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SUMMARY, 

The problem of the design and analysis of experiments involving 

mixtures, where a restriction exists due to the fact that the sum of 

the proportions must be unity, was, as far as the writer is aware 

first mentioned in the literature by Claringbold*. 

" Scheffe seems to have been the first to go into the problem in 

any great detail and he obtained equations for analysing such experi- 

ments and also considered some of the ramifications such as process 

variabl es, fractionation and restrictions on composition which make 

it necessary to use pseudocomponents., The equations which Scheffe 

derived are examined and criticised and their use illustrated by 

examples from experiments in which the writer has been involved. Scheffe's 

method of dealing with process variables is ulso illustrated by a 

synthetic example. 

Concentric shell designs recently developed by Doehlert are 

outlined and their relationship to balanced incomplete blocks, Scheffe's 

designs and Hadamard matrices is given. 

Draper and Lawrence have developed more sophisticated designs 

using techniques worked out by Box and Draper for minimising variance 

and bias errors in regression equations. A critical comparison is 

made between their designs and Scheffe's. 

Following Box's method of Evolutionary Operation, equations 

have been derived to enable the technique to be applied to production 

processes where mixtures are involved. This is illustrated by a 

simulated production process and some suggestions are made to overcome 

a difficulty encountered in this simulation which could easily occur 

in a real situation. 

The Appendix contains original tables to enable confidence 

limits to be calculated when using Scheffe's designs for the special, 

but usual, case when the replicates are of equal size. 

  

* Claringbold,P.J., "The Use of Simplex Designs in the Study of the Joint 
Action of Related Hormones", Biometrics, 1955, 11(2), 17.
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Introduction. 

This dissertation examines and illustrates the 

methods which have been developed by Scheffe (1958,1963) and 

others for the quantitative examination of mixtures. Most of 

the information is contained in two papers by Scheffe, two by 

Lambrakis (1968a,1968b) and one by Gorman and Hinman (1962). 

The two papers by Scheffe and Lambrakis are very erudite and 

mathematically elegant. But they can probably be read and 

understood only by the mathematically sophisticated and those 

to whom the exercise is a satisfying end in itself. Many of 

those who are in a position to put the techniques to use at the 

"shop floor level" are probably the ones who have the least time 

or detailed mathematical knowledge necessary to bring them down 

to practical terms. Gorman and Hinman have gone some way to 

remedy this in their paper in which they illustrate with practical 

examples the main contents of Scheffe's first paper. 

In this dissertation the writer hopes to amplify 

the work done by Gorman and Hinman and to take it several stages 

further illustrating some of the more advanced techniques by 

means of examples. 

The Problem. 

There are many situations where the response does 

not’ depend on the total amount of a mixture present (an extensive 

property) as would be the case in a field experiment with 

fertilisers, but only on the proportions of the components 

present (an intensive property) as would be the case in the 

octane rating of a blend of petrols or in an animal feeding 

experiment where certain dietary combinations had to be tried 

out. In the latter case if the usual analysis of variance 

techniques were applied one would find oneself in the position



of trying to get an animal ey eat twice or three times as much 

as the others, Even if this could be done the results would be 

of doubtful value. 

Similarly, if one wished to investigate the tensile 

strength of, say, stainless steel which has an approximate 

analysis of 18 chromium, 8% nickel and 7g iron and it was 

decided in the first instance to increase the chromium content 

by 2%; does one reduce the nickel. by 2% or the iron by 2% or 

reduce both by 1%? Are the observed changes in tensile strength 

due to an increase in chromium or to a decrease in the iron or 

the nickel or to both? It can be appreciated that the usual 

factorial analysis no longer applies. Contrast this situation 

with a similar experiment which one might carry out on a steel 

whose vhosphorus and sulphur content are of the order of 0.001%. 

Any change in tne latter would bring about a negligible change 

in the overall iron content. Similarly, the application of 

fertilisers at a few ounces per square yard does not produce any 

appreciable change in the soil concentration. Scheffe's method 

recognises that for systems involving composition the sums of 

the proportions by weight, volume etc., must sum to unity. 

Therefore, the factor space is a regular simplex. For three 

components‘ this will be an equilateral triangle; for five com- 

ponents a regular tetrahedron; for four or more components no 

geometric model is possible. 

Simplex Lattices. 

Any combination of three materials can be repre- 

sented by a point in an equilateral triangle, a concept used 

extensively by chemists and metallurgists in plotting phase 

diagrams, The method is illustrated in Fig.1. A point on



A_TWO DIMENSIONAL SIHPLEX LATTICE 

Fig 4: 
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the apex A represents 100% of peneenere A. A point on the line 

A-B represents a binary miexture of A and B and none of C, A 

point within the triangle consists of a ternary mixture of A, B 

and C. Thus, the point X represents 40% of A and 6% of B; the 

point Y represents 44% of A, 17% of B and 3% of C; the point Z 

represents equal amounts of A, B ani C and is the centroid of the 

triangle. The idea can be extended to four components in which 

case a quaternary mixture would be represented by a point within 

the tetrahedron. Notice that any point on the line A-W represents 

a constant ratio of B to C in the case illustrated this will be 

BiC32634. 

A (q,m) simplex lattice is defined as a lattice 

involving q components to which a polynomial of degree m is to 

be fitted. Examples of different lattices for q=3 are given 

in Fig. 2. The special cubic lattice is made by adding a centre 

point to the two dimensional face of the quadratic lattice. It 

will be shown later that this simplex, called a simplex centroid 

design, has several desirable properties which make its use pre- 

ferable in many cases to the other designs shown in Fig. 2. 

The proportions of the components are 0, 1/m,2/m,...,1 

giving a total of m+l equally spaces values from 0 to 1 and all 

possible mixtures with these proportions are used. For the 

quadratic lattice (q,2) the proportions are 0,4,1 and mixtures 

are all the possible permutations of (0,0,1) and of (0,%,4). For 

the cubic lattice (q,3) the proportions are 0,4,3,1 and the mixtures 

are all the permutations of (0,0,1), all the permutations of (0,4,%) 

and the centre point (4,4,4) 

Table 1 gives the number of points required for 

any lattice (except the special cubic) and is given by Scheffe (1958) 

as (m+q-1)!/m!(q-1)! For the special cubic the formula is



EXAMPLES OF LATTICE DESIGNS. 
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{3q(q+1) + a(a-1)(q-2)}/6. Dochlert (1970) has worked out 

alternative formulae in the form of nested sums and has given 

an algorithm for calculating the required figures. Doehlert's 

formulae are, 

m=2 a(a+1)/2 

m= 3 y A(4+1)/2 

a 
ei N° a(a42)/2 ete. 

Table 1 gives the number of points for various 

values of q and mn. Doehlert's” algorithm is that to obtain 

any figure one adds the one above to the one on the left. Thus 

2002 in row 8 and column 4. is obtained by 1287 + 715 = 2002. 

This does not hold, of course, for the case of the special 

  

cubic. 

TABLE 1. 

Number of Mixtures in Various Types of Lattices 

mi 2 2 4 5 Special Cubic 

No. of q 
components 

3 6 10 15 21 it 

4 10) 20 2p) 56 1 

5 te oo 10) 226 25 

6 21 B68 1268) 252 al 

a 28 «84. 210 462 63 

8 56) 120° 550 792 92 

9 45 165 495 1287 129 

10 $5220 715 2002 LD 

  

It is surprising that Scheffe does not mention it 

* 

and it is obvious from Doehlert's paper that he (Doehlert) has 

not appreciated it, that the figures in Table 1 are merely those 

 



in Pascal's triangle with the first two and last two figures struck 

out! Further, when m=2, the numbers generated are the well-known 

triangular numbers for which Eperson (1967) has deduced several 

interesting relationships. 

Relation of Lattice Designs to Uniform Shell Designs. 

Doshlert (1967) has developed a new series of ex- 

perimental designs which have an equally spaced distribution of 

points lying on concentric spherical shells. These have unifom 

space filling properties and show an interesting relationship with 

Scheffe's lattice designs and with well-known unsolved problems in 

balanced incomplete block designs and Hadamard matrices (C.L.Lui.) 

For instance, Hademerd matrices of order n are known to exist when 

nt 1,2,4, ., 43 (j < 50) with the exception j = 47 i.e. n = 188. 

If such a matrix is normalised by arranging the first Low and first 

column to consist of +1's, and if this row and column are struck 

out and the -1's replaced by zeros we have a symmetrical balanced 

incomplete block. However, Hadamard matrices for j > 50 can only 

be conjectured. Consequently, symmetrically balanced incomplete 

block designs for these values are similarly open to conjecture. 

A regular simplex in 2-space can be defined in terms 

of three cartesian coordinates A, B am C 

A (0.000, 0.000) 

B (1.000, 0.000) 

CG (0.500, 0.866) 

These points are labelled in Fig. 3 

D Cc 

Fig 3 

*See Appendix 1
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If each point is subtracted from each other 

point four more points are obtained which define a regular 

hexagon 

A-B  (-1.000, 0.000) E 

A-C (-0.500, -0.866) F 

C-B  (-0.500, 0.866) D 

BC ( 0.500, -0.866) 6G 

For three factors the starting point is a 3-space 

simplex i.e. a regular tetrahedron 

A (0.000, 0.000, 0.000) 

B (1.000, 0.000, 0.000) 

C (0.500, 0.866, 0.000) 

D (0.500, 0.289, 0.816) 

If these points are subtracted from each other we obtain: 

A-B (-1.000, 0.000, 0.000) B-C (0.500, -0.866, 0.000) 

A-C (-0.500, -0.866, 0.000) BD (0.500, -0.866, -0.816) 

A-D (-0.500, -0.289, -0.816) C-B (-0.500, 0.866, 0.000) 

C-D ( 0.000, 0.577, -0.816) 

D-B (-0.500, 0.289, 0.816) 

D-C (0.000, -0.577, 0.816) 

These nine points together wita the four original points define 

a cuboctahedron with a centre point 

el) 
Cuboctahedron
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For d factors a regular simplex is formed by adding to the d- 1 

simplex the point 

1 Th a 1 i AQ (d+1) 
2 2 

Qa ale” fa(a-n)(a-2)} ” J fza(a-n)} ” 12a) n
i
e
 

To use the formula one works from right to left noticing that only 

the last two coordinates change and that the last coordinate is 

always .|(d+1)/) (2a). 

Example. 

To find the basic coordinates when (a) d = 4 and 

(b) d= 5. 

a) deh i = Oc/9le and = w2"qrog) ete. x 216 

giving’ (0.500, 0.289, 0.204, 0.791) 

Db), des 541 ZL 
= Oslo: =a = OL bovete, 

| (2x5) 4 {2x5 (5-1) } 

giving (0.500, 0.289, 0.204, 0.158, 0.775) 

Putting these results in the form of a table together with those 

previously obtained we have 

0.000] 

0.000 

0.000 

0.000 

  

0.500 0.289 0.20). 0.791 0.000 
  

0.500 0.289 0.204. 0.158 0.775 

From these figures the coordinates of uniform shell designs up to 

a = 5 may be calculated. In Doehlert's paper (1970) more de- 

tailed figures up to d = 10 are tabulated. However, Doehlert 

ap Klee (1970) have shown that the levels of these designs can 

generally be reduced by rotating the design and have calculated 

tables giving designs up to and including 14 factors. 

Reverting to Dochlert's designs and their



  

First E:cur Sues of tua Ruomsic Lattice, 
Fig +. : 
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12, 

generation: if the same quantities subtracted in the process 

outlined above are now both subtracted from and added to the 

points in the uniform shell desig, larger designs are obtained. 

This process carried out to a radius of 4 in 2-space produces the 

design in Fig. 4. The dots are at the intersections of 

equally spaced lines, at 60° to each other i.e. a rhombic or 

1/3 lattice. The points which have beea joined by broken lines 

are the ones of interest. Working from the centre-point outwards~- 

it will be found that the developing pattern generates sequentially 

the simplexes necessary for the development of linear, quadratic, 

cubic, quartic etc., response surfaces (see Fig. 2 ) thus 

showing an interesting relationship between two apparently 

unconnected experimental desigas. If one goes back a step further 

one can regard Hadamard matrices as a common souce of three types 

of experimental design. 

Hadamard matrices 

Symmetrical Balanced Uniform Shell Designs 
incomplete Blocks 

Simplex Lattice Designs 

Reverting now to the simplex designs; at some 

stage a decision has to be made what the value of m shall be in 

a given experiment. A decision will be reached base on 

a) the maximum number of experiments which can be accommodated 

bearing in mind the need for replication if a measure of 

error is to be obtained 

b) the adequacy of the polynomial chosen. A quadratic polynomial 

describes a response surface with no more than one maximum 

or one minimum, but not both, and with no point of inflexion; 

a cubic polynomial will give a maximum and a minimum or a 

point of inflexion and so on, ; 

Bearing these factors in mind the writer feels
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that a cubic polynomial is sufficiently accurate for most 

practical purposes while not involving a prohibitively large 

number of experiments. 

The foregoing remarks will have to be modified when 

fractionation of simplex centroid designs are discussed which 

allow one to reduce the number of experimental points with the 

accompanying restrictions which fractionation involves. 

Polynomials on the Simplex. 

We will show how some of the equations used in this 

technique are derived. 

A polynomial of degree n in q variables 

X41) X2y esie9 a) subject to the restriction 

M4 + Xe + wee + X= 1 Cr) 

will be of the form 

= Do + De x, + > ramets * > 4 ik he ay. + evo 

asi<j<q 1isj<k<q 

Consider, in the first case, where there are 3 components i.e. 

q = 3 and we are interested ina second order polynomial 

ye Dotbaxa +boxe tbs 2 X4%_ ty gX1Xp+Dq o%qXota 1X1? +bg axe "4bg axe" (2) 

Now, by (1), X4 + Xg + xy = 1 

and bo = boxs + box, + Doxy (3) 

Hence bo may be eliminated from (2) by substituting (3) 

¥ = (Dotbs)x1+(bo+ba)xa+(bo+bg)xe+biax, Xgt+bag%s Xg 

+ besxexXs + bi1x47+ beaxa®+ beoxs” 

The squared terms may be eliminated by multiplying (3) by X4,Xe 

and xg to form the identities
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2 
Xa" = X4 - X4X%_ — XiXe 

Xg" = Xg - X4Xq — XgXg 

1 x3" Xg - X4Xg — X_Xs 

Substituting we obtain 

¥ = (botbstbi1)x1+ (bot bat baz) xa+(botbo+bsg)Xo 

+(bD12—ba1-be2)x1x2+(bas~baa—bea)+(bas—ba2-baa)xaXs 

Replacing the sums of the constants by 

Ba = Do + by + Daa CtC a5 

yields 

Y = Pix. + PaXe + PaXe + Ba2xaxa + BisXiXs + Bagxaxs 

or, more generally 

ve S BX; + Fy 

i<i<q a<i<j<q 

If a third order polynomial is required nine more 

terms must be added to give 

2 2 Y= Pot « 0 © © © + DagaXsXaQ* + Da19X17xQ 

2 2. 
+ DasaX%aXs° + DaigX1°Xg 

b. 2 Dd. 2 
+ DasaX2Xs" + Dagsxa”Xg 

+ DigsX%1XaXq 

+ Daaaxa° + dDageXa® + Dasaxe® 

Proceeding as before and using the following three 

equations derived from above to eliminate x® 

3 2 2 2 aes Shey a KEES X4-X1Xq—-X4Xg-X,?xXQ-K4? xq 
2 2. xa2° = x97 — xax2* — xg?xq = Xa—X1Xg~XgXg—X4Xq?—Kg7xg 

3 2 2 2 2 Xa" = Xs" — XgXg_* — xXgXg* = Xg—X1Xg—KgXg-X4Xo"—XoXg? 

we obtain 

Y = Pixs. + BaXa + BaXo 

+ B12X1X2 + BasXsXs + P2axXaxe2 

2 2. 2. 
+ Ba12X4°%2 + P115X1"Xo + Pa2sX2"xg 

2. 2. 2 + PsaaXsX%2"+ B1soX4Xs"+ BaaoXaXg 

+R gg ene (4)
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Now, from considerations of symmetry, Pay = ~ B. 

say, Which enables us to write terms involving coefficients 

Tjgnmei es? 

of this type in a more compact form 

Pag sty * Pag gity 
= Bag Xs ~ Fas ay 
= ¥5 p54, - x;) G4) 

Hence substituting in (4) 

Y = Baxa + Baxa + Paxa 

+ Paaxaxe + PisX1Xs + PasXaXa 

. ya2%1%e (xX4—x2 )+Vs9%aXs (X1-Xg)+ Yo oXaxXa(Xa-%s ) 

+ B1asX1XaXs (5) 

This third order equaticn may be written more generally as 

yr ) am + ) ars + - ¥% 1% jp 

as<i<q a<i<j<q asi<i<q 

: a Ba ca Pe (6) 
asi<j<k<q ee 

The equation for the special cubic (simplex 

centroid) is 

ye ) bx > gs z > Fie 

asi<q 1si<j<q Si<j<k<q 

Calculation of the coefficients of the polynomials. 

The coefficients for the cubic equation (5 ) will 

be derived and those for the quadratic and speciel cubic quoted. 

Let the response of the pure component be Yue 

Putting x, = 1 (and hence ch, 2 aoe 0) and inserting this 

value in ( 6) we find
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i.e. the coefficient associated with the pure components is the 

value of the response obtained with the pure component, a result 

which is generally true far all the equations of whatever degree. 

Let the response of the binary mixtures be Pay 

where the significance to be attached to the subscript is that 

at that point the mixture consists of 2 parts of component i 

and 1 part component j. At the point Xi = Sy Xs = 4 from (6) 
J 

mee: g 2 2 
Yigg = 58, +3 P53 + Pay tay Yay (7) 

and at the point x, =4, x55 g 

at 2 2 
¥ijs 2 Py + 385+ 3 Fi; ~# Ya5 (8) 

Adding (7) and (8) 

= cs 
Vajg * Ying ~ Fa * Fj ts Fs 

Substituting and rearranging 

=e i = Pi3 = 4 a55 + %5557 Ys YD 

Subtracting (7) and (8) 

~ xi aed aS %i93 7 4443 7 = Pp 3 Ps Se Yay 

Substituting and rearranging 

ae a = Vay =a (55 W555 7 Ya YD) 

Finally, to evaluate Bs ne put x, = = in (6) 

  

=i Ss cal a 4 a 4 Vij SB, +38, +s e+ bt Shia ts es a7 Page 

(£11 y terms are zero at this point) 

Using the above results we obtain 

Bij = 25 je ~ (27/4) a55 * Yaggt Yaa * Vinx + Vije + ¥ ja 

+ (9/2) (¥5 +35 +I) 

The corresponding formulae for the quadratic,
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special cubic and higher order polynomials may be similarly 

computed. Those for the first three models are quoted below:- 

Quadratic Model. 

ae) ND 
asi<q asi<j<q 

B= Y5 

Pa5 7 35> v5 (9) 

Special Cubic Model. 

- bi + » 55 + » Bsn a* Fe 

  

a<i<q a<i<j<q 18i< j<k<q 

Bias Fy 

Px 5 = a5 Va - Ws 

=2 Bs jie = 215 ue ~ WO dd p37 M) 

Cubic Model. 

ee > m+ > Pare ae > gees _ Bs na PX 
a<i<q A<i<j<q a<i<j<q a<i<jck<q 

Bi 93 

Bay = (9/4) (55 5 V5 gay) 

Ges Ses. 55 55°47) 

Bij = Wize = (27/4) (55 1 gg Tune noc Tse nad (10) 

+(9/2) Gee ji)
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Variance of the Predicted Response. 

The method of deriving the formula necessary for the 

calculation of the variance will be given for the cubic equation 

and those for the quadratic and special cubic quoted. 

We replace the @'s and y's by their estimates to give 

the predicted response 5S. 

Se
 

t = YaXit YaXa + Yoxo 

re (9/4) (vas2 + Yaa - Ya - Ya)XaXa +s + oo 

es (2?ys20 - (27/k) (Yasat¥a2atVsastVaaatVaa0+Vaas) 

+ (9/2) (yatyatys) Xa %aXe 

We now separate out the various coefficients 

1) Coefficient of ys , C1 say. 

Ca = x4 — (9/4) x1x2 - (9/4) x1x0 - (9/4) x1Xa(x1-x2) 

- (9/4)xax0(x1-%3)+ (9/4) xax2%0 

Factorising and using 1-xg = x1+X2 

Ca = (x1/2)(3xa-1)(3x1-2) and, in general 

CG, = (x,/2) (3x,-1) (3x,-2) « 

2) Coefficient of yiz2, Casa, say 

Casa = (9/4)x,x2 + (27/4) x4%0 (x1-%X2)- (27/4) x1 xexs 

= (9/2)x1xa (3x41) and, in general, 6,4 4=(9/2)x,x,(3x,-1) 

3) Coefficient of » say . 

C122 (9/2)x1%0(3x_2-1) and, in general, C5 55769/2)4,; (3x52) 

4) Coefficient of vies, Cias, say 

This is easily seen to be Cies = 27x1xXexs 

and, in general Cs ix = at 

Hence, for the cubic polynomial
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   ye C.y. c.. eal © 
% y a y (Cas 459 x 5 Wijk 

; asi<q asi<j<q asi< j<k<q 

Using the form of the equation given on Page Uy, where 

a i b e can C3, Oia 4 35 and ie have the values given above, we c 

determine the variance of the predicted response. If the 

variance of the simplex is o* then the variance of the 

predicted response is given by 

~ 2 2 F 2 2 
var )=f 2 tis a Cini Osa +) ae | 

2s, T.. Tr. Ts» 
ic 

a<i<j<k<q aa 

Yr...) T.., andr... are she number of observations 
dij 2d ijk 

where Tas 

on ¥y> M35 and Va jc 

Each of the polynomials are orthogonal on the 

lattice in the sense that each equ.ils unity at the lattice 

point associated with it. For example, for pure components 

when x4=1 we have @)(3-1)(3-2) = 1; for binary mixtures when 

- xX, = 3 and x, = 4 we have 2)()@) (3x1) = 1 and for ternary 

mixtures when x4= Xg= Xg= 4 we have 27(4)(4)(4) =1. 

Allocation of measurements on the lattice. 
  

It is obviously highly desirable to know how 

the experimental observations should be distributed over the 

lattice to give the minimum variance. A foreknowledge of this 

would enable an experimenter to allocate his, perhaps limited, 

resources to the best advantage. 

This can be done by taking the number of 

observations at each lattice point proportional to the 

maximum of the squares of the coefficients. This allocates 

to each observed mean a number of observations such that the
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maximum contribution to the variance of the predicted response 

is the same at each point. We have, therefore, to calculate 

the maximum values of the C coefficients. 

1) Maximum value of G.? 
  

By rearranging Cs given on page 18 

S Se C= (9/2) (x, x, )+ x, 

The maximum value of this is obviously x, = 1 and the 

  

minimum at x= 0. At the maximum value of Xy9 c 

and hence max(C,*) el. 

2 
2) Maximum value of C,    

Cc is a function of xp and 5 only and the 
add 

values of xy and oe must lie in the triangle 

e710, <5 2.05 ee ae te 

Now, 

2 
. 2, 2 2 C5 54 = (EMH) 2258 (3-2) 

and the maximum value is 

when x, +x, a ing 

Under this restriction 

=(9/2)x, (I-x,) (324-2)    
ae Lo 

Differentiation shows that the maximum is at x, = (ued7)/9 

corresponding to 6; 5, = (10+717)/27 and tence to 
2 a 

max(C, 5 5) = (443+140)7)/729 = 1.116. The same result 
a 

holds for C.. .o 
dij 

3) The maximum value of C,. 
ijk 

This is obviously when x; =X, _ x, = 4 at which 

  

2 
point max(C3 5.) iy



ene 

3) contd. 

Therefore, the observations must be allocated 

amongst the points in the proportion 

CP eBGe Oe = et LLG eds 
at ijj ijk 

This, for all practical purposes, is to say that one must 

take equal numbers of observations at each lattice point, 

a result which also holds for the quadratic response surface. 

Allocation of measurements on the lattice for the case 
of the special cubic. 

The way in which one tests the adequacy of fit 

of the polynomials is by taking extra observations (check points) 

at points of particular interest and comparing these observed 

values with those calculated from the polynomial. 

Referring to Fig. 2 ,it would be reasonable 

if one were fitting a second order polynomial, to take one check 

point at the centre of the lattice. Then, if the second order 

polynomial was found not to give a good fit when measured against 

this centre check point, the check point itself could be incorporated 

in the equation to give a third order polynomial which would be a 

better fit. This technique is known as "augmentation" and the 

special cubic lattice is sometimes referred to as an "augmented" 

cubic lattice. 

If one decides to make observations at the 

seven lattice points of the special cubic to fit a third order 

polynomial, then the remarks of the previous section apply; equal 

numbers of observations at all points. However, if used as a 

check point to test the goodness of fit of' a second order polynomial 

the distribution of observations over the lattice works out 

differently.
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Suppose we have derived a quadratic polynomial; 

at the centre point x, = =x, = 4 the response is given 

  

by 

et a ze = Va je = 30, + $0; + 5, + 30, 5t SPan. + $8, 

Now, for the quadratic polynomial the coefficients 

in terms of the observed responses are given by 

Bs =, } 

and Ps 5 = a2; = ay, 4 a. 

Substituting we find that the response for the ternary mixture is 

= (is . Viaje = WING, Han) ~ 0/9) O47 54.) 

and the difference between the observed mean response of the 

ternary mixture and that predicted is given by 

8g ne = Tage — WD Gs Tat gg) A/D) F447 54%) (22) 

where the carets denote mean values. 

Suppose ry observations are made with the pure 

components, rg with the binary mixtures and rg with the ternary 

mixture. If the observations are independent with equal variance 

O5 then the variance of 4s ix is given by 

160 die 

pe = a 7 ee * ae 

The total number of observations rs+3rat+3ri is 

fixed and the minimum may be found using Lagrangian multipliers 

1 16° 1 a 
ie ee, +ont a z) A (ro+3re+3r4) 

Differentiating this respectively with respect to ra,rg and rg 

and setting the derivatives equal to zero it is found that the 

minimum occurs when the observations are in the proportion
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Tai Me tte el sk 39 

For example, if we have 10-15 observations then 

to test a difference ove we should take rz = 1, rg = 2, 

rg =4or 5. However, if one wished to place confidence 

limits on B35 the coefficients of the polynomial associated 

with. the pure components, one would have to use as a measure 

of the standard deviation a figure obtained from a consider— 

ation of the observations made at the binary, ternary etc., 

points as the contribution made by vhe pure components would 

be zero for a single observation. This is an unattractive 

arrangement and it is suggested that at least two observations 

are made at each point and the ratio 1: 4 : 9 implemented 

as a secondary consideration, 

The essential difference between this allocation 

of observations and that of the previous section is that in 

this case the observations are being allocated for the purpose 

of testing a goodness of fit while in the previous section they 

are allocated for the purpose of estimating the response curve 

after the type of polynomial had been chosen. A polynomial 

having the same number of coefficients as points in the lattice 

will fit the observed mean value at each lattice point exactly 

and no measure of lack of fit is obtained. 

Testing goodness of fit. 

To test the adequacy of the model we need to com- 

pare the calculated response with an observed response somewhere 

other than at one of the lattice points for the reasons given 

at the end of the last paragraph. For this reason it is necessary 

to introduce into the experiment observations taken in regions of 

particular interest, the previously referred to "check points". We 

have seen that in the case of a quadratic polynomial the entre
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point may be used as a check point and introduced into the 

calculation to form the special cubic if tne quadratic is 

found to be inadequate. For other models the experimenter has 

a free choice as to the position of his check points. 

In order to judge the suitability of a model 

the student's t-value for the difference between the observed 

and calculated values needs to be determined. 

For the quadratic model using the centre point 

of tne simplex as a check point the test wili be 

t= ay pf VarC 9) 

where the numerator and denominator are given above. If the 

number of observations is the same at each lattice point this 

reduces to 

= eine 
Seidel G 

where r is the number of replications at each lattice point. 

When using points other than the centre of the 

simplex as check points the following formulae are used to 

compute the variance of the predicted values. The equation 

for the variance of the cubic has been derived earlier, but 

it is quoted again for completeness. 

Quadratic Model. 

~ 2 2 

Var(y) = ( » a,/r, + ms a f%i3 ) 

asi<q i<i<j<q 

where 
a, = x, (2x,-1) and 415 = tam,
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Special Cubic Model. 

var(y) = a( ». v,/t + i 0 43 + » Pape ) 
aSi<q as<i<jsq asi<j<k<q 

2 4 2 

by = (4/2), ~2x, 41-3 sy 2, ) 

j= 

where 

bs 5 dace 5 (3x5 - 2) ; 

bye 

Cubic Model. 

~. 2 2 2 2 

Var(y) = a( y Cy/r, + ae C35 f°" sag + ys 6359/7455 + - Cia 5) 

a<i<q aSi<j<q asi<j<q asi<j<ck<q 

where 

C= (%/2)(5x,-2) (3x,-2) 

Cya5 = (9/2)2,(32,-1) 
6555 = (9/2) x53 5(3x s-1 j 

u Cee gaa 

Notice that if the same number of observations are 

taken at each lattice point all of the above equations may be more 

compactly written 

var(y) = 0 2/r 

where r is the number of observatiom at each point and z is the 

sum of the squares of the coefficients, a function which depends 

only on tie composition of the mixture. 

Lambrakis (1968a) has shown tnat a general expression 

for the coefficients, z, of the variance equations is
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k 
< t t sii 1 a, = ll i(mx;) t/x jt (ax xi)8} 

Jet 4 

where Sr is any subset of the r elements of (1,2,...,4), Ps 

is the number of occurrences of a letter or number in the 

subscript and m is the degree of polynomial to be fitted. 

Example. 

For the cubic model, (q,3), m = 3 

a) Cal = Casa), hence ra = 3 

4 
Casa = MM {(3xq)1/38(3x4-3)83 = (21/2) (3xa-D( 5x1-2) 

B) Casa, hence rg = 2 andrg =1 

Casa = a
e
 

{(3x;) t/r j8(Gx 5-25) !} = (9/2)xaxa(3x.-1) 
JF4 

c) Cans, hence ra= ra= re= 1 

3 

Cias = OI (Gx )W/tGxo) i} = 27X1XaXa 

Compare these with the expression on page 18 

As the value of 2 depenes only on composition its 

value can be represented by contour lines on a simplex. Gorman 

and Hinman have published four simplexes from the quadratic 

to the quartic model which show these contours. But the dimensions 

are so small (2" x 2") that they can be used only for the coarsest 

measurements. To remedy this a table of z values has been cal- 

culated at intervals of 1.0(0.02)0.3) and is given in Appendix 

The function is symmetrical within the area bounded by the lines 

joined the centre of one side, the centroid and an apex, Hence 

the above intervals cover all cases. 

Synergism and Antagonism. 

The polynomials discussed can conveniently be re-
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garded as being composed of two negon parts; a linear part 

and a non-linear part. The first summation represents a linear 

combination of the mixture variables such as would occur if the 

density of a mixture of three liquids which underwent no volume 

change on mixing were measured. The second summation is the 

non-linear part and represents deviations from linearity which 

may be either positive or negative. If the deviation is negative 

the effect is said to be antagonistic; if positive the effect 

is said to be synergistic a term introduced in this context by 

Macht (1929). Sometimes agonistic is used as synonymous with 

synergistic. If the terms are antagonistic they will deflate 

the response below what one would expect from a linear model and 

vice-versa in the case of synergistic terms. 

The non-linear part is sometimes sub-divided to 

give binary synergistic (antagonistic) terms, ternary synergistic 

(antagonistic) terms etc., 

There has been some attempt to identify these terms 

with Yates's idea of interaction effects (Quenouille 1959). But 

Scheffe (1961) strongly rejects this and studiously avoids the 

term "interaction". He argues that for, say, a three component 

mixture the experimental points needed to define a two-factor 

interaction cannot be chosen without varying the third factor in 

such a way as to produce somehow an "interaction" of all three 

factors. The usu2l notions seen not to be applicable in this case. 

A knowledge of the synergism and antagonism can 

obviously be useful in giving some indication of the underlying 

mechanism and it has been suggested that it might help in the 

determination of Refutas blending numbers, These are numbers by 

which the viscosity of a mixture of oils can be precalculated, as 

the viscosity of a mixture of oils is not a linear function of the



viscosity of the individual’ components. 

In this section it seems appropriate to mention a 

piece of jargon sometimes encountered in this context; i.e. 

isobols. These are lines representing the combination of 

materials just necessary to cause a standard effect (Loewe ,1928) . 

Response Surfaces. 

Because of the restriction that the proportions 

of a mixture must sum to unity a three component mixture may 

be represented by a point on triangular graph paper, while a 

four component mixture may be represented by a point in a regular 

tetrahedron. Hence a response surface may be plotted. 

Example. 

The following example will illustrate the appli- 

cation of the previous theory to a problem in petrol blending 

which is a modification of the one in Gorman and Hinman (1962) 

concerning the octane rating of petrol blends. 

In practice the octane rating of different hydro- 

carbons show marked deviations from linearity when blended 

together. Paraffins with paraffins and olefins with olefins 

are sensibly linear while blends of paraffins with olefins or 

olefins with aromatics are not. With pure hydrocarbons these 

deviations may be quite large. But with ccmmerical petrols, 

which contain a large number of hydrocarbons, deviations may 

be quite small, The reason for these deviations are probably 

associated with the different oxidation mechanisms of the 

different hydrocarbons. 

The data in Table 2 represents octane ratings 

of blends of 3 different grades of petrol. It was decided to 

fit a quadratic model to the data or, if that was found to be not 

adequate, to fit a special cubic, The centroid corresponding to
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the mixture ($,4,4) was to be used as the check point for testing 

the quadratic. Hence, the observations were taken in the ratio 

given. A further observations was also made at the point 

(0.295, 0.405, 0.300). 

Table 2: Octane Ratings of Blends of Petrol. 
  

  

    

Volume Fraction 

Blend Xy X X3 Observed Octane No. | Mean 

z a: 0 0 100.9 100.90} Ya 

2 0 1 0 85.4. 85.4 | ya 

3 0 0 1 85.5 85.4. Yo 

4 4 4 0 88.8 89.3 89.05 yaa 

5 3 0 $ 99-3 90.7 95.5 Yao 
6 0 t $ 85.5 85.4 85.45 Yas 

7 4 as a 88.3 88.5 88.9 88.5 | 88.66] yas 
8 0.295 0.405 0.300 | 87.0 88.0 87.5 

8? = 0.295 

(aepor te 

Calculation of Coefficients of the Quadratic Model. 

fs = ys : = 100.9 

Ba = Ya = 165. 

Bs = Ys =. 85.5 

Bia = 4ysa-2vs-2ya = 4(89.05)-2(100.90)-2(85.40) = -16.4. 

fas = hyss-2y1-2ys = 4(90.05)-2(100.90)-2(85.50) = -10.8 

Bas = Was~2ya~2y— = 4(85.45)-2(85.40)-2(85.50) = 0.0 

The quadratic model then is 

¥ = 100.9%4+85..4%2+85.5x%5 — 16.4x1xX9 — 10.8x1x5 (is)) 

Using this equation the response at the centre point where 

X_ = Xg = Xg = 4 may be calculated 

Yaas = 100.9($) + 85.4($) + 85.5($) - 16.4($) - 10.8(4) 

87.58 u 

By (11), dias = 88.6 - 87.58 = 1.08 and by 03
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Var(diae) = 0.295(4'+ $8.5 +2) = 0.197 

and” +t =11.08/J0.197 = 2.55. 

The value of t is significant at the Te level with 7 

degrees of freedom (to.oas,7 = 2.36). Further a difference of 

1.08 is more than would be acceptable in practice. Therefore, 

a more complex model is necessary and we augment (13) by the 

term Bi2sX%1X2X%3, where Bias for the special cubic is given 

by (9) 

Baaa = 27(88.6)-12(89.05+85 .5+85.45)+3(100.9+85 o+85.5)= 29.22 

and the model now is 

Y = 100.9x4+85 0%94+85 05x%g-16 .x4XQ-10 .8x1x%9+29 .2x1XgXs (UV) 

We use the checkpoint, blend 8, to test this new model. ; 

The observed value at the point (0.295,0.405,0.3) is 87.5 and 

the value calculated from the special cubic model above is 87.3, 

a difference 0.2 and we now have to calculate the standard error 

in order to carry out a t-test on this difference. We can 

calculate the b coefficients using the x1,x2,Xs coordinates of 

blend 8 

ba = -0.0134 by? = 0.000180 

ba = 0.0306 ba? =_—« 0.000935 

bs = 0,0125 ba* = 0.000156 

biz == (0.04.78 bia* = 0.002284. 

bag = 0.0761 bas® = 0.005793 

bas == ~—(00559 bas® = 0.003124. 

_baza = 0.9677 Daas? = 0.936443 

E.g. ba = (0.295/2) (6x0.2957~2x0.2954+1 - 3(0.2957+0.057+0.37)) 

-0.0134. 

We can now find the variance of the predicted value var(y)
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fh 0. 0. 0.000156 var(y) = 0.295(° 000180 aa - 28 

0.00228), 0.005793 0.003124. 
ae oor ee eee 2 

ur 0.936443 ) = 0.071 

The variance of the difference between the observed and predicted 

values is the sum of the variances of the observed value (0.197) 

and the predicted value (0.071). Hence,the t-test is 

87.50 - 87.29 

J (0.197+0.071) 
= 0.512 

Entering the t-table with 7 degrees of freedom we find 

that the result is not significant at the 50% level (to.as,7 = 0.711) 

and we conclude that the model is adequate. 

If several points in composition are to be used to check 

the lack of fit a t value is calculated for each, However, these 

+ values are ererred to the o/(2k) point instead of the usual 

o/2 point of the t distribution where k is the number of check 

points in composition. This will be amplified in the next 

section. Meanwhile, we will notice that this usually leads to 

untabulated figures for the deviate and interpolation is usually 

necessary using, for instance Federighi's (1959) or Fisher's (2925) 

detailed t-tables. From Fisher's tables a useful graph of t against 

percentage point may be plotted for various degrees of freedom. 

Alternatively, Dunn (1959) gives an abbreviated table of the 

1-0.05/2k point of the Students t-distribution from which 

intermediate value may be obtained by interpolating with the 

reciprocal of the degrees of freedom. 

  

stimates 

Dunn (1959,1968) has considered the problem of finding 

confidence intervals for the means of dependent normally distributed
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variables when nothing is known about the correlation which might 

exist amongst them. There are occasions when one does not wish 

to make the laborious calculations to obtain the confidence band 

for a regression curve but rather to look for separate confidence 

intervals for each mean with the assurance that, with high 

probability, each interval of the set contains its mean. 

In the case of mixtures, the several different 

observations taken over the simplex are made on mixtures of the 

same materials (some in zero proportion) and the data may be 

correlated and the degree of correlation is unknown, In this 

case Dunn has shown that, if only an estimate of the variances 

is known the confidence intervals with confidence level l-a of 

the k sample means are 

Vy + C S/Jn (lte4 < k) 

where ¥y is the mean of the i th. set of observations and cr 

is the 1 - (a/2k) point of the Students Pease ue with 

k(n-1) degrees of freedom ani S is the overall variance of k 

observations replicated n times. 

Now, when testing lack of fit using k check points 

one is, in effect, carrying out a joint test at k points in 

compositions - in essence two linear combinations of all the 

observations. This is the basis last paragraph of the previous 

section. 

There is, however, another manipulation, which 

will be illustrated, in which we find the confidence limits at 

any point on the simplex and for this we use the t-value referred 

to a/(2k) point where k is the number of regression coefficients 

in the equation. The argument here is that we are concerned 

with simultaneously all confidence intervals which might be 

constructed for all compositions, each of which however concerns
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linear combinations of the k regression coefficients. 

Let us assume for the sake of the exercise that 

we have derived (13) on the basis of 3 observations at each 

lattice point, with no check points and that the variance 

is 0.36. The number of degrees of freedom is (3 x 7)-7 = 14. 

Suppose we now wish to calculate 95% confidence 

limits at the point x, = 0.56, x, = 0.34, xg = 0.10 at which 

the octane rating is 90.9. For 95% confidence limits we 

need to find 6 such that 

Pr(iy - 8<y <y + 3) = 0.95 

where 

b= + ax, VW) * 

t is taken at the o/2k level because of the k parameters in the 

regression equation, 

We have then 

a = 0.05 

k = 7,no. of constants in model 

= = 1 degrees of freedom 

of 2k 710400007 

2 = 5.11 at 0.00357 level for 14 d. of f. 

z = 0.5757 at x4=0.56, xg= 0.34.,x9=0.10 from 

tables in Appendix 4 

x = 3 observations at eacn lattice point 

s? = 0.36 

Hence, JVar(y) =Jo2/r = 10236x0.5757/2 = 0.32 

and 6 = 5.11 x 0.32 = 0.99 

Thus the octane rating lies between 90.9,+ 0.99 

i.e. 89.9 to 91.9.
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Simplex Centroid Designs. 

A (q,m) simplex lattice gives an equally spaced 

distribution of points over the simplex and has just enough 

points to enable a polynomial of degree m to be uniquely 

fitted. 

An objection to the simplex lattice design is 

the following: ‘suppose we wish to predict the response of a 

4, component mixture. We would use a (4,m) simplex lattice. 

If m= 2 we are using observations on pure components only; 

if m = 3 we are using observations on pure components and 

binary and ternary mixtures. Only when m = 4 do we have any 

observations of the effect of quaternary mixtures which is the 

real object of the experiment, Further for m > 2 the simplex 

lattice contains components in unequal proportions (see Fig.2). 

The simplex centroid designs differ in that 

they contain observations on mixtures consisting of every 

subset of the composition in equal proportions. This corres- 

ponds to the points (x1,x0, ++ 29% q) of the simplex obtained 

2 

mutations of ($,5,0,...,0), the 3 permutations of 

(4,4,4,0,06+,0) etc. and the point (*/a,*/a,*/q ...,*/a). 

Simplex centroid designs are also computationally 

by taking the q permutations of (1,0,...,0), the () per— 

simpler than the lattice designs and, as will be shown, can be 

developed to a more sophisticated level. One has already 

been met, the special cubic modal (Fig. 2 ). 

Calculation of Coefficients of the Simplex Centroid Models. 

A polynomial which has as many coefficients as 

there are points in the centroid design is
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a 
ye » BYXs, ay 2 Sires e - Bs nije + 2 es. 

a<i<q a<i<j<q a<i<j<k<q 

+ B120004 X1X_ coe ea (15) 

Let the response of the pure component be Vy: Putting x, = ui 

(and hence Rien My, = eee = Fy 0) and inserting this value 

we get 

Bs = Vy 

Let the response of the binary mixture b 

Vay Putting x, = x; = % (and hence Xp Fore = XY = 0) and 

inserting this value we get 

¥uj = 26, + 2B, + 36. . 

which gives 

B ag = 2l2yg 3 - 10447,)) 

Let the response of the ternary mixture b 

Putting x, =X, = j = = +4 (rest = 0) and inserting Vag’ 
this value we get 

2 % 2 Ba jc = PI go PO att nd + PO sy) 

These equations seem to indicate a pattern and Scheffe has 

shown that the general formula is given by 

Pg = re * g(8,)-(e1)? “9, (8_)+(-2)7 *¢ r-2 (s,)+ 

seoee #(-1)" * 17* g4(8_)) 

where 5, is any subset of r elements of (Gert) and $,(8.,) 

is the sum of all the responses of the t-nary mixtures with 

equal proportions from the r components in Si.
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Example. 

We will calculate the next B coefficients, Bae 

reek 

A(AP da (Sa)-3° $a (Sa) +2° ga (Sa )-1° $2 (Se )) (16) w Bs 4. 

Now Sq = (ijkn) 

and ¢a(ijkm) = Yi jan 

gold) = ¥5 5 AV 4 ja*V ston *Y jon 

ga(i din) = YA HAT _ 

Hence 

a 8. _38 
Bs jin = a(aey jum? iy jes jm*¥ itn stn) 

93 42°95 495 Want pct! San) 

“1° (y49 tH) 

It can be appreciated that the coefficients are 

much more easily derived than in the case of the simplex lattice 

designs. 

In the case of what was previously called the 

special cubic model the distribution of points over the simplex 

is identical with that of the simplest centroid design i.e. 

(1,0,0), (0,1,0), (0,0,1), (,3,0),(%,0,2), (0,4,5), (455.4), 

a comparison of the above shows that they are identical, 

Variance of Predicted Responses. 

To illustrate the method by which the variance 

of the simplex centroid designs are obtained we will calculate 

that for m= 3 

y = P1Xa + BaXa + BsXe + B1aXs1Xa + B1sxXaXa + BasxXaxXo + Bi2aX1Xaxa 

If in this formula we replace the B's by their estimates evaluated 

in terms of the responses we may collect coefficients of like
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terms to obtain the predicted response y> where 

~ a 4 a 
yr - asYy + a5 P45 + @193 Y1aa 

a<i<s a<i<j<e 

whence the variance is given by 

Var(y) = -( S a,/ry + » - r+ esas/rass) 

asi<s aSi<j<s 

  

where r is the number of observations at each point. 

Let a, be the coefficient associated with yi. 

Then if one carries out the process outlined above one finds 

Qg o> Xe + 2 Xa. 5 XX 2! a a. y= ai aX 

that 

J=2 a<j<ck<o 

3 

=u(.-2 y 73 Se * 7%) 

Ww 

dee 2<j<k<a 

The last term is merely 3x4xexs, but it is written 

in this form to help in the simplification. In order to simplify 

we have to utilise the fact that 

4 2 a. 2 

RT 
a<jck<q j= j=a 

This can be shown by the following expansion 

Peieect x.) 
q 

+ 2xg(Xo + ovo + x) 

(xe? + xa " (Xat Xa + eee + x4)" 

+ 2: toon + X xy (4 + x,) 

+ ececcese 

+ XX



Lae ons) oy ate Tm 
J=2 a-4 a<j<k<q 

whence the result follows. 

Using . x, =1- x4, and setting q = 3 

simplifies to 

8 

ay = (32/2) (a? - 2x, +1-3 a *) 

j=? 

Similarly 

Aza = 4xaX_ - 12xsXex— = hxixa(3x1+ 3xg - 2) 

and 

a129 = 27X1xaXa 

Process Variables. 

Suppose one wishes to examine the mixture 

variables at different levels of other factors which we will 

call process variables. E.g. the effect of mixtures of feeding 

stuffs on two different breeds of cow when given for two different 

periods of time or the road octane number of a blend of petrols 

when the make and speed of the car are varied. If there were no 

mixture variables the mathematical model corresponding to three 

factors A,B and C varied at two levels can be expressed as 

Vag sI+ Ay Hf S + C. + a5 + Ac, + Bice + ae + oie 

where Vase = the response with A,B and C at the 

ith, jth and kth level (i =+1,j =41, k = +1) 

H u the true mean of all the trials 

Aj = the true mean of all the trials in which A is 

at its ith level
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By and is are similarly defined 

a8; = the interaction of A and B with A at the ith 

level and B at the jth level 

AiCLs Bt and ALB SG. are similarly defined. 

To include process variables in the centroid 

design we carry out a complete factorial experiment at each 

lattice point and determine tne responses in the form given 

on the next page. These variable responses involving 

A, B, C etc. are used to calculate variable coefficients 

involving A,B,C etc. by using the formulae derived from 1) 

and we g3t a regression equation whixh can be solved for 

all values of the mixture variables at the two levels of 

the process variables.



TABLE 3 +: Responses of 3 mixture variables and 2 process variables. 

  

  

  

  

  

  

  

X4X2Xo A B Response Response func ti on 

- = 100 

100 + 108 ya = 150.25+7.25A+46.25B-3.25AB 

- + 186 

+ + 207 

- - 8h. 

010 + 2 194. ya = 160.25+19.25A+21 .25B-35.75AB 

- + 198 

+ + 165 

- - 85 

001 t+ os 98 Yo = 117.25+10.25A+25.75B+3075AB 

- + 129 

+ + 157, 

=a 89 

720 NS 202 Yaa = 139.75+42.75A-5.75B-13 .75AB 

- + 105 

+ + 163 

- - 90 

$04 tof 120 Yao = 132.5+122.5A+27.5B+7.5AB 

- + 130 

+ + 190 

- - 85 

oss tos 140 yas = 170.0+27.5A+57.5B 

- + 200 

+ + 255 

Sane 88 

5 + - Ly Yaas = 204.75+12.75A+88.75B-15..25AB 

- + 296 

+ + 291 
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Example. 

It is desired to investigate the effect of a 

mixture of 3 components at two levels of the factors A and 

B. The observed responses are shown in Table 3, 

The B coefficients corresponding to the responses 

of the pure components are 

Ba = 150.25 + 7.25A + 46.25B - 3.25AB 

B2 = 160.25 +19.25A + 21.25B -35.75AB 

Bs = 117.25 +10.25A + 25.75B + 3.75AB 

The variable coefficients for the binary and ternary 

responses are obtained by inserting the values of the variable 

responses, 

E.G. P12 = hysa - 271 - a 

4.(139. 75442. 754-5 «75B-13 .75AB) 

-2(150.25+7.25A+1,6, 25B+3.25AB) 

" 

2(160.25+19.25A+21.25B-35.754AB) 

= ~62.0+118.0A-150.0B + 10.0AB 

Similarly 

fas = -5.0 + 55.0A — 34.0B + 16.0AB 

fas =125.0 + 51.0A +136.0B + 61..0AB 

B129=150)..5-858 .5A+1.725 .OB=1..2 .5AB 

These seven variable coefficients are inserted in (15) 

with q = 3 to give an equation for the responses involving 

not only the mixture variables but also the process variables 

A and B which can take values -1 to +1. An alternative method 

of calculating these coefficients is given in Appendix 3,
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150.25 + 102k + 46.253 3.25AB) x4 

160.25 + 19.254 + 21.258 = 35. 75AB) xa 

( 

( 

+ (117.254 10.254 + 25.75R + 3.75AB) xa 

( ~62.0 + 118.0A <= 150.0B + 10.0AB)x1x2 

( 

( 

+ 

+(-5.0 + 550A - 34..0B + 16.0AB) x1xs 

+ (125.0 + 51.0A + 136.0B + 64..0AB) Xa Xs 

+ (1504.5. = 858.54 + 172.0B =  442,5AB)x1x9X 

The response contours and the synergism and antagonism 

of the above equation for all combinations of levels of A and 

B are plotted in Figs. 5 and 6. 

At the higher level of B the pattern and values 

of the responses do not change a great dedl in passing from 

the higher level of A to the lower level. The maximum for 

A=+l, B= +1 is 287.8 and that for A=-1, B= +1 is 307.0. 

Similarly the synergism and antagonism patterns do not alter 

markedly. However, there is a considerable difference in 

the response surfaces for B = -1 whether compared with each 

other or with the A= +1 surfaces. Of the four surfaces that 

for A= +1 and B = -1 is the odd one out and so is its 

synergism/antagonism plot. 

The following conclusions can be drawn from these 

surfaces 

1) If the highest value is required this should be taken at 

X4 = 0.28, x2 = 0.36, xg = 0.36 at the lower level of A 

and the upper level of B to give a value of 307.0. 

2) If the lowest value is required this should be taken at 

Xg = 1.0, xX, = X, = 0.0 at the lower level of A and of B 

to give a value of 84.0. 

3) If a value of, say, 200.0 is required there is an infinite 

choice except at the lower level of A and B.
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Variances and co-variances of Simplex Centroid Designs. 
  

We shall assume that the various observations _are 

normally distributed with a variance of o. As Bs = Y,, var Ps = O76 

Now, Bi5 = 55 =F, 2y 53 hence meres, = 160? + ho? + ho? = 2ho*. 

Similarly varp, i = 72907 + 33207 + 270? = 118807 and so on. 

All the expressions for the regression coefficients, 

apart from those for pure components, contain mixed terms; hence 

they are correlated and some of their co-variances and correlation ; 

coefficients will nov be calculated. Taking, as an example, the 

terms for Bs and Bi, we have 

i covar(A,, 8, 5) = 3(8,38; 5) ~ B(6,) 2(8,) 

B(y, (ay, 5275-27 1) 

-E(y;) EBCay, j-2¥ 5-27 7} 

u 4B(y0¥ 4) — BY) BO,,) 

2fe(y,") - B(y,) B(y4)3 

2{E(y, 7) - B(y3)(v,)5 

I 

=k covar(¥; 57, ;) - 2var(y,) - 2covar(y; 5¥ 5) 

As the observations are independent covar(y, 5; 5) = 0 and 

covar(y; .¥;) = 0. Hence, covar(B; +f; ;) = -2var(y,) = -207, 

The correlation coefficient is given by 

Covar(p,, B.) ie i 

eee 
a 

4 fvar(,) Var(6,)3 A (0? 2407) fz 

Otner variances and covariances can similarly be calculated. 

However, Scheffe has shown by using the theory of sets that the 

covariances of any pair of coefficients which we will call f and 

B' are given by
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h 

covar(B,p') = 0% () AG ae yo Aah 2 ae (17) 

t=4 : 

where r is the number of elements of the q mixture variables 

and h is the number of subscripts which the B's have in common, 

Where B and f' are identical r = r' = h and (16) reduces to 

var(~) = Pr? 3 @) 427-9 — of g(r) (18) 

tea 

When there are n process variables present 

h 

var(@) = or? + () Pr 2/2" = oP a(r)/n (29) 
t=1 

The manipulation of (17) and (18) will now be 

illustrated 

Case 1 

No elements in common i.e. f,, B; By, ete. 

h = 0 and covar(f,@') = 0. 

Case 2 

(a) One element in common i.e. B;, Bi 5 Ties = fend hia ad, 

: a 

covar(A; +f; ;) =o . @) eld) 38 fe toa t 4a tos 

tas 

which is identical with the result calculated earlier, 

(b) One element in common i.e. By 3 Pays re2, r'= 2, heal] 

a i 

covar( By 55Py) = é) @) 12.(-2)** 44 2 (1) * A = Ao? 
t=4 

As an example of the manipulation of (1g), take the case of a 

ternary mixture for which r = 3
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var(g) " ras » @kac 

£0" +0" -O2 
These equations enable covariance and correlation matrices to 

be easily drawn up. 

Covariance matrix for B's up to B; sk 
ee ees 

Bs B5 Pye GES Pax Pine ie 
  

By2| 1 0 0 -2 -2 0 5 

B; a 0 ~2 0 -2 3 

By, ak 0 -2 -2 3 

Bi; zo 4 4 -36 

By 1 4 ~36 

Py -36 
By ae 1 

All xo? 

Correlation Matrix for B's up to Bs ik 
ee eee eee ae ee 

  

Bi Pie Bape. Faic Bix Bs aie 
a h ° 0 -1W6 = -1/16 ° 1/6] 33 

j a Oo ~1A6 0 “YG 1/6) 33 

Ay 1 0 “W616 1/6133 

Bi 5 at 1/6 1/6 -,/297 

Bax 1 1/6 1/297 

Bx 1 1/297 

Bi ix ae 

The value of g(r) given by (17) increases rapidly with r, 

being in excess of 10’ forr =5, (The actwl value is 19,662,000). 

However the standard deviation obtained from (18) and (19) has to 
by the ; 

be multiplied/variables Ror oe etc. and these have maximum



values when the variables within a set have equal values, i.e. 

for single components, 1; for binary mixtures, 3; etc. and 

in general the maximum value over the simplex is pit Hence, 

the maximum value of the standard deviation of any term in- 

creases as r e2 (x) which is seen from Table 4} to be rather 

slowly 

TABLE J. 

Variance of Regression Coefficients from Simplex Centroid Design, 

4 me 
g(r) g*(r) r AG i Tene ace =z 

1 1 1.00 1.00 1.07 

2 2h, 4.90 22 1.14 

3 1188 ; Be 1.28 ee 

he 118400 3.609 1.34 1.29 

5 19662000 15h. 0 LB 1.42 1.37 

Plackett has pointed out that re) ca be 

approximated by (aee"2)*/2 and that for r = 7 agreement with 

the exact value is better than 2%. Figures calculated from 

this formula have been added to Table 4 for comparison. 

We are now in a position to calculate the confidence 

limits on the regression coefficients or to ascertain if they 

are ei puipv cantly, different from zero by means of a t-test. 

We have derived a regression equation for what was 

originally called a special cubic design but which is also ths 

simplest simplex centroid design. The 100(1-2a)% confidence 

limits associated with the coefficients is B + ta.S.E(@) and the 

significance of the coefficients is measured by their ratio to 

their standard errors i.e. by 

t = p/S.E.(g). 

Now, the variance from Table 2 is 0.295 with 7 degrees of
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freedom. to.o2as,7 = 2.365. Hence the maximum 95% confidence 

limits for the coefficients are: 

Px 2.365 x 1.00 x 10.295 0.73 (1 <i < 3) " By I+
 

Be, + 26365 x 1.22 x 10.295 0.89 (ivetee ji<-3) 
1d 

u I+
 Ps 

B1aa t+ 22365 x 1.28 x {0.29 = Bras + 0.94 

That is 

Bs +: 100.9 + 0.73, i.e. 100.2 to 101.6 

Bait MeSH On/ 55 “ieC wun eOr. 7 2 b0l. GO. L 

Bs 2) Oboe tt Or755., tees ce.8 tore-66.2 

Baz : -16.4+ 0.89, ise. -17.3 to -15.5 

Bie +: =10.8 + 0.89, i.e. -11.7 to - 9.9 

Bas ? 020 + 0.89, i.e. 0.9 to - 0.9 

Biss : 29.2 + 0.94, i.e. 28.3 to 30.2 

The eaann tea t values are all highly significant 

except that of Bas, the value of which is zero. E.g. the t value 

of Bis is given by 

t = -10.8/(1.22 x J0.295) = -28.6 

This is significant at the 0.00001% level! (to.o000001)7 = 192932). 

It has been stressed that these figures are maximum 

confidence limits, If one wished to calculate the confidence 

limits on, say, Bias(= 29.2) at the point (0.2, 0.3, 0.5) one 

vould use the figures in the column et) of Table 4 

to obtain 

29.2 + 2.365 x (0.2x0.3x0.5)x 34.46 x 10.295 

= 29.240.76 i.e. 28.4 to 2929. 

Fractionation of Simplex Centroid Designs. 

As the number of mixture variables (q) and process
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variables (n) increases the number of points at which experi- 

mental observations have to be made increases rapidly being 

given by (eho? when process variables are examined at only 

two levels. 

If no process variables are present one may 

fractionate by dropping all terms higher than a certain chosen 

degree. For example the cubic regression equation is obtained 

by dropping all terms of degree >3 to give 

ye > Pam - yas ss ) Pines 
asi<q asi<j<q asi<j<k<q 

The usual precautions must be taken when fraction- 

ating; the terms being dropped must be known to be small enough 

to be ignored and one of the prices of economy is less precision, 

Example. 

The following data was obtained in an experiment 

carried out in developing a paint which would reduce decarburisation 

of steel during preheating. 

Ki @ 66 

go 100 

52 60 

Ke 54 X3
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From the above the coefficients can be calculated 

Br = 66 Bia = 8h 

Ba = 52 fas = 12 Bias = 150 

Bs = 60 Baa = 148 

If a full cubic model is chosen the equation is 

Ya jk = 66x, + 52xg + 60xg + Sixixg + 12x1x5 + 148xegxg + 150xX1%xXs 

If one decides to choose a quadratic model by dropping the last tern 

the equation is 

age 66x4 + 52xg + 60X5 + Sh4xixXg + 12x4x5 + 18xex— 

The response surface for these two equations is plotted 

in Figs. 7 and 8, and the misleading pattern produced by the 

fractionated equation can be appreciated. This is due to the fact 

that the coefficient associated with the cubic term is quite large. 

The important point here is that the data used in this example are 

actual experimental figures about which there was no previous know- 

ledge. Had the design been fractionated in practice an erroneous 

conclusion would have been drawn. 

When process variables are present a complication 

arises, In the first place when talking about the degree of the 

equation the process variables must be included. So that if there 

are q mixture variables and n process variables the degree of the 

equation is qin. For instance in the example given on page 41, 

B12X%4X2 = (-62.0+118.0A-150.0B+10.0AB) x4x9 

and is of the fourth degree. So, if it is specified that an equation 

is to be of degree < 3 one would have to eliminate the AB tem from 

the binary cocfficients and the A,B and AB terms from the ternary 

coefficients. 

The second point is that if one is dealing with a
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large number of process variables ane one decides to reduce 

the number by fractionation it will be found that the 

fractional blocks at the various lattice points have certain 

combinations which are not in common. To illustrate this, 

suppose one wishes to examine 4 mixture variables and 5 

process variables A,B,C,D,E at two levels and to keep in the 

regression equation all terms of degree < 3. The variable 

coefficients will be 

(T+A+B+C+D+R+ AB+ AC + AD + AB Bs = 

+ BC + BD + BE + CD + CE + DE) 

P35 = (I +A+B+C+D +8) 

eee 

Now, ina 2° experiment main effects and two 

factcr interactions can be measured by a half replicate using 

the defining contrast ABCDE, assuming that three and four factor 

interactions are negligible. This is adopted for observations 

on the pure components. For the binary mixtures a quarter 

replicate will have to be chosen, The best is that wita de- 

fining contrasts ABE, CDE, ABCD in which the main effects have 

2-factor aliases. However, of one compares the principal blocks 

of the quarter and half replicates one finds four combinations in 

the former which are not given in the latter. This is shown in 

Table 5 in which the asterisks show the four in question. If 

one attempts to resolve the difficulty by generating a quarter 

replicate from the half replicate using the defining contrasts 

AB, CDE, ABCDE, the main effects A and B will be aliases of each 

other which makes the experiment pointless.



TABLE 5 : 
experiment. 

3 3 28. 

(1) ac ae ad 

ab be be ba 

acde de ed ce 

bede abde abcd abce 

Principal Blocks of 4 an 

55. 

d 4 replicates ¢ a 2° 

ax 2 

(1) bee* 

ab ade* 

ed bde* 

ace* abed 

There are two possible ways to resolve this 

adopt the half replicate at both the binary and single 

component points, calculate the response and drop the 

unwanted terms, 

(b) adopted the quarter replicate at the binary mixture 

points and add the four extra terms at the single com- 

ponent points to be used when necessary. 

As (a) requires more observations than (b) and the object of 

fractionation is economy of effort and resources (b) is adopted. 

At the ternary mixture point the problem is that 

of estimating the general mean of a 2° experiment and this can 

be done with a 2° fraction i.e. the single point (1) which is 

contained in all the other fractions. 

In this example the full factorial would have 

taken (24-1)2° = 480 observations. With the above fraction 

we have 

16+). observations on 4. single components = E00) 

8 a "6 binary mixtures = 

as e * 4 ternary mixtures = 

Eh
 

Totals: 

An illustration of this ramification of the 

technique would have been useful at this point. But the amount
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of computational work would be prohibitive within the time 

available. 

One objection to these fractionated designs is 

the same as that against simplex lattice designs discussed on 

page 34 . If it is decided to keep the degree of the equation 

<m then the prediction of the response is based on at most 

mixtures of m components. And the greater the difference between 

the number of components and the degree of the fractionated 

equation the less confidence one would have in the results. 

However, it may be a compromise between time and resources 

available and getting a bad answer to a problem which would 

otherwise have no answer at all. 

Another objection based on intuitive grounds is 

the compromise one has to make with regard to the four treat— 

ments not in common in the quarter and half replicates. Scheffe 

gives two rules 

1) As far as possible when fractions of process variables are 

of the same size they should be the same fraction. 

2) As far as possible when fractions of process variables are 

of different sizes the larger erase should contain the 

smaller. 

We found that it was not sensibly possible to 

implement 2 as this gave a non-uniform distribution of points 

over the simplex which is intuitively unattractive, 

Modifications of Simplex Lattice Designs. 

In practice there are many situations where the 

whole of the simplex is not available to the experimenter. Certain 

mixtures may not be possible on technological grounds; they may 

be dangerous or unstable. On the other hand they may be uninteresting.
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If, for instance, one were investigating the velocity of de- 

tonation of gunpowder, a three component mixture of sulphur, 

charcoal and potassium nitrate, one would not carry out any ex- 

periments on the pure components or binary mixtures because the 

velocity of detonation is zero. 

Suppose that only the first component has to be 

restricted and is subject to the condition that x, 2h. The 

second, third etc. components are replaced by "pseudocomponents" 

which are mixtures of the first component and proportions Py 

of the other components 

q 

eas. irl 

ies 

This is shown in Fig. 7 where the restriction is that x, 2 4.0% 

x a 

   = {Aor a, 

60% x3 , 

AON 
—ZX5 MG 

Fiq 7 : Fig 8 

ae 

  

and the shaded area is not available, The experiments are 

carried out with the pure component x, and the two pseudo- 

components Xa and xs and the necessary combinations demanded 

by the chosen regression equation. The idea can easily be 

extended to cover the situation shown in Fig.8 (See page 100 

for a practical example of the use of this technique). 

Consider now the alternative where X, <h. The
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available factor space is the frustum of the simplex containing 

h/[a-(1-h) 74] of the volume of the available factor space 

Fig 2» 
(-1).5/2 

hf3/2 

  

This can easily be shown for the special case of 

a triangular simplex when q= 3. Consider the simplex of unit 

side in Fig. 9, 

Area top & = (ah)? 43/2 = (3(1-n)2/a 
Area whole A 23.1. NOS 3 

Area bottom trapezium = 43. 8 (1-h)? 

= 1-(1-h)? [3/4 
oc 

Fractional area = += aS otk = 1-(1+h)? 
3/d. 

Now, the amount of xz, is proportional to h and this has to be 

distributed within the fractional area available . 

Amount a a 
Fractional Area ~ 4~(i-n)? 

and, in general h/[1-(1-h)**]. For small h this can be ex- 

panded and second order and higher terms ignored to give 

1/(-1). 

The solution to the problem of deriving a regression 

equation when xi < h has been worked out only for the case of 

the quadratic polynomial (q,2) and a modified design exists which 

spreads the experimental points out into the corners of the 

frustum only if there is one small component (See Fig. 9 Dia
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Suppose x4 <h; observations are taken of the 

responses of the pure components Vy (i > 1) and the responses 

to their binary mixtures Ya3 (j > i> 1), the response Yi of 

the binary mixtures for which x, = h, x5 = 1-h (j > 1), and 

the responses of the Ya mixture with x4 = th and 

Xa = Xo = see = X= (1-4h)/(q-1). Then the coefficients 

B, (i > 1) ana Bs 565 > i> 1) are still given by (9 ) and 

Ba and eS are calculated from 

nps + W(L-B)—,, = yy - CRIP, (9 = 243, veesa) (20) 
and 

$h(1-th t ath (1-3h)? 
np, « EG > Pas Saar ss Bs ca > Pas (24) 

asj<q asj<q a<i<j<q 

These may be solved for Ba and Bas to give the 

values of the regression coefficients. 

Consider the case where x1 < 0.25 on a (3,2) 

lattice i.e. h = 0.25.To examine this solution an equation was 

taken and the responses calculated for the points given above. 

Then, using @0) and 1), f2,812 and Bis were calculated and 

compared with the known values. The equation was 

y = 90x + 95x2 + 100xg + 27x4xQ + 27x1x%—3 + 27xX2X3 

"Observation" were made at the following points i.e. the 

responses at the following points were calculated
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Ya at x2 =1.0 95.0 

yo at x =1.0 100.0 

Yas at Xg=xXg=0.5 104..25 

yas at x4=0.25,x.=1-0.25.0-75 102.5625 

yas at x4=0.25,x5=1-0.25=0.75 98.8125 

ys at x4=$x0.25=0,125,x2=x%9=(1-$x0.25)/(3-1)=0.4379 104..6836 

ic     
ys 

Inserting these figures for the responses in (20) and (21) we 

obtain 

(i) 482 + Z(1-3)f1a = 98.8125 - (1-4) 95 

i.e. 4f1 + 3Ba2 = AL 

(41) tea + 4(1-4)fae = 102.5625 - (1-4) 100 

i.e. ups # 3p se = Ie 

Lae 
(443) 3.362 + sabseet) (6.54820) = 104.6836 — (25224) (954100) 

eae a 
i.e. 1682 + 7(f1atBis) = 1818 

Solving this triplet of equations we obtain
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Bs = 90, Baa = 27 and Baa = 27 

which are identical with the regression coefficieats in the 

equation used to generate the observations, thus illustrating 

that it is not necessary to make an observation at x, =1 

in order to be able to estimate Bi. 

g-component mixtures. 

Lambrakis (19682) has extended Scheffe's designs 

to the case where observations are made on mixtures containing 

all q components with non-zero proportions but has confined 

himself to simplex lattices of the (q,2) type i.e. quadratic 

models, because of the amount of algebra involved in deriving 

the necessary equations. 

Letting the same letter represent the mixture and 

the response to the mixture the following are the new types of 

mixtures 

Vy (1 <i <q) is the response to a mixture with proportions 

x, = 2) x, = 3(a-2)"* forl<r<¢aq,r#/i; 

y.:(1 <i < j <q) is the response to a mixture with proportions 4g Prog 

x, = %; =3,%,= 4(q-2)°* for l <r <q, rf i,d; 

Vas and 355 (1<i<j<q) are responses to mixtures with proportions 

x 9, 5 = 4) x, = (a2) * for le <a, v A 4, J; 

and x = 4, x, = 4, x, = 4(a-2)79 for lereg, x f i, 3; 

Vij and. ¥45530bStsdso) are responses to mixtures with proportions 

x, = 2 a = x, = $(q-2)"* for lersq, rv # i,3; 

4 a Le ee ’ 
i = 5 = 2, coe! 2(q-2) ? for lersq, rv 4 i,j; 5 

Yq ju (1si<ickea) is the response to a mixture with proportions 

x= %) = = 4, x, = 4(a-3)"* for ler<q,r f# i,j,k;
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Vas jucg (Lic d<k<e<a) in the response to a mixture with proportions 

myx jm exe =F, %, = F(p-h)* for lereg, v A i, 5,455 

and soon. So, for the case where q = 4, observations will be 

made at the following points 

  

ey =4 =4 ea 
Ya OSes eS Ee BLS gf ae! oe. 

oes A cs = ae 
Yaa 2 St = gs Xs = Ss = =, X= G3 

ae ae = = a 
Yaa ¢ Sa = os Se = 4p ora, Mm =HB5 

a er =d = ahs 
Yae2 2 eS a5 a = Ss: Xs = 3) mre 

s Sit aes 
Vaasa & x = 2, Xe = Ss Xo =f 9 Se = [53 

ae ms. ies eae 
Yaosa ¢ X21 =F %2=Gs Xs =f59 ™ =io3 

: fo ode ee elas 
Yuas = %1 $4, % =4, X= 4, MH 45 

ae =i zis Yaias 8S xa-= So % = 4, > Ss Me HF 3 

= =-2 =i =i. 
Yi229 ¢ x = 4, X2 =F» Xs = So My HRs 

: ad a4 sae =o Yiess $$ M1 =F, =F. wg» HE 

and similarly for otaer combination of subscripts making a 

total of 39 observations, all on 4 component mixtures.* 

The position of the points lying in the x, plane are shown 

in Fig. 10. 

For a quadratic model of a simplex lattice (9) 

is used which is given again 

ye BS* + ye By as; 

asi<g asi<j<q 

The calculation of the coefficients is carried 

out as previously described by substituting the observed means 

and their proportions and after a great deal of algebra one 

obtains 

  

* i There are, in fact, 50 subscript combinations but y. aaa dae? Vai je? and Vase and V4 jek all yield identical sets of values,
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q 
AA et pF ee oe ae > m5 

oe iss aSi<j<q 

Px 5 =~ B(yyty,)+Y, +6 ‘ Veg AO aes “de i ) 
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“Yer T 
ist asic jsa 

where 

A = 4(q-1)? (2a-5)/(a-2) (a°-29-2) 

B = 9(q~-2)?/(q-3)(q?-2q-2) 

C = 4(q-1) (5q*-559°+2277—N1 7q+288)/(q-2) (a-3) (q?~2a-2) 

(9?+2q-12) 

D = 9(q°+q*-56q°+2h0q?—372q+200)/(q-1) (a-3) (q?~20-2) (q? +2a-12) 

B= 12(q-1)?/(q?-2q-2) 

F = 18(q-2)?/(q-3) (20-5) 

@ = 9(q-2)?/(q-3)? (20-5) 

H = 27(q-2)°/(q~3) (2q-5) (a?~2q-2) 

I = 24(q-1) (4q*-48q9+213q7-1159+300)/(q~3) (2a-5) (q?-2q-2) 

(9?+2q-12) 

J = 9(q-2) (5q°+2q*-298q° +1 348q?~22),04+1264)/(q-1) 

(a-3) (24-5) (q?~2a-2) (q?+2q-12) 

and r,s = i means that one of r and s is equal to i, and r,s = i,j 

means that one of r and s is equal to i or j. In tle same way 

equations can be derived for the variance etc. and these are 

fully and clearly given in Lambrakis's paper for the (q,2) case. 

However, the equations apply only for mixtures of 

4. components or more for, if q = 3, all the coefficients given 

above, apart from A and E, will be infinite due to the term (q~3)
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in the denominator. 

While the rationale of this approach can be appre- 

ciated - that if one is investigating mixtures of q components 

then measurements should be made only on mixtures of q 

components - it leads to some tedious coefficients and more 

complex expressions than either the simplex lattice or the 

simplex centroid designs. Further, the number of observation 

points is large. For this design 4. components would require 

39 observations; a simplex centroid design would require 

24-1 = 15 observations while a quartic polynomial could be 

fitted using a simplex lattice (see Table 1 ). 

Table 6 gives values of the coefficients A to 

J for q = 4(1)10. 

TABLE 6: Lambrakis's Coefficients. 

  

g = No. of components 

Coefficient., 4 D) 6 aL 8 9 10 

A 9.0 8.2051 7.9545 7.8545 7.8116 7.7939 7.7885 

B 6.0 3.1154 2.1818 1.7045 1.4087 1.2049 1.0545 

c 4.0 0.6065 1.0480 1.1209 1.1159 1.0871 1.0495 

D 5.0 3.1605 2.3879 1.9318 1.6237 1.3998 1.2291 
E 2.0 0.9231 0.5455 0.3636 0.2609 0.1967 0.1539 

F 24.0 16.200 13.714 12.500 11.782 11.308 10.971 

G 12.0 4.0500 2.2857 1.5625 1.1782 0.9423 0.7837 
H 12.0 5.6077 3.7403 2.8409 2.3051 1.9464 1.6879 

i 0.0 1.6054 2.1212 2.3102 2.3652 2.3516 2.3077 

J 12.0 1.6508 5.8251 4.7360 3.9940 3.4513 3.0359   
Double Lattices. 

Lambrakis (1968) developed a theory for experiments 

with mixtures where each component itself is a mixture of several 

other components. An example might be a two polymers blends, 

the first composed of polymer A, plasticiser B and filler B and 

the second composed of polymer W, polymer X, plasticiser Y and
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filler Z and it is desired to eneein data on the physical pro- 

perties of mixtures of these two polymer blends. 

If we have one simplex lattice x1,X2,X3 for the 

first set of components and other simplex lattice 21,29,23,24 

for the second set of components and also all possible mixtures 

which can be produced by mixing each mixture from the first 

simplex lattice with each mixture from the second simplex lattice 

with proportions cy and cg respectively (catcg = 1) then we shall 

have a double lattice and if the first lattice was for a quadratic 

model (q,2) and the second for a cubic model (p,3) we would have a 

(p,4;3,2) double lattice which, in the special case above where 

= 3 and p = 4, would be a (3,4;3,2) double lattice. If we were 

dealing with a simplex lattice design this would mean that 

observations would have to be made at 6 x 20 = 120 points 

(see Table 2 ), while if a simplex centroid design were used 

there would be (2°-1)(24-1) = 105 points, Taking into account 

the replication necessary to give a measure of variance it is 

obvious that we have a very unweildy experiment and there is a 

strong case for fractionation. 

The double lattice polynomials are obtained by 

multiplying together the separate polynomials for each lattice, 

The polynomial for the (q,2) simplex lattice is 

¥ B55 + - fs a2, 

asi<q asi<j<q 

given by 

and that for the (q,3) simplex lattice by 

yams Vaeys ) atitiera DP 

asi<q a<i<j<q asi<j<q a<i<j<k<q 

Multiplying the two polynomials together and replacing the products
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of the coefficients by a single coefficient, we obtain the re- 

gression equation for the (p,q33,2) double lattice 

agi<p 1<j<q asi<p 1<j<k<q 

? yy Pi 5 na* i y ; fis, Kets y"t ‘ 
asi<j<p 1<k<q aSi< jsp isk<eé<q 

oe, ee % 5 25S) ye be % 5 eRe P Ace 
“asi<j<p a<k<q a8igjSp 1<k<¢<q 

- o Bs 5 ea Pe 
aXNi<j<k<p 1<¢<q 

y Y, Passe sEen 

asi<j<k<p 1<€<m<q 

This formula has been quoted to illustrate the 

complexity of the formulae involved with a relatively simple 

case of a multiple lattice. Further, the equations for estimating 

the coefficients, apart from the first four, are arithmetically 

tedious, the one for Ai ke having 12 terms, that for Pais 

having 10 terms and that for B. having 30 terms. ijk,ém 

While this work is didactically valuable in that 

it can be considered as the general case of the simplex lattice 

design, the writer feels that in practice it would be 

computationally simpler to work out the various mixtures of 

the pq single components and use these as pseudocomponents in a
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normal simplex lattice (pq,m) or a simplex centroid design. 

Strictly speaking this does not answer the original question 

of the effect of mixing two mixtures. But it is 

computationally more attractive and would probably yield a 

practical meaningful result though not satisfying the purist. 

Bias and Variance-free Designs. 

Draper and Lawrence (1965a) show that Scheffe's designs 

are "all variance" designs and are not suitable for situations 

where both variance and bias exist. In their 1965a paper they 

derive suitable designs for three components and in their 

1965b paper, four components. 

These two authors find it easier to work in cartesian 

coordinates with the origin at the centroid of the simplex 

whose coordinates are 

(0,0/13) , (m/2, 3/6) , (-m/2, -m13/6) 
where m is the length of the side of the equilateral triangle, 

which in this work was 1 decimetre, 

Box and Draper (1959) suppose the response surface 

is a polynomial of degree dyin x 

F(x) =m Bs 
while the true function over the region of interest, in this 

case’a triangular simplex, is a polynomial of degree dg: 

n(x) = x1 Bi + xa Bo 

We wish to arrange for the difference ¥(x) - n(x) to be as 

small as possible and the measure of "closeness" used is 

Ely(x) - n(x)? 

Over the whole region of interest this is averaged out to give
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3 = [ 25@) - ne P/ fox 

R R 

where R is the region of interest. In this case the region of 

: aa b 

interest is an equilteral triangle ana f = | | ° 

R ~a <b 

Now, the average variance is given by 

=) [3 -2 5a) ax] [ a 
R R 

and the average squared bias is given by 

J 2 

B =) fz Fle n(z)| ax] [ ox 

R R 
and it can be shown that J= V+B and that to minimise the bias 

one must minimise B, 

Proceeding along these lines, Draper and Lawrence 

(1965a,b) calculate five point sets which define the coordinates 

of the observation points. 

Set 1 vertices of an equilateral triangle, centroid at 

the origin, side p: 

. / 3 

@ BR)? «ee 7182) 

Set _2 = vertices of an equilateral triangle, inverted with 

respect to Set 1, centroid at the origin, side q 

zi 

( = , , ¢ 245 43 2). 
13 

vertices of a square, side a, centroid at the origin, Set 3 

sides parallel to coordinate axes: (+ a, + a)
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Set 4: points on the coordinate axes at a distance b from 

the origin: (+ b,0), (0, + b). 

Set_5 : vertices of a rectangle: (c,d),(-d,c),(-d,-d),(d,-c) 

P,9,4,b,c and d are tabulated for certain selected 

values for two cases 

a) when the model is linear (d,=1) and there is a possible 

? error due to the presence of second degree terms (dg=2) 

in the true model and 

b) ‘the model is quadratic (da=2) and there is a possibility 

of error due to a third degree term (dg=3). 

For case (a) figures are given for designs incorporated 5-9 

points (solutions for value < 5 do not exist) and for case 

(b) approximate designs are given fur 7-12 points and accurate 

designs for 13-15 points. 

Example d,=1, d,=2 

Point sets; 1 ad 2 

p= 0.662, q = 0.381 

No. of observations: 7 

Coordinates:/0, z x 0.662m \,(+3 0.662n,— B x 0.662m 
NB 

aa
 

( 2x 0.361m (#4 x 0.381m, 2 x 0.381) 
q3 

ieee (0,0.382m), (+ 0.331m, -0.191m) 

(0,0.220m), (+ 0.195, 0.110m) and centroid
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Example dy=1, dg = 2 

Point sets: 1, 1 ani 2. 

No. & observations: 9 

pa = 0.606m, pg = 0.550m, q = 0.364m 

Coordinates: (0,0.347m), (+0.303m, -0.175m) 

(0,0.289m), (40.250m, -0.144m) 

(0,0.210m), (+0.182m, 0.105m) 

Exampie di=2, dg=3 

Point sets: 1,3 and 4 

No. of observations: 13 

p = 0.756m, a = 0.183m, b = 0.258n 

Coordinates (0,0.436m), (+0.378m, -0.218m) 

(4 0.183m, +0.183m) 

(+ 0.258m,0), 0, +0.258m) and two points at 
centroid 

Example di=2, dg=3 

Point sets: 1,1,2,5 

pa = 0.545m, pa = 0.776m, q = 0.480m 

ce = 0.071m, d = 0.171m 

No. of observations = 15 

Coordinates: (0,0.314m), (+0.272m, -0.157m), 

(0,0.448m), (+0.388n, -0.22m) , 

(0,-0.277m) ,(+0.240m, 0.139m), 

(0.071m,0.171m) ,(-0.171m, 0.071m) 

(-0.071m,-0.171m) ,(0.171m,-0.071m) and two 
points at centroid 

These coordinates are illustrated in Figs, 

in which m = 20 cm. and the figures calculated above are 

adjusted accordingly. 

When both bias and variance errors are present 

each design point (x,,xg) is replaced by (0x, ,0xg) where @>1
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is a scale factor. In all-bias designs 6 = 1 and in all-variance 

designs 6 = o Draper and Lawreice give tables from which it is 

possible to calculate @ in the cases dy=1, dg=2 and d4=2, dg=3. 

But these require some a priori knowledge of the B coefficients 

in the polynomial. In the absence of such knowledge they suggest 

that in the first case, as a rough rule of thumb @ = 1.1 and in 

the second case 6=1.2. If, in a mixture problem a design 

cannot be expanded without some of the points going outside 

the region, a slightly smaller value of @ can be used. Identical 

figures are used for the 4 component case. 

A comparison of Draper's and Scheffe's designs. 

To compare Draper's designs with Scheffe's as 

approximating functions for a cubic polynomial, the cubic 

polynomial given by Gorman and Hinman (1962) and illustrated 

in Fig. 12 was taken. The quadratic approximation is obtained 

by ignoring all third order terms giving as the response function 

y = 54.91x. + 3.89%, + 9.87x5 

w1y..56x1x%2 — 28.70X1%5 + 21.19K2x5 

and is illustrated in Fig.13, 

To illustrate Draper's method the 13 point set of 

Fig.11 was chosen, The cartesian coordinates were first con 

verted to triangular coordinates and the relevant responses at 

these points were obtained using the equation of Fig. 12 

and are given in Table 7, 

The regression coefficients were obtained using 

the formula g = (X'X)*X'Y and the analysis of variance table 

obtained in the usual way.
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Analysis of Variance 

  

          

SOURCE §.S. DF. M.S. F 

Bo . 1,045.20 ah 

f1,62|Bo 938.01 2 469.01 Tide 

Ba1,Ba2,f12| 100.98 3 33.66 550k 

B1,B25Bo 

Residual 4.39 Z 0.63 a 

5088.58 

The response function is _ 

y = 15.521 - 31.620x, - 11.343x2 

+57.803x17 + 7.903xa7 + 1.608% 2% 

where the x's in this case are measured on the cartesian system, 

This is illustrated in Fig. U,. 

Of the variation about the mean R?=938.01/(5088.58-401,5 .20) 

= 0.899 (or 89.99 is explained, a very high proportion. 

From the equation of Fig. 11 the expected values of 

the responses at the coordinates of Table 7 can be obtained. 

These are given in Table 8 together with the observed values 

obtained using Draper's equation and Scheffe's equation 

  

  

Table 8. 

Expected Observed (Scheffe) Observed (Draper) 

12.10 11.26 11.21 

27.77 28.95 27.53 

10.94. 14.72 13.12 

18.14 18.22 18.97 

10.86 12.75 11.35 

12.79 11.32 12.51 

20.04. 21.38 19.94. 

26.21 27.75 27.08 

Bie ani rics 

15.08. 17.1 15.52 

9.39 12.27 12.08 
4146 4.2.24, 4.2.26 

9.50 6.77 11.00
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The values of x? for these two sets of observation are 

1.80 xX? (Scheffe) 
Jee 32d. of fs 

x? (Draper) = 43h 

Neither ae significant Gedeeres = 5.25), but the figure for 

Draper's design is better than that for Scheffe's. 

_if, from the calculation of x2, one picks out the three 

points which make the largest contribution one finds they are 

the same for both sets of data, but not in the same numerical 

order and they correspond to areas on the top and bottom right 

of the simplex, the more complex part of the response surface. 

This is where their greatest deficiency lies. 

The two equations can be qualititively compared by 

converting, say, Scheffe's triangular coordinates to cartesian 

coordinates using the relationship 

Za = (~3x4-XaN 341)/3, 2a=(3X4—-XaN541)/3, 29=(2xal 3+1)/3 

where 21,2a,23 are triangular coordinates and x1,xXe are cartesian 

coordinates. If this is done we obtain 

¥ = 17.17-34-.19x%4-6 .82x9 +44..56x2?-10 05x27 +57. 9x1 xe 

as compared with Draper's 

y = 15.52-31.62x4-11. 3x9 +27 8x47+7 903x224). 61x4Xq 

The most outstanding difference is in the coefficient of x27. In 

Scheffe's equation it is almost as antagonistic as it is synergistic 

in Draper's. 

Bias in Simplex Designs. 

Bax and Draper (1959) have pointed out that in practice 

a graduating function such as a polynomial will always fail 

to some extent to represent a true function (see page 68 Ve 

This they call "bias error". 

To examine this a quartic equation given by Gorman and
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Heinman ‘(1962) was used as a "true function". This is shown 

in Fig. 7. The equation was evaluated for a series of 

points over the simplex and from the computer print-out the 

calculated responses at the points necessary for the calculation 

of the coefficients of a linear, quadratic, special cubic and 

cubic polynomial were read off and the relevant coefficients 

calculated, These are given in Table 9, 

TABLE 9. 2 

Responses 

Ya = 95.03 Yaa = 94.50 Vasa = 94.35 Yass = 98.42 

ya = 94.97 Yao = 99.67 Yara = Web Yaas = 95.14 

Ys = 94.08 Yao = 96.37 Yass = 98.29 Yass = 96-35 

Yaas = 95.49 » 

Coefficients (i) Linear 2 Ps = 95.03 Bs = 94297 fa = 94.08 

(ii) Quadratic : Pi2=—-2.00 fas= 20-46 Psa = 7-38 

(iii) Sp.Cubic +: Pies = -56.01 

(iv) Cubic t Pia = 2.668 Bis =17.10 fas = 5.468 

Yaa =0.8775 ys =-3-420 Ysa = -10.10 
Bias = 38.16 
  

The response surfaces obtained using these coefficients are given 

in Fig.15,16 and 18. The difference amongst the response surfaces 

is, in the writer's opinion, startling. So much so that the 

computer programs we carefully checked and the coefficients re- 

calculated by an independent worker, The "hill" persists in all 

of them being a maximum at about x = 0.5. But the long valley on 

the left with a minimum near its head disappears in the cubic 

response surface to be replaced by a much shorter wider valley. 

The special cubic. represents this almost as a basin while the 

quadratic causes it to degenerate to a long shallow slope.
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When carrying out investigations which entail the 

examination of a response surface one is usually looking for 

a maximum or a minimum, If a maximum had been aimed for one 

would’ not have been led far astray and a binary mixture of equal 

peate of x, and xg would have been chosen. However, had one 

been looking for a minimum the quartic response surface would 

have indicated a position at the top of the valley 

. (approx x, = 0.2, x2 = 0.75, x3 = 0.05) while all the others 

would have indicated the single component x3. Had one been 

hoping to obtain some insight into the underlying mechanism 

one would have been led stray by using a cubic or lower degree 

polynomial. 

It is interesting to note in passing that the writer 

was unable to confirm the shape of Gorman and Heinman's 94 

contour. At about x, = 0.3, x2 = 0.6, xs = 0.1 the sides of 

their 94 contour meet to form two valleys. 

Evolutionary Operation (EVOP) apolied to the Mixture Problem. 

The technique of Evolutionary Operation developed by 

Box and others is now well enough known and established to re- 

quire no detailed introduction, It is a management tool in which 

a continuous routine becomes the basic mode of operation for the 

plant and replaces the normal static operation. As it is intended 

to be used on the "shop floor" by personnel whose technical 

qualifications do not fit them for carrying out sophisticated 

statistical calculations, as many of the calculations as 

possible are simplified by the introduction of approximations 

such as the range as a measure of the standard deviation. 

Consider a simple example in which, say, temperature 

and concentration are the two variables being investigated. 

Main effects and interaction are calculated in the normal way
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and the range used to calculate the standard error. The sig- 

nificance of the effects is then assessed and a decision made 

concerning the way in which the variables should be altered to 

increase the yield. 

When applying the basic ideas of EVOP to the mixture 

  

problem it is found that modifications are necessary because 

of the constraint ox, ay 

Suppose one had a process which, under normal operating 

conditions was using a mixture of three raw materials in the 

percentages 5%, 1%, 3% and producing a product with a property 

whose measured value was 106. If it is decided to carry out an 

EVOP investigation by changing the percentages of the mixture 

in the way shown in Fig. 18 , how can the figures be interpreted? 

2X22 (0%, Xs= 30%, 

roe OO fe 

10,2507,      
  

4 
X3-337, 

Xs: BOYo aot 242407, %37 307, Hae (Zh 

Fig. 18 Responses (ringed) for Fig. 19 xg:xgi:1:3 along 
various mixture concen- dotted line 
trations. 

With some experience of EVOP an investigator would initially ask 

what the effect of increasing or decreasing the amount of x, might
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be. But because of the restriction 3x = 1 he would quickly 

realise that any change in x, brings about a concomitant 

change in x, and xs, A channel to which the writer gave some 

thought was to consider a line through the apex of the simplex 

along which the ratio xg:xg3 was constant such as that shown 

in Fig. 19 and to investigate the effect of changing x, while 

the ratio x,:Xs was held constant and similarly for the other 

two pairs of ratios. However, this seemed a very contrived 

way of accomplishing the object and one which did not seem to 

be answering the question about x1,X%2 and x3; only about x, 

and x2:X3 etc. This approach was therefore abandoned. 

Consider the simplest regression equation that could 

be obtained by measuring a response at the three apices of a 

simplex 

Yy = Bix. + Paxa + Paxs 

The # coefficients measure the effect of the x's and 

it would appear sufficient to estimate the B's in order to de- 

termine the way to move up or down the response surface, This 

ignores the non-linear effects, but when it is realised that 

in EVOP one makes only small changes from the norm it can be 

appreciated that within the small simplex being investigated 

the non-linear effects will be pegligibie. The problem is thus 

resolved into finding the B's with sufficient precision to enable 

a decision to be made, This is accomplished by replication 

enabling the standard error of the coefficients to be calculated. 

It has been found that the inclusion in an EVOP program of the 

current best known conditions is important. Usually these 

conditions will be those at which the process is normally 

operating. The main advantage is the reassurance it gives to 

the personnel who are operating the process. Unexpected and
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inexplicable variations which normally occur on the best run 

plants will be ascribed to the EVOP program unless this re- 

ference condition is included. Further, with this reference 

point a comparison can be made with the average performance 

achieved while running the EVOP design with the performance 

which would have been obtained if all the runs had been made 

at the reference point. This comparison is given by 

(Average response over all runs of EVOP cycle) 

[ -(average response at reference conditions) 

and is called the Change in Mean Effect. 

Suppose n cycles have been completed and the average response 

ae the four points, yo being the reference point, are as 

shown in Fig. 20. 

ae 

J 5. 

Fig. 20 :Average responses after n cycles 

  

The change in mean is given by 

a(yat Yat Yor yo) -y 

= (Yat Yat Yor 3yo)/k 

and the variance of the change in mean is given by 

var($+4$+4-3 = 30%/hn 

Thus, i 
8.E (change in mean) = 0.870/Jn



The standard error of the B coefficients is CAR 

(See table 4 on page 48). 

A further quantity which will be found useful by 

plant personnel is the phase mean estimated by the average 

of all the sets of conditions, 

Phase mean = 4(¥i+ Yat Yat Ya) 

This measures the mean response over all the conditions 

being run in the current phase. 

Student's t-distribution is not used for setting 

up confidence limits to test whether an effect is significant 

or not; for the sake of simplicity aimed at in EVOP, 2 S.E. 

are taken as the 99% confidence limits. 

As each cycle of an EVOP program is completed the 

data is accumulated with data from the previous cycles to 

give cumulative figures for means of the responses of the 

various operating conditions and the standard deviation, as 

estimated by the range, from which the 2 $.E. limits may be 

calculated. The figures are entered in specially constructed 

tables which enable subsequent calculations to be easily as 

systematically calculated. A decision is then made whether 

to carry out another cycle using the same operating conditions 

or whether to move to a new phase with a new set of conditions. 

The figures for the mean are self-explanatory, but those in- 

volving the range need elaboration. After n cycles the following 

data will be available for any given operating condition, 

Average after n-l cycles Tey 

Observation on the n th.cycle Ny 

Difference, ee a, 

As the difference is the difference between one obser~ 

vation and the mean of n-1 previous observations all with
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variance o*, the variance of the difference is given by 

noe 
tert oe et ee 

4 
NS 

so that c= Std.dev(a,) @o 

As mentioned above, we measure Std.dev(d,,) by the range R, 

and a factor Wy, which is available in published tables. An 

estimate 5. of Std.dev(d,) is therefore provided by RW. 

leading to 

= 

Z =1\ 
een ee Wy. 

“4 E aon 

where 
= 

ging ga Mi 

This factor may be worked out in advance and included in the 

EVOP calculation sheet. For example, on the fifth cycle of a 

program involving observations on the responses at the three 

corners of a simplex plus the reference point, n= 5 am k = 4. 

Hence, Wa = 0.4857 and f4,5 = 15/(5-1) x 0.4299 = O.43ibe 

Having derived all the necessary equations etc. a 

simulation was carried out using the equation 

_ ¥ = 9OxX4+ 95xXg+ 1O00Xg+ 27x4xQ4+27X,xX_Q+ 27XQXg 

which contains three equal terms of quadratic binary synergism 

and generates a surface with a single peak. The solutions to 

this equation were computed at 1% intervals from which Fig. 21 

was drawn, Itwas assumed that the normal operating conditions 

x1 = 15%, x2 = 1% and xs = 73% with a response of 104.1 units 

and a standard deviation of 1.0 units. To try to increase the 

value of the response, it was assumed that investigations were
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carried out at the points of a simplex of which the above values 

are the centroid or reference point (See Fig. 21). The values 

of the response at these points were read off from the computer 

print-out and a normal random deviate added to the value 

obtained, These figures were entered on the EVOP sheet for 

cycle 1, phase 1. he standard deviation (assumed to be unknown) 

cannot be estimated from the data of a single cycle so the 

entries under "Calculation of Standard Deviation" are left blank 

except that the prior estimate of the standard deviation (assumed. 

to be available from previous plant operating records) is inserted 

in the first line. As soon as the figures from cycle 2 are 

available we can form an estimate of o based on the range cal- 

_culated from the two asterisked extreme values. 

The 2 S.E, limits decrease as one would anticipate 

until cycle 4 when an "unfortunately" high random deviate in- 

creased the standard error to 1.02. This again happened in 

cycle 5 with an increase to 1.81. Cycle 6 compensated and the 

figure was reduced to 0.85. The same pattern applied in sub- 

sequent cycles and anticipated reductions in the standard error 

did not materialise. For'didactic reasons ten simulated cycles 

were run before it was felt that a practical appraisal of the 

results should be made. 

At the tenth cycle Ja and Ya are not significantly 

different as judged by the 2 S.E. test. However, ve is sig- 

nificantly different from either y1 or Ya and at cycle 2 is the 

smallest of the three. It is reasonable to assume that one should 

move in a direction opposite to Ya for the second phase which 

would be centred on x1 = 1%, x2 = 164, x» = 6%. Proceeding in 

this fashion one would follow the zig-zag path shown in Fig, 21 

until in the vicinity of the maximum at x, = 30%, x2 = 35%,
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Xg = 359% with n = 113.2. Snorer before this point was 

reached one would find that the amount of effort involved in 

running the scheme for the small increase obtained was not 

justified from an economic point of view and the program would 

be terminated before the true optimum was reached. - 

If the response surface is examined it is obvious 

why y1 and Y2 do not become significantly different at even 

the tenth cycle; they both lie approximately on the same 

contour. Harrington has found this same effect with conventional 

square and cube EVOP patterns when applied to chemical processes 

and attributes this to the too cautious choice of the limits 

between which the variables were changed. He suggests tmt 

if the first few cycles do not reveal any change a larger pattern 

rotated at 45° to the first should be selected as shown in Fig. 22, 

  

      

Fig. 22 Fig. 23 

The effect of this is to double the area of the space being 

examined. If one extrapolates the technique to a simplex 

the area is quadrupled and this might be too bold a step re- 

sulting in the production of substandard material. The writer
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suggests two alternatives; rotate the simplex through 60°. 

This will invert it and if by chance two of the points do 

lie on the same contour line the defect will be corrected 

(Fig. 24). Alternatively one can double the area of the 

‘simplex by changing its height from J3 units to J6. This 

amounts to increasing the height of the simplex by 41.@% or, 

for practical purposes, two fifths. 

f
e
e
 

a 
Fig. 24 Fig. 25 

Practical Experience with the Techniague. 

These techniques have been used by the writer to 

investigate several three component systems. A (3,3) simplex 

lattice was used in all cases. One investigation was to 

examine the effect of two different types of polyacrylamide 

resins and tetrasodium pyrophosphate (T.S.P.P) as a bonding 

agent for foundry sands. 

Figs.26 to 28 give the response surfaces for 

different physical properties of sand bonded with different 

resin/?.S.P.P. mixtures. As high values are required for all
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four physical properties it is apparent by examining the response 

surfaces that polyacrylamide2in any combination is not acceptable 

and that a mixture of 70% T.S.P.P./30% polyacrylamide 1 would 

have the desired properties. 

Another investigation concerned the development of a 

coating which would inhibit decarburisation of steel ingots 

during preheating. During this process carbon is lost from 

the surface layers and the properties of the metal in this region 

are altered. Allowance has to be made for this and wastage of 

metal results. From technological considerations it was felt 

that a paint made from silliminite, bauxite and silica would be 

efficacious in retarding decarburisation and a series of ex- 

periments were undertaken to test this by coating small ingots 

of steel and measuring the depth to which decarburisation had 

taken place after heating and cooling. Fig.29 shows the response 

surface obtained for decarburisation and Fig.30 is three 

dimensional model of the response surface. Fig.31 is the reponse 

surface for the loss in weight of the ingots. The interesting 

point to notice is that silica or bauxite alone allow heavy 

decarburisation to take place (approx 1 mm.). But in combination 

(75% bauxite/2%% silica) a coating is produced which is better 

than any other combination, allowing decarburisation to proceed 

to a depth of less than 0.4mm, Further experiments confirmed 

this and as an added check a paint was made up corresponding to 

the position of the maximim (78% silica/10% silliminite/12% baumite). 

After processing with this coating the ingot was not only heavily 

decarburised but pitted and scaled. 

In an experiment which was carried out as part of 

the same investigation with aluminium/magnesia/silicon carbide 

mixtures a difficulty was encountered in that a stable coating 

could be made up only for certain combinations of the three
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components, This meant that observations involving the pure 

components could not be made, This problen was solved using 

pseudocomponents. The mixtures A,B and C were made up 

(Fig.32 ) and these were regarded as single components for the 

purpose of the experiment, When the observations had been made 

and the response surface plotted it was reduced photographically 

and superimposed in the correct place on the simplex as shown. 

The same technique had to be used when attempting 

to find the best composition Pon etarten tablets for electro- 

slag refining, These tablets, which in this case were made 

of calcium fluoride, calcium oxide and alumina, are used to 

help the electric are to strike at the beginning of the process 

and to form a liquid basic slag in which the metal is purified. 

Due to the hygroscopic nature of the calcium oxide the tablets 

deteriorated on storage. There was a certain latitude about 

the composition of the tablets and an investigation was put in 

hand to find the composition which was the least hygroscopic, 

Pseudocomponents were used again, this time because mixtures 

outside certain bounds were of no technological interest as 

it was known that they would not work. The response surface 

of the pseudocomponents and its synergism and antagonism are 

shown in Fig. 33 while the response surfaces to the correct 

scale is shown in Fig. 34, The optimum composition corresponds 

to about equal proportions of the three components. 

Fig. 35 shows a model of a response surface for a 

four component system. The four components are edible oils 

and the response is a measure of quality. 

Discussion. 

Scheffe's basic experimental designs are the simplex
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lattice and the simplex centroid. In the former we are completely 

free to choose the degree of the polynomial we wish to fit while 

in the latter the degree is always equal to the number of com- 

ponents involved except when the designs are fractionated. 

Box and Draper (1959) and Box and Hunter (1957) suggest 

that when a function was to be graduated by a polynomial, suitable 

requirements for a response surface design are as follows, although 

to be of value for a specific purpose a design will not need to i 

possess them all, 

a) The design should allow the approximating polynomial of degree 

n to be estimated with satisfactory accuracy within the region 

of interest. 

b) It should allow a check to be made on the representational 

accuracy of the assumed polynomial, 

ce) It showld not contain an excessively large number of experimental 

points. 

a) It should lend itself to "blocking" 

e) It should form a nucleus from which a satisfactory design of 

order n+l can be built in case the assumed degree of the 

polynomial proves inadequate. 

In Scheffe's designs the polynomials obtained utilise 

Bll the experimental points and pass through them all. By taking 

a larger number of observational points a better approximation 

to the true function may be obtained. The only limit is the number 

of observations one can physically achieve. Requirenent (a) is thus 

satisfied. 

In order to test the accuracy of the polynomial Scheffe 

uses check points and applies a t-test to test the significance 

. of the difference between the observed response at that point and 

the response predicted by the polynomial. This does not satisfy
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some authorities who feel that a deficiency in Scheffe's work 

is that he does not consider the variance of the predictions 

but only the variances of the estimated coefficients. However, 

in view of the fact thit a check can be made, albeit not to 

everyone's satisfaction, we can say that requirement (b) is 

satisfied. 

It seems to the writer that what constitutes an 

"excessively large number of points" very much depends upon 

the experiments, The experiment described on page 103 

regarding the development or a sand bonding agent was very 

easily carried out. Sand cores for testing could be produced 

=o the rate of 3-4 per minute and a batch of 20 could be made 

ata time, A cubic model involving ten observation points, 

each point replicated 10 times was not considered excessive. 

On the other hani in an investigation involving the casting 

of 5 ton ingots followed by sawing in half, smoothing, polishing 

etc.an; number in excess of two was considered too many! 

However, there is no doubt that Lambrakis's q-comp onent 

mixture designs do lead to a large number of points and suffer 

from the further restriction that they are undefinable when the 

number of components is three or less. 

Simplex lattice and simplex centroid designs do not 

lend themselves to blocking. Box and Hunter (1957) describe 

re rotatable designs can be broken down into blocks. E.g. A 

hexagonal design can be regarded as two equilateral triangles; 

an octangoral design can be regarded as two squares while a 

nonagonal design can be regarded as three equilateral triangles © 

etc. .(Fig.36 ). 

Scheffe's simplexes cannot be split up in this way 

because the points are not equiradially distributed about the 

centroid.
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We have seen how a special cubic model can be built 

up from the quadratic model. This step, at least, fulfils re- 

quirement (e). However, the special cubic has only four points 

in common with the cubic model and to use the former as a 

stepping stone to the latter would require the rejection of 

three observations and the making of four more at different 

coordinates, If one examines Fig. 2 it can be appreciated 

that a (q,m) lattice is a poor stepping stone to a (q,m+1) 

lattice but a better one to a (q,m+2) lattice. Scheffe's 

simplex lattice designs do not fulfil requirement (e) com- 

pletely. The centroid designs do not fulfil it at all as 

degree of the polynomial is determined by the number of components, 

Draper and Lawrence (1965) point out another disadvantage 

of Scheffe's designs! ‘the characteristics of a mixture of three 

components are not exhibited by mixtures which do not contain 

all the components. Consider for a two component mixture the 

petrol-oil mixture used in two-stroke engines. Experiments on 

"all petrol-no oil" or "no petrol-all oil" would not exhibit 

results typical of the mixture. 

All in all, Scheffe's designs would seem to be not 

altogether satisfactory by the criteria given by Box et al. 

However, their six criteria may be the council of perfection. 

Turning now to Draper and Hunter's designs; for any 

polynomial there are an infinite number of designs. 

For the case where a first degree polynomial is to be 

fitted and we wish to guard against the possibility that the 

true function is a.seconi degree polynomial (i.e. dy = 1 and 

dg = 2) nine designs have been calculated and for the case 

da = 2, dg = 3, twenty two designs have been calculated.* 

  

*The corresponding figures for components are ten and twenty-six
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Some of the designs are not accurate ‘and only those with dis- 

crepancies less than 10% are given, If an exact design is re- 

quired one must take at least 12 observations. Requirement a) 

is thus satisfied to a certain extent, but in opposition to re- 

quirement b). 

With these designs an analysis of variance can be 

carried out thus fulfilling requirement b). The writer feels 

that this is of great weight when compared with Scheffe's 

contrivance of using check points. 

However, the designs are not blockable any more than 

are those of Scheffe. 

Requirement e) is not fulfilled although one can pick 

out one desiga where it nearly is. For dy=l, dg=2 there exists 

one design where p = 0.733 and q = 0.457 ani for d,=2, dg=3 there 

is a design where pz = 0.748, pg = 0.445, qa = 0.468 and ag = 0.156. 

This seems to be the only one where one might feel that the 

difference is small enough to be ignored for practical purposes. 

Some more specific points will now be discussed. 

In the first instance the relative merits of simplex lattice 

and simplex centroid designs. 

Estimation is more difficult with the (q,m) lattice 

designs. Equations for the coefficients of the general polynomial 

are available only for m <4. while the coefficients for the 

centroid designs are easily obtained from the fornula given on 

page 35. Further, the centroid designs are easily fractionated 

by deleting terms while this technique applied to lattice designs 

does not seem to be satisfactory. For instance if one decides to 

reduce the number of observations on the cubic model by deleting 

all terms > 3; as well as deleting Brie =e one should 

logically delete the terms y. “4 x;x,( Similarly for a 

  

quartic model; if the terms Pi jxe*s* Xe goes so should the terms
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The simplex lattice permits more asymmetry in the 

regression function fitted. Along the edge of a simplex centroid 

design the regression function reduces to 

ye Bs; + Box; + Bastia 

But for a simplex lattice design the function is 

y = Bix, + BX; + Bsa; + ¥5 5155-5) 

which permits a cubic term. The centroid design can show only 

a synergism which is symmetric about the edge, while the lattice 

design can show asymmetric synergisms. 

When process variables are included the technique 

which was illustrated for the centroid designs will work 

equally well for lattice designs. But fractional designs 

are much more easily derived for the centroid lattices. 

The lattice and centroid designs are not good space 

fillers. As far as the lattice designs are concerned the degree 

of the polynomial chosen restricts the observation points, 

E.g. if one chose to fit a quadratic model one would make 

observations on pure components and binary mixtures only, A 

centroid design has only one observation on all the components. 

Lambrakis's technique of using only observations on q-ary mixtures 

overcomes this difficulty, but only applies to mixtures of three 

components or more, requires a large number of observati ons, leads 

to some arithmetically tedious equations, although the availability 

of electronic computers diminishes the importance of the latter. 

Draper and Lawrence's designs have a great deal to 

commend them over those of Lambrakis or Scheffe. One can take 

into account the existence of bias as well as variance; they 

are good space fillers and the mathematical technique for dealing 

with them is well known with softwear readily available. They
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fulfil the need expressed by Scheffe for designs with a equally 

spaced distribution of points. Hw ever, at the time of writing 

desigis are available only for three and four components and 

first and second degree polynomials. These restrictions are 

not too serious; not many mixtures encountered in practice have 

more than four components and it has been the writer's experience 

that where Ronn iientel mixtures are encountered it is often due 

to a willingness to add things to bring about modifications and 

improvements rather than to remove them. However, some responses 

do need a third degree polynomial to represent them adequately. 

Quenouille has pointed out that one may run into 

trouble if one of the components is inert. Consider n components 

which produce no response unless all are present in equal amounts 

when thoy produce unit response. The response equation is 

=n? =. va X4AXa ceoee X, 

which has a value of unit at the point x, = Xg = ... = x, = */n 

and zero at all other points. 

An inert material is now added so that it forms one 

half of the total and we have the point 

(*/2n, */2n, ..., */2n, */2) 
As only 50% active material is present the response will be 4. 

We have then 

DE for x, = 2% = ses xe = fn x =0 a n n+s 

" Xe Sees) ee yen x 4 
4 = for x, ye for x: n n+a 

This implies that the only terms in its equation involve 

XaXgeee Xn and) X4%4 see Xp. and the response equation will +4. 

be of the form 

= Axaxa oe. x + Bx, o a 4X2 nn 4 Xa ed 

Using the first condition
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l=An™” + B(O) 

; n 
i.e. Azn 

Using the second condition 

# = A(2n)? + v(2 4) a 

i.e. B= 2 n'(1,- 1/24) 

Whence 

ye nexa meee me oo n'(1-1/2™ *\e eee x, 
n ore 

Suppose we now use this equation a, predict what happens 

when all the substances are taken in equal proportions 

i.e. at (*/(n+1), */(n+1), ..0, */(n+1) which is very near 

to the point (*/n, */n, ..., */n,0) at which the response 

was 1. One might reasonably assume that the value of the 

observed response at this new point would be n/(n+1). However 

if one inserts the values of th new coordinates in the pre- 

dictive equation i.e. x, = X = ee. = Xue = 1/(n+1) one obtains 

n n n oon Dace 
Je, Gx) (@ tian 1 ene 

For large n the first term tends to &* while 

the second becomes very large. Thus, if one takes a 3 component 

mixture to which a fourth inert component is added the above 

equation will predict a response of 1.05 while one would have 

predicted on intuitive grounds that it ought to have been 3! 

This illustrates that errors may be aggravated 

if inert materials which produce no response whatever are included 

in the design. 

Plackett points out that there exist many functions 

which cannot be conveniently expressed as polynomials e.g. pH of 

a chemical solution where one is dealing with the negative logarithm 

of the hydrogen ion activity, or modern theories of drug action.



  

117. 

Plackett and Hewlett (196 ) derived the following equation 

for the "effect function" (x) of two drugs 24 and zg 

exp {(ast82 log 24-x)/A0, }+exp {(aatBa logze-x)/AG2) = 1 

where a1, 02,f81,82, 91,02 and A are parameters, Similarly 

Plackett and Hewlett (1952) obtained the following for a 

mixture of poisons 

x = $(xi+ xa)+ 0 a conh( Tee )| 
e 

where x is itself a function of the dose. Any attempt to fit 

a polynomial to these expressions would lead to a considerable 

amount of bias in the sense discussed by Box and Draper. 

Scheffe's original work has sparked off a great 

deal of interest ine xperimental designs for mixtures, The 

original simplex lattice and simplex centroid designs have the 

great virtue of simplicity although the generation of the data 

to enable thé response surfaces to be drawn is of such magnitude 

that a computer is necessary. 

The more sophisticated designs more recently 

produced are of such computational complexity that their 

use would be unthinkable without a computer. Indeed in the 

development of Draper and Lawrence's minimum bias and minimum 

variance designs a computer had to be used to solve the system 

of non-linear simultaneous equations produced. 

The following quotation from Tocher's discussion 

on the paper by Box and Wilson (1951) is relevant in this 

context. "Some pragmatists claim that one of the prime purposes 

of designing experiments is to enable the calculations to be 

easily performed. It so happens that many of the designs with 

desirable properties are also easily analysed, but the excuse
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for using this property as the aim of designing will soon be swept 

away with the establishment of modern automatic computing machines 

as computing aids. These machines would be able to analyse the 

most complicated experiments in a fraction of an hour." 

There are two developments the writer would like 

to see; a method of fitting a response surface to randomly acquired 

data analogous to the least squares method of line fitting to 

unequally spaced data and a computer program which would draw out 

the response surface on a digital plotter. This is not a trivial 

problem, Where one has an equation of the form y = f(x) or y = f(x,z) 

in cartesian coordinates it is easy to arrange for a-dine for y 

to be generated for continuous values of x at certain increments 

of z. But when we have, in the case cf mixtures, y = £(x2 ,X2 ,1-x1-x2) 

for 0 <izy, ag <1, in triangular coordinates we have to choose a 

figure for y and find the values of x, and xg which trace out this 

contour line, At the very least this entails solving a cubic 

equation, A suggested method of implementing this is given in 

Appendix 2
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APPENDIX i. 

HADAMARD MATRICUS
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HADAMARD MATRICES. 

A Hadamard matrix of order n is n x n matrix H con- 

sisting of 1 and -l entries such that 

HHt=ntI 

The inner product of any two distinct rows is zero and the inner 

product of a row with itself is n. A Hadamard matrix is normalised 

when the first row and the first column consist of 1's. 

ae -1 es 1 L aL al aL 

-1 -l -1 1 

  
dead ea 

| | 
ly -l. 2 «4 . Lent) oot 
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Py -1 a a Ee or ee 

NON-NORMAL - NORMALISED 

A Hadamard matrix of order n (n> 8) is equivalent 

to a (7,k,A) symmetrical balanced incomplete block, 

v= nel, k= (n/2)-1, A = (n/d)-1. 

Let H be a normalised Hadamard matrix. Delete the 

first row and the first column and replace all -1 by 0. 

This will give a symmetrical balanced incomplete block. 

Seka. scla aie Lo meeeN ene eee - Le 2 tg 
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H matrix 8 x 8 B.I.B. from H matrix.
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SUGGESTED ALGORITHM FOR DIRECT PLOTTING 

  

OF RESPONSE SURFACES USING AN ON-LINE 

  

DIGITAL PLOTTER. 
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The following is a suggested algorithm for enabling 

a response surface to be drawn using the digital plotter of a 

computer, 

We will consider the (3,3) simplex lattice 

design for which the regression equation is 

y = B1x4 + Baxe + BaXs 

+ B12X1Xa + BisxX1X3 + PasXaXa 

+ ysaxaxa(xX1-X2) + ysoX1Xe)+ yy sXaXa(xX2~-Xg) 

+ B1asX1XaXs 

with the conditions O €£ X14, X2y Xs <1 

X_ + X% + Xg = 1 

The probler is that given a contour line y and one coordinate 

X4, to find xg and x3. Clearly, we need find only xg as xg 

can be found from the relationship that the sum of the coordinates 

is unity. 

Make the substitution xg = 1~x,-xg to obtain a 

cubic form in x, and x, 

y = (a00 Z S01Xa + a0aXg" + aogxa®) Zea 
S-x 

+ (aso + a1axXe + asaxe*) x, 

+ (a20 + a21Xa)xs? 

+ asox1® 

where, 

aoo = Bs 

@o1 = fa - Bs + Bas — yas 

802 = —B2as + Byas 

aes = —2yas 

aso = 61 — Ba + Bis — yas 

aia = B12 - Bis - Pas + 2y1s + 2yas + Bias 

@42 = ~y12 - yis - Jyas - Bias 

ag0 = —fis + Sys 

@a1 = ya2 - 3y13 — yas — Bias 

aso = =2ye
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All these coefficients are known, hence all the a's may be 

calculated. xg is also known and the problem then is to 

solve the cubic equation in x, 

do + aX. + dgx,” + dgx,® = 0 

where 

2 3 
do (200 + &01Xa + AogX2° + AogsXa ) be fh 

da = (@10 + @11X2 + asaXa”) 

dz = (a20 + ag4%Xa) 

ds = aso 

for real roots such as 0 <x, <1. xg is already specified 

and X3 = 1. - x, - Xa. 

The cubic in x, may be further simplified by 

making the substitution x, = x, - d3/3dg which yields the cubic 

dgx1> + == = = + as) + (Sie - 3° + do) = © 

in which the quadratic term has been eliminated. This is 

probably not necessary as computers usually have subroutines 

for the solution of polynomials of degree higher than is 

envisaged in this work. 

Now, digital plotters usually have procedures 

by which it is possible to mark points specified in cartesian 

coordinates and it is probably easier to make the simple 

conversion from triangular coordinates (xa Xa »Xs) to cartesian 

coordinates (2, ,22) for the purposes of plotting using the 

formulae 

24 = (-3x4 - Xa3+1)/3; 22 = (3x2-Xad341)/3; 2s = (2x2) 3+1). 

As regards the values for the response contours 

that are to be drawn; suitable values at equal intervals will 

be suggested by the observed responses and experience suggests
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that about 10-15 lines on the simplex are usually adequate. 

If now the simplex is scanned at some suit- 

able interval (0.02 has been found to be adequately small and 

in. some cases 0.05 will suffice) and the cubic equation solved 

for real roots at each point for the various values of the 

response contours (y's) chosen, the coordinates of the points 

may be stored in an array. Use may then be made of the pro- 

cedure which exists for digital plotters whereby a smooth 

curve is drawn through a given set of points by fitting a 

cubic polynomial between (x, 575) and (iy Vag) using the 

Ys.,) and (x, 
# i coord tie ice (54 94a) 2 Ca rP ita ita Vite ).
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APE EON Det Xo 56 

AN ALTERNATIVE METHOD OF CALCULATING THE 

  

VARIABLE COEFFICIENTS WHEN PROCESS VARIABLES 

ARE PRESENT
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The reading of Scheffe's paper (1963) leads to 

the following method of calculating the P coefficients when 

process variables are present. The results are identical with 

.those given on page 41 which seem more natural in their de- 

rivation. An illustration of the calculation of the fis 

coefficient is given so as to avoid any confusion on this 

point. Scheffe's notation will be used which is self- 

explanatory apart from such coefficients as - which 

means the coefficient Bas with A at the 72 level and B at 

the ate level more usually seen as [(ab+(1))-(a+b)]. 

The responses from Block 1, Block 3 and Block 5 

are taken from Table 3a 

Block 1 Block 3 Block 5 

Ya,0-- = 100 Vane = 85 Mietes = 90 

Yt,ie = a Vai a 98 Vissis hoes! 

Pee Fened = 229 | ae = 130 

¥4 43 Ey ler) Yo,23 = — 157 Vie ,ij =) 150 

Using the formulae for calculating the coefficients of the 

special cubic model we have for 5, Sy 

pe = 4x90 — 2100 - 2x85 = «10 

a = 4x120 = 2x108 - 2x 98 = 68 

B5, = 4x130 - 2x186 - 2x129 =  =110 

833 90) =) 2207 hie 2 by = 32 

The various effects and interactions are therefore,
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past = 4((68+32) - (-ll0-10)) = 55 

fe (Gna eo Sa Gacy oe ae 
as 

pibetd . 3((-10 + 32) - (6-110)) = 16 

8. = %(-10 + 68 - 110 + 32) = 5 

and taking these figures 

B = -5+55A - 34B + 16AB 
a3,ij 

which is identical with the 61s coefficient given on page J.
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APPEND DX 4.
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When equal numbers of observations are made 

at each lattice point var(y) = o@2/r where r is the 

number of observations at each point and z is the sum 

of the squares of the coefficients given on page 25 

These tables give values of z for the 

quadratic, special cubic, cubic and quartic models 

for the intervals 1.0(0.02)0.32.
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CO-ORDINATES QUAD, » sRcuBic  cueic QUARTIC 

1-00 0-00 6-00 10000 1-0000 1.0000 1.0000 

0-98 0-00 0-02 0-8916= 0-68916 0-8349 00-8486 

0-96 0-00 0-04 0-&050 0-6050 0+7604 0-9398 
0-02 0-02 0+7926 0+7933 0+6974 0+7354 

0-94 0-00 0-06 0-7379 0+7379 0-7507 11340 
0-02 0-04 0-71.43 0-7143 0-6409 0-8274 

0.92 0-00 0-06 0-6884 0 +6554 0+7846 1-3410 
0-02 0-06 0 +6546 08-6527 0 +6416 1.0923 
0-04. 0-04 0 +6433 0-6414 05948 0 +8973 

0-90 0-00 0-10 Q-6544 0-6544 0+8447 1.5072 
‘ 0-02 0-08 Q-6115 0 +6067 0-6603 1-1814 

0-04 0-06 0-5900 0+5846 0-6000 1-0396 

0-88 0-00 0-12 0 +6340 0 -6340 0-9171 16963 
0-02 0-10 0-5830 0-5745 0-7405 163193 
0-04 0-08 0-5525 0-5420 0-63681 11843 
0-06 0-06 0-5423 0-5317 0-6046 121455 

0-86 0-00 0-14 0-6255 0-6255 0-9910 166317 
0-02 0-12 0 +5673 0-6-5544 0-8098 13950 
0-04 G-10 0-S287 09-5120 0 +6946 1.2921 
0-06 0-08 0-5094 0.4924 0 +6387 162568 

0-84 0-00 0-16 0-6271 0-6271 1.0582 165897 
0-02 0-14 0-5627 065447 00-8784 1-4046 
0-04 0-12 0-5169 0-4931 0+7578 1 +3453 
0-06 0-10 0+4896 0+4651 00-6887 1-3360 
0-06 0-08 0-4805 0-4562 0 +6661 13402 

0-22 0-00 0-18 0 +6373 0 +6373 161132 1.4945 
0.02 0-16 0-5675 0+5439 0-9391 1+3561 
0-04 0-14 0-5155 0 +4837 0-8191 1+3416 
0-06 0-12 00-4810 00-4482 0+7440 1 +3732 
0-08 0-10 0 +4638 0+4318 0-70680 1-4011 

0-60 0-00 0-20 0-6544 0-6544 1-1523 1 +3638 
0-02 0-16 0-S5601 0-5507 0-9671 1 +2628 
0-04 0-16 0-5228 0-4824 0-8719 1 +2864 
0-06 0-14 0-4620 0-4402 0-7968 1-3604 
0-08 0-12 0-4577 0-4175 0+7545 1+4246 
0-10 0+10 0 +4496 0+4104 0 +7409 124494



131. 

  

C0-0RDINATES QuAD, gh Cusic cuBic QUARTIC 

0-78 0-00 0-22 00-6771 0-6771 161737 162163 

0-02 0-20 0-S991 0 +5636 1-0194 161416 

0-04 0-16 0-5372 0 +4879 0-9122 1+1986 

0-06 0-16 0+4911 0 +4399 0-6413 13065 

0-06 Q+14 0 +4606 0-4120 0-795 11-4084 

0-10 0-12 0+4453 0-3994 00-7764 1 +4680 

0-76 0-00 . 0-24 0-7041 0-7041 1.1770 1-0690 

0-02 0-22 0 +6230 0-S814 1-0347 1-0092 

0-04 0-20 0-5574 0+-4989 00-9375 1+-0874 

0-06 0-18 0-5068 0 +4456 0-+-8738 heeee 9 

0-08 0-16 0-4709 0+4138 0 +8346 133579 

0-10 0-14 0+4494 0-3970 0-8137 1+4536 

0-12 0-12 0+4423 0-3918 0-s071 1-4880 

0-74 0-00 0-26 0-7340 0+7340 1+1631 0-9361 

0-02 0-24 0+6507 0-6029 1-0330 00-8808 

0-04 0-22 0-5820 00-5142 00-9468 0-9695 

0-06 0-20 0-S277 0 +4568 0-8923 1-1228 

0-08 0-16 0+-4672 00-4216 00-8599 11-2829 

0-10 0+16 0 +4604 0+4019 0-8422 14102 

0-12 0-14 0+4471 0-3932 0 +8346 14799 

0-72 0-00 0-28 0+-7658 0-7658 Vet 337 0-8289 

0-02 0-26 0 -6508 0-6270 1-0153 00-7685 

0-04 0-24 0-6098 0-5326 00-9405 0-6581 

0-06 0-22 0+5524 0 +4718 0 +8963 1+0190 
0-08 0-20 0 +5082 0 +4342 0+&724 1+1948 
0-10 0-18 0+4769 0+4127 0-6610 13459 

0-12 0-16 0-45€2 00-4019 0-564 1+4463 

0+14 0-14 0 +4520 0 -3986 0-&S553 11-4813 

0-70 0-00 0-30 0+7984 0-79&4 1.0912 0-7511 

0-02 0-28 Q-7122 0 +6526 0-9638 0 -6808 

0-04 0-26 0 +6396 0 +5537 0+91968 0+7631 

0-06 0-24 0-5799 0 +4896 0-8&62 0-9227 

0-08 0-22 0-5327 00-4504 0-8720 1-1045 

0-10 0-20 0+4976 00-4280 0 +8687 1-2701 

0-12 0-18 0+4744 0+4165 0-8701 1-3935 

O+14 " 0+16 0 +4628 0+4117 0+-8715 1+4590
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QvuaD. SP, CuBiC cvBic QUARTIC 

0-68 0-00 0.32 0.8308 0.8308 1.0389 0.7077 
0.02 0-30 0.7441 0+6789 0.9409 0.6222 
0-04 0.28 0-6703 0-5758 0-8869 0-6914 
0.06 0.26 0.6089 0-5094 0.8634 0.8421 
0-08 0.24 0.5594 0-4693 0-8591 1.0214 
0-10 0.22 0.5213 0+ 4468 0.8651 1.1922 
0.12 0-20 0.4943 0-4355 0.8742 1.3296 
0-14 0-18 0.4762 0-4306 0-8817 1.4178 
0-16 0-16 0.4729 0.4293 0.8845 1-4481 

0-66 0-09 0.34 0.8621 0.8621 0.9798 0.5965 
0.02 0.32 0.7754 0.7049 0.8896 0.5938 
0.04 0.30 0.7011 0.5984 0.8443 0-6462 
0-06 0.28 0-6386 0.5302 0.8301 0.7826 
0.08 0-26 0.5874 0+ 4897 0.8354 0.9522 
0-10 0.24 0-5469 0.4679 0.8507 161199 
0.12 0.22 0.5169 0.4578 0.8687 1.2623 
0-14 0-20 0.4971 0-4540 0.8837 1.3643 
0-16 0.18 0.4872 0-4530 0.8921 1.4173 

0-64 0.00 0-36 0.8916 0.8916 0.9175 0.7134 
0.02 0.34 0.8053 0.7300 0+8332 0.3934 
0-04 0.32 0.7309 0.6207 0.7949 0.6274 
0-06 0-30 0.6679 0.5513 0.7887 0-7463 
0-08 0-28 0-6156 0-5109 0.8027 0:9013 
0-10 0-26 0-5735 0-4903 0.8271 1.0592 
0.12 0.24 0.5411 0.4820 0.8541 1.1983 
0.14 0.22 0.5183 0-4803 0.8776 1.3053 
0-16 0.20 0-5047 0.4809 0.8934 1.3721 
0-16 0-18 0-5001 0+4814 0.8990 1.3948 

0-62 0-00 0.38 0.9186 0-9186 0.8553 0.7518 
0.02 0-36 0-8331 0.7534 0.7750 0+6163 
0-04 0-34 0.7591 0.6420 0-7420 0.6325 
0-06 0.32 0.6960 0.5718 0-7421 0+7326 
0-08 0-30 0.6432 0.5320 0+ 7636 0-8700 
0-10 (0.28 0.6000 0.5130 0.7962 1.0133 
0.12 0-26 0-5659 0-5072 0-8319 1.1428 
0-14 0.24 0.5408 0.5083 0.8641 142468 
0-16 0.22 0.5241 0-5117 0.8883 1.3187 
0-18 0.20 0.5158 0.5141 0.9011 1.3553 

0-60 0-00 0-40 0.9424 0-9424 0-7965 0.8040 
0.02 0-38 0.8581 0-7746 0.7182 ° 0-6561 
0.04 0-36 0.7849 0-6617 0.6885 0-6564 
0-06 0.34 0.7223 0.5912 0-6933 0.7386



133. 

  

Cor ORVINATES QUAD, Se cu6ic cusic QVARTIC 

0-60 0-08 0.32 0-6694 0.5523 0.7207 0.8574 
0-10 0.30 0.6256 0.5353 0.7603 0.9834 
0.12 0.28 0.5905 0.5324 0.8038 1.0987 
0-14 0-26 0-5636 0+5369 0.8444 1.1934 
0-16 0.24 0-5446 0-5438 0.8771 1-2626 
0-18 0.22 0-5333 0.5494 0.8982 1.3045 
0-20 0.20 0.5296 0.5515 0.9054 1.3185 

0-58 0-00 0.42 0.9626 0.9626 0.7440 0.8614 
0.02 0.40 0.8797 0-7931 0+6657 0.7052 
0-04 0.38 0.8078 96793 0.6375 0-6930 
0-06 0-36 0.7460 0.6089 0-6451 0.7595 
0-08 0.34 0-6935 0.5711 0-6767 0.8607 
0-10 0.32 90-6496 0.5564 0.7218 0.9686 
0.12 0-30 -0+6140 0.5564 0.7719 1.0671 
0-14 0.28 0.5860 0.5650 0.8202 1.1481 
0-16 0-26 0.5654 0-5760 0.8610 1.2084 
0-18 0.24 0.5517 30-5856 0.8904 1.2480 
0-20 0.22 0.5450 0.5911 0.9058 1.2674 

0-56 0.00 0-44 .0-9787 0-9787 0-7004 0-9160 
0.02 0-42 0.8976 0.8083 0.6203 0.7559 
0-04 0.40 0.8272 0.6942 0.5916 0-7354 
0-06 0-38 0.7665 0.6244 0-6003 0-7897 
0.08 0-36 0.7149 0-5880 0.6343 0.8756 
0-10 0.34 0-6715 0.5757 0.6832 0-9665 
0-12 0.32 0.6358 0.5792 0-7386 1.0475 
0-14 0-30 0.6072 0-5916 0.7932 1.1122 
0-16 0.28 0.5855 0.6071 0.8413 1.1594 
0-18 0-26 0.5702 0-6213 0.8788 1.1905 
0-20 0.24 0.5611 0-6311 0.9025 1.2078 
0.22 0.22 0.5581 0+-6346 0-9106 1.2134 

0.54 0-00 0-46 0-9905 0.9905 0-6677 0-9607 
0.02 0.44 0.9114 0-8201 0.5842 0.8011 
0.04 0.42 0.8427 0.7062 0.5533 0.7768 
0-06 0-40 0.7836 0+6372 0-5613 0.8231 
0.08 0-38 0.7331 0-6025 0.5959 0.8972 
0-10 0.36 0-6905 0-5926 0+6470 0.9734 
0-12 0.34 0.6552 0-5994 0.7059 1.0380 
0-14 0.32 0.6266 0.6159 0-7654 1.0859 
0-16 0-30 0.6043 0-6361 0-8198 161175 
0.18 0.28 0-5879 0-6553 0+8644 1.1359 
0.20 0.26 0.5771 0-6701 0.8960 1.1451 
0.22 0.24 0.5718 0-6781 0.9123 1.1487



  

CO-ORDINATES QUAD, Se. CuBic CUBIC QUARTIC 

0.52 0-00 0-48 0+9976 0-9976 0+6475 0.9899 
0-02 0-46 0.9207 0-820 0-5591 0 +6348 
0-04 0-44 0+£540 0-7150 0 +5246 0-8112 
0-06 0-42 0.7966 0-6472 0-5301 0-8539 
0-08 0-40 0+7476 0-6141 0 +5637 0.9205 
0-10 0-38 0-7063 0 +6067 0 +6152 0 +9855 
0-12 0-36 0-6718 0 +6168 0 +6760 1-0361 
0-14 0-34 0 +6436 0 +6372 0-7386 1.0682 
0-16 0-32 0-6213 0 +6621 0-+7979 1.0835 
0-16 0-30 0-60.43 0-665 0 +8486 160867 
0-20 0.28 0.5924 0-7067 0-8872 1 +0836 
0-22 0-26 0-5854 0+7198 0-9114 10794 
0-24 0-24 0+5831 0+7244 0-9196 1-0776 

0-50 0-00 0-50 1.0000 1.0000 0 +6406 1.0000 
0-02 0-48 0.9254 0 +8321 0 +5463 0-€528 
0-04 0+46 0 +8609 0.7204 0 +5067 0 +8338 
0-06 0-44 0-8055 0+6539 0-5084 0-6774 
0.08 0-42 0-7583 0 +6227 0 +5393 0-9409 
0-10 0-40 0-7184 0 +6176 0-5896 0 +9988 
0-12 0-38 0-6851 0 +6307 0 +6506 10387 
0.14 0 +36 0-6578 0.6550 0-7152 1.0573 
0-16 0-34 06356 0 +6644 0+°7775 1-0573 
0-18 0-32 0 +6188 0+7139 0 +8327 10449 
0-20 0-30 0 +6064 0+7396 0 +8773 1.0271 
0-22 0-28 0-5963 0-7584 0-9065 10108 
0-24 0-26 0-5943 0+7683 0.9245 1.0013 

0-48 0-00 0-52 0.9976 0-9976 0 +6475 0 +9899 
0-02 0-50 0-9254 0.6321 0 +5463 08528 
0-04 0-48 0 +8632 0.7222 0-5007 0 +8417 
0-06 0-46 0-8100 0 +6573 0-4972 0-8901 
0-08 0-44 0 +7648 0-6279 0.5242 0+9547 
0-10 0-42 0-7267 0-6250 0-5717 1.0097 
0-12 0-40 0 +6949 00-6409 0+6314 1.0429 
0-14 0-38 0 +6687 0 +6687 0 +6960 10514 
0-16 0-36 0 +6476 0-7024 0+7599 1.0364 
0-18 0-34 0 +6310 0 +7368 0.8182 160111 
0.20 0-32 0+6185 0+7679 0 +8673 0-9760 
0.22 0-30 0 +6098 0-7924 0-9043 0-9474 
0-24 0-28 0 +6047 0-808) 0.9273 0.9260 
0-26 0-26 0-6030 0-8134 0-9351 0 +9183



  

135. 

  

COORDINATES Quad, se cvusic eusic QVARTIC 

0-46 0-00 0-54 0.9905 0-9905 0+6677 0.9607 
0.02 0.52 0.9207 0.8280 0.5591 0-8348 
0-04 0-50 0.8609 0.7204 0-5067 0.8338 
0-06 0-48 0-8100 0-6573 0-4972 0.8901 
0-08 0-46 0.7670 0.6296 0.5191 0.9595 
0-10 0-44 0.7308 0-6288 0-5626 1.0159 
0.12 0.42 0.7008 09-6472 0-6193 1.0465 
0.14 0.40 0.6761 00-6781 0.6825 1.0486 
0-16 0-38 0.6562 0-7156 0+7464 1.0258 
0.18 0.36 0.6404 9.7545 0.8062 0.9859 
0.20 0.34 0.6284 0.7908 0.8583 0.9384 
0.22 0.32 0-6197 0-8210 0.8998 0.8927 
0.24 0-30 0-61.40 0-8425 0.9285 0-571 
0-26 0-28 -0-6112 0.8536 0.9433 0-8378 

0-44 0-00 0-56 0.9787 0.5787 0-7004 0-9160 
0.02 0-54 0.9114 0.8201 0.5842 0-8011 
0.04 0.52 0.8540 0-7150 0.5246 0.8112 
0-06 0-50 0.8055 09-6539 0-5084 068774 
0-08 0-48 0.7648 0-6279 0.5242 0-9547 
0-10 0-46 0.7308 0.6288 0.5626 1.0159 
0.12 0.44 0.7028 0+6493 0-6153 1.0479 
0.14 0.42 0-6799 0.6828 0-6756 1.0475 
0-16 0-40 0-6615 0-7236 0-7379 1.0187 
0-18 0-38 0-6469 0+ 7666 0.7976 0.9692 
0-20 0-36 0-6356 0-8076 0.8511 0.9093 
0.22 0.34 0.6273 0.8431 0.8956 0.8495 
0.24 0-32 0.6216 0.8704 0.9288 0.7991 
0-26 0-30 0-6183 0.8875 0-9493 0-7657 

0.42 0-00 0-58 0-9626 0-9626 0.7440 0.8614 
0.02 0-56 0-8976 0.8083 0.6203 0.7559 
0-04 0.54 0.8427 0.7062 0.5533 0-7768 
0-06 0.52 0+7966 0.6472 0-5301 0-8539 
0-08 0-50 0.7583 0.6227 0-5393 6.9409 
0-10 0.48 0.7267 0.6250 0.5717 1.0097 
0.12 0.46 0.7008 0-6472 0-6193 1.0465 
0-14 0.44 0.6799 0-6828 0-6756 1.0475 
0-16 0.42 0.6632 0-7263 0.7350 1.0163 
0-18 0-40 0.6502 0-7727 0.7932 0.9609 
0.20 0.38 0-6401 0.8179 0-8466 0.8917 
0.22 0-36 0-6326 0-8582 0.8924 0-8196 
0.24 0.34 0.6273 0-8909 0.9285 0.7552 
0.26 0.32 0.6239 0-9139 0.9534 0-7071 
0.28 0-30 0.6223 0.9257 0-9661 0-6815



136. 

  

« COORDINATES QUAD, se CcuBic cusic QuARTIC 

0-40 0-00 0-60 0.9424 0-9424 0-7965 0-60.40 
0-92 0-58 0 +8797 0+7931 0 +6657 0.7052 
0-04 0-56 0.68272 0 +6942 0+5916 0+7354 
0-06 0-54 0 +7836 0 -6372 0-5613 0-6231 
0-08 0-52 0+7476 0-61.41 0 +5637 0-9205 
0-10 0-50 0-7184 0-6176 0 +5896 0-9988 
0.12 0-48 0+6949 00-6409 0-6314 1.9429 
0-14 0+46 0-6761 0-678) 0-6625 1 +0486 
0-16 0-44 0-6615 0 +7236 0 +7379 1-0187 
0-18 0-42 0-6502 00-7727 0 +7932 0 +9609 
0-20 0-40 0 +6416 0.8213 0-8450 0 +8857 
0-22 0.38 0 +6353 0-8658 0-€907 0-8044 
0.24 0 +36 0 +6308 0-9035 0.9282 0 +7260 
0-26 0-34 0 6278 0-9319 0-9560 0 +6659 
0-28 0-32 0 +6261 0 +9496 0-9730 0 +6256 

0-38 0-00 0-62 0-91686 0 +9186 0-8553 0-7518 
0-02 0-60 0-8561 0+7746 0-7182 0-656) 
0-04 0-58 0.8076 0 6793 0+6375 0 -6930 
0-06 0-56 0+7665 0-6244 0-6003 0-7897 
0-08 0-54 0+7331 0.6025 0-5959 0.8972 
0-10 0-52 0-7063 0 +6067 0-6152 0-9855 
0-12 0-50 0-6851 0+6307 0-6506 1 +0387 
0-14 0-48 0 ©6687 0 +6687 0 +6960 1.0514 
0-16 0-46 0-6562 0+7156 0-7464 1.0258 
0-16 0-44 0 +6469 0 +7666 0-7976 0-9692 
0-20 0-42 0-6401 0 +8179 0 +8466 0-8917 
0.22 0-40 0 +6353 0 +8658 0+8907 0-8044 
0-24 0.38 0 +6320 0-9077 0.9260 0-+7187 
0-26 0+36 0 +6298 0-9411 0.9572 0 +6447 
0-28 0-34 0.6286 0+9643 0-9771 0-5905 
0-30 0-32 0.6280 0-9762 0-9873 0+5619 

0 +36 0-00 0-64 0-8916 0-8916 0-9175 0+7134 
0-02 0-62 0-8331 0-7534 0-7750 0 +6163 
0-04 0-60 0-7849 0 +6617 0 +6885 0 +6564 
0-06 0-58 0-+7460 0 +6089 0+6451 0+7595 
0-08 0 +56 0+-7149 0-5880 0 +6343 0-8756 
0-10 0-54 0-6905 0 +5926 0 +6470 0-9734 
0-12 0-52 0-6718 0-6168 0 +6760 1-0361 
0-14 0-50 0-6578 0-6550 0-7152 1-0573 
0-16 0-48 0 +6476 0-7024 0-7599 1.0384 
0-18 0-46 0-6404 0+7545 0.8062 0-9859 
0-20 0-44 0 +6356 0 +8076 0-8511 0-9093 
0.22 0-42 0 +6326 Q.e582 0-924 0 +8196 
0-24 0-40 0 +6308 0-9035 0-9282 0-7260 
0 +26 0-38 0 +6298 0-9411 0.9572 0 +6447 
0-28 0 +36 0-6294 0-9693 0+9785 0 +5785 
0-30 0-34 0 6292 0 +9867 00-9915 0 +5361



£ G. oRDINATES 

137. 

QUARTIC 
  

QUAD, « SP. CuBIC cuBic 

0-34 0-00 0-66 0-&621 0-8621 0+979& 0-696S 

0-02 0+64 0-&053 60-7300 0 -€332 0-5934 

0-04 0-62 0-7591 0-6420 0-7420 0-6325 

0-06 0-60 0-7223 0-5912 0 -6933 0 +7386 

0-08 0-58 06935 O-S711 0 +6767 00-8607 

0-10 0-56 0-6715 0+S757 0 -6832 0-966S 

0-12 0-54 0.6552 0-S994 0-7059 1-0380 

0-14 0-52 0 +6436 0 +6372 0-7388 1 +0682 

0-16 0-50 0 +6358 0 +6844 0-7775 1-0573 

0-18 0-46 0+6310 0+7368 0-81 82 1-0111 

0-20 0-46 0.6264 0-7908 0-8563 0-9384 

0-22 0+44 00-6273 0-+68431 0 +8956 0-+6495 

0-24 0-42 0 +6273 0-8909 0-9265 0-7552 

0-26 0-40 0 +6278 00-9319 0-9560 0 +6659 

0-28 0-38 0 +6286 0-9643 0-9771 0-S905 

0-30 0-36 0-6292 0+9867 0-9915 0-S361 

0-32 0-34 0 +6296 0-9981 0-9988 0-5076 

0-32 0-00 0+68 0-630 0-8308 1-0389 0-7077 

0-02 0-66 0+7754 00-7049 0 +8896 0-5938 

0-04 0+64 0-7309 0+6207 0-7949 0 +6274 

0-06 0-62 0-6960 0-S718 0-7421 0 +7326 

0-08 0-60 0 +6694 0-5523 0-7207 0+8574 

0-10 0+58 0 +6496 0-5564 0-7218 0 +9686 

0-12 0-56 00-6356 0-S792 0 +7386 1-0475 

0-14 0-54 0 +6266 0+6159 0+7654 1-0859 

0+16 0-52 0-6213 0+6621 0-7979 1-0835 

0-18 0-50 0 +6188 0+7139 0 +8327 1.0449 

0-20 0-48 0-615 0+7679 0-&673 0-9780 

0-22 0 +46 0+6197 0-8210 0+8998 0+8927 

0-24 0 +44 0 +6216 0-8704 0 -9288 00-7991 

0-26 0-42 0-6239 0-9139 00-9534 0-7071 

0-28 0-40 0 +6261 0+9496 0-+9730 0 +6256 

0-30 0-38 0-62€0 0-9762 0-9873 0-5619 

0-32 0 +36 0-6291 0-9926 0-9959 0-5215 

0-30 0-00 0-70 0-7984 0+7984 1-0912 0-7511 

0-02 0-68 0+7441 0+6789 0-9409 0-6222 

0-04 0-66 0-7011 00-5984 0 +8443 0 +6462 

0-06 0+64 0 +6679 0-S5513 0 +7887 0+7463 

0-08 0-62 0 +6432 0-5320 0 +7636 0-8700 

0-10 0-60 0 +6256 0 +5353 0-+7603 0 +9834 

0-12 0-58 0-6140 0 +5566 0+-7719 1.0671 

0-14 0-56 0-6072 0+S916 0-7932 1-1122 

0-16 0-54 0-6043 0 +6361 0-68198 101175 

0-18 0-52 0-6043 0 +6865 0 +8486 1-0867 

0-20 0-50 0 +6064 0+7396 0-8773 1-0271 

0-22 0-46 0 -6098 00-7924 0-9043 0+9474 

0-24 0-46 0+6140 0-8425 0-9285 00-8571 

= 0-26 0-44 0-6163 0-8875 0 +9493 0-7657 

0-28 0-42 0 -6223 0-9257 0-9661 0-6815 

0-30 0-40 0 +6256 0+9556 0-9786 0-6117 

0-32 0-38 0 +6280 0+-9762 0+9873 0-5619 

0-34 0-36 0-6292 0 +9867 0-9915 0-5361
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NOTE 1. 

NOTE 2. 

NOTE 3. 

NOTE 4. 

NOTE 5. 

NOTE 6. 

140. 

The paper by Gorman and Hinman contains three errors. 

Page 486 under Special Cubic Model, the equation for ds 

should read 

2 

by = (5/2)(6, 2x, + 3 \ =") 

i<ass 

and under Full Cubic Model the second term in Var(n) 

should be eliminated. 

On page 4.78 a negative sign is missing from 

the tenth term of the quartic equation. 

The paper by Scheffe (1958) contains two errors. 

Page 349, in formula 4.8, the coefficient should 

413 should be -12 and the coefficient -3 should be +3. 

The papers by Loewe and Macht have not been consulted 

by the writer. They are quoted as the original sources 

of the use of "synergistic" and "isobols". 

The paper by Dunn (1959) contains an error in the first 

column of the table on page 618. For 8,110 read 8,/110. 

The paper by Box and Draper (1959) contains an error 

in equation 5. It is correctly stated in equation 7. 

The paper by Box and Draper (1963) contains an error in 

the third equation of Appendix 1. For xiy, read xa'y4 

The book by Box and Draper, "Evolutionary Operation" 

contains three misprints in the title to Appendix iy



NoTé 8. The paper by Snee has not been consulted due to the 

difficulty experienced in obtaining a copy. This 

reference is given for the sake of completeness. 
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