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SUMMARY,

The problem of the design and analysis of experiments invelving
mixtures, where a restriction exists due to the faect that the sum of
the proportions must be unity, was, as far as the writer is aware
first mentioned in the literature by Claringbold*,

" Scheffe seems to have been the first to go into the problem in
any great detail and he obtained equations for analysing such experi-
ments and also considered some of the ramifications such as process
variaples, fractionation and restrictions on composition which make
it necessary to use pseudocomponents. The equations which Scheffe
derived are examined and criticised and their use illustrated by
examples from experiments in which the writer has been involved. Scheffe's
method of dealing with process variables is wlso illustrated by a
synthetic example.

Concentric shell designs recently developed by Doehlert are
outlined ard their relationship to balanced incomplete blocks, Scheffe's
designs and Hadamard matrices is given.

Draper and Lawrence have Geveloped more sophisticated designs
using techniques worked out by Box and Draper for minimising variance
and bias errors in regression equations. A critical comparison is
made between their designs and Scheffe's.

Following Box's method of Evolutionary Operation, equations
have been derived to enable the technique to be applied to production
processes where mixtures are involved. This is illustrated by a
simulated production process and scme suggestions are made to overcome
a difficulty encountered in this simulation which could easily occur
in a real situation,

The Appendix contains original tables to enable confidence
limits to be calculated when using Scheffe's designs for the special,

but usual, case when the replicates are of_equal size,

* Claringbold,P.J., "The Use of Simplex Designs in the Study of the Joint
Action of Related Hormones", Biometrics, 1955, 11(2), 17i.
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Introduction.

This dissertation examines and illustrates the
methods which have been developed by Scheffe (1958,1963) and
others faor the quantitative eiamination of mixtures. Most of
the inf'ormation is contained in two papers by Scheffe, two by
Lambrakis (1968a,1968b) and one by Gorman and Hinman (1962).
The two papers by Scheffe and Lambrakis are very erudite and
mathematically elegant. But they can probably be read and
understood only by the mathematically sopﬁiaticated and those
to whom the exercise is a satisfying end in itself. Many of
those who are in a position to put tine techniques to use at the
"shop floor level" are probably the ones who have the lcast time
or detailed mathematical knowledge necessary to bring them down

to practical terms., Gorman and Hiunman have gone some way to

remedy this in their paper in which they illustrate with practical

examples the main contents of Scheffe's first paper.

In this dissertation the writer hopes to amplify
the work done by Gorman and Hinman and to take it several stages
further illustrating some of the more advanced technigques by

means of examples.

The Problem.

There are many situations where the response does
not® depend on the total amount of a mixture present (an extensive
property) as would be the case in a field experiment with
fertilisers, but only on the proportions of the components
present (an intensive property) as would be the case in the
octane rating of a blend of petrols or in an animal feeding
experiment where certain dietary combinations had to be tried

out. In the latter case if the usual analysis of wvariance

techniques were applied one would find oneself in the position



3.

of trying to get an animal to eat twice or three times as much
as the others. Even if this could be done the results would be
of douttful value.

Similarly, if one wished to investigate the tensile
strength of, sagy, stainless steel which has an approximate
analysis of 18% chromium, 8% nickel and 74% iron and it was
decided in the first instance to increase the chromium content
by 2%; does one reduce the nickel. by 2% or the iron by 2% or
reduce both by 1%? Are the cbserved changes in tensile strength
due to an increase in chromium or to a decrease in the iron or
the nickel or to both? It can be appreciated that the usual
factorial analysis no longer applies. Contrast this situation
with a similar experiment which one might carry out on a steel
whose ohosphorus and sulphur content are of the order of 0.001%.
Any change in tne latter would bring about a negligible change
in the overall iron content, Similarly, the application of
fertilisers at a few ounces per square yard does not produce any
@& preciable change in the soil concentration. Scheffe's method
recognises that for systems involving composition the sums of
the proportions by weight, volume etc., must sum to unity,
Therefore, the factor space is a regular simplex. For three
components’ this will be an equilateral triangle; for five com-
ponents a regular tetrahedron; for four or more components no

geometric model is possible,

Simplex Lattices.

Any combination of three materials can be repre-
sented by a point in an equilateral triangle, a concept used

extensively by chemists and metallurgiéts in plotting phase

diagrams. The method is illustrated in Fig.l. A point on



A _TWO DIMENSIONAL SIHPLEX LATTICE

Fig L

100%

‘707

60J.
X: 407 A

- 5V 60% B
407,

L
c 7 7 7 ey 7 7 7 7
(0% 20Y% 30% 40% Sof. 6ol Toh 8cl % 1oy,



the apex A represents 100% of ;omponent A, A point on the line
A-B represents a binary miexture of A and B and none of C. A
point within the triangle consists of a ternary mixture of A, B
and C. Thus, the point X represents 4LO%Z of A and 60% of B; the
point Y represents 464 of A, 17 of B and 3% of C; the point 2
represents equal amounts of A, B and C and is the centroid of' the
triangle., The idea can be extended to four components in which
case a quaternary mixture would be represented by a point within
the tetrahedron. Notice that any point on the line A-W represents
a constan£ ratio of B to C in the case illustrated this will be
B:C::634.

A (g,m) simplex lattice is defined as a lattice
involving q components to which a polynomiagl of degree m is to
be fitted. Examples of different lattices for g=3 are given
in Fig. 2. The special cubic lattice is made by adding a centre
point to the two dimensional face of the quadratic lattice. It
will be shown later that this simplex, called a simplex centroid
design, has several desirable properties which make its use pre-
ferable in many cases to the other designs shown in Fig. 2.

The proportions of the components are 0, 1/m,2/m,...,1
giving a total of m+l equally spaces values from O to 1 and all
possible mixtures with these proportions are used. TFor the
quadratic lattice (q,2) the proportions are 0,5,1 and mixtures
are all the possible permutations of (0,0,1) and of (0,%,%). For
the cubic lattice (q,3) the proportions are O,%,%;l ani the mixtures
are all the permutations of (0,0,1), all the permutations of (O,%,%)
and the centre point (3,1,1

Table 1 gives the number of points required for

any lattice (except tie special cubic) and is given by Scheffe (1958)

as (m+g-1)!/m!(g-1)! For the special cubic the formula is

De
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§3q(q+1) + q(a-1)(q-2)}/6. Doehlert (1970) has worked out
alternative formulae in the form of nested sums and has given
an algorithm for calculating the required figures. Doehlert's

formulae are,

m=2 Q(q+1)/2
q
m=3 Z 1(141)/2
i=a
o
m= 4 Z Z i(isl)/2 etc.
J=4 i=1

Table 1 gives the number of points for various
values of g and m. Doehlert's* algorithm is that to obtain
any figure one adds the one above to the one on the left. Thus
2002 in row 8 and column 4 is obtained by 1287 + 715 = 2002,

This does not hold, of course, for the case of the special

cubic.
TABLE 1.
Number of Mixtures in Various Types of Lattices
ms £ 2 4 5 Special Cubic
No. of q
components
5 6 10 15 21 7
b 10 20 35 56 1
5 15 35 O 126 25
6 21 56 126 252 41
7 28 84 210 462 63
8 3% 120 3% 792 92
9 45 165 495 1287 129
10 95 - 220 715 2002 175

It is surprising that Scheffe does not mention it

*
and it is obvious from Doehlert's paper that he (Doehlert) has

not appreciated it, that the fiéures in Table 1 are merely those




in Pascal's triangle with the first two and last two figures struck
out! Fufther, when m=2, the numbers generated are the well-known
triangular numbers for which Eperson (1967) has deduced several

interesting relationships.

Relation of Lattice Designs to Uniform Shell Designs.

Doshlert (1967) has developed a new series of ex-
perimentel designs which have an equally spaced distribution of
points lying on concentric spherical shells, These have unif'om
space filling properties and show an interesting relationsaip with
Scheffe's lattice designé and with well-known unsolved problems in
balanced incomplete block designs and Hadamard matrices (C.L.Lui.)
For instance, Hadamard* matrices of order n are known to exist when
n: 1,2,4, eee, U4j (j € 50) with the exception j = 47 i.e. n = 188,
If such a matrix is normalised by arranging the first iow anmd first
column to consist of +1's, and if this row and column are struck
out and the -1's replaced by zeros we have a symmetrical balanced
incomplete block. However, Hadamard matrices for j > 50 can only
be conjectured. Consequently, symmetrically balanced incomplete
block designs for these values are similarly open to conjecture.

A regular simplex in 2-space can be defined in terms
of three cartesian coordinates A, B and C

A (0.000, 0.000)
B (1.000, 0.000)
¢ (0.500, 0.866)

These points are labelled in Fig, 3
: D ¢

lﬁj 3

*See Appendix l



If each point is subtracted from each other

point four more points are obtained which define a regular

hexagon
A-B  (-1.000, 0.000) E
A-C  (-0.500, -0.866) F
C-B  (-0.500, 0.866) D

B-C ( 0.500, -0.866) G
For three factors the starting point is a 3-space
simplex i.e. a regular tetrahedron
A (0.000, 0.000, 0.000)
B (1.000, 0.000, 0.000)
C (0.500, 0.866, 0.000)
D (0.500, 0.289, 0.816)

If these points are subtracted from each other we obtain:

A-B (-1.000, 0.000, 0.000) B-C ( 0.500, -0.866, 0.000)
A-C (-0.500, -0.866, 0.000) B-D ( 0.500, =-0.866, -0.816)
A-D (-0.500, -0.289, -0.816) C-B (-0.500, 0.866, 0.000)

C-D ( 0.000, 0.5?%, -0.816)
D-B (-0.500, 0.289, 0.816)
D-C ( 0.000, -0.577, 0.816)
These nine points together wita the four original points define

a cuboctahearon with a centre point

Cuboctahedron

9.
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For d factors a regular simplex is formed by adding to the d - 1

simplex the point

1 1 1 1 J(d+1)

oes o

;I; 2 EEE y Ji2(a-1)(a-2)} J {2d(a~1) } ; N (23)

Al
"2‘" 3

To use the formula one works from right to left noticing that only

the last two coordinates change and that the last coordinate is

always J(d+1)/J(2d).

Example.
To find the basic coordinates when (a) d = 4 and
(b) d = 5n
a) d==4 g:i = 0,791 and —e=. = 0,90} ots,
2)6
giving (0.500, 0.289, 0.204, 0.791)
b) L= L) o 0,775, —L——— _ 0.158 ete.

= 07? ’
J(2x5) d {2x5(5-1) }

giving (0.500, 0.289, 0.204, 0.158, 0.775)

Putting these results in the form of a table together with those
previously obtained we have

0.000 0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000

0.500 0.866 0.000 0.000 0.000

0.500 0,289 0.816 0.000 0.000

0.500 0.289 0.204 0.791 0.000

0.500 0.289  0.204 0.158  0.775:

From these figures the coordinates of uniform shell designs up to
d = 5 may be calculated. In Doehlert's paper (1970) more de-
tailed figures up to d = 10 are tabulated. However, Doehlert
;nd Klee (1970) have shown that the levels of these designs can
generally be reduced by rotating the design and have calculated
tables giving designs up to and ineluding 14 factors.

Reverting to Dochlert's designs and their
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generation: if the same quantities subtracted in the process
outlined above are now both subtracted from and added to the
points in the uniform shell design, larger designs are obtained.
This process carried out to a radius of 4 in 2-space produces the
design in Fig. 4. The dots are at the intersections of
equally spaced lines, at 60° to each other i.e. a rhombic or
n/3 lattice. The points which have been joined by broken lines
are the ones of interest. Working from the centre-point outwards-
it will be found that the developiﬁg pattern generates sequentially
the simplexes necessary for the development of linsar, quadratic,
cubic, quartic etc., response surfaces (see Fig, 2 ) thus
showing an interesting relationship between two apparently
unconnected experimental desigas. If one goes back a step further
one can regard Hadamard matrices as a common souce of three types
of experimental design.

| Hadamard matrices

Symmetrical Balanced Uniform Shell Designs
Incomplete Blocks

Simplex Lattice Designs

Reverting now to the simplex designs; at some
stage a decision has to be made what the value of m shall be in
a given experiment. A decision will be reached base on
a) the maximum number of experiments whica can be accommodated
bearing in mind the need for replication if a measure of
error is to be obtained

b) the adequacy of the polynomial chosen. A quadratic polynomial
describes a response surface with no more than one maximum
or one minimum, but not both, and with no point of inflexion;
a cubic polynomial will give a maximum and a minimum or a
point of inflexion and so on, .

Bearing these factors in mind the writer feels
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that a cubic polynomial is sufficiently accurate for most
practical purposes while not involving a prohibitively large
number of experiments,

The foregoing remarks will have to be modified when
fractionation of simplex centroid designs are discussed which
allow one to reduce the number of experimental points with the

accompanying restrictions which fractionation involves.

Polynomials on the Simplex,

We will show how some of the equations used in this
technique are derived,
A polynomial of degree n in q variables

X1, X2, 'o.,xq subject to the restriciion

x1+x3+noi+xq=l (1)

will be of the form

= by «+ be + Zb xx + Zlgklxxk+"'

1€igjsq 1€igjsksq

Consider, in the first case, where there are 3 components i.e.

qQ = 5 and we are interested in a second order polynomial

¥ = b0+b1x1+b3xs+b12x1x§+b13x1x9+b23X3x3+h11x12+b33x32+b33x32 (_2)
Now, by (1) , X1 +X3 + x3 =1
and bo = boxs + boXp + bpxg (3)
Hence bo may be eliminated from ( 2) by substituting (3)
y = (bg+bi)x1+(bo+b3)x3+(bo+ba)x3+b13x1 Xg+biaXy X3
+ b2gXaXs + b1sX1?+ b2axa®+ baaxs?
The squared terms may be eliminated by multiplying (3) by x1,xs

and xs to formm the identities
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"X = Xy = XiXg = XiXg
a
Xz~ = X3 = X4Xp = XpXg
st = Xg = X4X3 = X3Xg3

Substituting we obtain
¥ = (botbi+bsa)xs+ (bo+ ba+ bas)xp+(bo+ba+bss)xs
+(b12—b11—b22)X1K3+(b13-b:|.1-ba3)+(baa"b33-baa)xzxs
Replacing the sums of the constants by
Br = bo + by + byy ete.,
yields
Y = faXs + PaXa + PaXg + P12XaXa + P1sX1Xs + PazXaexs

or, more generally

go= Zﬁixi + B

1gi<gq 1€i<jsq

X.X.
i

[N
.

If a third order polynomial is required nine more
terms must be added to give
2 2
Y=bo+ o e e o e + bigaXiXa® + byigxs®xs
2 2
+ b13sXaX3” + bygaX1"Xg
Bon +b s
+ DogaXeXg™ + D3azXa™Xj
+b133x1x3x3
3
+ b114Xs® + baa2X3® + baaaxs
Proceeding as before and using the following three
equations derived from above to eliminate x®

38 2 2 2 2 2
X4 = X3 = Xy Xg = X4 Xg = xi-'xix'a-xiJCa-xi Xg=X41 Xg

2 2 2
x3% = x3® ~ xixa® - x3%x5

3 2 2 2
X3 = Xg = XgX3 = XaXg

X3 —?Cix;;-— HgXg=X 1Xg 2-)(3 ax.a

2
Xg=X1Xg=XaX3~X1X3" =XaXa">
we obtain

Yy = Paxs + BaXa + BaXg
+ P12XsXg + f13X1X3 + PasXaXa
2 2 2
+ P112X1" X3 + Pi113X1"X5 + PazsXa"xs
Xg %+ P P 3
+ P1r22X1Xa "+ BigaX X3+ PaaaXaX,

+ ﬁ:.as XXX g (%)

14,
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Now, f'rom considcerations of symmetry, ﬁiij = = ﬁijj = xlj’

say, which enables us to write terms involving coefficients

of this type in a more compact form

2 2
ﬁiijxi xj + pijjxixj

1

2 2
Piis® %5 = Pii 5%

yiqxlxa(x - xj) (3> 1)

i

Hence substituting in (4 )
= Bix1 + Pa¥a + PaXs
+ P1axiXa + f13Xa¥g + faaXaXs
+ yaaxixs(xi—x@)+y15x1xa(xi—x@)+yhaxgxa(xg~xa)

+ PizsX1XaXsg (5)

This third order equation may be written more generally as

Tt Zﬁ ¥ A Zﬁla & Z %555y

1<isg 1€i<jsq 1€i<igq

Z Py 311%™ FS)

i1€ig j<kgq

The equation for the special cubic (simplex

centroid) is

Zﬁixi‘f Zﬁijxixj X Z Py 5% %%

1€igqg 1€i<cjsg 1.€i<j<ksgqg

Calculation of the coefficients of the polyromials,

The coefficients for the cubic equation (5 ) will
be derived and those for the quadratic and speciel cubic quoted.
Let the response of the pure component be Yy

Putting xj_ =1 (and. hence xj &3 X_k = O) and inserting this

value in ( 6) we find
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i.e. the coefficient associated with the pure components is the
value of the response obtained with the pure component, a result
which :?.s generally true far all the equations of whatever degree,
Let the response of the binary mixtures be yiij
where the signif'icance to be attached to tle subscript is that

at that point the mixture consists of 2 parts of component i

and 1 part component j. At the point x; = 2 x. = 1 from (6)

J
— 1 2 2
yiij_ 3ﬁi+‘3ﬁj+9ﬁij+27 yiJ (7)
and at the point x; = %, x5 = 2
. 2 2 A
yij;‘. "'3ﬁ.i+ 3ﬁj+ 9pi,j ay Yi.:] (8)

Adding (7) and (8)

= 4
Fags ¥ Tiey = Pa n By Mo Py

Substituting and rearranging

R L IR R )

ﬁi' iij ijJj B ST

dJ

Subtracting (7) and (8)
ijJ ijd
Substituting and rearranging

Yi 4

= & - -

1J

1

Finally, to evaluate ﬁijk’ put x, = X5 = X % in (6)

L

=3 5 L S 4 L
Tige S5 Py * TPyt 3By 5 Pys* TPy * G By * 5B
(A1l y terms are zero at this point)
Using the above results we obtain
Bigi © Wi5 - (27/1) i3+ Yis5t Yaae * Vi * Ty + ¥ a0
o+ (9/2)(yi + .Yj F yk)

The corresponding formulae for the quadratic,



special cubic and higher order polynomials may be similarly

computed. Those for the first three models are quoted below:-

Quadratic Model.

1€i<qg 1€i<jgq
By =95
Py =, ~%9; = 475 (9)

Special Cubic Model.

Z Pi*; * Lﬁl,] 1% Z B i * ™%

1€i<q 1€i<cjsq 1€i< j<ksg

By =¥;
By = 2Ty 5 - 12(yij+yik+yjk)+3(yi+yj+yk)

Cubic Model.

J =Zﬁix‘ Zﬁla l 3 % Z 13 i J(xl-x )+ Z ﬁl.]kl JJﬁc

1€isq 1<€i<j<q 1<i<jgg 1gi< j<k<g
Py =34

Biy = (/g5 4955579577 5)

Yy = (9/1+)(33«'11J V5357544 5)

+(9/2) (y3#v 549)

(10)

174
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Variance of the Predicted Response.

The method of deriving the formula necessary for the
calculation of the variance will be given for the cubic equation
and those for the gquadratic and special cubic quoted.

We replace the B's and y's by their estimates to give

the predicted response }.-

<2
n

YaXq+ YyaXa + YaXa

+

(9/#)(Y112 * Viaa = Ja - Ya3)X1Xa + o o o o

(22Y123 = (27/LJ(Y112+Y132+Y113+3133+YQaa+ybaa)

+

+ (9/2) (ya+y3+ys)*1XaXs

We now separate out the various coefficients

1) Coefficient of ys , Ci say.

Ca = X3 = (9/W)xaxa = (9/W)x1%s = (9/4)%axa(xs=xa)
= (9/h)xaxa(xs-%a)+ (V/h)*x2xaXs

Factorising and using l-xs = X1+Xa

Cs = (x1/2)(3%x4~1)(3x4~-2) and, in general

C; = (xi/Q)(3xi-l)(§xi-2).

2) Coefficient of yiza, Cii2, say

(9/1)x,xa + (27/h)%1%a(x2~%a)-(27/4) X1 %a%a

K9/2)X1X3(3X¢—1) and, in general, Ciij=(9/2)xixj(5xi_1)

0112

I

3) Coefficient of yiaaz, say

C122(9/2)x4%s (3%3-1) and, in general, Cijjz(g/?)xixj(3xj-1)

4) Coefficient of Yyigas Cins, say

This is easily seen tobe Cizs = 27X1X2X3

and, in general Cijk = 27xixjxk

Hence, for the cubic polynomial
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~= C.y. C...‘... B Bl L .
Y Z 1y3- ¥ Z ( 11.]yllJ+ClJJleJ) Z\ Cijkyijk

1€igq 1<i< j<q 1€i< j<ksg

Using the form of the equation given on Page 1) where

G By

and C.,. have the values given above,K we can
e A ijk ’

13J
determine the variance of the predicted response. If the
variance of the simplex is o® then the variance of the

predicted response is given by

= c3 c? o2 c2
wire TE oY Hue Y Gu .y da]
g 2l T3 LR e § 1
i1€isq 1€i<]jgq 1<icjsq 1€i< j<kgg
where r., r..., r... and r, . are che number of observations
I iij X33 ijk

on y, s yij and yijk'

Each of the polynomials are orthogonal on the
lattice in the sense that each equils unity at the lattice
point associated with it. For example, for pure components
when x3=1 we have &)(3-1)(3-2) = 1; for binary mixtures when

o

xs = 5 and xa =3 we have (£)(%)(3)(3x51) = 1 and for ternary

mixtures when x3= X3= Xg= % we have 27(3) (1) (}) = 1.

Allocation of measurements on the lattice.

It is obviously highly desirable to know how
the experimental observations should be distributed over the
lattice to give the minimum variance. A foreknowledge of this
would enable an experimenter to allocate his, perhaps limited,
resources to the best advantage.

Tﬁis can be done by taking the number of
observations at each lattice point proportional to the
maximum of the squares of the coefficients. This allocates

to each observed mean a number of observations such that the



maximum contribution to the variance of the predicted response

is the same at each point, We have, therefore, to calculate

the maximum values of the C coefficients.

1)

2)

3)

Maximum value of Ci2

By rearranging Cj given on page 18

C; = (9/2)(xis-xiz) + X,

The maximum value of this is beiously X, = 1 and the
minimum at X = 0. At the maximum value of x5 Gy 1

and hence max(Cia) =Ty

-]
Maximum value of Ci"

JdJ

14JJ

values of Xy and xj must lie ir the triangle

C,.. is a function of x, and x, only and the

x; 20, xj z 0, P Es <1,
Now,

1J

when xi-i-xj =l

Under this restriction

iy bb

Differentiation shows that the maximum is at x; = (4=J7)/9
corresponding to Cj ;s = (10+7d7) /27 and hence to

2
max(Ciij

holds for C.. .o
oy

) = (h43+l40J?)/?29 = 1,116. The same result
3 ,

The maximum value of C. .
ijk

This is obviously when x; = K - B = % at which

2
point maX(Cijk) = 1-

and the maximum value is

20.

23
C..j = (81/4)xi’xja(3xi—1)2

C; 55=(9/2)%; (1-x,) (3x;-1)
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3) contd.

Therefore, the observations must be allocated

amongst the points in the proportion
B 0ol o B e den 10161 1

This, for all practical purposes, is to say that one must
take equal numbers of observations at each lattice point,

a result which also holds for the quadratic response surface.

Allocation of measurements on the lattice flor the case
of the special cubic.,

The way in which one tests the adequacy of fit
of the polynomials is by taking extra observations (check points)
at points of particular interest and comparing these observed
values with those calculated from the polynomial.

Referring to Fig. 2 ,it would be reasonable
if one were fitting a second order polynomial, to take one check
point at the centre of the lattice. Then, if the second order
polynomial was found not to give a good fit when measured against
this céntre check point, the check point itself could be iuncorporated
in the equation to give a third order polynomial which would be a
better fit. This technique is known as "augmentation" and the
special cubic lattice is sometimes referred to as an l-'auugmen’ced“
cubic lattice.

If one decides to make observations at the
seven lattice points of the special cubic to fit a third order
polynomial, then the remarks of the previous section apply; equal
numbers of observations at all points. However, if used as a
check point to test the goodness of fit of a second order polynomial

the distribution of observations over the lattice works out

differently.
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Suppose we have derived a quadratic polynomial;
at the centre point x; = x, = X = % the response is given
by

=4 1 1 - i S
yi,jk = sﬁi i ':?ﬁJ o+ iﬁk + gﬁij'i' eﬁj_k + Qﬁjk

Now, for the quadratic polynomial the coefficients

in terms of the observed responses are given by

pi:yi ]

1

Substituting we find that the response for the ternary mixture is
i = hY

and the difference between the observed mean response of the

ternary mixture and that predicted is given by

s

8 5 = Vs g = WGy 7,7 v/ Gy 49,) (1)
where the carets denote mean values.

Suppose r, observations are made with the pure
components, r; with the binary mixtures and rs with the ternary

mixture, If the observations are independent with equal variance

o’, then the variance of dijk is given by

16 1 i xE
Var(dijk) = 02<%a * St 5 ;1) (12)

The totel number of observations rs+3rz+3ry is

fixed and the minimum may be found using Lagrangian multipliers

i | 151 y gl |
Tit— o’“(;s + 27 ot 5 -E.) A (ra+3rg+3ry)

Differentiating this respectively with respect to ri,rs and rg

and setting the derivatives equal to zero it is found that the

minimum occurs when the observations are in the proportion
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Pis o e =1 3k 3 9

For example, if we have 10-15 observations then

to test a difference di. we should take ry =1, rg = 2,

Jk
rs = 4 or 5. However, if one wished to place confidence
limits on ﬁi’ the coefficients of the polynomial associated
with the pure components, one would have to use as a measure
of the standard deviation a fligure cbtained from a consider-
ation of the observations made at the binary, ternary etc.,
points as the contribution made by‘Lhe pure components would
be zero for a single observation. This is an unattractive
arrangement and it is suggested that at least two observations
are made at each point and the ratio 1l : 4 : 9 implemented

as a secondary consideration.

The essential difference between this allocation
of observations and that of the prerious section is that in
this case the observations are being allocated for the purpose
of testing a goodness of fit while in the previous sectiorn they
are allocated for the purpose of estimating the response curve
after the type of polynomial had been chosen. A polynomial
having the same number of coefficients as points in the lattice
will fit the observed mean value at each lattice point exactly

and no measure of lack of fit is obtained.

Testing goodness of fit.

To test the adequacy of the model we need to com—
pare the calculated response with an observed response somewhere
other than at one of the lattice points for the reasons given
at the end of the last paragraph. For this reason it is necessary
to introduce into the experiment observations taken in regions of

particular interest, the previously referred to "check points". We

have seen that in the case of a quadrafic polynomial the cent%e
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point may be used as a check point and introduced into the
calculation to form the special cubic if tne quadratic is
found to be inadequate. TFor other models the experimenter has
a free choice as to the position of his check points.

In order to judge the suitability of a model
the student's t-value for the difference between the observed
and calculated values needs to be determined.

For the quadratic model using the centre point

of the simplex as a check point the test will be
t = dijk/%ar(dijk)
where the numerator and denominator are given above. If the

number of observations is the same at each lattice point this

reduces to

27 %
ijk® 44 o

=d
where r is the number of replications at each lattice point,
When using points other than the centre of the

simplex as check points the following formulae are used to
compute the variance of the predicted values. The equation

for the variance of the cubic has been derived earlier, but

it is quoted again for completeness.
Quadratic Model.

varG) = o ( Z a /v, + Z oy /74 )

1€igqg 1gi<jsq

where

a, = xi(zxi—l) and a4 = 4xixj
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Special Cubic Model,

Yor(y) = &( Z by /vy + Z by /7y + Z b;jk/rijk)

1€i€q 1gicjgq 15ig j<ksq

2 g 2
b, = (xi/2)<éxi =2x,; +1-3 Z{: % )

J=a

where

b. .= e g (5 o
15" ¥ J(5 j ) .
R

Cubic Model,

- 2 2 2 2
var3) = o Z Cy/ry + Z Ci15/Taag * Z O3 9/7i55 * Z 1571 3x)

1€igq 1€i<jsq 1gicjsq 1<i<j<ksq
where

C, = (xy/2)(3%,-1) (3x,-2)

Cis5 = (9/2)xixj(3xi—1)

cijj = (9/2)xixj(3xj—l ;

1!

Gl - "B

Notice that if the same number of observations are
taken at each lattice point all of the above equations may be more
compactly written

Var(y) = o® z/r
where r is the number of observatiors at each point and z is the
sun of the squares of the coefficients, a function which depends
only on tie composition of the mixture.

Lambrakis (1968a) has shown taat a general expression

for the coefficients, z, of the variance equations is
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k
- 1 1 i 1
8y, = {I [(mxj) ./:r:"j.(mx‘j rj) 11
J=1 i .
where Sr is any subset of the r elements of (1,2,4..,9), rj

is the number of occurrences of a letter or number in the

subscript and m is the degree of polynomial to be fitted.

Example.
For the cubic model, (q,3), m = 3

a) Cs( = Css4), hence ry = 3

§(3x,)1/30(3x4-3) 0} = (x1/2) (3xa-2)(3%x2~2)

i

Ciaa =

=

J

B) ﬂi:l.?, hence ry = 2 and vy = 1

Casa = T {(3x,)t/r; 2 (e ) 1] = (9/2)xaa(3%:m)
J=1 3 :

G) C:.,_';a, hence ri= ra= ra= 1

—Hw

Cias = I(ij)s/lz(sxj—l)zl = 27X1X3Xs

j:i

Compare these with the expression on page 18

As the value of z depeﬁds only on compositioﬂ its
value can be represented by contour lines on a simplex. Gorman
and Hinman have published four simplexes from the quadratic
to the quartic model which show these contours. But the dimensions
are so small (2" x 2") that they can be used only for the coarsest
measurements. To remedy this a table of z values has been cal-
" culated at intervals of 1,0(0.02)0.34 and is given in Appendix L
The function is symmetrical within the area bounded by the lines
joined the centre of one side, the centroid and an apex. Hence

the above intervals cover all cases.

Synergism and Antagonism.

The polynomials discussed can conveniently be re-
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garded as being composed of two majér parts; a linear part

and a non-linear part. The first summation represents a linear
combination of the mixture variables such as would occur if the
density of a mixture of three liquids whicn underwent no volume
change on mixing were measured. The second summation is the
non-linear part and represents deviations from linearity which
may be either positive or negative. If the deviation is negative
the effect is said to be antagonistic; if positive the effect
is said to be synergistic a term introduced in this context by
Macht (1929). Sometimes agonistic is used as synonymous with
synergistic. If the terms are antagonistic they will deflate
the response below what one would expect from a linear model and
vice-versa in the case of synergistic terms.

The non-linear part is sometimes sub-divided to
give binary synergistic (antagonistic) terms, ternary synergistic
(antagonistic) terms etc.,

There has been some attempt to identify these temms
with Yates's idea of interaction effects (Quenouille 1959). But
Scheffe (1961) strongly rejects this and studiously avoids the
term "interaction". He argues that for, say, a three component
mixture the experimental points needed to define a two~factor
interaction cannot be chosen without varying the third factor in
suéh a way as to produce somehow an "interaction" of all three
factors. The usﬁa¢ notions seem not %to be applicable in this case.

A knowledge of the synergism and antagonism can
obviously be useful in giving some indication of the underlying
mechanism and it has been suggested that it might help in the
determination of Refutas blernding numbers. These are numbers by
which the viscosity of a mixture of oils can be precalculated, as

the viscosity of a mixture of oils is not a linear function of the
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viscosity of the individual components.

In this section it seems appropriate to mention a
piece of Jjargon sometimes encountered in this context; i.e.
isobols. These are lines representing the combination of

materials just necessary to cause a standard effect (Loewe,1928) .

Response Surfaces.

Because of the restriction that the proportions
of a mixture must sum to unity a thfee component mixture may
be represented by a point on triangular graph paper, while a
four component mixture may be represented by a point in a regular
tetrahedron. Hence a response surface may be plotted.
Example,

The following example will illustrate the appli-
cation of the previous theory to a problem in petrol blending
which is a modificzation of the one in Gorman and Hinman (1962)
concerning the octane rating of petrol blends.

In practice the octane rating of different hydro-
carbons show marked deviations from linearity when blended
together. Paraffins with paraffins and olefins with olefins
are sensibly linear while blends of paraffins with olefins or
olef'ins with aromatics are not. With pure hydrocarbons these
deviations may be quite large. But with commerical petrols,
which contain a large number of hydrocarbons, deviations may
be quite small., The reason for these deviations are probably
associated with the different oxidation mechanisms of the
different hydrocarbons.

The data in Table 2 represents octane ratings
of blends of 3 different grades of petrol. It was decided to
fit a quadratic model to the data or, if that was found to be not

adequate, to fit a special cubic, The centroid corresponding to
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the mixture (4,3,%) was to be used as the check point for testing
the quadratic., Hence, the observations were taken in the ratio
given. A further observations was also made at the point

(0.295, 0.405, 0.300).

Table 2 : Octane Ratings of Blends of Petrol.

Volume Fraction
Blend X, X3 Xa Obgerved Octane No. Mean
i 1 0 0 100.9 100.90 Vi
2 0 i X 0 8544 85 |” ya
3 0 0 3 85.5 8544 Vs
L z z 0 88.8 89.3 89.05| yia
5 % 0 % 99.3 90.7 9545 | Yas
6 0 5 5 85.5 85.4 85.45 Yas
. T % X % 88.5 88,5 88,9 88.5 88.66 Y133
8 0295 0.405 0.300 87.0 88.0 87.5
5% = 0.295
1de 0f I

Calculation of Coefficients of the Quadratic Model.

s = ¥a , = 100.9
Ba = Va = 85.4
Bz = Js = 85.5
fiz = 4¥12=2y1-2ya = 4(89.05)-2(100.90)~2(85.40) = -16.4
Bia = Lyis-2y1-2ys = 4(90.05)-2(100.90)-2(85.50) = ~10.8
Bas = L¥as—2ya=2ys = 4(85.45)-2(85.40)-2(85.50) = 0.0
The quadratic model then is
¥ = 10049%1+854Xa+85.5%5 = 16.4xaXy = 10.8x1xs (13)

Using this equation the response at the centre point where

X4 = Xz = Xg =3 may be calculated
yaza = 100.9(3) + 85.4(%) + 85.5(F) - 16.4(5) ~ 10.8(%)
= 87.58

By (1), dizs = 88.6 -~ 87.58 = 1.08 and by (L2
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Var(d;aa) = 0.295(%'+ %%w%‘+ 53) = 0.197

and t= 1.68/40.19? = 2.53
The value of t is significant at the 9% level with 7

degrees of freedom (to.ozs,z = 2.36). Further a difference of
1.08 is more than would be acceptable in practice. Therefore,
a more complex model is necessary and we augment (13) by the
term PizsX1X3Xs, where fizs for the special cubic is given
by (9)

Bias = 27(88.6)-12(89.05+85.5+85.45)+3(100.9+85 .4+85.5)= 29.22
and the model now is

¥ = 100.9%1485 o4xg+8505%5-16 kx4 X3—10.8%1X3+29.2%1 X3X5 (1)

We use the checkpoint, blend 8, to test this new modei.'
The observed value at the point (0.295,0.405,0.3) is 87.5 and
the value calculated from the special cubic model above is 87.3,
a difference 0.2 and we now have to calculate the standard error
in order to carry out a t-test on this difference. We can

calculate the b coefficients using the x4,%3,xs coordinates of

blend 8
ba = =0.,0134 b,? = 0.000180
ba = 0.0306 b2® = 0.000935
ba = 0.0125 bs® = 0.000156
bia = 0.0478 bia® = 0.002284
biz = =-0.0761 bis® = 0.005793
bas = 0.0559 b2s® = 0.003124
" bazs = 0.9677 bias® = 0.936443
E.g. by = (0.295/2)(6x0.295%=2x0.295+1 = 3(0,295%+0.405%+0,3°))

= =0,0134

We can now find the variance of the predicted value Var(y)
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Var(y) .—.0.295(3-030180 5 0:000935 < 0.0u0156

0.002284 0.005793 0.003124
+ > ey

4 -**———”-"0'936%3) = 0.071

The variance of the difference between the observed and predicted
values is the sum of the variances of the observed value (0.197)

and the predicted value (0.071). Hence,the t-test is

87.50 - 87.29
N (0.197+0.071)

= 0.512

Entering the t-table with 7 degrees of freedom we find
that the result is not significant at the 50% level (to.as,7 = 0.711)
and we conclude that the model is adequate.

If several points in composition are to be used to check
the lack of fit a t value is calculated for each. However, these
t values are’;aferred to the &/(2k) point instead of the usual
a/2 point of the t distribution where k is the number of check
points in composition. This will be amplified in the next
section. Meanwhile, we will notice that this usually leads to
untabulated figures for the deviate and interpolation is usually
necessary using, far instance Federighi's (1959) or Fisher's (1925)
detailed t-tables. From Fisher's tables a useful graph of t against
percentage point may be plotted for various degrees of freedom.
Alternatively, Dunn (1959) gives an abbreviated table of the
i—0.05/2k point of the Students t-distribution from which
intermediate value may be obtained by interpolating with the

reciprocal of the degrees of freedom.

Precision of Estimates,

Dunn (1959,1968) has considered the problem of finding

confidence intervals for the means of dependent normally distributed



variables when nothing is known about the correlation which might
exist amongst them. There are occasions when one does not wish
to make the laborious calculations to obtain the confidence band
for a regression curve but rather to look for separate confidence
interval s for each mean with the assurance that, wita high
probability, each interval of the set contains its mean,

In the case of mixtures, the several different
observations taken over the simplex are made on mixtures of the
same materials (some in zero proportion) and the data may be
correlated and the degree of correlation is unknown, In this
case Dunn has shown that, if only an estimate of the variances
is known the confidence intervals with confidence level l-g of

-

the k sample means are
Yi CaS/Jn (1 €ic<k)

where'gi ié the mean of the i th, set of observations and Ca
is the 1 - (a/2k) point of the Students t—distribﬁtion with
k(n-1) degrees of freedom and S is the overall variance of k
observations replicated n times.

Now, when testing lack of fit using k check points
one is, in effect, carrying out a joint test at k points in
compositions - in essence two linear combinations of all the

.observations. This is the basis last paragraph of the previous
section.

There is, however, another manipulation, which
will be illustrated, in which we find the conf'idence limits at
any point on the simplex and for this we use the t-value referred
to o/(2k) point where k is the number of regression coefficients
in the equation. The argument here is that we are concerned

with simultaneously all confidence intervals which might be

constructed for all compositions, each of which however concerns

32,



linear combinations of the k regression coefficients.

Let us assume for the sake of the exercise that
we have derived (13) on the basis of 3 observations at each
lattice point, with no check points and that the variance
is 0.36. The number of degrees of freedom is (3 x 7)-7 = 1.

Suppose we now wish to calculate 95% confidence
limits at the point x; = 0.56, X3 = 0.34, Xas = 0.10 at which
the octane rating is 90.9. For 95% confidence limits we
need to find & such that

Pr(y - 8§ <y <y + 8) = 0.95
where

5 = tw ak’fJVariy) .

t is taken at the @/2k level because of the k parameters in the

regression equation.

We have then
o Sl N e
k = 7,no. of constants in model
f = 14 degrees of free@om
o/ 2k = 0.00357
= = S1liat 0.06557 level for 1l d., of 1,
z = 0.,5757 at x4=0.56, Xg3= 0.34,%X3=0.10 from

tables in Appendix 4
r = 3 observations at eacn lattice point

s? = 0.36

Hence, JVar(y) = Jdo°z/r = J0.36x0.5757/2 = 0.32

and § = 3.1 x 0.32 = 0.99

Thus the octane rating lies between 90.9,+ 0.99

i.e. 89.9 to 91.9.
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Simplex Centroid Designs.

A (q,m) simplex lattice gives an equally spaced
distribution of points over the simplex and has just enough
points to enable a polynomial of degree m to be uniquely
fitted.

An objection to the simplex lattice design is
the following: 'suppose we wish to predict the response of a
4 component mixture. We would use a (4,m) simplex lattice.

If m = 2 we are using observations on pure components only;

if m = 3 we are using observations on pure components and
binary and ternary mixtures. Only when m = 4 do we have any
observations of the effect of quaternary mixtures which is the
real object of the experiment. Further for m > 2 the simplex
lattice contains components in unequal proportions (see Fig.2 ).

The simplex centroid designs differ in that
they contain observations on mixtures consisting of every
subset of the composition in equal proportions. This corres-
ponds to the points (x1,xa, ...,xq) of the simplex obtained

2
mutations of (%,2,0,ee4,0), the (g permutations of
(4,3,%,0504.,0) etc. and the point $ /9, (0,72 s l0)s

Simplex centroid designs are also computationally

by taking the q permutations of (1,0,...,0), the (%) per—

simpler than the lattice designs and, as will be shown, can be
developed to a more sophisticated level. One has already

been met, the spescial cubic modal (Fig. 2 ).

Caleculation of Coefficients of the Simplex Centroid Models.

A polynomial which has as many coefficients as

there are points in the centroid design is
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o
y = 2{: Bix; + ZLJ ﬁijxixj + zg: ﬁijkxixjxk L B

1€igq 1gicj<q 1€i< j<ksq

+ ﬁiao.cq X;LXQ coe XQ (15)

Let the response of the pure component be Ty Putting X, = i i
(and hence Xy = Xy = 00e =X = 0) and inserting this value
we get

Py = Y3

Let the response of the binary mixture b

yij* Putting x; = xj = & (and hence X = ees = xq = 0) and

inserting this value we get
= X L 2
yi,jhaﬁi+2ﬁj+4ﬁij

which gives

ﬂlj g 2(2le & l(yi+y3))
Let the response of the ternary mixture b

Yijk°
this value we get

Putting x; = Xy =x = 1 (rest = 0) and inserting

= 2 .4} = 2

These equations seem to indicate a pattern and Scheffe has

shown that the general formula is given by
5 r—1 S r=1 ; r-i
Pgis e $.(8,)-(=-1)" "¢ (8 )+(r-2)"""¢ (5 )+
seses +("‘l)r-1 lr-l ¢1(Sr))
where Sr is any subset of r elements of (1,2,...,q9) and ¢%(Sr)

is the sum of all the responses of the t-nary mixtures with

equal proportions from the r components in Sr'
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Example,

We will calculate the next B coefficients, ﬁijkm'
r =1
B, = (44 (84)-3°90(84)+2°¢a(54)-1%¢1(54)) (16)

Now Sg = (ijkm)

and ¢a(ijkm) = Y1 ska
ga(idkm) = ¥, 443 00 s,
da(ijkm) = y;+¥ ¥4y,

Hence

3 3 _z8
P i = Ll Y5 skm (yijkfyijm+yikm+yikm)
o8 &
A A R L )

O D))

It can be appreciated that the coefficients are
much more easily derived than in the case of the simplex lattice
designs.

In the case of what was previously called the
special cubic model the distribution of points over the simplex
is identical with that of the simplest centroid design i.e.
(1,0,0), (0,1,0), (0,0,1), (%,2,0),(2,0,2), (0,5,2), (3,5:%),

'a comparison of the above shows that they are identical,

Variance of Predicted Responses.

To illustrate the method by which the variance
of the simplex centroid designs are obtained we will calculate
that form = 3
¥y = PaXs + PaXz + PaXg + P12X1Xa + P13X1Xs + PasXaXa + f123X1XaXs
If in this formula we replace the B's by their estimates evaluated

in terms of the responses we may coilect coefficients of like
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terms to obtain the predicted response }, where

¥ = Z a.iyi + Z aijyi.j + 8133 Y123

1<i<s 1<i< jso

whence the variance is given by

Vax'(s;) = 02( Z a.:_/ri + Z a:_j/rij + 3133/1193)

1<i<s 1€i<jss
where r is the number of observations at each point.
Let a;, be the coefficient associated with yi.

Then if one carries out the process outlined above one finds

that
3
83 = Eq 2 Z x,«.,xj+_; Z x"xjxk
J=2 agj<kss
8
=x,_(1—2 ij+58—\ xf'k)
AN,
J=2 2€ j<kss

The last . term is merely 3xiXsxs, but it is written
in this form to help in the simplification. In order to simplify

we have to utilisze the fact that

3 2 d 2
R
2 £ j<ksq J=3 j=2

This can be shown by the following expansion

(3&22 + Xﬂa + oee T xqz)

1}

(X3+ Xa + ees + :v:q)2

3

2x3x + se0 + X
(o 2

3

2xs(x4 A Tatare; oE Xq)

+ esssscssc

+ 21::%_:‘_:::‘?L
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(Zﬁxa) Y e Vg

J=2 d=2 2<j<ksq

whence the result follows.

Using i xj =1 - x4, and setting q = 3
j=a

simplifies to

8

2
= (x2/2)(3x4% - 2x4 + 1 - 3 Z xj)

=
Similarly
84g = .’.{_‘K:}Cg - 122'.1:{3353 = }.|J{1XQ(3X3,+ 3}[3 i 2)
and

ai12s = 27X1XaXg

Process Variables,

Suppose one wishes to examine the mixture
variables at different levels of other factors which we will
call process variables. E.g. the effect of mixtures of feeding
stuffs on two different breeds of cow when given for two different
periods of time or the rozd octane number of a blend of petrols
when the make and speed of the car are varied, If there were no
mixture variables the mathematical model corresponding to three
factors A,B and C varied at two levels can be expressed as

SR AB. B AB
yi,]k I+A +BJ+G+ J+AC+ C+ C+eljk

where yijk = the response with A,B and C at the
ith,jth and kth level (i = +1,j=21,k=41)
I = the true mean of all the trials
Aj_ = the true mean of all the trials in which A is

at its ith level



Bj and Ck are similarly defined
AiBj = the interaction of A and B with A at the ith
level and B at the jth level

Aick’ BjCk and AiBjCk are similarly defined.

To include process variables in the centroid
design we carry out a complete factorial experiment at each
lattice point and determine the responses in the form given
on the next page. These variable responses invelving
A, B, C etc. are used to calculate variable coefficients
involving A,B,C etc. by using the formulae derived from {6 )
and we get a regression equation which can be solved for
all valuas of the mixture variables at the two levels of

the process variables.
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TABLE 3 : Responses of 3 mixture variables and 2 process variabl ¢s.

X4 XoXa A B Response Response function
- - 100

100 4 Sohewe 108 ¥4 = 150.25+7.25A+46.25B=3.25AB
- + 186
+ + 207
- - 8

010 & L 194 ya = 1.60.25+19.25A+21 .25B-35,75AB
- + 198
+ - 165
- - 85

001 + - 98 ya = 117.25+10.25A+25.75B+3,75AB
- + 129
+ + 157
- - .89

50 - 202 Y1z = 139.75+42.75A~5.75B-13 . 5AB
= 105
+ + 163
e 3k 90

Jo% P 120 Yia = 132.5+122,5A+27.5B+7.5AB
- + 130
+ + 190
- - 85

0L: + - 140 Yas = 170.0427.5A+57.5B
- + 200
+ + - 2585
- - 88

1 + - AR Yizs = 204.75+12.75A+88.75B-15.25AB

- + 296

+ + 291




4.

EXam.E le .

It is desired to imvestigate the effect of a
mixture of' 3 components at two levels of the factors A and
B. The observed responses are shown in Table 3,

The B coefficients corresponding to the responses

of the pure components are

Bi = 150,25 + 7.25A + 46.25B -~ 3.25AB
Bz = 160.25 +19.25A + 21,25B -35,75AB
Ba = 117.25 +10.25A + 25.75B + 3.75AB

The variable coefficients for the binary and ternary
responses are obtained by inserting the values of the variable
responses,

E.G. P13 = 4yia = 274 = 2ya
4(139.75+42.75A-5.75B-13 . 75AB)
=2(150425+7.25A+46,25B+3.25AB)

I

=2(160.25+19.25A+21 ,25B-35,75AB)

= ~62.0+118.0A~150.0B + 10.0AB

Similarly
Biz = =5.0 + 55.0A - 34.0B + 16.0AB
Bas =125.0 + 51.0A +136.0B + 64.0AB

B123=1504.5-858,5A+1.725 ,0B-4,2 ,5AB

These seven variable coefficients are inserted in (15)
with g = 3 to give an equation for the responses involving
not only the mixture variables but also the process variables
A and B which can take values -1 to +l. An alternative method

of calculating these coefficients is given in Appendix 3,
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y= (15025 + T+254 46.25B = 3.25AB) %4
+ ( 160.25 + 19.25A4 + 21,258 - 35.75AB) xa
+ ( 117.25 + 10.254 + 25.75B + 3.75AB)xs3
+ k -62,0"+ 118.00 = 150.0B + 10.0AB)x1 X3
+ (~-5.0 + 55.0A - 3)..0B + 16.0AB)x1xs
+ ( 1é5.o + b51l.0A - 136.0B + 6l ,0AB) %z X5
+ (1504.5 =~ 858.5A + 172.0B -  442.5AB)x1XaXs

The response contours and the synergism and antagonism
of the above equation for all combinations of levels of A and
B are plotted in Figs. 5 and 6.
At the higher level of B the pattern and values
of the responses do not change a great deal in passing from
the higher level of A to the lower level. The maximum for
A =41, B=+1 is 287.8 and that for A = -1, B = +1 is 307.0.
Similarly the synergism and antagonism patterns do not alter
markedly. However, there is a considerable difference in
the response surfaces for B = -1 whether compared with each
other or with the A = +1 surfaces., Of the four surfaces that
for A= +1 and B = =1 is the odd one out and so is its
synergism/antagonism plot.
The following conclusions can be drawn from these
surfaces
1) If the highest value is required this should be taken at
X1 = 0,28, X2 = 0.36, xg = 0.36 at the lower level of A
and the upper level of B to give a value of 307.0.

2) If the lowest value is required this should be taken at
Xz = 1.0, x; = x5 = 0,0 at the lower level of A and of B
to give a value of 84.0.

3) If a value of, say, 200.0 is required there is an infinite

choice except at the lower level of A and B.
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Variances and co-variances of Simplex Centroid Designs.

We shall assume that tine various observations are

2

normally distributed with a variance of o®. As ﬁi =Y., VAr ﬁi = 0o

19
Now, ﬁij = Ayij = oy 2yj; hence varﬁij = 160® + 4o® + 4o® = 240°,
Similarly varﬁijk = 7290 + 3320® + 270 = 11880° and so on.

All the expressions for the regression coefficients,
apart from those for pure components, contain mixed terms; hence
they are correlated and some of thei? co-variances and correlation .

coefficients will now be calculated. Taking, as an example, the

terms for g, and ﬁij we have

]

COV&I‘(ﬁi, ﬁl;]) E(ﬁiﬁij) = E(ﬁl) E(ﬁJ)

n

2E(y,?) - B(yy) E(vy)}

2{8(y;55) - B(r;) (v;)]

1

= U covar(yi,yij) - 2var(yi) - Zcovar(yi,yj)
As the observations are independent covar(yi,yij) =0 and

covar(yi,yj) = 0. Hence, covar(ﬂi,ﬁij) = -2var(yi) = =202,

The correlation coefficient is given by

3 Covar(ﬂi, ﬁj) D3
A var(p,) Var(g,)] e

ol 1=

Otner variances and covariances can similarly be calculated,
However, Scheffe has shown by using the theory of sets that the
covariances of any pair of coefficients which we will call B and

B! are given by



46,

h
covar(B,p') = o? ZE: (?) r(—l)r_t i r'(—l)r'_t tr'_i (17)
t=1 -
where r is the number of elements of the g mixture variables
and h is the number of subscripts which the f's have in common.

Where B and @' are identital r = r' = h and (16) reduces to

varl{l) = ohxs i‘ @ 373 - P g(r) (18)

t=4

When there are n process variables present

h
var(g) = o*r® (;) $2r3 /50 B g(r)/a (19)
t=1

The manipulation of (17) and (18) will now be
illustrated

Case 1
No elements in common i.e. ﬁi, ﬁj, By, etc.

h = 0 and covar(g,B8') = O.

Case 2

(2) One element in common i.e. B. ﬁij’ roxl, r* =2 apd ha'l,
3
: 1
covar(ﬁi,ﬁij) - 02 Z G) .1.(_1)1‘,{: ti—i 2, (-1)2-.t t2_1= —2(.'52
t=1

which is identical with the result calculated earlier.

(b) One element in common i.e. ﬁij’ By» T=2,r'=2,h=1

. {
covar(p; ;,By) = ozz @ 2.(-1)% b g7 p (1)t g
t=a
As an example of the manipulation of (18), take the case of a

ternary mixture for whichr = 3
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These equations enable covariance and correlation matrices to

be easily drawn up.

Covariance matrix for g's up to B.

ik
By By Py By PP Pin
B;o| 1 0 0 -2 -2 0 3
B 1 Q- w2 0 -2 5
By 1k 0 -2 -2 3
Bi s 1 b L -36
Bix X L -36
1 -
Pi 5x 316
A1l x &2
Correlation Matrix for B's up to ﬁijk
By . P By . Pgp . By Pix B; sx
g Sl 0 o -1/46 -1/46 0 1/6]33
P 1 o -1/M6 0 -1/J6  1/6133
By 1 0 -1/l6  -1/l6  1/633
B 5 1 1/6 1/6 -14/297
Bix X 1/6 -4/297
P ik 1 -14/297
Pi 5 *

The value of g(r) given by (17) increases rapidly wita r,
being in excess of 107 for r = 5, (The actwal value is 19,662,000).
However the standard deviation obtained from (18) and (19) has to

by the :
be multiplied/variables xi,xixj,xixjxk etc. and these have maximum



values when the variables within a set have equal values, i.e.
for single components, 1; for binary mixturss, ; etc. and

in general the maximum value over the simplex is e Hence,
the maximum value of the standard deviation of any tem in-
creases as r g%(r) which is seen from Table 4 to be rather
slowly

TABLE L.,

Variance of Regression Coefficients from Simplex Centroid Design,

&) £(x) TR (e BT

£

1 1 1.00 1.00 1.07
2 2l 4.90 1.22 1.14
3 1188 . ka6 1.28 1.21
4 118400 344,09 1.3 1.29
5 19662000 4430 L8 1.42 157

Plackett has pointed out that rrrg%(r) can be
approximated by (l+e"3)r’2 and that for r = 7 agreement with
the exact value is better than 2%, Figures calculated from
this formula have been added to Table 4 for comparison.

We are nov in a position to calculate the confidence
limits on the regression coefficients or to ascertain if they
are Significantly different from zero by means of a t-test,

We have derived a regression equation for what was
originally called a special cubic design but which is also the
simplest simplex centroid design. The 100(1-2a)% confidence
limits associated with the coefficients is f + ta.S5.E(8) and the
significance of the coefficients is measured by their ratio to
their standard errors i.e. by

t = g/5.E.(8).

Now, the variance from Table 2 1is 0.295 with 7 degrees of



freedom. to.oss,7 = 2.365. Hence the

limits for the coefficients are:

Bs

Bias

B3

That is

B1
Pa
Bs
P12
Bis
Pas
Pizs

2.365 x 1.00 x J0.295

2.365 x 1,22 x 40.295

2.365 x 1.28 x J0.2%

0.73,
0,73,
0.73,
0.89,
0.89,
0.89,
0.94,

i

Py
8.

ij

1

= Pizsa

100.2
8.7
8.8

=17.3

-11.7

0.9
28.3

49

maximum 9%% confidence

+ 0.73 (1 <isg3)

+ 0.89 (1 sl jx3)
+ 0.94

to 101.6

s -~ 80,1

to 86.2

to =15.5

to - 9.9

to - 0.9

to 30.2

The calculated t values are all highly significant

except that of Pas, the value

of’ ﬂg_a is given by

of which is zero. E.g. the t value

t = -10.8/(1.22 x J0.295) = -28.6

This is significant at the 0.00001% level! (to.0000001s7 = 19.932).

confiidence limits.

It has been stressed that these figures are maximum

If one wish=d to calculate the confidence

limits on, say, Pias(= 29.2) at the point (0.2, 0.3, 0.5) one

1
would use the figures in the column g®(r) of Table

to obtain

Pty e,

29.2 +

+ 0.76

2,365 x (0.2x0.3x0.5)x 34.46 x J0.295

i.e. 28.4 to 2929.

Fractionation of Simplex Centroid Designs.

As the number of mixture variables (g) and process
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variables (n) increases the number of points at which experi-
mental observations have to be made increases rapidly being
given by (2%-1)2" when process variables are examined at only
two levels.

If no process variables are present one may
fractionate by dropping all terms higher than a certain chosen
degree. For example the cubic regréssion equation is obtained

by dropping all terms of degree > 3 to give

ys ZE:ﬁixi -+ ZE:ﬁijxixj + j{:ﬁijkxixjxk

1€i<q 1€i<jsq 1€i<j<ksq

The usual precautions must be taken when fraction-
ating; the terms being dropped must be known to be small enough

to be ignored and one of the prices of economy is less precisiomn,

Example.

The following data was obtained in an experiment
carried out in developing a paint which would reduce decarburisation

of steel during preheating.

X, | 66
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From the above the coefficients can be calculated

A" = 6k Bia = &4
Ba = 52 Bia = 12 Pias = 150
Bs = 60 Pas = 148

If a full cubic model is chosen the equation is

yijk = 66xs + 52%3 + 60xg + 84xaxs + 12x1x%s + 148xxXs + 150x1Xpxs

If one decides to choose a quadratic model by dropping the last term
the equation is

Yigc = 66xs + 52xg + 60xs + SLxixz + 12x.%Xs + 14B8xsx,

The response surface for these two equations is pldtted
in Figs. 7 and 8; and the misleading pattern produced by the
fractionated equation can be appreciated. This is due to the fact
that the coefficient associated with the cubic term is quite large.
The important point here is that the data used in this example are
actual experimental figures about which there was no previous know-
ledge. Had the design been fractionated in practice an erroneous
conclusion would have been drawn.

When process variables are present a complication
arises., In the first place when talking about the degree of the
equation the process variables must be included. So that if there
are q mixture variables and n process variables the degree of the

equation is g+n. For instance in the example given on page 41,
B1aX1Xa = (-62.0+118.0A-150.0B+10.0AB)x,x,

and is of the fourth degree. So, if it is specified that an equation
is to be of degree € 3 one would have to eliminate the AB term from
the binary coefficients and the A,B and AB terms from the ternary
coefficients,

The second point is that if one is dealing with a



large number of process vériables aﬁd one decides to reduce
the number by fracticnation it will be found that the
fractiondl blocks at the various lattice points have certain
combinations which are not in common. To illustrate this,
suppose one wishes to examine 4 mixture variables and 5
process variables A,B,C,D,E at two levels and to keep in the
regression equation all terms of degree € 3. The variable
coefficients will be

(I+A+B+C+D+5 + AB+ AC + AD + AE

ﬁi s

+ BC + BD + BE + CD + CE + DE)
Fs 5 =(I+A+B+C+D+E)
Biop =%

Now, in a 2° experiment main effects and two
factor interactions can be measured by a half replicate using
the defining contrast ABCDE, assuming that three and four factor
interactions are negligible., This is adopted for observations
on the pure components. For the binary mixtures a quarter
replicate will have to be chosen. éhe best is that wita de-
fining contrasts ABE, CDE, ABCD in which the main effects have
2-factor aliases. Honever, of one compares the principal blocks
of* the quarter and half replicates one finds flour combinations in
the former which are not given in the latter. This is shown in
Table 5 in which the asterisks show the four in question. If
one attempts to resolve the difficulty by generating a quarter
replicate from the half replicate using the defining contrasts
AB, CDE, ABCDE, the main effects A and B will be aliases of each

other whicn makes the experiment pointless.



TABLE 5 : Principal Blocks of % and % replicates & a 2°
experiment,
% x 25 x 2
(1) ac ae ad (1) bece*
ab be be bd ab ade‘
acde de cd ce cd bde*
bede abde abcd abce ace* abcd

There are two possible ways to resolve this

(a) adopt the half replicate at both the binary

and single

component points, calculate the response and drop the

unwan ted terms,

(b) adopted the quarter replicate at the binary mixture

points and add the fowr extra terms at the single com-

ponent points to be used when necessary.

As (a) requires more observations than (b) and the objcct of

55.

fractionation is economy of effort and resources (b) is adopted.

At the ternary mixture point the problem is that

of estimating the general mean of a 2° experiment and this can

be done with a Z°° fraction i.e. the single point (1) which is

contained in all the other fractions.

In this example the full factorial would have

taken (2%-1)2° = 480 observations. With the above fraction

we have

- 16+4. observations on 4 single components

8 B - " 6 binary mixtures
) ﬁ " ) ternary mixtures
Total:

80

48
=
2,

no

An illustration of this ramification of the

technique would have been useful at this point. But the amount
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of computational work would be prohibitive within the time

available,

One obJjection to these fractionated designs is
the same as that against simplex lattice designs discussed on
page 34 .+ If it is decided to keep the degree of the equation
¢ m then the prediction of the response is based on at most
mixtures of m components. And the greater the difference between
the number of components and the degree of the fractionated
equation the less conf'idence one would have in the results.
However, it may be a compromise between time and resources
available and getting a bad answer to a probtlem which would
otherwise have no answer at all.

Another objection based on intuitive grounds iu
the compromise one has to make with regard to the four treat-
ments not in common in the quarter and half replicates, Scheffe
‘gives two rules
1) As far as possible when fractions of process variables are

of the same size they should be the same fraction.

2) As far as possible when fractions of process variables are
of different sizes the larger fractiﬁn should contain the
smaller.

We found that it was not sensibly possible to
implement 2 as this gave a non-uniform distribution of points

over the simplex which is intuitively unattractive.

Modifications of Simplex Lattice Designs.

In practice there are many situations where the
whole of the simplex is not available to the experimenter., Certain

mixtures may not be possible on techﬁological grounds; they may

be dangerous or unstable. On the other hand they may be uninteresting,
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If, for instance, one were investigating the velocity of de-
tonation of gunpowder, a three component mixture of sulphur,
charcoal and potassium nitrate, one would not carry out any ex-—
periments on the pure components or binary mixtures because the
velocity of detonation is zero.

Suppose that only the first component has to be
restricted and is subject to the condition that x1 > h. The
second, third etc. components are replaced by "pseudocomponentg"
which are mixtures of the first component and proportions P,
of the other components

q

Zpizl—h, 7 R &

i=g

This is shown in Fig.7 where the restriction is that x; > 40%

{4’07 x,
éoﬁ X3

o

Fij7. Fig 8

and the shaded area is not available, The experiments are
carried out with the pure component x; and the two pseudo-
components x;; and x; and the necessary combinations demanded

by the choseﬁ regreésion equation. The idea can easily be
extended to cover the situation shown in Fig,.8 (See page 100

for a practical example of the use of this technique),

Consider now the alternative where X, € h. The



available factor space is the frustum of the simplex containing

h/[l—(l~h)q”1] of the volume of the available factor space

(1-n)J3/2

o
Camn )

A

This can easily be shown for the special case of
a triangular simplex when g = 3. Consider the simplex of unit

side in Fig. 9,

i = 3(1-n)* J3/2 = {3(1-h)%/1
Area whole A = Zele Jg = Jﬁ

Area bottom trapezium = J% - J% (1-h)?

= 1-(1-n)? J3/4

Fractional area = l_(}fhjzdj/h‘ = 1-(1-h)?
A3/%

Now, the amount of x; is proportional to h and this has to be

distributed within the fractional area available .

Amount s}

Fractional Area S At )

and, in general h/[1-(1-h)T*]. For small h this can be ex-

panded and second order and higher terms ignored to give

1/(a-1).

The solution to the problem of deriving a regression

equation when x1 € h has been worked out only for the case of
the quadratic polynomial (q,2) and a modified design exists which
spreads the experimental points out into the corners of the

frustum only if there is one small component (See Fig. 9 s

58.
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Suppose x4 € h; observations are taken of the
responses of the pure componeuts ¥3 (i > 1) and the responses
to their binary mixtures yij (j >1i>1), the response y;j of
the binary mixtures for which x; = h, Xy = 1-h (j > 1), and
the responses of the yl mixture with x4 = %h and
X3 = X3 = eses =X, = (1-3h)/(g-1). Then the coefficients
B; (i>1) and ﬁij(j > i > 1) are still given by (9 ) and

P1 and ﬁij are calculated from

Bga + B(I-B)R ;= yy; - (-WE;  (5=23, wesd)  (20)

and

- 1o fy. 3 r ol —1n)2
%hﬂ“_zﬂ;_lﬂlzﬁij e Lﬁ (1) Zﬁ” (22

a<jsq 2gjsq a<isgjsq

These may be solved ZTor f1 and ﬂaj to give the
values of the regression coefficients.

Consider the case where x1 € 0.25 on a (3,2)
lattice i.e. h = 0.25.T0 examine this solution an equation was
taken and the responses calculated for the points given above.
Then, using (20) and (21 ), P1,B12 and Pis were calculated and

compared with the known values. The equation was
= 90x;s + 95%3 + 100xg + 27x3%p + 27x1Xs + 27%aXs

"Observation" were made at the following points i.e. the

responses at the following points were calculated



ya

Yas

Yaia

Yis

Ya

at

at

at

at

at

at

60.

Responses
xg = 1.0 95.0
Xs = 1.0 100.0
Xa=%3=0.5 104425
%120425,%3=1-0+25.0.75 102.5625
X4=0.25,%3=1-0.25=0.75 98.8125
X4 =5%04250,125, %5 =Xa=(1-5x0.25)/(3-1)=0.4375 |  104.6836

\\\\\

3o

Inserting these figures for the responses in (20) and (21) we

obt

ain

(1)

(ii)

(iii)

18, + H(1-%)B1a = 98.8125 - (1-%) 95
leee 4fa + 3B12 = 441

181 + 2(1-%)P1z = 102.5625 - (1~%) 100

i.e. 4P1 + 3B1s = 411

kW 0 B .
s + m;%i_lml(pigmia) = 10,6836 - (1—35%“-)(95-1-100)

1-1,1)2
= EE—E—%ga 27

i.e. 1681 + 7(B1a+Pf1s) = 1818

Solving this triplet of equations we obtain
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Bs = 90, Pia = 27 and fia = 27
whicn are identical with the regression coefficieats in the
equation used to generate the observations, thus illustrating
that it is not necessary to make an observation at x4 =1

in order to be able to estimate Bi.

g-component mixtures.

Lambrakis (1968a) has extended Scheffe's designs
to the case where observations ares made on mixtures containing
all q components with non-zero proportions but has conf'ined
himself to simplex lattices of the (q,2) type i.e. quadratic
modsls, because of the amount of algebra involved in deriving
the necessary equations.

Letting the same letter represent the mixture and
the response to the mixture the following are the new types of
mixtures |

Y3 (1L i < q) is the response to a mixture with proportions

I
e
v

x; = ,xr=%(q-1)“1fox:l£réq,r;-(i;

yi;j(l € i< j<q) is the response to a mixture with proportions
X = X4 = 3, x, = 1(g-2)y"* for 1 s r sq, r £ i,j;
yiij ard yijj (1<i<j<q) are responses to mixtures with proportions
% =% x5 =%, x, =2(q-2)7" for ler <q, r £ 1,j;
1 - - -
and X 5 xj = %J s B z(g-2)"* for lsrsg, r ié 1,d5
yii,j and. yijjj(l£i<jéq) are responses to mixtures with proportions
x; = -:—, Xs = -;“—, x, = L2(g-2)"* for ler<g, r £ i,J;
= 4 =y - d -1 s s y
X %5 xj =g A, B -;(q—Z) g Ior lsr€g, r P R BT

yijk(l£i<j<ksq) is the response to & mixture with proportions

I, x, = %(a-3)"* for lersq,r £ i,§,k;

»
F
|
"
(=
I
1l



Y3 5ke

xizxj=xk=x& = %, X, = %(p—hj'i for 1lsr<q, r £ i,j,k,¢;

and so on, So, for the case where q = L4, observations will be

made at the following

Yi

Yaa

Yai2

YVizz

Yi1a2

Yiazz

Yias

Yi128

Yizzs

Yizas

[

§ X o=

23
P X = '1:3':
P X1 = %)
T X =3
s XKi = 'g',
L. &} =%:
& X4 = %:
TR %s
: X =3,
HE < '_‘%-‘:

points

g

R e S R LR R

ol
-

! 1 ] 1 I 1
S oo ol o N2 ol
- - - - - - -

-

1
ol oo o
-

X3

Xz

g

and similarly for otaer combination

'_‘%: x"lz%;
:%J X,‘:%;
':%: xﬂ.‘-‘%s
=2, m =23
=f%’ *4 :f%;
=% X =i
= %: Xg =% 3
~ %: X = % ’
=%: x4=%';
=%s JQ:%

of subscripts making a

total of 39 observations, all on 4 component mixtures,*

The position of the points lying in the x3 plane are sﬁaﬁn

in Fig, 10,

For a quadratic model of a simplex lattice (9)

is used which is given again

y = E:: ﬁixi + EE: ﬂijxixj

1€i<q

1gi<j<q

The calculation of the coefficients is carried

out as previously described by substituting the observed means

and their proportions and after a great deal of algebra one

obtains

62,

(1si<j<k<€<q) in the response to a mixture with proportions

*There are,

and v

in fact, 50 subscript combinations but ¥

-

$ik and yijkk all yield identical sets of values,

3k Vi 5k
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q
B; = A glih E{: Yps * £ E{: 4 . 2{: Y13

i:f;sé:fq 1=3 1€i<j<q
iz =~ E<yi+y,j)+Fyij+G Z Pt H(Z Yout Z yrs )
BT
r
ey e
i=i 1€ic j<q
where
A = 4(g-1)?(29-5)/(a-2) (q*-20~2)
B = 9(a-2)%/(a-3) (a®~2g-2)
C = 4(a-1) (5q*-559°+2279®~417q+288)/(q-2) (q-3) (a®-2a-2)
(9®+29-12)
D = 9(q°+q*-584%+240q%-3729+200)/(g-1) (a-3) (g®-2g-2) (g®+2¢-12)
E = 12(g-1)%/(q*~29-2)
F = 18(a-2)*/(q~3)(29-5)
G = 9(a-2)?/(a-3)%(29-5)
H = 27(q-2)°/(q~3) (29-5) (¢®~2q-2)
I = 24(q-1)(4q*~48g°+2139°~415q+300)/(q~3) (2a-5) (q*~29~2)

(g®+2q-12)
| J = 9(g-2) (5¢°+2q*~298¢°+1348q*~2240q+126L)/(g-1)

(a-3)(29-5) (g®~29-2) (q® +29~12)

I

and r,s = 1 means that one of r and s is equal to i, and r,s = i,
means that one of r and s is equal to i or j. In the same way
equations can be derived for the variance etc. and these are

fully and clearly given in Lambrakis's paper for the (q,2) case,

However, the equations'apply only for mixtures of

ly components or more for, if g = 3, all the coefficients given

above, apart from A and E, will be infinite due to the term (g-3)
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in the denominator.

While the rationale of this approach can be appre-
ciated - that if one is investigating mixtures of q components
then measurements should be made only on mixtures of g
components - it leads to some tedious coefficients and more
complex expressions than either the simplex lattice or the
simplex centroid designs. Further, the number of observation
points is large. For this desigp 4 components would require
39 observations; a simplex centroid design would require
24.1 = 15 observations while a quartic polynomial could be
fitted using a simplex lattice (see Table 1 ).

Table 6 gives values of the coefficients A to

J for q = 4(1)10,

TABLE 6 : Lambrakis's Coefficients.

g = No. of components
Coefficient, L 5 6 7 8 9 10
A 9.0 8.2051  7.9545 - THB54E 78116 7.7939 T.78E"
B 6.0 3.1154 2,1818 1.7045 1.4087 1.2049  1.054S
C -4.0 0.6065 1.0480 1.1209 1,1159 1.0871  1.049S
D 5.0 3.1605 2.3879 1.9318 1.6237 1.3998 1.2291
E 2.0 0.9231 0.5455 0.3636 0.2609 0.1967 0.1539
F 24.0 16.200 '13.7%4% 12,500 11,782 11.308 10.97L
G 12,0 4.0500 12,2857 1.5625 1.1782  0.9423 0.7837
H 12,0 5.6077 3.7403 2.8409 2,3051 1.9464 1.6879
i3 0.0 1.6054 2.1212 2,502 2,3632 2.3516 2.3077
3 12,0 1.6508 5.8251 4.7360 3.9940 3.4513  3.0359

Double Lattices.

Lambrakis (1968b) developed a theory for experiments

with mixtures where each component itself is a mixture of several
other components. An example might be a two polymers blends,
the first composed of polymer A, plasticiser B and filler B and

the second composed of polymer W, polymer X, plasticiser Y and



filler Z and it is desired £o ébtain data on the physical pro-
perties of mixtwres of these two polymer blends.

If we have one simplex lattice xy,Xs,%Xs for the
first set of components and other simplex lattice z,,2z2,%3,24
for the second set of components and also all possible mixtures

which can be produced by mixing each mixture from the first

66,

simplex lattice with each mixture from the second simplex lattice

with proportions ¢y and cz respectively (ci+ca = 1) then we shall

have a double lattice and if the first lattice was for a quadratic

model (q,2) and the second for a cubic model (p,3) we would have a

(p,9;3,2) double lattice which, in the special case above where

qQ =3 and p = 4, would be a (3,4;3,2) double lattice., If we were

dealing with a simplex lattice design this would mean that
observations would have to be made at 6 x 20 = 120 points
(see Table 2 ), while if a simplex centroid design were used
there would be (2°-1)(2%-1) = 105 points. Taking into account
the replication necessary to give a measure of variance it is
obvious that we have a very unweildy experiment and there is a
strong case for fractionation,

The double lattice polynomials are obtained by
multiplying together the separate polynomials for each lattice,

The polynomial for the (g,2) simplex lattice is

15i<qg 1€i<jgq

given by

and that for the (qg,3) simplex lattice by

y = Zﬁixi + Z‘Bijxixj + Zyijxixj(xi-xj)+ Z ﬁijkxixjxk

18i<q 1<i<jsq 1<i<jsq 1<€i< j<ksq

Multiplying the two polynomials together and replacing the products
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of the coefficients by a single coefficient, we obtain the re-

gression equation for the (p,q;3,2) double lattice

1<igp 1€j<q agisp 1sj<ksq

Z Z ﬁl,],k o Jx-l( Z Z ﬁl&,k'ﬁxlx 5%k

asi< jsp 12<k<q 1€i< jsp 1skel g

z Z AR o e L P Z Z Vi3, 065155 (%%) 7%,

T agicj<p 1sksq 1€icjSp 1<k<lsq ;

Z Z B ik, e5 %55

1¥i< j<ksp 1sl<q

Z Z P ic, enS1 X% 0%

1€icj<ksp 15€<mgq

This formula has been quoted to illustrate the
complexity of the formulae involved with a relatively simple
case of a multiple lattice. Further, the equations for estimating
the coefficients, apart from the first four, are arithmetically
tedious, the one for yij,k& having 12 terms, that for pijk,&
having 10 terms and that for ﬁijk,&m having 30 terms,

While this work is didactically valuable in that
it can be considered as the general cése of the simplex lattice
design, the writer feels that in practice it would be

computationally simpler to work out the various mixtures of

the pq single components and use these as pseudocomponents in a
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normal simplex lattice (pq,m) or a simplex centroid design.
Strictly speaking this does not answer the original question
of the effect of mixing two mixtures. But it is
computationally more attractive and would probably yield a

practical meaningful result though not satisfying the purist.

Bias and Variance-free Designs.

Draper and Lawrence (1965a) show that Scheffe's designs
are "all variance" designs and are not suitable for situations
where both variance and bias exist. In their 1955a paper they
derive suitable designs for three components and in their
1965b paper, four components.

These two authors find it easier to work in cartesian
coordinates with the origin at the centroid of the simplex
whose coordinates are

(0,m/3) , (w/2, -n|3/6) , (-u/2, -w|3/6)
where m is the length of the side of the equilateral triangle,
which in this work was 1 decimetre,

Box and Draper (1959) suppose the response surface
is a polynomial of degree d;in x

y(x) =z B
while the true function over the region of interest, in this
case' a triangular simplex, is a polynomial of degree dg3
n(x) = x B + xa fa
We wish to arrange for the difference §(£) - n(x) to be as
small as possible and the measure of "closeness" used is

Ely(x) - n(x)]?

Over the whole region of interest this is averaged out to give
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3 =fE[§<5> -'n@la/fax
R R

where R is the region of interest. In this case the region of

: ga b
interest is an equilteral triangle andf = f j g

R -a =b

Now, the average variance is given by

o[ [50-25w)] o[
R

R

and the average squared bias is given by

¥ 2
B =f [E ¥(x) - n@)] d_x//.d.}'.
R R
and it can be shown that J= V+B and that to minimise the bias
one must minimise B.

Proceeding along these iines, Draper and Lawrence
(1965a,b) calculate five point sets which define the coordinates

of the observation points.

Set 1 : vertices of an equilateral triangle, centroid at
the origin, side p:
A J3
(0: :p),’ (i%?’ = 'GP)
N3
Set 2 : vertices of an equilateral triangle, inverted with

respect to Set 1, centroid at the origin, side g
3 ) ik
(0! 55 ) ’ (i '%'q, J% Q).
3

Set 3 : vertices of a square, side a, centroid at the origin,

sides parallel to coordinate axes: (+ &, + a)
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Set 4 : points on the coordinate axes at a distance b from

the origin: (+ b,0), (0, + b).

Set 5 : vertices of a rectangle: (c,d),(-d,c),(~d,~d),(d,~c)

PsQ,a,b,c and d are tabulated for certain selected
values for two cases
a) when the model is linear (d4=1) and there is a possible
- error due to the presence of second degree terms (dz=2)
in the true model and
b) the model is quadratic (di=2) and there is a possibility

of error due to a third degree term (daz=3).

-

For case (a) figures are given for designs incorporated 5-9
points (solutions for value < 5 do not exist) and for case
(b) approximate designs are given for 7-12 points and accurate

designs for 13-~15 points.

Example di=1, dp=2
Point sets: 1 and 2
p = 0,662, q = 0,381

No. of cbservations: 7

Coordinates:fb,;% x 0.662m ,Gﬁ% 0.662m,- J% X 0.662m)
W3

(?, % X 0.381m>,<%% x 0,381m, J% x 0.581m>
N3 '

i.e. (0,0.382m), (+ 0.331m, -0.191m)

(0,0.220m), (+ 0.195, 0.110m) and centroid
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Example di=l, dg = 2
Point sets: 1, 1 and 2.
No. € observations: 9
ps = 0.606m, pz = 0.550m, q = 0.364m
Coordinates: (0,0.347m), (+0.303m, -0.175m)
(0,0.289m), (+0.250m, —0.,1l4k4m)

(0,0.210m), (+0.182m, 0.105m)

Exampie da=2, da=3
Point sets: 1,3 and 4
No. of observations: 13
p = 0.756m, a = 0.183m, b = 0.258m
Coordinates (0,0.436m), (+0.378m, -0.218m)
(+ 0.183m, +0.183m)

(+ 0.258m,0), (0, +0.258m) and two points at
centroid

Example di=2, da=3
Point sets: 1,1,2,5
p1 = 0.545m, pa = 0.776m, q = 0.480m

c

0.07lm, & = 0.17lm

No. of observations = 15

Coordinates: (0,0.314m), (+0.272m, -0.157m),
(0,0.448m), (+0.388m, -0.224m),
(0,-0.277m) ,(+0.240m, 0.,139m),
(0.071m,0.171m),(=0.171m, 0.071lm)

(-0.071m,-0.171m),(0.17lm,-0.071m) and two
points at centroid

These coordinates are illustrated in Figs.
in which m = 20 cm, and the figures calculated above are
adjusted accordingly,

When both bias and variance errors are present

each design point (x4,%3) is replaced by (6x,,6x,) where g > 1
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is a scale factor. In all-bias designs 6 = 1 and in all-variance
designs 6 = . Draper and Lawrence give tables from which it is
possible to calculate @ in the cases di=1, dz=2 and di=2, dz=3.
But these require some a priori knowledge of the B coefficients

in the polynomial, In thé absence of sucﬁ knowledge they suggest
that in the first case, as a rough rule of thumb 8 = 1,1 and in
the second case § = 1.2, If, in a mixture problem a design

cannot be expanded without some of the points going outside

the region, a slightly smaller value of 8 can be used. Identical

figures are used for the 4 component case,

A comparison of Draper's and Scheffe's designs.

To compare Draper's designs witah Scheffe's as
approximating functions for a cubi ¢ polynomial, the cubic
polynomial given by Gorman and Hinman (1962) and illustrated
in Fig., 12 was taken. The quadratic approximation is obtained
by ignoring all third order terms giving as the response function

Y = 54.91x3 + 3.89%; + 9.87xs

=)y 56x1xa = 28.70x1xs + 2L .49%xa3xs
and is illustrated in Fig.13,

To illustrate Draper's method the 13 point set of
Fig.1ll was chosen., The cartesian coordinates were first con-
vertéd to triangular coordinates and the relevant responses at
these points were obtained using the equation of Fig, 12
and are given in Table 7,

The regression coefficients were obtained using
the formula g = (X'X)"*X'Y and the analysis of variance table

obtained in the usual way.
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Analysis of Variance

SOURCE 8.8, D.F. M.S. F
Bo . 4045 .20 1
Bz,B2| o 938,01 2 469,01 745
B11,P22,P12] 100.98 3 33.66 534
B1,P2,P0
Resgidual 4 .39 7 0.63
. 5088.58

The response function is _

¥ = 15,521 = 31.620x4 = 11.3L43xg

+57.803%1% + 7.903%32 + 44.608x%,%p

where the x's in this case are measured on the cartesian system.
This is illustrated in Fig. 1.

Of the variation about the mean R®=938.01/(5088.58~4045.20)
= 0.899 (or 89.99 is explained, a very high proportion.

From the equation of Fig. 11l the expected values of
the responses at the coordinates of Table 7 can be obtained.

These are given in Table 8 together with the observed values

obtained using Draper's equation ard Scheffe's equation

Table 8,

Expected Observed (Scheffe) Observed (Praper)
12,10 11.26 11,21
27.77 28.95 27.53
10.94 Th72 135,12
18.14 18.22 18.97
10.86 12.75 1155
12,79 11.32 12.51
20,04 21.58 19.94
26.21 AT 27.08
15.08} 17.1i] 15.52}
15,08 L.l 15.52

9.359 12.27 12.08
L1 L6 42,24 42,26

9.50 6.77 11.00
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The values of x® for these two sets of observation are

1.80

X2 (Scheffe)
] with 12 d. of f.

"

x? (Draper) L. 3)

Neither.is significant (Xia,o.os = 5.23), but the figure for
Draper's design is better than that for Scheffe's.

" I, from the calculation of x°, ome picks out the three
points which make the largest contribution one finds they are
the samz for both sets of data, but not in the same numerical
order and they correspond to areas on the top and bottom right
of the simplex, the more complex part of the response surface.
This is where their greatest deficiency lies,

The two equations can be qualititively compared by
converting, say, Scheffe's triangular coordinates to cartesian
coordinates using the reiationship

Zg = (—3X1"X243+1)/5, Za=(3x1-x2J3+l)/3, Za=(2X2J3;1)/3
where 2zi,23,23 are triangular coordinates and Xi1,Xs are cartesian
coordinates. If this is done we obtain

¥ = 17.17-34.19%:-6.82%a +hk.56x:2-10.05%a% 457 . Hhxa X3
as conpared with Draper's

¥ = 15.52-31.62%3-11.34x3+27.8%12+7.903x3 % +44.. 61x, %5

The most outstanding difference is in the coefficient of x2%. In
Scheffe's equation it is almost as antagonistic as it is synergistic

in Draper's.

Bias in Simplex Designs.

Bax and Draper (1959) have pointed out that in practice
a graduating function such as a polynomial will always fail
to some extent to represent a true function (see page 68 ).
This they call "bias error".

To examine this a quartic equation given by Gorman and
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Heinman'(1962) was used as a "true function". This is shown
in Pig, 7. The equation was evaluated for a series of
points over the simplex and from the computer print-out the
calculated responses at the points necessary for the calculation
of the coefficients of a linear, quadratic, special cubic and
cubic polynomial were read off and the relevant coefficients

- calculated. These are given in Table g,

TABLE 9. i
Responses
Y1 = 95.03 Y1z = 94.50 Yiaz = 94.35 Yisa = 98.42
ya = 9497 Yia = 99.67 Yiaa = 4b4b Yazs = 95.14
¥s = 94.08 Yas = 96.37 Ya1a = 98.29 Yass = 96.35
Yizs = 95.49 .

Coefficients (i) Linear s Bi = 95.03 Pz = %97 Pz = 94.08

(ii) Quadratic : Pia= =2.00 Pis= 20.46 Pas = 7.38

(iii) Sp.Cubic : Biza = =56.01
(iv) Cubic : Pia = 2.668 Pis =17.10 Pga = 5.468
yig 5=0.B775 yus =3:420 ¥as
Bi2s = 38.16

It

=10.10

The response surfaces obtained using these coefficients are given
in Fig.15,1§ and 18 . The difference amongst the response surfaces
is, in the writer's opinion, startling, So much so that the
computer programs'we carefully checked and the coefficients re-
calculated by an independent worker, The "hill" persists in all

of them being a maximum at about x; = 0.5. But the long valley on
the left with a minimum near its head disappears in the cubic
response surface to be replaced by a much shorter wider valley.

The special cubic represents this almost as a basin while the

quadratic causes it to degenerate to a long shallow slope.
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When carrying out investigations which entail the
examination of a response surface one is usually looking for
a maximum or a minimum, If a maximum had been aimed for one
would not have been led far astray and a binary mixture of equal
ﬁarts of x; and Xz would have been chosen, Howvever, had one
been looking flor a minimum the quartic response surface would
have indicated a position at the top of the valley
(approx x; = 0.2, X3 = 0.75, X3 = 0.05) while all the others
would have indicated the single component x5, Had one been
hoping to obtain some insight intc the underlying mechanism
one would have been led stray by using a cubic or léwer degree
polynomial,

It is interesting to note in passing that the writer
was unable to confirm the shape of Gorman and Heinman's 94
contour. At about x; = 0.3, x3 = 0.6, x3 = 0.1 the sides of

their 94 contour meet to form two valleys.

Evolutionary Operation (EVOP) apolied to the Mixture Problem.

The technique of Evolutionary Operation developed by
Box and others is now well enough knovn and established to re-
quire no detailed introduction. It is a management tool in which
a continuous routine becomes the basic mode of operation for the
plant and replaces the nomal static operation. As it is intended
to be used on the "shop floor" by personnel whose technical
qualifications do not fit them for carrying out sophisticated
statistical calculations, as many of the calculations as
possible are simplified by the introduction of approximations
such as the range as a measure of the standard deviation,

Consider a simple example in which, say, temperature

and concentration are the two variablés being investigated.

Main effects and interaction are calculated in the normal way



85.

and ths range used to calculate the standard error. The sig-
nificance of the effects is then assessed and a decision made
concerning the way in which the variables should be altered to
increase the yield.

When applying the basic ideas of EVOP to the mixture
problem it is found that modifications are necessary because
of the constraint in =1,

Suppose one had a process which, under normal operating
conditions was using a mixture of three raw materials in the
percentages 5%, 13, 33 and producing a product with a property
whoge measured value was 106. If it is decided to carry out an
EVOP investigation by changing the percentages of the mixture

in the way shown in Fig. 18 , how can the figures be interpreted?

o= (09, x2=30%

—_— s 6070

2509,
for !33'/
- w & = o
:(3"300/0 X a= 4—0/,x3 30 /n
Fig. 18 Responses (ringed) for Fig. 19 x53:xg::1:3 along
various mixture concen-— dotted line
tratio-ﬂs -

With some experience of EVOP an investigator would initially ask

what the effect of increasing or decreasing the amount of x, might
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be. But because of the restriction 3x = 1 he would quickly
realise that any change in x; brings about a concomitant
change in x; and Xg, A channel to which the writer gave some
thought was to consider a line through the apex of the simplex
~along which the ratio x3:xs was constant such as that shown
in Fig. 19 and to investigate the effect of changing x; while
the ratio x3:x; was held constant and similarly for the other
two pairs of ratios. However, this seemed a very contrived
way of accomplishing the object and one which did not seem to
be answering the gquestion about xi,%xs and xs; only about x;
and x3:Xxg etc. This approach was therefore abandoned.

Consider the simplest regression equation that could
be obtained by measuring a response at the three apices of a
simplex

Y = PBaXs + PaXa + PsXs

The B coefficients measure the effect of the x's and
it would appear sufficient to estimate the B's in order to de-
termine the way to move up or down the response surface, This
ignores the non-linear effects, but when it is realised that
in EVOP one makes only small chénges from the norm it can be
appreciated that within the small simplex being investigated
the non-linear effects will oe neéligible. The problem is thus
resolved into finding the B's with sufficient precision to enable
a decision to be made. This is accomplished by replication
enabling the standard error of the coefficients to be calculated.
It has been found that the inclusion in an EVOP program of the
current best known conditions is important. Usually these
conditions will be those at which the process is normally
operating. The main advantage is the reassurance it gives to

the personnel who are operating the process. Unexpected and



inexplicable variations which normally occur on the best run
plants will be ascribed to the EVOP program unless this re-
ference condition is included. Further, with this reference
point a comparison can be made with the average performance
achieved while running the EVOP design with the performance
which would have been obtained if all the runs had been made
at the reference point. This comparison is given by
(Average response over all runs of EVOP cycle)
~(average response at refevence conditions)

and is called the Charnge in Mean Effect.
-Suppose n cycles have been completed and the average response
a£ the four points, yo being the reference point, are as

shown in Fig. 20,

g

J2 Ya

Fig. 20 :Average responses after n cycles

The change in mean is given by
%(§1+_§a+ §3+ Yo) - ¥
= (Y1+ Ya+ Ya- 3yo)/b
and the variance of the change in mean is given by
Var(z + 3 + 2 = 3) = 36°/hmn

Thus, )
S.E (change in mean) = 0.87¢/.Jn

87.



The standard error of the g coefficients is ofyn
(See table 4 on page 48).

A further quantity which will be found useful by
plant personnel is the phase mean estimated by the average
of all the sets of conditions,

Phase mean = %(§1+ §3+ §3+ §4)
This measures the mean response over all the conditions
being run in the current phase,

Student's t-distribution is not used for setting
up confidence limits to test whether an effect is significant
or not; for the sake of simplicity aimed at in EVOP, 2 8.E.
are teken as the 994 confidence limits.

As each cycle of an EVOP program is completed the
data is accumulated with data from the previous cycles to
give cumulative figures for means of the responses of the
various operating conditions and the standard deviation, as
estimated by the range, from which the 2 S.E. limits may be
calculated. The figures are entered in specially constructed
tables which enable subsequent calculations to be easily as
systematically calculated. . A decision is then made whether
to carry out another cycle using the same operating conditions
or whether to move to a new phase with a new set of conditions.
The figures for the mean are self-explanatory, but those in-
volving the range need elabaration. After n cycles the following

data will be available for any given operating condition,

Average after n-1 cycles n
Observation on the n th.cycle My
Difference, > 1 S dn

As the difference is the difference between one obser—

vation and the mean of n-1 previous obsefvations all with



variance o®, the variance of the difference is given by

o
Var(dn) = 0® ¢ . S
1
=1\°
so that o= Std.dev(dﬂ) (==

As mentioned above, we measure Std.dev(dn) by the range B
and a factor Wk which is available in published tables. An

estimate Sn of Std.dev(dn) is therefore provided by Ran

leading to
i
" -1\?
8y = By (}H_ L
= Rn fk,n
where 1
£ he1\? g
k,n (ﬁn k

This factor may be worked out in advance and included in the
EVQP calculation sheet., For example, on the fifth cycle of a
program involving observations on the responses at the three
corners of a simplex plus the reference point, n =5 amd k = 4.
Hence, Wy = 0.4857 and f4,s = J5/(5-1) x 0.4299 = 0.434..

Having derived all the necessary equations etc. a
simulation was carried out using the equation

. y = 90x1+ 953{2"" lOO}C3+ 2?}[13{2+2?X1X2+ 27)(33(3

which contains three equal terms of quadratic binary synergism
and generates a surface with a single peak. The solutions to
this equation were computed at 1% intervals from which Fig. 21
was drawn, Itw as éssumed that the normal operating conditions
X1 = 136, Xp = 1% and x3 = 73 with a response of 104.1 units
and a standard deviation of 1.0 units, To try to increase the

value of the response, it was assumed that investigations werpe

89.
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carried out at the points of a simplex of which the above values
are the centroid or reference point (See Fig., 21). The values

of the response at these points were read off from the computer
print-out and a normal random deviate added to the value

obtained., These figures were entered on the EVOP sheet for

cycle 1, phase 1. The standard deviation (assumed to be unknown)
cannot be estimated from the data of a single cycle so the
'entries under "Calculation of Standard Deviation" are left blank
except that the prior estimate of the standard deviation (assumed
to be available from previous plant operating records) is inserted
in the first line. As soon as the figures from cycle 2 are
available we can form an estimate of o based on the range cal-
~culated from the two asterisked extreme values.

The 2 5.E, limits decrease as one would anticipate
until cycle 4 when an "unfortunately" high random deviate in-
creased the standard error to 1.02. This again happened in
.cycle 5 with an increase to 1.8l. Cycle 6 compensated and the
figure was reduced to 0.85. The same pattern applied in sub-
sequent cycles and anticipated reductions in the standard error
did not materialise., For'didactic reasons ten simulated cycles
were run before it was felt that a practical appraisal of the
results should be made,

At the tenth cycle }1 and ;ﬁ are not significantly
different as judged by the 2 S.E. test. However, 53 is sig-
nificantly different from either y; or ya and at cycle 2 is the
smallest of the three. It is reasonable to assume that one should
move in a direction opposite to §a for the second phase which
would be centred on X1 = 1%, X3 = 16%, x3 = 6P%. Proceeding in
this fashion one would follow the zig-zag path shown in Fig, 21

until in the vicinity of the maximum at x; = 30%, x, = 39%,



92

s U o P Puase = _1
CALCULATION OF AVERAGES CALCULATION OF Stp.DsVv.
OrerATING ConpiTiens | ) (v (2) (3) PrioR ESTIMATE of 7 |2
1 PrEvious CyciE Sun * |PrREVIOUS S54M S -
& PrEVieus CYCLE AvERAGE Previous AVERAGE 5 -
s New OBSERVATIONS 104.¢ | 1038 |105:0 [ 101-5 |New 52 RANGE » fom =
#DIFFERENCE 2-3 RANGE -
: s NEW Sums 1+3 104.4 |102:8 |105:0 | |05 |New Sum & =
el Avciases- s | ion-6 lio%a fiose [iors {Ba Aeret SeBgsdns -

CALCULATION

OF EFFECTS

CALCULATION OF

S.E. LiMiTS,

F.(coirhuﬂw x) *+ 5
Pu (coepricinT ) » Y,
fa (<OEFFICIENT X3) + 3.

Puase Mean = ,':(3'-03-+E-+§n)

CHANGE (M MEAN EFFRCT « PHASE MEAN —J, »-01

=1037
-1025‘8

3

Fok New AVERAGES « 225 % 2:4

21050 [For New EFFECTS -« £25 « 2 2:4

elOlS

El

n

FoR CHANGE 1N MEAN » 217452 £ 2.09
Jn

PBa (cOEFFICIENT X2) = Go
F- (COEFFICIENT Xy) = 3‘

CHANGE IN MEAN EFFECT « PHASE MEAN - F, = -l2

= [04-T [For New EFFECTS - 22% o 2|

™ '0"3

n
N

For CHANGE 1N Mean « 211435 4

ol

34

A

-5

3 2 CYCLE ne_2 _ Puase = _1
CALCULATION OF AVERAGES CALCULATION OF Svp.DeV,
OPERATING CONPITIONS ) (1) (2) (2 PricR EsTIMATE of ¢ 12
\ PrEvicus Cycle Som | 1046 | 1038 | 1050 {1015 |PREVIOUS SuM s =
a Previoss Cyeif AvsrAcl| | 046 | 103-8 | 1050 | 101-5  [PREVIOUSAVERAGE S =
s NEw OBSERVATIONS 165-2 | 1052 | 104:5| 1011 [New ss RarcE » fon - 073
4 DIFFERENCE 2-3 ..;.6‘ - |4 +o§' +04 |RancE - 240
s NEW SumMs 1+3 20q.8 | 20q.0 209.5 | 2026 NHew Sum ¢ = 073
« New AvsrAcss: i | 1049 | 1045 | 104:7 | 1013 {M** AvRAGE $o Maw Sin§ = 5.3
CALCULATION OF EFFECTS CALCULATION QF S.E. idMITS,
Puase Mean » t(g.oﬂ.-rg...a,J <104-0
P.(coirr-mtm x) « § =tobs Fok New AVERAGES « 223 .= [.7




93

2 CyeLe net Puase = _1
CALCULATION OF AVERAGES CALCULATION OF Stp.Dav,
OPERATING ConmiTions | (O) (1 (2) (3) PRiIOR EsTIMATE oF ¢ 112
i PrEvious Cycie Sum | 3147 | 213:0 | 815.2 | 3036 |Previous sum s - 1285
2 Previoss CyeE Avseace| 104-9 | [©4-3 | 1051 | |01 2 |Ppevious AVERAGE S - 0:63
sNEw OBSERVATIONS |]04-3 | 102.2 | 105] | 10F5 [New 5» RANGE x fon = 1-01
4+ DIFFERENCE 2-3 0:6 a-f 00 --c>-3‘!Ir RanGE - 2.4
QNaw Sums 143 419.0 | 4152 | 420-3 | 405:] [New Sum & = 306
¢ New AverAcss: Y | 104:8 | 1038 | 1051 | 1043 [NEW AVRAGE SilewSons = ).0p
CALCULATION OF EFFECTS lCALCULATlOH OF S.E. Limi1Ts,
Puase Mean = (Ge+ G+ Gus iy 1033
P' Bosrmein x) = 3.' .103:8 Fok New AVERAGES :%s_ =2 |02
Pu(coerricinT =) » 4, . =105 [For NEw EFFECTS -« £28 4 % |.02
P (coerFIcienT 2y) « 3, . (0}3 J n
OR CHAKGE IN MEAN » 2| 745 . % 0-R9
CHANGE [N MEAN EFFECT = PHASE MEAN - J, =—]0 | o
!
3 2 CYCLE ne__6 _ Puase =« 1
CALCULATION OF AVERAGES CALCULATION OF Stp.Dav,
OPERATING ConmiTionS | (O) (1) 6] () PRIOR EsTIMATE of o |2
1 Previous Cycie Sum | 5223 | 5187 | 523:4 | 505-% |Peeyious s . 405
a PrEviovs Cyci€ AvseAce| 1047 | 1037 | 104.7 | jo).) S T Y
sNEw OBsERvATIONS il 103:9 | 104:6 | 10I'° INgw ss RANGE x fon = 022
4 DIFFERENCE 2-3 ~0.4" —-0-2 o |" 01 |Rance . 08
6New Sums 143 6284 16226 | 6270 | £06'5 [New Sum ¢ & 427
¢ NEw AVERAGES: 1047 11038 | |04-5 | 101 [New AveracE s, &nw—sluug - 0.85

CALCULATION OF EFFECTS

CALCULATION OF S.E. LM TS |

Puase Msan - *(3’.-3-1-3-4-3-)

Bi(cosrrcent x) » §,
Pa(coerricint x)) .« §,
ps (coerFicienT 2y) » 5

« 1036
=038
=]04-5

For New AvERAGES . 223 ., 070

E3

FoR NEw EFFECTS - o « 2070

T [+10]

CHANGE IN MEAN BFFECT « PHAGE MEAN -9, =-).5

2%
N~

Fo CHANGE IN MEAN » 2|74s . = . éo
Jﬂ




s

3 2 CYCLE 'ﬂl__g PHASE = 1
CALCULATION OF AvERAGES CALCULATION OF Svp.Dev.
OPERATING CONPITIONS | (O) (1) (2) (z) PRioR EsTiMATE of ¢ -2
1 PrEvious Cyeie Sum 837-8 | 830-0| 8340 | 4087 PrREVIOUS UM 5 - 625
aPrEvIoss Cvei Ameace| (047 | 1087 | 1045 | 1011 PrevicusAVERAGE S =R
sNE & DBsERVATIONS [04:0 |104:9 | [04:9 | 101-] |Ngw ss RANGE % fon - 087
€+ L
+ DIFFERENCE 2-3 07 | =12 | =04 | 00 |pauce - 19
s NEW Sums 143 9418 | 9234.9| 9409°| 909-8 |New Sum g = 112
¢ New AvRAGES: Wi 1047 | 1037 | 1046 | 1011 [NEW BRASK Selgw s = 065
CALCULATION OF EFFECTS CALCULATION OF &.E. LiMiTs,
Puase Mean = £(Jo+GrGavdp) 1637
% o 1037 |Fok New AvERAGES « 225 % 057
Bicosrraan x) » §, . -
P (corFFICIBNT ) & §s 21046 |Icg New EfFEcTSs -« 225 4 2057
. Jn
f‘. (coerFicienT 23) » 3, e [0))
FoR CHANGE IN MEAN + 2} 145 , £ 0-S2
CHANGE N MEAN EFFRCT = PHASE MEAN —J. =-I10 Jn

CALCULATION OF AVERAGES CALCULATION OF Stp.Dav,
OPeRATING Conpimions | (O) (1) (2) (3) PrioR EsTIMATE ofF ¢ I'2
, Previous Cycie Sum | 941-8 | 934:9 | 9409 (4°9'B |PREvious sum s L 72
2 Previess Cycif Aweace| 104:7 | 1037 | 104:6 {1011 |PrevicusAvERAGE S . &85
sNe~ OBsERVATICNS 10636 103-9 | 102:9 99.7 [New 53 RANGE » fim - 014

v O
+DIFFERENCE -3 o -o2 | ©7 14 |Ranck s h
sNEW Sums 143 10454 |1038-Q [1044-8 [1009.5 |NEW Sum ¢ - 186
¢ New AVERAGES: Wi | 104°5 | 1039 | 104-5] (009 NEw AveRAcE 5-LH*_§*~ = 0
CALCULATION OF EFFECTS CALCULATION OF S.E. LiriTs,
Toe Gor o 035
Punse Maan = 3(§o=GorGerdo) ol
t. J ..j 5 S 03 Fok Niw AVERAGES + 228 .2 0:52

B.(cosrruent x) » « 1039 7

Pe (coEPFICIBNT 24) = U, 21945 [For New EFFECTS - o 23&_3 «2052

Ty » 1ore |

F‘. S c: 3’ * FoR CHANGE IN MEAN « 21743, 0-53
CHANGE [N MEAN BFFECT « PHAGE MEAN = J, =-1-0 Jn




95.

Xs = 356 with 5 = 113.2. ‘Howevef, before this point was
reached one would find that the amount of effort involved in
running the scheme flor the small increase obtained was not
justified from an economic point of view and the program would
be terminated before the true optimum was reached. 2
If the response surface is examined it is obvious
why'El and 5; do not become significantly different at even
the tenth cycle; they both lie approximately on the same
contour. Harrington has found this same effect with conventional
square and cube EVOP patterns when applied to chemical processes
and attributes this to the too cautious choice of the limits
between which the variables were changed. He suggests that

if the first few cycles do not reveal any change a larger pattern

rotated at 45° to the first should be selected as shown in Fig, 22,

Fig., 22 Fig. 23
The effect of this is to double the area of the space being
examined. If one extrapolates the technique to a simplex

the area is quadrupled and this might be too bold a step re-

sulting in the production of substandard material. The writer



suggests two alternatives; rotate the simplex through 60°.
This will invert it and if by chance two of the points do
lie on the same contour line the defect will be corrected
(Fig. 24 ). Alternatively one can double the area of the
'simplex by changing its height from J3 units to J6. This
amounts to increasing the height of the simplex by 41.6% or,

for practical purposes, two fif'ths.

NERN/

Fig. 2k Fig. 25

Practical Experience with the Technigue.

These techniques have been used by the writer to
investigate several three component systems. A (3,3) simplex
lattice was used in all cases. One investigation was to
examine the effect of two different types of polyacrylamide
resins and tetrasodium pyrophosphate (T.S.P.P) as a bonding
agent for foundry sands.

Figs.26 +to 28 -give the response surfaces for

different physical properties of sand bonded with different

.

~ resin/T.S.P.P. mixtures. As high values are required for all

96.
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four physical properties it is appafent by examining the response
surfaces that polyacrylamide2in any combination is not acceptable
and that a mixture of 70% T.S.P.P./30% polyacrylamide 1 would
have the desired properties.
Another investigation concerned the development of a

coating which would inhibit decarburisation of steel ingots
during preheating. During this process carbon is lost from
the surface layers and the properties of the metal in this region
are altered. Allowance has to bé made for this and wastage of
metal results. From technological considerations it was felt
that a paint made from silliminite, bauxite and silica would be
efficacious in retarding decarburisation andi a series of ex-
periments were undertaken to test this by coating small ingots
of steel and measuring the depth to which decarburisation had
taken place after heating and cooling. Fig.29 shows the responce
surface obtained for decarburisation and Fig. 30 is %hree
dimensional model of the response surface. Fig.3l is the reponse
surface for the loss in weight of the ingots. The interesting
point to notice is that silica or bauxite alone allow heavy
decarburisation to take place (approx 1 mm.). But in combination
(79% bauxite/25% silica) a coating is produced which is better
than any cher combination, allowing decarburisation to proceed
to a depth of less than 0.4 mm, _ Further experiments confirmed
this and as an added check a paint was made up corresponding to
the position of the maximim (78% silica/10% silliminite/12% bauxite).
After processing with this coating the ingot was not only heavily
decarburised but pitted and scaled.

-In an experiment which was carried out as part of
the same investigation with aluminium/hagnesia/silicon carbide
mixtures a difficulty was encountered in that a stable coating

could be made up only for certain combinations of the three
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components, This meant that obsérvations involving the pure
components could not be made. This problem was solved using
pseudocomponents. The mixtures A,B and C were made up
(Fig.32 ) and these were regarded as single components for the
purpose of the experiment, When the observations had been made
and the response surface plotted it was reduced photographically
and superimposed in the correct place on the simplex as shown.

The same technique had to be used when attempting
to find the best composition for'starter tablets for electro-
slag refining. These tablets, which in this case were made
of calcium fluoride, calcium oxide and alumina, are used to
help the electric arc to strike at the beginning of the process
and %o form a liquid basic slag in which the metal is purified.
Due to the hygroscopic nature of the calcium oxide the tablets
deteriorated on storage. There was a certain latitude about
the composition of the tablets and an investigation was put in
hand to find the composition which was the least hygroscopic .
Pseudocomponents were used again, this time because mixtures
outside certain bounds were of no technological interest as
it was known that they would not work. The response surface
of the pseudocomponents and its synergism and antagonism are
shown in Fig.j} while the response surfaces to the correct
scale is shown in Fig. 3, The optimum composition corresponds
to about equal propartions of the three components,

Fig. 35 shows a model of a response surface for a
four component system. The four components are edible oils

and the response is a measure of quality.

Discussion.

Scheffe's basic experimental designs are the simplex
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lattice and the simplex cen{roid. Ih the former we are completely

free to choose the degree of the polynomial we wish to fit while

in the latter the degree is always equal to the number of com-

ponents involved except when the designs are fractionated.

Box and Dreper (1959) and Box and Hunter (1957) suggest

that when a function was to be graduated by a polynomial, suitabl e

requirements for a response surface design are as f'ollows, although

to be of value for a specific purpose a design will not need to
possess them all.

a) The design should allow the approximating polynomial of degree
n to be estimated with satisfactory accuracy within the region
of interest.

b) It zhould allow a check to be made on the representational
accuracy of the assumed polynomial,

¢) It should not contain an excessively 1érge number of experimental
points.

d) It should lend itself to "blocking"

e) It should form a nucleus from which a satisfactory design of
order n+l can be built in case the assumed degree of the
polynomial proves inadequate,

In Scheffe's designs the polynomials obtained utilise

all the experimental_points and pass through them all. By taking

a larger number of observational points a better approximation

to the true function may be obtained. The only limit is the number

of observations one can physically achieve., Requirement (a) is thus

satisfied.
In order to test the accuracy of the polynomial Scheffe
uses check points and applies a t-test to test the significance

. of the difference between the observed response at that point and

the response predicted by the polynomial. This does not satisfy
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some authorities who feel that a deficiency in Scheffe's work
is that he does not consider the variance of the predictions
but only the variances of the estimatea coefficients. However,
in view of the fact that a check can be made, albeit not to
everyone's satisfaction, we can say that requirement (b) is
satisfied.

It seems to the writer that what constitutes an
"excessively large number of points" very much depends upon
the experiments, The experiment described on page 103
regarding the development or a sand bonding agent was very
easily carried out. Sand cores for testing could be produced
af the rate of 3-4 per minute and a batch of 20 could be made
at a time. A cubic model involving ten observation points,
eacn point replicated 10 times was not considered excessive.
On *he other hand in an investigation involving the casting
of 5 ton ingots followed by sawing in half, smoothing, polishing
etc.any number in excess of two was considered too many!

However, there is no doubt that Lambrakis's q;componenm
mixture designs do lead to a large number of points and suffer
from the further restriction that they are undefinable when the
number of components is three or less.

Simplex lattice and simplex centroid designs do not
lend themselves to blocking; Box and Hunter (195?) desc;ibe
h&m rotatable designs can be broken down into blocks. E.g. A
hexagonal design can be regarded as two equilateral triangles;
an octangoral design can be regarded as two squares while a
nonagonal design can be regarded as three equilateral triangles -
ete. .(Fig.36 ).

Scheffe's simplexes cannot be split up in this way
because the pointé are not equiradially distributed about the

centroid.
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. We have seen how a special cubic model can be built
up from the quadratic model. This step, at least, fulfils re-
quirement (e). However, the special cubic has only four points
in common with the cubic model and to use the former as a
stepping stone to the laﬁter would require the rejection of
three observations and the making of four more at different
coordinates, If one examines Fig. 2 it can be appreciated
that a (q,m) lattice is a poor stepping stone to a (q,m+l)
lattice but a better one to a (q,m+2) lattice. Scheffe's
simplex lattice designs do not fulfil requirement (e) com-
pletely. The centroid designs do not fulfil it at all as
degree of the polynomial is determined by the number of components,

Draper and Lawrence (1965) point out another disadvantage
of Scheffe's designs! the characteristics of a mixture of three
components are not exhibited by mixtures which do not contain
all the components, Consider for a two component mixture the
petrol-oil mixture used in two-stroke engines. Experiments on
"all petrol-no o0il" or "no petrol-all 0il"would not exhibit
results typical of the mixture.

All in all, Scheffe's designs would seem to be not
altogetﬁer satisfactory by the criteria given by Box et al.
However, their six criteria may be the council of perfection,

Turning now to Draper and Hunter's designs; for any
poiynomial there are an infinite number of designs.

For the case where a first degree polynomial is to be
fitted and we wish to guard against the possibility that the

true function is a. second degree polynomial (i.e. d; = 1 and

1l

da = 2) nine designs have been calculated and for the case

di = 2, da = 3, twenty two designs have been calculated.*

*The corresponding figures for 4 components are ten and twenty-six
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Some of the designs are not accurate 'and only those with dis-
crepancies less than 10f are given. If an exact design is re-
quired one must take at least 12 observations. Requirement a)
is thus satisfied to a2 certain extent, but in opposition to re-
quirement b),

With these designs an analysis of variance can be
carried out thus fulfilling requirement b). The writer feels
that this is of great weight when compared with Scheffe's
con?rivance of using check points.

However, the designs are not blockable any more than
are those of Scheffe,

Requirement e) is not fulfilled although one can pick
out one design where it nearly is. For d =1, dz=2 there exists

0.457 ad for d;=2, dz=3 there

one design where p = 0.733 and q
is a design where py = 0.748, pag = C.445, q4 = 0.468 and q; = 0.156.
This seems to be the only one where one might feel that the
difference is small enough to be ignored for practical purposes.

Some more specific points will now be discussed.

In the first instance the relative merits of simplex lattice
and simplex centroid designs.

Estimation is more difficult with the (q,m) lattice
designs. Equations for the coefficients of the general polynomial
are availabie only for m € 4 while the coefficients for the
centroid designs are easily obtained from the formula given on
page 35 . Further, the centroid designs are easily fractionated
by deleting terms while this technique applied to lattice designs
does not seem to be satisfactory. For instance if one decides to
reduce the number of observations on the cubic model by deleting
all terms > 3; as well as deleting ﬁijk xixjxk one should
logically delete the terms Yi xixj(xi-xj). Similarly for a

quartic model; if the terms ﬂijkexixjxkx& goes so should the terms
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2 2 2
2
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The simplex lattice permits more asymmetry in the

regression function fitted. Along the edge of a simplex centroid

design the regression function reduces to

Yy = ﬁixi +

i e
+ ﬂiJ %3

X .
Jd J

But for a simplex lattice design the function is

y = Byx; + ﬁjxj + ﬁijxixj - yijxixj(xi_xj)

which permits a cubic term. The centroid design can show only
a synergism which is symmetric about the edge, while the lattice
design can show asymmetric synergisms,

| When process variables are included the technique
which was illustrated for the centroid designs will work
equally well for lattice designs. But fractional designs
are mich more easily derived for the centroid lattices.

The lattice and centroid designs are not good space
fillers, .As far as the iattice designs are concernced the degree
of the polynomial chosen restricts the observation points,

E.g. if one chose to fit a quadratic model one would make
observations on pure components and binary mixtures only. A
centroid design has only one observation on all the components.
Lambrakis's technique of using only observations on g-ary mixtures
overcomes this difficulty, but only applies to mixtures of three
components or more, requires a large number of observations,leads
to some arithmetically tedious equations, although the availability
of electronic computers diminishes the importance of the latter.

Draper and Lawrence's désigns have a great deal to
commend them over those of Lambrakis or Scheffe. One can take
into account the existence of bias as well as variance; they

are good space fillers and the mathematical technique for dealing

with them is well known with softwear rea&ily available., They
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fulfil the need expressed by Scheffe for designs with aﬁ equally
spaced distribution of points. Hw ever, at the time of writing
desigis are available only for three and four components and
first and second degree polynomials., These restrictions are
not too serious; not many mixtures encountered in practice have
more than four components and it has been the writer's experience
that where compiicated mixtures are encountered it is often due
to a willingness to add things to bring about modifizations and
improvements rather than to remove them. However, some responses
do need a third degree polynomial to represent them adequately.
Quenouille has pointed out that one msy run into
troubie if one of the components is inert, Consider n components
which.pro&uce no response unless all are present in equal amounts

when they produce unit response. The response equation is

= nn X
y— H1X2 sewss n

which has a value of unit at the point x; = X3 = vvo =x_= */n
and zero at all other points.
An inert material is now added so that it forms one

half of the total and we have the point

/20, “/2a, eey %728, )
As only 50% active material is present the response will be 3.

We have then

= - - - =’. -
Y¥=1 for X4 = Xag = eee X /n X 0

=l = = = =1 =1
Yy=2 forxi =X = cee =% =%/2n Xes =2

This implies that the only terms in its equation involve
X1X3ees X and XaiXa i X ., @d the response equation will
be of the form

y:Axixa cew xn"'Bxlxa LN xn+1

Using the first condition
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1=An" 4+ B(0)

: n
leE,s A=

Using the second condition

1= A(2n)™" 4 p( 2+ "
i.e. B= 20 n(1 = 1/2%%)
Whence

n n
y =D XaXa ees X+ sl (l—l/2n"1)x1xg see X .

Suppose we now use this equation to.predict what happens
when all the substances are taken in equal proportions

i.e. at (*/(n+l), */(n+l), eeo, */(n+l) which is very near

to the point (*/n, */n, .., */n,0) at which the response

was 1. One migat reasonably assume that the value of the

ob served response at this new point would be n/(n+l). However
if one inserts the values of tle new coordinates in the pre-

dictive equation i.e. X3 =X = ceo = x = 1/(n+1) one obtains

n n
n 2 2
2t (%:I) (} T3 S IR T |

For large n the first term temds to € * while

the secord becomes very large. Thus, if one takes a 3 component
mixture to which a fourth inert component is added the above
equation will'predict a response of 1,05 while one would have
predicted on intuitive grounds that it ought to have been %1
This illustrates that errors may be aggravated
if inert materials which produce no response whatever are included
in the design.
Plackett points out that there exist many functions

which cannot be conveniently expressed as polynomials e.g. pH of

a chemical solution where one is dealing with the negative logarithm

of the hydrogen ion activity, or modern theories of drug actidn.
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Plackett and Hewlett (196 ) derived the following equation

for the "effect function" (x) of two drugs z; and zg

exp { (as+Bs log z4-x) /A0, Jrexp {(ca+Ba logza-x)/A6z) = 1

where ai,0a,P41,P2,601,03 and A are parameters, Similarly
Plackett and Hewlett (1952) obtained the following for a

mixture of poisons

X = 3(xa+ xa)+ 6 log|2 cosk ﬁz— )}
e )

where x is itself a function of the dose. Any attempt to fit
a polynomial to these expressions would lead to a considerable
amount of bias in the sense discussed by Box and Draper.

Scheffe's original work has sparked off a great
deal of interest ine xpérimental designa for mixtures., The
ériginal simplex lattice and simplex centroid designs have the
great virtue of simplicity although the generation of the data
to enable the response surfaces to be drawn is of such magnitude
that a computer is necessary.

The more sophisticated designs more recently
produced are of such computational complexity that their
use would be unthinkable without a computer. Indeed in the
development of Draper and Lawrence's minimum bias and minimum
variance designs a computer had to be used to solve the system
of non-linear simultaneous equations produced,

The following quotation from Tocher's discussion
on the paper by Box and Wilson (1951) is relevant in this
context. "Some pragmatists claim that one of the prime purposes
of designing experiments is £o enable the calculations to be

easily performed. It so happens that many of the designs with

desirable properties are also easily analysed, but the excuse
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for using this property as the aim of designing will soon be swept
away with the establishment of modern automatic computing machines
as computing aids. These machines would be able to analyse the
most complicated experiments in a fraction of an hour."

There are two developments the writer would like
to see; a method of fitting a response surface to randomly acquired
data analogous to the least squares method of line fitting to
unequally spaced data and a computer program which would draw out
the response surface on a digital plotter. This is not a trivial
problem, Where one has an equation of the form y = f(x) or y = £(x,2)
in cartesian coordinates it is easy to arrange for an}}ne for y
to be generated for continuous values of x at certain increments
of z, But when we have, in the case of mixtures, y = £(xs,%a,l-%x4-3%3)
for 0 € x4, kg € 1 in triangular coordinates we have to choose a
figure for y and find the values of x; and xg which trace out this
contour line, At the very least this entails solving a cubic
equation. A suggested method of impleﬁenting this is given in

Appendix 2
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APPE-NDIX 1.

HADAMARD MATRICIIS
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HADAMARD MATRICES.

A Hadamard matrix of order n is n x n matrix H con-
sisting of 1 and -1 entries such that
HB'=n1l
ThHe inner product of any two distinct rows is zero and the inner
product of a row with itself is n. A Hadamard matrix is normalised

when the first row and the first column consist of 1's.

P R PR 1S e 5
1- ) =1 o« el s S
W R ] SN SN S |
1 s IR e AT s AR . ]
NON-NORMAL " : NORMALISED

A Hadamard matrix of order n (n > 8) is equivalent
to a (7,k,A) symmetrical balanced incomplete block,
v=nl, k= (@21, A= (0/b)-1.

Let H be a normalised Hadamard matrix. Delete the
first row and the first column and replace all -1 by 0.,

This will give a symmetrical balanced incomplete block.

i S A St R e e 1 S R

My W BT RO R B A s SR - SR TG s (R T
i =l 103 =l 3 =} =1 3 IO Bl T
o=l =l LY ek T -1 R T R IR Bl e
e RN TRl S ShPeh Eu (R SRS | a3 A5 TR T i B ¢ - =
B R PR MU T DS . M | S ¢ e TR ¢ (P R (R
L, sl Sk wlied &L 1 3 Draied it 2 0 0.1 359
s AR ARy R ST SR [N [ | R 1. IR DO+ S ¢ IR

H matrix 8 x 8 B.I.B. from H matrix,.
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APPENDIZX 2

SUGGESTED ALGORITHM FOR DIRECT PLOTTING

OF RESPONSE SIRFACES USING AN ON-LINE

DIGITAL PLOTTER.,
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The following is a suggested algorithm for enabling
a response surface to be drawn using the digital plotter of a
computer.
We will consider the (3,3) simplex lattice
design for which the regression equation is
Yy = BaXs + Paxa + PaXa
+ P12X1Xa + P18XaXg + PasXaXg
+ Y13xixﬁ(xi—xa) it Y13x1x3)+}bax2x3(xa“xa)

+ P1a3X1XaXs

with the conditions 0 £ x4, Xgy Xg €1
Xy + X3 + X5 =1
‘The probler is that given a contour line y and one coordinate
X1, to find x3 and x3. Clearly, we need find only x3 as Xj
can be t'ound from the relationship that the sum of the coordinates
is unity,.
Make the substitution xg = l-x;-%; to obtain a

cubic form in x; and X

¥ = (200 Z so01Xa + 203Xz + 208x3?) LEQ
S=x
* (a.:,o + 8114Xa + 8.12.'&22)]{1
+ (220 + @21%3)x,?
+ aaox.ta
where,

aoo = fa
8ps = Pa - Pa + Pfaz - yas
aoz = —fa2s + 3yas
ags = =2yas
as0 = P1 = Ba + Pis = yis
a11 = Pi12 = Pia - Pas + 2yi3 + 2yas + Pias
asa = =yi2 - Y13 — 3yas - fi3s
azo = =fi18 + 3yis

agzg = Yyi2 - 3yis -~ yas - fias

a30 = =2 ¥
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All these coefficients are known, hence all the a's may be
calculated. xs is also known and the problem then is to

solve the cubic equation in x4

d.o + d,_x,_ + dgxla -+ daxia =0

where

do = (@00 + @01X3 + @02Xa” + 8osxa®) - ¥
ds = (810 + a14%a + asaxs?)

da = (ago + ags1x3)

ds = ago

for real roots such as 0 € x; € 1. x5 is already specified
and Xg = 1 - X3 = Xg.
The cubic in x4 may be further simplified by

making the substitution x; = x4 - dg/3ds which yields the cubic

d3x15+(%£ o -%g—za +d.1>x4 + (%—;%;3 -%’ +do)=0
in which the quadratic term has been eliminated. This is
probably not necessary as computers usually have subroutines
for the solution of polynomials of degree higher than is
envisaged in this work.

Now, digital plotters usually have procedures
by which it is possible to mark points specified in cartesian
coordinates and it is probably easier to make the simple
conversion from triangular coordinates (xi,X3,Xs) to cartesian
coordinates (31!23) for the purposes of plotting using the
formulae

21 = (-3%1 - Xa3+1)/3; za = (3xa~%aJ3+1)/3; 125 = (2x243+1).

As regards the values for the response contours
that are to be drawn; suitable values at equal intervals will

be suggested by the observed responses and experience suggests
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that about 10-15 lines on the simplex are usually adequate.

If now the simplex is scanned at some suit-
able interval (0.02 has been found to be adequately small and
in some cases 0.05 will sufﬁce) and the cubic equation solved
for real roots at each point for the various values of the
response contours (y's) chosen, the coordinates of the points
may Ihe stored in an é.rray. Use may then be made of the pro-
cedure which exist’s for digital plotters whereby a smooth
curve is drawn through a given set of points by fitting a

cubic polynomial between (xi,yi) and (xi+1’yi+1) using the

four coordinates (xi_i,'yi_i),(xiﬂ ’yi-u.) and (J-Li+2 ’yi+a>°
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APPENDTIZX Se

AN AITERNATIVE METHOD OF CALCULATING THE

VARTABLE COEFFICIENTS WHEN PROCESS VARIABLES

ARE PRESENT
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The reading of Scheffe's paper (1963) leads to
the following method of calculating the g coefficients when
process variables are present, The results are identical with
.those given on page 41 which seem more natural in their de-
rivation. An illustration of the calculation of the fBis

coefficient is given so as to avoid any confusion on this

Scheffe's notation will be used wnich is self-
AB,ij
23

level and B at

point,
explanatory apart from such coefficients as f§ which
Hesns the coofficient Bas With 4/at the 19
the jth level more usually seen as [(ab+(1))-(a+b)].

The responses from Block 1, Block 3 and Block 5

are taken frowm Table 5

Block 1 Block 3 Block 5
5’1,..‘ = 100 : y e 85 P4 = 90
3,.. 13,-.
yi!i' 108 ya’il = 98 yia’il 5 L0
: . = 12 " = 7 &
Ve sy = 186 Vo,ed ST Vin.d 30
. s = 2 i = g -
yi,lJ 07 ya,la o1 y1a,ij 190
Using the formulae for calculating the coefficients of the
special cubic model we have for Sr L
=" " 90 - 2x100 - 2 x 85 =10
B = 4x120 = 2x108 - 2 x 98 63
ﬂj. = 4x130 - 2x186 - 2 x129 -110
ﬁij £ Lx90 - 2x207 =~ 2 %157 32

The various effects and interactions are therefore,
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ﬁ‘:“;i = %((68+32) - (-110-10)) = 55
P S M(110432)0 - (6B-10)) =-3
i3
AB 45 3
pia’ = z((-10 + 32) - (68-110)) = 16
9 1
g, = z(-10 + 68 - 110 + 32) = =5
and taking these figures
B = ~5+55A - 34B + 16AB

18,1j

which is identical wita the Bis coefficient given on page 4l.
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When equal numbers of observations are made
at each lattice point Var(y) = o®z/r where r is the
number of observations at each point and z is the sum

of the squares of the coefficients given on page 25

These tables give values of z for the
quadratic, special cubic, cubic and quartic models

for the intervals 1.0(0.02)0.32,
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cO-ORDINATES QUAD, ., SP. CcuBlc cuBic QUARTIC
T e P 0.00 1.0000 1.0000 1.0000 1 .0000
0.98 0.00 0.02 0.8916«  D+8916 0.8349 0.8488
0.96 0.+00 0.04 0.£050 0.8050 0.7604 0.9398
0.02 0.02 0.7926 0.7933 06974 0.7354

0.94 0.00 0.06 0.7379 0.7379 0.7507 1 .1340
0.02 0.04 0.7143 0.7143 0.6409 0.8274

0 .92 0.00 0.08 0.6884 0.6884 0.7846 13410
0.02 006 0.6546 0.6527 0.6418 1.0023

0.04 004 0.6433 0.6414 0.5948 0.5973

090 0.00 0.10 0.6544 0.6544 0.8447 1.5072
; 0.02 008 0.6115 0.6067 0.6603 1.1814
004 0-06 0.5900 0+.5846 0.6000 1.0396

0.88 0.00 0.12 0.6340 0.6340 0.9171 1.6063
0.02 0.10 0.5830 0 +5745 0.7405 1.3193

0.04 0.08 0.5525 0.5420 0.6381 1 +1843

0.06 0.06 0.5423 0.5317 0+6046 141455

0 .86 0.00 014 0.6255 0.6255 0.9910 1.6317
0.02 0.12 0.5673 05544 0.5098 1 3950

004 0.10 0 «52&7 0.5120 06946 | 2921

0.06 0.08 0.+5094 0.4924 0.6387 1.2568

0.84 0.00 0.16 0.6271 0.6271 1.0582 1 «5897
0.02 014 0.5627 05447 0.8784 1 4048

0.04 0.12 0.5169 0.4931 0.7578 1.3453

0.06 010 0.+4896 0+4651 0 .6 8&7 1 +3380

0.08 0.08 0.4805 0+4562 0.6661 13402

0.82 0.00 018 0.6373 0.6373 1.1132 14945
0.02 0.16 0.5675 0.5439 0.9391 1.3561

0.04 014 0.5155 0.4837 0.8191 13416

0.06 0.12 04810 0.4482 07440 1 .3732

0.08 010 0« 4638 0.4318 0.7080 1+4011

0« &0 0-00 0 .20 0.65244 0.6544 1.1523 1.3638
0.02 0.18 0.5801 0.5507 0.9871 1 2628

0.04 0«16 0.5228 0.4824 08719 1 2884

0.06 0.14 0+4620 0.4402 0.7968 1 3604

0.08 012 0.4577 04175 07545 | 4246

0410 0410 04496 0.4104 07409 14494
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€0:-0RDINATES QuUAD, sP. CcuBic cuBic QUARTIC
078 0.00 0.22 06771 06771 11737 12163
0.02 0.20 05991 0 +5636 10194 11416

0.04 0«18 0.5372 0«4879 0.9122 11986

0.06 016 04911 04399 08413 13065

0.08 0«14 0.4606 0.4120 07985 1 «408&4

0«10 012 04453 . 03994 07784 1 «46 80

0.76 0.00 . 024 07041 - 0.7041 11770 1.0690
0.02 0.22 06230 DS5814 1.0347 1.0092

0.04 0.20 D «5574 D+.4989 09375 1 0874

006 0«18 D.5068 0 «4458 08738 1 2229

0.08 0«16 04709 04138 0 +8346 123579

0.10 0«14 04494 03970 08137 1 +4536

0«12 0«12 04423 03918 D.8071 1 <4880

074 0.00 026 07340 07340 11631 09361
0.02 024 06507 0D«6029 1.0330 086808

0.04 0.22 058620 05142 09468 09695

0.06 020 05277 0+4568 0.58923 11228

b 0.08 D18 0.4872 04216 0+8599 1 .2829
0.10 0«16 04604 0.4019 08422 14102

0.12 D14 04471 D+3932 08346 14799

0.72 0.00 0 .28 07658 07658 11337 0 .8280
0.02 0.26 0.6808 06270 1.0153 07685

0D.04 0.24 0.6098 05328 09405 0 +8581

0.06 0.22 05524 04718 08963 10190

0.08 0.20 0.50&2 0 «4342 08724 11948

0.10 0«1€ 04769 04127 08610 1 3459

0.12 D16 0.45€2 0.4019 0+8564 14463

‘ 014 0«14 0 «4520 0+398E6 0 «&553 14813
070 0.00 0.30 D«79&4 07984 1.0912 07511
0.02 0.28 0.7122 06526 0 .9838 06808

0.04 0.26 0.6396 05537 +9198 . 07631

0.06 0.24 05799 04896 08862 09227

0.08 0.22 -~ 0.5327 04504 08720 11045

0.10 0.20 04976 0«4280 08687 1.2701

0.12 018 04744 04165 0.8701 13935

0+14 " Del6 04628 04117 08718 1 «4590
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0.68

0.00
0.02
0.04
0.06
0.08
0.10
D.12
0«14
D.16

0.00
D.02
0.04
0.06
0.08
0«10
0.12
014
0.16

0.00
0.02
0.04
D.06
0.08
0.10
0.12
0.14
D.16
0.18

0.00
0.02
D04
0.06
0.08
0.10
0.12
D14
D.16
0.18

0.00
0.02
0.04
0.06

0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.18

0.16

0.34
0.32
0.30
0.28
0.26
D.24
0.22
0.20
0.18

0.36
0.34
0.32
0.30
0.28
D.26
0.24
0.22
0.20
0.18

0.38
0.36
0.34
0.32
0.30

‘0.28

0.26
D.24
D.22
0.20

0.40
0.38
0.36
0.34

euaD. SP CuBie
0.8308 0D.%308
0. 7441 0.6789
0.6703 0.5758
0.6089 0.5094
0.5594 D.4693
0.5213 0+ 4468
0+4943 D.4355
0.4782 0.4306
0.4729 0.4293
0.8621 0.8621
D« 7754 0.7049
0.7011 0.5984
0.6386 0.5302
0.5874 D.4897
0.5469 D.4679
0.5169 D.4578
0.4971 0.4540
0.4872 0.4530
0.8916 0.8916
0.8053 0.7300
0.7309 0.6207
0.6679 0.5513
0.6156 0.5109
0.5735 0.4903
0.5411 0.4820
0.5183 0.4803
0.5047 0.4809
0.5001 0.4814
0.9186 0.9186
0.8331 0.7534
0.7591 0.€420
0.6960 0.5718
0.6432 0.5320
0.6000 0.5130
0.5659 0.5072
D.5408 0.5083
0.5241 0.5117
0.5158 0.5141
009424 809424
0.8581 0.7746
0.7849 0.6617
0« 7223 0.5912

CUBIC

1.0389
09409
D. 8869
0. 8634
0.8591
D. 8651
0.8742
0.8817
0.8845

0.9798
0.8896
0.8443
0.8301
0.8354
0.8507
0.8687
0.8837
0.8921

0.9175

-0.8332

0.7949
0.7887
0.8027
0.8271
D.8541
0.8776
0.8934
0.8990

0.8553
0.7750
0. 7420
0.7421
0.7636
D.7962
0.8319
D.8641
0.8883
09011

0.7965

07182
0.6885
0.6933
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QUARTIC

0.7077
0.6222
0.6914
0.8421
1.0214
1.1922
1.3296
14178
1.4481

0.6965
0.5938
0.6462
0.7826
0.9522
11199
1.2623
1.3643
14173

0.7134
0.5934
0.6274
0.7463
0.9013
1.0592
1.1983
1.3053
1.3721

13948

0.7518
D.6163
0.6325
0.7326
0.8700
1.0133
1.1428
1.2468
1.3187
1.3553

0.8040
0.6561
06564
0.7386
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0.60

0.08
0.10
0.12
D14
0.16
0.18
.0020

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0«14
D16
D0.18
0.20

0.00
g.02
0.04
0.06
0.08
0.10
0.12
D14
016
0.18
0.20
D.22

0.00
g.02
0.04
0.06
0.08
0.10
D.12
0.14
0.16
0.18
0.20
0.22

0.32
0.30
0.28
D0.26
0.24
0.22
0.20

0. 42
0.40
0.38
D.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22

0.44
0«42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
D.24
0.22

0. 46
0.44
ul42
0«40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

QUAD, SPcugie
0.6694 05823
0.6256 D.5353
0.59205 D.5324
0.5636 D«.5369
0.5446 0.5438
0.5333 05494
0.5296 05515
D.9626 0.9626
0.8797 D.7931
0.8078 Ne6793
0.7460 0.6089
0.6935 05711
0.6496 0.5564
-0.6140 D«.5565
0.5860 0.5650
0.5654 D.5760
Bs5517 J.5856
0.5450 0.5911
09787 0.9787
0.89276 0.8083
0.8272 0.6942
0.7665 De.6244
0.7149 0D.5880
D.6715 05757
0.6358 D.5792
0.6072 D.59216
0.5855 0.6071
0.5702 0.6213
0«.5611 0.6311
D.5581 D.6346
0.9905 0.9905
0.9114 0.8201
0.8427 D.7062
0. 7836 0.6372
0. 7331 0.6025
0.6905 0.5926
0.6552 0.5994
D.6266 0.6159
0.6043 0.6361
0.5879 0.6553
0.5771 0.6701
D.5718 D.6781

Culc

0.7207
0.7603
D.8038
D.8444
0.8771
0.8982
0.9054

D.7440
0.6657
D«6375
0«6451
06767
D.7218
07719
0.8202
0«8610
0.8904
0.9058

0.7004
0.6203
N.5916
0.6003
0«6343
D.6832
0.7386
0.7932
D0.8413
D.8788
0.9025
0.9106

D«.6677
0.5842
0.5533
0.5613
0«5959
0.6470
0.7059
D« 7654
0.8198
D-8644
0.8960
0.9123

133.

@VART|C

0.8574
D.9834
1.0987
1.1934
1.2626
1.3045
1.3185

0.8614
0.7052
0.6930
0.7595
0.8607
0.2686
1.0671
11481
1.2084
1.2480
1.2674

0.9160
0.7559
0.7354
07897
0.8756
09665
1.0475
1.1122
1.1594
1.1905
1.2078
1.2134

0.9607
0.8011
0.7768
0.8231
D.8972
09734
1.0380
1.0859
l=1 125
1.1359
1.1451
1.1487



CO-ORDINATES QUAD, Se. CuBic CVBI¢ QUARTIC
0.52 000 0«48 09976 09976 06475 0.9899
0.02 0«46 09207 0«82E0 05591 ‘0 «E348

004 0«44 0 «&540 07150 05246 08112

0.06 0 .42 N.7966 06472 0.5301 06539

0.08 0 .40 07476 0.6141 05637 09205

0«10 0«38 07063 06067 06152 D «9E55

0«12 0«36 0D«6718 06168 06760 1 0361

D14 1 «34 06436 06372 07388 1-06&2

016 0«32 06213 U«6621 07979 1 «0&35

018 0+30 06043 0 «6E65 08486 1 «NELT

0.20 0D.2¢ 05924 07067 08872 1 .0&36

0.22 0.26 05854 07198 09114 10794

0.24 0«24 05831 07244 09196 10776

0.50 0.00 050 1.0000 1-.-0000 06406 1.0000
0.02 0«48 09254 08321 05463 06528

004 0«46 08609 07204 05067 08338

006 0«44 N«8055 06539 05084 06774
008 0 .42 0«758&3 06227 05393 09409
0.10 0«40 D7184 N«6176 05896 02988

0«12 0«38 06851 06307 06506 10387

Del4g 0«36 06578 1 «6550 07152 10573

0«16 0«34 () «6358 068644 07775 1.0573

018 0«32 D«61E8 07139 08327 1 «0449

0.20 0.30 06064 07396 08773 1.0271

0 .22 D28 05983 07584 09085 10108

0 .24 0.26 05943 07683 09245 1.0013

0+48 0.00 0 .52 0«9976 D 9976 06475 0 «9899
0«02 050 0.9254 0.8321 05463 0.8528

004 0+48 0.8632 07222 0.5007 D8417

0.06 0«46 «&100 06573 0«4972 08901

0«08 D44 07648 0.6279 0 «5242 09547

010 0 .42 0.7267 06250 05717 1.0097

0.12 0«40 06949 06409 06314 10429

0«14 0.38& 0«6687 06687 06960 10514

D16 0.36 06476 07024 0«7599 10384

018 034 06310 0.7368 08182 10111

0.20 0.32 D«6185 D.7679 08673 09780

0.22 0«30 06098 07924 09043 09474

024 028 06047 0D.8081 0.9273 0.9260

0.26 0.26 0.6030 08134 09351 0.9183




T~

b

CO.ORDINATES

0.46

0. 42

0.00
0.02
0.04
0.06
0.08
0.10
D12
D14
D.16
0«18
0.20
D.22
0.24
D.26

0.00
0.02
0.04
D.06
0.08
0«10
g.12
0«14
0.16
0.18
0.20
0.22
0.24
0.26

0.00

D.02
0.04
0.06
0.08
0.10
g.12
0.14
D.16
0.18
0.20
g0.22
0.24
0.26
D.28

0.54
D.52
0.50
0.48
0.46
0«44
0«42
D.40
0.38
0.36
0«34
0.32
0.30
0.28

0.56
D«.54
0.52
D.50
0.48
0. 46
0.44
0«42
0.40
0.38
D.36
0.34
0.32
0.30

0.58
0«56
0«54
D.52
0.50
0D.48
0.46
D« 44
D.42
D+40
0.38
0.36
0.34
0.32
0.30

QUAD,

0.9905
0.9207
0.8609
0.8100
0.7670
0.7308
0.7008
0.6761
0.6562
0+ 6404
0.6284
06197
0.6140
0.6112

0.9787
0.9114
0.8540
0D.8055
0.7648
0. 7308
0.7028
0.6799
06615
0.6469
0.6356
0.6273
0.6216
0.6183

0.9626
0.8976
0.8427
07966
0.7583
0«7267
0.7008
0.6799
0.6632
0.6502
0.6401
0.6326
0.6273
0.6239
0.6223

SPcuBic

0.9905
0.8280

0.7204
D0.6573
0.6296
D.6288
l.6472
U.6781

0.7156
Ne«7545
D0«7908
0.8210
0.8425
0.8536

J.8201
0«.7150
0.6539
0.6279
D.6288
0.6493
D.6828
07236
D. 7666
0.8076
0.8431
0.8704
0.8875

0-.9626
0.8083
0.7062
06472
0.6227
0.6250
D.6472
0.6828
0.7263
0.7727
0.8179
D.8582
0.8909
09139
0.9257

135.

cualc QUARTIC
0.6677 0.9607
D.5591 0.8348
0.5067 0.8338
0.4972 0.8901
0.5191 0.9595
0.5626 1.0159
0-6193 1.0465
D. 6825 1.0486
D« 7464 1. 0258
D.8062 0.9859
0.8583 0.9384
0.8998 D.8927
0.9285 D0.4571
0.9433 0.8378
0-.7004 02160
D.5842 D.8011
0.5246 D.&112
0.5084 0.5774
0.5242 09547
0.5626 1.80159
0.6153 1.0479
0.6756 1.0475
0.7379 1.0187
0.7976 0.9692
0.8511 0.9093
0.8956 0.8495
0.9288 0.7991
0.9493 0«7657
0.7440 0.8614
0.6203 0.7559
0.5533 D0.7768
0.5301 0.8539
0.5393 0.9409
0.5717 1.0097
0.6193 1. 0465
06756 1.0475
D.7350 1.0163
0.7932 0.9609
0.8466 0.8917
0.8924 0.8196
D.9285 0.7552
0.9534 0.7071
D.9661 0.6815



. COORPINATES

0«40

0.00
0.02
004
0-.06
0.08
0-10
0.12
0«14
0«16
D018
0.20
0.22
0.24
0.26
0.28

0.00
0.02
0.04
0.06
0.08&
0.10
0.12
0«14
0+.16
D18
0.20
0.22
0.24
0.26
0.28
0.30

0.00
0.02
004
0.06
0.08
010
0.12
014
0.16
018
0.20
0.22
0.24
0 .26
0.28
0.30

0.60
058
0«56
0.54
0 .52
0«50
0«4E
0 .46
0.44
0.42
0 - 40
0.38
0.36
0.34
0.32

0.62
0.60
0.58
0«56
054
0D.52
0«50
.48
046
0+44
0«42
0.40
038
036
0.34
0.32

064
0«62
0«60
0«58
‘0«56
054
0«52
0«50
048
0 .46
044
0«42
0«40
0.38
036
0.34

QUA D,

0.9424
0.8797
0.8272
07836
07476
07184
06949
06761

06615
0.6502
06416
06353
0.6308
06278
0.6261

0.9186
0.&5€1
0.8078
0.+7665
0.7331
0.7063
0+6851
06687
0.6562
06469
06401
06353
0.6320
06298
0+6286
0 +62 80

08916
0.8331
07849
07460
07149
06905
06718
046578
06476
046404
06356
0.6326
06308
06298
06294
06292

SP CUBiC

0.9424
0.7931

06942
06372
06141

06176
0.6409
0.67681

D.7236
07727
0.8213
0.8658
0.9035
09319
09496

0.9186

07746
06793
06244
06025
06067
1 «6307
06687
07156
07666
08179
D 8658
0.9077
0.9411
09643
09762

08916
07534
06617
06089
05880
05926
0+6168%
0 «6550
07024
07545
D8076
0.8582
0.9035
09411
09693
09867

cuvdlc

07965
06657
05916
05613
05637
05896
06314
06825
07379
0.7932
0.+8450
0.€907
0.9282
0.9560

0 «8553
0«7182
06375
06003
05959
06152
0+6506
06960
07464
07976
08466
08907
0«928&0
0«.9572
09771
09873

09175
07750
0 «6&85
06451
D+6343
06470
0+6760
0.7152
07599
0.8062
08511
0.8924
0.9282
0.9572
0+9785
09915

136.

QUARTIC

0 «&040
0.7052
0.7354
0.8231
0.9205
0.9968
1.0429
1 0486
10187
09609
08857
0.8044
0 «728&0
06659
06256

0.751¢
0.6561
0.6930
0.7897
068972
0 .9855
16387
10514
1.0258
0.9692
D.8917
08044
07187
06447
05905
05619

07134
06163
0+6564
07595
D.8756
0.9734
10361
b -0573
10384
09859 .
09093
08196
07280
06447
05785
05361



137.

tO-ORIHHATES [ QURD, , SP. CuBlc cuBiIc QUARTIC
0.34 0D.00 066 0.€621 08621 09796 06965
0.02 . 064 0.&053 0.7300 0 .£332 05934

D04 0«62 07591 06420 0 «7420 0 +6325

0.06 0.60 07223 0.5912 0+6933 07386

0.0¢& 0586 0+6935 0.5711 06767 0.8607

D10 0«56 06715 0.5757 0.6€32 09665

0.12 D +54 0D «6552 05994 0.7059 1 «03&0

0«14 D .52 0+6436 06372 0«73&8 1 0682

016 0 .50 06358 0D.6€44 0.7775 1.0573

D.18 048 0.6310 07368 0.&1&2 10111

0 .20 0 .46 0.628&4 D.7908 0 .&583 0 +9384

0 .22 0«44 06273 08431 08956 0 6495

0 .24 0 .42 06273 08909 0« 9285 0.7552

0.26 0«40 06278 0.9319 0+9560 06659

0«28 0«38 0+62€6 09643 09771 05905

0.30 0 .36 06292 09867 09915 05361

0 .32 034 0.6296 0+998&1 09988 0.5076

0 .32 0.00 0«68 0 +.&30€ 0.8308 1.03€&9 0.7077
0.02 066 07754 07049 08896 D«5938&

004 0.64 0.7309 0.6207 07949 0.6274

- 0.06 062 0.6960 05718 0+7421 0.7326
0.08 0.60 06694 05523 0.7207 08574

0410 058 06496 0.5564 0.7218 . 0.968&6

0.12 0.56 06358 0.5792 0.7386 1.0475

014 054 0 +6266 06159 07654 1 «0859

016 052 06213 06621 07979 1 <0835

018 0.50 06188 07139 0 .8327 1 <0449

0.20 048 06185 07679 0.8673 0+97&0

0.22 0«46 06197 D.&210 08998 08927

0+24 0 .44 06216 08704 0 «92§&8 0+7991

D .26 0 .42 06239 0.9139 0.9534 0.7071

0.28 0«40 D.6261 09496 09730 0 «6256

0 .30 0.38 0+62¢€0 0.9762 0.9873 05619

0.32 0 .36 0+6291 09926 09959 0.+5215

0 .30 0.00 070 0.7984 0.7984 1.0912 “Be15112
0.02 068 07441 D0+.6769 09409 0 .6222

0.04 066 D.7011 05984 08443 06462

006 0.64 06679 0.5513 07887 07463

0.08 D62 06432 0 .5320 07636 08700

010 0.60 06256 0 +5353 0.7603 0 +9834

0.12 0 .58 0+6140 0 +5566 07719 1.0671

0«14 0 .56 06072 05916 0.7932 1.1122

0«16 054 0.6043 06361 06198 11175

018 0 .52 0+6043 0 +6865 0 «&486 1 0867

0.20 0«50 06064 0.7396 0D+8773 10271

0.22 048 06098 D.7924 0.9043 09474

0 .24 0«46 D«6140 0 +8425 0.9285 08571

. 026 044 0+6183 08875 D +9493 07657
028 0«42 0.6223 0.9257 09661 06815

0.30 0«40 06256 09556 09788 06117

0.32 0.36 0 «628&0 0.9762 0+.9873 05619

034 0.36 0.6292 09867 09915 0 «5361
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NOTE 1.

NOTE 2.

NOTE 3.

NOTE 4.

NOTE 5.

NOTE 6.

The paper by Gorman and Hinman contains three errors.

Page 486 under Special Cubic Model, the equation for b,

should read

. 2
by = (xi/E) 6xi -2x; +1- 3 ZE: Xq )

isi<s
and under Full Cubic Model the second term in Var(p)
should be eliminated.
On page 478 a negative sign is missing from

the tenth term of the quartic equation.

The paper by Scheffe (1958) contains two errors.

140,

Page 349, in formvla 4.8, the coefficient should

41% should be =12 and the coefficient -3 should be +3.

The papers by Loewe and Macht have not been consulted
by the writer. They are quoted as the original sources

of the use of "synergistic" and "isobols".

The paper by Dunn (1959) contains an error in the first

column of the table on page 618. For SiJ10 read Si/JIO.

The paper by Box and Draper (1959) contains an error

in equation 5. It is correctly stated in equation 7.

The paper by Box and Draper (1963) contains an error in

the third equation of Appendix 1. For xiy; read xi'y,

The book by Box and Draper, "Evolutionary Operation"

contains three misprints in the title to Appendix 2.



141,

NOTE 8. The paper by Snee -has not been consulted due to the
difficulty experienced in obtaining a copy. This

reference is given for the sake of completeness,



