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SUMMARY 

Used waters containing high concentrations of organic materials 
have proved difficult to treat to suitable standards for discharge to 
inland waters ,using conventional biological filtration, 

The use of two stage filtration has been shown to produce effluents 
of a higher standard than single stage filtration. This investigation 
was undertaken to determine the optimum conditions for two stage 
filtration where the primary stage employed various types of biological 
media designed to accept high organic loadings, 

Pilot and laboratory scale filters were designed and constructed 
to investigate the mechanisms of two stage filtration, The quality of 
effluents obtained from the pilot scale high-rate filters was examined 
and their effects on nitrification in laboratory scale secondary 
filters employing low organic loadings observed. The ecological 
maturation of the high-rate primary filters was monitored. 

The study indicated that under the loading conditions considered, 
the high-rate filter media developed biological films which could 
support carbonaceous oxidation in proportion to the media specific 
surface areas, Random packed media developed weights of biological 
film in proportion to their specific surface areas, Modular media 
supported significantly less film per wit of specific surface area. 

The dominant flora and fauna of high-rate filter films were 
identified, After two years of operation, -the filters had not fully 

matured, ‘ 
Suitable primary hizh-rate filter effluents could be obtained to 

permit full nitrification in laboratory scale nitrifying filters, 
Further studies are required to optimise the use of high-rate filtration, 
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1. THE EARLY STAGES IN THE DEVELOPMENT OF SEWAGE’ TREATMENT IN BRITAIN. 

The development of sewerage and sewage systems stems from the 

eu disposal problems created by localised concentrations of people 

and effluents of industrial production. The history of sewage 

disposal and treatment has been well chronicled by the Institute of 

Water Pollution Control publications of Stanbridge (1976) and a 

synopsis written by Sidwick and Murray (1976). 

The Royal Commission appointed in 1832 to study the Poor Law may 

be considered as a landmark in public health reform. One of the 

-Assistant Commissioners, Edwin Chadwick, appointed to carry out field 

studies, reported in 1842 on the need to create unified drainage 

systems using carefully designed sewers to improve public hygiene. 

Until 1815, it had been illegal to ‘admit foul waters to surface drainage. | 

In poor overcrowded urban communities, privies and cesspools were 

frequently not provided, the inhabitants using the open streets for 

disposal of all wastes. If communal "middens" or "ashpits" had 

been dug, adjacent water supply springs or wells were often severely 

contaminated. In 1847, it became compulsory to drain houses into 

sewers. The development of the water carriage system had a marked 

benefit on the health of the community. However, as a result of 

these developments, the condition of receiving water courses deteriorated, 

Due to these problems, the Public Health Act of 1876 prohibited 

the entry of untreated sewage into streams and it became illegal to 

continue such discharges. However, because of the lack of knowledge 

of sewage treatment, the Act was difficult to enforce. Subsequently, 

.a Sewage Commission was established in 1882, which reported in 1834. 

It advocated the chemical precipitation of organic matter and land



treatment of the effluent prior to disposal to a water course. 

This led to the development of sedimentation tanks for removal 

of the solid matter. Due to the large areas of land required 

for treatment of the effluent, methods were developed for the 

"artificial treatment" of sewage. One of the early workers in 

this field was Dibdin who considered the muriticatory action of 

tanks containing porous media such as coke breeze or porous 

clay, used in a fill and drain manner, to be due partly to 

ehgeical and partly biological processes; the waste matter which 

adhered to the media surfaces when the tank was filled with sewage 

was subsequently biologically degraded when the tank was drained. 

At this stage, it was not fully realised that organic matter 

utilization by microbial organisms-was the dominant activity within 

the filter. Yet the introduction of these and similar processes 

led to improved conditions in receiving water courses. 

As a result of the development of improved methods of sewage 

treatment, a Royal Commission on Sewage Disposal was appointed in 

1898 to determine what sewage treatment and disposal methods could 

be adopted; the findings were to have significant effects upon the 

direction of sewage treatment developments until the present day. 

The outcome of the various reports of the Royal Commission 

established sewage treatment on a scientific footing and set standards 

which should be attained for effluents discharged to water courses. 

The Fifth Report established a suspended solids standard for sewage 

works effluents of three parts per hundred thousand, whilst the 

Eighth Report set a dissolved oxygen absorption over five days at 

65°Rr of two parts per hundred thousand. These values have become 

to be known to-day as the ‘Royal Commission' 20:30 standard, that is, 
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the effluent from a sewage works should not have a Biochemical Oxygen 

Demand (BOD) of greater than 20 mg /1, or a suspended solids value of 

greeter than 30 mg / 1, The Eighth Report also assumed that a 

dilution factor of at least eight times would be available in the 

receiving water. 

At the turn of the century and prior to World War 1, designers 

and operators of sewage disposal works became increasingly aware of 

the important role of bacteria; indeed the Second Report of the 

Royal Commission of 1902 was involved almost wholly with the 

bacterial problems associated with sewage disposal. Haigh Johnson 

- (1914) gives a comprehensive account of the flora and fauna observed 

in percolating filters although the role of each organism is not 

clearly defined. 

At this time in America, experiments were being carried out into 

the oxidation of sewage by the activated sludge process. Later 

experiments by Ardern & Lockett at Manchester in G.B., showed that 

-it was possible to obtain a fully nitrified effluent from an activated 

sludge process treating raw sewage. These experiments formed the 

basis of the activated sludge treatment plants at Daveyhulme and 

Withington. During the 1920's and 1930's the activated sludge 

process gained acceptance and became more widely employed, although 

the percolating filter remained the dominant system. During the 

1920's biofiltration became popular in the U.S.A. Biofiltration 

involves reapplication of filter effluent to the surface of the 

filter. The purpose of the system was to prevent the occurrence 

of ponding. The increased flow rates were thought to be responsible 

- for flushing excess film out of the filter; and prevent the filter 

from becoming anaerobic by maintaining a dissolved oxygen reserve



in the applied liquor. Jenks (1937) gives a descriptive account 

of the development of percolating filters in the U.S.A. During 

the 1930's, further legislation in G.B. enforced local authorities 

to accept trade effluents discharged into public sewers. These 

Acts had the effect of increasing the organic strength and 

volumetric loading to many sewage works; additionally, these 

trade effluents often were more difficult to oxidise than domestic 

sewage. In combination with developments in sewage treatment in 

the U.S.A., this appears to have stimulated further research into 

various forms of biological filtration. The use of recirculation, 

double filtration and alternating double filtration have all been 

examined. The use of high rate filtration employed as the primary 

stage of double or multistage system of filtration is discussed in 

the following chapter.



2. A REVIEW OF LITERATURE ON HIGH RATE FILTRATION. 

It is perhaps appropriate to first attempt to define high 

rate filtration of used waters. Bruce and Merkens (1970) have 

defined high rate filtration to be where the hydraulic load 

applied to the filter media’is in excess of 3m? /m?/a or where the 

organic load is in excess of 0.6 kg. BOD/m?/d. Such a definition 

is purely arbitrary; a hydraulic load of 2.8 m/m?/d could just 

as well be Constaenea high rate as an intermediate rate. In 

order to draw more meaningful comparisons between the relative 

efficiencies of filters, the ‘load may be better expressed in terms 

of weight of BOD applied per unit area of the media specific surface. 

Although high-rate biological filters have not commonly been 

used for the purification of municipal wastes in G.B., they have 

been employed as "roughing" filters for strong industrial effluents 

(Askew 1969) and as a temporary measure to reduce the load on 

overload sewage works (McDonald 1971, Anon. 1973 a and b). 

In the U.S.A., filters nave been qoeded with domestic sewage 

and industrial wastes at high hydraulic rates for the last 30 years, 

(Stanbridge 1954), with few problems of operation. One of the main 

reasons why high rate filtration has been more successful in America 

than in G.B., is probably the much weaker sewage to be treated; 

hence film accumulation in winter, leading to "ponding" and a 

frequently associated drop in efficiency of BOD removal, has not been 

a common problem. Also, high recirculation rates were frequently 

employed. 

Only three sewage treatment works in G.B., employing high rate 

filtration have been reported in the literature; these being at



Northampton (Andrews 1964; Eden et al. 1966) and Dunstable (Anon. 

1963); in both of these cases the high-rate filters act as primary 

filters effecting partial treatment of the sewage. In the third 

case, Kingston and Seymour (Hemming 1973) man-made media is employed 

for treatment of macerated sewage prior to estuarine disposal. 

A review of the literature reveals that current studies of 

high-rate filters stems from works in the 1930s in the U.S.A. 

(Levine et al. (1936), Levine (1940), Halvorson et al. (1936), 

Mohlmann (1936) and Jenks (1937)). These publications appear s 

have stimulated research in G.B., notably the studies of Goldthorpe 

(1938), Goldthorpe and Nixon (1942), Thompson (1942), Beedham (1947), 

and Oldroyd (1952) in the West Riding of Yorkshire and studies 

elsewhere of Tomlinson and Hall (1950), Barraclough (1954) and 

Peach (1957). Studies have also eee carried out in South Africa 

by Dekema and Krige (1949). 3 

Interest in high rate filtration was renewed in the early 

1960s by the introduction of man-made media which were designed to 

obviate certain problems associated with the use of mineral media, 

which will be considered later. 

High-rate filters have several ‘potential uses in preference 

to alternative methods of used-water treatment. They can be 

employed to partially remove carbonaceous matter and other oxygen 

demanding materials from strong sewages and wastes in order to 

ensure efficient working of standard low-rate filters or activated 

sludge plants. If they are used with the above intention in mind, 

then the consequences of their use can be the prevention of film 

accumulation on a secondary filter; and also they may effect such



carbonaceous reduction that the effluent from the secondary filter 

is well nitrified. 

They can be used as "roughing" filters for industries to reduce 

the load discharged to the sewers and therby reduce the trade 

effluent charges, and/or relieve treatment problems at a recipient 

sewage treatment works. High-rate filters using perenads media 

are being increasingly employed in this context. One such medium, 

'Flocor' has been used for the treatment of whisky distillation 

effluents (Hemming 1970), brewery effluents (Askew 1967) ,winery 

effluents (Jolly 1972), dairy effluents (Hemmings 1971a), poultry 

processing effluents (Summers 1972), fruit and vegetable wastes 

(Askew 1969) and textile wastes (Hemming 1971b). Where strong 

wastes are to be dealt with, two or three high-rate filters with 

interstage settlement may be employed. 

High-rate filters may also be employed with sedimentation as 

the sole method of sewage treatment in a situation where the 

quality of the final effluent does not have to attain very stringent 

standards; for example, coastal towns where dilution of the effluent 

is great (that is, in comparison to that of the dilution of an 

effluent from an inland town entering a river). 

In order that high-rate filtration can be employed in the 

appropriate situations, laboratory and pilot scale studies may 

need to be carried out to asses :- the efficiency of BOD removal at 

various organic and hydraulic loadings; the effect of specific surface 

area; uniformity of packing and void capacity of the various media; 

depth of media; retention times and their significance; necessary 

settlement of the influent and the effluent; effects of ventilation 

and temperature; nitrification in the secondary treatment plant; 

a
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the biological nature and quantity of film accumulated. 

A. Nature of Media. 

In order to compare various removal efficiencies of biological 

filters, it is necessary to define parameters for the media employed. 

One such parameter is the specific surface area. This term can be 

defined as the total surface area of unit volume of media. 

The grade of any one type of mineral media chosen is often a 

necessary compromise between the specific surface area and the pore 

Size. The greatest surface area per unit volume is obtained with 

the smallest grade of media, but as the size of the media decreases 

there is a concomitant decline in the mean pore size which may lead 

to problems of "ponding", a clogging of the filter bed interstices. 

The significance of the particle aige on the specific surface area 

and void capacity has been described by Schroepfer (1951), Wukash 

and Bloodgood (1966), and by Bruce (1968). 

-Schroepfer and Bruce also consider the importance of particle 

shape; both workers found that within one size grading of particles 

an increase in irregularity of the media caused a significant 

increase in the void capacity, which may help prevent ponding of 

the media as a result of film accumulation. The particle shape and 

size affect the pore size distribution as pointed out by Bruce (1968). 

Media of a configuration that provides large void capacities of very 

small pores are of limited suitability for biological filters, since 

such pores may be quickly blocked. 

It was appreciated in the 1930s and 1940s that the size of media 

had a significant effect upon the treatment of used waters. Jenks 

(1937) using a standard volume stated that "it appears that increased 
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size of rock does not condition the degree of purification so much 

as the time required to attain it", meaning that preteen recirculation/ 

feed ratios were necessary, to increase the retention time, with 

ieee size of media. This is due to the decreasing surface 

area of microbial film available to effect purification. Goldthorpe 

and Nixon (1942), attempting to treat sewage by two stage filtration, 

of which the primary stage was a high-rate filter, appreciated the 

significance of surface area upon filter performance. Unfortunately 

the value of their studies was reduced by the manner in which the 

filters were packed and also the outbreak of World War 11, which 

. resulted in a marked change in the nature of the sewage. 

Levine et al. (1936) succeeded in increasing the rate of 

filtration of sewage by the use of ceramic media. The media used 

were various sizes of Raschig pie ~ hollow cylinders of diameter 

equal to their length. The ceramic media showed a greater BOD 

removal in terms of quantity and efficiency over conventional media. 

.The filters could be satisfactorily loaded at high rates because of 

the high void capacities and comparatively high specific surface area. 

Comparative studies on the efficiency of BOD removal by various 

grades of natural media carried out by Thompson (1942), Hawkes (1952), 

Hawkes and Jenkins (1955), Truesdale et al. (1961) and work on 

ceramic media by Levine et al. (1936) have all indicated that the 

greatest efficiency and total BOD removal occurs in-filters with the 

greatest specific surface area. However, as noted by Thompson (1942), 

Hawkes and Jenkins (1955), and Truesdale and Eden (1963), the smallest 

grade of media are most likely to pond with a consequent fall in 

- efficiency. This result suggests that the optimum grade of media 

in a given situation is the smallest in which an accumulation of solids 

does not block the voids. 9



Since the advent of plastics, it has been possible to design 

packings which have far greater specific surface areas than the 

etone media commonly used, whilst maintaining a much higher void 

eaperity (usually greater than 90%). Such media may have regular 

pore sizes (that is, of uniform distribution), which are of much 

greater dimension than that of the mineral media and hence bridging 

by the film accumulation and subsequent blockages are reduced. 

Many of the advantages and disadvantages of plastic media in 

comparison to natural media have been listed by Chipperfield (1966) 

and Landine (1972); a summary of which is given below. 

Advantages. 

4. Plastic media can be designed with high void capacity of 

large regular pore size whilst maintaining a large surface 

area greatly limiting the likelihood of ponding. 

2. Much higher specific surface areas are feasible than for 

mineral media, therefore high hydraulic loadings may be 

applied and consequently the size and volume of filters 

may be much less. 

Se Plastic media is much less dense than mineral media, even 

when covered with a thick bios, hence filter structural 

costs can be markedly reduced. 

4. Because of the light weight of plastic media, filters may 

be quickly installed in situations where an immediate 

temporary solution to a waste problem is needed. 

Disadvantages. 

1. Plastic media tends to be more fragile than mineral media 

and could be subject to greater damage; particularly to the 
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surface of filters during maintenance operations. 

2. Plastic media is more expensive than mineral media per 

jvolume. 

3. Plastic media such as Cloisonyle and Flocor need uniform 
/ 

distribution of the waste over the surface of the filter 

since little lateral spread is possible within the filter. 

Table 2.1 gives an indication of the ranges of specific surface 

areas and void capacities of various media. Comparative studies 

of loadings and removal efficiencies of plastic media have been 

carried out during the last decade in G.B. From results of 

experimental filters at Derby and Cheltenham, Joslin et al. (1971) 

found that the BOD removal per unit surface area would appear to 

be similar for both mineral and synthetic media, although the 

relationship between BOD removal and specific surface area is not 

linear, 

Work reported by Bruce and Merkens (1970) suggests that the 

physical configuration of the media may have a significant effect 

upon the performance. The particular media (Cloisonyle) referred 

to presents only vertical surfaces and allows no lateral spread 

of the sewage; consequently, good distribution of the feed over the 

filter is vital. 

Plastic media of the varieties listed in Table 2.1 have enabled 

hydraulic loadings. of up to lim /m?/a to be applied to the primary 

filters but studies at the Water Pollution Research Laboratory 

(Bruce and Merkens 1970) have shown that increasing hydraulic loading, 

“in excess of that required to completely wet the surface area of the 

film, results in a decline in the percentage BOD removal, although 
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Table 2.1 Specific surface areas and percentage void capacity 

of _various media. 

  

  

SPECIFIC PERCENTAGE 

MEDIA CHARACTERISTICS SURFACE VOID 

AREA m°/m? CAPACITY 

Rounded gravel (a) 25 mm a inch) 445 42.8 

Rounded gravel (a) 63.5 (23 ins) 65 46.2 

Rock (a) 25 mm (1 inch) 4h0 51.3 

Rock (a) 63.5 (23 ins) 90 52.7 

Clinker (a) 25 mm (1 inch) 200 53.8 

Clinker . (a) 63.5 mm (23 ins) 120 57.0 

Slag (a) 25 mm (1 inch) 195 38.9 

Slag (a) 63.5 (2% ins) 405 42.0 

Slag (c) 100 mm (4 ins) 4g = 

Slag (c) 125 mm (5 ins) 10 - 

Granite (c) 100 mm (4 ins) 4g - 

Crushed basalt (c) 63.5 - 125 mm _ 45 - 

Flocor E (>) PVC modular 85 98.0 

Flocor M (>) Packings 135 98.0 

Flocor RS PVC Random 2ho 94.0 

Flocor R2S Packings 440 94.0 

Biopac 90 PVC Random 85 91.0 

Biopac 50 (ad) Packings © a 4eh 91.0 

Dee ne me as? 93-0 

Cloisonyle (b) eee pence 220 9.0 

Surfpac (b) Modular PVC sheets 82 94.0 
standard 

Surfpac (b) Modular PVC sheets 187 94.0 
crinkleclose 

  

(a) Data after Truesdale and Eden (1963) 

(b) Data after Bruce (1970) 

(c) Data after Bruce et al. (1974) 

(a) Data after Banks et al. (1974) 

Manufacturers: (1) ICI Ltd., (2) Hydronyl Ltd., (3) Mass Transfer, 

(4) Cegadur & Co. Ltd. 
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the absolute weight of BOD removed fo increase. Therefore such 

high hydraulic loadings, though not creating any maintenance 

problems, are not necessarily suited to two stage filtration most 

conceal being considered. Recent studies have indicated hydraulic 

loadings of plastic media in the range 6 - 12 m/m?/a of average 

strength sewage produced settled effluents of suitable BOD strengths 

for secondary treatment, where the intention is to achieve a 

nitrified effluent of R.C. standards (Joslin et al. 1971). 

B. Retention Times. 

In many studies, the retention time of liquids within filters 

has been shown to be a factor regulating the degree of biological 

purification occurring (Bruce 1970, Bruce and Merkens 1970, Schulze 

1960, Eckenfelder 1961). In what manner the retention time affects 

BOD removal and other ‘purification processes has not been 

satisfactorily explained as yet. However, it is thought that 

increasing the retention time up to a certain value does result in 

an improved effluent from the filter. 

The retention time of any filter is governed by the media 

characteristics, hydraulic loading, the frequency of dosing, and 

the degree of film accumulation. 

In many of the theories presented to explain the effect of 

pevention times, the degree of biological film activity has not 

been regarded as a separate significant factor, which according to 

results shown by Craft and Ingols (1973) clearly has some importance. 

Germain (1966) stated "Waste residence time within the filter is an 

indirect parameter; it does not affect the rate of reaction, but 

merely defines how close to completion the reaction can proceed 
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within the waste residence time provided". 

The media characteristics aay affect the retention time 

of a filter. The distribution of the surface area (i.e. the 

proportions of vertical, inclined and horizontal surfaces) may 

have an effect (as suggested by Bruce and Merkens 1970). The 

pore size distribution also has a very significant effect upon 

retention time curves. The more uniform the pore sizes within 

a filter the less the spread of the tracer concentration versus 

time curve, which means that any fraction of the applied liquid 

has a more equal opportunity to receive biological purification. 

The pore size itself can have an important effect upon the 

retention time of a liquid; film accumulation in smaller pores 

having a greater effect in retaining the liquid than in larger 

pores. 

The greater the specific surface area of any medias the 

longer the retention time is likely to be; assuming similar surface 

tension forces, the larger the surface area available, the greater 

the volume. of liquid that may be retained. This trend is shown 

by studies at the Water Pollution Research Laboratory reported by 

Bruce and Merkens (1970). 

Another feature of filter media, particularly synthetic, is 

the degree of surface wetting. Modular media such as Flocor and 

Surfpac, and also tubular media such as Cloisonyle, must have a 

uniform distribution of liquid to the upper surface, since the degree 

of lateral spread within the filter is séverely restricted. The 

minimum irrigation rate to obtain complete surface wetting of Flocor 

E is said to be 1.47 me fney, hour (Askew 1969). 

The hydraulic loading applied to a filter also affects the 
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retention time. In effect, increasing the hydraulic loading is 

comparable to reducing the available surface area of the media. 

That is, increasing the hydraulic load tends to reduce the period 

of retention and may also reduce the overall length of time over 

which all the liquid is retained, as shown by Meltzer (1962). 

According to Howland et al. (1963), the theoretical contact time 

varies with the third or two thirds inverse power of the hydraulic 

load depending on whether the flow is turbulent or laminar. In 

practice, the value has been found by Burgess et al. (1961) Eo be 

0.408; 0.760 by Meltzer (1962), 0.575 by Bryan and Moeller (1963), 

0.480 by Germain (1966) and 0.930 by Rincke and Walters (1970). 

However this theoretical 'n' factor does not take into account the 

nature of the film attached to the media surface. The presence of 

. a film may reduce the available eur face area for flow and may also 

cause part of the flow to percolate the film, hence it is conceivable 

that in practice, 'n' may exceed two thirds. 

The degree of film accumulation has a very significant impact 

upon the retention characteristics of a filter. On low-rate filters, 

Solbe et al. (1974) have shown how film accumulation can increase the 

retention time two or three fold. Excessive uneven accumulation of 

film may result in short circuiting (Truesdale et al. 1961), that is, 

channelling of the liquid within the filter resulting in reduced 

retention times. The precise manner in which film accumulation 

affects the hold up of liquid has been the subject of controversy, 

(Meltzer 1962). The water within a filter may usefully be considered 

to be in three discrete but interchangeable phases. Water is retained 

within the film by integration into the biological material and 

absorption. This water may be in a state of dynamic equilibrium 
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with adsorbed water on the film. This latter water is considered 

to be retained by surface tension effects and other similar surface 

phenomena. A third form of water within the filter is that which 

is in motion through the filter at any given time. This water is 

easily displaced by the next dose to be applied and corresponds to 

the peaks shown in tracer concentration versus time curves. 

However the retention time of a liquid within a filter, as previously 

mentioned, is an indirect factor on purification. It may only 

give a guide to the period over which organic matter is retained 

within the filter. This organic matter may be in solid, colloidal 

or dissolved form. The organic matter within each phase may have 

its own retention characteristic which may differ from that of the 

liquid. 

In summary, high-rate filters have similar retention characteristics 

to low-rate filters; the most significant difference is the very short 

retention period, commonly of only a few minutes duration, whereas 

low-rate filters may have retention times measured in terms of hours. 

C. BOD Removal and Hydraulic Loadings. 

The use of large gradings of natural media and synthetic media 

of high void capacity allows treatment of wastes at high BOD and 

hydraulic loadings, without severe problems of film accumulation. 

Hydraulic loadings up to 24 m/m?/a have been reported (Bruce and 

Merkens 1970). However, it has been shown that as the hydraulic 

load, at a constant BOD strength, to a filter is increased there is 

a decline in the BOD removal efficiency, although the absolute quantity 

of BOD removed increases to a maximum, This phenomena is shown in 

figures 2.1 and 2.2. As a consequence, increasing the hydraulic 
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Figure 2.1 Relation between % BOD Removal and 

| Hydraulic Loading. 
| 

% BOD 

Removal 

Hydraulic Loading. 

Figure 2.2 Relation between Weight of BOD Removed 
  

and Hydraulic Loading. 

Weight 

of BOD 

Removed 

Hydraulic Loading.



loading at a given BOD strength results in a decline in the quality 

of the effluent. This has been observed by Levine et al. (1936), 

Tomlinson and Hall (1950) and Bruce and Merkens (1970). 

Enereae ite the hydraulic loading whilst maintaining a constant 

organic load by decreasing the sewage feed strength will, on a 

theoretical basis, reduce the concentration of food available for 

diffusion into the biological film hence the rate of BOD removal 

(that is, the driving force for purification has been reduced). 

Much of the early work on the effects of increased loadings 

has oon marred by not separating the effects of hydraulic and 

BOD loadings. This is particularly true of treatment theories. 

Rincke and Wolters (1970) clearly distinguish between the two 

factors. They also advocate the use of the specific surface area 

as a basis for comparison, rather than the volume of the media, 

which is in common usage to-day. If the nature of the media has 

‘no effect fe the biological activity of the film, then all types 

‘of media, when under the same loading conditions, with similar 

retention times, should remove similar quantities of BOD per unit 

of surface area. This in fact has been shown by studies at the 

Water Pollution Research Laboratory recorded by Bruce and Merkens 

(1973), although Banks et al. (1974) found no correlation between 

specific surface area and BOD removed. 

From Chipperfield (1966) and Bruce and Merkens (1973), the 

saturation loadings and maximum removal values shown in Table 2.2 

have been computed in terms of specific surface area. The apparent 

high efficiency of BOD removal by Flocor E recorded by Chipperfield 

could be a result of brief primary settlement of the feed. Another 

reason for the differences shown in BOD removal by Flocor E could 
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be the nature of the organic waste. It can also be seen that 

Cloisonyle, although having a high specific surface area, is 

easily saturated and has a.low BOD removal value, in comparison 

to Surfpac Crinkle Close and Flocor E. 

Table 2.2 Observed saturation loadings and maximum BOD 

removed for various media. 

  

WORKER MEDIA SATURATION MAXIMUM 
= BOD BOD 

LOAQING REMQVAL 

(g/m°/a) — (g/m°/a) 

  

Chipperfield (1966) Flocor E 70 35 

Bruce and Merkens (1973) Flocor B DS 9.4 

Bruce and Merkens (1973) Cloisonyle 20.5 5.5 

Bruce and Merkens (1973) Surfpac ; 27 8.8 
(Crinkleclose) 

  

Early work using synthetic media appeared to indicate the 

necessity of using tall tower -filters to-effect good removal values, 

Chipperfield (1966) and Germain (1966); however, more recent studies 

comparing the BOD removal per unit volume in a tall tower (7.4m) 

and a conventional depth filter (2.1 m) of Surfpac (standard) have 

shown comparable results (Bruce and Merkens 1970). 

In practice, the loadings of high-rate filters will be dependent 

upon the required results. Where a filter is to act as a "roughing" 

filter to reduce the strength of a trade effluent, high BOD loadings 

may be employed, since the most important factor may not be the total 

BOD load of the effluent, but limitations imposed by the site, 

variations in flow rates, and so on. A new sewage ree tnen works, 

needing to comply with the Royal Commission standards and wishing to 
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produce a fully nitrified effluent is concerned with the BOD 

strength of the settles sewage applied to the biological filters. 

It has been shown by numerous studies (Levine et al. 1936, Edmondson 

and Goodrich (1947), Tidswell (1960), and Hawkes and Jenkins 1964), 

that the greater the carbonaceous BOD reduction demanded of a 

biological filter, the less capable the bed is of effecting oxidation 

of nitrogenous compounds. Hence, when considering using a primary 

high-rate filter, it may be necessary to employ lower loadings in 

order to achieve a suitable effluent for application to secoridary 

nitrifying beds. 

In order to design a satisfactory treatment works, three factors 

concerning sludge production need to be ascertained; the volume of 

Sludge, its ability to settle and its dewatering properties. 

Unfortunately, information about ihede three factors is limited and 

also highly conflicting. Chipperfield (1966) stated that the volume 

of sludge produced is inversely related to the loading, whilst Hawkes 

_and Jenkins (1964) in their studies showed that the concentration of 

solids in the effluent was related to the loading. Askew (1969) 

concludes that between 0.2 and 0.3 kg. of sludge are produced per kg. 

of BOD removed, yet Bruce and Boon (1971) found that 0.6 to 1.0 kg. 

of sludge are produced per kg. of BOD removed, and state that the 

percentage volatile matter present was greater than that found in 

sludge from conventionally loaded filters. In 1973, Bruce & Merkens 

calculated an average production of 0.755 kg / kg BOD removed, and 

in 1975, Bruce et al. state that the overall production of sludge was 

much greater than from a comparable single stage filter. 

Considering the settlement of high-rate sludge, Banks et al. 

(1974) stated that the sludge was difficult to settle, and Tomlinson 
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and Hall (1950) found that increasing the loading reduced the 

settleability of the sludge. In contfast to these findings, 

Chipperfield (1966) and Askew (1969) suggested that high-rate 

sludges are easy to settle. Levine et al. (1936) found that 

the percentage BOD removal for a synthetic sewage increased 

with increasing load and suggested that the filter acted as a 

colloiding agent; however, Askew (1969) states that sludges 

from high-rate plastic filters "are wholly of secondary origin 

but differ markedly from other secondary sludges". 

Again, when comparing results obtained concerning the 

ease with which a sludge may be dewatered, conflict is frequent. 

Askew (1969) maintains that the sludge is more easily dewatered 

than other secondary sludges, Eden et al. (1966) consider the 

sludge not difficult to dewater, Joslin et al. (1971) state that 

- the sludge was easily dewatered. These results contrast to the 

various studies reported by Bruce et al. (1974) in which the sludges 

produced were difficult to dewater. 

Little attention has been paid to the effect of frequency of 

dosing to high-rate filters. Bruce and Merkens (1970) compared two 

frequencies of dosing to large grade slag and granite media. The 

intervals considered were three and five minutes; no significant 

differences were apparent in the treatment results. Bruce et al. 

(1970) compared continuous dosing to a psuedo dosing interval of 

2.5 minutes. Again no significant difference was observed in the 

results. On low-rate filters, the frequency of dosing has been 

shown to have significant effects upon film accumulation and filter 

efficiency (Hawkes and Shephard 1970 and Hawkes and Shephard 1972). 

The frequency of dosing on low-rate filters are of the order 10 - 40 

minutes. On such filters the retention times are much greater than 
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for higher rate filters, as previously mentioned; hence for high- 

rate filters the frequency of dosing may be expected to be much 

higher. However, in the two high-rate studies mentioned above, 
| 

(Brude and Merkens 1979 and Bruce et al. 1970), the frequency could 

be too great and greater variations in the frequencies should be 

eeines: Because of the high loadings and particularly the high 

voidage of high-rate filters, it is quite probable that variation 

of the frequency of dosing may have a much less important effect 

upon film accumulation than occurs on low-rate filters. 

D. Film Accumulation. 

Film accumulation results from an interplay of factors, the 

strength and hydraulic load of the sewage applied are two important 

related factors, and also the frequency of dosing, as mentioned 

previously. 

Under low-rate conditions, biological filters have suffered 

ponding due to to the strength of a feed. Strong sewages will tend 

‘to permit rapid growth rates of the bioss If the dosage is such 

that no endogenous respiration can occur, or the temperature too low 

to permit an active filter bed grazing fauna, then the biological 

growth may accumulate, ultimately clogging the interstices resulting 

in reduced BOD removal. Too high an application rate will induce 

ponding on low-rate filters. 

With high-rate filters which have been specifically designed for 

high-rate treatment, ponding as a result of film accumulation does not 

appear to be such a serious problem, although difficulties did arise 

at Reading (Barraclough 1954). 

One reason why film accumulation is not a serious problem on 
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high-rate filters is the pore sizes. High-rate filters, as 

previously mentioned, have much larger pores than low-rate filters, 

hence to block such a filter requires a much greater thickness of 

film. Such thick films have not been commonly observed on high- 

rate filters, possibly because the film does not have sufficient 

mechanical strength to survive high application rates, although 

evidence provided by Huekelukian (1945) indicates that the flushing 

action of high flows is insufficient to cause a scouring of the 

film. Indeed, Heukelukian states "it appears from these results 

that the volumetric rate of application influences the film 

accumulation only to a limited extent and that the important factor 

is the total BOD and suspended solids load applied". These 

findings have also been confirmed by Tomlinson (1946) and Hawkes (1959). 

The nature and condition of the accumulated film also has a 

significant effect upon its ability to oxidise waste material. 

This has been described by Hawkes (1961). 

+ The type of waste water to be treated also has a significance 

upon the development of the film. Dairy wastes and also other strong 

carbohydrate wastes, cause the growth of a thick fungal film which 

whilst having a greater depth effecting oxidation than a bacterial 

film (Tomlinson and Snaddon 1966) can cause ponding difficulties. 

The biology of high-rate filter film will be referred to later. 

Bruce et al. (1970) compared the film accumulation on mineral 

and plastic media. Whilst the accumulated film on the mineral 

media was approximately in relation to the specific surface area, 

(expressed as‘a percentage saturation of the voids), and similarly 

on the plastic media, the latter types of media accumulated a much 
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smaller quantity per unit surface area. This did not appear to 

affect the BOD removal efficiences, which were related to the 

specific merce areas. Therefore it seems reasonable to conclude 

that the performance of the film was not directly related to the 

biomass. (It should be mentioned that the biological composition 

of the film was similar on all filters). Bruce (1970) found no 

significant variation in. film thickness with depth, and therefore 

expressed the results as the average thickness throughout the depth. 

It was shown that in common with low-rate filters, high-rate filters 

also increased film thickness in winter, although the effect on 

efficiency was not so marked, due to the larger pore sizes. 

Hawkes and Jenkins (1964) compared the efficiency of double 

filtration and alternating double filtration. They found that 

using mineral media of 1" - 23" grading, film accumulation was 

greatest on the high-rate primary filter of the double filtration 

pair during winter months, even though a low frequency of dosing 

chad been employed. Also, the nature of the film differed considerably 

on the different beds. 

E. Temperature and Ventilation. 

Temperature and ventilation are factors which can affect the 

activity of the biological film and as such are factors affecting 

the purification efficiency of the filters. 

Schroepfer et al. (1952) considered the Sewage temperature to 

be a more important factor regulating the bed temperature than the 

air temperature due to the differences in the specific heat. and 

volumes flowing through the bed. Studies on low-rate filters at 

the Water Pollution Research Laboratory reported by Bayley & Downing 
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(1963) have shown such to be the case. 

Temperature has an important effect upon Bilonice! activity: 

the higher the temperature the greater the biological activity, 

and hence the greater the oxidation of the organic waste. Asa 

result of this, film accumulation would be expected to be greatest 

during the summer months. Such is not the case. . Temperatures 

encountered also have an effect upon the macrofauna of the beds. 

During winter months the temperature ae fall below a critical 

value preventing the macrofauna from completing their life-cycles, 

hence. their populations are reduced, and they may also be markedly 

reduced in activity, (Reynoldson 1939 a & b, Thompson 1942, Solbé 

et al. 1974). 

Due to the design characteristics of plastic media, it may be 

expected that the ventilation may be greater than in mineral media, 

and that because of the low specific heat and bulk density will tend 

to have poorer heat buffering capacities than mineral media. 

Therefore a slightly greater reduction in bed temperature could be 

expected when the air temperature is particularly low, and also an 

increase in the summer, if the air temperature is particularly high. 

In the case of high-rate filters using mineral media, the heat applied 

to a given mass of media will be greater, but due to the increased 

pore size of the large media, increased ventilation may increase heat 

loss, when compared to a low-rate filter. 

In contrast to the expectations of Schroepfer et al. (1952), 

Bruce and Boon (1971) conclude that the effect of temperature on 

filter performance appears to increase markedly with increased load; 

‘whilst results gathered by Banks et al. (1974) suggest that the 
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importance of temperature as a factor governing BOD removal was 

less than that observed at the Water Pollution Research Laboratory. 

Where a high-rate filter is employed as a primary stage ina 

multistage treatment of used waters, the drop in temperature of 

the liquid through the filter and the sedimentation tank may be 

of great significance. Hawkes and Jenkins (1964) considered that 

temperature was not an important factor in accounting for the 

difference between alternating double filtration and double 

filtration; however, Hawkes in discussion of Bruce et al. (1995) 

suggested that poor nitrification on the secondary filter of a 

double filtration plant could be attributed to the heat loss in 

the high-rate primary filters. 

In order that the microbial film may carry out its metabolic 

activities without impediment, ventilation of the biological beds 

is necessary to supply sufficient oxygen. The manner in which 

-the ‘beds are naturally ventilated depends upon temperature differences, 

air density differences and the dimensions of the bed. The problem 

is complex. Johnson (1952) and Petra (1958) give clear practical 

and theoretical accounts of the subject. Levine (1940) showed 

that bottom ventilation or at least a facility for air flow through 

the bottom of the bed to be of great importance when treating dairy 

wastes. ‘Truesdale & Eden (1963) studying low-rate filters, 

considered the natural ventilation to be greatly in excess of the 

amount required to provide metabolic oxygen.Banks et al. (1974) 

studying high-rate filters restricted bottom ventilation and 

observed no deliterious effects. It therefore appears that filters 

not suffering from too thick an accumulation of film are adequately 

ventilated. 
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F. Ecology of High-Rate Filters. 

Information concerning the ecology of high-rate filters is 

severely limited. Most references to the biology of a filter 

re le incidental and not a primary consideration of the 

studies being carried out. Early indications from filters 

(Heukelukian 1945) were that increasing loads to filters resulted 

in a decrease in the range and populations of the grazing fauna. 

From results presented by Reynoldson (1941, 1942) and 

Thompson (1942) it also appears that the fauna is restricted by 

high loadings. Reynoldson (1941) showed for a high-rate primary 

' filter at Huddersfield, treating a sewage containing a toxic 

chemical waste, that the macrofauna was restricted to two species, 

of which only the insect, Psychoda alternata, was present in 

significant numbers. A most striking feature of the high-rate 

filter was the absence of oligochaete worms. Hawkes & Jenkins 

(1964) also found that there was a comparativly low population of 

-enchytraeid worms in a primary high-rate filter under study. In 

the case of the latter workers, the period of study of the particular 

filters was sufficient for several life cycles of worms: to have 

occurred and hence a large population to be present. One possible 

explanation for the lack of oligochaetes is the size of the media 

employed. These worms display marked thigmotaxis (Terry 1951) and 

the large pores present in high-rate filters may not provide suitable 

habitats to support large populations. 

Reynoldson (1942) and Usinger & Kellen (1955) noted a summer 

film accumulation and decline in the Psychoda alternata populations 

‘of high-rate filters. Hawkes & Jenkins (1964) noted a decline in 

the number of enchytraeids in an intermediate rate primary filter, 

27



with a simultaneous accumulation of septic film. These results 

suggest that at the peak summer temperatures the oer of the 

macrofauna cannot cope with rate of film production. They also 

found a spring time increase in Psychoda, a feature in common with 

two alternating double filtration beds treating the same sewage. 

This spring increase was assumed to be at the expense of the 

enchytraeid population. Anisopus fenistralis larvae were found 

to be most abundant in late winter. Rincke & Wolters (1970) 

observed the maturation of a high-rate filter over a period of 

seven weeks. The growth developed in the following order:- 

_ flagellate protozoa, ciliate protozoa, nematodes, sessile ciliate 

protozoa, and Psychoda larvae. Curds & Cockburn (1970) in a survey 

of protozoa in high-rate filters found the following ciliates to 

be present:- Colpidum campylum, C. colpoda, Chilodonella cucullulus, 

Paramecium caudatum, Epistylis plicatilis, Tachysoma pellionella, 

and Hemiophrys fusidens. Ingram (1959) also found the ciliates 

to be the predominant protozoa present. Banks et al. (1974) also 

mention the presence of ciliate protozoa. In contrast, Bruce and 

Merkens (1970) and Bruce et al. (1970) found flagellates to be the 

dominant protozoa, and apart from Opercularia, ciliates were absent. 

These authors also mention the presence of large numbers of nemotode 

worms. 

Another feature of high-rate filters is the form of the zoogleal 

film. Reynoldson (1942) reported a species of Oospora (Geotrichum) 

to be the dominant member of the film. This fungus could be 

dominant due to the nature of the sewage being treated at Huddersfield. 

_ Cooke & Hirsch (1958) using glass slides as a substratum for the 

development of growths in high-rate filters found that the order of 
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abundance of fungi was:- Fusarium aquaeductuum, Geotrichum 

candidum,. and Pullularia pullulans. Occasionally in early 

spring or late autumn, isolated colonies of Leptomitus Lacteus 
| See 

worel cbearved: Hawkes & Jenkins (1964) merely refer to the film 

on high-rate filters at Birmingham as being of a bacterial/fungal 

nature. Bruce & Merkens (1970) mention the presence of a 

bacterial and fungal association. The most evident member of 

the bacterial association was Sphaerotilus paludosus and the fungal 

member was tentatively described as a species of Subbaromyces. 

Banks’ et al. (1974) studying pilot high-rate filters at Ipswich, 

described the film to be of a bacterial nature. 

Algae may occur on the surface of filters. Cooke (1959) 

considered diatoms and green algae to be the dominant members on 

high-rate filters in the U.S.A., in contrast to the blue green algae 

on low-rate filters. 

G. Summary. 

It has been shown that information concerning the operation 

of high-rate filters is limited in various aspects and that many of 

the results so far obtained are conflicting. The significance of 

retention times on filter performance has not been elucidated. In 

a qualitative sense, the effects of hydraulic and gravimetric loadings 

upon filter efficiency have been described, but further results are 

required to quantify the effects. It appears that high-rate filters 

using appropriate media do not suffer severe film accumulation in 

winter, and there is evidence to suggest that the restricted fauna 

cannot cope with the rate of film production at high summer temperatures. 

Knowledge of high-rate filter biology is scanty. The. full 
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community of organisms and their significance have not been 

evaluated. 

It is likely that limits imposed on the quality of effluents 

entering water courses will become more stringent. In the 

immediate future, limitations on the concentration of unoxidised 

nitrogen will most probably be increased, since ammonia at high 

concentrations is toxic to fish, and encourages primary production, 

hence imposing a BOD load on the receiving water. To meet more 

stringent effluent quality controls, it is likely that greater use 

will be made of double filtration, alternating double filtration 

and primary filtration before an activated sludge stage. To obtain 

maximum nitrification, information regarding the permissible BOD 

loading on secondary filters will be required. This in turn may 

determine the hydraulic loading ofa particular sewage which can 

be applied to the primary high-rate filter. 
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3. A REVIEW OF LITERATURE ON THE NITRIFICATION PROCESS AND 

ITS ECOLOGICAL SIGNIFICANCE. 

When biologically oxidisable matter enters a watercourse, the 

microbial organisms erecent in the effluent and or the watercourse 

begin to oxidise the material. This process utilizes the dissolved 

oxygen in the water and may deplete the dissolved oxygen concentration 

if the rate of removal is greater than the rate of reaeration. Due 

to the flow of a river the maximum oxygen depletion will be some 

distance below the Bout of effluent discharge. Below this point 

of maeinun oxygen depletion, there is a zone of recovery where the 

respiratory activity is gradually reduced due to progressive reduction 

in oxidisable organic matter present. Oxidation of the organic 

matter results in the synthesis of saprobic organisms; bacteria, fungi 

and protozoa, some of which form macroscopic growths commonly known 

as sewage fungus. The development of sewage fungus and the associated 

oxygen depletion have an adverse effect upon the ecology of a stream 

(Hawkes 1963). 

During the oxidation of organic matter, nitrogenous materials such 

as proteins and amino acids are converted to ammonia, as an end product. 

The ammonia is subsequently oxidised to nitrite and then to nitrate 

(Beckman et al. 1972). This process is known as nitrification; it will 

further deplete the oxygen concentration in the watercourse. The 

removal of ammonia is however beneficial. Chlorination of water 

supplies containing ammonia is more costly and leads to the formation 

of chloramines which cause tastes and odours of the water (Nicholson 

1973). If the water is used as a potable supply then a limit of 

0.05 mg/1. ammoniacal nitrogen for treated water and 0.5 mg/l for raw 

“water is advised by the World Health Organisation (1970). Ammonia can 

also exert a toxic effect upon fish. 
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The simplest way eenee ammonia is by oxidation to nitrite 

and nitrate; but increasing the oxidised nitrogen concentration 

itself can have a deleterious effect on a watercourse. Excessive 

growths of algae and other aquatic vegetation can seriously alter 

the flow characteristics of a river, causing a nuisance to 

agriculture, transport and recreational uses of a watercourse. 

The growths modify the ecology of the watercourse, directly by the 

physical effects of excessive growths, and also by causing oxygen 

depletion of the water at night (Shindala 1972). Algal blooms 

can also cause difficulties in the treatment of water for potable 

uses. Nitrogen as nitrate is also toxic to human juveniles, 

causing the condition methhaemoglobin. Infants are susceptible 

to excess nitrate in drinking water when the disease is also known 

as the 'blue baby syndrome’. Therefore the discharge of a fully 

nitrified effluent whilst avoiding the effects of sewage fungus 

growth, can cause problems of eutrophication, if no other factor 

“inits growth. Where an effluent is nitrogen rich and/or stream 

dilution is low, it may be necessary.to remove the nitrogenous 

compounds. The effects of nitrogen in its various forms on streams 

has been described by Flaigg and Reid (1954). 

During the last century, many of the effects of organic 

pollution on watercourses, outlined above, were being enumerated, 

(Kolkwitz & Marsson 1908, Kolkwitz & Marsson 1909). It was also 

known during the latter part of the nineteenth century that deamination 

of nitrogenous organic constituents occurred in biological filters. 

Evidence obtained by the Royal Commission on Sewage Disposal indicated 

that the action of a septic tank was to increase the free ammonia 

concentration, reduce the albuminoid ammonia concentration and cause 
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a slight increase in oxidised nitrogen. Watson, carrying out 

investigations into biological filters at Birmingham in 1906 

(Sidwick & Murray 1976 c) notes that 'the greatest reduction in 

albuminoid ammonia and also in oxygen absorbed figures occurs 

within the first eighteen inches of the filter bed. Nitrates 

were not present in any appreciable quantity at a depth of twelve 

inches; at a depth of three feet, considerable quantities were formed'. 

Due to the increased demand for water, treated sewage effluent 

may form greater than one eighth of a river flow at any one point. 

Therefore it may be necessary to treat the sewage to greater than 

: Royal Commission Standards both in order to minimize the effect on 

a river's ecology and to minimize treatment requirements of any 

abstracted supply downstream. 

Where an effluent already attains R.C. Standards for BOD & SS, 

it is possible to reduce the suspended solids doncentha tion by 

physical means of tertiary treatment, such as microstrainers 

(Truesdale et al. 1964). The removal of solids by such a method 

has an associated BOD removal. However, such tertiary treatment 

does not have any significant effect upon the nitrogen status of an 
. 

effluent. For reasons previously outlined, it is necessary to 

obtain a nitrified effluent at least; due to the increasing re-use 

of waters, it is likely that nitrogen removal may become necessary. 

Sewage effluents contain relatively weak concentrations of ammonia 

and nitrate which render physical methods of nitrogen removal 

uneconomic. In certain instances where abstraction does not demand 

a low nitrogen concentration in the water, it may prove feasible to 

‘limit ecological difficulties by chemical precipitation of phosphate 

from sewage effluents. Such occasions are likely to be limited in 
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number, and generally it will be necessary to produce a nitrogen 

low effluent. Denitrification occurs bacteriologically when 

anoxic conditions and a suitable carbon source are available. 

(Painter 1970, Brezonik 1977, Christensen & Harremoes 1977, 

Painter 1977). 

Many workers have shown that carbonaceous oxidation and 

nitrification can take place within the same filter, but it is 

known that the upper region of a filter is the site of carbonaceous 

oxidation whilst nitrification occurs in the lower region of a filter, 

(Jenkins 1931, Eckenfelder & Hood 1950, Balakrishnan & Eckenfelder 

1969, Beckman et al. 1972, Duddles & Richardson 1974). Barritt in 

1933 showed that nitrifying organisms do occur in all sections of 

a sectional biological filter, although nitrification tended to increase 

towards the base of the filter. These findings were supported by 

work reported by Tomlinson (1942); using a six foot deep filter, 

- greatest nitrification was shown to occur between three and five 

-feet below the surface of the bed. 

The oxidation of carbonaceous matter and nitrification of 

ammonia are carried out by two distinct groups of organisms. 

Carbonaceous oxidation is effected by heterotrophic organisms which 

utilize complex organic materials directly for incorporation in their 

development and energy requirements. Nitrification has been shown 

to be carried out by predominantly autotrophic bacteria requiring 

simple inorganic nutrients for their metabolism. Autotrophic 

nitrification involves the oxidation of ammonia to nitrite and then 

to nitrate; the organisms responsible deriving their energy from 

these oxidations rather than the oxidation of organic materials. 

Heterotrophic nitrification can also occur, although such oxidations 
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are not the sole energy sources for the organisms involved. The 

literature concerning microbial inorganic nitrogen metabolism has 

been extensively reviewed by Painter (1970 + 1977), and Sharma and 

Ahlert 1977). Nitrosomonas (europaea and monocella) and 

Nitrococcus have been shown to be important autotrophic bacteria 

in the conversion of ammonia to nitrite (Bergey 1957). Other 

genera have been suggested but their abilities are questionable; 

Two genera of organisms capable of oxidising nitrite to nitrate 

are well established:- Nitrobacter agile and Nitrocystis. The 

autotrophic conversion of ammonia to nitrite may be expressed as 

follows:~- 

Nitrosomonas a. 2 

Cie a oo 2H,0 + 2H + energy 

x Nitrobacter 
eno, + O5 —_—> eC, + energy 

A large number of heterotrophic species have been shown to be 

capable of forming nitrite. Cutler & Crump (1933) cited 104 

.Species which produced low concentrations of nitrite, isolated 

from biological filters. Fisher et al. (1956) isolated a number 

of Gram negative rods which converted ammonia to nitrite. However, 

Eylar & Schmidt (1959) examining 1331 heterotrophic soil isolets, 

could find none that formed nitrite in significant amounts, 

Autotrophic nitrifying organisms, in contrast to many heterotrophs, 

have been shown to have very slow growth rates and also that the 

yield per energy unit utilised is very low. 

The nitrifying ability of a biological filter may be affected 

by the following factors outlined by Eckenfelder (1961):- the 

hydraulic load, the organic load, the nature of the sewage, the 

presence of inhibitors, the volume and type of media, depth of the 
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filter, ventilation and temperature. Of these factors, the 

effects of temperature, organic load and hydraulic loading upon 

nitrification will be discussed. 

| 
A. The Bffect of Hydraulic Loading on Nitrification. 

/ Edmondson & Goodrich (1947) reported that an increase in 

hydraulic loading resulted in a decrease in the nitrification 

achieved by a biological filter. The same effect was also reported 

by Grantham (1951). Lumb & Eastwood (1958) employing recirculation 

ina two stage filtration plant found that increasing the hydraulic 

Toad us the secondary filter reduced nitrification. Tomlinson 

(1946) comparing single filtration and alternating double filtration, 

found that increasing the hydraulic load to a single biological 

filter caused decreased nitrification through the filter, whilst 

increasing the hydraulic load to an alternating double filtration 

system caused a decrease in nitrifying ability of the filter film 

at all depths within the primary filter, but the decrease was only 

apparent in the upper three feet of the secondary filter. Hawkes 

and Jenkins (1964) found that increasing the hydraulic load to a 

double filtration plant and an alternating double filtration plant 

also reduced nitrification. Balakrishnan & Eckenfelder (1969) and 

Duddles & Richardson (1974) both found a trend of decreasing 

nitrification with increasing hydraulic loading. Bruce and Boon 

(1970) stated that at high hydraulic loadings (3m?/m?/a and greater) 

nitrification only partially occurred if at all. 

The effect of increasing hydraulic load whilst maintaining a 

constant organic load to a biological filter is to increase the 

‘area of carbonaceous oxidation; that is, the depth of heterotrophic 

film within the filter is increased, reducing the zone of nitrification 
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(Bruce 1969). 

B. The Effect of Organic Loading upon Nitrification. 

Generally, it appears ‘that the greater the organic loading 

imposed upon a biological filter the less the nitrification that 

occurs. The precise effect of organic matter upon nitrification 

is uncertain, It is possible that the organic matter has a 

directly inhibiting effect, and indirect effect of reducing the 

oxygen available due to the activity of the heterotrophic 

pretense and also the heterotrophic organisms, due to their far 

greater growth rate compared to the nitrifiers, physically dominate 

the filter film excluding the nitrifiers. That the heterotrophic 

organisms inhibit nitrification by the indirect effect of limiting 

the oxygen available has been shown by Barritt (1933), Heukelukian 

(1947), and Tomlinson & Snaddon (1966). Jenkins (1931) employing 

a sectional pilot biological filter found that glucose did not 

inhibit nitrification. Similarly, Painter & Jones (1963) using 

fresh sewage, glucose and peptone, found.no inhibition of nitrification. 

Tomlinson (1942) reported that as the BOD concentration increased 

nitrification decreased. Heukelakian (1942) stated that nitrification 

will only occur when the bulk of the carbonaceous material has been 

removed, and that nitrifiers do not require organic carbon for growth. 

Lumb & Eastwood (1958) showed that as the BOD concentration of a 

liquor decreased with depth in a biological filter, nitrification 

increased. Eckenfelder & Hood (1950) considered the carbon to 

nitrogen ratio to have a significant effect upon nitrification; 

nitrification ceasing when this ratio becomes excessive. Painter 

(1970) suggested that athigh C / N ratio heterotrophic organisms 

develop rapidly, utilizing available ammonia for their own synthesis. 
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However, in sewage treatment practice, the ammonia concentration is 

normally sufficient for carbonaceous oxidation and the energy 

requirements of autotrophic nitrifiers. Beckman et al. (1972) 

consider the organic carbon concentration to control the population 

ayaee en of heterotrophic bacteria; increasing organic carbon 

concentration causing the heterotrophic organisms to dominate over 

nitrifiers. Hawkes (1963) stated that the absence of nitrification 

in the presence of carbonaceous material is due to the slower growth 

rate of the nitrifying organisms, causing them to be outgrown by the 

quicker development of the heterotrophic organisms. This rie is 

supported by work reported by Painter (1970); Nitrosomonas was shown to 

be capable of growth in 10% dextrose solution when in pure culture. 

Bruce & Boon (1971), studying high-rate biological filters, 

found that increasing the organic loading progressively reduced the 

degree of nitrification, and that the removal of ammonia at high 

organic loads may be negligible. However, Duddles & Richardson 

(1974) on tnereasing the BOD loading on a two stage filter plant 

from approximately 0.1 ke/n/al to 0.24 kg/m?/a did not observe any 

deterioration in nitrification. Bruce (1969) explained decreasing 

nitrification with increased organic loading by suggesting that 

increasing competition by the heterotrophic organisms in the lower 

parts of the filter resulted in fewer autotrophic organisms being 

present. Bruce et al. (1975) considered that poor nitrification 

in a two stage biological filtration system was due to excessive 

BOD loading on the secondary stage. However, Hawkes in discussion 

of Bruce et al. (1975) considered the BOD concentration of the feed 

to the secondary filter to be the critical factor. Work reported 

by Hawkes & Jenkins (1964) showed good nitrification in a double 

filtration plant where the BOD concentration of the secondary feed 
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was between 30 and 40 mg / 1, ‘The BOD concentrations of the feeds 

applied to the secondary stage of the filters reported by Bruce et 

al. (1975) were between 75 and 167 mg/ 1, Reeves (1972) suggests 

that the secondary filter of a two stage plant will nitrify 

successfully where the BOD concentration applied is less than 40 

to 50 mg / 1. Davies (1973) found that a BOD concentration of 

greater than 40 mg / 1. had an inhibitory effect upon nitrification. 

It can be seen that the literature indicates a suppression of 

nitrification in the presence of organic matter; the autotrophic 

nitrifying organisms being restricted by the quicker growth of the 

heterotrophic organisms. Therefore nitrifying organisms are 

restricted to the lower regions of a filter where the reduced 

organic concentration allows the nitrifying organisms to compete 

with the heterotrophic oxidisers. 

c. The Effect of Temperature Upon Nitrification. 

When considering two stage or multi stage treatment of sewage, 

: the effect of temperature upon nitrification may be of major 

importance. The effect of temperature upon the growth of pure 

cultures of nitrifying organisms has been studied by various workers. 

Buswell et al. (1954) reported the optimum growth of Nitrosomonas 

to be in the range 30° - 36°C, with no significant growth below 

5°c. The temperature range for the growth of Nitrobacter has been 

reported by Nelson (1931), Deppe & Engel (1960) and Laudelot & van 

Tichelen (1960). Nelson studied the development of Nitrobacter 

between 8°C and maximum growth at 28°C, (the effects of higher 

temperatures were not examined). Deppe & Engel found the optimum 

temperature to be 34 - 35°C, with no growth below 4°C or above 45°C. 
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Laudelot & van Tichelen reported the optimum temperature to be 42°C. 

From these studies it can be concluded that the growth of nitrifiers 

below 8°C in pure culture is severely restricted. However, it 

ene be noted that these studies refer to the growth of the 

organisms and not their rate of metabolism; nitrification may still 

occur below 8°C. ‘The effect of temperature upon nitrification 

in biological filters has been studied by many workers. Tomlinson 

(1942), studying a two stage filtration system, found that the 

nitrifying capabilities of secondary filter film showed seasonal 

variations; greater nitrification being achieved by the film in 

the summer than in the winter. Balakrishnan & Eckenfelder (1969) 

found that the temperature within the range 15°C to 30°C had an 

important effect upon nitrification. Their results showed that 

nitrification decreased with decreasing temperature. Solbé et al. 

(1974) using pilot scale filters innoculated with grazing fauna 

observed that at temperatures of aC, 10°C ana 43°C, a decrease 

-in temperature resulted in a decrease in nitrification. Bayley 

& Downing (1963) and Bruce et al. (1967). reported that biological 

filter performance varied seasonally in response to the ambient 

temperature; nitrification being higher in summer than in winter. 

However, Hawkes & Jenkins (1964) studying double filtration and 

alternating double filtration found no seasonal variation in the 

oxidised nitrogen levels of both systems and stated that "it thus 

appears that nitrification in bacteria beds is not affected by 

changes in temperature over the range existing in the beds, i.e: 

between approximately 40°C and 20°C. The reduced nitrification 

, in bacteria beds in the winter when it does occur is probably due 

to the increased film accumulation". This increased film accumulation 
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could detec nitrification in two ways; the increased film, being 

mostly the result of increased Ne teroteophie growths could eliminate 

much of the nitrifying population by interspecific competition. 

Also, the increased film may cause a reduced oxygen concentration 

in the liquor being treated preventing the activity of nitrifiers. 

Hawkes (1961), controlling seasonal film accumulation by reduced 

frequency of dosing, observed that the winter decline in nitrification 

was reduced. In the work reported by Bruce et al. (1967), it can 

be clearly observed that nitrification decreased with decreasing 

temperature, the two minima being coincident, during January - 

February, whilst the greater film accumulation occurred approximately 

one month later in both the years reported. Bruce et al. (1975), 

using pilot scale two stage filtration, suggested that the minimum 

threshold temperature for nitrification is beneath 10°C. A 

temperature loss of 4 to 5 centigrade degrees was observed in the 

sewage during its passage through the primary filter, interstage 

Settlement tank and secondary filter. The poor nitrifying 

performance of the two stage filtration system compared to a single 

stage filtration being attributed to this greater temperature loss. 

However, Hawkes in discussion of Bruce et al. (1975), whilst 

accepting that temperature of less than 8°c may cause a marked 

reduction in nitrification as a direct effect of reduced metabolic 

rates of the organisms, suggested that the poor nitrifying ability 

of the secondary filters could be related to the organic strength of 

the feed applied. Duddles & Richardson (1974) found that the effect 

of temperature upon nitrification increased with increased hydraulic 

load applied to a two stage filtration plant. It is of interest 

to note that at a hydraulic loading of 0.3 me fu a9 they achieved 
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90% meri tication at temperatures as low as 4c, The effect of 

hydraulic loading upon the influence temperature exerts over 

nitrification is considered by Schroepfer et al. (1952). 

Temperature exerts an effect upon the oxidation of organic matter; 

decreasing the temperature increases the volume of the filter used 

for carbonaceous oxidation, “reducing the nitrifying zone, hence 

reducing nitrification. . An increase in hydraulic loading also 

causes a greater quantity of organic matter to be present lower 

in the filter, similarly reducing nitrification. Therefore, 

temperature also exerts an indirect effect upon nitrification. 

From the literature discussed, it can be seen that temperature 

effects’ upon nitrification are complex. In general, it appears 

that nitrification is severely limited at or below 8°c, which may 

be of vital importance in two stage filtration plants, where 

temperature losses can exceed those of single stage systems. The 

organic strength of sewage applied to filters specifically designed 

to effect nitrification may have a significant impact. Increasing 

hydraulic loading to a filter has the effect of reducing nitrification 

due to increased zone of heterotrophic activity. 

In view of the likely effects of temperature, organic strength 

and hydraulic loading upon secondary filter nitrification, laboratory 

scale filters were established to determine whether the Hereford 

high-rate filter effluent could be feasibly nitrified in secondary 

filters. 

42



4, PILOT HIGH RATE FILTRATION AT HEREFORD. 

A. Objectives of the Project. 

hiereford sewage treatment works receives a crude sewage of 

partly domestic and partly industrial origin. The industrial 

fraction, whilst contributing 25 - 30% of the volume, constitutes 

approximately 50% of the BOD load to be treated at the works. 

The major trade effluents include fruit and vegetable canning 

wastes, effluents from the production of cider and also poultry 

processing wastes. Cider production and fruit and vegetable 

processing are seasonal operations which result in wastes rich in 

organic matter contributing a high BOD to the sewage. Also, the 

inclusion of these vegetable wastes result in a high carbon to 

nitrogen ratio. The cider production wastes, in particular, 

cause difficulties in treating the sewage. The crushing of 

apples is highly seasonal, particularly strong wastes and greatest 

flows occurring between October and January. 

Due to the low temperatures, the strength of the waste and the 

high C/N ratio, the development of fungal growths is encouraged on 

piological filters. This can lead to ponding problems and a 

deterioration in the quality of the final effluent. 

In view of the nature of the sewage, and a need to increase 

the capacity of the works, the possibility of two stage treatment 

was considered where the first stage would be high-rate filtration. 

As information concerning the performance of high-rate filters was 

limited, a pilot scale investigation was initiated at the Hereford 

sewage treatment works. 

The purpose of the investigation was to determine whether two 
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stage filtration using high-rate primary filtration was feasible 

for the treatment of Hereford sewage, possibly resulting in an 

improved effluent quality, reduced operational difficulties and 

reduced capital expenditure on extending the sewage works. 

The project also included more fundamental objectives. 

Various types of media suitable for high-rate filtration were to 

be tested in order to obtain information about the comparative 

performances of the media and the relative economics of constructing 

full scale filters of each type of media. The effects of various 

loadings and frequencies of dosing were to be investigated. 

Also, an objective of the project was to assess the degree of 

purification necessary in a high~rate primary filter to ensure a 

fully nitrified effluent from the secondary stage. The temperature 

loss through the various high-rate filters was to be monitored in 

order to determine the likely operational temperatures of secondary 

‘stage filters, since evidence from previous two stage filtration 

studies indicate that nitrification difficulties might be encountered 

. 
in the secondary stage during winter months. 

Published information concerning the ecology of high-rate 

filters is extremely limited. prayions studies only mentioning the 

flora and fauna of filters in qualitative terms as incidental 

observations. It was therefore considered useful to obtain data 

concerning the comparative ecologies of the various media employed. 

B. Plant Description. 

The pilot scale filters were constructed by modification of two 

existing octagonal filters which had previously been employed for 

experimental work at Hereford. In order to obtain filters of 2 metres 
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in depth, it was necessary to raise the height of the brick octagonal 

filters using concrete blocks. One tank was divided into eight 

equal segments providing a surface area of 1.9 me for each filter. 

The divisions were constructed using shuttering, (an impervious ply 

boarding used in the construction industry), with kerb stones 

situated at the base of the boarding to ensure complete separation 

of the individual effluents. The screed bases of the filters were 

finished to ensure free drainage of the effluent to the effluent 

sumps, with no standing effluent at the base, as shown in figure 4.4. 

Drainage tiles were placed in the bases of the filters. The effluents 

were collected in small sumps constructed outside the main tank 

structure as shown in figure 4.1. These sumps were built to facilitate 

sampling of the individual effluents, by either manual or automatic 

techniques. 

In order to ensure adequate ventilation within the filters, 63.5 mm 

diameter yPVC pipes were inserted in the corner of each filter as shown 

in Plate 4.4, with the upper end extending above the retaining walls, 

and the lower end terminating at the level of the drainage tiles. 

As previously mentioned, one tank was divided vertically into 

eight equal radial segments; this rene being used to house four types 

of mineral media. The second tank was divided in a similar manner, 

but instead of being divided into eight equal segments was divided 

into six segments. (It had been decided at an early stage, after 

consultations with the manufacturers of Flocor, I.C.I. Limited, that 

in order to obtain a representative packing of the media within the 

octagonal structure, the filter volumes needed to be double the size 

used for the mineral media). Four of the segments within the second 

tank were of the same dimensions as the segments built to house the 
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mineral media. However, the remaining two segments which were 

diagonally opposed, each occupied a quarter of the total available 

surface area; that is, twice the size of the other four segments. 

These two filters housed the modular Flocor plastic media under 

test. The two types of Flocor used were Flocor E and Flocor M. 

The base of the segment aed to house Flocor M was raised by 

200 mm using a galvanised steel mesh of 25mm aperture. This action 

was taken in order to obtain an equivalent total surface area of 

media to a random plastics media, (Biopac 50), used to fill two 

of the smaller segments within the octagonal tank. The bases of 

all the segments contained drainage tiles and were constructed in 

a similar fashion to the segments of the other octagonal tank, having 

sloping bases, individual effluent sumps and ventilation shafts as 

previously described. The two larger segments had two effluent 

- sumps each. 

Prior to installing the mineral media and the random plastics 

media, a 2 metre deep 37.5 mm diameter hollow aluminium shaft was 

installed vertically in each filter, in such a position that it 

would eventually be surrounded by a minimum radius of 300 mm of the 

media packed into each filter. The shafts were placed in an 

identical position in each filter in order that they would be subjected 

to the same irrigation of sewage at the surface of the filter. (The 

tops of these shafts are visible in plates 4.4, 4.5, 4.9 and 4.10). 

The shafts were mounted in a manner to allow free drainage from the 

base, with large rubber bungs fitted to the tops. These shafts were 

used to carry out neutron scatter determinations of the moisture 

retained by the filter films at any depth. The technique will be 

described in detail in chaper 6, section BL. 
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Also installed in a similar manner to the aluminium tubes, 

were three galvanised perforated steel shafts per filter. These 

shafts were of 1.8 m depth and 225 mm internal diameter. Only 

four ‘filters of mineral media had the shafts installed as indicated 

in figure 4.1. | The purpose of these shafts was to permit access 

to the media at any depth within the filter. In erder te ensure 

media packing within the shafts representative of the rest of the 

filter, larger diameter shafts are to be preferred. However, it 

was felt that larger shafts might have a significant effect upon 

the filter performance. The shafts were perforated in order that 

_ the media packed within the shafts would be in intimate contact 

with the rest of the filter media to permit maximum colonisation 

of the media by the film and its grazers. The perforation employed 

was 19 mm diameter; this being considered adequate to allow 

colonisation of the media, without permitting any structural damage 

to the shafts or angular parts of the nedia to become trapped in the 

perforations. Three shafts were inserted in each filter in order 

that a full recolonisation of the sample media could occur between 

sample periods. Initially, bags made of 4" nylon shrimp netting 

were tried as possible containers for the media. However, although 

the shrimp netting allowed excellent packing of the media within the 

shafts, difficulties were encountered in removing the bags. Angular 

pieces of media tended to penetrate the perrorations of the steel 

shaft, chaffing the nylon netting and causing serious destruction of 

the bag. Therefore the media used in the shafts was contained in 

five plastic baskets of 220 mm diameter, constructed of 2" mesh 

'Netlon'. The basket at the surface of the filter was of 200 mm 

depth whilst the other four baskets were 400 mm in depth, (fig. 4.5). 

The baskets were lowered into the shafts by means of four lengths of 
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polypropylene baler twine attached to the open upper edges. Five 

baskets were inserted into each shaft as a compromise between the 

desired number and practical considerations. It is standard 

engineering practice to allow the depth of any insert within a 

cylindrical shaft to be twice the diameter of the shaft to avoid 

the insert jamming across the shaft. This would have meant that 

only four baskets could have been inserted into each shaft. Ae: 

was considered probable that the nature of the film would alter 

markedly within 450 mm, particularly near the surface of the: filter. 

Therefore the surface basket was constructed of 200 mm depth since 

this basket could easily be removed manually, extracting the 

individual pieces of media if necessary. The remaining four baskets 

were built 400 mm in depth, equal to twice that of the surface basket. 

The bed containing the mineral media was packed with four different 

types of media; nominally 89/50 mm and 125/75 mm granite and two 

similar grades of blast furnace slag. The physical properties of the 

media employed are detailed in chapter 5. Diagonally opposed pairs 

of filters were filled with the same media; one of each pair containing 

the three galvanised shafts previously described. Duplicate filters 

were used in order to determine whether the variation in performance 

between the various media was significant or whether it was due to 

natural variation between filters. The duplicates were sited 

diagonally opposite in an attempt to prevent any maldistribution of 

sewage to the filters or the effects of the prevailing winds leading 

to erroneous conclusions concerning any particular medium's performance. 

Due to the physical dimensions of each filter and the possibility 

of displcaing and damaging both the aluminium tube and the biological 

shafts, much care was taken when installing the media in each filter. 
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The media was individually placed manually; it was necessary to use 

a mobile crane with a dustbin attached to its jib to lift the media 

into leach filter. Immediately prior to its placement, the media 

was thoroughly washed, and collected as randomly as possible from a 

well mixed pile of the media. Because of the weight of the mineral 

media, each filter was filled in rotation, increasing the depth by 

approximately 300 mm at each filling to prevent distortion of the 

shuttering dividing the filters. 

The other octagonal tank was filled with plastic media. The 

four smaller filters being used for the random plastics media, 

Biopac 90 and 50, Diagonally opposed filters were filled with the 

same media. Due to the low bulk density of both types of Biopac, 

the media could be installed by tipping bags full into the filters; 

after installing approximately every 500 mm of media, large boards 

were placed on the surface of the media and these were ‘gently bounced 

upon in order to tamp the media into a stable packing arrangement. 

Biopac 90 and 50 take their names from the physical sizes of the 

media. The media consist of hollow plastic cylinders respectively 

90 and 50 mm in diameter and length. The structure of the 

individual units is shown in plate 4.3 and can be seen in the packed 

filters in plate 4.4. 

Flocor E, a modular plastic media consisting of corrugated 

sheets, (shown in plate 4.1) was packed into one of the larger 

segments in the second tank. Each module was 1.2 m in length, 

0.6 m in depth and 0.6 m in width. The lowest layer of the media 

was of a slightly different nature, although presenting a similar 

‘ surface area for colonisation. A thicker and more rigid laminar 

sheet of plastic was attached to each module as a vertical support; 
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these modules are known as Flocor ES. The purpose of the 

additional strengthening is to ensure that when a heavy film had 

developed on the upper layers of the media, physical distortion 

of the modules would not occur. Flocor M, a similar modular 

media of greater specific surface area (135 nal shown in 

plate 4.2, was used to pack the other large segment. As previously 

mentioned the base of this segment was raised by 200 mm in order 

to obtain a total surface area of media equivalent to that of the 

two filters containing Biopac 50. Due to the greater structural 

rigidity of Flocor M compared to Flocor Ey identical units of 

Flocor M were packed throughout the depth of the filter. Because 

of their modular structure, it was not feasible to use the biological 

shafts previously described in the Flocor E and M filters. Samples 

of the media and associated film had to be obtained by different 

methods. At three depths within each filter, namely O - 200 mm, 

600°- 800 mm and 1200 - 1400 mm, smaller subunits of each type of 

media were installed. These subunits were installed by cutting 

standard Flocor units into smaller pieces. In the case of Flocor 

E these units were 300 mm x 300 mm x 200 mm, whilst for Flocor M 

they were approximately 300 mm x 200 mm x 200 mm, At the surface 

of the filter four units cut from one standard module were installed. 

The purpose of the four units was to allow recolonisation between 

sampling intervals. At 600 mm - 800 mm depth another four 

similarly dimensioned units were installed. These units were 

positioned so that removal of film (during sampling) from the units 

above would not affect the quality of the sewage that they received. 

In order to remove these units for examination, a complete standard 

module from the layer above had to be lifted out from the surface 

of the filter using two "Mole" wrenches at diagonally opposed corners. 
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To remove samples of the media from the third depth via the surface 

of the filter would have required dicturbance of several modules of 

the media above, which might seriously affect the performance of 

the filter. Therefore an alternative method was employed. Only 

one small unit was installed at the 1200 - 1400 mm depth adjacent 

to the side wall of the octagonal tank. A rectangular hole was 

cut in the tank wall at the position of this sample unit in order 

that it might be extracted laterally for examination. To prevent 

excess ventilation through this aperture polystyrene blocks were 

cut to fit the hole as completely as practicable. These insulating 

blocks were held in position by an oversize board of shuttering 

attached to the external surface of the wall. 

Two aluminium tubes used for film moisture content determinations 

were installed in each filter, similarly positioned to those installed 

in the random mineral and plastics filters. The tubes were inserted 

by being hammered directly through the media from the surface. 

Little effort was required for this operation and minimal damage was 

incurred by the media, (plate 4.5). 

Settled sewage was applied to the surface of the filters by 

Simon Hartley rotating four arm distributors; one to each octagonal 

tank. The central vertical support shaft was sited at the centre 

point of each tank, being grouted and bolted in position. Trays 

were placed on the surface of the filters in various positions to 

collect distributed sewage in order the check that the central shaft 

was vertical and that an even distribution of sewage was obtained. 

Each arm was supported by means of a galvanised wire. stay attached 

to the top of the central shaft and approximately two thirds the 

length of each arm from the central shaft. Minor adjustment to 
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ensure that each arm was horizontal could be obtained by slackening 

or tightening a bottlescrew on each stay. To ensure that the four 

arms radiated at right angles horizontally to each other from the 

central shaft, galvanised steel stays were connected between each 

arm. The jets on the distributor arms were staggered to ensure 

full coverage of the filter surface, although due to the octagonal 

shape of the tanks used, a small area adjacent to the ventilation 

pipes did not receive. the same cover as the rest of the bed surface. 

fo further facilitate adequate distribution of sewage to the ‘filter 

surface stainless steel splashplates were fitted below each jet to 

increase the area covered, shown in plates 4.9 and 4.10. 

In order to provide a uniform frequency of dosing, the 

distributors were motor driven. The drive from the electric motor 

was transmitted to the distributor arms by means of a chain. The 

sprocket sizes on the final drive and driven shaft could be varied 

in order to obtain a variety of dosing frequencies. In order to 

provide adequate distribution of the sewage at various flow rates 

two opposite arms on each distributor were provided with valves. 

At low flow rates these valves could be closed, therefore only 

using two arms hence increasing the force with which the sewage 

impinged on the splashplates providing a wide spray area; the 

frequency of dosing could be maintained by altering the sprocket 

sizes on the chain drive. 

Sewage was provided to the experimental plant via a "Mono" 

pump sited adjacent to the main works primary settlement tanks 

collecting settled sewage from the collection chamber. The pump 

was capable of providing 200 m?/day under the site conditions 

prevailing. In order to maintain a constant flow to the filters, 
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a header tank was installed between the two octagonal tanks, where 

the surface of the sewage in the tank ‘could be maintained constantly 

at 1.3 m above the surface of the filters. The tank volume was 

2.4 nm. Sewage entered the base of the tank via a 75 mm diameter 

uPVC pipe and entered each distribution system via two 75 mm diameter 

uPVC pipes similarly AeoteH the base of the tank. Any sewage lost 

over the weirs at each end of the header tank whilst maintaining the 

constant head was run. to waste. In order to vary the flow to 

each distributor, a ball valve was installed in each line from the 

header tank. The pipe from the base of the header tank to each 

distributor ran through the octagonal retaining wall and then along 

a shuttering division between two filters, hence preventing any 

disturbance to the filter media packing and filter performance. In 

order to determine the retention times of the various filters, part 

of the pipework between the header tank and distributor arms was 

duplicated as shown in figure 4,2 and plate 4.6. This provided a 

means of inserting a known volume and concentration of tracer into 

the distribution system, and hence to the surface of the beds, with the 

minimum of disturbance to the flow rate. 

In order to monitor the sewage flow rate, initially two venturis 

were installed in the pipework between the header tank and the 

distributors; the flow being measured as a function of the pressure 

drop across the venturi. The pressure difference was converted into 

an electric signal via a transducer. The signal was then fed into 

an integratingrecorder. Unfortunately the system proved unsuitable 

for this application; the pressure either side of the venturi was 

transmitted to the transducer via 6 mm diameter "Bundy" tubing. 

This tubing quickly developed a film on its internal surface and 
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affected the pressure transmission. Also, the venturi itself 

presented too great a restriction on the flow rate, which could only 

be overcome by either raising the header tank, or increasing the 

bore of the pipework and the venturi. Due to both these problems, 

this method of flow measurement was abandoned early in the project. 

It was replaced by four Water Research Centre 10 litre tipping 

trough recorders, as shown in plate 4.7. These troughs could be 

calibrated for the volume of sewage required to cause them to 

overbalance and tip out their contents. Each tip was registered 

via a magnetic reed switch and integrating recorder. Electric 

power for the system was supplied bya 12v DC battery, kept charged 

by a 240v AC battery charger on a time switch. The four tipping 

troughs employed were specifically built to fit into the effluent 

channels, under the individual effluent sumps. To ensure an 

accurate measurement of the effluent flow from the sumps, the 

sump outfall weir required modification to permit its contents to 

flow directly into the trough. Because of the difficulty in moving 

‘the ronene from one effluent sump to another and also the modifications 

required, it was decided that two diagonally opposed effluents would 

be monitored continuously on each bed. 

The temperature of the sewage in the header tank and within each 

filter was monitored, using Foster Cambridge resistance probes. 

These probes were constructed of 570 mm long hollow steel tubes 

containing the resistance wires. Prior to installing the probes, 

tests were carried out to determine what depth of the probe required 

immersing in the sewage to ensure that the temperature recorded 

accurately reflected either the sewage or the bed temperature. In 

the case of the header tank, the probe was mounted vertically above 
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the surface of the sewage with 250 mm of the probe immersed in 

the sewage. Previous reports have indicated that the temperature 

within a filter bed may vary with depth. In order to ascertain 

whether any variation occurred in the filters used in this project, 

holes were drilled through the 200 mm octagonal retaining walls 

at three depths within each filter. The three depths of 200mm, 

1000 mm and 1800 mm from the surface of the filters were identical 

for all the filters except for the Flocor M filter where the two 

lowest positions were 1600 mm. The variation of temperature 

observed with increasing depth of the filter is discussed in 

chapter 6. The 13 mm diameter probes were installed after 

placement of the various media. In order to insert the probes 

into the filters, it was necessary to drive a 16 mm diameter steel 

rod through the media. In the cases of the mineral media, vigorous 

striking of the rod by a lump hammer was required. The rod was 

driven into each filter approximately 50 mm further than required 

_to insert the probe. Great care had to be taken over the 

positioning of the drill Eales in the canes of the filters 

containing the perforated steel shafts to ensure that the probe 

would pass directly between the shafts and not through or directly 

adjacent to a shaft. In total, 17 temperature probes were used; 

one for the incoming sewage in the header tank and one for each 

filter. However, only a three channel chart recorder was available 

to monitor the output from the probes. One channel continuously 

recorded the header tank temperature, whilst the other two channels 

were fitted with eight-position switches which allowed any one of 

the eight probes to be monitored. As a result, one filter temperature 

from each octaganal bed could be monitored oontinuously, with the 

facility of manually switching a desired probe into the recorder chanwel. 
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The Cambridge Clearspan recorder was capable of plotting temperatures 

within the range 0 - 30° C. No facility was available to calibrate 

each probe output, although initial tests showed that the temperatures 

recorded by different probes were accurate. In order to prevent 

any variations in resistance due to differing lengths of coupling 

wires to the probes, compensation wires were installed, and all 

wiring was screened to prevent any external interference. The 

chart recorder was provided with a heater to prevent problems of 

condensation during cold weather. 

Automatic sampling was provided by three Bestel Dean samplers. 

The sewage supply was sampled u#ing a standard 24 x 250 ml bottle 

sampler. The sampler incorporated a facility to ensure that the 

25 mm internal diameter heliflex tubing and the internal pipework 

of the sampler were thoroughly Banaed by fresh sewage before the 

sample was taken. A maximum purge time of 12 minutes was 

available although in practice a time of 3 minutes was found to be 

_adequate. The 24 bottle sampler shown in plate 4.8 worked in the 

following manner:- either by switching the sampling procedure on 

or by setting up the sample timer, the initial sample would be 

delivered into bottle number one, after purging the pipework for 

a desired interval. On completion of the first sample, the 

turntable on which the bottles were mounted rotated so that the 

delivery tube was positioned between the first and second sample 

bottle; this ensured that any drips from the delivery tube did not 

contaminate either sample. The sample interval timer then came 

into action. This timer could be set for a time interval varying 

from five minutes to four hours between each sample. In practice 

this was usually set to 55 minutes in order to provide 24 hourly 
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samples of the sewage feed. On completion of the sample time 

interval, the turntable would rotate to place the second bottle 

beneath the delivery tube, and the previously described routine 

would be repeated. On filling the 24 bottles the sampler would 

then switch off, and would not restart until manually reset. To 

prevent problems due to condensation and also freezing of the 

samples a small electric heater was installed in the base of the 

sampler cabinet, which could be switched on during cold weather. 

To increase the flexibility of sampling the davinetiwas controlled 

by a 7 day, 24 hour timer governing the mains supply to the unit. 

‘ This was considered necessary to obtain 24 hour sample periods 

during weekends and other unmanned periods greater than 24 hours. 

fo sample the effluents of the 16 filters, two purpose built 

8 bottle samplers were used. These differed from the standard 

24 bottle unit in various ways. Only eight canisters were present 

on the turntable. The sample bottles could contain a maximum 

volume of five litres. One sampler was allocated to each octagonal 

tank to sample the eight filter effluents. The samplers produced 

a composite sample of each effluent in a sample bottle, delivering 

250 mls on each sampling. The purge timer and interval timer were 

capable ef the same variations as the 24 bottle sampler. However, 

at each sample time, eight separate samples were taken of the filter 

effluents. The eight samples were taken sequentially, being 

delivered by the same delivery tube, with a purge of the tubing and 

associated pipework between each sample; the whole sequence taking 

35 minutes when a purge time of 3 minutes was used. After taking 

the eight samples, the turntable stopped in a@ position such that 

the delivery xube was midway between sample bottle number 8 and 

number 1. These eight bottle samplers differed from the 24 bottle 
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sampler in that they yonid)icantinne to sample until manually 

switched off. In order to obtain a sample of each effluent, sumps 

as shown in plate 4.7 were constructed. These sumps accumulated 

solids. To obtain a representative sample of the effluent from 

these sumps a purge time of 2.5 minutes minimum was found to be 

required. Therefore in practice a three minute purge time was 

employed. 

Seven day, 24 hour time switches were installed in the mains 

supply to each sampler to obtain weekend samples. A heater was 

also installed in the base of each sampler cabinet to prevent 

condensation difficulties and freezing of the collected samples. 
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Plate 4.5 Distribution System to Filters. 
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5. PHYSICAL CHARACTERISTICS OF THE MEDIA USED. 
  

In order to establish the characteristics of the various media 

to correlate with their differences in performance, several physical 

tests were carried out on the mineral media to determine their 

gradings, stabilities, specific surface areas, void capacities and 

retention times devoid of film. 

Since the plastic media were of known regular dimensions, the 

grading test was not applicable. Also due to their design, the 

plastic. media had known specific surface areas and hence were not 

assessed in the manner of the mineral media. However, their void 

capacities and retention times under the dosing regime employed 

were assessed. 

A. Grading of the Mineral Media. 

The gradings of the mineral media for use in high-rate filters 

is not specified in British Standards, consequently the grade of media 

é al is parent a matter of agreement between supplier and 

contractor. In order to obtain comparative data on the granite 

and blast furnace slag, the gradings shown in tables 5.1 and 5.2 

had to be complied with. In order to analyse the media the methods 

outlined in British Standard 1438 (1971) were followed. Standard 

sieves were used for the grades 63.5 mm and less, whilst steel meshes 

for the 150 mm, 125 mm, 100 mm and 75 mm, were fabricated. In 

order to determine the flakiness indices of the media, hardboard 

templates were constructed by inference from the size ratios 

described in the standard. 

For the 125 / 75 mm media, approximately 200 kg. were used in the 

test, and 100 kg. for the 89 / 50 mm media. These samples being 

random subsamples of roughly one cubic metre of thoroughly mixed media. 
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ae Results. . 

Table 5.1 - Sieve Analysis of 89 / 50 mm Mineral Media 

  

Sieve (mm) Suggested Passing Granted Slag” 

100.0 100 98.0 - 89.8 

76.0 Deed 38.0 39.3 

63.5 0 _ 10 4.8 12.0 

50.0 ° 0.5 2.2 

( *Results expressed as percentages of sample by weight) 

Table 5.2 -Sieve Analysis of 125 / 75 mm Mineral Media 

  

Sieve (mm) Suggested Pacsingl Granite! Slee 

150.00 100 100 97.5 

125.0 75 _ 85 85.9 75.0 

100.0 7S 38.3 3721 

* 76.0 Ome 0 — 3.2 7.8 

63650 0 0.7 2.9 

( *Results expressed as percentages of sample by weight) 

Table 5.3 - Flakiness Analysis of the Mineral Media 

Type of Media 

125/75 mm Granite 

125/75 mm Slag 

_ 89/50 mm Granite 

89/50 mm Slag 

* 

Flakiness 

5.0 

2.5 

12.1 

Fok 

( *Results expressed as percentages of sample by weight.) 

70



It Discussion. 

From tables 5.1 & 5.2, it can be seen that the large media 

complied fairly closely to the suggested gradings. However, the 

89/50 mm media showed deviations from the specifications. The 

granite media contained a greater proportion of small sizes. 

The media were accepted since it was considered that’ these 

deviations could be expected in standard commercial practice. 

All. the media complied with requirements of B.S. 1438 for 

flakiness; the 89/50 mm granite showing the greatest degree of 

flakiness. 

B. Sodium Sulphate Soundness of the Media. 

Mineral media can be subject to breakdown, when used in filter 

- beds, through various causes such as flaking due to incipient 

cracks, the effects of a particularly strong waste, or the 

varying thermal expansion coefficients within a piece of the media. 

In order to avoid such breakdowns, media to be used in 

sinelcad filters should undergo the Sodium Sulphate Soundness 

Test, described in British Standard 1438 (1971), which endeavours 

to simulate harsh conditions similar to those which media in filters 

might have to endure. Both the Granite and the Blast Furnace Slag 

were subjected to the test as described in B.S. 1438 (1971). 

oc Results. 

The results are presented below in Tables 5.4 & 5.5, the original 

data being given in Appendix 5.1 
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fable 5.4 - BS. 1438 Sodium Sulphate Soundness Test Results on 

Blast Furnace Slag. 

No. of pieces tested 4o 

Original Sample Weight _ 6464.7 g. 

Mean Weight 202.0 g. 

Final Sample Weight 6365.3 ge 

8 pieces disintegrated during the test. 

2 pieces lost greater than 10% of the mean weight during test. 

Therefore 10 pieces failed, ise: 25% 

Overall weight loss of samples 1.5% 

Table 5.5 - BS. 1438 Sodium Sulphate Soundness Test Results on 

Granite Media. 

No. pf pieces tested 4o = 

Original Sample Weight 9375.2 Be 

Mean Weight 234.4 g. 

Final Sample Weight 1994.3 g. 

31 pieces disintegrated during the test. 

1 piece lost greater than 10% of the mean weight. 

Therefore 32 pieces failed the test, i.e: 80% 

Overall weight loss of the conse 78.8% 

it Discussion. 

From tables 5.4 & 5.5, it can be seen that both types of media 
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failed the test. rote of the raw data tabulated in Appendix 

5.1 shows that the granite media survived well until the tenth 

cycle, after which disintegration occurred with increasing frequency. 

Visual inspection of the granite before the test indicated no 

incipient cracks or tendency to crumble. The granite was also very 

resistant to fracture on being struck heavily. In the case of the 

blast furnace slag, the disintegration was more gradual and less 

severe as compared with the granite. 

At ‘the end of the test period, after a 24 hour wash eerie and a 

4 hour drying, it was noticed that sodium sulphate crystals still 

formed on the surface of the media. In order to remove all traces 

of the sodium sulphate within the media, it was necessary to carry 

out three washing and drying cycles. 

It is pertinent to note that in BS 1438 (1971), users of the 

sodium sulphate soundness test are asked to forward results to the 

British Standards Institute, so that modifications may be made to the 

‘test if necessary. From the results presented, it would appear 

that the test is extremely severe are that a reduction in the number 

of cycles employed (to perhaps ten or less), and/or a reduction in 

the temperature used for drying might improve the suitability of the 

test. 

C. Specific Surface Area. 

Due to the irregular shapes of the mineral media, the surface 

areas are difficult to assess. Schroepfer (1951) and Truesdale et 

al. (1961) used a paint dipping method, which assumes that a uniform 

coat of paint can be obtained on the stone surface. Harrod & Hall 

(1962), in attempting to measure the surface area of aquatic plants, 

used a solution of teepol on the plant surface, and assumed that a 
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uniform film had been obtained: Calow (1972) used a modification 

of these methods to assess the surface areas of stones in littoral 

zones. In this method, the stone is covered with a latex solution 

in order to form a mould of the stone. This mould is then removed 

and the inside coated with teepol solution. The weight of teepol 

solution used is compared to the amount required to cover a know 

surface area. 

The method employed by Schroepfer (1951) and Truesdale et al. 

(1961) gives credible values for the surface areas of tones and 

appears to be reproducible; nevertheless, as mentioned by Truesdale 

et al., this method takes no account of the smaller pores, which 

are filled with the paint during the dippings. The method employed 

by Calow might conceivably lead to greater accuracy since the latex 

rubber mould can take up the shapes of the small pores. 

In this project, the specific surface areas of the mineral media 

were assessed during the paint dipping method described by Truesdale 

et al. (1961). The paint used was a red oxide Trimite 85/GP1 

described by the manufacturer as an air drying red oxide primer 

suitable for dipping. This paint was also used by Truesdale et al. 

(1961). 

A standard volume, 0.3696 n., of each grade of media was used. 

This volume, after noting Bruce (1968), was considered large enough 

to obtain a representative packing and grading of the media, whilst 

providing a sufficient number of pieces to be painted. 

The pieces of media used to fill this volume were randomly 

3 gathered from approximately 1m of media. Prior to paint dipping, 

the media were thoroughly washed, allowed to dry and then the 

individual weight of each piece recorded. The amount of paint taken 
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up was assessed in two different ways. The media were individually 

dipped into a paint reservoir of known weight for 30 seconds, and 

then allowed to drain over the reservoir for 2 minutes, after which 

the reservoir was re-weighed. 

The media was allowed to dry overnight, and the weight of the 

painted media recorded. This procedure was repeated three times. 

In order to assess the weight of paint taken up by unit surface 

areas of the media, 6 wooden blocks of three known surface areas 

were similarly dipped and their uptake recorded. 

I Results. 

The results presented in tables 5.6 & 5.7 are the summed 

weights of paint taken up. The results were calculated on the 

total weight of paint rather than the individual weight increases 

in order to minimize the effect of individual uptake variations on 

the final results for the specific surface areas. 

The specific surface area data in table 5.7 were obtained by 

dividing the respective cycle paint weight increased by the specifuc 

paint uptake for the wooden cubes for that cycle. 

Table 5.6 - Weight of Paint Taken ofa by the Wooden Blocks. 

  

Cycle No. Wet Paint Used (g/m?) Paint Used (Dry Weight) (g/m=) 

Cycle 1 426.82 109.44 

Cycle 2 445.06 260.83 

Cycle 3 525.32 284.55 
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Table 5.7 - Paint Uptake and Specific Surface Areas of the Four 

Mineral Media. 

Media Cycle Wet Paint S.S.A. Mean Dry Paint S.S.A. Mean 

Upteke(z) (m@/m?) S.S.A. Upteke(e) (m@/m?)  S.S-As 
(m@/n?) (n°/m?) 

Large cu 621.0 39.37 289.5 71.57 

Granite 2 693.0 42.13 39.03 375-5 38.95 37.64 

(125-75mm)3 697.5 35.92 382.0 36.32 

  

Small 1 762.0 48.30 280.7 69.40 

Granite 2 1013.0 61.58 57.64 463.8 48.11 49.68 

(89-50mm) 3 1042.5 53.69 539.0 51.25 

  

Large 41 609.0 38.61 268.5 66.38 

Slag 2 610.5 37611 32.95 351.5 36.46 34.80 

(125-75mm)3 617.0 31.78 348.5 33.14 

  

Small 1 1014.0 64.28 4uO 5 109.40 

Slag 2 1058.5) 64.35 | 64.18 4 9535.0 55.50 59.17 

(89-50mm) 3 1243.0 64.02 661.0 62.85 

  

at Discussion. 

_ Observation of table 5.6 showed that the uptake of paint by 

the wooden cubes on each cycle differs; the uptake being greater 

each successive cycle. This trend was most marked between cycles 

1 & 2 in the case of the dried paint weights. In this case the 

reason could be twofold. Firstly that the previous paint layer 

itself increased the area to be covered and secondly that the 

dried paint surface provided a more suitable surface for the adhesion 
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of paint. The first explanation would apply to an increase between 

any successive cycle, but is somewhat ‘negated by the effect of paint 

occluded pores. 

Another point of interest is that the weight ratio of wet paint/ 

dry paint (table 5.8), decreased each cycle. This indicates that the 

thinners used did not evaporate to the same extent, i.e: some of the 

thinner was retained within the layers of paint; a greater concentration 

being retained the thicker the layer of paint. This would indicate 

that perhaps insufficient drying time had been given for the cycles. 

The manufacturers advised that the majority of the thinner should be 

evaporated in 4 to 5 hours. Between each cycle there was a minimum 

drying period of 24 hours, in a well ventilated and heated room, 

therefore it is unlikely that the media was insufficiently dried 

between each cycle; rather that he thicker the layer of film created, 

the greater the retention capacity of the paint. 

Table 5.8 - Ratio of Wet/Dry Paint Uptake. 

  

Media Cycle Wet Paint(z) Dry Paint(g) Wet/Dry Ratio 

Large ; 1 621.0 289.5 2.745 

Granite 2 693.0 375.5 1.846 

(125-75mm) 2 697.5 382.0 1.826 

Small A 762.0 280.7 2.715 

Granite 2 1013.0 463.8 2.184 

(89-50mm) 2 1042.0 539.0 1.933 

Large 4 609.0 268.5 2.268 

Slag 2 610.5 35165 Sear 
(125-75mm) 3 617.0 348.5 1.770 

Small 4 1014.0 442.5 2.292 

Slag 2 1058.0 535.0 1.978 

(89-50mm) 5 1243.0 661.0 * 1,880 
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Whilst carrying out tne test, it was noticed, particularly in the 

case of the blast furnace slag, that occasionally pores of various 

sizes did not fill with paint, whilst other pores had been 

completely occluded. These occurrences will cause inaccuracies 

in the final result. In order to minimize the effect of incomplete 

surface cover, the media were kept immersed in the paint for 30 

seconds. Also, after weighing the wet media, the pieces were 

carefully placed on a 20 mm steel gauze, to allow any further 

drainage of excess paint and also minimize the point of contact 

with the media. It was noticed that many pieces of both types of 

media, particularly of the larger grading, had natural resting 

positions which could allow excess paint to accumulate in the 

hollows on the uppermost surface of the piece. This lead to 

inaccuracies in the determination; ‘in order to prevent such inaccuracies 

being carried forward from one cycle to the next, the pieces were, as 

far as practicable, placed on the gauze such that the upper surface 

did not accumulate large excesses of paint. Wide variations can 

be seen in the determinations of specific surface areas. However, 

these results appear to be in accord to results obtained by Schroepfer 

(1951) and Truesdale et al. (1961). 

Table 5.9 - Snecific Surface Areas Recorded for Various Media. 

Media S.S.A. (m°/n?) 

(1) Rock of size 76.7 mm. 51.8 

(1) Rock of size 69.9 mm. 55-7 

(2) Slag of size 63.5 mm. 108.2 

(2) Clinker of size 63.5 mm. 122.6 

(2) Rock of size 63.5 mm. 90.5 

(1) from Schoepfer (1951) 

(2) from Truesdale et al. (1961) 
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Comparing the specific surface areas of the two larger media 

to the gradings shown in table 5.10, it can be seen that the granite 

had the greater S.S.A., but that it also had the greater fraction 

of Taree pieces. This, in practice, is unlikely to occur 

particularly when the porous surface of the blast furnace slag is 

taken into consideration. 

Considering the two smaller media, the granite had a larger 

fraction of 100 mm.to 76 mmepieces, yet the blast furnace slag had 

a greater percentage of 63.5 mm. - 50.0 mm. pieces. As can be 

seen from the table 5.10, the S.S.A. of the granite media was less 

than that for the slag, as might be expected, considering the 

results of the grading tests and the nature of the two media's 

surfaces. 

These specific surface areas for the mineral media are compared 

to the values for the four plastic media used in the project in 

table 5.10. 

Table 5.10 - Specific Surface Areas of the Media Used. 

Media Specific Surface Areas m@/m” 

125/75 mm. Slag 34.62 

89/50 mm. Slag 61.68 

125/75 mm. Granite 38.33 

89/50 mm. Granite 53.66 

Flocor E 85 

Flocor M 135 

Biopac 90 85 

Biopac 50 12h 
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D. Void Capacities. 

The void capacities of the random media, both mineral and 

plastic, were assessed at the same time that the neutron scatter 

calibrations were made of the media. 

The media were packed into a 50 gallon drum, 575 mm diameter 

and 900 mm depth. After packing the drum to the brim with media, 

the volume of water required to fill the void spaces was measured. 

In order to carry out neutron scatter calibrations and void 

capacities of the modular Flocor E and M,arectangular tank of 

known volume slightly greater than that of a standard Flocor E 

module (600 mm x 600 mm x 1200 mm), was used, in a similar manner 

to that described for the cylindrical tank. 

I Results. - 

Table 5.11 ~ Percentage Void Capacities of the Media Used. 

Media % Void Capacity 

89/50 mm Granite 50.9 

125/75 mm Granite “50.9 

89/50 mm Slag 474 

125/75 mm Slag ¢ 51.7 

Biopac 50 90.5 

Biopac 90 94.8 

Flocor E 97.9 
Flocor M 95.6 

TL. Discussion. 

From tables 5.11, the most obvious differences between the various 

void capacities is that between the mineral and the plastic media. The 

mineral media have void capacities of approximately 50%, whilst the 
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plastic media have void capacities of approximately 95%. 

Considering the random media, for particles of a given shape, 

the void capacity of the packed bed is independent of the particle 

Size; therefore any variations in void capacity between different 

gradings of like media must be related to the different particle 

size distributions and variations in particle shape. The two granite 

media showed no difference in void capacity, but the blast furnace 

slag did differ in their void capacities. This suggests that the 

granite media were of similar particle distributions in each grade 

and Of a similar shape. The difference between the blast furnace 

slag void capacities could be explained by the differences between 

the particle size gradings - the larger 125/75 mm grade having a 

much greater large particle fraction. 

Considering the Biopac 90 & 50 media, the larger media has a 

greater void capacity. This could in part be due to the thickness 

of the material of the individual units, which is the same for both 

types. This argument could also be extended to the modular Flocor 

media. The Flocor M, having a greater volume of plastic per unit 

volume of the filter bed, hence reducing the void capacity. 

The values determined for the void capacities of the mineral 

media are similar to those obtained by Schroepfer (1951), Truesdale 

& Eden (1963), Wukasch & Bloodgood (1966), Bruce (1968) and Bruce 

& Merkens (1970). 

The value obtained for Flocor E (97.9) was in good agreement 

to that found by Bruce & Merkens (1970), namely 98%. 

E. Sewage Retention Times. 

The significance of sewage retention times within filters and 
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the various physical parameters which affect the retention times have 

been discussed in Chapter 2. 

The application of sewage to filters causes the development of 

a complex biological film on the surface of the filter media; the 

major floral components of the film being bacteria and fungi. The 

nature and extent of the biological film both have an effect upon 

the residence time. The residence time of sewage within a filter 

can itself have an effect upon the degree of biological purification 

occurring. 

In previous studies, various methods of determining the retention 

times of filters have been described. The methods can be broadly 

divided into two classes. One such method involves the application 

of a known quantity of tracer to the surface of the filter over a given 

time. The concentrations of the tracer emerging from the filter 

over a given time are then determined, and a tracer concentration - 

time curve plotted. The retention time of a filter can then be 

expressed as a function of the curve, (Eden, Brendish & Harvey, 1964). 

Tracer techniques suffer from specific practical limitations, The 

purpose of adding a tracer to the applied sewage is to observe the flow 

of the sewage through the filter, but a tracer may not behave in the 

required manner. The use of cations as tracers suffers from the 

capacity of the filter and filter film to selectively adsorb and absorb 

the cation, hence delaying its flow through the filter, Ammonium 

salts and organic tracers may suffer destruction within the filter which 

reduces the quantity recovered in the effluent. Simple anions such 

as chloride, bromide and iodide may also be adsorbed within the filter 

thus delaying the exit of the tracer, Certain radioactive tracers 

have been proposed for tracing techniques within filters, due to the 

simplicity of detection, their relatively inert activity within 
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the filter and also the small quantity which need be applied to 

the surface of the filter, thus minimising the disturbance of the 

sewage flow (Eden & Melbourne 1960, Meltzer 1962, Eden et al. 1964). 

The second class of determining filter retention characteristics 

is that of determining volume of water within a filter by studying 

its drainage characteristics, (Meltzer 1962, Tariq 1975). This 

method involves the suspension of routine operation whilst the 

amount of water draining from the filter is assessed. 

In this study, the retention time characteristics of the filters 

was determined using a known quantity of sodium chloride as the 

tracer, (with the addition of fluorescein to give an immediate 

visual indication). Whilst it was appreciated that radioactive 

tracer methods would provide a more accurate picture of the flows 

through the filters, practical limitations precluded their use. 

Initially, fluorescein tracer was added through the additional 

purpose built pipework between the header tank and the distributor 

arms. However, the tracer was found tobe unevenly distributed 

over the surfaces of all eight filters, via the two filter arms in 

operation. An alternative method was therefore sought. It was 

found that by applying the tracer to one of the distributor arm weir- 

boxes, with practice, a fairly even dosing of the tracer could be 

achieved over the surface of a single filter. Whilst this method 

was highly subjective and led to some loss of the tracer, it was the 

only practical solution available. 

Immediately the tracer was first added to the sewage in the 

weir-box, effluent samples were taken. During the first 20 minutes 

after applying the tracer, effluent samples were taken every 30 seconds, 

then at minute intervals for the next 10 minutes, and thereafter at 
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5 minute intervals. Samples of the sewage were also taken at 

15 minute intervals in order to determine the background chloride 

levels. 

The concentration of chloride in the sample was then 

determined in the laboratory by duplicate titration against 

standardised silver nitrate solution using potassium dichromate 

solution as the end point indicator, (Analysis of Raw, Potable 

and Waste Waters, H.M.S.O. 1972, P.73). In view of the large 

number of samples to be analysed and the time taken for each 

titration, a chloride electrode was purchased which allowed the 

chloride determination to be carried out in approximately half the 

number of man-hours required for the titration method. However, 

the electrode method of determination was only feasible when it 

was possible to carry out the analysis on the same day that the 

3 samples were collected. Storage of the samples caused the production 

of sulphide which severely interfered with the electrode response. 

After analysis, the data was then fed into a computer at the 

University of Aston for the calculation of the quantity of chloride 

emitted from a filter after a given time. From these results it 

was possible to plot a tracer time curve using log probability axes. 

The characteristics of the curves obtained were then described by 

their 16 and 50 percentile times. That is, the times after which 

16 and 50 percent of the recovered tracer had left the filter in 

the effluent, (as described by Eden et al. 1964). 
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Bh Results. 

Table 5.12 - Results of Retention Time Tests on Clean Media 

| Devoid of Film. (May 1975). 
| 

Media 16% ile ile 

125/75 Slag 2.2 5.5 

125/75 Slag (biol) 2.0 4.95 

89/50 Slag 3.6 7-7 

89/50 Slag (biol) 1.8 4.75 

125/75 Granite 0.75 2.0 

125/75 Granite (biol) 0.7 2.1 

89/50 Granite 4.5 hoo 

89/50 Granite (biol) 1.4 3.4 

Biopac 90 0525 ae 1.7 

Biopac 90 (biol) 0.5 107, 

Biopac 50 4.2 : 2.8 

Biopac 50 (biol) 0.8 2.7 

Flocor E (1 c.w.) 0.65 ~ 1.6 

Flocor E (2 c.w.) 0.7 da? 

Flocor M (1 c.w.) 0.65 1.8 

Flocor M (2 c.w.) 0.65 2.0 

((biol) refers to the sector incorporating the biol. shafts). 

Percentile time in minutes. 

The percentile retention times shown in table 5.12 relate to 

the media devoid of film with a dosing regime of once every two 

minutes; the mineral media was subjected to a hydraulic load of 

208 m?/m?/a, and the three plastic media Flocor E, Biopac 50 and 

Biopac 90, to a load of 5.6 m°/m?/d. The other plastic media, 

Flocor M, due to the reduced depth of the filter, was subjected to 

6.2 m?/m?/a. ee



IL Discussion. 

The data in table 5.12 indicates that the larger grades of 

natural media have reduced retention times when compared to the 

small grades. This is probably related to the surface area of 

the media available for the liquid to be retained on by adsorption 

and surface tension effects. However, using the four values for 

the 16 percentile and the 50 percentile retention times for each 

type of media, the correlations with the specific surface areas 

in table 5.12 were found. 

Table 5.13 ~ Correlation Coefficients of Retention Times to S.S.A.s. 

  

Media 16%/SSA Corr. Coeff. 50%/SSA Corr. Coeff. 

Small ci 299 297 

Large Granite 

Small cS 42 47 

Large Slag i 

It must be remembered when considering table 5.13 that only 

‘four values are involved in calculating each correlation coefficient. 

Nevertheless, a difference is shown between the granite and slag media. 

In the most part this is related to the high variation between the 

determinations of the retention times for the duplicate sectors. The 

greater variation compared to the granite media could be due to two 

particular factors. The blast furnace slag retention times are 

greater than those for the same grading of granite media, therefore 

any similar percentage variation will result in a greater absolute 

value. The surface of the slag differs from the granite in that 

many of the pieces have pores of various dimensions, This will 

increase the retentive capacity of the filter when compared to the 

granite and explains the larger percentile retention times. It is 
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/ snaskety that each dosing of sewage to the surface of the filter 

will follow the same route through thé filter. The liquid retained 

in these pores may therefore not be diluted by every dose of sewage. 

This will increase the variation in time over which the tracer emerges. 

The percentage retention times of tracer in the Biopac media 

followed a similar trend i that shown for the two grades of granite 

and blast furnace slag. The results show little variation, 

particularly the 50 percentile times. This is due to the uniformity 

of the media providing regular pore sizes. It is interesting to 

note that the modular Flocor media did not show any difference in 

16 percentile retention times even though the specific surface areas 

of E and M differ by 50 mone However, it should be remembered 

that, due to the reduced depth of the Flocor M filter, the hydraulic 

loading to the M media in terms of volume of liquid to the volume 

of media was greater. Nevertheless, when observing the 50 percentile 

times it can be notieed that the retention time for Flocor M was 

greater than that for Flocor E. The corrugations of the Flocor M 

sheets are smaller than those for Flocor E and it is likely that more 

liquid may be retained in these dips as small droplets. 

From the plots of the log chloride concentrations versus time 

curves shown in Appendix 5.2, the application of each dose of sewage 

to the filter can be seen to increase the concentration of tracer 

recovered in the effluent. This peak concentration also corresponded 

to the peak effluent flow rate. The increase in concentration is 

presumably because retained tracer in certain areas of the filter may 

only be flushed out at high flow rates. 

The variation in the flow rate and concentration of the tracer 

also account for the poor estimated recovery of tracer; a mean flow 
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being used to calculate the quantity of tracer in the effluent. 

The retention times of the filters were assessed at later dates 

at the same loading but with various accumulated’ thicknesses of film. 

The results are presented and discussed in chapter 8. 
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6. DESCRIPTION OF THE ANALYTICAL METHODS EMPLOYED ON 

THE HEREFORD HIGH RATE FILTER PROJECT. 

A. Chemical Analyses of Sewage Feeds and Filter Effluents. 

The sewage applied to the filters and the effluents, whether 

manually snap sampled or collected by automatic samplers, were 

composited into 500 ml ground glass stoppered stock bottles; all 

aliquots for the various analyses being obtained from these bottles. 

E Suspended Solids. 

Suspended solids analysis was carried out using the filtration 

method described in the ‘Analysis of Raw, Potable and Waste Waters' 

(H.M.S.O. 1972, P.40); the method was modified in certain aspects and 

is further detailed in appendix 6.1 

Three part 7cm. diameter Hartley funnels were employed using 

Whatman GF/C glassfibre filter papers. Prior to the analysis of the 

pilot plant sewage and filter effluents, whilst instructing the 

-technician in various analytical techniques, the loss in weight of 

numerous Whatman GF/C papers (previously dried to 105°C for a minimum 

of 1 hour), on washing was recorded. In no instance did the loss in 

weight after washing and drying at 105°C exceed 1 mg. The average 

weight of the clean dried papers being 200 mg each. Therefore the 

error in using unwashed filter papers for the solids determination 

would not exceed 0.5%, (the average weight loss was 0.2%). However, 

it was also noted at this time that the GF/C papers lost an appreciable 

weight after being dried at 105°C for one hour and being allowed to 

cool in a dessicator. 

In view of the large number of samples to be processed each day, 

the pre-washing of the filter papers was dispensed with but the filter 
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papers were individually dried out on watch glasses at 105°C and 

cooled in a dessicator before being weighed and used. 

In order to minimise the time required and space needed for 

filtration of the samples, the Hartley funnels were not individually 

mounted on Buchner flasks. A system was developed which allowed the 

simultaneous filtration of twelve samples. Figure 6.1 indicates the 

various components used. To regulate the vacuum applied to each of 

the two 'Vulcathene' manifolds a valve was installed in each suction 

line. ‘This permitted filtration of samples in one manifold hd lee 

replacing the Hartley funnels on the other manifold. Less than six 

samples could be filtered on one manifold by simply removing the 

base of the unrequired Hartley funnels from the manifold and inserting 

a rubber bung in the hole remaining. The system also minimised the 

time required to drain the Bucher ieee of filtrate since one large 

flask could be used, requiring infrequent emptying. The Edwards 

. vacuum pump installed was capable of displacing large volumes of air 

.through the twelve filters when almost drained and could comfortably 

maintain a strong vacuum. To prevent the pump exerting too great a 

vacuum on the filter papers, a valve was installed between the pump and 

the Buchner flask. Further adjustments in the pressure could be made 

at the valve to each manifold. Further reduction in the time required 

for filtration of the samples was obtained by transferring the 100 ml 

aliquots from aoe stoppered bottles into 250 ml beakers, thus allowing 

individual topping-up of the Hartley funnels when necessary, rather than 

slowly releasing the 100 ml samples from a pipette into the funnels as 

they emptied; (7 cm Hartley funnels hold approximately 50 ml of sample 

above the paper). 

Much consideration was given to settlement of the samples. The 
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objective of sample settlement should be to simulate the action of 

secondary settlement tanks, in order that the overall process 

efficiency may be determined. The settlement of solids has been 

shown to be affected by temperature and variations caused by draughts. 

The first intention was to settle 2 litres of sample in tall form 

beakers in a shed used solely for sample settlement. However, 

practical difficulties were envisaged which prevented the use of 

this system. A minimum of 17 samples had to be transported from 

the pilot plant to the laboratory daily. Two litre samples caused 

difficulties in the collection of the samples, their transport, and 

storage at 4c, Insufficient space was available in the laboratory 

to store equipment, reagents and sundry items. If sample settlement 

was to be carried out in the shed provided expressly for this purpose, 

then the equipment used for routine analysis in the laboratory needed 

_ reorganising between each type of analysis (in order to accommodate 

less frequently used equipment); which would have been unsatisfactory 

due to the time consumed and the increased likelihood of damage to the 

equipment. Difficulties were also envisaged in transferring the 

samples between the shed and the laboratory during the winter months. 

An alternative method of sampler settlement was therefore deemed 

necessary. 

Trials were carried out on the rate of sample settlement in 500 ml 

stock bottles, and the variations in settlement caused by temperature 

and vibration of the working surfaces. As may be observed from 

figure 6.2, the initial rate of sample settlement was rapid and 

gradually reduced. It was found in practice that the supernatant 

withdrawn after one hour varied little from a supernatent withdrawn 

after three hours; however, after only 30 minutes settlement, a 
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supernatent sample contained appreciably greater quantities of solids 

than a supernatent after one hour's settlement. It was therefore 

decided to allow one hour's settlement before withdrawing an aliquot 

of supernatent. Variations in temperature and vibrations experienced 

in the laboratory had little effect upon the rate of settlement in the 

500 ml stock bottles. 

The extraction of the settled sample also presented difficulties. 

Since the sample settling in the stock bottle would have greater 

solids concentrations the greater the distance from the surface of 

the sample, it was necessary to extract aliquots from a standard depth. 

In order to meet this requirement, the aliquots were withdrawn using 

a 100 ml pipette and pipette filler. The pipette was lowered to a 

standard depth in the sample bottles by attaching a plyboard restraint 

to the pipette which prevented it being lowered any further into the 

bottle. 

In view of the different nature of the filter effluents to the 

applied settled sewage, a reassessment of the settlment procedures 

was to be carried out after a period of filter maturation. 

TL Biochemical Oxygen Demand. 

Five day biochemical oxygen demand determinations were carried 

out using the method caeeribed in the ‘Analysis of Raw, Potable and 

Waste Waters’ (HMSO. 1972), employing the modified Winkler 

determination of dissolved oxygen (see appendix 6.2). However, in 

one procedure the method was modified as detailed below. 

The composite samples were stored in 500 ml stoppered glass 

bottles as mentioned previously. The samples were stored overnight 

in a refrigerator at 4c, and then allowed to attain room temperature 

before use. BOD determinations were made on both shaken samples and 
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on aliquots of the settled samples. The settled samples being 

withdrawn from the 500 ml bottle by the same method and from the 

same height as described for the suspended solids analysis. 

However, instead of mixing the sample in aerated diluent water in 

a manner described in 'Analysis of Raw, Potable and Waste Waters' 

(H.M.S.0. 1972), separate aliquots were pipetted into two 250 ml 

ground glass stoppered bottles, with the diluent water being 

carefully poured into the bottle from the tap of a 10 litre 

aspirator. Whilst it was realised that this procedure could 

introduce greater variation in the two diluent samples obtained, it 

was preferred due to the convenience and speed of sample preparation. 

Prior to the start of the pilot filters, comparative tests were 

carried out on the two methods. It was found that whilst the sample 

could be carefully mixed into a standard volume of diluent water before 

being poured into two 250 ml bottles, air became entrained in the 

_ diluted sample when pouring into the 250 ml bottles which was not always 

removed by tapping the sides of the sample bottle allowing air bubbles 

to escape before placement of the etorer thus introducing errors into 

the BOD determination. Less variability was found using two separately 

withdrawn aliquots of the sample and the addition of diluent water to 

each bottle. (The latter method was also quicker to carry out). The 

diluent was carefully poured down the sides of the glass bottles to 

minimise agitation and entrainment of gaseous oxygen. The bottles were 

filled to the brim with diluent water, sharply tapped on their sides and 

left to stand to allow any excess gaseous oxygen to escape before being 

stoppered. 

One bottle of each sample was then placed in an incubator and 

maintained at 20°C for 5 days. The other sample was immediately 
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pickled using the Pomeroy-Kirschman modification of the Winkler 

method. The amount of iodine liberated was then determined by a 

duplicated titration of 50 ml sample aliquots in control flasks with 

n/80 Esai thiosulphate. Weekly checks were made on the strength of 

the thiosulphate by replicated titration of a standard solution of 

N/40 potassium iodate. If the sodium thiosulphate strength had 

decreased greater than 0.6% then a fresh stock was prepared before 

titration of the samples. Replicate variation of titration of the 

standerd iodate eeiueinn was 0.2% It was considered desirable to 

titrate both the 1 day dilutions and the 5 day dilutions with the same 

preparation of sodium thiosulphate. In order to preserve the reagent 

it was stored in blackened bottles during use and kept refrigerated 

between the two sets of titrations. 

In order to obtain an accurate-end point for the thiosulphate 

titration, soluble starch with urea was used as an indicatorreagent, 

since it was found to have a sharper end point than soluble starch, 

providing less variable end points. 

Initially problems were encountered with the consumption of 1 mg/l 

of oxygen over 5 days in the diluent blank. In order to overcome this 

error the following precautions were instigated and maintained throughout 

the study. The diluent water was made using freshly prepared distilled 

water and the nutrients added immediately before use. The nutrient stock 

solutions were kept refrigerated. The diluent water was prepared in 

10 litre polythene aspirators and was aerated for one hour followed by 

one hour's settlement before use. Aeration was carried out using an 

electric induction pump which drew air through a cottonwool filter to 

minimise the effects of any atmospheric pollution. During summer months 

it was found that the distilled water in the laboratory was frequently 

warmer than 20°C. In order to cool the distilled water, the 10 litre 
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aspirators were filled the day before use and kept in a refrigerator 

overnight. Removing the aspirators early in the morning before use 

and the effect of aeration and standing to reduce supersaturation of 

the diluent water was found to raise the temperature to within 

3c of 20°C. To prevent any bacterial development in the diluent 

aspirators, after use each aspirator was thoroughly washed out with 

distilled water and 1 ml.of hypochlorite solution added as a sterilant. 

The aspirators were then returned to the refrigerator, and only 

drained of the sterilant before use. The aspirators were then washed 

out several times with distilled water to prevent any sterilant 

carry-over. Particular attention was paid to ensuring that the 

tap was thoroughly rinsed. 

Titration of the 50 ml sample aliquots was carried out using a 

Grade A 25 ml automatic levelling and refilling burette, which was 

marked in 0.02 ml divisions. Between uses the burette was always 

left charged with N/80 sodium thiosulphate which was drained and washed 

using fresh thiosulphate before use. 

After duplicated titration of the sample, the 250 ml bottles 

were washed out twice with tap water and finally once with distilled 

water. 

Occasionally, due to plant difficulties, or additional sampling, 

it was not possible to titrate the samples the day that they were 

pickled. Tests were therefore carried out to determine whether 

storage of the pickled samples affected the titration and hence the 

BOD's. Table 6.1 shows the effect of storing pickled samples. It 

can be seen that there is an increase in the dissolved oxygen result 

obtained when the sample is stored. However, it should be noticed 

that the increase is only significant between immediate titration and 
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18 hours storage. Further storage did not cause any significant 

increase in the thiosulphate required ‘to satisfy the liberated 

iodine. It was therefore concluded that an error of approximately 

5.7% was introduced by storage of the picked samples and that such 

storage should be avoided whenever possible. 

Table 6.1 - The Effect of Pickled Sample Storage Time on Dissolved 

Oxygen Titrations. 

Date Time Bottle No. Titre 1. Titre 2. Mean D.O. 
  

(mg/l D.O.) (mg/1 D.O.) (mg/1 D.O.) 

3/5/75 15.00 4 8.00 8.02 

2 8.02 8.04 

3 8.04 8.04 8.0275 
4 8.04 8.02 

4/5/95 08.30 5 8.50 8.48 

: 6 8.39 8.44 

7 8.37 8.39 8.3925 
8 8.28 8.28 

4/5/75 15.45 9 8.21 8.27 
: 10 8.38 dus. 8236 

"1 8.30 8.32 8.2925 
12 8.22 8.27 

5/5/75 15.30 3 8.50 8.50 
44 8.35 8.32 

5 8.50 8.48 8.4250 
16 8.36 8.38 

* Bottles labelled after being randomly filled. 

At 0.1% level of probability, random plot analysis of variance indicates 

L.S.D. of 0.3208 mg/l D.O. 

Therefore, only 3/5/75 15.00 samples differ significantly by 

5 The 

Allyl thiourea was not used to suppress nitrification in the BODs 

performed at Hereford on the high-rate filter feed or effluents since 
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it was considered unlikely that nitrifying bacteria would be present 

in significant numbers in the effluent. However, the extent of 

nitrification in the high rate primary filters was also to be 

monitored, and the use of allyl thiourea could be implemented at 

a later date if found necessary. Several references were found 

relating to the effect of nitrification on BOD determinations and 

the onset of nitrification. Apart from river water and final 

effluent samples, it was generally shown (Sawyer & Bradney 1946, 

Hurwitz et al. 1953, Buswell et al. 1954, and Wheatland & Smith 

1955) that nitrification did nou occur to any significant extent 

during 5 day BODs. 

Til Chemical Oxygen Demand. 

Chemical oxygen demand (COD) analyses were carried out on the 

sewage fed to the high-rate filters and their effluents using the 

method described in 'The Analysis of Raw, Potable and Waste Waters' 

(H.M.S.O. 1972, Pps.121-122), taking 5 ml samples, (see appendix 6.3 

for details of this method). The samples were withdrawn from the 

500 ml sample bottles by pipette as previously described. 

On occasions when the samples consumed greater than 40% of the 

dichromate, repeat analyses were carried out using 1 ml samples and 

adding 4 ml of distilled water to the reflux flask in order to maintain 

the sulphuric acid concentration. After being refluxed for 2 hours, 

(ensured by the use of a timeron the heating mantles), 45 ml of 

distilled water were added by being poured down the reflux condenser 

and the flask contents allowed to cool in cold water. 

The amount of dichromate remaining in the flasks was determined 

by titration with acid N/8 ferrous sulphate solution, using 1 drop of 

ferrous phenanthroline indicator. A 10 ml Of2 ml graduated automatic 
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refill burette was used to titrate the ferrous sulphate. If the 

blank titres varied by more than 0.8% from the control figure, 

duplicated blank refluxes were carried out to determine whether the 

result was a random error, or due to an error in the analysis. 

Chloride levels in Hereford settled sewage were found to be 

commonly slightly in excess of 100 mg/l. It was therefore decided 

that 0.2g of mercuric sulphate should be added to the contents of 

each flask including the blank before refluxing in order to suppress 

chloride interference. 

Prior to commencing the study, brief tests were carried out on 

‘the effect of acid concentration, reflux temperature and time, sample 

storage and the age of the reagents on the accuracy of the chemical 

oxygen demand determinations. 

Initially, using the method outlined in 'The Analysis of Raw, 

Potable and Waste Waters' (H,M.S.0. 1972), the effect of reflux 

temperature and time were studied. Table 6.2 indicates the effect 

of temperature on the destruction of dichromate; unfortunately, a 

suitable thermometer was not available at this time and therefore the 

temperatures used were assessed by the intensity of the electric coil 

colour in the heating mantles, the vigour with which the flask contents 

boiled and the setting of the variable rheostat. 

Table 6.2 - The Effect of Temperature on Dichromate Destruction. 

Simmering Continuous Boiling Agitated Boiling 

Dichromate Loss 2.73 2.93 3.82 

Results expressed as mean (of 6) percentage loss from the mean of 6 

unheated samples. 

From the table it can be seen that the temperature at which the 
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flask contents were refluxed had an effect upon the amount of 

dichromate destroyed. It was therefore considered good practice 

to maintain the flasks in a state of gentle boiling/simmering for 

this project. 

The effect of time of reflux is shown in table 6.3. From the 

table it can be seen that the longer the reflux period, the greater 

the dichromate destroyed. In order to obtain an accurate and 

reproducible time period the heating mantle was wired through a time 

switch cutting off the power supply after 2 hours. 

Table 6.3 - The Effect of Reflux Time on Dichromate Destruction. 

120 mins. 135 mins. 150 mins. 

Dichromate Loss 2.74 2.91 3215 

Results expressed as. mean (of 6) percentage loss from the mean 

of 6 unheated samples. 

The test on the effect of reflux time was carried out with the samples 

being boiled gently. 

From table 6.4 the effect of various acid concentrations on the 

destruction of dichromate may be observed. 

Table 6.4 - The Effect of Sulphuric Acid Concentration on Dichromate 

Destruction. 

Percent H. SO), Present 5565, 42.4 47.6 52.2 56.0 

Percent becteounts 20750 2.72) 9 2s 7h PSOne 2197 
Destroyed 

Results expressed as mean (of 6) percentage loss from the mean of 

6 unheated sample titres. 

From figure 6.3 it can be seen that when the acid strength exceeds 

approximately 42% v/v concentration a significant increase occurs 

in the destruction of dichromate. Since the proposed method for 
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COD determinations uses an acid concentration of 47.6 % v/v, strict 

control appeared to be necessary on the titration of acid into the 

reflux flasks. 

In the three tests mentioned above, the loss of dichromate has 

been expressed as the percentage lost when compared to the titration 

of unheated blank samples. In practice the consumption of dichromate 

by a sample is considered to be the amount of dichromate removed after 

reflux of the sample compared to the loss of dichromate from a 

refluxed blank containing 5 ml of distilled water instead of -the 

sample, therefore the destruction of dichromate due to the conditions 

of the test rather than’ the sample is compensated for. 

The results of these three tests were in close agreement with 

analytical tests carried out by Stones (1974). The most noticeable 

difference being that the onset of destruction of dichromate occurred 

at a slightly lower acid concentration in the Hereford tests, 

(approximately 42.5 % v/v) than in the tests carried out by Stones 

(50 % v/v). 

Brief tests to determine the stability of the acidified ferrous 

sulphate solution indicated that the reagent should be prepared weekly 

and kept refrigerated when not in use. The ferrous sulphate slowly 

oxidised if kept under ambient temperatures in the laboratory for 

greater than two weeks. 

The dichromate solution was found to be stable for long periods 

if kept refrigerated when not in use. However, it was decided that the 

reagent should be prepared fortnightly and kept refrigerated. 

Sample storage was shown to have a marked effect on the COD 

determination and was considered a serious cause for concern. ‘Table 6.5 

indicates the results of a test into the effects of sample storage. 
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The settled sewage sample taken was subdivided into three 500 ml 

stoppered bottles allowing puoromately 50 ml of air space at the 

top of the bottle. Prior to taking the 5 ml aliquot for COD 

analysis, the bottles were thoroughly shaken. The three bottles 

were then kept under different conditions, one being kept in shade 

in the laboratory, one refrigerated and another incubated at 20°C. 

Table 6.5 - Effect of Sample Storage on the Chemical Oxygen Demand. 

  

Hours Stored 0.75 27 5.75 24.75 49.75 

4 1400 1510 1290 1240 1200 

5°c 
ie 2 1420 1320 1350 1280 1150 

4 1400 1390 1440 1300 1160 

20° . 
; 2 1380 1410 1350 1280 1200 

4 1320 1340 1260 1100 990 
Laboratory 

fiona 1390 ©1470» 1350«S1170-=—S«1050 

COD in mg/l : 

As a result of the test on the effect of sample storage it was decided 

that it was necessary to refrigerate the samples for the minimum possible 

period before analysis. In view of the sampling routine to be 

established, the samples were commonly stored for 16 hours. 
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WwW Ammoniacal and Oxidised Nitrogen Determinations. 

Samples of Hereford high-rate filter settled sewage supply and 

filter effluents were taken weekly to be analysed for ammoniacal and 

oxidised nitrogen, in order to determine whether any ammonification 

and/or nitrification occurred within the filters. 25 ml of the 

composited samples were transferred to 25 ml screw topped universal 

bottles, to which were added 5 drops of concentrated hydrochloric 

acid from a Pasteur pipette. The hydrochloric acid was included to 

prevent any further biological activity in the samples which might 

affect the nitrogen status. The samples were then kept refrigerated 

until required for analysis. 

The addition of concentrated hydrochloric acid to preserve 

samples was studied to determine whateffects it had upon inorganic 

nitrogen by C.R. Kneale (1975). It was found that the method 

prevented any significant change in the inorganic nitrogen status. 

Additional periodical checks were carried out during the current study 

.to ensure that no significant change did occur. 

Analysis was carried out at the University of Aston using a 

Technicon AutoAnalyzer. The colorimetric methods employed for both 

the ammoniacal and the oxidised nitrogen have been described by Chapman 

et al. (1967) and are outlined in appendix 6.4. The method used for 

the oxidised nitrogen included both nitrous and nitric forms. Since 

the filters were to be employed as a primary biological treatment stage, 

it was considered unlikely that any nitrification would occur, although 

it might be possible for slight nitrification to occur during periods 

of weak settled sewage. 

Consideration was given at the outset of the study to the effects 

of solids in the samples on the concentrations of ammonia and oxidised 
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nitrogen. It is possible that ammonia in particular might be 

adsorbed on to the surface of the solids particles. Samples of both 

shaken and settled composite samples were therefore analysed for their 

emeris and oxidised morroren content. From table 6.6, it can be 

seen that the inclusion of solids had an insignificant effect upon 

the’ concentrations observed. Statistical analysis of the data 

indicated that there was no significant difference between the samples 

of the settled or shaken sewage feed or primary filter effluent at the 

1% level of probability. 

Table 6.6 - The Effect of Suspended Solids on Inorganic Nitrogen. 

Shaken Sample Settled Sample 

Oxidised Nitrogen mean 14.160 14.135 

(mg N/1) S.D. 0.0598 0.0489 

Ammoniacal Nitrogen mean 10.3925 10.4000 

(mg N/1) S.D. 0.0494 0.0538 

S.D. - Standard Deviation. 

(results are the means of 20 samples). 

¥. Phosphate Analysis. 

The samples collected for oxidised and ammoniacal nitrogen 

analysis were also analysed for total inorganic phosphate using the 

Technicon AutoAnalyzer. The method employed was developed by 

Technicon; an outline of the method is included in appendix 6.5. 

The reducing agent employed was amino - naphthosulphonic acid. 

Phosphate analysis was carried out to provide supplementary 

information on the condition of the filters and to observe the 

concentration variations in the sewage. 
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B. Physical Measurements on the High-Rate Filters. 

ia Temperature Measurements. 

The equipment used to. monitor the temperature of the sewage 

applied to the filters and the filter bed temperatures at three depths 

within each filter have been described in detail in Chapter 4. 

Prior to the application of settled sewage to the filters, a 

study was made of the Peaperateces observed at three levels in one 

filter, namely the Biopac 90 filter containing the biological sample 

shafts. The three levels were 200 mm, 1000 mm and 1800 mm from the ee 

surface of the bed. 

Without any sewage applied to the filters, the familiar sinusoidal 

temperature changes throughout a twenty four hour period were observed. 

This diel curve was followed by the temperatures at.all three depths 

within the filter. However, there were differences in the amplitude 

of the curve and the mean temperature recorded at each depth. The 

surface measurement (200 mm) showed the greatest fluctuation during 

‘the period, having both the maximum and minimum temperatures recorded. 

The centre. probe showed a reduced amplitude in its cycle, fitting within 

the curve traced by the surface probe. The probe situated at the base 

of the filter (1800 mm) recorded a further reduced amplitude in its 

curve; its minimum temperature being comparable to the surface minimums, 

but the maximum value being much lower, therefore showing a lower mean 

temperature. 

The filter appeared to gain solar heat in a similar fashion to the 

ground, but lost its heat in a slightly difference manner. The cooling 

appeared to oceur most at the surface and the base of the filter, 

causing the centre of the bed to be the warmest aoe at night. The 

surface of the filter could lose its heat by convection and radiation, 
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the centre by convection and conduction, whilst the base of the filter 

could lose its heat by conduction and.convection. 

The filter surface temperature will fall once the air temperature 

is less than that of the filter. The heat will be lost from the 

surface of the bed by radiation into the atmosphere, convection due 

to ventilation through through the filter and also due to air currents 

moving across the surface of the filter. 

The centre of the filter will begin to lose heat by conduction 

once the temperature of the surrounding media becomes lower than that 

of the centre of the bed. The centre of the filter can further lose 

heat to the ventilating air. At night when the air temperature falls 

below the temperature of the filter, any air passing through the 

filter will gain heat at the expense of the filter temperature. The 

base of the filter may also lose heat due to ventilation. The media 

at the base of the filter becomes colder than the media at the centre 

of the filter. If the ventilation of the filter occurred in an 

upwards direction the temperature difference betwean the air and the 

media at the base of the filter causes heat to be transferred to the air. 

As the air rises through the filter, the temperature difference between 

the media and the air diminishes causing a smaller heat loss from the 

centre of the bed. The media at the base of the filter may also 

suffer a heat exchange with the base of the filter. However, the 

similarity of the minimum temperatures recorded in the media at the 

surface and base of the filter indicate that ventilation must be the 

prime cause of the heat loss, with the other effects contributing only 

minor transfers of heat. 

The application of sewage dramatically altered.the observed diel 

temperature patterns of the dry filter. At a flow of 6 n/m? /a and 

a dosing frequency of two minutes, the previous diel pattern was greatly 
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modified. In general, the centre of the filter during application 

of sewage became the warmest zone of the filter, and the base of the 

filter was warmer than the surface, at the minimum temperatures. 

At the minimum temperatures recorded, the centre of the filter was 

again the warmest zone on three days, but however, on two days 

became cooler than the surface of the filter. It thus appears 

that the temperature patterns may also be confused by the prevailing 

weather. Unfortunately, the air temperature and wind conditions 

were not recorded at ‘the time of these observations; therefore it 

is extremely difficult to derive a satisfactory explanation of the 

observed temperature changes. 

Table 6.7 - Temperature Variations at Three Filter Depths. 

  

Upper Probe Centre Probe Lower Probe 

Date Max. Min. Max. Min. Max. Min. 

11/6/75 30+ - 17.6 - ue 

. 12/6/75 30+ 10.7 18.2 12.6 15.5 10.7 

92/6/75. eF0t  11.0 925.99) Sdgse 4855 11.8 
Without 

14/6/75 27s6 243.0 27.3 45.5 18.0 13.9 Sewage 

15/6/75 20.5 10.6 19.7). 1354 13.6 12.0 
  

  

          
16/6/75 18.0 4g 18.9 Oe) 17.7 6.8 
  

With 
12/6/75 19.0 357 19,3 15.8 18.4 14.9 Sevese 

18/6/75 18.3 13.9 1965 17.0° «S183 16.2 

19/6/75 19.17 13.2 15.9 13.8 13.9 13.0 

20/6/75 19.2 12.0 15.0 44.2 15.0 12.0 

Temperature in ce 
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For routine murecees it was decided that the daily maximum 

and minimum temperatures of one filter of mineral media and one filter 

of plastic media would be recorded and a weekly average produced. 

The influent temperature was also recorded continuously and a weekly 

average of its daily temperature maxima and minima calculated. Also 

during the day comparative filter temperatures of all 16 filters were 

to be made, and from the results any possible diel patterns and 

comparative temperature information obtained. A difference in 

temperature between filters might explain a difference in performance. 

IL Measurement of Filter Moisture Content using a Neutron Probe. 

As previously mentioned in chapter 4, the purpose of neutron 

scatter determinations of the filters at various depths is to detect 

indirectly the amount of film accumulation at that depth. The 

neutron probe consists of a source of a highly excited neutrons;the 

source used in this project contained a radioactive mixture of 

americium and beryllium. The neutrons emitted from such a source 

have a high energy content. Such neutrons are preferentially 

moderated by hydrogen atoms in association with oxygen in water 

molecules (Burn 1961). The bonding of hydrogen in organic matter 

and the supporting media, whether plastic or mineral, does not slow 

down or reflect the neutrons in the same manner. The neutrons are 

therefore reflected in proportion to the quantity of water present 

at a particular position within the filter. The pentced probe which 

is lowered to the desired depth within a filter also contains a 

detector specific to the reflected slow neutrons. Therefore, the 

probe provides an indirect method of determining the biomass at any 

given depth. 

In this study, the instrument used was a Pitman portable probe 

designed for field determinations of soil moisture contents. The 
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neutron source and detector were contained in a stainless steel 

cylinder which could be lowered into the filter to the required 

depth through aluminium shafts which had been previously inserted 

into the filters. The cylinder was supported by a cable through 

which electric power and the detector output were conveyed. This 

cable was fed through a meter in the head of the instrument, marked 

off in centimetres, which indicated the distance the probe was 

lowered from its moderator shield. Also in the head of the 

instrument was a digital display ratescaler which could show the 

number of counts received per second from 0 to 999. The ratescaler 

was mrovided, with two periods of operation. The number of counts 

received over a given time period of either 16 or 64 seconds could 

be paeeecade The count period was initiated by operating a start 

switch, but the period was automatically halted after 16 or 64 

seconds, whichever had been selected. The number of counts recorded 

in the interval was then divided by the number of seconds of operation 

to give a display of the number of counts per second. In dry media 

without any film, the number of counts per second was about 10 to 100, 

whilst in saturated media the counts were between 900 and 1000 per 

second; therefore the instrument provided a wide range of values for 

determining the moisture content. 

In view of the random nature of radioactive emissions, in order 

to obtain an accurate value of the moisture content, either the 

number of counts and/or the period over which the observations are 

made should be as large as possible. Due to the difficulties 

involved with the authorised storage of radioactive materials and their 

transport, it was necessary to determine the moisture content of all 

16 filters at every desired depth in one day. This requirement 

dictated the number of counts possible and the length of the counting 
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period. In practice, it was found that 4 replicate 16 second counts 

were in close agreement, and therefore 4 such counts were made at 

each depth in the routine estimation of the moisture content. In 

order to eliminate the effect of radioactive source decay over time 

causing inaccurate determinations of moisture content, the absolute 

ratescaler output was not used for the calibration curve of moisture 

content versus counts per second, but instead a ratio of the recorded 

counts per second within the filter media to the number of counts 

obtained by the detector when the source emission was observed within 

its moderator shield, (Bell and Eeles 1967). This ratio would be 

unaffected by any radioactive decay of the source. In practice this 

meant that at the outset of any moisture determinations, the shield 

count had to be made; to provide an accurate value for this denominator, 

four 64 second recordings were obtained and their average value used 

in the production of the ratios. 

- Prior to using the neutron scatter probe in the filters, 

calibration curves for the various media had to be constructed. In 

order to carry out the calibrations on the random media,a representative 

sample was placed in a 50 gallon steel oil drum, with an identical 

aluminium shaft to those used in the pilot scale filters placed in the 

centre of the drum. The drum was also provided with a tap at the base 

to facilitate drainage of the water. Previous studies (Marais and 

Smit 1960, Burn 1961), had indicated that similar oil drums provided 

a sufficient diameter of media about the aluminium shaft (600 mm) to 

avoid introduction of errors due to any edge effects. Investigations 

carried out by various workers (Mortier and de Boodt 1956, Marais and 

Smit 1960, Burn 1961, and Harvey et al. 1963) have shown that the number 

of slowed neutrons detected by the probe was not directly proportional 
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to the |noisture content, but traced a curve, particularly deviating 

from a linear relationship at very low moisture contents; however, 

at higher moisture contents the calibration curve tends towards a 

straight line. In order to obtain intermediate. moisture contents 

between freely drained and saturated media, various methods such as 

the inclusion of sand to occupy approximately 50% of the voidage 

have been used. However, ‘to carry out such operations © accurately 

imposes many practical difficulties and is very time consuming. 

Due to these difficulties and the nature of the calibration curves, 

only three points were used in this study to obtain the calibration 

curves. The three points used were air dry media, freely drained 

media and saturated media. ‘It was found that there was little 

difference between the counts obtained using air dry media and 

freely drained media. Whilst carrying out this exercise, it was also 

possible to obtain the void capacities of the various media, by 

measurement of the amount of water required to fill the oil drum after . 

the media had been inserted; the values obtained for the void 

capacities are recorded in chapter 5. 

: The two modular media, Flocor E and Flocor M, could not have 

calibration curves determined using an oil drum, therefore an alternative 

method was employed. For this purpose, a steel tank which could contain 

more than one complete module was used. The effective media diameter 

was greater than 600 mm, and the void capacities of the media were also 

determined at this time. 

When the sewage was first applied to the pilot filters, it was 

possible to carry out neutron scatter moisture determinations on the 

freely drained media. It was found that the results obtained agreed 

closely to the counts recorded for the freely drainéd media in the 

oil drum. The values only deviating at the mir face of the filters 

and the bases of the filters. All the calibration work in the oil 
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drum was carried out midway between the surface and the base of the 

drum. At the surface of the filter less counts were recorded than 

in ete oil drum. This edge effect was due to the proximity of the 

air above the filter minimising the moisture surrounding the probe. 

At the base of the filters, higher counts per second were observed 

than in the oil drum. This was due to the presence of water on 

the concrete base of the filters and the water retained within the 

porous clay drainage tiles. 

After initial calibration of the media, all further data 

processing was carried out with the extensive use of the computer 

facilities at the University of Aston. It had been decided that 

for 14 of the 16 filters the moisture contents would be determined 

‘at 14 depths within the filter. The first depth was 100 mm from 

the surface of the filters. The next 3 depths were at 50 mm 

increments from the surface, then at 450 mm and thereafter at 200 mm 

increases in depth. The surface of the filters were most intensively 

studied since it was considered that most film accumulation and 

variation would occur at the upper regions of the filters. For the 

two aluminium shafts in the Flocor M media, moisture observations 

were only taken at 13 depths identical to those for the other filters; 

but due to the lesser depth of the filters the lowest readings for 

the other filters were not possible. 

The calibration curve for each media was expressed in 

mathematical terms and entered into a specifically developed computer 

programme to obtain a direct print out of the moisture content at each 

depth and also to provide a graphical output of the moisture profile 

_ within each filter. Whilst the neutron scatter probe was in use, the 

four counts at each depth in the filters were directly entered onto 
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coded data sheets. Overnight, the data was then entered into the 

computer and final output received the following morning. The 

development of this programme dramatically minimised the processing 

time and operator time requirements. A copy of the graphical 

output for the freely drained media is shown in appendex 8. ; the 

deviations of the observed moisture contents at the surface and the 

base of the filters may be seen in the diagrams. 

Ti Retention Time Determinations. 

The: significance of sewage retention times within filters has 

been discussed in chapter 2, whilst the practical aspects of the 

determinations carried out at Hereford have been discussed in 

chapter 5. 

The results of initial retention time observations are also 

shown and discussed in chapter 5. One of the objectives of the 

project was to endeavour to relate the retention times, neutron 

scatter moisture determinations and film accumulations as assessed 

by analysis of film developed within the baskets in the biological 

shafts. Therefore at the outset of ine project, it was intended that 

quarterly retention time determinations, and quarterly determinations 

of film accumulation would be carried out during the project; with 

the intention of carrying out the retention time analysis directly 

before assessing film accumulation in order to obtain the two sets 

of results whilst the filters were maintained under similar conditions. 

Neutron scatter observations were to be made monthly. 

However, for various reasons including such problems as 

discontinuous sewage supplies, lack of manpower and transport 

difficulties, it was not possible to carry out as many retention time 

or film accumulation determinations as projected. The results of 

retention time and neutron scatter moisture content determinations are 
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presented in chapter 8. 

The amounts of film accumulated in the various filters at 

different times during the project are shown in chapter 8. 

C. Biological Analysis of Filter Film. 

In order to obtain samples of the filter media from various 

depths in each filter, three galvanised perforated steel shafts 

were inserted in one of the duplicates of each filter. Five 'Netlon' 

baskets containing the media were then inserted in each shaft. The 

dimensions of the shafts and baskets have been described in chapter 

4 and diagrams of their positions in the filters and profile are 

shown in figures 4.3 and 4.5. 

The two modular media, Flocor E and Flocor M, could not have 

samples of the media removed from the various depths in the same 

manner and therefore alternative methods were employed. These 

methods have also been detailed in chapter 4, 

The sample shafts were only installed in one of each pair of 

filters which permitted assessment of whether the presence of the shafts 

had a significant effect upon the performance of the filter. Initial 

indications from the retention time determinations of the 'clean' 

media (see chapter 5) would suggest that the shafts did not have a 

significant effect upon the flow characteristics. Three shafts were 

placed in each filter in order that the media contained in the baskets 

would have sufficient time between sampling periods for full 

recolonisation to occur. At the outset of the project it was intended 

that observations of the filter media would be carried out every 3 

months, therefore each shaft would have 9 months for recolonisation and 

maturation to occur. 
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When baskets of the filter media and associated film were 

removed from the steel shafts they were taken to the Hereford 

laboratory for determination of the amount of wet film present, 

the total and volatile solids content of the film and for 

identification and enumeration of the macroscopic grazers. 

The nature and relative abundance of the microscopic flora and 

micrograzers was also carried out on subsamples of the filter film. 

Prior to removal of the baskets of media, the sewage supply 

was disconnected for approximately 60 minutes to allow excess 

water to drain from the film. Immediately after removal from the 

shafts, the baskets were placed in large rigid polythene containers 

to minimise the loss of film in transit to the laboratory. In the 

laboratory, the media and basket were weighed using a spring balance. 

After removing all the film from the basket and media, and repacking 

the basket with media, the weight was again recorded. By subtraction, 

the amount of film in the known volume could be obtained. 

However, this weight was only used as a check on the amount of film 

recovered, since a significant Eaetne of film could develop on the 

surfaces of the basket. 

After the initial weighing, the media was removed from the basket 

and placed on a large tray. Most of the film was then removed from 

the pieces of media by scraping the individual pieces with a scalpel. 

After being scraped, the pieces were then carefully washed in 

equipment which allowed collection of the washings which were then 

sieved. To the film collected in this manner, the scrapings were also 

added and weighed. The film scrapings commonly constituted 90 - 95% 

of the total weight collected. This weight being taken as the total 

wet weight of film present in the known volume of media. The film 
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attached to the 'Netlon' basket being washed off and discarded. 

In the cases of the two modular median slightly different 

methods of film recovery were required, The subsection of the 

media was weighed complete with its attached growth and then 

carefully scraped with scalpels to remove as much film as 

possible. Test tube brushes and toothbrushes were then used to 

remove further film from the more inaccessible corrugated surfaces 

of the media. Additional film was also collected by careful 

washing of the module. However, it was not possibe to collect all 

the film successfully in this manner. Strenuous and repeated 

washings with hot water were required to clean the plastic surfaces 

thoroughly. Therefore, in order to obtain the weight of film 

supported by the media, the difference in weights between the 

subunit and its attached film and the weight of the clean media were 

recorded. 

The collected film was then thoroughly mixed and subsamples 

-taken for subsequent analysis. 10 grams of the wet film were 

weighed on to a watchglass and placed in an oven at 105°C for 

determination of the total solids. After drying in the oven 

overnight, the watchglass and film were placed in a dessicator to 

cool to room temperature. The weight of filmwas then determined. 

In order to obtain the volatile solids content of the film, the 

film dried to 105°C was then transported to the University ofAston 

where it was placed in a muffle furnace at 500°C for two hours. 

After cooling in a dessicator, the remaining ash was weighed. The 

difference in weight between 105°C and 500°C was then taken to be 

the weight of the volatile solids present in 10 ere of wet film. 

The method of volatile solids determinations is described in 
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'The Analysis of Raw, Potable and Waste Waters', H.M.S.0. 1972, 

P42, 

{In practice, it was found that the variety and number of 

eae. present in the filter film varied significantly 

between filters and times of sampling. In view of the number 

of samples to be processed, it was necessary to vary the weight 

of film used for this analysis. It was found that the number 

of dominant grazers which could be counted in approximately 30 to 

45 minutes was 100 to 500. Such a population was found to be 

commonly present in 10 grams of wet film. However, on occasions 

_it was necessary to reduce the weight of film to 5 grams. 

After being thoroughly mixed, the sample of film used for 

this analysis was weight out on to a petri dish, where the film 

was teased apart as much as moaeible using tweezers. The film 

was then transferred to a large white tray (approximately 600mm 

by 400mm) and washed using polythene washbottles full of water. 

It was found that surrounding the pieces of film with water 

encouraged most of the macrograzers to eat to the surface of 

the film; but enchytraied worms pended to burrow into the film 

which sty required further careful teasing apart. The macrograzers 

were identified with the aid of Water Pollution Research Technical 

Paper No. 9., Department of Scientific & Industrial Research, 

H.M.S.0. 1946, Scientific Publication No.22, Freshwater Biological 

Association 1971. 

A further subsample of the collected filter film was subjected 

to micrescopic examination to identify the floral components and 

-obtain a subjective assessment of the abundance of each component. 

n9



At the same time, identification and subjective abundance 

assessments of the protozoa and rotifers were carried out. The 

ciliated protozoa were identified with the aid of Water Pollution 

Research Technical Paper No. 12., Ministry of Technology, H.M.S.0. 

1969. 

In order to assess the microscopic members of the community 

ten separate mounts of the filter film from each basket of media 

were observed and the. relative abundance of each community member 

assessed. An aggregate abundance scale was then formed of the 

ten mounts. The scale was as follows:- rare, occasional, 

. frequent, common and abundant. 

In addition to these observations of the protozoa present _ 

in the filters, occasional samples of the filter effluents were 

taken by W.R.C. staff for analysis of the protozoan contents at 

Stevenage. The results of these observations are also included 

in chapter 8. 
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7. PHYSICO CHEMICAL PERFORMANCE OF HEREFORD PILOT SCALE 

HIGH RATE FILTERS 

A. /|Introduction 

| Three automatic samplers, described in chapter 4, were installed 

to take samples of the settled sewage feed and the sixteen effluent 

samples. The sampler used solely for the settled sewage feed 

contained 24 250 ml bottles. It was decided that for routine 

purposes one sample would be taken every hour. The individual 

samples could then be bulked into one sample for any given period. 

As previously described, the other two samplers formed bulked effluent 

samples for each of the filters. Again for routine purposes, it was 

decided that hourly samples would be taken. Because of the more 

complex pipework and manifold arrangements of these samplers, a 

minimum purge time of three minutes was necessary to ensure complete 

clearance of the previously accumulated solids and effluent from the 

system. Particular attention was paid to the effluent sumps at the 

base of each filter. Solids often tended to accumulate in these 

sumps. In order to remove these solids and prevent an unrepresenta- 

tive sample being taken, the 25 mm heliflex pipes were mounted in a 

manner which positioned the end of the tube at the base of the sump. 

It was found that within the three minute purge time the accumulated 

solids had been removed from the sump and that a volume of effluent 

greater than three times the volume of the sump had been drawn up the 

sample delivery pipework. To obtain samples for a given period over 

weekends, the samplers were governed by 7 day timeswitches. 

At the outset of the project, a weekly sampling programme was 

prepared with the intention of providing sufficient laboratory time 

p for the analysis of the samples within 24 hours of collection. 
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In order to ensure that the samples were stored for the minimum 

period, the 24 hour day was split into two periods; namely a daytime 

period of 8 hours between 10.00 and 16.00 and a nighttime period of 

16 hours between 17.00 and 09.00. This meant that the samples 

generated during the day could be removed after 16.00, taken to the 

laboratory, bulked and placed in a refrigerator overnight to reduce 

deterioration of the sample. The samples taken overnight could be 

removed after 09.00, bulked and analysed the same day. 

The sampling programme drawn up is shown in appendix 7.A.1. 

From the programme it can be seen that there were three sample days, 

Tuesday, Thursday and Sunday. The two weekday sampling periods were 

for 24 hours starting at 10.00, therefore two sets of samples were 

generated each weekday. At the weekend only the daytime period was 

sampled. This decision was necessary due to the workload imposed on 

the laboratory. As well as the weekend samples on Monday, dissolved 

oxygen titrations of the BOD samples had to be carried out. 

In order to determine the overall loading of the filters, as 

distinct from comparative performances, bulked daily samples of the 

settled sewage feed were also taken for COD and suspended solids 

analysis; the 24 hour day being split in the aforementioned manner. 

In addition to these analyses at the Hereford laboratory, samples 

of the settled sewage and filter effluents were taken weekly to the 

University of Aston for ammoniacal and oxidised nitrogen analysis. 

Unfortunately, difficulties immediately arose in maintaining this 

sampling programme due to frequent malfunction of the automatic 

samplers. All three samplers contained solenoid valves to regulate 

the liquor flows within the samplers. These valves were frequently 

jammed at various openings by mineral matter and humic solids alike. 
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The 24 bottle feed sampler did not break down as frequently as the 

other two samplers. After repeated thorough overhauls on site and 

also modifications by the manufacturers, this sampler ceased to 

present problems. 

However, due to the complexity of the two 8 bottle samplers, 

extreme difficulty was encountered in keeping them in service. 

Eventually, after having been shortcircuited and rewired several 

times, the manufacturers removed the samplers from the site for major 

design modifications. Due to these difficulties, it was necessary 

to resort to manual sampling of the effluents every hour. This meant 

that overnight and weekend sampling of the effluents had to be 

abandoned; overnight sampling was discontinued in February 1976. 

Due to prolonged delays in the modification of these samplers, after 

having been returned to site, it was decided that their use be 

completely abandoned. 

The taking of effluent samples manually every hour caused a 

greatly increased workload for the technician. Approximately two 

hours each sample day were lost because of this sampling. This 

additional workload had a far greater impact than simply the loss of 

two hours, since it was necessary to alter the routine of the 

laboratory analysis to accommodate taking the samples at fixed time 

intervals. Therefore, after February 1976, only two daytime sample 

periods were used each week. 

Initially, settled sewage was pumped from the old primary 

settlement tanks of the main treatment works at Eign. Numerous 

teething problems were encountered with the supply such as the blockage 

of the suction tube with gross solids (caused by overloading of the 

primary settlement tanks) causing evacuation of the 75 mm heliflex 
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tubing which frequently collapsed, particularly during periods of 

high temperatures and strong sunlight. Another difficulty was the 

splitting of the pressurised uPVC supply pipework. However, the 

initial difficulties were overcome and the basic design problems 

eliminated. 

The sewage works was undergoing major extensions at this time, 

which had the unfortunate consequence of disrupting the settled sewage 

supply to the pilot plant. As a result of the disruptions, the 

project had to be carried out using four differing qualities and 

quantities of sewage. Unfortunately, it was not possible to split 

the study into four equal periods under comparative environmental 

conditions. The physico chemical results reported in this section 

have therefore been grouped into the four periods of the study. The 

conditions pertaining during each period are detailed in the four 

following subsections. 

A list of the abbreviations used to code the different filter 

media in the following tables and the symbols used to denote the 

filters in the following figures has been included in appendix 7.A.2. 

A timetable of the four periods of study of the pilot scale high rate 

filters, indicating the loadings applied to the filters, has been 

included in appendix 7.A.3. 
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Be Period I: 16 June 1975 to 16 November 1975 

During this period of study when sewage was first applied to the 

filters, the supply was taken from the overloaded primary settlement 

tanks of the old works. Because the settlement tanks were overloaded 

and the screens in poor condition, gross solids frequently blocked the 

inlet to the Mono pump tubing, supplying the experimental filters' 

header tank. This had the initial effect of reducing the available 

supply for the filters and ultimately total blockage of the tubing 

which caused its Mracuat ion and sometimes its collapse. Modifications 

to the tubing inlet to increase the surface area of screening and 

regular cleaning of this screen permitted a more constant supply to be 

obtained. 

I. Results 

i) Flow Results:- 

During the initial trial period, the nominal flows were 2.8 m?/a?/a. 

for the natural media and 5.6 n/m? /a. for three of the plastic media. 

In view of the reduced depth of the Flocor M filter, and the distri- 

bution system employed, this filter pecetved a nominal flow of 

6.2 n/n Ya. 

The weekly mean flows received by the filters are shown in 

appendix 7.B.1. It can be seen that for the natural media during the 

period the average flow of 2.83 n/n? /a was only fractionally higher 

than the nominal 2.80 nm, fax? fas however the plastic media received 

appreciably less than the nominal flow at 5.03 m?/m?/d rather than 

5.60 n/n? /ae Closer examination shows that there were wide 

variations in the weekly average flows and also between the flows 

recorded by the two troughs to each tank. The main reason for the 
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variations has been mentioned previously, namely the blocking of the 

screen to the pumped supply. Difficulties were also encountered 

with the integrating recorders for the tipping troughs. It can be 

seen that during the first week and the last three weeks of the period 

one or more of the recorders were out of action. Two problems in 

particular caused either irregular recordings or no recording for the 

tipping troughs. During this period of the study, the recorders were 

each powered by two 4.5 v dry cell batteries. These batteries tended 

to discharge slowly and it was difficult to check their condition; 

hence the periods where there are no flow records. The other problem 

which led to poor flow records was a malfunction of the magnetic reed 

switches which did not always open and close each time the trough 

tipped. If the magnet was not fastened to the tipping trough in the 

correct position, it was possible for no make and break or several 

take and break contacts to occur every time the trough tipped out its 

contents. This problem was gradually overcome by operator experience 

of the system. 

* The marked difference in flows recorded for tank A for the week 

ending 13/7/75 was due to the electric motor driving the distributor 

arms burning-out. This happened on the 12/7/75 causing the arms to 

halt in such a position that much of the sewage was applied to the 

filter over the second tipping trough. As a temporary measure until 

the motor could be replaced on 18/7/75, the chain drive was removed 

which allowed the distributor arms to rotate as a result of reaction 

drive. From 12/10/75 to 16/11/75, much of the flow variation was due 

to unavailability of settled sewage for the pilot plant. On 30/9/75 

new filter beds on the Rotherwas site Nee commissioned; and much of 

the crude sewage at Eign inlet works was diverted to new primary 
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settlement tanks at Rotherwas, leaving insufficient sewage flow through 

the old primary settlement tanks to céver the experimental plant pump 

inlet. 

ii) Temperature Results:- 

Appendices 7.B.2 and 7.B.3 show the weekly meaned maximum and 

minimum temperatures and the comparative bed temperatures. Weeks 

14/9/75, 21/9/75 and 28/9/75 did not have the daily maximum and 

minimum temperatures recorded due to problems of instability in the 

chart recorder. Moisture within the cabinet and dirt on a slide wire 

were affecting the continuous readings. In appendix 7.B.3, there are 

five weeks when no comparative data were recorded. The first week 

and the last two weeks of missing data were due to an excessive 

analytical workload and plant maintenance which prevented the compara- 

tive temperatures being measured at 12.00 hours daily. The middle 

fortnight of absent data was due to the recorder difficulties 

previously mentioned. 

; For reasons which will be explained in the discussion of the 

e _ temperature data, in order to obtain more comparative data of the 

daily maximum and minimum temperatures of the plastic and mineral media, 

the temperature probes constantly monitored were changed. One probe 

was situated near the base of the clockwise second part of the Flocor M 

filter (FLM 2cw), whilst the other probe was situated near the base of 

the 89/50 mm blast furnace slag filter containing the biological 

shafts (SS biol). 

iii) Routine Analytical Results:- 

Appendices 7.B.4 to 7.B.9 show the weekly averaged data for this 

operational period. The averaged results shown in, these tables only 
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include sampling periods when it was possible to collect a complete 

set of data for any one type of analysis; noveren it should be 

remembered that the weekly averages do not necessarily include the 

same number of sample periods. It can be noticed that no results 

are present in any of the tables for the week ending 20/7/75. 

This was due to difficulties with the automatic samplers, which 

meant that no complete sets of samples were obtained during any of 

the five sample periods during that week. Analytical results for 

the weeks ending 12/10/75 and 19/10/75 are also ateents No samples 

apart from daily feed samples were collected during this fortnight 

whilst examination of the film in each of the filter media types was 

being conducted. It may also be noticed that no complete COD data 

.is presented for the weeks 3/8/75, 26/10/75, 2/11/75 and 9/11/75; 

the reason for incomplete data for these periods was the number of 

COD analyses required each week. Only a mantle for heating six 

flasks at any one time was available; therefore it was extremely 

difficult to heat more than 18 samples daily including a blank. 

In appendix 7.B.4 showing the BOD results for the period, 

averaged data for the week ending 28/9/75 has been omitted. During 

that week, due to difficulties with the automatic samplers, no 

complete set of BOD data was obtained. 

Appendices 7.B.8 and 7.B.9 showing the results of the ammoniacal 

and oxidised nitrogen refer only to one sample period per week; 

normally the overnight period Tuesday to Wednesday. Nitrogen 

analyses, which were carried out at Aston University, were not begun 

until the first week of September 1975. 
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II. Discussion of Physico Chemical Data for Period 1 

During this maturation period for the filters, the collection of 

analytical data was seriously affected by teething problems with the 

pilot plant equipment. Many of these difficulties have been 

explained in the results section. Further difficulties were 

encountered as a result of the extensions being carried out to the 

sewage works. 

From appendix 7.B.1, it may be seen that there were appreciable 

variations in the weekly flows applied to the filters; these 

variations being particularly pronounced during the first two months 

of operations. The reduction in the volume of settled sewage applied 

to the plastic media filters during November 1975 being due to the 

limited quantity of settled sewage available at the Eign works. 

Table 7.1: Weekly Averaged Daily Maximum and Minimum Temperatures 

(16/6/75 _- 16/11/75) 

Max. S.D. Min. S3De Fluct’. 8,0; 

Feed’ 15.48 446. 14.17 -4.24 1.32 0.35 

B9O (FIM 2cw) 14.61 456 12.88 4.27 1.72 0.63 

LG (SS biol) A413 4.63.- 12587" 4.78 41575 0.44 

Temperatures in cy 

From table 7.1, it can be seen that the average maximum and 

minimum temperature of the settled sewage in the header tank during 

the complete period was 15.48°c and 14.17% respectively, with a mean 

daily fluctuation of 1.32°c. Both types of media had lower average 

maximum and minimum temperatures during the period than the applied 

feed. The plastic media filters (B90 and latterly FLM 2cw) which 

were continuously monitored showed higher temperatures than the two 
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mineral media filters observed (namely LG and SS biol). Both the 

maximum and minimum temperatures were greater by approximately 0.5°C. 

This result may be explained by the greater flow of sewage applied to 

the plastic filters which prevented their temperature deviating to the 

same degree as the mineral media filter temperatures from the applied 

sewage temperature. 

The mineral media filters when compared to chelplasti media 

filters had far greater heat masses present and also more restricted 

ventilation due to the limited void capacities. Due to these two 

factors, it may be expected that the mineral media filters would display 

more limited daily fluctuations in temperature than the plastic media 

filters. However, from observations of table 7.1, it can be seen 

that the mean daily fluctuations were similar although their standard 

deviations differed; that is, the variation in the daily fluctuation 

was slightly more restricted in the mineral media filters. It would 

therefore appear that the higher sewage application rate to the plastic 

filters counteracted this effect. 

From figure 7.1, it can be seen that the temperature of the 

sewage declined from a summer maximum of approximately 20° to 75°C 

during this period. It can also be seen that the maximum and minimum 

temperatures of the two filters under constant surveillance also 

declined in a similar fashion; this suggests that the reduced volume 

of settled sewage available during late October and November 1975 did 

not directly affect the plastic media filters' temperatures. However, 

the decline in the meaned maximum and minimum temperatures of the 

settled sewage during October and November 1975 may be as a result of 

the increased ‘retention time provided for the sewage in the primary 

settlement tanks, although the temperature of the sewage may be 
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expected to decline at this time of year in any case. 

Turning to the comparative temperature data presented in 

appendix 7.B.3, the “filters which displayed the highest and lowest 

weekly meaned temperatures in each tank have been indicated. 

Examination of the highest and lowest temperatures shows that the 

duplicate filters did not a eplay similar trends. These observations 

are borne out by analysis of variance conducted on the data which 

showed that the duplicate filters varied significantly in temperature. 

The statistical analysis also indicated that the variation in 

temperature from week to week was highly significant. 

Table 7.2: Mean 12.00 hrs. Filter Temperatures (16/6/75 - 16/11/75) 

SG biol LS biol SS LG B50 biol B90 biol FLE 2cw FIM 2cw 

13.97 13.82 44.02 13.53 14.61 14.19 14,26 14,81 

8G IS 8S biol LG biol B50 B90 FLE lew FIM lew 

13.78 44.01 44,01 13.98 14.82 14.7% 14.6914 77 

L.S.D. @ 10% Probability Level = 0.33°C. 

Sesanination of table 7.2 ‘shows that overall there was no filter 

which had significantly the highest or lowest temperature, although 

the mineral media tended to have the lower temperatures with the 

89/50 mm Granite and the 125/75 mm Slag showing the lowest temperatures. 

The two Biopac media tended to have the highest temperatures. 

The variation in the temperatures recorded for the duplicate 

filters has been shown to be significant. This result leads to the 

question of why the duplicates varied. 

Table 7.2 which shows the mean of the daily filter temperatures 

taken at 12.00 hrs. indicates that certain filters were quite 

consistently cooler than other filters within the same tank. In tank A 
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containing the natural media, filter LG was consistently the coolest 

for five consecutive weeks. In ean B filters B90 biol and FLE 2cw 

were generally the coolest. By observation of figure 41 it can be 

ase ae the coolest filters were those which received the least 

solar radiation, and that their low temperatures were not related to 

the nature of the media. These filters had their surfaces shaded 

for the greater part of the daytime, whilst the warmest received the 

most sunlight at midday. The temperature probes were situated at 

the base of each filter and in fact the probes! exteriors received 

sunlight in inverse proportion to their temperatures. This would 

indicate that the surface temperature is important in determining 

’ the filter temperature. 

This effect was noticed in October 1975 and, as a result, the 

probes used to constantly monitor the two tank temperatures were 

changed to those in SS biol and FIM 2cw. From October 1975 until 

the end of the project these probes were employed for this purpose. 

Turning to the chemical analysis of the applied sewage and the 

‘filter effluents during the period, table 7.3 gives a summary of the 

average values found for the parameters. It should be recalled 

that the data presented refers to that collected during the compara- 

tive sampling periods and the values for the sewage should not be 

considered as the overall loadings applied during the period. From 

the last column in the table, it can be seen that only the midday 

temperatures of the filters showed significant differences between 

the replicate filters. This difference has already been explained 

to be as a result of the location and configuration of the filters. 

The filters did not show any significant differences in the values 

' for any of the other parameters. Time can be seen to cause 
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significant variations in the filter effluent qualities; however, by 

referring to the weekly averaged data in appendices 7.B.4 to 7.B.9, 

it may be seen that there was no consistent trend in the values of the 

parameters; therefore the variation with time was essentially a 

result of random variations in the applied sewage quality and quantity. 

Figures 7.2 to 7.11 which show the data of appendices 7.B.4 to 7.B.7 

in graphical form clearly indicate that there was no overall trend in 

the data, apart from the first fortnight's performance when there was 

an improvement in the COD and BOD removal abilities of the filters. 

Comparing the effluent qualities of the mineral and the plastic 

media filters, it can be seen that the mineral media filter effluents 

tended to have greater stability in their quality. This stability 

was not as a direct result of the variations in the flows of settled 

sewage. In the case of the plastic media filters, the standard 

deviation of the flow data was only 12% of the mean, whilst for the 

mineral media the variation was 38% of the mean which would suggest 

that the mineral media filters might show the greater instability in 

‘their effluent qualities. However, it Should be recalled that in 

volumetric terms, the plastic media filters did receive 1.78 times the 

Sewage applied to the mineral media filters per cubic metre. It is 

possible that this higher loading might account for the instability, 

although unlikely since in terms of the specific surface areas of the 

various media the organic loadings were comparable. 

Figures 7.6 and 7.7 show that the weight of sludge produced per 

unit of BOD removed by each filter. It can be’ seen that the trends 

and the values shown for all the filters are similar, the major 

differences in production appearing to occur in the mineral media 

filters during the week ending 5/10/75. However, it should be noted 
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that this was an isolated incident which was most probably related to 

the nature of the sewage applied to the filters during that week. 

The routine analysis did not show any marked deviation apart from the 

low BoD concentration applied and present in the effluents. On 

30/9/75, there was a reduction in the quantity of sewage available at 

Eign due to commissioning of the Rotherwas works; this increased the 

retention time of the sewage in the primary settlement tanks and also 

led to periods of insufficient supply to the experimental plant. 

Further consideration of table 7.3 shows that ae filters 

consisting of the 125/75 mm graded granite had the lowest temperatures, 

the lowest BOD removal of the natural media filters, and consequently 

: the highest BOD concentration in the effluent. Next to the 125/75 mm 

slag, the large grade of granite media filters had the highest sludge 

production per unit of BOD removed, although the solids present in the 

effluents were not particularly high. The 125/75 mm granite also had 

the highest COD concentrations in their effluents. 

The Biopac 50 filters tended to have low solids production and 

‘concentration of COD in their effluents. Whilst the BOD concentra- 

tions of the Biopac 50 effluents were not particularly low; due to 

the low solids production in the filters they tended to produce the 

lowest weight of sludge per gram of BOD removed. 

As a result of the high settleable solids production, the 125/75 

mm slag filters had overall the highest sludge production per gram 

of BOD removed. 

It can therefore be seen from table 7.2 that of the mineral media, 

the two larger grades of slag and granite tended to have the lower 

performances in terms of BOD and COD removal and solids production, 

of which the 125/75 mm granite filters were worst. Considering the 
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plastic media filters, it can be seen that the random media filters, 

particularly Biopac 50, tended to provide a greater removal performance 

than, the two modular Flocor media. Therefore, overall it can be seen 

that the 125/75 mm granite media filters gave marginally the worst 

performance of all the filters under the conditions provided. 

No one type of media gave the highest performance in terms of 

effluent quality, with the Biopac 50 and the 89/50 mm slag filters 

achieving better quality effluents than the other filters in most 

parameters. 
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Cc. Period 2: 19 November 1975 to 27 January 1976 

I. Results 

i)  Flows:- 

After 13/11/75, no settled sewage was available on the Eign 

part of the sewage trestnent works. In order to prevent the biomass 

which had developed on the pilot scale filters being lost, a limited 

supply of degritted comminuted crude sewage was obtained by gravity 

feed through a 75 mm uPVC pipeline from the top of the crude sewage 

screw pumps. Unfortunately, the head was limited, hence the much 

reduced flow. During this period two rectangular tanks used for 

cold digestion of sludge were converted into horizontal flow settlement 

tanks for the experimental plant. 

From appendix 7.C.1, it can be seen that the flows were markedly 

reduced. This supply of sewage led to two particular operational 

problems. Because of the limited supply, the constant head tank 

* supplying the distributor arms was never full, which caused diffi- 

‘culties in regulating the amount of sewage geing supplied to each 

tank of filters such that twice the volume should have been applied 

to the plastic media filters compared to that supplied to the mineral 

media filters. The second operational problem, which further 

exacerbated the regulation of the flows, was due to the nature of 

the supply. Although degritted, the crude sewage contained a high 

concentration of grease and gross solids. Due to this and the 

reduced flow through the distributor arms, large accummulations of 

grease developed in the arms, which when detached caused blockage of 

the distributor jets causing maldistribution over the surface of the 

filters. This occurred most frequently in the distributor arms 

supplying the mineral media filters. In view of the reduced level 
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of sewage in the header tank, any restriction in flow through one 

distribution system raised the sewage level in the header tank thus 

increasing the flow to the other octagonal tank of filters. 

It can also be seen from appendix 7.C.1 that difficulties were 

also encountered with the flow recorders. The damp situation of 

the recorders and the autumn weather caused rapid discharge of the 

dry cell batteries. Another frequent difficulty during the period 

was damage to the micro switches attached to the tipping troughs. 

Replacement of the switches was a major problem at the time due to 

their unavailability. 

ii) Temperature Data:- 

During this period, two major difficulties were encountered in 

obtaining continuous and accurate temperature recordings. 

As previously mentioned, the low flow of the crude sewage into 

the header tank meant that the tank was not completely filled. On 

i occasions, the temperature probe was not immersed in sewage due to 

“the difficulties in regulating the flow. However, the air temperature 

during this period was generally much lower than that of the sewage, 

therefore periods when the probe was recording air temperature were 

easily discernible and were disregarded. 

The other difficulty encountered was one of instability within 

the chart recorder, leading to incorrect readings. Due to this 

problem, temperatures recorded for five weeks of the period were 

disregarded. After a thorough overhaul of the chart recorder in 

December by the equipment suppliers, it functioned correctly and 

reliable recordings achieved. 

iii) Routine Analytical Data:- 

During this short study period of nine weeks, much of the routine 
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analytical work was not conducted for various reasons. From 

appendices 7.C.4 to 7.C.9, it may be seen that no srelytical results 

are presented for the week ending 23/11/75. This was the first week 

of the period during which numerous teething problems precluded the 

opportunity to carry out a full sampling programme. No samples were 

taken during the weeks ending 28/12/75 and 4/1/76 for analysis although 

the pilot plant was visited during this period to ensure correct 

operation. From appendix 7.C.5 it may be seen that two COD results 

for the week ending 14/12/75 are missing. This was due to the problem 

of limited facilities described in the results section for period 1. 

From appendix 7.C.4, it may be seen that, apart from the missing 

BOD data already accounted for, data is also missing for the weeks 

ending 21/12/75 and 11/1/76. No BOD samples were set up during the 

week ending 21/12/75 due to staff vacations the following week 

preventing titration of the 5 day incubated dilutions. No BOD 

results are presented for the week 11/1/76 due to staff illness which 

prevented titration of the incubated dilutions. 

II. Discussion of Physico Chemical Data for Period 2 

In view of the very limited extent of this period and the lack 

of analytical data which has been explained in the results section, 

none of the analytical data recorded has been presented graphically. 

Considering the flows shown in appendix 7.C.1, it may be seen 

that these were severely curtailed compared to the flows received by 

the filters in the first period of study; however the ratio of flow 

to the plastic media filters to that applied to the mineral media 

filters was quite similar at 1.64. In view of the nature of the 

sewage (i.e. unsettled) the BOD concentration was approximately double 
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that applied to the filters during the first period, with the result 

that the organic loading applied to the mineral media filters at 

0.793 kg BOD/m?/a was only 11.2% lower than during the first period 

(0.893 kg BOD/m?/d) « In the case of the plastic media filters, the 

reduction in organic loading was greater at 17.9% (1.303 kg BOD/m?/a) 

compared to the loading of 14588 kg BOD/m?/a during the first period. 

However, caution must be exercised when comparing the performance 

figures to those attained during the first period in view of the 

different nature of the sewage applied to the filters and the hydraulic 

loadings employed. 

During this period, two major difficulties were encountered in 

obtaining continuous and accurate temperature recordings. As 

previously mentioned, the low flow of the crude sewage into the header 

tank meant that the tank was not completely full. On occasions the 

temperature probe was not immersed in sewage due to the difficulties 

in regulating the flow. However, the air temperature during this 

period was much lower than that of the sewage, therefore periods when 

“the phone was recording air temperature were easily discernible and 

were disrégarded. 

The other difficulty encountered was one of instability within 

the chart recorder, leading a incorrect readings. Due to this 

problem, temperatures recorded for five weeks were disregarded. 

Appendix 7.C.3 showing the weekly meaned temperatures of all sixteen 

filters at 12.00 hours indicates that certain filters tended to be 

consistently cooler than other filters within the same tank. This 

pattern had also been observed during the first period of the study. 

As previously noted, the differences appear to relate to the amount 

of incident solar radiation upon the surface of the filters. The 
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duplicate filters positioned diagonally opposite within the same tank : 

do not appear to bear any significant similarities in temperature. 

Only the two filters containing the two Flocor media were similar; 

this being due to the fact that the two probes were within the same 

filter. 

Appendix 7.C.2 shows that the maximum and minimum temperatures of 

the sewage feed were higher during late December and early January 1976 

than observed in November during the previous phase, although the 

difference between the maximum and minimum temperatures tended to be 

greater. Apart from the week ending the 23/11/75, the maximum and 

minimum temperatures recorded for the plastic and mineral media showed 

similar tendencies to those recorded during the first period of the 

study; namely that the plastic media maximum and minimum temperatures 

most closely followed the sewage temperature variations although the 

range of temperature was greater and the overall temperature lower. 

The mineral media had the lowest maximum and minimum temperatures, 

although the range recorded was slightly more restricted than for the 

plastic media, presumably because of less ventilation due to the lower 

void capacities and the large heat mass present. The low temperatures 

recorded during the week ending 23/11/75 were due to highly fluctuating 

sewage flows and low air temperatures. Examination of table 7.4 

showing the mean of the analytical data for the duplicate filters 

during this period shows that the effluent qualities varied signi- 

ficantly with respect to time. This variation was due to the 

fluctuations in flow rates and the quality of the applied sewage. 

Also, from table 7.4, it can be seen that the percentage removals of 

all filters for BOD and COD were high compared to period 1 and the 

effluent qualities comparable. However, there appears to be a vast 
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difference in the mechanism of the organic matter removal during 

the two periods. Again, from table 7.4 it can be seen that the 

solids contents of the effluents from all the filters was very high 

compared to period 1. Examination of the sludge production/BOD 

removal figures for the period indicate an exceedingly high rate of 

sludge production in most cases. It should be recalled that the 

Sewage applied to the filters was unsettled, containing high 

concentrations of gross solids. Therefore the appar ent efficiency 

of the filters in penerel of organic matter should be viewed with 

caution, since primary settlement alone would remove much of the 

load. However, as mentioned above, the quality of the effluents 

was comparable in terms of BOD and COD concentrations to that 

achieved during the first period, therefore the filters must have 

played a role in the removal of a certain amount of the organic 

matter. Part of the organic matter will have been removed by 

oxidation, whilst another fraction will be transferred to the solid 

phase and hence settled out in the effluents; however, returning 

to the table, it can be seen that the sludge production figures for 

the 89/50 mm slag and the 125/75 mm granite were lower than during 

the first period, therefore oxidation of the material must account 

for quite a proportion of the organic matter removal. 

In view of the limited period, lack of analytical data and 

instability of the sewage supply for this period, few conclusions 

should be drawn with regard to the comparative filter performances. 

} 
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D. Period 3: 29 January 1976 to 29 July 1976 

As of 29/1/1976, comminuted sewage was diverted from the top 

of the crude sewage screw pumps on the main works to two converted 

cold digestion tanks, to provide primary settlement for the sewage. 

The tanks were modified such that the crude sewage entered the 

deep end towards the base of the tank. The inflow was directed 

against the end wall to minimize the turbulence which might prevent 

settlement of sludge. The shallow end of the tank was modified by 

the addition of a concrete weir across its length. In order to 

regulate the gravity inflow to the settlement tanks from the top of 

the screw pumps, two valves were installed in the pipework 

immediately before the settlement tanks. Each settlement tank 

(approximately 400 nm’) was modified to provide between 2 and 8 hours 

settlement dependent upon the flow through the tank. Two tanks 

were modified in order that a supply of settled effluent could be 

guaranteed to the pilot plant during necessary desludging and 

maintenance operations on any one tank. 

In order to supply the pilot header tank with settled sewage, 

it was necessary to use the previously mentioned Mono pump. The 

pump was mounted adjacent to the two settlement tanks; with its 

inlet strainer submerged in settled sewage in the outlet channel. 

Excess settled effluent from the modified tanks was returned to 

the main works inlet by making use of the existing dewatering pipework 

for the sludge tanks; however, it was found that careful regulation 

of the tank inflow was required, since the dewatering line was of 

small diameter. The settlement tanks could be desludged using the 

existing desludging facilities. 

In practice, it was found that minimizing the frequency of 
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desludging the settlement tanks improved the quality of the effluent; 

in order to achieve this objective both tanks were kept in use, thus 

increasing the retention time of each tank by minimizing the flow and 

also keeping the accu mulation of sludge to a minimum. Unfortunately, 

it was found that rising sludge became a problem in the settlement 

tanks. By only aeetuecine at fortnightly intervals, anaerobic 

digestion of the accu nulating sludge occurred. This caused the 

sludge to rise to the surface of the tank and to be lost over the 

outlet weir, to the detriment of the settled effluent quality and 

often blocking the Mono pump inlet strainer; in order to prevent 

this, scum boards were added to the outlet weirs. 

Even permitting extended periods between desludging operations, 

it was found that only a small volume of sludge could be removed from 

the tanks. The construction of the tanks was such that the sludge 

did not collect at the deep end but remained distributed throughout 

the floor of the tanks. Therefore, in order to remove the sludge, 

it was necessary to drain a tank and wash out the accu mulated sludge 

using a high pressure hose. 

Ie Results 

i) Flows:- 

From appendix 7.D.1, it can be seen that at the beginning of 

this period only one flow recorder was operative in each tank; two 

of the tipping troughs having been returned to the Water Research 

Centre for servicing. 

Over the period 18 - 21/4/76, no sewage was supplied to the 

filters due to an electrical fault on the Rotherwas site which caused 

the supply pump to be switched off. Over this period serious damage 
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was caused to the biological film. Unfortunately the break in the 

Sewage supply coincided with a period of strong winds and bright 

sunlight which serious drying effects upon the filters. 

During the first month of operation in this period, difficulty 

was encountered in achieving the desired nominal flows. These 

difficulties were gradually overcome as the operators gained experience 

of the system. Precise regulation of the flow through the settlement 

tanks was necessary.’ Excessive flows caused the outlet weirs to be 

flooded due to the inability of the surplus settled effluent pipework 

to handle the flows; however, if the flow through the settlement 

tanks was too restricted, insufficient settled sewage was available 

for the Mono pump to supply the pilot plant header tank, thus limiting 

the flow to the filters. 

It can be seen from appendix 7.D.4 that there were occasional 

weeks when no flow records are present for a particular tipping trough. 

These omissions are due to errors in the integrator readings as a 

result of faulty switches and/or loss of the power supply. 

ii) Temperature: - 

From appendix 7.D.2 and 7.D.3 showing the weekly meaned 

comparative mid-day bed temperatures and the maximum and minimum 

temperatures, it can be seen that there are four sections of missing 

data. During the week ending 8/2/76 insufficient sewage was present 

in the header tank to cover the temperature probe hence the missing 

data in appendix 7.D.2. Considering appendix 7.D.3 showing the 

comparative filter temperatures at mid-day, there are three weeks of 

omission; these were due to staff vacations and also excessive 

workloads during a period of biological sampling which prevented the 

mid-day temperatures being taken. 
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iii) Routine Analytical Results:- 

Observing appendices 7.D5 to 7.D.7, it can be seen that in the 

cases of the suspended solids and COD results there was a fortnight 

(2/5/76 and 9/5/76) where no results are presented. ‘This was due to 

sampling of the filters' films for biological activity, during which, 

apart from the daily analysis of the sewage fed to the filters, all 

sampling and analysis was suspended. In the case of the BOD data 

shown in appendix 7.D.4, there was a further week, namely the week 

: ending 18/4/76, when no results were obtained. This was due to a 

suspension of BOD analysis over the Easter vacation. 

From appendix 7.D.8, showing the ammoniacal N results, it can be 

seen that there were four weeks for which no analysis was carried out. 

These four weeks were weeks during which biological examinations of 

the filter films were being carried out. Appendix 7.D.9, listing 

the oxidised nitrogen concentrations, shows that only occasional 

_ analyses of effluent samples were conducted, due to the infrequent 

and limited presence of oxidised nitrogen. 

II. Discussion of Physico Chemical Data for Period 3 

At the end of January 1976 a source of settled sewage was 

available for the pilot plant in sufficient quantity to permit 

application to the filters at the originally intended nominal flow 

rates of 2.8 m?/n?/a to the natural media filters and at 5.6 n/n? /a 

to the plastic media filters. However, from tte it may be seen 

that in practice these rates were not achieved. It may be further 

noticed that there was greater stability in the flow rates during the 

period than previously attained, and that the ratio of the flow to the 

plastic media filters to that to the natural media filters at 1.85 was 

closer to the desired ratio of 2.00. Apart from.initial teething 
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problems with the settlement tanks and the disruption to the supply 

during the week ending 25/4/76, the flow variations in time were quite 

limited. Overall, it: can be seen that the flow applied to tank A was 

oleae to the nominal flow of 2.8 n/m? /a (being 10% less), and that 

the flow received by tank B filters was 13% lower than the nominal 

flow. The major difficulty in achieving the desired flow to tank B 

was the dimensions of the distribution system and the head of effluent 

available. 

Considering the temperature data for this period, it can be seen 

from figure 7.12 showing the mean maximum and minimum temperatures 

that there is a gradual increase in the temperatures from approximately 

11°C to 22% in the six month period; i.e. a doubling in the average 

temperature. It should be recalled that the data refers to 1976 when 

high ambient temperatures and little rainfall were recorded. From 

statistical analysis of the data in appendices 7.D.2 and 7.D.3, the 

following tables were prepared:- 

Table 7.5: Mean Max. & Min. Temperatures and L.S.D.s for the 

period 29/1/76 to 29/7/76 

  

Feed FLM 2cw SS biol L.S.D. 

Max. Temperature 18.277 17-577 170431 0.210 

Min. Temperature 17.235 16.358 16.342 0.180 

(Temperature in °c) 

Table 7.6: Weekly Averaged Daily Max. & Min. Temperatures 

(29/1/76 - 29/7/76) 

Max. S.D. Mine | '8.D). | Fluct’:,,. SDs 

Feed 18.28 3.35 17.23 3.58 1.048 0.620 

. FIM 2ew 17.58 3.83 = 16.36 = 3.85 - «14219 300435 

88 biol 170435 3.74 16.34 3.51 1.088 0.380 

(Temperature in °c) 
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From these tables it can be seen that both the maximum and 

minimum temperatures of the applied sewage were significantly higher 

than the respective temperatures of the two filters. No significant 

difference was evident between either the maximum or the minimum of 

the two filter temperatures. It may also be noticed from the above 

tables that the daily fluctuations in temperature of both filters was 

greater than that observed for the applied sewage although only by 

0.17°C in the case of FIM 2cw and only 0.04°C in the case of SS biol. 

This increased variation being due to the ventilation of the filters. 

Comparing the temperature data collected for this period to that 

- collected for the first period of study, apart from the absolute 

temperature differences several other points become evident. During 

period 1 the daily fluctuation of the sewage temperature was greater 

at 1.32% compared to 1.03°C, the fluctuation in the two filter 

temperatures was also greater at 4.72°C and 1.75°C. The main 

explanation for this difference was the prevailing weather conditions. 

During the first period of study in the autumn of 1975, there was a 

greater temperature difference between the air and the sewage, leading 

to greater ventilation of the filters and also greater cooling of the 

sewage, particularly overnight. Whilst considering the effect of 

ambient weather conditions, it is interesting to note from figure 7.12 

that during the third period (29/1/76 - 29/7/76) there were occasions 

when the temperature of one or other filter exceeded that of the 

applied sewage. This situation could be brought about by two factors; 

the air temperature may be greater than that of the sewage thus 

supplying heat to the filters, and also the situation can occur when 

the atmospheric temperature is comparable to that of the applied 

sewage. In this case the higher temperature of the filters can be 

brought about by the metabolic heat of the biomass. When the sewage 
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and air temperature are similar, little or no ventilation may occur 

(Petru 1958) and therefore this metabolic heat permits an increase 

in the filter temperatures. 

Turning to consider the comparative temperature data presented 

in appendix 7.D.3, it can be seen that,as previously, the highest 

and lowest weekly meaned temperatures in each tank are indicated. 

Statistical analysis of the data reveals that the duplicate filters 

did not vary significantly and that the variations which did occur 

between the different types of media were barely significant at the 

10% level of probability (see table 7.7). 

Table 7.7: Mean Mid-day Temperatures of the Duplicate Filters 

(29/1/76 _- 29/7/76) 

sc 1s " $8 1g 
16.9813 16.8083 17.1083 16.7063 

B50 B90 ELE FIM 

17.0167 16.6250 16.6542 16.8854 

L.S.D. = 0.2691°C 

During the first period there was a significant difference 

between the temperatures of the duplicate filters, which did not occur 

in the third period. This difference in temperature results may be 

explained by the ambient air temperatures and hours of sunlight 

available. During period 1 there was a limited number of sunlight 

hours and also the air temperature was less than the sewage temperature; 

however in the third period the air and sewage temperatures are 

comparable therefore direct solar padiation had an insignificant 

effect on the surface of the filters, the degree of ventilation now 

being of greater importance. The extent of the ventilation of filters



/ 

has been discussed in chapter 2, when it was explained that the nature 

of the media had an effect on ventilation. Since the prevailing 

conditions for most of period three were similar for all 16 filters, 

the media of the individual filters is of great comparative 

importance. Considering the mineral media filters, the two large 

grades of media had the largest voids which were less easily obscured 

by filter film hence permitting greater ventilation; this is 

reflected in the temperatures which are slightly lower than for the 

smaller media (table 7.7). The pattern is however not so easily 

discernible in the plastic media filters apart from the higher 

temperature of the Biopac 50 filters compared to the other filters. 

The Biopac 50 media has much smaller pore sizes than the other three 

media, and also the distribution of the pores is random compared to 

the highly regular large pore structure of the two Flocor media. 

From visual observations of the surfaces of the filters during the 

period, the Biopac 50 filters tended to support the greatest growth 

of film which frequently obscured many of the pores, thus reducing the 

"ventilation and any possible heat loss. ~ 

Considering the analytical data shown in table 7.8, it may be 

seen that time had a significant effect upon all of the parameters 

studied; this effect however was in the most part due to the random 

variation in the quality of the settled sewage applied to the filters 

and the variation in the flow rates. Figures 7.13, 7.14, 7.19 and 

7-20 show how the BOD and suspended solids concentrations of the settled 

sewage varied in time. This variation can be seen to have an impact 

upon the quality of the filter effluents. 

Apart from the random variations in the quality of the settled 

Sewage applied to the filters, two other effects can be seen in 
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| 
figures 7.13 to 7.24, to occur at different times during this period 

of study. Between 18/4/76 and 21/4/76 no sewage was applied to the 

filters. Unfortunately this lack of sewage coincided with a period 

of high temperature, strong winds and long hours of strong sunlight, 

with the result that the filters were severely dried out. At the 

surface of the filters, the film became so dessicated that thick 

sheets of it separated from the filter media, and were washed through 

the filters on resumption of pumping. 

The effect of this can be seen in figures 7.19 and 7.20 where the 

suspended solids concentrations of the settled filter effluents 

doubled between the week ending 18/4/76 and the week ending 25/4/76. 

This increase in solids loss gave rise to a marked increase in the 

sludge produced per unit weight of BOD removed during the week ending 

25/4/76. Rather surprisingly nel loss of filter film did not cause 

a vast increase in the effluents' BOD or COD concentrations, 

indicating the resilience of the filters to shock treatment. 

. Between 20/6/76 and 11/7/76, it can be seen that all four types 

of mineral media lost a high concentration of solids in their effluents 

(figures 7.19 and 7.20). The loss of the solids appeared to have a 

significant effect on the filter performances. Whilst the settled 

Sewage applied to the filters declined considerably in strength at the 

same time, which in itself could account for a fall in the percentage 

BOD removal efficiency of the filters, the CODs of the settled effluents 

increased, and the sludge production per unit weight of BOD removed 

increased dramatically. The intensity of this effect was restricted 

to the mineral media filters, although a minor inflection occurred in 

the plastic media filter effluents a week before the mineral media. 

In view of the BOD strength of the applied sewage at this time, and 
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the behaviour of the plastic media filters, it would appear reasonable 

to assume that the nature of the sewage did not cause the loss of 

solids from tank A filters. Reviewing the daily log for this period 

shoved that during the weeks ending 27/6/76 and 4/7/76, the distri- 

bution arm motor for tank A frequently cut out during the daytime due 

to thermal:overload. -Although- these bréaks were only of short 

duration they obviously.had a.significant éffect upoh thé filtérs’ 

performances. 

Examination of figures 7.13, 7.14, 7.15 and 7.16 shows that, 

whilst the BOD concentration of the settled sewage applied to the 

filters varied greatly, the mineral media filters generally gave a 

BOD removal of approximately 70% with no discernible trend during this 

period. However, when examining figure 7.16, it can be seen that the 

plastic media filters alitented to increase in their BOD removal 

efficiencies from approximately 70% at the beginning of the period to 

nearly 90% by the end of the period. This trend did not appear to G 

chave any significant effect upon the relative sludge productions: 

The initial decline in the sludge production/BOD removal data 

shown in figures 7.17 and 7.18 must in part reflect the reduced solids 

concentration being applied to the filters.” It should be recalled 

that not eae aia the solids content fall with a change in the sewage 

supplied, but also the nature of the solids would change, with less 

inert or highly stable organic solids being applied to the filters. ~ 

These solids would be gradually both flushed out of the filters and 

also to an extent digested by the filter film. The change in the 

nature of the sewage also in this case seemed to have resulted in a 

change of filter film. This point will be discussed in further detail 

later in the chapter and also in chapter 8. 

169



Considering the ammoniacal nitrogen contents of the filters! 

effluents, it can be seen that. wide panier tone in the concentrations 

occurred. It should be remembered that the weekly result for each 

filter is based on the analysis of only one composite sample, and 

hence a wide scatter of results may be expected. 

There are perhaps two features of particular interest in 

figures 7.23 and 7.24. It may bé seen that initially the filter 

effluents all contained less ammoniacal nitrogen than the settled 

sewage feed, but that during March and for the most of the period 

thereafter the effluents’ ammoniacal nitrogen concentrations were 

greater than that of the applied sewage. This initial loss of 

ammoniacal nitrogen through the filters was most. probably-due to a 

net increase in the filter biomass; the ammoniacal nitrogen being 

required for the synthesis of cellular tissues. This period of 

ammoniacal nitrogen consumption within the filters also coincided 

with the decline in the sludge production per gram of BOD removed, 

which again is likely to be due to cellular. construction within the 

filters. Both these phases end in March 1976, after which the 

ammoniacal nitrogen in the filter effluents exceeded that being applied 

to the filters. This situation may be normally expected in filters 

executing carbonaceous oxidation; deamination occurs as a result of 

organic matter destruction. 

The other noticeable feature concerning the ammoniacal nitrogen 

concentrations was their low values. In domestic sewage it would be 

reasonable to- expect the concentration to be inthe range 25 to 

4O mg/l as nitrogen. This low concentration of ammoniacal nitrogen 

present in the sewage was probably due to the high proportion of 

carbonaceous trade waste in the crude sewage, which had a very limited 
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ammoniacal concentration. 

Close examination of the means and values of the least significant 

differences in table 7.8 show that the Biopac 50 filters had the i 

lowest concentrations of suspended solids in their unsettled effluents. 

The value was significantly lower than the means for the two types of 

Flocor media. All the mineral media filters tended to fall midway 

between these extremes with no significant differences between their 

"means. A similar trend can be seen for the suspended solids concentra- 

tions of the settled effluents, where again the Biopac 50 media had 

significantly the lowest solids content. An interesting feature of 

these results was the poor quality of the natural media effluents 

which in several cases were significantly worse than all the plastic 

media effluents. Also, whilst not statistically significant, it can 

be seen that the smaller grades ne the mineral media tended to have 

better quality effluents than the larger grades. The significance of 

the differences in. the suspended solids of the settled effluents data 

was unfortunately marred by the significant variation of the duplicate 

filters. 

The pattern shown by the mean suspended solids of the settled 

effluents was similarly reflected -in the COD and the BOD data for the 

period. Considering the COD data, the variation between the 

duplicates was just significant hence slightly detracting from the 

value of the differences between the various media. However, the 

pattern shown by the suspended solids of the settled effluents was 

amplified in the case of the effluent CODs. The Biopac 50 filters 

had significantly the lowest COD concentration in their effluents, 

being 23.3 mg/l lower than the concentration in the Biopac 90 effluents. 

The Biopac 90 effluents were themselves significantly weaker than any 
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other of the six remaining types of media effluents. The two types 

- of Flocor effluents were remarkably similar (as also occurred with the 

suspended solids contents) and were significantly weaker than the 

mineral media effinentc, Considering the COD concentrations of the 

mineral media effluents it can be seen that these fell into two 

significantly different groups. . The small 89/50 mm media (both 

granite and slag) had significantly weaker effluents than the large 

125/75 mm grades, although they were significantly worse than any of 

the pastic media effluents. Overall, therefore, the worst ‘mineral 

media effluent (125/75 mm granite) was 45% stronger in terms of the 

COD concentration. 

Turning to the BOD results for this period, a similar pattern was 

shown in table 7.8; the Biopac 50 effluent being significantly lower 

than the remaining six types of effluent. However, the differences 

between the remaining six types of media were not so significant as was 

_ the case for the COD concentrations. There was slightly greater 

difference between the two types of Flocor media, but it is not 

statistically significant. The four types of mineral media showed 

limited. differences which in some cases were just statistically 

significant. It can be seen that the overall trend for the BOD 

concentrations of the effluents was similar to that observed for 

the COD concentrations. 

5 Turning to the sludge production data in table 7.8, it can be 

seen that the pattern exhibited by the suspended solids concentrations 

of the unsettled filter effluents had been slightly altered. The 

BOD removals of each media type also had a significant effect upon the 

order of performances. The result was a compression of the overall 

variations exhibited. Biopac 50 produced significantly less sludge 
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per gram of BOD removed than any of the other media types (apart from 

Biopac 90). Biopac 90 produced the second least amount of sludge, 

being significantly less than four other types of media. The two 

Flocor media produced slightly more sludge than the mineral media 

filters per gram of BOD removed, but the differences were not 

significant. 

Overall, it may be said that under the temperatures and loading 

conditions prevailing during this period, the Biopac 50 produced the 

least solids in the effluent and gave the greatest COD and BOD 

removals. The four mineral media gave the worst quality effluents; 

the larger grades of slag and granite giving particularly poor BOD and 

COD removals. 

Comparing the performances of the filters during this period to 

thoseachieved during period 1, it should be noted that the BOD strength 

of the sewage was approximately 15% stronger but that the flows to the 

filters were slightly lower during the third period, with the overall 

result that the gravimetric loadings were greater (see table 7.9). 

Comparing tables 7.3 and 7.8, it can be heed that the average 

temperature of the filters was approximately 3° higher, the percentage 

COD and BOD removals greater, the solids concentrations of the 

effluents higher and that the sludge production rates were lower during 

the third period. -At first. sight, it may appear strange that the 

sludge production rates were lower during the third period when the 

concentrations of solids in the effluents were greater. _ However, the 

weight of BOD removed and the nature of the solids in the effluents 

should be considered. 
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Table 7.9: Comparison of Gravimetric Loadings to the Filters 

during Periods 1 and 3 

Period 1 Period 2 

Tank A 0.893 0.971 

*Tank B 1.588 1.804 

Loading in kg BOD/nid 
*Loading to Flocor M filters 11% higher. 

The performances of the various filters in the two periods 

suggest that the filters were more mature during the third period of 

study. In the initial period, the BOD removal was lower due to the 

immature state of the filters. The filter effluents contained less 

solids than during the third period as a result of this immaturity. 

In the first period, the filters were developing a biological film and 

few macrograzers were present. During the first period, the filter 

film would be fairly thin and in a young healthy state. In the third 

period a more stable macrograzing population was established leading 

to removal of portions of the filter films. Also in the third period, 

“regions of the filter films may have been in poor condition due to the 

lysis of the film, leading to greater solids concentrations in the 

effluents. 

Considering the performances of the individual filters, from 

tables 7.3 and 7.8, it can be seen that in the initial period the 

relative performances of the various media were not clearly defined. 

Overall, Biopac 50 filters tended to produce the least solids in the 

unsettled effluents and provided a good COD removal; however, 

considering the settled effluents, the 89/50 mm slag tended to have a 

lower suspended solids concentration than the Biopac 50 filters and 

the BOD removal was greatest in the 89/50 mm slag filters. 

Considering the sludge production rate during the first period, the 
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Biopac 50 filters produced the least, with the 125/75 mm granite 

filters producing the most. 

By period three, the overall pattern of filter performances 

tended to be more clearly defined with the Biopac 50 filters giving 

the lowest solids production, best BOD and COD removals and the lowest 

sludge production rate. Of the mineral media filters, the gradings 

seemed to be of significance; the larger grades of slag and granite 

producing worse effluents and removal performances than the small 

grades. The two Flocor media, whilst not performing as well as the 

Biopac media, tended to give slightly better COD and BOD removals 

than the natural media. Although the relative performances of the 

different media during period three were more clearly defined than 

during the first period, it should be noted that the variation in the 

performances of the duplicate filters was of greater significance. 
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E. Period 4: 29 July 1976 to 17 July 1977 

On 29/7/76, a new source of settled sewage for the pilot plant 

was obtained from the main works. The new primary settlement tanks 

on the Eign site had recently been commissioned; the Mono pump which 

until now had been pumping settled effluent from the two converted 

cold digestion tanks to the pilot plant header tank was moved to a 

position from which it could draw primary settled effluent from an 

outlet chamber from one of the new primary tanks. 

I. Results 

i) Flow Results:- 

From appendix 7.E.1, it can be seen that this source of settled 

sewage permitted a fairly constant flow on to the filter beds; 

blockages due to gross solids not being experienced during this period. 

The presence of only one tipping trough flow record per tank of 

filters between 14/11/76 and 17/4/77 was due to the removal of two 

troughs from the site for servicing. 

During late February and March 1977, there were several breaks 

in the sewage supply to the pilot plant for two related reasons. 

On the fourth of March overnight for fifteen hours, the pump had to be 

stopped to permit repair to the delivery pipework. Between 19/3/77 

and 21/3/77 the electricity supply was cut off for approximately 

‘48 hours. There were further short cuts in the power supply during 

March which reduced the average flow to the filter beds. In April 

1977, between the ninth and the eighteenth, the sewage flow was halted 

due to damage to the Mono pump sustained as a result of ineffective 

mounting brackets. The flow was also cut between the fifth and the 

" ninth of June,1977 due to defective pipework in the main works primary 

settlement tank from which the pilot plant was supplied. 
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ii) Temperature Results:- 

From Appendix 7.E.2, it can be seen that the maximum and minimum 

feed) temperatures during the seven weeks in February, March and 

April 1977 were not recorded. The reason for the absence of this 

data was that the sewage feed temperature probe during this period 

was frequently exposed to the atmosphere as a result of power cuts, 

pump breakdowns and pipework problems mentioned in the section 

detailing the flow results. 

From appendix 7.E.3, it can be seen that the weekly meaned filter 

temperatures at mid-day were not available ‘for five weeks early in 

~ 1977. No comparative temperatures were taken during the week ending 

2/1/77 due to staff vacations. Other weeks of missing data were as a 

result of additional analytical workload due to biological sampling of 

the filters' films. This anes was protracted as a result of staff 

illness and difficulties with maintaining.the supply of settled sewages 

iii) Routine Analytical Results:- 

From appendices 7.5.4 to 7.E.9, it can be seen that there were 

many occasions where averaged analytical data were not available. 

Considering the BOD data, no results were available for the 8/8/76 

due to staffing difficulties; no results were available for 24/10/76 

due to biological sampling; no results were available for the 

fortnight 26/12/76 to 2/1/77 due to staff vacations; no data was 

available for February due to protracted biological sampling, no 

samples were collected for the week ending 10/4/77 due to Easter 

vacations, and also none the following week because of a pump break- 

down mentioned in the flow section. Finally, no data was collected 

for the two weeks ending 15/5/77 and 22/5/77 due to the additional 

workload imposed as a result of biological sampling. 
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No comparative data was available for the CODs or suspended 

solids of the effluents for the weeks previously mentioned for the 

reasons explained above. 

COD and suspended solids data was not available for the week 

ending 12/6/77 as a result of inadequate and irregular sewage supplies 

and the additional time lost in trying to maintain a flow to the 

filter beds. 

From appendix 7.5.8, it can be seen that the ammoniacal nitrogen 

data Roe presented was due to the omission of sampling for the 

reasons previously mentioned. It can be seen that in the case of 

the total oxidised nitrogen results (appendix 7.E.9) analysis was 

frequently omitted. These omissions were in the most part deliberate, 

since the value of frequent total oxidised nitrogen results was 

limited. 

II. Period 4: Discussion of the Physico Chemical Data for Period 4 

At the end of July 1976, settled sewage was eithdrawa from the 

outlet chamber of the main works Drlnary aeeclenene tank for the pilot 

plant using the existing Mono pump, now resited. Observation of 

appendix 7.E.1 shows that the mean flow rate of 2.74 n/m? /a to the 

mineral media filters was very close to the nominal rate of 

2.8 m?/m?/a. However, the desired flow value for the plastic media 

filters of 5.6 m?/m?/a was not achieved; there was an average short- 

fall of 12%. As previously mentioned, under the existing pilot ‘plant 

conditions, it was only just possible to attain the nominal rate. 

Any minor blockage of the distributor arms or reduction in the level of 

the sewage in the header tank resulted in a marked decrease in the 

volume of sewage applied to the filters. 
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Apart from late February, March and early April 1977, the flows 

to the filters were quite stable (the flow variations occurring in 

early 1977 being explained in the results section). The ratio of 

sewage applied to the plastic filters to that applied to the mineral 

media filters at 1.8 was close to the desired ratio of 2.0, although 

not quite so close as the 1.85 value achieved during period three. 

Considering the temperature data, from figure 7.25, it can be 

seen that during this 51 week period the sewage temperatures ranged 

from approximately 22°C in the summer of 1976 down to about 12°C in 

January and February 1977 and then rose to approximately 18°C again in 

the summer of 1977. From figure 7.25, it can be seen that the daily 

maximum and minimum temperatures recorded for the sewage differed by 

just greater than 1.0°C quite consistently throughout the period, with 

_ an indication that the daily fluctuation was reduced in the summer 

months. The maximum temperature of the plastic media filter (FIM 2cw) 

was for most of the period fractionally higher than that of the mineral 

media; however during May 1977 the mineral media filter temperature 

(ss biol) tended to increase more rapidly than that of the Flocor M 

filter and became frequently the warmer filter during June and 

duly 1977. 

Turning to consider the statistical analysis of the maximum and 

minimum temperatures, from the following two tables 7.10 and 7.11, 

it can be seen that all the temperatures differed significantly; the 

feed maximum and minimum temperatures being greatest. 
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Table 7.10: Mean, Max. & Min. Temperatures and L.S.D.s for 

the Period 29/7/76 - 17/7/77 

  

| Feed FILM 2cw SS biol L.S.D. 

Maximum 16.977 16.309 16.116 0.125 

Minimum 15.835 142.791 14.577 0.171 

(Temperatures in °c) 

Table 7.11: Standard Deviations & Fluctuations of the Max. & Min. 

Temperatures (29/7/76 - 17/7/77) 

Max.  S.D. Min. S.D. Fluct? s.D, 

Feed 16.977 3.405 15.835 3.412 1.140 0.299 

FIM 2cw 16.309 3.674 14.791 3.596 1.519 0.516 

SS biol 16.1% 3.735 14.577 3.605 1.516 0.502 

(Temperatures in °c) 

The difference between the feed temperature and either filter 

temperature was greater than that between the two filters. The 

plastic media (FLM 2cw) was significantly warmer than SS biol in terms 

of both the maximum and minimum temperatures. Considering table 7.11, 

the mean fluctuations recorded for the sewage temperatures were less 

than those for the two filters and also had the smallest deviation; 

the standard deviationmof the sewage maximum and minimum temperatures 

were also less than for either filter. It is interesting to note that 

there was remarkably little difference between the standard deviations 

of the two filters, yet the differences in the mean, maximum and 

minimum temperatures are significant. 

During the summer of period 3, the maximum temperatures of the two 

filters frequently exceeded that of the applied sewage (the possible 

reasons being explained in the discussion of that period). Apart 
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from the first month's data (August 1976), the sewage temperature 

was greater than that of either filter. In peneenber 1976, the 

ambient air temperature dropped dramatically and there was an end 

to the period of drought. Both these changes in weather would 

affect the temperature of the sewage and the rate of heat loss from 

the filters to the atmosphere. From the analysis of variance 

table 7.12, it can be seen that the comparative temperatures varied 

significantly in time, between the duplicate filters, and due to the 

nature of the media. The statistical analysis ahiows that the FLE 2cw 

filter was significantly cooler than any other filter and that the 

B9O biol filter was significantly cooler than any other filter in 

tank B apart from FLE 2cw. In the case of tank A filters, the 

SS filter was significantly warmer than the other filters; however, 

it was not significantly warmer than three of the plastic media 

filters. 

Considering replication, it can be geen that in all cases there 

was a significant variation in the temperature means, which indicated 

that something other than the type of media had an important effect 

upon the filter temperature. As previously mentioned, the degree 

of solar radiation received appeared to have some effect. However, 

it is curious to note that the sector exhibiting the lowest temperature 

in each bed was adjacent to the sector exhibiting the highest 

temperature. This is particularly noteworthy in the case of the 

FLE 1 cw and FLE 2cw sectors which were constructed of the same media 

and were in fact two halves of the same filter. Observation of 

table 7.12 shows that when the media temperatures are considered, 

FLE lew and FLE 2cw showed the lowest mean temperature, being 

significantly lower than any other temperature mean calculated. 

The Flocor E media has highly regular large voids which were less 
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frequently blocked than the voids of any other media. However, it 

should be recalled than when observing the effects of replication, 

FLE lew and FLE 2cw were not only significantly different, but 

FLE lew also exhibited the highest mean temperature in tank B; 

therefore the nature of the media may only partially explain the low 

temperature shown in the table. 

Comparing the temperatures recorded during this period to those 

collected during periods 1 and 3, it can be seen that the variations 

between the maximum and minimum daily temperatures were greater than 

those during the third period but less than those of the first period. 

The standard deviations of the maximum and minimum temperatures and 

the temperature fluctuations were similar in periods three and four, 

but in contrast to period 3, the maximum and minimum teuparacures of 

the 89/50 slag were significantly lower. 

From the comparative mid-day filter temperatures for the three 

periods, a confused picture emerges. In the first period the 

location of the filters and the effects of solar radiation appeared 

to be highly significant. In the third period the effects of solar 

radiation were minimized, and also the rate of heat loss to the 

surrounding structures and atmosphere due to the high ambient tempera- 

tures were minimal with the result that the temperature differences 

were not outstanding. However, in the fourth period, for the bulk 

of which the ambient temperature was lower than that of the sewage 

temperature, the comparative temperature results were confusing; 

in both tanks of filters, the filter exhibiting the highest tempera- 

ture was adjacent to the filter exhibiting the lowest temperature. 

In the case of the plastic media filters, the filters with the highest 

and lowest temperatures were halves of the same filter of Flocor E. 
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In the fourth period, which covered almost twelve months of reat inns 

the apparently conflicting results ould be due to different factors 

affecting the relative filter temperatures at different times of the 

year. The compilation of all the data into one block could then give 

rise to this curious artefact. 

Considering the analytical data for the fourth period, from 

table 7.12, it can be seen that the variation in the quality of the 

settled sewage applied to the filters caused significant variations 

in the filter effluents. Observations of figures 7.26 to 7.37 show 

that these time variations were in the most part random, with one or 

two individual short term trends. Examining the suspended solids 

concentrations of the sewage and the settled effluents shown in 

figures 7.32 and 7.33, the wide variation in the sewage suspended 

solids can be seen to be largely reflected in the quality of the 

effluents, although the variations were diminished in intensity. 

There were two pronounced peaks in the suspended solids concentrations 

in the sewage, on 12/9/76 and 24/4/77. There was no obvious reason 

ron the high value for the week ending 12/9/76; it was not accom- 

panied by any increase in the COD or BOD concentrations of the settled 

sewage. From figures 7.26, 7.32 and 7.34, it can be seen that in 

late August and September 1976 the quality of the settled sewage was 

unstable, with uncorrelated peaks in the suspended solids, BOD and COD. 

Considering the suspended solids contents of the settled filter 

effluents shown in figures 7.32 and 7.33, it can be seen that two 

high peaks of concentration occurred in late February, early March 

1977 and also in late March. These peaks were of similar intensity 

to the supply iqaelsey variations. There are three’ possible 

explanations for the high effluent concentrations, of which only one 
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could Recoune for the high settled sewage solids. Between March and 

May 1977, the rainfall was particularly low so that an absence of 

infiltration and/or surface water might reduce the normal dilution 

obtained, increasing the solids content. Although, in periods of low 

flow, the retention time of the primary tanks can be increased, 

resulting in a better eualaty of settled sewage. The second possible 

explanation for the high suspended solids concentration of the settled 

filter effluents is the effects of supply cuts to the filters. The 

settled sewage flow was disconnected between 19 - 21/3/77 and also 

between 9 - 18/4/77 due to the damage to pipework and the Mono pump; 

after each break in the supply, on resumption of normal operation, the 

filter effluents' solids concentrations rose, probably due to removal 

of lysed material from the filters and the inability of the filters to 

convert the colloidal solids in the sewage to larger more readily 

pottlesbie solids. The third possible reason for the high concentra- 

tion of effluent solids is the biological condition of the filter film. 

After an accummulation of film during the winter, as a result of 

reduced grazing activity, as the temperature increases in the spring 

s0 do the populations of the macrograzers leading to a heavy unloading 

of the filter film. In this particular case it was certainly 

noticeable that the thickness of the film on the surface of the 

various filters declined at this time. 

Whilst the solids content of the settled effluent certainly did 

peak at these two occasions, comparing the values of the solids 

panceneratiens with those occurring at other times, it can be seen 

that the peaks were not highly abnormal,. therefore it is possibly 

coincidence that the settled sewage contained high suspended solids 

concentrations at a time when the effluents were so poor. This then 

begs the question of whether the disturbed flows caused the solids 
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losses or whether the filters were naturally unloading. 

Turning to the BOD concentrations of the settled sewage and the 

filter effluents shown in figures 7.26 and 7.27, it can be seen that 

there was a wide variation in the settled sewage BOD concentration 

which tended to be reflected in the effluents. Comparing figures 7.26 

and 7.27 to figures 7.28 and 7.29, it can be seen that the percentage 

BOD removal was inversely proportional to the load applied to the 

filters. This trend was particularly noticeable in September 1976, 

when the BOD concentration of the applied sewage markedly declined 

paralleled by a steady increase in the percentage removal by all the 

filters. Over the whole period, the average BOD concentration of the 

settled sewage was 352.3 mg/l (compared to 365.2 mg/l in period 3) and 

a mean removal of 81% was achieved by the filters providing an effluent 

BOD concentration of 67.3 mg/l. 

The increase in the solids content of the settled sewage in 

March 1977 was correlated to an increase in the BOD concentration. 

From figures 7.30 and 7.31, it can be seen that the weight of 

sludge produced per gram of BOD removed by each filter varied 

considerably, oscillating about an overall average of 0.58 g/g of 

BOD removed. In late February - March 1977 and April 1977 the rate 

of sludge production increased dramatically (increasing almost sixfold 

in one particular case). 

Examination of figures 7.34 and 7.35 show that the COD concentra- 

tion of the settled sewage behaved in a similar manner to the suspended 

solids and the BOD concentrations, with a noticeable peak in concentra- 

tion in February - March 1977 but oddly not in April 1977; however 

. turning to figure 7.26 it can be seen that:the BOD concentration in 

April 1977 did not peak so dramatically as in February - March 1977. 
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Overall, for the entire period and all the filters, the COD 

concentration of the settled sewage was 436 mg/l and a mean effluent 

concentration of 147.6 mg/l giving a mean percentage removal of 66%. 

An interesting feature of the settled sewage was the low COD/BOD ratio 

of 1.25, probably as a consequence of the high proportion of readily 

biologically oxidizable matter present in the crude sewage due to the 

nature of the trade effluent discharges to the sewage works. 

Figures 7.36 and 7.37, showing the ammoniacal nitrogen concentra- 

tions of the settled sewage and filter effluents, indicate must 

throughout this period deamination of proteinaceous material was 

occurring. It can also be seen that the variations in the strength 

of the settled sewage followed the BOD concentrations; most 

noticeable is the slight increase in the settled sewage ammoniacal 

nitrogen concentration in February - March 1977, and particularly the 

strength of the effluents. Overall, the settled sewage contained an 

average of 9.8 mg/l of ammoniacal nitrogen and the effluents a mean of 

13.35 mg/l as ammoniacal nitrogen, therefore resulting in a net 

deamination of 3.55 mg/l N. 

From table 7.12, it can be seen that the suspended solids contents 

of the different media settled effluents varied considerably and also 

that there was a significant variation between the duplicate filters. 

The Biopac 50 filter effluents were significantly lowest in suspended 

solids, with the three other plastic media having settled effluents of 

similar suspended solids content. Although not by a significant 

margin, the 125/75 mm granite filters had the worst effluents. 

Examining the suspended solids contents of the unsettled effluents, 

it can be seen that the two types of Biopac clearly had significantly 

better quality effluents than those of the two Flocor media, whilst 
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all the mineral media tend to lie some way between these two extremes. 

Of the mineral media, the two smaller grades tended to have better 

quality effluents. 

Considering the CODs of the effluents, it can be seen from 

table 7.12 that the Biopac 20 filters had significantly the best 

quality effluents, with little difference between the three other 

. plastic media. All the mineral media had worse effluents than any 

of the plastic media filters, with the 125/75 mm granite being 

significantly the worst. The 89/50 mm slag had significantly the 

lowest COD concentration of the mineral media. However, for the COD 

data, there was a significant difference between the duplicate filters 

which reduced the significance of the media removal performances. 

The percentage removal of COD ranged from 70.6% for the Biopac 50 

filters to as low as 60.6% for the 125/75 mm granite filters. 

Comparing the BOD removal performances of the filters as depicted 

in table 7.12, it can be seen that yet again the Biopac 50 filters 

removed significantly the greatest BOD concentration whilst the 

Biopac 90 filters removed more than any other filters. The 125/75 mm 

granite had significantly the worst BOD removal ability. 

Turning to the sludge production rate, it can be seen that a 

similar pattern emerged to that developed for the other analytical 

parameters; namely that the small grades of mineral media produced 

less sludge per gram of BOD removed than the 125/75 mm grades of media, 

Biopac 50 just produced less sludge than any other media followed by 

the larger Biopac 90 media. The two types of Flocor media produced 

similar quantities of sludge per gram of BOD removed to the 125/75 mm 

grades of mineral media. 

Overall, therefore, the Biopac 50 media gave the best quality 
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effluent during period four (and hence the greatest removal). The 

small grades of mineral media tended to give better performances than 

the larger media, which in turn performed to a comparable extent to 

the two Flocor media. 

Comparing the filters' performances in period 4 to the perfor- 

mances in periods 1 and 3, the hydraulic and gravimetric loadings 

should first be considered. The settled sewage BOD during the fourth 

period was of a similar strength to the other two periods and also the 

flows were comparable, to give the gravimetric loadings shown in the 

table:- 

Table 7.13: Comparative Gravimetric Loadings of Filters in 
  

Periods 1, 3 and 4 

Pt. Ds, BBs P4, 
Tank A Mean 0.870 (0.893) 1.107 (0.971) 1.225 (0.965) 

S.D. 0.341 0.226 0.810 

*Tank B Mean 1.491 (1.588) 2.030 (1.804) 20423 (1.733) 

S.D. 0.500 0.564 2.518 

Loadings in kg. BOD/m?/a 

*Loadings to Flocor M filters 11% higher 

Figures in brackets refer to loadings applied during .! 

effluent sampling periods only. 

From table 7.13, it can be seen that using the loadings 

calculated from the effluent sampling periods flows and BOD concentra- 

tions, a different loading pattern emerged to that indicated from 

determinations of the flows and strength of the applied sewage at 

- times other than just during effluent sampling. 
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Considering the BOD removal efficiencies, during period 4 the 

filters had a slightly higher average of 81% compared to 75% in the 

third period and 70% during the first period. A similar trend was 

shown by the COD results. Turning to relative sludge production 

data, in period 4 the mean production was 0.58 g/g of BOD removed 

in period 1. Overall, these trends suggest that. the filters were 

still immature, indicated by their increasing removal efficiencies 

and decreasing rates of sludge production. However, this trend may 

only be an artefact of the manner in which the removal efficiencies 

have been expressed. Considering the gravimetric loadings calculated 

from the effluent sampling period only (data in brackets in table 7.13), 

then it would appear that the loadings applied to tank A filters in 

periods 3 and 4 were similar and that the loadings applied to tank B 

filters declined between periods 3 and 4; however, the loadings 

calculated using the entire analytical results for the settled sewage 

and the flows during each sampling period indicate that both the tank A 

é and tank B filters received higher loadings during period 4 than during 

period 3. Therefore, since the loadings applied to the filters during 

effluent sampling in the fourth period were considerably lower than 

the overall load applied, the effluent quality sampled may be expected 

to be better than that attained overall throughout the period, and 

also sludge production per gram of BOD removed would be less. 

Caution should also be exercised when comparing the relative removal 

efficiencies of the plastic and the mineral media filters, since the 

variations in applied gravimetric loads differed for both tanks of 

filters. Of the plastic media, Biopac 50 had the greatest BOD and 

COD removal, producing the least sludge per weight of. BOD removed. 

Biopac 90 had the next best removal efficiency whilst the two types 

of Flocor media trailed, having comparable removal efficiencies and 
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sludge production figures. It should be recalled that Flocor M had 

an 11% greater hydraulic loading (and consequently gravimetric loading) 

than Flocor E. In terms of their relative specific surface areas, 

the removal efficiency per surface area of the media may produce a 

different order. Considering the mineral media, their removal 

performances and sludge production appeared to fall between that of 

the two groups of plastic media. A distinct pattern had also emerged 

within the mineral media; the small grades giving the greatest 

removal efficiencies and least sludge production. There were indica- 

tions that of the two small grades, the 89/50 mm slag produced the 

best performance; of the larger grade, the 125/75 mm granite tended 

to give the poorer removal efficiency and the greatest weight of 

sludge produced per weight of BOD removed. 

Appendices 7.F.1, 7.F.2 and 2.F.3 show the BOD loading and 

removal of the eight media types during periods 1,3 and 4 respectively. 

_The’ loadings and removals have been expressed in terms of the weight 

of BOD applied to the available specific surface area of the filters 

per day (g BOD/m@/a). From these tables it may be seen that the 

loadings to the plastic and mineral media filters were comparable, 

although due to the high specific surface areas of the Biopac 50 and 

Flocor M media in particular, tiety loadings were the lowest of all 

the eight media types. In spite of approximately twice the volumetric 

load-being applied to the plastic media filters during all three 

periods, the two large grades of mineral media had the highest organic 

loadings in terms of the weight of BOD applied per unit of specific 

surface area. The data from appendices 7.F.1, 7.F.2 and 7.F.3 have 

been plotted in figures 7.38, 7.39 and 7.40. From the three figures, 

the most obvious feature was that. all eight filters removed a similar 
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fraction of the applied BOD per given area of specific surface, which 

implies that the nature of the paride media did not have a significant 

effect upon the film developed or its ability to’ oxidise the settled 

sewage. This result also implies that over the range of gravimetric 

loadings considered, the weight of BOD removed was constant at 

approximately 75% of the applied load. The correlation coefficients 

of the BOD removal to the applied BOD/m> of specific surface/day for 

the three periods were 0.99, 0.98 and 0.99 respectively, showing a 

very high degree of correlation between the loading applied and the 

BOD removed. 

Figures 7.38, 7.39 and 7.40 therefore imply that in order to 

improve the quality of the effluent from the filters, the gravimetric 

load must be reduced or the specific surface area of the media 

increased; that is, the greater the specific surface area of the 

media, the greater the quantity of BOD that may be removed and the 

better the quality of the effluent, given a constant hydraulic and 

gravimetric loading per given volume of media. In practice, the 

veaonnk of organic matter oxidised ina filter therefore would be 

limited by the nature of the void capacity and its ability to remain 

unponded. 

Comparing the Hereford data to previously published results, 

particularly Bruce et al. (1975) and Banks et al. (1976), the BOD 

removal performances of the Hereford filters appear to lie between 

those achieved in the two studies cited. Bruce et al. (1975) used 

very similar hydraulic loadings and similar strength Stevenage settled 

sewage to that used in the present study, yet only a 50% BOD removal 

was achieved resulting in a settled secondary effluent of 150 mg/l BOD. 

Banks et al. (1976) using BOD loadings of 3.5 ke/m?/a achieved settled 
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secondary effluents with BOD strengths of 70 - 80 mg/l; that is a 

BOD removal of approximately 80%, slightly better than that achieved 

at Hereford. ~The COD/BOD ratios of the settled sewages were 

Stevenage 1.8:1, Ipswich 1.4:1 and Hereford 1.2:1, which probably 

indicates different treatabilities of the sewages; the lower the 

COD/BOD ratio indicating a more readily biologically oxidizable sewage. 

From figures 7.38, 7.39 and 7.40, it can be seen that the BOD 

removal performances of the various media at Herefore were in direct 

proportion to their specific surface areas. Similar trends in media 

performances were shown by Bruce and Boon (1971), except in the case 

of Cloisonyle, a plastic media in which all the surfaces are vertical. 

fruesdale et al. (1961) also found that BOD removal was well 

correlated to specific surface area; curiously Banks et al. (1976) 

found that there was no significant correlation between BOD removal 

performance and specific surface area of the media. 

Sludge production figures at Hereford showed marked variations 

which were not correlated to the nature of the media or specific 

surface environmental conditions; generally greater than 0.5 g/g 

of BOD removed. 

Bruce and Boon (1971) also found that sludge production did not 

appear to be related to the media or its specific surface area. The 

amount of sludge produced in that study was highly variable in the 

range 0.63 - 1.00 g/g BOD removed. 

In common with Banks et al. (1976) the temperatures experienced 

by the filters in this study did not appear to have any significant 

effect upon the performances. The differences in temperature between 

the sewage and filter beds at Hereford were similar to those reported 

by Bruce (1970). 
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8. NATURE OF THE FILMS DEVELOPED ON THE HIGH RATE FILTERS 

Ae Physical Aspects of the Filter Films Developed 

I. Results:- 

i) Filter Volatile Solids Contents 

At the outset of the project it was decided that a quantitative 

and qualitative assessment of the various filter films at different 

depths of the filter would be made at quarterly intervals. The 

facilites for conducting these surveys and the methods employed have 

been described in the section entitled 'Biological Analyses of Filter 

Film' in chapter 6. Whilst it was not possible to adhere to a 

strictly quarterly timetable, eight observations of the filter films 

were conducted during the project. 

One survey was conducted in late October 1975 at the end of the 

first period of operation. A second survey was carried out in 

January 1976 at the end of the second period during which the filters 

received only a low flow of crude sewage. It was possible to carry 

out two examinations of the filter films during the third period in 

April/May-1976 and July 1976. During the fourth period, when a more 

consistent supply of settled sewage was available for almost twelve 

months, it was possible to conduct four examinations of the filter 

films. 

In this section, the volatile solids contents in different 

filters and at various depths are presented. As explained in greater 

detail in chapter 6, a ten gram sample of wet filter film was taken 

from each depth to be first dried to 105° to obtain the dry weight 

of film in a given volume. The dried film was ignited in a mffle 

furnace at 500°C to obtain the weight of non-volatile matter present 

after ignition. From the weight loss on ignition, it was then 
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possible to determine the volatile solids content of a given volume 

of filter media at each depth. 

The results of these determinations are presented in terms of 

kilograms of volatile solids per cubic metre of filter media in 

appendix 8.A.1. A visual appreciation of the differences in 

volatile solids content of the filters and their variation through 

the depth of the filters can be obtained from figures 8.A/1 to 8.4.8. 

When considering the results, it should be recalled that the 

Biopac 50 and 90 and Flocor E filters received nominally twice the 

organic load applied to the natural media. Flocor M, however, in 

view of its reduced depth (1800 mm) received 2.22 times the organic 

load per cubic metre of media, compared to the mineral media. 

As explained in chapter 6, for the modular Flocor media, it was 

only possible to obtain three samples of the filter film at different 

depths, whilst five samples of the random media covering the top 

. 1800 mm of the filters could be obtained. 

; ii) Neutron Scatter Results 

Throughout the period it was possible to make 22 observations 

of the film thickness using the neutron scatter probe, of which the 

first was carried out on the clean media prior to sewage application. 

During the first period, three consecutive monthly determinations 

only were possible at the end of the period. This was due to 

difficulties in transport of the radioactive probe, which were 

overcome by September 1975, after which monthly readings were 

conducted. 

In the fourth study period, when settled sewage from the main 

works was available, two months of readings were unfortunately omitted; 
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these being August 1976 and April 1977. The omissions were as a 

result of staff vacations and excessive workloads. 

From appendix 8.A.2 for April 1975 it can be seen that the 

Seroantare of the filter not occupied, i.e. the voidage, was 

practically constant throughout the depths of all sixteen filters. 

The voidages recorded compared well to those determined during 

calibration of the neutron scatter probe using an oil drum full of 

the various media (see chapter 5, page80 describing the void 

capacities calculated). However, it can also be seen from epee 

8.A.2 that within the first 100 mm of the surface of all the filters 

the apparent void capacities diminished. This apparent reduction 

in voidage was an artefact produced as a result of the effective 

neutron scatter zone including the air above the surface of the media, 

even though the source and probe were designed to minimize the 

vertical radiation and reception of slowed neutrons. However, this 

effect, when the filters developed a film, would be mich reduced, 

since the effective diameter of the reflecting media decreased 

rapidly as the water content increased. a 

iii) Retention Time Results 

Due to the limited number of occasions on which retention time 

determinations for the various filters were carried out, the date for 

the complete project period are presented in one section. 

The determination of retention times by the methods employed 

(which have been described in chapter 5, and their significance 

discussed in chapter 2) are extremely time consuming necessitating 

serious disruption of the routine sampling and analysis. In view of 

the difficulty in obtaining regular analytical data due to plant 

maintenance, major works modifications and biological sampling, it 
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was only possible to make four determinations of retention times 

throughout the entire period, with one of these being on the clean 

media prior to commencing the project. The second determination 

carried out in late October and early November 1975 had to be limited 

to only the natural media filters due to the disruption of the settled 

sewage supply to the pilot plant. 

Analysis of the collected effluent samples for chloride concentra- 

tion during the first two sewage retention determinations was by 

titration against standardised silver nitrate solution, whilst for the 

last two determinations a potentiometric method described in chapter 5 

was employed. 

125 grams of sodium chloride (as a saturated solution) were 

applied via a weir box on one of the distributor arms over the surface 

of one filter. Appendix 8.A.3 indicates that a poor recovery was 

achieved in the effluent from each filter. The causes of the poor 

recoveries are discussed later in this chapter. Appendix 8.A.3. 

_Shows the percentile recovery times; that is the time after which 

16% and 50% of the recovered tracer had lett the filter in the effluent. 

The nature of the accum ulative recoveries is shown in figures 8.A.9 

to 8.4.15. 
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II. Discussion 

i) Period 1: 16/6/75 to 16/11/75 Using Old Works Primary 

Settled Sewage 

During period 1, the retention times of the mineral media filters 

were observed in October 1975; the volatile solids contentsof the 

filters were determined in October 1975, and the unoccupied void 

capacities of the filters determined by neutron scatter in September, 

October and November 1975. 

Considering first the volatile solids contents determined in 

early October 1975, the quantities present per cubic metre of media 

are shown in figure 8.A.1. The most striking feature is the high 

quantity of solids developed in the Biopac 50 filter and also the 

manner in which the accum ulation varied with depth. There was a 

steady increase in the film from the surface down to the fourth 

sector where 43.3 kg of volatile solids were present. per cubic metre. 

The greatest development of filter film at the depth of 1.00 to 1.400 

metres below the filter surface could have been as a result of the 

high instantaneous flow rate applied to the surface. At the surface, 

the film had greater difficulty developing as a result of the rapid 

passage of the sewage over the media surfaces. Due to the random 

nature of the media and its numerous pathways through which the sewage 

may flow, the "plug flow" effect is reduced with increasing filter 

depth, presumably (combined with the change in quality) resulting in 

the most favourable condition for film development by one metre in 

depth from the surface of the filter. A similar though more 

restricted effect can be seen in the Biopac 90 filter. Considering 

the Flocor media, the trends are more difficult to observe due to 

there being only three depths at which the film weight was determined. 
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For Flocor E, it would appear that an even limited film development 

had occurred. Comparing the nature of the modular Flocor media to 

either size of Biopac, it would seem likely that the "plug flow" 

effect would be far less reduced by the highly regular pore shapes 

throughout the filter depth and the lack of horizontal surfaces on 

which sewage may remain between surface applications, therefore no 

particular depth of the filter may be advantageous for film develop- 

ment. This picture is not substantiated by the film weights developed 

at the three depths in the Flocor M filter; the 600 - 800 mm depth 

showing a far greater film development than observed in the Flocor E 

filter or at either of the other depths in the Flocor M filter. The 

Flocor M modules are 600 mm deep, so that the 600 - 800 mm depth 

represents the top 200 mm of the second layer of modules. As 

previously mentioned, each consecutive layer of modules was stacked at 

“right angles to enhance the sewage distribution over the available 

surface area. To a limited extent this will restrict the sewage flow 

* at the interface of each module, perhaps improving the conditions for 

film development. Unfortunately the quantity of film at the 400 = 

600 mm depth was not determined (any development at 600 - 800 mm 

might also be accompanied by development at 400 - 600 mm). 

Turning to the mineral media ‘filters, the most obvious feature was 

the much lower quantity of volatile solids developed throughout the 

filter depth compared to the Biopac filters. The manner of the film 

development did not appear to be similar in the four filters; no 

comparative features occurring in the same types or grades of media. 

jhe nature of the films developing should also be considered; it is 

likely that the types of flora differ with depth and the different 

flow regimes developing within each type of media resulting in 

differing patterns of film accum ulation. The nature of the films 
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within each filter of each type is discussed in the biological film 

section. 

|The results of the neutron scatter examinations during the first 

period can be seen in appendix 8.A.2. Considering first the effects 

of film development on the void capacities of the plastic media filters, 

it can be seen that by September 1975 the unoccupied void capacities 

of the Biopac 50 filters had been markedly reduced from greater than 

90% to as low as 43% at 200 mm below the surface of the filter, 

although in the other filter the unoccupied voidage was only reduced 

to 68% at 200 mm below the surface. Although there is a marked 

. difference between the voidage in the two filters, the trend in both 

cases was similar. A similar pattern is also shown in the Biopac 90 

‘filters but the extent of the void occlusion was much reduced. The 

development of film in both types of Flocor filters had resulted in 

little of the voidage being occupied by moisture. In all eight 

filters the same general trend was apparent; that is, the media near 

to the surface of the filters tended to have the greatest blockage of 

the voids, the trend being most pronounced in the Biopac 50 filters, 

with the duplicate filters differing significantly. 

Turning to consider the mineral media filters, the reduction in 

unoccupied voidage by September (approximately 6%) can be seen to be 

similar at all depths and to be the same in the duplicate filters. 

No marked differences had occurred in the filters of the different 

media. 

By the 30th of October 1975, the unoccupied void capacities of all 

the filters had changed dramatically. In the case of the plastic 

media filters, apart from Flocor E, the unoccupied voidage had fallen 

greatly to as little as 30% for the Biopac 90 and 50 filters about 
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300 pa below the surfaces of the filters. It is of interest to note 

that again the duplicate Biopac 50 filters showed marked differences 

in the available voidage, but that on this occasion the other duplicate 

had a greater percentage of its voidage occluded. The trend which 

had been seen in September of the least available voidage approxi- 

mately 300 mm from the filter surface was repeated, being most 

pronounced in the two Biopac 90 filters. Flocor E did not appear to 

have mich of the voidage occupied by filter film water, with a slight 

reduction in the occupied space at the surface of the filters. The 

Flocor M filters showed an interesting development in that there were 

changeable features in the blocked voidage. At the depths 600 mm 

and 1200 mm it can be seen that the voidage occupied was greatest. 

These two levels correspond to the position of the module interfaces. 

The mineral media filters also showed similar trends of greater void 

space occupation, the increases being of a similar magnitude to those 

shown by the Biopac filters. In comparing the four tyes of mineral 

media, the most obvious development was the smaller increase in 

; voidage occupation in the 125/75 mm slag filters. 

By mid November 1975, the pattern of void capacity blockage was 

markedly changed as a result of the reduced flow of settled sewage 

applied to the filters, particularly to the plastic media filters. 

The Flocor E and M filters had almost no voidage occupied, the Biopac 

90 filters had very little of the void space occupied by film, 

however the Biopac 50 filters appeared not to have suffered to such 

a marked extent, with the pattern of greatest occupied voidage 

occurring at approximately 300 mm from the filter surface. 

The mineral media filters also appeared to lose a significant 

quantity of film, particularly 300 mm from the filter surfaces, with 

very little change in the voidage occupied at greater depths. 
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This change in the voidage occupied relates to the change in 

the quantity and nature of the sewage available. However, it should 

not be considered that the increase in unoccupied void capacities was 

directly related to a loss of film; the nature of the film develop- 

ment may also have changed. Whilst the quality of the effluents did 

deteriorate in October and November 1975, there was no vast increase 

in solids present in the effluent. The neutron scatter probe 

indirectly measures the amount of water present at any particular 

level within the vicinity of the source and detector. Variations 

in the quality and quantity of sewage being applied to the filters 

can cause endogenous respiration to occur which can lead to a 

reduction in film thickness without a severe fall in the quality of 

the effluent. Also lysis of the micro-flora, whether fungal or 

bacterial, can lead to a reduction in the volume of the voidage 

occupied, without severe loss of film; that is,the structure of the 

film is altered, becoming weak with a loss of bridging links which 

may retain water. Also a change in the feed applied may result in 

a change in the relative species proportional composition of the floral 

community with a resultant Bangs in the amount of water retained by 

the filter. Fungal growths tend to be less dense producing a greater 

sponge-like structure when compared to the development of zoogleal 

film; therefore for a given weight of volatile solids the amount of 

water held by the film may vary significantly. Comparing the voidage 

occupied by moisture, as determined by neutron scatter in October 1975, 

and the various weights of volatile solids present at different depths 

within the filters no obvious correlation can be obtained. This 

lack of correlation may most easily be observed in the case of the 

Biopac 50 filters where the greatest occupation of the pores by 

moisture may be seen to be at approximately 200 mm to 400 mm from the 
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filter surfaces whereas the greatest volatile solids contents were 

observed at 1000 to 1400 mm from the surface. This trend may be 

explained by the nature of the film development. If the film at 

200 fe 400 mm depth was predominantly fungal, whilst at 1000 - 1400 mm 

the film was predominantly bacterial, the greatest holdup of water 

. May occur at the upper depth, yet the volatile solids could be 

greater at the lower depth. This feature will be further discussed 

in the biological section where the nature of the film at different 

depths will be described. Considering the retention time determina- 

tions made on the mineral media in October 1975 (figure 8.A.11), it 

_ can be seen that in all cases the 16%ile and the 50%ile times were 

increased; the increases in the 50%ile times being the most marked. 

The greatest change in retention times occurred in the two small 

grades of media, with the 50%ile time for both duplicates of the 

89/50 mm slag being greater than 30 minutes. Taking into account the 

volatile solids contents and the voidage occupied by moisture in the 

89/50 mm slag and granite filters, the retention times for the two 

types of media in October might be expected to be comparable; however, 

the slag filter had much higher 16%ile and 50%ile times. In April _ 

1975, when the retention times of the clean media were determined, the 

89/50 mm slag had greater retention times than the 89/50 mm granite; 

therefore the greater retention times in October 1975 would Ace to 

be a function of the media type. The same pattern was also shown in 

the four filters of the larger graded media, tending to support the 

idea that the nature of the media accounts for the difference in 

retention times. The retention times of the duplicate filters also 

differed by quite large margins in October 1975 as was shown in 

April 1975, however in the two instances the order was reversed. 
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The 125/75 mm granite filter containing the biological shaft had the 

shortest 16¥ile retention times in October and the difference between 

the duplicates 50%ile times in October 1975 was greatly increased 

Corer ed to April 1975. The order of the 89/50 mm slag duplicates 

50%ile times was reversed in October 1975 with the filter having the 

biological shaft having the greater retention time. These reversals 

of order support the hypothesis that the presence of the biological 

shafts in the filters did not increase the short circuiting of the 

sewage through the filters. 

ii) Period 2: 16/11/75 to 29/1/76 Using Comminuted Crude Sewage 

During period 2, from 19/11/75 to 18/1/76, only low flows of 

comminuted crude sewage were applied to the pilot filters, which 

meant that the BOD strength of the sewage was greater, the solids 

content higher but the overall dosdine lower due to the low flows. 

No retention time determinations were made during this period and 

only three neutron scatter determinations made, of which the first 

in November 1975 was conducted on the first day of the crude sewage 

application. Only one examination of the filter films was made, in 

late January 1976. 

Considering first the volatile solids content of the filters 

during this period, it can be seen that there was an appreciable 

change in the amounts and distributions within the filters. 

As an exception to the changes, in absolute terms the Flocor E 

filter gained very little film during the period; the increase 

overall being due to an almost doubling of the volatile solids content 

at the 600 mm to 800 mm depth, whilst film was lost at the surface and 

towards the base of the filter. The Flocor M filter lost much of its 

film from the 600 mm to 800 mm séction, the weight falling from 
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| 
17226 kg/m? to 4.9 kg/m? of volatile solids by late Tease) 1976. 

Both types of Biopac lost volatile polide during the period (figures 

8.a.1 and 8.4.2). In the case of the Biopac 50 filter, the change 

was quite dramatic; not only was there an overall loss of film but 

also a marked change in its distribution. In November 1975, the 

greatest film build up was an the centre of the filter. During the 

period it can be seen that from 600 mm downwards there was an 

overall loss of film, Averaging the depth from 1200 mm to 1800 mm 

there was a 62% loss in volatile solids. However, from O to 600 mm 

in depth, the Biopac filter film volatile solids content barely 

altered, with the result that the upper regions of the filter had the 

greater volatile solids content by late January 1976. 

A similar trend occurred in the Biopac 90 filter with the 

1200 - 1800 mm depth of the filter. losing 51% of its volatile solids 

content (however, in absolute terms the weight loss was far less than 

in the case of the Biopac 50 filter). In the top 600 mm of the 

filter, there was only a slight decrease in the amount of film present. 

Wiciotersia effect in the Biopac 90 filter was therefore a relative 

increase in the film supported by the upper part of the filter 

compared to the middle and base of the filter. 

In the mineral media filters, the change in film development was 

quite different. Apart from the 125/75 mm slag filter, the other 

three types of mineral media made large increases in the weight of 

volatile solids present at all depths. In the case of the 89/50 mm 

slag, a clear picture emerges of the greatest volatile solids content 

being supported at the surface of the filter with a gradual decline in 

solids through the depth of the filter. Although slight variations 

occurred, a similar pattern developed in the 89/50 mm and 125/75 mm 

237



granite filters, with the 200 mm - 600 mm depths supporting the 

greatest weight of volatile solids. ; The change in the volatile 

Solids content of the 125/75 mm slag differs completely to that which 

occurred in the other three mineral media filters, with very much 

less film being present at any depth of the filter, and the weight 

of volatile solids per cubic metre being greatest low in the filter. 

Contrasting the two small grades of mineral media to the two 

larger grades , it can be seen that the smaller media supported the 

greatest weight of volatile solids near the surface of the filters, 

whilst the larger grades had their greatest weights of solids lower 

in the filters. The 89/50 mm grades of media had greater specific 

surface areas than the 125/75 mm grades and therefore a greater 

weight of anaerobic film could develop per cubic metre of media. 

As the developed film oxidised the sewage passing through and over 

its surfaces, the potential for growth decreased, that is the 

substrate concentration was reduced hence reducing the potential 

for further microbial development, thus the gradual decline in the 

wolatile solide contentiiin depth. In the larger grades of media, 

the amount of volatile solids developing at the surface of the filter 

was limited by the available surface area and the rapid passage of 

Sewage through the filter. At the lower depths within the 125/75 mm 

filters, the instantaneous rate of sewage flow over the film surface 

reduced and an evening out of the plug flow effect occurred as a 

result of the retention effect of the media and developed film higher 

an the filter. Thus a more suitable environment was provided for 

greater film development at lower depths within the filters. 

Considering the neutron scatter moisture determinations 

conducted during this period (appendix 8.4.2), it can be seen that in 
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the plastic media filters there was a decline in the voidage occupied 

by moisture whilst in the mineral media filters there was an increase 

in the voidage occupied by moisture. 
| 

| 

In the plastic media filters between 19 November 1975 and 

17 December 1975, there was a marked reduction in the occupied 

voidage particularly in the Biopac 50 filters. The situation 

attained by the December examination was then maintained for all 

eight plastic filters until January 1976. It can.be seen that the 

two types of Flocor had very little of their void capacities occupied 

by water throughout the period, and that only slightly more of the 

voidage available in the Biopac filters was occupied by moisture, 

Turning to the mineral media filters, it can be seen that all 

four types of media had similar voidages occupied by water. During 

the period, a trend was developing of greater voidage being occupied 

towards the centre of the filters than at the surface. This trend 

does not follow that shown by the volatile solids contents at each 

_ depth; in the cases of the 89/50 mm media it might be expected that 

greatest moisture contents would be Ciservad near the surface of the 

filters, The explanation must be that differing types of film were 

developing within the filters which retained or contained water 

differentially. 

iii) Period 3: 29/1/76 to 29/7/76 Using Pilot Plant Settled Sewage 

During period 3, settled sewage was available for the pilot 

filters from converted cold sludge digestors being used as settlement 

tanks, which permitted greater flows to the filters than during 

period 2 with a much improved quality, having a lower BOD and 

suspended solids content. 
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During the period, it was possible to carry out two determina- 

tions of the volatile solids contents of the filters throughout the 

depths in April/May 1976 and July 1976. Coupled with the assessment 

of volatile solids made at the end of period 2 in January 1976, it 

was therefore possible to observe the change in volatile solids over 

two intervals. Considering first the plastic media filters, it can 

be seen from figures 8.4.2, 8.A.3 and 8.A.4 that in the two types of 

modular Flocor media filters there was a gradual increase in the 

volatile solids content throughout the period, most noticeable in 

the Flocor M filter where the film volatile solids contents more than 

doubled in the six months from approximately 4.8 kg/m? of media to 

10.1 kg/m? Reflecting on the development of the filter film during 

the first two periods, the 600 - 800 mm depth contained the greatest 

volatile solids content; however, in this period the distribution 

of the film was quite even throughout the three depths of the filter. 

Turning to the two Biopac filters, it can be seen from figures 

8.a.2, 8.A.3 and 8.A.4 that both filters contained far greater 

quantities of film throughout the period than the Flocor filters 

with the Biopac 50 filter containing the greatest quantity. Between 

January and late April 1976, it can be seen that both filters 

increased their volatile solids contents with greatest increases in 

the 200 mm to 1000 mm depths of the filters. By July 1976, the 

pattern and quantities of the volatile solids contents had changed 

appreciably. The filters lost much of their solids throughout their 

depths but particularly between 200 mm and 1000 mm from the surface. 

In the case of the Biopac 90 filter in July 1976 this depth still had 

the greatest volatile solids content but in the Biopac 50 filter only 

the 600 mm - 1000 mm depth had a greater volatile solids content than 

the other depths. Comparing the volatile solids contents at 
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different depths within the mineral media filters it can be seen that 

a similar trend to the Biopac filters’ occurred; namely that between 

January and late April 1976 film accumulated in the filters particu- 

larly at the lower depths only to be lost by July 1976. It is of 

interest to note that all the mineral media filters increased their 

volatile solids contents fron 600 mm to 1800 mm so that in April 1976 

these depths had greater volatile solids contents than the upper 

regions of the filters. A further feature of note in April 1976 

(figure. 8.4.3) is the comparison between the two grades of similar 

media. Both slag filters had similar depth profiles of film 

accumilation, with the 600 i - 1000 mm depths supporting the 

greatest film growth. In the case of the two granite media filters, 

it can be seen that both filters had similar depth profiles of film 

accumulation but that in their cases the greatest accumulations 

occurred between 600 mm and 1400 mm with greater amounts in the 

1000 mm to 1400 mm depths. 

By July 1976, the pattern of accumulation had altered in all 

sour mineral media filters, with an overall loss of film in all four 

filters. This loss of film was particularly from the lower depths 

of the filters in the cases of the granite media filters with a more 

overall loss of film in the slag filters. 

During the first two periods of study, the mineral media filters 

had appreciably less film than the two Biopac filters. In April 1976 

it can be seen that the mineral media filters' film contents were 

approaching those in the Biopac filters. By July, after the 

unloading had begun, it can be seen that all the filters apart from 

the two Flocors had lost well over 50% of their volatile solids. 

From chapter 7, it can be seen that all the filters between 
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April 1976 and July 1 976 were unloading due to increased macrograzer 

populations. This unloading began towards the bases of the filters 

travelling upwards to the surface. In July 1976 the unloading was 

still- occurring in the granite filters, which may account for the 

high quantities of film still present at the 200 mm - 600 mm depths. 

Considering the neutron scatter determinations of moisture 

contents during this period, it may be seen that during January, 

February and March 1976 there was a gradual increase in voidage 

occlusion in the plastic media filters with an instability in April. 

In May 1976 the Flocor M filter increased its moisture content. 

Comparing the Flocor E and M filters, it can be seen from appendix 

8.4.3 that the Flocor E filters lost much of their film in June and 

July whilst the Flocor M filter tended to maintain its film thickness. 

Turning to the Biopac filters, it can be seen that the steady 

build up of moisture content during February and March was arrested 

4 in April with a divergence of moisture contents between the duplicate 

filters. The Biopac 50 filters lost much of their moisture content 

in May with apparently a new ‘film build up in June and July leading 

to higher moisture contents at this time. The Biopac 90 filters 

however did not appear to lose their film and consequently moisture 

contents until June and July. 

The break in settled sewage flow to the filters in late April 

1976 did not appear to affect the moisture content too seriously 

apart from the Biopac 50 filters which perhaps began to unload film 

as a direct consequence of the drying out which occurred. 

Unfortunately due to the biological sampling of the filter 

films at this time, no analytical data for the effluents is available 

to relate to the changes in moisture contents. 
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Considering the moisture contents of the mineral media filters 

during this period, it can be seen that overall much more of the 

voidage was occluded by moisture than in the plastic media filters. 

In January and February the moisture contents of the mineral media 

filters was quite low suggesting a thin film with a greater moisture 

content in the 89/50 mm slag filters than the other three types of 

media. This pattern is endorsed by the volatile solids contents of 

the filters determined in January 1976 (figure 8.A.2). There 

appears’ to have been a gradual build up of film during March, April 

and May 1976 with a decline in June to much lower moisture contents 

in July in all four types of media. The high percentage occlusion 

of the/voids shown by the filters in May suggests that the drying out 

effect during the period of no sewage application in late April was 

not as serious as appeared from visual observations of the filters! 

surfaces. 

The neutron scatter measurements do not show quite the same 

_ Sharp emphasis of film thickness changes with depth as the volatile 

solids determinations, partly as a Pestle of the greater number of 

observations made through the depths of the filters smoothing out 

the apparent variations indicated by the volatile solids determinations. 

iv) Period 4: 29/7/76 to 17/7/77 Using Eign Works Primary 

Settled sewage 

In period 4 which lasted practically 12 months, settled sewage was 

available from a newly commissioned primary settlement tank on the 

Eign site. Apart from occasional A ceelend with the pump and teething 

problems of the settlement tank, a good quality tank effluent was 

available in suitable volumes for this period. 
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As a result of the continuity of supply it was possible to 

conduct four assessments of the film thickness and the associated 

fauna. For various reasons, these assessments could not be carried 

out at exactly quarterly intervals. Comparing figures 8.A.4 and 

8.4.5 showing the volatile solids contents of the various filters in 

duly and October 1976, it can be seen that in the cases of the plastic 

media there was little change in the overall pattern of the film 

distribution; the Biopac 90 filter tending to increase the weight of 

volatile solids throughout the filter particularly at the surface and 

the 4000 mm to 1400 mm depth. In the Biopac 50 filter there was 

little overall change in film weight, but a redistribution such that 

the amount of film supported by the media tended to decline with 

faietanse from the surface by October. The Flocor E and M filters 

showed little change in volatile solids contents. 

Considering the mineral media filters, overall there was a 

reduction in the quantity of film in the filters; in the case of the 

89/50 mm slag the reduction was confined to the upper 1 metre of the 

filter, whilst in the 125/75 mm slag filter, the lower regions of the 

filter tended to lose film whilst the upper two depths (O - 200 mm and 

200 - 600 mm) gained volatile solids. Turning to the two granite 

media filters, it can be seen that there were changes in distribution 

of the film, such that by October apart from the O - 200 mm segment 

of the filters the volatile solids supported by the media tended to 

decline with increasing distance from the surface. 

By March 1977 (see figure 8.4.6), in all six filters it can be 

seen that there were marked gains in the. volatile solids contents of 

the media at the 200 - 600 mm depth generally at the expense of the 

film at the other depths. In the cases of Flocor E and M the film 
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development at the three depths examined was very much restricted in 

March with slightly increased weights of film being supported at lower 

regions of the filters. This pattern of film distribution was very 

much altered by May 1977, when in the case of Biopac 90 (figure 8.A.7) 

the 200 mm to 1000 mm depths of the filter lost the majority of its 

film. In the Biopac 50 filter the change in volatile solids distri- 

bution between March and May 1977 was more complex. All the depths 

of the filter apart from 200 - 600 mm gained weight, whilst the 

200 - 600 mm depth lost approximately 60% of its volatile solids 

contents. In both types of Flocor, the filters increased the film 

volatile solids contents particularly at the two upper levels. The 

most dramatic changes in volatile solids contents occurred in the 

mineral media filters, with most depths in all four types of filters 

increasing their solids contents. During this period between March 

and May 1977 there appeared to be changes in the distribution of film 

with depth in these mineral media filters; the 200 - 600 mm depth in 

: particular losing volatile solids whilst the lower depths showed vast 

increases in the volatile solids produced. 

By August 1977 (figure 8.a.8) the film distribution in the filters 

had again changed, with a marked loss of volatile solids at all depths 

within the mineral media filters, but essentially only minor changes 

occurred in the distribution of volatile solids in the plastic media 

filters. The Biopac 90 filter tended to gain film at the lower 

depths with a slight loss of film between O and 600 mm from the surface. 

In the Biopac 50 filter, there was a more even distribution of film 

in August 1977 compared to May, with overall a similar weight of 

volatile solids. In the two Flocor media filters there was a general 

loss of volatile solids. As previously noted, the Flocor filters 
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supported very much less film at any time than the two randomly 

packed Biopac filters, being approximately 25% of the weight 

supported by the Biopac filters, and per given volume supporting 
/ 

a similar amount of film to the mineral media filters. 

| Considering the results of the neutron scatter determinations 

carried out during the period (appendix 8.A.2), it may be seen that 

for the plastic media filters, there was a general increase in the 

occluded voidage during the autumn and winter, particularly towards 

the centres of the two Biopac filters and at the bases of the two 

Flocor filters. By January 1977, after a loss of film in November 

- 1976, the Biopac filters retained very large quantities of water in 

the upper halves of the filters. In the Biopac 90 filter in 

January 1977 at 600 mm from the surface, less than 20% of the media 

volume was voidage. In the two Flocor media filters the pattern of 

voidage occlusion by moisture was markedly different. Apart from 

the bases of the filters, very little of the available voidage in the 

filters was occupied by moisture. These observations are in keeping 

with the results obtained from the comparative assessments of 

volatile solids contents at different depths within the different 

filters. The neutron scatter observations indicated the retention 

of much moisture in the bases of both the Flocor E and M filters. 

This moisture must have been retained by a denser film than higher 

in the filters, but it was not possible to tell whether the nature 

of the flora was different. Unfortunately, it was not possible to 

obtain samples of the filter media and associated film at the bases 

of these filters. 

In February 1977, the moisture content of the filters was 

similar to that observed in January but by the neutron scatter 
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determinations in March, changes had occurred. Much of the moisture 

content present in February did not occur in any of the plastic media 

filters in March. This decline in March was followed by a new 

increase in the moisture content by May 1977; however in the Biopac 

90 and 50 filters these increases in moisture content were at 

noticeably lower depths in the filters. A further interesting 

feature is the appreciable voidage occlusion in the Flocor M filter 

in May 1977. Unfortunately due to pump difficulties the flows were 

not maintained in March and April 1977, and therefore it is difficult 

to assess whether the loss of moisture content during this period was 

a direct result of the reduced organic loading to the filters or a 

natural unloading of the filter film. The average moisture contents 

of the filters in June and July was similar to that observed in May, 

but there was a change in the distribution, particularly in the 

Biopac 50 filter where the greatest moisture content tended to be 

higher in the filter than previously. Although the majority of the 

moisture contents at the bases of the Flocor E and M filters during 

the spring of 1977 was lost, there were ‘indications that a slight 

hold up of moisture still occurred at the bases of the filters. 

Comparing the changes in the moisture contents of the mineral 

media filters to those of the two Biopac filters during this period, 

it is immediately apparent that although the overall available voidage 

at any time was less in the mineral media filters, the voidage 

occupied by moisture was also less. This observation is in keeping 

with the smaller volatile solids contents determined for the mineral 

media filters. During the autumn of 1976, the build up of the 

moisture content in all four mineral media filters was slower than in 

the Biopac filters, with the 89/50 mm slag filters first showing a 
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reduction in the free voidage in December. During January and 

February 1977, all the filters increased their moisture contents 

particularly at depths between 200 mm and 800 mm from the surface 

of the filters. In March 1977, the moisture content of the filters 

declined, with a fairly evenly distributed moisture content being 

observed in all the filters during the early summer. 

Throughout the period, apart from the more rapid increase in 

moisture content of the 89/50 mm slag in December 1976, all the 

filters behaved similarly, showing similar moisture contents. 

Another feature of the neutron scatter data shown for this period 

for all the filters was the marked comparability in moisture contents 

of the duplicate filters. None of the duplicate filters showed any 

consistent differences in moisture contents. 

During this fourth study period, it was possible only to carry 

out two retention time determinations an all sixteen filters, one in 

October 1976 and the other in July 1977. From appendix 8.4.3, it can 

be seen that there were appreciable differences between the 16%ile 

and the 50%ile tracer retention times observed on the two occasions; 

the July 1977 determination showing very much slower tracer emergences 

than the October 1976 observation.. It may be seen that on the two 

occasions, the percentile retention times of the duplicate filters 

differed greatly in Beveral cases, a particularly marked one being 

the 50 percentile times for the Biopac 90 filters in October 1976. 

Considering the percentile recovery time for all the filters over 

the four sampling occasions, it can be seen that the presence of the 

biological sample shafts did not cause consistent differences between 

the two filters; therefore although the biological sample shafts 

may on occasion be responsible for short circuiting of tracer through 
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the filters, they were not wholly responsible for the variations 

between the duplicates. Further, it can be seen that the amount 

of the applied tracer recovered varied greatly between the various 

filters and duplicates. These variations were in the most part 

due to the inaccuracies inherent in the method of retention time 

determinations employed. As previously shown, the tracer tended 

to be washed out of the filters in peaks of flows and concentrations. 

If the effluent from the filter happened to be sampled seconds after 

each of. these peaks, this would result in a depressed overall 

recovery of the tracer and also tend to increase the 16%ile and 

50%ile recovery times since the major concentrations and variations 

occurred within the first few minutes of application. If the peak 

concentrations were not sampled during the initial emergence, then 

greater emphasis was laid upon the emergence of the tracer at a later 

time from the filters, tending to increase the percentile recovery 

times. 

Comparing the results for the neutron scatter observations in 

October 1976 and July 1977 to the retention time results, it may be 

seen that although in general the retention times shown by the filters 

in July were greater than in October, the moisture contents were quite 

similar, with perhaps greater moisture contents in October; the 

exception to this trend was the Flocor M filters where the 16%ile 

recovery times in particular were less in July than in October, 

although the moisture contents were quite similar. If the retention 

time determinations were reasonably accurate, then the greater 

retention times shown in July 1977 than October 1976 (whilst the 

moisture contents were similar) must be due to a change in the nature 

of the film. Also, the lack of.correlation between the retention 

times and the moisture contents could in part be explained by the 
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different times at which the determinations were carried out. 

Comparing the volatile solids and neutron scatter results 

gathered during all four periods of this study to values obtained 

by other researchers, one of the similarities is the relatively 

uniform distribution of film throughout the depth of the Flocor 

filters (particularly Flocor E). Bruce and Merkens (1973), using 

a neutron scatter probe, showed that there was no significant 

variation of film thickness within the depth of the plastic media 

filter (Flocor £). Bruce (1970) had reported that a greater thick- 

ness of film developed on the mineral media than the modular plastic 

media. The neutron scatter data at Hereford indicated a similar 

trend, /and the volatile solids in the Flocor filters tended to be 

slightly less than in the mineral media filters. However, this 

pattern was not followed by the two random packed plastic media 

Biopacs 50 and 90. The volatile solids supported by these media 

at Hereford was frequently twice as much per given volume as that 

supported by the mineral media. 

Truesdale et al. (1961) found that tie film thickness developed 

within low rate filters was proportional to the specific surface area, 

thus given surface areas tended to support similar quantities of film. 

From figure 8.4.16 showing the mean volatile solids supported by the 

different media throughout the study plotted against their specific 

surface areas, it can be seen that, apart from the modular plastic 

media Flocor E and Flocor M, the amount of volatile solids supported 

was proportional to the specific surface area of the media, and that 

on average all the media apart from the two Flocors supported 185g of 

volatile solids (dry weight) per square metre of available surface.



From the data presented in this section, it can be seen that 

there was only a limited correlation between the weight of film 

within the filters and their retention times. This can be as a 

result of short circuiting within the filters when a thick film has 

developed. Eden et al. (1964) found that there was no direct 

correlation between film weight and retention times and concluded 

that the use of retention times to predict the film weight within 

a filter was misleading. Peaks in retention times were shown to 

be associated with reductions in the rate of film accumulation or 

even a loss of film from the filters. 
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Figure 8.4.1. Volatile Solids in the Various Filters. 

~ October 1975 
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Figure 8.4.2. Volatile Solids in the Various Filters. 

January 1976 
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Figure 8.A.3. Volatile Solids in the Various Filters, 

April/May 1976 
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Figure 8.4.4. Volatile Solids in the Various Filters 

July 1976 
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Figure 8A.5. Volatile Solids in the Various Filters. 

October 1976 
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Figure 8.4.6. Volatile Solids in the Various Filters. 
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| Figure 8A.7 Volatile Solids in the Various Filters. 
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Figure8.A.8 Volatile Solids in the Various Filters. 
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Figure 8A16. Mean Volatile Solids throughout the study vs. 

Specific Surface*Area of the Various Media. 
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B. Biological analysis of the Filter Films 

During the preliminary planning of the project, it was envisaged 

that the filter films would be examined every three months. In order 

to obeein a sample of media and its associated film representative of 

the film in the body of the filter, three perforated steel shafts 

containing baskets of media were installed in each of the filters, 

thus permitting approximately nine months of uninterrupted re- 

colonisation for each basket of media within the shafts before removal 

for examination. A description of the shafts' dimensions ntl 

installation may be found in chapter 4. In the cases of the two 

modular media (Flocor E and Flocor M), it was only possible to obtain 

subunits from three different depths within the filters. The size 

and positioning of these units is also described in chapter 4. 

On removal from the steel shafts, the 'Netlon' baskets of media 

were taken to the laboratory for removal of their film and examination. 

The method of removing the film from the individual pieces of media 

has been described in chapter 6. The determination of the weight of 

film, its volatile solids content and the keys used for identification 

of the flora and fauna are also detailed in chapter 6. 

I. Results:- 

As previously described, the study at Hereford was divided into 

four. periods as a result of having four different supplies of sewage. 

The changes in sewage supply were dictated by reconstruction of the 

treatment works, and as a consequence the four periods were of 

differing lengths. Due to the discontinuity of supply to the pilot 

tank, maintenance operations and staffing difficulties, it was not 

possible to carry out the examinations of the biological film at 
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exactly quarterly intervals as originally envisaged, however, over 

the entire study period of two years, eight examinations were made. 

| 
| One assessment was made of the filters' film in the first period 

| 

in October 1975 after ten weeks of operation. 

Only one assessment of the filter film was made during the second 

period in which crude sewage was supplied to the filters. This 

examination was carried out in late January 1976, just as the crude 

sewage supply was being cut off. 

During the third period from 29th January to 29th July 1976, two 

examinations of the filter films were possible in April/May and July. 

In the final period which lasted practically 12 months from 

29th July 1976 until 17th July 1977, four examinations of the filter 

media and associated film were made; one in late October 1976, one 

in late February/early March 1977, another in May 1977, and the final 

’ 
examination in early August 1977. 

Five examinations were also made of the protozoa present in the 

effluents from the high rate filters. These samples were collected 

and the protozoa identified by members of the Water Research Centre 

staff. 

All the results of the biological analyses are tabulated in 

appendices 8.B.1 to 8.3.8. 

269



II. Discussion 

By October 1975, during the first period when settled sewage 

was applied to the mineral media filters at a nominal flow of 

2.8 m?/n?/a and to the plastic media at 5.6 m/m?/a, it was evident 

that a large build up of film had occurred in all eight types of media; 

most particularly in the Biopac 50 and 90 filters. . From appendix 

8.B.1 it can be seen that the dominant members of the flora in most 

filters were zoogleal bacteria. In some of the plastic media filters 

however, their abundance was not as great as that of certain fungi. 

In Biopac 50 and 90, Fusarium aquaeductuum was a very significant 

member of the flora at all depths, in both prostrate and erect forms. 

Nematode worms showed rather limited occurrences in all the filter 

films and were not observed at certain depths within some filters. 

Considering the ciliated protozoa, it can be seen that the motile 

forms - holotrichida and hypotrichida - were far more common than the 

attached peritrichida. Rotifera were also rarely observed. At the 

_ surface of the filters a unicellular green alga was also noted. 

These microscopic observations of the filter films suggest that the 

films were unstable, probably due to their immaturity. More mature 

filters might be expected to have greater proportions of sessile 

ciliated protozoa. The W.R.C. protozoal examination of the filter 

effluents (23/10/75) (appendix 8.B.1) showed that the two granite 

media filters had the greatest diversity with perhaps surprisingly 

the Flocor E filter having the next greatest diversity. The Biopac 

filters had very restricted protozoan diversity. At the time of 

sampling the Biopac 50 filters were ponding and the Biopac 90 filters 

possessed wary thick films; which probably restricted the protozoan 

development. As in the case of the microscopic examinations of the 
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filter films, the effluents contained a preponderance of motile 

protozoa. 

In the mineral media filters, Psychoda alternata was the 

afeant macrograzer with limited numbers of Lumbricillus lineatus, 

Chironomus dorsalis and Enchytraeus albidus. In view of the 

difficulties of identification of enchytraeid worms and the similar 

niches occupied by the various species, the enchytraeid components of 

the fauna have been recorded as the family Enchytraeidae. Periodical 

identification of these worms indicated that they were Eredar Gently, 

Lumbricillus lineatus; however, doubt has been expressed (Solbe et 

al. 1967) as to whether specimen from biological filters identified 

as Le lineatus are not in fact L. rivalis. 

Generally, in all the mineral media filters the Psychoda larvae 

outnumbered the pupae, and the numbers present were greatest towards 

the top of the filters; also it may be seen that the numbers were not 

directly related to the volatile solids contents. The enchytraeid 

- aera populations were greatest towards the bases of the filters 

where the Phychoda were least represented. However, the number of 

enchytraeid worms present were much less than the pyschodid numbers. 

Chironomus dorsalis was only present in the 125/75 mm slag in the 

mineral media filters. This filter also had a small population of 

Enchytraeus albidus in its lower half; the population showed a marked 

tendency to increase with depth. Therefore, though of the mineral 

media the 125/75 mm slag had a low specific surface area, it had the 

greatest diversity of the macrograzers. This probably resulted from 

the greater immaturity; a stable fauna not having yet developed, 

whilst the three other mineral media filters were slightly more 

advanced. 
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Turning to the plastic media filters, it is of interest to note 

that the modular Flocor media showed the greatest diversity, although 

very much restricted when compared to the mineral media. Both types 

of Biopac had developed very thick films which were grazed solely by 

Psychoda alternata. Comparing the mumbers of Psychoda alternata in 

the two Biopac filters, it can be seen that the Biopac 50 filter had 

a far greater proportion of pupae in its population than the Biopac 

90 filter and a lower absolute number of larvae. This suggests that 

a generation of the Psychoda in the Biopac 50 filter were more 

advanced than in the Biopac 90 filter. Another interesting point 

is that the total number of psychodid larvae and pupae in the Biopac 

50 filter were comparable to that in the Biopac 90 filter, even though 

a far thicker film was present in the Biopac 50 filter and the 

Biopac 50's greater specific surface area. This suggests that the 

film thickness was so great that grazing activity was restricted. 

The Flocor filter films probably had greater diversity than the 

_Biopac filters as a result of the excessive film development in the 

Biopac filters and the highly regular large voids in the Flocor media. 

Both of the Flocor media tended to support less film and also less 

Psychoda alternata than the Biopac filters. The Rien volatile solids 

content at the 600 to 800 mm depth in the Flocor M filter was as a 

result of the packing arrangement of the modules which resulted ina 

redistribution of the sewage in the filter at the 600 mm level. 

The second biological examination of the filters in January 1976 

was at the end of the second study period during which low flows of 

crude sewage were applied to the filters. This second period of 9 

weeks resulted in slightly reduced organic. loadings being applied to 

the filters and a vast change in the nature of the sewage applied. 
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From figures 8.A.1 and 8.4.2, it can a5 seen that the volatile solids 

contents of the 89/50 mm slag had increased dramatically during the 

period; slightly less marked increases in volatile solids contents 

were mie made by the 89/50 mm granite and 125/75 mm granite filters. 

The 125/75 mm slag filter showed a loss of solids throughout the 

depth, the loss being greatest at the surface, so that by January 1976 

the quantity of film supported by the 125/75 mm slag was much less 

than the three other mineral media filters. Generally, the plastic 

media filters also lost film, particularly heavy losses being recorded 

in the Biopac 50 filter, which still supported greater solids content 

than the three other plastic media and also the 600 - 800 mm depth of 

the Flocor M filter, which lost its previously large accumulation of 

film. 

Turning to consider the Tatars of the film, it may be seen by 

comparing appendix 8.B.1 to appendix 8.8.2 that the flora and 

associated microscopic grazers in the Flocor filters suffered a 

_ reduction in diversity between October 1975 and January 1976 which 

was particularly marked for the protozoa. However, in the cases 

of the two Biopac media, an opposite trend occurred. In the film 

examination of October 1975, no protozoa were noted in either of the 

filters whereas in January 1976 protozoa were observed at all depths 

in both filters. In the Biopac 50 filter, a general reduction in 

the number of filamentous bacteria also occurred between October and 

January 1976. The trends recorded for the Biopac filters suggest that 

a reduction in the quantity of volatile solids supported by the media 

resulted in improved conditions for protozoal development and the 

reduction in filamentous bacterial populations. 

Considering the two grades of granite media; from appendices 

8.B.1 and 8.8.2, it may be seen that the algal members of the surface 
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| 
communities noted in October 1975 were absent in January 1976. 

This change was probably as a result of the change in the nature and 

flow of sewage applied to the filters. Also, less sunlight was 

available in January than October, and of differing quality, reducing 

the potential for photosynthesis. The increased strength and reduced 

flow of sewage during the second period caused an overall increase in 

the volatile solids contents of the two granite filters. The two 

other features in these two filters worthy of note were the overall 

increase in the namber of sessile protozoa during this period and also 

the number of nematode worms present in both filters. 

Considering the two Peadae of slag, it should be borne in mind 

that the 125/75 mm slag filter lost mch of its film between October 

and January, whilst the smaller 89/50 mm grade filter increased its 

weight of volatile solids considerably; however the nature of the 

change in the flora and micrograzing members of the community were 

similar in both filters. There was an increase in the number of 

nematoda present and also an increase in the number of sessile 

peritrichida. Considering the floral members, there was an increase 

in the quantity of filamentous bacteria present in both filters, 

The number of Psychoda (larvae and pupae) in the 89/50 mm slag 

filter increased slightly between October 1975 and January 1976, with 

the lower depths of the filter in particular having the greater 

increases in population, such that in January 1976 the number of 

Psychoda alternata present was in approximate proportion to the weight 

of volatile solids. In the 125/75 mm slag, the reduction in volatile 

solids was not reflected in the number of Psychoda within the filter. 

Overall, there was a general increase in the number present, 

particularly at the lower two depths of the filter. - 
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In the two grades of granite, coupled with the increase in 

volatile solids seen in January 1976, compared to October 1975, there 

was an increase in the number of Psychoda present; as observed in the 

slag media, the increases were particularly noticeable in the lower 

depths of the filters. The most striking feature in the mineral media 

filters was the reduced diversity of the grazers present. 

Enchytraeus albidus, Chironomus dorsalis and the unidentified 

dipteran species had all disappeared by January 1976, whilst the 

number of enchytraied worms and Psychoda alternata had markedly 

increased. This reduction in diversity could be the result of 

three factors. The filters had been operating for 19 weeks by 

January 1976 and may therefore be more mature. The reduction in 

diversity might be a sign of instability due to immaturity; it is 

likely that the reduction reflects: the exclusion of a few opportunists 

ae larger more stable populations developed in the filters. The 

nature of the applied sewage (i.e. much stronger at a Pedhced flow 

rate) may also account for the reduced diversity. The reduction in 

" ground temperature may also have had a restrictive effect upon the 

filter faunas. 

The neutron scatter determinations carried out on the mineral 

media filters in January showed that the greatest voidage occlusion 

was at the centre of the filters, whilst the biological examination 

indicated that the greatest weight of volatile solids was present 

near the surface of the filters. From appendix 8.B.2 showing the 

relative abundance of the various microscopic components of the filter 

films in January 1976, it may be seen that the fungal component 

became more prominent in the film near the centre of the filters, 

where a greater proportion of coarse filaments weré observed; these 

probably caused greater retention of water than a denser mat of fine 
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| 
fungal filaments. 

Considering the macrograzers in the plastic media filters, there 

was a reduction in the number of Psychoda larvae and pupae in the 

Biopac filters, with a general predominance of larvae by January 1976. 

This reduction in numbers did not proportionately follow the reduction 

in volatile solids. Also during this period the filters had 

suffered an invasion of enchytraeid worms. All five depths of both 

filters had significant numbers of enchytraeids present by January 1976. 

In the Flocor filters, there was a general redistribution of 

Psychoda alternata larvae and pupae whilst the overall number did not 

alter greatly. The increase in the number of enchytraeid worms was 

very much more restricted in the Flocor filters than in the Biopac 

filters, and were present at approximately 1/100th of the level. 

In both the Flocor E and M there was a limited colonisation by the 

springtail Achorutes subviaticus in the bases of the filters. 

From the table in appendix 8.B.2 showing the W.R.C. examination 

of the filter effluents on 29/1/76, it may be seen that a greater 

protozoal diversity was present in the effluents than in October 1975 

in the Biopac 50 filters. A point of particular interest is the 

greater number of species present in the Flocor E effluents than in 

the Flocor M effluents on both occasions. 

Although greater quantities of film were present in the Biopac 

filters than in the Flocor filters in January 1976, the neutron 

scatter graphs showed that the Biopac filters had little more of their 

voidage occluded by film; this disparity must be due to slightly 

differing natures of the films and also perhaps as a result of the 

differing natures of the voids, resulting in a greater quantity of 

moisture being retained in the filter for a greater weight of 
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volatile solids. 

At the end of January 1976, settled sewage from the converted 

sludge holding tanks was applied to the pilot plant. Sufficient 

mevace was available to irrigate the filters at the originally 

intended nominal flow rates. In late April 1976, the Netlon baskets 

were removed from the perforated steel shafts to assess the weight of 

volatile solids and the nature of the film. The filters had been 

operating for 13 weeks using the settled sewage. It may be seen 

that there was a vast change in the quality and distribution of film 

in the filters. In the mineral media filters generally there was a 

loss of film from the top 600 mm of media and an increase in the 

volatile solids contents throughout the rest of the filter depth. 

However, the 125/75 mm slag was an exception to this trend. It had 

a vast increase in volatile solids throughout its depth with the 

greatest increases being near the surface of the filter; this increase 

however only brought its volatile solids contents to similar levels 

to those present in the other mineral media filters; for some reason 

“the volatile solids present in the 125/75 mm slag in January 1976 

appeared abnormally low. Turning to consider the volatile solids 

contents of the plastic media filters, it can be seen that the O - 200 

mm depth of the Biopac 90 filter lost 6.8 kg of volatile solids per 

cubic metre of media, whilst throughout the rest of the filter, large 

increases in the volatile solids contents were made, with the 200 - 

600 mm depth having a vast increase, and the trend then tapering off 

with depth. In the Biopac 50 filters a different pattern emerged; 

the upper 1000 mm of the bed showed an increase in the volatile 

solids content whilst the lower depths lost solids. In the two 

* Flocor filters there was an overall increase in the volatile solids 

contents, but the total amount present was much lower than that in the 
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mineral media filters. In the mineral media filters, the loss of 

solids at the surface, with the concomitant increase lower in the 

filters, was probably a direct response to the increased hydraulic 

loading which reduced the liquor residence time at the surface of the 

filters and thus the potential for film development. Overall, in 

all the filters there was a net increase in the volatile solids 

content, although the increase in gravime tric loading was not severe. 

This trend was probably a result of the climatic conditions; the low 

spring temperatures restricting the macrograzing populations, whilst 

permitting film accumulation. 

The accumulation of solids can be seen to have had a detrimental 

effect on the microbial community. In the mineral media filters 

it can be seen that the extent of the filamentous bacteria had 

increased greatly and that there had been a significant decrease in 

the number of nematodes present. The protozoal members of the 

commnity had been severely restricted with only limitea observations 

: of peritrichida in the filters. In the cases of the plastic media 

filters, it may be seen that similar trends occurred in the flora and 

“fauna, with increasing filamentous bacteria in the two types of 

Biopac, yet no similar increase in the cases of the two Flocor 

filters. The Biopac filters also suffered a decrease in protozoal 

diversity with a similar indication being shown by the Flocor filters. 

Overall, there was a large increase in the macrograzer populations 

within the mineral media filters between January and April 1976. 

Both the Psychoda alternata and enchytraeid populations had increased; 

the increase in the enchytraeid numbers being such that the populations 

in the various filters were comparable to the psychodid populations. 

In all four filters of mineral media the larval stage of the Psychoda 

greatly outnumbered the pupal stage. One feature of note was the very 
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limited number of enchytraeids and Psychoda at the 600 - 1000 mm 

depth of the 89/50 mm granite filter, with the invasion of Achorutes 

subviaticus. There was no previous indication that would cause one 

to expect the presence of Achorutes or the reduced numbers of the two 

dominant species. The number of Achorutes subviaticus was extremely 

small compared to the numbers of Psychoda and enchytraeidae. 

Comparing the change in the volatile solids contents of the 

mineral media filters to the changes in the neutron scatter data 

between: January and April/May 1976, it may be seen that the “general 

increase in the weight of volatile solids present in the filters 

particularly at the lower depths was reflected by increases in the 

moisture contents recorded by neutron scatter. 

In the plastic media filters there was little change in the 

volatile solids contents or the moisture contents of the two Flocor 

filters, however there were marked increases in the voidage occluded 

inthe Biopac filters, which was also reflected by the volatile solids 

contents of the filters. In the case of the Biopac 90 filter, the 

increase in solids towards the base of the filter was insufficient to 

account for the increase in moisture content, however there was a 

change in the nature of the fungus; the fine filaments being replaced 

by coarse filaments, which presumably retained a greater quantity of 

water. 

In the two Biopac filters, the numbers of macrograzers present 

were quite different. In the middle of the Biopac 90 filter very 

large numbers of Psychoda were present, yet in the Biopac 50 filter, 

although a similar weight of volatile solids was present, the 

populations of Psychoda were between one-tenth and one-third those 

observed in the Biopac 90 filter. In the Biopac 90 filter the 
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enchytraeid numbers were severely limited, and were also limited 

in the top of the Biopac 50 filter. The low number of Psychoda 

and enchytraeids in the Biopac 50 filter and the top 200 mm of the 

Biopac 90 filter was probably due to the very thick film development 

severely restricting oxygen transfer into the film and hence limiting 

the number of macrograzers supported. Where there was sufficient 

free voidage for adequate ventilation, the grazers could survive and 

thrive on the film. | The Biopac 50 media consists of smaller pores 

than the Biopac 90 being more easily blocked by film thus restricting 

ventilation and causing ponding at a lower volatile solids content 

than in the Biopac 90 filters. This probably accounted for the 

limited number of grazers in the Biopac 50 filter compared to the 

Biopac 90 filter in April 1976. 

Considering the Flocor filters, although by April 1976 the 

volatile solids had increased in both filters, the amount present 

was very much less than in the mineral media filters; however, 

particularly in the Flocor M filter, the number of Psychoda were as 

high as in the mineral media filters. This could be due to two 

causes; the film in the Flocor M filters was much more uniformly 

distributed over the surfaces and was thinner than in the mineral 

media filters, thus permitting a aheaten oxygen transfer into the 

film hence allowing the development of higher grazer populations. 

Both the Flocor filters had very limited presence of enchytraeids. 

Between April and July 1976 (a period of 13 weeks during which 

settled sewage from the modified sludge tanks was applied to the 

filters), the mineral media filters lost much of their volatile 

solids, in such a manner that the film distribution with depth was 

more uniform by July. In the two Biopac filters a similar pattern 
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emerged with the Biopac 90 filter losing 50% of its volatile solids 

content in the centre of the filter. The top 600 mm of the Biopac 

50 filter lost much of its volatile solids content. It may also be 

noted that the Biopac 90 gained a thicker film at the surface of the 

filter, whilst the Biopac 90 filter increased its volatile solids 

contents towards the base. Overall therefore, within the filters of 

both grades of media, there was a general redistribution of film more 

evenly throughout the depths of the filter which involved a signi- 

ficant loss of volatile solids. The Flocor filters continued their 

previously noted trend during this period of increasing film 

thickness. The increase in solids was most marked in the Flocor M 

filter, such that in July 1976 the Flocor M filters supported twice 

_ the weight of film present in the Flocor E filters. 

Considering the results of the microscopic examination of the 

filter films in July 1976 (detailed in appendix 8.B.4), it can be seen 

that the major change to have occurred since April 1976 was a reduction 

in the amount of filamentous bacteria present, with an increase in the 

abundance of protozoa and nematode worms. The increase in the 

ciliated protozoal community was mainly in motile hypotrichida with 

only limited occurrences of peritrichida. The nature of the fungal 

member of the community appears to have altered. In July there was 

a predominance of fine filaments in the mineral media filters with the 

coarse fungal filaments being generally restricted to the plastic media 

filters only. The coarse filaments in the plastic media filters were 

the prostrate system of Fusarium aquaeductuum. 

Comparing the macrograzers present in April and July 1976 in the 

mineral media filters, it may be seen that there was a general decline 

in the number of Psychoda alternata present. This decline was in



excess of the proportion that might be lost in sloughed film. 

Even more marked was the sharp decline in the number of enchytraeids, 

particularly in the two slag media; the lower depths of all four 

mineral media filters maintaining the largest enchytraeid populations. 

The decline in the volatile solids and the two macrograzers appears to 

have permitted the colonisation of the filters by an unidentified 

dipteran; the larvae and pupae were found in the various filters in 

sufficient numbers to suggest that their presence was more than just 

a chance casual innoculation. The smaller grades of mineral media 

tended to have the greatest numbers present. 

In the Biopac 90 filter during the 13 week interval much of the 

film was lost from the filter through most of its depth with a large 

reduction in the Psychoda alternata population; however also during 

this period there was a large increase in the number of enchytraeids 

present, particularly at the surface and base of the filter. In the 

Biopac 50 filter, which also lost much of its film, there was a 

marked upturn in the number of Psychoda present with little overall 

alteration in the numbers of enchytraeids. In discussing the 

condition of the film in April 1976, it was suggested that the 

thickness of the film was such that it precluded successful colonisa- 

tion of the filter by macrograzers due to severe limitation of oxygen 

transfer into the film. During the period between April and the 

July examination of the film, as the film sloughed a more suitable 

environment was established coupled with the increase in ambient 

temperature which permitted large numbers of Psychoda to develop; the 

large Psychoda population restricting the enchytraeid numbers. 

In the two Flocor filters which increased their weights of 

volatile solids supported between April and July 1976, there was a 
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decrease in the number of Psychoda present, particularly in the number 

of larvae. This reduction in the Psychoda population and the 

increased temperature probably led to the increase in the number of 

enchytraeids present and the limited occurrence of Chironomus dorsalis 

near the base of the Flacor E filter. 

In view of the very limited amount of film in the Flocor filters 

when compared to the Biopac filters and their highly regular large 

pores, the increasing film content would not create such conditions 

that the Psychoda could not obtain sufficient oxygen from the film 

surfaces. It is possible that the decline in numbers between April 

and July was due to an emergence of adult Psychoda as the temperature 

increased; the July sampling time happening to occur between 

successive generations of Psychoda. 

Comparing the moisture contents of the mineral media filters in 

May and July 1976 with the volatile solids contents present in the 

filters at these times it may be seen that the neutron scatter deter- 

minations showed similar moisture contents in the filters in April/ 

‘May and July. However, there were large losses of volatile solids 

in this period, and in view of the similarlity in the nature of the 

films in May and July these findings are inconsistent. Between the 

duly neutron scatter and the biological examinations (a period of 

ten days) there were several short breaks in the sewage supply to the 

filters and also further unloading of the filter films could have 

occurred. 

In the plastics media filters it may be seen that the Flocor M 

filters had greater moisture retention in July than in April/May and 

also a greater volatile solids content, though there was little change 

in the Flocor E filters. In the Biopac filters there were marked 
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declines in their volatile solids particularly at the upper and middle 

depths of the Biopac 50 filter and tHroughout the Biopac 90 filter, 

which was reflected by marked declines in their moisture contents. 

The decline in weights of film present was particularly at the expense 

of the fungal component of the filter film. 

On July 29, a new source of settled sewage was used for the 

experimental plant. The source, new primary settlement tanks on the 

main Eign works, resulted in a more consistent supply of settled 

sewage to the pilot plant, although the filter loadings differed 

only slightly from those applied to the filters during the last period. 

From figures 8.A.4 and 8.A.5 it may be seen that from July to 

October 1976 (fourteen weeks) various changes in quantities of filter 

films occurred. In the four mineral media filters, there were net 

losses of film although at certain depths in three of the filters 

there were limited gains in volatile solids. The two large grades 

of mineral media had less film near the filter surfaces than the 

small grades of media. This pattern might be expected, as a result 

“of the packed media properties. As the concentration of organic 

material declines in the liquor passing through the filters, the 

potential for film development is reduced and thus less solids 

produced at lower depths. In the cases of the small grades of 

mineral media, the larger film accumulation at the surface had reduced 

the sewage organic content and thus the amount of film supported 

declined with depth. In the larger grade of the two media, less film 

developed at the surface of the filters due to more limited sewage 

retention and limited surface area, hence the potential for film 

development may be greater lower down the filter than in the filters 

containing the smaller media, thus causing greater film accumlation 
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than at the surface of the filters. Considering the Biopac filters 

in October 1976, the Biopac 90 filter’had appreciably greater solids 

content than the Biopac 50 filter yet with its restricted specific 

surface area compared to the Biopac 50, it might be expected to have 

less film present. This apparently odd situation may be as a result 

of differing stages of filter maturity. In the case of the Flocor E 

filter, there was an increase in film accumulation particularly at 

the 1200 to 1400 mm depth; whilst in the Flocor M filter there was a 

net loss of film which was mostly accounted for by a loss at 1200 to 

1400 e: Overall, the Flocor M filter had a greater weight of film 

than the Flocor E filter. 

Considering the results of the microbial examination shown in 

appendix 8.B.5, it can be seen that filamentous bacteria had colonised 

all the filters to a far greater extent than previously observed and 

also that the nematode population had sharply declined in all the 

filters apart from the two 89/50 mm grades of mineral median however, 

the protozoal condition of the filters appeared to have improved 

‘appreciably with the establishment of sessile peritrichida in all the 

filters apart from Flocor E. 

From the neutron scatter graphs between July and October 1976, 

there is evidence that the film increased and then declined in the 

filters; however all the filters appeared to have similar moisture 

contents and volatile solids contents in July and October, with quite 

similar floral components as mentioned in the preceding paragraph. 

These observations suggest that the slight change in the film natures 

did not affect the moisture retention of.the filters. 

From appendix 8.8.5, it may be seen that in all the mineral media 

filters the number of enchytraeids had increased since July and also 
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that the unidentified dipteran had become established, although the 

number of larvae greatly exceeded the number of pupae. Apart from 

the 89/50 mm granite media, the number of Psychoda (larvae and pupae) 

declined between July and October. In the lower regions of the 

89/50 mm slag this reduction was such that the enchytraeid worms 

exceeded the Psychoda. In the 89/50 mm granite media, although the 

enchytraeids had increased their presence since July 1976, the number 

of Psychoda had also increased. This increase was in both larval 

and pupal forms of the fly, particularly near the surface of the filter, 

which suggests that the increase was perhaps due to an additional 

generation of the fly within the filter. 

Turning to consider the plastics media filters, from appendices 

8.B.4 and 8.8.5, it can be seen that although the amount of film in 

the Biopac 90 filter had greatly increased from July to October, the 

overall number of Psychoda alternata larvae had not altered much, 

though their distribution within the filter had changed. There were 

many more Psychoda alternata pupae present in October. The 

cenchgurceia population had become more uniformly distributed through- 

out the filter and the unidentified dipteran had colonised the filter. 

In the Biopac 50 filter, the reduced film content had not led toa 

decline in either the psychodid on enchytraeid populations, and had 

also permitted the invasion of the unidentified dipteran, Achorutes 

subviaticus and Chironomus dorsalis. This increase in the macro- 

Grazing populations was as a direct result of the rapid film develop- 

ment under summer temperatures providing sufficient food for the 

increased grazer populations. The net reduction in film being due 

to the comparatively greater grazing activity than in July 1976. 

It would have been of particular interest to note any development in 
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the Biopac 50 filter if summer temperatures had continued. It is 

possible that the increase in filter film Rarthent uly and October 

1976 was due to the summer temperatures increasing the floral develop- 

mene whilst the grazing population lagged in its development. 

Continued summer temperatures might have led to an explosion in the 

ace populations and a classical crash in the quantity of film 

present in the filters. In both the Flocor filters the high ambient 

summer temperature appeared to lead to the situation where the 

increased film development had supported increased numbers of macro- 

grazers and an increase in the diversity. 

The next biological examination of the filter films was conducted 

in March 1977. Unfortunately this was preceded by breaks in the 

sewage supply to the filters in late February. For various reasons, 

the biological sampling was delayed until the beginning of March, 

thus the period between this examination and the previous one was 

17 weeks. From the volatile solids results in appendices 8.4.5 and 

8.a.6, it can be seen that there was an overall loss of film from all 

“the filters; the reduction being particularly marked in the two 

Flocor filters. Considering the randomly packed media filters, it 

can be seen that in almost all cases the 200 to 600 mm depth contained 

the greatest film weight within the filters. In the 89/50 mm slag 

filters, the surface sample (O - 200 mm) contained 0.7 ke/m? more 

volatile solids than the 200 - 600 mm depth. In five of the filters, 

the 200 to 600 mm depth gained film during this last period whilst 

several surface samples and lower samples lost volatile solids. It 

is of interest to note that yet again the Biopac 90 filter contained 

a greater weight of volatile solids than the Biopac 50 filter. 

Considering the microscopic examination of the filter films, there 
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was a reduction in the amount of filamentous bacteria present in the 

mineral media filters, an increase in the number of nematode worms and 

a reduction in the number and extent of the protozoan community, 

whilst the fungus Fusarium aquaeductuum had increased its significance, 

developing both its prostrate and erect forms. 

Similar trends occurred in the plastic media filters; the 

protozoan populations being severely curtailed. In the Flocor 

filters Fusarium had. not developed so extensively as in the mineral 

media filters, being mostly present in its erect form. 

Although all the mineral media filters had less film present in 

March 1977 than in October 1976, the number of Psychoda alternata in 

the filters had risen dramatically; in the two grades of slag there 

had been a 300 - 400 percentage increase in the numbers present; the 

largest increase being in the number of larvae. Similar though 

smaller increases in the sychod populations in the two. granite filters 

_ were recorded. During the October to March 1977 period, a sharp fall 

_ in the number of enchytraeid worms occurred in all the filters, and a 

more restricted decline in the number of the unidentified dipteran 

was observed. However, in the two granite media filters, chironomid 

larvae were observed in limited numbers. In the Biopac filters, in 

contrast to the mineral media filters, there was a marked decline in 

the psychoda populations comparable in magnitude to the increase in 

the mineral media filters. The areas of the two filters occupied by 

enchytraeid worms was also severely reduced, with a consequent 

reduction in the number of individuals present. In the Flocor 

filters there was a decline in the number of Psychoda and enchytraeids 

present in March 1977 compared to October 1976; however the sharp 

reduction in numbers was confined to the Psychoda, with a more limited 
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fall in the enchytraeid population. All the plastic media filters 

suffered a reduction in the diversity of the macrograzers present 

from the levels in October 1976. 

From appendix 8.A.2, it can be seen that in March 1977, the 

mineral media filters had similar moisture contents to their previous 

examination in October 1976, although the voidages occluded at 

approximately 400 mm from the surface were greater. These results 

were similarly reflected in the film contents in March 1977 which 

showed that the 200 - 600 mm depths of the filters contained the 

greatest weight of volatile solids. 

In the Biopac media filters, a similar trend to the mineral media 

filters was observed where in March 1977, the 200 - 600 mm depth 

baskets of media contained the greatest weights of volatile solids, 

reflected by the greatest moisture contents as indicated by the neutron 

scatter data. In the Flocor filters there was an interesting increase 

in the moisture content at the base of the filters in March 1977. 

: Unfortunately, due to the limited biological sampling, the weight of 

volatile solids at the base of the filters was unknown. Comparing 

the weights of volatile solids in October 1976 and March 1977 in 

figures 8.a.5 and 8.A.6, it can be seen that much of the film had been 

lost by March. The high moisture content at the bases of the two 

filters presumably being as a result of sloughed film accumulating 

at the base of the filters. 

The next examination of the filter films was conducted in May 1977 

after an interval of 11 weeks from the previous examination. 

Comparing the volatile solids contents of the filters in March and 

May 1977, it may be seen that apart from the Biopac 90 filter, there 

was a large increase in filter film during the intervening 11 weeks. 

289



Not only did the filters increase their film contents, but there was 

also a redistribution of the film within the filters. In March 1977 

the 200 - 600 mm depth. of the mineral and the random plastic media 

filters contained the greatest amounts of solids. Generally the film 

at this level declined slightly, whilst the remaining depths of the 

filters increased their weights of film. In the case of the Biopac 

90 filter, 22.6 kg of volatile solids per cubic metre were lost at 

the 200 - 600 mm depth and 12.7 kg/m? lost at 600 - 1000 mm. The 

net result was that by May the Biopac 90 filters had appreciably less 

film overall than the Biopac 50 filters. It can also be seen that 

in the mineral media filters, the least amount of film was supported 

at the top of the filters. The two types of Flocor also increased 

their amount of film supported and by May had comparable quantities 

of film present. 

From Appendix 8.B.6 showing the microscopic examinations in May 

+ 1977, it may be seen that there was an fnerease in the occurrence of 

nematode worms in the granite filters, but that there was a reduction 

-in the number of ciliated protozoa present, particularly marked in 

the 125/75 mm granite media. The nature of the film had also altered; 

filamentous bacteria extending their zone of activity and abundance. 

Fusarium aquaeductuum was also present at all depths in the filters 

in approximately similar proportions to those noted in March 1977. 

In the two grades of slag, similar trends were also recorded but the 

marked difference compared to the granite filters was the inereaned 

number of ciliated protozoa present. In the Biopac 90 filters, 

filamentous bacteria were observed only in the upper 1000 mm, whilst 

in March they were noted as present in the top 1400 mm of the filter. 

There was also a decrease in the number of nematode worms present, 
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however a marked increase in the number of ciliated protozoa occurred. 

In March 1977, no protozoa were recorded whilst in May peritrichida 

were abserved at all five sample dep ths. In the Biopac 50 filter 

there was also a limited paaicei on in the nematode population, but an 

increase in filamentous bacteria and also an increase in the number of 

ciliated protozoa. In the two Flocor filters since March 1977 there 

was an increase in the abundance of Fusarium at the three sample 

depths in both filters. In the Flocor E filter filamentous bacteria 

were frequently observed at the 600 - 800 mm depth. In the Flocor M 

filter, the filamentous bacteria were noted in two depths. Compared 

to March 1977, there was a major increase in the number of sessile and 

motile ciliated protozoa in both filters, whilst the nematode popula- 

tion remained fairly static. 

Turning to consider the macrograzing populations, comparing 

appendices 8.3.6 and 8.B.7, it can be seen that there was a marked 

increase in.the number of Psychoda in the 89/50 mm slag; particularly 

Psychoda pupae, throughout the depth of the filter but the major 

concentration was noted at 200 - 600 mm. An almost tenfold increase 

in the number of enchytraeid worms occurred, with the highest popu- 

lations noted at depth within the filter. None of the unidentified 

dipteran were observed, their position apparently being filled by 

Achorutes subviaticus. 

In the 125/75 mm slag filter,’ the number of Psychoda declined 

significantly whilst there was a marked increase in the number of 

enchytraeid worms present. The increase in enchytraeids was 

particularly at the lower three depths of the filter sampled. Again, 

as noted in the 89/50 mm slag filter, the unidentified diptera had 

disappeared being replaced in the 600 - 1800 mm depth by Achorutes 
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subviaticus and also Chironomus dorsalis larvae at the 1400 - 

1800 mm depth. 

In the 89/50 mm granite filter there was a marked upturn in the 

pupal Psychoda population, particularly at the O - 200 mm depth. 

There was also a large increase in the enchytraeid population pre- 

dominantly towards the base of the filter. As noted in the two slag 

media filters, the unidentified dipteran population was markedly 

reduced with only a small number present at the 200 - 600 mm depth. 

In the 125/75 mm granite filter there was also an increase ao the 

number of Psychoda pupae, but little variation in the larval population. 

There was also an increase in the enchytraeid population predominantly 

towards the base of the filter with a loss of the dipteran and 

chironomids. 

In the Biopac 90 filter, auesuen there was a marked loss of film, 

this was restricted to the 200 - 1000 mm depth of the filter. There 

was a large increase in the number of Psychoda present in the filter, 

particularly the pupal stage; however, there was no significant 

change in the enchytraeid population. In the Biopac 90 filter, there 

was a very large increase in the Psychoda population which was centred 

on the 600 - 1400 mm depth, and “se mostly the larval stage. The 

enchytraeid population was unchanged, but there was a limited invasion 

of Chironomus at the base of the filter. 

In the Flocor filters the increased weights of film was para- 

lleled by an increase in the Psychoda populations generally throughout 

the depths observed, however there was a decline in the number of 

enchytraeid worms present which was focused on the lower sampling 

depth in the two filters. 

Comparing the computer graphs of the mineral media filters! neutron 
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scatter observations in March and May 1977, it may be seen that quite 

similar voidages were occupied by moisture, yet the amount of volatile 

solids present in each filter had approximately doubled, thus one 

would perhaps expect a greater moisture retention. Turning to 

consider the eee of the films at the two biological examination 

it may be noticed that the nature of the fungal component had changed, 

with much less of the very coarse fungal hyphae being observed. 

Also, the nematode populations had declined slightly with an increase 

in the peritrichous and hypotrichous protozoa. Considering the 

macrograzers, there had been an increase in the numbers of Psychoda, 

but not quite in proportion to the increase in weight of the volatile 

solids. However, there was a dramatic increase in the number of 

enchytraeid worms, which may have been responsible for maintaining the 

film in a "healthy" porous condition, permitting ready drainage of the 

liquor. Therefore, overall, it would appear that the change in nature 

of the fungus present and the large pneredce in the number of 

enchytraeid worms may account for the comparable moisture contents in 

‘March and May 1977, although the weights of volatile solids were 

vastly different. 

Considering the Biopac 50 filter in March and May 1977, there was 

a halving of the filter film, which was preferentially removed from 

the middle depths of the filter, which was reflected in the neutron 

scatter results. In the Biopac 50 filter there was an increase in 

the weight of film and a slight redistribution in favour of the lower 

depths. This trend was also reflected in the neutron scatter data. 

Considering the flora and fauna of the two filters, there were similar 

changes in the nature of the films as noted for the mineral media 

filters, with the exception of the macrograzers, where there were vast



increases in the density of the psychodid populations but little 

change in the number of enchytraeid worms present. 

{7a the Flocor filters during this period, there was a marked 

increase in the weights of volatile solids supported, paralleled by 

an increase in the numbers of nematodes, protozoa and Psychoda present, 

but a decrease in the number of enchytraeid worms. There was a 

similar increase in the moisture retained in May compared to March 1977. 

The filter films were next examined in early August 1977, when it 

was obvious that all the mineral media filters had lost volatile solids 

since May 1977. From appendix 8.A.1 it can be seen that the mineral 

5 media filters in fact lost over 50% of their volatile solids contents; 

these losses being particularly large towards the bases of the filters. 

“The 125/75 mm slag media had significantly less solids present through- 

out its depth than the other mineral media filters; a pattern that 

was also present in May 1977, but had not occurred previously. 

In the Biopac 90 filter an increase in film occurred by August 

_1977. There was also a redistribution of film within the filter with 

solids being lost from the upper 600 a whilst the remaining depth 

of the filter increased the weight of film it supported, such that 

the 1000 - 1800 mm depth supported the greatest weight of film. The 

Biopac 50 filter in August had its greatest accumulation of film 

within the middle depths. In May there was no consistent pattern to 

the film accumulation within the filter, the 200 - 600 mm depth having 

less film than the media directly above or below it. Since May 1977, 

there had been a slight overall loss of film. 

The two Flocor filters had both lost film overall, with the losses 

being restricted to the two upper depths examined. At the 1200 - 

1400 mm depth both filters increased the amount of film supported. 

294



Considering the microscopic observations of the film in the two 

slag filters (appendix 8.B.8), it can be seen that there was little 

Change in the nature of the film between the two sample periods. 

In August there was an increase in the abundance of peritrichida and 

a@ restriction of the hypotrichida populations. The two grades of 

granite media in August showed slightly greater diversity in their 

microscopic grazer populations than the slag filters with an increase 

in the abundance of protozoa recorded in August compared to May 1977. 

In the two Biopac filters it can be seen that the commun tee were 

similar, with a greater number of holotrichida being recorded in the 

Biopac 90 filter than the Biopac 50 filter, but a more limited 

occurrence of nematode worms. Since May 1977, both filters had 

shown marked increases in the extent of the filamentous bacteria; 

being observed at all depths in the two filters, however the protozoa 

and nematode populations also increased from the frequencies observed 

in May 1977. The Flocor filters both showed similar microscopic 

flora and fauna to the Biopac filters and also increased abundance 

- of filamentous bacteria since May 1977. _ However, less change in the 

nematode and protozoal communities was observed. 

In August 1977, the macrograzer populations of the mineral and 

plastic media alike (except for one isolated occurrence of Eristalis 

tenax) were restricted to Psychoda alternata and enchytraeid worms. 

In May 1977, although in limited numbers, three other grazers 

occurred in the filters. 

Considering the changes in the macrograzer populations during the 

May to August period, it may be seen that in the mineral media filters 

there was an overall reduction in the psychodid and enchytraeid popu- 

lations, which was most marked for the Psychoda population. The 
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reductions were throughout .the depths of the filters, with no clear 

change in their distribution through “the depths of the filters. The 

125/75 mm slag filter supported the lowest grazer populations as a 

result of the more restricted film development. In the Biopac 

filters very high numbers of Psychoda and enchytraeid worms were 

present. Since May the weight of volatile solids in the Biopac 90 

filter had increased; there was an increase in the number of Psychoda 

larvae and pupae, but little change in their relative distributions; 

however, there was an extremely large increase in the number and 

distribution of enchytraeids, so that its population was now approxi- 

mately 50% of the Psychoda population. In the Biopac 50 filter a 

similar pattern emerged with a marked increase in the enchytraeid 

population. Again there was a general increase in their frequency 

as the filter depth increased. 

In the two Flocor filters there were far less macrograzers present, 

and there was limited change betwen May and August 1977. The number 

of Psychoda declined slightly with increases in the enchytraeid 

populations. In the Flocor E filter Psychoda and enchytraeid worms 

were most frequent at the 600 - 800 mm depth, whilst in the Flocor M 

filter, although the numbers of Psychoda were greatest at 600 - 800 mn, 

the largest population was observed at the 1200 - 1800 mm depth. 

Between May and August 1977, in all the mineral media filters 

there was a 50% fall in the weight of volatile solids supported, yet 

examination of appendix 8.A.2 indicates only slight reductions in the 

voidage occlusion, with little change in the nature of the microflora. 

In the cases of the plastic media, it may be seen that there was 

limited change in the volatile solids supported between May and August 

1977, and only limited variation in the moisture contents as shown by 
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neutron scatter. 

Both the mineral and plastic media filters had their moisture 

contents determined in late July; the plastic media filter films 

waco examined on the first and second of August, whilst the mineral 

media filter films were examined on the third of August. Unfortuna- 

telytane to remedial work to the main works primary settlement tank, 

the sewage supply to the experimental plant had to be curtailed on 

the second, which resulted in films in the various filters drying out 

and also the loss of solids by endogenous respiration. The mineral 

media filters were examined after the sewage supply had been cut off. 

The microscopic flora and fauna of the plastic filters appeared to 

have changed little from that observed in May, but in the Biopac 

filters large increases of enchytraeids had occurred increasingly 

towards the bases of the filters, which resulted in the chironomid 

larvae being displaced. Less change had occurred in the Flocor 

filters. 

In the mineral media filters, the observed differences in the 

macrofaunal populations between May and July 1977 were probably 

distorted by the break in the sewage supply. Although the film 

within the filters was still moist, many Psychoda were observed to 

emerge, which may account for the lower number of pupae counted in 

duly compared to May. However, this break in the sewage supply was 

unlikely to be wholly responsible for the drop in the psychodid larval 

numbers or the reduced diversity of the filters. 

The changes in the quality and quantity of sewage applied to the 

filters was not conducive to a steady continuous maturation of the 

film, however there were indications that the media of highest 

specific surface area tended to mature fastest; unfortunately no 
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examination of the filter films was made between the initial 

application of sewage to the filters and the biological examination 

in October 1975, by which time very thick films had developed on the 

smaller grades of mineral media and in the Biopac 50 filter which 

restricted both the diversity and number of grazers present. In 

November 1975, sewage of a different nature was applied to the filters 

which altered the pattern of film development, and thus the process 

of maturation was disturbed. 

The Biopac 50 and both small grades of mineral media tended to 

pond under winter conditions which had deleterious effects upon 

performance. However, in the spring of 1976, there was a break and 

change in the sewage supply to the filters which may have precipitated 

the unloading which occurred. Without the rest period at this time 

it is possible that the volatile solids contents would have continued 

to increase having a more noticeable effect upon relative filter 

performances. Generally the Flocor filters maintained the least and 

" also the most stable quantities of volatile solids. 

In all the filters,when compared to low rate filters, the species 

diversity was extremely limited, Psychoda alternata being overall the 

dominant macrograzer. The enchytraeid population gradually increased 

in the filters so that by August 1977 it was present in comparable 

numbers to Psychoda alternata. These two grazers, whilst possibly 

competing within the filters, occupied differing positions in the 

filters. The Psychoda was always dominant in the upper regions of 

the filters where the enchytraeid worms were frequently absent. 

However, at the lower depths in the filters, enchytraeids were present 

in greater numbers, sometimes exceeding the number of Psychoda. 

The very thick films which developed in the filters also 
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encouraged limited colonisation by the rat-tailed maggot Eristalis 

tenax which is more frequently associated with sludge holding tanks 

and drying beds. Fusarium aquaeductuum was abundant in all the 

filters, frequently being the substratum for zoogleal bacterial 

development. The Fusarium aquaeductuum freely sporulated within 

these filters, a feature less commonly observed in low rate filters. 

The diversity of the ciliated protozoa was also very limited with 

particularly restricted numbers of the sessile varieties. 

Because of the limited periods under each loading regime, the 

differing times of year for the regimes and also the immaturity of 

the filters, it was not possible to correlate variations in the 

chemical performances of the filters to changes in their ecology. 

“The observations above concerning the ecology of the filters 

are in general agreement with the findings reported by other workers. 

Wheatley and Williams (1976) noted that whilst the Psychoda colonised 

plastic media filters loaded at intermediate rates within the first 

few months of operation, enchytraeid worms did not colonise the filters 

until the second year of operation. Also they noted that Achorutes 

subviaticus was restricted to the lower regions of the low rate filter 

(1.2 m?/m?/d), and that ciliated protozoa and nematodes were the 

dominant microfauna. Bruce and verkens (1970) observed Psychoda 

alternata and large populations of nematode worms in high rate filters 

using settled Stevenage sewage, but no enchytraeid worms, even after 

two years of operation; however, high rate filters at Northampton 

reported by the same workers contained Psychoda alternata, 

Lumbricillus rivalis and nematode worms. At Stevenage adult Psychoda 

were not observed emerging from the filters. Mohlmann (1936) also 

noted that Psychoda did not emerge under normal conditions but that 
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when no sewage was applied to the filters, adults did emerge. At 

Hereford, limited numbers of adult Psychoda emerged from the filters, 

but if application of sewage to the filters was interrupted, large 

scale emergence of the adults occurred. , 

‘ In this high rate study, there was no difference between the 

mineral and plastic media in the types of flora and fauna developed, 

only in the extent of the development. Compared to low rate filters, 

" the organisms present were similar but the diversity much restricted. 

These finding are in accord with studies reported by Thompson (1942), 

Reynoldson (1941 and 1942) and Heukelukian (1945) where high organic 

loadings tended to reduce species diversity. Reynoldson (1941) 

noted the absence of oligochaete worms in high rate filters which 

Terry (1951) attributed to the size of the media employed. In 

filters of large grades of media and thus large sized pares, 

oligochaete populations were limited. Ingram (1959) and Curds and 

Cockburn (1970) refer to the ciliated protozoa as the dominant 

protozoa in filters. 

C. Summary 

The high rate filters appear to have similar flora and fauna to 

low rate biological filters, but with a restricted diversity, 

resulting in larger concentrations of few species. Fungi, particu- 

larly Fusarium aquaeductuum played a more dominant role in the 

communities of the high rate filters which increases the likelihood 

of ponding problems. Large populations of the dipteran, Psychoda 

alternata, were observed which under certain conditions could lead to 

problems of fly nuisance. 

There appears to be no significant difference-in the weight of 
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volatile solids supported per unit of specific surface area of 

randomly packed mineral or plastic media. However, the regular 

modular media, Flocor, tended to support a much lower weight of film 

on a given specific surface area, thus limiting the likelihood of 

ponding. 

There is evidence to suggest that the study periods were of too 

shart duration for full ‘maturation of the filters to have occurred, 

as shown by the increase in numbers of enchytraeid worms throughout 

the two'years of study; it seems reasonable to expect further 

increases in the removal performances of the filters as maturity is 

achieved. 

The thick films present in the 89/50 mm slag and the Biopac 50 

filters in the spring of 1977 might have increased further if a break 

in the sewage supply had not occurred; such increases might have led 

to severe ponding which could have resulted in a reduction in removal 

performance. 

* At greater organic loadings the smaller mineral media and the 

Biopac 50 filters would certainly suffer from severe ponding, thus the 

other filters might provide greater removal of organic matter and 

effluents of superior quality. 

( The ultimate choice of mineral media for biological filters is 

| therefore the smallest grade offering the largest specific surface area 

which would not pond under winter conditions at the desired operational 

loadings. Similar considerations prevail for the random plastic 

media; however, the Flocor media having very large regular pores may 

tolerate even greater loadings before the onset of ponding, although 

| the quality of the effluent would deteriorate as the loadings 

increased, 
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9. LABORATORY SCALE NITRIFYING FILTERS USING 

HIGH RATE FILTER EFFLUENT 

A. Purpose of the Nitrification Study. 

As previously explained in chapter 2, the effluent from a high 

rate filtration plant had the bulk of the carbonaceous oxidisable 

matter removed, whilst little nitrification, if any, occurred. 

In chapter 3, containing a literature review on nitrification 

by biological filtration, the evidence from previous studies has 

been shown to be conflicting. What hydraulic loadings of the 

settled primary effluent may be applied to secondary filters? 

The temperature drop in the primary treatment stage and interstage 

settlement may be so great during the winter months that nitrification 

¢annot occur in secondary filters. It has been previously 

mentioned that nitrification at low temperatures may suffer due to 

an interplay of factors. The low temperature may result in a large 

zone of the secondary filters being required to facilitate the 

heterotrophic oxidation of carbonaceous matter leaving little room 

for autotrophic nitrification to occur. The temperature also has 

a direct effect upon the activity of the nitrifying organisms. 

Laboratory scale. studies were initiated to determine the possible 

limitations on nitrification of the effluent from the Hereford high 

rate filters. 
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B. Description of the Apparatus and Sampling Programme Employed. 

Since one of the objectives of the study was to determine the 

effects of temperature on nitrification, it was necessary to maintain 

the desired temperaturesaccurately. Two controlled environment 

cabinets were available at Aston. The cabinets included both 

heating and refrigerating equipment which were automatically switched 

on or off to maintain a stable temperature.(They were able to maintain 

the desired temperature in the range 5°c to 40°C to within + °c). 

Also included in the cabinets were fans which minimised temperature 

stratifications. The cabinets were permanently in darkness except 

during periods of sampling and maintenance. 

The decision to carry out the work at Aston led to problems 

concerning the transport of primary filter effluent from Hereford. 

This limited the volume of effluent available and hence the number, 

dimensions and volumes of the filters which could be used. The 

_ effluent from a filter containing 125/75 mm blast furnace slag was 

chosen as the supply for these laboratory scale secondary filters. 

This effluent was used because it was considered to have a higher BOD 

strength than effluent from the smaller grades of mineral media, and 

yet would hopefully not be subject to marked fluctuations in strength. 

The effluent was collected weekly at approximately 13.00 hours each 

Wednesday and transported back to Aston in 25 litre polythene canisters. 

At Aston the effluent was sieved through a 180 micron mesh to simulate 

interstage settlement. This also had the effect of minimising the 

likelihood of innoculation of the filters with large populations of 

grazing organisms which might severely affect individual filter 

performance. This was recognised as an artificial limitation on the 

filters; however, it would allow more comparative studies of the filters' 
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performances. After sieving, the effluent was transferred to 

10 litre polythene canisters which were stored in a refrigerator at 

4°o until required. 

As previously mencienes two cabinets were available, therefore 

identical dosing regimes could be carried out at two temperatures 

simultaneously. It had been decided that duplicate filters would 

be employed to ascertain to what extent the variation in performance 

was due to the regimes employed. Due to the limitations of transport 

and storage of the Seige effluent, twelve filters could be 

constructed, thus allowing duplicates of three different flows at 

two temperatures to be observed simultaneously. 

The filters consisted of 50 mm internal diameter glass columns 

containing 0.75 litres of pea gravel. The base of each column had 

been drawn intoafunnel shape over which tubing could be fitted to 

convey the effluent to the receiving beakers. To prevent the pea 

gravel being washed out of the filters and also the possibility of 

blocking the exit, the media in each filter was supported on an ASL 

“Airflow practice golf ball. “This also had the added advantage of 

increasing the surface area of the base of the filter available for 

ventilation. The sieved primary effluent was applied to the surfaces 

of the filters via one piece of tubing to each filter. The tubing 

was kept in position just above the centre of the filter surface by a 

push fit insertion through a hole in a plastic petri dish inverted 

over the glass column. Additional holes were molten through the 

dish in order to provide adequate ventilation to the filters. 

Accurate determination of the specific surface area of the pea 

gravel was not carried out prior to its placement in the filters. 

Severe practical difficulties were envisaged concerning the method 

of determining their surface area. An approximate estimate of the 
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a, surface area could however be made by assuming the iain 

to be spherical of diameter 10 mm., and that the packed volume 

included 50% voidage. The pieces were in fact of quite uniform 

dimensions and had quite regular smooth surfaces. The specific 

surface area was calculated as 300 mene Prior to inserting the 

media in the filters, it had been thoroughly washed in running tap 

water for one week. During this time, at least twice a day, the 

media was vigorously shaken and stirred to remove any dirt which 

might have been firmly adhered to the surface. In order to obtain 

the same volume of media in each filter, after being allowed to dry, 

the media was poured into a measuring cylinder t. 750 mls. The 

media was then placed in the filters. 
/ 

After filling, each filter was firmly tapped on the side to 

ensure a stable packing within the-glass cylinder. The filters 

ane then run under the experimental conditions to be studied, for 

a period of six weeks using tap water. This Prceeaure ascertained 

whether the desired flow rates could be maintained and whether a 

‘single tube at the surface of the filter-would provide adequate 

distribution of the effluent to the filter media and also as a final 

wash of the media in position. The wetting of the pea gravel using 

the distribution system was carefully observed for the first few days, 

particularly the first 24 hours. After 8 hours, approximately 

30 mm from the surface of each filter and thereafter, all the pieces 

of media appeared to be wetted, and no short circuiting of the water 

down the sides of the glass columns appeared to be occurring. After 

24 hours, all the media apart from the first two surface ‘layers! 

appeared to be wetted. 

The effluent was applied to the filters via a single Watson 
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Marlow MHRK 18 flow inducer sited above the surface of the filters 

as shown in plate 9,1. The pump had a single 10 tubing induction 

rotor fitted, of which only six were required. Tubes af three 

different bores were wrapped about the rotor to provide the three 

flows used. In order to simulate the dosing obtained on large 

scale filters, the electrical power supply to the Watson Marlow 

pumps were governed by an electro mechanical time switch. Both 

pumps were connected to the same timer to ensure identical dosing 

frequencies and flow rates. The pumps were switched on for 90 seconds 

in every 10 minutes. 

The sieved primary effluent was contained in 10 litre canisters 

above the pump rotor ensuring a positive head at all times. The 

canisters were recharged three times a week with sufficient only for 

the ensuing period, to minimise the variation in the quality of the 

effluent supplied. However, deterioration did occur and had to be 

tolerated. The supply tubes were kept at equal and constant depths 

-within the canisters by being attached to a rubber bung which kept 

their ends 25 mm above the base of the canister, The canisters were 

replaced weekly and thoroughly pasted before re-use. The effluents 

from these filters were collected in 2 litre glass beakers, which were 

emptied on Monday, Wednesday, Thursday and Friday each week. 

Sampling of the supply and effluents for BOD analysis was carried 

out on Thursdays. The sample from the supply canister was obtained 

by inserting a pipette to the level and adjacent to the supply tubes, 

and slowly withdrawing the sample. Samples were taken at 3.00 a.m. 

on Thursdays when the primary filter effluent collected the previous 

week was still in use. Immediately after sampling, the canister 

containing the old primary effluent was replaced by a canister of new 

sieved primary effluent. The volume collected im each beaker by 
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12.30 was recorded and discarded. This procedure was carried out to 

displace old primary effluent in the filters, prior to taking 

samples at 15.00 for BOD analysis. 

| At 9,00 each Thursday, the delivery tubes were washed out with 

new effluent, after being checked for any damage, and replaced. At 

Peatar intervals, it was found necessary to apply a small quantity 

of olive oil to the tubing wrapped round the rotor to reduce the 

friction between the rotor and each tube. Failure to oil the tubing 

led to rapid deterioration and eventual rupture of the tubes. Also, 

the oil enabled a more consistent tension to be maintained on the 

_ tubing which consequently minimised the variation in flow rates. The 

sieved primary effluent and secondary effluents were also sampled 

‘three times a week for ammonia and oxidised nitrogen concentrations. 

The samples of the filter effluents were taken from unsettled effluents. 

These samples were taken on Mondays, Thursdays and Fridays, and stored 

in 25 ml screw cap universal bottles under refrigeration until analysed 

To prevent sample deterioration during storage, 5 drops of concentrated 

iedeochiorie acid were added to the samples by Pasteur pipette immediately 

after being taken. The hydrochloric acid prevented any biological 

activity which might alter the ammonia and oxidised nitrogen 

concentrations. Physico chemical conversion of the nitrogenous 

materials was minimised by refrigeration. 

To provide comparative data from the various analyses used, the 

results were averaged on a weekly basis, beginning on Thursdays using 

the freshly collected effluent and ending on the following Thursday to 

coincide with the application of the next week's primary filter effluent. 

_ The ammonia and oxidised nitrogen analyses were carried out using 

Technicon AutoAnalyser and the determinations made by the methods 
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described by Chapman et ale (1967). The methods have been decoribed 

in detail in chapter 6. . The oxidised nitrogen results include both 

nitric and nitrous forms. Initially, analysis of the effluents for 

nitrites was carried out, which showed that on all the occasions 

sampled, less than 1 mg/l of nitrite nitrogen was present and that 

the values commonly observed were less than 0.5 mg/l. It was 

therefore decided to cease independent determinations of nitrites 

‘and analyse only for oxidised nitrogen; that is, both nitrite and 

and nitrate forms. All the results presented for oxidised nitrogen 

therefore include both forms; in view of the low concentrations of 

nitrite present, the results are also expressed as "nitrate". 

The determination of BOD used has also been described in 

chapter 6. During the first phase of the study between 24/6/76 and 

13/1/77 the BODs were determined without the use of ATU (allyl 

thiourea) to suppress nitrification. After 13/1/77 211 BOD 

determinations were made using the ATU nitrification suppressed method 

described in ‘Analysis of Raw, Potable and Waste Waters" H.M.S.0.1972. 

These laboratory scale studies were carried out in several phases 

(tables 9.1, 9.2 & 9.3). In the first phase, the three flow rates 

chosen were 0.22, 0.44 and 0.66 m/m?/a, and the two temperatures 

chosen were 725°C and 40°C. These temperatures were chosen to mature 

the filters, and as the initial experimental conditions, because they 

were considered likely temperatures to be encountered in full scale 

secondary filters. 

During the period 13/1/76 to 17/3/77, all twelve filters were 

supplied with sewage at a nominal flow rate of 0.66 m/m?/d, and the 

temperatures of both cabinets were raised to 20°C oyer a period of three 

days. The filters were exposed to identical conditions during this 
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Table 9.1 Environmental Conditions for the Various Filters, 

(24/6/76 = 13/1/77). 

Nominal Flow ; Filter Numbers. 

(°/a/a) 
0.22 1A,4A,(A1); 1B,4B, (Bt). 

0.44 2A,54,(A2); 2B,5B,(B2). 
0.66 : 3A,6A,(A3); 3B,6B,(3B5). 

Temperature (°C), 

10 A filters, 

‘7.5 B filters, 

Table 9.2 Environmental Conditions for the Various Filters, 

(31/3/77 - 21/7/71) 

A Filters. B Filters, 

‘Temperature (°C) 10 i 20 

Flows (m/m/a) 0.66 0.66 

Table 9.3 Environmental Conditions for the Various Filters, 

: ( 28/7/77 - 25/8/77-) 
  

A Filters, B Filters. 

Temperature (°c) 10 20 

Flows (m°/n?/d) 0.72 0.72 
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| 
period to obtain similar performances, prior to investigating 

their relative performances under other environmental conditions. 

After 17/3/77, the temperature of cabonet A (which during the 

first phase had been at 10°C) was lowered in seven equal daily 

stages of approximately 1.5°C to 10°C. ‘The temperature of cabinet 

B was maintained at 20°C. } Because all the filters under the loadings 

employed in the first phase produced effluents of comparable nitrate 

concentrations by the end of the period, the hydraulic loadings were 

increased. However, as will be discussed later, there was a 

variation between the replicates in their BOD removals. Due to this 

variation, it was decided to maintain all six filters in each cabinet 

at the same nominal loading of 0.66 n/a? /a, to minimise the effect 

upon the variations due to other factors. The temperatures were 

maintained at 40°C and 20°C until 25/8/77- 

On the 21/7/77, the hydraulic and hence the gravimetric loadings 

to the filters were increased by 10% until the end of the experimental 

period, 25/8/77. 

C. Results. 

The weekly means of the flows, feed and effluent BOD, ammoniacal and 

oxidised nitrogen are frown in appendices 9.1, 9.2 and 9.3. ‘Tables 

9.1, 9.2 and 9.3 indicate the loadings applied to, and the temperatures 

experienced by the various filters during the three study phases. In 

the three tables 9.4, 9.5 and 9.6, the letters in brackets under the 

least significant differences column in the Analysis of Variance 

indicate the L.S.D. is associated to differences between the loadings 

(L), replicates (R), or temperature (T). 
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J» Flow data:- From table 9.4, it can be seen that the flows 

varied significantly with time at the 0.1% level of probability, 

during the period 24/6/76 to 13/1/77, (29 weeks). However, the 

variations were only significant on the first and last weeks. 

During week 1 the flows were higher than average and for week 29 

the flows were appreciably lower than the overall average of 

0.3795 n/m /a Observation of the weekly means in appendix 9.1 

indicates that the flows received by filters 1A, 4A,1B and 4B 

were higher than their nominal flow of 0.22 n/a sae Also from 

the erences it can be seen that the flows to all the filters 

were far lower than their nominal values during the 29th. week. 

From tables 9.4, 9.5 and 9.6, it can be seen that the analysis 

of variance of the flow rates did not show any significant 

differences either over the respective study periods or between 

individual filters. 

- During the first phase, it can be seen that for all the filters 

the nominal flow rates were not attained, but that the three flows 

received were approximately in the ratio 1:2:3 as desired. 

II BOD data:- From appendix 9.1, it can be seen that during the 

first phase only 17 weeks BOD data were collected. This was due to 

staff shortages when BOD analysis had to be suspended. The results 

of the analysis of variance carried out on the BOD data for the three 

phases are Aes in tables 9.4, 9.5 and 9.6. During the first 

phase, it can be seen from table 9.4 that there were significant 

differences between the applied BOD loads to the three sets of 

replicates, and that in the case of the BOD removed, four sets of 

replicates varied significantly in their removal performances. The 

variation between the replicates is shown below:- 
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Table 9.4 Analysis of Variance of Chemical Data for Laboratory 

Scale Nitrifying Filters,Phase 1 (1/7/76 = 13/1/77). 

ES ter Al. A2. AB. Bie 352. B. L,S.D. 

Temperature 10.0 10.0 10.0 7.5 1.5 7.5 - 
mec 

Nominal Flow 0.22 0.44 0.66 0.22 0.44 0.66 - 
(a fu/a) 

Eoia1 Flow 0.2033 0.3602 0.5636 0.1774 0.3978 0.5750; (L)0.0443 
(x? /a?/a) 
i 26.2038 44.6049 7063481 22.3099 43.2600 B.o225 (1)4-8025 acd) ae 9212 

xe xt % L) 4.1935 
BOD" eset 23.3953 3722199 60.0004 19.0147 41,5529 52.6278 R)3.4240 

Eflvagt ae 2.8085 6.3850 10.3476 3.3751 7.7361 11.3947 (L)2.1308 
fee a) ; 

Bfloens BOD11.5735 18.1618 17.7206 16.0735 18.8823 19.8382 (L)4.1701 
al 

BPPluent wi 3.9155 4.6374 5.2129 3.4067 4.2638 5.0176 ee 
(mg/1) 

7)0.3443 

shoplied. 2.8210 4.9982 7.8076 2.3950 5.3890 7.7230 (L)0.2769 

fe We /4) : : 7 
Bffluent MH, 0.8564 1.7689 3.0528 0,6292 1.7446 2.9704 (L)0.2899 

{exe/a) 
Removed 1.9648 3.2292 4.7548 1.7657 3.6445 4.7526 (L)0.9708 

NO,Produced 7.7097 7.1488 6.6652 7.6174 6.9524 6.6650 (L)0.1701 

jaeit) 
N 0,Produced 1.5069 2.5345 3.6431 1.2207 2.6810 3.7517 (L)0.9733 

(¢ 3/a°/a) 

** Replicates displaying significant variation, 

**#** Results varying significantly in time at a 10% 

probability level or greater, 
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| 
Table 9.5 Analysis of Variance of Chemical Data for Laboratory 

Scale Nitrifying Filters,Phase 2 (31/3/77 - 21/7/71). 

Parameter Al. A2. AB. Bi. B2. B. L.S.D. 

Temperature 10.0 10.0 10.0 20,0 20,0 20,0 ‘ - 

Nominal Flow0.66 0.66 0.66 0.66 0,66 0,66 
3 ie) /a) 

Actual Flow 0.6441 0.6400 0.6556 0.6753 0.6253 0.6126 0 

Ee ae Va) : 

BOD Applied 43.9662 44.2560 45.3090 43.1784 39.7811 39.7434 0 
(¢/x°/a) 

BOD ‘Removed 41.3409 41.5784 42.5256 41,6035 38,6572 38.7041 0 

(ges 
Effluent BOD 2.6268 2.6747 2.8128 1.5748 1.1481 1.0386 (T)0.6787 

(e/n?/a) 
REKE 

Effluent BOD 4.1441 4.2618 4.4118 2.3059 1.8529 1.6618 (T)1.0631 

(me/1) 
bas NH, 4.5221 5.0426 2,1794 0.4652 0.4529 044338 (17)0.9420 

ng/1) 
ee 

prlied 7.7038 7.5952 7.8670 8.0871 7.4429 7.3517 0 
‘ (e. lad /a) é i 

Effluent NH, 2.6921 1.8365 1.4421 0.3144 0.2791 0.2665 (7)0,5822 

(¢ w/a°/a) 
"or 5.0117 5.7589 6.4249 7.7727 7.1638 7.0854 0 

'No,Produced 10.7326 12.4147 12.4997 13.4174 13.9456 13.9582 ° 

(mg/1) 
NOsProduced 6.9866 7.9783 8.2215 9.0015 8.6055 8.4347 0 

(g N/w/a) 
** Replicates vary significantly 

*#** Results varying significantly in time at a 10% 

probability level or greater. 
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Table 9.6 Analysis of Variance of Chemical Data for Laboratory 

Scale Nitrifying Filters,Phase 3 (28/7/77 - 25/8/71). 

Pasemeter dls) 02.3. «Be Re SD 
he 10.0 10,0 10,0 20,0 20,0 20,0 - 

rae O72 72 727272 OWT 

Actual Flow 0.6950 0.7010 0.7380 0.7430 0.7190 0.6930 0 
(m°/n?/a) 

BOD Applied 37.9721 36.6287 40.1904 60.7273 59.1840 55.6391 0 
(e/n°/a) 

BOD Removed 33.0408 32.6617 35.3442 58.3971 55.6326 53.4924 0 
(e/x°/a) 

Effluent BOD 429313 3.9670 4.8462 2.3302 3.5514 2.1467 (R)2.5081 

(e/s/a) Ke ee 

Effluent BOD 6.7300 5.6200 6.4300 3.0500 4.2900 3.0900 (R)2.6812 

(mg/1) 
Effluent wa, 270500 Ts100 F740, 1.1000 421950 T2650 (k)1.0512 
(mg/1) 

Applied 13.5620 13.3010 14.5038 14.6498 14.2019 13.5946 0 
(@ N/a /a) 

Effluent WE, 115889 173605 175057 0.8524 S29004 529058 (R) 0.7742 
(g 3/x°/a) 

NH, Removed 11.9992 11.4794 11.8000 12.2733 10.6671 10.0421 0 
(@ N/a /a). 

No,Produced 17.3390 16,6740 16,0670 16.7550 15.0620 14.5960 0 
(mg/1) 

NO,Produced 12,0522 11,5519 11.8399 12.2494 10.7065 10,0817 0 
(@ N/a?/a) 

** Replicates displaying significant variations, 

**** Results varying significantly in time at a 10% 

probability level or greater, 
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Table 9.7 - Variation in the BOD Applied to the Replicates (¢ BOD/m?/d). 

(1/7/76 - 13/1/77) 

42 Be = 

R1 47.2029 51.4038 70.3009 

R2 40.0068 47.9744 576 74l1 

L.S.D. between replicates = 3.9212 ¢ BOD/mja. 

Table 9.8 - Variation‘in the BOD Removal of the Replicates (¢ BOD/m?/d). 

(1/7/76 =- 13/1/77) 
A A2 AB B2 BB 

R1 39.6124 62.174 4.5688 56.5591 

Ro 4.827h 57.8265 38.5369 8.6965, 

L.S.D. between replicates = 3.424 g¢ BOD/m?/d. 

_ During the second phase, analysis of variance of the results 

indicates that the significant variations were due to time and 

temperature only. 

During the third phase, analysis of variance of the BOD results 

indicates that significant variations were due to replication only. 

The variation between the replicates is shown below:- 

Table 9.9 - Variation in the BOD Concentration in the Replicates' 

Effluents (mg/1) 

(28/2/77 - 25/8/77) 

Al B2 BB 

R1 9.680 8.040 6.020 

R2 3.780 4.820 2.560 

L.S.D. between replicates = 2.6812 mg/l. 
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Table 9.10 - Variation in the Weight of BOD in the Replicates' 

Effluents (¢ BOD m/i,) 

(28/7/77 - 25/8/77) 

AL AS 32 

R1 705118 6.4632 5.4488 

R2 2.3508 3.2292 1.6540 

L.S.D. between the replicates = 2.5081 g¢ BOD/m?/d. 

tir Inorganic Nitrogen Data:- The results of the analysis of 

variance’ of the inorganic nitrogen data are shown in tables 9.4, 

9.5 and 9.6. From the tables, it may be seen that the variation due 

to time was significant for all three phases for various aspects of 

the nitrogen results. However, variation between replicates was 

confined to the ammonia levels in the effluents during phase 3. 

The variation between the replicates is shown below:- 

Table 9.11 - Variation in the Replicates Effluents Ammoniacal Nitrogen 

(mg N/1) 

(28/7/77 - 25/8/77) 

a i B 
R1 2.93 2.72 2.43 1.92 

R2 4017 41.10 . 1.05 0.61 

L.S.D. between replicates = 1.0512 mg N/1). 

Table 9.12 - Variation in the Ammoniacal Nitrogen Weights in the 

Replicates' Effluents (¢ N/m?/a) « 

(28/7/77 - 25/8/77) 

Ad a2 3 Ba BB 
R1 2.0722 2.0599 1.9109 4.5510 1.4135 

R2 0.6940 0.6611 0.7004 0.4496 0.3980 

L.S.D. between replicates = 0.7742-g N/mrd. 
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D. Discussion. 

LS Phase _1. 

This phase was one of maturation for the filters. The 

temperatures of 2.5°C and 10°C were used as likely temperatures to 

be encountered during maturation of full scale filters. The sieved 

primary high-rate Hereford filter effluent was first applied to the 

filters on 17/6/76 but chemical analysis could not be commenced 

until 24/6/76. From appendix 9.1, it can be seen that only, 17 

weeks BOD data was collected during this period; an unfortunate 

consequence of staff shortages during which BOD analysis had to be 

suspended. The BOD analyses were made without the use of A.T.U., 

to suppress nitrification, due to the non-availability of the reagent 

at the beginning of the period. Figure 9.1 indicates that by the 

twentieth week, the filters were mature in terms of BOD removal. 

Figure 9.2 showing the overall percentage ammonia removals of the 

* twelve filters shows a gradual increase in removal throughout the 

period which did not reach the maximum of 95% until the twenty sixth 

week. However, it should also be noted that the percentage conversion 

to oxidised nitrogen does not follow the same trend. Initially 

there is a rapid increase to a high percentage conversion, although 

after the tenth week there is a decline in the percentage conversion. 

Inspection of figure 9.3 indicates that apart from weeks 23 and 24, 

there is a general decline in the quantity of ammonia applied to all 

the filters. As the quantity of ammonia applied to the filters 

declined in time, the percentage conversion of ammoniacal nitrogen to 

oxidised nitrogen declined since a greater proportion of the ammoniacal 

nitrogen available in the feed was required for film synthesis and hence    

rendered unavailable for oxidation. The initial.increase in 

nitrogenous oxidation occurs’ during a period of relatively stable 
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ammoniacal nitrogen concentration in the applied feeds, (see figure 

9.3), when colonisation of the filters was rapid. : Unfortunately, 

due v2 the limited data collected, it is not possible to determine 

whether this decline in ammonia concentration applied is also 

applicable to the BOD concentrations in the feed; however, from BOD 

Gee relating to the primary filter effluent during this period, 

there does not appear to be a marked decrease in BOD concentration, 

but, rather marked variations in the quality of the effluent. 

The ammonia removed which does not appear as oxidised nitrogen 

in the effluent must therefore be:- 1) utilised within the filters to 

. synthesisefilter film, 2) present in the effluent as organically 

bound nitrogen, 3) or lost as nitrogen gas due to denitrification. 

Table 9.13 - Temperature Effect upon Effluent Ammonia Concentration. 

725°C 10°C L.S.D. 

Ammoniacal N 4.2294 4.5886 0.3443 
Concentration 
(mg/1). 

* Difference significant at 5% probability level. 

Table 9.13 shows the mean effluent ammoniacal nitrogen 

concentrations of the three loadings at 725°C and 10°C. It can be 

seen that the effluents from the filters operating at 725°C contain 

a significantly lower.concentration of ammonia than at 10°C. This 

could be due to filter film still accumulating; at the lower temperature 

the filters may be at a less advanced stage of maturation, utilising 

the ammonia to synthesise a film, and also mineralising less of the 

organic nitrogen. At 10°C the filters could be more mature leading 

to greater mineralisation of the organic nitrogen than at 75°C, but 

‘the nitrifying flora may not yet be sufficiently established to convert 

the additional ammoniacal nitrogen to nitrite and nitrate. Unfortunately 
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the fate of the organic cenceen was not monitored during this study. 

From table 9.14 below, it can be seen that the quantity of 

inorganic nitrogen supplied but not appearing in the filter effluents 

increased with hydraulic loading although the concentration of 

inorganic nitrogen removed decreased; this lends further support to 

the theory that the filters were not fully mature. 

Table 9.14 - Overall Average Inorganic Nitrogen Balance at the Three 

  

Loadings 

$3 
z e ane es 
Qo + ee eh a fie 

zus Bok $5 = 52 g2-@ 52-5 eee sact oS mage ces S = 
: raz wo o o> o2 2.0 °= Ss ee 

Filters Zeon of 2 ao 2@n Se 2 Sss 

A1+B1 2.6080 1.3638 52.3 0.7428 0.5014 2.6340 

A2+ B2 5.1936 2.6078 50.2. 157567 0.8291 2.1878 

A3+B3 7.7651 3.6974 47.63.0116 1.0561 1.8551 

L.S.D. 0.2769 0.2899 0.7933 

’ From table 9.14, it can also be seen that the percentage 

nitrification is reduced as the hydraulic loading increases; this 

effect could be caused by two factors, ten individually or as 

a combination of both; namely, the result of the increased 

carbonaceous oxidation demanded of the filters, or the reduced 

retention time caused by the increased hydraulic loading. 

Table 9.15 shows that the BOD removals increased in quantitative 

terms with increased hydraulic loading. However, between the two 

highest hydraulic loadings the BD concentrations of the effluents 

did not differ significantly, but were significantly greater than 

for the filters given the lowest hydraulic loading, whilst it might 

be expected that a greater concentration of BOD would be present in 

the effluents from the filters receiving the greatest loading. 
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It is of interest to note that the ratio of inorganic nitrogen 

removed to that of the BOD removed (table 9.16) by the filters at 

each loading decreases with increasing hydraulic loading. This 

suggests that at increased gravimetric loadings, the maturation of 

the filters was more rapid and that a greater proportion of the 

organic matter was mineralised. 

Table 9.15 - Overall Averace BOD Data for Phase 1. 

  

Filters BOD Applied Effluent BOD BOD Removed Effluent BOD 

(eg BOD/m?’/d) (g BOD/m?/a)  (g BOD/m’/a) — (mg/1) 

Al + Bt 24.2968 3.0918 21.2050 12.8235 

 A2 + B2 46.4469 7.0605 39.3864 18.5221 

A3 + BS 67.1853 10.8711 56.3142 18.7794 

L.8.D. 4.8025 2.1308 4.1935 4.9701 

Table 9.16 - BOD and Inorganic Nitrogen Removals during Phase 1. 

  

Filter Inorganic y BOD Removal Inorganic N/BOD 

Removal Removal Ratio 

(g N/m?/a) (g BOD/n?/a) 
Al + B1 0.5014 21.2050 0.024 

A2 + B2 0.8291 39.3864 0.021 

AB + BS 1.0561 56.3142 0.018 

Due to wide fluctuations in the quality of the applied primary 

effluent and the maturation nature of this phase the variations were 

sufficiently great to mask any significant differences that might 

have existed in the data collected. However, there are indications 

that higher temperatures increase the rate of maturation, and that 

_ increased hydraulic loadings and hence organic loadings may increase 

the rate of maturation. Although, on average the filters had 
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stabilised at approximately 95% removal of BOD and applied ammoniacal 

nitrogen by the twentieth and twenty: sixth week respectively, they 

were not mature and filter film was still developing. 

Ir /Equilibration Phase. (13/1/77 - 17/3/77). 

| This period was one of equilibration in the performance of all 

twelve filters, in order that further studies of the effect of 

various environmental parameters could be made without the previous 

histories of the filters causing significant variations in their 

performances. The flows during the period were maintained at a 

nominal 0.66 mya aoe and the temperatures of both cabinets 

. maintained at 20°C (after being raised in three equal daily intervals 

to 20°C, 

By the end of the period, analysis of variance indicated that 

there was no significant differences in the qualities if the effluents. 

The mean percentage ammonia removal by the twelve filters for the last 

two weeks of the period was 93.4 %; (the standard deviation being 

2.2%), and the mean BOD removal was 95.5 % (with a standard deviation 

of 1.3%). However, on average, there was virtually no removal of 

inorganic nitrogen within the filters or increase in inorganic 

nitrogen in the effluents compared to that applied, suggesting that 

the filters might still not have been fully mature and might still be 

assimilating inorganic nitrogen into the filter film. 

III Phase 2. (31/3/77 - 21/7/77). 
  

During this period the temperature of cabinet B was maintained 

at 20°C, whilst cabinet A was lowered to 10°C in view of the 

significant differences in the BOD data between several of the 

replicates during the first phase, which was responsible for masking 
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any statistically significant differences in the performances of 

the filters under different conditions, all six filters at each 

temperature were supplied with the same volume of primary effluent. 

The analysis of variance was carried out on the data using the 

format employed during the first phase, in order to detect any 

possible differences in performance related to previous experiences 

of the filters. Observation of table 9.5 shows that the only 

o ct significant differences in performances were due to the temperatures 

employed and variations due to the changing nature of the primary 

effluent in time. The BOD analysis during this phase involved the 

use of allyl thiourea to suppress nitrification. 

Table 9.17 - Temperature Effects on Filter Effluent BODs and Ammoniacal 

Nitrogen Values. 

    

10°c. 20°C L.S.D. 

Effluent BOD (mg./1) 4.2925 41.9402 1.0631 

patent EOD 2.7048 1.2538 0.6787 
(g BOD/m/a.) 

.Effluent Ammonia 3.1814 4 0.4500 0.9420 

(mg N/1) 

Effluent Ammonia 

1.9901 0.2866 0.5822 
(g N/m?/d.) 

* Differences significant at 0.1 % probability level. 

Table 9.17 shows that although the quantity of oxidisable 

organic matter supplied to the filters at both temperatures did not 

differ significantly, the effluent BODs had highly significant 

differences; the filter effluents at 20°C having lower BODs than at 

10°C. Therefore it is concluded that the higher temperature allowed 

   ® greater heterotrophic 

  

the carbonaceous matter to occur, 

as might be expected. Considering the ammoniacal, results, it can be



seen that a similar trend to BOD removals occurred; therefore the 

higher temperature also enhanced the removal of ammonia. Overall 

during this phase, a greater quantity of inorganic nitrogen was 

present in the effluents than.in-the-feeds-applied-to-the-filterse ——-—-—~~- 

This was- probably due to-the mineralisation of organic mitroren 

present in the high rate filter effluent applied to the filters. 

It. can further. be seen -from-appendix 9.3 that there was an increase 

in the excess of inorganic nitrogen present in the effluents during 

this phase; that is, ‘the filter performances were not stable 

throughout the phase but-improved-during it... -Figure.9.4 shows. that- 

the conversion of ammoniacal nitrogen to oxidised nitrogen was 

greater at higher ammoniacal loadings on the filters. This was due 

to the greater concentration of ammonia available for oxidation 

  acting as the ‘driving force!. for the-process..-At-higher-emmoniacahe--2-i.+ 

nitrogen concentrations, a-smaller proportion would be. utilised by- 

the heterotrophic bacteria, leaving a-higher: concentration -availeble.-.- 0. 

throughout the filter to supply the autotrophic nitrifiers. . 

Biacasuge the difference. is not. significant, the filters at 20°C 

did not have such a great excess of nitrogen an the effluents as at 

10°C. The effluent ammoniacal nitrogen results suggest that 

nitrification was greater at 20°C, and the BOD data also indicate 

that greater heterotrophic activity occurred; therefore greater 

ammonification would be expected.also. The difference between the 

observed results and the expected results suggests that another process 

might also be involved; that of denitrification. Several previous 

studies (Solbe, Williams and Roberts 1967 , Duddles, Richardson and 

Barth 1974, praca, Merkens and Haynes 1975) have shown ammoniacal to 

oxidised nitrogen conversions of- between’ 45%. and.90%,. and thatthe 
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total nitrogen. in the effluents from filters was less than that 

applied. 

Although no references could be found in the literature to 

show that denitrification does account for any nitrogen loss” 

within the filters, several authors suggest that denitrification 

ean occur in conventional treatment plants, Johnson and Schroepfer: . 

(1964) suggest that denitrification occurs in plants in which 

’ full ‘nitrification occtirs, MohImann (1938) in an editorial ‘on 

nitrification refers to the difference between applied ammoniacal 

nitrogeii ‘arid ‘the “oxidised nitrogen in the effluent and indicates 

. that some of the nitrogen may have escaped from the plants as nitrogen 

gas. Bayley (1970), in a review of nitrogen removal methods suggests 

that denitrification occurs in many waste treatment plants toa 

limited extent and refers to the incidences of rising sludge in 

humus tanks as indicators’of the occurrence, Bishop, Heidman-and ~~ 

Stamberg (1976) state that denitrification will occur in’ both anoxic 

and anaerobic zones, although under anoxic conditions the rate is 

far greater, 

The present study differs from the references cited in that 

there was no loss of inorganic nitrogen through the. filters, but 

an increase, which was less at 20° than at 10°C. It is probable 

that the filters were not mature ( as indicated by the increasing 

nitrification during the phase), Although nitrification was 

occurring at both 10°C and 20°, the bacterial flora responsible for. 

denitrification were not fully established, 

IV Phase 3. (28/7/77 - 25/8/77) 

On 21/7/77, the flow to all twelve filters was increased to 

an average flow of 0.71 w/w/d. In order to supply sufficient primary 
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| 
effluent to the filters during this phase, it became necessary to 

use two partly filled 10-litre header’ tanks, instead of one full 

canister. One 'replicate' of the filters (as operated during 

phase 1) was supplied from each canister. During this phase the 

temperatures were maintained at 10°C (cabinet A) and 20°C (cabinet B). 

Table 9.6 containing the results of the analysis of variance 

on the chemical data shows that the use of two supply vessels had a 

significant effect upon the replicate effluent BODs and ammoniacal 

nitrogens. It is curious to note that the applied and removed BODs 

and ammoniacal nitrogen values did not have significant variations in 

the replicate qualities, and that there were no significant differences 

in the joxidised nitrogen concentrations produced; it would be expected 

that filtration of the sewage would tend to reduce the variations in 

quality, not apparently increasing the variations occurring. Time 

only had a significant affect upon the effluent ammonia concentrations | 

produced. Temperature appeared to have no significant effect upon 

the filter performances. 

Table 9.18 shows the average data for the period at each 

tonperature Although not statistically significant, differences 

did occur. There was a marked difference in the applied BOD loads. 

Since there was no statistical difference, it indicates wide variations 

in the quality of the effluent applied to the filters. In keeping 

with the results of phase 2, the effluent BODs at 10°C were worse than 

at 20°C. The ammoniacal nitrogens in the effluents were also higher 

at 10°C than 20°c, but the reverse was true for the oxidised nitrogen 

results. At both temperatures there is an overall loss of inorganic 

nitrogen during passage through the filters, which is more pronounced 

at 20°C. This indicates that denitrification was occurring in both 
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sets of filters, but that the rate was greater at 20°c. The 

filters subjected to 20°C had lower ammoniacal. and oxidised nitrogen 

concentrations in their effluents than that of the filters at 10°C. 
| : 

Table 9.18 - Averaged Analytical Data for Phase 2. 

10°C 20°c 

BOD Applied 
(g/n?/a) 38.2637 58.5168 

Effluent BOD , 

(mg/1) 6.2600 3.4767 

Effluent BOD : 
(g/m?/a) 4.5815 2.6761 

' Ammonia Applied 
lg N/m?/a) 13.7889 14.1487 

Effluent Ammonia 
(mg N/1) - 1.9000 1.1867 

Effluent Ammonia ‘tl : ‘ 

(g N/n?/a) eee 0.8795 

Ammonia Removed 
-(g N/m?/a) 12.4389 15.2692 

Oxidised Nitrogen Produced 

@ N/m?/a) 11.8080 11.0125 

Loss of Inorganic Nitrogen 

(g N/m?/a) 0.6809 2.2567 

* The values shown in the above table do not vary significantly. 

In view of the anereaed loading to all the filters during this 

phase compared to the second phase, it is surprising that denitrification 

appeared to be occurring to such an extent, when there was only a 

slight indication of the activity during phase 2. The increased 

- denitrification indicates that the filters were still maturing. 

332



However, compared to the other studies previously cited, the 

removal of inorganic nitrogen was only 5% and 16% at 10°c and 20°¢ 

respectively. 

| 
E. | Summary. 

Overall, during the three phases reported, the data indicates 

that the filters were not mature. By the twenty sixth week of 

ass 4 the filters all gave fairly stable ammoniacal removals and 

BOD reductions. Also during the first phase there was a loss of 

inorganic nitrogen through the filters at all three loadings. It _ 

appears that the loss is related to a build up of filter film, 

’ During the second phase, when all twelve filters received the same 

loadings, the BOD removal was greater than during phase 1, and there 

was an increase in the inorganic nitrogen present in the effluents. 

This . was due to further maturation of the filters. The increase 

in inorganic nitrogen relates to less active film development and 

greater BOD removal producing more ammoniacal nitrogen in the filters. 

During phase 3, employing higher organic loadings, there was a 

loss of inorganic nitrogen through the filters. This was a result 

of further maturation when the autotrophic nitrifying bacteria were 

more fully established, producing ereeten quantities of oxidised 

nitrogen which were further converted to gaseous nitrogen by a 

developing denitrifying population. Also the increased BOD loading 

encouraged further development of the filter film incorporating 

organic nitrogen. . The BOD removal during this phase was reduced 

when compared to the second phase. 

Increasing the temperature, in the range 725°C to 20°C, had the 

effect of accelerating maturation of the filters. 
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| 
From the data presented and discussed, it can be seen that 

during all three phases the filters Were not mature and therefore 

not showing their optimum performance. During the first phase 

the three hydraulic loadings employed gave rise to significantly 

different performances. The BOD and ammonia removals increased 

with hydraulic loading, whilst the effluent BOD and ammoniacal 

nitrogen concentrations deteriorated with increased hydraulic 

loadings. Nitrate production increased with hydraulic loading 

although the effluent oxidised nitrogen concentration was reduced 

by increased hydraulic loadings. The two temperatures used (725°C 

and 10°C) gave little Bienificant difference in filter performance. 

However, in the second phase where only one hydraulic loading was 

used, the variation between replicates was removed and the two 

temperatures were shown to give rise to significantly different 

performances. At the higher temperature (20°C) there was greater 

BOD reduction and enhanced ammoniacal nitrogen removal. During 

the third phase when the temperatures of 10°c and 20°C were again 

employed, any significant difference in the performance of the 

filters was masked by large variations between the replicates; 

however, there are indications that maturation had reached a further 

stage at 20°C than at 10°C. 

During the third phase, at the average hydraulic loading of 

0.71 m?/a/as the BOD concentration was 70 mg/1., and the ammoniacal 

nitrogen concentration approximately 20 mg/l. These gave rise to 

BOD and ammoniacal nitrogen loadings of 50 gfu?/a and 1h g N/a?/a. 

The media employed had an estimated specific surface area of 300 

n/n; using conventionally sized media with a specific surface area 

ie 
of 80 m ay the loading necessary to obtain the performances 
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| 
achieved at phase three would be:- a BOD loading of 13.33 ¢ /n°/a, 

an ammoniacal N loading of 3.73 g N/a? /a, and a hydraulic loading of 

0.19 n?/m?/d- It can be seen that these loadings are quite low, 

comparing to conventional values used in full scale practice. 

However, the filters did not achieve maturity and indicated that 

a further increase in efficiency could have been achieved in time. 

Unfortunately, the extended periods required by the filters to 

achieve maturity did not allow study of their possible performances 

at much higher hydraulic loadings. 

In conclusion, it can be said that the filters indicated that 

a long period is required to establish a stable nitrifying filter 

population and that the effluent from the primary high-rate filters 

at Hereford could be nitrified at conventional filter loadings. 

The study indicated that a settled sewage of an average 70 mg/l. 

BOD could be nitrified at hydraulic loadings of 0.19 mn?/u7/a on 

conventional media and that the secondary filters could accommodate 

large variations in the applied loads. The laboratory scale filters, 

although heavily colonised by nematode vorus, did not contain any 

macrograzers which might have affected their performance. 
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10. LABORATORY SCALE NITRIFYING FILTERS USING SYNTHETIC SEWAGE. 

A. Introduction. 

| As previously nentioned in chapter 3, the presence of organic 

meee in effluents to be treated in nitrifying biolagical filters 

is thought to affect the oxidation of ammonia to nitrate. In order 

to ascertain the effect of organic matter on this conversion, it is 

desirable to study identical nitrifying filters using differing 

strengths of carbonaceous matter,whilst maintaining similar 

concentrations of ammonia. Since the effluent obtained from primary 

filters treating a supply of natural sewage is subject to changes in 

its strength and nature over a period of time, synthetic sewage of 

known composition might gainfully be employed. Also, to determine 

the nitrifying ability of autotrophic organisms in the absence of 

organic matter, control filters treating a liqour containing a 

similar concentration of ammonia may be considered desirable, 

B, Experimental Work, 

In order to study solely the effect of organic matter upon 

nitrification, variations in other parameters such as temperature, 

flow rates and nitrogen concentrations had to be minimised, The 

time available and the cost of producing synthetic sewage on a 

large scale limited the size and number of filters which could be 

observed in the present study, Eight laboratory scale filters 

identical to those described in chapter 9 were constructed and 

installed in one of the cabinets also described in chapter 9. 

The filters were washed out with tap water for two months 

before the application of sieved primary effluent from the 

Hereford pilot scale high-rate biological filters. From 8/2/77 

until 31/3/77, all eight filters were supplied with the Hereford 

effluent at a nominal flow rate of 0.66 un, w/a. The temperature 

during most of this maturation period was maintained at 20°C, 
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On al 17/3/77, the Cancers of the cabinet was reduced in 

daily 1.5°C intervals to 10°C by 24/3/77. The sieved primary 

effluent was applied in order to obtain nitrifying filters of 

similar performances to commence the study. If the sterile 

synthetic sewages had been applied to 'clean' filters, the 

production of a nitrifying flora would be by chance innoculation 

and could lead to differing performances of the eight filters. 

On the 31/3/77, the filters were supplied with synthetic 

sewages of four different organic contents but similar ammonia 

concentrations, The flow rates were maintained at a nominal 

0.66 w, n/a, The substrate was applied to the eight filters in 

a similar manner to that described for the nitrifying filters 

using sieved Hereford primary filter effluent; the sampling 

procedures and the analytical routines being identical ( all 

- BOD determinations carried out pater evoet ion suppressed with allyl 

thiourea); only the volume of the supply tanks differed, The four 

pairs of duplicate filters were supplied from four separate 5 litre 

canisters which were cleaned weekly and recharged on Thursday and 

Monday each week, " 

Two of the filters were supplied with a solution of 400 mg/l 

sodium bicarbonate and 160 mg/1 of ammonium sulphate prepared 

with distilled water; the sodium bicarbonate being present as a 

buffer, Also added were trace nutrients in concentrations listed 

in table 10.1 to prevent nutrient inhibition of nitrification. 

The other three pairs of filters were provided with three differing 

concentrations of glucose, bacteriological peptone and laboratory 

lemco, but similar concentrations of ammonium bicarbonate and 

trace nutrients as described in table 10.1. Weekly stocks of the 

organic substrates were prepared by autoclaving concentrated volumes 

of the organic reagents, These were diluted when required,ammonium 
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ee being added.’ To the diluted solutions trace nutrients 

were added, and then the solutions made up to 5 litres. Table 10.1 

shows the various concentrations applied to the four pairs of filters. 

Table 10.1 Concentrations of Nutrients in the Synthetic Sewages. 

(mg/1) 

Nutrient A B & 

Peptone - 30 60 

Lab. Lemco 5 ‘ - 30 60 

Glucose : - 10 20 

Sodium bicarbonate 400 40 80 

Ammonium bicarbonate j = 200". 200 

Ammonium sulphate 160 - - 

Ferric chloride (,6#,0) 0.125 0.125 0,125 

Calcium chloride 27.500 27.500 27.500 

_ Magnesium sulphate (.7H,0) fi 25.000 25,000 25,000 

Potassium dihydrogen phosphate 42.500 42.500 42,500 

Sodium hydroxide 8.800 8.800 8.800 

C. Results. 

The weekly means of the flow rates, BOD concentrations, 

Iv
 

90 

30 

120 

200 
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25.000 

42,500 

8,800 

ammoniacal nitrogen concentrations and nitrate production are shown 

in appendix 10.1. The different treatments are denoted by A,B,C and 

D in the appendix and the following tables. A filters were supplied 

v 
with inorganic nutrients only; B,C and D filters received synthetic 

sewages of increasing organic strength. 

I Flow Results 

Analysis of variance of the flow results shows that there was no 

significant variation between the flows received by any of the 

filters and that there was no significant variation in time, The 
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mean flow value for all eight Citers over the 20 week study period 

was 0,742 m/w /a, and a standard deviation of + 0.056 nv n/a, The 

mean flow to the filters were as follows :- 

A 3 c D Std, Dev. 

0.742 06772 0475004735 + (0,056 m°/n/a, 

II BOD Results, 
  

Analysis of variance was also carried out on the weekly mean BOD 

results, Table 10,2 indicates the results of the analysis, In all 

cases there were significant differences between the treatments but 
’ 

no significant differences between the replicates. 

Table 10,2 Means and L.S.D.s of BOD Data. 

A 3 g 2 L.S.D.* 

BOD Applied 5.33 26.15 61,15 89,12 4.43 
-(mg/1) 

HERE 

BOD Quantity Applied 3.93 20.17 45.73 65.41 - 2.55 

(e/a°/a), 
HEHE 

Effluent BOD 4,02 4.26 5.63 13.57 2.14 

(mg/1) = 
HHH i 
BOD Removal 1.31 21.89 55.55 75.41 3.55 

(me/1) 
HERE 

BOD Quantity Removed 1.00 16.82 41.60 55.41 8.75 

(e/n°/a) 
Percent BOD 2544 83.4 91.0 84.7 

Removed. 

L.S.D.* Least Significant difference, calculated at 

10% level of probability. 

eK Results vary at 0.1 % level of probability 

with time. 
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III Inorganic Nitrogen :- The results of analysis of variance on the 

ammonia and nitrate data are presented in table 10,3. 

Table 10.3 Means and L.S.D.s of Inorganic Nitrogen Data. 

Parameter A 3B c 2 L.S.D. 

Nii, “Applied 36.75 38.15 40.08 40.32 2.12 

(mg N/1) 
RHEE 

Applied 27.23 29.36 30.24 29.75 1.27 
(¢ ¥/a°/a) 
KEKE 

Effluent NE * 5,09 15.20 15510. 20517 1.41 

(mg N/1) 
HERE 

Mi, “Removed 31067 22.96 += -24.98- 20.15 0.99 

(mg N/}) 
HREK 

Nii, “Renoved 23.56 17.68 18.81 14.77 1.23 

(g N/n?/a) 
ERE 

NO, "Applied 0.0415 0.1260 0.0283 0.0201 0,0676 

(¢ N/n?/a) : 
RHEE 

Effluent No. 32.34 28.10 52.54 27.72 2,04 

(mg N/1) : 
HHEK 

NO, "Produced 32.29 27.94 32.50 27.69 2,08 

(mg N/1) 
HEE, 

NO, Produced 24.02 21.46 24.38 20,23 1.47 
(e N/u?/a) 

* 
L.S.D. Least Significant Difference, calculated at 

10% level of probability. 

THHEE Results vary at 0.1 % level of probability with time. 
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D. Discussion, 

The nominal flow rate was 0.66 m/a/a; however from the 

results shown in appendix 10.1, it can be seen that this value 

was commonly exceeded for all eight filters, Although the values 

obtained were significantly greater than 0.66 mn, n/a, in view 

of the constancy of the results it was considered acceptable to 

maintain this flow rate, Occasions when the individual flow rates 

were greater or less than one standard deviation from the mean were 

generally attributable to damaged or incorrectly tensioned feed pump 

tubings. 

Table 10.2 showing the means of the BOD data shows that apart 

from the BOD concentrations applied, the gravimetric loads and 

removals and effluent BOD concentrations varied significantly with 

time, Since the applied BOD concentrations and the flows did not 

vary significantly with time, the variations in the gravimetric BOD 

loads must be the product of the combined variations of the BOD 

eoneenrre tions and the flow rates, No significant variation was 

found between the loads or removal performances of any of the 

duplicate filters, 

From table 10,2 showing the means of the BOD data, it can be 

seen that the mean concentrations applied to filters B,C and D were 

close to the desired concentrations of 30, 60 and 90 mg/1, However, 

in the case of the feed applied to A filters there should have been 

no organic matter present capable of exerting a BOD, The BOD 

observed in practice was due to bacterial contamination of the feed 

canisters and the supply tubing. The BOD and oxidised nitrogen 

analyses showed that there was no oxidised nitrogen or BOD present 

in the feeds at the beginning of each week, but that trace amounts 

of oxidised nitrogen were present by the end of each week and that 
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the feed also had a BOD by the end of each week. When renewing 

the synthetic sewage supply to the filters, the canisters were 

waghed using hypochlorite and then thoroughly rinsed before being 

refilled; the contamination was therefore introduced by the supply 

tubings to the pump, Again, considering A filters, the weekly 

Groraned data in appendix 10.1 shows that the BODs of the effluents 

were frequently greater than the applied BOD, The result could be 

explained as the consequence of autotrophic nitrifiers in the filters; 

that is the nitrifying bacteria impart a BOD to the effluent as a 

result of metabolism and cell lysis. 

From figures 10,1 and 10,2 it can be seen that the BOD removals 

in all cases closely followed the applied BOD loads, and that in 

the case of D filters the percentage removal was less than that 

observed in C filters, although the absolute quantity of BOD 

removed was generally greater than that of C filters. 

Observing the BOD removal for D filters in figure 10.2 

shows that during the study period the percentage removal declined, 

This trend began during the sixth Mee Visual observation of the 

filters indicated that by the fifth week a thick light grey-brown 

fungal film had developed on the surfaces of C1,C2,D1 and D2 filters 

to a depth of approximately 50 mm; particularly in the case of D 

filters, Microscopie examination of the surface film indicated that 

Fusarium aquaeductuum was the dominant fungus present, Sepedonium 

and Subbaromyces were also tentatively identified from the filter 

films, The films were all extensively grazed by nematode worms, 

present in much greater numbers than commonly occurring in full 

scale filters, This was presumably due to the absence of macro- 

grazers, By the seventeenth week of the study a thick black fungal 
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film had developed on D filters; in the case of D2 ponding occurred; 

the surface only partially draining between each dose of sewage. 

The black coloration was due to the anoxic zones where anaerobic 

degradation of the fungal film occurred, 

From table 10.2 it may be seen that the effluent BOD 

concentrations of A and B filters did not differ significantly 

although the BOD removals differed significantly. In the case of 
eee so eS 

A filters, a greater quantity of synthesised organic matter was 
ee 

produced as a result of autotrophic nitrification giving rise to 

an oxidizable effluent, From table 10,3 it can be seen that A 

filters produced a significantly greater quantity of oxidised 

nitrogen than B filters leading to a greater production of 

oxidizable organic matter in the effluent, Considering the BOD 

percentage removal figures shown. in table 10.2, the low figure of 

25.4% for A filters occurred for the above mentioned reasons. 

.It is of interest to note that D filters showed a lower percentage 

removal than C filters although the absolute quantity of 

oxidizable matter removed was greater than for C filters, 

The trend observed for the percentage removal figures indicated 

that at low quantities of applied BOD the activity of” the_ 
——_— ae ne reer 

eurerments nitrifiers exerted a Biericae BOD load on the | effluents 

  
  

oon one filters, whilst the absalute quantity of BOD removed did 

increase with increasing applied BOD, The percentage removal figures " 

indicate that at some stage between a BOD concentration of 30 to 

GO mg/1, near to 90 mg/1, at the hydraulic load employed, the ability 

of the filters to accommodate the increasing BOD load declines, 

of BOD removed would reach a@ maximum “value, After that stage, any 

further BOD load applied to the filters would be present in the filter 
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effluent, (see figure 10.3). 

Appendix 10,1 shows that the applied ammonia concentrations 

varied significantly with respect to time, but that the applied 

nitrate concentrations did not do so, This indicates that the 

production of nitrate in the feed canisters by nitrifying bacteria 

was not wholly responsible for the variations in the ammonia applied 

to the filters, Therefore the variations in the applied ammonia 

concentrations must also be attributable to inconsistencies in the 

production of eeatneriG sewages, analytical techniques; and also 

the oxidation of nitrogenous organic matter in the cases of B, C 

and D filters, 

From table 10.3 it can be seen that the ammonia concentrations 

applied to the four sets of filters varied, Filters C and D received 

feeds significantly stronger in ammonia than A filters, although 

proportional quantities of ammonium salts were used to prepare the 

synthetic sewages, It can also be seen from table 10.3 and appendix 

10,1 that A and B filters generally received a greater concentration 

of nitrate in the synthetic sewages applied. This pattern indicates 

that autotrophic nitrification was occurring within the feed canisters 

of A and B filters in particular, and also that oxidation of organic 

matter was occurring, The oxidation of organic matter converting 

organic nitrogenous. materials into ammonia can be seen to be 

occurring at a greater rate than the production of nitrate from ammonia; 

the net effect being the increasing concentrations of ammonia 

available for oxidation in the filters receiving sewages containing 

organic matter, 

From table 10.3, the following table can be produced :- 
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Nitrate Production and Ammonia Removal in Filters 
  

Table 10.4 

receiving Synthetic Sewage. 

A B a 2 

Ammonia Quantity 3.67 11.68 11.43 14.98 
in effluents 

(@ w/n?/a) 
Nitrate Produced 24,02 21346 24.38 20,23 

(g N/n°/a) 
Ammonia Quantity 23.256 17.68 18.81 14.77 
Removed (¢ N/w Ya) 

fas opelnctna’/:, Apmeae 3.78 «5.57 5.46 

From this table it can be seen that more nitrate was produced 

than ammonia removed from the synthetic sewage in each set of filters 

and that the excess nitrate production to ammonia removal is far 

greater in filters B, C and D than for A filters, Initially, it may 

seem incongruous that a greater quantity of nitrate may be produced 

than ammonia removed. However, the synthetic sewages to B, C and D 

filters also contained organic nitrogenous materials in the form of 

Oxoid laboratory Lemco and Bacteriological Peptone, Therefore the 

overall picture is one of nitrogenous organic matter producing 

ammonia within the filters which.may be further oxidised to nitrate, 

Overall, it can be seen that the amount of nitrate produced in any of 

the filters was less than the quantity applied, so that in quantitative 

terms, the organic nitrogen was oxidised only as far as ammonia in the 

filters, Table 10,4 also shows that in the case of A filters more 

nitrate was produced than ammonia removed, yet this ed not occur 

since the oe oor applied toa filters contained n no Bernas 

organic matters | Thia difference can one be sccounted for_as an artefact; 
aioe ~ ss ae 

that is the eras for nitrate nitrogen and ammoniacal nitrogen 

3h:



Fees auerensusce to occur, or that the previously 

matured filter film was being lysed during the period, releasing 

inorganic nitrogen, This last proposition could be feasible for 

A filters particularly, since during the maturation period organic 

sewages were applied to the filters thus developing a film which 

might not be able to survive under the conditions of the study, due 

to the application of inorganic salts only, If the first suggestion 

was the cause of this aitcennce, a consistent error of only 0.9% 

in the two analyses would account for the mean values shown. 

There was no significant trend in the differences between the 

nitrate being produced and ammonia applied to A filters. For only 

six widely spread weeks did the mean nitrate production exceed the 

emmond removal, It may therefore reasonably be concluded that the 

overall greater nitrate production in A filters than ammonia removal 

was in the most part attributable to analytical errors, 

Table 10,3 shows that B filters removed significantly less 

ammonia from the applied sewage than A filters. However, the true 

‘ ammonia removal in B, C and D filters could be greater than that 

shown in table 10.3. From the following table (table 10.5), the 

additional inorganic nitrogen present in the effluents to that 

applied in the synthetic sewages can be observed; this additional 

inorganic nitrogen occurred as the result of oxidation of nitrogenous 

organic matter, as previously explained, Therefore a more accurate 

value of the ammonia nitrogen removals can be made using the nitrate 

production data. From table 10.4 it can be seen that D filters produced 

the least nitrate, although not significantly different from that 

produced by B ‘filters, A and C filters produced significantly greater 

quantities of nitrate than either B or D filters’ It should be 

recalled that the BOD load to B, C and D filters increased in the 
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order B least and D greatest. 

Table 10,5 Total Inorganic Nitrogen Balance. 

A 3 & 2 

Inorganic Nitrogen 27.27 29.49 30.27 29,82 

Applied (g N/m?/a) 

Inorganic Nitrogen 27.81 33.16 35615 35.01 

in Effluent (g N/m?/4) 

Additional Inorganic 0.54 3.67 5.48 5.19 

Effluent W (g N/m°/a) 

Previous studies have indicated that increasing BOD load applied 

to nitrifying filters reduces the nitrifying ability either directly 

or by an indirect competitive effect exerted by the heterotrophic 

bacteria, as explained in chapter 3. It might therefore be expected 

that C filters would produce less nitrate than B filters and that D 

filters would produce even less. The ammonia concentrations in the 

effluents in table 10,3 show that the presence of the oxidisable 

i organic matter had a considerable effect in reducing the nitrification 

in B filters from that shown by A filters. Again, it might be expected 

that C filter effluents would contain a higher concentration of 

ammonia than B filters, Figure 10.4 shows the nitrate production 

which occurred at the various organic loadings, 

There are at least two possible explanations for the curve shown, 

One is that the curve is a consequence of two opposing trends. 

Increasing the BOD load to nitrifying filters reduces nitrification, 

either by directly inhibitory activities or the effects of competition, 

However, increasing the organic loading to a filter may also have the 

effect of increasing the nitrogenous organic material present, as in 

the present study, The nitrogenous organic matter has been shown to 

be oxidised to ammonia, thus increasing the concentration available 
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for oxidation to nitrate; that is , the greater the organic matter 

applied to the filters, the greater the concentration of substrate 

for the autotrophic nitrifiers. 

| 

| Another explanation for the nitrate production / BOD loading 

curve observed may be that the nitrogenous oxidation is performed 

by, both autotrophic and heterotrophic nitrifiers, Again two independent 

trends could explain the curve observed, Autotrophic nitrification 

is known to be depressed in mixed cultures when the organic loading 

increases, From the ‘differences in performances of A and B filters, 

it iene be poncitied that low concentrations of oxidizable organic 

matter in the range 0 to 30 me/1 of BOD begin to suppress the 

autotrophic nitrifying activity. However, the presence of organic 

matter may enhance the activity of heterotrophic nitrifiers, but 

that the optimum performance lies somewhere between 30 and 90 mg/1 

of applied BOD, At higher organic loadings heterotrophic nitrification 

is depreased perhaps as a direct result or indirect consequence of 

increased oxidation of the organic matter by other heterotrophic 

- organisms, However, only limited numbers of studies have shown the 

existence of heterotrophic nitrification. 

Eylar and Schmidt (1959) isolated heterotrophic organisms from 

various soils which displayed a aitpieyiog ability ermes isolates 

were the most numerous and also the most active nitrite producers, 

Fifteen fungal isolates produced nitrate as well as nitrite. Quastel, 

Scholefield and Stevenson (1950) found three species of organisms, 

isolated from soil, capable of oxidising pyruvic oxime to form nitrite, 

Jensen and Gundersen (1955) isolated a bacterium Corynebacterium 

simplex from a soil capable of converting aromatic compounds to 

nitrite, Marshall and Alexander (1962) showed that Aspergillus 

flavus could produce nitrate from organic sources of nitrogen in 

sufficient quantities in culture studies to be of practical significance. 
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‘tion is suppressed, 

Doxtader and Alexander (1966) found that various heterotrophic soil 

bacteria, actinomycetes and fungi produced nitrite when grown in media 

containing various forms of reduced nitrogen; however, none of the 

organisms formed nitrate from the substrates tested, The majority of 

studies, as indicated in chapter 3, have suggested that autotrophic 

oxidation is the most common form of nitrification; therefore this 

second explanation for the observed nitrate production / BOD loading 

curve should be viewed with caution, 

E. Conclusions, 

From the study reported in this chapter it can be seen that 

nitrification of ammonia is affected by the presence of oxidisable 

organic matter, However, the precise nature of this suppression has 

not been elucidated, At a BOD loading of less than 60 g/w/a 

suppression of nitrification occurs, This suppression might begin at 

a very low BOD loading in the region of 10 g/w/a. 

Further laboratory scale studies using higher concentrations of 

organic substrates are required to find out to what extent nitrifica- 

Studies using only ammonium salts and organic substrates without 

organic nitrogen compounds would more accurately indicate the nature 

of autotrophic nitrification suppression. 

More stringent quality controls should have been exercised in 

the production of the synthetic Sewages in order to avoid significant 

variations in their strengths, 
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11. l HEREFORD PILOT SCALE SECONDARY FILTERS 

A. Purpose of the Secondary Filters. 

In view of the preliminary findings from the laboratory scale 

secondary filters at Aston which indicated that the high rate primary 

effluent could be nitrified at conventional rates on mineral media, 

it was considered neserente to observe the performance of pilot 

scale filters at Hereford subject to more realistic environmental 

conditions and using fresh settled primary effluents. 

Also the opportunity arose to examine the performance of two 

plastic media, namely Flocor. RS and Flocor R2S, which were developed 

with the intention of providing a Royal Commission effluent. A 

previous study (Wheatley and Williams 1976) had indicated that the 

Flocor RC (similar to Flocor RS) could produce such an effluent using 

settled sewage, although the nitrification achieved was poor. Flocor 

RS and Flocor R2S have specific surface areas of 240 cya and 

140 fo/a respectively, with void capacities of greater than gh; 

. therefore in order to compare favourably with mineral media the 

hydraulic loadings would have to be of the order 0.6 mw, n/a and 

0.35 m/n?/a respectively. 

During the planning of these secondary filters, it was noted that 

in order to obtain maximum BOD removal from high rate primary filters, 

hence reducing the capital expenditure on high rate filters, loadings 

in excess of those which produced a well oxidised effluent are 

required. However, the pilot high rate studies were indicating that 

the effluent which would be achieved at high loadings might not be 

suitable for nitrifying in secondary filters. This led to the thought 

that three stage filtration of the sewage, in which the tertiary stage 

was designed to effect nitrification, might overall reduce the volume 

of media required. Therefore during the design stage of the pilot 
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secondary filters using the plastics media, consideration was given 

to providing much higher organic loads than would be conventionally 

used for nitrifying filters. 

| 

The construction of pilot scale nitrifying filters would also 

provide an opportunity to study the development of maturation, the 

ecology of nitrifying filters and the film thickness at different 

depths. 

B. Design and Construction Considerations. 

-At Hereford beside the pilot scale high-rate filters exists 

a Braithwaite tank of 18 mn volume, which had been employed for 

previous experimental trials. The tank is 3.6 metres long, 2.4 

metres wide and an average depth of approximately 2 metres. 

The shape of the tank dictated the use of reciprocating 

distributors of 3.6 m travel. In order .to study the effect of 

frequency of dosing, the speed of the distributor's movement 

should be variable. The jets on the distributor should also be 

designed such that the loading and method of distribution could 

be varied. 

In view of the Braithwaite tank shape, it was considered feasible 

to study two filters.each of 1.2 metres by 3.6 metres surface dimensions. 

Since the media to be studied (Flocor RS and Flocor R2S) were of light 

weight, the filters could be separated by the construction of a heavy 

gauge polythene partition fastened into position by a wooden framework 

which would also prevent the mixing of the effluents at the base of 

the filters. As can be seen from figure 11.1, the Braithwaite tank 

has a sloping base which would permit adequate egress of the filter 

effluents. The loading to each filter could be regulated by varying 

the number and size of the jets on the distribution arm. 
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The use of Flocor RS and Flocor R2S dictated the quantity of 

primary effluent which would require settlement and application to 

the filters. In order to raise the primary effluents to a 

settlement tank and the surface of the filters, the wasted settled 

sewage from the primary filters header tank would require diverting 

from the effluent channels into a separate chamber so that only the 

primary filter effluents would enter the existing outlet chamber. 

This existing chamber would then require modification to forma 

sump from which the primary effluent could be pumped to a 

settlement tank. In order to minimise the pumping requirements, 

the primary effluent settlement tank should be mounted on the 

raised concrete standing beside the Braithwaite tank so that the 

settled effluent could be gravity fed into the distribution system. 

The settled effluent would be most easily conveyed to the distributor 

by means of flexible piping to accommodate the travel of the 

distributor. arm. 

To maintain the required hydraulic loadings to the secondary 

filters, excess primary effluent would mead to be pumped to the 

settlement tank. In order that the secondary filters could be 

supplied with effluent having received similar settlement at all 

hydraulic loadings, the entire quantity pumped up to the settlement 

tank should receive settlowent; the excess being run to waste. 

To minimise the modifications to the waste system, it would be 

advantageous for this excess to be directed to the same waste 

chamber as the primary filters header tank overflow. 

In order to desludge the settlement tank, a system should be 

devised which would enable the operator to observe when desludging 

should cease. Again, to simplify the modifications, the sludge 
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should be conveyed to the same waste chamber used for the excess 

supplies. Preferably, a valve should be installed in the 

deslndging line at ground level, beside the waste chamber, so that 

the leverator could observe the sludge being wasted, and close the 

valve without having to climb up to the settlement tank for this 

procedure. 

Adequate provisions must also be provided to sample the liquors 

at each stage of the secondary treatment and to monitor the flows 

received by each filter. Samples of the sewage at each stage should 

preferably be obtained at ground level. By providing a free fall 

- into the waste chamber for the excess settled primary effluent, the 

desludging pipework and the secondary filter effluents, all the 

" samples could be obtained at one position on ground level, apart 

from the mixed unsettled primary effluente, which could be sampled 

from the pump wet well. The flows through the two filters could be 

monitored using tipping troughs in a similar manner to that used for 

_the primary filters, on the effluents from the filters. 

Two electric motors would be required for this secondary 

treatment stage; one driving the primary effluent pump and one for 

the reciprocating distributor. Three phase motors are to be 

preferred to single phase, to reduce the likelihood of overloading 

any single phase during start-up proceedings which could interrupt 

the supply to any of the other electrical equipment on the pilot 

plant. 

C. Construction Details. 

The primary filters header tank excess was diverted to a newly 

constructed waste chamber beside the Braithwaite tank, so that only 
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| 
the primary filter effluents entered the existing waste chamber. 

A brick wall was constructed in this chamber to form a sump of 

0.27 cubic metres capacity; the excess primary effluent flowed over 

the wall into the waste pipe. In order to drain the sump of any 

accumulated solids over an extended period, a port was built into 

the base of the sump wall to permit total emptying of the sump. 

A 240 volt three phase Mono pump was positioned directly above the 

sump to convey the unsettled effluent to the settlement tank; the 

pump being capable of providing a flow of 60 n?/d. against a 7 metre 

head. 7 * 

3 
A 2m steel settlement tank was mounted on the concrete base 

adjoining the secondary filters. The rectangular tank constructed 

for ICI Limited for similar experimental purposes is of the 'Dortmund' 

design with a steep pyramidal base and a stilling box in the centre. 

The unsettled effluent in this instance is conveyed into the stilling 

box ee the top of the tank. At the maximum theoretical flow, the 

settlement tank would allow 48 minutes residence time for the primary 

effluent. A 75 mm diameter uPVC pipe og fitted to the base of the 

tank to convey the sludge to the newly constructed waste chamber. 

A valve was fitted into the desludging pipework adjacent to the 

waste chamber. 

The settled effluent is conveyed to the distribution system 

via 50 mm diameter heliflex tubing from the tank perimeter weir. 

The excess settled effluent is to be conveyed to the waste chamber 

by 75 mm diameter uPVC pipework with a valve to control the flow. 

The reciprocating arm distribution system, manufactured by 

W.E. Farrer Limited, specifically for this study, was mounted directly 

on to the angle iron flange at the ends of the Braithwaite tank. 

Facilities were incorporated to adjust the horizontal level of the 
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arm to ensure the surface of the filter would be evenly provided 

with the settled primary effluent. - 

A three phase 240 volt motor had been fitted to drive the 

distributor arm. The speed of the arm can be varied by alteration 

of a chain drive mechanism. Initially, the drive had been adjusted 

to move the distributor arm at a speed of 0.5 metres per minute, so 

_ that the entire surface of the filters are dosed in 7.2 minutes, 

providing a pseudo dosing frequency of 14.4 minutes. 

The Braithwaite tank was modified to form two rectangular 

filters separated by a polythene partition. The filter effluents 

flowed from the base of the filters via 75 mm diameter uPVC pipes 

to the ‘waste chamber. The filters were filled with Flocor RS and 

Flocor R2S media. Because the media were supplied in bulky 2 a 

packages, it was necessary to use a crane to raise the media above 

the filters, from where they were tipped into the filters. 

The flows through each filter could be assessed by the installation 

of two nominal 20 litre tipping troughs which were under the outlets 

of the 75 mm diameter uPVC pipes in the waste chamber. 

In order to calculate the flow through the settlement tank, the 

volume of the excess primary effluent wasted could be timed by 

collection in a vessel of known volume in the waste chamber; knowing 

the flow through each filter the total settlement tank throughput 

may be derived. 

Unfortunately, due to a 12 month production delay at the 

manufacturers, it was not possible to use the secondary filters during 

the study period. It will however by available for use in a 

continuation of these studies. 
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12. eae AND RECOMMENDATIONS, 
  

A. Conclusions, - 

The results of this investigation were, in some ways, limited 

by the uncontrollable changes in the nature and quantity of sewage 
en p aeaiae me 

available due to works reconstruction and also by the limited 

  

period available for the maturation of the filters, The following 

conclusions may therefore only be taken as indicative of the likely 

| full scale performance. 

1. High-rate filtration at hydraulic loadings of 2.8 w/n/a on 

mineral media and 5,6 w/w/ don plastic media removed a high 

proportion (65 - 85%) of the organic matter from Hereford 

sewage, which contained a high organic concentration from 

cider production and food processing, Nitrification however 

was not established, 

2 Of the media tested, Biopac 50 nominally dosed at 5.6 w/n/a 

consistently proved the most effective in removing BOD. The 

relative performances of the different media was related to their 

‘respective specific surface areas, Although the Biopac 50 proved 

the most effective at 5.6 © w/a, there was evidence that at 

increased loadings severe ponding of this media might occur, 

resulting in decreased efficiency. 

3. At constant hydraulic loading, there was a direct relationship 

between the BOD removal per unit surface area and the BOD applied 

per unit surface area as determined by the differences in 

specific surface area of the media, Thus the smaller the specific 

surface area of the media, the more effective per unit area it 

was in removing BOD, withinthe range of loadings experienced. 

4. Sludge production did not appear to be correlated to organic 

loading or removal in the various filters, A much greater 
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5. 

Mik 

8. 

proportion of the organic matter within the sewage was converted 

to sludge than commonly associated with low-rate filters, 

When the filters were loaded with macerated crude sewage at 

houparable organic loadings to those employed when settled sewage 

was applied, effluents of a suitable quality for secondary 

/ treatment were produced. 

The amount of film per unit volume of filter was directly 

proportional to the specific surface area for the random media 

- both mineral and plastic; the corresponding amounts on the 

moder media were appreciably less but were again related to 

the relative specific surface areas. 

The high-rate filter films although restricted in diversity, 

had similar floral and faunal components to films observed in 

low-rate filters, The abundance and diversity of both the flora 

and fauna were most restricted in the two Flocor media, which 

would appear to be an effect of its modular nature, presenting 

only limited horizontal surfaces on which film might accumulate, 

Fusarium aquaeductuum was a dominant_member of the flora, 

frequently present in greater masses than the zoogleal bacteria, 

This fungus freely sporulated within the filters and was frequently 

the cause of localised ponding on the surface of the smaller 

graded mineral media and the Biopac 50 filters, It is likely that 

at higher loadings severe ponding might occur, Psychoda alternata 

enchytraeid worms were the dominant macrograzers. Eristalis tenax 

was also present, in limited numbers, at the bases of the filters, 

The results of tests on the Hereford high-rate pilot plant 

effluents using laboratory scale filters indicated that under the 

condition of a full scale plant, the effluent from a high-rate 

filter could be nitrified on a secondary filter of conventional 
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B. 

2. 

3. 

4. 

medium loaded at 0.2 me n?/ d. 

A laboratory scale study of the nitrification process using 

synthetic sewages showed that nitrification is affected by the 

presence of organic matter, although the mechanism of the 

suppression was not determined, The effects of this suppression 

were of limited significance below 0.06 ke B0D/m?/a, but could 

be detected at organic loadings as low as 0.01 kg BOD/m?/d. 

Comments on the Methods Employed. 

The sodium sulphate soundness test (B.S. 1438 (1971)) proved to 

be a particularly severe test of media stability. Both types of 

media withstood ten immersion/ drying cycles after which pieces 

began to disintegrate. The use of 105°C for 4 hours for drying 

the media is a harsh test unrelated to conditions experienced by 

filter media, The substitution-of freezing / thawing cycles for 

physical testing of the media would be worthy of evaluation. 

The paint dipping method of estimating the arecirie surface area 

of the media proved satisfactory, although paint uptake increased 

‘with each coat. : = 

Retention time determinations proved extremely time consuming 

and of limited use in assessing filter film condition, It would 

therefore appear that its use as a means of operational control 

is very restricted, 

Neutron scatter determinations proved to be a rapid nondestructive 

method of obtaining a profile of the filter moisture content, and 

their results could be related to film accumulation within the 

filters, This method also indicated that the moisture content 

might not be directly related to the volatile solids content, but 

was also dependent upon the nature of the film.’The application 

of neutron scatter techniques to low-rate filters would appear 

to be of limited eee 
3



c. 

1. 

2. 

4. 

5. 

Recommendations. 

To prove a viable alternative to single filtration, further 

studies should be carried out at higher loadings on secondary 
[ 

filters than employed in this investigation to determine whether 

satisfactory nitrification can be achieved. Results from the 

/ present study suggest that nitrification would be satisfactory 

up to an organic loading of 0.06 ke BOD/m?/d on secondary filters, 

In view of the high costs associated with sludge handling, 

examinations are needed into the nature, quantity, settleability 

and dewatering of high-rate filter sludges, 

Maturation of the primary at higher loadings, and operation of 

the secondary filters for a minimum period of twelve months at 

loadings of 0.5 w/m/a or greater could provide further useful 

information upon which full scale two stage filtration could be 

developed, The possible beneficial effects of controlled 

frequency of dosing and recirculation upon film accumulation 

should also be considered, 

There were indications that over a limited period of observations 

(during which there were intontheniakis variations in the sewage 

supply), maturation had not occurréd in the filters, Continued 

biological observations of the filters under the final loadings 

and also at higher loadings could provide a greater insight of 

the ecology of high-rate filters. 

The possibility of increasing the hydraulic and consequently 

organic loading to the primary filters should be considered, 

such that the secondary filters' function would be oxidation of 

residual organic matter at high hydraulic loadings,to provide an 

effluent suitable for tertiary filtration where the objective 

would be almost solely the oxidation of nitrogenous matter, 
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8. 

However, the increased settlement and possible pumping 

requirements should also be considered, 

Further studies using synthetic sewage of greater organic 

strengths and at higher hydraulic loadings are required to 

ennumerate the degree of nitrification suppression caused by 

increasing organic loadings. Studies using only ammonium salts 

and organic substrates excluding organic nitrogen sources could 

aid the determination of nitrification suppression. 

Under the range of hydraulic loadings observed, it appears that 

the ultimate choice of media depends upon the removal performance 

required, economies of construction, space available and likely 

loadings encountered, 

The use of filter media containing a large variety of sizes 

should be avoided in high-rate filters, A large range of media 

sizes leads to limited void capacities which could render the 

filter susceptible to ponding, although due to closer packing, 

the specific surface area may be enhanced, 
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Appendix 5.1 

B.S. 1438 (1971) Sodium Sulphate Soundness Test. 

b).Granite Media. 40 pieces tested. 

    

Original Sample Weight 9375.2 € 

Mean Weight 234.386 

Final Sample Weight 1994.3 € 

Piece Original Final Loss % 
No. Weight(g) Weight(g) (g) Loss 

1 397.8 D D = 
2 219.6 Weed) D = 
3 332.0 D D - 
4 63.5 D- D - 
5 133.1 D D - 
6 141.9 129.1 12.8 5-5 

ie 91.0 D D - 
8 175.0 166.2 8.8 3.8 
g 353.2 D D = 

10 185.7 D D - 
a1 434.8 426.6 02° 365 
12 266.9 D D - 

3 39505 D D = 
14 122.1 121.8 0.3 «6021 
15 72.1 D D - 
16 151.4 149.6 £e0” glee 
1? 187.6 D D - 
18 286.9 259.8 27ek 11.6 
19 270.0 D D - 
20 347.0 D D - 
al 3235-1 323-4 ° 0 
22 471.0 D D. _ 
23 223.7 D D - 
2k 192.3 191.8 0.5 0.2 
25 6502. D .D - 
26 154.28 D D - 
2? 170.5 D D = 
28 S222: D Sate aD - 
29 198.9 D D - 
30 221.5 D D - 
31 282.1 BD D - 
32 269.4 D D = 

to 202.0 D D - 
3h 222.6 D D - 
35 179.9 D D - 
36 180.5 D D - 
37: 127.0 D D - 
38 398.0 D D ~ 
39 229.0 . 226.0 320 1.3 
40 309.3 D D 

lod, 
8a, 

lid, 
10d, 
l4d,v 

19d, 
10a, 
12d,v 

7d,v 

2ld, 
10d, 
16d, 
18d, 
18d,v 

124,v 
lid, 

“10d, 
lld,f 
15a, 
14d,f 
l2d,f 
l2d,f 
15d,f 
lld,v 
104,f 
8a, 

lld,v 
lld,v 
10d,f 
lld,v 

204, 

D - Disintegrated sample. © 
dad - day sample withdrawn. 
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Remarks. 

soft,crumbled 
crumbled 
crumbled 

coarse, broken 
soft, crumbled 

flaking 
soft, v flaky 
flaking 
f soft,crumbled 
f soft, crumbled 
flaking 
soft, flaky 
soft, crumbled 

soft,crumbled 
cracking 
soft,v flaky 

cracking 
crumbled 
dense, fractured 

soft, crumbled 
surface flaked 

soft, crumbled 
soft, crumbled 

surface crumbled 
soft,crumbled 
soft, crumbled 
soft, crumbled 
soft, crumbled 
soft, crumbled 
soft, crumbled 
soft,crumbled 
soft,crumbled 
soft,crumbled 
soft,fractured~- 
soft,crumbled 

v crumbly



| A endix 5.1 
| 

B.Se 1438 (1971) Sodium Sulphate Soundness Test. 

a) Slag Media. 40 pieces tested. 
Original Sample Weight 

Mean Weight 

Final Sample Weight 

Piece Original Final 
Weight(g) Weight(g) No. 

IN
) 
N
U
N
N
 

EP 
RR
R 

b
e
 

B
R
R
O
R
U
R
E
S
S
E
S
E
G
E
E
R
 

E
S
 
o
p
s
 
a
u
c
u
n
e
 307.7 

25057 
211.0 
103.2 
134.2 
157.9 
212.8 
170.0 
226.3 
245.3 
232.6 
183.0 
241.0 
283.8 
27.0 

134.3 
23565 
248.7 
240.7 
168.1 
Buh 3 
232.8 
323.0 
86.8 

243.0 
135-1 
97-7 

223.5 
190.1 
254.3 
187.0 
32022 

189.0 
146.1 
155.5 
120.0 
142.8 
227.5 
133.4 
218.0 

306.8 
229.0 
209.2 
101.0 
136.1 
157.9 
209.7 
167.5 
2251 

24504 
230.0 
182.9 
239.6 

D 

76.9 
13325 
23409 
248.0 
23340 
145.3 
33704 
231.4 
32402 

D 
D 

134.6 
D 

224.5 
D 

256.1 
186.4 

D 
188.3 
145.6 
144.9 

D 
138.0 

D 
133-0 
“21761 

Loss 

(g) 
  

Ny 
N
e
R
E
r
R
O
 

O
O
r
e
e
 

NM C
I
O
 

e
o
 

N
I
P
 

I
N
 

F
R
A
O
N
U
E
H
 

o 
° 

F
O
 
O
N
N
 

H
A
O
 

fo 
r
F
P
A
M
N
O
D
O
O
C
O
O
 

* 
O
U
W
0
C
e
 

e
e
 

°o
 

ui
 

£
5
0
0
 

0 
+ 
Ue
 

es
 

Us
 
O
U
0
N
 

O
P
 
D
e
 

oO
 

eo
 

o
F
 

oO 

6464.7¢ 

202.0g 

6365-3¢ 

% Remarks. 
Loss 

O04 
10.7 

0.9 
tel 

0 
oO 

1.5 
1.2 
0.6 
0.9 
1.3 

0 
0.7 

- 8d,brittle,fractured 
0 

0.4 
0.3 
0.3 
3.8 

11.3 soft & crumbly 
3.4 
0.7 

Qo 
-  6d,v porous,crumbled 
- 17d,varied density 

0.2 
- 18d,cracked 
0 
- 9d,v porous,cracked 
0 

0.3 
-.13d,dense, fractured 

0.3 
0.2 

D035 
- 12d,porous,flaked 

2.4 , 
- ?7d,brittle,cracked 

0.2 
0.4 

D — Disintegrated sample. 
d - day sample withdrawn. 
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Appendix 6.1 Suspended Solids Analysis. 

i. 100 ml. aliquots of the shaken sample were withdrawn 

by pipette from the 500 ml stock bottles, at 10 cm. below 

the top of the bottle. 

2. 100 ml.aliquots of the settled sample were similarly 

withdrawn from the stock bottle after one hour's settle- 

ment. 

Be The 100 ml samples were transferred to 150 ml beakers 

used to fill the Hartley funnels; both beakers and funnels 

being washed down to ensure all the solids were transferred 

to the filter papers. 

ae | The 7 cm. Whatman GF/C filter papers were dried at 

105°C, cooled to room temperature in a dessicator and 

weighed before use. After insertion in the funnels, the 

papers were wetted using distilled water. 

5 After filtration with the aid of suction, the filter 

papers were removed from the funnels, placed on 10 cm. 

watch glasses and dried at 105°c for one hour. 

6. The papers were then transferred on their watch glasses 

to a dessicator, where they were allowed to cool for an hour 

before being reweighed. 

2.0 The suspended solids were then obtained by difference 

in the weight of the papers and expressed in mg/l. 
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Appendix 6.2 Biochemical Oxygen Demand Analysis. 

Apparatus. 

Ground glass stoppered 250 ml. bottles. 

Grade A 25 ml. automatic levelling and refilling burette, 

‘marked in 0.02 ml. divisions. 

Grade A pipettes for sample withdrawal. 

Electric induction pump for aeration. 

10 litre aspirator. 

Reagents. 

Ferric chloride solution: 0.125¢ Fe, 6H,0 in 1 litre ‘distilled 

water. 

Calcium chloride solution:55¢ CaCl, .6H,0 in 1 litre distilled 

water. 

Magnesium sulphate solution: 25¢ MgsO, «7H50 in 1 litre 

distilled water. , 

Phosphate buffer: 42.5¢ KHPO dissolved in 700 ml H05 4 

*8.8g NaOH added, 2g (mH, 550), and made up to 1 litre. 

1 ml of each above solution added per litre of diluent water. 

Manganous sulphate solution: 500g MnSO © 5H,0 in 1 litre. 4 

Alkaline iodide solution: 500g NaOH and 150g KI per litre 

of distilled water. 

Alkaline iodide/azide solution: 1 litre alkaline iodide mixed 

with 300 ml of 25g/1 sodium azide solution. 

Sulphuric acid: 50% v/v. 

Potassium Iodate : N/40 0.892¢ KIO, in 1 litre distilled water. 

Sodium thiosulphate: N/80 working solution using BDH convol 

phials. 

Starch Indicator : 10g soluble starch urea/ litre distilled 

water. 
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| 
Procedure. 

10 litres of diluent water was prepared in a polythene 

aspirator,previously sterilised and thoroughly washed out with 

distilled water, adding 10 ml of each nutrient stock solution. 

The water was then aerated for one hour, using air filtered 

through cottonwool to minimise contamination. The water was 

then allowed to stand for a further hour before use. 

The samples were withdrawn from the same level in the 

500 ml stock bottles as the suspended solids samples, and 

pipetted directly into the 250 ml ground glass stoppered 

bottles. Diluent water was then added from the aspirator; 

carefully poured down the bottle sides to prevent entrainment 

of air. The bottles were completely filled with diluent water, 

sharply tapped on their sides and left to stand to allow 

any excess gaseous oxygen to escape before being stoppered. 

One of each duplicate sample was then incubated for five 

days at 20°C, whilst the other sample was immediately fixed 

with 2 ml of manganous sulphate solution and 2 ml of alkaline 

iodide solution. After thorough mixing and settlement of the 

precipitate, 4ml of 50% (v/v) sulphuric acid was added to the 

sample bottle which was then restoppered and inverted several 

times to redissolve the precipitate and mix the bottle contents. 

Two 50 ml aliquots were then titrated against N/80 sodium 

thiosulphate using starch solution to indicate the end point. 

The samples were titrated in conical flasks immediately after 

being pipetted to minimise the liberation of iodine. 

After five days incubation, the second sample was analysed 

for its oxygen content in the manner described above and the 
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biochemical oxygen demand of the original sample calculated 

from:— 

x = Volume N/&0 thiosulphate required for 200 ml of the 
original dilution,(ml.). 

Volume N/80.thiosulphate required for 200 ml of incubated < " 

dilution,(ml). 

» " 

N " 

Volume of dilution water to 1 volume of sample (ml). 

Difference between volumes of N/80 thiosulphate required 
for 200 ml of dilution water before and after incubation, 
(ml.). - the blank correction. 
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Appendix 6.3 Chemical Oxygen Demand Analysis. 

Apparatus. 

Electric heating mantle. 

Reflux condensers. 

Reflux flasks. 

Grade A 10 ml burette. 

Grade A pipettes. 

Reagents. 

Potassium dichromate,N/8. Dissolve 6.129g potassium dichromate 

in 1 litre distilled water. 

Ferrous sulphate,N/8. Dissolve 34.75¢ FeSO, «7H50 in 100 ml 

sulphuric acid (25% v/v), diluted to 1 litre with distilled 

water. 

Saturated silver sulphate in 2586 sulphuric acid,(v/v). 

Sulphuric acid SG 1.84. ; 

Ferrous phenanthroline indicator BDH prepared reagent. 

Anti-bumping granules. 

_ Procedure. 

To 5 ml of sample in the reflux flask,0.2g of mercuric 

sulphate were added, and shaken thoroughly. With the flask 

immersed in cold water, 5 ml of N/8& potassium dichromate, 

10 ml sulphuric acid, 1 ml silver sulphate and a few anti- 

bump granules were added and the contents mixed well. The 

flask was then fitted to the reflux condenser and carefully 

refluxed for 2 hours, To ensure accurate and consistent heating 

the electric mantle controls were preset and wired through a 

timer which cut off the electricity supply after 2 hours. 

45 ml of distilled water were added through the condenser 

washing all the condensate into the flask. The flasks were then 

cooled in a bath of cold water, before being titrated against 
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N/8 ferrous sulphate using three drops of phenanthroline 

indicator. 

Calculation. 

| 
| | 

COD = (Blank titre - Sample titre) x 1000 mg/l. 

Sample Volume. 
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Appendix 6.4 Total Oxidised and Ammoniacal Nitrogen Analysis. 

hetereae (After Chapman et al. 1967). 

Technicon AutoAnalyzer 

Technicon Colorimeter 

Aochniton Chart Recorder 

625 mp colorimeter filter 

520 mp colorimeter filter 

i) Ammoniacal Nitrogen. 

Reagents : 

All'reagents were Analytical Grade, prepared with distilled 

water. 

Disodium ethylenediaminetetra acetate solution: 2g of E.D.T.A. 

were dissolved in 1 litre of distilled water; the resulting 

solution adjusted to pH 11.0 with sodium carbonate solution. 

Sodium hypochlorite solution: containing 5% available 

chlorine,any suspended matter being decanted off. 

Phenol solution : 83g of phenol in 100 ml distilled water. 

Sodium hydroxide solution: this stock solution was prepared 

by dissolving 200g NaOH in 1 litre of distilled water. 

Sodium phenate solution: 180 ml of stock sodium hydroxide 

added to the phenol solutiagn and diluted to 1 litre with 

distilled water. 

Standard ammonia solution : 0.19lg of NH,Cl dissolved in 4 

1 litre of distilled water to provide a standard solution 

containing 50 mg/l of ammoniacal nitrogen. 

Procedure. 

The AutoAnalyzer was set up as shown in figure A 6.4.1., 

first running a set of standards; their optical densities at 

625 mp being read from the chart recorder. From a calibration 

curve of ammoniacal nitrogen concentration vs. optical density, 
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the as content of the samples could = determined. 

After every eight samples a blank of distilled water was 

run in order to ascertain whether the conditions were stable 

without significant base line drift. Six standards were used 

in the range 0 — 20 mg/l ammoniacal N to establish the calib- 

ration curve. The 20 mg/l standard corresponded to approximately 

90% of full scale deflection on the chart recorder. 

ii) Oxidised Nitrogen. 

Reagents 

Sodium hydroxide solution : 20g NaOH dissolved in 1 litre 

of distilled water. 

Sulphanilic acid solution : 6g sulphanilic acid were dissolved 

in 700 ml of hot distilled water. After cooling, 2v0 ml 

concentrated HCl were added and the resulting solution made 

up to 1 litre with distilled water. 

Acetone/Water : 125 ml of acetone in 1 litre distilled water. 

Hydrazine sulphate solution : lg of hydrazine sulphate 

‘dissolved in 1 litre of distilled water. 

Copper sulphate solution : 0.8¢ CuSO, 5H50 dissolved inl 

litre distilled water. 

N(1-naphthyl) ethylenediamine dihydrochloride solution : 

O.4g of N(l-naphthyl) ethylenediamine dihydrochloride 

dissolved in 1 litre distilled water. 

Standard oxidised nitrogen solution: 0.36lg anhydrous KNO, 

dissolved in 1 litre distilled water. This solution 

contained 50 mg/l oxidised nitrogen. 1 ml of chloroform 

added to the solution inhibited biological activity. 

Procedure. 

The AutoAnalyzer was set up as shown in figure A 6.4.2. 

with a set of standards (6 in the range VU to 15 mg N /1) 
: 386



being initially run, from which the calibration curve could 

be established. The top standard of 15.u mg/l of nitrogen 

corresponded to approximately 90% of the chart recorder full 

scale deflection. A blank of distilled water was also run 

after every eight samples. The optical densities of the samples 

were determined at a wavelength of 520 m. 
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Figure A.6.4.1 Flow Diagram of AutoAnalyser Ammoniacal Nitrogen. 
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Appendix 6.5 Total Inorganic Phosphate. analysis. 

Apparatus. 

fechnicon AutoAnalyzer 

fechnicon Chart Recorder 

Technicon Colorimeter 

‘Technicon 660 mu filter. 

Reagents. 

All reagents were Analytical Grade, prepared with distilled 

water. 

Aminonaphtholsulphonic acid solution{ANSA): 120g NaHSO, and 
3 

he Na,S0, were dissolved in 800 ml warm distilled water. 

2g of ANSA were added, dissolved and the reagent made up 

to 1 litre with distilled water. rrom this stock solution, 

a one in ten dilution working solution was made up daily. 

Ammonium molybdate solution: 10g of (NH, ) gMo70 o4H50 was 24 
dissolved in 1 litre 1.2N H3S0),« 

Sulphuric acid : 10N 

Phosphate stock solution: 1.433g of anhydrous KH5PO,, 

dissolved in approximately 500 ml distilled water, 1 ml 

concentrated #80, added and the resultaht solution made 

up to 1 litre.with distilled water. 

Procedure. 

The AutoAnalyzer was set up as shown in figure A 6.5el., 

first running a set of standards; their optical densities 

being read at 660 mu from the chart recorder. A calibration 

curve could then be established in the range 0 - 10 mg/l 

total inorganic phosphate (TIP) from which the concentration 

of TIP in the samples could be determined. The 10 mg/l TIP 

standard corresponded to approximately 40% of full scale 

deflection. Only 40% of the optical range was used due to 
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> 

i nonlinear respénse of the solution optical density 
| 

as the phosphate concentration increased. Asin the case 

of the nitrogen analyses, ablank was run after every 

eight samples to check on the stability of the system. 

Appendix A.6.5.1 Flow Diagram of AutoAnalyzer Total Inorganic 

Phosphate Analysis. 

  

  
  

    
  

  
      
  

  

  
    

    

bs ml/min 

90°C ~ E Tair at 
bath double coil : ee 

\_1_ tsa, - a 4 double bastee | ina 0.8 

coil rt - 2.0 
UU tair Ae 

Dialyzer ! Wn Mol 

Saar eae —— 20 
a 08 

= |_| ANSA 2.0 

i 
: wer zs 

aa coil I a 

2 ty 
aS td 

pump 
head 

aan Recorder   
  

          ¥ Colori meter 

air 

390



| 
Appendix 7eAe1. Hereford High Rate Filtration Project 

Sampling Programme. 

Frequency :- 3 days per week (2 weekdays,l weekend day.). 

Weekday Sampling Periods:- 

Daytime 8 hrs. 10.00 - 16.00 

Night-time 16 hrs. 17.00 - 09.00 

Weekend day sampling = 

Daytime 8 hrs. 10.00 -- 16.00 

Sample days and analysis :- 

Sample Process Final DO (BOD). 

Sunday Monday Saturday 

Tuesday Wednesday Monday 

Thursday Friday Wednesday 

Samples generated per 24 hrs. :- 

Double period: (8+ 8 +1) x2 = 34 

Single period: (8 + 8 + 1) x1l<21? 

Routine Analysis :- 

Shaken sample Settled sample 

Suspended solids " w 

ie EOD Ae - " 

cobD* - " 

(CODs to be carried out on 1 of each duplicate only.) 

Occasional filtered samples to be used for analysis. 

In addition to the above, daily samples of the sewage 

feed to measure the overall loading of the filters, and a 

weekly 24 hr. analysis of the feed to monitor hourly 

variations in sewage strength. 

Weekly ammoniacal and oxidised nitrogen analysis of 

the samples to be carried out at Aston University.
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Appendix 7.4.2. List of Filter Codes and Symbols employed. 

Filter Type 

89/50 
89/50 
89/50 
89/50 

125/25 
125/25 
125/75 
125/75 

Biopac 

Biopac 

‘Biopac 

Biopac 

Flocor 

’ Flocor 

Flocor 

Flocor 

mm Slag 

mm Slag biol 

mm Granite 

mm Granite biol 

mm Slag 

mn Slag biol 

mm Granite 

mm Granite biol 

50 

50 biol 

90 

90 biol 

E lew 

E 2cw 

M lew 

M 2cw 

Filter Code 

ss 

SSbiol 

SG 

SGbiol 

Ls 

LSbiol 

IG 

' L@biol 

B50 

B50biol 

B90 

B9ObiolL 

FLElcw 

-FLE2cw 

FLMlcw 

FLM2cw 

Figure Symbol. 

> 

6
0
 

@ 
x
 

©
 
+
 

@ 

x 

® 
> 

~ — 

° 

== 

biol refers to the sector containing the three perforated 

steel shafts used for biological analysis. 

lcw refers to the first sector clockwise when viewed from above. 

2cw refers to the second sector clockwise viewed from above. 
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Appendix 7.4.3. Timetable of study periods at Hereford. 
  

Period. Dates. ; Source of Sewage. 

1” 16/6/75 - 16/11/75 Old works settled sewage 

2 19/11/75- 27/ 1/76 Crude sewage 
(Restricted supply) 

3 29/ 1/76- 29/7 /76 Pilot plant settled sewage 

4 29/7/76 - 12/7/77 New works settled sewage 

evs 3



Appendix 7.B.1 Weekly Mean Flows to the Filters from 16.6.75 to 
  

  

  

  

16.11.75. 

Tank A (Mineral Tank B: (Plastic Flocor M 
Media) Media) 

Date W/E Trough Trough x ‘Trough Trough x 

4 2 a 2 

22/6/75 2.14 =) 21k 15522 - 5.22 5.80 

29/6/75 2.50 3.51 3.01 4.98 4.07 4.53 5.03 

6/7/75 1682 2.10 1.96 5.56 5.32 5.44 6.04 

13/7/75 22736247 4.60 5.49 5.37 5.45 6.03 

20/7/75 4.50 5.26 4.88 5.51 5.46 5.49 6.10 
27/7/75. 2046 2.51 2249 6.10 6.04 6.07 6.74 

3/8/75 1038 1048 1.43 4.14 3.95 4.05 4.50 

10/8/75 2.64 2.56 2.60 5.54 5.40 5.47 6.08 

17/8/75 2.32 «2.56 2.44 5.62 5.44 5.53 6.14 

24/8/75 2.93 2.67 2.80 4.62 4.20 4.41 4.90 

31/8/75 5-10 4.29 4.70 4.72 4.50 4.61 5.12 

7/9/75 2.67 2.74 2.71 5.35 5.07 5.21 5.79 
44/9/75 2.35. 3.05 2.70 5.22 5.02 5.12 5.69 

_ 21/9/75 1673 2279 2226 4.84 5.33 5.09 5.66 

28/9/75. 2.40241 241 3.94 4.37 4.16 6.62 

5/10/75. 1.90 2.06 1.98 4.85 -4.59 4.72 5.24 

12/10/75 1.84 3.28 2.56 4.46 4.26 4.36 48h 

19/10/75 2.15 2.58 2.37 6.06 5.28 5.67 6.30 

26/10/75 3.41 3.73 3.35 5-85 5-84 5.84 6.49 
2/11/75, = 2c40 2.40 5.01 ° 4.69 4.85 5.39 

9/11/75 = 2592) 2292 43.80 5.2K “4.52 5.02 

16/11/75 - 3.01 3.01 4.80 5.28 5.04 5.60 

Mean 2.83 5.03 5.59 

Flows expressed in me jae ae 
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Appendix 7.C.1. Weekly Mean Flows to the Filters from 19.11.75 to 

  

27.1766 

Tank A (Mineral Tank B (Plastic 

eae Trough Trough x Trough Trough = Flocor M 

a = aw 2 

Pyare 0.59 0.59 - - :- - 

30.11.75 - 7.28 1.28 2.04 798° 2.01" 2223 

Wales - 2257) seen? 1596 TeSoume 1605). 1605 

14.12.75 1.00 fo 7.00' 1.44 0590 = 402 «1.43 

21.12.75 1.07 = 1.07 1.55 - 4255, 1070: 

28.12.75 0.49 - 0.49 = 2.08 - 2.00) 2251 

4.1.76 0.49 - 0.49 = 2.08 - 2.08 2.31 

A195 76 4233 - 4233 2.28 - 2.28 2.53 

18.1.76 1.47 = 1.47 2.04 - 2.04 2.27 

Mean 1.12 1.84 2.04 

(Flows expressed in m/m?/a = 
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Appendix 7.D.1. Weekly Meaned Daily Flow Results. (29.1.76 to 29.7.76) 

  

Tank A (Mineral Tank B (Plastic 

Date W/E eeu Badia” 
Trough Trough Mean Trough Trough Mean Flocor M. 

4 2 4 2 ‘ 

Rsla7oe e708 a Ve Oma 7 - 1.70 1.89 

8.2.76 1.05 - 1.05 1.70 = 1670 1.89 

1522-76 1.89 - 1.89 2.57 - 2257 | 2686 

22.2.76 2.91 - 2.91 5.37 6.09 5.73 6.37 

29.2.76 3.10 Sr 5510 S720 5650) 5e51) 36512 

9703:76 2.80 2.64 2.72 5.50. 5:06 5.28 _ 5.87 

14.3276 2.56 2675 2065. 15.09 4.68 4.89 5.43 

2423-76 5209 3-2 § 5.17 6.10 = 5.39 5-75 6.39 

28.35.76 3.00 3.2% 3.10 5.98 5.41 §.70 6.35 

4.4.76 3.33 3.58 3.45 5.78 5.04 5.41 6.01 

114.76 3.28 3.37 3032 4.85 4.45 4.64 5.16 

18.4.76 2.86 242 2.64 4.83 4.35 4.59 5.10 

2524.76 1.24 Nee] pee ee ge 5610 3.02 3.06 3.40 

2eb.(6 Beech 2.64 2.52) = 5.47 5.47 6.08 

9.5.76 2076 2078 2.77 6.51 5.17 5.84 6.49 
16.5276 2.68 Zenon me Peso Os0n Bch) Sen) a 

23.5276 2.21 2e00NE 2615 0 5575) 5.34 5.54 6.16 

30.5.76 2.47 2:78 2.63 5.17 5.05 5.10 5.67 

6.6.76 2078 2.75 2.77 4.92 4.94 4.93 5.48 
13.6.76- 2.58 3.11 +2.8h © 5.657 5.61 5.62 19 6.28 

20.6.76 - 2.77 2.77 4.85 4.65 4.83 5.37 

27.6.76 2.90 3.20 3.05 4.98 Bs050 905.01) igs? 

4.7.76 - 2.80 2.80 4.83 - 4.83 5.37 

11.7276 2.94 2095 2595 5.50 4.86 5.18 5.76 

18.7276 2.58 2.98 “2.78 5.14 6.09 5.62 6.24 

25.7.76 2.42 2.56 2.49 = 5-18 5.18 5.76 

29.7.76 2.90 2.90 2.90 - 5-92 5.92 6.58 

x 2.58 2.78 2.63 4.90 5.10 4.86 5.40 

S.D. 0.58 0048 = O254 | 4.31 0.64" 4.03 1.15 

(m?/m?/a) 
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Weekly Meaned Daily Flow Data 

1976 - 17/dul; 29/dul: 

Appendix 7.5.1. 

Date W/E Pe 

8/8 2.03 

15/8 1.58 

22/8 eve 

29/8 2.65 

5/9 2.75 

12/9 2.63 
19/9 2.74 

26/9 2.85 

3/10 2.64 

10/10 2.99 

17/10 2.89 

24/10 2.87 

31/10 2.99 

2/11 2.77 

14/11 - 

21/11 - 

28/11 2.73 

5/12 2.87 

12/12 3.08 

19/12 2.79 

26/12 2.04 

af) 1.97 

1 2.80 

16/1 2.87 

23/1 3.19 
30/1 Bay) 

6/2 2.76 

13/2 2.99 

20/2 Pave: 

27/2 - 

6/3 1.16 

13/3 2.69 

20/3 2.44 

27/3 2.33 

2.06 

1.68 

2.29 

2.78 

2.84 

2-73 

2271 

2.88 

2.67 

3.12 

2.93 

2.95 

2.93 

2.92 

2.65 

3.01 

ough Trough Mean 
2 

2.05 

1.63 

2.23 

2.72 

2.80 

2.68 

2.73 

2.86 

2.66 

3.06 

2.91 

2.91 

2.96 

2.85 

2.65 

3.01 

2.73 

2.87 

3.08 

2.79 

2.04 

1.97 

2.80 

2.87 

3.19 

3.17 

2.76 

2.99 

2.17 

1.16 

2.43 

2.44 

2.33 
429 

1927 (m?/m?/a) 

Trough Trough 
4 

Dante 

ok 

4.57 

5.37 
5.84 

4.76 

4.66 

5.09 

aaah 

4.83, 

5.06 

4.68 

4.95 

“4.87 

2. 

5.10 

4.17 

4.76 

5.63 

6.17 

5.12 

4.93 

5.46 

5.00 

5.78 

5.86 

5-37 

5.65 

5.21 

4.82 

“25597 

5.95 
5.40 

5-23 
5.21 

20 

4.98 

4.98 

4.57 

5-38 

ey) 

2.71 

Seo 

3.70 

3-93 

Mean 

5.11 

kot 

4.67 

5250) 

6.01 

4k 
4.80 

5.28 

457 

5.31 

5.46 

5.03 

5-30 

5.04 

482 

5.97 
5-95 

5.40 

5.23 

5.21 

5.20 

4.98 

4.98 

4.57 

5.38 

6.17 

6.20 

5-90 

Bide 

3.04 

4.16 

4.01 

4aag 

Flocor M 

5.68 

4.68 

5-19 

On 

6.68 

5-49 

5.33 

5.87 

5.08 

5.90 

6.07 

5.59 

5.89 

5.60 

5.36 

6.63 

6.61 

6.00 

5.81 

5.79 

5.78 

5.53 

5.53 

5.08 

5.98 

6.36 

6.89 

6.56 

3.47 

3.00 

4.62 

446 

466



Appendix 7.E.1. 

Date W/E Trough Trough Mean 
A 

3/4 

10/4 

17/4 
ak/k 

1/5 

8/5 

15/5 

22/5 

29/5 

5/6 

12/6 

19/6 

26/6 

3/7 

10/7 

12/7 

Yt 

sD 

4.49 

0.44 

3-33 

2.82 

3.12 

3.58 

3.28 

3-23 

2.24 

3.63 

3.72 

3.21 

2.67 

0.65 

Weekly Meaned Daily Flow Data 

Jul: 

2 

2.93 

3-70 

3.45 

3.45 

3.53 

3.34 

3.64 

2.39 

3-79 

3.24 

3.21 

3223 

2.94 

0.50 

1976 - 17/dul; 

1.49 

0.44 

3.13 

3.26 

3.29 

3-52 

3.40 

3.29 

3.64 

2.32 

3.63 

3.76 

3.23 

3.21 

3.23 

2.74 

0.65 

* 430 

19277 (m?/n?/a) 

Trough Trough 
4 

2.54 

0.68 

4.98 

5.61 

5.39 

4.82 

6.32 

4.36 

5.52 

5.40 

5.40 

6.14 

4.80 

1.13 

2 

2.25 

0.58 

4.19 

5.17 

5.17 

4.76 

6.08 

5.13 

4.30 

3.44 

6.00 

5.97 

5.25 

5.42 

5.85 

4.86 

Mean 

2.40 

0.63 

459 

5.39 

5.28 

4.79 

6.20 

5.15 

4.33 

3.44 

6.00 

5-75 

5.33 

5.44 

6.00 

492 

Flocor M 

2.67 

0.70 

5.10 

_ 5499 

5.87 

5.32 

6.89 

5.70 

4.84 

3.79 

6.67 

6.39 

5.92 

6.01 

6.67 

5.48 

1.17
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Appendix 7.F.1. BOD Loading and Removal per unit of 

Specific Surface Area,(16/6/75-16/11/75).« 

  

Filter Available BOD BOD 
Media Surface Area Applied Removed 

(m°) (g BOD/m*/a) — (g BOD/m*/a) 

LG 145.7 23-51 15.72 

Ls 131.6 25.81 18.68 

5G 203-9 16.65 12.30 

Ss 234.4 14.49 10.23 

FLE 325 8 18.69 12.12 
FLM © 461.7 13.07 8.86 

B90 323 18.69 12.94 . 

B50 471.2 12.81 9.08 
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Appendix 7.F.2. BOD Loading and Removal per unit of 

Specific Surface Area, (29/1/76-29/7/76). 

| : 
Filter Available BOD BOD 

  

  

Media Surface Area Applied Removed 

(m*) (g BOD/m*/ad) — (g BOD/m*/a) 
| 1G 14507 25.34 17.93 

Ls 131.6 28.06 20.32 

SG 203.9 18.10 13.33 

Ss 23heh © 15275 11.69 

FLE 323 21.22 15.79 

FLM 461.7 14.85 10.81 

B90 323 21.22 16.64 

B50 471.2 14.55 12.06 
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Appendix 7.F.3. BOD Loading and Removal per unit of 

Specific Surface Area, (29/7/76-17/7/77).« 

Fulter Available BOD BOD 

  

Media Surface Area Applied Removed 

(m°) (g BOD/m*/a) — (g BOD/m*/a) 

"Ie 14527 25.18 19.12 
Ls 131.6 27.88 22.37 

SG 20329 17.99 14.56 

SS 23404 * 15.65 12.80 

FLE 323 20.39 16.34 

FLM 461.7 14.27 11.24 

B90 323 20.39 16.97 
B50 471.2 13.98 12.05 
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Appendix 7.F.4. Rate of Sludge Production vs. BOD Loading 

per unit of Specific Surface Area 

| ; (16/6/75-16/11/75) « 

  

Filter Available BOD Sludge 

Media Surface Area Applied Production. 

(m°) (g BOD/m@/a) (g/g BOD Removed) 

LG 145.7 23.31 0.90 

Ls 131.6. 25.81 0.97 

SG 203-9 16.65 0.77 

SS Shek 14.49 0.75 

FLE 325 18.69 0.81 

FLM 461.7 13.07 0.82 

B90 323 18.69 0.74 

B50 471.2 12.81 0.68 
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Appendix 7.F.5. Rate of Sluage Production vs. BOD Loading 

per unit of Specific Surface Area. 

(29/1/76-29/7/76) « 

Filter Available BoD BoD 

Media Surface Area . Applied Production 

(m?) (g BOD/m*/a) (g/g BOD Removed) 

LG 145-7 25654 0.74 

Ls 131.6 28.06 0.71 

sc 203.9 18.10 0.72 

ss 23404 15.75 0.69 
FLE ES} : 21.22 0.75 

FLM 461.7 14.85 0.73 
B90 525 21.22 0.64 

B50 4271.2 14.55 0.58 
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Appendix 7.F.6. Rate of Sludge Production vs. BOD Loading 

| per unit of Specific Surface Area. 

| (29/7/26-17/27/77) 
/ 

Filter Available BoD BOD 

Media Surface Area Applied Production 

/ (m°) (ge BOD/m°/d) (g/g BOD Removed) 

LG 145-7 25-18 0.61 

Ls 131.6 27.88 0.61 

SG 203.9 17.99 0.58 

ss_ 2344 15.65 0.56 
FLE 325 20.39 0.61 

FLM 461.7 14.27 0.63 

B90 323 20.39 0.54 

B50 471.2 13.98 0.53 
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| 
Appendix 8.4.1, Volatile Solids Present in the Filters 

October,1975. 

  

  

  

Media O- 200 200- 600 600-1000 1000-1400 1400-1800 

ss 6.0 8.4 4.8 6.3 4.6 

Ls 8.1 563 8.3 6.7 5.9 

sc 4.3 7.2 11.5 6.8 4.8 

LG 5.5 5.7 3.9 3.3 4.5 

BOO: 2 9y5 13.8 18.7 18.8 14.5 
B50 27.2 2647 33.1 43.3 34.1 

Q- 200 600-800 4200-1400 

FLE 3.82 3674 2.70 

FLM 6.24 17.26 5.61 

Depths expressed in m, 

_ Volatile Solids in kg/m’, 

46%



Appendix 8.4.1.(cont) Volatile Solids Present in the Filters 

Media 

SS 

Ls 

Le 

B90 

B50 

FLE 

  

January ,1976. 

Q- 200 200- 600 600-1000 1000-1400 1400-1800 

18.5 16.5 14.8 12.0 8.3 

3.2 35 6.5 5.0 5.2 

14.0 16.1 14.5 15 12 .4 

9.0 1464 9.1 9.2 6.9 

10.8 11.2 1367 1.4 4.3 

25.8 26.3 19.5 15.0 7.9 

Q= 200 600-800 4200-1400 

2.1 7.0 eT 

4.4 4.9 5.0 

Depths expressed in mms, 

Volatile Solids in ke/w’. 

469



  

Appendix 8,4.1.(cont) Volatile Solids Present in the Filters 

April/May,1976. 

Media O= 200 200-600 600-1000 1000-1400 1400-1800 

ss 14.8 13.7 19.9 16.9 16.9 

Ls | 15.9 13.2 17.3 13.1 9.1 

sol 11.9 14.8 21.0 2165 1T 8 

LG 6.3 8.7 18.3 22.2 13.5 

B90 4.0 33.8 31.9 23.8 ia. 118 

B50 30.0 43.2 21.5 9.6 Tal 

2-200 600-800 1200-1400 
| ‘FLE 3.5 6.0 2.8 

FLM 7.0 6.4 7.8 

Depths expressed in m, 

Volatile solids in ke/m? 

470



Appendix 8,4.1.(cont) Volatile Solids in the Filters, July,1976. 

| 

  

aie! 0-200 200- 600 600-1000 1000-1400 1400-1800 
ss 14.1 10.7 10.8 8.6 6.5 

Ls 7.5 8.0 1161 10.0 Te 

sc 9.1 14.4 8.9 10.6 6.8 

L¢ 7.9 MSs 5.5 Rl a WA 

BQO 12.8 18.3 14.5 9.6 8.4 

B50 42.4 11.8 17.4 12.6 9.4 

Q= 200 600-800 1200-1400 

FLE 3.6 . Te 3.0 

FLN 10.5 SH a1eA 

Depths expressed in m, 

Volatile solids in ke/w



Appendix 8,4 .1.(cont) Volatile Solids Present in the Filters, 

October,1976. 

Media ~ O- 200 200+ 600 600-1000 1000-1400 1400-1800 

  

ss 10.2 10.1 8.9 8.4 5.6 

LS 8.5 10.7 Ted 8,2 st 

sc 10,0 11.4 9.0 6.4 6.9 

LG Ted 9.4 8.7 75 6.6 

BIO sé 20,2 18.3 15.2 16.4 9.4 

B50 _ 17.7 17.2 10.7 8.7 2.5 

Q- 200 600-800 4200-1400 

FLE 3.8 Tee 8.2 

FLM 10.2 9.6 5.0 

_ Depths expressed in m, 

Volatile solids in kg/m’. 
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Appendix 8,A,1,(cont) Volatile Solids Present in the Filters 

February/March, 1977. 

Q- 200 200-600 
  

Media 

o
e
 

B90 

B50 

  

  

600-1000 1000-1400 1400-1800 

11.3 10.6 567 

1.8 16.3 1007 

3.8 16.9 5.0 

9.2 15.4 6.3 

9.7 33.23 19.7 

901 20,2 12.8 

Q- 200 600-800 

0.6 2.0 

1.7 3.6 

Depths expressed in m, 

Volatile solids in ke/m, 

4AT3 

2.9 1.9 

4.2 3.0 

4.2 2.8 

1.5 1.3 

6.6 5a 

5.1 1.7 

1200-1400 

3.3 

4.5



Appendix 8.A4.1.(cont) Volatile Solids Present in the Filters ,May.1977. 

Media 

ss 

Ls 

B90 

B50 

  

O- 200 200— 600 600-1000 1000-1400 1400-1800 

11.5 12.8 15.8 16.3 19.5 

105 11.6 12.3 14.1 8.2 

8.6 14.2 19.3 10.3 1555 

6.7 12.7 21.6 16.3 13.7 

5.5 10.7 7.0 Tes 6.0 

12.5 8.8 1761 13.4 4.8 

O& 200 600— 800 4200-1400 

504 Tel 4.6 

4.6 7.9 2.3 

Depths expressed in mm, 

Volatile solids in keo/w? 
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Appendix 8,4.1.(cont) Volatile Solids Present in the Filters, 

} 
Media 

Ls 

SG 

Lc 

B90 

B50 

  

  

A jt .1 . 

O- 200 cae 600 600-1000 1000-1400 1400-1800 

10.4 as 8.3 66 5.3 

6.9 4.7 6.4 1.8 2.7 

6.2 64 8.7 564 3.6 

8.5 4.5 BG T= 557 

4 6.3 9.4 1404 14.3 

229 41.8 15.7 1361 9.1 

Q- 200 §00-800 1200-1400 

2.7 4.4 5.0 

307 567 5.5 

Depths expressed in mm, 

Volatile solids in ke/m, 

475



Appendix 8.42 Neutron Sc et Moisture. borhank Profiles. -April ape 
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Appendix 8.A2 Neifron Scatter Moisture Content Profiles. Aprib) Ss 
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Appendix 8A 2.Neutron Scatter Miosture Content Profiles. Sept. 1975 

“Percent Voidage. X1 
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Appendix 8.A2 Neutron Sc atter Miosture Content Profiles Sept1975 
- {Minerul Media ) : 

Percent Voidage. X1@! ° Percent. Voidage. xia! 
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Appendix %.A2 NeutronScatter Moisture Content Profiles Oct1975 
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Appendix 8.A2 Neutron Scatter.Moisture Content Profiles Oct1975 
Pliner ah Media ) ; 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, November, 1975. 

Percent Voidage. x19! Percent Voidage. xig! 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, November 1975. 

Percent Voidage. X1@ 
(Mineral) Percent Voidage. xia! 
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Appendix 8.A.2 Neutron Scatter Moisture Conten ts, DecemberJ975, 

Plastic Media : 
Percent Voidage. X1@ Percent Voidage. x19! 
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Appendix 84.2 Neutron Scatter Moisture Content, Decemberi975. 

(mineral media) 
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Appendix8A.2 Neutron Scatter Moisture Content January1976. 
Plastic media. 

Percent Voidage. xia! Percent Voidage. x19! 
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Appendix8.A.2. Neutron Scatter Moisture Contents, January 1976 
  

mineral media 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, February 1976. 
Plastic media. 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, February 1976. 

Mineral media. 

Percent Voidage. x1g! Percent Voidage. x1g! 

Oe 2 PG Orel Once 0 die Ga Be 18 

   
  

eee : s 
“100 : par) 

Qa a & -120 . E120 
-149 : -140 
-160 ‘ -168 
-188. g -180 

-200 SG -200 

Percent Voidage. xia! Percent, Voidage. xia! 

gee Ge Eien 

aj {i a 
-40 = -40 . 

in -60. 00 e -60 ® 

= S 

2 -86 60 e -80 oO 

2-108 . ‘e108 ‘ 
a a 

& -120 a E120 ‘ 
-140 . 148 : 
-160 ° -166 ® 

-208. S52) -208 LG 
489



Appendix8.4.2 Neutron Scatter Moisture Contents, March 1976. 
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Appendix 8.A.2 Neutron Scatter Moisture Contents,March 197% 
  

Mineral media 
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ans 8.A.2 Neutron Scatter Moisture Content, April1976 
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Appendix8.A.2 Neutron Scatter Moisture Contents, April1976 
Mineral media . 

Percent Voidage. xia! Percent Voidage. xia! 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, May 1976. 
  

Plastic media 

Percent Voidage. x19! Percent Voidage. X1 g! 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, May 1976 
Mineral media. 

Percent Voidage. x1@! Percent Voidage. xia! 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, June 1976. 
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Appendix 8A.2 Neutron Scatter Moisture Contents, June1976. 

Percent Voidage. xia! Percent Voidage. x1 Ql 
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Appendix 8A.2 Neutron Scatter Moisture Contents, July 1976_ 
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Appendix8A.2 Neutron Scatter Moisture Contents, July 1976 
mineral media. 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, September195 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, September 1976 
  

Mineral media. 
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APPENDIX 8.AZ.NEUTRON SCATTER MOISTURE CONTENT PROFILES OCT. 76 

( PLASTIC MEDIA) 

Percent Voidage. x19! Percent. Voidage. xia! 
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APPENDIX 8.A2. NEUTRON SCATTER MOISTURE CONTENT PROFILES OCT. 76 

(MINERAL MEDIA) 

Percent Voidage. xia! Percent Voidage. x10! 
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APPENDIX 8 AZ. NEUTRON SCATTER MOISTURE CONTENT PROFILES. Nov. 76 

(PLASTIG _ MEDIA) 
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APPENDIX8.AZ.NEUTRON SCATTER MOISTURE CONTENT PROFILES Nov. 76 

(MINERAL MEDIA) 

Percent Voidage. x1@! Percent Voidage. X1 Ql 
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APPENDIX 8.AZ. NEUTRON SCATTER MOISTURE. CONTENT PROFILES. DEC 76 

(PLASTIC MEDIA) 

Percent Voidage. x1g! Percent. Voidage. X1@! 
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APPENDIX 8.AZ. NEUTRON SCATTER MOISTURE CONTENT PROFILES. DEC-76. 

(MINERAL MEDIA.) 

Percent Voidage. xia! 
8 Q 2 4 6 

  

Percent Voidage. xia! 
@ 2 4 6 8 

  507 

Percent Voidage. x19! 
GES 72a a 6 ees 0 

pt
h 

in 
cm

s.
 

et 
a 

8 

De
 Ss
 

a
 

  

Percent Voidage. xia! 
Oitaee: ate be Saeed



De
pt
h 

in
 

cm
s.
 

De
pt
h 

in
 

cm
s.
 

Appendix 8.A.2 Neutron Scatter Moisture Contents, January 1977 

cai media 
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‘lnenaty 8.4.2 Neutron Scatter Moisture Contents, January1977. 

Mineral media 
Percent Voidage. xia! Percent Voidage. xX} Ql 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, February 1977. 
  

  

  

Plastic media . 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, February 1977 
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Appendix 8A.2 Neutron Scatter Moisture Contents, March 1977. 

Plastic media : 
Percent Voidage. x1@! Percent Voidage. Xia! 
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_ Appendix 8A.2 Neutron Scatter Moisture Contents, March 1977 
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-. «Appendix 84.2. Neutron Scatter Moisture Contents, May 1977. 

: Plastic media ‘ 
_ Percent Voidage. x1a! Percent, Voidage. xia! 
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Appendix8A.2 Neutron Scatter Moisture Contents, May1977. . 

Mineral media 

Percent Voidage. xia! Percent, Voidage. x1@! 
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Appendix 8A2 Neutron Scatter Moisture Contents, June 1977. 
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Appendix 8A.2 Neutron Scatter Moisture Contenis, June 1977. 

Mineral media 
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Appendix 8.4.2 Neutron Scatter Moisture Contents, July 1977. 
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Appendix 8.A.2 Neutron Scatter Moisture Contents, July 4977 

Mineral media 
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Appendix 8.4.3. Results of Retention Time Tests on Clean Media 

devoid of Filter Film,(May 1975) 

Media i6#ile. 5Oile. NaCl Recovered, 
&. 

Ls Bee 5.5 5.5 

LSbiol 2.0 4.75 67.2 

ss 3.6. Tet 113.7 

SSbiol _ 1.8 4.75 53.7 

ieee 0.75 2.0 40.6 

L@biol 0.70 2.1 46.7 

s¢ 1.5 4.0 58.6 

SCbiol 464 3.4 48.3 

B90 0.25 1.7 56.3 

BQObiol 0.5 177 66.1 

B50 ik) 2 2.8 55.9 
B50biol 0.8 eh 65.5 

FLE1 ew 0.65 1,6 - 99.4 
FLE2cw 0.7 1.7 58.2 

FLMicw 0.65 1.8 101.3 
FLN2cw 0.65 2.0 67.0 

Percentile times in minutes, 
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Appendix 8.4.3.(cont.) Results of Retention Time Tests on the 

High Rate Filters ,October,1975. 

Media i6file. 5Ofile, NaCl Recovered. 
&. 

Ls 5.7 23.0 36.7 

LSbiol 3.5 aeat5s7 24.0 

ss 1630). 32.0 56.0 

SSbiol 10.5 36.5 59.8 

le 1.35 5.7 38.0 

LG@biol 2.5 42.1 59.9 

sc 5.75 ery 39.8 

SGbiol 4.0 22,0 43.2 

Percentile times in minutes,



Appendix 8.4.3. (cont) Results of Retention Time Tests on the 

Media, 1Gfile. 

1s | 5.5 
LSbiol 11.3 

ss 5.5 

SSbiol 565 

LG 6.1 

LGbiol 3.3 

SG 6.1 

SGbiol 3.35 

~ B90 14.4 

B90biol 4.7 

B50 12.2 

B5Obiol 42.4 

FLE1ew 7625 

FLE2cw 6.5 

FLM1ew 11.1 

FLM2cw 1215 

17.2 

24.4 

At.4 

12.4 

1767 

9.5 

16.9 

8.9 

3764 

12,2 

30.8 

22,2 

23.0 

32.6 

31.0 

45.0 

Percentile Times in minutes, 
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High Rate Filters, October/November 1976. 

5O¢ile. NaCl Recovered 

g 

28.1 

2 6.5 

12,3 

12.9 

34.5 

28.7 

17.6 

26.2 

36.5 

8.1 

30.8 

21.9 

22.2 

Bee! 

42.7 

81.5



Appendix8.A,3.(cont) Results of Retention Time Tests on the 

High Rate Filters, July,1977. 

Media. 

Ls 

LSbiol 

ss 

SSbiol 

LG 

LGbiol ; 

SG 

SGbiol 

B90 

B90biol 

B50 

BObiol 

FLEtcew 

- FLE2ew 

FLMicew 

FLN2cw 

1&file, 

7.6 

5.0 

5.6 

50sile. 

29.1 

23.4 

42.2 

37.4 

17.9 

23.4 

28.5 

32.6 

33.0 

37.0 

29.5 

57.0 

16.6 

30.0 

26.5 

123566 

Percentile times in minutes, 

mg23 

NaCl Recovered. 

(ge) 

38.5 

26.2 

38.8 

34.61 

32,0 

47.6 

38.9 

63.3 

46.9 

76.6 

22,3 

47.5 

4501 

62.9 

Wat 

38.2



Appendix 6.8.1. Microscopic. Examinations of Filter Films, 

October ,1975. 
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Appendix §,5,]. Microscopic Examinations of Filter Films, 

October ,1975. 
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Appendix 6.58.1. Macroscopic Examination Of the Filter Films, 

October,1975. 
( Individuals/m3) 
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Appendix8.B.1. Macroscopic Fxemination of 

October,1975, 

the Filter Films, 

(Individuals/m 3) 
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Appendix8.2.2. Microscopic Examination of the Filter Films, 

January 1976, 
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“Appendix8.B.2. Microscopic Examination of the Filter Films, 

January ,1976. 
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Appendixd-P.2- Macroscopic Fxamination of the Filter Films, 

January ,1976. 
( Individuals /m3) 
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Appendix 2 Be2 Macroscopic. Examination of the Filter Films, 

January ,1976. 

(Individuats/m 3) 
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Cares Microscopic Examination of the Filter Films, 

April,1976. 
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Appendix 8.8.3. 

Biopac 50 

Biopac 90 

Flocor E 

Flocor M 

Microscopic kxamination of the Filter Films, 
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Appendix®+B «5 Macroscopic Examination of the Filter Films, 
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7 8B, 3. Macroscopic Examination of the-Filter Films, 

April 1976. 
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Appendix8.2.4 Microscovic Fxamination of the Filter Filns, 
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Appendix8.B.4. Microscopic Examination of the Filter Films, 
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lees Macroscopic Examination of the Filter Films, 

July 1976. 
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Appendix 8.B.5 Microscopic Examinations of the Filter Films, 

October,1976. 
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Appendix 8.B.5 Microscopic Exsminations of the Filter Films, 
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Appendix8.B.5 Macroscopic Examination of the Filter Films, 

October,1976. 
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Appendix 8.B.5 Macroscopic Examination of the Filter Films, 

October,1976. 
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Appendix 8,P.6 Microscopic Examinations of the Filter Films, 
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Appendix 8,242 Microscopic Examinations of the Filter Films, 
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Appendix6,B,7 Macroscopic Examinations of the Filter Films, 
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Appendix 8.3.8 Macroscopic Examinations of the Filter Films, 
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