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(i) 

SUMMARY. 

The search for relativistic field equations for 

elementary particles of arbitrary spin is a long standing 

problem of Quantum Field Theory. Although much work has been 

done on relativistic field theories describing fields with 

various mass-spin spectra, little has been done on picking 

out those theories which are quantizable, that is, those for 

which a particle interpretation exists which is consistent 

with the basic postulates of quantum theory. 

In this thesis we examine theories based on the 

relativistic field equation 

(La + xX)y = 0. 

The condition for ecahi tata on is expressed in terms of certain 

positive definiteness requirements on the eigenvectors corres- 

ponding to the non-zero eigenvalues of Lo. By restricting the. 

discussion to a specific type of theory, in which spin states 

are not repeated, these positive definiteness requirements are 

expressed in terms of certain simple trace conditions. A 

systematic procedure for finding representations of lo for 

quantizable theories is given, and illustrated in the case of 

spin 0,1,2 fields. In this procedure use is made of graphs 

depicting the representations of the Lorentz Group according 

to which % transforms ina relativistic field theory. Some 

simple results of graph theory are applied to develop the theory 

and also to discuss the properties of the Lo matrix. Further 

possibilities of this graphical approach are briefly discussed.



(ii) 

NOTATION AND CONVENTIONS. 

We work throughout in natural units, such that 

T= ¢ SL, 

xt, x*, x°, x° are the four coordinates of a point 

in space time, and we take the metric tensor 

oi ae uf 

= +1 wav ete ery 

= <1 H=ve=0 

ay is used to denote af ax", 

Greek subscripts and superscripts range over 0,1,2,3 

while Latin ones range over 1,2,3. The summation convention 

is used where appropriate. 

The word representation is used in two ways. It is 

used to refer to representations of the Lorentz group in some 

vector space, and also to refer to representati ons of certain 

matrices with respect to particular bases, The meaning will be 

clear from the context, so no confusion should arise,
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GHA Pot eR cL 

HISTORICAL SURVEY OF HIGHER SPIN FIELD THEORIES.



1) Historical Survey of Higher Spin Field Theories. 

1.1) The Dirac-Fierz-Pauli Theory 

The first theory of higner spin particles to receive 

attention was proposed by Dirac‘*) in 1936. This is a single 

particle theory, and is basically a generalization of the 

spinor form of the relativistic electron equation . The 

wave function is a symmetric spinor of appropriate rank, 

each component of which satisfies a Klein-Gordon equation 

ensuring unique mass. Also the spinor satisfies a set of 

subsidiary equations which reduces the number of independent 

components of the wave function and ensures unique spin. 

In’1939 Fierz‘?) developed the field theory for Dirac's 

equations, constructing an energy-momentum tensor and. charge- 

current vector. The total energy (total charge) was shown 

to be positive definite for integral (half odd int egral) 

spin fields, so the field theory could be quantized in the 

usual way, with the usual ea aeAteae ae connection. Fierz 

also showed that if interaction with the electromagnetic 

field was introduced by the gauge invariant minimal replace- 

ment 

Py Teen sey 

then the subsidiary conditions of Dirac's theory became 

inconsistent. This problem was soon overcome by Fierz 

and Pauli 2) who put the theory into a Lagrangian form and 

introduced “auxiliary field variables" in addition to the 

basic fields. As a result of the Euler-Lagrange equation 

these auxiliary fields vanished in the free field case, but 

became non-zero when interactions were introduced. The 

auxiliary fields were chosen so that the field equations were



1) contd. 
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consistent in the presence of interactions, and so that the 

number of degrees of freedom of the free field systan is the 

same with and without the interactions. This last condition 

was necessary to avoid singularities occurring in the free 

field solutions when the electromagnetic field was turned on. 

Unfortunately, tiers 48 a great deal of arbitrariness in the 

Fierz—Pauli procedure, since, for higher spins the auxiliary 

fields could be introduced many ways, and although these all 

lead to the same free field theory, they in general lead to 

inequivalent interaction theories. Some progress has been 

made towards systematizing the Fierz-Pauli procedure, but 

still a large amount of arbitrariness remains. Despite the 

arbitrariness, the Dirac-Fierz-Pauli theory (DFP theory) could 

be used consis tently with interactions, and is still very 

popular — especially as applied to the soin 2 and spin 2 

fields, originally studied by Fierz and Pauli. 

In 1941 Rarita and Schwinger‘ *) put forward an 

alternative formulation of the DFP theory for half odd integer 

spin fields, in which the field variables are spin- tensors 

rather than spinors, Such a formulation has cay been 

given by Nack‘ 5) for integer spin fields. The advantage 

of the RS formalism is that when the Lagrangian is constructed 

from the spin tensors, the auxiliary fields of the Fierz and 

Pauli type are already present and arise naturally when inter- 

actions are introduced. The RS formalism has therefore become 

very popular and received great usage. The difference between 

the DFP and RS formulations is little more than notation and. 

both will be included under the heading "DFP theory". The 

arbitrariness of the DFP theory referred to above is reflected
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in the arbitrariness of the Lagrangian's from which the 

RS equations can be obtained. It has been shown by many 

authors 66) 247) that the most general Lagrangian leading to 

the RS equations depend on a certain number of arbitrary 

parameters, To what extent such parameters arise in physical 

results of the theory does not sean clear at the moment. 

An effort has been made to organize the DFP theory 

by Fronsdal‘ ®) , who introduces a spin projection operator 

to do the work of the DFP subsidiary conditions - that is, 

to rodent out of an arbitrary field variable satisfying the 

Klein Gordon equation (Dirac first order equation) for integer 

spin (half odd integer spin) fields, that part corresponding 

to the spin required. The equations obtained using the spin- 

projection operator turn out to be non-local, involving 

inverse powers of momentum. Changs ®) has developed a systematic 

procedure for eliminating the non-localities by introauction 

of DFP type auxiliary fields. Quantization of the Fronsdal 

theory is however very difficult, especially in the interaction 

case. 

The first quantization of a DFP theory was performed 

by Gupta‘??? in 1954, who quantized the spin } theory in the 

free field case. A consistent interaction quantization of 

. the spin # theory was not proposed until 1969, by Gupta and 

Repko‘+*) The mathematics involved in this last work is so 

complicated that it is unlikely to survive as a higher spin 

theory. No one has yet put forward a consistent quantum field 

theory for an interacting systen involving a field of spin 

greater than one. Doubts as to wnether such theories exist 

have been expressed by a number of authors, notably Johnson
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contd. 

and Sudarshan‘ *?), It was shown by Johnson and Sudarshan 

that the usual local quantum field theory of higher half odd 

integer spin fields suffers from an inconsistency when inter- 

actions are introduced. The problem arises out of the sub- 

sidiary conditions - or "constraints" - to which the theory 

is subject to give unique mass and spin. First it is shown 

that a consistent interation quantization is possiole only if 

such subsidiary conditions are present in the theory. Then 

it is shown for particular spin theories that the assumption 

of the usual Fermi-Dirac statistics leads to physical results 

which conflict with relativity when interaction with the 

electromagntic field is considered. At present it is not clear 

how to get round the difficulties found by Johnson and Sudarshan 

for interacting fields. 

The DFP spin-two theory has received a great deal 

of attention and again arbitrary parameters occur in the 

Lagrangian.‘*9) (44), The free field quantization has been 

discussed, but work on the interaction case is lacking. 

Theories Based on a First Order Field Equation. 

Many authors considered the original DFP formalism 

as unsatisfactory because of the troublesome subsidiary conditions 

In 1925 Bhabha‘ +5) therefore proposed an al ternative approach 

to higher spin theories, which took as the basic wave equation 

one of the form 

(L, a + ix)y = 0 ; (1.2.1) 

No other subsidiary conditions were imposed. Such an equation 

had been used to great effect by Kemner‘*®) to describe scalar 

and vector mesons, and of course the Dirac electron equation
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has the matrix form (1.2.1). In his original fomulatio 

Bhabha only allowed a restricted possiblity for the v2 

namely such that 

Ly cc [Ls Lid (7.0) 

where Toy are the infinitesimal generators of the repre- 

3 sentation of the Lorentz group according to which the wave 

function ¢ transforms. The choice (1.2.2) was made simply 

because it was found to apply in the above theories of Dirac 

and Kemmer. As a consequence of (1.2.2) Bhabha found that 

(1.2.1) described multi-mass particles, and also that the 

DFP higher spin theories could not be put in the form (1.2.1). 

Rejecting the idea of multi-mass fields Harish- 

Chandra‘*?) abandoned the assumption (1.2.2) and looked for 

wave equations of the type (1.2.1) describing particles with 

unique mass, Harish-Chandra gave conditions on the 7 

for unique mass and quantized his free field theory, giving 

the conditions on Lo for definiteness of charge and energy. 

The work of Bhabha and Harish-Chandra has been developed over 

the years, but mainly with aview to obtaining equations with 

a given mass, spin spectrum. 

Bhabha obtained general representations for the 

Li, (independent of (1.2.2)) such that (1.2.1) is relativistically 

et. and proposed many particular theories, including one 

which suggested a high bees spin 2 state for the proton. This 

last theory was quantized by LeCouteurs +8) using an indefinite 

metric, in an unsuccessful attempt to compare the theory with 

experiment. 

It was early realized that L, was the impor tant
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matrix for discussing mass~spin spectra, charge and energy, 

definiteness and quantization. Also, if Lo is non-diagonalizable 

then, as shown by Wild‘*®, (1.2.1) does contain implicit 

subsidiary conditions. If lo is diagonalizable, then free 

field quantization, with the usual spin-statistics connection, 

is only possible for fields with spin less than 2. By regarding 

(1.2.1) asa general relativistic field equation, interpreting 

% as a field variable, it is possible to get good quantizable 

free field theories for higher spin than one, provided Lo is 

taken to be non-diagonalizable. An example is the DFP spin 

2 theory, which can be put in the form (1.2.1) with a non- 

d@iagonalizable Lo; also (1.2.2) is not valia‘?°, 

The general quantization of a theory based on 

(1.2.1) was published in 1952 by Udgaonkar‘**), This was 

only a "quantization in principle" because the usual spin- 

statistics connection depends on certain positive definite 

properties of the field energy and charge (before quantization), 

and these properties were assumed to hold (see Section 2.5 )s 

One must first find quantizable theories based on (1.2.1) which 

satisfy the required definite properties, 

A complete analysis of field theories described 

by (1.2.1) was given in 1948 by Gelfand and Yaglon‘?*), This 

thesis is based on their work and, with some modifications, 

the notation and terminology used are theirs. Gelfand and 

Yaglom found the most general form for the hee in a particularly 

useful representation, such that (1.2.1)is iwariant under proper 

Lorentz transformations and space reflections, ani is derivable 

from a real invariant Lagrangian. They found the mass and spin 

spectra for such a theory and studied particular theories up to
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the spin 2 DFP theory. Much of the work is detailed in (34) 

and will be reviewed in Chapter 2 of this thesis. As Gelfand 

— and Yaglom point out, any field equation can be reduced to a 

systen of first order equations and so (1.2.1) in its most 

general context includes all relativistic field theorics, 

provided enough freedom is allowed for the dis Thus in general 

Lo may be singular to allow for "redundant components" of y% 

which are introduced simply to reduce the order of certain 

field equations to first order. These redundant components 

do not correspond to physically independent states of the field 

and must be eliminated in the quantization process, so that 

only the independent field states go over into the particle 

picture. It was stated by Bhabha‘?°) that (1.2.1) was the 

most general wave equation possible on the quantum mechanical 

grounds that y, being a wave function, must satisfy a first 

order differential equation. If % is regarded as a field 

orichia then this does not apply. A field variable can satisfy 

an equation of any order, and (1.2.1) is merely a eonve dient 

presentation new set of field equations which may be equivalent 

to a system of higher order equations, 

Gelfiands work has been continued by Shelepin in a 

series of papers( 28) (26) 927) 2(28) which study the algebra of 

the te matrices. Shelepin has considered the irreducibility 

of (1.2.1), the algebraic relations between the L for various 

physical requirements, the relation between i and a and other 

aspects of the relativistic covariance of (1.5.3) The question 

of quantization and definteness properties of energy and charge 

were not considered. Recently Shelepin and Lizin‘?®) have 

extended Shelepin's work to calculating cross-sections for
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particles with arbitrary spin, Use is made of work by 

Fedorov’ #9) which is relevant to the work of this thesis. 

Fedorov constructs projection operators onto mass-spin states 

by use of the minimal polynomials of the operator pe and 

the helicity operator for a given theory. These projection 

operators can be used to obtain expressions for transition 

probabilities between states in terms of the trace of certain 

matrices. Also, compact trace conditions can be obtained for 

the definiteness of charge and energy in the theory. In 

Section 3.4 of this thesis we obtain similar conditions to 

Fedorov's, but which are stronger and more useful for practical 

work. 

The analysis of theories based on (1.2.1) is very 

difficult in practice, even for modest spins. As we will see, 

the conditions for Lorentz covariance, quantization, and the 

determination of mass-spin spectra, are all expressible in 

terms of mathematical conditions on the Lo matrix. These 

conditions are generally difficult to satisfy, and the main 

problem tackled in this thesis is that of the practical 

Feet iat iy af matrix representations of the Lo matrix 

corresponding to good quantizable theories. The major difficult 

lies in ensuring the necessary positive definite requirements 

for the charge and energy in the theory. Previously these field 

quantities have been explicitly calculated for a particular 

theory and their definitness exhibited directly. In Chapter or 

a fairly systematic procedure is discussed for finding theories 

of a certain type (each spin state occurs at most once) which 

satisfy the required definite properties. Examples of this 

procedure are given in-Chapter 4. In this procedure, use is
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made of certain graphical diagrams depicting the representation 

of the Lorentz Group according to which ¢ in (1.2.1) transforms 

under Lorentz transformations. Similar diagrams were used in 

‘a limited way by LeCouteur‘?#5)2(86) in work on theories for 

which Lo is diagonalizable. No such restriction is placed on 

Lo in the theories considered in this thesis. 

More Recent Theories. 

In 1956 Foldy‘*?) initiated a new approach to the 

study of higher spin wave equations. Foldy's object was to 

construct wave equations without troublesome subsidiary 

conditions. For this he abandoned manifest covariance and 

used the relativistic Schrodinger equation to provide a 

representation space for irreducible representations of the 

Zawonbeneous Lorentz Group corresponding to particles of 

mass mand spin s. The wave function used by Foldy has com- 

plicated (momentum dependent) transformation properties however, 

and this makes the covariant introduction of interactions 

difficult. To avoid this difficulty, Weaver, Hammer and 

Good‘ *®) constructed a relativistic Schrodinger equation whose 

solutions transformed according to the representation 

Q~ Xs,0)® Ko0,s) of the Homogeneous Lorentz Group. Such 

wave functions describe particles of unique spin s, and have 

simple transformation properties, which suggest ways in which 

interactions may. be covariantly introduced. The basic idea 

was to postulate the required Hamiltonian in the rest frame 

and use a generalized Foldy-Wouthuysen transformation to derive 

the Hamiltonian in an arbitrary coordinate system. 

The Weaver, Hammer, Good theory was studied in detail
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by Mathews‘ 99) (49) | who analysed the general relativistic 

equation of the form 

i ae =H ¢ 

which is suitable for describing particles of unique spin, 

without further subsidiary conditions, and such that 4 

transforms according to YNs,0)@ Wo,s). Mathews found 

that the Hamiltonian H was not uniquely defined by the 

requirements of covariance, but he was able to ensure 

uniqueness by imposing the extoa condition that the 

Hamiltonian should have a unique finite limit on the rest 

frame, Mathews was able to quantize the the ory in a 

consistent manner for the case of half odd integral spin 

fields, but he found that in the integral spin case the 

wave function was not causal. This was remedied by 

Nelson and Good‘4)in 1968. 

Weinberg‘4*) has also studied theories based on 

the representation Ws,0) @ K0,s), from a somewhat different 

viewpoint, not making explicit use of field equations. He 

starts from the single particle states, defined in terms of 

creation and annihilation operators. Working back from the 

known transformation properties of these states one obtains 

relativistic fields representing the corresponding particles 

and transforming in a simple way. When the &s,0) @X0,s) 

representation is used the fields obey the Klein Gordon 

equation, but no other equation - since this representation 

yields a unique spin, no sub sidiary equations are necessary 

to eliminate unwanted spin states. Whilst the Lagrangian
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aspect of field theory is not explicit in Weinberg's work, 

it is not completely avoided, as he claims. For, as shown 

by Shay‘ 4?) , the Weinberg equations can be incorporated in a 

Lagrangian approach. The equivalence of the Weinberg and 

Weaver, Hammer, Good quantized theories has been shown by 

Nelson and Good‘4®), 

The technique of Weinberg and others, of starting 

with the single particle states and working back to obtain 

the covariant fields describing these states, poses the 

question of the number of such covariant formulations, for 

a given mass and spin state, There are of course an infinite 

number of such formulations, corresponding to the infinite 

number of representations of the Lorentz group yielding a given 

spin state. Pursey‘ 44) has given a complete account of this 

approach to povard oat wave equations, showing clearly the 

role played by subsidiary conditions in eliminating superfluous 

spin states. Tung’ *5) has considered those formulations which 

do not contain subsidiary conditions, and he finds it unlikely 

that these can be used to describe particles of spin greater 

than one. This is consistent with the result of Wi1a‘+®) that 

good quantizable field theories based as a first order equation 

for spin greater than one must contain implicit subsidiary 

conditions. 

The above work of Foldy, Weaver, Hammer, Good and 

Weinberg may yet lead to quantizable higher spin field theories 

satisfying the required definiteness properties for charge 

and energy, ani we suspect that these will be equivalent to 

theories obtained by the approach of Section 1.2. In fact 

a number of authors have shown the equivalence of the various
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covariant formulations of the spin 2 theory originally 

proposed by Fierz and Pauli‘®), and it is likely that this 

carries over to arbitrary spins, In any case, it is thought 

that the class of field theories based on a first order 

differential equation derivable from a Lagrangian is 

sufficiently broad to justify a detailed study of such 

theories and their quantization. Im Chapter 2 we briefly 

review the theory of such a field equation.



Co HyAsP Ton R 2. 

RELATIVISTIC QUANTUM FIELD THEORIES DERIVABLE 

FROM A LAGRANGIAN LINEAR IN THE FIELD DERIVATIVES.
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2) Relativistic Quantum Field Theories Derivable from a 

Lagrangian Linear in the Field Derivatives. 

2.1) Introduction. 

Let ¢(xX4,Xg»Xs,t) be the field variable describing 

the state of the field at the space-time point (x1,X2,X9,t). 

To allow for an internal degree of freedom such as spin, ¢ 

will in general be a vector in some finite dimensional 

complex vector space. We do not consider the various possible 

theories involving infinite dimensional representations of the 

Homogeneous Lorentz group. 

The space-time evolution of the field is described 

by a field equation, which in accordance with the principle 

of local action is taken to be a linear partial differential 

equation in gy. Since any equation containing higher order 

astivabives can be reduced to one with only first order 

derivatives by introducing new field variables and modifying 

the definition of %, we need only consider a system of first 

order equations. However, if we do reduce a higner order 

equation to a first order equation, the new field variable 

% will contain extra components which do not represent in- 

dependent degrees of freedom of the field - such component s 

may be called "redundant". In obtaining physical quantities 

or in quantization the redundant components have to be 

eliminated so that only field components representing truly 

independent degrees of freedom of the field are used. 

For example consider the field equation for the 

scalar field:- 

2 2 2 
ot, - 24 - a, - £4, + y= 0 (250.3) 

In this case % has only one independent component. By in- 

troducing the new variable:-
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as GaSe p (2,132) 

the above equation can be written as the first order sys tem 

alt Pi xe 1 (15) 

id XP, 

The new field variable is a five componert object 

y = Ce) (2.1.4) 
L 

_ The Ota the redundant components. Using a iret order 

theory we would obtain the field theory for the scalar meson 

in the form of the equations (2.1.3). Only ¢ must play an 

essential role in the construction of physical quantities. 

So we choose as our field equation:- 

Ob Ou Ob L. 2 +a 
Uo ee + be art are a ONE 

or 

(La +ix)y = 0 (ue 0525255) (2.15) 

L are constant matrices and x is a real constant. 

We require a relativistic Lagrangian field theory 

which can be quantized and so we have basically three aspects 

to consider:- 

1) Relativistic Covariance of the Theory. 

We demand manifest covariance of the theory under 

the orthochronous Lorentz group, d- w is thérefore taken 

as a vector in some representation space of a reducible 

or irreducible representation A of £, the proper 

Lorentz group
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Qe = 2. Kx, ,£,) 
i 

Thus ¢ transforms according to 

yt(xt) = Ty(x) 

where T is a transformation matrix independent of x. 

Lagrangian Origin of the Theory. 

The Lagrangian formalism is convenient because 

it provides a systematic procedure for constructing 

conserved physical quantities of the field such as charge, 

energy, etc. There are two stages in establishing a 

Lagrangian formalism for a relativistic field theory:- 

i) A non-degenerate invariant bilinear form:- 

(dasa) = Yat Ads 

must exist. That is:- 

(¢,%) = 0 if and only if ¢ =0 

and 

(Ya sya") = (yss¢a) 

where 

5" =f bs 

ii) Using the bilinear form of (i) it must be possible to 

construct a real, invariant Lagrangian ore which the 

field equation (2.1.5) canbe derived. 

Quantization. 

The usual quantization procedure is used, in which 

the relativistic fields are expanded in eigenfunctions 

of linear operators representing certain observables, ani 

the coefficients of the expansion are expressed in terms
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of creation and annihilation operators of the appropriate 

particle states for these observables. These annihilatio 

and creation operators satisfy the usual commutation or 

anti-commutation relations, As is well known, if we do 

not allow such possibilities as indefinite metrics or 

para-statistics our theory must have the following spin- 

statistics connection:— 

Integral spin: Therelativistic fields must have 

positive definite total energy so that commutation relations 

(Bese~statistics) for the particle evatere can be used to 

quantize the field and give a positive definite charge 

(As Pauli‘4®) has shown: an integral spin field cannot be 

consistently quantized by antiaccumaben on ules) ¢ 

Half-odd integral spin: The relativistic fields must 

have detinit ¢ charge, ns that anti-commutation relations 

(Fermi-statistics) can be used to quantize the field and 

make the energy positive definite (Pauli showed that an 

half odd integral spin field must have indefinite energy). 

Much work has been done on first order field 

theories. Gelfand and Yaglom( #2) have given a complete treatment 

of the relativistic Lagrangian field theory, which also summarizes 

most of the earlier work of Bhabha, Harish Chandra, etc. 

An explicit matrix representation is chosen for 

-the Lorentz transformation of y% and the condition for covariance 

of (2.1.5) gives matrix representations for the Le, in terms of 

certain arbitrary complex numbers. The most general non- 

degenerate invariant hermitian form, in the representation
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space h of the Lorentz group, is obtained. There are several, 

and each one leads to a different Lagrangian field theory in 

@. The condition for Lagrangian origin of the equation (2.1.5) 

imposes further conditions on the elements of the er depending 

on the bilinear form used. The field mass and spin states 

described by (2.1.5) are found by studying the matrix lo. 

Lo cane partitioned into block diagonal form corresponding 

to the invariant subspaces of R under the subgroup of space 

rotations. To each representation of weight s of the rotation 

subgroup contained inW, there corresponds one of the blocks 

of Lo, called the s-block, The non-zero eigenvalues of the 

s-block give the masses of the spin s states. 

Gelfand and Yaglcom considered a number of simple 

field theories with the correct definitness properties for 

quantization, but the only higher spin theory they considered 

was the DFP spin 2 theory. The general problem of higher spin 

quantization and definitness properties was not studied by 

the se eho 

The "quantization in principle" of the first order 

field theory has been carried out by Udgaonkar‘#+), However, 

this quantization was performed for quite general fields, under 

the assumption that the appropriate definiteness hop aves 

hold. So far, no one seems to have analysed the general first 

order theory with a view to finding which representations 

lead to good quantizable field theories, and studying the general 

properties of such theories. Thus we might ask for the permissible 

bilinear forms and tle mass and spin spectra for a particular 

representation a such that it yields a quantizable theory.



2) contd. 

2.1) 

2 2) 

18. 

contd. 

Further, there seems to be a large amount of arbitrariness 

in manifestly covariant theories with a given mass-spin spectra 

and we would like to know the significance of this, and the 

possibilities of eliminating it - if necessary. So far these 

aspects of relativistic field theories have been approached 

by largely ad hoc methods. Some particular representation space 

A is tried ami found to yield a good theory, usually by trial 

and error. No general methods are available for finding "good" 

theories (i.e. quantizable field theories) or eliminating bad 

ones. The purpose of the work of this thesis is to examine in 

detail the general first order theory of Gelfand and Yaglom; 

to try to organize and extend it and develop general criteria 

for good theories. In’ Sections 2.2,-2.5; 2.4 we review: the 

basic results of the first order relativistic field theory and 

its "quantization in principle". 

The Relativistic Covariance of the First Order Field Equation. 

We first consider proper transformations of the 

Lorentz group:- 

ln ge eae * a ( ) 

where 

v 
sey [a,”| 

and 

Bo > #08 

We therefore need only consider infinitesimal transformations :- 

etie (ghee Tx B 2-2 ns 88: a *y ( ) 

where the ew are real infinitesimal parameters and 

€or €. 
HY Vu 

This transformation of space-time coordinates induces the
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following transformation of y in the representation space 

of R ;- 

yi(xt) = (I + be oe) (2.243) 

where the ee are infinitesimal generators of the re- 

presentation RZ, and 

t:e-2] ee is 5 (2.2.4) 

The necessary and sufficient condition that 

the field equation (2.1.5) is form invariant under the 

transformation:- 

oi(xt) = T, (x) xt = ax (2.2.5) 
is ; 

= 4 
ye qT. eet qT. a, pa Ly Uyv = O13, a5 (2.2.6) 

L 

In the case of infinitesimal proper Lorentz 

transformations (2.2.2) and (2.2.3); substitution in 

L lb, = L ” L Oe 

[ Ww? vp! Ev “pS up'v ( ) 

where Evy = 0 uf v 

= +1 p=vesil,2,35 

= =L p=we=0O0 

and p,v,p = 0,1,2,35. 

The Sie satisfy the usual Lie algebra o generators of a 

fr ,t Jag ote Cen (2.2.8) Let 
pv py Hp vo 3 Buch yp" 

To find all the Li satisfying (2.2.7) we choose 

a particular matrix representation of the I and substitute 
vp
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contd. 

eee.) contd, 

in (2.2.7), solving the resulting equations in the matrix 

elements of ais This procedure can be simplified by noting 

that (2.2.7) can be reduced to a smaller set of relations. 

For any proper Lorentz transformation can be factored into 

space rotations and a "boost", or pure Lorentz transformation 

along some space axis, say Io3. Splitting the relations 

(2.2.7) corresponding to space and time indices we get 

L, = [Lo, 1,5] 3 

gree Ty] 0 (2.2.9) 

1c? Tig) = Elo = Osho 

CIyeots gd = Bibs Bi shy = Fabs hosts 

ul 

[L 

Using the Lie algebra relations (2.2.8) and the Jacobi identity 

for the generators ity it is found that all of the relations 

(2.2.9) are contained in the equations:- 

L, = [Lo, a (2.2.10) 

[Lo Tao] = [Lo,las] =. [Lo,Ias] = 0 (2.2509) 

[Iso [Is0,L0]] = Lo (2.2412) 

The Thathtwo equations completely determine Lo for an 

equation (2.1.5)covariant under a representation of xs and 

then the L, canbe found from (2.2.10). In fact, so far as 

all physical quantities of interest are concerned, and for 

the testing for quantizability of the theory, it turns out 

that only Lo is important. 

To obtain a matrix representation for lo we 

need to use some representation of the Sie Most convenient 

from our point of view is the so called "canonical representation" 

The irreducible representation Qk,£) of &, generates represen- 

tation Qs) of the rotation group, where s = k+l, k+€-1,...|k-<|
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are the weights of the representations. Let rik, 4) denote 

the representation space of Xk, £). R&K,4) can be completely 

reduced to a direct sum of subspaces Bee, invariant under 

space rotations, forming representation spaces for Ns). As 

is well known, the eigenvectors of the operator 

He’ =. 42,5 (2.2513) 

supply an orthonormal basis 

ee m= s,s-l, eae (s-1),-s. (252524) 

for the representation space piks®) which is (2s+1)-dimens ional, 
s ‘ 

eb ks) is an eigenvector of Hs corresponding to eigenvalue nm, 
sm 

The basis (2.2.14) is called the canonical basis of nK*) | We 
s 

k,&) 
“ > select a canonical basis in each subspace RS then the 

: Ss : 

vectors:i- 

f eho) | s 

sm 

m 

i k+l, kt€-1, see, [k-6| (272,15) 

s,s-l, ee =(s-1:) <3. 

form a basis for. the irreducible representation Hk). In 

this basis the matrices representing space rotations are in 

completely reduced (block-diagonal) form. 

We will follow Gelfand and aotcms nated oo and 

specify the canonical representation by the pair of numbers 

(€o,£4), both integers or both half odd integers for finite 

representations of &,» whe re 

Lo = k-£, £4 = k+€41 . (2.2.16) 

In terms of these numbers bak. the index s specifying the spin 

representations contained in the representation Dk, £) = (l0,1) 

takes the values
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s = |fo|, [fo] +1, eee,fa —1 (2.2.17) 

A general irreducible representation of &, will be denoted by 

T..:OL Tye 

In general we consider reducible representations 

of &, and in this case we take R to ve a direct sum of re- 

presentations of £ A canonical basis ie! s = |Lo|,ee.s¢a-L 

M = S,S—lyece -(s-1),-s is chosen in each irreducible sub space 

corresponding to the representation Tr, ~ (26™ ,eh>), and then 

Te 
a : : ; 

iS 32 over all s, nm, T3> provides a basis for the reducible 

representation R ° 

Gelfand and Yaglom have given explicit represen- 

tations of the a in the canonical basis. For convenience, . 

we introduce new operators:=- 

H = ilgs-Tig 3 HO = ilastIis » Hs = as 

: a ; 2.2.18) 
FL = ilso-l2o F = ilsotlao » Fs = ilso ( ) 

Inspection of (2.2.11) and (2.2.12) shows that we 

only need the matrices for Hy, Hg and Fg; in fact these relation: 

become " 

[bo, H,] = [bo,H_] = [Lo,Hs] = 0 (2.2.19) 

[[Fs,Lo], Fs] = Lo (2.2.20) 

In the canonical representation the operators 

Hy» Hg, Fg are given by:- 

T 7 
m 

sm Eom 

T ' T 
R60: A(s+m) (s-m+1) ee (242,21) 

H, é7 = J(s+mtl)(s-m) ¢7 H, Si. = J(s+m+1l) (s-m) Sores 

7 onpeemnyse T iu Tv T 

Fb nm gh 5 -m eee Ame © geal (S41) BY Cae ie (2.2.22) 

Ha é
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_ 2] hstabo" (sey | 
‘where 9. C= 3 ot (2.2.23) 

A towed | (2.2.2h) 
s ~ ‘s(s+l) 

and. t (Lopta) 3-8 =: lols: (fol ths sacs tarts 

M = S,S-L,eceey-(S-1) ,-8 

Now equations (2.2.19) tell us that Lo commutes 

with all space rotations. In the canonical representations 

the me are in completely reduced form and each sub-represen- 

tation Xs) of the rotation group is irreducible. By a natural 

generalization of Schur's Lemma it follows that in the canonical 

representation Lo must have the form 

Tre 
Lowe io xtntd (2.2.25) 

whe re 

Tat oS 
ams'm? "Ss «4 Be Sam" (2.2.26) 

and the oe: are arbitrary complex numbers depending only 

on the representations r and r' and the spin index s. This 

uses up all of the information conveyed by (2.2.19) » 

The equation (2.2.20) further restricts the oe 

Substituting (2.2.22) and 

TN Tr ree me TT ee log”, = ve Ee ee y oes, (2.2.27) 
t's'm' i. Tt 

into the following form of (2.2.0):- 

T T 
[[Fs,Lo], Fa] Sa = Lo co. (2.2.2) 

gives six complicated equations, on equating coefficients of 

ee to zero. These equations have been studied by Gelfand 

and Yaglom and it is found that 

t 

cry = 0 ; (2.2.29) 

unless either
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4) (lo,l1)= (C041, £2) 

in which case 

. t 

ae = 0’ {(s+lor1) (8-20) 

' V2 (2.2.50) 
c? tT 05 Ti(s+€o+1) (s—o) | 

or 
' 1 

ii) (o,€1) = (€0,¢1+1) 

in which case 

t t oth OTT J(s+ta+1)(s-€3) ] S55) 

1 t 
ele 

cT 7 = CT Th (s+€s+1) (s-1) 
s 

whe re ern ct T are arbitrary complex numbers. When two 

representations T~ (f0,¢,) and T'~ (£9 ,€1) are related 

by (i) and (4i) they are said to be 1ikiod: Gs to interlock, 

by linkages of type (i) or type (ii) respectively. The above 

results show that only matrix elements of Lo which connect 

Linked representations in R are non-zero. This result was 

first obtained by Bhabha! *5) , am of course it is independent 

of the matrix representation of ve used - this just determines 

the form of the non-zero matrix elements. Infact, from (2.1.5); 

since 4, ~ X,s) and py ~D, Hx; ,;) it follows that 
i 

as 

a, ~ Leo Ust) @ His.) 
Doe [2x,-$,¢,-H)¢ Ak,-3,€,+2)® Ax, +2,,-2) © 

© Hx,+5, £545 | i 

. projects this space onto the space), gk 64) of ¢ and so 

— can only connect representations Ak, ,;) a Hx 556) such 

that 

es a ae ae 
eRe net t,=-h sh 

i.e. the representations are linked.
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(2.2.30) and (2.2.31) give the most general matrix 

Lo, such that the equation (2.1.5) is covariant under £, 

in the canonical representation. Although other representations 

of the Li, have been obtained‘*5), the canonical representation 

seems best for study of the physical properties of the theory. 

Of course, as much as possible should be done in a representation 

independent way. Much work has been done on this by Harish- 

Chandra and Shelepin, the latter in seeking to extend Gelfand 

and Yaglom's work, This involves a study of the algebra, 

but so far this work has been confined to the relativistic co- 

variance of the theory. The quantization and definiteness 

properties required have not been studied in this algebraic 

manner. The complexity of the . algebra for higher spin theories 

seems to discourage this. 

Our field equation (2.1.5) is now completely specified 

by the set of arbitrary complex numbers ct forely bade fee 

linked irreducible representations T,T' of , in R. If we now 

further require covariance of the theory under space reflections, 

i.e. under the orthochronous Lorentz group 4, then the ct 

become subject to further conditions. 

Any transformation of £ can be made up from trans- 

formations of £, and the reflection 

Xo' =X, x,'=- x, 1 =.1,2)9 (2.2.32) 

represented in Q reiative to the canonical basis by the matrix 

S say. We recall that any irreducible representation of £, on 

restriction to proper Lorentz transformations completely reduces 

into either a single irreducible self conjugate representation of 

Ls tT~ (0,€,) or two mutually conjugate irreducible represen- 

tations r~ (€,,6,) and r~ (-€,,¢,) of 4:
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Note that we differ slightly from Gelfand and Yaglom 

in putting the dot denoting space conjugation beside the re- 

presentation r and not above it. This removes the ambiguity 

in such symbols as T', which could mean the conjugate of the 

representation linked to T, or the representation linked to 

the conjugate of rt - as is easily seen these are not in general 

the same, or in our notation T°! Z£T**. 

1) 

We have two cases to consider:-— 

Self conjugate representations of és 
  

Let r be a self conjugate representation of > yee 

T~ (0,1), 

Let the canonical basis far T be fer abe Then we get’ two 

possibilities for 8, differing in sign, which lead to — 

two inequivalent representations of £ for a given self 

conjugate representation Tr of &i- 

get. elfen) it 
sm 

(2.2.33 
S es ss (-aytel Uae | ) 

where [s] denotes the integral part of s. 

Mutually Conjugate Pairs of Representations of fe 
  

os 7 Te rT and Te are conjugate. If ie and ie. are 

canonical bases in each representation space then we take 

fern? {er} as a canonical basis for the representations 

of £, tT @r- . In terms of this basis S can always be 

written in the form 

~1)/8] T° ( to } 

By 3" (-yhPl gt 
: osm 

T? 

: fom 

(2,2; 44)
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The generaliation of the above results to the case of a re- 

ducible representation of £ are obvious. 

Now consider the space reflection 

bt(x!) = 8 d(x). 35°x9' 5 Xo %, Fe x, (2.2.35) 

Substituting in (2.2.6) we find that 

[8;. lo]-= 0 (298536) 

is the condition for (2.1.5) to be covariant under the 

orthochronous Lorentz group. This imposes further conditions 

on the qT, For R to provide a representation of £ it must 

consist of self-—conjugate and/or mutually conjugate pairs of 

representations of hoe We only have to consider pairs T,T' 

of linked representations and so we have three possibilities:- 

a). tA revate 7 i oe Tl 

Substituting (2.2.34) in (2.2.36) gives 

Go acl (2.2.37) 

b) reream 7) £7rt* fort A re, t's t'*) 

From case i) above S has two forms, given at (2.2.33), 

so far as the representation r (or r') is concerned, while it 

only has one form, (2.2.34), so far as r' (or Tr) is concerned, 

We therefore find 

(1) 23 e = (-1)[s1 go - (2.2.38 

Ser = Gt) es 
then 

es m OT he (2.2.39) 

or 

(2) 8 gs ae. e } (2.2.40) 

ee et pe 
then
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contd. 

b) contd. 
a es a gira Co ae (2.2.12) 

Analogous results hold if Tr eyeiand 1's 7" *. 

Q) ye re-andor S.r'- 

In this case there are no extra conditions on the 

? : 

c™™ . However, there do exist different ways of repre- 

senting the operator S without affecting the matrics tee 

This gives rise to different transformation possibilitics 

for y under reflections S - leading to tensor and pseudo-tensor 

theories. Also, in this case S must act in the same way in 

7 tT? : Tee 
each subspace R and R’ , otherwise © will be zeros 

(2.2.30) and (2.2.31) and the three sets of conditions 

above (a) > (c) completely specify the form of Lo in the canonical 

representation such that the equation (2.1.5) is covariant under 

all transformations of the orthochronous Lorentz group &£. 

Lagrangian Field Theory. 

Bhabha‘ 2°) has shown that the most general Lagrangian 

density from which (2.1.5) may be derived, which is linear in 

the field derivatives can be put in the form 

Liye) ] =F Tah aMeixy (2.3.1) 
where A is a non-singular matrix. The Lagrangian L must be 

real if it is to be used to construct real field quantities in 

the usual way. L is real if the bilinear form 

($5 ¢2) = dia * Aiba (2,5,23 

is hernitian, i.e. if 

Av =A (2.343) 

am if
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(L tarda) = Charl pa) C2. Side) 

LeGe 

Te ve ee (2.3.5) 

or, the ¥, must be hermitian with respect to the bilinear 

farm: es"), 

The covariance of the field theory requires the 

invariance of the Lagrangian L, i.e. 

L[y'(x")] = Lfy(x)] 2.3.6) 

Necessary and sufficient conditions for this are:- 

1) The bilinear form (W1,%2) is invariant:- 

(wat(x"), gat(x'))= (pa(x), d(x) (2.3.7) 

2) the equation obtained from L, (2.1.5), is covariant. 

Since we have already constructed the f to satisfy 

(2), we have now only to find the most general invariant 

hermitimbilinear form ( , ) in the representation space R, 

and ensure that the Li, satisfy (2.3.4) for this form. Henceforth 

we shall consider only Lagrangian field theories which are covariant 

under £, the orthochronous Lorentz group. In this case a-non-— 

degenerate invariant hermitian form always exists in R, 

Gelfand and Yaglom have shown that the most general 

non-degenerate hermitian fom, in the finite representation 

space R, which is invariant under transformatiomof £ (from now 

on R is assumed to be a representation space for £) is given 

in the canonical basis by:- 

(ude) =) ST 8s Se Ton (2.3.8) 
Tsn 

where, in the canonical basis leet
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os = (x0) 5 a = (ys) 

and @. = (-r fs], The a’’’ satisfy 

  

at ss att £2.39) 

and in fact, by a transfomation to a new canonical basis 

it is always possible to ensure that 

at” Sel (2.3.16) 

which will be assumed in the future. 

The form given for ( , ) by Gelfand and Yaglom is 

more general than that above, since they also allow infinite 

dimensional representations fork . 

We now consider the conditions imposed on the a 

by (2.3.4). Again we have only to consider Lo because 

(Ya sLoya) (2,551) (Loa, ¥a) 

implies 

(¥asbj¢a) i = 1,2,3. (L; #45 ¢2) 

Further, the condition (2.3.11) is equivalent to 

TY : 7! 
(Logs 9S5tmt) aA (En? uOEs tnt) (2.512), 

where the . are the canonical basis vectors and as usual, 

t', denotes a representation linked to r. Substituting 

(2.2.27) in (2.3.12) gives after some manipulation 

Vat es t as awa. 
al * Gt =a Bs cr t (2.5.09) 

This condition differs from that given by Gelfand and Yaglom 

((24.) Part II; Section 8; (27)), which is not quite correct. 
' 

They give the above conditions directly on the okt » but 

in fact this depends on the linkage of r with r' . First, 

note that since (-¢,,¢,) is equivalent to (fo ,-&) we can adopt
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the convention that £, > 0 and only 9 can take positive 

and negative values. Then, from (2.2.17) 

s <4, , so (st+l,+1)(s-t,) <0 (2.3.14) 

Siete Ses a0 (s+€o41) (s-£0) > 0 | (253.45) 

It then follows, on substituting (2.2.30) and (2.2.31) that 

for a:- 

type (i) linkage 
  

Late t ° Lem, 

gee Oe es at mgr en (2.3.16) 

type (ii) linkage 

et. t ee al Ls cir edge: cr a (25,17) 

The hermitian form ( , ) can always be transformed so that 

alts a+ 1. The different possibilities then allowed for 

( , ) impose different conditions on the oT of Lo and we 

get different possible theories in a given av ean aa epee 

space ie That is, the hermitian form canbe chosen ina 

number of ways consistent with invariance and hermitivity, 

each leading to a different field theory. 

We now have the most general matrix Lg such that 

(2.1.5) is invariant under £ and is derivable from a real 

invariant Lagrangian density. We summarize the complete set 

ct 
of the conditions on the coupling coefficients which 

determine Lo:- 

In the canonical basis Lo has the form 

* Tr Loot Oo ett 

Covariance under £ leads to. 

TT < cTT's 5 
sms'm! s ss' mn' 

' 

The ct are zero except for linking representations:-
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Type (i) (Lo', £4") es (£o+1, £3) 

t ! 

cr = C'! “Ware oul) (sto 

t t : cT'T = oT'T J[artqrl (abo) 
s 

Type (ii) (£,',¢2') = (£0 441) 

Ss 

t t 

cr Be ols J(s+€4+1) (8-24) 

t ! 

ct’ = ¢7" J(s+0,+1) (s-24) 

t t TT : : 
where the c7" so are arbitrary complex numbers. Covariance 

under £ imposes the further conditions 

a) pe re andy" £7: 

qT i rite. 

by) 7 See ard 7h ete 

If the reflexion operator S is represented by:- 

Gy 8 f= Gye _ grr t 

then c’7 

sg (-1) fel’ 

te 
(2) Ss a Se (-1) fs}, 

sm then cit 

B a) an 
ree cT’T 

0) 7 = re and fr! es 7's 

No extra conditions om the C's, but different 

possibilities for reflection operator, leading to tensor and 

pseudo-tensor theories. 

Finally, if the equation (2.1.5) is obtainable from ~ 

a real invariant Lagrangian density constructed using the 

TT? 
hermitian form (9.3.8): where the a may be chosen as +l,
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then far a= 

‘Linkage      
t te ! tere 

TT2 T T 

type (ii) linkage 

t'rte t TT THES e 
a cit C T: 

Using the Lagrangian density (2.3.1) we can 

now construct the densities of the usual field quantities, 

momentum, charge, energy, angular momentum, etc. Neglecting 

unimportant conventional constants, the corresponding densities 

ares= 

Momentum Py i (Loy, a 4) 

i (Loy, doy) Energy H 

D> " - Charge (Loy, ¥) 

Orbital Angular g 

Momentum ij 

it} (Loy, (x; 95- 50; 4) 

Spin Angular : 

Momentum Diz = WMbowT, 5) 

Total Angular Momentum 

Ms es I, 35 cs A (Loy, (x5 9 5-* 535 + 1, ,)#) 

All these densitites are of the form 

o = (Log, O¢) 

where ois the density of some particular field quantity 

and © is the operator representing the corresponding observable 

in classical particle quantum mechanics. Note that all the 

densities above are real (Hence the i ind, ,, because & 

invariance of the form ( , ) means
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(Yas; a) = (Lj j¥asda) = - (Ya ,T, ¥1)} By integrating the 

densities over all space:- 

w= [ oar 

V 

we get the totals for all the above field quantities, 

2.4) Rest Mass and Spin. 

Associated with a quantum mechanical particle we 

have a rest mass and a spin (we shall not consider other 

internal symmetries). In the relativistic field theory these 

arise as characteristic quantities of the field which, on 

passing to the quantized theory, can be satisfactorily inter~ 

preted as the mass and spin of the corresponding particles. 

To find the mass and spin states for the theory, we expand 

the fields in eigenfunctions of the momentum and spin operators, 

First expand y% in eigenfunctions of ope 

y= a o(k) oi (2.4.1) 

k 

_where we here consider the field to be confined in a box of 

finite volume so that : has a discrete set of eigenfunctions. 

The ‘i are arbitrary, except that the field (2.4.1) must satisfy 

the field equation (2.1.5), which leads to 

(Le + XY¢(k) = 0 . (2.4.2) 

There exist non-zero solutions to this equation if and only if
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[i a +x | =0 (2.1.3) 

which equation gives us the allowed values of oe Now 

from (2.2.6) we have 

T(L klax) 3 * v bat + Xx (2 ste) 

sO 

[LxMex] = |b (a,"e") + xl (2.45) 

So [L xMex| must be an invariant polynomial in KY and so 

its irreducible factors must be of the form 1? +m” where 

IP oe ks “Sos— 
L 

L kY sy] = 1(k?4m?) = 0 | 2.4.6 | fh x| ay in ) (2.4.6) 

We identify the sy, with the four-momentum of the "plane 

wave" represented by 

=" 6 H, | (2 1-3) 

which on quantization will become identified with the four- 

momentum of the corresponding particle. (2.4.6) then says 

that + m, are the possible rest masses associated with the 

plane wave (2.4.7) and associated particles. Note that since 

any irreducible representations of £ is even dimensional, 

the Mi is even dimensional and so the polynomial [Lah +x| 

will be of even degree in k",as we have written it in (2.4.6). 

The m,, are related to the non-zero eigenvalues 

of Lo. We find, by considerations in the rest frame that 

(2.4.2) has a non-zero solution if and only if
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a 
k? =~ m4 (i) (2.48) 

x H Yr 

where + HM, are the non-zero eigenvalues of Lo. The zero 

eigenvalues of Lo have no physical significance; they 

correspond to the equations defining the redundant components. 

Thus the possible values of the rest mass 

associated with the field are given in terms of the non-zero 

eigenvalues + Ly OL lg by 

+m,=4 (2.4.9) 
r . 

For a reasonable physical interpretation we vant the n to be 

real, so the M, must be real. As shown by Gelfand and Yaglom, 

complex eigenvalues of Lo correspond to states of zero charge 

and energy density. Note that associated with every state of 

rest mass m_ = Wu, there will be one with rest mass 
r 

ee /'u,,° If we take /u,, > 0 then by convention this 

corresponds to the "particle" while mee Wt corresponds to the 

"anti-particle" of the theory. So finally (2.1.5) has plane 

wave solutions of the form 

i(k.xtw,__t) i(k.x-w, t) 
e = a) o (2.4.10) 

where 

2 

‘ot kK + () (2 ta12) 

Den = Koy k= (ka »Ka yks) 

The field expansion (2.4.1) can therefore be written 

i(kextw,..¢) i(k.x-w,.t) 
= { sre = + (k,rje ~ (2.4.12 n i. @e ) (7) ) Oe, 12) 

kr 

where ¢, (k,r) and ¢ (k,r) satisfy 
va
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(2.4 ie { oO
 (Lak - a, Lotx) ¢, (52) 

I oO
 

(L.K + wy, Lotx) & (k,r) (2.deU) 

The solution spaces of (2.4.13) and (2.4.14) are 

subspaces of the representation space R . We now require 

bases for these subspaces in order to expand ¢, (kyr) and 

& (kyr) and for this we need an operator which commutes 

with L xtx. Such an operator is the covariant spin : 

operator 

a 

£ Ste cta” (2.4.15) 

k xk? 
U 

where Wy is the Pauli—Lubanski covariant spin-vector 

at ae uv 1A wees Ene k (2.4.16) 

The eigenvalues of S$? ares(s+1) where s are the spin values 

carried by the states (k,t0,)¢ To show thatS? commutes with 

L ke +x it is sufficient to show that 

[i » 0] =0 (2.4.17). 

This last equation follows from (2.2.7), which gives 

p os Wy r, : [Lk 21 Ae L (2.4.18) 

Since the right hand side is the contraction of an anti- 

symmetric tensor with a symmetric tensor it must vanish, giving 

(2.17) « 

So S? splits the subspaces of R corresponding to 

states (k, +i.) into subspaces corresponding to eigenvalues 

s(s+1) of total spin, Thus & canbe split into "physical" sub- 

S j ; ; : 
spaces R'+ Hy, according to non-zero eigenvalues of lo and eigen-
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values of spin, and a "non-physical" subspace corresponding 

to zero eigenvalues of Lo. Each physical subspace ea. 
ate. 

carries an irreducible representation Hs) of the rotation 

group and there exist 2s+l independent vectors 

cra8 ome 
$44 9m m = 8,8-l, ... (s-1),-s in Ray providing a basis 

for this subspace. In particular the 2s+l eigenvectors of 

Hg (see (2.1.18)) provide a basis, in which case m represents 

the different possible values of spin projection along the 

X53 axis in the rest frame. 

In the canonical representation Lo provides a neat 

picture of all the mass-spin states associated with a given 

field theory. The spin values are given by the index s and 

from (2.2.26) we see that Lo can be put in block diagonal form, 

grouping together all the basis vectors fon m = s,s-1,...-(s-l),-s 

corresponding to the same values of spin s. We call these blocks 

"s-blocks"; they have the typical form 

Ge 

3 

We always suppress the m dependence in the s-blocks for brevity. 

Each of the "elements" in our s-blocks are in fact 

(2s+1) x (2s+1) scalar matrices and can therefore be treated 

like scalars. A non-zero eigenvalue of an s-block is thus a 

2s+1 repeated Ey pemradue oF Lo and specifies a state ¢ rest 

mass X/ and spin s i.e. the non-zero eigenvalues y of an 

s-block correspond to a state of rest mass x/u and of spin s. 

In this way the s-blocks of lo provide a list of all the states 

described by the field theory. On quantization these states go 

into particle states of mass x/u and spins. loin fact selects 

out for us certain mass-spin states from the complete range of 

states possible for the given representation R.
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Recently Capri ani Shamaly‘®*) 29?) nave proposed a 

method for finding first order equations (2.1.5) which describe 

fields of unique mass and spin. The method is to start with 

Bhabha! s‘ +5) representation for the Hi and use a transformation 

due to Wild‘*®) to obtain what are effectively the s-blocks 

of Gelfand and Yaglom, described above. The requirements of 

unique mass and spin are then used to impose conditions on 

these s-blocks. This method of Capri'ts is in fact incorporated 

in what we have said above about the s-blocks. If we want to 

ensure a unique mass m and spin j then we take, if possible, 

all other s-blocks to have only zero eigenvalues and the 

: ; ; : x 
~block to have a single pair of non-zero eigenvalues + —. J be 

Capri's method is simply a special case of this general 

approach. 

Quantization of the Free Relativistic Field. 

We quantize the theory in the usual way, by expanding 

the field quantities such as energy, linear and angular 

momentum, charge, etc, as sums of contributions for single 

particle states. This is done by expanding the fields in 

eigenfunc ti ons of the single particle operator for the corres- 

ponding quantum mechanical observable, and interpreting the 

coefficients in the expansion as elements of a certain operator 

algebra on a Hilbert space of states. From Section 2.5 we 

know that any field quantity density can be expressed in the 

form 

o = (Log, Oy) (2.5.1) 

where © is the hermitian operator representing the observable
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in classical particle quantum mechanics. The total field 

quantities are obtained by-integration over some box V:= 

M oa o dv (2.5.2) 

We expand y% in simultaneous eigenfunctions of a complete 

set of commuting operators, which commute with La + ix 

and which include © :- 

y= ‘ arb (2.5.3) 
a 

where I is an appropriate index set, Then we get 

Q i ¥ a 8 (Lotrs © $y) 
qi 

>, BetrAy Coty) 
rT 

where Ar is the eigenvalue of © with eigenfunction ¢r° 

So:- 

a u >, as | (Lodysdy)av 
ey 

I ’ 

ee apazAy (2.0.6) 

ls 

using some convenient normalization of py or aye By now 

regarding the ay as certain operators in a Hilbert space of 

states and taking ay as ar, + denoting the adjoint in this 

Hilbert space, we get a particle representation:-—
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M = y NA, = ¥ aaa, (2.5.5) 

r I 

for the given field quantity. The algebra we choose for the 

ar operators depends on the spin-statistics nature of the 

field theory one is quantizing. 

Referring again to Section 2.3 we notice that the 

orbital and spin angular momentum operators i(x, a5-%,4;) 

and ah do not separately commute with La + ix and so 

will not lead to a simple particle interpretation as obtained 

above if their separate eigenfunctions are used to expand 

the fields. However, their sum, the total angular momentum 

operator does commute with La + ix and so its eigenfunctions 

can be used as a basis for the field expansions. 

The major concern in the quantization of any field 

theory is in the particle form ef the energy and charge, 

which we'now study in detail. The densities of these field 

quantities are 

H i (Loy, doy) | (2.5.6) 

(Logs) (225.7) 

apart from unimportant conventional constants. y can be ex 

ll p 

panded in eigenfunctions of a, as shown at (2.4.12). From 

(2.4.13) and (2.4.14) we derive the "orthogonality relations":- 

$1 (kyr) A Lo¢ (k,r) = O for any r,r! (2.5.8) 

and 

gat (K,r')A Lod, (Ksr) = oT (kyr') Ald (kyr) = 0 (2.5.9) 

if Went # Wy 

These relations are useful in the quantization procedure, 

Substituting (2.4.12) into the densities (2.5.6) and
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(2.5.7) integrating over the box V and absorbing any constants 

in ¢,(k,r) and ¢ (k,r) as necessary we can now write the total 

energy and total.charge in the fom 

B=). (ston) og, y=) ef) Ahoy (er) 
kr 

Q = ye (4, Ger2) Alo (k,r)+ Me (,n) lod. (Es#) ) 
kr 

where we have used (2.5.8) and (2.5.9). 

The quantization procedure must ensure that both 

of these expressions have definite form in the particle 

number representation (i.e. are sums of positive contributions 

in the case of energy and have the form % (N-M) in the case 

of charge, where N counts the particles and M counts the anti- 

particles). Since both of these quantities transform like 

the fourth components of four vectors, we can restrict our 

selves to the rest frame for considerations of definiteness. 

A transformation out of the rest frame merely multiplies the 

energy and charge by a positive number. 

In the rest frame (2.4.13) and (2.4.14) show that 

¢,(0,r) and @(0,r) are eigenvectors of Lo corresponding to 

eigenvalues tu, and -y,, respectively. Employing the canonical 

basis Lo can be reduced to block diagonal form, the blocks 

being the s-blocks introduced in Section 2.4, and we see that 

$,(0,r) ard ¢ (0,r) can be expanded in terms of eigenvectors 

of the restriction of Loto the s-subspaces - i.e. of the s-blocks?-
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#,(0,r) = » a noe (028) 
rs 

# (0,7) = Lee # (Oor,8) 

2S 

where $¢, (0,r,s) and ¢ (0,r,s) are eigenvectors of the s-block 

corresponding to eigenvalues oH. and rf. respectively. The 

a and b are now to be interpreted as operators in the ors ors 

Hilbert space of states, and the complex conjugate goeS over 

to the adjoint in this Hilbert space. 

Since A does not mix up the s-blocks of Lo 

(see (2.3.8)) we can write 

$,'(0,r)ALog (0,7) 2 ne Borstors $/(0.1,8)A, (Lo), (0,7, 8) 

rs 

#.¥ (0,7) hog (0,2) = me PorsPors $0,728)A, (Lo). (0,2,3) 
to 

whe re A,» (Lo) , are the s-subblocks of A and Lg. The total 

energy and charge thus become in the rest frame:- 

A + \ot t E.< Wy M50 Pons Grist (O07, 8)A, (Lo). (05248) a nstoraft (O2Fs8) 

rs 
A, (Lo), (0.r,8)) 

Qs » (Horstoratt(OsP18)A, (to) 9, (Oo, s)+b..,b* (0,743) 
ors 

Br aay a. A, (Lo) 5. (0,743) ) 

Writing:- . 

e,(0,r,s) = $'(0,r,8) A, (Lo), ¢,(0,r,3) 

¢ (0,r,8) = #%0,r,5) 4 (1) #.(0,r,8)
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' ] 

E= eo. (or aie b* sere -a* ia (2.5.10) 
kr “+ ors ors ors ors Sen 

Pe | €(0,r,8) | 
rs 

Ca Fe (Orr, 8 ; 

e (0,r,8) 

2S 

So the definiteness properties of the quantized 

energy and charge depend ultimately on the quantities 

< (0,r,8) and ¢ (0,r,s). The usual spin-statistics connection 

will be patie ei es if in the case of 

Integral spin fields 

< (0,r,8) have the pane sign for all r,s and in 

each case ¢€ (0,r,s) has the opposite sign to €,(0,r,s). 

Half Odd Integral Spin Fields. 

<,(0,r,8) have the same sign for all r,s and 

in each case ¢ (0,r,s) has the same sign as ¢ (O,r,s). 
~ + 

The remainder of this work is concerned with 

-. the study of s-blocks and the search for field theories 

for which the c,(0,r,8) and ¢ (0,r,s) satisfy one of the 

above conditions. These conditions are equivalent to the 

usual ones of definite total energy for relativistic fields 

of integral spin and definite total charge for relativistic 

fields of half odd integral spin. Gelfand and others have 

studied field theories with positive energy or definite 

charge. It is known( 24) »( 49) that if Lo is diagonalizable 

then the only field theories satisfying the above conditions 

are those for ins 0. $ orl. For higher spins therefore 

Lomust be non-diagonalizable if we are to quantize the theory. 

Theories corresponding to a non-diagonalizable L, are those
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arbitrary parameters 

contd. 

containing "subsidiary conditions". 

In the Gelfand-Yaglom approach, the eigenvalues 

of the s-blocks are explicitly obtained in terms of the 

TT, Eigenvectors corresponding to 

non-zero eigenvalues are found explicitly and substituted 

in the field expressions for the charge or energy - the 

definiteness properties lead in this way to conditions on 

the oT’. The object of this thesis is to organize and 

simplify this lengthy and complicated procedure. 

Fedorov‘*°) has found useful conditions on 

A and Lo for definiteness of field energy or charge, but 

still these are difficult to apply directly in practice. 

The complexity in previous attempts to find quantizable 

higher spin theories lies in the fact that the required 

conditions on the field theory are usually expressed and 

investigated in terms of Lg. The work can be simplified 

haves by decomposing Lg into s-blocks and studying the 

quantities «,(0,r58) and < (0,r,8) defined above. In effect 

the s-blocks enable us to study separately the spin-s particles 

carried by the field and their separate contributions to 

charge and energy. 

In order to keep the algebra within reasonable 

bounds we find it useful to make the assumption that the 

field carries no more than one particle of any given spin. 

Thus restricting ourselves to a certain type of field theory 

(also we do not allow multiple representations in) we 

‘obtain, using certain graphs as visual aids, conditions 

similar to Fedorov's, but which are simpler and easier to. 

use in practice. We will not concern ourselves with the
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actual quantization of a field theory, rather we look for 

theories which are quantizable. There is no point then in 

explicitly exhibiting the particle or quantized fom of the 

theory.
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3) Investigation of Quantizable Free Field Theories. 

3.1) Introduction. 

We have seen in Chapter 2 that the s-blocks, into 

which Lo can be partitioned, contain much of the useful in- 

formation about the field theory. The non-zero eigenvalues 

of the s-block tell us the masses of the states of spins 

described by the theory. In Section 2.5 we saw that the 

important quantities in the quantization of the field theory 

are 

c,(r18) = dt, Alo) stng = €,(Os08) 

and 

e (0,r,s8) « (r,s) = gt A, (Lo) #1 -rs s 

where Pas are eigenvectors of the s-block (lg). corresp onding 

to eigenvalues iu, — more precisely it is the signs of these 

quantities that we are interested in. 

First we must construct the most general forms of 

the s-blocks. The exact form of the elements of lo have 

been given by Gelfand and Yaglom in the canonical represen- 

tation, as detailed in Section 2.2. However, to construct 

Lo and the s-blocks from these results is a lengthy, tedious 

job which can be organized a great deal, and this is the 

object of Section 3.2. We only here consider theories which 

do not contain multiple representations, that is@Qis a direct 

sum of distinct irreducible representations of dy It then 

proves useful to exhibit the s-blocks as simple graphs in the 

(29,41) plane. Using these graphs as visual ata provides 

simple proofs to some results about the s-blocks and also is 

advantageous in algebraic manipulation. This is done in 

Section 3.3. 

By making certain assumptions about the minimal 

polynomials of the s-blocks, very simple expressions can be
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found which give the signs of e,(r,8) and ¢ (r,s). Also, from 

considerations of the graphs of the s-—blocks it is easily seen 

that e, (r,s) and ¢ (r,s) have opposite signs in the case of 

integral spin and the same signs in the case of half odd 

integral spin, as required for quantization and the spin- 

statistics connection, The question of quantization and the 

definiteness properties of the field theories is considered 

in Section 3.4. 

Construction of the s-blocks. 

We give here an algorithm for the construction of 

the s-blocks, which takés the maximum advantage of their 

symmetries. Further details of the justification of the 

algorithm are given in Appendix A, 

Useful for the understanding of the algorithm is a 

graphical interpretation of the problem of the structure of 

Lo, which can also give a deeper insight into the structure 

- and properties of the s-blocks. The basic idea is that any 

reducible ponies niche. c of &, can be displayed as a particularly 

simple type of graph in the €9,€, plane; and all the conditions 

of &, and space reflection covariance and Seeianiciey origin can 

be represented in terms of this graph. To help with this and 

to reduce the number of theories we have to consider we will 

make two "simplicity" assumptions. These have no physical 

basis, but they do make the mathematical formalism simpler anj 

restrict the number of possible theories one has to investigate 

for a given maximum spin. The large amount of arbitrariness 

in such theories in general is well known.
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Assumption 1. 

No irreducible representation of &, occurs more 

than once in A, 

Many people have looked at theories involving 

multiple representations‘ ®+)?(82)2(88) In particular 

Bhabha‘®®) has shown that a quantizable field theory carrying 

a spin $ and spin 2 state can be obtained using the repre— 

sentation 

2(-3,2) @2(3,2) @ (-3,3) © (2,8). 

The question arises of the possibility of multi-state theories 

that are quantizable but do not have repeated representations. 

As we. see later, such theories do exist. 

Assumption 2. 2 

In a theory designed for maximum spin j, R shall 

not contain any representation carrying a spin greater than 

de 

This assumption is not so necessary as the first, 

and it is sometimes necessary to forsake it - for example in 

the spin 0 theory. However, unless otherwise stated we will 

adhere to this assumption from now on, 

It is convenient to treat the cases of integral and 

half odd integral spin separately. We will concentrate on 

the former in detail and simply point out the appropriate 

modifications for the latter, In the case of integral spin 

we plot only the points €0,¢1,, where 9,4, are both integers, 

in the £9¢4 plane and refer to the resulting lattice of points 

as the "Bose-plane". In the half odd integral spin case we
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plot only the points for which €09,¢, are both half odd integers 

and refer to the lattice as the “Fermi-plane ." Since the 

representations (£9,,) and (-€0,-€1) are equivalent, we can 

adopt the convention £, > 0, then we get all the irreducible 

finite representations of L, giving integer spin theories by 

plotting £9 = 0,+1,4+2, ... 3 4, = 0,1,2,... and similarly 

for half odd integer spin theories by plotting 

One Pig t Be ve hee eee, eee, and confining ourselves 

to the "fan" £, > |€)/. We now consider integral spin theories. 

Integral Spin. 

Any irreducible finite representation r of & in our 

representation space R wid be specified by two integers 

(40,4), giving a point in the Bose plane in the fan L, > 15| = 

called the "Bose fan", See Fig(3.2.1) 

aot 

Bese fan 
e
o
s
.
   

“2 = ° t 4. 3 4 . 

Fig sFeead



3) contd. 

3,2) 

Ot 4 

contd. 

The Assumption 1 means that R wir correspond to 

a subset of points or "nodes" in the Bose fan. Further, 

_ Assumption 2 means that for a theory with maximum spin j, 

we only consider representations T ~ (OG, e2) Ot & such 

that 

4, <j 4-1. 

Thus for a maximum spin j theory we have only to consider 

the tcp eeaneati ond T, in the shaded triangle and on the 

line 70,¢— j+141n Nieure: 5.2.26 R will be a representation 

A, 

\b 

\ 

Qi 

d, = j+! ere 
ZZ 

A 

¥ 

  
  

Fig.3.2.2. 

space for a possible maximum spin j theory if it corresponds 

to a subset of points in this triangle, with at least one point 

on the line 4 = j+l. It will clearly suffice to consider 

the most general possible such R - i.e. that which includes 

all representations in the triangle and on the @, = jtl line. 

Any other maximum spin j representation subject to Assumptions
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1 and 2 can then be obtat ned by omitting some represen- 

tations, or by equating appropriate crt to zero. Unless 

otherwise stated we will assume R is os most general re- 

presentation in the above sense. 

We will in future denote the s-block by 

Af re = (Io), (3.2.1) 

Its elements are scalar matrices fa] labelled by the 

repfesentationsr,r'. To construct i we first need the 

representations involved, “aes those representations rwhich 

carry a spin s state. From the range of spins given by 

(2.2.17) we see that the s-block will involve only those 

representations in and on the rectangle;- 

| (5.242) 
s+1 by j+1 ul bs " 

which will be called the "s—-rectangle". So the s—block in 

a maximum spin j theory will have dimension 

( j-s+1) (2s+1) (55253 

since (j-s+1)(2s+1) in the number of representations it contains, 

If some of the representations are not included in a particular 

theory then the s-block will of course be smaller. 

We now adopt a useful staniard numbering of the 

representations r in the Bose-fan, We number the representations 

from left to right along rows (i.e. lines of constant €4,). With 

this numbering, inspection of the s-rectangle in tle Bose triangle 

shows that the s-block will contain those representations
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Fa2/ Meg? 8 Mags 

where i= @ - 2 = s+1 | C3 2c) 

for o= stl,s+2, ees dite 

For a given €, (3.2.4) gives the representations in the 

' s-rectangle in the row £, = &. 

We label a row or a column of the s—block by 

the index k of the representation Ty to which it corresponds, 

in ascending values of k along rows and columns. Then A, 

‘can be partitioned into (2s+1)x(2s+1) subblocks Bo,.(8) 

corresponding to the rows of the s-rectangle; where Bo (3) 

contairs the rows of the s-block corresponding to the repre- 

sentations on the row ¢, = @ of the s-rectangle and the 

-columns of the s—block corresp onding to the representations 

on row 4, = k of the s-rectangle. 

Now the only non-zero elements in the s-block are 

those labelled by linked representations. Two representations 

are linked by a type (i) linkwge (see (2.2.30)) if they are 

adjacent in the Bose fan by a horizontal link in the lattice. 

Two representations are linked by a linkage of type (ii) 

[See (2.2.31)] if they are adjacent vertically. Thus a glance 

at the Bese triangle for Gis tells us the positions of the non- 

zero elements of A.. From the structure of the s-rectangle we 

see that, with the standard numbering systen, all of the 

Bi e(s) subblocks are zero except those on, immediately above 

and immediately below the leading diagonal. This is because 

two representations canbe linked only if they lie either on 

the same or adjacent rows. Furthermore, we see that with the
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standard numbering the non-zero elemeuts in the non-zero 

subblocks are distributed as follows:- 

Boe (s) 

All elements are zero except those immediately 

above and below the leading diagonal of By,(s)- 

Beeya (8) ot Be sels) 

These are all diagonal matrices. 

The positions specified by these statements give 

the only places where non-zero elements of the s-block can 

occur. In the absence of further conditions these non-zero 

elements can be taken as arbitrary complex numbers, The full 

application of £-covariance and Lagrangian origin restrict the 

form of these quantities, in the way detailed in Section 2.2. 

We now give a complete algorithm for the construction of any 

s-block in any maximum spin theory, giving the most general 

form after the above conditions of covariance and Lagrangian 

origin have been imposed. Details are given in Appendix A. 

Algorithm. 

First partition the s-block, as described above, 

into subblocks B, (8) corresponding to the rows of the 

s-rectangle. The only non-zero blocks are By, (3) Bo oa, (8) 

B s) for € = stl,s+2, .ee,j+l, so 
e+a,e'
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) 

B 

55De 

contd. 

3.2) contd. 

es es 8 Boca vane? op re ED, 0 Oo eae 0 

Ps eg oe a ete se) Mois, s40(B) 0 eee 
0 

° 

: 

0 

: 

BieGs Be. gO) By 

5 0 oe © © 0 
Cr er B soa gh? Be dita 

The non-zero subblocks B.» (8) are filled in as 

follows:- 

By p(s) - 

  

S) oihe =o, By, (0) e 0 

ees) are zero except those 

immediately above and below the leading diagonal. 

2) If s>0, all elements of B 

3) Bisect the leading diagonal by the "skew diagonal" from 

lower left to upper right of the subblock and fill in the 

left upper triangle as follows:- 

a) Put 
  

TXT: 
6 k k+a a2 = [osteo 42) (s-¢o™) (1m, ~ (to) £4) 

in the position k,k+l for k = i(é),i(é+1),... i(¢)+s where 

i(é) = ¢?-£—s4l1. Zein represents an arbitrary complex 

number which is independent of s, but depends on the re- 

presentations T, ,T,., wiicn it links. Diced will be the 

same in each s-block which receives a contributions from
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a) contd. 

the representations T,, ga 

b) For k = i,itl, ...i+s-2, in the corresponding symmetric 

position k+1,k put 

    

g kta 8 ck kts 
s ~ “kk+a “s 

where So et 1. As explained in the Appendix A, 

ae 

Stcea = BTN) oT 
a k+a k+a 

. (see (2.3.8)). 

ec) In the remaining position it+s,i+s-1 put 

Thea, i45—4 Tits tse. 
C =, Os ; C 

s its i+s,i+s+4 

where jj 44.7 + 1, depending on which matrix is 

used to represent the reflection operator S in the 

representation space R . 

4) To get the remaining lower right triangle, first reflect 

the upper left triangle in the skew diagonal, then in 

the leading diagonal - but under the last reflection 

leave the 7, , where it is. 

The above set of rules for constructing the 

Byp(s) subblock is more difficult to write and read than 

it is to apply. More insight will be gained by studying 

the patterns in the final general form of the B, 26s) block, 

shown in Fig.3.2.3, where we have, for clarity, used the
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TF 

notation ont = G k . 
8 s 

Bep4.(8) ae By, ae(8)s 
  

We first construct B s), to which By e(8) 
e+e 

is very simply related. 

1) (s) is diagonal, The diagonal positions are 
Beets 

labelled by k(2), k(4+1) , k(€)=i(2),i(€)+1,...i(¢)+2s 

where i(¢) = ?—C-s+l. By», .(s) is symmetric about its 

skew diagonal. Fill in the positions above and ah the 

skew diagonal with elements 

Tk(£)"k(£+2) 

C. “2 eyxfeu) | TED 

  

for k(@) = i(), i(€)+1, ... i(€)+s. To get the re- 

maining non-zero elements just reflect in the skew 

diagonal. This gives a Boo ., (8) subblock as shown in: 

Wigs eletks 

eta 6! £,£+2( 

conjugate of every element of Boe .. (3) and multiply the 

s) from B 2) To get B s)? simply take the complex 

k(€) ,k(¢+2) diagonal element Ge by S(¢)k(e+4)* Thus we get 

(s) subblock as shown: in Big. sc coe 
een re 

" Bee & 

This completes the cometain boon of the s—blocks 

in the case of integral spin. As is usual when discussing 

matrices, the process is much more difficult to deseribe 

than perform, ani once the me chanics of the algorithm have 

been grasped it willbe seen to provide an effective, simple 

way of writing down the s-blocks in any given theory. Although 

not essential for the construction of the s-blocks, it is
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useful to bear in mind the graphical representations of 

the s-blocks, as described in Appendix A. 

As an example of the above algorithm, we will 

construct the s-blocks for the maximum spin 2 theory :- 

Maximum Spin 2 s-blocks. 

The appropriate Bose triangle is shown in 

Paes 20 Ge 

ne 

  

  
  

‘ Qed 

a 
Qi 

5 & 7 3 4 

~ 43 * 

It 

te 

Fig.3.2.6 

O-Block. 

Contains the representations 1,3,7 

The B,,(o) blocks, corresponding to the rows, 

are all zero. 

The Bye, 6°) blocks are all 1 x 1; we get:-
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: 1 3 7 

eee ts eT CE) [200 0 
3 '|sas|4ea‘4)42)(-€2°)) [Za 0 | [a (2269941) (-2a"™) | ze 

7 0 sa 7/f(es0 1) (Ca) [Foy 0 

‘ 

3: 3 7 

a nena 12 Zas 0 | 

Se N284s729 0 Goze, 

e: 0) Sa 6 Ze 3 0 

1-block. 

The l-rectangle contains the representations 2,3,4,6,7,8 

in two rows. The B-blocks are 3 x 3. From the algorithm and 

graph we obtain the matrices shown in Fig.3.2.7. 

2-block,. 

The 2-rectangle consists of the representations 

5 5657,8,9, i.e. the 0, = 3 row. Thus all the B (2) 
& ,b+4 

Bee. Ac) blocks are zero aml the 2-block is just a single 
3 ; 

5x5 By, (2) block. Using the algorithm and graph we obtain 

the matrices in Fig.3.2.8. 

An arbitrary complex number can be absorbed into the 

z's and when this is done we can finally write the s-blocks:-
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0 

Sis Zas 

0 

1-block 

[ 0 Z29 

NaSas2a9 0 

0 72223 

SaeZa6 0 

0 Sg Ge fs7 

ere 0 

2-block 

[ i) 256 

856256 0 

0 ned 386 7267 

0 0 

0 0 

‘Half Odd-Integral Spin. 

13 237 

226 

0 

0 

J3se7267 

0) 

256 

60. 

  

0 0 

A? Bee ) 

0 Zo6 

267 0 E 

0 867267 

76267 Or 

0 

0 

0 

856256 

0 

The main difference between integral spin and half 

odd-integral spin theories lies in the fact that in the latter 

case there can be no self conjugate representations, that is, 

no representations lying on the £4, axis. The Be sub—-blocks are 

therefore always even dimensional. 

non- 

there elements are 

The Boe sub-blocks have 

zero elements in the central ositions on the skew diagonal; oO 3
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_ ee zee 12) ‘3(e) 25 el i(e) soot — 

and s 5 (4) 228k i(e)a2se2 2st 

As regards Lagrangian origin and é covariance, the same 

conditions apply as for integral spin theories. For space re- 

flection covariance the only difference is that the cases 
(c) r=r+ and T'*=r', or (b) T=Teand r'ér'.e can never 

occur in half odd integral spin theories. Thus, there is no 

Ng factor in the By, (s) sub-block. It follows that we can 

use the above algorithm for half-odd integral spin also, except 

that part (c) is omitted in the construction of the B,,(s) sub= 

block, and any instruction elsewhere about Ne is ignored, 

whilst the elements above are placed on the skew diagonal. The 

only difference in the construction of the B,,.(s) and B, | ,(s) 

sub-blocks is that in part 1) we need only fill in positions above 

the skew diagonal and not on it. In an even-dimensional matrix 

the skew diagonal does not contain an element of the leading 

diagonal. 

Having set up the s-blocks in any given theory, we 

are next interested in their eigenvalues and eigenvectors, and 

therefore their properties in general. In the next section we 

see how some simple graph theoretic ideas can provide information 

about the s-blocks and help us in constructing their characteristic 

polynomials. 

3.3) Properties of the s-blocks. 

We are interested in the real non-zero eigenvalues 

of the s-blocks, and their corresponding eilgenvectars, Also, it 

has been shown by Gelfand and Yaglom‘#9) (#4) and differently
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62, 

by Wila‘*®), that for spin > 1, good quantizable theories 

are only possible if Lo is non-diagonalizable,. Thus in any 

given theory for maximum spin >1, at least one of the s—blocks 

must be non-diagonalizable and must therefore have repeated 

eigenvalues. 

In general, s-blocks depend on three quantities 

Ther Sye2 292 which have the following significance:-— 

N Nl 

ké 

ke 

An arbitrary complex number appearing whenever the 

reprsentati ons Ty» Tg are linked in any s-block,. 

It is possible, by a’ "permissable" transformation 

of the basis in theA-space to convert some of ites 

complex numbers to real positive numbers, but this 

Makes Tittle difference. in. practice, t the work 

involved. 

can take the value +1 or -1, depending on which 

operator is used to represent space reflection in 

A. It only occurs in integral spin theories. 

again, can take the values +1; in fact:- 

Tre 
: ¥ . kk 

Kea Te rene 
eo £6 

  

ae being the arbitrary coefficients in the invariant 

bilinear form (2.3.8), which as stated at (2.3.10) can 

always be chosen such that all” = +1, and so 

= +1. <A choice of a set of Sie is thus equivalent 
Ske 

to a choice of a certain invariant hermitian form for 

the theory.
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The conditions imposed on the eigenvalues and 

eigenvectors of the s-blocks will impose restrictions on 

the n,s,z and their final forms and arbitrariness delineate 

the possible theories for a given maximum spin. 

| Tf we consider just the eigenvalue problem 

for an s-block of general form, we immediately meet a 

complication, even for quite modest s. We cannot solve, 

in a closed form, an equation of higher than fourth degree; 

and in practice even a cubic is unpleasant to handle. Thus 

to get general conditions on the n, s, z we have to resort 

to use of conditions on the coefficients of the characteristic 

equations of the s-blocks, which are notoriously complicated; 

and even then we cannot find general forms for the eigen- 

vectors. This practical obstacle will ocwr in all higher 

spin field theories, unless some sort of simplicity assumption 

is made to reduce the s-blocks, ie to simplify the characteristic 

equations. therwise bi btadoies values must be substituted for 

the n, 8, 2 and numerical techniques used. However, we can 

still make useful and interesting observations on the 

characteristic equation of the s-blocks, and for this it 

proves useful to use some ideas from graph theory. Later we 

will consider reducing the generality of the theories to make 

the mathematics easier. For a brief review of our needs in 

graph theory see Appendix B. 

We regard the s-rectangle as a graph repre- 

senting the s-block matrix; that is, non-zero elements can 

only occur in those positions corresponding to connected 

nodes of the graph. However, since the s-block is not in 

general symmetric, we have to split each link in the Bose
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or Fermi-triangle into two oppositely directed branches, so 

that we have a directed graph. The branches directed from 

Ts Tis 

node i to node j will represent ae J and that directed 

ToT 
from: j to. i represents cy *. Thus tae s-block will be 

represented by a graph of the type shown in Figure 3.3.1 - 

provided we have a completely general theory, using all possible 

representations. If some of the representations are missing 

then the s-block will be represented by a subgraph of that in 

the Figure. 

  
Figure 3.3.1 

Let us consider such graphs in general - that 

is, graphs which are topologically equivalent toa square ri 

or lattice. We are interested in the eigenvalues of matrices 

represented by such graphs. First we must say a word ae two 

about the graphical interpretation of a determinant. 

Let € be any graph with n nodes ani/M (c) any
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n xn matrix which can only have non-zero elements in the 

position i,j if the nodes i and j are connected by a . 

branch ing. Thus each branch i > j of ¢ represents a 

possible non-zero element el of (c). Any term in the 

determinant |fJ(¢)| must be of the form 

oll . m*. ok. Aiea Pete @eenee ni 

where ig i, ... in is some permutation:- 

Pet. 2 ooe fc 

i, ig eoe a 
n 

of the numbers 1 to n. Since any permutation can be written 

as a product of disjoint cycles it follows that the non-zero 

terms of P(r) | must correspond to sets of disjoint cycles, or 

loops of the graph ch say In the general case, this graphical 

interpretation of a determinant would be of little use because 

_of the difficulty of searching the graph to find sets of dis- 

joint loops. However, in the case of our simple graph it is 

quite useful. 

Now let G be any lattice graph of the type shown 

in Figure 3.3.1, with n nodes, Let M(G) be any n x n matrix 

which can only have non-zero elements in the i,j position if 

nodes i and j are connected by a branch on the graph 

G. Then:- 

Theorem 3.3.1 

If G contains an even number of nodes, n, the 

characteristic equation of M(G) is of te form 

IM(G) - at] = P,(a?) = 0
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where P, is a polynomial of degree n/2. 

If G contains an odd number of nodes, the 

characteristic equation is of the form 

[M(G) - AL] = Pa(d?) = 0 

where Pg is a polynomial of degree (n-1)/2, 

Let ms be the i,j element of M(G). 

The matrix M(G) = AI is represented by a 

lattice graph of the type of G@, except that each node has 

a self loop, which corresponds to the non-zero diagonal 

element -A, as shown in Fig.3.3.2. Apart from these self 

  

Figeredee 

loops, all loops of such a graph clearly have an even 

number of branches, The self loops are odd and of length 1. 

Any non-zero term of the expansion of |M(G) - AT] must 

correspond to a set of disjoint loops of the graph rep sisenit ne 

M(G) - AL. Hence any term of [M(G) - AI] must be of thé farm:- 

. : . : eeee : : zd 

= ia is Pah Mid (ra) 

where p must be even, since the m-part of this term must
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correspond to a union of disjoint loops with an even number 

of branches. The (-A)” part represents the self loops of r 

nodes. Now rtp = n, the order of M(G) - AL, and the number of 

nodes in the graph. Since p is even it follows that r is 

even or odd with n, from which the theorem follows. 

Theorem 3.32. 

Theorem 3.3.1 applies for any subgraph G' of G 

and also for any union of disjoint graphs of the type of Ge 

Any subgraph of G is obtained by deleting 

some of the branches of G, which is equivalent to putting» 

appropriate m.. equal to zero in M(G). This would not change 
ij 

the arguments of the proof of theorem 3.3.1. 

If G" is a union of disjoint graphs of type G, 

then by an appropriate numbering of nodes.M(G") can always be 

put tts fully reduced form. Blocks on the diagonal. of M(G") 

are then M(G, ) where G, are the disjoint graphs comprising 

G". The theorem (3.3.1) applies to each M(G;)> and since the 

characteristic polynomial of a block diagonal nacrae is the 

product of the characteristic polynomials of the blocks, the 

second part of the theorem follows. 

The proof of theorem 5.3.1 suggests a method 

of writing down the characteristic polynomial of u(G) directly 

from the graph G, using it as a visual aid. This method can 

be made systematic and has a definite advantage over the 

expansion of the determinant |M(G) -AI]. Of course, for large n, 

either way of finding the characteristic polynomial becomes 

prohibitive. 

The graphical method consists of writing down
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all the contributions to the coefficient of (-a)” for each 

of the necessary values of r (taking account of theorem 

3.3.1) by inspection of the graph. Each possible combination 

of r nodes is inspected (this corresponds to the term con- 

taining (-A)” in the expansion of |M(G) -AI|) and the graph 

is searched for sets of disjoint loops besides the r self 

loops of these nodes. If, for some particular combination 

of r nodes, there is no such set of loops having a total of 

n-r nodes, then the contribution of that particular combination 

of nodes to the term in (-A)” is zero. Otherwise aie Pactore 

corresponding to the sets of disjoint loops are written down 

as contributions to the coefficient of ex. with a sign 

which is determined by the parity of the permutation of the 

node numbers from natural order represented by the set of loops. 

There is an easy way to find this sign; it is simply (-1)% 

where € is the number of disjoint loops comprising the set of 

Loops. This follows from the nature of our graph, which is 

clearly such that every loop has an even number of nodes and 

so corresponds to a permutation cycle of even degree - such a 

cycle always has parity -1 from the theory of permutations. 

As an example of this graphical technique of 

writing down the characteristic polynomial, we will derive 

the characteristic polynomial for the graph of Figure 3.3.3, 

whose matrix can be represented by
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0 ag 0 Bag 0 0 

G24 0 agg «(COO agg =O 

Lege asa 0 Ore. O A36| (3.3.1) 

aad 0 0 as O 

0 asa 0 a5 4 0 a5 6 

0 0 agg O ages. 0 

  

Fig. By 

Note that A has the general form of the 1-block given at 

the end of section 3.2 for the general maximum spin two 

theory. The graph in the figure is that of the l-rectangle 

in the Bose triangle for a maximum spin two theory. Thus, 

this exanple will be useful in section 4.2, where the spin 2 

theory is studied. 

We know from Theorem 3.3.1 that the characteristic 

polynomial will be of the form 

A(-A) = (-a)® + Ca(-ay4 4 C,(-a)? ¢ Oe ¢
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70. 

We have now to calculate the Cy. 

Ca and C4 

There are 15 possible pairs of nodes and 15 possible 

sets of four nodes. These two sets of node sets are complemen ts 

of each other with respect to the set {1,2,3,4,5,6]} and are 

_ therefore conveniently tabulated together. The node sets, 

together with their contributions to the coefficients C2,C,, 

obtained by inspection of the graph, are listed in Table I. 

  

  

  

        

TABLE I. 

C4 C2 

Nodes “Terms Nodes Terms 

3456 | -as2Gea 12 845%54436%68 

21,56 0 a 0 

2356 | -As42a4 14 Ao 585289 686at82 929245 6265-22 323 6265452—425 45 6463432 

234.6 0 15 0 

23545 0 16 845954223432 

1456 | -agsasa 23 84494195 6 65 

1356 0 2h 0 

1346 | -aasasa 25 844941836263 

1345 0 26 0 
1256 0 3h. 42424456265 

126 0 a 0 

1245 | -@s36%3 20. 4 484 4 995%52+812 201 44595474825954 24 19137921914945852 

1236 | -84554 45 442821836463 i 

1255 0 46 0 

1234. | -@56865 56 G44444823%32 

Co 

This is the sum of all terms corresponding to sets of 

disjoint loops containing a total of six branches. By inspection 

of the graph we find:-



Co = + 84444149343 6465452 

+ 824444143545 6463432 

+ 8364639425454 441412 

+ 836463421414345452 

— 844441435 452436%63 

—~ 814941456465 4239432 

— 4396463445454412424 

— 41243383 6465%54444 

— 844445495 6469432424 

Collecting together the above results we get 

for the characteristic equation of A:- 

are’ 4 
A(A) =A (84989 4 +89 9939481484 1+895A85at8a68estGa5254tas gas )A 

+(€45854896%69t825 45243 6869+89 399245 6465+84545442 3432 

+ 844384145 6%65+414441936%69+812 49145 646544144414925452 

+ 84294949454544912421436469+91444 142 34392-42349 64654952 

2 
— 89545 6263943927435 454 4414127934414 4454952 ) r 

—(844441895852896863t81444 145 626599242 9+8368699459549124994 

+842929343 6465 4544414414445 45 6463432 491781484142 983 6465452 

244041895 45 6269299—896%698295454841819-896469991914845852) 

= 0 (3.3.2) 

Notice that the coefficient of (-a)* is simply the 

sum of the terms corresponding to all the loops of length two 

in the graph. This is no coincidence, and in general:- 

Theorem 3.3.3 

The coefficient of (-,)?"" in the characteristic
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polynomial of a lattice type graph with n nodes is equal 

to the sum of the terms corresp ond ing to all the loops of 

length two in the graph, 

Proof. 

Clearly only loops of length two can contribute ' 

to (ma) Se Also, every loop contributes at most once, since 

it corresponds to one possible selection of n-2 nodes of the 

graph. Further each loop contributes at least once, since 

corresponding to the pair of nodes of the loop there is a 

complementary set of n-2 nodes giving a factor (-A)”*. This 

proves the theorem, 

Theorem 3,3.3 will prove useful in finding the 

mass states in - particular simplified type of theory to which 

we will later restrict ourselves. 

We now return to the study of the s—blocks. 

Applying theorems (3.3.1) and (3.3.2) in this case we get 

Theorem ( Ds 9) + 

The characteristic polynomial of an s-block con- 

taining an even number of representations is of the form 

A(A) = Pa(A?) (3.33) 

and that of an s-block containing an odd number of repre- 

sentations is of the form 

where Py and Pg are polynomials of appropriate degree, 

This applies for the s-blocks of a theory based on any 

reducible representation of be 

Theorem (353.4) is a stronger result than that
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. 

obtained in Section 2.4. It was first shown by Bhabha that 

the characteristic polynomial |Lo-ALI| of Lo is a polynomial 

in (-A)?. (3.3.3) and (3.3.4) show that the field states of 

a given spin occur in pairs with "masses" of opposite sign, 

as discussed in Section 2.4. 

We can further show for the s-blocks that:- 

Theorem 3.3.5 

The characteristic and minimum polynomials of 

the s-blocks have real coefficients. 

Proof 

Let A, be any s—block. We have, from the hermiticity 

of Lo with respect to the bilinear form ( , ), (see (2.3.5), 

(2.3.2)):- 

Lot A = Abo 

where Ais the matrix of the bilinear form (2.3.8). From 

(2.3.8) we see that A does not mix up the s-subspaces and so 

ab A. is the restriction of A to the s-subspace, we have 

ried ge ALA (3.3.5) 

7. in - (Al xI)A, = A,(A, xI) 

where x is an arbitrary complex number, Since ( , ) is non- 

degenerate, we have 

|a,| 4 0 
and so 

t ie 5 [AJ - xI[ = A, - x1] 

or 

[A, = atl. = [AG xI| 

= A(x) 
n 

i} Q
 

5 

. 
8
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_A(x) being the characteristic polynomial of the nxn A,, and 

C. are its coefficients. So 

n n 
: aa 

C = Cox 
me r 

r=0 r=0 

or 

a
e
 

+s 

Q
 

¥ 
| 

a
 

ul Q
 am
 

moo: r=0 

as required, 

Now let the minimum polynomial of A. be 

m 

m(x) = 1% ve, 

r=0 

So 
m 

\ ~ 

r=o 

Then since 

kes AAS 
s 8 8 8 

we also have 

Hy -1 _ m(AS )= Ajm(A,)A. * = 0 

m 

n(ay t=) Day = 0 

r=0 

Hence 

By the uniqueness of the minimum polynomial
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as required. 

Theorem 3.3.5 provides a rough check on the 

rather complicated expressions for the coefficients of the 

characteristic and minimal equations in practice. 

Barlier in this section we remarked on the 

aifficulties of carrying througa any general analysis 

c for the eigenvalues and eigenvectors of the s-blocks, because 

of their size and the complexity of the characteristic 

equation. It seems we must therefore make some simplifying 

assumption which will permit more convenient discussion of 

the s—-blocks; of the many ways we could do this, the following 

is the most reasonablé:- 

Assumption. 

No two particle-anti-particle pairs of states 

in the theory will have the same spin. 

This leads to a considerable mathematical 

simplification, since it means that any s-block can only 

have two non-zero eigenvalues, + M,, say. Thus the nisivae bonita e 

polynomial of an n x n s-block must now be of the form 

n= 

AQ) = a7 (R-a7) (3.3.6) 

where n LS positive. “i,? is very easy to obtain graphically, 

since from Theoren 3.3.3 it is simply the sum of the terms 

corresponding to all the loops of length two on the graph 

representing the s-block, In general the coefficients CG, 

of the characteristic polynomial of an s-block will be 

complicated functions of Ther Ser "Kee The above assumption
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requires. that we impose the condition 

CO = 0 Al < n-2 (3.307) 

which will further restrict the arbitrary quantities . 

7, S, 2. Further,for a real mass we must have 

nt 250 (3,360) 

which gives a further restriction on the arbitrary 

parameters of our theory. Finally for a consistent 

quantizable theory we require certain conditions, detailed 

in Section 2.5, to be satisfied by the quantities 

c(re)e dt AAY, (3.3.9) 

elreey AL, (3.3.10) 

where v are eigenvectors of the s—block A, corresp onding 

to non-zero eigenvalues + He These conditions are studied 

in the next section. 

Quantizable Field Theories and Conditions on the s—-blocks, 

In this section A will represent a general ve n 

s-block with, following the assumption of Section 3.3, 

eigenvalues +-m (each once) and zero (in pane repeated). 

Thus the characteristic polynomial of A will be 

n= 

A(a) = A (a?-m?) = 0 3 (3.442) 
Since the minimum polynomial of a matrix contains the same 

irreducible factors as the characteristic polynomial, the 

minimum polynomial of A will be of the form 

m(A) =7(A?- m?) (3ebe2)
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where 1 ¢q <n-2, So A satisfies the minimum equation 

a‘(a? - m) = 0 (3 st. 3) 

A is diagonalizable if and only if q=1. 

ee f Represent eigenvectors of A corresponding 

to eigenvalues on respectively, then from (3.3.9) and (3.3.10) 

we are interested in the signs of the quantities 

e(m)=yT my (3.404) 

e(m)=ytT my, (3.4.5) 

where A is always to be taken as the restriction to the 

s-subspace, i.e. Ase 

Suppose A satisfies the minimum polynomial (3.4.3). 

Then A also satisfies 

aP (a? - m@) = 0 - p >a (3.4.6) 
Now consider the matrices 

P(A) = aP(aA +m). (304-07) 

Neither of these is zero, because each lacks an irreducible 

factor of the minimum polynomial. Also, P CA) satisfies 

(A - m)P (A) = 0 (3.4.8) 

and so the columns of PCA) are either zero or eigenvectars 

of A corresponding to eigenvalue m, There is only one such 

independent vector and so P(A) has exactly one independent 

column, that is:- 

Rank(P,(A)) = 1 (3.4.9) 

An eigenvector of A corresponding to eigenvalue +m is thus 
-
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v= PCA) ¢ (34.0) 

where y is an arbitrary vector. 

Similarly P_(4) satisfies 

(A+m)P__(A) = 0, (3.4.11) 

has Rank(P__(A)) = 1 and supplies an eigenvector 

¢ = P_ lA) ¢ (3.4.12) 

y arbitrary, 

of A corresponding to eigenvalue -m. 

We can therefore write, from (3.4.4) 

sign(e (m)) sign(ytpt (A)A A P(A) ) 

sign(yta AP (A)P(A)¥) 

using (3.3.5) 

sign(mP,(m) gla P(a)y) 
from (3.4.8), P(A)P_ (A) = P(m)P (A), 

sign(yta P_(A)y) (3.413) 

since m > 0. 

‘Similarly, from (3.4.5), (3.3.5), (3.4.11) we get:- 

ae 
sign(e (m) = (-1) sign(yta P_(A)y) (3 .t-eLd) 

Now consider gia P(A) ge. Since y is arbitrary 

this is positive or negative as A P(A) is positive or negative . 

semi-definite. But Rank(A P_(A)) = Rank(P (A)) = 1, since A 

is non-singular. Hence AP (A) has one non-zero eigenvalue, 

which will be positive or negative as AP (A) is positive or negative 

seme -defini Ce . 

asA P(A) is hermitian. This eigenvalue is given by 

p, = Trace (A P_(A)) = Tr(A P_(A)) (3.4.15) 

since the trace of a matrix is the sum of its eigenvalues.



3) contd. 

3 a) 

196 

contd. 

So finally 

sign(¢ta P (A)y) = sign(Tr(a P(A) (3 4-216) 

Similarly, we find 

siga(yta P_,(A)y) = sign(Tr(A P_,(A))) (3.4.17) 
So finally we get 

sign(e (m)) = sign(Tr(aP,(A))) (3.4.18) 

sign(e (m)) = (-1)P sign(tr(AP_((A))) p24 (3-419) 

Thus our problem of definiteness of charge or 

energy has been reduced to one of finding the signs of the 

quantities 

Py = TH(AP (A)) (3.4.20) 

Pom = Tr(A P_,(A)) (3.4.21) 

for our particular type of theory, specified by the assumption 

of Section 3.3. Now to calculate p, and p_ we need to find 

quantities like 

Trace(A A”) 

where € is some natural number. Now 

n 

tr(A A°) = 5 (a), ,(4°) , (3.4622) 
J ji 

i,Jj=a 

and (4); = 0 unless row i and column j correspond to two 

mutually conjugate representations on tho s-rectangle, in 

which case 

(4); 5 . (-1) #1] a (3.4023) 

where row i corresponds to the representation r and column j 

to the representation r-, It follows therefore from (3.4.22)
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that the coefficient of (21)'0 at?’ in te(A A°): 49 (A)rer, 

in obvious notation, which is given by the sum of the terms 

corresponding to all paths of length & from the representation 

r* to its conjugate representation r on the graph of the s- 

rectangle. In particular, it is clear from the correspond- 

ing graphs in the Bore and Fermi-planes that:- 

For Integral spin theories there are no paths of 

odd length between a representation and its conjugate. 

For half odd integral spin theories there are no 

paths of even length between a representation and its con- 

jugate. 

It therefore follows that:- 

1) For Integral spin s-blocks:= 

Tr(A a’) a0.°)< Aff odd (3.4. 2d) 

2) For Half odd integral spin s-blocks 

tr(A A’ )es 0 if £ even. (3d. 25) 

Now consider 

AP (A) = A aP(A + m) 

we have 

tr(AP (A)) = Tr(a aP*4)smtr(A AP) 

Then, for integral spin s-blocks the above results give:- 

tr(a AP**) if p odd Tr(A P (A)) 
| “1 (3.4026) 

mfr(A AP) if p even 

And for half odd integral spin s-blocks we have 

tr(AP (A)) = mir(a AP) if p is odd 
| (3.4.27) 

= Tr(a AP*+) if p is even 

Similarly for AP_ (A), we have
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tr(AP_(A)) = Tr(a aP*4)_otr( a AP) 

so for integral spin s-blocks:- 

tr(AP (A)) = Br(a AP**) if p is odd 
on | (3.4228) 

= mfr(a a’) if p is even 

Ani for half odd integral spin s-blocks:- 

Tr(a P_(A)) = -uTr(a A’) if p is odd 

oy | (3.4.29) 
= Tr(a aP**) if p is even 

Using these results in (3.4.18) and (3.4.19) we 

can simplify the conditions for quantizable theories. We 

summarize the results here for integral and half odd integral 

spin theories separately. 

Integral Spin. 

If A satisfies the characteristic equation - 

A™”3(a2 — m?) = 0 

and the minimal equation 

Al(aA? - m2) = 0 

where 1 <q <p, then 

sign(e (m)) = sign(Tr(a AP**)) p odd 
(3-4 30) 

= sign(Tr(A A’)) p even 

sign(e (m)) =-sign Tr(a aP**) p odd 
2 | (3.431) 

= -sign Tr(a A°) p even 

We note that in this case of integral spin 

sign(« (m)) = - sign(¢ (m)). (3.4.32) 

This is part of the condition for consistent quantization 

stated in Section 2.5, for integral spin fields, Thus in 

the notation of Section 2.5, our special type of theory 

satisfies the condition that, for integral spin fields
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e, (07,8) and ¢ (0,r,s) should have the opposite sign. 

The other part of the condition for consistent quanti zation 

is that the different e, (m) for each s-block must have 

the same sign. Without loss of generality we can always 

take this sign to be positive. Then the program for looking 

for quantizable integral spin theories is as follows. 

Examine each s-block A, and ensure that its 

characteristic polynomial is 

n~ 

A(a) = A (2?-m?) 

Choose some integer p, 1 <p <n-2and ensure that A 

satisfies 

P7, 2 aye 2 AAAS ) =0 

This need not be the minimal equation, which may be 

gq a. B\e2 As (A, m )220 

for any q such that 1 <q <p. Then we get a quantizable 

theory if we ensure that 

tra a P**) > 0 p odd 
| : | (3.4433) 

or tr(A,A, a ye p even 

These trace conditions are final conditions 

on the n, s, 2 for a consistent quantizable relativistic 

free field theory, for integral spin. 

Half Odd Integral Spin. 

If A satisfies the characteristic equation 

A’-3 (a? — m?) = 0 

and the minimal equation 

A243 = m?) = 0 

where 1 <q <p, then
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sign(e (m)) = sign(Tr(A A®)) pp odd 
' 3 alee 3 

= sign (Tr(a AP**)) p 8 

sign(< (m)) = sign(Tr( A A’)) p oda 
3 : | (Fes 35} 

= sign(Tr( a AP**)) p even 

We note that in this case of half odd integral 

spin 

sign(e (m)) = sign(e (m)) a (3.4436) 
This is part of the oor ees, for consistent quantization 

of half oid integral spin fields, stated in Section 2.5. 

Again, as in the case of integral spin fields we will adopt 

the convention that e, (a) > 0, then for consistent quantization 

it is necessary that the ¢ (a) for each s-block should be 

positive. The program for looking for quantizable half odd 

integral spin theories is thus as follows. 

Examine each s-block A, and ensure that its 

characteristic polynomial is 

A(A) = a (22 = m?) 

Choose some Lieber p, 1 <p <n and ensure that Ay 

satisfies 

AP (A? - m,?) = 0 

Then we get a quantizable theory if we ensure that 

r( hee) sO. 4F'p oo aay ( 
(3.4237 

Tr(AA,”) > 0 if p odd 

These impose the final conditions on the 7,58,2. 

The above results tell us how to find good 

quantizable theories for higher spin, The major practical
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difficulties arise in ensuring that the s-blocks, Ase 

satisfy the required equations, and the trace conditions 

specified. We obtain sets of equations in the n, z, s 

and any solutions to these equations give good theories. 

While there certainly is still a lot of work involved to 

obtain and solve these equations, the preliminary work 

we have done in this section simplifies the job a great 

deal. In practical calculations it is useful to remember 

that the i,j position in a is given by the sum of terms 

corresponding to all the possible paths of length € from 

the representation corresponding to i to that corresponding 

to j, in the s-rectangle, Thus, the graphs of the s-rectangle 

provide a useful visual aid to the practical calculations 

required in the search for good theories. In the next Chapter 

we study some particular exempta a of "good"theories. Also, 

in the examples it will become clear that some labour can be 

saved in calculating the Traces involved.
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4) Examples of Quantizable Theories. 

4.1) Spin 0 and Spin 1 Theories. 

The first thing to note is that with the assumption 2 

of Section 3.2, it is not possible to have a spin O theory! 

This is simply because, in order for the spin zero theory to be 

put in the form of a first order equation we must introduce 

another representation besides tT, ~ (0,1). If T1 alone is used 

then the field must satisfy a second order equation - the 

Klein Gordon equation. This situation arises because T, is the 

only representation with maximum spin 0. So, for the special 

case af spin O we break with our assumption of Section 3.2. Of 

course, the easiest way to get a first order spin zero theory 

is to introduce the representation rs ~ (0,2). This is simply 

equivalent to converting the second order equation to a first 

order equation by the process used in (2.1.1) to (2.1.4). It 

is then convenient to consider the spin O and spin 1 theory 

together, the appropriate triangle appearing in Figure 4.1.1. 

ae, 

it 
o 

LT 

  
Fig.4.1.1.
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Using (3.2.3), the O-block is 2 x 2 and the 

1-block is 3 x 3. Applying the integral spin oi coed eeg 

of Section 3.2 to the graphs of the 0O-block ani 1-block 

we have:s= 

0-block. 

Graph tz 

1, 

O=-block © As = 0 A2 24s] fiGr.1) 

S12 Bas 0 

Graph 

leblock = Ay = 0 N2 223 Ban 

7a Sas 2 Sas 0 Sa 2 aa (401.2) 

0 na J2 Zas 0 

The eigenvalues of the O-block are 

A=t+M = + N231sPis Chel 37 

giving sas = +1 for real mass. Here we are using the 

notation 

2 
Pre ae | ; (4.21 04) | "16 

The characteristic equation of the l-block is 

—\(A? 1.73 85 5P23) = 0 © (4.255) 

giving eigenvalues
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20 
  

and A=+ my, = + 2 nesaspas (421.6) 

giving na = sas for real mass, 

Applying the results of Section 3.4, noting 

that both for the O-block and 1-block there is only one 

choice for the minimal equation we see that for positive 

energy contribution we must have 

0-block Tr(Ao) > 0 G51 .2) 

1-block Tr(AgAs*) > O (4.1.8) 

From Gara) ne ast 

altT2 = 41 (421.29) 

From (4.1.8) we get 

tr(Asha®)=(-2) [*]]07979* (259 5Pa5)87°7°(linadaPa0) 
+ a’?73°(2saspas) | 

T27T2° T3T3 
-h{a SasPasta 7gSasPas) 

- 4a™8™8(past+mgSasPas) 

= = 8a'97%p,, since from (4.1.6), msas = +1 

>o0 

Hence (4.1.8) gives 

at8T8 . wl (4.1.10) 

We note that we cannot have a spin O and spin 1 

theory together here, since (4.1.9), (4.1.10) and sg = 1 

are incompatible. If we have just a spin O theory, then we 

must have, from (4.1.6) 

Pas = 0 

which reduces us to the theory based on the graph
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T 

This is in fact the usual spin zero theory. We have sy, = +l, 

and the masses are:- 

ee ae 
= z = 

Pas N2| zal Ih 

If we have just a spin 1 theory, then we must have, 

from (4.1.3) 

Pas = 0 

which reduces us to the theory based on the graph 

This is the usual spin one thyory studied by Gelfand, et al. 

We have a’§79 ~ ~1 and Na8as = +l, and the masses are;:- 

2 Jpas 2 lzasl 

4.2) The Spin 2 Theory. 

We look for quantizable theories describing a 

spin 2 state and possibly also a spin O or spin 1 state. 

Initially we will keep the analysis as general as possible, 

but eventually it will be necessary to restrict our theories 

to avoid excessive algebra. What we will do will be sufficient 

to illustrate the procedure to be followed in any case,
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The 0,1,2 blocks for the general spin 2 theory 

have been constructed in Section 3.2. They are 

  

0-block 

0 Z43 0 

Ay = BasZas 0 13 237 (4.2.1) 

0 S3~n3 237 0 

1l-block 

0 Ze3 0 Z2a6 0 0 

72829223 0 bagess 0 f2 Sar. O. 

tee a 72 223 0 0 0 Z26 

S26226 0 0 0 267 0 (22) 

0 Bswv2 Zaz 0 nNeSe aye Ol. ceraas 

0 ) S267 26 0 Ne267 0 

2-block 

fi. 0 256 0 0 Ol 
SseZs6 é 0 N3 267 Ps 0 | 

Ag = 0 J3ne8e7267 0 58 dete 0 (4-023) 

0 0 Ned 3267 O- Ss6256 

0 0 0 Z56 0 | 

. We will assume that no ‘a is zero for the present. We 

study each block in turn, ‘investigating the conditions 

imposed on the he S\o 210 by the requirements detailed 

in Section 3.4 ensuring a quantizable theory. We have a 

certain amount of choice as to the minimal polynomial of the 

s-blocks in this case, and each choice will lead to different 

eat ae hc i ene 
conditions on the Tic? S09 29 which have to be investigated.
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0-Block,. 

The characteristic equation is easily calculated 

in this case as 

-a[r? ~(81sP4st38s 2Ps7)] = 0 (Ca) 

So the eigenvalues of the O-block are 

A=0 

A= 4 My = + 18z9Pagt53 a7 (4.2.5) 

There are now two possibilities:- 

i) SisPig + 385 Paz Z- 0 

In this case a spin 0 state is carried by the 

theory, and to make it a physical state we must have 

real mass, soi- 

S1sP13 +383 7Ps7 > O (4-02 6) 

All the eigenvalues are different ami so the O-block 

will in this case be diagonalizable, and its minimum 

equation will coincide with its characteristic equation 

m(Ao) = Ao[Ao*-(SasP1st+38s7Ps7)] = 0 . 

For the spin O state to make a positive energy contributions 

we must therefore have, from Section 3.4 

Tr(AoAo*) > 0 (4.0267) 

The O-block graph is shown in Fig.4.2.l. Using 

% 

Tz 

Fig. 4.2.1.
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this as a visual aid, as described in the proof of (3.4.2h) 

and (3.4.25), we find 

° 

Tr(AoAo*)=(-1) [e78 Tas sPes +07°79(5, sp49+580 Po7)48" "7580 Da7| 

Tithe 2 
a (849 Sg 7PastSs7(S1sP1s+35s Ps 7) +389 Daz) ul 

= al 7773, ((+545)P1s +3(1+83 7)Ps 7) 

a’ ®78((1+513)Past3(1+897)Ps 7) (40228) 

We require Tr(ApAo*) > 0, and since from (4.2.6) :- 

(1+843)P1st3(1+837)P37 > 0 (422.9) 

this implies 

al8l? 5.0 Fo i,ena 0* = 4 (4.2.10) 

So, for the spin O state to contribute positive energy 

we must have a’37% = +1, The masses of the spin 0 states 

will then be 

as eT scmesuaiiy 
aot 2. ene (4.2.11) 

S1sP4st2S3 P37 

4 )ccs +33 = 0 

In this case all the eigenvalues of the O-block are 

zero, and there are no physical spin 0 states. In this 

situation we have:- 

Pas = — 381383 7Ps7 

giving, since all Pre ? O:= 

P48. eo 837 and Pas re 3P a7. (4.2.12)
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1—Block,. 

Comparing the 1-block (42.2) with (3.3.1) we 

see from (3.3.2) that the characteristic equation of the 

1-block is 

ne ee Cea* 4 Code + Ca 5.0 (iP .t a) 

whe re 

Cy, = -my?= —2(SagPae +8s7Pa7 +N2SasPas +1636 7267) (462014) 

Ca = 2neSa6867PacPe7 +4Sa6Ss 7PacPs7t+ 4NaNeSasSe7 PasPe7 +Pae” 

+2 na 8238a6PasPa67eN 2 83983 7(natNe)R (4.2.15) 

Co = -2(S3 Ps Pace +72 16523526567 PasPacP 6 7+82952656 PasPacPo7 

-J2 Sas5a65s 7(7atNe)Pa 6X) (4.2.16) 

and. R = Re(zZa92s 7236367) (4.22017) 

Note that all the coefficients are real, in accordance with 

Theorem (3.3.5). 

The assumption of Section 3.3, that there is only 

one particle-antiparticle state with spin 1 thus leads to the 

conditions 

Sq gPactSs Pa zt NaSasPastNese Pez > 9 (4.22.18) 

for real non-zero mass, and:- 

27682383 WagPertiss e8e Pa2c6Ps 7t4+m NeSas56 PaaPe 7+Pas” 

+2 752952 6PasPac ~2J2 8, 35s7 (natne)R = 0 (4.1.19) 

Sq Pac(Ps Pata ND aoP 6 7tPasP 67 2523826( rat Ne)R)= O (4.2.20) 

(4.2.20) shows that we must have 

Ta = Ne (4.2.21) 

because the case n, = - Ne leads to Devas = 0, which is 

not permitted. Thus the conditions become
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83 6PastSs 7P37 +7a(SasPastSe Pez) > 0 (422.22) 

2naS2sPa6(Ss Pe7tSacPaa)t4Sa65a Pacha 7t+Sa956 PasP 67 

+ pas? - 42 sasSa7 mR = 0 (4.2.23) 

0 (4.22.2) 
PasPact2PasPe7 2 maSasSack 

These conditions ensure that the characteristic 

equation of the 1-block will be 

ACA) e Asa me*) = 0:2 (4.2.25) 

m, real, The minimal polynomial of the 1-block must 

contain the same irreducible factors as ACA) and so must 

be one of 

m(A) = A (22 = ma?) (4.2.26) 

where 1 <r <4. Applying the results of Section 3.4 we 

now have two ways of ensuring that the spin 1 state has 

a positive energy contribution:- 

i) Ensure that the minimal equation of A, is 

Ax (As? - ma?) = 0 

where 1 <r < 2 and ma? > 0, then take 

oe Tr(ArAs*) > O 

ii) Allow complete freedom to the minimal equation - 

all we need to demand is the characteristic equation, 

then take 

Tr(AsAs*) > O 

The case when the minimal polynomial is 

A2(a? - ma?) is included in (ii), If either (i) or 

(ii) hold then the spin 1 state will have a positive 

energy contribution, 

First consider (i). 

It is sufficient to demand
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A,?(As* - mi?) = 0 (4.02.27) 

and Tr(AiAs*) > O (4.2.28) 

By substituting for A, in (4.2.27) (powers of A, can be 

calculated very effectively from the graph), we find it 

satisfied if the following equations are satisfied:- 

2)2na8as8e 7R~2 Na S23 82 6P23P2 6-282 386 7 23P 67-252 653 PacPa7 

—p26"—72582383 PacPe7 =0 (42.29) 

21289585 R+S205s DacPc 7-272 82986 Pacer = 0 (4.2.30) 

~Sa6Pacl 296257 2229237] = 0 (4.02.31) 

12 na8a58o 7-28 6Pa6( Na SasPpast2Sa ®37)-482386 7PasPe7 = 0 (4.2.32) 

~ Ta 8a 6Pac(SasZa62a0tl 286 725 ee) = 0 (4-62.33) 

2,|2 naSa 98s 7-2 SasSe6PasPa6~P26-23a556 PasPe67-2N25298a PacP67 

—2sa68s7aePs7 = 0 (40234) 

82.9 ( 2/255 7R+Sa Pa sPae-2772S6 7PasPe7) =0 (1,52,55) 

285 7(2)27n28acR-283 Pacda7 -728asP26P 67-232 6PasPe67) = 0 (4-22.36) 

These equations are easier to solve than they look, 

(4.2.32) - (4.2.36) gives 

S¢ 7PasP26—SasPacP67 = 0 

or Pas = S3as86WPe67 

which, since pgg > O, means 

Pas = Pez (402.37) 

and 823 = S67 (4.2.38) 

Now from (4.2.31) we have 

2a9%237 = = 226267 

M
l
l
e
 

q 
hence 

R= Re(Zgs%s72a6%67) = - PacPe7 (402239) 

ro
l 

le
 

q
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contd, 

Substituting this in (4.2.30) gives on simplification 

Pas = — 2725s 736 Pas 

or 72837867 = - 1 (4.2.40) 

Pas = 2Pas | (4-22.41) 

Now substitute the results so far in (4.2.35), we find 

Pas = (2+nmaSa6867)Pe7 

But from (4.2.37) pas = Pez) Ss0:- 

72826867 = ~L ; (4.2.42) 

From (4.2.29) we now get 

Pas = Ps7z 

and it is found that this also satisfies (4.2.34). 

We can thus summarize (4.2.29) - (4.2.36) as:- 

Pas = 2Pas = ez 2Ps7 

Raa Fes 

_ TpSasSa6 = ~1 

Sastae%as + 2867207267 = 0 = SagZag tl225 7267 

226267 + I22a5%37 = 9 

If these conditions are satisfied then A, satisfies (4.2.27). 

The scant is (4.2.23 )and (4.2.24) will tion te satisfied 

and we have now to satisfy (4.2.22). We find from this:- 

S37(2t+nass 7867) > 0 

i.e. 837 = +1 

We finally have 

8ae = 837 = E (4.22.43) 

72 =o S67 so Sag ; (462044) 

Pas = 2Pas = 237 = Pez (4.2.45) 

ZaeZas + 12 Za7%e7 = 0 (4.62.46)
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-) contd. 

4.2) contd, 

Sgate; + 12 Saker = 0 (442047) 

(4.2.43) - (4.2.47) ave the final conditions that the 

1-block has the characteristic equation 

a4(a? - m2) = 0 m,? > 0 

and satisfies the equation 

Az?(A,? - m,?) = 0 

although this need not be the minimal equation of A,, 

it could in fact be A,(Az?-m,?) = 0. 

We now impose the condition (4.2.28) :- 

Tr( AAs?) > 0 

This trace can be easily written down from the graph of 

the 1-block, observing that the coefficient of (Aa) pre is 

the sum of the terms corresponding to all paths of length 

two from the representation r* to the representation Ta 

We find, using (4.2.43) -(4.2.47) to simplify the result, 

that 

Tr(AvAs*) = - 4a’ psy (4.2.48) 
and so (4.2.28) gives 

A Ae (4.2.49) 

From (4.2.43) this gives 

alt?” = «1 (4.22.50) 

Now at (4.2.10) we found that the spin zero state gives 

a positive contribution to the energy if sc only if 

a’8T8° -1, So (4.2.50) shows that in this case (i), when 

the minimal equation of A, is 

As" (Ag? - ma®) = 0 r=1,2 

we cannot have a spin zero and spin one state together in 

a quantizable theory.
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4.) contd. 

4.2) contd. 

Case (ii). 

In this case we simply demand that A, has the 

characteristic equation 

r4(a2— m7) = 0 (4.2.51) 

and that 

Tr(AsA1*) > 0 - (4.2.52) 

We have only to satisfy the equations (4.2.22) - (4.2.24) to 

ensure the first condition, while Tr(A,Ai*) will be a real 

expression in Th? Sye2 Pre and Ze e° In this case there is 

a lot more freedom in these parameters and it is possible to 

satisfy (4.2.51) and (4.2.52) irrespective of the value of' 

a’87™3°, ‘hus in this case we can have a spin zero and spin 

one state together in a quantizable theory. 

Spin One State Absent. 

Finally if a spin one state is not present in the 

theory, we must have, in addition to (4.2.23) and (4.2.24):- 

m4? = S36Pac6tSs 7Pa7tNaSasPast NeSePe7z = 0 (4.2.53) 

In this case A, can have a minimal equation:~ 

Ay = 6 (4.2.54) 

r=1,2, ...6, each value of r giving a different formulation 

of the spin two theory. 

2-Block. 

The 2—block graph is shown in Fig.4.2.2. 

ts % %y x Te See 

Fig.4.2 ce
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contd. 

4.2) contd. 

Using the graph as a visual aid we obtain for the 

characteristic equation of the 2-block:- 

-A(A4 -2(sscpse +3656 Pe7)A tps6°+67N685656 PsePe7) = 0 (4.02 5) 

Uniqueness of the spin 2 state means that:- 

Dse + 67eSseSeDsePe7 = 0 (4.2.56) 

SsePse6 + INeSe7Pe7 > O (4.2.57) 

These give 

Pse = SPe7 (4.2.58) 

Sse6 = 1 (4.22.59) 

Ne8e7= —1 (4.2.60) 

The possible minimal equations are 

“ 
A, (Aa? - mg?) = 0 (452. 61,) 

where r = 1,2,50° Hor positive snergy theories it is 

sufficient to demand either 

4) Ag?(Ag? - mg*) = 0 (462.62) 

and Tr(AeAe”) > 0 (4.2.63) 

or 

ii) Ag?(Ag? - me*) = 0 (4-02. 64) 

oO and  Tr(AsAe*) > (402.65) 

Case (i) 

By direct substitution for Ag we find that Ag 

only satisfies (4.2.62) if ps6 and pez are zero, which 

possibility we do not allow. Sc case (i) cannot yield a 

spin two state if all the 2 are non-zero. 
ke 

Case (ii 

We find, using (4.2.58) - (4.2.60) that
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4.) Cc ont de 

4.2) 

4.3) 

contd, 

Tr(Aada*) 7 Gat fet Ps6P67 | (4.2.66) 

Hence (4.2.65) gives 

gE a eT (4.2.67) 

So for a quantizable uae we must have (4.2.67). 

We see that this is compatible with a quantizable spin 

zero state, but not with a spin one theory of the type 

discussed in a (i) for the l-block. However, nite @ 

1-block satisfying a minimal equation which is the same as 

its characteristic equation we can have a quantizable- theory 

describing a spin 0, spin 1 and spin 2 state. As none of 

the Zp are zero, this theory includes all of representations 

of 4, in the maximum spin two Bose triangle. This may not 

be necessary, of course, and good theories may be obtainable 

with more restricted reducible representations of fi A 

complete discussion of the spin two theory along the lines 

indicated in this section would be a lengthy, but not too 

difficult project. 

Discussion, ' 

In Sections 4.1 and 4.2 we have illustrated how 

the results of Chapter 3 may be applied to find particular 

quantizable theories. Whilst we have sy stematized the 

search for quantizable theories to some extent, it cannot be 

denied that the procedure still involves very depressing 

amounts of algebra. This seems inevitable, especially as 

we increase the spin. However, there seems to be much 

scope for general results in the theory and the methods 

of Chapter 3 may help in obtaining these. 

Recently a paper has been published by Amar
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contd, 

and Dozzios*®) on the subject of quantizable Gel'Fand-Yaglom 

equations for arbitrary integral spin, and it is interesting 

to discuss the relation between their work and this thesis. 

Amar and Dozzio give a sufficient condition for a theory 

to be quantizable, namely that exactly one s-block shall 

have just two non-degenerate non-zero eigenvalues, and the 

remaining s-blocks shall have no non-zero eigenvalues. Their 

proof is an indirect one, while uses Pauli's theorem *5) , We 

see that the sufficienty of the condition in fact follows 

from (2.5.10) and (2.5.11), both in the case of integral and 

half-integral spin. If only one s-block has non-zero eigen- 

values, and only two of these, +m, then there will be no 

summation in (2.5.10) and (2.5.11), which may be written 

=. W.€ bobo. ©. (0) - ag” ao 

“fie so} (Sm) 

= € obs ¢_ (0) + AQ” Ao Q = «, (0) p b (z . ag 

The s—blocks will all have characteristic ant minimal 

polynomials of the forms (3.4.1) and (3.4.2), so the 

results of Section 3.4 apply. In a ee in the 

case of integral spin ¢ (0) and €, (0) have opposite signs, 

which is sufficient to anause that E and Ohathe the correct 

quantizable forms, since they depend only on the single 

quantity < (0). A similar argument follows in the case of 

half odd integral spin. 

Ag Amar and Dozzio emphasize, their condition 

is not necessary. Indeed we have in the previous section
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4) contd. 

4.3) contd. 

_ obtained quantizable theordae ehlon do not satisfy their 

condition, and which display mass and spin spectra, 

Furthermore, we have not used multiple representations 

of fo. We feel that, if possible it is better, on the 

grounds of simplicity, to construct quantizable theories 

which do not use multiple representations. However, it 

would be interesting to extend the graph theoretical 

treatment used here to this case. 

Another interesting extension of our work 

would be to the inclusion of s-blocks having more general 

characteristic polynomials than (3.4.1), obtainable by 

dropping the assumption of Section 3.3. A simple example 

is given by Amar and DozZio, corresponding to the particular 

type of graph shown in Fig.4.3.1 for integral spin. The 

form of the s-blocks and their characteristic polynomials, 

pe, 

  
    

Fig.4.3.1.
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4.3) 

102, 

contd, 

as stated by Amar and Dozzio, are clear from a little 

Wondideration of the graph. The characteristic polynomial 

contains twice repeated non-zero roots. If we stick to - 

the assumption of 3.3, that each eigenvalue has a unique 

eigenvector then this implies that the minimal polynomial 

must have repeated factors. By a result of Udgaonkar 

this implies that the charge and energy density will 

vanish. For non-zero charge and energy density it is 

therefore essential to allow multiple eigenvectors 

corresponding to the non-zero eigenvalues, that is, to 

abandon the assumption of 3.3. By doing this in this 

simple case, Amar and Dozzio have obtained a unique mass 

theory with indefinite energy and charge, thereby dis- 

playing the insufficiency of the unique mass condition 

in ensuring quantizable theories.
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CONSTRUCTION OF THE S-BLOCKS.
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Appendix A. Construction of the s-—blocks. 

A.1 Integral Spin. 

With the standard numbering of the representations 

in a general maximum spin j theory (see Section 3.2) the s-rectangle 

will contain (j-s+1)(2s+1) representations, and the representations 

in the row €, = @ will be 

+. saat (A349) 
a? "Gea? i+2s 

where i = 2 - 2 - stl. 

We take the standard ordering of the rows and columns 

of the s-block to be the same as that of the représenteti ons in the 

Bose-plane . Then, the general form of the s-block willbe ‘titipleblock 

diagonal. The non-zero subblocks on, above and below the diagonal 

correspond to the rows of the s-rectangle., Thus the s-block has the 

forn:- 
— 

°o
 

B B 0 ° 
S+4,S+2 S+4,8+2 : See oe O° 

B B B. Sta ,Sta Sta,S+a S+2,S+3 

0 Bist pa. sak Skewes 6 a8 o 8eS : (As e2 

2 : 

° ° ° Be) Bo 5 

. . ° JjsJm* dad jy j+4 

oO ° ° ° e e ° e « ° e e e e @ « 0 B. Sane ; 
JttyJ Jt, dts     - 

where the (2s+1) x (2s+1) subblocks B, 

in rows 4 = €, and €, =m. We construct the s-block by building up 

correspond to the representations 

these B subblocks,. 
£m 

Boe subblocks. 

  

t 

The diagonal subblocks contain elements Ce where T 

and t' lie in the row €, = & Such representations are linked 

horizontally and we have
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+1 Ce . #0 

only if r and r' are horizontally adjacent, in which case, from 

(2.2.30), if ris "to the left of r' " on the graph 

! t 

Cite CT {att o+l) (8-65) 
“B . (A571 63) 

t t 

cr T = Of' © I (s+rlot1) (seo) 

With the standard numbering of rows and columns of the s-blocks, the 

By, subblocks have zeros everywhere except immediately above and below 

the leading diagonal, and are of the form:- 

  

  

Ts' Es 

[ O c.* ate 0 te a | OO. 66 ee Oe 8 Q ] 

Par Tes | ghia ole ‘ 0 G ata ita ON RO ee ae EO Oe, O | 

0 oe "ita 0 es O'S ORO Oe 8 Or Oe : | 

e ° ° 
| 

: : . c¢ itas~a"ites-a 0 c itas-17itas 
: : ‘ s 

| Te. cet 

0 0 Oe ey 0 Cee ee te | 

(A.1.2) 

where i = 0? — £-s+1. The real factor 

p(8,£o) = A(stlo4L) (s-2o) (A.1.5) 

is easily calculated by Looking at the abseissa (24) of the representation 

T~ (£0,04) in the Bos2 plane. fr is always the representation "on the 

left", The factor p(85£o) is the same for four elements of the B,, block. 

To see this, we note that if r~ (20,¢,) then r+ ~ (-£0,¢4) and 

tT! ~ (€9+1,£4) so T's ~ (—lo-1, £1). ‘Thus since t'* is on the left of 

T°, we have:- 

Tete on Te 

te : te 

ioe 2c'’' |. J(s-2o) (+8041)



105. 

Graphically, what this says is that p(s,£.) is not only the same for 

elements corresponding to the two oppositely directed branches 

between two given representations, but also for the naar images 

of these branches in the @, axis. This fact is useful in construct- 

ing the B,, block, It means that the factors p(s, ) in the Bye 

block are symmetrical about the leading and skew (top right to’ 

bottom left) diagonals. Thus, in obvious notation we can write the 

Bpp block as in (A.1.7)- 

O As, IC i Vise Oo " ‘ : - vue Oo 

p 6 0”) cnt 0 ; (  |tertin 

O  peeirictsta O 

oO Ps ONG Vivrsy Cioas     0 . ss s ; 3 fs (.”) £ Tivas Tivases 2, 5 

We now apply the conditions for Lagrangian origin and 

space reflection covariance. Because all the representations in a 

Bee subblock are linked horizontally by a type (i) linkage, the 

condition for Lagrangian origin, from (2.3.16) can be written
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ert a, grt 

a 

a tatr rt) Cr (A.1.8) 
p 

° 

TT* and therefore the s(r,7') can be chosen as +1, as where the a 

explained in 2.3. The condition for space reflection covariance can 

take two forms, ae iotd ine to the possibilities a), b) considered 

in Section 2.2. The possibility (c) considered there cannot occur in 

a B 2 subblock because it corresponds to two representations r,r' 
£ 

- linked vertically on the €, axis, whereas the Boe subblock only — 

contains representations which are all on the same row, It is 

convenient to use (A.1.8) in the conditions of Section 2.2 and then 

¢ t 

summarize the conditions on the eo as follows:- 

a) 7 £ pe and r' fF 7 

  

Chie cm Derr: (A.1.9) 

Grr. = (riety Bie (A.1.10) 

b) r= pevand £7? 

CTF why OTT da git Ee (a.2.11) 

CTT = » a(r,r") er? (A.1.12) 

where n = +1 depending on the matrix used to represent the 

reflection operator S$ in the representation spacefA, Similarly 

for the case 7 # re and r' = r'° 

The above conditions are illustrated on the graphs 

as shown below. In these graphs we omit the p(s,o) factors for 

clarity. 

Case (a). rf#reandrt fr 

Neither of the linked representations r,r' lie on the 

£, axis. This situation is shown in Figure A.1.1.. ‘(A.1.9) shows 

that a directed branch and its mirror image in the @, axis represent the
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té 107. 

ete mente 

~ MET 

Ms 1 : T° 

S329 E* ert 

Fig .A.1l.1 

t 

same complex number C7? . (A.1.10) then shows that a directed branch 

from 7 > 7' is related to its oppositely directed counterpart by 

complex conjugation and multiplication by s(r,r'). Thus, a pair of 

Loops such as those in Fig.A.1.1 correspond to four elements of 

the B,, subblock which all have the same p(S,£o) factor, and which 

: t 
crt 

Le 

depend'on a single arbitrary complex number, Saye 

Case (b). r= Te and tr! Zr? 

The representation r lies on the €, axis and is linked 

horizontally to r' and t's. This situation is shown in Fig.A.1.2. 

(A.1.11) shows that a directed branch ani its mirror image in the ¢, 

axis represent the same complex number apart from a factor n. (A.1.12) 

AL 

nore ee 

Te re 

5629 Ger qsero ce   
Fig,A.1.2
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then shows that a directed branch from r > r' is related to its 

oppositely directed counterpart by complex conjugation and. 

multiplication by n s(T,T')- 

We see that the only difference between the 

cases (a) and (b) is in the n factor, which only occurs when 

one of the representations lies on the @, axis. This only 

happens once on any row and so an mfactor only occurs once 

in any Boe block and can therefore be labelled by ¢, thus Nes 

We now see that the graph of the Boe subblock 

will be as shown in Fig.A.1.3. Again the p(s,.) factors, 

AQ, 

TT 
S(<i Zea) ef he. 

  

Ties ay, ee 
sete} Cc Tron iss s( Ties, Casey C TesGome                

i Cetin tig cries Cites 

  
Fig.A.1.3 

symmetrical about the ¢, axis, have been omitted. Inspection of 

the graph shows how the algorithm of Section 3.2, for constructing 

the B,, subblocks comes about. The skew diagonal (diagonal from 

upper right to lower left) of the B,, subblock is a row of zeros. 

The part below the skew diagonal is obtained from that above by 

reflection in the skew diagonal, followed by reflection in the 

leading diagonal, but leaving the ne in position under the last 

reflection. In practical work with the s-blocks we introduce
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the notation 

Tit SETS he 
See ° 

for elements in the By, Ssubblocks. 

Beets and Bose Subblocks, 

' 

These subblocks contain elements ave where 7 and rt! 

lie on adjacent rows. We consider first the Bees. subblocks, to 

which the B subblocks are simply related. 
£+48 

In the rows corresponding to the Bo eas block the 

T,T' are linked vertically, 7 on row @ being linked to r' on the 

row above,é+l. We have 

G7? £0 
8 - 

only if 7 and 7‘ are vertically adjacent, and in this case, we 

have from (2.2.31) 

ent = 0’? J(srenl) (se) (A.1.13) 

cTT' = cT'T I(sses1) (sae) (A.1.14) 
Ss 

With the standard ordering of rows and columns of the s-block, we 

see that the By subblock is diagonal and its non-zero elements 
L+4 

are 

g H(t) "e(era) dj (s+€41) (s-é) (A.1.15) 

where (4). A (2) P42) + 2, ace ACD) eee (A.1.16) 

and i(£) = €2-f-s+1 (451.17) 

From (A.1.13) and (A.1.14) the quantity J(s+é+1)(s-€) is a common 

factor in both the Betas and the Bese subblocks, 50 it can be calculated’ 

t 

once and for all and we can concentrate on the c’?™ . Notice however 

that it is purely imaginary, and it is convenient later to introduce 

the notation
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okie 
Sp PEF fp By, & 3(7, 57,2) (A.1.18) 

q(s,t) = |J(s+é+1)(s-2)| (A.1.19) 

We now consider the conditions imposed he lg 

and cT'T by space reflection covariance and Lagrangian origin. 

Since all the linkages are vertical, we have for the Lagrangian 

origin condition, from (2.3.17):- 

at ae s(r,7") ie (A.1.20) 

The conditions for whee reflection eaeeitanoe can take two forms, 

corresponding to the possibilities (a), (c) but turn out to be the 

same, The possibility (b) cannot arise for vertical (type (ii)) 

linkages. As when discussing the Boe subblocks, it is convenient 

to use (A.1.20) in these conditions’(a) ani (c) and then summarize 

the full conditions as follows:- 

a) and (c) r#re andr’ Ar** or r=re and r' = T° 

  

t ¢° ; 

gre Ge (Asle2h) 

  

gtt' 
~ s(r,r') o7 7 ol (AE O8) 

Graphically, (A.1.21) means that a branch and its 

mirror image in the €, axis correspond to the same complex number. 

(A.1.22) means that the oT?’ corresponding to a directed branch 

are related to the cT 7 corresponding to the oppositely directed 

counterpart by complex conjugation and multiplication by ~-s(r,T'). 

tf CTT is in the Bopy, Subblock then cT'T is the corresponding 

element in the Bose subblock, and the above conditions can be > 

summarized as follows, using the notation of (A.1.18) and (A.1.19):- 

The diagonal elements of the Betas subblock are 

a(sé) 7(£)k(£+1)



gd Ba Ee 

where k(£) i(e), i(4)4l, soo i(€)+28 

£2 -¢£ Bel and i(e) 

Then the diagonal elements of the Bese subblock 

are the complex conjugates of these,multiplied by 

"k(#)k(£+2) ~ 8(T.( 6) >Tc(e44)? 

that is:- a 

5ic(¢) c(t4a) 1092) 7(£)k(£+2) 

Further (from (A.1.21)), the matrix Bogy, 18 Symmetrical 

‘about the skew diagonal. 

The algorithm used in Section 3.2 follows directly 

from the above work, in the case of integral spin. 

A.2 Half-Odd Integral Spin. 

In the case of half odd integral spin theories we 

consider the lattice of points (£9,¢4,) for which both €, and 4 

are half~odd integral. We call this the "Fermi-plane". at we again 

make the restriction that a maximum spin j theory will contain no 

representations with €, > j+l, then for such a theory we are only 

interested in those points lying in the triangle 

£4 > £9 

b4 < jel 

Again we adopt as the standard numbering of the representations 

in the "Fermi-fan", that from left to right along the rows (see 

Fig.(A.2.1)). The rows and columns of the s-blocks are numbered 

in the same way. 

The s-block of a general maximum spin j theory 

will contain (j-s+1)(2s+1) representations, and the representations 

in the row €, = @ will be



"(e)? Ta(b)yeat: °* 2274 (£)+28 

where i(é) = @-@-s+ 3 

al, 

  
  

Fig.A.2.1 

Again, the s-block will be triple block diagonal 

as in (A.1.2), and we set it up by constructing the Bon subblocks,. 

Boe subblocks. 

  

The results (A.1.3), (A.1.6) hold in this case, 

so the p(s, £0) factors are symmetric about the €, axis, The only 

difference between the Boe subblocks for half odd integral spin 

and those for integral spin is that in the former case the re- 

presentations are linked across the ¢, axis. The conditions for 

Lagrangian origin and space reflection covariance are unaltered, 

except that the possibility (b) or (c) considered in Section 2,2 

cannot occur - there is thus no 7p-factor. The Bom subblocks are 

even dimensional, so the Boe contain non-zero elements on the skew 

  

it2,



diagonal. From Fig.A.2.2. these are seen to be 

  

tr Oa.7:°. Ose1 Fee. Ogle) yaad 
(ea i(e) = avai a C iP) (Lf) Aaa 

C , 2s—-l 2s +1 
i(é)+ ,i(t)+ 

Otherwise the Bop subbhocks can be filled in exactly as in the integral 

spin case. Ag 

ea of ¢ 4 

STios-s ; Fiosen) C oe 4 Ties, 

& a Tee 
é * i+ tose 

——___. 

+845 Teese 3\C $+ Coosa, SCsess Tess 5 Ce Test 

Sflisase1 Tiere Titey Tras \ 

Stirs Teas
 Civas 

  

   

  

     

         

  

  
lug Cite Zutons, Liss re Coir z, e Ue 

Cee Tiny te Betas 

Cts Tinser, Cetin, 

Ct 5-4 Tease ee 

Fig.A.2.2 

B B subblocks. Rhee heat 

These subblocks contain elements oft which are 

non-zero only if 7 and T' are linked vertically. With the standard 

ordering of rows and columns, the subblocks are all diagonal, and 

the non-zero elements in the Boe as subblock are, using the notation 

of (A.1.18) and (A.1.19):- 

ats,¢) 7 (£)k(£+2) 

where k(¢) = i(¢), i(é)+1, 22. i(€)+2s 

£3~£-s+ 3, and i(£) 

The conditions for space reflection covariance
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and Lagrangian origin are the same as given at (A.1.21) and (A.1.22), 

except that the possibility r = r- and/or r' = r'* cannot arise in 

the half odd integral spin case. It follows then that the Beas 

and B subblocks are symmetrical about their skew diagonals, 
£4218 

and that the Boal subblock is obtained from Boe as by complex 

conjugation and multiplication of corresponding elements by 

. 
bb 

8x (£)k(£+4) Thus to construct the Boots and. Boe subblocks 

for half odd integral spin we can use the same algorithm as for 

the case of integral spin but ignoring the instruction about elements 

on the skew diagonal. 

Notice that the essential difference between the 

Bie subblocks for integral and half odd integral spin is that in 

the former case they are always odd dimensional, and in the latter 

they are always even dimensional.
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Appendix B, Elementary Graph Theory. 

At present the terminology of graph theory does not 

appear to be standardized, and a particular term may be used in 

different ways, even by the same author, We will be using only 

very simple ideas from graph theory, and so we will not be too 

strict about our terminology, which we explain here, This may 

differ slightly from that of other authors, but not seriously, and 

in any case will be consistent with that of reference (34). Our 

purpose is to keep the discussion on an intuitive level and to 

avoid any but essential jargon. 

Our graphs will be pictorially represented by 

sets of points, called nodes, am lines, called branches. Each 

branch connects exactly two nodes, although there is no limit to 

the number of branches which may intersect any given node. If a 

direction is to be associated with a branch, this is represented 

by an arrow on the branch, pointing from the initial node to the 

terminal node of the branch, A directed graph is one whose branches 

are all directed. We are only interested in directed graphs in this 

thesis. A connected graph is one in which every pair of nodes is 

joined by some sequence of adjacent branches (not necessarily like 

directed). The degree of a node is the number of branches incident 

at the node. 

A path is a connected directed graph or sub-graph 

in which the terminal node of each braich is the initial node of 

the succeeding branch, Note that the same diveotea branch may be 

used more than once, and the same node may occur more than once in 

a general path, A path in which no branch occurs more than once 

is called simple, A path in which no node occurs more than once is 

called elementary. We will take the term cycle, or loop, to mean a 

closed elementary simple path - that is, an elementary, simple path 

whose initial and terminal nodes coincide, In other words, a loop
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of a directed graph is a directed subgraph in which every node 

is of degree 2, and all the branches are like directed, A loop 

with a single node and branch is called a self loop of that node - 

its direction is not defined, The number of branches in a path is 

called its length. 

Fig.B.1 illustrates the above ideas 

  

  

4 
\ 5 2 

3 

6 . 5 

125253 is a path which is neither simple or elementary 

~ 12532 is simple but not elementary 

4.3256 is simple and elementary 

12561 is a loop 

125616 is not a loop 

We associate with a directed graph G a node-node 

matrix M(G) which has non-zero elements only in the position i,j. 

where i is the initial node and j the terminal node of a branch 

of the graph G. Conversely any matrix can be associated with a 

graph in the same way - nodes i and j form the intial and terminal 

nodes of a branch of the graph if and only if the matrix has a non- 

zero element in the i,j position.
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Basically we use two simple results:- 

1) The graphical interpretation of the determinant of a matrix, 

see Section 3.3. 

2) If Ais the matrix associated with a graph @ then the a of) 

element of an is given by the sum of the terms corresponding 

to all paths of length @ from node i to node j. If there is no 

path from i to j then Co = 0. 

Our graphs, representing reducible representations 

of bys have such a simple form (which we call lattice type) that the 

two results above can be applied to good effect.
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The assumption of Section 3.3 requires simply that each s—block. 

has at most two independent eigenvectors corresponding to non- 
zero eigenvalues. This means that the characteristic polynomial 
may infact have repeated factors. Thus, the characteristic 
polynomial (3.3.6) is not the most general one consistent with 
the assumption as it stands. However, it has been shown by 
Uagaonkar‘ #+) that a necessary and sufficient condition for 
the charge and energy densities to be non-zero is that the 
minimal polynomial of Lo shall have no repeated non-zero 
roots. It therefore follows from this necessary physical 
requirement that the minimal polynomial of an s—block must 
be of the form (3.4.2). It can be shown that this, together 
with the assumption of the uniqueness of the s—block eigenvectors, 

implies that the characteristic polynomial of the s-block must 

be of the form (3.3.6).


