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Poor water solubility is characterised by low dissolution rate and consequently reduced 
bioavailability. Formulation of solid dispersion of the drug has attracted considerable interest as 
a means of improving dissolution process of a range of poorly water soluble drugs. This current 
study investigates the formulation of solid dispersion for a range of poorly water soluble drugs 
with varying physicochemical properties including paracetamol, sulphamethoxazole, phenacetin, 
indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole.

Solid dispersions were prepared using various drugs to polymer ratios.  PEG 8000 was selected 
as a carrier in the solid dispersions. The study revealed that inclusion of drug within the 
polymeric matrix, ratio of drug to polymer and physicochemical properties of the drug molecules 
enhance the dissolution rate. Characterisations of the solid dispersions were performed using 
DSC, FTIR and SEM. These studies revealed that all seven drugs were present in the amorphous 
form within the solid dispersions and there was a lack of interaction between the PEG 8000 and
drug. Stability studies for solid dispersions showed that all seven drugs studied were unstable at 
accelerated conditions (40°C±2°C/75%RH±5%RH) whereas, they were found to be stable for 12 
months at room conditions.

Permeability of indomethacin, phenacetin, phenylbutazone and paracetamol were higher for solid 
dispersions as compared to drug alone across Caco-2 cell monolayers. From the cell uptake 
studies it was shown that PEG 8000 enhanced rhodamine123 uptake which suggested that PEG 
8000 may increase the permeability of these drugs in solid dispersions. Gene expression profiles 
analyzing the expression changes in the ABC and solute carrier transporter during permeability 
studies.ABCA10, ABCB4, ABCC12, SLC12A6, MCT13, SLC22A12 and SLC6A6 gene 
expression were increased by indomethacin alone whereas solid dispersion of indomethacin 
resulted in a slight increase in expression. ABCC12 and SAMC gene expression was increased in 
case of paracetamol alone but slightly increased when exposed to solid dispersion of 
paracetamol. 
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1.1 Physiology of the gastro-intestinal tract (GIT)

The gastro-intestinal tract consists of esophagus which is 25 cm in length, followed by 

the stomach. The volume of the stomach changes with the change in the amount of food 

present in it, whereas its length is approximately 25 cm. The volume of an empty 

stomach is approximately 50 mL yet its volume can become as much as 4 L when it is 

dilated by food (Curtis and Barnes, 1994). The stomach is divided into three main parts: 

the fundus, the body and the pylorus region. The curved uppermost part of stomach is 

fundus which pushes gastric contents towards pylorus region by its slow continuous 

contractions. Body is the largest part of the stomach which acts as a reservoir and stores

the indigested food and liquids for a certain time period. The lowest part of the stomach 

is pylorus region; it prevents larger particles of food from entering into the small 

intestine. There are millions of deep gastric pits in the smooth lining of the stomach, 

through which the gastric juice produced by the gastric glands enters the stomach. The 

gastric juice consists of water, hydrochloric acid, pepsin and intrinsic factors. The 

environment inside the stomach is kept extremely acidic (pH 1-2.5) through hydrochloric 

acid. It kills the bacteria that are present in food and it is also vital for the activation and 

optimal activity of pepsin. The breakdown of proteins is carried out through pepsinogen, 

an inactive enzyme of pepsin. Vitamin B12 is absorbed in the small intestine by intrinsic 

factor which is a glycoprotein. 

The extreme acidity and the presence of pepsin; which is capable of digesting the 

stomach itself, provides the most rough conditions in the digestive tract to which mucosa 

of the stomach is exposed. Thick alkaline mucus is secreted by the stomach which
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prevents stomach mucosa from digestion. The thick mucus layer is responsible for 

limiting the absorption inside the stomach despite its large epithelial surface. The 

underlying tissue layers are kept protected by tight junctions in the epithelial cells of the 

mucosa from the gastric juice of the stomach. Damaged epithelial cells are shed and 

replaced quickly, with the whole stomach epithelium being replaced every 3-6 days. The 

partially digested food then reaches the small intestine, the longest part of the gastro-

intestinal tract. It is divided into three main parts. The first 20-30 cm of the small 

intestine is called duodenum (pH 5.5-6) which have deeply folded mucous membrane in 

its thick wall, containing duodenal digestive gland and Brunner's glands.  An alkaline 

secretion free from enzymes is produced by the Brunner's glands to neutralise the 

hydrochloric acid present in the gastric juice. This causes a change in the pH of chyme 

(the food/gastric fluid matter) that enters the small intestine.

The jejunum (pH 6.0-7.0) and the ileum (pH 7.0-7.5) are the continuation of the 

duodenum and constitute the remaining part of the small intestine. Although the jejunum 

has a thicker wall than either the ileum or duodenum, small intestine cannot be 

differentiated completely as its parts are not demarcated but are distinct in properties.  

The small intestine is approximately 2 m long. The small intestine is highly specialised 

for the purpose of absorbing nutrients. Along with the advantage of being greater in 

length, small intestine also has three main structural features which increase surface area 

and therefore, enhance the uptake of nutrients.
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The plicae circulares are large circular folds that increase the surface area. Villi are finger 

like projections that also contributes to the increase in surface area. Villi have tiny 

projections on their surface called microvilli which increase the surface area that further 

enhances the absorption process.

The gastric emptying differs with the amount of food digested (Davis et al., 1988) and 

with the type of preparation (Christensen et al., 1985). It has been reported that it takes 

around 3±1 hrs for a dosage form to reach the large intestine (Davis et al., 1986) though 

another work has reported that the mean small intestine transit time for a radiotelemetry 

capsule was 5.7±2 hrs (Evans et al., 1988).

The large intestine is much shorter than the small intestine as its length is approximately 

1.5 m but its diameter is quite larger as compared to the small intestine. In the large 

intestine very little digestion and absorption of food is carried out as most of it has 

already taken place in the small intestine. Bacterial fauna present in the large intestine 

produces water, electrolytes and vitamins that are to some degree absorbed over the 12 –

24 hrs time period for which the faecal matter remains in the large intestine.

1.2 Biopharmaceutics Classification System (BCS)

The Biopharmaceutics Classification System (BCS) is a scientific method in which drugs

are classified according to the solubility in water related to their dose at three different 

pHs and intestinal permeability (Amidon et al., 1995). The BCS system divides the drug 

substances into following four classes;
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Class 1 (high solubility–high permeability)

Class 2 (low solubility–high permeability)

Class 3 (high solubility–low permeability)

Class 4 (low solubility–low permeability)

However, the dissolution rate is used as a criterion for the classification of rapid release 

oral dosage forms. The BCS can be used in association with the dissolution of a product 

to monitor the three basic properties that are the determining factors in the rate and extent 

of drug absorption from immediate release solid oral dosage forms: dissolution rate,

solubility and permeability. The BCS has been successfully used for extended release 

solid dosage forms besides for immediate release forms and it is regarded as the basic 

instrument in the development of drugs over the last few years (Lennernas and 

Abrahamsson, 2005; Wei et al., 2008; Ku, 2008; Grudzien et al., 2009).

1.3 Dissolution rate

According to modified Noyes-Whitney equation (equation 1.1) the dissolution rate can be 

improved by increasing the surface area available for dissolution, decreasing particle size 

and/or increasing wettability, decreasing the boundary surface thickness, ensuring sink 

conditions for dissolution and increasing the apparent saturation solubility (Noyes and 

Whitney, 1897; Nernst, 1904).

dC/dt = (AD[Cs - C])/h  → (equation 1.1)

Where,
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dC/dt is the rate of dissolution, 

A is the surface area available for dissolution, 

D is the diffusion coefficient of the compound, 

Cs is the solubility of the compound in the dissolution medium, 

C is the concentration of drug in the medium at time t and 

h is the thickness of the diffusion boundary layer adjacent to the surface of the dissolving 

compound.

1.4 Solubilisation

Solubilisation is the use of an inert substance to enhance the solubility of a drug. There 

are different ways in which the solubility and dissolution of a drug can be increased by 

using adsorbents (Alsaidan et al., 1998; Bogdanova et al., 2007), surfactant (Krasowska, 

1980) or co-solvents (Etman and Nada, 1999).

1.5 Micronisation

It has been shown that the dissolution rate of a variety of drugs can be significantly 

increased and also the apparent equilibrium solubility can be improved by using 

micronisation. As predicted by the modified Noyes-Whitney equation (equation 1.1) the 

dissolution rate is associated with the particle size (Maillols et al., 1982).                                                                                                                     

The therapeutic dose of griseofulvin has been reduced to half by micronisation process 

(Atkinson et al., 1962; Kabasakalian et al., 1970). It has been proved that the 

bioavailability can be increased through ultra-micronised dispersions of griseofulvin 

(Straughn et al., 1980). The problem with very small particles is that they cause poor 

wettability and their handling is also very problematic (Serajuddin, 1999).                                                               
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1.6 Complexation

Sparingly soluble drugs have been shown to display improved dissolution by the 

formation of a complex with water soluble complexation agents. The most widely used 

complexation agents are cyclodextrins. Cyclodextrin complexes are formed by the 

binding of the hydrophobic core of the agent with the hydrophobic region of the drug 

(Florence and Attwood, 1988). The characteristic feature of these complexes is that they 

are reversible; hence facilitating the absorption by releasing the drug from the complex 

during dissolution as it is soluble in the fluids of the gastro-intestinal tract. Pitha and 

Pitha (1985) explained that the solubility of the sparingly soluble drugs can be improved 

by the application of cyclodexrin complexes. Aqueous solution of cyclodextrins was used 

to increase the solubility of a variety of steroids.  

1.7 Chemical modification (Prodrug)

Chemical modification can render a drug into a more soluble prodrug (Albert, 1958), 

where the prodrug is defined as "a bio-reversible chemical derivative of an active parent 

drug" (Taylor, 1996). It includes salt forms and complexes which can be easily 

disassociated from the drug (Anderson, 1985). Diclofenac, for instance, is generally 

formulated as a sodium and potassium salt whereas, dissolution is greater from potassium 

salt because potassium salt has very high dissociation rate. The basic objective is to 

increase the solubility either by introducing an ionisable group or by reducing the lattice 

enthalpy of a drug (Amidon, 1981). 
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Salt formation, by its nature requires a drug to be basic or acidic; therefore it is unsuitable 

for neutral drugs such as griseofulvin (Berge et al., 1977). The possibility of the salt form 

of a drug to aggregate in the gastro-intestinal tract demolishes any increase in the 

dissolution rate that was desired to have been attained by this process (Serajuddin, 1999). 

Numerous drugs along with griseofulvin have been modified into prodrug to enhance 

their solubility but this does not improve their bioavailability although they have been 

shown to have the ability to degrade at the intestinal lumen, therefore, a complete 

knowledge of the kinetics and mechanisms of prodrug degradation is necessary to make 

their use effective. The factors responsible for this are incomplete conversion, 

simultaneous breakdown into inactive derivatives and elimination from the body before 

complete conversion has occurred. To decrease the crystal lattice enthalpy digoxin 

prodrugs and complexes with hydroquinone are produced and the proof of their 

effectiveness is that a digoxin prodrug product is available in the United States 

(Acylanid®) (Higuchi and Ikeda, 1974; Stella, 1975).

1.8 Introduction to solid dispersions

Enhancement of bioavailability of hydrophobic drugs is one of the major challenges in

drug development. Of the plethora of pharmaceutical technologies available to address 

this issue, solid dispersion is one of the useful methods for the dispersion of the drug into 

an inert, hydrophilic polymer matrix (Chiou and Reigelman, 1971; Serajuddin, 1999). 

Solid dispersions in water-soluble carriers have attracted considerable interest as a means 

of improving the dissolution rate, and hence possibly bioavailability of a range of 

hydrophobic drugs. Although a large number of studies have been published but the 
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mechanisms underpinning the observed enhancement of the rate of drug release are not 

yet understood (Sjokvist-Sears and Craig, 1992; Friedrich et al., 2006).

The use of solid dispersions as an effective source of improving the dissolution rate of 

poorly soluble drugs has been well studied and demonstrated (Chiou and Reigelman, 

1971; Corrigan, 1985; Ford, 1986; Craig, 1990). The poorly water soluble drugs are 

characterised by insufficient bioavailability (low dissolution rates) and absorption in the

gastro-intestinal tract. Different methods have been used to increase the dissolution and 

bioavailability of poorly water soluble drugs including micronisation (Atkinson et al., 

1962), the use of surfactants (Khalafallah et al., 1975), and the formation of solid 

dispersions (Sekiguchi and Obi, 1961). Solid dispersions display an enhanced solubility

of drug because of the conversion of the drug’s crystal lattice into an amorphous form,

particle size reduction and increased wettability by the hydrophilic polymer. Therefore, 

the same pharmacological results can be obtained from a reduced amount of drug given 

to the patient.

1.8.1 First generation solid dispersions 

It has been shown by Sekiguchi and Obi in 1961 (Sekiguchi and Obi, 1964) that the 

formulation of eutectic mixtures improved the rate of drug release which in turn increases 

the bioavailability of poorly water soluble drugs. Solid dispersions systems were 

developed by Levy (1963) and Kanig (1964), who made solid solutions by using 

molecular dispersions instead of using eutectic mixtures, with mannitol as carrier. These 

improvements were due to faster carrier dissolution, releasing particles of drug. These 
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dispersions prepared using crystalline carriers were described as first generation of solid 

dispersions. Urea (Sekiguchi and Obi, 1964; Goldberg, et al., 1966b) and sugars (Kanig, 

1964) were the first crystalline carriers to be used in dispersions. The major drawback of 

first generation solid dispersion is that they form crystalline solid dispersions, which 

being thermodynamically more stable did not release the drug as quickly as amorphous 

ones.

1.8.2 Second generation solid dispersions 

It was noticed in the late sixties (Simonelli et al., 1969; Chiou and Riegelman, 1969), that 

solid dispersions with drug in the crystalline state are not as effective as amorphous 

because they are thermodynamically stable (Simonelli et al., 1969; Vippagunta et al., 

2006; Urbanetz, 2006). Therefore, second generations of solid dispersions were

introduced having amorphous carriers instead of crystalline. Formerly, the drugs were

molecularly dispersed in amorphous carriers which are usually polymers in random 

pattern (Vilhelmsen et al., 2005).

1.8.3 Third generation solid dispersions

Third generation of solid dispersions appeared as the dissolution profile could be 

increased by using carriers having surface activity and self-emulsifying characteristics. 

These contain surfactant carriers or a mixture of amorphous polymers and a surfactant as 

carrier. The third generation solid dispersions stabilise the solid dispersions, increase the 

bioavailability of the poorly soluble drugs and reduce recrystallisation of drug. The use of 
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surfactants such as poloxamer 407 as carriers resulted in high polymorphic purity and 

improved vivo bioavailability (Majerik et al., 2007).

1.8.4 Manufacturing methods for solid dispersions

Melting and solvent evaporation methods are the two major processes of preparing solid 

dispersions. Sekiguchi and Obi (1961) were the first to use melting method. The method 

depends on melting either the carrier or the drug or both. One component is melted and 

the second is dissolved in it. The solution is then cooled to prepare a solid dispersion. 

Goldberg and co-workers applied temperatures more than 100 °C to prepare paracetamol-

urea and chloramphenicol-urea dispersions (Goldberg et al., 1966a; Goldberg et al., 

1966b). The solvent evaporation method consists of solubilisation of the drug and carrier 

in a volatile solvent that is later evaporated (Lloyd et al., 1999; Hasegawa et al., 2005;

Rodier et al., 2005).

1.8.5 Proposed mechanisms for drug release from solid dispersions

Different factors influence the enhancement of dissolution rate of solid dispersions. The 

use of increased amount of urea enhances the dissolution rate of drug as was shown in a 

study with 20% chloramphenicol and 80% urea (Goldberg et al., 1965). This was due to 

the reduction in particle size. However, it was later found that the dissolution rate could 

be improved without any change in the particle size (Sjokvist-Sears and Nystrom, 1988). 

Non surface active carrier can enhance the wettability of a drug (Chiou and Reigelman, 

1971) by reducing the contact angle and thus causing an increase in the surface area 

available for dissolution. A drug can be retained in the solution by inhibiting its 
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precipitation with the addition of a polymer (Simoneli et al., 1976; Hilton and Summers, 

1986; Usui et al., 1997). The drug dissolves back into the solution, after precipitating out 

as metastable polymorph as this form is more soluble than the original polymorph of the 

drug, as highlighted in a study with indomethacin (Ford and Rubinstein, 1978; Hilton and 

Summers, 1986).

Carrier-controlled or drug-controlled dissolution mechanisms were first proposed by 

Craig (2002) in which the drug release depends either on the carrier or the drug itself. 

This method is based on the models proposed by Higuchi et al. (1965) and Higuchi 

(1967). The dissolution surface is non-disintegrating and the dissolution of both parts is 

diffusion controlled. The dissolution is controlled through a drug rich dissolving surface, 

formed only if the drug makes the larger component (Corrigan, 1985). In high polymer 

loading there is insufficient drug to support the drug controlling layer formed at the 

dissolving surface. This causes the drug to disperse within the polymer resulting in a 

carrier-controlled drug release process. In high drug loading solid dispersions, the 

dissolution rate of the drug can be measured, by considering the polymer as faster 

dissolving component. 

Hence, the dissolution of the drug is controlled by polymer dissolution if the drug forms 

the minor component in the solid dispersion. The carrier-controlled dissolution was 

further supported by another study investigating the incorporation of ten drugs into PEG 

6000 solid dispersions where identical dissolution rates were reported (Dubois and Ford, 

1985). A linear relationship was shown when the dissolution rate was plotted against the 
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drug content. Carrier-controlled dissolution works up to a limited concentration 

depending upon the drug (0-2% w/w for phenylbutazone and 0-15% w/w for 

paracetamol) as is evident from the differences in the linear relationships for various 

drugs.

Currently, there is no mechanism that can predict the behavior of a drug in solid 

dispersion, as various factors are pivotal in deciding drug release. Extensive work is 

required in order to fully understand the association of the carrier and drug in dispersion.    

1.8.6 Characterisation of solid dispersions

There are different techniques that have been used to characterise solid dispersions. 

Among these the most important methods are thermoanalytical, fourier transform infra-

red spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric 

analysis (TGA) and measurement of release rate of the drug.  These methods can be 

employed efficiently to differentiate between solid solutions (molecularly dispersed drug) 

and solid dispersions in which drug is only partly molecularly dispersed and physical 

mixtures of drug and carrier. It is difficult to differentiate accurately between molecularly 

dispersed and non dispersed systems because of the complex composition of these 

preparations. 

Differential scanning calorimetry (DSC) is the most reliable thermoanalytical technique. 

Processes in which energy is either required or produced can be quantitatively observed 

with the help of DSC. It is a thermal process to find out the heat flow and temperature 
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related with substance transitions as a function of time and temperature. With the help of 

DSC we can find melting temperatures as well as monitor and study the thermal behavior

of various substances. Interactions between drugs and polymer are generally said to have 

cause the changes in the exothermic and endothermic peaks (Ribeiro et al., 2005; Borges 

et al., 2005).

FTIR spectroscopic imaging is regarded as more beneficial than other methods because it 

takes into account the specific absorbance of molecular vibrations in the sample for 

quality assessment of biomedical materials. Hence, dyes or various labelling methods are 

not necessary for seeing chemical components within the sample. It has opened a new 

horizon of information about structure, conformation and dynamics of various molecular 

components (Mantsch and Chapman, 1996). It can be applied to follow changes in 

bonding between functional groups. 

SEM has been a process for ultrastructural analysis in the pharmaceutical industry. The 

characteristic properties of drug crystals like particle size and morphological surface can 

be known by the preparation method and chemical composition (Ramadan and Tawashi, 

1990). Additionally, the shape and granulometric properties of the powder particles can 

be explained through the range of parameters automatically obtained by connecting SEM 

with an image processor. As this method is automatic and gives precise measurements, it 

is time saving as well as reliable, therefore, it gives valid conclusions with smaller

number of observations (Paraira et al., 1994).
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Isothermal titration calorimeter (ITC) is a powerful technique with high precision that can 

quickly and directly explain the complete thermodynamic profiles of interaction in a 

single experiment (Haq et al., 2000; Leavitt et al., 2001). The heat absorbed or generated 

during binding can be measured by an ITC experiment. It involves the addition of one 

binding component (titrant) into the other binding component (titrate) over time using 

single or multiple injections. The absorbed or generated heat is measured as a change in 

temperature or as the change in power needed to maintain temperature between the 

sample and a reference cell. Based on the information of the cell volume and the 

concentration of the reactants the energy is changed into a binding enthalpy. The enthalpy 

measured includes the heat of binding between titrant and titrate, also any heat sources 

related with the reaction due to solvent effects, conformational changes and heats of 

dilution. It involves a very careful preparation of solutions to obtain thermodynamic 

parameters that accurately show the concern results.

TGA is a powerful technique for studying the changes in weight of a sample when 

heated, cooled or held at constant temperature. Its main application is to characterise 

samples with regard to their composition. Thus, the determinations of the moisture 

content in a solid dispersion can be determined by using TGA.

1.9 Polyethylene glycol (PEG)

Polyethylene glycols (PEGs) are polymers of ethylene oxide, having molecular weight 

usually falling in the range 200-30000 daltons (Da). PEGs with molecular weights of 

1500-20000 Da can be used efficiently in the formation of solid dispersions. PEG 
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polymers are widely used and employed in different formulations because of low melting 

point, low toxicity, compatibility with drugs and hydrophilic nature (Chiou et al., 1971). 

The viscosity of PEG increases with the increase in molecular weight. PEGs are fluid at 

molecular weights of up to 600 Da, while in the range of 800-1500 Da they are vaseline-

like, and tend to be waxy from 2000 to 6000 Da  and those with molecular weights of 

20000 Da and above form hard, brittle crystals at room temperature. Their ability to 

solubilise in many organic solvents makes PEGs highly useful for the formation of solid 

dispersions. The melting point of different molecular weight of PEGs lies under 65 °C 

(Price, 1994). The low melting point of the polymer is an ideal feature for the formulation 

of solid dispersions. Additionally, other favourable characteristics that make PEGs more

suitable for solid dispersions include their ability to solubilise some compounds (Betageri 

and Makarla, 1995) and also to improve compound wettability. Aspirin, which is a 

soluble drug, showed an increase in the dissolution rate when formulated as a solid 

dispersion in PEG 6000 (Asker and Whitworth, 1975). PEG 8000 formulation displayed 

enhanced dissolution rates as compared to drug alone (Perng et al., 1998). PEGs with low 

molecular weight are more likely to cause slightly greater toxicity as compared to those 

having higher molecular weight (Price, 1994).

In PEGs with molecular weights falling between the ranges of 4000–6000 Da, 

hygroscopy is not a problem despite the fact that they possess higher aqueous solubility 

and have melting points above 50 ºC. Formulation of a pharmaceutically acceptable 

product is difficult if a PEG having very low molecular weight is used as it may result in 

a product with a sticky consistency (Shah et al., 1995). PEGs with higher molecular 
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weight are employed to improve the process: PEG 8000 (Perng et al., 1998) and 10000 

(Khan and Zhu, 1998) have been shown to increase dissolution rates of the products than 

the pure drug.

PEG 6000 solid dispersions were used with 14 different drugs revealing that carrier plays 

a vital role in the formulation of solid dispersions successfully (Dubois and Ford, 1985). 

Dubois and Ford showed that the carrier governs the release rate and not the properties of 

the drug, if the dug is found in a low drug/carrier ratio (<2% in the case of 

phenylbutazone, up to 15% in the case of paracetamol).  Further studies suggested that 

there is an inverse relationship between release rate and the chain length of PEG (Ford et 

al., 1986). Similar results were obtained in a study for etoposide (Shah et al., 1995) and 

griseofulvin (Chiou and Riegelman, 1969). However, the release of glyburide PEG 4000 

solid dispersion was shown to be slower than an identical solid dispersion in PEG 6000 

exhibiting contradictory behavior (Betageri and Makarla, 1995). The capability of PEG 

6000 to dissolve increased amounts of drug than PEG 4000 provides the best possible 

explanation for improved release, causing more drugs to become molecularly dispersed.

Additionally, PEG 6000 promotes the dissolution of the carrier by avoiding precipitation 

of the drug due to its higher viscosity. 

PEG molecular weight effects the release rate as is illustrated by the detailed study of 

phenylbutazone/PEG solid dispersions (Ford et al., 1986).When a low percentage of the 

drug was used (0.5-2%), the release followed the rank order 1500> 4000> 6000> 20000

at percentages of 3 and 4% the rank order was PEG 1500> 4000> 20000> 6000 and at a 
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5% loading the order was 20000> 4000> 1500> 6000. The authors deduced from this 

data that the release is dependent on the extent of the formation of a molecular dispersion, 

as the rank order is associated with the crystallinity of the solid dispersion. However, 

chloramphenicol/PEG solid dispersions displayed contradictory results, for which the 

rank order of release was PEG 6000> 4000> 12000> 20000 (Kassem et al., 1979). The 

molecular weight of the PEG did not affect the release rate in some cases. For instance, 

10% dispersions of naproxen in PEG 4000, 6000 and 20000 displayed identical release 

rate, as was shown by Mura et al. (1999).

In addition to this, certain problems may arise in subsequent formulation of the solid 

dispersions into an acceptable dosage form. It becomes very difficult and impossible to 

manufacture a tablet dosage form if the resulting dispersion is too soft. The reason for 

this is that the molecular weight of the PEG used is very low or the drug has a plasticising

effect on the PEG (Shah et al., 1995). PEG 8000 was selected as a carrier for this study 

because it has excellent solubility in aqueous medium and low melting point. PEGs show 

lack of toxicity and immunogenicity; favorable kinetics as well as tissue distribution in 

the body (Zaplisky and Harris, 1997).

1.10 Dissolution of Polymer

In order to study the dissolution behavior of polymers, different methods and techniques 

can be employed including differential refractometry, optical microscopy, florescence 

and gravimetry (Miller-Chou and Koeing, 2003).
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The method of differential refractometry works on the principle that as the concentration 

of the polymer is increased within the solution, the refractive index changes; this is one of 

the older methods to study polymer dissolution. This technique is sensitive to change in 

concentration and hence can also be used for detecting any increase that may occur in the 

polymer concentration. However, there are certain drawbacks of this method as it is only 

applicable to high polymer concentration and cannot be used for small polymer 

concentration due to low sensitivity (Miller-Chou and Koeing, 2003). Additionally, it is 

only applicable to polymer solution alone as the addition of any other substance (drug) 

will affect the refractive index. 

The optical microscopy method provides direct method for observing the polymer 

dissolution within a given solution. Therefore, it is the most practical technique to study 

polymer dissolution. The basic limitation is that no quantitative information can be 

obtained and thus to know the polymer dissolution profile is not possible. 

The use of laser inferometry makes it possible to measure the dissolution rates of a 

polymer (Rodriguez et al., 1985). In this process monochromatic light is passed through a 

polymer film placed between two mirror lenses. Through the interference lines from the 

monochromatic light, information about the dissolution of the polymer can be obtained. 

The main drawback of this technique is that it can only be applied with the transparent 

film of polymer. In this method the dissolution profiles of the polymer cannot be 

obtained. 
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Gravimetric method can be used to follow the dissolution of a polymer. This method

involves the preparation of pellets of polymer followed by performing dissolution tests 

with these pellets. Pellets are weighed periodically at predetermined intervals by stopping 

the dissolution run. The major shortcoming of this method is the involvement of 

compression that is required in preparing the pellets. These forces are most likely to 

destroy the structure of solid dispersion.                                                                                                                                   

Microviscometry has been successfully applied in the polymer dissolution studies of solid 

dispersions using PVP (Esnaashari et al., 2005). The advantage of this technique is that 

samples can be taken during dissolution process (both drug and polymer concentration 

can be determined concurrently) and only a small sample is required. An instrument 

called Anton Parr microviscometer has the capability of measuring accurately viscosities 

as low as 0.3 mPa.S.

1.11 Mathematical models

Different mathematical techniques may be used to treat dissolution data (Shah et al., 

1998). To determine and study the release mechanism of solid dispersions, the release 

data were fitted to the Korsemeyer–Peppas equation which is mostly used to describe 

drug release from polymeric systems (solid dispersions) for binary systems and when the 

release mechanism is not known or when more than one release mechanism is involved 

(Korsmeyer et al., 1983). The best fit mathematical model for binary systems ranked in 

the following order of Korsemeyer–Peppas > Higuchi @ first-order > Hixson-Crowell 

cube root law zero-order (Ahuja et al., 2007).
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1.12 Stability of Solid dispersions

One of the challenges is assuring product stability during drug development in the 

pharmaceutical industry. Stability refers to the ability of a product to withstand any 

degradation in the storage time allowed. It is important that a solid dispersion should be

stable throughout the shelf life of the product as is the case for any other pharmaceutical 

product. On storage neither should its dissolution profile nor should any physicochemical 

properties change. 

Indomethacin PEG 6000 dispersions were used for carrying out the earliest stability 

studies. The dissolution profile exhibited an alteration in drug dissolution when it was 

stored at temperatures between 25 °C and 45 °C at 71% RH. Crystallisation of 

indomethacin was said to have taken place because the colour of the tablets became less 

yellow with time (amorphous indomethacin is yellow, crystalline indomethacin is off-

white) which resulted in a decrease in the dissolution profile (Ford and Rubinstein, 1980). 

A slightest change such as this colour change would raise concerns for any licensed 

pharmaceutical product. In another study, PEG dispersions of temazepam and triamterene 

were assessed for their stability profile and various physicochemical parameters including 

dissolution profile studies were investigated as stability markers (Dordunoo et al., 1997). 

In a recent paper seven drugs were studied to determine the influence of functional group 

on stability of the formulations.  Four of the seven drugs studied consisted of carboxylic 

acid groups; BAY 12-9566, naproxen, ketoprofen and indomethacin, whereas,  one had 
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hydroxyl groups (testosterone), one an amide (phenacetin) and the last consisted of a no 

proton donating group (progesterone). It was concluded that upon storage, the presence of 

interacting groups (such as carboxylic acid, hydroxyl) were stable possibly due to 

inhibition of reverse crystallisation by the interacting functional groups (Gupta et al., 

2002).

1.13 Physicochemical properties of drugs

Table 1.1 illustrates the physicochemical properties of seven drugs used as a model drugs 

as solid dispersions in the current study. 

Table 1.1. Physicochemical properties of the drugs used in the current study (drug 
bank). 

1.13.1 Paracetamol

Paracetamol is an acylated aromatic amide (Sweetman, 2002). The structure of 

paracetamol is shown in Figure 1.1. Paracetamol has analgesic and antipyretic properties 

and weak anti-inflammatory activity. Von Mering introduced it for the first time as an 

Drug Molecular Weight Melting Point H2O Solubility LogP

Paracetamol 151.163g/mol 169-170.5°C 14mg/L 0.917

Sulphamethoxazole 253.279g/mol 167°C 610mg/L 2.447

Phenacetin 179.216g/mol 134-136°C 763mg/L 1.667

Indomethacin 357.787g/mol 158°C 0.937mg/L 3.655

Chloramphenicol 323.129g/mol 150.5°C 2500mg/L 1.476

Phenylbutazone 308.374g/mol 105°C 47.5mg/L 4.214

Succinylsulphathiazole 355.38g/mole 186-188ºC - -
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antipyretic/analgesic in 1893. It has been used in home medication as an analgesic for 

over 30 years. Paracetamol is used in the symptomatic treatment of moderate pain and 

fever (Sweetman, 2004).

CH3

O

NH

OH

Figure1.1. Structure of Paracetamol

1.13.2 Sulphamethoxazole

Sulphamethoxazole is a sulfonamide drug. The structure of sulphamethoxazole is shown 

in Figure 1.2. It is a class 2 drug and it has relatively low solubility and high permeability 

(Sweetman, 2002). It is extensively applied in the treatment of bacterial and protozoal 

infections.
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Figure 1.2. Structure of Sulphamethoxazole
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1.13.3 Phenacetin

Phenacetin (structure shown in figure 1.3) was introduced for the first time in therapy in

1887. Analgesic mixtures were prepared by using phenacetin with other drug. For a long 

time it was employed as an analgesic and fever-reducing drug in both human and 

veterinary medicine.

CH3

O

NH

O

CH3

Figure 1.3. Structure of Phenacetin

1.13.4 Indomethacin

Indomethacin is poorly water soluble drug (Hancock and Parks, 2000). It is a member of 

the non-steroidal anti-inflammatory drugs. It is used for treating pain/swelling involved in

osteoarthritis, rheumatoid arthritis and headaches (Sweetman, 2005). It is a class 2 drug 

(Lobenberg and Amidon, 2000). Due to its hydrophobic nature, it often demonstrates low 

absorption and low bioavailability; so enhancement in dissolution rate and solubility are 

important factors for development of drug preparations (Hirasawa et al., 2003). The 

structure of indomethacin is shown in Figure 1.4.
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Figure 1.4 Structure of Indomethacin

1.13.5 Chloramphenicol

Chloramphenicol (structure shown in figure 1.5) is a bacteriostatic antibiotic originally 

derived from the bacterium Streptomyces venezuelae, isolated by David Gottlieb, and 

introduced into clinical practice in 1949. It was the first antibiotic to be manufactured 

synthetically on large scale. A vast range of microorganisms can be effectively treated by 

chloramphenicol; it is active against Gram positive bacteria, Gram negative bacteria and 

anaerobes (Ambrose, 1984; Kramer, 1984; Sweetman, 2002). 
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Figure 1.5. Structure of Chloramphenicol
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1.13.6 Phenylbutazone

Phenylbutazone (structure shown in figure 1.6) is a non-steriodal anti-inflammatory drug 

used in the treatment of pain and arthritis. It is mostly used in horses as an analgesic and 

antipyretic. 

O

O
CH3

N

N

Figure 1.6. Structure of Phenylbutazone

1.13.7 Succinylsulphathiazole

Succinylsulphathiazole is useful as an intestinal antiseptic. The structure of 

succinylsulphathiazole is shown in figure 1.7. It has a melting point of 186-188 ºC.
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Figure 1.7. Structure of Succinylsulphathiazole
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1.14 Permeability and Caco-2 cells

Permeability is the general term that explains the mechanism by which a drug moves and 

passes across a membrane. The physicochemical properties of a drug, such as its pH, 

charge, size, lipophilicity and polar surface area influence its permeability (Rowland & 

Tozer, 1995; Lipinski et al., 2001). The unionized molecules of the drug pass through the 

intestinal barrier more easily showing that the intestinal pH plays an important role in 

determining the permeability of the drug (Shore et al., 1957).

Among the various processes involved in the oral drug absorption, the determining factor 

is the drug permeability to the intestinal membrane in the absorption of the drug. The 

intestinal permeability of the drug can be determined by applying a variety of in vivo, in 

situ and in vitro methods. Along with determining the mechanism of drug absorption, the 

basic purpose of these studies is to predict oral drug absorption in humans. Cultured 

epithelial cell lines, most specifically Caco-2 cells, have drawn the focus of the 

pharmaceutical industry for the last decade. Assays to screen the compounds for 

evaluating their pharmacokinetic properties, like absorption, metabolism, etc are facing a 

challenge as it is highly difficult to keep pace with drug development pipeline because of 

the tremendously large number of compounds that are produced and analysed as potential 

pharmaceuticals. In vitro model membrane the Caco-2 cell monolayers have been 

recognised as vital for the rapid screening of the intestinal drug absorption.

Formation of the monolayers from the Caco-2 cells occurs by their spontaneous 

differentiation into mature cells. Caco-2 cells acquire many characteristic properties of 
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the absorptive intestinal cells during culture, such as microvilli, enzymes and different 

carrier mediated transport systems for sugars, amino acids and various drugs (Blais et al., 

1987; Hidalgo et al., 1989; Hidalgo and Borchardt, 1990; Hilgers et al., 1990; Dantzig 

and Bergin, 1990; Chen et al., 1994), despite their origin from colon carcinoma. The 

transcellular and paracellular movements of drugs through the epithelial layer can be 

differentiated by the attachment of the adjacent cells via tight junctions formed at the 

apical sides of the monolayers (Tanaka et al., 1995).

There exists a strong correlation between drug permeability in Caco-2 monolayers and 

that of intestinal membrane in vivo. It has been suggested that oral drug absorption in 

humans can be detected by the permeability of the drug to Caco-2 monolayers.

(Artursson and Karlsson, 1991; Rubas et al., 1993; Stewart et al., 1995; Chong et al.,

1996; Lennernas et al., 1996; Yamashita et al., 1997). However, numerous 

inconsistencies have been reported by these studies that are likely to be present in the 

experimental conditions including change in pH, shaking rate and solubilising agents in 

the medium. These conditions can significantly influence the calculated permeability of 

tested drugs in in vitro studies. As the permeability of even monolayers can be affected 

by the cell culture conditions, it is necessary to develop stable techniques of in vitro

transport study to have a much reliable prediction of in vivo drug absorption.

1.15 Scope of Solid dispersion

Griseofulvin in polyethylene glycol 8000 solid dispersion (Gris-PEG, Novartis) and a 

nabilone in PVP solid dispersion (Cesamet, Lilly) are the only commercial products that 



Chapter 1 Introduction

60

have been produced commercially and marketed in the last four decades following the 

initial work of Sekiguchi and Obi (1961), despite the fact that a great deal of work has 

been done as much as almost 500 papers have been published on this subject and 

different drug carriers have been tested (Leuner and Dressman, 2000). Chemical or 

physical instability and scale-up problems are the main factors responsible for the lack in 

commercial turn around (Serajuddin, 1999; Franco et al., 2001; Craig, 2002).

1.16 Microarray

Microarray is the most widely used method for studying gene expression in many 

organisms. It has led to large-scale gene discovery and is effectively used for the 

expression of great number of genes at the same time. Microarray consist of chemically 

coated glass slides that act as a support onto which DNA segments are arranged and 

attached on it in a fixed regular pattern. These DNA segments are then covered with a 

labelled nucleic acid sample. The gene products are labelled either using a fluorescent tag 

or a radioactive tag, and are washed over the array after being labelled. The DNA 

segments present on the support hybridise with their complementary sequences of the 

nucleic acid in the sample. This hybridisation can be measured and analysed with the 

help of labelling. Laser scanner (for fluorescence) or a phosphorimager (for radioactive 

materials) are used for detecting hybridisation signals, producing digital images (Chen et 

al., 1997). Microarray technology is developing rapidly (Blohm and Guiseppi-Elie, 2001;

Hughes and Shoemaker, 2001) since microarrays were first reported in the literature in

1995 (Schena et al., 1995). Microarray can also be called as DNA chips, gene chips or 

DNA arrays. On an array thousands of DNA spots are present and there are numerous 



Chapter 1 Introduction

61

identical DNA molecules found in each spot of lengths varying from 25 to hundreds of 

nucleotides.

The three main steps that constitute the process of expression analysis include: (1) array 

fabrication; (2) probe preparation and hybridisation; and (3) data collection, 

normalisation and analysis.

To study gene expression various techniques have been employed. Microarrays 

consisting of either oligonucleotides or cDNA fragments are considered to be the most 

practical method for analysing and studying multiple samples (Schena et al., 1995; Chee 

et al., 1996).

Biological processes including pathway analysis of specific genes can be effectively 

characterised using microarrays. Highly accurate maps and sequenced databases for 

diverse species have made the positional cloning projects extremely easy to carry out.

The availability of this extensive data has been proven to be very helpful in further study 

of genome function.

1.17 Microarray applications

The foremost advantage of DNA microarray technology is its versatility to study the 

transcript levels of expression of thousands of genes which can be measured in parallel. 

The high capacity of cDNA microarrays system was first shown by Schena & coworkers 

to examine the expression of 45 Arabidopsis genes in parallel (Schena et al., 1995). The 
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cDNA microarray has been observed to exhibit a number of applications in various 

organisms including plant (Schena, 1996), yeast (Shalon et al., 1996; DeRisi et al., 1997)

and human beings. Microarray was also employed to discover novel disease-related genes 

and investigate complex diseases. For example, inserting human chromosome 6 could 

reverse the tumorigenic properties of human melanoma cell line UACC-903 as observed 

by DeRisi et al. (1996). Rheumatoid arthritis and inflammatory bowel disease were 

examined for their distinctive gene expression by Heller and coworkers (1997). It was 

established that microarray could be effectively used to identify disease-related genes and 

study the diseases. The challenge of treating chronic diseases effectively was solved to a 

greater extend as this method provided an opportunity for drug development and hence 

improving disease therapies. The function of a particular gene can be ascertained by 

knowing its expression pattern. A target can be implicated in any pathway or disease 

without any difficulty by utilising the knowledge of sequence homology to a known gene 

family along with the selective gene expression.  

The alterations in the gene expression caused by a drug can also be detected by the DNA 

microarray method. It has been shown by Pietu et al. (1996) that the quantitative 

hybridisation of a high density cDNA array resulted in the expression of novel gene 

transcript in human muscle cells. The cathepsin K is a novel cysteine protease that is 

selectively expressed in osteoclasts. This resulted in the development of drugs to inhibit 

cathepsin K. The gene expression sequence of a particular disease can be detected by the 

simultaneous measurement of thousands of genes. Microarray technology has also been 

applied to study ‘‘toxicogenomics’’, investigating the different responses shown by 
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different individual towards a particular toxic substance due to differences in individual 

patterns of gene expression (Lettieri, 2006; Ferrer-Dufol and Menao-Guillen, 2009).

DNA microarray was also used to identify the target effects of secondary drugs and also

in drug validation studies by Marton (1998). Its effective use in gene discovery, gene 

expression, and mapping are ample proof of the fact that cDNA microarray technology 

has developed very rapidly. The correlation of the gene sequences and clinical medicine 

for both human beings and animals can be obtained by it. The applications of DNA 

microarray are of great importance in both molecular biology research and clinical 

diagnostics.
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1.18 Aims of the study

In order to enhance the solubility of poorly water soluble drugs, solid dispersions are 

carried out as it is a highly effective way of increasing the dissolution rate of a drug and 

thus increasing its solubility. Most drugs used in this study are poorly water soluble and 

belong to class 2 according to BCS. Phosphate buffer saline (PBS) is used due to its inert 

nature and exhibits no interaction either with the drug or polymer. PBS having pH value 

of 7.4 was used as it is similar to the pH condition in the small intestine. Therefore, for all 

solid dispersions studied the pH during dissolution studies was kept simulate to that in

intestinal pH condition.
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2.1 Materials

Indomethacin, phenacetin, paracetamol, phenylbutazone, chloramphenicol, 

sulphamethoxazole, succinylsulphathiazole, phosphate buffered saline tablets, 

potassium bromide, rhodamine123, bromophenol blue, ethylenediaminetetraacetic 

acid (EDTA), agarose, ethidium bromide, sucrose, Hepes, hydroxylamine 

hydrochloride, phenol solution, trpsan blue, 4',6-diamidino-2-phenylindole (DAPI),

albumin from bovine serum (BSA V), sodium citrate, sodium chloride, formamide,   

sodium carbonate and sodium bicarbonate were purchased from Sigma Aldrich, UK.

HPLC grade water, acetonitrile, methanol, glacial acetic acid, absolute ethanol, 

sodium dodecyl sulphate and hydrochloric acid were obtained from Fisher Scientific, 

UK.

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), Non-

essential amino acids (NEAA) and Hank’s balanced salt solution (HBSS) were 

purchased from Bio Sera, UK.

1% Trypsin–EDTA, 1% pencillin-strepotomycin supplemented with 2 mM glutamine

and RNase free water were provided by Gibco Lab. UK.

Poly dA (1 µg/µL) and Human Cot1 DNA were purchased from Invitrogen, UK.

Polyethylene glycol 8000 (PEG 8000) was obtained from Fluka (Biochemika), U.K.

NaOH was provided by Anala R, UK.
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1 mL, 2 mL, 5 mL, 10 mL serological pipette, 50 mL centrifuge tubes, 25 cm²,75 cm² 

cell tissue culture flasks, TC-Plate 6 well sterile with lid, 6 well cell culture plate and 

0.2 μm, 0.45 μm syringe filter were provided by Appleton Woods, UK.

Staining trough with drop on lid, Staining jar and lifterslip were provided by VWR, 

UK.

Caco-2 cell line was purchased from American Type Culture Collection (ATCC), UK.

RNeasy Mini Kit (50) was provided by Qiagen, UK; UV cuvette (50-2000 μL) was 

obtained from Eppendorf, UK.

Millex-GV syringe filter and MilliPore Pronto Background reduction Kit were 

provided by Corning, UK.

All other reagents were of analytical grade.

2.2 Spectrophotometric Analysis

Spectrophotometric technique was used to measure and determine the concentration 

of sample in phosphate buffer saline solution (PBS) of pH 7.4 throughout this study.  

Measured amounts of the seven drugs were dissolved in PBS and the wavelength for 

maximum absorption was measured using a Unicam UV-Visible Spectrophotometer 

between 200 nm- 400 nm. Before any sample analysis was undertaken a baseline scan 

was obtained using a phosphate buffer saline solution so that any interference could 

be accounted. 
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For the calibrations, stock solutions of drugs were prepared at 30 μg/mL in PBS. The 

linearity of the calibration curve was obtained in a concentration range from 2 μg/mL 

to 14 μg/mL analysed by UV for indomethacin, phenacetin, paracetamol, 

phenylbutazone, sulphamethoxazole and succinylsulphathiazole. For chloramphenicol 

the calibration curve was obtained in a concentration range from 5 μg/mL to 30

μg/mL.  Samples were analysed via spectrophotometry at the following wavelengths:

paracetamol 240 nm, sulphamethoxazole 252 nm, phenacetin 244 nm, indomethacin

264 nm, chloramphenicol 276 nm, phenylbutazone 236 nm and 

succinylsulphathiazole 256 nm respectively. 

2.3 Preparation of solid dispersion

Solid dispersions containing 5%, 10% and 15% (w/w) drug loading in PEG 8000 were 

prepared by melted fusion (Dubois and Ford, 1985). The drug and the polymer were 

heated until the polymer melt. The molten mixture was stirred until the drug was 

dissolved completely in the melt and a homogeneous solution was obtained. The 

solution was brought to solidification by pouring it into tablet moulds under ambient 

conditions. 

2.4 Physical mixture

Physical mixtures were prepared by grinding drug (indomethacin, phenacetin, 

paracetamol, phenylbutazone, chloramphenicol, sulphamethoxazole, 

succinylsulphathiazole) and PEG 8000 in a mortar for around 15 mins (the percentage 

drug to PEG 8000 was 5%, 10% and 15% (w/w)).
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2.5 Dissolution studies

The drug dissolution from solid dispersion was assessed using in vitro dissolution 

tests. The concentration of drug present in the dissolution media was measured by 

ultraviolet spectrophotometer at various time points (5, 10, 15, 20, 25, 30 and 60 

mins).  A Hanson Research apparatus (SRII 6 Flask dissolution test station) fitted with 

a validata control unit was used for dissolution studies. It was also equipped with 1 L 

round bottom flasks and baskets that conform to the Apparatus 1 standards laid out in 

the United States Pharmacopeia. The dissolution testing was carried out at 

temperature of 37 °C in 1000 mL of dissolution media (PBS), rotated at 100 rpm 

(Dubois and Ford, 1985). A 5 mL sample was taken at time points 5, 10, 15, 20, 25, 

30 and 60 mins and was replaced with fresh 5 mL dissolution media (all experiments 

were performed in triplicate). All the readings were blanked with the same media as 

was used in the dissolution study. The absorbance at the measured value for the 

wavelength of the specific drug was measured by ultraviolet spectrophotometer and 

the percentage of drug released was calculated using calibration curves. Mathematical 

modeling for transport mechanism was carried out on GraphPad Prism, version 4 by 

plotting the fraction of drug released versus time which was fitted to a power function 

to determine the values of diffusional coefficient n and release constant k.

A sample absorbance reading from the dissolution study in phosphate buffer solution 

pH 7.4 was found to be 0.783 (figure 3.18) for 10 mins data point of the dispersion

containing the paracetamol and PEG 8000. This is converted into a concentration in 

µg/L using a conversion factor taken from the line of best fit produced using the

"LINEST" function in Microsoft Office Excel 2003 from a calibration curve. The 



Chapter 2 Materials and Methods

70

calibration curve including the value produced by the LINEST equation is shown in 

figure 3.10 and it was found to be 0.0071x-0.015. It therefore follows that:

0.783+0.015 = 0.798 µg/L

0.798/0.071 = 11.239 µg/L

When found that the concentration of paracetamol was11.239 µg/L. As this value was 

taken after 10 mins of dissolution study, 10 mL of dissolution media had been 

removed. It therefore follows that:

11.239 * (1000-10)/1

11.127 mg/L

So, 11.127 mg of paracetamol had dissolved after 10 mins of dissolution study from 

paracetamol solid dispersion. The original weight of paracetamol that was loaded into 

the dispersion prior to the dissolution study was 25.75 mg.

11.127 * 100/25.75

43.21% of the paracetamol released from solid dispersion after 10 mins of dissolution.

2.6 Microviscometry analysis

Microviscometry was used to measure the dissolution of PEG 8000 from drug-PEG 

8000 solid dispersions. The samples were measured on an Anton-Parr AMVn 

(Austria) version 1.612047 microviscometer, equipped with the visionlab software.
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The Anton-Paar AMVn microviscometer in this method uses Stokes law to determine 

viscosity by measuring time taken for a rolling ball over a fixed distance through the 

liquid. The following conditions were used for each run sample:

 Temperature                                                  25 °C

 AMVn measuring programme                      Standard 50 x 4

 AMVn measuring system                             15084989                      

PEG 8000 was dissolved in PBS over the concentration range 2 mg/mL to 10 mg/mL 

to prepare a calibration. The dissolution of PEG 8000 from the drug polymer mixed 

systems was measured using microviscometry (Esnaashari et al., 2005) for all samples 

at all time intervals.  All the measurements were done in triplicate.

A sample viscosity reading from the dissolution study in phosphate buffer solution pH 

7.4 was found to be 0.9640 for 5 mins data point of one of the dispersion containing 

indomethacin and PEG 8000. The calibration curve showing the value produced from 

straight line is shown in figure 3.17 and it was found to be 0.0225x+0.9553. It 

therefore follows that: 0.9640-0.9553/0.0225, 0.387 * 1000, 387 mg/L. After finding 

that the concentration of PEG 8000 was 387 mg/L from indomethacin solid 

dispersion, the original weight of PEG 8000 loaded into the dispersion prior to the

dissolution study was 489.25 mg.

387 * 100/489.25

79.10% of PEG 8000 released. 

Fraction released of both drug and polymer was calculated from percentage released.
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2.7 Differential scanning calorimetry (DSC)

DSC data were obtained using a Perkin-Elmer Diamond DSC with a thermal analyser, 

equipped with Pyris software. Each sample (2-5 mg) was weighed into a non-

hermetically sealed DSC sample pan (Perkin-Elmer) which was then crimped and 

placed on to the sample furnace. An empty pan was also crimped and this was placed 

on to the reference furnace. 

The following method and conditions were used for each run (Normal DSC):

 Purge gas                    Nitrogen

 Heating rate                10 °C/min 

 Temperature range      0 °C to 300 °C

On completion of a temperature scan, analysis was performed using the Pyris 

software. The melting points of each peak were derived by measuring the onset 

temperature.

2.8 Hyper DSC

Hyper DSC is the use of heating rates in excess of 100 °C/min and as much as 500

°C/min, where normal DSC has a range of about 1 °C/min to 20 °C/min. This 

provides a number of advantages, the most important of which is that hyper DSC can 

be used to prevent recrystallisation during a fast heating (Pijpers et al., 2002).  

Hyper DSC data were obtained using a Perkin-Elmer Diamond DSC with a thermal 

analyser, equipped with Pyris software. The sample mass was accurately weighed into 
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a non-hermetically sealed DSC sample pan. This was crimped and placed on the 

sample furnace. An empty pan was crimped and placed on the reference furnace.

The following method and conditions were used for each run (Hyper DSC):

 Purge gas                     Helium

 Heating rate                 500 °C/min 

 Temperature range       0 °C to 300 °C

On completion of a temperature scan, analysis was performed using the Pyris 

software. The melting points of each peak were derived by measuring the onset 

temperature. All the measurements were performed in triplicate.

2.9 Infrared spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) spectra were obtained using FTIR 

spectrometer Pye Unicam Ltd Cambridge England. The samples were ground and 

mixed thoroughly with potassium bromide, at 1:100 (sample: potassium bromide) 

weight ratio. The potassium bromide discs were prepared by compressing the powders 

at a pressure of 5 tons for 5 mins in a hydraulic press. Scans were obtained at a 

resolution of 4 cm-¹, from 4000 to 400 cm-¹ at scan rate of 16. All studies were 

performed in triplicate.

2.10 Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) is a technique that determines the surface 

visualisation of substances to size as small as 1 μm. It is used to examine surface 
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characteristics such as roughness. SEM data were obtained by using a scanning 

electron microscope, Stereoscan 90 Cambridge, UK. Sample powders were fixed on 

an aluminum stub using double-sided adhesive carbon tape and coated in vacuum (4 

Psi) with a double gold layer in order to make them conductive using Emscope 

Sputter (SC 500) for 360 s at 10 mA. The samples were then loaded into the SEM to 

obtain scanning electron micrographs of the sample.

2.11 Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) is a technique used to measure changes in the 

mass of a sample as a function of temperature or time. It is performed by loading a 

known weight sample on to a mass pan. The sample then undergoes a heating step at a

constant rate and the resultant mass change is plotted against temperature or time.  

Thermogravimetric analysis was performed using a Perkin Elmer, (Pyris TGA) 

instrument with ThermoGravimetric Analyser. A pan base was loaded onto the mass 

stirrup of the TGA and tared. The pan base was then loaded with known weight of 

sample evenly spread. This was then transferred onto the TGA and the TGA furnace 

was raised. A typical heating run consisted of heating the sample from 30 °C to 150

°C at a rate 20 °C/min (Weuts et al., 2004). The average mass loss was calculated for 

each sample. All the studies were done in triplicate.

2.12 Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry (ITC) was used to detect small heat changes during 

reaction. ITC measurements were performed on a VP-ITC ultra sensitive titration 

calorimeter, MicroCal, LLC, Northampton, MA.  ITC experiments were carried out at 
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25 °C. All solutions were thoroughly degassed before use by stirring under vacuum 

(Thermovac Microcal) for 15 min at 23 °C. All titrations were performed with a 250

µL injection syringe and a stir rate of 307 rpm. Experiments were performed at 25

°C±1°C. A 25 mM phosphate buffer, pH 7.4, was used to prepare all solutions and 

used for calorimetric experiments. Each binding system was studied in duplicate. The 

sample cell (volume 1.4413 mL) was loaded with 0.250 mM drug solution and sample 

syringe was loaded with 2.5 mM PEG 8000. Injections were started after baseline 

stability had been achieved. The titration of PEG 8000 with drug solution involved 25 

consecutive injections, the first being 2 μL, and the remaining ones of 10 μL. In all 

cases, each injection was done in 20 s at 240 s intervals.  

Control experiments were done in which identical aliquots were injected into the 

buffer solution. The data were collected automatically and subsequently fitted to a 

one-site binding model by the Origin 7.0 software package supplied by the 

manufacturer (MicroCal). The enthalpy change for each injection was calculated by 

integrating the area under the peaks of the recorded time and then corrected with the 

control titrations. The first injection was not taken into consideration for data analysis. 

After subtracting the heat of dilution, a non-linear least-squares algorithm along with 

the concentrations of the titrant and the sample were used to fit the heat flow per 

injection to an equilibrium binding equation, providing best fit for the values of 

stoichiometry (N), the change in enthalpy (ΔH), and the binding constant (K). The 

change in free energy (ΔG) and the change in entropy (ΔS) for the binding reaction 

were calculated by the fundamental equations of thermodynamics.
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2.13 Solubility

For solubility studies excess amount of solid dispersion, physical mixture and drug 

alone were added in glass tube containing phosphate buffer saline, and stirred for 24 

hrs at room temperature. The solutions were filtered through 0.45 µm filter paper 

(Whatman), diluted, and analysed by UV Spectrophotometer at the corresponding 

wavelengths for each drug. The experiments were carried out in triplicate.

2.14 Drug content determination

60 mg of solid dispersion was accurately weighed and dissolved in 100 mL of PBS 

and filtered. Sample (1 mL) was diluted with PBS up to 20 mL and absorbance was 

measured with a UV spectrophotometer at respective drugs wavelength. The drugs 

content was calculated using the calibration curve (R2 = 0.9999).

2.15 Stability Studies

Stability testing was carried out to determine the quality of formulation under the 

influence of temperature and humidity over time.  The representative samples of solid 

dispersions were placed in a controlled temperature and humidity cabinet (Firlabo, 

6100). An accelerated term stability study was conducted according to the 

International Conference on Harmonization (ICH), stability protocol, 

40°C±2°C/75%RH±5% RH. In order to study the stability of the solid dispersions, the 

representative samples of solid dispersions were sealed in aluminum foil and stored at 

room temperature conditions (silica gel to control moisture content) and in a 

controlled temperature cabinet at 40 °C (75% RH) (silica gel to control moisture 

content). The physicochemical properties of these dispersions were evaluated after 0, 
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3 and 6 months for accelerated and 0, 3 and 12 months for samples stored under 

ambient conditions.

2.16 Culture media composition

 Dulbecco’s modified eagle medium (DMEM) 500 mL

 10% heat inactivated fetal bovine serum 50 mL

 1% pencillin-strepotomycin supplemented with 2 mM glutamine 5 mL

 1% non essential amino acid 5 mL

2.17 Procedure for Caco-2 cell culture

Caco-2 cells with passage 70 were obtained from American Type Culture Collection 

(ATCC) and used at passages 90-100. Cells were grown to 90% confluences in 75

cm² T-flasks with DMEM supplemented with 10% FBS, 1% pencillin-strepotomycin 

supplemented with 2 mM glutamine and 1% NEAA. Culture medium was changed 

every second day and cells were grown at a temperature of 37 °C and 5% CO2. For 

the transport assay, cells were seeded on top of 6 well transwell culture plate inserts 

(24 mm, 4.7 cm²) at a density of 2 x 105 cells/cm². Transwell inserts were used by first 

adding medium to the 6 well plate, then adding the transwell insert, followed by the 

addition of the medium and cells to the inside compartment of the transwell insert.

Recommended 6 transwell permeable medium volume is 2.6 mL for plate well and 

1.5 mL for inside of transwell. An initial equilibrium period was used to improve cell 

attachment by adding medium to the 6 well plate well and then to the transwell insert. 

The plate was then incubated for at least 1 h. The cells were then added to fresh 

medium in the transwell insert and returned to the incubator. The level was checked 

periodically and fresh medium added as required. The culture medium was replaced 
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every 24-48 hrs. Transepithelial electrical resistance (TEER) was measured at the start

and end of every study. 

2.18 Cell quantification

From the cell suspension, 200 μL was removed and mixed with 200 μL of tryptan 

blue. Using the haemocytomer, cell viability and the cell counts were determined. To 

each side of the cover slip placed on the haemocytomer, 10 μL of tryptan blue cell 

suspension was added and viewed microscopically. The viable cells (bright cells) 

were counted and from this cell concentration was calculated.

Average cell per square = 1+2+3+4+5+6+7+8+9+10

                                                              10

Cells per mL = Average cells per square x dilution factor (2) x 104.

2.19 Drug transport studies

Caco-2 monolayers were used 21–25 days after seeding. Apical to basolateral 

permeability of drug and the solid dispersion was assessed. After 1 h of pre-

incubation with drug-free transport medium (Hanks balanced salt solution), the 

medium containing the drug and the solid dispersion was introduced to the apical side 

(1.80 mL). To determine the initial concentration (Co), a sample of 300 µL was taken 

from the apical side (1.5 mL remaining at the apical side). Sample aliquots (300 µL) 

were taken from the basolateral side at given time intervals (0, 5, 10, 15, 20, 25, 30 

and 60 mins). After each sampling, an equal volume of fresh transport buffer (37 °C) 

was added to the receiver compartment (basal side) and kept the cells at a temperature 

of 37 °C and 5% CO2 during experiment. Samples were subsequently analysed by 
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HPLC. All experiments were performed at 37 °C (n = 3). Apparent permeability Papp 

(cm/s) was calculated according to the equation 2.1:

Papp= dQ/dt x 1/ACo       → (2.1)

where dQ/dt is the rate of appearance of the drugs on the basolateral side (µg/sec), Co 

is the initial concentration on the apical side (µg/cm3) and A is the surface area of the 

monolayer (cm2). 

After finding that the concentration of indomethacin from solid dispersion was 4.84

µg after 5 mins during permeability study using Caco-2 cells. Apparent permeability

coefficient was calculated using equation 2.1. 

Whereas 

dQ/dt =4.84/5*60 (µg/sec) is the flux across the basolateral side.

A = 4.7 (cm2) is the area of diffusion.

Co = 750 (µg/cm3) is the initial concentration of drug in donor compartment.

Papp= dQ/dt x 1/ACo       

Papp= (4.84/5*60)/4.7*750

Papp= 4.58 x 10-6.

The permeability coefficients (Papp) were calculated for each time points (5, 10, 15, 

20, 25, 30 and 60 mins) and determined the mean value of Papp for each drug and 

solid dispersion as shown in table 6.3.
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2.20 Caco-2 cell uptake studies

Rhodamine123 was used for Caco-2 cell uptake studies.

2.20.1 Preparation of 4% paraformaldehyde in PBS

Two PBS tablets were dissolved in 200 mL distilled water (2X stronger PBS 

solution). 4 g of paraformaldehyde was added to 50 mL double distilled water and 

heated to 60 °C. 1 M NaOH (14 drops) was added slowly until the solution was clear

and allowed to cool. This was followed by the addition of 50 mL of paraformaldehyde 

to 50 mL of 2X PBS and stored in a plastic bottle.

2.20.2 Uptake of rhodamine 123 across the Caco-2

Caco-2 cells were maintained in DMEM supplemented with 1% non-essential amino 

acids, 10% fetal bovine serum, and 1% penicillin streptomycin glutamine in 5% CO2

atmosphere at 37 °C. The Caco-2 cells were sub-cultured twice during the 

experimental time period. The cell viability was periodically examined using Trypan 

blue exclusion assay. After incubation for 60 mins at 37 °C, Hanks balanced salt 

solution (HBSS) in transwell inserts was removed and plates were washed with PBS.

2.20.3 Fixation and Staining of Caco-2 cells

The cells were fixed with 4% paraformaldehyde at room temperature for 10 mins. 

They were then washed in PBS, incubated for 5 mins at room temperature with 2

µg/mL DAPI to stain nuclei and washed again in PBS.
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2.20.4 Caco-2 uptake of rhodamine123 studied by fluorescence spectroscopy

Individual transwell membrane was mounted on clean glass slides with Vectasheild. 

The slides were viewed with a Zeiss AXIOCAM (AXIOSKOP WEST GERMANY) 

for the uptake and distribution. Fluorescence images were obtained at 40X

magnifications. 

2.21 Drug recovery

The recovery is defined as the amount recovered in the apical and basolateral 

compartment at the end of the experiment and is expressed as a percentage of the 

amount added to the donor side at time zero (equation 2.2):

Recovery = (CR, 60 mins × VR + CD, 60 mins × VD)/CD, 0 min × VD × 100 →

(2.2)

with CR, 60 mins and CD, 60 mins the concentration measured after 60 mins in the 

receiver and donor compartment, respectively, CD,0 min the concentration of the test 

compound in the donor compartment at time zero and VR and VD the volumes buffer 

added in receiver and donor compartment, respectively.

2.22 HPLC analysis (transport studies) and statistical analysis of data

The HPLC studies were performed using a Dionex 1100 HPLC system with 

autosampler (AS50), gradient pump (GP50), detector (UVD170U) and a C18 

analytical column with a particle size of 5 µm (Phenomenex ODS 3 Column, 4.6 µm 

× 150 mm). The mobile phase consisted of acetonitrile (50%): double distilled water 

(50%): 1 mL (per liter of mobile phase) of acetic acid for indomethacin, phenacetin 
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and phenylbutazone. Indomethacin, phenacetin and phenylbutazone were detected at a 

wavelength of 264 nm, 244 nm, and 236 nm at a flow rate of 1 mL/min. The mobile 

phase consisted of acetonitrile (10%): double distilled water (90%) for paracetamol 

and was detected at a wavelength of 240 nm, at a flow rate of 1 mL/min. The injection 

volume was maintained at 20 µL. Student’s unpaired t-test with P<0.05 was 

considered as significant. Statistical significance was calculated by GraphPad prism 

software.

2.23 Microarrays

The samples (PEG 8000, drugs alone and solid dispersions treated Caco-2 cells and 

untreated Caco-2 cells) were collected at various time points for transcriptomics 

directly into a mixture of phenol (5%) and ethanol (95%) in the ratio of 1:5 of phenol-

ethanol and sample. The samples were incubated on ice and then pelleted by 

centrifugation at 5000 rpm at 4 °C for 10 mins and the pellets were stored at -80 °C 

until RNA extraction. Total RNA was extracted from the bacterial pellets by using an 

RNeasy kit (QIAGEN) and reverse transcribed and fluorescently labelled with Cy3 

and Cy5 dye by using a CyScribe indirect postlabelling kit (GE-healthcare). All the 

controls and test samples were labelled with Cy3 and Cy5 dyes and single channel 

hybridisation was carried out.

Prior to hybridisation slides were treated with sodium borohydride from Pronto 

background reduction kit (Corning) followed by prehybridisation of slides for a 

minimum of 2 hrs in (20x SSC, 0.1% SDS, BSA 0.1%). For each experiment 80 pmol 

of Cy3 and Cy5-labelled cDNA was added to a final volume of 80 μL of hybridisation 

solution containing 30% formamide, 20× SSC, 0.1% SDS, Human Cot1 DNA and 
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Poly dA (1 ug/uL). The cDNA probes were denatured at 95 °C for 5 mins, centrifuged 

for 2 mins at full speed and hybridised for 16 hrs at 42 °C. Slides were then washed at 

42 °C with 2× SSC-0.1% SDS for 15 mins and at room temperature with 0.2× SSC

and twice with 0.05× SSC for 15 mins using Advawash slide washing machine. Slides 

were dried by low speed centrifugation at 1500 rpm at 25 °C for 10 mins and scanned 

by using Perkin Elmer Scanarray scanner. The signal intensity of each spot in the 

microarray was quantified by using scanarray software.

Quantile normalisation, hierarchical clustering, PCA and significant analysis of 

microaarays (SAM) were performed using TMEV (Saeed et al., 2003) TM4: a free, 

open-source system for microarray data management and analysis.

2.24 Agarose Gel Electrophoresis

2.24.1 Gel preparation and gel running conditions

Tribase (242 g) and EDTA (18.6 g) were dissolved in 600 mL distilled water. Glacial 

acetic acid (57.1 mL) was then added and made volume to 1000 mL with distilled 

water (50x TAE gel buffer). Agarose (1g) was dissolved in 100 mL (1x) TAE gel 

buffer by heating for 2 mins and allowed it to cool. Then ethidium bromide (4 μL) 

was added and allowed to set for 60 mins in the gel tray.

The loading dye was prepared by dissolving bromophenol blue (25 mg) and sucrose 

(4 g) in HPLC grade water (10 mL). Then RNA sample was prepared for gel 

electrophoresis by mixing of RNA (1 μL), loading dye (2 μL) and RNase free water 

(7 μL). The sample was run at 80 V for 30 mins in 1x TAE gel running buffer.
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3.1 Introduction

“Dissolution is defined as the process by which a known amount of drug substance goes 

into solution per unit of time under standardised conditions”. The dissolution of drug from 

a solid dispersion is dependent on the underlying solubility of the polymers (Craig, 2002). 

This is partially due to the mechanism whereby polymers dissolve due to the diffusion of 

solvent into the polymer matrix which results in the polymer altering from glassy to the 

rubbery state. This helps chain disentanglement which results in dissolution (Miller-Chou

and Koenig, 2003). The general objectives of the dissolution studies are:

1. Optimisation of therapeutic effectiveness during product development.

2. Assessment of production quality.

3. Prediction of in vivo availability.

In order to investigate the dissolution behavior of polymers various methods can be 

employed; these include differential refractometry, optical microscopy, microviscometry, 

fluorescence and gravimetry (Miller-Chou and Koeing, 2003). However, microviscometry 

has been successfully used for the dissolution studies of PVP from a solid dispersion 

(Esnaashari et al., 2005). When polymer dissolves into solution, the viscosity of solution 

increases and microviscometry is capable of differentiating the viscosity between low 

polymer concentration solutions. The benefits of using this method are such that samples 

can be taken during dissolution run (both drug and polymer concentration can be 

determined concurrently) and only a small sample (1 mL) is required. 
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Although a lot of work has been done on the release mechanism, the enhancement of drug 

release rate is not yet fully explained (Craig, 2002). The release process is complex and 

different factors such as the properties of drug (solubility) (Sjokvist-Sears and Craig,

1992), physical state (Horter and Dressman, 2001), particle size (Sjokvist-Sears and

Nystrom, 1988), dissolution of the polymer (Corrigan, 1985), molecular weight (Craig and

Newton, 1992) and the possible drug polymer interaction (Bogdanova et al., 2005) can 

affect the release process. Craig (2002) presented a drug release model distinguishing 

between carrier-controlled and drug-controlled dissolution, depending on the solubility of 

drug in the concentrated polymer layer (Craig, 2002). The model helps to describe the 

correct way to control the drug release rate from solid dispersions. In dispersions having 

low drug content, there are two methods for controlling the drug release: carrier-controlled 

dissolution and drug-controlled dissolution. In the former the dissolution of carrier controls 

the dissolution of drug while in the later, the physical properties of the drug itself seems to 

affect the rate of dissolution (Craig, 2002).  The first step for both mechanisms involves the 

formation of a carrier rich dissolving surface. The drug has to pass through this surface so 

that it can be released into the bulk phase. The next phase involves the dissolution of the 

drug into the carrier diffusion layer, and then the drug is released into the bulk medium. 

The second phase is vital in stating which mechanism will follow. Craig (2002) proposed 

that in case of carrier-controlled dissolution the drug dissolves in the carrier very quickly, 

causing the drug to disperse molecularly within the diffusion layer. The viscosity of the 

dissolving surface is sufficient to cause the diffusion of drug through this layer to be very 

gradual. Therefore, the dissolution of the polymer is the controlling factor in the release of 

drug. While in drug-controlled dissolution, particles dissolves slowly into diffusion layer, 
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so are released as solid particles into the bulk medium. Therefore, the properties of the drug 

such as the particle size and physical form are vital in the drug-controlled dissolution 

mechanism. There are other descriptions that provide possible explanations for which 

mechanism can be used for dispersions with high carrier content. As previously discussed 

that carrier can improve the wetting of drug, it is therefore, obvious that the carrier by 

improving wetting enables the drug to dissolve quickly into the diffusion layer, in turn 

causing carrier-controlled diffusion to occur (Chiou and Reigelman, 1971). 

In the current study, the in vitro drug release data were fitted to Korsemeyer–Peppas model 

Mt/M~ = Ktn    → (equation 3.1)

Where Mt/M~ is the fraction of drug released at time t, K is the apparent release rate 

constant that incorporates the structural and geometric characteristics of the drug delivery 

system and n is the diffusional exponent which characterises the transport mechanism of 

the drug.
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3.2 Aims of the study

The aim of this study was to investigate the effect of PEG 8000 on the drug dissolution 

profiles. Drug with different polymer concentration in the solid dispersion was studied for 

their effect on dissolution result. Drug release mechanism was studied based on dissolution 

of polymer and drug. 
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3.3 Results and Discussion

3.3.1 UV Analysis of drugs

The optimum absorbance wavelength was measured using Unicam UV-Visible 

Spectrophotometer. A scan over the range 200-500 nm was performed for each drug and 

the peak absorbance taken as the max for each drug. In some cases the run was only over 

the range 200-300 nm if the max value was within this range.

Figure 3.1. UV scan of paracetamol in phosphate buffer saline by Unicam UV, max = 
240 nm.

The max values were; paracetamol 240 nm; sulphamethoxazole 252 nm; phenacetin 244

nm; indomethacin 264 nm; chloramphenicol 276 nm; phenylbutazone 236 nm and 

succinylsulphathiazole 256 nm in phosphate buffer saline. 

Controls of phosphate buffer saline and PEG 8000 in phosphate buffer saline were under 

identical conditions to the drugs and no UV absorbance was noted for either solution. 

Figures 3.1-3.9 shows the scanning of paracetamol, sulphamethoxazole, phenylbutazone, 
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phenacetin, indomethacin, chloramphenicol, succinylsulphathiazole, phosphate buffer 

saline and PEG 8000.

Figure 3.2. UV scan of sulphamethoxazole in phosphate buffer saline by Unicam UV, 
max = 252 nm.

Figure 3.3. UV scan of phenylbutazone in phosphate buffer saline by Unicam UV, 
max = 236 nm.
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Figure 3.4. UV scan of phenacetin in phosphate buffer saline by Unicam UV max = 
244 nm.

Figure 3.5. Scan of indomethacin in phosphate buffer saline by Unicam UV, max = 
264 nm.
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Figure 3.6. UV scan of chlroamphenicol in phosphate buffer saline by Unicam 
UV,max = 276 nm.

Figure 3.7. UV scan of succinylsulphathiazole in phosphate buffer saline by Unicam 
UV,max = 256 nm.
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Figure 3.8. UV scan of Phosphate buffer saline blank by Unicam UV.

Figure 3.8 shows that there is no UV absorption in the range relevant to the drug absorption 

(240-276 nm), therefore there is no interference caused by the presence of phosphate buffer 

saline. Figure 3.9 highlights that there is no UV absorbance by PEG 8000 in the region of 

interest for the drugs (240-276 nm).

Figure 3.9. UV scan of polyethylene glycol 8000 (50 μg/mL) in phosphate buffer saline 
by Unicam UV.
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3.3.2 Calibrations of drugs via UV and polymer via microviscometry

3.3.2.1 Calibration curve of paracetamol 

For the calibration, stock solution of paracetamol was prepared at 30 μg/mL in phosphate 

buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of Determination 

R² = 0.99) was obtained in a concentration range from 2 μg/mL to 14 μg/mL by Unicam 

UV-Visible Spectrophotometer at 240 nm as shown in figure 3.10.

Figure 3.10. Calibration curve of paracetamol in phosphate buffer saline at 240 nm   
by UV. Data are expressed as mean±S.D (n = 3).
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3.3.2.2 Calibration curve of sulphamethoxazole 

For the calibration, stock solution of sulphamethoxazole was prepared at 30 μg/mL in 

phosphate buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of 

Determination R²=0.99) was obtained in a concentration range from 2 μg/mL to 14 μg/mL 

by Unicam UV-Visible Spectrophotometer at 252 nm as shown in figure 3.11.

Figure 3.11. Calibration curve of sulphamethoxazole in phosphate buffer saline at      
             252 nm by UV. Data are expressed as mean±S.D(n = 3).
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3.3.2.3 Calibration curve of phenacetin

For the calibration, stock solution of phenacetin was prepared at 30 μg/mL in phosphate 

buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of Determination 

R²=0.99) was obtained in a concentration range from 2 μg/mL to 14 μg/mL by Unicam 

UV-Visible Spectrophotometer at 244 nm as shown in figure 3.12.

Figure 3.12. Calibration curve of phenacetin in phosphate buffer saline at 244 nm by 
UV. Data are expressed as mean ± S.D(n = 3).
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3.3.2.4 Calibration curve of indomethacin

Figure 3.13 shows the calibration curve of indomethacin by UV in phosphate buffer saline 

(pH 7.4) at 264 nm. Stock solution of indomethacin was prepared at 30 μg/mL in phosphate 

buffer saline (pH 7.4). A calibration range of 2–14 µg/mL was established with good 

linearity over the entire working range (Coefficient of Determination R²=0.99). 

Figure 3.13. Calibration curve of indomethacin in phosphate buffer saline at 264 nm   
by UV. Data are expressed as mean±S.D(n = 3).
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3.3.2.5 Calibration curve of chloramphenicol

Figure 3.14 shows the calibration curve of chloramphenicol by UV in phosphate buffer 

saline (PBS) (pH 7.4) at 276 nm. A calibration range of 5–30 µg/mL was established with 

good linearity over the entire working range (Coefficient of Determination R²=0.99). 

     
Figure 3.14. Calibration curve of chloramphenicol in phosphate buffer saline at 
276 nm by UV. Data are expressed as mean±S.D (n = 3).
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3.3.2.6 Calibration curve of phenylbutazone

For the calibration, stock solution of phenylbutazone was prepared at 30 μg/mL in 

phosphate buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of 

Determination R²=0.99) was obtained in a concentration range from 2 μg/mL to 14 μg/mL 

by Unicam UV-Visible Spectrophotometer at 236 nm as shown in figure 3.15.

Figure 3.15. Calibration curve of phenylbutazone in phosphate buffer saline at 236
nm by UV Data are expressed as mean±S.D(n = 3).
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3.3.2.7 Calibration curve of succinylsulphathiazole

For the calibration, stock solution of succinylsulphathiazole was prepared at 30 μg/mL in 

phosphate buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of 

Determination R²=0.99) was obtained in a concentration range from 2 μg/mL to 14 μg/mL 

by Unicam UV-Visible Spectrophotometer at 256 nm as shown in figure 3.16.

    

Figure 3.16. Calibration curve of succinylsulphathiazole in phosphate buffer saline   
at 256 nm by UV. Data are expressed as mean±S.D(n = 3).
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3.3.2.8 Calibration curve of PEG 8000 

For the calibration of PEG 8000, stock solution of polymer was prepared at 30 mg/mL in 

phosphate buffer saline (pH 7.4). The linearity of the calibration curve (Coefficient of 

Determination R²=0.99) was obtained in a concentration range from 2 mg/mL to 10 mg/mL

by microviscometry (Esnaashari et al., 2005) as shown in figure 3.17.

Figure 3.17. Calibration curve of polyethylene gylcol (8000) in phosphate buffer saline 
by microviscometer. Data are expressed as mean±S.D(n = 4).

3.3.3 Drug release studies

3.3.3.1 Dissolution studies of paracetamol

The dissolution profiles of paracetamol from the solid dispersions with 5%, 10% and 15% 

(w/w) are shown in figure 3.18. The release patterns showed fast dissolution during the first 

30 mins. In formulations with weight ratio of PEG 8000, the drug release rate was not 

affected by the content of PEG 8000, as such in case of 5% (w/w) and 10% (w/w) since 
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decrease of the dissolution rate as compared to lower PEG 8000 concentration. The 

paracetamol release from the solid dispersion (SD) as compared to the pure drug and 

physical mixture (PM) are shown in figure 3.19. It was seen that the pure drug crystals 

showed a slower dissolution as compared to solid dispersion and physical mixture. The 

paracetamol release was 91% from solid dispersion; 43% from physical mixure and 34% 

from drug alone after 60 mins.
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Figure 3.18. Percentage released of paracetamol from solid dispersions; 5%, 10% and 
15% (w/w) corresponds to the amount of paracetamol in solid dispersions. Data are 
expressed as mean±S.D(n = 3).
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Figure 3.19. Percentage released of paracetamol from solid dispersions, physical mix 
and drug alone (15% w/w) corresponds to the amount of paracetamol in solid 
dispersions, physical mix and alone. Data are expressed as mean±S.D(n = 3).

3.3.3.2 Dissolution studies of sulphamethoxazole

The release profiles of sulphamethoxazole for 5%, 10% and 15% (w/w) solid dispersions 

are shown in figure 3.20. The rate and extent of sulphamethoxazole released was faster in 

5% (w/w) solid dispersion as compared to 10% and 15% (w/w). The drug released from

5% (w/w) solid dispersion was 100% in 60 mins as compared to 10% and 15% (w/w) solid 

dispersion (in case of 10% (w/w) drug release was 84% and for 15% (w/w) drug release 

was 83% after 60 mins. Solid dispersions in PEG 8000 exhibited faster dissolution rates 

than drug alone and their corresponding physical mixture as shown in figure 3.21. 

Sulphamethoxazole alone gave the slowest initial dissolution rate with only about 30% of 

the drug dissolved in 60 mins as compared to solid dispersion and physical mixture. (Drug 

released was 83% from solid dispersion and 40% from physical mix).
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Figure 3.20. Percentage released of sulphamethoxazole from solid dispersions; 5%, 
10% and 15% (w/w) corresponds to the amount of sulphamethoxazole in solid 
dispersions. Data are expressed as mean±S.D(n = 3).

Figure 3.21. Percentage released of sulphamethoxazole from solid dispersions, 
physical mix and drug alone (15% w/w) corresponds to the amount of 
sulphamethoxazole in solid dispersions, physical mix and drug alone. Data are 
expressed as mean±S.D(n = 3).

3.3.3.3 Dissolution studies of phenacetin

The 5% (w/w) solid dispersion displayed the best performance, as compared to 10% (w/w) 

and 15% (w/w) solid dispersions as shown in figure 3.22. Almost 100% drug released 
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within 30 mins from 5% (w/w) solid dispersion as compared to 10% (w/w) formulation 

with drug release was 46% after 60 mins. Drug released from 15% (w/w) solid dispersion 

was 29% over the entire length of time period during dissolution studies. Increasing the 

concentration of drug in the dispersions leads to a decrease in dissolution rate and release 

profile. Figure 3.23 indicates that phenacetin released faster in solid dispersion followed by 

physical mixture and then drug alone over the entire length of time period. But interesting 

results for first two time points were noticed; drug release was same from solid dispersion, 

physical mix and drug alone of about 3-4%.
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Figure 3.22. Percentage released of phenacetin from solid dispersions; 5%, 10% and 
15% (w/w) corresponds to the amount of phenacetin in solid dispersions. Data are 
expressed as mean±S.D(n = 3).
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Figure 3.23. Percentage released of phenacetin from solid dispersions, physical mix 
and drug alone (15% w/w) corresponds to the amount of phenacetin in solid
dispersions, physical mix and drug alone. Data are expressed as mean±S.D(n = 3).

3.3.3.4 Dissolution studies of indomethacin

Figure 3.24 shows the percentage released of 5%, 10% and 15% (w/w) solid dispersions of 

indomethacin with PEG 8000 during dissolution studies. The drug release was slower from 

the dispersions containing high drug content as compared to low drug content formulations. 

The release profile was not linear over the entire length of time period during dissolution 

studies. The drug released was almost 100% with 5% (w/w) indomethacin within 30 mins

as compared to 10% (w/w) which was 65%. In case of 15% (w/w) solid dispersions the 

amount of drug released was 45% within 30 mins. Increasing the concentration of PEG 

8000 showed faster release of indomethacin from solid dispersions as shown in figure 3.24. 

As the amount of PEG 8000 increased, a significant increase in the rate and extent of drug 

released was observed. The release profile of indomethacin from solid dispersion, physical 

mixture and drug alone of same concentrations are indicated in figure 3.25. The rate and 

extent of drug release was more from solid dispersion than physical mix and least with drug 
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alone. In case of solid dispersion the release profile was linear for the first 15 mins and 

maximum release was observed during 30 mins (45% released). The drug released was 

25% for physical mix and 16% for drug alone over the entire length of time period.  
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Figure 3.24. Percentage released of indomethacin from solid dispersions; 5%, 10% 
and 15% (w/w) corresponds to the amount of indomethacin in solid dispersions. Data 
are expressed as mean±S.D(n = 3).
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Figure 3.25. Percentage released of indomethacin from solid dispersions, physical mix 
and drug alone (15% w/w) corresponds to the amount of indomethacin in solid 
dispersions, physical mix and drug alone. Data are expressed as mean±S.D(n = 3).
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3.3.3.5 Dissolution studies of chloramphenicol

The dissolution profiles of chloramphenicol from the solid dispersions with 5%, 10% and 

15% (w/w) are shown in figure 3.26. The rate and extent of chloramphenicol released was 

faster in 5% (w/w) solid dispersion as compared to 10% (w/w) and 15% (w/w). The drug 

released from 5% (w/w) solid dispersion was 100% as compared to 10% and 15% (w/w) 

solid dispersion over the entire length of time period (in case of 10% (w/w) drug release 

was 62% and for 15% (w/w) formulation drug release was 45%. Solid dispersions in PEG 

8000 exhibited faster dissolution rates than drug alone and their corresponding physical 

mixture as shown in figure 3.27. It was seen that the pure drug crystals showed a slower 

dissolution as compared to solid dispersion and physical mixture. Chloramphenicol release 

was 45% from solid dispersion; 15% from physical mix and 13% from drug alone over the

entire length of time period. The release profiles for physical mixture and drug alone 

looked similar with 15% and 13% drug release during dissolution studies. 
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Figure 3.26. Percentage released of chloramphenicol from solid dispersions; 5%, 10% 
and 15% (w/w) corresponds to the amount of chloramphenicol in solid dispersions. 
Data are expressed as mean±S.D(n = 3).
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Figure 3.27. Percentage released of chloramphenicol from solid dispersions, physical 
mix and drug alone (15% w/w) corresponds to the amount of chloramphenicol in solid 
dispersions, physical mix and drug alone. Data are expressed as mean±S.D(n = 3).

3.3.3.6 Dissolution studies of phenylbutazone

The release profiles of phenylbutazone for 5%, 10% and 15% (w/w) solid dispersions are 

shown in figure 3.28. The rate and extent of phenylbutazone released was faster in 5% 

(w/w) solid dispersion as compared to 10% and 15% (w/w). The drug released from 5% 

(w/w) solid dispersion was 100% as compared to 10% and 15% (w/w) solid dispersion over 

the entire length of time period (in case of 10% (w/w) drug release was 84% and for 15% 

(w/w) drug release was 73%). Solid dispersions in PEG 8000 showed faster dissolution 

rates than drug alone and their corresponding physical mixture as shown in figure 3.29. 

Phenylbutazone alone gave the slowest release with only about 10% of the drug dissolved

as compared to solid dispersion and physical mix (drug released was 73% from solid 

dispersion and 36% from physical mix) over the entire length of time period during 

dissolution studies. However, similar result as phenacetin for first two time points was 
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observed; drug release was same from solid dispersion, physical mix and drug alone as 

shown in figure 3.29 (drug release was 4%).
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Figure 3.28. Percentage released of phenylbutazone from solid dispersions; 5%, 10% 
and 15% (w/w) corresponds to the amount of phenylbutazone in solid dispersions. 
Data are expressed as mean±S.D(n = 3).
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Figure 3.29. Percentage released of phenylbutazone from solid dispersions, physical 
mix and drug alone (15% w/w) corresponds to the amount of phenylbutazone in solid 
dispersions, physical mix and drug alone. Data are expressed as mean±S.D(n = 3).
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3.3.3.7 Dissolution studies of succinylsulphathiazole

Figure 3.30 shows that the percentage of succinylsulphathiazole released over time was 

fastest for 5% (w/w) loadings compared to 10% and 15% (w/w) loaded solid dispersions.

The drug released was almost 100% with 5% (w/w) solid dispersion after 25 mins as 

compared to 10% (w/w) and 15% (w/w) dispersions. The drug released from 10% (w/w) 

solid dispersion was 69% and 15% (w/w) solid dispersion was 48% over the entire length 

of time period. The release profiles of succinylsulphathiazole from solid dispersion, 

physical mixture and drug alone of same concentrations are shown in figure 3.31. The rate 

and extent of drug release was more from solid dispersion than physical mixture and least 

with drug alone. The drug released was 48% for solid dispersion, 26% for physical mixture 

and 15% for drug alone over the entire length of time period during dissolution studies.  
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Figure 3.30. Percentage released of succinylsulphathiazole from solid dispersions; 5%, 
10% and 15% (w/w) corresponds to the amount of succinylsulphathiazole in solid 
dispersions. Data are expressed as mean±S.D(n = 3).
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Figure 3.31. Percentage released of succinylsulphathiazole from solid dispersions, 
physical mix and drug alone (15% w/w) corresponds to the amount of 
succinylsulphathiazole in solid dispersions, physical mix and drug alone. Data are 
expressed as mean±S.D(n = 3).

3.3.4 Polymer dissolution studies

Figures 3.32-3.34 show drugs released faster or at a similar rate to PEG 8000 e.g

paracetamol, sulphamethoxazole and phenacetin.

Figures 3.35-3.38 show PEG 8000 released faster than drugs e.g indomethacin, 

chloramphenicol, phenylbutazone and succinylsulphathiazole.
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Figure 3.32. Fraction released of both Paracetamol and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of paracetamol; 
95%, 90% and 85% (w/w) correspond to the amount of PEG 8000 in the binary 
systems (solid dispersion).

Figure 3.33. Fraction released of both sulphamethoxazole and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of 
sulphamethoxazole ;  95%, 90% and 85% (w/w) correspond to the amount of PEG 
8000 in the binary systems (solid dispersion).
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Figure 3.34. Fraction released of both phenacetin and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of phenacetin ; 95%, 
90% and 85% (w/w) correspond to the amount of PEG 8000 in the binary systems 
(solid dispersion).

Figure 3.35. Fraction released of both indomethacin and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of indomethacin ;
95%, 90% and 85% (w/w) correspond to the amount of PEG 8000 in the binary 
systems (solid dispersion).
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Figure 3.36. Fraction released of both chloramphenicol and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of chloramphenicol ; 
95%, 90% and 85% (w/w) correspond to the amount of PEG 8000 in the binary 
systems (solid dispersion).

Figure 3.37. Fraction released of both phenylbutazone and PEG 8000 from solid 
dispersions; 5%, 10% and 15% (w/w) correspond to the amount of phenylbutazone ; 
95%, 90% and 85% (w/w) correspond to the amount of PEG 8000 in the binary 
systems (solid dispersion).
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Figure 3.38. Fraction released of both succinylsulphathiazole and PEG 8000 from 
solid dispersions; 5%, 10% and 15% (w/w) correspond to the amount of 
succinylsulphathiazole; 95%, 90% and 85% (w/w) correspond to the amount of PEG 
8000 in the binary systems (solid dispersion).

Mathematical modeling was performed on GraphPad Prism, version 4 by plotting the 

fraction of drug released versus time which was fitted to a power function to determine the 

values of n and K. These models are commonly used for drugs and less frequently used to 

analyse polymer dissolution, however, in this study it was interesting to use the same 

model for both drug and polymer release to see how similar the profiles were. The 

regression (R²) values for the polymer were lower than the drugs and this may be an artifact 

from the origins of the equation used.
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Table 3.1. Diffusional coefficient, n, release constant K and the correlation 
coefficient R² (Peppas equation) for drug release from 5%, 10% and 15% (w/w) 
solid dispersions (drug-PEG 8000). 

Drugs Loading 
% (w/w)

Drug release kinetics Transport
mechanism

Polymer release kinetics Transport
Mechanism

K n R² K n R²
Paracetamol 5 0.113 0.6647 0.9872 Non-Fickian 0.3201 0.3282 0.8283 Fickian

10 0.1294 0.6142 0.9917 Non-Fickian 0.23359 0.4014 0.902 Fickian

15 0.0547 0.8387 0.9643 Non-Fickian 0.053199 0.8113 0.8805 Non-Fickian

Sulphamethoxazole 5 0.0779 0.7818 0.9709 Non-Fickian 0.28987 0.3317 0.906 Fickian

10 0.0368 0.953 0.892 Case II 0.16063 0.4583 0.8987 Non-Fickian

15 0.0383 0.9603 0.9875 Case II 0.14474 0.5159 0.9543 Non-Fickian

Phenacetin 5 0.0576 0.8808 0.9423 Non-Fickian 0.002934 1.6833 0.9639 Super Case-II 
transport

10 0.0031 1.66 0.9906 Super Case-
II transport

0.003959 1.6003 0.9615 Super Case-II 
transport

15 0.0085 1.0629 0.9965 Super Case-
II transport

0.007165 1.3518 0.9195 Super Case-II 
transport

Indomethacin 5 0.0768 0.8175 0.9738 Non-Fickian 0.65306 0.1149 0.9619 Fickian

10 0.0747 0.8421 0.8846 Non-Fickian 0.52961 0.1699 0.9371 Fickian

15 0.1245 0.6804 0.9221 Non-Fickian 0.48623 0.1887 0.923 Fickian

Chloramphenicol 5 0.0652 0.7631 0.988 Non-Fickian 0.41351 0.2269 0.888 Fickian

10 0.0761 0.6431 0.9937 Non-Fickian 0.46886 0.1902 0.9083 Fickian

15 0.0977 0.5773 0.9922 Non-Fickian 0.54453 0.1489 0.8985 Fickian

Phenylbutazone 5 0.0116 0.9075 0.977 Case II 0.3074 0.2739 0.9667 Fickian

10 0.071 0.9766 0.9946 Case II 0.10947 0.5316 0.9681 Non-Fickian

15 0.0046 1.0554 0.988 Super Case-
II transport

0.13969 0.4335 0.9296 Fickian

Succinylsulp-
hathiazole

5 0.0483 1.0334 0.9611 Super Case-
II transport

0.52254 0.1718 0.9297 Non-Fickian

10 0.2119 0.5445 0.9075 Non-Fickian 0.60017 0.1207 0.9162 Fickian

15 0.3513 0.3675 0.8893 Fickian 0.5994 0.1247 0.959 Fickian
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Preparation of solid dispersions improved the dissolution rate of all drugs. The solid 

dispersions of the seven drugs showed that drugs released faster in solid dispersions as 

compared to pure drug. Solid dispersions of many poorly water-soluble drugs with 

hydrophilic carrier matrix have been formulated for improving drug dissolution rate 

(Serajuddin, 1999; Passerini et al., 2002; Seo et al., 2003). Drugs released faster in 5% 

(w/w) as compared to 10% and 15% (w/w) solid dispersions except for paracetamol solid 

dispersion where similar release profile was seen for 5% and 10% (w/w) as shown in 

figures 3.18, 3.20, 3.22, 3.24, 3.26, 3.28 and 3.30. The importance of the carrier to enhance 

the performance of solid dispersion was illustrated in a study of 14 different drugs 

formulated as solid dispersions in PEG 6000 (Dubois and Ford, 1985). Dubois and Ford 

(1985) showed that, when the drug is present in a low drug/carrier ratio, the release rate is 

dependent only on the carrier and not on the drug properties. Moreover, solid dispersions 

may improve the bioavailability of poorly soluble drugs by increasing the drug dissolution 

rate and their saturation solubility in the gastro-intestinal fluids. The use of solid 

dispersions as a potential means of improving the dissolution behavior of poorly soluble 

drugs has been well presented and studied (Chiou and Riegelman, 1971; Corrigan, 1985; 

Ford, 1986; Craig, 1990). Solid dispersions often show an enhanced solubility because of 

the transformation of the drug’s crystal lattice, a reduction of particle size and a better 

wettability exerted by the hydrophilic carrier. Even the dissolution rate of a relatively 

soluble drug like aspirin can be improved by formulating it as a solid dispersion in PEG 

(Asker et al., 1975). Possible mechanisms of increase in dissolution rates for solid 

dispersions have been proposed by Ford (1986), and include: reduction of particle size, a 
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solubilisation property of the carrier, improved wettability and dispersibility of a drug in 

the solid dispersion, conversion of drug into amorphous form.

The results showed that PEG 8000 improved drug dissolution for all the drugs studied. 

Similar result was shown when poorly soluble diclofenac was coupled with PEG 6000    

(Adamo et al., 2005). Chiou and Riegelman (1969) were able to achieve a noticeable 

increase in the release rate of griseofulvin from solid dispersions in PEG. An increase in 

the release rate by formulation as a solid dispersion in PEG 4000 has been observed for 

many drugs, including oxazepam (Gines et al., 1996), piroxicam (Fernandez et al., 1993), 

zolpidem (Trapani et al., 1999) and glyburide (Betageri et al., 1995). Similarly, a two-fold 

increase in the release rate of carbamazepine was achieved by formulation as a solid 

dispersion in PEG 4000 and 6000 and was translated into an increase in the bioavailability 

relative to a suspension of the drug (El-Zein et al., 1998). Norfoxacin/PEG 6000 solid 

dispersions also produced a moderate increase in bioavailability (Fawaz et al., 1996). It is 

well established that materials such as PEG may increase the solubility of a range of drugs, 

particularly at high concentrations. Further drugs which exhibited elevated release rates 

when formulated as PEG solid dispersions include Sr33557, a new calcium antagonist 

(Lheritier et al., 1995), ketoprofen (Margarit et al., 1994), oxazepam (Jachowicz et al., 

1993), nifedipine (Suzuki et al., 1997), phenytoin (Jachowicz et al., 1987), ursodeoxycholic 

acid (Okonogi et al., 1997), fenobrate (Sheu et al., 1994) and prednisolone (Jachowicz, 

1987). Perng et al. (1998) achieved a ten-fold increase in the release rate of an experimental 

5-lipoxygenase inhibitor with PEG 8000.



Chapter 3 Dissolution Studies

120

Increasing the concentration of drug in the dispersions leads to a decrease in dissolution 

rate. The drug/carrier ratio in a solid dispersion is one of the main influences on the 

performance of a solid dispersion. This could possibly be attributed to the wettability 

offered by the polymer and the conversion of crystalline drug into amorphous form. If the 

percentage of the drug is too high, it might result in the formation of small drug crystals 

within the dispersion rather than remaining completely molecularly dispersed thereby 

ultimately lowering the dissolution rate . On the other hand, if the percentage of the carrier 

is high, it can promote better wettability with an improved capacity to molecularly disperse 

the drug resulting in enormous increases in the solubility and release rate of the drug.

Similar findings were reported with solid dispersions of lorazepam–PEG where a linear 

relationship was found between the polymer weight fraction and the dissolution rate 

constant (Al-Angary et al., 1996). Lin and Cham (1996) showed that solid dispersions of 

naproxen in PEG 6000 released drug faster when a 5% or 10% naproxen loading was used 

when compared to 20%, 30% or 50% loading. Dubois and Ford (1985) showed that, when 

the drug is present in a low drug/carrier ratio the release rate is dependent only on the 

carrier and not on the drug properties. Similar results were obtained with etoposide (Shah et 

al., 1995) and griseofulvin (Chiou et al., 1969).

The increased dissolution rate observed in this case can thus be contributed by several 

factors such as a solubilisation effect of the carrier and improved wettability of the drug.

The rate and extent of drug release was more from solid dispersion followed by physical 

mixture and then drug alone for all formulations as shown in figures 3.19, 3.21, 3.23, 3.25, 

3.27, 3.29 and 3.31. The drug released was more from physical mixtures as compared to 
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drug alone for all drugs. This might be due to lowering of the surface tension effect of PEG 

8000 to the medium resulting in wetting of hydrophobic drug crystalline surface. Similar 

result was obtained by Sekikawa et al. (1979) and Tantishaiyakul et al. (1999). Drug 

release was same for 15% (w/w) solid dispersion, physical mix and drug alone for first 10 

mins in case of phenacetin and phenylbutazone. This might be due to the drug floating on 

the surface of dissolution medium.   

Paracetamol, sulphamethoxazole and phenacetin showed faster release than PEG 8000 as 

shown in figures 3.32-3.34 while PEG 8000 released faster than indomethacin, 

chloramphenicol, phenylbutazone and succinylsulphathiazole in solid dispersions (drug-

PEG) as shown in figures 3.35-3.38. Theories proposed for the mechanisms governing drug 

release from solid dispersions are dependent on an understanding of the dissolution 

behavior of both drug and polymer. Some systems show carrier-controlled release with the 

rate of release being determined by the dissolution of the polymer and independent of the 

drug loaded (Corrigan, 1985; Dubois and Ford, 1985) such as indomethacin, 

chloramphenicol, phenylbutazone and succinylsulphathiazole in the current study while 

others drugs such as paracetamol, sulphamethoxazole and phenacetin showed that release is 

dependent on the properties of the drug (Sjokvist-Sears and Nystrom, 1988).

The goodness of fit for various models was investigated for binary systems ranked in the 

order of Korsemeyer–Peppas > Higuchi @ first-order > Hixson-Crowell cube root law 

zero-order (Ahuja et al., 2007).
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All release data was converted into the fraction of drug released, from the solid dispersions 

and PEG 8000 and plotted against time. This plot was then fitted to the model described in 

equation 1, as shown in Figure 3.32-3.38.  In this study, all data are fitted theoretical data

from the experimental data using Peppas Equation. The kinetics of drugs and polymer 

release from the three different solid dispersions formulation was analysed using the 

Peppas and Korsmeyer model given by the following equation (Peppas, 1985).

Mt/M~ = Ktn    → (equation 3.1)

Where Mt/M~ is the fraction of drug released at time t, K is the apparent release rate 

constant that incorporates the structural and geometric characteristics of the drug delivery 

system and n is the diffusional exponent which characterises the transport mechanism of 

the drug. The release data was fitted into the above model to determine the n values. The 

transport mechanisms were classified based on the value that n assumes. For a cylinder, the 

drug transport mechanism is by Fickian diffusion when n=0.45, if 0.45<n<0.89, it indicated 

anomalous (non-Fickian) transport and for values of n=0.89, Case II or zero-order release 

kinetics was indicated (Peppas, 1985). When n>1 it indicated Super Case II transport. Case

II relates to polymer relaxation, while non-Fickian release is described by two mechanisms, 

the coupling of drug diffusion and polymer relaxation (Ritger and Peppas, 1987). 

Table 3.1 gives the n values for all the solid dispersions that were tested for 5%, 10% and 

15% (w/w). Table 3.1 shows that release of paracetamol, indomethacin and 

chloramphenicol for 5%, 10% and 15% (w/w) from the solid dispersions that were 
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formulated was by non-Fickian mechanisms. Similar non-Fickian behavior has also been 

reported previously with the Gelucire dispersions of paracetamol and caffeine (Khan and 

Craig, 2003). In 5% (w/w) sulphamethoxazole and phenacetin showed non-Fickian 

behavior; 10% and 15% (w/w) sulphamethoxazole indicated Case II transport while in 

phenacetin showed super Case II mechanism. Results of 5% and 10% (w/w) for 

phenylbutazone were Case II transport and for 15% (w/w) solid dispersion was super Case 

II. The mode of drug release for eleven drugs studied in chitosonium malate matrix was 

generally non-Fickian and Super Case II type (Akbua, 1993). In 5% (w/w) solid dispersion 

of succinylsulphatiazole was super Case II; 10% (w/w) was non-Fickian and 15% (w/w)

was Fickian behavior. The release data showed combined effect of diffusion and 

relaxational mechanisms for drug release (Sriamornsak et al., 2007). Table 3.1 also shows 

the release kinetics of PEG 8000. Fickian mechanisms in PEG 8000 as in the case of 

indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole. In the case of 

paracetamol and sulphamethoxazole it was Fickian to non-Fickian and phenacetin it was 

super Case II transport.
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3.4 Conclusions

The results show the suitability of PEG 8000 as the carrier for solid dispersions of all seven 

drugs studied. The dissolution rates of physical mixtures were higher in all seven drugs

than pure drugs; this being probably caused by wettability of drug due to PEG 8000. Solid 

dispersions demonstrated higher dissolution rates than those of physical mixtures and drug 

alone, resulting from the increase in drug wettability caused by carrier. Maximum

dissolution rate was obtained with 5% (w/w) drug loading solid dispersions suggesting that

high carrier concentration enhanced the dissolution. Microviscometry has shown to be 

effective method for measuring the dissolution of the PEG 8000 from the solid dispersions.

Formulations such as indomethacin, chloramphenicol, phenylbutazone and 

succinylsulphathiazole showed carrier-controlled release with the release rate being 

controlled by the dissolution of the polymer while drugs such as paracetamol, 

sulphamethoxazole and phenacetin demonstrated that release rate is dependent on the 

properties of the drug.
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4.1 Introduction

The characterisation of solid dispersions was performed using differential scanning 

calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), scanning electron 

microscopy (SEM), solubility studies and isothermal titration calorimetry (ITC).

4.1.1 Differential scanning calorimetry (DSC)

DSC was used to detect melting point and quantify transitions and reactions displayed as

endothermic and crystallisation (exothermic) events which results in a baseline shift as 

the specific heat capacity of the sample changes.

4.1.2 Hyper differential scanning calorimetry (Hyper DSC)

Hyper differential scanning calorimetry (Hyper DSC) employs heating rates typically in 

excess of 100-500 °C/min, whereas normal DSC has a range of about 1-20 °C/min. This 

provides a number of advantages, the most pertinent of which is that hyper DSC can be 

used to prevent recrystallisation during a heating step (Pijpers et al., 2002). Hyper DSC 

cycles were also used to enhance the thermal signal when compared to the standard DSC 

thermograms. This also had the additional benefit of minimizing changes in morphology 

and preventing any interactions during the heating process.

4.1.3 Fourier transform infrared spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) studies were performed to help and assist 

in the evaluation of any possible chemical (functional group) interactions between drug 

and PEG 8000. The interactions between drug and the polymer in the solid dispersion or 
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physical mixture would result in band shifts compared to the spectra for the drug and 

polymer (Silverstein et al., 1991).

4.1.4 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) produces very high magnification images of a 

sample morphology revealing details about 1 to 5 nm in size. The surface morphology of 

indomethacin, phenacetin, paracetamol, phenylbutazone, chloramphenicol, 

sulphamethoxazole, succinylsulphathiazole and its binary systems (solid dispersion) were 

examined by SEM.

4.1.5 Solubility studies

Solubility studies are important in the drug development. It serves for the identification of 

screening and bioavailability issues. In biopharmaceutical evaluation of formulation,

knowledge of solubility is important for the confirmation of bioavailability results. 

4.1.6 Isothermal titration calorimetry (ITC)

Calorimetric techniques are very powerful for studying and understanding biological 

processes at molecular level. Isothermal titration calorimetry (ITC) can detect the small 

changes of heat during reaction. It allows for the determination of the thermodynamic 

parameters such as enthalpy, entropy, Gibbs free energy, heat capacity, binding constant 

and effective number of binding sites in biological reactions. ITC is the only technique 

that can establish all of these binding parameters from a single experiment. Other 

advantages include the measurement of a heat signal (Wiseman et al., 1989).
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4.2 Aims of the study 

The characterisation was performed to see whether any interactions between drug-

excipient have taken place. DSC was used to detect melting point and any transitions 

which will be displayed as endothermic events and crystallisations for all seven solid 

dispersions. FTIR was used for determination of any interactions between drug and 

polymer. SEM at different magnifications was used to investigate the morphological 

differences of solid dispersions.

Isothermal titration calorimetry (ITC) was used to determine the small changes of heat 

during titration of drug with PEG 8000 and for the detection of PEG 8000/drug 

interactions.
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4.3 Results and Discussion

4.3.1 Differential scanning calorimetry (DSC)

DSC thermograms of drug alone, solid dispersions and physical mixtures (drug-PEG 

8000) for indomethacin, phenacetin, paracetamol, phenylbutazone, chloramphenicol, 

sulphamethoxazole and succinylsulphathiazole are discussed below:

4.3.1.1 DSC of polymer alone, indomethacin alone, solid dispersion 15% (w/w) 

(indomethacin-PEG 8000) and physical mixture 15% (w/w) of indomethacin-PEG 

8000

Figures 4.1-3 show the DSC thermograms of indomethacin, PEG 8000, solid dispersion

15% (w/w) (indomethacin-PEG 8000) and physical mixture 15% (w/w) of indomethacin-

PEG 8000. The thermograms of indomethacin alone and polymer alone exhibited single 

endothermic peaks at around 159.79 °C and 59.13 °C for indomethacin and PEG 8000,

respectively. Investigation of the heating scans of solid dispersion for the drug showed 

melting peak for the polymer at around 59 °C with no endothermic peak corresponding to

the indomethacin (figure 4.1). The absence of a peak at temperatures corresponding to the 

melting of the drug could potentially be attributed to the solubilisation and distribution of 

the drug within the hydrophilic polymer matrix resulting in the conversion of crystalline 

drug into amorphous form. Analogous phenomena have also previously been reported by 

various researchers (Craig et al., 1991; Guyot et al., 1995; Damian et al., 2000).
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However, physical mixtures of indomethacin with the polymer (figure 4.2) resulted in the 

absence of melting endotherm corresponding to the drug as seen in the thermograms for 

the solid dispersion. To further investigate the binary physical mixture of indomethacin 

and polymer, standard DSC at scan rate of 10 °C/min was employed to have an insight 

into any transitions occurring during slow heating in contrast to faster heating rate used in 

Hyper DSC. Analysis of samples (physical mixture) containing 20%, 30% and 40% w/w

drug content for the indomethacin showed only a single peak corresponding to the 

melting of the polymer (figure 4.3). These results are in agreement with previous work 

reported on the thermal analysis of physical mixtures of poorly soluble drugs and 

polymers. Research published by Ahuja et al. (2007), Abdul-Fattah and Bhargava (2002),

have shown that the physical mixtures of the drug candidates resulted in a single peak 

corresponding to the polymer melt with the peak for the drug absent in the scans for the 

physical mixture. The lack of the endotherm of the drug has been attributed to the melting 

and solubilisation of the drug within the molten carrier during the heating of the samples.  

PEG 8000 is characterised by an onset melt temperature of around 59 °C and the 

corresponding endotherms for indomethacin occur at 159.79 °C respectively. It may be 

possible that during the heating process for the analysis of thermograms for the physical 

mixtures, the molten carrier (which has nearly half the melting temperature when 

compared to the drug) begins to solubilise the drug thereby dispersing it within its matrix 

with the consequence that the endotherm for the drug disappears completely. To further 

explain the DSC results of physical mixtures during heating, the drug may be dissolved in 

the carrier and no crystalline drug remained as the melting temperature of the drug

reached showing only single carrier endotherm.     
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Figure 4.1. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
indomethacin, indomethacin alone and PEG 8000 alone.

Figure 4.2. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
indomethacin and PEG 8000.
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Figure 4.3. DSC thermograms of physical mixture consisting of 20%, 30% and 40%
(w/w) (bottom to top) indomethacin and PEG 8000.

4.3.1.2 DSC of polymer alone, phenacetin alone, solid dispersion 15% (w/w) 

(phenacetin-PEG 8000) and physical mixture 15% (w/w) of phenacetin-PEG 8000

Figures 4.4-5 show the DSC thermograms of phenacetin, PEG 8000, solid dispersion

15% (w/w) and physical mixture 15% (w/w) of phenacetin-PEG 8000. The thermograms 

of phenacetin alone and polymer alone exhibited single endothermic peaks at around 

133.38 °C and 59.13 °C for phenacetin and PEG 8000, respectively. Investigation of the 

heating scans of solid dispersion for the drug investigated showed melting peak for the 

polymer at around 59 °C with no endothermic peak corresponding to phenacetin (figure

4.4). The absence of a peak at temperatures corresponding to the melting of the drug 

could potentially be attributed to the solubilisation of drug within the hydrophilic 
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polymer matrix resulting in the conversion of crystalline phenacetin into amorphous 

form.

DSC scan for the physical mixture revealed an interesting profile. Physical mixture of 

phenacetin with the polymer (figure 4.5) showed two transitions: the first corresponding 

to the melt of the polymer (PEG 8000) and the second due to the melting of the 

phenacetin.  

Figure 4.4. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
phenacetin, phenacetin alone and PEG 8000 alone.
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Figure 4.5. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
phenacetin and PEG 8000.

4.3.1.3 DSC of polymer alone, paracetamol alone, solid dispersion 15% (w/w) 

(paracetamol-PEG 8000) and physical mixture 15% (w/w) of paracetamol-PEG 

8000

Figures 4.6-7 show the DSC thermograms of paracetamol, PEG 8000, solid dispersion

15% (w/w) (paracetamol-PEG 8000) and physical mixture 15% (w/w) of paracetamol-

PEG 8000. The thermograms of paracetamol alone and polymer alone exhibited single 

endothermic peaks at around 166.71 °C and 59.13 °C for paracetamol and PEG 8000, 

respectively. Investigation of the heating scans of solid dispersion for the drug 

investigated showed melting peak for the polymer at around 59°C with no endothermic 

peak corresponding to the paracetamol (figure 4.6). The absence of a peak at 

temperatures corresponding to the melting of the drug could potentially be attributed to 
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the solubilisation of drug within the hydrophilic polymer matrix resulting in the 

conversion of crystalline paracetamol into amorphous form.

Physical mixture of paracetamol with the polymer (figure 4.7) showed two transitions: 

the first corresponding to the melt of the polymer (PEG 8000) and the second due to the 

melting of the paracetamol. 

Figure 4.6. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
paracetamol, paracetamol alone and PEG 8000 alone.
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Figure 4.7. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
paracetamol and PEG 8000.

4.3.1.4 DSC of polymer alone, phenylbutazone alone, solid dispersion 15% (w/w) 

(phenylbutazone-PEG 8000) and physical mixture 15% (w/w) of phenylbutazone-

PEG 8000

Figures 4.8-9 show the DSC thermograms of phenylbutazone, PEG 8000, solid dispersion

15% (w/w) and physical mixture 15% (w/w) of phenylbutazone-PEG 8000. The 

thermograms of phenylbutazone alone and polymer alone exhibited single endothermic

peaks at around 107.70 °C and 59.13 °C for phenylbutazone and PEG 8000, respectively. 

Investigation of the heating scans of solid dispersion for the drug investigated showed 

melting peak for the polymer at around 59 °C with no endothermic peak corresponding to

the phenylbutazone (figure 4.8). The absence of a peak at temperatures corresponding to 

the melting of the drug could potentially be attributed to the solubilisation of drug within 

the hydrophilic polymer matrix resulting in the conversion of phenylbutazone into 

amorphous form.



Chapter 4 Characterisation Studies

137

Physical mixtures of phenylbutazone with the polymer (figure 4.9) resulted in the 

absence of melting endotherm corresponding to the drug as seen in the thermograms for 

the solid dispersion. To further investigate the binary physical mixture of phenylbutazone 

and PEG 8000, standard DSC at scan rate of 10 °C/min was employed to determine any 

transitions occurring during slow heating (Normal DSC) in contrast to faster heating rate 

used in Hyper DSC. Analysis of samples (physical mixture) containing 20%, 30% and 

40% (w/w) drug content for the phenylbutazone showed only a single peak corresponding 

to the melting of the polymer (figure 4.10).

Figure 4.8. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
phenylbutazone, phenylbutazone alone and PEG 8000 alone.
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Figure 4.9. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
phenylbutazone and PEG 8000.

Figure 4.10. DSC thermograms of physical mixture consisting of 20%, 30% and 
40% (w/w) (bottom to top) phenylbutazone and PEG 8000.
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4.3.1.5 DSC of polymer alone, chloramphenicol alone, solid dispersion 15% (w/w) 

(chloramphenicol-PEG 8000) and physical mixture 15% (w/w) of chloramphenicol-

PEG 8000

Figures 4.11-12 show the DSC thermograms of chloramphenicol, PEG 8000, solid 

dispersion 15% (w/w) (chloramphenicol- PEG 8000) and physical mixture 15% (w/w) of 

chloramphenicol-PEG 8000. The thermograms of chloramphenicol alone and polymer 

alone exhibited single endothermic peaks at around 150.48 °C and 59.13 °C for 

chloramphenicol and PEG 8000, respectively. Investigation of the heating scans of solid 

dispersion for chloramphenicol investigated showed melting peak for the polymer at 

around 59 °C with no endothermic peak corresponding to the drug (figure 4.11). The 

absence of a peak at temperatures corresponding to the melting of the drug could 

potentially be ascribed to the dispersion of the drug within the carrier matrix resulting in 

the loss of crystalline form and conversion into amorphous form. This phenomenon has

also been previously presented by Craig et al. (1991), Guyot et al. (1995) and Damian et 

al. (2000).

Physical mixtures of chloramphenicol with the polymer (figure 4.12) resulted in the 

absence of melting endotherm corresponding to the drug as seen in the thermograms for 

the solid dispersion. To further investigate the binary physical mixture of

chloramphenicol and standard DSC at scan rate of 10 °C/min was employed to gain 

insight into any transitions occurring during slow heating (Normal DSC) in contrast to 

faster heating rate used in Hyper DSC. Analysis of samples (physical mixture) containing 
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20%, 30% and 40% (w/w) drug content for the chloramphenicol showed only a single 

peak corresponding to the melting of the polymer (figure 4.13).

Figure 4.11. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
chloramphenicol, chloramphenicol alone and PEG 8000 alone.

Figure 4.12. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
chloramphenicol and PEG 8000.
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Figure 4.13. DSC thermograms of physical mixture consisting of 20%, 30% and 
40% (w/w) (bottom to top) chloramphenicol and PEG 8000.

4.3.1.6 DSC of polymer alone, sulphamethoxazole alone, solid dispersion 15% (w/w) 

(sulphamethoxazole-PEG 8000) and physical mixture 15% (w/w) of 

sulphamethoxazole-PEG 8000

Figures 4.14-15 show the DSC thermograms of sulphamethoxazole, PEG 8000, solid 

dispersion 15% (w/w) and physical mixture 15% (w/w) of sulphamethoxazole-PEG 8000.

The thermograms of sulphamethoxazole alone and polymer alone exhibited single 

endothermic peaks at around 167.22 °C and 59.13 °C for sulphamethoxazole and PEG 

8000, respectively. The heating scans of solid dispersion for the drug investigated showed 

melting peak for the polymer at around 59 °C with no endothermic peak corresponding to

sulphamethoxazole (figure 4.14). The absence of a peak at temperatures corresponding to 

the melting of the drug could potentially be attributed to the solubilisation of drug within 
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the hydrophilic polymer matrix resulting in the conversion of sulphamethoxazole into 

amorphous form.

Physical mixtures of sulphamethoxazole with the polymer (figure 4.15) resulted in the 

absence of melting endotherm corresponding to the drug as seen in the thermograms for 

the solid dispersion. Analysis of the samples using DSC at scan rate of 10 °C/min was 

employed to gain insight into any transitions occurring during slow heating in contrast to 

faster heating rate used in Hyper DSC. Analysis of samples (physical mixture) containing 

20%, 30% and 40% (w/w) drug content for the sulphamethoxazole showed only a single 

peak corresponding to the melting of the polymer (figure 4.16).

Figure 4.14. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
sulphamethoxazole, sulphamethoxazole alone and PEG 8000 alone.
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Figure 4.15. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
sulphamethoxazole and PEG 8000.

Figure 4.16. DSC thermograms of physical mixture consisting of 20%, 30% and 
40% (w/w) (bottom to top) sulphamethoxazole and PEG 8000.
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4.3.1.7 DSC of polymer alone, succinylsulphathiazole alone, solid dispersion 15% 

(w/w)  (succinylsulphathiazole-PEG 8000) and physical mixture 15% (w/w) of 

succinylsulphathiazole-PEG 8000

Figure 4.17-18 show the DSC thermograms of succinylsulphathiazole, PEG 8000, solid 

dispersion 15% (w/w) and physical mixture 15% (w/w) of succinylsulphathiazole-PEG 

8000. In case of succinylsulphathiazole alone, there were two melting endotherms which 

indicate the presence of more than one polymorphic forms of succinylsulphathiazole. 

Investigating the heating scans of solid dispersion for succinylsulphathiazole showed 

melting peak for the polymer at around 59 °C with no endothermic peak corresponding to

the drug (figure 4.17). The absence of a peak at temperatures corresponding to the 

melting of the drug could potentially be ascribed to the dispersion of the drug within the 

carrier matrix resulting in the loss of crystalline form.

Physical mixtures of succinylsulphathiazole with the polymer (figure 4.18) resulted in the 

absence of melting endotherms corresponding to the drug as seen in the thermograms for 

the solid dispersion. The analysis was followed up by DSC at scan rate of 10 °C/min

containing 20%, 30% and 40% (w/w) drug and resulted in a single peak corresponding to 

the melting of the polymer (figure 4.19).
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Figure 4.17. Hyper-DSC thermograms of solid dispersion consisting of 15% (w/w)
succinylsulphathiazole, succinylsulphathiazole alone and PEG 8000.

Figure 4.18. Hyper-DSC thermograms of physical mixture consisting of 15% (w/w)
succinylsulphathiazole and PEG 8000.
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Figure 4.19. DSC thermograms of physical mixture consisting of 20%, 30% and 
40% (w/w) (bottom to top) succinylsulphathiazole and PEG 8000.

Table 4.1 shows the summary of melting onset for Drug alone, drug-PEG 8000 15% 

(w/w) solid dispersion, PEG 8000 alone and physical mixture 15% (w/w) drug-PEG 8000 

during DSC studies.
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Table 4.1. DSC study of indomethacin, phenacetin, paracetamol, phenylbutazone 
chloramphenicol, sulphamethoxazole, succinylsulphathiazole, PEG 8000, solid 
dispersions 15% (w/w) drug-PEG 8000 and physical mixture 15% (w/w) of drug-
PEG 8000.

Drug alone, drug-PEG 8000 15% (w/w) solid dispersion, PEG 

8000 alone and physical mixture 15% (w/w) drug-PEG 8000

Melting onset

Indomethacin 159.79 °C

Indomethacin - PEG 8000 (15%:85%) solid dispersion 59.70 °C

PEG 8000 59.13 °C

Indomethacin - PEG 8000 (15%:85%) physical mixture 55.25°C

Phenacetin 133.38 °C

Phenacetin- PEG 8000 (15%:85%) solid dispersion 60.35 °C

PEG 8000 59.13 °C

Phenacetin- PEG 8000 (15%:85%) physical mixture 59 °C; 130.47°C

Paracetamol 166.71 °C

Paracetamol-PEG 8000 (15%:85%) solid dispersion 59.97 °C

PEG 8000 59.13 °C

Paracetamol-PEG 8000 (15%:85%) physical mixture 59 °C; 161.17°C

Phenylbutazone 107.70 °C

Phenylbutazone- PEG 8000 (15%:85%) solid dispersion 60.52 °C

PEG 8000 59.13 °C

Phenylbutazone- PEG 8000 (15%:85%) physical mixture 55.53°C

Chloramphenicol 150.48 °C

Chloramphenicol- PEG 8000 (15%:85%) solid dispersion 59.22 °C

PEG 8000 59.13 °C

Chloramphenicol- PEG 8000 (15%:85%) physical mixture 150.47°C

Sulphamethoxazole 167.22 °C

Sulphamethoxazole- PEG 8000 (15%:85%) solid dispersion 59.01 °C

PEG 8000 59.13 °C

Sulphamethoxazole- PEG 8000 (15%:85%) physical mixture 56.55°C

Succinylsulphathiazole 200.68 °C

Succinylsulphathiazole- PEG 8000 (15%:85%) solid dispersion 58.32 °C

PEG 8000 59.13 °C

Succinylsulphathiazole- PEG 8000 (15%:85%) physical mixture 53.18°C
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Investigation of the heating scans of solid dispersion for all the drugs investigated 

showed melting peak for the polymer at around 59 °C with no endothermic peak 

corresponding to the drug. The absence of a peak at temperatures corresponding to the 

melting of the drug could potentially be assigned to the solubilisation and distribution of 

the drug within the hydrophilic polymer matrix resulting in the conversion of crystalline 

drug form into amorphous form. Similar phenomena have also previously been reported 

and shown by various researchers (Craig et al. 1991; Guyot et al. 1995; Damian et al. 

2000). 

DSC scans for the physical mixture revealed an interesting profile. Physical mixtures of 

phenacetin and paracetamol with the polymer (figures 4.5 and 4.7) showed two 

transitions: the first corresponding to the melt of the polymer and the second due to the 

melting of the drug. However, physical mixtures of indomethacin, phenylbutazone, 

chloramphenicol, sulphamethoxazole and succinylsulphathiazole with the polymer 

(figures 4.2, 4.9, 4.12, 4.15 and 4.18) resulted in the absence of melting endotherm 

corresponding to the drug as seen in the thermograms for the solid dispersion.

In order to further investigate the differences in thermal behavior of the physical mixtures 

(presence and absence of drug endotherms), the samples were subjected to infra red 

analysis to determine the possibility of any molecular interactions between the two 

excepients. These results are similar to those presented by Frances et al. (1991) which

involved analysis of ciprofloxacin-PEG 6000 physical mixtures and are also similar to the 
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effects found by Dordunoo et al. (1991) for triamterene and temazepam-PEG physical 

mixtures.

4.3.2 Fourier transform infrared spectroscopy (FTIR)

In order to further characterise possible interactions between the drug and the polymeric 

carrier infrared spectra were recorded. Four different spectra comprising of drug only, 

polymer only, physical mixture of the drug 15% (w/w) with polymer and solid dispersion

15% (w/w) of the drug with the polymer were recorded for each of the drugs investigated.

4.3.2.1 FTIR spectra of polymer alone, indomethacin alone, solid dispersion 15% 

(w/w) (indomethacin-PEG 8000) and physical mixture 15% (w/w) of indomethacin-

PEG 8000

The infra red spectra for the polymer (figure 4.20a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. The IR spectra for indomethacin (figure 4.20b) was 

characterised by sharp transition occurring at 2965, 1716, 1612 and 1479 cm-1  

corresponding to the bond stretching associated with O-H, C=O, NH and C-C bonds

respectively.  Analysis of the spectra for both the physical mixture (figure 4.20c) as well 

as the solid dispersion of indomethacin (figure 4.20d) did not reveal any changes for the 

specific absorption bands for both the polymer as well as the drug suggesting a lack of 

interaction between the two moieties. Reproducibility of the spectra characteristic of PEG 

8000 and indomethacin when analysed as a physical mixture as well as solid dispersion 

suggested the absence of any interactions between indomethacin and PEG 8000.
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Figure 4.20. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) indomethacin, (c) physical mixture of PEG 8000 and indomethacin and (d) Solid 
dispersion of PEG 8000 and indomethacin.

4.3.2.2 FTIR spectra of polymer alone, phenacetin alone, solid dispersion 15% (w/w) 

(phenacetin-PEG 8000) and physical mixture 15% (w/w) of phenacetin-PEG 8000

The infra red spectra for the polymer (figure 4.21a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. Analysis of spectra for phenacetin (figure 4.21b) showed 

specific absorption bands at wave numbers 3286, 2928, 1267 and 838 cm-1 corresponding 

to the stretching associated with N-H, C-H, C-N and C-H respectively. However, infra 

red spectra for both the physical mix (Figure 4.21c) as well as the solid dispersion for 

phenacetin (figure 4.21d) showed broadening of peaks at 3286 cm-1 associated with N-H 

in the presence of PEG 8000. The broadening of these peaks (3450 cm-1 for PEG 

associated with O-H) clearly suggests the formation of hydrogen bond (Den et al., 1998) 

between the lone pair of electrons in the nitrogen atom and the hydrogen atom.  
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Figure 4.21. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) phenacetin, (c) physical mixture of PEG 8000 and phenacetin and (d) Solid 
dispersion of PEG 8000 and phenacetin.

4.3.2.3 FTIR spectra of polymer alone, paracetamol alone, solid dispersion 15% 

(w/w) (paracetamol-PEG 8000) and physical mixture 15% (w/w) of paracetamol-

PEG 8000

The infra red spectra for the polymer (figure 4.22a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and 

C-O bonds respectively. Analysis of spectra for paracetamol (figure 4.22b) showed 

specific absorption bands at wave numbers 3324, 3289 and 1225 cm-1 corresponding to 

the stretching associated with O-H, N-H and C-O respectively. However, infra red 

spectra for the physical mix (figure 4.22c) as well as the solid dispersion for paracetamol

(figure 4.22d) showed broadening of peaks at 3450 cm-1 associated with O-H group in 

PEG 8000 and 3289 cm-1 associated with N-H group in paracetamol suggesting the 

formation of hydrogen bond between the two groups (Den et al., 1998).
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Figure 4.22. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) paracetamol, (c) physical mixture of PEG 8000 and paracetamol and (d) Solid 
dispersion of PEG 8000 and paracetamol.

4.3.2.4 FTIR spectra of polymer alone, phenylbutazone alone, solid dispersion 15% 

(w/w) (phenylbutazone-PEG 8000) and physical mixture 15% (w/w) of 

phenylbutazone-PEG 8000

The infra red spectra for the polymer (figure 4.23a ) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. The IR spectra for phenylbutazone (figure 4.23b) was 

characterised by sharp transition occurring at 2956, 1752, 1325, 898 and 694 cm-1  

corresponding to the bond stretching associated with C-H, C=O, C-N, C-H and C-H 

bonds respectively.  Analysis of the spectra for both the physical mixture (figure 4.23c)

as well as the solid dispersion of phenylbutazone (figure 4.23d) did not reveal any 

changes for the specific absorption bands for both the polymer as well as the drug 

suggesting a lack of interaction between the two moieties.
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Figure 4.23. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) phenylbutazone, (c) physical mixture of PEG 8000 and phenylbutazone and (d) 
Solid dispersion of PEG 8000 and phenylbutazone.

4.3.2.5 FTIR spectra polymer alone, chloramphenicol alone, solid dispersion 15% 

(w/w) (chloramphenicol-PEG 8000) and physical mixture 15% (w/w) of 

chloramphenicol- PEG 8000

The infra red spectra for the polymer (figure 4.24a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. The IR spectra for chloramphenicol (figure 4.24b) was 

characterised by sharp transition occurring at 3466, 3347, 3259, 1686, 1563, 1348, 1107, 

845 and 656 cm-1 corresponding to the bond stretching associated with O-H alcohol, N-H 

amide, N-H, C=O carbonyl, C-C ring, N-O nitro compound, C-N aliphatic amine, C-H 

aromatic and C-Cl alkyl halide bonds respectively. Analysis of the spectra for both solid 

dispersion (figure 4.24a) as well as the physical mixture of chloramphenicol (figure

4.24c) did not reveal any changes for the specific absorption bands for both the polymer 

as well as the drug suggesting that there is no interaction between the two groups.
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Figure 4.24. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) chloramphenicol, (c) physical mixture of PEG 8000 and chloramphenicol (d) 
Solid dispersion of PEG 8000 and chloramphenicol.

4.3.2.6 FTIR spectra of polymer alone, sulphamethoxazole alone, solid dispersion 

15% (w/w) (sulphamethoxazole-PEG 8000) and physical mixture 15% (w/w) of 

sulphamethoxazole-PEG 8000

The infra red spectra for the polymer (figure 4.25a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. Analysis of spectra for sulphamethoxazole (figure 4.25b)

showed absorption bands at wave numbers 3467, 1621, 1596 and 1144 cm-1

corresponding to the presence of H-bonding, N-H amine, C-C aromtic ring and N-H 

aliphatic amine respectively. Analysis of the spectra for both solid dispersion (figure

4.25d) as well as the physical mixture of sulphamethoxazole (figure 4.25c) did not reveal 

any changes for the specific absorption bands for both the polymer as well as the drug 

suggesting that there is no interaction between the two groups.
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Figure 4.25. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) sulphamethoxazole, (c) physical mixture of PEG 8000 and sulphamethoxazole
(d) Solid dispersion of PEG 8000 and sulphamethoxazole.

4.3.2.7 FTIR spectra of polymer alone, succinylsulphathiazole alone, solid dispersion 

15% (w/w)   (succinylsulphathiazole-PEG 8000) and physical mixture 15% (w/w) of 

succinylsulphathiazole-PEG 8000

The infra red spectra for the polymer (figure 4.26a) was characterised by sharp peaks at 

3450, 2891 and 1148 cm-1 corresponding to the stretching associated with O-H, C-H and

C-O bonds respectively. Analysis of spectra for succinylsulphathiazole (figure 4.26b)

showed specific absorption bands at wave numbers 3471, 2945 and 842 cm-1

corresponding to the stretching associated with H-bonding, O-H and C-H respectively.  

Analysis of the spectra for both solid dispersion (figure 4.26d) as well as the physical 

mixture of succinylsulphathiazole (figure 4.26c) did not reveal any changes for the 
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specific absorption bands for both the polymer as well as the drug suggesting that there is 

no interaction between the two components.

Figure 4.26. Fourier transform infrared spectra of (bottom to top): (a) PEG 8000, 
(b) succinylsulphathiazole, (c) physical mixture of PEG 8000 and 
succinylsulphathiazole (d) Solid dispersion of PEG 8000 and succinylsulphathiazole.

The formation of hydrogen bond (Den et al., 1998) between the drug (paracetamol and 

phenacetin) with the polymer even as a physical mixture could possibly explain the DSC 

scans reported above. It may be possible that lower temperatures fail to break the strong 

hydrogen bonding association between the drug and the polymer whereby the mixing of 

the two components during the heating process of the DSC run is impeded as a result of 

which two distinct peaks corresponding to the melt of the polymer and the drug were 

obtained. However, the formulation of solid dispersions of these drugs which is 

characterised by continuous heating at a temperature above which both the polymer as 

well as the drug melt and the supplementation of the process with continuous stirring 

would explain the lack of peak in the DSC scans characteristic of the drug suggesting the 

drug to be in a dispersed amorphous state.  
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4.3.3 Scanning electron microscopy

Scanning electron microscopy (SEM) at different magnifications was used for 

investigating the morphological differences of samples (drugs, PEG 8000, physical 

mixtures and solid dispersions) and to further explain the DSC results.

4.3.3.1 SEM of PEG 8000

Figure 4.27 reveals that PEG 8000 exists as irregularly shaped particles as previously 

reported (Badens et al., 2009).             

                                                    

Figure 4.27. Scanning electron microphotograph of PEG 8000 

4.3.3.2 SEM of indomethacin alone, solid dispersion 15% (w/w) (indomethacin-PEG 

8000) and physical mixture 15% (w/w) of indomethacin-PEG 8000

Figure 4.28 reveals that indomethacin (figure 4.28a) showed plate-like crystals with 

irregular borders (Bandi et al., 2004). The physical mixture of the indomethacin with 

PEG 8000 (figure 4.28b) showed the presence of drug attached on the surface of carrier

(not dispersed in the carrier completely) which is justified by DSC results in physical 

mixtures. On the other hand, the photomicrographs of the solid dispersion (figure 4.28c) 

show that indomethacin might have dispersed in the carrier. It is clear that morphological 
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differences are seen between indomethacin alone, physical mixture and solid dispersion.

These observations show that the determinations from DSC study are justified from SEM 

studies.

a                                            b                                                  c 
Figure 4.28. Scanning electron microphotographs of  (a) indomethacin alone; (b) 
physical mixture of PEG 8000-indomethacin binary systems with 15% (w/w) drug 
content; (c) solid dispersion of indomethacin binary system with 15% (w/w) drug 
content.

4.3.3.3 SEM of phenacetin alone, solid dispersion 15% (w/w) (phenacetin-PEG 8000) 

and physical mixture 15% (w/w) of phenacetin-PEG 8000

Figure 4.29 reveals that phenacetin (figure 4.29a) consists of rod shaped crystals. The 

physical mixture of phenacetin with the carrier (figure 4.29b) showed that the drug was in 

crystalline form. On the other hand, the photomicrographs of the solid dispersion (figure

4.29c) showed that phenacetin might have dispersed in the carrier. 
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a                                              b                                                  c 
Figure 4.29. Scanning electron microphotographs of  (a) phenacetin alone; (b) 
physical mixture of PEG 8000-phenacetin binary systems with 15% (w/w) drug 
content; (c) solid dispersion of phenacetin binary system with 15% (w/w) drug 
content.

4.3.3.4 SEM of paracetamol alone, solid dispersion 15% (w/w) (paracetamol-PEG 

8000) and physical mixture 15% (w/w) of paracetamol-PEG 8000

Figure 4.30 reveals that paracetamol (figure 4.30a) SEM images were composed of 

irregular shaped particles and included cumulations of fine particles (Hirokazu et al.,

2005). The physical mixture of paracetamol with the carrier (figure 4.30b) showed that

the drug was in the crystalline form. However, the photomicrographs of the solid 

dispersion (figure 4.30c) showed that paracetamol might have dispersed in the carrier.

a                                            b                                              c       
Figure 4.30. Scanning electron microphotographs of  (a) paracetamol alone; (b) 
physical mixture of PEG 8000-paracetamol binary systems with 15% (w/w) drug 
content; (c) solid dispersion of paracetamol binary system with 15% (w/w) drug 
content.
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4.3.3.5 SEM of phenylbutazone alone, solid dispersion 15% (w/w) (phenylbutazone-

PEG 8000) and physical mixture 15% (w/w) of phenylbutazone-PEG 8000

Figure 4.31 reveals that phenylbutazone (figure 4.31a) consists of needle shaped crystals 

(Beretzky et al., 2002). The physical mixture of phenylbutazone with PEG 8000 (figure

4.31b) showed the presence of drug attached on the surface of carrier (not dispersed in 

the carrier completely) as explained by DSC results of physical mixtures. On the other 

hand, the photomicrographs of the solid dispersion (figure 4.31c) showed that 

phenylbutazone might have dispersed within the carrier. 

a                                     b                                          c 
Figure 4.31. Scanning electron microphotographs of  (a) phenylbutazone alone; (b) 
physical mixture of PEG 8000-phenylbutazone binary systems with 15% (w/w) drug 
content; (c) solid dispersion of phenylbutazone binary system with 15% (w/w) drug 
content.

4.3.3.6 SEM of chloramphenicol alone, solid dispersion 15% (w/w) 

(chloramphenicol-PEG 8000) and physical mixture 15% (w/w) of chloramphenicol-

PEG 8000

Figure 4.32 reveals that chloramphenicol SEM (figure 4.32a) was composed of irregular 

shaped particles. The physical mixture of chloramphenicol with PEG 8000 (figure 4.32b) 

showed the presence of drug attached on the surface of the carrier. Solid dispersion 
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(figure 4.32c) SEM showed that the drug might have dispersed within the carrier matrix 

which further supported DSC results.

                                               

     
a                                                  b                                                c  
Figure 4.32. Scanning electron microphotographs of (a) chloramphencol alone; (b) 
physical mixture of PEG 8000- chloramphencol binary systems with 15% (w/w)
drug content; (c) solid dispersion of chloramphencol binary system with 15% (w/w)
drug content.

4.3.3.7 SEM of sulphamethoxazole alone, solid dispersion 15% (w/w) 

(sulphamethoxazole-PEG 8000) and physical mixture 15% (w/w) of 

sulphamethoxazole-PEG 8000

Figure 4.33 reveals that sulphamethoxazole (figure 4.33a) consists of rod shaped crystals.

The physical mixture of sulphamethoxazole with PEG 8000 (figure 4.33b) showed the 

presence of drug attached on the surface of carrier. The photomicrographs of solid 

dispersion (figure 4.33c) showed that sulphamethoxazole might have dispersed in the 

carrier. SEM images reveal morphological differences between sulphamethoxazole, 

physical mixture and solid dispersion.
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a                                                b                                           c
Figure 4.33. Scanning electron microphotographs of (a) sulphamethoxazole alone; 
(b) physical mixture of PEG 8000- sulphamethoxazole binary systems with 15% 
(w/w) drug content; (c) solid dispersion of sulphamethoxazole binary system with 
15% (w/w) drug content.

4.3.3.8 SEM of succinylsulphathiazole alone, solid dispersion 15% (w/w)   

(succinylsulphathiazole-PEG 8000) and physical mixture 15% (w/w) of 

succinylsulphathiazole-PEG 8000

Figure 4.34 reveals that succinylsulphathiazole (figure 4.34a) showed plate-like crystals 

with irregular borders. The physical mixture of the drug with PEG 8000 (figure 4.34b) 

showed the presence of drug attached on the surface of carrier (not dispersed in the 

carrier completely) which was justified by DSC results of physical mixtures. On the other 

hand, the photomicrographs of the solid dispersion (figure 4.34c) show that 

succinylsulphathiazole might have dispersed in the carrier. These observations show that 

the results from DSC study are justified from SEM studies.
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a                                               b                                                c
Figure 4.34. Scanning electron microphotographs of (a) succinylsulphathiazole
alone; (b) physical mixture of PEG 8000- succinylsulphathiazole binary systems 
with 15% (w/w) drug content; (c) solid dispersion of succinylsulphathiazole binary 
system with 15% (w/w) drug content.

The physical mixture of paracetamol (figure 4.30b) and phenacetin (figure 4.29b) with

the carrier showed that the drug was in crystalline form. Similar results were obtained 

with indomethacin (figure 4.28b), phenylbutazone (figure 4.31b), chloramphenicol

(figure 4.32b), sulphamethoxazole (figure 4.33b) and succinylsulphathiazole (figure

4.34b) with PEG 8000 with the drug attached on the surface of carrier (not dispersed in 

the carrier completely) which was justified by DSC results in physical mixtures. On the 

other hand, the photomicrographs of the solid dispersion (figures 4.28c-34c) show that 

drugs might have dispersed in the carrier. It is clear that morphological differences were

seen between different drugs, physical mixtures and solid dispersions. All drug molecules 

must be dispersed or soluble or particle size reduced in the solid dispersions without 

crystal formation in order to enhance the dissolution profile (Al-Angary et al., 1996).

These observations also exhibit that the results from DSC study are tenable. SEM studies 

further suggested that the surface properties of all drugs and PEG 8000 were lost during 

the formation of solid dispersion system by melting and solidification resulting in the 

dispersion of the drug molecules within the carrier matrix. Furthermore, these results also 
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substantiate an enhancement in dissolution profile of the drug candidates possibly due to 

dispersion of the drug molecules and the absence of any crystalline particles characterised

by the prominent absence of the endotherm specific to the drug candidate during thermal 

analysis of solid dispersions using DSC.

4.3.4 Solubility

The solubility of solid dispersions of indomethacin, phenacetin, paracetamol, 

phenylbutazone, chloramphenicol, sulphamethoxazole and succinylsulphathiazole were 

compared to physical mixture and pure drug to further evaluate the affect of PEG 8000.

4.3.4.1 Solubility of indomethacin alone, solid dispersion 15% (w/w) (indomethacin-

PEG 8000) and physical mixture 15% (w/w) of indomethacin-PEG 8000

The solubility of the indomethacin from solid dispersions, physical mixtures and 

indomethacin alone were 33.14±0.93 µg/mL, 5.28±1.13 µg/mL and 1.02±0.45 µg/mL in 

phosphate buffer saline. As expected the solubility was higher in solid dispersion as 

compared to physical mixture and drug alone. This may be due to the amorphous form of 

indomethacin or dispersion of the indomethacin in the PEG 8000 resulting in its higher 

wettability (Teresa et al., 2002). In case of physical mixture higher solubility value (as 

compared to indomethacin alone) was due the presence of PEG 8000 which enhanced 

wettability of the drug.
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4.3.4.2 Solubility of phenacetin alone, solid dispersion 15% (w/w) (phenacetin-PEG 

8000) and physical mixture 15% (w/w) of phenacetin-PEG 8000

The solubility of the phenacetin from solid dispersions, physical mixtures and phenacetin

alone were 69.44±2.27 µg/mL, 10.47±0.63 µg/mL and 7.42±0.56 µg/mL in phosphate 

buffer saline. As expected the solubility was higher in solid dispersion as compared to 

physical mixture and drug alone. This may be due to the amorphous form of phenacetin

in solid dispersion as confirmed by DSC studies. In case of physical mixture higher 

solubility value (as compared to phenacetin alone) was due the presence of PEG 8000 

which enhanced wettability of the drug in the mixtures. 

4.3.4.3 Solubility of paracetamol alone, solid dispersion 15% (w/w) (paracetamol-

PEG 8000) and physical mixture 15% (w/w) of paracetamol-PEG 8000

The solubility of the paracetamol from solid dispersions, physical mixtures and 

paracetamol alone were 82.15±4.90 µg/mL, 30.53±4.49 µg/mL and 21.6±3.11 µg/mL in 

phosphate buffer saline. As expected the solubility was higher in solid dispersion as 

compared to physical mixture and drug alone. This may be due to the amorphous form of 

paracetamol in solid dipsersion. 

4.3.4.4 Solubility of phenylbutazone alone, solid dispersion 15% (w/w) 

(phenylbutazone-PEG 8000) and physical mixture 15% (w/w) of phenylbutazone-

PEG 8000

The solubility of the phenylbutazone from solid dispersions, physical mixtures and 

phenylbutazone alone were 44.68±2.7 µg/mL, 9.97±1.24 µg/mL and 6.34±0.68 µg/mL in 
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phosphate buffer saline. The higher solubility of the solid dispersion may be due to the 

amorphous form of phenylbutazone or dispersion of the phenylbutazone in the PEG 8000 

resulting in its higher wettability. The slight increase in solubility of the physical mixture 

was possibly due to the presence of PEG 8000 which enhanced wettability of the drug as 

compared to phenylbutazone alone.

4.3.4.5 Solubility of chloramphenicol alone, solid dispersion 15% (w/w) 

(chloramphenicol-PEG 8000) and physical mixture 15% (w/w) of chloramphenicol-

PEG 8000

The solubility of the chloramphenicol from solid dispersions, physical mixtures and 

chloramphenicol alone were 75.60±6.23 µg/mL, 27.80±4.78 µg/mL and 15.78±1.18

µg/mL in phosphate buffer saline. The solubility of chloramphenicol was higher in solid 

dispersion as compared to physical mixture and drug alone. The increase in solubility of 

chloramphenicol when formulated as a solid dispersion may be due to the amorphous 

form of the drug.

4.3.4.6 Solubility of sulphamethoxazole alone, solid dispersion 15% (w/w) 

(sulphamethoxazole-PEG 8000) and physical mixture 15% (w/w) of 

sulphamethoxazole-PEG 8000

The solubility of the sulphamethoxazole from solid dispersions, physical mixtures and 

sulphamethoxazole alone were 68.66±4.48 µg/mL, 20.07±0.95 µg/mL and 13.02±0.99

µg/mL in phosphate buffer saline. As expected the solubility was higher in solid 

dispersion as compared to physical mixture and drug alone. This may be due to the 
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amorphous form of sulphamethoxazole or dispersion of the sulphamethoxazole in the 

PEG 8000 resulting in its higher wettability. In case of physical mixture higher solubility 

value was due the presence of PEG 8000 which enhanced wettability of the drug as 

compared to sulphamethoxazole alone.

4.3.4.7 Solubility of succinylsulphathiazole alone, solid dispersion 15% (w/w)   

(succinylsulphathiazole-PEG 8000) and physical mixture 15% (w/w) of 

succinylsulphathiazole-PEG 8000

The solubility of the succinylsulphathiazole from solid dispersions, physical mixtures and 

succinylsulphathiazole alone were 60.29±2.27 µg/mL, 10.26±1.22 µg/mL and 5.72±0.53

µg/mL in phosphate buffer saline. The increase in solubility for the solid dispersion may 

be due to the amorphous form of succinylsulphathiazole or dispersion of the 

succinylsulphathiazole in the PEG 8000 resulting in its higher wettability. In case of 

physical mixture higher solubility value was due the presence of PEG 8000 which 

enhanced wettability of the drug as compared to succinylsulphathiazole alone.

The solubility for solid dispersions of indomethacin, phenacetin, paracetamol, 

phenylbutazone, chloramphenicol, sulphamethoxazole, succinylsulphathiazole, their 

physical mixtures (drug-PEG 8000) and drug alone are shown in table 4.2. The solubility 

of physical mixtures of indomethacin, phenacetin, paracetamol, phenylbutazone, 

chloramphenicol, sulphamethoxazole and succinylsulphathiazole with PEG 8000 in 

phosphate buffer saline after 24 hrs was higher than pure drug. This process can be 

attributed in the physical mixtures to the wettability of all drugs in the presence of PEG 
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8000 even though the drugs are not dispersed in the carrier nor are in amorphous form. It 

can be noticed that the solubility of all drugs were enhanced in the solid dispersion 

followed by physical mixture and pure drug. In case of solid dispersions the increase in 

solubility is due to the amorphous form of drug or dispersion of the drug in the PEG 8000 

resulting in its higher wettability as reported by Teresa et al. (2002). These results are in 

accordance with those of DSC and SEM data which suggested that solid dispersion of the

drug results in loss of crystallinity which enhanced the solubility of the drug.

Table 4.2. Solubility for solid dispersions 15% (w/w) of indomethacin, phenacetin, 
paracetamol, phenylbutazone, chloramphenicol, sulphamethoxazole, 
succinylsulphathiazole, their physical mixtures 15% (w/w)   (drug-PEG 8000) and 
drug alone in phosphate buffer saline. Data are expressed as mean±S.D.

Drug

Solid dispersions 

(µg/mL)±S.D

Physical mixtures 

(µg/mL)±S.D

Drug  alone 

(µg/mL)±S.D

Indomethacin 33.14±0.93 5.28±1.13 1.02±0.45

Phenacetin 69.44±2.27 10.47±0.63 7.42±0.56

Paracetamol 82.15±4.90 30.53±4.49 21.6±3.11

Phenylbutazone 44.68±2.7 9.97±1.24 6.34±0.68

Chloramphenicol 75.60±6.23 27.80±4.78 15.78±1.18

Sulphamethoxazole 68.66±4.48 20.07±0.95 13.02±0.99

Succinylsulphathiazole 60.29±2.27 10.26±1.22 5.72±0.53

4.3.5 Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) can determine the small changes of heat during 

reaction of drug and polymer (PEG 8000). The basic aim of using ITC technique was to 

detect binding of paracetamol and phenacetin to PEG 8000 in a physical mix as suggested

from FTIR studies. Further more we tried to use ITC for the PEG 8000/drug interactions 

in a similar way as protein–protein or carbohydrate–protein interactions. To the best of 
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our knowledge, this is the first time that PEG 8000/ drugs (paracetamol, phenacetin, 

chloramphenicol and sulphamethoxazole) interactions have been explored in this way.

4.3.5.1 Thermodynamic analysis of paracetamol using ITC

Figure 4.35 shows the ITC curves of the binding of the PEG 8000 to paracetamol (A) at 

25 °C. ITC data are shown in figure 4.35a, while a figure 4.35b shows a plot of the heat 

flow per mole of the titrant versus the molar ratio of the titrant to drugs for each injection, 

after subtraction of the background titration. It is observed that the binding of the PEG 

8000 to paracetamol is exothermic process. The best fit for the integrated heat was 

obtained using a one binding site model. The binding constant K (×10-3M-1) of the 

paracetamol is -2.46E4±7.47E3. The stoichiometry (N) for the binding of a PEG 8000

monomer paracetamol is 1:1.

  

Figure 4.35. ITC data from the titration of 0.25mM paracetamol (A) in the presence 
of 2.5 mM Polyethylene glycol 8000 (PEG 8000). a: heat flow versus time during 25 
injections of (PEG 8000) at 25°C (the first injection 2μL, subsequent ones 10μL
each). b: heat evolved per mole of PEG 8000 added against the molar ratio of PEG 
8000 to drug for each injection. (The data were fitted to a one- binding site model. ▪: 
the experimental data; -: the best fit).
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4.3.5.2 Thermodynamic analysis of phenacetin using ITC

Figure 4.36 shows the ITC curves of the binding of PEG 8000 to phenacetin (B) at 25 °C. 

The ITC data are shown in figure 4.36a, while a figure 4.36b shows a plot of the heat 

flow per mole of the titrant versus the molar ratio of the titrant to drug for each injection, 

after subtraction of the background titration. As noted for paracetamol, the interaction 

between phenacetin and polymer was an exothermic process. The binding constant K

(×10-3M-1) of phenacetin was -1.16E4±1. The stoichiometry (N) for the binding of a PEG 

8000 monomer to phenacetin was 4:1. The value of N was high. Possible reason for the

higher N value is that the PEG 8000 long chain might fold in such a way that its 

monomers are close enough to allow drug to bind both electrostatically and through H 

bonding (Helder et al., 2007).

      

Figure 4.36. ITC data from the titration of 0.25mM phenacetin (B) in the presence 
of 2.5 mM Polyethylene glycol 8000 (PEG 8000). a: heat flow versus time during 25 
injections of (PEG 8000) at 25°C (the first injection 2μL, subsequent ones 10μL
each). b: heat evolved per mole of PEG 8000 added against the molar ratio of PEG 
8000 to drug for each injection. (The data were fitted to a one- binding site model. ▪: 
the experimental data; -: the best fit).
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4.3.5.3 Thermodynamic analysis of chloramphenicol using ITC

Figure 4.37 shows the ITC curves of the binding of PEG 8000 to chloramphenicol (C) at 

25 °C. The ITC data are shown in figure 4.37a, while a figure 4.37b shows a plot of the 

heat flow per mole of the titrant versus the molar ratio of the titrant to drug for each 

injection, after subtraction of the background titration. The binding of PEG 8000 with

chloramphenicol was exothermic. The binding constant K (×10-3M-1) of chloramphenicol 

was 4.48E4±1.53E5. The stoichiometry (N) for the binding of a PEG 8000 monomer to 

chloramphenicol was 2:1. 

        

Figure 4.37. ITC data from the titration of 0.25mM chloramphenicol (C) in the
presence of 2.5 mM Polyethylene glycol 8000 (PEG 8000). a: heat flow versus time 
during 25 injections of (PEG 8000) at 25°C (the first injection 2μL, subsequent ones 
10μL each). b: heat evolved per mole of PEG 8000 added against the molar ratio of 
PEG 8000 to drug for each injection. (The data were fitted to a one- binding site 
model. ▪: the experimental data; -: the best fit).

4.3.5.4 Thermodynamic analysis of sulphamethoxazole using ITC

Figure 4.38 shows the ITC curves of the binding of PEG 8000 with sulphamethoxazole

(D) at 25 °C. ITC data are shown in figure 4.38a, while a figure 4.38b shows a plot of the 

heat flow per mole of the titrant versus the molar ratio of the titrant to drug for each 

injection, after subtraction of the background titration. It was observed that the binding of 
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the PEG 8000 to chloramphenicol is exothermic. The binding constant K (×10-3M-1) of 

chloramphenicol was -3.20E3±2.11E4. The stoichiometry (N) for the binding of a PEG 

8000 monomer to sulphamethoxazole was 1:1. 

         

Figure 4.38. ITC data from the titration of 0.25mM sulphamethoxazole (D) in the 
presence of 2.5 mM  Polyethylene glycol 8000 (PEG 8000). a: heat flow versus time 
during 25 injections of (PEG 8000) at 25°C (the first injection 2μL, subsequent ones 
10μL each). b: heat evolved per mole of PEG 8000 added against the molar ratio of 
PEG 8000 to drug for each injection. (The data were fitted to a one- binding site 
model. ▪: the experimental data; -: the best fit).

The best fit for the integrated heat was obtained using a one binding site model (table 

4.3). Furthermore, the data indicated that the binding of paracetamol is more exothermic 

(ΔH= −102.6 kcal/mol) than phenacetin, chloramphenicol and sulphamethoxazole (table 

4.3). Results show a positive value of ΔS for the drug- PEG 8000 binding (phenacetin 

and chloramphenicol) indicating that the binding is favoured by conformational entropy.
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Table 4.3. Thermodynamic parameters for the binding of PEG 8000 to paracetamol, 
phenacetin, chloramphenicol and sulphamethoxazole at pH 7.4 (from ITC 
measurements at 25°C); N: stoichiometry; K: binding constant; ΔH: binding 
enthalpy; ΔS: entropy change; and ΔG: free energy change.

Parameter Paracetamol Phenacetin Chloramphenicol Sulphamethoxazole

N 0.944±0.0347 4.12±24.6 2.24±1.24 1.07±335

K (×10-3M-1) -2.46E4±7.47E3 1.16E4±1.97E5 4.48E4±1.53E5 -3.20E3±2.11E4

ΔH (kcal/mol) -102.6±27.40 -32.49±30.75 -39.78±7.493 -63.50±69.25

ΔG (kcal/mol) - -38.003 -45.6458 -

ΔS (cal/mol K) - 0.0185 0.021 -

The binding constants K of the drugs was in the order Kchloramphenicol > Kphenacetin

> Kparacetamol > Ksulphamethoxazole. The effective numbers of binding sites per PEG 

8000 monomer was in the order Nphenacetin > Nchloramphenicol >

Nsulphamethoxazole > Nparacetamol. The stoichiometry (N) for the binding of a PEG 

8000 monomer to phenacetin was 4:1, for binding to chloramphenicol was 2:1, 

sulphamethoxazole was 1:1 and paracetamol was 1:1.

4.3.5.5 Thermodynamic analysis of PEG 8000 using ITC

Figure 4.39 shows the ITC curves of the binding of the PEG 8000 to phosphate buffer (E) 

and distilled water (F) at 25 °C. The ITC data are shown in figure 4.39. It is clear from 

ITC experiment that there were large heat changes (heat of dilution) that result when PEG 

8000 was added to either phosphate buffer or to water. These mask any possible 

interaction between PEG 8000 and the drug.



Chapter 4 Characterisation Studies

174

Figure 4.39. ITC data from the titration of 25mM phosphate buffer (E) and distilled 
water (F) in the presence of 2.5mM PEG 8000 (sample injector). Heat flow versus 
time during 25 injections of (PEG 8000) at 25°C (the first injection 2μL, subsequent 
ones 10μL each).

ITC was valuable tool in unravelling the minute differences between the interactions of 

drug with PEG 8000 under identical conditions. It allowed a quantitative comparison of 

the heat of interaction between the polymer and drug.

We can possibly hypothesise that the heat changes increases the dissolution of the drug 

within solid dispersion. We can further explain from ITC that the high energy released 

when PEG 8000 was titrated with drug in water or phosphate buffer enhanced dissolution 

rate.

The binding enthalpy of 4 drugs with PEG 8000 was in the order paracetamol > 

sulphamethoxazole > chloramphenicol > phenacetin and the reaction was exothermic.

E F
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4.4 Conclusions

DSC studies showed melting peak for the polymer at around 59 °C with no endothermic 

peak corresponding to the drug for all solid dispersion. The absence of a melting peak 

could potentially be assigned to the solubilisation or distribution of the drug within PEG 

8000 resulting in the conversion of crystalline drug form into amorphous form in solid 

dispersions. DSC scans for the physical mixture showed a very interesting profile.   

Physical mixtures of phenacetin and paracetamol with the PEG 8000 showed two 

transitions: the first corresponding to the melt of the PEG 8000 and the second due to the 

melting of the drug (phenacetin and paracetamol). However, physical mixtures of 

indomethacin, phenylbutazone, chloramphenicol, sulphamethoxazole and 

succinylsulphathiazole with the PEG 8000 showed single melting endotherm 

correposnding to the PEG 8000 as seen in the thermograms for the solid dispersion.

In order to further look into the differences in thermal behavior of the physical mixtures 

(presence and absence of drug endotherms), the samples were subjected to infra red 

analysis to determine the possibility of functional group interactions between drug and 

PEG 8000. FTIR spectra for the solid dispersion of all drugs did not reveal any changes 

for the specific absorption bands for both the PEG 8000 as well as the drug suggesting a 

lack of interaction between the PEG 8000 and drug. However, in the physical mixture of 

phenacetin and paracetmol showed the formation of hydrogen bond between the drug 

(paracetamol and phenacetin) and the PEG 8000 even as a physical mixture could 

possibly explain the DSC scans reported.  
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Drugs solubility was enhanced in the solid dispersion followed by physical mixture and 

pure drug. In case of solid dispersions it was possibly due to the conversion of crystalline 

drug into amorphous form during the formation of solid dispersion resulting in its higher 

wettability. 

ITC results show that it is a heat change that increases the dissolution of the drug in

physical mixture and solid dispersion in PEG 8000 as carrier. It may be due to high

energy released when polymer titrated with drug that enhanced dissolution rate as

compared to drug alone.
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5.1 Introduction

One of the problems that must be addressed for the commercial translation of solid 

dispersion is the instability of the dosage forms where the amorphous form may 

recrystallise out. In the field of drug targeting and delivery systems little attention is paid

to issues related to stability and reproducibility in formulation and performance. Stability 

testing is carried out to provide evidence on how the quality of pharmaceutical 

formulation varies with time under the influence of environmental factors such as

temperature and humidity. Additionally, product-related factors also influence the 

stability e.g. the chemical and physical properties of the active substances and the 

pharmaceutical excipients, the dosage form and its composition, the manufacturing 

process, the nature of the container-closure system and packaging materials. The quality 

of the pharmaceutical product has significant role in the safety of patients. The quality 

and safety of a pharmaceutical product is decreased by the changes in the chemical, 

pharmacological and toxicological properties of drugs that are caused by impurities and 

potential degradation products. To ensure delivery of active therapeutics to the patients,

drug stability is regarded as the safest method (Ahuja, 1998; FDA, Guidance for Industry: 

Impurities in Drug Product, Draft guidance, Center for Drug Evaluation and Research 

(CDER), 1998). Pharmaceuticals are highly sensitive to environmental factors because of 

their possible composition. Storage conditions should be kept in such a way that the 

product must remain intact and their activity is maintained.
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“Stability is defined as the capacity of a drug substance or drug product to remain within 

established specifications to maintain its identity, strength, quality, and purity throughout 

the retest or expiration dating periods”. (FDA, Draft Guidance for Industry: Stability 

Testing of Drug Substances and Drug Products, FDA, Rockville, MD, 1998).

In 1988, World Health Organization (WHO) initiated the stability testing protocols of 

pharmaceutical products. In 1996 WHO brought the Guidelines on stability testing for 

well established drug substance in conventional dosage forms on specification of 

pharmaceutical preparations. In 2000, International Conference on Harmonization (ICH) 

and WHO agreed to a number of stability tests and conditions employed. The mean 

kinetic temperature in any part of the world can be derived from climatic data, and the 

world can be divided into four climatic zones I, II, III and IV (table 5.1). The four zones 

in the world are differentiated by their characteristic prevalent annual climatic conditions. 

Information on the stability of the drug substance is an integral part of the systematic 

approach to stability evaluation. 

Table 5.1. Definition and storage conditions for the four climatic zones adopted 
from (ICH Q1A(R2), 2003).

Climatic zone Definition Storage condition

I temperate climate 21°C/45% RH

II subtropical and mediterranean climates 25°C/60% RH

III hot, dry climate 30°C/35% RH

IV hot, humid climate 30°C/70% RH
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General case

Table 5.2. General case with storage condition and duration adopted from (ICH 
Q1A(R2), 2003).

Study Storage condition Duration

Long term 25°C±2°C/60%RH±5%RH or

30°C±2°C/65%RH±5%RH

12 months

Intermediate 30°C±2°C/65%RH±5%RH 6 months

Accelerated 40°C±2°C/75%RH±5%RH 6 months

The formulation to be tested should be packaged in the same containers and packing that 

is proposed for the marketing of the final product. The stability study should cover those 

characteristics susceptible to change during storage conditions and likely to influence the 

quality, safety and efficacy of the formulation. Test parameters to be measured in a 

stability trial are determined by the dosage form/formulation type and may include 

physical properties of the product, drug content (active ingredient content), moisture 

content and any chemical interaction.
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5.2 Aim of the study

The main purpose of the current study was to investigate the qualitative and quantitative 

changes of drug (recrystallisation of drug, drug-excipient interaction, drug content and 

moisture absorption)  in the formulations with time under influence of temperature and 

humidity. The solid dispersion based tablets for all the drugs studied were prepared and 

packed in aluminum foil wrapping to simulate the blister packaging of the final product. 

Differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), 

drug content and thermogravimetric analysis (TGA) were carried out as part of the 

quality assessment criterion for all the formulations.  All the studies and characterisation 

reported were carried out in triplicate from three independently prepared batches. 
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5.3 Results and Discussion

5.3.1 Differential scanning calorimetry (DSC)

Representative DSC curves of solid dispersions of paracetamol, sulphamethoxazole, 

phenacetin, indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole 

with PEG 8000 after 3 months at accelerated conditions and 12 months at room 

temperature of storage are shown in table 5.3. Depending on the storage conditions, the 

DSC measurements reveal changes of three characteristics: 

(1) Change of the melting peak of PEG 8000, 

(2) The melting point of the drug and 

(3) Recrystallisation of drug. 

The main observation that can be made from these curves is that the melting behavior of 

PEG 8000 changed as a function of time and recrystallisation of drugs in accelerated 

conditions. Examination of peak temperature of PEG 8000 in the solid dispersions stored 

at accelerated storage condition (40°C±2°C/75%RH±5%RH) indicated a slight decrease 

in the peak temperature of PEG 8000 and recrystallisation of drug except indomethacin 

and phenacetin as illustrated from figures 5.1, 5.3, 5.5, 5.7, 5.9, 5.11 and 5.13. On the 

other hand, there were no marked differences between samples stored at room 
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temperature. There was no influence of storage time as well as storage conditions on the 

peak temperatures of these drugs in the solid dispersions stored at room temperature.

5.3.2 Fourier transform infrared spectroscopy (FTIR)

It was interesting to observe that the amorphous state of drug in solid dispersions with 

PEG 8000 was maintained throughout the storage period at room temperature for 12 

months. The spectra were identical and almost all the characteristic features of the drug 

were observed in every sample, showing that the lapse of the storage time had no 

influence on the appearance of the FTIR spectra at room temperature. However, in 

accelerated storage conditions (40°C±2°C/75%RH±5%RH) certain changes were noticed, 

for example, the lost or broadening or shortening or presence of some new functional 

group were shown in the FTIR spectra of solid dispersions.

5.3.3 Drug Content

In order to evaluate the effect of storage conditions on the chemical properties of the 

solid dispersions under investigation, their drug content behavior was studied. The data 

shows (table 5.4) a significant reduction of the percentage of drug content at accelerated 

storage conditions (40°C±2°C/75%RH±5%RH). 
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5.3.4 Thermogravimetric Analysis (TGA)

Thermogravimetric Analysis (TGA) is a type of testing that is performed on samples to 

determine changes in weight in relation to change in temperature. Its primary use 

includes measuring the thermal stability of a material. The effect of moisture content on 

product execution on stability should be evaluated by TGA. The moisture content of solid 

dispersion as shown in table 5.5 at room temperature after storage for 12 months was 

unchanged or remained same but in case of accelerated storage conditions

(40°C±2°C/75%RH±5%RH) it absorbed the moisture which caused the recrystallisation 

of drug demonstrated by DSC and change in the functional group as suggested by FTIR

studies. 

5.3.5 Stability studies of paracetamol 

5.3.5.1 Stability studies of paracetamol solid dispersion by DSC

The onset temperature for solid dispersion of paracetamol (figure 5.1) was 59 °C (a) and 

after 12 months storage at room temperature (c) stayed the same as no changes were 

observed in onset indicating the absence of any crystalline paracetamol. However, 

samples stored under accelerated stability conditions (b) for 3 months revealed four 

thermal events at 52 °C, 143 °C, 160 °C and 183 °C. The 52 °C melt possibly relates to 

the melting of the carrier which was lower than the onset temperature for solid dispersion 
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and this might be due to humidity and high temperature in accelerated conditions. The 

peak at 143 °C and 160 °C might be the drug onset which suggested that paracetamol

reverted to other polymorphic forms and drug recrystallised at 183 °C. This might also be 

due to moisture content and exposure to high temperature which suggested that solid 

dispersion of paracetamol is unstable at accelerated conditions. 

Figure 5.1. DSC traces of solid dispersion of paracetamol with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.5.2 Stability studies of paracetamol solid dispersion by FTIR

Analysis of spectra for paracetamol solid dispersion (figure 5.2) showed specific 

absorption bands at wave numbers 3500, 3291, 2888, 1267, 1250, 1243, 1149 and 700

cm-1 corresponding to the stretching associated with O-H, N-H O-H, C-H, C-C, C-O, C-O 
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and C-C respectively. Spectra for paracetamol solid dispersion did not reveal any changes 

for the specific absorption bands at room temperature for 12 months suggesting a lack of 

interaction which was further justified by DSC studies. However, changes were observed 

at wave numbers 3500 and 2888 cm-1 when stored under accelerated storage conditions. 

This might be due to moisture content and high temperature exposed at accelerated 

conditions.

Figure 5.2.  FTIR of solid dispersion of paracetamol with PEG 8000 (a, t=0), stored 
at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.5.3 Stability studies of paracetamol solid dispersion by drug content

The drug content of paracetamol solid dispersion was 99% at time point zero but after 3 

months at accelerated storage conditions (40°C±2°C/75%RH±5%RH), the drug content 

a

b
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was down to 27%. However, at room conditions the content of paracetamol was 97% 

which further suggested that the drug was intact in an amorphous form in the solid 

dispersion formulation. The reduction in the drug content at accelerated storage 

conditions suggests that there was a change in the physical structure of the amorphous 

drug/PEG 8000 dispersions. These differences are similar to that observed from DSC and 

FTIR. 

5.3.5.4 Stability studies of paracetamol solid dispersion by TGA

The moisture content of paracetamol solid dispersion was less than 1% at the start of the 

stability studies but after 3 months at accelerated storage condition 

(40°C±2°C/75%RH±5%RH), the moisture content was up to 10%. Formulations stored at 

room conditions showed similar results after 12 months as that observed at the initial time 

point suggesting minimum absorption of moisture. The enhancement in the moisture 

content at accelerated storage condition suggests that there was a change in the physical 

structure of the amorphous drug/PEG 8000 dispersions, which was further justified from 

drug content studies. However, these differences were also observed by the data obtained 

from DSC and FTIR suggesting that moisture absorption at higher humidity results in 

conversion of amorphous form into crystalline form.
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5.3.6 Stability studies of sulphamethoxazole

5.3.6.1 Stability studies of sulphamethoxazole solid dispersion by DSC

The onset temperature for solid dispersion of sulphamethoxazole (figure 5.3) was 61 °C 

(a) and was found to be exactly the same at room temperature (c) after 12 months storage

time since no difference was noticed in its onset temperature neither was 

sulphamethoxazole recrystallised within the solid dispersion. Three thermal events at 46

°C, 160 °C and 173 °C were recorded when exposed under accelerated stability 

conditions (b) after storage for three months. The 46 °C melt possibly relates to the 

carrier, where humidity and high temperature (accelerated conditions) to which the drug 

is exposed have caused the decrease in the onset temperature of solid dispersion. While 

the peaks at 160 °C and 173 °C are possibly due to the recrystallisation of drug 

suggesting the instability of solid dispersion of sulphamethoxazole at accelerated 

conditions. 
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Figure 5.3. DSC traces of solid dispersion of sulphamethoxazole with PEG 8000 (a, 
t=0), stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, 
t=12). t represents storage time (months).

5.3.6.2 Stability studies of sulphamethoxazole solid dispersion by FTIR

FTIR spectra for sulphamethoxazole solid dispersion (figure 5.4) exhibited absorption 

bands at wave numbers 3475, 3374, 2889, 1620, 1596, 1467 and 1150 cm-1

corresponding to the stretching associated with O-H, N-H, C-H, N-H, C-C, C-H and C-O 

respectively. Spectra for sulphamethoxazole solid dispersion showed the loss of 

absorption band at wave number 3475 cm-1 (O-H) at accelerated storage conditions. 

However, formulations at room temperature exhibited no change for specific absorption 

bands of sulphamethoxazole solid dispersion for 12 months as was further justified by 

DSC studies.
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Figure 5.4. FTIR of solid dispersion of sulphamethoxazole with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.6.3 Stability studies of sulphamethoxazole solid dispersion by drug content

The drug content of sulphamethoxazole solid dispersion was 98% at time point zero and 

remained the same at room conditions when stored at room temperature conditions. In 

contrast, the drug content was found to be 47% when exposed to accelerated storage 

conditions (40°C±2°C/75%RH±5%RH) after three months. This decline in the drug 

content suggests that a change in the physical structure of the amorphous drug/PEG 8000 

dispersions had occurred, as suggested by DSC and FTIR studies above. It may be due to 

the recrystallisation of the amorphous drug in the carrier matrix which decreases drug 

content in the solid dispersion of sulphamethoxazole.
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5.3.6.4 Stability studies of sulphamethoxazole solid dispersion by TGA

The moisture content of sulphamethoxazole solid dispersion was found to be less than 

1% at the start of the studies. It can be said that sulphamethoxazole was stable within the 

solid dispersion throughout the time period of 12 months as the moisture content was 

again observed to be less than 1% at room temperature conditions. However, moisture 

content increased to 6% after 3 months when accelerated storage conditions were applied 

(40°C±2°C/75%RH±5%RH). It is likely that during accelerated storage conditions the 

moisture absorption in the dispersion changes the stable and amorphous 

sulphamethoxazole into crystalline form as demonstrated from DSC results. In addition to 

this FTIR and drug content studies revealed results demonstrating similar differences.

5.3.7 Stability studies of phenacetin

5.3.7.1 Stability studies of phenacetin solid dispersion by DSC

The onset temperature of 59 °C (a) was observed for solid dispersion of phenacetin 

(figure 5.5) which was found to be unaltered after 12 months storage at room temperature 

(c) as recrystallisation of phenacetin in the solid dispersion was not found. In case of 

accelerated stability conditions (b) thermal event at 52 °C was observed after 3 months

storage. 
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Figure 5.5. DSC traces of solid dispersion of phenacetin with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.7.2 Stability studies of phenacetin solid dispersion by FTIR

Spectral analysis for phenacetin solid dispersion (figure 5.6) demonstrated absorption 

bands at wave numbers 3283, 2889, 1468, 1243, 1150 and 842 cm-1 associated with N-H, 

C-H, C-H, C-N, C-O and C-H respectively. No variation was displayed in the spectra for 

phenacetin solid dispersion for the specific absorption bands at room temperature for 12 

months suggesting a lack of interaction which was explained by DSC studies, while

accelerated storage conditions altered the spectra showing an absorption band at wave 

numbers 3283 and 2889 cm-1 associated with N-H and C-H. 
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Figure 5.6. FTIR of solid dispersion of phenacetin with PEG 8000 (a, t=0), stored at 
40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t represents 
storage time (months).

5.3.7.3 Stability studies of phenacetin solid dispersion by drug content

Analysis of drug content for phenacetin solid dispersion when subjected to accelerated 

storage conditions (40°C±2°C/75%RH±5%RH) showed that 74% of the initial amount of

drug was recovered after 3 months when compared to a 97% recovery at the start of the 

study.  Interestingly, formulations stored at room temperature conditions resulted in 96% 

drug recovery suggesting that lower temperature did not have any significant affect on 

drug stability. These results can further be substantiated with DSC as well as FTIR data 

where no changes were observed upon storage at room temperature conditions for 12 

months.
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5.3.7.4 Stability studies of phenacetin solid dispersion by TGA

The moisture content of phenacetin solid dispersion when exposed to accelerated storage 

conditions was 2% over a period of 3 months when compared to start of the study and 

samples stored at room temperature (1%). 

5.3.8 Stability studies of indomethacin

5.3.8.1 Stability studies of indomethacin solid dispersion by DSC

The onset temperature for solid dispersion of indomethacin (figure 5.7) was 64 °C (a) and 

after 12 months storage at room temperature (c) remained unaltered as no difference was 

found either in the onset and the recrystallisation of indomethacin in the solid dispersion

or its melting point. However, (b) after 3 months of storage at accelerated conditions, 

thermal event at 50 °C was noticed.  



Chapter 5 Stability Studies

195

Figure 5.7. DSC traces of solid dispersion of indomethacin with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.8.2 Stability studies of indomethacin solid dispersion by FTIR

Analysis of spectra for indomethacin solid dispersion (figure 5.8) demonstrated specific 

absorption bands at wave numbers 3394, 2945, 2890, 1702,1468,1343, 1242, 1149 and 

842 cm-1 associated with O-H, O-H, C-H, C=C, C-C, C-H, C-O, C-O and C-H 

respectively. Spectra for indomethacin solid dispersion did not reveal any changes for the 

specific absorption bands at room temperature for 12 months thus indicating a lack of 

interaction as supported by DSC. However, at accelerated storage conditions variations 

were seen in absorption band at wave numbers 3394 and 1702 cm-1. 
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Figure 5.8. FTIR of solid dispersion of indomethacin with PEG 8000 (a, t=0), stored 
at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.8.3 Stability studies of indomethacin solid dispersion by drug content

The drug content of indomethacin solid dispersion at the start of the experiment was 99% 

but after 3 months of storage at accelerated conditions, it was reduced to 70%. However,

for samples stored at room temperature conditions the content of indomethacin was 99% 

which evidently proved that the drug was intact in an amorphous form within the solid 

dispersion. As compared to paracetamol solid dispersion indomethacin drug content was 

more from indomethacin solid dispersion; this may be due to the factor that drug was an 

amorphous form in the solid dispersion as suggested by DSC. The thermogram of 
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indomethacin solid dispersion shows the onset change from 64 °C to 50 °C and  also that 

no recrystallisation of drug has taken place during accelerated storage conditions. 

5.3.8.4 Stability studies of indomethacin solid dispersion by TGA

The moisture content of indomethacin solid dispersion was less than 1% but after 3 

months at accelerated storage conditions, the moisture content increased to 3%. Although

at room conditions after 12 months the moisture content of indomethacin was found to be 

less than 1% suggesting that the drug was present in amorphous form in the solid 

dispersion. The enhancement in the moisture content at accelerated storage conditions

suggests a change in the physical structure of the amorphous drug/PEG 8000 dispersions, 

which can also be seen from drug content studies. However, these differences were also 

observed by the results obtained from DSC and FTIR. 

5.3.9 Stability studies of chloramphenicol

5.3.9.1 Stability studies of chloramphenicol solid dispersion by DSC

The onset temperature for solid dispersion of chloramphenicol (figure 5.9) was 59 °C (a) 

and after 12 months storage at room temperature (c) remained constant as no changes 

were observed in onset temperature and recrystallisation of chloramphenicol. However, 

two thermal events at 50 °C and 203 °C were displayed over the time period of (b) 3 
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months when subjected to accelerated stability conditions. The 50 °C melt possibly 

relates to the carrier which was lower than onset temperature for chloramphenicol solid 

dispersion and drug recrystallised at 203°C. The reasons for this might be high moisture 

content and exposure to high temperature at accelerated conditions. 

Figure 5.9. DSC traces of solid dispersion of chloramphenicol with PEG 8000 (a, 
t=0), stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, 
t=12). t represents storage time (months).

5.3.9.2 Stability studies of chloramphenicol solid dispersion by FTIR

Analysis of spectra for chloramphenicol solid dispersion (figure 5.10) showed specific 

absorption bands at wave numbers 3376, 3357, 2889, 1701, 1580, 1468, 1360, 1149, 

1113, and 842 cm-1 corresponding to the stretching associated with O-H, N-H, C-H, 

C=O, C-C, C-H, N-O, C-O, C-N and C-H respectively. No variation was exhibited by the 

spectra for chloramphenicol solid dispersion for the specific absorption bands at room 
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temperature conditions during the 12 months storage time. However, formulations 

subjected to accelerated storage conditions revealed alterations for absorption band at 

wave numbers 1580 cm-1 and loss of functional group at wave number 3375 cm-1

associated with O-H.

Figure 5.10. FTIR of solid dispersion of chloramphenicol with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).

5.3.9.3 Stability studies of chloramphenicol solid dispersion by drug content

The drug content of chloramphenicol solid dispersion at the start of the experiment was 

98% but with the passage of 3 months at accelerated storage conditions, the drug content 

was reduced to 62%. While at normal room temperature conditions the content of 
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chloramphenicol was found to be 96% stating that the drug remained intact in its 

amorphous form within the solid dispersion. The reduction in the drug content when 

exposed to accelerated storage conditions suggests that the physical structure of the 

amorphous drug/PEG 8000 dispersions had changed. Moreover, these differences were 

also observed in the data obtained from DSC and FTIR. Recrystallisation of the 

amorphous drug is the key factor for this in the solid dispersion.

5.3.9.4 Stability studies of chloramphenicol solid dispersion by TGA

The moisture content of chloramphenicol solid dispersion was found to be less than 1% 

whereas, after 3 months at accelerated storage conditions, the moisture content was 6%. 

On the other hand, for samples tested after 12 months duration at room temperature 

conditions, the moisture content of chloramphenicol was shown to be less than 1% which 

further implies that the drug was present in amorphous form in the solid dispersion. 

5.3.10 Stability studies of phenylbutazone

5.3.10.1 Stability studies of phenylbutazone solid dispersion by DSC

The onset temperature for solid dispersion of phenylbutazone (figure 5.11) was 61 °C (a) 

and no difference was seen in the onset tempereature of phenylbutazone in the solid 

dispersion even after 12 months storage at room temperature (c). But during accelerated 
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stability conditions (b) two thermal events were detected after storage for 3 months; 50

°C and 212 °C. The 212 °C indicates that this might be the recrystallisation (breakdown)

or conversion into different polymorphic form of phenylbutazone in the solid dispersion,

whereas, 50 °C melt relates to the carrier. Moisture content and high temperature could 

possibly explain changes in the onset temperature and breakdown/conversion into 

different polymorphic form of phenylbutazone at accelerated stability conditions. 

Figure 5.11. DSC traces of solid dispersion of phenylbutazone with PEG 8000 (a, 
t=0), stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, 
t=12). t represents storage time (months).

5.3.10.2 Stability studies of phenylbutazone solid dispersion by FTIR

Analysis of spectra for phenylbutazone solid dispersion (Fig. 5.12) showed specific 

absorption bands at wave numbers 3450, 2947, 1753, 1468, 1281, 1150 and 842 cm-1
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corresponding to the stretching associated with O-H, C-H, C=O, C-H, C-N, C-O and C-H 

respectively. Although no variations were exhibited by the spectra for phenylbutazone 

solid dispersion for the specific absorption bands after storage for 12 months at room 

temperature, absorption bands at wave numbers 2947, 1753 cm-1 and loss of functional 

group at wave number 3450 cm-1 associated with O-H were detected for the samples 

stored at accelerated conditions. 

Figure 5.12. FTIR of solid dispersion of phenylbutazone with PEG 8000 (a, t=0), 
stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, t=12). t 
represents storage time (months).
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5.3.10.3 Stability studies of phenylbutazone solid dispersion by drug content

The drug content of phenylbutazone solid dispersion was found to be 98% but was 

reduced to 61% after exposure to accelerated storage conditions over the period of 3 

months. However, the content of phenylbutazone when stored at room temperature was

shown to be 97% implying that the drug was in an amorphous form in the solid 

dispersion.

5.3.10.4 Stability studies of phenylbutazone solid dispersion by TGA

Phenylbutazone solid dispersion had less than 1% moisture content which increased to 

be 4% at accelerated storage conditions when examined after 3 months. On the contrary 

formulations stored at room temperature for 12 months duration, revealed low moisture 

content around 1% as that observed at the start of the study indicating the presence of 

amorphous form in the solid dispersion as evident from DSC, FTIR and drug content 

studies. However, the amorphous form of phenylbutazone solid dispersion is not retained 

as can be clearly seen from DSC results when subjected to accelerated storage conditions. 

Drug content studies also supported the same change. Moreover, similar differences were 

also observed by the results obtained from FTIR studies.
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5.3.11 Stability studies of succinylsulphathiazole

5.3.11.1 Stability studies of succinylsulphathiazole solid dispersion by DSC

The onset temperature for solid dispersion of succinylsulphathiazole (figure 5.13) was 61

°C (a) and stayed constant after 12 months storage at room temperature (c) as no 

recrystallisation of succinylsulphathiazole in the solid dispersion was observed.

Furthermore, no changes were found in the onset temperature. However, formulations 

exposed to accelerated stability conditions (b) presented three thermal events at 51 °C, 

200 °C and 218 °C after 3 months. The accelerated conditions have high humidity and 

high temperature which possibly causes the dispersion to melt at 51 °C that relates to the 

carrier to be lower than onset temperature of solid dispersion (61 °C). The peak at 200 °C 

might be the drug onset and drug recrystallised at onset 218 °C. 
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Figure 5.13. DSC traces of solid dispersion of succinylsulphathiazole with PEG 8000 
(a, t=0), stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, 
t=12). t represents storage time (months).

5.3.11.2 Stability studies of succinylsulphathiazole solid dispersion by FTIR

Analysis of spectra for succinylsulphathiazole solid dispersion (figure 5.14) indicated

peaks at wave number 3472, 3448, 2890, 1467, 1149 and 842 cm-1 corresponding to the 

stretching associated with O-H, O-H, C-H, C-H, C-O and C-H respectively. A lack of 

interaction can rightly be deduced as zero variations were observed by spectra for 

succinylsulphathiazole solid dispersion for the specific absorption bands at room 

temperature conditions for 12 months which was also supported by DSC studies. 

However, in case of samples stored at accelerated conditions, changes were observed

which included loss of an absorption band at wave number 3448 cm-1 associated with O-

H. 
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Figure 5.14. FTIR of solid dispersion of succinylsulphathiazole with PEG 8000 (a, 
t=0), stored at 40°C±2°C/75%RH±5%RH (b, t=3) and at room temperature (c, 
t=12). t represents storage time (months).

5.3.11.3 Stability studies of succinylsulphathiazole solid dispersion by drug content

Drug content observed for succinylsulphathiazole solid dispersion was 96% at the start of 

the experimental set up. The moisture content was 94% at room temperature conditions 

suggesting that succinylsulphathiazole was present in the amorphous form within the 

solid dispersion. When exposed to accelerated storage conditions, the drug content was 

reduced to 46% over the time period of 3 months. The accelerated storage conditions 

cause a decrease in the drug content showing that the amorphous form of 

succinylsulphathiazole within the solid dispersions had changed and resulted in drug 

degradation.
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5.3.11.4 Stability studies of succinylsulphathiazole solid dispersion by TGA

When the moisture content of succinylsulphathiazole was studied within the solid 

dispersion, it was found to be less than 1% at the start of the studies. After 3 months time 

period when subjected to accelerated storage conditions, the moisture content increased 

to 7%. However, the moisture content of succinylsulphathiazole after 12 months was less

than 1% at room temperature conditions. It suggests that the succinylsulphathiazole was 

present in an amorphous form in the solid dispersion. The enhanced moisture content

when exposed to high humidity and temperature possibly indicates that amorphous form 

of succinylsulphathiazole underwent a change at accelerated storage conditions, which 

can be additionally proved from DSC, FTIR and drug content studies. 

From the DSC curves of solid dispersions (table 5.3) it could be observed that the melting 

behavior (onset) of the carrier and drug recrystallisation significantly changed as a 

function of storage conditions at 40°C±2°C/75%RH±5%RH. But on other hand solid 

dispersion for all drugs were stable at room temperature conditions for 12 months.
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Table 5.3. Summary of DSC results for all solid dispersions at (t=0), stored at 
40°C±2°C/75%RH±5%RH (t=3) and at room temperature (t=12). t represents 
storage time (months).

S.No 15% solid dispersion 

(w/w)

DSC (onset To±S.D, 

recrystallisation Tr±S.D  

(time point 0 month) 

°C

DSC (onset To±S.D, 

recrystallisation

Tr±S.D  

(accelerated studies  

3 months)  °C

DSC (onset To±S.D, 

recrystallisation

Tr±S.D  

(room temperature 

studies  12 months) 

°C

1 Paracetamol 59±2 52±2,143±11,160,

183±9

59±2

2 Sulphamethoxazole 61±1 46±5,160±4,173±3 60±2

3 Phenacetin 59±5 52±1 59±2

4 Indomethacin 64±1 50±0.5 64±0.5

5 Chloramphenicol 59±1 50±2, 203±6 59±2

6 Phenylbutazone 60±0 50±2, 212±24 61±1

7 Succinylsulphathiazole 61±1 51±5, 200±18, 218±5 61±2
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From the drug content of solid dispersions (table 5.4) it could be observed that the drug 

content significantly changed as a function of storage conditions at 

40°C±2°C/75%RH±5%RH. But on other hand solid dispersion for all drugs remained

same at room temperature conditions for 12 months.

From the moisture content of solid dispersions (table 5.5) it could be observed that the 

moisture content significantly increased as a function of storage condition at accelerated 

storage conditions (40°C±2°C/75%RH±5%RH). But on other hand solid dispersion for 

all drugs remain same at room temperature for 12 months.
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Table 5.4. Summary of drug content for all solid dispersions at (t=0), stored at 
40°C±2°C/75%RH±5%RH (t=3) and at room temperature (t=12). t represents 
storage time (months).

S.No 15% solid dispersion (w/w) Drug contents 

mean%±S.D 

(time point 0 

month) 

Drug contents 

mean%±S.D 

(accelerated studies  

3 months) 

Drug contents 

mean%±S.D 

(room temperature 

studies  12 months) 

1 Paracetamol 99±5 27±5 97±3

2 Sulphamethoxazole 98±7 47±6 98±2

3 Phenacetin 97±4 74±5 96±4

4 Indomethacin 99±4 70±6 99±2

5 Chloramphenicol 98±8 62±9 96±3

6 Phenylbutazone 98±3 61±4 97±3

7 Succinylsulphathiazole 96±6 46±2 94±6
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Table 5.5. Summary of moisture content for all solid dispersions at (t=0), stored at 
40°C±2°C/75%RH±5%RH (t=3) and at room temperature (t=12). t represents 
storage time (months).

S.No 15% solid dispersion (w/w) TGA mean%±S.D 

(time point 0 month) 

TGA mean%±S.D 

(accelerated studies  

3 months) 

TGA mean%±S.D 

(room temperature 

studies  12 months) 

1 Paracetamol 0.54±0.29 9.76±0.42 0.48±0.20

2 Sulphamethoxazole 1.57±1.42 6.47±0.60 1.20±0.93

3 Phenacetin 0.30±0.182 1.93±0.25 0.29±0.16

4 Indomethacin 0.72±0.64 2.63±0.45 0.71±0.65

5 Chloramphenicol 0.23±0.07 6.07±0.55 0.23±0.09

6 Phenylbutazone 0.56±0.47 3.9±0.44 0.62±0.40

7 Succinylsulphathiazole 0.64±0.95 6.77±0.45 0.45±0.40
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The formation of solid dispersions often leads to the conversion of a crystalline drug into 

the amorphous state (a higher energy state). Thermodynamically, this high energy state is 

metastable and can in the course of time, be reconverted into the stable crystalline state 

(Fukuoka et al., 1986; Izutsu et al., 1994; Yoshioka et al., 1995). The dimensional 

arrangements of atom which exist in the crystalline form are absent in the amorphous 

form. When the storage condition i.e. temperature increases, the movement of molecules 

also increases, providing quicker crystallisation of the amorphous state. The movement of 

molecules in an amorphous state is related to chemical reactivity has been presented by 

Yoshioka and Aso (2007) and Craig et al. (1999) in which enhancing movement of 

molecules resulted in increased chemical decomposition of amorphous states. Exposure 

of metastable systems to high humidity may induce changes resulting in a decrease in

their dissolution properties, melting point, FTIR spectra and drug content. Solid 

dispersions tend to absorb a higher amount of moisture this may lead to the induction of 

crystallisation (Takeuchi et al., 2000). 

New peaks were observed in the FTIR spectra of the solid dispersions after storage under 

40 °C; these conditions indicated the drug in the matrix system underwent phase change, 

the kinetics of the reaction increase and the physico-chemical properties of the drug-

excipient are changed. Also, shift in the peak positions was observed indicating 

interaction between the drug and the polymeric matrix during accelerated storage 
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conditions. Furthermore, significant change in peak intensities corresponding to solid 

dispersions stored at 40 °C suggests that there is significant increase in the amount of 

crystalline drug in the matrix system after 3 months. Because the DSC studies have 

indicated that the drug is in the crystalline form in the matrix, it is not surprising to see 

significant changes of FTIR spectra. Storage at higher temperature speeds up and 

enhances recrystallisation process (Chieng et al., 2008). The FTIR spectra of the solid 

dispersions showed no loss or addition of bands, indicating the essential chemical and 

physical stability of the dispersion at room temperature conditions during the period of 12 

months study. All solid dispersions have high moisture content and lower drug content at 

accelerated conditions. The solid dispersion has the tendency to absorb higher amount of 

moisture which causes the recrystallisation of drug. This recrystallised drug in the solid 

dispersion affects the drug content. We get a similar trend for all solid dispersions having 

high moisture content and lower drug content except chloramphenicol at accelerated 

stability conditions.

Stability studies show that solid dispersions were unstable at accelerated storage 

conditions. This might be due to high temperature which enhances the molecules 

movement causing decomposition and conversion of drug into crystalline form. The solid 

dispersions were more sensitive to moisture and during accelerated storage it absorbs 

moisture which causes the recrystallisation of drug. The recrystallised drugs had low drug 
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content as compared to an amorphous drug form. This might be the reason for its effect 

on the dissolution, solubility and bioavailability because the amorphous state shows 

enhanced dissolution, solubility and bioavailability (Yu, 2001).

On the other hand, solid dispersions stored at room temperature conditions were stable 

after 12 months. There can be two possible explanations for this: Firstly, the temperature 

remained low at room (25 °C) as compared to temperature at accelerated storage (40 °C), 

and secondly the moisture content was controlled by silica gel. The hygroscopic nature of 

PEG 8000 results in the recrystallisation of the amorphous drug in the carrier matrix. In 

addition, the visual observation from our study showed that the solid dispersions were 

sticky due to moisture uptake of the polymer, which is also reflected from DSC, FTIR, 

drug content and TGA results. For stable solid dispersion formulations kept the 

temperature low to decrease the molecules movement to stop the chemical 

decomposition. Recrystallisation of drug in the solid dispersion was prevented by 

controlling the moisture content using silica gel.
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5.4 Conclusions

Stability studies were carried out for all solid dispersions under investigation at room 

conditions and accelerated conditions to determine the stability of drugs in the solid 

dispersions.

Accelerated stability studies (40°C±2°C/75%RH±5%RH) indicated that the solid 

dispersion for all seven drugs were unstable as shown by DSC, FTIR, drug content and 

TGA analysis. However, solid dispersions stored at room temperature conditions

(controlled moisture using silica gel) were stable for 12 months. Temperature and 

moisture are the two major factors that can rightly be said to have affected the stability of 

solid dispersions.
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6.1 Introduction

The process by which drug is taken from the site of administration to the site of action

within the body has been defined as absorption (Rowland & Tozer, 1995). Oral drug 

absorption is often referred to as drug transfer across the apical membrane of the 

enterocyte, as the apical membrane is considered to be the rate limiting step for 

permeation through the membrane (Fagerholm & Lennernas, 1995). Permeability is a 

general term describing how readily the drug is transferred through a membrane. The 

specific permeability characteristics of a drug are dependent on its physicochemical 

properties, including lipophilicity, charge, pH, size and polar surface area (Rowland & 

Tozer, 1995; Lipinski et al., 2001). The rate of absorption is dependent on permeability, 

surface area and concentration gradient across the membrane. The concentration gradient 

is the driving force for passive diffusion, the most common mechanism for drug 

membrane transport. 

The intestinal pH is an important factor for drug permeability as unionized molecules will 

pass the intestinal barrier most readily (Shore et al., 1957). As many drugs have a pKa in 

the physiological pH range, the permeability might vary with the degree of ionization of 

the compound according to the Henderson-Hasselbalch equation (Rowland & Tozer, 

1995). The lumenal pH in the fasted state of the gastro-intestinal tract varies from one 

intestinal region to another. In the stomach, it has been shown that the pH is 

approximately 2, in duodenum it is 6.0, from the jejunum to the ileum, it lies in the 

interval 6.5-7.5 and in colon it is 7.0 (Evans et al., 1988; Dressman et al., 1990). 

Consequently, there could also be a pH gradient across the intestinal membrane as the pH 
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of the blood is constant. This gradient could affect the drug permeability and is, therefore, 

often applied in in vitro permeability screening (Yamashita et al., 2000).

The small intestinal epithelium is a highly dynamic system, being spatially classified into 

proliferative, differentiating, and functional cells in the lower and upper crypt parts and 

on the villi, respectively. Therefore, dynamics during absorption has been studied in

experimental animals (Kedinger et al., 1987; Evans et al., 1994) or human colon cancer 

cell lines (Rousset, 1986). Animal models offer limited information about absorption in 

humans; for example, major differences in an intestinal cell differentiation in humans and 

rodents have been detected (Simon-Assman et al., 1994). 

Because in vivo studies performed with humans and laboratory animals are expensive, 

time consuming and often even unethical, in vitro methods, as accurate as possible, are 

needed in the screening of new formulations. Immortalized, often of cancer origin, 

animal and human cell cultures have been used for the estimation and prediction of 

human drug absorption. Several possible in vitro human cell models are available for this 

purpose, one of which is the Caco-2 cell model, a well characterised cell line. The Caco-2 

cell line is widely used in in vitro system for predicting gastro-intestinal absorption 

(Artursson et al., 1996). Caco-2 cells are derived from human colorectal carcinoma (Fogh 

et al., 1977) and differentiated spontaneously in culture into polarised cell monolayers 

with microvilli and tight junctions (Hidalgo et al., 1989). They differentiate 

spontaneously in culture and exhibit structural and functional differentiation patterns 

characteristic of mature enterocytes (Pinto et al., 1983). Caco-2 cells reach confluency 
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within 3-6 days and reach the stationary growth phase after 10 days in culture (Braun et 

al., 2000). Twenty days time period is required for complete differentiation (Pinto et al., 

1983). These cells when differentiated possess very high levels of different enzymes such 

as alkaline phosphatase, sucrase isomaltase and aminopeptidase activity characteristic to 

enterocyte brush border microvilli. Polarization of the monolayer after confluency is in 

correlation with the structural and functional differentiation of the microvilli. The tight 

junctions produced during the differentiation indicate the presence of structural polarity.

Barrier function is shown by monolayers as characterised by high transepithelial 

electrical resistance (TEER) values (200-600 Ωcm
2
, grown on polycarbonate filters).

Fully differentiated Caco-2 cells form an epithelial membrane with a barrier function 

similar to the human colon (Artursson et al., 1993). Caco-2 cell monolayers have been 

used for studying mechanisms of passive paracellular (Artursson et al., 1993; Artursson 

et al., 1996) and passive transcellular permeability (Artursson, 1990), carrier mediated 

absorptive transport of amino acids (Thwaites et al., 1995b), amino acid analogues (Hu 

and Borchardt, 1990; Thwaites et al., 1995a), oligopeptides (Thwaites et al., 1993), ß-

lactam antibiotics and ACE-inhibitors (Inui et al., 1992), and peptidomimetic thrombin 

inhibitors (Walter et al., 1995). Carrier mediated efflux of several drugs has been 

intensively studied over the last years (Benet et al., 1999; Collett et al., 2004). Many 

enzymes (e.g. Cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), 

sulphotransferases) and transporters (e.g. monocarboxylic acid transporter, P-

glycoprotein (P-gp) present in the small intestine are expressed in Caco-2 cells, though in 

different quantities than in the small intestine (Hidalgo et al., 1989; Konishi et al., 2002). 

Caco-2 cells nevertheless share many properties with the absorptive cells in human 
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intestine, and several studies have demonstrated excellent correlation between Caco-2 

permeability and intestine absorption in humans (Artursson and Karlsson, 1991; 

Yamashita et al., 2000). According to Biopharmaceutics Classification System (BCS) and 

FDA approval, Caco-2 cells can be used as a screening method for new drug candidates 

during drug discovery and development (Rubas et al., 1996; Artursson and Borchardt, 

1997; Guidance for Industry, FDA 2000).

P-gp is a phosphoglycoprotein belonging to the ATP (adenosine triphosphate)-binding 

cassette (ABC) transporter super-family. ABC transporters have a highly conserved ATP 

binding region, which is characteristic for these transporters. Over 200 ABC transporters 

are known and they exist in a wide variety of species, ranging from bacteria to humans, 

and are found in association with import or export of nutrients such as amino acids, 

sugars, peptides or hydrophobic substances (Higgins, 1992). The P-gp, (Pgp/ABCB1), 

can transport compounds with a broad range of chemical structure out of a cell through 

the consumption of energy. This phenomenon has been referred to as multidrug 

resistance (MDR) (Hunter & Hirst, 1997). Humans have one gene for multidrug 

resistance, the MDR1. One determinant for interaction with P-gp is the relative 

hydrophobicity of the interacting molecule. Substrates for P-gp have a partition 

coefficient (octanol/ water) of approximately +1 or greater (Hunter & Hirst, 1997). P-gp 

transports large hydrophobic, uncharged or slightly positively charged molecules

(Sarkadi and Muller, 1997; Stein, 1997). It was reported that P-gp was expressed not only 

in tumor cells but in many normal cells in various organs such as the liver, kidney, 

intestine and brain in humans and animals (Fojo et al., 1987; Thiebaut et al., 1987; 
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Cordon- Cardo et al., 1990). It has been suggested that the function of P-gp is to protect 

the body and important organs, such as the brain, from naturally occurring toxic 

substances. The contribution of P-gp in the blood-brain barrier (BBB) has been shown 

using knockout mice lacking the MDR gene, and drugs such as ivermectin and 

loperamide exhibited a much higher degree of brain toxicity when P-gp was absent 

(Schinkel et al., 1994; Schinkel et al., 1996). The function of P-gp in the intestine in not 

fully understood but it has been suggested that intestinal efflux transport by P-gp and 

other efflux proteins can affect the rate and extent of drug absorption and metabolism in 

rat and human intestine (Gan et al., 1996; Terao et al., 1996; Lown et al., 1997). Intestinal 

transporters, such as P-gp, could also cause drug-drug interactions due to changes in drug 

pharmacokinetics (Lin and Yamazaki, 2003). It could also be possible to increase the 

bioavailability after oral administration and transport across the BBB for some drugs and

to further understand drug-drug interactions.

Rhodamine123 is considered a permeant cationic fluorescent probe (Johnson et al., 

1981). Rhodamine123 is a substrate for P-gp and used as a marker for P-gp activity in 

cells, including Caco-2 cells.  Rhodamine123 was used to study processes such as uptake,

carrier-mediated studies (Cho et al., 2000), enhanced oral bioavailability of paclitaxel by 

d-α-tocopheryl polyethylene glycol 400 succinate (Hoa et al., 2008), permeability (Jung

et al., 2006) and modulation of P-glycoprotein-mediated efflux (Rupa et al., 2006).
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6.2 Aims of the study

The aim of this study was to study permeability of four drugs (indomethacin, phenacetin, 

paracetamol, phenylbutazone and their solid dispersions) and to establish any potential

correlation with dissolution studies during permeation across Caco-2 cell monolayers.

Indomethacin and phenylbutazone are carrier-controlled drugs whereas paracetamol and 

phenacetin are drug-controlled drugs. Indomethacin is a P-gp inhibitor and paracetamol is 

a P-gp substrate. Cell uptake studies were performed using rhodamine123 to further 

explore the effect and role of PEG 8000 in the permeability of these drugs.
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6.3 Results and Discussion

6.3.1 Calibration curve of indomethacin

Figure 6.1 shows the calibration curves of indomethacin by HPLC in Hank’s balanced 

salt solution (HBSS) at 264 nm. A calibration range of 2–10 µg/mL was established with 

good linearity over the entire working range (Coefficient of Determination R² = 0.99).

Figure 6.1. Calibration curve of indomethacin in Hank’s balanced salt solution 
(HBSS) at 264 nm using HPLC (n=3±S.D).
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6.3.2 Calibration curve of phenacetin

Figure 6.2 shows the calibration curves of phenacetin by HPLC in Hank’s balanced salt 

solution (HBSS) at 244 nm. A calibration range of 2–10 µg/mL was established with 

good linearity over the entire working range (Coefficient of Determination R² = 0.99).

Figure 6.2. Calibration curve of phenacetin in Hank’s balanced salt solution (HBSS) 
at 244 nm using HPLC (n=3±S.D).
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6.3.3 Calibration curve of paracetamol

Figure 6.3 shows the calibration curves of paracetamol by HPLC in Hank’s balanced salt 

solution (HBSS) at 240 nm. A calibration range of 2–10 µg/mL was established with 

good linearity over the entire working range (Coefficient of Determination R² = 0.99).

Figure 6.3. Calibration curve of paracetamol in Hank’s balanced salt solution 
(HBSS) at 240 nm using HPLC (n=3±S.D).



Chapter 6 Permeability Studies

226

6.3.4 Calibration curve of phenylbutazone

Figure 6.4 shows the calibration curves of phenylbutazone by HPLC in Hank’s balanced 

salt solution (HBSS) at 236 nm. A calibration range of 3–15 µg/mL was established with 

good linearity over the entire working range (Coefficient of Determination R² = 0.99).

Figure 6.4. Calibration curve of phenylbutazone in Hank’s balanced salt solution 
(HBSS) at 236 nm using HPLC (n=3±S.D).
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6.3.5 Transepithelial electrical resistance and Recovery of drug (s)

6.3.5.1 Transepithelial electrical resistance (TEER)

The transepithelial electrical resistance (TEER) of the Caco-2 monolayers measured at 

the start (t= 0 min) and end (t= 60 mins) of the experiment. The TEER values in the 

Caco-2 monolayers did not change during the course of the experiment (60 mins) (with

all drugs and solid dispersions) which showed that tight junction of the Caco-2 

monolayers were intact throughout the study (table 6.1).

Table 6.1. Transepithelial electrical resistance (TEER) of the Caco-2 monolayers 
measured at the start (t= 0 min) and end (t= 60 min) of the experiment. The TEER
values are represented as mean±S.D (n =3).
Formulation (s) Before experiment

TEER ohms (Ω)cm
2
±S.D. (n=3)

After experiment

TEER ohms (Ω)cm
2
±S.D. (n=3)

Indomethacin 562±35 527±27
Solid dispersion of indomethacin 551±42 537±41
Phenacetin 564±32 547±29
Solid dispersion of phenacetin 562±24 538±29
Paracetamol 556±29 537±31
Solid dispersion of paracetamol 570±21 563±17
Phenylbutazone 549±36 533±35
Solid dispersion of 
phenylbutazone

555±30 543±23

The differentiation of Caco-2 monolayers is completed within 20 days (Pinto et al., 

1983). Enzymes like alkaline phosphatase, sucrase isomaltase and aminopeptidase are 

found in these differentiated cells in high levels characteristic to enterocyte brush border 

microvilli. The structural and functional differentiation of the microvilli is associated 

with the polarization of the monolayer after confluency. The structural polarity is evident

from the tight junctions, which are formed during the differentiation. The monolayers 

exhibit a barrier function as judged by high TEER values 200-600 ohms (Ω)cm
2
. Figure 

6.5 showed the effect of (21) days in culture on the transepithelial electrical resistance of 
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Caco-2 monolayers grown on 6 transwell inserts. Cells were used in experiments at the 

age of 21–27 days (Khan et al., 2003; Khan et al., 2004; Tammela et al., 2004; Laitinen et 

al., 2007).

Figure 6.5. The effect of (21) days in culture on the transepithelial electrical 
resistance of Caco-2 monolayers grown on transwell inserts. Each point is the mean 
±S.D (n=6).

6.3.5.2 Recovery of Drug(s)

The calculated recoveries remained >70% for the entire range of drugs and solid 

dispersions investigated. An acceptable recovery value at the end of the Caco-2 

experiment is critical for the predictive value of the Caco-2 experiment. Indeed, if a low 

adsorption to the device surface), this could result in an erroneous estimation of the 

transport rate of the compound. Our result suggested that there was good recovery of 

drug after transport experiment and was more than 70% (shown in table 6.2) and no 

significant non-specific adsorption of drug to the plastic transwells was found at 37 °C 

suggesting that the drug was present in the cell monolayer (Neuhoff et al., 2005).
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Table 6.2. Recovery values (%) for the Apical-to-Basal transport experiment of the 
all drugs and solid dispersions. The values represent the average value of three 
experiments ±S.D(n =3).
Formulations Recovery (%)±S.D (n=3)
Indomethacin 83±10
Solid dispersion of indomethacin 90±4
Phenacetin 92±2
Solid dispersion of phenacetin 85±15
Paracetamol 70±3
Solid dispersion of paracetamol 76±3
Phenylbutazone 74±4
Solid dispersion of phenylbutazone 95±5

The permeability coefficients (Papp) were calculated and are tabulated in table 6.3.

Table 6.3. Shows the permeability coefficients (Papp) value calculated from solid 
dispersion and drug alone (n = 7) 
Drug (s) The permeability coefficients 

(Papp) x 10−6 cm/s (solid 
dispersion) ±S.D.

The permeability coefficients 
(Papp) x 10−6 cm/s (drug alone) 
±S.D.

Indomethacin 3.92±0.37 1.12±0.08
Phenacetin 42.52±5.97 29.37±4.12
Paracetamol 7.09±3.76 5.12±0.76
Phenylbutazone 15.98±0.99 10.04±0.30

6.3.6 Permeability Studies

6.3.6.1 Indomethacin

Figures 6.6-7 shows HPLC scan from permeability studies across Caco-2 monolayers at 

different time points of indomethacin and solid dispersion of indomethacin. 
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Figure 6.6. HPLC analysis of indomethacin alone from permeability studies at 5, 20,
60 mins time points (bottom to top).

Figure 6.7. HPLC analysis of solid dispersion of indomethacin from permeability 
studies at 5, 20, 60 mins time points (bottom to top).

Figure 6.8 shows the amount of indomethacin transferred (µg) across Caco-2 monolayer 

at different time points for both drug alone and solid dispersion.
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Figure 6.8. HPLC analysis of samples from Caco-2 cell studies evaluating the 
absorption of solid dispersion (�) of indomethacin in PEG 8000 as a carrier and 
indomethacin alone (). Data are expressed as mean±S.D (n = 3).

Figure 6.9 shows the cumulative % transferred of indomethacin from apical to basal per

transwell (µg/2.5 mL) across Caco-2 monolayer at different time point for both drug 

alone and solid dispersion.

Figure 6.9. Apical-to-basal permeability of solid dispersion of indomethacin (�) and 
indomethacin alone (■) across Caco-2 monolayers. Each column indicates 
mean±S.D (n=3).
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Figure 6.10 shows the rate transferred of indomethacin from apical to basal across Caco-2

monolayer for first 20 mins for drug alone, solid dispersion and difference in rate transfer 

from solid dispersion to drug alone.

Figure 6.10. Rate transferred of indomethacin across Caco-2 cell monolayers in 
basal medium by HPLC analysis. (Best linear fit for the apical to basolateral 
transport of solid dispersion and drug alone across Caco-2 cell monolyers was found 
over the first 20 mins) : Solid dispersion of indomethacin (�),indomethacin alone () 
and difference between amount transferred (µg) of solid dispersion to indomethacin 
alone (▲) with R² value. Data are expressed as mean±S.D (n = 3).

Figure 6.11 shows the apparent permeability coefficients (Papp) of indomethacin at 

different time points for both drug alone and solid dispersion across Caco-2 monolayers.
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Figure 6.11. The apparent permeability coefficients (Papp) of solid dispersion 
containing indomethacin (�) compared to the indomethacin alone (■).Each column 
indicates mean±S.D (n=3).

6.3.6.2 Phenacetin

Figures 6.12-13 show HPLC analysis from permeability studies across Caco-2 

monolayers at different time points of phenacetin alone and solid dispersion of 

phenacetin.
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Figure 6.12. HPLC analysis of phenacetin alone from permeability studies at 5, 20,
60 mins time points (bottom to top).

Figure 6.13. HPLC analysis of solid dispersion of phenacetin from permeability 
studies at 5, 20, 60 mins time points (bottom to top).

Figure 6.14 shows the amount of phenacetin transferred (µg) across Caco-2 monolayer at 

different time points for both drug alone and solid dispersion.
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Figure 6.14. HPLC analysis of samples from Caco-2 cell studies evaluating the 
absorption of solid dispersion (�) of phenacetin in PEG 8000 as a carrier and 
phenacetin alone (). Data are expressed as mean±S.D (n = 3).

Figure 6.15 shows the cumulative % transferred of phenacetin from apical to basal per 

transwell (µg/2.5 mL) across Caco-2 monolayer at different time points for both drug 

alone and solid dispersion.

Figure 6.15. Apical-to-basal permeability of solid dispersion of phenacetin (�) and 
phenacetin alone (■) across Caco-2 monolayers. Each column indicates mean±S.D
(n=3).
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Figure 6.16 shows the rate transferred of phenacetin from apical to basal across Caco-2

monolayer for first 20 mins for drug alone, solid dispersion and difference in rate transfer 

from solid dispersion to drug alone.

Figure 6.16. Rate transferred of phenacetin across Caco-2 cell monolayers in basal 
medium by HPLC analysis (Best linear fit for the apical to basolateral transport of 
solid dispersion and drug alone across Caco-2 cell monolyers was found over the 
first 20 mins): Solid dispersion of phenacetin (�),phenacetin alone () and difference 
between amount transferred (µg) of solid dispersion to phenacetin alone (▲) with 
R² value. Data are expressed as mean±S.D (n = 3).

Figure 6.17 shows the apparent permeability coefficients (Papp) of phenacetin at different 

time points for both drug alone and solid dispersion across Caco-2 monolayers.
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Figure 6.17. The apparent permeability coefficients (Papp) of solid dispersion 
containing phenacetin (�) compared to the phenacetin alone (■).Each column 
indicates mean±S.D (n=3).

6.3.6.3 Paracetamol

Figures 6.18-19 shows HPLC analysis from permeability studies across Caco-2 

monolayers at different time points of paracetamol alone and solid dispersion of 

paracetamol.
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Figure 6.18. HPLC analysis of paracetamol alone from permeability studies at 5, 20,
60 mins time points (bottom to top).

Figure 6.19. HPLC analysis of solid dispersion of paracetamol from permeability 
studies at 5, 20, 60 mins time points (bottom to top).

Figure 6.20 shows the amount of paracetamol transferred (µg) across Caco-2 monolayer 

at different time points for both drug alone and solid dispersion.
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Figure 6.20. HPLC analysis of samples from Caco-2 cell studies evaluating the 
absorption of solid dispersion (�) of parcetamol in PEG 8000 as a carrier and 
paracetamol alone (). Data are expressed as mean±S.D (n = 3).

Figure 6.21 shows the cumulative % transferred of paracetamol from apical to basal per 

transwell (µg/2.5 mL) across Caco-2 monolayer at different time point for both drug 

alone and solid dispersion.

Figure 6.21. Apical-to-basal permeability of solid dispersion of paracetamol (�) and 
paracetamol alone (■) across Caco-2 monolayers. Each column indicates mean±S.D
(n=3).
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Figure 6.22 shows the rate transferred of paracetamol from apical to basal across Caco-2

monolayer for first 20 mins for drug alone, solid dispersion and difference in rate transfer 

from solid dispersion to drug alone.

Figure 6.22. Rate transferred of paracetamol across Caco-2 cell monolayers in basal 
medium by HPLC analysis: (Best linear fit for the apical to basolateral transport of 
solid dispersion and drug alone across Caco-2 cell monolyers was found over the 
first 20 mins). Solid dispersion of parcetamol (�), paracetamol alone () and 
difference between amount transferred (µg) of solid dispersion to paracetamol alone 
(▲) with R² value. Data are expressed as mean±S.D (n = 3).

Figure 6.23 shows the apparent permeability coefficients (Papp) of paracetamol at 

different time points for both drug alone and solid dispersion across Caco-2 monolayers.
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Figure 6.23. The apparent permeability coefficients (Papp) of solid dispersion 
containing paracetamol (�) compared to the paracetamol alone (■).Each column 
indicates mean±S.D (n=3).

6.3.6.4 Phenylbutazone

Figures 6.24-25 show HPLC analysis from permeability studies across Caco-2 

monolayers at different time points of phenylbutazone alone and solid dispersion of 

phenylbutazone.
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Figure 6.24. HPLC analysis of phenylbutazone alone from permeability studies at 5, 
20, 60 mins time points (bottom to top).

Figure 6.25. HPLC analysis of solid dispersion of phenylbutazone from permeability 
studies at 5, 20, 60 mins time points (bottom to top).

Figure 6.26 shows the amount of phenylbutazone transferred (µg) across Caco-2

monolayer at different time points for both drug alone and solid dispersion.
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Figure 6.26. HPLC analysis of samples from Caco-2 cell studies evaluating the 
absorption of solid dispersion (�) of phenylbutazone in PEG 8000 as a carrier and 
phenylbutazone alone (). Data are expressed as mean±S.D. (n = 3).

Figure 6.27 shows the cumulative % transferred of phenylbutazone from apical to basal 

per transwell  (µg/2.5 mL) across Caco-2 monolayer at different time point for both drug 

alone and solid dispersion.

Figure 6.27. Apical-to-basal permeability of solid dispersion of phenylbutazone (�) 
and phenylbutazone alone (■) across Caco-2 monolayers. Each column indicates 
mean±S.D (n=3).
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Figure 6.28 shows the rate transferred of phenylbutazone from apical to basal across 

Caco-2 monolayer for first 20 mins for drug alone, solid dispersion and difference in rate 

transfer from solid dispersion to drug alone.

Figure 6.28. Rate transferred of phenylbutazone across Caco-2 cell monolayers in 
basal medium by HPLC analysis: (Best linear fit for the apical to basolateral 
transport of solid dispersion and drug alone across CaCo-2 cell monolyers was 
found over the first 20 mins). Solid dispersion of phenylbutazone (◊), 
phenylbutazone alone () and difference between amount transferred (µg) of solid 
dispersion to phenylbutazone alone (▲) with R² value. Data are expressed as 
mean±S.D (n = 3).

Figure 6.29 shows the apparent permeability coefficients (Papp) of phenylbutazone at 

different time points for both drug alone and solid dispersion across Caco-2 monolayers.
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Figure 6.29. The apparent permeability coefficients (Papp) of solid dispersion 
containing phenylbutazone (�) compared to the phenylbutazone alone (■).Each 
column indicates mean±S.D (n=3).

The transport of each drug through Caco-2 monolayers was more from the respective 

solid dispersions as shown in figures 6.8, 6.14, 6.20 and 6.26. All solid dispersions of the 

four drugs demonstrated a higher rate and extent of permeation than the drug alone. It 

gives the best linear fit for the apical to basal transport of drug, solid dispersion and

difference rate of transfer solid dispersion to drug alone over the first 20 mins with R² 

value as shown in figures 6.10, 6.16, 6.22 and 6.28. Unpaired t test results using Gradpad 

software showed that the difference were considered to be statistically significant in case 

of indomethacin (P value equals 0.0378)  while in case of phenylbutazone (P value

equals 0.0922), paracetamol (P value equals 0.1392) and phenacetin (P value equals 

0.5425) the difference were not considered to be statistically significant. It can be

concluded that the amount of transfer of drug in figures 6.8, 6.14, 6.20 and 6.26 show

similar trend over time as shown by the dissolution studies (figures 3.19, 3.23, 3.25 and 

3.29). The Papp at different time points for all solid dispersions and drug alone showed 
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two different trends for carrier and drug-controlled release drugs. The Papp of carrier-

controlled release drugs (indomethacin and phenylbutazone) did not change and remained 

constant for 30 mins as shown in figures 6.11 and 6.29. But in case of drug-controlled 

released drugs (paracetamol and phenacetin) the Papp were increased first (maximum at 

20 mins time point) and then decreased as shown in figures 6.17 and 6.23. The 

cumulative % transferred in basal medium from carrier and drug-controlled also showed 

some interesting profiles. In case of carrier-controlled release indomethacin and 

phenylbutazone the cumulative % transferred in basal medium tends to increase with time 

as shown in figures 6.9 and 6.27. But in case of drug-controlled release paracetamol and 

phenacetin the cumulative % transferred in basal medium remained constant as shown in 

figures 6.15 and 6.21.

The pattern of absorption followed the in vitro dissolution behavior of the solid 

dispersion reinforcing the role of PEG 8000 as a solubiliser for the drug in formulation. 

This observation was anticipated since the presentation of the drug at the site of 

absorption is dependent on the carriers. The solubilising effect of PEG 8000 allows the 

drug to quickly associate into the aqueous surrounding possibly by molecular 

complexation. This enables the solubilised drug to be absorbed quicker than the drug 

presented at the site of absorption without any carriers (Prabhu et al., 2005).

Nanoparticles to the size range of 230.95±38.97 nm are formed by PEG 8000 which 

might increase the uptake and also enhance the permeability of hydrophobic drugs as 

suggested by permeability (rhodamine123 cell uptake studies section 6.3.7) and 

dissolution studies. As shown from dissolution studies of pure drug (figures 3.19, 3.23, 
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3.25 and 3.29), the dissolution of drug alone was extremely poor in the phosphate buffer 

saline media as compared to solid dispersion. Poor solubility can be attributed to its 

hydrophobic nature and poor wettability. The dissolution rate increased significantly 

when PEG 8000 was added. The addition of PEG 8000 to the drug afforded a greater 

solubilising effect thus enhancing the dissolution rate (Alonso et al., 1988; Frances et al., 

1991; Al-Angary et al., 1996; Tantishaiyakul et al., 1999). The presence of PEG creates a 

better micro-environment for the dissolution of the drug (Weuts et al., 2005) which is 

further supported by permeability studies. Scanning electron microscopy suggests that 

drugs are dispersed in the carrier (PEG 8000) within the solid dispersions. Moreover,

drugs are in amorphous form within the solid dispersions as was further reinforced by 

differential scanning calorimetry, which in turn enhances permeability (figures 6.8, 6.14, 

6.20 and 6.26.) and dissolution as compared to crystal or rod shape of drug alone. It can 

be suggested that drug is present in an amorphous form within the solid dispersions

which improves the permeability of drugs.

The permeability coefficients (Papp) were calculated and are tabulated in table 6.2. 

Studies reported by Yee (1997) categorised the permeability coefficient (Papp) as low 

Papp (<1 ×10-6 cm/s), moderate Papp (=1-10×10-6 cm/s), or high Papp (>10×10-6 cm/s) 

corresponding to poor, moderate, and well-absorbed compounds, respectively. Based on 

this categorisation, the overall trend of absorption for all the four drugs suggests that the 

drug is absorbed more from the Caco-2 monolayers using PEG 8000 as a carrier in solid 

dispersion as compared to drug alone (table 6.3). However, as seen from table 6.3

phenacetin and phenylbutazone solid dispersion, tend towards the higher range of 
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absorption suggesting a high absorption behavior as compared to indomethacin and 

paracetamol which can be categorised as moderately absorbed systems. The drug 

absorbed from solid dispersion across Caco-2 monolayers for indomethacin is 

approximately 4 fold when compared to drug alone. In case of phenacetin, paracetamol 

and phenylbutazone solid dispersion the permeability coefficients are 1.5 fold as 

compared to drug alone across Caco-2 monolayers from apical to basal. These 

differences can be possibly explained as indomethacin is an inhibitor of a P-gp (Draper et 

al., 1997) which reduces the efflux of drug. However, paracetamol (Manov et al., 2007) 

which is the P-gp substrate possibly undergoes from drug efflux. The permeability data 

also shows similar trend toward the solubility of drug except paracetamol. The higher 

soluble drugs have higher permeability when administered as both solid dispersion and 

drug alone and are in order of phenacetin>phenylbutazone >indomethacin (solubility data

shown in table 6.4).  

Table 6.4. Solubility of solid dispersions and drug alone in phosphate buffer saline. 
Data are expressed as mean±S.D.

Drugs Solid dispersions  (µg/mL)±S.D Drug alone (µg/mL)±S.D
Phenacetin 69.44±2.27 7.42±0.56
Phenylbutazone 44.68±2.7 6.34±0.68
Indomethacin 33.14±0.93 1.02±0.45
Paracetamol 82.15±4.90 21.6±3.11

Recently, it was reported that some excipients, which are commonly added to 

pharmaceutical formulations, could inhibit the function of P-gp in the intestine. These 

excipients, which are added to formulations, are considered to be non-toxic and inert. To 

achieve an increase in drug transport by P-gp inhibition, the presence of polyoxyethylene 

groups is required (Cornaire et al., 2004). The possible explanation for the increase in 
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permeability across Caco-2 monolayers within the solid dispersions is the presence of 

PEG (Choi and Jo, 2004) which is inhibitor of a P-gp (Shen, et al., 2006), which

improved the solubility of drug (Betageri and Makarla, 1995) and form nanoparticle 

which modulate the permeability (Chiu et al., 2003; Johnson et al., 2002; Collnot et al., 

2006). It is suggested that PEG may have reduced P-gp activity by interfering with the 

structure of the apical membrane and thereby affecting either directly or indirectly the 

function of the transporter (Johnson et al., 2002). The data for PEG 8000 in the solid 

dispersion which implies that PEG increases the absorption and enhances permeability as 

compared to drug alone are shown (figures 6.8, 6.14, 6.20 and 6.26). It is further 

postulated for the carrier like PEG which is an inhibitor of a P-gp that it increases the 

absorption (Shen et al., 2006) and permeability of drug when used in the formulation.

6.3.7 Cell Uptake Studies

The aim of the work was to set up a proof of concept study to illustrate the uptake of 

hydrophobic drug in Caco-2 cell line. Rhodamine123 is a lipophilic fluorescent dye as a 

drug that has been found to be relatively non-toxic (Johnson and Walsh, 1980; Johnson 

and Walsh, 1981). Being a hydrophobic dye, rhodamine123 (Chawla et al., 2002; Liang 

et al., 2005) was efficiently loaded in the PEG 8000. Rhodamine123 is a substrate for P-

gp and can, therefore, be used as a marker for P-gp activity in cells. 4', 6-diamidino-2-

phenylindole (DAPI) treatment confirmed that the cells had remained completely viable 

assuring that the PEG 8000 did not induce any cytotoxicity (figures 6.30 and 6.32).
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6.3.7.1 Caco-2 cells treated with PEG 8000

The figure 6.30 shows Caco-2 cells treated with PEG 8000 and remained unclear because 

PEG 8000 is non-fluorescent. It also demonstrated that the nuclei of Caco-2 cells remain 

intact and cells were viable when treated with PEG 8000 as shown in figure 6.30. To get

clear vision of uptake, superimposed PEG 8000 with stain nuclei of PEG 8000 treated 

Caco-2 cells. It is not possible to differentiate in case of PEG 8000 because of non-

florescent nature.

Figure 6.30. Caco-2 cells were grown on 6 Transwell plates and treated with PEG 
8000 The images were taken by Fluorescence microscopy after 1h showing PEG 
8000 alone (a), PEG 8000 alone nuclei (b) and superimposed PEG 8000 alone with 
nuclei (c).

a

b

c
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6.3.7.2 Caco-2 cells treated with rhodamine123

The figure 6.31 shows Caco-2 cells treated with rhodamine123 are less fade. It also 

demonstrated that the nuclei of Caco-2 cells remained intact and cells were viable when 

treated with rhodamine123 as shown in figure 6.31. To further understand the uptake of 

rhodamine123, superimposed the rhodamine123 with stain nuclei of rhodamine123 

treated Caco-2 cells and clearly seen the rhodamine123 in figure 6.31c.
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Figure 6.31. Caco-2 cells were grown on 6 Transwell plates and treated with 
rhodamine 123. The images were taken by Fluorescence microscopy after 1h 
showing rhodamine 123 alone (a), rhodamine123 alone nuclei (b) and superimposed 
rhodamine123 alone with nuclei (c).

a

b

c
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6.3.7.3 Caco-2 cells treated with rhodamine123-PEG 8000

The figure 6.32 shows Caco-2 cells treated with rhodamine123-PEG (rhodamine123-

PEG) 8000. It is clear that PEG 8000 enhanced the uptake of rhodamine123 as shown in

figure 6.32 as compared to rhodamine123 alone (figure 6.31).It also demonstrated that 

the nuclei of Caco-2 cells remain intact and cells were viable when treated with 

rhodamine123-PEG 8000 as shown in figure 6.32. 
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Figure 6.32. Caco-2 cells were grown on 6 Transwell plates and treated with 
rhodamine123-PEG 8000. The images were taken by Fluorescence microscopy after
1h showing rhodamine123-PEG 8000 (a), rhodamine123-PEG 8000 nuclei (b) and 
superimposed rhodamine123-PEG 8000 with nuclei (c).

The intensity of rhodamine123 in rhodamine123-PEG 8000 is more as compared to 

rhodamine123 alone. The uptake level was increased approximately 4 times in the 

presence of PEG 8000 as shown in figure 6.33.

a

b

c
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Figure 6.33. Fluorescence microscopy of Caco-2 cells after incubation with 
rhodamine-123 solution in the absence of PEG 8000 exposed at 529 ms(a); in the 
presence of PEG 8000 exposed at 529 ms (b) and in the absence of PEG 8000 
exposed at 2121 ms(c).

It also suggests a more pronounced qualitative increase in rhodamine123 accumulation

when treated with PEG 8000 as compared to rhodamine123 alone. To get the same 

florescence and intensity the rhodamine123 alone treated Caco-2 cells were exposed at 

2121 ms as compared to rhodamine123-PEG 8000 which was exposed at 529 ms as 

shown in figure 6.33.  

a

b

c
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The uptake of rhodamine123 was significantly increased by PEG 8000 as compared to 

rhodamine123 alone as shown in figure 6.32. We have determined that significantly 

higher accumulation of rhodamine123 in Caco-2 cells was observed in cells treated 

rhodamine123-PEG 8000 as compared to rhodamine123 alone treated cells evidently by 

PEG 8000. The most evident explanation for this phenomenon is that PEG 8000 

increased solubility, permeability and formation of nanoparticles which enhanced the 

uptake of rhodamine123. As suggested by various researchers (Johnson et al., 2002; Chiu 

et al., 2003; Collnot et al., 2006) PEG 8000 modulated the uptake of rhodamine123 

possibly due to the formation of nanoparticles by PEG 8000. This study demonstrated 

that cells were intact after treated with rhodamine123-PEG 8000.

To further explain the permeability results and transport mechanism, microarray studies

for indomethacin (carrier-controlled release) which is P-gp inhibitor and paracetamol 

(drug-controlled release) which is P-gp substrate, were carried out. 
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6.4 Conclusions

It can be concluded from the permeability studies of four drugs under investigation; 

indomethacin, phenacetin, phenylbutazone and paracetamol that permeability was higher 

from solid dispersions as compared to drug alone. In case of indomethacin solid 

dispersion the permeability was as high as 4 times when compared with indomethacin 

alone. In solid dispersions of paracetamol, phenactin and phenylbutazone, the 

permeability was approximately twice than pure drug treatment. From the cell uptake

studies it has been shown that PEG 8000 enhanced the rhodamine123 uptake. From the 

above study the viability of Caco-2 cells can also be concluded when treated with PEG 

8000.  
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7.1 Introduction

Genomics is the field that deals with the study of genes and their function. The 

development of bioinformatics and the new emerging advanced technologies like 

microarray analysis has increased the knowledge of molecular mechanisms forming the 

basis of normal and dysfunctional biological processes. 

It is now possible to analyse and measure thousands of genes in a single RNA sample by 

using microarray analysis, also known as Gene expression profiling. This task can be 

achieved with the variety of the recently developed microarray platforms and the main 

concept for every sample is same: An array is spotted with DNA fragments or 

oligonucleotides that indicate particular gene coding regions. RNA after purification is 

labeled either fluorescently or radioactively and then hybridised to the slide/membrane. 

Hybridisation is also carried out simultaneously with reference RNA as it provides an

opportunity to compare data of many experiments.

Microarray has gained great popularity in recent years and is a routine work in 

laboratories. In almost every cancer related conference, microarray data is presented. 

Microarray was used to demonstrate the heterogeneous nature of breast cancer in a paper 

published in 2000 (Perou et al., 2000). This approach was already introduced but it was 

the first microarray publication to explain corresponding results. It was found for the first 

time by clinicians that it is possible to represent a patient-specific molecular signature by 

using microarray analysis which assists in selecting appropriate treatments from various 

options as well as in suggesting their consequences.
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7.1.1. Types of microarray

The expression of tens of hundreds of genes can be analysed simultaneously with the help 

of microarray. It also enables identification of genes which when arranged under certain 

conditions in specific tissues, for instance the induction of drugs or growth related 

changes can measure gene expression changes. This technique can also be employed to 

clinical procedures, like, establishing gene expression profiles in tumours by comparing 

patients that suffered a relapse to those sensitive to a drug (Folgueira, 2005; Jansen, 

2005). Microarrays have been classified into DNA and RNA microarrays, tissue 

microarrays and protein and antibody arrays.

7.1.2 DNA and RNA microarrays

The genetic profile of DNA greatly influences the basic principle of microarray 

technology. DNA or RNA, the starting material, should be of high quality and also the 

experimental replicates should be provided in adequate number in order to carry out the 

experiment successfully. To keep RNA intact, fresh tissue should either be snap frozen or 

kept in a proprietary RNA preservation reagent for subsequent storage in liquid nitrogen, 

since RNA degrades because it is a highly labile molecule. In the process of microarray 

manufacture thousands of ‘probe’ DNAs/RNAs, each of these are complementary to a 

certain gene transcript, are attached by applying various methods to a solid surface. DNA 

(target) is produced by reverse transcriptase of experimental RNA obtained from two 

different sources. DNA is labelled in this process with fluorescent dyes, such as green 

cyanine 3 and red cyanine 5 dyes (if single array is used for hybridisation of two 

samples). This in turn produces images and unprocessed raw data (figure 7.1). It is 
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possible to obtain targeted genotyping either by using the whole genome chips or by 

custom synthesis of the arrays. The difference of genes between the two samples is 

identified through the information obtained as a result of the molecular signature that is 

produced by applying bioinformatics.

Figure 7.1. Exemplar of microarray hybridisation. A representative portion from 
the 38K genome reveals the differential signals from two RNA samples.
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7.2 Aim of the study

The aim of the work presented in this chapter was to understand any gene expression 

changes that take place during the process of drug permeability.  Emphasis was laid on 

analysing the expression changes in the transporter network system (ATP binding 

cassette) and solute carrier transporter during permeability studies at different time points 

when treated with drug alone or the solid dispersion of the drug.

Two drugs, indomethacin and paracetamol were studied.  Indomethacin was chosen as it 

an inhibitor for PgP expression whereas paracetamol is a popular substrate.  
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7.3 Results and Discussion

7.3.1 RNA concentration measurement of control and PEG treated cells

RNA concentrations of control (untreated Caco-2 cells), PEG 8000, paracetamol, 

paracetamol solid dispersion, indomethacin and indomethacin solid dispersion treated 

Caco-2 cells were determined using a spectrophotometer.

RNA concentration of control (untreated Caco-2 cells) was measured at three different 

time intervals using spectrophotometer: initial time point being at 15 mins (1.89, 1.80, 

and 1.87), second at 30 mins (1.80, 1.87, and 1.8) and last at 60 mins (1.81, 1.80 and 2).

RNA quantification was studied by measuring absorbance at 260 nm and 280 nm. 

Absorbance ratio for RNA was observed to be about 1.80-2.0 (table 7.1) suggesting that 

nucleic acid preparations did not contain any protein contamination for downstream 

experiments.

Measurement of RNA concentration for PEG 8000 (table 7.1) treated Caco-2 cells at 

three different time intervals using spectrophotometer showed absorbance values at 260

nm and 280 nm to be in the range of 1.8-2.16. The recorded absorbances at 15 mins

(1.96, 2.16 and 1.84), at 30 mins (1.85, 2 and 2.00) and at 60 mins (1.97, 1.90 and 2.06)

showed that the extracted RNA was free from any protein contamination.   
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7.3.2 RNA concentration measurement of paracetamol aone and paracetamol solid 

dispersion treated Caco-2 cells

RNA concentration measurement of paracetamol alone treated Caco-2 cells was

measured via spectrophotometer at three time intervals of 15 mins (1.97, 1.94 and 1.95), 

30 mins (1.94, 1.85 and 2.04) and 60 mins (1.83, 1.83 and 2). Absorbance at 260 nm and 

280 nm were used for RNA quantification. It displayed absorbance ratio of 

approximately 1.83-2.04 (table 7.1) revealing that nucleic acid preparations have no 

protein contamination for downstream experiments. 

Analyses of RNA concentration of the solid dispersion of paracetamol treated Caco-2

cells at three different time events revealed the absorbance ratio in the region of 1.8-2.04

(table 7.1).

7.3.3 RNA concentration measurement of indomethacin alone and indomethacin 

solid dispersion treated Caco-2 cells

RNA concentration was noted for indomethacin alone (table 7.1) treated Caco-2 cells 

through spectrophotometer at three time periods i-e 15 mins (1.84, 1.96 and 1.9), 30 mins

(2.04, 1.88 and 1.85) and 60 mins (1.87, 2.03 and 1.95). RNA was quantified by applying 

absorbance at 260 nm and 280 nm. The absorbance ratio approximately was in the region 

of 1.84-2.04.
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RNA concentration measurement of indomethacin solid dispersion treated Caco-2 cells 

(table 7.1) showed the ratio of absorbance (260 nm/280 nm) was approximately 1.82-

2.14.

Table 7.1 shows the summary of RNA absorbance value at 260 nm and 280 nm for 

control (untreated Caco-2 cells), PEG 8000, paracetamol, paracetamol solid dispersion, 

indomethacin and indomethacin solid dispersion treated Caco-2 cells.

Table 7.1 RNA concentrations of control (untreated Caco-2 cells), PEG 8000, paracetamol, 
paracetamol solid dispersion, indomethacin and indomethacin solid dispersion were 
measured using a spectrophotometer. Absorbance at 260 nm and 280 nm (absorbance 
ratios: 260 nm/280 nm) were used for quantification of RNA. 

Sample(s)

15mins 30mins 60mins

260nm 280nm
Absorbance 
ratio 260nm 280nm

Absorbance 
ratio 260nm 280nm

Absorbance 
ratio 

Control 0.053 0.028 1.89 0.06 0.0332 1.80 0.069 0.038 1.81
0.065 0.036 1.80 0.055 0.029 1.87 0.074 0.041 1.80
0.062 0.033 1.87 0.072 0.04 1.8 0.054 0.027 2

PEG 8000 0.059 0.03 1.96 0.052 0.028 1.85 0.0612 0.031 1.97
0.056 0.026 2.16 0.056 0.028 2 0.0611 0.032 1.90
0.059 0.032 1.84 0.062 0.031 2.00 0.062 0.03 2.06

Paracetamol 0.075 0.038 1.97 0.066 0.034 1.94 0.077 0.042 1.83
0.096 0.049 1.95 0.089 0.048 1.85 0.065 0.0354 1.83
0.068 0.035 1.94 0.086 0.042 2.04 0.076 0.038 2

Paracetamol 
solid 
dispersion 0.184 0.102 1.80 0.096 0.045 2.13 0.084 0.041 2.04

0.181 0.098 1.84 0.091 0.048 1.89 0.079 0.04 1.97
0.165 0.088 1.87 0.183 0.091 2.01 0.0786 0.042 1.87

Indomethacin 0.061 0.033 1.84 0.098 0.048 2.04 0.107 0.057 1.87
0.055 0.028 1.96 0.096 0.051 1.88 0.13 0.064 2.03
0.095 0.05 1.9 0.087 0.047 1.85 0.096 0.049 1.95

Indomethacin 
solid 
dispersion 0.056 0.03 1.86 0.062 0.032 1.93 0.071 0.038 1.86

0.067 0.035 1.93 0.071 0.039 1.82 0.096 0.051 1.88
0.061 0.032 1.90 0.067 0.0312 2.14 0.075 0.039 1.92
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7.3.4 Gel electrophoresis

Gel electrophoresis is a technique mostly used in biochemistry and molecular biology for 

RNA molecules separation by size. Negatively charged nucleic acid molecules move

towards positive charged electrode through an agarose matrix in an applied electric field.

RNA of control (untreated Caco-2 cells), PEG 8000, paracetamol, paracetamol solid 

dispersion, indomethacin and indomethacin solid dispersion treated Caco-2 cells were run 

on gel electrophoresis to determine their integrity.

7.3.4.1 Gel electrophoresis of control RNA

RNA of untreated Caco-2 cells run on gel electrophoresis showed rRNA (ribosomal 

Ribonucleic Acid) bands for 28 S and 18 S. This implies that RNA did not degrade. 

Before the formation of cDNA (complementary Deoxyribonucleic Acid), the quality of 

RNA was proved from these bands. Figure 7.2 shows samples of control RNA at three 

different time intervals using gel electrophoresis.

Figure 7.2. Gel electrophoresis of RNA untreated Caco-2 cells showing bands for 28
S and 18 S rRNA. First 3 samples represent 15 mins time point followed by next 3 
samples for 30 mins time point and last 3 samples for 60 mins time point (from left 
to right).  

28 S

18 S
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7.3.4.2 Gel electrophoresis of Caco-2 cells RNA treated with PEG 8000 

rRNA bands of 28 S and 18 S were seen by running RNA of Caco-2 cell treated with 

PEG 8000 on a gel electrophoresis. These bands suggest that RNA remained intact. 

Partially degraded RNA possessed a smeared appearance. Figure 7.3 shows samples of 

PEG 8000 treated RNA of Caco-2 cells at three different time intervals using gel 

electrophoresis. The quality of RNA was confirmed before cDNA was synthesised 

through the gel electrophoresis as is evident from rRNA bands that RNA was intact.  

Figure 7.3. Gel electrophoresis of PEG 8000 treated Caco-2 cells RNA showing 
bands for 28 S and 18 S rRNA. First 3 samples represent 15 mins time point 
followed by next 3 samples for 30 mins time point and last 3 samples for 60 mins
time point (from left to right).  

7.3.4.3 Gel electrophoresis of Caco-2 cells RNA treated with paracetamol 

RNA of Caco-2 cells treated with paracetamol run on gel electrophoresis showed rRNA 

bands for 28 S and 18 S. Figure 7.4 shows samples of paracetamol treated RNA of Caco-

2 cells at three different time intervals using gel electrophoresis. Similarly, Caco-2 cells 

28 S

18 S
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treated with solid dispersion showed intact RNA bands as shown in figure 7.5 suggesting 

that the quality of RNA was not compromised during experimental procedures.

Figure 7.4. Gel electrophoresis of Caco-2 cells RNA treated with paracetamol 
showing bands for 28 S and 18 S rRNA. First 3 samples represent 15 mins time 
point followed by next 3 samples for 30 mins time point and last 3 samples for 60
mins time point (from left to right).  

28 S

18 S
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Figure 7.5. Gel electrophoresis of Caco-2 cells RNA treated with paracetamol solid 
dispersion showing bands for 28 S and 18 S rRNA. First 3 samples represent 15
mins time point followed by next 3 samples for 30 mins time point and last 3 
samples for 60 mins time point (from left to right). 

7.3.4.4 Gel electrophoresis of Caco-2 cells RNA treated indomethacin

RNA of Caco-2 cells treated with indomethacin run on gel electrophoresis have rRNA 

bands for 28 S and 18 S. These bands signify the intactness of RNA. Figure 7.6 show

samples of indomethacin treated RNA of Caco-2 cells at three different time intervals 

using gel electrophoresis. Similar results were obtained upon treatment with solid 

dispersion of indomethacin (figure 7.7).   

28 S

18 S
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Figure 7.6. Gel electrophoresis of Caco-2 cells RNA treated with indomethacin 
showing bands for 28 S and 18 S rRNA. First 3 samples represent 15 mins time 
point followed by next 3 samples for 30 mins time point and last 3 samples for 60
mins time point (from left to right).  

Figure 7.7. Gel electrophoresis of Caco-2 cells RNA treated with indomethacin solid 
dispersion showing bands for 28 S and 18 S rRNA. First 3 samples represent 15
mins time point followed by next 3 samples for 30 mins time point and last 3 
samples for 60 mins time point (from left to right).  

28 S

18 S

28 S

18 S
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7.3.5 Data clustering and normalisation

The data set obtained was normalised using the TMEV software. This was done to 

eliminate any deviations due to the introduction of any systematic errors such as 

differential labelling efficiency of the two fluorescent dyes, differences in starting amount 

of mRNA prior to cDNA synthesis and hybridisation. Total intensity normalisation was 

carried out as the amount of RNA for the various experiments was same.  

Various methods are employed to analyse microarray data (Claverie, 1999). It is an 

extremely difficult task for biologists to interpret highly complex and vast dimensional 

experimental results. In order to make the dimension of the data less extensive and also to 

distinguish and recognise useful patterns, various computational and statistical 

approaches are required. Out of these the most commonly used method is clustering (i.e. 

unsupervised learning) which enable to unfold and investigate coordinated expression 

patterns in a group of microarrays (Eisen et al., 1998; Tibshirani et al., 1999; Getz et al., 

2000). The fundamental purpose in carrying out interpretation of huge data from cDNA

array experiments is to extract the basic gene expression patterns which gives knowledge 

about the underlying biology of given sample. Genes having identical expression patterns 

in different circumstances can contribute in similar signal pathway or are co-regulated. 

Data is usually collected in the form of heat maps, with rows and columns, representing a 

different gene and an individual sample respectively. There are distinct areas that are 

predominantly green, representing down regulated genes in multiple samples while the 

red represents up regulated genes. Shade differences indicate the level of up or down 
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regulation between tumours and black areas relate to genes whose expression between 

samples remains unaltered.  

Data clustering was carried out for the different data sets. The results showed that when 

clustering for the controls was carried out, all the different data sets were grouped 

together suggesting that little or minimal variation in gene expression profiling was 

observed throughout the entire duration of the experimental set up. Hierarchical 

agglomerative clustering was used to group different data sets into bigger clusters. As the 

results from the control clustering analysis showed that there was very little variation 

observed over the time course of the experimental analysis, a single mean value was used 

for clustering when comparison with other data sets (formulation treated and PEG 

treated) was carried out.  

Furthermore, when multi class significant analysis of microarrays (SAM) was performed 

on the gene set of the control samples, it was observed that at a false discovery rate 

(FDR) of 12%, accounting for approximately 1000 out of the total 38000 genes

significantly changing between the control samples at the three different times. 

When SAM analysis was carried out on data sets comparing control, PEG treated, 

indomethacin alone treated and solid dispersion of indomethacin treated cells, there were 

47% of the total genes showing variations at an FDR of 1%. Similar analyses for 

paracetamol based data showed that there were 25% of the total genes exhibiting

variations at an FDR of 1%. 
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Figure 7.8. Principal component analysis performed on the transcriptional time 
course data of the control samples (Caco-2 only).  Samples were tested at 15 mins, 
30 mins and 60 mins.
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Principle component analysis (PCA) was carried out on the control samples studies over 

the duration of the study (15 mins, 30 mins and 60mins). The results (figure 7.8) show 

that majority of the samples tested clustered together around the origin on the PCA plot 

suggesting that minimal variation in gene expression over the time course analysis of the 

experiment. However, single data set for time point 15 as well as 30 mins showed minor 

variability across the second component. Additionally, two sample sets (Caco-2 30 mins

1 and 2) were shown to have higher degree of variability as they were separated from the 

rest of the centrally clustered samples across the first principle component. These 

differences for the outliers can potentially be attributed to the experimental as well as 

biological sample variations. Research has shown that variability’s beyond 20% can be 

expected due to changes in physical conditions of the experimental set up such as 

variation of temperature, pH, changes in biological processes and sampling errors.
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Figure 7.9. Principal component analysis on the transcriptional time course for 
indomethacin (IND) alone and solid dispersion of indomethacin (SD-IND). The 
number represents the time points. The plot represents the data for all the 
individual data sets.
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Figure 7.10. Principal component analysis on the transcriptional time course for 
indomethacin (IND) alone and solid dispersion of indomethacin (SD-IND). The 
number represents the time points. The plot represents the data for the mean values 
at each time point.
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Figure 7.11. Principal component analysis on the transcriptional time course for 
paracetamol (PARA) alone and solid dispersion of paracetamol (SD-PARA). The 
number represents the time points. The plot represents the data for the individual 
values at each time point.
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Figure 7.12. Principal component analysis on the transcriptional time course for 
paracetamol (PARA) alone and solid dispersion of paracetamol (SD-PARA). The 
number represents the time points. The plot represents the data for mean values at 
each time point.
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Principal component analysis was carried out on the averaged normalised data for both 

indomethacin (figures 7.9 and 7.10) as well as paracetamol (figures 7.11 and 7.12) treated 

samples. Principal component 1 and principal component 2 were used to describe the 

molecular state of the cell and to determine dynamic trends during drug permeability.  

The PCA plot in figure 7.9 represents the data for individual data sets at each time. For 

clarity, mean values at each time point were taken and PCA plot was obtained as 

illustrated in figure 7.10. The PCA plot in figures 7.9 and 7.10 show that the response of

indomethacin permeability was minimum during the first 15 mins. This could possibly be 

due to the time required for DNA transcription and mRNA synthesis.  However, at 30

mins, indomethacin alone treated cells exhibited maximum variability across the first 

principal component when compared to solid dispersion. Solid dispersion exposed cells 

cluster around the centre representing relatively lower gene expression changes when

compared to their control counterparts. The molecular state of gene expression following 

exposure to indomethacin follows a circular trajectory as the gene cluster at 60 mins 

moves close to the origin. PCA analysis also suggests that maximum variability in gene 

expression was observed when exposed to drug alone when compared to its solid 

dispersion counterpart. This observation highlights an important finding that drug 

permeability increase (as reported in the chapter on drug permeability) is not necessarily 

followed by an increase in overall gene expression profile and the presence of other 

excipients (PEG 8000) can be used as a tool to optimise and deliver drug across the 

gastro-intestinal barrier.   
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The PCA plot in figures 7.11 and 7.12 for paracetamol reveals a different trend. The 

trajectory was clockwise when compared to the anticlockwise profile for indomethacin.  

Secondly, both the drug as well as solid dispersion treated cells show similar changes and 

follow the same path. Maximum variability in gene expression profile was obtained after 

30 mins of drug permeability and the changes revert back to the original cluster after 60 

mins of treatment.

7.3.6 Data analyses of genes controlling transporter network systems

7.3.6.1 Selection of polyethylene glycol

The number of poorly soluble drugs has increased sharply especially after the 

introduction of high through put screening to drug development cycle. It is now a 

challenge to improve the solubility of such poorly soluble compounds. Many techniques 

have been adapted to improve the drug solubility by using physical modifications (drug 

micronisation, use of cyclodextrins or use of surfactants), chemical modifications (salt 

formation and prodrugs) and solid dispersions (Leuner and Dressman, 2000).

Solid dispersions were first discussed by Sekiguchi et al. 1964 when it was suggested that 

the preparation of eutectic mixture could improve the drug solubility and in turn its 

bioavailability.

Polyethylene glycol (PEG) is one of the most common carriers used to prepare solid 

dispersions (Leuner and Dressman, 2000).
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A study conducted by Hugger et al. 2002 suggested that PEG has an effect on the efflux 

transporter activity in Caco-2 cell monolayer. The study suggested that PEG 300 is 

capable of inhibiting the efflux transporter (MRP/P-gp) activity in Caco-2 cell monolayer 

and the reason for this could be the changes in the microenviroment of P-gp such as 

change in membrane fluidity; as a result the transporter lose its ability to efflux substrates 

such as taxol and doxorubicin.

In this study PEG was used to formulate a solid dispersion of poorly water soluble drugs 

(namely indomethacin and paracetamol) in order to improve the drug solubility and 

inhibit the efflux mechanism of the transporters and hence improve the overall 

bioavailability.

This study also evaluated the gene expression of different transporters (including ABC 

and SLC transporters) on Caco-2 cells monolayer.

7.3.7 Effect of Indomethacin and paracetamol dispersion systems on transporter 

gene expression

7.3.7.1 ATP- binding cassette (ABC)

The small intestine is considered as the main absorption site for any ingested material 

including dietary, therapeutic and toxic compounds. Oral administration is one of the 

most popular routes of administration as the oral dosage forms are non-invasive and

convenient. However, intestinal enterocytes form a barrier to xenobiotics and drugs; as 
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such this barrier is created by a specific membrane transport system and metabolising 

enzymes.

The largest transporter gene family is ATP- binding cassette (ABC) also known as traffic 

ATPase. ABC is a diverse class of transporter proteins which utilise ATP hydrolysis 

energy to translocate solute across biological membranes. Members of ABC family are 

involved in large number of processess including signal transduction, presenting genes, 

uptaking nutrients and resisting drugs and xenobiotic (Higgins, 1992).

Different members of ABC family were identified in bacterial, archaea and eukrya. 

Therefore, it could be considered as an ancient proteinaceous device to transport solute 

against its concentration gradient across lipid bilayer (Schneider and Hunke, 1998).

ABC transporters consist of a pair of ATP-binding domains which is known as nucleotide 

binding folds (NBF), two sets of transmembrane (TM) domains. The former consists of 3 

conserved domains; walker A, B and signature (C) motif. Signature C is characteristic for 

ABC transporters and differentiates them from other ATP-binding proteins. ABC are 

organised as either full transporters containing two TM and two NBF or half transporter 

containing one of each domain (Dean et al., 2001). ABC mechanism of action is not yet 

fully understood although many studies have tried to evaluate how ABC maintains these 

broad, distinct substrate specifications. 

The results for the current study suggest that the level of differentially expressed genes 

varies with the type of drug, formulation and time. In the case of indomethacin exposed 
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cells, there were 26 genes that were over expressed after half an hour when compared to 

1 gene that was suppressed (figure 7.13A). However, exposure of solid dispersion of 

indomethacin for the same duration resulted in 23 genes that were over expressed and 

three remained unaltered (figure 7.13B). 

In the case of paracetamol exposed cells, there were 13 genes that were over expressed 

after 30 mins and two remained unchanged (figure 7.14A). However, exposure of solid 

dispersion of paracetamol for the same duration showed 13 genes that were over 

expressed and two remained unaltered (figure 7.14B).  

Investigation of the results for paracetamol reveals that the total number of genes 

exhibiting variations was similar for both drug alone as well as solid dispersion after 

exposure for 30 mins (figures 7.15 and 7.16) with differences being apparent in the type 

of genes involved.

Figure 7.13. Total number of ABC genes over-expressed () and suppressed (□) 
after 30 mins of exposure to indomethacin (7.13A), Total number of ABC genes 
over-expressed() and unchanged (□) after 30 mins of exposure to indomethacin-
PEG solid dispersion (7.13B).
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A                      B

Figure 7.14. Total number of ABC genes over-expressed (13 genes) (□) and 
unchanged (2 genes) () after 30 mins of exposure to paracetamol (7.14A), Total 
number of ABC genes over-expressed (13 genes) (□) and unchanged (2 genes) () 
after 30 mins of exposure to solid dispersion of paracetamol (7.14B).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Expressed genes

le
v

e
l 

o
f 

g
e

n
e

 e
x

p
re

s
s

io
n

Indomethacin Indomethacin-PEG dispersion

Figure 7.15. Gene expression of ABC transporters on Caco-2 cells after 30 mins of 
exposure to indomethacin(�) and indomethacin-PEG solid dispersion(). (n=3).



Chapter 7 Gene expression analysis during drug permeability

285

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Expressed genes

le
v

e
l 

o
f 

g
e

n
e

 e
x

p
re

s
s

io
n

Paracetamol Paracetamol-PEG dispersion

Figure 7.16. Gene expression profiles of ABC transporters on Caco-2 cells after 30 
mins of exposure to paracetamol(�) and paracetamol-PEG solid dispersion(). 
(n=3).

7.3.7.2 ABCA10

It is a member of ABCA6-like ABC transporters. ABCA10 expression is induced by 

cholesterol efflux in human macrophages and inhibited by cholesterol influx, therefore,

ABCA10 is believed to play a role in lipid trafficking (Wenzel et al., 2003).

Addition of PEG causes only a slight decrease on ABCA10 expression over 15 mins, 30

mins and 60 mins, while exposure to indomethacin alone caused a significant increase 

(2.6±0.68) in ABCA10 expression only after 30 mins of Caco-2 cells exposure to the 

drug (figure 7.15). However, exposure of Caco-2 cells to indomethacin-PEG solid 

dispersion system resulted in a slight increase in ABCA10 expression when compared to

indomethacin alone (0.85±0.51). This could be attributed to the low permeability 

coefficient of indomethacin and in turn indomethacin remains in contact with the genes 

on the apical cells for longer time and hence increased the expression of large number of 
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genes. On the other hand, indomethacin-PEG solid dispersion has higher permeability 

coefficient (almost 4 times of indomethacin alone) (figures 6.8 and 6.9). This might result

in less contact time with genes of apical cells and hence less gene expression. Similarly, 

studying the effect of paracetamol and paracetamol-PEG dispersion system on ABCA10 

gene expression has showed a significant increase in the expression from 0.47 (basal 

state) to (1.88±1.9) for paracetamol alone and (1.23±0.96) for paracetamol dispersion 

system (figure 7.15).

7.3.7.3 ABCA2

It is the largest known mammalian ABC transporter which consists of 2436 amino acids 

with apparent molecular weight of Mr 270,000 (Vuleric, 2001). ABCA2 shares highest 

homology with cholesterol responsive transporter ABCA1 (50%) and it is believed that 

ABCA2 has a potential role in neural development and microphage lipid metabolism 

(Kaminiski et al., 2001).

Similar trend as ABCA10, PEG has no effect on the gene expression profile, while 

indomethacin causes a sharp increase in ABCA2 expression (2.09±2.17) after 30 mins of 

Caco-2 cells exposure to the drug. Such this expression was reduced (0.67±0.94) when 

the solid dispersion system of indomethacin-PEG was added. 
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7.3.7.4 ABCA4

It is also known as ABCR or rim protein and expressed highly and intensively in retina. 

ABCA4 is linked with stargardt macular degeneration and retinal degenerative disease 

which causes severe vision loss in affected individuals (Molday, 2007).

ABCA4 actively transport N-retinylidene-phosphotidyl ethanol amine from lumen to 

cytoplasmic side of disc membrane such this transport ensures that retinoids do not 

accumulate in disc membrane. Mutation of ABCA4 which could result in diminished 

transport activity and hence accumulation of N-retinyldene PE in disc membrane and 

react to preduce A2E precursors, causing RPE cell death and photoreceptor degradation 

and finally loss of vision (Molday, 2007).

Indomethacin-PEG dispersion system increase ABCA4 gene expression from -0.47 to

0.87±0.05) which in turn ensures the transport of N-retinylidene PE and prevents it 

accumulation on the disc, thus avoids stargardt macular degeneration.

7.3.7.5 ABCA8

It is located in the ABCA transporter cluster of genes on chromosome 17q24 and was

isolated from human brain libraries (Nagase et al., 1998; Dean et al., 2001). It mainly 

functions as a lipid transporter.

Exposure of the cells to indomethacin resulted in a 2.5 fold increase in the expression 

after 30 mins whereas reformulation as solid dispersion suppressed its expression.



Chapter 7 Gene expression analysis during drug permeability

288

7.3.7.6 ABCB1/ P-gp

It is also known as phosphoglycoprotein (P-gp) originally discovered in tumor cell 

(Juliano and Ling, 1976). ABCB1 was involved in development of tumor resistance to 

many chemotherapeutic agents. Also played a role in transporting wide range of 

hydrophobic and amphipathic drugs for instance cardioglycosides (like digoxin), 

analgesics (morphine), epileptic drugs (phenytoin).

Recently, ABCB1 was identified in normal tissues such as liver, kidney, intestine and

adrenal and was reported to play a role in limiting the absorption and facilitating the 

excretion of xenobiotics.

Indomethacin acts as a specific inhibitor ABCB1 but its permeability is inhibited by 

efflux mechanism, this could be demonstrated by the increase of P-gp expression from -

0.53 to (2.8±0.29) upon exposing the Caco-2 cells to indomethacin. On the contrary, the 

solid dispersion system resulted in suppression of P-gp expression (0.037±0.003) which 

possibly accounts as one of the reasons for increase in its influx/permeability when 

compared to indomethacin alone.

7.3.7.7 ABCB10

ABCB10 is also known as ABC-me (ABC-mitochondrial erythroid). It possesses a long 

105 amino acid mitochondrial targeting presequence (mTP). ABCB10 is embedded in 

mitochondrial inner membrane homodimerizes and homo-oligomerizes.
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AMC-me overexpression enhances haemoglobin synthesis in erythroleukemia cells and

also participates in diverse physiological processes by coupling ATP hydrolysis to 

substrate transport across the cell membranes (Shirihai, 2000)

Interestingly, indomethacin alone was found to decrease the expression of ABCB10 from 

0.239 to (-1.58±0.31) after 30 mins, while indomethacin-PEG solid dispersion has no 

significant effect on ABCB10 expression during 30 mins (0.15±0.12) and started to 

decrease the gene expression after 60 mins.

7.3.7.8 ABCB4

Adenosine triphosphate-binding cassette, subfamily B, member 4 which encodes the 

phosphatidyl choline translocator across canalicular membrane, homozygous and

heterozygous mutation in ABCB4 are responsible for progressive intrahepatic cholethesis 

type 3 (Jacquemai et al., 2001).

Fracchia et al. 2001 suggested that ABCB4 gene defects in peculiar forms of 

cholelithiasis (e.g intrahepatic gallstone disease).

During the basal state of Caco-2 cells, ABCB4 expression was -0.5 and this expression 

slightly decreased upon adding PEG. However, adding indomethacin alone, ABCB4 

expression increased drastically to 2.64, while indomethacin-PEG dispersion system 

increased the expression to 0.166 only. In a similar way, ABCB4 gene expression was 
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increased to (2.36±1.5) and (0.93±0.61) for paracetamol and paracetamol-PEG dispersion 

respectively.

7.3.7.9 ABCC12

Also known as MRP9 and consists of 29 exons; oriented tail to head on human 

chromosome 16q12.1 (Yabucchi et al., 2001).

No physiological function is known for ABCC12 but it is believed to play a role in a 

genetic disease in infancy known as paroxysmal kinesigenic choreoathetosis PKC 

(Shimizu et al., 2003). It is suggested that ABCC12 plays a role in detoxification system 

and could be involved in transporting endogenous substances in testis.

Both indomethacin and paracetamol caused an increase in ABCC12 expression from (-

0.37 at basal state) to 2.6 and 3.54 respectively. However, the solid dispersion of these 

drugs resulted in a slight increase in ABCC12 expression (0.98±0.31) for indomethacin-

PEG and (0.579±0.99) for paracetamol-PEG solid dispersion.

7.3.7.10 ABCC13

ABCC13 was first identified by (Yabuuchi et al., 2002) and it spans ~70 Kb on human 

chromosome 21q11.2 and possesses 14 exons. ABCC13 is expressed highly in fetal liver 

(20 times than adult liver). Also human leukaemia K562 were found to express ABCC13 

and this expression decrease during cell differentiation induced by TPA.
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The results were similar for both indomethacin as well as paracetamol exposed cells.  In 

both the cases, the expression was nearly 2.5 fold higher when exposed to drug alone as 

compared to their solid dispersion counterparts.

7.3.7.11 ABCB5

(MDR/TAP) is a new human ABC transporter which encode on 7p15.3 chromosome. It 

maintains the membrane hyperpolarisation and acts as a determinant of membrane 

potential and regulator of cell fusion in physiological skin progenitor cells.

Study conducted by (Frank et al., 2005) identified ABCB5 as a novel drug transporter 

and chemoresistance mediator in human malignant melanoma.

Indomethacin alone exposed cells showed a 2.5 fold increase in its expression when 

compared to solid dispersion suggesting that the drug could be a substrate resulting in 

resistance.

7.3.7.12 ABCB6

ABCB6 has multiple functions such as iron homeostasis (as it transfers heme or iron-

related compounds from mitochondrial matrix into cytosol), porphrin transport and 

cytotoxic agents resistance.

A study conducted by Paterson et al. 2007 demonstrated that ABCB6 has two distinct 

molecular weight forms and is localised at the plasma membrane and outer mitochondrial 
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membrane. Another study conducted by Masashi et al. 2008 found that ABCB6 is 

localised in the endoplasmic reticulum; mainly golgi apparatus rather than the 

mitochondria.

Indomethacin exposed cells showed approximately 2.3 fold increase in its expression 

when compared to their solid dispersion counter parts. However, there was no change 

observed in the extent of expression in the case of paracetamol exposed cells.

7.3.7.13 ABCB9

It is a member of transporter associated with antigen processing TAP-like (TAPL) and 

translocates a large number of solutions across membranes.

According to mRNA level, TAPL is highly expressed in testes and moderately in brain 

and spinal cord but expressed at low levels in other tissues (Wolters et al., 2005).

ABCB9 also forms a homodimeric complex which acts as a specific and ATP-dependent 

peptide transporter (i.e vacuum cleaner removing peptides from cytosol).

There was a two fold increase in its expression when exposed to indomethacin alone after 

30 mins as compared to its solid dispersion. This possibly suggests that indomethacin is a 

substrate for ABCB9.



Chapter 7 Gene expression analysis during drug permeability

293

7.3.7.14 ABCC10

It is a member of multidrug resistance protein (MRP) known as (MRP-7). Yet, its protein 

structure has the lowest degree of structure resemblance to other MRPs. On the basis of 

amono acid alignment (~34-26%), MRP7 showed resistance to natural anticancer agent 

including Texans, vinca alkaloids and anthracyclins. It exhibits its highest activity against 

docetaxel (9-13 folds) (Hopper-Borge et al., 2004).

Indomethacin alone exposed cells resulted in approximately 2.5 fold increase in the 

expression of ABCC10 when compared to their solid dispersion counterparts. This was 

expected as ABCC10 is a member of MRP and would therefore play a vital role in the 

efflux of indomethacin. The result also suggests that reformulation of MRP substrates 

and inclusion of excipients (in this case PEG 8000) can be a simple tool to overcome 

drug resistance.

7.3.7.15 ABCC1

Known as 190 kDa multidrug resistance protein 1 (MRP1) and was first discovered in 

lung cancer cells. It is a primary transporter of glucuronate, sulphate conjugate and 

unconjugated organic anions and GSH (Lesile et al., 2001). MRP1 plays a role in efflux 

of several xenobiotics such as vinca alkaloids, methotrexate and arsenic and antimonal 

oxyanions (Cole et al., 1994).
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Similar results were obtained as that seen with ABCC10. There was approximately 3 fold 

increase in the expression of ABCC1 when subjected to drug alone (indomethacin) when 

compared to solid dispersion.

7.3.7.16 ABCC3

It is a member of MRP family and known as MRP3. It shares the highest amino acid 

sequence identity with MRP1 (58%); it also localised at basolateral membrane of 

polarised cells. Human adrenal glands and intra-hepatic bile ducts are the highest organs 

to express MRP3 followed by small intestine, kidney and pancreas (Kool et al., 1997).

A study conducted by Hiroshashi et al. 1999 suggests that MRP3 plays a role in organic 

anions detoxification from liver.

Zelcer et al. 2001 concluded that ABCC3 resist the transportation of etoposide and

teniposide in cancer cells. Moreover, ABCC3 transport bile salt plays a role in 

enteolepatic circulation of these salts.

Exposure of indomethacin alone resulted in a 2 fold increase in its expression when 

compared to solid dispersion.

7.3.7.17 ABCC4

Known as MRP4 and is localised to proximal tubule apical membrane kidney. A study 

conducted by Van Aubel et al. (2002) suggested that MRP4 is a novel apical organic 
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anion transporter which acts as an efflux pump for cGMP and cAMP in proximal tubules 

of human kidney.

Another study conducted by (Chen et al., 2002) concluded that MRP4 is a resistance 

factor for methotrxate and it acts as an energy dependent efflux system for methotrexate 

and physiological factors along with MRP1 and MRP2.

The results show that exposure of indomethacin alone caused a three folds increase in its 

expression when compared to solid dispersion. This was expected as ABCC4 has been 

shown to act as an efflux pump in the removal of hydrophobic anti cancer compounds.  

Exposure of indomethacin alone resulted in a higher level of its expression with 

reformulation enabling its suppression.

On the other hand, the results for paracetamol suggest that the expression of ABCC4 was 

higher in solid dispersion when compared to drug alone.

7.3.7.18 ABCC9

It is a sulsonyl urea receptor (SUR2) and is a member of c-branch adenosine triphosphate 

superfamily. ABCC9 produces two isoforms namely SUR2A and SUR2B, the former

plays a role in assembling KATP channels in cardiac and skeletal muscles while the later

participates in maintaining of vascular tone (Bryan et al., 2007).
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Exposure of indomethacin alone resulted in nearly 1.5 times higher levels of expression 

when compared to solid dispersion. 

7.3.8 Solute carrier transporters (SLC)

Another superfamily of membrane proteins is solute carrier transporters (SLC). SLC 

transporters play numerous roles in physiological process such as transporting nutrients, 

metabolites and neurotransmitters.

Around 43 SLC families with 300 SLC genes have been established. Each family has 

specific substrate like, monocarboxylic acids, organic anions, cations and sugars.

SLC transporters have broad substrate selectivity as they confer sensitivity to multiple 

drugs with different structures. Yet some SLC possess drug chemosensitivity properties. 

Moreover, SLC transporters could be used as an analysis tool for polymorphism 

associated with therapeutic response and toxicity of anticancer drugs (Huang et al., 

2007).

Figures 7.17, 7.18 and 7.19 show total number of SLC genes over-expressed  and 

unchanged  after 30 mins of exposure both drugs and dispersion.
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                           A                                                              B

Figure 7.17. Total number of SLC genes over-expressed () and unchanged (�) 
after 30 mins of exposure to indomethacin (7.17A), Total number of SLC genes 
over-expressed() and unchanged(�) after 30 mins of exposure to solid dispersion 
indomethacin (7.17B).

A              B

Figure 7.18. Total number of SLC genes over-expressed (□) and unchanged() after 
30 mins of exposure to paracetamol (7.18A), Total number of SLC genes over-
expressed(□) and unchanged() after 30 mins of exposure to solid dispersion of 
paracetamol (7.18B).
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Figure 7.19. Gene expression of SLC transporters on Caco-2 cells after 30 minutes 
of exposure to indomethacin( ) and indomethacin-PEG solid dispersion( ). (n=3).

7.3.8.1 SLC12A6

It is a K+ Cl- cotransporters (KCC3) which belongs to electroneutral cation-chloride 

cotransporters family. KCCs play a major role in swelling activated K+ efflux in 

erythrocytes. KCCs are not affected by membrane potential. However, they are sensitive 

for loop diuretics such as furosamide and bumetamide (Mount et al., 1999).

Indomethacin was found to affect SLC12A6 expression in Caco-2 cells and increased its 

expression from -0.637 to 2.66. However, indomethacin dispersion system had slightly 

increased this expression to 0.144.
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7.3.8.2 SLC16A13

It is a member of monocarboxylate cotansporter (MCT) family; which consists of 14 

members. MCT 13 is expressed on 17p13.1 gene and distributed mainly in breast, bone 

marrow and stem cells. Up till now no information is available on their functions and

properties (Halestrap and Meredith, 2004).

MCT13 expression was increased by indomethacin and reached 2.62±0.63 after half an 

hour of exposure to indomethacin alone. Yet the solid dispersion system increased the 

expression slightly by (0.64±0.3). The expression of other MCT members such as 

MCT11, MCT14, MCT3 and MCT2 increased as well and only MCT12 was depressed.

Both paracetamol and paracetamol-PEG SD were found to affect the gene expression of 

MCT13. Interestingly, paracetamol-PEG SD had over expressed MCT 13 more than the 

drug alone; 1.86±0.85 and 1.36±0.1 respectively.

7.3.8.3 SLC22A12

It acts as a urate-anion exchanger in human kidney (Iwai et al., 2004). Mutation of 

SLC22A12 which could result in inactivating gene causes renal idiopathic hypouricemia. 

The genetic variation of SLC22A12 affects the urate levels in general population and 

contribute to hypo or hyperuricemia.
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The result suggests that SLC22A12 expression is affected by indomethacin as its 

expression increases to (2.75±0.217), while the indomethacin-PEG SD caused a slight 

increase in its expression (0.45±0.05).

7.3.8.4 SLC6A6

It belongs to Na+ and Cl- dependent neurotransporters family. It plays a major role in γ-

amino butyric acid (GABA) transportation. It also known as taurine transporter (Taut) 

which is expressed in retinal capillary endothelial cells and mediates taurine transporting. 

Tomi et al. (2008) established that SLC6A6 is involved in transporting GABA across 

blood retinal barrier (BRB). 

The basal expression of SLC6A6 in Caco-2 cells was -0.49 and increased sharply to 

(2.69±0.97) upon adding indomethacin alone for 30mins into cell culture. On the other 

hand, indomethacin solid dispersion system had a slight increase (0.51±0.23) in the 

SLC6A6 expression. The expression of SLC6A8, SLC 6A9 and SLC6A18 were similar 

to that of SLC6A6.

7.3.8.5 SLC25A26/ SAMC

S-adenosylmethionine carrier (SAMC) belongs to a mitochondrial carrier family of 

proteins (SLC25). Members of this family have different functions, but they had related 

sequences. S-adenosylmetionine is essential for mitochondrial metabolism especially 

protein synthesis. S-adenosylmetionine also plays a role in methylation of various types 

of nucleic acid in mitochondria such as DNA. Moreover, it takes part in post-transitional 



Chapter 7 Gene expression analysis during drug permeability

301

modification of some proteins. S-adenosylmetionine is synthesised in the cytosol and is 

required in mitochondria; this transportation is catalysed by SAMC in exchange for 

internal substrates (Agrimi et al., 2004).

Paracetamol was found to increase the expression of SAMC gene from -0.36 in basal 

state of Caco-2 cells to (3.58±0.36) after 30 mins of exposure to paracetamol. On the 

other hand, paracetamol-PEG solid dispersion had a slight effect on SAMC genes 

expression (0.18±0.001).

7.3.8.6 SLC38A4/ATA3

It is a member of amino acid transporter system A gene family and known as ATA3. It is 

expressed mainly in liver and skeletal muscle. ATA3 mediates the uptake of aliphatic, 

neutral, short chain amino acids. 

Both paracetamol and parcetamol-PEG SD raised ATA3 gene expression. ATA3 gene 

was expressed to (3.5±0.52) by paracetamol alone and only expressed to (0.737±0.14) by 

the solid dispersion.

7.3.8.7 SLC6A2

SLC6A2 is a human norepinephrine transporter (hNET) and is a member of Na+/Cl-

dependent GAT (GABA transporter)/NET transporter family. Bruss et al. 1993 suggested 

that hNET is a single copy of gene located on chromosome 16. Mutation which results in 
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inactivation or dysfunction of SLC6A2 could cause many diseases such as cardiovascular 

disorders, fatal arrhythmias and orthostatic intolerance disorder (Hahn et al., 2003).

SLC6A2 expression was increased by paracetamol (3.08±0.175), whereas, paracetamol-

PEG SD increased the gene expression to (1.1±0.8).



Chapter 7 Gene expression analysis during drug permeability

303

7.4 Conclusions

Gene expression profiles analysing the expression changes in the transporter network 

system ABC (ATP binding cassette) and solute carrier transporter when treated with drug 

alone (paracetamol alone and indomethacin alone) or the solid dispersion of the drug

(solid dispersion of paracetamol and solid dispersion of indomethacin).

The Caco-2 cells exposed to indomethacin solid dispersion lead in a slight increase in 

ABCA10 expression when matched to indomethacin alone. This could be attributed to 

the low permeability coefficient of indomethacin and higher permeability coefficient of 

indomethacin solid dispersion. The indomethacin alone contacts with the genes on the 

apical Caco-2 cells for longer time as compared to indomethacin solid dispersion and so

changed the expression of large number of genes. Indomethacin acts as a substrate on 

ABCB1 but its permeability is reduced by efflux mechanism, this increase of P-gp 

expression upon treating the Caco-2 cells to indomethacin alone. On the contrary, the 

solid dispersion of indomethacin resulted in a slight increase in P-gp expression. Thus its 

permeability is higher than indomethacin alone. Indomethacin decreases the expression 

of ABCB10 while indomethacin solid dispersion has no significant effect on ABCB10

gene expression during 30 mins and started to decrease the gene expression after 60 mins.

Indomethacin alone and indomethacin solid dispersion increases the expression of 

ABCB4.

Paracetamol and paracetamol solid dispersion on ABCA10 gene expression has 

demonstrated a significant increase in the expression. In a case of paracetamol and 
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paracetamol solid dispersion, ABCB4 gene expression was increased. Both indomethacin 

and paracetamol made an increase in ABCC12 gene expression. However, the solid 

dispersions for both drugs showed in a slight increase in ABCC12 expression. 

Indomethacin alone was resulted to effect SLC12A6 gene expression and increased its 

expression. However, indomethacin solid dispersion had slightly increased the

expression. MCT13 gene expression was increased by indomethacin alone and solid 

dispersion of indomethacin. SLC22A12 and SLC6A6 gene expression were increased by 

indomethacin alone while indomethacin solid dispersion resulted in a slight increase in its 

expression. 

Both paracetamol and solid dispersion of paracetamol were found to effect the gene 

expression of MCT13. Paracetamol alone resulted increase the expression of SAMC 

gene. While in case of paracetamol solid dispersion had a slight effect on SAMC genes 

expression. Both paracetamol and parcetamol solid dispersion increased SLC6A2 and 

ATA3 gene expression. 
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Conclusions

Solid dispersions in water-soluble carriers are regarded as highly effective means of 

increasing the dissolution rate which in turn enhances bioavailability of various drugs like 

paracetamol, sulphamethoxazole, phenacetin, indomethacin, chloramphenicol, 

phenylbutazone and succinylsulphathiazole. Solid dispersions increase the solubility of 

drug due to the conversion of the drug’s crystal lattice into amorphous form, decrease in 

the particle size and increase in wettability caused by hydrophilic polymer. Current study 

suggests the suitability of PEG 8000 as a carrier for solid dispersions for all seven drugs 

studies. It has been shown that PEG 8000 used as a carrier within the solid dispersions

increase the dissolution rate. The physical mixtures displayed higher dissolution rates in 

all seven drugs as compared to pure drugs which can rightly be attributed to the 

wettability of drug caused by the presence of PEG 8000. Moreover, solid dispersions 

exhibited higher dissolution rates than those of physical mixtures and drug alone which is 

possibly due to increase in drug wettability caused by polymer used as carrier. Maximum 

dissolution rate was shown by solid dispersions containing 5% (w/w) drug loading 

implying that high carrier concentration increases the dissolution rate. Microviscometry 

has been shown to be a suitable technique for determining the dissolution of the PEG 

8000 within the solid dispersions.

Theories presented for the mechanisms governing release of drug from solid dispersions 

depends on the dissolution behavior of either drug or polymer. Paracetamol, 

sulphamathoxazole and phenacetin demonstrated faster release rate than PEG 8000 while 

PEG 8000 released faster than other drugs of the study, like, indomethacin, 
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chloramphenicol, phenylbutazone and succinylsulphathiazole in solid dispersions. Some 

formulations such as indomethacin, chloramphenicol, phenylbutazone and 

succinylsulphathiazole showed carrier-controlled release with the release rate being 

controlled by the dissolution of the polymer while solid dispersions of paracetamol, 

sulphamathoxazole and phenacetin displayed that the properties of the drug are the 

controlling factor in the release rate.

Characterisation studies were performed to gain an insight into the possible explanation 

as how solid dispersions enhance the dissolution of drugs as compared to physical 

mixtures and drug alone. DSC studies revealed that melting peak of the polymer was 59

°C with the absence of endothermic peak relating to the drug for all solid dispersions. 

This lack of a melting peak could potentially be due to the distribution or solubilisation of 

the drug within PEG 8000 which leads to the conversion of drug’s crystals into 

amorphous form within the solid dispersions. DSC scans for the physical mixture 

presented highly distinguishing profile. Two transitions were displayed by the physical 

mixtures of phenacetin and paracetamol with PEG 8000 in which the first melt 

corresponds to the melt of PEG 8000 while the second relates to the melting of the drug 

(phenacetin and paracetamol). Whereas, a single melting endotherm was noticed for the 

physical mixtures of indomethacin, phenylbutazone, chloramphenicol, 

sulphamethoxazole and succinylsulfathiazole with the PEG 8000 that relates to the PEG 

8000 as is given by the thermograms for the solid dispersion.
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To further investigate the difference in thermal behavior of the physical mixtures 

(presence and absence of drug endotherms) infra red analysis of the samples was carried 

out to detect any possibility of functional group interactions between drug and PEG 8000. 

FTIR spectra revealed the absence of any interaction between the drug and PEG 8000 for 

the solid dispersion of all drugs as no variations in the specific absorption bands for both 

the PEG 8000 as well as the drug were observed. However, the physical mixture of 

phenacetin and paracetmol showed the formation of hydrogen bond between the drug and 

the polymer.

Scanning electron microscopy (SEM) was used at different magnifications to determine

the morphological differences of solid dispersions. SEM studies showed that the surface 

properties of all drugs and PEG 8000 were lost in the process of preparing the solid 

dispersion system by melting and solidification causing the drug to be molecularly 

dispersed within the carrier matrix.

Solubility of the drug increased in the solid dispersion followed by physical mixture and 

pure drug. The increased solubility in solid dispersions is potentially due to the 

conversion of crystalline drug into amorphous form during the formation of solid 

dispersion which leads to higher wettability. ITC results revealed that heat change causes 

an increase in the dissolution of the drug in physical mixture and solid dispersion with 

PEG 8000 as a carrier. The high energy released while polymer is titrated with drug 

enhances the dissolution rate as compared to drug alone. 
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Stability studies were performed at room temperature conditions and accelerated 

conditions (40°C±2°C/75%RH±5%RH). Accelerated stability studies showed that the 

paracetamol, sulphamethoxazole, phenacetin, indomethacin, chloramphenicol, 

phenylbutazone and succinylsulphathiazole were unstable as suggested by DSC, FTIR, 

drug content and TGA analysis. Solid dispersions stored at room temperature (controlled 

moisture using silica gel) were stable for 12 months for all seven drugs. Temperature and 

moisture can affect the stability of solid dispersions.

Permeability of indomethacin, phenacetin, phenylbutazone and paracetamol was higher 

for solid dispersions as compared to pure drugs across Caco-2 cell monolayers. In case of 

indomethacin solid dispersion the permeability was 4 times higher than indomethacin 

alone. In solid dispersions of paracetamol, phenactin and phenylbutazone, the 

permeability was twice as compared to drug alone treatment. Cell uptake studies shows

that PEG 8000 enhanced the rhodamine123 uptake which may have increased the 

permeability of indomethacin, phenacetin, phenylbutazone and paracetamol in solid 

dispersions across Caco-2 cell monolayers. 

Gene expression profiles analysing the expression changes in the transporter network 

system ABC (ATP binding cassette) and solute carrier transporter during permeability 

studies at three different time points (15 mins, 30 mins and 60 mins) when treated with 

drug alone (paracetamol alone and indomethacin alone) or the solid dispersions of the 

drug (solid dispersion of paracetamol and solid dispersion of indomethacin).
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The exposure of Caco-2 cells to indomethacin solid dispersion led to a little increase in 

ABCA10 expression when matched to indomethacin alone. This could be ascribed to the 

low permeability coefficient of indomethacin and contact with the genes on the apical 

Caco-2 cells for longer duration and hence changed the expression of large number of 

genes. In case of indomethacin solid dispersions, a higher permeability coefficient was 

observed. This might cause in less contact time with apical cells gene and hence results in 

less gene expression. Paracetamol and paracetamol solid dispersion on ABCA10 gene 

expression has shown a significant increase in the expression.

Indomethacin acts as a specific substrate on ABCB1 but its permeability is repressed by 

efflux mechanism, this could be shown by the increase of P-gp expression upon treating

the Caco-2 cells with indomethacin alone. Contrary to this, the solid dispersions of 

indomethacin ensued in a slight increase in P-gp expression. Hence, the permeability of

solid dispersions of indomethacin is higher than indomethacin alone.

Indomethacin alone causes the expression of ABCB10 to decrease after 30 mins, while 

indomethacin solid dispersion has no significant effect on ABCB10 expression during 30 

mins and tends to limit the gene expression after 60 mins.

Indomethacin alone increases the expression of ABCB4 to 2.64, while indomethacin

solid dispersion increased the expression of the same to 0.166. In a case of paracetamol 



Conclusions

310

(2.36±1.5) and paracetamol solid dispersion (0.93±0.61), ABCB4 gene expression was

shown to have increased.

Both indomethacin and paracetamol made significant increase in ABCC12 gene 

expression. However, the solid dispersions for both drugs showed a minor increase in 

ABCC12 expression.

Results showed that indomethacin alone effect SLC12A6 gene expression and increased 

its expression from -0.637 to 2.66. However, indomethacin solid dispersion had slightly 

increased this expression to 0.144.

MCT13 gene expression was increased by indomethacin alone (2.62±0.63) after 30 mins

of exposure. But the solid dispersion of indomethacin increased the gene expression 

slightly (0.64±0.3). Both paracetamol (1.36±0.1) and solid dispersion of paracetamol 

(1.86±0.85) were found to effect the gene expression of MCT13. 

SLC22A12 gene expression was increased by indomethacin alone as its expression 

increases (2.75±0.217), while indomethacin solid dispersion resulted in a slight increase 

in its expression (0.45±0.05). SLC6A6 gene expression was increased by indomethacin 

sharply (2.69±0.97) for 30 mins into cell culture. On the other hand, indomethacin solid 

dispersion had a slight increase (0.51±0.23) in the SLC6A6 expression. 
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Paracetamol alone resulted in an increased expression of SAMC gene. While in case of 

paracetamol solid dispersion, it did not have any significant effect on SAMC gene

expression. Both paracetamol (3.5±0.52) and parcetamol solid dispersion (0.737±0.14) 

increased ATA3 gene expression. SLC6A2 expression was increased by paracetamol 

(3.08±0.175) whereas paracetamol solid dispersion increased the gene expression slightly 

(1.1±0.8).
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