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SUMMARY

Modern control techniques have been applied to a distillation column. Three
control techniques were selected for evaluation. These are; a decoupling and
disturbance rejection control scheme; an estimator aided control techniques using a
Kalman filter; and an implicit generalised minimum variance self tuning control. A 10
tray pilot scale binary distillation column, interfaced with a microcomputer, was used
for investigation of the process control techniques. A non-linear model of the column
was developed. The reliability of this model was demonstrated. The model was
therefore used for the design, analysis and screening of control systems for the pilot
plant distillation column.

The results of extensive simulations on linearised state variable models of the
column simulator demonstrate that the decoupling and disturbance rejection controller
works in the presence of load disturbances and setpoint changes. The proper choice
of the values of a diagonal matrix in the precompensator of the controller required for
accurate setpoint tracking has also been shown. By analogy with PI control, integral
and derivative modes have been introduced into the controller to equip it with the
ability to remove offsets. Simulation results demonstrate that the sensitivity of the
controller to non-linear effects makes the controller inoperable on the column
simulator, as well as on the pilot plant. Therefore, the use of an adaptive form of the
controller is necessary to compensate for the non-linear effects and other model errors
for on-line application to be practical on the pilot plant.

On-line implementation of the Kalman filter algorithm using a linear state variable
model of the column simulator as the filter model, was not possible because of the
large memory requirement of the software, long execution time and the inability to
produce satisfactory estimates of all the tray compositions.

Simulated and experimental studies for both single temperature control and dual
temperature control of the distillation column, demonstrated that self tuning control
can provide tighter control of the products of distillation columns than PI control.

An algorithm, called the Simplified Correction (SPC) method, has been
implemented to prevent the parameters of a self tuning controller from reaching
unsatisfactory values when the closed loop system is not sufficiently excited.
Simulations show that the SPC can provide significant improvements even when only
a subset of the controller parameters are prevented from attaining bad values.

The findings in this work verify the degrading effects that model errors have on
controller performance. Areas for future work have been suggested in the case of the
on-line implementation of the control schemes selected in this work.

Key Words: Self tuning control, Decoupling and Disturbance Rejection control,
Parameter Correction, Simplified parameter Correction, Distillation Column.



This thesis is dedicated to my mother, Rashidat Olayinka Folami, to my late
brother, Salmon Ayodeji Folami, and to the rest of my family; Sabitu Olaore Folami,
Muyibat Wonuola Folami, Alhaja Nofisat Idewu, Sabitu Olayinka, Abubakar
Oladotun, Uthman Oluwakemi, Hakeem Oludare, Kamal Ademola, Sarata, Yewande,

Bolakale, Rotimi




Acknowledgements

I wish to thank Dr J.P. Fletcher for his supervision of this research work, and

for his patience and valuable suggestions on this thesis.

I wish to Dr A.P.H. Jordan for his assistance and encouragement during the

course of the research work.
I would also like to thank

Dr B. Gay for allowing me to use the computing facilities at the Depertment of

Computer Science oo Applied Mathematics;

The University of Aston in Birmingham for financing me and for providing all

necessary equipment;

Diane Stretton for her typing of part of this thesis;

Phillipa Forde for her help in preparation of this thesis;

My friends, Numfor Ajongwen, Sama Nwana, Mohammed Sarki and all my
colleagues in the Department of Chemical Eingineering and the Department of
Computer Science and Applied Mathematics for their encouragement throughout

the course of this work.

Finally, 1 should thank my family for their support throughout my education.



List of Contents

Volume 1
THIE PAZE .. 1
SUIMIMATY oo 2
DediCAtON . ...ietiiiie e 3
ACKNOWIEAZEIMETES . ..iiiitt it 4
LASE OF FIGUIES .. oenivniii e e e e 14
LAst  Of  Tables...cccouiuiiiiieiiiiiiii e 21
LASEOTPIALES ...uoveititiii e 23
CHAPTER  ONE. .. o 25
INtroQUCHON L ..ot et e e e e 25
Lo Introdietion .. e ettt e et e et e e e e e 25
1.2 Requirements of a CONrol SYSTEML......ccieiriiimiireriiiiiiiereiiiieeeeeiiieeeeeiaanes 28
1.3 Previous industrial practice and motivation for change........cccocvviiiiiiiinninnn. 29
1.4 The use of digital computers in process Control.........o.eeveiviieiiiiiiienneanniennan.. 30
1.5 Inadequacies of conventional methods and the need for new approaches to
cONtrol SYStEMS deSIZN...ouuti it i it 30
1.6 The extent of application of advanced control in the chemical industry ................ 32
1.7 This ReSEarCh ..oviinietit e e et e i anes 35
1.8 Reasons for studying distillation column control ... 36
1.0 The TRESIS .t euvtentttte ittt e e et et e et ettt et et e et e et e oo e e e e n 39
1.10 Chapter ConcluSION ......o.viiuitiiiniiii i 40
CHAPTER TWO .ottt ettt et e et e et et et et e et e e 41
L eTAtUTE REVIEW ..ottt ittt ettt ettt et ettt e e et et e 41
2.1 IntrOQUCTION ittt 41
2.2 Recent developments in control systems design and analysis........................... 41
2.2.1 Control 100p PaAITINZ.cc.viiirriiiiiiiiiiiiiii 41
2.2.2 The Relative Gain Array method for control loop pairing............... 43
2.2.3 The Singular Value Decomposition applied to loop pairing.............. 45
2.2.4 Model uncertainty and controller performance............................ 48
2.2.5 The Internal Model Control Structure ............coooviiiiiiiiiii.n, 51
2.2.6 Assessing the effects of model uncertainties on controller
PEITOTINANCE ...\t evetine it iet ettt ettt 55
2.2.7 The relationship between the RGA and the condition number of
a4 Process MALTIX....oooiiiiiiiiiiiiie e 58
2.2.8 Applications of Singular Value Decomposition and the RGA
analysis to chemical process control...............coooiiiiinne. 58



2.2.9 Guidelines for selecting control configurations for binary

diStillation COIUMIL .. tuuviiiet e e e e e, 60

2.3 Introduction to Advanced CONtrOl SYSIEMS ... vvuerneenireeeee e eeeeeeneeeeanens 64
2.4 State variable representation of systems, Controllability and Observability ........... 66
2.4.1 Controllability and Observability ............ccvvviiiiiiiiniininiinnnn. 66

2.5 Modal Analysis and Modal CONtrol......cccooeeeeieeemesseeeeeeeeeeeeeeeeeeeereeseneens 68
2.5.1 Modal ANalySiS ...o.uivniriinet i e 68
2.5.2Modal Control ......vueiiriiiie e 70

2.6 Decoupling COntrol. ... ... i e 73

2.6.1 Decoupling and Disturbance Rejection for distillation column
COMETOL. o e 78
2.6.2 Synthesis of the Decoupling and Disturbance Rejection

CONEIOIIET. it 79
2.6.3 Minimum number of measured state variables for feedback. ........... 83
2.6.4 Applications to distillation column control. .............c.coeiiiinnn.. 88
2.7 Derivative Decoupling Control........ouviiiiuetietiiiieiieie e 90
2.8 Time Delay Compensation. .. .. o.vuuiuieiuieit it eenenteteeenteterenenaaeanaanas 90
2.8.1 Application to chemical engineering SyStems ...........cccovveevvnennn... 91
2.9 Adaptive COntrol. ....uuine it e e e 94
2.9.1 INtrodUCHION .ottt ettt ettt et e 94
2.9.2 The Self Tuning Regulator........ccoeevriiiiiniiiiiiiiiiieeiiieeines 97
2.9.3 Reported deficiencies of the self tuning regulator ..........c....ooeun.n. 100
2.9.4 The Self Tuning Controller.....c.ccccoviiiiiiiiiiiiiniiiiiiinieiiriennes 101
2.9.5 Selecting the design parameters for the self tuning controller........... 105
2.9.6 Operational problems of the recursive least squares scheme............ 108
2.9.7 The persistent excitation probleM.........ccccevruviievieiiiiniinerennnnn, 111
2.9.8 Adaptive algorithms that avoid the persistent excitation condition...... 112
2.9.9 Incremental self tuning control algorithms ...........coovviiiiiiiiiiea.n, 115
2.9.10 Deficiencies of incremental self tuning control algorithms............. 117
2.9.11 Stability and convergence of adaptive control algorithms.............. 118
2.9.12 Extensions of self tuning control to multivariable systems ............ 119
2.9.13 Chemical engineering applications of adaptive control................. 121
2.9.14 Application of adaptive control in the chemical industry ............... 122
2.10 Estimator aided control of chemical plant.........ccooviiiiiiiiiiiii, 124
2.10.1 The Kalman Filter algorithm........ccociiiiiiiiiiiniiiiinniinin.. 126
2.10.2 Application to non-linear systems - The Extended Kalman
288 =5 O P 131
2.10.3 Application of Kalman Filtering to process control..................... 133
2.11 Chapter CONCIUSION ... .uuitiiniiii it e e eae 135



...............................................................................

3.1 INtrOAUCHION . euiiiiiie s es e
3.2 The approach to the TESEATCH ... ...ivive i
3.3 The iSsues adAreSSed «....uvvnernieeei it
3.3.1 The Decoupling and Disturbance Rejection Control scheme............
3.3.2 The Kalman Filtering studies ..........ccoveiririiiiiiiineriiiieenannnnn,
3.3.3 The Self Tuning Controller design method...........cccovvveerirninneennn
3.4 Chapter CoOnCIUSION. ... .oiiiiiiiiii e

CHAPTER FOUR ..ottt e e
The pilot plant distillation column and the interface to the System96
TTUCTOCOIMIPULET . ..ttt et ettt et eaee et et et aet e e e ae e ee e et ane e et eaee e teneneananeenns
4.1 INtrodUCHION.couu ittt e
4.2 The pilot scale distillation cOlumMN.....ccoiiviiiiiiiiriiiiiiiiiiiine e e
4.2.1 The operational problems of the original distillation column

arrangement and the modifications made in the design.................

4.3 Instrumentation of the COIUMN.......ccoiiiiiiiiiii e
4.3.1 FIOW MEaASUTCIMEIIE ...\ tttttteeeitteeeeseaiiinerreeeaeierrnreeereeeainnenes

4.3.2 The CONtIOl ValVeS ... ittt e e e ettt ettt e et v e e,
4.3.3 Valve calibration resultsS .....oovvriiriiiiiiiiiiii i

4.3 4 The thermosyphon reboiler arrangements and operation of the

31 11 PN

4.3.5 Temperature mMEaSUIEIMENt. c.ueeuniunierneineiinrreenreireineenerarnneenss

4.3.6 Liquid level measurement ......oouuvutiineiiiiiieiiiiiiiaaeaieaien,

4.4 The System96 MICTOCOMPULET. .. iuuimniiiiitiiiiit ettt ei e eennas
4.4.1 The Unified Input / Output system of the System96.....................

4.4.2 The Basic09 programming 1anguage............coovvviiviiiiiieininennn.,

4.5 The interface of the Distillation Column and the System96......................ooo. L.
4.5.1 The Data Acquisition SOftware ..........coooevviiiiiiiiiiiiiiiiiiennn.,

4.5.2 Program timing for real-time applications ............covevvernennnnennn..

4.6 ProCESS OPETALION .. .vutint ittt ettt et ettt e e e
4.7 Chapter CONCIUSION ... .iuiiiititit it e
CHAPTER FIVE ..o e e e,
Mathematical modelling of the distillation column and model verification..................
5.1 INtrOAUC ION ettt ettt e aaas
5.1.1 Modelling of tray distillation columns ..o,

5.1.2 Modelling requirements for this work .................

5.2 The steady state mOdel ..o



5.2.1. The steady state model EqUALIONS. ... ....vvvereiseeeiiiiiiieneeaainnns 187

5.2.2 The solution procedure for the steady state model............co.......... 191
5.3 The nonlinear dynamic model - the column SIMUIALOr. . ... o..vvrereeeeeeeeeieeeeenin, 193
5.3.1 The dynamic model €qUationsS...........ccccoovvvveeeiiiuiereeenennn, 194
5.3.2 Solution procedure for dynamic simulation .............................. 196
5.4 The linear state variable MOAEl ..............ouuiinienie et 199
5.5 Steady State SIMUIAHONS . ...\ ..\t 205
5.5.1 Results and Discussions............o.vviiiiieiiniiiii e, 205
5.6 Dynamic simulation..........ooooiiiiiiiiiiiiiieeiiee e 207
5.6.1 Results and DisCuSSIONS.........ovivveiiiiiiiiece e 207
5.7 Open loop experiments on the pilot plant distillation column................c.ccoevenene. 214
5.7.1 Results and DiSCUSSION ....uvvviiviiteei i 214
5.8 Model VETIfICAtIONS ....uutiiitiiit ittt et ettt 217
5.8.1 The column simulator vs the pilot plant...............coooiiiiiiii.n. 217
5.8.2 Results and DisCUSSION ...eittiiiiietiiitiie et eeeeaeaes 219
5.8.3 The linearised model vs the column simulator............................ 225
5.9 Steady state analysis using relative gain array and condition number .................. 225
5.9.1 Selecting the manipulated and controlled variables of the
distillation COIUMIM ... vttt ittt e et ee e eeree e e anenn 230
5.10 General Discussions and ConcluSiOnS. .....oouviveeeriiieeeeiiineeeriineneeennennn. 231
5.11 Chapter ConCluSION ... ..o.eiuitiiiiiiit i 234
CH AP TER  SIX ittt e et ettt et et 236
Application of the Decoupling and Disturbance Rejection control to the linear and
non-linear models of the binary distillation column .............cooocciiiiiiiiiin... 236
LT B B R0 g e Jo L Teh 5 Lo : DU PP 236
6.2 Synthesis of the Decoupling and Disturbance Rejection control scheme............... 237
6.3 Controller deSIgN..cceniuniiiiiiiiiiii it 240
6.4 Implementation of the control scheme to the linear model .......................... 243
6.4.1 Load disturbance rejection.....c.ccoviiirieiniiinniiiiiniiineenienineennn. 243
6.4.2 The setpoint tracking problem ... 253
6.4.3 Effect of non-linearities on setpoint tracking............oooeevviinninn... 254
6.4.4 Comparison with conventional multiple loop PI control................. 254
6.4.5 Choosing K* for setpoint tracking..............coooeviiiiiinniia.. 256
6.4.6 Application on the linear model of Shimizu and Matsubara (113)...... 258
6.4.7 Remarks on the simulations for setpoint tracking ........................ 262
6.4.8 Using less than the minimum number of state variables that
should be measured. ......oooiiiiiiiiii e e 263



6.5 Application of the disturbance rejection control scheme to the column

SHTIUIALOT . ..ttt 264
6.6 Concluding remarks on the simulation results of the decoupling and
disturbance rejection control SChEME ...........o.vuiuiiiii et 266
6.7 Addressing the problem of offset in the disturbance rejection and decoupling
CONrOl SCHEME . ....oeei i 269
6.7.1 Incorporating integral mode into the disturbance rejection and
decoupling control SChEME .. ...ovvvirieiiniei i, 273
6.7.2 Significance of including integral mode ...........c.o.oevviiniiiiininnn. 275
6.7.3 Application of the decoupling and disturbance rejection control
scheme with integral and derivative action on the linear model
of the distillation column.........cccoiovvviiiiiiiiiiiiiiiiiiiiiiiee, 276
6.7.4 Conclusions on the application of the decoupling and
disturbance rejection with integral and derivative action on the
linear model. ...t e 280
CHAPTER SEVEN ..o e e e e 309
Kalman Fltering Studies .......coooiuiiiiiiiii 309
7.1 Introduction .o 309
7.2 The requirements of the Kalman filter..............c..cooi 310
7.3 Formulation of the Kalman Filter...........ooooiiiiiiii i 311
7.3.1 Filter EQUatioNS.....o.vvuiiitiitiiii i 312
7.3.2 The computational sequence of the filter algorithm...................... 314
7.4 Off-line Kalman Filtering Studi€s.......ccccoeeiiiiniiiiiiiiiiiiiiiniinn, 315
T4 1 RESUIS . vttt 317
7.4.2 Discussion of the resultS.....c..cooviiiiiiiiiiiiiiii, 321
7.4.3 Computational requirement of the Kalman Filter......................... 322
7.4.4 Conclusions and Recommendations ...........ccovveiiiiniiiinnienenn.. 323



List of Contents

Volume 2
THE PAE ettt e e 1
SUMIMATY ..ottt e e e e e, 2
DedICAtION .....vititit et 3
ACKNOWIEAdZEMENES. ..ttt 4
List of Contents for VOIume 1 .......o.iiiiiiiiiiiiiii e 5
LISt OF FIZUIES .. ceeinitii e 14
List Of Tables .o e 21
LISt OF PIAtes ..o onint ittt e 23
CHAPTER  EIGHT ... o, 25
The design of self tuning controllers for the distillation column............................. 25
8.1 Design of the Controllers .........oueieeiiiiii e e 25
8.1.1 Model structure for SISO case.........coviviiiiiiiiiiiiiiieeen, 26
8.1.2 Model structure for MIMO €ase .......cooevieiiiiiiiiiiiiiiiiieenn, 26
8.2 Control 1aw SYNhesiS ... .uuii et e e 28
8.2.1 The SISO CaSC . .uuiiiiiiii it e 28
8.2.2 The MIMO CaSC..ciuiiritiiiiiii et e e 31
8.2.3 The parameter vectors, the data vectors and the control laws............ 32
8.2.4 Measurable load disturbances............cooeeviiiiiiiiiiiiiiiiii 36
8.2.5 Parameter eStImMation . ..evuueenetiiirtee ettt et eaeaieeaaeeanaeas 36
8.2.6 Variable Forgetting Factors ..o, 37
8.3 Introducing parameter correction into the self tuning algorithm................. e 39
8.3.1 A simplified form of parameter COITECHION......cccvvuiireereeveeeeeennn. 41
8.4 Software development for implementing the controllers ...............c..ooiiiin. 44
8.4.1 Software on the System96 .........ooiiiiiiiiiiiiii i 44
8.4.2 Computational and storage requirements of the software................ 48
8.4.3 Software on the IBM PC-AT ... 49
8.5 Chapter TEVIBW .. .outiuiieitint ittt e et 50
CHAPTER NINE .o e e e e 51
Evaluation of the Self Tuning controllers on the column simulator...........cccoceeennn. 51
ST T 115 e Ye £ U2 4 1o Y ¢ D PSPPSR 51
9.2 Simulation on a simpie iinear model.............oooiiii 51
9.3 Single loop top tray temperature COntrol ............ooooviiiiiiiiiiiiiiii, 57
0.3.1 SUIMIMAIY L1 utet ettt et e 60
9.4 Simultaneous control of the top tray and the bottom tray temperatures................. 68

10



9.4.1 SUMMATY «. oottt 72
9.5 Application of the Parameter Correction (PC) and Simplified Parameter
Correction (SPC) methods ......oooviiinii e, 82
9.5.1 Evaluation of the parameter correction methods .......................... &3
9.5.2 Discussions and ConcluSiONS ............o.ovuenin il 87
9.6 Chapter COnCIUSION. ..uuuuueteeeeeiriie et 88
CHAPTER TEN .....ooiiiiiii e 104
Microcomputer control of the pilot scale distillation column ..................cooevvennnn.. 104
101 INtrodUCHiON . ..e.vuene e e e 104
10.1.2 Implementing the controllers on the experimental column. ............ 105
10.2 Single loop control of the top tray temperature ..............ooevivinveeerieannennnn... 106
10.2.1 Discussion of the results ............ooooiiiiiiii 106
10.2.2  SUMMATY . oottt et e e eaaes 107
10.3 Simultaneous control of top and bottom tray temperatures.............cocovvvevr...... 112
10.3.1 Discussion of the 1esults ........oovuiiiiiiiiiiiiiiiiiieiieena, 112
10.3.2  SUMMATY . ouininitiiitie et e e e 113
CHAPTER ELEVEN ...t e 118
General discussions, conclusions and recommendations for further work................. 118
O o1 Cod L1 (014 o) o B O 118
11.2 Modelling of the distillation column: The validity of the column simulator .......... 119
11.3 The decoupling and disturbance rejection control scheme......................o.... 120
11.3.1 Load disturbance r€jection ......covuvuererrreerennrereniiieeeeniineeannnnns 123
11.3.2 Combined feedback and feedforward compensation ................... 123
11.3.3 Setpoint tracKing .....ooouueiiittiiii i e 124
11.3.4 Robustness to non-linear effects ...........cooviiiiiiiiiiiiiniinnn. .. 125
11.3.5 Comparison with PIcontrol ..o 128
11.3.6 Addition of integral and derivative modes in to the decoupling
and disturbance rejection controller......c..coovvviiiiiiiiniiiiineninnns 128
11.4 The off-line Kalman filtering Studi€S........cceuuviiriiiiiiiiniiiiiiiiiieeiiinennnn. 130
11.5 Evaluation of the self tuning controllers on the column simulator..................... 131
11.5.1 Single loop top tray temperature control ..............cooooiiiiiionn. 131
11.5.2 Simultaneous control of the top and bottom tray temperatures........ 132
11.5.2 The performance of the parameter correction methods................. 133
11.6 Computer control of the pilot plant distillation column ... 135
11.8 Summary of CONCIUSIONS ....uvivininiiiiniit i 136
11.9 Recommendations for further Worki........ccovuiiiiiiiiiiiii i 137

11



REFERENCES ... ot 140
List Of SYymboIS. ...t 160
APPENDIX L. 163
APPENDIX Al i e e e 163
Flowmeter and control valve Specifications ............c.ovvriiiiiriviiiiii e aienenen, 163
Al.1 Flowmeter and control valve SpecifiCationS........cccecveeeivvirvieeieereeereiieeianens 163
Al.1.1 Flowmeter specification ..........ooviveeeiiieriieiiiniiiaeianennaanennss 163
A1.1.2 Control Valve SpecificationsS. .......c.ceeviiiiieiiniiaineniennniennns 165
A1.2 Functions of the MOonolog ........co.oiiiiiiiiii e 166
AL.2.1.HOow to USE MaSter......iuinniitiiiti i 170
A1.2.3 Functions of the programs for on-line data logging and control...... 174
A1.3 The startup and shut down procedures of the column.................coviviiiii.., 174
A1.3.1 Process Startip ....oo.eeeeeiiiiiiitiiiiiii i 174
A1.3.2 Process ShutdOWn .....ooiiuiiiiiiiii e 175
APPENDIX A2 .ottt e 177
Functions of the program modules of the steady state and the dynamic model of
the distillation COIUMML. ... oottt e e e 177
Appendix A2.1 Software for the steady state simulation of the binary
Trichloroetylene and Tetrachloroethylene distillation system using the
method of Kinoshita €t al.(45) ...ovveiiiiiiii 177
Appendix A2.2 Software for Dynamic Simulation of the distillation column.............. 178
A2.2.1 Settings for PI and PID controllers using the Cohen and Coon
equations (Stephanopoulos (116)).....cccceviiiiiiiiiiiiiiiniiinnnennn. 178
A2.3 Matrix manipulation modules in BasicO9 ...........coooiiii 180
APPEN DX A it e 181
Appendix A3.1 Software for the synthesis and implementation of the Decoupling
and Disturbance Rejection Control scheme............oooiiiiiiiiiiii i, 181
A3.2 On the formulation of Equation 2.18 in Chapter 2.............coooiiiiiiiiiiiiiiiin. 182
APPENDIX A4 ...ttt 183
A4.1 Modules that perform the Kalman filtering ... 183
AP P EIN D X A ittt e e 184
AS.1 The Square Root algorithm for updating the covariance matrix (Kiovo (70))....... 184

12



AS5.2 Software used for implementing PI control and self tuning

control on the column SIMUIAtOr .. ..vrett i ieeeans

..................................................................................

13



List of Figures

Volume 1

Figure 1.1 General structure of a Feedback Controlled SYStEm ...oeevvviiiiiieniiieannn, 27
Figure 2.1a A Reformulation of the conventional feedback control loop...covvvivnin.. 53
Figure 2.1b The Internal Model CONtrol STrUCHUTE. ... .eevvveeeeeseee oo 53
Figure 2.1c The Internal Model Control structure with filter inserted for

TODUSINESS AESIZI o..evnevniet it 55
Figure 2.2 Schematic of a binary distillation column.............cocoeveveeveeereeeenen.. 63
Figure 2.3 Schematic representing the Modal Controller of Equation 2.35b .............. 71
Figure 2.4a Schematic of a process with 2 controlled outputs and 2 manipulated

IPULS ettt ettt et e ettt et e e e e e 74
Figure 2.4b Schematic of a process with 2 controlled outputs and 2 manipulated

inputs with simplified decoupling............cooovviiiiiiiiiiiin . 75
Figure 2.5 Schematic of a closed loop system under control by u = Fx + Gw

(Shimizu and Matsubara (113)) ...ovvviiiiii i, 77
Figure 2.6 Schematic of a closed loop system under control by u = Fx + Gw

with incomplete state feedback (Takamatsu and Kawachi (129)).......... 86
Figure 2.7 Flowchart for finding the minimum number of state variables to be

measured for feedback (Takamatsu and Kawachi (129))......covvveene..... 87
Figure 2.8 Dead Time compensation using Smith Predictor .................oooiiinl. 92
Figure 2.9 General structure of adaptive control systems (Seborg et al (140)) ............ 95
Figure 2.10 Structure of the positional self tuning controller (Clarke et al (21))........... 103
Figure 2.11 Implementation of a positional self tuning controller (Clarke et al.

(5 T P 104
Figure 2.12 Implementation of a k-incremental control law (Clarke et al. (20))........... 116

Figure 4.1 Schematic diagram of the distillation column arrangement used by Daie

(26) and Shaffii (115) .....oovviviiiii 143
Figure 4.2 Schematic diagram of a sieve tray of the column.................... 144
Figure 4.3 The reboiler drum on the isomantle heater...............o 145
Figure 4.4 The thermosyphon reboiler arrangement ... 148
Figure 4.5 The firerod catridge HEALET ettt 148
Figure 4.6 Schematic diagram of distillation column used inthiswork .................... 150
Figure 4.7 Schematic of the turbine flowmeter used on the Column........................ 152
Figure 4.8 Circuit description of the interface between the control valve and the
COTIPULET . .+ e et ee s ettt 153
Figure 4.9 a) and b) Control valve characteriStCs ...ouivriiiiii et iieeeiiiiiieeeeans 155
Figure 4.9 ¢) and d) Control valve characteristics (Continued) ..................coovvvinn 156

14



Figure 4.9 e) and ) Control valve CharacteriStiCS.....ooommmmommmoe oo 157
Figure 4.10 Diagram representing how the heater Works..........ovvvvvooooeoeeovonon 158
Figure 4.11 Circuit description of the interface of a control valve to the computer........ 159
Figure 4.12 Structural organisation of Input / Qutput related modules of the

SYSEMOIO ..ot 164
Figure 5.1 Schematic diagram of column for the steady state modelling ................... 183
Figure 5.2 a Schematic diagram of balances around a tray ...............cocoeuveeeenenii.... 184
Figure 5.2b Schematic diagram of balances around the reflux + condenser............... 185
Figure 5.2¢ Schematic diagram of balances around the reboiler............................. 186

Figure 5.3 Comparison of predicted vapour liquid equilibrium with published
experimental data of Bachman et al (180)......ccccveiiiiviiiiiiiiiiiiiiiiiiie, 197
Figure 5.4 Convergence criteria trajectories of the steady state simulations................ 205
Figure 5.5 Refinement of the initial steady state: Top tray and bottom tray
(2001810 ¢ 110 (S PP 209
Figure 5.6 Refinement of steady state: Shift of the temperature profile of the

Figure 5.7a Simulated open loop responses of the column simulator : Responses
of top and bottom tray temperatures to reflux flow changes..........cccoceeveennne. 211
Figure 5.7b Simulated open loop responses of the column simulator : Responses

of top and bottom tray temperatures to reboiler heat input and feed flow

CRANEES ..ottt ittt e e e e 212
Figure 5.8 Open Loop Experiment No 1. ..., 215
Figure 5.9 Open Loop Experiment NO 2 ... 216
Figure 5.10 Trajectories of the liquid levels in the reboiler and reflux drums :

Reboiler liquid level under two position control ...........ooovviiiiiiiiiii .. 218
Figure 5.11 Model Verification NO 1. ...cc.ooiiiiiiiiiiiiiii 220
Figure 5.12 Steady state temperature profiles of the column, Model vs Column.......... 221
Figure 5.13 Model Verification NO 2. ......oooiiiiiiiiiiiiii e 223

Figure 5.14a Column simulator vs the state variable model : Responses of the top
and bottom tray compositions to step change in reflux rate.......ccccoevveieeennnn, 226
Figure 5.14b Column simulator vs state variable model : Responses of the top and

bottom tray compositions to step change in feed flow rate. ..................oooueen, 227

Figure 6.1. Load disturbance rejection - 25% increase on feedflow: Top and
bottom products under control: MO = diag (0, 0) vs MO = diag (-

0.3, =03 281
Figure 6.2. Load Disturbance rejection control - Load disturbance - 25% increase
in feed flow, Top and bottom tray compositions under control:

Performance of an "integrator decoupled” system. ...........ccovvviiini.., 282

15



Figure 6.3. Load disturbance rejection- 25% increase in feedflow Effect of pole
ASSIZMIMENES ... o. ittt ettt ettt et ettt e 283
Figure 6.4 Load disturbance rejection using the feedforward compensator, Ty

Load disturbance - 25% increase in feedflow.......c..oooevveveereenennn.. 284
Figure 6.5 Load disturbance rejection using the feedforward compensator, Ty,

with state feedback. Load disturbance - 25% increase in feedflow ........ 285
Figure 6.6 Load disturbance rejection - 25% increase in feed composition: Effect

Of POIE ASSIZNMENIS. ... vttt 286
Figure 6.7 Load disturbance rejection using feed foward compensator, Ty, alone.

Load disturbance - 25% increase in feed composition....................... 287
Figure 6.8 Load disturbance rejection using the feedforward compensator, T,

with state feedback. Load disturbance - 25% increase in feed

(0111 e L3 1o D SO PUR 288
Figure 6.9 Effect of non-linearities on the performace of the disturbance rejection

controller: Load disturbance - 25% increase in feedflow.................... 289
Figure 6.10 Setpoint tracking: My = diag (-0.8, -0.8).......coveiiiii 290
Figure 6.11 Setpoint tracking: My = diag (-5, -5).cceevniiiiiin, 291
Figure 6.12 Setpoint tracking: MO = diag (-0.8, -5), K* = diag (0.8,5).................. 292
Figure 6.13 Setpoint tracking: M = diag (-5, -10), K* = diag (5, 10).................... 293
Figure 6.14 Setpoint tracking: My = diag (-5, -5); Effect of non-linearities ............... 294

Figure 6.15 Comparison of multiple loop PI control with disturbance rejection

control: Load disturbance rejection (25% increase in feed flow)........... 295
Figure 6.16 Comparison of multiple loop PI control with decoupling and

disturbance rejection control: Setpoint tracking and load disturbance

rejection, Simultaneously.....cooooviiiiiiiiiiiiiiii 296

Figure 6.17 Application on the mode! of Shimizu and Matsubara (113): Setpoint
tracking with K* = diag (840, 9, 10)...cccccriiiiiiiiiiiiiiiiiiiiiinnen. 297

Figure 6.18 Application on the model of Shimizu and Matsubara (113): Setpoint
| tracking comparison of K* = diag (56,9, 10) and K* =1 ................. 208

Figure 6.19 Effect of using less than the minimum number of state variables that

should be measured: Top tray composition measurement not

available. ... 299
Figure 6.20 Effect of using less than the minimum number of state variable:

Bottom tray composition measurement not available. ....................... 300
Figure 6.21 Effect of using less than the minimum number of state variable:

Second tray composition measurement not available. ....................... 301
Figure 6.22 Effect of using less than the minimum number of state variable: Ninth

tray composition measurement not available...................o 302
Figure 6.23 Application of the disturbance rejection and decoupling control

scheme on the column SimMulator. ... ..ot e 303

16



Figure 6.24 The performance of the decoupling and disturbance rejection

controller with integral mode for feed flow disturbance rejection ......... 304
Figure 6.25 Effect of integral time on the performance of the decoupling and
disturbance rejection controller with integral mode:..............cc..co..... 305

Figure 6.26 Effect of derivative mode on the performance of the disturbance
rejection and decoupling controller with integral mode (Figure

Figure 6.27 Setpoint tracking; Use of integral action to remove offset due to
wrong choice of K* ..o 307
Figure 6.28.Using integral action to attempt to remove offset due to non-linearity ....... 308

Figure 7.1a Estimation of the tray compositions corresponding to the tray

temperatures measurements : Tray land Tray 2 .......coooiiiiiiiinnees 325
Figure 7.1b Estimation of the tray compositions corresponding to the tray

temperatures measurements : Tray 7, Tray 9and Tray 10.................. 326
Figure 7.1c Trajectories of the 1- norms of the covariance and the filter gain

1100 4 (L S PPN 327
Figure 7.2a Baises between the tray composition estimates and their true values

Tray 1, Tray 2 .ot 328
Figure 7.2b Baises between the tray composition estimates and their true values

Tray 1, Tray 2, Tray 7and Tray O. ... 329
Figure 7.3a Estimation of the third tray cOmMpoOSition........ccccooeveiiiieiiiiniiiienennn 330
Figure 7.3b Estimation of eighth tray composition...............cocoiiiiiiiiininn.. 330

Figure 7.4a Estimate of the third tray composition : Smaller P(0,0) and Q elements

for the tray COMPOSItIONS. ....viriiiiiiiriiri i e 331
Figure 7.4b Estimate of the eighth tray composition : Smaller P(0,0) and Q

elements for the tray compositions without tray temperature

TN ASUTEITICIIES . tuenttarentnteeentneaneanenen et et e es et et et aaetanaaanass 331
Figure 7.5 Estimation of measured feed flow...............oo 332
Figure 7.6 Estimation of measured reflux flow................co 333
Figure 7.7 Estimation of reboiler heat input............oooiiiiiiiiiiiiiiis 334
Figure 7.8 Estimation of unmeasured feed composition..............c.ccoovviiiin. 335

17



List of Figures

Volume 2

Figure 8.1 Block diagram representation of the distillation column. ........................ 25
Figure 8.2a) Trajectory of a parameter using the SPCwithO < <l.........c.cooeiinl, 45
Figure 8.2b) Trajectory of a parameter using the SPC with 1< H< 2o, 45
Figure 9.1 Load disturbance on the linear SyStemm ... ...ovvvvueneereeieeeesseeeeee, 51
Figure 9.2 Servo and regulatory performance of a positional self tuning controller,

without estimation of the bias term, d............cooeiiiiiieeeiiiie e 53
Figure 9.3 Servo and regulatory performance of a positional self tuning controller

which includes estimation of the bias term, d. .........ooooviririie .54
Figure 9.4 Servo and regulatory performance of an incremental self tuning

CONETOLIET ittt e 55
Figure 9.5 Effect of non-linearity on the servo and regulatory performances of the

positional and incremental self-tuning controllers .............coooviviuievinineinnn.a.. 56
Figure 9.6 Load disturbances for single loop top tray temperature control................. 57
Figure 9.7a Top tray temperature control using PI: ATc = 0.5 minute K¢ =-2.0

Vhr/°C, ; = 3.0 minutes vs. Kc = -2.5 I/hr/°C, 1; = 3.0 minutes.................... 61
Figure 9.7b Control actions for Figure 9.7a
Figure 9.7¢ Top tray temperature control using PI: ATc = 1.0 minute, Kc =-1.15

Vhr/?C, 1, =3.0 MINULES ...ttt 61
Figure 9.8. Top tray temperature control: PI vs. PSV-STC............ccevviiiinnnnnnnnn. 62
Figure 9.9 Comparison of ISV-STC with PSV-STC ... 62
Figure 9.10 Parameter estimates for ISV-STC......ccccovvimiiiiiiiiiniiiiiiiiiniiniennnn. 63
Figure 9.11 Effect of increase in the the control inteval, ATc, to 1 minute on the

performance Of ISV-STC . .. i e 64
Figure 9.12 Effect of a) slower reference model and b) larger control weighting

on the performance of ISV-STC: ATc=0.5minutes.......cooeeviiiiiiiiiiinann.... 64
Figure 9.13 Performance of ISV-STC: First order P and R each with a time

constant of 0.5 minutes @ = - 0.6A, ATc =0.5minutes..................oooi 64
Figure 9.15 Behaviour of estimator estimator for ISV-STC using VFF1 algorithm

WIith 20 = 0,00 66
Figure 9.16 Behaviour of estimator estimator for ISV-STC using VFF1 algorithm

W 20 = 0.5 66
Figure 9.17 Behaviour of estimator estimator for ISV-STC using VFF2 algorithm

WIth NO = 0.0 e e e e, 67
Figure 9.18 Behaviour of estimator estimator for ISV-STC using VFF2 algorithm

WIth NO = 1.0 i e e e et e e 67
Figure 9.19. Load disturbances for simultaneous control of the top and bottom

tray temperature: Load disturbance rejection ........cocoviviiiiiiiiiiiin 69

18



Figure 9.20 Simultaneous control of the top tray and bottom tray temperatures

(Servo control): Multiple loop PI vs Multiple loop PI + steady state

ECOUPIINE ... oottt e 73
Figure 9.21 Simultaneous control of the top and bottom tray temperatures:

Comparison of multiple loop PI, PMDI1-STC and IMDI1-STC ....oovvvnenininn, 74
Figure 9.22 Simultaneous control of the top tray and bottom tray temperatures

(Servo control): Comparison of the positional and incremental MD2-STC

and MD3-STC ... e 75
Figure 9.23 Simultaneous control of the top tray and bottom tray temperatures

(Servo control): Comparison of IMD1-STC and IMD3-STC to demonstrate

the benefit of interaction COMPENSAtON. ...........oviviiiiiiiiiiiiiiiiee e, 76
Figure 9.24. Simultaneous control of the top and bottom tray temperatures: Load

disturbance rejection PI vs PI + steady state simplified decoupling.................. 77
Figure 9.25. Simultaneous control of the top and bottom tray temperatures: Load

disturbance rejection. Comparison of PMD1-STC, IMD1-STC and multiple

00D Pl 78
Figure 9.26 Regulatory performances of the positional and incremental forms of

MD2-STC and MD3-STC ... 79
Figure 9.27 a) Parameter Estimates for PMD1-STC for servo control...................... 80
Figure 9.27 b) Parameter Estimates for IMD1-STC for servo control...................... 30
Figure 9.27 c) Parameter estimates for IMD3-STC for servo control....................... 81
Figure 9. 28a The performance of IMD1-STC using a large initial covariance

matrix PP(0) = 106 ..o 89
Figure 9.28b Control actions corresponding to Figure 9.28a...............c..ol. 90
Figure 9.29 Parameter estimates corresponding to Figure 9.28 ........................ ... 91
Figure 9.30 Performance of IMD1-STC combined with PC algorithm: The g(l)1

and g(z)2 parameters are specified and o = 0.15 ... 92
Figure 9.31 Behaviour of the traces of the covariance matrices and the parameter

estimates: Graphs corresponds to Figure 9.30.............c..coiiiiii 93
Figure 9.32 Performance of IMD1-STC combined with PC algorithm: The g(l)1 R

g(l)z, g%l and g%g parameters are specified and & = 0.2........cccooiiiiiiiiii. 94
Figure 9.33 Behaviour of the parameter estimates: Graphs corresponds to Figure

03 e e 95
Figure 9.34a Effect of m on the performance of IMD1-STC combined with SPC........ 96
Figure 9.34b Control actions corresponding to Figure 9.34a...............c.ocoen . 97
Figure 9.35 Parameter estimates for IMD1-STC combined with SPC using 1 =

0,15 e e 98
Figure 9.36a The performance of IMD1-STC combined with SPC forp=02.......... 99
Figure 9.36b Control actions corresponding to Figure 9.36a............................. 100

19



Figure 9.37 Estimator parameters for the case with the bounds of all the G
parameters specified: IMD1-STC combined with SPC (L = 0.2)..ccooccvevvecnennn. 101
Figure 9.38 Performance of the PC method, o = 0.15, with covariance matrix

maintained constant at a large value by selecting the forgetting factor

according to EQUation 9.3 ...ttt 102
Figure 9.39 Parameter estimates corresponding to Figures 9.38 ............ooiiiiiiiiininns 103
Figure 10.1 Top tray temperature control using Proportional + Integral controller........ 108
Figure 10.2 Top tray temperature control using PSV-STC.......ccoooirviveniininnin. 109
Figure 10.3 Top tray temperature control using ISV-STC ......... .o, 110
Figure 10.4 Self tuning controller parameters for PSV-STC (Top) and ISV-STC

§270]510) 10 ) I PP 111
Figure 10.5 Effect of steady state decoupling on the performance of the multiple

100P PICONtIOlIErS. ...ttt e 114
Figure 10.6 Multiple loop PI control in presence of feed flow disturbances............... 115
Figure 10.7 IMD3-STC control in presence of feed flow disturbances..................... 116
Figure 10.8 IMD1-STC control in presence of feed flow disturbances..................... 117

20



List of Tables
Volume 2

Table 8.1 The computational times of the self tuning algorithms on the System96....... 50
Table 9.1 Integrated Squared Error (IAE) for single loop top tray temperature

ToTo 115 f o1 O PP 58
Table 9.2 Integrated Squared Error (IAE) for single loop top tray temperature

control: Comparison of the performance of ISV-STC with the different

variable forgetting factor algorithms.........cooooviiiiiiiiiiiiiii 58
Table 9.3 Integrated Squared Error (IAE) for the simultaneous control of the top

tray and bottom tray teMPETatures ......uueueeiurtennrenieeareenneeriteeeaeeniaennaenns 70
Table 9.4 Bounds on the controller parameters for use with the parameter

correction MEthods. . ...ooviiiii 83
Table 9.5 Integrated Squared Error (IAE) for the simultaneous control of the top

tray and bottom tray temperatures using IMD1-STC combined with the

PATAMELET COTTECTION. L.ttt inint ittt ettt e e et aaeeaae 84

22



List of Plates
Volume 1
Plate 1 The pilot plant distillation COUMN....ccovieiriviiiiiiiiiini,
Plate 2 The control valves and the column on a smallerscale ...l
Plate 3 The control panel and theSystem96 microcomputer..........ooooiviiiiiiineieeenn.

23



This page is left intentionally blank

24




CHAPTER ONE
Introduction

1.1 Introduction

The control of a physical system involves taking action to counteract any
disturbances that may have adverse effects on the state of the system. The disturbances
could be due to changes in the environmental conditions or may be introduced by an
operator if a change in the state of the system is desired. In the chemical industry
process control is central to the smooth and safe operation of plant as well as
improving plant economy.

Any equipment designed to effect the change of physical or chemical properties of
the raw materials on a commercial scale can be considered as a chemical plant. Often
such plants consist of arrangements of connected units such as chemical reactors, heat
exchangers, pumps and distillation columns, all arranged in a systematic manner in
order to convert raw materials into desired products. The products of the plant are to
be made to the desired specification in a safe and environmentally acceptable manner,
using the available energy sources in the most economical manner. During plant
operation, the physical limitations of the equipment must not be exceeded, nor should
some process variables exceed some specified bounds for reasons of safety and
environmental regulations. Account must also be taken of external disturbances such
as noise, weather changes and changes in the raw material compositions. The
operation of chemical plant must therefore be continuously monitored and controlled to
ensure all the operational objectives are being satisfied. The control of the entire
chemical plant is the culmination of the control of the primary variables of the
individual processing units. The primary variables will influence the final product and
each unit will have its own operational objectives and physical limitations which must
be satisfied.

In the face of a disturbance, one approach to control is to wait for the effect of the
disturbance to manifest itself and then take proper corrective, or control, action. This

is known as feedback control since the output of the process is "fedback" to the
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controller as expressed schematically in Figure 1.1a. This brings into being a closed
loop system The control action is based on the amount of deviation of the output from
the desired value. The input that is manipulated in order to bring about this effect is the
mamnipulated, or control, input; the output that is under control is called the controlled
output.

Feedback is the most commonly used approach in all fields of engineering.
Another approach to control is to perform the corrective action before the disturbance
materializes on the output of the process. This is achieved by anticipating the effects of
the disturbance using a model of the process and measurement of the disturbance. This
is feedforward control and is expressed schematically in Figure 1.1b. Both feedback
and feedforward methods can be combined in order to improve the quality of control
of the system. The intent is that the feedforward counteract most of the effects of the
disturbances and the feedback provide residual control and setpoint tracking (Rinard
(170))

One of the earliest control methods include the flyball governor and the most
common early control methods were based on manual adjustment of the inputs of the
process. The development of measurement devices and automatic control valves has
permitted automatic control, where control is performed continuously by mechanical,
electrical and pneumatic devices. These are commonly referred to as analogue
controllers. The methods commonly used to obtain the controller settings, which
determine how much the input is to be changed subject to the deviation of the output
from the desired values, are classified generally as "classical design theory"”. These
design methods are called classical, or sometimes, conventional design methods and
they include those of Cohen and Coon (203) Ziegler and Nichols (191), Nyquist, and
Bode, which are all treated in Stephanopoulos (116). The methods are based on the
assumption that the process is linear and is described by simple transfer functions.
They are suitable for designing single loop controllers which have one control, or
manipulated, input and one controlled output, both of which must be paired

appropriately. Each control loop is designed independently, without taking into
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account of interactions that may exist between the controllers when they are in

operation.

H |

Figure 1.1a General structure of a feedback controlled system

y + + y
> G g

L/ P U

Figure 1.1b General structure of a feedforward control system

Notation

d 1s disturbance, u is the input, e is the error signal y 1s the output and yq 1s the
setpoint. G, G4 are the process transfer functions relating the input to the output and
the disturbance to the output. H_\, G ¢, G, GC and are the feedback measurement,

disturbance measurement, the feedforward controller and the feedback controller
transfer functions
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1.2 Requirements of a control system

An important step to control systems design is to determine what the control
system is meant to do and what performance is expected of it. Practical process control
criteria generally belongs to types involving product quality, economic, safety and
equipment limitations and the paramount requirement of the control system is to
maintain stability of the closed loop system.

The qualities of an ideal control system are perfect disturbance rejection and perfect
setpoint tracking, in other words "perfect” control; this is where the output tracks the
desired trajectories perfectly and where the effects of disturbances are not evident in
the closed loop response. This is, however, an idealistic feature which can rarely be
attained in practice due to various reasons such as material holdups in the process,
delays due to mass and energy transport, measurement delays and various limitations
of the equipment. The desirable qualities of a control system are, thus, good
regulatory control and quick and smooth setpoint tracking capabilities. Other desirable
qualities of a control system include, (1) robustness to errors in the model used to
design the controller, since it is usually the case that a model of the process is involved
at the design stage, (2) robustness to instrument failure (3) insensitivity to changes in
operating conditions (4) avoidance of excessive control action and (5) avoidance of
controller saturation. Some of these requirements will result in conflicting controller
designs. It is therefore usually the case that a compromise must be met to satisfy
various criteria. For example, in the high performance case with the requirement of
fast setpoint tracking and fast disturbance rejection, the control action will generally be
required to be fast in order to bring the system to the new state quickly. This would
usually require excessive control actions and oscillatory response of the output and
easy saturation of the manipulated input. Robustness is usually achieved by slowing

down the control action.
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1.3 Previous industrial practice and motivation for change

The most widely used conventional feedback controller is the proportional-
integral-derivative (PID) controller which the conventional design methods are
commonly used to assist their tuning. The PID algorithm is widely used in industry. It
has a long and proven history of applications such that it has become the standard by
which all other forms of controller designs are assessed (Shaffii (115)). Ray (104)
pointed out that in the 1960s simple control schemes like the PID, in analogue form,
were commonly used for automatic control. Installation of the hardware was costly, so
that only a limited number of control loops could be justified on a chemical plant.
According to Ray, these simple control schemes worked well because industrial
processes were large, slow responding systems and were usually stable even without
a controller. Plants were generally overdesigned and intermediate storage tanks were
widely used to dampen out fluctuations and, therefore, helped to compensate for
inadequate control. Product specifications and safety specifications were loose and
energy efficiency was permitted. Ray concluded that the incentive for improving
control were therefore quite low.

In the last 20 years there have been new developments that have provided the
incentive to develop better ways of designing chemical plants and their control
systems. Most chemical companies have been under pressure to operate their plants
more efficiently, increase their productivity, reduce their operating cost and energy
consumption. The market also demand for consistently high quality products. The
main objective of these companies is to achieve financial benefits, be competitive in the
market and thus stay in business. There are also stricter safety and environmental
regulations that must be met. For these reasons, capital investment has gone into the
construction of many large and continuously operated plants to replace the older ones,
and to increase the integration between the processing units in order to make better use
of the energy and raw materials. The consequence of this is the increased complexity
of plant and a more complex aund interconnected control structure for the plant. This in
turn gives an increased possibility of failure of instruments and control systems; the

consequence of which could be severe to the environment due to the large scale and
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continuous nature of chemical plant. The incentive therefore exists for developing

reliable high quality, high performance and robust control systems for modern

chemical plants.

1.4 The use of digital computers in process control

Digital computers are now available to perform automatic control. In computer
control the computer replaces the hardware and, since the control is then done in
digital form. The control laws can be programmed in the computer and the control
performed cheaper and more efficiently than hardware. There is also the opportunity to
use more complex control schemes which would be difficult to apply with mechanical,
pneumatic and electrical devices. The performance of real time process computer and
microcomputers has improved greatly while prices have fallen significantly over the
last 15 years. This has made it possible to easily justify the installation of computers to
monitor, schedule, and control the chemical plant on the basis of improved safety,
reduced labour costs and reduced cost of controller hardware ( Ray (104), Benson
(148) ). There have also been significant improvements in on-line measuring devices
such a flowmeters, composition analysers and thermocouples (Gunderlach (186)).
There is evidence that many plants are now under computer control and financial

benefits have been obtained (Stephanopoulos(116)).

1.5 Inadequacies of conventional methods and the need for new
approaches to control systems design

Conventional controller design methods frequently cannot provide control systems
that meet the demand for high performance, robust and more reliable control systems
required for modern chemical plant. In the first place, the methods assume that the
process is linear. Linear models are only valid approximately since chemical processes
are usually non linear. Therefore, if the operating conditions of the system change
significantly, new controller parameters may need to be found or control action slowed
0 as to ensure good control at the new operating point. The presence of significant

time delays and time lags between the input change and the output response will have a
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destabilizing effect on the controlled system. Such delays and lags may be due to fluid
transport in pipelines, measurement delays and measurement lags. For example, the
presence of time delays in the system will reduce the maximum controller gain of a
PID controller that can be used before the system becomes unstable. If measurements
of the variables needed for control are not directly available, because the variable may
be difficult, expensive or even impossible to measure, a conventional controller cannot
be applied directly. In such a case a method must be devised in order to infer accurate
values of the variables needed for control from secondary measurements which relate,
in some way, to the required variables.

When more than one variable of a process is to be controlled, interaction between
the control loops will exist due to interations between the process variables.The
classical design methods do not take account of interactions that may exist between the
variables of the process as the methods are suitable for designing SISO controllers
only. Therefore, when more that one process variable is controlled by conventional
SISO controllers the combined performance of the multiple loop control system may
be poor and non linearities and time delays will simply make the situation worse. The
selection of the appropriate pairing of the manipulated and controlled variables is also
very important in such situations, so that the designer must use his knowledge about
the process to select the appropriate control configuration. In the presence of
interactions among the control loops, it is, strictly speaking, not satisfactory to
consider each control loop as independent. A design method that handles several
variables is required. This is known as multivariable control.

The various inadequacies of classical controller design methods provided the
incentive for developing better methods of performing control in all fields of
engineering. The result is that significant progress has been made in the development
of new control techniques and there is now a wide variety of advanced control
techniques available as alternatives to the classical design methods. In general, any
method that departs from the classical design methods is called an advanced control
technique. Advanced control systems design methods range from simple feedforward

control to multivariable control through to adaptive control where the controller
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parameters are changed according to changes in operating conditions. Many of these
design methods, particularly the multivariable design methods, are classified under the
general heading of " Modern Control Theory". Many have arisen from fields of
engineering such as the aerospace and electronics industry (Bell and Griffin (15), Ray
(144)). Some methods are extensions of single loop frequency domain design
methods, such as Nyquist and Bode methods, to multivariable systems. Advanced
control techniques can, in principle, solve many of the problems encountered in
chemical process control, but there is a wide range of problems to be addressed and no
single technique can solve them all (Foss (33)).

Compared with conventional controllers such as the PID, advanced control
techniques usually involve more complex calculations to obtain the controller
parameters and implement the resulting control policy. On-line digital computers are
needed for their implementation since to design mechanical, pneumatic or electrical
hardware for there implementation would be difficult, or even impossible to do. The
basis of most advanced control techniques is a mathematical model of the process,
therefore, mathematical modelling and process identification techniques are valuable
tools for the design, analysis and implementation of advanced control systems. In fact,
with the complexity now required for the overall control system of modern chemical
plant, a good knowledge about the behaviour of the processes over a wide range of
operating conditions is required by the control systems designer. This means that the
first stage in the design of a control system for a process usually involves building a
mathematical model of the process that will be valid over a wide operating range. The
availability of cheaper and powerful computers has made the task of process
simulation easier, as large complex calculations can be performed much more easily.

This has increased the scope for applying advanced control techniques.

1.6 The extent of application of advanced control in the chemical

industry

Despite the theoretical advantages of advanced control methods and the availability

of cheaper, powerful and flexible computers and microcomputers, the application of
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advanced control schemes to industrial chemical processes has been, and still is,
limited. The PID algorithm is still the most widely used in industry (Benson (148),
Rinard (170) and Clarke and Gawthrop (22)) and computers have been mainly used to
make their implementation more cost effective and reliable (Clarke and Gawthrop (22))
. Computer simulations using process models have been frequently used to
demonstrate the benefits of most advanced control schemes.

Several factors are responsible for this state of events. One is because advanced
control techniques involve complex calculations for controller design and
implementation of the control policy and this complexity tends to discourage their use.
This is particular true if the plant en gineer is not familiar with the calculations, which,
it can be said, is often the case.

The practicability of many advanced control schemes have also been question.
Critics such as Foss (33) have criticised several multivariable controller design
methods that do not address the real problems such as non linearities, control loop
pairing and estimation of unmeasurable variables in chemical systems. He gives
examples of situations were failures have occurred and are likely to occur in the direct
applications of multivariable design methods that assume linearity of the process. The
assumption of linearity of the process can rarely be valid for chemical systems which
are inherently non linear with parameters that change unpredictably: while such models
can adequately describe a large number of mechanical and electrical systems even if
high performance control systems is required (Ydstie et al. (146)). While this is true in
many cases, there are a significant number of methods which, in theory, do not fall in
this category, but are still not widely used. An example is adaptive control design
methods based on continuous on-line identification of a model of the process which is
then used to update the controller parameters. The availability of more flexible and
powerful computers that make their real time implementation relatively easy. The
superiority of many of adaptive control methods over conventional methods have been

demonstrated, but they have not had extensive application at industrial level; they are

still perceived difficult to use in industry (Dumont (176)).
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A major contributory factor to the limited use of advanced control systems in

industrial processes has been atiributed to the reluctance of industrial practitioners to
adopt new ideas. This is the point of view of some including Bell and Griffin (15) and
Shaffii (115). According to Shaffii, industrial practitioners are usually not interested in
applying new control methods unless the methods have had a long and proven history
of applications, reliability and satisfactory performance. This is strongly supported by
the fact that some industrial processes like distillation and absorption columns are still
controlled manually, according to Skogestad and Morari (153).

There is now wider opportunities to bring advanced control into practice in the
process industries. According to Asbjornsen (2), many companies now regard
improved process control as a significant contributor to plant economy in the future.
One reason he gives for this is that these companies perceive that the exploitation of
increased integration of processing units and exploitation of economies of scale to
increase productivity and plant economy as a whole, will soon be exhausted. Ray
(104) gives another reason, which is that engineers trained in advanced process
control are now reaching positions of responsibility. They can, therefore, assess the
practical advantages of these advanced control methods in industrial environment and
influence their wider applications on the industrial processes.

Furthermore, there are many older plants which still have significant operating life
and where it may be more cost effective to invest in improving control rather than
building a new plant. Increasing knowledge about the operation of such processes has
been gained over the past years so that adequate steady state and dynamic models for
many chemical processes can now be developed to the point were they can be used for
control systems design and detailed analysis by computer simulation. This will make
the analysis of advanced control methods by computer simulations more realistic and
convincing so that they will be useful in determining the practicality of the methods. It
is also important the the synthesis of the control system can be done conveniently.
Even though the calculations may be lengthy and complex, the control engineer should
be carried along the synthesis and the implementation of the control scheme with

relative ease, as this will help promote the use of the design method. This factor has
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greatly promoted the development and the use of interactive computer packages for

control systems design and analysis over the last decade.

1.7 This Research

Having given some factors responsible for the limited use of advanced control
systems, it is true that not all the methods would be practical to chemical systems.
There are many methods which have not been evaluated on realistic process models
and in practical situations. This provides the incentive to test applicability of some
design methods on practical systems, preferably on real plant, to assess their
practicality, benefits and limitations. Furthermore, the robustness of any control
scheme to various factors such as model errors and instruments failures, are important
requirements of the control system. Such desirable property of a control system when
demonstrated in a real environment, would contribute significantly in promoting the
use of the control system in real systems.

The aim in this research work is to select some advanced controller design
methods and apply them on a practical chemical engineering system with the use of a
microcomputer for direct digital control. Three methods were selected on the basis of
three different criteria, so that each method primarily addressed a particular problem. It
was aimed to consider a reasonably wide class of advanced control methods so as to
address a reasonably wide range of problems. A binary distillation column was chosen
to assess the design methods.

The criteria for selecting the design methods, and the methods selected, are given
as follows:

1) One multivariable controller design method that addresses the problem of
control loop interactions. A method called the Disturbance Rejection and Decoupling
Control originally proposed by Falb and Wolovich (179) is chosen. The method
assumes the the process is linear and is described by a set of linear ordinary
differential equations, that is, in state variable form. The control objective is to

decouple the control loops sO that the closed loop response of each output variable will
be independent of the others.
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2) One method that is applicable in the situation were direct measurements of the

controlled variables are not available. A method called the Estimator Aided
FeedForward (EAFF) control scheme proposed by Daie (26) is selected. The method
employs an Extended Kalman Filter as an estimator to generate the controlled variables
of the process using a non linear model of the system combined with secondary
process measurements.

3) One method that addresses the problem of changes in operating conditions of
the plant. The adaptive control system design method called the generalized minimum
variance (GMV) Self Tuning Controller (STC) is selected. This basis of this method is
the single step optimisation of a quadratic cost function and was developed by Clarke
and Gawthrop (156). The design method adapts the controller to changes in the
process environment by adjusting the controller parameters based on the parameters
of an assumed model of the process. The parameters of the model is identified on-line
using process input and output data and a recursive parameter estimation law.

These design methods, the synthesis of the control policies and their applications
to chemical processes, will be treated in more detail in the next chapter. In order to
achieve the goals of this research work, the first task was to develop a dynamic model
of the column used in this work, after the construction of the pilot plant distillation
column used in this work. This model was used for studying the dynamic behaviour
of the column and to design and analyse the control systems for the column. The
decision to proceed with on-line application of the control schemes selected for
evaluation was based on the performance on the dynamic model. The next section
deals with the importance of distillation columns in the chemical industries and why

they are good examples to illustrate application of advanced control systems.

1.8 Reasons for studying distillation column control

The purpose of a distillation column is to split the feed into two or more products:
A conventional binary distillation column splits the feed into two products, the tops
and the bottoms products. Heat is used to bring about the separation and the amount of

heat input is strongly linked to the degree of separation that is achieved. Distillation is
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an important fundamental chemical engineering process found in a majority of

chemical and petrochemical plants. Distillations systems are complex non linear
multivariable systems with strongly interacting variables. They generally consume
large amounts of energy and it is usually the case that the quality of the products from
a distillation column strongly influences the quality of the final product of the plant.
This 1s particularly the case when the column is towards the end of the processing line,
where it will be subject to many load disturbances from processing units in upstream.

The usual control objective of a column is to maintain the product quality, at one or
both ends, at desired levels subject to many adverse load disturbances and product
demand changes. Another desirable operating objective is to reduce the energy
consumption of the column since they usually consume a lot of energy. Numerous
studies on the dynamics and control of distillation columns have been carried out (10,
44, 57, 169, 188, 192, 199). It is generally agreed (199, 57, 169, 188) that
improving the control of distillation columns would make it possible to operate the
column closer to the product specification, reduce off specification periods, increase
the rare of recovery of products and hence achieve more economical operation of the
column. The recent article by Skogestad and Morari (153) point out that many
distillation columns are still controlled manually, and , in most cases, only the product
at one end is under control.

The problems in the control of an average industrial, and even a pilot scale
distillation process, is typical of the major problems in chemical process control.
These include the presence of significant time lag between the response of the product
compositions to changes in the inputs. These lags are usually introduced by the large
liquid holdups in the column and by composition analyzers used for direct
measurement of the product compositions. The selection of the proper location in the
column were composition should be measured to achieve effective product
composition control s frequently encountered. There are also many manipulatable
inputs in a distillation column that strongly influence most of the primary variables of
n including the product compositions. Therefore, selecting the best

the entire colum

input to control a particular product can be difficult. It is also usually the case that
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direct measurements of the compositions are not available as on-line composition

analyzers can be very expensive and unreliable. Furthermore, as distillation is a
complex nonlinear multivariable process, the assumption of linearity in controller
design means the resulting controller will be subject to robustness and stability
problems as operating conditions change.

Numerous simulated and experimental results (73, 57, 169, 161) have shown that
the dual composition control of the top and bottoms of distillation columns can provide
substantial benefits in terms of reduced energy consumption. This has been reported
(199, 205) to have industrial support. Dual composition control is, however, known
to pose problems due to the strong interactions that exists between the variables of the
distillation column. The control loop interactions in distillation columns can sometimes
be considerable. A control loop at one end will affect the control loop at the other end
because the manipulated inputs have significant influence in the entire column. The
combined performance of independently designed conventional SISO controllers may
become very bad as they will interact with each other. Stability problems are likely to
arise and the nonlinear characteristic of the column will worsen the case. In such
situations the controllers will have to be detuned to maintain stability and robustness
with the loss of performance since longer response times and large deviations of the
product quality from the desired levels will result. This type of control loop
interactions has been cited (Marchetti et al. (82), Tham et al. (131) and Skogestad and
Morari (153)) as one of the main reasons why multiproduct control of distillation
columns is difficult. The incentive, therefore, exists to develop techniques which can
deal more effectively with such interactions than conventional control methods.

In the face of load disturbances such as feed flow and feed composition
disturbances, feed forward control can be beneficial to distillation column control if the
disturbances can be measured and a model which adequately predicts the effects of the
diturbances on the product composition can be developed. The advantage of such a
scheme is that the disturbances can be nullified before they have significant effect on
the product composition and also avoid significant lags due to the hold ups in the

column. Significant saving in off-specification products and in energy consumption
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can be achieved (Jafarey and McAvoy (57)). Combinations of feedback and

feedforward control schemes have been shown (Luyben (76) and Coppus et al. (25))
to offer significant improvements in the control of distillation columns.

In view of all the control problems in distillation column control, distillation
columns are regarded as good examples for illustrating advanced control techniques
(Rys (169). In fact, it can be assumed that an advanced control strategy that can tackle
some of the major problems in distillation column control has a promising future in

becoming widely applied in the chemical industry.

1.9 The Thesis
The rest of this thesis is arranged as follows.

Chapter 2 reviews some recent developments in control systems design, analysis
and the selection of control configurations. It surveys some modern
controller design methods including those that have been selected for
evaluation in this work. The review extends to the applications of the control
schemes there benefits, and limitatations as reported in the lterature.

Chapter 3 follows on from the literature review. It states the issues addressed in
this work as regards each of the control techniques selected for evaluation.

Chapter 4 describes the pilot plant binary distillation column and the interfacing
of the column with the microcomputer, System96, for investigating process
control techniques.

Chapter 5 describes the steady state and dynamic modelling of the column as
well as the verifications of the models.

Chapter 6 describes and discusses the results obtained from applying the
Disturbance Rejection and Decoupling Control scheme by simulation on
linearised state variable models of the non-linear model of the column and on
the non linear dynamic model of the distillation column.

Chapter 7 describes the Kalman filtering studies performed in an effort to assess

the feasibility of applying the EAFF control scheme of Daie (26) to the

distillation column.
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Chapter 8 describes the design of self tuning controllers for single variable and
multivarible control of the column.

Chapter 9 discusses performance the self tuning control systems on the on the
non-linear model of the column and compares the results with PI control.

Chapter 10 discusses the results obtained from computer control of the pilot
plant distillation column and

Chapter 11 gives the general discussions, conclusions and future work

recommended of this work.

1.10 Chapter Conclusion
This chapter has introduced the need, approaches and the motivations for
developing new control schemes. It has given a brief description of the aim of this

work.
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CHAPTERTWO

Literature Review

2.1 Introduction

The purpose of this review is to survey the state of the art of control systems
design, analysis and structuring with reference to distillation. A review of some
advanced control techniques and some reported applications to chemical engineering
systems is made. The review does not survey every development in advanced control
theory. Rather it surveys some design methods which have been receiving significant
interest during the last 15 years and some methods that have been demonstrated as
practical by laboratory and industrial applications. Also the review of the design

approaches that were selected for evaluations in this research work is made.

2.2 Recent developments in control systems design and analysis

2.2.1 Control loop pairing

The development of control systems generally involves the formulation of the
control objectives, the selection of the appropriate pairings of the controlled and
manipulated variables; that is loop pairing, and the determination of the appropriate
control law (Lau et al. (75)). The interconnections Between the manipulated inputs and
controlled outputs, or loop pairing, is referred to as the controller structure while the
manipulated and controlled variables is called the control configuration, or sometimes
the control structure (Arkun (165)).

Lau et al. (75) argue that the selection of the manipulated and controlled variables
and pairing them appropriately i worth more attention than it previously has had. They
base this on the need for efficient and reliable control structures for complex highly
interconnected modern chemical plants. The argument is that since these plants have to

show high performance and the incentives for improved control are great the choice of
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the various manipulated and controlled variables and their pairings become important in

achieving good control.

Choosing the proper manipulated and controlled variables and there pairings is
usually more involved for multivariable systems with single input single output control
loops since it may be necessary to pair the loops to minimise interactions between the
control loops. Interaction analysis in multivariable systems is thus an important
consideration in the design and analysis of control systems for multivariable systems.
Numerous studies have therefore been carried out (Jensen et al. (59), Witcher and

McAvoy (194) and Lau et al. (75)) on providing measures of the degree of interactions

in multivariable systems.

Multiple loop and Multivariable control systems: It is appropriate here to mention

the distinction between what is meant by a multiple loop control system, as used in this
review, and a multivariable control system, as regards the necessity for control loop
pairings. A set of single loop controllers controlling the outputs of a multiple-input
multiple-output (MIMO) system can be referred to as a multiple loop control system.
The single loop controllers may be conventional or advanced controllers; each is
designed independently without considerations of the interactions that may exist
between them. After selecting the manipulated and the controlled variables, it is then is
necessary to determine the proper control structure for the multiple loop control
system.

By contrast a multivariable controller design method takes into account of the
interactions between the control loops of the MIMO systems since, strictly speaking,
implicit in the controller design is the ability to handle several variables. There is no
need to specify the proper control structure; the multivariable controller will consist of
a matrix relating the manipulated inputs and the controlled outputs. Thus, strictly
speaking, if there are no interactions among control loops there will be no need for a

multivariable controller design method to be used since each loop could be treated
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independently. Control loop pairing is therefore primarily concerned with either single

loop and multiple loop control systems.

2.2.2 The Relative Gain Array method for control loop pairing

In industrial practice the control loop pairings is commonly done by experience of
the plant operators. For systems that require multiple control loops, it is usually more
difficult to select the best loop pairings when interactions between the variables are
severe. A method called the relative gain array (RGA) technique is one method for
selecting the control configuration for MIMO systems. This method is treated in books
on distillation column control by Shinskey (142) and Desphande (168). The method
indicates the control configuration that will give the minimum interactions between the
control loops. Each element in the RGA represent the relative gain of a pairing of
controlled and manipulated variables. Scali et al. (111) have defined the relative gain is
the ratio between the steady state gain relating the manipulated and controlled variables
when the MIMO system is in open loop condition and the steady state gain when all the

other loops are closed. The quantity is given as;

”ij = steady state gain with all control loops open

steady state gain with all other control loops closed

2.1
= (dyi/duj) uk, k#j / (dyi/duj) yk ke 27

where et corresponds to the relative gain between the outputi, yj, and the input j, uj.

The i and j correspond to the i-th row and j-th column in the RGA. Qualitatively, the
RGA is an index of how much the system is influenced when control loops change
from open to closed loops. If there are no interactions between a manipulated variable
u; and the other controlled variables, yj where j # i, the corresponding relative gain 7
will be 1. The elements in each row, or in each column, of the RGA must also add up
to 1.

The RGA is a measure of the strength of interactions in the system and it indicates the

proper pairings for the minimum steady state interaction among the control loops. It is
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easy to compute because it requires only the knowledge of the steady state gains of the

process systen. Since the elements in each row and in each column of the RGA must
add up to 1 for a process with 2 manipulated inputs and 2 controlled outputs (a2 x 2
system) only one relative gain need to be determined. The other elements can be
obtained by appropriately summing up to make the row elements and column elements
add up to 1. The RGA may, however, be computed directly from the process gain

matrix rather than perform actual experiments, or simulations. Given the process gain

matrix for a 2 x 2 system as
Gp = g11812
821822

the RGA is computed as (Skogestad and Morari (119), Marlin et al. (98))

T, ., 1-1
11712 117
RGA = = 2.4
Ty Mon| |1-Tyymy,

[S9]
(WS

where 111 = (1= (21989 1)/(€11229)) !

For a process gain matrix of size n x n the RGA is
RGA =Gp x (Gp )T 2.5

Ideally, it is desirable to have pairings which have relative gains close to 1 as this
indicates minimum interactions of the corresponding loop with other loops. Shinskey
(142) has used the RGA to compare control configurations for dual composition
control of distillation columns and suggested some recommendations which has been
interpreted by Skogestad and Morari (153) as pairings with relative gains between 0.9
and 4 should be used.

The drawback of the steady state formulation of the RGA is that the degree of
interactions between the control loops may vary significantly during operation and
these may dictate a different control configuration than that predicted at steady state
(Lau et al. (75)). The RGA can be computed at different frequencies of practical
importance to the systeni. The si gnificance of this is that an indication of variations of

the strength of interaction during the transient behaviour of the system could be
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obtained. The RGA is therefore defined in the frequency domain as (Skogestad and
Morari (119), Scali et al. (111))
RGA = Gp(w) x (Gp(w)-HT 2.6

The magnitude of the dynamic relative gain elements and the phase angles can then
be plotted against frequency similar to the Bode plots in frequency response analysis
used for analysing SISO systems. Frequencies of practical importance in a particular
system may be the crossover frequency and the ultimate frequency. The variations in
the dynamic relative gains around the ultimate frequency, for example, may be
obtained. If the variations are significant then this discloses that the degree of
interactions would vary greatly and control may be poor (Deshpande (168)). An
adequate compensator or a different controller design could then be sought for in order
to avoid poor controller performance. Analysis and evaluations of relative gains of
multivariable systems have also been extended to non linear multivariable systems
(Mijares et al. (83)). Steady state RGA analysis has also found use in analysis of the

operability of chemical processes and the prediction of process control performance

(Marlin et al. (98))

2.2.3 The Singular Value Decomposition applied to loop pairing
The singular values of a system are related to the eigenvalues of the system. Given
a matrix, Gp, the singular values of the matrix are the square roots of the eigenvalues
of matrix
Gp* x Gp, where superscript + denotes the complex conjugate transpose of Gp, that is
o, =2 2(Gp* xGp) 2.7
where o, is the singular value which is the square root of the eigenvalue A . The

singular values are thus the spectral norms of the matrix. In numerical analysis the
spectral norm of a matrix is the Euclidean norm, represented as lIGpll,,which is the 2-
norm of the matrix Gp. !t is defined (Grosdidier et al. (204)) as the maximum singular

value given by
12, +
P Gp" xGp)

2]
o0

Omax = Mmax
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In the context of control the singular values are also known as the principal gains of

the plant matrix (Shimizu et al. (189)).
Another quantity that can be derived from the singular values is the condition

number of the system matrix. The condition number, y(Gp), is the ratio of the

maximum and minimum singular values, & and ¢

max min’ respectively, and is given

by
YGP) = Opax /Opmin 2.9

In numerical analysis, the condition number of a matrix indicates the extent of

illconditioness of a matrix.

The singular value decomposition of Klema and Laub (160) is another method of
obtaining the singular values of a matrix. It involves the decomposing the plant matrix,
whether square or non-square, into three matrices. These are given as ;

Gp =vVowT 2.10
whereQ = diag(cl, G9peveenes O )

o; are the singular values of the Gp matrix of rank n

V= (vy, Voreenn. ) - the matrix of the left singular vectors v
W = (Wl, Woy e . ) - the matrix of the right singular vectors W4
vIv =1

wliw =1

where I is the identity matrix. This relationship is given in the articles by Lau et al.
(75) and Levien and Morari (152).

According to Lau et al. (75), by performing SVD on the plant matrix it is possible
to make direct relationships between the input and outputs of the MIMO system and
extract much more information about the characteristics of the system. They point out
that the singular values are measures of the sensitivity of the MIMO systems in the
same manner as the amplitude ratio is used in SISO systems. Yu and Luyben (137)
have also combined the singular values and the singular vectors to select the controlled
and manipulated variables of systems and pair them appropriately, since the singular

vectors disclose the extent at which an input affects the outputs of the system.
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In the work of Lau et al. this SVD technique of Klema and Laub (160) was shown

to be an efficient method for selecting the control structure MIMO systems with SISO
controllers. Lau et al. extended the SVD to the frequency domain to enable analysis to
be carried out over a range of frequencies of practical significance to the given process,
in a similar way as the Bode plots is used in the frequency response analysis of SISO
systems (Stephanopoulos (116)). By formulating the SVD in the frequency domain,
they were able to define new measures of dynamic interactions among the control
loops of the MIMO system. This interaction measure was then combined with the
condition number of the process matrix to assess the control properties of some
example model systems which included a distillation column. These quantities were
plotted against frequency and the information the plots provided were used to assess
the need and the feasibility of designing compensators to minimise interactions among
the multiple SISO control loops.

The ability of the SVD analysis to identify aspects such as model uncertainties
which can affect performance of the control structures selected was also demonstrated.
They found that the SVD analyses indicated that a closed loop system with larger
dominant time constant (slow responding system) can tolerate model errors than a
system which has smaller dominant time constant (faster responding system). This
result conforms with practical experience and engineering judgement since the
universal way to improve the robustness and the stability properties of a control system
is to reduce the control actions; for example, reducing the proportional gain of the PID
controller will reduce the closed loop response of the controlled system. Hammarstrom
et al. (47) investigated the effects of model errors on the performance of a multivariable
optimal linear quadratic gaussian (LQG) controller on a distillation column with time
constants as large as 16.6 minutes. There investigation showed that errors of up to
30% in the time constants had no significant effects on the controller performance.

Yu and Luyben (137), in their work which involved the design of rigorous
composition estimators for multicomponent distillation systems, employed the SVD to

locate the best tray temperature measurement for product composition estimation, and
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to select the control configuration for control of the product compositions of the

column. The criteria for selecting the control configuration is given in the article. In
summary the criteria is as follows;
1) Select the largest singular value and the the largest element corresponding left
singular vector v 4
2) The location of this element is the location of the controlled variable.
3) The appropriate manipulated variable is the largest element in the
corresponding vector w 1
They found that resulting control structures based on this criteria were reasonably
insensitive to changes in the operating conditions. They also used the SVD to
determine which tray temperature can infer feed composition disturbance best, using a
similar criteria to that given above.
In recent years the RGA and SVD have found extensive use as tools for assessing
the effects of plant characteristics, such as model errors, on the properties of multiple

loop and multivariable control systems (Morari (159), Grosdidier et al. (204)). The

topic of the next section concerns these areas.

2.2.4 Model uncertainty and controller performance

A view held by Doyle and Morari (177) and Morari (150) is that for any controller
design procedure to yield a control algorithm which works satisfactorily, the following
need to be specified:

(1) Process model and model uncertainty bounds.

(2) Types of inputs (set point changes, load disturbances).

(3) Performance objectives.
These considerations are from the point of view of Internal Model Control IMC),
which will be introduced in the next section. According to them, the omission of any
of these procedures may eventually lead to bad controller performance because every
controller design or tuning method is centred around a process model. In particular,

they emphasize that the presence of uncertainty in the model can adversely affect the
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performance of the resulting control system. They base this on the fact that processes

can seldom be modelled exactly so that there is always a mismatch between the plant
and the best model available. This mismatch is referred to as model uncertainty. The
sources of uncertainties in process models include incorrect estimates of the process
parameters such as rate constants and time constants, the neglect of non-linearities and
higher order dynamics, and errors in the input and output measurements due to noise
and faulty measuring instruments.

Doyle and Morari (177) and Morari (150) claim that model uncertainty is one of the
major problems that face the control systems designer in the development of reliable
and robust control systems. They pointed out that neglecting uncertainty in the models
could lead to a controller that is too tight which will cause oscillatory closed loop
response of the system or even instability. Simple examples were used to illustrate
how errors in the assumed process time delay can seriously affect the performance of a
control system that is based on compensating for the time delay, and how errors in the
manipulated inputs can deteriorate the control of an MIMO system with controllers
aimed at compensation for control loop interactions (i.e decoupling control).

Doyle and Morari also claim that one reason for the lack of use of advanced control
techniques in the chemical industry is because these techniques often do not address
practical issues such as model uncertainties. They emphasised that the control engineer
in industry needs efficient and robust controller synthesis procedures rather than
having to embark on time consuming and usually expensive procedures of analysis
either by simulation or by experimentation.

In recent years, aspects of model uncertainties on controller performance have been
receiving a great deal of attention. Some definitions now commonly used to indicate
the closed loop system performances will be given. These are, nominal performance,
robust performance and robust stability. These are defined more fully in the articles by
Doyle and Morari (177) and Morari (150) and only simple forms of the definitions will

be given here.

49



Robustness is defined as a measure for the effect of uncertainty on plant stability

when under control (Morari (150)). Robustness is put in a simpler manner by
Grosdidier et al. (204) as the ability of a closed loop system to remain stable in the
presence of errors in the plant model used for the controller design. Grosdidier et al.
(204) define a closed system which becomes unstable due to model mismatch as
"sensitive". Nominal performance is stable performance of the controller on the
process model. The terms robust stability and robust performance are used to indicate
that a closed loop system is stable and meets the performance specifications, for
example, fast set point tracking, even though the model used for controller design is
associated with errors.

Artkun et al. (1) also noted that a common criticism levied at various controller
design methods is the lack of considerations of model uncertainties in the design
procedures. If model uncertainty considerations are not considered at the controller
design stage, then tuning of the controller to compensate for model uncertainties so as
to improve the robustness of the closed loop system can only be done when the
controller is in operation. In the case of simulation this will be done by trial and error
simulations. However, it is not straightforward to quantify model uncertainties and
predict their effects on controller performance. This is probably one of the major
reasons that model uncertainty considerations have been excluded from control
systems design and analysis procedures for chemical systems. It can thus be said that
this difficulty provided the incentive for some workers such as Grosdidier et al. (204),
Morari (159) to concentrate on finding methods of quantifying model uncertainties and
predict their effects on controller performance. Workers such as Arkun et al. (1),
Doyle and Morari (177), Morari (150) and Shinnar (100), have addressed the issues of
describing model uncertainties and include model uncertainty considerations and
robustness features into controller design. A new theory and representation of control
systems has thus emerged in recent years and has been useful in assessing the effects

of model uncertainties and other plant characteristics on controller performance. This is



the Internal Model Control introduced by Garcia and Morari (200, 201, 202) and is

treated in brief in the next section.

2.2.5 The Internal Model Control structure

Garcia and Morari (200, 201, 202) proposed a general structure called the Internal
Model Control (IMC) structure for the design of feedback controllers. This IMC
structure is equivalent to the conventional feedback loop structure as expressed in
Figures 2.1a and 2.1b. The name Internal Model Control is pointed out by Morari
(150) to have arisen because the IMC structure includes a plant model, Gp, explicitly
in the control loop. An advantage offered by using the IMC is that many control
systems can fit into the structure (Ray 104). However, the controller designs
considered by Garcia and Morari (200, 201, 202) using the IMC are based on the
controller being the inverse of an approximate plant model, i.e;

Ge =1/Gp 2.11

If the model is exact, that is, Gp = G, then "perfect" control can be achieved. Morari
(159) emphasized that any feedback controller provides an approximate inverse of the
plant transfer matrix. The full theory on the IMC can be found in the articles of Garcia
and Morari (200, 201, 202) mentioned above, therefore only a summarised review of
these articles will be given in the following.

In practice, perfect control cannot be achieved because certain plant characteristics
will limit the achievable performance of the controller. The model Gp is, therefore,
factorized as shown by Garcia and Morari (200) into

Gp =G.G+ 2.12
where G. contains the invertible part of the plant and G4 contain the non-invertible
parts. The IMC controller is then assumed to be the obtainable and stable parts of the
system inverse, G-_l. The G+ holds the parts of the plant that limit the controller

performance. The IMC controller is then given as

Ge=GplGy=G."!

[V
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Considering a multivariable system the closed loop transfer function for the IMC

structure in Figure 2.1b is

y = GGelI + (G - Gp)Ge] Ly~ d) + d 2.14
d
y + + *
s F\rp bCP Gpe u G . .
4 J
Y +
Gp | > Gp D

"p

Hm [«

Figure 2.1a A Reformulation of the conventional feedback control loop
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Ge=1/Gp
Figure 2.1b The Internal Model Control structure
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The control input is

u=[I+Ge(G - Gpl ' Ge(y, - @) 2.15

If the model Gp is exact then the control input will be
u=Ge(y,-d) 2.16

The IMC design strategy is, therefore, to find a stable approximation to the inverse
of the plant model since if controller Gc is stable then the closed loop system is stable.
The controller parameters and the control structure are given directly so that control
loop pairing is not necessary. This property is claimed to be one major advantage of
using the IMC structure instead of the conventional feedback controller structure; the
conventional feedback controller has to be chosen to achieve closed loop stability.

From Figure 2.1b, if no disturbances enter the system, that is, Yg and d are zero,
then the feedback signal dp given as

dp =d+[G - GpJu 2.17

becomes zero. Hence, the IMC becomes a feedback controller only when it is
necessary .

Garcia and Morari (201) explained that a system equipped with a controller
Ge = Gp_1 can be very sensitive to modelling errors. They mentioned that even when
Gc is stable, if a pole of its discrete time transfer function Ge(z) is close to -1, the
manipulated variables can exhibit oscillatory behaviour which may produce undesirable
responses in the outputs. There is, however, another feature of the IMC which allows
the inclusion of robustness as a design objective. This is achieved by designing an
appropriate filter, F, shown in Figure 2.1c, which is capable of improving the
robustness to modeling errors. Garcia and Morari (201) addressed the issue of the
design of the filter F. They give a necessary condition that must be satisfied for design
of a diagonal exponential filter for a multivariable system that would give a stable
closed loop system. A diagonal filter implies one filter for each control loop; an

exponential filter implies a filter having the form of a first order transfer function.
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dp

F

Figure 2.1c The Internal Model Control structure with filter inserted for
robustness design

Morari (159) used the IMC philosophy to identify the plant characteristics that are
likely to limit the performance of a controller; in terms of perfect control, this implies
the characteristics that will prevent perfect control to be achieved. The goal was to find
these characteristics without imposing any constraints or structure on the controller.
The IMC structure provided this feature. The characteristics that where found to
prevent perfect control from being achieved where sensitivity to model uncertainties,
time delays in the process, constraints on the manipulated inputs and inverse response
behaviour of the output.

Inverse response is the case where the initial response of the output of the system
is in the opposite direction to where it eventually ends up. This usually occurs due to
opposing effects in the system. When a plant output exhibits inverse response
behaviour it is said to have nonminimum phase (NMP) behaviour. This occurs in
plants which have positive zeros and time delays in their continuous time transfer
function. In the case of the discrete time transfer function, a nonminimum phase
system has zeroes outside the unit circle, that is zeroes which have magnitudes greater

than one.
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Taking the inverse of the system, time delays will require prediction. The inversion

of zeroes which are positive in Laplace domain and greater than 1 in discrete time, will
result in an unstable controller. These characteristics are therefore included in G4 to
represent the characteristics that prevent perfect control from being achieved. Garcia
and Morari (200) point out that these plant characteristics are inherent in the system and
cannot be removed by any control system. Their effects can only be suppressed by
designing appropriate compensators: for example, time delay compensator and inverse

response compensators.

2.2.6 Assessing the effects of model uncertainties on controller performance

Morari (159) investigated techniques for assessing the effects of time delays,
nonminimum phasedness, and sensitivity to model errors on the performance of
multivariable control systems. These techniques are also summarised in the articles of
Levien and Morari (152) and Skogestad and Morari (119, 153). The effects of model
uncertainties on controller performance have been assessed using tools, or indices,
provided by SVD analysis and RGA analysis.

Morari (159) proposed the SVD analysis to predict model uncertainty effects on
controller performance. The other quantity is provided by SVD analysis is the
condition number, Y(Gp), of the process gain matrix. In matrix algebra the condition
number of a matrix is a measure of illconditioness of the matrix. One example of an
illconditioned matrix is one were the magnitude of the elements in the diagonal differ
by orders of magnitude. Another example is were the matrix is singular, or near
singularity. Matrices with high condition numbers thus have high degree of
illconditioness.

Shimizu et al. (189) have used the SVD analysis to assess the ability of a closed
loop system to compensate for disturbances. Grosdidier et al. (204) showed the norm

of the matrix from the steady state RGA analysis can also be used to assess effects of



model uncertainties on controller performance. How all these techniques are applied is

summarized here.

Compensating for Disturbances

Performing SVD on the plant matrix enables the control input, u, to be related to

the minimum singular value, ¢ of the plant matrix as is shown by Shimizu et al.

min>

(189). Their analysis is as follows. From SVD analysis the plant gain matrix Gp

becomes Gp =VOWT from Equation 2.10. Substituting into Equation 2.16 then gives
u=i0 VT (. a) 2.18

and hence they obtain the relationship

lull = G~ Ly, - 2.19

From this relationship the size of the disturbance that can be controlled without
saturation of the manipulated variable can be determined. The significance of this is
that it is important to avoid cases where Omin is small because the manipulated variable
will easily hit a constraint. Whenever a manipulated variable hits a constraint it is no
longer useful for control and poor, even unstable, controller performance is likely to
result. Furthermore, in the cases where there are several manipulated inputs to choose
from, a small omin could indicate those manipulated inputs that should be avoided
since if they have small ranges they will easily hit a constraint to small disturbances.

Sensitivity to Modelling Errors

The magnitude of the condition number of the plant matrix, Y(Gp), is a measure the
effects of model errors on controller performance. In general the magnitude of ¥(Gp)
indicate the closed loop system sensitivity to model uncertainties. This directly links
the degree of illconditioning of the plant matrix to the controller performance.
Grosdidier et al. (204), Shimizu et al. (189) explain this from the following
relationship :

IG-Gpll IGp™ 1l < 1/ (1iGpil 1Gp™ 11y = v(Gp)™! 2.20

It can be observed that lIGpll HGp“IH is the definition of the condition number of the

matrix Gp, i.e Y(Gp) = ©,,../C i, (Equation 2.9). Regarding the control of the

plant, G, the above relationship has been interpreted as to imply the following. For the
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. -1 e
controller Ge = Gp 7, stability is guaranteed only when the relative modelling error,

IIG-Gpll HGp_IH, does not exceed the inverse of the condition number, y(Gp)_l, of the
plant model. For example, Y(Gp(0)) = 10 implies that a steady state relative modelling
error of as little as 10% might lead to instability, where Gp(0) is the steady state
process gain matrix. Hence a very large y(Gp(0)) implies the system is
"uncontrollable” by the IMC controller Gc = Gp-l as error is implicit in the plant
model Gp.

Grosdidier et al. (204) showed that the size of the norm of the RGA, lIAll, at steady
state, can be used to indicate control properties in a similar way to the condition
number. They found that a very large IIAll also discloses potential difficulties in
feedback control as indicated by a large condition number. A system whose plant
matrix has large y(Gp) or lIAll is termed an illconditioned system. In the context of
control, such an illconditioned system is one where the plant gain in certain directions
of input change is much larger than in other directions, and when under closed loop
control, will be very sensitive to model uncertainties (Skogestad and Morari (153)).
Skogestad and Morari (119, 153) also point out that high purity distillation columns
usually have this characteristic and that this is one reason why they are usually more
difficult to control than low purity columns.

Only MIMO systems can exhibit this sensitivity to model uncertainties. This type
of sensitivity cannot be exhibited by SISO systems since, for example, the system
cannot be described by a gain matrix. This has been used (Garcia and Morari (201)) to
explain why MIMO systems are in general more difficult to control than SISO
systems.

Doyle and Morari (177) and Morari (150) illustrate the sensitivity of MIMO
systems using a high purity distillation column model under control. They used two
control structures; one a set of SISO PI controllers and the other a set of SISO
controllers with steady state decoupling. To represent model errors a 20% error in the
computed changes in the manipulated variables was introduced. The results of there

simulations led them to conclude the following. For multivariable systems the dynamic
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responses for different input directions are different and a control system, such as

decoupling control, which attempts to change the natural directions makes the dynamic

behaviour worse. A small Y(Gp) or lAll implies less sensitivity and less difficulty in

controlling the system.

2.2.7 The relationship between the RGA and the condition number of a process matrix

Skogestad and Morari (119) noted that the lIAll is usually preferred to y(Gp)
because SVD involves more complex computations than the computations required for
the RGA. Moreover, the value of the condition number depends on the scaling of the
process matrix. For example, if the matrix is scaled such that the largest element on
each row, or column, has the value of 1 the the condition number will be reduced as
shown by Grosdidier et al. (204). These workers thus pointed out that the condition
number is a useful measure of sensitivity only when the process matrix have been

scaled by the above mentioned procedure to minimise the condition number. They

defined this as the minimised condition number, v,,(Gp). They observed relationships

between the minimised condition number, v,,(Gp) and llAll; for2x 2 andnxn

systems. These are as follows. For 2 x 2 systems
2 12

Y (Gp) =1TA N +(HTA T - T) 2.21
and |

Y (GP) =2 11Ally as TAll{ tends toee 2.22
For n x n systems

Y (Gp) = 2 max( WAl TA) 2.23

where | A 111 and Il All_ are the I-norm and the e - norm of the RGA matrix.

2.2.8 Applications of Singular Value Decomposition and the RGA analysis to chemical

process control
Using the SVD and RGA analysis, it is possible to predict many properties of the

multivariable control systems before the controllers are commissioned. The
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significance of these predictions is that, in practice, the number of trial and error

simulations and pilot plant tests necessary for the detailed analysis of the control
system can be significantly reduced (Levien and Morari (152)). This means that
significant savings can be obtained.

Levien and Morari (152) employed the SVD technique to test the "resilience" of a 3
X 3 process system which was a coupled distillation system. The term "resilience” was
introduced by Morari (159) and is defined by Levien and Morari (152) as the ability of
a process to move quickly and smoothly from one operating condition to another, and
to reject effects of disturbances effectively; complete resilience implies prefect
regulatory and servo control, i.e. "perfect" control. Levien and Morari examined the
effects of non-minimum phase characteristics, input constraints and model
uncertainties on the performance of multivariable control systems based on IMC
structure. They performed their analyses on three 3 x 3 MIMO linear laplace transform
models selected from various models all obtained from experimental step response
results. They observed that (i) a system with a larger minimum singular value, Omin,
could handle larger load disturbances better, (i) a system with a large condition
number Y(Gp) was sensitive to model uncertainties when under closed loop control and
that (iii) a system with Y(Gp) close to 1.0 was insensitive to direction of disturbances
under control, indicating that any disturbance (load or setpoint changes) can be handled
regardless of the direction of the change. Sensitivity to model uncertainties was found
to be the most significant factor that affected the controller performance. It was also
shown how steady state SVD alone could lead to misleading conclusions as they found
significant variations with frequency in the condition number of one of the MIMO
models.

The effects of using a filter in the feedback loop of an IMC controller structure, as
shown Figure 2.1c, was also demonstrated by Levien and Morari. They reported
simulated and experimental results which show that an exponential filter, a first order
lag, in the feedback loop, provides significant improvements in the controller

performance by improving the robustness of the system. As the filter time constant is
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increased the closed loop response of the system becomes more sluggish since control

action is slower. The results showed that, by appropriate selection of the filter time

constant, the IMC controlled system that is unstable could be made stable.

2.2.9 Guidelines for selecting control configurations for binary distillation column

The SVD and RGA techniques have been used to explain practical experience and
observations that have been made in the control of chemical process systems. One
such analysis is that of Skogestad and Morari (153). They used RGA analysis to
explain the observations on the dual composition control of distillation columns made
by Shinskey (142).

In the dual composition control of distillation columns the recommendation of
Shinskey (142) is to choose control loop pairings with relative gains between 0.9 and
4. As this represents relatively small RGA elements, Skogestad and Morari (153) point
out that their observations that systems with large RGA elements are difficult to control
justifies the recommendations of Shinskey.

Skogestad and Morari (119, 153) applied the SVD and RGA analysis to distillation
column control and their work has culminated into good guidelines for selecting
control configurations for the multiple loop control of distillation columns. In general,
they suggested that a control configuration with large y(Gp) or lIAll should be avoided
since it implies greater sensitivity to model uncertainties. They also suggested that
decoupling control should be avoided for a process with large y(Gp) or lIAll as
instability may result. An example of the destabilising effect induced by incorporating
decoupling into the dual composition control loop of a high purity distillation colamn
was demonstrated in the article of Morari (150). It was shown that the closed loop
dynamics could be degraded significantly if decoupling is introduced into the closed
loop system consisting of SISO controllers.

This type sensitivity properties induced by decoupling was also explained by RGA

analysis. The explanation is given as follows. Without decoupling control the multiple
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loop control system is a diagonal controller, that is, a set of independent SISO

controllers. The RGA of the control structure, the controller matrix, will have diagonal
elements equal to 1. There is then no possibility of an illconditioned control system
resulting. If decoupling is introduced, the control matrix is then not a diagonal matrix
since the matrix will now have off-diagonal elements. Therefore, the RGA of the
MIMO controllers can have elements greater than 1. There is then the possibility of
having an illconditioned control matrix which will induce its own instability properties
into the closed loop system,

Skogestad and Morari (153) carried out a comprehensive investigation of the
characteristics of the various possible control configurations for dual composition
control of a binary distillation process. They used the RGA in their investigations. In a

distillation column as shown in Figure 2.2 the variables that are usually available for

manipulation are the reflux flow, L, vapour boilup, V. distillate flow, D, and

bottoms flow, B. They used L and V, instead of L and VN, as notation. The

observations and conclusions arrived at include the following.

(1) If uncertainties are present then configurations with small RGA elements will
work better than others as they will be more robust to model uncertainties. The LV
configuration which uses reflux to control the top product and vapour boilup to control
the bottoms product, gave the largest RGA elements. All configurations using D or B
for composition control have small RGA elements and hence are insensitive to
uncertainties.

(2) If a diagonal controller, such as two single loop PI controllers, is used a control
configuration with large RGA elements may not be very sensitive to input uncertainty,
for reasons already discussed above. For disturbance rejection a diagonal controller
may also deliver acceptable performance if the disturbance condition number is small

for all possible expected disturbances and tight setpoint tracking is not required.

(3) For fast initial response, the LV configuration should be used. The(% \{3—)

configuration also has this feature but configurations with D or B for composition

control are not preferable since the initial response is slow.
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(3) Configurations with D or B for composition control are insensitive to

disturbances in reflux flow, vapour boil-up and feed enthalpy, but do not reject

disturbances in feed flow. The(-% %) configuration is the best for disturbance

rejection. It is insensitive to disturbances in feed flow rejects other flow disturbances

as well as provided reflux is large.

The (—% \-{3—) configuration was found to be the best choice for servo and regulatory

control and pointed out that this agrees with the recommendations of Shinskey (142).
It is claimed that all the recommendations agree well with engineering judgement. This,
therefore, makes them good guidelines for the design of control systems for distillation

columns and other similar processes such as absorption columns as well.
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Figure 2.2 Schematic of a binary distillation column
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2.3 Introduction to Advanced Control systems

It was mentioned in Chapter 1 that any controller design method that departs from
the conventional classical feedback controller design methods is generally classed as an
advanced controller design method. Advanced control systems range from feedforward
control schemes to state variable feedback control schemes where the system is
described by a set of ordinary differential equations. The various methods include the
following:

(1) Multivariable Controller design methods such as the Inverse Nyquist Array
(INA) method, Direct Nyquist Array (DNA) method and the Characteristic Loci
Method. These methods are extensions of SISO frequency domain design methods,
such as the frequency domain method of Nyquist, that have been extended to the
MIMO case (Nawari (193)). Jensen et al. (59) have recently demonstrated that the
DNA method is a useful method for interaction analysis and the method handles
control loop pairing and interaction compensation directly.

(2) Multivariable controller design methods based on state variable description of
the process system. One such method is Modal Control techniques (Ray (144)) where
the poles or eigenvalues of the system can be placed at desired locations in order to
speedup the response of the system or stabilise the system. Another method is Optimal
Control (Ray (144)), which is defined in various ways. One approach to optimal
control is where the control inputs are calculated as a function of the state variables in
order to optimise the time required to bring the process to a new state, and another 1s to
determine the feedback and feedforward gains that minimise a quadratic cost functional
of the process state variables and the control inputs.

(3) Multivariable controller design methods based on decoupling the control loop
of the system. The simplest form is simplified decoupling control where decoupling
compensators are inserted into the multiple loop control system in order to directly
cancel out the effects of the control loops from each other. A more complicated form
of decoupling is called the Decoupling and Disturbance Rejection Control method by

Shimizu and Matsubara (113) which is based on the work of Falb and Wolovich (179)
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and Morgan (196). In this method, closed loop poles can also be assigned in order to
achieve desired closed loop response.

(4) Estimator Aided Control methods, which use the available process
measurements and a model of the process to produce estimates of the variables
required for control. These methods are used in the cases where direct measurements
of the control variables are either not available, corrupted by noise or errors in the
measuring instruments or the measurement is subject to long time delays.

(5) Time delay compensation techniques which are used in the situations where
there are significant time delays in the system. These methods attempt to directly cancel
the time delays using a model of the process and the Smith Dead Time Compensator
(172, 173) is one such approach.

(6) Adaptive controller design approaches (Goodwin & Sin (39)) where the
controller parameters are continually changed to correspond with changes in the
operating conditions and the process environment. The usual approach to adaptive
control is to use an identification technique to continually estimate the parameters of an
assumed model of the process on-line using process input and output measurements.
The model is then used to calculate new controller parameters for the control
algorithms.

Standard texts on the various advanced control theory are available for reference.
These include Ray (144), Astrom and Wittenmark (206), Stephanopoulos (116) and
Bell and Griffin (15). Critical reviews of the applications of advanced control
algorithms are given by Foss (33) and by Nawari (193).

In this review two multivariable controller design approaches based on the state
variable feedback approach will be reviewed first. These are the Modal Control
approach of Rosenbrock (105) and the Decoupling and Disturbance Rejection Control
design approach based on the work of Falb and Wolovich (179). Both methods are
multivariable controller design methods which result in control systems with
decoupling control properties. However, a drawback of the methods is that they do not

have integral action so that they cannot address the problem of offsets.
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2.4 State variable representation of systems, Controllability and

Observability

When a set of first order differential equations is used to describe the dynamic

behaviour of a system these equations can be written in the form

dx(ty/dt = A(t)x(t) + B(Hu(t)

y = C(Ox(t) 2.24
This is referred to as the state variable or state space formulation of the system
dynamics. The x is the vector of the state variables, u is the vector of the system inputs
and y is the vector of the outputs. The A is the state, or system, matrix, B is the input
driving matrix and t denotes time. Assuming the numbers of the state variables and the
number of inputs are n and m, respectively, then the dimension of x isnx 1, uis m X
I,yisrx1Aisnxn, Bisnxmand Cisrxn.If A, Band C do not vary with time
then the t can be dropped from A(t), B(t) and C(t) to give

dx(t)/dt = Ax(t) + Bu(t) 2.25a

y(t) = Cx(t) 2.25b

This equation is called a linear time-invariant state variable model.

2.4.1 Controllability and Observability

There are two important issues that arise in the analysis and control of dynamic
systems. One is whether it is possible to steer a system from a given initial steady state
to another state; this introduces the issue of controllability. The other consideration is
whether it is possible to determine the state of the dynamic system from observations
of the inputs and outputs; this raises the question of observability. Controllability and
Observability are very important particularly in the design of control systems based on
state variable representation of the system. The definitions given by Astrom and
Wittenmark (206) will be presented here.

Consider the linear time invariant state variable system of Equation 2.25. The

discrete time equivalent of the system is given as (Astrom and Wittenmark (206))

x(te, ) = Oty 1ofIx0) + T'(ty, phoudty) 2.26a
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y(t) = Cx(ty) 2.26b

where
(D(tk-i-l’tk) = eXp(A AT)

et 1
D, o4y = j tkexp (A (ty, 1-0))dTBu(ty)

AT =1t +1 -t and k denotes the sampling instant.

A controllability matrix Wc is defined as

We = [T, O, ®°T,.....o" 2.27

According to Astrom and Wittenmark, the system of Equation 2.26 is controllable if it
is possible to find a control sequence such that the origin can be reached from any
initial steady state in finite time. This is possible if the rank of Wc is n.

The observability matrix Wo is defined

Wo = [C, co, co?, co™ !}t 2.8
The system is observable if there is a finite k , sampling steps, such that the a
knowledge of the inputs u(0), u(1),.....u(k-1) and outputs y(0), y(1),.cocuvrn.. y(k-1)
is sufficient to determine the initial state of the system. This implies that the system is
observable if and only if Wo has rank n.

Observability considerations are important in the estimation of the state and
parameters of systems, particularly in situations where control depends on the
estimates of the state. A good example is in Kalman filtering when applied to estimate
the state of the system by combining the measurements and a process model. If
observability is lost then the estimates may become unstable, and so will the filter
algorithm (Daie (26)).

Russel and Perkins (149) present a review on the various controllability problems
frequently encountered in chemical plant. They point out that controllability analysis
techniques have isolated major factors that affect the controllability of chemical plant
and that this has enabled better assessment of the benefits and limitations of various

control systems and control structures for chemical plant. Controllability

considerations are very important particularly in applications of control systems which
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are based upon state variable representation of the process. Since it is seldom the case

that all the states of the process will be available, it is important to ensure, prior to on-
line application, that the system will be controllable with the incomplete state vector.
Techniques to overcome such problems include using observers or estimators to
reconstruct the unmeasured states; thus adding the issue of observability. In fact as,
indicated by Russel and Perkins (149), controllability techniques based on using input-
output representations of the processes rather are more beneficial for analysis of
chemical plant than those based on state space representation of the processes. One

reason they give is that it is neither necessary nor practical to measure all the states of

the process.

2.5 Modal Analysis and Modal Control

There are many multivariable controller design methods that are based on the
assumption that the system is described by a linear state variable model. One of these
design methods is the Modal Control technique which was first proposed by

Rosenbrock (105).

2.5.1 Modal Analysis
The main procedure in the design of a modal control system is modal analysis of

the model. This involves the decomposition of the system matrix, A, into its

eigenvalues, )‘i’ and associated eigenvectors, v;, such that
AVi = 7\.1V1 229
where i = 1 to n and n is the order of A. The A matrix can be written as
A =TAQ 2.30

where A is the diagonal matrix of the system eigenvalues which are real, distinct and

negative,
A = diag(h1, A2seewees An) 2.31

68



Q:(V11V2, s 606006 e .,V __1,Vn)
1

and Q =T

The modes of the system are the directions in the state space that correspond to the
right eigenvectors, v;. Each mode is associated with an eigenvalue, kl-. The
eigenvalues are also the poles of the system and their negative reciprocals are the time
constants of the corresponding modes. A stable system will have negative eigenvalues.
An unstable system will have at least one positive eigenvalue.

The eigenvectors discloses the extent at which the other modes affect each other.
The sizes of the elements in the eigenvector disclose the phenomenon that accounts for
the existence of that mode. For example, Levy et al. (74) found that the slowest mode
of a binary distillation column comprised of the accumulation and the transfer of
chemical species in the column. The smaller eigenvalues disclose the dominant modes
which determine the dynamic behaviour of the system and the larger eigenvalues
disclose the faster modes. Modal analysis is therefore useful in providing deeper
insight into the dynamic behaviour of the system.

Many multistage processes like distillation columns have a wide spectrum of time
constants. In a distillation column each tray has composition, hydraulic and heat
dynamics taking place simultaneously. The composition dynamics are usually the
slowest. The fast modes decay rapidly leaving the only the slower modes which are
important in determining the process dynamics. Modal analysis can provide
knowledge about these modes and, therefore, guide the selection of the proper tray
location for measuring composition for control. Levy et al. (74) and Shimizu and Mah
(117) have used modal analysis in this way to examine the response modes of
distillation systems.

One important quantity provided by modal analysis is the activation of the modes

(Rosenbrock (105)). The activation, nij’ of a mode i by the j-th input is defined by

—v.Tb.u: 2.32
nij_vl bJuJ 3

where bj is the j-th column of B and vy is the left eigenvector of A. The activation is a

measure of the extent at which an input affects a mode. Thus, the importance of a
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mode can be judged by the activation of that mode relative to the other modes.

Furthermore, the activation can indicate the best input to use to manipulate the state
variable that is selected as the controlled variable. This has been exploited by Davison

(30) in the control of a distillation column using a modal controller.

2.5.2 Modal Control

Modal control is, in general, a technique where the system closed loop eigenvalues
can be placed in any desired location using a state variable feedback. This means that
the speed of response of the modes of the system, and, therefore, the speed of the

system response, can be increased or decreased by a state variable feedback. Consider

a system modelled by

dx/dt = Ax 2.33
According to Rosenbrock (105), the following feedback controlled system can be
adopted;

dx/dt = (A + YK®)x 2.34
where ®x is referred to as the measuring vector (Davison (30)), Y is the control
matrix and K is a diagonal matrix consisting of feedback loop gains. The control
problem is to find Y and ©. As explained in Rosenbrock (105) and in Davison (30),
suppose that Y =I" and ©® = Q and assuming Y and ® are square matrices and non -
singular. Then YK® = I'AQ and the controlled system becomes

dx/dt = Y(A+ K)®x 2.35a
The eigenvalues of the controlled system are A, + K; . So by choosing x; large and
negative these eigenvalues can be made large and negative as desired. Thus, the speed
of response of the closed loop system can be made as fast as desired.

Equation 2.35a is artificial because, in practice, it is usually impossible to make up

a control matrix Y = I'. Furthermore, it is usually the case that all the state variables in
x are not available due to various practical and economic reasons. Rosenbrock

considered this difficulty and then suggested a procedure which will enable only the
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dominant eigenvalues of the system to be eliminated. This procedure is given as

follows.

It is assumed that A < Aol <Ap < <A, < Ay < 0. Rosenbrock

suggests chosing ® = U which is a n x z matrix having as its columns the first z
vectors of €2 and Y = H, which is a n x z matrix having as its columns the first z

vectors of I'. The z represents the number of variables or modes that are measured.

Then let K be a z x z diagonal matrix with elements “K{,- Ky ,.m K, ON the

principal diagonal. The corresponding controlled system is now

dx/dt = (A+YK@T)X 2.35b

and is represented schematically in Figure 2.3. The eigenvalues of the closed loop

system are ?»1 + K1, 7‘2 + Ky 7\.2 + K, A Xn. Rosenbrock also considers

z+1°
this controlled system to be artificial because it will usually not be possible to choose

the control matrix Y which has as its columns exactly as the first z vectors of I".

n variables
&
Y : = A
&
Manipulated VariablesT T T _
n variables
/K <G 0
V <&
z Measured modes
z proportional
controllers

Figure 2.3 Schematic representing the modal controller of Equation 2.35b
(Rosenbrock (105))

Following the work of Rosenbrock, Davison (30) designed a modal controller to
control a binary distillation column with pressure variations inside the column. His
studies were performed on an 8 plate distillation column model via computer

simulation and the modal analysis procedure of Rosenbrock was used to select the
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proper control configuration for the column. Davison showed that by maximising the

smaller eigenvalues, that is, minimising the dominant time constants of the distillation
column, the offsets of the state variables from steady state will be minimised. The
modal controller was found to deliver better control compared with conventional
control. The modal controller greatly reduced the settling time of the column and the
offsets in the outputs of the column from steady state when subjected to disturbances
in the feed composition, reflux, and reboiler temperature and condenser temperature.

A modal controller called the Pole Assignment technique was proposed by
Crossley and Porter (195). The objective of the approach is to speed up the response
of a system, or stabilise an unstable system, by shifting either some or all of the
system poles to desired locations. To speed up the system the poles are shifted further
to the left; that is the eigenvalues are made larger in the negative direction. To stabilise
an unstable system the poles are also shifted to the left, but must be made negative.
According to Crossley and Porter, the method is applicable to systems having real or
complex eigenvalues. They demonstrated that the technique makes it possible to
modify both the real and imaginary parts of any number of complex conjugate
eigenvalues and any number of real eigenvalues using a single loop. This can only be
achieved when all the system modes are controllable and measurements of all the state
variables are available.

The synthesis procedure for the pole assignment technique is also presented in the
article by Shimizu and Mah (118). The required specifications for the design of the
controller are

1) the poles to be shifted and where they must be shifted to

2) the manipulated inputs that are to be used for pole shifting

3) the measurements that need to be fedback to the controller

Shimizu and Mah (118) used the technique to successfully control control a binary
secondary reflux and vapourisation (SRV) distillation column. Using modal analysis

they found that reflux flow is the best input for pole shifting in the SRV distillation

column.
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The primary drawbacks of modal control techniques have been noted by Foss (33).

They are given as;

1) the controllers do not have integral action and so cannot address the problem of
offset.

2) the technique does not address closed loop zeroes which also influence the
system behaviour; for example positive zeroes mean nonminimum phase behaviour.

3) the assumption of linear system will not be valid for many systems. This is

particularly true of chemical processes which are usually nonlinear systems.

2.6 Decoupling Control

To deal with the problem of interaction between control loops in a multivariable
system, the theory of decoupling control emerged. The philosophy behind decoupling
control is to eliminate the interactions of the control loops so that a change in the
setpoint of one control loop will only affect the corresponding output. If this can be
achieved then the control loops can be treated as separate single loops. There are two
main approaches that have been proposed for decoupling control. These are the
compensator approach and the state variable feedback approach. The compensator
approach will be introduced first.

The compensator approach is most popular and the simplest form is called
Simplified Decoupling by Luyben (71). The design procedure involves obtaining
compensators that would directly cancel out the effects of each manipulated variable on
the other outputs. Figure 2.4a gives a schematic of a 2 x 2 MIMO system under
control with interacting control loops and Figure 2.4b shows the same system under

“simplified decoupling with two decoupling compensators D; and D5. The method of
obtaining these compensators is given in Stephanopoulos (1 16) as
D1=-G12/G11 2.36
D2=-G21/G22 2.37
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Figure 24a Schematic of a process with 2 controlled outputs and 2 manipulated

inputs




Figure 2.4b Schematic of a process with 2 controlled outputs and 2 manipulated

inputs with simplified decoupling
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for the system described by
¥1=G1quy +Gyouy 2.38a

where y and u are the controlled output and manipulated input vectors and Gij is the

transfer function relating output y; and input u;. The control inputs then become
. .

[UI]—{I DIJ p

u .

2 D2 1 U;

Luyben (71) applied simplified decoupling in the dual composition control of a

2.39

binary distillation system by conventional PI controllers. The LV control configuration
was used and the studies were performed by computer simulation. He reported that
stable effective control could be achieve but noted non-linearities and inaccuracies
incurred in approximating the compensators due to the errors in the process models
will limit the achievable performance of the control scheme. Therefore, perfect
decoupling may not be possible. As mentioned earlier, recent investigations,
Skogestad and Morari (119, 153), Doyle and Morari (177) have shown that for dual
composition control of distillation columns using the LV configuration, decoupling
should be avoided as this configuration usually has large RGA elements which indicate
an illconditioned system. Introducing decoupling into the multiple loop control system
could degrade the quality of control significantly due to the greater sensitivity of the
closed loop system to uncertainties in the model used for the controller and
compensator design. High purity columns have higher degree of illconditioness and
Morari (150) and Doyle and Morari (177) show how the dynamics of a high purity
column under dual composition control is degraded by introducing decoupling into the
control loops.

Foss (33) has criticised the notion of decoupling applied to process control. His
argument is that since it is natural for most chemical processes to have strongly

interacting variables, the interaction between the variables should be exploited rather
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than eliminated. He noted that modal control is one such multivariable controller design

method.
The state variable feedback approach to decoupling was first proposed by Morgan

(196). He derived a feedback controller

u=Fx+Gw 2.40
for the system

dx/dt = Ax + Bu

y=Cx 2.41
where y is the output vector, u is the input vector and C is the matrix relating the
output y to the state x. The w is the vector of the desired values of the outputs, F is a
feedback gain matrix and G is a precompensator gain matrix. The vectors are
deviations from a steady state. Figure 2.5 is a block diagram showing the

corresponding closed loop system.

zd

Jan)

Figure 2.5 Schematic of a closed loop system under control by u = Fx + Gw

(Shimizu and Matsubara (113))
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Falb and Wolovich (179) investigated the approach of Morgan and found that the

conditions under which decoupling control of linear state variable systems can be
achieved were not well established. They subsequently derived the necessary and
sufficient condition for decoupling of general linear multivariable systems described in
state variable form. Wonham and Morse (178) also used the state variable approach
the multivariable control problem. They called it the "Geometric Approach”. The
theoretical details are examined in Takamatsu et al. (130). The most recent
investigations in these areas regarding application to chemical engineering systems are
due to Takamatsu and Kawachi (129), Takamatsu et al. (130) and Shimizu and
Matsubara (113,114).

Takamatsu et al. (130) employed the geometric approach to design a multivariable
controller for disturbance rejection of the effects of disturbances on the outputs. The
controller has the form

u = Kx 2.42
where K is the feedback matrix which is designed to reject the effects of disturbances
from the outputs of the system described by

dx/dt = Ax + Bu + Dzd

y=Cx 2.43
where the zd is the nd x 1 disturbance vector. The works Takamatsu & Kawachi (129)
and Shimizu & Matsubara (113, 114) culminate into a control scheme called the
Decoupling and Disturbance Rejection control scheme. This is treated in the next

section.

2.6.1 Decoupling and Disturbance Rejection for distillation column control

Takamatsu & Kawachi (129) and Shimizu & Matsubara (113) used the formulation
of Morgan (196) and Falb and Wolovich (179) to design a multivariable decoupling
control scheme which is called the Decoupling and Disturbance Rejection control

scheme by Shimizu and Matsubara. Both group of workers use distillation columns as
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examples to evaluate the decoupling control scheme. This control scheme has the form

of Equation 2.40,

u=Fx+Gw
The decoupling control problem is to find the mawices F and G that will reject the
effects of disturbances from the outputs and achieve non-interacting control of the
outputs such that a change in the setpoint w; will only affect output y;.

An important feature of the design is that closed loop poles can be specified to
achieve desired output responses while simultaneously decoupling the system. Falb
and Wolovich (179) determined the number of closed loop poles that can be assigned
and provided a synthesis procedure for obtaining the desired closed loop pole
configurations. The number of poles that need to be assigned are partly determined by
quantities called decoupling indices and each output is associated with a decoupling
index. The synthesis and application of control scheme is reviewed in some detail in

the next section with reference to distillation column applications.

2.6.2 Synthesis of the Decoupling and Disturbance Rejection controller

Consider a conventional binary distillation column modelled by Equation 2.43. The
zd is a nd x 1 vector of the disturbances and D is the n X nd disturbance matrix. This
model can obtained by linearising the nonlinear model of the column at a steady state.

Consider that the vectors as X, u, zd and y as

X = (Xl’ Xy pesens R xn)T
u = (Lr, Vb)
zd = (F, xf)
y =y, Xp)

The Lr, Vb, F and xf denote reflux rate, vapour boilup, feed rate and feed
composition, respectively. The control objective is to maintain the outputs y at the
desired values w by manipulating the inputs u. The objective of the decoupling

controller is to achieve input-output noninteracting control of y using a constant
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feedback gain matrix, F, and a precompensator matrix, G. Figure 2.5a shows a block

diagram of the decoupling controlled system. Substituting Equation 2.40 into Equation
2.43, the equation of the decoupled system is is obtained
dx/dt = (A+BF)x + BGw + Dzd
y=Cx 2.44
Before presenting the synthesis procedure of the decoupling control method it is
appropriate to say that the mathematical proofs of the design method is quite involved.
In fact, Falb & Wolovich (179) and Morgan (196), who have contributed much in this
area are not in the field of chemical engineering. Falb is a mathematician and Wolovich
is in the disciplines of mathematics and electrical engineering. The mathematical proofs
and theorems that culminate in the decoupling control design method involve advanced
mathematics and thus are quite complex. Thus, only the synthesis procedure will be
given here.
The synthesis procedure for obtaining the controller matrices, F and G, can be
found in the articles of Falb and Wolovich (179), Shimizu & Matsubara (113) and

Takamatsu and Kawachi (129). It is summarized here as follows;
A decoupling index, di’ is defined as
di = min (j : for CiAjB #0,j=0,1,2,.,n-1)
=n-1 (ifCiAjB=Of0r allj) 2.45

where i denotes the control inputs,i=1tom

Two matrices, A* and B*, are also defined as
i 7
C]Ad1+1

C2Ad o+ 1

A¥ =

.d +1
Rk 2.47a
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- -

d
dy

C,A
C,A

B
B

CmAde

2.47b
where Ci 1s the i-th row of matrix C. Falb and Wolovich (179) established that the

nonsingularity of B* is the necessary and sufficient for decoupling of the system to be
achieved.

The F and G matrices of the controller are obtained as follows
k=2

F=| D MCAk- ax
k=0 /. m X n matrix 2.48

where d = maxi(di)

~ 1y . .
G = (B*) K* ... m X m matrix 2.49

The M is a diagonal matrix

C_,(i)k =0fork>d,fori=1tom.
i

¢ o :
[he gJ)k are used to arbitrarily assign

i=m
m+ 2 d;
i=1
closed loop poles to achieve desired closed loop response. The diagonal matrix, K*, is
K* = diag(k*, ky*,, ki, ™) 2.50
This matrix was introduced by Falb and Wolovich. According to them, if a pair of
matrices F and G decouples the system Equation 2.41 then there is a diagonal matrix
K* such that
G = (B*) K*.
This diagonal matrix K* is interpreted in Shimizu and Matsubara (113), as
manipulating the m decoupled systems. Specific vuidance for chosing K* is not given.
)

If no poles are assigned then M™", =0 .1 ltom,k=1to d; and the feedback

gain matrix, F, then becomes

F= (B*)'lA* 2.51



The closed loop system is referred to as an "integrator decoupled" system by

Takamatsu and Kawachi (129).

The following algebra gives the analysis provided by Falb and Wolovich.

Assuming zd = 0, then from Equation 2.43 and 2.44 and using Equation 2.45 then
Ci(A+BF)k= CiAk k=0,1,...,d:

CA+BR = CAYABR I kogar 0 252
because CiAkB =0fork=0to di -

Application of the state variable feedback Equation 2.40 and repeated differentiation

together with Equation 2.52 results in the following relations

yi(l) = C,Ax = C;(A+BF)x + CiAOBGw = C;(A+BF)x

yi(z) = CiAzx = Ci(A+BF)2x + CiABGw =CyA+ BF)zx

yi(di) = CiAdix = Ci(A+BF)dix + ciAdi"lBGw = ci(A+BF)dix
The second terms in the above relations cancel out as can be verified from Equation

2.45, which gives the decoupling indices.
yi(d1+1) = Ci(A+BF)d1+lx + Ci(A+BF)d’BGw

(“’ - C.(A+BF)"x + C,(A+BF)" ' BGw +...+ C,(A+BF) 1B G ("4
0

where y; - represents the j-th differential of the i-th output, i-th member of y. This

implies that
(di+1) di+1 d; ]
y "= A + BF)x + C(A + BF)"BGw

d;+1

= C(A+BF)"" x + CA"BGw 2.53

From Equation 2.52, C. (A+BF)d i+ _ d1+1

(di+1)

i

+CGA lBF then the above gives
=C, A% x4 CiA BFx + CiA YBGw



) di+l . . , T ) .. .
Since CiA """ is the i-th row of A* and CiA(’B is the i-th row of B*, it can be written

that

v = (A% - B¥F)x + B*Gw 2.54

) (dj+1

where y* is the vector containing the y; ). Substituting Equation 2.48 and 2.49

into Equation 2.54 and assuming K* = I, where I is the identity matrix, gives

y* = }:MRCAkx +w
= szy(k) + W 2.55

or, equivalently,
(dy H)
} 1

ZM + W, 2.56

A one-to-one correspondence is accomplished. Hence, the i th

()

input, Wi, affects only
the i-th output, ¥i- In the case with no poles assigned, M™7, =0,i=1tom,k=11to

d;, Equation 2.56 becomes
v (dj+1) _

i i

2.57

It is claimed in Falb and Wolovich (179) that, for the "control loop™” i some suitable
values of gmk can be chosen such that any desired closed loop pole assignment can be
achieved. With the poles assigned, the transfer function matrix G(s) is expressed,

according to Shimizu and Matsubara (113) and Takamatsu and Kawachi (129), as

(1 k

Ges) = { 1/6"eM, D5y s et em, s ) 2088

assuming K* =1, where I is the identity matrix. In the case with no poles assigned
G(s) becomes

dm+l

di+1
G(s) = diag{ 1/s°1 e, 1/s™7 ) 2.59

The resulting closed loop system is referred to as an "integrator decoupled” system.
Falb and Wolovich showed that the number of poles, m + Edi, that can be
arbitrarily assigned can never exceed n, where n is the number of state variables, as

well as the number of system poles. They claimed that it may sometimes be possible to

assign more than m+2di poles, when the number of free parameters, fp, in the K

matrix is more than m + Zdi. In simple terms, fp is the number of columns in F that

have at least one non-zero entry.
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Feed forward compensation can also be used for disturbance rejection. For a

completely observable system, Shah (207) proved that there exists a feedforward
compensator which achieves the disturbance rejection if R(D) is a subset of R(B),

where R(.) denotes the range of (.). The article by Shimizu and Matsubara (113) gives

the feedforward compensator, Ty, which attains disturbance rejection as

Te=- (BTB)_IBTD m X nd matrix 2.60

so that the feed forward control is of the form

u =Tf><zd 2.60b

It is stated in Shimizu and Matsubara (113) and in Shah (207) that, if m < n, that is, if
the number of control inputs is less than the number of states, the Ty obtained by
Equation 2.60 does not completely reject the disturbances, but suppresses them to
some extent.

The mathematical computations involved to obtain the F, G and Tpmatrices are at
least an order of magnitude more complex than those necessary for conventional
controller design methods. The synthesis procedure involves many matrix
manipulations including matrix inversion. Therefore, as the order of the system
increases, i.e n become larger, the computational requirements for obtaining the
controller matrices will become more demanding. Numerical problems are likely to
occur from computer roundoff errors because of the many floating point calculations
that are involved in the synthesis procedure. This could strongly affect the matrix
inversion results. The problems will be much more acute if the system is itself
illconditioned, that is, if any or all the A, B and D matrices are illconditioned matrices.
In this case, the results of the synthesis procedure could become very sensitive to small
errors due to roundoff and in the A, B and D matrices. The problem will be more
severe with computers using short wordlengths. The use of extended precision can

alleviate the problems to some degree.

84



2.6.3 Minimum number of measured state variables for feedback.

A common problem in the control of chemical plants concerns the availability of
measurements vital to control. The decoupling and disturbance rejection control
method discussed above is no exception.The feedback controller given by Equation
2.40 presumes that all the state variables are measured for feedback. In practice
measuring all the state variables will usually not be possible for various practical and
economic reasons. For example, it will not be economical to measure all the tray
compositions of a distillation column as composition analysers are expensive. It may
be that only a few state variables can be measured. The problem of how many and
what state variables should be measured to achieve the control objectives will therefore
arise. In simple terms, this implies what state variables must be measured for the
system to remain controllable when all the state variables are not available. One way of
overcoming this problem would be to use the Kalman filter approach to reconstruct the
state variables of the system. The controller synthesis can also be based on an
approximate model which considers only the state variables that are, or can be,
measured. A drawback of using the Kalman filter approach is the computational
requirements will be large, particularly if the order of the system is large. In the case of
basing the controller synthesis on an approximate model, there is also a problem. If the
process model is simplified, then structural information may be lost since the controller
depends on the structure of the model (Shimizu and Matsubara (114)). The possible
consequence is the loss of controller performance.

Takamatsu and Kawachi (129) proposed a different approach. The approach aims
at finding the minimum number of state variables, and the choice of the variables, that
must be measured in order to achieve complete decoupling of the system. They
introduced a diagonal matrix, H, in which each diagonal element has the value of 1 if
the corresponding state variable is measured, and O otherwise. The matrix H is chosen

to satisfy the relationship
CANIH) =0,k =010d+1,i=1 tom 2.61



To do this, the diagonal elements of I - H which have to be 0 are those that are

multiplied by non zero elements of CiAk. The corresponding diagonal elements of H

have to be 1. The state variables are then the minimum number of state variables that

must be measured to achieve decoupling control of the system. This procedure implies

that, for each input, i, an H, called Hi’ can be uniquely determined so as to decouple
the i-th input-output relationship. The overall H ,,, indicating all the state variables to
be measured is the logical sum of all the H;s.

The feedback control law then becomes

u= FHOVX +Gw 2.62

and the closed loop equation of the decoupled system now becomes
dx/dt = (A+BFH_ )x + BGw + Dzd 2.63

Figure 2.6 is an illustration of the corresponding closed loop system, with the H in this

figure corresponding to H , in Equation 2.63; Figure 2.7 gives the flowchart for

T
finding H .

d

Figure 2.6 Schematic of a closed loop system under control by u = Fx + Gw

with incomplete state feedback (Takamatsu and Kawachi (129))
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Figure 2.7 Flowchart for finding the minimum number of state variables to be

measured for feedback (Takamatsu and Kawachi (129))
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2.6.4 Applications to distillation column control.

Takamatsu et al. (130) applied the state feedback controller of Equation 2.42 designed
using the geometric approach of Wonham and Morse (178) for load disturbance
rejection to the dual composition control of the top and bottoms products composition
of a simulation of nine plate binary distillation column. The studies were performed by
computer simulation using a very simple nonlinear model of the column. They pointed
out that the properties of the controller depends on the model structure and never
affected by the kind and number of disturbances that affect the process. This means
dependence on the structure of the A and B matrices of the model in Equation 2.38.
They reported a case measuring only two state variables which were the second and
ninth tray compositions, the controller completely rejects the effect of feed composition
disturbance on the top and bottoms compositions. The effect of feed flow disturbances
on the bottoms composition could not be completely rejected and this deficiency
appeared as an offset in the bottoms composition. This deficiency was also observed in
the studies of Shimizu and Matsubara (113) who used the state feedback decoupling
controller (Equation 2.40 with w = 0) on a 10 plate binary ethylene-ethane distillation
column with pressure variation. This indicates the similarities in the characteristics of
controller design based on the geometric approach and the state feedback decoupling
and disturbance rejection controller. Shimizu and Matsubara have noted that the
coefficients from the 3rd column to the n-1 th column of K in Equation 2.42 are equal
to those of the same columns of F in Equation 2.40.

Takamatsu and Kawachi (129) applied their proposed method for finding the
minimum number of state variables that must be measured for feedback to achieve
complete decoupling control of a distillation column with the top and bottom products
compositions as the controlled variables. They found that only five state variables need
to be measured for the design of the decoupling controller. These variables were the
first, second, third, n-1th and nth tray compositions, numbering from the top tray to
the reboiler drum. They point out that this number, and the variables, does not depend

on the number of trays on the column, rather it depends on the structure of the model.
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The significance of this is that the cost of measuring may not necessarily increase for

application on a column with more trays as long as the structure of the model is the
same.

Takamatsu and Kawachi did not claim that their result, on the minimum of tray
compositions required for their conventional binary distillation columns, applies to
binary distillation columns in general. However, the number of tray composition
measurements and their actual locations obtained by Shimizu and Matsubara (113)
agreed with the result of the former. Shimizu and Matsubara found that 6 state
variables were required to be measured for feed back. These were the 5 tray
compositions and the column pressure.

A drawback of the decoupling and disturbance rejection control strategy is due to
the assumption of a linear system. Distillation columns are nonlinear systems with the
main factors causing the non-linearities being the curvature of the vapour-liquid
equilibrium surface and the vapour and liquid enthalpy surfaces. The assumption of
linearity would not be valid if the operating conditions of the column change
significantly from the point of linearisation, particularly if it is highly nonlinear.
Therefore, the achievable performance of the decoupling control system will be
limited. These considerations are important for assessing the practicality of the control
scheme on a real process.

Shimizu and Matsubara (114) emphasised that non-linearities are more pronounced
in a column were a highly nonideal mixture is being distilled or the column is operated
at elevated pressures closer to critical point. However, all the workers mentioned
above have not used highly nonideal mixtures nor did any model their respective
columns at elevated pressures in applying the decoupling control scheme. Shimizu and
Matsubara (113, 114) simply argued that industrial columns distill near ideal mixtures
and are operated well below their critical points. Takamatsu and Kawachi used a model
which is very simplified with the only non linearity in the model due to a simple

vapour liquid equilibrium relationship which was only slightly non linear.
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It was noticed that Shimizu and Matsubara (113) and Takamatsu and Kawachi

(129) did not examine the setpoint tracking capabilities of the decoupling and
disturbance rejection control scheme. There have also been no reported experimental
applications of the decoupling control scheme to distillation columns in the literature

surveyed.

2.7 Derivative Decoupling Control

There is another approach to decoupling control called Derivative Decoupling
Control. This was proposed by Liu (81). The approach is based on decoupling the
state derivatives rather than the state variables themselves, as the disturbance rejection
approach does. Derivative decoupling has been applied to practical systems by
Palmenberg and Ward (103), Hutchinson and McAvoy (51), Cheng and Ward (52)
and Jung and Lee (60). Hutchinson and McAvoy (51) highlighted some difficulties in
obtaining the controller equations. Jung and Lee (60) extended the design method to
deal with unmeasured load changes and to handle input constraints. They used a
laboratory scale mixing tank in the investigations and the derivative decoupling control
technique was reported to perform better than controllers designed by the Inverse
Nyquist Array (INA) design method. The results obtained by all these workers
mentioned above show that the Derivative Decoupling control strategy relies heavily on
good process models so that, like most control systems, it has its limitations as regards

sensitivity to model errors.

2.8 Time Delay Compensation

Effective and robust control of processes with significant time delays between the
input and outputs response is usually difficult to achieve. Time delays, or dead-time,
will reduce the maximum controller gain that can be used in a PID controlled system.
Qualitatively, the control action must be slowed, by reducing the controller gain, for

example, to maintain the stability and robustness of the closed loop system. A typical
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example of where large dead-times frequently occur are in the composition control of

distillation columns. Composition analysers are usually associated with large dead-
times needed for analysis.

A way to improve the control under these circumstances is to incorporate the
Smith dead time compensator (DTC) (172, 173) in the control scheme. The DTC
attempts to directly cancel out the time delays so that control can be performed on the
system as if there are no time delays present. Figure 2.8 expresses the DTC in block
diagram form for feedback control. From this diagram the Gk is the compensator

which outputs y* - y*, where y* is the simulation of the undelayed output while Y*p

is the simulation of the delayed output. This output is added to the process output, v,

and the resulting value, y 4. , is fed back to the controller, which may be of advanced

or conventional type. Gik is in essence the difference between two process models. If
the models are exact then y = y* and exact time delay compensation will be achieved.
In theory any appropriate model formulation can be used, state variable or transfer
function models (Ogunnaike and Ray (95)). Furthermore, the exact value of the time
delay is required by the DTC. However, in real processes time delays may be varying
or may not be known accurately and the quality of control provided by the DTC control
scheme can be very sensitive. This is demonstrated in the article by Morari (150).
According to Palmor and Powers (102), investigations of DTC control schemes
have shown that some special sensitivity and stability properties is induced by the DTC
itself into the closed loop system. These properties exhibited by the DTC control
schemes showed that it is inadequate to design the primary Qontrol]er, Gpc in Figure
2.8, for the equivalent system which has no dead time simply because a DTC is

incorporated.

2.8.1 Application to chemical engineering systems
Many simulated and pilot scale experimental applications have shown that

incorporating a DTC into conventional control systems offers an improvement over
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conventional control. Meyer et al. (90) reported the earliest practical application of the

DTC.

Hm
Y dic
Gtk=Gp- Gp*
Gp process model without time delay , Gp* process model with time delay
y* output of Gp, yp*  output of Gp*

Figure 2.8 Dead Time compensation using Smith Predictor

They applied the DTC in the PI control of the top product composition of a pilot
scale methanol-water binary distillation column with 8 bubble cap trays and 22.5cm in
diameter. They reported that the performance of the PI controller with the DTC
incorporated provided significant improvements in control than ordinary PI control
both in simulated and experimental applications.

Extension of the DTC to multivariable systems were made by Ogunnaike and Ray
(95). They also considered multivariable systems with multiple time-delays.
Ogunnaike et al. (96) then implemented the multiple - delay DTC of Ogunnaike and
Ray (95) combined with PI controllers to control a laboratory scale binary distillation
facility. The top, bottom and sidestream compositions of the column were
simultaneously controlled and significant improvements over conventional PI were

reported in both simulated and laboratory experiments. A very hich level of robustness
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of the multiple delay DTC based control system in the face severe model uncertainty

was observed. This indicated a promising future for time - delay compensation
techniques.

Ogunnaike and Ray (98) have also addressed the problem of incomplete state
feedback in a time delay compensated control schemes. They describe a method for
estimating the necessary state variables for implementing a multivariable time-delay
compensator. Jerome and Ray (58) present improved forms of the multivariable dead
time compensation techniques like those of Ogunnaike and Ray (95). They generalised
the approach thus extending the types of systems to which they can be applied.

Palmor and Powers (102) extended the DTC approach to predict the effects of
measurable load disturbances on the controlled output. They achieve this by cancelling
the time delay associated with the load disturbance response. Furthermore, they argued
that compensation of all the dead-time may not always be the best strategy and
subsequently introduced the idea of partial cancellation of the time delays. A design
parameter, which indicates how much of the time delay is to be cancelled, is introduced
into the DTC design. Their results show that partial cancellation can sometimes be
beneficial. This partial cancellation technique could be valuable in digital process

control schemes where fractional delays and varying time delays are common.
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2.9 Adaptive Control

2.9.1 Introduction

Control systems that automatically adjust their controller parameters to compensate
for changes in process conditions or the environment are called adaptive control
systems. These control systems are of practical value to process control since
processes are usually nonlinear and have time varying process parameters. During the
last two decades adaptive control systems that are based on recursive identification of
the process system have been receiving a great deal of attention. The reason for this is
that the control systems are generally very easy to design, they are flexible and they are
easily implemented on computers. The significant improvements in computer
technology have made it possible to apply adaptive control cheaply and simply on real
systems.

Adaptive control concepts are regarded by Seborg et al. (140) as having reached a
mature state of development. This assertion is based on evidence of the many
successful practical applications of the techniques to chemical engineering systems.
Some of these applications were reviewed including a survey of applications in
industry. Isermann (54) and Astrom (4) also give comprehensive reviews on the
theory and applications of adaptive control.

According to Seborg et al. (140), adaptive control design techniques can be
grouped into three main classes. These are

(1) design methods based on optimising quadratic cost functions, e.g. self tuning
regulators (STR) by Astrom and Wittenmark (154) and self tuning controllers (STC)
by Clarke and Gawthrop (156, 157),

(2) design methods based on stability theory such as model reference adaptive
control (MRAC) (Landau (197), Sen de. la. (124) ) and

(3) Pole-zero assignment techniques (Astrom and Wittenmark (9)).

Adaptive control methods which are based on state space representation of the
process have also been developed (Hesketh (50) and Samson and Fuchs (120)). All

these techniques are closely related; they differ only in the way the controller
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parameters are adjusted (Astrom (4)). Figure 2.9 illustrates the general structure of

adaptive control systems. Recently, Gawthrop (43) proposed some adaptive control

designs which have PID controller structure and can, therefore, be used for automatic

tuning of PID controllers.

T

Control Law Parameler
Synthesis Estimation
Setpoint w l Output y
—_—
Controller Process B
Inputu
Feedback

Figure 2.9 General structure of adaptive control systems (Seborg et al (140))

The basis of an adaptive control system is to estimate the parameters of an assumed
process model on-line and then adjust the controller settings based on the current
parameter estimates. This procedure is carried out continuously at regular time
intervals. In this way the problem of model uncertainty is directly addressed. The
recursive least squares estimation technique is a method that 1s commonly used for
parameter estimation. Other methods such as the projection algorithm and instrumental
variables algorithms are also used. These techniques are treated more fully in the book
on adaptive filtering, prediction and control by Goodwin & Sin (39).

One advantage of using an adaptive control system is that the assumed process
model only needs to be a iocal approximation, that is, the model is only required to
give an adequate fit to the system within and around the sample interval. This means

that the assumed model can be made relatively simple in terms of the number of

95



parameters that need to be regularly updated and lower order process model can be

used to fit higher order processes. Some adaptive control designs can also be
formulated in predictive form by formulatin g the parameter estimator to predict the
future outputs of the system. For example, in a system with significant time delays the
estimator could be made to predict the output over the time delay so that control can be
based on this output prediction. The adaptive controller will then function as a time
delay compensator as well. Therefore, in principle, the adaptive concept tackles
directly (i) model uncertainty issues, such as non-linearities in the system and time
varying process parameters, in control systems design and (ii) the problem of time
delays; both of which limit the achievable performance of conventional constant
parameter control systems such as the conventional PID control.

There are two main ways of organising the combination of the recursive parameter
estimator and the control algorithm in an adaptive control system. They are the explicit,
or indirect, and implicit, or direct, formulation (Seborg et al. (40). In the explicit
formulation, the process model parameters are first estimated, then the controller
parameters are explicitly solved using these estimates of the process parameters.
However, the solution involves iterative calculations so that the numerical problems,
such as illconditioning of the parameters, can arise. Isermann (54) pointed out that the
explicit formulation is widely used because it allows for many estimator - controller
combinations and the direct access to the process parameters at all times during
operation.

In the implicit formulation, the controller parameters are estimated directly. This
eliminates the extra calculations for the controller equations and, hence, computation
time can be saved. The name implicit arises because the controller is based on estimates
of an implicit process model (Astrom (4)). This formulation reduces the risk of
numerical problems that could arise as in the explicit formulation. The formulation is
more restrictive in terms of the number of estimator-controller combinations possible
(Seborg et al. (140)). Evaluation of implicit formulations of adaptive control systems

has also shown that, sometimes, the number of parameters that need to be estimated
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may increase, compared to the explicit formulation, so that it may not always be the

case that computation time can be saved (Isermann (54) ). In this thesis, attention will
be focussed on the implicit formulation.

A significant proportion of the publications on applications of adaptive control have
been on the self-tuning approach based on optimising a quadratic cost function has
been. The basis of these methods is the self-tuning regulator STR by Astrom and
Wittenmark (154). This was later modified by Clarke and Gawthrop (156, 157) to the
self-tuning controller (STC) which overcome some of the inadequacies of the STR.
The STC also extends the range of process systems to which the self tuning approach
can be applied. In the following, a summarised version of the synthesis of SISO STR
and STC will be presented. More details can be found in the original articles of Astrom
and Wittenmark (154) on the STR, Clarke and Gawthrop (156,157) on the STC,
Seborg et al. (140) and Clarke (20) on both methods.

2.9.2 The Self Tuning Regulator
The usual assumption in the design of adaptive control systems is that the process
is modelled by a linear difference equation:
A Dy =B ut-k +ChHE () +d® 2.64

where A, B and C are polynomials in the z domain,

Azl =1+ajzl +ayz2+...+a,z"

considering single input single output (SISO) case. The y and u are the respective
plant inputs and outputs. The z-! is commonly referred to as the backward shift
operator, so that z1y(t) = y(t-1); it also represents z-transform. The n and m are
integers which represent the orders of the A(z-1) and B(z!) polynomials, so that they
represent the order of the process given by Equation 2.64. The t is an integer which
sents the number of sampling intervals, AT, rather than continuous time. The

repre

symbol k is an integer representing the process time delay ty, so that k = 1+
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INT(t 4/AT), where INT denotes integer. The k includes the inherent unity delay due to

sampling, so thatk > 1. The &(t) represents the zero mean random noise disturbances.
The d(t) represents offset due to non-zero mean disturbances, unmeasured load
disturbances, local linearisation and inaccuracies in initial values (Clarke (20),Clarke et
al. (21) ). It is sometimes called the bias term. It is usually the case that the noise
cannot be modelled by C(z-!) because real plants are characterised by the disturbances
that represent d(t), mentioned above. Clarke (20) mentions that in the case were C(z-1)
is unknown a noise shaping filter can be introduced.

The y and u can be full valued data, that is data as they are obtained. The
corresponding adaptive controller is commonly referred to as a positional controller, by
analogy with the positional form of the PID control algorithm.

The self-tuning regulator (STR) is a minimum variance controller based on the
prediction of the system output, y* (t + k), given data up to time t, where k is the time
delay of the process and the superscript * denotes prediction. The controller attempts to
set this prediction to zero at each time interval. The objective of the controller is to
minimise the following cost function:

J1= y* (t+k)? 2.65
If the explicit formulation is used the following polynomial identity
Ll =EeY) AED +2XFE ) 2.66
is that which must be solved to obtain the controller parameters. The E(z'1) and F (1)
are of the form
Eizl) =1 +e1z !+t e 2 (D)
Fzl) = fyr fy27] 4ot £y 2 (n-1) 2.67
These polynomials are obtained given B, C and k.

According to Clarke (20), by writing Equation 2.64 at time t+k and multiplying by

E(z'1) gives
EDAE Dy = E@DBEDu® + E@DE () + E@HA®
2.68

Note that y(t+k) = z+ky(t) which implies y atk intervals in the future.
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Using Equation 2.66 and defining G(z1) = E(z-1)B(z-1) then Equation 2.68

becomes

C&h) 2+ y(0) - 24k 2KF (2 )y (1) = Gz Dyu() + E(zDE®) + E(z1)d(1)
which by rearranging becomes
CEh) y(t+k) = Fz Dy () + Gz u() + E@HE (1) + E(zD)d(t)

2.69

where

Gzh)- go+ gzl ot Cmik-1Z (m-+k-1)

If the noise is not modelled by a polynomial then C(z'!) = 1 can be assumed.The
predictor model can then be written as
y¥(t+k)=F y(®) + Gu(t) + d 2.70
where d = E(1)d(0) by assuming d(t) is constant; the 2z has been dropped for clarity.
The prediction error ep(t+k) is given by ep(t) = E(z-1)E (t+k). The control law that
minimises Equation 2.6.5 is given by
Fy(®) + Gu(t)+d=0 2.71
which then gives
u(t) =- (Fy(t) + d)/b6 2.72
The denominator G(z"1) of the controller Equation 2.72 has as a factor the numerator
of the process model which is B(z"1) (see Equations 2.68); the STR controller poles
therefore attempt to directly cancel out the process zeroes.
For the self tuning version of the control law, considering implicit formulation, a
regression model is defined as
y*(t) =F y(t-k) + Bu(t-k) +d 2.73
by writing the predictor model Equation 2.70 at t = t - k . The controller parameters F

and G are arranged in the parameter vector.

oT = [fg> T1s 80> 815 -+ d] 2.74

with the data or measurement vector arranged as
AT (t-k) =[yt-k),y (t-k- 1) ...;u(t-k), u(t-k-1), ....;1]
2.75
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The "1"

in the vector @ (¢ - k) is for the estimation of the offset level d. This approach

is usually called the "one in the data vector " method. An alternative to this method was

suggested by Morris et al. (86). The method is to use the integrated prediction error
mn(t) = mn(t-1) + Wep(t) 2.76

where @ is a scaling factor that must be prespecified. The mn(t) replaces the 1 in

vector ¥(t - k). This approach has been called "proxy of the residuals", as the

prediction error is sometimes referred to as " the residuals "

The vector 8 contains the controller parameters which are estimated directly if
implicit formulation is considered. Expressed more clearly, the predictor model of
Equation 2.73 is given as

y*(t+k) = [ny(t) +fy(t-1) + .t f.1y(tn+1) + gou(®) + gyu(t-D+.....
..... + 8rak-1u(t-m-k+1) + d] 2.77
The control law is simply derived by setting the future prediction error to zero, that is
ep(t+k) = y(t+k) - y*(t+k) = 0.
The minimum variance control law is then
u(t) = -1/gglfgy() + f1y(t-1) +..+ £ _yy(tn+1) + gyut-1) +
ot 8k u(tm-k+1) + d] 2.78

At each time interval the new F and b parameters are updated into the controller

equation, Equation 2.78, and then the control action u(t) is computed.

2.9.3 Reported deficiencies of the self tuning regulator

There STR has several diadvantages. These have been noted by many workers
including Seborg et al. (140) and Clarke and Gawthrop (156,157). One is that the STR
generates large control actions due to the minimum variance control. Secondly, since
the STR controller poles attempts to cancel out the process zeroes, complete instability
will result if the process is stable but exhibit non minimum phase behaviour. This is
because the zeroes of the non minimum phase system which are outside the unit circle
become unstable poles of the STR control law. According to Clarke (20), even if exact

cancellation is achieved, the finite wordlength of the computer, or computer round-off,
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will still induce instability into the system. Nonminimum phase behaviour greatly

limits the performance of minimum variance adaptive control schemes, thus, various
methods and adaptations of the standard method of adaptive control design methods
have been developed (eg. Samson and Fuchs (120), Clarke (20) and Boland and
Giblin (12)) to address the problem.

Difficulties will occur if the parameters are not identified accurately. Such problems
will arise if sufficient excitation of the closed loop system is not achieved so that not all
the parameters can be identified properly. Some parameter estimates may converge to
wrong values, or be biased, and cause control problems. For example, the leading
parameter of &, g, which determines the STR controller gain (see Equation 2.75) may
become biased; it may converge close to zero causing large control actions, or it may
converge to very large values causing very sluggish closed loop response. The

parameter may also assume the wrong sign so that control actions will be computed in

the wrong direction which may cause an unstable system. For these reasons g is

usually fixed a priori. Trial and error approach is usually employed to obtain the best

value of g0- An example of where this is done is in the work of Dahlqvist (31).

Finally, the STR does not explicitly address set point tracking.

2.9.4 The Self Tuning Controller

The generalised minimum variance (GMV) self-tuning controller (STC) by Clarke
and Gawthrop (156, 157) is another approach based on optimising a quadratic cost
function. This approach overcomes many of the limitations of the STR as well as
extend the number of systems that the self tuning approach can be applied. The
synthesis procedure of STC is similar to that of the STR and so only a summary is
given here.

The STC of Clarke and Gawthrop (157) optimises a modified objective function:

B=PE )y +0-REH WP + [0E @2 2.79

The w(t) is the set point. The P(z_l) is called the output weighting polynomial, B(z_l)

is called the setpoint filter polynomial and U'(z_l) is the control weighting polynomial.
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They all have the form P(zﬂl) = PN(z—l) / PD(Z_I), where the N and D denote the

numerator and the denominator of the polynomial. The @' penalises excessive control
action, the R filters the setpoint to prevent excessive overshoot of the output after a
setpoint change. The output weighting polynomial P equips the resulting controller
with model following features as it acts like a reference model..
For the STC the identity of Equation 2.66 is now
C(Z‘I)PN(Z_I) / PD(Z-l) =E(@D) A +zkF(zly PD(Z—I)
2.80
Assuming the noise model is not identified (ie. C(z-1) = 1), the corresponding
predictor equation is given as:
Py*(t+k)=(F/ Pp)y'(® + Gu(t) + d 2.81a
This becomes
Py*(t+ k) =Fy'(t) + Gu(t) + d 2.81b
where y'(t) = y(t) / Ppy .

The optimal control law that minimises the Equation 2.79 w.r.t is given by
8]2/8u =0=yt+k)* =P y*(t +k) - B w() + 0 u(t) 2.82
where 0 = 0'0'(0)/G(0). This gives
u(t) = (R w() - P y*(t + k) )/ 2.83
The minimisation procedure is given fully in the articles by Clarke & Gawthrop (157).
By substituting Equation 2.82 into Equation 2.81, the general predictive control law
becomes
Fy'(t) + Gu(t) +d - (Rw(t) - Qu(t)) =0 2.84
which, by rearranging, becomes
u®=[6+0a11 [-Fy@®+Rw-d] 2.85
The closed loop equation may be obtained by substituting the above equation into
Equation 2.64. This gives
y(t) — _Z_-_IE.._..,E.B.—._ G M

Q
pr0n Y g+ aa 56

The characteristic equation is therefore

PB+0R=0 2.87
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which shows that P and I can be used to manipulate the poles of the closed loop

system. Therefore, the STC can be applied to a nonminimum phase plant when the
proper choices of P and I are made. The structure and implementation of the
positional STC is given schematically in Figures 2.10 and 2.11. Since the delay term
z'k does not appear in the characteristic equation the STC, therefore, provides time
delay compensation (Morris et al. (85)). The STC becomes the STR when P =1, [ =
0and w(t) = 0. When P =T and I = 0 the STC becomes a minimum variance

controller with set point tracking capabilities.

£®

w(t)
R C) .—L— Plant >
1] u(t) y(®)
py*(t+k)
g ) k vy
Zp
prediction error, ep(t)

Figure 2.10 Structure of the positional self tuning controller (Clarke et al (21))
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Figure 2.11 Implementation of a positional self tuning controller (Clarke et al (21))

The STR and the STC are in positional form as presented above, where full value
data is used for parameter estimation and control calculations. The implication is that
the initial values of the input and output data, yq and ug, need to be accurately
determined. In practice, this is not always possible as process systems are rarely ever
at exact steady state. Offsets are therefore likely to occur in practice if the reference
values are in error. Several ways for obtaining good estimates of the reference values
have been suggested by Latawiec and Chyra (78), but these methods still do not
guarantee that offsets will be eliminated completely.

The use of scalar control weighting @ = A induces an offset commonly known as
lamda offset. This offset arises because Q(1) # 0. Lamda offset can be removed by
choosing Q such that @(1) = 0. The simplest possibility is @ =AA |, where A = 1-z-1,
so that changes in the control u(t) - u(t-1) are penalised rather than absolute values. In
this case the cost function Equation 2.79 becomes:

T3 = [[ P y(t+k) - Ru@®)2 +[0Q (1- z1) u(n}?] 2.88a

and the control law becomes
dJz/0u=0=P y*(t+k) -Bw()+0Qd- z-1) u(t) 2.88b
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2.9.5 Selecting the design parameters for the self tuning controller

The performance of the STC, and all adaptive control schemes, depends on
appropriate selection of the various model, controller and estimator parameters.
Comprehensive reviews concerning the selection of these parameters are given in
articles by Seborg et al. (140), Isermann (54) and Astrom (4, 21). These articles show
that, with reasonable understanding of the process, the selection of only a few of the
parameters is crucial. The crucial parameters are the sampling period and the time delay
assumed in the process model.

1) Model parameters:

The four model parameters necessary are the model order represented by n and m,
the sampling interval, AT and the integer k representing the time delay. The assumed
model order is usually chosen to be Ist, 2nd or 3rd (n and m =1, 2 or 3 ) since the
model only needs to be a local approximation. Low order models fitted to higher order
processes are usually good approximations provided sampling interval is reasonably
long (Clarke (20)). In industrial applications, however, larger model orders may be
needed resulting in larger number of parameters that need to be estimated.

Selecting AT can be done by standard methods used to select sampling intervals for
applications of conventional control (Isermann (54)). In general, the robustness of the
STC, and adaptive control systems in general, improves as tg becomes larger. A small
ts can make the process model become non-minimum phase, while longer tg can be
used to avoid non-minimum phase zeroes, reject high frequencies disturbances and
badly modelled plant modes, but sluggish response may result (Clarke (20)) .

The time delay k usually need to be accurately determined and must be exact
multiples of AT. Kurz and Goedecke (69) have reported that the performance of
adaptive control algorithms based on recursive parameter estimation are very sensitive
to incorrect choice of the process time delay, more sensitive than the incorrect choice of
the process model order. They report that if the time defay is not known exactly, or

varies significantly with time, the control may be poor or instability may even result.
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They consequently proposed that the time delay could be estimated on-line, if it varies

significantly.

Another approach to self tuning control is called the extended horizon approach.
Ydstie et al. (146) suggested this approach to deal with varying time delays as well as
non minimum phase behaviour. In this method the controller does not attempt to drive
the predicted output to the setpoint in one step, rather the controller is allowed more
time, that is, the time horizon of the controller is extended. Ydstie et al. (146) point out
that by doing this it is possible to look beyond the process time delay and periods of
nonminimum phase behaviour. They applied the method to a pilot scale carbon dioxide
absorber-desorber unit and reported that the effect of extending the horizon of the
controller is to detune the controller. Other extensions exist where both the control and
prediction horizon can be extended. An investigation of such extensions were carried
out by Montague et al. (88) on a linear model of a distillation column. Their results
showed that, when both the control and the prediction horizons become larger than the
actual process time delay, improvements in controller performance are insignificant.
Using a non-linear model of the column they reported that deterioration of performance
resulted. They also pointed out that obtaining the best combination of control and
prediction horizons can be a tedious task.

2) Estimator parameters
The parameter estimation step is a crucial step in all adaptive control schemes. The
recursive least squares (RLS) in standard form is given as,
8(t) = 6(t - 1) + K(v) [y(t) - D(t - K)To( - 1)]
=0(t- 1) + K(ep(t) 2.89
K(t) = (PP(t- 1) @(t - k)/[1 + BT(t- k) (PP(t- 1) B(t- k)

2.90

PP(t) = PP(t-1) - PP(t- NB(t-K)D(t- K)IPP(t-1)
1 + @(t-k)TPP(t- DNB(1-k)

= [I-K() @(t- KIPP(t- 1) 2.91

where t is the time, 6(t) is the vector of the parameter estimates, @(t - k) is the data

vector. The K(t) is the estimator gain, PP(t) is the covariance matrix, I is the identity
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matrix and ep(t) is the output prediction error , or the residuals as it is sometimes

called.

The estimator requires the specification of the initial covariance matrix, PP(0), and
the initial parameter vector, 6(0). Choosing the initial parameter estimate 6(0), is
usually not difficult particularly if the process response data is available a priori.. The
common practice is to use a suitable conventional controller to initially “tune in” the 6(t)
parameters. The adaptive controller is then switched on when, for example, the
prediction error is small over several samples and the control actions of the self tuning
controller are the same as those of the conventional controller. A large initial covariance
matrix, PP(0), implies poor confidence in 6(0) and will produce rapid initial changes
in O(t) because the estimation gain K(t) depends directly on PP(t). A small PP(0)
indicates good confidence and slow initial changes in 6(t).

In some situations it may become necessary to avoid updating the controller with
new parameters, that is to “freeze” the controller parameters, if some or all the
parameters drift or jump into undesirable space. Examples of where such preventative
measures are necessary is when large disturbances enter the system yielding a large
prediction errors. The parameter estimates may then fluctuate drastically for a few
iterations and it is then important not to update the controller with bad or unrealistic
parameter estimates Seborg et al (140). A common test used to prevent this is to
specify the maximum allowable prediction error and freeze the controller parameters if
this limit is exceeded. If a good knowledge of the parameters are known, an additional
test is to specify the upper and lower bounds within which the controller parameters
must lie.

3) Controller parameters

The weighting P(znl) is a transfer function that can be specified to give a desired
closed loop response to setpoint changes, while ﬂ(z-l) is used to reduce excessive
control activity and introduce integral action into the controller structure. With proper
selection of P(z-l) and U(z-i) an unstable process can be stabilised. The weighting,

H(znl), is a transfer function used to filter the set point; thus tailoring the set point
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response without affecting load disturbance response. It is useful in situations where
the output is not desired to follow sudden jumps in set point and can therefore in the
reduce overshoots. Only P(zﬁl) affects the parameter estimates, as it appears in the
predictor model (Equation 2.79). The order of P(z_l) has been suggested by Clarke
and Gawthrop (157) to be chosen as at least of the order of the assumed process
model, to avoid under performance of the controller.

To avoid steady state offsets the relationship P(1) = R(1) must be satisfied. This
can be verified by examination of the closed loop equation, Equation 2.81, putting
0(2—1) =0 and &(t) = 0 in the equation.

Morris et al. (85) have reported that choosing Q(z_l) as the inverse of a

conventional PID controller of the system yielded good results. This allows the system
closed loop behaviour to be modified by a design of a controller using a conventional

design method.

2.9.6 Operational problems of the recursive least squares scheme

It is the characteristic of the RLS, and most parameter estimation schemes, to loose
sensitivity; that is the estimator gain becomes too small. This happens because the
PP(t), and hence K(t), tend to zero as more data is processed so that corrections to the
parameters in 6(t) become smaller and smaller. When this happens the parameter
estimator will not be able to track slowly time varying parameters. To prevent this a
weighting factor, v (0 <v £ 1), called the forgetting factor, can be introduced into
Equation 2.91 to give

PP(t) = [I - K(t) @(t - K)]PP(t - 1)/v 2.92

Choosing v to be less than 1 weighs new data more heavily. The effect is to
prevent the covariance matrix PP(t) from becoming too small since it is scaled by a
factor less than 1. This would maintain the sensitivity of the estimator so that process
parameter variations could be tracked. However, if the data y and u are zero or do not
change much, that is, the closed loop system is not excited, the PP(t) will begin to

grow when v is less than 1. The PP(t) can become too large and so make the estimator
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too sensiuve. This is called covariance windup. The consequence is that large and

violent changes in the parameter estimates, or “bursting", would occur if small changes
in the data enleré the system and this may lead to instability of the closed loop system.
This characteristic of adaptive control schemes is treated in Hsu and Costa (143),
Ydstie et al. (146) and Goodwin & Sin (39).

To reduce the risk of covariance windup several variable forgetting factor
algorithms have been suggested. These include those of Fortescue et al. (34),
Wellstead and Sanoff (121), Ydstie et al. (146), Ydstie (151), Lozano-Leal (79) and
Zarrop (139). In general, each variable forgetting factor algorithm reduces v(t) when
the prediction error increases. This has the effect of increasing the size of the
covariance matrix and hence increases the speed of the adaptation. The forgetting factor
converges to unity as prediction error becomes smaller. The variable forgetting
algorithms do not entirely eliminate covariance windup, except that of Lozano-Leal
which computes the forgetting factor to maintain a constant Tr(PP(1)), where Tr
represents the trace. In doing this covariance windup is effectively eliminated. The
success of the method depends, however, on the closed loop system being persistently
excited to the appropriate degree.

The robustness of adaptive control systems is also an important issue. Anderson
(7) has shown that even without the effect of covariance windup bursts can occur and
lead to instability as a result of the parameters drifting due to lack of excitation, model
mismatch, and computer round off errors. Rohrs et al. (108) have also shown that
unmodelled disturbances and wrong model order could easily lead to instability of the
adaptive controlled system, if sufficient excitation of the system is not ensured.

Several modifications have been proposed to improve robustness of the adaptive
control system. These include an approach called "dead zone” where the adapration of
the parameters are stopped if the error is small, smaller than a user specified limit.
Another method is to introduce a " leakage " term which introduces a linear drift term
into the parameter estimator updating equation, Equation 2.90. Ydtsie (151) gives a

combined form of the leakage and dead zone approach as
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0(1) = 0(t - 1) + K(Mep() + a(@@-1) - 8" (1) 2.93
where @ is the leakage term and 6*(t) = 6*(t-1) if K(t) ep(t) < e and 9*(1') = 0(t-1)
otherwise.The term @ is the deadzone specified by the user and the leakage @ is
usually chosen to be small. Ydstie (151) points out that this approach will not always
work because model mismatch will not always manifest itself as a slow drift.

In the computation of PP(t) using Equation 2.91, computer roundoff can result in
PP(t) loosing positive definiteness. This will cause the estimator calculations to
become unstable and an unstable system could result. This will happen in fewer
iterations on computers that use short wordlengths. Methods available which overcome
this problem include using the square root filter (SQRTF) algorithm (Perterka (155)) or
the UD factorisation method, given in Astrom and Wittenmark (206) and Ydstie

(151)), to update the PP(t). A very clear presentation of the SQRTF algorithm for

computer programming is presented in Kiovo (70)

There have been many modifications of the RLS method. For example, when the
noise is to be modelled (C(z‘l) # 1), other techniques such as the extended recursive
least squares (ERLS) technique must be used to estimate the parameters including the
noise model parameters. The ERLS approach has been used by Chien et al. (24). The
technique and its applications are treated fully by Lai and Wei (77). Fuchs (35), Sin

and Goodwin (175) also present modified forms of the RLS.
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This approach has been used successfully by some workers (McDermott et al. (38,

84)), but is considered undesirable (Absjorben (2), Kershenbaum and Fortescue
(158)) because a significant increase the variance of the outputs will result. The actual

level and proper frequency of the application of the signals may also be difficult to

determine.

2.9.8 Adaptive algorithms that avoid the persistent excitation condition

Numerous work have been done to address the problem of parameter identifiability
in adaptive control systems where sufficient excitation of the closed loop system is not
obtained. These workers include Lozano-Leal and Goodwin (147), and Ossman and
Kamen (94) who have suggested various adaptive control approaches that do not
require persistent excitation for good parameter estimation.

The approach of Ossman and Kamen (94) will be focussed on in this thesis. The

method assumes that the system parameters, 6, belongs to a known bounded interval
[emin’ emax] and a reasonable assumption, or a priori information, of these bounds
is available. The method also assumes that the plant is stabilisable fo’r all possible
values of the unknown system parameters. The RLS estimation scheme is then

modified to force 0 into the bounded interval, over several sampling intervals. The

basic algorithm for a SISO system is given as follows. A vector f is defined as

0(t-1)-6™*  when 6(t-1)>0™
fO@E1) = 6@1-6"" when8(t-1)<6"
0 when 6(t-1) is inside the bound [Gmm, emax}

2.94
The f is an np x 1 vector and np is the number of parameters. The parameter updating

equation Equation 2.90 is then modified to
9(t) = 0(t-1) + K®O[y(D) - B(t-k)TO(t-1)] - aPP(t-1)T(B(t-1))
2.95
where o is a positive scalar chosen such that

o PP(O) < 2T 2.96a



where PP(0) is a diagonal matrix with diagonal elements of equal values (al, where a is

any positive value, eg 1001). Note that if the diagonal elements are not the same then
Equation 2.96 should in effect become

ocmax(PPi(O)) <2 2.96b

where i denotes the i-th diagonal element.

Apart from the introduction of the correction term, another modification of the RLS
algorithm was used by Ossman and Kamen. This modification is a data normalisation
procedure which ensures that the covariance matrix, PP(t), converges to a positive
semi-definite matrix with magnitude less than PP(0). The procedure is given as

1 when the determinant of PP(t) > ¢,
where e is a small positive number
N1 =
max(1, I @(t-k) Il) otherwise
where Il x I=[xTx](1/2) and € is chosen as any positive number. Ossman and Kamen
suggested that € should be chosen to be very small since they found that too large €

sometimes resulted in large transients in the system response. The Mg is introduced in

the computation of PP(t) to give
PP(t) = PP(t-1) - PP(t-D@(t-k)B(t-k)TPP(t-1)
n2t_l + @(t-k)TPP(t- 1D (t-k)
so that the term K()[y(t) - @(t-k)T6(t-1)] in Equation 2.89 becomes
PP(t- D@tk v(0-B(t-K) TH(-1)]
n2t_1 + @(t-k) TPP(t-1)D(t-k)

and Equation 2.95 becomes
0(t) = 6(t-1) + _PP(t-DB-K[y(0)-B(t-kTO(t-1] - aPP(t-1) F(B(t-1))
n2t_1 + @B(t-k) TPP(t-1)B(t-k)

2.96¢

The algorithm becomes the standard least squares with the correction term if 1 is

always 1.
The properties of the estimation algorithm includes that the prediction error tends to

0 as t tends to infinity. The proof of the characteristics of the estimation algorithm is

lengthy and is not presented here since it is the basics of the approach that is of main
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concern. According to Ossman and Kamen, the modified RLS scheme they propose is
not a projection algorithm which forces the estimates to converge to the "target "
bounds [emin, emax] every sampling instant, t. Instead, the “correction term” in
Equation 2.95 only forces the estimates to converge to these bounds as t tends to
infinity.

It clear that the “correction term” — aPP(t)f (8 (t - 1)) can be incorporated into
any suitable estimation algorithm. Also, implicit in the algorithm is the ability to

compensate for parameter drifts from their true values, or more precisely, away from

their admissible bounds. The algorithm is, however, quite different from the deadzone
approach which avoids updating the parameters if the prediction error is small in order
to avoid parameter drifts. The method is also not a form of the leakage approach since

the leakage term does not have a "target" parameter bound that must be reached.

Ossman and Kamen (94) combined the method with a multivariable STR and
applied it to a linear multivariable system. They reported that improved controller
performance was achieved. They also conjectured that the approach could be applied in
situations where the bounds of only some of the parameters are known. This implies
that it may be possible to retain good controller performance while only correcting
some of the parameters. This would be advantageous since it may sometimes be that
only some key parameters need to be closely monitored. For example, the parameters
that directly determine the controller gain may need to be monitored to prevent it from
attaining wrong values.

A possible drawback of the approach as regards practical application is that, in
practice, it may not be easy to obtain sufficient knowledge about the parameter bounds
of the system especially for processes that are poorly understood. This problem will be

more acute if the system is non linear. The literature also contains no practical

application of the approach.
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2.9.9 Incremental self tuning control algorithms

One property of the RLS scheme and, all parameter estimation schemes, is that if
the noise affecting the data is not zero mean the parameter estimates determined will be
of wrong mean values; that is, the parameter estimates will be biased. Positional forms
of adaptive control algorithms use full value data for parameter estimation and control
calculations. They, therefore, suffer from the fact that non-zero mean noise levels in
the plant data would cause biased parameter estimates, and prediction offsets (Clarke et
al.(21)). Clarke et al. showed that the performance of the "one in the data vector" and
the "proxy of residuals” methods in estimating offset level d could be significantly
degraded by non-zero mean data when a positional self tuning control algorithm is
used.

The use of incremental data for parameter estimation and control calculations
alleviates these problems. As stated by Clarke et al. (21), this is primarily because
zero-mean data naturally result when incremental data is used for parameter estimation.
The incremental approach is simple. It involves differencing the plant data with
previous data prior to parameter estimation, and then following exactly the same
procedure to obtain the corresponding control law. A parameter estimator which uses
differenced data is called an incremental predictor and a self tuning controller based on
an incremental predictor is, therefore, referred to as an incremental self-tuning

controller.

The method proposed by Clark et al. (21) is the k - incremental controller where

the parameter estimator uses data differenced by Ay. It is derived as follows. The

predictor is obtained by shifting the positional predictor, Equation 2.81b, backward in
time to give
Py*(t) = Fy'(t-k) + Gu(t-k) + d 2.97

Subtracting Equation 2.97 from the Equation 2.81b gives
P(z'l)Aky*(Hk) =FAy'(D) + 64u(0) 2.98

This is the k- incremental predictor. This can be re-arranged to give

Pz Dy*(k) = P Dy + FAY(® + A0 2.99
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The control law is the same as that used by the positional predictor in Equation 2.82,

or Equation 2.88b if removal of lamda offset is required. Thus the controller output is
computed as
-1 '
Au®)=[6+ Q1! [-P(z Hy*() - FA y®©+Rw(@®] 2.100
and u(t) = u(t~k)+Aku(t).

w(t) . 1
— R -b—% B 0a g#| Plant ;:)
< P »
+
FA |
PD

Figure 2.12 Implementation of a k-incremental control law (Clarke et al. (21))

Apart from reducing the risk of biased parameter estimates and prediction offsets,
an incremental self tuning controller is equipped with integral action. This is unlike the
positional counterpart where integral action must be pre-specified by the designer.
Clarke et al. (21) showed that a k- incremental predictor implicitly estimates the offset
level, d, and that changes in this offset level only lasts for k samples. The resulting
incremental controller removes all possible offsets that may occur. Another feature of
incremental controllers is that they do not require accurate knowledge of 1nitial, or
reference, values as required by positional forms. For the dual composition control of
binary distillation column model and pilot plants, Tham et al. (131, 132) have reported
that the use incremental control improves the decoupling properties of the multiple loop

self tuning control system.
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2.9.10 Deficiencies of incremental self tuning control algorithms

Despite all the advantages provided by incremental adaptive control algorithms, it
has been reported many times in the literature that they deliver more vigorous and
sensitive control actions than there positional counterparts. Such reports include those
of Montague et al. (88), Kam et al. (67, 68), Tham et al. (131, 132) and Clarke et al.
(21). Clarke et al. (21) observed that k-incremental self-tuning controllers are more
sensitive than their positional counterparts to incorrect choice of the plant time delay
when minimum variance control is required. |

One source of sensitivity in incremental controllers is due to noise in the process
data, if indeed noise is present in the data. It is the property of incremental predictors to
amplify high frequency noise in the process data (Berger (11). This will make the
closed loop response of a system under control by an incremental self tuning controller
sensitive. To reduce the high frequency noise amplification in a system under control
by an incremental self tuning controller, Berger (11) suggested passing the plant data
through a moving average filter (MAF) prior to parameter estimation. The basic

formulation of this filter is given as
j 1-i-k
F (o) =1.- %
J5k . 3
=1 ] + o

2.101
where k is the time delay. Introducing the filter model into the appropriate predictor
model for minimum variance control (Equation 2.69), for example, becomes
Czh Fj,k}’(“‘k) = F(Z'I)Fj,k}’(t) + G(Z'I)Fj,ku(t) + E(Z’I)Fj,ké () + E(Z‘I)Fj’kd(r)
2.102

According to Berger, o in Equation 2.101 is chosen as a small number and it is

.. . -1 .
used when the noise model is identified to prevent the zeroes of C(z )Fj,k from lying

on the unit circle (the C(Z’I)Fj | term is similar to C(z'1) y(t+k) in Equation 2.69,

except that the filter terin is introduced). If this is not done then problems of
convergence of the parameter estimates and problems of stability of the closed loop

system may occur.
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Equation 2.102 implies that the plant data is differenced by the the average values

of j previous values. The generality of the k-incremental controller is still retained due

to the k in the filter formulation since Fi (o) = Ay when o =0 and j=1.

According to Berger (11), if k = 1 and o = 0, the effect of the filter on a signal

composed of u and zero mean white noise e,, the filtered output will be

]
e
M= 5 =1
J 2.103
with variance
2— 2 1-1/ 2.104
Oy =0 (1-1/) :

2. : L 2. . :
where G, is the variance of the noise input and 6, is the variance of the filtered

data. The filter therefore reduces noise amplification as the filter depth j is increased.
Thus, the sensitivity of the controlled system reduces. The filter depth j is chosen by
the designer depending on the requirements of the system.

Berger showed that no benefits are obtained using the moving average filter when
low frequency noise is affecting the system. No experimental application of this

approach has been reported in the literature.

2.9.11 Stability and convergence of adaptive control algorithms.

Astrom (4) points out that the closed loop systems obtained in adaptive control are
non linear and this makes their analysis difficult especially if random disturbances are
affecting the system. The stability and convergence analysis of adaptive control
systems are key problems to which much effort has been devoted to address. Astrom
(4, 166) gives a review of efforts done in this area. He points out that to ensure
stability of the adaptively controlled system, the data vector ¢ must be bounded.

The performance of adaptive control systems in the presence of unknown
disturbances is of great interest and several workers including Xianya and Evans (136)
and Samson (122) have carried out investigations in this area. Samson studied the

stability of adaptive control systems subject to bounded disturbances with unknown
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statistics. His view is that the property of stability of the closed loop system should be

established in order to be able to obtain good robustness of the control. He points out
that in order to be able to perform a stability analysis on the system the parameter
estimator should satisfy the following; (1) the parameter vector must be bounded, (2)
the prediction error must be very small compared to the size of the data vector and (3)
when the data vector becomes large the difference between two successive parameter
estimates must become very small to allow the control of a time varying system.
Samson pointed out that, in the deterministic case, these properties can be verified in
most parameter estimation algorithms,

The analysis of convergence of adaptive control systems is dealt with in Anderson
and Johnson (8). They showed that a persistent excitation condition is necessary for
exponential convergence, which guarantees the robustness of the adaptive controller to
model mismatch noise and other uncertainties. More details on the stability and

convergence of adaptive control systems can be found in the articles mentioned above.

2.9.12 Extensions of self tuning control to multivariable systems

Extensions of the Self-Tuning Controller of Clarke and Gawthrop (156, 157) to
multivariable systems were proposed by Kiovo (70), Morris et al. (86) and Chien et al.
(24). Chien et al. (24) presented extensions to deal with multiple delay multivariable
systems. Morris et al. (86), Montague et al. (88) and Tham et al. (131, 132) also
considered multivariable algorithms with each loop sampled at different rates. These
workers have pointed out that the computational requirements are much more involved,
particularly for multiple sampling cases.

For a multivariable system the assumed model equation becomes

Ay =zKBEhu® +C@hHEw +d@
2.105

The Hl(z‘l), B(z'1) and C(z-1) are now polynomial matrices. The u, y, d, and &

are all vectors. An important consideration that the designer is faced with in the design

of a multivariable self tuning controller is the assumption of the structure of the
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assumed process model, particularly regarding the H(z-1) polynomial matrix. The two

choices are given by Tham et al. (131, 132) as

(i) the P-canonical form, where the H(zhl) is assumed to be diagonal, and

(ii) the V-canonical form, where R (2-1) is full.

They noted that the P-canonical form is usually preferred for simplicity. With this
formulation the fi(z-1), B(z-1) and C (z1) matrices, for a 2 input 2 - output system,

are defined as

B, zk“'k12B12
B - kpy-ky
z B, B3,
Note that k;; is the delay between y; and u; and k;; is the delay between y;to uj; it is

]

assumed that kij > k;; > 1. Equation 2.105 can be decomposed into 2 multiple-input

single output (MISO) subsystems, described by
Hy.() = Bu,(t-k;) + Bijuj(t-kij) + Ciéi(t) +d;(0) 2.106
The P-canonical form facilitates reduction of the multivariable system structure into
sets of multiple input-single output (MISO) sub-systems. Each sub-system can then be
treated independently. For each sub-system, the corresponding self tuning controller
can be determined by following the synthesis procedure of the SISO STC controller.
Then, strictly speaking, a multiple loop self tuning control system is obtained, with the
capability of compensating for control loop interactions. The use of multiple sampling
rates are also more readily accommodated.
The identity of Equation 2.66 becomes
CP=EH,+ z-Kii F, 2.107
and d = E(1)d. The corresponding self tuning controller design parameters are

denoted as P (z_l), (](z'l) and H(znl) which are diagonal polynomial transfer function

in the multivariable case. The kﬁ - step ahead predictor for each loop becomes



Piyi(tsly) = Fiy'i(0 + Gjui() + Gjjug(t +gi k) + d; - 2.108a

and the corresponding control law is obtained as in the single loop case. Following the
derivation of the STC in Section 2.94, the corresponding controller equation for each
loop is
w® =[G+ 0,11 [-Fyy0- Bjju;(t +kjikyp) + R wy(0) - ;]
2.108b

Control loop interactions are accomodated via the Gij'

2.9.13 Chemical engineering applications of adaptive control

A large proportion of the published work on applications of adaptive control
systems have been by simulation. Quite a few successful laboratory scale applications
have been reported of which Seborg et al. (140) gives a fairly detailed review. Clarke
and Gawthrop (22) demonstrated the flexibility and ease of applying of STC on a
portable microprocessor. Dexter (27) described the development of a STC on a single
chip microcomputer. He demonstrated the viability of a simple STC algorithm suitable
for low cost control applications in consumer products. Sharaf and Hogg (123)
assessed various types of process identification methods to the optimal control of a
laboratory scale turbogenerator. The identification methods they used include the
recursive least squares, the extended recursive least squares and the recursive
instrumental variable.

Examples of experimental applications of adaptive control for the dual composition
control of distillation systems are by Badre et al. (14), Morris et al. (85, 86) who used
the STC of Clarke and Gawthrop (156, 157), and Martin-Sanchez and Shah (89) who
used the model reference approach. McDermott et al. (34, 84) applied the pole .
placement approach to control a fixed bed auto thermal reactor.

Some industrial applications have also been reported by Seborg et al. (140),
Keyser and Cauwenberge (65) and by Dumont (176). Keyser and Cauwenberge (65)
successfully implemented a self-tuning multiple step predictor on an industrial blast

furnace to guide the operator in selecting control inputs. Very good and trouble free
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performance of the predictor over a period of months was reported. Dumont (190)

applied an STR to control the motor load of a chip refiner in an industrial
thermomechanical pulp production unit. The application was successful despite the
slow drifts and occasional sign changes of the incremental gain of the motor load.

Chien et al. (23) proposed an extension to the STC for decoupling control of
MIMO systems. The method is based on a novel way to choose the control weighting
matrix, . Qualitatively, the Q is chosen to be a full matrix rather than a diagonal. Tade
et al. (133) also developed an adaptive approach to decoupling control. The method
allows for the specification of the closed loop behaviour of the system in form of a
reference model and uses a linear difference model to represent the system. Non linear
versions of adaptive control techniques have also been developed (A garwal and Seborg
(3)

Tionoven (63) developed an algorithm which automatically adjusts the control
weighting, @, when the STC is in operation. They justified there work on the basis
that it may sometimes be difficult to find the proper weightings a priori. They
addressed the case of regulatory control only and point out that the method does not
necessarily give good performance on a non minimum phase system.

Many applications of adaptive control systems, by both simulations and
experiments, have been to distillation processes. These include the investigations of
Morris et al. (86), Chien et al. (24), Badre et al. (14), Montague et al. (88) and Tham
et al. (131, 132), Martin-Sanchez and Shah (89) and Dahlqvist (31). This reflects the
importance of distillation as a key process in the chemical industry. As distillation
possesses many of the characteristics that limit the performance of conventional control

system, adaptive control is perceived as one approach that can solve the major control

problems in this field.

2.9.14 Application of adaptive control in the chemical industry
Dumont (176) made a comprehensive survey of the use of adaptive control in the

pulp and paper, chemical and petrochemical industries. He found that adaptive control



has had limited use in industry, contrary to what was predicted by proponents of

adaptive control particularly in the early 1980s. His report reveals that industrial
practitioners agree that adaptive control is useful and there are some control loops
where there is the need for it, but they find adaptive control still too complicated to use.

To illustrate some of the reasons for this view in industry, the survey gives several
examples in industry where adaptive control has been applied, and some cases where
projects on application of adaptive control have been terminated. Major difficulties
encountered in applying adaptive control systems to industrial processes were usually
due to problems of model identification, reliability and robustness of the algorithms.
The number of parameters that need to be estimated is usually quite large for industrial
systems, so that it becomes difficult to identify them all. Reports of some failures due
to this problem were given. The survey also revealed that commissioning and tuning of
adaptive control systems can take up long periods of time, sometimes weeks or even
months.

In conclusion, Dumont (176) emphasized the need for close liaison between
universities and industry regarding the needs and application of adaptive control. He
pointed out that key issues such as the robustness and convergence of adaptive control

algorithms need to be addressed for their applications in industry to be progressed.
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2.10 Estimator aided control of chemical plant

In practice several factors will dictate the number and the types of measurements
that will be made on a chemical plant. Control may dictate a different priority: Control
may require measurements which present severe practical difficulty, or even
impossibility. Measurements vital for control may be corrupted by noise in the
measuring instruments; faulty instruments may also induce inaccuracies in the
measurements; the measurements may be available at infrequent times because of long
analysis times, or the difficulty or high cost of measurement. Only some easily
measurable variables, or secondary variables, that relate, in some way, to the variables
needed for control may be available. In these circumstances a method must be devised
in order to infer accurate values of the variables needed for control from these
secondary measurements to enable the design of an effective control system.

Distillation column control is a typical example were such problems frequently
arise as has been discussed in Chapter 1. Composition analysers are usually very
expensive, have significant time delay due to analysis time and can be very unreliable.
More usually, only easily measurable tray temperatures are available. In this event the
composition control scheme must be developed to operate without the missing
composition measurements. Since for a binary mixture the temperature on a plate is
usually a good indicator of the composition on that plate and the temperature of a tray
near an end of the column is also a good indicator of the product composition at thut
end, the tray temperature can either be controlled instead or be used to infer the
product composition.

A combination of a mathematical model of the process and the noisy, inaccurate or
secondary measurements could be employed to provide the “best” estimate of the
controlled variable. This is the basis of an “estimator aided” control scheme. The
performance of the estimator will stron gly depend on the adequacy of the mathematical
model and how well the available measurements indicate the controlled variable whose

estimate is required. Several workers (Daie (26), Luyben and Shah (110), Yu and



Luyben (137), Hamilton et al. (49) and Dahlgvist (162)) have used control schemes

based on this approach.

Estimators of these types can be broadly classified into two types. These are static
and dynamic estimators; static estimators employ steady state models and dynamic
estimators employ dynamic models. The estimation can be done sequentially or non-
sequentially (Daie (26)). Sequential estimation techniques basically means that the
estimates of state variables of the process are generated at each sampling instant. This
is commonly referred to as recursive filtering and an example of such a technique is the
Kalman filtering technique (Kalman (163), Bozic (145)). The non-sequential approach
to estimation is based on a series of measurements over a period of time to estimate the
desired variables (Daie (26)).

Luyben and Shah (110) applied an estimator based PI control system to control the
products of a 24 tray 20.3cm diameter binary distillation column distilling a mixture of
water and methanol. A tray by tray non-linear steady-state model of the column was
used to back-calculate product compositions. Only four tray temperatures and two
flowrates were needed as measured variables for the estimator-based scheme. The
resulting product composition estimates were then used as the controlled variables.
Simulated and experimental results showed that the estimator based control scheme
performed better than conventional control. It was also noted that there is a predictive
feed-forward control action implicit in estimator based control schemes.

Extensions of the approach of Luyben and Shah to multicomponent distillation
system were developed by Yu and Luyben (137). In their work, however, the singular
value decomposition (SVD) technique was employed to select the proper location of
tray temperature measurements, as mentioned earlier in this chapter. The performance
of an estimator based PI control scheme was tested on four different multicomponent
distillation processes by computer simulation. The results showed the estimator based
schemes gave better performance than direct PI control. Yu and Luyben, however,
point out that a disadvantage of the static estimator they employed is that the dynamic

behaviour of the output of the estimator may not match the actual dynamic responses of



the process outputs. This is expected since the estimator employs a steady state model

rather than a dynamic model.

The other workers, Hamilton et al. (49), Dahlqvist (162) and Daie (26), all used
the Kalman filter technique in their estimator based control schemes. Comprehensive
treatments of the theory of Kalman filtering can be found in the books by Astrom (166)
and by Kalman (163). Also the theses of Payne (99), Daie (26) and Shaffii (115) give
reasonably comprehensive reviews of the theory, applications and advances that have
been made concerning Kalman filtering and its applications in process control. These
reviews form the basis of the summarised treatment to follow.

The Kalman filter is a sequential estimation technique which employs a linear
dynamic model of a process to generate the true process variables from noisy
measurements at each sampling instant. The technique can be used to estimate process
variables and parameters from secondary process measurements. Both Dahlqgvist (162)
and Daie (26) have employed the technique to estimate product compositions of
distillation column from tray temperature measurements. A short presentation of the

basic theory of the Kalman filtering approach will be given first.

2.10.1 The Kalman Filter algorithm

The fundamental idea of the Kalman filter is to determine the optimal estimates of
the state variables of a given process from a knowledge of outputs and inputs
(controls, disturbances etc.) and a mathematical model of the process. The basic
assumption is that the process is (a) modelled by first order linear differential
equations, (b) excited by additive zero-mean “white gaussian” noise and (¢) such that
some measurements are available, corrupted by experimental errors. The
measurements must be combinations of the state variables.

“Whiteness” of the noise implies that the noise level is not correlated in time,
meaning that all the values of the noise are mutually independent. “Gaussianess” is
related to the noise amplitude. It implies that at any single point in time the probability

density of the noise amplitude takes on a normal bell-shaped curve, the Gaussian
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probability density function. Daie (26) noted that the assumption of "white gaussian”

noise makes the mathematics of performing Kalman filtering more tractable.
The derivation of the Kalman filter and the characteristics have been extensively
dealt with by several workers including Payne (99) and Daie (26). Therefore, only a

brief treatment will be presented here.

The process is assumed to be described by linear time invariant state variable

model as
dx(t)/dt = Ax(t)+ Bu(t)+ w (t) 2.109
y(t) =Mx(t) + v(t) 2.110

where W(t) is n x 1 vector of random system disturbances and v(t) is the nm x 1 vector
of random measurement disturbances represented by a zero mean white Gaussian noise
process. Therefore, E[v(t)] = 0 and E[w(t)] = 0, where E is the mathematical
expectation operator. The matrix A is the n x n system matrix, B is the n x m input
driving matrix and M is the nm x n measurement matrix. The vector x(t) is the n x 1
vector of the true state variables and u(t) is the m x 1 vector of the inputs. The n, m and
nm are the number of states variables, inputs and measurements, respectively.

The solution of equation is given (see Daie (26), Shaffii (115) and Astrom and

Wittenmark (206 )) by
x(t) = (D(t,tk)x(tk) + J O, 1)Bu(t)dt + w(tk) 2.111
The O(t,t) is an n x n matrix called the transition matrix and is given by
do(ty) = A DY) 2.112
dt
O(t,to) = exp(A AT) 2.113

where AT = t-t) The initial value of CD(t,tk) att =ty 18
O(t,t) = D(ty, ty) =1 2.114
where I is the identity matrix. The state at the next sampling interval t_ ; is thus given

by
et

X<tk+1) = CXp(A (tk'\"l“tk)) X(tk) + jtk eXp(A (tk+1‘T))BU(T)dT + W(tk+1)
2.115
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which gives

fk+1
X(tk+1) = CXp(A (tk'*‘l—tk)) X(tk) + JAtk eXp(A (tk+1-T))d”CBu(tk) + W(tk+l)
o _ 2.116
as B is time invariant.
Dropping the t, the system becomes as
x(k+1) = Dk+1, k)x(k) + F'&uk) + W(tk+l) 2.117
yk+1) = M(k+ Dx(k+1) + v(k+1) 2.118

These equations are valid only at the sampling instant k .

Using the simple Euler method is used for the discretisation gives

@ =(+AAT) 2.119
I'(k) = BAT 2.120
M(k+1) =M 2.121

as M is time invariant, where AT is I interval.

The Kalman filtering problem is to determine the estimate x"(k+1, k +1) of the

state so as to optimise the following quadratic cost function given (Shaffii (115)) by
-1
T = 172 (Ix(k) - XA TR (R IO[x(k) - xR )
j =k-1 |
#1225 (IYGHD-MGHD) X°GHLDIT R G+ [¥(+1) - MGHD X
G+1,)1) 2.122
where the superscript -1 and T denotes matrix inversion and transpose, respectively.

The x (k, j) is the estimate of the states obtained at time k given a set of observations

through to time j. The optimisation yields the following matrix recursion relations

(Daie (26)).
Prediction step
x* (k+1,k) = ©k+1, k)x *(k, k) + T'u(k) 2.123
P (k+1,k) = ®k+1, k) Pk, k) OT k+1,k) +Q 2.124
Estimation step

Kk+1) =P(k+1, k)MT(kH)[M (k+1) P(k+1, k)
MT(k+1) + R 2.125
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XMk+1k+1) = x*(k+1, k) + K(k+1) [y (k+1) -

M(k+Dx*(k+1, k)] 2.126

P (k+1, k+1) =[I- K(k+D)M (k+1)] P(k+1, k) 2.127
or

P(k+1,k) = [T - K(k+1)M(k+1)] P(k+1.k) [I - K(k+1)

Mk+DIT + K(k+DR(k+1) K(k+1)T 2.128

x* and x” are, respectively, the prediction and the estimate if the state x

Q (k) is the n x n system noise covariance matrix, E [w(k) w(k)T]

R (k) is the m x m measurement noise covariance matrix, E [v(k) v(k)T]

P(k,k) is the n x n covariance matrix of the error in x*(k, k)

K(k+1) is the n x nm filter gain matrix

The term y(k+1) - M(k+1)x*(k+1,k) in Equation 2.126 represents the difference
between the measurements and the predicted measurements, that is, the prediction error
or measurement residuals, as in the recursive least squares method.

Payne (99) pointed out that the discrete time form of the Kalman filtering procedure
is preferred because it is composed of matrix recursion relations which makes the
technique easily implementable on a computer. He also regards the Kalman filter as an
optimal recursive data processing algorithm since all previous data are not required to
be kept in storage and reprocessed every time new process measurements are taken.
This is vital for the practicality of the filter implementation on digital computer as
mernory requirements are kept to a minimum.

In applying the filter to generate the state of the system the issue of observability
becomes important. Provided the system remains controllable and observable the
estimate of xA(k+1,k+1) and the filter algorithm will be stable for all k. The condition
for observability is that a matrix L4 given (Shaffii(115) by

Log = (dT(1,00MT(0), @T(L,0MT(1), oo, , Tk, 0MT(K))

2.129
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has the rank n, where n is the number of states to be estimated. Thus, L, grows with

k. If the system becomes unobservable the best way to combat it is by increasing the
number of measurements supplied to the filter.

The noise covariance matrices, Q(k) and R(k), are positive semi-definite matrices
and they are usually assumed to be constant for simplicity. To initialise the filter Q, R
and an estimate of the initial values of the state vector, x*(0,0), are required. The initial
error covariance matrix, P(0,0), is also required and is given by

P(0,0) = E [(x (0,0) - Xme (0))( x(0,0) - xme (O)T] 2.130
where Xme(0) is the mean of the actual initial state x(0) and is given as

E[x(0)] = xme(0) 2.131
and P(0,0) is a positive definite matrix.

To compute P(k,k) in the filter algorithm, Equation 2.124 is preferred because it is
better conditioned numerically and will retain positive definiteness and symmetry of
P(k,k) (Payne (99)). Equation 2.119 represents the integration of the state vector over
the sample interval. This can be done by integrating the filter process model with the
advantage of removing inaccuracies that could be incurred in in the computation of the
transition matrix, particularly in the case of nonlinear systems.

The P(k,k) represents how uncertainties in the filter estimates propagate with time.
It is the measure of the spread of the distribution of the estimates of the states, x*(k,k),
about the true state x(k,k); this true state is unknown, except in simulation. Loosely
speaking, the square roots of the diagonal elements of P(k,k) represent the errors of
the corresponding estimates of x*(k,k) from their true values is x(k.,k).

In practice, the noise spectra of the system and measurements are usually not
readily available. This means that Q and R cannot be obtained directly and must,
therefore, be assumed. However, Q may be used to represent uncertainty in the filter
process model. A large Q implies the process model is highly uncertain. From
Equations 2.120 and 2.121 it can be deduced that a large Q will result in a large filter
gain so that the filter will rely more on the measurements, y(k). This large gain will be

maintained because the computed error covariance matrix, P(k,k), is prevented from
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becoming too small. This will reduced the risk of filter instability that may occur due to

large filter model uncertainties. The R_matrix can also be used in a similar way. A
large R implies small filter gain and vice versa.

The P(0,0) and x*(0,0) affect the initial response of the filter . As explained in
Daie (26), the larger the error in x*(0,0) the longer the filter takes to converge because
unti] the system becomes observable the filter relies on the initial estimate, x*(0,0).
Chosing a large P(0,0), the filter gain will initially be large. This also increases the
time the filter will reach steady state as a high gain filter would rely more on noisy
measurement residuals.

Thus, compared to the static estimation techniques used in the works previously

reviewed the Kalman filter is more easily “tuned” using P, Q and R matrices.

2.10.2 Application to non-linear systems - The Extended Kalman Filter

The Kalman filter is in terms of a linear model. It is, therefore, only applicable to
linear systems. To apply the technique to nonlinear systems, which is common to
many chemical processes, the system and measurement models must be linearised
about a known and suitable reference trajectory. The Taylor series expansion is a
convenient method of linearisation and is therefore commonly used. This is the basis
of the Extended Kalman filter. This technique has been used by Daie(26), Payne(99)
and Shaffii (115). Their theses therefore provide details about the characteristics of
extended Kalman filters which form the basis of this review.

The development of an extended Kalman filter is as follows. The following model

describes a general non-linear system:
= + W) 2.132

y(© = h(x) + V() 2.133

The linearised transition matrix becomes

_y.af (x(k), uk)) AT
Ol =T+ o==0 1

2

=1+J AT 134

and the linearised measurement matrix
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M (k+1) = 2.135

Jdh(x k)
—_

where J is the Jacobian matrix. The linearisation is done around x(k). The second and
higher order terms of the Taylor series expansion are usually neglected from the
linearisation procedure. Rather than use actual states the state deviations,
Ox = x*(k+1) - xM(k), 8y = y(k+1) - y(k), are processed through the filter algorithm
presented. However, Daie (26) has shown that it is possible to use the actual states as
opposed to deviations if the measurement relationship is linear or very mildly
nonlinear.

In an extended Kalman filtering application the frequency of linearisation of the
process model as the filter operates will depend on the sample time and on the severity
of nonlinearity in the system. Typically, the values of the latest estimates at sampling
instant k are chosen as the reference trajectory for re-linearisation since they are the
“best” values that will be available at that time (Shaffii (115)). The implication is that
linearisation may have to be done during every interval to obtain new transition and
measurement matrices, @ and M, with significant increase in computational overheads,
particularly if the order of the process model and number of measurements are large.

It is reported in the theses of Payne (99), Daie (26) and Shaffii (115) that in the
extended Kalman filter approach the estimates may no longer be optimal. Observability
may also be lost since now the @ and M both vary. This is because the system is
assumed to be linear within the sampling interval, AT, so that if the sampling interval
is not small enough there is then the risk of violating the linearity assumption. This will
give rise to bias effects and divergence of the estimates and will, therefore, affect the
stability of the filter algorithm. Unmeasured disturbances will also cause biased
estimates (Morari and Fung (91)). It is possible to estimate the biases in the estimates
and then use it to correct the estimates produced by the filter. One such approach was
presented by Friedland and Grabousky (141), which can also detect sudden changes in
biases. To combat the problems of biased estimates due to violation of non linearity,
the sampling time can be made smaller and higher order terms in the Taylor series

expansion can be retained. In doing this the problems may not be completely solved. If
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the filter cycle time is already a large fraction of the sample time then adding higher

order terms in the Taylor series would require more storage space, increase the
computational load and, thus, the filter cycle time. This may require an increase in the

sampling interval, or a more powerful computer.

2.10.3 Application of Kalman Filtering to process control

Compared to applications in the space and electronics industry the Kalman filter
has had much less practical application to chemical engineering systems (Shaffii
(115)). The applications to chemical engineering systems that have been reported in the
literature show promise of increased future applications. Hamilton et al. (49) reported
that significant improvements in control of a pilot scale double effect evaporator was
achieved when an extended Kalman filter was inserted into the multiple PI control
loops. A stationary form of the filter algorithm, that is, a constant gain filter, was used.
In the work of Payne (99), an extended Kalman filter was implemented in open loop
on a large double effect evaporator. His work highlighted the many difficulties that
can be encountered during on-line implementation of the filter algorithm. These
problems included long filter cycle time due to computational requirements of the filter,
and the assumptions required to be made in the development of the filter to enable
operation within the limits imposed by the equipment used.

Daie (26) developed an estimator aided feedforward (EAFF) control algorithm
based on an extended Kalman filter for a pilot scale binary distillation process. He
designed the extended Kalman filter for the estimation of the tray compositions of the
distillation column from tray temperature measurements and combined the filter with
two PI controllers to control the top and bottom tray compositions of the column.
Implicit in the design of the EAFF control scheme is the ability of the filter to predict
the future effects of load disturbances on the outputs so that feedforward compensation
could be achieved without the need for separately designing feed forward

compensators. Hence, the name estimator aided feedforward (EAFF) control.
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Daie demonstrated by simulation that the EAFF scheme performed better than the

ordinary PI controllers in the face of large load disturbances and a large time lag due to
the large liquid holdups in the reboiler. What was significant in the results of Daie is
that with very tightly tuned PI controllers, which resulted in severe oscillatory closed
loop response of the outputs, the EAFF completely eliminated the output oscillations.
Furthermore, the EAFF was found to perform quite well even when very long
sampling intervals, relative to the speed of response of the system, were used. The
significance of these results is that by introducing the filter in the multiple PI control
loops tighter control could be achieved than when the PI controllers were used directly.
The extended Kalman filter not only acted as a composition analyser, it also improved
the robustness of the closed loop system as oscillatory response is removed.

Shaffii (115) tried to extend the work of Daie by attempting to implement the
extended Kalman filter on a distillation process. He used a linked Honeywell H316
minicomputer and Motorola M6800 microcomputer for data acquisition. Several
problems were encountered and these prevented on-line application of the EAFF
scheme. The extended Kalman filter required relatively large intersample computational
load so that the minimum sampling interval achievable was too long in relation to the
response time of the distillation system. The bulk of the filter cycle time was found to
be taken up by program overlay, which was necessary within every interval due to
computer memory limitations, the integration of the state at the prediction step using
the nonlinear model of the column, and the computation of the error covariance and
transition matrices, P(k,k) and ®(k+1,k). Consequently, Shaffii proposed the
simplification of the filter algorithm in order to enable on-line application of the EAFF
scheme. He suggested the use of a constant state transition matrix, constant gain and
reduction of the filter order .

The approach to implementing adaptive control can also been applied to indirect
control of the controlled variable. Guilandoust et al. (41) have presented two adaptive
estimators for estimating the bottom product composition of a binary distillation

column which is subject to long time delays. The estimators use a secondary output,
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tray temperature, to produce estimates of the controlled output (product composition),

and where derived using different approaches. One approach assumes the plant is
model in state variable form and the other uses input - output model, both of discrete
formulation. Guilandoust et al. found that the two approaches resulted in estimators
with similar structure, after some valid simplifying assumptions were made. The
estimators made it possible to perform control at a faster rate than the rate the product
composition measurements were available.

The estimators are simple to design and require moderate computing effort when
compared with estimators such as those based on Kalman filtering. A disadvantage in
one of the approaches, the one based on input-output model, is that the number of
parameters to be estimated increase as the time delay increase so that the tuning in
period of the estimator may be long. Guilandoust et al. claim that for a delay of up to 6
sampling intervals the tuning period increases only slightly; these were from simulation
exercises which were unreported. They demonstrated that the estimators can be
combined with adaptive or non-adaptive feedback control algorithm. The estimators
were found to be insensitive to the selection of the secondary variables and can cope

well with time varying behaviour of the process.

2.11 Chapter Conclusion

This chapter has given a review on some recently developed methods that are
useful in the design, analysis and applications of control systems to process systems.
A review of some advanced control design methods was carried out together with their

applications with chemical en gineering systems.



CHAPTER THREE

Restatement of The Problem

3.1 Introduction

In the introductory chapter the primary objective of this research work was
described. It is to apply three advanced control methods to a pilot scale binary distillation
column using a microcomputer for direct digital control. A detailed description of the

actual issues that have been addressed in this work are given in this chapter.

3.2 The approach to the research

As discussed in Chapter 1, there is evidence in the literature that there has been a
wide gap between advanced control theory and its application in the chemical and
petrochemical industries. There are a wide variety of advanced controller design methods
which have had limited applications on practical chemical engineering systems.
Computer simulations have been frequently used to demonstrate the advantages of
advanced control methods over conventional methods. This has provided the evidence
for the benefits of the application of advanced design methods on chemical processes.
Therefore, at the outset the aim of this research work was not to develop new control
algorithms, but rather, to select some design methods already available in the literature
and attempt to evaluate their performances on a pilot scale distillation column.

The advanced controller design methods that were selected for investigation in this
work are (1) the Disturbance Rejection and Decoupling Control approach based on the
work of Falb and Wolovich (179) (2) the Estimator Aided Feedforward (EAFF) control
scheme of Daie (26) and (3) the Self Tuning Controller design method of Clarke and
Gawthrop (157). These have been treated in detail in the previous chapter. These
methods result in control policies that are very different and they addressed different
control problems. The Disturbance Rejection and Decoupling Control design method

addresses the problem of interaction in the multivariable controller design, the EAFF
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operates in situations measurements of the controlled variables are not available, and the

self-tuning controller adapt the controller parameters to compensate for changes in
process conditions or the environment. The methods were chosen to cover a reasonably
broad class of advanced controller design methods. The PI, given in Appendix A.2.2.1,
was used as the reference which the performance of the methods were assessed

The existence of the mathematical proofs that underlie the selected design methods
has also been discussed. An understanding of the philosophies behind the approaches
and the synthesis of the control policies has also been given. From the point of view of
Doyle & Morari (213) and Morari (150), a control engineer in industry requires
controller synthesis procedures rather than extended analysis of the control schemes; the
existence of mathematical proofs of the various control schemes is more important than
the detail.

The importance of distillation columns in the chemical industry and their
characteristics which make them good examples for illustrating advanced control
schemes, were given in the introductory chapter. It was mentioned that they possess
process control problems that are typical of those frequently encountered on chemical
plant. The goal in this work is to compare the performances of the selected control
schemes on the distillation column, particularly as regards the stability and robustness of
their respective closed loop systems, since these are basic requirements of any control
scheme. To achieve this goal feasibility studies were necessary, and this was performed
by computer simulation. This required reliable process models to enable meaningful
simulations to be carried out. Thus, after the building and instrumentation of the
distillation column, the first major task was to seek a model that described the dynamic
behaviour of the column. The model was required to be good enough so that the
decision to proceed with on-line application of any of the control schemes could be
based on the performance of the control scheme on the model.

In summary, the general approach taken to achieve the objectives of this work is as
follows;

1) Formulate the mathematical model of the column

2) Check the model with experimental data.
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3) For each controller design method;
a) Design the controller
b) Test controller by computer simulation using the model
¢) Decide if the controller is viable for on line application
d) Formulate the real-time version of the control policy
e) Apply the control scheme to the column .

f) Compare the performance with that of conventional PI control

3.3 The issues addressed
A number of issues where considered worthwhile to investigate after the review of

the literature was carried out. These are discussed in this section.

3.3.1 The Decoupling and Disturbance Rejection Control scheme
The Disturbance Rejection and Decoupling Control design method is a typical

example of the multivariable control design methods that have been developed by
workers in other fields of engineering than chemical engineering. The applications of the
approach by Takamatsu & Kawachi (129) and Shimizu & Matsubara (113, 114) to
chemical engineering systems such as distillation columns were reviewed in Section
2.6.4. These workers focussed on the disturbance rejection capability of the control
scheme and did not examine feedforward compensation and the setpoint tracking
capabilities of the control scheme. In this work attention is focussed on the setpoint
tracking ability of the controller, since servo control properties of any control scheme are
of importance as any controller which cannot track setpoint changes lacks necessary
flexibility. To recap on Section 2.6.2 , the decoupling control scheme is given as

u=Fx+Gw 3.1
for the system described in state variable form

dx/dt = Ax+Bu+Dzd 3.2

y = Cx 3.3
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where X, y, u, w, and zd are the state, output, control input, setpoint and load

disturbance vectors. The A, B, D and C are the state, input , disturbance and output
matrices. The F and G are the controller matrices.

From the articles of Takamatsu & Kawachi (129), Shimizu & Matsubara (113, 114)
it could easily be presumed that the value of K* =1 is a suitable choice in the
relationship

G =B 'K 3.4

given in Chapter 2, Equation 2.49. In fact, Takamatsu and Kawachi (129) did not
introduce this K* term into the above relationship, implicitly assuming K* = I. This is
probably because they did not examine setpoint tracking, but their presentation suggests
that the choice of K* is not crucial to the controller performance. For load disturbance
rejection only, the precompensator, G, will not have any effect on the disturbance
rejection capabilities, since if the setpoint is constant the output from the compensator
will be zero. Shimizu and Matsubara (113) also assumed K* =1 to compute the
precompensator, but did not study the setpoint tracking case. There are no guidelines
available from these authors for choosing K*.

A problem addressed in this work is to examine the importance if K* to setpoint
tracking, and to establish how to choose its diagonal elements. In order to do this, the

setpoint tracking properties of the decoupling control scheme have been investigated.

3.3.2 The Kalman Filtering studies

Section 2.10 dealt with the EAFF control scheme developed by Daie (26) for the
dual composition control of a distillation column. They can also be applied to SISO or
MIMO systems where only measurements of secondary variables are available for
control, or where the measurements of the controlled variables are subject to very long
time delays and the control is required to be done at a faster sampling rate. Attempts by
Shaffii (115) to apply the method on-line were unsuccessful. The major obstacle to real
time application was the excessive computational load of the filter. He consequently

proposed the simplification of the extended Kalman filter that functions as the estimator

in the EAFF.




In this work a simplification of the filter is aimed at reducing the computational load

and execution times of the filter algorithm to acceptable levels so as enable real time
application of the EAFF scheme. A linear model of the column is used as the filter
model, as opposed to a comprehensive non-linear model of the column as used by Daie
(26) and Shaffii (115). The filter algorithm must perform satisfactorily for on-line
application to be feasible. Criteria such as stability of the estimates produced and the
stability of the filter itself must be satisfied for the real time application of the EAFF to be
feasible. Such evaluations are best done by simulation and by off-line analysis using real
process data. In this work, off-line analysis with experimental data were used to evaluate

the performance of the filter.

3.3.3 The Self Tuning Controller design method

The literature review discussed and highlighted that there is interest in the robustness
of control systems to model errors such as input uncertainties, instrument failure,
constraints in the manipulated variable and errors in model parameters. These impose
limitations on the performance of any control scheme. Many investigators have written
that the robustness of self tuning control algorithms is good, but reports of on-line
operation of these control systems under severe conditions of uncertainties are limited in
the literature. Thus, investigations in this work were aimed at demonstrating the

operation of self tuning controllers under such environment by suitable experiment.

The Parameter Correction (PC) method

As discussed in Section 2.9.8, Ossman and Kamen (94) suggested a method to
provide good parameter estimates of the adaptively controlled system in the absence of
persistent excitation. The method forces the parameter estimates into their admissible
ranges that are specified by the user. The implication is therefore that the proper ranges
of all the system parameters need to be known a priori. .

However, Ossman and Kamen suggested the method could be applicable in
e only the bounds of some of the parameters are known, but they noted

situations wher

that. in such cases, the stability of the system cannot be guaranteed for all the possible
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system parameters. The implication of this is that it may be possible to apply the method

to force only some of the parameters to their correct ranges and still retain good robust
controller performance. If this can be achieved, the advantage would be significant to
cases where the estimates of some key parameters are bad and cause poor controller

performance. In this work was, this possibility has been investigated.

3.4 Chapter Conclusion

This chapter has given, in more detail, the formulation of the goals of this work. The
major part of the remainder of this thesis describes the various work done in achieving
these goals. In the next chapter the pilot plant distillation column and interfacing with the

microcomputer is described.
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CHAPTER FOUR

The pilot plant distillation column and the interface to the S ystem96

microcomputer

4.1 Introduction

The experimental equipment used in this work is a pilot plant distillation column.
This column has been interfaced to a real time multitasking microcomputer called
System96 for the purpose of data acquisition and process control studies. The interface
box is a separate unit called the Monolog and it houses the analog to digital, signal
conditioning and digital to analog converter modules. The distillation column, its

Instrumentation and the computer are described in this chapter.

4.2 The pilot scale distillation column

The original distillation column was donated to the Department of Chemical
Engineering at the University of Aston by IBM UK Limited. It has been used in a
number of research projects including Daie (26) and Shaffii (115). A schematic diagram
of the arrangement used by these two workers is given in Figure 4.1.

The column is a 3 inch general purpose glass column with 10 sieve plates of which
the enriching section has 6 trays and the the stripping section has 4 trays. The
characteristic dimensions of a tray are shown on Table 4.1, and a schematic diagram of
it is shown on Figure 4.2. Each tray has a thermocouple well into which a
thermocouple can be placed in order to measure the temperature of the vapour above the
liquid held on the tray. Two cylindrical feed tanks each with a capacity of 30 litres are

situated at a height above the feed entry point into the column and two product tanks are

available for the top and bottoms products of the column.
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Figure 4.1 Schematic diagram of the distillation column
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d , is the tray diameter, d d is the downcome diameter

Figure 4.2 Schematic diagram of a sieve tray of the column

Table 4.1 Dimensions of a Tray, in metres (m)

Diameter of tray, d, 0.0762

Diameter of Downcomer, d d 0.0105

Tray thickness 0.0002

Diameter of perforations 0.00011

Number of perforations per tray 145 holes per tray
Weir height 0.0003

Tray spacing 0.08

Four 60W Stuart Turner centrifugal pumps are available for delivery of the feed into the
column, top and bottom products into the product tanks, delivery of the reflux back to
the column and the recycle of the product tanks back to the feed storage tanks to enable
continuous operation of the column. A 3 inch standard condenser is arranged to
condense the vapour from the top of the column into a 3 inch glass reflux drum
connected directly below it. This condenser-reflux drum arrangement is connected to
the top of the column by a 3 inch glass column called the vapour line. A heat exchanger
is available to cool down the bottoms product before it passes to the delivery pump and

the corresponding control valve.
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4.2.1 The operational problems of the original distillation column arrangement and the

modifications made in the design

The original arrangement of the column, as schematically shown in Figure 4.1, had
many operational problems which meant that it was difficult to obtain useful results.
These problems and their sources were discussed by Daie (26) and are summarised
below.

The reboiler arrangement consisted of a large spherical tank mounted on a 2.4 KW
double circuit isomantle heater as shown in Figure 4.3.

During operation of the column, the liquid holdup in this reboiler drum was usually
about 10 litres which was much larger than the totul liquid holdup on all the trays. This
meant that large quantities of liquid were held inside the column during operation. The
heater was also underpowered. Even at maximum setting this reboiler arrangement
could barely produce vapour boilup rate was quite low. It was therefore difficult to
perform reasonable dynamic and control studies on the column. The large reboiler
liquid holdup swamped the variations in the vapour temperatures on the trays,

particularly those in the stripping section, to changes in heat input.

Spherical Tank

2

10 Litres
Isomantle Heater

Figure 4.3 The reboiler drum on the isomantle heater

The piping around the column was made of 1/2 inch stainless steel pipes of 16 gauge
(SWG). This made transportation lags around the column significant as the column
required flow rates of about the range of 1 to 15 litres per hour for operation. Accurate
and reproducible flow measurements were difficult as orifice plate type flowmeters
were used; errors as large as 3.0 I/hr could occur. The flow control valves suffered

from electrical and mechanical faults. Furthermore, tray temperature measurements
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were not very accurate. Daie could only obtain them to the accuracy of 0.1°C, and even

then lengthy calibrations and modifications of the temperature measurement device were
necessary .

The vapour line was 2 metres long and was unlagged. This long vapour line, the
large reboiler liquid holdup and the underpowered heater, caused very little vapour to be
condensed in the reflux drum. The range of flow of reflux that could be used for control
was therefore limited. Gravity flow of reflux was also used and this added difficulties
in reflux flow measurement and control implementation.,

The consequence of all these was that no experimental studies on the control of the
distillation column could be done by both Daie (26) and Shaffii (115). The few open
loop feed flow step response tests that were managed by Daie were just adequate to be
used for dynamic model verifications.

Since it was the objective of this research work to apply advanced control schemes to
the distillation column it became necessary to improve on its design and
instrumentation. The following modifications were made;

1. New digital to pneumatic flow control valves were purchased to replace the old
ones

2. The vapour line from the top to the condenser was reduced to 1 m in length
and it was lagged in order to reduce the extra reflux condensing in the vapour
line

3.The reflux is pumped back into the column rather than allowing gravity flow.
The distillate line is also connected to the reflux line

4. Where appropriate, 1/4 inch 16 gauge stainless steel pipes were used for the
piping system around the column

5. Nickel- Chromium & Aluminium thermocouples with accuracy of up to 0.01
°C were used for temperature measurement

6. Low cost turbine flowmeters were used for liquid flow measurement

7. A new reboiler arrangement, a thermosyphon type arrangement, which uses a
firerod catridge heater for heating the liquid in the reboiler drum, was designed

by Fuller (182). The nominal holdup of the reboiler drum during operation of
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the column is about 1.5 litres. A diagram of the reboiler is shown in Figure

4.4. and Table 4.2 gives the dimensions of the parts. A diagram of the heater
1s shown in Figure 4.5.
A diagram of the new distillation column arrangement is shown in Figure 4.6 and

Table 4.3 gives the column dimensions. Plate 1 shows the actual column.
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Figure 4.4 The thermosyphon reboiler arrangement
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& Stainless Steel

Electric Cable

Figure 4.5 The firerod catridge heater
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Table 4.2 Dimensions of the thermosyphon reboiler parts

Material of construction is stainless steel

Part

A 380 mmlong pipe 31/4 " OD 10 SWG

B 440 mm long pipe 11/8 ' (** 2") OD 16 SWG

C 185 mm long pipe 1/4" (** 3/8 ") OD 16 SWG

D 150 mm long pipe 1/2" OD 16SWG

E 460 mm ling pipe 3/4 " (**5/8 ") OD 16 SWG

F 100mm long pipe 1/4" OD 16 SWG plugged at one end (thermocouple well)
G Flange 1/4 " thick plate 190 mm diameter

H  75mm long pipe 3/8 " OD 16SWG

Dp Differential pressure transducer

FR Firerod heater

GC Bottom end of Column

** Denotes the dimensions of the reboiler that was eventually used in this work

Table 4.3 Column Dimensions

Dimensions in metres, m

Column diameter (OD) 0.0762
Length of Enriching section 0.65
Length of Stripping section 0.55
Diameter of reflux drum 0.0762
Diameter of reboiler drum 0.0762
Length of vapour line 1.0
Number of trays in the enriching section 6 trays
Number of trays in the stripping section 4 trays
Product tank capacities 50 litres
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igure 4.6 - T C.
Figure 4.6 Schematic diagram of distillation column used in this work
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4.3 Instrumentation of the column

4.3.1 Flow measurement

The feed, reflux, distillate and bottoms flowrates required for the operation of the
column range from 1 to 15 l/hr. For accurate and precise measurement of these low
flowrates special turbine flowmeters were required. The cost of measuring all the flows
with such flowmeters was considerable. The turbine flowmeters that were used were of
simple design and much cheaper. They were supplied by RS Components Ltd. The
body and the rotor of the flowmeter are made of acetal rubber. The rotor of the meter is
fitted with 3 stainless shaft ceramic magnets. The metering principle is velocity
counting. The output of the flowmeter is electrical pulses of which the frequency is
linear to flowrate.

For compatibility with the data acquisition hardware, or more precisely, the analog
to digital (A/D) converter, the output frequency is converted to voltage in the range 0-5
volts by a frequency to voltage converter. The accessories for this converter were also
supplied by RS Components and was assembled in the departmental workshop. Figure
4.7 shows a simplified schematic diagram of the flowmeter.

The manufacturers specified that the reproductivity of of the flowmeter is about
+19% of the maximum flow which was specified as 100 I/hr. This meant that the
flowmeters were always operating at the lower end of the flow range were the precision
is very low, hence, high uncertainties in the flow measurements were more likely.
Furthermore, the flowmeters are appropriate for monitoring mild and noncorrosive
liquids such as water. The liquid mixture used in the column is a binary mixture of
trichloroethylene and tetrachloroethylene. The suppliers of the flowmeters provided a
chart showing the effects of various chemicals on the acetal rubber that the flowmeters
are made from. The chart showed that this material has limited resistunce to
trichloroethylene. For a Imm thick piece of acetal rubber completely immersed in the
liquid for 30 days at temperatures of 20-60 °C, trichlorethylene increased the weight by
9% and reduced the tensile strength by 30%. Thus, during preliminary experiments the

flowmeters were found to have a short operating life sometimes as short as eight 1 hr
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experiments. The operating life of a flowmeter was even shorter when it was used to

monitor the reflux, bottoms and distillate flows, since these streams were warm.

Liquid Flow b o o b

O

Magnetic Shafts

Frequency to
Voltage
Converter

Monlo
A/D Board — £

Figure 4.7 Schematic of the turbine flowmeter used on the Column

The small internal area of the meter meant that liquid flow through it was easily blocked

by small dirt that entered the piping system around the column.

4.3.2 The control valves

The new control valves for automatic control of flowrates are miniature air-operated
valves supplied by Platon Flowbits Limited. The valves are suitable for automatic
control of liguids, gases and steam in 1/4" and 1/2" pipes. Each control valve has an
associated unit which is a digital to pneumatic converter as shown on Plate 2. These

converters accept 8 or 10 bit binary numbers to produce a proportional output in




pressure ranges of up to 120 psi (8 bar). The low pressure version of the converters
using a range of 15 psi (1 bar) was used in this work.

The converters are actually current to pneumatic converters with the current range of
4 - 20 mA. It was thus necessary to construct digital to current converters for each, to
enable the direct manipulation of the valves by the computer. These digital to current
converters are 8 bit converters as the data line from the interface box to the digital to
current converters is an 8 bit parallel line which is called the versatile interface adapter

(VIA). A schematic of the interface from computer to control valve is depicted in Figure

4.8.

8 bit
8bit VIA Buffer
( From Monolog) —
Computer control 8 bit 20 mA
Digital/Analog Volis [\4 elm Control
® - l/ valve
- Manual controp ) Volt/Curent
) converter
8 bit C tto P i
Thumblewheel edge 8 bit urrent to Fneumatic
. | converter
switch Buffer
Hex to Binary

Figure 4.8 Circuit description of the interface between the control valve and the

computer

The valves can be manipulated by sending a digital signal, integer number in the
range 0 - 255, from the computer to the digital to current converter which converts the
signal to a current in the range 4-20mA. This current is converted to pressure signal in
the range of 3-15 psig to adjust the valve stem position accordingly. The valves can also
be operated manually by depressing a switch for each valve on the panel shown on
Plate 3.

The valves require an air supply of 20 psig to operate satisfactorily. The
departmental compressed air supply is at a much higher pressure so that a pressure

regulator is installed to reduced the pressure to 20 psig for the operation of the valves.
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Each of the centrifugal pumps could deliver in excess of 140 l/hr of liquid across
nominal heads of 2 to 3 meters. As the required flowrates for column operation are
much lower than this, by-passes had to be made around each pump as shown
schematically in Figure 4.6. This was done in order to prevent buildup of pressure in

the upstream side of the valve and to reduced mechanical strain on the pump.

4.3.3 Valve calibration results

Benchmark calibration of the control valves on installation the experimental column
was performed. The calibrations were done in two ways; 1) by the bucket and stop-
watch method were the time required to deliver 2 litres of liquid was measured, and 2)
by the turbine flow meters. The by-passes of the respective pumps where made fully
open during calibrations. The calibrations were done with water at room temperature
and the with 50/50 % w/w trichloroethylene/ tetrachloroethylene (T/T) mixture. The
results could then be correlated with fractional opening of the valve using the least
squares fit method given in Adby and Dempster (167). However, standard programs
that correlate data were available on the graphical package used to draw the graphs.

Figures 4.9a to 4.9f shows typical plots of flow with fractional valve openings for

each control valve.
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Distillate valve y=7.4576 + 18.141x R =0.9596

B Dist Water

Flowrate Vhr

1 ¥ H o i v

0.0 0.2 0.4 0.6 0.8 1.0
Fractional Opening

(a) Water at room temperature, flowmeter readings

Feedvalve  _ 34640+ 19.571x R =0.9935

30

Flowrate l/hr

0.0 0.2 0.4 0.6 0.8 1.0
Fractional Opening

(b) Water at room temperature, flowmeter readings
( R= correlation coefficient, x= fractional opening)

Figure 4.9 a) and b) Control valve characteristics
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Bottoms product valve y= -29774 +28.138x R =0.9989
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(c) Water at room temperature, flowmeter readings

Reflux Valve y = -2.9408 + 32.90408x R=1.00 (@)
= -4.0328 + 33.604x R=1.00 (*)
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0.0 0.2 0.4 0.6 0.8 1.0
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BS Ref water
FM Ref Water

(d) Water at room temperature, BS- Bucket and Stop watch method,

FM - flowmeter readings ( R= correlation coefficient, x= fractional opening)

Figure 4.9 ¢) and d) Control valve characteristics (Continued)
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(e) Trichloroethylene and Tetrachloroethylene (T/T) at room temperature
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(f) Trichloroethylene

and Tetrachloroethylene at about 50 °C

( R= correlation coefficient, x= fractional opening)

Figure 4.9 e) and f) Control valve characteristics
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4.3 4 The thermosyphon reboiler arrangements and operation of the heater

A stainless steel thermosyphon reboiler arrangement which uses a 1/2 inch diameter
8 inches long 2.0 KW firerod heater was designed by Fuller (182). The schematic is on
Figure 4. 4. The firerod heater (Figure 4.5) is located inside the tube E of the heated
arm B. The liquid that is heated up is in the annular space between E and B. The
vapour rises and exits through the pipe D into the column. The liquid level must be
maintained above X to ensure the heated portion of tube E is always immersed in
liquid. The liquid level must also be maintained below Y to prevent blockage the entry
of vapour into the column. During column operation, the nominal liquid holdup
capacity is about 1.5 litres, and only the maximum of about 0.5 litres of this holdup is
heated up in the annular space in the heated arm.

Special electrical accessories such as a transformer, a solid state switch and a digital
control timer were needed to operate the firerod heater manually and by computer
signals. The heater operates in cycles with periods of Th seconds; where Th is 4
seconds. At full value of computer signal, which is 255, the voltage supply to the heater
will be on for the full Th seconds. It instantaneously switches off and on to start
another period of length Th ; this operation is carried out by the digital control timer and
the solid state switch. The voltage supply to the heater is on for a period of time which
is proportional to the computer signal ( integer signal 0 - 255). A schematic of the

operation is depicted below for computer signal 128.

dKW| off | 2KW| off | 2KW| off | 2KW] off | 2KW| off

0 Th 2Th 3Th 4Th 5Th

Figure 4.10 Diagram representing how the heater works
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Figure 4.11 Circuit description of the interface of a control valve to the computer

The new reboiler arrangement significantly changed the dynamic behaviour of the
column, particularly to heat input changes, compared to the old arrangement shown in
Figure 4.2 . As the heated liquid is only a small proportion of the total liquid holdup
and the vapour enters directly into the column, the effects of changes in heat input on
the tray temperatures were much greater and felt more quickly .

The thermosyphon reboiler arrangement still posed some problems. The first
problem encountered was with the original design made by Fuller (182). It was found
that the heated arm of the reboiler, B, was easily starved of liquid because the pipe C,
see Figure 4.4, was of small inside diameter (1/4 inch OD 16 SWQG). In fact, heater
"burn out” resulted and when this happened the heater becomes grossly underpowered
or completely loses power. This made it necessary to replace C with a pipe of 3/8 inch
OD 16SWG pipe to ensure B is never starved of liquid.

Secondly, the firerod heater required a tight fit with the tube E to reduce the risk of
burn outs. This tight fit could not be guaranteed due to expansion and contraction
resulting from cooling and heating of the annular tube E and the heater body itself. In
fact, on the first occasion after a burnt out occurred, the heater had to be forced out of
the tube E to allow a new one to be inserted. It was then decided to replace the heated
arm of the reboiler with a new one of the same design but different dimensions. The

modified design has E with 5/8 inch OD 16SWG pipe and B of 2 inch OD 16 SWG
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pipe. With all these minor modifications the operation of the reboiler became more
reliable.

With the reboiler arrangement installed, the actual heat supplied to the liquid in the
reboiler was required, since for control and model verification purposes reasonably
accurate knowledge of the actual heat into the column is needed. It became necessary to
calibrate the heat input with the computer signal on installation, similar to the
calibrations of flowrate with fractional valve opening. The method of calibration used
was to measure the time taken for a known mass of the liquid (pure trichloroethylene or
tetrachloroethylene) in the heated arm of the reboiler to reach boiling point from a
known initial temperature. A thermocouple located in the well denoted F on Figure 4.
gave the temperature of the vapour coming out of the heated arm. These were logged by
the computer and stored in floppy disks. There where several disadvantages to this
method. In the first place the shortest sampling interval that could be used was 10
seconds, as the data logging program required 6 seconds to retrieve data and the other 4
seconds was allowed for purposes of data logging. This meant that errors of up to 10
seconds could be in the measured time, particularly since it was necessary to wait for at
least one sample interval to ensure the vapour temperature is reasonably constant. Since
the amount of liquid heated up is small, boiling was usually reached within two
sampling periods such that an error of even one second in the measurement time is
significant. A typical example for Trichloroethylene (MVC) is shown in Table 4.4

It was decided to assume that the heat input is proportional to the computer signal
and thus linear to the fraction of the period Th that the heater is on. The validity of the
linearity assumption was checked in the model of the distillation column. This
assumption of linearity is a very rough approximation for many reasons including the
following; (1) the expansion contraction of the heater body, (2) cooling of the heater
during the off-periods, (3) the fact of the tight fit between the heater body and the inside
of the annulus it is placed and (4) heat losses and heat transfer from the heater into the

tube. Thus, means should be sought for better calibration of the heater.
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Table 4.4 Results of heater calibrations.

Inteiger signal  Mass of Liquid (g) Temperature rise Sample intervals

0-255 MVC) (£%5) (£ (10 seconds per
sample)

64 304 66 5

128 304 65 3

192 304 66 2

255m 304 64 2

4.3.5 Temperature measurement

Nickel-Chromium Aluminium thermocouples were used for temperature
measurement. They were supplied by RS Components Ltd. No calibrations were
necessary as they can be connected directly to the signal conditioners that precede the
A/D converters and provide the measurements in the units required by the user.

Accuracy of 0.01 °C were obtained in the temperature measurements.

4.3.6 Liquid level measurement

Two air differential pressure transducers were used to monitor the liquid level in the
reboiler and reflux drums. The transducer measures the pressure difference between
two points on the vertically mounted drums. This pressure difference is proportional to
the liquid level in the drum. Each output of the transducer is a voltage which is further
converted by the A/D converter for compatibility with the computer. The relationship
between the voltage reading and the level is linear. The range of voltage readings is 0-5

volts for 0-20 inches of water (gauge pressure). This is equivalent to 0-13.3 inches of

T/T mixture assuming relative density of 1.5.
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4.4 The System96 microcomputer

The computer used in this work for real-time process control studies is a System96
Level II microcomputer from Measurement Systems Limited. It is a 6809 8 bit
microprocessor based computer with dual disk drives, and it operates at the speed of 2
Mhz. The System96 supports a real-time multitasking operating system called OS9.
OS89 is modeled after the UNIX operating system of Bell Laboratories. At present the
the computer has the random access memory (RAM) capacity of 256K expandable in
units of 128K. The disks drives use double sided double density 5 1/2 inch floppy
disks with memory capacity of 720K.

Since OS9 is multitasking, several programs, or tasks, can be run concurrently, but
the memory requirements of each task has a limit of 64K. One important feature of OS9
is that software, both user written and system software, is re-entrant and position
independent. This means that only one copy of all the necessary modules needs to be in
the computer memory at one time, although there may be more than one user, or
program, accessing any of the modules. This reduces the overall memory requirements
of software.

The central processing unit (CPU) of the computer is interrupted by a hardware real
time clock which generates interrupts at regular intervals of about 10 per second; this
time unit is called a tick. At the occurrence of a tick of the real time clock, the OS89 can
suspend the execution of a program and start the execution of another. Programs can be
assigned priority and the time slice that a program gets depends on its assigned relative
priority to other processes and events occurring in the system. The processes can be
classified into three categories :

a) Active processes are those which have useful useful work to do and each is
allocated CPU time ( time slice)
b) Waiting processes are suspended pending the occurrence of some event
¢) Sleeping processes are suspended by a self request for specific time interval.
Waiting and sleeping processes are not allocated CPU time until they are activated by

some signal or event.
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The command interpreter of the computer is called the Shell. The Shell is not part of
OS89, but is the interface between the user and the "kernel” of the computer. The Shell
has optional facilities to modify program execution. These facilities include input and
output redirection, sequential and concurrent execution and "pipes". Pipes are
connections between two programs. The standard output of one is the connected to the
standard input of the other, rather than to files or input/output devices. These "pipes"
can be used to transfer data from process to process in one direction only. This is from
the source, which sends the data, to the sink which receives the data. The transfer of
data is synchronised so that the output of the source never gets ahead of the input of
the sink. This can result in delays, for example, if source does not send data as fast as
the sink requires the data for its operations. When delay of 20 seconds or more occur

then programming error corresponding to no input data results.

4.4.1 The Unified Input / Qutput system of the System96

The unified input/output (I/O) system means that all devices (visual display unit,
printer, disk drives etc.) connected to System96 are regarded as files, so that hardware
dependencies are eliminated using software routines. The structural organisation of I/0
related systems on the System96 is shown schematically on Figure 4.12.

The input output manager (IOMAN) module provides the first level of service for
the I/O system calls by routing data on I/O paths from processes to or from the
appropriate managers or device drivers such as the asynchronous interface adapter
(ACIA), parallel interface adapter (PIA) and the disk driver.

The function of a file manager is to process data stream to or from device drivers for
similar class of device. The two file managers in the system are the random block file
manager (RBEMAN) and the sequential character file manager (SCFMAN) and both are
re-entrant program modules. The RBFMAN operates random access block structured
devices such as the disk system. The SCFMAN operates single character oriented
devices such as the visual display unit and printers.

The device driver modules (PIA, ACIA, Disk Drivers, SLAVE) are subroutine

packages that perform basic low-level input and output data transfer to or from a
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specific type of device hardware controller. The modules are re-entrant. The device

descriptor modules (DO, D1, T1, T2, /MQO) are small non-executable modules which

provide information that associates a specific 1/O device with its logical name, hardware

controller addresses, device driver name, file managers and initialisation parameters. An

example of a device descriptor module is given in Appendix A7.

The unified 1/O structure of System96 offers several advantages :

1) Programs run correctly regardless of the I/O device used when the program is

executed

2) Inputs and outputs can be redirected to alternate files and devices at run time.

3) The same system calls used for physical I/O functions can be used for

interprocess communications.

Input Output Manager

(IOMAN)

Random Block Fil
Manager

(RBFMAN)

€

v

Disk Driver

|

DO

Dl

Device Descriptors

l

Sequential Character
File Manager
(SCFMAN)
ACIA _
Driver SLAVE PIA
TO T1 /MO

Device Descriptors

Figure 4.12 Structural organisation of Input / Output related modules of the System96
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+4.4.2 The Basic09 programming language
The System96 supports a high level programming language called Basic09 which is
claimed by the the manual (29) to have strong resemblance to Pascal. Important features

of Basic09 include;

1

(R

2

9.
10. Error trapping is efficient
Unlike the original Basic, Basic09 does not have the facility for specifying global
variables. Unlike Fortran77; Basic09 does not have the facility of common blocks
systemn of variables. Also array sizes of arguments must be explicitly specified and
cannot be changed during execution. For fuller details about the System96 and Basic09
consult the user manual (29).
The Plot10 graphics package (28) has been converted to Basic09 from Fortran 1V in

the Department of Chemical Engineering at the University of Aston in Birminghan.

4.5 The interface of the Distillation Column and the System96
To acquire real process data and control the column by computer control, a data
acquisition unit called a Monolog was installed fo interface the column and the

System96. The Monolog provides the host computer, System 96, with analogue and

. Procedure, or subroutine, calls by names and parameters. The subroutines can

. Optional line numbers

. Dara types include bytes, integers, real, boolean, strings as well as complex

. One, two and three dimensional arrays

. The "Pack" command produces shorter and more efficient programs

. Access to the any capability of OS9 using the Shell command

. Programs written in assembler language can be accessed from any Basic09

have local variables.

data types which are combinations of the former types

Control structures such as If.. then..Else; For...Next; Repeat..Until;

Loop...Endloop; Do..Until;

program

Recursive programs can be executed; that is a program can repeatedly call itself
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digital input/output facilities. The Monolog is a separate processing unit as shown on

Plate 3. It houses the Analog to digital (A/D) converters, Digital to Analog (D/A)

converters, signal conditioners, and digital input/output cards. It is driven entirely by

the host computer and can be remotely located from both the host computer and the

distillation column. The host computer sends commands to the Monolog to set or read

analog or digital signals. The communication is conducted in decimal ASCII characters

which can be processed by any general purpose computer.

More than one Monolog can be connected to the System96. This facilitates the use of

System96 for hierarchical and supervisory control of several processes remotely located

from each other and from the System 96.

At present, the Monolog unit consists of the following;

1.

One 1010E A/D converter card which can handle up to 256 input channels

with 12 or 16 bit resolution;

. Two 1020E signal conditioning cards, each with a capability of handling 8

input channels with the aid of in-built multiplexers. More A/D channels can be

used by adding extra signal conditioning cards.

. One RMI000E single board computer (SBC) card which has a 16K

programmable read only memory (PROM) in which the Monolog program
resides. The board also has a 2K read/write memory (RAM), one 8 bit digital

input port and one 8 bit digital output port

. One digital input /output board, which is a general purpose input/output card

called RM5223 General Purpose Interface (GPIF) parallel interface board.
This card has prefixed addresses so that it can be configured as either an input
or output card according to the user requirements. Upto 15 digital input/output

ports can be supported by adding extra GPIF boards.

_One RS232 interface board called RM5451 board, through which the Monolog

is connected to the System96. This board is software initialised and the

standard baud rate fixed as 300 characters per second in the PROM of the SBC

The Monolog is connected to the control valves and the heater of the column by a 8

bit parallel interface, VIA, from the GPIF board through the respective logic unit cards
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that activate the control valves and the heater. These cards are housed inside the panel
next to the column as shown in Plate 3, and a schematic diagram of the cards have been
given in Figures 4.8 and 4.11 for the valves and heater respectively. Switches to
manually activate the valves and the heater are placed on this panel as well.

In this work, the Monolog box was located on this panel which was two floors
down from the host computer. It was necessary to locate the Monolog unit closer to the
column since the connection of the column and the Monolog is a parallel line (VIA).
Data transfer through parallel lines becomes less efficient as the distance the data has to
travel increase. This is less of a problem in serial interfaces so that the System96 was
located remotely from the column.

The functions that can be executed by Monolog include a) read and report analog
channels once or continuously, b) halt the reading of analog channels, c) read digital
port, d) set digital port and analog port, e) set data format and f) set up alarm reporting.
These functions are initiated by commands in the software package in System96. If all
256 analog channels are in use, they are scanned sequentially from 1 to 256, or from 32
to 256 and then from 1 to 31

A variety of sensors can be connected to the signal conditioning cards and the
readings converted into engineering units, depending on the choice of the user, and
reported to the host computer. The engineering units that can be obtained include
temperature in degrees centigrade, dc¢ voltage, resistance in micro-ohms, strain gauge
full bridge in micro strain and dc current in microamps. Thermocouples can be
connected directly to the signal conditioners and several types including Ni-CrAL and
platinum resistance thermocouples can be used. Fuller details on the functions of the

Monolog are given in Appendix Al.2.

4.5.1 The Data Acquisition Software
The acquisition of data and the implementation of control action is done with the aid
of software provided by the suppliers of the System96 and Monolog. This software

package is resident in System96. The package consists of a user interface routine called
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Master, a device driver called Slave and an OS9 format device descriptor table called

/MO. The Slave and /MO have been introduced in Section 4.41 and in Figure 4.12.

The Slave routine handles the physical link into the Monolog and all the line
protocols necessary to perform functions such as (1) opening and closing physical link
to the Monolog, send commands to set up the Monolog and receive data from the
Monolog. The device descriptor table /MO corresponds to the RS232 port on the
System96 to which the Monolog is connected. The programs are re-entrant and
position independent which means they can be used by more than one Monolog
operating independently. Each Monolog must have its own RS232 port on the
System96.

The Master program is the link between the user and the Monolog. The user can
retrieve process data and send control actions to the column by specifying the
appropriate functions as parameters to the Master program. The user is notified of any
errors that occur during communication with the experimental column as well as give
details of the status of the Monolog, so that Master is also the primary means by which
the user can interact with the Monolog itself. Fuller details on the various functions of

the Monolog as well as how to use the Master are provided in Appendix A1.2

Since Master was designed to form the sole means of communication of the
System96 with the "outside world" program developments for on-line application of
control were required to be done only in Basic09. The user written programs centre
around the Master program.

Separate Master calls are needed to acquire data which have different engineering
units. Therefore, it is convenient to group like channels to nearby channel numbers; that
is, those analog channels with the same engineering units should be grouped together to
minimise the number of calls to Master, since the channels are scanned in one direction
only, as mentioned earlier. At present, 16 analog input channels are in use as given in
Table 4.5, so that only two signal conditioners are housed in the Monolog box. The

channels 1 to 8 are used for temperature measurements; channels 9 to 16 are configured
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for voltage readings. Therefore, only two separate calls of Master were needed each

time process data was required.

The digital outputs are sent to the control valves and the firerod heater through two
GPIF boards each configured as output boards. Two output ports on the GPIF were
used for sending these signals. Port 7 carries a signal that is used to select the
instrument to be activated, as given in Table 5.5. Port 6 carries the digital signal
corresponding to the control signal. An example subprogram that performs this function

is Valve-Out, and a listing is given in Appendix A7.

4.5.2 Program timing for real-time applications

During real-time experiments measurements and control actions are acquired at
discrete times. A mechanism that ensure that these actions are done at the correct times
must be built into the data acquisition software. This is achieved using the real-time
clock of the computer. For the Monolog, it is specified in the user manual the the delay
between readings can be set by the user. This refers, however, to the delay between
each analog to digital conversion cycle and the maximum delay possible is much less
than one second. This means that measurement and control time intervals of 10 to 30
seconds (required for the monitoring and control of the column) cannot be set in the
Master program. The Delay function in BasicO9 can fulfil this requirement by
temporarily suspending the System96 program execution. However, in this work the
function of a timer is achieved in a different way without the use of the Delay function.
Two small Basic09 routines were written. One is called Real-time, which has the
function of getting the "real time" from the real time clock. The other routine is called
Delta-t, which continuously compares the time of the previous sampling interval with
the present one until the time difference is exactly the specified sampling interval. The
measurements are then taken and control action is effected. Any sampling interval

greater than 1 second can be selected. These two programs are in Appendix A7 and

there computational overheads are very small.
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4.6 Process operation

During preliminary operation of the column it was found that the delivery of the
distillate and the bottoms rate were inconsistent. This, combined with the very small
distillate and bottoms offtake rates, which were between O - 4 litres per hour, meant that
reliable flow measurements could not be obtained. In the case of the bottoms,
considerable back pressure was always present and this caused the inconsistencies. All
these were major obstacles to the effective control of the reboiler and reflux drum liquid
level. As a consequence some compromise had to be reached. The distilliate flow control
valve was usually set to an opening to deliver approximately 3 - 4 I/hr of distillate flow.
This meant that the reflux level was allowed to vary according to the amount of vapour
condensed in, and liquid removed as reflux from, the reflux drum. The level could vary
between 1 and 30cm in the reflux drum before liquid can overflow back on to the
column. The control of the liquid Ievel in the reboiler drum is more important since, as
explained earlier, the liquid level must be kept between level X and Level Y as shown
on Figure 4.3. It was decided to employ two position control for reboiler level control
between a range of 8cm, with 6 cm safe range above level X.

A significant number of experiments were done to gain experience of the operation
of the column, particularly as many improvisations were made. The inconsistencies in
the distillate and bottoms flows and the problems of reflux flowmeter failures made the
reproduction of experiments difficult; this was one motivating factor in developing a
good mathematical model of the column. The duration of experiments were limited to
the maximum of 1 hour, as experience showed that this prolongs the operating life of

the firerod heater and reduces strain on the pumps.

4.7 Chapter conclusion
This chapter has described the experimental equipment and its interfacing with the
distillation column. Some operational problems of the column have been discussed. The

next step is the modelling of the column and testing with experimental data.
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Table 4.5 Typical set of measurements taken during on-line applications

| Analog;r Inputs
Channel number Measurement
1 Reflux temperature Tlr
2 Top tray temperature T
3 Second tray temperature T,
4 Feed temperature Tf
5 Feed tray temperature T
6 Ninth tray temperature T
7 Bottom tray temperature Tio
8 Reboiler drum temperature T}, (F in figure 4.3 )
9 Not used (millivolts)
10 Reflux drum level pressure transducer (millivolts)
11 Reboiler drum level pressure transducer (millivolts)
12 Bottoms flow turbine flow meter (millivolts)
13 Feed flow turbine flow meter (millivolts)
14 Distillate flow turbine flow meter (millivolts)
15 Reflux flow turbine flow meter (millivolts)
13 Not used (millivolts)
Digital Outputs
Output Port Number = 6
Unit Number Equipment
(Sent through Port 7)
1 Bottoms product control valve
2 Distillate product control valve
3 Feed flow control valve
4 Reflux flow control valve
5 Firerod heater
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CHAPTER FIVE

Mathematical modelling of the distillation column and model verification

5.1 Introduction

Mathematical modelling of the process to be controlled is important to the design
and analysis of the control systems. Many subsequent decisions can be based on
results derived from mathematical models of the system such as the type of control
system to use and modifications that may need to be made on the system design.
Control systems design implies work with dynamic systems and the first major task
will be to build a mathematical model that approximates the dynamic behaviour of the
system. The degree to which the model behaviour represents the real system will
depend strongly on the validity of the assumptions made in deriving the model. The
experience and judgement in constructing the model are therefore important to
adequately describe the dynamics of the system. The intended use of the model will
influence the required complexity and the assumptions made in deriving it. For
instance, a model that is required for the design of a conventional feedback control
system is may not need to be as complicated as a model that is required for system
optimisation, where optimum operating points of the system are required, and the
detail testing of the performance of various control systems. For each model a
suitable solution method must be found.

For control system design and analysis and the simulation of fairly complex
processes like distillation, a good mathematical model is necessary that will be valid
over a wide range of operating conditions of the process. Given a suitable solution
method such a model can then be used to study the dynamic characteristics for
various load disturbances at various operating points by computer simulation,
Different control configurations and alternative coiitrol systems can be analysed for all
the possible setpoint demands and load disturbances that could possibly affect the real

system. It is thus possible to greatly reduce th number of pilot plant experiments
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necessary to verify the operation of the full scale plant. Potentially, a significant
reduction of commissioning costs can be obtained. This makes the time and money
spent on mathematical modelling worthwhile.

Chemical systems are generally quite difficult to model adequately, because in
operations several complex phenomena are taking place simultaneously and the
process parameters can change significantly. Also many chemical processes such as
chemical reactions are not well understood. Therefore there are usually significant
errors between a model and the process it represents. Examples of typical
phenomena common to chemical systems are heat and mass transfer, chemical
reactions, mass transport, density changes and phase changes. Mathematical and
empirical relationships describing these phenomena are not always available and, if

available, they are sometimes associated with error.

5.1.1 Modelling of tray distillation columns

The steady state and dynamic modelling of a tray distillation process involves the
description of mass and energy transfers occurring on an individual tray and stepping
this up from a single tray to a column with a number of similar trays. Typically the
equations describe mass and energy balances, equilibrium relationships, efficiency of
separation and component summation; this is possible case for packed columns and
absorption columns as well. A comprehensive steady state model of a typical
distillation column model comprises of nonlinear algebraic equations (AE’s) while a
comprehensive dynamic model comprises of nonlinear differential and algebraic
equations (DAE’s); this is the case for all separation processes as well (Holland and
Liapis (48)). In the dynamic case, the common approach is to use lumped differential
equations in order to avoid having to solve partial differential equations. The usual
assumptions made in deriving the model relate to the tray hydraulics, vapour hold up
dynamics, equilibrium relationships and efficiency. These assumptions would depend
mainly on the particular column, its size, the mixture to be distilled and the intended

application of the model. Sufficient computing power must be available to perform

the calculations.
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In present times sufficient knowledge about the physical nature of distillation is
available to enable the development of adequate mathematical models of the process
(Daie (26)). Many workers have successfully developed dynamic models for
conventional tray distillation columns which are in reasonably good agreement with
the actual columns they describe. Such studies include Gunn et al. (36), Stathaki et
al. (112), Cairns and Furzer (135), Kumar et al. (61) and Kisakurek (62). Numerous
work on the steady state and dynamic modelling for studying steady state and
dynamic behaviour of distillation systems have also been carried out. These include
the works of Kinoshita et al. (45,46) and Takamatsu and Kinoshita (128) on steady
state modelling; and Rosenbrock (106), Brierly (16), Yue and Billing (138), Schuil
and Bool (127), Ranzi et al. (107), Furzer (32), Ohmura et al. (93) and Wahl and
Harriot (134) on dynamic modelling.

In the dynamic modelling of process systems, selecting an appropriate solution
procedure to solve the DAEs is important. This is particularly true if non-linearities
are pronounced and if the differential equations contain time constants which differ by
orders of magnitude; that is, the differential equations are stiff. Stiff differential
equations frequently arise in dynamic models of distillation columns since in most
tray distillation columns the dynamic response of the liquid composition on a tray is
usually much slower than the dynamic responses of the vapour holdups, liquid
holdups and the pressure inside the column. The implication of this is that the
integration interval must be chosen based on the differential equation with the smullest
time constant. Stability and convergence problems are likely to arise during solution
of the equations if the integration interval and solution method are not carefully
selected. Solution methods such as the Gears method (Gallun and Holland (37),
Holland and Liapis (48)), are available which deal with stiff differential equations and
where the integration interval can be adjusted automatically. Ogbonda (181) gives a
comprehensive review of such solution procedures. Sensitivity analysis of the DAEs

and AEs (Leis and Kramer (120)) of the system can be carried out to aid in the

selection of the solution procedure.
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The detailed dynamic modelling of distillation columns generally results in a large
set of DAEs. Large sets of equations can be difficult to handle and require significant
computing power for their solution. Model order reduction techniques can be useful
in alleviating such problems in that they can reduce the number of equations of the
model to more manageable forms. An example of such techniques is the model order
reduction procedure proposed by Cho and Joseph (17, 18, 19). They have shown
that it is possible to reduce the number of DAEs that describe a distillation column by
a factor of 4 and still retain reasonable accuracy .

The recent advances made in computer technology have made available computers
with high computing power and large memory storage capabilities at reasonable low
costs. The computing power required to solve large sets of equations is no longer a
major limitation to developing comprehensive models. In recent times some general
purpose dynamic simulation software packages for solving DAE’s and AE’s have
been developed. Examples of such packages are ACES (Kocak (183)) and DASP
(Ogbonda (181)). Shacham (125) presents a variety of software that is available for
solving nonlinear algebraic equations of the types which arise in models of chemical
engineering systems. As regards DASP, the package is resident and operational on an

IBM PC AT.

5.1.2 Modelling requirements for this work

To evaluate different controller designs for a particular objective it is advantageous
for the evaluations for all the different controllers be done under the same set of
disturbances, load and setpoint changes. It is usually not possible to reproduce
operating conditions exactly and consistently on the real systems as, for example, the
surroundings temperatures and the nature of disturbances may change. Simulations
are thus very useful in this respect as operating conditions can be reproduced exactly.
Thus given a suitable model the screening of the controller designs can be performed.

In this work, the need for a model which can be used as a substitute of the actual
distillation column became more important as the operational problems on the column

began to emerge. These problems were reported in Chapter 4 to make obtaining
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steady state operating conditions consistently so that evaluations as those mention in
the previous paragraph could be carried out on the experimental column.

For the purpose of this research work, three types of models have been derived for
the experimental binary distillation column described in the previous chapter. They
are:

(1) a non-linear steady state model
(i1) a non-linear dynamic model, and
(iii) a linearised state variable dynamic model.

The models (i) and (ii) are based on mass and energy transfer, vapour liquid
equilibrium and component summation relationships which result in AEs and in
DAEs in the dynamic case. The linearised state variable model is obtained by
linearising of the non-linear dynamic model about a steady state.

The non-linear dynamic model was required for studying of the dynamic
behaviour of the column and to perform detailed assessment of the performance of
control schemes prior to experimental applications. The primary requirement of this
dynamic model was therefore to adequately predict the direction and magnitude of the
responses of the variables of the column to input changes. The steady state model
was required to aid the selection of operating points and to provide good initial values
for the dynamic model. The linearised state variable dynamic model was required for )
off-line Kalman filtering exercises and the design of multivariable control schemes

based on the state variable description of the column.

5.2 The steady state model

As mentioned earlier a steady state model was required to provide good initial
values for the dynamic model and aid the selection of operating points. In binary
distillation column simulation, short cut methods such as the McCabe and Theile
method (Coulson et al. (189) and Treybal (53)) can give approximate initial values
which can be used to initialise the dynamic model. The dynamic simulator is then
allowed to reach steady state, thus refining the approximate values and give a steady

state operating point. This approach was used successfully by Daie (26). It is a crude
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method, but it avoids developing a good steady state model. It may be difficult to find

good initial estimates for highly non linear distillation systems and multicomponent

distillation systems, so that developing a steady state model cannot be avoided.

In order to avoid using a dynamic model to refine approximate initial values, a
steady state model which is more accurate than the McCabe and Theile method was
needed. The literature was searched to find a suitable algorithm for distillation
systems which will require moderate programming requirements, easy to understand
and use.

A suitable method is the steady state simulation procedure proposed by Kinoshita
et al. (45) for multicomponent distillation problems processing non-ideal or
chemically reactive solutions. The method is bascd on the use of the Newton-
Raphson iterative procedure in the main calculation loop and the specification of a
unique set of functions to be zeroed. Global material and energy balance equations
are employed to solve for the internal liquid and vapour flowrates and the liquid mole
fractions on the trays are chosen as the independent variables.

Kinoshita et al. carried out case studies which showed that the stability properties
of the algorithm were high and showed a high speed of convergence. They also
showed that wild initial estimates of the liquid mole fraction could be tolerated. This
is considered a good feature by Takamatsu and Kinoshita (128) because good initiul
estimates are usually difficult to find for steady state simulation of multicomponent
distillation systems processing a non ideal mixture. Kinoshita et al. showed that the
heat balances around the column can be readily incorporated into the algorithm; the
simulation could be performed with or without incorporating heat balances. They also
showed that regardless of incorporation heat balances, non ideality and chemical
reactions, the independent variables are always liquid mole fractions.

The algorithm has been used successfully to solve a wide variety of systems.
Kinoshita et al. (46) applied the method to simulate multicomponent distillation
columns with three phases and with partially immiscible liquids. Takamatsu and
Kawachi (128)) extended the algorithm to cases were the specifications of Murphree

vapour efficiencies are taken into account. They confirmed that introducing tray
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efficiencies, the algorithm still retained the high convergence rate and stability using
the liquid mole fractions as the independent variables.

In this research work, the al gorithm referred to above was employed for the steady
state simulation of the distillation column. Although the algorithm was developed to
solve multicomponent system, the algorithm could be formulated to solve a binary
system. This was done in this work. The following assumptions were made in the
derivation of the model;

(1) total condenser

(ii) no heat of mixing; that liquid and vapour have the same temperature;

(iii) the reboiler is considered as an equilibrium stage.

(iv) the trays are assumed to be 90% efficient in separation

(v) the liquid on the trays and in the reboiler and reflux drums are well mixed.
(vi) no entrainment of liquid by the vapour leaving a tray;

(vil) column is adiabatic .

(viii) no pressure drop across the column

The steady state equations formulated for the binary distillation are given below.
Figure 5.1 shows a schematic diagram of the column as used for the steady state
modelling. Figures 5.2a to 5.2c show the balances on the trays, the reflux and
reboiler drums respectively.

The assumption of 90% efficiency on all trays was arrived at on the basis of the
simulation results of Daie (26). Daie wrote a package for predicting Murphree vapour
efficiencies of the trays based on the well established A.I.C.H.E methods for
predicting efficiencies of columns. The method used by Daie required the prediction
of a wide spectrum of the physical properties of the liquid system such as the critical
properties and the vapour and liquid diffusivity. The resulting computer program
greatly increased the computational load of the dynamic simulation package as
program size was of the order of the dynamic simulator program as well. It was
found that the efficiencies were reasonably time invariant, so that they were computed
at some predetermined steps much longer than the integration interval. The simulation

results of Daie showed that the efficiencies of the trays in the column range from 99%
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Figure 5.1 Schematic diagram of column for the steady state modelling.
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from the top to 88% at the bottom. The assumption of 90% efficiency for all the trays
was chosen as an estimate within this range. Better values of tray efficiencies can be
obtained from pilot plant tests.

Recently, Fletcher (64) presented a numerical method for incorporating the
efficiency model of Standart (92) into the rigorous calculation of distillation column.
The approach is applicable to both binary and multicomponent distillation
calculations. The calculations involve the solution of extra equations representing
fictitious ideal flows, compositions, temperatures and enthalpies which are used in
the definition of the efficiency. Fletcher performed calculation using experimental data

at total reflux and presented results which show good fit with experimental data.

5.2.1. The steady state model equations

The distillation column has 10 trays with the tray 7 as the feed tray. In the
following L and V denotes the vapour and liquid flowrates inside the column. The
symbols j denotes the tray where the stages are numbered from the condenser, j = 1,
to the reboiler, j = 12. The symbol i denotes component and N denotes the total
number of stages is12. the number of components nc = 2 number of trays nt is 10
and for the feed tray j = 8. The symbol F denotes feed flow and the symbol x and y
are Nx1 vectors containing the liquid and vapour mole fractions of the more volatile
component on each stage. Therefore, the vector X, is given as

X = (Xd’xl’XZ’X3’X4’X5’X6’X7’X8’X9’XIO’Xb)T°
Since nc=2 the model can thus be presented in terms of the more volatile component
(mvc) only; the composition of the less volatile component (lvc) is obtained by
difference. Table 5.1 shows the necessary physical property and equilibrium data for
trichloroethylene and tetrachloroethylene needed for the model development

Group 1

Component_balances

Condenser, j =1

Traysj=21t0 N-1
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B Ve G Ly - Vi =0 >
Reboilerj=N=12
where Fj is feed entry to tray j.

Group 2

Vapour compositions

¥, = K.y. 1=
yJ KJfoorJ 2toN 5.4

where y*j 1s the vapour composition in equilibrium with X, and K denotes the

equilibrium relationship . The equilibrium relationship is defined by
0
¥ =g X
Y¥ =8P (Tpx; [Py 5.5
where P is the column pressure, Tj is the temperature on tray j, PO(TJ-) is the

saturation vapour pressure of the mvc in tray j and 8] is the activity coefficient

if mvc on tray j

L= yE ] =
yp=y5i=1 5.6
yJ- =emvjy*j + (l-emvj)yjH ,j=2toN-1 5.7
YN =Y'N 5.8
where emv; is the Murphree vapour efficiency on tray j given by
c=(y. -V *, _y.
emy; (yJ yJH)/(y i )J+1)
Group 3

Global material and heat balances material

The overall material balance is

™ C
LJ+V2—L1=VJ+1+er 5)

The overall heat balance is

Lj hJ + V2H2 - Llhl = Vj‘*‘lI_Ij'*‘l-*‘ ZFkhfk

The subscript k in Fy denotes the feed entry to stage k The summation ZFy
represents the sum of the feed entries into trays k =2 to J.

Eliminating Vj+1 and using Vo = Li+Vi+hy gives

H, )
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forj=2toN-1. 5.10

Note that V1 =0 since a total condenser is assumed.
Hj is the enthalpy of vapour stream leaving tray j
h ; 1s the enthalpy of liquid stream leaving tray j
hfj is the enthalpy of feed stream entering tray j

The enthalpy symbols are

HJ = (EHiyi)j

where hi is the liquid enthalpy of component i, H; is the vapour enthalpy of
component i, Cp; is the heat capacity of the of component i, and x; and y; are

the liquid and vapour compositions of component i and AT =T - Ty; Ty is the

reference temperature chosen as 25°C

Group 4
The functions to be zeroed are d E
. =x. - X 5.11
fj=x;- X %
where Xj are given as ?
. = (F.xf. ) ) Coav.e V)L i= -1
XJ (FfoJ + LJ-IXJ-I + VJ+ly3+1 \/Jyj)/LJ j=2toN
5.13

189




Table 8.1 Properties of Trichloroetyhlene and Tetrachloroethylene

Heat Capacity Trichloro- Tetrachloro-
Constants ethylene ethylene
a 0.9935 1.042
b 0.00611 0.005129
¢ 3.676x 107" 3.433 x 10

Cp=a+bAT +cAT ,AT=T- T()’ where TO is the reference

temperature at (eg. room temperature (19 °C - 25 °C)). Cp is in J/gramme

Density

grammes / cm’ 1.466

1.6475

Molecular weight

grammes 131.4

165.85

Vapour Liquid Equilibrium

Antoine Constants

Cl 7.4266

8.08374

C2 1549.3

2128.93

C3 254.082

288.34

Van Laar Constants

A = 0.0042

B = -0.0004
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5.2.2 The solution procedure for the steady state model

After supplying the model with initial composition profile of the mve, reflux ratio,
distillate or bottoms flow, feed flow, feed composition, feed temperature, the steps
followed to solve the equations of the steady state model are given below.

Step 1) Compute the compositions for the less volatile component (lvc) on each
tray by difference.

Xj,lvcz 1- Xj 5.15

Step 2) Determine the y*s by the bubble point method. This involves solving a

non-linear equilibrium relationship Equation 5.5 for Tj for each tray, except for

the reflux stream if the reflux is assumed to enter the column as a cold liquid.

The solution is an iterative procedure requiring a guess value for Tj’ Newton

Raphson iterative procedure was used in this work

Step 3) Obtain the actual vapour compositions Y using the Group 2 equations,

Equations 5.6 to 5.8, which reperesent Murphree vapour tray efficiency

Step 4) Calculate the vapour and liquid enthalpies and then calculate Vj and Lj

using the Group 3 equations, Equations 5.9 and 5.10 alternately.
Step 5) Using the Group 4 equations, Equation 5.12 to 5.14, compute new
liquid mole fractions, X

Step 6) After normalising the vector X in the following way

7
Xi,j

Xi,j /the functions to be zeroed, fj for j = 1 to N in Equation 5.11, are computed

using Equation 5.12 to Equation 5.13.
Step 7) The Jacobian matrix J is numerically evaluated as
= 5.16
J e afi/axj

where J: : is the element in row i column j of J. The symbol 0 denotes a small
1

perturbation. The Gaussian elimination with maximal pivoting algorithm given

r_Jg. of
i Burden et. al. (56) was used to solve - J Ox =1 for Ox.

191




Step 8) The new values of Xj are then calculated as

,r+1_ T T
XJ —Xj+6)&j 517

where r is the iteration step and 8x Tis given as

S 5.18
Step 9) Before updating the new xjr the absolute values of ijr are checked to
see if they are not too large. This is is done by checking if 11dx jrll exceed pxjr
where p is a damping factor chosen as 0 < p < 1. The x; r+l are then updated

J

as

+1
xjr = ij+ SIGN (pxjr, ijr) 5.19

where SIGN (a, b) is a number whose absolute values is a and sign is the same

as that of b.

Step 10) Check if the xjr+1‘s violate the limits 0 and 1 and reset as

Xj =0.0001 if xj <Qor
Xj =(.9999 if xj >1.0

Step 11) Go to Step 12 if convergence criteria
Jev=IIfll;/N<e 5.20

where € is a tolerance chosen appropriately, otherwise return to Step 2).

Step 12) Calculate reboiler and condenser heat duty and stop procedure.

In this work a simple procedure was used to select the damping factor p in Step 9
to avoid specifying a damping factor for each state variable. At each iteration step, r,
the element with the largest magnitude in the vector, 6Xjr was obtained. Denoting this
value as {, the p was chosen as