Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately

(openaccess@aston.ac.uk)



DEVELOPMENTS AND EXTENSLONS OF ROTH'S

MEICHOD OF DOUBLE FOURIER SERECMS WITH

APPLICATIONS TO T SOLUTION OF ELEGTRO-

MAGNETIC FIELD PROBLEMS.

SHEILA GLADYS MUDGE

For the Degree of Ph.D.

September 1973



Summary.
The first part of the thesis compares Roth's method

with other methods, in particular the method of separation of
variables and the finite cosine transform method, for solving
certain elliptic-partlal differential equations arising in practice.
In particular we consider the solution of steady state problems
associzted with insulated conductors in rectangular slots. Roth's
method has two main disadvantages namely the slow rate of con-
vergence of the doublz Fourier series and the restrictive form of
the allowable boundary conditions. A combined Roth-separation

of variables method is derived to remove the restrictions on the
form of the boundary conditions and various Chebyshev approximations
are used to try to improve the rate of comvergence of the series.
A1l the techniques are then applied to the Neumann problem arising
from balanced rectangular windings in a transforuecr window,

Roth's method is then extended to deal with probleas
other than those resulting from static fields. First we consider
a rectangular insulated conductor in a rectangular slot when the
current is varying sinusoidally with time. An approximate method
is also developed and compared with the exact method. The
approximation is then used to consider the problen of an insulated
conduc tor in a slot facing an air gap. We also consider the
exact method applied to the determination of the eddy-current loss
produced in an isolated rectangular conductor by a transverse

magnetic field varying sinusoidally with time. The results obtained
using Roth's method are critically compared with those obtained by
other authors using different methods.

The final part of the thesis investigates further the
application of Chebyshev methods to the solution of elliptic

partial differential equations; an area where Chebyshev

approximations have rarely been used., A Poisson equation



with a polynomial source term is treated first followed by a

slot problem in cylindrical geometry.
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Introduction

Between the years 1927 and 1938, a French engineer,
E.Roth, developed a mathematical method using double Fourier
serics for the solution of boundary value problams in electrical
engineering., He applicd the method to problems of hesat conduction
and to magnétic field problems in electrical machines and trans-
formers although his methods are capable:of much wider application.

Roth's first paper(i) considers the flow of heat in
electrical machines and¢?) deaisﬂwith the thermal and magnetic
fields of current carnyiné conductors, assumed infinitely long and
of rectangular cross-section, in a long rectangular slot. A steady
constant current flows in the axial direction. The problem is then

two-dimensional and is .

(0] N

I
illustrated by Fig.l. |
I
|

Roth assumes the centre line

00' to be a line of symmetry |

and the magnetic boundary :

condi tions are those of

R

infinite permeability along A

BA,AA' ,A'B' while BB' is a ©
flux line. by 1.
Roth next{®) deals with the leakage field in transformers
considering the case ban rectangular transformer window with
balanced rectangular windings. A steady constant axial current
flows in thé windings, and the permeability of the iron at the
iron-air boundaries is again assumed to be ihfinite.,
Roth's method involves the summation of a double Fourier
serics., The rate of convergenze of such series is poor and although

their numerical computation can be much improved if the recurrence

properties of the trigonometric functions are used, Roth did not



realis< this, His next paper(4), written in collaboration
with G.Kouskoff, seeks improvéd—methods of summation of the
double serics and they achieve this by summation of the series
over one variable, |

Roth int®) again considers the leakage field in

transformers but with a more sophisticated configuration as

shown in Figure 2. C‘/7 /Tc
AC,A'C*' and AA' are iron- //;;
B

R

air boundarics and the iron

is assumed to be infinitely

?\3,:2.

permeable, CC' lies along

the centre line of the core

and is, by symmetry, a flux Y by
‘line. The region BB'C'C represents th: iron core and 1s assumed
to have finite, constant permeability.

In¢ &) Roth generalised the confliguration of¢3) shown
here in Figure 1. The permeability of the iron along AR is still
assumed to be infinite but along AB and A'B' the tangential
magnetic field is finite and of arbitrary strength. Also BB' is
no longer a flux line and the windings are not aymﬁctrically
distributed about 00'.

Rererenues(7) and (®)are included for completeness
but are not considered in detail in the thesis. In'7?) Roth
applies his methods to a transformer problem with ciwéular
boundaries. The solution involves double series of Bessel and
trigonometric functions and although Roth sums over the circular
functions the labourr involved is prohibitive. Reference(s) deals
with the magnetic field of a system of rectangular parallei
conductors.

. NE: i I .
In 1967, Hamunond ) wrote a critical account ot



Roth's method listing its advantages and disadvantages and com-
paring it with the method of separation of variables. He
considered the configuration of Figure 1 but with just one
condictor in the slot. To obtain the solution by the method

ol" scparation of variables the slot must be divided into

e e ae o e —m e e geemm———

regions as shown in Figure 3. B Reglcn 3. &
There is a separate solution T
valid in each region and Rlegien 2. 3

6 g fig.3.
continuity conditions must be - -
met across all internal boundaries. A Qeﬁ‘Cﬂ L N

Roth's method on the other hand gives a single solution valid
over the whole region of the slot. Hammond points out that to
apply Roth's technique directly it is necessary that the slot
bound aries are either flux lines or scalar equipotentials, This
restriction does not apply to the method of separation of
variables. Because Roth's solution is a double Fourier series,
the rate of convergence is slow compared with the single series
of the solution by separation of variables. kumondfconcludes
that Roth's method is not suitable for numerical computation. In
the separatipn of variables solution, each individual term in the
infinite series is a linearly indeperdent solution of Laplce's
equation and these individual terms can often be usefully identificd
with different parts of the boundary. In Rotii's svlution, only
the complete expression satisfies the conditions of the problem.
Based on the claims made by Hamnmond inl®) both for
and against Roth's method, the first part or this in&estigation
consists of a detailed description of Roth's method together witn
a critical comparison of Rotlhi's method with the method of
separation ol variubles. The methods are compared from the

{ollowine: points ol view:-



(1) case of derivation of the mathematical Solution valid

over the whole region of the slot;

(ii) numerical computation of the solution;

(iii) rate of convergence of the series solution;

(iv) effect of increasing the number of conductors in the slot;
(v) form of allowable boundary conditions;

(vi) siznificance of individual terms in each form of solution;

(vii) fomn of allowable current density function;
(viii) the conductor cross-section.
For the solution by Roth's method, thc relative merits of the
Roth-Kouskoff techniques as described in{4) are discussed.
(%0 | Mullineux and Reed point out the similarities
between Roth'é method and methods of solution using finite cosine
transform techniques. In fact the two solutions are identical if
the slot boundaries are flux lines or scalar equipotentials.
However, unlike Roth's method, the transform method without
modification can cope with more generalised forms of boundary
condition., If the boundary conditions are of the Dirichlet type
then the sine transform is used and if the boundary conditions
are of the Neumann type the cosine transform is used. As with
Roth's method, the Fourier transform technique results in a single
solution valid over the whole region af the slot. Mullineux and
Reed conclude that, since Roth's metnod appears to be a special
case of the transform method able to cope with only a limited
form of boundary condition, a better comparison would be between
the transéorm n2thod and the method of separation of variables.
To examine this canflict of opinion more fully we

consider a configuration where the boundary corditions are of

mixed type, the normal derivative being specified as known



functions around three sides of the slot while the function
itsolf is spocificd along thﬁ remaining side, To solve this
problem using Roth's method, a combined Roth-separation of
variables technique is derived and this is then compared with
the finite Fourier transformn approach. As a practical example
of the methods we consider the problem of{8) described in

(s)

Figure 2.  An exanmination of Roth's solutioﬁ as given in
is also included. _

One of the chief disadvantages in the use of Roth's
methods is the slow rate of convergence of the double Fourier
series. In an effort to improve this we investigate the effect
of using Chebyshev polynomials rather than circular functions
in the solution. It is well known in the thsory of numerical
solution of ordinary differential equations that Chebyshev
approximation speeds up the rate of convergence of the solution.
Also, little work has been done to date on the aﬁplication of
Chebyshev polynomials to the solution of partial differential
equations and so the treatment given here represents a
significant advance in the current knowledge. Due to the
difficulties associated with differentiation of Chebyshev
polynomials, we consider first Chebyshev approximation in one
direction only, taking each direction in turn. Then we allow
Chebyshev variation in both directions simultaneously. The
various Chebysliev approximations are compared with each other and
with the double Fourier series method. The Fourier;Chebyshev
method reduces the partial differential equation to a sequence
of ordinary differential equations and two methods of solution
are described. This 1is ba;ked up by a theoretical investigation

of the error due to the introduction of the Lanczos t-terms.

Consideration is given to the possible methods of solution when



the boundary. conditions are either of the Dirichlet type or

of the Neumann type, and the effect of slight perturbation

of the boundary conditions is studied. In the double Chebyshev
approximation, a new method for the evaluation of the Chebyshev
coefficients is developed and this is capable of wider
application.

Roth's method and the Chebyshev methods are then
modified to solve the Neumann problem resulting from
rectangular windings in a transformer window. Although Roth
himself realised that, for a solutionifo exist at all when the
surmw uuding iron is assumed infinitely permeable, the total
net current in the window must be zero, later writers*®) and(iz)
do not emphasise this point. We consiler here the simpiest
configuration possible i.e. a primary and a secondary winding
balanced so that the total net current in the window 13 zero.

Prior to ﬁlis investigation Roth's method has only been
applied to probiems resulting from static fields. The next part
of the thesis endeavours to extend Roth's ideas to other classes
of problem. Tn{®) Hammond suggested that one might try
consideration of éddy—current phenomena. He states that a
solution in Rothi's form demands that the conductivity and
permeability must be constant throughout the region under
consideration so excluding most problems of practical interest.

We consider first an insulated rectangular conductor in a
rectangular slot when the current in the conductor is varying
sinusoidally with time. A Roth solution is developed, valid
throughout the whole region of the slot. The Fourier coefficients
are not now calculable dir;ctly but are determined by a set

of linear complex equations for which an iterative method of

solution is developed. The effective resistance and inductive



reactance are obtained by integration of the Poyniing vector.
With the conductor filling the slot, the results are compared
with those given by Swanﬁ and Salmon inl%®) for the fully open
slot,

Due to the difficulty of having to solve a large set
of equations for the Fourier coefficients, a simpler approximate
model is developed. This involves a superposition of a separation
of variables solution on a Roth solution. The results of this
simplified model are then compared with those of the exact
model for a practical range of insulation thicknesses. The
approximate method is used to consider the problem of an insulated
conductor in a slot facing an air gap. This problem is considered
by Silvester in‘14) who concludes that the insulation layer
drastically affécté the complex impedance. Due to the
controversial nature of these conclusions we aim to use Roth's
method to try to corroborate Silvester's findings.

In{%5) Stoll obtained the eddy~-current loss produced in
a long conducfor of rectangular cross—-section by a transverse
magnetic field which varies sinusoidally with time. The field
is uniform and perpendicular to one side of tne conductor. We
use Roth's method to solve this problem and the purpose of doing
this is twofold. Firstly it shows that Roth's method can be
applied to problems other than those associated with insulated
conductors in slots and secondly, the results obtained us ing
Roth's method can be critically compared with those obtained by
Stoll int15), Roth's exact method of solution must be used for

this probleﬁ since the cross-scctional area of the non-conducting

region is large.

The final part of ths thesis reverts back to consideration

of the use of Chebyshev polynomials in the solution of partial



differential equations. It will be shown that Chebyshev
approximations cannot be recommended for the determination

of fields due to rectangular conductors in slots. The
question remains as to whether there exist physical problems
where Chebyshev methods would be superior to other metnods,
for example, the method of separation of variables or Roth's
method. The first exanple to be considered is a Poisson
equation with a polynomial source term and this is solved
using Roth's method, the method of separation of variables
and the double Chebyshev approximation. All three methods of
solution are then compared. Then follows a more general example
in cylindrical geometry, namely an infinitely long insulated

conductor in an annular slot as described

e

e

by Figure 4. It is assumed that . conductor
there is a steady axial current
flowing in the conductor. The
Laplacian is.expressed in
cylindrical coordinates and the //// $;8' L.
solution is obtained using a Fourier—Chebyshév approximation.

To derive the solution by Roth's method or the method of

separation of variabies would involve the use of Bessel functions
making these methods, if not impossible, then very cumbersome.

Not only does this example serve to illustrate the power of

Chebyshev methods in solving practical problems, it also provides

a quantitative estinate of the effects of neglecting curvature

in the solutions for the rectangular slot.



CHAPTER 1.

THE ELECTRO-MAGNETIC FIELD EQUATIONS.




1.1)

1.2)

1.3)

Introduction.

This chapter is’baéed on Maxwell's equations
and the mathematical simulation of the physical problems
to be considered. Althousgh mauy of the results quoted are
well known, it is considered to be worthwhile including
them both for completeness and in order to put the rest of
the treatment on a firmly based foundation. Also we shall

require them for frequent reference in later chapters.

The field eguations.

At all interior points of bodies Maxwell's

equations are satisfied, 1.e.

curl E + f% = 0 1.2(1)
at

curl H - Eg = d 1.2(2)
at

div D = »p 1.2(3)

div B = O 1.2(4)

Macroscopic properties of matter.

In free space,

D = g E 1.3(1)
B = u H 1.3(2)

where €, and My are constants.

For homogeneous isotropic bodies

1.3(3)

o
1=

= € e
B = pou B 1.3(4)

where U, and €, are ,constant throughout the body.



1.4) Ohm's law.

For a conducting medium Ohm's law is satisfied

J = o 1.4(1)

eo!

where o is constant.

1.5) The scalar and vector potentials.

Since div B = 0O there is a vector A such that
B = curl A 1.5(1)

Hence, using cquation 1.2(1)

cur1<§ + fé > =0
at 7

Thus there exists a scalar function V such that, to

within a constant,

E + = - grad V 1.5(2)

mim
RES

1.6) The potentials in an insulatiog mediud.
Since the medium is =20 insulator the currznt density
is everywieres zero,
a) Steady state equativs.
In this case, all quantities are time invariant and

equation 1.2(2) becomes

curd H = 0 1.6(1)
Hence curl curl A = O
i.e. grad div A - VA = 0

e 5 P A
wher‘&VA;:_(W +-é:/-g'+ Ll AX1+AyJ+Ak>.

Twposing the further conditicn that div A =0

this equation reduccs to

VA = 0 1.6(2)



1.6) contd.

b) Sinusoidal variation with time.

;%2 is noglected; the usual assumption for the
range of freque.cies to be considered. Hence 2(uavions
1.6(1),(2) are again satisfied.

Assuming sinus»oidal variation with time t, we may

write

A = R@(ei“’t A*) , =41 1.6(3)

where A* is a complex vector function of position and
Re(z) denotes the real part of z. Equation 1.6(2)

then reduces to

V3A* = 0 1.6(4)

1.7) The potentials in a conduc ting medium,

a) Steady state equations.

A1l quantities are time invariant and Ohm's law
is satisfied everywhere within the region. Combining

equations 1.2(2), 1.3(4) and 1.5(1),

" n J = curl (ur u, H)
= curl B
= curl curl A
= grad div A - V?A.
S.oVRA =-op p 4 A dIVA S 0 1.7(2)

b) Sinusoidal variation with time.

From equation 1.5(2),

E = -grad V- s

—

at

= _}3_]_1 +§3



1.7) coutd.

b)

contd.,
where Ei = - grad V and
B2 o= -2
at
From Ohm's law
J = ofBs + Ea)
= J1 + da
where J4 = 0B =~ o grad V
and Jda 30__122:—0_3%
ot

Equation 1.7(1) is still satisfied so that

2 —_— e
VRA == p (o + da)

2 oA
A - 2 - - J
Hence V u uOO' HypH | 2

at
Writing A = R@(el“’t _4*)

and Jy = R&(elwt gl*>

this equation r educes to
Ik i * - . *
VEA¥ - pop o do A Myt d1

uoJa* 1.7(2)

i.e. VA% - 1 & A¥ = - 4
a 4 rHy =

1.8) Boundary conditions.

The boundary conditions across a surface dividing

two media are

i)

ii)

the normal component of B is continuous and
the tangential components of H are continuous across

a change in medium when the conductivity is bounded.

»



1.9) A conductor in an open slot of an electrical machine.

ANZ
1
AN
\Con on.
© C >y
/
/
/
conductor /
/
X ; /
nsuviavar /
A B \-'\3.5
Leon .
x

Both the conductor and fhe slot have rectangular cross-~
section and are infinite in length in the axial direction.
A current I flows in the axial z-dircction as shown in the
diagram, The slot is surrounded oh three sides by ths iron

core and the fourth side is open. With this configuration
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1.9)

10.

contd.,

[
!

(0,0,3,)

and A (0,0,A ) where A -is independent of z.

1l

a) Constant steady current.

When I is a constant steady current equations

1.6(2) and 1.7(1) apply and the equations to be solved

are
P23 )
R, TA _ in the insulator 1.9(1)
o
P23 3
ana 9P 49 A - p_u J  in the conductor 1.9(2)
an ayd r 0 Z

The compouents of B and H in the directions of the
axes are given by
B = “r“oﬁ = <:fz ’ -ffi ’ d)
ay ox
so that, if AZ is known as a function of x and y through-
out the slot, then the magnetic intensity and flux density
components canb e calculated. The components of grad AZ are

grad AZ <aAz » aAz R 0)
ox ay

so tinat B.grad AZ =0
i,e. B and grad Az are perpendicular vectors. This implies
that flux lines are also lines of constant AZ and a plot

of Az is therefore a flux plot.

Consider now the cross-section of the slot OABC

yA
o ettt
nsulotor B
. Q\g.hn.
won conductor \Con
iﬂ?;u\&kof‘
~
x
rd
o 1WConN | A



11.

1.9) contd.
a) contd.
In practice the permeability of the insulator is the
same as that of theﬂconductor so that across the
insuiator—conductor boundaries, the tangential and
normal components of both B and H are continuous.

Phus throughout the interior of the slot R, g %

v————

ax oy
are continuous. This implies that AZ must be continuous
also. The iron is assumed to have infinite permeability
so that at the iron-insulator boundaries ths tangential

components of H must be zero. This gives rise to the

following boundary conditions:i-

@, = 0 on 0C, AB | 1.9(3)
7%
A, = 0 on 0A 1.9(k)
ay

It is assﬁmed that the line BC is a flux line 1i.e.
A = constant. Due to the form of equations 1.9(1)
and (2), we may, without loss of generality, choose the
value of this constant to be zero. Choice of a different
value for this constant merely alters the level of potential.
Thus we have a further boundary conditionsi-

A, =0 on BC . 1.905)
To obtain AZ and hence the field throughout the slot
we have to solve equations 1.9(1) and (2) subject to the
boundary conditions 1.9(3),(4) and (5).

b) Current varying sinusoidally with time.

Equations 1.6(4) and 1.7(2) now apply i.e.

in the insulator




1.9)

1.10)

12,

contd,

b)

contd,

Ph Pa
72+ zZ -0 1.9(6)
axz ) a,yB

and in the conducting region

PA PA * *
z + z - ia?Az = =p Jiz 1.9(7)
ox° ay °

2

* ]
d i1 b
where AZ an le are given by

*
é* = (030:Az)
* *
g_:l. = (O:O)Jiz)
* *
. 0A oA * .
Again Tz , z , and AZ are continuous throughout the slot.
ox y '

By reasoning analogous to thes steady current case the

boundary conditions at the iron-insulator surfaces are:-

*
9, -0 ono0C, AB 1.9(8)
ax

*
94, -0 onoA 1.9(9)
ay

*
Along BC, AZ is constant but because of the form of
equations 1.9(6) and (7) we may not now assume this
constant to be zero. Sufficient equations are now given

*
for AZ to be determined throughout the slot.

Rectangular windings in a transformer window.

The configuration is exactly similar to that

discussed in paragraph 1.9 except that the region OABC is

now completely enclosed by the iron.



1.10)

13.

contd.
A
ron
c B
nsclatoe
?\3. |
iron o o won
¢ £
el c
- L.
3 3
> 0
o . A
Iwon

Considering the case of.constant steady current
in the windings, equation 1.9(1) applies in the insulator
and 1.9(2) in each winding. Boundary conditions 1.9(3) and
(4) still apply but since BC is now an iron-insulator boundary

the appropriate boundary condition is

A, - 0 along BC 1.10(1)

ay
If I is the total net axial current flowing through the

window OABC,

I= ){E.d_s_ where C is the path OABC.

Q

But H = L <3ﬁg y Eﬁg » 0) so that, taking account
HpHy ay gx
of the boundary conditions along C,
I =0 1.10(2)
Thus for a solution to exist with these boundary conditions,

the total net current must be zero, which means that the

simplest problem we can consider is that of two winaings

with axial currents I and Ia such that
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contd.

I, +I2 =0 1.10(3)

Magnetic energy and leakage inductance.

Consider the case of a constant steady axial
current flowing in the conducting region. The magnetic

energy W stored in a volume V 1is

J/ERE
3 [[fwaa e

v
L ///(aiv(a x H) + A.curl H)
oo - soes o

L/ (axn.as+3 [ Aag
2‘[£ A x H).dS > /z]'A J dv

since curl H = J,

=
1

1l

(S is the surface bounding the volume V).
Consider the volume V formed by taking unit axial length

of the slot, cross-section OABC.

Now A= (O,O,AZ)
1
H= —— <3fz 5 - aAz s 0>
#r#o o 3;‘

. o P 2 ,
LohxE= e (Azax A, a2 AZ,O>

Thus, taking account of the boundary conditions on the

surface S, for the transformer window and for the open slot

(A x H).dS =
/ZA H).d§ = 0

If it is assumed that

_‘l = (O,O:JZ)
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is constant within the volume VC of the conducting region
and zero elsewhere then

1
W = 5 JZ /]]‘AZ dv

v
c

and so the magnetic energy per unit axial length of the

conductor is

1
w=34J, // A, dx dy 1.11(1)
S
c
where 5, is the conductor cross-sectional area, The
leakage inductancel (per unit axial length) is fhen given
by
LI® 1.11(2)

=
]
N

Complex impedance for current varying sinusoidally

with time.

The complex Poynting vector is defined to be

1.+~
3 E x H*
* .
where E = Re(E elwt)
£ -
H = Re( elwt)

~ * %
and z denotes the complex conjugate of z. E , H are

complex, vector functions of position only.
If S is a closed surface bounding a volume V

and dS is in the direction of the outward normal to 5,

3@ xE).as = 3 [[[aivE < E)
{/ZE i) ?Md &

~ * *x ~
%.[[ (H*.curl E - E .curl H¥)av
Y

Il
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* *
From equation 1.2(1) curl E = - iwB and from
equation 1.2(2) curl E* = E*

Nl

* ~
/g.g*dv

I

/S [ 4 Ea- - iw///g,,_g*dv ]
o L4 2 o

¥ ~
*
%./]].i -L dV is real and equal to the average power in

the volume V.

* ~

*x ~

Hence%/// -2 av = 2rp+. Ix
—_—

v
where R is the effective resistance and current

* 3
elwt)

1 [[[ B*. B : .

> = * = dV is real and equal to the magnetic energy

stored in V.

~ *
1 B*.B
JIEERRETrE
v Nrﬂo ~
1(B* x H*).da8 = -
2
S

Thus, integrating the complex Poynting vector over a

i
Y
|l
I
H
*

I I4(R + ddL) 1.12(1)

|
NIH

* ~
I . I*R + iX) 1.12(2)

e

suitable surface enables us to find the effective resistance
and reactance of unit length of the conductor. The evaluation
of the integral is particularly simple due to the form of the

bouwidary condit onse.
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1.,13) Summary.
We have now set up thoe mathematical models of the

physical systems we arc to study. The subsequent chapters
will be devoted to methods of solution of these moiels.

Roth's method of double Fourier series will be described

in detail and critically compared with othsr methods of
solution. Where necessary, improvements and modifications
will be made to his methods in order to make_them applicable
to a wide variety of practical problems. Roth himself and
also later users of his methods dealt only with problems
where the current in the conductor is constant and independent
of time. We shall develop Roth's technique to solve problems

where the applied field is varying sinusoidally with time,



CHAPTER 2.

DESCRIPTION OF ROTH'S METHOD AND COMPART SON

WITH THE METHOD OF SEPARATION OF VARIABLES.
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Introduction.

Roth's form of solution.for N rectangular conductors
in an infinitely long rectangular slot is described in
detail. A constant steady axial current is flowing in each
conductor. The identical problem is then solved using the
method of separation of variables. The two methods for
obtaining the vector potentiul over the whole cross-scction

of the slot are then critically compared.

Description of Roth's method.

il
e [R(a,b)
(0,%)

o
70

KAy, O Q\S_ 3.

4 .

ﬁllb Bllb

O(c,0) Ala,0)

> X

Referring to section 1.9, OABC is the cross-section
of the slot, with sides of length é and b metres as shown
in Figure 8. 0 is taken as origin of coordinates.
Pi Qi Ri Si is the cross-section of a typical conductor in
the slot and the dimensions and position in the slot of this
i'th conductor are as shown in the diagram. Let the current
density associated with this i'th conductor be Jzi' Suppose
there are N such non—overlapéing conductors in the slot.

Then from equations 1.9(1) and (2) we have to solve
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3 3 _ . .y v .
A, 0 A _ { Mo b J, ini th conductor (i = 1,2,3 ...N)
X ay2 0 in the insulator

-£(x,y)  (say)

il

subject to the boundary conditions(equations 1.9(3),(4) and (5))

(1) 2 =0 for x =0, 0<y<bh
ax

(1) %= 0 forx=a, 0<y<D
ax

(iii) ffg = 0 fory =0, 0<x <a
ay

(iv) AZ = 0 fory =b, 0 sx < a.

Assume an expression for Az of the form

2 2
A = C COS pX cOSs .
Z P q Pq P v

Then A, automatically satisfics boundary conditions (i) and

(iii). In order to satisfy boundary condition (ii)

sin pa =0
. T 27 ks . P
.. p =0, S ettt Ta where m is any positive

integer, or zero.
Similarly using boundary condition (iv)
cos gb =0

: 1 31 5m

T .
A R R R (2k+1) 5 where K is any

positive integer, or zero.

(-] . 7?;\
. B m7x 1\ vy
oA, = 2{: Coic 0%~ cos(% + é) b 2.2(1)
=o k=0
2,
where ) deunotes that a factor % is to be included when
m=0
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The function f(x,y) defined over the whole slot

may be expanded as a double Fourier series of the same

form i.e,.

£(x,y) = l;*fg i ' i {Z yrquZiai(m)pi(k)}cognl;—”-‘ cos<k+-]é'->-%z 2.2(2)

When J . is constant in each conductor, o, (m) and p; (k) are

given by
ai(m) - sin(aaimﬂ)—sin(aiimﬂ) (n £ 0)
ai(O) - (asi - aii)”
ﬁi(k) Sin(ﬂgi(1({+1§);r)—5in(ﬁ1i(k+71.2—)7T) 2.2(3)
Ktz

If A, given by 2.2(1) is to satisfy the
differential equation

93A PA
Z + 2z
ox* ay”

== f(x,y),

where f(x,y) is given by 2.2(2), the coefficients C_, are

given by
N
c _ L iil urquzi ai(m)ﬂi(k) for m = 0,1,2 .o
nk -~ 77 p K = 0,1,2 oue 2.2(4)
nw 1ya T
{ ag (k+2) b }

obtained by equating coefficisnts of cosg-gE cos(k+%)%? .
Thus equations 2.2(1),(3) and (4) give the vector
potential A = (O,O,AZ) at all points in the slot, cross-

section OABC, with N rectangular couductors.
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2.3) Convergence of the solution.

From equations 2.2(1) and (L)

, 2
IAZI < Z B lka co%ﬁc cos(k+1§)%
T .
m=0 k=0
t
§13 bl
m=o0 k=o
N
Mo 19 ai(m)ﬂi(k)f

b
and ]ka[ S$—s iz

B o ]

Now, from equations 2.2(3)

2
lg@)] <2 (a £ 0)
]ai(O)! < (azi - aii)ﬂ-
2
lB; ()] < Ty
s N
8 mb” - -
Hence ICokl s (ke)27° “rlJzil<“5i aii)
i=g
a N
and Ikal € 16uob .2 “rlJzil N m#Z O

1=1

1y _af m®b% 1\3
m(k+g) 7 {—a"r +(k+3)

N I
[} )-I-Hoba \ - l
" IAZI S A “rlJzil(aai a1i> Tk +)®
i=1 k=0

N ®
4 - )
' s 2_/ {ﬂrIJZil}z Z -
4
4 : 1y (m?p? 113
i=g m=1 k=0 m(k+%) — +(k+3%)

Now z -(Tc%;)-a is convergent

k=0

313
oo 2 + (k+3)? > 2m <—§>(k+-;-)
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* o s <] o0
Limme i
1y{m®Db kel)?

which is convergent.

Hence the double Fourier series for AZ is
absolutely convergent and so may be summed in any manner,
Since the terms are of the same order of magnitude along
the diagonals shown in the diagram of suffices below, the

series is summed by diagonals, truncating at the M 'th diagonal.

zero diagona’l - 00 /Ol /02 03 Oli- » © @ o o @ @ o o s e o oM
s - - ~ )
first diagonal- 10 I 12 /’15 (l,M-l)
- 7~ - o
2nd diagonal =— 20 //21 22
-
3rd diagonal =— 307 /31
Lth diagonal = 407

(M-2, 2)
(M-l ’ l) P

~

Ss000000 0000
\

M'th diagonal -

=
-
o
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contd.

The truncated form of AZ is then

M M-m
] ™

A, = EZ: { }LJ Cok cos(k+3) %? } cosggE 2.3(1)
m=o0 k=0

where the cosfficients C_, are given by 2.2(4). The
numerical method for calculating this sum efficiently is

described in Appendix 1,

Single conductor in a slot.

When considering just one conductor in the slot

we may drop the i-suffix and writing

3
A, = X He T R(x,y) 2 .1(1)
17,4

then F(x,y) is non-dimensional and is given in truncated

form by

M M-m

P =) {L HELEUD o cos () ot 2.4(2)

{22 m2 + ( k+1§) 3

m=o0 k=0
where a(m) = sin(agmﬂi—sin(aimn) (n £ 0)
a(O) = (aa-ai)’ﬂ 2-4(3)
B(x) = Sin(ﬁzgiiggW)-Sin(ﬁi(k+%)ﬂ)

Estimate of truncation error,

Let 8 .. be the sum of all terms on the (m+l)th

diagonal, neglected in the sum 2.4(2).
m+a

= ° -
SIn+1 = j{: {(:)bg(m+13r) 2 COerX cos<% + % - >%?
r 'E‘l‘z +<H1-P‘2“-I‘>

=0
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m+4

. SN |e(x)] n4l-r
R RS

3
SRR

Using the results of Section 2.3,

m+41

lSm+1l S (ag;gizﬁ + 4—2{: L
im i / 3
2 r=1 r<%+ §~r E%gi +<%+g-r> }

Considering the continuous function of r given

ﬂﬂ=r@+g-I>F%£+@+§_ 7}

2

then f(r) =Owhenr =0 or r = m + % and is positive for

by

intermediate values of r. Hence the greatest term in the

m+41

. z : 1 . . .
series —=— occurs when f(r) is least i.e. elther

f(r)

r=1i

when .r = 1 or when r = m+1

1 1
£(1) a
(et 27 +(me)” |
1 _ 1
f(m+1)

(m+1><%){gi<m+1>9 : %}

and both of these expressions are 0<j%3>

m+1 "

DR

2k,
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A o(#) 2.5(1)

s o _ 1
Similarly ]sm+r| = o<zm)2> 2.5(2)

If the truncation error is E then

8] < 2{: N 2.5(3)

. 1
Consider z (m+r )2.

r=0

Now g(r) = z%:;)g is a positive monotonic

decreasing function of r as illustrated by Figure 9.

\'\ q)
N\

3(0\ cAU) %2\

$V%.(R.

By the standard result,
R R

faMM+g@)<§:aw<[gumr+gw>

o)
r=0

R
! 1. N L 11
1e€e 0~ WR * (meR)? < Ei: g(r) <g R o

r=0
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[+ ]

IR

r=0

14

Combining this with equations 2.5(1), (2) and (3)

8| = o<%> 2.5(1)

Thus the absolute error due to truncating the infinite

series at the m'th diagonal should not be greater than

O(%). It should be emphasised here that this is an upper

bouiid, not necessarily the least upper bound. In fact, in
practice the truncation error is much less than O<%> in

magnitude as can be seen in the following table, The data

used to obtain the wvalues in the Table is as follows:—

o’

as = 0.1, ag = 0.8, f1 = 0.1 fz = 0.7, = = 1.5
The values obtained by the method of separation
of variables (solutions truncated at 30 terms) are given
for comparison., It will be shown later that this latter

solution has converged to within 0.01%.
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Table 1, Values of F(x,y) at selected points in the slot truncating

the double series at 10,20,30 diagonals.

“‘\~\\31\\ﬁ Separation of
(x,¥) 10 20 30 | variables
(0,0) 6.19295 6.19650 ~ 6.19603 6.19613
(0,b/2) 4. 77017 4. 77316 4 77299 4. 77305
(a/2,0) 6.18270 6.18705 6.18624 6.186L45
(a/2,b/2) 4.87935 4.88048 4.88068 4.88076
(2,0) - 5.96918 5.96797 5.96795 5.96791
(a, b/2) 449420 4.4 9356 L. L9346 INRCLINN

From the table it can be seen tmat F(x,y) has
converged to within 0.1% when the infinite series has been
sunmed up to and including the 10'th diagonal. As can be seen
from the contour plot given in Figure 10, F(x,y) changes more
markedly with y than with x. Because of this in the evaluation
of F(x,y) over the slot more mesh points were used in the
y-direction and the mesh chosen was % = O(O.l)l,% = 0(0.05)1.
As explained in  Section 1.9 this contour plot is also a flux
plot. The times taken to evaluate F(x,y) over the given mesh
on an L.C.L. 1903A computer (using the algorithm given in
Appendix 1 to sum the Fourier series) are given in the
following table.

Table 2. Computing time taken to evaluate F(x,y) over a mesh
of (11 x 21) points (x,y)

M Computing time in seconds Number of terms in double
| . Fourier serics.
l .

20 18 231

30 2l 496
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The times glven include compilation time of the
program and time for calculation of the coefficients ka
in each case. It should also be noted that when M = 30
there are more than twice as many terms to be summed at
each mesh point than for the case M = 20. Comparison of the
corresponding computing times gives some indication of the
efficliency of'the numerical algorithm for suwmming a Fourler

series described in Appendix 1.

2.6) Magnetic energy and leakage inductance.

From S=ction 1,11 the magnetic energy per unit

axial length of the conductor is

g o

- M M-m ﬂzb OLQV
- 2“I‘uOJZ b z‘{ ELI.H%E_QQ___ f cos(k+1§)1§£dY}/ COSB?— dx
4 b a 1\3
T m=0 k=0 (E) . +(k+2) a1VQ.
pab
Bab b
Now /.cos(k+%)%¥dy == p(k)
B1b
o
agﬁ

and/ cosBZ ax = £ a(n)

o1&
3 M M-m a
W= 2Ur#onaba ! { [a(m) B(Xx)] }
78 = (%) n?+(k+3)?

The total current I and Jz are related by

I =J,(aes)(fa=P1)ab
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M M-m
m=

7° (g~ ai) ﬁa—ﬁi

(o] k=0

The leakage inductance L per unit axial length is then,

from equation 1.11(2)

M M-m

L (D) 2 z {z [a(n) (k) I? } 2 6(2)

7 (oa-0s)? (Ba-ps)? = =L (2?2m2+(1<+%)2

Figure 11 shows the variation of

M
NN Lem) ﬁ(k)]2 with when as = O. = 0.8
L}:L } th M wl 0.1 az = 0.8,

il et <“> + (ked)?

= 1.5. The graph shows that this
double series converges rapidly. In addition it is an

expression which is readily evaluated.

Advantages and disadvantages of Roth's metiod.

The chief advantage of Roth's method is that it
gives a single solution for AZ which is valid over the whole

region of the slot. This solution is in the form of a double

00 00
. . ‘! nux
Fourier series ). C cos—

m=o0 k=0

COS(k+%)%¥ and each

coefficieunt ka is a combination of circular functions.

The C_, are therefore easily calculated using a digital
Jue

computer. Likewise, using the algorithm given in

Appendix 1 the double series is readily evaluated at any

point (x,y).- The method of obtaining the solution is very

straightforward and re

eV ) e

quires a minimum of mathomatical manipulation.

|
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There are two main disadvantages of Roth's
method, the first being the slow rate of coavergence of
the double Fourier series so that a large number of terms
are required to give an éccurate solution, For example,
sunming up to and including the 10th diagonal i.e. 66 terms
gives a solution converged to within 0.1%. Obviously

the rate of convergence would be worse than this in the

calculation of B = <a_§r a,- 2

AZ, O> and better in

the calculation of magnetic energy (say) where the integral
of AZ is required. However, with the availability of fast
electronic computers, the slow rate of convergence is not
considered to be a severe disadvantage when weighed against
the case of computation of the solution and the advantage
of having a single expression valid over the whole region
of the slot.

The other disadvantage is that to apply Roth's
techniqus directly it is necessary that the slot boundaries
are either flux lines or scalar equipotentials. This means
that Roth's method canpot be applied, without modification,
to regions bounded by material of finite permeability. However,
we shall show in the next chapter how to superpose a Roth
soluti'on on a solution obtained by separation of variables
to circumvent this difficulty.

A further advantage of Roth's method is that the
solution is of ths same simple form no matter how many con-

ductors are in the slot. The coefficients ka now involve

K}

a sum of terms (equation 2.2(L4)) and the solution then proceeds

ag before. We still hayve a single expression valid over the

whole region o the slot.
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In the Roth solution, only the complete expression
satisfies the conditions of the problem. Each individual
term in the double serieé does not satisfy Poisson's
equation and can therefore have no physical significance.

Perhaps not applicable in most known practical

cases at present, Roth's method can.be applied when

mix
JZ(X,Y)COS > cos(k+%)%? is :ny integrable function

of x and y over the conductor area., It is, of course,
possible that, in this case, the integration over the
conductor area to give the coefficients ka might have
to be performed numerically but this is no real dis-
advantage.

Also the method can still be used when the
conductor cross-section is not rectangular. Pramanik
in(18) considers the case of a conductor of triangular
croés;section in a long rectangular slot. A conductor cross-
section with any mathematically defined bounding curve can
be dealt with by Roth's method using the techniqgues of
double integration. Again it is possible that the integration

might have to be performed numerically but this is not a

severe disadvantage.

2.8) Roth-Kouskoff method for reduction of the double Fourier
series to a single series.

From equation 2.4(2) the untruncated form of
F(x,y) is .

o -5 A e oo

m=o0 k=
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To illustrate the Roth-Kouskoff technique we shall reduce
this double Fourier series to a single series. From
4)

reference ¢ we extract the following results far

O<y<b,0<p<1l

R sin(k+1§),31r cos(k+—12-)1’% 5 2
-5 (- #(F)- #*)acf <
o (k+%)a | 2 ( ~<\b b

gﬂm<_%>ﬂ%>p 2.8(2)

i

e ————

3.3 3
k=0 (k+%) _Eg— + (k+%)2> 2<éa§ > cosh Egﬁ

sin(k+g) 78 cos(k+%)%¥ . co;hgﬂxcoshgﬂh(l-ﬁ)
- {1— a a }if%<ﬁ

i

.o Wmpb, . W7D .
sinh —=f sinh— (1 - %) } ir £ > B

2 3 { b
2(? 2 ) m7bh
3 cosh —
a

a

Using these expressions in 2.8(1) we can reduce the double
series for F(x,y) to a single series, However it canbe seen

that we shall then have a different single series for each of

the three regions 0 < % < P1s P S % < Pa, Pa S % < 1.

Thus by using this technique we have lost the simplicity of
having a single expression for F(x,y) valid over the whole

region of the slot. In addition the resulting single series

for each region is a more complicated mathematical expression

which does not lend itself well to numerical computation. In
fact, as will be seen later, by using the Roth-Kouskoff methods
)

we have reduced the solution to the identical one which would

be obtained by the method of separation of variables. We are

to discuss this latter method in detail in the next paragraph

togethsr with its inherent disadvantages. Suffice it to say
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at this stage that the Roth-Kouskoff method suffers from

similar disadvantages,

Method of solution by separation of variables.

Consider first the case of a single rectangular
corductor in the slot as illustrated in Figure 12. The

diff'erential equation to be solved in the region OABC

together ya
CZ(9 b\ \Q%YU“ 3) &

bt -

A0 N

fiq. 13

u’.\(l\ ‘Qﬁ%}\O“ 2.
Yy =B - - -
1=f

~Ol‘11
N%¥ .
O A (a,0)

with the associated bourdary conditions are the same as
given in Section 2.2, but to obtain a solution by separation
of variables we have to divide the slot into three regions
because the current distribution is limited to part of the

slot. Choose these regions as follows:-

Region 1 % ﬁl: 0 <x<a,
Region 2 B % Ba, 0 £x € a,

¢ s S [ ]
Region 3 pa < % <1 Osxsa
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3 3
In regions 1 and 3, g Az + g Az =0
ax® v
In region 2 azAz + azAz = - u_po J _(x)
r Yy
ox? ay?
. X
where Jz(x) = 0 if 03 <oy
= Jz(constant) if a1 < E < ag
= 0 ifaaszél
a

If A , A and A represent A in tle regions 1, 2, and
1z’ Taz 82 z
3 respectively then

o«

!
i mmux m
m a a

12
m=0
and A =ZG cos----mnh———-(—) {;Go<-x>
3z m b
m=1

taking account of the boundary conditions at x = 0, x = a,

y = 0ard y = b, The constants Cm and Gm will be evaluated

by matching AZ and aAz across the boundaries % = B4 and
ay

Lo

For region 2, the current density function Jz(x)

can be expanded as a half range Fourier cosine series given

by -
? max
Jz(x) - 4, g. a(m) cos—=
T

m=o0

where a(m) is given by tquations 2.4(3).

Thus we have to solve in region 2
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9°A 3 w

az+aA2z —— 2JZ Nt (m) mx
= - 0 . a(m) cos

axz a‘y:a r -_‘IT a

m=0

The particular integral of this equation is of the form

R T,

21
m=1

Thus in region 2

o0

- { ! .| m7x 1 1
A . —Z :<Dm couh-—;f'Z + Em s:.nh—z:‘z> cos—= + 3 DO + 3 Eoy

2
m=4
_upod (a(0) s _ 2a® ' a(m) mrx
r z{ =~ ¥ = ) A oSy
T
M=4

where Dm and EH1 are constants to be found by equating AZ,

and aAz across % = PB1,P3a.
ay
As in equation 2.4(1) define functions Fy,Fz,Fs

valid in regions 1,2 and 3 respectively  Then after much

mathematical manipulation we obtain, from the continuity of

AZ and aAz at the boundaries % = f1,P2

g

4

Fa(x,5) = g— (aa-as) (Ba-fiz) (2~Pa=Pa)

+ =L G {COSh_(l_ﬁi)_COSIh—(l_ﬁg)}os—-—— cosh-—7—r'Z 2.9(1)

CESAEE
B (x,3) = g‘(aa_an[mz-pi)(z-pi-m-(% - p)}

z{: 9492 { _ sinn(®2, ) sinn(P22(1-5))
b I
<2> m=1 cos hEl-Z—b

X

_ coslﬂa@(l_pg) cos;f{x :}cos—a— 2.9(2)

coshE:@-
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Fo (%,7) = {‘(aa-ai)(ﬁa-ﬁi)(l _ %>

= - . mpb .. mgb
T olm)l sinh———fg-sinh——
+ 2%_ —i—li inh==fa=-sinh="=0, sinhgﬂg 1 = Lleos2E 2.9(3)
2<§> m? . myb & b &
= cosh
1

m=

Using these results a flux plot for the whole
area of the slot was obtained for the case a1 = 0.1, oz = 0.8,
Bs = 0.1, B2 = 0.7, % = 1.5 truncating each infinite serics
at first 30 terms and then 40 terms. The changes in the values

of’ AZ between these two cases were within 0.01% so the solution

was deemed to have converged when truncated at 30 terms.

2.10) Advarttages and disadvantages of the method of solution by
separation of variables applieu to the problem of a conductor
in a slot.

To apoly the method of separation of variables
for one rectangular conductor in a slot it is necessary to
subdiwde the slot into 3 regions with a different expression
for AZ in each region. Thus we no longer have a single
expression for AZ valid over the whole region of the slot.

Each expression is a single Fourier series of the foru

cosh
¢ cos2IX } BTY  and each coefficient G involves
% m a : a m
sinh
m

s combination of hyperbolic functions. Considerable

manipulation is required in order to obtain the

e whole slot since AZ and aAz have to be

ay

matched across the internal boundariezs between the regions.

mathematical

solutions over ti

Having derived equations 2.9(1), (2) and (3), before a

i tempted it is necessary to scale
computer solution can be attemp 5

the terms involving hyperbolic functions so that only

ntial terms with negative exponent occur. Otherwise

expone
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oy 3 mpx _ 7
terms like COSh—;— will cause numerical overload as m
gets large. Aguin this involves considerable mathematical

manipulation,

One of the advantages of the method is that

o

it converges at least as fast as does ;{: %3 so that

comparatively few terms are required fﬁ?ian accurake
solution. The solution has converged to within 0.01% when
30 terms of each series are included.

The method of separation of variables does not
suffer from the restriction that the slot boundaries should
be either flux lines or scalar equipotentials, By super-

position of solutions the method canbe used with a boundary

condition of the form

(1) oA, f(y) for x =0, 0<y <b

Jx

f(y) for x =0, 0<y <b

or (ii) A

z

for example, with similar conditions at the other slot boundaries.
Up to the present we have considered the case of

a single conductor in the slot. As the number of' conductors

increases, so does the number of regions of division of the

slot. For example suppose there are two condwbors in the slot

as shown in Figure 13.

<ls B
l*‘ — el - - - .
o . fig 13,
3
_a—- - 3
: .
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The minimum number of regions fequired now is f'ive, There
will be a different solution valid in each region and continuity
conditions must be met across all intemal boundariss. This is
a tedious and lengthy algebraic exercise and a severe
lLimitation on the use of this method,

An advantage of the method of separation of variables
is that each term of the series in the solution is a solution
of Laplace's equation and can be sometimes usefully identifiéd
with different parts of the boundary so making the soluti on
more meaningful,

Considering again the single conductor in the
slot, to obtain the solution by the method of section 2.9
the currsnt density function Jz(x,y) in the onductor must be
such that it can be expanded as a Fourier series in x. It is
then necessary for theAresulting series to be such that it is
possible to evaluate the particular integral of the differential
equation. A further constraint on the method 1is that the

conductor must be of rectangular cross-section.

Conclusions,

Roth's method gives a single solution for AZ valid

over the whdle region of the slot. The derivation of the

solution requires the minimum of effort and the resulting

double Fourier series can readily be evaluated using a .digital

computer. The method of separation of variables requires tas

slot to be subdivided into regions with a separate solution

valid in each region. Considerable mathematical effort is

required to obtain the solutions since continuity conditions
must be met across all internal bounlaries. Even when the

mathematical solution has been derived, further manipulation
4 < e L
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is required to render the solutiohs suitable for digital
computation, The rate of convergence of the Roth do uble
Fourier.series 1s slow by comparison with the single series
of separation of variables. However with digital computing
facilities available this is not considered to be too serious
a disadvantage when weighed against the ease of computation
of the solution and the advantage of having one expression
for the whole slot. Summarising then, far less human effort
is required to obtain a flux plot using Roth's method than is
needed using the method of separation of variables.

Roth's methiod is particularly advantageous when
there are several conductors in the slot. For a separation
of variables solution, as the number of conductors increases
so does the number of regions of subdivision of the slot. There
is a different solution for sach region and the algebra required
to match the continuity conditions across the internal boundaries
becomes prohibitive. Roth's solution on the other hand still
consists of a single expression valid over the whole slot, the
Fourier cocfficients being slightly more complicated.

A disadvantage of Roth's method is that it requires
the slot boundaries to be either flux lines or scalar equi-
potentials. The method of separation of variables can deal with

more general forms of boundary condition making the latter more

generally applicable in practice. In the next chapter we shall

show how & Roth solution may be supzrposed on a separation of

variables solution so combining the simplicity of Roth's solution

for the discontinuities in current density in the slot with the

generality of separation of variables for dealing with more

generalised bound ary conditions.

Only the complete Roth solution satisfics the
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conditions of the problem; individual terms in the series
cannot be interpreted meaningfully. In the separation of
variables solution every term in the infinite series is a solution
of Laplace's equation and can often be related to different

parts of the slot boundary.

Using the Roth-Kouskoff methods, the double

Fourier series of Roth may be summed over one variable to
produce a single series. In doing this we lose the advantage
of having a single series valid over the whole slot and in
fact the solution becomes identical to that obtained by the
me thod of separation of variables. So againwe have the
difficulties imposed by having different solutions in
different regions of the slot and by having solutions which
must be scaled before a numerical solution can be attempted.
However by using Roth's method followed by the' Roth-Kouskof'f

. A
substitutions one avoids the problem of matching AZ and 9 %
ay

across the internal boundarics. On the whole, though, it is

considered better to work with the double series directly and

tolerate its slow rate of convergence.

Another advantage of Roth's method is that it
canb e used when the conductor cross-section is bounded by

any mathematically defined closed curve. The method of

separation of variables requires the conductor cross—-section

to be rectangular. Also with a general current density func tion

in the conductor there might well be difficulties in finding
ticular integral in the separation of variables

the par

solution. Roth's method can be applied with a gencral

current density function but it is posasible that in some
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cases the coefficients ka in the double Fourier series
might not be obtainable in closed form but would have to

be evaluated using numerical integration,

4l.



CHAPTER 3.

GENERALISED BOUNDARY CONDIT LONS.
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Introduction,

In this chapter we shail show how a Roth solution may
be superposcd ona separation of variables solution so allowing
Roth's method to be used when the slot bourdaries are not flux
lines ov scalar equipotentials. Briefly the Roth solution is used
to deal with the discontinuities in current density in the slot
and the wmethod of separation of variables is used to cope with the
inhomogeneous boundary conditions. This Roth-separation of
variables combination is then compared witlh the finite Fourier
transform approach and we apply both methods of solution to the
problem described in reference(5). For completeness, Roth's treat-

ment as given in(s)‘is also briefly discussed.

Description of the problen,

As described in Figure 8, there are N conductors in the

slot and the differential equation to be solved throughout the region

Osx<a, 0y <b is

Phy L T (xy) 3.2(1)
ax:!d —%'J
N
where f(x,y) = Z z {Z prquziai(m)ﬁi(k)}osin';Lx- cos(2k+l)-£%
m=o0 k=0
Z Z {Zurquzlal(m)ﬂ (r)}(l-—( )70l Bios T 3.2(2)
m=0 r=o0

1
where Zﬁi(2k+l) = ﬁi(k)
and ai(m),ﬁi(k) are given by equations 2.2(3)
[ﬂ'(Zk){l—(—l)Zk} = 0 but the termm is included for completeness]
i

The boundary conditions are generalised as follows:-
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1

/s
b
A
®

. oA :
(1) 2z = fi(x) when y=0,0

ay
(1) 2
ax

= fa(y) when x= 0, 0 sy <b
ek A
(iii) f_g = fa(y) when x = a, 0 €y < b
0x
(iv) A, =1f4(x) wheny =Db, 0 <x <a

It is assumed that the functions fy(x), fa(y), fa(y) and fq(x)
are known over the given intervals and that they satisfy the
conditions necessary for expressibility as a Fouriler series.
Expand the functions fi(x) and f4(x) as half range Fourier
cosine series over [0,a] so that

-]

fi(x) = Z‘am cos-m—Z-X 3.2(3)

m=0
= |

and ﬁ@h}i%m%z 3.2(k)
m=0

The functions fa(y) and fa(y) are defined over the interval
[O,b]. Assume that for b <y € 2b,
- T3 (2b-y) 3.2(5)

- fa(2b-y) 3.2(6)

fo(y) can be expanded as half range Fourier cosine

fQ(Y)

and fa (Y)

il

1l

Then fg(y) and

series over [0,2b] in the form

-]

fa(y) = z b, cos(2k+l)12r‘%

k=0
o

M (c1) ) cost where 2b b ,(1-(-1)%% =0 3.2(7)
_Z br(l"(" ) CO“’Qb ak+1 Kk ak

r=0

L]
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d =
and fa(y) ZE: Cye cos(2k+l)g%
=0

_ It T r t k
= j{: Cr(l—(—l) )cosE%x where 26, = Ck,(l—(—l)2 )C;k= 0 3.2(8)

I'=0

Boundary conditions (i), (ii) and (iii) allow for
an arbitrary, tangential magnetic field strength along the
bottom and sides of the slot. The mouth of the slot is no longer

a flux line (boundary condition (iv)).

3.3) The Roth-separation of variables solution.

Write A = Ay + Ay + Ag + A+ A 3.3(1)
Briefly, A takes account of the conductors in the slot and

Ay4,Az,As,A4 take account of boundary conditions (1), (ii), (ii1),

(iv) respectively.

2
A
Let %;é + g;g = - £(x,y)

so that As,Aqs,As,Aq all satisfy Laplace's equation

i.e. Qi? + g;g =0 3.3(2)

ox

The boundary conditions to be satisfied by A,As,A3,As,As are

given in the following table
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potentials
Bound ary A A, As Ay
. dA A
(1)y=0,0sx<a E& =0 §§1=f1(x) %%9: 0 géa -
.. = _QA _ 6A1 . dAg d
(11)x=0,05b x0T C = =fa (y) ais =0
L5 )x= 98 _ o |9As 9ha oA
(iii)x=a,0y<b Pl 0 Fri 0 == 0 5§3=f3(y)
(iv)y=b,0sx<a | A =0 |[AL =0 Az = 0 A = o

As given in section 2.2

TABLE 3.

A = ZE: j{: C cos(k+%)%§ cos—=

m=0 k=0

1
o

s sl slp
2)

ox

Ag=f4(x)

where the coefficients C , are given by equation 2.2(L).

45.

1
=
©
P
<
g

3.3(3)

Assume a separation of variables solution of equation 3.3(2) in

the form ¢ = X(x) Y(y).

1 d%x 1 3%y
Then X rrc i

Taking the positive

sinh
X = cosh} Ax
o+ px
sin )
T= cos} A
y+ &%

Taking the negative sigm,

Y dyg -

+ A3

if A£ O

ifAa=0

if A£O

if A =0

X is

and Y in hyperbolic func tions.

Taking

(iv) A4 is of the form

where A 1s some constant.

sign the solutions are of' the form

expressed in circular functions

sccount of boundary conditions (ii), (iii) and
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o0

A, = o X oMb/
1 j{: P, cos— Sth—E—<% - %) + %PO< - %) 3.3(4)

m=a

The coefficients Pm are found using boundary condition (i)

and equation 3.2(3)

m mwb
Pm<- —é—> COSh—é"—‘ = am(m % O)

1\ _
Po(}%) =%

From boundary conditions (i), (iii), (iv),

3.3(5)

Ay = E{: Qe 005(k+%)%¥ cos (k+%)%? <% - ﬁi{} 3.3(6)

k=0

The coefficients Q are found from boundary condition (ii)

and equation 3.2(7)
Qk<-.(k+-§;3-)%r>sinh(k+%)LbEE = b, k=0,1,2 ... 5.3(7)

Proceeding in this way,

o

As = ZE: Ry cos(k+%)%¥ cosh(k+%)%% 3.3(8)
k=0
where
Rk<(k+1§)-g) sinh(k+1§)1b% =0, k = 0,1,2 +u. 3.3(9)
and Ag = 2?: S, oosggz coshggx + & 5, 3.3(10)
m=1
where & cosh Egﬁ =d, B = 0,1,2 «ss 3.3(11)

Thus we have obtained the solutions for A,A; ,Az,As and Ay and

hence for AZ from equation 3.3(1).
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3.4) Discussion on the Roth-separation of variablecs method.

The method is a powerful one, extending Roth's
technique to cope with general boundary conditions. Roth's
method is used to obtain the vector potential solution due to
the conductors in the slot, the method of separation of variables
being inconvenignt in this case for the reasons given in Chapter 2.
We superpose on this solution potentials which arise due to
the general form of the boundary conditions. These potentials
are obtained using the method of separation of varisbles., Thus
we are utilising Roth's methods when the use of separation of
variables is inconvenient and so optimising the derivation of
the complete solution for the whole slot.

The problem described in section 3.2 specifies the
normal derivative of AZ round three sides of the slot and the
variation of AZ along the fourth side, this being the natural
extension of the insulated conductor problem described in
Chapter 2. The Roth-separation of variables method described here
can also be used when the boundary conditions specify either
AZ around the slot boundary (Dirichlet form of boundary conditions)
or the normal derivative of AZ around the slot. boundaries (Neumann

conditions). For the Dirichlet problem the Roth solution will be

of the fomm

A= j{: j{: C . sim—= sintrL (A = 0 around the slot)
= . . mk a b

k=1 m=2

and for the Neumann problem, of the form

o0 00
1 k 0A
A - z{:' ZA: C cosmzx cos—%x o = 0 around the slot)

k=0 m=0

Obviously therefore, the method has wide scope for application
)

to a variety of problems. It is particularly useful when the
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boundary conditions specify the function over part of the
boundary and the normal derivative over the remainder., In this
case Fourier transform methods are cumbersome as will be shown
in the subsequent sections,

A further point in favour of the Roth~separation of
variables method is that only the contribution to AZ from A
is a double series. The remaining contributions are all single
series with a consequently faster rate of convergence. Also,
each termm in each single series is itself a solution of Laplace's
equation and can be identified with different parts of the
boundary. Tnis makes for a more meaningful physical inter—
pretation of the solution.,

On tle other hand we have lost the advantage of having
a single solution valid over the whole region of the slot and tho
contributions to AZ from A;,A3,A; and A4 being series involving
hyperbolic functions require further mathematical manipulation
before a computer solution can be attempted as explained in

Chapter 2 when considering the disadvantages of separation of

variables solutions.

Fourier transform methods.

To solve the problem of section 3.2 by the transform

A

methal , consider the region 0 € x €a, 0 £y < 2b. This will

make far easier comparison with the Roth-separation of variables

combination. The configuration is as shown in Figure 1l4.

Boundary comdition (i) is as given insection 3.2.

Bounijary conditions (ii) and (iii) now become
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©,2) Bla,2b)

ST T T T T TR

+ J;

<L
>
© Ale,0)
Figure 14.

(ii) fﬁg = fa(y) when x = 0, 0 s y <2
ax

(iii) ffg = fa(y) whenx =a, 0 < y €£2b
ax

For b < y < 2b, the functions fa(y), fa(y) are given by

equations 3.2(5) and (6) so that equations 3.2(7) and (8) still

apply.

In order to use the finite cosine transform approach
we must speccify the normal derivative of AZ along B'C'., Assume

therefore that the remaining boundary condition is

(iv) fﬁg = f5(x) when.y = 2b, 0 € x < a.
a

Yy

£5 (

use of boundary condition (iv) of section 3.2 when the solution

for AZ is known.
By taking the mirror images  of the conductors as

shown in Figure 14 the differential equation to be satisfied is

x) is an unknown function, which will be determined by making
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cquation 3.2(1) whare f(x,y) is given by cquation 3,2(9).
Taking the finite cosine transforn of' equation 3,2(1) with

respect to y, we get

) -<%>2A;=f1<x)-<—l)”fs<x) - Z Z IRICAOINE

il—(-l)rXCOkm”X 3.5(1)

2b
1
h A = r
where Z ./ Az COSE%X dy
(o]

1

2b
dA r
At x =0, _z = fa(y) cosE%X dy
dx

o]

= b;(l-(~l)r)b using equation 3.2(7)

]
Similarly, at x = a, A, _ ¢ (1-(-1)")b
dx

Taking the finite cosine transform of equation 3.5(1) with

respect to x gives

A:(r,m)&%jw» <—§-g>2}) 280 (1-(-1) )z Hyht I )ﬁ (r)

2 [(—l)rem—am} + b(l—(—l)r){(—l)mc; - b; } 3.5(2)

N

using equation 3.2(3) and writing

a
" ' mux
Az(r,m) =./ A, cos—— dx,
(0]
a
nyx _a
and‘/ fs(x) cos— dx = 75 -

(o]

tiei *known and to be determined
The coefficients e are unkno

n
i i S ion 3.2, Vote the
using boundary condition (iv) of section 3.2, Note that AZ(O,O)
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is undefined and putting r = m = 0 in equation 7.5(2) gives

o = o 2.5(3)

S0 giving the unknown coefficient €0 .

The inverse transform is

L%— ‘__°_°‘\ 1 'E"\ Y 1" nrK Ty
EZab) 21J : Az(r:m) COS™ = cosny 3.5(4)
=0 1

Considering sepavately odd and even values of r equation 5.5(2)

becones

A (2k+1 m){ <§?> <%k+1§n> J 2ab “r“oniai<m)ﬁi(k)

. §<-em-am>+b<e1>‘“ Gy,

form = 0,1,2 ...,k = 0,1,2 ...
" /K 3"
A (21{ m){_ (mj> +<—%—> j

The coefficients e m= 1,2, ... are obtained by applying

1
1

%(e -a ) form= 0,1,2 ...

k=0,1,2 ... 3.5(5)

Z

boundary condition (iv) of section 3.2. From equations 3.5(4)

and 3.2(4)

o
oo

T
Z_/ AZ(I‘ m) 005—2— d for m = 0,1,2 ...
r=0

e 2N a0 = g ' 3.5(6)

Using equation 3.5(5) this becomes for m #0

(o)
’ k=0 <%§> * <ﬁﬁ>

Making use of the known series

3.5(7)

]
oY
8
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-1
3 3
(BT (k’lf o . .m7b
k=0 <"‘a > + _b> ™ Sll’lh—-——-a

]

, m£0

2m7r b
e =~ a + 4 i ._]m'IT _
m m m a S1n a ) m = 1,2,3 s e e

When m = O equation 5.5(6) become s
n
AZ(O,O) = ab do

Equations 3.5(3), (4),(5), (8) and (9) give the complete

3.5(8)

3.5(9)

solution for A over the required region 0 <x < a, 0 <y < b. For

the problem considered in Chapter 2 when the functions
fy,fs,fs and f4 are all ideuntically zero, it can be seen that

the solution obtained by the transform method is the identical

one to that obtained by Roth's method.

Discussion on the Fourier transform me thod.

Fourier transform methods. are most conveniently

applied when the boundary conditions are either of the Dirichlet

type when the sine transform is used or of the Neumann type when

the cosine transform is used. Tor mixed boundary conditions of

the type given in section 3,2, the method is not so suitable

since considerable mathematical manipulation is required to

obtain the solutlon.

An advantage of the method 1is that it gives a

single solution valid over the winole region of the slot in the
form of a double Fourier series. Such a solution is readily

evaluated numerically using the technique of Appendix 1 but £

solution will require tne summation of a large numbzr of terms

since the rate of convergence 1S poor.

The boundary conditions are includad in the
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Fourier coefficients and this makes the physical interpretation

of the solution rather difficult and not so obvious as for the
Roth—separaﬁion of variables solution. In addition each term

of" the series is not a solution of Laplace's equation and can

have no physical significance. By summation over one variable

of the parts of the double series arising {rom the boundary conditions,
it is possible to thain the identical solution to that obtained

by the Roth-scparation of variables combination but this is not

recommended as it requires considz=rable mathematical effort. The

Roth method is a much shorter route to the same destination.

Practical application,

As a practical application of the two methods

described in this chapter consider the configuration shown in

Figure 15, 3
©, Q) E 0(a,0)
C Blo k)
Ob
©,m . o
Ay O-
ol O
P Q
pib B.b
- > O
o) A, 0)

Fi:(’ure 15 .

PQRS is a single conductor in the region OA3C. The boundaries

OA. OE, AD are iron-air boundaries of a transformer and the
2 b )

iron is assuned to have infinite permeability. The boundary
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ED represents the centre line of the core and is by

symnetry a flux line, Thex‘ectangular region CBDE represents
the core iron having a constant finite relative permeability
Zr' Let Aiz’ Aazbe the z-components of vector potential in

the regions OABC, CRDE respactively., Then the differcntial

equation to be solved for A is
1z

3. 3
ad Aiz . 9 Aiz - {% prquZ in PQRS
ax* ay* 0 elsewhere in QABC

subject to the boundary condit ons

. JA
(1) 22 =Owheny =0, 0 €£x < a

(ii) aAiZ Owhen x=0,0<y<b

1

1
o
-
(&)
/A
<
/A
o’

(iii) 17 = 0 when x

The differential equation to be satisfied by Aaz is

a%a o*A , . . ‘
37 + 3z = 0 in region CBDE subject to the boundary
P P
ox ay
conditions
(i) A, -0 whenx =0, bsy<ec
x
(ii) A, =0 whenx=a bs<ysec
Jx
(ii1) 4,, =0 wheny =¢c, 0 <x % a.

Across the boundary BC,
(1 4, =

Loy L -
(i) == " I T
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Using the method of separation of variables the

solution for Aﬁz is given in the form

where the coefficients Bm are to be determined from the

boundary conditions across CB,

Solution for A |
17

Referring back to section 3.2, Aiz is to satisfy
equation 3.2(1) where now N = 1 so that the i-suffix may be

dropped. The functions f4,f3,fs are all identically zero and

-]

fa(x) = Ei: B cost sinb=l (c-b)+ % Bo(é - g)
m=q,

Hence from equation 3.2(4)

£
(o} (o} Cc

(o]
1]

d =B Sirﬁlinlr (C—b) m = 1’2, e
m m a
a) Using the Roth-separation of variables method.

As in section 2.4

a3 o T mx
A= o J b EE: Z{: Coy cos(k+%)%? cos——
k=0

T4

m=0
c = _a(m) k)
mie 20 2+ Tk 19
A 3

m), p(k) are given by equations 2.¢(3).
)

where

and a(

to Alz

3.8(1)

3.9(1)

3.9(2)

3.9(3)

The contributions

from A,,As,A of section 3.3 are all identically zero and
1



3.9)

56.
contd,
a) contd, . ' ,
o MX
b= Qe m
Aa Z/ Sm cos—3 cos PO % So 5-9(4)
M=a
where 8, = Bo<? - h)
c
B sinh—=L (c-b 5.9(5)
SII],: o a ( ) m:l,2,3 see
coshlm}2
a
combining equations 3.3(1) and 3.9(2).
The solution is then
Aiz = A + Ay 3.9(6)
Theummmnc%fﬁcmnml%(m:(LLQ...)ama&tﬁmm
from
1 /2A 1 /oA
-[.-1- 12 = : i 32
r ay y:b #r ay y:b
Using equations 3.8(1), 3.9(3), (4), (5) aud (6) and vquating
coefficients of cosﬂgz leads to
-— be k 1
Bo = by, po Jz ;;'E{: (-1) " (k+3) Cok 5.9(7)
k=0
- 1 . T m7b
ana (B2 1 conBH(om) + § sinf(o) st ]
m| a r
Hy
Lyod b K)o for m = 1,2,3 ... 3.9(8)
= Z - (‘1) ( +2> mk 250
-
k=0

i i it i ible .to sum these infinite
Using known Fourder series, it is poss

series giving

B =2 ﬂr,po J, bc(az-ai)(ﬁa*ﬂi) 3.9(9)

0

‘ 1 .. oy mb
mm 1 mm ~-b + = Slllh—_(c"b) tanh—""'}
and B <—5X = coslry (c=b) i, a a

r
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contd.,

a) contd,

; b . b
= 2uod, - amm {Slnh(mﬂﬁz s) = sinh(nrfs Z)} 3.9(10)
A coshggh

fOI‘ m = 1)2)3 see
We have now obtained the vector potential throughout
the region OADE.

b) Using the finite cosine transform method.

Equations 3.5(3),(5), (8) and (9) become in
this case

& = O 3.9(11)

A (2l m){ < > (T-—illﬂ> } = 280 U ol a(m)p()-Fe, 3.9(12)

A:Z(Zk,m){<2l> + (%?) } =S e 3.9(13)

2 . b . o,m )
en = —gﬂ Slnh<%5—> Bm&UHI;QC‘b) 5.9(14)
(m=1,2,3, ...) (using equation 3.9(2)
AI&0,0) = ab BO< - %) (using equation 3.9(2)) 3.9(15)

The solution is then from equation 3.5(4)

2 ' ‘ A" (r,m) costE cos%%rZ 3.9(16)
AiZ = ab ' 1zY a
m=o0 I=0

i i the boundary
The coefficients Bm are obtained from

condition

-:-L- (aA:LZ> = _-lj(<aA9z>
HI‘ ay y:b Aur ay y=b

»

3 1 uations
ici s—— and using equatio
ing coefficients of co

Equati
3.9(11),(12),(15),(14) and

) are found and are of course identical

(15) the coefficients

B“l (H] = O,l, oo o
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b) contd.

to those obtained by the Roth method. Equation 3.9(16)
then gives the potential Alz over the whole region
O0<x<a,0<y €b. If the contributiocns to this
series which multiply the coefficients BIn are sumnmed
over the y variable the resulting solution fov Aiz is
the same as that obtained by the Roth-separation of

variables combination.

3.10) Roth's solution as given in(8)

Roth in(®’ derivés a single solution for Az in
the form of a double Fﬁurier series valid over the whole region
0<xsa, 0y <c. The method assumes an arbitrary current
distribution on the surface y = b to produce the same effect
as the material of relative permeability ;r; This surface

current distribution is determined by considering the change

in aAz across y = Db.

——

ay
To satisfy the boundary conditions around the

slot OQADE we must have AZ of the form

o0 -]
Y S nE 10(1
A, = j{: j{i Coy ©05 % cos(k+3) - 3.10(1)
k=0

m=0
and A must satisfy the differential equation
zZ

aBAZ . aQAz _ {iurquZ in the conducting region

-y
5;7_ oy 0 glsewhere

together with an unknown current strength f(x) along y = b.

Hence the coefficients ka are given byv

, 1y3 _ 8S cos (ked) 2R .10(2)
leilm:"'urg ¥ (ﬁﬁg—ﬁ}% = HypHod, a(m) (k)57 +o0s (k) (m) 3.20(
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contd.

. b '
where (k) = Sln(k+%)ﬂ o Ba - Sin(k+%)n'hﬁ1
c

.10
o) 3.20(3)
a
and  F(m) = o
(m) ]'f(x) cos—= dx 3.10(4)
o
At the interface y = b it can be shown that
~_ -
f(x) = 2 o ) <3fg> where y = Ky
uo+ 1 P .
Y y=b Hr.
Combining this with equations 3.10(1) and (4),
_ u=1 T . m’
F(n) = 2 L=1) z ¢ (kb oin(ie )2 | & 5.10(5)

(u+ 1)
- k=0
Substituting for C , from equation 3.10(2) gives F(m).
Using series given in the Roth-Kouskoff paper(4), it is
possible after much mathematical manipulation té obtain the
coefficients F(m) in closed form, The coefficients ka are
then known in closed form and the solution over the whole

region 0 € x €a, 0 £y sc¢ is given by equation 3.10(1).

Conclusions.,

The Roth method as described int®), although

ingenious, is not recommended. Its main adventage is that it

gives a single solution in the form of a double Fourier series

valid over the whole region 0 € x <a, 0 £y s cC. However

cons iderable mathematical effort is required if the coefficients

F(m), m = 0 1,2 , are to be found in closed form. Although

3 — , ’ o0

the double series lends “itselfl well to numerical computation,
@ :

th te of convergence of the solution is slow and is particularly
e rat i

bad in the region of the discontinuity at y = b.

the transform method and the Roth-separation

Both



3.11)

60.

contd,

of variables method consider the two regions of the slot
separately, deriving a separation of variables single series
in the region BCED. Thus, in this region, comparatively few
terms are required to give a solution which has converged to a
given accuracy. However the disadvantages associated with
the numerical computation of a separation of variables solution
(as described in Chapter 2) will, of course, be present.
Consideration of the two regions separately leads to an easier
interpretation of the physical conditions of the problem across
the boundary y = b, but it does mean that we have lost the
advantage of having a single solution valid over the whole region
0<x sa, 0y sc.

Considering now the derivation of the solution
in the rogion 0ABD, the Roth-separation of variables method is
straightforward and uses single series wherever possible. The

double series arises as a result of the discontinuity in current

density in the region. Associated with each part of the boundary

where there is a generalised boundary condition, there is a single

series solution obtained by the method of separation of variables.

This again leads to a more direct physical interpretation of* the

solution. Summarising then, the Roth-separation of variables

me thod combines the advantages of Roth's method for dealing with

the discontinuities in current density with those of the method

of separation of variables for dealing with the generalised

boundary conditions We have in this way optimised the derivation
oundar ions.

f ot omplete solution over the whole slot using Roth's method
O 1€ C N

ion of variables is unsuitable for

when the method of separat

the reasons gilvel in Chapter 2.
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contd,

Althoush the transform method is very straight-
forward when the boundary conditions are either of the
Dirichlet type when the finite sine transform is used or of
the Neumann type when the finite cosine transform is used,
it cannot be recommended when the boundary conditions are of
mixed type as described in this chapter, In'this case the
method becomes unwieldy and its beauty is lost. The boundary
couditiors are included in the Fourier coefficients and this
makes the physical iuterpretation of the solution rather
difficult. An advantage of the method is that the solution
consists of a single expression in the form of a double Fourier
series which is readily summed numerically using the algorithms
of Appendix 1 although a large number of terms are required to

give a solution which has converged to within a given accuracy.

Based on the results of this chapter we must

disagree with the assertions of Reed and Mullineux in(20)

For general boundary conditions the Roth-separation of variables

method and the finite Fourier transform e thod ars very

different and for boundary conditions of mixed type, the

Roth~separation of variables combination is to be preferred.

When ths boundary conditions are either of Dirichlet or of

Neumann type, either of the two methods can be applieu, and
3

both are then straightforward. However we would still

ecommend the Roth-separation of variables combination since
reco :
the physical interpretation of this combined solution 1s so

Also the solution consists of single series

either Dirchlet conditions of the

much simpler.
wherevdr possible. For

Newnann conditions aAz = 0 around the slot
= 0 or h “—“'an

ions obtained by the

foru AZ
two methods are identical.

boundary, the SOlUt



CHAPTER 4

USE OF CHEBYSHEV POLYNOMIALS WITH ROTH'S METHODS.
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Introduction.

One of the chief disadvantages in the use of Roth's

meth i
ods 1is the.slow rate of cowvergence of the double Fourier

series,

of ordinury differential equations that the use of Chebyshev
polynomials, rather than trigonometric functions, speeds up

the rate of convergence of the solution.

work has been done to date on the application of Chebyshev

polynomials to the solution of partial differential equations
so the treatment given in this chapter sheds a great deal of
light on the more general aspects of Chebyshev approximation.
The configuration to be considered is that given in Figure 8
with a single conductor in the slot.

associated with differentiation of Chebyshev polynomials we

Tt is well known in the theory of numerical solutlons

Also, very little

Due to the difficulties

62.

consider first Chebyshev variation in one direction only taking

each direction in turn, Then we allow Chebyshev variation in

both directions simultaneously.

Chebyshev variation in the y-

direction only.

By considering the mirror
image of the slot as shown
in Figure 16 we may determine
the solution over the whole
region 0 € X § &, ~b <
In this case the boundary
conditions in the y-direction
are ol the Dirichlet type

i.e. A =0 when y = £ b,
® L] Z

N o
C B
©b (@,0)
+ J;
A
O[ 1(\1)0)
| f
| - - - — - |
l ' : :
AR S o
| _ - — A t
| i
@l“h%#'_-‘_ —_— e — = .J%;)‘B>
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contd.,

In the x-direction the boundary conditions are

oA
z=0whenx =0, a; -b <y <b.
ax '

Hence we shall seek a solution in the form

_ ot 1 mrx
AZ = EiJ E{: Cmr cos—— Tar (%) 4.2(1)

The boundary condition in the x-direction is then automatically
satisfied. The current density profile over the whole region

may be expressed in the form

o . oo ) .
f(x,y) = K, Ho fig zg: jg: a(m) 8(r) cosggE Tzr(%) 4.2(2)
_ T
r=0

mn=0
using the orthogonal properties of the Chebyshev polynomials
and circular functions. The coefficients a(m) are defined

by equations 2.4.(3) and the coefficients 5(r) are given by

§(r) = % (sin2rés-sin2réa) r=1,2 ...] b203)
5(0) = 2(é1 - &)

where &4 = cos * P1, &3 = cos™t Pa Lo2(k)
A + aQAz = ~f(x,y) where £(x,y) is given by

Now 2 ‘
ox ay

equation h.2(2).

that
Write F = AZ/4Nr“°sz? 50
i e 18

ﬂ4

- -~ ,
P*F + _a_ig.‘ = - %:_ZJ' }J' a(m) §(r) cos—— T2r<%> 4.2(5)
7
9x ay

m=0 I=0

(x,y) in the forua

Assume a solution for ¥
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4.2)  contd.

F - o
0 Z W) 1.2(6)
m=o0

This automatically satisfies the boundary condition

vl

= Owhen x= 0, a; =b sy b,

To satisfy the differential equation 4.2(5)

r=0o

obtained by equating coefficients of cos PLB‘M— , m=0,1,2 ...
Equation 4.2(7) must be solved for each value of m. We have
reduced the partial differential equation to a sequence of

ordinary differential equations to determine the coefficients

b, From the boundary conditions at y =1 D,

¢, = Owheny =+ b - 4.2(8)

4.3) Determination of the coefficients ¢ , m = 0,1,2 ...

a) Direct method.

The direct method solves equation 4.2(7) as it

stands in the following way. Writing

_ L35(1
Y_% 4.3(1)

assume that, dropping the m suffix,
R
- 1
$ = a, T (Y) 4.3(2)

ar

r=0

4.3(3)

o8
S
11
o’
=
3
»
Lo
P
<
S~
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contd.
where the coeffici
0 lcients br are to be calculated, Integrate
this equation twice witp respect to Y and then compare
coefficie = i
oefficients of Tgr(Y), r= 1, ... R with equation 4.3(2)
giving
1 {(b -b_) (b_-b
a._ = I'~1 - I‘_ ) ] =
. —TE— r+1’ Y r =1,2, ... R
4{2r) 2r-1 2r+l N
where by = bR+l =0 b 3(k)

Solving this set of equations for the coefficients

br) r = O,l, oo e (R—l) gives

jon
fl

R-1 4(2R) (2R-1)ay

o’
1l

peo = (1) (2R-2)(2R-3)a, . +4(2) (2R) (2R-2) sy

o'
1

pey = (1) (k) (R-5)ay_p+h(2) (28-2) (=) ap o+ (3) (2R) (R-3)ay

etc.  4.3(5)
Substituting the truncated form of ¢ given by equation 4.3(2)
in the differential equation 4.2(7) with the right hand side
truncated at‘r = R, there results a superfluous equation for the

coefficients &, To make the equations consistent, rewrite

equation 4.2(7) as

R

b 3 d2¢ — . m ' r -7

-<sn_> b ot - - >Z 3(r) T, (1) = 7P T (¥)
=0

(m=0,1,2 eus ) L. 3(6)

3
d ¢h and. equating coefficients of

Substituting for ¢, and =

Tzr(Y)’ r=0,1,2 s R glves

pmalaleY

a

(2

_ <mﬂb>3ar i b, == am) 8(r), = Oy e (R-1) 4.3(7)

fl

-7 a(m) S(R) - ﬂ27h k.3(8)
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66.
contd.’
together with the boundary equation
R
),
a = 0
v . 4.5(9)
r=o

This set ol equations is solved successively for m = 0,1,2 M
’ o8 ®
(truncating at M terms in the x—direction). For the method to
be successf icient
ul the coefficients a, should decrease with increasing
r so that each T should be small giving a negligible error in
the differential equation. The equations for‘the a_assume a
r

particularly simple forin as can be seen by considering R = L

1 1 17 ao | [ o 1

(Y % F F O]
7§ 2120 1%§& o (3)
<b> (Z':—)B 22k aq 2(;

A Gaussian procedure was written to reduce the

coefficient matrix, row by row, to upper triangular form. Note

also that only the sub-diagonal elements need to be altered

as m varies. Also from the form of the equations aR will be

small and hence 'rm is small 8O that the error due to the

introduction of the 7T-terms should be negligible. This will be

ection 4.4. Having obtained

considered in greater detail in s

the coefficients a, for cach my F is given by equation 4.2(6)

umnmation 1s calculated using the methods of

and this double s

Appendix 1.
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l.3) contd.
b) Integrated method.

In the direct method, in order to evaluate the co-
efficients a., consideripg now the untruncated equation
4.2(7), we have to solve an infinite set of equations each
with an infinite number of unknowns, Thus, on truncation,
an infinite number of small terms are neglected in each equation.
The integrated method leaus to an infinite number of equations
but with a finite number of terms in each so that each linear
equation for the a, arising from the differential equation
will now be exact. We would expect therefore a more accurate
solution using the integrated method. Integrating equation

3,.2(7) twice with respect to Y gives

o«

- (%)2// ¢ 0¥ & + ¢ = -nﬁa(m)z Q(r)Tgr(Y)+K1Y+K2 4.3(10)

. I‘:1
1( 8§(r-1) 2 &(r §(r+l) 311
where Q(r) :‘Z { or—1)2r  (Lr -l) + (2r+1 Zr} b 3( )

and K,,Ka are constants of integration.

If ¢ is given by equation 1,.3(2) then

R+l
j' ¢ dY dY = j;j C.. Tzr(Y) + constant
r=1 ‘
_Lia _o2an 4 % }r:l,.? LR+ L4.3(12)
wnere Bp =L {'('Z;;'i—l)—zr -1 (erel)er

and aR+2 - aR.+1 =0

the equations consistent on truncation write

To make
R+l
y ﬂb>3//¢ . _ﬂﬁa(m)zQ(r)TQr(Y)+K1Y+K3—113TmT2R+2(Y) b 3(13
of

R = l 2 se e (R+l)
Comparing CO@fflCleﬂtSATBr(Y) for r ,

gives
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4.3) contd,
b \?
B <%5‘> Cota == a(m)Q(r) r=1,2, ...n 4. 3(14)
mb\? :
- <——EL—> CR+1 = -na a(ﬂl) Q(R+l) - TTBTm );.3(15)

which must be solved together with the boundary equation 4.3(9).

Iiquations 4.3(14) may be written in the form

a +A(r) a, + u(r) a,

r-y ,=EP(), r=1,2... R L.5(16)

+

where aR+l =0,

ute) = (5

=
P(r) = (2r-1)(2r)Q(v)

A recurrence algorithm to solve equation 4 .3(9)

together with a set of recurrence equations of the type given

by 4.3(16) is given in Appendix 2, Having obtained the

i he direct method.
coefficients a, the solution proceeds as for t

4.y) Error estimation.

There are two sources of error in the solution;

th r due to truncation and the error due to the introduction
e erro :

3 ip v E due to the r-terms.
of the 7-terms. Consider first the error &, GUe
ie ilated value of F and the
— - re F - is the calc
If ET =F FC whe o | B
hen the boundary conditions are

ig ted, t
truncation error 18 neglected,

; N
(1) aET when x = 0, & for -b €y €D

ox
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69.
contd.
and (i1) ET = 0 when y = + b for 0 € x < a,
Assume a solution in the form
M ‘
Vg_" mx
E o= —— '
r=) Y (Y) cos— Loi(1)
Ly
m=0
and then boundary condition (i) is automatically satisfied.
Using boundary condition (ii)
¢m(i 1) =0form=0,1,2 ... M L.i(2)

a) Direct method.

‘Using the direct method of determination of Fc’

the equation to be satisfied by ¢m is

a are

_GEEE>9 g s d2¢m = ﬂBTm TZR(Y)’ m=0,1 ... M 4.4(3)

Integrating this equation twice with respect to Y gives

’

- (9-?>7f¢m(y)dﬁf at + g (¥) = P Up(V)+ o Y+F) beali (1)

U (1) (1), T o(Y) e
wherse UR(Y) = A{ §§+i 7R+2) ARER_ T (2er)(2R_2) j (5)

and a , B_ are constants of integration.
m’> "m

When m = 0, equation 4.0(4) gives
go(Y) = 1o Up(¥) + aol + Po

Applying the boundary cordibions 4.4(2) gives

ﬂO = - TIBTOUR(:]_)

a = 0,
37T2To
i.e. po = _(Zﬁu—l)(ARd m_—n
fonco go(1) = P7ol(D) = %) . 41 (6)
When m £ 0, write ¢ (¥) = 7Ty UR(Y) + g () Wi (7)
en , A
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a) contd,

. ! .
ow // UR(Y) dY aY = 0‘<§4> and is neglected by comparison

with the other terms, Hence

bN\E [ |
- <%£;>.[/ v (Y) aY ay + ¢;(Y) =¥ +p

mb\? ¥ d3¢,*(y)
or = < Py ) wm(Y) + ___d_;lfl_g___ = 0 which gives on integration
(ﬁ*(Y) = P cosn(Z2 y) Q sinh/DT2 y (8)
m m a m a Ll-o)+

Applying the boundary condition,

Q =0
mb
P111 cosh(——(;;) == 7 T UR(]_)
so that

mab
v (Y) = 1, {UR(Y) - (1) COShE‘i;Y)} bali(9)
cosh 9—;—)

m7b
= )

.M " .
and B_ = ~ Z 'Tm{UR(Y)—UR(l) cosh( } cos—g"'X 4.4(10)

m7b

cosh(—a—

(]

m=

Now UR(l) = O<%4> and the largest numerical value of UR(Y)

occurs at ¥ = 0 and

) :_1: R+1
U (0) = J(R?-1)

L4 (11)

M
‘”g A ,
. IETI < -—(‘T—4 R3-1) Z ’ ml

" m=0

Using this result for R = M = 10 gives

|E_| < 0.0058
;
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LJy) contd.
b) Inteprated method,
-In this case the equation to be satisfied by
z/;m is
mm g (Y)aY av + ¢ (v
+
(1) = 7o or (1) + a Y+f - b (12)
Solving in the same way as for the direct method,
mb ’
b —-——Y
B = P Z {QR (1) = cos) }cosglg—x k(13)
mzb
sh(—~
Note *that in this case the neglected term is
// T2R+2(Y)dY dy = 0(%:;).
(Hl?Tb
Now cosh'a ¥/ <1 and [ (V)] <
oosh( Wb)
RN
]
T m
m=o

Using this result for R = M = 10 gives

|E_| <0.015
T

Comparing these results for the direct and

integrated methods, it would appear that the direct method

is significantly petter., The following table gives the
is

alculated values of F obtained by the direct and integrated
calcule
(obtained by the

methods, compared with the exact value

b < 23 v e
thod of separation of variables). The actual errors ar
method of

n a it i Y values
d Wlth the estlmated
also ive d can be compare

of' LT.
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L .4) contd.
TABLE 3., Val ' s
D ‘Fc obtained by the direct and integrated
methods,
direct method integrated method
) F (separation ‘
point (x,y of variable
=) 7| | 7 |7-F,|
(o,g) 6.19613 6.19822 0.00209 6.19896 0.00283
(0,%) L..77305 77176 0.00129 | 4.77378 0.00073
a
(5,0) 6.186L5 6.19379 0.00734 | 6.19159 0.00514
ab "
57) 4.88076 1+.88142 0.00066 | 14.88510 0.004 3k
(a,0) 5.96791 5.96853 0.00062  |5.96969 0.00178
b
(a,3) L L9300, L1 9428 0.0008% | 449433 0.00089
et 56
-0 = 0.8 |ET|s 0.060586 lETl < 0.015

ﬁi:o.l ﬁg: 0.7
b
PR
R=M=10

From the table it can be seen that the estimates

for ET are reasonably good. Although the actual error is greater

than the estimate at one or two isolated points, this could be

accounted for by the truncation error. Both from the error

estimation for the two methods and by inspection of the

contrary to expectations, the solution

calculated values,

obtained by the integrated method was no more accurate (and at

many points was worse) for a given R and M than that obtained by
the dipect method. In the latter method an infinite number of

terms are neglected in each equation and consequently would be

expected to be the poorerd" the two. In the book by Fox and
d -—

ssing the equation p(x)—(—% + q(x)y = r(x)

Parker(1?), in discu

Wh("l'(ﬁ p q r are po]_ynomials il’l Xy it iS Stated that the dlI‘eCt
i )y

[49]
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contd.

Vmuthod 1s better than the integrated method fur cases when
p(x) is small compared with q(x) over the range of x values
considered. It quotes tie case when p(x) = x,

a(x) = 2 (-1 € x €1). We are solving the sequence of

equations
mab\? a*¢ A
< a > ¢m(Y) +__m = - a(m) ﬂaziJ S(P)Tar(Y)
day
r=0
for m = 031’2 [

Clearly as m increases, the coefficieunt of ¢h(Y) becomés
dominant. Also Fox states that the direct method seems
preferable for slowly convergent solutions and again my

problem is of this type.

Boundary conditions of the Neumann type.

In choosing the Chebyshev variation for the

y-direction the boundary conditions for the sequence of
§

ordinary differential equations are of the Dirthlet type.

If we consider Chebyshev variation in the x-direction then we

produce & similar sequence of ordinary differential equations

but with boundary conditions of the Neumann type. Now we take

the mirror image of the slot in the 1line 0C and determine the

<x sa, 08y S b. The current

solution over the region —2&

density profile is expressed in the form

e yj _ Lt Hod A zgj' ﬁ(k)n(r)cos(k+%ﬁﬂT21(x) 4.5(1)

k=0 1'=0

w
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where Y = %, X :f

(x) = (s ’ ;)
n = Z(sin 20y - sin 2rf3), r = 1,2 ...
U(O) = 2(51 - §2)

S 4.5(2)
{1 = cos * ag, {3 = cos™* o 4.5(3)

and the coefficients p(k) are as given by equa"cion 2.:.(3).

We assume’ a solution for F(x,y) in the form

F(x,y) = L gbk(X) cos(k+3) 7L 4.5 (L)

k=0

and the differential equations for the coefficients ¢k are

- ‘{(kﬁg)l{?};k(x) + ii;’bg = - f(%jﬁ(k)i 'n(r>T2r(X)

k = 0:1)2 ees . 4-5(5)
The boundary conditions are

E?k = 0 when X = + 1 - 4.5(6)

aX

Before detailed discussion of methods of solution

of these equations, let us examine E‘r for the direct method

and the integrated method. Assume that ET is given in the

form N
ET =. ¢;k(X) cos(k+12-)n’f 4.5(7) )
k=0
with boundary condition
Ay _ o when*X =21, K7 0,1,2 oos N 4.5(8).

ax
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a) Direct method.

b)

The differential equation to be satisifed by wk is
_ k{<k+'1_)1ra}2 4. (X) cingk 2
25 Kk + =771 T X
« Ton (%) 14.5(9)

kK =0,1,2 aus

Using the methods of section 4.k
g (0 = 77 U (X) + P cosh| (keb) T2 X inhl (kal )=
K K K +7)% + QkSl (k+‘2—)'b—'X

where Pk’ Qk are arbitrary constants to be determined from

the boundary condition 4.5(8).

Now S Up(X) = %{szl(x) - TZR—l(X)}
2R+1 2R-1

Hence Qk =0

T . 73
P (k+%)7; 51nh[(k+%)ﬁr } = k

cosh ffe+) X ] }

ence X) = 7T (x) =
H ¢ (%) k{UR ¥ (4R-1) (k+3)= sinh {(k+3) 1

Thus the error due to the 7T-terms is bounded and 1is

N
N\ : thod
o ) Il o i et
k=0

Integrated method.

The differential equation is now
2
¢ _ .3
- {(kﬂg)-%é} f / </fk(X)dX ax + gl/k(X) =T TkT2R+2(X)

with approximate S olution

ﬂsz{?2R+é(X)} +'Pkcosh{(k+%)%?X} + kainh{(k+%)%? X}

1

5, (%)

0059,

i

Putting X

ce
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b) contd.

dX(T’)R-&Z X>} = de{cos(2R+2)6} <s¢}19> )

(2R42) Sin(2R+2)0

siné

. a .

0 - O sin@
= (2R+2)2
Simil d )
imilarly at X = -1, dx{ 2R+2(X)} - - (2R+2)3

Hence applying the boundary condition 4.5(8)

kao

Pk ‘ﬂQTk(2R+2)2

(k+%)%? sinh(k+%)%?

and ¢, (X) = ﬂBTk{?2R+2(X) _ (ere2)? cosh{(k+%)%?x}‘}

Ta
(k+2)%

sinh(keb)} =

The magnitude of Ty is O(%R) and so, from

the above equation, the magnitude of wk(X) increases with

increasing R. If the integrated method is applied to the

Neumann problem, the solution oscillates, a point which

ig not mentioned in the relevant texts. To conclude then,

the integrated nethod is totally unsuitable for problems '6)

of the Neumann type and the direct method must be used.

It is however possible to modify the direct method in order

to circumvent the problem of having an infinite number of

i i is is done in the
neglected terms in each equation. This is do

following waye

| i hat
Dropping the k-suffix assume tha .
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contd.
&
$®) =) an B
ar QI‘(X) 4.5(10)
r=0
R-4
2 = _ 5
and g_i = b T (X) )
ax® roar 4. 5(11)
r=90
Then the coefficients a . and b are related according to
equation 4.3(4). The truncated form of equetion 4.5(5)
is
Lo le (0s S o p@Y N
/b (l)k d—x-g-— - <B-> ﬁ(k) n(r) TQ;X)
r=0
=11 o (X) 1.5(12)
Using equations 4.5(10) and (ll) and comparing coefficients
of TQI\(X)) r = O)1’2 co gives
1 \ TR \3
- (k+‘§)"'b" a, + br = =70 -B-> ﬁ(k) n(r), r=0,1,2 «aa (R—l) 4.5(13)
k*z }2 2 = >@(k) n(R) - 71, | a5 (1h)
Integrating ‘equation 4.5(11)
R-1 7
S ,
d¢ = lboTi(X) + ’12' b [Tzri-i(x) - Tzr— 1(X) } + constant
ax ~ = s 21
r=1 ‘
Applying the boundarylconditions 5.5(6)
R-
i
- Z b, =0 14.5(15) 6)
il*.]." —1)
r=1
1lved for the coefficients
Equations 4.5(13) and (15) are now SOV
- e define
a0,b, T = 0,1 «oo (R-1).» If W
% =0, e () h5(16)
r (41‘2-15
then equation ).5(15) becomes ice
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2{:'°r =0 | 4. 5(17)

and equations 4.5(13) (excluding the first which.gives ao)

may be written in the form

C + A(r)cr + u(r)c

r-1 by S kP(R), v =1,2 0 (R-1) 4.5(18)

where CR = 0.

These equations 4.5(17) and (18) are then solved using the
methods of Appendix 2 and the solution proceeds as before.

Alternatively the direct method is used exactly as
described in section 4.3. There is found to be little difference
in the rate of couvergence of the solutions obtained by the

direct method or the modified direct method.

Reduction of ET by perturbation of the boundary conditions.

In the application of Chebyshev polynomials to
ordinary differential equations, it is sometimes possible to

reduce the error in the solution by slight perturbation of the

boundary conditions. With the exact boundary conditions, the

solution is exacf at the boundary but erroneous within the

rectangle. Perturbation of the boundary conditions should result

1 " s ot of the error OVETr the whole region.
in a "smoothing" ©

Cons ider now the estimation of ET using the direct

method of solution as described in section 4.4(a). We have

go(Y) = P To UR(Y) + aoY + Po and
. b
wm(Y) = ﬂﬁTh UR(Y) + P coshcggg Y> + Q 51nh<%3— Y>

m=1,2, «oo M,

are constants of integration to be determined

where ao,B0, PpsOp
Assume that ths boundary conditions

fron the boundary conditions.
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as given are perturbed and now read

(1) g,(1)

|
o

! }n = 0,1, v.o M 4.6(1)

VIn when ¥ = 0

1

(i1) Y
dyYy

where u o, vV, are small, This gives

o = Vo

ﬁo = Uo~ Vo- ’HBTQ UR(l)

7b )
Qm(?a > = Vo
m=1,2 «o.. M

/ inh(— .6(2
P cosh(B2) = u - 71 UR(l) - 'm 3t (= 4.6(2)
" A\ o o m7b
a

1]

Hence ¢o(Y) ﬂBTo{UR(Y)—UR(l)} + vo(Y¥-1) + uo

b mb
inh (=) cosh(———'Y)
= A v (1)- "n®t -
e ¢m(Y) ] ﬂBTﬁUR(Y) ' {Fm m R( ) m7b mwb
—— cosh(——
| a
v . m7h _ 1.9 y
+ __&__ sinh _6-1_ , m =1, eee )
m'l:fb/a
We may take u ﬂBT U (1), m= 0,1, eos M 4.6(3)
then go(Y) = 7' To UR(Y) + vo(¥-1)
y (Y) = rr_ U (Y) - ' 51nh———(1-Y) =1,2 ... M
= L B B
ul m b Sh(—__)
a
ins i ical value at ¥ = 0
Now UR(Y) attains its largest numericat ¥
1 R+l
i.e. UR(O) = TR
.. M so that E is zero at ¥ = 0O
Choose VvV, M = 0,1,2 . .
1 R+l a
e T
ee VO = (-1 0 1‘_.6(4)

+1

-1 R A {EEE coth g%?ﬁ m=1,2 «oo M
- a

<
{
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Hence o(Y)

1

7o {UR(Y) . ﬁfﬁ ?Il (Y—l)}

)¥-6(5)
’ R+l . m7b
g (1) = P {UR(Y) - szg_”—;{ — Slm{‘?(”)] }
sin(2

=

_ ' mx
and ET = ¢m(Y) cos—— .
m=o

To apply these perturbations to the actual

solution for F boundary conditions 4.2(8) are replaced by

1}

(5) ¢ (1)

~u == 1 U (1)

(i1) S
dy

- Vv when ¥ =0
m

The amplitudes of these perturbations will be small since

T is small and R is large. It should be noticed that now

Az is no longer constant across the top of the slot but takes
the form of a very low amplitude ripple. To implement boundary
condition (i), equation 4.3(9) is replaced by

R

Zgjlar == T, UR(l)

r=0

which becomes on substituting for T from equation 4.3(8)
N b
ZZJ a, + ap <% + GE§-> UR(1)>= P a(n) 8( r) UR(l) 4.6(6)

r=o0

This is then solved with equations 4.3(7) to give the
coefficients a . as deséribed in section A.B(a). Boundary
condition (ii) is not so readily implemented since the assumed

evenness of the solution depends on the fact that %5 = 0 when

y = 0. The simplest way to cater for this condition is to replace
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] 1 .
¢m by ¢m + ¢m where ¢h is used
Thus
2, 3,
s
dy
. !
where (i) ¢m(Y) = 0 when ¥ = 1
!
(ii) ddy - - v when Y = 0.
day

The solution of this is

8L,

to give boundary condition (ii).

(1-Y) m=1,2 «0u M

4.6(7)

t
¢ (Y) = m sinhB2
m a
<%nb> <%nb
— 1 cosh({——
a a
t
¢o(¥) = vo(1-Y).
Taking v , m = 0,1,2 «.. M as given by equations L.6(L)
' Ar (LR sineT2(1-y)
¢y (¥) = —_m 2
L(R*-1) sinlnvﬂ)
R+1
' 70 (=1
¢0(Y) = A~§ -1 (l_Y>

This solution is superposed on the solution for ¢ (m = 0,1, +oo M),

modified by the condition at Y = 1, and the solution over the

whole slot then proceeds as before.
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point(x,y)| Yo |P-F_|
(0, 0) |6.1988. 0.00271
(o, %) 4 77074 0.00231
(0, B) | 6 x107°% | 6 x 10°°
(5, 0) |6.19096 0.00451
(%, 2 |4.88042 0.00034
(%, b) [-2x10°% | 2 x10°°
(a, 0) |5.96819 0.00028
(a, % 449335 0.00009
(a, b) |=3 x 10”8 3 x 1078

82.

TABLE 4,

Values of IF-FCI with boundary

- conditions perturbed

R=M=10
oy :;O.l az = 0.8
B = 0.1 fa = 0.7
b/a = 1.5

Table 4 shows the error in the calculated solution over

a range of points in the slot.

Comparing this with Tuable 3 of

Section 4.4 it will be seen that perturbation of the boundary

conditions has resulted in some "smoothing" of the error, the

net effect producing a reduction in the error over most of the

slot. Although comparatively little effort is required to perturb

the boundary conditions in this way and so obtain some slight

improvement in the overall error, it is felt to be hardly worth-

while since the same effect can be obtained more easily by increasing

the number of terims taxken in the double series.

However, if there

is not a great deal of computer storage available then this

technique can be useful.

4.7) Comparison with Roth's method.

Both methods give a single solution valid over

the whole region of the slot. Each solution is in the fom

of a double series and for each method the sun is readily

evaluated numerically using the methods described in Appendix 1.

Also, if the number of conductors in the slot is increased,
B
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contd.
the difficulties in using either method are only marginally
increased; the Fourier-Chebyshev method involving additional
terms on tle righl hand sides of the
equations for the coefficients &

In Roth's method the Fourier coefficients are
independent of each other and are obtained directly. The
Fourier-Chebyshev method requires the solution of a sequonce
of ordinary differential equations to obtain the coefficisents
which are inter-dependent in this case. However the resulting
linear equations for the coefficients are of a simple form
whether the direct or integrated method is used and so the
inter-dependence of the coefficients is felt to be not too
serious a disadvantage.

Table 5 illustrates the rate of convergence of

the solution with increasing R and M using the direct methed

of the Fourier-Chebyshev approcximation,

. R 10 10 15 20
M 10 15 15 15
F (separation B
point (x,y)|of variables) c
(0, O) 6.19613 6.19822 6.19829 6.19610 6.19605
(0, ) 4. 77305 L7176 | 477295 | 477283 | L.77321
Z, 0) 6.18645 6.19379 | 6.19377 | 6.1845L | 6.18L5L4
8,2 | 88076 488142 | 4.88118 | 4.87950 | 4.87957
(a, 0) 5.96791 5.96853 5.96845 5.96796 | 5.96790
(2 D) 195l 409428 | L.49297 | 449302 | L.49350

b H
as = 0.1, az = 0.8,8a2 = 0.7,'8: = 1.5 TABLE 5.

ﬁ‘:(3~l.
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There would seem to be little virtuc in taking unequal
values of R and M. Comparing this table with Table 1 of
section 2.5, it is seen that taking R = M = 15 gives a solution
of comparable accuracy to that obtained by taking M = 20 using
Roth's method. The number of terms summed in the two cases is
256 using the Fourier-Chebyshev method and 231 using Roth's
method. Thus no saving is achieved by using Chebyshev polynomials,
In additiou, the computing time for a given accuracy is 50%
greater using the Fourier-Chebyshev method rather than Roth's
method for the mesh X = 0(0.1)1,Y = 0(0.05)1. This is a result
of having to solve sets of linear equations for the coefficients
in the double sum.

Let us now consider the case where we generalise the
boundary conditions as described in section 3.2 but in one
direction only (say the y-directioan) i.e. the boundary conditions
are now

(i).fﬁi = fy(x) wheny = 0; 0 €x S a
ay

(ii) aAz = 0 when x = 0,a; O £y s b.
ax

(iii) 4, = fa(x) when y = b; 0 € x < a.

The furc tions fai(x) and fa(x) are expressible as Fourier
series as given by equations 3.2(3) and (4). Then these
boundary conditions can be directly incorporated into a Fourier-

Chebyshev solution of the form given by equation 4.2(6) where

now R
6 (/v) = Z\ a7 (/v)
r=o
The equations corresponding to 4.2(8) are

%m = dm when y = b
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contd.

and éi ﬁnC%) =a when y = 0,

The solution ;hen proceeds with only slight
modifications using the direct Fourier-Chebyshev mcthod.A
similar modification can be made if the boundary conditions
are generalised in the x-direction only. Using the Fourier-
Chebyshev approximation, therefore, when the boundary conditions
are generalised in one direction only, we can obtain a single
solution over the whole aréa of the slot with only slight
modification to the existing equations. To solve the same
problem by Roth's method, we would need to combine with
a separation of variables solution and so would not have a

single solution valid over the whole region of the slot.

Double Chebyshev approximation.

Although the Fourier-Chebyshev approximation
produced little significant improvement on Roth's method it
was felt to be worthwhile to seek for a solution using a
Chebyshev approximation in both directions simultaneously.
This could well be an improvement on the Fouricr-Chebyshev
method and, in addition, very little work has been done to
date on the solution of partial differential equations of the
elliptic type using a double Chebyshev approximation.

We now consider the solution over the whole
region -a € x € a, -b £y < b, the configuration being as
e 17 where we are taking the mirror image of

shown in Figur

the slot in both coordinate axes.
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r —_ - - L,(O,\:\ R
I
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| | + :Yz | + jz
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|

Figure 17.

The boundary conditions in the y-direction are of the
Dirchlet type

i.e. (1) AZ =0 for y = +b, -a £ x

/A

a

while in the x-direction we have Neumann boundary: conditions

i.e (ii) aAz = 0 for x = +a, -b €y € b,

ox -

The current density profile over the whole region may be

expressed as a double Chebyshev series

i.e. £(x,y) = kol ;ZJ QEJ 8(r) n(m) T__(7/v) Tgm<%> 4.8(1)

=0 I'=0

where 8(r), n(m) are defined by equations 4.2(3) and 4.5(2)

respectively. The differential equation to be solved for

F(x,y) is therefore
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b 3 33F 32F . 3 *Sﬂt Nl
S) SE S = - L L 5(r) n(n) T, (¥) T, (X) 1.8(2)
=0 r=o
We propose to solve this equation using the integrated method
but noting the form of the boundary conditions, for the reasons
given in section 4.5, we must integrate the equation only in the
Y direction (where the boundary conditions are of the Diriechlet

type). Integrating the equation twice with respect to Y gives
Qg 23, oo Som, s ) o0
m=o0 r=q

where Q(r) is defined by equation 4.3(11) and K ,L, are arbitrary
constants of integration (Ks = 0 from symmetry).

Assume that

%j?g =L L o Ton(0) T, (0) 1.8(4)

r's0 m=0
Then
R M+l‘
"t
=) m () n,m] :8(5)
r=0 m=0
where b =& 1% mg - 28‘rm + Zroots }’ 4.8(6)
b | Ton1)om 4m*-1 2m( 2m+1)

for m = 1,2 oo M+1
ar,M+2 - ar‘,M+1 -

and b is a constant of integration.
r,o

R+1

// >aY ar = Z T (X){Z TQI‘(Y)} 1.8(7)

r=1

’ 4.8(8)

- rm +

1 2a a
where C = =] r-i,m r4+4,M }
4 {EZr—lin 4re-1 (2r+l)2r

for r = 1,2 «u. (R+1)
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and a = -
R+2am aR+1,m - 0

(The constant of integration here is taken care of in LS).

We truncate the right hand side of equation

4.8(3) and introduce T terms so that the equation recads

<§>ﬁ[/<%;§> Y @Y + F = -7° ﬁi%' n(m)sz(X){;S + E;? Q(r)Tar(Y)}

7 n(M+1)Q(R+1)T (xX)T

+

2M+2 2R+2(Y)

+

X o
T2R+2<Y)2_/ Tmsz(X)+T2M+2(X)L T, T (¥) 4.8(9)
m=o0 r=4

Substituting for F in this equation and equating coefficients of

Tam<X) TQP(Y) for {j : 3:2’2 ::: ﬁ:i gives
<§>zcm +b_ == 7 g(n)Q(r) for g‘ : ij g ,.8(10)
<§>2% Cp o * %»bgo = =% 7(0)Q(r) for r = 1,2 R 4.8(11)
B e = —nan(M+l)Q(f)+T; for r = 1,2 ..o R 4.8(12)
= 0,1, ... M 4.8(13)

<§;f Rel,m " -ﬂzn(m)Q(R+l)+Tm for m

These are the total number of equations arising from the
differential equation . Further equations for the coefficients
a arise from the boundary conditions.

rm

From boundary condition (i)

R
AR
ziJ'b =0 dorm= 0,1, eo. (M+1) : 4.8(1h)
' rm
'=0 )
R M : N
Now & - S (Y) }ij arm(T2m+1(X) - sz—i(x)} + = aroTi(X)j
aX 2r 2 L 2m+l 2m-1
r=0 m=a

Hence boundary condition (ii) gives
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i M
‘ T a =\ &rm
< ro iy T 0,1, ... R 4.8(15)
M=

Equations 4.8(12) and (13) are used to give the
T-terms and equations 4.8(11) and the first of (14) give the
constants of integration br,o r = 0,1, ... R. These equations
will thérefore be ignored at this stage. The remaining equations
number {(R+1)(M+1l) + 1} while the number of unknowns a .
is (R+1)(M+1). Thus we would appear to have one surplus
equation but in Appendix 3 it will be shown that one of the
equations deducedfrom the boundary conditions (4.8(14) and (15))
is linearly dependentmon the remainder, It will also be shown
that this is still the case when the boundary conditions are

of the Neumann or Dirichlet type all round the region or when

they are mixed as in this protlem.

4.9) Method of solution,

We have to solve equations 4.8(10), (14) and (15)
(excludirg one boundary equation) for the coefficients
a {: = 0,1, ... R
T’ n 20,1 ... M
Equation 4.8(10) may be written

b 2
(EElegg {ar m—1 - 2a < 14 + ( {a) > + ar,m+1 }
“resm (®/a)" ({2n-1) (2m) SN (2m+1)2m

1

1,2 voo M

(20-1) _ <%l§%; (-4® p(0)Q(r)) m

T (2r+l) “ras,m
r=1,2 ... R

= ° =0
where ar,M+1 aR+l,m -
When m = 1, this equation involves N but we may substitute for

a  from equation 4.8(15) so that
ro
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] e

Gl PR R

(Eg_iifg ( n(l)Q(r)) r=1,2 ... R

N
g
}L

Define vectors

= ri for r = 0,1, ... R.

a 4.9(1)

o
—I\

Then the above equations may be written in matrix form as

&, Alr) B, & + u(r) 2, =" wr® A(r) Q(r) T 4.9(2)
for r = 1,2, eesee R
where ‘§h+1 =0
MO
("/a)
u(xr) = gEfii%
(1)
2= (2
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2
and Er = Kr— it?
L
3l
0
’
0
where K. =
r

equation 4.8(14).

2m-1)2m

S
1.3 2.3 '3,5°?
, K- =2
r 3.5
L
? 5.6
0 s

-
~
()

-

—2(%/a) /(4c-1).

9.

1 1
7 7.9° Teece 0 oMLy (2M+)
5 J O ) ces e > O
2 1
5.7 3 6.7 5] s e 0B ) O
)
b
_q—l -
, (T Y (2h=2)
1 K . 2

) scecsssene (2M—l)(2M) ) T

A further equation is obtained from the boundary

2a
m +

1411\ -1

a
r,m+i

2m(2m+15

In terms of the coefficients &.n

}:

this equation

1,2 eee (M41)

(the first of (14) is neglected at this stage since it involves

the constants bro)' Oritting the equation for m = 1 (one

equation is linearly deperdent cn the others) these equations

sy be written in matrix form as

&)

=0
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. — E— =2 1 ]
where G = 5.45° 5.3°%5.050 0 e e e 0
L2 1
O ? 506 ’ -7—;—5- ’"_.—6’ o b [ ] ] . . - 3 3 O
. 1 -2 1
. O _— —— D
: : b 7.8’ 9-7’ 9.8 ’ e o o & o s = (.)
; D0 :
: 1 -2
: : : (-1)2M  ’  (2M+1) (2M-1)
6 (.) 6 ® e 00000 v e ' 1
3 ) i *es0sscese e O > (2M+])(2M+2)

Now [C| # 0 so that C"* exists.

R
BRI |
Hence % & =0 ‘ 4.9(3)

A recurrence algorithm to solve equations 4.9(2)
and (3) is given in Appendix 2. Having obtained the vectors
2., equations 4.8(15) give a, and 4.8(11) and the first of (1.4)
give bro’ r =0,1,2 ... R. The solution for F is then calculated
using equation 4.8(5), the double Chebyshev sum being evaluated

using the methods of Appendix 1.

4.10) Error estimation,

Defining ET as in section 4.4, then ET satisfies

the differential equation M R
! 1
3.3 3 2
()25 1 P o - S ) 5 aa0) 2 20 | 2000
a)=sga— S5
X oY =0 o
where

(i) ET =0 forY=4+1, =1 X =<1

(i1) Pr=0 for X = %

17):8

il
+
=
-
|
=
M
s
A
]

Considering the case R = M = 10, 71

me O = 1,2 ... 10,
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'

!

as

92,
and T, r = 2,5 .., 10 are negligible by comparison with
To,Ta. Hence equation 4.,10(1) may be approximately written
B P (4 1
= e e——n] = K T T
'a_Y’l aYQ{_’Z 7o Topyp(t) + 1a Tal¥) '2M+2(X)} 4.10(2)

? E
'é" T +
x>

d2

Now —*a{Tz(Y)} = 4 and assume that ET is given in the form

dy

E_ = 6(X) + &) where 0,8 are functions of X only, Y only,

T

respectively.

Hence equation 4.10(2) may be written

bY d%e | L 7T (%) -d&e 4 4t o (Y)
2 ) Ax 2opgo\ ) = qYF T 2 TO FyB topyo

where A is

3
Hence <§>
a

= A (say)
some constant,
oot o a0
(2M+3) (2M+k) (2M+3) (2M+1)

AXQ
t S PGX + QG

(PG’QG arbitrary constants)

AY2

a.nd‘I’=—";‘To T2R+2(Y)_T+P¢Y+Q¢

(P¢,Q¢ arbitrary constants)

Boundary condition (ii) gives

PB =0

t
LTy

A= = T3 3) (ML)

1
—i T2M+4(X) - 2T2M+2(X)

;
flence B = - (°/a)" {de)(zmﬂ (20+3) (2+1)

t
2 2T 3
-3 7o Typ, oY) + Z2M+3522M+l){¥ (

Qe + Q
2 ¢
(°/a)

where Q =

¥3
/a)

Ton

4.10(3)

s (%) }
(2M+1) 2M

4.10(4)

+

"y ® )

M( 2N+ 1)

2} + P

RER 54.10(5)

|
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t
1
Now the terms involving 7, are at most O<jﬁé|>

i.e. 5 x 10°% while |70| = 4 x 107® (taking R = M = 10).

)
Hence E =z To(l - T2R+2(Y)) 4.10(6)
applying boundary condition (i).

SolE L = o(lTe]) = o(a x io‘a) 4.10(7)

-~

Table 6 shows the caloulated values of IF—FCI
over a range of points in the slot for R = M = 10, From the
the table it can be seen that the error estimate derived above

gives a good indication of the absolute magnitude  of the error.

TABLE 6.

(x,5) F P, |7-F |

(0,0) 6.19613 6.19888 0.00275
(0,-2-) Lo 77305 Lea 77542 0.00237
(5,0) 6.18645 6.19144 0.00499
(5.9) 1488076 1,..88583 0.00507
(a,0) 5.96791 5.96948 0.00157
(a,9) b o193l L h9LTL 0.00127

Comparison of the double Chebyshev method with the
Fourier-Chebyshev and Roth's method.

Again we have a single solution valid over the
whole region of the slot, the double sum being readily evaluated

pumerically. Negligible increase of difficulty follows if the

number of conductors in the slot is increased. However, to

:fficients a_ requires considerable
derive and calculate the coefficients rm ]

thematical and computational effort by comparison with the
matheme
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other methods,

Table 7 shows the rate of convergence of the

solution with increasing R and M

R=M= 8 10 11
point F Fc FC FC
(0,0) 6.19613 6.20287 6.19888 | 6.19551
(0,%) Lo 77305 4. 78131 b 77552 | 4077290
(5,0) 6.18645 6.19789 6.1914 | 6.18517
(2,2) | 4.88076 487885 4.88583 |  4.88147
(a,0) 5.96791 5.97205 5.96948 | 5.96689
(,2) | h.b93uk 4 49603 LLONTL | 409236

TABLE

Comparing this with Table 1 of section 2.5, taking

R =M = 11 gives comparable accuracy to that obtained by

taking M = 20 in Roth's method, Thus some saving in the number

of terms taken in the doubls sum has been achieved by using

the double Chebyshev approximation.

However the time taken

to compute the solution using this method is four times that

taken by Roth's method for the mesh of points f = 0(0.1)1,

% = 0(0.05)1.

The double Chebyshev method does however have the

advantage that it can cope directly with more generalised

forms of boundary condition. For example suppose that we

are considering the boundary conditvions as given in section
3,2 where we will assume that the functions f4,f3,fa and fy

are all polynomials. Tlizse polynomials can

as finite Chebyshev series

then be expressed
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M
e fa(x) = ) ‘g m (%
8¢ 14(x) = dm Tm(?) (say).

m=oQ

RN
A o= N
7)) g T 10

=

o)
]
o)

the bouniary equations correspording to this condition
would read

R

NN ] '
EZJ b =d form=0,1, ... M
rm m

r=0

with appropriate modifications for the other boundary

conditions. Before anything more can be said about this,
it 1s necessary for further investigations to teke place,
as various questions now arise., For example, by how much
would the equations for determination of the Qr be affected

and could the algoritam for their solution given in
Appendix 2 still be utilised?  Also, how would the linear
dependence of the boundary cquations be affected? However
it would appear that the double Chebyshev method ¢ an be )
made to cope with more general boundary conditions and I

propose to devote further research effort to this point,

Conclusions,

The use of.Chebyshev polynomials rather than
circular functions cannot be recommended for the type of
problem under consideration where the current density
function is discontinu;us within the slot. However the

experience gained in applying Chebyshev methods to an

elliptic partial diff'erential equation is felt to be very
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worthwhile. Although not suitable for slot problems tho
question arises as to whether there exist problems where ,
Chebyshev approximations would be the most suitable. One

obvious possibility is the solution of the equation

o*u *u
Elr A C )

where f(x,y) is a finite polynomial in x and y. Examples
of this and other types of problem will be considered in
Chapter 8. Also theré are further avenues of investigation
associated with  the problems arising from more general
forms of boundary condition as indicated in section 4.11.
We have derived here a very powerful method of solution
which will be shown in Chapter 8 to be particularly suitable

for certain types of problem,



CHAPTER 5

RECTANGULAR TRANSFORMER WINDOW.
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5.1) Introduction,

This chapter aims tQ show how Roth's method and
the Chebyshev methods can be adapted to solve the Neumann
problem arising from rectangular windings in a transformer
window,

The configuration to be considered is described
in section 1.,10. We shall solve the case of a transformer
window with two balunced rectangular windings, i.e., with axial
currents I,,I5 such that I,+ Iz = O. Thus the geometrical

configuration is as shown in Figure 18,

Y
C B
©,5)
S R,
S, R,
o(;_;_CL
oy OO
L 1
9(21 (l
AuC P, Q.
f O pub|  [Bab
B‘.b/[ F);t\o |

o A(a,0)
Figure 18.

J , d " are the current densities in windings 1 and 2, re-
Z1 73

spectively, OABC is the cross section of the window withthe

windings P1QsR;Ss and P3QzRaSa. The differential equation to

be satisfied throughout OABC is

3 - i inding 1
aBAZ . ad AZ - “r“OJzi in winding
- =
ox % - y_pod in winding 2
" z3
0 elsewhere
= - f(xy) (say) 5.1(1)

Referring to sections 1.9, 1.10, the boundary



98.
5.1) contd.

conditions are

.\ OA
(1) z =0 when x = 0, a; for 0 €y €D
X
..y OA
(ii) z =0 when y =0, b; for 0 € x € a.
ay

In this chapter we shall show how Roth's methods
and the Chebyshev methods can be modified to solve this type
of problem., No loss of generality occurs by considering only
two windings; the methods all extend when there are several
windings in the region OABC provided of course that the
total net axial current within OABC is zero. Solution by
the method of separation of variables is not considered as

it is unsuitable for the reasons given in Chapter 2.

5.2) Roth's method.

To satisfy the boundary conditions the solution

must be of the form

! ! mnrx kmy
A = ;;j Cy COF - COST 5.2(1)
=0 k=0
as described in section 2.2. The function f(x,y) is expanded

as a double Fourier series of the same fom i.e.

£(x,y) = % z 'z'{urqumal(m)ﬁi(k)wrquzzaz(m)ﬁz(k) }m—ﬂzﬁg

m=0 k=0 5.2(2)

aa(m) are given by equations 2,2(3) and

p; (k)= sin(g,gkn) - sinlfkm) g0
< } 5.2(3)

B, (0) = (Bys - BT

where oy (m),
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Substituting equatiors 5.2(1) and (2) into the
differential equation and equating coefficients of

mM7X k )
CcosS—— COS—gX gives

3 kQ' d '
Cul e+ 52 7 = Bl o2 ()92, 20 ()8 ) | 0
m=0,1,2 .., k=0,1,2 ... 5.2(4)

Note that Coo is undefined and equation 5.2(4) becomes in this

case

A#ruo

_ﬂz_[ngau-an)(ﬂu-ﬁ11>+Jm<aza-am>mm-ﬁig)} -0 5.2(5)

again expressing the fact that the total current within the
region OABC must be zero. Without loss of generality we may
take

Coo = 0 ‘ 5.2(6)
A different value of Coo merely gives a different level of

potential within the region OABC. Note that with this value

of Coo,

a b
j[ j[ A dx dy = 0 5.2(7)

X=0 Y=0
Thus the solution is given by equation 5.2(1) where the coefficients
ka are defined by equations 5.2(4) and (6) and the current
densities J and J_ are related by equation 5.2(5). The double
sum is evaluated by diagon&ls as descrihed in section 2.3

using the numerical algorithm given in Appendix 1. Due to the

symmetrical nature of the solution, values of AZ are calculated

over the mesh = = 0(0.05)1, £ = 0(0.05)1.
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5.3) Fourier-Chebyshev approximation.

Due to the symmectry of the boundary conditions,
1t is felt to be iumaterial in which direction we take the
Chebyshev variation. Since the boﬁndany conditions are of
the Neumann type, the integrated method of solution as
described in section 4.3 is unsuitable for the reasons given
in section 4.5 and the direct method or modif'ied direct method
must be used as follows. Assuming Chebyshev variation in the
y-direction and following the treatment given in section 4.2
we may expand fhe current density profile over the region
O0<x <a, -b sy s<hb, as

o0 (o

o) = et )1 a0 s (@) 20293, oot (1)

m=0 r=0
5.3(1)

where ai(m), i=1,2, ... is given by equations 2.2(3)

1, . . B

and 8i(r) = Z(sin 2r¢ ;- sin 2r§2i) r=1,2 ...

5.3(2)
Si(O) = 2(§1i_§21)
- -1
where §1i = cos * ﬁli » &4 = CO8 ﬁai 5.3(3)
.. 4#rHoJ b?
Defining F = AZ A )

_g;g . _g;_g _ %rz Z' i'[ai(m) 8(r)+J az(m)éa(f‘)}osg? Tzr(%> }

m=o |
g
z
J

z1
(aga=a )(321-3132 5.
=7 (azg-ai:)(ﬁzz—ﬁiz) 5.3(4)

where J

since the total current within the slot must be zero.

Defining F(x,y) in the fom given by equation 4 .2(6)

we obtain
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_<%§E> (Y)+ - . nazlJ i n) 51(r)+J az(m) Sa r):# (Y)

for m = 0,1,2 ... 5.3(5)
where Y = Y /b,

From the boundary conditions at y = + b

de '
m =0 whenY =+ 1 3(6
' * 5 3( )

. a?
Assuming that ¢m and ¢ %n are given by equations
av?

4.3(2) and (3) respectively, the equations deducible from

the differential equation are

a

_ Gm%fé%q.mfz-f{%@@ 52 (x) +J(m@0%(ﬂ} 5.3(7)

r=0,1,2 eos (R-1)

- <?ﬂh>3 o = _natai(m)ﬁl(R) +J ag(m) SQ(R)} - "1 5.3(8)

a

where the coefficients a , b are related by equations 4.3(L).

The boundary condition 5.3(6) gives, as described in section

L5,
=0 5.3(9)

Z b
- T
(4r-1)
r=1
Equations 5.3(7) and (9) are solved for the coefficients

aO’bI‘, r = o,l, e e (R"l), fOI‘ m = 1,2 eoe M-
Considering the case when m = 0, a is undefined and