TAPE 8 

RESTRICTED MOTION 

i. This is the tape to be used with Booklet 8 

of 'A Revision Course in Particle Dynamics', by Kenneth 

Jackson, and is concerned with 'Restricted Motion’. 

Early examples are about motion in a circle, and later 

ones about motion along general plane curves. In all of 

these, you will remember, a body is forced to travel 

along the curves by the interaction of forces, and their ~ 

reaction to them. To consider these motions, it is 

convenient to use normal and tangential components of 

acceleration. These are revised for you in the first 

section of the booklet. Read this carefully. SWITCH OFF. 

Ze The reaction.experienced by a particle will 

depend upon the physical nature of the problem. A bead 

on a wire, for example, can feel both inward and outward 

reactions, depending on its position, and always stay on 

the wire, but only a single direction of reaction is 

possible on an inner or outer surface. In such cases 

there is often a breakdown of the restricted motion. Now 

look at the first question and diagram carefully. We 

shall work through part of this, which deals with the 

special case of vertical motion on a circle. SWITCH OFF. 

Be The conservation of energy, shows that the 

speed at D is the same as the starting speed. To describe 
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the motion between B and D, we introduce the angle theta 

measured from the fixed vertical OB. The reaction is zero 

when theta = 45 degrees, and hence we may calculate u, 

and the velocity of change over. Follow this working in 

the next section of the booklet. SWITCH OFF. 

A. To determine the velocity at B, use the 

energy equation again. To finish the question, drew 

another diagram showing the motion between B and C, and 

the angle to the vertical OB. The particle will leave the 

open tube when the reaction is zero. Usethis condition 

with F = ma radially, and the energy equation to find 

where this happens. Check your method in the next section. 

SWITCH OFF. t 

oF The second question is also on circular motion, 

and we shall work throvgh this in stages. Read it, and 

study the diagram. SWITCH OFF. 

‘Oz When the particle is at A, the string is slack, 

so it will fall freely from A to B when the string becomes 

taut, with an impulse along the inward radivs. This 

impulse is the change of momentum in this direction. The 

particie will begin to move along the circular are BC, 

with velocity Vos which is the tangential component of 

the previous vertical velocity. Complete the working as 

far as V3y and then check in the booklet. SWITCH OFF. 

ie You will need another diagram showing the 

motion beyond C, and the energy equation will complete 

the question for you. Check this afterwards. SWITCH OFF. 

Be The third example concerns a conical pendulum 

220.



with two strings. Read this carefully and study the 

diagram. SWITCH OFF. 

9. As both A and B are rotating in horizontal 

circles about the vertical axis, we shall need equations 

for vertical equilibrium, as well as F = ma radially. 

Write out these equations, and then check them in the 

next section. SWITCH OFF. 

10. By manipulation and division, you can introduce 

tan alpha and tan beta as required. Carry out these 

processes and then check your working. SWITCH OFF. 

il. To consider the effects of making alpha and beta 

small introduce a simple radian approximation, and manipul-— 

ate equations 5 and 6, to obtain the first result. Then 

use this result to complete the question. Check Ste 

working afterwards. SWITCH OFF. 

bes Read question four which is about a bead on a 

parabolic wire, and we shall work through part of this 

together. This will involve the more general form of 

F = ma along the inward normal. Notice in the diagram, the 

direction of the axes and forces concerned. SWITCH OFF. 

13. At P, the angle between the horizontal and the 

tangential velocity v, is labelled alpha. This angle is 

normally designated y, but difficulties will be avoided 

if this is only done when ¥ is positive. This config- 

uration is such that ~ is an acute positive angle and 

hence alph equals y. By using the energy equation you 

should be able to obtaine the general velocity. Write, 

alos, the equation of motiong along the inward normal, and 
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then check this efterwerds. SWITCH OFF. 

14. You can now find the reaction when y = 2a. 

Remember that tan ~ = dy/ax, and p can be calculated 

from the formule involving the first and second derivations. 

Attempt this, and check your working afterwerds. SWITCH 

OFF. 

I The fifth example concerns the motion of a 

perticle along a different curve. Read this, and study 

the diagram carefully. SWITCH OFF. 

16. This example shows the care that must be taken | 

with the angle ¥, as in this configuation alvha = =f. 

Again, start by finding the velocity,-using the energy 

equation, and then the normal equation of motion. Work 

with alpha, and later introduce the angle y%. Try oe 

question for yourself, checking it afterwards in the 

next section. SWITCH OFF. 

hs You should now consider the next question, 

which is about motion along a cycloid. Read this, and 

study the diagrem, so that we may work through part of 

this together. SWITCH OFF. 

18. You will remember that the path of a point on 

a@ rolling circle, can be described in terms of the angle 

rolled through, and the radius. By noting the relationship 

between this angle and ¥, the psrametric equations can be 

obtained. By elimination of x and y, we ere able to 

produce the intrinsic equetion.between S and ¥. These 

are needed in this question. One particular advantage 

of the intrinsic equation is the ease with which the 
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radius of curvature can be found, although this is not 

required in this question. We start by finding the equat— 

ion for tangential motion, and then integrate to find an 

expression for velocity. Follow this in the section 

below. SWITCH OFF. 

is This expression could, of course, be obtained 

by using the energy equation between A and P. Do this 

for yourself, using the x axis as the zero of potential 

energy. When you agree with this, switch on the tape 

again. SWITCH OFF. 

20. To complete the question we need to find ds/at 

and then integrate again from A to the origin. Choose the 

negative square root as S is decreasing while t increases. 

Do this and check your working afterwards. SWITCH OFF. 

el. This is one way of solving this particular 

example, but notice in the equation of motion, that there 

is a restoring force, proportional to the displacement S. 

This mesns that the solution of the differential equation 

can be quoted immediately. Derive this alternative solution, 

end then check this in the next section of the booklet. 

SWITCH OFF. 

22. The next question is about a particle moving 

in a tube in the form of a catenary. When you have read 

example 7, draw a diagram showing the forces and velocities. 

When you have completed this, write the normal and tengent- 

ial equations of motion for the particle. Check these 

with those in the booklet, afterwards. SWITCH OFF. 

235 The two downward foces will eventually bring 
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     the varticle to rest, and then start i% movin 

    the vertex again. Because the tube is   

particle will oscillate continually about the verter. c 

are again able to use two methods of finding s, energy 

or integration. Carry out the integration first using 

vdav/aS for 8 and a@y/ds for sing. The variables v and y 

can then be separeted. The positions of instantaneous 

rest are found by the standard method of putting v = 0. 

Check these afterwards. SWITCH OFF. 

24. You should now find v, using the energy equation 

Remember, you will need to find the work done by the 

veriable force. Again, check this in the booklet after-. 

wards. SWITCH OFF. 

25l6 You will notice that in this second atoms 

we have applied the nergy equation directly from the stert, 

to the position of rest, and avoided the step of putting 

v= 0. To find the reaction at the apex, use equation 2, 

with the appropriate values for v, p and y¥. Check this 

afterwards im the next section. SWITCH OFF. 

26. The next question is about a bead on an ellipt— 

ical wire, which will involve another radius of curvature. 

Reed it, and study the diagram. SWITCH OFF. 

27. Notice that by launching the bead to the left, 

we heve a positive acute configuration for y. However, 

the x value is now negative and this must be borne in mind. 

Again, write the eouation of motion for the pertiele 

along the inward normal, and use the energy equation to 

find v. When you have done this, check it below. SWITCH 

OFF. 
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28. You should now be eble to find the reaction, 

but remember that parametric differentiation is needed 

to find dy/dx, and extra care should be taken with the 

second derivative. When you have finished this, checkit 

below. SWITCH OFF. 

29 By equating R to zero, you are able to obtain 

the given equation. There is, however, the additional 

requirement that the reaction shovld be positive at the 

start of the motion. Insert the appropriate value for 

theta, and deduce the inequality. Check your method 

afterwards. SWITCH OFF. 

30. The next question, example 9, introduces an 

extra complication with a frictional force acting along 

a parabolic wire. Read this, and look at the position 

of this force in the diagram. SWITCH OFF. 

Sale We can now write the normal and tangential 

equations of motion. Both of these contain R, which 

must be eliminated. As we wish to integrate with respect 

to psi, we must also manipulate ro. Follow this working 

in the next section. SWITCH OFF. 

32. This differential equation reduces to a standard 

first order linear using the substitution v =p. It can 

then be solved with an integrating factor. Determine 

this, and apply it to the equation. Check this afterwards. 

SWITCH OFF. 

33- The remaining integral needs to be determined 

Separately. The straightforward method of integrating this 

expression by parts, is to split the term involving the 

tangent into the secant and its differential coefficient. 
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Then carry out this integral. Afterwards, check this. 

SWITCH OFF. 

34. This result needs to be considered in the general 

equation, and the constunt of integration determined using 

initial velocity. To obtain the final result, find the 

angle given when v = zero in the exvression. Check this 

in the next section afterwards. SWITCH OFF. 

35:6 The last question is about a particle moving on 

the inside of a cycloidal wire, that is, it is only 

restricted on one side. Read it thoroughly and draw 

your diagrem showing a position of the varticle before it 

falls from the wire. Attempt this question in the stend—_ 

ard woy, that is, using energy to find the velocity, end 

making the reaction zero to find the point of departure. 

When you have finished, check your working overleaf. 

SWITCH OFF. 

36. This completes the work on ‘Restricted Motion’. 

Please rewind the tepe before you remove it from the machine. 

Thank yout 
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APPENDIX 9, 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 9 to be used with TAPE 9 

"Central Forces" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience.) 
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Folar Coordin 

    

Path r = f(@) Se 

=i + réj 

2 a= k =i(h- r8*)+ 22 (278)5     

Pole 0 Initial line 60 

Hence the acceleration in the outward radial direction = (F - ré?) 

and transverse acceleration = ee $ (x 6) in the sense of @ 

increasing. 

Under the action of a force directed towards the pole, 

  

  

'F = ma’ gives 2.2 (2? 6) = 0 ive. r76 = c= x(r8)/ 
t 

Note = + 176? # r 

When you have studied this, ; 

SWITCH ON. 

EXAMPLE 1 

Masses m, and mg are attached to the ends of a light 

inextensible string, AOB, and rest on a smooth horizontal table. 

The string is in contact with a fixed smooth peg at 0, and the 

portions of the string OA (= a) and OB (= b) are in a straight 

line. The mass mg is projected horizontally with a velocity u 

perpendicular to OB. If the string remains in contact with the 

peg and all motion takes place on the table, prove that the mass 

ma reaches the peg with velocity, 

u |@2 a(2bta) 
(asd) J (mi4ma) 

The diagram is overleaf. 
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Position 

0 
< a te b —~P A 

2 

mz 0 ‘| 

u 
At_time t 

When you are ready, ma 

SWITCH ON. 

Use 'F = ma' for m at A 

mz =-7 osentd) 

for mg at B, radially, mg(r— ré*) = -7 wea (2) 

No transverse force gives r*@ = constant = r(r@) = bu owe (2) 
t=o 

When you agree with these, 

SWITCH ON. 
  

From (1) above, mr =T 

Add to (2) (mi+mg)F - mgr? = 0 
2 2,2 

from (3), ve -b2,   

Mg b?u? 
Hence, ros 33 (matie ) 

Multiply by r and integrate. 

Pa Seon 1 mgb*u? 
2 2r* ° mMa+Mg) 

mg <u? when 9=0, r=b, r=0, C = O(ma+ma) 

2 2 eg _ _Mgu Bb 

r= (atts) G ie *) 

(Continued on the next page) 
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) sou ima 
Sr A (mi+ mz 

The positive root is required for my to approach the peg. 

When mz reaches the peg, r=a+bd 

giving, velocity of m, = X=-fs Ge peas 2 i 7 ~ (a+b A (ms+m2 

Hence velocity ma is negative, as expected. 

SWITCH ON. 
  

[K.E. + P.E.]. = [K.E. + P.E.] 
. 0 

In this case all the energy is kinetic. 

Ama(r? + 126) + dma(-x)? = meu? 

$ b?u? use eOR0 ies ena 

F p?u? ° 
and hence mg(r* + wa) + mir? = mu” 

2 2 

and r? = ae as before. 

SWITCH ON. . 
  

EXAMPLE 2. 

A particle ,of mass,m,on a smooth table,is attached 

by a light string ,passing through a small hole in the table, 

and carries an equal particle ,hanging vertically. The former 

particle is projected along the table,at right angles to the 

string ,with velocity 2eh, when at a distance 'a' from the hole. 

Find the tension in the string in the general position. 

If ris the distance from the hole,in the subsequent motion, 

show that, 

a) coh an - *) + g(a-r) 

ii) the lower particle will be pulled up to the hole,if 

the total length of the string is less than 

| . jah + 
q 4 wi

p + 

(The diagram is overleaf). 
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When you have studied this, 

SWITCH ON 
  

radially , m(F - ré?) = 

‘F = ma' for A, 

-T coe 

transverse direction gives r*6 = constant = r(xrd ) =a,] 2gh 
i ¢) 

for B,vartically, mx =m-T 

From the diagram, x + r = Gonstant 

hence Zale fm oie (hana x u 

C (say) 

r 

When you agree with thesa, 

SWITCH ON 

(2) 

(2) 

(3) 

  

Rewrite (3) as m(r+g)= 7 

Eliminate r with (1) to give 

from (2) 

hence 

\prom (2) 

m(r6*+ g) = 20 

2 
o( 22500), Baek 

20h 
T = mg(1 + =")   

Add (1) and (6) to give, 

m(2¥ = r67+ ¢) 

2 

Bae BR 
re 

(Continued on the next page). 
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Nultiply by r and integrate 

- er 

when @=0, r= 0 and r = a, hence D = g(ath) 

i.e. ee ef - =) + g(a-r) 

SWITCH ON. 
  

  

Zero of P.E. 

  

  

ng 

let & = original length of string below 0, then 

x + r= constant =f+a 

oré=r+x-a 

[K.B.+ P.E] = [K.B. + P.E.] 
t 0 

im(z? + r°6) + $m(-x)* - mex = 4m(2gh) - mg(r+x-a) 

: en, 2a%gh > i.e. $y SE + 2? = ogh — 26(ra) 

. a? 

res ent = 7) + g(a-r) 

SWITCH ON. 
  

Write os) -g(x-a) 

£, (m2) [a(rse) - =| u 

(Continued on the next page) 
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t= & (ma) [an +B - @-3) | 
Notice that fF = 0 when r = a, which is the initial condition. 

For the hanging particle to rise in the subsequent motion, 

r must be greater than a 

i.e. (ra) >0 

Since r* must be positive, so the square bracket must also be 

positive. 

y n? ae 
i.e. on > (2-3) 

h 
2 

  

  

2 

2hUB 6 r< 4 lan 4 B 
d 4 

; ih he 
and Teen "3+ [oo +E 

when f is again zero. Hence the hanging particls will be 

pulled to the hole if the total length of the string is less 

thanr . 
. max 

SWITCH ON. 

  

EXAMPLE 3. 

P and Q are two particles, each of mass Dy 

connected by a light,inextensible string ,of length 2€ which 

passes through a small hole 0, in a smooth horizontal table. 

P is free to slide on the table, Q hangs freely. Initially, 

0Q is of length 2, and P is projected at right angles to OP, 

with velocity Find the maximum and minimum distances 13° 
of P from O,in the ensuing motion, What do you conclude from 

one of these? 

Do not read the solution overleaf unti] yours is complete, 
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f- — Zero of P.E, 

From the diagramsr+x = 2 so Pee at 0 

henceysP=-% ... (1) andr =-x seo (2) 

Throughout the motion,r®6 = constant = r(r8) =f aa soe tS) 

  

(K.n. +P.) = [K.E. + P.z.] 
t 0 

dm(z? + 128?) + 4m(-%)? — mg(2e - r) = dm (*$*) = mee 

. 3 
Hence, using (1) and (3), r= lee se - gr 

For max. and min. distances from 0, r=0 

i.e. 5r°- 7r*é+ 462 = 0 

(x-£)(3r? - 4re - 427) =0 

(m£)(3r + 2€)(r2€) =0 

r = 2 and Pini = £ as r cannot be negative. 
max in # oy 

When r = 2€, the particle Q has been lifted to the hole. 

SWITCH ON. 
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A particle P, of mass m, which moves in a planz, 

is attracted towards the origin Osof rectangular coordinates 

(x,y),by a force 9mr, where r = OP, Initiallysthe particle is 

projected from the point (a,0),with velocity u, parallel to 

the axis of y. Prove that the projectile describes the 

ellipse a Si =1 

= Same Ls Raa eee 
Be ~~ - s uatt 

wa ad mo SK 
/ ms \ 

J \ 
1 WwW 

Oo }—>i 

ee 

In
 

  
When you have studied the vectors, 

SWITCH ON. 
" ° 

R
Y
 

  

'F =ma' gives 

“ a 
mr =- 9mrr=-— Snr 

aX+49 =- 9(ix + Jy) 
Equate coefficients of i and j to give 

x =- 9x and y = — oy 

2. 

Consider x =- 9x, i.e. £3 + 9x =0 

x =A cos 3t + B sin 3t 

when t = 0, x = a, hence A =a 

X =~ 3 Asin3t + 3Bcos3t 

when t = 0, x = 0, hence B =0 

i.e. x =a cos3t coe 

SWITCH ON, 
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The differential equation for y,is ¥ + 9y =0 

so y = C cos3t + D sin3t 

when t = 0, y =0, hence C = 0, 

y = 3D cos3t 

when t = 0, y =u, and D = 

wi
le
 

so y= 5 sin3t 

i.e. Bie sin3t 
u 

Rewrite (1) as 2 = cos3t 

Square and add these equations to give 

2 2 
G) + io) ak which is the given orbit. 

SWITCH ON. 

10. 

  

A particle ,of mass myis attached to an elastic 

string,of modulus A, length 'a', the other end of which,is 

attached to a fixed point on a smooth horizontal table. The 

particle lies on the table,and is projected with velocity 

v, at right angles to the string, which is initially just 

taut. Show that the greatest extension of the string in the 

subsequent motion is 

  

amy” /a +b 
a be 

where b is the greatest length of the string. 

Bo not read the solution overleaf, until you have completed 

your own, 
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at time t 

  

Throughout the motion, r°8 = constant = r(ré) 

  t=o 
2 

P.E. in the string = 4 = 

[K.2.+P8.] = Ike. 4 PZ] 
t 0 

. 2 

$m(r? +176?) + Alwat = $v? 

'e 2.2 2 

a i +) + Alea)" = mv? 

bet 1 

2 2 

sa. y8/, _ &.\ _ Alma)*® v0 9) = 

ut (ma) [Ei(oe) - 2(ma)] 

So % = 0 when r = a,which is the start of the motion. 

He
 

is also zero when r= b, where 

2 

#2 (bia) - % (b-a) =0 

2 
i.e. extension = b - a = aa ( ) 

SWITCH ON. 
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EXAMPLE 6. 

A particle,of mass m,is projected with velocity 

vosat a distance 'a' from the origin, and it moves under 

a central attractive force ald, + 4) If the direction of 

projection is perpendicular to the ee vector, and 

2 
vo? = 4 + = show that the particle will again be moving a? 

at right angles to the radius vector,when r = ee 

At time t 

Vo at t =0 

When you have studied this, 

SWITCH ON. 
  

Use 'F = ma', 

: - ae ie hp 
radially ,m(r - ré7) =- ti 

transverse direction,gives r*6 = constant = ao = avo 

t=o 

When you have checked these, 

SWITCH ON. 

238.



13-6 

Aaa 
From these equations, fF = 2. re 

Multiply by r and integrate, 

2 2 2 ay eve A L 
at Bee oe ee 

When t = 0, 9=0, r=a, andr=0 

2 
pyeoe eA Le WAS Ate ey Ee eee: 

boncesC) seo) 2o* 7) Bas eate cag ea" Shan oa 
2 a 

cee ee Ale ee Ae 
and 3 = oer + 7 3a) ar’ G+# 

When r = 0 (i.e. at an apse) the particle moves at right angles 

to the radius vector, 

i.e. ar? — Jar +a? 0 

0 " (2r = @)(r ~ a) 
So r = a at the start, and the other apse is at r= 

ni
e 

SWITCH ON. 
  

EXAMPLE 7. 

A particle is projected from a point,at a distance 

'a' from the centre of force, and moves under the action of 

4 
the attractive force Xe - a) per unit mass. The velocity of 

projection is 3 at an angle vant 442) with the outward 

radius vector. Show that the apsidal distances of the orbit 

are,2a and 2L ; 

  When you have studied this, 
239. 
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vere Sn PEA eae xe MN 2 ex 
EOS eon AN at ele di! 

Jia ey 
oo ic Ay] 2 

va = £ FAX .cosa- $ PAA, 3 - aI5A 2 213 A seas Gee 
For the transverse motion r°@ = constant = »(r8)},_, 

2 ayeteoa® BA = aVa = 2a JS eee (1) 

SWITCH ON. 
  

'F = me' radially, 

m(P - vit) = om - 5) 

= 4 
From (1) tee ork   TAs 

Multiply by P and integrate, 

eee ee Desa Are 
er’ 2 Ni

ke
 

when t = 0, @=0, r =a,and r = Va = ee 

2 

hence C = 2 

x? 19Aa? Bata Ar? 
Di eo 8 nagpnt! = om 

At the apses, r =0 

hence 4xt— 19a7x* + 12a = 0 

(in? a5) (5 tia*) <0 

r= ee or 2a 
ere 

(Remember 'r' is always positive). 

SWITCH ON. 
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Differential Equation of the orbit for a central 
attractive force. 

As 
  

  

Te
y " ~ aF(2)i 

the force function F(r) 

Ie
 

aan See ee CTO 
A 

The plane of the motion is defined by OA ana Ue 

The differential equation of the orbit is 

a?u x se) 
aoe 7 OF Ay 

where u =4 » F(u) = force function in terms of u. 

and h = r@ = r(ré) 
  t=o0 

The solution of this differential equation contains two 

arbitrary constants, which must be evaluated from the given 

conditions. 

When you are ready to proceed, 

SWITCH ON. 
  

EXAMPLE 8. 

If a particle, P, moves in a plane under the 

action of an attractive force £ per unit mass towards the 

pole O, and the particle is projected from a point A,with 

velocity 2b at right angles to OA, where OA =a, show 

that the particle describes the curve, 

The diagram is overleaf, 

241.



  

16. 

8 

3 

Z rl tee 
a 43 

ye ql 
@------a-------- pA 

When you are ready, 

SWITCH ON. 
  

1G) ee oe and F(u) = p> 

. 2 2 
h = r*@ = r(r6) = of Eytan 

2. 

D.E. of the orbit is S440 

0 to 
i
r
 

| 

" 

Bi
ld
 e 

dé ‘u 

a?u Ses Se 
oeeu- is wig 

a?u io 
i.e. GF ee! 

or (p® + Z)u =0 where D = 4. - = 46 

General solution is u=A sin + B coog 

when t= 0, @=O0 andu=>, hence B = = 

Le neato cos? and 77 u=A sing + Bee 

SWITCH ON. 
  

u ah, @ cose = + sin’ ae 
x 2a Ae ae he. 2 2) at 

poten (Hi. eam InN a -r -( cos ai sing) 28 

when t =0,0=0, r=0, r°6 =h, hence A = 0 

This curve.is such that r increases steadily,as @ increases, 

and r eventually becomes infiniteswhen 6 reaches 180°. 

242, 
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EXAMPLE 9. 

A particle of mass,m,is attracted by a force =, 

towards a fixed point 0, where k is a constant. It is pro- 

jected from a point A, which is distant 'a' from 0, with 

velocity ae yat an angle tan™*(4) with 40 (he. with the 

inward radial direction.) Show that the orbit is 

n Sia oe. 

Do not read this solution until you have completed your 

  

  

  

owns 

0 

F(r) =, , and F(u) = ce 

h = r°6 = r(ré)| ity Pax [5 
|t=o 10 

D.E. of the orbit is rd tus E(u) which gives, 

a. 2 . e (D? - 9)u =0 where D = a5 

or (D-3) (D+3)u = 0 

General solution is 2 =u = Ae®? + Ber 8? 

(Continued on the next page). 
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18. 

el
e At t=0, 6=0 andu = 

‘ Ze ties 5 SAG B welauncl) 

Differentiating with respect to t, gives 

I He
 = 3(r?6)(Ac®? — Be789) 

=0, r6=h = 2 ® oo u ° a 

d and r=- Vp=- 
P
l
y
 

@ 
hw
 a3i fe” ‘a Jo 

ie ae o (a-B) 

hence = = (A - B) ase a) 

From (1) and (2), A= 

eI
h and B =0,so the orbit is, 

= ae" 29 »which is a spiral into the centre of force, 

SWITCH ON. . 
  

= 244,



APPENLIXN 9 CONTINUED 

SCRIPT FOR TAPE 9 

CENTRAL FORCES 

ae This is the tape to be used with Booklet 9 of 

‘A Revision Course in Particle Dynamics' by Kenneth 

Jackson. It is concerned with problems in two dimensions 

where the use of polar coordinates for velocity and 

acceleration components are appropriate. These are 

mainly connected with orbits, but also cover some examples 

on connected particles. You should read carefully the 

information revising this for you in the first section 

of the booklet. SWITCH OFF. 

2s When a string is attached at some fixed point, 

or passes through a hole in a table top there is a natural 

pole for the motion, with a central force provided by the 

tension in the string. The first example is of this type, 

and we shall work through it together. Read the problem 

and study the two diagrams relevant to it. SWITCH OFF. 

3. The peg 0 is the pole for the motion of B, 

while m, moves along a straight line AO. Notice that 

the variables x and r are measured from 0, and remember 

the connections between velocity and acceleration 

components. As the string OB turns through angle 9, we 

can write the equations of motion at A and B. These 

are written for yow below. Study them carefully. SWITCH 

OFF. 

4. By eliminating T, 9 and x you can obtain an 
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expression for r, which can be integrated by using the 

integrating factor r. Insert the initial conditions to 

obtain a general expression for the radial velocity of B. 

The question is completed by using the appropriate value 

for r when A reaches the peg. Check your work in the next 

section afterwards. SWITCH OFF. 

5e This velocity may be also found quite neatly, 

using the energy equation, which is demonstrated for you 

in the next section. Notice how we need to use the two 

perpendicular components of velocity for the kinetic 

energy of M5 SWITCH OFF. 

&e The second question also concerns a string, 

but this time passing through a hole in a table. Read it, 

and study the diagram, and note that the hanging ‘particle! 

introduces potential energy into this question. SWITCH OFF. 

Te You should be able to write two equations of 

motion for A, another for the hanging particle B, and 

also the relationship between r and x using the information 

in this diagram. When you have completed these equations 

. check them in the section below. SWITCH OFF. 

8. You have here all the information required to 

solve the problem. Find the tension by eliminating r 

between equations 1 and 3. The expression for r is again 

faound by using an intesrating factor. Carry out these 

processes, and check them afterwards. SWITCH OFF. 

3. As an alternative approach, you should also 

use the energy equation to deduce this expression for b 

Remember that there is potential energy for particle B 

246.



to be considered. When you have finished, ¢heck this it 

the next‘scetion of the booklet. SWITCH OFF. 

  

10. The last answer concerning the length of string 

may be deduced from the expression for £, which cen only 

be positive or zero. By factorization and completion of 

the souarre, tliis expression can be rewritten es shovm in 

the next section. The deduction on the length of string 

cen then be completed. Follow this analysis carefully. 

SWITCH OFF. 

die The third example is similar to the previous 

one, and is for your own working. Again, use the energy 

equation. When you have finished, check your working on.- 

the next page. SWITCH OFF. 

12. It is not always necessary to use polar coord- 

inates when dealing with central forces, as is shown by 

example 4. Read the question and study the diagram 

earefully. SWITCH OFF. 

aoe When the central force is proportional to 

Gisplacement, it is possible to work using cartesian 

coordinates. The question can be started by writing the 

equation of motion in vector form, as is shown in the 

next section. Follow this carefully. SWITCH OFF. 

14. Solve the differential equation for y in the 

seme way, and use the initial conditions to find the 

arbitrery constents. Eliminate the time t between the 

equations for x and y to obtain the ellipse. Check your 

working in the next section. SWITCH OFF. 

el Se Example five is for your own working and concerns 

an elastic string. You will find it convenient to use 
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polar coordinates and the energy equation sgain. Remember 

that the string will have a potential energy of its own. 

Check your working afterwards. SWITCH OFF. 

TGs The next example is about a more complex central 

force, and we shell work through this together. Read it, 

and study the diagram carefully. SWITCH OFF. 

Di. The action of this central attractive force 

is to cause the perticle to move in the plane which is 

specified by the initial velocity and the radius vector. 

Thus the motion is again conveniently described using 

polar coordinates. Write the radial and transverse eqauat-— 

ions of motion in the usual way, and then check these 

below. SWITCH OFF. ‘ 

18. Now find r by integration, using r as an integ- 

rating factor. You will find it helpful with this 

complicated force, to substitute for v nought in the 

constant of integration. Complete the problem, and remem— 

ber that the particle moves at right angles to the radius 

vector when v = 0. Afterwards, check your working overleaf. 

SWITCH OFF. 

ag. Exemple 7 is similar to the previous one. Rea 

it, and note particularly in the diagrem, the direction 

of the initial velocity. SWITCH OFF. 

20. Yoti will notice the added complication of 

having the particle projected at an angle alpha to the 

initial line OA. Resolve this velocity into its components 

Vy and V5 and find the constant of transverse motion. 

Check this working overleaf. SWITCH OFF. 
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ras Now find r by integration in the usual woy. 

Remember, when you find the constant of integration, that 

the initial value of r is the velocity component ve. 

Complete the question and then check your working below. 

SWITCH OFF. 

22. In many problems connected with central attract- 

ive forces it is important to find the orbit. This can 

often be derived from e stendard second order differential 

equation in u and ©, where u =1/r. These ideas are 

revised for you overleaf. SWITCH OFF. 

23. These equations are of fundamentel importance 

in finding orbits and should be memorized. We shall 

illustrete the process in example 8, which we shall work 

through together. Read the example, and study the 

diagram. SWITCH OFF. 

24. The advantage of this method, is that we can 

use our knowledge of differential equations to find a 

solution for u, end hence find the polar equation of the 

orbit. Follow the working for the first part, very 

carefully in the seetion below. SWITCH OFF. 

25. As you see, we have evaluated one of the 

constants immediately from the initial conditions. The 

Second may be obtained from the initiel radial velocity, 

but we must differentiate with respect to the time variable, 

t, in order to do this. Again, follow the remainder of 

the working below. SWITCH OFF. 

26. i You should now try the last example by your 

own efforts. It is a little more difficult. Read it very 
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cerefully, to ensure thet you have the correct initial 

radial velocity, when you come to find the arbitrary 

constents. When you have finished, check your solution 

with that in the booklet. SWITCH OFF. 

27. This completes the work on Central Forces. 

Please rewind the tape before you remove it from the 

machine. Thank you! 
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Appendix 10. 

A REVISION COURSE IN PARTICLE DYNAMICS 

by 

Kenneth A.H.Jackson 

BOOKLET 10 to be used with TAPE 10 

"Orbits" 

Read the instructions on page 1 thoroughly. 

(Omitted for convenience.) 
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EXAMPLE 1. 

A particle, of mass m, moves under the action 

: my, Z : ; 
of the central attractive force ar which is always directed 

towards the fixed point 0. Find the orbit, if the particle 

was projected from the point AO , withv 

at an angle of 60° with AQ, where AO = 3a/2. 

elocity + 

  

When you have studied this diagram, 

SWITCH ON. 
  

F(r) = = and F(u) = put 

Le a ee Ob Smee yee eee h = r°6 Tee) | eae Ba eese zk. 

2 

D.E. of the orbit is a +us FO), which b 

4 
oe u eae = Sau" 

po 

a?u 2 
1i.@. ao? = 3Jau* -u 

SWITCH ON. 
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(i) put p = & de 

au _ ap _ a mm _ a 
pions 66 on dey) cues 

Hence p§2 = 3au® - u eet CL) 

(ii) It is necessary to find p when t = O in order to determine 

the constant of integration, and to do this, p must be re- 

written as follows, 

  

edt me GL /E\ pes OP Le ae 
Baz agihs do \ajeg  aeysde =) Putas ad 

Sep) pee eae oe °O8. D= 5 ==> 

SWITCH ON. 

p dp = (3au? - u)@ 

= 2 
Beso®-2 4c 

when t =0,u= %, ro=s-Va=- ZF 

nove p= (~ 2) 2B) = 2 

Jal'5 

amen 25) z (Se) (5) +C giving C =0 
2 Ge ON 

  

and p® = 2au® - u? = u?(2au - 1) 

SWITCH ON. 

p=+ waau-1 

Now Poe that # = - n(+ wfZan = 2) 

Initially f is negative, and this will be so if the positive 

root is chosen. 

; ao] pe 
i.e. ag =P = wi 2au - 1 

du 
Var e =o Teale te) 

continued overleaf- 
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put 2au - 1 = z* with 2 = j2au- 1 

2741 
  

  

Then u = “p> and du == as 

SWITCH ON. 

aoe 2dz. 
a Goa) 

6 = 2tan +z +K 

otek SE, 1 
When t = 0,6-0,u= 35, making z= = 

43 

ae 3° 

Hence 1 + van'(Z + é) By o es 2e08(3 x 2) 

a r= 2 a/ 2 eg 
and r= 2a cos'(5 + ¢ 

2n j i Oe ees een 
Notice that r =O when 5+ @ =o ice. 6= a 

and the particle has been attracted right into the centre 

of forces 

SWITCH ON, 
  

EXAMPLE 2. 

A particle of mass m, is attracted towards a 

fixed point 0, with a force a Ca + #) where ris the 

distance of the particle from0, It is projected one 

point A, at a distance c from 0, with a velocity 42) 

at an anglé of 60° with OA. Find the orbit, and the distance 

of the particle from 0 when 6 = 120°. 

Do not turn over until you have drawn a diagram and 

simplified the differential equation of the orbit, 
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h = r°6 = r(ré) = Vi = 2) 
  t=o 

D.E. of the orbit is a +u= 2) » Which becomes, 
d@ 

au 

SWITCH ON. 
  

= =u =A cos$4B sin’ + a 
2 2c x eo 

Soyer rosience = when @ =0, r= c, hence = = oR 

i a eos” im? 4 2. 200 = a O6 cosz + B sing + 3e 

when t = 0,9 =0, b= va = 3/2 

i.e. ane 2a _B yee hencoes = 
3c 2 qd 3 ol'3 

(Continued on the next page) 
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So the orbit is = a he cost - = sing 

Put 6 = 120° to give r = he 

SWITCH ON. 
  

EXAMPLE 3. 

A particle, of mass m, which moves under an attractive 
2 

force nu( $e + =) is projected from an apse at r = a4 with 

speed Ags . Find the orbit. 

Do not read the solution until you have completed your own. 
  

att =.0) 3, 

  

  

F(r) = aul $e + =) and F(u) = mu*(a?u? + 4) 

_ anlau 
h = r°6 = r(ré) See 3k 

  t=o 

2, 

D.E. of the orbit “2 +u - 2) reduces to 

gin) 2 2aS Se 
des. 4 

(Continued on the next page). 
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du 

© 
pi
ne
 

r= 

So p = 0, and hence C =0 

ae =: 

du d*u 
Put p= a6? then aor =P 

2 24 2 

: 2 ea Hence So an 16 +C 

We also have p 

when t =0, @=0,u=+, 

u? 

and p? = 9 (a?u®? - 1) 

° ay =iy 
z fo 5155 

N.B. The initial conditions give no indication whether the 

positive or negative 

For convenience take the positive root. 

root should be taken as r= 0, 

  

Z du 1 er 
Nowa » and 3% = r a6 

——- 
Substitute - 4, = = = & = 2 

to give 

poo -2 f 
ia = 

in */£\) ox. 2 sin 0) =K 5 

where @=0, r=a, hence K = 5 

Eee hatn oo 8 i.e. re=a ein(? ~ 3) = 4 cosy 

This particle spirals into T 

2 
the centre of force, reaching 

O when 6 = 2n 

3a 
3S 

a/2 A 

z a 6-0 

3m 
2 

257. 
SWITCH ON.



Conics in polar coordinates 

  

S @=0 

  
directrix 

The equations are of the forn = = 1+ e cosé 

is the semi latus rectum 

eccentricity e < 1 for an ellipse 

u e=1 fora parabola 

" e>1fora hyperbola 

When you have revised this work, 

SWITCH ON. 
  

EXAMPLE 4. 

A particle of mass m moves under the influeme of a 

force = » Which is always directed towards a fixed point 0, 

with OP = r, and 'a' a constant. The particle is projected 

from a point D, where OD = d, with a speed & at an. angle 

of 30° to DO. Show that the orbit is r = : se0%(3 & 3) 

where the pole is at 0, and the initial line is OD. Also, 

sketch this orbit, 

Do not look at the next section until you have drawn the 

diagram, and produced the general solution. 
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F(r) = = and F(u) = au? 

h = r°0 = r(rd) 2 iu ie 
t=o 

2 
D.E. of the orbit is So tus Fa) » Which becomes 

a?u ae 2 
agree a 

x : 2 
Hence 3 =A cos@ +B sing +7 

SWITCH ON. 
  

ro
 when t =O, @=0, and r=4d, so that A =- 

diff. w.r.t. time 

-4 r= (-A sing + B cos6)@ 

when t =0, o-Oaai--v-- B 

3 ono G2 tenes oe Also 19 =h = 15 hence B = “4 

Hence the orbit is 

4 = é = 3 cosé 2 sing 

First, convert the tem 4 into one, by multiplying through 

a 
by 2 

(Continued on the next page) 
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10. 

Bh eee oe = 1-3 cos@ + %5 sing 

ro
le

 

B
I
R
 

i.e. 

Now combine the circular functionstogether, 

i.e. $ . = = 1+ cos6@ cont - sing sind 

Se pee Ag Hence Sas 1+ c0s(@ + #) 

Put @+ 2 = ¢ then 

$4 = 1 + cos¢, which agrees completely 

with the standard equation,in terms of # in place of 0. 

SWITCH ON. 
  

n
l
a
 

Semi latus rectum = @ = 

Eccentricity = e 1, hence a parabola. 

Axis is given by $=0 = 6+ 4, 1.66 @=—- “g indicating é 

a clockwise rotation of a 

  

aie 4m\ 2/8 , 29 Se vos(@ + co = 2008 (@ PS 

wo aeacoe, oe Aies = > Dnect Se 3 

SWITCH ON. 
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EXAMPLE 5. 

A body of mass m, moves under a central attractive 

force _ » and is projected from a point distant 'a' from the 

centre of the force, at right angles to the mdius vector, 

with velocity & Show that the orbit is an ellipse. 

Sketch the orbit, and find the period, 

Do not read the next section until you have found the equation 

of the orbit. 

  

  

  

Sees pene 2 be ee Bae, h = r*6 = r(r@) aa caer igs 
t=o 

2. 

D.E. of the orbit is 3 ee Ea) » which becomes 

ee do" ge 

: 2 ws ipa i.e. (D¥+1)u = 3a where D= a5 

+ =u =A cosé +B sing + =, 
3a 

(Continued on the next page). 
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When t = 0, @=0, and r =a, hence A = os 

kI
r Diff. wer.t. time - =, r= (-A sin@ +B cos6) 68 

When t = 0,0 =O and r =0, hence B =O. 

The equation of the orbit is 2 . 3 = 1+ $cos@ 

Hence &@ = 2 ande=%<1, i.e. an ellipse. 

SWITCH ON. 
  

If a,B are the semi major/minor axes respectively, then 

2 
B? = oF (1-67) and £ =& 

2 
sop" = 22 = Bq and a = 2a 

Also p? = (2) and fp = al3 

The period is calculated from the constant of the transverse 

motion. 

a ae 2 dé ’ 
bo=r76 | Se at 

So ghat = $r* ae 

T a7 

h 1,2 and 3 dat = gr” dé 

° ° 

1.6. — = area of the ellipse = 7 of 

  

3/ 
So T = on fe (2a) (al 3) = 42a ala 

The phase angle in this orbit was zero, hence 

the major axis coincides with the initial line 

i.e. 9=0. 

  

    262. SWITCH ON.



EXAMPLE 6. 

A particle,of massymsis attracted by a force 

= towards a fixed point O. If it was projected froma 

2 

with speedy¥19p/16a 
to ‘OA, \show that it describes an ellipse, Find the eccentricity 

fixed point A, distant oe from 0, at an angle ee) 

and semi latus rectum of this. Sketch the orbit,and find its 

period, 

Do not look at the solution until you have completed the 

  

  

  

question. 

P 
m1 

my 
r 

es 

6 

0 €-- o-oo ------- > 

F(r) = = and F(u) = yu? 

h = r°@ = r(ré) 2y, = S fs = {Qua 
t=o 

D.E. of the orbit is a +us AY » Which becomes 

any +u a. ae 2a 

u 

ad z 1 
7; =usA cosé +B sing + 5 

2 = ee -i When t = 0, @=0 and r = hence A= @ 
2 

Tama = hk? 
N53 

(Continued on the next page). 
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Diff. w.r.t. time, -=3 rs (-Asino+Beos6) 8 

k
I
P
 

when t =0,0=0, $= vo= Kona 245 - (hia 

  

  

Hence B = — = 

a2l3 

1 a zi z 
Se e088) sing 

2 a r a. 6a ans 

2a _ == 

  

gives € = 2a ande = $< 1 i.e. an ellipse. 

If a@ and fare the semi axes, then 

Boge G@ - $y and pf? = 2a. 

hence a= 2 jh = ba 

A> 

For inclination of major axis, put (@ + 3) =0 

hence @ = - § gives a clockwise rotation of 6” about f 

the focus. 

    

2ua 
3/2 

Period, T. 2ua, = rage ; ba hence T = 1087 [2 & 
45 5 Wd pth? 

Sketch of orbit. 

    SWITCH ON. 
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Velocity in ¢ ptic orbit. 

Consider a particle, of mass m, moving unier an 

attractive force o in an elliptic orbit with major axis 2a. 

PF 

  

  

  

The velocity at any point P,can be calculated 

directly ,from the radial distance y from the formula 

Cees 
ae 3 5 a) 

When you have revised this, 

SWITCH ON. 
  

A particle is moving in an elliptic orbit of 

eccentricity 4, and semi major axis a, under a central 

force a If at one end of the minor axis, its velocity is 

suddenly doubled, find the eccentricity of the new orbit. 

  

  

  
When you have studied this, SWITCH ON. 
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gt te 

A one . 2 (22 i le Since SB = a, so V Ka 3) ines V = Je 

The new start velocity is 2V= of 

Pace een oe ose =a = = = 

i.e. a = 60° and sina = 12 

h for the new orbit = r(r@)| = 4 2V sina 
t=o 

i.e, hal NZ - ice TAG 5 A 3ya 

SWITCH ON. 
  

  

chee, Oa Wy, 
D.E. of the orbit is pt eS ee 

- =u = Acos@ + Bsin@ + as 
3a 

when t = 0,09=0, r=a, hence A = ee 
3a 

Diff. wer.t. time - 4, P = (-Asing+Bcos@) 8 

Mhen t =0,0=0, =, = fd 

r°9@ sh = 3a 

hence ; Be=- ale 

Ls 2 _ 1 sind So aa BS 5 cos@ als 

(continued on the next page). 
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i.e. si
p 

al
e 

hence £ = Ja, and e 

So the new orbit is 

@=-¢. 
H 

a 

+ 2cos@ - N35 sind 

+17 cos(0+¢), where ¢ = tan”* 13 

N7>1. 

hyperbola with the axis given by 

  

SWITCH ON. 
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APPENDIX 2O CONTINUED 

SCRIPT FOR TAPE 10 

ORBITS 

a This tepe is to be used with Booklet 10 of 

"A Revision Course in Particle Dynamics', by Kenneth 

Jackson. It is concerned with more difficult problems 

on central forces, and also considers in particular, the 

inverse square lew. All of this work is a natural prog-— 

ression of Booklet 9° and uses the standard differential 

equation for inverse polars i.e. u = 1/r and 6. Read 

exemple 1, study the diagram, and we shall then work + 

through it together. SWITCH OFF. 

2. Notice in this question, the direction of the 

initial velocity, producing an inwards component. The 

first step in all these problems will be to write the 

differential equations of the orbit, determine the 

force function, and the constant h, and to substitute 

these into the equation. Then the equation must be simp- 

lified as far as possible, without attempting any integ— 

ration. Do this, for the first question, and then check 

your working below. SWITCH OFF. 

Be You will notice, that we cannot integrate this 

on sight, and to make progress, it is convenient to make 

a substitution, which must be developed in two ways. 

Follow this working in the next section. SWITCH OFF. 

4. The result of this substitution is to give 
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equation (1) in p and u which is varieble, separable and 

easy to integrate. The second expression gives p in 

terms of the radial velocity, which is known when t = 0. 

Now carry out this integration end evaluate the constent. 

When you have done this, look at the next section, to 

check your -working. SWITCH OFF. 

5 We cen now take a square root, but we must be 

careful with the sign. The variebles need to be separated 

agein and prepared for the final integration. To carry 

this out however, we need to remove the Squere root by 

an appropriate substitution. Follow these overations in 

the next section. SWITCH OFF. 

6. By completing the substitution on the left gide 

of equation (2), you will be eble to integrate, and then 

eveluate the constant. Replace u as ifr, and, with a 

little manipulation finish the question. Check your 

working afterwards. SWITCH OFF. 

Los The second question has a more complicated 

force function, yet leads to a simple ).E. We shell 

work through this in steges. When you have read the 

question, draw a diagrem and write down the D.E. of the 

orbit. When you heve simplified this, check it. SWITCH 

OFF. 

8. This is a standard differential equation with 

constant coefficients and can be solved in the normal way, 

using the particular integrel and complementary function. 

Write out the general solution end find the two arbitrary 

constants. This will give you the orbit which can be 
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used to celeu ate the required distence. Check your 

answer when you have finished. SWITCH OFF, 

3. You have now seen two different methods for 

integrating the differential equation of the orbit. The 

next exemple, number three, uses the first method. TI.e. 

substitution for du/dO as p. Read the question, draw 

the diagram and work through this one by your owm efforts. 

You will find the second integration easy in terms of r 

and 9, rather than u and ©. Check your complete solution 

afterwards; SWITCH OFF. 

i0% The remainder of this booklet is concerned with 

the inverse square law of attractive force, which is very 

important as it is the Law of Gravitation. With this law 

of force, the orbits are conics, and the polar equations 

of the curves are summarised for you in the next section. 

SWITCH OFF. 

Wks Example 4 is a typical inverse square law 

question, and you can start the working by yourself. Read 

the question, and when you have drawn a diagram, write the 

differential equation of the orbit, and find its general 

solution. Check your working in the next section. SWITCH 

OFF. 

a2. You can now find the two arbitrary constants in 

the normal way, using the initial oonditions. Then try to 

express your answer in the standard form for a conic in 

polar coordinates, by manipulation. Check this result in 

the next section. SWITCH OFF. 

aS You should now be able to state the length of 
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the semi latus rectum, to give the eccentricity end decide 

  

thich type of conic it is. Also, find the direction of 

the axis and sketch the curve. Finally, manipulate your 

equetion to give the stated answer. Check your working 

in the next section of the booklet. SWITCH OFF. 

14 Example 5 aiso depends on the inverse souare 

law and this time the orbit is an ellipse. Read the 

question carefully, draw a disgram, find the orbit equatim, 

and determine 1 and e. When you get this far, check your 

working. SWITCH OFF. 

ales From 1 and e, you can now calculate the semi- 

exes of the ellipse. It is convenient to call then alpha 

and beta, as the symbol 'a' has already been used in this 

question. The orbit can be sketched, and the period pound 

Follow this in the next section of the booklet. SWITCH“OFF. 

a6. The next example is of exactly the same type 

as question 5, and you should work this completely yourself. 

Check your result in the next section afterwards. SWITCH 

OFF. 

ai. The last example concerns the velocity at any 

point in the orbit of an ellipse. Before you consider 

this, read the next section of the booklet which revises 

this result for you. SWITCH OFF. 

266 You should now read example seven, end study 

the diagram drewn for this. SWITCH OFF. 

ales The new velocity at B will enable us to calculate 

the value of h for the new orbit, and thus solve its 

differential equation. Notice, however, that the tangential 
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velocity V, will have components along SB, and at right 

angles to SB and hence we require the angle alpha. We 

are told the eccentricity of the ellipse, and you should 

be able to find the trig. functions of this angle. Do 

thi, and also calculate the new value of h, and then 

check your results. SWITCH OFF. 

20. You should now draw a new diacrem, showing 

the new velocity components. . Then you can write the 

DYE. of the orbit, and obtain the general solution. 

Determine the constants in this, and then write your orbit 

in standard form. You will then be able to obtain the 

eccentricity and the type of orbit. When this is complete, 

check your working. SWITCH OFF. - 

als This completes the work on 'Orbits'. Please 

rewind the tape before you remove it from the machine. 

Thank you! 
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