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SUMMARY

In this work the solution of a class of capital investment
problems is considered within the framework of mathematical
programming. Upon the basis of the net present value criterion,
the problems in question are mainly characterized by the fact that
the cost of capital is defined as a non-decreasing function of the
investment requirements. Capital rationing and some cases of
technological dependence are also included, this approach leading
to zero-one non-linear programming problems, for which specifically
designed solution procedures supported by a general branch and
bound development are presented. In the context of both this
development and the relevant mathematical properties of the previously
mentioned zero-one programs, a generalized zero-one model is also
discussed. Finally, avariant of the scheme, connected with the
search sequencing of optimal solutions, is presented as an alternative
in which reduced storage limitations are encountered.
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CHAPTER I

INTRODUCTION




1.1) THE CAPITAL INVESTMENT PROBLEM.

Investment, in the sense with which this work is con-
cerned, is usually defined in the dictionaries as "any placing
of money to secure income or profit". Narrow and incomplete as
it may seem, this definition contains the very characteristic
nature of what the attitude of an investor would be. Most
certainly, it only accurately reflccts the traditional behaviour
of capitalistic entities, but it is also truc that, regardlsss
of means, ways and philosophical differences, it features in
general a very important practice pertaining to achievements of
goals, commonly, although not necessarily, measured in terms of
money. To analyse the concept of investment to the lesvel of
formally structuring a precise and flexible definition is not
the task of the present discussion. For its purposes,an invest-
ment should simply be interpreted as any placing of money with
which the achievemunt of a goal, with subsequeont flows of money as
defining elements, is associated. Whilc accepting that this concept
is closely related to that of the dictionaries,it should be noted
that the basis to generalize the definition is now included. Scarce
resources could be placed instead of money, anl no specification has
been imposed upon the character of the goal. In the context of this
work, however, the maximigzation of the present worth will be referred
to as the goal, under the assumption that its degree of achievement
is measurable by the resulting subsequent flows of morey. This
position might not be applicable in general, but it is doubtlessly
valid for most purposes within Western type mixed economies,

The general investment processtincludes the following
four phases:
1. Identification of the need to invest,
2. Identification of ways (investmeant proposals or projacts)

to satisfy the need to invest.




3. Appraisal of thc identified projects.
4. Selection of projects to invest in.

Individuals, private firms and national bodies normally
know that an aporopriate course of action to increase their
present worth is to invest. On the other hand, they also know
that a wrong decision may lead to catastrophic results, and
this is certainly the main reason upon which many decision
makers support their tendency to look for alternative ways of
improvement. These alternatives, however, are usually rather con-
servative in relative terms and, in many cases,insufficient.
Arising from either subjective or objective considerations,
the fact of qualifying this set of altcrnatives as unsatisfactory,
marks the beginning of the investment process, It is precisely
at this point that the need to invest becomes meaningful, giving
place to the necessity of counting with a rational guide to
approach the problem., In theory, the problem is to determine,
subject to the prevailing circumstances, a feasible set of
investment decisions maximizing the contribution to the present
worth. Such a concept is of course purely academic, since, at the
present, it imposes unrealistic requirements regarding the know-
ledge of the existing environment., Nonctheless, it is "the" point
of reference towards which the analysis is to be directed.
Accordingly, three questions have to be answered: Which ways
(or projects) will be considered for investment purposes? How
will each project contribute to the present worth? Under
feasibility considerations, which of these projects will define
the set of investment decisions meximi zing the contribution to
the present worth? In the ssnse of logically answering these
que stions, the problem posed by the nced to invest is solved when

this 1s accomplished.




The first two phases of the general investment process
have to be developed as a result of the experience and the
initiative of the analysts, as, for obvious reasons, no realistic
mathematical model in this connection is available. Along these
lines, an assumption of this work will be that both the nced to
invest and a universe of a class of capital investment projects
to satisfy this need have been identified. Consequently, the
aim will be to analyse an aspect of what in the present study
will be referred to as the Capital Investment Problem: Amongst
the elements of a set of capital investment projects, which
feasible combination should be selected in order to maximize the
corresponding contribution to the present worth? As can be easily
observed, this is nothing but a re-statement of the last guestion
in the preceding paragraph, and the first step to attack the provlem
is to determine the way by which the projects are to be appriased.
Under specific assumptions, in this worx the net present value
(NPV) - the basis of' the most accepted criterion to handlec this

problemg - will be used as the appraisal measure,

1.2) TYE CAPITAL GROWIH MODEL.

The supportung theory of the NPV is what in most texts on
mathematics for finance 1s referred to as Compound Interest Theoryae
In this section a formal development leading to the fundamental
results of this theory is presented. Concepts related to capital
growth processes will be mentioned, and, for illustrative purposes,
they can he interpreted as concepts related to deposits of money
in financial institutions.

DEFINITION 1.1 : Let it be considered that capital grows in &
process at a unitary rate 1 in a fixed period
of time. Referred to that period of time, i is

said to be the EFFECTIVE RATE OF INTERLST.




LEMMA 1.1 : Let n be any natural number, and let it be assumed
that capital grows in a process during n successive
periods of time at an effective rate ol interest
i per period. Let Cp be the initial capital and
Cj the capital at the end of the j-th period

. N
(3 =1,2,00.,n). Then ¢, = Co 1+4i)7
Proof (by induction): Let n = 1. It has to be shown that
Ci = Co(l+i)*. From

Definition 1.1, it follows that, after one time period, i additional

units of capival will correspond to each unit of Cp. Accordingly,

the total capital after one time period will be Co + iCq, or

Co(1+i)t,

Let i1t now be supposed that Lemma 1.1 is valid for n = k.
) i L\ Kt L
It has to be shown that Ck+1 = Co(1+1) . Following the same
reasoning as above, given that at the beginning of the (k+1)-th
. . . N i
time period the total capital is Co(1+i) s 4t the end of that same
. . . KL Nk
period the total capital will be Co(l+i) +i Co(l+i), or

Co (141 )5+,

DEFINITION 1.2: Let m successive time subperiods define a timo
period. Referred to that time period, UM 5

said to be the NOMINAL RATE OF INTEREST, if

HE

is the efflective rate in each of the m sub-
periods.
COROLLARY 1.1: Let i and i'™ be the effective and the nominal
rates of interest in any time period, respectively.

() m
Then 1+i = (1+ =) .

Proof: This result follows directly from Lemma 1,1,




DEFINITION 1.35: For any natural number m, let i{™ Ye the nominal
rate of interest in a time period. Referred to
that time period, & is said to be the FORCE OF

INTEREST, if & = ¢im i¢™,

m -+

LEMMA 1.2: Let i and & be the effective rate of interest and the

force of interest in any time period, respectively. Then
1+1 = eBn
Proof: From Corollary 1l.1,it follows that:
i
iU ()™ - 1]
Hence,
&
. I .
§ = ¢im m[(2+i) =1] = en(1+1)
n - e

.o 1+l =@
LEMMA 1.3: In a capital growth process starting at time point

zero, let C_ be the capital at time point t. For

t
any non-ncgative real number t, if':
C .
i) E_t exists;
dt

ii) Cp £0; and

iii) the time subperiod [t,t+ i] has an associa ted

NE)

effective rate of interest , Where m 1s any

natural number;
then Cp = Co(l+i)t, the b asic time perlod being defined by m
successive time subperiods of length %.
Proof: Let At = é. Then, since by ii) C, A0, by iii) it may
be stated that:

T T A

C, T m
ooa(m Coant™b%

= ot i(™

- t

Therefore, taking i) into account, it may alsc be stated that §




can be expressed in terms of Ct' Namely:

5 = £im 5 (m) £im

C, 1 4c

1 C -
m > o T, Moo bt b= C -t

t At t dt

t

o /‘ 2 % at = enc, - enCo = en Ct=s,
t 4t Co

0
&t

or Ct =G0y e

Finally, from Lemma 1.2, it follows that:

At
Ct = Co(1+1)

DEFINITION 1l.4: A time point marking the end of a capital growth
process is said to be a

REDEMPLION POINT,

DEFINITION 1.5: In a capital growth process starting at time point
zero, if all possible redemption points t lead to
a final capital Co(1+i)t, then the process is said
to be a COMPOUND INTEREST PROCESS at an effective
rate of interest i, the basic time period being
defined by t = 1.

DEFINITION 1.6: In a compound interest process, Ct is said to be
EQUIVALENT to Cp (t,7 20), if a real number T

= ¢, (141)".

exists, such that CT

COROLLARY 1.2: In a compound interest process starting at time
)—t

1+1

point zero, Ct is equivalent to Co = C 5

&
for any non-negative real number t.

Proof: This result follows as a direct consequence of Definition 1.6,

1.3)  THe NET PRESENT VALUE

1.3.1) AN EXAMPLE

Let P be a capital investment project, defined in terms of':

i) an initial capital outlay (cost) Co,




ii) a series of cash in-flows (benefits) Bi,Baye.e,B , and

iii) a series of cash out-flows (costs) C1,Ca,eve5C,

where Bk(k > 1) and Ck<k > 0) take place at the beginning of the

(k+1)-th time period and m, called the PLANNING HORIZON, is any

natural number,
Under normal circumstances, capital deposited in financial
institutions can always be increased by the interest paid for

refore

el
o
@23
=
w
@
Ll
=3
jny
[

, taking into account the conditions regarding
the acceptance of deposits (interests determined by means of a
percentage referred to a time period), the capital growth in this
kind of institution tends to define a compound interest process,
Let it be assumed that B > C (k =1,2,...,m). Then, if P were
to be considered as an alternative of depositing an owned capital
of Co monetary units at an effective rate of interest ¢ during
m time periods, one way of handling the problem would be to think
of* the net cash in-flows Bl-Ci,Bg—Cg,...,Bm—Cm as the result of
a compound interest process, referred to an initial capital

m

L= 2 (Bk—ck)(1+c)”k, Tn this context, X would be the maximal

C=d

initial capital outlay to secure an effective rate of interest

at least as high as ¢, and hence P should be sclected if:

Co < X

or, equj_v&l&lltly, ife
g Bk - Ck
Y = > N > O,
k=0 (l+C)

where By = 0.
It can be easily seen that in this example Y is simply

the difference between the equivalent present value of the

cash in-flows at an effective rate of interest c and

@
<2

future n

the actual present cash out-flow Co. Consequently, Y can be

interpreted as an equivelent present net cash flow of project P,

=
o

minimal yield c¢ is required. In this sense, ¥ is said to

be the NPV of P.




1.3.2) CERTAINTY CONDITIONS.

In general, the NPV of a project is defined as the
difference between the present value of its benefits and'the
present value of its costs, and, accordingly, the NPV CRITERION
establishes that a contribution towards the maximization of the
present worth is encountered, if the NPV turns out to be a
benefit. Upon the basis of an appropriate measure of the actual
costs and benefits, these conceptls are logical and consistent as
such, but the task of measuring the NPV in practice has not been
a simple one. As in the previous example, duc to the fact that
it accurately represents the functioning of financial transactions,
the model of the compound interest processes has bcen accepted as
a correct way to obtain the present value of a stream of fubture
cash flows. The associated rate ol interest ¢ (usually referred to
as the DISCOUNT RATE or COST OF CAPITAL), however, has been a very
controversial issue, ever since the publication of an article due
to Modigliani and Miller® in which the conclusion that in perfect
capital markets the cost of capital to & firm is independent of’
the financing used to raise capital funds for investment was
reached. Durand: "Modigliani and Miller have cut out for them-
selves the extremely difficult, if not impossibvloe, task of being
pure and practical at the same time. Starting with a perfect market
in a perfect world, they have taken a few steps in the di~ection of

realism; but they have not mude significant progress L
Modigliani and Miller, replying: " .. h¢ has focussed on the
apparent limitations of the perfect markct model instead of trying
to surmount these limitations by extending our basic approach,"®
Boness: "Perhaps the most exciting event in gconomic controversy

was the publication of work by M.H.Miller and F.Modigliani®?®> 728

on the cost of capital and related problems. The controversy




continues, judging from a session of the proféésiGhal meetings at
Pittsburgh in December, 1962, with more passion than reason,"®

"he term cost of capital may be defined as the price paid
by a firm for funds acquired from its capital suppliers."io.e.
"While there is fairly general agreement concerning the usefulness
of the concept and how it should be applied, there has been a
fundamental lack of agreement on exactly whit it is or how it
should be measured."*? ,,. "The definition of c¢ as the cost of
capital is only one way of expressing its nature and function and
perhaps it is not the most useful way. Other descriptions of its
role exist. Thus c¢ has been referred to as (a) the minimum required
rate of return on proposals using capital funds, (b) the cutoff rate
for capital expenditure, (¢) the "hurdle" rate or "target" rate of
return which must be surpassed if capital-use is to be justified,
(d) the financial standard"*® .., "Therc has been considerable con-
troversy over tho rate at which public undertalings should discount
future receipts and costs when appraising investment ... It was
commonly assumed that investment needed to earn only enough to cover
amortization and interest at a rate resembling ths current yield of
government securities, or the rate at which the industry borrowed
from the Exchequer ... LT public investment is financed by with-
drawing through taxation meney which might have been used - and which,
having been withdrawn from consumption could in principle be used -
to finance additional private investment, the real marginal cost of
the capital invested in the public sector will be its opportunity
cost, defined as the return that might have been samad by a marginal

. . . 3
addition to privats investment ,"*

In ths present work no attempt to discuss or narrow the
rance of disagreement about the cost of capital will be made.

Tnstead, it will be considered in terms of a number of imperfect

capital marksts assumptions likely to be encountered, particular




in this relation, but general = in regard to’theaCQntéxt within

which the problem could arise. The class of problems under con-

sideration will be formulated on the basis of variants of the

usual definition of the NPV and the NPV criterion for perfect

capital markets which are next presented:

DEFINITION 1.7: Let P be an independent capital investment
project, in the sense that its acceptance or
rejection in nc way affects other existing projects
and vice versa, Then, if the cost of capital c is
a constant,

i) The present value of the cash in-flows By,Ba,...,B (costs and

benefits of P to be denoted as in Scction 1.5%.1) is given by

m B
B= 2 —ﬂ_k;“"k
k=414 (_l + C)
ii) The present value of the cash out-flows Co,Ci,....,Cm is

given by:
n 5

K=o (1+0)
1ii) The NPV of project P is glven by:
NPVP =B - C

THE NPV CRITERLON: Accept P, if NPVb > O;reject it, otherwise.

Associated with perfect capital markets assumptions isan
important implication. Capital funds supply at the market rate of
interest (constant and equal to the cost of capital) is unbounded.
Consequently, decision makers can accept as many profitable in-
dependent projects as they wish. This mecans that this kind of
projects are automatically dealt with after the third phase of
the general investment process, and that the fourth phase 1s
irrdlevant in this context.

Finally, it is pointed out that Definition 1.7 can be

extended for non-independent projects in a straightforward fashion,




but in reference to particular selections. Therefore, in this case
the NPV criterion can only go as far as asserting whether an in-
dividual contribution towards the maximization of the present worth

is being made or not.

1.3.3) UNCERTAINTY CONDITIONS,

The importance of the NPV as a quantitative measure may be
sumnarized as follows:

1. It tells whsther or not an investment proposal contributes
towards the maximization of tho present worth.

2. In terms of present monetary units, it determines the size of
such a contribution,

Under deterministic . assumptions and on the basis of an
appropriate discount rate, these two points are meaningful, because
the required information (and hence the NPV) is lmown with certainty.
However, if a certain degree of uncertainty were assoclated with
the information, then it would no longer be possible to determine
whether a contribubion would be achieved. Nevertheless, probabilistic
statements and related psrameters can serve as useful tools to deal
with the problem. In this framework., it would be desirable to know
the NPV, now a random variable, to such an extent that the following
assertions could be made:

It leads to the probability of an investment proposal contri-

}.._J
e

buting towards the maximization of the present worth
(p {NP‘VD >01).

2. In terms of present monetary units, 1t determines the expected
size of the contribution (B {NPVP}).

In this regard, the distribution of the NPV was derived

5

o+ Hilliert* for a class of normally distributed net cash flows,

and handled by Hertz2® via computer simulation under specific




subjective probability assumptions. As exambiéé of two general
approaches, that of Hertz has the advantages inherent to com-

puter simulation, but both require complete probabilistic
information in connection with the net cash flows. More recently,
Diaz-Padilla‘®’17 developed successfully a practical method using
first order approximations®® to obtain the mean and variance of

the NPV, His approach is also based on subjective probability
assumptions, but only the means, variances and covariances of

the net cash flows are required. In any case, it should be

observed that in uncertainty conditions the assertions involved

are strictly probabilistic, and that, as a result, ths NPV

criterion as such caunot be established. Therefore, any criterion
approaching the NPV criterion for deterministic conditions can be
accepted as relatively valid, its level of validity being determined
by ths accuracy of the estimates used to measure subjective pre-
ferences. A simple and very logical alternative is to base the
criterion on the sign of the mean restricting the size of the variance
but other related possibilities exist (Markowitzgo, for example,

penalizes the mean with the variance in a linear fashion).

1.4) THE KNAPSACK PROBLEM.

Tn Section 1.3.2 it was noted that independent projects are
particularly simple to handle in perfect capital markets. The
associated conditions, however, are restrictive in a number of
aspects. One of these aspects is referred to the supply of
capital which, either intemally or externally, is very often found
to be bounded. In this case the funds for investment are limited,
and hence, in general, not all the profitable projects can be
accepted. In other words, if capital rationing is assumed, the
role of the fourth phase of the general investment process becomes

active.

19
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Let U = | Pi,PQ,...,Pn}, a set of capital‘igﬁestment
projects, be considsred under the following assumptions:
i) EBach project is indivisible, in the sense that it is
either totally accepted or rejected.
ii) Each project Pj is defined by a sequence of cash in-
flows B. ,B. ,...,B. anda sequence of cash out-~flows

Ji’ J2 Jm
rhore 1 > 3 1 > - o 1
CjO’cji"°°’ij’ wher Bjk (k 2 1) an Cjk (k > 0) take
place at the beginning of the (k+1)-th time period,
1ii) For any J € {1,2,...,0n} and avy k « {1,2,00.,m},

B C

S 1S
iv) All the projects are TECHNOLOGICALLY INDEPENDENT, in
the sense that, apart from capital rationing and
desirability limitations, the acceptance or rejection
of any one of them in no way affects the possibility
of accepting or rejecting any one of the others,
v) Acceptances and rejections do not affect the size
of any of the defining cash flows.
vi) The cost of capital is gilven by the constant c.
vii) The NPV of each project pj (vaj) is positive,

If perfect capital markets conditions were further assumed,
then the projects would be independent and, as was previously
mentioned, all the projects could be accepted. However, if
such conditions were restrickd by assuning that an active limit
b on the capital expenditures ¢xists,then a non-trivial capital
investment problem would have to be solved. Under the assumption
of this kind of capital rationing, let ths variable
X5 (3 =1,2,...,n) be defined as follows:

v = {1, if Pj is accepted
b o, if P, is rejected

Then, if U is the inverse of investment proposals, the problem

car be stated as:

13,




[n]

(1.4)

Max z = 2 NPV.x. ’ s - @)
. J J B, 5
J=1
n
s.te 2 0. x. <D 1.2
3 Cyx (1.2)
J=1
X5 = Oorl, j=1,2,c..yn (1.3) )
ul B.k—C.k
whare NPVj = oy 4 JE , Bjo =0 and ¢ is the cost of capital,

k=0 (1+o)k

=

Referred to a hiker facing the decision of carrying a
number of items within a limited weight capacity, problem (1.4)
was named by Dantzig21 as the KNAPSACK PROBLEM. He described

a straightforward inspection rule to obtain the optimal solution
to the continuous problem (the xj's taking any value in the
interval [0,1]) indicating that the rounded-off solution - a
feasible solution to the original problem - should be prcbably
satisfactory for most practical problems. Strictly speaking,
however, this inspection rule was not new, as two years before
the publication of Dantzig's article, Lorie and Savage®® had
already proposed the procedure, despite the fact that they were
not explicitly dealing with a mathematical programming problem.
In their section "Given a fixed sum for capital investment, what
group of investment proposals should be undertaken?", Lorie and
Savage approached problem (l,A) stating that acceptances should

be made in decreasing order of the unitary net present values

until exhausting the capital funds for investment. In a different

framework, this is nothing but the rule suggested by Dantzig.

® was the first to identify capital

In any case, Weingartner2
rationing and indivisibilities as a mathemsatical programning
problem, and, as such, the knapsack problem can be solved by any
integer linear programming method®*, Before Gomory's pioneer

systematic cutting planes development in this f1e1d®®, Dantzig

noted that the problam could be solved by msans of dynamic




programming®®, this idea being later exploited by Gilmore and

26,37538,2389
Gormory=822 7228225

Of course, cutting plane methods can also
be used to solve the problem, as well as the more specialized and
efficient Balas—typéxélgorithms . Nonetheless, it was the branch
and bound approach of Land and Doig31 the one which led to more

Ao s L 1 3253333
efficient solution methods®<°""? 4,

Specialized approximate pro-—
cedures of fast convergence can be found in the works of Senju

and Toyoda®®and Toyoda®®,

1.5) SUMMARY AND SCOPE OF THE STUDY.

Within the context of the general investment process, the
capital investment problem was defined in this chapter upon the
basis of the NPV criterion. Preceded by a formil description of
its mathematical model, the usual definition of this criterion
for perfect capital markets was presented, pointing out its
relevance in connection with the capital investment problem. The
NPV and the NPV criterion were alsc discussed under conditions of
uncertainty.

Under deterministic assumptions, perfect capital markets
conditiocnswere restricted in a nowadays classical example on the
subject (the knapsack problem) by allowing capital funds to be
rationed. In this work the solution to a number of variants of a
generalized version of the knapsack problem, to be referred to as
the MULTI-DIMENSIONAL KNAPSACK PROBLEM, is considered within the

framework of mathematical programning., This problemwas first

studied by Weingartner®® and canbe stated as follows:
n -
Max 2z = 2 NPVJX,
J=1 J
s.te. j§1 ajkxj < bk’ k =0,1,.0.,m

xj =0orl, j=21,2,.00,0,

P

where all the parameters are non-negative constants.




The capital market conditions will be mainly characterized

by the flact that the cost of capital will be defined as a non-

decreasing function of thz level of expenditure for investment.

For practical purposes, this can be interpreted as a consequence
of capital attraction being a non-decreasing function of capital
productivity, or, equivalently, as a result of capital suppliers
evaluating the investor's "intention and ability to repay"°7.
Under this assumption, the problems under consideration lead to
zero-one non-linear programs, for which specifically designed
solution procedures are presented. These solution methods are

supported by a general branch and bound development, with which
L b )

together with the relevant mathematical properties of the previously
mentioned zero-one programs, a generalized zero-one programming
model is discussed. Finally, a variant of the scheme dealing

with reduced storage limitations along the sovlution processes,

is also presented.
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CHAPTER II

A BRANCH AND BOUND SOLUTION SCHEME FOR
FINITE PROGRAMMING PROBLEMS.




2.1) INTRODUCTION

Ever since the publication of Land and Doig's article®
to solve integer linear programming problems, branch and bound
algorithms have constituted an important part of integer pro-
gramming theory. As in the cutting planes method of Gomory?,
this approach starts relaxing ths integer restrictions on the
variables. The original feasibiliy region is of course a subset
of th2 continuous space, and so the continuous optimal solution is

al

03

o optimal to the integer program, if it satisfios the integer
restrictions. In this case the problem is solved. Otherwise, the
continuous space is partitioned into a collection of subspaces on
the basis of necessary conailtvions for integer solutions, disre-
garding those parts of the space for which the original problem is
not feasible. As a result, this collection of subspaces will
contain all the feasible solutions to the integer progran. The
assoclated continuous subproblems may then be treated in the same
way as the original continuous problem. After repeated application
of the procedure, an optimal solution to the integer program is
given by an optimal solution to the subproblem with the best optimal
objective value (amongst all the generated subproblems) satisfying
the integer restrictions., Each of these optimal objective values
defines a bound to the objective value corresponding to the integer
solutions of the assoclated subspace, and, together with other
criteria, they allow implicit consideratlion of many subproblems
involving feasible integer solutions. The name BRANCH AND BOUND,

due to Little et al.®, is referred to the role of partitioning

d

and bounding, respectively.
After the work of Land and Doilg, pioneers in the

a0 a0 - I+ imea -4 ¢ ] . 3 2]
development of branch and bound algoritims, extensive study of

N - y 2 e ey ~ AT a b - 4535
aleications and improvements of this spproach followed R

. . I A e ] L e - ~4356575859
including the generalization of its underlying principle .




In this chapter, the mathematical structure éf a branch and
bound solution scheme is presented. The scheme, -subsequently

to be implemented for the particular problems under consider—
ation, is also discussed in the context of the branch and bound
principle, as stated by Balas®,

2) THE DIRECTED TREE.

Let the feollowing optimization problem be considered:

Max z = £(s) ~
j (2.1)
s.t s €5
where :
i) S is a subset of T with more than one elcment,
ii) T is a finite subset of Y,
iii) Y is an arbitrary set, and
iv) f: ¥ » R ,R being the set ol real numbers
DEFINITION 2,l; S and f are sald to be the FEASIBLLITY REGION
and the OBJECTIVE FUNCTLON of problem (2.1),
respectively. The elemcnts of Y are called
SOLUTIONS, those of S FEASIBLE SOLUTIONS, and
those of S for which f is maximal (in S)
OPTIMAL SOLUTIONS.

An optimal solution s* to problem (2.1) clearly exists,
because S is finite and non-empty. As usual in the framzwork of
branch and bound algorithms, the proposed method to find such a
solution is a search procedure which can be interpreted as the
generation of & directed tree. The concepts aud properties linking

this approach with both problea (2.1) and the proposed solution

method are next presented.
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DEFINITION 2.2: Let C be the collection of subsets of T with more

than one element, and let P.be a function, such

that P:C » D, where D is the collection of sets

with non-empty subsets of T as elements. P will Dbe

sald to be a PARTITIONING FUNCTION, if for any ceC,P(c)

is a partition of C (the notation used in the definit-

ions will hereafter be referred to the corresponding

concepts.

DEFINITION 2.3: Let E be the collection of non-empty subsets of T.

If ¥ is an injective function, such that N:E - N
(N being the set of the natural numbers), then N(e)

will be said to be a NODE, for any eel,

DEFINITION 2.4: Let e;eC and ezeB. The ordered pair [N(es),N(ez)]

LEMMA 2.1:

Proof: This

will be said to be a DIRECTED ARC, if, and only

if, eaeP(es).

Let $n(N) be the image of N, SN a non-empty subset of

%a(N), and SA a set of directed arcs. If:
1) N(T) ¢ SN,

ii) nae SN=>(nyna)e SA, where ngAN(T) and n,eSN,and
iii) (ni,n2)eSA=ing,ns € SN,
then TR = {SN,SA} is a finite directed rooted tree,

N(T) being the root of the tree.

Proof: See Appendix CH Il

COROLLARY 2.1: For any neSN, if n # N(T), then one and only one

directed path from N(T) to n exists in TR.

Proof: This result follows from Lemms AIL.l,
Definition AIT.15 (see Appendix CIII) and Lemma 2.1,
COROLLARY 2.2: Bvery neSN belongs to one and only one level of TR.

result follows from Corollary 2.1 and Definition AII.17

(see Appendix CHII).




COROLLARY 2.3: Let N"%, with Jm(N) as domain, be the inverse

function of N. Then, if ny,nael(j) and ni# na,

then N *(ng) IN"*(ng) = ¢, for any level £(3J)

of TR,

I': Let p; and pp be the directed paths from N(T) to n; and

na, respectively (by Corollary 2.1, they exist and are
unique). If j = 1, N *(ny){| N *(ns) = ¢, because both
N *(n;) and N %(nz) are elements of P(T). Otherwise,
let m, be the‘second component of 2; (i = 1,2). Again,
N *(my) and N *(mg) are elements of P(T), and hence
Nll(ml)(}N“l(mg) = ¢. Consequently, given that N‘i(ni)
is a proper subset of N’i(mi)(i =1,2), the required

result follows.

DEFINITION 2.5: TR will be said to be COMPLETE, if the following

conditions hold:

1) For any nedN, if néIN and eeP[N"*(n)], then

N(e)eN
ii) For any nelN, N *(n){l C = ¢,

where TN is the set of terminal nodes (see

Appendix CH 11)

COROLLARY 2,4: Let V = {x/xa0 *(n) and aeIN}, and let TR be

complste. Then T=V and §(V) = §(TN)

(4: cardinality).

Proofy This result follows from Corollary 2.1 and Definition 2.5,

DEFINITION 2.6: TR will be said to be FEASIBIE, if seS=sdl” *(n)

for some nelN. It will be said to be COMPLETELY

FEASIBLE, if, in addition, N"*(n)(] Sf¢,for any

nelN.




LEMMA 2.2: TR is feasible, if, and only if, eeP[N %(n)] and

e ) S#¢::>N(e)eSN,for any neSN, such that ngTN,

Proof: =)) H : TR is feasible,

Let it be assumed that some non~terminal element n

of SN exists for which N(e)¢SN, where eeP[N"*(n)] and
e[l S¢¢. This means that all the directed pa&hs of the form

ni,.n.,nk), whers n, €N, are such that N“i(nk)ﬂ eflS = ¢.

If all the terminal nodes were invnlved with these paths, then,

since ef18$¢, at least one element of S would not belong to

N“i(nk)yforeany n, €N (contradiction to H). Otherwise, let
TNy be the set of the remaining terininal nodes,and let the

path (N(T)yri,,,.,r&,n) be considered. The sets N *(r,)

P

i=1,2,...,8) contain e properly, and, by corollaries 2,2
and 2.3, if nkETNi, then N‘i(nk)f]e:¢. Hence, again,
SGS%¢>S€N_1(HK) for some n?eTNi, and a contradiction to H is
encounter;—)de

(= )H: ecP[N"*(n)] ana e (] Skp=N(e)eSN, for any nesN,
such that n%TN,
Let it be assumed that TR is not feasible. Then an
element s of S exists, such that skN"i(n)nyI'any neTN ,Under
this assumption, some level £(j) in whi h sgN"%(m) has to exist,
where m is a non~terminal element of €(j) (o%herwise, by H,

TR would have to be feasibls), However, since obviously seT,

considering in succession the levels of the tree, 1t follows

(also by H) that no such level £(j) can exist. Therefore, T

has to be feasible,

LEMMA 2.3: Let TR be feasible. TR is completely feasible if,
and only if, eeP[N"*(n)] and ell S = ¢ ==

N(e) SN, for any ned, such that n¢TN.




Proof:=))H : TR is complately feasible

If a non-terminal element n of SN existed for which
N(e)eSN, where eeP[N—l(n)] and efl S = ¢, then a path of the
foru (n,ni,...,nk) would exist, n, Dbeing a terminal node and

=~

1 K T
N (nk) containing no elements of S. Hence, H would be con-

tradicted.
=) H :eeFN*(n)] and eN 8 = ¢ =N(e) SN, for any
neSN, such that néIN.
Let it be assumed that meTN and that N *(m)[l 8 = ¢

(or, equivalently, that TR is not completely feasible).

Because S=T, in the path from N(T) to m has to be a component

n, such that N *(n)1 S $ ¢ and N"*(,)Il S = ¢, where ny is

also a componegt of" the path andh(n,ni)eSA. Hence,

N™*(ny) eP[N"*(n)], contradicting hypothesis H. Therefore,

TR has to be completely feasible.

DEFINITION 2.7: TR will be said to be PARTLALLY COMPLETE, if

the following conditions hold:
i) For any neSN, if nfTN, eeP[N"*(n)] and ellStp, then N(e)eSN.

ii) For any nelN,N"*(n)[l C = ¢. N

LEMMA 2.4: If TR i; partially complete, then it is also

feasible.

Proof: By condition i) of Definition 2.7, for every non-
terminal node n, all the elem=nts of N *(n) belonging
to S have to belong to the union of the slements
©1,083,004,8) OF P[N"*(n)],for which N(ei)€SN(i = 1,2,000,k).

Consequently, every seS has to be an element of

N"*(m), for some meIN.

ST R
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DEFINITION 2.8: TR will be said to/bé:éSngCiﬁNTLY COMPLETE,
if it is completely feasible and partially
complete,
COROLLARY 2.5: Let V = [x/» = N"*(n) and néIN}, and let TR be
sufficiently comélete. Then S=V and #(V)= $(IN).
Proof: This result follows from Corollary 2.1 and Definition 2.8,
DEFINITION 2.9: TR will be said to be SUFFICIREN[, if:
i) s*&" *(n), where nelN and f is maximal in S at s*.
ii) The functions g:IN » {n} and h:N"*(n) » {s*} are known,
Clearly, a sufficiént directed free léads to an optimal
solution to problem (2.1), this being the basis of the proposed
procedure to find such a solution. In a most rudimentary approach,
the construction of a complete directed tree would provide the
required information, and, although with some improvement involved,
the same can be stated in connection with partially and sufficiently
complete directed trees. In thesc cases, all the subsets of S
containing one single elcment would be associated with terminal
nodes of the tree, and hence this would be equivalent to an
explicit enumeration of the elements of S. The problem would be
then to choose that or those elements of 5 for which f is
maximal. Obviously, however, this is not the task of the
solution method. The purpose will indeed be to find a sufficient
directed tree, but as far apart from the different concepts of
completeness as possible., In terms of enumeration, the goal
can be described as finding an optimal sclution by means of
inspecting only a few elements of 3. Relevant concepts in this
regard and their properties are now introduced.

DEFINITION 2.10: Any element n of Sn for which Sn = S(]N‘1<n)+¢

will be szid to be a FEASIBLE NODE,
DEFINITION 2.11: Let n be any feasible node and let Yn be a

subset of Y, such that Sﬁ: Yn‘ A fanction




DEFINITION 2,11: Zn:Yn - R will be said to Bé én UPPER BOUNDING
(oontd)

FUNCTION of n, if 2 (y) = f£(y) for all yeS ,

%
and Z = max {Zn(y)} exists.
yel

DEFINITION 2.12: TR willbe said to be UPPER~BOUNDING, if
s*l"*(n), for some neTN, and an upper bounding
func%ion is associated with all the feasible
elements of TN,

LEMMA 2.5: Let TR be upper-bounding, and lct F be any subset

of tha set of feasible terminal nodes. If s*eN *(m),
for some meF, then U, = max{z*} is an upper bound to
" ngF

problem (2.1),

Proof: By definition, Zm(s*) > f(s*). Hence, U_ 2 f(s*).

r

COROLLARY 2.6: If TR is upper-bounding, thsn U is an upper

FIN
bound to problem (2.1), FIN being the set of
feasible terminal nodes.

Proof: s*dl”*(n), for some neFIN, because TR is upper-bounding.

Conséquently, the required result follows from
Lemma 2.5.

DEFINITLON 2.13: Let TR be upper-bounding. If, for any two
feasible nodes n and m with which an upper-
bounding function is associated, (n,m)eSA
and Z; = Zl, then TR will be saild to be
CONSI STENTLY UPPER-BOUNDING.

DEFINITION 2.14: Let Zrl be an upper bounding function of any
feasible node n, and let fL be a known lower
bound to problem (2.1). If Z; < f,n will be
said to be a REJECTED NQDE (after Ochoa-Rosso®®).

LEMMA 2.6: If n is a rejected node, then s*@N *(n).

S




Proof:

. ¥ ) o ) "
Let s n 0€ such that f is mximal in S at s*n. By
i " n

definition, Zn(s*n> > f(s*n) and Z*n > Zn(s*n)' As
& result, 2% > f(s*n) and f > f£(s* ). Hence,
s*EN"*(n).
DEFINTTION 2.15: Let W be a collection of non-empty subsets
of T, and let d be a function, such that
W > S. If N *(n)eW and ¢ = d.[N‘-i(n)]ESn,
then‘tn will ge saild to be an AUilLIARY
SOLUTION of n, for any feasible node n,.
DEFINITION 2.16: Let n be a feasible node.
If N"*(n)eW and S = {tnz, then n will be
said to be CONCLUDING.
DEFINITION 2.17: TR will be said to be LOWER-BOUNDING, if
an auxiliary solution is associated with all
the feasible terminal nodes. It will be said
to be CONSISTENTLY LOWER-BOUNDING, if, in
addition, s*eN *(n), for some nelN.
A direct consequence ofﬂthe previous definition is that,
if TR is lower—bounding, lower bounds to problem (2.1) will
be available (those corresponding to the values of £ at the
existing asuxiliary solutions). Denoting by AN the set of nodes

)}

with which an auxiliary solution is associated, L = max if(tn

neAN
will obviously be the BEST of these bounds.
DEFINITION 2.18: TR willbe said to be BOUNDING, if it is uppefu
and lower-bounding. It will be said to be
CONSISTENTLY BOUNDING, if, in addition, it is
consistently upper-bounding.

LE¥MA 2,7: If TR 1s pounding, then it is also consistently

lower—bounding.




29.

Proof: TR is lower-bounding and S*éNﬁi(n),rfdﬁ some nelN,because
it is also upper-bounding. Heﬁce, TR is consistently
lower-bounding.

DEFINITION 2.19: Any feasible terminal node will be said to

be ACTIVE (after Lawler and Wood®), if it
is not known to be concluding or rejected.

LEMMA 2.8: Let TR be upper-bounding, and let A be the set of

active nodes, If A = ¢, then TR is sufficient.

Proof': s*éNni(n),for some neIN, because TR is upper-bounding.
Let m be such a node. By Lemma 2.6, m cannot be a
re jected node. Hence, it has to be a concluding node
(A = ¢). This means that the auxiliary solution t  is,
in fact, s*, or at least such that f(tm) = f(s*). The
definition of L would lead to node m, or to some other
node for which the same reésoning holds.

LEMMA 2.9: Let TR be bounding. LT A # ¢, then L &'UA and UA

is an upper bound to problem (2.1).

Proof: Again, TR being upper-bounding, a terminal node m exists,
such that s*eN *(m). If meA, thes, by Lemms 2.5, U, 1s an upper
bound to prbblem (2.1), and, since TR is also lower-
bounding, L is a well defined lower bound to the problem.
Hence, L <€ UA' On the other hand, if m§A, by Lemma 2.6,
m has to be a concluding node. In this case, as happens
when A = ¢, L = f(tm):f(s*). Clearly, L < UA(otherwise,

4 could only have rejected nodes as elements) and the
required result follows.

COROLLARY 2.7: If TR is bounding and:

i) A= ¢, or
ii) A ¢pand L =T,
then 1t 1is sufficisnte.

proof: This follows from Jemmas 2.8 and 2.9

RS
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The importance of bounding trees is summarized in

Lemma 2.9 and Corollary 2.7. According to the corresponding

statements,a bounding tree leads eithar to an optimal or to

a feasible solution to problem (2.1), in which . case an

indication (L~UA) of how far it is from an optimal solution is

also given. Clearly, the associated auxiliary solutions and

upper bounding functions play a relevant role in this connection,

and, due to the fact that thz proposed algorithms will be based

on iterative constructions of sufficient trees, it would be
desirable to deal with consistently bounding trees. This being
the case, the possibilities to find a sufficient tree, neither
complete, nor partially or sufficiently complete, would certainly
increase.

DEFINITION 2.20: Given problem (2.1), P,d and {znln is a mode},
let p be a collection of consistently boundipg
trees with non-empty sets of active nodes, and
let T be the set of all directed trees. A function
Br:p » 71, such that, for any TRep:

1) TR is a sub-trec (see Appendix CHIT) of B (TR) = TR,

ii) nel =) eithor neIN or N *(n)eP[N"*(¢)] and Sn#¢, where

teh, U, =%, and & is the set of terminal nodes of TR, and
1ii) TR is consistently bounding,

will be said to be a BRANGING RULE.

DEFINITION 2.21: A function B ip -+ R x R, such that BO(TR):(L,UA),
will be said to ﬂe a BOUNDING RULE.

The mathematical structure associated with the proposed
solution methods for the class of problems under consideration
has now been completed. These problems will be formulated in
the form of problem (2.1), and, accordingly, followed by its
ction with the branch and bound principle, a general state-

conne

" . . . e ra s 11116(1 in the ney_t S(—jC'tj_on
ment of the algorithms will be prese .




General relevant comments regarding the propoSéd solution

methods are the following (both "directed tree™ and "tree"

will be terms used in the sense of the particular concept intro-

duced in Lemma 2.1, rather than in the general sense [see

Appendix CH IL]):

1. The procedure to find an optimal solution to problem (2.1)
will be based on a search defined in terms of successive
partitions of T and subsets of T. This will be achieved by
means of successive applications of branching and bounding
rules, by which a sufficient directed tree (to be called the
final directed tree) will be constructed. Therefore, at any
stage of the construction, a consistently bounding tree
(referred to as interm=diate, if the stage is not the last),
and hence also a feasible solution to the problem, will be
available. Additionally, intermediate trees will also be seen
to be completely feasible.

2, Since any intermediate tree is a sub-tree both of intermediate
trees corresponding to sub sequent stages and of ths final tree,
improving upper and lower bounds will be associated with the
development of the procedure (given that the defining elements
of the lower bounds are the available auxiliary solutions,
the current best feasible solution will also be improving).

The result is a systematic possibility of implicitly

inspecting subsets of T containing several feasible solutions,
and it will be directly related with the current number of

re jected nodes.

%, In the absence of implicit inspections along the construction
process, the final tree would be sufficiently complete. As
was mentioned before, in this extremc case every feasible

. 2 A bl o m e
solution would be associated with one and only one terminal




5. contd.

node of the tree, and vice versa (see Corollary 2.5), dne
to the fact that partitions are used to divide T and sub~
sets of T, Also because of this feature, the search pro-
cedure will be sharp, in the sense that any subset of T
associated with a node n (either of an intermediate or of
the final tree) will only be contained in those subsets

of T associated with the nodes defining the path from the

root to node n (see corollaries 2.2 and 2.3).

2.3) THE ALGORITHM,

Given problem (2.1), and under the assumption

i) A branching rule (and hence also a bounding rule) is
availabls,
i1) A+ ¢ = TRep, TR being a cousistently bounding tree,
and
iii) An initial consistently bounding tree TRy i1s available,
the algorithm can be stated as follows (with an added sub-index
referred to the iterations of the procedure, the same notation
as that of the preceding section will be used) .
START (ITERATION 0)
1. Obtain Lo and Ao.
2. If Ao =¢ ,stop; the suxiliary solution associated with Lo
is optimal. Otherwise, complete the bounding rule obtaining
Uo (for convenience, U, willbe written as Ui)'
3, If Lo= Uo,stop; the auxiliaty solution associated with Lo

is optimal. Otherwise, set 1 = 1 and proceed.




ITERATION i
L. Apply the branching rule Br to TRi , Obtaining
— 1

TR; = Br(TRi~l)

2. Obtain L. and A
i i
If Ai = ¢, stop; the auxiliary solution associated with
L, is optimal., Otherwise, complete the bounding rule
obtaining Ui°
bo I L; = Ui’ stop; the auxiliary solution associated with
Ly is optimal. Otherwise, set i ¢— i+l and start
iteration 1.
The algorithm clearly leads to an optimal solution
to problem (2,1) in a finite number of iterations, because
the elements of p are finite and consistently bounding. As
usual, 1t should be observed that such a procedure could prove
to be useful, only if relatively casy work is involved at each
iteration (in terms of the difficulty associated with the
original problem). This will be, therefore, a further

assumption,

2,4) THE ALGORITHM AND THE BRANCH AND BOUND PRINCIPLE,

In this section, the connection between the proposed
algorithm and the branch and bound principle is discussed.
Referred to problem (2.1), this principle, as stated by Balas®
(in turn based on Bertier and Roy?), consists in the fulfilment
of thz following three conditions:

i) There exists a finite superset T' of 5 and a function
wiTt » R, such that seS=ow(s) = f(s).
ii) A function B:C! » D' (referred to as a BRATCHING RULE),

such that ceC' and B(c) = idlﬁdg,...,dq} =

q R, N g T e
U dy=c- {t, § , where ¢t is toe collection of subsets

i:j_

s




contd.

of T' with more than one element, D' is the collection
of sets with non-empty subsets of T' as elements, and
W(tk) = zax iW(t)g, can be defined.

€c

iii) TPor any ceC' and any tec, the UPPER BOUND w(tk) on

f{t) can be (easily) determined.

When these three conditions are satisfied, s* can
be found by means of successive applications of B. At the
beginning, T' is considered. If the corresponding upper bound
w(to) is such that toeS, then f(to) = f(s*) and the problem is
solved. Otherwise, an element d, of B(T') with maximal upper
bound w(ti) is next considered, and the same reasoning 1s
repeated. If ti 1s not an optimal solution, B is applicd to
di’ and, from then on, in order to proceed in the same fashion,
a current maximal upper bound w(tk) is obtained on the basis of
all the subsets of T generated by the applications of' B, but
not yet used as arguments of’ the branching rule. Hence, at any
stage of the procedure, if t, €3, then f(t,) = f(s*). Finally,
pecause T' is finite and one of its elements is eliminated
each time the branching rule is applied, an optimal solution
has to be found in a finite number of stepse.

The relations linking the conditions of the branch
and bound_principle and the structure associated with the
proposed algorithm are next presented.

CONDITION i: This can be seen to be a particular case of the
concept of upper bounding funstion (see Definition
2.11). Specifically, if Z; = zy,for any i4 3,
and Zm(y) } £(y),for any n and any yeS, then,
cince T Ya,this conaition is satisfied (pr=1

5 = 7 restricted tc T, for any n).

4730 =
203 n




CONDITION ii: The fun

ction B corresponds to fhéirpié/of the

concept of partitioning function kéee Definition
2.2), if C' = C and D' = D. This being the case,‘
for any ceC, the elements of B(c), although
preferably, do not necessarily have to be

mutually exclusive, as opposed to those of

P(c). The main difference, howsver, is that B
imposes the exclusion of tk’ whereas P does not.
Now, if condition i) is satisfied, as was explained
before, this exclusion is completely justified.

Nevertheless, if this condition were relaxed to the

w

extent that seS=>w(s) > £(s), then t, could be

k

feasible and non-optimal. Therefore, by Definition
2.11, T cannot be excluded in general under P.
This function, on the other hand, only imposes

the inclusion of all e;eP(c), such tht e fl 5 £ ¢,
as a result of Definition 2.20. Obviously, this
last feature could be incorporated to B without
changing itsfundamental rolc, as it merely states

that, if a subset of T' 1s excluded, then none of

its elements belongs to 5.

CONDITION iii:In the proposed algorithm it has been assumed that

proposed algorithm 15

(¢8}

* > n 'a k3
7. can be (easily) determined for any feasible
n

node n. Hence, if only complctely feasible trees
are involved (as will be seen to be the case) and

condition i) is satisfied, then this condition is

D

also satisfied., Otherwise, if condition i) is not

*
satisfied, then Z would correspond to the role

) *
of W(tk) in a looser sense (Zn > w(tk)).

. RIS @ 3 g a . p
From the preceding discussion follows the fact that

defined on the basis of a more general

A TR hea 19t 10T £ 1 1 N
context than that sssociated with the conditlons O Balas!' branch




and bound principle, for these are only fulfilled under specific
circumstances., 1In particular, when the first condition is satis-
fied (as indicated previously), the whole principle and its
corresponding procedure to find s* are directly applicable, if
tk is excluded each time P is evaluated. Otherwise, however,
tk could notv be excluded and the procedure would no longer be
valid. In this case, successive applications of P would
eventually isad to a complete enumeration of' the elsments of 5,
but improving upper bounds would still be available along the
process. Consequently, if at any of its stages a feasible

solution s for which f(s) = U (U being the best current upper
bound ) were also available, the process would then come to an

end, without necessarily having to complete the enumeration
explicitly. The knowledge of feasible solutions is obviously
equivalent to the knowledge of lower bounds to the original
problem, and it is by all means a very useful knowledge. It not
only provides a tool to solve the problem approximately when

time and s torage requirements are scarce, but it also can be used
to e stimate (together with the upper bounds) how large the incurred
error wmight be. When Land and Doig first introduced their approach
to solve integer linear pIOgramsi, the idea of counting with lower
bounds was not systematized, because by means of their algorithm
feasible solutions, in general, are neither (easily) obtainable
nor intended to be obtained. This problem has been dealt with in
o variety of wayst®it?*222% and the concept itself was incor-

porated by Mitten® in his formulation of branch and bound methods.

nis formulation is a generalized version of both Balas' principle

3

(although in a way more restrictive, precisely due to the

unding rule) and Ochoa-Rosso's general

requirement of a lower bo
e 10 s sy i o e
branch and bound algorithm™", in which, 1n the context of

1 ] i 3 Y o B!
directed trees, lower bounds are supposed to be available.




Mitten also assumed the existence of the funo%ion w satisfying
condition i), but the essence of his approach is mainly based
on well defined improving upper and lower bounds and a BRANCH
AND BOUND RECURSIVE OPERATION which divides elenents of C°,
excluding subsets that are known eithor not to contain an optimal
solution or to contain only non-feasible solutions., In this
sense, the proposed algorithm coincides with the requirements
of Mitten, the difference being a more flexible background to
produce upper bounds. Again, this difference would not be
present, if condition i) were satisfied. This condition is

of course desirable to obtain smaller upper bounds, but 1t
should be noticed that it could prove to be too restrictive,
not allowing the use of, although looser, less costly and still

effective upper bounds.

2.5) SUMMARY.
In this chapter a solution method for discrete pro-
gramming problems was considered. This method belongs to a class

of techniques which can be interpreted as the construction of a

di~ected tree, and a precise mathematical formulation linking

this concept and the proposed solution method was presented.

The relation of the method with the branch and bound approach

originally developed by Lend anc Doig to solve integer linear

3 g e I3 are] N e @ a 1
programning problems wWas nalysed, on the basis of Balas

. 5 - IR I 3 N - 1 . 1, e A . .
generalization of the principle”. T+ was shown that the defining

conditions of this principle are only fulfilled for particular

t e a3 ma ” 1 4 hea o -1 g3 a ] .
cases,anireférameto the similarity between the method and a

more general fopmulation (th:t of Mitten®) was also indicated.

- S na oy e P . .
Tn both cases, the basic difference wWas seen to be the more

Cans A the 1 sed solution method
general context within which the proposec o
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deals with the calculation of upper bounds. In the following
chapters the application of the method to the previously

mentioned capital investment problems will be discussed.




APPENDIX CH IIX

PROOF OF LEMMA 2.1




AII. 1) BASIC CONCEPTS OF GRAPHS.

The basic concepts of graph theory involved with
the proof of Lemma 2.1 (see Section 2.2) are presented in this
section. These concepts,with minor essential differences, may
be found in any standard text on the sub ject®4.

DEFINITION AIT.1: Let SN be a non-empty set and SA an arbitrary

set. If a function h:SA » SN® exists, SN®

being the set of unorderéd pairs of elements

of &, then G = {SN,84,h} is said to be a
GRAPH., The elements of SN are called the NODES,
ana those of SA the ARCS of Gh. If 5A = ¢, then
{SN, SA} is said to be a NULL GRAPH.

DEFINITION AIT,2: If ON and SA are finit.,then Gh is said to be
a FINITE GRAPH. Otherwlise, it is said to be an
INFINITE GRAPH.

DEFINITION AIT.3: A graph Gé = {SN',SA',g} is said to be a SUB-
GRAPH of Gh’ if SN'< SN, SA'<iSA and
g(e) =hle) Yeesar.

DEFINITION AII.L: TFor any eeSA, the nodes n, and ng are said to
be the END NODES of e, if h(e) = n,,n,. If
ni= nz, e is said to be a SELF-LOOP,

DEFINITION AIL.5: TFor any node n and any arc e, ifn is an end
node of e, then n and e are said to be INCIDENT
on each other. For any node n, its DEGREEX is
defined as the number of arcs incident on n, with
self-loops counted twice. Any node of degree one
is veferred to as a TERMINAL NODE.

DEFINITION AIL.6: A WALK is defined as a finite sequence <ai>§:1,

where




DEFINITION AII.6: i)

(conta) A s

11)  a eBA, if i is even,
iii) a; 1s incident on a,  ,for iz 15250 00,N-1,
iv) ai,ajeSA::$ i=jorea; + 85y and
v) N is an odd natural number.
DEFINITION AIT.7: A walk is said to be CLOSED, if a; = ey
Otherwise, it is said to be OPEN.
DEFINITION AIT.8: A PATH is defined as an open walk in which
ai,ajeSN =>1=jora, £ 8. If, with the

exception of a; and a,, this last property 1is

N)

satisfied and the walk is closed, it is then

refered to as a CYCLE.

DEFINITION AIT.9: A graph Gh is said to be CONNECTED, if for any
pair ny,ng of its nodes, a path with a;= ny
and ay = a2 exists. It is saild to be ACYCLLC,
if no cycles can be defined in Gh.

DEFINITION AII.10: A graph is said to be a TREE, if it is connected
and acyclic.

LEMMA ATI.l: In a tree there is one and only one path between

every pair nj,np of its nodes (a1=n1,&N =nNg).

Proof: This is a direct result of Definition AII.10.

DEFINITION ATT.1l: A tree is said tobe ROOTED, if one of its
nodes, called the ROOT, 1is distinguished from
211 the others. Given a path in a rooted tree,
a, being the root of the tree, ay is sald to be
at LEVEL €€&él> of the tree. A level £(J)
1s constitdted by all the nodes at that level.

DEFINITION ATT .12: Given a grapn Gh’ let g:éb(h) > SN x SN

be such that g(ng,ng) = (ny,nz), where %ﬁ(h)

Y

is the image of h and SN x SN is the Cartesian

o

e e e

i




DEFINITION

(contd)

DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

ATT . 12;

ATL.153:

ATT .1l

ATT.15:

ALY .16:

ATT.17:

product of SN (i.e., with pfdéﬁéd pairs of

SN as elements). Then Ggoh:{SN’SA>gOh} i

said to be a DIRECTED GRAPH, Gh being its
associated UNDIRECTED GRAPH. The elements of

SN are called the NODES, and those of SA

the DIRECTED ARCS of Ggoh(directed subgraphs,
Tinite and infinite directed graphs are defined
in the same way as that of graphs).

For any directed arc e,ns is said to be the
INITIAL NODE and nz the FINAL NODE of e, if
goh(e) = (ny,nz). In this case, e is said to be
INCIDENT OUT OF n, and INCLDENT INTO ng.

For any node n of Ggoh’ the number of directed
arcs incident out of (into) n is called the OUT-
DEGREE (IN-DEGREE) of n. Any node of out-degree
zero and in-degree one 1s referred toas a
TERMINAL NODE.

Let <a.>N_ be & path in Gh. The path 1s said

1 1=41
to be a DIRECTED PATH in G , 1f
goh
goh(ai) = (ai~1’ai+1)’ for i = 2,4, ...,N=1.

G is said to be CONNECTED, if G, is connected.
goh h

is said to be ACYCLIC, if G

Similarly, Ggoh

h

is acyclic.

A directed graph is said to be a DIRECTED TREE,
if its associated undirected graph is a tree.
If the latter iz rooted, then the directed tree
is also sald to be ROOTED. The ROOT and the
LEVELS of the directed tree correspond to the

root and the levels of the undirected tree.




\II.2 THE PROOF,

In this section, SN and SA will be used to denote

the specific concepts of definitions 2.3 and 2.4 in Section 2.2,

LEMMA ATT.Z2: SN and SA are finite.

Proof: Clearly, the number of elements in SN is bounded by the
number of elements in E, which is a collection of subsets
of a finite set (T). Hence, SN has to be finite. On the
other hand, the elements of SA are ordered pairs of the
elements of SN. Therefore, SA has to be finite too.

LEMMA AII.3: If h:SA -» SN? is such that (n,,nz)eSA =

h[(ni,ngS] = n, ,ng, then:
i) The inverse function g of h exists,

ii) TRh = {SN,SA,h} is a finite rooted tree,

iii) TR = {SN,SA,goh} is a finite directed rooted tree.

goh

Proof: i) If (ng,nz)eSA, then, by Definition 2.4, ez is a proper
subset of es, where ny = N(es) and na = N(ez). This being
the case, (ng,nl) cannot belong to SA, and hence h is an
injective function. Therefore, its inverse function g
exists.

ii) By Definition AII.1 and property iii) of Lemma 2.1,
TRy, is a graph. Let ny and nz be any two elements of SN,
Bither if ng = N(T) of if nz = N(T), a path with
4= ng and ay = ng exists, as a result of Lemua AIT.2

and property ii) of Lemma 2.1. Otherwise, due to the

f
same reason, a path with ai' =1y and By, * N(T) and

t
a path with a; = ns and aﬁ = N(T) have to exist. For
2

o :aitv. under the consideration that the elements
simplicltly,

of SA are defined in terms of their end nodes, let these

t
two paths be denoted by pa = (a1',83" 00,8 and
F M,




ii)

oo\
iii)

contd,

roon n
B2 = (ai’a3’°'-:aM2); respectively. Again, either if
"

as" = g.!t omae 3 — . O |}
1 &y , for some i = 1,3,c00,Mg,0r if a4’ = a: ',

. i
Tor some 1 = 1,3,,..,Ma, a path with a;= ny and

3y = N2 exists. Otherwise, a;' =a." for some
1= 3,5,...,M4 and some j = 3,5,...,Mz, where

ak' % ae" for any k < i and any € < j, because at
19 o ! —_ N y . L
least = d&g = N(T). Hence, once again, a path with

as= ng and a, = nz would have to exist. Therefore, TRh

HL

is connected. On the other hand,TRh is also acyclic,
given that, for any walk (ai,aa,...,aM)<following the
same¢ notation as that of pi and pa), e is a proper
subset of e if 1 > 3, whore N(Oi) = a; for

i =1,3,...,M. Finally, N(T) is distinguished from

all the other elemcnts of SN, taking into account that
(ni,nz)eSA => nz$N(T). Thus,TR iz a rooted tree, which,
by Lemma AII.2, is also finite.

By Definition AIL.12 and property i) of this lemma,

TRh is the associated undirected graph of TRgoh'
Therefore, by Definition AIT.17, TRgOh is a finite
directed rooted tree, with N(T) as its root. Again,

as in the case of directed paths in which a simplified
notation was introduced (in the preceding part of this
proof), due to the fact that the clements of SA are
ordered pairs of 3N and that goh is the identity function,
TR will be simply denoted as TR = {SN,SA Y. Moreover,

goh
also for simplificity, TR will be indistinctively be

5

referred to as a directed tree or as a tree.
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CHAPTER

IIT.

CAPITAL, INVESTMENT ON A CLASS OF KCONOMICALLY

DEPENDENT PROJECTS:

THE BASIC ALGORLTHM,

R

)




3.1) INTRODUCTION,

& o 1 . . .
In this chapter the multi-dimensional lmapsack

roblem presented in Section 1.5 will be discussed under more
conditions, Specifically, based on the principle that
a¥traction is in divect relation with capital pro-
ductivity, the cost of capital will not be as:=umed to be
constant. Instead, it will be defined as a non-decreasing

P A PO 1 EE s o A - 1
function of capital expenditure for investment. Under this

extended assumption, the individual net present values of the

projects vary according to the different values of the cost of

caplital, and hence economic dependence between projects is
automatically introduced. In terus of the mathematical pro-

gramming model, this means that a non-linear problem has to be

solved. It will be seen that the form of this problem corresponds
to that of problem (2.1) (see Section 2.2), and a procedure satis-

fying the requirements of the sclution method descriped in Section

2.5 will be developad.

%.2) TFORMULATION OF THE PROBLIM.

Let U = ZPi,Pz,.,.,Pn}, a set of capital investment
projects, be considered under the following assumptions:

1) Bach project is indivisible.

ii) PRach project 1s defined by a sequence of cash in-flows and

a sequence OF cash out-flows, as indicated in Section 1.4,

iii) ¥

that B., < C.

ik e if k > Mj (BjO =0), and Bjk > cjk, if

j nat 1 O o
T ar ieet a natural number M, (< m) exists, such
‘or any project Pj’ a natura 5 ( ) ;

k> M.. Itwillbe assumed that, for any k =

1,25 00 5Ms,

the OPERATING REQUIREMENT C.k‘~ B., 13 not large in terms

RESE

of the INVESTMENT REQUI REMENT Cjo‘




M.

iv) For any project P,,C ZJ (B.,~C.,) g (B, ~C )
project P.,C. - L =C.o) < 2 A
3 k=4 e gk k:Mj+1 Ji K

This, together with the preceding assumption, means that
the intemal rate of return IRR'j associated with each
project Pj (see Appendix CHIII)exists. It will be assumed that
the internal rates of return are relatively small in terms
of the cost of capital (to be defined).
v) All the projects are technologically independent, and
acceptances and rejections do not affect the size of
the defining cash flows.
vi) Any final selection should not result in an overall in-
vestment requirement surpassing the limit bo, nor in
an overall operating requirement at the end of tha k-th
time period surpassing the limit bk(k:l,2j...,M = m@x{Mj})o
J
Overall operating requivemcats are simply defined as the
sum of the corresponding individual operating requirements
(in other words, overall operating requirements are not
supposed to be compensated by positive net cash flows
taking place at the time point urmler consideration).

yal

vii)  Capital funds to invest in the projects (and, if necessary,
to keep them operating) are available at an associated cost
of capital c(t), where t is the overall investment require-

ment, and ¢ 1s a positive non-decreasing function of t,

only if projects with positive NPV are accepted.
Forany k € M and 210y j, let the parameter ajk be defined

as follows: - 1k & M.
Lo S Bae ST

=
J% 0, otherwise

. N I Alrorta Ina Fp=Y £ 9 3 oy
Then, again, if U 18 the decision maker's inverse of investment

proposals, the problem can be stated as:




ul B.k - 0. n
where NPV,(t) = 3 -3—————53——1; andt = 3 C. x.
k=0 [1+c(t)] J=1 0

Clearly, if c(t) were a cunstant, problem (3.5) would
correspond to problem (1.5), which is Weingartner's generalization®
of the Lorie and Savage problem® discussed in Section l.4. In this
case, all the NPVj(t)'s would be constant, and direct elimination
of non-promising projects (those with non-positive NPV) would be
possible. Constraint (3.3) would therefore be unnecessary,and
problem (3.5) would precisely take the form of problem (1.5).
Otherwise, however, a number of additional considerations have
to be taken into account. In the first place, simply because the

), the

NPVj(t)'s are non-linear functions of x = (Xa,Xa,...,%,

projects are now ECONOMICALLY DEPENDENT (the acceptance of any

one of the projects can affect the contributions of individual
net present values of the others), and the problem is obviously

no longer linear. In qualitative terms, this does not change the
form of the objective function, but direct elimination becomes
restricted, as a result of the possibility of the NPVj(t)'s taking
negative or positive values, depending on the value of t. Under
these circumstances, only projects with non-positive NPV for any
feasible value of t can be regarded as non-promising. On the
other hand, constraint (3.3) now has to be incorporated, in order

to guarantee that an optimal solution to problem (3%.5) will only

) o , e P
include projects with positive NPV. The problem being a maximization

1 me 1 include a project with negative
problem, no optimal solution could proje e




NPV. Nevertheless, without cons

traint (3.55;/5% least in theory,

such a solution 33 . .
a tion could include a project with NPV equal to zero.

Finally, it is pointed out that, as was mentioned in Section 2.1,

the original sis of "o 3 o
ginal basis of branch and bound methods when solving

integer linear programs® was the (relative) simplicity with
which ths associated continuous problem could be handled. For the
special case of problem (1.5) this feature is very powerful®, and,
consequently, in the context of branch and bound methods, it is
particularly useful®’®’7, 1In the case of problem (3.5), however,
an sasy-to-handle problem is not defined by allowing the xj's to
take any value in the interval [0,1],as c(t) is an arbitrary non-
decreasing positive function. To overcome this problem, an

alternative based on the interal rate of return (IRR) criterion

(see Appendix CHIII) will be prescnted in this chapter.

3,3)  DEVELOPMENT OF Tit SOLUTTON METHOD.

3.3.1) IDENTIFLJATION OF THE PROBLEM.

Let S,T,Y and f be defined as follows:

S = &géEn/(§.2)-(5.4) are satisfied}
T = iéﬁEn/(B.h)iS satisfiedd,
Y =T, and

n
£:7¥ - R, w here _)_(.€Y:)f(:{:) :Z NPVJ('Z:>XJ
J=1

o ST
The set T is clearly finite becausc there are only 2

clements in En satisfying constraint (5.4). On the other hand,

the objective function (3.1) is equal to f(x) and 3 is a non-
empty subset of T (0 = (0,0,...,O)GS). Hence, if #(S) > 1, then

a - 1 ’,, K} o h) ~ r. =]
the form of problem (3.5) corresponds to that of problem (%.1)

(see Section 2.2); otherwise, O is the optimal sclution to
> . e 3] —

5 Tn the following section the concepts presented

problzm (5.)),

co T ¢ S e
in Section 2.2 will be implemented for problizm (3.5). Accordingly,
- (w3 L




they will be established for the cases in which:%(s> > 1.

3.3.2) THE DIRECTED TREE.

Using th: same notation as that of Section 2.2, let

{Pj: C > D be such that eeC:>Pj(e) = {es,es],where e1= @Ege/szlg
and eg = g&Ee/Xj = Of, for some given je{l,Z,...,n} (at least two
elements x! :(xi',XQ',a..,Xn‘) and x" = (xi",xa“,...,xn”) of e
with x! #xj" have to exist for j to be suitable), and let
N : E » N be an injective function. Pj is obviousiy a partitioning
functién, and 4&(N) is a set of nodes. Associated with each node
£ will be th= %Ollowing concepts (to be referred to as the
ASSOCTATED CONCEPTS of the node):
DEFINITION 3.1: If, for all xel"*(&), eithoer X o= 0 or xy = 1,

x; will be said to be o NON-FREE VARTABLE at

node ¢, forany jgil,Z,...,n}. Otherwise, it will

be satd to be a FREE VARTABLZE at node £.
DEFINITLON 3.2: x(£€) = [Xi(é),xa(@),...,xn(ﬂ)] will be said to be

the £—th SPECIFICATION of x,1if:

x.,if x. is a non-free variable
J J at node ¢
x.(¢) =

0, otherwise

The objective value of (%) will be denoted by z, and
the associated cost of capital by r(¢). In particular, if x(£) =

r(¢) can be conventionally fixed at minfc(t)/xel and x 4:9§w This

. P - e scantine Gy N - =
is a fictitious cost of capital representing & lower bound to the

1§ investment is to take place. Therefore,

incurred cost of capital, 11

it can be associated with x = 0 without introducing s conceptual
. (=241 VO hiRad — —

S

ontrs

or quantitativ@ con

n

dis

U

tinct from C.

LEMMA 3.1: Let Fv(e¢) be a set of free variables at node £ (the

clements of FV(£) to be denntcd by sub-indices of

.dicticn, G long a8 it is referred to solutions




51.

LEMMA 3.1: the variables),

such that J¢F nly i 15
(conta) at JEFV(e), only if xg 1 known

to be non-promising (i.e.,if Xy = 1 is known to lead
to non-feasible solutions). Pirther, let Y@ be a
subset of N *(¢), such that xdﬁ“i(«ﬁ)—Y6 =>x, 18

- J

free at ¢ and JEFV(e). If Y, $ ¢, 2, : ¥, > R

n

m B., - C.
and. §€Y€:> Z@('?E) = 2 X. M _Q_LLMPJ_:E s the
j=1 I k=0 [l+r(6)]&

Z@(§> > £(x) for all xeY,.

Proof: By Definition 3.2, associated with any element of N"*(e)
is a cost of capital at least as high as r(¢). Hence,
m B, -C

since 2 _Jk Jk

. s e decreasing function of ¢ (t),
k=0 [1+ c(t)]

for any jeil,2,...,n} (see Appendix CHILI), and c(t) is a

non-decreasing function of t, then

m B.k - C.k m B'k - C.k
~£-»—~QE > 2 ~£4*—*~1E,for:1ny'gﬁN‘i(é) and any
k=0 [1+r(2)] k=0 [1+c(t)]

n ul B.ka.k n B.k;—C.k
jeil,2,...,n}. Therefore, 3 x. B 5 —dEdE

! ” X, - -
j=a 9 k=o [1+r(€)]” j=2 I k=0 [1+c(t)]

for any ﬁdf"i(@). In particular, this result holds for

any XGY@' bonsequently, the trequired result follows.

IEMMA 3.2: Let Y(£) be & subset of {1,2,...,0}, such that
jer(e), if, and only if, either xj(@) = 1,or
3eFv(2) and IRRj > r(¢). Then, for any node &:

/

m

3. 3, Ei¥ - Cgi ,if Y(e) + ¢
e k= 4
jo = o {Z@(E)} :%JCY<€) =0 [1+r(e)]
Coxel, -
i Z@’ otherwise
. 5 b wnere a. = % Bjk ~ C:k
Proof: Z@(E) = jf; ajxj(@) +36§V(3) ajxy, where ay = k:é [I:;zzgii“

PP




Proof: (contd)

T ~ ; .
—RRJ < r(2), for a1l jeFV(¢), which means that a. < 0, for

all jeFV(2) (see Appendix CH III). Therefore, as happens
n A
when FV(L) = ¢, in this case Z,* = 3 a.x.(¢) =2,. Let
J=1 ! ¢
1t now be assumsd that Y(€) # ¢,and that Z,(x') = Z,*, where
x'e¥,, xj' =0 and jeFv(e)[1 Y(£). Since jeFv(e),
1 i

5 = (Xitjxgl,.a.,x.

Jes? ,...,xn‘)eY6 exists, Clearly,

y X.
e

a; > 0,because,jbelonging to ¥(¢), IRRj > r(¢). Hence,
Z€(§“> > Ze(g'), which contradicts the assumption that

zg(zf) = 2,*. In other words, if 2,(x') = Z,* and

jerv(e)[] Y(¢), then xj‘ = 1. Therefore, in this case

n
- ) - — N . -
Zy _.é,ajxj(@) + 3 a.%x, = Soa. =

j=1 jerv(e) Y(e) 99 jer(e) 9

2 2 ng ” C:k
jeY(2)k=o [l+r(€)lk‘
COROLLARY 3.1: If £ iz a feasible nodg, th91Z@is an upper bounding
function of 4.
Proof: Sgc: Y&' Hencs, by lemmas 3.1 and 3.2,the required result
follows,

It is now possible to start dealing with the assumptions
of the algorithm proposed in Section 2.3. To begin with, the pro-
cedure o find thz initial Lree TRO will be presented. This
procedure will always lead 1o TRO,unless 0 is the only element of

]
Do

CONSTRUCTION OF THE INITIAL TREE (PROCEDURE P1)
Step 1: Define N(T) = 1 end obtain the associated concepts
of node l.

Select an element j of FV(1) (¥FV(1) = {1,2, ...,n} at the

2
=
[0}
e
N

beginning) with maximal internal rate of return IRRJ

(suggested tic breaking rule: maximal investment).
oD

g,




Step 3s If IRR. <
J

Step 4t

U2

~ Step 6:

are the

Case

Case 2:

(]

2]

o]

o

n

r(1), stop; x* =0 is the optimal solution

to problem (3.5).
Otherwise continue.

If IRRj < ¢(C. ), go to step 6.

Jo

Otherwise, continue.

s If 2y € by, for k= 0,1,... M, define N(ty) = 2 and

o

(tz) = 3, where PJ(T) = {ts,tz]. The procedure is
complete: SN = {1,2,31, SA = {(1,2),(1,3)] and

TR, = ESNO,SAO}.

Othesrwise, continue.

Subtract § j 3} from FV(1).

If FV(1) 4+ ¢, go to step 2.

Otherwise, stop; x* =0 is the optimal solution to
problem (3.5)

The underlying justifications regarding thils procedure
following:

IRRj < C(Cjo)
Bearing in mind that the NPV of a project can only be
positive if its IRR is greater than the cost of capital,
and that ¢ is a non-decreasing function of t, it is clear
that constraint (3.3) would not be satisfied, if xy = 1.
Therefore, {j} is subtracted from Fv(1), which, as will
be seen further on, 1s ecquivalent to reject Pj“

b.

ik

L eause the 2. 's are non-negative, it would be
Because a. ik

a., > for some k = 0,1,...,M
Jk !

impossible to avoid the violation of constraint (3.2),
if P. were accepted. Again, {j} has to be subtracted from
j X

Fy(1), rejecting Pj.

. The procedure stops when FV(1) = ¢.

is is merely an extension of the preceding cases,
i o bt -

=

leading to the rejection of all projscts.

Yo
i




Case l:

LEMMA 3.,

The procedure stops at step 3.

The reasoning justifying Case 1 is also applicable,
since r(1l) s c¢(t),for azyt > 0. In addition, in this
case there is no other non-rejected project with a
greater IRR, and so all the projescts have to be
rejacted.
3: TRo is a completely feasible directed tree, and x(4)

is an auxiliary solution of ¢, for any ZedNo.

Proof: TRo is obviously a directed tree. On the other hand, steps

3,4 and 5 of P1 gurantee that x(2)eS, and %(3) equals

x(1), which is also an element of 3. Hence, 5z = SN~ *(2)

end Sz = SIIN"*(3) are both non-empty. Finally, the two

e

lements of Pj(T) correspond to the two elements of TNg ,

which means that TRy is completely feasible. That £(6> is

an auxiliary solution of ¢ (£ = 1,2,3 ) follows then from

the fact that £(€>€S@u

LEMMA 3.

Proof:

procedure Pl, either t

lys Together with its associated concepts, TRo is
consistently bounding.
By Corollary 5.1 and Lemma 3.3, TRo is upper-bounding and
consistently lowsr-bounding. Additionally, both domains of
75 and Zg are subsets of the domain of Z,, and
r(2),r(3) > r(1). Therefore, Zo%, Zg* € Zy*. This means
that TRo is consistently upper-bounding, and hence alsc
consistently bounding.
In summary, it has been seen that, after performing

he optimal solution (x* = 0) to problem

(3.5) is found, or assumption iii) of the proposed solution

method (

A

LO = ZQ;

to obtain the se

iteration i (observe

see Section 2.3) is satisfied. This being the case,
and Ao has to ve determined. The following is a procedure

+ of active nodes Ai to be considered, for any

that A. is not necessarily uniquely deter-
i




mined,

~ ey ;. /
@le to the way active nodes are defined

DETERMINATION OF ACTIVE NODES (PROGEDURE P2).

Step 1:

Step 2:

Step 3:

Step L

Step b:

Step 6:

Step 7:

Step 8:

Step 9:

LEMMA 3.5: Let Ai’

Set A. =
1

nodes which are known to be concluding ('CQ: ¢ at the
beginning), and R; is the set of terminal rejected
nodes.

If A.l = ¢, stop; Ai is the current set of active nodes.
Otherwiss, continue,

Select an element £ of Ai with maximal 2* (suggested
the b reaking rule: maximal 2).

If FV(L) = ¢, go to step 9.

Otherwise, select an element j of FV(&) with maximal
internal rate of retumm IRRj (suggested tie breaking
rule: maximal Cjo).

If IRﬂﬁ < r(e), set FV(¢) = ¢ and go to step 9

Otherwise, continue.

n
I ] . t ; .
If IRRj < c < b Cvoxv(e) + CJO), go to step 8
V=4
Otherwise, continue,
n
If 2 a
V=1

kav(é) g by, for k = 0,1,...,M, stop;

'Ai is the considered current set of active nodes,
with & and j as parameters.

Otherwise, continue.

Subtract (3] from FV(¢) and go to step L.

Subtract {¢} from A,, add {e] to C, and go to step 2.
witn € and j as parameters, be the result
of procedure p2, If TRi is complstely feasible and

pounding, and IRRp > IRRv,for any p such that

(2)= 1 and any pelv(2), then:

"
i) A, is a set of active nodes, and
i
i1) A + =1L 1is not a concluding node.
- “i

M™; ~ C; - R, where C. is the set of terminal




Proof':
i) Because TR, is completely feasible éﬁdjﬁéﬁnding, Ri'is

well defined. Hence, at step 1, A, is a set of aétivé,\ .
nodes. This part of the proof may be completed justifying
the possible subsequent changes in A.. These changes can
only take place at step 9, which is performed either
after step 4 or after step 5. In both cases, step 9
comes as a result of FV(£) being empty, and this means
that £ is a concluding node. Thus, at this stage {€}
has to be subtracted from Ai and added to Ci' Finally,
steps 4-8 (a simple extension of steps 2-6 of procedure
P1) guarantee that FV(Z) is appropriately handled along
the procedure.

ii) Steps 4~7, together with the two assumptions of the lemms,
guarantes that at least x(€)and x'(¢) are elements of 5,,
where §+(6) = [x17(2), Xg+(€),...,xn+(€)], xj+(€) = 1
and. xv+(€) = xy(@),for any v $ 3. Therefore,vé cannot
be a cbncluding node.

After determining Ao (lemmas 3.3 and 3.4 and step 2
of P1 show that the assumptions of Lemma 3.5 hold for TRo), with
which Uo is also obtained, the start (iteration 0) of the algorithm
will lead either to an optimal solation to problem (3.5) or to the
necessary information to proceed with the next iteration. In
this case, a branching rule has to be available. The following
is a procedure which will be seen to fulfil the requirements
of a branching rule. Assumption ii) of Section 2.3 will also be
seen to be satisfied (again, the procedure will be referred to any

iteration i).




THE BRANCHING RULE (PRQCEDURE P5),
Step 1: Define N(ty) = r+l and N(ts) = r+2, where r is the total

number of nodes of TR, , Pj[N“i(e)] = {ty,ta}] and ¢

and j are the parameters of Ai .
Step 2: Set SN, = SNi_iU frel,r+2} and
SA; = SAinJJ f(e,r+1),(L,r+2)}.

Step 3: Define TR; = (SN , SAi}

LEMMA 3.6: If TR;_, is a directed tree, then TR, is also a

directed tree,
Proof: The two directed arcs by which SAi differs from SA, are
i-1
incident out of one terminal node of TRi and incident

into the two nodes by which SNi dif'fers from SNi L

Therefore, if SN.l ana SAi satisfy the assumptions

—~41 4

of Lemma 2.1 (see Section 2.2), so do SN, and SA,.
LEMMA 3.7: If TRi~1 is a directed tree, then TR. is a
sub-tree of TRi‘
Proof: Clearly, SNi~f:: SNi’ SAi_lcz SAi, and no changes of
association between arcs and nodes are involved.
LEMMA 3.8: Together with their assoclated concepts, if TRi__1
is completely feasible and consistently bounding,
then TRi is also completely feasible and consistently
bounding.
Proof: P2 and Step 1 of P3 guarantee that nodes r+l and r+2 are
feasible nodes, because at least x' (&) = E(r+l)68r+1
and x(&)= §(r+2)eSr+2. All the other terminal nodes of
TRi are feasible terminal nodes of TR.1~~ , and, since
Nt (r+1) W (r+2) = N*(e), TR, has to be completely
feasible. ﬁence,given‘that x(r+l) and x(r+2) are
auxiliary solutions of r+l and r+2, respectively, and

that, by assumption, an auxiliary solution is associsted

with all the other terminal nodes of TRi’ by Corollary 3.1,




TR, 1is upper-bounding and consistently lower~bbdhdiné. Pinally,

* * *
TR, 1s consistently bounding, because Zr y & < Z@ (see

+1 r+3

proof of Lemma 3.4).

COROLLARY 3.2: If TRi~1 is completely feasible and consistently
bounding, then the requirements of a branching
rule (see Definition 2.20 in Ssction 2.2) are
satisfied by procedure P3.

Proof: Because assumption ii) is clearly satisfied by procedure

P3, this result follows from lemmas 3.7 and 3.8,

Having proved that TRo 1s completely feasible and
consistently bounding, the general validity of P3 is implied by
induction, uhder the consideration that assumption ii) of
Section 2.3 is always satisfied after P2 has been performed. The

algorithm can now be stated.

3.3.3) STATEMENT OF THE ALGORLTHM.

In the following statement, the steps previous to
the construction of the initial tree will be included as part
of the start
START (ITERATION O)

1. Follow the s teps of procedure Pl.

2. If x =0 is optimal, stop.
Otherwise, continue.

3., Follow the steps of procedure P2 for i = 0.

Lo If Ag =¢, stop; Lo = 22 corresponds to the optimal solution
to problem (3.5).
Otherwise, continue.

5, If Lo =Uo, stop; Lo = 22 corresponds to an optimal sclution
to problem (3.5).

Otherwise, set i=1 and continue.




ITERATION 1.

1. TFollow the steps of procedure P3.

2, TFollow the s teps of procedure P2,

3, 1f either Ai = ¢ or Li = Ui’ stop; Li corresponds to an
optimal solution to problem (3.5).
Otherwise, set i+«—1+1 and start iteration 1i.

It should be noted that, when following procedure
pe, Li has to be available in order to detemine Ri' In this
connection, there is no need to perform a search of any kind.
The suxiliary solutions assoclated with'TRi differ from those
associated with TRy only by x(r+l), since x(r+2) = x(e).

Y

Therefore, L, will simply be given by max{Li_l,Ar+2}. On the

other hand, Rj is clearly a subset of Ri’ because L_l < L.
Rl ) -4 1

Hence, apart from r+l and r+2, only non-rejected nodes of TN,
-1

have to be inspected to determine Rj. Ci , on the other hand,
. -1
can be used as input for Ci' Finally, it is important to bear

in mind that, as usual, only information correspording to current

active nodes has to be stored for computational purposes.

3.4) A NUMERICAL EXANPLE.

Tn Tables 3.1 and 3.2 the data corresponding to
an example of 6 projects over 9 time periods are presented
(bg = 15 and by = 5). The summarized results of the complete
procedure and the final directed tree can be found in Table 3.5
and Figure 3.1, respectively. As can be observed, projscts
P.,Ps and Pg could be directly eliminated. However, for reasons
which will become evident in subsequent chapters, they have
been included in the calculations. The algorithm will be

followed iteration by iteration.




START (IERATION O)

Node 1 is created

FV(1) = {1,2,3,4,5,6}
x(1) = (0,0,0,0,0,0), r(1) =0.126 and Zy =0

(1)

Nodes 2 and 3 and arcs (1,2) and (1,3) are created (j=2)

1

i

2152,13:}‘5':5:6} and Zl* = 6"2&

FU(2) = FV(3) = {1,3,4,5,6}

x(2) = (0,1,0,0,0,0),r(2) =0.126 and Za = 3.593
Y2) = {1,2,3,4,5,6}and Za* = 6.280

x(3)
Y(3)

x(1), r(3) = r(1) and 23 =0

i1

1

{1,3,4,5,6} and Zg* = 2.687 < Zg Node 3 REJECTED

Ro = {3}, Co = ¢ and Ao = {2} (&= 2, ]

1

5)

t

Lo 3,593 and Uy = 6.280




Projsct

Py ol el el e
jo Ji Js J8
P 0 2 3 3 dees
* 5 5 11.211.2 |...
o 0 1 2 2 Hees
2 2 2 0.5 10.5 |.eee
o 0 1 2.3 12.3 loeo
8 L 2 1 1 Jeee
P 0 L 7a5 175 leso
4 10 9 ol [lel feoo
P 0 1 2.5 12.5 |...
s 4 3 0.8 10.8 |eue
p 0 2 3 3 ...
& 6 3 151}- 161‘1' © 0 e

TABLE 3.1 Cash Flows and Internzl Rates of

Return of the Projects,

Level of Cost of Capital
Investment e(x)
0O £x &4 0.126
L <x <8 0.132
8 <« x 12 0.1l
x > 12 0.150

TABLE 3.2 Levels of Investment
and Cost of Capital




? s
Iteration ¢ ls |a Concluding | Rejected |
i ‘d i Nodes Nodes  |—
L.
2
0 2 15 |{2} ~ 3 3593
il L3 - 5 4..823
2 - = | 7 6 4.823
TARLE 3.3: Summarized Results of the Numerical Example,

Xa =1

7 = 4.509
Z¥= 1..509

7 = 4,825 OPTIMUM

FIZURE 3%.1: The Final Directed Tree.




ITERATION 1.

Nodes 4 and 5 and arcs (2,4) ad (2,5) are created (j=5)

FV(L) = FV(5) = {1,3,4,6}

x(4) = (0,1,0,0,1,0),r(4) =0.132 and 24 = 4.823%

Y(4) = {2,3,5) and 74 = 5.413

x(5) = x(2), x(5) = x(2) and Zs = 3.59

Y(5) = {1,2,3%,4,6} and Zs* = 4.710 < 5; Node 3 is REJECTED
Ry = §3,5}, Ci=¢ and Az = [} (&=4, j=3)

Lo = 4.823 and Uy = 5.415

ITERATION 2.
Nodes 6 and 7 and arcs (4,6) and (4,7) are created (j=3)
FV(6) = FV(7) = [1,4,6]

x(6) = (0,1,1,0,1,0), r(6) = 0.14k and 26 = 4.509

1l

Y(6) = §{2,3,5} and Zg* = 4.509 < La Node 6 is REJECTED

t

£(7) = x(8), £(7) = w(6) ad 2o = 4823
Y(7) = (2,5} and Z.%= 4.825

Rz = {3,5,6}, Cz = {71 (rv(7) changes from §1,4,6} to ¢)and

AQZd)
La = 4.823

After iteration 2,it is found that the current set
of active nodes is empty. Therefore, x* = (0,1,0,0,1,0),

associated with Lg = 4.823, is optimal. This example clearly
shows that, when the cost of capital is dependent on the level
of investment, it is not sufficient to know that the NPV of a
project is positive (given a level of investment) in order to be
in a position to accept it, even without active expenditure
1imits. The auxiliary solution x(6) = (0,1,1,0,1,0) is obviously

feasible, but not optimal,




3.5) AN UNCONSTRAINED VERSION/QF/I{D{&E;
Problem (3.5) wasvformulatad iﬁVSeéﬁibn 3,2 under

the assumption that both the investment and the operating

overall requirements could not surpass their corresponding

pre-determined 1imits bo,bise..,D This can be interpreted

M°
either as a self-imposed financial policy, or as an éxternal
restriction associated with the availability of funds for
investment. Within a deterministic context, however, the
possibility ot obtaining as much as necessary to invest in
profitable projects cannot be disregarded, if the capital supply
is sufficlently large. In this case, the expenditure limits at
each time period, rather than being previously fixed, are de-
termined by the maximal requirements corresponding to a selection
of projects with positive NPV. The limits are, therefore, a
function of the universe of investment proposals and of the

cost of capital under consideration, and they are uniquely
established once these two concepts are given. Nonetheless,
there is no need to exhibit them explicitly in the model,

because of the assumption that, in any case, funds to meet

the expenditure requirements are available, only if projects

with positive NPV are selected. Hence, the problem may be

formulated as:

n
Max Z = 3 NPVj(t)xj (3.6)
J=a (3-9)
s.b. NPVj(t) >0, if x,=1,3= 1,2,...,0 (3.7)
x.=00r1l, j=12,...,n (3.8)

J
Problem (3.9) differs from problem (3.5) only by constraint (3.2),

and, as a result of (3.7), strictly speaking, it is a constrained

zero-one programming problem., Let the problem defined by (3.6)

and (3.8) be considered; namely:



n
Max Z = 32 NPV (t)x.
jo1 J J

(3.20)

Problem (3.10) is the zero-one unconstrained version
of problem (3.9), and, as was mentioned before, although the
feasbility region of the first can properly contain that of
the second, their optimal objective values have to be the
same, because they are maximization problems. Any optimal
solution to problem (3.9) is an optimal solution to problem
(3.10), and, for most practical purposes, vice versa, In
short, the difference between the two problems is to a large
extent negligible, and, since constraint (3.7) will be dealt
with anyway, problem (3.9) will be referred to as the (zero-
one) unconstrained version of problem (3.5). To handle this
problem in the framework oi the solution method developed for
problem (3.5), it is sufficient to think of the b 's as verylarge

numpers (b =00, k = 0,1,,.,,M), as a consequence of which 5 reduces toi

k
8y = x e ®"/(3.7) and (3.8) are satisfied}

Similarly, the steps of the precedure associated with con-

straint (3.2) are no longer relevant and may therefore be

eliminated)as shown below:

PROCEDURE Plu

Step 1l: Define N(T) = 1 and obtain the associated concepts
of node 1.

Step 2: Select an elemsnt j of FV(1) with maximal internal
rate of return IRRj (suggested tie breaking rule:

maximal investment).




Step 3:

Step 5t

If IRR; < vl Stepy 3% = o
solution to problem (3:5). -
Otherwise, continue. .
If IRR; > c<ch), define N(ti) = 2 and N(ta) = 3, \\
where Pj<T) = {ti,ta}. The procedure is complete:

SNo = {1,2,3}, Sho = {(1,2),(1,3)} and TRo = [SNo,Sho s
Otherwise, continue,

Subtract {j} from FV(1)

If FV(1) ¢, go to step 2.

Other&ise, stop; x* =0 is the optimal solution to

problem (3.5).

PROCEDURE P2u

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Set A. = TN. - C. - R,
i 1 i 1

If Ai = ¢, stop; Ai is the current set of active nodes.
Otherwise, continue.
Select an element € of Ai with maximal Z%,
If FV(L)= ¢, go to step 8.
Otherwise, select an element j of FV(e) with
maximal internal rate of return IRRj.
if IRRj < r(e), seb FV(¢) = ¢ and go to step 8.
n
If IRR, > ( v?; Cvoxv(ﬂ) + Cjo>’ A, is the considered
current set ofgactive nodes, with € and j as parameters.
Otherwise, continue.
Subtract {j} from FV(€) and go to step k&
Subtract {€} from A, add i1 to C, and go to step 2.

Problem (3.9) can then be solved by means of the

algorithm presented in Section 3.3%.3.




3.6) CHANGING THE EXPENDITURE LIMITS
In this section some postoptimalityfaséeéts associated
with problem (3.5) and the change of the expenditure limits

by Do, ..-,b will be considered, Problen (3.5) will be referred

M

to as the CONSTRAINED PROBLEM (pc), and problem (3.9), as

indicated in the preceding section, as the UNCONSTRAINED PROBLEM

(Pu> -
Let x* be an optimal solution to P , let b = (Do,bassssD0 )5
b=Db+ 4b = b + (Abo,Abi,...,AbM), and let PC denote the probleam

A
defined by replacing b by b in Pc'
LEMMA 3.9: If x* is an optimal solution to Pu and a feasible

A
solution to Pc’ then x* is an oplimal solutlon

A

to P .
c

~ A A

Proof: Let S be the feasbility region of PC. Obviously, S CZSu.
Hence, f(x*) is maximel in S,

COROLLARY 3.3: If x* is an optimal solution to Pu and.

n
Sa.nx.¥ <£b + Abk (k= 0,1,...,M), then x* is

. K7 k
oy I
&
an optimal solution to PC.
n
Proof: If j?iajkxj* < by + Aby (k =0,1,...,M), then x* is a

o

feasible solution to Pc’ Thus,by Lemma 3.9, the required
result follows.

These straightforward results indicate that, il x* is
an optimal solution to the unconstrained problem, then the
expenditure limits can arbitrarily be increased without altering
the optimality of x*. Alternatively, the sane assertion can

be made if negative changes Abk's are introduced, but only when

n n
- e ~ — p ~ %
j§1 ajkxj < bk and - Abk < bk jfl &jkﬁj o




IZMIA 3.10: A sufficient condition for
solution to Pu is encountered, if;/éiong the
solution process of Po’ step 5 of Pl and Stg@_zgw
of P2 are never followed by Step 6 of Pl and Step 3
of P2, respectively.

Proof: Indeed, in this case Pl = Plu and P2 = qu‘ Therefore,

x* is an optimal solution to Pu'
To use this result, it is only necessary to record
whether or not the sequences of steps were followed. For

example, in the problem presented in Section 3.4,

x* = (0,1,0,0,1,0) is an optimal solution to both the con-

strained and the unconstrained problem. Accordingly, so long

as bo > 6 and by > 3, it can be guaranteeed that x* is optimal,

LEMMA 3.11: If Ab < 0 and x¥e §, thon x* is an optimal

solution to PC.

A

A
Proof: In this case Sc=S. Thus, since x*e S, f(x*) is maximal

>
.

in
n
COROLLARY 3.4: If Ab <0 and ji. 2yt Syt b, (k= 0,1,...,M),

I
then x* is an optimal solution to Po'

n
Proof: Again, since j%; ajkxj* < bk + Bby (k =0,1,...,M),

x¥ is & feasible solution to PO. Therefore, by Lemma 3.11,

the required result follows.

In other werds, x* belng an optimal solution to Pu or

n
otherwise., if % a. x.* < b,, then b, can be decreased down
’ . Jk3 k k
J=1
n
to 2 ajkxj* (k = 0,1,...,M), without having to recompute x*.
j=1

LEMMA 3.12: If x* is not an optimal solution to Pu and

I}
S S, then x* is not necessarily an optimal
A

solution to Pg.




A
Proof: If, for example, 5 = Su’ then x*

solution to PC.
COROLLARY 3.5: If Ab > 0 and x* is not an optimal solution

to Pu, then x* is a feasible, but not

S
necessarily an optimal solution to Pc'
A
Proof: If Abz O, then ScS, from which 1t follows that x*

Y
is a feasible solution to Pc' However, by Lemma 3.12,

it is not necessarily an optimal solution to this
problem.

These results are relevant for the cases in which
increments for the expsnditure limits are considered, not
having met the condition given by Lemma 3,10, Of course, this
does not mean that x* is not an optimal solution to the un-
constrained problem, but the contrary is not known eithar., In
terms of the final directed tree from which x* was obtained,
this means that the search was not nccessarily complete, but
the calculations prior to the step at which the condition of
Lemma 3.10 was violated can obviously be used to obtain the
new optimal solution or to checl that x* is optimal. Ior
example, if the problem of Section 3.4 had been solved for
bo = 8 and by = 3 (see Table 3.4 and Figure 3.2), the condition
would have been vioklted at Step 8 of P2 when performing iteration
1, and x* = (0,1,0,0,1,0). If then the increments Abo = 2
and Aby = 2 had been considered, it would only have been
necessary to repeat Step 7 at that point for be = 10 and
b, = 5, and go on with the procedure. After one iteration it

would have been found that x* is an optimal solution to both

A
LEMMA 3%,13: If x*eS, then x* 1s not an optimal solution to




\is trivial result is a direct co
Definition 2.1 (see Section 2.2),
n
COROLLARY 3.6: If Ab < 0 and 2 8 X% > b, + Abk\fq\w
=1 \
k =0,1,...,M, then x* is not an optimal
solution to PC.

n

Proof: Since 12 ajkxj* > bk + Abk for scme k =0,1,...,M,
=1

~ A
x*¢S. Hence, it cannot be an optimal solution to P _.

As illustrated in the preceding example, the work
pior to the violation of the condition of Lemma 3.10 could
also be used in this case, i1f no expenditure surpassing
b, + by (x = 0,1,...,M) had been considered at the time,
Otherwise, it would be necessary to go further back, until
this last requirement could be met. If in the probluam of

Section 3.4 bp and by were to be decreased to 6 and 2,

respectively,




Iteration Concluding Rejeétééi:ff,i'
. ¢ J Ai Nodes Nodes | .
0 2 | 5] {2} - ;

. - =) ¢ L 5

TABLE 3.4 Summarized Results of the Numerical
Example (bo = 8 and bs = 3).

Z =3.593
7% =6, 280 3 ) B*= 2,687 R

X5=O

Z*= 4.710 R

OPTIMUM

FIGURE 3.2 The Final Directed Tree
(bo - 8 8.1’1(1 bi = 5)




(note that condition of Lemma 310 was no

example), then iteration O, as opposed to iteration 1 in which

aga+ 8sa = 3 < 2, could be used to obtain the new optimal s

5

solution (see Table 3.5 and Figure 3.3).

3,5) SUMMARY AND FINAL REMARKS,

In this chapter a class of capital investment problems
involving economically dependent projects was considered, under
the assumption that the cost of capital, rather than being
constant, is a positive non-decreasing function of the level of
investment. This approach leads to a zero-one non-linear pro-
gramming problem, for which a branch and bound solution method

was fully developed, on the basis of the schems presented in

Section 2.3. Within this context, the solution to an unconstrained

version of the problem was discussed, as well as some post-

optimality aspects connected with changes in the expendibure

limits. Illustrative numerical examples were also included.
Two final relevant remarks are the following:

1. It was assumed that the cost of capital is a function of
the overall investment requirement only, and, accordingly,
that one, and only one, investment requirement is associated
with each project. However, by means of what was referred
to as operating requirements, subsequent capital net out-
flows were also considered. For intultive reasons linked
with the way the cost of capital was defined, they were
assumed to be not large in terms of the corresponding
investment requirements, but with no implications at all,
as far as the solution method is concerned. Therefore,
if more than one investment requiremcnt were involved

with the projects, or, equivalently, if the operating

requirements were large enough to have smme effect in the




Iteration Concluding Rﬁjéqgea; 7.
a S Ay Nodes Nodes e
° 212 - 3 3.593
: A 5 1..022
TABLE 3.5 Summarized Results of the Numerical Iixample

(bo = 6 and bi 2).

XQ:O

e

o=

2,687 R

Xa:o

OPTIMUM

FIGURE 3.3 The Final Directed Tree
(bo :6 and b 3_22) .




cost of capital, the solution method would still be

applicable, so long as this cost were a positive non-
decreasing function of each of its variables (eithar
operating or investment requirements). In this case,
steps k4 and 5 of Pl and steps 5 and 6 of P2 would have

to be extended according to the number of variables of c.
The IRR criterion plays an important role both in the
search procedurs (reducing the sets of free variables)

and in the calculation of the upper bounds. In both
cases, this role is likely to become active (or more
active), depending on the number of the IRRj‘s lying

near or within the range of c¢. Disregarding those which
are under this range (the corresponding projects can directly
be eliminated), the higher this number, the more active
will the role be likely to becoms. Ior this reason,
although, again, with no theoretical implications, it was
assumed that the IRRJ‘S are relatively small. In the next
chapter an alternative to deal with large IRRj‘s will be

discussed.




APPsNDIX CH ITL.

THE INTERJAL RATE OF RETURN.




ATIT.1) INTRODUCTLON.

In this section tho definition and some properties
of ths internal rate of return {IRR), an alternative appraisal
mesasure to the NPV, will be presented. The pgbperties under
consideration are basically those connected with the way the
measure was used in this chapter, and, therefore, they are
by no means comprehensive, More complete discussions on tho
subject may be found, for example, in the works of Solomon®,

S

Mao® and Bierman and Smidtt®.,

AIIT.2) DEFLILLION AND PROPERTIES.

Let P be a capital investment project defined as in
Section 1.3 (Bo =0).
DEFINITION AIIT.1l: If a unique non-negative constant IRRP

exists, such that:

m B. -~ C
— . =0, (AITI.1)
k=0 (1+IRRP)

then IRRp is said to be the INTERNAL RATE OF RETURN of project P.
In general, more than one non-negative constant satis-

fying equation (AIII.1) may exist, in which case P would
normally be referred to as a project with multiple internal
rates of return. However, as shown in the next lemma, this case
is not relevant for the purposes of this work.
LEMMA ATII.1: If a natural number M (< m) exists, such that:

i) Bk < Ck’ if k < M,

ii) B, > €, if k > M, and

k k’
M m
ii1) 5 (6, -B,) < 3 (B ~C )
k=0 k "k k=M+21 k Tk
m Bk—Ck

then the IRR of project P exists, and g(y) = 3 is

k=0 (l+y)k

decreasing for non-negative valuszs of y.

>




-
Proof: g(0) = 2 (Bk"ck)' Therefore, by jaSS)limptibn iii.),,
k:O - T

g(0)> 0. On the other hand, ¢im g(y) == Co < O.
NS
Hence, since g is continuous for non-negative values of y, it
has at least ons positive real root., In general, to find the

roots of g, the solutions to the following equation would have

to be obtalined.

m Bk-Ck

Z '—""‘_"""'l_{' = O or
k=0 (1+y)
dox¥ +8a% T 4 ...+ d =0, (ATII.2)

where dk = Bk - Ck and x = 1+y.

Consequently, taking into account assumptions i) and
1i) and the Law of Signs of Descartes, equation (AIII.2) has

only one positive real solution. In terms of g, this means that

it only has one positive real root (the LRR of projsct P), and
that g(y) > O for any ye[o,IRRp). Let the first derivative of g
be considered in this interval.

B, -C

m
o k "k
g'(y) =~ 2 k-——7=
k=0 (l+y)

m

- - 1—%—; 5y
T ke (1)
1 m m Bl(-—Ck
T R
1+y

. k
i=1 k=i (l+y)
Tt is known that g(y) > O, if y€[O,IRRP). Hence, as a conse-

quence of assumptions 1) and ii), in this interval

2 s ke 0 for any i€fl,2,..0,m}, and thus g'(y) < 0.
k=i (l+y

Therefors, g is decreasing in [O,IRRD). The same reasoning
leads to the conclusion that g is decreasing for non-negative

values of y, if the y-axis is translated downwards arbitrarily




above -Co.
Having shown that, according to Definitién ATTL1, for
each project of problem (3.5) (see Section 3,2). the IRR exists,
the well known connection between the NPV and the TRR is next
presented. Again, this result will be referred to the class of
projects under consideration.
COROLLARY AIII.1l: Let NPVp be the NPV of project P (see
Definition 1.7 in Section 1.3). Under
the assumptions of Lemma ALTI.1, NPVp >0
if, and only if, IRRD > ¢, where c is the
cost of capital.
Proof: As a consequence of Lemma ATYIT .1,

vab = g(c) > g(IRRp) = 0, if, and only 1if, IRR.)j > C.
&

AITII.3) FINAL COMMENTS.

Severa arguments aganst thc use of th: IRR as an appralsal
measure have been established, starting with the possible
analytical difficulties of its definition. WNot only more than
on¢, but also no non-negative (or even real) constant satisfying
equation (AIII,1) could be found to exist. Otherwise, the ILRR
can be used directly in the sense of Corollary AIII.1l to know
whether or not the NPV is positive. This implies that in perfect
capitel markets (see Section 1.%) the IRR can be used instead of
the NPV to accept or reject independent projects. However, either
vecause of dependence constraints or because of imperfect capital
markets conditions, if the problem is to choose amongst com-
petitive projects, the IRR is no longer consistent with the NPV.
Its use as a pay-off would certainly lead to a selection of
projects with positive NPV, but not necessarily to an optimal

selection,
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CHAPTER 1V

ON SCME BOUNDING ASPECTS OF THE ALGORITHM.




4.1) INTRODUCTION.

The calculation of improved upper and lower bounds
in connection witn the algorithm presented in Section 3.5.5
will be considered in this chapter. The proposed procedures
will be shown to be applicable in general for borth lower and
upper bounds, but that associated with the latter will be seen
to be particularly useful for thz cases of large internal rates
of return and samll expenditure limits.

4.2)  IMPRCVED UPPER BOUNDS.

l.2.1) PRELIMINARY REMARKS.

The role of upper bounds in the framework of the pro-
posed solution method is clearly of great importance. Essentially,
the usefulness of these bounds could be summarized in that,
together with the lower bounds, (1) they provide a means to
estimate how far the optimal solution might be, at any s tage
of the algorithm; and (2) their defining elements are the basis
to reject feasible terminal nodes, and hence to reduce the number
of steps in the search procedure. It is obvious too that the
effectiveness of these two aspects are in inverse relation to the
size of the upper;bOunds, and, in any case, upper bounds can only
be interesting, if they are reasonably small. Now, as indicated
in Section 2.2 (see Lemma 2.9), upper bounds in the proposed
solution method correspond to optimal objective values of the
upper boundling functions of active nodes, For each node €, these
functions were defined in Section 3.3.2 (see Lemma 3.1) with Y,
as domain, which means that constraint (3.2) of problem (3.5)
(see Section 3.2) was not explicitly considered (simply because
Y& - S is not necessarily empty). It was assumed, however, that

£

the internal rates of return of thz projects were relatively sm il

in terms of the cost of capital, sc that the number of elements




in Y(¢) (see Lemma 3.2) could also be ekéégt’d/té be relatively
small, in the sans2 of representing an element of Y€ near or
within the region defined by constraint (3.2). In this sense,
this constraint was implicitly considered. Relaxing this
assumption, the theorstical support of the algorithm would not
be affected, but then, especially if small expenditure limits
were involved, many relatively large internal rates of return
would be likely to define relatively large numbers of elements
in the Y(£¢)'s. This would obviously lead to less effective upper
bounds, and, therefore, to a less efficient solution method. To
illustrate the impact of the relative size of the internal rates
of return, the problem of Section 5.4 will be considered under

different ranges for the cost of capital.

4.2.,2) SOME NUMERLCAL COMPARTSONS.

THE ORIGINAL SXAMPIE: In this case IRR4,IRRy and IRRg are within
the range R, =[0.126,0.150] of the cost of capital; IRRs,IRRs
and IRRs are above R_ by 1%, 3.8% and 21.9%, respectively.
The procedure ended after 3 iterations (teking the start into
account), and only 4 terminal nodes were considered. Additionally,
the current set of active nodes never had more than one element
along the procedure.
FIRST CHANGE: The original example solved with c(x) replaced
by cs(x) given in Table L.1 (see Table k.2 and Figure hol).
In this case the intemal rates of return are comparatively larger:
IRRs,IRRs and IRRa are now above R = [0.166,0.141] by 1.9%, L.7%
and 22.8%, respectively, but IRRs,IRR, and IRRC are still well within
R, Nevertheless, both the number of iterations and the number

1

of terminal nodes, increased by 1, as well 4s the number of

elements in Ai.




! Level of Cost of
Investment Gapital
X cy (x) ca(x)
O sx <4 0.116 0.106
L <x £8 0.123 0,113
8 <« x €12 0.135 0.125
x > 12 0.141 0.131

TABLE ...1 Levels of Investment
and Costs of Capital.
SECOND CHANGE: The preceding example solved with ce(x) replaced
by ca(x) given in Table 4.1 (see Table 4.3 and Figure 4.2).
Although the difference between ca(x) and ci(x)is practically
the same as that between cg(x) and c(x), in this case IRR;,IRRy
and IRRe, again within sz = [00106,0.151])z1ra very close to
the upper limit of Rbg' As a consequence, in reference to the
first change, the number of iterations increased by 5 to 9, the
number of terminal nodes by 5 to 10, and the maximal number of
current active nodes by 3 to 5,
Finally, it is interesting to observe that, after
having found the optimal solution, the number of iterations
to complete the procedure was 1 in the first case, 2 in the
second case, and 6 in the third case, even though the same
sequencing was followed to obtain the optimal solutions. It can
therefore be inferred that the extira computations and requirements
were mainly due to comparatively large increments in the upper

bounds.

4 ,2,3) THE IMPROVED UPPER BOUNDS .

Relaxing the assumption of comparatively small internal
rates of return, an alternative definition for the upper bounding
functions leading to improved uppcr bounds will be proposed 1in

d to

[}

this section. The corresponding domains will now be allow




E Iteration Concluding Rejécfje/(fi/ Zi* = 8,362
' i el 3] Ay Nodes Nodes
L. U.
1 l

O 2 5 {2)51 - - 50875 80362
1 Ll 3| 4,53 - 3 5.337 | 6.8%0
2 513 5,7} - 6 5.3357 | 6.480
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TABLE 4.2 Summarized Results of the Numerical
Bxample with cq(x).
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FIGURE 4.2 The Final Directed Tree for cz(x).




teration Concluding ;Rééécféd Z;*: 10.582
i £ J Ai Nodes Nodes s
L. U.
€1 l’
0 21 5] f{2,3} - - L4176 | 10,582
1 Lo 3| §3,4,5]} - - 5943 9.013
2 51 31 §3,5,6,7} - - 5.973 8.367
3 71 6113,6,7,8,91 - - 5.973 7.960
L 9 i 1} {3,6,8,9} | - 10,11 | 5.973 | 7.135
5 8! 1| §3,6,8} -~ 12,13 5.973 7.033
6 315 {31 6 14,15 | 5.973 6.406
7 16| 3 {161 - 17 5.975 6.406
8 - - ¢ - 18,19 5.973 -

TARLE 4.3 Summarized Results of the Numerical
Example with cz(x).

be infinite, and, in consequence, the set Y will have to be re-
defined in order to fulfil the requircments of Secction 2.2,

Let Y = Lg € En/O <x,<1, j=1,2,...,n}. Obviously,
T, as defined in Section 3.3.1, is a subset of Y. Hence, with
the only exception of the definition of Y, the complete develop-
ment of Section 3.3 remains unaffected with this change.
LEMI 4.l: Let W = [x e B'/(3.2) is satisfied} (see section

3.2), and let Q@: Y,' > R be such that

2
-~ m B, -G,
2 gk , where

. Xj - Ik
j=1 k=o [1+r(£)]

!
b B

e YOt — - —
_{:C 7 "":>Q€(‘{>

1

N, A
v, = wﬂve,v@ = [xeB"/cither jeFV(£) and Oex,<l,
or xj:xj(é)}, and ¢ is any node. If Y, ! + ¢,
then Q@<£) > £(x), for all xel,'.

Z

Proof: See proof of Lemma 3.1 in Secction 3.3.2.

he)

COROLLARY L.1: If ¢ is a feasible node, Q€ is an upper bounding

function of 2.



85.

Proof': By definition, any xeS has to satisfy constraints (5,2)
and (3.4). Consequently, if 5656, then it also has. to

belong both to W and to V This means that S@C: Y&,

I

and, evidently, Y, Y. On the other hand, Y, is bounded

L £

and Q@ is linear. Thus, Qe* has to exist. Finally, by
Lemma 4.1, it can be concluded that Qg is an upper bounding
function of any feasible node £,

LEMMA 4.2: If £ is any feasible node, then Qﬁ* < ZE*.

2"

P — - —_ 1 1
Proof: Let x' = (Xi‘,XQ‘,..B’Xn‘> and x" = (x1",xXa yeeesX,

be any elements of Y for which Qa(z') = Q,* and

x") = 2o If J4TFV(e), then xj' = x.'= x(£).
On the other hand, if jeFV(L) and xj' > 0, then

IRR. > r(£). When IRRj = r(e), jEY(L) and xj" = 0, However,

J
m B.k-C ‘e
in this case 2 ~i—-i—~k = 0, and s0
k=0 [1+r(2)]
m B‘k_c'k m B.k;c.k
x.1 3 = oy - —. Otherwise,

} keo[14r(e)1 Y keo [14r(e) 16

Lf IRR, > r(¢), then jeY(¢) and xj" =1 > xj'h Hence,

m  B..-C. m B, -C.
) S . S| S
; e S Fy K
k=0 [l+r(e)] k=0 [1+r(¢)]

Finally, if jeFV(L) and x! o= 0, then xj" =0 or 1,
depending on whether or not je¥(€), byt in any case
x." g, EQE:EQE— > 0, Therefore, Q,* < 2 *
I k=0 [l+r(€)]k ¢ ¢
The relevance of the new upper bounding functions
in connection with what was previously discussed, can now be
appreciated. Indefining Y,' by means of W, constraint (%.2)
was explicitly considered, and, as expected, the new optimal
objective values to determine upper bounds were found to be

better. This last statement is not fully substantiated by the




assertion of Lemma 4.2, because the possibility of Qé* being
equal to Za* is included. Nonetheless, under the assumption
that the intemal rates of return are comparatively large, and
that the expenditure limits are sufficiently small, the state-
ment becomes meaningful. In this case, if jeFV(L) and x.' = 0,
it can logically be inferred that, in many instances, Xj“ will
be equal to 1, and that Qg* will be significantly smaller
than Ze*. The next step is then to consider the problem of how
to obtain Q€$'

Let ¢ be any feasible node. Following th2 definition

of Ye‘, the problem of calculating 06* may be expressed as:

n m B‘l;—C e
Max Q = 3 x, 3 L (4.1)
j=o 9 k=0 [l+r(e)]"
n
s.t. 351 2ty < by, k= 0,1, (4.2) > (4.5)
0 < x; <1, jerv(e) )
57 Xj(€>’ JEFV () (deds)

Substituting (4.4) in (4.1) and (4.2), problem (L.5) may be re-

formulated as follows:

Max Q = 2 C.X. (4.6)
3 A (‘J J
JeFv(e)
s.t. 2 a.. x. <b ,k=0,1,...,M (4. 7)
k 3 2 3 4
jepv(e) I K
0 < Xy <1, jeFv(a) (1..8)
where
0=0- 2 cx5(),
JEFV(e)
m B. -C.

o
1

I’ k . - \
5 ° —t 9% X (3 =1,2,...,n), and
k=o [1+r(¢)]

o »
H

b, - 2 a. x.(¢
7y

(4.9)
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Problem (4.9) is a linear ptogramming/problém‘which
can obviously be solved by the simplex method. However, it can
also be sclved by repeated apolication of Dantizig's inspection
rule!, expressing the problem in the form of Ochoa-Rosso's form-
ulation of the continous multi-dimensional knapsack problem®, To
do this,it is only necessary to express (4.6)-(4.8) in terms of

new varlables yjy.
N .

LEMMA L4..3%: Let yjy be such that:

0 < Vi S 2y jerv(e),k = 0,1,...,M (4-.20)
and
m m i
S y.. =x. 3 a.., Jjerv(e) (4.11) !
k=0 Jie J k=0 K t

Then problem (4.9) is equivalent to:

m
Max Q = 2 Ly (4.12)1
jerv(e) k=o Y7 L (1)
s.t. 2 ka < bk" k=0,1,...,M, <}+a15>
jervie) ’
where :
%
fj =, jerv(e) < {4..15)
2 a.
k=0 JK

Proof: From (4.10) and (4.11), it follows that (4.8) is always

satisfied. On the othor hand, summing in (4.11) over j:

m n n
5 (Zy.) = (2% a, x.), JEV(e)
oo ges 95 keo jma 9K

Hence, (4.7) holds, if, and only 1if, (4.13) holds. TFinally,

substituting (4.11) and (4.15) in (4.6), it can be seen that

>

Q=

-

©

N

Observing that Q is separable, and thet each variable
Y @ppears in one, and only one, imequality of (4.13) (with a
coefficient of 1), an optimal solution to (Lo1h) can be obtained

by successively setting each variable at its upper bound (or at




nighest possible value so that (4.13) is not violated) in

1ts I
decreasing order of the f.'s. For each insquality in (4.13),

J
if a non-negativae fj is found following the prescribed order,.
the remaining variables are then set at its lower bound. In
this way, the optimal objective value of (4.14), which equals

that of (4.9) and, £ being a feasible node, exists, can be

obtained. Adding 2 ojxj(é) to this value, QE* 1is determined.
J¢Fv(e)

It only remains to show that, using the Q,'s instead

[

of the Ze's, the scheme of the solution method leads to con-

sistently bounding trees. To see that this is the case, let
(£,k) be any directed arc of TRi (1 20). Ye' is a subset of

Y, ' and r(€)s< r(k). Hence, Q% < 0,%.

4.2.4) A NUMERICAL EXAMPLE,

In Table 4.4 and Figure 4.2 the summarized recults
of' the procedure and the final directed trece for the third
case of Section 4.2.2 are presented. As can be observed from
these results, by the use of the new upper bounds the number
of iterations decreased by 4 to 5, the number of terminal nodes
by 4 to 6, and the maximal aumber of current active nodes by

2 to 3.

4.2.5) COMMENTS.

In sections 3.5 and 3.6 2 number of aspects regarding
the variability of the expeaditure limits were discussed. Under
the assumption of comparatively smzll internal rates of return,
these were feaslbility considerations based on a likely low level
of involvement of the expenditure limits. Nevertheless, their
real support was the fact that the upper bounds were independent

)

of these limits. If the proposed improved upper bounds are used




Iteration soncluding Rejected / ¥ = 8,235
i 213 Ai Nodes Nodes
L U.
L A
0 2|5 | {2,313 ~ - 4,176 8.235
1 L3 | 4,51 - 3 5.943 7.417
2 716 |i5,6,71 - ~ 5.973 6.722
3 513 | 15,6} - 8,9 5.973 6.630
N = b 6 10,11 5.973 -

TABLE 4.l Summarized Results of the Numsrical
Ixample with ca(x) and Improved Upper
Bounds.

N L o=4.176 RN
{2 ) Q*=8.235 3 ) Q* =l 361,
v,/\\ S
AN R

@Q*‘@@o

Xg=0 Xa=lL XS—O

J—
Dotz uo Yo, 6\> 5.5

OPTINMUM
stl :‘-6:()

FIGURE 4.3 The Final Dirccted Tree with Improved
Upper Bounds for ca(x).




to solve ths original problem, this 1s obviously no longer the
case. Hence, in order to know how much of the original cal-
culations can be utilized when changes in the expenditure limits
are introduced, nct only feasibility, but also upper bounding
considerations have to be taken into account.

).3) IMPROVED LOWER BOUNDS.

J.3.1)PRELIMINARY REMARKS.,

In the sense that, amongst the elements of Sgr

x(¢) is the one with which the minimal number of accepted projects
is associated, and that, at each iteration, only onc project is
considered for acceptance, the proposed solution method is similax
to the so-called implicit enumeration methods®?4 . In terms of
the search procedure and the lower bounds this means that onl
P 5
one free variable is fixed at one at a time, and that the current
lower bound can only be increased accordingly. Therefors,
particularly at the first stages of the ulgorithm, 1if the optimal
solution (or solutions) to the problem includes the acoep tancs
of a relatively large number of projects, the current lower
bounds will be likely to correspond to poor feasible solutions.
The availability of auxiliary solutions with a reasonable large
aumber of acceptances, regardless of those associated with the
x(€)ts, is hence very desirable. These solutions, together with
. . . . ~ ~ A
the x (£)'s (as sillustrated in Section 3.k, if xeS, and X + x(e),
— v

A A _ ;

it cannot be guaranteed that (%) = Ze), would certainly provide

a much s tronger basis to determine lower bounds.




l.3.2) ALTERNATIVE AUXILIARY SOLUTIONS,

Given x(£)2{e):= [, (¢), ;z(e),g,.,ih(e)] will be defined
by the following procedure:

CALCULATION OF THE ALTERNATIVE AUXILIARY SOLUTION (PROCEDURE PL)

Step 1: Set x(€)= x(2)

Step 2: If Fv(e) = ¢, stop; 2(6) is the alternative auxiliary
solution,
Otherwise, continue.

Step 3:

Select an element j of FV(&) with maximal IRRj (suggested
tie breaking rule: maximal investment).
Step L4: If IRRj < r(e), set FV(L) = ¢ and stop; x(¢&) is

the alternative auxiliary solution.

Otherwise, continue.

n
. . 2 < M - " r e g R
Step 5: If IRRj < cf vu cvoxv(@) + cjo), go to step 7
-1

Otherwise, continue,.
3

n
Step 6: If Za xv(é) +a, <b fork=0,1,...,M, set

;j(é) = 1 and ﬁﬁ(@) = ¥V(e) - {j}, and go to step 8.
Otherwise, continue,

Step 7: Subtract {j} from FV(£) and go to step 2.

Step 8: If ﬁ%(@) = ¢,stop; g(@) is the alternative auxiliary
solution,
Otherwise, continue.

Step 9: Select an element J of ﬁ%(@) with marzimal IRRj

(suggested the obreaking rule: maximal investment).

(¢)], stop; 2(6) is the

oy
peh
@

T
™0

n
10: If IRR. <sc [ 2 C
J Vo v

V=1

alternztive auxiliary solution.

Otherwise, continue.




x (€)+ C. ), go to step 13.

n
Step 11: If IRR, < c( X ©
V=4

Otherwise, continue.

n
Step 12: If 2 a

2
v=4

~

xv(ﬁ) +oaL

J¥

S b]rsfor k =0,1,...,M, set

;1(6) = 1 and go to step 13.

Otherwise, continue.

Step 13: Subtract {j} from ﬁ?(@) and go to s tep 8.

A number of relevant properties associated with ;(6)
are next presented.

LEMMA 4.4: For any feasible node £, x(&) is an auxiliary

solution of £.

Proof': x(¢)eS,, because & is a feasible node. If g(&): x(2),
then it is obviously an auxiliary solution of node £.
Otherwise, by steps 5,6,11 and 12 of PL, 2(6)586 and
the required result follows,

LEMMA L.5: For any feasible node €, if x(¢) = g(&), theu € is

a concluding node.

Proof: Let it be assumed that x % 5(6), anl that ﬁese, This means

n
that, if x. = 1, then IRR, > ¢( 3 C x ), and
J J Vo v
v=1
n A
2 & X, S bk}for k =0,1,...,M. On the other hand,
V=t

for any xeS,, if xj(e) = 1, then x, = 1. Therefore, if

n n
A A
¥. = 1l,then 2C x » 2C x (€) + C._ and
Vo v vo~ v Jo
V=41 V=a

n n
Sa x 2 3 a xv(e) + ajk,for k =0,1,...,M. In tum,

vkTv vk
V=1 V=4
n
this implies that IRR, > ¢( 5 C_ x (€) + C. ) and that
- J v=4 VOV Jo

n

2 avkxv(e) +ag € b, for k = 0,1,...,M. Hence, by steps
V=4

5 and 6 of Ph, g(&) £ x(¢), contradicting the original

assumption of the lemma. Consequently, if x(¢) = x(2),




then S5, has only one elezment and £ is a concluding node.

A a

airect implication of this result is that, with
~
x(€), a means to know whether or not each current terminal node
is concluding is introduced. The determination of active nodes as
such is hence no longer necessary, ana only the assocciated
parameters nave to be determined. The corresponding procedure
would then be the following:
DETERMINATION OF PARAMBTERS OF ACTLVE NODES (PROCEDURE P5).
Step 1: Obtain C. and R., where C. is the sot of terminal con-
t i i’ i
cluding nodes and Rj is the set of terminal rejucted
nodes. Set A, = TN, - C. - R..
A i i i
Step 2: If A, = ¢, stop; no parameters are nicessary.
i !
Othzrwise, continue.
Step 3: Selasct an element £ of Aj with maximal 2% (or Q%)

A
o

(suggested tie breaking rule: maximal d, where

A

d = max Z, = f[;(ﬁ)]}).Stop; the paramcters of

gré’ 2
A, are ¢ and j, where IRR, = max {IRR }
velV(e)

It can be szen that all the possible changes of
FV(€) in P2 are covered and justified along the same lines in
P4, taking into account that for each created note the latter
will have to be followed. This, of course, will also be done
for the three nodes of TRy, and so P1l can also be reduced
accordingly:

CONSTRUCTION OF THE INITIAL TREE (PRUCEDURE P6).

Step 1: Define N(T) = 1 and obtain the associated conepts of
node 1.
If x(1) = x, stop; x* =0 is the optimzl solution

topmbbm(}5%

Otherwise, continue.




-

Step 2: Define N(ti) = 2 and N(tz) = 3, where Pj(T) = batad

and j is such that IRR. = max {IRR }. The procedure
velv(1l)

is complete: SNo = {1,2,3}, SAo = {(1,2),(1,3)} and

TRo = [No,S40}.

As regards the branching rule, no changes are

introduced withh this approach.

It is finally noted that, after completing procedure
PL, it will be known whether or not x(€) is the only auxiliary
solution of £, and, if not, an altemmative auxiliary solution
~
x(€) will be available. Obviously, the auxiliary solution to be
used will be the onc wiuvh greater objective value (again, it is
pointed out that the possibility of x(€) being a better feasible

~ - - -
solution than x(£) cannot be disregarded). This valuc will be

denoted by Q&” 1

Lk.3.3) RE-STATEKENT OF THE ALGORITHM.

Taking into account the considerations of the pre-
ceding section, the algorithm presented in Section 3.3.3 can be

re-stated as follows:

START (ITERATION 0)

1. Follow the steps of procedure P6,

2. If x =0 is optimal, stop.
Otherwise, continus.

3, Follow the s teps of procedure P5 for i = 0.

N

A A A
Lo If Ag =¢ , stop; Lo = max {Qg,Qa} = Qs = Zacorresponds
to the optimal solution to problem (3.5).
Otherwise continue.
A A . .
5. If Lo = Ug, stop; Lo = max {QQ,QS} corresponds to an optimal
solution to problem (3.5).

Otherwise, set 1 = 1 and continue.




o

ITERATION i,

1. Follow the steps of procedure P3

2. Follow ths steps of procedure P5

3., If either A, = ¢or Li = Ui’ stop; Li corresponds to an
optimal solution to problem (3.5)

Otherwise, set 1i«—1+41 and start ieration i.
The following points in connection with the
algorithm should be observed:

1. If x = 0 is not optimal and Ao =¢, then Sy = {x(2)}
and Sz = {x(3) = 0}. Clearly, since Ly > 75 = 0,

Ly = £2 corresponds to the oplimal solution to problem
(3.5). However, if Ao# ¢, in genenl nothing precise about
the elaments of Sz and Sz, nor about 63 and 63, can be
stated., Therefore, Lo is simply dafined as max{ﬁg,ﬁai.

2, When procedure P5 is followed, Ci and Ri have to be
obtained (note that Riﬂ Ci is not necessarily empty). Tor
this reason, procedure Pl has to befollowed at this stage
for nodes r+1 and r+2. In this case, the corresponding
auxiliary solutions could differ from all the auxilizry

solutions associated with TR. , and so Li will be given

N Al .
by maxiLi_l,Qr+l,Qr+2}. After completing PlL., it will be
known whether or not nodes r+l and r+2 are concluding,

and Ri can then be obtained as indicated previously (see

Section 3.3).

Lk.3.4) A NUMERICAL EXAMPLE,

In Table 4.5 and Figure 4.4 the summarized results
of the procedure and the final directed tree for the example
of Section 4.2.4 with improved lower bounds are greésented.

As can be observed, the coanfiguration of the final directed

tree did not change., However, the optimal solution was found




—

[}

aft

[s3)

r the first iteration, as a consequence of whioﬁ node ) was
rejected at the same iteration. This, together with the fact

that node 6 wasfound to be concludinga fter the third iteration,
rather than after the fifth, made the maximal number of current

active nodes decrease by 1 to 2.

k.3.5) COMMENTS.

Although at different stages of the algorith, both
the original and the improved version of ths lower bounds are
linked with the expenditure limits in exactly the same way. of
course, with the improved lower bounds arising from auxiliary
solutions involving a relatively large number of acceptances,
the restr ctions imposed by these limits will be likely to be
considered at earlier stages of the procedure. However, the
considerations themselves do not differ. Therefore, this and
further restrictions associated with the upper bounds being
takern into account, the same kind of criteria as those of the

original version can be used to deal with changes of the expenditure

LoL)  SUMMARY.

Tn this chapter improved upper and lower hounds for
the original version of the algorithm were proposed. As opposed
to how the uppsr bounds were defined in that version, the constraints
associated with the expenditure limits were now fully considered.
The implication of this approach is the need to know the solution
of the linear programming problem each time a node is created, but
the problem is simple enough to solve it by insgpection. In general,
the resulting upper bounds were scen to be at least as good as
those of the original version; in particular, if comparatively large

0f return and small expenditure limits are involved,

3]

internal rate




Iteration Concluding| Resje od x(1) % E(l)
i < J Ai Nodes Nodes
U.
1
0 2| 5| {2} - 3 5.973 8,235
1 Lo| 3| {45} - - 5.973 7417
) 71 615,71 6 - 5.973 6.722
3 5131 51 - 8,9 5.973 6.630
b - |- ¢ - 10,11 5.973 -

TABLE 4.5 Summarized Results of the Numerical Example with ca(x)
and Improved Upper and Lower Bounds.

71\ = 5.973
Q‘_»- L= 8,235
/ \
xa=1 // \\ 7 =0
/W\<4 =5 2 >
(a5 () v
\,,,/\\ -
.
Xs=1 x5 =0

g >Q 2913 (A) =518
Ve=rabl 7 0*=6.6%0
XS._]- XJ:]_ XSZO

N\,
AN
a 6 =5.015 ) =5.945 1 =5 17 O*=5,895
\6) Q*=6. 300 O*=6.722 <1O (0*=5,862 lj) 5.895
R

/ :
OPTIMUM

(g ) =5.275 N Q*=5.913
\ R (9 R

\

FIGURE L.l The Final Directed Tree with Improved
Upper and Lower Bounds for ez(x).




significant improvements can be expected at the COS£ of the
corresponding extra computations. As for the lower bounds, it
was pointed out that, while the original auxiliary solutions
are a result of feasibility conditions, they are only linked
with possible increments of the objective function in terms of

the

)

£

.cceptances imposed by ths applications of the branching rule.
The number of these acceptances is equal to 1 at each iteration,
and so good early feasible solutions cannot be expscted in general,
particularly if many acceptances are involved with the optimal
solution. Accordingly, a look-ahead procedure following the sams
criterion as that of the branching rule (the maximal IRR criterion)
was proposed to anticipate future feasible acceptances which

could eventually be reached by the original auxiliary solutions.
Alternative auxiliary solutions with relatively many acceptances
were thus defined and incorporated, leading to overall improved

lower bounds.
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CHAPTER V

APPLICATIONS UNDER EXTENDED ASSUMPTIONS.




5.1) INTRODUCTION,

In this chapter a number of variants arising from the
class of capital investment problems under consideration will be
discussed. Specifically, aspects in connection with financing
decisions and technological dependence will now be contemplated,
in addition to those regarding the economical structure associated
with the variability of the cost of capital (as a function of the
level of investmsnt). In each case, the problem will be formulated
and identifisd within the context of the solution technique developed

in the preceding chapters.

5.2)  FINANCING DECISIONS.

5.2.1) FORMULATION OF THE PROBLEM.

In Ssction 3.2 it was assumed that capital funds for
investment, available only for combinations of projects with
positive individual net present values, could be obtained at a fixed
unitary cost ¢(t), given the corresponding overall investment
requirement t. One way to interpret this assumption is to think
of a market in which capital suppliers impose identical conditions

on the availability of money, the total level of investment t always

Je

being takea into account. Under these circumstances, assuning

-]

b

further that the supply of money is sufficiently large, and that
hoth the funds for investment and the subsequent cash requirements
have to be borrowed from the capital suppliers at the cost c(t),
the supposition in question can appropriately be used. In this
fremework, it will now be considered that the capital suppliers
work under different competitive terms. In particular, together
with suppositions i)- vii) of Section 3.2 (without imposing a
restriction on the size of the IRRJ'S>, it will be assumed that:
viii) Si,Sg,..,,SS are the existiag capitsal supplicrs from

which the requirements have to be borrowed




ix)!

any finel s elcection including only projects with

positive NPV, each capital suppliers Si is in position to

o

rovide funds as indicated below:

=g

At the beginning of the first time period, any amount Qio
up to b, units at the rate of interest r. (Q. ). The
io io‘*io

rio's aré assumed to be positive non-decreasing functions

e}

At the end of the k-th time period, any amount Qik up to
AN

bik units at ths rate of interest rik(Qik), where:

NS

Qiorio(Qio)

1

Q) = 1

S
2 Q.
. Q0
i=1
This means that the rates of interest of the operating
requirements are determined by the investment require-

ments, It is also assumed that, for cach selection, the

total supply does not surpass the corrcsponding requirements

(in other words, that only that what is necessary can be
borrowed) .

The cost of capital associated with the funds borrowed
from the capital suppliers is given by the following

welghted average:

223 050(Q)
i

where:

2 Q
N
Q)= 8

<

2 Oy
l:1

i Til%y)

Accordingly, the problem may be formulated as:




? a X, €b, k=0,1, .o0,N (5.3) 7 (5.7)

=1 Jk3
vaj(g) >0, if xy =1, § = 1,2,..0,m (5.4)
0 €Qiy € byps 1= 1,2,000,8, k =0,1,...,M (5.5)
x; =000 1, j=1,2, ...pn (5.6)
where
n B.k—C_.k
3 L, if 9 £ (0,0,...,0)
k=0 [l+c(9)}
NPV (Q) =

0, othorwise
Expressions (5.1), (5.3), (5.4) ani (5.6) correspond to

expressions (3.1)-(3.4) of Section 3.2, respectively,

and constraints (5.2) and (5.5) arise from assumption i%).

In the next section it will be seen how the form of
problem (5.7) canbe simplified to that of problem (3.5),
and hence that the proposed solution method for the latter

may also be applied in this case.

5.2.2) IDENTIFLCATION OF A SOLIJTION METHOD.

While the aim of problem (5.7) continues to be the
maximization of the overall NPV, the final decision now involves
not only projects, but also capital suppliers and corresponding
capital funds to be borrowed. Each project selection defines fixed
levels of regquirements, which, in turn, depending upon the amounts
borrowed from each capital supplier, definec a fixed cost of capital

determining the individual contribution of each projsct towards the
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maximization in question. In this sense, the finanoing problem
and the project selection problem are clearly linked. Neverthe-
less, for many practical purposes, tha optimal strategy can be
expected to minimize the cost of capital. This being the case,

the financing problem could be imbedded into the project selection
problem, as fixed levels of requirements would always be known to
incur the associated minimal cost of capital. It will be seen that

this argument is valid for problem (5.7).

LEMMA 5.1: Let Q*(t) = 9*(to,tiyﬁ..,tk) be an optimal solution

to the problem:

Min c(Q)

1 b (5.8)

k =0,1,.. ,)

bl

0 < Qik < bk’ 1 =1,2;,...,8,k =0,1,...,M,

where:
A n A
t,, = A a. x.>0
k j:i Jlx J
k = 0,1,...,M,

A A A

and ¥ = (x4,%a, ...,xm) is a binary specification of x.
bl '

o
Then Q*(E) is alse an optimal solution to the problem:

n N |
Max 5 NPV.(Q)x.
PR
: > 5.9
5.t 2, = B, K= 0,1, (5.9)
i=1
0 €@ €b, 1= 1,2.000,8,k = 0,1,.0.,H

Proof: The feasibility regions of both problems are exactly the
same. On the other hand, there is no feasible sclution

A
Q such that C(Q) < C[Q*(i)}~ Thercfore, simce

m B. -C.
2 9k ~ is decreasing for non-negative values of y
ko 1TV

(see Appencix CHIII), no feasible solution §Q exists, such

that:




0 N O m
s K Uik Bk ™ ik

1+ 9 k=0 [1+c(g)]k j=a 3 k=0 {1+Cﬂi*(§)m

k > Z a ‘kJ
k=0 [1+c(Q)] k=o  {1+c[Q*(t) 1}
or
n . m B _C. n , m B. -C,
2 X, ke gk > 3 x. A JK J

X k
J: i

. &
Consequently, Q*(t) is an optimal solution to problem (5.9).
In view of constraint (5.6), one rudimentary way
to solve problem (5.7) would be to consider all the binary
specifications of x satisfying constraint (5.3). For each such
. . A - - . =
specification x, the procedure could be defincd as follows:

n 3

1, If i% bik > bk and 2, a., X. > 2 bik,ior some

(&)

. 1 .
1 J=a 3€ 1=a

>

k =0,1,...,M, x is not feasible (because of (5.5), (5.2)
could not be satisfied). Otherwise, continue.

2+ Solve problum (5.8) (hence dealing with constraints (5.2)
and (5.5))°

3. If NPVj[ *(ﬁ)] < 0 and ;j =1, 2 is not feasible (constraint

A
(5.4) would not be satisfied). Otherwise, [2’4*(£>] is an

optimal solution to (5.7) when x = x (by Lemmz 5.1).

Either by explicit or by implicit enumerastion of all
the binary specifications of x satisfying constraint (5¢5), this
procedure would lead to an optimal solution to problem (5.7), or
to an indication that no such solution exists (epart from the
trivial solution X = 0). Along these lines, an equivalent

formulation of the problem would then be:




2 by

s, 3 a. ,k=0,1,...,M v (5.10)

NPVJ.[Q*(E)] >0, if xj:l,j:l,?_,“.,n

x5 = Oor1l, j=212 n

3Ty e ety /

n
where .‘E = (tO;tiy"°JtM>; 'tk = Jili d.jl()(j(1( = OJl,..u,]\’l>y
Q*(d) is an optimal solution to the problem:

Min c(Q) ( )
5 5.11
s.b. 3 Qpy =d 20, k=0,1,...,M0 P

0 Q.. <b., ,i=1,2..0,8, k=0,1,...,M

and 9*<g) = <9,9,---,9)-

Obviously, if c[Q*(Q)] were fcunld to be a positive non-
decreasing function of do (independent of dl,dg,‘..,&M), then the
form of problem (5.10) would exactly correspond to that of problem
(3.5), and the proposed solution method would therefore be also
applicable (of course, as will be discussed further on, this would
also mean that problem (5.11) would have to be dealt with). Now,by

assumption x):
ms
30295009
k=0 i=1
c(Q) = M s
% 2 Q.
k=0 1=1 ik
M S
302 Q5 (Q)
k=0 1=1
M S
2 2 Q.
k
k=0 i=1 *

. . 1
Hence, by assumption ix)’ :




By assumptions ix)' and x), c¢o(Qo) is an average of

positive non-decreasing rates of interest. By (5.12), on the
other hand, co[go*(do)] is minimal in the feasibility region
of (5.11), and so c{@*(d)] is a positive non~-decreasing function
of do (independent of di,dg,...,dM). The proposed solution method
is, therefore, applicable, and it only remains to discuss how
probiem (5.11) could be handled.

Expression (5.12), in accordance with assumption ix)",
indicates that the cost of capital is not affected by the operating

requirements, Thus, so long as:
s

2 Qik = dk’ k=1,2,...,M, and
i=1

0<Q., €b..,1=121,2,...,s, k = 1,2,00.,M5

problem (5.11) can be replaced by:

N
Min Co(_Qo)
S 0. < (5.13)
suto .Zl Q_LO —-do >O ?
1=a1
0 < Qio < bio’ L= 1,2,%5..4,58

Multiplying co(Qo) by do, which is a positive parameter of (5.13),

this problem can again be replaced by:
S

Min.§ Qiorio<Qio)
° p (5.14)
s.t. ‘Z; Qi = do
i=1
O £Q. <b, ,1=1,2,...,5

io io
I the r.o’s were constant (observe that in this case
i

the cost of capital would not necessarily have to be constant),

then (5.14) would be a linear programming problem which could be




solved by inspection (setting each variable at its upper bound,
or at its highest possible value so that feasibility is maintained,
in decreasing order of the rio’s). Otherwise, depending upon the
properties of the rio‘s, a number of alternative methods could be
used to solve problem (5.14). For example, it could be solved by
separable vrogrammingl’z, aud, under certain differentiability
conditions, also by other methods using linear approximations?®

or penalitiss®. In any case, 1f only solutions corresponding to
one value of do were provided, then the problem would have to be
solved several times along or before the execution of the algorithm
(although, clearly, existing solutions could be used as inputs to
obtain other solutions). If the problem were suitablc to be
approximated by restricting the variables tc integer values, one
way to overcome this difficulty would be to use dynamic programming®’®,
In general, a reascnably small number of capital suppliers can be
expected, which means that, in terms of the number of variables, a
problem of reasonably amll size would have to be solved. Howsver,

in order to avoid severe storage requirements, do should not be

very large. This being the case,the problem could be solved for

M

n
do = min{ 2 aigr & bio,bo} and all the sclutions corresponding
g=a 99 i=a

il

b1

to smaller values of do would he generated during the process,

5.2.3) COMMENTS.
As in Section 3.2, in the preccding sections the dis-
cussion was addressed to projects involving only singe-stage invest-

sumptions 1n which the cost of capital

[0}

ment requircments , under a:
is only affected by these requirements. Again, however, the
possibility of subsequence negative net cash flows was included

in the formulation of the problcm. If these cash flows were to affect

the cost of capital and the weighted average approach’ were used to
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cost (see Section 5.2.1), than the applicability of

ot

he proposed solution method, as mentioned in Ssaction 3.5, would
simply depend on whether or not the cost of capital is a positive
non-decreasing function in each of its variables, at lcast in the
range under censideration. Othorwise, the method could still be
adapted to solve the problem, if after reasonably low levels of
requirements the cost of capital, once again, wers positive and
non-dacreasing. Finally, it is pointed out that extending
assumption ix)' for several periods (see section 5.2.1), the
conditions regarding the direct applicability of the method and

the cost of capital would not necessarily be met.

5.3) TECHNOLOGICALLY DEPENDENT PROJECTS.

5.3,1) DEFINITION.

DEFINITION 5.1: ZLet U = ZPl,Pg,...,Pn} be a set of projects,
For any j = 1,2,...,n, if,apart from capital
rationing and disirability limitations, the
acceptance or rejection of P, affects the

possibility of accepting or rejecting at least
one of the others, or vice versa, then Pj will
be saild to be TECHNOLIGICALLY DEPENDENT.
Three kinds of technologically dependent projects will
be discussed in this section: mutually exclusive, complementary

and supplementary projects (hereafter, no imposition on the size

nf the IRRj‘s will be assumed)n




5.3.2) MJTUALLY EXCLUSIVE PROJECTS.

DEFINITION 5.2: Given a set of projacfs, if the acceptance of
any one of them implies the rejection of all the
others, they are referred to as MUTUALLY
EXCLUSIVE projects.

Analytically, it is very easy to deal with mutually
exlcusive projects, In addition to suppositionsi)-iv),vi)

and vii) of Section 3.2, let it be assumed that projects

Pi,Pg,..,,Pnlare technologically independent, that projects

n1+1’Pn1+2""’Pn are mutually exclusive, and,again, that
acceptances and rejections do not affect the size of the defining
cash flows. The following constraint would clearly guarsntee
that the zero-one values of the xj’s (§ = na+1l,ns42,...,0)
comply with ths requirements of Definition 5.2:

n

2 x. £ 1

J=n,+1 J

Hence, the problem canie stated as follows:

n

Max 2 = 3 NPV, (t)x. )
. J J
J=1
n
s.t. 2 83y < b ok = 0,1, 0.0, Ml F (5.15)
J=1
NPVj(t) > 0, if xj:l,j:l,2,...,n

Xy = Ooril, j=1,2,...50,
where:
0, if Jjefl,2, . 0,0y}
a‘j(M+1)2 {l, otherwise
and

-xD - 1
M4a

Problem (5.15) has exactly the same form as that of
problem (3.5) (see Section 3.2), and, therefore, the application

of the prcposed solution method is direct (a more straightforward




way to deal with mutually exclusive projects is illustrated in

Section

U

.3.5).

5.3.3) COMPLEMENTARY PROJECTS.

DEFINITION 5.3: Let Pj and Pk be any two different projects, such

K has to

be accepted (rejected), and vice versa. In this

that, if Pj is accepted (rejected), then P

case, P. and Pk will be said to be COMPLENENTARY
projects,

This definit ion caun be taken into account by means of
the following constraint:

X, =X =0 <5.16>

By equation (5.16), X5 = 1(0)<r>xk = 1(0), which means
that Pj and Pk are complementary. Let supposition v) of Section
5.2 be modified as follows:

v)! Projects Pi,Pg,...,Pni are technolagically independent. The
remaining projects are such that, given Pj for some
je{n1+l,ni+2,,n.,n}, at least one element k of
{h1+1,n1+2,..,,n}exists, for which Pj and Pk are complementary.
Acceptances and rejections do not affect the size of the
defining cash flows,

Obviously, as a consequence of this assumption, different
pairs of complementary projects with & common component would be
permitted. However, not all of these pairs have to be exhibited.
For example, if (ny,n2) and (nz,ns) corresponded to pairs of com-
plemsntary prcjects, then (ni,ns) would c¢learly correspond to a
pair of complementary projects too. Nonetheless, only two constraints
would have to be included; say:

x - x =0, - (5.17)

and
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(5.18)

If (5.17) and (5.18) hold, then x_ - x_ =0 also has
N4 Ng

to hold. Therefore, this constraint would be redundant. The
minimal set of pairs representing all ths complementary relation-
ships among the projects (pairs leading to redundant constraints
would not be included) will be denoted by A.

Under all the other assumptions of Section 3.2, the

problem would now be to:

n

3 NPV, (t)x.
j=a J J

Max 7

t

n
s,tu.z ajkxj S bk’ k =0,1,2...,M (5.19)
J=1

X =¥, = 0, (j,2)eA

EZ

NPVj(t) >0, if xj:l,j:l,Q,...,n

xji)or 1, J=1,2,..0,n

Problem (5.19) does not have the same structure as that
of problem (3.5), but simple modifications can be introduced to adapt
the proposed solution method. The discussion will be referred to the
improved lower bounds approach (see Section lia3).

In the first place, since the partitioning function is
defined in terms of one variable only , Definition 7.2, in view of

assumption v)', would not necessarily lead to an auxiliary solution

in the context of the proposed algorithm (see Section 3.3.2). In
thls connection, 5(@) can be re-definied as follows:
DEFINITION 5.: E(@> = [x21(2), xg(a),...,xn(ﬂ)] will be said to be

the 4-th SPECIFLCATION of x, where:

( xj,if Xj is non-free at £
x.(L) = Xt’if ¥, is non-Tree at € and jth

O,otherwise




v >ni/v £t and (v,t)éA}/}/
for any J and azny t,

The s et Qt marely represents the projects with which
Pt is complementary, and a number of conditions regarding its
role have to be obssrved in order to be consistent with the
method. It can be easily seen that the following modified versions
of procedures P4, P6 and P3 satisfy the corresponding additional
requirements,
CALCULATION OF THE ALTERNATIVE AUXILIARY SCLUTION (PROCEDURE P7)

Step 1: Set g(@) = x(¢).

Step 2: If FV(£) = ¢, stop; x(£) is the alternative auxiliary
solution,

Otherwise,continue.

Step 3: Select an element j of FV(&) with maximal IRRj (suggested |

the breaking rule: meximal investment).

Step 4: If IRR, < r(e), set FV(¢) = ¢ and stop; %(e) is the
alternative auxiliary solution.
Otherwise, continue.

n
Step 5: If IRRy < c( 2 Cvoxv(ﬁ) + 3 Cvo) for any

V=1 veQ;Uid}
teruij}, go to step 7.
Otherwise, continue.

I

Step 6: If avkxu(é) B A s by, for ko =0,1,...,M,
v=4 V’EQJUEJ}

set ;u<€) =1 ¥ uerU {j} and FU(¢) = FV(€)~(QJU G,
and go to step 8.
Otherwise, continue.

Step 7: Subtract QjLJ[j} from FV(¢) and go to step 2,

Step 8: If f&(@) = ¢, stop; z(é) is the alternative auxiliary
solution,

Otherwise, continue.




Step 9:  Select an elsment j of ﬁ%(@) with maximal IRRj
(suggested tie breaking rule: maximal investment)
n
Step 10: If IRRJ scel 3 C ¥, (€)1 stop; x(€) is the
V=1
altermative auxiliary solution.
Otherwise, continue.
n
Step 11: If IRR, < c( 2 Cyoxy(é) + 3 - Cvo) for any
V=1 ved | 13}
tGQj U i}, g0 to step 13.
Otherwise, continue.
n N
Step 12: If 3 avkxy(e) + 3 8 S by, for ko =0,1,...,M,
V=1 VEQJU {31

set xv(e) = 1'VverLJ{j}’and 8o to step 13,
Otherwise, continwe .

Step 13: Subtract Qij{j} from fﬁ(é) and go to step 8,

CONSTRUCTION OF THE INITIAL TREE (PROCEDURE P8).

Step 1: Define N(T) = 1 and obtain the associated concepts
of node 1,
If x(1) = x(1), stop; x* =0 is the optimal solubion
to problem (5.19).

Otherwise, continue,

Step 2:  Define N(ty) = 2 and N(tz)

%, where PJ(T) = {ty,ta}

and J is such that IRR., = max {IRRU}.
veFv(1)

Step 3:  Subhract Qj from both ¥V(2) and FV(3).
Step 4 Define TRo = {SNo,SAo}, where SNy = {1,2,3} and

Sho :i<lJ2)J<l:5)}'

THE BRANCHING RULE (PROCEDURE P9).
Step 1: Define N(ti) = r+1 and N(t2) = r+2, where r is the total

number of nodes of TRi_i,Fj[N"l(C)] = {ti,t2} and ¢ and

j are the parameters Of‘Ai-i'

Step 2:  Subtract Qj from both FV(r+l) and #V(r+2),




11k,

_1LJ§r+l,r+2} and SAi:SAiMiL[{(6,r+l),(6,r+2)}.

w2
+
D
T
B
t
[¢9]
)
}_J
=
(0]
3
j=s
{l

{SN.l »SA, §

Clearly, Definition 5.4 and procedures P7, P8 and P9
differ from Definition 3.2 and procedures PL, P6 and P3, only
in that the complementary constraints are contemplated by the
modifications., Since no other essential difference is involved,
the algorithm of Section 4.3.3 can be used to solve problem (5.19)
with these modifications, provided associated upper bounding
functions are available, Naturally, both the Zg's and the 06‘5
continue to be upper bounding functions in this case, because
the feasibility region of problem (5.19) is contained by that of
problem (3.5). They can, however, be improved, by intersecting
their domains with the complementary constraints. TIn the first
case, it would only be necessary to subtruct from Y(2) every j,
such that Y(@)f]Qj # ¢, to obtain the new Z,*. In the second
case, the complementary constraints would have to be added to
those of the linear programming orohlem which solution leads to
Qz*, Of course, in this case the inspection procedure would not
necessarily be valid to solve this problem, because of the possibility
of having to deal with ncgative coefficlents in the constraints. In
Table 5.1 and Figure 5.1, the results corresponding to the example
of Section 3.4 are presented, under the assumption that projects
1 and 2 are complementary. As can be observed, the optimal solution
in this case is x* = (0,0,1,0,1,0). Project 2, although by itself
very promising, now hid to he rejected as a consequence of both its
connection with project 1 and constraint (3.3). In fact, it can
be seen that without this constraint the optimal selection would

1

include these two projects, and that the overall NPV, despite the

presence of an individual negative NPV (that of Py), would be

higher (see Table 5.2 and Tigure 5.2). In terms of the underlying

1 ki

;. - N H T < -~ AN e S N otra 1 o 3 1 4= (g
assumptions, this could only be possible 1f the availability of

=1




funds were not conditional to selections of projects with
positive NPV. The previous example shows that this is an
alternative which should not be disregarded a priori, when
complementary projects are involved. In such cases, funds to
invest in an undesirable project could be expected to be available,
but only if it were aporopriately compensated by a promising com-
plementary project. One way to deal with this problem would be to
consiler complementary projects as one. If assumptions 1ii) and
iv) of Section 3.2 were satisifled, the fom of the problem would
coincide with that of problem (3.5). Otherwise, modifying pro-

cedure P7 so as to ensure that, if Xj = 1, then

b NPVét) > 0, woull also lead to the required solution,

5.3.4) SUPPLEMENTARY PROJSCTS.

DEFINITION 5.5: Let Pj and Pk be any two different projects, such
that P, can only be accepted if Pj is accepted,
but not vice versa. In this case, Pk will be said
to be a SUPPLEMIND ARY project pf Pj'

This kind of technological dependence can be dealt with

by means of the following inequality:

A\

0 (5.20)
By (5.20), x%,_can only be equal to 1, if x is equal to 1, but
not vice versa. Instead of supposition v) of Section 3.2, let it

now be assumed that:
v," Projects Py,Ps,...,P_are technologically independent,
o n
1

The remaining projects are such that,for any js§n1+l,ng+2,.,.,n},
P. is =z supplementary project of Pk’ or P.K is a supplementary

for at least one e¢lement k of {ni+1,n;+2,...,n}.

W

Acceptances znd rejections do not affect the size of tns defining

cash flows.




Ite?ation Concluding | Rejected Zii%e=-De 573
+ Ai Nodes Nod s . T ‘
i i
0 {21 - 3 1.981 | 2.573
1 ¢ | 45 ~ 1,981 -

TABLE 5.1 Summarized Resulls of the Original Example
(x1= x2 and NPVj(t) >0 if Xy = 1).

X5 :l / \XS’—“O

Q =0.729
5 ) 2%=1.00L

Q =1.569

Ui

%/) 5 =1.981
C

OPTIMUM

FIGURE 5.1 The Final Directed Tree of the Original
Example (xi=x2 and NPVj(j) > 0 if 5 = 1).




Iteration Concluding | Re jected Zy* = 6.280

i 1 I Ay Nodes Nodes L. ] U

i i
0 2 {3 | - 5 36 | soa
1 - -1 ¢ Ly,5 - 5.361 1 =
TABLE 5.2 Summarized Results of the Original Example
(x1=x3 and 3 NPV (t) > 0 if x =1),
. 1% J
veQ; U {3}

S

R

OPTIMUM

FIGURE 5.2 The Final Dirccted Tree of the Original

Example (xi=xz and J MRV (t) > 0 ir szl)ﬁ
veQ Ui}




Again, under all the other assumptions of Section 3.2,

the problem may now be formulated as:

n h
Max Z2 = 3 NPV, (t)x,
521 J J
n
s.t. 2, a.,nx. £ Db k=0,1,...,M
S B! k? ITave ? (5.21)
X.-—X€ = OJ (316)€A1
NPV.(t) >0, if x.=1, § = 1,2,...,n

A; being the minimal set of pairs representing all the supplementary
relationships amongst the projects,

As in the case of problem (5.19), the fom of problem
(5.21) does not correspond to that of problem (3.5), but the
prcposed solution method can be easily adapted. In fact, the re-
quired modif'ications would be very similar to those associated
with probtm (5.19), the difference being that in this case some

elements of (P P } canbe accepted, without having

,F
n4ta” ng+2? °“n
to accept any other element of this set of projects. Talking this
point into consideration, the modif'ications can be introduced along
the same lines. On the other hand, if, under appropriate conditions,
projects with negative NPV were allowed, the alternative of grouping
the projects would have to be complemented. For example, if Pk were
a supplementary project of Pj and these two projects were to be
considered as one project Pj,k’ then Pk would have to be eliminsteq;

P., however, would still have to be considered in order to cover

all the feasible combinations, but under a mutuslly exclusive constraint

with respcect to P, .




5.3.5) RE-INVESTMENT ALTRRNATIVES.

Technological dependence can be found in a wide variety
of ways and combinations. In this connection, three different
cases have been considered separately in previous sections, but
no specific problem leading to the conditions of dependence was
discussed. In this section, this aspsct will be illustrated wit
an example of technologically independent projects admitting
alternatives of re-investment.

Let U :{Pio),P;O),..B,PéO)}, a set of capital invest-
ment projects, be considered under the following assumptions:

i) Each project is indivisible.

ii) Each project P%O)is defined by a sequence of cash in-

2] o] o] - g
flows b‘l) Bgz),..., g;) anc a sequence of cash out-flows

clo) ¢lo) (0  Lha (o) e (0) N
JO ij.‘L ,a..,ij 3 whare BJR (k 2 l) ana ka <1 = O)

take place at the beginning of the (k+1)-th time period.
1ii) Associated with each project Pg Jis an alternative of re-

investment, only available if PSO) is accepted. If this

alteruaztive is considered at the end of thei-th time period,

. NE TGS 3D na |
a sequence of cash in-flows BY (3+1), (1+2)’°"’ im and a
sequence of cash out-flows ¢, ot e
J(i+1) jm

generated independently of P%O), where B%i) (k > i+l) ang
cgi) (k > i) take place at the beginning of the (k+1)-th
time period. These cash flows will be referred to as
project Pgi)a

iv) TFor zny project P%i), a natural number MQi) (< m) exsits,

. X » N i
such that B§i> < Cgi), if ko< Mg ) (Bgl) =0),

Bgi> > C%i>, if k > Mgl). For any k = 1+l,i+2,...,M(l)

i iy . . ]
the operating requirement cl )—B(i) i3 relatively small

rms of the investment (or re-investment) requirement

=
3
ot
@




yiii)

.l

n

. o . .
Or any project P% ),the re-investment alternative may

5\

D

[0}

considered (only once) at the end of any time period
i, for which MSO)< i< mj < m, where mj 15 a natural
number. Clearly, this is a convention which could be
changed according to the circumstances, without altering
the basic structure of the provlonm.
i
A
B by D iy (d e iy (i
For any project PC ),CQ,)— Z,(BQI)—CQ )) < 2. (BQ )¢t )).
J Ji k=i Jk Jk . (1) " gk jk
- k=M 41
Again, this assumption,together with iv), mean® that the
internal rate of return IRRgl) is well defined for each

. J
project Pgl).

i i
Any set of the form {P{%) pl*2) o },where

Ja Ja Jg
3y % Jg ool j@, is a set of technologically independent
projects. Additionally, acceptances and rejections do not
affect the size of the defining cash flows.

Any final section should not result in an overall reguilre—

ment surpassing the limit bk.at tha end of the k-th time

(

L i .
pericd (k = 0,1,...,M = max {MQ )}), re-investment
1,3
alternatives being included. Once again, overall réquiremsnts

are not supposed to be compensated by positive net cash

flows taking place at the time point under consideration.
Capital funds for an overall investment or re-investment
requirement of t. at the beginning of the (i+1)-th time
period (i 2> 0) are available at the cost ci(ti), only if
projects with positive NPV are accepted. The ci's are
assumed to be positive non-decrszsing functions of tho
ti‘s, and operating requircments are obtainable at the

cost of the corresponding investmert requirements,
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ko ik J
alk =
J 0, otherwise
k =0,1,...,M
and
1, if XY 55 accepted
_ J
o=
0, otherwise

Taking both U and the re-investment alternatives into account,

the problem can now be stated as:

n "
Max 2 = 3 2 NPV,. (t.)x. . 5.22
J=1 1=M(9) 41 i3 L8053 5-22)
m.
n J
5.t 2 i§&(0)+l 2 sy S Doke0,l, LN (5.23)
J=1 _’j -
X —x s 0 ﬂ j:l,2,...,1’l, (5-24)
Toj Tig T 7 {
i:M(jo)+l,M(j°)+2,...,mj
m .,
J
5
i:Mgo)+1 %581 § = 1,2, (5.25)
- (J=1,2,...,n,
NPV. .(t > 0,if x. .= 1, ~
130 ) > 0okt = 3, 1 b1 D o, o, (5:26)
J 3 J

21,2, 0,1
. .=0 or 1,§:J Lryeee,n (
1J

yeeesty

SRS (D I V
J j

D o(1)_a(1)
1 < DBY/=CM
where NPV, .(t.) = — & _jk k _ = (to,t.)
1J—1 [1+co(to)] k=i [1+C.(t.)1k_l » 1y v/
ivrisd
n n
Po = 2 Aoy end by = 3oaygx .
J=1 J=1

The following explanatory relations regarding both
the structure of problem (5.28) and the proposed solution method
can be observed:

The elements of U, together with the assccizted projects of re-

(5.28)




[
°

contd.

investments, constitule the universe of investment proposals.

In this sense, (5.22), (5.23), (5.26) and (5.27) are the ex-

ot
D
—
g

wded versions of (3.1), (3.2), (3.3) and (3.4), respectively.
In particular, the form of the objective function in (5.22) can
be explained as follows. If i = O, themn NPVij(Ei) is obviously
a simple extension of NPVj(t). Otherwise, vai’<£i> corresponds

to a project of re-investment. By assumptions iii) and ix), the

i
NPV of P% ) at the eni of the i-th time period is given by

5B oD . o
V.. = 2 T3k ik . In order to know the NPV of Ivij

K=3, [l+Ci (tl) ]1("-].

at the beginning of the first time period, IVij can be thought

of as a cash flow which can only be obtained, if project

P;O) is accepted. Since the incurred cost of capital for
ol 0) 1« . —_— s .. Tv. .
Pr is co(ty), the NPV in question is ig .

J

: [l+co(to)]?
By assumption iii), P%i) 15 a supplementary project of P%O),
for any J and any 1 > O; Consequently, in accordance with
(5.20), canstraint (5.24) has to be included. On the other hand,
by assumption v), the re-investment alternstive for any project
PCO) can only be considered once for implementation. Hence,

J
projects of re-investment corresponding to P%O) have to be
treated as mutually exclusive projects. This means that constraint
(5.25) also has to be included.
Having indicated how the solution method can be adapted to deal
with constraints (5.24) and (5.25) (see sections 5.3.2-5.3.L4),
further modifications arising from the fact that projects
with different starting time points are involved have to be
introduced. In the first place, a unigue cost of capital will
no longer be associated with the specifications of the variables,

However. the relationship between projctcts starting at a given
i ~ 9 ~ -~ L Ea
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contd.
time point i and the cost of capital ci(ti) is exactly the same
as that of projects P1,Pg,...,P  and ¢(t) in Section 3.2, Indeed,

IV, ; will only be positive if IRR%l)> ¢, (t.) (see Appendix CHITI),

. 1
since ————————_ > 0 regardless of the value of co(te),

[1+co (t0)]*

»)
fud
o

-

IV.

the same holds for vaij(£i> = ij . . Therefore, bearing
[1+co(to)]

in mind that internal rates of returm have to be compared with
the cost of capital incurred at the starting point of the projects,
tests of exactly the same character as before can be performad
in this case. This follows both from the fact that the ci‘s
are positive non-decreasing functions of the ti‘s, and from the
m Bgi)—CQi)
Jk k

1 5 k

fact that is decreasing with respect

(l+y1)l k=1 (l+yg)k}1

to positive values of y; and ys, as can casily be verified (see

Appendix CHIII). Finally, Z@(E) and 03(5) would now be given

m, (L) (D)
oY 1 e
by the exprsssion 2 2 —————e——r ] X

3 - - Tl
j=1 i:M%°)+l [1+ro(€)11 k=i [1+ri(@)]k Lo
where r. (&) is the cost of capital at the beginning of the (i+1)-th
€1
time perind associated with the £-th specifiication of

\ 5 . A . ~ . e e e i g e
X (ri(é) = min  fe (t,)}, if the investment or re-investment
- vl
t.> o ’
i

requirement is zero), this time defined as:

(x,., if x. . is non~free at £
J 13 13
= x ., if x . is non-frce at &
%508 = 7y P )

LO, otherwise

The modifiezd versions of procedures PL4, P6 and P3 for this

example are next presented.




Step 3:

Step 4

Step 5H:

Step 6:

H
Hy
xf
<

N
&

p—
§

¢, stop; x(€) is the alternative auxiliary
solution.

Otherwise, continue.

Select an element ij of FV(€) with maximal IRR31>

(suggested tie breaking rule: maximal investment)

If IRRgi) < ri(e), subtract from FV(¢) a2ll the elements
of the form iq (including ij). If, in addition, i = O,
subtract from FV(£) all the elements of the form pj.

Go to step 2.

If 1 £0, 0jeFv(e) and IRREO) < 1o(2), subtract from
FV(€) oj and ij. Go to step 2.

therwise, continue.

: n N
7 IR <o a. . % () +a...), set T =1 and
J o ivi "iv 1Ji

go to step 7.

If i 40, 0jeFv(e) and IRRSO) < of

and go to step 7.

Otherwise, continue.
m

n v

Ir 2 2

) + a... > b, _for some
v=a @) 4l ) e o
v

auvkxuv

k=0,1,...,M, set I =1 and go to step 7.

m
n v

If i 40, 0jefv(e) and 3 3 a % (&)«
’ =y ['l:u'IS)O) +1 l—“jk 1y

for some k = 0,1,...,M, set I = 1 and go to step 7.

Otherwise, set ﬁv(é) = FV(¢) and Qij(e) = 1. Subtract
15 from FV(e). If i + 0 and ojeFv(2), set xy5(e) =1

and subtract oj from FV(&). If i $£ 0, subtract from

FV(¢) all the elements of the form pj. Go to step 8,

a_ . +a, . >
ojk Tijk

121,

b,
k




Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Subtract ij from FV(e).

If i = o, subtract from ﬁﬁ(@) all the slwments of

solution,

Otherwise, continue.

Select an element ij of ﬁﬁ(@) with maximal IRRSi)
(suggested the breaking rule: maximal investment).

n

Ir IRRSl> < cf ? aivigiv(e)]’ subtract from ﬁV(&)

all the elements of the form iq (including i1j). If,

in addition, i=o, subtract from Fv(e) all the elemonts

of the form pj. Go to step 8.
n

If ifo,0jeFv(e) and IRRSO)s ol Za, x (£)], subtract

~ V=4
from FV(¢) oj and ij. Go to step 8.

Otheruise, continue.

. n
1f IRR(T) < c( 2 a
J V=4

(€)+aiji), set I = 1 and go to

L X
iviTiv
step 13,

n
If i4o, 0jeFV(eL) and IRR%O)S C(vilaovoxov(€)+aojo)’

set I =0 and go to step 13.

Otherwise, continue,

n "y N
T x 8. ., > for some

2 (o) aukauu<€)+ 1k bk’ or som

v=1 u=M +1

v
k =0,1,...,M,set I =1and go tostep 13.
m
n v N

If i 40, 0jeFV(€) and 3 5 a (€)+&ojk+aijk> b,

> uvk
V=g y:MiO)+1 ! -

for some k =0,1,...,M, set I = 1 and go to step 13.

Otherwise, set ;ij<€) = 1. Subtract ij from ﬁV(&). If

i % o and 0J¢ FV(&), set Xoj(é) = 1 and subtract oj from




FV(2). Ifi o, subtract from ﬁﬁ(e) all the elements

of the form pj. Go to step 8,
Step 13: Subtract ij from fV(@)‘
If i = o, subtract from FV(€) all the elements of the

form pj.

—
y

I =0, subtract oj from ﬁﬁ(&).
Go to step 8,

CONSTRUCTION OF THE INITIAL TREE (PROCEDURE P11).

Step 1: Define N(T) = 1 and obtain the assoclated concepts
of node 1,
If (1) = x(1), stop; x* = o is the opbimal solution
to problem (5.28).
Otherwise, continue.

Step 2: Define N(ty) = 2 and N(tz) = 3, where [Pijgtl?} = {t1,ts]
and 1 is such that TRRSY) = max IRt 3,

vu=FV(1) v

Step 3: If i 4 o, subtract from FV(2) all the elements of the
form pj.
If 1 = o0, subtract from FV(3) all the elements of
the form pj. .

Step 4: Define TRo = {SNo,SAo}, where SNo = {1,2,3} and
SAo = {(1,2),(1,3)].

THE BRANCHING RULE (PROCEDURE P12).

Step 1: Define N(t;) = r+l and N(ts) = r+2, where r is the total
number of nodes of TR, PPJEN"1(€)} = {ti,t2} ang ¢
and pJ are the parameters of Ai11°

If p $ o subtract from FV(r+l) 2ll the elecments of the

w
t+
O]

le]
N

form sj.

If p = 0, subtract from FV(r+2) all the elements of

the form 3]j.
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Step 3: =8N, U {r+l,r+2] and sA; =S54, 1U{(E,r+l),(€,r+2)}.

e 1 Lo

Step L: Define TR. = {SN,,SA. 1,
1 1 1

It can be easily checked that the modifications
Introducsd in procedures P10-P12 and based on the relation between
the internal rates of returm and the individual net present values,
taking into account that: a) If a re-investment project Pgi> is
acceptad, then P%O) has to be accepted and all the other re-
investment projects associzted with PSO) have to be rejected;
and b) If a project Pgo)is rejected, then all the re-investment
projects associated with PSO) have to be rejected. Clearly, this
is equivalent to deal with constraints (5.24) and (5.25). Replacing
Pl., P6 and P3 by P10,P11l and P12,respectively, the algorithm of
Section 4.3.3 can be used to solve problem (5.28). Procedure P5,
with the only difference of the numeration of variables (ij instead
of j), is essentially the same, and, as in the case of complementary
projects, the upper bounding functions as originally definead
(constraints (5.24) and (5.25) not being considered) can be improved
by intersecting their domains with (5.24) and (5.25). In Table
5.3 and Figure 5.3 the summsrized results and the final directed
tree for the example of Section 3.4 is presented, under the
assumption that, eithzr at the end of perind 2 or at the end of

period 3, re-investment can take place. Due to constraint (5.26),

projects P(O),P(O) and p(O) (P,,P, and Pg in the notation of
1 4 6

Section 3.4) were directly eliminsted, and the net cash flows of
re-investment were considered as follows: -1 ot the beginning and

0.4 thersafter for PO (IRR(?) = 0.351 and IRR®) = 0.327), -3 at
2 23
the beginning and 0.7 thereafter for P(°) (IRR'?)= 0,140 and
3 3

TrRe{®) - 0.106), and -4 at the beginning and 1 thereafter for
3
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PO (Rl

52) = 0.163 and TRR'*)= 0.130). It was further assumed
5 5

that the cost of capital for re-investment is 0.142 for re-

quirements above k4, and 0.136 otherwise (xgs = 0), and that

5.4) SUMMARY,

In reference to the solution scheme under study,
problems involving financing decisions and technological depend-
ence were considered in this chapter. In the first case, the
problem was formulated in terms of capital suppliers offering funds
at different competitive costs, thus defining two types of decisions:
those associated with the financing of the projects, and those
associated with the selcction of the projects. It was shown that,
although linked, these decisions can be dealt with separately
under the considered assumptions, the minimal cost of capital
being the criterion to handle the financing decisions. This was
seen to be a separable programming problem, which solution allows
the direct applicability of the optimal sclection procedures pre-
sented in previous chaptsrs. As for the problews including
technologically depwndent projects, these procedures were
extended to solve them, on thz basis of both the constrainits
of' dependence anc the general supporting framework of the pro-
cedures. Mutually exclusive, complemuntary and supplementary
projects, and an example of re-investment alternatives were

discussed.




'Ite;ati . N Concluding | Rejected | x(1)4 x(1)
i e i i Nodes Nodes
Ly
0 2 |22 {21 -~ 3 5,247
1 I | 05 4,53 - - 5.247
2 5132 5,61 - 7 5.398
> 8105 16,8,9] - = 5.398
L 6|25 {6,9,10} - 11 5.398
5 12103 {9,10,12,13} - - 5.578
6 10 | 25 {9,10,131 14,15 1k 5.578
7 16103 | {9,13,16,17} - - 5.578
8 13] 03 {9,13,17} 18,19 18,19 5.578
9 9105 {9,17} 21 20,21 5.578
10 17103 {17,221} - 23 5.578
11 221 25 o2} 25 20,25 5.578
12 261 03 {26} - 27 5.578
13 -1 - ¢ 28,29 28,29 5.578

TABLE 5.3 Summarized Results of the Original Ixample with
Re~Investmant Alteratives,




Koz =0
Q =L.823 _ CR
| R 22 Z*:S,,?]_O I
| (23)2#=1.353
1( Xos=1
Q =4.770
Z*=5.891
Q =5.247 23=0
(Dz+72173 R
l Q =5.152 , )
Xge =1 2¥=6,292 Z*=l. 750 c R
- A
‘220 55) 9 =5.22h
0 2/ px=5,00)
2f Q =5.247 - 2-22k
T 2*=7.173 i
l Q :5.,22[].
Xaa=l % “Z*=5,838
. yd N
0 =5.247 - s =0 T\ ¥os=l
*_f y ,
Z —\Q.\éoo \\ // @) Z*:)+n921
) - -5
Xog =1 ~
Q =5.490
Z*:5.24.9O
C,R

Xag =
~— o @?}Z*z5,101 Yy 9 =5.152
Xoa=1 X05=0 ) £ =5.578 = Z2#=5,182
2*=5.578 C
\ ~ OPTIMUM
(i)n =5.247
Z*=5,235
C,R

FIGURE 5.3 The Final Directed Tree for the Original
Example with Re-Investment Alternztives,
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CHAPTER VI

A GENERALIZED ZERO-ONE PRO.RAMMING MODEL.




6.1) INTRODUGTION.

The general solution scheme developed in. sections
2.2 and 2.3 was.applied in the preceding chapters to a class
of problems arising in the field of capital investment, taking
advantage of some of their structural properties. In this
chapter, the application of the scheme is extended to problems
which, sharing thesse propertiss, are suitable to be dealt with

in a similar fashion,

6.2) THE PRUBLEM.
Let the following zerv-one programming problem be con-

sidered:

Max 2 = 3 f.[h(t)]x (6.1)
J=1
> (6.4.)
s.t. gi(z) €b.,,1=1,2,...,n (6.2)
X-j =0 or lJ J = 1,2,..,,11 (6'5>
where t = (ti,tg,...,tm), t, = gi<£>’ x = (xl,xgj,.,,xn) and:

i) fj: R -» R is decreasing and fj(sj) = 0 for some sj€R
(3 = l,;,...,n); and
ii) h: E" > R and gi:En > R (i =1,2,...,m) are non-decreasing
with ré5pect to eachfof its variables.
LEMMA 6.1: For any j = 1,2,...,n, if fj(y) =0, then y = 8.,
Proof': Since fj is decreasing, either fj(y) < fj(sj> op
fj(y) > fj(sj), ify & 55 Therefore, fj(y) =0 only
if y = Sj.
COROLLARY 6.1: TFor any J = 1,2,...,n:

J
f =0 if'y = s.
J(y) , if'y ;
<0, if y > Sj
Proof: This result is a direct consequence of assumption i)




M

g
(@)
N

LE} ¢ If gi(g) > b, for some i = 1,2,...,m, then no

o
L

easible solution to problem (6.4) exists.
Proof: By assumption ii), for eny x satisfying constraint (6.3),
8. (x) 28.(0) (3 =1,2,...,m). Hence,if g;(0) > b., then
gi(z) > bi' This means that no solution satisfying constraint
(6.3) can satisfy constraint (6.2).
In view of Lemma 6.2, it will further be assumed that
g;(0) = b (1 =1,2,...,m), which is the case of interest,
Let 5,T7,Y and £ be defined as follows:

S=x ¢ E/(6.2) ard (6.3) are satisfied},

I8

T = {x ¢ E/(6.3) issatisficd},

Y

i

&é € En/b < xj €1, j=1,2,...,n}, and

n
£:¥ > R, where x € Y = £(x) = 3 [h(i)]xj

J=1
As can easily be checkad, the form of problem (6.4) corresponds

to that of problem (2.1) (see Section 2.2)

6.3) THE DIRECTED TREE.

A

It will be assumed that Pj’N’ x(€), Z,, FV(&) and v,

6’

are defirned as in Section 3.3%.2, and that:

hig(e)] , if x(¢) 0
I‘(@) =
min fh(t)}, othcrwise,
xel
xto

for any node ¢,

where:
t(e) = [ti(ﬁ),tz(ﬁ),ﬁ..,tm(ﬁ)], and
ti(é) = gifﬁ(é)], i=121,2,...,m.

LEMMA 6.3: Let Z,: N *(£) > R be such that zel *(g) =)

£
n - ~
Eﬁ(:) = 3 f.[r(@)]xj, where £ is any node.
Then Z,(x) > f(x), for all xal"*(e).




b = 1, for any

, since the gi's and h are non-

decreasing, h[g(g_c.)] =h (t) > r(@)’for any xeN ().

The fj's, on the other hand, are decreasing, and so:

fj[h(g)] < fj(r(@)] » 3= 1,2,...,n,

n n
. _ P . < < 15
o B o= 2 orn(e)]xg < Brylr(e)] =2,(x),
J=1 J=1
for any xeN *(¢),

COROLLARY 6.2: If £ is a feasible node, then Z(, is an upper

bounding function of £,

Proof: Since for any node LN~ () is finite, _Z“(5 is bounded

and 7 ,* = max ﬁ@(g‘)} exists, Therefore, by
xeN~ ()

Lemma 6.3, th2 required result follows.,

COROLLARY 6.3: If € is a feasible node and w:D ~» R is such
that 8,=D =N *(e) and w(x) = z;(g_), for all
xeD, thenw 13 an upper bounding function of £,

| Proof: Again,D is finite. Hence, since w(x) = _Z—{,j(g_{) v xeD,

the required result follows from Lemma 6.3.

COROLLARY 6.4: If € is a feasible node and 2 :¥Y - R is

e e
such that Zé(-}—{) = Zg(é)’wr all %eY,, then

Z€ is an upper bounding function of £,

Proof: Recause S€C Y@C N"*(¢), this result follows from

Corollary 6.3.
EMMA 6.4: Let Y(£) be a subset of {1,2,...,n},such that

jeY(¢), if, and only if, either xj(z) = 1,or

jeFV(L) ang 54> r(£). Then, for any node &:

| 2o fin(e)], if v(e) $ ¢
| jex(e)
"
5y = wx (2,0] = <
xe¥, Z,, othcrwise




Proof: See proof of Lemma 3.2 in Section 3.3.2 (a.
J
and s, replacing IRR.).
J J

LEMMA 6.5: Let Q, + Y,' > R be such that xe¥,' =

Qe(ﬁ) = f fj[r(é)]xj, where Y, ! = WTWV&, and
W= {xe& /(6.2) is satisfied} (V, defined as in
Section 4.2.3). If Y, £ ¢, then Q (x) f(x), for
ail §€Y€'.

Proof: Again, if xj(é) = 1 and xe¥,', then x5 0= 1, for any

J=1,2,...,n. Thus (see proof of Lemma 6.3),

f. [h(t) (r(¢)], 5 = 1,2,...,n,
£(x) = ji £ ()], < 2 £50e(e) Jxy= 0, ().

COROLLARY 6.5: If ¢ is a feasible node, then Q& is an upper
bounding function of £.
Proof: Yé' is a bounded region, and so Q,* = max {QZ(E>1

exists. Therefore, by Lemma 6.5, Q, is an upper

£
bounding function of £,
LEMMA 6.6: If ¢ is any feasible node, then Q@* S Zg*"

Proof': See proof of Lemma 4.2 in Section 4.2.3

m
(f.[r(e)] and s . replacing 3 —J———Q—~ and IRR
J J k=0 [1+1(¢)]
respectively).
n n
LEMMA 6.7: cy < Cg = 2 fj(cl)xj > 3 fj(ca)xj, for

1 J=1
(j = 1)2)°"Jn)‘

§]

J
any "~ x. 2 0
Y J

Proof: Since fJ is decreasing, j(cl) > fj(cg) for any j = 1,2,.

Hence, the required result follows.

COROLLARY 6.6: If (€,k) iz a directed arc, then Z,* > 2,* and

Qg*a Qk*.




Proof': Since r(¢) < r(k) for any directed arc (¢,k),

n n
2 £ [r(e)]x. > 3¢ [r(k)])x., where x. > 0
P 3700 j 3

(by Lemma 6.7). On the other hand, Y, <Y, and

Y '&@Y,'. Therefore, 0. * > *
k £ P e Qk °

The re-formulation of fundamental concepts and pro-
perties associated with the proposed solution muthod and
problem (3.5) (see Section 3.2) is now complete in connection
with problem (6.4). The remaining structure is essentially
the same in this case, and it can be Justified on exactly the
same grounds as before, In relation to the improved lower
bounds approach (see Section L4.3.2) the version of procedure
P4 would hence be the following:
CALCULATION OF THE ALTERNATIVE AUXILIARY SOLUT LON (PROCEDURE P13).

Step 1: Set g(e)

x(¢)

Step 2: If FV(e) ¢, stop; x(€) is the alternative auxiliary

tl

solution,

Otherwise, continue,

Step 3: Select an element j of FV(€) with maximal 55

Step 4: If 55 < r(¢), set FV(€) = ¢ and stop; g(é) is the
alternative auxiliary solution,
Otherwise, continue.

Step 5: If 55 % h(t), where
b, = gi[zlu),;g(e),,..,Ij_1<e),1,;’j+1<e),..n,”rl(e)],
for i = 1,2,...,m, go tostep 7.
Otherwise, continue.

(z),1,23+1<6),...,;£<e>] <b,,

Step 6: If g [x:(€),xa(€),eue,x.
f i -1

~

for i =1,2,...,m, set xj(e) = 1 and FV(&) = FV(e) - {j},
and go to step 8.

Otherwise, continue.




Subtract {j} from FV(¢) and go tostep 2,
Step 8: If FV(e) = ¢, stop; x(£) is the slterustive auxiliary
solution,
Otherwise, continue,

Step

\O

Select an element j of ﬁﬁ(@) with maximal s..
J
Step 10: If 55 < h(t), where t, = gi[gg(é)]’for i=1,2,...,m,
stop; x(€) is the altermative auxiliary solution.
Otherwise, continue.
Step 11: If 55 S h(t), where
= (R0, Kae), T, (O0F, (6,005 (8)],

for i = 1,2,...,m, go tostep 13.

Otherwise, continue.

Step 12: If gi[x1<€)’xg<€)’""Xj-l(e)’l’xj+1(€)"'"’Xn(é)] < b,
fori =1,2,...,m, set ;j(é) = 1 and go to step 13.

Otherwise, continue.
Step 13: Subtract {j} from FV(£) and go to step 8.

Replacing P4 by P13 and bearing in mind that 3 in P
& (@) (o] J

and P6, instead of IRR, = max EIRRU}, should now satisfy
velv(e)
the equality s, = max {sV} s broblem (6.)4) can be solved by
velFv(e)

means of the algorithm of Section L.3.3. As regards the upper
bounding functions, the Z,*'s will always be (easily) available

(see Lemma 6.4); anc for the Q@*’s the solution of the following

non-linear programming problem will be reqlired:

n 3
Max Q = 2 f.[r(e)]x.
s J J
J=1
s.t. g (%) €b,, 1=1,2,...,m (6.5)
Xy = xj(é) , JEFV(L)
O £x, <1, J=1,2,...,n

J
Clearly, if the gi’s were linear, then problem (6.5) would be a

linear programming problem which, as in the case of problem (4.5)

(see Section 4.2.3), could be solved by inspection,



6.4) A NUMERICAIL EXAMPLE.

Let the following zero-one programming problem be con-

sidered:

6 )
Max 2 = jfi [aj <t+l ) ]x
s.te t = Oxg+2Xatxs+ 2Xg+xs+5%Xe< 15 % (6-6)
X = Oorl, j=1,2,...,6,
where:
| J 1 2 3 4 5 6
aj 2 5 10 3 N S
bj 1 5 7 2 3 5
Writing g(x) = 8x1+2Xg+Xa+2x4+Xs5+5%g, h(t) ti; and

f.(y) = aj—bjd§, it can'b e seen that the form of problem (6.6)

corresponds to that of problem (6.4): fj is decreasing and

©

5 5 (aj/bj)% for j =1,2,...,6, and h and g are increasing,

Hence, the problem can be solved by the proposed solution method

m

The summarized results of the procedure and the final directed
tree are presented in Table 6.1 and Figure 6.1, respectively;

the optimal solution is x* = (0,0,1,0,0,0).

€.5) SUMMARY.

In this chapter the sclution of a class of zero-one
prozramming prcblems was considered. Thzse problems constitute
based upon propertics which were used to develop

a generalization b

solution method for particular applications in capital investment.

®

Accordingly, the sclution method was extended, after re-formulating
and dealing wit!i the corresponding requirements. Further extensions
like those involved with technological depcundence between projects

(see Section 5.3) could also be adapted in this case.
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Iteration Concluding | Rejectegd ; ~
i e | A Nodes Nodes | %(1) % x(1)
L, U,
1 ;
0 316 {2,3} - - 1.039 | 6.505
1 51 2 {2,4,5] - - 1.094 | 3.629
2 71 4 {2,4,7} £ - 1.094 | 2,303
3 913 {93 8 2,4 1.427 | 1.753
N - - ¢ 10 11 1427 | -

TABLE 6.1 Summarized Results of the Numerical Example.

Q =0.986
0*=6.893

8

A

7N Q =1.094
(Q% Q*=1.3,1

R
Xz:l

.72

h a
(i;i>£7 =1.427 (i;g) 0*=0, 326
xC _

OFTIMUM

FIGURE 6.1 The Finzl Directed Tree,

R




CHAPTER VII

A ZERO-ONE BRANCIH SEARCH AFPROACH.




7.1) INTRODUCTICN,

In the context of dirscted trees, as characterized
in Section 2.2, the memory requirements of branch and bound
algorithms are determined by the maximal number <MA) of" active
nodes, These requirements are, therefore, bounded by the number
(MT) Of terminal nodes in a complete final directed tree. of
course, MA 1s to be expected to be much smaller than MT’ but as
the number of variables (n) increases, it can be large enough to
impose severe storage requirements. One way to overcome this
problem is to alter the sequencing of the tree construction in
such a way as to ensure that inf'ornation corresponding to no more
than n nodes has to be stored, at the cost of affecting the improving
character of the upper bounds. Based on the search sequencing of
implicit enumeration methods®?? Greenberg and Hegerich® applied
this approach to the knapsack problem in what they called a "branch
searcn” algorithm, using ideas of both Kolesar® and Lana and Doig®,
Upon the basis of the same search sequencing (often referred to as
the "last created node" branching option®), problem (6.)) of
Section 6.2 will be discussed in this chapter, making use of the

properties by which the proposed branch and bound solution schome

was implemented.

7.2) THE SEARCH SEQUENCING.

In reference to problem (2.1) (see Ssction 2,2), lct
T = {EeEn/szo or 1, j =1,2,...,n}, and lot P be defined as in
Section 3,3.,2,
DEFINITION 7.1: A non-terminal node € of TR will be said to be
NON-BOUNDED, if szN“i(e)} = {ti,t2} and either
N(t1) £ SN or N(t2) f SN. Otherwise, € will be
said to be BOUNDED.

N

This definition is based in the way that f is bounded
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over S6 wher £ is non-terminal and TR is consistently upper-
bounding. Such an upper bound is of course given by Zg*: but

then an upper bound at least as good as Zz* and hopefully

better than Zg* is given by maxEZi+1,Zz+2}J where (£,r+1),
(€,r+2) € SA. However, if (£,r+1) or (£,r+2) are not elements
of" 5A, then Zé* cannot be improved as previously indicated.
In this sense, it is said that £ is non-~bounded.
DEFINITION 7.2: A terminal node € will be sald to be FINAL,
it NTE(e) ) = 1.
In order té see that the sequuencing of the tree

construction is well defined, it will be first introduced in
terms of the construction of the complete directed tree. After
showing that the sequencing does lead to the complete tree, implic it
inspection considerations will be incorporated. It will be assumed
that TRo = {5No,5A0} is given, where SNo={1,2}, Sho={(1,2)},
N(T) =1, N(ty) = 2 and PJ(T) = {ty,tz] for some jefl,2,...,n},
chosen according to scme criterion C.
CONSTRUCTION OF THE COMPLETE DIRECTED TREE (PROCEDURE P1.).
Step 1: Set 1 =0 and € = 2.
Step 2: If € is final and the path p from the root of TR, to k

has only bounded nodes as clements, where (k,2) € SAi,stop;

TR(n) = TR, is complete.

Otherwise, continue,
Step 3: If € is final, define N(tz) = r+l, where r in the total

number of nodes of TR, Pj{N“l(s)} = {ty,ts), and s is

a non-bounded node, either eéual to k, or such that

p = (N(T),...s, f1,02, .. .,0 = k), n  being bounded ,

for v = 1,2,...,q. Define SN, = SNiLJ§r+1},

SAi+i: SAiU {(s,r+1)} and TRs .= {SNi+1’SAi+1}'

Set 1+«— i+land € = r+l. Go to step 2,

Othzrwise, continue.




Step 4: Define N N, = SNiU{r+1},

A, = GA, 4 TF =
SA;, .= S8Uf(e,r+1) ] and TR, ., {SN.l+1,SAi+1

P

where PJZN~1(€)} = {ts,t2}, and j is chosen according
to criterién C. Set i+—i+l and ¢ = r+l. Go to step 2.
LEMMA 7.1: For any n > 2, TR(n) is complete.
Proof (by induction):
If' n = 2, procedure Pl leads to TRg = [SNg,SAs], where
SNs = {1,2,...,7} and SAg = {(1,2),(2,3),(2,4),(1,5),(5,6),(5,7) 1.
By Definition 2.5 (see Section 2.2), TRs is complete.
Let it now be assumed that TR(k) is complete, and that

the variable Xty is added to the problem. Without loss of generality,

it can also be assumed that X, is such that Xj 13 always chosen
+1

before Xk+1 by criterion C, for any j < k+l. Incorporating Eygn to
TR(k) (simply adding to T the corresponding o now ¢lements), a
directed tree fﬁ(k+l) of exactly thv same configuration of nodes
and arcs 1z obtained. Let Eﬁ(k+l) be the set of terminal nodes of

TR(k+1). Clearly, since TR(k) is complete, Nt (e)} = 2 (for any

LN [k+1]), _wLJ N *(e) =17 and N2 (e)NN"*(s) = ¢, for any two
LeIN (k+1) : .

different terminal nodes € and s of TR(k+1). This means that if,

for each £€IN(k+1), nodes N(t;) and N(ta) and arcs [£,N(t4)] and
[¢,N(t5)] were added to TR(k+l), where Pk+1£N"1(6)} = {ti,ta}, then
the resulting tree would be complete for the éroblem with k+1
variables. Now, because Xyevs i3 the last variable to be chosen by
criterion C, P14 would guarantee that TR(k+1) in terms of TR(k+1)
is

s constructed, if for each terminal node £ of TR(k+1) thc corres-

ponding node €' in TR(k+l) werc generated and, after intermediate

steps, used to carry on with the procedure, without altering the
sequence of the construction. Bearing in mind that £ is {inal for

TR(k), the next step after £ is created is to look for a node s,

as defined in Step 3. On the other hand, after creating &', first
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N(ts) and [e', N(t4)], and then N(tz2) and [£',N(t2)] are created,

where Pk+1§ (')} = [t1,t2). Asa result, N(ty) and N(tp)

are

i

[

inal, and £' is bounded. So, after cruating N(ta), the next
step is again to look for a node s', as defined in Step 3.
Obviously, s! # €', because £' is now bounded. This shows not
only that fﬁ(k +1) in terms of TR(k+1) is constructed, but, as
mentioned before, also that TR(k+l) is complete.

That procedure P14 finishes after a finite number
of steps is clear from the fact that T is finite;that it leads
to the optimal solution (or solutions) to problem (2.1) is a
direct consequence of Lemma 7.1. Finally, it can be easily seen
that, storing the bast current feasible solutinn, only informstion
corresponding to the path p (see Step 2) has to be available for

computational purposes.

7.3) THE IMPLICIT ENUMERATION SCHEME.

The exhaustive search scheme provided by procedure
P14 can be approprigsly shortened for problem (6.4) (see Section
6.2) by means of the same implicit inspection criteria of the
branch and bound approach. All that has to be taken into account
is that no further considerations are necessary for concluding or
rejected nodes. Thercfore, these nodes can be treated as if they

were final nodes. The same concepts associated with the nodes will

hence be assumed. The changes due to the new search sequencing are

rext presented,

CONSTRUCTION OF THE INITIAL TREE (PROCEDURE P15).

Step 1: Define N(T) = 1 and obtain the associsted concepts of

If x(1) = g(l), stop; x* =0 is the optimal sclution

to problem (6.4).

Othavwi e  continue .
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Step 2: Define N(t,) = 2, where Pj{T} = {ti,ta] and j is such

that s, = max {s)}. The procedure is complete:
veRrv(1) V7

SNo = {1,2} and SAo ={(1,2)}

From procedure P 1L, it can be observed that at each
iteration only one new node £ will be created. If 66Ai, at the
next iteration it will no longer be terminal, as a consequence
of the creation of another node k such that (€,k)€SAi+1. This
means that, at the most, the number of elements of A.l will be
one, for any i > o. Only one parameter — that corresponding
to the free variable j determining Pj - will therefore be
associated with Ai’ The determination of paramcters of active
nodes is hence reduced to the sclection of tho free variuble Je
FREE VARIABL: SELECTION FOR ACTIVE NODES (PROCEDIRE P16).

Step 1: Obtain Ai
otep 2: If Ai = ¢, stop; no parameter is necessary,
Otherwise, continue.

Step 3: The parameter of A. i3 j, where s. = mux §s
+ P i > ( )
Jerv (e

v

and A; = 1.

Of course, to obtain A, procedure P13 (see Section 6.3)
has to be followed for the current possiblc candidate for Ai’
which is the node that was last created.

Only th2 procedure to obtain TR.l from TRi_1 remains }
to be described.

CONSTRUCTICON OF INTERMEDIATE TREES (PROCEDURE P17).

Step 1: If Ai + ¢, define N(ty) = r+1, where r is the total
-1

number of nodes of TRi_fPJZN_l(ﬂ)} = {ti,tal], Ay, = e

and j is the paramcter of Ai~1° Sut k = £ and go to Step 3,

Otherwise, continue,
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Define N(tz) = r+l,where Pj{N”i(s)§ = {t1,%2} and s

efined as in Step 3 of Pl4, € being the last created

f.l
[¥23
¥
I

node., Bet k = s,

w

pufy

)]
el
(SX]

Set SN, = SNi_iLJ§r+l} and SA, = 4, U {(k,e+1) 3.

Define TR, = ESNi, Sa, .

Intermediate trees obtained following tha sequencing
under consideration are not necessarily upper-bounding. Therefors,
upper bounds as defined in the b ranch and bound approach will not
be available. However, a weaker definition can be introduced re-
placing Ai by AiU NBNi, NBNi being the set of non-bounded nodes
of'TRi. The resulting upper bounds are also improving along the
procedure, but no priority is given to this e ffect. Thus, they can

be expected to remain unchanged for relatively many iterations.

7.4) STATEMENT OF THE ALGORITHM.

Combining the concepts of the preceding sections, the
algorithm to solve problem (6.4) can be stated as follows:
START (ITERATION O)

1. Follow the steps of procedure P15
2. If x =0 is optimal, stop.
Otherwise, continue.
3. TFollow the steps of procedure P16 for i = o,
4o Set i = 1.
ITERATION i
1. Follow thesteps of procedure P17,
2. Follow the steps of procedure P16,
3. If A, ¥ ¢, set i+— i+l and re-start iteration i,

Otherwise, continue,
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L. Ir Ai = ¢ and the path p from the root of TRi to k has

only bounded nodes as elements, where (k,r+l)e SA., stop;
i

Li correszonds to an optimal solution to problem (6.4),

Otherwise, set i +— i+l and re-start iteration i,

7.5) A NUMERICAL EXAMPLE.

The

5}

plication of the branch search approach 1s illustrated

in this section iteration by iteration for the example of Section
L.3. 4. The optimal solution to problem (4.5) (see Section e2.53)

will be deroted by x*(£), and ths objsctive value of %(¢) by

~

Z@’

START (ITERATION 0).
Node 1 is created

(1)
x(1)

N

o o= 5.973

1

(0,0,0,0,0,0), r(1) = 0.106 and 2, = 0

Ip

(0,1,1,0,1,0) and 2, = 5.973%

I

x*(1) = (0,1,1,3,1,0) . u* = 8,235
Node 2 and arc (1,2) are created (j=2)

(0,1,0,0,0,0), r(2) = 0.106 and %5 = 4.176

>
—~

N
S—

1

x(2) = x(1)

~J

3

@}
9
il

5.9
x*(2) = x*(1) . Q2% = 8.235
Ao = {21 and j=5

LO 5»975

i

ITERATION 1

Node 3 and arc (2,3) are created (j=5)

N

0,1,0,0,1,0), r(3) = 0.11% and Z; = 5.94

(2)

f»
P
L
N—

1l

(




ITERATION 2
Node L ani arc (3,4) arc created (j=3)

A

2{_(4) = :3;(4) e Qq = 5-975
4 is CONCLJDING
¢ a-I).(.‘l B = (l, 2,5)

5.973

ITERATION 3

Node 5 and arc (3,5) are created (s = 3and j = 3)
2(5) = x(3), £(5) = v(3) and 25 = 5.943

2(5) = (0,1,0,0,1,1) ana Es = 5.273

55 = 5.943

x*(5) = (0,1,0,4£,1,0) ", Q5% = 6.722

Az = {5} and j = 6

Lz = 5.973

ITERATION 4

Node 6 and arc (5,6) are created (] = 6)

x(6) = (0,1,0,0,1,1) = x(6) = x*(6) .\ Qs = Qe* =
Node 6 is CONCLUDING and REJECTED

Ay = ¢ and p = <1;2y3)5>

ITERATION 5

Node 7 and arc (5,7) are created (s = 5 and j = 6)

x(7) = x(5) = 2(7) = x*(7) % Q7 = Q* = 5.943
Node 7 is CONCLUDING and REJECTED

As=¢ and p = <13215)5>

Ls = 5.975




Node 8 and arc (2,8) are created (s =2and j =5)
(8) =x(2), r(8) = r(2) and 25 = 4.176

(8) = (1,1,1,0,0,0) and %5 = 4.518

Jo Qs = 4.518

x*(8) = (o,1,1,§,o,o) Ce Qg = 6,630

Ag = {8} and j = 3

|
[+
11

5.973

ITERATION 7
Nods 9 and arc (8,9) are created (j = 5)
2(9) = (0,1,1,0,0,0) § x(9) = %(8)

x*(9) = (0,1,1,4,0,0) .. Qo* = 5.862 < L,

Node 9 is REJECTED

ITSRATION 8.

Node 10 andarc (8,10) are created (s = 8 and j = 3)
x(10) = x(8) # x(0)

x*(10) = (g,l,o,gg,o,o).i Qio* = 5.895 < L,
Node 10 is REJECTED

Ag = ¢ and p = (1,2,8)

Ls = 5.973

ITERATION 9.

Node 11 and arc (1,11) are created (s=1 and j=2)
x(11) = x(1) # x(12)

x*(11) = (0,0,1,%,1,0), . le = L.36L < Lg
Node 11 is REJZCTED

As=¢ , p = (1) and node 1 is bounded

= 5,973 corresponds to the optimal solution

Lg




The final directed tree is bresented in Figure 7.1.
As can be observed, in this case the corresponding configuration
in connection with that of Section L.3.4 did not change., In

general, howaver, due to the absence of effective upper bound s,

)

larger final canfigurations can be expected to be obtained by

means of this approach.

7.6) SUMMARY.

In this chapter, an altermative approach to deal with
the zero-one programning problems under stuay was presented,
the implementation of the implicit enumeration search sequencing
being the main feature of the procedure, This sequencing,
also considered as a branching option in the context of branch
and bound methods, does not give priority to the calculation
O0f upper bounds. Therefore, larger final directed trees are
likely to be involved. The storage requirencents, however, are
bounded by the number of variables, as opposed to those

associated with the original search scquenciag,

i
i
i
b
1
i
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FIGURE 7.1 The Final Directed Tree,
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