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SUMMARY

A mathematical model is developed for the general pneumatic
tyre. The model will permit the investigations of tyre deformations

produced by arbitrary external loading, and will enable estimates

to be made of the distributions of applied and reactive forces.

The principle of Finite Elements is used to idealise the
composite tyre structure, each element consisting of a triangle of
double curvature with varying thickness. Large deflections of theV

structure are accomodated by the use of an iterativ

small incremental steps, each of which bbéys the iaws of linear  ‘

mechanics.

The theoretical results are found to compare fayoﬁfablyf

with the experimental test data obtained from two diffeﬁen£ fy@és

process has prohibited accufate;aSSéSS@eﬂfs2tb

distributions in the regions of high stress
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CHAPTER 1.

Introduction .

The outward appearance of the pneumatic tyre belies the
complexity of its internal construction. Because. of its apparent
simplicity, there is a tendency to assume that the problems of
structural mechanics and defbrmations have long been solved. On
closer examination it is seen that the modern tyre is a highly
sophisticated load carrying structure, requiring detailed mathematical

modelling to effect a solution.

The composite construction of cord, steel and rubber combine
to form a structure which is neither homogeneous or isotropic.
Each component serves a vital purpose in producing a device capable

of withstanding a wide range of loading conditions.

The early stages of tyre development were concerned with
improving the component materials and construction techniques. In
more recent times, the emphasis on performance and service has
nec.-ssitated the investigation of the finely balanced system of
forces which are capable of being altered by design. The structuxalk
complexity has, for the main part; permitted only piecemeal analysis
of the type to be undertaken. Furthermore, although the basic
principles by which the tyre transfers load from the ground to the
wheel can be propounded, no mathematical model is available for

obtaining a quantitive solution of this fundamental problem.

The purpose of this thesis is to investigate the deformations
of the tyre when subject to arbitrary loading, and to determine

how such loads are transmitted t. the wheel. To accomplish this,




the complete tyre will be represented by a mathematical model which
utilises the structural characteristics and material propertie§ dﬁ

the tyre. This will be achieved by the use of finite elements.

Fach element is a three dimensional sub-structure consisting
of a triangle of double curvature with varying thickness. When
combined, they form a realistic approximation to both the geometry
and elastic properties of the tyre. The elastic properties of
individual elements are derived from the laminate construction of
cord ply layers. Large deflections are accommodated by the use
of an iterative sequence of small incremental steps, each of which
obeys the laws of linear mechanics. The displacement of the
élements are formulated so as to ensure compatability of displace-

ments for the boundaries of adjacent elements.

The finite element method enables the overall stiffness of
the tyre to be estimated. From this, the response of the structure
to any arbitrary applied forces can be studied in terms of displace-

ments and reaction forces.

An IBM 370 digital computer has been programmed to process
the vast quantities of data required in the formulation, and the
results compared with experimental results obtained for two

different types of tyre construction.




CHAPTER 2.

Review of literature

During the last fifty years, many authors have Contributéd
toward the theory of the mechanics of the pneumatic tyre. For the
main part, mathematics apertaining to tyres can be classified into
two sections. Firstly, there are the specialised theories, usually
formulated by engineers and mathemticians closely involved in the
tyre industry, which help in the understanding of the fundamental
mechanics of tyres, and secondly general structural mathem tics, of

which the tyre can be considered as just one specific problem.

2.1 Tyre mathemtics

Due to the commercial secrecy that surrounds any developments,
the theoretical basis of tyre mathemtics has tended to be slow and
not well documented by way of published articles. One of the first
works to become readily available was by Hofferberth [1]. In this,
the tyre model was based on'thin shell theory with the shell surface
being comprised of.a cord net which was allowed to deform such that
trellising occurred at the crossing points of cord plies. The cords
were assumed to experience a constant stretch along their entire
length with rubber effects being ignored. The method was applied to

problems of symmetric loading arising from inflation forces.

Similar equations were developed by Rivlin [2], assuming
inextensible cords, and by Bukhin [3], who derived a non-linear

relationship for the force-extension curve of the cords.

Lauterbach and Ames [4] incorporated a digital computer to

solve these equations and obtained estimates of cord stresses. Later,
Ames [5] expanded on the work of Hofferberth to include a cord

extension factor which was a function of position.




This theory was further developed by Walter [6] to include the .

effects of centrifugal loading as induced by a spinning tyreQw
Zorowski [7] compared the above methods for the case of the conventional ‘

cross-ply tyre subject to inflation pressure.

All the above theories have been based upon a linear thin
shell model subject to symmetric loading, with some prior knowledge ;
of the final deformed shape. The prediction of the equilibrium
shapes generated by such theories, is shown in the summary of the
literature given by Frank [8]. An extensibn to pressurised thick
shells has been attempted by Gough [9]. In the non-linear field,

a paper by Usyukin [10] presents an exact solution of the large
deformation of a toroidal membrane shell under inflation pressure.
However, the non-linear theory is applied to a homogeneous elastic

shell without cord reinforcement.

More recent work on the mthematical model of the tyre is
that of Dunn [11], who uses finite elements to obtain a non-linear,

thin shell solution. Again, the problem solved is that of

deformations due to symmetric loading, as induced by internal
pressure and centrifugal force. An attempt to obtain solutions for
the arbitrary loaded case yielded poor results. The symmetric
loading case was also the basis of Brewer's paper [12] who studied

the non-linear behavious of aircraft tyres under inflation loading.

2.2 Mathematics of laminated structures

The basic mathematics describing the characteristics of isotropic,
homogeneous materials is well documented by Green [13] and Godfrey [14].
The pneumatic tyre, however, consists generally of cord layers in a

rubber matrix, producing a composite structure which is both anistropic

and heterogeneous.




Such structures have been the centre of much IésearCthverlﬁhé
past decade. Reissner and Stavsky [15] considered the’simplifiéﬁ cas
of a plane laminate composed of two orthotropic Sheets of équéi .l ‘
thickness such that their axes of elastic symmetry ﬁade equal ahdkilw‘ ;
opposite angles with the axis of the compesite. Clark [16,17]
examined the properties of cord-rubber laminates of the type foﬁnd in
the pneumatic tyre. The effect of tension and compression on a
composite sample was shown to produce a bi-linear form of the stress-
strain curve, and the state of inter-ply stress estimated as a

function of the externally applied forces.

Gough [18] documented the research carried out at the Dunlop
Company by Wainwright [19] and Lawton [20], and applied the results to
estimate the stiffness of the tread breaker band in radial ply tyres.
A comprehensive surfey of literature appertaining to the elastic
characteristics of pneumatic tyres up to 1967 was given by Frank and

Hof ferberth [21].

With the greater use of composite materials as lightweight,
high strength structures in the field of structural mechanics, autﬁors
such as Ashton [22] and Calcote[23] have published a general survey of
the state of the knowledge in composite materials, of which the
pneumatic tyre can be considered one application. Robecci [24.]
dealt with the general mathematics of tyres, which included a detailed

analysis of the laminated model.

The ma jority of the above research has been concerned primarily
with the two-dimensional stress-strain relationship of a laminate.
Solutions for a three-dimensional structure have been given by Hashin

[25] and Hermans [26], and applied to tyre analysis by Brewer [12].




2e3 Finite element methods

The finite element method was first introduced by Turnmer and

associates [31], using flat triangular and rectangular elements to

analyse plane stress problems arising from the study of complex
structures in aircraft design. The éppearance of the method in the
aeronautical industry was due partly to the need to solve involved
structural problems, and also to the availability of automatic digital
computing facilities, capable of handling large amounts of data. Such
a machine is an essential pre-requisite of any application of the

finite element method.

Over the past fifteen years, the method has been developed to
a high degree of sophistication with vast quantities of literature
being published at each stage. The original flat triangular element
has been replaced by all manner of different elements, all of which
have advantages in particular applications. A comprehensive
presentation of the finite element method, its present state of
development, and examples on its applications has been published,by

Zienkiewicz [32].




Formulation of a mathematical model for the pneumaticﬁtﬂré

The modern pneumatic tyre is a highly complex struéture,
designed to function under a wide varlety of loadlng Condltlons.
Figure 3.1 shows a cut section from the two basic types of tyres
manuf'actured to-day, namely the radial and cross-ply form. A third,’

less common type, is a combination of these two.

The tyre carcass consists of a number of rubberised layers,
each possessing a high tensile strength, and consisting of either
cords or steel which are fabricated to form a laminated composite
structure. The cord layers are surrounded by a variable thickness
rubber layer, forming an air-tight seal which simultaneously allows

shearing thvoughout the tyre and also protects the main load carrying

cord plies from damage.

The differing geometries in which the cord layers are
arranged produces the two basic structures of the radial and cross-
ply tyres. In the case of the radial ply tyre, it is necessary to
include an extra layer of cords in between the tread rubber and the
carcass plies to act as a reinforcing element, thus stiffeniﬁg\thé\

tyre in a direction parallel to the rolling surface.

The cord layers are anchored to a rigid steel band which holds

the tyre onto the wheel. The tread rubber provides a ‘means:of applylng
the external loads, which can include static radial loads, as well as,7*

tractive and cornering forces. These forces are summarised in

Figure 3.2.

Thus the complete assembly results in a highly flexible
structure which is neither homogeneous or isotropic. Under the
action of a complex loading system, the structure will undergo large

deformations even though the strains in the cords remain relatively small.




A mathematical model is required which will characterise any type

of tyre, of any size and material construction, and WhiCh;W1v,

simulate the tyre behaviour under any prescribed loadingséituéﬁiqn,n

3.1 Basic assumptions

3.1.1 Shear effects

Previous mathematical models of the tyre have always been
based upon the assumption that it's behaviour can be approximated by
a thin shell of revolution. The effect of shear deformation through
the shell thickness has been ignored on the basis that the cord layers,
which occupy a relatively small part of the structuré, are the mJjor

load bearing components of the tyre.

For the type of problems in which this particular assumption

has been made, namely those of deformations due to inflation pressure
and dynamic lcading, the approximation is probably justifiable. However,
in studying the deformation of tyres under arbitrary loading conditions,

the shear effects in the structure should be included. This effectively

means that account should be taken of the variation in thickness of the_V ,' ﬁ.

tyre around its profile and of the finite thickness of individual plies.

3.1.2 Tread region

The tread region of a tyre consists of a rubber slab into
which a number of large grooves and slots are moulded. A consequence

of these grooves is that any load applied to the tread, which is

sufficient to deflect the tyre, will be accompanied by large logal

deformations in the tread rubber in the vicinity of the contact area.

Such displacements have been investigated using finite difference

techniques by Barson and Osborne [27].




In order to eliminate the undesirabie effeots:of th

compressions, the tread rubber was removed from the experiment

tyres, and the mathematical model based upon this simpler construction.

3.1.3 Cord angle variation

The formation of a tyre consists of forcing a cylindrical
structure into a near toroidal form, as shown in Figure 3.3. Thus
a laminated body which initially consistead of cord layers of constant‘f
bias angle is transformed to one whose bias angle is a function of
position. This introduces the heterogeneous material properties of
the shaped structure. Mathematical analyses by Gough [28,29] of‘the

shaping process for a cross-ply tyre have shown that:-

(a) If the cords move subject to a pure trellising

action, then the law governing the. cord angle

can be written as,
R =K cos ¢ (3.1)

where R is the radius rrom the axis of symmetry (Figure 3u4)

¢ is the new cord bias angle

K is a constant.

Further, if no cord extension takes place, then the constant,

K, can be determined from the initial values of radius and bias .;

angle of the cord plies on the build-up drum. A similar law to

equation (3.1) will hold for a constant extension factor.

(b) If ply slippage occurs, then this represents a

variation in radius with no change in bias amngle.




A combination of the effects‘of frelii&inQE;Q@rﬁfekfeng‘
and ply slippage result generally in a non-linear fdrm of the R-cos
curve, particularly as applied to cross-ply tyresjfdsjwill;begéhoﬁn;:;.
by measurements on the test tyre. This non—linearity,wasjinCOxporatédf;:y
into the mathematical model by fitting a second order polyan131 to. -

the measured curve of the form

cos¢p = ap R® + a4 R + ag (3.2)

Changes in cord angle during shaping are accompanied by “ :
variations in the density of the cord plies. The number of cords
crossing a given circumferential lines will remrin constant during

moulding process, so that

2m Rbnb' sin¢b = 27Rn.sing 1 (jfz) ¥>.k A

or n = .R .sin (3.4)
E Rb / R sin ¢

where s Rb and ¢b refer to the ends per inch, radius, and cord bias\ : 

angle respectively on the build-up drum ard n,R, and ¢ refer toa

position on the shaped tyre.

3.2 Elastic properties of cord-rubber composites

The basic structures of the pneumatic tyre consists of layers
of orthotropic cords embedded in an isotropic rubber matrix, resulting

in a composite which i1s both anistropic and heterogeneous. Such a

structure will possess a highly complex internal stress distribution,
even for the simplest of loading configurations. Analytical

simplifications can be achieved if the material is characterised




on the macroscopic scale as being orthdtropic and hbmogéﬁeous;‘*'

The resulting stress-strain distributions for this model”ﬁéﬁithe

be studied on the microscopic level to reveal the state of internal
stress. To enable the elastic constants associated with the
simplified model to be evaluated, the properties of the individﬁal ‘

components of the composite must first be defined.

3.2.1. Rubbter properties

Much of the experimental work dealing with the elastic
characteristics of rubber has been concerned with large strain
applications. A typical stress-strain curve for a rubber specimen
subject to uniaxial tension is given by Clark [30] and reproduced

in Figure 3.5. In the case of the pneumatic tyre, the rubber is rein- ]

forced with cords which possess high elastic moduli in comparison with
that of rubber. As a consequence, the structure is generally.subjeoted,' 
to quite small strains. If the curve in Figure 3.5 is examined in

the region of the origin,~it is ckear that, for small extensions, a

linear stress-strain law will be adequate (Figure 3.6).

Further, since rubber is isotropic, only two independent elastic

constants are required, namely Young's modulus, Er’ and Poisson's ratio

V_. The shear modulus, G_, is related to these by the equation:-

G (3.5)

r - E”/2(1+vr)

Rubber can be considered incompressible, and so Poisson's

ratio equals 0.5. Hence equation (3.5) becomes : \ Qg

G = E (3.6)




3.262 Cord properties

The cords will consist either of a steel strand or a wound
fibre. In the case of steel, the cord is both homogeneous éné isotropic;,~
and the stress-strain relationship can easily be defined in terms of

its material constants, Es and Vs’ where Es is Young's modulus for

steel and VS in Poisson's ratio for steel. The shear modulus, Gs;

is given by a similar expression to (3.5) as

¢ = (3.7)

E
5 %01 4 V)

For fibre cords, the material can be approximated as being

homogeneous and orthotropic, with the axis of elastic symmetry being

taken in the direction of the cord axis as given in Figure 3.7. It
has been shown by Brewer [12] that to define such a material, five

independent elastic constants are required, namely:-

B, Young's modulus along the cord axis, %,
JOo Young's modulus perpendicular to X,
i.e. in the x%; - X3 planq.

Gy 2 Shear modulus in the axial diredtion

Vig Poisson's ratio in the x,-x; plane,
representing a contraction in the x5
direction as a result of a stress applied
in the x, direction.

Vas Poisson's ratio in the xg-x3 plane.




Hooke's law for the cord can then_bé/expregséd"in matrix

form as:-
o= -4 =
1 _ _ o e
€114 /E:Li Vzi/Egg Vai/Esa 0 0 0 014
€ -V. 1 ~V.
= e, e, /B 00 0] o
€ =V. -V 1
33 13/E11 za/Ea2 /Eaa 0 0 0 Oss
€13 0 0 0 1 0 0
/Gaz 013
€as o 0 0 o 1/ 0 loas
Gas
€1 0 0 0 0 0o 1 a1
J i /Gai
L L 4 L
(3.8)

where the subscript 1,2 and 3 refer to the x4 ,x; and x3 axes of the

cord.

The remaining constants in equation (3.8) can be defined in terms

of the known five independent constants as:

Via = Viz
v = V
32 22 (3.9.a)
Goy = &g
E = E

33 22




by using symmetry of the Xy Xg axes. together with

foe = E22/2(1+V23) g (3-9-b)
and from the symmetry requirement of equation (3.8) we have

Vay

1

E22 Viz/E.li ( . )
3.9.cC
Vay

11

Eaa V:L:a/];‘:i1 = Ezz V:LQ/Eli

36243 Laminate properties

When a set of parallel fibres are embedded in a rubber matrix
it forms a laminate as shown in Figure 3.8. The anglep which the
cords make with the x; axis represents the bias angle of the ply. With
reference to the x,, X3, X3 axes, the laminate is assumed to behave as
being homogeneous and orthotropic on the macroscopic scale. As such5'r

Hooke's law for the three dimensional body can be written as:

(014 | Dy 4 Dsg Dya O 0] [e1s]
O22 Dz Dgz O 0 €22
ora| _ Dsya 0 0 €13 (3.10)
o33 symmetric Dga Das €23
,031J i DSSJ _€°1J

In the above matrix, the stresses and strains associated with the
x3 direction have been ignored. This simplification is based on the
usual shell theory assumption that these components of the stress and

strain vector are negligible compared with the membrane effects.



The constants D, for i,j = 1 to 5, can be evaluated
ij- .

according to the equations derived by Hermans [26]. These are quite

cumbersome, whereas the equations for the two-dimensional casey

i.e. D, for i,j =1 to 3,
ij

as given by Gough [18] are easier to handle and lead to almost identical

results. For a single cord layer of bias angle (f)k, representing the

kth ply of a composite lamina, the constants are:

(Dii)k = Kr + _—]_{}5 cost qbk (3-11)
Kk
(D12)k:(D21)k = AKI,VI,+ E.I.{. sin? b cos? ¢k (3.12)
t
k
(D“’)kz(D"1 )k = El_g sin ¢ cos® by (3413)
t .
k
(D22)k = KI‘ + _]f—_‘l(_ sin" ¢)k (3'114-)
by
e
(DSS)k = GI‘ + _KI(_ Sin4 ¢k (3.16)
tk
| = .1
where K. = Er/(l—Vr)2 (3.17) |
and K, = Ec, . A ony (3.18)
Gr = shear modulus for rubber
E = Young's modulus for rubber
r Jé
V = Poisson's ratio for rubber
r

th
Ec, = Young's modulus for cord in k  ply.




thickness oft"the lamina

cross-sectional ‘area of the cord

P?;D

n, = number of cords per inch-measured

perpendicular to direction of cords.

Equations (3.11) through to (3.18) can be extended to account
for the composite effect of m plies, to give the constants of the

composite as expressed in equation (3.10), where

DiJ = Z tk (Dij)k m (3-19)

k=1
so that .
Dig = K+ % ZKk cos® ¢, (3.20)
| k=1
m
Dyg =Day =KV + % sz sin® ¢, cos? ¢, (3.21)
k=1
m ‘
Dyg =Dgy = %Z]{k sin ¢ cos® P (3.22)
k=1
m
Das = K_ +%Zxk sin ¢ (3.23)
L ‘
n
Dyy = Dgg = %Zl{k sin® ¢ CO8 ¢y " (3.24)
=1 |
m
Doy =G +-% ZK]( sin® ¢ (3.25)

T = Ztk (3.26)




If the construction of the lamina is such that there are an
even number of plies, consisting of pairs of plies with equal and

opposite bias angle, then equations (3.22) and (3.24) reduce to

D13 = D31 = Dzs = Dan = 0 (3-27)

The remaining constants, D44, Dgs and Dgs of equation (3.10)
represent the shear moduli connected with the x3 direction. It has
been shown by Herman's [26] that for the shear moduli of the cord-
rubber composite in the X, direction, the cord moduli effects are
small compared with the rubber effects. The cords can be treated as
rigid inclusions, and since the volume ratios of cord to rubber is

usually small, the shear effects of the cords can be ignored.

The effective values of the constants are thus:

Daa = G, (3.28)

Dss = O (3.29)

Dss = G, (3.30)
3¢3 Finite element idealisation

The finite element method is basically a means by which a
continuous structure, ideally possessing an infinite number of
degrees of freedom, is approximated by dividing the continuum into
an assembly of sub-structures, each héving a finite number of

degrees of freedom. The process can be summarised as follows:

(a) The continuum is seperated by lines or surfaces

into a finite set of "finite elements".




(v)

(c)

(d)

(e)

(£)

These elements are connected at a discrete number
of points, called "nodes", which are situated at
the element boundaries. The displacements and

rotations of these points form the unknown parameters

of the problem.

The displacements within each element are defined

as functions of the nodal displacements. This enables
the stiffness properties of the individuval structural
elements %o be computed, usually with reference to a local
set of co-ordinate axes which are defined for each

element.

The ‘'local' stiffness matrix is transformed from the
local co-ordinate system to a form relating to the
global co-ordinate system of the original complete

structure.

The stiffness matrix of the complete structure,
donated by [K], is assembled by adding the components
of individual elemental matrices, using superposi®ion

of nodal partitions.

Equilibrium equations are thus formulated relating the
vector of applied nodal forces, [F], to the vector of

nodal displacements, [§], in the form

[F] = [K] [s] (3.31)

These are a set of simultaneous equations which

can be solved by standard techniques.




The actual mechanics of step (e) is dealt with in a later

chapter (L.k)

The initial subdivision of the structure into elements is made
after due consideration of the problem to be analysed, since the
analysis is performed on the substitute structure and the results
will be valid only within the degree with which the elemental model
approximates to the real problem. The formulation of the element

stiffness matrix is such that it obeys the following conditions:

(a) Equilibrium. The internal forces acting at each

nodal point equals the externally applied load at

the nodes.

(b) Compatability.The element deformation pattern must be

chosen so as to ensure that adjacent elements possess

displacement continuity in the deformed condition.

(c) Elastic properties. The relation between applied forces

and displacememts for each element must be related by

the governing equations of elasticity.

The mathematical basis of the finite element me thod is described inthe |

Appendix .

3.3.1. Flement definition

A thick, curved, triangular element, developed by Ziekiewicsz [32],'

was used as the basis of the mathematical model. This type of
element was chosen primarily to ensure a good fit to the geometry of
the tyre profile, and to permit shear deformation effects to be

included. To enable the formuwlation to be simplified, areal co-ordinates




were used as one of the basic co-ordinate systems of the element;’f“ 

3.3%.1.1 Areal co-ordinates

Consider the triangle 1,2,3, of area A, lying in the x; - xg
plane (Figure 3.9). Any point P(xy ,x;) divides the triangle into
thiwe sub-triangles. The areas of these triangles are defined as
A, Ay, Ay, where the subscript denotes the number of the opposite

corner. (learly,

A+ A+ A = A (3.32)

BN

Then the point P can be represented uniquely by the three areal

co-ordinates
Wi = Ai/A i= 1’2,3 (3~33)
3 :
where j{: W, = 1 (3.30)
i=1

Equation (3.34) indicates that the areal co-ordinates,
w,, are not independent. Further, the equation w, = constant,
represents a line parallel to the side opposite corner i. From

equation (3.33) it is clear that

o< w <1 (3.35)

1

In terms of the rectangular Cartesian co-ordinates, equation

(3.33) can be re-written as:




or

(3.37)

where i,Jj, and k represent a cyclic permutation of the corner points

1,2, and 3 of the triangle.

3.3.1.2 Geometry of a curvilinear triangle

Consider a curved surface in space forming a curvilinear triangle

whose corner points are
Pi (X:L, X2, xs) i=1,2,3
as shown in Pigure (3.10). Let the points

Pi (xd., X3 X:!) is= 4,5,6

be the mid-arc points of the sides 1-2, 2-3, and 3-1, respectively.
Then, since each side is defined by three points, they can be
expresses as quadratic functions of the local areal co-ordinates

W5 i =1,2,3, and the global position co-ordinates of the six points




Pj(xﬁ.axzsx\'s) J =1 to 6,

Thus the equation of arc 1,4,2 is given by:

= ' r I

Xy xij
X .
3l = % 5. 35 (3.38)
X . 2 .
° J=1,4,2 3
. - b -

where, as shown inthe Appendix, the Sj are shape functions which

have to satisfiy the conditions

Sm (Xins X2, Xan) = {1 m=n (3.39)
0 m#Zn

The shape functions satisfying these criteria will thus ensure

geometric compatability across the interfaces of adjacent elements.

With reference to Figures 3.9 and 3.10, the equation of the arc

1,4,2 in the local areal co-ordinates of the curvilinear triangle is:
wy = 0 (3.40)

The corresponding values of the co-ordinates wy, and wy; on the

arc are
wg = O, w, =1 at point 1

0.5 at point 4 } (3.41)

1
(@]
L
U1
-
&

0

Wy

w, = 1, w, =0 at point 2

Thus to satisfy conditions (3.39) subject to equations (3.40)

and (3.41), the form of the 2nd degree shape function Sj in equation

(3.38) is:

w (2 w-1)

Wa (2 Wo = 1) (3-42)
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S4 = lq. Wy W



A similar argument can be applied to the arcs numbered 2,5,3

and 3,6,1 in Figure 3.10, to yield the remaining shape functions:

S; = wy (2ws~= 1)
S = hwyw, } (3.43)
SG = l;wswi

The equations defining the three arcs, of the form of
equation (3.38), can be combined to define any point on the surface.
The resulting equation for any point P(xy ,X;, X;) in the global co-

ordinate system is

X4 6 Xij
Xa = 2{: Sj (Wigwbswa) { xaj (3-44)
X3 J= xaj

3.3.1.3 Geometry of a thick shell element

The concept of a curvilinear triangle can readily be extended
to include a thickness dimension which can vary with respect to
position within the element. Consider a linear co-ordinate axis, ¢3,
which is normal to the surface of the triangle, such that the surface of the
curvilinear triangle, defined by equation (3.44), represents the surface
Ys = 0. Further suppose that the surface ¢ = 0 is the mid-surface of

the thick element, as shown in Figure 3.11.

If account is taken of the thick¥ness at each node, i, by usingk
a thickness vector %;i in the direction of ¢35, then the range of ¢j

can be normalised to

-1 ¢ <1 (3.45)



The equation of the mid surface ¢3 = 0, in global co-ordinates

of any point within the thick element, is

X4 6 xij
X2 = Z Sj (Wi s Wg ,Wa) ( ij + "di% { :Ea j} ) (3.14-6)

where {E;j} is a column matrix representing the thickness vector at
node j, having the three Cartesian components referred to the global

axes as

{taj ‘
b e (3.47)

J3e3elaly Independent curvilinear co-ordinates

The geometry of the curved, thick triangular element has been
defined in terms of areal co-ordimates of thz mid-surface topether
with a linear co-ordinate axis normal to the mid-surface, (equation
(3.46)). This involves four co-ordinate varisbles, namely W
i=1,2,3, and ¢3, to represent a three dimensional system. The

interdependancy of the w. is given by equation (3.3)) as
Wy + Wo + Wz = 1 (3.48)

A set of three independent curvilinear coordinates ¥ ,¢,, and (g

which are local to the.element, can be formed from the four variables

above, such that

=
V)
i
|
V)

Pr " ?1 } (3.49)
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The range of the new variables is given by

0 ¢, ¢a K1 (3.50)

which lie in the plane of the mid-surface of the element, together
with ¢3 which remains unchanged. Thus ¢i, i=1,2,3, form the local

curvilinear co~ordinate system for the element.

3.3.1.5 Element displacement functions ' ‘
|
\

To complete the definition of the element model, it remains only
to specify the manner in which the displacement vary throughout an
individual element. The finite element approach requires that:the
displacement at any point within the element should be defined in terms

of the nodal displacements. This implies a relationship of the form:-

o= I8] 18 (3.51)

where [S] is a matrix of shape functions which behave in the same
manner as those for the position vector {xi} of equation (3.38), and
the vector {SEe contains the unknown displacements at specified nodes.
In defining the displacements at a node it should be remembered that
even for comparatively thick shells, the normals to the mid-surface will
remain nearly straight after deformation. This property can be used if
the displacements at a node are defined in terms of three Cartesian
components of displacement u , uz, and uz along the global Cartesian
axes, together with two rotations of the nodal thickness vector~%3

£

%
about the local x and x, axes, as shown in Figure 3.12. The local

¥
Cartesian axes, X, i=1,2,3 are fully explained in Section 3.4.

With the five degrees of freedom at each node specified, the

displacement functions of equation (3.51) become :




Uy

- A : ’\\ \\,,\r i
6z .
I ZRJ-(%,WQ,M( REIRT s [Qj R B 8] s
. Ga - o
j=1 B J e

U

<3

where u;, up, us are the displacements in the directions of the global

Cartesian axes, X3, Xg, Xge

Rj are the displacement functions

ts . is the thickness of the carcass at node j.
N A
tij,tnj are the unit vectors in the directions of

* *
X4 andX 5 at node j.
N N
eij,e,,j are rotations about tlj and tgj respectively,
as shown in Figure 3.12, and are assumed small.

M the number of nodes at which the unknown

displacements are specified.

There are two basic possibilities for the range of the
summation in equation (3.52). TFirstly, the unknowns can be defined
at the corner nodes so that for each element there will be fif'teen

degrees of freedom. The displacement shape functions Rj’ J=1,2 and

3 are chosen to satisfy displacement compatability between adjacent
elements in the same manner that the shape functions Sj of equation
(3.4) ensured geometric compatability, so that

Rm (Xin: Xans Xen) = {1 m=n (5'55)
Om#Zn

Ciearly the Rj for j=1,2,3 must be linear functions of wy, Wg

and Wy, so that a convenient form in

for M=3 R =w,
R, = W, } O (3.54)
Ry = g

i
= |




An alternative formulation occurs if all six nodes of the
element have unknown displacements. The value of M in equation (3.52)?
is then six, ard the shape functions Rj will be quadratic. In fact,
they will be identical with the shape functions Sj which define the

element geometry, i.e.

for M = 6 R.=S. , j=1to06 (3.55)

The choice between the two sets of formulae is difficult. Using
M = 3, the number of unknowns in the problem is reduced, but since the
displacement functions are linear within an element, smaller, and hence

more, elements will be required to achieve good results. Using M = 6,

the computer storage regquired will be greater and the formulation more
difficult, although less elements will be required. These problems

will be discussed in more detail in later sections.

. . L
3. Construction of local Cartesian axes . x,
i

In section 3.2, the elastic properties of tyre structure were
modelled as a thick homogeneous orthotropic shell. The principal

directions of orthotropy were taken as the bisectors of the angles

formed by the crossing of cords in alternate plies. By choosing the

xz, x: axes to lie along the directions of othotropy, the equations
derived for material constants (3.10) can be applied directly without

any further co-ordinate transformations. Thus the directions ofﬁxz

and:xz are such that they are tangential to the mid-surface of the tyre and
lie in the circumferential and meridian directions respectively, as

shown in Figure 3.13. The thickness vector at any node 1, %;i is

normal to the mid surface and in the direction of ¢j.




® .
A vector in the direction of the tangent to x4 at node i, say

tii’ is perpendicular both to -£°i and to the global xy axis, thus

< [
. = 1
b X O X |ta, (3.56)
0
tixi 0
or
Bl = | Pex, (3.57)
t"xa tax,
» 45 . J5

. . . - 3 *
Similarly, a vector in the direction of the tangent to x4, say

tgi, is mutually perpendicular to gii and %-35.’ so that

{-1?2}’ = E:L} X {-Ea} (3.58)
1 1 1 .
or b2 X1 tixz N t3x3 -tj‘x:a' 'taxz
t t
?Xg tixa' 3%y (3.59)
--tQXSJ | - tixzo taxi J
AN A A

Associated with %,, tz and ts are the unit vectors t,, ty and ts.

These form the local C artesian axes at any point, denoted by xf, x¥ and

% x¥ in Figure 3.12,

In section 3.3.1.5, the displacements, us of the nodes were
formulated in terms of the global co-ordinmate system. If the displacements
in the local co-ordinate system are required, that is, along the tangents to
circumferential and meridian lines and along the normal, then these can

be ontained by a simple transformation of the form

ug Uy
w| = DAl |us (3.60)
u* L.




. . L SN ‘
where uf, i=1,2,3 are the displacements along the x, axes and [A] is

the transformation matrix given by

b B by ] D
(A) =
tgxi tgx2 t’xa (3.61)
taxi Tt‘;‘33{2 taxa
A
where the unit vector t; has components tix ’ tix and t4

1 3 s°*

3.5 Stresses and strains in local co-ordinates

Equation (3.10) represents the Hookean stress-strain relation-
ship for a flat test piece whose principle axes were denoted as x ,

Xy, and xz. To conform to the nomenclature of local co-ordinate

system x; as defined in section 3.4, equation (3.10) can be re-written

as

fo*} = [D] {e*} (3.62)

where D is the fifth order matrix as defined in equation (3.10). The
stress and strain components {¢*] and {e*] now refer to the local

co-ordinate system, such that

~-
g *
X1

U* =

Lo} ot (3.63)
%* *

X1 X2
% *

X2Xs3
* *

|“x 5 x4

and

(3.64)




Appendix , the components of equation (3.67) are given by

% L3
€ * ML VER s /g *
Xi XJ. = 5 ( / Xj + J/ Xi ) (3.65)
3.6 Calculation of the element stiffness matrix

The general definition of the element stiffness matrix is
derived in the Appendixgequation ( 7.54), as
e t
[K] / (1" (0] [6] av (3.66)

Vn

where Vn is the volume of the element
dV is the volgme of' the elementary cube of sides
dx, ,dx;,dx; in global co-ordinates
[D] is the fifth order matrix of material constants
[C] is a matrix relating the global strains in an element
to the nodal displacements, and is defined by the

relationship

e} = [C] {s1° (3.67)

The formulation of equations(3.66)and (3.67)are with respect
to the global Cartesian axes, Xj,Xg and xz, where the components of

the column matrix {e} are

55 = 2(%,5 1) (3.68)

and {8}6 represent the global displacements of the element mid-surface

nodes at which point the displacements are unknown i.e.




(8] = < L (3.69)

.
\ o

{8, = 21 (3.70)

%231
The volume Vn of equation 3.66 throughout which the integration

is taken is also expressed in terms of global co-ordinates, such that

an infinitesimal cube of the element has a volume:

av = dx; . dxg. dxg (3.71)

If the integrand of equation(3.66)is formulated in terms of
the local curvilinear co-ordinate set, ¢1, ¢a, ¢s of the elementary triangle,
and the infinitesimal volume AV of equation (3.71) is similarly transformed,
then the integration limits become simple. The resulting numerical

integration, as discussed in section (4.3) , becomes relatively easy to.

pro gramme.

3.6.1 Transformation of strain components

The strain vector {e} of equation (3.67) contains terms of the




form

aui/axj i,j=1,2,3

which are derivatives of displacements in the global co-ordinate system.

In the definition of the displacement functions within an element,

RS st s e

equation (3.52), the global displacements u,, u, and uy are expressed
as functions of the local arealco-ordinates, wy, wy, and wy, and g« By
using a change of variable as given by equation (3.49), w, u; and ug

can be written as functions of ¢y, ¢ and ¢s.

A relationship between derivatives of w, uy, uy with respect to

both the curvilinear co-ordinates ¢y, ¢3, ¢35 and global co-ordinates
Xy ,X3,Xs 18 expressable in the form:

Ju. aui axk

_— — e {2
5 W, (3.72)

where the repeated suffix denotes summation. Equation (3.72) can be

considered as the components of a matrix [A], given by

-

aui/awi au2/3¢1 au3/3¢i

[A] = YEVR %2 /50, Ms /5 (3.73)

Laui/a¢a au2/5¢a aua/a¢é

Further, equation (3.72) can be written in matrix form as

(a] = [J] [U] (3¢ 74)

.




where

SV 3/ 3 3 /04,

(7] = 6)(1/a¢2 axa/adla axa/é(/lz . (5-75)

P8/ o R

TR s

and

T/ oy 9/ oy %/ 3y | i

W] = |%™/ox 93/ e I / o (3.76)

91 / ok N3 / ok 93 / o

L -

In equation (3.75), [J] represents the Jacobian of transformation

from the global xs co-ordimate system to the local wi system, The

components of the strains in the global system, {e} are contained in
the matrix [U] of equation (3.76). Inverting equation (3.74) gives [U]
explicitly as:

-1
(0] = [3] [a] (3.77)

In order to form the strain matrix {e}, the elements of the

matrices [J], and hence [J]_l, and [A] are required.

(a) Components of matrix [A]

The general term of [A], as given by equation (3.72) is
aui/a¢j , (3.78)

In the definition of the global displacements, Uy of

equation (3.52), the variables involved are wy, Wy, W and y3. To

evaluate terms of the form (3.78), relationships are required




between derivatives of u, with respect to s ,¢as¢s, and- derivatives .

with respect to wy, wg, Ws, ¢s. These are given by

6ui aui awy, aui dovig aui JWga aui s

= + + - (3.79)
an oWy a‘/’J OWg a‘/’J W3 a¢j a¢3 a¢j

for i,j = 1,2,3

These expressions can be simplified by using the conditions of

equation (3.49), so that

aui aui aui

oy amy  OWs

uy _ 6uiv_ ouy } i=1,2,3 (3.80)
dYa oWz JW3
Jdu. Ju.
i _ i
0Ya s

Using equation (3.52) with the relevant form of Ry, =1t M,

the expressions (3.80) can be evaluated. Consider first the case where

M = 3. The expressions for Rj are as in equation (3.54). Then the

analytical form of equation (3.80) is

Ju.
1
3&;’ = ui + ¢Ys EZ_ (tixi 62 = tﬂx‘i 61) | (3.81)
(1-3)
Ju.
t
-a_di; = ui + g[!; Ea' (-tj_x:. 62 = tﬂx. 91) (3'82)
i i
(2-3)
. t
_;1_3_; _ U+ g “32' (tixi 62 = tzx:i 61)
Ya (1+2+3) (3.83)




where the notation
(m-n)
indicates that the expression is evaluated at node m and at node n

and the results subtracted.

Equations (3.81), (3.82) and (3.83) are valid for i=1, 2 and 3.
They are explicit in terms of the displacements u,,uy, us and the
rotations 6,, 8; of the element mid-surface corner nodes, which
constitutes the unknown parameters of the tyre deflection problem.
To separate the unknowns, the 3 x 3 matrix [A] can be written in terms

of a 9 x 1 colum matrix {A’}, such that

{2’} = [y] {81° (3.84)

whe re

aui/&/&T

%%/ 9
aui/a¢a

M3/ o
0/} = |9/ oy, (3.85)
%2/ 3
93/ gy
3/ oy

aua/a¢aj

and {S}e is the 15 x 1 matrix of displacements and rotations as

described by equations (3.69) and (3.70).

The matrix [y] will be of order 9 x 15, and is tabulated

explicitly in Table 3.1.




If M=6, the matrix {5}6 now contains thirty elements, equivalent

to the five degrees of freedom at each of the six nodes. A gimilar set
of equations to (3.81),(3.82) and (3.83) can be derived, but they are
cumbersome. However, they can be expressed in a form similar to
equation (3.84), where now [y] will be a 9 x 30 matrix, as shown in

Table 3.2.

(b) Components of the matrix [J]

The general term of matrix [J] is of the form

Tifaps 1.3 = 1,2,3

This can be expressed in a form analagous to equation (3.79) as

Jx. JX.  dw. 8Xi 0Wa 6Xi JdWa 6Xi 93

i i i
= + + + (3.86)
. . . . oy .
3¢J Wy 3¢J JdWy 8¢J JdW3 6¢J d¢a ¢J
which can be simplified to
axi _ axi _ axi
6(/!1 - @W1 OWg
0X. X 0X. ;
i i i .
= - i=1,2,3 : (3.87)
Y2 P d¢ra } T
axi ~ axi
s~ s

Hence using the definition of X5, i=1,2,3 as given by equation
(3.4)) together with the shape functions Sj’ j=1 to 6 in equations

(3.42) and (3.43), equations(3.87) becomes:

0x.
. - (Awg—l)fi - (Zwva-l)f‘i l + bwaf,

! ~Lw, £,
s 1 3 L

1

5

+(Wy =7y )fi ’6 (3. 88)




where

together with

1 1 1

ax.
1
T (bwa-1)f, | - (hws-1)f;| + by £ L+ b(wg=wg )f, | - uwifi'
2 3 5 6
(3.90)
and '
i = (2wrl )t 2 (2ws1) 3 ( t
AR N A t3xil + 5 (2wz1) ox, ,
1 2 3
+ 2w1w2tax.[ + '2w2w3t3X. + 2W3W1tax (3.91)
A

5 6

Equations (3.88) to (3.91) are valid for i=1,2 and 3.

Having evaluated the matrices [A] and [J], the matrix [U] in

equation (3.77) can be evaluated, the general term being of the form

In tensorial form this can be written as

u. .
1,4

where the comma denotes differentiation with respect to the variable
xj . To ensble the strain components to be evaluated in the local

co~ordinate system, which involves terms of the form

u. .
1,]




whexe u*.

. = gJu*

i,J i *
X .

/ J

it is necessary to subject the second order tensor u,

. to a trans-
s d
formation of axes from the global to the local system. This is
defined by

* —_—
Y5 T Mptn Ymgn

(3.93)
where M.
im .

i,m = 1,2,3 are the direction cosines between the local

and global Cartesian axes, as given in equation (3.61), and the

repeated suffix denotes summation.

In matrix form, (3.93) can be re-written as

(0] = [ (0] [

(3.94)
where
u¥151 w21 u*sss
[U’u] = 11*1,2 u*zs:a u*asa (3-95)
U*l $3 U.*Q 33 li*3 3
Using equation (3.77), equation (3.94) becomes
[v¢] = [ (317 (8] )Y (3.96)

Since [A] is a function of the element node displacements {§}°,
as shown in equation (3.84) then so will be [U*].

By appropriate choice
of components of [U*],

#
the local strain matrix, f{e }, can be
expressed in a form analogous to equation (3.67) as

fe*] = [c*] fs}° (3.97)

This enables the stiffness matrix of the element, equation (3.66)

to be computed using the local axes ¢i,f2,¥s as the integration variables.
The modified form of the equation is thus:-—

Gl

i
i




[x]° =/ [0*1" (0] [c*] [3] aga, Wardiis. (9800 &
Vn 1

where IJ{ is the determinant of the Jacobian of transformation from

global to local co-ordinates.




CHAPTER 4.

Implementation of the finite element method

Lol Formation of element mesh pattern

In section 3, the mathematical model for the pneumatic tyre
was obtained by dividing the structure into a pattern of curved,
triangular, thick shell elements and then determining a stiffness
matrix [K]® for each element. These matrices are t; be combined
to simulate the assemblage of the complete structure, resulting

in a set of linear simultaneous equations of the form:

{F} = [K] {s} (4.1)

where {F} is the vector of all the nodal forces
[K] is the stiffness matrix of the complete structure

and {8] is the vector of all the nodal displacements.

The solution of equation (4.1) will be subject to the prescribed

boundary condition.

Before the stiffness matrix of an element can be calculated
and assembled into the total stiffness matrix of the structure, the

following information is required to define the element.

(a) The position of each of the six nodes, (three corner
nodes and three mid-side nodes), which define the mid-
surface of the element, with reference to the global

Cartesian coordina e axes.

(b) The three Cartesian components of the vector representing

the thickness of the element at the six nodes.




(c) An element numlter and its associated six node numbers,

such that the element assembly is uniquely defined.

For a typical problem of the type tackled in this study, there
may be about 100 elements with a total number of ﬁodes in the region
of 250. This would entail in excess of 2000 items of initial data
in order to specify the problem configuration. Clearly the probability
of a data error would be high, and the checking laborious, if all this

information was manually determined.

To overcome this problem, programmes have been developed to
automatically generate the element mesh pattern, node and element
numbering schemes, node coordinates and thickness vector components,
with only the minimum of data preparation. These programmes use
the property that the tyre can be considered as a shell of revolution,
formed by rotation about the axis of the wheel. This permits the
simple calculation of Cartesian coordinates and thickn:.ss vectors at
any point of the tyre surface, from an initial description of the
cross-sectional profile. A variable pattern generator is used to
determine the element mesh configuration and its associated node

sequencing.

To obtain a good approximation to the solution, it would be
advantageous to use a large numier of small elements. Computer
time and storage requirements, however, impose restrictions on the
extent to which this is possible, and necessitates that the nodes

at which displacements are to be calculated are positioned to the

greatest advantage.




In the pneumatic tyre under radial load, large displacements
occur within the first 30 to 40 degrees from the centre of the
contact patch, and gradually reduce to almost zero at 180 degrees.
Thus the nodes should preferably be concentrated within the proximity
of the contact region, so as to obtain good estimates in the region
of high stress gradients. This can be readily ovefcome by consid-~
ering the mid-surface of the tyre to be initially sub-divided into
curvilinear quadrilateral elements whose corners lie at the inter-
section of circumferential lines and meridian planes, as shown in
Figure 4.1. The required ™riangular" elements can then be obtained

by completing a diagonal of the quadrilateral elements.

By allowing the angle between successive meridian planes to
increase with respect to the angle from the centre of contact,
6 = 0, smaller elements will be obtained in the region of interest.
This is illustrated in Figure 4.2, where the mid-surface is developea
into a rectangular section. !

The sequence of angle increments is taken an arithmetic
progression, whose common difference is k@, where

6 is the angle between the centre line and the first

meridian plane

k is a factor chosen to compress the planes towards the

centre line.

Since the total number of planes, N, will have to be defined
for a particular problem, the only other piece of information required

in the factor k. This permits the angles of all. the meridian planes

to be calculated since:




0 + (6+k6) + ... + (6+(N-2)kg) = T

21
9 = WY (Zak(v-2)) (4.2)

The effect of altering k for a fixed value of N is shown

in Figure 4.3, resulting in a typical element mesh pattern as

depicted in Figure L.4(a).

Further, by allowing the number of nodes along the meridian
planes to reduce as the angle from the centre of contact increases,
fewer elements will be required, and the elements thus formed will
tend to become more equilateral in the form (Figures 4.4 (b) and
Lkoi(c)). Thus for a fixed available computer storage, the number

of nodes in the high stress regions can be increased.

To finalise the mesh configuration, it remains only to sequence
the elements and to number the nodes associated with each element.
Provided the node numbering system enables the structure to be
uniquely defined, then any random choice will provide the same
solution. However, a specific ordering is essential to minimise
the amount of computer storage required. This is discussed further

when dealing with assembling the stiffness matrix [K] of equation

(4o1)-

.2 Nodal coordinates and associated thickness vector

The position of any node coincides with the intersection of a
circumferential line with a meridian plane on the mid-surface. The

global Cartesian coordinates of any point can thus be obtained from




the cross-sectional profile of the mid-surface in the X4 ~Xg plane‘
for the inflated tyre. Two regions require special consideration.
(a) Bead region.

The bead region is a rigid assembly of steel, cords, and
rubber. The problem of defining precisely the properties of this
region can be avoided if it is assumed that the effect of the bead
is to fix the tyre to the wheel rim. In Figure 4.5 the point A
represents the contact point of the tyre and wheel flange. ?he
boundary node is chosen to lie at the centre of the line AA'. Then
the rigidity of the bead region can be approximated to by ensuring
that the position of the boundary node remains fixed for all tyre
deformations.

(b) Breaker edge region.

The material constants associated with both the breaker
region and sidewall region for a radial tyre can be calculated as
detailed in section 3,2. In most production tyres, the posifion
of the interface cannot be precisely determined, since not all the ,
breaker plies will end at exactly the same circumferential line.
There will be a region between the breaker and sidewall ovef which
the material properties will change in a continuous manner. However,
the simple concept of a discontinuous boundary will be'adopted, and
is achieved by positioning an element corner node such that it lies

at the approximate breaker/sidewall interface.

Once the nodal co-ordinates in the x3;-x, plane have been
established, the remaining nodes which lie on the same circumferential

lines can be calculated by a rotation about the X, axis, given by




Xg 0 sin ¢ cos § Xg

where g is the angle of rotation of the meridian plene from the

(o]

initial profile, ¢=0

Associated with each node on the initial profile is a

thickness vector T4, given by

rt?xi
(Tal= | "ox, (4-)
?3X3
L | J
The thickness of the carcass, l Ea I! is first determined

for all nodes on the cross-sectional profile. The angle between
is also measured at each node, so enabling the components of ta to

be derived as

{te] = [ta].| sin g (4:5)

By a subsequent rotation corresponding to the required
meridian plane, the components of the new vector, %5, associated

with a node on the same circumferential line, can be found as

cos B :
[ty = |Ts|.| sin B .cos @ (4.6)

sin B,sin @

x4 0 cos § -sin @ x (4e3) - o




L3 Numerical integration

Having divided the structure into elements, the stiffness
matrix for the individual element, as derived in section 3.6, is

given by

[K]° = / [S] d(vol) (4.7)
v

where V is the element volume and [S] is a matrix dependant upon

spatial position and material properties of the element.

In terms of local curvilinear co-ordinates ¢, ,¢5, and Ua s
equation (4.7) can be expressed as

11 1y, 4
[K]° - /// (5] aet[J) aps dgs dgs (1,.8)
-1 700

Curvilinear co—qrdinates are used to make the numerical
solution of equation (4.8) straightforward. The integration
technique suggested by Zienkiewicz [33] was used, which incorporates
expressions developed by Hammer [34] for the ¢y ~¢o plane of the
triangle, together with a Gaussian Quadrature formula (Lanczos [35])
for integration through the thickness of the element, ¢a. Tables

for both integration formulae are given in Tables 4.1 and L.2.

The integration over the triangle is reduced to the form

1 1=y m

/ /f(wi,wz) Ay dgn = Z Fy (g ss02y) (4.9)
0° 0

i=1




and for the ¢, direction

1
n

/5(4/1:3) Ay = Z Gj;g(¢‘3j) | | (4.'10)(

-1
j=1

so that equation (4.8) becomes

n m
[K]e = zg: ;{: Fi'Gj'h(¢1i’¢2i’¢3j) (4e11)
j=1 =1

where n represents the number of integration points for
Gaussian quadrature
m represents the number of integration points for
triangular integration
Fi are the weighting factors for triangular integration
G " " " " " Gaussian quadrature

and h(¢1i,¢2i,¢aj) is the functional of equation ( 4.8) evaluated at

a particular point in the element.

bhe3.l Accuracy of numerical integration

The number of integrating points used in any direction is
important in ensuring a good approximation to the integral. It has
been shown by Zienkiewicz [32] and Irons [36] that the integration
process will converge if its order is sufficient to evaluate precisely
the element volume. For an element of the type used,a minimum of
three points, situated at the mid-side nodes, would be sufficient
to estimate the volume. This is shown by the second figure in
Table 4.1. Ahmad [37], recommends that more points should be used
to obtain a more exact value of the integral by taking the points

shown in the fourth figure of Table L4.l, +together with a two point




Gaussian integration in the ¢35 direction.

More recent work by Zienkiewicz [38] and Pawsey [39] has
shown that considerable improvement can be achieved by using the

minimum integration order.

Lk.3.2  Explicit integration

Although it is not possible to obtain a complete explicit %
solution to the triple integral of equation (4.8), Zienkiewicz [38]
has reduced the problem to that of a double integral over the ¢, ~y,
domain. His method assumes that the matrix of direction cosines (A]
of the local co-ordinate axes (equation 3.61) is constant with
variations of ¢3. It has been estimated that a saving of 50% on the
calculation time for'the element stiffness matrix can be achieved.
However, the programming is more involved, and at the present time

this method has not been adopted.

Lok Formation of the total stiffness matrix

e . . .
The stiffness matrix of each element, [K] , is derived in

terms of displacements at nodal points. For all elements, the
displacements are with respect to a fixed base systemy; namely the
global Cartesian axes for the three translation components and the

local mid-surface co-ordinate axes for the two rotation components.

In order to obtain the total stiffness matrix, [K], of the

complete structure it is necessary to superimpose sub-matrices of
each [K]® so as to simulate the nodal connections between adjacent

elements. To make efficient use of the computer storage space

required for [K], the numbering sequence of the nodes is important.



The node numbering system is dependent upon whether displacements are
defined at all the nodes of a particular element or at only the
corner nodes, denoted respectively gy M=6 and M=3 in equation (3.52).

(a) M=3

Consider the mesh pattern shown in Figure L.6a. Since the

displacements of the corner nodes alone are required in equation
(3.52), oprime consideration is given to their sequencing. The
mid-side nodes can be numbered in any unique manner. The particular

equilibrium equations for the element E of Figure L.ba is

v} = [x)° 15} (4.12)

where, 1in terms of the node numbers 7,8, and 12 of element E,

equation (4.12) can be expressed as

[ r 1T r
F7 k k k. )
7 7 7.8 7. .12 7
J
— k
< Fe > = ke,7 ks,e 8,12 88 (4-13)
Fia kiz 7 kiz 8 kiz 12 il 512
k L 3 E] 3 L J
where
B
X1
F
X2
7] = L 1=7,8,12 (4.10)
M@,
Me2
L 44




and

(8.3 = u 3=7,8,12 (4.15)

and ki,j is a 5x5 array, expressing the partitioned form of [K]e.

The nine sub-matrices of [K]e are superimposed into the
overall stiffness matrix [K], having regard to the nodal numbering.
The relative positions in which the partitions appear is shown iﬁ
Figure L4.7a. The banded nature of [K] is characteristic of finite
element problems. Furthermore, since the matrix [K] is symmetric,
the storage requireménts can be condensed to that of a rectangular
array of dimensions nxm, as shown in Figure 4.8, where n is the

number of unknown displacements and m is the semi-bandwidth.

The value of m is obtained from the node numbering sequence
by recording the maximum difference, d, between the cormer nodes

of an element. Then m is given by

m = f.(d+1) (4.16)

where f is the number of degrees of freedom at each node (five).

From Figure 4.6a, d=5, and hence m=30, as illustrated in Figure

L.7a. The node numbering problem is. thus reduced to ensuring that
d is a minimum, so that the storage requirement for the rectangular

version of [K] is also minimised. This has been achieved for the

mesh pattern of Figure L.6a, although this sequence of numbering is

not unique.



(b) M=6
In this case, all six nodes of the element are present in the
stiffness matrix. Thus for a particular element F of Figure L.6b,

the equilibrium equation will be

( \ - M 7
Fa ka’a k3,7 lc:3,8 ](:3,11 k:’b’:LQ k‘.’),ﬂ.a 83
F; 87
B 1)

8 — 8
x g (4e17)
Fii 511‘ ’
etCo

Flz 852

{ FmsJ i J 8134

where (F.}, {8j} and ki,j are defined as for M=3. Once again the
criterion for node numbering is to minimise d, in this instance
taken over all six nodes of the element. The value of 4 for the
structure in Figure 4.6b is thus 10, so that the semi-bandwidth

is 55. The complete stiffness matrix for this mesh pattern is shown

in Figure 4.7b, with the contribution from element F detailed.

The two meshes in Figure 4.6 illustrate the two types of
pattern required to obtain approximately the same number of nodal
displacement evaluations. In the case of M=3, there were 24 active
nodes, and 28 for M=6. Although the number of elements required for
M=6 are reduced by approximately two thirds from 30 to 9, with a
subsequent saving in computation time, the storage space for [K]
has almost doubled. This will result in an increase in computation
time for the solution of the simultaneous equations (4.1). The
overall effect is that the total time taken will be of the same

order in both cases.



o5 Boundary conditions

The set of equations (L4.1) represent a singular system. To
evaluate a unique solution, boundary conditions in the form of
prescribed forces or displacements must be applied so as to prevent

rigid body movements of the structure.

L.5.1 Initial boundary conditions

These represent the physical situation of the tyre mounted
on a fixed wheel. In the case of a flat plate load, symmetry about
two axes enables one quarter of the tyre, together with relevant
boundary conditions, to simulate the behaviour of the complete
structure. For the developed section shown in Figure 4.1, each
side possesses different types of boundary conditions. Only the
nodes on the boundaries are affected by the initial conditions.

(a) Boundary 1

This represents a circumferential line near to the bead of
the tyre. It will be assumed that points on this line are fixed,
so that the Yy ,u, and u, components of displacement are all zero.
Furthermore, the rotations 6, and 6, about the local X: andAXZ axes
will be small and can be ignored.

(b) Boundary 2

This is the line of symmetry of the circumferential line
passing through the crown points of the tyre. Thus along this edge
u, and g, will be zero.

(¢) Boundary 3 and I
These boundaries lie on the axis of symmetry of the contact

area centre line. For points on these edges, both u, and 6, are zero.

A summary of these results is given in Table 4.3



?

4L.5.2 Deflected boundary conditions

The effect of subjecting the tyre to different loading
conditions, such as static load, braking, or cornering, can be
simulated by a set of boundary conditions. These can be applied in
two distinct ways.

(a) TForces specified.

Research work by Gough [40] and Clark [41] has shown thaf the
pressure distribution inside the contact area is extremely complex.
Using the finite element method, the continuous force distribution
is approximated by a set of discrete forces acting at the node points

located inside the contact region. Attempts by Dunn [11] to

analyse a loaded tyre by using a Fourier series solution were
inconclusive
(v) Displacementé specified.

If the contact pressure distribution is considered as being
the result of applied deflections rather than the cause, the boundary
conditions can be defined in terms of initial displacements. Using
this method, the result of a load applied by contact with a flat plate
can easily be simulated. It is only necessary to scan through the
global (xi,xz,xs) co-ordinates of the node points to detect which lie
below the boundary plane, as shown in Figure ,,9, Then the displace-

ment in the x, direction for such a node is given by

+ 8= (%) (4.18)

where (xz)i is the x, co-ordinate of node i
(x,) is the maximum x, co-ordinate of the tyre
max

& is the applied defleCtion (positive)



This will ensure that all points inside the region cut off
by the plane of contact remain upon it. However, points which are
close to the edge of the contact area will tend to move away from
the plane. The special treatment necessary for these points is

dealt with later.

Having fixed a value for u,, then the displacements in the
other directions can either be fixed at zero to simulate a high
friction surface, or permitted to move freely as in the case of a

lubricated surface.

Leob Implementation of boundary conditions

To solve equations (/4.1) subject to the boundary conditions

determined above, consider the ith equation given by

kopdy + kyody +oeeenn e kgd 4 eeeee + ko do= fL (4.19)
where kij are the components of matrix [K] which is of order n.
dj are the n unknown degrees of freedom, representing

displacements and rotations.

r are the compoments of the force vector.

Suppose the displacements di is prescribed by a boundary

condition, say

Then the set of equations (4.1) can be modified in the

following manner :

d, =D (4.20)



,:55 L

(a) Multiply the diagonal term, k.. , of (K] by a large number,
10
say 10
(b) Replace the force component fi by the new diagonal term

multiplied by the displacement, D.
Then equation (4.19) becomes

i0 10
k. ceee =
1197 * kyod, ¢ +10 kg do 4 .eew +k; d =10 kD (4o21)

The solution of such an equation is, +to a close order of

approximation, dizD, as required by equation (4.20). This process
can be rfpeated with all the prescribed boundary conditions to yield

a non-singular set of equations.

The solution of simultaneous linear equations fall into two
categories

(a) Iterative methods, as described by Varga [42], and
Hestenes [43], which have been applied to finite element problems
by Fried [44] and Fox [45]. All these techniques use a successive
approximation based upon on initial assumed solution.

(b) Direct methods. These use the special properties of [K] to
maximum advantage, since they operate directly on the modified
rectangular form of [K], as described in section 4.k.

To solve equation (4.1), the direct Gaussian elimination
is chosen (Kunz [46]). Algorithms based upon this method are well
known and published in CACM (47]. These required only minor

modifications to solve the condensed form of eguation (4.1).




L7 Calculation of nodal forces

The contact area forces and reaction forces in the bead
region can be obtainsd by back substitution of the calculated
displacements into the original equations (4.1). The component of

force F,, associated with the displacement u_, measures the applied

loads for nodes in the contact area. The distribution of these
point loads, together with the air pressure effect, will produce

an estimate of the contact pressure distribution.

The direction of the force F, should be the same as that of
the applied load, If the sign at any node is in the reverse sense,

it indicates that this particular node is being incorrectly held

onto the boundary plane. The true situation is obtained by removing
the boundary conditions for this node and re-solving the equations.
This situation will arise for points near to the edge of the contact
area which will tend to move away from the contact plane during

deflection.

1.8 Stresses and strains

* .
The local strain vector fe } is defined in terms of strailn
i *
components whose general form 1s a second order tensor, u, ;
3

i,j=1,2,3. Such a term obeys laws of transformation

: = u m,n = 1,2,5 (24"22)

u., . = A._A.
i,d im jn m,n

The formulation of Uoh can be written in the form of a
5

column matrix,as in equation.(}BSLV”ﬁCh is given in tensorial form as




“m,n = Yonk®k co 2y

m,n

where k

1 to 15 for M=3 ( )
L..2L

b
1

1 to 30 for M=6

Ir Sk, the displacement tensor, is partitioned into its
translation and rotation components, given by St and Br respectively,
then eguation (4.23) becomes

(4.25)

um,n = ymntst * ymnrsr

where t=1,2,3, 6,7,8,  ceene
(1..26)
r= 1,5, 9,10, 00n.s

From Table 3.1 and 3.2 it will be seen that
(a) Yont is a function of the ared co-ordinates w, and w,

only, and consequently a function of the local co-ordinates ¢, and
¢, so that

ymn-t = ymnt(wi”l’g> ()-;-.27)

(b) For n=1 and 2

i

RN C R (2.28)

where Yénr is a function of ¢ 1and ¢2 only.

(¢c) For n=3, Y . is a function of ¢, and ¢, so that

ym}r - ym3r(¢i,¢2> (4'29)

i
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Equation (4.20) can now be written as

*

u. .
1,3

= (A

i nYmnttIn=1,2, 3

* (Aimhjnyénr8r¢3)n:1,2 (4.30)

+ (Aimkjnymnrsr)n:B

In terms of the variables ¢, ,¢, and Vo this can be expressed

as the functional relationship

SERETRIRAS

*

%
uoso= oy () + iy V(e (4.31)

*
where u, j(¢i ¢2) refers to a position on the mid-surface ¢a:0.
3 b

The numerical integration process described in section 4.3
requires the evaluation of equation (4.31) at six points in the
element, comprising pairs of points whose ¢, co-ordinate is equal in
magnitude but opposite in sign for a fixed ¢, and ¢,. The ¢, ,¢,

co-ordinates correspond to the mid-side nodes. Thus for a particular

node, s, equation (4.31) gives

s
= ui’j(¢i,¢2)s v Py V(G e,

~—
1

(4.32)

~—
|

*
= ui,j(¢i’¢2)s - ¢3'V(¢1’¢2)S

corresponding to positive and negative values of ¢,. Hence the

value of the mid-surface strain components at node s, together with

the variation across the element, V, can be calculated as

uz,j(¢1’¢2)s = (“z,j>s+ MR 1/; (433)



1,37 s+ 1,38~
Equations (4.33) and (4.54) enable the strain components at
any point to be calculated as defined by equation (4.31), and hence

_ *
the strain vector {e ] of equation (3,97).

4.9 Non-linear solutions

In many problems of solid mechanics the governing equations
are formulated adequately by assuming a linear system. This implies
that both the stress-strain and strain-displacement relationships are
linear. For a pneumatic tyre subjected to an arbitrary load, it is
necessary to ascertain the validity of these underlying principles.
In the general deflécted state, large deformations can occur even
though the internal strains experienced by the structure are
relatively small. With this in mind, the linearity of the stress-
strain law is quite plausible. However, the Iiearity of the strain-

displacement law was based upon small deflection theory, and clearly

this does not hold in the case of the tyre.

To overcome this difficulty two methods are available.
(a) A more complex, non-linear, relationship between strains

and displacements can be derived. This would be an extension of the

linear form to include second order (or higher) terms. Using such a

system, the resulting set of simultaneous equations (4.1) will now

be non-linear and will require some iterative scheme to effect a

solution.

Brebbia [52], and Martin [53].

(b)The non-linear, large deflection system can be approximated by

V(g e) = [ (o ) - (u; ) ],/2‘ (s

B

Such a method was adopted in the research work of Oden [51],
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a step-by-step method of small increments. These steps are chosen so
that a linear model can be used for each. In the limit, as the
increment size decreases, the solutioﬁ obtained will converge to the
non-linear forme The incremental model is applied in the following

manner 3

The initial geometry of the structure is defined piecewise by
the global co-ordinates (Xi)j i=i,2,3 at the nodal point Jj,
together with the directions of the local co-ordinate axes (xz)j.

The latter are functions of the nodal thickness vector. At each
increment of deflection, the set of equations (4.1) are solved to
produce the vector of displacements {8} for the entire structure.
{6} will consist of (ui)j for i=1,2,3 and (ek)j for k=1,2 at each‘
node j. Using this information, the geometry of the system can be
modified to obtain a new set of nodal co-ordinates and local
Cartesian axes. This enables a different stiffness matrix to be

calculated for the updated structure. This process is repeated at

each increment of deflection.
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CHAPTER 5.

Results

5.1 Tyre preparation

Two standard production tyres were selected to verify the
accuracy ol the maytherstic- ) wodel. These were a four ply, rayon,
6.,0/50 = 13 D75 cross-ply tyre, and a 165 SR70 - 13 radial tyre
with a four ply nylon breaker. Each was chosen from a batch on the
basis of good uniformity. The tread rubber was removed from both tyres.
On the cross-ply tyre, a section of sidewall rubber was removed to
expose the outer cord layer. This enabled measurements of the cord

bias angle to be made. The results are given in Figure 5.1 .

5.2 Measurements

5.2.1 Load-deflection curves

A series of load-deflection curves were obtained at varying

inflation pressures (Figures 5.2 and 5.3), under the application of
a flat plate load. Using technigues described by Cooper and Gough [54],

the curves were extrapolated to obtain the structural stiffness of

the tyres at zero inflation pressure.

5e2.2 Sidewall deflections

An initial measurement of the cross-sectional inflated
profiles were taken (Figures 5.4 and 5.5) which enabled the position
of the mid-surface profile to be calculated. An air pressure of

25 psi was maintained during these tests.

Deflections of 0.5 and 1.0 inches were applied to the tyres.
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At each deflection, measurements were taken of displacements along

oY

the global Cartesian axes at points marked on the tyre surface.

Figures 5.6 to 5.11 give the cross-ply deformations, and Figures

5.12 to 5.17 apply to the radial tyre.

5.3 Solution by computer

5.3.1 Application of mathematical model

An IBM - 370 digital computer has been programmed with the
finite element model of the pneumatic tyre. The differences in
manufacturing techniques between the main types of tyre constructions
require only minor changes to the basic programmes, as it is only
necessary to define.the geometry and material properties of the tyre

components in mathematical form.

The programmes are capable of solving the equations of equilibrium
which relate applied forces to displacement at discrete points in the
tyre structure, for any arbitrary loading condition. However, the
limits of direct access storage space has permitted only the
solution of symmetric flat plate load problems. This analysis

enables symmetry to reduce the model to represent one quarter of the

tyre.

The simplest form that the loading can take is that due to

internal air pressure. The solution of this problem has not been

pursued here, since far simpler (symmetrio) methods are available

as reviewed in section 2.1. Moreover, the mathematical model is

more suited to boundary conditions which are applied in terms of

displacements rather than forces, since the 'geometric' boundary

conditions can be precisely determined in terms of nodal displacements



for a given deflected tyre situation, whereas any applied forcé

distribution must first be approximated by a set of discrete nodal

forcese

It will therefore be assumed that the initial state of the
structure is that of an inflated tyre, subject to stresses and
strains due to the moulding and inflating processes, and that
methods are available for obtaining quantitive values for the
internal forces. The programs will solve for applied deformations
of the inflated tyre and the results will be in the form of variations
in the geometry and internal forces. By superposition, the conditions

relating to the inflated, deflected tyre will be obtained.

5.3%3.2 Choice of theory

In section 3.3 , two forms of the mathematical model were
described. These were denoted by values of 3 and 6 for the index M
in equation (3.52), where M defined the number of element nodes at

which the displacements were to be calculated.

Comparison of solutions have shown that similar results can
be obtained using the two methods. However, the more exact theory
(M=6) has advantages over the M=3 method, namely
(a) To produce the load-deflection curve of Figure 5.18, larger
incremental steps can be used.
(b) Fewer elements are required for the same number of_evgluation
points, as shown in the mesh patterns of Figure 5.19.

(c) The effect of the above is to reduce the overall computation

time.




5.4  Global displacements

s

i

The solution of the equilibrium equations (4.1) produce

directly the displacements us i=1,2,% of the node points along the

global Cartesian axes. Using deflection increments of 0.25 inches,
and superimposing the solutions, the displacements associated with
deflections of 0.5 and L0 inches were obtained. The agreement with

test results are good, as shown in Figures 5.6 to 5.17 . §

The fundamental difference in displacement patterns between
the cross-ply and radial tyres is clearly visible. The positions of
maximum displacement tend to lie along the cord path of the carcass
plies. This produces two peaks for the cross ply tyre, situated at
angles of t250 from the ceytre of contact, and a single peak for the
radial tyre situated at 0°. The stiffening effect of the breaker in
the radial tyre is dgmonstrated by the small changes in Qisplacement

across the breaker region, as shown in Figures 5.12 to 5¢17

5.5 Load-deflection curves

The load carrying mechanism of the pneumatic tyre has been
fully described by Gough [55]. The transmission of forces from the
contact area to the wheel rim is a combination of the tyre behaving
as a structure and as an inflated membrane. In the former case the

inflation pressure is not involved, and in the latter the loading

is a function of both pressure and geometric deformations.

5.5.1 §§;uctural effect

The mathematical model describes the structure of the tyre in

the form of the stiffness matrix [K] of equation (4.1). Having



obtained the displacements of all the nodes, the associated nodal
forces along the Cartesian axes can be calculated by solving equation
(4.1) as described in section 4.7. These nodal forces represent the
externally applied forces necessary to displace the contact region
while maintaining the bead region fixed. The result is a series of
point loads which approximate to the distribution of forces in the
contact region, together with an equal and opposite reaction at the
bead. All forces at nodes removed from the boundary will be zero.
The summation of either the contact area forces, or the bead region
forces in the X, direction, will produce the load-deflection curve
of the struoture at zero inflation pressure, as shown in Figures 5.2

and 5.3.

The results for the radial ply tyre are about 50% greater
than those estimated from the test curves, whereas the cross-ply
values are acceptable. This can be attributed in part to the assumed
discontinuity of the elastic properties at the edge of the breaker.
The true situation of a gradual change in material properties from
the breaker to the sidewall over some finite range can only be
accounted for by increasing the number of elements. At the present

time, computer storage limitations make this difficult.

5.5.2 Air pressure effect

The effect of inflating the tyre is to introduce membrane

tensions which are eguated by reactions at the bead. The relationship

between forces, pressure, and the geometry of the tyre cross-

section have been derived by Gough [56]. With reference to Figure

5.20a, the radial force on a unit length of bead, due to air

pressure, can be expressed as

e R




P‘(R§~R§)

F =
’ 501
P Z.Rb.tanﬁb ( )

where p = inflation pressure
Rb = radius of bead from axis of rotation
R = radius of maximum tyre width from axis of rotation

ﬂb = angle between normal to mid-surface at the bead

and the x, axis.

From equation (5.1) the total force in the X, direction

applied to both beads is given by

.

m

F = '/ Fp.cos o de (5.2)
o}

where § is the angle about the axis of revolution measured from the

positive x, axis.

Since Fp is independent of 6, then the expression for F in
equation (5.2) is identically zero. This describes the condition of
symmetric inflation loading with no external applied forces in the

x5 direction.

If the inflated structure is now deformed by contact with a
plane, the angle ﬁb and the radius RS will alter, as shown in
Figure 5.20 b. Furthermore, the new values of these variables will

be functions of 6, so that the force integral of equation (5.2)

will now possess a non-zero value. This represents the force in the

x, direction necessary to overcome the internal inflation pressure

for the prescribed deflection. This force, by virtue of equation

(5.1), 1is proportional to the air pressure, and thus enables the

membrane load-deflectlion curve at any pressure to be constructed.

The structural and membrane effects can then be added to produce the




total load-deflection curve, as given in Figures 5.2 and 5.3

The applied load is equated by a reaction at the boundary
nodes in the bead region. The radial component of reaction is shown
in Figures 5.21 and 5.22. The ammount by which the bead and cord
tensions change cannot be precisely determined, since the point of

application of the reaction load is on a circumferential node line

some distance away from the centre of the bead.

5.6  Contact area

The total force, F, of equation (5.2) is balanced by the
transmission of contact pressure through the contact region of area A,
such that

F = p.A (503)

Equation (5.3) enables the magnitude of the contact area to
be evaluated. The linear dimensions of the contact boundary can be
estimated by noting that certain nodal points are situated inside the
region of contact. These points arise from the analysis of section
5.5.1. The positions of these points,the area magnitude, together
with the approximate elliptic shape of the contact boundary, enables

the the contact boundary to be sketched, as shown in Figure 5.23.




Conclusions

A mathematical model for the pneumatic tyre has been developed
using thick shell finite elements of double curvature. The model
incorporates the anisotropy of the cord-rubber assembly and is
applicable to all types of tyre construction. The formulation is capable
of evaluating the geometric deformations and associated reactive
boundary forces associated with an arbitrary loading configuration.

Large deflection problems are solved by means of linearised incremental
procedures which update the geometry of the deformed structure after

each load increment.

To confirm the accuracy of solution , the model has been
applied to both the’crbss—ply and radial-ply tyre constructions.
Cood correlation with test results has been achieved for both the
geometric deformations and the load-deflection curves. The greatest
error was in the estimate of the structural stiffness of the radial
~tyre. This 1s probably due to the difficulty in modelling the breaker
edge region, where the elastic continuity of the structufe from the
breaker region to the sidewall has not been accounted for. In
principle this can be overcome by dividing the structure into more
elements, but at the present time the availability of direct access

computer storage space 1imits the maximum number of elements that

can be used.

More storage space could be obtained by introducing

sophisticated programming techniques. Irons [57], has developed

methods which eliminate the construction of the large stiffness

matrix of the structure. However, any substantial increase in the




number of elements will be accompanied by a greater increase in
computation time. This is already at a high level due to the

iterative solution techniques involved in the incremental method.

The theory of finite elements enables the stresses and
strains within the elements to be estimated, and consequently the
load distributions of the cords can be calculated. Although the
mathematical model ensures displacement compatibility between
adjacent elements, the strains are discontinuous across the
boundaries. ZEstimates of the internal stresses can be obtained by
averaging the discontinuities, but to obtain accurate values of the
peak stresses, such as those associated with fatigue failures, %t
will be necessary to reauce considerably the size of each element.
Such detailed analyses are outside the present limits of practicability,
but with the advent of larger and faster computers it should be
possible to extend this work to include more complex loading

situations, even though accurate predictions of important stresses

cannot be obtained.
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Pigure Poimts | ool e Weights
a ©3333,43333543333 50
a
a .
.50 ,.50 ,.0 1667
> b .0 ,.50 ,.50 L1667
c .50 ,.0  ,.50 L1667
c
a «3333,.3333,.3333 .2813
b «7535,.1333,.1333
c «1333,.7333,.1333 o« 2604
d 01555)'1335) ‘7333
a +3333,.3333,.3333 .2250
b .50 ,.50 ,.0
c .0 ,.50 ,.50 L0667
4 d .50 ,.0 ,.50
e 1.0 ,.0 ,.0
f .0 ,1.0 ,.0 .0250
g g .0 ,.0 ,1.0

Table 4.1

Numerical integration points for triangles.

AR




S

195

i n
/~g(X) dx =Y§ G5 &lx,)
- / J
i 1
j=1
+X. G
-3 J
0.5773503 1.0
0.0 0.8755833
0.7745967 0.562208l,.
0.3399€10 0.651068L,.
0.8611363 0.3489316
0.0 0.5652007
0.538,693 0.4860118
0.9061798 0.2313879

Table 4.2 Gaussian quadrature formulae.

Boundary Degree of freedom

number u1 u2 u§ 91 92
1 0 0 0 0 0
2 0 0
5,4 0 0

0 represents a fixed degree of freedom
with a value of zero.

Table L.3 Initial boundary conditions.




APPEND IX

Mathematical basis of the finite element method

7.1 Stress at a point

The state of internal force at any point in a body is defined

in terms of nine components of the stress tensor

oj; 1,3 =1,2,3 (7.1)
where the first subscript denotes the plane that is normal to the ith
axis, and the second subscript refers to the co-ordinate direction of

the stress.

An elemental cube situated in the body will be subject to the
forces as shown in Figure 7.1l. This shows the Cartesian components of
stress acting on the three visible faces of the cube. The corresponding

stresses on the opposite faces do not include the incremental stresses.

By taking moments about the Cartesian axes, it can be shown

that the stress tensor is symmetric,
%ij = %3 1,5 =1,2,3 (7.2)

7e2 Equations of equilibrium

If the elemental cube is also subjected to body farces of the

form
B, i=1,2,3 ' (7.3)
in the direction of the Cartesian axes, then from Figure 7.1, the

equations of motion for the cube are:

Oij,j . Bi - pu; = 0 (7.4)

where p is the density of the body. The repeated subscript denotes




e

tensorial summation, and the comma denotes differentiation.
For static equilibrium, equation (7.4) reduces to
.. . B,
i, + i =0 (7.5)

73 Strain-displacement relationship

The state of strain at any point is defined by the strain tensor

€5 120 =1,2,3 (7.6)

For small deflection theory the relationship between strain and

displacement is given by:

+ ous s) i, =1,2,3 (7.7)

e
2 1,J Jdsl

€. .
1J
where the u;, are the components of displacement. From equation (7.7)

it is evident that the strain tensor is symmetric, so

€557 €55 i, =1,2,3 (7.8)

7ok Stress-strain relationship

In the case of a linearly elastic system, Hooke's Law represents

the relationship between stress ahd strain. The tensorial form is:

995 < dijkl %1

i,d,k,1 = 1,2,3 (7.9)
The equations (7.5), (7.7) and (7.9), together with the
symme try properties, give a set of fifteen equations in the fifteen

unknowns, namely six stresses, six strains, and three displacements.

These have to be solved subject to the relevant bourdary conditions;;f?

7e5 Boundary conditions

The surface of the body can be considered divided into two parts

from the viewpoint of boundary conditions.
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Correspording to these displacements will be small variations

in strain, 86ij, given by

_ 1 ’ ,
Seij = 3 (5ui,j + Suj,i) (7.15)

Then the work done, W, by the internal stresses will be:

W = /aij Sey 4 AV (7.16)

v

where the stresses are assumed constant during small displacements, 80

that second order terms are ignored. Hence,

- 1
W _/ 205 5 (Bui’j + 8uj’i) av

i
Q{SUi 55,5 % Suj o534 } av (7.17)

|
g

Further, Gauss's Divergence Theorem states that

/Xi,i av :/Xi cos (n,xi) ds (7.18)
v S

so that by letting
o5 8y = X; (7.19)

equation 7.17 becomes

W = X. .dv - Su. o.. . dV «20
/ Jdsd / Y3 GlJ’J (7 )
v v

since i and j are dummy subscripts in equation 7.17. Hence using

equation 7.18 in equation 7.20 gives

W =‘/ 05 5 8uj cos (n,xj)dS —./ Suy Gij,jdv (7.21)

S v




ne

Application of the boundary condition equation (7.11) into equation

7.21 gives
W = P. . dS = . 0. . . 4V 022
_/ 5 %Y /8111 %13,d (7.22)
S A"

and using boundary conditions (7.14) together with equation (7.12)

reduces equation (7.22) to

W :_/ Pg 8uj ds -'[ Su. o av (7.23)

1713,

Sf v

The equation of equilibrium (7.5) finally reduces equation (7.23)
to
W =/P3‘ Buj ds +/8ui Bi dv (7.24)

Sf \Z

The first term is the work done by the applied,specified, surface

loads, and the second is the work done by the body forces.

77 Strain energy density

From equation (7.16), the work done by the internal stresses per

unit volume is

SW = o5 5 8€ij (7.25)

Then the strain energy density is given by

U = /Ui,j 8€ij + (7.26)

0]

This can be re~written in matrix form as

U= /[oJ fde] (7.27)

where [o] denotes a 1 x 9 row vector

{de] denotes a 9 x 1 column vector.




H

From equation (7.
(D] e} (7.28)

{of =

9) we have

where [D] is a 9 x 9 matrix of material constants. Taking the

transpose of equation (7.28) gives

(o] = [e] [D] (7.29)

since [D] is

o

symmetric matrix. Thus equation (7.27) becomes

u :;[ [e] D] {de} (7.30)

If a = [e][D] {de}, a 1x]1 matrix, (7.31)

then aTz a = [de] [D] {e}
a =% ([e] [D] {de} + [de) [D) {e})
o =% a(le] [D] {e}) (7.52)

Thus equation 7.30 becomes

U =2 [e] D] {e} (7.33)

From physical considerations, this can be shown to be positive

definite.

7.8 The Principle of

Minimum Total Potential Energy

Since the stress
(equation 7 9) and the

(equation 7.7) then the

8U = 0. . Se.

i i

components can be expressed in terms of strain
strains expressed as functions of displacements

increment in strain energy density, given by

= &W (7.30)

i3 also a furction of displacements, i.e.

8U = sU(u,) (7.35)
Hence the principle of virtual work becomes
- % - = y
/SU(ui)dV /Fpi su. ds /Sui B, dV =0 (736)

v S

f

v




Then, if %he surface and body forces can be assumed constant during

the infinitesimal displacements 8U; »

]

P* Su.
i i

s (Pru; ) (7.37)
and

B. Su.
i i

5(B;u, ) (7.38)

i

Equation (7.36) then becomes

SU(ui)dV - S(P;‘;L'ui)ds - s(Biu;)dv =0
[fsutepar- | /

\Y Sf v
§m = 0 (7.39)
where 7 :‘/(U—Bipi)dv - jé; u.ds (7.40)
A Sf

The function # is the total potential energy of the body.
Equation (7.40) shows that for all admissable displacements satisfying
the prescribed geometric boundary conditions, the true displacements
are these which ensure that the total potential energy is stationary.
By taking small variations and applying Taylor's theorem, it can be

deduced that the stationary value is a minimum.

709 The Rayleigh-Ritz method

This is a method for determining, by successive approximation,
functions which give a stationary value to a functional. Thus for the
functional w(u), where u is the required function solution, a solution
is gssumed of the form

B Z %53 (7.41)

J=1

where the o, are unknowns, and the uj are the selected functions which

are admissable, i.e. they satisfy the geometric boundary conditions and
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continuity requirements. Then the constants as are determined by

ensuring &6 = 0,

S =0 for j=1ton (7.42)
j .

which produces a set of n simultaneous equations for the n ajo

7.10 The finite element method as a Rayleigh-Ritz process

In the finite element method, the displacements with each
element are defined as functions of the nodal d%splacements. The

displacement functions (or shape functions) will be of the form:

fu;} = [s] {5}° | (7.43)

where {ui} is a column vectar representing the displacement of any
point in the element
[S] is the matrix of shape functions of the displacements,
being functions of the co-ordinate system.
{8}8 is the column vector of nodal displacements for the

element.

In general, if the nodes are characterised by m,n, .......etce,

then [S] and {8]° can be expressed in a partitioned form as

[s] =[S, S.» eeevees ] (7.44)
fgm\
and  {5}°= 8 (745)

\ J

where Sm are the displacements at node m, etc,




The functions Sm’ etc. have to be chosen to satisfy the

prescribed displacements. Thus, for example,

. (7@6)

I
o

Sm(xﬁ.msxzmsxom)

(747)

1
©-

S (X—L sX2_ sXs )

m n n n

where I is the identity matrix

¢ is the null matrix

With the displacements defined at all nodes, the strains can
be evaluated from equation (7.7 ). This will result in a relationship

of the form

fe} = [c] {8]° (7.48)

1l

i

(e} = [5)° [c]” (7.49)

or [€]

When the continuum is divided into a set of discre%e elements,

Vn, the total potential energy , given by equation (7.40) is

- (0(u;)-Byu;) v - [ (Prugas))  (7.50)
I1 2{: ( 4. U B av é' P¥u.d ) 750

n
n f
n

Using the expressions for the strain energy density, equation

(7.33), equation (7.50) becomes, in matrix form:
- (/(%[ennne;-[nnuz) av
n A

—/ [P*] f{u} ds > (7.51)
S¢

n
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)

oh

By using equations (7.43), (7.48), and (7.49), equation (7.51)

becomes
Z( /( ° [c1%[o1 [c] §53° - [B) [s] {8}°) av
~/ [P*] [s] {s}° as > (7.52)
an
. 0= z <% [a]e[KJf{a}? - [F)1°s}° > (7.53)
where [K]e:/ rc1® 0] [c] av C (7.54)

Vn

is the stiffness matrix of the element, which can be seen to be

symmetric,

and /' [B] TS] av + ].[P*] [s] as (7.55)

Vn

is the matrix of nodal forces for the element.

The principle of minimum total potential energy requires that

equation (7.53) should be a minimum. Thus for each element,

1 [51% [K]° (5}° - [F]°98]° = minimum (7.56)
Taking variations gives
3 [as])® [K]° {s3°+% [8]° [K1® [as}®- [F]® {as}® = 0 (7.57)
Since [K]® is symmetric, this redwces to:

([61° [X1°- [F]°) {as}® =0 (7.58)




which, for an arbitrary column vector {ds}e, gives

[51° [K]°-[F]° = O (7.59)

or  {F}° = [K]° {8}° (7.60)

which is a set of simultaneous equations relating the nodal forces
to the nodal displacements for an individual element. This farms

the basis of the finite element method.
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