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THE UNIVERSITY OF ASTON IN BIRMINGHAM 

APPLICATION OF MODERN CONTROL TECHNIQUES TO A 
DISTILLATION COLUMN 

Taofeek Oladiran Folami PhD 1989 

SUMMARY 

Modern control techniques have been applied to a distillation column. Three 
control techniques were selected for evaluation. These are; a decoupling and 
disturbance rejection control scheme; an estimator aided control techniques using a 
Kalman filter; and an implicit generalised minimum variance self tuning control. A 10 
tray pilot scale binary distillation column, interfaced with a microcomputer, was used 
for investigation of the process control techniques. A non-linear model of the column 
was developed. The reliability of this model was demonstrated. The model was 
therefore used for the design, analysis and screening of control systems for the pilot 
plant distillation column. 

The results of extensive simulations on linearised state variable models of the 
column simulator demonstrate that the decoupling and disturbance rejection controller 
works in the presence of load disturbances and setpoint changes. The proper choice 
of the values of a diagonal matrix in the precompensator of the controller required for 
accurate setpoint tracking has also been shown. By analogy with PI control, integral 
and derivative modes have been introduced into the controller to equip it with the 
ability to remove offsets. Simulation results demonstrate that the sensitivity of the 
controller to non-linear effects makes the controller inoperable on the column 
simulator, as well as on the pilot plant. Therefore, the use of an adaptive form of the 
controller is necessary to compensate for the non-linear effects and other model errors 
for on-line application to be practical on the pilot plant. 

On-line implementation of the Kalman filter algorithm using a linear state variable 
model of the column simulator as the filter model, was not possible because of the 
large memory requirement of the software, long execution time and the inability to 
produce satisfactory estimates of all the tray compositions. 

Simulated and experimental studies for both single temperature control and dual 
temperature control of the distillation column, demonstrated that self tuning control 
can provide tighter control of the products of distillation columns than PI control. 

An algorithm, called the Simplified Correction (SPC) method, has been 
implemented to prevent the parameters of a self tuning controller from reaching 
unsatisfactory values when the closed loop system is not sufficiently excited. 
Simulations show that the SPC can provide significant improvements even when only 
a subset of the controller parameters are prevented from attaining bad values. 

The findings in this work verify the degrading effects that model errors have on 
controller performance. Areas for future work have be~n su_ggested in the case of the 
on-line implementation of the control schemes selected m this work. 

Key Words: Self tuning control, Decoupling and Disturbance Rejection control, 
Parameter Correction, Simplified parameter Correction, Distillation Column. 
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CHAPTER ONE 

Introduction 

1.1 Introduction 

The control of a physical system involves taking action to counteract any 

disturbances that may have adverse effects on the state of the system. The disturbances 

could be due to changes in the environmental conditions or may be introduced by an 

operator if a change in the state of the system is desired. In the chemical industry 

process control is central to the smooth and safe operation of plant as well as 

improving plant economy. 

Any equipment designed to effect the change of physical or chemical properties of 

the raw materials on a commercial scale can be considered as a chemical plant. Often 

such plants consist of arrangements of connected units such as chemical reactors, heat 

exchangers, pumps and distillation columns, all arranged in a systematic manner in 

order to convert raw materials into desired products. The products of the plant are to 

be made to the desired specification in a safe and environmentally acceptable manner, 

using the available energy sources in the most economical manner. During plant 

operation, the physical limitations of the equipment must not be exceeded, nor should 

some process variables exceed some specified bounds for reasons of safety and 

environmental regulations. Account must also be taken of external disturbances such 

as noise, weather changes and changes in the raw material compositions. The 

operation of chemical plant must therefore be continuously monitored and controlled to 

ensure all the operational objectives are being satisfied. The control of the entire 

chemical plant is the culmination of the control of the primary variables of the 

individual processing units. The primary variables will influence the final product and 

each unit will have its own operational objectives and physical limitations which must 

be satisfied. 

In the face of a disturbance, one approach to control is to wait for the effect of the 

disturbance to manifest itself and then take proper corrective, or control, action. This 

is known as feedback control since the output of the process is "fedback" to the 
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controller as expressed schematically in Figure 1.1 a. This brings into being a closed 

loop system The control action is based on the amount of deviation of the output from 

the desired value. The input that is manipulated in order to bring about this effect is the 

manipulated, or control, input; the output that is under control is called the controlled 

output. 

Feedback is the most commonly used approach in all fields of engineering. 

Another approach to control is to perform the corrective action before the disturbance 

materializes on the output of the process. This is achieved by anticipating the effects of 

the disturbance using a model of the process and measurement of the disturbance. This 

is feedforward control and is expressed schematically in Figure 1.1 b. Both feedback 

and feedforward methods can be combined in order to improve the quality of control 

of the system. The intent is that the feedforward counteract most of the effects of the 

disturbances and the feedback provide residual control and setpoint tracking (Rinard 

(170)) 

One of the earliest control methods include the flyball governor and the most 

common early control methods were based on manual adjustment of the inputs of the 

process. The development of measurement devices and automatic control valves has 

permitted automatic control, where control is performed continuously by mechanical, 

electrical and pneumatic devices. These are commonly referred to as analogue 

controllers. The methods commonly used to obtain the controller settings, which 

determine how much the input is to be changed subject to the deviation of the output 

from the desired values, are classified generally as "classical design theory". These 

design methods are called classical, or sometimes, conventional design methods and 

they include those of Cohen and Coon (203) Ziegler and Nichols (191), Nyquist, and 

Bode, which are all treated in Stephanopoulos (116). The methods are based on the 

assumption that the process is linear and is described by simple transfer functions. 

They are suitable for designing single loop controllers which have one control, or 

manipulated, input and one controlled output, both of which must be paired 

appropriately. Each control loop is designed independently, without taking into 
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account of interactions that may exist between the controllers when they are in 

operation. 
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Figure I.la General structure of a feedback controlled system 
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Figure I.lb General structure of a feedforward control system 

Notation 
d is disturbance, u is the input, e is the eITor signal y is the output and y s is the 

setpo_int. Gp, Gd are the process transfer functions relating the input to the output and 

the disturbance to the output. Hm, Gmf' Gcf' Ge and are the feedback measurement, 

disturbance measurement, the feedforward controller and the feedback controller 
transfer functions 

27 



1.2 Requirements of a control system 

An important step to control systems design is to determine what the control 

system is meant to do and what performance is expected of it. Practical process control 

criteria generally belongs to types involving product quality, economic, safety and 

equipment limitations and the paramount requirement of the control system is to 

maintain stability of the closed loop system. 

The qualities of an ideal control system are perfect disturbance rejection and perfect 

setpoint tracking, in other words "perfect" control; this is where the output tracks the 

desired trajectories perfectly and where the effects of disturbances are not evident in 

the closed loop response. This is, however, an idealistic feature which can rarely be 

attained in practice due to various reasons such as material holdups in the process, 

delays due to mass and energy transport, measurement delays and various limitations 

of the equipment. The desirable qualities of a control system are, thus, good 

regulatory control and quick and smooth setpoint tracking capabilities. Other desirable 

qualities of a control system include, (1) robustness to errors in the model used to 

design the controller, since it is usually the case that a model of the process is involved 

at the design stage, (2) robustness to instrument failure (3) insensitivity to changes in 

operating conditions (4) avoidance of excessive control action and (5) avoidance of 

controller saturation. Some of these requirements will result in conflicting controller 

designs. It is therefore usually the case that a compromise must be met to satisfy 

various criteria. For example, in the high performance case with the requirement of 

fast setpoint tracking and fast disturbance rejection, the control action will generally be 

required to be fast in order to bring the system to the new state quickly. This would 

usually require excessive control actions and oscillatory response of the output and 

easy saturation of the manipulated input. Robustness is usually achieved by slowing 

down the control action. 
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1.3 Previous industrial practice and motivation for change 

The most widely used conventional feedback controller is the proportional­

integral-derivative (PID) controller which the conventional design methods are 

commonly used to assist their tuning. The PID algorithm is widely used in industry. It 

has a long and proven history of applications such that it has become the standard by 

which all other forms of controller designs are assessed (Shaffii (115)). Ray (104) 

pointed out that in the 1960s simple control schemes like the PID, in analogue form, 

were commonly used for automatic control. Installation of the hardware was costly, so 

that only a limited number of control loops could be justified on a chemical plant. 

According to Ray, these simple control schemes worked well because industrial 

processes were large, slow responding systems and were usually stable even without 

a controller. Plants were generally overdesigned and intermediate storage tanks were 

widely used to dampen out fluctuations and, therefore, helped to compensate for 

inadequate control. Product specifications and safety specifications were loose and 

energy efficiency was permitted. Ray conciuded that the incentive for improving 

control were therefore quite low. 

In the last 20 years there have been new developments that have provided the 

incentive to develop better ways of designing chemical plants and their control 

systems. Most chemical companies have been under pressure to operate their plants 

more efficiently, increase their productivity, reduce their operating cost and energy 

consumption. The market also demand for consistently high quality products. The 

main objective of these companies is to achieve financial benefits, be competitive in the 

market and thus stay in business. There are also stricter safety and environmental 

regulations that must be met. For these reasons, capital investment has gone into the 

construction of many large and continuously operated plants to replace the older ones, 

and to increase the integration between the processing units in order to make better use 

of the energy and raw materials. The consequence of this is the increased complexity 

of plant and a more complex and interconnected control structure for the plant. This in 

turn gives an increased possibility of failure of instruments and control systems; the 

consequence of which could be severe to the environment due to the large scale and 
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continuous nature of chemical plant. The incentive therefore exists for developing 

reliable high quality, high performance and robust control systems for modern 

chemical plants. 

1.4 The use of digital computers in process control 

Digital computers are now available to perform automatic control. In computer 

control the computer replaces the hardware and, since the control is then done in 

digital form. The control laws can be programmed in the computer and the control 

performed cheaper and more efficiently than hardware. There is also the opportunity to 

use more complex control schemes which would be difficult to apply with mechanical, 

pneumatic and electrical devices. The performance of real time process computer and 

microcomputers has improved greatly while prices have fallen significantly over the 

last 15 years. This has made it possible to easily justify the installation of computers to 

monitor, schedule, and control the chemical plant on the basis of improved safety, 

reduced labour costs and reduced cost of controller hardware ( Ray (104), Benson 

(148) ). There have also been significant improvements in on-line measuring devices 

such a flowmeters, composition analysers and thermocouples (Gunderlach (186)). 

There is evidence that many plants are now under computer control and financial 

benefits have been obtained (Stephanopoulos(l 16)). 

1.5 Inadequacies of conventional methods and the need for new 

approaches to control systems design 

Conventional controller design methods frequently cannot provide control systems 

that meet the demand for high performance, robust and more reliable control systems 

required for modern chemical plant. In the first place, the methods assume that the 

process is linear. Linear models are only valid approximately since chemical processes 

are usually non linear. Therefore, if the operating conditions of the system change 

significantly, new controller parameters may need to be found or control action slowed 

so as to ensure good control at the new operating point. The presence of significant 

time delays and time lags between the input change and the output response will have a 
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destabilizing effect on the controlled system. Such delays and lags may be due to fluid 

transport in pipelines, measurement delays and measurement lags. For example, the 

presence of time delays in the system will reduce the maximum controller gain of a 

PID controller that can be used before the system becomes unstable. If measurements 

of the variables needed for control are not directly available, because the variable may 

be difficult, expensive or even impossible to measure, a conventional controller cannot 

be applied directly. In such a case a method must be devised in order to infer accurate 

values of the variables needed for control from secondary measurements which relate, 

in some way, to the required variables. 

When more than one variable of a process is to be controlled, interaction between 

the control loops will exist due to interations between the process variables. The 

classical design methods do not take account of interactions that may exist between the 

variables of the process as the methods are suitable for designing SISO controllers 

only. Therefore, when more that one process variable is controlled by conventional 

SISO controllers the combined performance of the multiple loop control system may 

be poor and non linearities and time delays will simply make the situation worse. The 

selection of the appropriate pairing of the manipulated and controlled variables is also 

very important in such situations, so that the designer must use his knowledge about 

the process to select the appropriate control configuration. In the presence of 

interactions among the control loops, it is, strictly speaking, not satisfactory to 

consider each control loop as independent. A design method that handles several 

variables is required. This is known as multivariable control. 

The various inadequacies of classical controller design methods provided the 

incentive for developing better methods of performing control in all fields of 

engineering. The result is that significant progress has been made in the development 

of new control techniques and there is now a wide variety of advanced control 

techniques available as alternatives to the classical design methods. In general, any 

method that departs from the classical design methods is called an advanced control 

technique. Advanced control systems design methods range from simple feedforward 

control to multivariable control through to adaptive control where the controller 
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parameters are changed according to changes in operating conditions. Many of these 

design methods, particularly the multivariable design methods, are classified under the 

general heading of " Modern Control Theory". Many have arisen from fields of 

engineering such as the aerospace and electronics industry (Bell and Griffin (15), Ray 

(144)). Some methods are extensions of single loop frequency domain design 

methods, such as Nyquist and Bode methods, to multivariable systems. Advanced 

control techniques can, in principle, solve many of the problems encountered in 

chemical process control, but there is a wide range of problems to be addressed and no 

single technique can solve them all (Foss (33)). 

Compared with conventional controllers such as the PID, advanced control 

techniques usually involve more complex calculations to obtain the controller 

parameters and implement the resulting control policy. On-line digital computers are 

needed for their implementation since to design mechanical, pneumatic or electrical 

hardware for there implementation would be difficult, or even impossible to do. The 

basis of most advanced control techniques is a mathematical model of the process, 

therefore, mathematical modelling and process identification techniques are valuable 

tools for the design, analysis and implementation of advanced control systems. In fact, 

with the complexity now required for the overall control system of modem chemical 

plant, a good knowledge about the behaviour of the processes over a wide range of 

operating conditions is required by the control systems designer. This means that the 

first stage in the design of a control system for a process usually involves building a 

mathematical model of the process that will be valid over a wide operating range. The 

availability of cheaper and powerful computers has made the task of process 

simulation easier, as large complex calculations can be performed much more easily. 

This has increased the scope for applying advanced control techniques. 

1.6 The extent of application of advanced control in the chemical 

industry 

Despite the theoretical advantages of advanced control methods and the availability 

of cheaper, powerful and flexible computers and microcomputers, the application of 

32 



advanced control schemes to industrial chemical processes has been and still is 
' ' 

limited. The PID algorithm is still the most widely used in industry (Benson (148), 

Rinard (170) and Clarke and Gawthrop (22)) and computers have been mainly used to 

make their implementation more cost effective and reliable (Clarke and Gawthrop (22)) 

. Computer simulations using process models have been frequently used to 

demonstrate the benefits of most advanced control schemes. 

Several factors are responsible for this state of events. One is because advanced 

control techniques involve complex calculations for controller design and 

implementation o_f the control policy and this complexity tends to discourage their use. 

This is particular true if the plant engineer is not familiar with the calculations, which, 

it can be said, is often the case. 

The practicability of many advanced control schemes have also been question. 

Critics such as Foss (33) have criticised several multivariable controller design 

methods that do not address the real problems such as non linearities, control loop 

pairing and estimation of unmeasurable variables in chemical systems. He gives 

examples of situations were failures have occurred and are likely to occur in the direct 

applications of multivariable design methods that assume linearity of the process. The 

assumption of linearity of the process can rarely be valid for chemical systems which 

are inherently non linear with parameters that change unpredictably: while such models 

can adequately describe a large number of mechanical and electrical systems even if 

high performance control systems is required (Ydstie et al. (146)). While this is true in 

many cases, there are a significant number of methods which, in theory, do not fall in 

this category, but are still not widely used. An example is adaptive control design 

methods based on continuous on-line identification of a model of the process which is 

then used to update the controller parameters. The availability of more flexible and 

powerful computers that make their real time implementation relatively easy. The 

superiority of many of adaptive control methods over conventional methods have been 

demonstrated, but they have not had extensive application at industrial level; they are 

still perceived difficult to use in industry (Dumont (176)). 
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A major contributory factor to the limited use of advanced control systems in 

industrial processes has been attributed to the reluctance of industrial practitioners to 

adopt new ideas. This is the point of view of some including Bell and Griffin (15) and 

Shaffii (115). According to Shaffii, industrial practitioners are usually not interested in 

applying new control methods unless the methods have had a long and proven history 

of applications, reliability and satisfactory performance. This is strongly supported by 

the fact that some industrial processes like distillation and absorption columns are still 

controlled manually, according to Skogestad and Morari (153). 

There is now wider opportunities to bring advanced control into practice in the 

process industries. According to Asbjornsen (2), many companies now regard 

improved process control as a significant contributor to plant economy in the future. 

One reason he gives for this is that these companies perceive that the exploitation of 

increased integration of processing units and exploitation of economies of scale to 

increase productivity and plant economy as a whole, will soon be exhausted. Ray 

(104) gives another reason, which is that engineers trained in advanced process 

control are now reaching positions of responsibility. They can, therefore, assess the 

practical advantages of these advanced control methods in industrial environment and 

influence their wider applications on the industrial processes. 

Furthermore, there are many older plants which still have significant operating life 

and where it may be more cost effective to invest in improving control rather than 

building a new plant. Increasing knowledge about the operation of such processes has 

been gained over the past years so that adequate steady state and dynamic models for 

many chemical processes can now be developed to the point were they can be used for 

control systems design and detailed analysis by computer simulation. This will make 

the analysis of advanced control methods by computer simulations more realistic and 

convincing so that they will be useful in determining the practicality of the methods. It 

is also important the the synthesis of the control system can be done conveniently. 

Even though the calculations may be lengthy and complex, the control engineer should 

be carried along the synthesis and the implementation of the control scheme with 

1 · as thi·s w1·11 help promote the use of the design method. This factor has re at1ve ease, 
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greatly promoted the development and the use of interactive computer packages for 

control systems design and analysis over the last decade. 

1.7 This Research 

Having given some factors responsible for the limited use of advanced control 

systems, it is true that not all the methods would be practical to chemical systems. 

There are many methods which have not been evaluated on realistic process models 

and in practical situations. This provides the incentive to test applicability of some 

design methods on practical systems, preferably on real plant, to assess their 

practicality, benefits and limitations. Furthermore, the robustness of any control 

scheme to various factors such as model errors and instruments failures, are important 

requirements of the control system. Such desirable property of a control system when 

demonstrated in a real environment, would contribute significantly in promoting the 

use of the control system in real systems. 

The aim in this research work is to select some advanced controller design 

methods and apply them on a practical chemical engineering system with the use of a 

microcomputer for direct digital control. Three methods were selected on the basis of 

three different criteria, so that each method primarily addressed a particular problem. It 

was aimed to consider a reasonably wide class of advanced control methods so as to 

address a reasonably wide range of problems. A binary distillation column was chosen 

to assess the design methods. 

The criteria for selecting the design methods, and the methods selected, are given 

as follows: 

1) One multivariable controller design method that addresses the problem of 

control loop interactions. A method called the Disturbance Rejection and Decoupling 

Control originally proposed by Falb and Wolovich (179) is chosen. The method 

assumes the the process is linear and is described by a set of linear ordinary 

differential equations, that is, in state variable form. The control objective is to 

decouple the control loops so that the closed loop response of each output variable will 

be independent of the others. 
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2) One method that is applicable in the situation were direct measurements of the 

controlled variables are not available. A method called the Estimator Aided 

FeedForward (EAFF) control scheme proposed by Daie (26) is selected. The method 

employs an Extended Kalman Filter as an estimator to generate the controlled variables 

of the process using a non linear model of the system combined with secondary 

process measurements. 

3) One method that addresses the problem of changes in operating conditions of 

the plant. The adaptive control system design method called the generalized minimum 

variance (GMV) Self Tuning Controller (STC) is selected. This basis of this method is 

the single step optimisation of a quadratic cost function and was developed by Clarke 

and Gawthrop (156). The design method adapts the controller to changes in the 

process environment by adjusting the controller parameters based on the parameters 

of an assumed model of the process. The parameters of the model is identified on-line 

using process input and output data and a recursive parameter estimation law. 

These design methods, the synthesis of the control policies and their applications 

to chemical processes, will be treated in more detail in the next chapter. In order to 

achieve the goals of this research work, the first task was to develop a dynamic model 

of the column used in this work, after the construction of the pilot plant distillation 

column used in this work. This model was used for studying the dynamic behaviour 

of the column and to design and analyse the control systems for the column. The 

decision to proceed with on-line application of the control schemes selected for 

evaluation was based on the performance on the dynamic model. The next section 

deals with the importance of distillation columns in the chemical industries and why 

they are good examples to illustrate application of advanced control systems. 

1.8 Reasons for studying distillation column control 

The purpose of a distillation column is to split the feed into two or more products: 

A conventional binary distillation column splits the feed into two products, the tops 

and the bottoms products. Heat is used to bling about the separation and the amount of 

l · t · strongly linked to the degree of separation that is achieved. Distillation is 1eat mpu 1s 
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an important fundamental chemical engineering process found in a majority of 

chemical and petrochemical plants. Distillations systems are complex non linear 

multivariable systems with strongly interacting variables. They generally consume 

large amounts of energy and it is usually the case that the quality of the products from 

a distillation column strongly influences the quality of the final product of the plant. 

This is particularly the case when the column is towards the end of the processing line, 

where it will be subject to many load disturbances from processing units in upstream. 

The usual control objective of a column is to maintain the product quality, at one or 

both ends, at desired levels subject to many adverse load disturbances and product 

demand changes. Another desirable operating objective is to reduce the energy 

consumption of the column since they usually consume a lot of energy. Numerous 

studies on the dynamics and control of distillation columns have been carried out (10, 

44, 57, 169, 188, 192, 199). It is generally agreed (199, 57, 169, 188) that 

improving the control of distillation columns would make it possible to operate the 

column closer to the product specification, reduce off specification periods, increase 

the rare of recovery of products and hence achieve more economical operation of the 

column. The recent article by Skogestad and Morari (153) point out that many 

distillation columns are still controlled manually, and, in most cases, only the product 

at one end is under control. 

The problems in the control of an average industrial, and even a pilot scale 

distillation process, is typical of the major problems in chemical process control. 

These include the presence of significant time lag between the response of the product 

compositions to changes in the inputs. These lags are usually introduced by the large 

liquid holdups in the column and by composition analyzers used for direct 

measurement of the product compositions. The selection of the proper location in the 

column were composition should be measured to achieve effective product 

composition control is frequently encountered. There are also many manipulatable 

inputs in a distillation column that strongly influence most of the primary variables of 

the entire column including the product compositions. Therefore, selecting the best 

input to control a particular product can be difficult. It is also usually the case that 
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direct measurements of the compositions are not available as on-line composition 

analyzers can be very expensive and unreliable. Furthermore, as distillation is a 

complex nonlinear multivariable process, the assumption of linearity in controller 

design means the resulting controller will be subject to robustness and stability 

problems as operating conditions change. 

Numerous simulated and experimental results (73, 57, 169, 161) have shown that 

the dual composition control of the top and bottoms of distillation columns can provide 

substantial benefits in terms of reduced energy consumption. This has been reported 

(199,205) to have industrial support. Dual composition control is, however, known 

to pose problems due to the strong interactions that exists between the variables of the 

distillation column. The control loop interactions in distillation columns can sometimes 

be considerable. A control loop at one end will affect the control loop at the other end 

because the manipulated inputs have significant influence in the entire column. The 

combined performance of independently designed conventional SISO controllers may 

become very bad as they will interact with each other. Stability problems are likely to 

arise and the nonlinear characteristic of the column will worsen the case. In such 

situations the controllers will have to be detuned to maintain stability and robustness 

with the loss of performance since longer response times and large deviations of the 

product quality from the desired levels will result. This type of control loop 

interactions has been cited (Marchetti et al. (82), Tham et al. (131) and Skogestad and 

Morari (153)) as one of the main reasons why multiproduct control of distillation 

columns is difficult. The incentive, therefore, exists to develop techniques which can 

deal more effectively with such interactions than conventional control methods. 

In the face of load disturbances such as feed flow and feed composition 

disturbances, feed forward control can be beneficial to distillation column control if the 

disturbances can be measured and a model which adequately predicts the effects of the 

diturbances on the product composition can be developed. The advantage of such a 

scheme is that the disturbances can be nullified before they have significant effect on 

the product composition and also avoid significant lags due to the hold ups in the 

column. Significant saving in off-specification products and in energy consumption 
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can be achieved (Jafarey and McAvoy (57)). Combinations of feedback and 

feedforward control schemes have been shown (Luyben (76) and Coppus et al. (25)) 

to offer significant improvements in the control of distillation columns. 

In view of all the control problems in distillation column control, distillation 

columns are regarded as good examples for illustrating advanced control techniques 

(Rys (169). In fact, it can be assumed that an advanced control strategy that can tackle 

some of the major problems in distillation column control has a promising future in 

becoming widely applied in the chemical industry. 

1.9 The Thesis 

The rest of this thesis is arranged as follows. 

Chapter 2 reviews some recent developments in control systems design, analysis 

and the selection of control configurations. It surveys some modern 

controller design methods including those that have been selected for 

evaluation in this work. The review extends to the applications of the control 

schemes there benefits, and limitatations as reported in the lterature. 

Chapter 3 follows on from the literature review. It states the issues addressed in 

this work as regards each of the control techniques selected for evaluation. 

Chapter 4 describes the pilot plant binary distillation column and the interfacing 

of the column with the microcomputer, System96, for investigating process 

control techniques. 

Chapter 5 describes the steady state and dynamic modelling of the column as 

well as the verifications of the models. 

Chapter 6 describes and discusses the results obtained from applying the 

Disturbance Rejection and Decoupling Control scheme by simulation on 

linearised state variable models of the non-linear model of the column and on 

the non linear dynamic model of the distillation column. 

Chapter 7 describes the Kalman filtering studies performed in an effort to assess 

the feasibility of applying the EAFF control scheme of Daie (26) to the 

distillation column. 
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Chapter 8 describes the design of self tuning controllers for single variable and 

multivarible control of the column. 

Chapter 9 discusses performance the self tuning control systems on the on the 

non-linear model of the column and compares the results with PI control. 

Chapter 10 discusses the results obtained from computer control of the pilot 

plant distillation column and 

Chapter 11 gives the general discussions, conclusions and future work 

recommended of this work. 

1.10 Chapter Conclusion 

This chapter has introduced the need, approaches and the motivations for 

developing new control schemes. It has given a brief description of the aim of this 

work. 
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CHAPfERTWO 

Literature Review 

2.1 Introduction 

The purpose of this review is to survey the state of the art of control systems 

design, analysis and structuring with reference to distillation. A review of some 

advanced control techniques and some reported applications to chemical engineering 

systems is made. The review does not survey every development in advanced control 

theory. Rather it surveys some design methods which have been receiving significant 

interest during the last 15 years and some methods that have been demonstrated as 

practical by laboratory and industrial applications. Also the review of the design 

approaches that were selected for evaluations in this research work is made. 

2.2 Recent developments in control systems design and analysis 

2.2.1 Control loop pairing 

The development of control systems generally involves the formulation of the 

control objectives, the selection of the appropriate pairings of the controlled and 

manipulated variables; that is loop pairing, and the determination of the appropriate 

control law (Lau et al. (75)). The interconnections between the manipulated inputs and 

controlled outputs, or loop pairing, is referred to as the controller structure while the 

manipulated and controlled variables is called the control configuration, or sometimes 

the control structure (Arkun (165)). 

Lau et al. (75) argue that the selection of the manipulated and controlled variables 

and pairing them appropriately is worth more attention than it previously has had. They 

base this on the need for efficient and reliable control structures for complex highly 

interconnected modem chemical plants. The argument is that since these plants have to 

show high perfonnance and the incentives for improved control are great the choice of 
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the various manipulated and controlled variables and their pairings become important in 

achieving good control. 

Choosing the proper manipulated and controlled variables and there pairings is 

usually more involved for multivariable systems with single input single output control 

loops since it may be necessary to pair the loops to minimise interactions between the 

control loops. Interaction analysis in multivariable systems is thus an important 

consideration in the design and analysis of control systems for multivariable systems. 

Numerous studies have therefore been carried out (Jensen et al. (59), Witcher and 

McAvoy (194) and Lau et al. (75)) on providing measures of the degree of interactions 

in multivariable systems. 

Multiple loo:p and Multivariable control systems: It is appropriate here to mention 

the distinction between what is meant by a multiple loop control system, as used in this 

review, and a multivariable control system, as regards the necessity for control loop 

pairings. A set of single loop controllers controlling the outputs of a m,ultiple-input 

multiple-output (MIMO) system can be referred to as a multiple loop control system. 

The single loop controllers may be conventional or advanced controllers; each is 

designed independently without considerations of the interactions that may exist 

between them. After selecting the manipulated and the controlled variables, it is then is 

necessary to determine the proper control structure for the multiple loop control 

system. 

By contrast a multivariable controller design method takes into account of the 

interactions between the control loops of the MIMO systems since, strictly speaking, 

implicit in the controller design is the ability to handle several variables. There is no 

need to specify the proper control structure; the multivariable controller will consist of 

a matrix relating the manipulated inputs and the controlled outputs. Thus, strictly 

speaking, if there are no interactions among control loops there will be no need for a 

multivariable controller design method to be used since each loop could be treated 
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independently. Control loop pairing is therefore primarily concerned with either single 

loop and multiple loop control systems. 

2.2.2 The Relative Gain Array method for control loop pairing 

In industrial practice the control loop pairings is commonly done by experience of 

the plant operators. For systems that require multiple control loops, it is usually more 

difficult to select the best loop pairings when interactions between the variables are 

severe. A method called the relative gain array (RGA) technique is one method for 

selecting the control configuration for MIMO systems. This method is treated in books 

on distillation column control by Shinskey (142) and Desphande (168). The method 

indicates the control configuration that will give the minimum interactions between the 

control loops. Each element in the RGA represent the relative gain of a pairing of 

controlled and manipulated variables. Scali et al. (111) have defined the relative gain is 

the ratio between the steady state gain relating the manipulated and controlled variables 

when the MIMO system is in open loop condition and the steady state gain when all the 

other loops are closed. The quantity is given as; 

~ = steady state gain with all control loops open 

steady state gain with all other control loops closed 

= (dy/du) uk,ki=j / (dy/du) yk ,k:;t:i 

2.1 

2.2 

where rrij corresponds to the relative gain between the output i, Yi, and the input j, Uj. 

The i and j correspond to the i-th row and j-th column in the RGA. Qualitatively, the 

RGA is an index of how much the system is influenced when control loops change 

from open to closed loops. If there are no interactions between a manipulated variable 

ui and the other controlled variables, Yj where j * i, the corresponding relative gain~ 

will be 1. The elements in each row, or in each column, of the RGA must also add up 

to 1. 

The RGA is a measure of the strength of interactions in the system and it indicates the 

proper pairings for the minimum steady state interaction among the control loops. It is 
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easy to compute because it requires only the knowledge of the steady state gains of the 

process system. Since the elements in each row and in each column of the RGA must 

add up to 1 for a process with 2 manipulated inputs and 2 controlled outputs (a 2 x 2 

system) only one relative gain need to be determined. The other elements can be 

obtained by appropriately summing up to make the row elements and column elements 

add up to 1. The RGA may, however, be computed directly from the process gain 

matrix rather than perforn1 actual experiments, or simulations. Given the process gain 

matrix for a 2 x 2 system as 

GF[:::::!] 2.3 

the RGA is computed '['~ :~:~:jest(r·~ :~~ -~~:lari (119), Marlin et al. (98)) 

RGA = = 2.4 
1C211C22 }-TC J ITC J l 

where rr11 = (l-(g12g21)/(g11g22))-l 

For a process gain matrix of size n x n the RGA is 

2.5 

1deally, it is desirable to have pairings which have relative gains close to I as this 

indicates minimum interactions of the corresponding loop with other loops. Shinskey 

(142) has used the RGA to compare control configurations for dual composition 

control of distillation columns and suggested some recommendations which has been 

interpreted by Skogestad and Morari (153) as pairings with relative gains between 0.9 

and 4 should be used. 

The drawback of the steady state formulation of the RGA is that the degree of 

interactions between the control loops may vary significantly during operation and 

these may dictate a different control configuration than that predicted at steady stare 

(Lau et al. (75)). The RGA can be computed at different frequencies of practical 

importance to the system. The significance of this is that an indication of variations of 

the strength of interaction during the transient behaviour of the system could be 
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obtained. The RGA is therefore defined in the frequency domain as (Skogestad and 

Morari ( 119), Scali et al. ( 111)) 

RGA = Gp(co) x (Gp(co)-l)T 2.6 

The magnitude of the dynamic relative gain elements and the phase angles can then 

be plotted against frequency similar to the Bode plots in frequency response analysis 

used for analysing SISO systems. Frequencies of practical importance in a particular 

system may be the crossover frequency and the ultimate frequency. The variations in 

the dynamic relative gains around the ultimate frequency, for example, may be 

obtained. If the variations are significant then this discloses that the degree of 

interactions would vary greatly and control may be poor (Deshpande (168)). An 

adequate compensator or a different controller design could then be sought for in order 

to avoid poor controller performance. Analysis and evaluations of relative gains of 

rnultivariable systems have also been extended to non linear multivariable systems 

(Mijares et al. (83)). Steady state RGA analysis has also found use in analysis of the 

operability of chemical processes and the prediction of process control performance 

(Marlin et al. (98)) 

2.2.3 The Singular Value Decomposition applied to loop pairing 

The singular values of a system are related to the eigenvalues of the system. Given 

a matrix, Gp, the singular values of the matrix are the square roots of the eigenvalues 

of matrix 

Gp+ x Gp, where superscript+ denotes the complex conjugate transpose of Gp, that is 
1/2 + 

cr11 = An (Gp x Gp) 2.7 

where crn is the singular value which is the square root of the eigenvalue A11 • The 

singular values are thus the spectral norms of the matrix. In numerical analysis the 

spectral norm of a matrix is the Euclidean norm, represented as 11Gpll2,which is the 2-

norm of the matrix Gp. It is defined (Grosdidier et al. (204)) as the maximum singular 

value given by 
1/2 + 

crmax = Amax (Gp x Gp) 2.8 
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In the context of control the singular values are also known as the principal gains of 

the plant matrix (Shimizu et al. (189)). 

Another quantity that can be derived from the singular values is the condition 

number of the system matrix. The condition number, y(Gp), is the ratio of the 

maximum and minimum singular values, CTmax and CTmin' respectively, and is given 

by 

2.9 

In numerical analysis, the condition number of a matrix indicates the extent of 

illconditioness of a matrix. 

The singular value decomposition of Klema and Laub (160) is another method of 

obtaining the singular values of a matrix. It involves the decomposing the plant matrix, 

whether square or non-square, into three matrices. These are given as ; 

Gp=VQWT 2.10 

whereQ = diag(01, CTz, ...... , CTn) 

CTi are the singular values of the Gp matrix of rank n 

V = ( v 1 , v 2, . . . . . ) - the matrix of the left singular vectors v i 

W = ( w 1 , w 2, ..• ) - the matrix of the right singular vectors w i 

vTV = I 

wTw =I 

where I is the identity matrix. This relationship is given in the articles by Lau et aL 

(75) and Levien and Morari (152). 

According to Lau et al. (75), by performing SVD on the plant matrix it is possible 

to make direct relationships between the input and outputs of the MIMO system and 

extract much more information about the characteristics of the system. They point out 

that the singular values are measures of the sensitivity of the MIMO systems in the 

same manner as the amplitude ratio is used in SISO systems. Yu and Luyben (137) 

have also combined the singular values and the singular vectors to select the controlled 

and manipulated variables of systems and pair them appropriately, since the singular 

vectors disclose the extent at which an input affects the outputs of the system. 
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In the work of Lau et al. this SVD technique of Klema and Laub (160) was shown 

to be an efficient method for selecting the control structure MIMO systems with SISO 

controllers. Lau et al. extended the SVD to the frequency domain to enable analysis to 

be carried out over a range of frequencies of practical significance to the given process, 

in a similar way as the Bode plots is used in the frequency response analysis of SISO 

systems (Stephanopoulos (116)). By formulating the SVD in the frequency domain, 

they were able to define new measures of dynamic interactions among the control 

loops of the MIMO system. This interaction measure was then combined with the 

condition number of the process matrix to assess the control properties of some 

example model systems which included a distillation column. These quantities were 

plotted against frequency and the information the plots provided were used to assess 

the need and the feasibility of designing compensators to minimise interactions among 

the multiple SISO control loops. 

The ability of the SVD analysis to identify aspects such as model uncertainties 

which can affect performance of the control structures selected was also demonstrated. 

They found that the SVD analyses indicated that a closed loop system with larger 

dominant time constant (slow responding system) can tolerate model errors than a 

system which has smaller dominant time constant (faster responding system). This 

result conforms with practical experience and engineering judgement since the 

universal way to improve the robustness and the stability properties of a control system 

is to reduce the control actions; for example, reducing the proportional gain of the PID 

controller will reduce the closed loop response of the controlled system. Hammarstrom 

et al. (47) investigated the effects of model errors on the performance of a multivariable 

optimal linear quadratic gaussian (LQG) controller on a distillation column with time 

constants as large as 16.6 minutes. There investigation showed that errors of up to 

30% in the time constants had no significant effects on the controller performance. 

Yu and Luyben (137), in their work which involved the design of rigorous 

composition estimators for multicomponent distillation systems, employed the SVD to 

locate the best tray temperature measurement for product composition estimation, and 
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to select the control configuration for control of the product compositions of the 

column. The criteria for selecting the control configuration is given in the article. In 

summary the criteria is as follows; 

1) Select the largest singular value and the the largest element corresponding left 

singular vector v i . 

2) The location of this element is the location of the controlled variable. 

3) The appropriate manipulated variable is the largest element rn the 

corresponding vector w i. 

They found that resulting control structures based on this criteria were reasonably 

insensitive to changes in the operating conditions. They also used the SVD to 

determine which tray temperature can infer feed composition disturbance best, using a 

similar criteria to that given above. 

In recent years the RGA and SVD have found extensive use as tools for assessing 

the effects of plant characteristics, such as model errors, on the properties of multiple 

loop and multivariable control systems (Morari (159), Grosdidier et al. (204)). The 

topic of the next section concerns these areas. 

2.2.4 Model uncertainty and controller performance 

A view held by Doyle and Morari (177) and Morari (150) is that for any controller 

design procedure to yield a control algorithm which works satisfactorily, the following 

need to be specified: 

(1) Process model and model uncertainty bounds. 

(2) Types of inputs (set point changes, load disturbances). 

(3) Performance objectives. 

These considerations are from the point of view of Internal Model Control (IMC), 

which will be introduced in the next section. According to them, the omission of any 

of these procedures may eventually lead to bad controller performance because every 

controller design or tuning method is centred around a process model. In particular, 

they emphasize that the presence of uncertainty in the model can adversely affect the 
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performance of the resulting control system. They base this on the fact that processes 

can seldom be modelled exactly so that there is always a mismatch between the plant 

and the best model available. This mismatch is referred to as model uncertainty. The 

sources of uncertainties in process models include incorrect estimates of the process 

parameters such as rate constants and time constants, the neglect of non-linearities and 

higher order dynamics, and errors in the input and output measurements due to noise 

and faulty measuring instruments. 

Doyle and Morari (177) and Morari (150) claim that model uncertainty is one of the 

major problems that face the control systems designer in the development of reliable 

and robust control systems. They pointed out that neglecting uncertainty in the models 

could lead to a controller that is too tight which \vill cause oscillatory closed loop 

response of the system or even instability. Simple examples were used to illustrate 

how errors in the assumed process time delay can seriously affect the perfom1ance of a 

control system that is based on compensating for the time delay, and how errors in the 

manipulated inputs can deteriorate the control of an MIMO system with controllc·rs 

aimed at compensation for control loop interactions (i.e decoupling control). 

Doyle and Morari also claim that one reason for the lack of use of advanced control 

techniques in the chemical industry is because these techniques often do not address 

practical issues such as model uncertainties. They emphasised that the control engineer 

in industry needs efficient and robust controller synthesis procedures rather than 

having to embark on time consuming and usually expensive procedures of analysis 

either by simulation or by experimentation. 

In recent years, aspects of model uncenainties on controller performance have been 

receiving a great deal of attention. Some definitions now commonly used to indicite 

the closed loop system performances will be given. These are, nominal performance, 

robust performance and robust stability. These are defined more fully in the articles by 

Doyle and Morari (177) and Morari (150) and only simple forms of the definitions will 

be given here. 
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Robustness is defined as a measure for the effect of uncertainty on plant stability 

when under control (Morari (150)). Robustness is put in a simpler manner by 

Grosdidier et al. (204) as the ability of a closed loop system to remain stable in the 

presence of errors in the plant model used for the controller design. Grosdidier et al. 

(204) define a closed system which becomes unstable due to model mismatch as 

"sensitive". Nominal performance is stable performance of the controller on the 

process model. The terms robust stability and robust pelj'ormance are used to indicate 

that a closed loop system is stable and meets the performance specifications, for 

example, fast set point tracking, even though the model used for controller design is 

associated with errors. 

Arkun et al. (1) also noted that a common criticism levied at various controller 

design methods is the lack of considerations of model uncertainties in the design 

procedures. If model uncertainty considerations are not considered at the controller 

design stage, then tuning of the controller to compensate for model uncertainties so as 

to improve the robustness of the closed loop system can only be done when the 

controller is in operation. In the case of simulation this will be done by trial and error 

simulations. However, it is not straightforward to quantify model uncertainties and 

predict their effects on controller performance. This is probably one of the major 

reasons that model uncertainty considerations have been excluded from control 

systems design and analysis procedures for chemical systems. It can thus be said that 

this difficulty provided the incentive for some workers such as Grosdidier et al. (204), 

Morari (159) to concentrate on finding methods of quantifying model uncertainties and 

predict their effects on controller performance. Workers such as Arkun et al. ( 1 ), 

Doyle and Morari (177), Morari (150) and Shinnar (100), have addressed the issues of 

describing model uncertainties and include model uncertainty considerations and 

robustness features into controller design. A new theory and representation of control 

systems has thus emerged in recent years and has been useful in assessing the effects 

of model uncertainties and other plant characteristics on controller pe1fom1ance. This is 
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the Internal Model Control introduced by Garcia and Morari (200, 201, 202) and is 

treated in brief in the next section. 

2.2.5 The Internal Model Control structure 

Garcia and Morari (200, 201, 202) proposed a general structure called the Internal 

Model Control (IMC) structure for the design of feedback controllers. This IMC 

structure is equivalent to the conventional feedback loop structure as expressed in 

Figures 2. la and 2.1 b. The name Internal Model Control is pointed out by Morari 

(150) to have arisen because the IMC structure includes a plant model, Gp, explicitly 

in the control loop. An advantage offered by using the IMC is that many control 

systems can fit into the structure (Ray 104). However, the controller designs 

considered by Garcia and Morari (200, 201, 202) using the IMC are based on the 

controller being the inverse of an approximate plant model, i.e; 

Ge= 1/Gp 2.11 

If the model is exact, that is, Gp= G, then "perfect" control can be achieved. Morari 

(159) emphasized that any feedback controller provides an approximate inverse of the 

plant transfer matrix. The full theory on the IMC can be found in the articles of Garcia 

and Morari (200, 201, 202) mentioned above, therefore only a summarised review of 

these articles will be given in the following. 

In practice, perfect control cannot be achieved because certain plant characteristics 

will limit the achievable performance of the controller. The model Gp is, therefore, 

factorized as shown by Garcia and Morari (200) into 

2.12 

where G- contains the invertible part of the plant and G+ contain the non-invertible 

parts. The IMC controller is then assumed to be the obtainable and stable parts of the 

system inverse, G_ -l. The G+ holds the parts of the plant that limit the controller 

performance. The IMC controller is then given as 

Ge= Gp- 1G+ = G_-l 
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Considering a multivariable system the closed loop transfer function for the IMC 

structure in Figure 2.1 b is 

y = GGc[I + (G - Gp)Gcr 1(ys- d) + d 2.14 
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The control input is 

u =[I+ Gc(G - Gpr 1Gc(y - d) s 

If the model Gp is exact then the control input will be 

u = Gc(ys- d) 

2.15 

2.16 

The IMC design strategy is, therefore, to find a stable approximation to the inverse 

of the plant model since if controller Ge is stable then the closed loop system is stable. 

The controller parameters and the control structure are given directly so that control 

loop pairing is not necessary. This property is claimed to be one major advantage of 

using the IMC structure instead of the conventional feedback controller structure; the 

conventional feedback controller has to be chosen to achieve closed loop stability. 

From Figure 2.1 b, if no disturbances enter the system, that is, y s and d are zero, 

then the feedback signal dp given as 

dp = d+ [G - Gp]u 2.17 

becomes zero. Hence, the IMC becomes a feedback controller only when it is 

necessary. 

Garcia and Morari (201) explained that a system equipped with a controller 

Ge = Gp-l can be very sensitive to modelling errors. They mentioned that even when 

Ge is stable, if a pole of its discrete time transfer function Gc(z) is close to -1, the 

manipulated variables can exhibit oscillatory behaviour which may produce undesirable 

responses in the outputs. There is, however, another feature of the IMC which allows 

the inclusion of robustness as a design objective. This is achieved by designing an 

appropriate filter, F, shown in Figure 2. lc, which is capable of improving the 

robustness to modeling errors. Garcia and Morari (201) addressed the issue of the 

design of the filter F. They give a necessary condition that must be satisfied for design 

of a diagonal exponential filter for a multivariable system that would give a stable 

closed loop system. A diagonal filter implies one filter for each control loop; an 

exponential filter implies a filter having the form of a first order transfer function. 
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Morari (159) used the IMC philosophy to identify the plant characteristics that are 

likely to limit the performance of a controller; in terms of perfect control, this implies 

the characteristics that will prevent perfect control to be achieved. The goal was to find 

these characteristics without imposing any constraints or structure on the controller. 

The IMC structure provided this feature. The characteristics that where found to 

prevent perfect control from being achieved where sensitivity to model uncertainties, 

time delays in the process, constraints on the manipulated inputs and inverse response 

behaviour of the output. 

Inverse response is the case where the initial response of the output of the system 

is in the opposite direction to where it eventually ends up. This usually occurs due to 

opposing effects in the system. When a plant output exhibits inverse response 

behaviour it is said to have nonminimum phase (NMP) behaviour. This occurs in 

plants which have positive zeros and time delays in their continuous time transfer 

function. In the case of the discrete time transfer function, a nonminimum phase 

system has zeroes outside the unit circle, that is zeroes which have magnitudes greater 

than one. 
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Taking the inverse of the system, time delays will require prediction. The inversion 

of zeroes which are positive in Laplace domain and greater than 1 in discrete time, will 

result in an unstable controller. These characteristics are therefore included in G+ to 

represent the characteristics that prevent perfect control from being achieved. Garcia 

and Morari (200) point out that these plant characteristics are inherent in the system and 

cannot be removed by any control system. Their effects can only be suppressed by 

designing appropriate compensators: for example, time delay compensator and inverse 

response compensators. 

2.2.6 Assessing the effects of model uncertainties on controller performance 

Morari (159) investigated techniques for assessing the effects of time delays, 

nonminimum phasedness, and sensitivity to model errors on the performance of 

multivariable control systems. These techniques are also summarised in the articles of 

Levien and Morari (152) and Skogestad and Morari (119, 153). The effects of model 

uncertainties on controller performance have been assessed using tools, or indices, 

provided by SVD analysis and RGA analysis. 

Morari (159) proposed the SVD analysis to predict model uncertainty effects on 

controller performance. The other quantity is provided by SVD analysis is the 

condition number, y(Gp), of the process gain matrix. In matrix algebra the condition 

number of a matrix is a measure of illconditioness of the matrix. One example of an 

illconditioned matrix is one were the magnitude of the elements in the diagonal differ 

by orders of magnitude. Another example is were the matrix is singular, or near 

singularity. Matrices with high condition numbers thus have high degree of 

illconditioness. 

Shimizu et al. (189) have used the SVD analysis to assess the ability of a closed 

loop system to compensate for disturbances. Grosdidier et al. (204) showed the norm 

of the matrix from the steady state RGA analysis can also be used to assess effects of 
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model uncertainties on controller performance. How all these techniques are applied is 

summarized here. 

Compensating for Disturbances 

Performing SVD on the plant matrix enables the control input, u, to be related to 

the minimum singular value, amin, of the plant matrix as is shown by Shimizu et al. 

(189). Their analysis is as follows. From SVD analysis the plant gain matrix Gp 

becomes Gp= VQWT from Equation 2.10. Substituting into Equation 2.16 then gives 

u=WQ-1 vT (ys-d) 2.18 

and hence they obtain the relationship 

!lull= 0min-111ys - dll 2.19 

From this relationship the size of the disturbance that can be controlled without 

saturation of the manipulated variable can be determined. The significance of this is 

that it is important to avoid cases where 0min is small because the manipulated variable 

will easily hit a constraint. Whenever a manipulated variable hits a constraint it is no 

longer useful for control and poor, even unstable, controller performance is likely to 

result. Furthermore, in the cases where there are several manipulated inputs to choose 

from, a small 0min could indicate those manipulated inputs that should be avoided 

since if they have small ranges they will easily hit a constraint to small disturbances. 

Sensitivity to Modelling Errors 

The magnitude of the condition number of the plant matrix, y(Gp ), is a measure the 

effects of model errors on controller perfom1ance. In general the magnitude of y(Gp) 

indicate the closed loop system sensitivity to model uncertainties. This directly links 

the degree of illconditioning of the plant matrix to the controller performance. 

Grosdidier et al. (204), Shimizu et al. (189) explain this from the following 

relationship : 
-1 -1 -1 

IIG-Gpll llGp II< 1/ ( IIGpll IIGp II)= y(Gp) 2.20 

It can be observed that IIGpll IIGp-
1

11 is the definition of the condition number of the 

matrix Gp, i.e y(Gp) = ama/amin (Equation 2.9). Regarding the control of the 

plant, G, the above relationship has been interpreted as to imply the following. For the 
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controller Ge = Gp-
1
, stability is guaranteed only when the relative modelling error, 

IIG-Gpll llGp-lll, does not exceed the inverse of the condition number, y(Gpf1, of the 

plant model. For example, y(Gp(0)) = 10 implies that a steady state relative modelling 

error of as little as 10% might lead to instability, where Gp(0) is the steady state 

process gain matrix. Hence a very large y(Gp(0)) implies the system is 

"uncontrollable" by the IMC controller Ge = Gp-l as error is implicit in the plant 

model Gp. 

Grosdidier et al. (204) showed that the size of the norm of the RGA, IIAII, at steady 

state, can be used to indicate control properties in a similar way to the condition 

number. They found that a very large IIAII also discloses potential difficulties in 

feedback control as indicated by a large condition number. A system whose plant 

matrix has large y(Gp) or IIAII is termed an illconditioned system. In the context of 

control, such an illconditioned system is one where the plant gain in certain directions 

of input change is much larger than in other directions, and when under closed loop 

control, will be very sensitive to model uncertainties (Skogestad and Morari (153)). 

Skogestad and Morari (119, 153) also point out that high purity distillation columns 

usually have this characteristic and that this is one reason why they are usually more 

difficult to control than low purity columns. 

Only MIMO systems can exhibit this sensitivity to model uncertainties. This type 

of sensitivity cannot be exhibited by SISO systems since, for example, the system 

cannot be described by a gain matrix. This has been used (Garcia and Morari (20 l )) to 

explain why MIMO systems are in general more difficult to control than SISO 

systems. 

Doyle and Morari (177) and Morari (150) illustrate the sensitivity of MIMO 

systems using a high purity di.stillation column model under control. They used two 

control structures; one a set of SISO PI controllers and the other a set of SISO 

controllers with steady state decoupling. To represent model errors a 20% error in the 

computed changes in the manipulated variables was introduced. The results of there 

simulations led them to conclude the following. For multivariable systems the dynamic 
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responses for different input directions are different and a control system, such as 

decoupling control, which attempts to change the natural directions makes the dynamic 

behaviour worse. A small y(Gp) or IIAII implies less sensitivity and less difficulty in 

controlling the system. 

2.2.7 The relationship between the RGA and the condition number of a process matrix 

Skogestad and Morari (119) noted that the IIAII is usually preferred to y(Gp) 

because SVD involves more complex computations than the computations required for 

the RGA. Moreover, the value of the condition number depends on the scaling of the 

process matrix. For example, if the matrix is scaled such that the largest element on 

each row, or column, has the value of 1 the the condition number will be reduced as 

shown by Grosdidier et al. (204). These workers thus pointed out that the condition 

number is a useful measure of sensitivity only when the process matrix have been 

scaled by the above mentioned procedure to minimise the condition number. They 

defined this as the minimised condition number, Ym(Gp). They observed relationships 

between the minimised condition number, Ym(Gp) and IIAll 1 for 2 x 2 and n x n 

systems. These are as follows. For 2 x 2 systems 
2 1/2 

Ym(Gp) = II A 11 1 +( II A 11 1 - 1) 2.21 

and 

Ym(Gp) = 2 11 A 11 1 as II A 11 1 tends to oo 2.22 

For n x n systems 

Ym(Gp) =2 max( II A 11 1 , II A 11
00

) 2.23 

where II A 11 1 and II A 11
00 

are the I-norm and the 00 - norm of the RGA matrix. 

2.2.8 Applications of Singular Value Decomposition and the RGA analysis to chemical 

process control 

Using the SVD and RGA analysis, it is possible to predict many properties of the 

multivariable control systems before the controllers are commissioned. The 
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significance of these predictions is that, in practice, the number of trial and error 

simulations and pilot plant tests necessary for the detailed analysis of the control 

system can be significantly reduced (Levien and Morari (152)). This means that 

significant savings can be obtained. 

Levien and Morari (152) employed the SVD technique to test the "resilience" of a 3 

x 3 process system which was a coupled distillation system. The term "resilience" was 

introduced by Morari (159) and is defined by Levien and Morari (152) as the ability of 

a process to move quickly and smoothly from one operating condition to another, and 

to reject effects of disturbances effectively; complete resilience implies prefect 

regulatory and servo control, i.e. "perfect" control. Levien and Morari examined the 

effects of non-minimum phase characteristics, input constraints and model 

uncertainties on the performance of multivariable control systems based on IMC 

structure. They pe1formed their analyses on three 3 x 3 MIMO linear laplace transforn1 

models selected from various models all obtained from experimental step response 

results. They observed that (i) a system with a larger minimum singular value, C>min, 

could handle larger load disturbances better, (ii) a system with a large condition 

number y(Gp) was sensitive to model uncertainties when under closed loop control and 

that (iii) a system with y(Gp) close to 1.0 was insensitive to direction of disturbances 

under control, indicating that any disturbance (load or setpoint changes) can be handled 

regardless of the direction of the change. Sensitivity to model uncertainties was found 

to be the most significant factor that affected the controller performance. It was also 

shown how steady state SVD alone could lead to misleading conclusions as they found 

significant variations with frequency in the condition number of one of the MIMO 

models. 

The effects of using a filter in the feedback loop of an IMC controller structure, as 

shown Figure 2. lc, was also demonstrated by Levien and Morari. They reported 

simulated and experimental results which show that an exponential filter, a first order 

lag, in the feedback loop, provides significant improvements in the controller 

performance by improving the robustness of the system. As the filter time constant is 
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increased the closed loop response of the system becomes more sluggish since control 

action is slower. The results showed that, by appropriate selection of the filter time 

constant, the IMC controlled system that is unstable could be made stable. 

2.2.9 Guidelines for selecting control configurations for binary distillation column 

The SVD and RGA techniques have been used to explain practical experience and 

observations that have been made in the control of chemical process systems. One 

such analysis is that of Skogestad and Morari (153). They used RGA analysis to 

explain the observations on the dual composition control of distillation columns made 

by Shinskey (142). 

In the dual composition control of distillation columns the recommendation of 

Shinskey (142) is to choose control loop pairings with relative gains between 0.9 and 

4. As this represents relatively small RGA elements, Skogestad and Morari (153) point 

out that their observations that systems with large RGA elements are difficult to control 

justifies the recommendations of Shinskey. 

Skogestad and Morari (119, 153) applied the SVD and RGA analysis to distillation 

column control and their work has culminated into good guidelines for selecting 

control configurations for the multiple loop control of distillation columns. In general, 

they suggested that a control configuration with large y(Gp) or IIAII should be avoided 

since it implies greater sensitivity to model uncertainties. They also suggested that 

decoupling control should be avoided for a process with large y(Gp) or IIAII as 

instability may result. An example of the destabilising effect induced by incorporating 

decoupling into the dual composition control loop of a high purity distillation column 

was demonstrated in the article of Morari (150). It was shown that the closed 1oop 

dynamics could be degraded significantly if decoupling is introduced into the closed 

loop system consisting of S1SO controllers. 

This type sensitivity prope11ies induced by decoupling was also explained by RGA 

analysis. The explanation is given as follows. Without decoupling control the multiple 
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loop control system is a diagonal controller, that is, a set of independent SISO 

controllers. The RGA of the control structure, the controller matrix, will have diagonal 

elements equal to 1. There is then no possibility of an illconditioned control system 

resulting. If decoupling is introduced, the control matrix is then not a diagonal matrix 

since the matrix will now have off-diagonal elements. Therefore, the RGA of the 

MIMO controllers can have elements greater than 1. There is then the possibility of 

having an illconditioned control matrix which will induce its own instability properties 

into the closed loop system. 

Skogestad and Morari (153) carried out a comprehensive investigation of the 

characteristics of the various possible control configurations for dual composition 

control of a binary distillation process. They used the RGA in their investigations. ln a 

distillation column as shown in Figure 2.2 the variables that are usually available for 

manipulation are the reflux flow, L, vapour boilup, VN, distillate flow, D, and 

bottoms flow, B. They used L and V, instead of L and VN, as notation. The 

observations and conclusions arrived at include the following. 

(1) If uncertainties are present then configurations with small RGA elements will 

work better than others as they will be more robust to model uncertainties. The L V 

configuration which uses reflux to control the top product and vapour boilup to control 

the bottoms product, gave the largest RGA elements. All configurations using D or B 

for composition control have small RGA elements and hence are insensitive to 

uncertainties. 

(2) If a diagonal controller, such as two single loop PI controllers, is used a control 

configuration with large RGA elements may not be very sensitive to input uncertainty, 

for reasons already discussed above. For disturbance rejection a diagonal controller 

may also deliver acceptable performance if the disturbance condition number is small 

for all possible expected disturbances and tight setpoint tracking is not required. 

(3) For fast initial response, the LV configuration should be used. The(t ~) 

configuration also has this feature but configurations with D or B for composition 

control are not preferable since the initial response is slow. 
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(3) Configurations with D or B for composition control are insensitive to 

disturbances in reflux flow, vapour boil-up and feed enthalpy, but do not reject 

disturbances in feed flow. The(t ~) configuration is the best for disturbance 

rejection. It is insensitive to disturbances in feed flow rejects other flow disturbances 

as well as provided reflux is large. 

The (t ~) configuration was found to be the best choice for servo and regulatory 

control and pointed out that this agrees with the recommendations of Shinskey (142). 

It is claimed that all the recommendations agree well with engineering judgement. This, 

therefore, makes them good guidelines for the design of control systems for distillation 

columns and other similar processes such as absorption columns as well. 
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2.3 Introduction to Advanced Control systems 

It was mentioned in Chapter 1 that any controller design method that departs from 

the conventional classical feedback controller design methods is generally classed as an 

advanced controller design method. Advanced control systems range from feedforward 

control schemes to state variable feedback control schemes where the system is 

described by a set of ordinary differential equations. The various methods include the 

following: 

(1) Multivariable Controller design methods such as the Inverse Nyquist Array 

(INA) method, Direct Nyquist Array (DNA) method and the Characteristic Loci 

Method. These methods are extensions of SISO frequency domain design methods, 

such as the frequency domain method of Nyquist, that have been extended to the 

MIMO case (Nawari (193)). Jensen et al. (59) have recently demonstrated that the 

DNA method is a useful method for interaction analysis and the method handles 

control loop pairing and interaction compensation directly. 

(2) Multivariable controller design methods based on state variable description of 

the process system. One such method is Modal Control techniques (Ray (144)) where 

the poles or eigenvalues of the system can be placed at desired locations in order to 

speedup the response of the system or stabilise the system. Another method is Optimal 

Control (Ray (144)), which is defined in various ways. One approach to optimal 

control is where the control inputs are calculated as a function of the state variables in 

order to optimise the time required to bring the process to a new state, and another is to 

determine the feedback and feedforward gains that minimise a quadratic cost functional 

of the process state variables and the control inputs. 

(3) Multivariable controller design methods based on decoupling the control loop 

of the system. The simplest form is simplified decoupling control where decoupling 

compensators are inserted into the multiple loop control system in order to directly 

cancel out the effects of tht; control loops from each other. A more complicated form 

of decoupling is called the Decoupling and Disturbance Rejection Control method by 

Shimizu and Matsubara (113) which is based on the work of Falb and Wolovich (179) 
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and Morgan (196). In this method, closed loop poles can also be assigned in order to 

achieve desired closed loop response. 

(4) Estimator Aided Control methods, which use the available process 

measurements and a model of the process to produce estimates of the variables 

required for control. These methods are used in the cases where direct measurements 

of the control variables are either not available, corrupted by noise or errors in the 

measuring instruments or the measurement is subject to long time delays. 

(5) Time delay compensation techniques which are used in the situations where 

there are significant time delays in the system. These methods attempt to directly cancel 

the time delays using a model of the process and the Smith Dead Time Compensator 

(172, 173) is one such approach. 

(6) Adaptive controller design approaches (Goodwin & Sin (39)) where the 

controller parameters are continually changed to correspond with changes in the 

operating conditions and the process environment. The usual approach to adaptive 

control is to use an identification technique to continually estimate the parameters of an 

assumed model of the process on-line using process input and output measurements. 

The model is then used to calculate new controller parameters for the control 

algorithms. 

Standard texts on the various advanced control theory are available for reference. 

These include Ray (144), Astrom and Wittenmark (206), Stephanopoulos (116) and 

Bell and Griffin (15). Critical reviews of the applications of advanced control 

algorithms are given by Foss (33) and by Nawari (193). 

In this review two multivariable controller design approaches based on the state 

variable feedback approach will be reviewed first. These are the Modal Control 

approach of Rosenbrock (105) and the Decoupling and Disturbance Rejection Control 

design approach based on the work of Falb and Wolovich (179). Both methods are 

multivariable controller design methods which result in control systems with 

decoupling control properties. However, a drawback of the methods is that they do not 

have integral action so that they cannot address the problem of offsets. 

65 



-
2.4 State variable representation of systems, Controllability and 

Observability 

When a set of first order differential equations is used to describe the dynamic 

behaviour of a system these equations can be written in the form 

dx(t)/dt = A(t)x(t) + B(t)u(t) 

y = C(t)x(t) 2.24 

This is referred to as the state variable or state space formulation of the system 

dynamics. The x is the vector of the state variables, u is the vector of the system inputs 

and y is the vector of the outputs. The A is the state, or system, matrix, B is the input 

driving matrix and t denotes time. Assuming the numbers of the state variables and the 

number of inputs are n and m, respectively, then the dimension of x is n x 1, u ism x 

1, y is r x 1 A is n x n, B is n x m and C is r x n. If A, B and C do not vary with time 

then the t can be dropped from A(t), B(t) and C(t) to give 

dx(t)/dt = Ax(t) + Bu(t) 

y(t) = Cx(t) 

This equation is called a linear time-invariant state variable model. 

2.4.1 Controllability and Observability 

2.25a 

2.25b 

There are two important issues that arise in the analysis and control of dynamic 

systems. One is whether it is possible to steer a system from a given initial steady state 

to another state; this introduces the issue of controllability. The other consideration is 

whether it is possible to determine the state of the dynamic system from observations 

of the inputs and outputs; this raises the question of observability. Controllability and 

Observability are very important particularly in the design of control systems based on 

state variable representation of the system. The definitions given by Astrom and 

Wittenmark (206) will be presented here. 

Consider the linear time invariant state variable system of Equation 2.25. The 

discrete time equivalent of the system is given as (Astrom and Wittenmark (206)) 

x(tk+l) = <I>(tk+l•tk)x(t) + f'(tk+l•tk)u(tk) 2.26a 
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where 

<D(tk+l'tk) = exp(A LiT) 

tk+l 

I'(tk+l'tk) = f t exp (A (tk+i-t))dtBu(tk) 
k 

LiT = tk+l - tk and k denotes the sampling instant. 

A controllability matrix We is defined as 

We _ [I' <DI' ,.,t,.2-r n-1 
- ' ' 'V l , •.•.•. <D 1] 

2.26b 

2.27 

According to Astrom and Wittenmark, the system of Equation 2.26 is controllable if it 

is possible to find a control sequence such that the origin can be reached from any 

initial steady state in finite time. This is possible if the rank of We is n. 

The observability matrix Wo is defined 

Wo = [C, C<D, C<D2, C<Dn-l]T 2.28 

The system is observable if there is a finite k , sampling steps, such that the a 

knowledge of the inputs u(0), u(l), ..... u(k-1) and outputs y(0), y(l), ............ y(k-1) 

is sufficient to determine the initial state of the system. This implies that the system is 

observable if and only if Wo has rank n. 

Observability considerations are important in the estimation of the state and 

parameters of systems, particularly in situations where control depends on the 

estimates of the state. A good example is in Kalman filtering when applied to estimate 

the state of the system by combining the measurements and a process model. If 

observability is lost then the estimates may become unstable, and so will the filter 

algorithm (Daie (26) ). 

Russel and Perkins (149) present a review on the various controllability problems 

frequently encountered in chemical plant. They point out that controllability analysis 

techniques have isolated major factors that affect the controllability of chemical plant 

and that this has enabled better assessment of the benefits and limitations of various 

control systems and control structures for chemical plant. Controllability 

considerations are very important particularly in applications of control systems which 

~ ~ !J'brf;ry & !nfoffl'll'!.tlon Serv!OOS 
~ ~ 8jffl'lingham 84 7ET England 67 



a 

are based upon state variable representation of the process. Since it is seldom the case 

that all the states of the process will be available, it is important to ensure, prior to on­

line application, that the system will be controllable with the incomplete state vector. 

Techniques to overcome such problems include using observers or estimators to 

reconstruct the unmeasured states; thus adding the issue of observability. In fact as, 

indicated by Russel and Perkins (149), controllability techniques based on using input­

output representations of the processes rather are more beneficial for analysis of 

chemical plant than those based on state space representation of the processes. One 

reason they give is that it is neither necessary nor practical to measure all the states of 

the process. 

2.5 Modal Analysis and Modal Control 

There are many multivariable controller design methods that are based on the 

assumption that the system is described by a linear state variable model. One of these 

design methods is the Modal Control technique which was first proposed by 

Rosenbrock (105). 

2.5.1 Modal Analysis 

The main procedure in the design of a modal control system is modal analysis of 

the model. This involves the decomposition of the system matrix, A, into its 

eigenvalues, Ai, and associated eigenvectors, vi, such that 

Av• = A·V· 1 1 1 
2.29 

where i = I ton and n is the order of A. The A matrix can be written as 

A=rAQ 2.30 

where A is the diagonal matrix of the system eigenvalues which are real, distinct and 

negative, 

A = diag(A 1, Az, ...... , An) 

r and Q are the right and left eigenvectors of A where 

r = (v1, v2,········, vn-1' vn) 
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.Q=(v1, v2, · • · • · · · · 'vn-1 1 vn) 

and .Q == r- l 

The modes of the system are the directions in the state space that correspond to the 

right eigenvectors, Vi, Each mode is associated with an eigenvalue, Ai. The 

eigenvalues are also the poles of the system and their negative reciprocals are the time 

constants of the corresponding modes. A stable system will have negative eigenvalues. 

An unstable system will have at least one positive eigenvalue. 

The eigenvectors discloses the extent at which the other modes affect each other. 

The sizes of the elements in the eigenvector disclose the phenomenon that accounts for 

the existence of that mode. For example, Levy et al. (74) found that the slowest mode 

of a binary distillation column comprised of the accumulation and the transfer of 

chemical species in the column. The smaller eigenvalues disclose the dominant modes 

which determine the dynamic behaviour of the system and the larger eigenvalues 

disclose the faster modes. Modal analysis is therefore useful in providing deeper 

insight into the dynamic behaviour of the system. 

Many multistage processes like distillation columns have a wide spectrum of time 

constants. In a distillation column each tray has composition, hydraulic and heat 

dynamics taking place simultaneously. The composition dynamics are usually the 

slowest. The fast modes decay rapidly leaving the only the slower modes which are 

important in determining the process dynamics. Modal analysis can provide 

knowledge about these modes and, therefore, guide the selection of the proper tray 

location for measuring composition for control. Levy et al. (74) and Shimizu and Mah 

( 117) have used modal analysis in this way to examine the response modes of 

distillation systems. 

One important quantity provided by modal analysis is the activation of the modes 

(Rosenbrock (105)). The activation, '11ij' of a mode i by the j-th input is defined by 

11 .. = v.Tb,u• 2.32 
lJ 1 J J 

where b· is the j-th column of Band Vi is the left eigenvector of A. The activation is a 
J 

measure of the extent at which an input affects a mode. Thus, the importance of a 

69 

■ 



•• 

mode can be judged by the activation of that mode relative to the other modes. 

Furthermore, the activation can indicate the best input to use to manipulate the state 

variable that is selected as the controlled variable. This has been exploited by Davison 

(30) in the control of a distillation column using a modal controller. 

2.5.2 Modal Control 

Modal control is, in general, a technique where the system closed loop eigenvalues 

can be placed in any desired location using a state variable feedback. This means that 

the speed of response of the modes of the system, and, therefore, the speed of the 

system response, can be increased or decreased by a state variable feedback. Consider 

a system modelled by 

dx/dt = Ax 2.33 

According to Rosenbrock (105), the following feedback controlled system can be 

adopted; 

dx/dt = (A + YK0)x 2.34 

where ex is referred to as the measuring vector (Davison (30)), Y is the control 

matrix and K is a diagonal matrix consisting of feedback loop gains. The control 

problem is to find Y and e. As explained in Rosenbrock (105) and in Davison (30), 

suppose that Y = r and 0 = Q and assuming Y and e are square matrices and non -

singular. Then YKE> = r AQ and the controlled system becomes 

dx/dt = Y(A+ K)0x 2.35a 

The eigenvalues of the controlled system are Ai + Ki . So by choosing Ki large and 

negative these eigenvalues can be made large and negative as desired. Thus, the speed 

of response of the closed loop system can be made as fast as desired. 

Equation 2.35a is artificial because, in practice, it is usually impossible to make up 

a control matrix y = r. Furthermore, it is usually the case that all the state variables in 

x are not available due tc various practical and economic reasons. Rosenbrock 

considered this difficulty and then suggested a procedure which will enable only the 
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dominant eigenvalues of the system to be eliminated. This procedure is given as 

follows. 

It is assumed that 'A < "I "I ') ') o R b k n 11,n-l < /\,n-2 < ........... < /\,2 < I\, 1 < . osen roe 

suggests chosing e = U which is a n x z matrix having as its columns the first z 

vectors of Q and Y = H, which is a n x z matrix having as its columns the first z 

vectors of r. The z represents the number of variables or modes that are measured. 

Then let K be a z x z diagonal matrix with elements -K: 1, - K2 , ... ,- K:
2 

on the 

principal diagonal. The corresponding controlled system is now 
T 

dx/dt = (A+ YKE> )x 2.35b 

and is represented schematically in Figure 2.3. The eigenvalues of the closed loop 

system are A1 + K 1, 11.2 + K 2, ..... , A2 + K 2 , Az+l' An. Rosenbrock also considers 

this.controlled system to be artificial because it will usually not be possible to choose 

the control matrix Y which has as its columns exactly as the first z vectors of r. 

Manipulated Variables 

z proportional 
controllers 

y 

n variables 

z Measured modes 

A 

n varia Ies 

Q 

igure 2.3 Schematic representing the modal controller of Equation 2.35b 
(Rosenbrock (105)) 

Following the work of Rosenbrock, Davison (30) designed a modal controller to 

control a binary distillation column with pressure variations inside the column. His 

studies were performed on an 8 plate distillation column model via computer 

simulation and the modal analysis procedure of Rosenbrock was used to select the 
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proper control configuration for the column. Davison showed that by maximising the 

smaller eigenvalues, that is, minimising the dominant time constants of the distillation 

column, the offsets of the state variables from steady state will be minimised. The 

modal controller was found to deliver better control compared with conventional 

control. The modal controller greatly reduced the settling time of the column and the 

offsets in the outputs of the column from steady state when subjected to disturbances 

in the feed composition, reflux, and reboiler temperature and condenser temperature. 

A modal controller called the Pole Assignment technique was proposed by 

Crossley and Porter (195). The objective of the approach is to speed up the response 

of a system, or stabilise an unstable system, by shifting either some or all of the 

system poles to desired locations. To speed up the system the poles are shifted further 

to the left; that is the eigenvalues are made larger in the negative direction. To stabilise 

an unstable system the poles are also shifted to the left, but must be made negative. 

According to Crossley and Porter, the method is applicable to systems having real or 

complex eigenvalues. They demonstrated that the technique makes it possible to 

modify both the real and imaginary parts of any number of complex conjugate 

eigenvalues and any number of real eigenvalues using a single loop. This can only be 

achieved when all the system modes are controllable and measurements of all the state 

variables are available. 

The synthesis procedure for the pole assignment technique is also presented in the 

article by Shimizu and Mah (118). The required specifications for the design of the 

controller are 

1) the poles to be shifted and where they must be shifted to 

2) the manipulated inputs that are to be used for pole shifting 

3) the measurements that need to be fedback to the controller 

Shimizu and Mah (118) used the technique to successfully control control a binary 

secondary reflux and vapourisation (SRV) distillation column. Using modal analysis 

they found that reflux flow is the best input for pole shifting in the SRV distillation 

column. 
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The primary drawbacks of modal control techniques have been noted by Foss (33). 

They are given as; 

1) the controllers do not have integral action and so cannot address the problem of 

offset. 

2) the technique does not address closed loop zeroes which also influence the 

system behaviour; for example positive zeroes mean nonminimum phase behaviour. 

3) the assumption of linear system will not be valid for many systems. This is 

particularly true of chemical processes which are usually nonlinear systems. 

2.6 Decoupling Control 

To deal with the problem of interaction between control loops in a multi variable 

system, the theory of decoupling control emerged. The philosophy behind decoupling 

control is to eliminate the interactions of the control loops so that a change in the 

setpoint of one control loop will only affect the corresponding output. If this can be 

achieved then the control loops can be treated as separate single loops. There are two 

main approaches that have been proposed for decoupling control. These are the 

compensator approach and the state variable feedback approach. The compensator 

approach will be introduced first. 

The compensator approach is most popular and the simplest form is called 

Simplified Decoupling by Luyben (71). The design procedure involves obtaining 

compensators that would directly cancel out the effects of each manipulated variable on 

the other outputs. Figure 2.4a gives a schematic of a 2 x 2 MIMO system under 

control with interacting control loops and Figure 2.4b shows the same system under 

simplified decoupling with two decoupling compensators 01 and 02. The method of 

obtaining these compensators is given in Stephanopoulos ( 116) as 

o
1 

= -G12;G11 2.36 

2.37 
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Figure 2.4b Schematic of a process with 2 controlled outputs and 2 manipulated 

inputs with simplified decoupling 
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for the system described by 

Y1 = G1 lul + G12u2 

Y2 = G21u1 + G22u2 

2.38a 

2.38b 

where y and u are the controlled output and manipulated input vectors and Gij is the 

transfe[;"t[~;;J1:rrtput Yi and input uj" The control inputs then become 

2.39 

Luyben (71) applied simplified decoupling in the dual composition control of a 

binary distillation system by conventional PI controllers. The L V control configuration 

was used and the studies were performed by computer simulation. He reported that 

stable effective control could be achieve but noted non-linearities and inaccuracies 

incurred in approximating the compensators due to the errors in the process models 

will limit the achievable performance of the control scheme. Therefore, perfect 

decoupling may not be possible. As mentioned earlier, recent investigations, 

Skogestad and Morari (119, 153), Doyle and Morari (177) have shown that for dual 

composition control of distillation columns using the LV configuration, decoupling 

should be avoided as this configuration usually has large RGA elements which indicate 

an illconditioned system. Introducing decoupling into the multiple loop control system 

could degrade the quality of control significantly due to the greater sensitivity of the 

closed loop system to uncertainties in the model used for the controller and 

compensator design. High purity columns have higher degree of illconditioness and 

Morari (150) and Doyle and Morari (177) show how the dynamics of a high purity 

column under dual composition control is degraded by introducing decoupling into the 

control loops. 

Foss (33) has criticised the notion of decoupling applied to process control. His 

argument is that since it is natural for most chemical processes to have strongly 

interacting variables, the interaction between the variables should be exploited rather 
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than eliminated. He noted that modal control is one such multivariable controller design 

method. 

The state variable feedback approach to decoupling was first proposed by Morgan 

(196). He derived a feedback controller 

u == Fx + Gw 

for the system 

dx/dt = Ax + Bu 

y = Cx 

2.40 

2.41 

where y is the output vector, u is the input vector and C is the matrix relating the 

output y to the state x. Thew is the vector of the desired values of the outputs, Fis a 

feedback gain matrix and G is a precompensator gain matrix. The vectors are 

deviations from a steady state. Figure 2.5 is a block diagram showing the 

corresponding closed loop system. 

zd 

w 
B 

X 
C 

Figure 2.5 Schematic of a closed loop system under control by u = Fx + Gw 

(Shimizu and Matsubara (113)) 
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Falb and Wolovich (179) investigated the approach of Morgan and found that the 

conditions under which decoupling control of linear state variable systems can be 

achieved were not well established. They subsequently derived the necessary and 

sufficient condition for decoupling of general linear multi variable systems described in 

state variable form. Wonharn and Morse (178) also used the state variable approach 

the multivariable control problem. They called it the "Geometric Approach". The 

theoretical details are examined in Takamatsu et al. (130). The most recent 

investigations in these areas regarding application to chemical engineering systems are 

due to Takamatsu and Kawachi (129), Takamatsu et al. (130) and Shimizu and 

Matsubara (113,114). 

Takamatsu et al. (130) employed the geometric approach to design a multivariable 

controller for disturbance rejection of the effects of disturbances on the outputs. The 

controller has the form 

u=Kx 2.42 

where K is the feedback matrix which is designed to reject the effects of disturbances 

from the outputs of the system described by 

dx/dt =Ax+ Bu + Dzd 

y=Cx 2.43 

where the zd is the nd x 1 disturbance vector. The works Takamatsu & Kawachi (129) 

and Shimizu & Matsubara (113, 114) culminate into a control scheme called the 

Decoupling and Disturbance Rejection control scheme. This is treated in the next 

section. 

2.6.1 Decoupling and Disturbance Rejection for distillation column control 

Takamatsu & Kawachi (129) and Shimizu & Matsubara (113) used the formulation 

of Morgan (196) and Falb and Wolovich (179) to design a multivariable decoupling 

control scheme which is called the Decoupling and Disturbance Rejection control 

scheme by Shimizu and Matsubara. Both group of workers use distillation columns as 
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examples to evaluate the decoupling control scheme. This control scheme has the fonn 

of Equation 2.40, 

u =Fx+Gw 

The decoupling control problem is to find the matrices F and G that will reject the 

effects of disturbances from the outputs and achieve non-interacting control of the 

outputs such that a change in the setpoint wi will only affect output Yi• 

An important feature of the design is that closed loop poles can be specified to 

achieve desired output responses while simultaneously decoupling the system. Falb 

and Wolovich (179) determined the number of closed loop poles that can be assigned 

and provided a synthesis procedure for obtaining the desired closed loop pole 

configurations. The number of poles that need to be assigned are partly determined by 

quantities called decoupling indices and each output is associated with a decoupling 

index. The synthesis and application of control scheme is reviewed in some detail in 

the next section with reference to distillation column applications. 

2.6.2 Synthesis of the Decoupling and Disturbance Rejection controller 

Consider a conventional binary distillation column modelled by Equation 2.43. The 

zd is a nd x 1 vector of the disturbances and D is the n x nd disturbance matrix. This 

model can obtained by linearising the nonlinear model of the column at a steady state. 

Consider that the vectors as x, u, zd and y as 
T 

x = (x 1, x2, ...... , x
11

) 

u = (Lr, Vb) 
T 

zd = (F, xf) 
T 

y = (x1, xn) 
T 

w = (xls' xns) 
T 

The Lr, Vb, F and xf denote reflux rate, vapour boilup, feed rate and feed 

composition, respectively. The control objective is to maintain the outputs y at the 

desired values w by manipulating the inputs u. The objective of the decoupling 

controller is to achieve input-output noninteracting control of y using a constant 
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feedback gain matrix, F, and a precompensator matrix, G. Figure 2.5a shows a block 

diagram of the decoupling controlled system. Substituting Equation 2.40 into Equation 

2.43, the equation of the decoupled system is is obtained 

dx/dt = (A+BF)x + BGw + Dzd 

y = Cx 2.44 

Before presenting the synthesis procedure of the decoupling control method it is 

appropriate to say that the mathematical proofs of the design method is quite involved. 

In fact, Falb & Wolovich (179) and Morgan (196), who have contributed much in this 

area are not in the field of chemical engineering. Falb is a mathematician and Wolovich 

is in the disciplines of mathematics and electrical enginee1ing. The mathematical proofs 

and theorems that culminate in the decoupling control design method involve advanced 

mathematics and thus are quite complex. Thus, only the synthesis procedure will be 

given here. 

The synthesis procedure for obtaining the controller matrices, F and G, can be 

found in the articles of Falb and Wolovich (179), Shimizu & Matsubara (113) and 

Takamatsu and Kawachi (129). It is summarized here as follows; 

A decoupling index, di, is defined as 

di= min G: forCiAJB i:-0 ,j =0, 1, 2 , ... , n-1) 

= n-1 ( if CiAJB = 0 for all j) 2.45 

where i denotes the control inputs, i = 1 to m 

Two matrices, A* and B *, are also defined as 

C1Ad1+l 

C2A d2+ 1 

A*= 

2.47a 
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C1A 1B 

C2A d2B 

B* = 

2.47b 

where C1 is the i-th row of matrix C. Falb and Wolovich (179) established that the 

nonsingularity of B* is the necessary and sufficient for decoupling of the system to be 

achieved. 

The F and G matrices of the controller are obtained as follows 

F = ('f M kC A k - A* J . 
k=O ....•. m x n matrix 2.48 

where a= max.(d-) 
1 l 

m x m matrix 

The l\1k is a diagonal matrix 

. (I) (2) (m) 
Mk = diag( <; k' <; k, ..... , <; k) 

<;(i\ = 0 fork > di' for i = 1 to m. 

'I'I (j) d b. ·1 . 1e <; k are use to ar itran y assign 
1= m 

m+ I,di 
i = l 

2.49 

closed loop poles to achieve desired closed loop response. The diagonal matrix, K*, is 

JT* - d' o-(k * k * k *) \.. - Iab } ' 2 , ... ,, !TI 2.50 

This matrix was introduced by Falb and Wolovich. According to them, if a pair of 

matrices F and G decouples the system Equation 2.4 I then there is a diagonal matrix 

K* such that 

This diagonal matrix K* is interpreted in Sl11111izu and Matsubara (113), as 

manipulating them decoupled systems. Specific ;:1,1dance for chosing K* is not given. 

. d I l\1(i) 0 . I k 1 d d h f db k lf no poles are ass1gne t 1en I k = , 1 to m, , = to i an t e ee ac 

gain matrix, F, then becomes 

F = (B*f 1 A* 2.51 



The closed loop system is referred to as an "integrator decoupled" system by 

Tak:amatsu and Kawachi (129). 

The following algebra gives the analysis provided by Falb and Wolovich. 

Assuming zd = 0, then from Equation 2.43 and 2.44 and using Equation 2.45 then 
k k 

C/A+BF) = CiA k = 0,1, ..... , di 

Ci(A+BF/ = CiA di(A+BF/-di k = di+ 1, .... , n 2.52 

k 
because CiA B = 0 fork= 0 to di - 1 

Application of the state variable feedback Equation 2.40 and repeated differentiation 

together with Equation 2.52 results in the following relations 
0 

Y· = C.x = C.(A+BF) x 
l l l 

y. Cl)= C.Ax = C.(A+BF)x + C.A OBGw = C.(A+BF)x 
l 1 1 1 1 

(2) 2 2 2 
V· = C.A x == C-(A+BF) x + C.ABGw = C.c;\ 18F) x ·1 1 1 1 1· 

(d·) d· d· d· 1 d· 
y. 1 = C.A 1x = C.(A+BF) 1x + C.A r BGw = C.(A+BF) 1x 
·I 1 1 I 1 

The second terms in the above relations cancel out as can be verified from Equation 

2.45, which gives the decoupling indices. 

Y. (di+ l) = C.(A+BF)di+ 1x + C.(A+BF)diBGw 
1 1 1 

. . . 

Y_(n) = C.(A+BF>11x + C.(A+BF>11- 1BGw + ... + C.(A+BF)diBGw(n-di-l) 
1 I 1 1 

where y/D represents the j-th differential of the i-th output, i--th member of y. This 

implies that 

y?i+l) = C/A + BF/i+lx + C/A + BF)diBGw 

= C/A + BF/i+l x + CiA diBGw 2.53 

. C A F di+l C Adj+l C AdiBF h h b . From Equat10n 2.52, / +B ) = i + i , t en t ea ove gives 

(dj+l) C Adj+i C AdiBF + C AdjBG Yi = i x+ i x i JW 
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S . CAdi+l. l . h fA' dj mce i 1s t1e H row o ,;< and CiA B is the i-th row of B*, it can be written 

that 

y* =(A* - B*F)x + B*Gw 2.54 

where y* is the vector containing the y/di+l)_ Substituting Equation 2.48 and 2.49 

into Equation 2.54 and assuming K* = I, where I is the identity matrix, gives 

v* =IM CA\ +w • k 

(k) 
= I,Mky + w 2.55 

or, equivalently, 

I (di+l) - "'M (k) 
) i - L, k Yi + Wi. 2.56 

A one-to-one correspondence is accomplished. Hence, the i th input, wi, affects only 

the i-th output, Yi· In the case with no poles assigned, M(i) k = 0, i = l tom, k = 1 to 

di, Equation 2.56 becomes 

(dj+l) 
v. = w .. 
• I I 

2.57 

Iris claimed in Falb and Wolovich (179) that, for the "control loop" i some suitable 

values of c;(i) k can be chosen such that any desired closed loop pole assignment can be 

achieved. With the poles assigned, the transfer function matrix G(s) is expressed, 

according to Shimizu and Matsubara (113) and Takamatsu and Kawachi (] 29), as 

assuming K* = I, where I is the identity matrix. In the case with no poles assigned 

G(s) becomes 

d1 +l d111 +1 
G (s) = diag{ 1/s , .... , 1/s } 2.59 

The resulting closed loop system is referred to as an "integrator decoupled" system. 

Falb and Wolovich showed that the number of poles, m + I,di, that can be 

arbitrarily assigned can never exceed n, where n is the number of state variables, as 

well as the number of system poles. They claimed that it may sometimes be possible to 

assign more than m+I,di poles, when the number of free parameters, fp, in the F 

matrix is more than m + I,di. In simple tenns, fp is the number of columns in F that 

have at least one non-zero entry. 
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Feed forward compensation can also be used for disturbance rejection. For a 

completely observable system, Shah (207) proved that there exists a feedforward 

compensator which achieves the disturbance rejection if R(D) is a subset of R(B), 

where R(.) denotes the range of(.). The article by Shimizu and Matsubara (113) gives 

the feedforward compensator, T f• which attains disturbance rejection as 

Tr= - (B TBf 1B TD m x nd matrix 2.60 

so that the feed forward control is of the fom1 

u=Trxzd 2.60b 

It is stated in Shimizu and Matsubara (113) and in Shah (207) that, if m < n, that is, if 

the number of control inputs is less than the number of states, the T f obtained by 

Equation 2.60 does not completely reject the disturbances, but suppresses them to 

some extent. 

The mathematical computations involved to obtain the F, G and T f matrices are at 

least an order of magnitude more complex than those necessary for conventional 

controller design methods. The synthesis procedure involves many matrix 

manipulations including matrix inversion. Therefore, as the order of the system 

increases, i.e n become larger, the computational requirements for obtaining the 

controller matrices will become more demanding. Numerical problems are likely to 

occur from computer roundoff errors because of the many floating point calculations 

that are involved in the synthesis procedure. This could strongly affect the matrix 

inversion results. The problems will be much more acute if the system is itself 

illconditioned, that is, if any or all the A, B and D matrices are illconditioned matrices. 

In this case, the results of the synthesis procedure could become very sensitive to small 

errors due to roundoff and in the A, B and D matrices. The problem will be more 

severe with computers using short wordlengths. The use of extended precision can 

alleviate the problems to some degree. 
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2.6.3 Minimum number of measured state variables for feedback. 

A common problem in the control of chemical plants concerns the availability of 

measurements vital to control. The decoupling and disturbance rejection control 

method discussed above is no exception.The feedback controller given by Equation 

2.40 presumes that all the state variables are measured for feedback. In practice 

measuring all the state variables will usually not be possible for various practical and 

economic reasons. For example, it will not be economical to measure all the tray 

compositions of a distillation column as composition analysers are expensive. It may 

be that only a few state variables can be measured. The problem of how many and 

what state variables should be measured to achieve the control objectives will therefore 

arise. In simple terms, this implies what state variables must be measured for the 

system to remain controllable when all the state variables are not available. One way of 

overcoming this problem would be to use the Kalman filter approach to reconstruct the 

state variables of the system. The controller synthesis can also be based on an 

approximate model which considers only the state variables that are, or can be, 

measured. A drawback of using the Kalman filter approach is the computational 

requirements will be large, particularly if the order of the system is large. In the case of 

basing the controller synthesis on an approximate model, there is also a problem. If the 

process model is simplified, then structural information may be lost since the controller 

depends on the structure of the model (Shimizu and Matsubara (114)). The possible 

consequence is the loss of controller performance. 

Takamatsu and Kawachi (129) proposed a different approach. The approach aims 

at finding the minimum number of state variables, and the choice of the variables, that 

must be measured in order to achieve complete decoupling of the system. They 

introduced a diagonal matrix, H, in which each diagonal element has the value of 1 if 

the corresponding state variable is measured, and O otherwise. The matrix H is chosen 

to satisfy the relationship 

C·Ak(I-H) = 0 k = 0 to d-+1 i =1 tom 
1 ' l ' 

2.61 
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To do this, the diagonal elements of I - H which have to be O are those that are 

multiplied by non zero elements of CiA k_ The corresponding diagonal elements of H 

have to be 1. The state variables are then the minimum number of state variables that 

musr be measured to achieve decoupling control of the system. This procedure implies 

that, for each input, i, an H, called Hi, can be uniquely dete1111ined so as to decouple 

the i-th input-output relationship. The overall H
0

v indicating all the stare variables to 

be measured is the logical sum of all the Hi' s. 

The feedback control law then becomes 

u = FH0 vx + Gw 2.62 

and the closed loop equation of the decoupled system now becomes 

dx/dt = (A+BFH
0

y)x + BGw + Dzd 2.63 

Figure 2.6 is an illustration of the corresponding closed loop system, with the H in this 

figure corresponding to H
0

v in Equation 2.63; Figure 2.7 gives the flowchart for 

finding Hov· 
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Figure 2.6 Schematic of a closed loop system under control by u = Fx + Gw 

with incomplete state feedback (Takamatsu and Kawachi (129)) 
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i=i+l 

j=l 

Set the j-th diagonal of 

H(i) to zero 

Hov =IH(i) 

end 

No 

Restore the j-th diagonal element of 

H(i) to I 

Figure 2.7 Flowchart for finding the minimum number of state variables to be 

measured for feedback (Takamatsu and Kawachi (129)) 
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2.6.4 Applications to distillation column control. 

Takamatsu et al. (130) applied the state feedback controller of Equation 2.42 designed 

using the geometric approach of Wonham and Morse (178) for load disturbance 

rejection to the dual composition control of the top and bottoms products composition 

of a simulation of nine plate binary distillation column. The studies were performed by 

computer simulation using a very simple nonlinear model of the column. They pointed 

out that the properties of the controller depends on the model structure and never 

affected by the kind and number of disturbances that affect the process. This means 

dependence on the structure of the A and B matrices of the model in Equation 2.38. 

They reported a case measuring only two state variables which were the second and 

ninth tray compositions, the controller completely rejects the effect of feed composition 

disturbance on the top and bottoms compositions. The effect of feed flow disturbances 

on the bottoms composition could not be completely rejected and this deficiency 

appeared as an offset in the bottoms composition. This deficiency was also observed in 

the studies of Shimizu and Matsubara (113) who used the state feedback decoupling 

controller (Equation 2.40 with w = 0) on a 10 plate binary ethylene-ethane distillation 

column with pressure variation. This indicates the similarities in the characteristics of 

controller design based on the geometric approach and the state feedback decoupling 

and disturbance rejection controller. Shimizu and Matsubara have noted that the 

coefficients from the 3rd column to the n-1 th column of Kin Equation 2.42 are equal 

to those of the same columns of F in Equation 2.40. 

Takamatsu and Kawachi (129) applied their proposed method for finding the 

minimum number of state variables that must be measured for feedback to achieve 

complete decoupling control of a distillation column with the top and bottom products 

compositions as the controlled variables. They found that only five state variables need 

to be measured for the design of the decoupling controller. These variables were the 

first, second, third, n-1 th and nth tray compositions, numbering from the top tray to 

the reboiler drum. They point out that this number, and the variables, does not depend 

on the number of trays on the column, rather it depends on the structure of the model. 
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The significance of this is that the cost of measuring may not necessarily increase for 

application on a column with more trays as long as the structure of the model is the 

same. 

Takamatsu and Kawachi did not claim that their result, on the minimum of tray 

compositions required for their conventional binary distillation columns, applies to 

binary distillation columns in general. However, the number of tray composition 

measurements and their actual locations obtained by Shimizu and Matsubara (113) 

agreed with the result of the former. Shimizu and Matsubara found that 6 state 

variables were required to be measured for feed back. These were the 5 tray 

compositions and the column pressure. 

A drawback of the decoupling and disturbance rejection control strategy is due to 

the assumption of a linear system. Distillation columns are nonlinear systems with the 

main factors causing the non-linearities being the curvature of the vapour-liquid 

equilibrium surface and the vapour and liquid enthalpy surfaces. The assumption of 

linearity would not be valid if the operating conditions of the column change 

significantly from the point of linearisation, particularly if it is highly nonlinear. 

Therefore, the achievable performance of the decoupling control system will be 

limited. These considerations are important for assessing the practicality of the control 

scheme on a real process. 

Shimizu and Matsubara (114) emphasised that non-linearities are more pronounced 

in a column were a highly nonideal mixture is being distilled or the column is operated 

at elevated pressures closer to critical point. However, all the workers mentioned 

above have not used highly nonideal mixtures nor did any model their respective 

columns at elevated pressures in applying the decoupling control scheme. Shimizu and 

Matsubara (113, 114) simply argued that industrial columns distill near ideal mixtures 

and are operated well below their critical points. Takamatsu and Kawachi used a model 

which is very simplified with the only non linearity in the model due to a simple 

vapour liquid equilibrium relationship which was only slightly non linear. 
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It was noticed that Shimizu and Matsubara (113) and Takamatsu and Kawachi 

(129) did not examine the setpoint tracking capabilities of the decoupling and 

disturbance rejection control scheme. There have also been no reported experimental 

applications of the decoupling control scheme to distillation columns in the literature 

surveyed. 

2.7 Derivative Decoupling Control 

There is another approach to decoupling control called Derivative Decoupling 

Control. This was proposed by Liu (81). The approach is based on decoupling the 

state derivatives rather than the state variables themselves, as the disturbance rejection 

approach does. Derivative decoupling has been applied to practical systems by 

Palmenberg and Ward (103), Hutchinson and McAvoy (51), Cheng and Ward (52) 

and Jung and Lee (60). Hutchinson and McAvoy (51) highlighted some difficulties in 

obtaining the controller equations. Jung and Lee (60) extended the design method to 

deal with unmeasured load changes and to handle input constraints. They used a 

laboratory scale mixing tank in the investigations and the derivative decoupling control 

technique was reported to perform better than controllers designed by the Inverse 

Nyquist Array (INA) design method. The results obtained by all these workers 

mentioned above show that the Derivative Decoupling control strategy relies heavily on 

good process models so that, like most control systems, it has its limitations as regards 

sensitivity to model errors. 

2.8 Time Delay Compensation 

Effective and robust control of processes with significant time delays between the 

input and outputs response is usually difficult to achieve. Time delays, or dead-time, 

will reduce the maximum controller gain that can be used in a PID controlled system. 

Qualitatively, the control action must be slowed, by reducing the controller gain, for 

example, to maintain the stability and robustness of the closed loop system. A typical 
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example of where large dead-times frequently occur are in the composition control of 

distillation columns. Composition analysers are usually associated with large dead­

times needed for analysis. 

A way to improve the control under these circumstances is to incorporate the 

Smith dead time compensator (DTC) (172, 173) in the control scheme. The DTC 

attempts to directly cancel out the time delays so that control can be performed on the 

system as if there are no time delays present. Figure 2.8 expresses the DTC in block 

diagram form for feedback control. From this diagram the Gtk is the compensator 

which outputs y* - y*0 , where y* is the simulation of the undelayed output while y*o 

is the simulation of the delayed output. This output is added to the process output, y, 

and the resulting value, y dtc , is fed back to the controller, which may be of advanced 

or conventional type. Gtk is in essence the difference between two process models. If 

the models are exact then y = y*o and exact time delay compensation will be achieved. 

In theory any appropriate model formulation can be used, state variable or transfer 

function models (Ogunnaike and Ray (95)). Furthem1ore, the exact value of the time 

delay is required by the OTC. However, in real processes time delays may he varying 

or may not be known accurately and the quality of control provided by the DTC control 

scheme can be very sensitive. This is demonstrated in the article by Morari (150). 

According to Palmor and Powers (102), investigations of DTC control schemes 

have shown that some special sensitivity and stability properties is induced by the DTC 

itself into the closed loop system. These properties exhibited by the DTC control 

schemes showed that it is inadequate to design the primary controller, Gpc in Figure 

2.8, for the equivalent system which has no dead time simply because a OTC is 

incorporated. 

2.8.1 Application to chemical engineering systems 

Many simulated and pilot scale experimental applications have shown that 

incorporating a DTC into conventional control systems offers an improvement over 
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conventional control. Meyer et al. (90) reported the earliest practical application of the 

DTC. 

d 

u 
G pc 1-----.---.i 

+ 
G 

y 

+ 
y 

m Gtk 

Hm 
y 

dtc 

Gtk=Gp- Gp* 

Gp process model without time delay, Gp* process model with time delay 

y* output of Gp, Yn * output of Gp* 

Figure 2.8 Dead Time compensation using Smith Predictor 

They applied the DTC in the PI control of the top product composition of a pilot 

scale methanol-water binary distillation column with 8 bubble cap trays and 22.5cm in 

diameter. They reported that the performance of the PI controller with the DTC 

incorporated provided significant improvements in control than ordinary PI control 

both in simulated and experimental applications. 

Extension of the DTC to multivariable systems were made by Ogunnaike and Ray 

(95). They also considered multivariable systems with multiple time-delays. 

Ogunnaike et al. (96) then implemented the multiple - delay DTC of Ogunnaike and 

Ray (95) combined with PI controllers to control a laboratory scale binary distillation 

facility. The top, bottom and sidestream compositions of the column were 

simultaneously controlled and significant improvements over conventional PI were 

reported in both simulated and laboratory experiments. A very hi !2h level of robustness 
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of the multiple delay DTC based control system in the face severe model uncertainty 

was observed. This indicated a promising future for time - delay compensation 

techniques. 

Ogunnaike and Ray (98) have also addressed the problem of incomplete state 

feedback in a time delay compensated control schemes. They describe a method for 

estimating the necessary state variables for implementing a multivariable time-delay 

compensator. Jerome and Ray (58) present improved forms of the multivariable dead 

time compensation techniques like those of Ogunnaike and Ray (95). They generalised 

the approach thus extending the types of systems to which they can be applied. 

Palmor and Powers (102) extended the DTC approach to predict the effects of 

measurable load disturbances on the controlled output. They achieve this by cancelling 

the time delay associated with the load disturbance response. Furthermore, they argued 

that compensation of all the dead-time may not always be the best strategy and 

subsequently introduced the idea of partial cancellation of the time delays. A design 

parameter, which indicates how much of the time delay is to be cancelled, is introduced 

into the DTC design. Their results show that partial cancellation can sometimes be 

beneficial. This partial cancellation technique could be valuable in digital process 

control schemes where fractional delays and varying time delays are common. 
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2.9 Adaptive Control 

2.9.l Introduction 

Control systems that automatically adjust their controller parameters to compensate 

for changes in process conditions or the environment are called adaptive control 

systems. These control systems are of practical value to process control since 

processes are usually nonlinear and have time varying process parameters. During the 

last two decades adaptive control systems that are based on recursive identification of 

the process system have been receiving a great deal of attention. The reason for this is 

that the control systems are generally very easy to design, they are flexible and they are 

easily implemented on computers. The significant improvements in computer 

technology have made it possible to apply adaptive control cheaply and simply on real 

systems. 

Adaptive control concepts are regarded by Seborg et al. (140) as having reached a 

mature state of development. This assertion is based on evidence of the many 

successful practical applications of the techniques to chemical engineering systems. 

Some of these applications were reviewed including a survey of applications in 

industry. Isermann (54) and Astrom (4) also give comprehensive reviews on the 

theory and applications of adaptive control. 

According to Seborg et al. (140), adaptive control design techniques can be 

grouped into three main classes. These are 

(1) design methods based on optimising quadratic cost functions, e.g. self tuning 

regulators (STR) by Astrom and Wittenmark (154) and self tuning controllers (STC) 

by Clarke and Gawthrop (156, 157), 

(2) design methods based on stability theory such as model reference adaptive 

control (MRAC) (Landau (197), Sen de. la. (124)) and 

(3) Pole-zero assignment techniques (Astrom and Wittenmark (9)). 

Adaptive control methods which are based on state space representation of the 

process have also been developed (Hesketh (50) and Samson and Fuchs (120)). All 

these techniques are closely related; they differ only in the way the controller 
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parameters are adjusted (Astrom ( 4)). Figure 2.9 illustrates the general structure of 

adaptive control systems. Recently, Gawthrop (43) proposed some adaptive control 

designs which have PID controller structure and can, therefore, be used for automatic 

tuning of PID controllers. 
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Figure 2.9 General structure of adaptive control systems (Seborg et al (140)) 

The basis of an adaptive control system is to estimate the parameters of an assumed 

process model on-line and then adjust the controller settings based on the current 

parameter estimates. This procedure is carried out continuously at regular time 

intervals. In this way the problem of model uncertainty is directly addressed. The 

recursive least squares estimation technique is a method that is commonly used for 

parameter estimation. Other methods such as the projection algorithm and instrumental 

variables algorithms are also used. These techniques are treated more fully in the book 

on adaptive filtering, prediction and control by Goodwin & Sin (39). 

One advantage of using an adaptive control system is that the assumed process 

model only needs to be a local approximation, that is, the model is only required to 

give an adequate fit to the system within and around the sample interval. This means 

that the assumed model can be made relatively simple in terms of the number of 
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parameters that need to be regularly updated and lower order process model can be 

used to fit higher order processes. Some adaptive control designs can also be 

formulated in predictive form by formulating the parameter estimator to predict the 

future outputs of the system. For example, in a system with significant time delays the 

estimator could be made to predict the output over the time delay so that control can be 

based on this output prediction. The adaptive controller will then function as a time 

delay compensator as well. Therefore, in principle, the adaptive concept tackles 

directly (i) model uncertainty issues, such as non-linearities in the system and time 

varying process parameters, in control systems design and (ii) the problem of time 

delays; both of which limit the achievable performance of conventional constant 

parameter control systems such as the conventional PID control. 

There are two main ways of organising the combination of the recursive parameter 

estimator and the control algorithm in an adaptive control system. They are the explicit, 

or indirect, and implicit, or direct, formulation (Seborg et al. (40). In the explicit 

formulation, the process model parameters are first estimated, then the controller 

parameters are explicitly solved using these estimates of the process parameters. 

However, the solution involves iterative calculations so that the numerical problems, 

such as illconditioning of the parameters, can arise. Isermann (54) pointed out that the 

explicit formulation is widely used because it allows for many estimator - controller 

combinations and the direct access to the process parameters at all times during 

operation. 

In the implicit formulation, the controller parameters are estimated directly. This 

eliminates the extra calculations for the controller equations and, hence, computation 

time can be saved. The name implicit arises because the controller is based on estimates 

of an implicit process model (Astrom (4)). This formulation reduces the risk of 

numerical problems that could arise as in the explicit formulation. The formulation is 

more restrictive in te1ms of the number of estimator-controller combinations possible 

(Seborg et al. (140)). Evaluation of implicit formulations of adaptive control systems 

has also shown that, sometimes, the number of parameters that need to be estimated 
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may increase, compared to the explicit formulation, so that it may not always be the 

case that computation time can be saved (Isermann (54) ). In this thesis, attention will 

be focussed on the implicit formulation. 

A significant proportion of the publications on applications of adaptive control have 

been on the self-tuning approach based on optimising a quadratic cost function has 

been. The basis of these methods is the self-tuning regulator STR by Astrom and 

Wittenmark (154). This was later modified by Clarke and Gawthrop (156, 157) to the 

self-tuning controller (STC) which overcome some of the inadequacies of the STR. 

The STC also extends the range of process systems to which the self tuning approach 

can be applied. In the following, a summarised version of the synthesis of SISO STR 

and STC will be presented. More details can be found in the original articles of Astrom 

and Wittenmark (154) on the STR, Clarke and Gawthrop (156,157) on the STC, 

Seborg et al. (140) and Clarke (20) on both methods. 

2.9.2 The Self Tuning Regulator 

The usual assumption in the design of adaptive control systems is that the process 

is modelled by a linear difference equation: 

A (z-1) y(t) = B(z-1) u(t-k) + C(z-1)~ (t) + d(t) 

where A, B and C are polynomials in the z domain, 

A(z-1) =1 + a1z-1 + a2z-2 + ..... + anz-n 

B(z-1) = bo + b1z-1 + ..... + bmz-m 

C(z-1) =1 + c1z-1 + c2z-2 + ..... + cnz-n 

2.64 

considering single input single output (SISO) case. The y and u are the respective 

plant inputs and outputs. The z-1 is commonly referred to as the backward shift 

operator, so that 2-ly(t) = y(t-1); it also represents z-transform. The n and m are 

integers which represent the orders of the A(z-1) and B(z-1) polynomials, so that they 

represent the order of the process given by Equation 2.64. The t is an integer which 

represents the number of sampling intervals, ~ T, rather than continuous time. The 

symbol k is an integer representing the process time delay td, so that k = 1+ 
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INT(td/LiT), where INT denotes integer. The k includes the inherent unity delay due to 

sampling, so that k;:::: 1. The s(t) represents the zero mean random noise disturbances. 

The d(t) represents offset due to non-zero mean disturbances, unmeasured load 

disturbances, local linearisation and inaccuracies in initial values (Clarke (20),Clarke et 

al. (21) ). It is sometimes called the bias term. It is usually the case that the noise 

cannot be modelled by C(z-1) because real plants are characterised by the disturbances 

that represent d(t), mentioned above. Clarke (20) mentions that in the case were C(z-1) 

is unknown a noise shaping filter can be introduced. 

The y and u can be full valued data, that is data as they are obtained. The 

corresponding adaptive controller is commonly referred to as a positional controller, by 

analogy with the positional form of the PID control algorithm. 

The self-tuning regulator (STR) is a minimum variance controller based on the 

prediction of the system output, y* (t + k), given data up to time t, where k is the time 

delay of the process and the superscript * denotes prediction. The controller attempts to 

set this prediction to zero at each time interval. The objective of the controller is to 

minimise the following cost function: 

2.65 

If the explicit formulation is used the following polynomial identity 

2.66 

is that which must be solved to obtain the controller parameters. The E (z-1) and F (z-1) 

are of the form 

1 1 -(k-1) E(z- ) = 1 + e1 z- + ....... + ek-1 z 
_1 -(n-1) 

f(z-1) = fo+ f1z + .... + fn-lz 2.67 

These polynomials are obtained given A, C and k. 

According to Clarke (20), by writing Equation 2.64 at time t+k and multiplying by 

E(z-1) gives 

E(z-l)A(z-l)y(t+k) = [(z-l)B(z-l)u(t) + E(z-1)s (t) + E(z- 1)d(t) 

2.68 

Note that y(t+k) = 2+ky(t) which implies y at k intervals in the future. 
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Using Equation 2.66 and defining G (z-1) = E (z-1 )B (z-1) then Equation 2.68 

becomes 

C (z-l) z+k y(t) - z+k z-kf (z-1 )y(t) = G (z-1 )u(t) + [ (z-1 )~(t) + [ (z-1 )d(t) 

which by rearranging becomes 

C(z-1) y(t+k) == f (z-1)y(t) + G(z-l)u(t) + E(z-1)~ (t) + E(z-l)d(t) 

2.69 

where 

If the noise is not modelled by a polynomial then C (z-1) == 1 can be assumed.The 

predictor model can then be written as 

y*(t + k) = f y(t) + Gu(t) + d 2.70 

where d = E(l)d(O) by assuming d(t) is constant; the £ 1 has been dropped for clarity. 

The prediction error ep(t+k) is given by ep(t) == E (z-1 )~ (t+k). The control law that 

minimises Equation 2.6.5 is given by 

f y(t) + Gu(t) + d == 0 

which then gives 

u(t) = - (f y(t) + d)/G 

2.71 

2.72 

The denominator G (z-1) of the controller Equation 2. 72 has as a factor the numerator 

of the process model which is B(z-1) (see Equations 2.68); the STR controller poles 

therefore attempt to directly cancel out the process zeroes. 

For the self tuning version of the control law, considering implicit formulation, a 

regression model is defined as 

y*(t) = f y(t - k) + Gu(t - k) + d 2.73 

by writing the predictor model Equation 2.70 at t = t - k. The controller parameters f 

and G are arranged in the parameter vector. 

9T = [fo, f 1, ..... ; go, gl, .... ; d] 2.74 

with the data or measurement vector arranged as 

0T (t _ k) = [y(t - k), y (t - k- 1) .... ; u(t - k), u(t-k-1), .... ;1] 

2.75 
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The "l" in the vector 0 (t - k) is for the estimation of the offset level d. This approach 

is usually called the "one in the data vector" method. An alternative to this method was 

suggested by Morris et al. (86). The method is to use the integrated prediction error 

mn(t) = mn(t-1) + mep(t) 2.76 

where m is a scaling factor that must be prespecified. The mn(t) replaces the 1 in 

vector 0(t - k). This approach has been called "proxy of the residuals", as the 

prediction error is sometimes referred to as " the residuals ". 

The vector 0 contains the controller parameters which are estimated directly if 

implicit formulation is considered. Expressed more clearly, the predictor model of 

Equation 2. 73 is given as 

y*(t+k) = [f0y(t) + f1y(t-1) + ..... + fn-IY(t-n+l) + g0u(t) + g1u(t-1)+ ..... 

..... + gm+k-l u(t-m-k+l) + d] 2.77 

The control law is simply derived by setting the future prediction error to zero, that is 

ep(t+k) = y(t+k) - y*(t+k) = 0. 

The minimum variance control law is then 

u(t) = -1/g0[f0y(t) + f1y(t-1) + ... + fn_ 1y(t-n+l) + g 1u(t-1) + 

... + gm+k-l u(t-m-k+l) + d] 2.78 

At each time interval the new f and G parameters are updated into the controller 

equation, Equation 2.78, and then the control action u(t) is computed. 

2.9.3 Reported deficiencies of the self tuning regulator 

There STR has several diadvantages. These have been noted by many workers 

including Seborg et al. (140) and Clarke and Gawthrop (156,157). One is that the STR 

generates large control actions due to the minimum variance control. Secondly, since 

the STR controller poles attempts to cancel out the process zeroes, complete instability 

will result if the process is stable but exhibit non minimum phase behaviour. This is 

because the zeroes of the non minimum phase system which are outside the unit circle 

become unstable poles of the STR control law. According to Clarke (20), even if exact 

cancellation is achieved, the finite wordlength of the computer, or computer round-off, 
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will still induce instability into the system. Nonminimum phase behaviour greatly 

limits the performance of minimum variance adaptive control schemes, thus, various 

methods and adaptations of the standard method of adaptive control design methods 

have been developed (eg. Samson and Fuchs (120), Clarke (20) and Boland and 

Giblin (12)) to address the problem. 

Difficulties will occur if the parameters are not identified accurately. Such problems 

will arise if sufficient excitation of the closed loop system is not achieved so that not all 

the parameters can be identified properly. Some parameter estimates may converge to 

wrong values, or be biased, and cause control problems. For example, the leading 

parameter of G, g0, which determines the STR controller gain (see Equation 2. 75) may 

become biased; it may converge close to zero causing large control actions, or it may 

converge to very large values causing very sluggish closed loop response. The 

parameter may also assume the wrong sign so that control actions will be computed in 

the wrong direction which may cause an unstable system. For these reasons g0 is 

usually fixed a priori. Trial and error approach is usually employed to obtain the best 

value of g0 . An example of where this is done is in the work of Dahlqvist (31). 

Finally, the STR does not explicitly address set point tracking. 

2.9.4 The Self Tuning Cont.roller 

The generalised minimum variance (GMV) self-tuning controller (STC) by Clarke 

and Gawthrop (156, 157) is another approach based on optimising a quadratic cost 

function. This approach overcomes many of the limitations of the STR as well as 

extend the number of systems that the self tuning approach can be applied. The 

synthesis procedure of STC is similar to that of the STR and so only a summary is 

given here. 

The STC of Clarke and Gawthrop (157) optimises a modified objective function: 

Ji= [[ P(z- 1) y(t +k) - R(z-
1

) w(t)]2 + [O'(z-
1

)u(t)]2] 2.79 

The w(t) is the set point. The P(z-
1
) is called the output weighting polynomial, R(z-

1
) 

is called the setpoint filter polynomial and O' (z- l) is the control weighting polynomial. 
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They all have the form P (z ) = P N(z ) IP 0 (z ), where the N and D denote the 

numerator and the denominator of the polynomial. The O' penalises excessive control 

action, the R filters the setpoint to prevent excessive overshoot of the output after a 

setpoint change. The output weighting polynomial P equips the resulting controller 

with model following features as it acts like a reference model.. 

For the STC the identity of Equation 2.66 is now 
1 -1 -1 -1 C(z- )PN(z ) I P0 (z ) = E(z-1) A(z-1) + z-k f(z-1)/ Po(z ) 

2.80 

Assuming the noise model is not identified (ie. C (z- 1) = 1 ), the corresponding 

predictor equation is given as: 

Py*(t + k) = (f / P0 )y'(t) + Gu(t) + d 

This becomes 

Py*(t + k) = F y'(t) + G u(t) + d 

where y'(t) = y(t) I P0 . 

2.81a 

2.81b 

The optimal control law that minimises the Equation 2.79 w.r.t is given by 

aJ21au = 0 = 'Jf(t+k)* = P y*(t + k) - R w(t) + 0 u(t) 2.82 

where O = 0'0'(0)/6(0). This gives 

u(t) = (R w(t) - P y*(t + k) )/0 2.83 

The minimisation procedure is given fully in the articles by Clarke & Gawthrop (157). 

By substituting Equation 2.82 into Equation 2.81, the general predictive control law 

becomes 

fy'(t) + Gu(t) + d - (Rw(t) - Ou(t)) = 0 

which, by rearranging, becomes 

u(t)=[G +OJ-1 [-F y'(t)+R w(t)-d] 

2.84 

2.85 

The closed loop equation may be obtained by substituting the above equation into 

Equation 2.64. This gives 
z-k BR 

y(t) = P B + 0 A w(t) + 

The characteristic equation is therefore 

PB + OA = 0 

G + 0 
PB + OA ~(t) 2.86 

2.87 
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which shows that P and O can be used to manipulate the poles of the closed loop 

system. Therefore, the STC can be applied to a nonminimum phase plant when the 

proper choices of P and O are made. The structure and implementation of the 

positional STC is given schematically in Figures 2.10 and 2.11. Since the delay term 

z -k does not appear in the characteristic equation the STC, therefore, provides time 

delay compensation (Morris et al. (85)). The STC becomes the STR when P = I, 0 = 

0 and w(t) = 0. When P = I and O = 0 the STC becomes a minimum variance 

controller with set point tracking capabilities. 

', 
w(t) __.. R K)--. 1 - - ..__ 
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V ---
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.~ k 

u 
z p 

a 

prediction error, ep(t) 

Figure 2.10 Structure of the positional self tuning controller (Clarke et al (21)) 
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Figure 2.11 Implementation of a positional self tuning controller (Clarke et al (21)) 

The STR and the STC are in positional form as presented above, where full value 

data is used for parameter estimation and control calculations. The implication is that 

the initial values of the input and output data, Yo and u0, need to be accurately 

detem1ined. In practice, this is not always possible as process systems are rarely ever 

at exact steady state. Offsets are therefore likely to occur in practice if the reference 

values are in error. Several ways for obtaining good estimates of the reference values 

have been suggested by Latawiec and Chyra (78), but these methods still do not 

guarantee that offsets will be eliminated completely. 

The use of scalar control weighting Q = A induces an offset commonly known as 

lamda offset. This offset arises because O (1) -.:/:- 0. Lamda offset can be removed by 

choosing Q such that Q(l) = 0. The simplest possibility is O = A.6. 1, where .6. 1 = l-z- 1, 

so that changes in the control u(t) - u(t-1) are penalised rather than absolute values. In 

this case the cost function Equation 2. 79 becomes: 

J3 = [[ P y(t + k) - Ru(t)]2 + [O (1- z-1) u(t)]2] 

and the control law becomes 

cHiau = 0 = P y*(t + k) - R w(t) + 0 (1- z- 1) u(t) 
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2.9.5 Selecting the design parameters for the self tuning controller 

The performance of the STC, and all adaptive control schemes, depends on 

appropriate selection of the various model, controller and estimator parameters. 

Comprehensive reviews concerning the selection of these parameters are given in 

articles by Seborg et al. (140), Iserrnann (54) and Astrom (4, 21). These articles show 

that, with reasonable understanding of the process, the selection of only a few of the 

parameters is crucial. The crucial parameters are the sampling period and the time delay 

assumed in the process model. 

1) Model parameters: 

The four model parameters necessary are the model order represented by n and m, 

the sampling interval, ~T and the integer k representing the time delay. The assumed 

model order is usually chosen to be 1 st, 2nd or 3rd ( n and m = 1, 2 or 3 ) since the 

model only needs to be a local approximation. Low order models fitted to higher order 

processes are usually good approximations provided sampling interval is reasonably 

long (Clarke (20)). In industrial applications, however, larger model orders may be 

needed resulting in larger number of parameters that need to be estimated. 

Selecting ~T can be done by standard methods used to select sampling intervals for 

applications of conventional control (Isermann (54)). In general, the robustness of the 

STC, and adaptive control systems in general, improves as ts becomes larger. A small 

ts can make the process model become non-minimum phase, while longer ts can be 

used to avoid non-minimum phase zeroes, reject high frequencies disturbances and 

badly modelled plant modes, but sluggish response may result (Clarke (20)) . 

The time delay k usually need to be accurately determined and must be exact 

multiples of ~T. Kurz and Goedecke (69) have reported that the performance of 

adaptive control algorithms based on recursive parameter estimation are very sensitive 

to incorrect choice of the process time delay, more sensitive than the incorrect choice of 

the process model order. They report that if the time delay is not known exactly, or 

varies significantly with time, the control may be poor or instability may even result. 
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They consequently proposed that the time delay could be estimated on-line, if it varies 

significantly. 

Another approach to self tuning control is called the extended horizon approach. 

Y dstie et al. (146) suggested this approach to deal with varying time delays as well as 

non minimum phase behaviour. In this method the controller does not attempt to drive 

the predicted output to the setpoint in one step, rather the controller is allowed more 

time, that is, the time horizon of the controller is extended. Ydstie et al. (146) point out 

that by doing this it is possible to look beyond the process time delay and periods of 

nonminimum phase behaviour. They applied the method to a pilot scale carbon dioxide 

absorber-desorber unit and reported that the effect of extending the horizon of the 

controller is to detune the controller. Other extensions exist where both the control and 

prediction horizon can be extended. An investigation of such extensions were carried 

out by Montague et al. (88) on a linear model of a distillation column. Their results 

showed that, when both the control and the prediction horizons become larger than the 

actual process time delay, improvements in controller performance are insignificant. 

Using a non-linear model of the column they reported that deterioration of performance 

resulted. They also pointed out that obtaining the best combination of control and 

prediction horizons can be a tedious task. 

2) Estimator parameters 

The parameter estimation step is a crucial step in all adaptive control schemes. The 

recursive least squares (RLS) in standard fom1 is given as, 

8(t) = 8(t - 1) + K(t) [y(t) - 0(t - k)TS(t - 1)] 

= 8(t - 1) + K(t)ep(t) 2.89 

K(t) = (PP(t - 1) 0(t - k)/[1 + 0T(t - k) (PP(t - 1) 0(t - k) 

PP(t) = PP(t-1) - PP(t-1 )0(t-k)0(t-k)IPP(t-1) 
1 + 0(t-k)TPP(t-1)0(t-k) 

= [I - K(t) 0(t - k)]PP(t - 1) 

2.90 

2.91 

where t is the time, 8(t) is the vector of the parameter estimates, 0(t - k) is the data 

vector. The K(t) is the estimator gain, PP(t) is the covariance matrix, I is the identity 
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matrix and ep(t) is the output prediction error , or the residuals as it is sometimes 

called. 

The estimator requires the specification of the initial covariance matrix, PP(0), and 

the initial parameter vector, 0(0). Choosing the initial parameter estimate 0(0), is 

usually not difficult particularly if the process response data is available a priori .. The 

common practice is to use a suitable conventional controller to initially 'tune in' the 0(t) 

parameters. The adaptive controller is then switched on when, for example, the 

prediction eITor is small over several samples and the control actions of the self tuning 

controller are the same as those of the conventional controller. A large initial covariance 

matrix, PP(0), implies poor confidence in 0(0) and will produce rapid initial changes 

in 0(t) because the estimation gain K(t) depends directly on PP(t). A small PP(0) 

indicates good confidence and slow initial changes in 0(t). 

In some situations it may become necessary to avoid updating the controller with 

new parameters, that is to "freeze" the controller parameters, if some or all the 

parameters drift or jump into undesirable space. Examples of where such preventative 

measures are necessary is when large disturbances enter the system yielding a large 

prediction errors. The parameter estimates may then fluctuate drastically for a few 

iterations and it is then important not to update the controller with bad or unrealistic 

parameter estimates Seborg et al (140). A common test used to prevent this is to 

specify the maximum allowable prediction eITor and freeze the controller parameters if 

this limit is exceeded. If a good knowledge of the parameters are known, an additional 

test is to specify the upper and lower bounds within which the controller parameters 

must lie. 

3) Controller parameters 

The weighting P(z-
1

) is a transfer function that can be specified to give a desired 

closed loop response to setpoint changes, while O (z- l) is used to reduce excessive 

control activity and introduce integral action into the controller structure. With proper 

selection of P(z-
1

) and O(z-i) an unstable process can be stabilised. The weighting, 

R (z -l ), is a transfer function used to filter the set point; thus tailoring the set point 
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response without affecting load disturbance response. It is useful in situations where 

the output is not desired to follow sudden jumps in set point and can therefore in the 

d 
-1 

re uce overshoots. Only P (z ) affects the parameter estimates, as it appears in the 

predictor model (Equation 2.79). The order of P(z-
1
) has been suggested by Clarke 

and Gawthrop (157) to be chosen as at least of the order of the assumed process 

model, to avoid under perfom1ance of the controller. 

To avoid steady state offsets the relationship P (1) = R (1) must be satisfied. This 

can be verified by examination of the closed loop equation, Equation 2.81, putting 

-1 
O(z ) = 0 and ~(t) = 0 in the equation. 

Morris et al. (85) have reported that choosing Q (z - l) as the inverse of a 

conventional PID controller of the system yielded good results. This allows the system 

closed loop behaviour to be modified by a design of a controller using a conventional 

design method. 

2.9.6 Operational problems of the recursive least squares scheme 

It is the characteristic of the RLS, and most parameter estimation schemes, to loose 

sensitivity; that is the estimator gain becomes too small. This happens because the 

PP(t), and hence K(t), tend to zero as more data is processed so that corrections to the 

parameters in 0(t) become smaller and smaller. When this happens the parameter 

estimator will not be able to track slowly time varying parameters. To prevent this a 

weighting factor, u (0 < u s 1), called the forgetting factor, can be introduced into 

Equation 2.91 to give 

PP(t) = [I - K(t) 0(t - k)]PP(t - 1)/u 2.92 

Choosing u to be less than 1 weighs new data more heavily. The effect is to 

prevent the covariance matrix PP(t) from becoming too small since it is scaled by a 

factor less than 1. This would maintain the sensitivity of the estimator so that process 

parameter variations could be tracked. However, if the data y and u are zero or do not 

change much, that is, the closed loop system is not excited, the PP(t) will begin to 

grow when u is less than 1. The PP(t) can become too large and so make the estimator 
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too sensitive. This is called covariance windup. The consequence is that large and 

violent changes in the parameter estimates, or "bursting", would occur if small changes 

in the data enters the system and this may lead to instability of the closed loop system. 

This characteristic of adaptive control schemes is treated in Hsu and Costa (143), 

Y clstie et al. (146) and Goodwin & Sin (39). 

To reduce the risk of covariance windup several variable foro-ettino- factor 
b b 

algorithms have been suggested. These include those of Fortescue et al. (34), 

Wellstead and Sanoff (121), Ydstie et al. (146), Ydstie (151), Lozano-Leal (79) and 

Zarrop (139). In general, each variable forgetting factor algorithm reduces u(t) when 

the prediction error increases. This has the effect of increasing the size of the 

covariance matrix and hence increases the speed of the adaptation. The forgetting factor 

converges to unity as prediction error becomes smaller. The variable forgetting 

algorithms do not entirely eliminate covariance windup, except that of Loz~1no-Leal 

which computes the forgetting factor to maintain a constant Tr(PP(t)), where Tr 

represents the trace. In doing this covariance windup is effectively eliminated. The 

success of the method depends, however, on the closed loop system being persistently 

excited to the appropriate degree. 

The robustness of adaptive control systems is also an important issue. Anderson 

(7) has shown that even without the effect of covariance wind up bursts can occur and 

lead to instability as a result of the parameters drifting due to lack of excitation, modd 

mismatch, and computer round off errors. Rohrs et al. (108) have also shown that 

unmodelled disturbances and wrong model order could easily lead to instability of the 

adaptive controlled system, if sufficient excitation of the system is not ensured. 

Several modifications have been proposed to improve robustness of the adaptive 

control system. These include an approach called "dead zone" where the adaptation of 

the parameters are stopped if the error is small, smaller than a user specified limit. 

Another method is to introduce a" leakage "term which introduces a linear drift tern, 

into the parameter estimator updating equation, Equation 2.90. Ydtsie (151) gives a 

combined fom1 of the leakage and dead zone approach as 
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0(t) = 0(t - 1) + K(t)ep(t) + a (0(t-l) - 0 * (t)) 2.93 

. * * * where a IS the leakage term and 0 (t) = 0 (t-1) if K(t) ep(t)::;; e and 0 (t) = 0(t-1) 

otherwise.The term e is the deadzone specified by the user and the leakage a is 

usually chosen to be small. Ydstie (151) points out that this approach will not always 

work because model mismatch will not always manifest itself as a slow drift. 

In the computation of PP(t) using Equation 2.91, computer roundoff can result in 

PP(t) loosing positive definiteness. This will cause the estimator calculations to 

become unstable and an unstable system could result. This will happen in fewer 

iterations on computers that use short wordlengths. Methods available which overcome 

this problem include using the square root filter (SQRTF) algorithm (Perterka (155)) or 

the UD factorisation method, given in Astrom and Wittenmark (206) and Y dstie 

(151)), to update the PP(t). A very clear presentation of the SQRTF algorithm for 

computer programming is presented in Kiovo (70) 

There have been many modifications of the RLS method. For example, when the 

noise is to be modelled (C(z-
1
) "#- 1), other techniques such as the extended recursive 

least squares (ERLS) technique must be used to estimate the parameters including the 

noise model parameters. The ERLS approach has been used by Chien et al. (24). The 

technique and its applications are treated fully by Lai and Wei (77). Fuchs (35), Sin 

and Goodwin (175) also present modified fom1s of the RLS. 
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This approach has been used successfully by some workers (McDermott et al. (38, 

84)), but is considered undesirable (Absjorben (2), Kershenbaum and Fortescue 

(158)) because a significant increase the variance of the outputs will result. The actual 

level and proper frequency of the application of the signals may also be difficult to 

determine. 

2.9.8 Adaptive algorithms that avoid the persistent excitation condition 

Numerous work have been done to address the problem of parameter identifiability 

in adaptive control systems where sufficient excitation of the closed loop system is not 

obtained. These workers include Lozano-Leal and Goodwin (147), and Ossman and 

Kamen (94) who have suggested various adaptive control approaches that do not 

require persistent excitation for good parameter estimation. 

The approach of Ossman and Kamen (94) will be focussed on in this thesis. The 

method assumes that the system parameters, 0, belongs to a known bounded interval 

[8min, emax] and a reasonable assumption, or a priori information, of these bounds 

is available. The method also assumes that the plant is stabilisable for all possible 

values of the unknown system parameters. The RLS estimation scheme is then 

modified to force 8 into the bounded interval, over several sampling intervals. The 

basic algorithm for a SISO system is given as follows. A vector f is defined as 

f (8(t-1)) = 

max max 
0(t-1)-8 when 0(t-1)>0 

min 
when 0(t-1)<0 8(t-1)-8min 

0 e( 1) . . .d h b d [0min emax]. when t- 1s rns1 e t e oun , 

2.94 

The f is an np x 1 vector and np is the number of parameters. The parameter updating 

equation Equation 2.90 is then modified to 

0(t) = S(t-1) + K(t)[y(t) - 0(t-k)T0(t-1)] - aPP(t-l)f(S(t-1)) 

2.95 

where a is a positive scalar chosen such that 

a PP(O) < 21 2.96a 
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where PP(O) is a diagonal matrix with diagonal elements of equal values (al, where a is 

any positive value, eg 1 OOI). Note that if the diagonal elements are not the same then 

Equation 2.96 should in effect become 

amax(PPjCO)) < 2 2.96b 

where i denotes the i-th diagonal element. 

Apart from the introduction of the correction term, another modification of the RLS 

algorithm was used by Ossman and Kamen. This modification is a data normalisation 

procedure which ensures that the covariance matrix, PP(t), converges to a positive 

semi-definite matrix with magnitude less than PP(O). The procedure is given as 

1 when the determinant of PP(t) > £, 

where e is a small positive number 

11t-1 = 

max(l, II 0(t-k) II) otherwise 

where II x ll=[x T x](l/2) and £ is chosen as any positive number. Ossman and Kamen 

suggested that £ should be chosen to be very small since they found that too large e 

sometimes resulted in large transients in the system response. The 11t-l is introduced in 

the computation of PP(t) to give 
PP(t) = PP(t-1) - PP(t-1)0(t-k)0(t-k)IPP(t-1) 

172t-l + 0(t-k)TPP(t-1)0(t-k) 

so that the term K(t)[y(t) - 0(t-k)T0(t-1)] in Equation 2.89 becomes 

PP(t-1 )0(t-k)["y(t)-0(t-k)T0(t-1 )J 

172t-l + 0(t-k)TPP(t-1)0(t-k) 

and Equation 2.95 becomes 

0(t) = 0(t-1) + PP(t-120(t-k)[y(t)-0(t-k)T0(t-l)l - aPP(t--l)f(0(t-l)) 

172t-l + 0(t-k)TPP(t-1)0(t-k) 

2.96c 

The algorithm becomes the standard least squares with the correction term if 11 is 

always 1. 

The properties of the estimation algorithm includes that the prediction error tends to 

o as t tends to infinity. The proof of the characteristics of the estimation algorithm is 

lengthy and is not presented here since it is the basics of the approach that is of main 
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concern. According to Ossman and Kamen, the modified RLS scheme they propose is 

not a projection algorithm which forces the estimates to converge to the "target " 
min max 

bounds [0 , 0 ] every sampling instant, t. Instead, the "correction term" in 

Equation 2.95 only forces the estimates to converge to these bounds as t tends to 

infinity. 

It clear that the "correction term" - aPP(t)f (0 (t - 1)) can be incorporated into 

any suitable estimation algorithm. Also, implicit in the algorithm is the ability to 

compensate for parameter drifts from their true values, or more precisely, away from 

their admissible bounds. The algorithm is, however, quite different from the deadzone 

approach which avoids updating the parameters if the prediction error is small in order 

to avoid parameter drifts. The method is also not a fom1 of the leakage approach since 

the leakage term does not have a "target" parameter bound that must be reached. 

Ossman and Kamen (94) combined the method with a multivariable STR and 

applied it to a linear multivariable system. They reported that improved controller 

performance was achieved. They also conjectured that the approach could be applied in 

situations where the bounds of only some of the parameters are known. This implies 

that it may be possible to retain good controller performance while only correcting 

some of the parameters. This would be advantageous since it may sometimes be that 

only some key parameters need to be closely monitored. For example, the parameters 

that directly determine the controller gain may need to be monitored to prevent it from 

attaining wrong values. 

A possible drawback of the approach as regards practical application is that, in 

practice, it may not be easy to obtain sufficient knowledge about the parameter bounds 

of the system especially for processes that are poorly understood. This problem will be 

more acute if the system is non linear. The literature also contains no practical 

application of the approach. 
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2.9.9 Incremental self tuning control algorithms 

One property of the RLS scheme and, all parameter estimation schemes, is that if 

the noise affecting the data is not zero mean the parameter estimates determined will be 

of wrong mean values; that is, the parameter estimates will be biased. Positional fonns 

of adaptive control algorithms use full value data for parameter estimation and control 

calculations. They, therefore, suffer from the fact that non-zero mean noise levels in 

the plant data would cause biased parameter estimates, and prediction offsets (Clarke et 

al.(21)). Clarke et al. showed that the performance of the "one in the data vector" and 

the "proxy of residuals" methods in estimating offset level d could be significantly 

degraded by non-zero mean data when a positional self tuning control algorithm is 

used. 

The use of incremental data for parameter estimation and control calculations 

alleviates these problems. As stated by Clarke et al. (21), this is primarily because 

zero-mean data naturally result when incremental data is used for parameter estimation. 

The incremental approach is simple. It involves differencing the plant data with 

previous data prior to parameter estimation, and then following exactly the same 

procedure to obtain the corresponding control law. A parameter estimator which uses 

differenced data is called an incremental predictor and a self tuning controller based on 

an incremental predictor is, therefore, referred to as an incremental self-tuning 

controller. 

The method proposed by Clark et al. (21) is the k - incremental controller where 

the parameter estimator uses data differenced by Lik. It is derived as follows. The 

predictor is obtained by shifting the positional predictor, Equation 2.81 b, backward in 

time to give 

Py*(t) = Fy'(t-k) + Gu(t-k) + d 2.97 

Subtracting Equation 2.97 from the Equation 2.81 b gives 

P(z-l)Liky*(t+k) = F Liky'(t) + GLiku(t) 2.98 

This is the k- incremental predictor. This can be re-arranged to give 
1 -1 P(z- )y*(t+k) = P(z )y*(t) + F Liky'(t) + GLiku(t) 2.99 
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The control law is the same as that used by the positional predictor in Equation 2.82, 

or Equation 2.88b if removal of lamda offset is required. Thus the controller output is 

computed as 

L\u(t) = [ G + QJ- 1 [-P(z-
1
)y*(r)- f ,,:\ y'(t) + R w(t)J 2.100 

and u(t) = u(t-k)+L\u(t). 

w(t) 

R 
ll(l) 

Plant 
y(t) 

p 

+ 

Figure 2.12 Implementation of a k-incrernental control law (CLU'ke et al. (21 )) 

Apart from reducing the risk of biased parameter estimates and prediction offsets, 

an incremental self tuning controller is equipped with integral action. This is unlike the 

positional counterpart where integral action must be pre-specified by the designer. 

Clarke et al. (21) showed that a k- incremental predictor implicitly estimates the offset 

level, d, and that changes in this offset level only lasts fork samples. The resulting 

incremental controller removes all possible offsets that may occur. Another feature of 

incremental controllers is that they do not require accurate knowledge of initial, or 

reference, values as required by positional fo1ms. For the dual composition control of 

binary distillation column model and pilot plants, Tham et al. (131, 132) have reported 

that the use incremental control improves the decoupling properties of the multiple loop 

self tuning control system. 
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2.9.10 Deficiencies of incremental self tuning control algorithms 

Despite all the advantages provided by incremental adaptive control algorithms, it 

has been reported many times in the literature that they deliver more vigorous and 

sensitive control actions than there positional counterparts. Such reports include those 

of Montague et al. (88), Kam et al. (67, 68), Tham et al. (131, 132) and Clarke et al. 

(21). Clarke et al. (21) observed that k-incremental self-tuning controllers are more 

sensitive than their positional counterparts to incorrect choice of the plant time delay 

when minimum variance control is required. 

One source of sensitivity in incremental controllers is due to noise in the process 

data, if indeed noise is present in the data. It is the property of incremental predictors to 

amplify high frequency noise in the process data (Berger (11). This will make the 

closed loop response of a system under control by an incremental self tuning controller 

sensitive. To reduce the high frequency noise amplification in a system under control 

by an incremental self tuning controller, Berger (11) suggested passing the plant data 

through a moving average filter (MAF) prior to parameter estimation. The basic 

formulation of this filter is giv~n as 
J 

F.(a)=l- L 
J,k 

i=l 

1-i-k 
z 

J + a 
2.101 

where k is the time delay. Introducing the filter model into the appropriate predictor 

model for minimum variance control (Equation 2.69), for example, becornes 

C(z-1) F- ky(t+k) = f (z- 1)F· ky(t) + G(z-1)FJ· ku(t) + [(z-1)FJ· kS (t) + E(z- 1)FJ. kd(t) 
J, J, ' ' ' 

2.102 

According to Berger, a in Equation 2.101 is chosen as a small number and it is 

used when the noise model is identified to prevent the zeroes of C (z- l )Fj,k from lying 

on the unit circle (the C(z-
1

)F- k term is similar to C(z- 1) y(t+k) in Equation 2.69, J, 

except that the filter term is introduced). If this is not done then problems of 

convergence of the parameter estimates and problems of stability of the closed loop 

system may occur. 
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Equation 2.102 implies that the plant data is differenced by the the average values 

of j previous values. The generality of the k-incremental controller is still retained due 

to the kin the filter formulation since ~j,k(a) = ,0.k when a= O and j=l. 

According to Berger (11), if k = 1 and a= 0, the effect of the filter on a signal 

composed of u and zero mean white noise et, the filtered output will be 

J 

w e l: f'. 
t = t - i=l t-J 

J 2.103 

with variance 

cr,/= cre
2

( 1 - 1/j) 2.104 

where cre 
2 

is the variance of the noise input and crw 
2 

is the variance of the filtered 

data. The filter therefore reduces noise amplification as the filter depth j is increased. 

Thus, the sensitivity of the controlled system reduces. The filter depth j is chosen by 

the designer depending on the requirements of the system. 

Berger showed that no benefits are obtained using the moving average filter when 

low frequency noise is affecting the system. No experimental application of this 

approach has been reported in the literature. 

2.9.11 Stability and convergence of adaptive control algorithms. 

Astrom (4) points out that the closed loop systems obtained in adaptive control are 

non linear and this makes their analysis difficult especially if random disturbances are 

affecting the system. The stability and convergence analysis of adaptive control 

systems are key problems to which much effort has been devoted to address. Astrom 

(4, 166) gives a review of efforts done in this area. He points out that to ensure 

stability of the adaptively controlled system, the data vector 0 must be bounded. 

The performance of adaptive control systems in the presence of unknown 

disturbances is of great interest and several workers including Xianya and Evans (136) 

and Samson (122) have carried out investigations in this area. Samson studied the 

stability of adaptive control systems subject to bounded disturbances with unknown 
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statistics. His view is that the property of stability of the closed loop system should be 

established in order to be able to obtain good robustness of the control. He points out 

that in order to be able to perform a stability analysis on the system the parameter 

estimator should satisfy the following; (1) the parameter vector must be bounded, (2) 

the prediction error must be very small compared to the size of the data vector and (3) 

when the data vector becomes large the difference between two successive parameter 

estimates must become very small to allow the control of a time varying system. 

Samson pointed out that, in the deterministic case, these properties can be verified in 

most parameter estimation algorithms. 

The analysis of convergence of adaptive control systems is dealt with in Anderson 

and Johnson (8). They showed that a persistent excitation condition is necessary for 

exponential convergence, which guarantees the robustness of the adaptive controller to 

model mismatch noise and other uncertainties. More details on the stability and 

convergence of adaptive control systems can be found in the articles mentioned above. 

2.9.12 Extensions of self tuning control to multivariable systems 

Extensions of the Self-Tuning Controller of Clarke and Gawthrop (156, 157) to 

multivariable systems were proposed by Kiovo (70), Morris et al. (86) and Chien et al. 

(24). Chien et al. (24) presented extensions to deal with multiple delay multivariable 

systems. Morris et al. (86), Montague et al. (88) and Tham et al. (131, 132) also 

considered multivariable algorithms with each loop sampled at different rates. These 

workers have pointed out that the computational requirements are much more involved, 

particularly for multiple sampling cases. 

For a multivariable system the assumed model equation becomes 

R (z-1) y (t) = z-kii B (z-l) u (t) + C (z-1) ~(t) + d(t) 

2.105 

The fll(z-l), B(z-1) and C(z-1) are now polynomial matrices. The u, y, d, and~ 

are all vectors. An important consideration that the designer is faced with in the design 

of a multivariable self tuning controller is the assumption of the structure of the 
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assumed process model, particularly regarding the R(z-1) polynomial matrix. The two 

choices are given by Tham et al. (131, 132) as 

(i) the P-canonical form, where the ff(z-
1
) is assumed to be diagonal, and 

(ii) the V-canonical form, where R (z- 1) is full. 

They noted that the P-canonical form is usually preferred for simplicity. With this 

formulation the R(z- 1), B(z-l) and C(z-l) matrices, for a 2 input 2 - output system, 

are defined as 

Note that kii is the delay between Yi and ui and kij is the delay between yi to uf it is 

assumed that kij > kii > 1. Equation 2.105 can be decomposed into 2 multiple-input 

single output (MISO) subsystems, described by 

Riyi(t) = Biiu/t-kii) + Biju/t-kij) + C/~i(t) + d/t) 2.106 

The P-canonical form facilitates reduction of the multi variable system structure into 

sets of multiple input-single output (MISO) sub-systems. Each sub-system can then be 

treated independently. For each sub-system, the corresponding self tuning controller 

can be determined by following the synthesis procedure of the SISO STC controller. 

Then, strictly speaking, a multiple loop self tuning control system is obtained, with the 

capability of compensating for control loop interactions. The use of multiple sampling 

rates are also more readily accommodated. 

The identity of Equation 2.66 becomes 

CP =£.ff.+ z-kii F · 
1 1 1 

2.107 

and d = E(l)d. The corresponding self tuning controller design parameters are 

denoted as P(z-1), Q(z-
1
) and R(z-

1
) which are diagonal polynomial transfer function 

in the multi variable case. The ½i -step ahead predictor for each loop becomes 
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P 1· Y1· (t+k1•1·) = f
1
•Y' ·(t) + G .. u,(t) + G .. u .(t +k .. -k .. ) + d-

1 11 1 IJ J 11 IJ 1 
2.108a 

and the corresponding control law is obtained as in the single loop case. Following the 

derivation of the STC in Section 2.94, the corresponding controller equation for each 

loop is 

u/t) = [ Gi1' + ol.J- 1 [ -F · y',(t) - (i .. u,(t +k .. -k .. ) + R W•(t) - d,] 
1 1 IJ J 11 IJ I 1 

2.108b 

Control loop interactions are accomodated via the Gij' 

2.9.13 Chemical engineering applications of adaptive control 

A large proportion of the published work on applications of adaptive control 

systems have been by simulation. Quite a few successful laboratory scale applications 

have been reported of which Seborg et al. (140) gives a fairly detailed review. Clarke 

and Gawthrop (22) demonstrated the flexibility and ease of applying of STC on a 

portable microprocessor. Dexter (27) described the development of a STC on a single 

chip microcomputer. He demonstrated the viability of a simple STC algorithm suitable 

for low cost control applications in consumer products. Sharaf and Hogg (123) 

assessed various types of process identification methods to the optimal control of a 

laboratory scale turbogenerator. The identification methods they used include the 

recursive least squares, the extended recursive least squares and the recursive 

instrumental variable. 

Examples of expe1imental applications of adaptive control for the dual composition 

control of distillation systems are by Badre et al. (14), Morris et al. (85, 86) who used 

the STC of Clarke and Gawthrop (156, 157), and Martin-Sanchez and Shah (89) who 

used the model reference approach. McDermott et al. (34, 84) applied the pole 

placement approach to control a fixed bed auto thermal reactor. 

Some industrial applications have also been reported by Seborg et al. (140), 

Keyser and Cauwenberge (65) and by Dumont (176). Keyser and Cauwenberge (65) 

successfully implemented a self-tuning multiple step predictor on an industrial blast 

furnace to guide the operator in selecting control inputs. Very good and trouble free 
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performance of the predictor over a period of months was reported. Dumont (190) 

applied an STR to control the motor load of a chip refiner in an industrial 

thermomechanical pulp production unit. The application was successful despite the 

slow drifts and occasional sign changes of the incremental gain of the motor load. 

Chien et al. (23) proposed an extension to the STC for decoupling control of 

MIMO systems. The method is based on a novel way to choose the control weiahtino-o 0 

matrix, Q. Qualitatively, the O is chosen to be a full matrix rather than a diagonal. Tade 

et al. (133) also developed an adaptive approach to decoupling control. The method 

allows for the specification of the closed loop behaviour of the system in form of a 

reference model and uses a linear difference model to represent the system. Non linear 

versions of adaptive control techniques have also been developed (Agarwal and Seborg 

(3)) 

Tionoven (63) developed an algorithm which automatically adjusts the control 

weighting, 0, when the STC is in operation. They justified there work on the basis 

that it may sometimes be difficult to find the proper weightings a priori. They 

addressed the case of regulatory control only and point out that the method does not 

necessarily give good perfom1ance on a non minimum phase system. 

Many applications of adaptive control systems, by both simulations and 

experiments, have been to distillation processes. These include the investigations of 

Morris et al. (86), Chien et al. (24), Badre et al. (14), Montague et al. (88) and Tham 

et al. (131, 132), Martin-Sanchez and Shah (89) and Dahlqvist (31). This reflects the 

importance of distillation as a key process in the chemical industry. As distillation 

possesses many of the characteristics that limit the performance of conventional control 

system, adaptive control is perceived as one approach that can solve the major control 

problems in this field. 

2.9.14 Application of adaptive control in the chemical industry 

Dumont (176) made a comprehensive survey of the use of adaptive control in the 

pulp and paper, chemical and petrochemical industries. He found that adaptive control 

122 



h:is had limited use in industry, contrary to what was predicted by proponents of 

adaptive control particularly in the early 1980s. His report reveals that industrial 

practitioners agree that adaptive control is useful and there are some control loops 

where there is the need for it, but they find adaptive control still too complicated to use. 

To illustrate some of the reasons for this view in industry, the survey gives several 

examples in industry where adaptive control has been applied, and some cases where 

projects on application of adaptive control have been terminated. Major difficulties 

encountered in applying adaptive control systems to industrial processes were usually 

due to problems of model identification, reliability and robustness of the algorithms. 

The number of parameters that need to be estimated is usually quite large for industrial 

systems, so that it becomes difficult to identify them all. Reports of some failures due 

to this problem were given. The survey also revealed that commissioning and tuning of 

adaptive control systems can take up long periods of time, sometimes weeks or even 

months. 

In conclusion, Dumont (17 6) emphasized the need for close liaison between 

universities and industry regarding the needs and application of adaptive control. He 

pointed out that key issues such as the robustness and convergence of adaptive control 

algorithms need to be addressed for their applications in industry to be progressed. 
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2.10 Estimator aided control of chemical plant 

In practice several factors will dictate the number and the types of measurements 

that will be made on a chemical plant. Control may dictate a different priority: Control 

may require measurements which present severe practical difficulty, or even 

impossibility. Measurements vital for control may be corrupted by noise in the 

measuring instruments; faulty instruments may also induce inaccuracies in the 

measurements; the measurements may be available at infrequent times because of long 

analysis times, or the difficulty or high cost of measurement. Only some easily 

measurable variables, or secondary variables, that rel:ite, in some way, to the variables 

needed for control may be available. In these circumstances a method must be devised 

in order to infer accurate values of the variabks needed for control from these 

secondary measurements to enable the design of an effective control system. 

Distillation column control is a typical example were such problems frequently 

arise as has been discussed in Chapter 1. Composition analysers are usually very 

expensive, have significant time delay due to analysis time and can be very unreliable. 

More usually, only easily measurable tray temperatures are available. In this event the 

composition control scheme must be developed to operate without the missing 

composition measurements. Since for a binary mixture the temperature on a plate is 

usually a good indicator of the composition on that plate and the temperature of a tray 

near an encl of the column is also a good indicator of the product composition at tlwt 

end, the tray temperature can either be controlled instead or be used to infer the 

product composition. 

A combination of a mathematical model of the process and the noisy, inaccurate or 

secondary measurements could be employed to provide the "best" estimate of the 

controlled variable. This is the basis of an "estimator aided" control scheme. The 

performance of the estimator will strongly depend on the adequacy of the mathematical 

model and how well the avail;.1ble measurements indicate the controlled variable whose 

estimate is required. Several workers (Daie (26), Luyben and Shah (110), Yu and 
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Luyben (137), Hamilton et al. (49) and Dahlqvist (162)) have used control schemes 

based on this approach. 

Estimators of these types can be broadly classified into two types. These are static 

and dynamic estimators; static estimators employ steady state models and dynamic 

estimators employ dynamic models. The estimation can be done sequentially or non­

sequentially (Daie (26)). Sequential estimation techniques basically means that the 

estimates of state variables of the process are generated at each sampling instant. This 

is commonly referred to as recursive filtering and an example of such a technique is the 

Kalman filtering technique (Kalman (163), Bozic (145)). The non-sequential approach 

to estimation is based on a series of measurements over a period of time to estimate the 

desired variables (Daie (26)). 

Luyben and Shah (110) applied an estimator based PI control system to control the 

products of a 24 tray 20.3cm diameter binary distillation column distilling a mixture of 

water and methanol. A tray by tray non-linear steady-state model of the column was 

used to back-calculate product compositions. Only four tray temperatures and two 

flowrates were needed as measured variables for the estimator-based scheme. The 

resulting product composition estimates were then used as the controlled variables. 

Simulated and experimental results showed that the estimator based control scheme 

perfonned better than conventional control. It was also noted that there is a predictive 

feed-forward control action implicit in estimator based control schemes. 

Extensions of the approach of Luyben and Shah to multicomponent distillation 

system were developed by Yu and Luyben (137). In their work, however, the singular 

value decomposition (SVD) technique was employed to select the proper location of 

tray temperature measurements, as mentioned earlier in this chapter. The perfom:ance 

of an estimator based PI control scheme was tested on four different multicomponent 

distillation processes by computer simulation. The results showed the estimator based 

schemes gave better performance than direct PI control. Yu and Luyben, however, 

point out that a disadvantage of the static estimator they employed is that the dynamic 

behaviour of the output of the estimator may not match the actual dynamic responses of 
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the process outputs. This is expected since the estimator employs a steady state model 

rather than a dynamic model. 

The other workers, Hamilton et al. (49), Dahlqvist (162) and Daie (26), all used 

the Kalman filter technique in their estimator based control schemes. Comprehensive 

treatments of the theory of Kalman filtering can be found in the books by Astrom (166) 

and by Kalman (163). Also the theses of Payne (99), Daie (26) and Shaffii (115) give 

reasonably comprehensive reviews of the theory, applications and advances that have 

been made concerning Kalman filtering and its applications in process control. These 

reviews form the basis of the summarised treatment to follow. 

The Kalman filter is a sequential estimation technique which employs a linear 

dynamic model of a process to generate the true process variables from noisy 

measurements at each sampling instant. The technique can be used to estimate process 

variables and parameters from secondary process measurements. Both Dahlqvist (162) 

and Daie (26) have employed the technique to estimate product compositions of 

distillation column from tray temperature measurements. A short presentation of the 

basic theory of the Kalman filtering approach will be given first. 

2.10.1 The Kalman Filter algorithm 

The fundamental idea of the Kalman filter is to determine the optimal estimates of 

the state variables of a given process from a knowledge of outputs and inputs 

(controls, disturbances etc.) and a mathematical model of the process. The basic 

assumption is that the process is (a) modelled by first order linear differential 

equations, (b) excited by additive zero-mean "white gaussian" noise and (c) such that 

some measurements are available, corrupted by experimental errors. The 

measurements must be combinations of the state variables. 

"Whiteness" of the noise implies that the noise level is not correlated in time, 

meaning that all the values of the noise are mutually independent. "Gaussianess" is 

related to the noise amplitude. It implies that at any single point in time the probability 

density of the noise amplitude takes on a normal bell-shaped curve, the Gaussian 
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probability density function. Daie (26) noted that the assumption of "white gaussian" 

noise makes the mathematics of performing Kalman filtering more tractable. 

The derivation of the Kalman filter and the characteristics have been extensively 

dealt with by several workers including Payne (99) and Daie (26). Therefore, only a 

brief treatment will be presented here. 

The process is assumed to be described by linear time invariant state variable 

model as 

dx(t)/dt = Ax(t)+ Bu(t)+ w (t) 

y(t) = Mx(t) + V(t) 

2.109 

2.110 

where w(t) is n x 1 vector of random system disturbances and v(t) is the nm x 1 vector 

of random measurement disturbances represented by a zero mean white Gaussian noise 

process. Therefore, E [v(t)] = 0 and E[w(t)] = 0, where E is the mathematical 

expectation operator. The matrix A is the n x n system matrix, B is the n x m input 

driving matrix and M is the nm x n measurement matrix. The vector x(t) is the n x 1 

vector of the true state variables and u(t) is them x 1 vector of the inputs. Then, m and 

nm are the number of states variables, inputs and measurements, respectively. 

The solution of equation is given (see Daie (26), Shaffii (115) and Astrom and 

Wittenmark (206 )) by 

x(t) = <D(t,tk)x(tk) + f <D(t,'t)Bu(t)d't + W(tk) 2.111 

The <D(t,tk) is an n x n matrix called the transition matrix and is given by 

d<P(t,tkl = A <D(t,tk) 

dt 

<I>(t,to) = exp(A ~T) 

2.112 

2.113 

where ~T = t-tk' The initial value of <P(t,tk) at t = t0 is 

<DC t, to) = <I> c t0, t0) = r 2.114 

where I is the identity matrix. The state at the next san1pling interval tk+ 1 is thus given 

by 
1k+l 

x(tk+ 1) = exp(A (tk+ rtk)) x(tk) + f tk exp(A (tk+ i-t))Bu(t)d't + W(tk+ 1) 

2.115 

127 



a 

which gives 

tk+ 1 

x(tk+ 1) = exp(A (tk+ 1-tk)) x(tk) + Jtk exp(A (tk+ 1-t))dtBu(tk) + w(tk+ l) 

as B is time invariant. 

Dropping the t, the system becomes as 

x(k+ 1) = <I>(k+ 1, k)x(k) + r(k)u(k) + w(tk+ 1) 

y(k+l) = M(k+ l)x(k+l) + v(k+l) 

These equations are valid only at the sampling instant k . 

2.116 

2.117 

2.118 

Using the simple Euler method is used for the discretisation gives 

<I>= (I+ A ~T) 

r(k) = B~T 

M(k+l) =M 

as M is time invariant, where ~ T is tk - tk- l interval. 

2.119 

2.120 

2.121 

The Kalman filtering problem is to determine the estimate x"(k+ 1, k + 1) of the 

state so as to optimise the following quadratic cost function given (Shaffii (115)) by 

Jk = 1/2 ( [x(k,k) - x"(k,k)]TE_-l(k,k)[x(k,k) - x"(k,k)] ) 

j = k-1 

+ 1/2 I j = 0 ([y(i+ 1) - M(j+ 1) x"(j+ 1, j)]T R-l (j+ 1) [y(j+ 1) - M(j+ 1) x" 

(j+l,j)J) 2.122 

where the superscript -1 and T denotes matrix inversion and transpose, respectively. 

The x (k, j) is the estimate of the states obtained at time k given a set of observations 

through to time j. The optimisation yields the following matrix recursion relations 

(Daie (26)). 

Prediction step 

x* (k+l,k) = <I>(k+l, k)x *(k, k) + ru(k) 2.123 

E. (k+l, k) = <I>(k+l, k) E,(k, k) <I>T (k+l, k) + Q 2.124 

Estimation step 

K(k+l) =..£(k+l, k)MT(k+l)[M (k+l) E,(k+l, k) 

MT(k+l) + RJ-1 
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or 

xA(k+l,k+l) = x*(k+l, k) + K(k+l) fy (k+1)­

M(k+1)x*(k+1, k)] 

E (k+l, k+l) = [I - K(k+l)M (k+l)] E(k+l, k) 

E(k+l,k) = [I - K(k+l)M(k+l)] E(k+l,k) [I - K(k+l) 

M(k+l)]T + K(k+l)R(k+l) K(k+l)T 

2.126 

2.127 

2.128 

x* and xA are, respectively, the prediction and the estimate if the state x 

Q (k) is then x n system noise covariance matrix, E [w(k) w(k)T] 

R (k) is them x m measurement noise covariance matrix, E fv(k) v(k)TJ 

E(k,k) is then x n covariance matrix of the error in x*(k, k) 

K(k+l) is then x nm filter gain matrix 

The term y(k+ 1) - M(k+ l)x*(k+ 1,k) in Equation 2.126 represents the difference 

between the measurements and the predicted measurements, that is, the prediction error 

or measurement residuals, as in the recursive least squares method. 

Payne (99) pointed out that the discrete time form of the Kalman filtering procedure 

is preferred because it is composed of matrix recursion relations which makes the 

technique easily implementable on a computer. He also regards the Kalman filter as an 

optimal recursive data processing algorithm since all previous data are not required to 

be kept in storage and reprocessed every time new process measurements are taken. 

This is vital for the practicality of the filter implementation on digital computer as 

memory requirements are kept to a minimum. 

In applying the filter to generate the state of the system the issue of observability 

becomes important. Provided the system remains controllable and observable the 

estimate of xA(k+ 1,k+ 1) and the filter algorithm will be stable for all k. The condition 

for observability is that a matrix L
0

d given (Shaffii(l 15) by 

L
0

d = (<t>T(l,O)MT(O), <t>T(l,O)MT(l), .................. , <t>T(k,O)MT(k)) 

2.129 
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has the rank n, where n is the number of states to be estimated. Thus, L
0

d grows with 

k. If the system becomes unobservable the best way to combat it is by increasing the 

number of measurements supplied to the filter. 

The noise covariance matrices, Q(k) and R(k), are positive semi-definite matrices 

and they are usually assumed to be constant for simplicity. To initialise the filter Q, R 

and an estimate of the initial values of the state vector, x*(0,0), are required. The initial 

error covariance matrix, £(0,0), is also required and is given by 

£(0,0) = E [(x (0,0) - Xme (o))( x(O,O) - Xme (O))T] 2.130 

where Xme(O) is the mean of the actual initial state x(O) and is given as 

E[x(O)] = Xme(O) 2.131 

and £(0,0) is a positive definite matrix. 

To compute £(k,k) in the filter algorithm, Equation 2.124 is preferred because it is 

better conditioned numerically and will retain positive definiteness and symmetry of 

f(k,k) (Payne (99) ). Equation 2.119 represents the integration of the state vector over 

the sample interval. This can be done by integrating the filter process model with the 

advantage of removing inaccuracies that could be incurred in in the computation of the 

transition matrix, particularly in the case of nonlinear systems. 

The £(k,k) represents how uncertainties in the filter estimates propagate with time. 

It is the measure of the spread of the distribution of the estimates of the states, x*(k,k), 

about the true state x(k,k); this true state is unknown, except in simulation. Loosely 

speaking, the square roots of the diagonal elements of £(k,k) represent the errors of 

the corresponding estimates of x*(k,k) from their true values is x(k,k). 

In practice, the noise spectra of the system and measurements are usually not 

readily available. This means that Q and R cannot be obtained directly and must, 

therefore, be assumed. However, Q may be used to represent uncertainty in the filter 

process model. A large Q implies the process model is highly uncertain. From 

Equations 2.120 and 2.121 it can be deduced that a large Q will result in a large filter 

gain so that the filter will rely more on the measurements, y(k). This large gain will be 

maintained because the computed error covariance matrix, f (k,k), is prevented from 
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becoming too small. This will reduced the risk of filter instability that may occur due to 

large filter model uncertainties. The R_matrix can also be used in a similar way. A 

large R implies small filter gain and vice versa. 

The P.(0,0) and x*(0,0) affect the initial response of the filter . As explained in 

Daie (26), the larger the error in x*(0,0) the longer the filter takes to converge because 

until the system becomes observable the filter relies on the initial estimate, x*(O,O). 

Chosing a large E(O,O), the filter gain will initially be large. This also increases the 

time the filter will reach steady state as a high gain filter would rely more on noisy 

measurement residuals. 

Thus, compared to the static estimation techniques used in the works previously 

reviewed the Kalman filter is more easily "rnned" using E, Q and R matrices. 

2.10.2 Application to non-linear systems - The Extended Kalman Filter 

The Kalman filter is in tem1s of a linear model. It is, therefore, only applicable to 

linear systems. To apply the technique to nonlinear systems, which is common to 

many chemical processes, the system and measurement models must be linearised 

about a known and suitable reference trajectory. The Taylor series expansion is a 

convenient method of linearisation and is therefore commonly used. This is the basis 

of the Extended Kalman filter. This technique has been used by Daie(26), Payne(99) 

and Shaffii (115). Their theses therefore provide details about the characteristics of 

extended Kalman filters which form the basis of this review. 

The development of an extended Kalman filter is as follows. The following model 

describes a general non-linear system: 
dx 
dt- = f (x, u) + w(t) 

y(t) , = h(x) + v(t) 

The linearised transition matrix becomes 
<P(k+l,k) =I+ d f (x(k), u(k)) l\T 

)x(k) 

= I+J l\T 

and the linearised measurement matrix 

2.132 

2.133 

2.134 
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M (k+ l) = oh(x k) ux 2.135 

where J is the Jacobian matrix. The linearisation is done around x(k). The second and 

higher order terms of the Taylor series expansion are usually neglected from the 

linearisation procedure. Rather than use actual states the state deviations , 

ox= x*(k+ 1) - xA(k), oy = y(k+ 1) - yA(k), are processed through the filter algorithm 

presented. However, Daie (26) has shown that it is possible to use the actual states as 

opposed to deviations if the measurement relationship is linear or very mildly 

nonlinear. 

In an extended Kalman filtering application the frequency of linearisation of the 

process model as the filter operates will depend on the sample time and on the severity 

of nonlinearity in the system. Typically, the values of the latest estimates at sampling 

instant k are chosen as the reference trajectory for re-linearisation since they are the 

"best" values that will be available at that time (Shaffii (115)). The implication is that 

linearisation may have to be done during every interval to obtain new transition and 

measurement matrices, <D and M, with significant increase in computational overheads, 

particularly if the order of the process model and number of measurements are large. 

It is reported in the theses of Payne (99), Daie (26) and Shaffii (115) that in the 

extended Kalman filter approach the estimates may no longer be optimal. Observability 

may also be lost since now the <D and M both vary. This is because the system is 

assumed to be linear within the sampling interval, L1 T, so that if the sampling interval 

is not small enough there is then the risk of violating the linearity assumption. This will 

give rise to bias effects and divergence of the estimates and will, therefore, affect the 

stability of the filter algorithm. Unmeasured disturbances will also cause biased 

estimates (Morari and Fung (91)). It is possible to estimate the biases in the estimates 

and then use it to correct the estimates produced by the filter. One such approach was 

presented by Friedland and Grabousky (141), which can also detect sudden changes in 

biases. To combat the problems of biased estimates due to violation of non linearity, 

the sampling time can be made smaller and higher order terms in the Taylor series 

expansion can be retained. In doing this the problems may not be completely solved. If 
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the filter cycle time is already a large fraction of the sample time then adding higher 

order terms in the Taylor series would require more storage space, increase the 

computational load and, thus, the filter cycle time. This may require an increase in the 

sampling interval, or a more powerful computer. 

2.10.3 Application of Kalman Filtering to process control 

Compared to applications in the space and electronics industry the Kalman filter 

has had much less practical application to chemical engineering systems (Shaffii 

(115)). The applications to chemical engineering systems that have been reported in the 

literature show promise of increased future applications. Hamilton et al. ( 49) reported 

that significant improvements in control of a pilot scale double effect evaporator was 

achieved when an extended Kalman filter was inserted into the multiple PI control 

loops. A stationary form of the filter algorithm, that is, a constant gain filter, was used. 

In the work of Payne (99), an extended Kalman filter was implemented in open loop 

on a large double effect evaporator. His work highlighted the many difficulties that 

can be encountered during on-line implementation of the filter algorithm. These 

problems included long filter cycle time due to computational requirements of the filter, 

and the assumptions required to be made in the development of the filter to enable 

operation within the limits imposed by the equipment used. 

Daie (26) developed an estimator aided feedforward (EAFF) control algorithm 

based on an extended Kalman filter for a pilot scale binary distillation process. He 

designed the extended Kalman filter for the estimation of the tray compositions of the 

distillation column from tray temperature measurements and combined the filter with 

two PI controllers to control the top and bottom tray compositions of the column. 

Implicit in the design of the EAFF control scheme is the ability of the filter to predict 

the future effects of load disturbances on the outputs so that feedforward compensation 

could be achieved without the need for separately designing feed forward 

compensators. Hence, the name estimator aided feedforward (EAFF) control. 

133 



Daie demonstrated by simulation that the EAFF scheme performed better than the 

ordinary PI controllers in the face of large load disturbances and a large time lag due to 

the large liquid holdups in the reboiler. What was significant in the results of Daie is 

that with very tightly tuned PI controllers, which resulted in severe oscillatory closed 

loop response of the outputs, the EAFF completely eliminated the output oscillations. 

Furthermore, the EAFF was found to perform quite well even when very long 

sampling intervals, relative to the speed of response of the system, were used. The 

significance of these results is that by introducing the filter in the multiple Pl control 

loops tighter control could be achieved than when the PI controllers were used directly. 

The extended Kalman filter not only acted as a composition analyser, it also improved 

the robustness of the closed loop system as oscillatory response is removed. 

Shaffii (115) tried to extend the work of Daie by attempting to implement the 

extended Kalman filter on a distillation process. He used a linked Honeywell H3 l 6 

minicomputer and Motorola M6800 microcornputer for data acquisition. Several 

problems were encountered and these prevented on-line application of the EAFF 

scheme. The extended Kalman filter required relatively large intersample computational 

load so that the minimum sampling interval achievable was too long in relation to the 

response time of the distillation system. The bulk of the filter cycle time was found to 

be taken up by program overlay, which was necessary within every interval due to 

computer memory limitations, the integration of the state at the prediction step using 

the nonlinear model of the column, and the computation of the error covariance and 

transition matrices, E_(k,k) and <P(k+ 1,k). Consequently, Shaffii proposed the 

simplification of the filter algorithm in order to enable on-line application of the EAFF 

scheme. He suggested the use of a constant state transition matrix, constant gain and 

reduction of the filter order. 

The approach to implementing adaptive control can also been applied to indirect 

control of the controlled variable. Guilandoust et al. (41) have presented two adaptive 

estimators for estimating the bottom product composition of a binary distillation 

column which is subject to long time delays. The estimators use a secondary output, 
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tray temperature, to produce estimates of the controlled output (product composition), 

and where derived using different approaches. One approach assumes the plant is 

model in state variable form and the other uses input - output model, both of discrete 

formulation. Guilandoust et al. found that the two approaches resulted in estimators 

with similar structure, after some valid simplifying assumptions were made. The 

estimators made it possible to perform control at a faster rate than the rate the product 

composition measurements were available. 

The estimators are simple to design and require moderate computing effort when 

compared with estimators such as those based on Kalman filtering. A disadvantage in 

one of the approaches, the one based on input-output model, is that the number of 

parameters to be estimated increase as the time delay increase so that the tuning in 

period of the estimator may be long. Guilandoust et al. claim that for a delay of up to 6 

sampling intervals the tuning period increases only slightly; these were from simulation 

exercises which were unreported. They demonstrated that the estimators can be 

combined with adaptive or non-adaptive feedback control algorithm. The estimators 

were found to be insensitive to the selection of the secondary variables and can cope 

well with time varying behaviour of the process. 

2.11 Chapter Conclusion 

This chapter has given a review on some recently developed methods that are 

useful in the design, analysis and applications of control systems to process systems. 

A review of some advanced control design methods was carried out together with their 

applications with chemical engineering systems. 
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CHAPTER THREE 

Restatement of The Problem 

3.1 Introduction 

In the introductory chapter the primary objective of this research work was 

described. It is to apply three advanced control methods to a pilot scale binary distillation 

column using a microcomputer for direct digital control. A detailed description of the 

actual issues that have been addressed in this work are given in this chapter. 

3.2 The approach to the research 

As discussed in Chapter 1, there is evidence in the literature that there has been a 

wide gap between advanced control theory and its application in the chemical and 

petrochemical industries. There are a wide variety of advanced controller design methods 

which have had limited applications on practical chemical engineering systems. 

Computer simulations have been frequently used to demonstrate the advantages of 

advanced control methods over conventional methods. This has provided the evidence 

for the benefits of the application of advanced design methods on chemical processes. 

Therefore, at the outset the aim of this research work was not to develop new control 

algorithms, but rather, to select some design methods already available in the literature 

and attempt to evaluate their performances on a pilot scale distillation column. 

The advanced controller design methods that were selected for investigation in this 

work are (1) the Disturbance Rejection and Decoupling Control approach based on the 

work of Falb and Wolovich (179) (2) the Estimator Aided Feedforward (EAFF) control 

scheme of Daie (26) and (3) the Self Tuning Controller design method of Clarke and 

Gawthrop (157). These have been treated in detail in the previous chapter. These 

methods result in conu·ol policies that are very different and they addressed different 

control problems. The Disturbance Rejection and Decoupling Control design method 

addresses the problem of interaction in the multi variable controller design, the EAFF 
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operates in situations measurements of the controlled variables are not available, and the 

self-tuning controller adapt the controller parameters to compensate for changes in 

process conditions or the environment. The methods were chosen to cover a reasonably 

broad class of advanced controller design methods. The PI, given in Appendix A.2.2.1, 

was used as the reference which the performance of the methods were assessed 

The existence of the mathematical proofs that underlie the selected design methods 

has also been discussed. An understanding of the philosophies behind the approaches 

and the synthesis of the control policies has also been given. From the point of view of 

Doyle & Morari (213) and Morari (150), a control engineer in industry requires 

controller synthesis procedures rather than extended analysis of the control schemes; the 

existence of mathematical proofs of the various control schemes is more important than 

the detail. 

The importance of distillation columns in the chemical industry and their 

characteristics which make them good examples for illustrating advanced control 

schemes, were given in the introductory chapter. It was mentioned that they possess 

process control problems that are typical of those frequently encountered on chemical 

plant. The goal in this work is to compare the performances of the selected control 

schemes on the distillation column, particularly as regards the stability and robustness of 

their respective closed loop systems, since these are basic requirements of any control 

scheme. To achieve this goal feasibility studies were necessary, and this was performed 

by computer simulation. This required reliable process models to enable meaningful 

simulations to be carried out. Thus, after the building and instrumentation of the 

distillation column, the first major task was to seek a model that described the dynamic 

behaviour of the column. The model was required to be good enough so that the 

decision to proceed with on-line application of any of the control schemes could be 

based on the performance of the control scheme on the model. 

In summary, the general approach taken to achieve the objectives of this work is as 

follows; 

I) Formulate the mathematical model of the column 

2) Check the model with experimental data. 
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3) For each controller design method; 

a) Design the controller 

b) Test controller by computer simulation using the model 

c) Decide if the controller is viable for on line application 

d) Formulate the real-time version of the control policy 

e) Apply the control scheme to the column. 

f) Compare the performance with that of conventional PI control 

3.3 The issues addressed 

A number of issues where considered worthwhile to investigate after the review of 

the literature was carried out. These are discussed in this section. 

3.3.1 The Decoupling and Disturbance Rejection Control scheme 

The Disturbance Rejection and Decoupling Control design method is a typical 

example of the multivariable control design methods that have been developed by 

workers in other fields of engineering than chemical engineering. The applications of the 

approach by Takamatsu & Kawachi (129) and Shimizu & Matsubara (113, 114) to 

chemical engineering systems such as distillation columns were reviewed in Section 

2.6.4. These workers focussed on the disturbance rejection capability of the control 

scheme and did not examine feedforward compensation and the setpoint tracking 

capabilities of the control scheme. In this work attention is focussed on the setpoint 

tracking ability of the controller, since servo control properties of any control scheme are 

of importance as any controller which cannot track setpoint changes lacks necessary 

flexibility. To recap on Section 2.6.2 , the decoupling control scheme is given as 

u = Fx + Gw 

for the system described in state variable form 

dx/dt = Ax+Bu+Dzd 

y = Cx 
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where x, Y, u, w, and zd are the state, output, control input, setpoint and load 

diSturbance vectors. The A, B, D and C are the state, input , disturbance and output 

matrices. The F and G are the controller matrices. 

From the articles of Takamatsu & Kawachi (129), Shimizu & Matsubara (113, 114) 

it could easily be presumed that the value of K* = I is a suitable choice in the 

relationship 

G = (B*f 1K* 3.4 

given in Chapter 2, Equation 2.49. In fact, Takamatsu and Kawachi (129) did not 

introduce this K* term into the above relationship, implicitly assuming K* = I. This is 

probably because they did not examine setpoint tracking, but their presentation suggests 

that the choice of K* is not crucial to the controller performance. For load disturbance 

rejection only, the precompensator, G, will not have any effect on the disturbance 

rejection capabilities, since if the setpoint is constant the output from the compensator 

will be zero. Shimizu and Matsubara (113) also assumed K* =Ito compute the 

precompensator, but did not study the setpoint tracking case. There are no guidelines 

available from these authors for choosing K*. 

A problem addressed in this work is to examine the importance if K* to setpoint 

tracking, and to establish how to choose its diagonal elements. In order to do this, the 

setpoint tracking properties of the decoupling control scheme have been investigated. 

3.3.2 The Kalman Filtering studies 

Section 2.10 dealt with the EAFF control scheme developed by Daie (26) for the 

dual composition control of a distillation column. They can also be applied to SISO or 

MIMO systems where only measurements of secondary variables are available for 

control, or where the measurements of the controlled variables are subject to very long 

time delays and the control is required to be done at a faster sampling rate. Attempts by 

Shaffii (115) to apply the method on-line were unsuccessful. The major obstacle to real 

time application was the excessive computational load of the filter. He consequently 

proposed the simplification of the extended Kalman filter that functions as the estimator 

in the EAFF. 
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In this work a simplification of the filter is aimed at reducing the computational load 

and execution times of the filter algorithm to acceptable levels so as enable real time 

application of the EAFF scheme. A linear model of the column is used as the filter 

model, as opposed to a comprehensive non-linear model of the column as used by Daie 

(26) and Shaffii (115). The filter algorithm must perform satisfactorily for on-line 

application to be feasible. Criteria such as stability of the estimates produced and the 

stability of the filter itself must be satisfied for the real time application of the EAFF to be 

feasible. Such evaluations are best done by simulation and by off-line analysis using real 

process data. In this work, off-line analysis with experimental data were used to evaluate 

the perfom1ance of the filter. 

3.3.3 The Self Tuning Controller design method 

The literature review discussed and highlighted that there is interest in the robustness 

of control systems to model errors such as input uncertainties, instrument failure, 

constraints in the manipulated variable and errors in model parameters. These impose 

limitations on the perfom1ance of any control scheme. Many investigators have written 

that the robustness of self tuning control algorithms is good, but reports of on-line 

operation of these control systems under severe conditions of uncertainties are limited in 

the literature. Thus, investigations in this work were aimed at demonstrating the 

operation of self tuning controllers under such environment by suitable experiment. 

The Parameter Correction (PC) method 

As discussed in Section 2.9.8, Ossman and Kamen (94) suggested a method to 

provide good parameter estimates of the adaptively controlled system in the absence of 

persistent excitation. The method forces the parameter estimates into their admissible 

ranges that are specified by the user. The implication is therefore that the proper ranges 

of all the system parameters need to be known a priori . . 

However, Ossman and Kamen suggested the method could be applicable in 

situations where only the bounds of some of the parameters are known, but they noted 

that, in such cases, the stability of the system cannot be guaranteed for all the possible 
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system parameters. The implication of this is that it may be possible to apply the method 

to force only some of the parameters to their correct ranges and still retain good robust 

controller performance. If this can be achieved, the advantage would be significant to 

cases where the estimates of some key parameters are bad and cause poor controller 

performance. In this work was, this possibility has been investigated. 

3.4 Chapter Conclusion 

This chapter has given, in more detail, the fom1ulation of the goals of this work. The 

major part of the remainder of this thesis describes the various work done in achieving 

these goals. In the next chapter the pilot plant distillation column and inte1facing with the 

microcomputer is described. 
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CHAPTER FOUR 

The pilot plant distillation column and the interface to the System96 

microcomputer 

4.1 Introduction 

The experimental equipment used in this work is a pilot plant distillation column. 

This column has been interfaced to a real time multitasking microcomputer called 

Systern96 for the purpose of data acquisition and process control studies. The interface 

box is a separate unit called the Monolog and it houses the analog to digital, signal 

conditioning and digital to analog converter modules. The distillation column, its 

instrumentation and the computer are described in this chapter. 

4.2 The pilot scale distillation column 

The original distillation column was donated to the Department of Chemical 

Engineering at the University of Aston by IBM UK Limited. It has been used in a 

number of research projects including Daie (26) and Shaffii (115). A schematic diagram 

of the arrangement used by these two workers is given in Figure 4.1. 

The column is a 3 inch general purpose glass column with 10 sieve plates of which 

the enriching section has 6 trays and the the stripping section has 4 trays. The 

characteristic dimensions of a tray are shown on Table 4.1, and a schematic diagram of 

it is shown on Figure 4.2. Each tray has a thermocouple well into which a 

thermocouple can be placed in order to measure the temperature of the vapour above the 

liquid held on the tray. Two cylindrical feed tanks each with a capacity of 30 litres are 

situated at a height above the feed entry point into the column and two product tanks are 

available for the top and bottoms products of the column. 
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Figure 4.2 Schematic diagram of a sieve tray of the column 

Table 4.1 Dimensions of a Tray, in metres (m) 

Diameter of tray, dt 0.0762 

Diameter of Downcomer, dd 0.0105 

Tray thickness 0.0002 

Diameter of perforations 0.00011 

Number of perforations per tray 145 holes per tray 

Weir height 0.0003 

Tray spacing 0.08 

Four 60W Stuart Turner centrifugal pumps are available for delivery of the feed into the 

column, top and bottom products into the product tanks, delivery of the reflux back to 

the column and the recycle of the product tanks back to the feed storage tanks to enable 

continuous operation of the column. A 3 inch standard condenser is arranged to 

condense the vapour from the top of the column into a 3 inch glass reflux drum 

connected directly below it. This condenser-reflux drum arrangement is connected to 

the top of the column by a 3 inch glass column called the vapour line. A heat exchanger 

is available to cool down the bottoms product before it passes to the delivery pump and 

the corresponding control valve. 
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.;f .2.1 The operational problems of the original distillation column arrangement and the 

modifications made in the design 

The original arrangement of the column, as schematically shown in Figure 4.1, had 

many operational problems which meant that it was difficult to obtain useful results. 

These problems and their sources were discussed by Daie (26) and are summarised 

below. 

The reboiler arrangement consisted of a large spherical tank mounted on a 2.4 KW 

double circuit isomantle heater as shown in Figure 4.3. 

During operation of the column, the liquid hold up in this reboiler drum was usually 

about 10 litres which was much larger than the tot,tl liquid hold up on all the trays. This 

meant that large quantities of liquid were held inside the column during operation. The 

heater was also underpowered. Even at maximum setting this reboiler arrangement 

could barely produce vapour boilup rate was quite low. It was therefore difficult to 

perform reasonable dynamic and control studies on the column. The large reboikr 

liquid holdup swamped the variations in the vapour temperatures on the trays, 

particularly those in the stripping section, to changes in heat input. 

Spherical Tank 

Isomamlc Heater 

Figure 4.3 The re boiler drum on the isomantle heater 

The piping around the column was made of 1/2 inch stainless steel pipes of 16 gauge 

(SWG). This made transportation lags around the column significant as the column 

required flow rates of about the range of 1 to 15 litres per hour for operation. Accurate 

and reproducible flow measurements were difficult as orifice plate type flowrneters 

were used; errors as large as 3.0 1/hr could occur. The flow control valves suffered 

from electrical and mechanical faults. Furthermore, tray temperature measurements 
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were not very accurate. Daie could only obtain them to the accuracy of 0.1 °C, and even 

then lengthy calibrations and modifications of the temperature measurement device were 

necessary. 

The vapour line was 2 metres long and was unlagged. This long vapour line, the 

large reboiler liquid hold up and the underpowered heater, caused very little vapour to be 

condensed in the reflux drum. The range of flow of reflux that could be used for control 

was therefore limited. Gravity flow of reflux was also used and this added difficulties 

in reflux flow measurement and control implementation. 

The consequence of all these was that no experimental studies on the control of the 

distillation column could be done by both Daie (26) and Shaffii (115). The few open 

loop feed flow step response tests that were managed by Daie were just adequate to be 

used for dynamic model verifications. 

Since it was the objective of this research work to apply advanced control schemes to 

the distillation column it became necessary to improve on its design and 

instrumentation. The following modifications were made; 

1. New digital to pneumatic flow control valves were purchased to replace the old 

ones 

2. The vapour line from the top to the condenser was reduced to 1 m in length 

and it was lagged in order to reduce the extra reflux condensing in the vapour 

line 

3.The reflux is pumped back into the column rather than allowing gravity flow. 

The distillate line is also connected to the reflux line 

4.Where appropriate, 1/4 inch 16 gauge stainless steel pipes were used for the 

piping system around the column 

5. Nickel- Chromium & Aluminium thermocouples with accuracy of up to 0.0 I 

°C were used for temperature measurement 

6. Low cost turbine flowmeters were used for liquid flow measurement 

7. A new reboiler arrangement, a thermosyphon type arrangement, which uses a 

firerod catridge heater for heating the liquid in the reboiler drum, was designed 

by Fuller (182). The nominal holdup of the reboiler drum during operation of 
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the column is about 1.5 litres. A dia,gram of the reboiler is shown in Figure 

4.4. and Table 4.2 gives the dimensions of the parts. A diagram of the heater 

is shown in Figure 4.5. 

A diagram of the new distillation column arrangement is shown in Figure 4.6 and 

Table 4.3 gives the column dimensions. Plate 1 shows the actual column. 
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Figure 4.4 The thermosyphon reboiler arrangement 
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Figure 4.5 The fir;erod cat.ridge heater 
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Table 4.2 Dimensions of the thern1osyphon reboil er parts 

Material of construction is stainless steel 

Part 

A 380 mm long pipe 31/4 11 OD 10 SWG 

B 440 mm long pipe 11/8 "(** 2 11
) OD 16 SWG 

C 185 mm long pipe 1/411 (** 3/8 11
) OD 16 SWG 

D 150 mm long pipe 1/211 OD 16SWG 

E 460 mm ling pipe 3/4 11 (**5/8 11
) OD 16 SWG 

F 100mm long pipe 1/411 OD 16 SWG plugged at one end (them1ocouple well) 

G Flange 1/4 11 thick plate 190 mm diameter 

H 75mm long pipe 3/8 " OD 16SWG 

Dp Differential pressure transducer 

FR Firerod heater 

GC Bottom end of Column 

** Denotes the dimensions of the reboiler that was eventually used in this work 

Table 4.3 Column Dimensions 

Dimensions in metres, m 

Column diameter (OD) 0.07G2 

Length of Enriching section 0.65 

Length of Stripping section 0.55 

Diameter of reflux drum 0.0762 

Diameter of reboil er drum 0.0762 

Length of vapour line 1.0 

Number of trays in the enriching section 6 trays 

Number of trays in the stripping section 4 trays 

Product tank capacities 50 litres 
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4.3 Instrumentation of the column 

4.3.J Flow measurement 

The feed, reflux, distillate and bottoms flowrates required for the operation of the 

column range from 1 to 15 1/hr. For accurate and precise measurement of these low 

flow rates special turbine flowmeters were required.The cost of measuring all the flows 

with such flowmeters was considerable.The turbine flowrneters that were used were of 

simple design and much cheaper. They were supplied by RS Components Ltd. The 

body and the rotor of the flowmeter are made of acetal rubber. The rotor of the meter is 

fi rted with 3 stainless shaft ceramic magnets. The metering principle is velocity 

counting. The output of the flowmeter is electrical pulses of which the frequency is 

linear to flowrate. 

For compatibility with the data acquisition hardware, or more precisely, the analog 

to digital (A/D) converter, the output frequency is convened to voltage in the range 0-5 

volts by a frequency to voltage converter. The accessories for this converter were also 

supplied by RS Components and was assembled in the departmental workshop. Figure 

4.7 shows a simplified schematic diagram of the flowmeter. 

The manufacturers specified that the reproductivity of of the flowmeter is about 

±I% of the maximum flow which was specified as 100 1/hr. This meant that the 

flowmeters were always operating at the lower end of the flow range were the precision 

is very low, hence, high uncertainties in the flow measurements were more likely. 

Furthermore, the flowmeters are appropriate for monitoring mild and noncorrosive 

liquids such as water. The liquid mixture used in the column is a binary mixture of 

trichloroethylene and tetrachloroethylene. The suppliers of the flowmeters provided a 

chart showing the effects of various chemicals on the acetal rubber that the flowmeters 

are made from. The chart showed that this material has fo11ited resistance to 

trichloroethylene. For a 1 mm thick piece of acetal rubber completely immersed in the 

liquid for 30 days at temperatures of 20-60 °C, trichlorethylene increased the weight by 

9% and reduced the tensile strength by 30%. Thus, during preliminary experiments the 

flowmeters were found to have a short operating life sometimes as short as eight 1 hr 
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experiments. The operating life of a flowmeter was even shorter when it was used to 

monitor the reflux, bottoms and distillate flows, since these streams were warm. 

Liquid Flow 

Magnetic Shafts 

Frequency to 
Voltage 
Converter 

AID Board 

Figure 4.7 Schematic of the turbine flowmeter used on the Column 

Monlog 

The small internal area of the meter meant that liquid flow through it was easily blocked 

by small dirt that entered the piping system around the column. 

4.3.2 The control valves 

The new control valves for automatic control of flowrates are miniature air-operated 

valves supplied by Platon Flowbits Limited. The valves are suitable for automatic 

control of liquids, gases and steam in 1/4" and 1/2" pipes. Each control valve has an 

associated unit which is a digital to pneumatic converter as shown on Plate 2. These 

converters accept 8 or 10 bit binary numbers to produce a proportional output in 



pressure ranges of up to 120 psi (8 bar). The low pressure version of the converters 

using a range of 15 psi (1 bar) was used in this work. 

The converters are actually current to pneumatic converters with the current range of 

4 - 20 mA. It was thus necessary to construct digital to current converters for each, to 

enable the direct manipulation of the valves by the computer. These digital to current 

converters are 8 bit converters as the data line from the interface box to the digital to 

current converters is an 8 bit parallel line which is called the versatile interface adapter 

(VIA). A schematic of the interface from computer to control valve is depicted in Figure 

4.8. 

-----Sbit 

8bit VIA Buffer 

( From Monolog) 

Computer control 

- Manual contrr,1-_..__ 

8 bit 

Thumblewheel edge 
switch 
Hex lo Binary 

8 bit 
Buffer 

8 bit 

Digital/Analo Volts 
4-20mA 

Volt/Curent 
converter 

Current to Pneumatic 
converter 

Figure 4.8 Circuit description of the interface between the control valve and the 

computer 

The valves can be manipulated by sending a digital signal, integer number in the 

range 0 - 255, from the computer to the digital to current converter which converts the 

signal to a current in the range 4-20mA. This current is converted to pressure signal in 

the range of 3-15 psig to adjust the valve stem position accordingly. The valves can also 

be operated manually by depressing a switch for each valve on the panel shown on 

Plate 3. 

The valves reqmre an air supply of 20 ps1g to operate satisfactorily. The 

departmental compressed air supply is at a much higher pressure so that a pressure 

reo-ulator is installed to reduced the pressure to 20 psig for the operation of the valves. 
b 
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Each of the centrifugal pumps could deliver in excess of 140 1/hr of liquid across 

nominal heads of 2 to 3 meters. As the required flowrates for column operation are 

much lower than this, by-passes had to be made around each pump as shown 

schematically in Figure 4.6. This was done in order to prevent buildup of pressure in 

the upstream side of the valve and to reduced mechanical strain on the pump. 

4.3.3 Valve calibration results 

Benchmark calibration of the control valves on installation the experimental column 

was performed. The calibrations were done in two ways; 1) by the bucket and stop­

watch method were the time required to deliver 2 litres of liquid was measured, and 2) 

by the turbine flow meters. The by-passes of the respective pumps where made fully 

open during calibrations. The calibrations were done with water at room temperature 

and the with 50/50 % w/w trichloroethylene/ tetrachloroethylene (T/T) mixture. The 

results could then be correlated with fractional opening of the valve using the least 

squares fit method given in Adby and Dempster (167). However, standard programs 

that correlate data were available on the graphical package used to draw the graphs. 

Figures 4.9a to 4.9f shows typical plots of flow with fractional valve openings for 

each control valve. 
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(a) Water at room temperature, flowmeter readings 
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(b) Water at room temperature, flowmeter readings 

( R= correlation coefficient, x= fractional opening) 

Figure 4.9 a) and b) Control valve characteristics 
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Bottoms product valve y = - 2.9774 + 28.138x R = 0.9989 
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(c) Water at room temperature, flowmeter readings 
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(d) Water at room temperature, BS- Bucket and Stop watch method, 
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Figure 4.9 c) and d) Control valve characteristics (Continued) 
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(e) Trichloroethylene and Tetrachloroethylene (T/f) at room temperature 
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(f) Trichloroethylene and Tetrachloroethylene at about 50 ·c 

( R= correlation coefficient, x= fractional opening) 

Figure 4.9 e) and f) Control valve characteristics 
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4.3 4 The thermosyphon reix>iler arrangements and operation of the heater 

A stainless steel thermosyphon reboiler arrangement which uses a 1/2 inch diameter 

8 inches long 2.0 KW firerod heater was designed by Fuller (182). The schematic is on 

Figure 4. 4. The firerod heater (Figure 4.5) is located inside the tube E of the heated 

arm B. The liquid that is heated up is in the annular space between E and B. The 

vapour rises and exits through the pipe D into the column. The liquid level must be 

maintained above X to ensure the heated portion of tube E is always immersed in 

liquid. The liquid level must also be maintained below Y to prevent blockage the entry 

of vapour into the column. During column operation, the nominal liquid holdup 

capacity is about 1.5 litres, and only the maximum of about 0.5 litres of this holdup is 

heated up in the annular space in the heated arm. 

Special electrical accessories such as a transformer, a solid state switch and a digital 

control timer were needed to operate the firerod heater manually and by computer 

signals. The heater operates in cycles with periods of Th seconds; where Th is 4 

seconds. At full value of computer signal, which is 255, the voltage supply to the heater 

will be on for the full Th seconds. It instantaneously switches off and on to start 

another period of length Th ; this operation is carried out by the digital control timer and 

the solid state switch. The voltage supply to the heater is on for a period of time which 

is proportional to the computer signal ( integer signal O - 255). A schematic of the 

operation is depicted below for computer signal 128. 

I 2Kwj off I 2KWI off I 2KWI off I 2KWI off I 2KWI off [ 

0 Th 2Th 3Th 4Th STh 

Figure 4.10 Diagram representing how the heater works 
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Figure 4.11 Circuit description of the interface of a control valve to the computer 

The new reboiler arrangement significantly changed the dynamic behaviour of the 

column, particularly to heat input changes, compared to the old arrangement shown in 

Figure 4.2 . As the heated liquid is only a small proportion of the total liquid holdup 

and the vapour enters directly into the column, the effects of changes in heat input on 

the tray temperatures were much greater and felt more quickly . 

The thermosyphon reboiler arrangement still posed some problems. The first 

problem encountered was with the original design made by Fuller (182). It was found 

that the heated arm of the reboiler, B, was easily starved of liquid because the pipe C, 

see Figure 4.4, was of small inside diameter (1/4 inch OD 16 SWG). In fact, heater 

"bum out" resulted and when this happened the heater becomes grossly underpowered 

or completely loses power. This made it necessary to replace C with a pipe of 3/8 inch 

OD 16SWG pipe to ensure B is never starved of liquid. 

Secondly, the firerod heater required a tight fit with the tube E to reduce the risk of 

bum outs. This tight fit could not be guaranteed due to expansion and contraction 

resulting from cooling and heating of the annular tube E and the heater body itself. In 

fact, on the first occasion after a burnt out occurred, the heater had to be forced out of 

the tube E to allow a new one to be inserted. It was then decided to replace the heated 

arm of the reboiler with a new one of the same design but different dimensions. The 

modified design has E with 5/8 inch OD 16SWG pipe and B of 2 inch OD 16 SWG 
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pipe. With all these minor modifications the operation of the reboiler became more 

reliable. 

With the reboiler arrangement installed, the actual heat supplied to the liquid in the 

reboiler was required, since for control and model verification purposes reasonably 

accurate knowledge of the actual heat into the column is needed. It became necessary to 

calibrate the heat input with the computer signal on installation, similar to the 

calibrations of flowrate with fractional valve opening. The method of calibration used 

was to measure the time taken for a known mass of the liquid (pure trichloroethylene or 

tetrachloroethylene) in the heated arm of the reboiler to reach boiling point from a 

known initial temperature. A thermocouple located in the well denoted Fon Figure 4. 

gave the temperature of the vapour coming out of the heated arm. These were logged by 

the computer and stored in floppy disks. There where several disadvantages to this 

method. In the first place the shortest sampling interval that could be used was 10 

seconds, as the data logging program required 6 seconds to retrieve data and the other 4 

seconds was allowed for purposes of data logging. This meant that errors of up to 10 

seconds could be in the measured time, particularly since it was necessary to wait for at 

least one sample interval to ensure the vapour temperature is reasonably constant. Since 

the amount of liquid heated up is small, boiling was usually reached within two 

sampling periods such that an error of even one second in the measurement time is 

significant. A typical example for Trichloroethylene (MVC) is shown in Table 4.4 

It was decided to assume that the heat input is proportional to the computer signal 

and thus linear to the fraction of the period Th that the heater is on. The validity of the 

linearity assumption was checked in the model of the distillation column. This 

assumption of linearity is a very rough approximation for many reasons including the 

following; (1) the expansion contraction of the heater body, (2) cooling of the heater 

during the off-periods, (3) the fact of the tight fit between the heater body and the inside 

of the annulus it is placed and (4) heat losses and heat transfer from the heater into the 

tube. Thus, means should be sought for better calibration of the heater. 
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Table 4 4 Results of he':tter rb ,, 
' ea 1 ra ions. 

Integer signal Mass of Liquid (g) Temperature rise Sample intervals 

0- 255 (MVC) ( ±%5) ( ±1) (10 seconds per 

sample) 

64 304 66 5 

128 304 65 3 

192 304 66 2 

255 304 64 2 

4.3.S Temperature measurement 

Nickel-Chromium Aluminium thermocouples were used for temperature 

measurement. They were supplied by RS Components Ltd. No calibrations were 

necessary as they can be connected directly to the signal conditioners that precede the 

AID converters and provide the measurements in the units required by the user. 

Accuracy of 0.01 °C were obtained in the temperature measurements. 

4.3.6 Liquid level measurement 

Two air differential pressure transducers were used to monitor the liquid level in the 

reboiler and reflux drums. The transducer measures the pressure difference between 

two points on the vertically mounted drums. This pressure difference is proportional to 

the liquid level in the drum. Each output of the transducer is a voltage which is further 

converted by the AID converter for compatibility with the computer. The relationship 

between the voltage reading and the level is linear. The range of voltage readings is 0-5 

volts for 0-20 inches of water (gauge pressure). This is equivalent to 0-13.3 inches of 

T/T mixture assuming relative density of 1.5. 
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4.4 The System96 microcomputer 

The computer used in this work for real-time process control studies is a System96 

Level II microcomputer from Measurement Systems Limited. 1t is a 6809 8 bit 

microprocessor based computer with dual disk drives, and it operates at the speed of 2 

Mhz. The System96 supports a real-time multitasking operating system called OS9. 

OS9 is modeled after the UNIX operating system of Bell Laboratories. At present the 

the computer has the random access memory (RAM) capacity of 256K expandable in 

units of 128K. The disks drives use double sided double density 5 1/2 inch floppy 

disks with memory capacity of 720K. 

Since OS9 is multitasking, several programs, or tasks, can be run concurrently, but 

the memory requirements of each task has a limit of 64K. One important feature of OS9 

is that software, both user written and system software, is re-entrant and position 

independent. This means that only one copy of all the necessary modules needs to be in 

the computer memory at one time, although there may be more than one user, or 

program, accessing any of the modules. This reduces the overall memory requirements 

of software. 

The central processing unit (CPU) of the computer is interrupted by a hardware real 

rime clock which generates interrupts at regular intervals of about 10 per second; this 

time unit is called a tick. At the occurrence of a tick of the real time clock, the OS9 can 

suspend the execution of a program and start the execution of another. Programs can be 

assigned priority and the time slice that a program gets depends on its assigned relative 

priority to other processes and events occurring in the system. The processes can be 

classified into three categories : 

a) Active processes are those which have useful useful work to do and each is 

allocated CPU time ( time slice) 

b) Waiting processes are suspended pending the occurrence of some event 

c) Sleeping processes are suspended by a self request for specific time interval. 

Waiting and sleeping processes are not allocated CPU time until they are activated by 

some signal or event. 
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The command interpreter of the computer is called the Shell. The Shell is not part of 

OS9, but is the interface between the user and the "kernel" of the computer. The Shell 

has optional facilities to modify program execution. These facilities include input and 

output redirection, sequential and concurrent execution and "pipes". Pipes are 

connections between two programs. The standard output of one is the connected to the 

standard input of the other, rather than to files or input/output devices. These "pipes" 

can be used to transfer data from process to process in one direction only. This is from 

the source, which sends the data, to the sink which receives the data. The transfer of 

data is synchronised so that the output of the source never gets ahead of the input of 

the sink. This can result in delays, for example, if source does not send data as fast as 

the sink requires the data for its operations. When delay of 20 seconds or more occur 

then programming error con-esponding to no input data results. 

4.4.1 The Unified Input I Output system of the System96 

The unified input/output (I/0) system means that all devices (visual display unit, 

printer, disk drives etc.) connected to System96 are regarded as files, so that hardware 

dependencies are eliminated using software routines. The structural organisation of I/0 

related systems on the System96 is shown schematically on Figure 4.12. 

The input output manager (!OMAN) module provides the first level of service for 

the I/0 system calls by routing data on I/0 paths from processes to or from the 

appropriate managers or device drivers such as the asynchronous interface adapter 

(ACIA), parallel interface adapter (PIA) and the disk driver. 

The function of a file manager is to process data stream to or from device drivers for 

similar class of device. The two file managers in the system are the random block file 

manager (RBFMAN) and the sequential character file manager (SCFMAN) and both are 

re-entrant program modules. The RBFMAN operates random access block structured 

devices such as the disk system. The SCFMAN operates single character oriented 

devices such as the visual display unit and printers. 

The device driver modules (PIA, ACIA, Disk Drivers, SLAVE) are subroutine 

packages that perform basic low-level input and output data transfer to or from a 
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specific type of device hardware controller. The modules are re-entrant. The device 

descriptor modules (DO, Dl, Tl, T2, /MO) are small non-executable modules which 

provide information that associates a specific I/O device with its logical name, hardware 

controller addresses, device driver name, file managers and initialisation parameters. An 

example of a device descriptor module is given in Appendix A 7. 

The unified I/O structure of System96 offers several advantages : 

1) Programs run correctly regardless of the I/O device used when the program is 

executed 

2) Inputs and outputs can be redirected to alternate files and devices at run time. 

3) The same system calls used for physical I/O functions can be used for 

interprocess communications. 
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Figure 4.12 Structural organisation of Input/ Output related modules of the System96 
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-t:t2 The Basic09 programming language 

The System96 supports a high level programming language called Basic09 which is 

claimed by the the manual (29) to have strong resemblance to Pascal. Important features 

of Basic09 include; 

1. Procedure, or subroutine, calls by names and parameters. The subroutines can 

have local variables. 

2. Optional line numbers 

3. Data types include bytes, integers, real, boolean, strings as well as complex 

data types which are combinations of the former types 

4. One, two and three dimensional arrays 

5. Control structures such as If .. then .. Else; For ... Next; Repea.t...Until; 

Loop ... Endloop; Do .. Until; 

6. The "Pack" command produces shorter and more efficient programs 

7. Access to the any capability of OS9 using the Shell command 

8. Programs written in assembler language can be accessed from any Ilasic09 

program 

9. Recursive programs can be executed; that is a program can repeatedly call itself 

10. Error trapping is efficient 

Unlike the original Basic, Basic09 does not have the facility for specifying global 

variables. Unlike Fortran77, Basic09 does not have the facility of common blocks 

system of variables. Also array sizes of arguments must be explicitly specified and 

cannot be changed during execution. For fuller details about the Systern96 and Basic09 

consult the user manual (29). 

The Plotl0 graphics package (28) has been converted to Basic09 from Fortran IV in 

the Department of Chemical Engineering at the University of Aston in Binningham. 

4.5 The interface of the Distillation Column and the System96 

To acquire real process data and control the column by computer control, a data 

acquisition unit called a Monolog was installed to interface the column and the 

System96. The Monolog provides the host computer, System 96, with analogue and 
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digital input/output facilities. The Monolog is a separate processing unit as shown on 

Plate 3. It houses the Analog to digital (A/D) converters, Digital to Analog (D/A) 

converters, signal conditioners, and digital input/output cards. It is driven entirely by 

the host computer and can be remotely located from both the host computer and the 

distillation column. The host computer sends commands to the Monolog to set or read 

analog or digital signals. The communication is conducted in decimal ASCII characters 

which can be processed by any general purpose computer. 

More than one Monolog can be connected to the System96. This facilitates the use of 

System96 for hierarchical and supervisory control of several processes remotely located 

from each other and from the System 96. 

At present, the Monolog unit consists of the following; 

1. One 10 lOE AID converter card which can handle up to 256 input channels 

with 12 or 16 bit resolution; 

2. Two 1020E signal conditioning cards, each with a capability of handling 8 

input channels with the aid of in-built multiplexers. More AID channels can be 

used by adding extra signal conditioning cards. 

3. One RMlO00E single board computer (SBC) card which has a 16K 

programmable read only memory (PROM) in which the Monolog program 

resides. The board also has a 2K read/write memory (RAM), one 8 bit digital 

input port and one 8 bit digital output port 

4. One digital input /output board, which is a general purpose input/output card 

called RM5223 General Purpose Interface (GPIF) parallel interface board. 

This card has prefixed addresses so that it can be configured as either an input 

or output card according to the user requirements. Upto 15 digital input/output 

ports can be supported by adding extra GPIF boards. 

5. One RS232 interface board called RM545 l board, through which the Monolog 

is connected to the System96. This board is software initialised and the 

standard baud rate fixed as 300 characters per second in the PROM of the SBC 

The Monolog is connected to the control valves and the heater of the column by a 8 

bit parallel interface, VIA, from the GPIF board through the respective logic unit cards 
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that activate the control valves and the heater. These cards are housed inside the panel 

next to the column as shown in Plate 3, and a schematic diagram of the cards have been 

given in Figures 4.8 and 4.11 for the valves and heater respectively. Switches to 

manually activate the valves and the heater are placed on this panel as well. 

In this work, the Monolog box was located on this panel which was two floors 

down from the host computer. It was necessary to locate the Monolog unit closer to the 

column since the connection of the column and the Monolog is a parallel line (VIA). 

Data transfer through parallel lines becomes less efficient as the distance the data has to 

travel increase. This is less of a problem in serial interfaces so that the System96 was 

located remotely from the column. 

The functions that can be executed by Monolog include a) read and report analog 

channels once or continuously, b) halt the reading of analog channels, c) read digital 

port, d) set digital port and analog port, e) set data format and f) set up alarm reporting. 

These functions are initiated by commands in the software package in System96. If all 

256 analog channels are in use, they are scanned sequentially from 1 to 256, or from 32 

to 256 and then from 1 to 31 

A variety of sensors can be connected to the signal conditioning cards and the 

readings converted into engineering units, depending on the choice of the user, and 

reported to the host computer. The engineering units that can be obtained include 

temperature in degrees centigrade, de voltage, resistance in micro-ohms, strain gauge 

full bridge in micro strain and de current in microamps. Thermocouples can be 

connected directly to the signal conditioners and several types including Ni-CrAL and 

platinum resistance thermocouples can be used. Fuller details on the functions of the 

Monolog are given in Appendix Al.2. 

4.5.1 The Data Acquisition Software 

The acquisition of data and the implementation of control action is done with the aid 

of software provided by the suppliers of the System96 and Monolog. This software 

package is resident in System96. The package consists of a user interface routine called 
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1\1aster, a device driver called Slave and an OS9 format device descriptor table called 

/MO. The Slave and /MO have been introduced in Section 4.41 and in Figure 4. 12. 

The Sia ve routine handles the physical link into the Monolog and all the line 

protocols necessary to perfom1 functions such as (1) opening and closing physical link 

to the Monolog, send commands to set up the Monolog and receive data from the 

Monolog. The device descriptor table /MO corresponds to the RS232 port on the 

System96 to which the Monolog is connected. The programs are re-entrant and 

position independent which means they can be used by more than one Monolog 

operating independently. Each Monolog must have its own RS232 port on the 

System 96. 

The Master program is the link between the user and the Monolog. The user can 

retrieve process data and send control actions to the column by specifying the 

appropriate functions as parameters to the Master program. The user is notified of any 

errors that occur during communication with the experimental column as well as give 

details of the status of the Monolog, so that Master is also the primary means by which 

the user can interact with the Monolog itself. Fuller details on the various functions of 

the Monolog as well as how to use the Master are provided in Appendix A 1.2 

Since Master was designed to form the sole means of communication of the 

System96 with the "outside world" program developments for on-line application of 

control were required to be done only in Basic09. The user written programs centre 

around the Master program. 

Separate Master calls are needed to acquire data which have different engineering 

units. Therefore, it is convenient to group like channels to nearby channel numbers; that 

is, those analog channels with the same engineering units should be grouped together to 

minimise the number of calls to Master, since the channels are scanned in one direction 

only, as mentioned earlier. At present, 16 analog input channels are in use as given in 

Table 4.5, so that only two signal conditioners are housed in the Monolog box. The 

channels 1 to 8 are used for temperature measurements; channels 9 to 16 are configured 
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for voltage readings. Therefore, only two separate calls of Master were needed each 

time process data was required. 

The digital outputs are sent to the control valves and the firerod heater through two 

GPIF boards each configured as output boards. Two output ports on the GPIF were 

used for sending these signals. Port 7 carries a signal that is used to select the 

instrument to be activated, as given in Table 5.5. Port 6 carries the digital signal 

corresponding to the control signal. An example subprogram that performs this function 

is Valve-Out, and a listing is given in Appendix A 7. 

4.5.2 Program timing for real-time applications 

During real-time experiments measurements and control actions are acquired at 

discrete times. A mechanism that ensure that these actions are done at the correct times 

must be built into the data acquisition software. This is achieved using the real-time 

clock of the computer. For the Monolog, it is specified in the user manual the the delay 

between readings can be set by the user. This refers, however, to the delay between 

each analog to digital conversion cycle and the maximum delay possible is much less 

than one second. This means that measurement and control time intervals of 10 to 30 

seconds (required for the monitoring and control of the column) cannot be set in the 

:Master program. The Delay function in Basic09 can fulfil this requirement by 

temporarily suspending the System96 program execution. However, in this work the 

function of a timer is achieved in a different way without the use of the Delay function. 

Two small Basic09 routines were written. One is called Real-time, which has the 

function of getting the "real time" from the real time clock. The other routine is called 

Delta-t, which continuously compares the time of the previous sampling interval with 

the present one until the time difference is exactly the specified sampling interval. The 

measurements are then taken and control action is effected. Any sampling interval 

greater than 1 second can be selected. These two programs are in Appendix A 7 and 

there computational overheads are very small. 
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4.6 Process operation 

During preliminary operation of the column it was found that the delivery of the 

distillate and the bottoms rate were inconsistent. This, combined with the very small 

distillate and bottoms offtake rates, which were between O - 4 litres per hour, meant that 

reliable flow measurements could not be obtained. In the case of the bottoms, 

considerable back pressure was al ways present and this caused the inconsistencies. All 

these were major obstacles to the effective cona-ol of the reboiler and reflux drum liquid 

level. As a consequence some compromise had to be reached. The distillate flow control 

valve was usually set to an opening to deliver approximately 3 - 4 1/hr of distillate flow. 

This meant that the reflux level was allowed to vary according to the amount of vapour 

condensed in, and liquid removed as reflux from, the reflux drum. The level could vary 

between 1 and 30cm in the reflux drum before liquid can overflow back on to the 

column. The control of the liquid level in the reboiler drum is more important since, as 

explained earlier, the liquid level must be kept between level X and Level Y as shown 

on Figure 4.3. It was decided to employ two position control for reboiler level control 

between a range of 8cm, with 6 cm safe range above level X. 

A significant number of experiments were done to gain experience of the operation 

of the column, particularly as many improvisations were made. The inconsistencies in 

the distillate and bottoms flows and the problems of reflux flowmeter failures made the 

reproduction of experiments difficult; this was one motivating factor in developing a 

good mathematical model of the column. The duration of experiments were limited to 

the maximum of 1 hour, as experience showed that this prolongs the operating life of 

the firerod heater and reduces strain on the pumps. 

4.7 Chapter conclusion 

This chapter has described the experimental equipment and its interfacing with the 

distillation column. Some operational problems of the column have been discussed. The 

next step is the modelling of the column and testing with experimental data. 
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Table 4.5 Tvpical set of measurements taken during on-line applications 

Analog Inputs 

Channel number Measurement 

1 Reflux temperature Tlr 
2 Top tray temperature T 1 
3 Second tray temperature T 2 

4 Feed temperature Tf 
5 Feed tray temperature T7 
6 Ninth tray temperature T 9 
7 Bottom tray temperature T 10 
8 Reboiler drum temperature Tb ( F in figure 4.3 ) 

9 Not used (millivolts) 

10 Reflux drum level pressure transducer (millivolts) 

11 Re boiler drum level pressure transducer (millivolts) 

12 Bottoms flow turbine flow meter (millivolts) 

13 Feed flow turbine flow meter (millivolts) 

14 Distillate flow turbine flow meter (millivolts) 

15 Reflux flow turbine flow meter (millivolts) 

13 Not used (millivolts) 

Digital Outputs 

Output Port Number= 6 

Unit Number Equipment 

(Sent through Port 7) 

1 Bottoms product control valve 

2 Distillate product control valve 

3 Feed flow control valve 

4 Reflux flow control valve 

5 Firerod heater 
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CHAPTER FIVE 

Mathematical modelling of the distillation column and model verification 

S. l Introduction 

Mathematical modelling of the process to be controlled is important to the design 

and analysis of the control systems. Many subsequent decisions can be based on 

results derived from mathematical models of the system such as the type of control 

system to use and modifications that may need to be made on the system design. 

Control systems design implies work with dynamic systems and the first major task 

will be ro build a mathematical model that approxirn:1tes the dynamic behaviour of the 

system. The degree to which the model behaviour represents the real system will 

depend strongly on the validity of the assumptions made in deriving the model. The 

experience and judgement in constructing the model are therefore important to 

adequately describe the dynamics of the system. The intended use of the model will 

influence the required complexity and the assumptions made in deriving it. For 

instance, a model that is required for the design of a conventional feedback control 

system is may not need to be as complicated as a model that is required for system 

optimisation, where optimum operating points of the system are required, and the 

detail testing of the performance of various control systems. For each model a 

suitable solution method must be found. 

For control system design and analysis and the simulation of fairly complex 

processes like distillation, a good mathematical model is necessary that will be valid 

over a wide range of operating conditions of the process. Given a suitable solution 

method such a model can then be used to study the dynamic characteristics for 

various load disturbances at various operating points by computer simulation. 

Different control configurations and alternative c"1: l rol systems can be analysed for all 

the possible setpoint demands and load disturb:i1h., s that could possibly affect the real 

system. It is thus possible to greatly reduce tl1, ,1t11nber of pilot plant experiments 
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necessary to verify the operation of the full scale plant. Potentially, a significant 

reduction of commissioning costs can be obtained. This makes the time and money 

spent on mathematical modelling worthwhile. 

Chemical systems are generally quite difficult to model adequately, because in 

operations several complex phenomena are taking place simultaneously and the 

process parameters can change significantly. Also many chemical processes such as 

chemical reactions are not well understood. Therefore there are usually significant 

errors between a model and the process it represents. Examples of typical 

phenomena common to chemical systems are heat and mass transfer, chemical 

reactions, mass transport, density changes and phase changes. Mathematical and 

empirical relationships describing these phenomena are not always available and, if 

available, they are sometimes associated with error. 

5.1.1 Modelling of tray distillation columns 

The steady state and dynamic modelling of a tray distillation process involves the 

description of mass and energy transfers occurring on an individual tray and stepping 

this up from a single tray to a column with a number of similar trays. Typically the 

equations describe mass and energy balances, equilibrium relationships, efficiency of 

separation and component summation; this is possible case for packed columns and 

absorption columns as well. A comprehensive steady state model of a typical 

distillation column model comprises of nonlinear algebraic equations (AE's) while a 

comprehensive dynamic model comprises of nonlinear differential and algebraic 

equations (DAE's); this is the case for all separation processes as well (Holland and 

Liapis (48)). In the dynamic case, the common approach is to use lumped differential 

equations in order to avoid having to solve partial differential equations. The usual 

assumptions made in deriving the model relate to the tray hydraulics, vapour hold up 

dynamics, equilibrium relationships and efficiency. These assumptions would depend 

mainly on the particular column, its size, the mixture to be distilled and the intended 

application of the model. Sufficient computing power must be available to perfom1 

the calculations. 

177 



ln present times sufficient knowledge about the physical nature of distillation is 

available to enable the development of adequate mathematical models of the process 

(Daie (26)). Many workers have successfully developed dynamic models for 

conventional tray distillation columns which are in reasonably good agreement with 

the actual columns they describe. Such studies include Gunn et al. (36), Stathaki et 

al. (112), Cairns and Furzer (135), Kumar et al. (61) and Kisakurek (62). Numerous 

work on the steady state and dynamic modelling for studying steady state and 

dynamic behaviour of distillation systems have also been carried our. These include 

the works of Kinoshita et al. (45,46) and Takamatsu and Kinoshita (128) on steady 

state modelling; and Rosenbrock (106), Brierly (16), Yue and Billing (138), Schuil 

and Boo] (127), Ranzi et al. (107), Furzer (32), Ohmura et al. (93) and Wahl and 

Harriot (134) on dynamic modelling. 

In the dynamic modelling of process systems, selecting an appropriate solution 

procedure to solve the DAEs is important. This is particularly true if non-linearities 

are pronounced and if the differential equations contain time constants which differ by 

orders of magnitude; that is, the differential equations are stiff. Stiff differential 

equations frequently arise in dynamic models of distillation columns since in most 

tray distillation columns the dynamic response of the liquid composition on a tray is 

usually much slower than the dynamic responses of the vapour holdups, liquid 

holdups and the pressure inside the column. The implication of this is that the 

integration interval must be chosen based on the differential equation with the smallest 

time constant. Stability and convergence problems are likely to arise during solution 

of the equations if the integration interval and solution method are not carefully 

selected. Solution methods such as the Gears method (Gallun and Holland (37), 

Holland and Liapis ( 48)), are available which deal with stiff differential equations and 

where the integration interval can be adjusted automatically. Ogbonda (181) gives a 

comprehensive review of such solution procedures. Sensitivity analysis of the DAEs 

and AEs (Leis and Kramer (120)) of the system can be carried out to aid in the 

selection of the solution procedure. 
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The detailed dynamic modelling of distillation columns generally results in a large 

set of DAEs. Large sets of equations can be difficult to handle and require significant 

computing power for their solution. Model order reduction techniques can be useful 

in alleviating such problems in that they can reduce the number of equations of the 

model to more manageable forms. An example of such techniques is the model order 

reduction procedure proposed by Cho and Joseph (17, 18, 19). They have shown 

that it is possible to reduce the number of DAEs that describe a distillation column by 

a factor of 4 and still retain reasonable accuracy . 

The recent advances made in computer technology have made available computers 

with high computing power and large memory storage capabilities at reasonable low 

costs. The computing power required to solve large sets of equations is no longer a 

major limitation to developing comprehensive models. In recent times some general 

purpose dynamic simulation software packages for solving DAE's and AE's have 

been developed. Examples of such packages are ACES (Kocak (183)) and DASP 

(Ogbonda (181)). Shacham (125) presents a variety of software that is available for 

solving nonlinear algebraic equations of the types which arise in models of chemical 

engineering systems. As regards DASP, the package is resident and operational on an 

IBM PC AT. 

5.1.2 Modelling requirements for this work 

To evaluate different controller designs for a particular objective it is advantageous 

for the evaluations for all the different controllers be done under the same set of 

disturbances, load and setpoint changes. It is usually not possible to reproduce 

operating conditions exactly and consistently on the real systems as, for example, the 

surroundings temperatures and the nature of disturbances may change. Simulations 

are thus very useful in this respect as operating conditions can be reproduced exactly. 

Thus given a suitable model the screening of the controller designs can be pe1formed. 

In this work, the need for a model which can be used as a substitute of the actual 

distillation column became more important as the operational problems on the column 

began to emerge. These problems were reported in Chapter 4 to make obtaining 
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steady state operating conditions consistently so that evaluations as those mention in 

the previous paragraph could be carried out on the experimental column. 

For the purpose of this research work, three types of models have been derived for 

the experimental binary distillation column described in the previous chapter. They 

are: 

(i) a non-linear steady state model 

(ii) a non-linear dynamic model, and 

(iii) a linearised state variable dynamic model. 

The models (i) and (ii) are based on mass and energy transfer, vapour liquid 

equilibrium and component summation relationships which result in AEs and in 

DAEs in the dynamic case. The linearised state variable model is obtained by 

linearising of the non-linear dynamic model about a steady state. 

The non-linear dynamic model was required for studying of the dynamic 

behaviour of the column and to perform detailed assessment of the performance of 

control schemes prior to experimental applications. The primary requirement of this 

dynamic model was therefore to adequately predict the direction and magnitude of the 

responses of the variables of the column to input changes. The steady state model 

was required to aid the selection of operating points and to provide good initial values 

for the dynamic model. The linearised state variable dynamic model was required for 

off-line Kalman filtering exercises and the design of multivariable control schemes 

based on the state variable description of the column. 

5.2 The steady state model 

As mentioned earlier a steady state model was required to provide good initial 

values for the dynamic model and aid the selection of operating points. In binary 

distillation column simulation, short cut methods such as the McCabe and Theile 

method (Coulson et al. (189) and Treybal (53)) can give approximate initial values 

which can be used to initialise the dynamic model. The dynamic simulator is then 

allowed to reach steady state, thus refining the approximate values and give a steady 

state operating point. This approach was used successfully by Daie (26). It is a crude 
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method, but it avoids developing a good steady state model. It may be difficult to find 

good initial estimates for highly non linear distillation systems and multicomponent 

distillation systems, so that developing a steady state model cannot be avoided. 

In order to avoid using a dynamic model to refine approximate initial values, a 

steady state model which is more accurate than the McCabe and Theile method was 

needed. The literature was searched to find a suitable algorithm for distillation 

systems which will require moderate programming requirements, easy to understand 

and use. 

A suitable method is the steady state simulation procedure proposed by Kinoshita 

et al. (45) for multicomponent distillation prob1ems processing non-ideal or 

chemically reactive solutions. The method is based on the use of the Newton­

Raphson iterative procedure in the main calculation loop and the specification of a 

unique set of functions to be zeroed. Global material and energy balance equations 

are employed to solve for the internal liquid and vapour flowrates and the liquid mole 

fractions on the trays are chosen as the independent variables. 

Kinoshita et al. carried out case studies which showed that the stability properties 

of the algorithm were high and showed a high speed of convergence. They also 

showed that wild initial estimates of the liquid mole fraction could be tolerated. This 

is considered a good feature by Takamatsu and Kinoshita (128) because good initial 

estimates are usually difficult to find for steady state simulation of multicomponent 

distillation systems processing a non ideal mixture. Kinoshita et al. showed that the 

heat balances around the column can be readily incorporated into the algorithm; the 

simulation could be pe1formed with or without incorporating heat balances. They also 

showed that regardless of incorporation heat balances, non ideality and chemical 

reactions, the independent variables are always liquid mole fractions. 

The algorithm has been used successfully to solve a wide variety of systems. 

Kinoshita et al. (46) applied the method to simulate multicomponent distillation 

columns with three phases and with partially immiscible liquids. Takamatsu and 

Kawachi (128)) extended the algorithm to cases were the specifications of Murphree 

vapour efficiencies are taken into account. They confirmed that introducing tray 
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efficiencies, the algorithm still retained the high convergence rate and stability using 

the liquid mole fractions as the independent variables. 

In this research work, the algorithm referred to above was employed for the steady 

state simulation of the distillation column. Although the algorithm was developed to 

solve multicomponent system, the algorithm could be formulated to solve a binary 

system. This was done in this work. The following assumptions were made in the 

derivation of the model; 

(i) total condenser 

(ii) no heat of mixing; that liquid and vapour have the same temperature; 

(iii) the reboiler is considered as an equilibrium stage. 

(iv) the trays are assumed to be 90% efficient in separation 

(v) the liquid on the trays and in the reboiler and reflux drums are well mixed. 

(vi) no entrainment of liquid by the vapour leaving a tray; 

(vii) column is adiabatic . 

(viii) no pressure drop across the column 

The steady state equations formulated for the binary distillation are given below. 

Figure 5.1 shows a schematic diagram of the column as used for the steady state 

modelling. Figures 5.2a to 5.2c show the balances on the trays, the reflux and 

reboiler drums respectively. 

The assumption of 90% efficiency on all trays was arrived at on the basis of the 

simulation results of Daie (26). Daie wrote a package for predicting Murphree vapour 

efficiencies of the trays based on the well established A.I.C.H.E methods for 

predicting efficiencies of columns. The method used by Daie required the prediction 

of a wide spectrum of the physical properties of the liquid system such as the critical 

properties and the vapour and liquid diffusivity. The resulting computer program 

greatly increased the computational load of the dynamic simulation package as 

program size was of the order of the dynamic simulator program as well. It was 

found that the efficiencies were reasonably time invariant, so that they were computed 

at some predetemlined steps much longer than the integration interval. The simulation 

results of Daie showed that the efficiencies of the trays in the column range from 99% 
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from the top to 88% at the bottom. The assumption of 90% efficiency for all the trays 

was chosen as an estimate within this range. Better values of tray efficiencies can be 

obtained from pilot plant tests. 

Recently, Fletcher (64) presented a numerical method for incorporating the 

efficiency model of Standart (92) into the rigorous calculation of distillation column. 

The approach is applicable to both binary and multicomponent distillation 

calculations. The calculations involve the solution of extra equations representing 

fictitious ideal flows, compositions, temperatures and enthalpies which are used in 

the definition of the efficiency. Fletcher perfom1ed calculation using experimental data 

at total reflux and presented results which show good fit with experimental data. 

5.2.l. The steady state model equations 

The distillation column has 10 trays with the tray 7 as the feed tray. In the 

following Land V denotes the vapour and liquid flowrates inside the column. The 

symbols j denotes the tray where the stages are numbered from the condenser, j = 1, 

to the reboiler, j = 12. The symbol i denotes component and N denotes the total 

number of stages isl2. the number of components nc = 2 number of trays nt is 10 

and for the feed tray j = 8. The symbol F denotes feed flow and the symbol x and y 

are Nxl vectors containing the liquid and vapour mole fractions of the more volatile 

component on each stage. Therefore, the vector x, is given as 
T 

x = (xd,x 1,x2,x3,x4 ,x5 ,x6,x7,x8,x9,x 10,xb) . 

Since nc=2 the model can thus be presented in terms of the more volatile component 

(mvc) only; the composition of the less volatile component (lvc) is obtained by 

difference. Table 5.1 shows the necessary physical property and equilibrium data for 

trichloroethylene and tetrachloroethylene needed for the model development 

Group I 

Component balances 

Condenser, j = 1 

VzY2 + (L1 + Ld)x1 = 0 

Trays j = 2 to N-1 

5.1 
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Lj-1 xj-1 + vj+ 1Yj+ l + F/fj - L/j - YjYj = 0 

Reboiler j = N = 12 

LN-lxN-1 + FN-lxfN-1 - LNxN - VNyN = O 

where Fj is feed entry to tray j. 

Group 2 

Vapour compositions 

y*j = K/j for j = 2 to N 

5.2 

5.3 

5.4 

where y*j is the vapour composition in equilibrium with xj, and K denotes the 

equilibrium relationship. The equilibrium relationship is defined by 

y*j = g lo(T}xj /PT 5.5 

where PT is the column pressure, Tj is the temperature on tray j, PO (Tj) is the 

saturation vapour pressure of the mvc in tray j and g j is the activity coefficient 

if mvc on tray j 

* . 1 Yj = y j' J = 
"· = e1nv-v*. + (1- emv•)Y· 1 J. =? to N-1 
J J J) J J J+ ' -

YN = y*N 

5.6 

5.7 

5.8 

where emvj is the Murphree vapour efficiency on tray j given by 

emvj = (yj - Yj+ 1 )/(y*j - Yj+ 1) 

Group 3 

Global material and heat balances material 

The overall material balance is 

Lj + V 2 - L 1 = Yj+ l + IFk 5.9 

The overall heat balance is 

Lj hj + v 2H2 - L 1h 1 = Yj+lHj+l+ IFkhfk 

The subscript kin Fk denotes the feed entry to stage k The summation IFk 

represents the sum of the feed entries into trays k = 2 to j. 

Eliminating Yj+ 1 and using V 2 = L 1 +V 1 +Ld gives 

Lj = (Llhl- (L
1

+ v 1+ Ld)H2 + (Y 1+ Ld)Hj+l - Hj+lIFk + IFkhfk )/(hj-

Hj+l) 
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for j = 2 to N-1. 

Note that V 1 = 0 since a total condenser is assumed. 

Hj is the enthalpy of vapour stream leaving tray j 

hj is the enthalpy of liquid stream leaving tray j 

hfj is the enthalpy of feed stream entering tray j 

The enthalpy symbols are 

hj = (Lhli)j 

Hj = (LHiyi)j 

H- = h-+A· 
1 1 J 

f 2 3 
h- = Cp· dT = a.fff + b-L\T /? + C-L\T /3 

1 1 1 1 - I 

5.10 

where hi is the liquid enthalpy of component i, Hi is the vapour enthalpy of 

component i, Cpi is the heat capacity of the of component i, and xi and Yi are 

the liquid and vapour compositions of component i and .:'.\ T = T - T 0; TO is the 

reference temperature chosen as 25°C 

Group 4 

The functions to be zeroed are 

f.= X· - X, 
J J J 

where Xj are given as 

Xj = V2y2/(L1 + Ld) j = 1 

xj = (Flfj + Lj-I xj-I + vj+ 1 Yj+ 1 - vjYj)/Lj 
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Table 5.1 Properties of Trichloroetyhlene and Tetrachloroethylene 

Heat Capacity Trichloro- Tetrachloro-

Constants ethylene ethylene 

a 0.9935 1.042 

b 0.00611 0.005129 
-b -b 

C 3.676 X 10 3.433 X J() 

Cp =a+ b~T + c~TL, ~T = T - T0, where T0 is the reference 
I 

temperature at (eg. room temperature (19 °C - 25 °C)). Cp is in J/gramme 

Density 
--, 

I 3 grammes cm 1.466 1.6475 

Molecular weight 

grammes 131.4 165.85 

Vapour Liquid Equilibrium 

Antoine Constants 

Cl 7.4266 8.08374 

C2 1549.3 2128.93 

C3 254.082 288.34 

Van Laar Con5tants 

A 0.0042 

B -0.0004 
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5.2.2 The solution procedure for the steady state model 

After supplying the model with initial composition profile of the mvc, reflux ratio, 

distillate or bottoms flow, feed flow, feed composition, feed temperature, the steps 

followed to solve the equations of the steady state model are given below. 

Step 1) Compute the compositions for the less volatile component (lvc) on each 

tray by difference. 

X·1 =l-X• J, vc J 5.15 

Step 2) Detem1ine the y*s by the bubble point method. This involves solving a 

non-linear equilibrium relationship Equation 5.5 for T- for each tray, except for 
J 

the reflux stream if the reflux is assumed to enter the column as a cold liquid. 

The solution is an iterative procedure requiring a guess value for Tj, Newton 

Raphson iterative procedure was used in this work 

Step 3) Obtain the actual vapour compositions Yj using the Group 2 equations, 

Equations 5.6 to 5.8, which reperesent Murphree vapour tray efficiency 

Step 4) Calculate the vapour and liquid enthalpies and then calculate Vj and Lj 

using the Group 3 equations, Equations 5.9 and 5.10 alternately. 

Step 5) Using the Group 4 equations, Equation 5.12 to 5.14, compute new 

liquid mole fractions, X 

Step 6) After normalising the vector X in the following way 

x .. 
x. ·=--1'-"--J_ 

l ,J 
nc 
"'-"x .. L.J l ,J 

i = 1 

Xi,j /the functions to be zeroed, fj for j = 1 to Nin Equation 5.11, are computed 

using Equation 5.12 to Equation 5.13. 

Step 7) The Jacobian matrix J is numerically evaluated as 

J .. = ar.;axi 
J,J I " 

5.16 

where J· . is the element in row i column j of J. The symbol a denotes a small 
l ,J 

perturbation.The Gaussian elimination with maximal pivoting algorithm given 
r r . r 

in Burden et. al. (56) was used to solve - J bx = f tor 8x . 
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Step 8) The new values of xj are then calculated as 

r+ 1 r r 
X· = X· + OX· 
J J J 5.17 

where r is the iteration step and ox r is given as 

ol = - J -1 { 5.18 

Step 9) Before updating the new X·r the absolute values of ox.r are checked to 
J J 

see if they are not too large. This is is done by checking if llox-rll exceed px-r 
J J 

h . d . f r+ 1 w ere p 1s a amprng actor chosen as O < p < 1. The xj are then updated 

as 
r+ 1 r r r 

X· = X· + SIGN (px- ox- ) 
J J J ' J 5.19 

where SIGN (a, b) is a number whose absolute values is a and sign is the same 

as that of b. 

Step 10) Check if the xj r+ Ls violate the limits 0 and 1 and reset as 

xj = 0.0001 if xj < 0 or 

xj = 0.9999 if xj > 1.0 

Step 11) Go to Step 12 if convergence criteria 

Jcv = II f 11 1 / N < £ 5.20 

where£ is a tolerance chosen appropriately, otherwise return to Step 2). 

Step 12) Calculate reboiler and condenser heat duty and stop procedure. 

In this work a simple procedure was used to select the damping factor pin Step 9 

to avoid specifying a damping factor for each state variable. At each iteration step, r, 

the element with the largest magnitude in the vector, oxj r was obtained. Denoting this 

value as ~' the p was chosen as follows; 

p = 0.1, if~ > 0.3 

p = 0.3, if 0.2 < ~ < 0.3 

p = 0.5, if 0.1 < ~ < 0.2 

otherwise p = 1.0. Then 
r+l r ,'.'. r 

xj = xj + p oxj 

5.21 
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5.3 The nonlinear dynamic model ~ the column simulator 

The dynamic model is also based on non-linear mass and energy balances and 

equilibrium relationships. The tray by tray concept of modelling was employed and 

the equations were grouped in a cause and effect sequence to ensure stability of the 

solution. The phrase "cause and effect sequence" means that the information flow in 

the mathematical model is made to coincide with material flow in the distillation 

column to the best of the ability of the modeller. For example, the vapour leaving 

each tray should be calculated from the reboiler upwards and the liquid flow leaving 

each tray should be calculated from the top to the bottom tray; these are the directions 

of travel inside the column. 

The following assumptions are made in the development of the dynamic model to 

avoid stiff differential equations and to have a model that is not too complex and 

which requires only moderate computational time. A set of DAE's were generated by 

the modelling exercise . 

The assumptions made for the steady state model stated in Section 5.2 were used. 

The additional assumptions for the dynamic model are: 

(i) the liquid hold up on each tray is constant and the vapour holdup on each tray 

is negligible compared to the liquid holdup. 

(i) the heat dynamics are very fast compared to the composition dynamics. 

(iii) the feed tray is modelled like all other trays above and below it, with 

additional terms such as the feed entering the column. 

(iv) the thermosyphon reboiler arrangement is modelled as a simple well mixed 

tank 

(v) all the heat supplied to the reboiler vapourises liquid in the reboiler. 

Assumptions (i) and (ii) meant that the mass and energy balance equations reduce 

to algebraic equations from which the liquid and vapour rates were calculated. Under 

these assumptions the only significant dynamics in the model are due to the dynamics 

of the component balances of the liquid on each tray. This effectively avoids stiff 

differential equations because the composition ti1111. , ,lnstants are of the same order (l 
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- 3 seconds). The holdups on each tray were approximated by the Francis wier 

formula given in Treybal (53). 

5.3.l The dynamic model equations 

The dynamic model of the distillation column is schematically shown in Figure 

5.1. However, unlike the steady state model, local energy and mass balances around 

each tray and the reboiler and reflux drums were employed. These ,u-e represented 

schematically in Figures 5.2a to 5.2c. For the dynamic model, Fj = 0 for all j except 

the feed tray which is j = 8 numbering from the reflux drum to the reboiler. The 

model equations are given by the following. 

Model of a tray, j = 2 to N-1 

dMj/dt = 0 = Lj-l + Yj+l - Lj - Vj + Fj 

Mjdxj/dt = Lj- l xj- l + Yj+ l Yj+ l - L/j - YjYj + Flff 

Mjhj/dt = 0 = Lj- l hj- l + Vj+ l hj+ l - L}1j - Y/fj + F?fj 

y*• = g .po (T-)x• /P,r 
J J J J 

5.22 

5.23 

5.24 

5.25 

y. = emv-v*·+ (1- emv•)Y·+i 5.26 • J J· J J • J 

where g is the activity coefficient and PO (Tj) is the saturation vapour pressure 

of the more volatile component, and PT is the column pressure. 

From the energy balance equation , Equation 5.22, the vapour leaving a tray 

can be computed as 

vj = (Lj- l 11.i- l + v.i+ 1 hj+ 1 - Llj + Flf) I Hj 5.27 

From the mass balance equation, Equation 5.22, the liquid leaving a tray can be 

computed as 

Lj = Lj- l + Yj+ l - Yj + ~ 

]Vlodel of the reflux drum, i = 1 

dM/dt = Yj+l - Lj - Ld 

Mjdx/dt + xjdM/dt = Yj+lYj+l - Ljxj - Ldxj 

so that 
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Mjdx/dt=-xiM 1/dt+Vj+JYj+l -Llxd-Ldxd 5.31 

Since a total condenser is used then, Y1 = Y2, xl = xd, and Ml= Md. 

' 0 
Yj = Y)j<j = g l (T)xj /PT 5.32 

Model of the re boiler drum i N 12 

dMN/dt = LN-l - LN- VN 

MNdxN/dt + xNdMN/dt = LN-lxN-l - LNxN- VNyN 

so that 

5.33 

5.34 

5.35 

MNhj/dt = 0 = LN-lhN-l - LNhN- VNHN + Qrb 5.36 

whereMN=Mb 

From Equation 5.36, the vapour leaving the reboiler drum is obtained as 

where Qrb is the reboiler heat input 

PT column pressure 

Mj hold up of liquid on tray j 

5.37 

5.38 

5.39 

The prediction of the vapour liquid equilibrium in both the steady state and 

dynamic models was done using the Antoine relationship for the saturation vapour 

pressure and the Van Laar equation for the activity coefficients. The Antoine 

relationship is given as 

Log10PiO(T) = Cli-C2/(C3i-T) 5.40 

where T is the temperature in degrees centigrade and the subscript i denotes the 

component i. The activity coefficients, gi, are predicted from the Van Laar 

relationship given as 

Log
10

g
1 

= (2B-A)x2
2 + 2(B-A)x2

3 5.41 
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5.42 

where the subscript i in g and x denote the component i.The Cl ,C2 and CJ, A and B 

are constant parameters given in Table 5.1. These values were obtained from Daie 

(26). Figures 5.3a and 5.3b shows a comparison of the prediction of Equation 5.40 

using column pressure at 760 mmHg with published experimental data of Bachman et 

al. (180). 

5.3.2 Solution procedure for dynamic simulation 

An outline of the sequence of solution is given below: 

Step 1) Obtain initial values of feed flow, reflux flow, reboiler heat input, feed 

composition, feed temperature, reflux temperature, liquid and vapour flows 

entering and leaving each stage from the results of the steady state model. The 

column pressure was assumed to be at 760 mm Hg. 

Step 2) Ensure the tray compositions are in the limit O and 1 and take appropriate 

corrective action if they are not. This was done by setting 

xj = 0.0001 if xj < 0 or 

xj = 0.9999 if xj > 1.0 

Step 3) Pe1form bubble point calculations to obtain Tj and y*j for all trays and 

then obtain actual vapour composition Yj using the Murphree tray efficiencies 

specified from the reboiler to the condenser. 

Step 4) Calculate the enthalpies of the liquid and vapour streams leaving each 

tray, and the enthalpies of the feed and reflux streams. 

Step 5) Compute the vapour rates leaving each tray from the reboiler to the top 

tray. 

Step 6) Compute the liquid rates from the top to the bottom tray. 

Step 7) Compute the differential, dxj /dt for all the trays in including reboiler and 

reflux drums and dMj/dt for both drums only 

Step 8) Integrate the differential equations by the simple Euler integration 

method. 

Step 9) Return to Step 2) and continue until specified time duration is reached. 
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Appendix A5.2 explains the functions of the computer programs that perfonn the 

dynamic simulation. The actual model equations of the column are in the module 

D yn model. For flexibility and computational efficiency the integration of the 

differential equations is done outside the Dynmodel in the main calling program,and 

the main program handles data output at the specified interval. Control action, when 

required, is also performed in the main calling program. 

The bubble point temperature calculations were done using the temperatures of the 

previous integration step as the starting guess temperature for the present step. This 

improved on the computational efficiency of the solution as the number of bubble 

point iteration steps required to solve for Tj was significantly reduced. A similar 

approach was used in the steady state model by using temperatures of the previous 

iteration step as the guess temperatures. 
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S.4 The linear state variable model 

The linearised state variable model is represented as 

dx/dt =Ax+ Bu +Dzd 5.43 

where A is the system state matrix (n x n), Bis the input driving matrix (n x m), and 

D is the disturbance matrix (n x nd). The u and zd are the input and disturbance 

vectors (m x 1) and (nd x 1), respectively and x is the state vector (n x 1). Then, m 

and nd are the number of states, inputs and disturbances respectively. State variable 

models of a process are useful in the design of state variable feed back control 

systems for the process. 

For the column the vectors u and zd are 

u = [ti Lr, tiQrb] T 

zd = [liF, lixf] 
T 

5.44 

5.45 

where i::J. represent deviation from steady state. The Lr, Qrb, F and xf are the reflux 

flow, reboiler heat input, feed flow and feed composition, respectively. Their 

respective units, as used to derive the linearised state variable model, are 1/hr, KW, 

1/hr, mass fraction and °C, respectively. The vector x contains the tray compositions 

of the more volatile component 

5.46 

To obtain the state variable model of the column, the vapour and liquid flow rates 

leaving the trays were calculated by solving the mass and energy balance equations 

for all the trays simultaneously using the Newton-Raphson procedure. This method is 

more accurate than the Steps 5) and 6) in the previous section, but required more 

computer memory for program storage and the extra calculations required since it 

involves an iterative procedure. The approach was therefore used for linearising the 

dynamic model to obtain linear state variable models of the column. 

The A, B, and D matrices of the model were obtained by linearising the non-linear 

equations of the column simulator about a steady state. This was done numerically by 

perturbing the variables of the column. Tables 5.2b and 5.2b. contain two sets of A, 

B and D matrices obtained at different operating points. Those on Table 5.2a 
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correspond to the state variable model at high top product purity of 96.5% mvc which 

will be called model LMl. The matrices in Table 5.2b was obtained when the column 

was at lower top product purity of 86% mvc and it will be called model LM2. The 

srnte matrices are essentially tridiagonal as the other entries are telative1y small as 

shown in Table 5.2c. These small entries were eliminated when the models were used 

for simulations and design of controllers based on state vai-iable descrip6on of rhe 

co1urnn 
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Table 5.2a Linearised state variable model LM 1 

-0.1195 0.0393 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.()000 0.0000 
5.8717 -9.1433 2.9931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 6.5078 -9.7826 3.6109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 6.4969 -10.1417 4.3077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 6.4553 -10.8023 5.4197 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0024 0.0000 6.4169 -11.9408 6.8967 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0003 0.0000 6.4023 -13.4965 8.3748 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.7254 -19.4654 8.8343 0.0000 0.0000 0.0003 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.7103 -20.8274 11.3931 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0022 11.5833 -23.3442 14.7516 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.4777 -26.7498 14.4325 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1791 -0.3003 

__J ,....., 
0 

A N 

B D 

-1.212 E -7 -3.471 E-10 0.000000 0.0 
0.000748 -0.00000172 0.000000 0.0 
0.001529 -0.00000345 0.000000 0.0 
0.002692 -0.00000609 0.000000 0.0 

0.004059 -0.00000917 0.000000 0.0 
0.004845 -0.00001113 0.000000 0.0 

0.004406 -0.00001048 0.000000 0.0 

0.002572 -0.00000973 0.0002622 6.0858 

0.001885 -0.00001276 0.001334 0.0 

0.001972 -0.00001372 0.001384 0.0 

0.002178 -0.00001124 0.001125 0.0 

0.0000047 -0.000000089 0.0000094 0.0 
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Table 5.2b Linearised state variable model LM2 

-0.1247 0.047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5.5422 -9.2974 4.0186 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 .. 0000 
0.0000 6.1700 -10.654 5.6626 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 6.2367 -12.0977 7.3298 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 6.2661 -13.8578 8.8088 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0024 0.0000 6.3097 -15.4256 9.7902 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0003 0.0000 6.3292 -16.4148 10.2870 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.6291 -21.0371 11.2850 0.0000 0.0000 0.0003 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.5247 -23.2216 14.4463 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0022 11.4351 -26.3319 17.7526 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.3371 -29.5507 16.0096 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1760 -0.3173 

N 
0 
0l 

A. B D. 

-l.47E-7 -4.06 E -10 0.000000 0.0 

0.003143 -0.00000686 0.000000 0.0 

0.004805 -0.00001049 0.000000 0.0 

0.005384 -0.00001174 0.000000 0.0 

0.004544 -0.00000987 0.000000 0.0 

0.002944 -0.00000667 0.000000 0.0 

0.001652 -0.00000366 0.000000 0.0 

0.000279 -0.00001146 0.002727 6.0712 

0.001974 -0.00001291 0.001401 0.0 

0.001687 -0.00001054 0.001196 0.0 

0.001264 -0.00000701 0.0007619 0.0 

0.0000018 -0.000000048 0.0000053 0.0 



(:'f') 

0 

Table 5.2c State matrix coefficients for the state variable model LM2 with errors 
N 

-0.1247 0.047 0.0063 0. 0008 0.0001 0.()000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 
5.5422 -9.2974 4.0186 0.0034 0.0004 -0.000 -0.0001 -0.0001 -0.0002 -0.0004 -().()007 0.0000 

-0.0096 6.1700 -10.654 5.6626 0.0214 -0.0001 -0.0002 -0.0002 -0.0002 -0.0005 -0.0009 0.0000 

-0.0057 -0.0062 6.2367 -12.0977 7.3298 0.0345 0.0003 -0.0004 0.0006 0.0012 0.0002 0.0000 

-0.0031 -0.0051 0.0053 6.2661 -13.8578 8.8088 0.0370 0.0015 0.0023 0.0040 0.0084 0.0001 

-0.0073 -0.0034 0.0024 -0.0004 6.3097 -15.4256 9.7902 0.0467 0.0026 -0.0045 -0.0009 0.0000 

-0.0014 -0.0182 0.0018 0.0003 0.0002 6.3292 -16.4148 10.2870 0.0522 0.0006 0.00015 0.0000 

-0.0043 -0.0086 0.0003 -0.0004 -0.0007 -0.0009 5.6291 -21.0371 11.2850 -.0062 -0.0061 0.0003 

-0.0029 -0.0308 0.0027 0.0003 0.0000 -0.0001 0.0000 11.5247 -23.2216 14.4463 -0.0064 0.0000 

-0.0016 -0.0252 0.0032 0.0014 0.00143 -0.0002 0.0020 0.0022 11.4351 -26.3319 17.7526 0.0031 

-0.0023 -0.0175 0.0013 -0.0001 -0.0004 -0.0006 0.0007 -0.0007 -0.0012 11.3371 -29.5507 16.0096 

..0.0002 -0.0001 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1760 -0.3173 



Table 5.2d Operating conditions of the column simulator at oint of linearistion 

Linearised state variable model LMI 

xf=0.4 mass fraction, Lr = 165 g/min ( 6.6 1/hr) , F = 200 g/min, reflux ratio = 2.2, 1 

56778.0 j.min (0.9463 KW), xd = 0.987 mass fraction, xb = 0.0502 mass fraction, efficien, 

trays= 90% 

Linearised state variable model LM2 

Operating condition obtained by driving the column simulator to a steady state with 

top tray composition control 0.85 mass fraction. xf = 0.4 mass fraction, Lr = 157 

g/min ( 6.6 1/hr) , F = 200 g/min, Qrb = 56778.0 joules/min (0.9463 KW), xd = 

0.942 mass fraction, xb = 0.025 mass fraction, efficiency of trays= 90% 
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5.5 Steady state simulations 

5.5.l Results and Discussions 

ln all the steady state simulations the same initial composition estimates were used. 

These initial values were obtained from rough calculations using the McCabe and 

Thiele procedure. Table 5.3 gives details of the simulation experiment perfom1ed as 

well as the initial composition profile used to initialise the steady state algorithm and 

the final solutions. Figure 5.4a shows the trajectory of the convergence criteria, Jcv, 

. -4 
lor c chosen as 9. x 10 . 

Some other simulations were performed to examine the effects of tray efficiencies 

less than 100% and the frequency of computing the jacobian on the convergence 

properties of the algorithm. In these simulations, the following were specified; F = 

165 g/min, Lr = 188 g/min, Lr/Ld = 2.2, xf = 0.47 mass fraction, feed temperature, 

TC= '.25 °C, £ = 1. x 10-
5 

and reflux temperature, Tlr = 55°C. Figure 5.4b shows that 

the rate of convergence is significantly affected by the efficiency values assumed. 

Reducing the plate efficiencies from 100% to 90% efficiency slightly affected the 

convergence of the steady state model. The convergence rate using 90% efficiency of 

each plate improved slightly after 6 iterations. Reducing the frequency at which the 

jacobian is computed from every iteration to every 4 iterations degraded convergence 

of the steady state model. There was a "delay" in when the rapid convergence to the 

solution began. 

The results of the simulation procedure verified that the simulation procedure is 

satisfactory to simulate the binary distillation system at steady state. The next stage 

was to explore the accuracy of the converged solution, relative to the dynamic model. 

This is treated in the next section. 
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5.6 Dynamic simulation 

In this research work the single step Euler method was used to integrate the 

differential equations of the column simulator and adequate results were obtained. 

The integration step size of 0.025 minute gave adequate results. The running times of 

the column simulator on the System96 is also very high. With the integration interval 

of 0.025 minutes, the ratio of computer time to process time is about 5.5 to 1. This 

means 5.5 minutes of computer time is required to simulate 1 minute of process time. 

On the IBM PC AT this ratio significantly reduces to 0.5 to 1 for integration interval 

of 0.025. This gave an idea of the speed of the System96 computer compared with 

that of the IBM PC AT. 

5.6.1 Results and Discussions 

For the simulated step response studies, the feed and the reflux streams were 

assumed to enter the column as saturated liquids at their bubble points. The reboiler 

and reflux drum levels were controlled by conventional PI method. The distillate rate 

was used to regulate the reflux drum liquid level and the bottoms offtake rate was 

used to regulate the reboiler liquid level. The same settings were used for both level 

controllers; the proportional gain used was 30 (g/min)/cm and integral time of 3.0 

minutes. 

The column simulator was initialised with the results of the steady state model of 

which Table 5.3 correspond. The sampling interval used was 0.5 minutes. The tray 

temperatures moved to new points as shown in Figure 5.6 which compares the 

original temperature profile of the column with the new or "refined" profile. Figure 

5.5 shows the corresponding response for the top and bottom tray temperatures. 

These graphs demonstrate that the refinement of the initial values was not very much, 

indicating the accuracy of the steady state predictions, relative to the dynamic model. 

The shift of the steady state profile of the column can be mainly attributed to a 

difference in the assumptions in the dynamic and steady state model. This is the 

assumption of 100% 
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Table 5.3 Details of a steady state simulation 

Tray Initial Final 

Composition Composition Temperature 

Reflux 0.90 0.967289 87.26 

1 0.7594 0.921198 88.08 

2 0.7394 0.848688 89.44 

3 0.7067 0.745829 91.55 

4 0.6563 0.621191 94.44 

5 0.5861 0.498221 97.82 

6 0.50 0.398310 101.01 

7 0.413 0.333808 103.35 

8 0.349 0.257999 106.43 

9 0.2615 0.178680 110.11 

10 0.168 0.109078 113.79 

Reboiler 0.09 0.059627 116.71 

F = 200g/min (8 1/hr), Lr = 165g/min (6.6 1/hr), Lr/Ld = 2.2, xf = 0.4 mass 

fraction, Feed and reflux enter column as saturated liquids, efficiency 90%, 

jacobian J computed every 4 iterations, £ = 0.0009, Number of iterations to 

reach convergence = 4 
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efficiency in the reboiler in the steady state model and 90% in the dynamic model. The 

"refined" steady state values were used as initial values for the column simulator. 

A series of step response tests were carried out by introducing 15 % step 

increases and step decreases in the feed flow, feed composition, reflux flow and 

reboiler heat input denoted F, xf, Lr and Qrb, respectively. Each input has significant 

effects on all the tray temperatures. The dynamic behaviour of the tray temperatures 

of the distillation column is dominated by first order responses for all the step input 

changes, except the response of T 1 to the step increase in Lr. Figures 5.7a and 5.7b 

show this for the top and bottom tray temperatures, T 1 and T 10, for step inputs in 

Qrb, Lr and F. 

Table 5.4 shows the steady state gains and approximate time constants relating 

each input to the outputs T 1 and T 10 for the + 15% and -15% step changes in the 

inputs. The significant differences in the steady state gains and the time constants for 

positive and negative step changes in the inputs indicate the non-linearities in the 

distillation column. This behaviour is more pronounced for the (Lr, T 1 ), (Qrb, T 1) 

and (xf, T 1) combinations. The results indicate the assymetric behaviour of the 

column (Coppus et al. (25), Stathaki et al. (112)). 

The implications of this pronounced non-linear behaviour of the column has been 

discussed in Chapter 2 Section 2.2.6. The significant non linear behaviour of the 

column indicates a high degree of illconditioning of the distillation system and 

sensitivity to model errors under closed loop control. This is because the initial steady 

state is reasonably close to the maximum of 100% purity; 97%w/w top product 

quality as indicated on Table 5.3. High purity columns are difficult to control because 

they can be very sensitive to model errors (Skogestad and Morari (153)). 
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Table 5.4 Open loop gains and time constants of the column simulator 

Step Top Tray Temperature Bottom Tray Temperature 

Change (T l) (Tl o) 

15% Kp 1' Kp 'C 

tLr -0.5 1.92 -9.53 2.96 

--l,Lr -8.67 5.59 -3.89 1.43 

tQrb 81.01 4.59 33.99 1.02 

--l,Qrb 3.56 1. 18 80.77 2.17 

t F -0.16 3.30 -3.71 2.28 

--i,F -2.86 16.17 -3.53 2.26 

txf -5.29 4.36 -91.97 4.57 

--1,xf -49.92 14.9 -59.1 3.13 

Kp = Gain, t = time constant in minutes 

*** For the units of the gains Lr and Fare in 1/hr, Qrb in KW, xf in mass fraction T 1 

and TIO in °C The arrows indicate the direction of the step change: The reboiler and 

reflux drum holdups were Mb = 2472.0g Md = 2211.0 g, Mj = 28.0g in enriching 

section j = 1 to 6, Mj = 32.0 g in stripping section j = 7 to 10, where j denotes trays 

from top tray to bottom tray. 
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5.7 Open loop experiments on the pilot plant distillation column 

Experiments were performed on the pilot scale distillation column to study its 

dynamic behaviour to step changes in the inputs. The start up procedure for the 

experimental column is outlined in Appendix A 1. After the column has reached steady 

state, step changes in the feed flow, reflux flow and reboiler heat input (Qrb) were 

made. The computer program Log-new described in Appendix A 1.1.3 was used for 

the data logging, data conversion and storage of infom1:ition on the floppy disk. The 

sampling interval of 0.5 minutes was used. The rr:1y temperature measurements taken 

were T 1, T2, T7 , T9,T10, Tb. These are the vapour temperatures above the liquid 

on the top, second, feed, ninth, bottom trays and the reboiler drums, respectively. 

5.7.l Results and Discussion 

Figure 5.8 and Figure 5.9 show the results of two step response experiments. The 

feed composition for these two runs are 41 % trichloroethylene and 47% 

trichloroethylene, respectively. The figures show drifts in the feed flow and the 

oscillatory behaviour of reflux flow. The oscillations were more severe at low flow 

rates where the fixed reflux valve opening was small. One reason for this oscillatory 

behaviour was pressure variations in the upstream side of the reflux valve clue to the 

pump operation. Feed flow measurements were usually not oscillatory because 

gravity flow was employed to deliver feed into the column; the drifts occurred due to 

the variations in the liquid head in the feed tank . 

Figure 5.9 represents a result of the experirnental open loop step response. The 

responses of the tray temperatures to changes in F, Lr and Qrb can be assumed to be 

approximately first order. The response of the top two tray temperatures, T 1 and T 2, 

to feed flow change were delayed by about three samp1e intervals (1.5 minutes). This 

was because the effects of a change in feed flow first have first to travel down the 

column to the reboiler and then back up the column. The reboiler holdup is 

significantly larger than tray holdups and this introduced significant lag in the 

responses of the trays, temperatures in the enriching section to feed flow changes. By 

contrast, the effect of reflux flow change and re boiler heat input is felt on all the trays 
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-
within a sampling interval. The responses of the tray temperatures to reboiler heat 

input change were close to first order response. 

As mentioned in Chapter 4, the operational problems of the column prevented 

effective PI control of the reboiler drum and reflux drum liquid level. This made it 

necessary to allow the reflux drum level to vary by withdrawing constant distillate 

flow, and using two position control to control the reboiler drum liquid level. Figures 

5.10 show the trajectories of the drum levels during the open loop experiment 

represented by Figure 5.9. 

Figure 5.9 shows the response of the temperature of the vapour above the liquid in 

the reboiler drum, Tb' was affected by effects other than the dominant responses to 

the input changes. The T 10 did not exhibit oscillatory response since the 

corresponding tray, tray 10, is two tray spacings from the vapour entry point so that 

the disturbances causing the oscillations in Tb are dampened out by the liquid holdup 

on the tray. 

5.8 Model verifications 

5.8.l The column simulator vs the pilot plant 

The response of the column simulator to step changes in the feed flow reflux flow 

and reboiler heat input was examined using experimental data. As composition 

analysers were not installed on the column, model-plant comparisons could be 

conveniently done only by comparing tray temperatures. This experiment will 

compare the actual distillation column response to throughput changes with the model 

prediction. The model should then predict the columns response to feed composition 

changes with comparable accuracy. 

To test the validity of the column simulator, the procedure given below was 

followed: 

(1) Real plant measurements from the open loop experiments were obtained and 

stored in a floppy disk. 
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(2) Initial values of feed flow reflux flow, reboiler heat input, feed composition, 

feed temperature and the reflux temperature were supplied to the column 

simulator and the simulator then allowed to reach steady state. 

(3) The simulator was then used to simulate the plant using, at every sampling 

interval, the measured values of the inputs, F, Lr, and Qrb, which were fed as 

inputs to the column simulator. 

The following adjustments were made to obtain consistent data. The feed 

temperature was at measured room temperature which was usually between 19 ·c and 

22 ·c. The reflux temperature was assumed to be constant at 55 ·c in the column 

simulator and the column pressure was assumed to be 760 mmHg. The reboiler 

hold up in the model was assumed to be 0.5 litres to be of the order of the amount of 

liquid heated up in the heater arm of the thermosyphon reboiler; the reflux drum 

holdup was also assumed to be 0.5 litres. During the model verifications, the reflux 

and reboiler drum levels could be controlled by PI controllers or assumed constant 

(perfect level control). In the latter approach, the distillate and bottoms product rates 

are calculated by total mass balance around the column at every sampling interval. 

The mass balance option was used in the verification exercises. Since the holdups in 

the reflux and reboiler drums were considerably larger than that of a tray the 

assumption of perfect level in the control simulator is not unrealistic, although there 

were practical problems with this on the plant. 

5.8.2 Results and Discussion 

Exercise Number One 

In this exercise the data obtained from the experimental open loop response test 

shown in Figure 5.8 was used. Figure 5.11 show the predicted tray temperature 

responses compared with actual experimental data. Figure 5.12 shows the predicted 

initial and final steady state tray temperatures compared with experimental data. The 

initial steady state predictions of the first and second tray temperatures were 

reasonably close to experimental data, but were worse in the stripping section. 

However, the final steady state predictions in the stripping section were better. This 
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means that, for the initial operating condition, the column simulator does not 

satisfactorily represent the steady state at stripping section of the column. This 

demonstrated that uncertainties in the column simulator varies significantly with 

operating conditions and varies at different locations along the length of the column. 

Figures 5.11 shows that the column simulator responded to the data supplied to it 

at every sampling interval. For example, the kick in each of the predicted tray 

temperatures was in response to the kick in the feed flow at about t = 5 minutes. The 

graphs also demonstrated that the column simulator exaggerates the dynamic response 

of the actual column as the gains are much larger in the column simulator. 

Exercise Number Two 

In this exercise the results of the experimental open loop response test shown in 

Figure 5.9 was used. Figure 5.13 show the predicted tray temperature responses 

compared with the experimental responses. The column simulator predictions to the 

large changes in the feed flow, reflux flow and reboiler heat input were in the same 

directions as the actual column responses. There were also large errors in the initial 

steady state predictions. 

The column simulator also exaggerated the response of the column, pa11icularly the 

response to the large step increase in the reflux flow at about t = 27 minutes. The 

column simulator predicted a smooth profile of Tb since the thermosyphon reboiler 

arrangement on the actual column was modelled as a simple mixing tank in which 

only vapourisation of liquid was only taking place. 

The exaggeration of the actual column response as regards the speed of response 

and the larger gains can be attributed to two main assumptions made in the model 

during the model verification exercises. The first is the assumption of adiabatic 

condition in the column which is not strictly true since heat losses were present. The 

second is the assumption that the reboiler holdup is 0.5 litres which is very small 

compared with the 1.5 litres ho)dup in the actual column. 

The assumption which may have contributed significantly to the errors in the 

steady state predictions is the uncertainty in the reboiler heat input to the column. This 
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was assumed to be linear with the digital signal from the computer. This was a rough 

approximation which was made due to difficulty in accurately calibrating the heat 

input with computer signal when the reboiler was installed. The responses of the 

column simulator to heat input changes adequately describes the dynamic behaviour 

of the column and this demonstrated that the assumption is reasonable. 

There is also a useful information that can be drawn from the model verification 

results. It concerns the uncertainties in the reflux flow and feed flow measurements 

that were supplied to the column simulator. Two results provide the information. 

They are 

1) the kick in each of the tray temperatures in the column simulator due to the 

kick in the feed flow in Figure 5.11 and 

2) the responses of the top tray and second tray temperatures to the reflux flow 

between t = 10 minutes and t = 20 minutes as shown in Figure 5.13. 

The absence of these responses in the actual column suggested that either the 

model is insensitive to the input changes at that particular operating condition or that 

the variations in the measured values of the feed flow and reflux flow are due to 

imprecise measurements. In view of the responses of the column at other operating 

conditions it is unlikely that the case would be insensitivity to changes in input. The 

practical problems on the column, discussed earlier and in the previous chapter, 

suggested that the discrepancies between the model and the column in the regions 

mentioned above were primarily due to imprecise measurements of the reflux flow 

and the feed flow. The model was, in a sense, useful to detect faults in the operation 

of an instrument which in the cases under discussion are the flowmeters. 
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5.8.3 The linearised model vs the column simulator 

Figure 5.14a shows the responses of the top and bottom tray compositions of the 

linear model compared with that of the column simulator for 15% step decrease in 

reflux flow. Although the direction of the responses are the same, the graph indicate 

clearly that the linearised state variable model is only valid in a very small range 

around the steady state linearisation point. This is more apparent in the response to 

the top tray composition as the responses of the bottom tray compositions of both 

models agree quite well. For a 15% step decrease in feed flow, both the top tray and 

the bottom tray compositions of the state variable model are relatively insensitive to 

the feed flow changes compared with the responses of the column simulator. This is 

shown in Figure 5.14b. These results in Figure 5.14a and 5.14b implies that the class 

of control systems that are designed using the state variable models will be put to 

severe test. 

Before going into the discussion on the usefulness or limitation of the column 

simulator and the linearised state variable models some simple steady state analysis 

perfmmed on the column simulator will be dealt with. 

5.9 Steady state analysis using relative gain array and condition 

number 

The discussions in Chapter 2 Sections 2.2, focussed on how to compute the 

steady state relative gains and the condition number of a system and the useful 

information that can be drawn from them regarding the likely problems that could be 

encountered in multivariable or multiple loop control of the variables of the system. In 

the case of the distillation column under study in this work the likely problems in the 

multiple loop are multivariable control of top and bottom tray temperatures of the 

column is addressed. 

Using the relationships in Equations 2.2 and 2.21 in Chapter 2, the relative gain 

array and condition number of the column were computed. The steady gain matrices 

used were those obtained from the step response data obtained from the column 

simulator for the control configuration 
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Figure 5.14a Column simulator vs the state variable model : Responses 

of the top and bottom tray compositions to step change in reflux rate. 
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Figure 5.14b Column simulator vs state variable model : Responses of the top and 
bottom tray compositions to step change in feed flow rate. 
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y = Gp(0)u 

In this relationship y = (T 1, T 10) T, u = (Lr, Qrb) T and Gp(0) is given as 

Gp(O) = [gl 1 glj 
g21 g22 

where gij is the steady state gain between Yi and uj 

Simulated data was preferred to experimental data since the experimental step 

responses will include secondary effects such as ( 1) disturbances form the control of 

the liquid level in the reboiler, (2) the uncontrolled level in the reflux drum and (3) 

uncertainties in the reflux and feed flow measurements and in the reboiler input. The 

steady state gains are arranged in matrix form as shown on Table 5.5. The arrow 

beside each gain element indicates the direction of the step change in the input that 

resulted in the corresponding gain. The relative gain, n 11 , condition number y (G) m 

and the size of the II A 11 1 are also shown on the table. 

The II A 11 1 and Ym (G) are small for the gain matrices whose elements were 

obtained from step changes in Lr and Qrb in the same directions. As discussed in 

Chapter 2, this small II A 11 1 and Ym (G) suggest that the distillation system is well 

conditioned and the closed loop response of the distillation column will not be 

sensitive to model errors when using a multiple loop or a multivariable control system 

to control T 1 and T 10 simultaneously. The IIAII 1 and y
11
/G) are, however, much 

larger for the other gain matrices with the input changes in opposite directions. The 

large IIAll 1 show the strength of steady state interactions. Together with the large 

Ym(G), indicate that closed loop sensitivity problems may arise during multivariable 

or multiple loop control of T 1 and T10. Furthermore, the large IIAll 1 and y11/G) 

predict that introducing decoupling in the simultaneous control of T 1 and T 10 can 

make the system very sensitive to model errors (Skogestad and Morari (153, 119) 

and Morari (150)). 

The values of the RGA elements for all the gain matrices differ so widely that it is 

difficult to draw any conclusions on the appropriate control loop pairing for the 

simultaneous control of T 1 and T 10 using single loop controllers. In general, what 

the results predict is that sensitivity and interaction problems should be expected 
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particularly if control over a wide operating range is desired. In regulatory control 

over wide operating range is equivalent to controlling the column subject to large 

variations in the feedflow and feed composition entering the column. Multiple loop 

SISO controllers should thus be conservatively tuned when they are to be applied to 

control T 1 and T 10, simultaneously. 

Table 5.5 The Relative Gain Array and the Condition Number of the column 
simulator 

Plant matrix (Gp) IIAll 1 -y(Gp) 

-8.67-1- 3.56-1- 1.02 2.08 3.90 

-3.88-1- 80.77-1-

-0.51' 81.011' -0.0225 2.09 3.925 

-9.531' 33.991' 

-8.67-1-81.011' 15.41 59.64 119.27 

-3.88-1- 33.991' 

-0.51' 3.56-1- 6.24 22.96 45.89 

-9. 531' 80.77-1-

*** The arrows indicate the direction of the step change 

y=Gp(0)u, y=(T 1,T 10), u = (Lr,Qrb), Gp(0) indicates the steady state gain 

matrix 

*** For the units of the gains Lr and F are in 1/hr, Qrb in KW, xf in mass 

fraction T 1 and TIO in °C 
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5.9.1 Selecting the manipulated and controlled variables of the 

distillation column 

There a many options available to control the products of a distillation column. 

Numerous workers such as Skogestad and Morari (153), Desphande (168) and 

Shinskey (167, 142) have discussed the various methods that are used to control the 

products of distillation columns. In this work, interest is in the control of the products 

of a conventional binary distillation system which is the main theme of the work of 

Skogestad and Morari (153). 

The schemes of distillation column product control are generally classified into 

material balance schemes and energy balance schemes (Desphande (168)). In a 

material balance scheme, a product rate (distillate or bottom product rate) is used to 

control the product composition in the case of single product composition control. 

For example, the distillate rate to control the distillate product composition or the 

bottoms product rate to control the bottoms product composition. In the dual 

composition control only one product rate can be the manipulated input as material 

balance around the column has to be satisfied. In energy balance schemes the reflux 

ratio and the vapour boilup from the reboiler are the manipulated inputs. Other 

options include using the ratio of the reflux and the distillate flow and the ratio of the 

vapour boilup and the bottoms offtake rates as manipulated inputs. Skogestad and 

Morari dealt with this in their work on the dual composition control of a binary 

distillation column. Some of his observations and suggestions have been discussed in 

Section 2.2.9. 

Since composition analysers were not fitted on the distillation column used in this 

work, the top and bottom tray temperatures, T 1 and T 10, were selected as the 

controlled variables to indirectly control the product compositions. 

The T 1 was chosen to indirectly control the top product composition since T 1 

bears a direct relationship to the top product and because it is the closest to the top end 

of the column. The closer the temperature measurement location is to the top the 

smaller the error between the liquid composition on the top tray and the top product 

composition (Desphande ( 168 ) ). For the control of the top product composition by 
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feedback manipulation of the reflux rate, moving the location of the measurement tray 

down the column decreases the critical frequency and the maximum controller gain 

that can be used because of the increasing number of hydraulic lags (Beaverstock and 

Hariot (10)). It is therefore better to choose the control plate as close to the top as 

possible. For similar reasons, the T 10 was chosen to control the bottoms product 

composition. The T 10 was preferred to the vapour temperature above the reboiler 

liquid level, Tb' because the former was not subject to oscillatory responses due to 

effects such as the two position control of the reboiler liquid level as shown in 

Figures 5.9a and 5.10. 

For the control of T 1 only, the reflux flow, Lr, was the manipulated input. For the 

simultaneous control of T 1 and T 10, the Lr was paired with T 1 and re boiler heat 

input, Qrb, was paired with T 10. This configuration is equivalent to the dual 

composition control of the distillation column using the LV configuration, where Lis 

the reflux which controls the top product and V is the vapour boilup controls the 

bottoms product composition. As discussed in Section 2.2.9, Skogestad and Morari 

(153) have demonstrated that the LV configuration provides fast initial response to 

setpoint and load disturbance changes. 

5.10 General Discussions and Conclusions 

The question to be addressed at this stage is whether the two models, the column 

simulator and the linearised state variable models, will be of any use in the design, 

analysis and the final screening of control systems that can be applied to the 

distillation column. 

As regards the column simulator, the dynamic response of the actual column to 

step changes in the inputs was predicted adequately by the column simulator although 

many simplifying assumptions were made in building the model. However, the 

model verification results demonstrated that the column simulator exaggerates the 

speed of response and the gains of the actual column. This is considered useful from 

the perspective of conn·oller design since if a controller perfom1s well on the column 

simulator the controller should be expected to provide good control on the actual 
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column. A simple reason can be given. The proportional gain of a PI controller is 

proportional to the inverse of the process gain, as can be seen in the Cohen and Coon 

controller tuning equations in Appendix A2.2.1. Thus, it would be advantageous to 

use the larger gains of the column simulator to design PI controllers for the actual 

column as this would result in a PI controller that is not too tight (Table 5.6 shows 

corresponding PID controller settings using gains and time constants from Table 

5.4). This means robustness is achieved to a certain degree. 

Considering the conditions under which the controller will be operating, if adverse 

conditions are handled satisfactorily on the column simulator which exaggerates the 

responses of the column, the controller will be expected to handle similar adverse 

condition on the actual column which is slower and has smaller gains. 

From these points of view, it is considered advantageous to use the column 

simulator as a substitute to the actual distillation column in the analysis and the 

screening of control systems for the column. 

As regards the linearised state variable model, the comparison of its response with 

that of the column simulator indicated that the linearised model is only valid within a 

small region which the linearisation was done. The linear model severely 

underestimates the gains and the speed of responses of the column simulator and the 

actual column as well judging from the comparisons of the column simulator and the 

actual columns responses. Thus, as mentioned earlier in the chapter, controller 

designs that a based on using the state variable models directly would be put to severe 

test when they are applied on the column simulator and on the actual column. Since 

the linearised model underestimates the gains of the simulator it may result in 

controller design that are tight. If such a controller then performs satisfactorily on the 

simulator and then on the column, the benefits of the controller, particularly in terms 

of robustness, would be demonstrated. 

The sources of errors in the predictions of the column simulator are numerous. 

Firstly, the assumption of only latent heat changes in the reboiler is not strictly true 

since not all the liquid content is heated up and some heat losses are present because 

some parts of the surface of the reboiler drum are exposed. This invalidates the 
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Table 5.6 Controller settings for PI and PIO controller using the Cohen and Coon 
controller setting equations for set oint tracking in Stephanopoulos (116). 

Control loop K 1:p Kp 1"· 
I 1:d Notes 

Lr-T1 1' -0.5 1.92 -10.74 1.113 0.173 PIO 

-7.07 i .JS PI 

-.!, -8.67 5.59 -1.746 1.18 0.170 PIO 

-1.17 1.403 PI 

Qrb-T 10 81.01 4.59 0.154 1. 1 8 0.178 PIO 

().10 1 . .:15 PI 

3.56 1.18 1.05 1. 03 0.169 PID 

0.605 0.895 PI 

Sampling interval used in the calculations is 0.5 minutes 

1:P and 1:i are in minutes 
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assumption of adiabatic condition in the column. Furthermore, the whole reboiler is 

modelled as a simple mixing tank ignoring the more complex phenomena taking place 

in the thermosyphon reboiler arrangement. 

Other sources of errors in the predictions of the column simulator were: 

(1) uncertainties in the reflux and reboiler flow measurements. 

(2) unknown extra reflux due to vapour line above the top of the column, which 

was observed to be significant. 

(3) variations in the reflux temperature which is assumed to be constant in the 

model. 

(4) errors of± 2% w/w in determination of the feed composition. 

(5) the assumption of constant pressure throughout the column. During the 

experimental investigations, it was observed that the pressure at the bottom 

end of the column was usually about 10 - 15 mm Hg greater than at the top 

end during operation of the column. 

(6) the assumption of 90% efficiency, on the basis of the simulation results of 

Daie (26). Incorporating the approach for efficiency calculations developed 

by Fletcher (64) could be investigated in the search for better results. 

5.11 Chapter Conclusion 

This chapter has dealt with the steady state and dynamic modelling of the 

distillation column which were carried out in preparation for the design analysis and 

final screening of control systems for distillation system. The usefulness and possible 

limitations of the column simulator and the linearised state variable models as regards 

the analyses that they were required for were addressed in this chapter. The next stage 

was using these models for the intended analyses. 
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CHAPTER SIX 

Application of the Decoupling and Disturbance Rejection control to the 

linear and non-linear models of the binary distillation column 

6.1 Introduction 

The discussions in Chapter 4 dealt with the construction and instrumentation of 

the pilot scale distillation column on which control studies were carried out. Chapter 5 

dealt with the development of models for the distillation column which were used for 

the design and analysis of the control systems for the distillation column. The two 

dynamic models of the column, the column simulator and the linear state variable 

model of the column, were those used for analyses. Chapter 3 gives details of the 

issues to be addressed on the controller designs selected for investigation in this work 

and this chapter focuses on one of these applications. 

This chapter discusses modelling the behaviour of the decoupling and disturbance 

rejection control using the distillation column models. The linearised state variable 

models were used for the design of the control scheme. The column was modelled 

using either the linear models or the column simulator to assess the feasibility of on­

line application of the control scheme. The results will demonstrate the limitations and 

usefulness of the approach in the design and applications of a control system based on 

state variable feedback approach. The setpoint tracking capabilities of the controller 

are also assessed. 

The disturbance rejection and decoupling controller is a controller with 

proportional action only. Therefore it is not equipped with the ability to remove 

offsets which may be caused by unmeasurable input disturbances or model en-ors, as 

the controller has no integral action. adding integral mode to the controller would 

equip it with the capability of removing offset from steady state. The addition of 

integral mode, and derivative mode as well, into the control scheme is discussed in 

this chapter. 
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6.2 Synthesis of the Decoupling and Disturbance Rejection control 

scheme. 

The synthesis procedure of the decoupling and disturbance rejection control policy 

have been presented in Section 2.6.2. It is presented here again for clarity. 

The control law is 

u = Fx + Gw 6.1 

for the distillation system, assumed for the purpose of controller design to be 

described by the linearised state variable model; 

dx/dt = Ax + Bu + Dzd 

y = Cx 

6.2 

6.3 

The A is then x n system matrix, B is then x m input driving matrix, Dis then x 

nd disturbance matrix, C is m x n the output matrix, y is the m x 1 vector of the 

outputs to be controlled, w is the m x 1 vector of the setpoints, u is the m x 1 input 

vector of the controls, zd is the nd x 1 disturbance vector and x is the n x 1 vector of 

the state variables. The F is the m x n constant state feedback gain matrix and G is the 

m x m precompensator gain matrix sometimes referred to as the prefilter (Preuss 

(208)). The state feedback gain matrix, F, is designed to effect load disturbance 

rejection from the outputs, y, in the presence of unmeasured load disturbances, zd. 

The precompensator, G, equips the controller with the capability to track the setpoint, 

w. 

By substituting Equation 6.1 into Equation 6.2 and then using Equation 6.3, and 

setting zd = 0, the closed loop equation relating y to w can be obtained, in Laplace 

domain, as 

-1 
y(s) = C (sl - (A+ BF)) BGw(s) 6A 

where s denotes the Laplace transform operator. Similarly, the closed loop equation 

relating the y to zd is 

-1 
y(s) = C(sl-(A+BF)) Dzd(s) 6.5 

For the distillation column used in this work nd = 2, m = 2 and n = 12 and the 

reboiler and reflux drum compositions are the controlled outputs. The state vector x 

contains 
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X=(~xd,~x 1,~x2,~x3,~x4,~x5,~x6,~x7,~x8,~x9,~x 10,~xb) 
T 

The symbols xd and xb are the top and bottoms compositions, respectively, and~ 

represents deviation from steady state. The subscript i in xi represent the tray 

composition on tray i. The u, zd, and y are 

u = (~Lr, ~Qrb) T 

T 
zd = (~F, ~xf) 

T 
y = (~xd, ~xb) 

The units of Lr, Qrb,F,and the compositions are in grammes per minute (g/min), 

joules per minute (i/min), g/min and mass fraction, respectively. 

The control law in Equation 6.1 is obtained in the following sequence; 

1) Determine the decoupling index di is 

di= min (i : CiAJB -:t 0, j = 0,1,2, ... ,n-1) 

6.6 

2) Compute A* and B* as follows: 

A*= 

6.7 

B*= 

6.8 

where Ci is row i-th of the matrix C. 

3) If B* is non singular then compute the controller matrices F and Gas 

F = (kfMkC Ak-A* I 
k=O J. 6.9 

G = (B*t 1K* 

where a= max/di) 

238 

6.10 



M _ . (1) (2) (m) 
k - diag ( <; k' <; k' ..... , <; k) 

(i) 
<; k= 0 for k > di 

K* d. (k * k * k *) = iag 1 ·' 2 ·' ···, m 

In the case studied here the poles have the units minute-I. The diagonal matrix 

K* was set as the identity matrix, I, when computing G for reasons that will be 

explained later. 

4) Compute the feedforward compensator, T f, as 

T r= -(B TBf 1B TD 

for the feedforward controller 

u = Tr X zd 

6.11 

6.12a 

The feedforward compensation can also be combined with state feedback control 

to give 

u =F.x+Tr,zd 6.12b 

5) Use the procedure of Takamatsu and Kawachi (129) to find the minimum 

number of state variables to be fedback for complete decoupling. This involves 

choosing a matrix H so as to satisfy 

CiAk(I-H)=O, i= 1 tom, k=Otodi+l 6.13 

for each output i. The diagonal elements of H which have the value 1 correspond 

to the state variables that must be measured. The flowchart for this procedure 

has been given in Figure 2.7. Figures 2.5 and 2.6 show the block diagrams for 

the closed loop systems with and without H. 

The synthesis procedure given above was written in Basic09 on the System96 

microcomputer. The functions of the key program modules are presented in Appendix 

A3. l. Two linearised state variable models representing different steady state regions 

of the column simulator are used in the studies. The coefficients of the A, B and D 

matrices for these two steady states have been presented in Tables 5.2a and 5.2b. In 

this chapter, the linearised model derived at the region of high top product purity will 

be referred to as model LMl; the model derived at the region of lower top product 

purity will be referred to as model LM2. 

239 



6.3 Controller design. 

The design of the decoupling and disturbance rejection control scheme requires 

the following to be specified; 

a) the closed loop poles, which must be negative for closed loop stability to be 

achieved, to give the desired closed loop responses of the outputs 

b) the diagonal elements of K*, if setpoint tracking is considered. 

Only the tridiagonal elements of the system matrix, A, were used in the models 

LMl and LM2. The elements off the tridiagonal were considered as errors incurred 

due to the linearisation procedure and were made equal to zero when computing the 

controller matrices. 

For the controlled variables chosen as the top and bottoms products, xd and xb, 

the following results were obtained from the controller synthesis procedure; 

a) The decoupling index di = 0 for both outputs, i = 1 to m . The number of 

poles that can be arbitrarily assigned is 
i= m 

m+ L,di 
i = 1 

6.14 

which is equal to m. This implies that only two closed loop poles need to be 

assigned in the controller design. Thus, 

Mk =Mo= diag(c;;(l)o, <;(2) o) 6.15 

which implies that one close loop pole is assigned for each output. According to 

Shimizu and Matsubara (113), the transfer function matrix between y and w is, 

G(s) = diag(k1 */(s-c;;Cl)0), k1 */(s-c;;C2)0)) 6.16 

This means that the closed loop response of each output, Yi, is required to be 

first order with time constant equal to the negative reciprocal of c;;Ci)0. 

b) A minimum number of four state variables should be fedback to achieve 

complete decoupling control. These variables are xd, x 1, x10 and xb. This 

result is not consistent with those of Takamatsu and Kawachi (129) who found 

that a minimum of 5 state variables, the 1 st, 2nd,3rd, n-1 th and the nth, were 

required to accomplish complete decoupling control of a binary distillation 

column with the top and bottom products as the controlled variables. The reason 
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for this is that the structure of the input matrix, B, of the linear state variable 

model of the column simulator is different from the structure of the model of 

Takamatsu et al. (130). The B 11 and B 12 elements of the model of the 

simulator are non-zero, but very small compared to the other elements in the 

corresponding rows. This is due to the way in which the column simulator was 

linearised (Section 5.4). The same elements in the model of Takamatsu et al. are 

zero, as they consider this to be the case for the usual binary distillation column. 

The non-zero B 11 affected the decoupling index, d 1, which would have been 1 

if B 11 = 0. 

The feedback gain matrix, F, and the precompensator matrix, G, were computed 

for different pole assignments M 0 = diag(O.O, 0.0), M 0 = diag(-0.3, -0.3), M 0 = 

diag(-0.8, -0.8). As discussed in Chapter 2 Section 2.6.2, the assignment M 0 = 

diag(0.0,0.0) implies an integrator decoupled system is desired. Table 6.1 show the 

F and G matrices for the above pole assignments. The Fis a 2 x 12 matrix and the G 

is a 2 x 2 matrix. The K* = I was always assumed when calculating G. This was 

done to make it convenient to manipulate the diagonal elements of K* just prior to an 

application, should it be necessary. It is important to note that, from here on, the 

reference to the F matrix includes the multiplication of the H matrix which holds the 

information on the number of state vaiiables that must be fed back. 

Table 6.1 shows that only the elements of the first and the last columns of F, F 1 

and F 12, are affected by the pole assignments, where Fi denotes column i of F. This 

is because F2 and F 11 are uniquely determined but the F 1 and F 12 are used for pole 

assignment. This can be verified by examination of Equation 6.9 which will show 

that the poles M0 = diag(c;(1)0, c;(
2

) 0), will affect only F 1 and F 12. All the elements 

of, F, Fi for i = 3 to 10, have zero elements. Even if these elements were nonzero 

they will effectively become zero by FH because their corresponding state variables 

are not measured. 

The entries of F and G are large in magnitude, indicating a very sensitive control 

system would result. The reason for these entries having large magnitudes is because 

the entries in the first and last rows of B, B 1 and B 12, and the diagonal entries A1 1 , 
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and A12 l2 in the system matrix A are much smaller in magnitude compared to the 
' 

other entries in the respective matrices. This is an indication of illconditioning of the 

distillation system and is due to the much larger holdups of the reflux and reboiler 

drums compared with the tray holdups. The consequence is a small B* and, hence, 

large F and G coefficients. 

Table 6.1 Controller Matrices for Model LM2: Top and bottoms product 
compositions as the controlled variables 

A* = [-0.124 7 4. 77 6 x 10 -
2 

0 0 0 0 0 0 0 0 0 0 ] 
0 0 0 0 0 0 0 0 0 0 0.176 -0.3173 

[ 
-7 -10] B* = -1.4709 x 10 4.0677 x 10 
-6 -8 

4.7970 X 10 -4.8247 X 10 

G = [-5330252674.12 44962.49] f K* = I 
-5302526764.0 -16255786.7 or 

[
-665167.25 254722.70 0 0 0 0 0 0 0 0 -7915.84 14266.65 ] 

F = -66136579.20 25326695.4 0 0 0 0 0 0 0 0 2861901.06 -5157981.35 

for Mo = diag(0.0) 

F =[ 934734.28 -254722.70 00 000000 -7915.84 
92939222.9 25326695.4 0 0 000000 2861901.06 

for M0 = diag(-0.3,-0.3) 

777.907 ] 
-281245.33 

[
3601236.84 -254722.70 0 0 000000 -7915.84 21703.34 ] 

F = 358065560.0 25326695.4 0 0 0 0 0 0 0 0 2861901.06 7846648.03 

for Mo= diag(-0.8,-0.8) 
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6.4 Implementation of the control scheme to the linear model 

Implementation on the linear model represent preliminary tests which were done to 

examine how the decoupling and disturbance rejection control scheme works. The 

simple Euler integration method was used to integrate the linear differential equations 

with the integration interval chosen as 0.02 minutes. Substituting Equation 6.1 into 

Equation 6.2 gives 

dx/dt = (A + BF)x + BGw + Dzd 6.17 

which represents the controlled system to be solved. The control interval of 0.25 

minutes was used in all the simulations. Unless otherwise stated, model LM2 is 

referred to in the simulations reported here. 

6.4.1 Load disturbance rejection 

For load disturbance rejection only, the control law is u = Fx since w will be 

equal to 0; G is not required to effect disturbance rejection. The first problem that 

arose was to select the F matrix from Table 6.1 that gives the best control; this implies 

the best pole assignment to give the best control. 

Figure 6.1 shows the results for the case with M O = diag(0.0,0.0) and 

Mo= diag( -.3, -.3) for 25% increase in the feed flowrate. The closed loop responses 

of the outputs for this case are clearly unsatisfactory. The manipulated inputs 

saturated at their lower constraints immediately after simulation commenced, and 

resided at these limits for a long period. They exhibited sharp bursts until they 

eventually moved to their upper constraints in one step. The outputs showed sudden 

changes in their directions which corresponded to the sudden movement of the inputs 

from their lower constraints to their upper constraints. For M0 = diag(-.3,-.3) the 

closed loop responses improved, but only slightly. The main difference is that the 

manipulated inputs did not show any intermittent bursts after they had saturated. 

Several simulations where pc:rformed using smaller load disturbances and with 

different pole assignments. Unsatisfactory control was always delivered; the 

manipulated inputs always saturated. The reason for this behaviour was the large 
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magnitudes of the coefficients of the F matrices which subsequently produced very 

sensitive controlled system. This demonstrated the extent of illconditioning of the 

distillation system. 

In the search for better and more useful results, it was decided to use the top and 

bottom tray compositions, x 1 and x 10, as the controlled vaiiables. Another set of F 

and G matrices were computed for this case. Table 6.2 shows the corresponding F 

matrices, and the G matrix for K* = I for the pole assignments Mo = diag(O.O, 0.0), 

M 0 = diag(-0.8, -0.8), M0 = diag( -5, -5), M0 = diag(-0.8, -5.0), M0 = diag(-5.0, -

10). The results of the synthesis procedure showed that only two poles need to be 

assigned, as was the case when the xd and xb were the controlled variables. 

However, the number of state variable that must be fedback increased to 6 state 

variables. The state variables are xd, x1, x2, x9, x10, and xb. Table 6.2 also show 

that only the entries of the second and the eleventh columns of F, F 2 and F 11 , were 

affected by the pole assignments. Furthermore, the entries of F and G are much 

smaller in magnitude compared with those obtained when xd and xb were the 

controlled variables as shown on Table 6.1. A less sensitive control system was thus 

given simply by choosing the control location as the trays at the ends of the column. 

In the previous chapter, the top tray and the bottom tray were chosen as the 

location where temperature measurements are to be located for the dual composition 

control of the pilot plant distillation column. The results of the synthesis procedure of 

the decoupling and disturbance rejection control scheme supports this choice of the 

measurement location. This is because a less sensitive controller resulted when the top 

tray and the bottom tray compositions were selected as the controlled variables instead 

of the top and bottoms products. The disadvantage, however, is that the number of 

state variables that must be fedback has increased. Thus, from the point of view of 

reducing the cost of measuring, it is better to choose the controlled variables as the top 

and bottoms products while it is better to choose the top and bottom tray compositions 

as the controlled variables to obtain a less sensitive closed loop system. Therefore, 

not only has the synthesis procedure provided the controller matrices, the results it 
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produced provided useful information as regards sensitivity of the closed loop system 

and cost of performing decoupling and disturbance rejection control. 

The results of the synthesis procedure were sensitive to the errors in the system 

matrix, A. When the entries that are not on the tridiagonal were retained, the result 

obtained suggested that all the 12 state variables must be fedback. A set of 

corresponding F and G matrices for Mo= diag (-0.8,-0.8) are shown in Table 6.4. 

This control structure is not practical since to measure all the tray compositions for 

feedback means that composition analysers must be located on each tray. This would 
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Table 6.2 Controller matrices for model LM2, with the top tray and bottom tray 
corn ositions are the controlled variables 

A*= [5.542 -9.297 4.018 0 0 0 0 0 0 0 0 0 l 
0 0 0 0 0 0 0 0 0 11.34 -29.551 16.009 

[ 

-3 -61 B* = 3.143 x 10 -6.862 x 10 
-3 -6 

1.265 X 10 -7.010 X 10 

[
524.92 -513.90 l 

G = 94719.14 -235390.82 
for K*=I 

[
-2902.24 4880.41 -2109.48 000000 5826.22 -15186.23 8227.39 ] 

F = -524956,1 880642.91-380643.80000002668668.83 -6955971.92 3768511.69 

for Mo = diag(0,0) 

[
-2902.24 4460.48 -2109.48 000000 5826.22 -14775.11 8227.39 ] 

F = -524956.1 804867.6 -380643.8 0000002668668.83 -6767659.25 3768511.69 

for Mo= diag(-0.8,-0.8); 

[
-2902.24 2255.806 -2109.48 000000 5826.22 -12616.72 8227.39 ] 

F = -524956.1 407047.21-380643.80000002668668.83 -5779017.79 3768511.69 

for Mo = diag(-5.0,-5.0t 

r -2902.24 4460.48 -2109.48 000000 5826.22 -12616.72 8227.39 ] 
F = L-524956.1 804867.81-380643.80000002668668.83 -5779017.79 3768511.69 

for Mo=diag(-0.8,-5.0); 

[
-2902.24 2255.806 -2109.48 000000 5826.22 -10047.2 8227.39 ] 

F = -524956.1 407047.21-380643.80000002668668.83 -4602063.67 3768511.69 

for Mo=diag(-5.0,-10); 
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ble 6.3 Feed forward comoensator for model LM2 

[
0.447 683.405] 

Tr= 199.316 268207.056 

ble 6.4 Controller Matrices for Model LM2: Effect of the errors in the state matrix on the coefficients of the controller. 

[
524.92 -513.90] 

G = 94719.14 -235390.82 

[

-2924.401 4451.46 2108.81 
F = 531902.24 800737.17 -380340.26 

I 

. for K*=I 

54.7 -0.4489 -0.2687 -0.300 -0.300 
-9893.45 -144.43 -132.182-152.245 -160.49 

-0.46628 
-244.78 

!;: 
N 

5852.46 -14774.71 8273.83 ] 
2668712.82 -6767586.02 3776891.28 

for Mo= diag(-0.8,-0.8) 
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be very expensive to do in practice. The result highlights that the combination of 

computer roundoff and small errors in the model used for controller design can 

significantly affect the results produced. 

Simulations were carried out to assess the capabilities of the disturbance rejection 

controller in the presence of 

1) for 25% increase in the feed flow rate 

2) for 25% increase in the feed composition and 

3) non-linearities,which is a type of model error commonly encountered in the 

design of control systems for processes. 

The latter was done to assess how well the control scheme can tolerated non­

linearities; that is how robust the controller is to non-linearities. The test was carried 

out by applying a controller designed using a linearised model at one steady state to 

control a linearised model derived at another steady state; by applying a controller 

designed using model LMl on model LM2, for example. Feedforward compensation 

using Equation 6.12a and combined disturbance rejection and feedforward 

compensation, were both examined. The combined feedback and feedforward control 

law is Equation 6.12b. 

Limits were placed on the control actions in order to represent reality. The limits 

were 

1.0 :S: Lr :S: 16 1/hr 

0.3 :S: Qrb :S: 1.5 KW 

The observations that were made are outlined in the following. 

6.18 

1) Specifying the poles as Mo= diag(0.0,0.0) required an integrator decoupled 

closed loop system and this resulted in poor controller pe1formance as shown in 

Figure 6.2 for 25% increase in the feed flow rate. The manipulated inputs 

saturated at their lower constraints and resided at their limits throughout the time 

duration of the simulation. The response of the top tray composition showed an 

initial rise in response to the load disturbance. The attempt by the controller to 

return it back to the desired value resulted in the sharp change in the direction of 
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the output and subsequently settling at a steady state well below the desired 

value. The offset of the bottom tray composition was also significant. This 

demonstrated that specifying an integrator decoupled closed loop system is not a 

good choice, as it resulted in an undesirable closed loop response. 

2) Feed flow disturbance resulted in offset in the bottom tray composition. This 

offset reduced as the magnitude of the poles increased. Figure 6.3 shows this 

for the cases with M0 = diag(-0.8,-0.8) and Mo= diag(-5,-5) specified. With 

the faster desired closed loop response (Mo= diag(-5,-5)) the quality of control 

improved because the rise of the top and bottom tray compositions were arrested 

more quickly, thus, reducing effect of feed flow on both outputs and the final 

offset in the bottom tray composition. These improvements were achieved with 

much less control effort as the manipulated variables only moved slightly from 

there original values compared to when M 0 = diag(-0.8,-0.8) was specified. 

The feedforward compensator alone (Equation 6.12a), with the T f shown on 

Table 6.3, could not completely remove the effects of the feed flow disturbance 

on both outputs as shown in Figure 6.4. The combination of feedback and 

feedforward control, using Equation 6.12b, resulted in poorer quality of control 

compared with state feedback control alone and feedforward compensation only. 

The closed loop system lost resilience as regards removal of the disturbance 

effects from the top tray composition. This is shown in Figure 6.5 in 

comparison with control without feedforward compensation. It can be seen that 

a considerable offset is in the steady state value of the top tray composition and 

there is still significant offset in the bottom tray composition. 

3) The effect of feed composition disturbance on the top and bottom tray 

compositions were completely removed by the disturbance rejection controller as 

no offsets appeared in the final steady states of both outputs. Figure 6.6 

compares the responses for M0 = diag(-.8,-.8) and M 0 = diag(-5,-5). As was 

the case for feed flow disturbance rejection, as the poles become larger in 
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magnitude the maximum peak deviations of the outputs reduced, the final values 

of the control inputs were found more quickly and, thus, the system reached 

steady state more quickly. Feedforward compensator (Equation 6.12a) alone 

resulted in offsets in both outputs as shown in Figure 6. 7, as was the case when 

the system was subjected to feedflow disturbance (Figure 6.4). The closed loop 

system behaved very badly, however, when the combined feedback and 

feedforward compensation (Equation 6.12b) was used to reject the effect of the 

feed composition disturbance on the outputs. This is shown in Figure 6.8 for 

Mo = diag(-0.8,-0.8) in comparison with state feedback control control alone. 

The manipulated variables saturated at their lower limits and remained there 

throughout the duration of the simulation and, thus, the offsets in the final 

values of the outputs were significant. This deterioration in control was worse 

than when feedforward compensation was included with state feedback to 

remove feed flow disturbance effects on the outputs (Figure 6.5). 

4) To assess the effect of non-linearities on the control properties of the 

disturbance rejection controller and how well it can tolerate non-linearities, the 

controller designed using model LM2 was applied on model LMl and the 

performance compared with that of a controller designed using model LMl 

applied on model LMl. Table 6.5 contains the F and G matrices for M 0 = 

diag(-0.8, 0.8) for model LMl. Comparing these with those on Table 6.2 for 

model LM2 with the same M0, the differences in magnitude between the entries 

of corresponding entries are quite significant, indicating that the disturbance 

rejection control scheme would be very sensitive to non-linearities in the 

distillation column. The result shown in Figure 6.9 confirmed this. The effect of 

non-linearities was to deteriorate the resilience of the closed loop system, 

causing offsets. However, instability did not result, indicating some degree of 

robustness. A better assessment of the robustness of the control scheme to non­

linearities is to use the nonlinear column model. This is will be discused later in 

the chapter. 
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These sets of results show that an integrator decoupled system should be avoided 

for good stable control to be achieved. The complete rejection of the feed composition 

disturbance from both the top and bottom tray compositions, and the offset that 

appears in the case of feed flow disturbance rejection are consistent with the published 

result of Shimizu and Matsubara (113). 

As stated Shimizu and Matsubara (113) and in Shah (207), using feedforward 

compensator T f alone would not completely remove the effects of disturbances from 

the outputs if the number of manipulated inputs is less than the number state 

variables, that is if m < n. The results discussed above confirmed this as offsets 

occurred in both outputs when the feedforward compensation was used alone 

(Figures 6.4 and 6. 7). The results also showed that there was degradation in the 

control when the feedforward compensator was combined with state variable 

feedback for both feed flow and feed composition disturbance rejection. 

The results show that as the magnitude of the poles is increased the effects of the 

feed flow disturbances on the outputs are minimised and control effort required also 

reduced. It is therefore advantageous to maximise the closed loop poles in order to 

minimise the offset caused by feed flow disturbance, rather than trying to eliminate 

the offset completely by introducing the feedforward compensator T f· 

A deficiency of the disturbance rejection controller observed from the simulations 

using feedforward compensation and introducing non-linearity, is that the control 

inputs tended to saturate very quickly and reside at the limits for most of the time. 

This easy saturation of the control inputs is also a serious disadvantage as the inputs 

were useless for control when they saturated. 
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(Table 6.5 Controller matrices for model LM 1 

[ 
-14185.80 21057.07 -7231.27 000000 4260.34 . -9632.16 5357.14 ] 

F = -27488~5.08 3907347.49 -1401746.27 000000 1847009.27 -4175878.42 2322508.17 

for Mo = diag(-0.8,-0.8) 

[
2515.95 -371.18] 

G = 463220.82 -160921.40 
for K*=l 

N 
V) 
N 



6.4.2 The setpoint tracking problem 

As was mentioned in Chapters 2 and 3, previous workers (Shimizu and 

Matsubara (113, 114) and Takamatsu and Kawachi (129)) who applied the 

decoupling control approach to distillation systems did not examine the setpoint 

tracking problem and the gave no guidance on how to choose the proper K*. The 

investigations discussed here were aimed at answe1ing the following questions; 

1) How important is the choice of K* to setpoint tracking capabilities of the 

controller? 

2) How should the proper values of K* be chosen ? 

For setpoint tracking the control law is Equation 6.1 

u = Fx + Gw 

The w is the vector of the setpoints w = (t1x 1 s, "1x 1 Os) T where the subscript s 

denotes setpoint. As mentioned earlier, the G matrices were computed using K* = I 

to allow the manipulation of K* to be done conveniently when the controller is 

commissioned. 

Figure 6.10 shows the results for the case when M 0 = diag(-0.8,-0.8) for 

different values of K*. The responses of both outputs followed their specified closed 

loop responses, which is a first order response with time constant of 1.25 minutes 

(1/0.8). The responses were also completely decoupled from each other, as desired. 

One important observation that can be made from the graph is that offsets in the 

final values of the outputs occurred when K* was not chosen as diag( +0.8,+0.8), 

that is, when K* -:f::. -M0. Figure 6.11 showed that specifying Mo= diag(-5,-5) the 

closed loop response is faster than when M 0 = diag(-0.8,-0.8). Again offsets 

occurred when K* was not chosen as diag( +5,+5). The elements K* had to be 

changed form K* = 0.8I to K* = 5.0I in order to have zero offset. 

Many similar simulations were perfo1med with different pole assignments in the 

controller designs. The results c011sistently showed that for setpoint tracking K* = -

Mo must be selected to avoid offsets in the final values of the outputs. Figures 6.12 
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and 6.13 show this for Mo= diag(-0.8,-5.0), K* = diag(0.8,5.0) and for Mo= diag(-

5.0,-10.0), K* = diag (5,10), respectively. 

The results discussed above gave a conclusive answer to the first question. These 

are that the choice of K* is important to set point tracking, it depends on the closed 

loop poles and must be chosen as the magnitude of the poles. The second question 

concerning how to chose K* needs justification and this is given later. 

6.4.3 Effect of non-linearities on setpoint tracking 

The condition that K* must be chosen as -M0 to avoid offsets did not hold in 

presence of non-linearities in the distillation system. Figure 6.14 shows this clearly 

for the case using Mo= diag(-0.8,-0.8) with the decoupling controller designed using 

model LMl applied to control model LM2. As in the case for load disturbance 

rejection, the non-linearity degraded control significantly. The manipulated variables 

saturated at their their upper constraints within a short time after the simulation 

commenced. 

This result showed that the decoupling control scheme is not very tolerant of non­

linearities, that is, the performance of the control system is very sensitive to non­

linearities. The implication is that new F and G matrices must be computed as the 

operation conditions change. This is a tedious task to perform as it implies 

recomputing the A, B and D matrices at the required times during operation of the 

column. 

6.4.4 Comparison with conventional multiple loop PI control 

The performance of the decoupling and disturbance rejection control scheme and 

multiple single loop PI controllers were compared. The Cohen and Coon (203) 

method was used to assist the determination of the PI controller settings. The settings 

are: 

Kc= 800 (grammes/rninutes)/mass fraction 

'ti = 3.0 minutes 
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for the Lr - x 1 loop, 

Kc = -15,0000 (ioules/minutes)/mass fraction 

'Ti = 1.2 minutes 

for the Qrb - x 10 loop. 

Figure 6.15 compares the closed loop responses for M0 = diag(-5, -5) and the 

multiple PI controllers for +25% feed flow disturbance. Under the multiple loop PI 

controllers the system had not reached steady state even after 30 minutes and the 

control loop interactions were significant. By contrast, the disturbance rejection 

control scheme returned the outputs to steady state in much shorter time. Similar 

results were obtained for simultaneous load (25% increase in the feed composition) 

and setpoint changes. These is shown in Figures 6.16. 

In conclusion, for the distillation system described by linearised state variable 

model, the decoupling and disturbance rejection control scheme is superior to multiple 

loop PI control in the following ways; 

(a) It achieves complete decoupling of the responses of the outputs from each 

other 

(b) It returns the outputs to their desired values in much shorter time, hence, 

increases the rate of recovery of the products of the distillation column. 

The only advantage of using the PI controllers is that any offsets would eventually 

be eliminated by the integral actions in the controllers. The decoupling and 

disturbance rejection control scheme is not equipped with integral action and cannot, 

therefore, eliminate offsets. 
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6.4.S Choosing K * for set point tracking 

In Section 6.4.3 it was shown that for setpoint tracking if K* ~ -M0 then offsets 

will occur. This could be explained from a simple analysis given as follows. For the 

case where di= 0 for all i, from Equation 6.15, the transfer function between Yi and 

wi is k*i / (s-<;(i) 0). Using the final value theorem, the corresponding steady state 

gain is 

- k* i / <;(i) 0 . 6.19 

For y i = w i at steady state, k* i must be chosen so that this gain has the value 1, 

which means that 

k* - /i) i - - -:, 0 6.20 

This was verified by the results of the simulations in Figures 6.10 to 6.13. 

If two poles are assigned for each output, that is di = 1, the transfer function 

between Yi and wi will be k\ / (s-<;(i) o)(s-<;(i) 1). The steady state gain would then 

be 

6.21 

From this it could be presumed that k\ must be chosen as the absolute value of the 

product (<;(i) 0<;(i) 1). The further implication of this, is that, for the general case, di> 

1, each k\ is the absolute value of the product of the poles assigned for that output i, 

with the poles nonzero. That is, 
j = '½ 

k*i = II c-1)js(i) 

j=O 6.22 

An alternative approach to finding the solution to the problem of selecting K* can 

be given from the laplace transform relationship of y and w given by Equation 6.4. 

For zero offset in y to a step change in w, the steady state gain between y and w 

should be 1. Since 

. G = (B*f 1K*, 

it then follows from Equation 6.4 tbat K* should be selected such that 

C (- (A+BF))-
1
B(B*f

1
K* = I 6.23 

The K* must be diagonal, to satisfy Equation 6.10. 
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The proof that K* = - Mo for di= 0 for i = 1 tom is given in the following. 

Proof 

For di = 0 for i = 1 to m 

A*=CA 

B*=CB 
-1 

F=B* (M0C-A*) 

6.24 

6.25 

6.26 

Rearranging Equation 6.23 and substituting Equation 6.26 gives 

BB*-lK* = - (A+ BB*-l (MoC -A*))C-l 6.27 

which gives 

BB*- 1K* = - A c- 1 - BB*-1MoCC-l + BB*-l A*C-l 6.28 

Substituting Equations 6.24 and 6.25 into the last term in the RHS of Equation 

6.28 gives 

BB*- 1K* = - A c- 1- BB*-1MoCC-l + BB- 1c-1cAc-1 6.29 

BB*-IK* = - BB*- 1M0 6.30 

Hence 

K* = - Mo 6.31 

QED 

The numerical solution of Equation 6.23 for K* also confirmed that K* = - M0. 

For M0 = diag (-0.8,-0.8), K* was obtained as 

K* = [0.79999998 -3.08 x 10-
8

] 

-9.65 X 10-lO 0.79999998 

which is essentially K* = diag(0.8, 0.8) as the small of diagonal elements can be 

attributed to roundoff errors from the floating point calculations. Similarly, for M0 = 

diag(-5, -5) th[e K* was obtained as _
8
] 

K* = 5.0 -2.55 x 10 

-9.65 X 10 -9 4.99999999 

From the above it is clear the an integrator decoupled system, M O = 

diag(0.0,0.0), will not be suitable for set point tracking even if it results in good load 

disturbance rejection. This is because if K* = 0 no setpoint tracking can be achieved 

as the output from the precompensator G will be zero since G = 0. In view of the 
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closed loop behaviour of an integrator decoupled system in Figure 6.1 and 6.2, an 

integrator decoupled system is thus not a satisfactory choice for this system for both 

setpoint tracking and load disturbance rejection. 

The results of Equation 6.23 do not provide the answer for choosing K* for the 

general case, di > 0, nor does it refute Equations 6.22. To do this requires a system 

where di > 0 for at least one output i. Such a system is the model of a binary 

distillation system studied by Shimizu and Matsubara (113) and the use of the model 

in this work is discussed in the next section. However, before continuing, the 

solution of Equation 6.23 for K* for the case di = 1 will be given to demonstrate that 

the relationship for K* is more complex. 

Solving K* for di= 1 for i = 1 tom gives the following 

For di = 1 for i = 1 to m 

A*=CA
2 

B* =CAB 

F = B*-l (MoC + M 1CA - A*) 6.32 

Equation 6.29 thus becomes 

BB*- 1K* = - A c-1- BB*- 1MoCC-l - BB*- 1M1CAc-1 + BB-l A- 1c-1cA 2c-1 

This results in 
-1 

K* =-M0 -M1CAC 

For the general case it can be determined that 
i -1 

K* = -M0 - (I,MiCA C ) fori = 1 to di 

6.33 

6.34 

This indicates that choosing K* gets more complicated as the decoupling index 

increase from 0. 

6.4.6 Application on the linear model of Shimizu and Matsubara (113) 

The linear state variable model of the binary distillation system used by Shimizu 

and Matsubara (113) is shown on Table 6.6. The model represents a ten stage binary 

distillation system distilling a mixture of ethylene and ethane, and the column 

pressure, p, is also a state variable. The feed composition, xf, and the feed flow, F, 
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are the load disturbances. The controlled variables are the top and bottoms product 

compositions and the column pressure using reflux, Lr, condenser cooling water 

temperature, Tc, and the steam temperature, Th. The A, B and D matrices of the 

system have the dimensions 11 x 11, 11 x 3, and 11 x 2, respectively. The 

corresponding zd, y, and ware (LiF, Lixf)T, (Lixd, Lixb, Lip)T and (Lixds' Lixbs' 

Lips) T' respectively, where the s denotes setpoint. The state vector x is 

T 
x = (Lixd, Lix 1, Lix2, Lix3, Lix4 , Lix5, Lix6, Lix7, Lixg, Lixb, Lip) 

and the control input u is 
T u = (LiLr, LiTc, LiTh) 

6.35 

6.36 

The compositions are in mole fractions, p is in bar, F and Lr are in Kg-mol/hr, Th 

and Tc are in degrees Kelvin. The synthesis procedure programmed on the System96 

was used to compute the control scheme for this model. The following results were 

obtained. 

l)The decoupling indices are d1 = 1, d2 = 0 and d3 = 0 meaning that 4 poles 

need to be assigned, two poles for Lixd response and one pole each for Lixb and 

Licp responses. 

2)The minimum number of state variables to measure for feedback are 6, and they 

are the first, second, third, ninth and tenth stage compositions and the column 

pressure. 

These agreed with the results published in Shimizu and Matsubara (113). 

3) Using the pole assignments M0 = diag(-56, -9, -10) and M 1 = diag(-15, 0, 

0), as was specified by Shimizu and Matsubara, the corresponding F and G 

controller matrices for K* = I obtained are shown on Table 6.7. For comparison 

the published values obtained by Shimizu and Matsubara are also given. The 

coefficients agree well with the published data and the discrepancies are due to 

computer roundoff on the System96. 

259 



This distillation system is a good example on which to test validity of Equation 

6.22 as more than one pole for one output i = 1 can be assigned, since d 1 = 1. 

Setpoint tracking case was considered, with 

T w = (0.05,-0.05, 0.1) 6.37 

The integration interval of 0.0001 hr and control interval of 0.001 hr were used. The 

results of simulations for setpoint tracking are discussed in the following. 

Specifying K* = diag(840, 9, 10) according to Equation 6.22, it is shown in 

Figure 6.17 that only L1xb and L1p moved to their new setpoints with no offsets in 

their final values, while the final value of L1xd had a large offset. This shows the 

decoupling nature of the control scheme since "bad" performance of one "control 

loop" did not propagate in the system and deteriorate control of the other outputs. If 

limits were imposed on the control inputs, which will be the case in practice, the large 

reflux flow input would have saturated and caused offsets in the other output 

variables. 

The result shown in Figure 6.17 demonstrated that for a controlled output with 

more than one closed loop pole assigned for its desired response, K* must not be 

chosen according to Equation 6.22. Using K* = I, the outputs in no way moved to 

there new setpoints, as is superimposed in Figure 6.17. 

However, solving Equation 6.23 numerically for K*, gave 

K* = diag(56.00001, 8.99992, 9.9998) 6.38 

which corresponds to M0. Figure 6.18 shows the corresponding closed loop 

response for this K*. Clearly, all the outputs moved to their setpoints and no steady 

state offsets resulted. This result contradicts Equation 6.33 as it indicates that the 

second term in the equation, - M 1 CAC-l, does not affect the choice of K*. The 

implication is that this term is zero, which is only true when M 1 = 0. The further 

implication is that the K* must be chosen as -M0 for the general case with di 2 0. 
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Table 6.6 Distillation column model of Shimizu and Matsubara (113). Coefficients of Matrices 

-
-13.50 15.421 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.289 
33.750 -87.094 54.673 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -10.016 
0.0 33.750 -88.423 55.724 0.0 0.0 0.0 0.0 0.0 0.0 -8.042 
0.0 0.0 33.750 -89.474 56.520 0.0 0.0 0.0 0.0 0.0 -6.162 

A= I o.o 0.0 0.0 22.50 -78.179 38.106 0.0 0.0 0.0 0.0 -3.335 
0.0 0.0 0.0 0.0 40.499 -78.606 38.654 0.0 0.0 0.0 -4.319 
0.0 0.0 0.0 0.0 0.0 40.499 -79.153 39.336 0.0 0.0 -5.439 
0.0 0.0 0.0 0.0 0.0 0.0 40.499 -79.835 40.153 0.0 -6.614 I ,...... 

\0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.499 -80.652 41.091 -7.720 0l 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.100 -10.018 -8.652 
-2.241 32.747 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.866 -49.475 

0.0 0.0 0.0 0.0 0.0 
0.00422 0.51258 0.0 0.0 0.0 
0.00340 0.41300 0.0 0.0 0.0 
0.00261 0.31732 0.0 0.0 0.0 

B= 
I 0.00129 0.17213 0.0 

D= 
18.000 0.00016 

0.00102 0.22340 0.0 0.0 0.00102 
0.00129 0.28207 0.0 0.0 0.00129 
0.00157 0.34423 0.0 0.0 0.00157 
0.00184 0.40340 0.0 0.0 0.00184 
0.00041 0.07022 0.0 0.0 0.00041 
0.00183 1.58193 0.97192 0.0 -0.00095 



Table 6.7 The controller matrices for the distillation column model of Shimizu 
and Matsubara (113) 

d1 =1, d2=0, d3=0 
M0 = diag (-56, -9, -10) and M 1= diag (-15, 0, 0) 

[

-29945.6 70495.1 -45357.7 00000 49055.5 
F = 176.05 -414.44 266.66 00000 -403.75 

-342.78 773.24 -519.19 00000 749.26 

-6542.3 -43470.7] 
52.96 378.79 

-123.05 -657.74 

Published by Shimizu and Matsubara (113) 

[

-29415.2 69750.13 -44552.72 0000048182.30 -6055.5 
F = 171.74 -407.25 260.13 00000 -396.68 49.85 

-332.51 760.5 -507.29 00000 736.37 117.1 

-43435.2] 
376.82 
654.49 

Computed on System 96 computer 

[

53.47 -5948.43 15.452j 
G = -0.31 48.97 -0.090 

0.61 -90.91 1.205 

Computed on System 96 computer 

[

54.42 6055.0 15.735j 
G = -0.32 49.84 0.0925 

0.623 -92.48 1.209 

Published by Shimizu and 

Matsubara (113) 

6.4.7 Remarks on the simulations for setpoint tracking 

The simulation results have shown that the choice of K* strongly determines the 

setpoint tracking performance of the decoupling and disturbance rejection controller. 

The appropriate values of the diagonal elements depend directly on the values of the 

closed loop poles assigned. The K* must be chosen to satisfy Equation 6.23 

C (- (A+BF))-1B(B*f 1 K* = I 

which is the steady state relationship between the outputs and the setpoints. The 

analytical and simulations results obtained showed that, for cases with di = 0 and di = 

1, K* must be chosen as -M0.to avoid steady state offset. This was confirmed by the 

simulations on the linearised state variable models of the distillation column and the 

model of Shimizu and Matsubara (113). 
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6.4.8 Using less than the minimum number of state variables that 

should be measured. 

The procedure of Takamatsu and Kawachi (129) (Equation 6.12) gives the 

minimum number of state variables and the state variables themselves that must be 

measured to achieve complete decoupling control using the decoupling and 

disturbance rejection controller. The simulations that have been presented so far 

verified this as the desired control objectives were achieved. The simulations 

discussed here were done to examine what would happen if less than the minimum 

number of :variables are fedback, since there is no guarantee that the variables will all 

be measurable in practice. This possibility was tested on model LM2 by examining 

the effect of not measuring each of the state variables, x1, x2, x9 and x10, on the 

quality of control. Simulations were performed for the setpoint tracking case using 

Mo= diag(-5,-5). 

Figure 6.19 shows the closed loop response when x1 was not measured. The 

control actions were oscillatory at the initial stage causing initial oscillations in the 

outputs. The final value if x 1 showed an offset while x 10 had no offset. 

The absence of x10 measurement resulted in severe oscillatory control actions to 

be generated, as shown in Figure 6.20. This was expected since the entries F 2 and 

F 11 are affected by the pole assignments, so that these entries strongly determine the 

closed loop behaviour of the system. 

The absence of either x2 or x9 also resulted in bad control, as shown in Figure 

6.21 and 6.22. In both cases, saturation of the manipulated inputs occurred very 

quickly. 

These results verified that these 4 state variables must be measured for the system 

to be controllable and that x2, x9 and x 10 are more important than x 1 in achieving the 

control objectives in full. Thus, if in practice any of these variables cannot be 

measured, the decoupling and disturbance rejection control scheme cannot be applied 

successfully. 
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6.5 Application of the disturbance rejection control scheme to the 

column simulator 

Section 6.4 discussed the application of the decoupling and disturbance rejection 

controller on the state variable models of the distillation column. Satisfactory results 

were obtained for both load disturbance rejection and setpoint tracking for many of the 

cases studied. This section discusses the application of the control scheme on the non­

linear model of the distillation column, known as the column simulator. The control 

scheme was assessed for nominal performance on the column simulator for on-line 

application to be considered feasible. As mentioned in Section 2.2.4, nominal 

performance means stable performance of the control scheme on the model of the 

process. The performance of the controller on the column simulator would indicate 

how robust the controller is to non-linearities, as the controller is designed using linear 

state models obtained by linearising the model equations of the column simulator. 

The simulations were performed with the controller designed using linearised state 

variable model LM2 with M0 = (-0.8, -0.8) specified. The sequence followed in the 

simulations is as follows: 

(a) Control the top tray composition, x 1, to 0.85 using PI control, 

(b) Ensure the the column simulator has reach steady state, 

(c) Switch to disturbance rejection and decoupling control 

and then 

(d) Induce changes into the distillation system after some time duration. 

A simulation was first performed with no disturbances induced into the distillation 

system after switching from PI control to the decoupling and disturbance rejection 

control scheme. Figure 6.23 shows the result that was obtained. Shortly after 

switching to disturbance rejection control the manipulated inputs moved quickly to 

their lower limits and remained at these limits. The closed loop system was clearly 

undesirable as the controller failed to maintain both x 1 and x 10 at their initial values 

even though no load disturbances entered the system. This is contrary to what was 
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expected in that the outputs should stay at steady state until a disturbance enters the 

column. 

This result is not easily explained as the column is a non-linear system, however 

non-linearity plays an important role in producing the undesirable behaviour. One 

possible explanation is that it is computer roundoff that produced changes in the 

manipulated inputs which in turn produced changes in the outputs, since at steady 

state the column simulator values are only affected by the computer roundoff. 

Eventually these round-off effects were amplified possibly due to the fact that the 

elements of the F matrices were large. Non-linear effects then came into play and 

prevented the controller from maintaining the outputs at their original values. 

The controller behaved badly because of the significant differences between the 

linear model used to design the controller and the column simulator. The result in 

Figure 6.23 clearly demonstrated that the disturbance rejection control scheme could 

not tolerate the non-linearities in the column simulator; that is the controller was not 

robust to the non-linearities in the column simulator. If the controller were robust to 

the non-linearities, it would at least have been able to maintain the outputs at their 

initial values in the presence of the computer roundoff. On the basis of the poor 

performance of the controller on the column simulator, the disturbance rejection and 

decoupling control scheme is not applicable on the pilot plant distillation system. 

The failure of the controller on the column simulator was consistent with the poor 

performance of the control scheme on the linearised models, where the controller 

designed on the basis of a model at one steady state performed badly on the model 

obtained at another steady state. This was because the region of validity of the linear 

model in approximating the column simulator is very small as was shown in Figures 

5.14a and 5.14b. The result confirms the report by Doyle and Morari (177) and 

Morari (150) that neglecting of non-linearity in a model used for controller design can 

result in a controller that is too tight and hence poor performance on the non-linear 

system may result. In the case of the distillation column the effects of computer round 

off were amplified and this indicated the tightness of the controller as well as the 

limitation for on line application. 
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6.6 Concluding remarks on the simulation results of the decoupling and 

disturbance rejection control scheme 

Application of the decoupling and disturbance rejection control strategy to the 

distillation column simulation has demonstrated the following. For the linear model : 

a) A total of 6 state variables, the 1 st, 2nd, 3rd, n-2 th, n-1-th and the n-th tray 

compositions needed to be measured for feedback for controller design to 

achieve complete decoupling control of the top and bottoms tray compositions. 

b) Only two closed loop poles, one for each controlled output, need to be 

preassigned for desired closed loop response. 

c) The disturbance rejection control scheme can completely remove the effects of 

feed composition disturbances from both the top and bottom tray compositions. 

The effects of feed flow disturbances can be suppressed from both outputs by 

choosing large, negative, poles. 

d) Introducing the feedforward compensator T f into the disturbance rejection 

control scheme degrades closed loop system dynamics. This shows that 

combining the feedforward compensator with state feedback for load 

disturbance rejection is not a good choice, as regards the distillation system 

modelled by the linearised state variable models. 

e) For both setpoint tracking and load disturbance rejection, the decoupling and 

disturbance rejection control scheme performed better than multiple loop PI 

controllers. The disturbance rejection control scheme achieved complete 

decoupling control and returned the system to steady state in shorter times, and 

this time reduced as the magnitude of the poles were increased. In practice this 
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would mean significant reduction in off-specification products of the distillation 

column. 

f) The proper value of K* is strongly linked to the value of the closed poles 

assigned. The diagonal elements of K* must always take the negative values of 

the corresponding poles in Mo to avoid offset in the final value of the 

corresponding setpoint. This condition does not hold in presence of non­

linearities and indicates possible areas were difficulties will be met in practice. 

g) From the simulation results presented earlier, the disturbance rejection and 

decoupling control scheme usually produced undesireable closed loop responses 

in the presence of non-linear effects in the distillation system. The approach was 

therefore not considered a good choice for on-line application on the pilot scale 

distillation column used in this work, since the column is non-linear. 

The most significant limitation of the disturbance rejection and decoupling control 

scheme is the inability to handle non-linearities. Even small non-linear effects will 

cause offsets in the outputs and these cannot be eliminated as the controller is not 

equipped with integral action. This is a major obstacle in the application of the scheme 

to chemical systems, as chemical systems are usually non-linear systems. Control 

systems that are not robust to non-linearities will find limited application in the 

chemical industry. 

To overcome the deficiency due to non-linearities, an adaptive form of the 

algorithm will be advantageous in that new F and G can be recomputed, or updated, 

as operating conditions of the process change. The frequency at which new controller 

matrices will need to be recomputed will depend on the degree of non-linearity of the 

system. An adaptive form of the control scheme also means that all the calculations in 

the synthesis procedure, including the procedure for finding the minimum number of 

states that should be measured, will have to be carried out each time new controller 

matrices are required. The computational effort needed for such a task will be 
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demanding and will increase greatly as the frequency that the new parameters are 

required increases and if the dimension of the system is large. All this still excludes 

the computational requirements of the method that will be used to obtain the new 

matrices A, B and D of the system each time new controller matrices need to be 

updated. 

In simulation, the A, B and D matrices can be obtained by linearising the non­

linear dynamic model itself around reference trajectories as the simulation progresses. 

The appropriate reference trajectory would be at the state the process is at the instants 

when the linearisation is to be done. Emphasis is put on the fact the the dynamic 

model itself should be linearised as this will minimise errors in the resulting linearised 

model. If, for example, an approximate non-linear model is used for the linearisation 

the control scheme will not be able to compensate for the errors between the 

approximate model and the "real" model. 

By similar reasoning, in real applications it would also be inappropriate to use an 

approximate non-linear model for the linearisation as the controller may not be able to 

compensate for the error between the model and the process. A better approach would 

be to identify the system model on line. The estimation technique needed will be one 

that updates the A, B and D matrices with new coefficients using the process data 

available. The computational effort required by such an approach would be very high 

as the number of coefficients of the matrices would usually be large. 

To identify all the coefficients of the system model accurately would also be 

difficult, particularly as the number of coefficients will be large compared to the 

number of measured variables that will be available. In the case the distillation column 

studied in this work, for example, only the feed flow, feed composition, reflux flow, 

reboiler input, top and bottom tray compositions will be available as measurements. 

These are five measurements compared to the total number of coefficients of the A, B 

and D matrices which are more than 30 (Tables 5.2a and 5.2b). The estimation 

technique that will be used will be a recursive technique similar to the recursive least 

squares method commonly used in adaptive control, as discussed in Section 2.9.5. 

To identify all the coefficients of A, B and D would require persistent excitation of the 
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column by the inputs and this excitation must be at the required degree which depends 

on the number of coefficients that are to be identified. If this is not satisfied, when the 

process is at steady state, for example, then some of the coefficients will be biased. 

Similar problems where discussed in Section 2.9.7 in relation to the application of 

parameter estimation techniques in adaptive control. The estimation technique used to 

obtain the A, B and D coefficients would also be susceptible to numerical problems as 

discussed in Jordan (185). For example, if a least squares technique is employed the 

covariance matrix may become illconditioned if the data used for estimation is not wel 

scaled. 

Observability of the process at all times would be important considerations that 

must be addressed. This is an important consideration where a large number of 

coefficients need to be identified from much less measurements. Since it will be 

uneconomical to measure all the state variables of the distillation column, then a 

method is required which can produce estimates of the state variables from available 

process measurements. For this to be successful, the distillation system must be 

observable at all times; the conditions of observability has been stated in Section 

2.3.1. 

6.7 Addressing the problem of offset in the disturbance rejection and 

decoupling control scheme 

The problem in question 

A basic requirement of a control system is that it should have the ability to 

eliminate steady state offset; this requirement is secondary only to the requirement of 

closed loop stability. The discussions in Section 6.4 have shown that a major 

drawback of the disturbance rejection and decoupling control scheme is its inability to 

remove offsets, as the controller gives proportional control only. Some cases where 

offsets occurred when the control scheme was applied to the linear model of the 

distillation column are given as follows: 
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1) Offset in the bottom tray composition in the presence of feed flow disturbance 

(Figure 6.3) 

2) Offsets in the top tray and bottom tray compositions when the feedforward 

compensation alone was applied in the presence of load disturbances (Figures 

6.4 and 6.7) 

3) Offsets in both outputs when K* =-t:. M 0 in the setpoint tracking case (Figures 

6.10 and 6.11) 

4) Offsets in both outputs in the presence of model errors, which was non­

linearities. 

Shimizu and Matsubara (113) suggested the use of the feedforward compensation 

such as the compensator T f to suppress the effects of feed flow disturbance on the 

bottom tray composition. This compensator was applied with and without the state 

feedback on the linear model of the column. The results in both cases, shown in 

Figures 6.4 and 6.5, showed clearly that offsets occurred in both outputs. 

Approaches to solving the problem 

The concept of prop01iional-plus-integral feedback is the most common approach 

used to counter steady state offsets in process control. It would be advantageous to 

equip the disturbance rejection and decoupling controller with the capability to deal 

with offset such as those obtained when the controller was applied on the linear model 

of the distillation system, as listed above. A linear state feedback multivariable 

controller which ensures that steady state offsets do not occur after load or setpoint 

disturbances could be developed or terms such as integral mode could be added to the 

disturbance rejection and decoupling control law (Equation 6.1). If any of this can be 

achieved it is then possible to avoid using the feedforward compensator T f to attempt 

to remove offset in the bottom tray composition due to feed flow disturbance. The 

problem to address would then be the offset due to the remaining 3 cases, 1 ), 3) and 

4) listed above. 

It is possible to design state variable feedback controllers for linear multivaiiable 

systems that provide both disturbance rejection and servomechanism and ensure that 

no steady state offsets occur. Such design problems are dealt with by Preuss (208) 
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and Kimura (210). Only the approach used by Preuss will be review here, since he 

considers general control law of which the disturbance rejection and decoupling 

control law in Equation 6.1 is on such family of control laws. 

The work of Preuss (208) was motivated by the fact that conventional state space 

controller design techniques are usually dedicated to the regulator problem. The object 

of the controller is to supply a control to take the plant from a non-zero state to a zero 

state; that is, to drive the plant output and its derivatives to zero when the plant is 

subjected to unwanted disturbances (Anderson and Moore (211)). Examples of these 

techiques are the modal control technique used by Davison (30), the pole assignment 

technique of Crossley and Porter (195) and the disturbance rejection technique of 

Wonham and Morse (178) used by Takamatsu et al. (130). All these have been 

mentioned in Section 2.4 through to Section 2.6. Typically, the controller is a state 

feedback controller which has proportional action only. It cannot deal with setpoint 

changes and cannot address offset as integral mode is absent. The decoupling and 

disturbance rejection technique used in this work has similar qualities but setpoint 

trncking is allowed for by using the constant prefilter, G, with the state feedback. 

Preuss acknowledged that integral mode is the most popular way of eliminating 

offsets and his view is that a controller should, ideally, have both setpoint tracking 

and disturbance rejection capabilities. He, thus, proposed new methods for 

approaching the design of state variable feedback controllers that will meet the 

requirements of setpoint tracking and regulatory control, avoiding the use of integral 

action or setpoint prefilter. Starting from the control law of Equation 6.1, one 

approach considered by Preuss was to dispense with the prefilter such that the 

objective is to design the feedback control law 

u =Rx+ w 6.39 

where R is an m x n matrix. Comparing with Equation 6.1, the state feedback R is 

similar to the state feedback F in Equation 6.1, and the prefilter or precompensator, 

G, is replaced by the identity matrix, I, of appropriate dimension. The object is to 

design the state feedback R to meet the following requirements: 
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1) Asymtotical closed loop stability, that is, the eigenvalues of A+ BR must have 

negative real parts. 

2) Zero steady state errors in the outputs, that is, offset free response, in the 

presence of setpoint changes and load disturbances where the load disturbances can be 

either measured or unmeasurable. 

The design of R for various objectives are given in the paper by Preuss (208). 

Such design methods would be appropriate for the linear model of the distillation 

column to deal with the offset that occurred in the bottom tray composition after 

feedflow disturbance when the decoupling and disturbance rejection controller was 

applied. 

Preuss gave the necessary condition for the decoupling and disturbance rejection 

controller, Equation 6.1, to be able to achieve the requirements above as well as effect 

dynamical decoupling of the controlled system with the restriction that G = I. The 

condition is that B* in Equation 6.8 has necessarily to be of diagonal structure. 

The results of the synthesis procedure of the decoupling controller in Equation 

6.1 for the linear model of the distillation system (eg. Tables 6.1 and 6.2) shows, 

however, that B* is not of diagonal structure. It is therefore not possible for the 

controller to achieve the requirements of zero steady state errors in the presence of 

load disturbances and, alternatively or simultaneously, setpoint changes. In order to 

achieve the objectives, it is necessary to consider one of the design approaches 

presented by Preuss (208) or consider the addition of integral mode to the disturbance 

rejection and decoupling controller in Equation 6.1. The objective is that Equation 6.1 

should be able to eliminate the offset that will arise when setpoint changes and feed 

flow disturbance are simultaneously occurring, as the simulation results on the linear 

model of the column have shown that feed flow disturbance resulted in offset in the 

bottom tray composition. 

The use of integral action was preferred in this work rather than attempt to apply 

one of the methods proposed by Preuss. The reasons for this is given in the 

following. 
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In the first place, using any of the approaches of Preuss to obtain R in Equation 

6.39 would require calculations which will be of the order of the calculations required 

to obtain F and G matrices in Equation 6.1. Secondly, the offset due to the model 

errors, which is non-linearities in the case in question, cannot be compensated for by 

the state feedback R alone. This is because R is designed for the linear multivariable 

system using the linear state variable model of the column. 

The addition of integral mode to Equation 6.1, on the other hand equips the 

controller with the ability to eliminate offsets caused by unmeasurable load 

disturbances, non-linearities and other sources. 

6.7.1 Incorporating integral mode into the disturbance rejection and 

decoupling control scheme 

The addition of integral action was investigated to see whether it would extend the 

capabilities of the disturbance rejection and decoupling control scheme. It was first 

required to devise a way of introducing integral action into the decoupling and 

disturbance rejection control scheme and then apply it in this work. 

In this work, the approach used to include integral action into the disturbance 

rejection and decoupling control scheme is on the basis of the conventional single 

input single output PI control system. An SISO PI controller in continuous time 

formulation is given by 

u(t) = Kc( e(t) + ~ s:e(t)dt) 
6.40a 

where u is control input, 'ti is the integral time and Kc is the proportional gain. e(t) is 

the error signal given by 

e(t) = Ys -y(t) 6.40b 

where y is the controlled output and the subscript s denotes setpoint. Conventional 

controller design techniques, such as the Cohen and Coon method used in this work , 

are commonly used to obtain starting values of the parameters Kc and 'ti. 

The representation of the decoupling and disturbance rejection control law in 

Equation 6.1, 
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u = Fx + Gw 

can be compared with the representation of a PI controller in Equation 6.39. The 

control law contains terms proportional to the state x and the setpoint w. It is therefore 

equivalent to proportional control action. Integral action can be included by adding an 

integral term similar to the integral term in the PI controller in Equation 6.40. This is 

done as follows 
-1 

u=Fx+G(w+TI h) 6.41 

The term TI-lh is analogous to the integral term in the PI controller 

1 ft 
-J, e(t)dt 
1: 0 6.42 

The h is the integral of the error signal and is given by 
t t 

hj(t) = f ei(t)dt = f (wi(t) - Yi(t)) 
0 0 for i=l tom 6.43 

and TI is a diagonal matrix containing the integral times for each "control loop" i for i 

= 1 tom; 

6.44 

Fwm Equation 6.43 the following differential equations can be obtained: 

dh-/dt = e•(t) = w-(t) - y•(t) for i = 1 tom 
1 1 1 1 

6.45 

Equation 6.45 are m extra differential equations which are solved together with the 

system represented by Equations 6.2 and 6.3. Substituting Equation 6.41 into 6.2 

gives the equation of the closed loop system as 
-1 

dx/dt =(A+ BF)x + BGw + BGTI h + Dzd 6.46 

The solution of the differential equations in Equation 6.45 give the h in the control 

law in Equation 6.41. The next problem was how to select the diagonal elements of 

T, which, by analogy with the PI controller, coITespond to the integral times of each 

"control loop" i. In this work, values for these diagonal elements were obtained using 

the conventional single input singie output controller design method that was used to 

assist the tuning of a PI controller. As mentioned earlier in the chapter, the Cohen and 

Coon Method (203) (Appendix A.2.2.1) was used in this work. 
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Incorporating derivative mode 

A derivative mode can also be added to the control scheme, in a similar way the 

integral mode is added in Equation 6.41. With a derivative mode added, Equation 

6.41 becomes 
-1 

u = Fx + G(w + TI h + Tnde/dt) 6.47 

where TD is a diagonal matrix containing the derivative times. The de/dt is defined by 

de/dt = dw/dt - dy/dt = dw/dt - Cdx/dt 6.48 

since y = Cx. For regulatory control only, dw/dt = 0. This is not so for setpoint 

changes. If, the setpoint changes are step inputs, which is the case used in this work, 

then 

dw/dt = oo. 

To overcome this dw/dt can the approximated by 

dw/dt = L).W/L).T 

6.49 

6.50 

where L).T = af).Tc where a is an integer number which would dete1mine the number of 

intervals over which dw/dt -:f; 0. The value selected in this work was a= 2. 

The derivative mode requires m extra equation to be solved and the selection of 

derivative times in TD· This extra overhead is quite smal compared to the increase in 

the computational overheads thatt would be incurred if Preuss's approach were to be 

used. The diagonal elements of TD may also be chosen using SISO controller design 

techniques. 

6.7.2 Significance of including integral mode 

The way in which the integral and derivative modes has been introduced into the 

decoupling and disturbance rejection control scheme is approached from the point of 

view of analogy with a classical PI control. The question needs examining of whether 

by the inclusion of the integral t~rm, TI-
1

h, and derivative term, T Dde/dt, the 

resulting controller partially, or completely, looses its decoupling capabilities. That is, 
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does Equation 6.41 and 6.47 still posses decoupling property of the original 

controller, Equation 6.1. 

There is, however, some benefit in using simple techniques to extend the 

capability of a multivariable controller such as the decoupling controller, from the 

practical application point of view: the inclusion of the integral and derivative modes 

did not involve rigorous mathematics and there is the possibility of using simple SISO 

controller tuning techniques to obtain starting values of the integral times in T 1 and 

derivative times in TD- Furthermore, the implications in terms of practical applications 

would be great if the integral mode can indeed remove offset due to non-linear effects 

in the distillation column. This would mean increased possibility of applying the linear 

multivariable controller directly to the non-linear distillation system, as the integral 

mode has improved the robustness of the controller to non-linearities. 

In a situation where distillation control objective is to reduce off specification 

product as the cost of off-specification products of the column is high, significant 

motivation exists to eliminate offset when the decoupling and disturbance rejection 

controller is being used. Therefore, even if the control scheme looses its decoupling 

properties, the financial benefits that can be obtained if the offset is eliminated could 

be much greater. 

6.7.3 Application of the decoupling and disturbance rejection control 

scheme with integral and derivative action on the linear model of the 

distillation column 

The proposed decoupling and disturbance rejection control scheme with integral 

action developed in Section 6.7.2 has been applied in some situations where offsets 

occurred when the disturbance rejection and decoupling control scheme (Equation 6.1) 

was applied on the linear model of the distillation column. The situations in which the 

proposed method was applied are as follows: 

Case l); where offsets in the bottom tray composition occurred in the presence of 

a 25% increase in the feed flowrate (Figure 6.3), 
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Case 2); where offsets occurred when K* ;t. -M0 in setpoint tracking (Figure 

6.10) and 

Case 3); where offsets occurred in both the top tray and bottom tray compositions 

when the controller designed using model LM2 was applied on model LMl in 

the presence of a 25% increase in the feed flow rate (Figure 6.9). 

The decoupling and disturbance rejection control scheme with integral action was 

assessed using the F and G matrices obtained for the model LM2 using the pole 

assignments M 0 = diag(-0.8, -0.8). 

The diagonal matrix of the integral times was chosen as TI = diag (3.0, 1.2), 

where the times are in minutes. These integral times correspond to the integral times 

used the multiple loop PI controllers for the top tray composition and the bottom tray 

composition PI control loops. In Section 6.4.4, the performance of this multiple loop 

PI control scheme for both disturbance rejection and setpoint tracking was compared 

with the decoupling and disturbance rejection control scheme without integral action 

(Equation 6.1). 

Figure 6.24 shows the results obtained for Case 1) mentioned above. There was 

no offset in the final steady state value of the bottom tray composition as was present 

when the original decoupling and disturbance rejection control scheme without integral 

action was applied (Figure 6.3). The integral action improved the control of the 

bottom tray composition in that it removed the offset. This was, however, achieved at 

the expense of overall dynamic response of the closed loop system. The control inputs 

and controlled outputs exhibited oscillatory response, as should be the case when 

integral mode is introduced into a proportional controller; inclusion of integral mode to 

a controller with proportional action only increases the order of the overall system and 

thus makes it more sensitive. The oscillations were reasonably well damped and both 

outputs eventually settled at their original levels after 25 minutes. 

The result shown in Figure 6-24 demonstrated that the proposed method of 

introducing integral action is worked satisfactorily in that the offset in the bottom tray 

composition was completely removed. What is also significant in the result is that the 

integral times in TI where chosen as those of the PI controllers in the multiple loop PI 
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control system for the linear model. This demonstrated that the appropriate integral 

times for the proposed decoupling and disturbance rejection control scheme with 

integral mode can be selected using conventional controller design techniques for 

designing single loop controllers for linear systems, such as the Cohen and Coon 

method used in this work to assist the design of the multiple PI controllers for the 

linear model. 

If the integral times in TI are not carefully selected, the closed loop system may 

become unstable. The choice of the integral times in TI would depend on the values of 

the pole assignments in a similar manner as the appropriate integral time will depend in 

the proportional gain in a PI controller. This is because the values of the poles 

assigned determine the speed of the closed loop response delivered by the disturbance 

rejection and decoupling control scheme. The closed loop response becomes faster as 

the magnitude of the is poles increased. This has been shown earlier in this chapter 

that the pole assignment of M0 = diag(-5, -5) gives faster response than when Mo= 

diag (-0.8, -0.8) is specified( Figure 6.3 and Figures 6.10 vs Figures 6.11). This 

effect of the pole assignments on the closed loop response delivered by the 

disturbance rejection and decoupling controller is analogous to the effect of increasing 

the proportional gain of a PI controller. For example, the closed loop response of an 

SISO linear first order system under proportional (P) control would increase as the 

proportional gain is increased. 

Figure 6.25 shows that when the integral times in TI were increased in value to 

TI= diag (7.0, 5.0), the speed of the closed loop response of the linear model and the 

frequency of the oscillations of the outputs decreased accordingly. The oscillatory 

behaviour of the system decreased and the outputs settled at their setpoints in a slightly 

earlier time (20 minutes), compared with when TI = diag (3.0, 1.2) was used. On the 

basis of this result it was decided to use T1 = diag (7.0, 5.0) in the decoupling and 

disturbance rejection control schemi". with integral action. The latter choice is preferred 

as oscillatory behaviour is significantly reduced particularly in the response of the 

bottom tray composition. 
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Figure 6.26 shows the result obtained when derivative mode was added to the 

control scheme with integral mode compared with the result without derivative mode 

in Figure 6.25. The derivative times of TD= diag (1.5, 1.0) was used. These times 

are approximately 10 times the derivative times computed for the top tray and bottom 

tray temperature PID controllers, in Table 5.6.The dynamic responses of the closed 

loop system was more sluggish than without the derivative mode. The most 

significant differences can be seen from the control inputs and the responses of the top 

tray composition. The overshoot is higher than without integral mode, but is lower in 

the case of the bottom tray composition. 

Figure 6.27 shows the result for Case 2), which is for setpoint tracking where K* 

* M0. The figure compared the result for the controller with integral mode with when 

the control scheme is without integral action. The K* was chosen as I and this choice 

has been shown in Figure 6.10 to result in offsets in both outputs for the case when 

Mo = diag (-0.8, -0.8). Slight oscillations of the outputs resulted but offsets did not 

result due to the integral action in the controller. 

Figure 6.28 shows the result obtained when the control scheme with integral 

action was applied in Case 3). The integral action did not eliminate offset in this case. 

Instead it made the performance of the control scheme worse in that the control inputs 

simply saturated at their upper limits and the controlled outputs attained values which 

were unrealistic in practice, as compositions can have the maximum value of 1. This 

result demonstrated the greater sensitivity to non-linearities of the closed loop system 

when the control scheme was equipped with integral action compared with when 

integral action was not present. This greater sensitivity of the closed loop system is as 

a result of the integral action since adding integral action to a controller with 

proportional action only increases the sensitivity of the closed loop system, for 

example, oscillatory responses can be obtained of the integral times are chosen smal 

enough. This factor and the sensitivity to the model errors due to non-linearities, 

combined to produce an even more sensitive closed loop system. Therefore, the 

dynamic behaviour was therefore worse than without integral mode in the controller. 

It would have been an added bonus if the integral mode had successfully eliminated 
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this offset due to non-linearity, as non-linear systems are common in chemical 

processes. 

6.7.4 Conclusions on the application of the decoupling and disturbance 

rejection with integral and derivative action on the linear model. 

In this work, integral and derivative modes has been included into the decoupling 

and disturbance rejection control scheme. The approach followed to introduce the 

integral and derivative modes into the control scheme is based on the analogy with PI 

control. For each mode, an extra m differential equations need to be solved as a result 

of the introduction of the integral term, where the m is the number of controlled 

outputs. 

One advantage of the method used to include two modes into the control scheme is 

that the appropriate integral and derivative times for each "control loop" can be 

selected using conventional controller design techniques used to assist the design of 

conventional SISO control systems for linear systems. 

Simulation results on the linear model of the distillation column demonstrated that 

offsets are eliminated by the integral term, except offsets due to proces - model 

mismatch. The only disadvantage is the the decoupling properties of the original 

control scheme is partially lost by the addition of the integral and derivative modes. 
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CHAPTER SEVEN 

Kalman Filtering Studies 

7 .1 Introduction 

This chapter describes off~line Kalman filtering studies which were aimed at 

applying the Estimator Aided Feedforward control (EAFF) scheme of Daie (26) on the 

pilot plant distillation system. As discussed in Section 2.10.2, an extended Kalman 

filter functions as the estimator in the EAFF scheme to produce estimates of the top 

and bottom tray compositions from tray temperature measurements and other plant 

variables such as the feed flow and the reflux flow. The composition estimates are then 

used as the controlled variables for a multiple PI control system. Daie developed an 

EAFF for the distillation column which has been used in this research. As reported in 

Chapter 4, the column has been extensively modified in this work. Daie did not apply 

the EAFF control scheme on-line. This work was aimed to apply a modification of 

Daie's EAFF to the modified column. 

As reported in the Section 2.10.1, Shaffii (115) attempted on-line implementation 

of the extended Kalman filter on the same distillation column and met with problems of 

computer memory limitations and excessive filter cycle time.due to the computational 

load of the filter algorithm. Shaffii suggested simplifying the filter algorithm, and 

stressed that efforts should be directed at reducing the filter's execution time in order to 

enable real time application of the extended Kalman filter to be practical. Only then 

could the EAFF control scheme be practical for on-line application on the distillation 

column. This possibility was investigated in this work, as mentioned in Chapter 3. 

More powerful real time computing also relaxes the restriction on computational load 

and program memory requirements of the filter. 

The linear state variable model of the column, model LM2 on Table 5.2b in 

Chapter 5, was used as the filter model. The use of the linearised state variable model 

in the design of the decoupling and disturbance rejection control was discussed in the 

previous chapter. The results demonstrated that it is not satisfactory to use the model 
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for controller design for the non-linear distillation system without incorporating a way 

for compensating for the non linearities neglected in the state variable model. The 

model may be limited as regards use for design of a state variable feedback controller 

for the distillation column, but it could be useful in the estimator to produce the 

required variables for implementing control. This possibility arises because there are 

some design parameters in the Kalman filter which can be adjusted to compensate for 

uncertainties in the filter model. These design parameters are the initial error covariance 

matrices and the system noise covariance matrix. How they are adjusted and how they 

affect the performance of a Kalman filter has been discussed in Section 2.10.1. Also 

uncertainties at different locations in the model could be addressed separately, as each 

diagonal element in the covariance matrices correspond to a differential equation in the 

state variable model. 

7.2 The requirements of the Kalman filter 

The main simplification made in the extended Kalman filter discussed in Section 

2.10 was to use the linear state variable model of the distillation column as the filter 

model. The resulting simplified Kalman filter was required to satisfy the following 

requirements: 

(i) Provide good estimates of the tray compositions particularly the top and bottom 

tray compositions which are the intended controlled variables. 

(ii) The estimates should be free from static errors. 

(iii) Provide good estimates of the measured inputs such as the feed flow, reflux 

flow and reboiler heat input. 

If all these requirements are met then applying the EAFF scheme on the pilot plant 

distillation system could be considered. The interval of 30 seconds was chosen for the 

real time control of the column to allow for data logging, data storage control 

calculation. The "target" cycle time that the filter must meet was 15 seconds at the 

most, allowing 15 seconds for data logging, data conversion and control calculations. 
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7.3 Formulation of the Kalman Filter 

The linearised state variable model of the column is 

dx/dt = Ax+Bu+Dzd 

The measured variables relate to the state variables as 

y = h(x) 

7.1 

7.2 

where A, B, D and h are, respectively, the state matrix, input driving matrix, 

disturbance matrix and the matrix relating the measurement vector y and the state 

vector x. The h(x) is non linear since the tray temperature relates to composition by a 

non linear relationship given by the vapour liquid equilibrium relationship. The u and 

zd are the vectors of the inputs and the disturbances, respectively. Assuming n is the 

number of states, m is the number of inputs, nd is the number of disturbances and nm 

is the number of measurements then x, y, u and zd are n x 1, r x 1, m x 1 and p x 1 

vectors, respectively. A, B, D and h are n x n, n x m, n x p and r x n matrices, 

respectively. 

To minimise the computational overheads of the filter program, the reboiler drum 

and reflux drum composition were excluded as state variables in the filter model. 

Therefore, n = 10, m = 2 and nd = 2. The corresponding vectors, x, u and zd are 

given as 

x = [xl' x2, ... , xn]T 

u = [Lr, Qrb]T 

zd = [F, xf]T 

All the tray compositions and all the inputs in u and zd are to be estimated. Then 

the filter model can be reformulated as 

dX/dt = AX 7.3 

A-[A,B,D,] 
where - 0, 0, 0, 

(n+m+p) x (n+m+p) matrix 

T T TT X = [x , u , zd ] 

The measurement vector Y will contain the measured tray temperatures as well as the 

measured inputs. 

311 



To evaluate the performance of the filter algorithm in the case of estimating the tray 

compositions, the tray compositions were required for comparison with the estimates 

produced by the filter. This was done using the non-linear relationship between the 

measured tray temperature and the composition on that tray for a binary system. This 

is given as 
0 0 0 7 4 x l = (PT-P l (T)) I (P l (T) - P 2 (T)) . 

where x is the mole fraction of the more volatile component (mvc ), T boiling point of 
-1 

0 0 . 
the liquid, PT is the column pressure and P1 (T) and P2 (T) are the saturat10n vapour 

pressures of the mvc and the less volatile component (lvc), respectively. The 

relationship in Equation 7.4 is obtained from the following physical laws: 
0 

1) Raoults Law xi Pi (T) = Pi 

2) Daltons law of partial presures Pi= Xi PT 

3) Antoine relationship Log10PiO(T) = Cli - C2/(C3i - T) 

where Pi is the partial pressure exerted by the vapour of component i. The major error 

introduced in the calculation of the tray compositions from Equation 7.4 is due to 

pressure variations inside the column. The activity coefficients were omitted in the 

above equation for simplicity; simulations on the column simulator showed that they 

were close to one, for the chemical system used. 

Since Equation 7.4 relates the measured tray temperatures to tray compositions 

through h(x) in Equation 7.2, the extended Kalman filter formulation was, therefore, 

retained. Equation 7.2 was linearised at every sampling interval. The deviations in the 

state and measured variables oX and oy were processed through the filter algorithm 

instead of the actual y and X, where the symbol o denote deviation from the last 

sampling instant. 

7 .3.1 Filter Equations 

The discrete form of the Kalman filter was employed. The basic formulation of the 

Kalman filter has been presented in Section 2.10.1, Equations 2.123 to 2.128. For the 

non-linear distillation system the equations were formulated as follows: 
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Prediction step 

X* (k + 1, k) = <D(k + 1, k) X *(k, k) 

E (k + 1, k) = <D(k + 1, k) E(k, k) <DT (k + 1, k) +Q 

Estimation step 

K (k + 1) = E(k + 1, k) MT (k + 1) [M (k + 1) E(k + 1, k) 

7.5 

7.6 

MT(k+ l)+RJ-1 7.7 

oX A(k + 1, k + 1) = oX*(k + 1, k) + K(k + 1) [oy (k + 1) -

M (k + 1) oX* (k+l, k)] 

:e_ (k + 1, k + 1) = [I - K(k+l) M (k+l)] E(k+l, k) 

or 

7.8 

7.9 

E(k + 1, k) = [I - K(k + 1) M (k + l)J E(k + 1, k) [I - K(k +1) 

M (k + l)JT + K(k+l) RK(k + l)T 7.10 

where k denotes sampling instant. The oX* = X*(k+l,k) - X A(k,k) and oy = 

y(k+l)-yA(k). The* and A denote prediction and estimate, and <D denotes the 

transition matrix. The Q is the system noise covariance matrix, E [w wTJ where w is 

the vector of the noise affecting the system and E is the mathematical expectation 

operator. The R is the measurement noise covariance matrix given by E [v vT] where 

v is the vector of the measurement noise. The E(k, k) is the covariance matrix of the 

error in X *(k, k) and K(k + 1) is the filter gain matrix. The M(k) is the linearised 

measurement matrix given by 

M(k) = oh (X(k,k) / oX(k,k) 

such that 

oy(k) = M(k)oX(k) 

Equation 7.5 represents integration of X over the sampling interval ti.t. This was done 

by integrating the filter model using the simple Euler method. 

The transition matrix, <D, is given as: 

<D = (I + A ti.t) 7.11 

The measurement matrix 

M = oh (X(k,k) / oX(k,k) 7.12 
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dT' . 
contains the linearised forms of a), where J represents the tray number and xj the 

J 

composition of the more volatile component in tray j. For example, if the temperature 

of tray 7 is measured and it is the third measurement, that is, y(3) = T 7, then 

M (3, 7) =- ~~~' 7.13 

The values of ~~~ are obtained numerically by perturbing the function in Equation 
J 

7.4 with respect to T and then 

dTj -l / ( ~) 
crx::;- dT · 

J 
7.14 

7.3.2 The computational sequence of the filter algorithm. 

The Kalman filter algorithm computational sequence is given in the following. 

Step 1) Set k = 0, supply filter with state estimate X "(k,k), Q, R, and 

E.(0,0). Derive y"(k) form X "(k,k) and then compute measurement 

matrix M(k+l) sing y"(k) as the reference trajectory to be used at 

the next sampling interval 

Step 2) Start filter algorithm 

Step 3) Compute the predicted state vector X*(k+l,k) at next sampling 

interval by integrating the filter process model from X "(k,k). 

Step 4) Compute J.:(k+l,k) from Equation 7.6 

Step 5) Get process measurements y(k+l) and compute the state and the 

measurement deviations as 

oX*(k+l,k) = X*(k+l,k) - X"(k,k) 

oy(k+l) = y(k+l) - y"(k) 

Step 6) Compute the filter gain matrix using Equation 7. 7 

Step 7) Compute estimate of the state deviations oX "(k + 1, k + 1) from 

Equation 7.8 and then compute oy"(k+l) as 

oy"(k+l) = M(k+l) oX "(k + 1, k + 1) 

Step 8) Compute the state estimate and the estimate of the measurement 

vector: 

X"(k+l, k+l) = X"(k, k) + oX "(k + 1, k + 1) 

y"(k+l) = y"(k) + oy"(k+l). 
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These are now new reference trajectories. 

Control actions should be computed and implemented at at this point. 

For EAFF control the filter model integrates the estimates X A(k+ 1,k+ 1) up to 

the next sampling instant, k+2, to give X*(k+2,k+l). Control is 

then based on the top tray and the bottom tray compositions 

contained in X*(k+2,k+l). 

Step 9) Compute new measurement matrix to be used at the next sampling 

instant using yA(k+l) 

Step 10) Compute E(k+l,k+l) using Equation 7.10 

Step 11) Set k = k+l and then jump to Step 2) 

7.4 Off-line Kalman Filtering Studies 

The software programs that perform the Kalman filtering are explained in 

Appendix A4 and listings are in Appendix A 7. The whole package is written in 

Basic09 on the System 96. 

Since the linearised state variable model used as the filter model is a rough 

approximation of the column simulator, it is therefore much less representative of the 

actual distillation column than the column simulator. The covariance matrices, E (0,0), 

Q and R, are design parameters which can be adjusted to tune the filter to obtain the 

best filter performance possible. The elements of the Q matrix can be made larger to 

compensate for the model inaccuracies such as non linearities. Care must, however, be 

excercised in choosing these elements as the diagonal elements of the computed 

variances of the state variables elements of E(k,k) should not be too large in relation to 

the state variables otherwise the estimates may oscillate about the true states. 

The state vector, X, contains of 

X = Cx1, x2, x3, x4, x5, x6' x7, x8, x9, x10, Lr, Qrb, F, xf) 
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• 
7.15 

The measurements supplied to the filter are 5 tray temperatures and the four inputs, Lr, 

Qrb, F, xf. The measurement vector contains ; 

7.16 

where the j in T- denotes the tray. This large number of measurements were taken to 
J 

partly compensate for the model inaccuracies. The top tray and the bottom tray 

temperatures, T 1 and T 10, were selected as measured variables because the liquid 

compositions on these trays would be the controlled variables. Although on-line 

measurement of the feed composition was not available, the feed composition was 

assumed measured in the filter because the feed was thoroughly mixed before the start 

of the experiment, as is reported in Appendix Al.3 

In the filter model, Lr, Qrb and F have the units g/minute, joules per minute 

(J/min) and g/minute, respectively. They also have these units in the vector X. In the 

measurement vector y, these variables are in 1/hr, KW and 1/hr, respectively. To 

convert g/minute to 1/hr, the liquid density was assumed to be constant at 1.5 g/cm
3

. 

The measurement matrix M relating y and X handled the necessary conversions as is 

shown in Table 7 .1. 
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Table 7 .1 The Measuremen t tr M ma 1x 

Entry Measurement 

dT1 
M(l,l) = axf T 1' OC 

dT2 
M(2,2) = OX2 T2, OC 

dT7 
M(3, 7) = C1X7 T7, OC 

dT9 
M(4,9) = ClX9 T9, OC 

dT10 
M(S,10) = oxfo T 10' OC 

M(6,l 1) 0.04 Lr, 1/hr 

M(7,12) 1/60000. Qrb, KW 

M(8,13) 0.04 F, 1/hr 

M(9,14) - 1.0 xf, mass fraction 

7.4.1 Results 

Data from the experimental open loop step response tests shown in Figure 5.9 

were used in these studies. The data were collected using sampling interval, ~t, of 30 

seconds. 

Estimation of the tray compositions 

The estimation of the tray compositions, x1, x2, x7, x
9

, x
10

, which had their 

corresponding tray temperatures measurements supplied to the filter will be discussed 

first. To represent reality, the initial values of some of the tray composition estimates 

supplied by the filter were deliberately made to be in error, or biased. The following 

set of covariance matrices were used: 

l:.(0,0) = diag ( 0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.01, 0.05, 0.01, 0.01, 

100, 5000, 100, 0.01) 
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Q = diag (0.05, 0.05, 0.4, 0.4, 0.4, 0.4, 0.05, 0.1, 0.05, 0.05, 120, 10000, 

120, 0.05) 

R = diag (0.0001,0.0001,0.0001,00001,0.0001,0.4,10,0.4,0.01) 

7.17 

Figures 7.la and 7.lb show the estimation of xl and x2 and x7, x9 and xl0 

compared with their "actual" tray compositions, which are represented by the dashed 

lines. The estimates followed the trajectories of their true values quite well, but the 

biases in the initial values could not be removed. Only the estimates of x1, with exact 

initial values, perfectly tracked the true values; the estimate and true values cannot be 

distinguished on the graph. Figure 7. lc shows the corresponding trajectories of the 

sizes of the gain matrix and the covariance matrix. 

The trajectories of the baises between the estimated and true values are shown in 

Figures 7.2a and 7.2b. The biases stayed virtually constant except the relatively large 

amounts removed by the large step changes in the reflux flow, feed flow and reboiler 

heat input. Even then, the amount of bias removed from each estimate by each input 

change was quite small considering the sizes of the input changes. 

The estimation of the tray compositions, x3, x4, x5, x6, x8, which did not have 

their corresponding temperatures measured were unstable as the compositions became 

greater than 1, and the estimates overlapped with the other tray compositions. Figures 

7.3a and 7.3b show the estimates for the x3 and x8, respectively. The corresponding 

diagonal elements of P(k,k) of these tray compositions at a steady state, t = 15 

minutes, showed that the elements attained values greater than 1 throughout the time 

duration of the filtering exercise. These elements are indicated by ** below. 

diag (E(k,k)) = (2.003 x 10-
7

, 1.912 x 10-7, 151.2**, 1273.54**, 

1466.86**, 258.59**, 6.83 X 10-2, 2.98**, 2.26 X 10-1, 1.73 X 10-?, 

122.98, 9.99, 123.22, 8.54 X 10-5) 

These values "tell" the filter that the error between the estimated values of the tray 

compositions and the true values are greater than 1, which cannot be true since 

compositions in a distillation column can have the maximum value of 1. This resulted 
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in the bad filter performance as large corresponding gain elements were computed, as 

shown in Table 7.2. 

The :E.(k,k) element corresponding to x8 was much smaller compared with the 

other trays without temperature measurements. This is because the T 7 and T 9 above 

and below tray 8 were measured and that temperature measurements were more 

concentrated in the stripping section than in the eruiching section. 

Similar results were obtained when very small :E.(0,0) and Q elements 

:E.(0,0) = diag (0.01, 0.01, 0.0001, 0.0005, 0.0005, 0.0005, 0.0001, 

0.0005, 0.0001, 0.0001, 100, 5000, 100, 0.01) 

Q = diag (0.05, 0.05, 0.0001, 0.0001, 0.0001, 0.0001, 0.05, 0.0001, 0.05, 

0.05, 120, 10000, 120, 0.05) 7.18 

were specified for the tray compositions. Figures 7.4a and 7.4b show the 

corresponding x3 and x8, respectively. The corresponding diagonal :E.(k,k) elements 

were smaller, but they were still greater than 1, except for x8 (marked *** below) 

which is now less than 1. 

diag (J:(k,k)) = (2.003 x 10-
7

, 1.9129 x 10-
7

, 15.399 **, 117.29**, 

-3 -3 -3 
129.07 **, 25.0**, 9.7 X 10 , 0.751 **, 1.16 X lQ , 1.37 X 10 , 

-3 
122.58, 9.99, 123.22, 8.536x10 ). 

The estimation of x8 was, however, still bad. 
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Table 7.2 Filter Gain Matrix at a steady state, t= 15 minutes 

-4.4755 E -2 -3.3963 E-9 1.0402 E -10 -2.9066 E -11 -3.7762 E -10 3.7557 E -8 -1.3221 E -14 -8.5892 E -9 1.9645 E -9 
1.4334 E -8 -4 3737 E -2 -8.0934 E -10 2.0348 E -12 -1.4962 E -10 8.5619 E -10 -1.1382 E -15 5.2636 E -11 -4.6566 E -10 
6.4978 E -2 1.8382 E -1 -6.0826 E -2 9.4007 E -3 1.3912 E -1 2.6046 E -1 -4.0655 E -8 -1.1796E-1 -1.2061 
-1.8796 E -1 -2.9198 E-1 2.0715 E -1 -6.404 E -2 -4.8965 E -1 -5.2347 E -1 7.7842 E 08 2.6786 E -1 3.6769 
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Estimation of the parameters Lr, Qrb, F, and xf. 

The best estimates of the measured Lr, Qrb, F were obtained using the covariance 

matrices of Equation 7.17. Figure 7.5 and 7.6 show the results for F and Lr, 

respectively. The estimates of Lr and F were good primarily because these variables 

were measured. The filter smoothed the measurements of F and Lr, but both overshoot 

their measured values after the large step changes. The Lr estimates subsequently 

exhibit oscillatory response. 

The figures also show what happens when the corresponding Q elements of Lr, 

and F (marked** below) were too small. 

:E.(0,0) = (0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.01, 0.05, 0.01, 0.01, 100, 

10, 100, 0.01) 

Q = (0.05, 0.05, 0.4, 0.4, 0.4, 0.4, 0.05, 0.1, 0.05, 0.05, 1 **, 10, 1 **, 

0.05) 

The filter now disregarded the measured values of these inputs and relied more on its 

inaccurate model to produced their estimates. The result was the poor tracking of F and 

Lr, as their estimates simply exhibited oscillatory behaviour with large amplitudes after 

there respective step changes. In the case of Qrb, smaller :E.(0,0) and Q elements was 

not too detrimental as shown in Figure 7. 7. The overshoot was present after the set 

changes, but good estimates were produced within a short time. 

Figure 7.8 shows what happens when xf was not measured, but was estimated as 

a state variable. The estimates produced were very oscillatory, as the trajectory was 

greatly affected by the changes in all the other inputs. This demonstrated that the xf 

must be measured to obtain stable satisfactory estimates of the variable. The same 

applied for the other inputs as well. 

7.4.2 Discussion of the results 

The Kalman filter was unable to give the following : 

1) Remove the biases from the tray composition estimates, 

2) Produce stable estimates of the tray compositions without tray temperature 

measurements and 
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3) Produce good estimates of the unmeasured feed composition, 

This was because of the large inaccuracy of the filter model and that the sampling 

interval ,6.T of 30 seconds is relatively long. The results demonstrated that the complete 

removal of biases in the tray composition estimates required the large changes in the 

inputs Lr, Qrb and F to be entering the system continuously. This requirement is a 

limitation since large changes in the inputs will not occur at, or near, steady state. 

Furthermore, in practice, the true values of the tray compositions will not be available 

since this is the primarily the reason why the filter was needed in the EAFF algorithm. 

Even when accurate knowledge of the tray compositions are available, biases will arise 

due to changes in operating conditions as the distillation column is non-linear. 

7.4.3 Computational requirement of the Kalman Filter 

The Kalman filter program presented in Appendix A 7 and explained in Appendix 

A4 basically consists of matrix manipulation routines. The software was developed to 

handle a maximum of 15 state variables and 10 input measurements. This meant a 

large program memory requirement. The software required 6K for program storage 

and 12K for data storage. The size could be reduced but this was prevented by a 

limitation in Basic09. As reported in Chapter 4, the arrays and vector sizes must be 

explicitly declared in terms of the maximum possible size it will need during program 

execution. This limited the portability of the matrix manipulation routines so that the 

array and vectors in the package had to be declared in terms of the largest size which 

were 15 x 1 for vector and 15 x 15 for matrices. 

Despite the large memory requirement of the filter algorithm, the ample memory on 

the System96 allowed all the program modules required to perform the off-line 

filtering studies to be in the computer memory. There was no need for program 

overlay as was required by Shaffii (115). Having said this, at run time, the filter 

program usually needed 60K of memory which is as large as the 64K limit that a 

single task can have on the System 96. 

The filter cycle time was also excessive due to the computational load of the 

calculations involved. The filter required 72 seconds per cycle for 9 measurements and 
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14 state variables. This was more than twice the sampling interval of 30 seconds 

chosen for the control the the top and bottom tray compositions, and about 5 times the 

"target" interval of 15 seconds. Table 7.3 gives details of the times required by the 

major tasks in the filter algorithm. As expected, the filter cycle times dropped greatly 

with the number of measurements. These cycle times for the cases shown on Table 7.3 

were still significantly longer than the maximum and target interval of 30 seconds and 

15 seconds, respectively. 

7.4.4 Conclusions and Recommendations 

The conclusion that can be drawn from the off-line studies discussed above is that 

that the filter cannot be used for on-line application on the distillation column where 

the sampling time of 30 seconds is required for control and good estimates of all the 

required variables are needed. The filter failed to remove biases in the tray 

composition estimates except when the inputs and disturbances entered the column. It 

also produced unstable estimates of the tray compositions without associated tray 

temperature measurements and the cycle time required was too large. 

The high inaccuracy of the filter model and the long sampling interval used were 

the major causes of the poor performance of the filter. For this model to be valid a 

much shorter sampling interval is necessary. The demand for computational power 

will then be more. All these factors were the reasons why further work regarding on­

line application of EAFF scheme was not pursued. 

It is suggested that a more accurate filter model such as the column simulator 

should be used for better performance of the filter to be achieved. The computational 

requirements would, however, increase significantly. The model reduction procedure 

suggested by Cho and Joseph (17,18,19) could useful in this respect. The procedure 

is based on the assumption that a separation column can be approximated by a 

distributed system in which the composition and flow profiles of the column can be 

represented as continuous variables along the length of the column. Thus the 

composition and flow profiles can be represented as the polynomials with respect to 

the length of the column. Cho and Joseph (18,19) have demonstrated that there 
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procedure could be used to reduce the order of a distillation column by a factor of 4 

and still retain very good accuracy. 

Table 7.3 Computer processing time required to perform the filter tasks. 

(14 state variabes estimates - the 10 tray compositions, Qrb, Lr, F, and xf) 

Task Real time required 

Computation of in seconds 

Covariance Matrix P(k + 1,k) 14 

Filter Gain K(k) 23 

Covariance Matrix P(k,k) 25 

Others** 10 

Total 72 

@Total for 8 measurements 62 

@@Total for 6 measurements 45 

@ 4 tray temperatures, Qrb, Lr, F and xf 

@@ 3 tray temperature, Qrb, Lr, F 

** Others - include integration of filter model at the prediction step, data storage, 

retrieval or real process data from floppy disk, and calculation of the measurement 

matrix. 
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Figure 7 .1 a Estimation of the tray compositions corresponding to the tray 

temperatures measurements : Tray 1 and Tray 2 
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Figure 7 .1 b Estimation of the tray composi_tions corresponding to the tray 

temperatures measurements: Tray 7, Tray 9 and Tray 10 
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Figure 7.5 Estimation of measured feed flow 
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Figure 7.8 Estimation of unmeasured feed composition 
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