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INVESTIGATION OF FINITE ELEMENT SCHEMES FOR
THE NAVIER STOKES EQUATIONS

The main aim of this thesis has been to develop a reliable
numerical method for the solution of the two-dimensional
Navier-Stokes equations. The numerical method to be used
was the finite element method. A literature survey revealed
that a limitation common to all finite element methods
available to date is that they only produce solutions for
low Reynold's numbers. However, for aerodynamics applications,
Reynold's numbers of the order of 10% are frequently encount-
ered. At these levels conventional finite element methods
break down completely. It was felt that this limitation could
be overcome by the use of new types of shape functions.

The search for the new shape functions were carried out
in three stages. Firstly a new method is presented for
deriving shape functions for a wide class of second order
ordinary differential equations with significant first order
derivatives. The method is then extended to derive shape
functions for a wide class of elliptic partial differential
equations with similar properties. Several numerical examples
are presented to illustrate the advantages of the new shape

functions over the traditional polynomial shape functions.

The shape functions developed for partial differential
equations are then used to construct a new finite element
scheme for the Navier-Stokes equations. The scheme was
implemented on a computer and the numerical results obtained
indicated that the new scheme was more stable than the
conventional schemes.

FINITE ELEMENTS FOR VISCOUS FLOWS
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- CIIAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE PROBLEM

Over the last two decades or so finite element methods
have made a deep impact in the field of structural mechanics.
The finite element method has, in general, certain advantages
over the traditional finite difference method. These are the
ease with which irregular geometries non-uniform meshes and

imposition of appropriate boundary conditions can be applied.

The use of finite element methods in the field of fluid
mechanics is a relatively new innovation. It is anticipated
that the method will again supersede the finite difference

methods in the ways mentioned above.

In classical hydrodynamics, the fluid is assumed to be
inviscid and incompressible, the so-called ideal fluid. An
extensive mathematical theory has been developed for the ideal
fluid and in addition finite element applications to potential
flow problems may be found in (11, 29). Indeed it is fair to
say that for potential flow problems the lead of the finite

element method has already been established (46).

However, in real life problems fluids are in general

viscous and compressible. The theory of ideal fluids fails



to explain many phenomena of real fluids when the effects of
viscosity and compressibility become important. In construct-
ing a theory for real fluids it must be remembered that flows

in many practical cases are turbulent in nature. Unfortunately
most mathematical models of turbulent flow are empirical in
nature and consequently analytic solutiors to practical turbulent
flow problems are not available. However, many important
features of turbulent flows may be obtained from the study of
laminar flows. Even then the complete set of equations des-
cribing laminar viscous flows are extremely complicated, non-
linear and analytically intractable except in certain special

cases.

Tn a vast number of engineering problems, substantial
simplifying approximations can be made without the introduction
of an intolerable error. Perhaps the most common approximation
of viscous fluids is that the fluid is assumed to be incomp-
ressible. For example in many problems it may be assumed that

steady state conditions prevail and the flow is two dimensional.

The equations under these assumptions are a system of
non-linear elliptic partial differential equations. These

are described in the next section.

1.2 THE NAVIER STOKES EQUATIONS

The two-dimensional, steady state flow of an incompressible
yiscous fluid is described by the solution of a system of coupled

non-linear partial differential equations expressing mass



conservation and the local transport and diffusion of momentum.

In rectangular cartesian coordinates, the velocity distribution,

q' = u'iv+ v'i, satisfy the system
u' %%; + v"giz + % %%; = vviu! (1.2.1)
u' %%; + v! 5%; ; % %%; = yy2vy!

where p is the density and v the kinematic viscosity. Non-

dimensionalise equations (1.2.1) with respect to a character-
istic length, Lj; and velocity, U_, and identify the Reynold's
Number
U L
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Equations (1.2.1) in non-dimensional- form become
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Numerous attempts have been made in the literature to solve
equations (1.2.2) using the finite element method. These
will be considered in detail in Chapter 3. A limitation
common to all the methods available to date is that they only
produce solutions for low values of the Reynold's number (of

the order of a few hundred).

However, for aerodynamics applications, Reynold's numbers
of the order of 10° are frequently encountered. At these
levels conventional methods breakdown completely. The aim
of this work has been to construct a finite element scheme
which will produce a solution of the equations (1.2.2) for

practical Reynold's numbers.

1.3 PLAN OF THIS THESIS

Chapter 2 presents that part of the basic theory of the
finite element method which is most relevant to the work
presented in this thesis. This chapter is included mainly
for completeness. However, it does serve the purpose of
setting up a notation and also some of the results are approached
from a viewpoint which is different to the conventional view-
point. It is suggested that the reader who is familiar with
the mathematics of the finite element method does no more than

skim through this chapter.

In Chapter 3 a survey is made of some of the most popular
" methods of solving equations (1.2.2) by finite element methods.

The methods are carefully compared and their limitations noted.



The thesis then goes on to describe how some of the
limitations can be overcome by the use of new types of shape

functions.

In order to justify the use of the chosen shape functions
the author begins in Chapter 4 with a discussion of ordinary
differential equations, which exhibit.. similar characteristics
to the Navier Stokes equations. In Chapter 5 the discussion
is extended to a single elliptic partial differential equation
which also exhibits characteristics similar to those of the

Navier Stokes equations.

A method is presented for construaing shape functions
for both ordinary and partial differential equations (of the

type considered) which results in stable finite element schemes.

In Chapter 6 the theory developed is applied to the Navier
Stokes equations. A new finite element scheme for the Navier
Stokes equations is presented. This scheme 1s then used to
make a numerical study of the Hiemenz flow problem for
low values of the Reynold's number. At practical Reynold's
numbers it is found that the iterative method for solving the
non-linear finite element equations fails to converge. However,
the results indicate that the new finite element scheme is

probably stable for all Reynolds numbers.

In Chapter 7 stability of the new finite element scheme
for practical Reynold's numbers is established. To achieve

this the author by=passes the problem of convergence by study-



ing a system of partial differential equations (the quasi
Navier Stokes equations) which arise in each iteration of
the solution procedure for the Navier Stokes equations.

An analytic solution to the quasi Navier Stokes equations
is obtained to validate the numerical results obtained from

the new finite element scheme.



CHAPTER TWO

NUMERICAL SOLUTION OF BOUNDARY
VALUE PROBLEMS USING FINITE ELEMENTS
METHODS

2.1 Introduction

This Chapter gives a résumé of the theory required to apply
finite element techﬁhues to solve boundary value problems num-
erically. Although, many of the results quoted are well known,
it is considered to be worthwhile including them for complete-
ness. Also frequent reference will be made to some of the
results in later chapters. Another significant function of
this Chapter is to set up a notation and style of presentation

to be used throughout this thesis.

The author strongly believes that the literature on the
finite element method is full of obscurities. The main reason
for this is the lack of a standard notation. It is hoped that
the notation adopted in this thesis will be both illuminating

and attractive.

2.2 Mathematical Statement of Boundary Value Problem

This Chapter is mainly concerned with boundary value
problems where the dependent variable ¢ (a scalar, or more
generally, a vector ¢$) in a domain R is to be determined by

solving a field equation of the form




L = £ 1in R, (2.2.1)
Subject to boundary conditions of the form

B.o = g. {2 1,2,...,P, (2.2.2)

on the boundary 5R of R. The operator L contains ¢ and its
derivatives (up to some order p) with respect to the independ-
ent variables Xj,Xz,...X> and will generally be a linear
(elliptic) operator, i.e. ¢ and its derivatives appear linearly
in it. The operators Bi contain ¢ and its derivatives (usually
normal to the boundary) up to some order g, and in general f

is a function of the independent variables. If ¢ is a vector
¢, L and Bi will in general be matrices of differential oper-

ators, and f and g will Dbe vectors.
A few definitions are in order.

The operator L is self-adjoint if for any two elements

¢, ¢y from its field of definition (domain R)

[ ¢LydR = [ yL¢dR (2.2.3)
R R

The operator L is positive if

[ ¢L¢dR = O (2.2.4)
R

"and positive definite if in equations (2.2.4) the equality holds

only for ¢ = 0. It may be shown that if L is positive



definite then equation (2.2.1) cannot have more than one

solution.

2.3 The Equivalent Variational Problem

The problem presented in the last section may some times

be formulated variationally. This means that a functional

x(¢) 1is to be minimised

x($) = min, ¢ in R (2.3.1)

The functional is some integral of ¢ and its derivatives
over R and/or 3R. If the integrand of the functional is den-
oted by F, it is known from the Calculus of Variations that F
satisfies the Euler-Lagrange equation. When the various
derivatives of F are evaluated, thié latter equation reduces
to a differential equation in ¢ which, of course, is identical

to the original domain equation (2.2.1).

The problem of finding a functional whose Euler-Lagrange
equation is precisely the differential equation (2.2.1) is not
an easy one., However, if the operator L is linear and positive

definite then it may be shown that

x(0) = (Lo,4) - 2(f,4) (2.3.2)

Some examples of variational principles for differential

equations with Dirichlet boundary conditions are given below:
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(1) Laplaces Equation

1]
=
Nj=
~
-
N
+
-
N
A3
o,
o

x ()

XX vy

¢ given on 3dR.

(2) Poisson's Equation

x($) = jR(¢X2+¢y2+2f¢)dR
6 . +¢ =1

xx Tyy

¢ given on 9dR.

So far problems with Dirichlet boundary conditions have

been considered. If now, for example, the functional
x(¢) = [ F(x,y,¢,¢_,¢ )dR (2.3.3)
R Y

is minimised, where ¢ is not given on 3R, the necessary

conditions are

3 0X ‘9 X 9y ‘9 y
QE—cosu + 32—81na = 0, on 9R
3¢X 8¢y




where a is the angle which the normal to the surface makes
with the horizontal. The condition on 3R is the natural
boundary condition of (2.3.3). If the boundary conditions
are neither Dirichlet nor natural,x(¢) requires modification.

Writing x(¢) as

X(‘b) = IRF(X)Y>¢>¢X>¢y)dR + IBRG(X’y’q)’q)S’q)H)dS

The necessary conditions become Mitchell (41)

oF oF . 3G 9 (9G _
54 _cosa + 35 sina t g T ——(§$—) 0,
X y
8¢ <o,
u
n

The function G is chosen so that the above equation coincides

with the boundary conditions of the problem.

Examples of variational principles for differential

equations with more general boundary conditions are

(i) Poissons Equation

x(¢) = [ (o 2+¢ 2+2f¢)dR - [ (A¢-28)¢dS
R * Y

R
3%2¢ 3%2¢ .
-s—x-z-'f‘-—a?'—flnR
@9_+A¢ = B on oR.




(ii) x(¢) = [ {a(¢xz+¢ 2) + co?+2f¢}dR
R y
- [ a(Aé®-2B¢)dS
3R
(a¢x)x + (a@y)y - c¢ = f in R
%% + Ap = B on 9dR

Having found the variational equivalent of a problem the
functional x(¢) may be minimised numerically. The finite
element method, which is an extension of the classical Ritz
method, attempts to minimise the functional x in the following
manner -

1. The region R is separated by imaginary lines into a
number of subregions called 'finite elements' or
simply elements. These elements may be of any shape
although in this thesis only polygonal elements are
used.

2. The elements are assumed to be ihterconnected at
3 discrete number of nodal points situated on their
boundaries. The values of ¢ at these nodal points
will be the basic unknown parameters of the problem.

3. A function (or functions) is chosen to define uniquely
the value of ¢ within each element in terms of its
nodal values.

b The union of all such functions 1s taken to represent

¢ over the entire region R. Thus ¢ is represented




in terms of the unknown values of ¢ at the nodal
points.

5. This representation of ¢ is substituted into the integral
defining y and the values of ¢ at the nodal points

required to minimise x are determined.

How these steps are carried out will be discussed in
detail. Poisson's equation with Dirichlet boundary condit-
ions will be used throughout this Chapter to illustrate the

ideas introduced.

2.4 The Subdivision of the Region

The region R is subdivided into discrete subregions or
finite elements with the boundaries of each element being
plane or curvilinear faces, and with the adjacent boundaries
of any pair of elements being coilncident. The last condition
means that where two faces of a pair of elements are in
contact, the edges around these faces and the vertices of these
faces are, respectively, coincident. Commonly used elements
are of triangular, polygonal, or polyhedral form. At similar
positions in each element, a number of points are identified

as nodes or nodal points. These are generally at the vertices

of the elements and at strategic positions of an edge or within
the element. The subdivision of a two-dimensional region into

triangular elements with nodes at the vertices is illustrated

in figure (2.1) below.
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Figure (2.1)

LLet the number of elements into which R is subdivided be &, and

the total number of nodes in and on the boundary of R be M. The

number of nodes in a single element will be taken as m. The M

total nodes are identified serially by the system node numbers

1,25.00515...,M. The & elements are similarly identified by

the element numbers 1,2,...,e,...%. The value which the

solution has at a node is the nodal value of ¢ , denoted Dby

¢, where i is the node number of that node. When an element

e is being considered on its own, the m nodal values of the
element will be identified as ¢1,¢2,...,®m, these being the

node identifiers.




The notation described above is now clarified with

reference to figure (2.2) below

o} X
Figure (2.2)

Figure (2.2) depicts the subdivision of a two dimensional
region into three node triangular elements. The circled

numbers are element numbers whilst the uncircled numbers are

node numbers. With the notation given above it is easily seen

that for the grid in figure (2.2)

M = Total number of nodes = 10
m = Number of nodes in an element = 3
9 = Total number of elements = 11




The node identifiers of an element should be clearly

distinguished from
example in element
are, respectively,
would be allocated
some convention (e

to the system node

the node numbers of that element.

For

4 there are 3 nodes, whose node numbers

3,5,6. The element node identifiers 1,2,3

to the nodes of the element according to

numbers as tabulated below

Element Node System Node
Identifiers Numbers
1 6
2 3
3 5

.g. counter clockwise), and might correspond

The situation for element 4 is also shown in the diagram

below

3(2)

6(1)

5(3)

where the numbers in brackets are node identifiers.

Having subdivided the region R as described above the aim

is then to find the values of ¢ at the nodal points.

This 1is

accomplished by minimisaticn of the functiornal associated with




the differential equation that is to be solved over the
region R. However, before describing the minimisation
procedure it is necessary to discuss a key idea in finite

element work, namely that of "element shape functions'".

2.5 The Element Shape Functions

The function ¢ is now defined piecewise over each
elemental region. Within an element, e, it will be supposed
that ¢ can be approximated by a linear combination of suitably
chosen functions. The functional form of ¢ chosen is called

the trial function. Thus over a typical element e a trial

function i1s assumed to be

3

g

¢ (x,y) = Z;/ajfj(x’y) (2.5.1)

j=1
where aj's are constants and fj(x,y) (3 = 1,2,...,m) are
suitably chosen functions. If (2.5.1) is written down at

each node of element e there results the following linear

algebraic system of equations viz.

m
¢(xi,yi) = E:ajfj(xi,yi) (2.5.2)
j=1
i=1,2,...,m

Equation (2.5.2) may be written in matrix form as




R — r - — -
f1(x, ,Y1) f,(x, sY1) evenn fm(Xl sY1) ai ¢
fi1(x2,y2) £y (Xas¥2) oun.. fm(Xz,YZ) as b2
fi(x ,ym) fa(x ,ym) ..... f (x ,ym) a. ¢m

L —1 L 4 L -

(2.5.3)

Solving (2.5.3) for the constants aj (3=1,2,...,m) and
substituting back in (2.5.1) the trial function may be written
in terms of the nodal values of ¢ as

dp(x,y) = N.(x,y)¢j (2.5.4)

J

e

J
11
(-]

The functions Nj(x,y) (3 = 1,2,...,m) are called the shape
functions. From (2.5.4) it is easily seen that the shape

functions satisfy the condition

Ny Geyhyy) = 8y (2.5.5)

The procedure described above for calculating the shape
functions is rather tedious and not recommended. In the next
section a formula is derived from which the shape functions

may be calculated directly.




2.6 The Shape Tunction Formula

From (2.5.4) it is easily seen that

¢(x,y) = Ni¢py - Np¢p, = ... - N ¢ = 0

Using (2.5.1) to substitute for ¢, ¢1, ¢2, ...,¢m in the above

equation gives

m m m
z: ajfj(x,y) - N, E: ajfj(xl,yl) - N, /, ajfj(xz,yz)
:]:l j:l j:l

Rearranging this equation gives

m m
2 Al
al[:fl(x,y) - Njfl(xj,yj) ] + aﬁ[%é(x,y) - ;{J Njfz(xj,yj{}
j=1 =1
m

+
-+
oY
=
1
h
=
bl
NS
|
=
e
F
3
N
bed
[
<
[
L
11
o

The last equation holds for all a; (i = 1,2,...,m). Hence the
coefficient of each of the a's must be zero. This gives rise to

" the following set of simultaneous algebraic equations.



—_—
fr(xy,y1) £1(xe,y2) oo fl(Xm,ym) N, fi(x,y)
fz(Xl ,yl) fz(Xz,yz) ..... fz(Xm,ym) Nz fg(X,y)
fm(xl,yl) fm(xz,yz) ..... fm(xm,ym) Nm fm(x,y)

(2.6.1)

A1l the shape functions may be found directly from equation

(2.6.1). This formula will be called the shape function

formula. It is worth noting that every shape function Ni(x,y)

will be of the form

Ni(x,y) = Bilfl(x,y) +8i2f2(x,y) + .. * Bimfm(x,y)

e
1]

1,2,...,Mm.

Where Sij is a function of the coordinates of the nodes of the
element considered. Finally it must be mentioned that the
formula is valid in any coordinate system although cartesian

coordinates were used in the proof.

2.7 Conforming Two Dimensional Elements and their

Shape Functions

The trial function is generally required to be continuous
between adjacent elements. All elements for which this contin-

‘uity requirement 1s satisfied are called conforming elements.

The Shape Functions of the most commonly used two dimensional

conforming elements will now be derived using equation (2.6.1).




(i) Four Node Rectangle

Y

Figure (2.3)

In figure (2.3) e is a typical four node rectangular element of

a finite element grid with node identifiers 1,2,3,4 as shown.

To ensure that the element is conforming the trial function 1is

chosen as

& = A + Bx + Cy + Dxy . (2.7.1)

I+ is clear that this trial function is continuous between
adjacent elements as its value at every point on a side of
the element depends only on the nodal values on that side.
The calculation of the shape functions may be simplified if
the element is referred to the local (X,Y) coordinate system.

‘The local and global coordinates are related by the transform-

ation equations.



X:X+X1 (2.7.2)

y:Y+y1 (2.7.3)

Where (x;,y;) are the coordinates of node 1 in the (x,y) frame

of reference. The trial function in the (X,Y) plane will be

given by

¢ = A' + B'X + C'Y + D'XY (2.7.4%)

Using (2.6.1) the Shape functions are given Dby

1 1 1] ] [
0 h 0 N, X
0o 0 k X Nj =1 Y (2.7.5)
lo 0o nx 0 | \ Red

Solving (2.7.5) for the Shape functions gives

Ni(X,Y) = Bil + Biﬁx + Bi3Y + BiHXY (2.7.6)

iz 1,2,3,U4

where
1 1 1
Bi1 = 13 Brz = ~35 Bis = -3 Biw = ¢
Byy = 03 B2z = Bi123 B2s = 0 3 Bouw= -Biw
Bs1 = 03 Bszz2 = 03 B3z = 0 3 Bauw = Biwu

By:1 = O3 By2 = O3 Bys = 5 Buu= -Biu

o L




The Shape functions Ni(X,Y) may now be obtained in the global
(x,y) coordinate system by using (2.7.2) and (2.7.3). However
it will be seen later that this step is not necessary when the

finite element method is applied to obtain numerical solutions

to differential equations.

(ii) The Three Node Triangle

]
3(x5>93)
2.(% 5.9, )
c
1 (,,4,)
0 X

Figure (2.4)
A three node triangular.element with node identifiers 1,2,3

is depicted in figure (2.4). The trial function which 1is

continuous between adjacent elements is easily seen to be

¢ = A + Bx + Cy (2.7.7)
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This is so because the value of ¢ at every point on a side of

the element depends only on the nodal values of ¢ on that side.

Using (?.6.1) the Shape functions are given by
— — — — =
1 1 1 Nj ]
X1 X2 X3 N, = X (2.7.8)
Y1 V2 Y3 N3 y
S — ISR -

Solving (2.7.8) for the Shape functions using Cramer's rule

gives
Ni(x,y) = Bil + BiQX + Bi3y (2.7.9)
iz 1,2,3,
where
(X2Y3 - x3y2) (Yz’Y3) (X3—X2)
Bi1 = 5 Bi12 = ——— 3 Br13 = —
24 20 24
(x3y1 = X1ys3) (y3=y1) (x,=-x3)
B2a1 = 5 B2 = —— 3 B2z = —— 3
24 20 2
(X1¥2 = X2y1) (Y1;Y2) (xp=%1)
Bz = 5 B3p = —— B3y = ——
24 2A 20
A being the area of triangle 1 2 3. The following determinantal

formula for the area of the triangle has been used viz.

1 1 1

X1 Xo X3

\Y1 Y2 Y3!




(iii) The Six Node Triangle

¢

Figure (2.5)

A Six node triangular element with node identifiers 1,2,3,4,5,6
is depicted in figure (2.5). A full quadratic expansion cont-
aining six constants can be used as a trial function. Thus,

for example, the function ¢ can be written as

& = A + Bx + Cy + Dx2 + Exy + Fy? (2.7.10)

of course the usual problem of contuwmity of the function between
adjacent elements has to be considered. It should be noticed
that the variation of ¢ along any side of the element 1is now

~ parabolic. Thus along any side such as 1 - 5 - 2 the function

¢ may be written as




¢ = a + bs + cs? (2.7.11)

The variation of ¢ being parabolic. The three values of ¢ at
nodes 1, 5 and 2 uniquely determine the parabola, and contin-
uity of the function at these nodes with those of the adjacent
element automatically guarantees the continuity of the function

throughout the interfoxce 1 - 5 - 2.

Using (2.6.1) the Shape functions are given by

1 1 1 1 1 1 v, ] BN
X1 Xo X3 Xy X5 Xe N, X
Y1 Y2 ys3 Y ys ye | [Nsf = | ¥
X12  Xp? X3?2 Xy 2 X5 2 xg 2| INy x?
X1¥1 X2Y2 X3¥3 XyYu XsYs  XeYs Ns Xy
yi12  y2? ys?® yu? ys? Ve [ﬁe y?

' N N S | R

(2.7.12)

Solving (2.7.12) the Shape functions may be written as

- 2 2
Ni(x,y) = Bil+3i2X+Bi3y+BiuX +Bi5xy+8i6y (2.7.13)

i 2 1,2,35...,6.

The coefficients Bij (i = 1,2, 63 J = 1,2,...,6) are
highly complicated functions of the coordinates (Xi’yi) and
will not be given here. In fact the use of cartesian
coordinates for triangular elements is not recommended. A
nore suitable system of coordinates for triangular elements

will be discussed in (2.14).




2.8 Minimisation of the TFunctional

The finite element technique of minimising a functional

will now be described in detail for Poisson's equation.

It has already been stated that the solution of Poisson's
equation with Dirichlet boundary conditions minimises the

functional x where

2

2
e j[[(%ﬂ%) *<%%> * 2f¢]dxdy (2.8.1)

If the value of yx associated with an element e is called Xe

then

2

2
& = []R%%) +<%%> + 2f¢]dxdy (2.8.2)

e

The superscript signifies that the integration is limited to

+he area of element e.

Tf the elements used are conforming then

-\ e (2.8.3)

where the summation 1s carried over all the elements.

The expression for ¢ over an element i.e.

-

N (X, 906 (2.8.4)
RERSSNAE

<




is then substituted in (2.8.1). This gives X to be a function

of all the nodal values of ¢ and for an extremum it is required

that
3X - ¢ (2.8.5)
56 .
i
or gquivalently from (2.8.3)
Z X" = o (2.8.6)
;5 00,
i
e
i = 1,2,3,...M

The solution of these simultaneous linear algebraic
equations then gives the nodal values of ¢. The equations

(2.8.6) in matrix form are

[Al {¢} = ({b} (2.8.7)

where [A] is an (M x M) square matrix. {¢} and {b} are (M x 1)
column vectors. The details of constructing the elements of

[A] and {b} are given in the next Section.

2.9 Construction of the Algebraic Equations

From (2.8.3)




Substituting

for ¥

e

from (2.8.2) in above gives

@
><

i :ZH 3‘?2

Cr ¢X2 + ¢y2 + 2f¢]dxdy

QL
=

Hence

a9
9X - E X Y,0edd |
55, ° [[[2¢ 39 +2¢y3¢.+2f3¢J dxdy
1 ! 1 1 1)

But over a

where j is a typical node number of element e.
Substituting this in the last equation gives

ax o
gh QHR? c)
ee/

oN . oN. oN.

L ___1 1
+<§ oy ¢j>8y

- ¥ fNi]dxdy

l_l
1!
N
1
—
—
TN
] Q@
Xl =
e
Wl @
Xl =
J
+
QW @
x| =
[
(o9}
=
)
N
[}
b
[}
DY
L1
=
e

(2.9.1)
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Define
"
- f[(aNi aNj AN, aNj>
*iy 7 % 3% '3y 5y /XYW
e
> (2.9.2)
e -
Fi = [ [ Nifdxdy
e
-

The superscript e signifies that the integration is confined

to the element e. For an extremum it is required that
X
9X -0
8¢i

so that (2.9.1) gives

- .

;i/ E_ as. = - Ej e (2.9.3)
L l:] / 1

e .

I+ will be noticed that only elements containing node i will
contribute to

3X
36 .

1

Consequently the summation in (2.9.3) need only be carried
over such elements. If e, is an element containing node 1 and

7 is a typical node number of e then (2.9.3) may be written




—— O]h‘ e
z } o . = - }F.I (2.9.4)
y) v l:] ] / 1
e
r

Of course the superscript e  means that the integration in
(2.9.2) is confined to element e . Tor brevity the super-

script e, will be replaced by (r) so that (2.9.4%) becomes
- : (r) 1
¢ - - }; (r)
} " ] ty (2.9.5)
e_ ] e

Equation (2.9.5) is more conveniently written using set

notation. Let
(r) .
N - be the set of nodes in eP
Ei - be the set of elements e,

Thus (2.9.5) may be written

]EN P

Y ; ¢. = _z"ﬂr) (2.9.6)
3 i

EJ- e

r‘ 1




Introducing the further two sets Ni and Eij defined as

Ni - the set of nodes in Ei

Eij - the set of elements containing node i and
node 7J.

Equation (2.8.6) becomes

P () (2.9.7)

- (r)
Z"’j Z %1

jENi ersEij ePeEi

I

The step from (2.9.6) to (2.9.7) is easily understood if

(2.9.6) is written in extenso.

" Comparing (2.9.7) with (2.8.7) i.e.

[(al{¢} = {b}

it is seen that

Q.. = Ei o ) (2.9.8)
i] ; i]
£
r

e .
1]

_ | (r) '
b, = - }; F. (2.9.9)

e ekb.
r 1

where a3 and b, are typical elements of [A'and {b} respectively.
i




For illustration purposes consider the finite element grid

shown below

\8 \ T 16 1S \4

\3

\Z

0 > o
Figure (2.6)

It is required to solve Poisson's equation viz.

v2¢ = £ in R

¢ = g on 3R
where R is the rectangular region shown in figure (2.6). The
function ¢ is prescribed on the boundary. Hence from the

finite element grid it is obvious that the basic unknowns of
the problem are D102y coeesboe In order to find these
nodal values of ¢ it is necessary to write (2.9.7) at all
internal nodes. Suppose (2.9.7) is to be written down for

node 1 then firstly the sets Nl and Elj have to be identified.




From figure (2.6) these sets are given by

N, = {1, 4, 5, 2, 16, 17, 18, 19, 20}

- 3 Eij
1 1 {1 , 2 , 5, 6
1 4 { 5 , 6 1}
1 5 { 6 1}

1 2 { 2 , 6 1}
1 16 { 2 3}

1 17 {1 , 2 1}
1 18 { 1 1}

1 19 {1 , 5 1}
1 20 { 5 }

1 J ¢ N, { null set }

Equation (2.9.7) for node 1 gives

al1¢1+a12¢2+a1u¢4+al5¢5+al,16¢1e+al,17¢17+a1,18¢18

+a1,19019%a1,20920 = b1 (2.9.10)

From (2.9.8) and (2.9.9) it is seen that

_ v I s 6
arj; = a;, +ap; tayir ot 01

_ 2 6 . - 5 6
ajs = 012 t+t a1z 5 @is = Oix ot Oyw

e . 2 . _ ) 2
ays = Q1s 5 d1516 = 0O1s168 3 dirs17 - O1517° 1t Q117

_ | : . _ ' 5 i _ 5
ai1,18 = 01,18 5 @A1,19 = OG1,19 + 1,19 3 A1,20 =01, 20




"

aj ¢ for 7 ¢ N1

-]

b, -(F! + F¥ + F} + F%)

Equation (2.9.10) may also be written

ar1dr1+tarbtarsdytaisds = Ry (2.9.11)
Where
Ry = by —(a1,16b16%a1,17017%¥a1,18010+a1,19019%@1,20020)
Notice that R; & known quan'ity since ¢16,0175..,020 are
prescribed values. Similarly (2.9.7) may be written at
nodes 2, 3, 4, 5 and 6. Hence six equations will be obtained
for the six unknowns ¢1, $d2,...506
.. (r) (r)
The coefficients aij and Fi have to be evaluated
to obtain aij and bi. Now from (2.9.2)
o < BNi BNj BNi BNj>
%55 - 5% 9% 3y Ay dxdy

e
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PQ)
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Figure (2.7)

The element e with node numbers p, g, r, s and corresponding

node identifiessl, 2, 3, 4 is shown in figure (2.7). Trans-

forming the double integral af.

i from global (x,y) to

local (X,Y) coordinates gives

~© _ aN. 3N.  3N. 3N.
| (525

i %7
5% 3% Y 8¢ ) dXdy

by



where Bij\

Thus

Let

are given in (2.7).

he ]% |
= 8BS, +8S \‘\/Be +RS v )+ BS, +BE 'X>
ig TRig: ) Pyp TR i3 TPiy
O O
e e |
(ot vt n) Jce
- h k £+l n+l
. e e e 77 h k
= [ f X7y laxay = =& =
(E+1) (n+1)
O O

(2.9.2)

Also from (2.9.2)

- jj N, f dxdy

e



If £ is approximated as a constant fe over ' element e then

]
1

i e [ f Ni(XsY>dxdy = £ [ f Ni(X,Y)dXdY
e

e

e -
F.” = fe / [ (Bil+8i2x+8i3Y+BiuXY)dXdY
e

e e
1 e "1l 0,0

e e e
12F1,0"Bi3P0,1785uP1 .1’

]
i
Hh
™

+B (2.9.3)

2.10 Alternative Method of Inserting Dirichlet

Boundary Conditions

For the illustrative example presented in the last section
the finite element equations were written down only at the
internal nodes, i.e. the nodes at which ¢ was to be determined.

The resulting system of algebraic equations took the form

(Al {¢} = {b}
(M x M) (M x 1) =(M x 1)

Where M is the number of internal nodes. In many cases

(especially when dealing with simultaneous partial differ-

ential equations) it is found convenient to write down the



finite element equations at all the nodes including boundary

nodes. The resulting algebraic equations now take the form

[A1{¢} = {b} (2.10.1)

(M x M)(M x 1) = (M x 1)

Where of course as usual M is the total number of nodes.

The Dirichlet boundary conditions are now applied directly

to the matrix equation (2.10.1). For example if ¢ is specif-
ied at a node n on the boundary then the nth equation in

(2.10.1) is replaced by the equation viz.

where ¢n* is the prescribed value of ¢ at node n. This gives

the following rule for Dirichlet nodes.

Rule for Dirichlet Nodes

If n is a Dirichlet node (numbep) put zeros
in the nth row of the [A] matrix in equation
(2.10.1) except for a 1 in the diagonal
position, and put in the nth row of the {b}

vector the known value of ¢ for that node.

2.11 Continuity Requirements of the Trial Function

It was mentioned in (2.7) that the trial function is

generally required to be continuous between adjacent elements.



This is usually the case for second order partial differential
equations where the highest order derivative appearing in the
associated functional is of order unity. Quite generally the

functional x is defined as

= 3¢ 39 3¢ 3¢ 3¢
X j G(X’y’z’d)’ax’ay’az""’g—ﬁ ’ 1'1) d(R)
R X 97

where ¢ is the unknown function, " is the highest order deriv-
ative of ¢ and R is the region over which the solution is
sought. If Xe is the contribution of an element 'O the

value of y it is assumed that

X =X (2.11.1)
e

This is generally only true if no 'infinite' values of G occur
at element interfaces. The condition of continuity can there-

fore be restated by the requirement that ¢ and all its deriv-

atives up to order (n-1) be continuous and finite on the

interface.

Example
For the partial differential equation

y Y y
890 1.9 , v 2% - ¢ inR

ox " 9x’ oy’ dy" ~
satisfying the boundary conditions that ¢ , %% are known on

YR the associated functional x 1s



— 2 2
X = f f {(q>Xx + ¢yy) - 2f¢rdxdy (2.11.2)
R

The highest order derivatives in (2.11.2) is of order two.
This means that if (2.11.2) is to be minimized using finite
element methods the trial function must be chosen so that ¢
and the first derivatives of ¢ are continuous between adjacent

elements.

2.12 Notion of an Element Stiffness Matrix

It is quite apparent that the procedure described in
(2.9) for constructing the algebraic equations is not
suitable for computer implementation. However, if the
equations are assembled by evaluating the contribution of

an element to the global matrix then the process can be

made automatic. In order to find the contribution of
e
element e to %%, it is necessary to compute %% . Now
i i
N 2 2
= G (Be) v esn Jasey
e
Proceeding as in (2.9) gives with the notation already
introduced
5y & E v
9X_ = af. . + FS (2.12.1)
8¢i 1] J 1



Let e be as usual an m mode element with node identifiers

.M.

., yields the equations

r -
6T

b

F

e
m
A

Writing (2.12.1) at each node of element e,

(2.12.2)

The (m X m) matrix in (2.12.2) is called the element

stiffness matrix.

the element stiffnes

The vector

s vector.

F

in (2.12.3) will be called

For example referring back to figure (2.6) equations

(2.12.3) for element 6 would
—
ax® 6
36, 011 Q12
Bxe 6
502 Q21 022
6 =
géa G313 Q32
6 N
géq a&l @52

be

(2.12.3)



Where the node identifiers are allocated to the node numbers

of elements 6 as shown below

l Um“) 2 (3)

4() | 5(2)

The element stiffness matrix and element stiffness vector in

(2.12.3) may be evaluated using (2.19.12) and (2.19.13)



2.13

Construction of Algebraic Equations Using Element

Stiffness Matrices

The final set of algebraic equations, viz.

{%5.} = [A] {¢} + {F} =0 (2.13.1)
:L.

are easier to construct using element stiffness matrices.

In order to do this use is made of the equation

(i)

(ii)

(iii)

(iv)

(v)

S

X - 9X
T Ta : (2.13.2)

LJ 1

The procedure is summarised below: -

K =20

Initialise the elements of the global matrix [A]
(M x M) and the vector {F} (M x 1) to zero.

K = K+1.

Take element number 'K' and compute its element stiff-

ness matrix and element stiffness vector.

Let aij and F?' be typical elements of the ith row
of the element stiffness matrix and element stiffness
vector respectively. Where of course 1 and ] are
node identifiers.

If I and J are node numbers corresponding to the

node identifiers 1 and j respectively thén perform

the following operations -




TJ i=1,2,...m

1,2,...m

M
[N N N4
Cle

i

where arj and F. are typical elements of [A) and {F}

I
respectively.
(vi) If K is equal to & (the total number of finite

elements in the grid) then stop otherwise go to

(iii).
Tt is not difficult to see that steps (i) - (vi) are in fact
equivalent to writing down (2.13.2) for each node 1i. The

equations corresponding to Dirichlet nodes are modified after

assembly in the way described in (2.10).

This method of constructing the global matrix 1s most

widely used and indeed is very suitable for computer implement-

ation.

2.14 Use of Area Coordinates for Triangular

Elements

A coordinate system will now be described which facilit-

ates the use of triangular elements in finite element work.

Consider the point P inside a triangle (as shown 1in figure
2.8). Instead of specifying the position of P by rectangular
cartesian coordinates (x,y), it may be specified relative

to the triangle by the three areas A;, Az and A, or, more
"conveniently, by the non-dimensional areas

A A A
w5 La s L =g

3 (2.14.1)

L1:




2(x,,9,)

Figure (2.8)

It is clear from the foregoing relations that

Ly + L, + Lz =1 (2.14.2)

Ly, L, and Lz will be used as coordinates of the point P. If
degsired the coordinate L; may also be considered to represent

the non-dimensiocnal distance

N
bt

Ly = (2.14.3)

=

" of P from the element side 1.




- 47 -

Similarly the coordinates L, and Ls; may be interpreted
as the distances from the other two sides. Thus, (L;,L;,Ls)
constitutes a special type of cartesian coordinate system.
Two coordinates suffice for specifying the pont P uniquely.
This complies with the interdependence relation found.in

equation (2.14.2),

The area coordinates of the nodal points are -

Node 1 L = 1 Lo = Lsg = 0O
Node 2 Lo =1 Ly, = Ls =0 (2.14.4)
Node 3 L3 = 1 Ll = L2 =

*

The equations for the sides of the triangle are -

Side 1 L, =0
Side 2 L, = 0O (2.14.5)
Side '3 Ly =0

The area coordinates of the centre of gravity of triangle 123

are:

L, = L, = Ls =%— (2.14.6)

The relation between area coordinates and rectangular
cartesian coordinates is established by writing down the linear

relationship viz.




= N —
r% X1 X2 X3 FL;1

y = A Y2 ) Lo (2.14.7)
1 1 1 1 L3

— e g — S

Where the first two lines in (2.14.7) represent the conditions
to be satisfied at the corners (compare with (2.14.4)) and

the last line is merely a repetition of (2.14.2).

Area coordinates are expressed by rectangular cartesian

coordinates by inversion of (2.14.7), yielding

[— | [ T
L Y23 X32 X2Y3—X3Y2 X
1
La | = 55 | Y31 X13 Xsy1-X1Ys y (2.14.8)
L3 Viz X221 X1¥Y2-X2V1
- —_ 1

Where A is the area of triangle 123 and the notation y,3 = y2-y3

etc. has been introduced.

The linear relationships of equétion (2.14.7) shows that
polynomials in (x,y) may be expressed by polynomials of the
same degree in (L:,Lz,Ls). The advantage of a polynomial in

(L;,L2,Ls) is that these coordinates are invariant with respect

to the shape and the orientation of the triangle, and that all

integration formulas become remarkably simple. These advant-

ages justify the introduction of this coordinate system.

It will now be shown that the shape functions of triang-

ular elements can be written in terms of area coordinates.




(1) Three Node Triangle

The trial function usually taken for a three node triangle

i1s a complete polynomial of degree unity.

Now from (2.14.7) it is seen that

X = Ll(Xl—Xa) + Lz(Xz'Xg) + X3 (2.1H.9)

Li(yi1-y3) + La(ya-y3) + y3 (2.14%.10)

«
1

Thus any polynomial in (x,y) may be expressed by polynomials

of the same degree in L; and L,.

For the three node triangle shown below

)

(<

o) e

The trial function in cartesian coordinates 1is
¢(x,y) = A + Bx + Cy

By virtue of (2.14.9) and (2.14.10) the trial function in area

coordinates may be taken as

¢(L1,L2) = A' + B'L; + C'L,




Using the "Shape Function Formula" the shape functions

N1, N2, N3 in terms of area coordinates are given by

— —_ — —
1 1 1 rﬁl FI
1 0 0 N2 = L]_ (2.1”’.11)
0 1 0 N

B I T N e

From (2.14%.11) the shape functions are found to be
Ny = Ly Np = L2 N3 = 1-L,-L, = L3

Hence the shape functions for the three node triangle are simply

the area coordinates.

(ii) Six Node Triangle

The trial function usually taken over a six node triangle

is a complete polynomial of degree two.

Thus for a six node triangle shown below

Y 3




the trial function in cartesian coordinates is

b(x,y) = A + Bx + Cy + Dxy + Ex2 + Fy?

By virtue of (2.14.9) and (2.14.10) the trial function 1n area

coordinates may be taken as

6(Ly,Lp) = A' + B'L, + C'L, + D'L;L, +E'L} +F'L}

Using the "Shape Function Formula" the shape functions

Ni(Ll,Lz) (i = 1,2,...,6) in terms of area coordinates are
given by
———— | -
1 101 1 1 1| [wm (1 ]
1 0 0 3 3 O N, L,
o 1 0 0 3 1 N, L,
= (2.14.12)
O 0 0 0 &4 O Ny LiLo
1 0 0 & & O Ns L3
o 1 0 0 % & Ng L3
s o R —

Solving (2.14.12) for the shape function gives

N1 = (2]_»1"]_)]_»1; NL, = LlLlLa
N2 = (2L2—1)L2; N5 = HLILQ
N3 = (2]_:3":]_)]_:3; N5 = L#LQL;;

" Tn a similar way shape functions for higher order triangular

elements may be found in terms of the area coordinates (Lj,La,L3)



2.15 Analytic Integration Using Area

Coordinates

In finite element work various integrals have to be

evaluated. These will be of the form
[ [ [Gldxdy (2.15.1)

in which [G] depends on N (shape function) and/or its
derivatives with respect to global, i.e. x,y coordinates.
If polynomial trial functions and polygonal elements are

used then all the integrals will exhibit terms of the form

E.n
= .15,
Pgn f [ x7y dxdy (2.15.2)

e

£, n being positive integers

For example, in section (2.9) the solution of Poisson's
equation using the four node rectangle involved the evaluation
of P, . Of course, for rectangular elements PEn is easily

En
evaluated analytically.

When using triangular elements it is found convenient to

write [G] in terms of area coordinates. The only feature is
presented by the fact that differentiation with respect to

cartesian coordinates needs to be carried out. This is quite

easy noting that



3 _ 3Ly 3 ., 3L, 3 ., 3L
X — 9x 9L, ox oL» 9x dL3
3 _ 3Ly 3 ., 3L, 3 , 3Ls

But from (2,14.8)

1
L, = §K(y23x + X3,y + (Xpy3—-X3Ww)) etc.

This gives

9 _ 1 d d
3% - 2AWY2e 3Ly T Vs gL, foYwe
> - 1 2 2

3y - 2R*32 3Tyt Xis g, ToXen

[G] will now depend on N (shape function

coordinates) and/or its derivatives with

o
L3

0

aL3 )

)

in terms of area

respect to area

i.e. Ly,Lz,Ls coordinates. All the integrals will exhibit

terms of the form

T = f f ¢ L8 1Y axay

where o, B,y are positive integers and QXy

triangular element in the (x3;y) plane.

is a typical

Fortunately an analytic expresseion for I is available

and in fact



o 1 1 1
I:U 3Py dxdy:(g;s)r{H;SIQA (2.15.3)

g
1

area of triangle, e
Xy

Although the formula (2.15.3) is well known its proof it not.
The following proof uses the beta and gamma functions in the

deriviations.
The proof is divided into two parts -

(1) The first step is to show that any triangle may be

mapped into a right angle triangle using area coordinates.

To this end consider a triangle in the (x,y) plane with

vertices 1, 2, 3 as shown below

y

Figure (2.9)



The equation of side 12 is L3 = 0O and similarly for sides 31
and 23. The coordinates L;, L, and L3 are not independent
since

Ly + Lp_ + L3 = 1 (2.15.’4’)

To avoid ambiguity L, and L, will be regarded as independent
from now on. Whenever L3 occurs it must be replaced by

(1-L;-Lz) from (2.15.4). From (2.14.8)

L, = f%EY23X + X327 + (X2y3-X3W) ] (2.15.5)
L, = é%EY31X + X13y + (X3y1-%X1y3) ] (2.15.6)

The vertices of triangle 123 in figure (2.9) may easily be
mapped into corresponding points In the(L; ,L2) plane using
(2.15.5) and (2.15.6). The result of doing this is given

in tabular form below

Vertex Cartesian Area
coordinates (x,y) coordinates (Li,L2)
1 (%x1,y1) (1, O)

3 (x3,y3) (0, 0)




The sides of triangle 123 are easily mapped into the
(L;,L,) plane. For example side 23 will map into L, = O
since along 23 L; = 0 etc. The triangle in the (L,;,L,) plane

is shown below

L.

(o) 12

J
(0,0]3 0,0> L,

Figure (2.10)

This is a right angle triangle as required.

(ii) The second step is to prove the formula given in (2.15.3)

viz.

_ o B _oalBlyl 2p
I = [[ LY LE LY dxdy = gy

writing Ls = 1-L;-L, from (2.15.4) in above gives



T = [[ ¢ ¥ (-, -1, Yaxdy

e
Xy

Changing variables from (x,y) to (L;,Lz) in above integral

gives
- o B Y
=1 Ly Ly (1-Ly-Lz)"|J|dL,dL: (2.15.7)
L.L,
where
eL1L2 area of right angle triangle

in (L ,L,) plane, shown in

figure (2.10).

and J is the Jacobian of the transformation, i.e.

_oolx,y)  _fox 3x
J 5, | 3k 3T,

Now from (2.14.7)

Lixy13 + LaoxXa23 + X3 (2.15.8)

ke
i

Liyis + Layas + V3 (2.15.9)

<
1



where the notation X3 © xl—xaetc. has been used. Hence
J = X1 3 X2 3 = 1 1 1 = 2A
X X X
Yi2 Y23 ! 2 3

Y1 N Y3

Thus equation (2.15.7) may be written

T :[[ ¢ P o(1-1,-1,)Y2adL,dL,

T = 2A[ 1% dLl‘[ 18 (1-1L,-L,)YdL,

In the inner integral put

(l—Ll)y = Lz i.e. sz = (l—Ll)dy

This gives

1 1 .
I = 2Aj' 2 dLl[ (1-L2PyP -1 )Y (1-y) Y (1-L1)ddy

o ®]



or

Thus

T = 2AB(o+1,B+y+2)B(R+1,y+1)
using

B(m,n) = g%%%§§§l
gives

I = 2A

T(a+l)T(R+y+2) T(R+1)T(y+1)

F(a+1)T(B+1)T(y+1),,
T(a+R+y+3)

Also using
T(N+1) = N!
.o By
t- (@+B+Y+2)FA

as required.

T(a+R+Y+3) NEEEZD)



2.16 Galerkin's Formulation

Not. every differential equation has a solution which
minimizes some functional. In such cases, the general principles
of finite elements can be applied but some other criteria are
required to write down the finite element equations to deter-
mine the ¢ - One possible approach, proposed originally Dby
Galerkin for solving ordinary differential equations 1s to
look for approximate solutions to the differential equations
which are orthogonal to the shape functions. Thus for the

equation viz:
L¢ = f in R (2.16.1)

Orthogonallity is defined as a solution such that

f[ N, (L¢-f)dxdy = 0O (2.16.2)
R

for every Ni'

As only one shape function is defined for every node,
then if (2.16.2) is written down at every node at which ¢ 1is
to be determined, there will result precisely the same number
of equations as unknowns. Solving these equations yields the
required result. If the highest derivative appearing in the
_integrand of (2.16.2) is of order n then continuity of the

tprial function and all its derivatives up to order (n-1) are



required on the interface. Green's theorem can often be used
in (2.16.2) to reduce the order of the highest derivatives thus
enabling the use of simpler elements. Finally it is mentioned
that when a problem can be stated in a variational form, then

Galerkin's approach leads to the same solution.

2.17 Galerkin's Approach Applied to Polsson's
Eguation

In order to highlight some aspects of Galerkin's form-
ulation and also to introduce further notation consider

Poisson's eqguation viz:

vi¢ = £ in R (2.17.1)

Galerkin's criteria requires that
‘[f Ni(V2¢ - f)dxdy = O (2.17.2)
R

Using Green's theorem (to reduce the interelement continuity

requirement) in the form

jf NiV2¢dxdy = - [[ gradNi.grad¢dxdy'
R R
: 39
+ f Ni Bmds



Equation (2.17.2) becomes

- 3%
fj‘gradNi.grad¢dxdy + [f Nifdxdy = ‘é Ni ands

R R oR

Writing integrals over R and 3R as sum of integrals over the

elements gives

BNi ¢ BNi 3¢> }: .[f
) e w w) wrs i

e e e e
NI
= ' gﬂlds
L i 9n
e OR
Where BRe is the boundary of element e. Over element e put
= N.o.
¢ ;i ]¢]
./
J

so that the above equation becomes

Y T [H <8Ni N, ANy aN.> W
/L 5% 3% T3y 3y / XV ¢y
e j e

) ) Lt
vy N, fdxdy = PNy mhds (2.17.2)
e

e e 9dR
e




Define the following quantities

. ”<3Ni N, ANy 9N, >
“i3 7 5% 9x 9y 3y . dxdy
e
FS - Z N. fdxd ¢S - % N, 20
i g HAxey i i Sﬁds
e oRg

(2.17.2) now becomes
= e - _ e
Z ;“% ¢ X(Gi Fi> (2.17.3)
e ]

(2.17.3) is written at every node i at which ¢ is to be deter-
mined. Alternatively (2.17.3) may be written at all the nodes
including boundary nodes. The equations corresponding to
Dirichlet nodes can then be modified as explained in (2.10).

It should also be noticed that the line integral G? only
contributes when 1 is a boundary node. Furthermore the integral
is only to be taken along those sides of element e which

actually coincide with the boundary.

The global matrix obtained by writing (2.17.3) at every
node may also be constructed using the element stiffness matrix.
 Writing (2.17.3) at every node of an m node element with node

" identifiers 1,2,...,m gives



.m
T\
<E>?:} e . _.g° - e
: agy o (GS FE) (2.17.4)
1=1
1 =1,2, ,m

e . . .
where (E)i denotes the contribution of element e to equation

I. Of course, I is the node number corresponding to the node
identifier i, In matrix form (2.17.4) is
— 1 — —
e e e e e , 2 e
(E)lv a1 C12 e e Ol.lm (1)1 ((11 —Fl )
e e e e e e e
(E) Ao Bl22 eeeew 2 ¢2 (G, -Fz )
te e e e e e e
(E)m o SRR o ¢TJ (Gm —Fm )
s ——— 3 O

(2.17.5)

The matrix on the right hand side of (2.17.5) having
e . . .
typical element aij is the element stiffness matrix for
Poisson's equation. The global matrix is now easily constructed

using the algorithm given in (2.13).

The next chapter continues with a critical survey of some
of the most common finite element methods available to solve

the Navier Stokes equations.



CHAPTER THREE

LITERATURE SURVEY

3.1 INTRODUCTION

The usual way of discretizing differential equations to
obtain the finite element equations is to seek a variational
equivalent of the original problem. This means that the Euler
Lagrange equation(s) of the associated functional are precisely
the differential equation(s) to be solved. Unfortunately, many
systems do not possess a variational principle, and amongst these
are the Navier Stokes equations. A crude proof of this fact was
originally given by Millikan (16). A much more elegant proof

using the frechet calculus may be found in (15, 16).

T+ is fair to say that most research workers have concen-=
trated on seeking alternative methods of discretizing the Navier
Stokes equations to obtain the finite element equations. A
convenient alternative is the method of weighted residuals part-
icularly the Galerkin Method. A discussion of several common

formulations for the Navier Stokes eguations (1.2.2) is presented

below.

3.2 COMMON FORMULATIONS

T+ is convenient to restate equations (1.2.2) again. These

were
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Jdu oV _
3 T oy - °
du Ju o 1
ou Jdu op - 1 g2
ug, * vay t oAy Re Veu (3.2.1)
AY v op _ 1 2
Usx t Vay T3y TRe VY

It is worth noting that for transient viscous incompressible
flow it is only necessary to augment the left hand side of the

second and third equations in (3.2.1) by %% and %% respectively.

Stream Function Formulation

Equations (3.2.1) may be transformed into a single
equation written on a stream function, ¢, defined to reduce

the first of equations (3.2.1) to an identity

L

oy
(3.2.2)

g =¥

90X

Cross differentiating and subtracting the remaining equations

(3.2.1) to eliminate the explicit appearance of pressure gives

2 _ 2 - L oos
wyv wx wxv wy = Re vy (3.2.3)

Probably the first attempt at solving equation (3.2.3) was

" made by Atkinson, Card, Irons (4). They considered the solution



of (3.2.3) for creeping flows only. The Reynold's number of
creeping flow problems is very small and consequently (3.2.3)
reduces to the biharmonic equation. The solution of the
biharmonic equation using a variational approach was given

in (4). A formulation using Galerkin's approach may have
application to higher Reynolds number flows. A clear disad-
vantage of the method is the requirement of higher order
elements to ensure interelement continuity, while the advant-
age is that only one equation is required to describe the flow

instead of three.

Olson (36) has presented a formulation for solving the
whole of equation (3.2.3) using a pseudo variational principle.

The LCuler Lagrange equation of the functional

HEEC R X R

-

will yield the differential equation (3.2.3) provided the under

lined bracketted terms are held constant. Since the functional

I contains derivatives of ¥ up to second order C(l) continuous
elements are required. It was stated in (36) that this form-

ulation has been tested on several examples and good results

were obtained; but the author has seen no published results.

" Stpeam Function and Vorticity Formulation

Equations (3.2.1) may be reduced to two equations involv-

ing the stream function and vorticity w defined by -



_ dv _ odu
W = s 3y (3.2.4)

Substituting for u and v from (3.2.2) into (3.2.4) gives the

equation

V3 = -w (3.2.5)

The introduction of y and w into the second and third of

equations (3.2.1) and eliminating pressure gives

L og2, - _
e Vw = wywx wxmy (3.2.6)

The solution of (3.2.5) and (3.2.6) is not straightforward
since generally the vorticity is not known on the boundary
walls. A brief description of the solution procedure as

presented by Taylor and Hood (17, 18, 18) is given below.

Now to solve equation (3.2.5) it isrecessary to specify y
or its normal derivatives on all boundaries. This implies
that suitable velocity profiles have to be determined both on
entrance to and exit from the region. Of course on the
boundary walls the velocities are zero. The boundary values of
y may be determined by fixing ¢ at an arbitrary reference point

on the boundary and using equations (3.2.3).

Also as the vor ticity is not known anywhere an initial guess

has to be made. Equation (3.2.5) can then be solved for the



stream function. To solve (3.2.6) for the vorticity field it
is necessary to know boundary values of vorticity. To this

end let Yy and w be given by the element approximation functions

Ve (x,y) = XNim,y)lpi (3.2.7)
=

we(x,y) = YNi(‘x,y)wi (3.2.8)
i

Let Wy be the vorticity at the boundary node K. Substituting

for ¢ from (3.2.7) in (3.2.5) gives

2 = —
Ve ? Ni(x,y)wi) = oty (3.2.9)
When two or more elements meet at a node K the average values
obtained by (3.2.9) is used. Equation (3.2.6) may be solved

by the finite element method for the vorticity field. In (19)
it is suggested that it is more efficient to obtain the vort-

icity field from

VZw = O (3.2.10)

With boundary conditions provided by (3.2.9). The values of
vorticity so obtained are substituted into (3.2.5) and the cycle
‘repeated until convergence is obtained. Equation (3.2.6) may
‘then be used in place of (3.2.10) to obtain the vorticity field.

The advantage of this approach is that the symmetric matrices
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arising from (3.2.5) and (3.2.10) are identical and inversion
is required only once at the beginning of the cycle. This

procedure by Taylor and Hood (19) may be summarised as follows:

1. Determine suitable velocity profiles on inflow and
exit ¢
2. From a reference stream function obtain boundary

conditions on Y

3. Guess an initial w distribution
V. e
b, Solve V%Y =-w
v
5. Find the boundary w values from Wy = -Vzwe
6. Solve V?w = 0
v —
Convergence -~
\LI <
7. Solve V?*y = -w and find boundary values from
- 2.,.€
wg = VoY &
2_y O Dy =
Solve (gz V by 3% T ¥k 3y)w 0
\'I P
Convergence
8. Solution obtailned

The solution of (3.2.6) by finite elements requires further
discussion. There are two possible ways of discretizing (3.2.6)

either the term

(Y. w -V w. )



is incorporated in the matrix for V2w or it is put on the
"right hand side" using the previously iterated values.
It is mentioned in (19) that the latter approach proves to
be unstable. The type of element required for this formul-

(0)

ation 1s C continuous and at least a third order polynomial,

since second order derivatives are taken of the shape functions.

Several numerical results using the stream function and
vorticity have been presented in the literature. Taylor and
Hood (19) showed that for couette flow the stream function and
vorticity formulation was very inefficient from the comput-
ational viewpoint. Baker (8), M. Ikenouchi and N. Kimura (22)
used Galerkin's criteria and the stream function and vorticity
formulation. In (8) numerical results were presented fof flow
in a duct at a Reynolds number of 200. In (22) the flow
around a cylinder was studied and good agreement obtained for
a Reynolds number of u40. Pin Tong (u44) has used a variational
principle and the stream function and vorticity formulation.
Numerical results for flow around a cylinder upto a Reynolds

number of 4O were obtained in this reference.

One major disadvantage of the stream function and vortic-
ity formulation is that it 1s only applicable to two dimen-

sional problems.

Velocity Pressure Formulation

Tt is possible to solve for the velocity and pressure

field directly by descr#tizing equations (3.2.1) by Galerkin's

method.



Let the element interpolation functions be defined by

the equations:

e Z
voo= N.v. (3.2.11
- J ] )
]

where for convenience the same shape functions are chosen for
velocity and pressure. This 1s by no means necessary or even
desirable. Galerkin's method applied to equations (3.2.1)

lead to the following non-linear finite element equations

. =
E I:A..u. + B..V. =0 (3.2.12)
L 1] 3 13 71 !
]

®

o ™S
o {\/1
=S
N
(@]
'_J.
Je
=
c
e
c
S
}—J.
[
=
[
e
<
=
N~

r\ . N .
P E ¥ } 2 A..p. = /T (3.2.13)
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L —_ - R
1 .

+ = ..V, . ..pPs = .  Z.
Re ;il ZL/El]V] + }J ; Bljpj Ei/Gl (3.2.14)

Where e is a typical element, j and K are typical node numbers

of element e. The various coefficients are defined below: -

[, 2

N
i3 = [ fNi 3y dxdy 3
e
3N
15K T f /Ni 55 NxdX 5
e

N, dxdy 3

1"
—
—

zZ

e
l @
g =
=

Piik

,BNi BNj . BNi, aNj)
iy T f f <ax % T3y Ay ) Y



- ou .
Fl = jg Nl 5—; ds 5

t~

G. = jg Nl -5—1{(18.

Notice that the integrations are confined to the element
e. Green's theorem has been used on the Laplacian terms toO
reduce the order of interelement continuity. Consideration
of the order of derivatives will show that the order of con-

tinuity required 1is C(O).

Taylor and Hood (18, 19) have applied this formulation to
problems in the low and intermediate range of Reynolds numbers.
They used the parabolic isoparametric element. Oden (32) has
applied this formulation to a number of problems using the six
node triangular element. It had been observed by research
workers that the use of common trial functions for velocities
and pressures lead to some inaccuracies in the pressure field.
Kawahara, Yoshimura and Nakagawa (24) used perfect polynomial
series to second order for velocities and linear polynomigl
series for pressure. This device gave good answers for all
the variables. Hood and Taylor (20) conducted numerical
experiments to confirm this and also presented tentative

proposals to explain this phenomena.



3.3 LIMITATIONS OF CONVENTIONAL SHAPE FUNCTIONS

All the work to date has used polynomial shape functions.
Using such shape functions solutions begin to breakdown for
Reynolds numbers of the order of a few hundred. However,
for aerodynamics applications, Reynolds numbers of the order
of 10°% are frequently encountered. At these levels conventional
shape functions breakdown completely. Thus there is a very

real need for a new approach to choosing the shape functions.

In order to develop the approach methodically the author
starts in the next chapter by examining a class of ordinary
differential equations which exhibit similar characteristics

to the Navier Stokes equations.



- CHAPTER TOUR

FINITE ELEMENT SCHEMES DERIVED FROM
ORDINARY DIFFERENTIAL EQUATIONS

The aim of this chapter is to investigate the finite
element solution of a wide class of ordinary differential
equations. It will be shown that traditional polynomial trial
functions used in conjunction with the finite element method
lead to numerically unstable schemes. A new method of choosing
the trial function to result in numerically stable schemes

is presented.

The starting point is a second order constant coefficient
ordinary differential equation. However, a great advantage
of the method is that it may be readily adapted to apply to
differential equations with variable coefficients including
non-linear differential equations. In the next chapter the

whole concept will be extended to cover partial differential

equations.

To fix ideas consider the second order constant coeffic-

ient homogeneous differential equation

Ly + py = O (4.1.1)

over [a,bl, where L is a differential operator defined as



_d*  .d
= EEZ—.AE§ (4.1.2)
The non-homogeneous equation will be treated later although

it is well-known that the stability of a difference equation

is generally decided by its homogeneous solution (49).

For illustration purposes it is conven ient to commence

with the equation Ly = O.

4.2 FINITE ELEMENT SOLUTION OF Ly = O

Galerkin's criteria requires that
b

[ N;Lydx = O (4.2.1)

a

Integration by parts yields

b
[ an. ay dy W B _’b
? = + AN. dx - | N.y' | =0

L dx dx
a

or
< dN. dy dy*\ }ﬁ :
I, —— - ! 1 -
}T\ [ dx d +‘Ah1 dx,/dx ‘_le 0
e e e e
Over an element write y = I Njyj where j is a typical node of

j



element e. The above equation reduces to

Z’\ O [[ <dNi dn ..de
;L x> ax "M oax >dx] Y4
B
- ZLNiy'j =0 (4.2.2)

Define the following quantities

e [ de e dNi de
Cig 7 0 Nim Eiy ° [ o ax I
e e
(4.2.3)
r¢ = [N.y'] and oS, = xS, + ES
i i e ij ij 1]
Equation (4.2.2) now takes the form
:; Ki e _}y. - :ﬁFe -0 Y 9
’ . ) F, = .2.h
[ é_/[;lj T VA ( )
e j e

This is a set of linear algebraic equations for the nodal
values of y. For computer implementation of finite element
algorithms it is generally desirable to construct the global

matrix from the element stiffness matrix.




4.3 ELEMENT STIFFNESS MATRIX FOR Ly = O

Consider an m node element e whose nodes are

spaced and numbered as shown below

e—hé% e

For this element (4.2.4) becomes

m

e | e e _ e
las. | y: - FD o= (E):
VAN U B B i i
j=1

i = 1,2,...,m

Where (E)i denotes the contribution to equation 1

equally

(4.3.1)

from element

e. The superscript signifies that the coefficients are eval-
uated solely for element e. In matrix form equation (4.3.1)
looks like
e e e e
(E)§ at1 a2 SRR Oy yi sz
e e e e e
(E)% 021 052 e o, V2 F3
= - (4.3.2)
e e e e e e
Onl B e *mm | [ ¥n]




The matrix on the right hand side of (4.3.2) having typical
element uij is the element stiffness matrix for the equation
‘Ly = 0. Lach element is taken in turn and the entries of its
associated element stiffness matrix are put into the approp-
riate locations of the global matrix. For example the element
aij would be accumulated to the element ary in the global
matrix. Where I, J are the actual node numbers corresponding
to the node identifiers i,j. The same procedure applies 1in

constructing the right hand side of the final system of

equations.

It will be noted from (4.2.3) that in order to evaluate

uij it is necessary to compute the coefficients Cij and Eij'
These coefficients are given below for linear (m = 2) and
quadratic (m = 3) elements.

(i) Linear Elements (m = 2)

For linear elements the trial function is y = A+Bx. If
the origin is taken to coincide with node 1 the shape functions

are computed to be

(he - X
N1(X> = -—-—T,l“—"

' e

)

The coefficients Cij and Eij as defined in (4.2.3) are

Nz(X) = /

RS

easily found to be




e
Cii=z =3 c$, = -C%a
Cz1= Ci11 ng = _C?l
and
1
ES, = O E?z = -E?1
e
e e
Ez1= E12 3 ES> = E11
(ii) Quadratic Elements (m = 3)

For quadratic elements the trial function is y = A+Bx+(Cx2.
Again to simplify the algebra take the origin to coincide with

node 1 of element. The shape functions gre found to be

(x-h )(x-2h )
e e

Nl (X) =
2h?
e
x(2he - X)
N, (x) =
hZ
e
x(x - he)
Na(X) =
2h?
e
.. e e
The coefficients C.. and E.. are
1] 1]
e 2 e 1
cS1 = -3 Crz2 = 3 Cis = = ¢ ;
¢, = —c%,; S, =0 3 Chyo=CYz
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and

e 7 e -4 e 1
Ey: = Ei, = E =
5h ) ~ 3 13 )
c ohe Bhe
e e
Ez:1 = Ef2 ES, = 8 5 E§3 = EY, ;
3hy
e e e e e

4.4 DERIVATION OF NEW FINITE ELEMENT SCHEME FOR Ly = O

The entries of the element stiffness matrix for the
equation Ly = O both for linear and quadratic elements were
derived in the last section. It is shown in appendix 1 that

for linear elements a condition for stability requires that
ho < [£] (4.4.1)

where h is the steplength. This is clearly prohbitive for

. In this section alternative shape

large values of |A

functions are derived which obviates this severe restriction

on h.

Now the general solution of the differential equation

Ly = 0 is
g = A + BeM* (4.4.2)

I+ is desired to construct a difference equation whose

solution is identical to (4.4.2). To this end take as a trial

function

g = A + Be®

over a two node element as shown below




This element will be referred to as the "exponential element"

for convenience.

to coincide with node 1 for this element.

are given by the equation

It is again convenient to take the origin

The shape functions

— —
1 1] FN' | ‘-1
5 ' b
Ah_| | - (4.4, 3)
€| i f AX
| _ :'__N"._i e
This gives
exx _ ekhe
(1 - erie)
AX
N, (x) = -1-—*-—?'%-—
(1 -e )

.. e e
The coefficients Cij and Eij

;
Ci1 = =3 5
e

Cor- = Cll ]

are given below

e _ e
Cr2 = =-Ci,
e e
Cz2 = -Cha




and

Tor large

the numerical evaluation of the coefficient E?l.

values of |A|

Ah
AL +e ) e
X h > Evs =
2(1 -e &)
E?z H E%z =

| some care ha

_Ell

s to be exercised

arranged so that only negative exponential functions are

computed for otherwise numerical overflow will occur.

three possible arrangements are shown below

I+ is shown in appendix 1 that this choice of shape functions

lead to a difference equation whose solution is identical to

-Ahe
A (e + 1)
T for A >0
2(e - 1)
1 _
S for A= 0O
e
Ahe
A(l + e )
v for A <O
7(1 - e )

+he differential equation.

The

in

It must be




4.5 NUMERICAL EXAMPLE

The differential equation considered is y" + Ry' = 0 on

1l are

the interval [0,13}. If the conditions y(0) = 0; y(1)

specified then the analytical solution is
SR S

y(x) =
(1-e7)

It is interesting to note that as R » « y(x) » H(x), the

unit step function.

The differential equation y" + Ry' = O was solved using

the
(1) linear element
(11) quadratic element
(1ii) exponential element

for various values of R. The finite element grids are shown

below
X=0 FQLQ x =)
! 2 3 4 5 6 17 &8 9 1o M
Linear and Exponential Elements
X=0 l&‘O'Z — by

I 2 3 4 5 6 1 8 9 lo

Quadratic Elements




In all cases the steplength h was taken to be 0.1. The
results are presented in tabular form for R = 1, 10, 50, 1000
in figure (4.1). A graphical illustration of the results for

these values of R may be found in figures (4.2) - figures (4.5).

For R = 1, it can be seen that there is not a great deal
of discrepancy between the schemes. As R increases, the trad-
itional linear and quadratic elements exhibit a Gibbs type
oscillation. However, the "exponential element" continues to
give the correct solution. For R > 1000, although not shown,
the Gibbs oscillations associated with linear and quadratic
elements increase dramatically but the "exponential element”

continues to give the correct solution.




SOLUTIONS OF Y+RY=0 FOR VARIOUS

VALUES OF R

ELEMENTS

USING DIFFERENT

R=41

R=

10

P IANALY TLCJEXPONENTIAL] L INEAR fQUADRATIC X L\NALYTIC. PONENTIAL] LINEAR HUADRATIC
OLUTIonN ELEMENT! FLEMENT ELEMENT SOLUTION | ELEMENT & ELEMENT! ELEMENT |
0-0 0.0 0-0 0-0 0-0 0.0 0.60Q° 0.0 0.0 0.0
LEN 01505 01505 01506 04506 | o014 063214 0-¢322 0:66 677 06429
0-2 0.2868R 0-28¢8 028683 0.28638 | 0.2 0:8647 0-8641 0.8889 0.8572
0-3 04100 0-4100 04101 0-4400 | 0.3 095073 04503 09630 0-944 0
0-4 05215 0-5215 05216 0-5216 | o4 098171 09847 098717 0-3197
05 0-6225 0:6225 0-62.26 0-6225 | 0.5 09433 0-419%3 0-995 1 09128
06 011338 01138 01139 07138 | 0.6 0-9916 09976 0-918 ¢ 0-9971
07 0164 o19¢4 01165 01964 | 061 04999 41 09911 0-944¢6 04910
0-8 087111 087111 0-87112 08112 | 0.8 0.4447 0-29197 04949 0-9919 6
04 04388 09382 04388 09388 | 04 0-9449 09999 40000 49199
) 1.0 1:0 1L A0 10 104 Lo Lo A0 1:0
R=50 R=4000
X ANALYTIC {EXPONENTIAL | LINEAR [QUADRATIC | »¢ ANALYTIC |EXPONE LINEAR |QUADRATIC
) 0 | ELEMENT | ELEMENT | ELEMENT SOLUTION | ELEMENT | ELEMENT | ELEMENT.
0-0 0.6 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0
04 09933 09433 14289 12240 | o1 10000 40000 59469 81246
02 1.0000 1.0000 0-8165 0-6994 | 0-2 4.0000 140000 0.2332 0.22.41
03 | . 40000 4.6000 1-0784 4.0695 | 03 1:0000 10000 51228 5.4206
0t 4.0000 10000 04665 04104 | 04 10000 1-0000 04485 0-4363
05 1.0000 1.0000 1.01471 1-0228 | 05 1-0000 10000 55460 55480
0-6 1.00 00 1.0000 09340 04748 | 06 | 4:0000 1.0000 0-64712 06256
0 1.0000 4.0000 1.0029 4.0087% | 01 1-0000 4:0000 53251 54213
08 4.0000 40000 0-9991L 04442 § 0-8 1-0000 1:0000 0-23071 0.8233
09 A.0000 10000 1.0001 1.0044 | 04 1.0000 1-0000 54488 5.3303
el 1.0 A.0 1.0 1.0 1-0 1.0 1-0 1.0 1-0

FIG 41




SOLUTION OF Y4RY=0 FOR R=1
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SOLUTION OF Y"+RY'=o FOQR_R=10

10 B —&—8—8—=8

09

03

07

06 % ANALYTIC SOLUTION

® EXPONENTIAL ELEMENT
Y-AXI1S

05 - - — LINEAR ELEMENT
/{ —— — —— —- GBUADRATIC ELEMENT
/

o4] I

03

e

02

01

V5702 03 04 05 06 07 08 09 10

X-AXIS FIG 4.3




SOLUTION OF Y’+RY=0 FOR R=50

ANALYTIC SOLUTION

EXPONENTIAL ELEMENT

&
& LINEAR ELEMENT
______ —@®--—_-_ GUADRATIC ELEMENT

151

06
05
0-4
03
02
01

0 01 02 03 0L 05 06 07 08 09 10

FRAXS F1G 44




SOLUTION OF Y+4RY=0 FOR R=1000
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4.6 THE CASE OF A A NON-CONSTANT

The finite element solution of Ly = O using traditional
polynomial elements when A is a function of x may involve
numerical integration. This is easily seen since Galerkin's
criteria leads to the following system of finite element

equations (see (4.2.2.))

y T [ < Nj de > ‘l
/ ___J L ax + )\(X)N. T dx yj
]

e e

) [is]
- | N.y' =0 (4.6.1)
i1 i

e

e

For polynomial elements the shape functions and therefore
the derivatives of the shape functions are polynomials. This
means that the first term on the left hand side of (4.6.1) may

be evaluated analytically. However, the second term, i.e.

dN.
[ A(x)IN. —=  dx (4.6.2)
1 X

would in general require numerical integration. In practice

Gaussian quadrature formulae are used.

For large values of Z(x)| the polynomial elements lead to

numerically unstable schemes as inferred in appendix 1.



Now the general solution of Ly = 0 when A is any function of
X 1s not known. Thus the construction of a difference equation
whose solution is identical to the solution of the differential
equation Ly = O is not possible. However, in an interval of

x [x., 1, sufficiently small A is approximately constant,

i2%i+1
X say. In that interval the solution for y will be of the

form
_ AX
y(x) = A + Be (4.6.3)
From (4.6.2) it can be seen that if A(x) = A over element e
then
an B S an,
f A(X)Ni a;*dx ~ A/- Ni a§~dx (u.6.u)
e e

Now using the generalised first mean value theorem, (4.6.2) also

yields

1+1
[ an. [ an
! A(X)Ni a;- dx = X(E) N. a§~dx (4.6.5)

where

i i+1



Thus comparing (4.6.4) and (4.6.5) it is seen that A may be

chosen so that

X = ANE)D (4.6.6)

The choice of § is somewhat arbitrary. The author has found

it convenient to choose A(E) such that

~ A(x.) + A(x: )
X o= A(E) = —2 1] (4.6.7)
2

This is clearly permissible from the intermediate value theorem

assuming A(x) is a continuous function.

When X 1is a function of both x and y it is first

necessary to guess the solution. Let §§n) be the value of ys

at the nth iteration. The function A(x,y) may be approximated

as a constant over an element in the way described above. Thus

for the (n+l)th iteration X over an element e is given by

—(n) —(n)
A(xi,yi ) o+ A(Xi+1’yi+l)

X = AE,y®) = (4.6.8)
2

Hence for the differential equation Ly = O it is only

necessary to replace X by A in the coefficients given in

(4.4).



This procedure means that the difference equation for a
pivotal point does not have a solution identical to that of
the differential equation. However, in a vanishingly small
region about the pivotal point, for arbitrary h, the solution
of the difference equation behaves exactly as the solution of
the differential equation. This 1s opposed to the situation
with polynomial elements when solutions of the homogeneous
difference and differential equations only coincide for
vanishingly small h. This suggests that the "exponential

element" is inherently more stable than the polynomial elements.

4,7. NUMERICAL EXAMPLES

(1) This example illustrates the case of a linear differential
equation with variable coefficients. The equation considered

is
y" + Rxy' = O (4.7.1)

subject to y(0) = 0 and y(1) = 1.

The analytical solution 1is

_ erf(VRx)
= Ter T /Ry | (4.7.2)

where erf(g) is the error function defined as

g
erf(g) = - [ et at
vy

O



For large values of |{| the asymptotic expansion of erf(§)

is

0

erf(z) ~ 1+ EE 7 (-1 L)
T K= 2

This shows that erf(g) - 1 as ]5[ > o , Hence from (4.7.2) it

is clear that as R » = yy(x) » H(x), the unit step function.

The differential equation y" + Rxy' = O was solved using
the
(1) linear element

(1ii) exponential element

for various values of R. In all cases the steplength was chosen

to be 0.1.

The results are presented in a table for R = 1, 25, 100,
1000 in figure (4.6). A graphical illustration of the results
for these values of R may be found in figures (4.7) - figure
(4.10). It is seen that as R increases the traditional linear
element exhibits oscillations but the "exponential element"

continues to give excellent agreement.



SOLUTION OF Y<+RXY=0 FOR VARIOS

VALUES OF R USING DIFFERENT
ELEMENTS

=1 R=25
> |ANALYTIC [EXPONENTIAL LINEAR | 5 |ANALYTIC [EXPONENTAL LINEAR
QLUTION | ELEMENT | ELEMERT SOLUTION | ELEMENT | ELEMENT]

0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0
01 01166 0-1161 04167 | O1 0-3830 063329 0-3344
0.2 02323 0-2322 0-2322 § 0.2 06826 06326 0.6825
0-3 03454 0-3454 0-3454 | 0.3 0-86 ¢4 0-8¢ 64 0-86%9
04 045532 0-4553 04552 { 0.4 | 049544 09545 09580
0.5 05611 0-5609 05608 §| G5 0-9871 ¢ 04816 0-9901
Cof 0613 0-6614 0-6613 § 0.4 0-99 14 049713 0-9984
0.1 01559 0-1559 01559 | 0.7 1.0000 09995 0-94914
0.8 0-2441 0.8441 o.8441 § 0.8 1-0000 041449 1.6000
09| 09256 | 09256 | 049255 | 04} 10000 | 10000 | 10000

1.0 1.0 1-0 -] 4:0 1:2 1o el

R=400 R=1000
5 PNAYTIC [EXTONENTIAL LINEAR | > [AnALYTEC [EXPoneNTIAL LT NEAR
SOLUTION | EAEMENT | FLEMENT oluTIonN! ELEMENT | FLEMENT

0-0 0-0 0.0 0.0 0.0 0.0 0:0 0.0
0 0-6326 06820 0.6741 § 0.1 4.0000 0494717 11481
0-2 04544 | o0A4s42 | 09701 | 02| 1.0000 1.0000 0-9455
03| 09474 | 0.9973 0024 § 0.3 | 4.0000 | 4.0000 10430
04 | 4.0000 099414 09995 | 04 1:0000 1.0000 09824
o5 1.0000 1.0000 l.o002 | 0.5 1-0000 1.0000 1.0250
0-6 10000 1.0000 0-9999 § 0.6 1.0000 1-0000 099219
0.7 10000 1.0000 4:0000 ¢ 0.1 1.0000 10000 4.0183
0.8 1:0000 1:0000 1.0000 § 0.8 1-0000 4.0000 049915
0.9} 10000 10000 | 20000 | 04 4-0000 1-0000 10149

1.0 ) 1:0 40 ) 10 A0 -0

FIG 4.6
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SOLUTION OF Y+RXY=0 FOR R=25.
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SOLUTION OF Y4RXY=0 FOR R=100 .
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SOLUTION OF Y/+RXY=0 FOR Re1000.

% ANALYTIC SOLUTION
& EXPONENTIAL ELEMENT
5 —— LINEAR ELEMENT

15

14

13 J/‘\\

12 \

||
10
09
08
07
06
05

04
03

02
01

FIG 4-40

1 WO e —— - . -
o 01 02 03 O4L 05 06 07 08 0S5 10
X-AXTS



- 92 -
(2) Ihis example presents the non-linear differential
equation
y" + Ryy' = 0 (4.7.3)

With y(0) = 0 and y(1) = 1. The analytical solution is

—aRx)
(4.7.4)
—aRx)

o(l-e
(1l+e

where o is the root of the transcendental equation

(a+l)e_Ru + (1-a) = O (4.7.5)

This transcendental equation was solved by the Newton
Raphson method to locate the root a for various values of R.
It is worth noting that if R > 1 then 1 < a < 2 and as R» =
then o » 1. This also implies that the solution y(x) - H(x)

as R » o,
FEquation (4.7.3) was solved using the

(i) linear element

(ii) exponential element

for various values of R. In all cases the steplength was chosen

to be 0.1.

The table of results for R = 1, 50, 100, 1000 is given in
‘figure (4.11). The results are also illustrated graphically

for the same values of R in figures (4.12) - figure (4.15). In
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411 cases the iterative process was started from an initial
guess of zero. Convergence was obtained within ten iterations
in all cases. It is seen once again that the "exponential
element" gives excellent agreement Dbut for large R the linear

elements breakdown.



SOLUTION OF Y<+RYY=0 FOR VARIOUS

VALUES OF R USING DIFFERENT
ELEMENTS

R=1 R=50
X ANALYTIC EXPONENTIRH LINEAR D4 ANALYTIC |EXPONENTIAY LLINE AR,
SOLUTION | ELEMENT | ELEMENT SOLUTTION | ELEMENT | ELFME
0-0 0.0 0-0 0-0 0.0 -0 0.0 0.0
0.1 01129 0-1188 01128 1 O 0-98¢¢ 04518 1.06177
0-2 0-23 63 02363 0-23¢62 ° 0.0 0.994 4 0-999¢ 09621
6.2 03511 0:3510 0-350%§ 03 1-0000 1:.0000 1-06133
0-4 04612 046177 04616 ) 04 1-6000 1.0000 0-9943
0-5 05676 0-5¢75 0-5674 } 0.5 1:0000 1-0000 10025
0-6 06616 0-€6 15 0-66 14 | 0.6 10000 10000 041940
0.1 01611 01610 07609 § O 1.0000 1.0000 10005
0.2 0.-84718 o-84177 0.84771 3 0O-8 1.0000 1-0000 0.914¢
09 0924 0-9274 049273 § 0.1 1.0000 1.0000 1.0001
1.0 1.0 1.0 1.0 1.0 1.0 10
R=4100 R=1000
X |ANALYTIC EXPONENTIAQ LINEAR & ¢ ANALYTIC [EXPONENTIALL LINEAR
SOLUTION | ELEMENT ! EAEMENT SOLUTION | ELENENT | ELEMENT
0-0 0-0 0-0 0.0 0-0 0.0 0.0 0-0
0-1 04991 099466 1:2379 § o1 1.0000 1-0000 3.2381
0.2 10000 10000 0-8150 § 0.2 1.0000 1.0000 04294
03 1-0000 1:0000 11150 § 0% 4.00 00 {-0000 32042
O} {.0000 10000 03270 § 04 | 1-0000 1-0000 o104
0.5 4:0000 1.0000 1.0865 § 05 1-0000 1.0000 317726
0-6 1:0000 10000 0972\ § 06 } 10000 | 4.0000 0.8027
0-7 {.0000 1.6000 1.0293 § &7 1.0000 1.0000 s.\428
0-8 1:0000 1-0000 09115 | 0-% 1.0000 10000 09095
0-9 1-6000 1.0000 1.0¢70 § 04 10000 1.0000 3.4\ 44
1:0 1.0 1.0 1.0 1.0 1.0 {.0 1.0

FIG 441
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SOLUTION OF Y=+RYY™
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4.8 THE NON-HOMOGENEQUS EQUATION Ly = f

It has already been mentioned earlier that the stability
of a difference equation is generally decided by its homo-
geneous equation [49]., This means that if a trial function
of the formy = A + Be>‘X is assumed over an element for the
equation Ly = f then stability for all values of |A| may be
expected. Experience indicates that this is usually the case.
However, in (4.10) it is shown how to construct a difference
equation whose solution is identical to the solution of
Ly = f assuming A and f to be constants. The method is
also extended to the case when A and f are functions of x
and vy. Both methods mentioned above are effective in over-
coming the problem of stability associated with the non-
homogeneous equation. However, the latter approach gives

slightly better accuracy. But first, the finite element

solution of the non-homogeneous equation must be formulated.

4.9 FINITE ELEMENT SOLUTION OF Ly = f

Galerkin's criteria requires that

b

ﬁ Ni(Ly - f)dx = 0 (4.9.1)
a

Integration by parts yields



PNy dy o]
= — 4+ AN. —
Cdx o dx 1 dx

a

Assuming A and f are constants for the moment this may be

written as

e e e e

T T
- / Ny' = 0 (4.9.2)
[+l 1 : .
e e
Over an element write y = I Njyj where 7 is a typical node
]
of element e. The above equation reduces to

o0
+ ZE: [ N.fdx = ) P N.y't =0 (4.9.3)

Define the following quantities



ij dx dx
e e

dN. _ dN.. aN.
ct. :[ N, —Jddx 3  ES. :f —* —dax

e _ ' e - e )
F,oo= [Niy ]e and aij ACi]+Elj
¢S = f [ N.dx

1 1

Equation (4.9.3) can now be written more compactly as
N Ej {1x?-_j y. - §j<??—e?> =0 (4.9.4)
— = 1] . J ! 1
€ J

With the usual notation the equations for an element for

the non-homogeneous equation in matrix form are

R —~ —
R e g l_-'e e
(E)1 11 Q12 oo . OLLm[ Vi (F1"61>
i e e e e ,
(E)fé 031 022 oeenn a2mé v (F5-G3)
1 . . - . .
eg e e e g ‘e e e
! N -
E)mé o, Uy e - fym (Fm Gm)
L. I — e S —_—
.. e e e e
The coefficients C.., EI., F. and hence also &.. are the same
1] 1] 1 L]
as those defined in (4.2.3). The values of these coefficients

for the polynomial and "exponential" element have already been
given earlier. The only new coefficients to be evaluated for

. e .
the non-homogeneous equation are the Gi's. These are given



below for the linear and "exponential' element

(1) Linear Element

c$ = ifh
(4.9.6)
€ _ 1
c% = 1fh
(i1) Exponential’Eleﬁent
Khe
c _ _f[_l +. ,he,e., -—!
LT N Y Y
_A ey -
(1l-e )
(4.9.7.)
h
62 - f[_l * T i
- e

4.10 DERIVATION OF NEW FINITE ELEMENT SCHEME FOR Ly = f

If A and f are constants then the general solution of the

differential equation Ly = f is

y = A + Be -

TN

1
X +'7:> (4.10.1)

=]

where, of course

A
A + Be - complementary function

£

1 . .
- X\X + X/ - particular integral



It is desired to construct a difference equation whose
solution is identical to (4.10.1). To this end take as a

trial function

over a two node element as shown below

An element for which this trial function is assumed will be
referred to as the "augmented exponential element". This
name 1s suitable since the trial function for the homogeneous
equation is augmented to deal with the non-homogeneous equation.
To express the trial function in terms of the values of y at
the nodes of element e proceed in the usual manner. Hence,

writing down (4.10.1) at the two nodes of the element e gives

1 ]
o = A+ B L S 1) (4.10.2)
£ ]
define
f 1
Z =y + /T— (X + 'X) ('LF.]_O.H)

so that (4.10.2) and (4.10.3) may be written



,i = A + B! (4.10.5)

2y = A+ BeX2 (4.10.6)
This means that if Ni(x) and N, (x) are the shape functions

corresponding to a trial function of the form

A + Be}\X

N
I

then

Niz:1 + N222

N
i

using (4.10.4) this equation transforms into

a 1 M ]
f 1 ‘ f 1. | f 1,
y + X X> = NthﬁX(X1+X)'+ N%_Y2+X(X2+X{J
or
y = Niyi + Naya + X(x) (4.10.7)

where the function y(x) is defined as

x(x) = - §<X+%’> + —g(x1+%:—>l\f1 N —i— <x2+~>N2 (4.10.8)

Thus (4.10.7) gives the trial solution in terms of the nodal
values of y. It is worth noting that if £ = 0 then X(x) = 0 in
which case the trial function is identical to that used for the

homogeneous equation.
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.11 FINITE ELEMENT SOLUTION OF Ly = f USING THE
"AUGMENTED EXPONENTIAL ELEMENT"

Tt is now necessary to formulate the finite element
solution of the differential equation Ly =

function given in (4.10.7).

Writing y = % Njyj+X(X) over an element gives

=0 (.11,

= f using the trial

Galerkin's formulation leads to

1
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Define the following quantities

,de - f’dNi'de
e _ . =
ST j‘ N, gxdx s Big 7l @ &
e e
e _ . e _
FT o= INgy'T : 6 = f £N . dx
e
g€ - ﬂ{% : ¢ = [ n. Xax
i dx dx > 1 i dx
e ’e
oS, = acS. + ES. S = ATt + s
1] i3 1] 1 1 1

Equation (4.11.1) may now be written

! e / e e e
| ZE‘;]] vy ¥ 2<Bi *6f - Fi)
3

e

1
o

(4.12.2)

(D,\\/I

4.12 CONSTRUCTION OF ELEMENT STIFFNESS MATRIX

The usual procedure leads to the following equations for

a typical element e

Fm? (ST U N AV BN RS M
| |
-

e
2

e
G2 1 Q22

[, — JUS

0]

(F$-G5-8%)
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. e e e e e 4 .
The coefficlents Cij’ Eij’ Fij’ Gi and also aij are identical

to those given for the "exponential element" in (4.4) and (4.9).

The coefficients S? and T? are given below

f f 1 f 1,p.€
S? = ¥ + X(X1+X )E?l'*' X(XZ'*'”)\‘)EIZ
1
S% = - %\:- + 7\—(}(14- )E21+ (‘XZ"}"}\‘)E%Z
e T 1 he , - f 1, .e £ 1l,.e
TV = X{-T+ Ah ) + T(X1+X)C11+ A(X2+A)C12
L7 (1l-e -
e £f1 1 h £ 1, e £ 1, e
Tz == 7[7 D | Rourpchis 3oaepcts
(1-e” ") _J

4.13 THE CASE WHEN A AND/OR f ARE NON-CONSTANTS

If X and/or f are functions of x then the argument presented

in (4.6) can clearly be repeated. Thus over an element
[xi,xi+l] it is only necessary to replace A by X and f by T,
where
s . A(xi) + X(xi+l)
2
_— f(xi) + f(xi+l)

N

The procedure to be adopted when X and f are functions of x and

y 1s also similar to that described in (4.6),



L,luy NUMERICAL EXAMPLE

The equation considered is

d?’y R dy - _Rr(1+ (4.14.1)
o= T 0 ax R(1+x)
subject to y(0) = 03 y(1) = 1.
The analytic solution 1is
_
R s | . 2(3+5R) 1-R
y = 1-(1+x)° | + =~ (1+x) -1
3C2+RY | ~ s+ryr2tRe1 .

as R »

(11 ~ (1l+x)?]

Wl

It can be seen from (4.10.1) that if [x| > > |f| then the
particular integral of Ly = f is virtually zero. The parameter
R is included on the right hand side of (4.14,1) to make the

augmenting term (—l);(x+%) significanf.

Equation (4.14.1) was solved using

(1) Linear element
(ii) Exponential element

(1ii) Augmented exponential element

- for various values of R. The steplength was 0.1 in all cases.

The results are depicted in a table in figure (4.,16) for



R = 5,50, 100, 1000. The results are also illustrated
graphically in figure (4.17) - figure (4.20) for the same

values of R.

For R = 5, it can be seen that there is not a great
deal of discrepancy between the schemes. As R increases
the linear elements exhibit oscillations. However, the

"exponential element" and the "augmented exponential element"
give very good agreement even for very large R. The results
irdicate that the latter element gives slightly better
accuracy than the former. Several other examples on the
non-homogeneous equation were tried and they all confirmed

the above observation.



SOLUTION OF Y+RE==1Y=R(+X¥)FOR VARIOUS
VALUES OF R USING DIFFERENT

ELEMENTS

R=5

R=50

X |ANALYTIC BUGHENTED [EXFONENTIAL| LINEAR | ¢ |ANALYTIC ézmﬂ EXPONENTIAL] LINEAR
SOLUTION Ferrmenr | ELEMENT | EIEMENT SOLUTION | ErOMENTT FLEMENT | E1 £ MENT]

0.0 0.0 Qo 0.0 0.0 0-0 0.0 0.0 0.0 0-0

01| 08228 | 08239 | 0.8239| 08386 ] 01| 31071 | 3.1041| 30866 | 45945
02 | 12444 ] 13004 | 13004 | 13177 | 02| 30048 | Bo0016| 29918 | 24172
03| 15635 | 15643 | 15643 | 15800 | 03 | 28599 | 28579 | 28447| 30715
04| 16898 | 16893 | 44893 | 171020 | 04 | 26346 | 26829 | 2€121| z¢138
05| 11171 47t | 11113 | 11271 | 05| 24824 | 24809 | 24723 | 25004
06| 16133 | 4.673% | 167133 | 16804 | 0.6 | 22513 | 22501 | 2435 | 22451
07| 45122 | 15722 | 15122 | 15110 o1 | 149894 | 1.93%3¢ | 19833 | 19395
08| 14230 | 14229 | 14229 | 14259 )08 | 16949 | 16143 | 16112 | 1L¢140
09§ 12312 | 12311 | 12311 | <2324 |09 | 13651 | 13654 | 1-3¢39| 1.3¢54
10l 20 1:0 10 L0 101 10 10 10 _2.9

R=100 R=1000
% [ANALYTIC ha@gum EXPONENTAL LINEAR | 3¢ [ANALYTIC [WGMENTED [EXPONENTIAL LINEAR
sotuTIon FRINETAL] - EMENT | ELEMENT soluTIon [EPNENUAL | HemenT | ELEMENT |

0.0 0.0 0-0 0-0 0.0 0.0 0-0 0-0 0.0 0-0

04| 31191 | 34768 | 34192 | 55644 | 04| 22186 | 22157 | 30849 |-63305¢
02 | 20497 | 30476 | 29964 | 14387 | 02| 30865 | z.0840 | 24¢41| 30743
03| 28964 | 28946 | 22500 | 39627f 03| 29305| 24282 28202 |-111192
O | 271476 | 271164 | 2:678L| 20751 | 04| 271485 | 21466 | 26514 | 46361
05| 25444 | 25401 | 24187 | 29041} 05| 25336 | 26370 | 24585 F121me
0-6 | 22758 | 22148 | 22499 | 20708 | 0.6 | 22437 | 22975| 22305 | 41260
0.1 2:0088 2-:0080 1-9%9¢ 21314 § 0.1 20269 2.:0260 145 |-132111
0.8 17085 171080 1-¢9s5% 16619 0.8 17212 17206 1.¢854 3.45¢1
o1 | 3729 | 437126| 13¢66 | 14447 | 09| 13719¢| 13793 | 13612 Fr2.¢112
1.0 1.0 10 1.0 1.0 10 1.0 1-0 1.0 1.0

FIG 4:16
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SOLUTION OF Y™4RE=]Y'=R(+x¥)FOR_R=50
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4 .15 DISCUSSION OF THE EQUATION Ly = uy = f

To commence with consider the homogeneous differential
equation Ly - uy = O and assume that A and u are constants.,
T+ is desired to construct a difference equation whose solution
is identical to that of the differential equation. The general

solution of the homogeneous equation 1s

(h.16.

E_l
p

m?2 - Am -u=0 (4.16.2)
Thus

my A+/A2+”“ (1.16.3)

2
mp = *‘/g s (4.16.4)
The rest of the procedure is exactly the same as before.

Thus a trial function of the form y = Ae™ X 4 Be™2F s
assumed over a two node element. If the origin is taken to

coincide with node 1 of the element the shape functions are

given by the equation

mm\,mw
Z
-

E
= i (4.16.5)
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The equation Ly -py = O may be discretized by Galerkin's

method as previously.

When A and/or p are functions of x then m; and my; are

approximated as constants over an element in a similar way

to that explained in (4.6). Thus over an element [Xi, Xi+l]
m (x.) + m (x. )
m = = SR (4.16.6)
2
m (x.) + m (x., )
T = = it (4.16.7)

2

Tn the case when A and/or p are functions of both x and y
then an initial guess has to be made at the solution and an
iterative process set up. This has also been explained with

reference to the equation Ly = O in (4.6).

There is one other difficulty that has to be resolved. It
may happen that over some elements m; and m, turn out to be
complex or even equal. In this case the appropriate trial

function over that element must be used.
For example if m =a*jg over an element then the trial
function for this element will be
y = e®*(Acospx + Bsingx)

The shape functions for this trial function will have to be

computed and used in the evaluation of the element stiffness



matrix for the element considered.

The non-homogeneous equation may be treated by augmenting

the trial function for the homogeneous equation with a partic-

ular integral. As the argument is very similar to that for
the differential equation Ly = f it is not proposed to go into
details.

4,16 SUMMARY AND CONCLUSTIONS

The dimensionless form of the one dimensional Navier Stokes

equation 1is

- Re u ¥ - g, @2 (4.16.1)

where Re is the Reynolds number, u 1s the x-component of
velocity and p the pressure. If the pressure is a knrown

function of x say p(x) (4.16.1) becomes

d2u du _ .
=z Re u 53 = Rep(x) (4.16.2)

The problem of stability assoclated with the Navier Stokes
equations for large Reynolds numbers is well known.

The aim of this chapter has been to study the class of

differential equations viz.

gxy - (%, Y) a% = f(x,y) (4.16.3)
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- It will be noticed that this class of differential
equations encompass the one dimensional Navier Stokes
equation. A method has been presented for deriving shape
functions for (4.16.3) to result in numerically stable

schemes.

A number of numerical examples were also presented
+o illustrate the advantage of the new shape functions

over the traditional polynomial shape functions.

The possible extension of the method to other

differential operators were discussed in the last section.

In the next Chapter we examine a single elliptic partial
differential equation which exhibits similar characteristics

+o those of the two-dimensional Navier Stokes equation.
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FINITE ELEMENT SCHEMES DERIVED FROM
PARTIAL DIFFERENTIAL EQUATIONS

The canonical form of an elliptic partial differential

equation may be taken as

3%¢ , 379 36 _ , 3¢ - =
o5r tayr T Mox T Moyt et e (5.2.3)

S A E 8
X Byz ox

o
|
ol
N

so that (5.1.1) becomes

Le + fo =g A (5.1.2)

The solution of a linear ordinary differential equation 1s a
1inear combination of a finite number of independent functions.
It was this property which allowed the construction of a
difference operator with an identical solution to the differ-

~ential operator. However, the solution of (5.1.2) is generally
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a2 linear combination of an infinite number of independent
functions. Thus it is not clear how the technique of the
last chapter can be applied to (5.1.2) to obtain a difference

operator whose solution 1is identical to (5.1.2).

One approach is to choose a finite number of particular
solutions of (5.1.2) from the infinite number available.
Suppose the functions Fi(x,y) (i = 1,2,...,m) are particular
solutions of (5.1.2) then the trial function

m
:l’\
6 =/ aiFi(x,y) (5.1.3)

i=1

may be assumed over an m node two dimensional element.
Galerkin's criteria can be used to discretize (5.1.2) in the
usual way. There 1s one question which has to be answered.

How are the functions Fi(x,y) determined?

5.2 SEPARATION OF VARIABLES

Tt can be shown (12, 13, 1u4) that if a problem yields to
the method of separation of variables and if the Galerkin
method is applied 1n a certain way, then the two solutions are
the same, provided the GCalerkin method is carried through to
completion. In fact the approximating functions 1in the
Calerkin method must be the eigenfunctiors found Dby the method
- of separation of variables. Such a result means simply that

if the exact solution is contained in the trial function, then



Galerkin's method will find it, of course, in numerical
calculations after obtaining an exact solution in the form
of an infinite series, one calculates only a finite number

of terms as a matter of practical necessity.

To commence with consider the differential equation

Lo = 0, i.e.
3% %0 _ 30 _ 9¢ _
.B__z.-i-._.é__z. _5._. us._._ 0 (5,2.1)

A and u will be assumed to be constants so that (5.2.1) can
be tackled by the separation of variables. The case when A
and yu are general functions of x,y and ¢ will be treated

subsequently.

Separating variables of (5.2.1) yields

1
S SRS S u%:k (5.2.2)

where X is a function of x only and Y is a function of y only,

k is a constant. There are three separate cases 1O be considered.
(1) k < 0
Write kK = - w?

(5.2.2) gives
X" o= AX' + w?X =0 (5.2.3)

y" - opY' - w?Y =0 (5.2.4)
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Define

A+ /RPT TR

A - /R2THG?

o+ /pZrhoe?

b= YutEhe’

X and Y are then given by

X = aleplx +oa,edt® if A% > Lw?
Y = blerly + bzeSly

or

¢ = Ay

N Dle(q1x+sly)

.5)

.6)

.7)

.8)

e(p1x+r1y) N Ble(p1x+sly) N Cle(q1x+r1y)

(5.2.9)

Thus the functions e

(p1x+r1y) (p1x+s1y) (q1x+r1y) (qix+s1y)
b e b e 2 €

are particular solutions of (5.2.1). An infinite set of such

solutions may be generated by giving w different values.



(ii) k > O
Write k =

(5.2.2) gives

X" -

vroo—

Define

X and Y are then

Thus

2

€
N
><
i
O

Sy
N
=<
1
O

Aze(p2X+I‘2y> + B?_

Dze(qu+Szy>

e(P2X+Szy) + C

(5.

(5.

(5.

(5.

(5.

(5.

.10)

A1)

.12)

.13)

L1u)

.15)

Ze(q2x+r2y)

(5.2.16)



- 114 -

Hence the functions e(pzx+r2y)> e(p2x+sgy)) e(Q2X+P2y)’

(aoaX+sS2y) . . .
e d2%X782Y 70 ape particular solutions of (5.2.1) and again an
infinite number of such solutions may be generated by giving

w different values.

(ii1) x =0
In this case it is easlly seen that

X + :
o = Ay + Bse’ 4 Cae™Y 4+ DytXTWY (5.2.17)

For bpractical purposes it 1s now necessary to choose a
finite number of the particular solutions derived above. The

question is which ones and how many?

From a computational point of view it 1is convenient to
choose four particular solutions. This means that the element
can be chosen to be a four node rectangle. As all the part-

) ) +
icular solutions are of the form eax By

an added advantage
of this choice is that all the integrations may be performed
analytically. In selecting the four particular functions ease

of implementation takes priority. In cases (1) and (ii) above

A and pare required to satisfy.

22 > U4p? in case (1)

u? > yw? in case (i1)

If these inequalities for A and u are violated the solution

for X in case (i) and Y in case (ii) will contain trigggometric
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terms. This means that the shape functions will be different
for different ranges of values of A and p. For the case of

non-constant A and pu to be discussed later it would be necessary
+o choose appropriate shape functions for each element. Hence,
this choice of eigenfunctions introduces a great computational

complexity.

. . + ) .
However, the eigenfunctions 1, ekx, euy, e>‘x HY derived in

case (iii) above are suitable as there are no restrictions on A

and W.

5.3 SHAPE FUNCTIONS FOR A TRIAL SQLUTION OF THE TORM

o = A + Be>\X + ce™Y o+ De)\Xﬂiy

The functions 1, ekx, euy, e>\x+uy are solutions of the

differential equation L¢ = O as established in the lastT

sectilon. A linear combination of these functions viz.

o = A + B 4 celY 4 pe AXtHY (5.3.1)

is taken as a trial function over a four node rectangle as shown

below

gn
L
IA

d

e W —

A Y



To simplify the algebra the axes are taken through node 1 as

shown. Using the "shape function formula" the shape functions

are gilven by

r 1 1
1 ekh
1 1
1 e>\h

Solying (5.3.2)

N1+ =

It is easily veri

] — -~
1 I {1Q:1 1
eAh 1 % i N2 e>\X
MK euk% ; Ns HY
;
K | 3
ekh+pk eU<§ LN ekx+uy

for the shape functions yilelds

AX_ ANy B B
“h

(e

(1l-e

y (1-eM)

(l~ekx)(euy—euk)

(1-e Dy (1-e¥5)

(1-ey (1-eMY)

(1-eMy (1=

(e MMy (1-eMY)

(1-e™y (1-eM)

(5.3.2)

fied that these shape functions satisfy the

usual conditions viz.



1
(o]

N. . . ..
l(xj,y]) i3

L
\‘.N ( )
L/, _L X,y

H
=

i=1

The four node rectangular element with which the above shape

functions are associated will be called the "exponential

element".

5.4. FINITE ELEMENT SOLUTION OF L¢ = 0

GCalerkin's criterion requires as usual
f‘[ NiL¢ dxdy = O (5.4.1)
R

where R is the two-dimensional region over which the solution

of L¢ = 0 is required. Using Green's theorem in the form
r aV
” UV2VdA = - J” (gradU.gradV)dA + j£ U g—ﬁds
R R C

to reduce the interelement continuity requirement. Hence

(5.4.1) may be written



R C ; R

or

% N 3% = 0 (5.4.2)
K¢

Where r is the region of a typical element and C_ its boundary.

The summation 1is of course carried over all the elements.

Over a typical element write ¢ =3 Nj¢j. Thus (5.4.2) may
]

be written

- aN. AN, AN, aN. AN aN. -
F [(/___l —d o+ = --1\-+<>\N- —L + N ——%}dxdy b
| L \ax  9x oy 3y / 1 9x 19y i

(5.4.3)
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Define the following quantities

o€ [ : BNj' e .AaNj
.. = N. --—= 1y J. = N. ——
i | [ Nl X dxdy; Dlj [[ Nl % dxdy
I‘e pe
aN. 2aN. N. 3N.
S, = j. / = J 4 e ° J \dxdy
17 \ox o 3y oy /
r
e
F¢ = 7£ N, 2845,
1 ! 1 3n
C
e
and
e _ e e e
%33~ >‘Clj ¥ UDij M

(5.4.3) now becomes

V V roﬁjq). - yf‘? = 0 - (5.4.4.)
j — 1

5.5 CONSTRUCTION OF ELEMENT STIFFNESS MATRIX

The contribution of an element to the global matrix will
now be evaluated. for an m node element € (5.4.4) may be

wWritten
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m
N
o € b € _ -e _ e .
ZLJLA ij_ﬂ)j Feoo= (B)) (5.5.1)
j=1
1= 1,2, ,m

e . .
Where (E)i denotes the contribution to equation I from element
e. I being the node number corresponding to the node identif-

ier 1.

Tn matrix form (5.5.1) 1is

e e e e e e e
(E)l P 0y 1 012 ooo- OLli e e Ol.mmi b1 %Pl
e e e e i
(E)z Co Clog . Otzi e O(,Sm q)? F?
el — e e e e el — e

)T . X C e e e e . : ;

( )1 OLll OL12 all 0le ¢l Fl

:
e ; e e e é é e

E ' .. . e e e ;

( )mi OLml O m2 aml 0ﬂmm .¢m; Fm
I S T

(5.5.2)

The superscript signifies that the coefficients are

calculated solely for element e.

The coefficients C?., DE.
1] 1]

analytically for the traditional four node rectangle. These

and Efj are easily calculated

coefficients may also be calculated analytically for the three

node and six node triangle but it 1s necessary to use the known



- 121 -
formula
o Bry _oalBlyl2A
LoLYa =
//f Ll 2L3 Xdy (O(.+B+Y+ 2)3 (5.5.3)
where Li (i = 1,2,3) are the area coordinates for node i. The

integration is confined to a triangle having an area b.

. . e . .

The coefficients C*j’ D?j and E?j for traditional poly-
nomial elements are given in appendix 2. It 1is interesting to
note that other research workers have preferred to use numerical

integration for triangular elements.

The coefficients for the "exponential element" can also be
evaluated analytically. However, the expressions for these

Buk

aAh and e 5 o

coefficients exhibit terms of the form e
B being constants. If it is desired to solve L¢ = 0 for large
lkland ‘ulthese coefficients must be arranged soO that only neg-
ative exponential terms appear for otherwise numerical overflow
will occur. All these coefficients arranged suitably are given

in the next section.

5.6 ENTRIES OF ELEMENT SITFFNESS MATRIX FOR THE
"EXPONENTIAL ELEMENT"

The coefficient a?j in (5.5.2) for the "exponential element"

are given below. First define the following quantities.
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Q1 (&,n) f(3e€n‘1) n62€n
’ 2 (1-e5M)  (1-e5M)2
-/n
3
(3—e—€n) N n
26 (e EN21) (o EN_1y2
&n En I
Q2(&,n) (-1 -ne _ L lire é |
L (1-e*™ 2£(1-e5™)
_Jn
16
l(‘l)fa__lﬁifj__ RGN
L (e_gn—l)2 2};(e”€n—l)_s
Qs(g,n) =~ n (3-e5M)
(1-efMyz  2z(1-e8M)
_Jn
=\ 3
. ne_Q‘En N (3¢ 5N-1)
(e EN_1yz 2g(e”EN-D)
“(_1xx1+e5”)
(£,n)
v Zl—egn)
L
-l =




The

and

and

coefficients C

= =3Qu(p,k)5  CT2 = -CTi; CTs = 3Qu,X); CTu =
= c%) ;, C%2 = -Ciy3 C5s = CYs ; CSy =
= -CTs ;€S2 = ¢Ts ;5 €55 = 3Qs(u,k)3C5. =
= -CTs s Ch, = CTs 5 C%s = CS5 . Coy =
= -3Q:(A,h)5 DYz = 3Q2(A,h); DYs= -Diz; Di
= D%, ; D5, =-3Qs(A,h); Dys= -D5»; D5
= dY, ,; D5, = Db ; D3 = -D3.3 D54
= D?l ; Diyz = DY, 5 Dys = ‘D?zs Dfu
= Qu(A,h)Qy (u,k) + Qu (1, Xk)Q(A,h)

= (=1)Q, (A,h)Qy (u,k) + Qu (u,k)Q2(X,h)

= (=1)Q4(A,h)Q2(u,k) + (-1)Qy (u,k)Qa (A,h)

= Q, (A,h)Q2(u,k) + (=1)Qu(u,X)Q1(A,h)

= E?z

= Qy (A,1)Q (u,k) + Qy(u,X)Qa(A,h)

= Qy(A,10)Qs (uok) + (~1)Qu(u,k)Qs (Ash)

= (=1)Q4 (A,h)Qa (k) + (-1)Qy (u,k)Q2(X,h)

= E?a

= E?a

= Qy (A,1)Qa (k) + Qu (1,k)Qs (A1)



e
Ey1 = Era

e
Er2 = E2u

, e
Ers = Es3u

E3, = (—l)Qu(K,h)Qa(U,k)+Qu(U,k)Q2(A,h)

Eery = Qq(k,h)Qa(U,k)+Qu(U,k)Q1(A,h)

05 . may now be obtained from the relation

5.7 NUMERICAL EXAMPLE

The solution of L¢ = 0 1.e.

3%2¢ . 3%9¢ 3¢ _ , 3¢
=2 T Ay T Mk T My

(5.7.1)

over a rectangle subject to the boundary conditions shown

below 1is

u

s

<

o) 225

1]

$=0

,A(a-, b)

o

O
SN
1

(250)



- 125 -

00}

™ g1 hl
6 = 2 e%(kx+uy)e%ub In2.51nh(23ny)'1sin /nﬂX)
- : . ! \ Tz
L G 2
(5.7.2)
where
I 22
B A e e T (5.7.3)
2
a
and
a
1) . i
Il’l = [ e @ S(f(X):’3‘]_1'1\/1'—17—;?& >d (5.7.14)
o

f(x) was chosen to be
the boundary and also

analytically. It is

1672nl1l

sin(%?) so that ¢ is continuous along
with this choice In may be evaluated

not difficult to show that

G

e

+ (-l)ne 2

]
(5.7.5)

A3a?[{1l +

2.2
b(n-1)°m 101

. E(n+1)2ﬂ2]

ACa - , N

The analytic solution from (5.7.2) was evaluated for various
values of A and u over the finite element grids shown 1in

figure (5.1) - figure (5.6).

The numerical evaluation of the analytic solution 1is

discussed in (5.13). It is worth noting that as A, u > ®

then ¢ » 0. The differential equation (5.7.1) was solved

using the



(1) Three node triangle
(ii) Traditional four node rectangle
(iii) Six node triangle

(iv) Exponential element

for various values of A and u.

In order to carry out convergence tests the finite element
solutions were computed on a set of coarse and fine meshes see

figure (5.1) - figure (5.6).

The results are illustrated graphically for A, u = 1, 10,
102, 103, 10% for the fine meshes in figure (5.7) - figure (5.11).
The results for the coarse mesh are shown for A, u = 10, 103
in figure (5.12) and figure (5.13) respectively. It can be
seen that refining the grid improves the accuracy for all the

elements.

For A= u = 1 there is not a great deal of discrepancy
between the various elements. As A and u increase the trad-
itional elements exhibit oscillations. However, the "expon-
ential element" continues to give good agreement. Although
not shown, but when A,p > 10 the oscillations associated with
the traditional elements increase dramatically. Finally 1t
must be mentioned that although the graphs show the variation

of the solution along the line y = 0.3, the same phenomenon

was observed at other nodal points.



Fax TS OI 3 0=x
95 L 15 < &) 1S 0S L & £ Vavs
LS o i %7 (11 &7 (7 b § |
85 Se 7 _ g L
hS ) 2/ Y| el _ 07 bl AL
9y &l | Ll 9 Sl + el Z| | 0l
19 b 8 L 9 S Y P4 T el
9 9 9 89 P 87 % oL 1L l

FTONVLIOIS 3JQAON JNO 4 ONISN HSIW ISAV0O

O=),

90mp



Pax 29 914 o=
% G 46 gowG  1G 05 W gh Ly
LS\ S bt *H R H UH b L L
NN N I AN o
e N Y N N NG o~ b 5
09 Al 4 L1 ol Gl H ¢l V4 | Ol fil
= N N 5 N DN N N N N 2
S I ® ® 0 1T &

‘FONVIYL FION IIYHL SNISN HSIW 3ISAVOOS

=L

Eady 3



€9 914 o
WS fg 75 1S 05 bz 8 Ly %

H7 el liy Iz

fe e

LI 9] Sl +
13 L 9 S 17] p [4 T T
79 57 77 L9 Y, Ui IL o o

TU9NVIYL ITON XIS OSNISN HSIW ISIVOD



TR o=xX
™ 68 ¥ { %4} 14l h{ ] b} B 2L l 9 l

Y O A A L B ST_ 5 157
H T T 2] N W W o 13 174
S Ri 02 B - 4 Q) M L ) lljll vz
9 ™ N | R B A I I B J 5 | w ol 15/ I &1
Lol 5 Wy '§ o o g j i|ﬂj o P44
w9 I 1 RS NS &_||Q 7 B B B B m
3% 1S [{ I 0 W W J ks | 144
ol ¥ b4 | | W v 0 Hizt
| g o N o 6 8 L 1 IR 2 1224
Y6 T W I W9 T T Fif4 244

JTONVIO3A

JTON JN0 4 ONISN HS3IW 3INIA

O=A



4|

®] IR ] I ML i 1 b.d| 7 H 1171 i

W

TN & 2!

3TONVIAL

JION IIYHL ONISN HSIW 3INIA

Os)

9-02)



99 914 osx -

X
L i ... — iR Woooey W S W W om
a1 J | w‘ ) 14
) W o
Y o o = a L 7
ET N | T |
I o n J L o h M b
8 N O i 44
" v d o\ g B\ B\ M S 3_1 8 2
o] 4 /4
W b ”n T I NG AR B S\ # v
W W 990=

JTONVI¥L FION XIS ONISN HSIW 3INIA



FINITE ELEMENT SOLUTION OF
L®=0 ALONG Y=0-% ON THE FINE.
MESH FOR A=M=1.0_

¢ A ALL SOLUTIONS LIE ON THIS CURVE

o2

o1
01 (072 03 e oS (0 07 08 09 10

X-AXIS CFIG 5D



FINITE ELEMENT SOLUTION OF
L@=0 ALONG Y=03 ON THE FINE

= U=
é«‘ — ANALYT(C SOLUTION
. SI1X NODE TRIANGLE
0-0t
6 5 o EXPONENTIAL ELEMENT
e a— A A THREE NODE TRIANGLE
—— oo —--— FOUR NODE RECTANGLE
/ N\
K A TR “\
003 /) A’/ ,-—6—%\
/
7/ pd \
gt
/ \
4 /

- 1/ \

o1 o 03 o4 05 0-6 01 03 09 1:0

X-AXIS CFIG 580
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5.8 THE CASE OF X AND/OR u NON-CONSTANTS

When A and p are functions of x and y then the argument
presented in (4.6) for ordinary differential equations can be
applied here. Thus over a typical four node rectangular element

with node identifiers 1234 A(x,y) and p(x,y) can be approximated

as constants A and U respectively where

>
n
£
’\/14:
>
N
X
J
~
<
—J
N

(5.8.1)

(5.8.2)

=|
I
£iz
MJ—‘
—
N
x
.
<<
p—

When A and p are functions of x and y and also ¢ it is first

necessary to guess the solution. Let $§n) be the value of ¢i
at the nth iteration. Then for the (n+l)th iteration X and u
are given by
.l
- ) —(n)
A =& ,,k(xj’yj’¢j ) (5.8.3)
J=1
L
o= \p(x.,y.,ggn)) (5.8.4)
| 3773773
j=1

For the case of variable ) and y the elements are actually non-
conforming. However the above procedure yields good results

even for a fairly coarse mesh as the next example shows.
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5.9 NUMERICAL EXAMPLE

This example illustrates the case of non-constants A

and p. The partial differential equation considered 1is

320 326 2 90 2 36 _
8_>(2-+S§].Z-Jr;(-TS(-Jr—--a—y—-O (5.9.1)

over a rectangle subject to the boundary conditions shown

below

I D) $=5a) C (e5d)

o
Y
(o]

A% @ B(c,b)

i
O

where

m(x-a)

f(X) = sin ——(—6_—61‘3‘

Tt can be shown by separation of variables that the solution

is

sinh[télgg%]

_ d(c+a) - hemd . ! 7T(x—a)% _ 16d(c-a)

o = 2Xy o W(d—b)] S Temay ! T2 Xy
sin! [——('—C—_-_Tl's‘
[e'e) _ X ? ( o )
Z rsinn( 20T gin (IS
¥ _
r=1 (urz~l):sinh[2%%égjgl] (5.9.2)
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The numerical evaluation of this series is discussed in (5.13).

Comparing (5.9.1) with the standard equation L¢ = O it is

seen that

A = = (5.9.3)
| x|

Ll S (5.9.4)
|y

This means that |A| and |u| will be large if [x| and |yl are

small.
The differential equation (5.9.1) was solved using the

(1) Three node triangle
(ii) Traditional four node rectangle
(iii) Six node triangle

(iv) Exponential element

for various positions of the rectangle ABCD. It is seen from
(5.9.3) and (5.9.4) that the position of the rectangle relative
to the origin determines the magnitude of A and u. When the
coordinates of the point A are large x| and |u| are accord-

ingly small and vice versa.

The results are illustrated graphically for various
positions of the rectangle ABCD in figure (5.14) - figure (5.18).
The coaprse mesh only was used to compute the finite element

solutions. It is observed from the graphs that for
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small values of !A| and |u! all solutions compare well with
the analytic solution. As Al and |u| increase the traditional
elements exhibit oscillations. However, the "exponential

element'" continues to give good agreement.
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5.10 THE NON-HOMOGENEQUS LQUATION Lo = g

It was mentioned in the last chapter that the stability
of a difference equation is generally decided by its homogeneous
solution (49). This means that if a trial function of the form

AX

¢ = A+Be +Ce“y+DeXX+“y

is assumed over an element for the
equation L¢ = g then stability for large values of [x]| and
lu| may be expected. Experience indicates that this 1s usually

the case.

As the equation L¢ = g does not in general yield to the
method of separation of variables it is difficult to see how

the above procedure may be improved.

5.11 FINITE ELEMENT SOLUTION OF L¢ = g

Galerkin's criterion requires

[[ Ni(L¢—g)dxdy = 0 (5.11.1)
R ,

The usual procedure leads to the following finite element

equations

ey - r— K" N
> \'i e —1¢ - <F§*G?\ = 0 (5.11.2)
s :



The coefficients aij and Fi are precisely the same as in (5.4).

The coefficient Gi 1s given by

s e . . . .
The evaluation of Gi may require numerical integration depend-
ing on the functional form of g. The equations for an element

with the usual notation for an m node element are

L] | IR e o)

(E)§ ofr  ofy ...oaf r¢? (F$-6%)

(E)5 o031 a%2 ... o 1 1e% (F3-63)

(eye | - ail “iz aim oS | - (Ff—Gi) (5.11.3)
e e e e ; e e e

(E)m o, O, e O §¢m (Fm Gm)

S et o———} — c— er— o —

5.12 NUMERICAL EXAMPLE

The differential equation considered is

9%¢ . 9%¢ _ , 36 _ 3¢ _ 5.12.1)
FER A P T ot

Where X,p and ko are constants.
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This equation was solved over a rectangle with the boundary

conditions shown below

v
-

g L0)

(0,5) (2,b)

O ¢H:o éq90> >

To solve (5.12.1) analytically the dependent variable was

changed from ¢ to y by the following substitution

o2 (Ax+uy), (5.12.2)

With the substitution (5.12.1) transforms into

32y 8%y 1, 2, 2y, - -3 (Ax+uy) .
5 + 5;7 - H(A +ucdY = koe (5.12.3)

and the boundary conditions into
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)
\//: é"l:?_(zx%b/_{; (’)C_\

~

W:O yj—_-o

O =0 (q,)o>

Taking the finite sine transform of (5.12.3) w.r.t.

the following ordinary differential equation

dzﬁ I T -3y
dy? L Bv = koe Jn
where
) 2.2
2 _ 2 2 4neTm
Bn = A+ pt o+ 7
a
J = / e 2 sin 2MX gy
n a

The general solution of (5.12.4) 1s

Y o= Acosh(3B y) + Bsinh(3B y) + a e

“ky

X gives

(5.

(5.

(5.

(5.

12.4%)

12.5)

12.6)

12.7)



where

ukan
o = 20 (5.12.8)
(p2-R32) g

n

The boundary conditions for (5.12.7) are that when

y:O: ITI):O Yy = 0
_1 =]
y = Dbj v o= e 2(“J’“b)f(x) U = e ZUbIn
where
a
- /

I = J e f(x)sinl—ﬂﬁ>dx (5.12.9)
n \ a

o

The application of the above boundary conditions to (5.12.7)
determines the arbitrary constants A and B. It 1s easily shown

that this gives

+ i
sinh(%ﬁnb) sinh(%Bnb)<_

<
"

-1
’_e_%uy _ e ZubS]_nh(%Bny)
o i
n!

(5.12.10)

Taking the inverse and using

o = LPe%(kxﬂiy)
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gives
¢ = b1+ 0o (5.12.11)
where
(e8]
- —
L2 31Oxny) ) 2 Si1ub
b1 = 7 e® /., %y & 2HY - eT2H sinh(38 V)
et inh(}8_b)
sin an
sinhig_(y-b)
sinh(3B8_b)  _
n
(5.12.12)
and
= rsinh(36,_y) 7
9, = 2 e%(xx+uy)e—%ub }L I (— natzbny ;S4n/nﬂx\
2 = = o
2 N ginn(iep)— N2 7
n
n=1 ‘
(5.12.,13)

It will be noticed that ¢, is merely the solution of L¢ = O.

Since a = 0 when kg = 0 this is to be expected. In this test

- problem f(x) was chosen as



F(x) = sin(X) (5.12.14)

With this choice of f(x) the quantities J,» oy and I as
defined 1in equations (5.12.6), (5.12.8) and (5.12.9) respect-

ively work out to be

n ha
(=1
Jn i} Unrall-(-1)"e ] (5.12.15)

[A2a? + un?qm?2)

b
0 = 16k mnll-(-1)"e ]
n
I 252 1
N a[“?naﬁ]z (5.12.16)
A
n_ ~72¢
16m2nl1+ (-1
p o= frnfixlzl) e — (5.12.17)
-1)2 ]
A SReAce Pl STEPRIE LTI
a a
Now ¢; and ¢2 are completely determined. The numerical comput-

ation of ¢; and ¢, will be discussed iIn(5.13).

The analytic solution ¢(=d:+¢2) was evaluated for various
values of XA and u over the finite element grids shown in

figure (5.1) - figure (5.3). ko was chosen to be unity.

The differential equation (5.12.1) was solved using the
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(1) Three node triangle.
(ii) Four node rectangle.
(iii) Six node triangle.

(iv) Exponential element.

for A, w = 1,20.

It can be seen from figure (5.19) and figure (5.20) that
there is not a great deal of discrepancy between the various
elements for = y = 1. For A = u = 20 the "exponential

element" is more accurate than the traditional elements.
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5.13 A NOTE ON THE NUMERTCAL EVALUATION OF THE
- ANALYTIC govomioN

The analytic solutions to the test problems presented in
this chapter are in the form of Infinite Series. These series
contain hyperbolic functions and to prevent numerical overflow
these must be expressed in terms of negative exponentials. For
the test example presented in (5.7) the analytic solution in

terms of negative exponentials is

AN 2.9 : O'(‘n)
Cb =372°m Z m—)—
n=1
where

B ~da | 1 ( -B y\ <n'ﬂx>

o(n) = n 1+(-1)"e ? 3e§Dx—(b—y)(u+8n)—61ogka]\l_e N/ sin\"a
r 2 | 2 .r_ -8 b |
o(n) = |1 B—T—T——é—rlz—ﬂ w et lee T

Similarly for the second test problem the analytic solution

(5.9.2) may be written

_m(d-y) [T _2mCy-b) ]
c-a) . (c-a) |

i d(c+ade g t1l-e 7 77 it M (x=a) |
¢ = — —QWTﬁ-bTLW t (c-a) |
2xy} l-e (c-a) -
. |
, brm(y-h)™
oo -2rm(d- V) {_ "%:‘yr
N re (cma) | l-e . S0 )
16d(c-a) — — SjnIQPW(X —a) |
szy _J — _HPW(@*b)"} i (c- ay ]

r=1 (-‘i[‘z—l)z‘l— (c-a) !



!
}41
a4z
O

I

The analytic solution (5.12.11) to the non-homogeneous equation

can be written as

o = o1t 02
where
1 F =e—=a
b, = 32&0Tr :‘\ n%l—(~1)n§_2 _ (;%{Ax—(u+8n)(b—y)—SlogA}
a Loy C L
n=1 31+X7?T—
-8By =B, (b-y)
< l-e \ N e%{xx—y(Bn—u)—8logky1—e ; \
-B_b | -B_b
1-e ™ / \ 1-e /

1{Ax-8logr} ' . <DWX\
- e sin y.
a

1
)

_ 2 o(n)
92 = 37w o(n)
n=1
where
F Aa | %[Ax—(b—y)(u+8n)—610gka1/ -B y\ /nwx\

o(n) = ‘_1+(—l)ne 2 —ip ‘\l_e n '/S]'_IT'\ = /



r- + ﬂﬂz(n'l)ZTS ™ +‘uﬂ2(n+l)2_!fi_e_snb7

o A2a?2 A2a? ]

It should be noticed that ¢; cannot be evaluated for very large
A as the underlined term becomes unbounded. The only other

point warranting discussion is the number of terms to be taken
in the series. 1In practice as each term is generated a partial

sum s =~ say can be formed and the process terminated when

!

| (s |

nel T Sn) / s

n+m

is less than any prescribed level of accuracy.

5.1% SUMMARY AND CONCLUSIONS

The dimensionless form of the two dimensional Navier

Stokes equation in the x-direction is

2. 2
%;% + %;% —A%%'-Ugé = Re %% (5.14.1)

The usual notation has been employed of course



If the pressure is known function of x and y such that
Re §.1:)_ = g(X y)
. 0X - >

then becomes

32%u 52u Su du

537 + _5.}72_ - )\57(_ - u—_y = g(x,y) (5.14.2)
For large Reynolds numbers |[A| and |u| are also large. The

aim of this chapter has been to study differential equations

of the type (5.14.2). A method has been presented for deriving
shape functions for (5.14.2) to result in numerically stable
schemes. A number of numerical examples were also presented

to illustrate the advantage of the new shape functions over

the traditional polynomial shape functions.

In the next Chapter we make use of the shape functions
developed in this Chapter to construct a new finite element

scheme for the Navier Stokes equations.
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A NEW FINITE ELEMENT SCHEME
FOR THE NAVIER STOKES EQUATIONS

Considerable effort and attention has been devoted to
computations in viscous problems in the past. The partial
differential equations to be solved are of course the rnon-
linear Navier Stokes equations. When these are discretized
by some numerical process a system of non-linear algebraic
equations are obtain .ed which are generally solved iteratively.
Consequently the numerical techniques tend to require very
large compute@fnﬁgnd to lack accuracy and, in many cases, the
iterative process for the non-linear algebraic equations fails
to converge. Of course the most formidable problem of all is

that numerical instability is encountered at practical Reynolds

numbers,

A survey of many of the available finite element form-
ulations for the Navier Stokes ecuations was given in Chapter 3.
It was noted that polynomial elements are not sultable from the
point of view of obtaining a solution for practical Reynolds
numbers. However, in the beginning of this research project the

author conducted numerous numerical studies of the Navier Stokes
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equations using traditional elemen*s. Some notes on the deriv-
ation of finite element schemes using traditional polynomial

elements may be found in Appendix 3.

In this Chapter a new finite element scheme is presented
which uses exponential trial functions of the type developed
in the last Chapter. Subsequent work will show that this new
scheme 1s inherently more stable than schemes obtained using

traditional polynomial trial functions.

6.2 FINITE ELEMENT FORMULATION USING THE NEW SCHEME

The Navier Stokes equations in non-dimensional form are

= + 5y = 0 (6.2.1)
u %% + v %5 + %% = ﬁ% V2u (6.2.2)
u%+v%+%§:}%v2v (6.2.3)

Defining X and u as
A = Re # u (6.2.4)
u = Re v (6.2.5)

equations (6.2.1) - (6.2.3) may be written



Jdu v
—a;+ (7\7— 0 (6.2.6)
2 ou du 3D
Veu )\"—"ax U—'ay = Re 5‘)‘5 (6.2.7)
2, _ 9V _ dv op
Vv )\ax Llay = Re 5y (6.2.8)

In Chapter 5 it was shown that for differential equations

of the type

exponential trial functions were more sultable than the trad-
itional polynomial trial functions. This was especially true
for large values of |A| and |u! . It is clear from (6.2.4) and
(6.2.5) that for practical Reynolds numbers |A| and |u| will be
large. The results obtained in Chapter 5 suggest that to

solve the Navier Stokes equations for practical Reynolds numbers

the following trial functions should be used for u and v

l.e.
u = A + BekX v+ ceY o+ Dekx+uy )
)
(6.2.9)
v = A+ Be>\X + ce’ 4 De>\X+’Jy )
over a four node rectangle. The traditional trial function

over a four node rectangle may be taken for pressure, i.e.



D = a+ bx + cy + dxy (6.2.10)

If Nj(x,y) are the shape functions corresponding to the
exponential trial functions (see 5.3) and Mj(x,y) are the shape
functions corresponding to the trial function in (6.2.10) then

over a typical element

&S
1t
z
(S
B,
J

We now apply Galerkin's criterion to discretize equations
(6.2.6) - (6.2.8). For reasons which will emerge later the
continuity equation is weighted with the shape function for
bressure and the momentum equations are weighted with the shape
function for velocities. This procedure yields the following

finite element equations

™ 'i\ _‘]
; FA? u; + BS. v. | =0 (6.2.11)
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The various coefficients are

L
i}
I

I

LS.
]

pj =

Y“r
=
J

defined below:

A-j = [[Mi T dxdy ; Bij = W[Mi
-Je.) ,e
e aNﬁ e [
= B : = J.
cYs f[Ni —dxdy : D} ;[hl
e e
M.
€ = —-—] € = J.
K'% = [[Ni 5=dxdy ; LY [fnl
iy g /
(S
SN. aN. IN. 3N,
e _ 1 ] 1 8 a
Eis @ [[ <ax 3% 3y 3y >dx y
e
e _ e —n€ e
@i % ACiy WPy F Ry

(6.2.12)

>"-\
e
- Fi

e
E:Gi (6.2.13)

oN.
J

BNj
—=dxd
v \Y

BMj
W—dXdy
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Where XA and W are the values of A and p respectively
approximated as constants over element e in the way described

in Chapter 5.

The coefficlents defined above may all be evaluated

analytically. However, the expressions for these coefficients

yAh yuk

contain terms of the form e and these must be

and e
arranged so that only negative exponential are computed for

otherwise numerical overflow will occur.

6.3 ENTRIES OF ELEMENT STIFFNESS MATRIX FTOR THE
NEW SCHEME

First define the following quantities:

: En_ 2En
Qi) [ s e £ <0
2E(l-e M (1-e=M)2
_Jn i}
42 £ =0
(S”e-gn) + n g > O
QE(e—gn—l) (e78N_1)2
En 4. EN
Qe ) -1y —Dei oy el ] E<o0
L (1l-e” )2 2E(Ll-e”)
= D— g = 0
5
- -&n &N =
2<~1>r n p e 220 £ > 0
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Q:(E,m) [ (3"'6'&”2
(1-e&MNH? 2&(“-e’n)
- D..
3
-2in (3ef€ﬂ415

(=1)E(L+e"N)

Qu(E,mn)
2(l—e€n)

L
2n

(—l)&(e_€n+l)
(e—gn—l)

S, (E,n)  [(-1) —p— b =

Va2t
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_n
&)
f _‘Sn : : !
(—1);[_ 6_3 + __n P
E(e En 1) 2 (e &n 1) £%n_
eEn neEn . L
E(l-e®My  2(1-e®M) &2y
J_n
6
. 1 _ _rj ) + 1
F(e N1y 2(e” Moy g2y
1 m 1
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£(1-e®M) 2(1-etM)  g2q
{_ 1
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- —2qy 5 DS.= 2a, 3 DSs = -DT. 5 DI = -Dia
= D?Z 5 DEZ: -3Q3; D%a = ‘D§2 3 ng = ‘D?z
- 0%, 5 DS, = D§,; DSs = =D, 5 D5. = -Dis
= D?l 5 DEZ = D?z; Dﬁa = —D?z 3 Dfu = =-Dr11
= quql + ala ; EY, = (-L)alg+ ala
= (-1)asqd + ('l>qLQ2SE?u = qu,q3 + (-1)giaa
- £, , E%, = quql + aids
- quad + (-1dalgs 5 Ea2s = (=1)gwqd + (-1)alaq
=%, 5 ES: = £Ss; ESs = aqual + alas
(-1)guq} + Quadz 3 Efl :E?u 5 Efa = E?u
guql + glid
= 8,84 5 Ky, = -x$1 3 K$3 = -naud s KSy = x5,
= 8,8% K, = -X31 K33 = -s160 K5, = -K%s
= 5,88 K?z = _Kil ; K?s = =lgiig 5 K%q = ‘K?3
= 8% KEZ = "Kil 5 Kfa = =555 ¢ 3 Kfq = —Kfa
= 3353 3 L?z = $3Sy L?a = “L?z ; L?q = -L?l
= 8485 3 L?Z = 83256 3 Lg_za = 'sz B Lgu = —7_,2
= 8'15--15 ; ]_,6;'2 = S_{Se 5 L€3’3 = "‘I_:(;?_ 5 L%u = “T_,egl
= 5{85 3 Lyp = S{S4 3 LSy = -Lis ; Lb. = -LY



o may be computed from the relation
e oy — e
o = ACI. + DI. + ET.
i) ij H 17 1)

6.4 IMPOSING AND HANDLING BOUNDARY CONDITIONS

The most natural boundary conditions consist of the vel-
ocities prescribed on solid boundaries and on the sides of any
obstacle. The specification of boundary conditions on the
inlet and exit planes of a contained flow problem 1s a more

difficult task.

Boundary conditions of velocity, pressure and/or normal

Ceriva~ives of velocity are easy enou:zh fo incerscrazTe 1nTC

the sclution procedure. As usual the fini<e elemenT 2cuzTlcons
are writ=en at each and every noce anc the bouncary CIrnClTIcns
are appliec directly to the global system oI a’gedralc SCUET CIE.

If for example a velocity component at nocde X on The ICUTCAY

is known “he corresponding componen®t oI The <Tn MOTENTLT SCLETICN
is deleted and veplaced by a 1 on the clagonal &anc Tne 2rEs-
cribed value on the right hand sice vecter. If The crecssure s
Known a+ +he k+h node Then *the continuifty ecueTicorn 2T Toe LT
noce is cdeletecd and revlaced as adove. This z2holce 12 scme-

what arbitrary and certalnly Lt maxes oo ciffererce LI ZnoTIET
choice 6f eryations +o be Cceleted 1s mace Droviisl TRaT TIE

b . . . . + J oI
Cholce g coonsistent with +he mMatrlx assemns.y.

SR S



6.5 NUMERICAL EXAMPLE

Stagnation in Plane Flow (Hiemenz flow).

Consider fluid arriving from the y-axis and impinging on
a flat wall placed at y = 0. The fluid divides into two

streams on the wall and leaves in both directions see Figure

(6.1) below

o
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FIGURE 6.1

The origin O is the stagnation point. The velocity and pressure

distribution for this kind of flow are given by

u o= axe ' (n) (6.5.1)
v = - /%e (‘i)(n) (6.5.2)



Where a 1s a constant

pressure and as usual

n = a Re

and the function &(n)

differential equation

¢Hl + (T)(;b”

la?x? - 3 (ggj[q)z(nﬂ?q)'(n)]

(6.5.3)

at our disposal Py is the stagnation

Re i1s the Reynolds number.

n is given by

(6.5.4)

satisfies the non-linear ordinary

- ¢ +1 =0

(6.5.5)

The solution of (6.5.5) may be found in Schlichting (39) and

is reproduced in tabular form 1n

Figure (6.3).

Owing to the

symmetry of the problem, flow in the first quadrant was

considered. The boundary conditions used to obtain a solution

are shown below

J

w,v, ?
W=o0
’§!=O
;24

‘
}

-.,;Q < F
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U=

V=0

FIGURE 6.7
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[@al
(0)]
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] !
n = vaRe y = ® } o' o
, | A
0 | 0 0 1.2326
0.2 0.0233 0.2266 1.0345
0.4 0.0881 0.4145 0.8463
0.6 0.1867 0.5663 0.6752
0.8 0.3124 | 0.6859 0.5251
1.0 | 0.4592 | 0.7779 0.3980
| ;
1.2 0.6220 ; 0.8467 0.2938
1.4 0.7967 | 0.8968 0.2110
1.6 0.9798 ! 0.9323 0.1474 |
1.8 1.1689 ; 0.9568 0.1000 |
2.0 1.3620 | 0.9732 0.0658
2.2 1.5578 | 0.9839 0.0420
2.4 1.7553 | 0.9905 0.0260 g
2.6 1.9538 g 0.9946 0.0156 l
2.8 2.1530 g 0.9970 0.0090 |
3.0 2.3526 ; 0.9984 0.0051
!
3.2 2.5523 ? 0.9992 0.0028
3.4 2.7522 | 0.9996 0.0014
3.6 2.9521 } 0.9998 0.0007
3.8 3.1521 0.9999 0.0004
4.0 3.3521 1.0000 0.000?
4.2 3.5521 | 1.0000 0.0001
L,y 3.7521 ! 1.0000 0.0000
T 3.9521 1.0000 0.0000
|
FIGURE 6.3

The above table shows that the velocity components u and v

vary rapidly near the wall y = O for large values of Re.

sequently the finite element mesh should be more refined in this
region. The new scheme was used to obtain a numerical

on the finite element mesh shown in figure (6.4) for various

values of the Reynolds number.

Con-

solution



FINITE ELEMENT MESH FOR
THE NAVIER STOKES EQUATIONS
USING THE NEW SCHEME

Y4 T4 13 12 11 10 69 68 61 66
75 1 2 3 4 6 7 65
Y=2.8 76 8 9 10 11 12, 13 14 4

77 15 16 17 18 19 20 21 c3

Y-1.6 78 Z 23 24 25 26 21 28 62
719 24 30 31 32 33 34 25 61

\
Y=08 RO 3 37 38 39- “-Q 44 42, 60
8 43 i 45 4g 47 48 49 59

Y=0

50 51 5Z 53 5% 5% 5% 57 8
X=0 X=1 X=2 X=3 ' X=4



6.6 DISCUSSION OF RESULTS

The results are illustrated graphically in Figure (6.5)
- Figure (6.7) for Re = 1. The results show that the velocity
distribution obtained using the new finite element scheme

compares well with the analytic solution.

However, the results for pressure are subject to inacc-
uracies. Refining the grid does improve the accuracy of all
the variables but the pressure field is always less accurate
than the velocity field. This anomaly also arises when trad-
itional polynomial finite element schemes are used. The use
of "mixed interpolation" overcomes this problem and will be

discussed in Tthe next section.

For large Reynolds numbers (= 10%) the iterative process
for the non-linear finite element equations failed to converge.
But the results indicated that the new scheme was probably
stable. In the next Chapter we shall show that this scheme 1s
inherently more stable than the traditional polynomial trial

functions.
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6.7 DISCUSSION OF MIXED INTERPOLATION

So the new finite elemen*t scheme presented yields an
acceptable velocity field but the assoclated pressures are,
in particular instances, subject to inaccuracies. Actually
+t+he same phenomenon was observed by other research workers
long ago when they applied Galerkin's method combined with
polynomial trial functions to solve the Navier Stokes equations.
The reason for this anomaly was not initially known, and it
was assumed that the effect might be due to incorrectly posed
boundary conditions or to too coarse a mesh. Further invest-
igations by researchers showed that neither of these possib-
ilities could account for the discrepency. It was finally
suggested that the same polynomial trial function for both
velocity and pressure fields was incorrect under certain

circumstances.

The next obvious step was to use different trial functilons
for the variables so as to produce accurate results simultan-
eously for both velocity and pressure fields. It was eventually
discovered (although not clear from the literature by whom) that
if a quadratic trial function 1s used for velocities and a linear
frial function is used for pressure, and in addition if the

continuity equation is weighted with the shape function for

}J

pressure and the momentum equations with the shape functions
for velocities, then accurate results could be obtained for
all the variables simultaneously. A very useful element which

has been used for this purpose is the six node triangle. Pressure

is assumed to be linear over the element and is therefore only



interpolated at the corner noces. Velocities are assumed to be

quadratic and are interpolated at all the nodes of the element.

Several research workers have used this so called mixed inter-

polation. Although it works but as far as the author 1s aware
a rigorous justification of it is not available in the liter-

ature.

The phenomenon described above was observed when the
numerical example (Hiemenz flow) presented in (6.5) was solved

using traditional polynomial trial functions for low Reynolds

numbers. Of course, for large Reynolds numbers the traditional
schemes are unstable. The finite element grids are shown in
Figure (6.8 - Figure (6.10). The pressure distribution along

Yy =const for Re = 1 and Re = 25 is depicted in Figure (b.1lD) and
Figure (6.12 respectively. It is seen that the pressure dist-
ribution obtained using mixed interpolation agrees well with
the analytic solution. However, the pressure distribution
obtained using common interpolation for all the variables 1is
subject to inaccuracies. The velocity distribution in all

cases compared well with the analytic solution.
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Tt has already been mentioned that a rigorous justification
of mixed interpolation is not available. However, Taylor and
Hood (20) used mixed interpolation and GCalerkins approach to
obtain numerical solutions to the slider bearing problem and
also flow past a cylinder. In this paper they gave a heuristic
explanation to justify the used of mixed interpolation. Although
their argument 1is solely confined to polynomial type trial
fFunctions but it is worth repeating here to see if it offers
a solution for the new finite element scheme presented in this

Chapter.

Tn (20) two requirements are posed 1in connection with a

weighted residual process applied to coupled equations.

(i) The maximum order of error associated with the residual

of each variable must be equal.

(ii) The residuals arising from each equation must be
weighted according to the maximum error occurring

in each equation.

The first condition may be illustrated by considering an
example. Suppose that in a pair of partial differential
equations, the variables are ¢ and ¥, in which the highest
space derivative of ¢ is of order n, and Y of order n+m. A
Taylor expansion of the shape function within each element
shows that to achieve the same order of accuracy for each
variable, the polynomial shape function for Y must be m

orders higher than that for &. Suppose that the interpolation



field for ¢ is a polynomial of order n, then the accuracy of
e At e . n+l e e

the interpolation field will Dbe to O(h ), and 1f v s simil-

arly chosen to be a polynomial of order n+m then the accuracy

will be of O(nR*M*L

), where h is the largest dimension in an
element. On substitution of these polynomial fields into the

differential equations the residual from both the ¢ and Y fields

will have an accuracy to O(h).

The second criterion is concerned with the weighting
function allocated to each residual. Supposing that the
residual from the first equation is accurate to 0(h?2) and that of
the second to O(h), then the first equation should be welghted
with a polynomial of one order less than the second equation,
in an attempt to assign a consistent accuracy 1o all the

equations.

That then is literally the argument presented in support

of mixed interpolation by Taylor and Hood (20).

T+ is now readily seen how this applies to the Navier
Stokes equations. The momentum equations contain second order
derivatives of velocity, and first order of pressure. Thus
to obtain the same order of error from each variable, parabolic
elements might be used toO depict variations in velocity, and
linear elements for pressure. The residuals resulting from
this choice of element are 0(h) in *he momentum equations and
O(h2) in the continuity equation. Thus the momentum equations
should be weighted with a parabolic shape function and the

continuity equation by & linear shape function, in accordance



with criterion (ii).

Let us now summarise the main requirements of mixed

interpolation. These are -

(1) The trial function for velocities and pressure should be
different. Furthermore the trial function for velocilty
should always be of a higher order than the trial function

for pressure.

(ii) The continuity equation is weighted with the shape
function for pressure but the momentum equations are
weighted with the shape function for velocity. This
essentially means that the continuity equation is

not imposed at all the nodes of an element.

The new finite element scheme presented in this Chapter
nearly satisfies the above requirements. However, 1t does
not satisfy part of the requirement (ii) since with the new
scheme the continuity equation is imposed at all the nodes.
The latter point may be elucidated with reference to the

following system of ordinary differential equations, viz:

il
I (5.7.1)
X X
d?u du _ o @P
o T kg T Rk (6.7.2)
d?v dy _ , dP
Sz T Kegy 7 Reax (6.7.3)



Suppose this sytem of differential equations 1s to be
solved over the interval (a,b) with a constant step length

h as shown below

Lt '; i*‘

—
X.za >

1
<

Over a typical element assume u, v and p are linear (i.e.
= o+bx). Discretizing (6.7.1) - (6.7.3) using Galerkins
criterion gives the following finite element equations at

a pivotal point 1

(Ul+l—u —l) + (Vi+l—vi—l) = 0 (6.7.4)
/) / \ / \
ki h _ _kih) h = .
\ 1+ 5 /ul-l 2\,11‘1" \l 2 /Ui+1+2R]\Pl+l *i“‘l/ = 0 (6 /.5)
kh _kzh) A U .
15 > Vi_qm2v +11 BV 1 taRaPL Pioy 0 (6.7.6)

Tt is seen from (6.7.5) and (6.7.6) that P, does not enter
the finite element equations. This implies that when the tot-
ality of the finite element equations are solved for the values
of u, v and p at the nodes it will be found that the values of
p at alternate nodes are nonsensical. This 1s in fact the case.

" This simple example does throw some light on the need for

requirement (L1).



6.8 AN EIGHT NODE MIXED ELEMENT

The new finite element scheme can be adapted to yield an
accurate pressure field by using the ideas introduced In the
last section. To this end consider the eight node rectangular

element shown below

4 2
5 ?
P
i ! H
;,; b
L
5. Tr 2k
4 A L

Where node 5 is the midpoint of side 1h4 etc.

By virtue of the results from the last section the trial

function for velocities and pressure are taken as

3
(u]
wJ " L aifi(x,y) (6.8.1)
i=1
m
p = EE\ bigi(x,y) (6.8.2)
i=1

This will mean that the pressure is interpolated at the
four corner nodes of the rectangle »ut the velocity is inter-

polated at all the eight nodes. In addition the continuilty



equation will be weighted with the shape function for pressure.
The only remaining problem now is to choose the functions
f.(x,y) and g;(x,y) so that the resulting finite element scheme
will be stable for practical Reynolds numbers. From the
previous work it is required that the functions fi(x,y) should
be particular solutions of the partial differential equation

viz.

V2o - A2% 80 o (6.8.3)

The only difficulty here is to decide which eight particular

solutions are to be chosen from the infinite number availlable.

Some experiments with ordinary differential equations
opened up other possibilities for the functions fi(x,y). It

was shown in Chapter 4 that for the equation viz.

d?y _ ,dy _
S¥ - =0 (6.8.4)

the trial function y = A+Be yields ‘solutions for all [i].

However, if this trial function is augmented with a polynomial

it continues to yield stable solutions for large Il For
example it was found that the trial function y = A+Be>‘x+cx2
results in a stable finite element scheme for (6.8.4). These

findings éuggested that the trial function for velocitiles on

our eight node mixed element may be taken as
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8

ru .
t }: ar +azer *ra, e Yia, A XY, E; a.f.(x,y) (6.8.5)
v — 177

3=5

Where the first four components of the trial function are
solutions of (6.8.3). The functions fj(x,y) (3 = 5,6,7,8)
are polynomials. Now traditionally the trial function for

an eight node rectangle is of the form
b = a,+tax+asy+aysxy+tasxi+agyZ+a,x’y+agxy’ (6.8.6)

The question is that from the eight polynomials in (6.8.6)
which ones should be included in (6.8.5)? From requirement
(i) (see 6.7) 1t is necessary to choose fj(x,y) (3 = 5,6,7,8)
to correspond to the higher order polynomials in (6.8.6).
Thus for the velocities choose the following trial function

viz.

(u
AX+1
LV} = a1+a2ekx+a3euy+aqe py+a5x2+a6y2+a7x2y+a8xy2

(6.8.7)

and for pressure choose the traditional trial function for a

four node rectangle as this contains lower order polynomials

P = bi+bax+bs3y+buxy (6.8.8)

Alternatively (6.8.7) and (6.8.8) may be written



8

9. $ ool

Ly) © Ij(x,y) Lyl ) (6.8.9)
j=1 .
L“ A

p = E;:Mj(X,y)pj (6.8.10)
j=1

The shape functions Mj(x,y) are well known. Using the '"shape
function formula" the shape function for velocity are given by
equation (6.8.11) shown on the next page. The actual shape

functions may be found in Appendix k.
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6.9 TFINITE ELEMENT FORMULATION USTNC THE EIGHT
NODE MIXED ELEMENT - '

The Navier Stokes equations are written as

ou vV

52+5§_O (6.9.1)

~oaou o du 3ap
v°u Aax UBy = Re ™ (6.9.2)

2y - A2V _ 8V 9p
Vv Aax UBy = Re 3y (6.9.3)

where

A = Re * u (6.9.4)
u = Re * v (6.9.5)

Applying Calerkins method to descretize the above equations
using the eight node mixed element yields the following finite

element equations -

N Lo

/o laisuy #bigvy g =0 | (6.9.6)

e ]

- ;

: Z;J_Bij—luj + Re ;Erkijipj = ‘Tgi (6.9.7)
- 1 A .

é—J ] e J e

(6.9.8)
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where the coefficients are defined below: -

é [ BNS - [[ BNS
= — : = M — ]
a g [ Mr g dxdy brs || M3y dxdy 3
e e
oN oN
e _ [ s e _ s
Cig 7 j Nt §-dxdy H dts = fj Nt §~—dxdy R
e e
e . 'Y/BNt BNS . BNt BNSj>dXd
ts J\9x  ox oy dy y
e
8¢ = 2ec + ud + e
ts Tt s ts
e BHP e BMln
ktr = U N sg—dxdy; Lip T j[ Ny gy—dxdy
e e
e ou . e v
fe ° % Ng gpds 3 gt~ % Ni gnds
r = 1,2,3,4
t,s = 1,2,3, , 8

A and p have been approximated as constants X and | resspectively

over element e as described in Chapter 5. Thus -



8
~ 1 _ .
A -—@RB 1. (6.).9)
iy 3
j=1
c
—_ 1 —
o= g Re §~ V. (6.9.10)
]

cl

: etc. being the value of u at node 3 from the previous

iteration.

All the coefficients defined above are listed in Appendix

6.10 NUMLRICAL LXAMPLE

The lliemenz flow problem was solved using the "eight node
mixed element'" for various values of the Reynolds number. The
finite element grid used is shown in Figure (6.13. The pressure
distribution along y =const for Re =1 is depicted in Figure

(6.11%. It is seen that the pressure distribution obtained using

the eight node mixed element compares very well with the anal-
ytic solution as seen in Figure (6.15) and Figure (6.16). The
velocity distribution was also found to compare very well with

the analytic solution.

I'or large Reynolds numbers the iterative process for the
non-linear finite element equations failed to converge. However,

it is found that if the partial differential equation, viz.
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- u¢ =0 (6.10.1)

is solved using an eight node rectangular element with the trial

function

o = A+Be M aceMY DM T HY LEX 24Py 216 x 2y +Hxy 2

(6.10.2)

then stability for large |A] and |u] is not obtained. This
indicates that the trial functions for the eight-node mixed
element are probably not suitable from the point of view of
obtaining‘éolutions to the Navier Stokes equation for practical
Reynolds numbers. But this work does clearly show the strategy

which has to be employed in order to get correct answers for

both the velocity and pressure field simultaneously.

6.11 SUMMARY AND CONCLUSIONS

Tn this Chapter a new finite element scheme has been
presented for the Navier Stokes equations. Numerical results
were obtained for the "Hiemenz flow" problem for which a semi-
analytical solution is available. For low values of the Reynolds
numbers the new finite element scheme produced acceptable results
for velocity although in particular instances the pressure was
subject to inaccuracies. For large Reynolds numbers (= 10%) the
iterative process for the non-linear finite element equations
does not converge but the results indicated that the new scheme

was probably stable.
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The author then discusses the concept of mixed inter-
polation and proposes a scheme which yields accurate results

for both velocity and pressure fields simultaneously.

In this thesis we are mainly interested in establishing
a stable finite element scheme for the Navier Stokes equations.
Consequently the author decided to by-pass the convergence
problem in order to make some statement about the stability of
the new scheme. The next Chapter goes on to show that the new
finite element scheme presented in this Chapter is inherently

more stable than the traditional polynomial schemes.



CHAPTER SEVEN

STABLLITY ASPECTS OF THE NEW FINITE
ELEMENT SCHEME

7.1 INTRODUCTION

One obvious way to establish that the new scheme is stable
is to persevere with the Navier Stokes equations and try to
obtain convergence for practical Reynolds numbers. Unfortunately
the elements of the global matrix are rather complicatec. This
virtually rules out an analytical approach to the convergence
problem. The alternative is an empirical approach. The latter
approach would involve considerable numerical experimentation

and is necessarily very time consuming.

Tdeally it would be best to investigate the stability of
the new scheme independentally of the convergence problem. If

the scheme proves to be stable then all further efforts can be

concentrated on convergence.

To this end we merely have to study the system of linear
partial differential equations which are solved by the new
scheme in each iteration of the Navier Stokes equations. These

equations are

Sou 9V L g (7.1.1)



ou du on
v2 - - - RO 7.1.2
“ Aax uBy 1\BX (7.1.2)
LAY Y op
Viy - - = — 1.3
% XBX Woay RBy (7.1.3)
where A,y and R are taken to be constants. For convenience the

equations (7.1.1) - (7.1.3) will be called the ""quasi Navier
Stokes equations". To validate the numerical results from the
new scheme it is first necessary to obtain an analytic solution

to the quasi Navier Stokes equations.

7.2 AN ANALYTIC SOLUTION TO THE QUASI NAVIER
STOKES EQUATIONS ' ' o :

A solution of the quasi Navier Stokes equations may be

found by looking for a solution in the form

ot
1"

g(x)f'(y) ; v = —g'(x)Ef(y)

G(x)F(y)

o)
"

Where g(x), G(x), f(y) and F(y) are unknown functions, which are

to be chosen suitably.

Now

au_ 1 . _B_Y_:-”

X g' (x)E' (y) H ™ " (x)E(y)
au " : Y - g O ()
5y g(x)" (y) 3 5y g' () f" (y



57 - o"(x)E' (y)

gGOE™M (y)

Of‘\
H

2
3V = - g GO

2%V - ! 1

@-p—: _a_B— !
o G' GOE(y) ay-G(xﬂ?(y)

Notice that (7.1.1) is identically satisfied. Equations (7.2.2)

and (7.2.3) give respectively

g”f' + gfm _)\gva - Ugf" - RG'T (7.2.1)

—gM £ - g'f" o+ Aghf o+ pg'f' = RGF' (7.2.2)
(7.2.1) rearranges to

- 1
Fmo_ EN 4 (gigléL)f' - BE_E (7.2.3)

choose g(x) such that

k being a constant, i.e.

g" + (k-2)g' = 0

or

g(x) = o™ (KAIX (7.2.4)
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Equation (7.2.3) now becomes

£ -uf" o+ k(k-Af" = RG!' Fe KM%

(7.2.5)

Substituting for g(x) in (7.2.2) gives after simplification

.RGF,e(krA)x
(k - A)

" - uf' o+ k(k-M)1f = (7.2.6)

Thus it has been shown that with g(x) given by (7.3.4%) equations
(7.1.2) and (7.1.3) reduce to equations (7.2.5) and (7.2.6).
These are two independent equations containing three unknown
functions f(y), F(y) and G(x). This means that one of these

functions is at our disposal.

Now as the left hand sides of (7.2.5) and (7.2.6) are

functions of y so the right hand sides must also be functions

of y. This may be ensured 1if G(x) is chosen as
G(x) = (k-aye (KT (7.2.7)
Equations (7.2.5) and (7.2.6) now becomes
FMo— pE" o+ k(k-A)E' = -R(k-A)ZF (7.2.8)
£~ pf' o+ k(k=-X)f = RF' (7.2.9)

These are two equations for f(y) and F(y). Eliminating f(y)
gives

F" + (k-M)2F =0
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F(y) = Acos(k-\)y + Bsin(k-A)y (7.2.10)

A and B being arbitrary constants.

Substituting for T(y) into (7.2.9) gives

FUouf 4k (k-A)F = R(k-A)[Bcos(k-A)y-Asin(k-1)y]

(7.2.11)

Assuming p?-tk(k-1) > O (which can always be ensured by

choosing k suitably) and defining

2— —

p, = BF /1_12 DIESTY) (7.2.12)
— 2_ —

p, = & ‘/*_12 HicTk=2) (7.2.13)

The solution of (7.2.11) may now be written

fly) = ceP1Y 4+ peP2¥

(7.2.14)

" where C and D are arbitrary constants.
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Hence for u, v and p we have

_ e-(k—k)x (ep,ePtY 4 ngepzy
R(k=-X) .
NN {(AB-pA)sin(k-A)y + (Bu+Ar)cos(k-A)yl}]

(7.2.15)

v = (k—k)e_(k—A)X[Ceply + Depzy

+ (—A—Z%‘z—y { (AB-pA)cos(k-A)y-(Bu+Ar)sin(k=1)y}]
(7.2.16)

-(k=-A)x

p = (k-Xe [Acos (k=A)y+Bsin(k-A)y] (7.2.17)

where A, B, C and D are arbitrary constants at our disposal.

7.3 TINITE ELEMENT FORMULATIONS OF THE
QUASI NAVIER STOKES EQUATIONS

The new finite element scheme applied to the quasi Navier

Stokes equations yields the following finite element eguations:

. K_
e e
~.u. + B..v. =0 7.3.
}HV Z;;Al]u] 1]V] (7.3.1)
e ]

Lg[aij 3 + R L[_JKQ Ps ha (7.3.2)
e ]
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" \ [— 'j! T

e e

" L7, |ps = 2 G- (7.3.3)
%~~—1 S i

£
(o

TN
\ \\’

-

e

J

The various coefficients are defined below

e BNj e [ : BNj
e e
. [‘f N . ” o
e e
e [[<?Nl oN. BNl 8Nj>
i3 7 % 3% T 3y 3y ) XY
e
e e e e
uij = Acij + “Dij + Eij
oM. oM.
N PO
iy T ff N 5 dxdy 3 Lij i 3y dxdy
e e
e _ ou . ¢ = N. axd
Fi = % Ni Bnds 5 Gi % i 3m S

Where of course the trial functions for velocities and pressure

for the new scheme are

u )
( } = A + Be>‘X + CeUy + De)\X+1Jy

p = a+ bx + cy + dxy



' |
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over a four node rectangle. Or

MEpEaEE

j

N
po=/ MyPy
3

The coefficients defined above are the same as those given in

(6.3) except that A and p are constants in this case.

7.4 NUMERICAL EXAMPLE

A solution of the quasi Navier Stokes equations was
derived in (7.2). The constants appearing in that solution

are now chosen -

Choose

1

(k=-2) 3 A =

write

Assuming that A , wand R are numbers of the same order of absolute
magnitude, then 1f W < 0, choose negative sign and if w > O
choose positive sign. Then if lul »nm and if |ul~|r] we shall

have aw~u.

Choose C or D to be zero and the other to be B/R, where

will be determined below. Then the solutions to the quasi Navier

Stokes equatilons i.e.(7.2.15) - (7.2.17) will become
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S _ oTmx Ba oy R r . _ ]
u e {i Re + Xy:iy ? pusinmy XCOSNY} B

~—

- —ﬂx(—Bﬂ oy R ( . W
v = e =€ + PEAETES ; pcosTy+Asinmy !

N —

-TX
cosmy

g
1
®

When p > 0, a > 0 and e®Y will increase with increasing y.

Choose B8 so that u(0,3) = 1.

When X >0, o >0 and e%Y will decrease with increasing y.

Choose B so that u(0,0) = 1.
The corresponding solutions are

(a) If u >0

. -TX _ uR aly=-3) R . _
u = e l:<l XT:ET> e +(A oy Lusnmy AcosTy

e cosmy

i
3
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(b)) If u< O

. AR N ay, R : 1
u = e {G<I+X7:if/)e +X7:E7-{U8lnﬂy—kCOSﬂy }_J

__-TX | T AR N\ ay R T : ]
v = e [:a<l+77:ﬁ7>e TEITEd LUCOSﬂyfASlnﬂy}J

-mX
e cosmy

T
1

oy - Y =hu(m+A)
2

T+ will be noticed that with this choice of constants the
exponential terms occurring in the solutilon are easily computed
for large |A| and |u|. Also u and v vary rapidly with [XA] and

|u| which is reminiscent of the Navier Stokes equations.

The quasi Navier Stokes equations were solved on the region

0 < x <1

0 <y < 0.5

using

(i) Three node triangle
(ii) Six node triangle
(iii) The new finite element scheme. (For convenience
we shall refer to this element as the "exponential

element™".)
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For various values of A,u and R. The analytic solution
used is that given in (a). Two sets of meshes were employed.
The course mesh was (4 x 4) and the five mesh was (8 x 8).

On the boundary of the rectangular region u, V and p were
specified. In addition it was found necessary to specify

p at an internal point.

The results for u and v are illustrated graphically for

the coarse mesh in Figure (7.1) - Figure (7.3). It is seen
that for small |A], |p| and R there is not much discrepancy
between the various elements. For large |A| and [u] the

tpraditional elements breakdown completely but the "exponential

element" continues to give good agreement.

The results for p are illustrated graphically in Figure

(7.4) and Figure (7.5).

For small |Al, |u| and R good results were obtained for
p using the "exponential element™. As Ix], |u| and R were
allowed to increase the accuracy in p deteriorated slightly.
However the accuracy could always be improved by refining the

mesh as shown in Figure (7.5).

Finally it must be said that it was expected that for any
given grid size the numerical results for p would be inferior
to the corresponding results for u and v. This 1s so because
the discussion of mixed interpolation as presented in the last
Chapter is clearly also applicable to thé quasi Navier Stokes

equations.
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7.5 SUMMARY AND CONCLUSIONS

The system of partial differential equations which are
solved by the new scheme in each iteration of the solution
procedure for the Navier Stokes equations are very similar

to the '"quasi Navier-Stokes equations’, viz

ou vV _
a—)z'*'-é*};— 0 (7.5.1)
2. _ ou ou  _ 9D
Veu Asz U§§ = R ™ (7.5.2)
2 - oV _ oV - 9
Vev A§; u§§ R 55 (7.5.3)

where A,up and R are constants.

Tn this Chapter an analytic solution has been obtained
for the quasi Navier-Stokes equations. A striking feature cf
the analytic solution for u and v is that it varies rapidly
with A andp something very reminiscent of the Navier Stokes
equations. The numerical results showed that for small |A],
lu| and R there was not much discrepancy between the new
cchemes and traditional schemes. Tor large Ix], |w] and R
the traditional schemes break down completely but the new scheme

continues to give good agreement.

7.6 TUTURE WORK

The work presented in this thesis opens up a wide field

of research in both numerical mathematics and numerical fluid
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dynamics. Further scope of research in each of these areas

is briefly outlined below -

(i) Numerical Mathematics

Investigate the derivation of finite element schemes

using the technique described in Chapters 4 and 5 for diff-

erential operators other than those discussed in this thesis.

I+ seems that if the first derivatives 1in a differential
equation are significant then the new schemes are probably

tbetter' than the traditional schemes.

(ii) Numerical Fluid Dynamics

There is still a real need for a reliable numerical
method for the solution of the Navier-Stokes equations. A
new finite element scheme for the Navier—Stékes equations
has been presented in this thesis. The numerical results
obtained using the new scheme indicate very strongly that
the scheme is stable for practical Reynolds numbers.
However, further numerical experimentation is required to

obtain convergence for high Reynolds numbers.

It would also be worthwhile investigating schemes which

employ mixed interpolation. One such scheme was presented

in Chapter 6.
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- APPENDIX T

A DISCUSSION ON THE STABILITY OF
" SOME FINITE ELEMENT SCHEMES

ATI.1 AN EXAMPLE

To illustrate an aspect of the stability problem, consider

the equation
_ 24y .
IxZ de = 0 (AT.1.1)

The finite element equations at a pivotal point 1 corresponding

to both the linear and exponential elements are =

(i) Linear Element

Ah Ah _
(\l+.—2—)yi_l - 2yl + (l—-—z—‘ yi+ll— 0 (AI.l.Q)
(ii) Exponential Element
Ah Ah i
e Yi "~ (1l+e )yi Y4 0 (AT.1.3)
Now the solution of (AI.1.1) is given by




The behaviour of the exponential term of (AI.1l.4) 1s illustrated

in figure (AI.1) below

AX
e

ALo0

Figure (AI.1)

For positive A the function increases, and for negative A,

the function decays.

The very least that should be expected of the finite

element solutions is that they behave monotonically as e>‘X

for X > O and A < 0.
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Fach solution will be analysed in turn

(i) (AI.1.2) yields the solution

(AT.1.5)

If the behaviour of the exponential term of (AT.1.5) is analysed,
it is seen that it only displays the correct monotonic behaviour
for A < O and A >0if the condition

h < (AT.1.6)

>0

is satisfied.

If A > Oand Ah = 2 then the solution of the difference
equation becomes unbounded. If » < 0 and A*h = 2 then the only
solution of the difference equation is a constant, and thus two

independent boundary conditions could not be fitted.

If (AL.1.6) is contravened by the opposite inequality, then
the solution becomes oscillatory, and then although a solution
can be found it is useless. Hence (AT.1.6) is the condition for

stability of the difference equation.

(1i) It is easily verified that y = A+Belx satisfies the differ-
ence equation (Al.1.3). This means that the difference equation
using the exponential element has the same solution as the analytic

solution to the differential equation. It is also worth noting
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that the difference equation for 1inear elements 1s contained
in the difference equation for the exponential element. To
see this multiply (AI.1.3) by

_Ah

e

Expanding the coefficients of the above equation and

neglecting second and higher powers of A gives

Ah
(1+= )y

TR
But this is precisely the difference equation obtained

using linear elements.

To summarise these results there 1is -

(i) A condition of stability always exists when
using linear elements, and if |A| becomes very
large, then the condition (AI.1.6) would make
linear elements computationally infeasible.

(ii) The exponential element yields a difference
equation which has an identical solution to
that of the differential equation. The finite
element scheme obtained using the exponential

element 1is thus unconditionally stable.
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From these conditions, it is reasonable to infer that if

an equation like

a}’(‘z f(X,y)a—X‘ = 0
where f(x,y) takes both large positive and large negative

values, is to be solved using polynomial elements (in particular

linear elements), then a stability condition

o< 1 (AI.1.7)
[ T(x,y)
max
must be applied. In the Navier-Stokes equations this precise

situation holds where

f(x,y) = RelU

U being a flow velocity and Re the Reynolds number. Thus,

the condition (AI.1.7) gives the approximate requirement for

two dimensional flow

1
MaX(h,k)<T—R—e-LTr . (AT.1.8)
In many situations (gas flows), Re = 10%, the condition

(AT.1.8) makes the application of polynomial elements to many

fluid flow problems completely infeasible.
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APPENDIX TWO

STIFFNESS MATRICES FOR THE SINGLE
ELLIPTIC PARTIAL DIFFERENTTIAL EQUATION
USING POLYNOMIAL ELEMENTS

A2.1

A typical element uij of the stiffness matrix for the

partial differential equation, viz.

V%>—A39—1%%: 0 (A2.1.1)

is comprised of the following coefficients -

o ‘ aNj e ‘ aNj
e e
o [[ ( BNi,BNj BNi,BNj >
Biy ° % 50 b oy 3y S
e .
where
0S. = AC?. + pD?. + ES.
1] 13 1] 1]

The coefficients Cij, Dij and Eij for a numher of traditional

elements are given below:
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(i) Four Node Rectangle
For the four node rectangle shown below
4. 3 A
%
Y R
L v
1 X h 2
B S s
Th .. e e
e coefficients Cij’ D and Ei.: -

k e e
cS, "5 3 cSs = -c%1 Cis = -3Ci1
C5, cS1 C32 = -cS1 C5s = —%C?l

e e e

CS1 %C?1 3 €S2 = -3Ci1s C3s = -Cia

e e e

Cha %C?l ; Ch, = -3Ci1s Cys = -Cia
e h e _ 1€ e _  1ne
D11 5 H Di2 = D11 3 Dis = -zD11
D31 %D?l : D52 = DS: D33 = -D%1

e

DS %D?l 3 D32 = DY1 5 D33 = -DS 1
e e
D% 1 DTT Dy2 = %D?l 3 Dys = -3D11

(h2+k?) e _ (h%-2K?) e e
E?l Thic ;3 Byg = Shk ; Evs = -3E1na

e e e
E?l E?z 5 E?z = En 5 Ezs = Evw

e e e e e

Eil Eis 5 Esz2 = Eza 5 Ess = Eina
e e e e
‘Efl E?u 5 E,o, = B2y 5 Eivs = Eay

Ciy
Caoy
Cau

Cuy

D?u
D?u
Diy

Dy

oi—
(@)
—~ D

=
(@)
(D

~ (D

@
—

@]
=




(ii) Three Node Triangle
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For the three node triangle shown below

3(xs,7)

1(X|;n>

define

o
|

Y2~Y¥3 5

C1 = X3=X2

>
W

Also define

Y§j<P1,P2,P3> {i,j = 1,2,3}.

e _ P
Yi1 = € 5 Yi2 =
e
Y21 = Y11 s Y22 =
e e
Y31 = Yi1i 5 Y32 =

The coefficients cS., D<.
1) 1)
e e
Cij = Yij(b1>b2>b3)
De.. = 'Ye.-(Cl,Cz,Cs)

1] i]

b, = ys-

Cy = X17

P2
"6" )
Yi2 3
e
Yi2
, and £S
1

Yi s

X3 3

area of triangle 123.

=<

N

w
It

=<
w
w

"

2 (4., 1.)

by = y1-Y2
C3 = Xo2—X)
3
Y?a
Y13
1,2,3
1,2,3
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and

(] _ (b1b2+clc2)
Ell uA ) El? - L‘A
e _ _e e (ba%+c,y?)
Ez1 = Evo ; Ly = ——— 75—
e e e .e
E3y = Eys 3 LE32 = Ez3

(1i1) Six Node Triangle

For the six node triangle shown below:

) (’%;73)

2 (x1,7,>
1(,,1)

define
by = yo2-y3 5 b = yi-ya 5
Cy = X3~—X2 5 C2 = X17X3 >
A = area of triangle 123

Also define

Oij(PlsP2>P3) {l’j = l’2a3s°

Ee - (b1b3+C1C])
3 13 - uA
. p® - (bobs+cacs)
s 23 - LA
r€., = (by?+c,?)
’ 33 -~ b A
by = yi-y2
C3 = Xz2-X)




P . e

1]

6T, = T > 12
85s = Sgﬁ%%gil; 8% 6
S, = —%% 5 054
65, = -%% ; 052
85s= -Lgi%gil; 055
8% 4= %% S Y
65, = %% ’ 9?2
05 s= ﬂif%%f&l e?e-
6?32 gl 5 afu:

e

1]

The coefficients Cij’ D..
e _ €
Clj - Oij(blsb25b3)
e e
Dij = eij(cl,cz,ca)

and
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2(2P,+P,).
—— 5 0Oss

15

and E?
1

J

are

P P 2 -
e A N
_ _(Pp+P3) ge _ _Pi.oge o P2
- 30 ) 21 - —@' by »}22 - 'l"'g
- Py +P3) 6 2P, -P3) e _2(P3=-P2)
- 30 ) 25 -~ 30 Py 826 - 30
_Pa 6 _ P3| pe _(2P1-P3)
30 3 053 = 15 3 954 T30
(2P2-P3) 6€ - Py 0%, = P2
30 ’ - 10 » Ye2 7 730
_'4(P1+P3). 6 _ 2(P1+2‘P2) e _2(2P2+P3)
- 15 > 5= T 15 Ove=—"75
P P 2(P
_ 2(P2+2P3)' _ “Pl e Pz
—5— 5 %617 35 3 Y627 10

_ 2(2p1+P2) e _ 4L(Py+P3)
- 15 —) 066" -5
1,2, 6
1,2, 6




(b,b,+c,Cu)
12A

(b1b2+clgg

- b 2:2 ) ES,=
(b,b,+c,c4) . pe -
3 > 15
- E?z > Eiz
=0 5 ES s
= E?s H E?zz
(bibs+ ci1C3) .e -
= A ; Egs =
= i ; Euz =
2(b;2+bi by + bs? +cy % +C

3A

2)

2+
Ly A

(b

(b1b2+01C2)
3A

2
y C3 +C3 7 )

3 A

3

£e - _(b,b,+ C,C,)
13 12A

e  _

Ele = 0

o :‘_(b?b3+czcil
23 124

S, - (b2bs+c2cs)
26 = 38
e (bs 2 +c3 )

E33 = _...____...L‘_&i——-—-

e (b2 bs +x2 Cc3)

2 2
(b1 +b1b2+bib 3+2L2b3+cl +c1c2+clc3+cico3+2c2C3

3A

(b32+bsb1+bsba+2biba+cs’+caci+caca+2C1C2)

= N
.e e _ Le e _ Le

= bEys 3 Eg, = Eos > Egy = Egs
‘ 2 2 2 4 S92

: 2 (b, +b,b,+b,%+c, +to,C,+C, )

3A

A
e e
E 5 = Ly
e e
Esw = Eys

(b22+b1b2+b2b3+2b1b3+022+clc2+c2c3+2clc3)

3A




2(bz2+b2b3+b3’2+C22'+'C2C3+C'3'2)

3A
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APPENDIX THREE

A NOTE ON THE DERIVATION OF TRADITIONAL

FINITE ELEMENT SCHEMES TOR THE

NAVIER

STOKES EQUATIONS

A3.1

The Navier Stokes equations in non-dimensional form are -

du du 9p _ 1 g2
Uex tVay t3x T Re VY
v v, 9p . L g2
Uax Y Vay T3y T Re vev

(A3.1.1)

(A3.1.2)

(A3.1.3)

Galerkins criterion can be used to discretize the Navier Stokes

equations to obtain the finite element equations. There are

two cases to be considered.

(i) Common Interpolation

By common interpolation it is meant that the same trial

function is to be used for the yvariables u,

discretization process leads to the follow

equations.

v and p. Galerkin's

ing finite element
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(Ae..u. + BS 7‘ -0 (A3.1.4)

® E\/j
LL[\
~P]

(A3.1.5)

(A3.1.6)
The various coefficients are defined below
o [[ BNj o [[ ..BNj
e e
- - [[ .aNj o f[ ,.BNj
Cljk 5 —;—dexdy ; Dijk = Nl §§_deXdy
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e _ ou ) e _ Y
Fi —% Ni ds G- -% Ni -a—ljl—ds.

All the coefficients defined above may be calculated analytically
for polynomial elements. The non-linear finite element equations
may be solved by the Newton Raphson method. An alternative method
is to linearise equations (A3.1.4) - (A3.1.6). This gives the
following linear algebraic equations to be solved within each

iteration.

Z Z[A?.u. + B?.VJ (A3.1.7)
) i3 73 ij

0. + z } AS.p. = ZF‘? (A3.1.8)
j Lo i3] i

°
w
)
wJ

Yﬁ ) }; \
e e e
+ ! B..p. = G- A3.1.9
[ 2 8155 [/ 3P i ( )
e J e J r
where
Le e - e. — 1l e
Bij = Z(Cijkuk + Dijkvk> * RS Eij (A3.1.10)

k

Where Gk and Vk are the values of u and v respectively at node

k from the prevous iteration.
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(ii) Mixed Interpolation

The essential point of this formulation is that the con-
tinuity equation is weighted with a linear shape function but
the two momentum equations are weighted with quadratic shape
functions. The element to be used is the six node triangle.
The pressure is interpolated at the corner nodes only but the
velocities are interpolated at all the nodes. Thus over the

six node triangle shown below

3
o4 6
A
5

|

6 6. 3.
u = }, Njuj ; v = };vaj y; P = Ljpj

j=1 3=1 51
Nj - quadratic ;Lj - linear

Galerkins process applied to the Navier Stokes equations using

mixed interpolation gives the following finite element equations

Z a®.u. + bS.v. = 0 (A3.1.11)
1373 i3] .

e J




- 203 -

(A3.1.12)
t \ A
e e 1 e
Z Z(Cijkukvj * Dijkvjvk>+ Re Z ZEijVj
e J k e ]
3 )
e _ e
v/ hisPy = £ &4
e 3 e
(A3.1.13)
The various coefficients are defined below
e aNj e aNj
aij = .ﬂ.Li Si—dXdy 5 bij = ‘H Li §§_dXdy
e e
e aNj e 8N]
13k = .U' Nl —§—dexdy 5 Di]k —.U Nl 3—_Nk dxdy
e e
9N. HN. aN. 3N.
e X3y Y L) axd
Eij ﬂ(ax dX oy 3Y > Y
e
JL. [ L.
e. - ____] . e = __;]_
gi] f Ni % dxdy ) hij L Ni 5y dxdy
e e

e . . o
Fy o= ffNi s ’ Gy ‘j( N; gqds
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All the coefficients defined above are easily calculated

analytically using area coordinates.

Once again linearising

equations (A3.1.11) - (A3.1.13) gives the following linear

algebraic equations

; ;E‘ijuj

to be solved within each iteration.

b?.v.] = (A3
1] )
e _ e
+ EZ?E gijpj = Z{:Pi (A3
e j e
VT -
+ he.p. = EG‘? (A3
Z _L/ l:]P:] _J 1

e ] e

where Bij is given by (A3.1.10).

L1.14)

.1.15)

.1.16)

The author has written a series of Fortran subroutines

which compute the element stiffness matrices for the Navier

Stokes equations.
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APPENDIX FOUR

SHAPE FUNCTIONS AND STIFFNESS MATRIX
FOR THE EIGHT NODE MIXED ELEMENTS

The shape functions Ni(x,y) (i =1,2,...,8) for a trial

function of the form

AX A
b = a +ase +asetY+a,e *y+a5x2+a8y2+ayxzy +agxy?

over the eight node rectangular element shown below -

4 3 3

5 p » 7 :LK
{ é ~
fe—— 2h >

Figure (A4.1)

AX ny AX+uy 2 2 2
Ni(x,y) . +o; €7 o e to, e Yo e xTtaL yTra, oxTy

+ o0 XY

i =1,2,..., 8.
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The sixty-four coefficients a5 are given below. First define

the following quantities: -

8§, = e>\h i 8§, = eUk 3 8§3= (5+8,+8,-38,82)
Gq: (61‘3) N 65 = (62—3); 66: 1—612
§7= 1-8,72 ; §g = 1-81 3 Sg= 1-682
610— l+61 H 611 = 1+62
Then
(1-62%684) , 462 3, B (8, +82+28182)
11 = 5e%, 5.8, ' 8160 §38607

o 3 5
arg = ( 1)[:6q68 * 636869:

o, - (_l)[:(46265+61265> \ 4(61+62+26162):

656587 635567

S S §2

A T ETE,S, b YSTTRES, 0 %187 T ey
(282-36,-61085) . (26,-38,-8,85)
%17 = TTOR?TKSS o e 7RKZ § 3
1 1 , o
G21 = 6463 636369 ? sz - @21
.1 U, A |

) - _(3+62;26i62)
a2 = O 5 Q27 = ThZKS s




O2g

Gy 1

Oy 3

Cys

Oy 7

Qss
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(6162*62—2)

(1-8

2hk?6 3

1+265)

ThkZS

(4U8g=61285)

4(1-8:68,),

= —0y1

858687

838607

bl

G37

Oy 2=

Oyy=

Qye=

Oy g=

Os56

~031

031

(1-62+261)
2h“ké§;

53850

=0y 2

1
k%35

§,(28,-1)-3

2hk®§3




Og1

Q7y =

Ogy =

The

function
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shape functions Mj(x,y) (3

of the form

¢

a + bx + cy + dxy

Genz - 84811
58 7hk? 6,
Og2= —0Og1
Qey= —0g3
Oee= 0
Ogg= - 89810
hkzég

O072= 073 = —071

|
o

075 =076

84811

%78 =~ 7HKZS,

Qg2a= Qg3 = —Qg1
ags = O0gg = O

_ 849810
Ges = RS,

= 1,2,3,4) for a trial
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over the four node rectangle 1234 shown in Figure (A4.1l) are

of the form

Mj(x,y) = le+6j2 + Bj3y + Bjuxy (3 = 1,2,3,4)

The sixteen coefficients ) Bij are given below: -

1 1 1
Bi1= 1 5 Bi12 = B Bis = =7 3 Brs = hx 3
Boa1 = O 5 B22 = Bir2 3 Bz = O 5 Boy = =Biw
Bs1 = O 3 B3zz2 =0 3 Bszz =0 5 Baw = By

1

By1= 0 35 By2 = O 5 Buys = R Byy = —Baiwy

For convenience we now define the quantities Ti(g,n)

{i=1,2,...,9} as follows:

t:(E,m) =2n 3 T12(&,n) =2n° ;3 T13(&,M) ?%nza 14 (E,n)=ln?

5 .
s (Com =2ty tetE,m) =) 5 w(gm = et -D

To(g,m)= F2le’ SN (2En-1)+1 ]
TelE,n)= %3E(2£2n2-2€n+1>e25”-13
Let
€. = T()\,h)
1 1
Ei = Ti(p,k)
i= 1,2,...,9

All the coefficients (as defined in 6.9) necessary to compute
the element stiffness matrix for the Navier Stokes equations

using the 8-node mixed element are given below in terms of

.. .. . and e!.
al]’ 81]’ €1 i
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e BNS
(l) ars = fer -é"'x""— dXdy
e
e _ 1 ' 1
alg © Brl(xu82€6el+xa l+6666+20L 5€2€l+2a 7 2€2+u 88361)
1 1 1 [ 1
+Br2(Aa82€8€l+xu845866+2a5563el+2us7e352wa88€2€3)

1] 1 1]
+BP3(Au8262€6+Ausu€6€8+2a856252+2a 2€,7€ 3 +a58€u€l)

e el+la _, e, +2a

! 1 1
T8, (Ao EgEotAa, EgEyg s5€3E9+20 HEE3FO GEHEL)

(ii) e = UMF 5y axdy

1 ! 1
rs Brl(“as3€é51+““su€6€6+2“56€2El*“s7€2€1+2“88€2€2)

] \ 1

+BP2(ua 4€9€ +ua H€8€6+2u 6€2€2+u 7eqel+2388€3€2)
1 1 1 1

+Bp3(““s3€é€1+““su€6€8*2“86€3€1+as7€3€2+2“s8€2€3)
1 1 1

+B, (MO g€ EgPUlg €8€é+2“56€2€3*“s7€u€2*2“58€3€3)

p o= 1,2,3,4 3 s = 1,2,...8
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o l(xa
o Q(Xa
a 3(Aa
o L\L(>\0L
a. (Ao

t5

at6(A

at7(ka

S(Xa

]
g2E€7€g A

s2 972 s47978
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g.el+ia e .el+2a

s?2°671 sh~ 676

e-el+ia ,e.el+2a

s2- 771 st~776

€ +2a

Egtrag,€6Ey

2%8

e7e'+2a

sy 7

1
2€9€l+ka ege6+2a

e.el+ia €

52EpE 3t A EgEgT2O

9

e.el+ia e el+2a

e,el+ia

55€8

1]
cp€gEatAG  EgEqt L E

Cig = [f N 5——dxdy
e

5€2€ '+2a

5828 '+2a

!
€2€6+2a

]
e6+2a

e, el+2a

sb 471

1
5€2€3+2a

e, el+2a

s5 472

!
3€3+2a

s7 872

s7°8°8 “s8

1
575482158383

s7 4

1
57638058808

ge~E)+a )

]
5762827 %58% 35

1
576882 05 g€gE )
ele.+a

88981)

1
6669)

e, €l+0
™)
1
7€2€u+as8€5€l)
€ el+a
ol

8€3€u)
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(lV) dtS = [j Nt VdXdy
e
e = 1 1 1 1
dig = gy (MaggEgE  FHay LEgE 20 GEES T HEGE ] H20 GEGES)

1 1 1 1
+ atZ(uaS3€6 6+pa €7€6+2a86€8€1+as7€3€6+2as8€2€8)

1 1 1 1
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1 t 1
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1 1 |
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o, g (Ha 4EQE,y qEgt20 g€ B TO 783837205850 Yy
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&4

1 ! 1
at8(ua83a 2€9+ua 6859+2a36€264+as7€u€3+2a 8 364)
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+20Lt5

+20ct
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oN_. 9N . ON_. 9N
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ts ~ ff <Bx 5% 3y 3y :>dxdy

] 1 \]
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