THE USE OF MICROPROCESSORS IN THE CONTROL OF CHEMICAL PLANT WITH SPECIAL REFERENCE TO THE USE OF DISTRIBUTED PROCESSORS

A Thesis submitted for the degree of Doctor of Philosophy

by

Azman Firdaus Shafii

Department of Chemical Engineering University of Aston-in-Birmingham

April 1983

THE USE OF MICROPROCESSORS IN THE CONTROL OF CHEMICAL PLANT WITH SPECIAL REFERENCE TO THE USE OF DISTRIBUTED PROCESSORS

A. F. SHAFII

Ph.D.

APRIL 1983

SUMMARY

The advent of the microprocessor has created an enormous impact on both society and industry. In particular, it has provided the technological basis for far-reaching changes in industrial control and automation where attention is focussed on the observable trends in applying microprocessor-based systems to improve control system design and integrity. This has also led to a renewed interest in the implementation of modern digital control policies.

The research described here is concerned with the development and use of a linked twin processor system comprising an 8-bit Motorola M6800 microcomputer and a 16-bit Honeywell H316 minicomputer. The linked facility provides for a wide range of OFF- and ON-LINE data processing activities including interactive real-time data acquisition and control of chemical plants. The system can support two computer users, with independent on-line sampling frequencies and control configurations.

Two major software packages have been developed. The first comprises two real-time Executives, one for each processor and written in its assembly language, which handle the communication protocol between processors as well as input-output information to the process plant. In each computer the user may communicate interactively in BASIC. To this end, some practical demonstrations have been conducted on a binary distillation process and a double-effect evaporator.

The second software package is concerned with the digital simulation of an Extended Kalman Filter for state and parameter estimation of the distillation process. Although the simulation results are satisfactory, an on-line implementation for the present hardware is prohibited by relatively long computation times.

This research work has shown that although it is practical to apply microprocessor technology to process control problems the learning curve is steep and software development costs, in terms of man and machine hours, still remain the biggest consideration - a finding which is compatible with many independent initiatives.

Key words

Microprocessors, linked processor system, process control, Kalman filtering, simulation.

ACKNOWLEDGEMENT

The author is indebted to Dr. B. Gay for his supervision of the thesis, in particular for the guidance and idea generating sessions throughout the course of this research.

The author also wishes to acknowledge with thanks, the assistance given by the following:

The Public Services Department, Government of Malaysia, and the University of Malaya for the provision of a grant.

The Staff of the Malaysian Students Department, London; in particular Encik Wahid Md Don and Encik Ikmal Hijaz for their help in the 'less controllable' aspects of my stay in the U.K.

Messrs. F. M. Lea and D. Bleiby for their attention during computer system design development.

Miss Eileen Broughton for her excellent typing and retyping of manuscripts.

LIST OF TABLES

		Page
3.1	Functional Units and I/O Protocols of the Honeywell H316 CPU	58
3.2	The Honeywell H316 Leading Characteristics	59
3.3	Organisation of the PIA Control Registers	84
3.4	The M6800 Input/Output Ports	88
3.5	Interrupts in the M6800 Microcomputer	93
4.1	Benchmark program execution times in the H316 and M6800	150
4.2	Operating Modes of the linked H316-M6800 Twin Processor System	153
5.1	Number representation in the mainframe and mini- computers	172
5.2	Main characteristics of a Typical tray	175
6.1	Subroutine Assignments in the BASIC CALL Table	210
6.2	H316 Execution times in a Kalman Filtering application	246

- iv -

LIST OF FIGURES

		Page
1.1	Present Process Control System Design	15
1.2	Block diagram of the classical feedback control loop	16
1.3	Direct Digital Control Loop (P+I+D)	17
1.4	Flow Diagram of a Simple Digital PID Controller	19
1.5	An Overview of a Totally Distributed System	23
2.1	Overview of a microprocessor-based digital filter system design	37
2.2	Single-loop Controller Prototyping Tool	43
3.1	Block diagram of the Honeywell H316 Control Processing Unit	57
3.2	A Schematic diagram of the Computer-Process Hardware Interface	66
3.3	The Analogue Inputs Subinterface	65
3.4	The Motorola M6800 family components	73
3.5	Block Diagram of the MC6800 Microprocessor	76
3.6	Condition Code Register	77
3.7	The MC6830 ROM Bus Interface	79
3:8	The MC6810 RAM Bus Interface	81
3.9	The MC6820 PIA Bus Interface	82
3.10	Block diagram of the MC6850 ACIA	87
3.11	Saving machine status in the stack	94
3.12	The MP-T Interrupt Timer Interface Organisation	96
3.13	Hardware Arrangement for the Linked H316-M6800 Twin Processor System	98
4.1	Typical Memory Utilisation in the H316 and M6800 Computers	107
4.2a	Interrupt Source Identification in the H316 Mini- computer	121
4.2b	Interrupt Handling in the H316 Minicomputer	122
4.3	The CB2 Interrupt Flowchart	125
4.4	The CA2 Interrupt Flowchart	128

- v -

LIST OF	FIGURES (Continued)	Page
4.5	M6800 stack before and after CALL SUB3(N,U)	136
4.6	Interrupt Handling Flowchart in the M6800 Executive	138
4.7	Memory Utilisation by the H316 BASIC Interpreter	141
5.1	Schematic Formulation of a System for Kalman Filtering Applications	156
5.2a	Time evolution of p(x,t) without observations	157
5.2b	Time evolution of p(x,t) with plant observations	157
5.3	Signal Flow digram for the Discrete-time System Formulation	161
5.4	Flow diagram of the discrete-time Extended Kalman filter	168
5.5	A Schematic diagram of the IBM Distillation Column	177
5.6	Schematic Diagram of a Typical Tray	183
6.1	Schematic Construction of the Total Simulation Package	209
6.2	Refinement of Steady States in Models I and II - Compositions	213
6.3	Refinement of Steady States in Models I and II - Temperatures and Vapour Rates	214
6.4	Flowchart for Simulation of Dynamic Response of Process Models	218
6.5	Response of tray liquid compositions due to a 40% step change in feed rate	219
6.6	Response of tray liquid compositions due to a 40% step change in feed rate	220
6.7	Response of Tray Temperatures due to a 40% step change in feed rate	221
6.8	Response of Tray liquid compositions due to multiple disturbances in feed rate and composition	223
6.9	Flowchart for Simulation of a Kalman Filtering Application	225
6.10	Estimation with EKF1: $\Delta t = .002$ hour	228
6.11	Estimation with EKF1: $\Delta t = .004$ hour	229
6.12	Estimation with EKF1: $\Delta t = .005$ hour	230

- vi -

-	vii	-	

LIST OF	FIGURES (Continued)	Page
6.13	EKF1: Models initialised with Model I steady states	231
6.14	EKF1: Models initialised with own steady states	232
6.15	Parameter estimation with EKF1: Feed and Reflux rates	235
6.16	Parameter estimation with EKF1: Vapour rates	236
6.17	Parameter estimation with EKF1: Feed composition	238
6.18	Estimation with EKF2: $\Delta t = .0001$ hour, Simple Euler	241
6.19	Estimation with EKF2: $\Delta t = .001$ hour, Modified Euler	243
6.20	Estimation with EKF2: $\Delta t = .0025$ hour, Modified Euler	244
6.21	Schematic Construction of EKF3	245
6.22	Estimation with EKF2: $\Delta t = .0075$ hour, Modified Euler	248
7.1	A Serial Data Link for the H316-M6800 system: Method 1	252
7.2	A Serial Data Link for the H318-M6800 system: Method 2	253
7.3	A Parallel Data Link for the H316-M6800 system: Method 3	254
7.4	A Microcomputer to Microcomputer Link	255
7.5	The M6800 system interfaced directly to a Process Plant	256
7.6	A Timing Diagram for Counter and Scanning Interrupts	261
7.7	M6800 Control of Reboiler and Reflux Drum Levels	265
7.8	Response of tray temperatures due to a step change in feed rate	267
7.9	Schematic diagram of the Control Problem in a Double-Effect Evaporator	269
7.10	Block Diagram of a Double-Effect Evaporator Control System Design	270
7.11	M6800 Control of Temperatures in the Double-Effect Evaporator	272

LIST OF PLATES

3.1	The Honeywell H316 Minicomputer System and Peripherals	56
3.2	The Motorola M6800 Microcomputer System	71
3.3	The Motorola M6800 System Kit	72
5.1	A Laboratory view of the IBM Distillation Column	174

Page

NOMENCLATURE

А,В	Brambilla's constants
A _i ,B _i ,C _i	Constants for component i in the Antoine equation
A(t)	Plant driving matrix
B(t)	Plant input driving matrix
D(t)	Plant noise driving matrix
E	Mathematical Expectation operator
cov	Covariance
F	Feed rate (mol/hr.)
н	Vapour enthalpy (kJ/mol)
h	Liquid enthalpy (kJ/mol)
h _D	Liquid height in downcomer
h _{OW}	Liquid height over weir
h _W	height of weir
I	Unit matrix
J	Jacobian matrix
J _c	Cost function (to be minimised) in Kalman Filtering problems
К	Gain matrix (Kalman Filter)
ĸ	Equilibrium relation ($K_i = y_i/x_i$) where x_i and y_i
	are liquid and vapour compositions of component i
	respectively
к _р	Proportional gain in DDC loop
ĸ	Integral action
к _D	Derivative action
L	Liquid flow e.g. L _R is reflux rate
М	Measurement Matrix (Kalman Filter)
M _{RD}	Reflux drum hold-up
м _в	Reboiler hold-up

M n	Tray liquid hold-up
P	Error covariance matrix (Kalman Filter)
Q	Process Noise Matrix (Kalman Filter)
R	Measurement Noise matrix (Kalman Filter)
v	Vapour throughput
x(t)	random state variable or vector
p(x,t)	probability density distribution of x at time t
x	mean value of x
x	predicted value of x
x	estimated value of x
z	measurement vector
z ⁻¹	unit delay
v(t)	measurement noise (white, Gaussian and zero mean)
ω(t)	process noise (white, Gaussian and zero mean)
u(t)	deterministic control input vector
Φ	State transition matrix
δ	Dirac δ -function or 'deviation'
Δt	Sampling interval (sometimes as T)
k	non-negative integer, usually denotes sampling instant
	in discrete time systems
f,g	non-linear functions
r(k)	set-point at time = k∆t
]	integration operator

Subscripts

0	reference
i,j	with respect to component i or j
k	at time k∆t

Superscripts

-1	delay or inversion
Т	transpose
0	reference
*	equilibrium value

TABLE	OF	CONTENTS	
-------	----	----------	--

	TABLE OF CONTENTS	Page
Summary		ii
Acknowledge	ment	iii
List of Tab	les	iv
List of Fig	ures	v
List of Pla	tes /	viii
Nomenclatur	e	ix
Table of Co	ntents	xii
CHAPTER 1:	INTRODUCTION	2
1.1	Early Development and Use of Computers	2
1.2	Era of a New Computer Technology - The Microprocessor	6
	1.2.1 A Brief History of Microprocessors	7
	1.2.2 Current State of the Art	9
	1.2.3 The Microprocessor and Society	11
1.3	Microprocessors in Control	12
	1.3.1 Nature of Process Control Problems	13
	1.3.2 Current Process Control Design	14
	1.3.3 The Basic Process Control Loop	16
	1.3.4 Recent Trends	18
	1.3.4.1 Stand Alone, Single-Loop Digital Control	20
	1.3.4.2 Distributed Digital Control Systems	21
1.4	Background to the Research Project	24
1.5	Objectives of the Thesis	26
CHAPTER 2:	APPLICATIONS OF MICROPROCESSORS - SOME OBSERVATIONS FROM A LITERATURE REVIEW	29
2.1	Overview of Microprocessor Applications	30
2.2	Industrial Applications	33
	2.2.1 Dedicated Microprocessors	34
	2.2.2 General-Purpose Microcomputers	39

TABLE	OF	CONTENTS	(Conti	inued)
-------	----	----------	--------	--------

2.3	Implementation of Advanced Control Algorithms	41
2.4	Industrial Microprocessor-based Process Controllers	44
2.5	Problems in Using Microprocessors	46
	2.5.1 Software Aspects	47
	2.5.2 Hardware Selection	49
	2.5.3 System Integration	50
	2.5.4 Economics and Manpower	51
2.6	Conclusions	52

CHAPTER 3:		PROCESSOR SYSTEM	54
3.1	Introd	luction	54
3.2	The Ho	oneywell H316 Minicomputer System	55
	3.2.1	Central Processing Unit and Peripheral Devices	55
	3.2.2	System Software	61
		3.2.2.1 Machine Code Patch for Use with the Newbury terminal and printer	63
	3.2.3	The Honeywell Analogue Digital Input Output System (HADIOS)	65
		3.2.3.1 High Level Analogue Inputs	67
		3.2.3.2 High Speed Counter Inputs	67
		3.2.3.3 Logic-Level Non-Isolated Inputs	67
		3.2.3.4 Logic-Level Outputs	67
		3.2.3.5 Alarm Inputs	68
	3.2.4	The H316 Interrupt Structure	69
	3.2.5	The H316 Real-Time Clock	70
3.3	The Mo	torola M6800 Microcomputer System	70
	3.3.1	System Overview and Hardware Features	73
	3.3.2	The MC6800 Microprocessing Unit	75
	3.3.3	Read Only Memory (ROM)	79

Page

TABLE OF CC	NTENTS (Continued)	Page
	3.3.4 Random Access Memory (RAM)	80
	3.3.5 Peripheral Interface Adapter (PIA)	81
	3.3.6 The MC6850 Asynchronous Communications Interface Adapter (ACIA)	86
	3.3.7 The M6800 Input/Output (I/O) Ports	88
	3.3.8 Peripheral Devices	89
	3.3.8.1 The Visual Display Unit (VDU) and the Teletypewriter (TTY)	89
	3.3.8.2 The FD-8 Floppy Disk Memory System	89
	3.3.8.3 The Analogue Input/Output Hardware	89
	3.3.9 System Software	90
	3.3.10 The M6800 Interrupt Structure	92
	3.3.11 The MP-T Interrupt Timer	95
3.4	The Linked H316-M6800 Twin Processor System	96
	3.4.1 System Hardware Overview	97
	3.4.2 Communication Protocol	99
3.5	Conclusions	100
CHAPTER 4:	ON-LINE SOFTWARE DEVELOPMENT	103
4.1	Introduction	103
4.2	Software Objectives	1,04
4.3	Memory Allocation	106
	4.3.1 Source Tape Preparation	108
	4.3.1.1 H316 Software	108
	4.3.1.2 M6800 Software	110
4.4	The HADIOS Executive Revision 03	113
	4.4.1 HADIOS Subroutines	114
	4.4.2 Interrupt Handling	119

TADLE OF COM

TABLE OF CO	ONTENTS (Continued)	Page
	4.4.2.1 The H316 Real-Time Clock (RTC)	120
	4.4.2.2 Counters	123
	4.4.2.3 CB2 Interrupts	123
	4.4.2.4 CA2 Interrupts	124
	4.4.3 Counter Code Modifications	127
	4.4.4 Error Handling and Sense Switch Usage	129
	4.4.5 Limitations	131
4.5	The M6800 Executive	132
	4.5.1 Interrupt Handling	136
	4.5.2 Error Handling	139
	4.5.3 Limitations	140
4.6	Modifications to the BASIC-16 Interpreter	140
4.7	H316 Tektronix Graphics Package	145
4.8	Special FORTRAN and Utility Routines (F\$ER,F\$HT, BASIC MTH-PAK POINTERS and SU10)	147
4.9	Software Execution Times	148
4.10	Construction of the HADIOS Executive Package Rev. 03	151
4.11	Conclusions	152
CHAPTER 5:	THEORETICAL DEVELOPMENT OF A KALMAN FILTERING APPLICATION	155
5.1	Introduction to Kalman Filters	155
	5.1.1 Linear Systems	158
	5.1.1.1 Continuous-time Systems	158
	5.1.1.2 Discrete-time Systems	160
	5.1.2 Non-linear Systems - the Extended Kalman filter	165

5.1.3 Chemical Engineering Applications 167

TABLE OF CONTENTS (Continued)

5.2		of a State lation Colu	e and Parameter Estimator for a umn	170
	5.2.1	Apparatus	and Process Description	173
e asi.		5.2.1.1	Introduction	173
		5.2.1.2	The Motorised Valves	175
		5.2.1.3	The Reboiler	176
		5.2.1.4	Temperature measurements	176
		5.2.1.5	Continuous Level Measurements	178
		5.2.1.6	Flow Measurements	178
		5.2.1.7	Remote Signal Conditioning Unit	179
		5.2.1.8	Process Operation	181
	5.2.2	Formulatio	on of Process Models	182
		5.2.2.1	The Actual Process Model - Model I	185
		5.2.2.2	The Filter Process Model - Model II	187
		5.2.2.3	Tray Efficiencies	189
	5.2.3	The Kalman	n Filter Algorithm	189
	5.2.4	The State	Vector x _{nx1}	191
	5.2.5	The State	Transition Matrix Φ_{nxn}	191
	5.2.6	The Measu	rement Vector z _{mx1}	201
	5.2.7	The Measu	rement Matrix M _{mxn}	201
	5.2.8	Filter In	itialisation and Tuning	203
	5.2.9	Conclusion	'n	203
CHAPTER 6:	TOTAL	SIMULATION	PACKAGE - PROCESS MODELS AND	

	ESTIMATION	205
6.1	Software Objectives	206
6.2	The Simulation Package	207
	6.2.1 Software Requirements	207

Page

TABLE OF	CONTENTS	(Continued)	Page
	6.2.2		for Program Overlay and ion of the Package	208
	6.2.3	Steady-St	ate Profiles	210
		6.2.3.1	Mcabe-Thiele Calculations	210
		6.2.3.2	Refined Steady States	211
	6.2.4	FORTRAN S	ubroutines	212
6.3	Simula Models		e Dynamic Response of the Process	217
	6.3.1	Response feed rate	to a single step disturbance in	217
	6.3.2		to multiple disturbances in feed composition	222
6.4	Kalman	Filtering	Simulation	222
	6.4.1	State and	Parameter Estimator: EKF1	224
		6.4.1.1	Initial Estimate of the State	224
		6.4.1.2	The Initial Error Covariance matrix, P(0,0) 15x15	224
		6.4.1.3	The System Noise Matrix Q _{15x15}	226
		6.4.1.4	The Measurement Noise Matrix R _{7x1}	226
		6.4.1.5	Simulated Gaussian Noise	226
		6.4.1.6	Observability	226
		6.4.1.7	The Effect of Sampling Interval	227
		6.4.1.8	Estimation of Process Parameters F, x _F , L _R , V	233
		6.4.1.9	The BASIC program	239
	6.4.2	State Est measureme	imator using three temperature nts: EFK2	239
		6.4.2.1	Filter initialisation	239
		6.4.2.2	The Measurement Vector and Measure- ment Noise Matrix	239
		6.4.2.3	Effect of changing integration methods	240

- xviii -

TABLE OF CO	DNTENTS	(Continued)	Page
6.5	Consid	lerations for an On-line Filter: EKF3	242
	6.5.1	Memory Utilisation	242
	6.5.2	Execution Times	245
6.6	Conclu	sions	247
CHAPTER 7:	EXPERI	MENTAL RESULTS AND DISCUSSIONS	250
7.1		ruction of the Linked H316-M6800 Twin sor System	250
	7.1.1	Constraints due to a single PIA chip	250
	7.1.2	Alternative Designs in linking the two Processors	252
		7.1.2.1 Serial Data Methods	252
		7.1.2.2 Parallel Data Link	254
	7.1.3	The M6800 interfaced directly to a Process Plant	255
	7.1.4	Noise and Spurious Interrupts	256
7.2		the Software Package for the Linked sor facility	258
	7.2.1	Development of and Running User Application Programs	258
	7.2.2	Use of Counters - Some Operational Constraints	258
	7.2.3	On-line Demonstration Experiments	262
		7.2.3.1 Microprocessor Control of Reboiler and Reflux Drum Hold-ups in the IBM Distillation Column	263
		7.2.3.2 Microprocessor Control of Temperatures in a Double-Effect Evaporator	268
7.3	The To	otal Simulation Package	273
	7.3.1	Overview of Simulation Experiments	273
	7.3.2	Dynamic Process Models	274
	7.3.3		275
	7.3.4	On-line estimation and the linked twin	
	1.3.4	processor system	276

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS (Continued)			
CHAPTER 8:	CONCLU	ISIONS AND RECOMMENDATIONS FOR FUTURE WORK	279
8.1	The Li	nked H316-M6800 Twin Processor System	279
8.2	Simula	tion of a Kalman Filtering Application	280
8.3	Recomm	mendations for Further Work	281
	8.3.1	The linked processor facility	281
	8.3.2	Kalman Filtering Application	282
	APPEND	DIX	283
3			283
3.1		ruction of a Self-contained LDR-APM Rev. E ry Map	284
	Table		
	A3.1	Summary of DAP-14 MOD2 Instructions	285
	A3.2	Summary of DAP-16 MOD2 Pseudo-Operations used	288
	A3.3	M6800 Instruction Set	289
4.	A4.1	Assembler listing of the HADIOS Executive Rev. 03	291
	A4.2	Source listing of the M6800 Executive	333
	A4.3	The ADT1-8 program	354
	A4.4	The BASIC I/O MOD program	355
	A4.5	Subroutine GRAPH	356
	A4.6	Construction of the Graphics Package	357
	A4.7	Memory map of Graphics Package	357
	A4.8	Special FORTRAN routines: F\$HT, F\$ER	358
	A4.9	Modified FORTRAN F\$HT, F\$ER for use with M6800 interrupt response code	359
	A4.10	BASIC MTH-PAK Pointers	360
	A4.11	Utility subroutine SU10	361
	A4.12	H316 BASIC Benchmark program	362
	A4.13	H316 FORTRAN Benchmark program	363
	A4.14	SD BASIC Benchmark program	364

TABLE OF	CONTENTS	(Continued)	Page
	A4.15	Subroutine CLOCK for use with SD BASIC benchmark program	365
	A4.16	Construction of the HADIOS Executive Rev. 03	366
	A4.17	Memory map of the HADIOS Executive Rev. 03	366
	Figure	<u>e</u>	
5.	A5.1	Calibration of Reflux Valve, Al	367
	A5.2	Calibration of Bottom product valve, A2	368
	A5.3	Calibration of Feed valve, A3	369
	A5.4	Calibration of Distillate valve, A5	370
	A5.5	Calibration of Topmost tray thermocouple	371
	A5.6	Calibration of Feed tray thermocouple	372
	A5.7	Calibration of Lowermost tray thermocouple	373
	A5.8	Characteristics of the Reflux stream thermocouple	373
	A5.9	Characteristics of the Feed stream thermocouple	373
	A5.10	Calibration of Reflux Drum Level	374
	A5.11	Calibration of Reboiler level	375

6.

Table

A6.1	Construction of SLST of the Disk Overlay routine	376
A6.2	Construction of EKF1: Segment 1	381
A6.3	Construction of EKF1: Segment 2	383
A6.4	Construction of EKF1: Segment 3	385
A6.5	Construction of EKF1: Segment 4	387
Å6.6	Construction of EKF1: Segment 5	387
A6.7	BASIC program to calculate Antoine constants	388
A6.8	BASIC program to perform a Mcabe-Thiele analysis of the Distillation Column	389

- xx -

TABLE OF CONTENTS (Continued)

A6.9	FORTRAN Subroutines: for Model I and general	396
A6.10	FORTRAN Subroutines: for Model II	413
A6.11	FORTRAN Subroutines: for Estimation with EKF1	416
A6.12	BASIC program for estimation with EKF1	426
A6.13	Memory map of Segment 1: EKF2	429
A6.14	Memory map of Segment 2: EKF2	430
A6.15	Memory map of Segment 3: EKF2	431
A7.1	On-line BASIC program: Distillation Column	432
A7.2	On-line SD BASIC program: Distillation Column	433

- A7.3 Machine code patch in BASIC Interpreter 435 (for use with Newbury 8005 VDU)
- A7.4On-line BASIC program: Double-Effect Evaporator436A7.5On-line SD BASIC program: Double-Effect438Evaporator438

REFERENCES

7.

440

Page

CHAPTER ONE INTRODUCTION

INTRODUCTION

1.

The computer has opened the door to a large number of interesting and important applications ranging from on-line computer control of industrial processes or laboratory experiments, where the computer is the central component in the system, to miniaturised versions embedded in an ever increasing variety of consumer goods.

This research is basically concerned with one such class of computer applications, namely, the use of computers (a minicomputer and a linked microcomputer system) in the control of chemical engineering processes. This chapter covers the background and general concepts to such work and begins with a general perspective of computers and their uses, with special reference to microprocessors and microcomputers.

1.1 Early Development and Use of Computers

Evidence of early computation goes back to as early as 1700 B.C. when the Babylonians began using base 60 (sexagesimal) calculations from which came our units of hours, minutes and seconds.⁽¹⁾ Later, the abacus became extensively used in Asia and by 1630 the slide rule, automating the tasks of multiplication and division, had already become the most popular calculating tool in Europe.

As commerce and society became more 'sophisticated' in the 17th and 18th centuries, ancient calculating tools and aids proved inadequate so that many attempts were made to build mechanical calculating machines notably that of Pascal (1623-1662) and Leibniz (1646-1716). However, the person generally accepted as the father of today's computer⁽²⁾ is Charles Babbage (1792-1871) who provided a model of a rudimentary computer in his Difference Machine (or Engine as he called it) in 1822 which he later improved into a more general purpose device called the

- 2 -

Analytical Engine. But it was not until a century later that similar ideas were realised by the pioneering work of Konrad Zuse⁽³⁾ of Germany and independently, John Atanasoff⁽⁴⁾ of the United States. Zuse's Z3 machine is believed to be the world's first general purpose, program controlled electro-mechanical computer. The Atanasoff machine, built in 1939, in the laboratories of Iowa State College, is widely regarded now as the world's first electronic computer.

The Atanasoff computer is particularly significant as computations were based on the binary number system (base 2) and the use of a machine regenerative memory.

But the most important pioneering effort was the design and building of the Electronic Numerical Integrator and Calculator (ENIAC) in 1943 through 1946, directed by John Mauchly and J. P. Eckert.⁽⁵⁾ The ENIAC used electonic vacuum tubes instead of electro-mechanical relays (a 1000 times speed improvement) and is the first, large scale, fully electronic computer. By today's standards, the ENIAC was an enormous machine. The following features of the ENIAC explains why.

components - 18,000 vacuum tubes

70,000 resistors

10,000 capacitors

- power consumption 150 to 200 kW
- weight 30 tons

others

- floor space occupied 15,000 sq. ft.
- performance 5,000 additions or subtractions
 per sec. 300 multiplications per sec.
 - use of a central clock to synchronise operations. Use of flip-flops as the basic memory element. Low storage capacity (only 20 ten-decimal digit numbers).

- 3 -

The ENIAC was truly general purpose. Before retiring from active service in 1955, it processed 80,223 hours of work. Data input/output were on punched cards. Programming was done by wiring of component connections and was therefore formidable as a sound knowledge of machine operations was required.

Soon after the ENIAC was built, John von Neumann, himself a consultant in the ENIAC project, proposed the concept of the stored program computer. He suggested that instructions and data are better stored in the computer. Thus, instructions can be changed without manually re-wiring component connections and also since the instructions are stored as numbers, the computer could process instructions as if they were data. This made possible the automatic modification of instructions and alteration of their sequence. This concept led to the first fully complete stored program computer - the Electronic Delay Storage Automatic Calculator (EDSAC) built at Cambridge University in 1949 under the direction of M. V. Wilkes.⁽⁶⁾

The Universal Automatic Computer (UNIVAC)-1 in March 1951, largely due to the enterprising efforts of Mauchly and Eckert, turned out to be the world's first production-line digital computer. Instead of vacuum tubes, UNIVAC-1 used crystal diodes thereby foreshadowing the solid-state era. Its first installation was at the United States Census Bureau in 1951. Its first commercial installation was at the General Electric plant in Louisville, Kentucky.

The 1950's saw a flurry of activities not only in the development of hardware but also in the different levels of computer software. The invention of the transistor in 1948 eventually led to the production of the next generation of computers. These transistorised digital computers, coupled with the development of programming languages such as FORTRAN (1954), ALGOL (1958-1960) and COBOL (1959) greatly increased the use of computers especially in the data processing area.

- 4 -

In the same period, parallel milestones were also observed in industrial control and instrumentation. In the 1940s the application of vacuum-tube electronics to measuring instruments and the development of pneumatic force balance transmitters were forerunners of the industrial control rooms. The so-called pivotal year was 1958 when first-generation electonic control systems were introduced. Polymerization was reported as the first industrial process to be brought under closed-loop computer control.⁽⁷⁾ It was reported that it took the company, Texaco, 21 years to make the necessary preparations for the automation and a further five months to develop the computer model. The polymerization unit was connected to a Thompson-Ramo-Wooldridge RW-300 digital computer which gathered information from 110 sources, controlled 16 different streams, pressures and temperatures and sounded alarms if failure or danger threatened.

The use of direct digital control (DDC) in the process industry however, failed to match the euphoria it generated in the marketplace when it was first introduced in the early 1960s. A full scale DDC implementation was relatively rare despite its practical feasibility being demonstrated at several plant experimental trials.^(8,9) One such application encompassed 100 loops in an ammonia-soda plant but as in other implementations especially in the petroleum industry, a complete set of analogue back-up units was always maintained. Apparently DDC went through a period of bad reputation largely due to the lack of sufficient understanding of <u>both</u> the digital computer and modern control theory on the side of its implementers.

The conventional DDC systems were characterised by a centralisation of computing power, both at the lowest (control) and highest (management) levels of the control system hierarchy. As a result, they suffer from the following setbacks which also precluded

- 5 -

DDC systems from wider acceptance.

- a) heavy computational load on the control computer.
- b) complex software and programming techniques required.
- c) reduced individual loop information.
- d) total system reliability is reduced.
- e) individual loop performance must compete with that
 of the classical Proportional + Integral + Derivative (PID)
 analogue single-loop controller.

The appearance of the minicomputer based on integrated circuitry in the mid-1960s reduced some of the problems but in general computer usage was largely directed to open-loop plant optimisation operations,⁽¹⁰⁾ management and plant-wide data processing for the mainframes bracket and also as a useful tool in process design and simulation. A useful introduction to the early development in computer process control is provided by Savas.⁽¹¹⁾

1.2 Era of a New Computer Technology - The Microprocessor

Although in one sense, today's computers have changed little since the mid-1940's, there is an enormous difference between today's machines and those of only thirty years ago. Computer technology has basically entered into a fourth generation involving large-scale integration (LSI) methods to manufacture computers. The following dates roughly indicates the major technological advancements that have taken place.

lst	Generation	(1939-1954	;):	Valve Computers
2nd	Generation	(1954-1965	5):	Transistorised Computers
3rd	Generation	(1965-):	Integrated Circuits (IC)
4th	Generation	(1971-):	LSI and Very Large Scale
				Integration (VLSI)

- 6 -

In a report prepared for the Department of Industry (UK and Eire) by the Massachusetts Institute of Technology⁽¹²⁾ it was reported that "In 1969, M. E. Hoff, an engineer for Intel Corporation discovered that he could incorporate the entire central processing unit on a single silicon chip. By attaching two additional chips - one for input/output (I/O) and another for inscribing a program - Mr. Hoff had what amounted to a basic computer!". With that, the era of the microprocessor has arrived, promising with it, a most profound technological effect on the society and the world at large.

1.2.1 A Brief History of Microprocessors

Strictly speaking, a microprocessor may be defined as a Metal Oxide Semiconductor Large Scale Integration (MOS LSI) system that contains the arithmetic, logic and control units needed to form a complete digital processor. Whether it is realised on a single (i.e. monolithic) or on a small number of silicon-based chips, the microprocessor forms the central processing unit (CPU) of a new generation of digital computers. When this microprocessing unit is combined with memory, auxiliary circuits, power supply and control panel plus the minimum software into an integrated system, a microcomputer is produced. It is important to uphold this conceptual difference between a microprocessor and a microcomputer although the two terms have been used interchangeably in literature.

The microprocessor is a natural outgrowth of the semiconductor revolution which began when complete transistor circuits were first diffused on a single piece of silicon in the late 1950s. These early 'integrated' circuits contained the equivalent of only 10 to 20 transistors whereas today's chips may contain as many as 100,000 or more transistors. This is why microprocessors are the products of semiconductor manufacturers rather than existing computer manufacturers.

- 7 -

The first commercially available microprocessor was the 4-bit Intel 4004 introduced in 1971. As program storage is entirely in read-only memory (ROM) and data storage in random access memory (RAM), a microcomputer system based on the 4004 is a calculator-oriented system. This is not surprising as the 4004, comprising 1600 transistors on 0.25 cm² of silicon, was originally designed as a custom LSI part for the calculators made by the Japanese firm, Busicom. The 4-bit neatly allows Binary Coded Decimal (BCD) applications but in several ways this first product was very limited. The greatest integer which could be held is 15 and there is a lack of interrupt capability. Similar constraints were also exhibited by other 4-bit devices although the IMP-4 is microprogrammable.⁽¹³⁾

Eight-bit microprocessors were soon produced partly to overcome the limited performance of their 4-bit predecessors. The monolithic Intel 8008, introduced in 1972, was the first of these first-generation microprocessors. Although it has a 48-instruction set, a 16 x 1024 (16K) memory address capability and a limited interrupt facility, early users found it necessary to design considerable support and interface logic in their applications.⁽¹⁴⁾ It was used mainly to fill in system requirements where either transistor/transitor logic (TTL) became too large and complex to be handled conveniently or minicomputers were too large and expensive.

As semiconductor technology advanced, second-generation microprocessors came into the market notably the Intel and Motorola family series. Unlike the Intel 4004 and 8008 chips which were fabricated using Positive MOS (PMOS) technology, second-generation devices like the Intel 8080, Motorola MC6800, Fairchild F8 (all introduced in 1974) and the Zilog Z80 (in 1978) were Negative MOS (NMOS) chips. They are three times faster and because of TTL compatible voltages these microprocessors emerged as the most popular devices.

- 8 -

1.2.2 Current State of the Art

It is difficult to assess accurately a technology which is in a high state of flux. Semiconductor advances have led to the production of more powerful eight and sixteen-bit single-chip microcomputers. The level of NMOS integration (memory cells/unit area) continues to double every year (the so-called Moore's Law, after Gordon Moore who first formulated this empirical growth pattern⁽¹⁵⁾) since the mid-1960s and with the availability of 64K RAMs and 256K ROMs, Japan is now on the way to produce 256K RAMs that would put her in a clear lead in semiconductor products. (16) Another significant trend has been the increasing use of Complementary MOS (CMOS) or CMOS/NMOS technology in processor and memory design. These devices are relatively fast (about 150 nanoseconds (ns) access time) but have a low power consumption. Also, an important development has, been the production of Electrically-Erasable and Programmable ROMs (EEPROMs) that match industry standard Ultra-Violet EPROMs in density.

- 9 -

However, memory growth patterns and the popularity of microprocessor-based systems do not necessarily lead to completely new types of microprocessors. Very often, prototype designs are refined to meet the requirements of modern and structured high-level software. Thus, CPU designs, although still very much register-oriented as in early designs, are increasingly emulating various aspects of the stack architecture. Many processors have multiple index registers now giving rise to powerful and efficient addressing modes.

Take the Motorola series of 8-bit microprocessors. During 1977 and 1978, Motorola introduced several new chips such as the M6801, M6802, M6805 and M6809. The M6801 is one of the earliest VLSI microcomputers containing about 40,000 transistors. It is object code compatible with the M6800 and include additional 16-bit instructions. The M6809 is a much more powerful processor. Its hardware architecture provides for two stack pointers, two index registers, a direct page register and 16-bit arithmetic. The major strengths of the M6809 lie in the addressing modes. For example, the Program Counter (PC) relative addressing mode permits position-independent code. In fact, this has allowed Motorola to sell mass-produced firmware in ROMs that can reside anywhere in the 64K address space. The direct page register allows quick access to any page in memory and simplifies the generation of software for multi-tasking operations. In some benchmark tests⁽¹⁷⁾ the M6809 has shown a 2.7 times improvement in speed of the M6800, required 42% fewer instructions and used 33% less code. A comparative software analysis⁽¹⁸⁾ of the M6809 showed that it is superior to the M6800 and the Z80.

But the real attention in recent years has been directed to the 16-bit microcomputers and development of supporting chips to meet the requirements of more powerful operating systems, block-structured high level languages and sophisticated computer graphics. Microcomputer support chips are developed basically to overcome three factors. (19) The first is the so-called 'Von Neumann bottleneck' problem in single processor systems. This has led to the concept of the co-processor or multi-processors. The second factor has been poor programmer productivity. This has led to the production of memory management units (MMU), virtual memory support and various peripheral controllers. And thirdly, the difficulty in interfacing microprocessors to analogue systems. This is partly solved now with the availability of a great variety of 8-bit Analogue-to-Digital and Digital-to-Analogue Converters (ADCs and DACs), compatible with microprocessor data busses, with conversion times of 10 to 500 microseconds (µs) and costing only £3 to £10.

- 10 -

1.2.3 The Microprocessor and Society

The real impact of microprocessor-based technology is yet to come, affecting both people and industry. The Optimist speaks about Continuous Technological Growth and Infinite Social Adaptability. The Pessimist speaks only about Zero Social Adaptability. What ever the situation is, every random sampling of microprocessor applications seems to reveal its protean utility.

There are now about 150 different computer manufacturers in the United States alone. The magazine, Office Systems (20), estimated the number of personal computers in the U.K. by the end of 1981 to be 176,000 (or one per 286 persons) as compared with 1,936,000 in the U.S. (or one per 125 persons). In a recent issue of the magazine 'What Micro?', a list of commercially available personal computers in the U.K. includes more than 200 different systems ranging in costs from under £500 to over £3500.⁽²²⁾

And in the last one and a half years, over a 100 16-bit microcomputers have been launched on the world market. Of these, almost 50 are reportedly now available in the United Kingdom.⁽²¹⁾ They form many of the more powerful personal computers and small business systems, and are much sought after by universities and other research establishments. The Motorola 68000 chip for example has a 16-bit address bus but uses a 32-bit internal architecture. It can run twice as fast as the DEC 11/70 microcomputer and since it is able to directly address up to 16 Megabytes of RAM, it is, in this respect, comparable to the IBM 370 mainframe computer!

The microprocessor is slightly over ten years old now. Over the period, it has become one of the most exciting technological innovations of this century. And the limits of NMOS technology has not yet been reached. In 1981, Hewlett Packard introduced their single-chip

- 11 -

32-bit processor using 450,000 transistors operating with an 18 MHz clock.⁽²³⁾ It can execute a 32-bit integer addition in 55 ns, a 32-bit integer multiply in 1.8 microseconds and a floating point multiply in 10.4 µs. More recently, an advanced-architecture microprocessor, the 16-bit AAMP, has been announced by Rockwell International.⁽²⁴⁾ Moving away from classical von Neumann and register-oriented designs, the AAMP is a VLSI CMOS/SOS (CMOS/Silicon on Sapphire) chip and has a languagedirected stack architecture giving high throughput and high compiled code density.

1.3 Microprocessors in Control

The following factors have contributed to the application of microprocessors in the control industry.

- 1. Lower cost per function.
- 2. Flexibility.
- 3. Stability, Accuracy and Security.
- 4. Human Factors.
- 5. Advanced Control Capability.

As mentioned earlier, LSI technology has enabled thousands of digital circuits and special-function logic to be fabricated on a single chip at very low cost. Because the microprocessor can be programmed to perform different tasks, flexibility is more readily achieved than in equivalent analogue systems. Digital devices are more reliable and secure. Accuracy is only a function of bits used to represent a basic unit of information. Digital information can be processed and/or transmitted for data or report presentations and graphics display. This leads to improved operator-interface designs. Finally, the protean computing ability of the digital computer can be used to implement advanced control techniques which proved difficult in classical analogue systems. The topic 'microprocessors in control' is very broad and can be discussed from many viewpoints such as its market growth, price change, control applications, theories, computations, computer architectures, software/firmware/hardware mixes, programming developments, LSI technologies, performances, reliabilities, etc. In the context of this work, it is more profitable to concentrate on microprocessors in process control.

1.3.1 Nature of Process Control Problems

Process Control is basically Large System Control. More specifically, it is fluid process control which involves the control of plants manufacturing homogeneous materials such as oil, chemicals, paper and concrete, etc. Because of the nature of the product, control manipulation is possible with simple valves or actuators. The state of the processed material can be inferred from simple measurements of continuous properties and most of the control variables are naturally bounded and self-stabilising.

Chemical processes are usually smoothly non-linear, highly uncertain, and of very high order, modelable only to a very gross approximation. A plant may involve thousands of measurements and actuators, and hundreds of control loops. Some plant complexes occupy many square miles of land. Thus, the very nature of the industry makes process control systems very complex and multi-level, and usually achieving a more complete level of automation than more other plants in the sense of produced value per employee. One operator may be responsible for 100 or more control loops but the training and intellect to cope with each loop per hour are slight. Human factors are therefore important.

- 13 -

If new, microcomputer-based process control techniques are introduced, then they must be accompanied with new operational techniques. Also the new process control system should be predictable in its failure modes which means a good manual operating philosophy (or any suitable contingency planning) must be provided.

1.3.2 Current Process Control Design

In the last decade, the image of computerised process control has improved after a bad start in the early 1960s. In the last decade, the design of the central control room has been extended to include better electronic instrumentation and microprocessor-driven measurements. There have been improved power supply systems and Cathode Ray Tube (CRT) operation distributed control. In the 1980-1990 period, the evolution of process control system technology is expected to continue with the expansion in direct digital control, intercoupling of complex digital devices and the increasing reliance on complex measurement. This is reflected by an overview of the present process control system design as illustrated in Figure 1.1.

In reference to this system overview, Stanton⁽²⁵⁾ has discussed some of the practical problems created by poor system maintenance and design, in spite of the availability of good measurement and computational equipment. Too many different hardware vendors for the system is cited as a common problem. It means proper interface support and protocol must be provided for data communication between field devices and control room equipment, and the digital computer.

Kane⁽²⁶⁾ also shared Stanton's view that poor maintenance of instruments can lead to costly experiences in a computer control environment. System technicians tend to overlook basic instrument

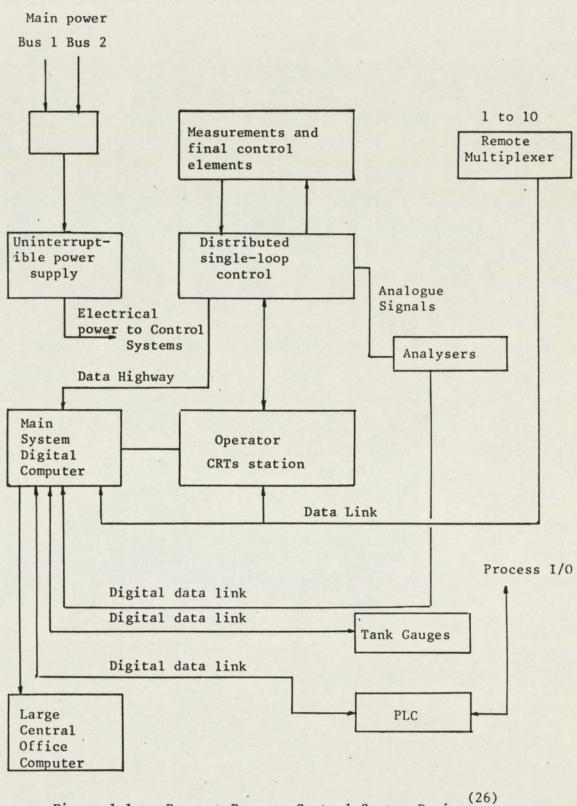
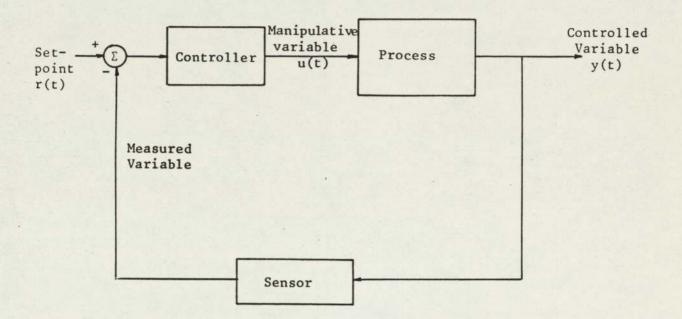



Figure 1.1. Present Process Control System Design.

engineering and the real reason for poor system performance could be that an orifice plate is not installed correctly, a potential ground loop is overlooked or placing turbine meter runs in vertical pipe runs.

1.3.3 The Basic Process Control Loop

A block diagram of the classical feedback control loop is shown in Figure 1.2. Basically, a good control system should have the following features.

Figure 1.2 Block diagram of the classical feedback control loop

a)	A good servo (set-point tracking) operation. Set-point			
	changes should be fast and smooth.			
b)	A good regulatory function.			
c)	The control algorithm should be robust and reliable in the			
	face of all possible disturbances and changes.			
d)	The controller itself should be reliable and easy to maintain.			
e)	The controller should be designable (tuneable) with a minimum			
	of information concerning system disturbances and the system			
	architecture.			

The PID control algorithm, expressed in analogue form, has been the trademark of the process control industry since it evolved from the ingenious design of bellows and linkage mechanisms in pneumatic controllers some fifty years ago. 90% of all such controllers are said to be Proportional + Integral (PI). From the standpoint of universality and stability, PI represents a standard by which new control forms (for example, direct digital control algorithms) are measured.

When a microprocessor is used as the controller, it is only natural to write digital control algorithms that simulate analog control laws, the discrete PID algorithm whilst adding more flexibility for control loop interactions such as ratio-, cascade-, and feedforward control. As Figure 1.3 shows that the individual controllers gains K_p , K_I , K_D can be made independent of each other although they now become a function of the sampling time, T. To avoid the effects of sudden changes in the

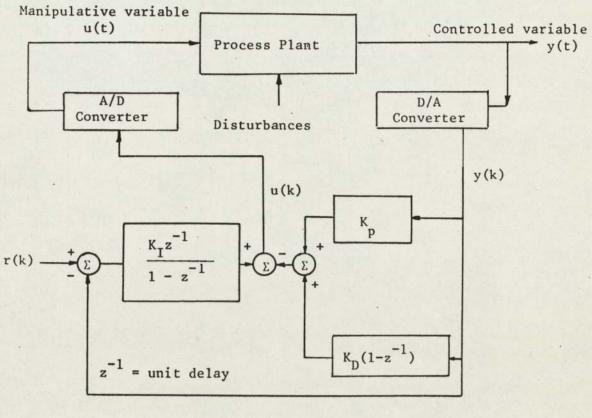


Figure 1.3 Direct Digital Control Loop (P+I+D)

- 17 -

manipulated variable when the set-point (remote supplied or internal) is suddenly changed (set-point and derivative kick), the set-point signal r(k) is only included in the I-action. With something like fifteen years experience in the PID-DDC algorithm implementation, it is reaching maturity. In all practical systems, the control algorithm must be packaged to provide certain key facilities:-

- 1. internal or remote set-point
- 2. bumpless transfer in auto/manual changeover
- 3. output control signal limiting
- 4. control signal conditioning
- 5. integral de-saturation and anti-reset windup
- 6. filtering of measured process variables
- 7. linearisation of measured process variables

Most analog controllers provide the first five facilities as standard and the last two facilities ought also to be included in any digital based control scheme. Figure 1.4 indicates how these facilities might be incorporated into a simple DDC package for a PID algorithm.

1.3.4 Recent Trends

It has often been said that the process industry has a good reputation for its tradition of holding off new technology. This cautious conservatism is to a certain extent acceptable for there is a need to safeguard vital and costly plant and equipment. New techniques do not really arouse practical interest unless they have a sufficient long and proven history of reliability. The other main reason is system component economics i.e. the analogue vs. digital trade-off. As a result of these two related factors, DDC never really challenged the primary controller market. Nevertheless, the experiences in implementing analogue and minicomputer-based systems have been invaluable.

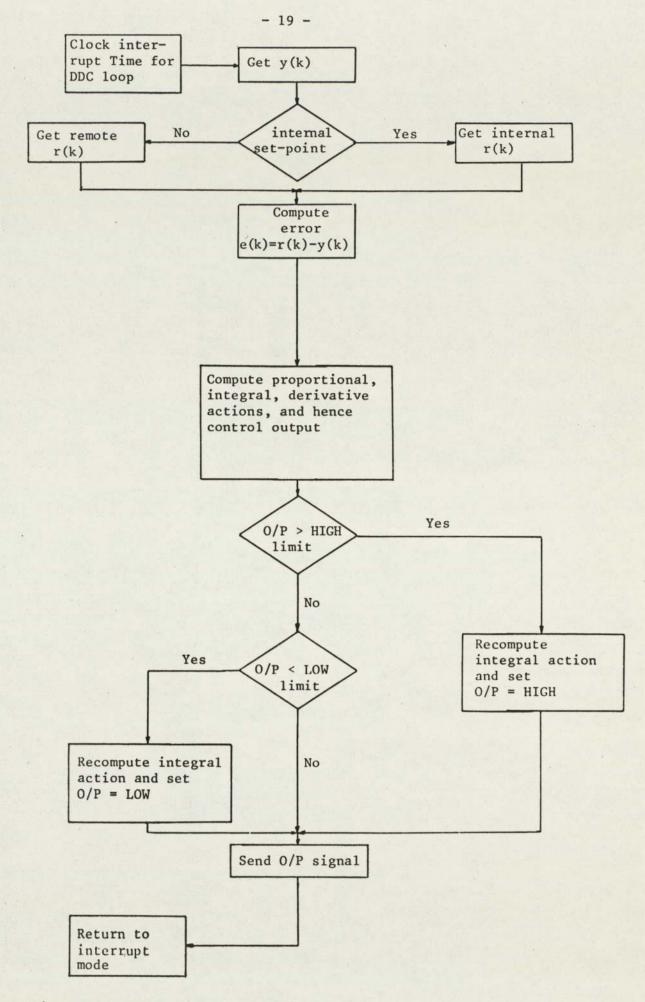


Figure 1.4 Flow Diagram of a Simple Digital PID Controller

Now that powerful microcomputing power is cheaply available and the increasing availability of suitable software, attitudes are beginning to change. The response has blossomed into two main directions:

- The development of stand-alone, single-loop digital controllers.
- 2. Distributed Digital Control Systems.

Because of the theoretical and practical implications (and the so-called theory-applications gap) involved in such concepts, it warrants paying each a closer attention.

1.3.4.1 Stand-Alone, Single-Loop Digital Control

Classical single-loop control is built upon a sound theory and a long history of industrial applications. It has also been the bastion of the conventional PID analogue, feedback controller. It is also true that the cost, size and reliability of the analogue controller is improving but the nature of the algorithms that can be realised remains unaltered. The use of the microprocessor removes this limitation and allows more complex control algorithms to be implemented with relative ease.

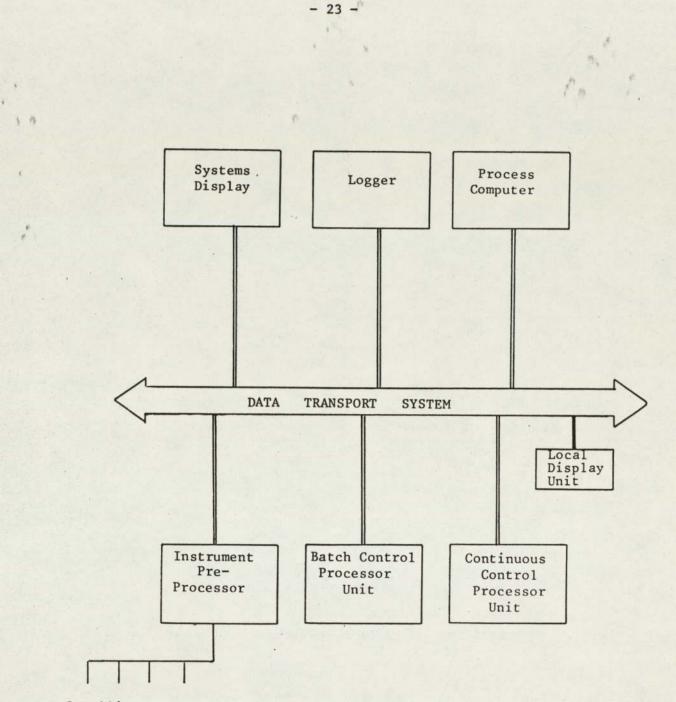
Stand-alone, single-loop digital (SASLD) controllers are systems which have no central control computer and would have otherwise used independent analogue controllers. Such a system is a general purpose application for which a degree of adjustment or programmability is required to meet the needs of specific processes. Some studies in hardware and algorithms applicable to stand-alone controllers can be found in the literature. ^(27,28,29)

A SASLD controller would not offer much advantage over its analogue cousin unless it is field programmable in a readily understood language (which would not be true if the controller is only ROM-based). Researchers in this field say that the SASLD controller can take up a computer format such as the Commodore's PET but with limited computing capability and memory to be economically attractive. Such requirements therefore place stringent requirements in the process models and control algorithms that can be used. These are as follows:

- The parameters of the process model must be directly related to easily measured and easily computed process properties.
- It must be possible to compute the controller parameters from the process model parameters with a minimum number of iterations.
- 3. The on-line control policy must be simple and fast.

Some modern digital control algorithms encompassing Finite-Time Settling Time (FTSC) and State Variable methods have been discussed by Anslander, et al.⁽³¹⁾ They suggested that any transcendential routines and floating point calculations should be implemented on hardware rather than software methods.

1.3.4.2 Distributed Digital Control Systems


This trend is more evident as reflected in various meetings and journals in the control and engineering industries as well as the product trends in the controller market. (30, 32-37) Actually, distributed control is not a new concept. Chemical plant complexes are inherently distributive in nature. The main agent of distributed control has in fact, been the analogue, feedback controller.

Distributed control is not a design concept. It is a control philosophy. In the early stages of process control, the instruments were located next to the process they were monitoring and the peripatetic control man (the controller in fact!) would take measurements from the local instruments, adjust handwheels to correct deviations of many process variables and report back to his central management when things go out of hand. Today, local microprocessor-based instruments and controllers can perform these tasks much more effectively and efforts are being made to manufacture sufficiently rugged devices to survive the hostile environmental conditions.

Some control system designs and implementations based on the distributed control philosophy have been reported.^(38,39) But above the level of direct or local (DDC) control, the systems do exhibit limitations. These include the ability to link to only one control operating system, and the dependence on one process computer.

A more general system design solution has been proposed by Kent Process Control Ltd.⁽⁴⁰⁾ A schematic diagram is shown in Figure 1.5. The system presents a 'Totally Distributed System' with total unit independence, functional and geographical distributions. The major benefits of such a design are as follows:

- A single element failure would not bring down a significant sized area of controlled plant.
- 2. Reduced cost and size of units by functional distribution.
- The system is expandable and contains no bottlenecks which restrict the data path or system operation.
- Reduced wiring costs and signal noise by geographical distribution.
- 5. Maximum autonomy of distributed units.
- System is evolutionary and can cope with changes in technology and market forces.

Intelligent Instruments

Figure 1.5 An Overview of a Totally Distributed System⁽⁴⁰⁾

The system is basically made up of three main elements - the management units and the process units, linked by a secure multipath communications highway. Management units include operating stations, loggers and process computers and are usually associated with control rooms and process management functions. Process units, which have been given a high degree of functional and supervisory powers for maximum autonomy, are normally located near to the plant they control. Physically, the process units are identical, but by implementing different software packages they can be used to carry out instrument pre-processing, batch or continuous control functions.

The system is also modular. Each module can support up to 32 management and process units in any combination to suit operational and managerial needs. Because these units can be located exactly where they are needed and instant total system access is possible, the system is said to be truly functionally and geographically distributed. Furthermore, the system can easily accommodate the SASLD controller discussed earlier. Some aspects of the control hierarchy of conventional DDC systems are also preserved.

It is believed that with improvements in data communications technology, and microprocessor support chips and software, such a system will be fully exploited.

1.4 Background to the Research Project

The Chemical Engineering Department of the University of Aston-in-Birmingham has had for some years a well developed interest in the real-time use of computers for data acquisition and processing and process control. The basic tool for these studies has been a Honeywell H316 minicomputer which through a Honeywell Analogue-Digital Input-Output System (HADIOS) has been linked to a number of items of process plant (distillation column, double-effect evaporator, resin manufacturing plant, chemical reactor, etc.).

Over the years, the original software has been developed and extended to support these applications. In particular, the BASIC interpreter has been modified to permit real-time use by a single user.

- 24 -

This is done via a collection of Assembly Language subroutines (the HADIOS Executive) callable from BASIC, to operate the various subinterfaces of the HADIOS. A Graphics Library (originally written in FORTRAN by Tektronix Inc.) is also provided. The system therefore allows the user to quite conveniently write and modify his BASIC program on the Visual Display Unit (VDU) or an ASR-33 Teletypewriter (TTY), literally next to his plant, conduct process monitoring or control experiments and plot his results.

More specialised applications such as multivariable control, on-line estimation and plant dynamics studies would require the user to write additional subroutines (FORTRAN and/or Assembly Language) to suit his particular application. Also, the computer core memory is only 32K and the user may have to use the floppy disk storage facility for some software overlaying.

More recently, the Department purchased a M6800 microcomputer system. Through its 8 I/O Ports the M6800 can be connected to a variety of external devices including ADCs and DACs. The software of the system is disk-based with a good operating system (DOS). Of particular interest is the SD BASIC Compiler which can be interfaced to M6800 Assembly Language subroutines and will run in an interrupt environment. The M6800 microcomputer system has been used for small real-time tasks such as data acquisition and processing from instrumentation but when compared with the H316, it is very limited in the number and variety of inputs it can handle and in its supporting software. Again, only one user is supported.

The project was initiated because it seemed worthwhile to investigate the feasibility of a linked twin processor system through which, for instance two users could share hardware and software resources or, alternatively two parts of the same task could be divided between the computer system.

- 25 -

It was thought that the logical 'initial assault' on the problem was to provide the M6800 microcomputer system with its own Executive program, similar in function to the HADIOS Executive, and interfaced to the SD BASIC compiler. And if the proper hardware arrangements and software protocol for the linked twin processor system can be established, the M6800 user would then have independent access to HADIOS and hence his plant. To do this, the author had realised that the existing HADIOS Executive would have to be considerably modified. For efficient utilisation of microcomputer memory and to retain the feature that on-line M6800 users would only need to write his programs in SD BASIC, the M6800 Executive would have to be written in M6800 Assembly Language. Since this level of programming is more hardware dependent than others and that the author had no previous contact or experience in writing such software, much of the initial effort was directed to acquiring the basic skills in the low-level programming of both processors.

1.5 Objectives of the Thesis

The primary objective of this research is therefore to develop a linked H316-M6800 twin-processor system for real-time data acquisition and process control. The system should be easy to use and sufficiently robust for the general user. Furthermore, the system should be flexible enough to allow two independent users to share hardware and software resources or, alternatively two parts of the same control or data processing task could be divided between the computer system.

Secondary objectives are basically the applications of such a general purpose package. These are as follows:

 To conduct practical demonstrations of the linked twin-processor system. The plant selected for this exercise is a distillation column. However, the package

- 26 -

should also permit the simultaneous access of two separate plants if desired.

2. To investigate the feasibility of constructing an advanced control policy based on an Extended Kalman Filtering estimation of the distillation column. The effort needed here is to design and implement a suitable filter for online estimation of several process variables and parameters, optimising where possible the advantages offered by the linked twin-processor facility. It is hoped that once an operational estimator is developed, an estimator-aided control policy can be implemented. In the pursuit of this particular objective, the Kalman filter's performance should be studied under simulated conditions. This means some modelling and digital simulation work on the Honeywell H316 minicomputer must be done.

- 27 -

CHAPTER TWO

APPLICATIONS OF MICROPROCESSORS

SOME OBSERVATIONS FROM A LITERATURE REVIEW

2. <u>APPLICATIONS OF MICROPROCESSORS - SOME OBSERVATIONS FROM</u> <u>A LITERATURE REVIEW</u>

The ubiquitous nature of the microprocessor in the field of control and instrumentation has already been introduced in Chapter 1. In this chapter, some observations from a broader look at microprocessor applications including several case studies, are presented.

A literature survey of microprocessor applications has been conducted to achieve the following objectives:

- A broad base appraisal of microprocessor technology and its impact on society and industry.
- 2. Discovering the potential uses of microprocessors.
- To have a good perspective of the various system design techniques used.
- To understand the problems that arise when using microprocessors.

It is not the objective here to elucidate every reported application as each is usually accompanied by its own specific case history and motivation. Besides, there are just too many to consider. It is better to categorise the applications on the basis of functional complexity i.e. on the degree to which the flexibility and computing ability of the microprocessor is utilised.

Also, many applications reflect the specific hardware architecture of the microprocessor used and in general, the person conducting such a survey should at least be familiar with the basics of the technology. Otherwise, the less obvious points may easily be overlooked. Several good texts^(41,42,43) are available for this purpose. 2.1

Overview of Microprocessor Applications

In an attempt to compile reported applications of LSI microprocessors and microcomputers for the period 1970-1974, Ward⁽⁴⁴⁾ managed to list only 97 references. Today, such a list would appear endless. As both the microprocessor industry and market began to be defined, new applications have appeared in a geometrical progression. It is already becoming difficult not to come across a microprocessorbased product on our way to work!

An early overview of microprocessor applications by Nichols⁽⁴⁵⁾ indicated that microprocessor usage was predominantly in the areas of industrial control and instrumentation, aerospace, computers and communication. Naturally, these cover military aspects as well. The picture is not much different today with perhaps an ever-increasing share going to consumer and business-oriented products. Microprocessors are also finding their way into products where electronics were not used before because the job could be done through electro-mechanical means. For example, they are being used to control traffic lights, household appliances and mixers. A person using a conventional elevator may soon find himself wishing a micro-chip to be in charge of lift operations.

Microelectronics has also allowed greater functional capability than would have been practical in previous design techniques primarily because the incremental cost for additional functions is very small in a microprocessor-based system. This has expressed itself most noticeably in the area of instrumentation where manufacturers are finding it practical to add such features as remote-control, autocalibration, programmability, improved read-out and peripheral interfaces with little impact on product price. The 4-bit processors are the most popular with such applications and because of the enormous size of the market, the 4-bit processors, especially the Texas Instrument TMS 1000,

- 30 -

have also dominated microprocessor sales figures (number of units shipped per year).

Towards the complex end of microprocessor applications, the 8and 16-bit microprocessors are normally used. Second and third generation 8-bit microprocessors not only form the basis of many popular microcomputer systems (Apple II, Sinclair ZX-81, etc.), they are also finding themselves increasingly embedded to reduce parts in a system and to enhance processing power. The most demanding data and word-processing applications however, require the power of the 16-bit devices. An application spectrum providing a quick perspective of microprocessor applications is found in an article by Biewer⁽⁴⁶⁾.

At the same time, the task of putting the general-purpose processor to solve specific problems fostered a host of supporting LSI peripheral chips which can be more complex than the microprocessor itself. Some like multipliers and arithmetic chips, are designed to enhance processing power; others like CRT and disk-memory controllers unburden the CPU from I/O chores. The newer generation of terminals and printers now have micro-based intelligence giving rise to more flexibility and local control, powerful displays and good quality prints. The more expensive VDUs often support high resolution animated graphics. But amid all the excitement, the production of software - the programs that tailor microprocessors to specific applications, could be the limiting factor in the proliferation of microcomputers. The situation is improving however, as many general-purpose microcomputer systems are now offering facilities with BASIC, PASCAL and also FORTRAN 77 and FORTH.

Detailed studies of a wide range of microprocessor applications abound in literature. The large amount of publications is also due to the fact that there are so many different types of microprocessor chips.

- 31 -

Often, a design solution is repeated with a different microprocessor architecture. A useful compilation covering the area of single chip controllers to more complex microprocessor systems is now available in book form⁽⁴⁷⁾. The editors, Capece and Posa, have selected the more outstanding articles in the literature and grouped them into nine sections which include topics like Signal Processors, Peripheral Support Chips and Software for Microcomputers. In the MIT Report quoted in Chapter 1, case studies in heating, ventilation and air-conditioning controls to sewing machines and medical equipment are presented. The study observed several conclusions which are also compatible with those of other independent initiatives. For example, it showed that the motivations for the incorporation of microprocessors in each of the products studied are highly varied. Also, the fact that standard hardware and components can be tailored to meet each user's special requirements is cited as a major factor in the widespread use of microprocessors. Microprocessor-based products gain another added value - it lies in the efficiency in design and/or manufacturing which arise from replacing hardware with software. Finally, the study showed that in many cases, product performance rather than product cost, became the prime consideration of most manufacturers.

Naturally it is impossible to cover all sectors of microprocessor utilisation although review papers are available. Randle and Kerth⁽⁴⁸⁾ discussed microprocessors in instrumentation and described a design for the IEEE Standard 488 (GPIB) Interface Bus. Leventhal⁽⁴⁹⁾ provided some solutions to the special problems found in aerospace applications and Klig⁽⁵⁰⁾ gave an account of biomedical applications. The main thrust of the following discussion is therefore in the field of industrial applications.

- 32 -

2.2 Industrial Applications

The dual nature of the microprocessor - a piece of microelectronics and a digital computer, provides the technological basis for widespread use in industrial environments. Since the micro chip is also a subset of a more general class of machines called Information Processors, its applications may also be viewed from the point of information handling. This can be broadly divided into data processing and control of industrial processes.

The data processing problem is one where large volumes of data are manipulated and the nature of the job may change from hour to hour. This is accomplished by using a system with a significant read/write memory and different programs to switch from job to job. The system demands the specialised techniques of program loading, interrupts, multi-processing and direct memory access (DMA), with the emphasis on productivity. Present microprocessors have shortcomings in satisfying the productivity requirement and make very poor computer replacements for data processing. The picture may change in the next few years if the trend in decentralised data processing continues. With better memory handling units, faster execution times and better software, medium size jobs may well be in the realm of the next generation of microprocessors. The emphasis is therefore on the control of industrial processes.

In an industrial situation, information taken from or transmitted to a process is usually of three types:

1. Analogue information:

2. Logical information:

for example, voltages delivered
by transducer measurements of
level, flow, temperature, etc.
contact closures or digital status
contacts (detection of high or
low levels, on/off etc.)

- 33 -

3. Digital information:

information supplied by digital output measurements which include pulse (flowmeters) and tacho-meter type signals (frequency, angular position, speed, etc.)

The microprocessor can handle these types of information in a variety of functional complexity. From the point of user interaction and system programmability, two general roles can be identified: dedicated and general purpose systems.

2.2.1 Dedicated Microprocessors

Dedicated applications include the microprocessor replacements of hardwired logic, digital filtering and signal processing, and dedicated controllers. They are usually application and I/O-oriented with no or little user programmability.

The advantages of microprocessor logic over analog-based and hardwired components in the context of the processing plant has been discussed by Weissberger⁽⁵¹⁾. Increased flexibility and performance realised by firmware modules (ROM-based programs), reliability, and reduced storage, power and cooling requirements are listed as among the potential benefits. For example, a microprocessor dedicated to alarm limit checking and data logging could replace analogue recorders and annunciators. Sophisticated analogue equipment such as summing units, multiplexers, multipliers, dividers, lead lag circuits, timers and relays can be implemented as software modules. Furthermore, pre-package routines are available if the user does not wish to indulge in assembly language programming.

The fixed requirement of dedicated control also defines precisely the logic storage needed. Such control designs require only ROMs and some scratchpad RAM to function. Often, dedicated control jobs can be done with less than 2K words of programmed logic. This has kept packaging requirements and costs to a minimum.

The need for greater flexibility has also led to the implementation of microprocessors as digital filters ^(52,53). Although analogue filters have improved from bulky LC circuits to IC devices, they could not offer the advantages created by microprocessor-based designs which include immunity of their responses from changing component values caused by temperature or ageing, availability at very low cut-off frequencies, exactly reproducible responses and compatibility with digital transmission systems. The last point is expected to increase in importance due to the accelerating use of digital techniques in communication systems.

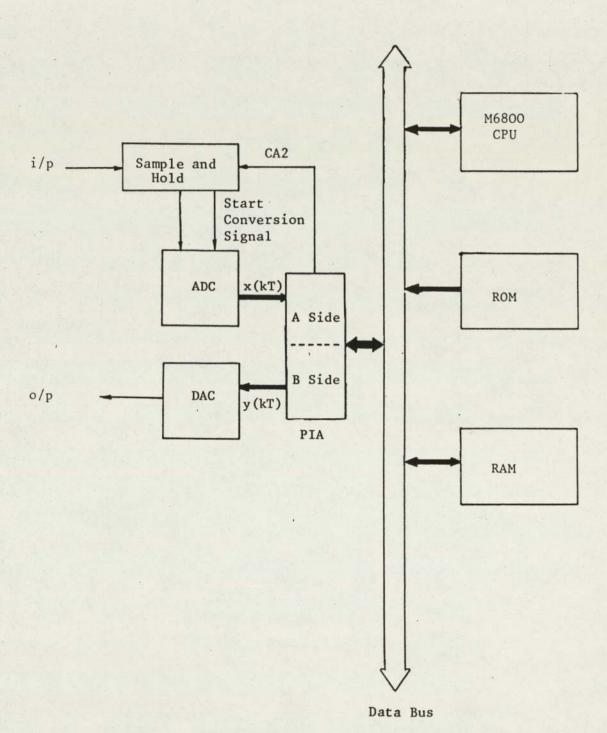
The implementation of a digital filter in a microprocessor is the physical realisation of a difference equation (the transfer function for the process). Microprocessors can easily be programmed to handle this as instruction sets usually have fast add, logical and shift instructions. Alternatively, the programming can be done via LSI hardware. An example of the first is reported by Allen and Holt⁽⁵⁴⁾ and a hardware filter fabricated in MOS LSI by Pye TMC has been described by Edwards⁽⁵⁵⁾.

The work of Allen and Holt warrants closer attention as it illustrates several aspects which are commonly encountered in microprocessor-based designs. The first consideration is speed which is of course not a restriction in analogue devices. The digital filter, like any sampled-data system, is band-limited in the sense that the range of frequencies it can handle is limited by the Nyquist sampling criterion. Thus, some form of approximation must appear when a digital equivalent of an analogue filter is derived. If filters with large

- 35 -

bandwidths are to be designed, then higher sampling frequencies are required which means programs must execute faster. Thus, on one hand filter characteristics can easily be altered (by changing coefficients in the difference equation), the advantage of flexibility is off-set by processor speed limitation.

The second problem is associated with wordlength. The digital filter was implemented on a M6800 based system incorporating an ADC/DAC and a Motorola Peripheral Interface Adapter (PIA) chip as illustrated in Figure 2.1. Note that the PIA A and B Sides have been programmed into an 8-bit input and output port respectively. A sampling interval of 1 ms is implemented by a software delay loop. At a sampling time, a CA2 control output is used to strobe the sampler which, upon obtaining a sample, holds it for its digital conversion. In the implementation of a low pass filter where the output y(kT) at time kT(T = sampling interval, k ε I where I is the set of non-negative integers) is given by:


$$y(kT) = aTx(kT) + exp(-aT)y([k-1]T)$$
 (2.1)

x(kT) is the input at time kT

a is the inverse of the time constant in the filter transfer function, a multiplication subroutine had to be written as the M6800 has no special instruction for multiplication. Furthermore in an effort to reduce program size and increase the speed of the filter program, the 16-bit products were rounded to one byte causing some random errors in the output.

Also, the decimal coefficients aT and exp(-aT) could only be represented by as multiples of 2^{-7} (0.0078125) as this is the smallest magnitude other than zero for an 8-bit binary representation. These round-off errors not only alter the filter's response but as the complexity of the filter increases, the effect of this rounding can cause

- 36 -

(54) Figure 2.1 Overview of a microprocessor-based digital filter system design

instability⁽⁵⁶⁾. Double precision arithmetic can be used but in this case the increase in program execution times makes it prohibitive.

The digital filter example clearly shows a situation where speed and accuracy can become critical factors in the evaluation of a design performance. As far as industrial signals are concerned, direct

- 37 -

microprocessor based signal conditioning and noise filtering is almost non-existent because an external, analogue pre-filter is usually required to eliminate signals above 5 Hz to prevent aliasing and interference from high frequencies which is possible in all sampled-data systems⁽⁵⁷⁾. In data acquisition systems, pre-filtering is usually accomplished using a first-order, low pass hardware (analogue) filter. Any additional filtering is then best achieved by digital (including microprocessor) means.

The low pass filter also suits the nature of industrial processes. Because our ability to control most industrial processes is limited dynamically (and the processes themselves change state slowly because of time lags and delays), we are primarily interested in signals that are meaningful in the low frequency range. High frequency signal variations can therefore be treated as noise and discarded. These are normally electrical pick-ups concentrated in the 60 to 120 Hz range when fluorescent lighting is present and measurement noise (0.5 to 100 Hz) as a result of causes such as turbulence around flow sensors. Process noise, as a result of disturbances due to the process itself ranges from .005 to 1 Hz, rarely higher.

Finally, microprocessors are finding themselves increasingly embedded in various environments as controllers and data handlers. Embedded systems are those incorporating a microprocessor (or microprocessors) to accomplish specific logical or control tasks without which the system could not function. Usually, the product user is not aware of the presence of microprocessor intelligence in his vicinity. Applications of these sort range from microwave oven control to complex data handlers as in CRT terminals and minicomputer peripherals (disk memory controllers for example). Single loop process monitors are also

- 38 -

of this category and because the computing requirements are straightforward, most applications involve the 4- and 8-bit processors only.

An example of the latter is a M6800 based flow monitoring system described by McKay and Gross⁽⁵⁸⁾ for use in oil fields and gas processing plants. Sampling is done via a ADC-8S analogue to digital converter and the system's firmware on initialisation accepts orifice factors, transmitter ranges, fluid specific gravities, etc. thus allowing installations in different process environments.

2.2.2 General-Purpose Microcomputers

The general-purpose microcomputer system can be viewed as a system which is fully programmable and usually employs standard peripherals such as VDUs and floppy disk storage. A variety of functions are supported including scientific and business applications to instrument control and industrial automation.

General purpose systems are supplied with high level software options and a host of other support chips. This allows the buyer to shop around for suitable software packages (BASIC, FORTRAN compilers, Assemblers, etc.) to suit a particular application. Programs can be written, run and saved on a floppy disk. Alternatively, the microcomputer can be linked to a mainframe where program development can take place. Then it can be downloaded to the microcomputer for execution. The micro-computer system offers conventional computing resources at a comparatively low cost, making it within the financial reaches of university departments and industrial research establishments. As a result, the situation has spurred many research and development efforts into microcomputer applications to chemical engineering problems. For instance, at a recent Symposium where an earlier version of the software

- 39 -

package developed in this work⁽¹²⁷⁾ was also described several applications of commercially available microcomputer systems were reported.

The first describes interactive process flowsheeting implemented in BASIC to run on a 32K Commodore PET⁽⁵⁹⁾. The authors claimed their results have shown that flowsheeting problems of significant size and complexity can be solved on a microcomputer although program execution time is admittedly slow. Another presentation described several applications of an Apple II microcomputer system⁽⁶⁰⁾. Three applications were mentioned: monitoring a lab-scale fixed bed reactor in an attempt to reduce and control SO₂ emissions during the start-up of a sulphuric acid plant, the use of a DISA fibre-optic probe as an instantaneous direct measure of the phase content in a gas-liquid bubbling system and lastly the reading of a photograph of a field of mixed black-white solids produced from a static mixture by a light-wand. Again, application programs were written in BASIC.

Practising process engineers are also experimenting with the benefits of personal computing. In one such exercise bordering on process design, a steady state simulator of a distillation column (up to 5 components and a maximum of 20 theoretical stages) has been written in interpretive BASIC by Sucksmith⁽⁶¹⁾. The simulator, called MICROCHEM, for a 5 component run using NRTL liquid-activity coefficients and Redlich-Kwong vapour fugacities, used 22K of RAM and took about 5 hours. It indicates that present microcomputers can solve substantial practical problems such as distillation design but do not have the speed needed for more complex applications.

Microcomputing has certainly found a home in chemical engineering. The real benefits are yet to be seen when more powerful

- 40 -

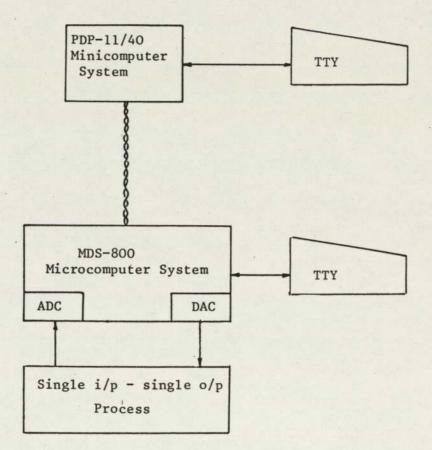
16-bit devices and supporting software become fully integrated. In the mean time, there is considerable interest in implementing advanced control policies and an increasing commitment from industrial controller manufacturers to the need of programmable, microprocessorbased process controllers. The feasibility of applying modern controller designs will be looked at first before going on to a survey of several industrially proven microprocessor-based process controllers.

2.3 Implementation of Advanced Control Algorithms

Unlike the conventional analogue PID controller, the digital controller is easily configured to handle advanced, multi-variable and adaptive control algorithms. The development of the microprocessors has given further impetus in this direction. It is now economically possible to implement sophisticated control strategies ⁽⁶²⁻⁶⁴⁾.

One area which has caught the attention of microprocessor control designers is the development of self-tuning controllers. These controllers are designed to overcome the rather subjective tuning difficulties associated with conventional controllers and also to remove the heavy dependence of other digital controller designs on accurate plant models. The self-tuning regulator has been applied successfully in several industrial processes ⁽⁶⁵⁻⁶⁸⁾.

An early feasibility study of microprocessor-based self-tuners was detailed by Clarke et al. in 1975⁽⁶⁹⁾. In a way, it was a response to the original self-tuning regulator of Astrom and Wittenmark⁽⁷⁰⁾ of 1973 which stimulated considerable interest as adaptive performance was shown to be possible with a relatively modest computational requirement. However, the design lacked flexibility in that the program was written in a 'medium-level language' which needed a macro-assembler for its generation, and hence was difficult to modify 'on site'. As a result,


- 41 -

a second microcomputer system was built, also based on the 8-bit Intel 8080 processor, to achieve system portability and providing a high-level language suitable for control. In view of the range of parameter values likely in self-tuning applications, the authors decided to represent numbers in floating point format comprising 3 bytes (7 for exponent, 16 for fractional part). As the 8080 has no overflow flag, the eighth bit of the first byte acts as a 'guard' bit for overflows. Hence values in the approximate range $\pm 10^{\pm 19}$ can be stored to a precision of 4½ decimal digits. Clarke and Frost⁽⁷¹⁾ also developed a new high level language called Control BASIC which is used with the self-tuner. The system has been applied to several pilot plants including a batch chemical reactor and effluent pH control.

More recently, Sheirah et al.⁽⁷²⁾ reported what they described as a Universal Self-Tuning Controller. An initial design was built using 8-bit M6800 microprocessor components but it was found that the configuration limits the accuracy of computations. To improve on the accuracy, the software was re-written in 32-bit floating point arithmetic on an Intel 8085 microcomputer. Floating point numbers are therefore in the range $\pm 3.4 \times 10^{38}$ and the integers in the range $\pm 215 \times 10^7$ giving better results but at nearly ten-fold increase in computation time.

The design and implementation of an adaptive, identifier-based, single-loop controller using an Intel 8080A-based Microcomputer Development System (MDS) 800 is found in the work of Baradello⁽⁷³⁾. Using a prototyping tool schematically shown in Figure 2.2, microcomputer programs were written on the PDP-11/40 using cross-assemblers and simulators, downloaded into the MDS-800 only for final verification. The software floating-point package used operates on real numbers represented by 3 bytes (1 bit for sign of number, 1 bit for sign of exponent, 6 bits for the exponent and a 16 bit mantissa). Typical addition and

- 42 -

Figure 2.2 Single-loop Controller Prototyping Tool⁽⁷³⁾

multiplication required 0.4 and 1.2 ms respectively accurate to [±] least significant bit of the mantissa. However, real-time results were limited as the 'chemical process', up to 3rd order, was simulated on an EAI-TR2O analogue computer.

In another research effort, Jensen⁽⁷⁴⁾ employed an M6800 microprocessor not only to identify but also to control to a set-point a distributed parameter system consisting of an insulated copper rod with variable heat flux at one end and a measurement at the other. A discrete-time model of the thermal system was integrated into an observer formulation where optimal control is achieved using feedback estimates of the states. A least square technique was used to perform the on-line identification. Jensen strictly adhered to assembly language programming in formulating both the identification and control algorithms. Subroutines were written to perform 32-bit floating-point arithmetic in conjunction with a hardware multiplier, add and multiply vectors and matrices, for solving system equations using Gaussian reduction, and transposing matrices. According to Jensen, the assembly language route was chosen to break the tradition of under-utilisation of microprocessors by high-level programming which sacrificed speed and memory with no apparent improvement in the quality of the control effort.

2.4

Industrial Microprocessor-based Process Controllers

The relatively slow response of the process control industry in the use of microprocessors in the control of chemical plants has been discussed earlier. Nevertheless, the upward trend in computer control is certainly there. Despite the economic recession, a study of process control equipment markets in the United States⁽⁷⁵⁾ indicates a trend of 11.4% in the annual growth rate of process control computers and 32% for programmable controllers for the period 1981 to 1985.

Several reviews of the process controller market have been reported in the literature (36,76,77). In general, the surveys indicate that the combination of analogue and conventional digital computer control is dominant. An example in the ac₂ (analogue control centre) marketed by Fisher Controls Company, which is designed to sandwich with their dc₂ (digital control centre) and supported by a modified basic programming called pc₂ program. Although each of these packages can cost up to 1500,000, Fisher Controls claims to have installed this process controller hardware/software in more than 600 plants with about 1000 loops in diverse industries. For a detailed survey of other industrial products including

- 44 -

their costs range, Reference 77 should be consulted.

More specifically, microprocessor-based controllers have also appeared partly in response to changing trend in control system design and philosophy. Among the earliest to move away from centralised DDC is Honeywell Inc. who first field-tested their Total Distributed Control system TDC-2000 in 1975. The basic unit of the TDC-2000 is the Basic Controller, which comprises eight microcomputers (or computational slots) based upon the 16-bit CP 1600 microprocessor, which can be programmed from a control centre using any one of the 28 algorithms available. These include all functions associated with conventional instrumentation as well as computational devices from 1, 2 or 3-mode controllers with or without cascade or ratio to square root extraction, alarms and auto/manual switch. Currently, the TDC 2000 is an 8-loop shared controller although Honeywell Inc. is believed to be working on a 16-loop version. These controllers can be distributed around the plant as operational substations and linked to a control centre by a data highway. For these reasons, the manufacturer claims that the TDC-2000 is the first complete multimicroprocessor system to incorporate all the necessary aspects in a unified design and could therefore be considered a paradigm of future development in this field. The fact that by the end of 1978 several hundred TDC 2000 systems had been delivered involving more than 20,000 loops is an indication of its popularity.

Current industrial controllers basically offer similar facilities differing only in programmability, special functions and number of loops catered. The Mod III introduced by Taylor Instrument Limited was the first system to introduce an adaptive gain module for controlling non-linear parameters. The ACCO Bristol's microcomputerbased UCS 3000 offers conventional control algorithms as well as advanced

- 45 -

ones. For example adaptive control and optimisation can be implemented by the user. For this purpose, the UCS 3000 is equipped with a 16K RAM, and an EPROM module for the relatively fixed schemes.

However, many of these controller packages may not be suitable for certain process design requirements. In these cases, the companies concerned may prefer to carry out in-house developments using vendor supplied components instead. Monsanto Co. has described a M6800-based single loop controller for a simple temperature control application⁽⁷⁸⁾. The system's control software resides in a 2K byte ROM and process variables are stored in a 128-byte RAM. A watchdog timer circuit shuts down the loop if the controller malfunctions. In its remote control mode, the controller can be addressed by a PDP-11/03 supervisory computer which provides new set-points, alarm-limits and tuning parameters. Another development was applied to pH control⁽⁷⁹⁾, always a difficulty with conventional analogue controllers due to the severe non-linearity of the neutralisation curve.

More complex industrial applications have also been reported by Mitchell⁽⁸⁰⁾ and Langill, et al.⁽⁸¹⁾. After having failed to find a suitable system on the market, Mitchell described how the Amoco Texas Refining Co. employed a M6800 microprocessor to control a cooling tower chemical addition and a Texas Instruments 990/4 microcomputer-based control of a cool-down cycle of a refinery coking unit. Langill described how microprocessors were used in a petroleum wax and sugar refinery recovery operations.

2.5 Problems in Using Microprocessors

The literature survey has shown that the microprocessor has brought both the era of opportunities and also of problems. This is because microprocessors are a new technology and for the first time

- 46 -

hardware and software is integrated into a single formation. Users are therefore introduced to the need for different methods of working. The problems of using microprocessors has been discussed by Carter⁽⁸²⁾. This award-winning paper identifies the technical, manpower, commercial and sales and marketing aspects as problem areas but the treatment is only general. In fact, it is difficult to be specific as a difficulty encountered in one application may not be the case in another. This section builds upon the perspective generated by Carter's paper by giving some examples reported in the literature survey. The biggest single problem is software and this will be considered first.

2.5.1 Software Aspects

The generation of suitable software has not only been a major difficulty but has also captured the largest share of the costs in many implementations of microprocessor technology. The early users of microprocessors especially found developing and implementing programs difficult and expensive partly because microprocessor hardware design was at its infancy and did not take into account of software requirements and partly because of the lack of suitable software development tools.

Basically, there are three major software bases as described by Crutchley⁽⁸³⁾ in his four-part tutorial paper on microcomputer control. These are:

	process control language	-	nign-level, user-oriented,
			requires minimum programming
			skill.
•	standard high level	-	FORTRAN, BASIC, PASCAL, etc.
	programs		Its effective use requires

skilled programmes.

processor time and memory but

assembly language - allows efficient use of

- 47 -

users must learn how to program the particular processor.

Many companies already offer software based on process-control language which usually includes program linking and de-linking capabilities, a library of control and display programs and conversational input routines by which the user can easily build and modify control and Standard high level software is relatively rare on the other routines. industrial microcomputer scene as it usually requires more memory and not economical on 8-bit systems. Although a recent survey (84) of 400 leading American organisations in the instrumentation and control field was reported to have shown that FORTRAN at 50% usage still dominates the language bazaar of industrial multi-user systems (20% use PASCAL, 15% use C-language, 10% use assembly language and 5% others), this standard software is only likely to flood the scene when fully-developed 16-bit microcomputers become available. Until then, many users would have to invest considerable time and money learning to program in assembly language or buy vendor supplied ROM-based modules. In general the nature of the application and user resources dictate the software base to be used.

The literature also suggests that although process inputs (to the microcomputer) of 8 or 12-bit resolution (about 1 and .05% respectively) are generally satisfactory as transducer accuracy is rarely more than that, the internal representation of numbers operating on these inputs often require 3 or 4-byte floating point representation. This is particularly true when 8-bit microprocessors are used to implement advanced control strategies as in the case of self-tuning and identifier-based adaptive controllers. The cost has been increased user

- 48 -

program development and machine execution times. The trend however, is encouraging. Changes in microprocessor architecture and increased availability of supporting hardware chips are expected to create a more efficient high level software base for process control.

2.5.2 Hardware Selection

Hardware selection (microprocessor and supporting ROM, RAM and I/O chips) can be a nightmare if the user fails to calculate his system needs carefully. One of the biggest problems is at what level to start as microprocessor hardware is normally supplied at chip, board and system levels. Chip level is cheap to get started but the user must have the proper resources of design and technical support. Even here, choosing a suitable microprocessor is highly subjective. In particular, there is very little guideline on the relative difficulty in using different microprocessors for process control except, to the author's knowledge, in the research work of Dickey⁽⁸⁵⁾. By using a set of 5 kernel programs said to be representative of computational tasks in process control systems, he developed a method of rating 6 microprocessors (M6800, Intel 8080, MCS 6502, IMP-8, Fairchild F8 and COSMAC 1801) in terms of relative difficulty of programming them in assembly language code. The method is based on measuring the logical complexity of each microprocessor instruction repertoire. Dickey's results, though a limited one, showed that the complexity measure of a microprocessor can be directly determined from a formal instruction set. In this ensemble, the M6800 was found to be the least difficult to program but in practice, other factors such as market rating, software and peripheral support and cost are the deciding factors.

The applications mentioned in this chapter emphasised mainly 8-bit microprocessors. This is partly because they were the first to affect the process control industry in a big way and partly because they are more

- 49 -

readily available with generally acceptable performances. When compared to 16-bit machines, they can be more efficient, on a bit for bit basis, in using memory. Ultimately, the choice of an 8 or a 16-bit processor becomes secondary when what really matters is the total system performance and features available.

2.5.3 System Integration

At the lower levels of the process control hierarchy where the microprocessor is currently more suitable, the microprocessor must be integrated into the analogue environment. The process of translating analogue signals into digital ones (and vice-versa) is likened to a process with some kind of transfer function. Thus, the discretisation process not only resulted in some loss of information but makes digital devices always slower than their electrical analogue counterparts.

Interfacing is another major problem area. The electrical interface is partially solved by making TTL compatible hardware but microprocessor designs have been known to suffer from electrical and radio frequency interferences. In many applications, filters and circuits were located near the sensors to minimise noise communicated to the microprocessor. But the greatest difficulty in microprocessor application design appears to be in the interfaces between the microprocessor and the mechanical parts of the system. Designing sensors and actuators is particularly demanding as it requires an intimate knowledge of how the system must perform. This perhaps explains why many firms have found that training their existing technical people in electronics is more desirable than attempting to bring in people expert in microprocessors and familiarise them with the user's needs.

2.5.4 Economics and Manpower

The main attraction for microprocessors has been the low cost for a given performance. But the overall cost in an application depends on a variety of factors including back-up instrumentation, equipment consolidation, peripherals and manpower training costs. Microprocessor controllers have often been said to be more flexible than conventional PID controllers. If we are talking about choosing between DDC and a PID controller, then the above comparison is not practical. This is because in practice, most computer-controlled plants have computer compatible analogue controllers which take over when the computer is down for maintenance or some other reasons. The situation is thus that microprocessor-based control is not justified on DDC only - the flexibility of DDC is just a handy advantage on going to computer The bulk of the credit in microprocessor-based control comes control. from the extra benefits generated by its programmed facilities. This would include communication with a supervisory computer, a richer loop information and status display or variable trend recording or some other background processing.

Applying microprocessors therefore needs appropriate manpower support if they are to bring in the maximum benefits. Two key figures - the design integrator, a person who knows a lot about the process or nature of the application, and the 'creative programmer' or software designer. Much of the long-term success of an application depends on the efficiency, versatility and reliability of the software created for the application.

2.6 Conclusions

The literature survey has shown that the technological basis for the application of microprocessors is already firmly established. However, the pace in the process control industry where the essence has been "that computers should control and controllers should compute" has been relatively slow although this is expected to change when better software support and 16-bit computers become readily available.

Microprocessors also introduce new difficulties and the need for different methods when developing a system design. Starting from chip level and programming in assembly language get the maximum out of a microprocessor but the user must supply adequate staff support. The learning curve with microprocessor-based designs is steep and it is wise to experiment on the gentler slopes first.

Generally, whenever the microprocessor is being applied, it has shown itself to be a cost effective alternative. However, many outstanding difficulties still remain. These are software development costs, interfacing problems and manpower/microprocessor productivity. CHAPTER THREE

DEVELOPMENT OF A LINKED HONEYWELL H316-MOTOROLA M6800 TWIN PROCESSOR SYSTEM

DEVELOPMENT OF A LINKED HONEYWELL H316 - MOTOROLA M6800 TWIN PROCESSOR SYSTEM

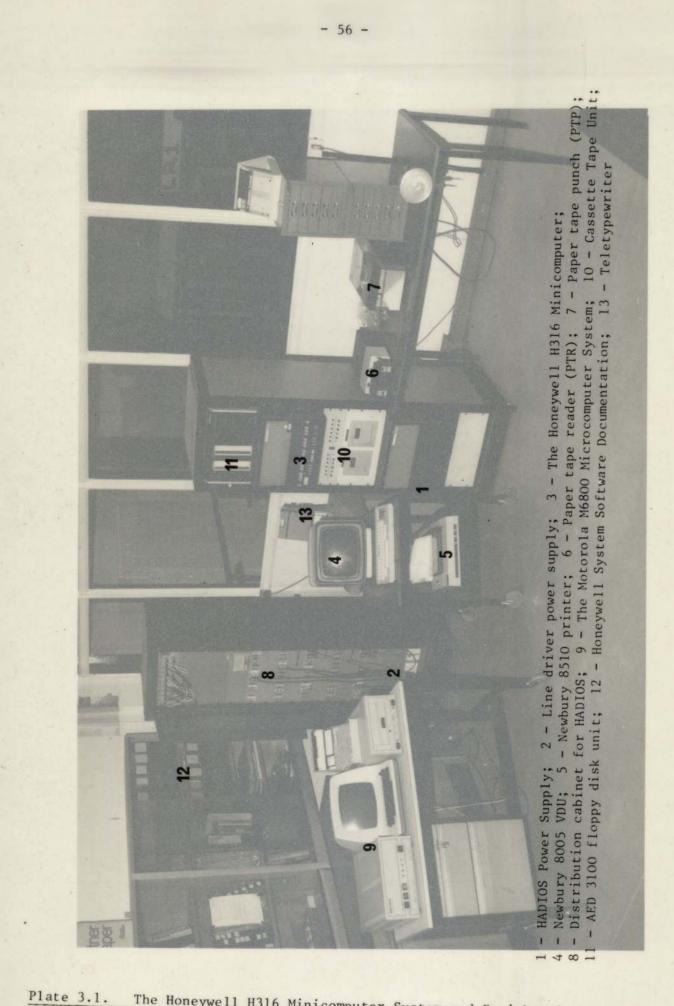
3.1 Introduction

Central to system design and program development in this research are two departmental general-purpose computer systems: a ferrite core 16-bit Honeywell H316 minicomputer system and a semiconductor-based 8-bit Motorola M6800 microcomputer system. Clearly, the two computers not only differ markedly in size, speed, system organisation and cost but needless to say, each has been a product of a different age in the evolution of computer technology. Originally acquired in the late sixties, the Honeywell 316 minicomputer system has now expanded to include the Honeywell Analogue Digital Input Output System (HADIOS) as its primary data acquisition facility. It is well equipped with supporting software and has been used in both batch scientific and real-time data acquisition and pilot plant control work. The M6800 microcomputer system on the other hand, was acquired in kit form and assembled in the late seventies, has less extensive supporting software and utilisation but nevertheless is sufficiently equipped with additional logic and peripheral interfaces for real-time data acquisition and control work.

This chapter concentrate^s on the hardware architecture of both computer systems, the peripheral and interface devices, and finally the linking of both machines to form what will be described as the linked H316-M6800 twin processor system. The design and development of a feasible software protocol for the operation of such a system will be described in the next chapter.

- 54 -

3.2


The Honeywell H316 Minicomputer System

The Honeywell H316 is a second generation digital computer designed for both open shop and batch scientific applications and real-time on-line data processing and control. Its modular design, flexible I/O structure and command repertoire enables it to be tailored to a broad variety of applications both on- and off-line. The departmental Honeywell minicomputer facilities have expanded considerably from its basic configuration in a mainframe, a control panel and an ASR teletypewriter, to include a variety of peripheral devices and the HADIOS which can be linked to pilot plant signal conditioning boxes. The variety of applications has therefore included data reduction and formatting, process control, instrumentation, simulation and batch scientific and engineering computation.

3.2.1 Central Processing Unit and Peripheral Devices

Plate 3.1 shows the Honeywell minicomputer and peripherals as seen in the computer laboratory. A simplified block diagram of the CPU indicating the data storage registers, the control units and the I/O controls is shown in Figure 3.1. The random access memory shown as a single block, is a magnetic core store consisting of four modules of 4096 (4K) 16-bit words. The computer uses two's complement machine code, has a memory cycle time of 1.6 µs and I/O data handling at a maximum word rate of 156 KHz/s. Table 3.1 describes the functional units of the CPU and its I/O controls and Table 3.2 summarises the minicomputer's leading characteristics.

- 55 -

The Honeywell H316 Minicomputer System and Peripherals

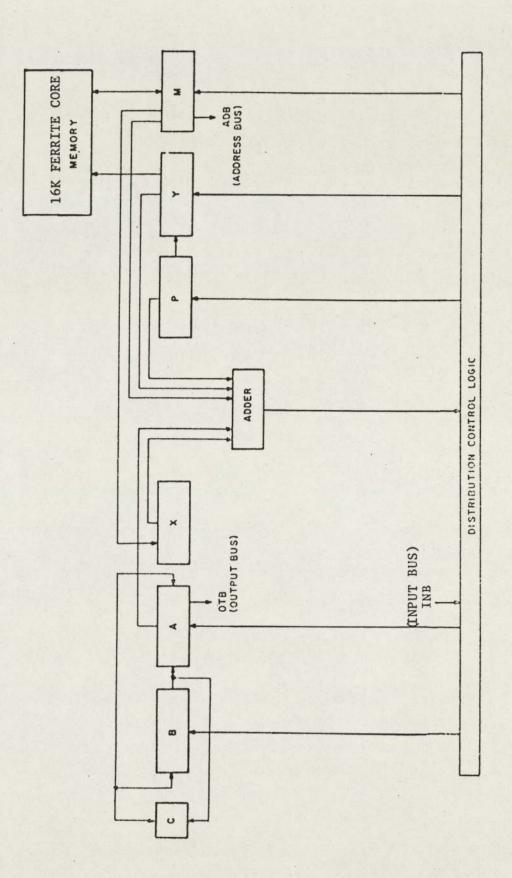


Table 3.1 Functional Units and I/O Controls of the Honeywell H316 CPU

A-Register (A)	A 16-bit primary arithmetic and logic register of the computer.
B-Register (B)	A 16-bit secondary arithmetic and logic register used primarily to hold arithmetic operands which exceed one word in length.
Adder	Performs the basic arithmetic processes of addition and subtraction.
M-Register (M)	A 16-bit memory buffer register used to transfer information to and from the core memory.
P/Y-Register (P/Y)	A 16-bit memory address register used to store the address for the memory.
C-bit (C)	A 7-bit indicator associated with the A- and B-registers that stores overflow status resulting from the execution of arithmetic instructions and stores the last bit shifted out of the A- or B-register during the execution of shift instructions.
Index Register (X)	A 16-bit register used for address modification. Usually, any memory write cycle addressing memory location zero also loads the X-register.
Output Bus (OTB)	Sixteen lines that transmit data from the computer A-register to an I/O device.
Input Bus (INB)	Sixteen lines that transmit data from an I/O device to the computer A-register.
Address Bus (ADB)	Ten lines used in conjunction with I/O devices. Bits 7-10 define the function to be performed by the I/O device. Bits 11-16 designate the I/O device to be used.

.

Primary power	425 watts, 5.5 amps. at 115 vac ± 10% at 60 ± 2 Hz
Туре	parallel binary, solid state
Addressing	single address with indexing and indirect addressing
Machine code	two's complement
Circuitry	integrated
Signal levels	logical ZERO: O volts logical ONE : 6 volts
Instruction complement	72 instructions (See Table A3.1, Appendix 3)
Memory Cycle Time	1.6 µs
Speed, Add Subtract Multiply (optional) Divide (optional)	3.2 μs 3.2 μs 8.8 μs 17.6 μs
Standard memory	16K core organised in 512-word sectors
Memory Type	Coincident-current ferrite core
Standard interrupt	single standard interrupt line
I/O Modes	single word transfer single word transfer with priority interrupts
Standard I/O lines	10-bit address bus (4 function code, and 6 device address), 16-bit input bus, 16-bit output bus; external control and sense lines
Environment	room ambient temperature for computer less I/O devices: O-45°C
Weight (less console)	120 pounds
Dimensions	17.88 in. x 24.5 in. x 14 in.
Cooling	filtered forced air

Table 3.2 The Honeywell H316 Leading Characteristics

To date, the Honeywell minicomputer can support the following peripheral equipment:

- A Tektronics 4010-1 VDU. This unit is capable of both graphical and character display. In the alphanumeric mode, it operates at a rate of 200 baud. Attached to the VDU is a hardcopy device which produces permanent copies of the display when these are required.
- An ASR teletypewriter operating at 10 characters per second (cps).
- 3. A high speed paper tape reader operating at 200 cps.
- 4. A high speed paper tape punch operating at 75 cps.
- A magnetic tape cassette unit, used for both input and output at a rate of 375 words per second.
- 6. An AED 3100P floppy disc storage unit.

More recently, several Newbury Model 8005 terminals and Model 8510 desk top dot matrix serial impact printers were acquired by the Department. These products are good examples of the impact of microprocessor technology as both contain ROM and RAM chips to provide greater intelligence, storage, and adaptability than conventional analogue or programmable logic-based devices.

The Newbury terminal has four modes of operations ranging from the standard alphanumeric I/O to graphical input mode. Local display and editing functions are provided to enhance page formatting and labelling. A RS232-based interface adapter with a smaller range of baud rate (110 to 9600) has been built at the minicomputer end to accommodate any one of the Newbury terminals. The terminal emulates the Tektronix VDU but with poorer screen resolution.

The printer is linked to the VDU through its own RS232 port and can also serve as a data communication terminal and a hardcopy unit for VDU displays (for example, Graphics). Printing speed is 100 cps.

3.2.2 System Software

The definition of system software here is extended to include not only those programs supplied by the computer manufacturer (utilities, monitors and control programs) to control the operation of the computer but also any other standard software package provided by the computer manufacturer, instrument and interface manufacturers or organisations specialising in software. These may include language compilers, object loaders, I/O and library subroutines and operating systems. As a rule, system programs do not exactly meet the requirements of a specific computing objective so application programs are written, very often by the user himself. Application programs may or may not incorporate modified versions of available system software packages.

FORTRAN Compiler

The Honeywell FORTRAN IV compiler has been produced for 16-bit computers according to the American Standards Association specifications.⁽⁸⁶⁾ Normally, source programs are prepared using the Honeywell Text Editor in standard format. Object code output is normally directed to paper tape punch in relocatable mode.

DAP-16 MOD 2 Assembler

To avoid programming directly in machine code, a symbolic assembler, DAP-16 MOD 2, is provided by the manufacturer.⁽⁸⁷⁾ The assembler is a 'one for one' language, i.e. one symbolic instruction corresponds to one machine code operation, except in the case of pseudo-operations, which request action by assembler rather than

- 61 -

specifying an operation code. Assembly language programs are invaluable tools in writing real-time software packages or patching existing system programs to meet user/application requirements. Paper tape source programs are prepared using the Text Editor and usually assembled in the two-pass mode. Assembler and FORTRAN object code outputs are fully compatible. Tables A3.1 and A3.2 in Appendix 3 summarise the DAP-16 MOD 2 assembler language mnemonics and pseudo-operations respectively.

Object Leader

The object code produced by the DAP-16 assembler or FORTRAN compiler is processed by the object loader to form a core image in memory. As an instruction word of 16 bits requires 4 bits to represent a sufficient number of operands and a further 2 bits for indirect addressing and indexing, the maximum number of locations that can be accessed by direct addressing is 2^{10} (1024) or two sectors - the current sector of the instruction and usually the lowest sector in memory (base sector). By indirect addressing, the maximum number is 2^{14} (16384) as the index and indirect addressing bits are still required. This limitation means the user must have a reasonable assessment of cross-sector links acquired for a successful loading.

The loader therefore operate in two modes. In the desectorising mode, the loader handles all intersector references by generating indirect address links where necessary. These links are usually located in base sector, unless the assembler program specifies a location elsewhere by the SETB (Set Base) pseudo-operation. In the load mode, the loader assumes all intersector links are handled by the assembler program.

A successful loading generates a memory map indicating memory utilisation and program segment length and location. The core image may then be punched out as a self-loading system tape (SLST) using a

- 62 -

punch utility PAL-AP, stored on paper tape, cassette or stored on a floppy disc.

It was envisaged at the early stage of program development that much of the software to be used will occupy low and high sectors of H316 memory. A suitable self-contained loader, LDR-APM Rev. E, occupying locations '13050 through '16577, was therefore constructed. (See Section 3.1 of Appendix 3.)

BASIC-16

BASIC-16 is the Honeywell version of BASIC for 16-bit processors with memory size 4K or more. Interpretative in operation, the compiler provides the user with an interactive, problem-orientated high-level language. In standard form, communication with BASIC is from the teletype but a machine code modification permits I/O via the paper tape reader and punch.

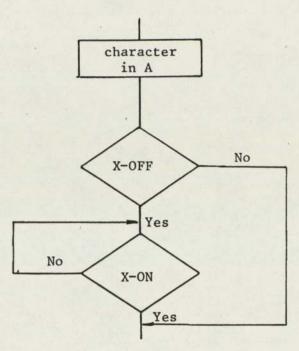
An important refinement provided in BASIC-16 is the CALL statement, which enables up to 10 FORTRAN/DAP-16 subroutines to be accessed from a BASIC program. The general form of the statement is

ln CALL (sn, a1, a2, ..., an)

where

ln is the statement line number

CALL is the statement operator


sn is the subroutine reference number (1 to 10)

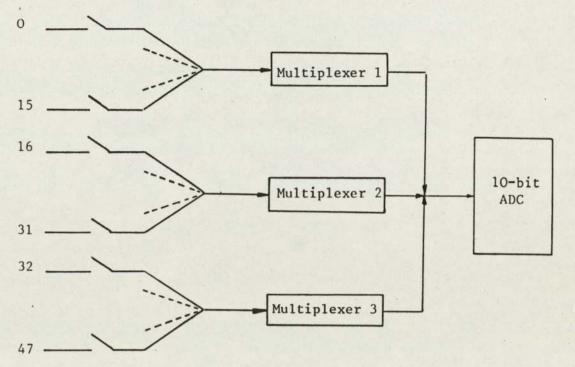
a1 to a are arguments to be passed to the subroutine called.

3.2.2.1 Machine Code Patch for use with the Newbury terminal and printer

A software patch was found to be necessary for satisfactory use of the Newbury terminal and printer. The flowchart shown below, puts the H316 in a waiting loop on sensing a 'VDU busy' signal from the

- 63 -

terminal. This 'busy' signal (X-OFF character) can be initiated by the printer if its input buffer is full. On receiving a 'ready' signal (an X-ON character) the H316 exits the waiting loop to proceed with normal program execution. In this way, no information is lost during printing. An example of its use with the H316 Text Editor is shown below.


Location	Mnemonic		Machine code
1:1270	TEST DAC	**	000000
11271	STA	TEMP	04 1 311
11272	OCP	14	14 0 004
11273	INA	1004	54 1 004
11274	JMP	* −1	01 1 273
11275	CAS	XOFF	11 1 312
11276	SKP		100000
11277	SKP		100000
11300	JMP	CONT	01 : 307
11301	INA	1004	54 : 004
11302	JMP	* −1	01 1 301
(1303	CAS	XON	11 1 313
11304	SKP		100000
11305	, JMP	CONT	01 1 307
1130.4	JMP	*-5	01 1 301
11307	CONT LDA	TEMP	0:2 1 311
11310	JMP*	TEST	-0: 1 270
11811	TEMP BSZ	1	000000
(11312	XOFF OCT	223	000223
11313	XON OCT	221	000221

3.2.3 The Honeywell Analogue Digital Input Output System (HADIOS)

The HADIOS hardware basically consists of a controller, connected to the I/O data and control lines, which generate subsidiary data, addresses and controls for up to 15 different subinterface cards. These subinterfaces can be analogue or digital devices and input or output. As Figure 3.2 schematically shows, the HADIOS is the main interface between the computer and a wide range of I/O devices in on-line applications. The HADIOS devices used are as follows:

3.2.3.1 High Level Analogue Inputs

This subinterface consists of a single channel analogue to digital converter (ADC), with a maximum conversion rate of 40 kHz, and connected to three 16-channel multiplexer units. Hence, there are 48 analogue inputs and these are numbered from 0 to 47. Figure 3.3 illustrates this schematically. The input signals (0 to 5 volts) are converted to a binary integer with ten bits resolution i.e. 0 to 1023. Sample and Hold Channel

Figure 3.3 The Analogue Inputs Subinterface

- 65 -

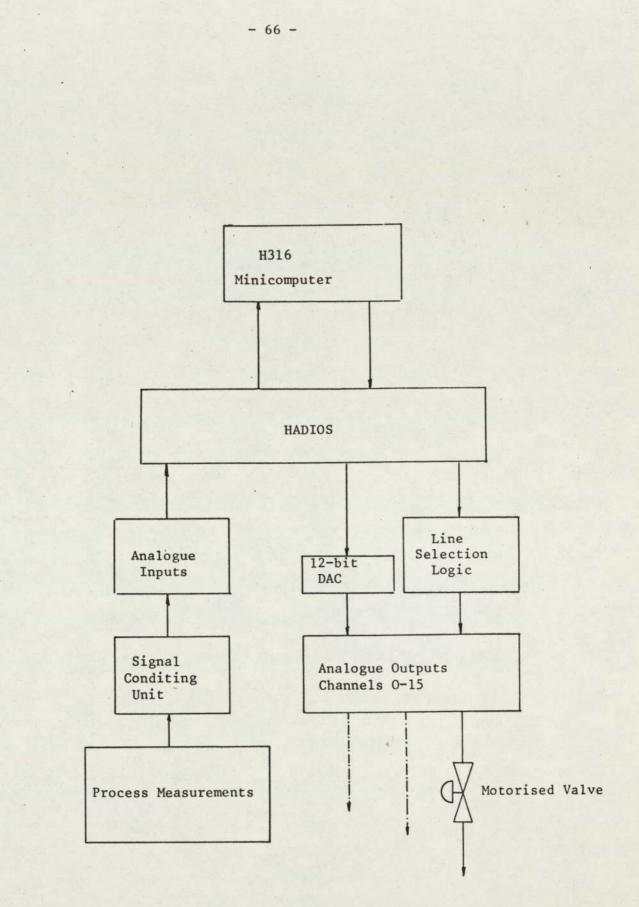


Figure 3.2 A Schematic Diagram of the Computer-Process Hardware Interface

3.2.3.2 High Speed Counter Inputs

A counter input provides a method of monitoring the number of changes of level of a digital input. The counter is incremented by a high active transition (a voltage transition from logic '0' to logic '1'). The current contents of a counter can be attained by a programmable command. Each counter can also be initialised to a preset value and programmed to interrupt the H316 central processor when half-full.

Each counter input subinterface card has an 8-bit register with a range of 0 to 255. When this subinterface is operated in the noninterrupt mode, the 8-bit register automatically returns to zero when a count of 255 is reached whereas in the interrupt mode when the register is half-full i.e. it contains 127, an interrupt request to the CPU is generated. There are 3 subinterface cards in service at present.

3.2.3.3 Logic-Level Non-Isolated Inputs

There are two digital inputs subinterface cards namely digital input A and B (DGIA and DGIB) respectively. Each card senses the voltage levels present on the 16 parallel user's input lines. The input signals are usually low impedance voltages switchable from logic '1' to logic '0'. The signals sensed are transferred to the A-register as a 16-bit pattern. By experimentation, it has been found that if any of the digital input lines are non-active from the user's point of view i.e. these lines are in open-circuit conditions, then the corresponding values in the A-register turn out to be logic '1's.

3.2.3.4 Logic-Level Outputs

The two digital subinterface cards A and B (DGOA and DGOB) provide a means of transferring digital data to peripheral equipment

external to, but near, the central processor. The data is held in MSI flip-flops in the subinterface cards and hence, remain valid until new data are output from the computer.

Either card can be used in conjunction with the digital to analogue converter (DAC) available. Sixteen analogue output channels (numbered 0 to 15) therefore provides a facility for outputting analogue voltages in the range 0 to 10 volts. However, each analogue output has the digital equivalent of only the 10 most significant bits of the original value in the A-register. This is because the six least significant bits are used mainly to make room for addressing up to 16 output channels.

3.2.3.5 Alarm Inputs

In general, the alarm inputs subinterface card channels externally-generated interrupts into the standard interrupt line of the H316 computer. There are 16 input channels on the card and the unit was configured to cause an interrupt request of the H316 on the occurrence of a low active transition (logic '1' to logic '0') on any one of the 16 input channels. When an interrupt is acknowledged, the state of the 16 inputs must be transferred to the computer A-register and a software sort carried out to find which particular input of the 16 channels has become active. The non-active lines (open-circuit conditions) register themselves as logic '1's in the computer A-register.

Summary of HADIOS Devices

To summarise the HADIOS then, the following facilities are provided:

48 analogue inputs connected to one ADC via three multiplexers 3 counter inputs

2 digital inputs

- 2 digital outputs, including one DAC giving 16 analogue outputs
- 1 alarm inputs unit providing 16 channels

3.2.4 The H316 Interrupt Structure

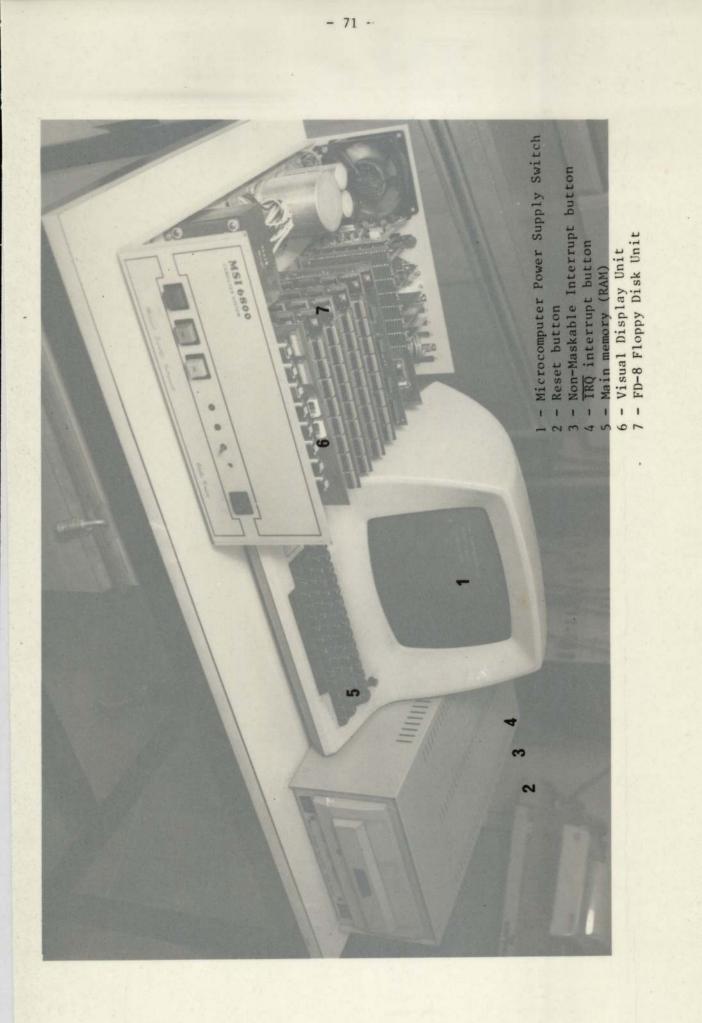
The H316 minicomputer has a powerful interrupt/break structure (a break is also hardwire-controlled but unlike an interrupt, it occurs between instructions or cycles of an instruction <u>without</u> affecting the contents of the program counter) which consists of nine levels. If two or more sources assigned to different levels request memory access simultaneously, they are executed in a priority sequence determined by hardware. Of main interest to this research is Level 6, the standard interrupt, to which most peripheral devices are connected by means of the priority interrupt line, PILOO, of the I/O bus.

When an I/O device or some special application hardware request service by forcing the party line PILOO to a particular state, an interrupt request is said to be present on the line and an interrupt request is said to be present on the line and an interrupt is pending. To generate an interrupt, however, the central processor must have executed an ENB (Enable Interrupt) instruction. Although, several sources may request interrupts simultaneously, only one interrupt is allowed at any one time.

The programmer can also control which devices request interrupts. This is done by setting the particular device interrupt mask corresponding to the A-register via the SMK '20 instruction. Location '63 is the dedicated location for the standard interrupt system and contains the interrupt vector.

For a device to cause an interrupt then, the following conditions must be met.

- (i) The device must be ready.
- (ii) The interrupt mask flip-flop must be set.
- (iii) System interrupt must be enabled by an ENB instruction.


3.2.5 The H316 Real-Time Clock

The Real-Time Clock of the H316 minicomputer increments dedicated location '61 at a constant rate independent of the prime power source. Several frequencies (5 to 20 ms continuous) are available but a 20 ms frequency has been used throughout this work. When the contents of the counter pass from '177777 to '000000 and the device mask is set, an interrupt request is generated through the standard interrupt location '63.

The clock can operate in a non-interrupt mode and can therefore be used as a time base (i.e. real-time) in many applications. In the interrupt mode, the programmer can cause execution of his program either cyclically at a specified interval or at a specified time. Such a scheme is the basis of the operation of the HADIOS real-time executive program to be described in Chapter 4.

3.3 The Motorola M6800 Microcomputer System

This departmental microcomputer system started off from the Midwest Scientific Instruments M6800 Computer System Kit (which includes Chassis and Hardware, Power Supply, Mother Board and Connectors, MPU Board and Monitor, 8K RAM Memory Board, Interface Adapter Board and Serial Interface Board, all for £375 including V.A.T. in 1977) and now has a variety of supporting devices and software packages such as to become a general purpose microcomputer. Plates 3.2 and 3.3 show in varying detail the hardware of the M6800 microcomputer system.

4. 4

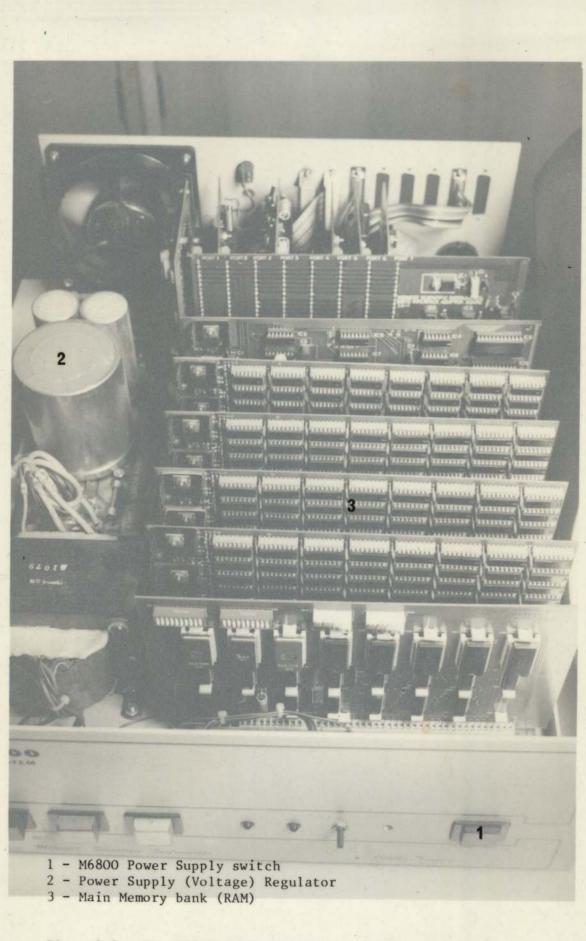
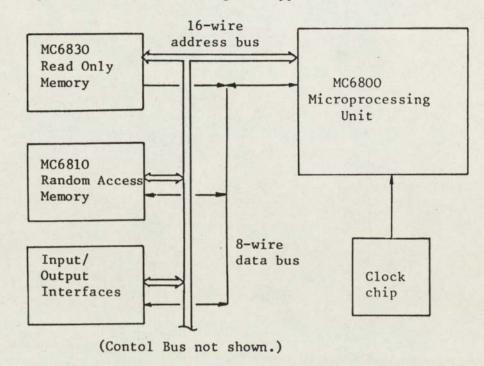
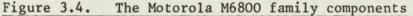


Plate 3.3 The M6800 System Kit (Assembled)




3.3.1 System Overview and Hardware Features

The basic Motorola M6800 microcomputer family consists of five parts:

- 1. The MC6800 microprocessing unit (MPU).
- MC6830 masked programmed Read Only Memory (ROM) (1024 bytes of 8-bit each).
- MC6810 Static Random Access Memory (RAM) (128 bytes of 8 bits each).
- MC6820 Peripheral Interface Adapter (PIA) for parallel data I/O.
- MC6850 Asynchronous Communications Interface Adapter (ACIA) - for serial data I/O.

As shown in Figure 3.4, a complete microcomputer can be built by interconnecting the system components via a 16-wire address bus, an 8-wire data bus, and a 9-wire control bus, plus a clock so that the computer can function in a timely and orderly manner. The modularity of family components and the system's bus-oriented architecture allow easy configuration for a wide range of applications.

For a component to be a member of the M6800 microcomputer family and to ensure compatibility, it must meet specific system standards. The standards must also make it convenient for other external devices to interface (or communicate) with the microprocessor. These standards, which apply to all M6800 components are as follows:

8-bit bidirectional data bus
16-bit address bus
3-state bus switching techniques
TTL/DTL level compatible signals
5 volt N channel MOS silicon gate technology
24 and 40 pin packages
Clock rate 100 KHz to 1 MHz
Temperature range of 0 to 70°C.

The temperature range chosen is adequate for most industrial and commercial applications and is also the same as the standard TTL range.

The Data Bus

Since the basic word length of the M6800 is 8-bits (one byte), it communicates with other components via an 8-bit data bus. The data bus is bidirectional, and data is transferred into or out of the M6800 over the same bus. To accomplish this, a Read/Write line (one of the control lines) is provided.

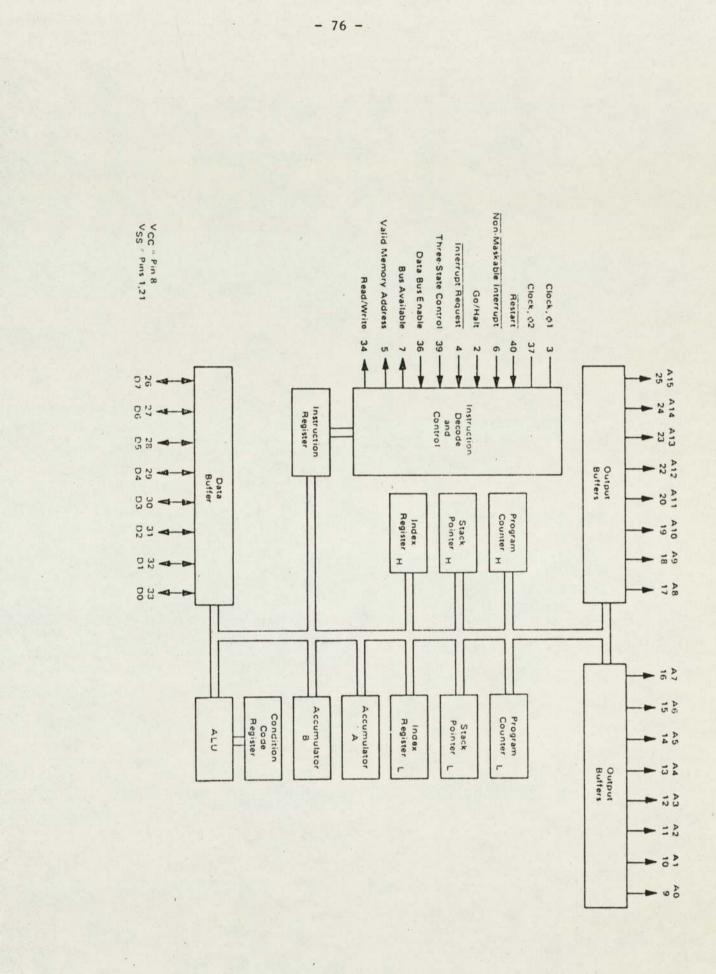
An 8-bit data bus can also accommodate ASCII characters and packed BCD (two BCD numbers in one byte).

The Address Bus

These 16 output lines are used to address (through data generated by the MPU) devices external to the MPU and they are chosen for the following reasons:

- For programming ease, the addresses should be multiples of 8-bits.
- 2. An 8-bit address bus would only provide 256 addresses but a 16-bit bus provides 65,536 distinct addresses (hexadecimal 0000 to FFFF) which is adequate for most applications.

Three-State Bus Switching Techniques


A typical digital line is normally either HIGH (normally at a logical 'l' level), or LOW (normally at a logical 'O' level). However, since microcomputer components are in general bus oriented in architecture, (a component chip hanging off the system bus, so to speak) and therefore share a common bus, three-state bus technology is necessary to allow one, and only one, selected component to drive the bus at any one time. This is done via the Read/Write (R/\overline{W}) Valid Memory Address (\overline{VMA}) control lines in conjunction with the address bus which make all unselected components force their three-state bus drivers to the high-impedance state (i.e. the third state). The transfer of information via the data bus can therefore be bidirectional over the same 8-wire bus.

5 Volts N Channel MOS Silicon Gate Technology

The M6800 requires only a single +5 volts supply for its operation. The use of a single standard voltage gives it a significant advantage over other microprocessors and MOS devices that require several different voltages for their operation.

3.3.2 The MC6800 Microprocessing Unit

The MC6800 microprocessor is the nucleus of the M6800 microcomputer system and is enclosed in a 40-pin package. As the block

2

diagram of the MPU in Figure 3.5 shows, the various internal registers are inter-connected to the instruction decode and control logic via an 8-bit internal bus. The figure also shows the nine control lines that communicate with the external devices, the address bus at the top and the data bus at the bottom.

The Arithmetic Logic Unit (ALU) and Hardware Registers

The Arithmetic Logic Unit of the MC6800 is an 8-bit, parallel processing, two's complement device. It includes the Condition Code (or processor status) Register.

Figure 3.6 shows the significance of the bits of the condition Code Register. The register is used by branch instructions to determine whether the MPU should execute an instruction located at some other address other than next in the sequence. For a detailed description of how each bit of the Condition Code Register is affected by branch and other instructions, the full instruction set of the M6800 in Table A3.3 of Appendix 3 should be consulted.

1	1	Н	I	N	Z	v	С
7	6	5	4	3	2	1	Ö

C - Carry/Borrow

V - Overflow (two's complement)

- Z Zero result
- N Negative (bit 7 = 1)
- I Interrupt Mask
- H Half-Carry (bit $3 \rightarrow bit 4$)

Note: Bits 6 and 7 are not used and always set to a "1".

Figure 3.6 Condition Code Register

The other five internal registers which the user must be concerned with, are as follows:

A Accumulator (A) B Accumulator (B) Index Register (X) Stack Pointer (SP) Program Counter (P)

<u>A Accumulator</u> - An 8-bit register used as a temporary holding register for MPU operations performed by the ALU. <u>B Accumulator</u> - As register A. Registers A and B allow operand to remain in the MPU. Instructions that can be performed using both accumulators (e.g. ABA, TAB and SBA) are therefore very fast as they do not require additional cycles to fetch the second operand.

<u>Index Register</u> - A 16-bit (two bytes) register, implemented with a high (H) and low (L) byte. It is primarily used to modify addresses when the indexed mode of addressing is employed. As with the A and B accumulators, the index register can be incremented, decremented, loaded, stored, or compared.

<u>Stack Pointer</u> - A 16-bit register, also implemented with a high (H) and low (L) byte, that contains a beginning address, normally in RAM, where the status and the register contents of the MPU during an interrupt, or the return address in executing a branch or jump to a subroutine instruction (BSR or JSR), can be stored. Program Counter

A 16-bit register that contains the address of the next <u>byte</u> of the instruction to be fetched from memory. The program counter is automatically incremented by one when its current value is placed on the address bus.

System Clock

The M6800 microcomputer requires a two-phase non-overlapping clock capable of operating from the 5V system power. The clock synchronises the internal operations of the microprocessor, as well as all external devices on the bus. In this system, the MC6875 chip provides the two timing pulses Phase 1 and Phase 2 (ϕ_1 and ϕ_2) at 2 MHz.

3.3.3 Read Only Memory (ROM)

Read Only Memory for the M6800 microcomputer comes in 1024 (1K) eight-bit bytes, mask programmable MC6830 chips. Its bus organisation is shown in Figure 3.7.

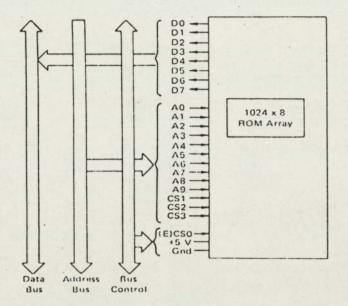
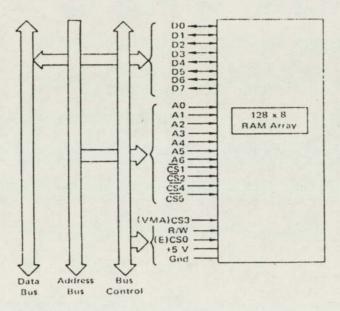


Figure 3.7 The MC6830 ROM Bus Interface (89)

Included are ten address lines, eight data lines and four chip select lines. Because this is a ROM, no R/\overline{W} line is needed. The ten address lines are used by the MPU to select an eight-bit byte on the particular chip addressed. All ROM chips share the same ten address lines so chip select lines are used (defined by user and manufactured into the device) to decode individual chip address.


ROM units have specified memory access time of 700-900 nano-seconds and normally used to store permanent software. In this microcomputer system, a 1K ROM unit is used to house the MIKBUG monitor. A current version of FORTH has recently been programmed into a 4K EPROM memory thus enabling the user to access an efficient high-level language without the use of the floppy disk.

3.3.4 Random Access Memory (RAM)

The standard Random Access Memory chip for the M6800 microcomputer is the 128-byte, read/write MC6810. Its bus organisation is shown in Figure 3.8. Included are seven address lines, eight data lines, six chip select lines and a R/\overline{W} line. The seven address lines are used by the MPU to select an eight-bit byte on the particular chip addressed. As in the case with ROMs, all RAM chips share the seven address lines and the chip select lines which are connected to other address and control lines, ensure that only one RAM chip is communicating with the system bus at any one time.

Because of its read/write nature, RAM chips provides the main memory for program and data storage. However, unlike Read Only Memory, RAM memory is volatile and all stored information is lost when the system power supply is off. For this reason, a floppy disk storage unit has been acquired for the M6800 microcomputer to house system and user-written software.

- 80 -

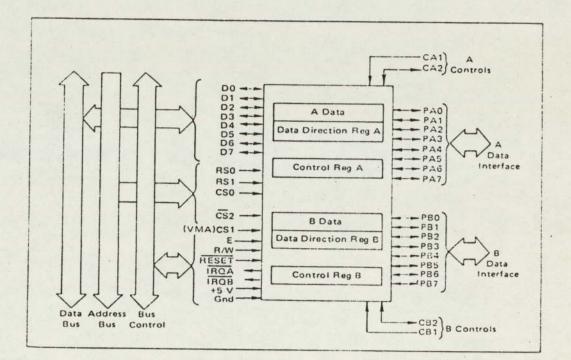


Figure 3.8 The MC6810 RAM Bus Interface (89)

3.3.5 Peripheral Interface Adapter (PIA)

The MC6820 Peripheral Interface Adapter chip is used to control parallel data transfers between the M6800 system and nearby external devices. A block diagram of a PIA is shown in Figure 3.9 which indicates that the PIA is a dual I/O port unit (a port is defined as an 8-bit parallel interface) with two similar sides labelled A and B. Each side contains three registers.

- The Control/Status Register controls the operation of its side of the PIA.
- The Data Direction Register determines the direction of data flow (input or output) on each I/O line.
- The Peripheral Data Register holds the I/O data going between the external system and the PIA.

Figure 3.9 The MC6820 PIA Bus Interface (89)

These PIA registers are treated as a set of memory locations by the M6800 system. Data can be read or written into these registers as with any other memory location. In fact, the programmable nature of the PIA helps create a powerful and flexible I/O facility for the M6800 system, warranting a more detailed description of its operation. This can be subdivided into PIA interface lines, operating modes and initialisation.

(a) PIA Interface lines

The most important signal functions the user must be concerned with, are summarised in this section. Each of these eight data lines can be programmed to act either as an input or an output by setting a 'l' in the corresponding bit in the data direction register if the line is to be an output or a 'O' if it is to be an input.

Data Lines (DO-D7)

These eight bidirectional data lines permit transfer of data to/from the PIA and the MPU i.e. through the same data bus that the ROMs and RAMs share.

CA1 and CB1 Input Lines

These lines are only inputs to the PIA and set the interrupt request flags (bit 7) of the control registers (see Section on PIA Operating Modes). For this reason, CA1 and CB1 are often described as interrupt input lines.

CA2 and CB2 Control Lines

Each of these control lines can be programmed to act as either a peripheral output or interrupt input. The function of these lines is programmed with the respective control registers (bits 3, 4 and 5).

IRQA and IRQB

These two low-active lines are channelled together into the standard $\overline{\text{IRQ}}$ line and interrupt the MPU through the interrupt priority circuitry. In principle, if CA1, CA2, CB1 and CB2 all act as interrupt inputs, each PIA can generate four different $\overline{\text{IRQ}}$ interrupt requests to the MPU. Each input sets up its corresponding interrupt request flag

in the respective control registers (bit 6 and 7) and the MPU must carry out a software sort to determine a particular source. The interrupt request flags (bits 6 and 7) are cleared when the MPU needs the peripheral data register or on hardware reset.

(b) PIA Operating Modes

The operating mode of the PIA depends on the organisation of the control register words summarised in Table 3.3.

The PIA, like all the system component chips discussed thus far, is accessed via the chip select lines which are connected to the address lines of the MPU. The two register select lines (also connected to the MPU address lines) are than used to select one of the six internal registers. However, two input lines can only select one in four registers uniquely. This problem is conveniently solved by the logical status of bit 2 of the control registers. If bit 2 is a 'l', then the peripheral data register is addressed. If bit 2 is a 'o', then the data direction register is addressed. In fact, this is the only purpose of bit 2 of the control register.

A Side IRQA1	7	6	5	4	3	2	1 0
	IRQA1	IRQA2 CB2 Control				DDRA or IORA	CA1 Control
B Side	7	6	5	4	3	2	1 0
	IRQB1	IRQB2	CE	32 Cont	ro1	DDRB or IORB	CB1 Control

Table 3.3 Organisation of the PIA Control Registers

The general purpose of each of the remaining bits is summarised as follows:

Bit 7 is the IRQA1/IRQB1 status bit. It is set by transitions on the CA1/CB1 input lines and will remain set until an MPU Read of Peripheral Data Register A/B.

Bit 6 is the IRQA2/IRQB2 status bit. It is set by the CA2/CB2 control lines and will remain set until an MPU Read of the Peripheral Data Register A/B.

Bit 5 determines whether CA2/CB2 control line is an input (0) or output (1).

Bit 4, if CA2/CB2 control line is an input, determines whether IRQA2/IRQB2 status bit (bit 6) is set by low active transitions on the CA2/CB2 line. If CA2/CB2 is an output, bit 4 determines whether CA2/CB2 control line is a pulse (0) or a logical level (1).

Bit 3 set to 1, if CA2/CB2 control line is an input, enables the $\overline{IRQA/IRQB}$ signal to channel an interrupt request into the \overline{IRQ} pin of the MPU, based on transitions on the CA2/CB2 control line. If CA2/CB2 is an output, bit 3 then takes on three different interpretations.

1. If bit 4 is 1, then CA2/CB2 control line will be

output at all times with the level of bit 3.

If CA2/CB2 control line is a pulse (bit 4 is 0), bit 3 specifies an automatic handshaking sequence as follows:

2. If 0, bit 3 selects an interrupt handshaking.

3. If 1, bit 3 selects a programmed handshaking.

It is important to note that there are some differences in the handshaking logic associated with CB2 as compared to CA2. The PIA A side will only handle data input with handshaking and CA2 will be output low only after an MPU Read operation of the A Peripheral Data Register, while the PIA B side will only handle data output with handshaking and CB2 will be output low only after an MPU Write operation to

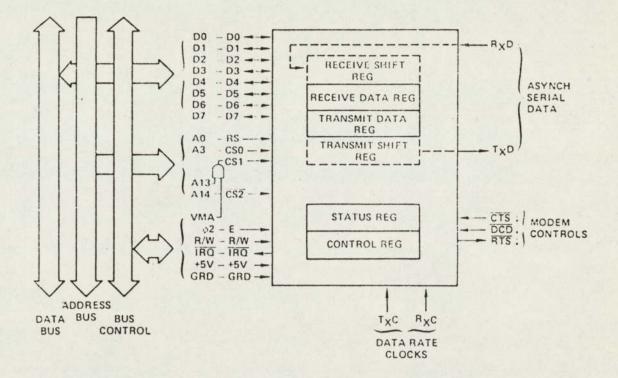
- 85 -

the B Peripheral Data Register. For this reason, the A side of a PIA is normally used as an input port and the B side as an output port.

Bit 1, when 1, enables the IRQA1/IRQB1 signal, via which an interrupt request is output to the MPU, based on transitions on CA1/CB1 control line.

(c) PIA Initialisation

On a power-on condition or a hardware reset, all the registers in the PIA will have been cleared. Because of these conditions, the PIA has been defined as follows:


- All I/O lines to the external world are defined as inputs.
- CA1, CA2, CB1, CB2 are defined as interrupt input lines that are low active.
- 3. All interrupts on the control lines are masked. Setting of interrupt flag bits will not cause \overline{IRQA} or \overline{IRQB} to go low.

For these reasons, each PIA must be initialised by formatting the control registers before applying it to meet any specific task.

3.3.6 The MC6850 Asynchronous Communications Interface Adapter (ACIA)

The MC6850 Asynchronous Communications Interface Adapter provides a means of interfacing the MPU to devices requiring an asynchronous serial data format, especially over very long distances. It can function either as a serial-to-parallel converter or as a parallel-to-serial converter. This means parallel data on the MPU data lines can be sent to the ACIA, a byte at a time, converted to a series of 1's or 0's, and then sent to a serial data device such as a teletype, CRT terminal or a printer. Likewise, data in the form of 1's and O's can be received from an external source such as a keyboard or tape reader, converted by the ACIA to parallel data bytes and then placed on the microcomputer data bus.

Figure 3.10 shows a simplified block diagram of the ACIA. As before, chip selects lines cause a particular ACIA chip to be accessed and a combination of the R/\overline{W} and Register Select lines selects one of the four internal registers. However, there are only two addressable memory locations as the Control and Status Registers share a common address and the Transmit Data and Receive Data Registers share the other one.

Figure 3.10 Block diagram of the MC6850 ACIA⁽⁸⁹⁾

ACIA data transfer and control operations are more complex when compared to the PIA and as the user is usually less concerned with programming the ACIA, further details are not discussed here and system

- 87 -

manuals^(88,89) should therefore be consulted. However, it is sufficient to note the following features:

- The ACIA has no Reset input; a control code is used as a master reset.
- 2. The ACIA serial I/O logic requires an external clock signal (ϕ_2 of the system clock is usually used) in order to time the serial, asynchronous data stream which is either output or input.

3.3.7 The M6800 Input/Output (I/O) Ports

The M6800 I/O Ports provide the means to communicate with peripheral devices such as CRT terminals, printers and disk memories, via any of the interface adapters previously described. There are eight I/O ports, each of which is an eight-bit bidirectional port with control lines. Eight addresses per port is the standard assignment and as Table 3.4 shows, Port O resides with a base address of \$F500.

Table 3.4 M6800 Input/Output Ports

1/0	Port No.	Address Assignment
	0	\$F500-\$F507
	1	\$F508-\$F50F
	2	\$F510-\$F517
	3	\$F518-\$F51F
	4	\$F520-\$F527
	5	\$F528-\$F52F
	6	\$F530-\$F537
	7	\$F538-\$F53F

Hardware options are available however, for altering the base address of Port O and/or to assign four addresses per port.

3.3.8 Peripheral Devices

Supporting peripheral devices for the M6800 require some hardware configuration, provided basically by PIAs and ACIAs via the I/O Ports just described, for interfacing to the MPU.

A description of the available devices except the Interrupt Timer, which is discussed in Section 3.3.11, follows:

3.3.8.1 The Visual Display Unit (VDU) and the Teletypewriter (TTY)

The VDU/TTY is interfaced to the MPU by means of a single ACIA on Port O which has a base address of \$F500. Since data handling is faster with the VDU, a switch is provided at the back of the M6800 panel to select the required baud rate. A Newbury Model 8510 bidirectional printer can be connected to the VDU to give hardcopy prints at 100 cps.

3.3.8.2 The FD-8 Floppy Disk Memory System

The FD-8 system comprises a single disk drive and controller and provides a cheap and reliable means of bulk storage for the M6800.

It is interfaced to the microcomputer by means of a single PIA chip on I/O Port 7 with a base address of \$F538. One half of the chip is utilised as an eight bit bidirectional port for data flow and status information. The second half of the PIA is used as an output control port.

The controller board also contains approximately 3K of RAM memory which allows information to be transferred from controller to disk completely independently of processor speed.

3.3.8.3 The Analogue Input/Output Hardware

This hardware subsystem was built to provide the M6800 with the capability to perform data acquisition and process control functions. It consists of a Control Logic Board and three devices, namely:

- 1. Mode Select Logic
- 2. An eight-bit Analogue to Digital Converter
- 3. An eight-bit Digital to Analogue Converter.

The unit is interfaced to the MPU through a PIA on Port 5 with a base address of SF528 and can be connected to a small analogue $computer^{(90)}$ and a level-sensor equipment⁽⁹¹⁾.

Plate 3.2 shows the M6800 microcomputer with its supporting peripherals. In this research, the Analogue I/O Hardware is not used at all.

3.3.9 System Software

The M6800 is supplied with a family of software that permits program development and evaluation. Only the most important software packages are described.

The MSI-BUG Monitor

The MSI-BUG Monitor is a firmware program occupying locations \$E000 through \$E3FF. The ROM is connected to the M6800 system so that when a hardware reset occurs, the MSI-BUG Monitor is automatically entered. As such, the Monitor provides an immediate means of communications between the M6800 and the VDU/TTY.

The MSI-BUG program also has a 128-byte RAM, often referred to as scratchpad memory, for stack and temporary storage. This RAM has a base address of \$F000. On reset, the Monitor automatically sets the MPU Stack Pointer to \$F072.

The MSI-BUG Monitor provides useful functions which include listing, execution and debugging programs at he machine level. In particular, typing 'G ECOO' on the terminal (G is the Execute User Program Function) causes the microcomputer to enter the Disk Operating System (DOS) mode. A complete list of Monitor functions is found in the MSI-BUG Monitor MT-1 Manual.

The FD-8 Disk Memory System Software

The FD-8 software includes the Disk Operating System (DOS) monitor routine, disk driver routines, a routine called MINIDOS which reads/writes specified number of sectors to/from any desired address in memory to/from any desired track and sector location on a floppy disk, a routine called FDOS which allows the user to utilise floppy disk for system programs, user source and machine code programs, plus other utility programs which aid program development and documentation.

The DOS monitor and Disk Bootstrap are stored in ROM memory occupying locations \$ECOO through \$EFFF.

The TSC File Editor System

The TSC Text Editing System is intended for use with the FD-8 Disk Memory System and provides the user with an editor, the TSC File Editor, to enter and edit a M6800 Assembly Language or BASIC source program and save it on disk by filename or load it from a disk. For details on commands and use of the TSC File Editor, the TSC Editor for use with FD-8 Disk Memory System Manual should be consulted.

Software Dynamics BASIC (SD BASIC)

The Software Dynamics BASIC (SD BASIC) software allows the user to write programs in a familiar high-level language for scientific or engineering computation and real-time applications. SD BASIC is a compiler language, not an interpreter as are most BASICs. A source program is first compiled by SDBASCOM (SD BASIC Compiler) to produce an output file which is M6800 Assembly Language compatible. This output file is then assembled using the M6800 Assembler to produce the binary code. This binary file can then be executed in conjunction with the system Run Time Package (RTP) and the Software Dynamics I/O Package (SDIOPACK).

SD BASIC compiling operation is therefore a two-pass process. If required, the compiled SD BASIC program can be merged with any other assembler routines using the RTP MERGE.B facility (a merger program) before proceeding to the second pass (assembling operation).

For the reasons just described, two main advantages are derived.

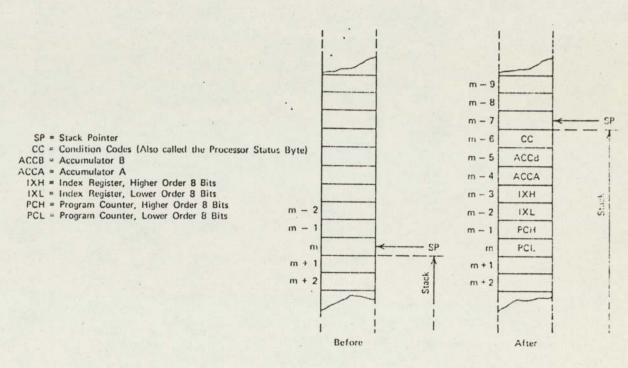
- Programs are usually smaller as during execution, only the binary file and the run-time packages need be in core.
- The run-time packages 'interpret' each line of assembled code and no line by line syntax analysis takes place. This leads to faster program execution.
 The SD BASIC Compiler manual ⁽⁹²⁾ should be referred to for a

complete compilation of SD BASIC features. Among the useful ones are:

- 1. Individual memory locations (ROM or RAM) can be accessed.
- 2. SD BASIC programs are interruptible.
- Assembly Language subroutines can be called from a SD BASIC program using the CALL facility.
- SD BASIC accommodates file I/O operations in conjunction with the floppy disk unit.

3.3.10 The M6800 Interrupt Structure

The M6800 has a powerful interrupt structure which includes the following important aspects:


- 1. The stack concept.
- 2. Use of vectored interrupts.
- Interrupt priority scheme provided by the microprocessor logic.

There are four kinds of interrupts to the M6800 MPU as summarised by order of priority in Table 3.5. The first three are hardware generated and the fourth, the Software Interrupt (SWI) is instruction initiated.

Table 3.5 Interrupts in the M6800 Microcomputer

Туре	Location of Interrupt Vector in EPROM	Input Line to the <u>MPU</u>
Reset	\$FFFE-\$FFFF	RES via Pin 40
Non-Maskable Interrupt	\$FFFC-\$FFFD	NMI via Pin 6
Interrupt Request	\$FFFA-\$FFFB	IRQ via Pin 4
Software Interrupt	\$FFF8-\$FFF9	Instruction initiated

When an interrupt occurs, the instruction in progress is completed before the microprocessor begins its interrupt sequence. The first step in this sequence is to save machine status (i.e. program status) by storing the contents of the Program Counter, Index Register, A and B accumulators and the Condition Code Register on the stack in the order shown in Figure 3.11. The Stack Pointer (SP) which should always be pointing to a free location is decremented seven times to accommodate the seven MPU bytes. The interrupt mask bit (I) is next set to '1', which allows the service program to run without being interrupted by \overline{TRQ} or SWI. \overline{RES} and \overline{NMI} are non-maskable interrupts and ignore the I bit. Then the MPU fetches the address of the service routine from the

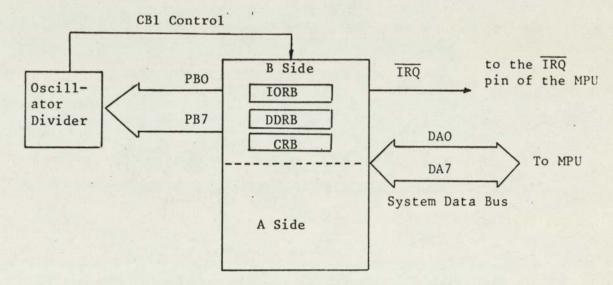
Figure 3.11 Saving machine status in the stack (89)

appropriate vector location and places it into the Program Counter.

Nested interrupts are permissible (in the case of IRQ and SWI, the I bit must be cleared using the CLI instruction) but the user must ensure the stack is large enough and common subroutines are reentrant.

The service program must end with the Return From Interrupt (RTI) instruction which restore machine register status, earlier stored on the stack.

RES interrupts are used to start a program from a power-down condition or to stop program execution by entering the MSI-BUG Monitor for debugging or to stop program execution by entering the MSI-BUG Monitor for debugging purposes. The RES line can also be connected to any hardware devices that have a hardware reset and need to be initialised such as the PIA (the ACIA has no $\overline{\text{RES}}$ input line and must be software initialised).


NMI interrupts function as very high priority interrupts. Normally it is reserved for system recovery routine in the event of a power failure or where immediate user/peripheral action is required.

IRQ interrupts are usually used when peripheral devices must communicate with the MPU (data transfer, timers, etc.). Since a single PIA can generate interrupt requests from four difference sources, a software sort (e.g. a polling routine) must be carried out to isolate the active source.

SWI interrupts can be used in various programming situations such as for error indications and as a debugging aid.

3.3.11 The MP-T Interrupt Timer

The MP-T Interrupt Timer is a crystal-controlled, programmable oscillator/divider chip, interfaced to the microcomputer system via a PIA chip on I/O Port 6. Figure 3.11 shows the essential features of this arrangement. Only the B Side is used. The oscillator/divider's output is connected to the CB1 input line while its eight-bit data inputs are connected to the B-Side output data bus. These byte inputs to the timer are hexadecimal codes which governs the frequency of low active CB1 transitions (thereby generating IRQ interrupts of the MPU) at rates covering a range of one microsecond to one hour. The timer therefore provides a simple and accurate measure of the passage of real time.

PIA Chip

Figure 3.12 The MP-T Interrupt Timer Interface Organisation

3.4

The Linked H316-M6800 Twin Processor System

The H316 Minicomputer, through its HADIOS interface, has been the main tool for real-time data acquisition and control studies on a number of items of process plants (distillation column, double-effect evaporator, resin manufacturing plant, chemical reactor, etc.) in the Department. As a result, much of the original software has been developed and extended to support such applications. In particular, the BASIC-16 Interpreter is extended to permit real-time use and graphical display of results. The M6800 microcomputer has also been used for real-time tasks but the applications are limited to using the Analogue I/O Hardware for data acquisition and processing from instrumentation.

The resulting software packages perform satisfactorily but in each case, operation is limited to

1. A single user.

2. One sampling frequency.

The M6800 is also limited in the number and variety of inputs and outputs it can handle, and has less supporting software.

For these reasons, a linked twin-processor arrangement was proposed, through which, for instance two users could share hardware and software resources or, alternatively two parts of the same task could be divided between the computer system.

3.4.1 System Hardware Overview

The basic idea here was to design a hardware arrangement in the simplest possible way and yet be sufficient for

- either computer to be able to send an interrupt request to the other
- 16-bit digital data to be transferred between the compilers (two 8-bit data bytes in the case of the M6800).

The resulting hardware arrangement for the linked twinprocessor system is shown in Figure 3.13. It is unique in the sense that the M6800 access the process plant via the HADIOS and has to interrupt H316 processing to do so. Thus, in a way, the H316 behaves as the front end of the microcomputer.

Three HADIOS subinterfaces are used on the H316 side: a digital input (DGIB), a digital output (DGOB) and the alarm inputs. On the M6800 side, only a single PIA chip is required. The programmable

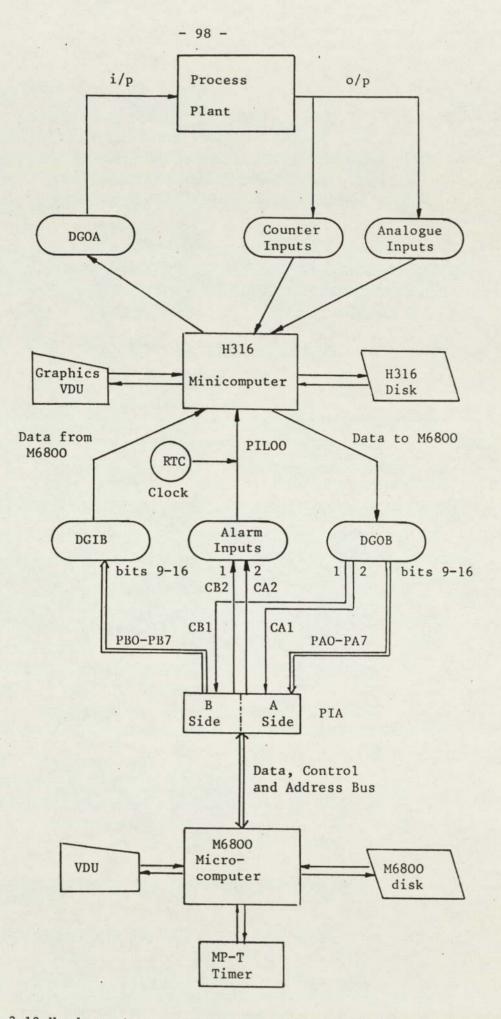


Figure 3.13 Hardware Arrangement for the Linked H316-M6800 Twin Processor

nature of the PIA makes it very suitable for such an application.

3.4.2 Communication Protocol

The communication protocol was designed to meet both the system objectives and specific subinterface/adapter requirements. All the interface devices are TTL-compatible which means the output data lines (PBO-PB7) of the PIA B Side can be wired directly to the input lines (9 through 16)^{*} of DGIB. Likewise, the input data lines. (PAO-PA7) of the PIA A Side can be wired directly to the output data lines (9 through 16) of DGOB. Integer formatted data words can therefore be transferred between the computers via these I/O ports.

The M6800 needs to interrupt the H316 to perform the following:

- 1. Scan the process variables.
- 2. Output control settings.
- 3. Send data bytes to the H316 for further processing (special codes, further computation, output to paper tape or graphical display).

The first is accomplished via low active CA2 transitions on channel 2 of the alarm inputs. The other two are accomplished via low active transitions on channel 1 of the Alarm Inputs. The alarm inputs subinterface has been configured so as to generate an interrupt to the H316 when a low active transition occurs at any one of its sixteen input channels. Note that channels 3 through 16 of the Alarm Inputs are not used and remain in open circuit conditions.

By experimentation, it was found that the operating speed of the Alarm Inputs is about 100 Hz and the M6800 must wait in a sufficiently long delay loop before attempting to generate the next

*In the H316, the bits are numbered 1-16 from left to right.

CA2/CB2 interrupt. This timing problem was overcome by fitting a 10 μ F capacitor between the solder turrets on the input stage of each Alarm Inputs channel used.

The CB2 interrupt acknowledged in the handshaking scheme is a low active CB1 transition generated from output pin 1 of DGOB. This transition sets the IRQB1 flag and can therefore be detected by the M6800 software.

The PIA A Side, serving as the data input port to the M6800, is configured to operate in two modes. This is because the data transfer can be initiated either by the H316 or the M6800. The H316 may need to transfer data bytes to the M6800 immediately and it can interrupt the M6800 by a low active CAl transition generated by the output line 2 of DCOB. Therefore, the A Side should have the option to be in CAl interrupt mode The response to this interrupt is to convert the A Side to the handshaking mode, outputting a CA2 interrupt to the H316 every time the M6800 is ready for more data.

In a microprocessor scan, the A Side is always switched to the handshaking mode. Low active CA2 transitions interrupt the H316 and the data transfers acknowledged via the CA1.

The digital output DGOA is used (not simultaneously) by both computers to output control settings to the process plant.

3.5 Conclusions

This chapter has described mainly the hardware building blocks of the linked H316-M6800 twin-processor system and the arrangement shown in Figure 3.13 is the proposed architecture based on the resources available at the time of system design. One could use more PIAs on the M6800 side and allow more M6800 interrupts to the H316 via the remaining Alarm Inputs channels. Clearly, more complex and more

- 100 -

powerful data handling operations can be accommodated.

As described in Section 3.4.2, the communication protocol strongly depends on the hardware arrangement and software objectives for the given system. In fact, it directly affects the design and operation of the two related Assembly Language executive programs which handle the communication between the two processors. CHAPTER FOUR

ON-LINE SOFTWARE DEVELOPMENT

4. ON-LINE SOFTWARE DEVELOPMENT

4.1 Introduction

In the context of this chapter, software development means the system design and development of the software packages required to operate the linked H316-M6800 twin-processor system for real-time data acquisition and process control. The software includes both system programs (standard routines or user'modified) and user-written application modules.

The software support for the H316 minicomputer is already well developed. System programs are well documented and source listings (assembler listings) are available which make these programs easy to modify to suit a particular application. Over the years, various packages had been developed and in particular, attention is focussed on developing the BASIC-16 Interpreter to permit interactive real-time use and graphical display of results. To support these applications, many versions of the HADIOS Executive have been written (in DAP-16 Assembly Language) to operate the various HADIOS devices. The user's BASIC program may then call subroutines in the HADIOS Executive or the Graphics Library to meet his particular requirements.

On the other hand, system software documentation and listings for the M6800 are minimal. This means modifying them in the H316 sense is a non-trivial task. Also, it means that the detailed organisation and operation of important system packages such as the SD BASIC COMPILER and the RUN TIME PACKAGES are not fully understood. In one attempt to overcome this handicap, a DISSAMBLER was written to decode system binary programs into M6800 assembly language level codes⁽⁹³⁾. The exercise on the RUN TIME PACKAGES for instance, was laboriously timeconsuming and met with limited success.

Real-time use of the M6800 has been largely confined to the use of SD BASIC. This is because SD BASIC, like most BASICs, is a familiar language to most users and has many extended features suitable An SD BASIC program is interruptible; it can read or for such tasks. write into memory locations (for instance, testing an interrupt status flag) via its POKE and PEEK statements, manipulate bits via its AND, OR, SHIFT, XOR or COM functions, calls on M6800 Assembly Language subroutines, and communicate with data files stored on the floppy disk. In fact, a user may not find it necessary to interface assembly language subroutines to his BASIC program at all. This is generally true for most microprocessor BASICs since microprocessor software is usually more hardware dependent than others. But to make useful exploitation of this feature, the user must also have a reasonable understanding of the hardware building blocks of his microcomputer system.

The preceding discussions, at the same time, bring about another point. While each computer has sufficient software to operate individually in real-time mode, extra software is required to handle the communication protocol for the twin processor set-up. This is provided by two assembly language executive programs, one residing in each computer. This chapter describes the design and operation of such programs, and the use of existing software to achieve the stated objectives of the linked twin-processor system.

4.2 Software Objectives

The principal objective of previous software was to enable the user to program the H316 minicomputer in BASIC only so that programs would be easy to write and modify. The HADIOS Executive enables him to specify the sampling frequency, the devices and number of scans required. The system is flexible enough for the single user

- 104 -

to sit down at the VDU/TTY, in the immediate environment of his process plant, and conduct calibration or control experiments. Normally, his BASIC program would call subroutines (which were originally written in FORTRAN or H316 Assembly Language code) stored as machine code for further processing of plant information as these lead to faster execution times.

The M6800 user would also retain the interactive feature in spite of SD BASIC being a compiled language. This is because editing and recompiling programs is efficient as the language (unlike BASIC-16) is disk-based and supported by a good operation system (DOS).

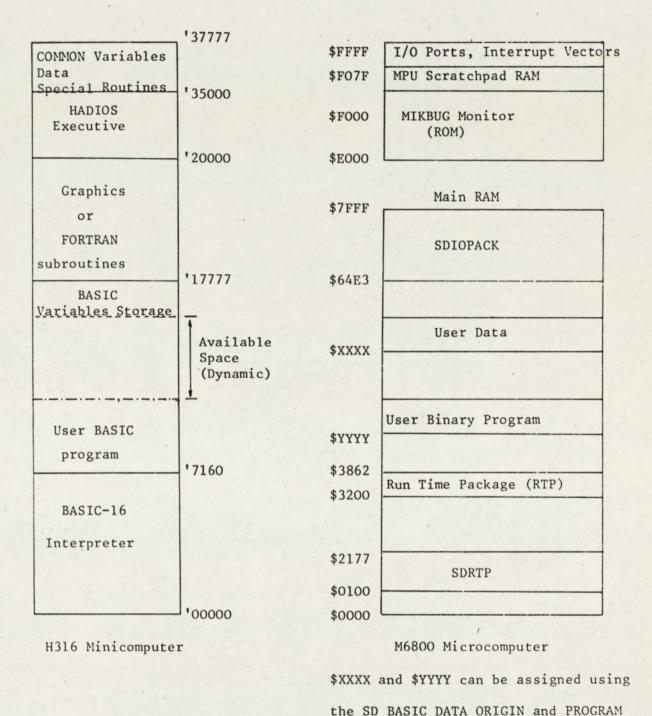
The simplest logical approach for the linked twin-processor system is therefore to retain the facility for programming in BASIC and develop the software with the following objectives:

- To continue the facility for an interactive BASIC program in the H316 to access a plant through HADIOS with an option for on-line graphics.
- To provide a facility for a disk-based SD BASIC program in the M6800 to access the HADIOS hardware and the H316 graphics facility.
- 3. The HADIOS hardware to be divided between the two processors or accessed by both processors (except the counters). This would allow two plants or the same plant to be monitored and controlled.
- Each processor to control its own real-time clock (hence two independent sampling frequencies are possible).

Either processor to be taken out of real-time mode and used off-line without affecting the other.

- 105 -

 To provide a program overlay facility in conjunction with the AED3100 floppy disk unit for the H316 user.


The last objective is included to overcome the problem of user core-memory and design limitations. Since the M6800 may interrupt the H316 at any (permissible) time, the HADIOS Executive must always be core-resident. With additional space provisions for graphics, the H316 user may soon find that he is short of space to accommodate his BASIC program and data storage, and FORTRAN subroutines (which may be large in certain applications such as on-line parameter and state estimation) necessary for a given computing task. In view of the latter situation, the disk to core transfer facility is incorporated in the overall software design strategy.

4.3 Memory Allocation

Memory consideration is important in the initial stages of design as a limited core memory may result in the stated software objectives being more difficult to achieve. In this research, the problem was more critical in the H316 minicomputer. A consideration of memory utilisation in each computer (Figure 4.1) helps explain why.

Core memory for the H316 amounts to 16K organised into thirty-two (40 octal) 512-word sectors. System requirements mean the BASIC-16 Interpreter and the HADIOS Executive must be core-resident. The BASIC-16 Interpreter essentially occupies the lowest seven and a half sectors of memory (see Section 4.6 for greater details). It also requires a high octal address (HOA) to be specified to calculate and inform the user of the space available for his BASIC program and data storage. This means HOA should be made as high as possible. The HADIOS Executive and its FORTRAN library routines are relocatable code and could be loaded high up in memory.

- 106 -

The SD BASIC DATA ORIGIN and FROM

ORIGIN facility respectively.

Typical values are: \$XXXX - \$5000 \$YYYY - \$4000

Figure 4.1 Typical Memory Utilisation in the H316 and M6800 Computers

Memory allocation is also necessary for the GRAPHICS library, user-written FORTRAN subroutines, disk Read/Write routines, and any other data areas that used to remain core-resident. For these reasons, a value of '17777 is chosen for the HOA giving a BASIC user space sufficient for most applications. The HADIOS Executive is loaded high up in memory so that memory sectors '20 through '26 can be used for program segments loaded from the disk. (See Chapter 6 for a practical example.)

In the M6800, the user normally has most of RAM memory locations \$0000 through \$7FFF for program space. For real-time use, the SD BASIC Run Time Packages and the user's BASIC program interfaced to the M6800 Executive must be in core. The Run Time Package (RTP) and its Input Output Package (SDIOPACK) occupy locations \$3200 through \$3862 and \$64E3 through \$7FFF respectively. The software also uses page zero (\$0 through \$00FF) for direct addressing. Some other RAM locations are used for interrupt vectors (\$FFF8-\$FFFF), I/O Ports address assignments (\$F530-\$F53F) and CPU scratchpad (\$F000-\$F072). The remaining area of RAM is available to the user.

4.3.1 Source Tape Preparation

In the course of this research, programs and subprograms have been written in SD BASIC, Honeywell BASIC, standard FORTRAN, DAP-16 MOD 2 and M6800 Assembly Languages. In each computer system, a text editor was used.

4.3.1.1 H316 Software

As the H316 is not provided with a disk-based operating system, the H316 Text Editor was used to prepare source programs on paper tape or cassette tape. DAP-16 MOD 2 programs were normally assembled in the two-pass mode. FORTRAN subroutines were compiled

- 108 -

using the FORTRAN Compiler Revision E. The object output from both operations are compatible and are loaded into core memory using a self-contained loader, LDR-APM Revision E.

Since the BASIC interpreter uses most of sector zero (the usual base sector) for address constants, buffers and base requirements, H316 source programs were written in the de-sectorised mode. FORTRAN modules are kept small (within a sector) and perform no I/O operations. The starting base address for each sector is specified at loading time. For DAP-16 MOD 2 programs, the SETB (Set Base) pseudo-operation may be used. The programmer must ensure that sufficient space is reserved for base. A base crossing into the next sector is detected by the loader (an 'NO' - memory overflow message is output to the VDU) but not base which is over-written by program code. An estimate of program size is helpful but a successful program load usually requires some initial dummy loads or trial and error procedures.

At one stage, it was thought that the Honeywell Series 16 FORTRAN Translator could be used to de-sectorise FORTRAN subprograms. The Translator allows in-line DAP-16 MOD 2 coding so that the SETB and ORG (Program Origin) pseudo-instructions can be inserted. However, the author found the method less attractive as too many iterations were required to de-sectorise large FORTRAN programs (as they are in estimation studies). Furthermore, the locations of blocks of CONMON storage in the various program units must be defined at translate-time. This is because the names given by the FORTRAN programmer to particular COMMON blocks cannot be passed on for recognition by the loader.

Another problem was concerned with subroutine reentrancy. The FORTRAN library routines are non-reentrant which means certain interrupt response code (such as M6800 interrupts) must have its own collection of FORTRAN library routines. This requires more space for code duplication. The BASIC interpreter has its own library routines (the BASIC MTH-PAK). They are also non-reentrant but very similar to equivalent FORTRAN mathematical routines. For this reason, they are fully exploited and used by subroutine or interrupt response code when BASIC statements are not in execution (such as the RTC interrupt response and Graphics). A list of the BASIC MTH-PAK routines used is found in Table A4.10 of Appendix 4. Note that several routines are not available in the MTH-PAK. These include ARG\$ and F\$AT (used in argument transfers) and D\$11 (integer division).

4.3.1.2 M6800 Software

The disk-based operating system (DOS) in the M6800 makes it easy to write and compile programs. The TSC Text Editor and the program files are all stored on the disk. For large source files (such as the M6800 Executive), a memory patch using the MIKBUG command 'M' was necessary to increase the editor's workspace. In the H316, a similar patch was not possible. The HADIOS Executive source tape editing had to be done in two parts.

Another advantage in the M6800 is that unlike the H316, the M6800 emulates some aspects of stack architecture. The M6800 stack grows toward the low end of memory (on a last-in first-out (LIFO) basis) and the instruction set provides fast 'PSH' and 'PUL' (push and pull) instructions operating on registers A and/or B for stack manipulation. While in the H316 the user has to specify the buffer to save the machine status of an interrupted program (in fact one buffer for each source of interrupt), processor status in the M6800 is automatically 'pushed' on to the stack on interrupt. The programmer is therefore relieved of this chore but has to make sure that the stack must not grow too large and overwrite some instruction or data bytes. Furthermore, the H316 programmer must be careful not to use common registeroriented instructions such as LDA (Load A register) or STA (Store A register) before saving the status of processor keys (the C-bit, shift count etc.) in the interrupt response code.

At the assembly language level, the M6800 instruction set also offers greater flexibility than DAP-16 MOD 2. The H316 is very much single-register (A-register) oriented. The index register is useful for temporary storage and addressing and many control instructions (SNZ-skip if non-zero, SPL-skip if plus, etc.) work only with the A-register. On the other hand, two 8-bit registers (A and B) and a 16-bit index register are available to the M6800 programmer. Branch instructions (BMI-branch is minus, BLS-branch if less or equal, etc.) work with all the registers. Furthermore, the index register itself can be indexed and is therefore useful in retrieving a 16-bit value from a 16-bit address. Ample examples of the points just mentioned are found in the respective real-time executives.

The WAI (Wait for Interrupt) instruction however, does not work in this version of the M6800 microcomputer system. Due to the specific hardware set-up of the interface adapters, a WAI causes the VMA (valid Memory Address) line to become inactive and disenables all incoming IRQ interrupts.

Also, the TSC Text Editor can be patched with the following assembly code to punch out (at the TTY) H316 compatible source tapes. The M6800 can therefore act as an intelligent terminal to the H316.

Finally, in writing SD BASIC programs for use with the M6800 executive the programmer must avoid variable names which have already been specified as labels in the Executive. Data structures for integers and reals are also different in SD BASIC. The address of a variable and its numerical value (real or integer) each takes up six

- 111 -

A Machine Code patch of the TSC Text Editor to enable the preparation

of H316 compatible source program tapes.

	NAM	MCASM
	OPT	0
	ORG	\$7FDO
OUTEEE	EQU	\$E1D1
	STAA	TEMP
	EORA	#\$80
	JSR	OUTEEE
	LDAA	TEMP
	CMPA	#\$OD
	BNE	RETN
	LDAA	#\$8A
	JSR	OUTEEE
RETN	RTS	
TEMP	RMB	1
	END	

bytes as indicated below. Memory grows from left to right.

Address of Numeric Value

Integer Value

O * * * INTEGER					
	0	*	*	*	INTEGER

Decimal Floating Point Values

EXP	BCD	BCD	BCD	BCD	BCD
-----	-----	-----	-----	-----	-----

 $0 \leq INTEGER \leq 65536$

The BCD bytes are base 100 digits. Floating point zero if defined by EXP = 0and all BCDs zero.

Because main memory is volatile in the M6800 and data areas may contain 'anything' on a power-on condition, it is therefore sensible to initialise those variables which is assumed by the M6800 Executive to be in a real or integer format, at the beginning of the program and sustained throughout program execution. However, SD BASIC is flexible enough to allow an array to have a mixture of real and integer elements.

4.4 The HADIOS Executive Revision 03

The HADIOS Executive Rev 03 is a considerably modified version of the previous version. It is written in H316 Assembly Language (DAP-16 MOD 2) and contains subroutines callable from a BASIC program, and all the interrupt service routines. In this way, the details and low-level operations of HADIOS devices remain hidden from the general user who would be programming mainly in BASIC and FORTRAN.

The organisation of the Executive is best understood by first listing its specific functional objectives which are as follows:

- To enable regular access of HADIOS hardware at the required frequency from either computer.
- To handlé and service all interrupts to the H316 minicomputer (real-time clock, counters, CA2 and CB2 control, and special data transfers to/from the M6800).
- To provide a real-time base for the calculation of flowrates from counter inputs (for both computers).
 To provide an idling loop to wait for clock interrupts.

- 5. To provide a dispatcher table which contains pointers for special/background processing. An option is provided whereby the H316 may be exclusively used by the M6800 user (graphics and/or data processing).
- To enable either computer to output control settings to the process plant at any desired time.
- To terminate H316 scanning of HADIOS devices when the required number of scans has been done.
- To handle error conditions while not disrupting any microprocessor operation.

These objectives are achieved by a combination of subroutines callable from BASIC, and interrupt response routines. The use of the subroutines will be discussed first with reference to an assembly listing of the HADIOS Executive provided in Table A4.1 of Appendix 4.

4.4.1 HADIOS Subroutines

The user communicates with HADIOS by CALLs from his BASIC program as follows:

CALL (1, A(0), B(0)

Subroutine 1 is the basic scanning routine. Arrays A (dimensioned 13) and B (dimensioned 86) contain the user's parameters and variables.

A(0) Scanning interval in seconds

A-Array

A(1) Devices required

- = 1 Analogue Inputs
- = 2 Counter 1
- = 4 Counter 2
- = 8 Counter 3

The required set of devices is selected by setting A(1) equal to the sum of the appropriate values above. This allows easy decoding of the HADIOS devices required by ANA (logical AND with A-Register) instructions in the Executive. Number of scans required, including the initial scan at

A(3) First analogue channel.

time zero.

A(2)

- A(4) Last analogue channel.
- A(5) A delay element in the Analogue Inputs sampling code. The specified analogue channels (A(3) through A(4)) are scanned as many times as possible over a period of one H316 clock resolution (20 ms) and the cumulative sum for each channel is divided by that ensemble number. The smaller A(5) is, the smaller the delay after each multiplexing operation and therefore the larger the ensemble number. This averages out the noisy signals giving the effect of a simple filter. A(5) = 33 is a typical value and zero is not recommended.

The Executive returns the current ensemble number in A(5) after every Analogue Inputs scan and stores the initial value of A(5) internally.

- A(6) Counter 1 scan type.
 - = 0 Non-interrupt mode.
 - = 1 Counter 1 interrupts enabled.
- A(7) Counter 1 preset value (0-255).
- A(8) Counter 2 scan type.
 - = 0 Non-interrupt mode.
 - = 1 Counter 2 interrupts enabled.
- A(9) Counter 2 preset value (0-255).

- A(10) Counter 3 scan type
 - = 0 Non-interrupt mode
 - = 1 Counter 3 interrupts enabled
- A(11) Counter 3 preset value (0-255)
- A(12) A program flag in the HADIOS Executive.
 - = O Normal. The H316 scans at its own clock frequency.
 - = 1 In this mode, the HADIOS devices come under exclusive control of the M6800 user. The H316 clock is not interrupt enabled and only the following elements of array A need to be specified: A(1) = integral multiple of M6800 sampling intervals. A(2) = total number of scans required The Executive also stores values of Analogue and/or Counter Inputs (specified by the M6800 user) into the appropriate B array elements. The H316 BASIC program can therefore access these values at the interval specified by A(1) and subject them to further mathematical treatment and/or graphics. In fact, the treated data can also be communicated to the M6800 via another CALL to Subroutine 4.
- A(13) A program flag in the HADIOS Executive.
 - = 0 Normal, ON-LINE MODE*.
 - = 1 The H316 is in OFF-LINE mode. The H316 is not clock interrupt driven for a plant scan but may communicate with the M6800 which may or may not be in OFF-LINE mode. If the M6800 is in OFF-LINE, then the H316 has to interrupt the M6800 through subroutine 4 for a H316 to M6800 data transfer.

The subroutine of A(1) and A(2) is the same as when A(12) = 1.

*ON-LINE means with respect to the process plant only.

B-Array

- B(0)-B(47) Analogue Inputs channel readings (each averaged over the ensemble number as returned in A(5)).
- B(48) Counter 1 interrupt time (sec.). The HADIOS Executive Rev 03 (unlike previous versions) upgrades the interrupt time at every counter interrupt cycle. It is proposed that in general this gives a better measurement of the 'instantaneous' value at scanning time (see Section 4.4 on Counter Code Modifications). This modification applies to all counters i.e. B(51) and B(54) as well.
- B(49) Counter 1 contents at scanning time.
- B(50) Number of Counter interrupts during the last scanning interval.
- B(51) Counter 2 interrupt time (sec.).
- B(52) Counter 2 contents at scanning time.
- B(53) Number of Counter 2 interrupts during the last scanning interval.
- B(54) Counter 3 interrupt time (sec.).
- B(55) Counter 3 contents at scanning time.
- B(56) Number of Counter 3 interrupts during the last scanning interval.

B(57)-B(86) Storage area for data transferred from the M6800. (0-32767).

At the BASIC level, subroutine 1 is entered only once. The addresses of A(O) and B(O) are passed to the Executive via locations PARS and PARS+1 respectively. All other array locations can therefore be addressed as displacements from this base taking into account that all BASIC variables are REAL in the FORTRAN sense and occupy two computer words each. The location of the next BASIC line after CALL (1,A(0),B(0)) is also stored internally. It serves as the entry point into BASIC from the DISPATCHER waiting loop (a scanning interrupt or an M6800 interrupt when A(12) or A(13) is non-zero).

Basically Subroutine 1 initialises some program flags and the required HADIOS devices. In the interrupt mode, the clock and the counters are initialised by a routine called the Common Interrupt Initiator. The program then enters the DISPATCHER loop to wait for the first clock interrupt which comes after about 100 ms.

CALL (2)

This CALL causes the program to wait in the DISPATCHER loop for the next scan (clock interrupt of A(12) = 0 or the relevant M6800 interrupt if A(12) or A(13) = 1) if all scans requested via A(2) have not been done. Else the BASIC program continues from after the statement CALL(2).

CALL (3, N, U)

This subroutine converts digital output signals into analogue outputs via DGOA and extra hardware (a 12-bit DAC and a Zero-Order Hold).

N

Analogue output channel (0 - 15).

U

Digital equivalent of the analogue output. For $0 \le U \le 32767$, the analogue output is 0 to 10 volts. As DGOB is normally interfaced to the PIA A Side, only DGOA is used by this subroutine. The set-up word output to the DGOA is shown below:

12345 16 Channel 12-bit integer N U

The DGOA can be accessed by both computers. To prevent a simultaneous service, part of the code has been made interrupt inhibited. <u>CALL (4,I,M,D(0))</u>

This subroutine is used to transfer data stored in the D array to the M6800. If I = 0 then the M6800 must be in ON-LINE mode and the subroutine merely places the data in a temporary buffer (BUF1 BSZ 30) to be picked up by the M6800 at its next process scan, else I = 1, which causes the routine to immediately interrupt the M6800 via a low active CA1, thus initiating the data transfer.

M Number of H316 computer words to be transferred including D(0) in one transfer operation (M \leq 30).

D(O) Array locations D(O)-D(M-1) are consecutively occupied by the M data words.

4.4.2 Interrupt Handling

All interrupt requests to the H316 are channelled into the standard interrupt line, PILOO, and sorted out by the HADIOS Executive. When an interrupt occurs (for conditions, see Section 3.2.4), the program automatically executes a JST*'63 (a JUMP and STORE through dedicated location '63) to begin the servicing routine. The address SKST of the Executive is placed in location '63 so that the software sort may begin from location SKST+1.

The sorting out is accomplished by a sequential testing of possible sources using the SKS (skip if sense line set) instruction. Once identified, program status is saved in a five-word buffer of the particular interrupt Link by the Common Interrupt Handler (as opposed to the stack concept in the M6800). The program status consists of five words: Program Keys (C-bit, Shift Count, Double Precision Mode

Indicator, etc.). Contents of the B-Register. Return Address.

After an interrupt response code has been executed, the program exits through a Common Interrupt Return which restores the original status of the interrupted program. System requirement means that some parts of the interrupt response code are necessarily interrupt enabled/ inhibited.

Figs. 4.2a and 4.2b respectively show the flowchart of decoding a particular interrupt source and the saving of program status by the Common Interrupt Handler. Note that in sorting out the M6800 interrupts, the keys are saved first before manipulating the A-register.

4.4.2.1 The H316 Real-Time Clock (RTC)

The H316 clock interrupt is primarily used to initiate a scan of the required devices. The code is fairly straightforward except that some manipulations of the contents of some locations associated with the counter response code is done to maintain the correct measure of real time. This is because the counter response code also uses location '61 as a time base (see Section 4.4.3).

Note that the clock resolution is 20 ms. The BASIC user merely specifies A(0) in seconds. The Executive multiplies it by 50 first, then truncates the result to the nearest integer two's complement multiple of 20 ms. On a clock interrupt, the clock is normally reset to this initial value.

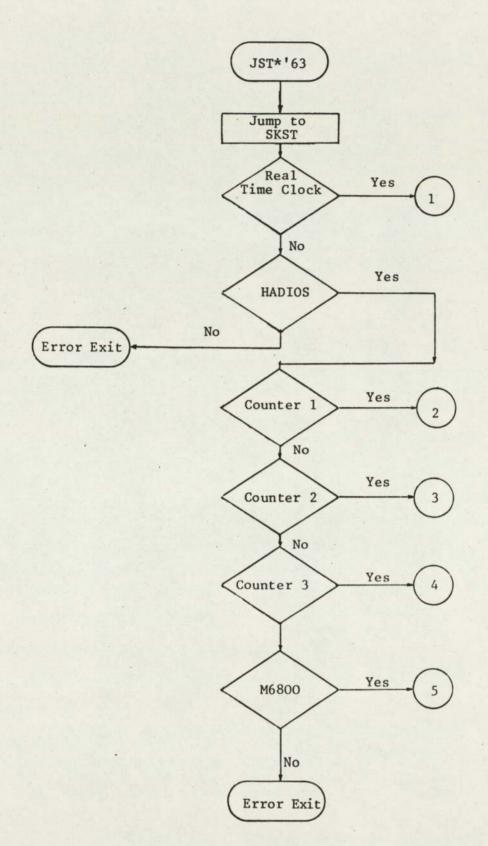


Figure 4.2a Interrupt Source Identification in the H316 Minicomputer

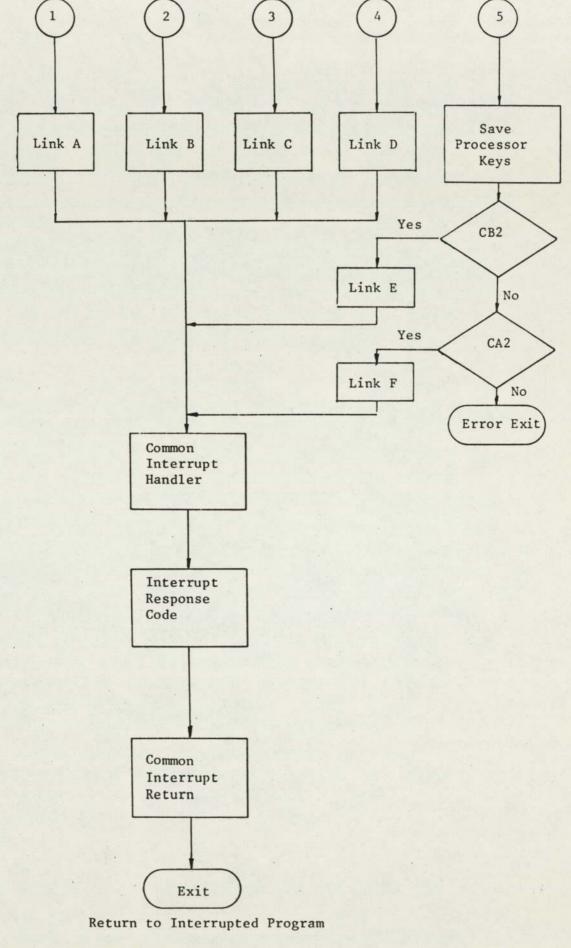


Figure 4.2b Interrupt Handling in the H316 Minicomputer

4.4.2.2 Counters

Each counter input is driven by pulses received from a flowmeter which provides an alternative method of flow measurement in comparison to the usual pressure-differential manometer/transducer. When programmed in the interrupt mode, a counter interrupts the H316 when its internal register is half-full (127). The modification to the counter interrupt response code is described in greater detail in Section 4.4.3.

Although both computers can access any of the counters, at any one time the usage is mutually exclusive.

4.4.2.3 CB2 Interrupts

Because the M6800 is interfaced to the H316 via a single PIA, the CB2 and the CA2 interrupt response codes make heavy use of steering flags or semaphores to achieve different computing tasks. The CB2 interrupt in particular, is used to provide four basic functions.

1. Initialisation

Normally, the HADIOS Executive Package Revision 03 (BASIC Interpreter + Graphics + HADIOS Executive Rev 03) is started by entering at location zero (relative) in the Executive. This is because the Common Interrupt Initiator needs to configure the H316 to make it CB2 and CA2 interruptible right from the beginning. A jump is then made to location '1000 for the initialisation of the BASIC Interpreter.

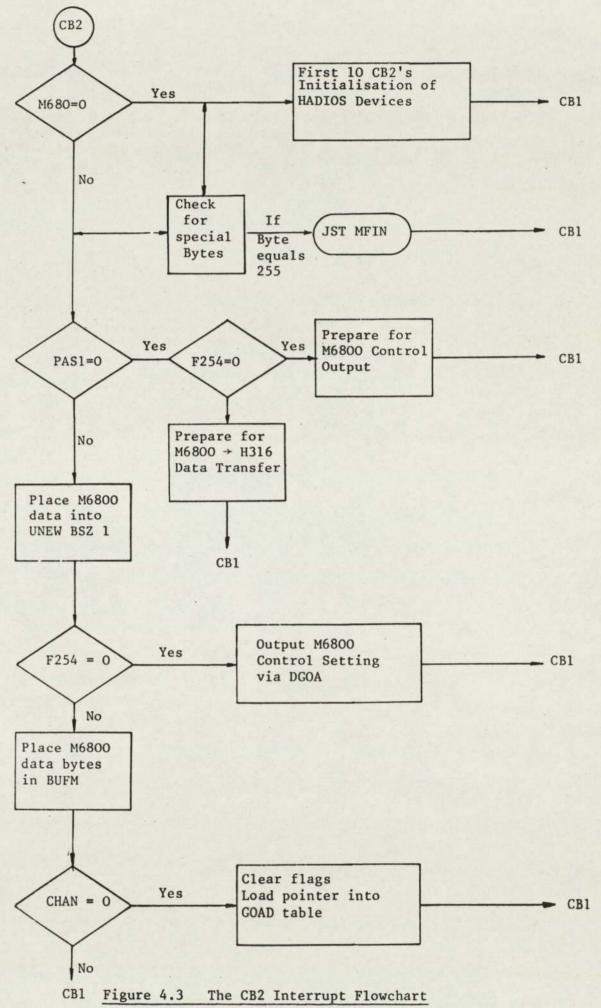
The M6800 can then interrupt the H316 to access the required HADIOS devices. The first ten CB2 interrupts are normally assignments of HADIOS parameters specified by the user in SD BASIC (see Section 4.5.1).

2. Control Outputs

A 16-bit digital equivalent analogue output can be sent by the M6800 user using two CB2 transfers. The HADIOS Executive then outputs the value via the specified channel of DGOA to the process plant. Because any byte containing 254 or 255 is a special code to the Executive, the maximum value for the least significant byte of the 16-bit control word is 253. In other words, the maximum 16-bit control output from the M6800 is limited to \$7FD.

3. M6800 to H316 Data Transfer

The HADIOS Executive can receive up to thirty words (60 bytes) from the M6800 at any one time through sixty CB2 transfers. This operation must be preceded by another two CB2s which send a byte of 254 (a steering flag) and the number of words to be transferred.


4. Error Code

In the event of an error situation that would require the M6800 program to be aborted, a data byte of 255 is sent to the H316 via a single CB2 transfer. This causes the HADIOS Executive to initialise the H316-M6800 communication protocol, without disrupting any H316 software operation. Such an error situation could either arise from a genuine program execution error which is detected by the M6800 Executive or a user interference which stops M6800 operation when the NMI button is pressed.

Figure 4.3 shows a flowchart of the CB2 Interrupt structure. Note that a CB2 interrupt is always acknowledged by a CB1 in the handshake protocol.

4.4.2.4 CA2 Interrupts

The PIA A Side is also configured in the handshake mode except that when the M6800 is in the OFF-LINE mode, bit 1 of the control register is set, thus allowing the H316 to interrupt the M6800 via a CA1 transition.

- 125 -

CA2 interrupts are used in the transfer of data bytes from the H316 to the M6800 which arise in three different situations as described below. As in the CB2 interrupt response code, steering flags are used to achieve different computing tasks as only a single CA2 interrupt line is available.

1. M6800 Scanning Routine

In a M6800 scan, two CA2 interrupts are required to retrieve a HADIOS device input (analogue or counter). Each byte of the input word is sent together with a CA1 acknowledge. The CA1 transition does not cause an TRQ interrupt to the M6800 as bit 1 of the PIA A Side control register has been earlier reset to 0. During such a scanning operation, the A Side remains in this non-interruptible mode. Note that this operation also picks up any H316 data that is 'waiting' to be transferred.

2. H316 to M6800 Data Transfer

When the M6800 is not scanning (OFF-LINE mode), the H316 may transfer data to the M6800, initiated by a CA1 interrupt through the PIA A Side. The CA2 interrupt to the H316 is now used as an acknowledge signal. Note that in this operation, only the first CA1 is an interrupt to the M6800. The following transitions are handled in the same way as in a M6800 scanning routine except that the role of CA1 and CA2 are now reversed.

3. Error Code

An error situation may also be detected in the HADIOS Executive which only affect M6800 operation. These error codes are sent to the M6800 via any of the two data transfer operations just described. A fuller treatment of error handling by the HADIOS Executive is described in Section 4.4.4. Figure 4.4 shows a flowchart of the CA2 Interrupt structure. Note the two ways in which the CA2 (hence the CA1) can be used .

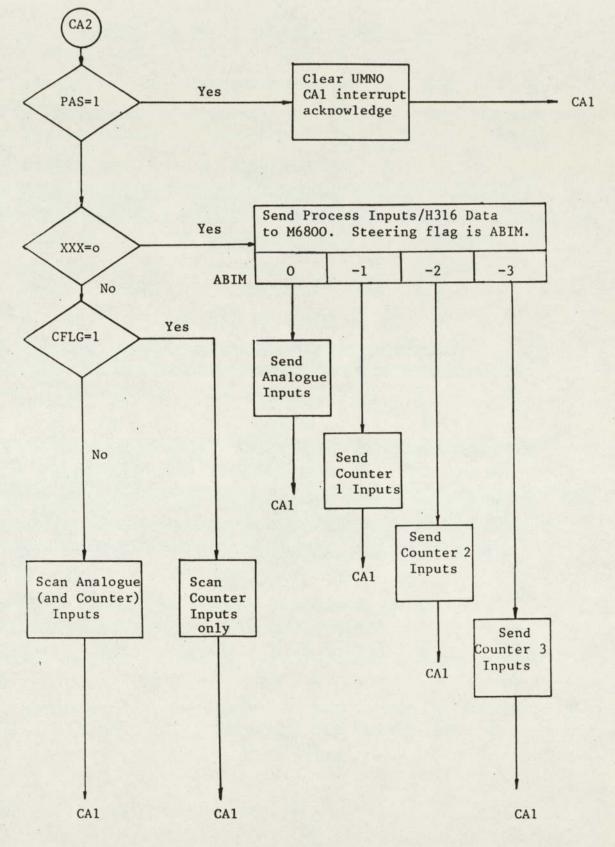
4.4.3 Counter Code Modifications

The counter interrupt response code and counter inputs handling routines have been modified to achieve the following objectives:

- A search for a more accurate value of the 'instantaneous' flowrate.
- Counters under M6800 control to depend also on the H316 clock (location '61) for measurement of real time.

A relatively simple scheme has been devised to achieve both objectives. It is based on the continuous running of the H316 clock. When H316 scans are not required, the clock is enabled to run only in the non-interrupt mode i.e. the transition from -1 to 0 in location '61 does not generate an interrupt request via PIL00.

There are two ways of calculating flowrates, assuming the relation between flowmeter pulse rate and flow has been determined. For counter 1, the formulae are as follows; in units of pulses received per second.


1. Rate = $(127 - \Lambda(7))/B(48)$

2. Rate = ((127-A(7)) * B(50) + B(49) - A(7))/A(0)

Formula 1 is an 'instantaneous' measure of flowrate if the counter interrupt time B(48) is calculated as close as possible to the sampling time. Formula 2 is an average measure over the entire previous scanning interval, hence the inclusion of the term A(0).

In previous versions of the HADIOS Executive, B(48) is determined for the first counter interrupt after every HADIOS scan but its value is only read at the next scan. While this is acceptable if the

- 127 -

Figure 4.4 The CA2 Interrupt Flowchart

*

flow does not change appreciably over the scanning interval, misleading results can occur if the flow regime changes markedly. For this reason, the modified code upgrades location ITM1 (precursor to B(48)) at every counter 1 interrupt.

The modified code, like all interrupt response codes, has been kept as short as possible. The main problem in writing a workable code was in meeting the following specific requirements.

- All counters depend on location '61 for measurement of real-time.
- 2. Use of a counter by either computer is mutually exclusive.
- The contents of location '61 changes abruptly (by software) on a H316 scan or an error condition.

Tests conducted with a laboratory pulse generator showed that the modified code is a better approach to the measurement of flow while at the same time satisfying the requirements of the linked twin-processor system.

4.4.4 Error Handling and Sense Switch Usage

A proper error handling scheme is vital in the HADIOS Executive if it is to support a general, user-interative and real-time facility. The fifth software objective in Section 4.2 in fact requires that the H316 must not be in the HALT mode else M6800 real-time operation would have no practical meaning.

The existing scheme whereby an error condition would cause the program to exit to the BASIC command mode is extended to include several more error conditions. The error message has the format ERROR XY LINE NNN, where NNN is the BASIC line number and XY is one of the following:

BK - A program BREAK has occurred in the course of program execution. Sense switch 1 (S.S.1) has been set. Note that a BREAK prior entry to the Executive does not adjust location '61.

- CE The H316 user has specified a counter which is already under M6800 control.
- GE Relevant only when A(12) = 1. The H316 was still executing the interscan BASIC processing when the next relevant M6800 scanning interrupt occurs. It is therefore similar to error TF.
- NC The HADIOS controller has interrupted the CPU but the interrupting device was not a counter.
- NM An Alarm Input interrupt has occurred but it was not a CA2 or CB2 from the M6800.
- NR An unidentified interrupt has occurred.
- RI A Real to Integer conversion error has occurred in a library routine, i.e. the conversion of a real number outside the range -32768 to 32767 has been attempted.
- TF The,H316 clock interrupt frequency is too small and BASIC code was still being executed when the next scanning interrupt arrives.
- UI Program execution has been terminated via a user interference i.e. S.S.2 has been set and detected in the DISPATCHER waiting loop.

Sense Switch Usage

- S.S.1 Normally used for terminating a BASIC program. If the switch is set when H316 is in communication with the M6800, then program execution jumps to BASIC command mode via the HADIOS Executive error exit routine.
- S.S.2 This switch setting is tested in the DISPATCHER waiting loop. If set, program returns to the BASIC command mode.

S.S.3 The INPUT statement reads data from cassette or paper tape.S.S.4 The PRINT statement writes data to cassette or paper tape.

There are other error conditions that do not disrupt H316 operation. When they occur, the HADIOS Executive simply communicates the condition, to the M6800 at the next earliest scan of analogue or counter inputs. The M6800 Executive then takes the appropriate action to inform its user (see Section 4.5.3).

The HADIOS Executive also uses some FORTRAN library routines for its own use (for example FSAT, FSER, etc.) although the use of such routines has been minimised since many of the routines in the BASIC Interpreter MATHEMATICS PACKAGE are similar and therefore can be used. All these routines are non-reentrant and cannot be used simultaneously by two or more calling programs. This also means that FORTRAN subroutines callable from BASIC (for example the GRAPHICS segment or the DISK READ/ WRITE facility) must be provided with their private collection of library routines.FORTRAN generated errors are therefore possible and these are distinguished from the other errors by the characters 'FT'.

4.4.5 Limitations

In providing a general purpose package such as the HADIOS Executive Package Revision 03, some flexibility is normally lost.

In particular, the sampling frequency A(O) is fixed on entry and remains constant throughout an on-line run whereas more intelligent executives would include a facility for variable sampling speeds in response, or in adaptation, to rapidly changing plant operating conditions.

Another limiation is that is is only possible to scan a single group of sequentially arranged analogue channels. If one is to scan channels 0 to 7 and channels 36 to 47 in one scanning routine then the

- 131 -

user has no choice but to scan channels 0 to 47. This means some time is wasted in scanning the irrelevant channels. To overcome this problem, channels for a single process plant are grouped together as far as possible.

The maximum ensemble number for any channel is 32. Recall that a group of sequentially arranged analogue channels is scanned as many times as possible over one clock resolution (20 ms). At the same time, the cumulative sum for each analogue channel is stored in a buffer. The ADC is a 10-bit device and the maximum digital equivalent for a 5 volt input is 1023. For thirty-two samples at this input level (which is practicable), the cumulative sum is 32736 which is within the upper limit for a 16-bit two's complement integer word. Clearly, the cumulative sum for thirty-three samples would be interpreted as a negative number, leading to meaningless results. This upper bound on the ensemble number is not included in the previous HADIOS Executive packages.

Since the HADIOS Executive and the Disk Read/Write routine must be core-resident, five locations of the BASIC Interpreter's CALL table (which is now located in the Executive) are permanently occupied. Therefore, only up to five other subroutine addresses can be accommodated. However, with the disk facility, different program segments can share the same address as long as only one program segment needs to be in core at any one time. The problem of CALL-table size is therefore regarded as an academic observation.

4.5 The M6800 Executive

The M6800 Executive is written in M6800 Assembly Language and followed similar lines to the HADIOS Executive. It proved to be reasonably straightforward to write given the previous experience on the H316 in writing such software. - 133 -

first considering the specific functional objectives and discussing them in reference to a source listing provided in Table A4.2 of Appendix 4.

The M6800 Executive is designed to meet the following objectives:

- To enable the M6800 to access HADIOS hardware at the required frequency.
- 2. To handle all interrupt requests to the M6800 MPU (i.e. $\overline{\text{NMI}}$, and device generated $\overline{\text{IRQ}}$, including batch data transfers to/from the H316).
- To provide an idling loop to wait for the M6800 scanning interrupt (via the MP-T Interrupt Timer).
- 4. To provide a dispatcher table which contains pointers for special/background processing (for example, moving data from a buffer into an SD BASIC array).
- To enable the M6800 user to output control settings to the process plant.
- To terminate M6800 scanning when the required number of scans has been done.
- To handle error conditions while not disrupting H316 operation.

These objectives are achieved by a combination of subroutines callable from SD BASIC, and the interrupt service routines. Together, they form the Executive which must be assembled together with the user's SD BASIC program.

The M6800 Executive is normally stored as a file on floppy disk. For real-time use, the user merely appends it to an application SD BASIC program. The arrays used are A (dimensioned 11) and B (dimensioned 86). As with the HADIOS Executive, the M6800 Executive can operate either in the ON-LINE or OFF-LINE mode. The user HADIOS parameter and storage values take the same significance with the following differences.

- Array A must be an integer array. For array B, only the elements corresponding to the channels scanned [B(A(3)) - B(A(4)) and H316 data transferred [B(57) - B(57 + M - 1)] must remain in integer format.
- The control outputs must be converted into integer format first (using the INT function) before conveying them to the M6800 Executive.
- 3. The counter contents used by the M6800 (potentially B(49), B(52) and B(55)) are scanned as multiples of the RTC clock resolution (20 ms). The user must convert these to the required units through program.

As in the HADIOS Executive Package, there are basically four subroutines. However, a call to a house-keeping subroutine (CALL SUBO) must be made first. This prints out the high SD BASIC address (in hexadecimal) and the high address for the entire program segment (SD BASIC and M6800 Executive). This allows the programmer to examine data locations which by default (the data storage area can be assigned elsewhere via the DATA ORIGIN statement) begin at the top of the SD BASIC program segment.

SUBO also requests the user to specify which mode he wants the M6800 Executive to operate in. In the ON-LINE mode, the MP-T Timer is used to initiate M6800 scanning interrupts and the Executive is used in a way similar to the HADIOS Executive under normal operation. In the OFF-LINE mode, the MP-T Timer is not used at all. The M6800 may not independently access a process plant but can be programmed to engage in asynchronous data transfer operations as part of a distributed computing activity between the two processors.

CALL SUB1 (A(0), B(0))

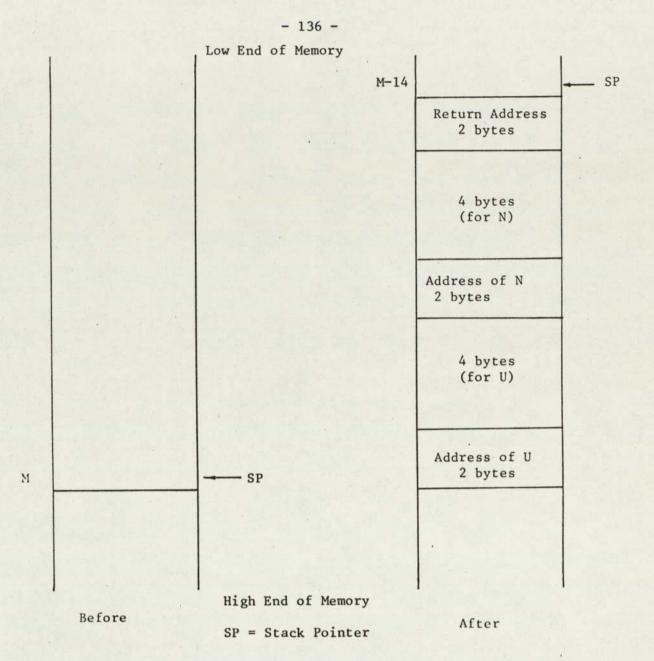
This is the basic scanning routine. It is similar to CALL (1,A(0),B(0)) in the H316 except that SUB1 is called once in every scan. Note that the addresses of the arrays A and B are transferred on to the M6800 stack in the reverse order as they appear in the argument list.

CALL SUB2

This subroutine call is similar to CALL(2) in the H316 except that if the number of M6800 scans required is still not reached, the program always return to SD BASIC where it jumps into the DISPATCHER loop (via SUB1) to wait for the next scanning interrupt.

CALL SUB3(N,U)

This subroutine is similar to CALL(3,N,U) in the H316 except that in the M6800, N and U must represent integer values. As in CALL SUB1 (A(0),B(0)), the argument addresses are pushed on to the stack in the reverse order (see Figure 4.5). Recall that in SD BASIC, the address of a variable (as the numerical value itself) takes up six bytes. When a CALL is executed, the index register points to the first byte of the address of the last argument transferred while register A contains the number of arguments involved.


N = output channel number of DGOA (0-15)

U = 0 to 32767 corresponding to 0-10 volts

CALL SUB4(M,D(O))

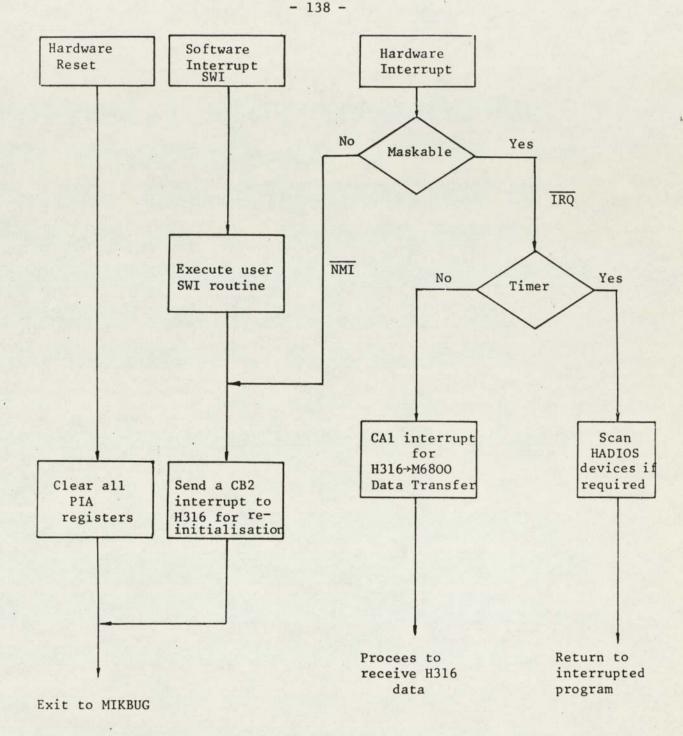
This subroutine transfers M consecutive data words (two bytes each) located in INTEGER array D which is dimensioned 29 (buffer size defined by BUFM in the HADIOS Executive). The first CB2 output in the

- 135 -

Figure 4.5 M6800 stack before and after CALL SUB3(N,U)

sequence transfers a code byte (254) which prepares the HADIOS Executive for the subsequent data transfer. Like all data transfers to the H316, the CB2 interrupt is used to inform the H316 that a data byte is available and the H316 acknowledges receipt via a CB1.

4.5.1 Interrupt Handling


A M6800 Executive basically handles IRQ, NMI and SWI interrupts. IRQ interrupts are generated by the MP-T Timer (every second if the reserved SD BASIC variable TIMER is set to \$06, an integer multiple of which is the sampling interval) or by the H316 via a low active CA1 transition to initiate a H316 to M6800 batch data transfer operation.

Unlike the HADIOS Executive, the M6800 Executive does not have to allocate buffer locations to store the machine state of the interrupted program. This is automatically done by hardware which conserves the status on to the stack. The interrupt handling routine is therefore straightforward and as each type of interrupt (\overline{IRQ} or \overline{NMI}) is channelled through its own dedicated vector, the Executive only has to poll the expected sources to identify the active one.

Figure 4.6 shows the interrupt handling flowchart as used in the M6800 Executive. The polling method is used to sort out the \overline{IRQ} interrupts, the MP-T Timer being tested first (IRQB1 flag set?) as it is the more likely one under normal ON-LINE conditions.

There is only one $\overline{\text{NMI}}$ interrupt source i.e. via the NMI button at the computer front panel. It is used to cause a user interrupt in a manner similar to the functions of sense switches 1 and 2 in the H316.

The SWI interrupt is used as a run-time debugging aid. In using the system, spurious CB1s (or CA1s) may be generated when data is transferred from the DGOA to the PIA A Side. Because the PIA B Side is usually programmed in the handshake mode, a spurious low active CB1 sets the IRQB1 flag. This premature setting causes the next STAA IORBO (send a low active CB2 to the Alarm Input subinterface) instruction to be ineffective. Subsequent CB2s are effective as the IRQB1 flag would have been reset by a LDAA IORBO instruction. As a result, the M6800 Executive 'thinks' that, it has sent out all the required CB2s whereas the HADIOS Executive has actually received one less and the effect on the CB2 interrupt response code is of course, disastrous. Two SWI instructions

Figure 4.6 Interrupt Handling Flowchart in the M6800 Executive

are used to check a spurious CBl (or a CAl). The first SWl interrupt response prints a message and restores the MIKBUG SWI vector. The second, which is MIKBUG's own, prints the register contents before passing control to the monitor.

4.5.2 Error Handling

The SWI error handling routine has been described earlier. It means an interface hardware check is necessary. As far as the M6800 user is concerned, the other error conditions may encompass the following:

- 1. Initialisation errors detected by the M6800 Executive.
- 2. SD BASIC Run Time Package (RTP) errors.
- FORTRAN errors in the library routines used by the M6800 interrupt response code of the HADIOS Executive.
- 4. A user interference via the NMI button.

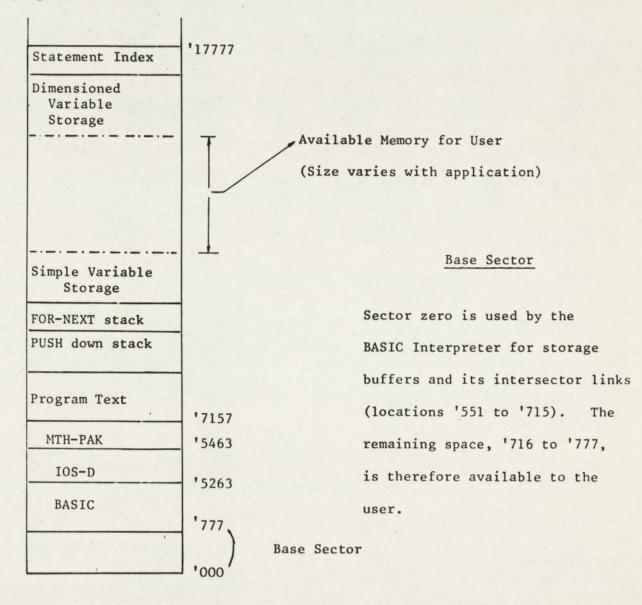
There are basically two types of errors: those that necessitate initialisation of CB2/CA2 response code in the HADIOS Executive and those that do not. In the first category, when an error is detected, a special data byte (255) is sent to the H316 via a CB2. All relevant program flags and buffer locations in the HADIOS Executive are set to their initial values so that the M6800 can re-start its communication protocol at any subsequent time.

Run-time (SD BASIC) errors are channelled to the M6800 Executive via SUB99 (EN,LN) where EN and LN are assigned the error and line (last line number encountered) numbers respectively, and the SD BASIC "ON ERROR GOTO" facility. Run-time errors in the HADIOS Executive which concerns the M6800 include the specifying of a counter currently being used by the H316 user and FORTRAN library routine errors. These errors are only passed on to the M6800 Executive for recognition at the next scanning interrupt.

User interference must be via the NMI button once the N6800-H316 protocol has started. This is because a hardware reset clears all M6800 CPU and PIA registers as well which means there is no way to initialise the HADIOS Executive for M6800 interrupts except by stopping H316 program execution and patching the flags and buffers by hand. SD BASIC can recover from input errors by responding with a "INPUT ERROR?" message and ignores superfluous input data before the carriage return key is pressed. Each CTRL/O (the CONTROL and O keys together) can also be used to 'delete' a previous character input.

The M6800 Executive error messages are self-explanatory (refer to the assembler listing in Table A4.2 of Appendix 4). Of course a more user friendly package can be written at the expense of more programming effort and space requirements. In the context of this work, that extra feature does not seem warranted.

4.5.3 Limitations


As the M6800 Executive is designed along the lines of the HADIOS Executive and to provide the M6800 user with the ability to access the HADIOS system, most of the limitations discussed in Section 4.4.5 also apply to the M6800 Executive. Other constraints are reflective of the fact that the M6800 is a linked system to the H316-HADIOS hardware via a single PIA chip. The M6800 user has no access to the plant without using some H316 machine time. This and other constraints caused by limited hardware and supporting software will be discussed in a later chapter. However, M6800 sampling times can go well below 1 sec. (H316 minimum) by specifying the appropriate MP-T Timer control code through the variable TIMER in SD BASIC.

4.6 Modifications to the BASIC-16 Interpreter

The original BASIC interpreter is still available but its utility is limited Input/Output is only via a TTY and it cannot run in an interrupt environment. To meet the requirements of the twin-processor system several modifications are necessary. These patches are easily made since an assembler source listing of the interpreter is available.

- 140 -

Figure 4.7 gives an overview of the memory utilisation by the interpreter. The initialisation routines (INIT.A) are only used once and can therefore be used to store program text. The user's BASIC program is stored in a compressed form to facilitate interpretive action during program execution.

Figure 4.7 Memory Utilisation by the H316 BASIC Interpreter

The ADT1-8 Table

The ADT1-8 Table (assigned dimensioned variable table) has been shifted to location '757 to '766 to allow the use of locations '61 and '63 for real-time applications. This is done by the assembly language program listed in Table A4.3 of Appendix 4.

Initialisation

Locations '166 through '180 are patched so that an initialisation, the message "HADIOS EXEC 03 1983" is output to the VDU. Other locations patched are indicated below:

Location		Original	Patch (Mnemonic	+ Code)
'7240		JST TYPE	NOP	'101000
'7241		XAC HMAM	NOP	'101000
'7242	INO3	JST TYPE	NOP	'101000
'7243		ХАС АУОН	NOP	'101000
'7245		LDA C241	JMP '7301	'003301

where '7301 contains the instruction LDA HOA, and HOA (location '7367) is the High Octal Address initialised for this system to 17777.

The I/O MOD

The I/O MOD program patch allows the BASIC interpreter to read in data via a paper tape reader (PTR) when an INPUT statement is executed and Sense Switch 3 set. Similarly, if sense Switch 4 is set, a PRINT statement will output characters or data to the paper tape punch (PTP). The I/O MOD as listed in Table A4.4 of Appendix 4 is written in Relocatable format. In this work, the I/O MOD is loaded into locations '720 through '752 (the loader usually loads from an even address location). This is because location '550 through '715 are used by the interpreter for its base requirements.

The CALL statement

The BASIC interpreter keeps a ten-word CALL table in locations '516 through '527 where the addresses of subroutines callable from BASIC are normally hand-patched. Alternatively a software method can be adopted as done in the HADIOS Executive (refer to its CALL table).

1.

When BASIC encounters a CALL statement, basically three things are done as illustrated below before a jump to IBUF is made from location '4012.

IBUF

	JST*'515 + N
	Argument 1
	Argument 2
	Argument k
	0
	JMP* 550
-	

- JST* '515 + N instruction is placed at the start of the calling sequence i.e. in the input buffer, IBUF.
- If more arguments follow after N, then their addresses are placed in IBUF+1 onwards.
- A zero word is inserted after the kth argument for FORTRAN compatibility and the sequence ends with an entry into BASIC through location '550.

Therefore if the HADIOS executive is to maintain its own CALL statement processor and table, then location '4012 should be patched with a JMP* '716 where '716 contains the beginning address of such a code.

Error routines

The normal entry-point of the BASIC error handling routine is '5243, accessible from all parts of the interpreter outside sector 5 through a base link in '551. However, the linked processor system requires a certain amount of housekeeping prior exiting to the command mode via '5243. The address of the HADIOS Executive error housekeeping routine (ERCL) is therefore patched into location '551. The following patches have still to be made as they are jumps to the error routine from sector 5 itself where the base link is not necessary.

Location	Original	Patch		
'5133	JST '5243	JST* '551		
'5742	n	"		
'5744	"	"		

The program 'BREAK' needs a further consideration since a 'BREAK' can occur before or after the program has entered the Executive. If the break is made before entry then no house-keeping by the Executive is necessary else the 'BREAK' is processed like any other error. The 'BREAK' exit to the command mode in location '3267 (JMP CMOD) is therefore patched with a JMP* '717 where '717 contains the address of the 'BREAK' handling routine in the Executive.

Special locations ('63 and '2540)

Location '63 is patched with the standard interrupt vector (SKST). Location '2540 has a more subtle significance. The relevant code is shown below to make the point. However, the 'locate simple variable' routine (LSV) returns the program counter to '5237 is the research is not successful

Location		Orig	ginal
'5236		JST	LSV
'5237	EX15	JST	ERR
'5240		BCI	1,UV
'5241		JMP	EX14

thereby reporting an 'Undefined Variable' error, or to '5240 if the search was successful. Location '5240 is therefore interpreted as an instruction in the latter context. The Honeywell documentation apparently acknowledges this programming mistake and says that the "BCI 1,UV" (or '152726) will be interpreted as an ERA (Exclusive OR) instruction.

However, program safety cannot be assured as both bit 1 (the indirect address flag) and bit 2 (the index bit or tag) are both set. If the index register contains a bit 1 set then it indicates another level of indirect addressing, and the process can remain in an indirect loop indefinitely. For this reason, location '5240 is patched with '052726 i.e. with the indirect addressing bit reset.

BASIC IOS-D Patch

For

The following 'Jump and Stores' were placed into the two locations of the BASIC IOS-D module to handle the software patch required when using the Newbury terminal and printer.

Location	Mnemonic
'5344	JST TEST
'5365	JST TEST

where TEST = '753 (See also Table A7.3 of Appendix 7.)

4.7 H316 Tektronix Graphics Package

The Graphics Library routines have been grouped together to form a single segment forming subroutine 5. A steering subroutine called GRAPH⁽¹²⁴⁾ listed in Table A4.5 in Appendix 4, allows the user to access the different graphical operations from a single CALL(5,N,C(0)) by specifying parameters N and elements of the C array (dimensioned 7) as follows:

N = 1	Enter graphic mode
= 2	Set the windows
= 3	perform graphic functions (draw, move, etc.)
= 4	to invoke the cursor facilities
= 5	output alphanumeric characters to screen
= 6	leave graphic mode
N = 3	A(0) = 1 dark move
	= 2 move and draw the point
	= 3 draw a line connecting the initial and
	final point
	The x and y coordinate values are conveyed through

A(5) and A(6) respectively. A(0) = 4,5 and 6 also perform similar operations if Δx and Δy are given.

A(1),A(2)	= minimum value and range of x coordinate
A(3),A(4)	= minimum value and range of y coordinate
A(5),A(6)	= values of x and y to be plotted
A(7)	= to output text on the screen or to invoke the
	cursor facility.

The Graphics Package was originally written for the Tektronix 4010 terminal. Using the more advanced Newbury 8510 multi-page terminal, two control operations are needed to enter and leave its graphic input mode.

C(7) = 29, N = 5, CALL(5,N,C(0)) - enter Newbury 8510 graphics mode C(24) = 24, N = 5, CALL(5,N,C(0)) - leave graphics mode to return to standard mode.

The graphics package was constructed as a self-contained program segment. This would allow the segment to be stored on floppy disk and loaded into core when required. The graphics package uses some COMMON areas and these have been assigned to the top of memory ('37506 - '37777) where they remain core-resident. It was decided that to maximise use of available memory, the graphics segment should be loaded into sectors '20 through '26. To achieve this, the 37 subroutine object tapes making up the basic graphics facility, are divided into suitably-sized groups using the 'OBCHOP' utility. The package requires its own FORTRAN library routines although some space is saved by using BASIC MTH-PAK routines where possible. The FORTRAN error routine F\$ER requires a different patch depending whether the graphics is used in conjunction with the HADIOS Executive or not. (See Section 4.9.)

The loading procedure of the graphics package with the resulting memory map are described in Tables A4.6 and A4.7 of Appendix 4.

4.8 Special FORTRAN and Utility Routines (F\$ER, F\$HT, BASIC MTH-PAK POINTERS and SU10

F\$ER and F\$HT

Recall that the M6800 interrupt response code of the HADIOS Executive requires its own FORTRAN library routines. While this in general means duplication, the F\$ER and F\$HT error routines need modifications to suit their special functions.

F\$ER and F\$HT used by the H316 clock interrupt response code or graphics need a patch such that they exit via the HADIOS Executive error handling routine (ERCL). If the Executive is not being used such as in off-line simulation and/or graphics, then the routine exits via the BASIC error routine.

F\$ER and F\$HT used by M6800 interrupt response code must not disrupt any H316 program execution. They are therefore modified so that on exit, error codes (ERRM and MCOD) are eventually passed on to the M6800 (at the next M6800 scanning interrupt) for recognition.

BASIC MTH-PAK Pointers

Many of the BASIC MTH-PAK routines are similar to their equivalent FORTRAN counterparts. They can therefore be used to minimise duplication. There is one difference as far as the real-to-integer routine (C\$21) is concerned. The BASIC C\$21 reports an error (via ERCL, patched into location '551 of BASIC) if the conversion results in a value outside the H316 integer range. The FORTRAN C\$21 apparently does not. The various MTH-PAK pointers are taken from the BASIC interpreter and passed on to the loader in the form of assembly language EQUs.

SU10

This DAP-16 MOD 2 routine is designated as subroutine 10 and its

beginning address therefore occupies location '527 in the BASIC CALL table.

The routine is called from BASIC as CALL(10,X1,X2,X3) where X1=0 Output 24 frames of paper tape (leader) X1≠0 Using the H316 RTC as a timer X2=0 start the clock with a large negative number X2≠0 stop the clock X3 = time elapsed in seconds.

Assembler listings of all the above routines are found in Table A4.8 through Table A4.11 respectively in Appendix 4.

4.9 Software Execution Times

In many on-line control applications, computer speed is often a vital factor in achieving good performances. The faster a digital controller determines the error status of a controlled variable, the quicker calculated (and optimised) corrective actions can be made.

This section compares the software execution speeds of the H316 and M6800. The specified performance based on machine level instructions is discussed first, followed by results from a simple BASIC and FORTRAN program benchmark test.

Specified Performance

Computer performance is not easy to define in exact terms, as it is determined by both hardware and software architectures of the machine which in turn are function of a rapidly changing technology. Nevertheless, a comparison of machine code execution times is a useful indication. Since the H316 and the M6800 are basically stored-program computers, instructions are fetched from memory and decoded by the internal logic of the CPU in a clock synchronised operation. The nominal memory cycle time in the H316 is 1.6 µs which means loading a value (LDA) into the A-register, adding it with the contents of a memory location (ADD) and then storing the result (STA) would take 9.6 µs as each of these instructions takes 2 cycles or 3.2 µs. In terms of cycle times, the M6800 is therefore a faster machine since with a clock frequency of 2 MHz, it can load (4 cycles), add (4 cycles) and store (5 cycles) in the extended addressing mode in 6.5 µs. However, if a l6-bit data byte is involved, the M6800 basically repeats the process and that would require 13 µs. Hence, on a per bit basis the H316 is faster.

The variation in instruction execution speed is more marked in the M6800. There are 5 addressing modes generating 1, 2, and 3-byte instructions which, as a result gives rise to 197 different instructions. Generally, those instructions in the indexed mode are among those with the higher cycle times required. The SWI instruction has the longest cycle time (6 µs) as the instruction needs to be decoded and then the seven byte machine status pushed on the stock.

BASIC Benchmark Test

As the user(s) of the system under study would be programming in BASIC in either computer, it would be useful to compare the execution times in running a short BASIC program. This can be done by using the RTC (in the H316) and the MP-T Interrupt Timer (in the M6800) to mark the passage of real time.

- 149 -

Listings of the three benchmark programs, with their associated subroutines if any are shown in Tables A4.12 to A4.15 respectively in Appendix 4. Each program comprises the same number of looping operations (IF...THEN...ELSE only in SD BASIC), similar GOSUBs and arithmetic operations. The outermost loop index (FOR...NEXT in BASIC, DO loop in FORTRAN) N and the variable VALUE (or V) must be specified by the user. Note that VALUE can be integer or floating-point formatted in SD BASIC F1 and F2 in the SD BASIC program

are MP-T Timer control codes. When Fl = \$03, the timer interrupts the M6800 every 1 ms thus its time base. Altogether each program was run 10 times covering values of N from 0 to 4 (or 1 to 5 for the FORTRAN program) and Table 4.1 shows the execution times obtained.

N	VALUE	M6800	H316 BASIC	H316 FORTRAN
0	2	3.361	8.92	.42
0	1.556	4.406	8.96	.42
i	2	6.694	17.78	.84
1	1.556	8.810	17.88	.82
2	2	10.082	26.66	1.22
2	1.556	13.295	26.82	1.24
3	2 1.556	13.443 17.811	35.54 35.76	1.64
4	2	16.803	44.42	2.06
4	1.556	22.020	44.68	2.04
		and the second se		

Table 4.1	Benchmark	program	execution	times	in	the	H316	and	M6800	(secs.)	Į.
-----------	-----------	---------	-----------	-------	----	-----	------	-----	-------	---------	----

Note: For FORTRAN program 1 & N & 5

The following observations can be made:

 SD BASIC runs 2 to 2.5 faster than BASIC but about 8 times slower than FORTRAN code implemented on the H316.
 In SD BASIC, the execution times increases by about 30% if floating-point arithmetic operand is being used. The difference in the H316 is very slight.

The first observation is due to the fact that SD BASIC is a compiled language. An SD BASIC source program is compiled into a series of coded numbers (not syntax) which are interpreted at run time. In the H316, the BASIC interpreter has to carry out a line syntax (although stored in compressed form) before execution takes place. Compiled FORTRAN is much faster as the object code produced is usually an efficient machine code program.

The second observation is partly explained by referring to the structures of integer and decimal floating point variables in SD BASIC (Section 4.3.2.2). Because operations are carried out on the fractional and exponential parts of a floating point number, more cycles are used.

4.10 Construction of the HADIOS Executive Package Rev 03

The BASIC Interpreter, the HADIOS Executive and the Graphics Package can now be combined together to form a general purpose software package which has options for graphics and communication with the linked M6800 microcomputer system.

To construct the package, the three SLSTs (BASIC + HADIOS + GRAPHICS) were first prepared. The BASIC Interpreter is already available in SLST form. It only required the modifications described

- 151 -

in Section 4.6. The Graphics Package was loaded into locations '20006 through '26774 (see Table A4.7 of Appendix 4). The first six locations of sector '20 has been reserved for a dummy subroutine called KOMMON which comes into significance in constructing the Kalman Filtering simulation package but this aspect will be discussed in Chapter 6.

Finally, the HADIOS Executive was loaded and together with subroutine 10 (SU10) and the required FORTRAN library routines. The core image eventually occupies about six sectors i.e. from '20000 to '34762. The loading procedure and the resulting memory map are fully described in Tables A4.16 and A4.17 respectively in Appendix 4.

The addresses of subroutines 5 and 10 (GRAPH and SU10) are then patched into locations '522 and '527 of the BASIC Interpreter's CALL table. The final package therefore consists of a two-part SLST tape namely the BASIC Interpreter ('63-'7415) and Graphics/HADIOS Executive ('20000-'34762). Copies were made on paper tape and on floppy disk.

4.11 Conclusions

This chapter has described the philosophy and the technical effort required in providing a general purpose software package for the linked H316-M6800 twin-processor system. A user's manual including several demonstration programs has been prepared elsewhere ⁽⁹⁴⁾ although some examples and potential operating problems will be discussed in Chapter 7. The package is relatively simple to use and also provides a facility for on- or off-line distributed data processing.

Table 4.2 below summarises the four operating modes of the system. Note that the term ON- or OFF-LINE is with respect to the process plant.

- 152 -

Table 4.2	Operating	Modes	of	the	linked	H316-M6800	Twin-Processor	System

<u>H316</u>	<u>M6800</u>	Remark
ON-LINE	ON-LINE	When the M6800 is in off-line mode, the
ON-LINE	OFF-LINE	PIA A Side is configured into the interrupt
OFF-LINE	ON-LINE	mode and the H316 sends data via a CA1
OFF-LINE	OFF-LINE	interrupt. Otherwise, the PIA A and B Sides
		are always in the handshake mode.

Inter-processor data transfers and control outputs are possible in all modes of operation. Also, it is stated earlier (Section 4.2) that the use of floppy disks to overlay program segments is incorporated in the software design strategy. The implication of this facility on the HADIOS Executive Package Rev. 03 will be discussed in a later chapter.

CHAPTER FIVE

THEORETICAL DEVELOPMENT OF A KALMAN FILTERING APPLICATION

THEORETICAL DEVELOPMENT OF A KALMAN FILTERING APPLICATION

- 155 -

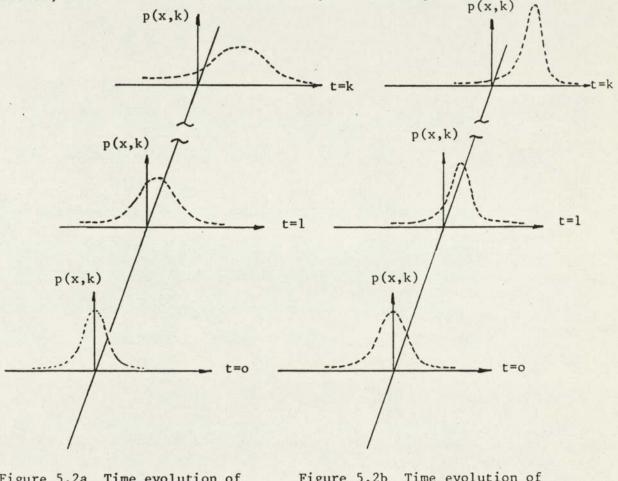
Estimation theory plans an important role in the application of modern control theory to industrial systems. This has been attributed to the fact that in many industrial processing systems, the total state vector can seldom be measured and the number of plant outputs is much less than the number of states. In other cases where the state vector is measurable, the measurements are often corrupted by significant experimental error which precludes its use in control system design. In addition, the measurement process introduces delays and time lags into the control loop while the process itself is subjected to random, unmodelled disturbances.

This chapter describes the application of a sequential estimation technique which was first formulated by Kalman⁽⁹⁵⁾ and later with Bucy⁽⁹⁶⁾ at the turn of the 1960s. Known as the Kalman filter, this estimation technique has been widely used in aerospace and electrical systems, and to a lesser extent in chemical process systems.

The discussion which follows will only present the Kalman filter in a formal way so as to highlight the basic features of an operational filter. This is because a full and rigorous treatment of these topics requires a thorough background in the theory of stochastic processes as well as classical, deterministic optimal control. The texts written by Doobs⁽⁹⁷⁾, Bryson and Ho⁽⁹⁸⁾ and Jazwinski⁽⁹⁹⁾ appear to be the standard references for this purpose.

5.1 Introduction to Kalman Filters

Quite apart from its theoretical importance, the Kalman filter is now regarded as a highly practicable technique for state and parameter


5.

estimation. For a linear dynamic system, the theory is on a rigorous basis but an extension of the filter, by means of local linearisation, has been a useful approximation when applied to non-linear systems.

The fundamental idea in a Kalman filtering problem is to determine the state variables for a given process from only a knowledge of the outputs (plant data) and the inputs (controls, disturbances, etc.). The underlying assumption is that the process is modelled by a firstorder, linear, vector-differential equation excited by an additive random noise and that some measurements which are some combinations of the state variables, are also available, corrupted by experimental error. This is schematically shown in Figure 5.1.

Figure 5.1 Schematic Formulation of a System for Kalman Filtering Applications The need for some measurements may be intuitively obvious. Since x (and z) is now a random variable, and in general a function of t, it is possible to envision a time evolution of the distribution of possible process states resulting from the stochastic model. This is provided by its probability density function p(x,t) and for the one-dimensional case this is shown schematically in Figure 5.2a. However, if measurements z are available, then it is possible to consider

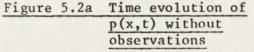


Figure 5.2bTime evolution ofp(x,t) with plantobservations

the conditional probability distribution p(x(t)/z), which is the probability distribution of the state given the set of measurements z(t'), $0 \le t' \le t$. With proper use of plant information one can devise a procedure to improve the estimates with time as shown in Figure 5.2b. The Kalman filter algorithm is one such procedure to obtain the best (optimal) estimate of the true state according to some predefined cost functional. The only difference is that for a linear system, the Kalman filter is the best of all from the class of both linear and non-linear estimators. In general, a different optimisation criterion yields a different estimate (maximum likelihood, minimum variance, least squares, etc.) but if the noise is Gaussian, they are all identical.

The engineering practice of using a probabilistic approach to modelling and uncertain measurements is adopted because there is no other alternative approach that can match it in terms of its extensive mathematical theory and sophistication. In particular, attention is focussed on the use of continuous, Gaussian, white noise. This means its density function is uniquely defined by its mean and variance which in this case, is infinite. Thus, past measurements do not help in improving future predictions or estimates. In other words, the design is based on a 'worst case' situation (infinite variance) and future predictions, often by complex algorithms and heavy computational load, are minimised.

Furthermore, primary macroscopic sources of random phenomena are independently Gaussian since these macroscopic random effects may be thought of as a superposition of very many microscopic random effects, regardless of individual statistical properties. The assumption is therefore reasonably practical in most cases.

5.1.1 Linear Systems

5.1.1.1 Continuous-time Systems

The process and measurement models assumed are as follows: $\frac{dx(t)}{dt} = A(t)x(t) + B(t)u(t) + D(t)\omega(t)$ (5.1)

- 158 -

$$z(t) = M(t)x(t) + v(t)$$

where x(t) is the state vector (nxl) u(t) is the deterministic control input vector (lxl) w(t) is the process noise vector (rxl) z(t) is the measurement vector (mxl) v(t) is the measurement noise vector (mxl) A(t) is the system matrix (nxn) B(t) is the input driving matrix (nxl) D(t) is the process noise driving matrix (nxr) M(t) is the measurement matrix (mxn)

In fact without the noise terms, one can immediately see the structural similarity with optimal control problems as using the control effort u(t), one can force the time evolution of x(t) so as to minimise the departure from a known reference trajectory $x_0(t)$.

The following assumptions are usually used to solve the problem.

1. The initial state vector is Gaussian with known mean and covariance.

$$E\{x(0)\} = \overline{x}(0)$$
 (5.3)

 $cov[X(0), x(0)] = E\{(x(0) - \overline{x}(0))(x(0) - \overline{x}(0))^T\} = P(0,0)$ (5.4) and $P(0,0) = P^T(0,0)$, non-negative definite.

E is the mathematical expectation operator and superscript T denotes transpose.

2. The process driving noise $\omega(t)$ is white, Gaussian, with zero mean and known covariance, $\forall t \ge 0$.

$$E(\omega(t)) = 0 \quad \forall t > t \tag{5.5}$$

$$cov[\omega(t), \omega(\tau)] = E [\omega(t)\omega^{T}(\tau)] = Q(t)\delta(t-\tau)$$
(5.6)

where $Q(t) = Q^{1}(t)$, non-negative definite $\forall t \ge 0$.

$$\delta$$
 (t- τ) is the Dirac delta-function

The measurement is also white, Gaussian, with zero mean and known covariance matrix ¥t, i.e.

$$E(v(t)) = 0 \ \forall t$$
 (5.7)

$$cov[v(t), v(\tau)] = E[(v(t).v^{T}(\tau)] = R(t)\delta(t-\tau)$$
(5.8)

with $R(t) = R^{T}(t) \quad \forall t$

Also, the processes x(0), v(t) and $\omega(t)$ are mutually independent, i.e.

$$cov[x(0), \omega(t)] = 0 \quad \forall t$$
 (5.9)

$$cov[x(0), v(t)] = 0 \quad \forall t$$
 (5.10)

$$cov[\omega(t), v(\tau)] = 0 \quad 0 \le \tau \le t$$
 (5.11)

The solution to the continuous problem of (5.1) and (5.2)

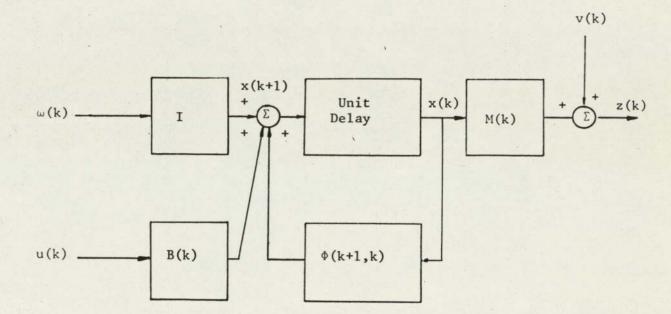
is well known and is given below: t

$$\mathbf{x}(t) = \Phi(t, t_0) \mathbf{x}(t_0) + \int \Phi(t, \tau) \mathbf{B}(\tau) \mathbf{u}(\tau) d\tau + \beta(t)$$
 (5.12)

where

$$\Phi(t,t_0)$$
 is the state to transition matrix (nxn) given by
 $\Phi(t,t_0) = \exp(A\Delta t)$ where $\Delta t = t-t_0$. (5.13)

 $\beta(t)$ is an n-vector, zero mean, Gaussian white noise.


5.1.1.2 Discrete-time Systems

In discrete-time, the Kalman filtering problem is formulated as follows: Consider the linear, discrete-time, multi-variable system defined by

$$x(k+1) = \Phi(k+1,k)x(k) + B(k)u(k) + \omega(k)$$
(5.14)
$$z(k+1) = M(k+1)x(k+1) + v(k+1)$$
(5.15)

where the symbols carry the same significance as before except that (5.14) and (5.15) are valid only at the instant k of time.

The system is shown in signal flow formation in Figure 5.3.

Figure 5.3 Signal Flow diagram for the Discrete-time System Formulation

Furthermore, the noise is zero-mean, Gaussian, white and stationary.

$$E[\omega(k)\omega^{T}(j)] = Q\delta_{jk} = Q, j=k$$

$$= 0, j\neq k$$

$$E[v(k)v^{T}(j)] = R\delta_{jk}$$
(5.16)

Also, to solve equation (5.14), an initial estimate of x(0) is required. Since x(0) is now Gaussian, this is given by its mean and covariance respectively:

$$E[x(0)] = \hat{x}(0)$$
 (5.17)

$$E[(x(0) - \hat{x}(0))(x(0) - \hat{x}(0))^{T}] = P(0,0)$$
(5.18)

As before, $\omega(k)$, v(k) and $\hat{x}(0)$ are mutually independent.

The Kalman filtering problem is then to determine the estimate $\hat{x}(k+1,k+1)$ so as to minimise the following quantity J_c . $J_c = \frac{1}{2} (x(k,k) - \hat{x}(k,k))P^{-1}(k,k)(x(k,k) - \hat{x}(k,k))$

+
$$\frac{1}{2} \sum_{j=0}^{k-1} \{ [z(j+1) - M(j+1)\hat{x}(j+1,j)]^{T} R_{j+1}^{-1} [z(j+1) - M(j+1)\hat{x}(j+1,j)] \}$$
 (5.19)

where superscript -1 denotes matrix inversion, and $\hat{x}(k,j)$ is the estimate obtained at time k given the set of observations through time j.

The problem can be solved in several ways (99-101) yielding the following recursive set of prediction and estimation matrix relations for the case of unit process noise driving matrix and open-loop situation (u=0).

Prediction step:

$$\tilde{x}(k+1,k) = \Phi(k+1,k)\hat{x}(k,k)$$
 (5.20)

$$P(k+1,k) = Q(k+1,k)P(k,k)\phi'(k+1,k) + Q$$
 (5.21)

Estimation step:

$K(k+1) = P(k+1,k)M^{T}(k+1) \cdot \{M(k+1)P(k+1,k)M^{T}(k+1) + R\}^{-1}$	(5.22)
$\hat{x}(k+1,k+1) = \tilde{x}(k+1,k) + K(k+1) \{z(k+1) - M(k+1)\tilde{x}(k+1,k)\}$	(5.22a)
$P(k+1,k+1) = \{I - K(k+1)M(k+1)\} P(k+1,k)$	(5.23)

or
$$P(k+1,k+1) = \{I - K(k+1)M(k+1)\} P(k+1,k).$$

 $\{I - K(k+1)M(k+1)\}^{T} + K(k+1)RK^{T}(k+1)$ (5.24)

where R,Q, $\hat{x}(0,0)$ and P(0,0) are given and I is the unit matrix (nxn).

Kalman⁽⁹⁵⁾ has shown that provided the system remains observable and controllable (complete observability is a sufficient condition for the existence of a steady-state solution and complete controllability will ensure that the steady-state solution is unique), the estimate $\hat{x}(k,k)$ and the filter algorithm are stable for all k.

Clearly, the Kalman filter equations (5.20-5.24) are easily implemented on a digital computer. Since the algorithm is recursive, storage requirements are kept to a minimum. In fact, the storage and computational requirements per iteration have been discussed by Mendel⁽¹⁰²⁾. If the order of the system is high, say, in the order of 50 state variables, so that the on-line storage and computation times become prohibitive, multi-level filters can be designed such as the two-level form due to Noton⁽¹⁰³⁾.

In this research work, the prediction step of equation (5.20) is accomplished by the integration of the filter process model thus removing any inaccuracies due to the computation of $\Phi(k+1,k)$ and equation (5.24) is used instead of (5.23) as Aoki⁽¹⁰⁴⁾ has shown via a sensitivity and error analysis of the filter that (5.24) is better conditioned for numerical computation since the right hand side is the sum of two symmetric positive definite matrices. This will ensure the symmetry and positive definiteness of the estimated error covariance matrix P(k+1,k+1) which is the inherent assumption in (5.19). On the other hand, (5.23) is at best the difference of two positive definite matrices.

Unfortunately there is no systematic way of choosing R,Q, and the a priori information x(0,0) and P(0,0), so as to achieve a desired filter performance. Much depends on the user applying judicious estimates after coming to grips with the physics of the problem. However, qualitative and semi-theoretical guidelines are available.

The initial state estimate $\hat{x}(0,0)$ and its error covariance matrix P(0,0) determine the basic speed of response of the filter. The magnitude of the initial state error $(x(0,0) - \hat{x}(0,0))$ will cause an initial error in the covariance matrices which results in an initial error in the gain or weighting matrix K(k+1). The initial error increases the time required for the filter to reach steady state. Similarly if P(0,0) is large, the filter gain K(k+1) will initially be large. This also increases the time to reach steady state as a high gain filter would rely more on current noisy measurement residuals, $z(k+1) - M(k+1)\hat{x}(k+1,k)$.

- 163 -

Equation (5.22) therefore determines the response characteristics of the filter. If the gain is large, the filter relies more on current observations to determine the estimates. When the gain is small, the memory weighting is large i.e. the filter tends to use past information, paying less attention to new measurements.

The error covariance P(k,k) basically describes how uncertainty propagates in time. It gives a measure of the spread of the distribution of $\hat{x}(k,k)$ about the true state x(k,k) which is unknown (except in simulation). Normally, the magnitudes of the elements of P(k,k) will increase initially, often reaching a maximum before stabilising the steady state values.

The assignments of the noise intensity matrices Q and R are also interpreted in a similar way. If the dynamic model of the plant (or certain sections of it) is subjected to modelling errors, then the elements of Q can be increased (or corresponding elements of it) so as to 'mask' out the effects of error propagation in steps (5.21) and (5.22). A large Q causes a high gain and the effect has been mentioned earlier. The values of R are relatively easier to determine as one is usually less uncertain about his sensor equipment. Normally, accurate measuring instruments are reflected in small values of R. This could also mean that we want the filter to rely more on measurements to make up for a process dynamics which is not well understood (as propagated by the integration of the process model). Large values of R therefore tend to make the filter gain small which causes current measurements to be disregarded. Clearly, the assignment of $\hat{x}(0,0)$, P(0,0), Q and R constitutes what is known as, in the parlance of today, 'tuning' the Kalman filter.

- 164 -

5.1.2 Non-linear Systems - the Extended Kalman filter

It must be remembered that the Kalman filter is a linear, (discrete-time) finite-dimensional system. For a non-linear application, the system process (and measurement) models must be linearised about a known and suitable reference trajectory and the deviation variables are then processed through the filter equations (5.20-5.24).

Consider the multivariable system

$$\frac{dx}{dt} = f(x, u, t) + \omega(t)$$
(5.25)
z = h(x) + v(t) (5.26)

where f is a non-linear lumped-parameter model of the plant,

h is a non-linear function of the state vector x(t), and the rest of the symbols have been defined earlier.

By linearising (5.25) and (5.26) about a reference vector x_0 (Taylor Series expansion and omitting second and higher order terms), one can obtain the following linear system for the discrete-time, open-loop case:

$$\delta x(k+1,k) = \Phi(k+1,k) x_{o} x(k,k) + \omega(k)$$
(5.27)

$$\delta z(k+1) = M(k+1)_{x_0} \delta x(k,k) + v(k)$$
 (5.28)

where

$$\Phi(k+1,k)_{x_0} = I + J\Delta t$$
 (5.29)

is the first order Taylor Series truncation of the matrix exponential expansion of equation (5.13) and J is the Jacobian matrix

$$\frac{\partial f[x(k,k)]}{\partial x(k,k)} \Big|_{x_{o}}$$

$$\Delta t = t_{k+1} - t_{k}$$

$$M(t+1) = \frac{\partial h[x(k,k)]}{\partial x(k,k)} \Big|_{x}$$

Since at time t_{k+1} , the 'best' knowledge of the plant can only come from the latest estimate $\hat{x}(k,k)$, it is not surprising that $\hat{x}(k,k)$ is often chosen to be the reference trajectory. The implication is that linearisation would have to be done at every sampling instant to obtain new values of Φ and M with obvious overhead on the computation. The filter therefore provides the deviation estimates and the state estimates at time t_{k+1} which is simply given by

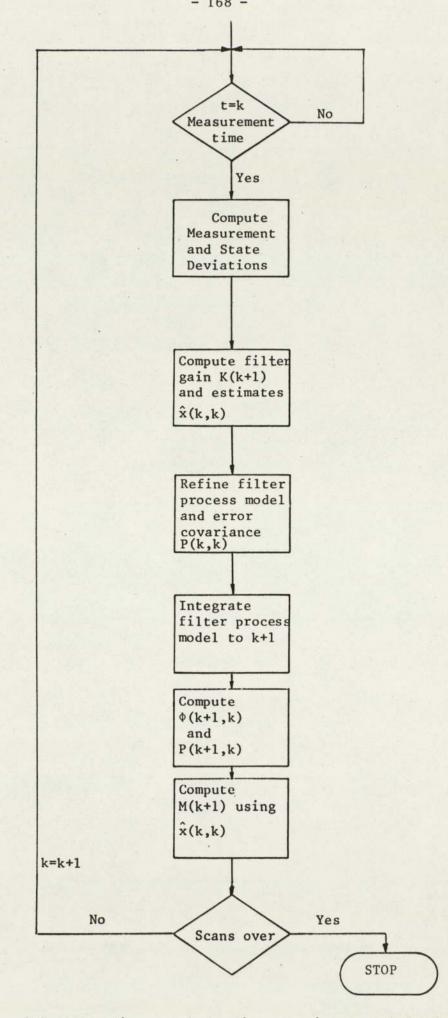
$$\hat{\mathbf{x}}(k+1,k+1) = \hat{\mathbf{x}}(k,k) + \hat{\delta \mathbf{x}}(k+1,k+1)$$
 (5.31)

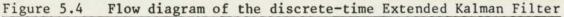
Note that the estimates obtained may no longer be optimal. In fact, it can be shown that conditions of optimality is guaranteed only for an infinite dimensional system (101) hence the name sub-optimal Furthermore, divergence and bias effects may effect the filters. numerical stability of the filter algorithm. The main reason for these observations is the violation of the linearity assumption. Although, the sequence of relinearisation about a new estimate as soon as it becomes available does help to prevent large estimation errors from propagating through time, there is still no way of predicting that the linearised process (and measurement) models are valid at each statistical experiment where a statistical experiment is defined as the realisation of one of the many possible states at the sampling time. This is because we do not have specific control over the outcome of a white noise process and therefore we cannot guarantee that the system does not deviate significantly from the region in which the linearisation is more or less valid.

(5.30)

Higher order filters can be formulated by retaining more terms in the Taylor series expansion and/or the time interval can be made smaller to make the system 'more linear' but often these measures do not meet the requirements of on-line applications.

Figure 5.4 shows the flow diagram for the application of a discrete-time, extended Kalman filter on a digital computer.


5.1.3 Chemical Engineering Applications


Relatively speaking, there have been few applications of Kalman filtering theory to industrial process estimation and control. Some of the reasons are coupled to the same inertial effects that the digital computer has to overcome to be acceptable to the chemical process industry. Other factors include the fact that accurate process models are rarely available, and the statistical nature of observation errors and random inputs to large industrial processes is difficult to predict. Even where reliable plant models are known, the system is often non-linear and too complex for on-line repetitive calculations. Nevertheless, one would expect that with more powerful and cheaper microcomputers increasingly available on the market, low-order filters or even singleloop single variable filters may soon find their way in.

One of the earliest reported chemical engineering applications of the Kalman filter was by Noton and Choquette ^(105,106) in the on-line identification of a reactor train for the Polymer Corporation in Canada. In this pioneering work, the computer was initially used to make off-line computations during open-loop experiments. Later, closed-loop experiments were conducted and significant improvements over manual control were reported.

Other applications soon followed notably those by Coggan and Noton⁽¹⁰⁷⁾ and Sargent and co-workers⁽¹⁰⁹⁾. In particular, Coggan

- 167 -

Wilson⁽¹⁰⁸⁾ suggested a model reduction technique, prior to estimation, to minimise the number of state variables required to describe a system. They also reported an on-line implementation of a 10^{th} order system on a 4K microcomputer including an investigation of computational times per filter cycle for various dimensions of the state vector⁽¹¹⁰⁾. Sargent and Goldman⁽¹⁰⁸⁾ described the application of an extended Kalman filter to state and parameter estimation of a simulated distillation column and a fixed-bed catalytic reactor with superimposed Gaussian and rectangular noise. The work though informative is based on disturbance-free process models i.e. Q = 0. A comprehensive review of other applications in the process industry, especially in open-loop situations, can be found in the work of Webb⁽¹¹¹⁾.

However, the most informative compilation of the application of modern control theory and estimation, applied to chemical processes, has been done by Seborg and Fisher⁽¹¹²⁾. The research mainly conducted on a double-effect evaporator demonstrated that the incorporation of the Kalman filter into a multi-variable control design results in significantly better process control. Payne⁽¹¹³⁾ and Coleby⁽¹¹⁴⁾ also worked on the double effect evaporator using non-stationary forms of the filter. They implemented their on-line algorithms on a 16-bit H316 minicomputer for open-loop conditions.

More recently, Dahlqvist⁽¹¹⁵⁾ and Brosilow et al.⁽¹¹⁶⁻¹¹⁸⁾ have applied the filtering exercise to distillation columns. Daie⁽¹¹⁹⁾ has shown, under simulated process conditions, that an estimator-aided feed-forward (EAFF) controller delivers a better performance than a digital PID controller in tackling large, load disturbances that enter a binary distillation process. An industrial scale application has been described by Wick⁽¹²⁰⁾. It involves the on-line estimation of centre temperature profiles of steel ingots in a soaking pit. An off-line model-fitting was first conducted and the resulting model used in a locally linearised form for on-line state estimation. A MODCOMP II/2 process control computer was used to collect plant measurements connected by a data link to a host computer where the filter algorithm resides.

5.2 Design of a State and Parameter Estimator for a Distillation Column

During the development of the HADIOS and M6800 executives, Daie (119) completed a research effort which included the modelling, and state and parameter estimation of a binary distillation process. The liquid used was a mixture of trichloroethylene and tetrachloroethylene. Although Daie successfully constructed a model for the process which was checked against experimental data, estimation and some work on an estimator-aided feedforward (EAFF) control of the distillation process were done on much more powerful mainframe computers (the ICL 1904S and Manchester University CDC 7600) for simulated conditions. Typically, 22 first-order differential equations were used to describe the process dynamics of the 11-plate column and its filter model. The matrices involved were therefore large (the error covariance matrix P(k,k) would be 26 by 26 if 22 states and 4 parameters were being estimated) and calculations time-consuming. In particular, when Daie tried to use constant plate hold-ups for his filter process model he was forced to raise the number of process measurements to at least six for an operational filter.

It therefore seemed appropriate to extend Daie's work and investigate the feasibility of applying such a filter to an on-line

- 170 -

situation using the linked H316-M6800 twin processor developed in this work. In doing this, several considerations were immediately obvious to the author.

The first of these is available storage space in the H316 minicomputer. Initial calculations showed that since the BASIC interpreter, the HADIOS Executive and some data areas would have to be core-resident, it is not practical to implement any of Daie's original filters. For example, the 26 by 26 P(k,k) matrix alone would need 1352 words (about 2½ sectors) of storage space. The problem dimensionality must therefore be reduced and even at the early stages, it was envisaged that the floppy disk facility would have to be used for program overlay.

The second conerns computational speed. In his simulation work, Daie proposed a sampling interval of 18 seconds. Longer sampling intervals led to the deterioration of filter performance. Even with a reduced dimensionality, the meaningful minimum being the estimation of 11 plate liquid compositions from 3 temperature measurements i.e. for open-loop estimation or stochastic feedback 'optimal' control, it was unlikely that a sampling interval of 18 seconds could be achieved. In earlier on-line Kalman filtering work on a double-effect evaporator, Payne⁽¹¹³⁾ required 120 seconds for an 8th-order system and Webb⁽¹¹¹⁾ required 100 seconds for a 7th order system. The bulk of computation time was taken up by the integration of the filter model in the prediction step of the filter algorithm.

The final computational aspect concerns accuracy. The single precision integer and floating-point number formats of the Manchester CDC 7600 and H316 are compared in the tables below.

It is clear that the reduction in going from the two mainframes to the process control minicomputer is very significant. The effect is that a filter that works well in the CDC may not necessarily maintain

- 171 -

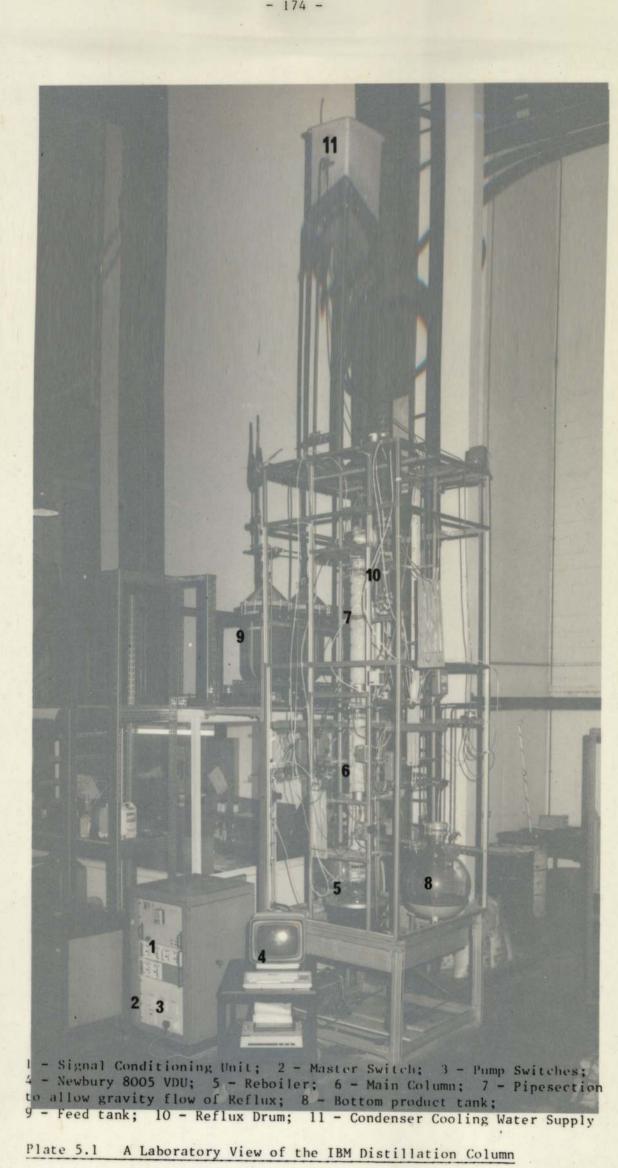
	CDC 7600	<u>H316</u>	H316 Double Precision
Integer:			
Number of bits	60	16	32
Approximate range	±2 ⁵⁹	±32768	±2 ³⁰
Floating Point:			
Number of bits	60	32	48
Range	10^{-293} to 10^{332}	±10 ³⁸	±10 ³⁸
Accuracy	approx. 14 decimal digits	2 ⁻²³ (≃ 7 decimal digits)	2 ⁻³⁹

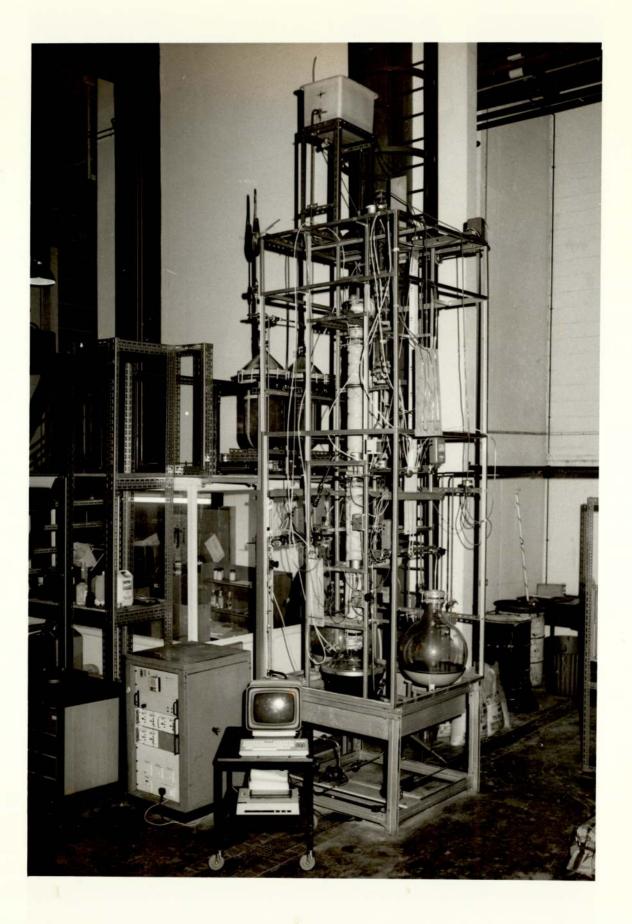
Table 5.1 Number representation in the mainframe and minicomputers

its performance in a much smaller minicomputer. Double-precision numbers may be used with the H316, each consuming another 16 bit word and improving the range and accuracy as shown in the last column of Table 5.1, but the overhead in computational time makes it prohibitive given the scale of the on-line application requirements.

The filter algorithm and integration of filter process model would be best done in FORTRAN given the findings of Section 4.9. BASIC statements would be mainly used to initialise the estimator, scaling and conditioning plant outputs, plotting in conjunction with the Tektronix Graphics package and other 1/0 tasks. These would save some previous computation time while maintaining a reasonable level of user interaction with his on-line program. In order to grasp the magnitude of the problems involved, simulation experiments would be necessary and these are detailed in Chapter 6. The rest of the discussion in this chapter is directed to describing the experimental background to the filter exercise, followed by the theoretical development in designing a suitably-sized Kalman state, or state and parameter, estimator for the binary distillation process.

5.2.1 Apparatus and Process Description


5.2.1.1 Introduction


The distillation column and its accessories were donated to the Department by the I.B.M. (U.K.) Ltd., together with some parts of its instrumentation and data conditioning equipment. A schematic diagram of the column is shown in Figure 5.5 and a laboratory view is shown in Plate 5.1. The construction of the column has been described in detail by Daie. Only the main features will be mentioned here.

At present, the column hardware includes:

- an enriching and a stripping section with six and four 3-inch diameter sieve trays respectively and one temperature measurement well per tray.
- a 3-inch diameter standard glass total condenser plus the reflux drum.
- 3. a 2.4 kw, double-circuit Isomantle electric heater.
- a 1-metre long, 3-inch O.D. glass pipe section, above the enriching section.
- 5. two cylindrical feed tanks.
- two spherical product tanks for top and bottom product respectively.
- 7. three stainless steel centrifugal pumps.

The column was designed by IBM to be an all-purpose distillation column capable of handling corrosive liquids. For this reason, the materials used for its construction and piping were limited to stainless steel, glass and P.T.F.E. All the pipelines are made of $\frac{1}{2}$ -inch O.D. heavy gauge stainless steel. However, the vapour line connecting the

column to the condenser is made of a 3-inch diameter glass section.

The main characteristics for a typical tray are listed in Table 5.2. A small heat exchanger is installed in the bottom line to prevent boiling liquid reaching the pump thus avoiding possible cavitation problems. The entire column is also lagged with ½-inch standard fibre glass lagging.

Table 5.2 Main characteristics of a typical tray

Tray diameter	0.0762 m.
Downcomer diameter	0.0105 m.
Tray thickness	0.0002 m.
Diameter of the Perforations	0.00011 m.
Number of Perforations	145
Weir Height	.0003 m.

5.2.1.2 The Motorised Valves

As indicated by Figure 5.5, five motorised values are provided on the column. Each value can be driven manually from the remote signal condition unit or from the computer through the use of CALL(3,N,U) (or SUB3(N,U) in the M6800). The range of the valve input signal is 0 to 10 volts from fully closed to fully open stem positions. Each valve can be calibrated in situ by outputting a voltage signal from the computer and measuring the volumetric flowrate by the stopwatch and bucket method. The valve characteristics can therefore be expressed into the form

output voltage = f (volumetric flowrate)
or volumetric flowrate = g (output voltage)

where f and g are generally non-linear functions. The polynomial fit for each valve is given in Appendix 5. Valve 4, the condenser cooling water valve, was not calibrated as it was always set to fully open during experimental runs.

5.2.1.3 The Reboiler

The reboiler is essentially a 2.4 kw isomantle electric heater which can be driven by a maximum of 10 volt input from the computer or manually from the remote signal conditioning unit. The reboiler characteristics have been studied by Daie and may be used for the purposes of this research. These are as follows:

$$Q = .3312 - 0.17724V + .0792V^2 - .00524V^3$$
 (5.31)

or alternatively

$$V = 3.62 - 3.860 + 6.590^2 \tag{5.32}$$

where Q is the heat transferred kJ/s

V is the input voltage, 0 to 10 volts.

These correlations were found for a 12 kg reboiler liquid contents. Clearly, the heat transfer area (hence Q) changes with various amounts of reboiler liquid, hence necessitating a correction factor. The actual heat transferred Q_A is then given by

$$Q_A = \frac{1}{R} Q$$
 (5.33)
R = h (mass of liquid in the reboiler, M kg)

where

 $= -0.9183 + 0.485M - 0.0442 M^{2} + .00191 M^{3}$

5.2.1.4 Temperature measurements

Altogether five thermocouples were used to monitor the feed, reflux and three tray temperatures. The feed and reflux stream thermocouples are of the Lee-Dickens type and accurate to $\pm 1^{\circ}$ C. They derive their power supply from the mains. On the other hand, the three

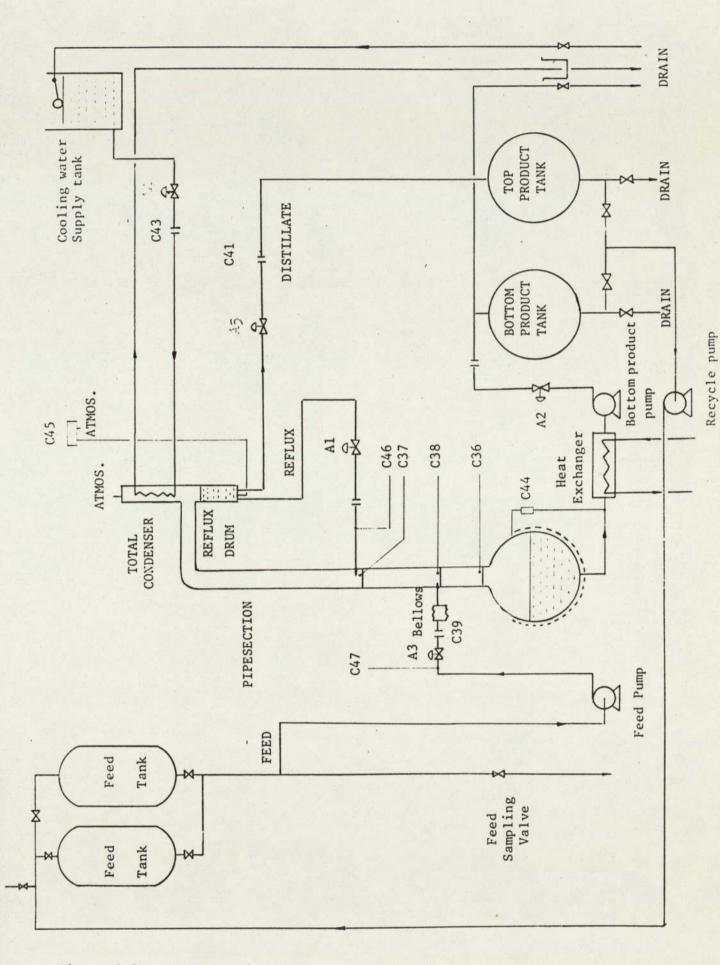


Figure 5.5. A Schematic diagram of the IBM Distillation Column

tray thermocouples are accurate to $\pm \cdot 1^{\circ}$ C and battery powered. The characteristics of the three tray thermocouples, normally the top, feed and bottom trays, and the feed and reflux streams are given in Appendix 5.

5.2.1.5 Continuous Level Measurements

The reflux drum and reboiler levels need to be monitored continuously for open-loop and control experiments. This is done via two air differential pressure transducers, isolated from the liquid by an air-lock. Transducer characteristics of the form

Hold up (volume or mass) = z (output voltage) were found to be linear and they are given in Appendix 5. The correlations are:

Reboiler:
$$M_B = -60.0 + 40.1V$$
 (5.34)
Reflux Drum: $M_{RD} = -.05864 + .541V$ (5.35)

5.2.1.6 Flow Measurements

In the original column set-up, four pressure differential transducers were provided for the measurement of feed, bottoms, reflux and distillate flowrates. The flowrate could be correlated to the transducer output (0 to 5 volts) and a correlation obtained in a way similar to previous transducer calibrations. However, the use of these transducers were grossly inaccurate and unreliable and they were therefore not used for flow measurements.

The high inaccuracy (up to \pm 50 cm³/min for a 150 cc/min flow) is basically due to the low flowrates available because of the limitations on the reboiler heater capacity. Flowrates are computed via value opening characteristics instead.

5.2.1.7 Remote Signal Conditioning Unit

The H316-HADIOS hardware is connected to the column via a remote signal conditioning interface as shown schematically in Chapter 3, Figure 3.2. A total of 12 analogue inputs and 6 digital outputs are used as it stands at present. The channel numbers assinged are given in Table 5.3 below.

The remote signal conditioning unit prepares transducer electrical outputs (usually in the order of millivolts) for H316-HADIOS compatibility. Thus, all analogue outputs are converted into the range 0 to 5 Volts D.C. As the ADC set-up word (shown below) requires 2 bits to differentiate any one of four multiplexers (at present only three are used) and a further 4 bits to decode any one of 16 channels per multiplexer,

	10	11 12 1	13	16
10-bit Analogue Input		Multi- plexer	Channel	

only a 10-bit ADC can be used to represent an analogue input giving an accuracy of about 0.1%. Also contained in the unit are:

- 1. line drivers for the transmission of digital signals.
- power supplies for the transducers, motorised valves and reboiler.
- 3. the analogue output device.
- the manual/automatic switches for the values and the reboiler required to start up the column.

The signal conditioning unit was built by Departmental electricians and is situated adjacent to the plant for convenience as well as to minimise the effects of electrical noise during the

Analogue Inputs	Location and Function
C36	Lowermost tray, thermocouple T ₁₀
C37	Topmost tray, thermocouple T ₁
C38	Feed tray, thermocouple T ₇
C39	Feed flow, pressure transducer (PT)
C40	Bottoms flow, PT
C41	Distillate flow, PT
C42	Reflux flow, PT
C43	Condenser cooling water, PT
C44	Reboiler Level Indicator, PT
C45	Reflux Drum Level Indicator, PT
C46	Reflux stream, thermocouple
C47	Feed stream, thermocouple
Digital Output Channel	
A1	Reflux stream, motorised valve (MV)
A2	Bottoms, MV
A3	Feed stream, MV
A4	Condenser cooling water, MV
A5	Distillate, MV
A6	Reboiler Heat

Table 5.3 Analogue Inputs and Digital Output Channel Numbers

transmission of signals to the computer.

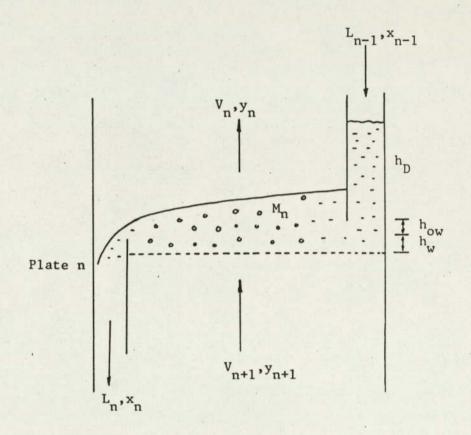
5.2.1.8 Process Operation

A typical process operation includes start-up, manual/ computer control and shut-down. The recommended procedure is as follows⁽¹¹⁹⁾.

- Turn on the mains power supply by switching on the MASTER switch of the remote signal conditioning unit.
- 2. Put all valves and reboiler heater into manual mode.
- 3. Switch on the H316 computer, the HADIOS power supply (switch 1 in Plate 3.1) and the digital output line driver power supply (switch 2 in Plate 3.1).
- 4. Load the HADIOS Executive Package Rev 03.
- 5. Empty the reboiler and reflux drum.
- Recycle the feed stock a couple of time to ensure good mixing of components.
- Disconnect all transducer connections at the pressure transducers to allow air into the transducers.
- Manually open and close the valves to ensure that they are in working condition.
- 9. Fill the reboiler to the required amount, connecting the transducer connections as soon as the dead zone is covered (about the first 200 cc.).
- Connect all transducer connections making sure that all U-tubes and air-locks are intact.
- Turn on the cooling water for the condenser and the bottoms product line heat exchanger.
- 12. Switch the reboiler heater on and run the column at total reflux for at least 20 minutes to ensure that the trays are filled (the reflux value fully opened).

13.	Switch the	e f	eed put	np or	and	open	the	feed	valve
	gradually	to	allow	the	feed	into	the	colu	mn.

- 14. Set the reflux valve to the required opening.
- Switch the thermocouples on and switch to automatic mode of operation to let the computer take over.
- 16. Allow about 30 minutes for the column to reach steady state after which disturbances can be introduced and experimentation can begin.


Shut-down

- Switch the heater, all pumps, manual and motorised valves off, in that order.
- 2. Switch the thermocouples off.
- Switch off the HADIOS, computer system and associated peripherals.
- 4. Switch the MASTER-switch off.
- Allow the column to cool down for at least 30 minutes and turn off the cooling water taps.

5.2.2 Formulation of Process Models

Two mathematical models of the binary distillation process are formulated - one to simulate the actual column operation and the other to be used as the filter process model. Both models are based on the work of Daie with some modifications to adapt them to the storage and other computing requirements of the H316 minicomputer.

Essentially, distillation behaviour can be approximated by modelling a typical tray with a defined vapour-liquid equilibrium and stepping this up from a single tray to a column with a number of similar trays. The models of the reboiler and condenser can then be added to complete the mathematical description of the system. A typical tray is shown in Figure 5.6 with the following assumptions made:

h _D	=	liquid height in the downcomer
how	=	liquid height over the weir
h _w	=	height of the weir
Mn	=	plate liquid hold-up
L _n ,V _n	=	liquid and vapour flow rates respectively
x _n ,y _n	=	liquid and vapour compositions of the MVC

Figure 5.6 Schematic Diagram of a Typical Tray

1. Liquid on the tray is perfectly mixed and incompressible.

2. The time constants for the fluid and thermal transfers

are negligible compared with that for the mass transfer.

- Vapour hold-up is negligible compared with liquid hold-up.
- 4. The column is adiabatic.
- 5. Vapour and liquid are in thermal equilibrium (but not in phase equilibrium).

Total continuity:
$$\frac{d}{dt} M_n = (L_{n-1} - L_n) + (V_{n+1} - V_n)$$
 (5.36)

Component continuity for the more volatile component (MVC): $M_n \frac{d}{dt} x_n = L_{n-1}(x_{n-1}-x_n) + V_n(x_n-y_n)$

+

$$V_{n+1}(y_{n+1}-x_n)$$
 (5.37)

(5.39)

Energy equation:
$$V_n = (L_{n-1}h_{n-1} + V_{n+1}H_{n+1} - L_nh_n)/H_n$$
 (5.38)

Fluid Dynamics: $L_n = (M_n - A)/B$ where A,B are Brambilla constants⁽¹²¹⁾

Actual vapour
composition for MVC:
$$y_n = y_{n+1} + E_n(y_n^* - y_{n+1})$$
 (5.40)

where y_n^* is the vapour composition is equilibrium with x_n

(through bubble-point calculations)

E is a Murphree vapour-phase efficiency term for tray n.

1.

Model of the Feed Tray

Total continuity: $\frac{d}{dt} M_n = (L_{n-1}-L_n) + (V_{n+1} - V_n) + F$ (5.41) where F is the feed rate (mol/hr.) Component continuity for the MVC: $M_n = \frac{dx_n}{dt}$

$${}^{M}_{n} \frac{dx_{n}}{dt} = L_{n-1} (x_{n-1} - x_{n}) + V_{n}(x_{n} - y_{n})$$
$$+ V_{n+1} (y_{n+1} - x_{n}) + F(x_{F} - x_{n})$$
(5.42)

where x_F is the feed composition (mol fraction of MVC) Energy Balance equation: $V_n = (L_{n-1}h_{n-1} + V_{n+1}H_{n+1} - L_nh_n + Q_F)/H_n$ (5.43)

where $Q_F = F\Sigma q_j x_j$ and $q_j = C_{p,j} (T_F - T_o)$ $T_F = feed temperature, T_o = reference temperature (273K)$ Fluid Dynamics: $L_n = (M_n - A)/B$

For MVC:
$$y_n = y_{n+1} + E_n(y_n^* - y_{n+1})$$
 (5.44)

5.2.2.1 The Actual Process Model - Model I

With reference to Figure 5.6, the following energy balance can be written for a typical tray n:

$$\frac{d}{dt} (M_n U_n) = (L_{n-1} h_{n-1} + V_{n+1} H_{n+1}) - (L_n h_n + V_n H_n)$$
(5.45)

where

U = internal energy term (kJ/mol)

- M_n = molar liquid hold-up
- L_n = liquid rate from the nth tray (mol/hr.)
- h_n = liquid enthalpy (kJ/mol)
- V_n = vapour rate from the nth tray (mol/hr.)

 $H_n = vapour enthalpy (kJ/mol).$

The accumulation term, $\frac{d}{dt}$ (M_NU_n), is negligible compared with the heat fluxes through the tray giving the following equation for the calculation of vapour rate leaving each tray.

$$V_{n} = \frac{L_{n-1}h_{n-1} + V_{n+1}H_{n+1} - L_{n}H_{n}}{H_{n}}$$
(5.46)

where

 $h_n = \Sigma h_i x_i$, x_i is liquid mole fraction of component j

 $H_n = \Sigma H_j y_j$, y_j is vapour mole fraction of component j $h_{j} = \int_{T_{o}}^{T} C_{p,j} dT$ $H_i = h_i + \lambda_i$

 T_{o} = a reference temperature (273K) λ_j = latent heat of vaporisation of the j^{-th} component $C_{p,j} =$ heat capacity equation for component j (function of temperature, T)

3. Model of the Reboiler Total continuity: $\frac{d}{dt} M_n = (L_{n-1} - L_o) - V_n$ (5.47)

where $L_0 = bottoms rate (mol/hr.)$

Component continuity $M_n \frac{d}{dt} x_n = L_{n-1}(x_{n-1}-x_n) + V_n(x_n-y_n)$ for the MVC: (5.48)

Energy equation:
$$V_n = (L_{n-1}h_{n-1} - L_{obo} + Q)/H_n$$
 (5.49)

where Q = heat duty (kJ/hr.)

Fluid dynamics: $L_{p} = (M_{p}-A)/B$ (5.50)

Actual vapour composition: $y_n = x_n + E_n (y_n^* - x_n)$ (5.51)

4. <u>Model of the Condenser and Reflux Drum</u> Total continuity: $\frac{d}{dt}M_D = V_1 - L_R - D$ (5.52)

where L_R = the reflux rate (mol/hr.) D = the distillate rate (mol/hr.)

Component continuity: $M_D \frac{d}{dt} x_D = V_1(y_1 - x_D)$ (5.53)

where M_D = reflux drum molar hold-up x_D = the reflux composition for MVC y_1 = topmost plate vapour composition

5.2.2.2 The Filter Process Model - Model II

In the work of Daie, it was observed that the percentage variations of plate liquid hold-ups are small when compared with corresponding variations in liquid or vapour compositions. In view of this and the limitations imposed on the H316 minicomputer, the filter process model is a much simplified version of Model I with the following assumptions:

- (i) Constant molar hold-ups.
- (ii) Equimolal overflow: $V_{n-1} = V_n = V_{n+1} = V$.
- (iii) the feed and reflux streams enter the column as saturated liquids at their bubble points.
- (iv) constant column pressure.
 - (v) negligible time-lags in the reboiler and condenser responses.

1. <u>Model of a Typical Tray</u> Total continuity: $L_{n-1} = L_n = L$

(5.54)

where L = reflux rate, L_R , is in the enriching section

=
$$L_R$$
 + F is in the stripping section.

Component continuity
$$dx_n$$

for the MVC: $M_n \frac{dx}{dt} = L_{n-1} (x_{n-1} - x_n) + V(y_{n+1} - y_n)$ (5.55)

Actual vapour composition: $y_n = y_{n+1} + E_n(y_n^* - y_{n+1})$ (5.56)

2. Model of the Feed Tray
Total continuity:
$$L_n = L_{n-1} + F$$
 (5.57)
Component continuity $M_n \frac{dx_n}{dt} = L_{n-1}x_{n-1} - L_nx_n$

+
$$V(y_{n+1}-y_n)$$
 + Fx_F (5.58)

Actual vapour composition:
$$y_n = y_{n+1} + E_n(y_n^* - y_{n+1})$$
 (5.59)

3. Model of the Reboiler
Total continuity:
$$L_0 = L_{n-1} - V$$
 (5.60)

Component continuity:
$$M_n = L_{n-1} x_{n-1} - L_n x_n - Vy_n$$
 (5.61)

Energy equation: $V = Q/\lambda$ (5.62)

where λ = average latent heat of vaporization for the mixture

Actual vapour composition:
$$y_n = y_n^* E_n$$
 (5.63)

4. <u>Model of the Condenser and Reflux Drum</u> Total continuity: $L_R = V - D$ (5.64)

Component continuity for
the MVC:
$$M_D \frac{dx_D}{dt} = V(y_1 - x_D)$$
 (5.65)

5.2.2.3 Tray Efficiencies

It was also observed in Daie's work that the calculations of Murphree plate efficiencies based upon the A.I.Chem.E. method⁽¹²²⁾ were not only time-consuming but that the resulting efficiencies did not vary much over the simulated process operating conditions and disturbances. In this work, the tray efficiencies for the two models are those obtained off-line for a typical operating condition. This will be discussed again in Chapter 6.

5.2.3 The Kalman Filter Algorithm

For the purposes of this research work, the discrete-time Kalman Filter algorithm can be restated as a set of prediction and estimation steps as follows:

Prediction:

$$\tilde{x}(k+1,k) = \hat{x}(k,k) + \int_{k}^{t} f(\hat{x}(k,k))dt$$
 (5.66)

$$P(k+1,k) = \phi(k+1,k)P(k,k)\phi^{T}(k+1,k) + Q$$
(5.67)

Estimation:

$$K(k+1) = P(k+1,k)M^{T}(k+1) \cdot \{M(k+1)P(k+1,k)M^{T}(k+1)+R\}^{-1}$$
(5.68)

 $\hat{x}(k+1,k+1) = \tilde{x}(k+1,k) + K(k+1) \cdot \{z(k+1) - M(k+1)\tilde{x}(k+1,k)\}$ (5.69)

$$P(k+1,k+1) = \{I-K(k+1)M(k+1)\}P(k+1,k)\{I-K(k+1)M(k+1)\}^{1}$$
(5.70)

+ $K(k+1)RK(k+1)^{T}$

To start the filtering computation, R,Q together with $\hat{x}(0,0)$ and P(0,0) must be known at time zero (k=0).

The distillation models described earlier are clearly non-linear and the extended Kalman filter applies. The approach taken is to process the state and measurement deviations (from a known reference trajectory) through the linear filter algorithm and convert them back into actual estimates. This procedure is described below where the reference trajectories are derived from the previous estimates.

- Set k=0: Estimate x(k,k) and P(k,k) and derive z(k) from the filter process model.
- 2. Compute ϕ based on $\hat{x}(k)$.
- 3. Compute predicted state vector x(k+1,k) at next sampling instant by integration of the non-linear differential equations (filter process model) starting from x̂(k,k).
- 4. Compute the predicted state deviations and the measurement deviations as new measurements z(k+1) become available:
 δx(k+1,1) = x(k+1,k) x(k,k) (5.71)
 δz(k+1,k) = z(k+1) z(k) (5.72)
- 5. Process the deviations through the linear filter to obtain x(k+1,k+1). $\hat{\delta x}(k+1,k+1) = \hat{\delta x}(k+1,k) + K(k+1) \cdot \{\delta_z(k+1)\}$ - M(k+1) $\tilde{\delta x}(k+1,k)\}$ (5.73)

6. Compute $\hat{x}(k+1,k+1)$ using $\hat{x}(k+1,k+1) = \hat{x}(k,k)$ + $\delta \hat{x}(k+1,k+1)$ (5.74)

7. Compute $\hat{z}(k+1)$ using the filter model. Note, $\hat{x}(k+1,k+1)$, $\hat{z}(k+1)$ now become the new reference trajectories.

8. Set k=k+1, jump to step 2 and continue.

5.2.4 The State Vector x nxl

A typical problem was to estimate 11 plate liquid compositions and 4 process variables regarded as parameters. The resulting state vector is therefore 15x1:

$$x^{T} = (x_{1}, \dots, x_{11}, F, x_{p}, V, L_{p})$$
 (5.75)

where F, x_F , V and L_R are feed rate, feed composition, boil-up and reflux rates respectively.

5.2.5 The State Transition Matrix Φ_{nxn}

The state transition matrix ϕ can be calculated given the latest estimates $\hat{x}(k,k)$ as follows: From equation (5.29),

 $\phi(k+1,k) = I + J(k) \ \delta t \tag{5.76}$ where J(k) is the Jacobian matrix $\frac{\partial f(x_j)}{\partial x_j} / k$ is computed at the latest estimated state.

(5.77)

$$f_{1} = \{L_{R}(x_{D}-x_{1}) + V(y_{2}-y_{1})\} / M_{1}$$
(5.78)

$$\frac{\partial f_1}{\partial x_1} = \{K_1(L_R - V) - L_R\}/M_1$$
 (5.79)

$$\frac{\partial f_1}{\partial x_2} = V K_2 / M_1$$
 (5.80)

$$\frac{\partial f_1}{\partial x_j} = 0 \qquad \forall_j = 3,11 \tag{5.81}$$

In addition, if F, x_F , V and L_R are treated as pseudo-state variables or parameters and being estimated:

$$\frac{\partial f_1}{\partial F} = 0 \tag{5.82}$$

$$\frac{\partial f_1}{\partial x_F} = 0 \tag{5.83}$$

$$\frac{\partial r_1}{\partial V} = (y_2 - y_1) / M_1$$
 (5.84)

$$\frac{\partial f_1}{\partial L_R} = (y_1 - x_1) / M_1$$
 (5.85)

$$f_2 = \{L_R(x_1 - x_2) + V(y_3 - y_2)\}/M_2$$
(5.86)

$$\frac{\partial f_2}{\partial x_1} = L_1 / M_2$$
(5.87)

- 192 -

2.

1

$$\frac{\partial f_2}{\partial x_2} = -(L_R + VK_2)/M_2$$
(5.88)
$$\frac{\partial f_2}{\partial x_3} = VK_3/M_2$$
(5.89)
$$\frac{\partial f_2}{\partial x_j} = 0 \quad \forall j = 4,11$$
(5.90)
$$\frac{\partial f_2}{\partial F_2} = 0$$
(5.91)
$$\frac{\partial f_2}{\partial x_F} = 0$$
(5.92)
$$\frac{\partial f_2}{\partial V} = (y_3 \neg y_2)/M_2$$
(5.93)
$$\frac{\partial f_2}{\partial L_R} = (x_1 \neg x_2)/M_2$$
(5.94)
$$\frac{\partial f_3}{\partial x_1} = 0$$
(5.95)
$$\frac{\partial f_3}{\partial x_2} = L_R/M_3$$
(5.97)
$$\frac{\partial f_3}{\partial x_3} = -(L_R + VK_3)/M_3$$
(5.98)

$$\frac{\partial f_3}{\partial x_4} = VK_4/M_3$$
 (5.99)

$$\frac{\partial f_{3}}{\partial x_{j}} = 0 \quad \forall j = 5,11 \qquad (5.100)$$

$$\frac{\partial f_{3}}{\partial F} = 0 \qquad (5.101)$$

$$\frac{\partial f_{3}}{\partial x_{F}} = 0 \qquad (5.102)$$

$$\frac{\partial f_{3}}{\partial v} = (v_{4}-v_{3})/M_{3} \qquad (5.103)$$

$$\frac{\partial f_{3}}{\partial L_{R}} = (x_{2}-x_{3})/M_{3} \qquad (5.104)$$

$$f_{4} = (L_{R}(x_{3}-x_{4}) + V(y_{5}-y_{4}))/M_{4} \qquad (5.105)$$

$$\frac{\partial f_{4}}{\partial x_{j}} = 0 \quad j = 1,2 \qquad (5.106)$$

$$\frac{\partial f_{4}}{\partial x_{3}} = L_{3}/M_{4} \qquad (5.107)$$

$$\frac{\partial f_{4}}{\partial x_{4}} = -(L_{R} + VK_{4})/M_{4} \qquad (5.108)$$

$$\frac{\partial f_{4}}{\partial x_{5}} = VK_{5}/M_{4} \qquad (5.109)$$

$$\frac{\partial f_{4}}{\partial x_{j}} = 0 \quad j = 6,11 \qquad (5.110)$$

(5.100)

$$\frac{\partial f_4}{\partial x_F} = 0 \tag{5.112}$$

$$\frac{\partial^2 f_4}{\partial V} = (y_5 - y_4) / M_4$$
 (5.113)

$$\frac{\partial f_4}{\partial L_R} = (x_3 - x_4)/M_4$$
 (5.114)

~ -

$$f_5 = \{L_R(x_4 - x_5) + V(y_6 - y_5)\}/M_5$$
(5.115)

$$\frac{\partial f_5}{\partial x_j} = 0 \quad \forall j = 1,3 \tag{5.116}$$

$$\frac{\partial f_5}{\partial x_4} = L_R / M_5$$
(5.117)

$$\frac{\partial f_5}{\partial x_5} = -(L_R + VK_5)/M_5$$
 (5.118)

$$\frac{\partial r_5}{\partial x_6} = V K_6 / M_5$$
(5.119)

$$\frac{\partial f_5}{\partial x_i} = 0 \quad \forall j = 7,11 \tag{5.120}$$

$$\frac{\partial f_5}{\partial F} = 0 \tag{5.121}$$

. .

$$\frac{\partial f_5}{\partial x_F} = 0 \tag{5.122}$$

$$\frac{\partial f_5}{\partial V} = (y_6 - y_5) / M_5$$
 (5.123)

$$\frac{\partial f_5}{\partial L_R} = (x_4 - x_5) / M_5$$
 (5.124)

$$f_6 = \{L_R (x_5 - x_6) + V(y_7 - y_6)\}/M_6$$
(5.125)

$$\frac{\partial f_6}{\partial x_j} = 0 \quad \forall j = 1,4$$
(5.126)

$$\frac{\partial f_6}{\partial x_5} = L_R / M_6$$
(5.127)

$$\frac{\partial f_6}{\partial x_6} = -(L_R + VK_6)/M_6$$
(5.128)

$$\frac{\partial r_6}{\partial x_7} = V K_7 / M_6$$
(5.129)

$$\frac{\partial f_6}{\partial x_j} = 0 \quad \forall j = 8,11 \tag{5.130}$$

$$\frac{\partial f_6}{\partial F} = 0 \tag{5.131}$$

$$\frac{\partial f_6}{\partial x_F} = 0 \tag{5.132}$$

$$\frac{\partial f_6}{\partial V} = (y_7 - y_6) / M_6$$
(5.133)

$$\frac{\partial f_{6}}{\partial L_{R}} = (x_{5} - x_{6})/M_{6}$$
(5.134)

7. $f_7 = \{L_R x_6 - L_7 x_7 + V(y_8 - y_7) + F x_F\}/M_7$ (5.135) where $L_j = L_R + F_{,\forall j} = 7,11$

26

$$\frac{\partial f_7}{\partial x_j} = 0 \quad \forall j = 1,5$$
 (5.136)

$$\frac{\partial f_7}{\partial x_6} = L_R / M_7$$
(5.137)

$$\frac{\partial^2 7}{\partial x_7} = - (L_7 + K_7 V) / M_7$$
(5.138)

$$\frac{\partial^2 r}{\partial x_8} = V K_8 / M_7$$
(5.139)

$$\frac{\partial^2 7}{\partial x_j} = 0 \quad \forall j = 9,11$$
 (5.140)

$$\frac{\partial f_7}{\partial F} = (x_F - x_7) / M_7$$
(5.141)

$$\frac{\partial f_7}{\partial x_F} = F/M_7$$
(5.142)

$$\frac{\partial E_7}{\partial V} = (y_8 - y_7) / M_7$$
 (5.143)

$$\frac{\partial E_7}{\partial L_R} = (x_6 - x_7) / M_7$$
 (5.144)

$$f_8 = \{L_7 x_7 - L_8 x_8 + V (y_9 - y_8)\}/M_8$$
(5.145)

$$\frac{\partial f_8}{\partial x_j} = 0 \quad \forall j = 1, 6 \quad (5.146)$$

$$\frac{\partial f_8}{\partial x_7} = L_7 / M_8 \quad (5.147)$$

$$\frac{\partial f_8}{\partial x_8} = -(L_8 + VK_8) / M_8 \quad (5.148)$$

$$\frac{\partial f_8}{\partial x_9} = VK_9 / M_8 \quad (5.149)$$

$$\frac{\partial f_8}{\partial x_j} = 0 \quad \forall j = 10, 11 \quad (5.150)$$

$$\frac{\partial f_8}{\partial x_F} = (x_7 - x_8) / M_8 \quad (5.151)$$

$$\frac{\partial f_8}{\partial x_F} = 0 \quad (5.152)$$

$$\frac{\partial f_8}{\partial x_R} = (x_7 - x_8) / M_8 \quad (5.153)$$

$$\frac{\partial f_8}{\partial L_R} = (x_7 - x_8) / M_8 \quad (5.154)$$

$$f_9 = \{L_8 x_8 - L_9 x_9 + V (y_{10} - y_9)\} / M_9 \quad (5.155)$$

$$\frac{\partial f_9}{\partial x_j} = 0 \quad \forall j = 1,7$$
(5.156)

$$\frac{\partial f_9}{\partial x_8} = L_8/M_9 \tag{5.157}$$

$$\frac{\partial f_9}{\partial x_9} = - (L_9 + VK_9) / M_9$$
 (5.158)

$$\frac{\partial \varepsilon_9}{\partial x_{10}} = V K_{10} / M_9 \tag{5.159}$$

$$\frac{\partial f_9}{\partial x_{11}} = 0 \tag{5.160}$$

$$\frac{\partial f_9}{\partial F} = (x_8 - x_9 / M_9)$$
 (5.161)

$$\frac{\partial f_9}{\partial x_F} = 0 \tag{5.162}$$

$$\frac{\partial f_9}{\partial V} = (y_{10} - y_9) / M_9$$
(5.163)

$$\frac{\partial f_9}{\partial L_R} = (x_8 - x_9) / M_9$$
(5.164)

$$f_{10} = \{L_9 x_9 - L_{10} x_{10} + V(y_{11} - y_{10})\} / M_{10}$$
(5.165)

•

$$\frac{\partial f_{10}}{\partial x_j} = 0 \quad \forall j = 1,8$$
(5.166)

$$\frac{\partial f_{10}}{\partial x_9} = L_9 / M_{10}$$
(5.167)

$$\frac{\partial f_{10}}{\partial x_{10}} = -(L_{10} + VK_{10})/M_{10}$$
(5.168)

$$\frac{\partial f_{10}}{\partial x_{11}} = V K_{11} / M_{10}$$
(5.169)

$$\frac{\partial f_{10}}{\partial F} = (x_9 - x_{10}) / M_{10}$$
(5.170)

$$\frac{\partial f_{10}}{\partial x_F} = 0 \tag{5.171}$$

$$\frac{\partial f_{10}}{\partial V} = (y_{11} - y_{10}) / M_{10}$$
 (5.172)

$$\frac{\partial^2 10}{\partial L_R} = (x_9 - x_{10}) / M_{10}$$
 (5.173)

~ /

$$f_{11} = (L_{10}x_{10} - L_{11}x_{11} - Vy_{11})/M_{11}$$
(5.174)

$$\frac{\partial f_{11}}{\partial x_j} = 0 \quad \forall j = 1,9$$
 (5.175)

$$\frac{\partial r_{11}}{\partial x_{10}} = L_{10}/M_{11}$$
(5.176)

$$\frac{\partial f_{11}}{\partial x_{11}} = -(L_{11} + VK_{11})/M_{11}$$
(5.177)

$$\frac{\partial^{1} 11}{\partial F} = x_{10}/M_{11}$$
 (5.178)

$$\frac{\partial^2 f_{11}}{\partial x_F} = 0 \tag{5.179}$$

$$\frac{\partial f_{11}}{\partial V} = -y_{11}/M_{11}$$
(5.180)

$$\frac{\partial f_{11}}{\partial L_R} = \frac{x_{10}}{M_{11}}$$
(5.181)

2.
$$f_{12} = \frac{dF}{dt} = 0$$
 (5.182)
 $\frac{\partial f_{12}}{\partial x_j} = 0 \quad \forall j = 1,15$ (5.183)
3. $f_{13} = \frac{dx_F}{dt} = 0$ (5.184)
 $\frac{\partial f_{13}}{\partial x_j} = 0 \quad \forall j = 1,15$ (5.185)

14.
$$f_{14} = \frac{dV}{dt} = 0$$
 (5.186)

$$\frac{\partial^2 f_{14}}{\partial x_j} = 0 \quad \forall j = 1,15$$
 (5.187)

15.
$$f_{15} = \frac{dL_R}{dt} = 0$$
 (5.188)

$$\frac{\partial^2 r_{15}}{\partial x_i} = 0 \quad \forall j = 1,15$$
 (5.189)

5.2.6 The Measurement Vector zmx1

1

The measurement vector comprises five plate temperature and two flow measurements:

$$z^{T} = (T_{1}, T_{3}, T_{5}, T_{7}, T_{9}, F, L_{R})$$
 (5.190)

5.2.7 The Measurement Matrix M mxn

Since the state variables are not measured (on-line composition measurement is normally a more involved task), a functional relationship h is needed to relate temperature T to plate liquid composition x, i.e. T = h(x).

Consider the following:

On a tray,
by Raoult's Law:
$$P_1(T) + P_2(T) = x_1 P_1^0(T) + x_2 P_2^0(T) = P$$
 (5.191)

Thus,

where P = total pressure, mm.Hg.

- P_i = partial pressure of component i, mm.Hg. P_i^0 = vapour pressure of i, mm.Hg.
- x = $\frac{P P_2^{o}(T)}{P_1^{o}(T) P_2^{o}(T)}$ (5.192)

Further, by using Dalton's Law:

$$P_{i} = y_{i}P$$
 (5.193)

and the Antoine relationship

$$\log P_{i}^{o}(T) = A_{i} - \frac{B_{i}}{C_{i}+T}$$
 (5.194)

it can be shown that

$$\frac{\partial T}{\partial x} = \frac{\{P_1^{o}(T) - P_2^{o}(T)\}^2}{-\frac{\partial P_2^{o}}{\partial T} \{P_1^{o}(T) - P_2^{o}(T)\} - \{\frac{\partial P_1^{o}(T)}{\partial T} - \frac{\partial P_2^{o}(T)}{\partial T}\} \{P - P_2^{o}(T)\}}$$
(5.195)

where
$$\frac{\partial P_i^0(T)}{\partial T} = \frac{2.303 B_i}{(C_i + T)^2} P_i(T)$$
.

Thus, the measurement matrix, M consists of zero elements everywhere except

$$M(1,1) = \frac{\partial T_1}{\partial x_1} , \quad M(2,3) = \frac{\partial T_3}{\partial x_3} , \quad M(3,5) = \frac{\partial T_5}{\partial x_5}$$
$$M(4,7) = \frac{\partial T_7}{\partial x_7} , \quad M(5,9) = \frac{\partial T_9}{\partial x_9}$$

M(6,12) = 1. and M(7,15) = 1.

If instead of temperatures, compositions were measured, then the non-zero M-matrix elements described above are all unity.

5.2.8 Filter Initialisation and Tuning

To start the filter operation $\hat{x}(0,0)$, P(0,0), R and Q must be specified. An off-line simulation of a Mcabe-Thiele analysis of the distillation for a typical operating condition, yields the temperature, hold-up, liquid and vapour, and composition profiles which can be used to initialise the actual and filter process models for simulation purposes. Typical values for P(0,0), R and Q are given below:

$$P(0,0) = \text{diag} (0.001, \dots 0.001, .04, 0.01, .04, .04)$$

$$R = \text{diag} (.01, .01, .01, .01, .01, 1.0, 1.0)$$

$$Q = \text{diag} (.01, .01, .01, .01, .01, .01, .005$$

The significance of these numbers will be discussed in the next chapter.

5.2.9 Conclusion

The theoretical background of a Kalman filtering application has been described in this chapter although the emphasis has been on simulation on the H316 minicomputer. However, simulation and off-line modelling are normally the first steps in an on-line estimation work. The preceding discussions have indicated that considerable model development in the context of limited computing resources is necessary before applying a Kalman filter to a process plant. In this case, the plant dynamic models are more or less established. The case may be similar in an actual industrial situation for good plant management would have some record of a plant's dynamic behaviour which may have been required for other design or control purposes.

The next move is to examine the filter performance in simulation on the H316 minicomputer before an on-line attempt is made. This is the essence of the material covered in the next chapter. CHAPTER SIX

TOTAL SIMULATION PACKAGE - PROCESS MODELS AND ESTIMATION

The ideas formulated in Chapter 5 are put together into a digital simulation package which is described in this chapter.

6.1 Software Objectives

The total simulation package includes modules which allow dynamic response studies of process models as well as estimation for a fixed dimensional system in an interactive manner. The objectives of the package are basically two-fold:

- To investigate the feasibility of implementing on-line estimation and control of a distillation process using the linked H316-M6800 twin processor system.
- To allow the user to become familiar with the physics of the process and the operational features of a Kalman filter.

In terms of program structure and philosophy, the package is basically similar to that implemented by Daie. In terms of software resources used and computing constraints, it is completely different. In fact the dimensionality of the filtering problem had to be reduced to suit the requirements of the H316 minicomputer system.

The simulation package allows the user to investigate the process dynamics of both the filter and actual process models 'simultaneously' thus helping the designer to make judicious assignments to the Q matrix for a filtering experiment. For example by disturbing certain parameters in the process and noting the response of the state vector, one can derive a feeling for the 'stiffness' of the column.

The prime concern however is speed and to a lesser extent, storage. The numerical integration process would be expected to consume much of machine time in model response studies on estimation. The package allows the user to investigate the possibility of using larger integrator step lengths for a meaningful application, thereby shortening computation times for a given sampling interval.

The simulation package is also constructed with an on-line application in mind. In other words, use of storage areas which would normally be occupied by core-resident modules such as the HADIOS Executive, is minimised. It was quickly learnt that the use of floppy disks for program overlay is inevitable.

The estimation modules allow the user to tune his filter and study aspects of numerical stability and filter divergence. Having found a reasonable filter operating range, he can then start formulating his on-line package.

6.2 The Simulation Package

Although the simulation package allows the user to conduct dynamic response and digital control studies in an interactive manner, estimation is restricted to a particular filtering problem only. This is because the COMMON areas used by different program modules have fixed addresses for a given problem dimension. Thus, several packages are actually available, each having a different state and/or measurement vector dimensions.

6.2.1 Software Requirements

It was decided that the user is interfaced to the fixed modules of the simulation package via interpretive BASIC. This would allow him to specify important variables such as integrator step-length, filter tuning and graphics package parameters, etc. with ease. The fixed modules of the package i.e. the process models, the filter algorithm, the integrator, etc. are implemented in FORTRAN, basically for faster execution. BASIC mathematics library routines are used as far as possible.

Note that the BASIC interface has provided some degree of flexibility in the sense that the integrator step-length can be altered during computation and one is free to specify the type, magnitude and time of a process disturbance. For studying controller designs implemented at the BASIC level, two controller outputs (reflux rate and reboiler duty) have been provided. Input/output tasks are exclusively handled by BASIC statements.

6.2.2 The Need for Program Overlay and Construction of the Package

The problem of using the floppy disk for secondary storage on the H316 was first tackled by Jordon and Gay⁽¹²³⁾ and was first used in an on-line environment by Mukesh⁽¹²⁴⁾. The existing software allows program segments, previously stored on the disk using the utility routine A\$D14, to be overlayed thus greatly increasing the size of available memory. However, its core image occupied unfavourable locations. A new core image was constructed for the purpose of the simulation package. The procedure is described in Table A6.1 of Appendix 6.

Because the simulation package is too large for the available core, it was decided to split the package into 5 segments, one segment of which will be in core at any one time. The construction of the five segments are described in detail in Tables A6.2 to A6.6 of Appendix 6. Basically, the schematic representation of the package is shown in Figure 6.1. The names listed which are not defined in Figure 6.1 refer to the FORTRAN subroutines used in the total package. Clearly, several subroutines can now share the same starting address as indicated by

- 208 -

'0	'7160	20000	27000	'33143
BASIC	User Space	KOMMON, INIT, INIT1 INIT2, INIT3, P10F10, TRANS, MATMUL, MATTPX	COMN, MATADD, SDBUB, DIAADD, FDTX, SDINT, KALMA1, MATTPS INTPAS, INTJS, MATHS, DTOC	vari-

"	.".	KOMMON, DCOL, DCOL2, DCOL3, DCOL5, DCOL6, SWAVE, RAMP, PERTUB.	DCOL4,	"		:
---	-----	--	--------	---	--	---

"	"	KOMMON, SIMUL, SIMULX, VECTOR, KALMAN, MATINV, P10F10, DIAMUL, DIASUB, MATTPX, TRANS, PKK, MATVEC	n	"
---	---	--	---	---

"		GRAPHICS Package (37 subroutines + MATHS.)	"	
---	--	---	---	--

	KOMMON, KOMN			
 			"	5
		a sea		

Figure 6.1 Schematic Construction of the Total Simulation Package

Table 6.1, which shows the contents of the BASIC CALL table.

A description of all the FORTRAN subroutines is given later in Section 6.2.4. DTOC is a FORTRAN interface routine for the slightly modified Read/Write Sector (RWSC) routine of the disk utility A\$D14.

<u>No</u> .	Location in BASIC	Subroutine	Address
1	'516	DTOC	'30000
2	'517	KOMN, GRAPH, SIMUL, DCOL, INIT	'20006
3	'520	P10F10	'24000
4	'521	COMN	'27000
5	'522	KALMAN	'22000
6	'523	РКК	'26 0 00
7	'524	PERTUB	'25000
8	'525	DISTUB (not in estimation)	'23000
9	'526	*	-
10	'527	SU10 (location varies)	'33620

Table 6.1 Subroutine Assignments in the BASIC CALL table

where * means unused location.

6.2.3 Steady-State Profiles

6.2.3.1 Mcabe-Thiele Calculations

Due to storage limitations and since steady-state profiles for a given process condition are used only once by the filter and actual process models, steady-state calculations were done in BASIC. The first program, listed in Table A6.7 of Appendix 6, calculates the time-invariant, average Antoine constants, 3 for each component. The equation used is that of equation (5.194).

$$\log P_{i}^{o}(T) = A_{i} - \frac{B_{i}}{C_{i} + T}$$

The second program, listed in Table A6.8 of Appendix 6 does a Mcabe-Thiele analysis of the column for a given operating condition. Thus, for a given feed rate, temperature and composition, reflux ratio and temperature, top and bottom product specifications, top or bottom product rate, the program calculates the heat duty and the following profiles:

- Plate liquid and vapour concentration profiles for the MVC.
- 2. Plate hold-ups (mol.)
- 3. Plate temperatures (°C)
- 4. Liquid rates (mol./hr.)

The reflux ratio is calculated using a Wegstein algorithm to speed up convergence. The boil-up rate becomes the vapour rate through the column which is constant. The plate efficiency calculations are based on the A.I.Ch.E. method⁽¹²²⁾, originally developed for binary mixtures on bubble cap trays and was later extended to other types of trays⁽¹²⁵⁾. For a detailed description of the method, references (119), (122) and (125) should be consulted.

6.2.3.2 Refined Steady States

The Mcabe-Thiele calculations provide approximate profiles for the actual and filter process models (models I and II respectively). As indicated in the program in Table A6.8, the model used to calculate these profiles is basically model I except that an option for plate efficiency calculations is offered and that the vapour rate throughout the column is constant. Since model II is a much simpler model than model I, it is not surprising that when the two models are initialised with the Mcabe-Thiele profiles, the state vector in model II moves to a new point in space driving its differential equations to zero while the state generated by model I basically needs little adjustment. This point is shown by the corresponding variations in composition, vapour and temperature profiles in Figures 6.2 to 6.3. The final steady-states are termed refined steady-states and may be used to initialise the filter or the dynamic simulation modules by punching them out first on to paper-tape.

6.2.4 FORTRAN Subroutines

Excluding the graphics steering routine, GRAPH, and the utility SU10, the total simulation package contains 38 FORTRAN subroutines, 10 of which are accessible from BASIC. The modules and their functions are described below. Their source listings are found in Tables A6.9 to A6.11 of Appendix 6, where the arguments in the CALL statements are also defined.

<u>KOMMON</u> - This is a non-executable routine. Basically it contains all the COMMON blocks used in package. Its purpose is to align the COMMON variables in all the segments correctly. For this reason, it is the first object module loaded in the construction of any of the 5 segments that constitutes the simulation package.

<u>KOMN</u> - BASIC statement - CALL(2,C(1),L6,L7,L8,L9). It is called to retrieve array values (P,Q,R,M and matrix inverse in filter simulation experiments) which are returned columnwise in the vector C.

- 212 -

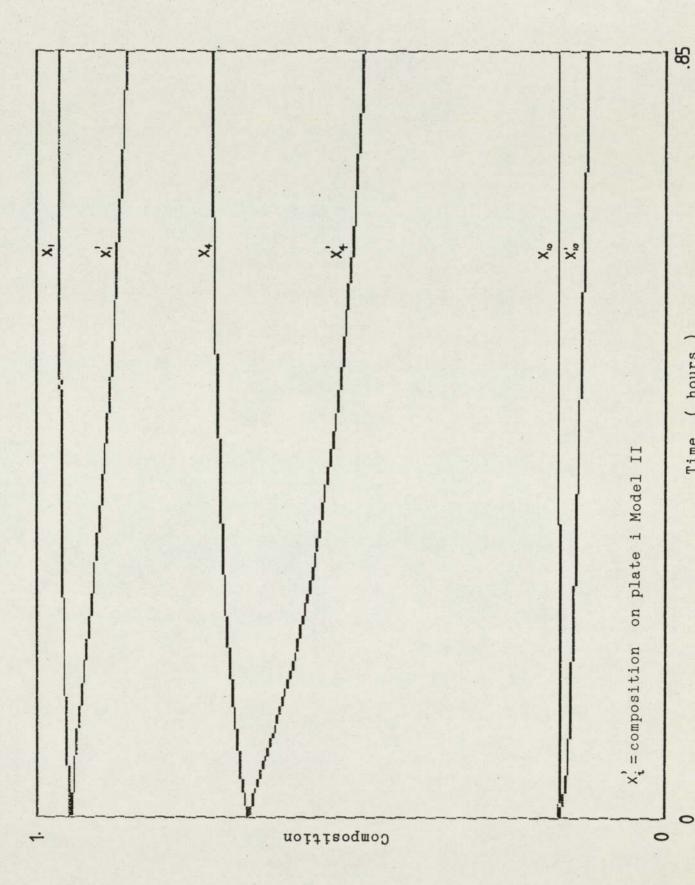


Figure 6.2 Refinement of Steady States in Models I and II - Compositions

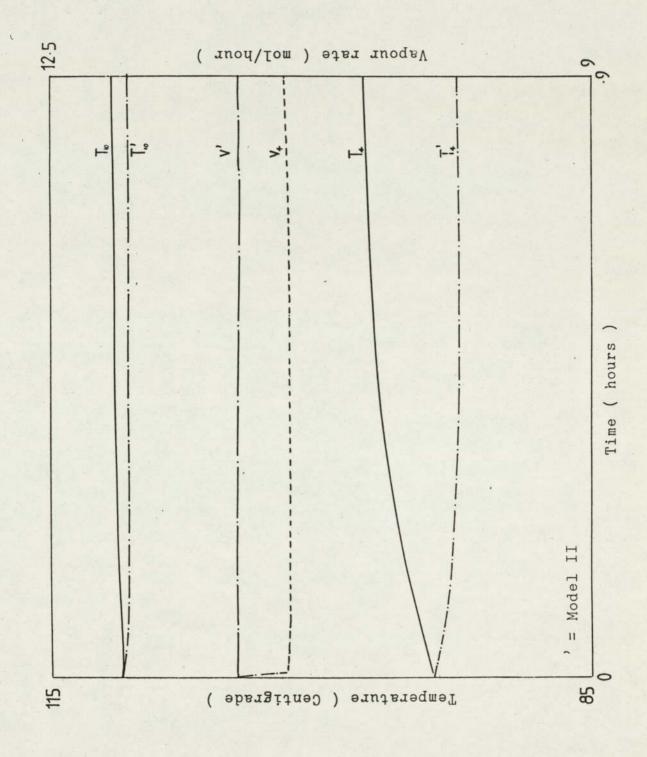


Figure 6.3 Refinement of Steady States in Models I and II -Temperatures and Vapour Rates

<u>COMN</u> - BASIC statement - CALL(4,C(1),D(1),E(1),RO,QO,E2,E3) This routine is among the 10 FORTRAN modules that are core resident. It is used to retrieve current profiles (compositions, flowrates, temperatures, etc.) of the two process models. The estimated profiles are returned in vector E.

Since it can be called anytime (or anywhere) in the BASIC program to change the reflux rate (RO) and heat input (QO) to the actual process model, the routine can also be used to output the control vector {RO,QO} in digital control simulation studies.

<u>INIT</u> - BASIC statement - CALL(2,C(1),D(1),E(1),E1,E2,E4,V1) This is an initialisation routine. Other related routines are INIT1, INIT2 and INIT3.

DCOL - BASIC statement - CALL(2,T1,T2,Z1)

This, in conjunction with DCOL1, DCOL2, DCOL3, DCOL4, DCOL5 and DCOL6, forms the actual process dynamic model. Note that T1 is time, T2 is integrator step-length and Z1 is integration-method option. The variables are specified in BASIC which allows easy changes to be made. <u>PERTUB</u> - BASIC statement - CALL(7,T1,S(1),R(1),W(1),F1,F2) This routine simulates actual process disturbances at the desired times (step, ramp or sinusoidal of up to 5 process variables: feed rate,

temperature and composition, reflux rate and temperature). It therefore calls subroutines STEP, RAMP or SWAVE where appropriate.

<u>DISTUB</u> - This is similar to PERTUB except that the disturbances affect only the filter process model. It is usually used in modelling studies of model II.

<u>SDBUB</u> - This routine calculates bubble points and vapour equilibrium compositions. It includes a Newton-Raphson iteration with an adjustable limit in the bubble point accuracy. <u>SDINT</u> - This routine, in conjunction with INTPAS and INTJS forms the integrator. Numerical integration methods offered are simple and modified Euler methods only.

SIMUL - BASIC statement - CALL(2,T3,T4,Z2,T9)

Together with SIMULX, they constitute the filter process dynamic mode. Note that T3 (time), T4 (integration step length) and Z2 (integration method option) can be different to the ones used in Model I when both are being 'simultaneously' integrated. T9 is a steering flag. If zero, normal integration; else the secondary variables (flowrates, temperatures, etc.) are updated with the latest estimated state vector.

P10F10 - BASIC statement - CALL(3,S9)

This routine, in conjunction with TRANS (transition matrix calculations) computes the predicted error covariance matrix P(k+1,k). S9 is the sampling intervals in hours.

PKK - BASIC statement - CALL(6)

This routine computes the estimated error covariance matrix P(k+1,k+1). <u>KALMAN</u> - BASIC statement - CALL (5,Y(1),U(1),K(1),M(1),L(1),P9,D9) Together with KALMA1, they constitute the main Kalman filter estimation steps. Noisy process measurements are passed to the FORTRAN subroutines via vector Y.

<u>FDTX</u> - This routine is used to compute temperature-composition derivatives required for the measurement matrix (equation 5.195 in Chapter 5) of the extended Kalman filter.

The rest are matrix and vector manipulation routines. <u>MATMUL</u> - Matrix Multiplication. The product matrix is returned to the calling subroutine via either one of the matrices in the argument list. <u>VECTOR</u> - Vector addition or subtraction.

MATINV - Matrix inversion based on the Gauss-Jordan method.

MATVEC - Matrix-Vector multiplication.

DIAMUL - Matrix multiplication, the first being a diagonal matrix. DIASUB - Matrix subtraction, the second being a diagonal matrix.

MATTPS - Matrix transpose.

MATTPX - Matrix transpose but unlike MATTPS, it puts the answer in the matrix to be transposed.

MATADD - Matrix addition.

DIAADD - Matrix addition where one of the matrices is diagonal.

6.3 Simulation of the Dynamic Response of the Process Models

The total simulation package allows the user to conduct dynamic response studies of both process models simultaneously. A typical flowchart for such a simulation exercise is shown in Figure 6.4. Each model may be initialised with its steady-state profiles and then subjected to multiple process disturbances. Since it is useful to know how well the filter process model approximate the 'true' plant (Model I), each model is integrated using the same step length and subjected to the same disturbances at the same points in time.

6.3.1 Response to a single step disturbance in feed rate

When the process models are subjected to a single 40% step change in feed rate, the typical responses for plate liquid compositions of the MVC are shown in Figures 6.5 and 6.6. The response of plate temperatures are shown in Figure 6.7. In this case, the models have been initialised with their individual refined steady states and the integration step length, using the simple Euler method, is .0001 hour.

The results show that dynamically, the filter process model (Model II) is a reasonable approximation to the 'true' plant although its steady-state behaviour is markedly different. For example, the liquid composition on plate 4 settles to about .84 in Model I whereas in the

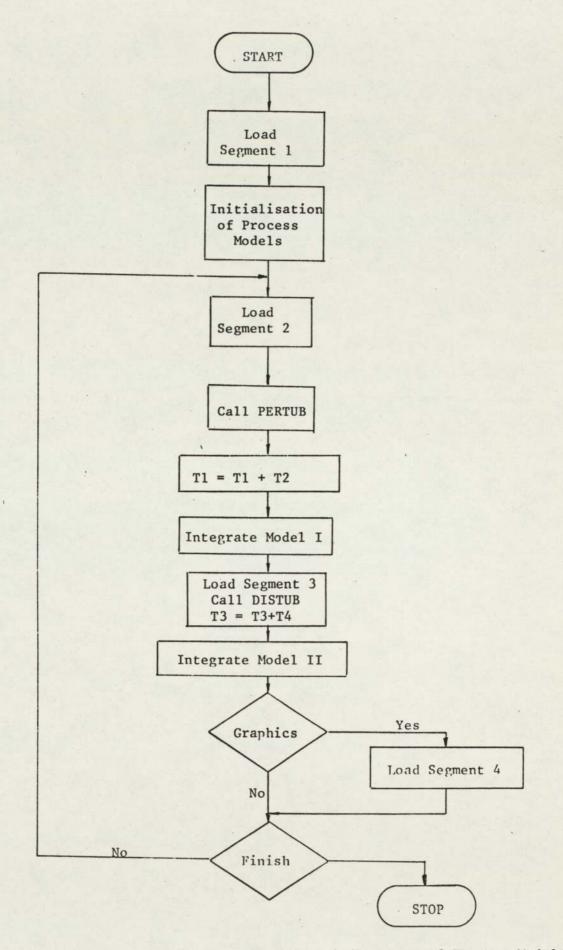
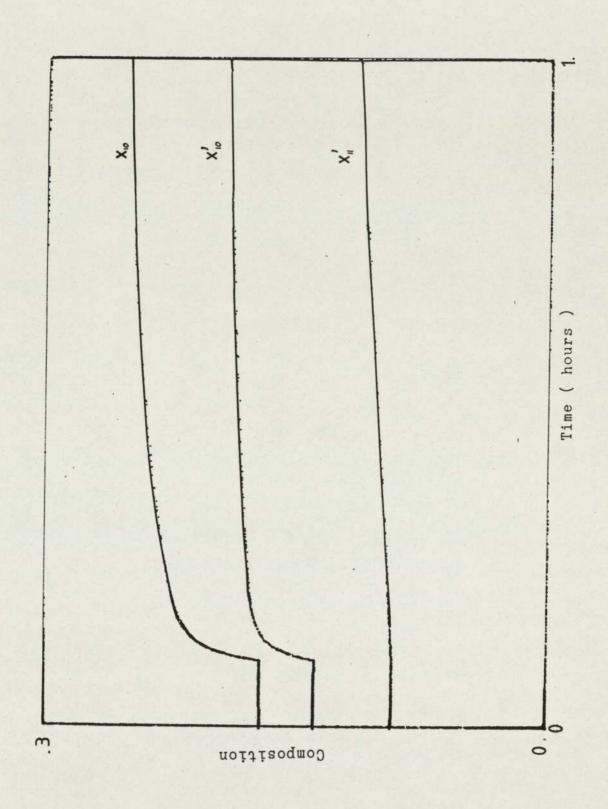
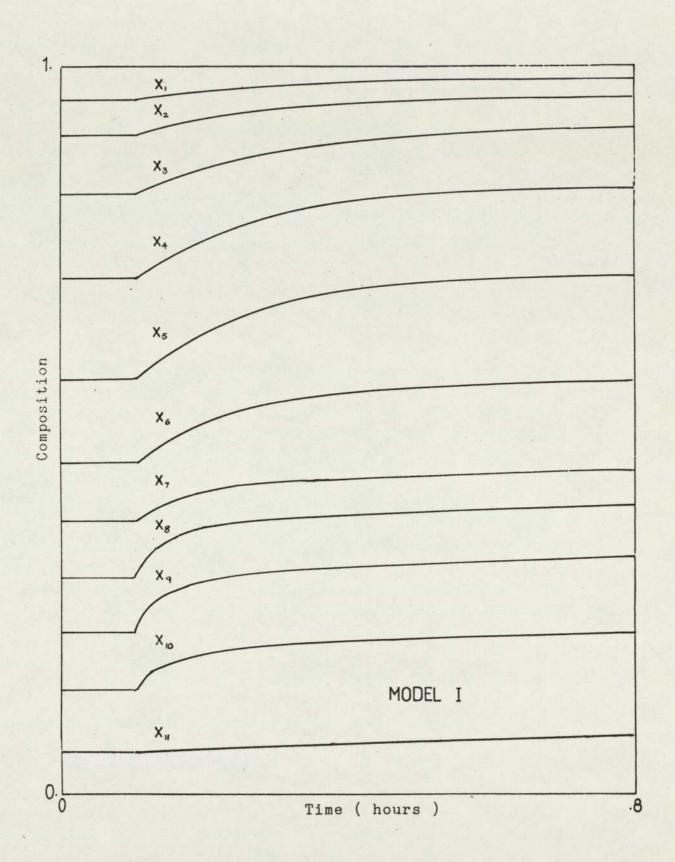




Figure 6.4 Flowchart for Simulation of Dynamic Response of Process Models

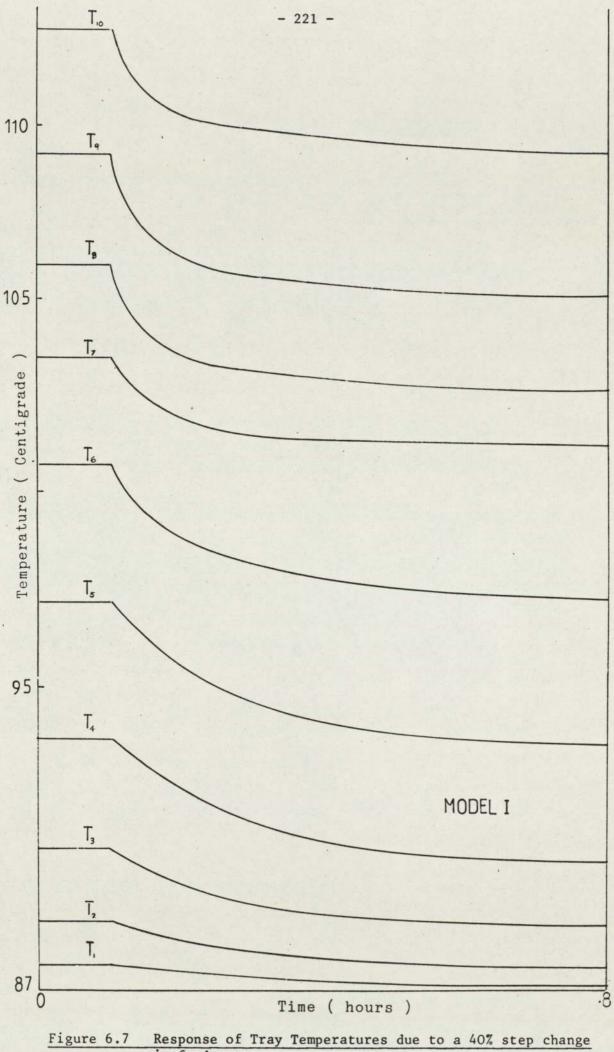


Figure 6.5 Response of tray liquid compositions due to a 40% step change in feed rate

Figure 6.6 Response of tray liquid compositions due to a 40% step change in feed rate

- 220 -

in feed rate

filter process model, the corresponding value is about .61. The bottom product compositions are hardly affected because of the dampening effect of the relatively large reboiler hold-ups. Also, the responses above the feed plate (plate 7) are slower, increasingly so as one moves up the column and away from the feed plate, than those in the stripping section. This is because distillation is a stagewise process and the effect of a feed rate disturbance is translated into changes of compositions and internal flowrates which eventually work their way up the column.

6.3.2 Response to multiple disturbances in feed rate and composition

When both models are initialised with the steady-state profiles of Model I, and then subjected to multiple disturbances in feed rate and composition, the typical responses in plate liquid compositions for the NVC are shown in Figure 6.8. Clearly, in the stripping section, the behaviour is reasonably well modelled but above the feed plate the response from Model II is unsatisfactory. The results in Figures 6.2 and 6.3 suggest that because Model II is initialised with the steady state profiles of Model I, the driving force pulling Model II to its steady state values is significant (in fact the drive is stronger above the feed plate) thus swamping the effect of the load disturbances.

6.4 Kalman Filtering Simulation

In terms of software development carried out in this research, a considerable portion has been directed to the simulation of the Kalman filtering application formulated in Chapter 5. Several simulation packages are available, each differing in problem dimension in the sense of number of states and/or parameters to be estimated, and the number of process measurements. Only two such packages are discussed as they adequately reflect the typical findings and problems encountered. A

- 222 -

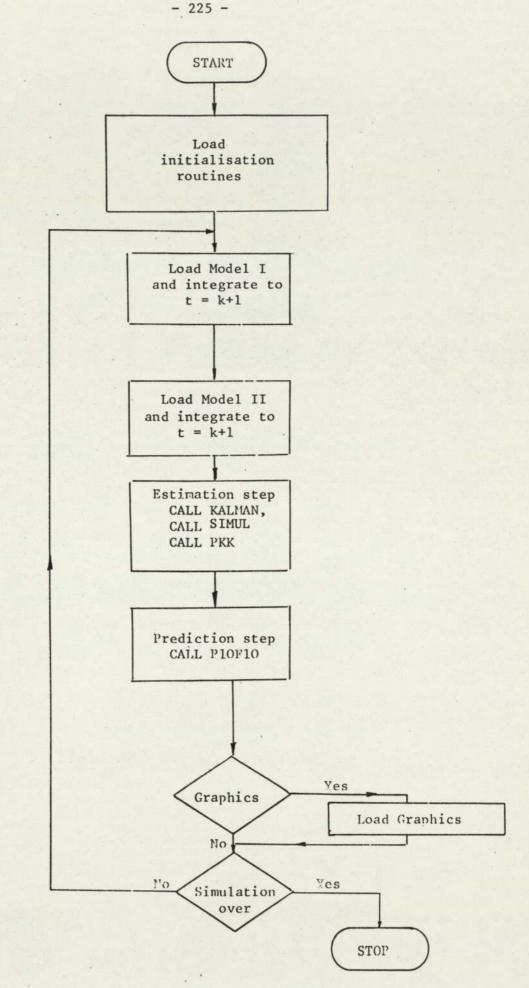
Figure 6.8 Response of Tray liquid compositions due to multiple disturbances in feed rate and composition

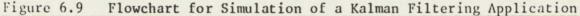
flowchart for such a simulation experiment is shown in Figure 6.9.

6.4.1 State and Parameter Estimator: EKF1

Given the limited size of core memory in the H316 minicomputer the original filtering problem considered by Daie⁽¹¹⁹⁾, i.e. a 26 by 26 process model, a 22 by 22 filter process model and 3 measurements, has been reduced to the following:

- a 15 by 15 process model (11 states and 4 parameters)
- an 11 by 11 filter process model
- and 7 process measurements.


The number of measurements, plate liquid compositions or temperatures, has been increased to compensate for the poorer predictions resulting from a simplified filter process model. The theoretical development for this exercise has already been covered in Chapter 5.


6.4.1.1 Initial estimate of the state

The refined steady-state profiles for Model I are usually used as an estimate of the state vector at time zero. Typically, this is for the separation:

Feed Rate	F = 10	mole/hr
Feed composition	$x_F = .4$	mole fraction of MVC
Top composition	x _D = .95	` mole fraction of MVC
Bottom composition	$x_B = .05$	mole fraction of MVC
Reflux ratio	R = 2.0	

6.4.1.2 The Initial Error Covariance matrix, P(0,0) 15x15

This means that the standard deviations of the initial composition estimates, feed rate, feed composition, reflux rate and boil up rate are about 3%, 2%, 10%, 3% and 2% respectively.

6.4.1.3 The System Noise Matrix, Q15x15

The system noise matrix is also diagonal and its typical value is given by

6.4.1.4 The Measurement Noise Matrix R7x1

This is given by

R = diag (.01,.01,.01,.01,.01,1.0,1.0)

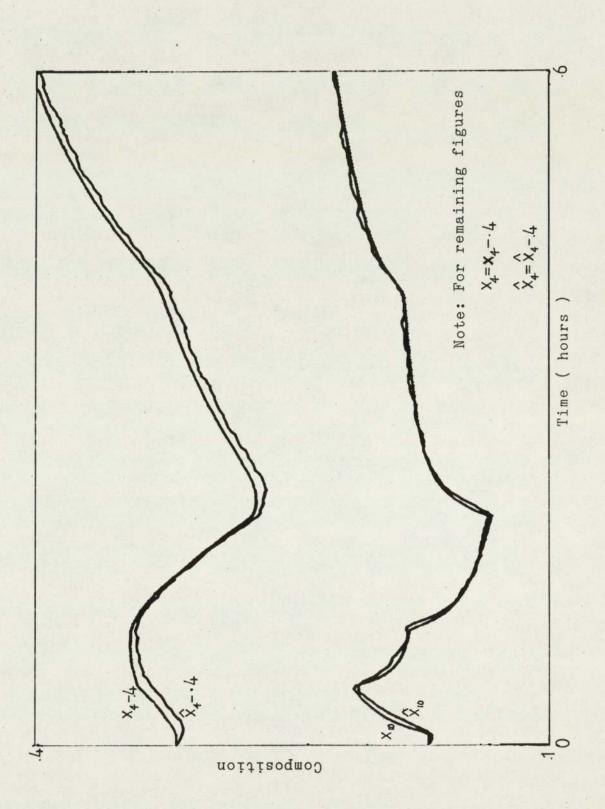
The standard deviations of the thermocouples, feed rate and reflux rate measurements are therefore about $.1^{\circ}$ C, 10% and 16% respectively.

6.4.1.5 Simulated Gaussian Noise

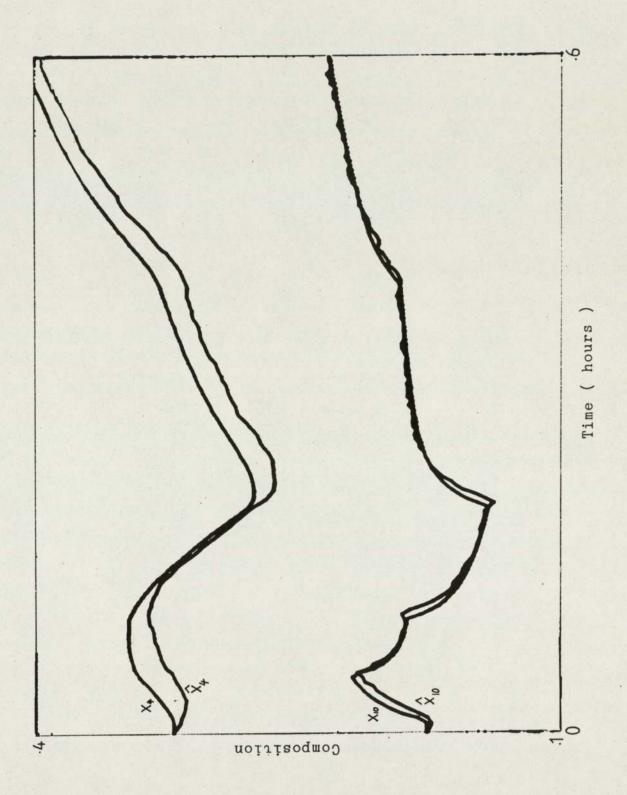
Since the pseudo-random number generator is BASIC has an approximately flat probability distribution profile, a crude Gaussian noise is used based on 50 numbers generated by the RND function. The temperature measurements are corrupted by a sequence characterised by $(0,\sqrt{.01})$ and the flow measurements by $(0,\sqrt{0.5})$.

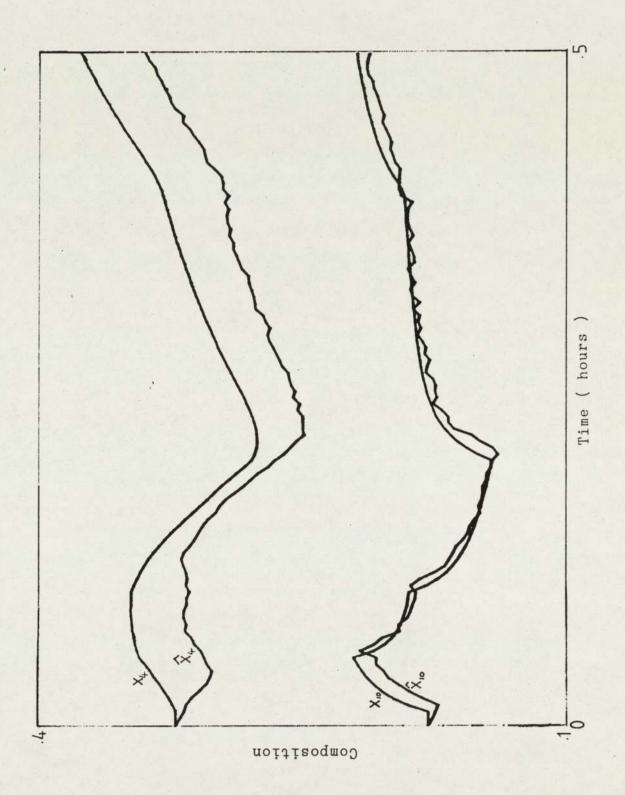
6.4.1.6 Observability

The discrete observability matrix L od for this estimation problem for up to k sampling instants is given by


$$L_{od} \left[\phi^{T}(1,0)M^{T}(1), \phi^{T}(2,0)M^{T}(2), \dots, \phi^{T}(k,0)M^{T}(k) \right]$$
(6.1)

The condition for observability for k sampling instants is that L_{od} has rank $n^{(126)}$, where n is 15. Since Φ and M vary with time, and L_{od} grows with k, the task may be carried out by some numerical means. It can be shown however, that since the feed flowrate F is being estimated in EKF1, a feed tray temperature (or composition) measurement must be included in the measurement vector. If not, the system is unobservable for all k.


6.4.1.7 The Effect of Sampling Interval


It was observed that estimation performance is sensitive to the choice of sampling interval, At. Figures 6.10, 6.11 and 6.12 graphically illustrate this point for sampling intervals of .002, .004 and .005 hour respectively. The rest of the filter parameters are the The filter became unstable as reflected in large values in the same. error covariance matrix when a sampling interval greater than 0.005 hour The results in Figures 6.10, 6.11 and 6.12 show that although was used. the filter's performance is acceptable, a combination of a less well modelled enriching section and a larger sampling interval has resulted in a larger bias in the composition estimates above the feed plate. On one hand, the larger At generates a poorer state transition matrix \$. The other contribution to the loss of performance is due to the fact that if the integration parameters (method and size of step-length) are kept constant, model predictions are likely to be less accurate since more step-lengths are required over a larger Δt .

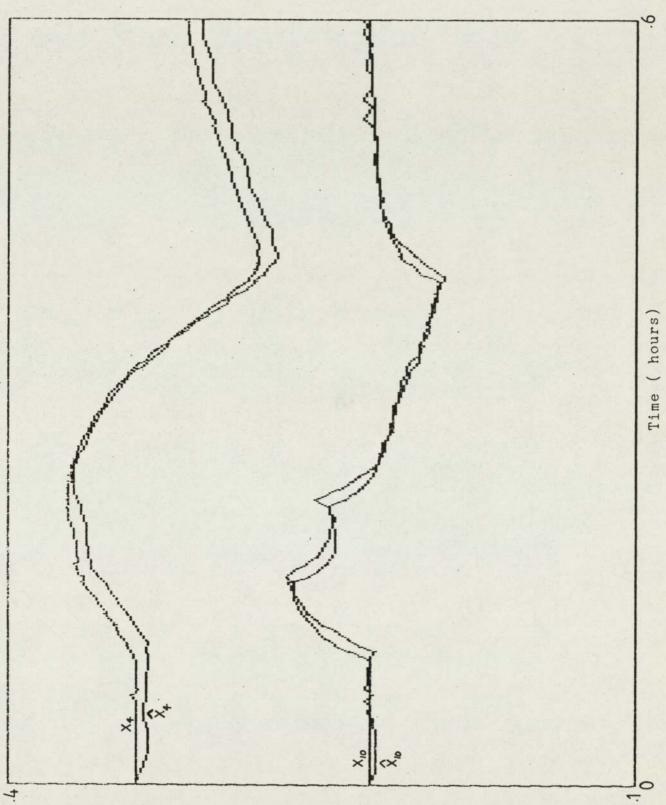
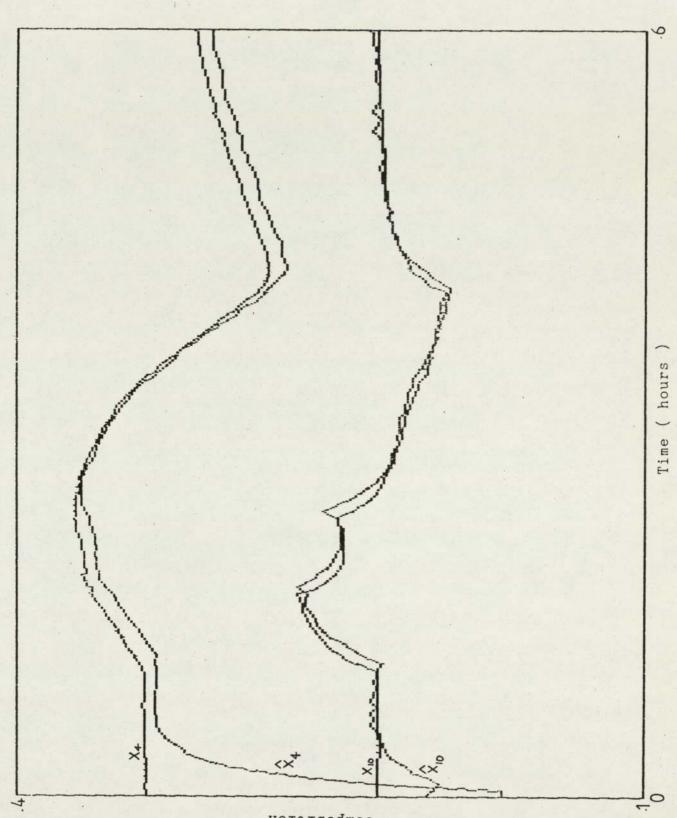
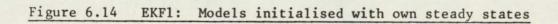

Figures 6.13 and 6.14 show, for a sampling interval of .003 hour, that a different initial estimate affects only the initial response of the filter. The first disturbance occurs at t = .1 hour which means that the filter is able to track the composition on plate 10 after about

Figure 6.10 Estimation with EKF1: $\Delta t = .002$ hour





noitizoqmoð

Figure 6.13 EKF1: Models initialised with Model I steady states

noitisoqmol

- 232 -

15 plant observations. Examination of the filter gain K(k+1) during this period, shows relatively large values of elements corresponding to the five temperature measurements. This is because for the same measurement noise matrix R, the filter weights the measurements in Figure 6.14 more heavily than the case in Figure 6.13 as model predictions are less reliable during these transient conditions.

6.4.1.8 Estimation of Process Parameters F, x_F, L_R, V

The motive in estimating the four parameters F, $x_{\rm F}$, $L_{\rm p}$ and V is linked both to estimation and control. The calibration experiments in Chapter 5 Section 5.2.1.6 have demonstrated the difficulties associated with the orifice-plate based flow transducers used to measure F and Lp such that flows are determined from valve openings instead. These are therefore pragmatic solutions and it may be possible that the flow values obtained may not be accurate enough. For instance, the values sometimes suffer from mechanical and electrical strictions and the flow for a given valve opening is not calibrated for varying upstream pressure. In the latter case, the reflux rate may not be sensitive since under normal operating conditions, the reflux drum level would be under regulatory contol. However, this is not so for the feed rate. For a complete run, the change in liquid level in the feed tank can vary by as much as a metre and the effect of decreasing head in feed rate entering the column is therefore significant. Estimating F and L_R therefore provides the 'software' alternative.

Varying feed composition x_F is relatively more difficult to track and even more so the boil-up rate, V. The filter not only provides estimates but generates additional benefits in the sense that it helps in understanding the internal dynamics of the column. The other bonus is control. A 'degrees of freedom' analysis for a typical column operation yields only two manipulative variables to effect the state vector for the system. Normally, L_R and the heat duty q are chosen since they represent convenient energy inputs to the column. Although q is not estimated directly, its effect, V, is. It is therefore possible to envisage some feed forward control applications where the effect of a feed disturbance on L_R and V (hence, q) can be predicted by the filter and the necessary manipulative measures are than made.

For the case of EKF1, with conditions the same as in Figures 6.13 and 6.14 except that the sampling time is .005 hour, the estimates of F, x_F , L_R and V are shown in Figures 6.15 through 6.17. In particular, in Figure 6.17 the estimated boil-up rate \hat{V} is compared with the 'true' boil-up rate and the vapour rate leaving the top plate.

Figure 6.15 shows that the filter is producing reasonably good estimates of F and L_R despite large variations in feed rate. Part of the reason is due to the fact that both flows are also measured. The reflux rate remain constant as the process is under open-loop, steady-state (with respect to reflux and reboiler level) conditions.

Figure 6.16 shows that the estimated feed composition x_F^{\cdot} is able to track unmeasured variations in x_F but the filter seems unable to eliminate a consistent positive bias.

On the other hand, the estimated boil-up rate V is relatively insensitive to changing process conditions. This is shown in Figure 6.17. The filter process model assumes a constant vapour throughput up the column. While the actual variations in the stripping section (as evident in a data print-out) are relatively small, vapour rates above the feed plate appear to be more markedly affected by changes in feed rate. This behaviour is absent in the filter process model and since it is significant, it is suggested as a cause for filter instability especially at larger sampling intervals. In fact, using relatively larger Q elements

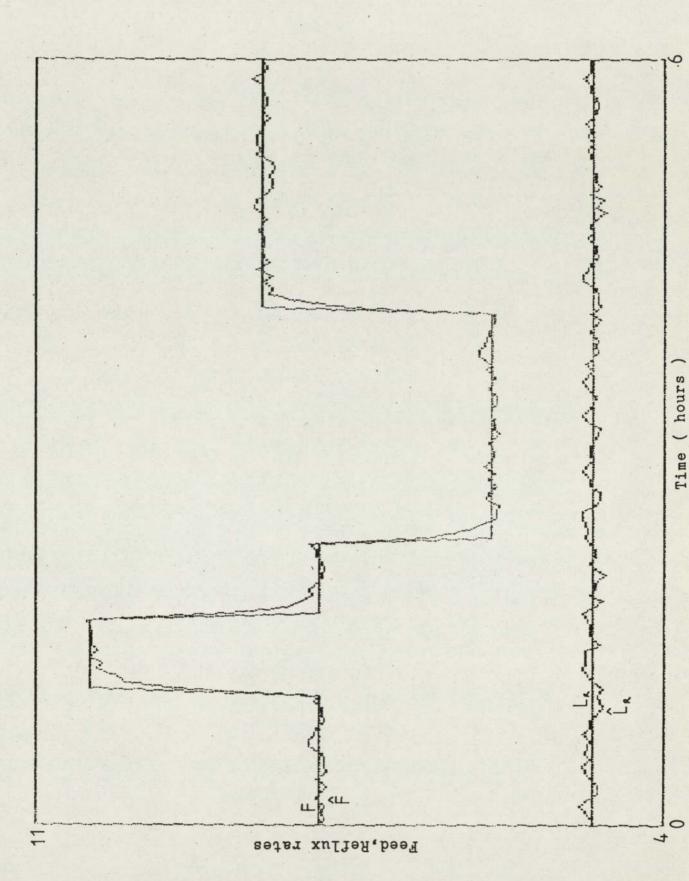


Figure 6.15 Parameter estimation with EKF1: Feed and Reflux rates

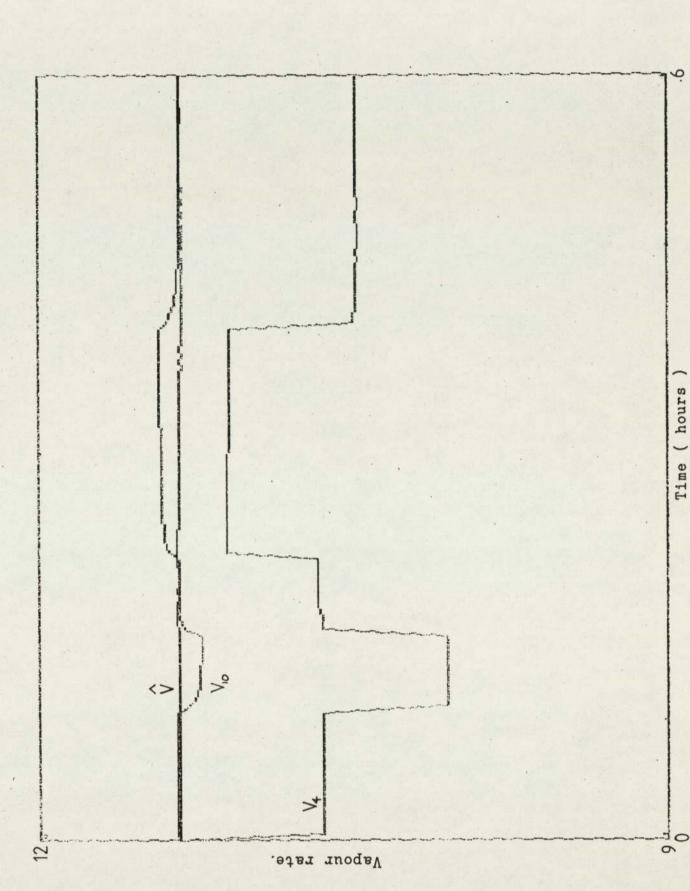


Figure 6.17 Parameter estimation with EKF1: Vapour rates

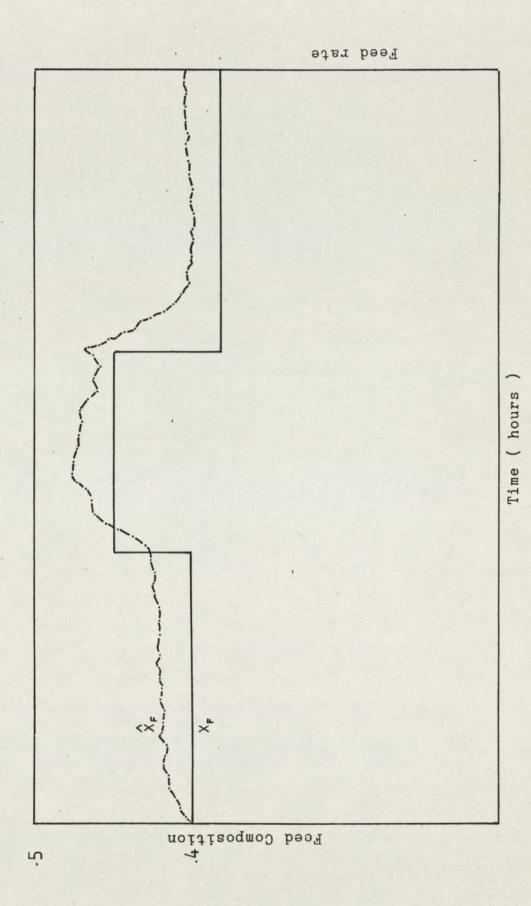


Figure 6.16 Parameter estimation with EKF1: Feed composition

corresponding to the compositions above feed plate also did not seem to improve the performance in any significant way.

6.4.1.9 The BASIC program

The BASIC program used in EKF1 is listed in Table A6.12 of Appendix 6. With a slight modification, the same program can also be used to simulate the dynamic response of process models as described by the flowchart in Figure 6.4.

6.4.2 State Estimator using three tray temperature measurements: EKF2

A more practical filtering problem as a first step toward an on-line application is the estimation of 11 plate liquid compositions using 3 temperature measurements. The memory maps for the four segments (the Graphics segment is the same as for EKF1) are listed in Tables A6.13 to A6.16 of Appendix 6. The feed flow rate and composition, reflux rate, reflux drum and reboiler levels were fixed.

6.4.2.1 Filter initialisation

As in EKF1, the steady-state profiles of Model I are used as the initial estimates. The matrices $P(0,0)_{11\times11}$, $R_{3\times3}$ and $Q_{11\times11}$ are typically as follows:

P(0,0) = diag(.001,...,.001)

$$R = diag (.01, .01, .01)$$

6.4.2.2 The Measurement Vector and Measurement Noise Matrix

It was decided to spread the temperature measurements through the column. As the feed tray temperature is considered important, the remaining two thermocouples are allocated to the top (plate 1) and bottom (plate 10) trays respectively.

The measurment vector
$$z_{3x1}$$
 is therefore
 $z = (T_1, T_7, T_{10})^T$
(6.2)

and the measurement noise matrix M_{11x3} at time t = $(k+1)\Delta t$ is a matrix with elements zero except for the following:

$$M(1,1) = \frac{\partial T_1}{\partial x_1}$$
(6.3)

$$M(2,7) = \frac{\partial T_7}{\partial x_7}$$
(6.4)

$$M(3,10) = \frac{\partial T_{10}}{\partial x_{10}}$$
 (6.5)

As in EKF1, a crude Gaussian noise characterised by the sequence $(0,\sqrt{.01})$ is added to the temperature measurements at each sampling instant.

6.4.2.3 Effect of changing integration methods

The previous simulation results for EKF1 are obtained when both process models are integrated using the simple Euler method with the critical step length of .005 hour or 18 seconds (this figure is critical only for the integration of Model I). The estimation result for EKF2 is shown in Figure 6.18. The first four disturbances are due to feed rate and the fifth which occurs after .4 hour is due to a 12.5% step change in feed composition. In the stripping section, the estimate and the actual values are virtually indistinguishable while above the feed plate the behaviour is reflective of earlier difficulties except that the filter seems to respond better to a disturbance in feed composition.

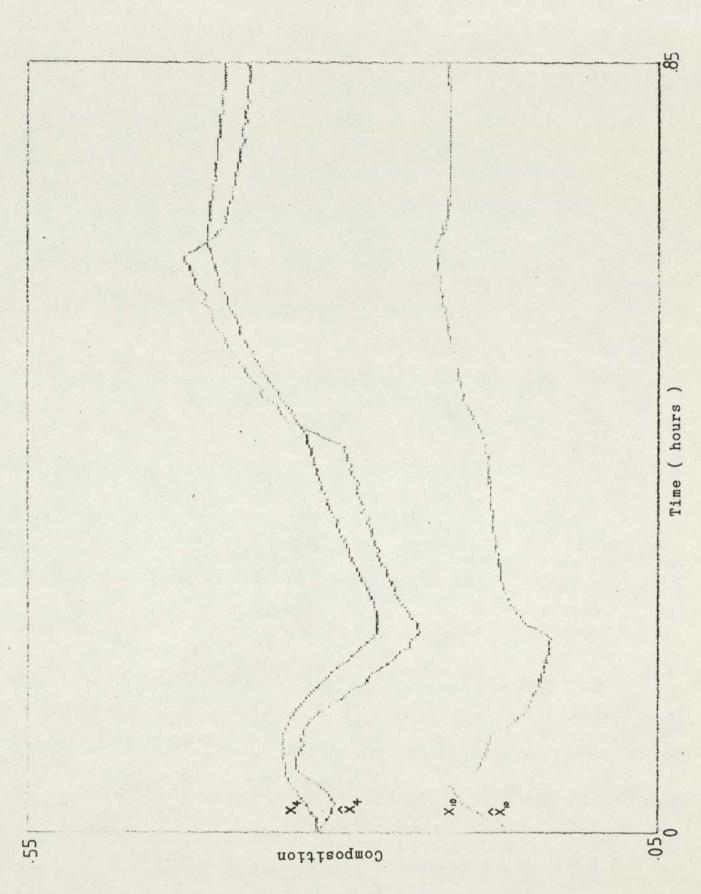
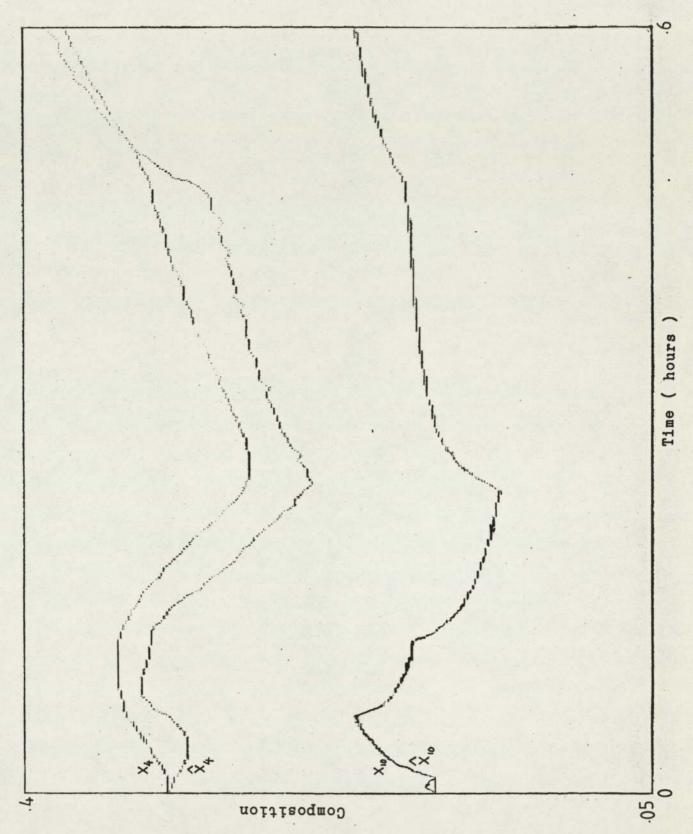
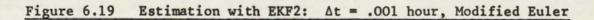


Figure 6.18 Estimation with EKF2: $\Delta t = .0001$ hour, Simple Euler

A similar behaviour is indicated in Figures 6.19 and 6.20 where the filter process model is integrated using the modified Euler method with larger step-lengths. While the performance in the stripping section is unchanged, a slight deterioration is indicated by the use of a larger integration step-length, which in Figures 6.19 and 6.20, are 10 and 25 times that used in Figure 6.18.


6.5 Considerations for an On-line Filter: EKF3


The results obtained from the simulation of EKF2 suggest that an on-line version of the filter, EKF3, should be investigated. The various aspects to be looked at include memory utilisation, execution times, filter initialisation and some real-time requirements which would have to be satisfied.

6.5.1 Memory utilisation

The basic memory configuration for the on-line package is similar to that for EKF2 except that the HADIOS Executive is now incorporated. Noisy measurements are made at each process scan. The true state of the plant is now unknown.

A feasible memory utilisation using only two segments is shown schematically in Figure 6.21. The Graphics package, if required, forms the third segment. Since Model I is irrelevant in the memory utilisation of EKF3, the storage requirements are less critical. For instance, the COMMON base have gone up from '34735 to '35413 thus enabling the HADIOS Executive ('27000 through '34762) to be accommodated. In fact, in EKF3 none of the estimation FORTRAN modules needs be core-resident. However, the disk overlay routine DTOC has to be divided into two parts. The main body resides in sector '35 while the rest are loaded into the unused locations of the HADIOS Executive. The memory allocation is detailed

- 243 -

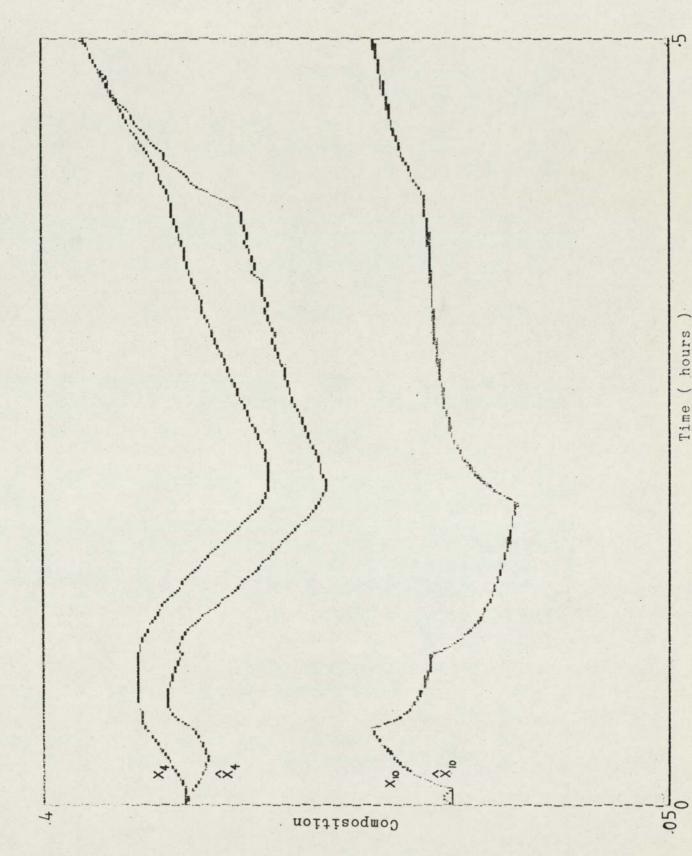


Figure 6.20 Estimation with EKF2: $\Delta t = .0025$ hour, Modified Euler

'0	'7160	20000	'27000 '	35413
BASIC	User Space	KOMMON, SIMUL, SIMULX, P10F10, MATMUL, TRANS, MATTPX, DIAADD, SDBUB, SDINT, INIT, INIT3, INTPAS, INTJS	Rev 03,	COMMON vari- ables

"		KOMMON, KOMN, COMN, MATMUL, FDTX, KALMAN, KALMA1, MATTPX, MATTPS, DIAADD, MATVEC, MATINV, PKK, DIASUB, MATADD, DIAMUL		"
---	--	--	--	---

Figure 6.21 Schematic Construction of EKF3

further in the corresponding memory maps found in Tables A6.17 to A6.19 of Appendix 6.

6.5.2 Execution Times

Besides memory requirements, the other vital factor in an on-line implementation is machine execution time. Faster program execution times would permit smaller sampling intervals thereby improving estimation performance. Using the timer routine SU10 in conjunction with EKF2, the execution times required in a typical estimation exercise are shown in Table 6.2 below.

For an on-line application, the total time incurred would be the sum due to 3, 4 or 5, 6, 7, 8, 9 and, if plotting is required, 10 and 11. Further time would also be required for a certain number of I/O tasks. Table 6.2 H316 Execution times in a Kalman Filtering application

-	Function	Time (secs)
1.	Loading Segment 2	3.1
2.	Integration of Model I (per step)	3.8 Simple Euler
3.	Loading Segment 3	3.1
4.	Integration of Model II (per step)	2.3 Simple Euler
5.	Integration of Model II (per step)	6.7 Modified Euler
	Estimation step:	
6.	Subroutine KALMAN (inversion, etc.)	2.2
7.	Refinement of filter process model	2.2
8.	Calculation of P(k,k)	9.8
9.	Calculation of P(k+1,k)	8.1
10.	Loading Segment 4 (Graphics)	2.8
11.	Plotting 4 variables	0.44

Note: 3,4 or 5,6,7,8,9 are necessary for ON-LINE.

The time for steps 3 and 6 to 9 which are relatively constant is about 25 seconds which means the user can only minimise program execution times by a suitable choice of integration procedure.

By trial and error it was found that the critical step length for the integration of the filter process model using the simple Euler method is approximately .0012 hour i.e. about 12 times the critical step-length for Model I. Using the modified Euler method, a step-length of .0025 hour has been found to be acceptable as indicated earlier in Figure 6.20. It can be shown that because the first method requires more integration step lengths (although 3 times faster per step) for a nominal sampling interval, it uses much more computation time and hence becomes a second choice.

_ 246 _

The minimum sampling interval for EKF3 is therefore about (25 + 7 ℓ) seconds where ℓ is a positive integer and 7 is a rounded figure for step 5. Using a step-length of .0025 hour, the meaningful value for ℓ is 12 or greater since the integration time of about 12 x 7 = 84 seconds and the 25 second estimation/overlaying step can be accommodated within a sampling interval of 12 x .0025 x 3600 = 108 seconds. A step-length of .003 hour can be used, giving poorer predictions, but ℓ would be reduced to 7 and the sampling interval to about 76 seconds.

Unfortunately, the filter could not cope with such values of Δt , even when $\Delta t = 27$ seconds as shown by Figure 6.22. The estimates start to oscillate after about 15 sampling instants and filtering operation breaks down. The chief reason for instability is attributed to a poor value of ϕ as Δt enters directly into its first-order Taylor series truncation. Under the circumstances, EKF3 is therefore unlikely to be practically feasible.

6.6 Conclusions

Basically, this chapter has shown that a major simulation exercise is feasible on the H316 minicomputer although at considerable programming effort and long execution times. The simulation results have shown that while it is possible to design an operational filter for a given process, an on-line implementation is not practical unless further steps are taken to reduce the sampling interval, Δt , or alternatively a better approximation of Φ is found.

- 247 -

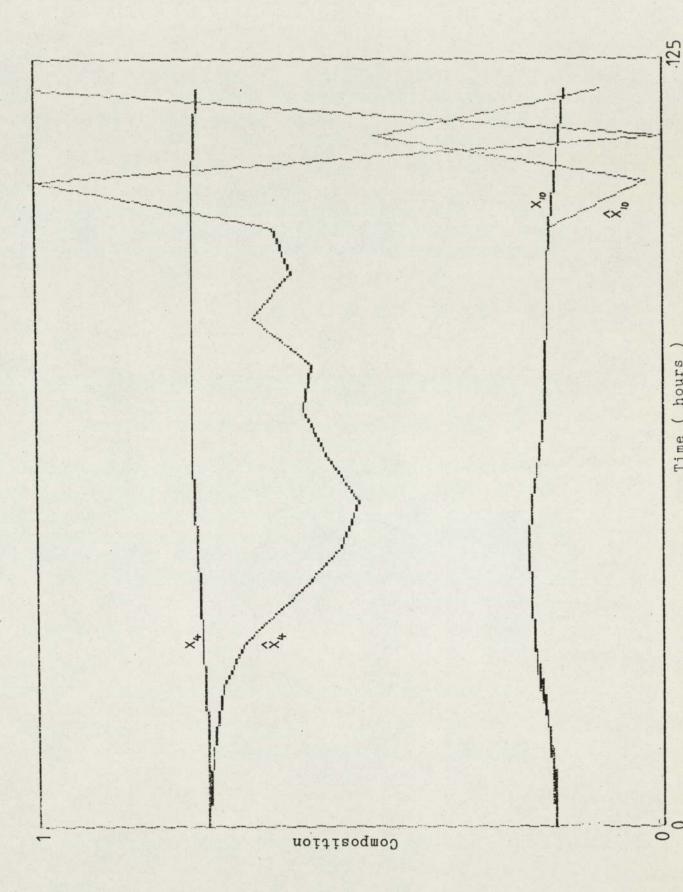


Figure 6.22 Estimation with EKF2: $\Delta t = .0075$, Modified Euler

- 248 -

The sector property

CHAPTER SEVEN

EXPERIMENTAL RESULTS AND DISCUSSIONS

.

1

7. EXPERIMENTAL RESULTS AND DISCUSSIONS

The three major aspects of this research emanating from the main and secondary objectives stated in Chapter 1, Section 1.4 will be discussed in the following sections. In view of what has been done these aspects can now be restated as follows:

- Construction of the linked H316-H6800 twin processor system.
- Using the software package for the linked-processor system.
- 3. Kalman filtering feasibility studies.

7.1 Construction of the Linked H316-H6800 Twin processor System

It must be noted that the development of the linked twin processor system has been done within the context of the hardware resources available. It turned out that the extra hardware interfaces required is minimal (a single PIA chip at the micro-end and an Alarm Inputs subinterface for the HADIOS) and with sufficient technical support the data and control links proved to be rather straightforward. However, it also turned out that this solitary dependence on a single PIA has both been a major factor in the logic design of the software protocol and defines the limit of the facilities the linked processor system can offer. The case of data transfers between the computers clearly illustrates these points.

7.1.1 Constraints due to a single PIA chip

During system development, it was desired that the H316 should be able to send data immediately to the M6800 even if the latter is on-line. The purpose may be to alert the microcomputer to undertake

some immediate and specific computing task. To achieve this, the PIA A Side would have to be configured in the interrupt mode so that the H316 may interrupt the M6800 via a CA1 active transition. The micro may or may not be required to acknowledge the data transfer accompanying this interrupt. If it does, then the CA2 is likely to be used. However, since the micro is in on-line mode, a split second situation can arise whereby the mini sends a CAl just before the micro sends out its first CA2 to interrupt the mini for a process scan (a frequency which is independent of and unknown to the mini). The mini is therefore interrupted on the wrong footing so to speak and the protocol may never recover. For this reason, the PIA A Side has been made CAl interruptible in the off-line mode only. The M6800 still retains the ability to interrupt and send data to the H316 via the PIA B Side output port. Thus, when the M6800 is on-line, the action of CALL (4, I, M, D(O)) in the H316 is only to place the data {M, D(O), D(1), ..., D(M-1)} in a temporary buffer for M6800 collection at its next process The effect of the data $D(0), D(1), \ldots,$ etc. on the computation in scan. the M6800 is therefore felt at the most, one M6800 sampling interval later.

Clearly, a second PIA chip removes some of these limitations. In fact, it can be dedicated to process alarm signals and I/O parallel data transfers between the M6800 and the H316 or any other piece of equipment capable of doing so. The M6800 microcomputer system must provide a Port address for it while at the H316 and, unused Alarm inputs interrupt lines and DGOB output pins are readily available. The software effort in either executive would include extra interrupt polling steps and their corresponding response codes and no major revamping of existing logical paths is necessary.

- 251 -

7.1.2 Alternative Designs in linking the two Processors

During system design, alternative approaches to provide a linked twin processor have been considered. Three technically feasible designs can be identified. For the sake of discussion, they will be called Method 1, 2 and 3. The first two are RS232-based and are therefore serial data methods and the third is a completely parallel data technique.

7.1.2.1 Serial Data Methods

The first alternative design is schematically shown in Figure 7.1.

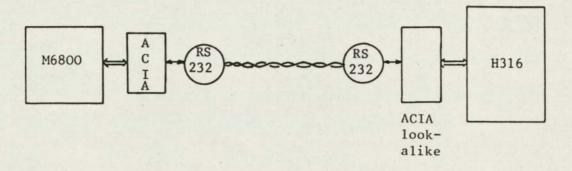
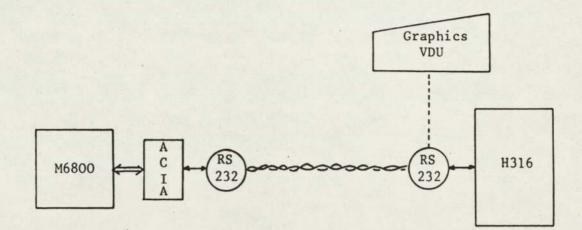



Figure 7.1 A Serial Data Link for the H316-M6800 system: Method 1

An ACIA chip is interfaced to the M6800 data and address busses and basically converts 8-bit data bytes into a serial format suitable for an RS232 output port. At the H316 end, another RS232 will receive the transmitted data and channel it to an ACIA look-alike which is interfaced to the minicomputer system bus. This ACIA look-alike needs to be developed in-house as the logic involved must be upgraded, acceptable and unambiguous for the H316 digital circuitry which is basically DTL-based (Diode-Transistor Logic).

Although the RS232 links provide a simple approach in the sense that it only involves three wires (Transmit, Receive and Common) and the standard hardware usually accepts only 'true' signals, the method is inherently slow. The advantage of being able to transmit and receive ASCII data (eight bits with perhaps one or two start/stop bits), thus permitting the transfer of floating point numbers and strings, programs, etc., is off-set by the need to develop sufficient software modules to check for incorrect data. This is because the serial link does not check the contents of the data to be transferred.

Avoiding the use of the ACIA look-alike at the H316 end leads to Method 2 schematically shown in Figure 7.2. Here, one avoids the extra logic design but is forced to use the only RS232 port available on the H316 which is currently used with the Newbury 8005 terminal. As far as the H316 is concerned the M6800 is now just another (complicated, intelligent) VDU.

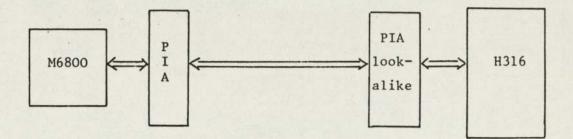


Figure 7.2 A Serial Data link for the H316-M6800 system: Method 2

- 253 -

7.1.2.2 Parallel Data Link

As an alternative to the parallel data link used in this research, Method 3, schematically shown in Figure 7.3, avoids the use of the HADIOS system altogether.

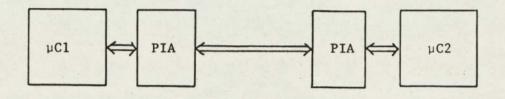


Figure 7.3 A Parallel Data Link for the H316-M6800 system: Method 3

This method requires the in-house development of a PIA lookalike at the H316 end. The advantage of fast data transfer rates and avoiding the HADIOS which was not originally designed for processor to processor communication of this sort, are again off-set by the need for a considerable and careful digital design to cope with the different (and older) DTL technology of the H316. In addition, control signals specific to the H316 data and address bus, and the necessary low-level software support would have to be provided.

Summary

The preceding discussions have shown that the method used in this research is a close second to the 'best' technique of Method 3. The extra logic design is minimum and data transfer rates are reasonable. Of course, as Figure 7.4 shows, such links for a microcomputer to microcomputer system is relatively straightforward. Basically, two

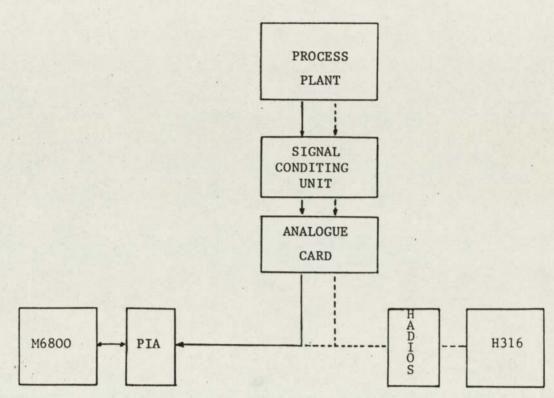

 $\mu C = Microcomputer$

Figure 7.4 A Microcomputer to Microcomputer Link

PIAs are required. Each microcomputer is merely another I/O device to the other.

7.1.3 The M6800 interfaced directly to a Process Plant

The present M6800 microcomputer system can be configured to be interfaced directly to a process plant via family compatible ADC/DAC chips. In fact, a limited study (90,91) has shown that it is practically feasible. In the context of this research, the M6800 system could have been interfaced directly to any of the process plant signal conditioning units via an analogue card. Figure 7.5 shows a diagrammatic view of two possible arrangements.

Figure 7.5 The M6800 system interfaced directly to a Process Plant

The dark line configuration is closer to industrial practice as it removes microprocessor dependence on a host minicomputer for its data acquisition and control operations. The function of the analogue card is to prepare the plant analogue inputs for microprocessor (and ADC) compatibility and channels microprocessor digital or analogue control outputs to the plant. The ADC typically can be an 8-bit ADCS-80 or its 12-bit version obtainable at a very reasonable price.

The dotted line configuration adds more flexibility and distribute control power on top of the existing twin processor facility. A separate PIA would have to be provided but much more powerful control schemes can be designed if future development of this research is to blossom in this direction.

7.1.4 Noise and Spurious Interrupts

Besides having to cope with new methods of working (requiring

familiarity with microprocessor technology), the system designer is also faced with signal interferences which may consume many man-hours of program development effort. A particular problem that plagued the linked processor system developed from time to time is that created by spurious interrupts generated by CA1 or CB1 control inputs to the PIA.

Low-active CB1 transitions are less problematic since the PIA B Side is an output port and data is normally sent out of the M6800. The PIA A Side is quite a different story. As Figure 3.12 in Chapter 3 shows, bits 1 and 2 (CB1 and CA1 lines respectively) and bits 9 to 16 of the DGOB are used for data transfer operations. It was observed (with the aid of a CRT oscilloscope and a digital logic analyser) that occasionally the CA1 input line is energised, generating spurious spikes, when certain data patterns appear on the data lines (bits 9 to 16). The downward edge of this spurious pulse upsets the program logic in the M6800 Executive by setting the IRQA1 flag prematurely if the PIA A Side is in the normal handshake mode and creates a spurious \overline{TRQ} interrupt request otherwise (M6800 in off-line mode).

The exact cause of the problem was never identified but a temporary solution by providing a separate screened cable for the CA1 control input line seems to eliminate the problem. Possible causes may include signal mismatch due to improper impedance at either end, unfiltered voltage spikes from the DGOB or even faulty chips. Such 'random assaults' on the system integrity can be monitored by running special test or debugging programs from time to time especially before a major on-line exercise.

Other disturbances are more predictable. They are mainly noise generated from switching mains power supplies for the HADIOS and its digital output drivers (switches marked 1 and 2 in Plate 3.1 of Chapter 3). These phenomena may be pathological to the power supply

- 257 -

and noise rejection designs of the existing hardware but it is not a serious problem. As suggested in the operating manual ⁽⁹⁴⁾, it is best to switch on all relevant power supplies first before loading the system and application software.

7.2 Using the Software Package for the Linked processor Facility

In using the linked H316-M6800 twin processor system, the user must realise that the M6800 is a linked computer, completely dependent on H316 machine cycles for its process data acquisition and control. This may be seen as an inherent disadvantage as in practical industrial situations, one would wish the microcomputer to be as autonomous as possible - both in the hardware and software sense of the word. The linked-processor facility developed in this work is therefore unique in the sense that it is a pragmatic solution in optimising the human and material resources available.

7.2.1 Development of and Running User Application Programs

The detailed steps involved in program development have been described by way of examples in the user's manual of Reference 94. Only the important operational points will be mentioned here.

Basically, the user enters the HADIOS Executive Rev 03 package at location '27000. The Executive initialises the HADIOS for M6800 CA2/CB2 interrupts and starts the H316 Real-Time Clock (location '61) in the non-interrupt mode before jumping to location '1000 for normal BASIC interpreter initialisation. Location '61 which is incremented once every 20 ms is used as a general-purpose real-time base. If the user strictly does not want to allow M6800 interrupts, then he should enter the package at location '1000 which is the normal entry point of the Interpreter. In the H316, the user may write programs in BASIC with FORTRAN and DAP-16 MOD2 Assembly Language subroutines. The disk overlay facility can be used if core storage is insufficient. If he does not wish to use the on-line graphics package, then before entering the package, the High Octal Address (HOA) for the BASIC interpreter (location '7367) should be patched with '26777, thus providing him with an extra seven sectors of core space (the graphics and the Executive are self-contained segments).

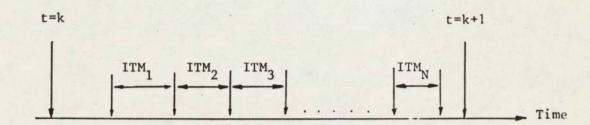
Note that CALL (3,N,U) and CALL (4,I,M,D(0)) are independent of CALL (1,A(0),B(0)) and CALL (2) which are mutually related. This allows the user to conduct control valves calibrations in situ or transfer data to the M6800 in off-line distributed processing.

In on-line work, sampling intervals can be kept small by reducing inter-scan BASIC processing to a minimum. However, developing FORTRAN subroutines may take hours as there is no operating system as such for the H316. Program debugging is normally done by switching the H316 into single-instruction (SI) or Memory Access Mode (MA) and examining bit patterns in individual memory locations. The HALT instruction in location '31046 of the Executive, though undesirable in real-time software, is deliberately included for detecting a fatal H316 execution also halts if its instruction decoder fails to error. interpret a given bit pattern as a recognisable operation code. The most common execution errors arising out of using FORTRAN and DAP-16 MOD-2 subroutines include those caused by improper allocation of base when loading in the desectorised mode, and improper use of the index register and indirect addressing mode.

H316

M6800

Although a combination of SD BASIC, the M6800 Executive, additional and disk-based file I/O facilities provides a wide range of on-line applications, the major constraint is still speed, and a lack of general purpose mathematical routines. The SD BASIC could not be modified in (Honeywell) BASIC sense, and its mathematical package is non-reentrant (as is BASIC MTH-PAK) and inaccessible from user assembly language subroutines. If FORTRAN is supported then it may be possible to emulate the Tektronix Graphics routines for use with the Newbury terminal. With a modified RS232, the baud rate can be increased from the present 300 to a maximum of 9600.


In the M6800, CALL SUB3(N,U) and CALL SUB4(M,D(O)) are normally used between CALL SUB1(A(O),B(O)) and CALL SUB2. If the user wants to use only CALL SUB3(N,U) and/or CALL SUB4(M,D(O)) then the steering flag M680 in location '27001 of the HADIOS Executive should be manually set to non-zero before initialising the package.

Also, in a normal M6800 operation (off- or on-line mode) the reset ($\overline{\text{RES}}$) button may be used to stop program execution provided the first CB2 interrupt (via the first CALL SUB1(A(0),B(0)) has not been sent out else the NMI button should always be used. This is because a hardware reset also clears all PIA registers and the M6800 Executive would not be able to re-initialise the microprocessor response code in the HADIOS Executive.

7.2.2 Use of Counters - Some Operational Constraints

As indicated in Chapter 4, Section 4.4.3, a counter may be used by a H316 on a M6800 user. The modified counter handling code does give better estimates of flowrates provided certain precautions are taken. A counter, driven by a turbine flowmeter or otherwise, has two operating modes. In the non-interrupt mode, the user must ensure that his maximum flowmeter output pulse rate does not exceed 255 within a sampling interval (the user can minimise this by presetting the counter to zero at each sampling instant). Failing to do this would lead to incorrect readings of counter contents during scanning time since the 8-bit counter register overflows to zero.

The situation is slightly more involved when the counter is used in the interrupt mode. Consider the schematic timing diagram of Figure 7.6 showing instances of a counter and computer scanning interrupts. Clearing the last counter interrupt time, ITM_N, is the best estimate, from

Figure 7.6 A Timing Diagram for Counter and Computer Scanning Interrupts

the set of $\{ITM_{j}, j=1, N\}$, of instantaneous flowrate at time k+l if ITM_{N} does not include significant time delay which may arise if the counter tries to interrupt during system interrupt inhibited. In fact, significant error is embedded in ITM_{N} if it includes the 20 ms delay when a computer is sampling analogue inputs. This is a plausible situation as for example in the double-effect evaporator exercise (see Section 7.2.3.2) where the maximum flowrate used corresponds to about 200 Hz (4 counter increments per 20 ms) the error for an interrupt time of one second (corresponding to a counter preset value of (127-50) = 77) is about 8%. Since the preset value is fixed for a given run, the percentage decreases with decreasing flowrate but the preset value must not be so low that the number of counter interrupts becomes less than two. The counter flowrate formula 1 in Section 4.4.3 becomes meaningless in this situation. The user can minimise these difficulties through suitable choices of counter preset values for a known flow operating range.

In addition, the values of counter interrupt times B(48), B(51) and B(54) are meaningless (they are zeroed in the case of the micro) at the first process scan (time zero) and should be ignored.

The preceding discussions suggest that using the counters in the non-interrupt mode with a preset value of zero is more preferable. As a general rule in real-time software design, the system should not be burdened by handling extra interrupts unless it is absolutely necessary. A multiple interrupt situation is always a potential source of erros, fatal or otherwise.

The counter experiments also indicates the disadvantage of going digital in this specific case. A better counter set up would contain in-built logic (e.g. an embedded micro) to calculate the counter inputs and then merely presents them for collection during a process scan. In this way, the computer saves valuable processor time and system reliability improved.

7.2.3 On-line Demonstration Experiments

The litmus test for a real-time data acquisition and control software is actually to use it on-line to a process plant. The linked

- 262 -

processor facility has been used on the IBM distillation column and the double-effect evaporator. The experience is summarised below.

7.2.3.1 <u>Microprocessor Control of Reboiler and Reflux Drum Hold-ups</u> in the IBM Distillation Column

The experiment described here was chosen because it demonstrates a suitable role of the M6800 microcomputer in using the linked processor system for a possible open-loop, on-line estimation exercise.

Basically, the H316 is placed in the OFF-LINE mode, i.e. A(12) = 1, while two P or P+I controllers are set up in the M6800 which also scans the plant (Analogue Inputs channels 36 through 47) every one or two seconds. Because A(12) = 1 in the H316 BASIC program, process information is available at each M6800 scan. The H316 can then use this information for further data processing or plotting.

The SD BASIC and BASIC programs required for the exercise are listed in Tables A7.1 and A7.2 of Appendix 7. Note that the SD BASIC program sends the two M6800 controller outputs [D(0),D(1) in SD BASIC, into B(57) and B(58) respectively in the H316] during every sampling interval. Also, at a specified time, the H316 program places a non-zero value into B(57) in SD BASIC to instruct the M6800 to affect a step change in the feed value to the column.

The column operation is first started using the procedure described in Chapter 5, Section 5.2.1.8. After initialising the software package, the simple BASIC program below

> 10 INPUT N,V 20 U = 32767*V/10 30 CALL (3,N,U) 40 GOTO 10

can be used to bring the column approximately to steady state. The various valve readings (N=1 to 5) are noted and can be used as initial valve settings in the SD BASIC program thus allowing a bumpless transfer.

The arrangement allows the evaluation of M6800 controller performance by plotting control and manipulative variables on the H316 VDU. To do this, the value of A(1) in the H316 program must be set to 1 so that the plotting interval is also the M6800 scanning interval.

Figure 7.7 shows such a plot where the M6800 controller outputs are indicated by the two histograms. The controllers, though needful of proper tuning, seem able to keep the two levels reasonably constant. The reboiler level in particular is considerably noisy due to the boiling liquid. The noise in the reflux drum level is mainly due to condensed vapour droplets which fall directly on to the liquid surface. The spurious dots and occasionally missing segment are due to, presently, unsolved difficulties when using the Newbury 8005 VDU in an interrupt environment. Apparently, the VDU 'loses' a character, or plots a different or several different ones instead, if the H316 is interrupted (by the M6800 or a counter) at the moment when it is about to output a character to the VDU. The plotting action is initiated by the first CA2 interrupt in a process scan. Since during each sampling interval the M6800 interrupts the H316 a total of 42 times (28 for analogue inputs, 8 for control outputs and 6 for M6800 to H316 data transfer), it is not possible to pin-point which interrupts are responsible.

This phenomena also causes editing problems in BASIC when the micro is connected on-line to the plant. A machine code patch for the BASIC IOS-D module has been made in an attempt to recover a possibly 'lost' character during an input mode but outstanding problems remain.

- 264 -

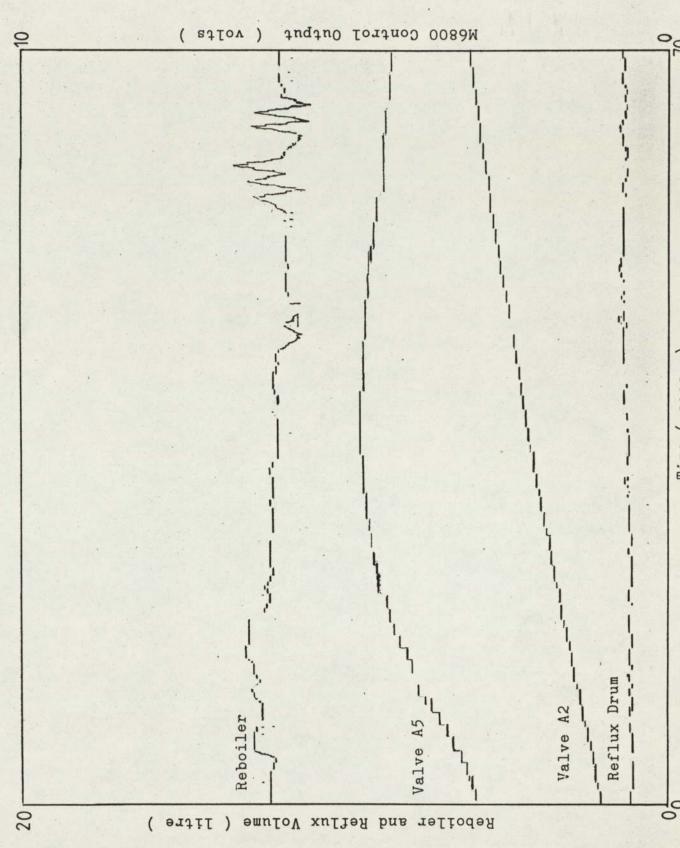
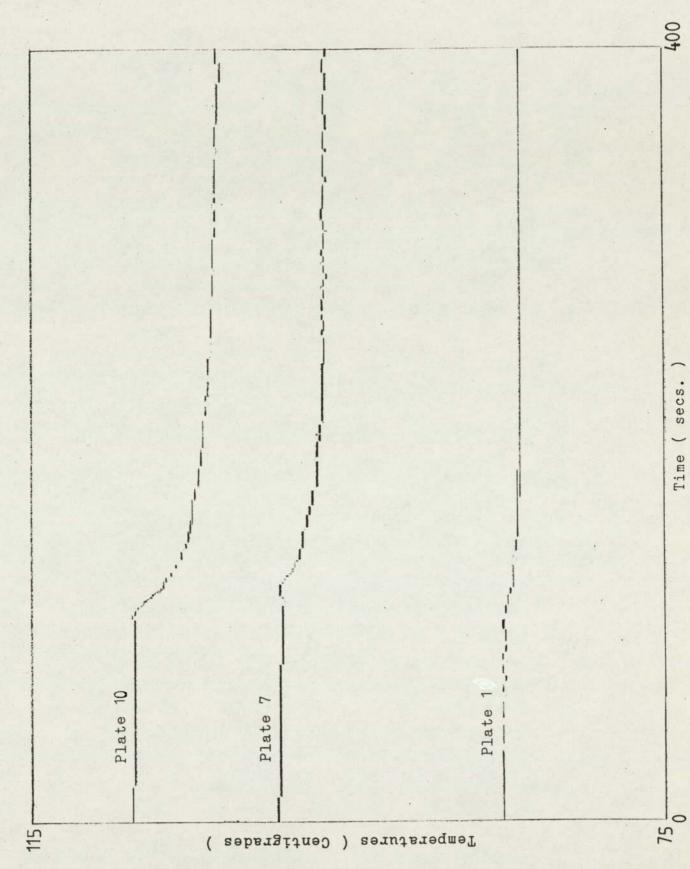


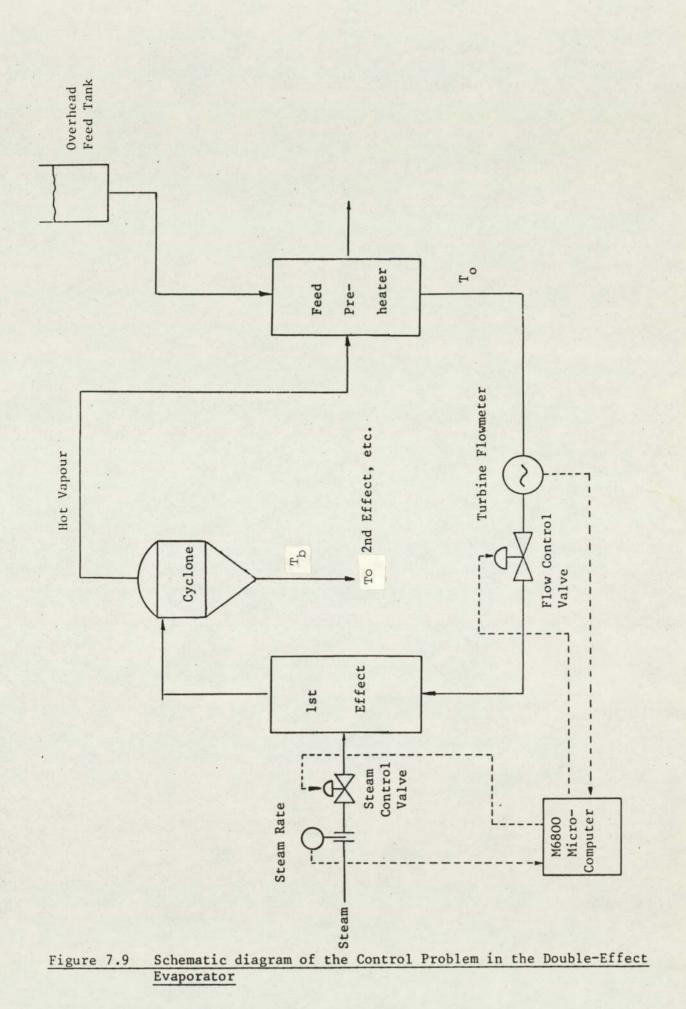
Figure 7.7 M6800 Control of Reboiler and Reflux Drum Levels

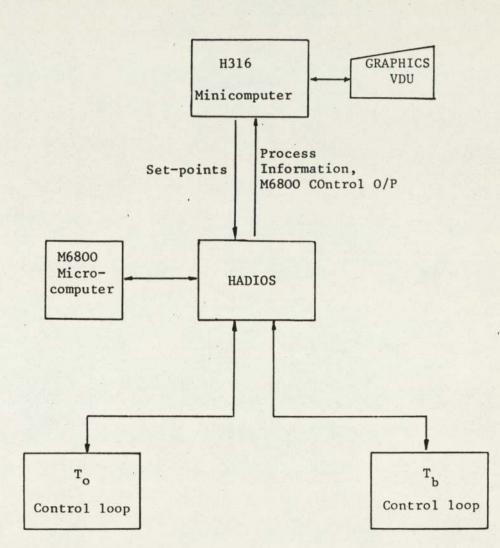
- 265 -

The patch, located in sector zero, is described in Table A7.3 of Appendix 7.

When the column is kept under steady-state conditions by microprocessor control action and the column subjected to an approximate step disturbance in feed rate, the response of the three tray temperatures are shown in Figure 7.8.




Figure 7.8 Response of tray temperatures due to a step change in feed rate


7.2.3.2 <u>Microprocessor Control of Temperatures in a Double-Effect</u> Evaporator

A parallel research effort in the Department is undertaken by Nawari⁽¹²⁸⁾ and is concerned with the modelling and control of a double-effect evaporator. The process model developed is to be ultimately incorporated in the design of a Wiener-Hopf controller^(129,130) applied to a multivariable case. It was decided to demonstrate the feasibility of using the microprocessor in such a control scheme.

The control problem is schematically shown in Figure 7.9. It is proposed that the microprocessor regulates the cyclone outlet liquid temperature T_b and the feed preheater outlet temperature T_o using P+I action. In an actual Wiener-Hopf implementation, the set-points for the M6800 controllers would be generated by a Wiener-Hopt controller model residing in the H316. The H316 in this sense acts as a supervisory computer in a basically servo-control type of set-up. Since the Wiener-Hopf controller is yet to be fully developed and the prime consideration is to test the practicality of the control system architecture, a P+I model is used to generate the new set-points instead. Figure 7.10 illustrates the control philosophy in block diagram form.

The temperature T_0 is regulated by controlling (to a set-point) the preheater outlet flowrate. The microprocessor measures the flow via a counter, driven by a turbine flowmeter, and adjusts the downstream valve (high pressure to close) accordingly. The temperature T_b is regulated by controlling (to a set-point) the input stream flowrate to the lst effect. The microprocessor measures the steam rate via an analogue input channel connected to an orifice plate-based pressure transducer and adjusts the downstream valve (high pressure to open)

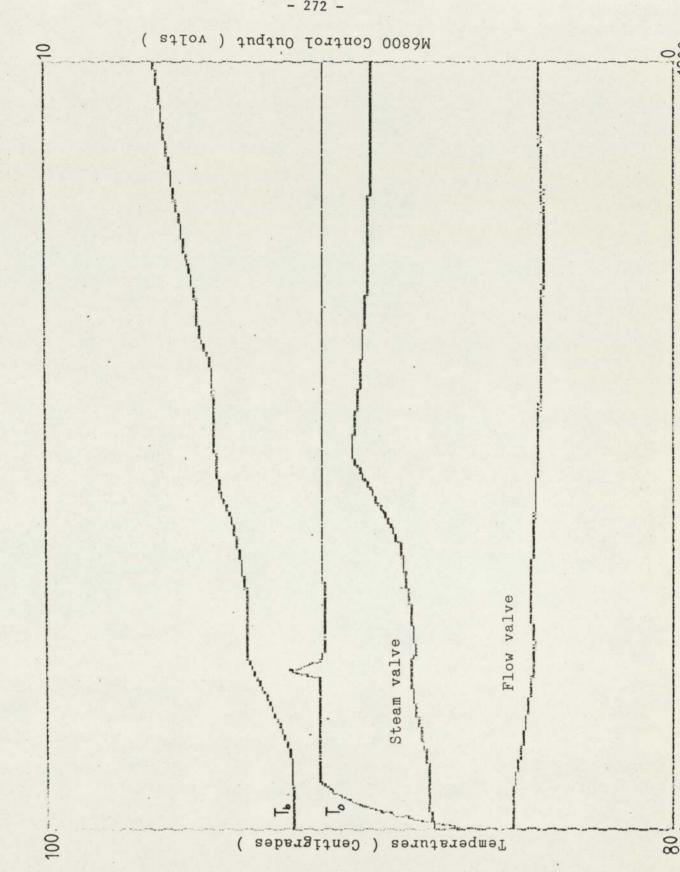


Figure 7.10 Block Diagram of a Double-Effect Evaporator Control System Design

accordingly. Because the hot vapour outlet from the 1st effect is used to heat the feed, the outlet temperature of which is being regulated by adjusting liquid flow which then feeds back into the 1st effect, the two control loops are inherently interactive. The SD BASIC and BASIC programs for a control experiment is listed in Tables A7.3 and A7.4 of Appendix 7. Figure 7.11 shows the microprocessor controller performance. As in the distillation case, the H316 is in OFF-LINE mode. The sampling interval is 2 seconds to allow the plotting of microprocessor control outputs (histograms) at every process scan. When microprocessor control outputs are not plotted, the sampling interval can be reduced to one second and the H316 may send new set-points to the M6800 once in an integral multiple of the latter's sampling interval. Figure 7.11 shows that even with set-points generated by a relatively straightforward P+I model, T_o is reasonably well regulated. The 'pulse' at about 250 seconds is due to a deliberate flow disturbance introduced by affecting manually a secondary valve in the preheater outlet line. The regulation of T_b is less satisfactory and needs further controller adjustments.

Note on On-line Experiments

Admittedly, the number of on-line experiments is limited. This is because most of the time in this work has been directed at system and software development. However, the experiences with the distillation column and the double-effect evaporator demonstrated the practicality of the linked H316-M6800 twin processor facility for real-time applications.

M6800 Control of Temperatures in the Double-Effect Figure 7.11 Evaporator

7.3 The Total Simulation Package

In this section the results from the total simulation package described in Chapter 6 are reviewed.

7.3.1 Overview of the Simulation experiments

The simulation experiments, besides being a design aid, have created a better understanding of the problems associated with the application of an Extended Kalman filter. The Departmental H316 minicomputer was chosen for such purposes because the simulation exercise was conducted with an on-line application in mind. Thus, the memory utilisation and software design of the package are reflective of this point.

Although the techniques of interfacing BASIC, FORTRAN and DAP-16 MOD2 programs are well established in the H316, thereby permitting the design of interactive simulation packages, there is virtually no operating system. The disk operating system, built around the A\$D14 routine is primitive and handles only batch transfers. In the existing arrangement, it is not possible to edit programs using the Text Editor and store them directly on to floppy disks. A relatively minor modification to a FORTRAN subroutine would require the complete segment which it is in to be reconstructed. A change in the size of any CONMON block in any of the FORTRAN subprograms requires the entire simulation package to be reconstructed. This is to preserve the correct address alignments since the same variables may be referred to in different program segments. Changing the dimension of the filtering problem therefore requires a major effort. It is an unattractive feature of H316 operation which the user has to cope with.

The other aspect of the H316 that limits the running of simulation experiments is its slow speed by today's minicomputer standards.

A typical simulation run for EKF2 for instance, requires about 9 hours for a real problem time of 0.7 hour. The execution times for EKF1 are longer still. As a result, the simulation package was normally left to run overnight.

7.3.2 Dynamic Process Models

The results from the dynamic response studies have revealed certain weaknesses of the filter process model. This is particularly relevant in the enriching section which is basically two thirds of the column. Earlier, Figure 6.8 has shown the inability of the filter process model to predict the significant variations in vapour rates in this region. This weakness is partly associated with the assumptions of equimolal overflow and a simple heat transfer reboiler model incorporated in its formulation. The effect of a load disturbance on vapour throughput is only propagated through the relation $V = Q/\lambda$ (equation 5.62) and since changes in reboiler compositions are relatively small (see equation 5.61) due to the large hold-up, the changes in λ (hence, V) are therefore minimal.

There is less difficulty with composition changes due to disturbances in feed rate and/or feed composition. The model of the feed tray (equation 5.58 in particular) ensures that the feed tray composition x_7 is affected and hence the disturbance propagated throughout the column. In general, Model II is perturbed to a lesser extent as is evident from the response of tray compositions starting from their respective steady states, but which modelling aspect this is due to is difficult to pin-point.

In the bubble point calculations, the values of activity coefficients for the conditions tested were found to be in the range 0.94 to 1.0. To save some space and execution times, the activity coefficients could be simply assigned to unity for the filter process model without seriously affecting the prediction of equilibrium vapour compositions. In the bubble point iteration routine, if the limiting accuracy (EPSIL in subroutine SDBUB) is significantly less than .001 (on 0.1% of 1°C) say, EPSIL = .01, then the composition predictions becomes unsatisfactory. In fact, by doing so, the saving in computation times is not significant (about 1 second over a typical sampling interval).

7.3.3 Estimation

The simulation study has shown that the application of an Extended Kalman filtering problem on a minicomputer involves the careful consideration of memory space available, the software resources and process modelling. If the filter is to be implemented on-line than an appraisal of program execution times is necessary.

Since a Kalman filter essentially manipulates information from a process model and plant measurements, the quantiative nature of these dual contributions being reflected in the filtering equations 5.20 through 5.24, a sufficiently accurate filter process model is therefore desirable. In fact, a better model results in a better ϕ and hence, better filter operation. However, at the moment there is no theoretical method of saying how good a particular model should be.

A similar situation arises in selecting the number of process measurements. With more measurements, one may be able to compensate for the effect of some modelling deficiencies but it also increases the demensionality of the filtering problem. In the on-line implementation, extra sensors would have to be installed. A more crucial problem associated with measurements is the question of system observability. In this work, the discrete observability matrix L_{od} helps in the selection of measurements so that one is assured the system is not unobservable at all times. On the other hand, unless it is computationally determined, one also cannot guarantee observability at each sampling instant. Thus, it pays to have as accurate a filter process model as possible since in regimes of unobservability, the filter tends to weight model predictions more heavily and 'ignores' the measurements.

In general, the states associated with the measurement variables have been better estimated. The estimates usually converge to steady values and the corresponding elements in the error covariance matrix are small in magnitude. It is when the filter starts to be unstable that elements of the error covariance matrix become unduly large and physically meaningless (for example, the composition error covariances becoming greater than unity).

7.3.4 On-line estimation and the linked twin processor system

The simulation results with EKF2 have shown that the on-line filter EKF3, is only practical if the sampling intervals do not exceed * 18 seconds. The study suggests that filtering operation breaks down due to the poor approximations of the true state transition matrix. Little can be done about program execution times except through the use of hardware techniques and more efficient matrix manipulations. The other approach is to find a better Φ which is not too sensitive to the Δt .

EKF3 has also been developed in line with the requirements of the linked H316-M6800 twin processor system. In an on-line situation, the microcomputer can be given the task of regulating the reflux drum and reboiler levels, and other fast flow loops which require relatively high sampling frequencies. It is therefore suggested that the H316 operates in the OFF-LINE mode. Although process information is available at every M6800 process scan, the estimator uses the measurements at a suitable multiple of microcomputer sampling interval.

The estimates can be calculated as soon as process measurements became available. This is because the filter gain and the predicted error covariance matrices can be precomputed. Such a situation is particularly important in a stochastic control application since corrective actions should be output to the plant as soon as the latest estimates become available. The linked processor facility can cope with all these requirements quite readily.

* As shown in Section 6.5.2, the computational overhead for estimation requires a sampling interval of at least 76 seconds.

26213-121

CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

This research has shown that microprocessor technology can be readily applied to problems of industrial process control by proper consideration of both the hardware and software resources available at the time of system design. If the application is a first one for a particular person, then it also involves a learning process which can consume considerable time and development effort.

8.1 The Linked H316-M6800 Twin Processor System

The linked H316-M6800 twin processor system developed in this work is an example where the use of a microcomputer has considerably extended an existing real-time data acquisition and process control facility thereby creating a more powerful and flexible computing base for research and experimentation. In particular, the system is sufficiently general-purpose to support two users with independent sampling frequencies and control configurations. Alternatively, a single user may use the linked facility for a wide range of data processing activities including OFF- and ON-LINE implementations. With proper consideration of timing and resource limitations, the user may also program the facility to provide for distributed processing and control of chemical plants. The experience with the double-effect evaporator, though limited, has indicated that advanced control strategies can also be readily implemented.

Like many other independent initiatives in microprocessor applications, hardware and software aspects are integrated and considered important factors in system design. In this research, the design of the interfacing requirements and the communication protocol have been found to be relatively straightforward and additional hardware has been kept to a minimum. Attention is focussed on the use of a single PIA at the microcomputer end. In fact, the design has demonstrated the power and programmability of a single peripheral interface chip which is typical of microprocessor-based devices. Clearly, more powerful designs can be constructed if more peripheral interfaces are used.

The principal software objective in the linked processor system is to allow interactive access to a chemical plant. In either processor, BASIC provides the means for this. The general user therefore need not be too concerned with two-level programming in a particular application. However, more specialised applications normally require additional FORTRAN and assembly languages routines. As the simulation of a Kalman Filtering application shows, this involves the careful consideration of memory utilisation, the software resources available and program execution times.

The development of the linked facility also highlighted some problems which are commonly encountered in the application of microcomputers. Spurious signals and power supply transients were the main problems since interfacing problems were minimum as both the HADIOS and M6800 interfaces are TTL compatible. Nevertheless, the service of a microelectronics staff has been found to be indispensible.

8.2 Simulation of a Kalman Filtering Application

In an attempt to apply an Extended Kalman Filter to a binary distillation process, this work has also demonstrated the value of interactive digital simulation, both as a design aid and as a means of understanding the mechanics of the filtering problem. In particular, the use of the floppy disk overlay facility has permitted the combined parameter and state estimation study for up to a 15th order system. For a sampling interval of 18 seconds and below, the filter's performance has been found to be satisfactory.

More critical than space limitations turned out to be the speed of the H316 minicomputer. An on-line attempt of an llth order state estimator was not possible because the sampling interval required for a stable operation was too small.

8.3 Recommendations for Further Work

8.3.1 The linked processor facility

The linked processor facility developed in this work has created more avenues for research into process control problems, in particular the implementation of microprocessor-based controllers. Because of available human and material resources at the time of system design, the communication protocol depends heavily on the use of a single PIA for data I/O to and from the M6800. It is suggested that an extra PIA be added to the system to relieve this burden. The additional PIA could be used for data transfers between the two computers or even interfaced directly to an item of process plant.

Admittedly, the number of on-line experiments using the linked facility is limited. A more exhaustice series of experiments should be carried out to check the robustness of the software developed because a piece of real-time software is almost impossible to be 'bug' free. Using it on-line can help define the operating conditions and precautions, the adherence to which would normally result in satisfactory use of the linked processor system.

The recommendations to improve the operation of the IBM Distillation Column and its associated instrumentation have already been suggested by Daie in his work. The recurring problem is still the lack of properly designed flow transducers and to a lesser extent, stiction in the motorised values. It was also observed that the rate of condensation of top vapour product is relatively low. This is due to the limited reboiler heater capacity and the phenomenon of parasitic reflux in the connecting pipe above the enriching section. Because of this, the distillate and reflux values could not be set to large opening values as this would simply empty the reflux drum in a matter of several minutes. Any major control work on the column should therefore consider these operating limitations very carefully.

8.3.2 Kalman Filtering Application

Since it was shown that the on-line state estimator EKF3 works reasonably well in simulation, methods of finding a better state transition matrix ϕ and keeping the sampling interval small should be sought so that an on-line implementation becomes practical. A more accurate ϕ may be obtained by formulating a better filter process model or considering higher-order terms in its Taylor series expansion. Alternatively, an adaptive design such as the one experimented by Webb⁽¹¹¹⁾ could be considered. The last two approaches may incur considerable overheads in execution times. This means programs should execute faster. It is recommended that a hardware-based multiplication/ divide option or a floating point processor be used with the H316. This should solve many of the difficulties described in the filtering exercise.

The possibility of the M6800 doing some of the interscan calculations should also be considered. One may start with the preparation of a library of general purpose mathematical routines, written in M6800 Assembly Language. Matrix and vector manipulations can then be achieved using the library package. Alternatively, some of the microcomputing load can be done in SD BASIC. If future work is to develop in this direction then it is best to experiment with small order systems first. In the final analysis, the question of timing and accuracy, and general aspects of concurrent programming can be important considerations.

8.3.3 Possible re-design of the estimation procedure

The possibility of redesigning the estimation procedure based on a constant gain extended Kalman Filter should also be investigated. Such a filter would reduce the computational overhead since the calculations of the error covariance and filter gain matrices are no longer necessary. The optimum gain would still have to be determined by trial and error although the steady-state values obtained in this work may be used as starting values. The method would also reduce the size of the sampling interval thus increasing the possibility of an on-line application. APPENDIX

÷

HLOW	100.50
*51AK1	13000
*4154	13600
+VAMES	34007
*COMV	37777
*HASE	13571
*PASE	12774
*PASE	11776
*FASF	10774
ITMC	10215**
1\$CH	10227**
INHAL 1	13444

- 284 -

MH

An SLST of the loader is punched out to paper tape Subroutines I\$MC and I\$CB were not loaded since in using the loader, the use of magnetic or card input medium is not expected.

Table A3.1 DAP-16 MOD2 INSTRUCTIONS

Mnemonic	Meaning Mr	nemonic	Meaning
ADD	Binary add to A register	LDA	Load A
ALR	Logical left rotate of A	LDX	Load Index Register
ALS	Arithmetic left shift of A	LLL	Long left shift of A and B registers
ANA	Logical AND to A	LRL	Long nightshift of A and B
ARR	Logical right rotate A	MPY	High speed multiply
AOA	Add one to A	NOP	No operation
ARS	Arithmetic right shift of A	OCP	Output control pulse
CAS	Compare and skip	OCT	Octal constant
CRA	Clear A	ОТК	Output keys
DIV	High speed divide	SKP	Unconditional skip
ENB	Enable CPU interrupts	SKS	Skip if sense line set
ERA	Exclusive OR to A		
HLT	Halt	SMI	Skip if A minus
IAB	Interchange A and B	SMK	Set mask
ΙΜΛ	Interchange A and memory	SNZ	Skip if $A \neq 0$
	location	SPL	Skip if A > O
INA	Input to A from peripheral	SSM	Set sign minus
INH	Inhibit CPU interrupts	STA	Store A
INK	Input keys	STX	Store index register
IRS	Increment, replace and skip	SUB	Subtract
JMP	Unconditional Jump	' SZE	Skip if $A = 0$
JST	Jump and store current location	n TCA	Two's complement A

PROGRAMMING INSTRUCTIONS FOR HADIOS

HADIOS CONTROLLER

SKS 'XXYY		<pre>skip if controller not interrupting YY is device address of controller (70) XX is controller highway address line (17)</pre>
DIGITAL INF	UT	
INA 'IIYY	Ē,	input to A register II is the digital input highway address line DGIA - II = 11 DGIB - II = 10
DIGITAL OUT	TPUT	
οτα 'οογγ	-	Output from A register OO is the digital output highway address line DGOA - OO = 13 DGOB - OO = 12
COUNTER INF	UTS	
INA 'CCYY		Input to A register from counter 8 bit register. Counter register is automatically cleared after an INA CC is the counter input highway address line Counter 1 CC = 04 Counter 2 CC = 06 Counter 3 CC = 02
OTA 'DDYY		Output from A register to present the counter 8 bit register DD is the second counter input highway address line Counter 1 DD = 05 Counter 2 DD = 07 Counter 3 DD = 03
SKS 'CCYY	-	Skip if counter not interrupting
OCP 'CCYY	-	Enable half-full counter interrupts
OCP 'DDYY	-	Reset counter interrupt mode
ANALOGUE IN	NPUTS	
оср 'аауу	1111	Starts ADC conversion cycle AA is the first analogue input highway address line Corresponds to DATA in the HADIOS Executive AA = 00

- 286 -

.

INA 'AAYY - Input data to the A register is conversion has completed; data enters the 10 MSB's of A.
 The previous contents of A must be cleared first.

OTA 'BBYY - Output set up word to ADC.
BB is the second analogue input highway address line (01).

The set up word format is as follows:

O OOO O1O OOO MMM NNN where MM = OO, O1, O2 (multiplexer number) N NNN = OO to '15 (channel number) bit 6 is set to logic '1' to force the ADC to be in the sequential address mode.

CONTROLLER INTERRUPT BIT

In an interrupt mode, the HADIOS controller interrupt bit must be set with a SMK '20 instruction issued with bit 13 set in the A register. <u>ALARM INPUTS</u>

INA 'LLYY	Ξ	Input status of alarm input channels into A register. LL is the device input highway address line (14).
OPA 'LLYY	-	Sets the alarm inputs option into 'input' mode.
SKS 'LLYY	-	Skip if alarm inputs not interrupting.

Mnemonic	Meaning
ABS	Instruction following to have absolute addresses
BCI	Binary coded information
BSZ	Block set set to zero
DAC	Define address constant
ORG	The location of the next instruction or data
REL	Instruction following to have relocatable addresses (relative)
SETB	Set base .
VFD	Variable Field Descriptor
**	Zero address code
*	Indirect operation (when in operation code)
*	Address of this location (when in address field)
'222	Octal constant
= 9	Literal constant

Table A3.3 M6800 Instruction Set⁽¹³¹⁾

ACCUMULATOR AND MEMORY INSTRUCTIONS

ACCUMULATOR AND MEMORY		IMMED			DIRECT		CT		INDEX EXTR			EXT	D		INHE	R	BOOLEAN/ARITHMETIC OPERATION			3	12	1	
PERATIONS	MNEMONIC	OP		#	OP	-	.11	OP			OP			OP		17	refer to contents)	H	1	-	12	v	10
Add	ADDA	218	1	7	98	3	7.	AB	5	,	RB	4	3		**		A + M + A	1.		1	t	11	t
*114	ADDB	CR	1	2	DB	3	2	EB	5	,	FR	4	3				8 · M · B	:		1	1	:	1
Add Armites	ABA		1				-							18	1	E	A + B + A	1		:		1	
Add with Carry	ADCA	89	2	7	99	3	1	A9	5	2	89	4	3				A + M + C + A	:		1:		:	
	AUCB	C9	7	2	09	3	2	1.9	5	2	19	4	3				8 · M · C · 8	1		1	1	1	1
ind	ANDA	84	2	2	94	3	2	A4	5	2	B4	4	3				A • M • A			1.7		0.00	
	ANDB	C4	2	2	04	3	2	E4	5	2	F4	4	3				8 • M · B		1.	1		S 123	1
a Test	BITA	85	2	2	95	3	2	A5	5	2	85	4	3				A • M	:	:	1.1			
	BITB	C5	2	2	05	3	2	ES	5	2	F5 7F	4	3				B • M 00 • M			1.2			
leat	CLR					8 -		6F	1	1	"	6	3	4F	1	1	00 • A			100		10	1
	CLRA										- 1			SF	1	1	00 .8					1000	
omuare	CMPA	81	2	2	91	3	2	AI	5	2	81	4	3				A M			:			
	CMPB	C1	2	2	DI	3	2	EI	5	2	FI	4	3			1	B M			: :		: :	
ompare Acmitrs	CBA													11	7	1	A - B			1.7	1		
complement, 1's	COM							63	1	2	13	6	3				M - M	•		1		0.000	
	COMA				1									43	2	1	A · A			1.		1000	100
	COMB													53	2	1	8 • 8	:	:	1.5		100	100
(negate)	NEG							60	1	2	10	6	3	40	1,	1	00 - M • M 00 A • A	1.					SIC
(respect)	NEGA													50	1		00 8 •8			1.00			Die
	NEGB				1							10.1					Converts Binary Add of BCD Characters				1	1	1
Çecimal Adjust, A	DAA							1						19	7	1	anto BCD Format		1	1	1		
Decrement	DEC							6A	1	2	14	6	3				M 1 - M			1		1.0	
	DECA													4A	1	1	A 1 · A			1		1.1	910
	DEC8				1									5A	17	1	8 - 1 + 8		1:	1		-	
Exclusive OR	EORA	88	2	2	98	3	2	A8	5	2	88	1	3					1.	1:				
	EORB	C8	2	2	DB	3	1	E8 6C	5	2	F8 7C	4	3				B + M + B M + 1 + M	1.					
ncrement	INC				1			DC.	1'	1	n	•	1 3	40	2	1	A +1 +A			1.15		12	
	INCB													50	1,	1	8 + 1 - 8						
oad Acmitr	LDAA	86	2	2	96	3	2	A6	5	2	86	4	3				M · A			1.2	1		100
	LDAB	C6	2	2	06	3	2	F6	5	2	F6	4	3	100			M *8		1			: R	
Or, Inclusive	OHAA	84	1	2	9A	3	2	AA	5	17	BA	4	3	1.1			A + W + A	:				1 R 1 R	
	ORAB	CA	12	12	A II	3	17	EA	15	12	14	1	3			1.	H + W · H		1	1			
Pusti Data	PSHA		1					1						36	4	1	A + Mgp, SP 1 + SP	1.	1	1	1		Г
	PSHB							1						31	1		B + Mgp, SP 1 + SP SP + 1 + SP, Mgp + A		1				
Pull Date	PULA													37	4	1	SP + 1 + SP. MSP + 8						
Rotate Left	ROL							69	1	2	79	6	3	33	1	1	MI .					: 0	-
n diale Leit	ROLA							0.2	1	1.	1.0		1	49	1	1	A to spinne					: 6	
	ROLB													59	2	1	B 1. 1. 10					: 6	
Rotate Right	ROR							66	1	2	76	6	3				MI.			•		: 3	
	RORA													46	2	1	A Quinning			10		: 6	
	RORB										1			56	2	1	81		1			: 0	
Shift Left, Arithmetic	ASL							68	1	2	78	6	3				M .		1	1		: 3	
	ASLA													48	2	1!		1:				:0	
	ASLB		1					67	1,		m	6	3	58	2	1	8) M)	1:				: 0	
Shift Right, Arithmetic	ASR							61	1'	1	1"	0	1 3	41	1,	1,						: 0	
	ASRA				1									57	7	1	$\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}^{\mathbf{f}} \stackrel{\text{(1111111)}}{\longmapsto} \stackrel{\text{(111111)}}{\longmapsto} \stackrel{\text{(111111)}}{\longmapsto} \stackrel{\text{(111111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(1111)}}{\longmapsto} \stackrel{\text{(11111)}}{\longmapsto} \stackrel{\text{(1111)}}{\longmapsto} \stackrel{\text{(1111)}}{\vdash} \stackrel{\text{(1111)}}{\longmapsto} \stackrel{\text{(1111)}}{\vdash} \stackrel{\text{(111)}}{\vdash} \stackrel{\text{(1111)}}{\vdash} \stackrel{\text{(111)}}{\vdash} \stackrel{\text{(1111)}}{\vdash} \stackrel{\text{(111)}}{\vdash} ($			1	_	: 0	
Shift Right, Logic	ASR8 LSR							64	1	2	14	6	3	3"	1'	1	M		10			: 0	5
Sourt Hight, Logic	LSRA				1		1	1.	1	1	1~	1.	1	44	2	1	A o dimmin • D					: 0	
	LSRB													54	1	1	R the to C					10	
Store Acmits.	STAA				91	4	2	AI	6	2	81	5	3				A · M	1.		•	1	: 8	
	STAR	1	1		0/	4	17	ET	6	2	F1	5	3				B • M			•		: .	1
Subtract	SUBA	80	2	2	30	3	2	A0	15	2	80	4	3				A M · A			•		: :	
	SUBB	CO	12	2	100	3	17	6.0	15	2	FO	4	3				B M - H		•	•		: 1	
Subrect Acmitra	SBA													10	11	1	A 8 · A			•		: 1	
Subtr. with Carry	SBCA	82	2	2	97	3	2	A2	5	2	82	4	3	-			A - M - C • A			•		: 1	
	SBCB	C2	2	2	UZ	3	2	E2	5	2	FZ	4	3				B M C · B		1	•		1	
Transfer Acmitrs	TAB										1			16	2	1	A *8		1			1 R	
	TBA	1						1						11	7	1	B • A						1
Test, Zero or Minus	TST TSTA		1					60	1	2	10	6	3				M 00						
	TSTR						1							40	2	1:	A 00 8 - 00						
	1310	1	1	1	1	1	1	1	1	1	_	-	1	1 30	Ľ	1.	8.00		-	1	-	1-	-
LEGEND:				M	SP (Conte	nts o	t mer	nury	local	non		00	B	yte	Zer	u; R Reset A	ways					
OP Operation Co	de (Hexadecin	nal);			. 1	pointe	ed to	be St	ack P	Point	er;		н	H	lall c.	vite	from bit 3; S Set Alw	ays					
~ Number of M				+		Book	an le	nclusi	-	R -			1		nterr				tru	e, ci	ear	ed o	the
= Number of Pr								xclus								100				3513	-	1223	
	37.00 XX XX			Ň						n.,			N				ngn un7		. R	enie	100		
4 Arithmetic Dr.				N		comp	neine	ent of	m;				Z	2	era (byte	J		- "	- 915			
Arithmetic Pl Arithmetic M						Trans		121.00					v	723	1.00		2's complement LS Least Sig	m.t.m.					

.

ise

.

- 290 -

. .

JUMP AND BRANCH INSTRUCTIONS

JUMP AND BRANCH		R	ELA	TIVE	Γ	INDI	X		EXT	ND		INHE	ER		5	4	3	2	1	0
OPERATIONS	MNEMONIC	OP	~	#	OP	-	#	OP	-	#	OP	~	=	BRANCH TEST	н	1	N	2	۷	C
Branch Always	BRA	20	4	2			-					-	-	None		•	•	•	•	•
Branch II Carry Clear	BCC	24	4	2										C + 0					•	•
Branch It Carry Set	BCS	25	4	2				1.1				10		C · 1				•	•	•
Branch II - Zero	BED	21	4	2						1				2+1				•	•	•
Branch II Zero	861	20	4	2					1					N+V - 0				•	•	•
Branch II - Zero	861	11	4	2										Z + (N + V) = 0					•	
Branch If Higher	BHI	22	4	2										c+z = 0						
Branch II + Zero	BLE	71	4	2										Z + (N + V) + 1						
Branch II Lower Or Same	BLS	23	4	2								110		C + Z + 1						•
Eranch II + Zeru	BL1	70	4	2			5.1							N V + 1					•	•
Branch II Minus	BWI	28	4	2										N+1					•	
Branch If Not Equal Zeru	UNI	26	4	2				1 1						Z - U						
Branch IT Overflow Clear	BVC	28	4	2										V = 0						•
Branch If Overflow Set	BVS	29	4	2										V - 1		•		•	•	•
Branch If Plus	BPI	1A	4	2										4 - 0					•	
Branch To Subroutine	BSR	80	8	2										1					•	
qmut	JMP				GE	4	2	1E	3	3				See Special Operations						
Juing To Subroutine	JSR				AD	8	2	80	9	3								•	•	•
No Operation	NOP										01	2	1	Advances Prog Cotte Only	•	•	1.		•	•
Return From Interrupt	HII								1		38	10	1		-	-	- (9)•		-
Return From Subroutine	ATS						1		1.11		39	5	1	See special Operations				•	•	•
Saftware Interrupt	SWI										31	12	1	See special operations		S	•	•	•	•
Wait for Interrupt	WAI		-			-					3E	9	1	1		0			•	•

INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

INDEX REGISTER AND STACK		IMMED DIRECT			INDEX			EXT	ND		INH	A			4	3	2	1					
POINTER OPERATIONS		OP	-		OP	-	#	OP	-	#	0P	-	#	OP	-	E	BOOLEAN, ARITHMETIC OPERATION	H	1	N	2	v	¢
Compare Index Reg	CPX	8C	3	3	90	4	2	AC	6	2	BC	5	3				(XH XL) - (M/M + 1)		•	0	:	0	T
Decrement Index Reg	DEX													09	4	1	x - 1 - x		•		:	•	ŀ
Decrement Stack Potr	DES													34	4	1	SP 1 + SP		•		•	•	ł
Increment Index Reg	INX				1.1			1						08	4	1	X + 1 + X		•		:		I
Increment Stack Patr	INS													31	4	1	SP + 1 + SP			•		•	I
Load Index Reg	LOX	CE	3	3	DE	4	2	EE	6	2	FE	5	3			10	M + X _H . (M + 1) → X _L		•	0	:	8	ł
Load Stack Pott	LOS	86	3	3	91	4	2	AL	6	2	BE	5	3				M + SP (M + 1) - SPL			0	:	8	I
Store Ladex Reg	SIX				DF	15	17	EF	1	2	11	6	3		- 24		x ₁₁ • M x ₁ • (M • 1)			0	:	R	I
Store Stack Potr	STS				91	5	2	AF	1	2	BF	6	3				SPH .M. SP1 -(M+1)		•	0	:		I
Inda Reg + Stark Pote	1x5							1	1					35	4	1	X 1+5P				•	•	ł
Stack Poste + Inda Reg	ISX									. 1				30	4	1	SP+1 +x						l

CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

CONDITIONS CODE R		NHER	i i	1	5	4	3	1	1	U	
OPEPATIONS	MNEMONIC	OP	-		BOOLEAN OPERATION	H	1	N	z	۷	c
Clear Carry	LIL	01.	1	1	0 • C						H
Clear Interrupt Mask	CLI	OE	2	1	0 -1		R				
Clear U.ritium	LLV	UA	1	1	0 · V	•				H	
Set Creve	SEC	ou	2	1	1.0						s
Set Interrupt Mask	SET	01	2	1	1 -1		s		•		
Set Overflum	SEV	80	2	1	1 - V					5	
Acmite A + CCR	TAP	06	2	1	A · CCR	-		- (1.) -	_	_
CLH . Acmite A	1PA	0/	1	1	LEH .A		1.				1.

CONDITION CODE REGISTER NOTES:

- (Bit set if test is true and cleared otherwise)
- () (Bat V) Test Result 100000007
- () (But C) Less Result / 00000000?
- (i) (bit C) Test Decimal value of most significant BCD Character greater than (Not cleared if previously set.)
- () (But V) Test Operand 10000000 prior to execution?
- (6) (Bit V) Test: Operand = 01111111 prior to execution?
- $\widehat{G_{2}}$. (But V). Test: Set equal to result of N + C after shift has occurred.
- (i) (Ent N) Test Result less than zero? (Bit 15 = 1)
- (9 (Ail) Load Condition Code Register from Stack. (See Special Operations)
- (1) (Bit I) Set when interrupt occurs. If previously set, a Non Maskable Interru required to exit the wait state.
- (3 (ALL) Set according to the contents of Accumulator A

	2	9	1	
•	1	ч		_

				- 291 -	
	Table A4.1	Assembler	listing of	the HADIOS Executive	Rev. 03
		*			PAGE 1
0001		*			
0002				XECUTIVE REV 03 fo	
0003				316-M6800 twin pro	
0004				of version dated 1	5.2.1983
0005			the second second second second	by A.F.B. SHAFII	
0006		*		1 (0700)	a server de
0007				loaded from '2700	
0008				core-resident as M	
0009		*		ent access of HADI	55 system.
0010				Package should be	entered at
0011				. If user does not	
0013		*		ts then package sh	
0014		*			
0015		*			
0016			REL		
0017			ENT	HADIOS, PDCS	Entries for
0018			ENT	SKST	Loader memory
0019			ENT	CALM	map
0020			ENT	CAL0	
0021			ENT	IFLG	
0022			ENT	ERRM	
0023			ENT	MCOD	
0024			ENT	ERCL	
0025			ENT	CB2	
0026			ENT ENT	CA2 ABUF	
0027			ENT	MBUF	
0028			ENT	C123	
0030			ENT	CTRS	
0031			ENT	MCTR	
0032			ENT	TIME	
0033			ENT	TABL	
0034			ENT	ICT1	
0035			ENT	MO	
0036			ENT	CA22	
0037			ENT	SUB1	
0038			ENT	SUB2	
0039			ENT	SUB3	
0040			ENT	SUB4	
0041			SETB	BASO	
0042		*			Commanda in
0043		*		form of HADIOS I/O O where YYY is an	and the second
0044		*		vice Line address	
0045		*		er address	and ro is neuros
0048		*			
0047	0.00		ATA EQU	10070	
.0049			NAG EQU	10170	
0050			TR3 EQU	10270	
0051			ET3 EQU	10370	
0052			TRI EQU	10470	
0053		570 S	ETI EQU	10570	
0054	000		TR2 EQU	10670	
0055	000		ET2 EQU	10770	
0056			GIB EQU	1070	
0057	001	170 D	GIA EQU	11170	

				- 292 -		100
		*			PAGE	2
0058	001270	DGOB	EQU	1270		17.00
0059	001370	DGOA		1370		
0030	001470	ALRI	EQU	1470		
0061	001770	HAD	EQU	1770		
0062		*				
0063	000020	CLK	EQU	120		
0064		*				
0065		* SI	P = BA	SIC statement	INDEX POINTER	
0066		* SBI	P = BA	SIC statement	BYTE POINTER	
0067		* 18	UFis	BASIC input BU	FFER	
0068					efore BASIC 'CAL	
0069					tement PROCESSOR	
0070			BASIC	Interpreter.		
0071		*				
0072	000220	SCLK		1220		
0073	000034	SIP	EQU	134	. de la che a terrar il cont	
0074 0075	000037	SBP	EQU	'37 '230		
0076	000515	CJST		1515		
0078	004064	SS	EQU	4064		
0078	004084	*	200	4004		
0079			ETC Ma	the Package P	ointersLibrar	~
0080					o corresponding	,
0081				Library routin		
0082		* 101		Libraly routin	e =	
0083	000675	C12	EQU	675		
0084	000676	C21	EQU	1676		
0085	000653	L22	EQU	1653		
0086	000654	H22	EQU	1654		
0087	000670	D22	EQU	1670		
0088	000674	M22	EQU	1674		
0089		*				
0090				CK in non-inte		
0091				e CA2,CB2 Inte	rrupts and progr	am
0092		*flag	gs			
0093		×				
0094 00000	100000	PDCS				
0095 00001	000000	M680	BSZ	1		
0096 00002	0 02 00635		LDA	NMAX		
0097 00003	0 04 00061		STA	161		
0098 00004	14 0020		OCP .	CLK		
0099 00005	0 02 00650		LDA	MCKK		
0100 00006	0 04 02572		STA	ABF0		
0101 00007	0 10 00247		JST	CII		
0102 00010 0103 00011	0 000156 0 001637		DAC	LNRE-2		
0104 00012	0 10 00247		JST	CB2 CII		
0105 00013	0 000171		DAC	LNRF-2		
0105 00014	0 002160		DAC	CA2		
0107 00015	000401		ENB	UNZ		
0108 00016	0 02 00745		LDA	=-10		
0109 00017	0 04 01552	•	STA	A20		
0110 00020	0 01 01000		JMP	1000		
0111		*				
0112			terrun	t entry point	via loacatio	0163
0113					rst before decod	
0114					NPUT sub-interfa	

0124 0125 0126 0127 0128	00021 00022 00023 00024 00025 00025 00025 00027	0 000000 34 0020 0 01 00074 34 1770 0 01 00030 0 10 03603 147322	* in * sy * in * SKST * * HAL	terru stem struc DAC SKS JMP SKS JMP JST BCI	pt MASK	ting	s set and	the
0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146	00030 00031 00032 00033 00034 00035 00035 00035 00040 00041 00042 00043 00043 00044 00045 00045 00045 00045 00045	34 0470 0 01 00107 34 0670 0 01 00122 34 0270 0 01 00135 34 1470 0 01 00042 0 10 03603 147303 0 13 00071 000043 000005 0 04 00072 14 1470 54 1470 0 01 00047 0 04 00073	* CONT MC68	JMP SKS JMP SKS JMP SKS JMP JST BCI IMA INK SGL STA OCP INA JMP	CTR1 LNKB CTR2 LNKC CTR3 LNKD ALRI MC68 ERCL 1,NC AINT SAVK ALRI ALRI *-1			
0148 0149 0150 0151 0152 0153 0154 0155 0155 0155 0157 0158 0159 0160 0161 0162 0163 0164	00052 00053 00054 00055 00055 00055 00057 00060 00061 00063 00064 00065 00065 00065 00065 00065 00065 00065 00070 00071 00072 00073	100400 0 01 00060 0 02 00072 171020 0 13 00071 0 01 00150 0 03 00744 101040 0 01 00065 0 10 03603 147315 0 02 00072 171020 0 13 00071 0 01 00163 000000 000000	AINT SAVK MIKR *	BSZ BSZ	MIKR *+5 SAVK AINT LNKE ='40000 *+3 ERCL 1,NM SAVK AINT LNKF 1 1 1 1 terrupt			
0168 0169 0170	00074 00075 00102	0 10 00176 000000 000001	* LNKA		CIH 5 ·	link		

0170	00100	0.000075	*	-		PAGE 4
	00103	0 000075	LNDA	DAC	LNKA+1	
	00104	0 000000	LNRA		**	
	00105	0 35 00103		LDX	*-2	
	00106	0 01 00222		JMP	CIR	
0176			*			
0173			* 10	unter	interrupt links	
	00107	0 10 00176		TET	CIH	Counter 1
0180	00110	000000	LININD	BSZ	5	councer 1
0181	00115	000010		OCT	10	
0182		0 000110		DAC	LNKB+1	
0183		0 000000	LNRB		**	
0184		0 35 00116	LINKD	LDX	*-2	
0185		0 01 00222		JMP	CIR	
0186	00121	0 01 00222	*	UNF	CIR	
	00122	0 10 00176		IST	CIH	Counter 2
	00123	000000	Linico	BSZ	5	bounter 2
	00130	000010		OCT	10	
	00131	0 000123		DAC	LNKC+1	
0191		0 000000	LNRC		**	
	00133	0 35 00131	Linic	LDX	*-2	
	00134	0 01 00222		JMP	CIR	
0194		0 0. 00222	*	0111	UIK	
	00135	0 10 00176		JST	CIH	Counter 3
	00136	000000		BSZ	5	
0197	00143	000010		OCT	10	
0198	00144	0 000136		DAC	LNKD+1	
0199	00145	0 000000	LNRD	DAC	**	
0200	00146	0 35 00144		LDX	*-2	
0201	00147	0 01 00222		JMP	CIR	
0202			*			
0203			* M68	300 in	terrupt links	
0204			*			
	00150	0 10 00176	LNKE		CIH	CB2 interrupt
	00151			BSZ	5	
0207		000000				
		000010		OCT	10	
	00157	000010 0 000151		OCT DAC	10 LNKE+1	
0209	00157 00160	000010 0 000151 0 000000	LNRE	DAC DAC	10 LNKE+1 **	
0209	00157 00160 00161	000010 0 000151 0 000000 0 35 00157	LNRE	OCT DAC DAC LDX	10 LNKE+1 ** *-2	
0209 0210 0211	00157 00160	000010 0 000151 0 000000		DAC DAC	10 LNKE+1 **	
0209 0210 0211 0212	00157 00160 00161 00162	000010 0 000151 0 000000 0 35 00157 0 01 00222	*	OCT DAC DAC LDX JMP	10 LNKE+1 ** *-2 CIR	
0209 0210 0211 0212 0213	00157 00160 00161 00162 00163	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176	*	OCT DAC DAC LDX JMP JST	10 LNKE+1 ** *-2 CIR CIH	CA2 interrupt
0209 0210 0211 0212 0213 0214	00157 00160 00161 00162 00163 00164	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000	*	OCT DAC DAC LDX JMP JST BSZ	10 LNKE+1 ** *-2 CIR CIH 5	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215	00157 00160 00161 00162 00163 00164 00171	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010	*	OCT DAC DAC LDX JMP JST BSZ OCT	10 LNKE+1 ** *-2 CIR CIH 5 10	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216	00157 00160 00161 00162 00163 00164 00171 00172	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164	* LNKF	OCT DAC DAC LDX JMP JST BSZ OCT DAC	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217	00157 00160 00161 00162 00163 00164 00171 00172 00173	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000	*	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 **	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172	* LNKF	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0216 0217 0218 0219	00157 00160 00161 00162 00163 00164 00171 00172 00173	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000	* LNKF LNRF	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 **	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172	* LNKF LNRF	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172 0 01 00222	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172 0 01 00222	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler **	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0217 0218 0219 0220 0221 0222 0223 0224	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 0 000164 0 000000 0 35 00172 0 01 00222 0 01 00222	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP IMP IMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler ** CIH	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175 00176 00177 00200	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172 0 01 00222 0 01 00222 0 000000 -0 15 00176	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP IMP IMP IMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler ** CIH CIH CIH	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175 00176 00177 00200 00201	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172 0 01 00222 0 01 00222 0 01 00222 0 01 00222 0 35 00176 1 13 00001	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP IMON IT DAC STX* LDX IMA	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler ** CIH	CA2 interrupt
0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0217 0218 0220 0221 0222 0223 0224 0225 0226 0227	00157 00160 00161 00162 00163 00164 00171 00172 00173 00174 00175 00176 00177 00200	000010 0 000151 0 000000 0 35 00157 0 01 00222 0 10 00176 000000 000010 0 000164 0 000000 0 35 00172 0 01 00222 0 01 00222 0 000000 -0 15 00176	* LNKF LNRF * * Con	OCT DAC DAC LDX JMP JST BSZ OCT DAC DAC LDX JMP IMP IMP IMP	10 LNKE+1 ** *-2 CIR CIH 5 10 LNKF+1 ** *-2 CIR terrupt Handler ** CIH CIH CIH	CA2 interrupt

			*			
0229	00204	1 04 00002	^	CTA		
				STA	2,1	
0230	00205	0 02 00021		LDA	SKST	
0231	00206	1 04 00004		STA	4,1	
0232	00207	1 02 00005		LDA	5,1	
0233	00210	140401		CMA		
0234	00211	0 03 00264		ANA	MASK	
0235	00212	0 04 00264		STA	MASK	
0236	00213	74 0020		SMK	20	
0237		1 02 00007		LDA	7,1	
0238		0 04 00651				
				STA	CIHA	
0239		000201		IAB		
0240		1 04 ,00003	1	STA	3,1	
0241	00220	000011		DXA	S	
0242	00221	-0 01 00651		JMP*	CIHA	
0243			*			
0244			* Co	mmon I	nterrupt	Return
0245			*			
	00222	1 02 00003		LDA	3,1	
	00223	000201	CIK	A CONTRACTOR OF A CONTRACTOR O	3,1	
				IAB		
0248		1 02 00005		LDA	5,1	
	00225	140401		CMA		
0250		001001		INH		
0251	00227	0 03 00264		ANA	MASK	
0252	00230	1 05 00005		ERA	5,1	
0253	00231	0 04 00264		STA	MÁSK	
0254		74 0020		SMK	20	
0255		1 02 00004		LDA	4,1	
	00234	0 04 00245				
				STA	CIRA	
0257		1 02 00000		LDA	0,1	
0258		0 04 00246		STA	CIRX	
0259		1 02 00002		LDA	2,1	
0260	00240	171020		OTK		
0261	00241	1 13 00001		IMA	1,1	
0262	00242	0 35 00246		LDX	CÍRX	
	00243	000401		ENB		
	00244	-0 01 00245		JMP*	CIRA	
	00245	000000	CIRA			
					1	
	00246	000000	CIRX	852	1	
0267			*			
0268				nmon I	nterrupt	Initiator
0269			*			
	00247	0 000000	CII	DAC	**	
0271	00250	-0 35 00247		LDX*	CII	
0272	00251	0 12 00247		IRS	CII	
	00252	1 02 00000		LDA	0,1	
	00253				0,1	
		140401		CMA		
	00254	0 03 00264		ANA	MASK	
	00255	1 05 00000		ERA	0,1	
	00256	74 0020		SMK	120	
	00257	0 04 00264		STA	MASK	
0279	00260	-0 02 00247		LDA*	CII	
0280	00261	0 12 00247		IRS	CII	and the second second
	00262	1 04 00002		STA	2,1	
	00263	-0 01 00247		JMP*	CII	
	00264		MACH			
		000000	MASK		1	
0284	00265	000000	IFLG	BSZ	1	
0285			*			

PAGE

5

86 87 88 89 90			 PAGE 6 DISPATCHER Waiting loop in HADIOS EXER Background job pointers are placed here. SENSE SWITCH 2 is tested for a user 'Interrupt' to BASIC command mode.
91 92 94 95 97 97 97 97 97 97 97 01 02 04 05	00266 00267 00270 00271 00272 00273 00274 00275 00276 00276 00277 00300 00301 00302 00303 00304 00305 00306	0 35 00743 1 02 00313 100040 0 01 00301 100010 0 01 00277 0 12 00000 0 01 00267 0 01 00267 0 01 00266 0 10 03603 152711 0 04 00305 140040 1 04 00313 -0 01 00305 000000	DISP LDX =-5 LDA GOAD+5,1 SZE JMP DISQ SR2 JMP STOP IRS 0 JMP DISP+1 JMP DISP STOP JST ERCL BCI 1,UI
09 10 11 12 13 14 15			* BASIC entry point via '716 (JMP* '716) * Location CJST contains JST* '515 * Location IBUF contains JST* '515+N * where N is the Subroutine ref. no. * For other Subroutines: DAC IBUF in TABL * Addresses in BASIC CALL table from * location '522 onwards should be patched
19 20 21 22 23 24 25 26 27 28 29	00314	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>* CALL LDA IBUF SUB CJST STA 0 JMP* TABL-1,1 TABL DAC SUB1 DAC SUB2 DAC SUB3 DAC SUB4 DAC IBUF DAC IBUF DAC IBUF DAC IBUF DAC IBUF AC IBUF SAC IBUF * * * Subroutine 1 CALL(1,A(0)(B(0)) * Flag CAL0=1 if H316 in on-line mode * else zero * * * Counter can be used by H316 or M6800 * If MCI (I=1,2,3) is non-zero then Counter * * For Counter I,ITMI is the * interrupt time (N*20 ms) and is upgraded * every interrupt cycle an instantaneous</pre>

÷

.

					*				PAGE		7
0343					* va	lue					
0344					*						
0345					* If	H316 i e	off-line	(A(12)	or A(1	3)=1)
0346							doe's not				
0347				Sel Se	*						
0348	00331	0	02	00034	SUB1	LDA S	IP				
0349	00332	0	04	00641		STA S	IP1				
0350	00333	0	02	00037		LDA S	BP				
0351	00334	0	04	00642		STA S	BP1				
0352	00335	0	02	00636		LDA N	IEXT				
0353	00336	0	04	00340		STA *	+2				
0354	00337	0	01	00341		JMP *	+2				
0355	00340	0	000	0000		DAC *	*				
0356	00341	-0	10	00640		JST* F	AT				
0357	00342	00	0000)2		DEC 2					
0358	00343	00	0000	00	PARS	BSZ 2					
0359	00345	-0	10	00653		JST* L	22				
0360	00346	-0	000	0343		DAC* F	ARS				
0.274	00247	0	10	00/74		TOTY M	00				

0396 00412

0397 00413

0398 00414

0399 00415

0 04 00631

0 02 00061

0 04 00630

0 10 00706

UCUL	00000		2 00030		LUH	NEAT		
0353	00336	0 04	4 00340		STA	*+2		
0354	00337	0 0.	00341		JMP	*+2		
0355	00340	0 00	00000		DAC	**		
0356	00341	-0 10	00640		JST*	FAT		
0357	00342	0000	002		DEC	2		
0358	00343	0000	000	PARS		2		
0359	00345	-0 10	00653		JST*	L22		
0360	00346	-0 00	00343		DAC*	PARS		
	00347		00674		JST*	M22		
	00350		0.0646		DAC	F50		
	00351	-0 10	00676	•	JST*	C21		
	00352		00570		JMP	ERI		
	00353	1404			TCA			
	00354		4 00637		STA	CINT		
	00355		2 00343		LDA	PARS		
	00356		6 00742		ADD	=10		
	00357		01533		STA	REP+3		
	00360		2 00343		IRS	PARS		
	00361		2 00343		IRS	PARS		
	00362		5 00741		LDX	=-13		
	00363		00645		STX	KT		
	00364		00653		JST*	L22		
0375	00365		0343		DAC*	PARS		
	00366		00676		JST*	C21		
	00367	0 01			JMP	ERI		
	00370		5 00645		LDX	KT		
0379	00371	1 04	04342		STA	CTRS+13,1		
0380	00372	0 12	2 00343		IRS	PARS		
0381	00373	0 12	2 00343		IRS	PARS		
0382	00374	0 12	00000		IRS	0		
0383	00375	0 01	00363		JMP	*-10		
0384	00376	0 02	2 04341		LDA	CTRS+12	A(13)=1	?
0385	00377	1000	40		SZE			
0386	00400	0 01	01554		JMP	A7+1		
0387	00401	0 02	2 04340		LDA	CTRS+11	A(12)=1	?
0388	00402	1010)40		SNZ			
0389	00403	0 01	00407		JMP	*+4		
0390	00404	0 02	2 00740		LDA	=-1		
0391	00405	0 04	00633		STA	ARRO		
0392		0 01			JMP	GPAR		
0393	00407	0 02			L.DA	=1		
0394	00410		03522		STA	BYTE+1		
	00411		00632		STA	CALO		
000/	00410	0.01	00/01			115115		

STA

LDA

STA

JST

HEND

161

L61

MTES

			×				PAGE	8
0400	00416	001001		INH	-			
0401	00417	14 0220		OCP	SCLK			
0402	00420	0 02 00634		LDA	FRST			
0403	00421	0 04 00061		STA	161	and the second		
0404			*					
0405	00422	0 35 00743	GPAR	LDX	=-5		Clear D	snatch
0406	00423	140040		CRA			table	sparen
0407	00424	0 04 00265		STA	IFLG			
0408	00425	0 04 01573		STA	SCAN			
	00426	1 04 00313		STA	GOAD+	5.1		
	00427	0 12 00000	3	IRS	0	-,.		
0411	00430	0 01 00426		JMP	*-2			
0412			*		-			
0413			* Int	errur	t init	ialisation	noutines	
0414			* H31	6 610	ock fin	et Chack f	or doubly s	
0415							off-line b	
0416								
0417			* 45	ALLON	muitip	les of mic	ro scan int	erval
0418				A(13)	=1 bot	in computer	s off-line.	
and the second second second	00431	0 00 04040	*					
	00432	0 02 04340		LDA	CTRS+	.11		
	00432			SZE				
	00433	0 01 00566		JMP	INT			
	00434	0 10 00247		JST	CII			
		0 000102		DAC	LNRA-	·2		
	00436	0 001113		DAC	ACLK			
		14 0020		OCP	CLK			
	00440	001001		INH				
0427			*					
				nter	1	Device 2		
0429	00000		*					
0430		0 02 04325		LDA	CTRS			
0431	00442	0 03 00736		ANA	=2			
0432		101040		SNZ				
	00444	0 01 00455		JMP	A1			
	00445	0 02 01622		LDA	MC1			
	00446	101040		SNZ				
	00447	0 01 00452		JMP	*+3			
	00450	0 35 00736		LDX	=2			
	00451	0 10 00572		JST	CERR			
	00452	0 10 00506		JST	CT1			
	00453	0 004333		DAC	CTRS+	6		
0441	00454	0 004332		DAC	CTRS+	5		
0442			*					
0443			* Cou	nter	2 1	Device 4		
0444			*					
	00455	0 02 04325	A1	LDA	CTRS			
	00456	0 03 00735	1	ANA	=4			
	00457	101040		SNZ				
	00460	0 01 00471		JMP	A2			
	00461	0 02 01626		LDA	MC2			
	00462	101040		SNZ				
0451	00463	0 01 00466		JMP	*+3			
	00464	0 35 00735		DX	=4			
0453	00465	0 10 00572		JST	CERR			
	00466	0 10 00526		JST	CT2 .			
	00467	0 004335		DAC	CTRS+	8		
	00470	0 004334		DAC	CTRS+7			
			10		Untorn			

9

			*				PAGE
0457		•	*				
0458				intan	2	Device	0
				meer	3	Device	0
0459			*				
		02 04325	A2	LDA	CTRS		
0461 0	0472 0	03 00734		ANA	=8		
0462 0	00473 10	1040		SNZ			
0463 0		01 00566		JMP	INT		
		02 01632			MC3		
				LDA	MC.S		
0465 0		1040		SNZ	-		
0466 0		01 00502		JMP	*+3		
0467 0	0500 0	35 00734		LDX	=8		
0468 0	0501 0	10 00572		JST	CERR		
0469 0	0502 0	10 00546		JST	СТЗ		
0470 0		004337		DAC	CTRS+	10	
		004336					
				DAC	CTRS+	7	
	0505 0	01 00566		JMP	INT		
0473			*				
0474			* CT1		Counte	r 1 ini	tialisation
0475			*				
0476 0	0506 0	000000	CT1	DAC	**		
0477 0		35 00506		LDX*	CT1		
		12 00506		IRS	CT1		
0479 0		02 00000		LDA	0,1		
0480 0		0570		OTA	SET1		
0481 0	0513 0	01 00512		JMP	*-1		
0482 0	0514 -0	35 00506		LDX*	CTI		
0483 0	0515 1	02 00000		LDA	0,1		
		1040		SNZ	-,-		
		01 00524		JMP	*+5		
0486 0		10 00247		JST .	CII	-	
0487 0		000115		DAC	LNRB-	2	
		001000		DAC	I CT1		
0,489 0	0523 14	0470		OCP	CTR1		
0490 0	0524 0	12 00506		IRS	CT1		
0491 0	0525 -0	01 00506		JMP*	CT1		
0492			*				
0493				0	ounter	2 init	ialisation
0494			*		ouncer	2 11110	TATISACIÓN
	053/ 0	00000		040			
0495 0			CT2	DAC	**		
		35 00526		LDX*	CT2		
0497 0	0530 0	12 00526		IRS	CT2		
0498 0	0531 1	02 00000		LDA	0,1		
0499 0	0532 74	0770		OTA	SET2		
0500 0		01 00532		JMP	*-1		
0501 0		35 00526			CT2		
				LDX*			
0502 0		02 00000		LDA	0,1		
0503 0		1040	`	SNZ			
0504 0	0537 0	01 00544		JMP	*+5		
0505 0	0540 0	10 00247		JST	CII		
0506 0	0541 0	000130		DAC	LNRC-	2	
0507 0		001031		DAC	ICT2		
0508 0		0670		OCP	CTR2		
0509 0		12 00526	•	IRS	CT2		
0510 0					CT2		
	0040 -0	01 00526		JMP*	012		
0511			*				
0512				3 C	ounter	3 init	ialisation
0513			*				

- 299 -

×

PAGE

				~			FAGE	10
		00546	0 000000	СТЗ	DAC	** *		
			-0 35 00546		LDX*	СТЗ		
		00550	0 12 00546		IRS	СТЗ		
		00552	74 0370		LDA	0,1 SET3		
		00553	0 01 00552		JMP	*-1		
			-0 35 00546		LDX*	СТЗ		
-	0521	00555	1 02 00000		LDA	0,1		
	0522	00556	101040		SNZ			
	0523	00557	0 01 00564		JMP	*+5		
		00530	0 10 00247		JST	CII		
			0 000143		DAC	LNRD-2		
		00562	0 001062		DAC	ICT3		
			14 0270		OCP	CTR3		
			0 12 00546		IRS	СТЗ		
	0530	00383	-0 01 00348	*	JMP*	СТЗ		
		00566	000401	INT	ENB			
		00567	0 01 00266		JMP	DISP		
		00570	0 10 03603	ERI	JST	ERCL		
	0534		151311		BCI	1,RI		
		00572	0 000000	CERR		**		
		00573	0 02 00000		LDA	0		
		00574	140401		CMA			
		00575	0 03 04325 0 04 04325		ANA	CTRS		
		00577	0 10 03603		STA JST	CTRS ERCL		
	0541		141705		BCI	1,CE		
	0542			*		.,		
	0543			* Sut	proutin	ne 2 CALL(2))	
	0544					normally set to		ck
	0545			* int	errup	t response code.		
	0546					A(2) then retuin		fter
	0548			* CAL	.L(2) 6	else goto DISPAT	ICHER.	
	0549	00601	001001	SUB2	INH			
	0550		0 02 00034		LDA	SIP		
	0551		0 04 00643		STA	SIP2		
	0552		0 02 00037		LDA	SBP		
	0553		0 04 00644		STA	SBP2		
	0554		140040		CRA			
	0555		0 04 00265		STA	IFLG		
	0556 0557		0 02 01573		LDA	SCAN		
	0558 1		0 07 04326 101400		SUB	CTRS+1		
	0559		0 01 00616		SMI	*+3		
	0530 1		000401		ENB	**3		
	0561		0 01 00266		JMP	DISP		
	0562 (00313	0 02 04340		LDA	CTRS+11		
	0563		0 04 00000		STA	0		
	0564 (140040		CRA			
	0565 0		0 04 00631		STA	HEND		
	0566 (0 04 04340		STA	CTRS+11		
	0568 0		0 04 04341 0 02 00000		STA	CTRS+12		
	0569 1		100040		LDA SZE	0		
	0570 (0 01 04000			GFIN		
					0.11	UT ATA		

$0572 \\ 0573 \\ 0574 \\ 0575 \\ 0576 \\ 0577 \\ 0578 \\ 0577 \\ 0578 \\ 0577 \\ 0578 \\ 0577 \\ 0578 \\ 0577 \\ 0582 \\ 0583 \\ 0584 \\ 0584 \\ 0583 \\ 0597 \\ 0593 \\ 0597 \\ 0593 \\ 0597 \\ 0597 \\ 0593 \\ 0597 \\ 0507 \\ $	00627 00630 00631 00632 00633 00634 00635 00636 00637 00640 00641 00642 00643 00643 00643 00643 00643 00645 00657 00657 00673 00673 00673 00673 00673 00673 00673 00673 00673 00673 00673 00673 00673	0 01 03620 000000 000000 000000 177777 100000 0 000231 000000 0 000000 000000 000000 000000 000000	* DG * 16	BSZ DEC DEC DAC BSZ SZ BSZ BSZ BSZ BSZ DEC DAC BSZ DEC DAC BSZ	common to output tr	CALL (3,N, to H316 and uncated to selection	M6800 12-bits,	
0621	00704	-0 01 01572		JMP*	CL06			
0623	00705	000000	CH3 *	BSZ	1			
	00706		MTES	DAC	**		MTES and	
	00707	0 02 01622 101040		LDA SNZ	MCI		are Count related r	
				UNIL			related r	outine

- 301 -

-- 1

-	302	-	

13 00730 -0 35 00727 LDX* MCX 14 00731 0 10 04266 JST TIME 15 00732 0 12 00727 JRS MCX 15 00733 -0 0 00727 JMP* MCX 17 00734 000010 FIN MCX 00735 000004 00736 000010 FIN 00740 177773 00741 177766 100742 000012 00743 177773 00744 040000 00745 SETB 00745 177766 SETB BAS1 1 * * Counter interrupt response code 1 * * Counter interrupt response code 1 * * * Counter interrupt response code 1 * * * Counter interrupt response code 1 * * * * 10100 14 0570 ICT 1 0CP SET1 5
0643 00730 -0 35 00727 LDX* MCX 06444 00731 0 10 04266 JST TIME 0645 00732 0 12 00727 IRS MCX 06445 00733 -0 0 00727 JMP* MCX 0647 00734 000010 FIN MCX 00735 000001 FIN MCX 00740 1777763 00744 040000 00744 040000 00745 177766 0648 000746 BAS0 EQU * 0649 00744 040000 00745 177766 0650 SETB BAS1 * 0066 0651 * Counter interrupt response code * 0653 01001 14 0570 ICT1 0CP SET1 0655 01002 101040 SNZ MC1 0455 0456 01005 0404333 TA CTR+5 0655 01005 0404333 TA
0649 0RG '1000 0650 SETB BAS1 0651 * 0652 * Counter interrupt response code 0653 * 0654 01000 14 0570 ICT1 0CP SET1 0655 01001 0 02 01622 LDA MC1 0656 01002 101040 SNZ 0657 01003 0 01 01006 JMP *+3 0658 01004 0 02 04317 LDA MCTR+5 0659 01005 0 04 04333 STA CTRS+6 0661 01007 74 0570 OTA SET1 0662 01010 0 01 01007 JMP *-1 0663 01011 14 0470 OCP CTR1 0663 01012 0 12 01030 IRS FLG1 0665 * * 06666 01013 0 02 00061 LDA '61 0666 01013 0 02 00061 LDA '61 0666 01013 0 02 00061 LDA '61 0667 01014 0 04 00000 STA 0 0668 01015 0 07 01026 SUB TIM1 0669 01016 0 06 01025 ADD ADT1 0670 01017 0 04 01027 STA ITM1 0671
0653 * 0654 01000 14 0570 ICT1 0CP SET1 0655 01001 0 02 01622 LDA MC1 0655 01002 101040 SNZ 0657 01003 0 01 01006 JMP *+3 0657 01003 0 01 01006 JMP *+3 0658 01004 0 02 04333 STA CTRS+6 0659 01005 0 04 04333 STA CTRS+6 0640 01006 0 02 04333 LDA CTRS+6 0640 01007 74 0570 OTA SET1 0642 01010 0 01 01007 JMP *-1 0643 01011 14 0470 OCP CTR1 0646 01012 0 12 01030 IRS FLG1 06465 * * * * * * 06466 01013 0 02<

0730 01077

0728 01075 0 02 00061 0729 01076 0 04 00000

0 07 01110

0674 0675	01022	0 04 01025	*	STA	ADTI		PAGE
0676	01023 01024	0 10 00117 0 01 01000		JST JMP	LNRB ICT1		
0679	01026	000000	ADT1 TIM1	BSZ	1		
0380	01027 01030	000000	ITM1 FLG1	BSZ BSZ	1 1		
0682 0683 0684			* * Cou	unter	response	code	2
0685	01031	14 0770 0 02 01626	ICT2	OCP LDA	SET2 MC2		
0687	01033	101040 0 01 01037		SNZ	*+3		
0689	01035	0 02 04321 0 04 04335		LDA STA	MCTR+7 CTRS+8		
0692	01040	0 02 04335 74 0770		LDA OTA	CTRS+8 SET2		
0694	01041 01042	0 01 01040		JMP OCP	*-1 CTR2 FLG2	•	
0696	01043	0 12 01061	*	IRS	· 161		
0698	01045	0 04 00000 0 07 01057		STA	0 TIM2		
	01047 01050	0 06 01056 0 04 01060		ADD STA	ADT2 ITM2		
	01051	0 15 01057	*	STX	TIM2		
0705	01052 01053	140040 0 04 01056		CRA STA	ADT2		
	01054	0 10 00132	*	JST JMP	LNRC ICT2		
0709	01056	000000	ADT2 TIM2	BSZ	1		
0711	01060	000000	ITM2 FLG2	BSZ	1 1		
0713 0714			* * Cou	unter	response	code	3
	01062	14 0370	* IСТЗ		SET3		
0718	01063 01064 01065	0 02 01632 101040 0 01 01070		LDA SNZ JMP	MC3 *+3		
0720	01066	0 02 04323 0 04 04337		LDA	MCTR+9 CTRS+10		
0722	01070 01071	0 02 04337 74 0370		LDA	CTRS+10 SET3		
0725	01072 01073	0 01 01071 14 0270		JMP OCP	*-1 CTR3		
0726	01074	0 12 01112	*	IRS	FLG3		
11 7 11 1	0.075	0 00 000/1		I DA	(()		

TIM3

LDA STA

SUB

- 304 -

PAGE

			*			PAGE
	01100	0 06 01107		ADD	ADT3	
0732	01101	0 04 01111		STA	ITM3	
0733			*			
	01102	0 15 01110		STX	TIM3	
	01103	140040		CRA		
	01104	0 04 01107		STA	ADT3	
	01105	0 10 00145		JST	LNRD	
	01106	0 01 01032		JMP	ICT3	
	01107	000000	ADT3		1	
	01110	000000	TIM3		1	
	01111	000000	ІТМЗ		1	
	01112	000000	FLG3	BSZ	1	
0743			*			
0744				6 C10	ck interrupt respon	nse code
0745			*			
	01113	140040	ACLK			
	01114	0 04 00630		STA	L61	
	01115	0 10 01576		JST	HTES	
	01116	0 02 03522		LDA	BYTE+1	
	01117	101040		SNZ		
	01120	0 01 01124		JMP	*+4	
	01121	140040		CRA		
	01122	0 04 03522		STA	BYTE+1	
	01123	0 01 01125		JMP	*+2	
	01124	0 10 00706		JST	MTES	
	01125	14 0220		OCP	SCLK	
	01126	0 02 00637		LDA	CINT	
	01127	0 04 00061		STA	· 61	
	01130	14 0020		OCP	CLK	
	01131	000401		ENB		
	01132	0 02 00101		LDA	LNKA+5	
	01133	0 07 01547		SUB	BSTP	
	01134	100400		SPL		
	01135	0 01 01574		JMP	STP	
	01136	0 02 00265		LDA	IFLG	
	01137	100040		SZE		
	01140	0 01 01574		JMP	STP	
	01141	0 12 00265		IRS	IFLG	
0769			*			
0770				inter 1	Inputs H316 on1	Y
0771			*			
	01142	001001	A3	INH		
	01143	0 02 04325		LDA .	CTRS	
	01144	0 03 01677		ANA	=2	
0775		101040		SNZ		
	01146	0 01 01207		JMP	A4	
0777		140040		CRA		
0778		54 0470		INA	CTR1	
0779		0 01 01150		JMP	★ −1	
	01152	000201		IAB		
	01153	0 02 04333		LDA	CTRS+6	
0782		74 0570		OTA	SET1	
0783		0 01 01154		JMP	*-1	
0784		000401		ENB		
0785		0 02 00344		LDA	PARS+1	
0786		0 06 01676		ADD	=48	
0787	01151	0 06 01676		ADD	=43	

0789 01163 0790 01164 0791 01165 0792 01166 0793 01167 0794 01170 0795 01171 0796 01172 0797 01173 0798 01174 0799 01175 0800 01176 0801 01177 0802 01200 0803 01201 0804 01202 0805 01203 0806 01204 0807 01205	0 04 01172 140442 0 04 01204 000201 -0 10 00675 -0 10 00675 -0 10 00675 -0 10 00675 -0 10 00675 -0 10 00676 0 000000 B48 0 02 01030 -0 10 00675 -0 10 00675 -0 10 00654 0 000000 B50 140040	LDA JST* DAC JST* DAC LDA JST* JST* DAC CRA	140442 B49 140442 B50 C12 H22 ** ITM1 C12 D22 F50 H22 ** FLG1 C12 H22 **
0809 0810 01207 0811 01210 0812 01211 0813 01212 0814 01213 0815 01214 0816 01215 0817 01216 0818 01217 0819 01220 0820 01221 0821 01222 0822 01223 0823 01224 0824 01225 0825 01226 0826 01227 0827 01230 0829 01232 0830 01233 0831 01234 0832 01235	$\begin{array}{c} 001001\\ 0 & 02 & 04325\\ 0 & 03 & 01675\\ 101040\\ 0 & 01 & 01255\\ 140040\\ 54 & 0670\\ 0 & 01 & 01216\\ 000201\\ 0 & 02 & 04335\\ 74 & 0770\\ 0 & 01 & 01222\\ 000401\\ 0 & 02 & 00344\\ 0 & 06 & 01674\\ 0 & 06 & 01674\\ 0 & 04 & 01246\\ 140442\\ 0 & 04 & 01252\\ 000201\\ \end{array}$	STA ENB INH LDA SNZ JMP CRA INA JMP IAB LDA JMP ENB LDA ADD STA STA STA STA IAB	CTRS =4 A5 CTR2 *-1 CTRS+8 SET2 *-1 PARS+1 =51 E51 140442 B52 140442 B53
0833 01236 0834 01237 0835 01240 0836 01241 0837 01242 0838 01243 0839 01244 0840 01245 0841 01246 0842 01247 0843 01250 0844 01251	-0 10 00675 -0 10 00654 0 000000 B52 0 02 01060 -0 10 00675 -0 10 00670 0 000646 -0 10 00654 0 02 01061 -0 10 00675 -0 10 00654	JST* JST* DAC LDA JST* JST* DAC JST* DAC LDA JST* JST*	C12 H22 ** ITM2 C12 D22 F50 H22 ** FLG2 C12 H22

×

			*				DAGE
084	15 01252	0 000000	853	DAC	**		PAGE
	46 01253		000		**		
	17 01254			CRA			
084		0 04 0100		STA	FLG2		
	9 01255		*				
		000401	A5	ENB			
	0 01256			INH			
	1 01257	0 02 0432	5	LDA	CTRS		
	52 01260	0 03 0167	3	ANA	=8		
085	3 01261	101040		SNZ	-0		
085	64 01262	0 01 0132:	2	JMP	~ /		
	5 01263	140040	-		A6		
	6 01264			CRA			
		54 0270		INA	CTR3		
	7 01265	0 01 01264	1	JMP	*-1		
	8 01266	000201		IAB			
	9 01267	0 02 04337	7	LDA	CTRS+10	1	
086	0 01270	74 0370		OTA	SET3		
085		0 01 01270					
	2 01272	000401		JMP	*-1		
	3 01273			ENB			
		0 02 00344		LDA	PARS+1		
	4 01274			ADD	=54		
	5 01275	0 06 01672		ADD .	=54		
	6 01276	0 04 01314	1. 28.	STA	B54		
0833	7 01277	140442		OCT	140442		
	8 01300	0 04 01306		STA			
	01301	140442	1000		B55		
	01302			OCT	140442		
0871		0 04 01320		STA	B56		
		000201		IAB			
	2 01304	-0 10 00675		JST*	C12		
	3 01305	-0 10 00654		JST*	H22		
	1 01306	0 000000	B55	DAC	**		
0875	5 01307	0 02 01111		LDA	ITM3		
0876	6 01310	-0 10 00675		JST*			
	01311	-0 10 00670			C12		
	01312			JST*	D22		
		0 000646		DAC	F50		
	01313	-0 10 00654		JST*	H22		
	01314	0 000000	854	DAC	**		
	01315	0 02 01112		LDA	FLG3		
0882	01316	-0 10 00675		JST*	C12		
0883	01317	-0 10 00654		JST*	H22		
	01320	0 000000	B56				
	01321	140040	630	DAC	**		
	01322			CRA			
		0 04 01112		STA	FLG3		
0887		000401	A6	ENB			
0888			*				
0889			* Ana	alooue	Inpute e		11012
0890			*	al ogue	Inputs s	can	H316 only
0891	01324	0 02 04325	° .	1 64			
	01325			LDA	CTRS		
	01326	0 03 01671		ANA	=1		
		101040		SNZ			
	01327	0 01 01553		JMP	A7		
	01330	0 35 01670		LDX	=-48		
	01331	140040		CRA			
0897	01332	-0 04 01431		STA*	0040		
	01333	0 12 00000			AB48		
	01334	0 01 01332		IRS	0		
	01335			JMP	*-2		
		0 02 04331		LDA	CTRS+4		
0901	01336	140407		TCA			

0902 01337 0903 01340 0904 01341 0905 01342 0906 01343 0907 01344 0908 01345 0909 01346 0910 01347 0911 0912	0 02 04330 0 06 01432 0 04 01433 0 02 04330 0 07 04327 141206 140407 001001	STA HCTS LDA CTRS+3 ADD AB40+1 STA AB48+2 LDA CTRS+3 SUB CTRS+3 SUB CTRS+2 AOA TCA INH		17
0913 0914 0915 01350 0916 01351 0917 01352 0918 01353 0919 01354 0920 01355 0921 01356 0922 01357 0923 01360 0924 01361 0925 01362 0926 01363 0927 01364 0928 01365 0929 01366 0930 01367 0931 01370 0932 01371 0933 01372 0934 01373 0935 01374 0936 01375 0937 01376 0938 01377 0938 01377 0938 01377 0938 01377 0939 01400 0940 01401 0941 01402 0942 01403 0943 01404 0946 01407 0945 01406 0946 01407 0947 01410	* Sa	STA CHXR CRA STA ENS LDA '61 STA HREG LDA '61 STA HREG LDA '61 STA HREG+1 ERA HREG SNZ JMP *-4	l over subintervals ple filter	of 20 ms.
0951 01414 0952 01415 0953 01416 0954 01417 0955 01420 0956 01421 0957 01422 0958 01423	0 02 01514 -0 10 00675 -0 10 00654 -0 001533 0 01 01516 0 02 01430 DLY	LDA ENS JST* C12 JST* H22 DAC* REP+3 JMP A5A LDA HCTS STA HREG IRS HREG		

		*		PAGE	
01425 01426 01430 01431 01432	0 01 01423 0 01 01362 000000 000000 1 001514 1 001435 000000	HREG HCTS	BSZ DAC DAC BSZ	*-1 ESBL 2 1 ABUF+48,1 ABUF+1,1 1	
01514	000000 000000 000000	ENS STUP	BSZ	48 1 1	
		* Ana	alogue	Data processing H316	5
01517 01520 01521 01522 01523 01523	000401 0 02 04327 0 06 01544 0 04 01545 0 02 00344 0 06 04327 0 06 04327 0 06 04327 0 04 01546 0 35 01550	Á5A	ENB LDA ADD STA LDA ADD ADD STA LDX	CTRS+2 BF0 ADBF PARS+1 CTRS+2 CTRS+2 DBF CHXR	
01531 01532 01533 01534 01535 01535 01536 01537 01540 01541 01542 01543	-0 10 00675 -0 10 00670 0 000000 -0 10 00654 -0 001546 0 12 01545 0 12 01546 0 12 01551 0 12 01551 0 01 01530 0 01 01553		STX LDA* JST* JST* DAC JST* DAC* IRS IRS IRS IRS JMP JMP	X1 ADBF C12 D22 ** H22 DBF ADBF DBF DBF X1 REP A7	
01545 01546 01547 01550	0 001434 000000 000000 0 000021 000000 000000 000000	ADBF DBF BSTP CHXR X1 A20	BSZ BSZ DAC	ABUF 1 1 SKST 1 1 1 1	
		* Up	date H	316 scan VEC2=CL06	
01554 01555 01557 01557 01560 01561 01562 01563 01564 01565	0 12 01573 0 02 00641 0 04 00034 0 02 00642 0 04 00037 0 02 04341 100040 -0 01 01572 0 02 04340 100040 -0 01 01572 0 02 01572		IRS LDA STA LDA STA LDA SZE JMP* LDA SZE JMP* LDA	SCAN SIP1 SIP SBP1 SBP CTRS+12 CL06 CTRS+11 CL06 CL06	
	01426 01430 01431 01432 01433 01434 01514 01515 01516 01517 01520 01521 01522 01523 01524 01525 01526 01533 01534 01535 01536 01537 01540 01541 01542 01543 01544 01545 01546 01551 01552 01556 01557 01556 01557	01425001013620142600000001431101432101433000000014340000000151400000001515000000015170000151700001522000015230000152400001533000015340000153500001534001201535001546001534001543001544001535001544001534001535001535001544001545001545001544001545001546001547001551000000015510000000155100155300155400001560000000000000000000000000 <td>01425 0 01 01362 01426 000000 HREG 01430 000000 HCTS 01431 1 001514 AB48 01432 1 001435 01433 000000 ABUF 01514 000000 ENS 01515 000000 STUP * Ana * Ana 01516 000401 A5A 01517 0 02 04327 01520 0 06 01544 01521 0 04 01545 01522 0 02 00344 01523 0 06 04327 01525 0 04 01545 01526 0 04 01545 01527 0 15 01551 01526 0 04 01546 01526 0 035 01550 01527 0 15 01551 01530 -0 02 01545 REP 01531 -0 10 00670 01533 0 000000 01534 -0 10 00674 01535 -0 001546 01536 0 12 01545 01537 0 12 01546 01540 0 12 01546 01541 0 12 01546 01541 0 12 01546 01542 0 01 01553 01542 0 01 01553 01543 0 01 01553 01544 0 001434 BF0 01544 0 001434 BF0 01545 000000 ADBF 01547 0 000021 BSTP 01550 000000 X1 01552 000000 X1 01552 000000 X1 01555 0 04 00034 01555 0 004 0034 01555 0 004 0034 01555 0 004 0035 0 02 04340 0 01557 0 0 01 01572 0 01 01572</td> <td>01424 0 01 01423 JMP 01425 0 01 01362 JMP 01426 000000 HREG BSZ 01430 000000 HCTS BSZ 01431 1 001514 AB48 DAC 01432 1 001435 DAC 01433 000000 BSZ 01434 000000 ABUF BSZ 01514 000000 ENS BSZ 01515 000000 STUP BSZ 01515 000000 STUP BSZ 01517 0 02 04327 LDA 01520 0 06 01544 ADD 01521 0 04 01545 STA 01522 0 02 00344 LDA 01523 0 06 04327 ADD 01524 0 06 04327 ADD 01525 0 04 01546 STA 01525 0 04 01546 STA 01527 0 15 01551 STX 01527 0 15 01551 STX 01527 0 15 01551 STX 01530 -0 02 01545 REP LDA* 01531 -0 10 00670 JST* 01532 0 00 00000 DAC 01534 -0 10 00654 JST* 01535 -0 001546 IRS 01537 0 12 01546 IRS 01536 0 12 01546 IRS 01537 0 12 01546 IRS 01536 0 12 01546 IRS 01540 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01542 0 01 01533 JMP 01544 0 001434 BF0 DAC 01545 000000 ADBF BS2 01546 000000 BF BS2 01547 0 000021 BSTP DAC 01550 000000 X1 BS2 01551 000000 X1 BS2 01554 0 02 00641 LDA 01555 0 04 00037 STA 01555 0 04 00037 STA 01556 0 02 00642 LDA 01557 0 04 00037 STA 01560 0 02 04340 LDA 01561 100040 SZE 01562 -0 01 01572 JMP* 01563 0 02 04340 LDA</td> <td>01424 0 01 01423 JMP *-1 01425 0 01 01362 JMP ESBL 01430 000000 HCTS BSZ 1 01431 1 001514 AB48 DAC ABUF+48,1 01432 1 001435 DAC ABUF+1,1 01433 000000 BSZ 1 01434 000000 ABUF BSZ 48 01514 000000 ENS ESZ 1 * Analogue Data processing H314 * Update Analogue Data processing H314 * Update H314 scan VEC2=CL04 * * Update H314 scan VEC2</td>	01425 0 01 01362 01426 000000 HREG 01430 000000 HCTS 01431 1 001514 AB48 01432 1 001435 01433 000000 ABUF 01514 000000 ENS 01515 000000 STUP * Ana * Ana 01516 000401 A5A 01517 0 02 04327 01520 0 06 01544 01521 0 04 01545 01522 0 02 00344 01523 0 06 04327 01525 0 04 01545 01526 0 04 01545 01527 0 15 01551 01526 0 04 01546 01526 0 035 01550 01527 0 15 01551 01530 -0 02 01545 REP 01531 -0 10 00670 01533 0 000000 01534 -0 10 00674 01535 -0 001546 01536 0 12 01545 01537 0 12 01546 01540 0 12 01546 01541 0 12 01546 01541 0 12 01546 01542 0 01 01553 01542 0 01 01553 01543 0 01 01553 01544 0 001434 BF0 01544 0 001434 BF0 01545 000000 ADBF 01547 0 000021 BSTP 01550 000000 X1 01552 000000 X1 01552 000000 X1 01555 0 04 00034 01555 0 004 0034 01555 0 004 0034 01555 0 004 0035 0 02 04340 0 01557 0 0 01 01572 0 01 01572	01424 0 01 01423 JMP 01425 0 01 01362 JMP 01426 000000 HREG BSZ 01430 000000 HCTS BSZ 01431 1 001514 AB48 DAC 01432 1 001435 DAC 01433 000000 BSZ 01434 000000 ABUF BSZ 01514 000000 ENS BSZ 01515 000000 STUP BSZ 01515 000000 STUP BSZ 01517 0 02 04327 LDA 01520 0 06 01544 ADD 01521 0 04 01545 STA 01522 0 02 00344 LDA 01523 0 06 04327 ADD 01524 0 06 04327 ADD 01525 0 04 01546 STA 01525 0 04 01546 STA 01527 0 15 01551 STX 01527 0 15 01551 STX 01527 0 15 01551 STX 01530 -0 02 01545 REP LDA* 01531 -0 10 00670 JST* 01532 0 00 00000 DAC 01534 -0 10 00654 JST* 01535 -0 001546 IRS 01537 0 12 01546 IRS 01536 0 12 01546 IRS 01537 0 12 01546 IRS 01536 0 12 01546 IRS 01540 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01541 0 12 01546 IRS 01540 0 12 01546 IRS 01541 0 12 01546 IRS 01542 0 01 01533 JMP 01544 0 001434 BF0 DAC 01545 000000 ADBF BS2 01546 000000 BF BS2 01547 0 000021 BSTP DAC 01550 000000 X1 BS2 01551 000000 X1 BS2 01554 0 02 00641 LDA 01555 0 04 00037 STA 01555 0 04 00037 STA 01556 0 02 00642 LDA 01557 0 04 00037 STA 01560 0 02 04340 LDA 01561 100040 SZE 01562 -0 01 01572 JMP* 01563 0 02 04340 LDA	01424 0 01 01423 JMP *-1 01425 0 01 01362 JMP ESBL 01430 000000 HCTS BSZ 1 01431 1 001514 AB48 DAC ABUF+48,1 01432 1 001435 DAC ABUF+1,1 01433 000000 BSZ 1 01434 000000 ABUF BSZ 48 01514 000000 ENS ESZ 1 * Analogue Data processing H314 * Update Analogue Data processing H314 * Update H314 scan VEC2=CL04 * * Update H314 scan VEC2

1016						FHOE	
	01547	0 04 00307		STA	GOAD+1		
	01570	0 10 00104		JST	LNRA		
1018	01571	0 01 01113	8 III -	JMP	ACLK		
1019	01572	004013	CL03	OCT	4013		
	01573	000000	SCAN		1		
					and the second se		
	01574	0 10 03603	STP	JST	ERCL		
	01575	152306		BCI	1,TF		
1023	01576	0 000000	HTES	DAC	**		
1024	01577	0 02 04325		LDA	CTRS		
	01300	0 03 01677		ANA	=2		
				SNZ	-		
	01601	101040					
1027	01602	0 01 01305	i.	JMP	*+3		
1028	01603	0 10 00727		JST	MCX		
	01604	177775		DEC	-3		
	01605	0 02 04325		LDA	CTRS		
					=4		
	01606	0 03 01675		ANA	=4		
1032	01607	101040		SNZ			
1033	01610	0 01 01613		JMP	*+3		
	01611	0 10 00727		JST	MCX		
	01612	177776		DEC	-2		
	01613	0 02 04325		LDA	CTRS		
1037	01614	0 03 01673		ANA	=8		
	01615	101040		SNZ			
	01616	0 01 01621		JMP	*+3		
	01617	0 10 00727		JST	MCX		
	01620	177777		DEC	-1		
1042	01621	-0 01 01576		JMP*	HTES		
1043	01622	000000	MC1	BSZ	4		
	01626	000000	MC2	BSZ	4		
1045	01400	000000	MCO	DC7	4		
	01632	000000	MC3	BSZ	4		
1046	01632	000000	TZER		4		
			TZER *	BSZ	1		
1046			TZER *	BSZ	1	esponse code	
1046 1047 1048			TZER * * M68	BSZ 300 in	1 terrupts re		node
1046 1047 1048 1049			TZER * * M68 * CAL	BSZ 300 in _M=1 m	1 terrupts re eans M6800	in communication m	node
1048 1047 1048 1049 1050			TZER * * M68 * CAL * ie	BSZ 300 in _M=1 m	1 terrupts re eans M6800		node
1048 1047 1048 1049 1050 1051	01636	000000	TZER * * M68 * CAL * ie *	BSZ 300 in _M=1 m . ON o	1 terrupts re eans M6800	in communication m	node
1046 1047 1048 1049 1050 1051 1052	01636	000000	TZER * * M68 * CAL * ie	BSZ BOO in M=1 m ON O ENB	1 terrupts ro eans M6800 r OFF-line	in communication m	node
1046 1047 1048 1049 1050 1051 1052	01636	000000	TZER * * M68 * CAL * ie *	BSZ 300 in _M=1 m . ON o	1 terrupts re eans M6800	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053	01636 01637 01640	000000	TZER * * M68 * CAL * ie *	BSZ BOO in M=1 m ON O ENB	1 terrupts ro eans M6800 r OFF-line	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054	01636 01637 01640 01641	000000 000401 0 02 00001 100040	TZER * * M68 * CAL * ie *	BSZ 300 in "M=1 m . ON o ENB LDA SZE	1 terrupts re eans M6800 r OFF-line M680	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055	01636 01637 01640 01641 01642	000000 000401 0 02 00001 100040 0 01 02460	TZER * * M68 * CAL * ie *	BSZ 300 in "M=1 m . ON o ENB LDA SZE JMP	1 terrupts ro eans M6800 r OFF-line M680 CB22	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056	01636 01637 01640 01641 01642 01643	000000 000401 0 02 00001 100040 0 01 02460 54 1070	TZER * * M68 * CAL * ie *	BSZ 300 in _M=1 m . ON o ENB LDA SZE JMP INA	1 terrupts ro eans M6800 r OFF-line M680 CB22 DGIB	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057	01636 01637 01640 01641 01642 01643 01644	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643	TZER * * M68 * CAL * ie *	BSZ 300 in _M=1 m . ON o ENB LDA SZE JMP INA JMP	1 terrupts ro eans M6800 r OFF-line M680 CB22	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057	01636 01637 01640 01641 01642 01643	000000 000401 0 02 00001 100040 0 01 02460 54 1070	TZER * * M68 * CAL * ie *	BSZ 300 in _M=1 m . ON o ENB LDA SZE JMP INA	1 terrupts ro eans M6800 r OFF-line M680 CB22 DGIB	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058	01636 01637 01640 01641 01642 01643 01644 01645	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050	TZER * * M68 * CAL * ie *	BSZ 300 in "M=1 m • ON o ENB LDA SZE JMP INA JMP CAL	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059	01636 01637 01640 01641 01642 01643 01644 01645 01646	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572	TZER * M68 * CAL * ie * CB2	BSZ 300 in M=1 m ON o ENB LDA SZE JMP INA JMP CAL STA*	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	01636 01637 01640 01641 01642 01643 01643 01645 01645 01646 01647	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367	TZER * M68 * CAL * ie * CB2	BSZ 300 in M=1 m . ON o ENB LDA SZE JMP INA JMP CAL STA* STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	01636 01637 01640 01641 01642 01643 01644 01645 01645 01646 01647 01650	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021	TZER * * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA STA JST	1 terrupts ro eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	01636 01637 01640 01641 01642 01643 01643 01645 01645 01646 01647	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367	TZER * * M68 * CAL * ie * CB2	BSZ 300 in M=1 m . ON o ENB LDA SZE JMP INA JMP CAL STA* STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	01636 01637 01640 01641 01642 01643 01644 01645 01645 01645 01650 01651	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572	TZER * * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063	01636 01637 01640 01641 01642 01643 01644 01645 01646 01647 01650 01651 01652	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS IRS	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064	01636 01637 01640 01641 01642 01643 01643 01645 01645 01650 01651 01652 01653	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS IRS JMP	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20 CB1	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065	01636 01637 01640 01641 01642 01643 01644 01645 01645 01650 01651 01652 01653 01654	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666	T2ER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA STA STA IRS IRS JMP LDA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1065	01636 01637 01640 01641 01642 01643 01644 01645 01646 01646 01650 01651 01652 01653 01654 01655	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 01552	T2ER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA STA JST IRS IRS JMP LDA STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1065	01636 01637 01640 01641 01642 01643 01644 01645 01645 01650 01651 01652 01653 01654	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666	T2ER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA STA STA IRS IRS JMP LDA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1061 1062 1063 1064 1065 1065	01636 01637 01640 01641 01642 01643 01644 01645 01646 01646 01650 01651 01652 01653 01655 01655 01656	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 01552 0 02 02372	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS IRS IRS JMP LDA STA LDA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2	in communication m	node
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1064 1065	01636 01637 01640 01641 01642 01643 01644 01645 01645 01651 01651 01652 01653 01655 01655 01655 01655	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 01552 0 02 02372 0 04 02415	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS IRS JMP LDA STA STA STA STA STA STA STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2 REP1+3	in communication m	hode
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1057 1058 1059 1061 1062 1063 1064 1065 1065 1065 1065 1066 1065 1066 1065 1066 1065 1066 1065 1066 1065 1066 1065 1066 1065 1066 106 1066	01636 01637 01640 01641 01642 01643 01644 01645 01645 01650 01651 01652 01653 01655 01655 01655 01655 01655	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 02152 0 02 02372 0 04 02415 0 02 01671	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA* STA JST IRS JST IRS JMP LDA STA LDA STA LDA STA LDA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2 REP1+3 =1	in communication m	hode
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1064 1065 1066 1067 1068 1069 1070	01636 01637 01640 01641 01642 01643 01643 01644 01645 01646 01651 01651 01652 01653 01655 01655 01655 01655 01656 01657 01661	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 02151 0 02 01671 0 04 02151	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA JST IRS JMP LDA STA LDA STA LDA STA LDA STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2 REP1+3 =1 CALM	in communication m	hode
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071	01636 01637 01640 01641 01642 01643 01644 01645 01646 01645 01651 01652 01653 01655 01655 01655 01655 01655 01657 01660 01661 01662	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 02415 0 02 01671 0 04 02151 0 04 00001	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA STA IRS JST IRS IRS IRS JMP LDA STA LDA STA STA STA STA STA STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2 REP1+3 =1 CALM M680	in communication m	hode
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071	01636 01637 01640 01641 01642 01643 01643 01644 01645 01646 01651 01651 01652 01653 01655 01655 01655 01655 01656 01657 01661	000000 000401 0 02 00001 100040 0 01 02460 54 1070 0 01 01643 141050 -0 04 02572 0 04 02367 0 10 04021 0 12 02572 0 12 01552 0 01 02635 0 02 01666 0 04 02151 0 02 01671 0 04 02151	TZER * M68 * CAL * ie * CB2	BSZ BOO in M=1 m ON O ENB LDA SZE JMP INA JMP CAL STA JST IRS JMP LDA STA LDA STA LDA STA LDA STA	1 terrupts re eans M6800 r OFF-line M680 CB22 DGIB *-1 ABF0 CFLG+1 NCEK ABF0 CFLG+1 NCEK ABF0 A20 CB1 =-10 A20 REAL+2 REP1+3 =1 CALM	in communication m	node

- 310 -

PA	0		
200	1.1	~	

1073 01664 1074 01665 1075 01666 01667 01670 01671 01672 01673 01673 01674 01675 01676 01677	140040 0 01 02000 177766 000037 177720 000001 000066 000010 000063 000004 000063 000004 000060 000063	* JMP FIN	SEC2
1076 1077 1078 1079 02000 1080 02001 1081 02002 1082 02003 1083 02004 1084 02005 1085 02006 1085 02006 1086 02007 1087 02010 1088 02011 1089 02012 1090 02013 1091 02014	001700 0 04 03525 0 04 03523 0 04 03170 0 04 02566 0 04 02146 0 04 02147 0 04 02150 0 04 02567 0 04 02570 0 04 02571 0 04 02366 0 04 02366 0 04 01636 0 02 04324	BAS1 EQU ORG SETB SEC2 STA STA STA STA STA STA STA STA STA STA	* 12000 BAS2 TEST WAS XCAT PAS1 EFLG ERRM MCOD PAS2 PAS3 PAS4 CFLG ABIM TZER MACS
1093 02016 1094 1095 02017 1096 02020 1097 02021 1098 02022 1099 02023 1100 02024 1101 02025 1102 02026 1103 02027 1104 02030 1105 02031 1106 02032 1107 02033 1108 02034 1109 02035 1110 02035 1110 02036 1111 02037 1112 02040 1113 02041 1114 02042 1115 02043 1116 02044 1117 02045 1118 02046 1119 02047	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ANA SZE JMP LDA STA LDA ANA SNZ JMP LDA STA JMP	ABF0 MCTR =1 M1 =1 CFLG MCTR =2 *+4 =-3 ABIM M1+4 MCTR =4 *+4 =-2 ABIM M2+4 MCTR =8 =-1

1120 02050 0 0 02234 STA ABIM PAGE 1121 02051 0 01 02114 JMP M3+4 1122 02053 0 02 04312 ML AM TR 1123 02053 0 03 02711 ANA =2 1124 02054 101040 SNZ FILE F					
1139 02072 0 03 02707 ANA =4 1140 02073 101040 SNZ 1141 02075 0 10 02110 JMP M3 1141 02075 0 10 02110 JMP M3 1142 02075 0 02 02146 LDA EFLG 1143 02076 000004 SZE 4 144 1144 02077 0 02 02146 LDA EFLG 1145 02100 0 0102110 JMP M3 1144 02102 0 12 01626 JST CT2 1148 02103 0 004321 DAC MCTR+7 1150 02104 0 004321 DAC MCTR+7 1150 02107 0 00102152 JST ML61 1152 02107 0 00102152 JST ML61 1153 02110 0 0 02130 JST 1156 021	1121 02051 1122 02052 1123 02053 1124 02054 1125 02055 1126 02056 1127 02057 1128 02060 1129 02061 1130 02062 1131 02063 1132 02064 1133 02065 1134 02066 1135 02067 1136 02070	0 01 02114 0 02 04312 M1 0 03 02711 101040 0 01 02071 0 10 02130 000002 0 02 02146 100040 0 01 02071 0 12 01622 0 10 00506 0 004317 0 004316 0 10 02152 0 001026	JMP LDA ANA SNZ JMP JST DEC LDA SZE JMP IRS JST DAC DAC JST	M3+4 MCTR =2 M2 CHEC 2 EFLG M2 MC1 CT1 MCTR+5 MCTR+4 ML61	PAGE
1141 02074 0 01 02110 JMP M3 1142 02075 0 10 02130 JST CHEC 1143 02075 0 00004 DEC 4 1144 02077 0 02 02146 LDA EFLG 1144 02070 0 02 02146 LDA EFLG 1145 02101 0 01 02110 JMP M3 1147 02102 0 12 01626 JST CT2 1148 02103 0 10 00526 JST CT2 1149 02104 0 004321 DAC MCTR+7 1150 02105 0 04320 DAC MCTR+6 1151 02106 0 10 02152 JST ML61 1152 02107 0 001057 DAC TIM2 1153 02112 101040 SN2 SN2 1155 02113 0 10 02435 JMP CB1 1157 02114 0 10 02130 JST CHEC 1158 02115 000010 DEC 8 1150 02114 00	1139 02072	0 02 04312 M2 0 03 02707	ANA		
1162 02121 0 12 01632 IRS MC3 1163 02122 0 10 00546 JST CT3 1164 02123 0 004323 DAC MCTR+9 1165 02124 0 004322 DAC MCTR+9 1165 02125 0 10 02152 JST ML61 1167 02126 0 001110 DAC TIM3 1168 02127 0 01 02635 JMP CB1 1169 *	1142 02075 1143 02076 1144 02077 1145 02100 1146 02101 1147 02102 1148 02103 1149 02104 1150 02105 1151 02106 1152 02107 1153 02110 1154 02111 1155 02112 1156 02113 1157 02114 1158 02115 1159 02116 1160 02117 1161 02120	0 10 02130 000004 0 02 02146 100040 0 01 02110 0 12 01626 0 10 00526 0 004321 0 004320 0 10 02152 0 001057 0 02 04312 M3 0 03 02705 101040 0 01 02635 0 10 02130 000010 0 02 02146 100040	JMP JST DEC LDA SZE JMP IRS JST DAC DAC JST DAC LDA SNZ JMP JST DEC LDA SZE	CHEC 4 EFLG M3 MC2 CT2 MCTR+7 MCTR+6 ML61 TIM2 MCTR =8 CB1 CHEC 8 EFLG	
1169 * 1170 * Check for doubly specified counters 1171 * 1172 02130 0 000000 CHEC DAC ** 1173 02131 0 02 00632 LDA CAL0 1174 02132 101040 SNZ 1175 02133 0 01 02144 JMP *+9	1162 02121 1163 02122 1164 02123 1165 02124 1166 02125 1167 02126	0 12 01632 0 10 00546 0 004323 0 004322 0 10 02152 0 001110	IRS JST DAC DAC JST DAC	MC3 CT3 MCTR+9 MCTR+8 ML61 TIM3	
* 1172 02130 0 000000 CHEC DAC ** 1173 02131 0 02 00632 LDA CAL0 1174 02132 101040 SNZ 1175 02133 0 01 02144 JMP *+9	1169	*			specified southers
1173 02131 0 02 00632 LDA CAL0 1174 02132 101040 SNZ 1175 02133 0 01 02144 JMP *+9		*			specified counters
1175 02133 0 01 02144 JMP *+9	1173 02131 1174 02132	0 02 00632	LDA		
	1175 02133	0 01 02144	JMP		

1177 02135	0 00 04005	*	-	OTDO			PAGE	22
1178 02135	0 03 04325		ANA SNZ	CTRS				
1179 02137	0 01 02144		JMP	*+5				
1180 02140	0 02 02712		LDA	=1				
1181 02141	0 04 02146		STA	EFLG				
1182 02142	0 04 02147		STA	ERRM				
1183 02143	0 04 02150		STA	MCOD				
1184 02144	0 12 02130		IRS	CHEC				
1185 02145 1186 02146	-0 01 02130 000000		JMP*	CHEC				
1187 02147	000000	EFLG		1				
1188 02150	000000	MCOD		1				
1189 02151	000000	CALM		1				
1190		*						
1191 02152	0 000000	ML61	DAC	**				
1192 02153	0 02 00061		LDA	161				
1193 02154 1194 02155	-0 35 02152 1 04 00000		LDX*	ML61				
1195 02156	0 12 02152		STA	0,1 ML61				
1196 02157	-0 01 02152		JMP*	ML61				
1197		*						
1198		* CA2	2 Inter	rrupt r	espons	e:in a	M6800 p	rocess
1199							s Analog	
1200							rest jus	
1201 1202					.Count	er inpu	uts are	scan
1203		* *	.21 14	any				
1204 02160	000401	CA2	ENB					
1205 02161	0 02 04221		LDA	PAS				
1206.02162	100040		SZE					
1207 02163	0 01 03576		JMP	CA2C				
1208 02164	0 02 02365		LDA	XXX				
1209 02165	101040 0 01 02646		SNZ JMP	CA2R				
1211 02167	0 10 03076		JST	GRAF				
1212 02170	0 02 02366		LDA	CFLG				
1213 02171	0 11 02703		CAS	=0				
1214 02172	0 01 02446		JMP	Y123				
1215 02173	0 10 03246		JST	A15				
1216 02174 1217 02175	101000	0400	NOP					
1218 02176	140040 0 35 02702	CA2S	LDX	=-48				
1219 02177	-0 04 02276		STA*	ABM				
1220 02200	0 12 00000		IRS	0				
1221 02201	0 01 02177		JMP	*-2				
1222 02202	0 02 04313		LDA	MCTR+1				
1223 02203	140407		TCA					
1224 02204	0 04 02275		STA	MCTS				
1225 02205	0 02 04315		LDA	MCTR+3				
1228 02208	0 06 02277 0 04 02300		ADD STA	ABM+1 ABM+2				
1228 02210	0 02 04315		LDA	MCTR+3				
1229 02211	0 07 04314		SUB	MCTR+2				
1230 02212	141206		AOA					
1231 02213	140407		TCA					
1232		*						
1233		* San	pling	spaced	over	subinte	rvals o	f 20ms.
			14	a training the line of the				

- 312 -

1234			* * Ef	fect	of a simple	e filter.	PAGE Maximum e	23 nsemble
1236	5		* A(* is	5).Up	is 32.Dynar per limit 023 sin	in 16-bit	integer	in buffer
	02214	001001	*	INH				
1240	02215	0 04 02574	MPC1	STA	CHXM			
	02218	0 04 02361		CRA STA	ENSM			
	02220	0 02 00061		LDA	61			
	02221	0 04 02273		STA	MREG			
	02222	0 02 00061		LDA	61			
	02223	0 04 02274 0 05 02273		STA ERA	MREG+1 MREG			
	02225	101040		SNZ	MREG			
	02226	0 01 02222		JMP	* -4			
	02227	0 35 02574	ESBM		CHXM			
	02230 02231	0 02 04314		LDA	MCTR+2			
	02232	0 02 02362		STA	SETW SETW			
	02233	74 0170		OTA	ANAG			
	02234	0 01 02233		JMP	*-1			
	02235 02236	14 0070		OCP	DATA		10	
	02238	140040 54 0070		CRA INA	DATA			
	02240	0 01 02237		JMP	*-1			
1260		0404 72		LGR	6 .			
1261	02242	-0 06 02300		ADD*	ABM+2			
1263		0 12 02362		STA*	ABM+2 SETW			
	02245	0 12 00000		IRS	0			
	02246	0 01 02232		JMP	MUXM			
	02247	0 12 02361	MPC2		ENSM			
1268		0 02 02701 0 07 02361		LDA SUB	=31 ENSM			
	02252	101400		SMI	ENSPI			
	02253	0 01 02255		JMP	*+2			
1271		0 01 02261		JMP	*+5			
	02255	0 02 00061 0 05 02274		LDA	161			
	02257	101040		ERA SNZ	MREG+1			
	02260	0 01 02266		JMP	DLYM			
	02261	0 02 02361		LDA	ENSM			
	02262	-0 10 04013		JST*	MC12			
	02263	-0 10 04016		JST* DAC*	MH22			
	02265	0 01 02374		JMP	REP1+3 A9			
1281	02266	0 02 02275	DLYM		MCTS			
	02267	0 04 02273		STA	MREG			
	02270	0 12 02273		IRS	MREG			
	02271	0 01 02270 0 01 02227		JMP JMP	*-1 ECOM			
	02273		MREG		ESBM 2			
1287	02275	000000	MCTS		1			
	02276	1 002361	ABM	DAC	MBUF+48,1			
	02277	1 002302		DAC	MBUF+1,1			
1270	02300	000000		BSZ	1			

- 313 -

*

4

			*			PAGE	
1291	02301	000000		BSZ	48	FHUE	24
	02361	000000		1 BSZ	1		
	02362	000000		BSZ	i		
	02363	000000		BSZ			
	02364	000000		BSZ	1		
	02365	000000			1		
	02366	000000	XXX	BSZ	1		
	02370			BSZ	2		
	02372	000000	REAL	BSZ	2		
		0 002370		DAC	REAL		
1301	02373	0 002361		DAC	ENSM		
1302			*				
1303			* 1+	A(12)	=1 variable	s stored in BASI	С
1304			* 8-	array	as wellIn	dex register can	't be
1305			* US	ed as	a counter h	ere used in M	aths
1306				utines	• • •		
	02374	000404	*	1			
		000401	A9	ENB			
	02375	0 02 04340		LDA	CTRS+11		
	02376	101040		SNZ			
	02377	0 01 02404		JMP	*+5		
1311	02400	0 02 00344		LDA	PARS+1		
	02401	0 06 04314		ADD	MCTR+2		
	02402	0 06 04314		ADD	MCTR+2		
	02403	0 04 02455		STA	ABF4		
	02404	0 02 04314		LDA	MCTR+2		
	02405	0 06 02453		ADD	BFM		
	02406	0 04 02454		STA	ABF2		
	02407	0 35 02574		LDX	CHXM		
	02410	0 15 02452		STX	CHNO		
	02411	0 15 02363		STX	XCTR		
	02412	-0 02 02454	REP1	LDA*	ABF2		
	02413	-0 10 04013		JST*	MC12		
	02414	-0 10 04017		JST*	MD22		
	02415	0 000000		DAC	**		
	02416	0 04 02456		STA	AAA		
	02417	000201		IAB			
	02420	0 04 02457		STA	BBB		
	02421	0 02 04340		LDA	CTRS+11		
	02422	101040		SNZ			
	02423	0 01 02433		JMP	OSAI		
	02424	0 02 02457		LDA	BBB		
	02425	000201		IAB			
	02426	0 02 02456		LDA	AAA		
	02427	-0 10 04016		JST*	MH22		
	02430	-0 002455		DAC*	ABF4		
	02431	0 12 02455	-	IRS	ABF4		
	02432	0 12 02455		IRS	ABF4		
	02433	0 02 02457	OSAI	LDA	BBB		
	02434	000201		IAB			
	02435	0 02 02456		LDA	AAA		
	02436	-0 10 04014		JST*	MC21		
	02437	-0 04 02454		STA*	ABF2		
1343		0 12 02454		IRS	ABF2		
1344		0 12 02363		IRS	XCTR		
1345		0 01 02412		JMP	REP1		
	02443	0 02 04314		LDA	MCTR+2		
1347	02444	0 06 02453		ADD	BFM		
		•		and the second se			

- 314 -

×

PAGE 25

134 135 135 135 135 135 135 135 135	8 02445 9 02446 0 02447 1 02450 2 02451 3 02452 4 02453 5 02454 6 02455 7 02456 3 02457 9	0 04 02454 140040 0 04 02365 0 12 01636 0 01 02646 000000 0 002301 000000 000000 000000 000000	Y123	STA IRS JMP BSZ DAC BSZ	ABF2 XXX TZER CA2R 1 MBUF 1 1 1 1	PAGE	25
1360 1361 1362 1363	2		* in * tha	M6800	ntrol output to H316 data 4=1 in the la	routine also u transfer except tter case	ised
1364 1365 1366	02460 02461 02462	54 1070 0 01 02460 141050	* CB22	INA JMP CAL	DGIB *-1		
1368	7 02463 8 02464 9 02465 9 02466	0 04 02367 0 04 00000 000201 0 10 04021		STA STA IAB	CFLG+1 0		
1371 1372 1373	02467 02470 02471	0 02 02566 100040 0 01 02540		JST LDA SZE JMP	NCEK PAS1 PROC		
1375	02472 02473 02474 02475	0 02 04043 101040 0 01 02502 000201		LDA SNZ JMP IAB	F254 *+6		
1378 1379 1380	02476 02477 02500	140407 0 04 04042 0 04 02565		TCA STA STA	N254 CHAN		
1383	02501 02502 02503 02504	0 01 02504 0 02 00000 0 04 02565 0 12 02566		JMP LDA STA IRS	*+3 0 CHAN PAS1		
1385 1386	02505	0 01 02635		JMP	CB1		
1387 1388 1389 1390 1391			* err * MFI	or con N sets	ans over or an dition in M68 s all relevant at M6800 commu	ny other known 300 Executive t flags for unication	
1393	02506 02507	0 000000 I 001001	MFIN I	DAC	**		
1395	02510 02511	0 02 01622 100040		_DA SZE	MC1		
1397	02512	14 0570 0 02 01626	1	DCP DA	SET1 MC2		
1399	02514 02515 02516	100040	(SZE DCP	SET2		
1401	02517	0 02 01632	9	DA SZE	MC3		
1403	02520	14 0370 140040	0	OCP CRA	SET3		
1404	02522	0 04 01622	5	STA	MC1		

1405 02523	0 04 01626	STA	MC2
1406 02524		STA	MC3
1407 02525	0 04 04043	STA	F254
1408 02526		STA	PAS
1409 02527	0 04 04222	STA	UMNO
1410 02530	0 04 03171	STA	XXX2
1411 02531	0 04 04217	STA	MIC
1412 02532		STA	
1413 02533	0 04 02366	STA	CALM
1414 02534			CFLG
1415 02535		STA	M680
1416 02536		STA	ERRM
1417 02537		ENB	
1418		JMP*	MFIN
	*		
	0 02 02567 P		PAS2
1420 02541	100040	SZE	
1421 02542	0 01 02547	JMP	LSBY
1422 02543		SBY IAB	
1423 02544	0 04 02556	STA	UNEW
1424 02545	0 12 02567	IRS	PAS2
1425 02546	0 01 02635	JMP	CB1
1426 02547	000201 L:	SBY IAB	
1427 02550	141340	ICA	
1428 02551	000201	IAB	
1429 02552	0 02 02556	LDA	UNEW
1430 02553	0410 70	LLL	8
1431 02554	0 04 02556	STA	UNEW
1432 02555	0 10 02575	JST	
1433 02556		NEW BSZ	UOUT 1
1434 02557	0 02 04043	LDA	the same second second
1435 02560	101040	SNZ	F254
1436 02561	0 04 02566	STA	DACI
1437 02562	140040	CRA	PAS1
1438 02563	0 04 02567	STA	0400
1439 02564	0 01 02635	JMP	PAS2
1440 02565			CB1
1441 02556			1
1442 02567			1
1443 02570			1
1444 02571		S3 BSZ	1
1445 02572		S4 BSZ	1
1446 02573		FO BSZ	1
1447 02574		F3 BSZ	1
1448		XM BSZ	1
	*		
		UT DAC	**
1450 02576	0 02 04043	LDA	F254
1451 02577	100040	SZE	
1452 02600	0 01 02615	JMP	UDAT
1453 02601	-0 02 02575	LDA* ,	UOUT
1454 02602	0415 77	ALS	1
1455 02603	000201	IAB	
1456 02604	0 02 02565	LDA	CHAN
1457 00205	001001		Constant of the second second

INH

LRL

IAB

OTA

JMP

DGOA

*-1

4

*

1405 02523 0 04 01424

1457 02605

1458 02606

1459 02607

1460 02610

1461 02611

001001

0400 74

74 1370

0 01 02610

000201

PAGE

- 317 -

. .

1462 02612 1463 02613 1464 02614 1465	0 12 02575	* ENE IRS JMP	UOUT	PAGE
1466 1467			00 data	transfer,come here.
1468 02615 1469 02616 1470 02617 1471 02620 1472 02621 1473 02622 1474 02623 1475 02624	-0 02 02575 -0 04 04044 0 12 04044 0 12 02575 0 12 02565 -0 01 02575 140040 0 04 04043	~	* UOUT * BUFA BUFA UOUT CHAN * UOUT	
1476 02625 1477 02626 1478 02627 1479 02630 1480 02631	0 04 02566 0 04 02567 0 02 02634 0 04 00306 0 02 04400	STA STA LDA STA LDA	PAS1 PAS2 VEC1 GOAD MDAC	
1481 02632 1482 02633	0 04 04044 0 01 02635	STA JMP	BUFA CB1	
1483 02634 1484	0 004045 (VECI DAC	B254	
1485 1486	*	• Output	CB1 1ow	the CB2 acknowledge
1487 02635 1488 02636	140040 C	BI CRA		
1489 02637	140500 74 1270	SSM OTA	DGOB	
1490 02640 1491 02641	0 01 02637 140100	JMP	*-1	
1492 02642	74 1270	SSP OTA	DGOB	
1493 02643 1494 02644	0 01 02642	JMP	*-1	
1495 02645	0 10 00160 0 01 01637	JST JMP	LNRE	
1496	*		CB2	
1497 1498	*	Send DA	TA bytes	to M6800 now
1499 02646	0 02 02364 Cr	A2R LDA	ABIM	
1500 02647 1501 02650	101040 0 01 03126	SNZ		
1502 02651	0 11 02706	JMP CAS	CA20 =-2	
1503 02652	0 01 03050	JMP	CA23	
1504 02653 1505 02654	0 01 03031 0 02 02570 CA	JMP	CA22	
1506 02655	100040	A21 LDA SZE	PAS3	
1507 02656 1508 02657	0 01 02664	JMP	*+6	
1509 02660	0 02 03526 0 04 03524	LDA	MIN3	
1510 02661	0 12 02570	STA IRS	WAS+1 PAS3	
1511 02662 1512 02663	0 02 03527	LDA	Ci	
1513 02664	0 04 02573 0 10 03460	STA	ABF3	
1514 02665	0 02 01626	JST LDA	CDAT MC2	
1515 02666 1516 02667	101040	SNZ		
1517 02670	0 12 02364	JMP I RS	*+3 ABIM	
1518 02671	0 01 03532	JMP	CAI	

PAGE 28

1519 02672 1520 02673 1521 02674 1522 02675 1523 02676 1524 02677 1525 02700 1526 02701 02702 02703 02704 02705 02706 02707 02710 02711 02712	* 0 02 01632 101040 0 01 02700 0 12 02364 0 12 02364 0 01 03532 0 01 03000 000037 177720 000000 177777 000010 177776 000004 177775 000002 000001	LDA SNZ JMP I RS JMP JMP FIN	MC3 *+4 ABIM CA1 YYY
1527 1528 1529 1530	002713 BAS2	EQU ORG SETB	* 13000 BAS3
1531 03000 1532 03001 1533 03002 1534 03003 1535 03004 1536 03005 1537 03006 1538 03007 1539 03010 1540 03011 1541 03012 1542 03013	0 02 02366 YYY 101040 0 01 03026 0 02 01622 100040 0 01 03015 0 02 01626 100040 0 01 03020 0 02 01632 100040 0 01 03023	LDA SNZ JMP LDA SZE JMP LDA SZE JMP LDA SZE JMP	CFLG VIAX MC1 MCP1 MC2 MCP2 MC3 MCP3
1544 03015 1545 03016 1546 03017 1547 03020 1548 03021 1549 03022 1550 03023 1551 03024 1552 03025	000000 HALT 0 02 03667 MCP1 0 04 03170 0 10 04235 0 02 03666 MCP2 0 04 03170 0 10 04235 0 02 03665 MCP3 0 02 03665 MCP3 0 04 03170 0 10 04235	HLT LDA STA JST LDA STA JST LDA STA JST	=-3 XCAT XXX1 =-2 XCAT XXX1 =-1 XCAT XXX1
1553 03026 1554 03027 1555 03030 1556 1557 03031 1558 03032 1559 03033 1560 03034 1561 03035 1562 03036	140040 VIAX 0 04 03170 0 10 04235 * 0 02 02570 CA22 100040 0 01 03041 0 02 03526 0 04 03524	CRA STA JST LDA SZE JMP LDA STA	XCAT XXX1 PAS3 *+6 MIN3 WAS+1
1562 03038 1563 03037 1564 03040 1565 03041	0 02 03530 1 0 04 02573 9	IRS LDA STA JST	PAS3 C2 ABF3 CDAT

			*				DACE	
1566 0		0 02 010	532	LDA	МСЗ		PAGE	29
1567 0	3043 1	01040		SNZ				
1568 0		0 01 030)47	JMP	*+3			
1569 0	3045 0		364	IRS	ABIM			
1570 0		01 035	532	JMP	CAI			
1571 0		01 030		JMP	YYY			
1572			*					
1573 0		02 025	70 CA2	3 LDA	PAS3		1 N 1	
1574 0	3051 1	00040		SZE	1400			
1575 0:		01 030	60	JMP	*+6			
1576 0	3053 0			LDA	MIN3			
1577 0:				STA	WAS+1			
1578 0:				IRS	PAS3			
1579 0:				LDA	C3			
1580 03				STA	ABF3			
1581 03		10 034	30	JST	CDAT			
1582 03	3061 0			JMP	YYY			
1583			*					
1584			* M	ERR ro	utine ch	erke for a	rror condit	
1585			* I-	f found	1.modify	CUPPOPT P	YTE and next	ION
1586			* f	or M680	00 decor	lino 2 o	rrors detec	t
1587			* F(RTRAN	library	counter -	ispecificat	table
1588			* ai	d DATA	A hyta)	1022 for	analogue i/p	INN
1589			*	O PHIL	- byte /	1023 for .	analogue i/p	P
1590 03	062 0	000000	MERE	R DAC	**			
	063 0	02 0317	71	LDA	XXX2			
1592 03	064 10	00040		SZE				
1593 03		01 0307	74	JMP	*+7			
1594 03	066 0	02 0214		LDA	ERRM			
1595 03	067 10	01040		SNZ	LINKIT			
1596 03	070 0	01 0307	74	JMP	*+4			
1597 03	071 -0	35 0304		LDX*	MERR			
1598 03	072 1	02 0000		LDA	0,1			
1599 03	073 0	04 0352		STA	BYTE			
1600 03	074 0	12 0308		IRS	MERR			
1601 03	075 -0	01 0306	2	JMP*	MERR			
1602			*	0111 ~	HERR			
1603			* Ac	tivate	1M4800	Graphical	if required	
1604			* ie	. when	A(12)=:	1 or apriles	it required	••
1605			*			••		
1606 030		000000	GRAF	DAC	**			
1607 030	077 0	02 0434	0	LDA	CTRS+11			
1608 03:	100 10	1040		SNZ	0	Hadd Transf		
1609 031		01 0307	6	JMP*	GRAF			
1610 031		12 0063		IRS	ARRO			
1611 031	103 -0	01 0307	6	JMP*	GRAF			
1612 031	104 0	02 0026	5	LDA	IFLG			
1613 031	05 10	1040		SNZ	1110		1	
1614 031	0 201	01 0311	2	JMP	PLOT			
1615 031		02 0312		LDA	VEC4			
1616 031		04 0031		STA	GOAD+3			
1617 031		01 0307		JMP*	GRAF			
1618 031	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	02 0312		LDA	VEC3			
1619 031		04 00310)	STA	GOAD+2			
1620 031		12 0026	5	IRS				
1621 031		02 04325	5		IFLG	1		
1622 031		0407		LDA	CTRS			
		- 107		TCA				

a ta and a second second		*				PAGE	30
1623 03117		3	STA	ARRO		THOL	30
1624 03120	-0 01 0307		JMP*				
1625 03121							
1626 03122			B DAC	GRF1			
	0 003124	VEC4	1 DAC	GRF2			
1627		*					
1628 03123	0 01 0155	3 GREI	IMD	~7			
1629			UNF	A7			
1630 03124	0 10 0010	*					
		3 GRF2	2 JST	ERCL			
1631 03125	143705		BCI	1,GE			
1632		*		-,			
1633			11				
1634		* FO	IIIOWI	ng rout	tine used in	n M6800 scan	and
1635		* 10	H316	to M68	300 data tr.	ansfer PA	AS=1
		* or	2 in	M6800	off-line mo	nde !	
1636		*					
1637 03126	0 02 03525	5 CA20	100	TEST			
1638 03127	100040			1201			
1639 03130	0 01 03141		SZE				
1640 03131	0 01 03141		JMP	LSBE			
	-0 02 02454	4	LDA*	ABF2			
1641 03132	141140		ICL	2. 1			
1642 03133	0 04 03521		STA	BYTE			
1643 03134	0 10 03062		JST				
1644 03135	0 003236			MERR			
1645 03136			DAC	C200			
	140040		CRA				
1646 03137	0 12 03525		IRS	TEST			
1647 03140	0 01 03532	2	JMP	CA1			
1648 03141	-0 02 02454	LSBE	I DA¥	ABF2			
1649 03142	141050		CAL	HOF Z			
1650 03143	0 04 03521						
			STA	BYTE			
1651 03144	0 10 03062		JST	MERR	A CONTRACTOR		
1652 03145	0 002150		DAC	MCOD			
1653 03146	0 02 02147		LDA	ERRM			
1654 03147	100040			EKKI			
1655 03150			SZE				
	0 10 02506		JST	MFIN			
1656 03151	140040		CRA				
1657 03152	0 04 03525		STA	TEST			
1658 03153	0 12 02454		IRS	ABF2			
1659 03154	0 12 02452						
1660 03155			IRS	CHNO			
	0 01 03532		JMP	CAI			
1661 03156	0 02 04221		LDA	PAS			
1662 03157	101040		SNZ				
1663 03160	0 01 03172		JMP	DUTM			
1664 03161	0 12 04221			PNIM			
1665 03162	0 12 04221		IRS	PAS			
	0 01 03532		JMP	CA1			
1666-03163	140040	PSRM	CRA				
1667 03164	0 04 04217		STA	MIC			
1668 03165	0 04 04221						
1669 03166	0 04 04221		STA	PAS			
	0 04 04220		STA	MCA			
1670 03167	-0 01 01572		JMP*	CL06			
1671 03170	000000	XCAT I	BSZ	1			
1672 03171	000000	XXX2		i			
1673		*		•			
1674							
1675		* Ret	urn af	ter CA	LL(4, I, M, D(0))	
		*					
1676 03172	0 02 03171	PNIM I	DA	XXX2		Sond Frank	- 1
1677 03173	100040		SZE		1	Send Ensemi	DIE
1678 03174	0 10 04235			vvv.		number to	
1679 03175	0 02 02571			XXX1		micro.	
	0 02 025/1	L	DA	PAS4			

- 320 -

			*			PAGE
	03176	100040		SZE		
1681		0 01 03206		JMP	*+7	
	03200	0 02 03665		LDA	=-1	
	03201	0 04 02452		STA	CHNO	
	03202	0 12 02571		IRS	PAS4	
	03203	0 02 02373		LDA	REAL+3	
	03204	0 04 02454		STA	ABF2	
	03205	0 01 03532		JMP	CAI	
	03206	140040		CRA		
	03207	0 04 02571		STA	PAS4	
1690	00010		*			
	03210	0 02 04312		LDA	MCTR	
	03212	0 03 03664		ANA	=2	
		101040 0 01 03217		SNZ		
	03213	0 02 03667		JMP	*+4	
	03215	0 04 02364		LDA	=-3	
	03216	0 01 03532		STA JMP	ABIM	
1698	03210	0 01 03532	*	JUNE	CAI	
	03217	0 02 04312	*	LDA	MCTR	
	03220	0 03 03663		ANA	=4	
1701	03221	101040		SNZ	-4	
	03222	0 01 03226		JMP	*+4	
	03223	0 02 03666		LDA	=-2	
	03224	0 04 02364		STA	ABIM	
	03225	0 01 03532		JMP	CAI	
1706			*			
1707	03226	0 02 04312		LDA	MCTR	
	03227	0 03 03662		ANA	=8	
	03230	101040		SNZ		
	03231	0 01 03235		JMP	222	
1711	03232	0 02 03665		LDA	=-1	
	03233	0 04 02364		STA	ABIM	
	03234	0 01 03532		JMP	CA1	
	03235	0 10 04235	ZZZ	JST	XXX1	
	03236	000200	C200	OCT	200	
	03237	0 003240	CADR		C123	
1718	03240	000000	C123	BSZ	6	
1719			*			
1720					unter(s) routines .	
1721				(2)=1.	ed in BASIC B-arra	y 1+
1722			* = ()	12/-1.		
	03246	0 000000	A15	DAC	**	
		0 02 02146	HIJ	LDA	EFLG	
	03250	100040		SZE	EFLO	
	03251	-0 01 03246		JMP*	A15	
	03252	0 02 01622		LDA	MC1	
	03253	101040		SNZ	nei	
	03254	0 01 03326		JMP	A16	
	03255	001001		INH		
	03256	140040		CRA		
	03257	54 0470		INA	CTR1	
	03260	0 01 03257		JMP	*-1	
	03261	0 04 01624			MC1+2	
	03262	000201		IAB		
	03263	0 02 04317			MCTR+5	

						×			
	1737	03264	7	4 0	570		OTA	SET1	
	1738	03265	0	01	03264		JMP	*-1	
	1739	03266	0	004	01		ENB	a sector	
	1740	03267	0	02	04340		LDA	CTRS+11	ſ
	1741			010			SNZ		
	1742		0	01	03275		JMP	*+4	
	1743		0	02	00344		LDA	PARS+1	
	1744		0	06	03661		ADD	=96	
	1745	03274	0	01	03276		JMP	*+2	
	1746	03275	0	02	03237		LDA	CADR	
	1747	03276	0	04	03316		STA	MB48	
	1748	03277	1.	404			OCT	140442	
	1749	03300	0	04	03306		STA	MB49	
	1750	03301		404			OCT	140442	
	1751	03302			03323		STA	MB50	
	1752	03303		0020			IAB		
	1753				04013		JST*	MC12	
	1754				04016		JST*	MH22	
	1755	03306	0		0000	MB49		**	
	1756	03307	õ		01027	11047	LDA	Î TM1	
	1757		õ	10	03513		JST	CZER	
	1758	03311	0		01623		STA	MC1+1	
	1759			10	04013		JST*	MC12	
	1760	03313		10	04017		JST*	MD22	
	1761	03314	õ		646		DAC	F50	
	1762				04016		JST*	MH22	
	1763		Ō		0000	MB48	DAC	**	
	1764	03317			01030	110 10	LDA	FLG1	
	1765	03320	0		01625		STA	MC1+3	
	1766	03321			04013		JST*	MC12	
	1767	03322			04016		JST*	MH22	
	1768	03323	0		0000	MB50	DAC	**	
	1769	03324		1004			CRA		
	1770	03325	0		01030		STA	FLG1	
	1771					*	• • • • •		
	1772	03326	0	02	01626		LDA	MC2	
	1773			104			SNZ	1102	
	1774	03330			03402		JMP	A17	
	1775	03331		100			INH		
	1776	03332		1004			CRA		
	1777	03333		06			INA	CTR2	
	1778	03334			03333		JMP	*-1	
	1779	03335			01630		STA	MC2+2	
	1780	03336		020			IAB	1102.2	
	1781	03337			04321		LDA	MCTR+7	
	1782	03340		07			OTA	SET2	
	1783	03341			03340		JMP	*-1	
	1784	03342		040			ENB	~-1	
		03343			04340		LDA	CTRS+11	
		03344		104			SNZ	CIRSTII	
		03345			03351		JMP	*+4	
		03346			00344		LDA	PARS+1	
		03347			03660		ADD	=102	
		03350			03352		JMP		
		03351			03237			*+2	
		03352			03237		LDA	CADR	
		03352		044			STA	MB51	
-		03333	14	044	2		ост	140442	

1794	03354	0	0.4	0336	*	OTA	MOEO
	03355		404		2	STA	MB52
1796				0337	7	OCT	140442
1797	A SALE OF SALES AND A SALES AND A SALES		002		·	STA IAB	MB53
1798		-0		04013		JST*	MOLO
1799		-0		0401		JST*	
1800				0000	MB52		MH22 **
1801	03363	0		0106		LDA	ITM2
	03364	0		03513		JST	CZER
	03365	õ		0162		STA	MC2+1
	03366	-0		04013		JST*	
	03367			04013		JST*	
	03370			0646	- Think	DAC	F50
	03371			0401	4	JST*	MH22
	03372			0000	MB51	DAC	**
	03373			0106		LDA	FLG2
	03374			01631		STA	MC2+3
1811	03375			04013		JST*	
	03376			04016		JST*	
	03377			0000	MB53		**
	03400		400			CRA	
1815	03401			01061		STA	FLG2
1816					*		
1817	03402		004		A17	ENB	
	03403			01632	2	LDA	MC3
	03404		010			SNZ	
	03405			03246	5	JMP*	A15
	03406		010			INH	
	03407		400			CRA	
	03410			270		INA	CTR3
	03411			03410		JMP	*-1
	03412			01634	a second	STA	MC3+2
	03413		0020			IAB	
	03414			04323	•	LDA	MCTR+9
	03415 03416		4 03			OTA	SET3
	03418		01	03415	,	JMP	*-1
	03420			04340		ENB	CTRCLLL
	03420		02			LDA SNZ	CTRS+11
	03422		01	03426		JMP	*+4
	03423	0		00344		LDA	PARS+1
	03424			03657		ADD	=108
	03425	õ	01			JMP	*+2
	03426			03237		LDA	CADR
	03427			03447		STA	MB54
	03430		4044			OCT	140442
	03431			03437		STA	
	03432		4044			OCT	MB55 140442
	03433			03454		STA	
	03434		0020			IAB	MB56
	03435			04013		JST*	MC12
	03436			04015		JST*	MH22
	03437	õ		0000	MB55	DAC	**
	03440	õ		01111		LDA	I TM3
	03441	ō		03513		JST	CZER
	03442	0		01633		STA	MC3+1
	03443	-0		04013		JST*	MC12

PAGE

		*	
1851 03444	-0 10 04017	JST* MD22	
1852 03445	0 000646	DAC F50	
1853 03446	-0 10 04016	JST* MH22	
		MB54 DAC **	
1854 03447		LDA FLG3	
1855 03450	0 02 01112		
1856 03451	0 04 01635	STA MC3+3	
1857 03452	-0 10 04013	JST* MC12	
1858 03453	-0 10 04016	JST* MH22	
1859 03454	0 000000 1	MB56 DAC **	
1860 03455	140040	CRA	
	0 04 01112	STA FLG3	
1861 03456		JMP* A15	
1862 03457	-0 01 03246		
1863		*	
1864 03460	0 000000	CDAT DAC **	
1865 03461	0 02 03523	LDA WAS	
1866 03462	100040	SZE	
1867 03463	0 01 03473	JMP LSB	
1868 03464	-0 02 02573	LDA* ABF3	
and the second se	141140	ICL	
1869 03465		STA BYTE	
1870 03466	0 04 03521		
1871 03467	0 10 03062	JST MERR	
1872 03470	0 003236	DAC C200	
1873 03471	0 12 03523	IRS WAS	
1874 03472	0 01 03532	JMP CA1	
1875 03473	-0 02 02573		
	141050	CAL	
1876 03474	0 04 03521	STA BYTE	
1877 03475			
1878 03476	0 10 03062		
1879 03477	0 002150	DAC MCOD	
1880 03500	0 02 02147	LDA ERRM	
1881 03501	100040	SZE	
1882 03502	0 10 02506	JST MFIN	
1883 03503	140040	CRA	
	0 04 03523	STA WAS	
1884 03504		IRS ABF3	
1885 03505	0 12 02573		
1886 03506	0 12 03524		•
1887 03507	0 01 03532	JMP CA1	
1888 03510	140040	CRA	
1889 03511	0 04 02570	STA PAS3	
1890 03512		JMP* CDAT	
	0 01 00400	*	
1891	0 000000		
1892 03513	0 000000		
1893 03514	0 04 00000	STA 0	
1894 03515	0 02 01636	LDA TZER	
1895 03516	100040	SZE	
1896 03517	0 02 00000	LDA 0	
1897 03520	-0 01 03513	JMP* CZER	
	0 01 00010	*	
1898	000000		
1899 03521	000000		
1900 03523	000000		
1901 03525	000000	TEST BSZ 1	
1902 03526	177775	MIN3 DEC -3	
1903 03527	0 001623	C1 DAC MC1+	1
1904 03530		C2 DAC MC2+	1
1905 03531	0 001633	C3 DAC MC3+	
	0 001000	*	
1906			
1907		* Output CA1 lo	W

--- the CA2 acknowledge

PA	- m-	
PA	11	
1 1 1		

	*			PAGE 35
1908	* If	M6800	off-line and no	longer in
1909	* con	munica	tion go back	to BASIC !
1910	*			
1911 03532 0 02 04312		LDA	MCTR	
1912 03533 0 03 03670		ANA	=16	
1913 03534 100040		SZE		
1914 03535 0 10 03571		JST	XCA1	
1915 03536 140040		CRA		
1916 03537 140500		SSM		
1917 03540 0405 77		ARS	1	
1918 03541 140100		SSP		
1919 03542 0 05 03521	1	ERA	BYTE	
1920 03543 74 1270		OTA	DGOB	
1921 03544 0 01 03543		JMP	*-1	
1922 03545 141050		CAL		
1923 03546 74 1270		OTA	DGOB	
1924 03547 0 01 03546		JMP	*-1	
1925 03550 0 02 04221		LDA	PAS	
1926 03551 101040		SNZ	100	
1927 03552 0 01 03567		JMP	IRC	
1928 03553 0 02 04222		LDA SZE	UMNO	
1929 03554 100040		JMP	*-2	
1930 03555 0 01 03553 1931 03556 0 02 04221		LDA	PAS	
		CAS	=1	
1932 03557 0 11 03656 1933 03560 0 01 03163		JMP	PSRM	
1934 03561 101000		NOP		
1935 03562 0 12 04222		IRS	UMNO	
1936 03563 0.02 03525		LDA	TEST	
1937 03564 101040		SNZ		
1938 03565 0 01 03124		JMP	CA20	
1939 03566 0 01 03141		JMP	LSBE	
1940 03567 0 10 00173	IRC	JST	LNRF	
1941 03570 0 01 02160)	JMP	CA2	
1942	*			
1943 03571 0 000000	XCA1		**	
1944 03572 0 02 02151		LDA	CALM	
1945 03573 100040		SZE		
1946 03574 -0 01 0357		JMP*	XCA1	
1947 03575 -0 01 0157:	2	JMP*	CL06	
1948	*			
1949 03576 140040		CRA		
1950 03577 0 04 0422		STA	UMNO	
1951 03600 0 01 0356		JMP	IRC	
1952	*	ICT	EDCI	
1953 03601 0 10 0360	3 BRKC		ERCL	
1954 03602 141313		BCI	1,BK	
1955	*		vacutive FRROR	handling routine
1956	¥ Ad	liuste	location '61 wh	ere requires
1957 1958	* 40	00515		
1958 03603 0 000000		DAC	**	
1960 03604 140040	21101	CRA		
1961 03605 0 04 0434	0	STA	CTRS+11	
1962 03606 -0 02 0360		LDA*	ERCL	
1963 03607 0 04 0401		STA	EDAC	
1964 03610 0 02 0434		LDA	CTRS+12	
		an seather Sta		

1965 1966 1967 1968 1967 1970 1971 1972 1973 1974 1975 1977 1978 1977 1980 1981 1983 1984 1985 1986 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1997 1998 1997 2000 2001 2002 2003	03623 03624 03625 03626 03627 03630 03631 03632 03633 03633 03633 03635 03635 03640 03641 03645 03645 03645 03651 03652 03651 03652 03653 03654 03655 03655 03655 03656 03657 03660 03661 03662	$\begin{array}{c} 100040\\ 0 & 01 & 04004\\ 0 & 02 & 00632\\ 100040\\ 0 & 01 & 03617\\ 0 & 01 & 04006\\ 001001\\ 0 & 02 & 04325\\ 0 & 03 & 03664\\ 100040\\ 14 & 0570\\ 0 & 02 & 04325\\ 0 & 03 & 03663\\ 100040\\ 14 & 0770\\ 0 & 02 & 04325\\ 0 & 03 & 03662\\ 100040\\ 14 & 0770\\ 0 & 02 & 04325\\ 0 & 03 & 03662\\ 100040\\ 14 & 0770\\ 0 & 02 & 04325\\ 0 & 03 & 03662\\ 100040\\ 14 & 0370\\ 140040\\ 0 & 04 & 00632\\ 0 & 02 & 00061\\ 0 & 04 & 00264\\ 74 & 0020\\ 0 & 02 & 00635\\ 0 & 04 & 00061\\ 14 & 0220\\ 0 & 02 & 00635\\ 0 & 04 & 00061\\ 14 & 0220\\ 0 & 02 & 00635\\ 0 & 04 & 00061\\ 14 & 0020\\ 0 & 01 & 04006\\ 0 & 01 & 04006\\ 0 & 01 & 04006\\ 0 & 01 & 04006\\ 0 & 01 & 04006\\ 0 & 00011\\ 0 & 000154\\ 0 & 000146\\ 0 & 00010\\ 0 & 000010\\ 0 & 000004\\ \end{array}$	* HFIN	SZE JMP LDA SJMP HLDA SOCA SOC	MODE CALO *+2 MODE CTRS =2 SET1 CTRS =4 SET2 CTRS =8 SET3 CALO '61 L61 MTES SCLK LNRA-2 MASK '20 NMAX '61 CLK HEND MODE
	03661	000140			
2004 2005 2006 2007 2008 2009 2010	04000 04001 04002	003671 000401 0 02 00643 0 04 00034	BAS3 * GFIN	EQU ORG SETB ENB LDA STA	* / 4000 BAS4 SIP2 SIP

×

- 327 -

			*					PAGE	37
2012 2013	04003 04004 04005	0 02 00 0 04 00 -0 01 01	644 037 572	LDA STA JMP*	SBP2 SBP CL06			FHOE	37
2014 2015 2016			*		O BASI	IC com	mand mo	ode via '!	5243
2018 2019 2020 2021 2022 2023	04010	140040 0 04 00: -0 10 04 0 000000 005243	265 012 0 EDAC ERR *	ост	I FLG ERR ** 5243	librai	ry poir	nters here	e
2026 2027 2028 2029 2030 2031 2032	04013 04014 04015 04016 04017 04020	0 000000 0 000000 0 000000 0 000000 0 000000	* 0 MC12 0 MC21 0 ML22 0 MH22 0 MD22 0 MM22 *	XAC XAC XAC XAC XAC XAC XAC	C±12 C±21 L±22 H±22 D±22 M±22			d for err	
2033 2034 2035			* co * *	des he	re			or scans data tran	
 2037 2038 2039 2040	04021 04022 04023 04024 04025 04025	0 000000 0 02 023 0 11 044 0 01 040 0 01 040 -0 01 040	367 406 040 027	DAC LDA CAS JMP JMP JMP*	** CFLG+ =254 M255 M254 NCEK	1			
 2042 2043 2044 2045	04027 04030 04031 04032 04033		043 M254 400 044		F254 MDAC BUFA =-30				
 2047 2048 2049 2050	04034 04035 04036 04037 04037	-0 04 044 0 12 000 0 01 040 0 01 026	401 000 034	STA* IRS JMP JMP	MDAC+ 0 *-2 CB1 MFIN	1			
 2052 2053 2054	04041 04042 04043 04044	0 01 024 000000 000000 000000		JMP BSZ BSZ	CB1 1 1 1				
 2057 2058 2059 2030 2030	04045 04046 04047 04050 04051		B254 344 404 954 944 BREP		PARS+ =114 BDAC BUFA	1			
 2063 2064 2065 2065	04052 04053 04054 04055 04056 04056	-0 10 003 -0 10 003 0 000000 0 12 040 0 12 040 0 12 040	54 BDAC 54 54	JST* JST* DAC IRS IRS IRS	C12 H22 ** BDAC BDAC BUFA				
									1. 2. 3

	*		DAGE	
2068 0406	0 0 12 04042	IRS	N254 PAGE	3
2069 0406:				
2070 0406		JMP		
2071 04063		ENB		-
2072 0406		NOP		
		LDA	CTRS+12	5
2073 04065		. SZE		
2074 04066		JMP	A7	
2075 04067	0 01 00266	JMP		
2076	*		510	
2077		-		
2078		Maic s	statement CALL(4,I,M,D(0))	
2079	* .	1-0 1+	M6800 on-line . I=1 if off-1:	2
2080	· 1	1-IIODer	of Hold words to be transformed	b d
	* 1	1 = 1 t	to 30 only	-
2081	*			
2082 04070	0 02 00636 SUE	34 LDA	NEXT	
2083 040/1	0.04 04073	STA		
2084 04072	0 01 04074	JMP		
2085 04073				
2086 04074		DAC	**	2
2087 04075		JST*		
2088 04075		DEC	3	
		BSZ	1	
2089 04077		BSZ	1	
2090 04100		BSZ	1	
2091 04101	0 02 02151	LDA	CALM	
2092 04102	101040	SNZ	on En 1	
2093 04103	-0 01 01572	JMP*	CL06	
2094 04104	0 35 04403	LDX	=-4	
2095 04105	140040	CRA	4	
	1 04 04223			
2097 04107	0 12 00000	STA	MIC+4,1	
2098 04110	0 01 00000	IRS	0	
2099 04111	0 01 04106	JMP	*-2	
2100 04112	-0 10 00653	JST*	L22	
	-0 004076	DAC*	I	
2101 04113	-0 10 00676	JST*	C21	
	0 01 00570	JMP	ERI	
2103 04115	100040	SZE		
2104 04116	0 12 04220	IRS	MCA	
2105 04117	-0 10 00653	JST*		
2106 04120	-0 004077		L22	
2107 04121	-0 10 00676	DAC*	M	
2108 04122	0 01 00570	JST*	C21	
2109 04123	141207	JMP	ERI	
2110 04123	141206	A0A		
	0 04 04156	STA	BUF1	
2111 04125	140407	TCA		
2112 04126	0 04 04155	STA	CHN4	
2113 04127	0 04 00000	STA	0	
2114 04130	0 12 00000	IRS	0	
2115 04131	0 02 04215	LDA		
2116 04132	0 04 04216		BUF2	
2117 04133	0 12 04216	STA	BUF3	
2118 04134		IRS	BUF3	
2119 04135			L22	1
2120 04136	-0 004100	DAC*	D	
	-0 10 00676	JST*	C21	
2121 04137	0 01 00570	JMP	ERI	
2122 04140	-0 04 04216	STA*	BUF3	
2123 04141	0 12 04100	IRS	D	
2124 04142	0 12 04100	IRS	D	
		110	U	

	*	
2125 04143 2126 04144 2127 04145 2128 04146 2129 04147 2130 04150 2131 04151 2132 04152 2133 04153 2134 04154 2135 04155 2136 04156 2137 04157 2138 04215 2139 04216 2140 04217 2141 04220 2142 04221 2143 04222 2144	0 12 04216 IRS BUF3 0 12 00000 IRS 0 0 01 04134 JMP CA2X 0 02 04215 LDA BUF2 0 04 04216 STA BUF3 0 12 04217 IRS MIC 0 02 04217 IRS MIC 0 02 04220 LDA MCA 100040 SZE 0 01 04223 JMP DAP -0 01 01572 JMP* CL06 00000 BUF1 BSZ 1 000000 CHN4 BSZ 1 000 00 BUF1 BSZ 1 000000 BUF3 BSZ 1 000000 BUF3 BSZ 1 000000 MIC BSZ 1 000000 MCA BSZ 1 000000 MIC BSZ 1 000000 IL 1 1 000000 MIC BSZ	
2145 04223 2146 04224 2147 04225 2148 04226 2149 04227 2150 04230 2151 04231 2152 04232 2153 04233 2154 04234 2155	-0 02 04215 DAP LDA* BUF2 0 06 04407 ADD =256 -0 04 04215 STA* BUF2 0 02 04215 LDA BUF2 0 02 04215 LDA BUF2 0 02 04215 LDA BUF2 0 04 02454 STA ABF2 0 12 04221 IRS PAS 0 12 04222 IRS UMNO 0 02 04155 LDA CHN4 0 04 02452 STA CHN0 0 01 03126 JMP CA20	
2156 04235 2157 04236 2158 04237 2159 04240 2160 04241 2161 04242 2162 04243 2163 04244 2164 04245 2165 04246 2166 04247 2167 04250 2168 04251 2169 04252 2170 04253 2171 04254	0 000000 XXX1 DAC ** 0 02 03171 LDA XXX2 100040 SZE 0 01 04257 JMP LCA1 0 02 04215 LDA BUF2 0 04 02454 STA ABF2 0 02 04217 LDA MIC 101040 SNZ 0 01 04250 JMP *+3 0 02 04155 LDA CHN4 0 01 04252 JMP *+3 0 04 04156 STA BUF1 0 02 04402 LDA =-1 0 04 02452 STA CHN0 140040 CRA	
2171 04254 2172 04255 2173 04256 2174 04257 2175 04260 2176 04261 2177 04262 2178 04263 2179 04264 2180 04265 2181	0 04 02364 STA ABIM 0 12 03171 IRS XXX2 0 01 03532 JMP CA1 140040 LCA1 CRA 0 0 04 03171 STA XXX2 0 04 03171 STA XXX2 0 04 04217 STA MIC 0 02 03170 LDA XCAT 0 04 02364 STA ABIM 0 12 02365 IRS XXX 0 01 03532 JMP CA1 * * * * *	

			*			PAG	
2182				adjustm	ients for	counter c	ode
2185 2186 2187 2188 2187 2188 2189 2190 2191 2192 2193 2193 2194 2195 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208	04266 04267 04270 04271 04272 04273 04274 04275 04276 04276 04276 04275 04276 04275 04300 04301 04301 04302 04303 04304 04305 04306 04305 04306 04307 04310 04311 04312 04325 04324 04325 04342 04302	0 000000 0 02 00630 -1 07 04307 -1 06 04312 -1 04 04312 0 02 00632 101040 0 01 04301 0 02 00637 -1 04 04307 -0 01 04268 0 02 00635 -1 04 04307 -0 01 04268 0 02 00635 -1 04 04307 -0 01 04268 0 001026 0 001025 0 001057 0 001056 0 001056 0 001055 0 001056 0 001055 0 001056 0 001056 0 001056 0 001056 0 001057 0 001057 0 001056 0 001057 0 001057 0 001057 0 001057 0 001057 0 001056 0 001056 1 004312 000000 0 004342 1 004400 177777 177774 000162 177742 000376 000400	* TIME DA S S A S S L S J L S J L S S J L S S J L S S J L S S J L S S J L S S J L S S J L S S S J L S S S S	AC ** DA L61 UB* TIM DD* ADT TA* ADT DA CAL VZ MP *+4 DA CIN TA* TIM MP TIM AC TIM AC TIM AC TIM AC ADT AC	H+3,1 +3,1 +3,1 0 T H+3,1 E H+3,1 E 1 2 3 1 2 3 R		
2211		004410	BAS4 EG	٥U ×			
2212 2213 2214 2215 2216 2217 2218 2219			* '4012 * '551	2 origin origina 2 'BREAK 38	ally cont lly conta	sequence ained JMP ined 15243 tion in 13	1
2220 2221	00063	0 000021	DA	C SKS	-		
	00551	0 003603	OF DA OF	C ERCI	L		
2224 2225	00716	0 000313	DA	C CALI			
	00717	0 003601	DA	C BRKI	0		
	04012	-0 01 00716		IP* 171			
A1 A2	00045 00047		003246 001552	A16 A3	003326	A17 A4	003402

			*			PAG	E 41
A5	001255	A5A	001516	A6	001323	, A7	
A9	002374	AAA	002456	AB48	001431	ABFO	001553
ABF2	002454	ABF3	002573	ABF4	002455		002572
ABM	002276	ABUF	001434	ACLK		ABIM	002364
ADT	004307	ADT1	001025	ADT2	001113	ADBF	001545
AINT	000071	ALRI	001470A		001056	ADT3	001107
8254	004045	B48		ANAG	000170A	ARRO	000633
851	001246	B52	001200	B49	001172	B50	001204
855	001306	B56	001240	B53	001252	B54	001314
BAS2	002713	BASS	001320	BASO	000746	BAS1	001700
BDAC	004054	BFO	003671	BAS4	004410	BBB	002457
BRKC	003601	BSTP	001544	BFM	002453	BREP	004051
BUF3	004216	BUFA	001547	BUF1	004156	BUF2	004215
Ci	003527	C12	004044	BUFM	004342	BYTE	003521
C200	003236		000675A	C123	003240	C2	003530
CA2	002160	C21	000676A	C3	003531	CA1	003532
CA23		CA20	003126	CA21	002654	CA22	003031
	003050	CA2C	003576	CA2R	002646	CA2S	002175
CA2X	004134	CADR	003237	CALO	000632	CALL	000313
CALM	002151	CB1	002635	CB2	001637	CB22	002460
CDAT	003460	CERR	000572	CFLG	002366	СНЗ	000705
CHAN	002565	CHEC	002130	CHNO	002452	CHN4	004155
CHXM	002574	CHXR	001550	CIH	000176	CIHA	000651
CII	000247	CINT	000637	CIR	000222	CIRA	000245
CIRX	000246	CJST	000515A	CL06	001572	CLK	000020A
CONT	000030	CT1	000506	CT2	000526	CT3	000546
CTR1	000470A	CTR2	000670A	CTR3	000270A	CTRS	004325
CZER	003513	D	004100	D22	000370A	DAP	004223
DATA	000070A	DBF	001546	DGIA	001170A	DGIB	001070A
DGOA	001370A	DGOB	001270A	DISP	000266	DISQ	000301
DISS	000305	DLY	001421	DLYM	002266	EDAC	004011
EFLG	002146	ENS	001514	ENSM	002361	ERCL	003603
ERI	000570	ERR	004012	ERRM	002147	ESBL	001362
ESBM	002227	F254	004043	F50	000646	FAT	000340
FLG1	001030	FLG2	001061	FL63	001112	FRST	000634
GFIN	004000	GOAD	000306	GPAR	000422	GRAF	003076
GRF1	003123	GRF2	003124	H22	000654A	HAD	001770A
HALT	003014	HCTS	001430	HEND	000631	HFIN	003620
HPC1	001350	HPC2	001402	HREG	001426	HTES	001576
I	004076	IBUF	000230A	ICT1	001000	ICT2	001031
ICTO	001062	IFLG	000265	INT	000566	IRC	003567
I TM1	001027	ITM2	001060	I TM3	001111	KT	000645
L22	000653A	L61	000630	LCA1	004257	LNKA	000074
LNKB	000107	LNKC	000122	LNKD	000135	LNKE	000150
LNKF	000163	LNRA	000104	LNRB	000117	LNRC	000132
LNRD	000145	LNRE	000160	LNRF	000173	LSB	003473
LSBE	003141	LSBY	002547	M	004077	MO	002017
MOX	002034	M1	002052	M2	002071	M22	
M254	004027	M255	004040	MB	002110		000674A
MACS	004324	MASK	000264	MB48	003316	M680	000001
MB50	003323	MB51	003372			MB49	003306
MB54	003447	MB55	003437	MB52	003362	MB53	003377
MC1	001622	MC12		MB56	003454	MBUF	002301
MC3	001632	MC38	004013	MC2	001626	MC21	004014
MCOD	002150	MCP1	000042	MCA	004220	MCKK	000650
MCTR	004312		003015	MCP2	003020	MCP3	003023
MDAC	004312	MCTS	002275	MCX	000727	MD22	004017
MIC	004217	MERR	003062	MFIN	002506	MH22	004016
	004217	MIKR	000073	MIN3	003526	ML22	004015

	ML 61 MPC2 MUX NCEK PARS PAS3 PNIM REP SBP1 SEC2 SETW SKST STUP SUB4 TIM1 TZER UNEW VEC4 XCA1 XXX1 ZZZ 0000 W DAP-16	002152 002247 001365 004021 000343 002570 003172 001530 000642 002000 002362 000021 001515 004070 001636 001636 002556 003122 003571 004235 003235 ARNING OR MOD 2	MM22 MREG MUXM NEXT PAS PAS4 PROC REP1 SBP2 SET1 SIP SS SUB1 TABL TIM2 U UOUT VIAX XCAT XXX2 ERROR F REV. C	* 004020 002273 002232 000636 004221 002571 002540 002412 000644 000570A 000034A 000034A 0000317 001057 000662 002575 003026 003170 003171 LAGS 01-26-7	MODE MSBY N NMAX PAS1 PDCS PSRM SAVK SCAN SET2 SIP1 STOP SUB2 TEST TIM3 UDAT VEC1 WAS XCTR Y123	004006 002543 000661 000635 002566 000000 003163 000072 001573 000770A 000641 000277 000601 003525 001110 002615 002634 002363 002363 002446	PAGE MPC1 MTES N254 OSAI PAS2 PLOT REAL SBP SCLK SET3 SIP2 STP SUB3 TIM TIME UMNO VEC3 X1 XXX YYY	42 002215 000706 004042 002433 002567 003112 002370 000037A 000220A 0000370A 000643 001574 000652 004304 004266 004222 003121 001551 002365 003000
AC								

- 333 -

Table A4.2 Source listing of the M6800 Executive

*	*	
	- VERSION DATE 26.01.1983 *	
* THE HADIOS EXECUTIVE IN THE H316 SHOULD BE *		
* INITIALISED BEFORE	NORMAL EXECUTION OF THIS *	
* PROGRAM IS POSSIBL	E. THE NMI-SWITCH SHOULD *	
* BE USED TO RETURN	TO MIKBUG MONITOR IN ROM *	
) BY A.F.SHAFII *	
*	a nané ang	
* ORIGIN EQU ±4000		
*		
* MIKBUG ROUTINES		
INHEX EQU ≢E089	ACCEPT 1 HEX DIGIT FROM VDU	
INEEE EQU #E1AC	PLACE CHARACTER IN VOU IN ATKED.	
OUTCH EQU #E075	PRINT CHAR. FROM ADDRESS #F018 PRINT BYTES FROM MEMORY	
PDATA1 EQU ÉEO7E	PRINT 4 HEX DIGITS AND SPACE	
OUT4HS EQU #EOC8 CRLF EQU #EOB1	RETURN AND LINE FEED	
*		
IORAO EQU ≢F528	PIA A-SIDE I/O REGISTER	
DDRAO FOU IORAO	SAME FOR ITS DATA DIRECTION REG	
CRAO EQU ≢F529	A-SIDE CONTROL REGISTER	
IORBO EQU #F52A	PIA B-SIDE I/O REGISTER SAME FOR ITS DATA DIRECTION REG	
CRBO EQU #F52B		
* IRQVEC EQU #F000 NMIVEC EQU #F006 SHIVEC EQU #F014	IRQ. INTERRUPT VECTOR	
IRQVEC EQU #F000 NMIVEC EQU #F006 SWIVEC EQU #F014	NMI INTERRUPT VECTOR	
OWIVED LOOP EI VII	THE BUILDING OF THE STREET	
MONSWI EQU £E133	MONITOR SWI RESPONSE	
MON EQU ÉEODO	MIKBUG MONITOR ENTRY POINT	
*		
* A AND B ADDRESS POINTERS *		
	A(0)	
AVEC2 RMB 2	A(2)	
AVEC5 RMB 2	A(5) B(0)	
BVECO RMB 2 C1B48 RMB 2	B(48)	
C2B51 RMB 2	B(51)	
C3B54 RMB 2	B(54)	
B57 RMB 2	B(57)	
*		
* #F000-#F072 IS SCRATCHPAD RAM FOR MONITOR		
* ±67F5-±6921 IS RUN-TIME PACKAGE STACK		
* *SD BASIC STATEMENT CALL SUBO		
*		
SUBO SEI		
LDAA ##FF		

STAA CHAN7 LDX #NMIRES STX NMIVEC LDX #POLL STX IRQVEC LDX #MYSWI STX SWIVEC CLI LDX #VDU **JSR PDATA1** LDX #VDU5 JSR PDATA1 LDX #SUB0-1 STX AO LDX #AO **JSR OUT4HS** LDX #VDUO JSR PDATA1 LDX #END STX AO LDX #AO **JSR OUT4HS** JSR CRLF TYPMOD JSR CRLF LDX #VDU10 JSR PDATA1 JSR INEEE CMPA #'Y BEQ GOYES CMPA #'N BEQ GONO BRA TYPMOD GOYES CLRB STAB MODE BRA TYPECR GONO LDAB #1 STAB MODE TYPECR JSR INEEE CMPA ##OD BEQ GOCRLF BRA TYPECR GOCRLF JSR CRLF JSR CRLF SEI JSR PIAOAB CLI JSR INIT2 RTS

SET INTERRUPT VECTORS

HIGH SD BASIC ADDRESS

HIGH PROGRAM ADDRESS

INPUT 'Y' FOR ON-LINE : MODE=0 'N' FOR OFF-LINE: MODE=1

CONFIGURE PIA --- BASE ADDRESS #F528 IF OFF-LINE THEN A-SIDE CA1 INTERRUPTIBLE ELSE BOTH NORMAL HANDSHAKE MODE

*

*RETURN TO SD BASIC

MODE	RMB 1	
*SD BASIC STATEMENT CALL SUB1(A(0),B(0))		
* SUB1	STS SPSAVE LDAA START BNE INIT1	SAVE STACK POINTER
	JMP DISP	JUMP TO DISPATCHER
*	LDX 4,X DEX DEX STX TEMP	SAVE ADDRESSES A(0) AND B(0) THROUGH CALL STATEMENT
	JSR XPLUS6 STX BVECO LDX XSAVER LDX 10,X JSR XPLUS4	SAVE ADDRESS B(0)
*		SAVE ADDRESS A(0)
	LDAA #3 TAB DECB BSR BMULTX	
*	STX AVEC2	SAVE ADDRESS A(2)
*	BSR UPDATE STX AVEC5	SAVE ADDRESS A(5)
	LDX BVECO LDAB #48 BSR BMULTX	
	STX C1B48 BSR UPDATE	SAVE ADDRESS B(48)
STX C2B51 BSR UPDATE	SAVE ADDRESS B(51)	
	STX C3B54 BSR UPDATE	SAVE ADDRESS B(54)
	STX B57 LDX AVEC2	SAVE ADDRESS B(57)
AVEC2N	JMP XMODE	STORE VALUE OF A(2) IN AVEC2N
* UPDATE	TAB BSR BMULTX	UPDATE ADDRESS IN X BY 6*(B) TIMES

*	RTS	
	JSR XPLUS6 DECB BEQ *+4 BRA BMULTX RTS	BUMP X SIX TIMES
INIT2	LDAB #6 STAB MULT1 STAB SCANO STAB FINISH STAB START LDX #1	INITIALISE ALL PROGRAM FLAGS
	STX TF LDX #0	COUNTER FOR NUMBER OF SCANS
;	STX GOAD STX GOAD+2 STX GOAD+4	CLEAR DISPATCHER TABLE - 6 BYTES
	STX BYTEO STX DUTPUT STX ADDBUF STX INPUT STX AFLAG STX ERR316 STX AO STX CB2CTR STX CA2CTR	CLEAR BYTEO AND CFLG CLEAR OUTPUT BUFFER (2 BYTES) CLEAR TEMP. ADDRESS BUFFER CLEAR INPUT BUFFER (2 BYTES) CLEAR AFLAG AND BFLAG CLEAR ERR316 AND PASS
	STX IFLG STX MUXM STX CHAN9 CLRB STAB CB1CTR LDAA #10	CLEAR IFLG AND CHAN CLEAR MUXM AND CHAN7 CLEAR CHAN9 AND LABYTE
CLEAR	LDX #MCTR STAB X DECA BEQ CLRFIN DEX	CLEAR MCTR (HADIOS PARAMETERS) BUFFER
	BRA CLEAR STAB FREQ RTS	
* XMODE	LDAA MODE BEQ ONLINE LDAA #16 STAA MCTR JSR INITCB JMP DISP	SEND 10 DUMMY PARAMETERS TO H316
*		

ONLINE LDX AVECO STX AO LDAA TEMP+1 STAA ADD1 LDAA TEMP STAA ADD1+1 LDX ADD1 STX ADD10 SAVE ADDRESS A(0) *DEVICE TEST --- CFLG=1 IF NO ANALOGUE INPUTS REQUIRED * STS STACK SAVE STACK POINTER.LOAD A-ARRAY LDS #MCTR AND STORE INTO MCTR.CHECK VALUES LDX AVECO LDAA 7,X GET A(1) - HADIOS DEVICE CODE PSHA ANDA #1 ANALOGUE INPUTS ONLY ? IF YES, SKIP BNE VIAO COUNTER TESTS LDAA #1 STAA CFLG SET 'COUNTER(S) ONLY' FLAG LDAA MCTR ANDA #2 COUNTER 1 ONLY ? BNE VIA3 LDAA MCTR ANDA #4 COUNTER 2 ONLY ? BNE VIA3 LDAA MCTR ANDA #8 COUNTER 3 ONLY ? BNE VIA3 JMP ERRO HADIOS DEVICE NOT CORRECTLY RMB 2 SPECIFIED ! AO CHANCK SUBA #47 ANALOGUE CHANNELS REQUIRED BLS RTCHEK IN RANGE ? JMP ERRO RTCHEK RTS FINISH RMB 1 LDAA 31,X GET A(5) - DELAY FACTOR IN VIAO ANALOGUE INPUTS MULTIPLEXING BNE VIA3 JMP ERR1 **OPERATION.ZERO NOT RECOMMENDED !** × × PSHA VIA3 LDAA 19,X GET A(3) - FIRST ANALOGUE CHANNEL PSHA CHECK RANGE : 0 TO 47 ONLY BSR CHANCK GET A(4) - LAST ANALOGUE CHANNEL LDAA 25,X PSHA BSR CHANCK CHECK RANGE : 0 TO 47 ONLY LDAA 37,X GET A(6) - COUNTER 1 SCAN TYPE

O = NON-INTERRUPT MODE PSHA GET A(7) - COUNTER 1 PRESET VALUE LDAA 43,X PSHA O TO 255 GET A(8) - COUNTER 2 SCAN TYPE LDAA 49,X 1 = COUNTERS INTERRUPTS ENABLED **PSHA** GET A(9) - COUNTER 2 PRESET VALUE LDAA 55,X PSHA GET A(10) - COUNTER 3 SCAN TYPE LDAA 61,X PSHA. GET A(11) - COUNTER 3 PRESET VALUE LDAA 67,X PSHA. RESTORE STACK POINTER LDS STACK *CALCULATE BEGINNING CHANNEL ADDRESS IN PREADC × JSR PREADC SEND 10 HCDIOS PARAMETERS TO H316 JSR INITCB BRA CLOCK RMB 2 STACK RMB 9 RMB 1 MOTR *CB2 IS LOW AND CA2 IS HIGH ON HARDWARE RESET *SO ENSURE BOTH ARE HIGH INITIALLY *CLEAR IRQ FLAGS FROM SPURIOUS CB1'S, CA1'S * PIA0AB LDAA #%111000 STAA CRAO A-SIDE CONTROL REGISTER CLRB A-SIDE DATA DIRECTION REGISTER STAB DDRAO B-SIDE CONTROL REGISTER STAB CRBO COMB B-SIDE DATA DIRECTION REGISTER STAB DDRBO STAA CRBO LDAB #%100100 NORMAL HANDSHAKE-MODE STAB CRBO STAB CRAO CLEAR SPURIOUS IRQA1 FLAG JSR CAIDAT STAB CRAO SET CRA TO %100101 IF OFF-LINE JSR SETCRA CLEAR SPURIOUS IRQB1 FLAG LDAB IORBO RTS *SEND HADIOS OR DUMMY PARAMETERS NOW --- 10 CB2 INTERRUPTS × INITCB LDX #MCTR LDAB #10 VIA2 LDAA X JSR SENCB2

DEX DECB BEQ INITOV

BRA VIA2 INITOV RTS BYTEO RMB 1 RMB 1 CFLG XSAVEO RMB 2 RMB 1 MUXM CHAN7 RMB 1 + *CONFIGURE MP-T INTERRUPT TIMER * CLOCK SEI LDAA :+TIMER+5 SPECIFY TIMER IN SD BASIC STAA FREQ LDX ##F530 LDAB ##FF STAB 2,X LDAA ##3C SET CONTROL REGISTER FOR FIRST DUMMY STAA 3,X INTERRUPT REQUEST LDAA FREQ STAA 2,X NOP CLI WAICLK LDAA 3,X WAIT FOR FIRST MP-T 'INTERRUPT' BMI OUT1 BRA WAICLK OUT1 LDAA 2+X CLEAR IRQB1 FLAG LDAA ##3D STAA 3,X JMP DISP ÷ FREQ RMB 1 SCANO RMB 1 × * IRQ INTERRUPT RESPONSE CODE × POLL LDX ##F530 LDAA 3,X BMI CLKDAC CLOCK INTERRUPT LDAA CRAO BMI CAIRES CA1 INTERRUPT JMP ERRIRQ ERROR IRQ ! RTI CLKDAC JMP CLKRES × ERRIRQ LDAA CHAN7 IRQ INTERRUPT NOT RECOGNISED CHAN7=0 INTERRUPT WAS THERE FROM BEQ SYS1 BSR FRINT BEGINNING. BRA SYS2 SYS1 JSR SYSOFF

SYS3 SYS4 * PRINT	LDX #VDU12 JMP GGG-4 LDAA CHAN7 BEQ SYS3 BSR PRINT BRA SYS4 JSR SYSOFF LDX #VDU13 JMP GGG-4 LDX #VDU14 JSR PDATA1 RTS	BACK TO MIKBUG EVENTUALLY CA1 INTERRUPT NOT RECOGNISED
* CA1RES	LDAA #%100100 STAA CRAO JSR DATA ANDA #1 BEQ HWTOMC JMP ERRCA1 RTI	TURN OFF INTERRUPT MODE ACKNOWLEDGE WITH CA2 INTERRUPT ! FIRST H316 CA1 INTERRUPT MUST ACCOMPANY A " 1 " !
	JSR CA1WAI JSR DATA TAB DECB STAB NWORDS LDX #ADBUF2 JSR CA1WAI JSR DATA STAA 0,X JSR CA1WAI JSR DATA STAA 1,X INX INX DECB	NUMBER OF H316 WORDS (2*N BYTES) LOAD X WITH BUFFER ADDRESS MAXIMUM - 30 WORDS (60 BYTES) ONLY GET H316 BYTE AND ACKNOWLEDGE WITH CA2 INTERRUPT !
*	BNE REPEAT JSR SETCRA LDX #TASK2 STX GOAD RTI	TURN ON INTERRUPT-MODE PLACE JOB POINTER IN DISPATCHER EXIT CA1 INTERRUPT RESPONSE
	LDX ##F530 LDAA 2,X LDAA SCANO BNE PASS LDX AO DEX BEQ SCAN	CLOCK PIA BASE ADDRESS CLEAR IRQB FLAG FIRST SCANNING INTERRUPT FLAG M6800 SCANS AT THE FIRST CLOCK INTERRUPT IF X=0 THEN SCANNING INTERRUPT

ELSE EXIT AND TRY NEXT TIME ! STX AO RTI CHECK INTERRUPT FLAG. LDAA IFLG SCAN BEQ PASS SCANNING INTERVAL TOO SHORT ! JMP ERR4 RESTORE A(O) COUNTER IN AO LDX AVECO PASS LDX O,X STX AO CLRA STAA SCANO PLACE JOB POINTER IN DISPATCHER LDX #TASK1 STX GOAD+2 EXIT SCANNING INTERRUPT RESPONSE RTI ADBUF2 RMB 60 × * NMI INTERRUPT RESPONSE CODE - BOUNCY SWITCH * NMI MUST BE USED FOR USER-INTERFERENCE ¥ NMIRES LDX #VDU9 JSR PDATA1 BEEP ONCE JSR BEEP1 TURN-FF CLOCK IF ON-LINE RTPERR JSR SYSOFF INC START BACK TO MIKBUG MONITOR JMP MON MYSWI IS USER SWI INTERRUPT MYSWI LDX #VDU16 RESPONSE CODE JSR PDATA1 JSR BEEP1 TURN OFF CLOCK IF ON-LINE JSR SYSOFF SEND A CB2 TO RESET HADIOS EXEC JSR ERRCB2 RESTORE MONITOR SWI VECTOR LDX #MONSWI STX SWIVEC RETURN TO INTERRUPTED PROGRAM RTI JMP ERRO JERRO * ROUTINE TO CALCULATE FIRST CHANNEL PREADC LDX #MCTR-3 ADDRESS FOR B-ARRAY LDAA O,X SAVE PERMANENT COPY IN ADD10 LDAB 1,X SBA CHANNELS INCORRECTLY SPECIFIED BMI JERRO INCA CHANX+1,MUXM = A(4)-A(3)+1STAA CHANX+1 STAA MUXM LDAA 1,X LDAB #0 SBA INCA STAA CHANX BSR MULT

BSR ADDW LDAA ADD1+1 STAA ADDBUF STAA ADD10 LDAA ADD1 STAA ADDBUF+1 STAA ADD10+1 RTS *ADDBUF CONTAINS FIRST B CHANNEL ADDRESS --- DEFAULT B(0) × AN 8 BIT BY 8-BIT MULTIPLY ROUTINE MULT CLRA NOTE: COULD HAVE JUST UPDATED ADDRESS CLRB USING X REG. AS IN PREVIOUS METHOD LDX #8 ASLB SHIFT ROLA ASL MULT1 BCC DECR ADDB CHANX ADCA #0 DECR DEX BNE SHIFT STAA ADD2+1 STAB ADD2 RTS RMB 1 MULT1 TEMP RMB 2 ADDBUF RMB 2 * LDAB BYTENO ADDW CLC LDX #ADD1 LDAA X MCADD ADCA 21X STAA X INX DECB BNE MCADD RTS BYTENO FCB 2 RMB 2 ADD1 RMB 2 ADD2 ADD10 RMB 2 × * THE M6800 DISPATCHER TABLE ¥ ANY NEW DATA FROM H316 ? DISP LDX GOAD IF YES, DATA IN ADBUF2 BUFFER BNE HWCA1 CLOCK INTERRUPT REQUEST ? LDX GOAD+2 IF YES, BEGIN A HADIOS SCAN BNE CLKVEC

	BEQ DISP CLR GOAD+4	DATA TRANSFER IN OFF-LINE MODE ? NOCONTINUE FOLLING CLEAR FLAG RESTORE STACK POINTER RETURN TO SD BASIC
* IE. 1	F MODE=1 RETURN	AFTER CALL SUB1(A(0),B(0))
Statements and	SEI JSR 0,X CLI	NO IRQ INTERRUPTS DURING H316 DATA TRANSFER TO B-ARRAY
*		RETURN TO DISPATCHER LOOP
	JMP 0,X	GOTO CLOCK INTERRUPT RESPONSE
	STS STACK1	SAVE STACK POINTER
	STX GOAD LDAB NWORDS LDX B57	CLEAR H316 DATA TRANSFER POINTER B = NO. OF H316 WORDS B(57) ADDRESS IN X
LOAD1 RELOAD	PULA	LOAD SP WITH TOP OF ADBUF2 PULL MSBYTE OFF STACK
	PULA	STORE IN B-ARRAY PULL LSBYTE OFF STACK STORE IN B-ARRAY
	BEQ TASFIN INX INX INX INX INX INX INX	FINISH ? BUMP X SIX TIMES
STACK1	LDS STACK1 RTS	BUMP OFF-LINE FLAG IN DISPATCHER RESTORE (RTP) STACK POINTER RETURN TO DISPATCHER
* NWORDS	RMB 1	
* TASK1	LDX #0 STX GOAD+2 INC IFLG JSR A2CHEK LDAA MUXM STAA CHANX+1 BRA NOANAG	BEGIN SCANNING INTERRUPT ROUTINE CLEAR ITS POINTER FIRST BUMP INTERRUPT FLAG IS NUMBER OF SCANS = REQUIRED ? YES,THEN THIS IS LAST SCAN. = A(4)-A(3)+1
CHANX *	RMB 2	

×

*ONE CA	1316 DATA BYTES N A2/CA1 HANDSHAKE	NOW 2 * (CHANX+1) BYTES PER BYTE TRANSFERRED
* NOANAG	LDAA CFLG	COUNTER(S) ONLY ?
ANAG	BNE NONE JSR DATAIN	NO, GO & READ ANALOGUE INPUT BYTES
* ENSM	LDAA #1	2 BYTES FOR ENSEMBLE NUMBER
1	STAA CHANX+1 LDX AVEC5	LOAD ADDRESS OF A(5)
	STX ADDBUF JSR DATAIN	GO AND READ BYTES VIA CA2/CA1
* NONE	LDAA MCTR ANDA #2	COUNTER 1 ?
	BEQ VIA5 LDX C1B48 BSR CTRDAT	LOAD ADDRESS OF B(48) GO TO COUNTER DATA ROUTINE
* VIA5		COUNTER 2 ?
	BEQ VIA6 LDX C2B51 BSR CTRDAT	LOAD ADDRESS OF B(51) GO TO COUNTER DATA ROUTINE
* VIA6	LDAA MCTR ANDA #8	COUNTER 3 ?
	BEQ VIA7 LDX C3B54 BSR CTRDAT	LOAD ADDRESS OF B(54) GO TO COUNTER DATA ROUTINE
* VIA7	LDAA #1	SET TEMPORARY FLAG
	STAA CHAN9 LDX #MWORDS JSR XXCA1	GET TOP WORD OF BUFFER BUF1 BSZ 31 OF HADIOS EXECUTIVE
	LDX MWORDS BEQ VIA8X STX SWORDS LDAA MWORDS+1 DECA LDX B57 JSR XXCA1	IF ZERO THEN NO H316 DATA TO BE RETRIEVEDIF NON-ZERO THEN READ M WORDS ((A)-1) INTO B(57) ONWARDS.
* VIASX	CLR AFLAG CLR BFLAG CLR CHAN9 JSR SETCRA LDS SPSAVE RTS	CLEAR PIA A & B-SIDE PROGRAM FLAGS

MWORDS RMB 2 SWORDS RMB 2 * XXCA1 STAA CHANX+1 STX ADDBUF JSR DATAIN RTS CTRDAT LDAA #3 6 BYTES FOR EACH COUNTER SET UP CA2-CA1 COUNTER STAA CHANX+1 STX ADDBUF SET UP COUNTER ADDRRESS IN B-ARRAY INC CHAN9 NFIRST JSR DATAIN GO READ DATA VIA CA2-CA1 HANDSHAKE CLR CHAN9 RTS × IF ON-LINE THEN PIA A-SIDE SETCRA LDAA MODE BEQ RSTACK REMAIN IN HANDSHAKE MODE ELSE IN CA1 INTERRUPT MODE. LDAA #%100101 ACR STAA CRAO RTS RSTACK LDAA #%100100 BRA ACR × *RETURN TO SD BASIC AFTER CALL SUB1(A(0),B(0)) XSAVE2 RMB 2 × * SD BASIC STATEMENT --- CALL SUB3(N,U) * N = DGOA CHANNEL NUMBER (O < N < 15) * U = 16-BIT INTEGER CONTROL OUTPUT (0 < U < 32767) ¥ SUB3 STX XSAVER SAVE INDEX REGISTER JSR SPBYTE GET FIRST ARGUMENT ON STACK STAA NCHAN LDAB #15 JSR NMTEST IS N WITHIN RANGE ? JSR SENCB2 YES, SEND IT TO H316 JSR SPDATA GET 2 BYTE CONTROL OUTPUT LDAB PLUS1 JSR CBDATA SEND THEM TO H316 RTS * SAVE (A) ON STACK NMTEST PSHA (A) = (A) - (B) AS BINARY NUMBERS SBA BLS *+5 IF < 15 THEN RESTORE (A) AND RETURN JMP ERR9 ERROR IF N > 15 ! FULA RTS SPBYTE LDX 10,X LOAD SECOND ARGUMENT ON STACK

	LDAA 5+X STAA CHAN RTS	NORMALLY 'N' OR 'M' FROM SUB3 OR SUB4
* SENCB2	STAA BYTEO	SAVE CB2 OUTPUT BYTE
WAITCB	JSR CB20P0 LDAA CRB0 BMI OUTCB	SEND BYTE TO H316 VIA CB2/CB1 HANDSHAKE IRQB1 FLAG SET BY CB1 ACKNOWLEDGE ? BRANCH OUT IF SET ELSE WAIT FOR CB1.
OUTCB	BRA WAITCB LDAA IORBO LDAA CRAO BMI XCA1	CLEAR IRQB1 FLAG IS IRQA1 FLAG SPURIOUSLY SET ?
	RTS CLR BFLAG SWI SWI	RETURN IF NOT. IF YES THEN OUTPUT MESSAGE VIA SWI AND RETURN TO MIKBUG.
* SPDATA	LDX XSAVER LDX 4,X STX XSAVER	THIS ROUTINE IS USUALLY USED TO CONSECUTIVE WORDS FROM ADDRESS IN STACKSEE SUB4(M,D(0))
	LDX 4,X STX OUTPUT RTS	
* XPLUS6		BUMP X SIX TIMES
XPLUS4	INX INX INX INX INX RTS	BUMP X FOUR TIMES
* CBDATA	LDAA OUTPUT	GET MSBYTE OF OUTPUT WORD.
LSB	BRA VIA9	BRANCH TO CB2 0/P ROUTINE
	BSR IN253	CHECK FOR RANGE : 0 <= LSBYTE < 254
VIA9	JSR SENCB2 LDAA BFLAG BNE VIA9X INC BFLAG JMP LSB	SEND MSBYTE VIA CB2/CB1 HANDSHAKE BFLAG SHOULD BE ZERO FOR MSBYTE TRANSFERBUMP IT FOR LSBYTE TRANSFER.
VIA9X	CLR BFLAG DECB BEQ CB2FIN LDX XSAVER JSR XPLUS6 STX XSAVER LDX 4,X STX OUTPUT	CLEAR BFLAG AFTER EVERY WORD TRANSFER DECREMENT WORD COUNTER CB2 TRANSFERS OVER IF (B) ZERO. FETCH MORE CONSECUTIVE WORDS FROM ADDRESS IN STACKBUMP SIX TIMES AS ADDRESS VARIABLE IS 6-BYTES LONG. LOAD X WITH VALUE OF LOCATION IN X ! STORE IN 2 BYTE OUTPUT BUFFER
	JMP CBDATA	JUMP TO BEGIN CB2 TRANSFER

CB2FIN	RTS	
IN253 0UT253	BLS OUT253 DECA BRA IN253	COMPARE (A) WITH 253 BRANCH IF LESS OR EQUAL TO 253 (BINARY) MUST BE > 253 , SO DECREASE IT BY ONE GO AND CHECK AGAIN.
D254 D255	FDB 0 FCB 253 FCB 254 FCB 255 FCB +1	
* SD B * M=NU * USER	MBER OF DATA WOR MUST ENSURE AT	CALL SUB4(M,D(0)) DS INCLUDING D(0) : M <= 30 SD BASIC LEVEL THAT D(0) IS EQUAL THAN 32767.
SUB4	LDAB #30 JSR NMTEST LDAA D254 JSR SENCB2 LDAA CHAN JSR SENCB2 JSR SPDATA LDAB CHAN JSR CBDATA RTS	SAVE X AS IT POINTS TO LAST ARGUMENT ADDRESSGET FIRST ARGUMENT 'M' SAVE FOR DEBUGGING PURPOSES YOU CAN'T SEND NOTHING ! IS M WITHIN RANGE ? GO AND ASCERTAIN PREPARE TO SEND A '254' CONTROL BYTE TO H316 FOR M6800 DATA TRANSFER FETCH 'M' AND SEND IT TO H316 VIA A CB2/CB1 HANDSHAKE GET D-ARRAY WORDS (B) IS WORD COUNTER : (B)=M SEND DATA WORDS VIA CB2/CB1 ROUTINE RETURN TO SD BASIC
*	JMP ERR9 RMB 1 RMB 1 RMB 2	
	ASIC STATEMENT	CALL SUB2
* SUB2 NORM	LDAA MODE BEQ NORM JSR A2CHEK CLR IFLG LDAA FINISH BEQ VIA10 RTS	ON-LINE MODE ? BRANCH IF YES ELSE IS NUMBER OF SCANS = REQUIRED ? CLEAR INTERRUPT FLAG FINISH = O IF LAST SCAN IS DONE

A.

RTS *RETURN TO SD BASIC AFTER CALL SUB2 TF IS SCAN COUNTER A2CHEK LDX TF COMPARE WITH REQUIRED IE. A(2) CPX AVEC2N BNE NORMAL CLEAR FINISH FLAG WHEN SCANS OVER CLR FINISH RTS BUMP SCAN COUNTER BY ONE NORMAL LDX TF INX STX TF RTS IF SCANS OVER, GOTO HOUSEKEEPING ROUTINE JSR SYSOFF VIA10 AND EXIT. LDX #VDU4 JMP GGG × TF RMB 2 SET B-SIDE TO HANDSHAKE MODE CB20P0 LDAA #%100100 STAA CRBO FETCH BYTE TO BE OUTPUT LDAA BYTEO STORE IN B-SIDE I/O REGISTER STAA IORBO CB2 INC CB2CTR RETURN TO WAIT FOR CB1 ACKNOWLEDGE RTS RMB 2 INFUT RMB 6 GOAD ERR316 RMB 1 RMB 1 PAS5 × DATAIN LDAA #%100100 SET A-SIDE TO HANDSHAKE MODE STAA CRAO READ INPUT BYTE ON I/O REGISTER.. THIS LDAA IORAO CA2 SENDS OUT A LOW-ACTIVE CA2 !! INC CA2CTR GOTO 'WAIT FOR CA1' ROUTINE JSR CA1WAI GOTO 'GET THE INPUT BYTE' ROUTINE JSR CA1DAT BRA GETDAT END # BEGIN CA2/CA1 ROUTINE BRA GETDAT IS IRQA1 FLAG SET ? CA1WAI LDAA CRAO IF MINUS, A LOW-ACTIVE CA1 HAS OCCURRED BMI CA1IN ELSE WAIT FOR A CA1. BRA CA1WAI IS IRQB1 FLAG SPURIOUSLY SET ? LDAA CRBO CAIIN BMI XCB1 RETURN IF NOT. RTS. IF YES THEN OUTPUT MESSAGE VIA SWI CLR AFLAG XCB1 AND RETURN TO MIKBUG SWI SWI CB1CTR FCB 0 'EXOR'ED CRA TO DISENABLE CA2 OUTPUT CA1DAT LDAA #%100000 WHEN READING INPUT BYTE IN ON-LINE EORA CRAO CASE ONLY... IF OFF-LINE THEN CA2 IS STAA CRAO OUTPUT ON THIS READ !! LDAA IORAO . DATA SAVE FOR POSSIBLE DEBUGGING STAA LABYTE RTS RMB 1 CHAN9

LABYTE RMB 1

GETDAT	INC CA2CTR+1	
	LDAB AFLAG	AFLAG = O WHEN MSBYTE IS BEING READ
		AFLAG = 1READING LSBYTE
MSBYTE	STAA INPUT	SAVE MSBYTE
	LDAA CHAN9	NO DATA CHECKS IF H316 DATA TRANSFER !
	BNE NOERR	IEWHEN CHAN9 NON-ZERO.
	LDAA INPUT	RESTORE MSBYTE
	ANDA #%11111100	MSBYTE > %11 ? MAXIMUM ANALOGUE
	BEQ NOERR	INPUT IS 1023 FOR 10-BIT ADC.
	ANDA #%10000000	MSBYTE = #80 IS 'DATA > 1023' ERROR CODE
		ELSE MSBYTE WAS < 1023 , MUST BE OTHER ERROR
		BUMP MSBYTE ERROR FLAG
LE1023		SET AN ERROR FLAG FOR LATER USE
	STAA ERR316	
NOERR		BUMP AFLAG TO READ LSBYTE
	BRA VIA4	
LSBYTE	STAA INPUT+1	SAVE LSBYTE
	LDAA ERR316	IS ERROR FLAG SET ?
	BEQ VIA13	IF NOT , CONTINUE READING NEXT 2 BYTES IF A
	LDAA INPUT+1	IF YES , DECODE THE ERROR PREVIOUS LSBYTE
		DID YOU SPECIFY A COUNTER BEING USED BY
		THE H316 USER ?
CODTON	JMP ERR7	REPORT COUNTER ERROR DECODE ERROR BYTE AGAIN
FORTRN	LUAA INPOTTI	IS IT A M6800 FORTRAN LIBRARY ERROR ?
		15 11 A MOSOU FURTHAN LIDNART ERROR :
	BEQ 61023	REPORT A FORTRAN LIBRARY ERROR
01000	JMP ERR8 LDAA PAS5	WAS LAST ANALOGUE INPUT DATA > 1023 ?
	DEO UTA1O	
	IMD EDD2	YES IF NO ERRORS THEN READ MORE BYTES LOAD VARIABLE ADDRESS FOR INPUT WORD STORE IN SD BASIC VARIABLE IN X
VIA13	CLE AFLAG	LE NO ERRORS THEN READ MORE BYTES
VINIO	I DY ADDRUE	LOAD VARIABLE ADDRESS FOR INPUT WORD
	I DAA INPUT	STORE IN SD BASIC VARIABLE IN X
	STAA O,X ·	
	LDAA INPUT+1	
	STAA 1,X	
	LDAB CHANX+1	
	DECB	DECREMENT WORD COUNTER
	BEQ RTS	EXIT CA2/CA1 ROUTINE IF OVER
	STAB CHANX+1	
	JSR XPLUS6	IF MORE , BUMP X TO NEXT VARIABLE
	STX ADDBUF	
VIA4	JMP DATAIN	CONTINUE READING IN BYTES
RTS	LDX ADD10	RESTORE FIRST ANALOGUE CHANNEL ADDRESS
	STX ADDBUF	IN ADDBUF
	RTS	
AFLAG	RMB 1	
BFLAG	RMB 1	

OUTPUT RMB 2 IFLG RMB 1 CHAN RMB 1 CB2CTR RMB 1 CTR255 RMB 1 CA2CTR RMB 2 * SD BASIC STATEMENT CALL SUB99(EN,LN) * EN = ERROR NUMBER FROM SD BASIC 'ERR' FUNCTION * LN = LINE NUMBER FROM SD BASIC 'ELN' FUNCTION SUB99 STX XSAVER THIS ROUTINE PRINTS RUN-TIME ERROR JSR SYSOFF NUMBER AND LAST SD BASIC LINE NUMBER LDX #VDU99 IN HEXADECIMAL JSR PDATA1 LDX XSAVER LOAD FIRST ARGUMENT ADDRESS FROM STACK LDX 10,X JSR XPLUS4 BUMP X FOUR TIMES TO GET CORRECT JSR OUT4HS BYTE ADDRESS. LDX #VDU100 JSR PDATA1 LDX XSAVER LDX 4,X LOAD SECOND ARGUMENT ADDRESS FROM STACK **JSR XPLUS4** POINT TO CORRECT BYTES **JSR OUT4HS** JSR BEEP1 JMP RTPERR CLKOFF LDAA MODE IF ON-LINE THEN TURN OFF CLOCK BNE RETURN ELSE RETURN SEL LDX ##F530 LDAA 2,X CLEAR CLOCK PIA IRQB1 FLAG OUTPUT ±80 TO MP-T TIMER TO LDAA #£80 STAA 2,X DISENABLE IT. CLRA STAA 3,X NOP CLI RETURN RTS BEEP1 LDAA #7 SOUND A BEEP ! JSR OUTCH RTS

×

*

×

¥

THIS CB2/CB1 HANDSHAKE IS USED ONLY ERRCB2 LDAA #255 TO RE-INITIALISE THA HADIOS EXECUTIVE FOR A SUBSEQUENT M6800 COMMUNICATION. STAA BYTEO JSR CB20P0 WAI255 LDAA CRBO NOTE THE '255' ERROR CODE.

- 350 -

	BMI OUT255
	BRA WAI255
OUTOEE	LDAA IORBO
001255	
	INC CTR255
	RTS
*	
* FOLL	OWING ARE ERROR MESSAGES REPORTED BY THE THE
* M680	O EXECUTIVE. THEY ARE SELF-EXPLANATORY.
*	
ERRO	LDX #VDU1
LINIO	JMP GGG
ERR1	LDX #VDU2
ERAI	
	JMP GGG
*	
ERR2	JSR SYSOFF
	JSR ERRCB2
	LDX #VDU3
	JMP GGG
*	
ERR4	JSR SYSOFF
	LDX #VDU6
	JMP GGG
ERR7	JSR SYSOFF
	LDX #VDU7
	JMP GGG
ERRS	JSR SYSOFF
ERRO	
	LDX #VDU8
	JMP GGG
ERR9	JSR SYSOFF
	LDX #VDU15
	JMP GGG
ERR11	JSR CLKOFF
	LDX #VDU11
	JMP GGG
*	
	JSR ERRCB2
	CLI
GGG	JSR PDATA1
	JSR BEEP1
	INC START
	JMP ORIGIN
*	
*	

-4 SYSOFF JSR CLKOFF

* VDU

VDUO

FCB ±OD, ±OA FCC /MC6800 EXECUTIVE 1981/ FCB ±0D,±0A,±04

RTS

FCB ±OD, ±OA

JSR ERRCB2

	FCC FCB	/HIGH HEXADECIMAL ADRRESS IS /
VDU1	FCB	<pre>±OD, ±OA /HADIOS DEVICE NOT SPECIFIED ! /</pre>
		<i>±</i> OD, <i>±</i> OA, <i>±</i> O4
VDU3		ÉOD, ÉOA
		/H316 DATA >1023 !/
		£0D, £04
VDU2		£OD, £OA
		/ENSEMBLE NO. ZERO ! / ±OD,±OA,±O4
VDU4		20D,20A,204
VDO4		/ALL MC6800 SCANS DONE ! /
		±0D, ±0A, ±04
VDU5	CONTRACTOR OF THE OWNER	έOD, έOA
		/HIGH SD BASIC ADDRESS IS /
	FCB	
VDU6		ÉOD, ÉOA ∕SAMPLING TIME TOO FAST ! /
	FCB	
VDU7		±OD, ±OA
1007		/COUNTER CODE ERROR ! /
	FCB	
VDUS	and the second se	±OD, ±OA
		/FORTRAN ERROR IN THE H316 !/
UDUO	FCB	
VDU9		±OD, ±OA /USER NMI INTERRUPT PRESS RESET NOW !/
		±04
VDU10	FCB	ÉOD, ÉOA
		/ON-LINE MODE ? ANSWER Y OR N /
		£04
VDU11		±OD, ±OA /ERROR IN H316-M6800 DATA TRANSFER !/
		204
VDU99		ÉOD, ÉOA
	a second	/RTP ERROR /
		≜ 04
VDU12		ÉOD, ÉOA
		/UNIDENTIFIED IRQ INTERRUPT ! /
		£04
VDU13		±OD,±OA /UNIDENTIFIED H316 INTERRUPT !/
		±04
VDU14		±0D,±0A
VDOIT	FCC	/HADIOS EXEC. NOT INITIIALISED - PRESS RESET !/
		±04
VDU15	FCB	έOD, έOA
		/N OR M IN SUB3 OR SUB4 OUT OF RANGE !/
	FCB	£04

```
VDU16 FCB ±0D,±0A
FCC /SPURIOUS CA1,CB1 - CHECK INTERFACE !/
FCB ±0D,±0A,±04
VDU100 FCC /AT ABOUT LINE /
FCB ±04
END RMB 1
END RMB 1
END #
```

*

1

Table A4.3 The ADT1-8 program

0001					* *		RELOCATION
0002					*		
0003						ORG	4757
0004	04757	0	04	00770		STA	1770
0005						ORG	4761
0006	04761	0	04	00771		STA	1771
0007						ORG	4763
0008	04763	0	04	00773		STA	1773
0009	04764	0	15	00772		STX	1772
0010						ORG	4766
	04766	0	04	00775		STA	1775
0012						ORG	15006
0013	05006		077			OCT	1773
0014	05007	0	04	00773		STA	1773
0015	05010	0	12	00771		IRS	1771
0016						ORG	15023
0017	05023	0	02	00773		LDA	1773
0018						ORG	15025
0019	05025	0	0.4	00771		ADD	1771
0020	00010	•	00			ORG	15027
0021	05027	0	04	00774		STA	1774
0022	03027	0	04	00774		ORG	5034
	05004		04	007//			1766
0023	05034	0				STA	
0024	05035	0	07	00774		SUB	1774
0025						ORG	15037
0026	05037	0	04			STA	1767
	05040	-0	02			LDA*	1766
0028	05041	-0	04			STA*	1767
0029	05042	0	12			IRS	1766
0030	05043	0	12	00767		IRS	1767
0031						ORG	15045
0032	05045	0	07	00766		SUB	1766
0033						ORG	15050
0034	05050	0	02	00767		LDA	1767
0035						ORG	15061
0036	05061	0	07	00774		SUB	1774
0037		-				ORG	15065
	05065	0	02	00773		LDA	1773
0039	00000		02	00770		ORG	15070
0037	05070	0	04	00766		STA	1766
	03070	U	04	00700.		ORG	
0041	05074	~		007//			15074
0042	05074	0	12	00766		IRS	1766
0043						ORG	15076
0044	05076	0	02	00771		LDA	771
0045						ORG	15100
0046	05100	0	04	00766		STA	1766
0047						ORG	15104
0048	05104	0	12	00766		IRS	1766
0049						ORG	15112
0050	05112	0	02	00771		LDA	1771
0051		0				ORG	5114
	05114	0	0.2	00770		LDA	1770
	00114	0	02	00770			
0053			~ ~			ORG	15123
0054	05123	0	02	00775		LDA	1775
0055		-	-			ORG	15126
	05126	0	35	00772		LDX	1772
0057				•		END	

And a start of the	-				
Table A4.4	The	BASIC	I/0	MOD	program
*		S. 12.			

		-	Iddie			1010 1/0	riob prog.		-	
				*				PAG	E	1
0001				*	MOD	ton DAC	SIC . If		witch 2	ie
0002										1 5
0003				* set	, then	cuitet	a paper A is se	t then	0/0	
0004							punch el		07.0	
0005				* via *	a paper	-cape	punch er	se voo.		
0006				*	REL					
0007	00000	101004		AA	SS3					
	000001	0 01 00			JMP	*+3				
	00002	140040			CRA					
	00003	0 04 00	105		STA	105				
	00004	0 02 00	Courts I P		LDA	406				
	00005	-0 01 00			JMP*	*+1				
	00003	004143			OCT	4143				
	00007	0 12 00	1105	BB	IRS	105				
	00010	140040			CRA					
	00011	0 04 00	106		STA	106				
	00012	-0 10 00			JST*	*+2				
	00013	-0 01 00			JMP*	*+2				
	00014	003065			OCT	3065				
	00015	004575			OCT	4575				
	00016			CC	SS4					
	00017	0 01 00	022		JMP	*+3				
	00020	14 0002	2		OCP	12				
	00021	0 12 00			IRS	106				
	00022	-0 10 00			JST*	*+2				
	00023	-0 01 00	025		JMP*	*+2				
	00024	003047			OCT	3047				
	00025	004212			OCT	4212				
	00026	0 12 00	1105	DD	IRS	105				
	00027	140040	110/		CRA	1101				
	00030	0 04 00			STA JMP*	*106				
	00031	-0 01 00	1032		OCT	5245				
	00032	005245		*	001	0240				
0035				-	ABS					
0038					ORG	4142				
0037	04142	0 01 00	0000		JMP	AA				
0038	04142	0 01 00			ORG	4211				
0037	04211	0 01 00	0016		JMP	CC				
0040	04211	0 01 00	010		ORG	4574				
0041	04574	0 01 00	0007		JMP	BB				
0043	040/4	0 01 00			ORG	15244				
0043	05244	0 01 00	0026		JMP	DD				
0045	00244	0 01 00	0020		END					
0040					LIVE					
AA	0000	00 BB		0000	07	cc	000016	DD	000020	5
1.11.1	0000									

0000 WARNING OR ERROR FLAGS DAP-16 MOD 2 REV. C 01-26-71

AC

- 356 -

Table A4.5 Subroutine GRAPH

		But to define BRATH
		SUBROUTINE GRAPH(XN,A)
C		-Subroutine Graph for use with Tektronix Graphics Routines
С	4.9	This is a steering routine N and C-array elements
С		must be defined at the BASIC level.Note that C(0) in
С		BASIC corresponds to A(1) in this routine.
С		
		DIMENSION A(8)
		IX=IFIX(XN+.2)
		GOTO(10,15,20,30,40,50),IX
10		CALL INITT(0)
		RETURN
15		CALL VWINDO(A(2),A(3),A(4),A(5))
		RETURN
20		IF=IFIX(A(1)+.1)
		GOTO (1,2,3,4,5,6),IF
	1	CALL MOVEA(A(6),A(7))
		RETURN
	2	CALL POINTA(A(6),A(7))
		RETURN
	3	CALL DRAWA(A(6),A(7))
		RETURN
	4	CALL MOVER(A(6),A(7))
		RETURN
	5	CALL POINTR(A(6),A(7))
		RETURN
	6	CALL DRAWR(A(6),A(7))
~~		RETURN
30		IC=IFIX(A(8)+.2)
		CALL VCURSR(IC,A(6),A(7))
		A(8)=FLOAT(IC)
40		RETURN
40		
		CALL ANCHO(IC) RETURN
50		
00		IX=A(6) IY=A(7)
		CALL FINITT(IX,IY) RETURN
		END
		CIND

Table A4.6 Construction of the Graphics Package

Loader COMMON base is set to '37777. (See also Table A6.2 of Appendix 6). G1,G2,G3,G4,G6,G7 are groups of library routines and addresses are in octal.

	<u>P</u>	<u>A</u>	B	Subroutines
1.	16000	20000 (or 20006)	20720	G1
2.	16003	21000	21725	G2
3.	16003	22000	22720	G3
4.	16003	23000	23724	G4
5.	16003	24000	24750	G5
6.	16003	25000	25720	G _. 6
7.	160003	26000	26730	G7 MATHS

Table A4.7 Memory Map of the Graphics Package

*LOW 05470 EXP 06563 VECMOD 22000 D#11 2653	
*BASE 24761 SQRT 06677 V251 22052 F#ER 2660 *HIGH 26756 SIN 06757 PNTMOD 22260 F#HT 2661 *BASE 23755 ATAN 07065 MODCHK 22316 ERCL 2665 *COMN 37505 GRAPH 20006 REL2AB 22344 F#AT 2665 *NAMES 11506 INITT 20410 REVCOT 23610 ARG# 2673 *BASE 26774 FINITT 20560 TKDASH 23000 SAVE 3750 *CASE 26774 FINITT 20560 TKDASH 23000 SAVE 3750	26534 26604 26653 26654 26736 37505 37675

					550 -		1			
		Table A4.8	Speci	al FOR	TRAN rout	tines:	F\$HT,	FSER GE		1
0001			*							
0002									F≢ER,F	
0003					tion ER				os Exec	Uti
0005			* 111	IUCA	CION ER	CL III		routin	e	1
0006				SUBR	F≢HT,	HALT			1.1.1.1.1	
0007				SUBR	F≢ER,					11
0008				ENT	ERCL					
0009				REL						1
0010	00000	0 000000	ERR	DAC LDA*	** ERR					
		0 04 00044		STA	TEMP					
	00003	-0 02 00044		LDA*	TEMP					
0014	00004	0 04 00011		STA	ERR1+	1			N. S. S.	1
		0 02 00045	-	LDA	FT					1200
		0 04 00046		STA	OP					
	00007	0 10 00022		JST	CONT					
	00010	-0 10 00047 000000	ERRI	JST* OCT	ERCL 0					34
0020	00011	000000	*	001	U					
0021	00012	0 000000	HALT	DAC	**					
0022	00013	-0 02 00012		LDA*	HALT					134.5
	00014	0 04 00044		STA	TEMP					
	00015	-0 02 00044		LDA*	TEMP					
	00016	0 04 00046 0 10 00022		STA JST	OP CONT					2,6
	00020	-0 10 00047		JST*	ERCL					5
	00021	144324		BCI	1,HT					
0029			*							
	00022	0 000000	CONT		**					1.12
	00023	34 0104		SKS	104					
	00024	0 01 00023		JMP OCP	*-1 104					1.16
	00026	0 02 00043		LDA	CRLF					1.00
	00027	0 10 00033		JST	OUT					
	00030	0 02 00046		LDA	OP					
	00031	0 10 00033		JST	OUT					
0038	00032	-0 01 00022	*	JMP*	CONT					and a
	00033	0 000000	OUT	DAC	**					
	00034	0416 70	001	ALR	8					2 12
	00035	74 0004		OTA	4					1816
	00036	0 01 00035		JMP	*-1					
	00037	0416 70		ALR	8					1.25
	00040	74 0004		OTA	4				*	1
	00041	0 01 00040		JMP	*-1					
	00042	-0 01 00033 106612	CRLF	JMP* OCT	OUT 106612					
	00043	000000	TEMP		0	2				
0050	00045	143324	FT	OCT	143324	4				
0051	00046	000000	OP	OCT	0	AT SUBP				
0052	00047	0 000000	ERCL		**					
0053				FIN						
0054				END						
CONT	00002	22 CRLF	00004	13	ERCL	00004	7	ERR	000000	
ERR1	00001		00004		HALT	00001		OP	000046	
				C. Start						See 11

- 358 -

Table A4.9 Modified FORTRAN F\$HT, F\$ER for use with M6800 interrupt response code

- 359 -

	* PAGE 1
0001 0002 0003 0004 0005	* * Modified FORTRAN F±ER,F±ET routines for * M6800 interrupt response code in HADIOS * Executive ERRM = 1 is first byte sent * to micro followed by MCOD = 2
0006 0007 0008 0009 0010 0011	* SUBR F±HT,HALT SUBR F±ER,ERR EXT ERRM EXT MCOD
0012 0013 00000 0 000000 0014 00001 0 02 00021 0015 00002 0 04 00000 0016 00003 0 02 00020 0017 00004 0 04 00000 0018 00005 0 12 00000 0019 00006 -0 01 00000	REL ERR DAC ** LDA =1 STA ERRM LDA =2 STA MCOD IRS ERR JMP* ERR
0020 0021 00007 0 000000 0022 00010 000201 000201 0023 00011 0 022 00021 0024 00012 0 04 00000 0025 00013 0 02 00020 0026 00014 0 04 00000 0027 00015 000201 0027 0028 00016 0 12 00007 0029 00017 -0 01 00007 000002 000001 0030 00020 000001 000001 000001	* HALT DAC ** IAB LDA =1 STA ERRM LDA =2 STA MCOD IAB IRS HALT JMP* HALT FIN
0031	END
ERR 000000 ERRM	000000E HALT 000007 MCOD 000000E
0000 WARNING OR ERROR F DAP-16 MOD 2 REV. C	LAGS 01-26-71

AC

200

							500			
			Table /	4.10 E	ASIC N	TH-PAK	Pointer	<u>s</u>	PAGE	
	0001				*				THOL	
	0002					IC Ma	ths Pac	Kage rout	ines	
	0003		19 a.		* C±2	1 is	a speci	al case		
	0004				*					
	0005					ENT	ABS,AB			
	0006					ENT	L≢22,L H≢22,H			
	0007					ENT	N±22,N			
	0009					ENT	S#22,S			
	0010					ENT	A#22,A			
	0011					ENT	D≢22,D			
	0012					ENT	M±11,M			
	0013					ENT	M±22,M C±12,C			
	0014	14117				ENT	C≢21			
	0016					ENT	E≢22,E	22		
	0017					ENT	ALOG,L	OGF		1000
	0018					ENT	EXP;EX			
	0019					ENT	SQRT,S			
	0020					ENT	SIN,SI ATAN,A			
	0021				*	ENI	HIHN,H	i i i i i		48 - 1 - 1 - 7 - J
	0023		0054	70	ABSF	EQU	15470			
	0024		0055		L22	EQU	15554			
	0025		0055		H22	EQU	15560			
	0026		0055		N22	EQU	15576			
	0027		0057		S22 A22	EQU EQU	15753			
	0028		0057		D22	EQU	16035			Call In the
	0030		0061		M11	EQU	16163			FR. 84 54
	0031		0062		M22	EQU	16204			PAR DER
	0032		0062		C12	EQU	16247			
	0033		0063		E22	EQU	16370			
	0034		0064		LOGF		16477			
	0035		0066		SORF		16677			196354
ł,	0037		0067		SINF		16757			
	0038		0070	165	ATNF		170.65			
	0039		0062	260	C21	EQU	16260			
	0040				*	051				1. C. S. S. S.
	0041	00000	0.00	00000	C±21	REL	**			State Page
		000001		06260	CEZI	JST	C21			
		00002		00004		JMP	ERR			
		00003	-0 01	00000		JMP*	C#21			
		00004			ERR	JST*	1551			122
		00005	1513	311		BCI	1,RI			
	0048					END				
	A22	0057	604	ABSF	0054	70A	ATNE	007065A	C±21	000000
	C12	0062		C21	0062		D22	006035A	E22	006370
	ERR	0000		EXPF	0065		H22	005560A	L22	005554
	LOGF	0064	77A	M11	0061		M22	006204A	N22	005576
	\$22	0057	53A	SINF	0067	57A	SQRF	006677A		
	0000	LIADAUTA	0.00		Ace					
		6 MOD		ERROR FI REV. C		-26-7				
	P. 1. 1	0 1100	-	A Real of the second			and the second			And the second

DAP-16 MOD 2 REV. C 01-26-71 AC

		Table	A4.11	Utili	ty subroutine SU10	
0001			*			PAGE 1
0002 0003 0004 0005			*Subi *BAS	IC stat	e 10 Timer and tement CALL(10 are BASIC MATHPAK	,X1,X2,X3)
0006 0007 0008 0009		000675 000654 000670	H≢22 D≢22		'675 '654 '670 SU10	
0010 0011 0012 0013	00000	0 000000	* SU10	REL SETB DAC	BAS9 **	
0015	00001 00002 00003	0 10 00036 100040 0 01 00012	*	JST SZE JMP	ARG	Get the first argument
0018 0019 0020 0021	00004 00005 00006 00007	-0 10 00043 0 12 00000 0 12 00000 0 12 00000	Lane.	IRS IRS IRS	LEAD SU10 SU10 SU10	Output Leader
	00010	0 12 00000 -0 01 00000	*	IRS JMP*	SU10 SU10	Return
0025 0026 0027	00012 00013 00014	0 12 00000 0 10 00036 100040		IRS JST SZE	SU10 ARG	Get second argument
0029 0030 0031 0032	00015 00016 00017 00020 00021	0 01 00022 0 02 00046 0 04 00061 14 0020 0 01 00006	MULA	JMP L'DA STA OCP JMP	STOP =-32768 '61 '20 TAPE+2	Start CLOCK
0035 0036	00022 00023 00024 00025	0 12 00000 0 10 00036 0 15 00034 0 02 00061		JST STX LDA	SU10 ARG X3 '61	Get address of X3
0039 0040 0041 0042	00026 00027 00030 00031 00032 00033	0 07 00046 14 0220 -0 10 00675 -0 10 00670 0 000044 -0 10 00654		SUB OCP JST* JST* DAC JST*	=-32768 '220 C±12 D±22 F50 H±22	Time elapsed in 20 ms. Convert to REAL in sec.
	00034 00035	0 000000 0 01 00007	×3	DAC JMP	** TAPE+3	Return
0047 0048 0049 0050	00036 00037 00040 00041 00042	0 000000 -0 02 00000 0 04 00000 -0 02 00000 -0 01 00036	ARG	DAC LDA* STA LDA* JMP*	** SU10 0 ARG	
0053 0054	00043 00044 00045	0 005432 041544 000000	LEAD F50	DEC	'5432 50.0	
0055	00046	100000	*	FIN		
0057		000047	BASP	END	*	

et.

Table A4.12 H316 BASIC Benchmark program

```
DIM A(100), B(100), C(100), D(100)
10
20
    INPUT N,V
25
    X1=1:X2=0
    CALL (10,X1,X2,X3)
30
    FOR J=0,N
40
    FOR I=0,100:A(I)=V:B(I)=V:C(I)=V:D(I)=V: NEXT I
50
   FOR I=0,100
60
70
    IF I (50 THEN 85
    A(I)=V:B(I)=V:C(I)=V:D(I)=V: NEXT I
80
82
    GOTO 87
    GOSUB 100: NEXT I
85
87
    REM
88
   FOR I=0,100: GOSUB 200: NEXT I
90
    REM
    FOR I=0,100:C(I)=A(I)*B(I):D(I)=C(J)*D(I)
92
   D(I)=(D(I)*10/1023+23.303)
93
94
   NEXT I
95
    NEXT J
96
    X2=1
97
    CALL (10,X1,X2,X3)
    PRINT "TIME=" :X3
98
99
    END
100 A(I)=V+V:B(I)=V+V:C(I)=V+V:D(I)=V+V: RETURN
200 RETURN
```

```
10 DIM A(100),B(100),C(100),D(100)
20 INPUT N,V
25 XS=0
30 X1=1:X2=0: CALL (10,X1,X2,X3)
40 CALL (9,A(0),B(0),C(0),D(0),N,V)
50 X2=1: CALL (10,X1,X2,X3)
60 PRINT "TIME TAKEN =";X3
100 END
```

- 362 -

- 363 -

```
SUBROUTINE FTIME(A, B, C, D, RN, VALUE)
       DIMENSION A(1), B(1), C(1), D(1)
C----Benchmark program for H316
C-----
       N=IFIX(RN)
       DO 10 J=1,N
       DO 20 I=1,101
       IF ( I .LT. 50 ) GOTO 100
       A(I)=VALUE
       B(I)=VALUE
       C(I)=VALUE
       D(I)=VALUE
       GOTO 20
   100 A(I)=VALUE+VALUE
       B(I)=VALUE+VALUE
       C(I)=VALUE+VALUE
       D(I)=VALUE+VALUE
    20 CONTINUE
C----
       DO 30 I=1,101
       GOTO 200
   201 CONTINUE
    30 CONTINUE
C----
       DO 40 I=1,101
       C(I) = A(I) * B(I)
       D(I)=C(I)*B(I)
       D(I)=( D(I)*10./1023. + 23.303 )
    40 CONTINUE
    10 CONTINUE
       RETURN
   200 GOTO 201
       END
```

1

- 364 -

```
PROGRAM ORIGIN :4000
    DATA ORIGIN
                   :4500
    DIM TIME/0/,F1/0/,F2/:80/,I,J,N,A(100),B(100),C(100),D(100)
    DIM VALUE
    REM
    REM - PROGRAM ENDS WITH A SWI .. TIME ELAPSED IN
    REM
          VARIABLE 'TIME' IN LOCATION :4500-:4505
          CONVERT TO APPROPRIATE UNITS DEPENDING ON
    REM
          TIMER RESOLUTION 'F1' ...
    REM
    REM
    INPUT "INPUT N, F1, VALUE " N, F1, VALUE
    CALL CLOCK(F1)
    FOR J=O TO N
    FOR I=0 TO 100 \ A(I)=VALUE \ B(I)=VALUE
                      C(I)=VALUE \ D(I)=VALUE
    NEXT I
    FOR I=0 TO 100
    IF I<50 THEN GOSUB 100 \ NEXT I
    ELSE A(I)=VALUE \ B(I)=VALUE \ C(I)=VALUE \ D(I)=VALUE
    NEXT I
    REM
    FOR I=0 TO 100
    GOSUB 200
    NEXT I
    FOR I=0 TO 100
    C(I) = A(I) * B(I)
    D(I)=C(I)*B(I)
    D(I)=( D(I)*10/1023 + 23.303 )
    NEXT I
    NEXT J
    CALL CLOCK(F2)
100 A(I)=VALUE+VALUE \ B(I)=VALUE+VALUE
    C(I)=VALUE+VALUE \ D(I)=VALUE+VALUE
    RETURN
200 RETURN
    END
```

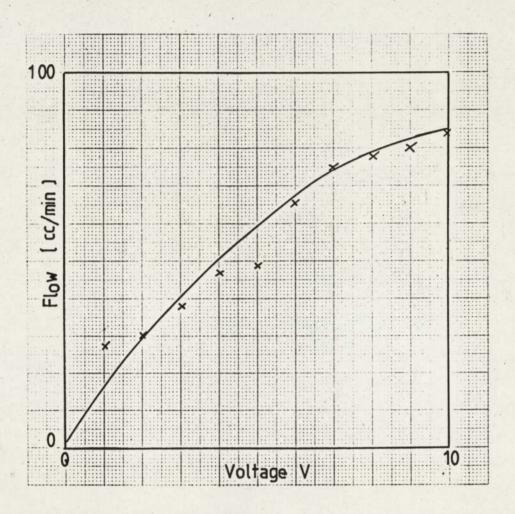
CLOCK	SEI
	LDAB FLAG
	BNE OFF
	LDX 4+X
	LOAA 5+X
	STAA FREQ
	LDX #IRQRES
	STX #F000
	LDX ##F530
	LDAB ##FF
	STAB 2.X
	LDAA ##3C STAA 3+X
	STAA 3+X
	LDAA FREQ
	STAA 2+X
	NOP
	CLI
WAICLK	LDAA 3,X
	BMI OUTCLK
	BRA WAICLK
OUTCI K	I DAA 2,X
Sector Content to	LDAA ##3D
	STAA 3+X
	INC FLAG
	RTS
	RID ,
*	LEV A V
OFF	LDX 4+X
	LDAA 5,X
	LDX ##F530
	STAA 2,X
	NOP
	CLI
	SWI
*	
IRDRES	LDX :+TIME+4
	INX
	BMI SWI
	STX :+TIME+4
	LDX ##F530
- 1	LDAA 2,X
	RTI
SWI	SWI
FLAG	FCB 0
FREQ	
ENER	
	END

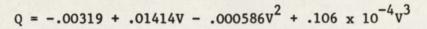
 Table A4.15
 Subroutine CLOCK for use with SD BASIC

 benchmark program

Table A4.16 Construction of the HADIOS Executive Rev. 03

1.	Clear th	ne memory.	· And a subset of	
2.	Load the	SLST of	LDR-APM Rev.	E (constructed in Appendix 3).
3.	Set P =	'16000, A	= '27000 and	l load the object code of the
	HADIOS E	xecutive	Addresses are	in actal.
4.	<u>P</u>	A	B	Subroutine
	16003 '	34000	34760	M\$22
				D\$22
and the second	The second	Contract States	State of the line	C\$12
			and the state of the	C\$21
- · · · · · · · · · · · · · · · · · · ·			and the state of	S\$22
				. A\$22
A states	e din in the second	a tree the	alle an easter in	ARG\$
	16003	33450	33760	N\$22
			The search and	REAL
			• •	L\$22
				H\$22
	·			F\$AT
	North Contraction		The state of the state	F\$ER - Modified


5.


The utility PAL-AP is then used to punch out an SLST of the Executive occupying location '27000 to '34762.

F\$HT - Modified

Table A4.17 Memo	ory map of the	HADIOS Exec	utive Rev. 03	
	ing indiana		week Statistical	2 36 19
*L.CIJ 0003	3 SUB	3 27652	NEAL	33462
ASTART 0006	.3 ICT	1 30000	L#22	33462
*HIGH 3475	A ABU	F 30434	H422	33472
+ + HES 1244	3 CB2	30637	5±47	33510
40 Grist 87.77	2 M0	31017	許太につ	33572
YEARE 3476	2 ERR	M 31147		33.401
	- MCO	b 31150	MAREN	34000
+885E 3277	CAL	M 31151	M# 23	34000
**PSE 3177		31150	D#23X	34161
+84SE 3075		IF 31301	547.7	34161
* BASE 2777		2 32031	C#12	34420
-a0105 2700		3 32240	C#21	34452
SKST 2702		L 32603	S#22	34504
1FLG 2726		and the second second		34512
TOPL 2731			→大22 た余らか	34734
5081 2733			. 1. 1. 1. 1.	34/34
EUR2 2760				·
CAL0 2763	A 201			

- 366 -

Note:

Valve and Level calibrations are done using water at room temperature.

n. m

Figure A5.1 Calibration of Reflux valve, Al

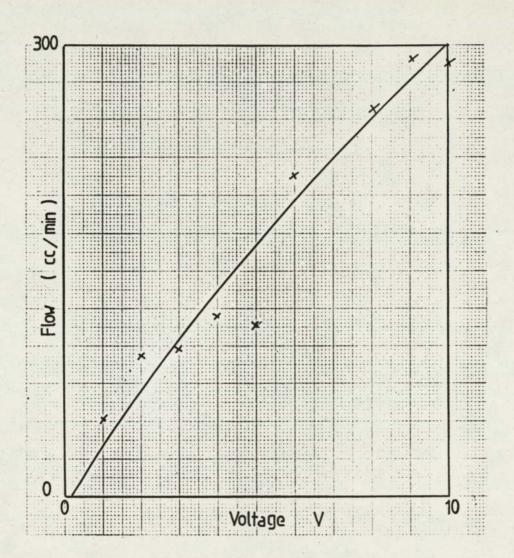
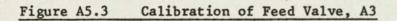



Figure A5.2 Calibration of Bottom product valve, A2

 $Q = 37.26 + 30.04V + .9524V^2 - .1548V^3$

 $V = -.123 + 2.453Q + 9.195Q^2 - 4.266Q^3$

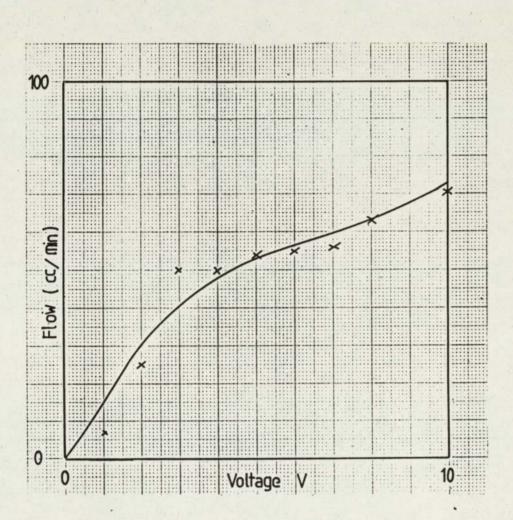
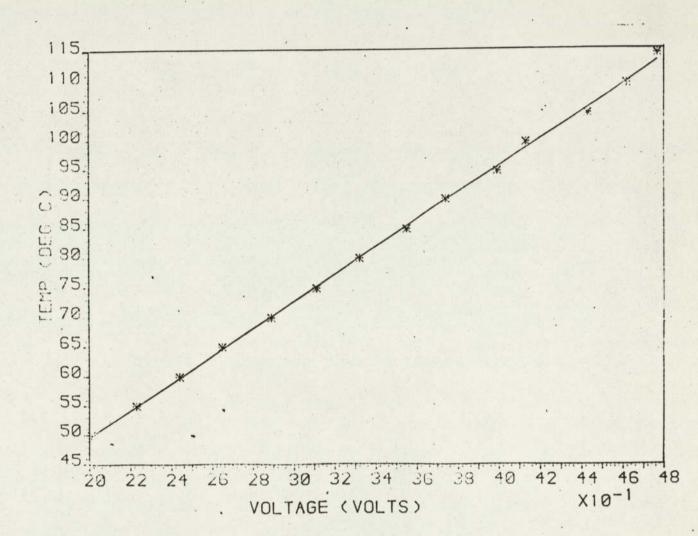
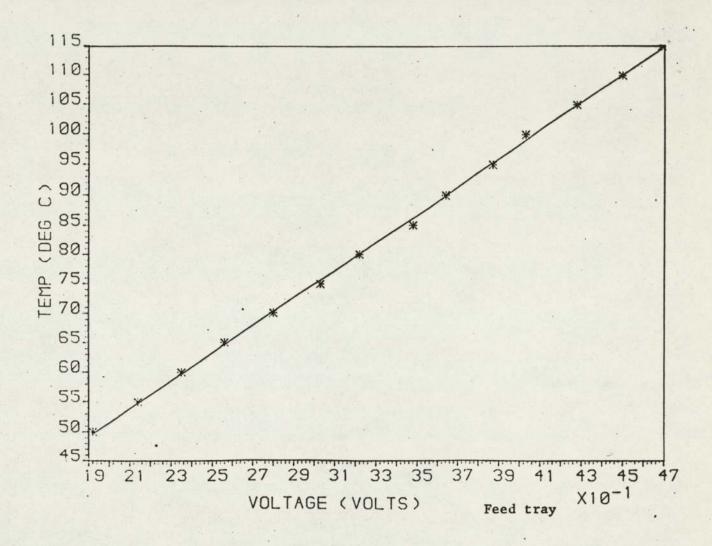
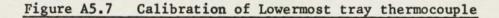


Figure A5.4 Calibration of Distillate Valve, A5

 $Q = .0365 + .0463V - .0075V^2 + .0004V^3$

- 370 -


Figure A5.5 Calibration of Topmost tray thermocouple

T = 23.181V + 3.2204

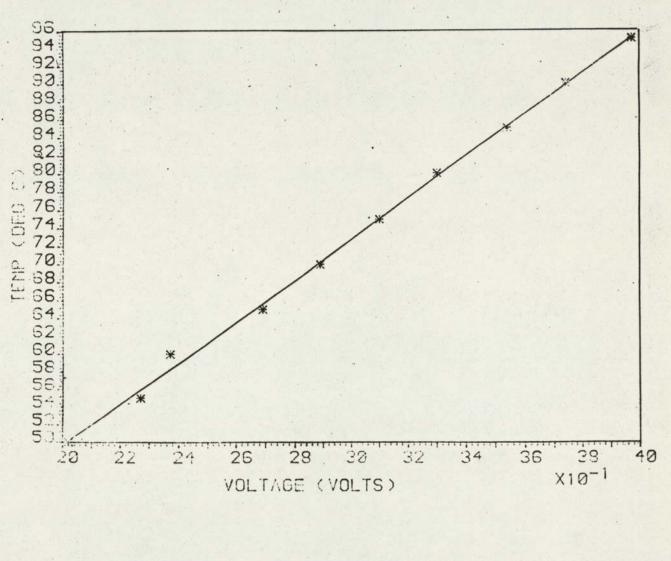


Figure A5.6 Calibration of Feed tray thermocouple

T = 23.422V + 4.688

T = 23.181V + 3.2204

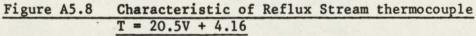


Figure A5.9 Characteristic of Feed Stream thermocouple T = 22.1V - .307

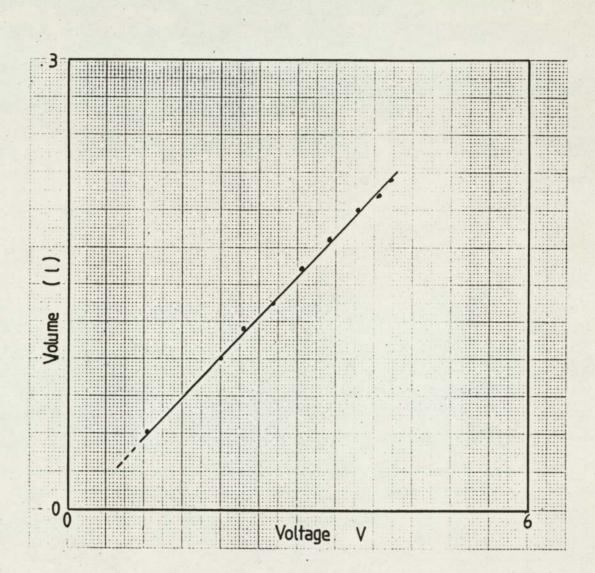
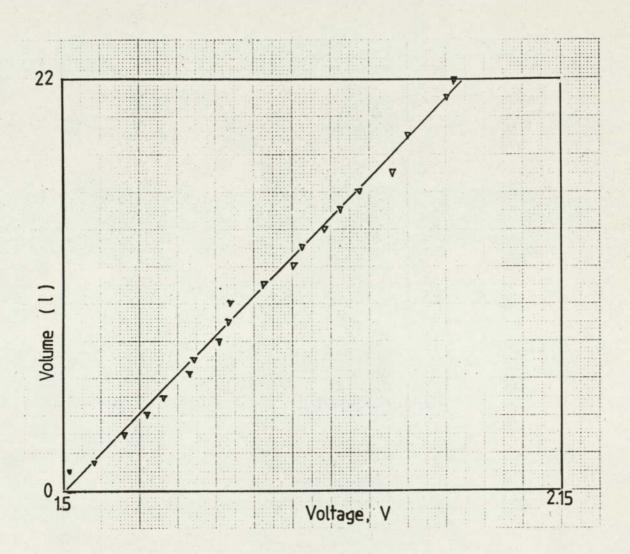



Figure A5.10 Calibration of Reflux Drum Level

 $L_1 = -.05864 + .541V$

 $L_2 = .60.0 + 40.1V$

Table A6.1 Construction of the Disk-Overlay Utility Program

The three main units of the program are subroutines DTOC, RWSC and A\$DO3. The first two are listed here for the sake of completeness. Note that for more reliable disk operation, the instruction ANA CMD in A\$DO3 has been changed to ERA CMD. Also, the RWSC routine has been made interrupt inhibited by the use of INH and ENB instructions. This means the H316 cannot be interrupted while it is reading a sector from disk storage - a situation which is considered desirable in an on-line environment since the detailed operation of the disk unit is not fully understood.

c		SUBROUTINE DTOC(UNIT, TRAK, SECTOR, FADDE, LADDR, ERR)
0-		-This subroutine, in conjunction with RUSC, overlays program segment on disk into core
c	70	REAL LADDR IUNIT=UNIT ITRAK=TRAK ISECT=SECTOR IBUF1=FADDR IBUF2=LADDR K=IBUF1-IBUF2+1 IF(K.GT.54) K=64
000		-Call the Read a sector routine If unsuccessful after 10 searches then call A±D03 to turn off motor by Rezero seek and outputting a Type 0 command with bit 8 set
00		Repeat another 10 times DO 30 1=1,20 CALL RWSC(IUNIT,ITRAK,ISECT,IRUF1,K,IER) IF(1ER.EQ.0) GOTO 50 IF(1.EQ.10) CALL A±D03(IUNIT) CONTINUE IF(K.LT.64.OR.IER.NE.0) GOTO 90 ISECT=ISECT+S IF(ISECT.LE.26) GOTO 80 ISECT=ISECT-26
		IF(ISECT, HQ. 1) 1=1+1 IBUF1=IBUF1+64 GOTO 70 ERR=IER CALL A±D03(IUNIT) RETURN END

Memory map of DTOC

*LOW	05470
*START	27777
*HIGH	30460
*NAMES	12636
*COMN	37777
*BASE	30464
ABS	05470
L#22	05554
H≢22	05560
N≢22	05576
S≢22	05753
A#22	05760
D≢22	06035
M±11	06163
M≢22	06204
C#12	06247
E≢22	06370
ALOG	06477
EXP	06563
SQRT	06677
SIN	06757
ATAN	07065
DTOC	30000

RWSC

A±D03

L±33

F±AT.

C±21

30222

30336

30354

30370

30376

				SUBR	RWSC
0001				SUBR	RWSC
0002		000130	OPMD		130
0003		001030	DSKO		1030
0005		000230	OPCD		1230
0003		000530	DEMK		1530
0007		000030	I PMD		1030
0008		000130	DFMK		130
0009		000530	IPDA		1530
0010		001030	DSKI	EQU	1030
0011		000330	OPDA	EQU	1330
0012		000430	STAT		1430
0013	00000	0 00 00			
0014	00001	077777	STT	OCT	77777
0015	00002	0 00 00			
0016	00003	001000	SCCD		1000
0017	00004		0000 TEMP		
0018	00005	0 00 00	0000 SBUF	DAC	**
0019	00007		0000 Kwsc	CALL	FEAT
0021	00010	000006		DEC	6
0022	00011	0 00000	O UNIT		**
0023	00012	0 00000			**
0024	00013	0 0000			**
0025	00014	0 00000			**
0026	00015	0 0000	00 SECL	DAC	**
0027	00016	0 00000	0 ERR	DAC	**
0028	00017	001001		INH	
0029	00020	14 0130		OCP	OPMD
0030	00021	-0 02 0	0015	LDA*	SECL
0031	00022	140407		TCA	COUT
0032	00023		0000	STA	COUT
0033	00024		0014 L 0005 S0	LDA* STA	BUFF
0034	00025		0120	LDA	='37777
0035	00028		0005	SUB	SBUF
0037		140407		TCA	0001
0038	00031	0 04 0		STA	SBUF
0039	00032	140040		CRA	
0040	00033	0 04 0	0002	STA	DERR
0041	00034	-0 02 00		LDA*	UNIT
	00035	0406 7		ARR	2
0043	00036	-0 06 00	0013	ADD*	SECT
0044	00037	0 06 0		ADD	SCCD
0045	00040	74 103		OTA	DSKO
	00041		0040	JMP	*-1
0047	00042	14 023		OCP	OPCD
	00043	-0 02 0		LDA*	UNIT
0049	00044	0406 7		ARR	2
	00045	-0 06 0		ADD*	TRAK
0051	00046	0 04 0		STA	TEMP
	00047	0 02 0		LDA	=1 5
0053	00050	0406 7		ARR	TEMP
			0004	OTA	DSKO
0055	00052			JMP	*-1
0058	00053	14 023		OCP	OPCD
0037	00034	14 023		UCF	0100

PAGE

0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0075 0076 0077 0078 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0085 0086	00055 00056 00057 00060 00061 00062 00063 00064 00065 00066 00067 00070 00071 00072 00073 00074 00075 00075 00076 00077 00100 00101 00102 00103 00104 00105 00106 00107 00100 00101 00101 00111 00112 00113 00114 00115 00116	$\begin{array}{c} 0 & 35 & 0.00 \\ 14 & 0030 \\ 140040 \\ 34 & 0130 \\ 0 & 01 & 000 \\ 14 & 0530 \\ 54 & 1030 \\ 0 & 01 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140040 \\ 0 & 12 & 000 \\ 140030 \\ 0 & 01 & 000 \\ 34 & 0530 \\ 0 & 01 & 000 \\ 34 & 0530 \\ 0 & 01 & 000 \\ 34 & 0530 \\ 0 & 01 & 000 \\ 14 & 0030 \\ 14 & 00$	54 53 50 50 50 50 50 50 50 50 50 50	SUBR LDX OCRASS JOCPA SKPP INPA SCRSS JOCP	RWSC SBUF IPMD DFMK DEST IPDA DSKI *-1 STT 0 COUT S4 DEMK *-1 IPMD D2 DEMK S4 ='100 DERR IPMD STAT DSKI *-1 ='3700 DERR 6 ERR RWSC	00	PAGE		2
BUFF DEMK DSKI IPMD OPMD S2 SCCD STT	00116 00117 00120 0000 0005 0010 0000 0001 0000 0000	000001 037777 14 COUT 30A DERF 30A DSK0 30A L 30A L 30A RWS0 43 S4 03 SECL	8 0000 0 0010 0000 0000 0000 0000	02 30A 24 06 60 15	D1 DEST ERR OPCD S0 S6 SECT TRAK	000101 000077 000016 000230A 000025 000067 000013 000012	D2 DFMK IPDA OPDA S1 SBUF STAT UNIT	000103 000130A 000530A 000330A 000034 000005 000430A 000011	
	WARNIN 6 MOD	G OR ERROF 2 REV.		-26-71		•			

- 379 -

2

AC

0001				SUBR SUBR REL	A±D03 A±D03,	•	PAGE	
	00000	0 000000	AD03	DAC	**			
	00001	0 10 00000		CALL	F≢AT			
	00002	000001		DEC	1			
	00003	0 000000	LD	DAC	**			
	00004	-0 02 00003		LDA*	LD			
	00005	0406 76		ARR	2			
	00003	0 05 00014		ERA	CMD			
	00007	14 0130		OCP	OPMD			
0011	00010	74 1030		OTA	DSKO	*		
	00011	0 01 00010		JMP	*-1			
	00012	14 0230		OCP	OPCD			
	00013	-0 01 00000	-	JMP*	AD03			
0015		000130	OPMD	EQU	130			
0016	00014	001030	DSKO	EQU	1030	7	107	•
	00014	034400	CMD	VFD		,7,2,0,1,1	,1,0,7,	0
0018		000230	OPCD	END	1230			
0019				END				
ADO3	00000	00 CMD	0000	14	DSKO	001030A	LD	000003
OPCD	00023		00013					
0.00								
0000	WARNING	G OR ERROR F	LAGS					
	6 MOD			-26-71				

AC

1

Table A6.2 Construction of EKF1 - Segment 1

- 381 -

Note:

P, A, B are the settings (in octal) of the P, A and B registers respectively. The COMMON base is changed to '37504 before the first loading. Due to an error in the loader program, subroutines cannot be force-loaded (P = '16004) with a new origin and base address (for the intersector links) as is possible with a loader program break (P = '16003). This difficulty is solved by following a modified procedure denoted as FORCE.

	P	A	B	Subroutine
1.	16000 16004	20000	20750	KOMMON INIT
2.	16003	21000	21740	INIT1
3.	16003	22000	22750	INIT2
4.	16003	23000	23750	INIT3
5.	FORCE	24000	24750	P10F10
6.	16003	25000	25750	TRANS
7.	16003	26000	26740	MATMUL
8.	FORCE	27000	27750	COMN MATADD
9.	FORCE	30470	30760	FDTX
10.	16003	31000	31750	SDBUB DIAADD
11.	FORCE 16004 16004	32000	32750	KALMA1 SDINT MATTPS MATHS
13.	FORCE 16004	33000	33120	INTPAS INTJS

Memory	map for	Segment 1		
*LOW	05470		A±22	05760
*START	17777		D#22	06035
*HIGH	33110		M±11	06163
*NAMES	11547		M±22	06204
*COMN	33143		C≢12	06247
*BASE	30762		L.±22	06370
*BASE	33121		ALOG	06477
*BASE	32762		EXP	06563
*BASE	31765		SQRT	06677
*BASE	27760		SIN	06757
*BASE	26746		ATAN	07065
*BASE	25761		KOMMON	20000
*BASE	24760		INIT	20006
*BASE	23757		INIT1	21000
*BASE	22761		INIT2	22000
*BASE	21760		INITS	23000
*BASE	20763		P10F10	24000
ABS	05470		TRANS	25000
L#22	05554	the second second	MATMUL	26000
H≢22	05560		MATTPX	26500
N≢22	05576		COMN	27000
S≢22	05753		MATADD	27570

31000
31504
32000
32240
32416
32510
32524
32524
32524
32534
32542
33000
33052
33143
33217
33257
33301
33305
33361
33365
33671
34021
34427.
34757
37477

Table A6.3 Construction of EKF1 - Segment 2

	P	A	B	Subroutine
1.	16000 16004	20000	20745	KOMMON DCOL
2.	16003	21000	21760	DCOL1
3.	16003	22000	22760	DCOL2
4.	16003	23000	23760	DCOL3
5.	16003	24000	24760	DCOL5 DCOL6
	16004 (if	required)		SWAVE
6.	FORCE - (if	25000 required)	25760	PERTUB RAMP STEP
7.	16003	26000	26760	DCOL4
8.	16003 16004	31000	31750	SDBUB DIAADD
9.	FORCE 16004	32000	32750	KALMA1 SDINT MATTPS MATHS
10.	16003 -	33000	33120	INTPAS INTJS

Memory	map	of	Segment	2
*LOW	0547	70		
*START	1777			
*HIGH	3311			
*NAMES	Shires The second			
*COMN	3314	43		
	3311			
*BASE	3270	52		
*BASE	317	65		
*BASE	2673	71		
*BASE	257	70		
*BASE	247	73		
*BASE	237	74		
*BASE	227	75		
*BASE	217	74		*
*BASE	207	72		
ABS	054	70		
L#22	055			
H≢22	055			
N#22	055			
S#22	057			
A±22	057			
D#22	060			
M±11	0.61			
M≢22	062			
C≢12	062			
E±22	063			
ALOG	064			
EXP.	065			
SQRT	066			
SIN	067	57		

ATAN	07065
KOMMON	20000
DCOL	20006
DCOL1	21000
DCOL2	22000
DCOL3	23000
DCOL5	24000
DCOL6	24444
PERTUB	25000
RAMP	25337
STEP	25476
DCOL4	26000
SDBUB	31000
DIAADD	31504
KALMA:	32000
SDINT	32240
MATTPS	324:6
L#33	32510
IFIX	32524
INT	32524
IDINT	32524
C#21	32534
FÉAT	32542
INTPAS	33000
INTJS	33052
PRIN	33143
DATA	33217
HOUSE	33257
BUB	33301
CONVEC	33305
INTEG	33361
INVERS	33365
WORK	33671
COLUMN	34021
MODEL	34427
FILTER	
KOLPAR	37477

Table	A6.4	Construction	of	EKF1	-	Segment 3

	P	A	B	Subroutine
1.	16000	20000	20750	KOMMON SIMUL
2.	16003 16004	21000	21762	SIMULX VECTOR
3.	FORCE	22000	22760	KALMAN
4.	16003	23000	23760	MATINV
5.	FORCE	24000	24760	P10F10 MATMUL
6.	16003	25000	25740	TRANS
7.	16003	26000	26760	PKK DIAMUL DIASUB MATTPX
8.	16003	30470	30760	FDTX
9.	FORCE	27000	27750	COMN MATADD
10.	16003	3100	31750	SDBUB DIAADD
11.	16003	32000	32750	KALMA1 SDINT MATTPS MATHS
12.	16003	33000	33120	

Memory map of Segment 3

*LOW *START *HIGH *NAMES *COMN *BASE *BASE *BASE *BASE *BASE *BASE *BASE *BASE *BASE *BASE *BASE *BASE	05470 17777 33110 11420 33143 27760 31765 24761 23771 32762 33121 25761 26763 30762 22773 21775 20774	M±11 M±22 E±22 ALOG EXP SQRT SIN ATAN KOMMON SIMUL SIMULX VECTOR KALMAN MATINV P10F10 MATMUL TRANS	06163 06204 06370 06477 06563 06677 07065 20000 20006 21000 21636 22000 23000 24000 24000 24172 25000	SDBUB DIAADD KALMA1 SDINT MATTPS L#33 IFIX INT C#21 F#AT INTPAS INTJS PRIN DATA HOUSE BUB	31000 31504 22000 32340 32510 32524 32524 32524 22524 22524 22524 33000 33052 33143 33217 33257 33301
*8ASE				INT	32524
*BASE	23771			IDINT	32524
*BASE	32762			Cź21 -	32534
*BASE	33121 .			FEAT	32542
*BASE	25761			INTPAS	33000
*BASE	26763			INTJS	33052
*BASE				PRIN	33143
*BASE .				DATA	33217
*BASE .				HOUSE	33257
	and the second			BUB	33301
ABS	05470	PKK	26000	CONVEC	33305
L#22	05554	DIAMUL	26124	INTEG	33361
H¥25	05560	DIASUB	26310	INVERS	33365
N#22	05576	MATVEC	26440	WORK	33671
S£22	05753	MATTPX	26556	COLUMN	34021
A±22	05760	COMMON	27000	MODEL	34427
D#22	06035	MATADD	27570	FILTER KOLPAR	34757 37477

Table A6.5 Construction of EKF1 - Segment 4

This segment is identical to the Graphics package constructed in Table A4.6 of Appendix 4. Note that in EKF1, subroutine GRAPH must be loaded at location '20006.

	<u>P</u>	<u>A</u>	<u>B</u> .	Subroutine
ι.	16000 16004	20000	20700	KOMMON KOMN
2.	FORCE 16004 16004	32000 (L\$33 force-loaded)	32750	KALMA1 SDINT MATTPS MATHS
	Memory ma	ap of Segment 5		
	*LOW *START *HIGH *NAMES *COMN *BASE *BASE *BASE ABS L#22 H#22 N#22 S#22 A#22 D#22 D#22 D#22 D#22 D#22 D#22 D	05470 17777 33110 12446 33143 30762 33121 20707 05470 05554 05560 05556 05753 05760 06035 06163 06204 06247 06370 06477	KOMMON KALMAI SDINT MATTPS L#33 IFIX INT IDINT C#21 F#AT INTPAS INTJS PRIN DATA HOUSE BUB CONVEC INTEG INVERS	20008 32000 32240 322415 32510 32524 32524 32524 32524 32534 32542 33000 33052 33143 33217 33257 33257 33301 33305 33361
	EXP SQRT	06563 06677	WORK COLUMN	
	SIN ATAN	08757 07085	MODEL FILTER KOLPAR	34757

- 387 -

```
10
    REM
         --- PROGRAM TO CALCULATE TIME-INVARIANT ANTOINE COEFFICIENTS
20
    DIM U(3), V(3), S(3), T(3), L(4)
30
    FOR I=1 TO 3: READ U(I), V(I), S(I), T(I), L(I), M(I), N(I): NEXT I
40
    DATA 40,40,11.9,40.1,.175,1.07,.98
    DATA 100,400,31.4,100,.348,1.05,.98
50
    DATA 760,760,86.7,120.8,.487,1.05,.98
60
70
    L(4)=.434:M(4)=1.05:N(4)=.98
80
    N0=2
90
    REM
100
     FOR I=1 TO NO: GOSUB 1000: NEXT I
     GOSUB 1500
110
     PRINT "VA=";C1;: PRINT "VB=";C2
112
     PRINT "A(1)=";A(1);: PRINT "B(1)=";B(1);: PRINT "C(1)=";C(1)
120
125
     PRINT "A(2)=";A(2): PRINT "B(2)=";B(2): PRINT "C(2)";C(2)
130
     END
132
     RETURN
1000
      IF 1>1 THEN 1200
      P1=(LOG(U(1)))/2.303:X1=S(1)
1010
      P2=(LOG(U(2)))/2.303:X2=S(2)
1020
1030 P3=(LOG(U(3)))/2.303:X3=S(3): GOTO 1250
     REM
1040
             -----
1200
     P1=(LOG(V(1)))/2.303:X1=T(1)
1210
     P2=(LOG(V(2)))/2.303:X2=T(2)
      P3=(L0G(V(3)))/2.303:X3=T(3)
1220
1250
      X4=(X2-X3)*(P1-P2)-(X2-X1)*(P3-P2)
     X5=(X2-X3)*(P1-P2)*X1+(X2-X3)*(P1-P2)*X2
1260
     X5=X5-(X2-X1)*(P3-P2)*X3-(X2-X1)*(P3-P2)*X2
1270
1280.
      X6=(X2-X3)*(P1-P2)*X1*X2-(X2-X1)*(P3-P2)*X2*X3
      C(I)=((-X5)+SQR(X5^2-4*X4*X6))/(2*X4)
1290
1300
      B(I)=(P1-P2)*(X1+C(I))*(X2+C(I))/(X1-X2)
1310
      A(I) = P1 + B(I) / (X1 + C(I))
1320
      RETURN
1500
     P=0:Q=0
1510
      FOR J=1 TO 4
1520
      GOSUB 1600: GOSUB 1700
1530
      P=P+P0:Q=Q+Q0
1540
     NEXT J
      C1=P/4:C2=Q/4: RETURN
1550
1600
      \times 1 = L(1) : \times 2 = 1 - \times 1
1310
      P0=(X1-X2)*LOG(N(I))/((X1^2)*2.303)+2*LOG(M(I))/(X2*2.303)
1620
      RETURN
1,700
     \times 1 = L(I) : \times 2 = 1 - \times 1
     Q0 = (X2 - X1) \times LOG(M(I)) / ((X2^2) \times 2.303) + 2 \times LOG(N(I)) / (2.303 \times X1))
1710
1720
      RETURN
```

- 389 -

```
Table A6.8
                      BASIC program to perform a Mcabe-Thiele analysis of
                      the Distillation Column
10
    DIM E(11),X(22,2),Y(22,2),Z(11,2),T(11),M(11)
20
    DIM P(2),G(2),A(70),B(20),C(20),H(16),K(10),F(16)
    DIM Q(2), 0(6), S(6), L(11), U(110), W(20)
25
        --- ENTER EQUILIBRIUM COEFFICIENTS NOW
30
    REM
35
    READ C1,C2,A(1),A(2),B(1),B(2),C(1),C(2)
40
    DATA .42E-02,-.4E-03,7.4266,8.08374
45
    DATA 1549.3,2128.93,254.082,288.34
    REM --- INPUT FEED, FEED COMP., BOTTOM COMP., TOP COMP.
46
47
    REM --- EFFICIENCY FLAG AND REFLUX RATIO GUESS ..
    PRINT "INPUT F,XF,XB,XD,EFFLAG,RG"
48
50
    INPUT F2, F1, B1, D1, E0, R1
55
    B2=.2:B3=.6E-02:V8=31.5074:V9=34.777:D3=.10089E05
57
    B2=.25
60
   D4=8686.75:R2=.381E-01:F7=7:N=10:G9=.1
65
   T9=1*760
68
   Z1=.762E-01:Z2=.105E-01
70
   IF E0=0 THEN 85
   E1=.94: GOTO 200
80
85
   Z1=.762E-01:Z2=.105E-01:Z3=.3E-02:Z4=.435E-01:Z5=.2335E-01
20
   Z6=.381E-01:Z7=0:Z8=0:Z9=0
95
   F(1)=359.9:F(2)=391.8:F(3)=560.94:F(4)=579.8:F(5)=45.445
100
     F(6)=40.72:F(7)=.265:F(8)=.268:F(9)=.286E-03:F(10)=.344E-03
    F(11)=.295E-01:F(12)=.321E-01:F(13)=.345:F(14)=.436
105
110
     F(15)=131.5:F(16)=166
200
    J=1:N9=N+1: GOSUB 1000: REM
                                            ----CALL SUBROUTINE SDWEG: PRI
210
    GOSUB 3000:M(N9)=60
212
     PRINT
215
     PRINT
     PRINT "FEED COMPOSITION=";: PRINT F1;
220
     PRINT TAB(30) : "FEED RATE=" :: PRINT F2:: PRINT "MOL/HR"
230
240
     PRINT
250
     PRINT "DISTILLATE COMP=";: PRINT D1;
    PRINT TAB(30); "DISTILLATE=";: PRINT D: PRINT
260
    PRINT "BOTTOMS COMP=" ;: PRINT B1;
270
    PRINT TAB(30); "BOTTOMS=";: PRINT BO: PRINT
280
282
    PRINT "VTOP=" ;: PRINT V4;
284 PRINT TAB(30); "VBOT=";: PRINT V5: PRINT
    PRINT "REFLUX R=":: PRINT (V4-D)/D;
286
    PRINT TAB(30); "HEAT Q=";: PRINT Q9: PRINT
288
290
     PRINT "-----
300
     PRINT
310
     PRINT "
                                                              T(I)"
               I
                                  L(I)
                                              M(I)
320
     PRINT
330
     FOR I=1 TO 11: PRINT I,L(I),M(I),T(I): NEXT I
340
     PRINT : PRINT
     PRINT "
                                                             EFF"
350
                                  XS
                                              YS
                Ι
360
     PRINT : FOR I=1 TO 11
    PRINT 1,X(1,J),Z(1,J),E(1)
370
    NEXT I: PRINT "SET SS 4 NOW AND INPUT 1 OR 0 ";: INPUT W9
380
385
    IF W9=0 THEN STOP
390
     FOR I=1,11: PRINT X(I,J);: PRINT ",";: PRINT Z(I,J);
     PRINT ", ";: PRINT M(I): NEXT I
392
     FOR I=1,11: PRINT L(I);: PRINT ",";: PRINT T(I);
394
396
     PRINT ",";: PRINT E(I): NEXT I
```

2255 REM L(I) = R0 + F22260 2270 V=L(I)-B0 I2=I-1:Y(I,J)=(L(I)*X(I2,J)-B0*B1)/V 2280 2290 GOSUB 4000:T(I)=T8:X(I,J)=X9 2300 IF E9=1 THEN RETURN IF I<>N9 THEN 2350 2320 2340 E(I)=1: GOTO 2360 IF E0=1 THEN 2360 2350 GOSUB 7000 2355 2360 NEXT I F9=X(N9, J) 2370 2380 RETURN 2997 REM 2998 ----- MCCABE THIELE STEADY STATE MODULE -----REM 2999 REM IF E0=0 THEN 3030 3000 FOR I3=1 TO N9: IF I3=N9 THEN 3020 3010 3015 E(I3)=E1: GOTO 3025 3020 E(I3) = 13025 NEXT 13 D=(F1-B1)*F2/(D1-B1):B0=F2-D:R0=D*R 3030 3040 V4=R0+D FOR I=1 TO N9: IF I>1 THEN 3130 3050 L(I)=R0:Y(I,J)=D1 3060 GOSUB 4000 3070 T(I)=T8:X(I,J)=X93080 IF E9=1 THEN RETURN 3090 3100 IF E0=1 THEN 3120 3110 GOSUB 7000 3120 GOTO 3300 3130 IF I>=F7 THEN 3210 L(I)=R0:Y(I,J)=L(I)*X(I-1,J)/V4+D*D1/V4 3140 3150 GOSUB 4000 3160 T(I)=T8:X(I,J)=X9 3170 IF E9=1 THEN RETURN 3180 IF E0=1 THEN 3200 3190 GOSUB 7000 3200 GOTO 3300 3205 REM ----3210 L(I)=R0+F2V5=L(I)-B0 3220 Y(I,J)=(L(I)*X(I-1,J)-B0*B1)/V5 3230 GOSUB 4000:T(I)=T8:X(I,J)=X9 3240 3250 IF E9=1 THEN RETURN IF I <> N9 THEN 3290 3260 3270 E(I)=1: GOTO 3300 IF E0=1 THEN 3300 3290 3295 GOSUB 7000 3300 NEXT I 3305 REM ----Z(N9, J) = Y(N9, J) * E(N9)3310 3320 I=N 3330 I 3=I+1 3340 Z(I,J)=E(I)*Y(I,J)+(1-E(I))*Z(I3,J)3350 I = I - 1

```
- 391 -
```

```
3360
     IF I <1 THEN 3380
3370 GOTO 3330
     D1=Z(1,J)
3380
3390 B1=(F2*F1-D*D1)/B0
3400 X(N9,J)=B1
3410
     V6=L(N)-B0-V5
     V7=B1*V8+(1-B1)*V9
3420
3430
     Q9=V7*V5
3440
     Q7=22/7:Q8=2*R2
3450 FOR I=1 TO N
3460 D2=X(I,J)*D3+(1-X(I,J))*D4
3470 D6=L(I)*10/(D2*Q7*Z2)
3480 D7=B2+B3*D6
     D8=(Q7*.1E05/4)*(Z1^2-2*Z2^2)*D7
3490
     M(I)=D8*.1E-05*D2
3500
3510 NEXT I
3515 L(11)=B0
3520
     RETURN
3525
     REM
                     ----
3997
      REM
3998
           ----- DEW POINT CALCULATIONS -----
      REM
3999
     REM
4000
     E9=0
     IF Y(I,J)>1 THEN PRINT "ERRORTB": GOTO 4040
4010
     IF Y(I, J) (0 THEN PRINT "ERNEG": GOTO 4040
4020
     GOTO 4050
4030
4040
     E9=1: RETURN
4050
      J2=J
4060
     Y(I+11, J) = Y(I, J)
4070 F0=L0G(10):Y(I+11,2)=1-Y(I+11,1)
      FOR I1=1 TO 2:G(I1)=1: NEXT I1
4080
4090
      T0=80
4100
      REM
4105
     S1=0:S2=0
4110
     FOR J1=1 TO 2
     P(J1)=EXP(F0*(A(J1)-B(J1)/(T0+C(J1))))
4120
     X(I+11,J1)=Y(I+11,J1)*T9/(G(J1)*P(J1))
4130
4140
     S1=S1+X(I+11,J1)
4150
     S3=F0*B(J1)*X(I+11,J1)/(T0+C(J1)^2)
4160
     S2=S2+S3: NEXT J1
     E7=1-S1: IF ABS(E7) (=.1E-02 THEN 4800
4170
4190
      REM
4210
      T0=T0-E7/S2
      IF ABS(1-X(I+11,1))(.1E-06 THEN 4500
4220
4230
      X(I+11,1)=X(I+11,1)/(X(I+11,1)+X(I+11,2))
     X(I+11,2)=X(I+11,2)/(X(I+11,1)+X(I+11,2))
4240
      FOR J1=1 TO 2
4250
4260
     IF J1>1 THEN 4300
4270
     S4=(2*C2-C1)*(1-X(I+11,J1))^2
      S5=2*(C1-C2)*(1-X(I+11,J1))^3
4280
      G(J1)=EXP(F0*(S4+S5)): GOTO 4320
4290
4295
      REM
4300
      S4=2*(C1-C2)*(1-X(I+11,J1))^2
4310
      S5=2*(C2-C1)*(1-X(I+11,J1))^3
     G(J1)=EXP(F0*(S4+S5))
4315
      NEXT J1
4320
4330
     GOTO 4510
4500
      G(1)=1:G(2)=1
```

```
GOTO 4105
4510
4800
     T8=T0
4810
     FOR J1=1 TO 2
     P(J1)=EXP(F0*(A(J1)-B(J1)/(T8+C(J1))))
4820
     Q(J1)=Y(I+11,J1)*T9/(G(J1)*P(J1))
4830
4840
     NEXT J1
     J=J2
4850
4890 X9=Q(J)
4900
     RETURN
5999
      REM
6990
     REM.
           ----- PLATE EFFICIENCY CALCULATIONS ------
6991
      REM
6992
     REM
7000
     L1=L(I):V1=V
      DEF FNS(Z0)=1.85335-2*.7327*Z0-3*.32393*Z0^2+4*.16057*Z0^3
7005
      T7=T(I)+273
7010
      28=1:29=1
7015
     H1=Z1:H2=Z2:H3=Z3:H4=Z4:H5=Z5:H6=Z6:H7=Z7:H8=Z8:H9=Z9
7020
7030
     REM
     FOR J3=1 TO 2
7040
      H(J3)=F(J3):H(J3+2)=F(J3+2):H(J3+4)=F(J3+4)
7050
      H(J3+6)=F(J3+6):H(J3+8)=F(J3+8):H(J3+10)=F(J3+10)
7055
      H(J3+12)=F(J3+12):K(J3+8)=F(J3+14)
7060
7070 NEXT J3
7080
     REM
     FOR 17=1 TO 2:H(14+17)=T7/H(2+17)
7090
     K(I7)=(K(8+I7)*H(4+I7)/H(2+I7))
7100
      K(17)=K(17)*(.653E-01/(H(6+17)^.773)-.9E-01*H(14+17))
7110
      K(4+17)=.324*K(17)^.5
7120
     K(4+17)=K(17+4)*3.6
7130
     K(I7)=K(I7)*.1E07/K(I7+8)
7140
      K(2+17)=Z8*.101325E06/(8.314*T7)
7150
     F3=(1.9*H(14+I7))^(.9*LOG(1.9*H(I7+14))/2.303)
7160
      F4=1.058*H(17+14)^.645-.261/F3
7170
      K(17+6)=33.3*SQR(K(17+8)*H(17+2))*F4
7180
      K(6+17)=K(6+17)/((H(8+17)*.1E07)^(2/3))
7190
     K(6+17)=K(6+17)*3.6*.1E-03
7200
7210
     NEXT 17
7220
      REM
      FOR 17=1 TO 2:H(10+17)=H(10+17)*.1E07: NEXT 17
7230
     W1=1.18*(H(10+1)^(1/3))
7240
     W2=1.18*(H(10+2)^(1/3))
7245
7250
      W_0 = (W_1 + W_2)/2
      W3=1.15*H(1):W4=1.15*H(2):W5=SQR(W3+W4):W6=T7/W5
7255
     W7=1.16145/(W6^.14874)+.52487/EXP(.7732*W6)
7260
     W7=W7+2.16178/EXP(2.437*W6):W8=SQR(1/K(9)+1/K(10))
7265
7270
      W9=1-2.46*W8*.1E-03
      U0=W8*W9*(T7^(3/2)):U1=3600*.1E-03*(U0/(Z8*W7*W0^2))
7280
      U2=7.4*.1E-07*K(9)^.5/(H(11)^.6)
7380
     U3=7.4*.1E-07*K(10)^.5/(H(12)^.6)
7390 -
7400
      114=1
      IF X(1, J) (0 THEN U4=0
7410
      U5=U4*(X(I,J)*U3+(1-X(I,J))*U2)
7420
      U6=(X(I,J)*K(5)^(1/3)+(1-X(I,J))*K(6)^(1/3))^3
7430
```

```
7435
     U6=U6/3.6:U7=U5*T7/U6
                                  ----CALL CONVRT
7440
     GOSUB 8500: REM
     M5=22/7:M6=M5*(H1^2-2*H2^2)/4
7450
     Y_{4=X(I,J)*K(1)+(1-X(I,J))*K(2)}
7455
7460
     Y5=Y(I,J)*K(3)+(1-Y(I,J))*K(4)
     Y6=(X(I,J)*K(5)^(1/3)+(1-X(I,J))*K(6)^(1/3))^3
7470
     Y7=(Y(I,J)*K(7)*SQR(K(9))+(1-Y(I,J))*K(8)*SQR(K(10)))
7480
7485
     Y7=Y7/(Y(I,J)*SQR(K(9))+(1-Y(I,J))*SQR(K(10)))
7490
     Y8=Y7/(Y5*U1)
     Y9=1.25*(.124E-01+.171E-01*M7+.25E-02*Y1/H4+.15E-01*H3)^2
7495
7500
     A1=M7*SQR(Y5): IF A1>2.5 THEN 7520
     IF A14.5 THEN 7530
7505
7508
     GOSUB 8000
7510
     GOTO 7600
      B9=.6: GOTO 7600
7520
7530
      B9=1
7600
     A2=B9*Y3*M6/(12*M9*3600)
     A3=H5^2/(Y9*A2)
7610
     A4=SQR(1.065*.1E05*U7)*(.26*M7*SQR(Y5)+.15)
7620
7625 A5=A4*A2*3600
      A6=(.77+.116*H3-.29*M7*SQR(Y5)+.217E-01*M8)/(SQR(Y8))
7630
7633
     \times 0 = \times (I, J)
     A7=FNS(X0)
7635
     A8=A7*V1/L1:A9=A5*A6/(A5+A8*A6): GOTO 7650
7640
7645 A9=A6
7650
     C3=1-EXP(-A9)
      C4=(A3/2)*(SQR(1+4*A8*C3/A3)-1)
7655
      C5=C4+A3:C6=(EXP(C4)-1)/(C4*(1+C4/C5))
7660
7665
     IF C5>10 THEN 7700
7670
     C7=1/EXP(-C5): GOTO 7710
7700
     C7=0
7710
     C8=(1-C7)/(C5*(1+C5/C4))
7720
      09=08+06
      E(I)=C9*C3
7730
     IF E(I)>=.99 THEN E(I)=.99
7740
7750
      RETURN
7997
      REM
     REM
             ----- INTERPOLATION MODULE ------
7998
7999
      REM
      FOR 19=1 TO 6: READ O(19), S(19): NEXT 19
8000
     DATA 0,1,.5,.726,1,.642,1.5,.6,2,.5789,2.5,.56
8010
8020
      N3=6
      IF (A1-O(1)),8100,8100,8070
80.30
8070
      IF (A1-0(N3)),8120,8080,8080
3080
      B9=S(N3)
8090
     RETURN
8100
      B9=S(1): RETURN
      FOR 19=2 TO N3
8120
8130
     IF (A1(0(19)) THEN 8150
8140
     NEXT 19
     B9=S(I9-1)+(A1-0(I9-1))*(S(I9)-S(I9-1))/(0(I9)-0(I9-1))
8150
8160
     RETURN
```

```
8497
      REM
           ----- CONVERT TO COMPATIBLE UNITS ------
8498
      REM
8499
      REM
      H1=H1/.3048:H2=H2/.3048:H3=H3*12/.3048
8500
      H4=H4/.3048:H5=H5/.3048:H6=H6*12/.3048:H7=H7*12/.3048
8510
      FOR 18=1 TO 2
.8520
      K(I8)=K(I8)*K(8+I8)*.1E-05*62.43
8530
      K(2+18)=K(2+18)*K(8+18)*.1E-05*62.43
8540
      K(I8+4)=K(4+I8)*.672E-03/3.6
8550
      K(18+6)=K(18+6)*.672E-03/3.6
8560
      NEXT IS
8570
8580
      U1=U1/(.929E-01*3600):U7=U7*10/2.581
      M1 = K(9) * Y(I, J) + (1 - Y(I, J)) * K(10)
8590
      M2=K(9)*X(1,J)+(1-X(1,J))*K(10)
8600
      M3=K(3)*Y(1,J)+(1-Y(1,J))*K(4)
8610
      M4=K(1)*X(I,J)+(1-X(I,J))*K(2)
8620
      M5=22/7:M6=(M5/4)*(H1^2-2*H2^2)
8630
      M7=V1*(M1*.2205E-02)/(3600*M3*M6)
8640
      M8=L1*(M2*.2205E-02)/(H4*60*M4*.13368)
8650
      M9=L1*(M2*.2205E-02)/(3600*M4)
8660
      Y1=L1*(M2*.2205E-02)/(M4*60*.13368)
8670
      Y2=.48*1.25*(Y1/H6)^(2/3)
8680
8690
      Y3=H3+Y2+H7
8700
      RETURN
```

Sample Output from Program in Table A6.8

10Pul +, XF, XF, XD, FFFLAG, NG 110, . 4, . 89, . 98, 6, 2. 69

151816-2000 151816-2000 151816-2000

....... FFEI COMPOSITION= .4 FFEI MATE 16 MOL/HE LISTILLAIN= LISTILLATE COMF= .97975 3. 18315 HOTICKS COMP= .9013371-01 F011045= (.51685 VED1= 16.73%1 1101= 10.7381 HEAT 0= 378.273 1. F FLIX H= 2. 09284 1(1) 1 L(1) M(1) .111418 37.9771 7.25492 1 . 109235 7.25.642 89.1315 2 7.25498 . 167948 91.8649 3 95.1959 . 1111428 1.25498 4 • 107022 95.095 • 102114 98.7845 • 102537 102-131 7.25492 18.7819 5 7.25492 1 17.2549 . 11 2198 112.573 7 115.85% 17. 2549 . 111739 14 119.011 14 17.2549 · 111 543 .998868-61 17.2549 112.655 10 6.51(85 14 116.125 11 YS +++ 1 XE ·9/3661 . 97975 . 99 1 . 95/972 . 99 . 486137 2 . 143091 . 97 ? .9114(f. . 44(12) .99 . (59 7 109 1 . 99 . . 718135 ٤, . 534323 . 421816 . 173425 . 44 1 .98546 . 391388 . 63346 1 . 561419 .984683 . 328094 25 .. 474828 4 . 24:41:32 .1.51128 . 351 711 . 3731.14 10 .113422 . 218(13 .9013371-(1 1 11 SET SS & NOW AND INFLI 1 OF & 11

41'C 1X11

Table A6.9 FORTRAN Subroutines for Model I and

general BASIC Calls

INIT:	CALL(2,C(1),D(1),E(1),F(1),E1,E2,E4,V1)
where	<pre>C array contains the initial (steady state) profiles for Model I D array contains operating conditions E array contains the initial (steady state) profiles for Model II F is array containing assignments to P(0,0), Q and R E1,E2,E4 are steering flags V1 Vapour boil-up rate</pre>
COMN:	CALL(4,C(1),D(1),E(1),R0,Q0,E2,E3)
where	C array contains Model I profiles D array contains process parameters E array contains Model II profiles (dynamic response or estimates) RO Reflux rate in Model I QO Heat duty in Model I E2,E3 are steering flags
DCOL:	CALL(2(T1,T2,Z1)
where	<pre>T1 is time T2 integration step length Z1 integration method 1 = Simple Euler, 2 = Modified Euler</pre>
PERTUB:	CALL(7,T1,S(1),R(1),W(1),C1,F2)
where	S array contains STEP disturbance parameters R array contains RAMP disturbance parameters W array contains SWAVE disturbance parameters F1 - index for type of disturbance F2 - index for variable to be disturbed
KOMN:	CALL(2,C(1),L6,L7,L8,L9)
where th	e C array is returned containing the specified matrix (rows = L_6 , column = L_7)

```
COMMON/CONVEC/FKR(7),FKQ(15)
COMMON/INTEG/JS4,JS,JE,ND
COMMON/INVERS/A1(7,14)
COMMON/WORK/Z(2),ZZ(2),PP(15),QQ(15),01,52,00,S4,S5
1,S6,S7,S8,S9,S10
COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11)
1,ST(11),SV(11),EMV(11),L0,D0,F0,XF,X0,XE,FT,RT,LR,Q0
COMMON/CODEL/SX1(11,2),SY1(11,2),SYACT(11,2),SSM(11),SL(11)
2,SL1(11),SV1(11),SV1,L01,D1,F1,XF1,Y01,YS1,LP1,Q1
COMMON/FILTER/P(15,15),FKT(15,15),FX(11),FK1(7,15),FKK(15,7)
3,ST2,ET4,ET6,ET8,ET10,EFR,ELR,EXF,SV
COMMON/KOLPAR/NT,NPLATE,NCCMP,IPF,JCC
10C=1
RETURN
```

1, LAMDA1, LAMDA2, DEN1, DEN2, RAD, DDIAM, PACE, FEC2), HHC(2) COMMON/HOUSE/VA, VB, A(2), B(2), C(2), F10

```
SUBROUTINE KOMMON
REAL LR,L0,LR1,L01,LAMDA1,LAMDA2
COMMON/PRIN/DX(11),DM(11)
COMMON/DATA/AREA,PAI,HC,THETA
```

COMMON/SUB/NPB,NCOMPB,TCPB,EPSIL

SUBROUTINE INIT(C,D,E,F,E1,E2,E4,SVB) С C-----This subroutine in conjuction with INIT1, INIT2 and INIT3 С are used in initialising variables.. REAL LR, LO, LO1, LR1 COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11 1,ST(11),SV(11),EMV(11),L0,D0,F0,XF,XD,XB,FT,RT,LR,Q0 COMMON/MODEL/SX1(11,2),SY1(11,2),SYACT1(11,2),SSM1(11) 1,SL1(11),ST1(11),SV1,L01,D01,F1,XF1,XD1,XB1,LR1,Q1 COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC DIMENSION C(1), D(1), E(1), F(1) C----ITASK=E1 IC=IFIX(D(1)) NPLATE=IFIX(D(2)) ICC=IC NT=NPLATE+1 GOTO(5,10), ITASK 5 CONTINUE DO 55 IP=1,NT SX(IP,IC)=C(IP) SY(IP,IC)=C(IP+11) SYACT(IP,IC)=C(IP+11) SSM(IP)=C(IP+22) SL(IP)=C(IP+33)ST(IP)=C(IP+44)EMV(IP)=C(IP+55) 55 CONTINUE IF (E4.EQ.O.) RETURN DO 77 I=1,NT SX1(I,1)=E(I) SYACT1(I,1)=E(I+11) SY1(I,1)=E(I+11) SSM1(I)=E(I+22) SL1(I)=E(I+33) ST1(I)=E(I+44) 77 CONTINUE SV1=SVB RETURN C---1.0 CONTINUE CALL INIT1(D,F,E2,E4) RETURN

END

	SUBROUTINE INIT1(D,F,E2,E4)	
С		
C	This subroutine in conjunction with INIT, INIT2, INIT3	
Ċ	are used for initialisation	
С	COMMON/PRIN/DX(11), DM(11)	
	COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SI	(11)
	ST(11), SU(11), EMU(11), L0, D0, F0, XF, XD, XB, FT, RT, LR, Q0	
	COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC	
	COMMON/BUB/NPB,NCOMPB,TCPB,EPSIL COMMON/INTEG/JS4,JS,JE,ND	
	DIMENSION D(1), F(1)	
C		
	IC=ICC	
	F0=D(3) XF=D(4)	
	RT=D(5)	
	FT=D(6)	
	R=D(7)	
	IPF=IFIX(D(8)) SSM(NT)=D(10)	
	QC=D(11)	
	D0=D(12)	1.1
	L0=D(13)	
~	EPSIL=D(14)	
C	ND=2*NT	
	CALL INIT2(LAMDA1, LAMDA2)	
	XD=SYACT(1,IC)	
	XB=SX(NT,IC)	1
	SX(NT,2)=1XB CALL SDBUB(NT,IC,SX(NT,IC),SY(NT,IC),ST(NT))	
	SYACT(NT, JC)=SY(NT, IC)	
	AMDA=XB*LAMDA1+(1XB)*LAMDA2 +	
	VTOP=Q0/LAMDA	the same
0	DC 49 IP=1,NT	
	SU(IP)=VTOP	
	49 CONTINUE	
C		
	IF(E2.EQ.O.) RETURN CALL INIT3(F,VTOP,E4)	
	RETURN	
	END	

SUBROUTINE INIT2(LAM1,LAM2)	
C CThis subroutine in conjunction with INIT, INIT1 and I	NITO
C are used for initialisation	14113
C	
REAL LAM1,LAM2,LAMDA1,LAMDA2 INTEGER ECOUNT	
C	
COMMON/PRIN/DX(11), DM(11), KFIL, KCOUNT, IE, IEC, ECOUNT	
COMMON/DATA/AREA,PAI,HC,THETA 1,LAMDA1,LAMDA2,DEN1,DEN2,RAD,DDIAM,HA(2),HB(2),HHC(2	
COMMON/KOLPAR/NT,NPLATE,NCOMP,IPF,ICC	
COMMON/HOUSE/VA, VB, A(2), B(2), C(2), F10	
COMMON/BUB/NPB,NCOMPB,TCPB	
HC=.25	
THETA=.006	
LAMDA1=31.507	
LAMDA2=34.777 LAM1=LAMDA1	
LAM2=LAMDA2	
DEN1=10089.743	
DEN2=8686.75 RAD=.0381	
XCDIAM=.0762	
DDIAM=.0105	
XDDIAM=DDIAM XTCP=1.	
C	
KCOUNT=0 NCOMP=2	
HA(1)=31.1766	
HA(2)=41.2685	
HB(1) = .19166	
HB(2)=.20319 HHC(1)=.0001154	
HHC(2)=.000136	
PAI=3.1416	
AREA=.004387 NPB=NPLATE	
NCOMPB=NCOMP	
TCPB=XTCP*760.	
VA=.0042	
VB=0004	
A(1)=7.4266	
A(2)=8.08374 B(1)=1549.3	
B(2)=2128.93	
C(1)=254.082	
C(2)=288.34 F10=ALOG(10.)	
RETURN	
END	

```
SUBROUTINE INIT3(F,VTOP,E4)
C
C----This subroutine in conjunction with INIT, INIT1 and INIT2
C
      are used for initialisation ..
C
      REAL LR, LO, LR1, LO1
      COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11)
     1,ST(11),SV(11),EMV(11),L0,D0,F0,XF,XD,XB,FT,RT,LR,Q0
      COMMON/MODEL/SX1(11,2),SY1(11,2),SYACT1(11,2),SSM1(11)
     2,SL1(11),ST1(11),SV1,L01,D1,F1,XF1,XD1,XB1,LR1,Q1
      COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15), FKK(15,7)
     3, ET2, ET4, ET6, ET8, ET10, EFR, ELR, EXF, EV
      COMMON/CONVEC/FKR(7), FKQ(15)
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC
      DIMENSION F(1)
C----
      IC=ICC
      DO 33 I=1,15
      FKQ(I)=F(I)
   33 CONTINUE
C---
      FKR(1)=F(16)
      FKR(2)=F(17)
      FKR(3)=F(18)
      FKR(4)=F(19)
      FKR(5)=F(20)
      FKR(6)=F(21)
      FKR(7)=F(22)
C----
      DO 100 I=1,15
      DO 90 J=1,15
     · P(I,J)=0.
      IF(I.EQ.J) P(I,J)=F(23)
  90 CONTINUE
  100 CONTINUE
      P(12,12)=F(24)
      P(13,13)=F(25)
      P(14, 14) = F(26)
      P(15,15)=F(27)
C----
      F1=F0
      XF1=XF
      XD1=XD
      XB1=XB
      LR1=LR
      D1=D0
      L01=L0
      Q1=Q0
      EFR=F1
      ELR=LR1
      EXF=XF1
      EV=VTOP
C----
      IF(E4.NE.0.) GOTO 400
      DO 200 I=1,NT
      S\times1(I,IC)=S\times(I,IC)
      SY1(I,IC)=SY(I,IC)
      SYACT1(I,IC)=SY(I,IC)
```

- 401 -

```
SSM1(I)=SSM(I)
       SL1(I)=SL(I)
       ST1(I)=ST(I)
  200 CONTINUE
      SV1=VTOP
C----
  400 SX1(NT,2)=SX(NT,2)
       SL1(NT)=L0
      RETURN
      END
      SUBROUTINE KOMN(E,R,C,RN,RM)
C
  ----Subroutine used to retrieve COMMON arrays from BASIC ..
C-
ć
      COMMON/INVERS/A(7,14)
      COMMON/CONVEC/FKR(7),FKQ(15)
      COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15)
     1, FKK(15,7), ET2, ET4, ET6, ET8, ET10, EFR, ELR, EXF, EV
      DIMENSION E(1)
C----
      IR=R
      JC=C
     N=IFIX(RN)
      IF(N.EQ.0) GOTO 20
C----
      DO 10 J=1,JC
      DO 9 I=1, IR
      K=I+(J-1)*IR
      GOTO(1,2,3,4,5),N
    1 E(K)=P(I,J)
      GOTO 9
    2 E(K)=FKT(I,J)
      GOTO 9
    3 \in (K) = FKM(I, J)
      GOTO 9
    4 E(K)=FKK(I,J)
      GOTO 9
    5 E(K)=A(I,J)
    9 CONTINUE
   10 CONTINUE
      RETURN
C---
   20 M=RM
      DO 23 I=1,IR
      GOTO(21,22),M
   21 E(I)=FKR(I)
      GOTO 23
   22 E(I)=FKQ(I)
   23 CONTINUE
      RETURN
      END
```

```
:
      SUBROUTINE DCOL(TIME, DT, RIOD)
C
   ---This subroutine in conjunction with DCOL1, DCOL2, DCOL3,
C-
      DCOL4, DCOL5, and DCOL6 describes the actual PROCESS dynamics model.
С
      It is called from BASIC which supplies the time, integration
C
C
      step interval, etc....
C
      REAL L,M,LR,LO
      COMMON/PRIN/DXT(11), DMT(11)
      COMMON/COLUMN/X(11,2),Y(11,2),YACT(11,2),M(11),L(11)
     1,T(11),U(11),EMU(11),L0,D,F,XF,XD,XB,FT,RT,LR,Q
      COMMON/INTEG/JS4, JS, JE, ND
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC
      DIMENSION ENTHV(11,2), ENTHL(11,2), Z(24), DZ(24)
C----
      IOD=RIOD
      IC=ICC
      JE=0
      JS=0
      IPASS=0
C---
    9 CONTINUE
      XD=YACT(1,IC)
      L0=L(NPLATE)-V(NT)
      D=V(1)-LR
C----
      IZ=1
      CALL DCOL1(IZ)
      DO 80 IP=1,ND
      IF(IP.GT.NT) GOTO 60
      Z(IP) = X(IP, IC)
      DZ(IP)=DXT(IP)
      GOTO 80
   60 J=IP-NT
      Z(IP)=M(J)
      DZ(IP)=DMT(J)
   80 CONTINUE
C----
      STP=TIME
      DO 90 INTCAL=1,ND
      TIME=STP
      CALL INTJS(JS4, JS, JE, IOD, IPASS)
      CALL SDINT(Z(INTCAL), DZ(INTCAL), TIME, DT, IOD, INTCAL)
   90 CONTINUE
      CALL DCOL6(DXT, DMT, DZ, X, M, Z)
      DO 200 IP=1,NT
  200 CALL SDBUB(IP,IC,X(IP,IC),Y(IP,IC),T(IP))
C----
      IZ=2
      CALL DCOL1(IZ)
C----
      CALL DCOL2(ENTHV, ENTHL)
      CALL DCOL3(ENTHV, ENTHL)
C----
      CALL DCOL4(L,V,F,LR)
      IPASS=IPASS+1
      CALL INTPAS(IPASS, IOD)
      IF(JS.NE.0) GOTO 9
      RETURN
```

- 403 -

```
SUBROUTINE DCOL1(IZ)
С
C----This subroutine in conjunction with DCOL, DCOL2, DCOL3, DCOL4,
С
      DCOL5 and DCOL6 describes dynamic PROCESS model ..
C
      REAL L,M,LO,LR,LAMDA1,LAMDA2
      COMMON/PRIN/DXT(11), DMT(11)
      COMMON/COLUMN/X(11,2),Y(11,2),YACT(11,2),M(11),L(11)
     1,T(11),V(11),EMV(11),L0,D,F,XF,XD,XB,FT,RT,LR,Q
      COMMON/DATA/AREA, PAI, HC, THETA, LAMDA1, LAMDA2, DEN1
     1, DEN2, RAD, DDIAM, HA(2), HB(2), HHC(2)
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, IC
C----
     GOTO(5,55),IZ
    5 CONTINUE
      DO 50 IP=1,NT
      IF(IP.EQ.1) IK=1
      IF(IP.GT.1.AND.IP.LT.IPF) IK=2
      IF(IP.EQ.IPF) IK=3
      IF(IP.GT.IPF.AND.IP.LT.NT) IK=4
      IF(IP.EQ.NT) IK=5
C----
      GOTO(10,20,30,20,40),IK
C----
   10 I=IP+1
      DMT(IP)=LR-L(IP)+V(I)-V(IP)
      DXT(IP)=(LR*(XD-X(IP,IC))+V(IP)*(X(IP,IC)-
     1YACT(IP,IC))+V(I)*(YACT(I,IC)-X(IP,IC)))/M(IP)
      GOTO 50
   20 J=IP-1
      I = IP + 1
      DMT(IP)=L(J)-L(IP)+V(I)-V(IP)
      DXT(IP)=(L(J)*(X(J,IC)-X(IP,IC))+U(IP)*(X(IP,IC)-
     1YACT(IP,IC))+V(I)*(YACT(I,IC)-X(IP,IC)))/M(IP)
      GOTO 50
   30 CALL DCOL5(IK, IP, DMT, DXT)
      GOTO 50
   40 CALL DCOL5(IK-1, IP, DMT, DXT)
   50 CONTINUE
      RETURN
C---
   55 CONTINUE
      DO 300 IP=1,NT
      IF(IP.EQ.NT) GOTO 250
      DENM=X(IP,IC)*DEN1+(1.-X(IP,IC))*DEN2
      ZZ=1.E2*M(IP)/(DENM*AREA)
      ZZ=(ZZ-HC)/THETA
      ZZ=ZZ*PAI*DDIAM/10.
      L(IP)=ZZ*DENM
      GOTO 300
  250 L(IP)=L0
  300 CONTINUE
      RETURN
      END
```

```
SUBROUTINE DCOL3(ENTHV, ENTHL)
      REAL L, LO, LR, NUM, LAMDA1, LAMDA2
      COMMON/COLUMN/X(11,2),Y(11,2),YACT(11,2),SSM(11),L(11)
     1,T(11),V(11),EMV(11),L0,D,F,XF,XD,XB,FT,RT,LR,Q
      COMMON/DATA/AREA, PAI, HC, THETA
     2, LAMDA1, LAMDA2, DEN1, DEN2, RAD, DDIAM, HA(2), HB(2), HHC(2)
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC
      COMMON/WORK/ENTHF(2), ENTHR(2), HL(15), HV(15), ZZZ, FHEAT
     3, RHEAT, ZH, COMPF, COMPR, NUM, DENM, ZZ, S10
      DIMENSION ENTHU(11,2), ENTHL(11,2)
C----
      ZZZ=FT-25.
      DO 1400 IC=1,NCOMP
 1400 ENTHF(IC)=(HA(IC)+HB(IC)*ZZZ+HHC(IC)*ZZZ**2.0)/1000.
      FHEAT=0.
      DO 1600 IC=1,NCOMP
      IF(IC.EQ.1) COMPF=XF
      IF(IC.EQ.2) COMPF=1.-XF
      FHEAT=FHEAT+ENTHF(IC)*COMPF
 1600 CONTINUE
C----
      ZZZ=RT-25.
      DO 1800 IC=1,NCOMP
 1800 ENTHR(IC)=(HA(IC)+HB(IC)*ZZZ+HHC(IC)*ZZZ**2.0)/1000.
      RHEAT=0.
      DO 2000 IC=1,NCOMP
      IF(IC.EQ.1) COMPR=XD
      IF(IC.EQ.2) COMPR=1.-XD
      RHEAT=RHEAT+ENTHR(IC)*COMPR
 2000 CONTINUE
C----
      DO 2400 IP=1,NT
      HL(IP)=0.
      HV(IP)=0.
      DO 2200 IC=1,NCOMP
      HL(IP)=HL(IP)+X(IP,IC)*ENTHL(IP,IC)
      HV(IP)=HV(IP)+YACT(IP,IC)*ENTHV(IP,IC)
 2200 CONTINUE
 2400 CONTINUE
C----
      V(NT)=(L(NPLATE)*HL(NPLATE)-L0*HL(NT)+Q)/HV(NT)
      RETURN
      END
```

```
SUBROUTINE DCOL4(L,V,F,LR)
      REAL NUM, LR, L
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC
      COMMON/WORK/ENTHF(2),ENTHR(2),HL(15),HV(15),ZZZ,FHEAT
     2, RHEAT, ZH, COMPF, COMPR, NUM, DENM, ZZ, S10
      DIMENSION L(1), V(1)
C----
      I P=NPLATE
 2500 CONTINUE
      K=IP+1
      IF(IP.NE.1) GOTO 2510
      J=IP
      GOTO 2520
 2510 J=IP-1
 2520 CONTINUE
      IF(IP.EQ.IPF) NUM=L(J)*HL(J)-L(IP)*HL(IP)+
     1V(K) *HV(K) + F*FHEAT
                    NUM=LR*RHEAT-L(IP)*HL(IP)+V(K)*HV(K)
      IF(IP.EQ.1)
      IF(IP.NE.1.AND.IP.NE.IPF) NUM=L(J)*HL(J)-
     1L(IP)*HL(IP)+V(K)*HV(K)
      V(IP)=NUM/HV(IP)
      IP=IP-1
      IF(IP.LT.1) RETURN
      GOTO 2500
      END
      SUBROUTINE DCOL5(IK, IP, DMT, DXT)
      REAL L,M,LO,LR
      COMMON/COLUMN/X(11,2),Y(11,2),YACT(11,2),M(11),L(11)
     1,T(11),V(11),EMV(11),L0,D,F,XF,XD,XB,FT,RT,LR,Q
      COMMON/KOLPAR/NT,NPLATE,NCOMP,IPF,IC
      DIMENSION DMT(1), DXT(1)
C----
      IK=IK-2
      GOTO (30,40),IK
   30 J=IP-1
      I = IP + 1
      DMT(IP)=L(J)-L(IP)+V(I)-V(IP)+F
      DXT(IP)=(L(J)*(X(J,IC)-X(IP,IC))+V(IP)*(X(IP,IC)-
     1YACT(IP,IC))+V(I)*(YACT(I,IC)-X(IP,IC))+F*(XF-
     2X(IP,IC)))/M(IP)
      GOTO 50
   40 J=IP-1
      I = IP + 1
      DMT(IP)=L(NPLATE)-L0-V(NT)
      DXT(IP)=(L(J)*(X(J,IC)-X(IP,IC))+U(IP)*(X(IP,IC)-
     1Y(IP,IC)))/M(IP)
```

50 CONTINUE RETURN END

SUBROUTINE DCOL6(DX, DM, DZ, X, M, Z) REAL M COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, IC DIMENSION X(11,2),M(1),Z(1),DX(1),DM(1),DZ(1) C----ND=NT+NT DO 100 IP=1,ND IF(IP.GT.NT) GOTO 95 \times (IP,IC)=Z(IP) DX(IP)=DZ(IP) **GOTO 100** 95 J=IP-NT M(J)=Z(IP)DM(J)=DZ(IP)100 CONTINUE RETURN END SUBROUTINE DCOL2(ENTHV, ENTHL) REAL L, LAMDA1, LAMDA2, LO COMMON/COLUMN/X(11,2),Y(11,2),YACT(11,2),SSM(11),L(11) 1,T(11),V(11),EMV(11),L0,D,F,XF,XD,XB,FT,RT,XLR,Q COMMON/DATA/AREA, PAI, HC, THETA 2, LAMDA1, LAMDA2, DEN1, DEN2, RAD, DDIAM, HA(2), HB(2), HHC(2) COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, ICC DIMENSION ENTHU(11,2), ENTHL(11,2) C----IC=ICC YACT(NT, IC)=Y(NT, IC) *EMV(NT) I P=NPLATE 500 CONTINUE K=IP+1 YACT(IP,IC)=EMV(IP)*Y(IP,IC)+(1.-EMV(IP))*YACT(K,IC) IP=IP-1 IF(IP.LT.1) GOTO 600 GOTO 500 600 CONTINUE DO 900 IP=1,NT IF(IC.NE.1) GOTO 800 X(IP,2)=1.-X(IP,1) Y(IP, 2) = 1. - Y(IP, 1)YACT(IP,2)=1.-YACT(IP,1) GOTO 900 800 CONTINUE X(IP,1)=1.-X(IP,2)Y(IP, 1) = 1. - Y(IP, 2)YACT(IP,1)=1.-YACT(IP,2) 900 CONTINUE C----DO 1200 IP=1,NT DO 1100 IC=1,NCOMP ZZZ=T(IP)-25. ENTHL(IP,IC)=(HA(IC)*ZZZ+.5*HB(IC)*ZZZ**2.0+ 1(1./3.)*HHC(IC)*ZZZ**3.0)/1000. IF(IC.EQ.1) ZH=LAMDA1 IF(IC.EQ.2) ZH=LAMDA2 ENTHV(IP,IC)=ENTHL(IP,IC)+2H 1100 CONTINUE 1200 CONTINUE RETURN END

	SUBROUTINE PERTUB(TIME,S,R,W,F1,F2) REAL L0,LR,M,L,L01,LR1 COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11) 1,ST(11),SV(11),EMV(11),L0,D0,FEED,XFEED,XD,XB,FT,RT,LR,Q COMMON/MODEL/X(11,2),Y(11,2),YACT(11,2),M(11),L(11),T(11),V 1,L01,D1,FEED1,XF1,XD1,XB1,LR1,Q1 DIMENSION S(1),R(1),W(1)
- 	ITYPE=IFIX(F2) IF(ITYPE.EQ.0) RETURN IVAR=IFIX(F1) GOTO (10,20,30),ITYPE
10 C	STIME=S(1) SMAG=S(2) GOTO (11,12,13,14,15),IVAR
11	XFEED=STEP(TIME,STIME,XFEED,SMAG) RETURN
12	FEED=STEP(TIME,STIME,FEED,SMAG) RETURN
13	FT=STEP(TIME,STIME,FT,SMAG) RETURN
14	LR=STEP(TIME,STIME,LR,SMAG) RETURN
15	RT=STEP(TIME,STIME,RT,SMAG) RETURN
C	
20	GOTO (21,22,23,24,25),IVAR
21	XFEED=RAMP(TIME,R(1),R(2),R(3),XFEED) RETURN
22	FEED=RAMP(TIME,R(1),R(2),R(3),FEED) RETURN
23	<pre>FT=RAMP(TIME,R(1),R(2),R(3),FT) RETURN</pre>
24	LR=RAMP(TIME,R(1),R(2),R(3),LR) RETURN
25	RT=RAMP(TIME,R(1),R(2),R(3),RT) RETURN
C	
30 31	GOTO(31,32,33,34,35),IVAR XFEED=SWAVE(TIME,W(1),W(2)) RETURN
32	FEED=SWAVE(TIME,W(1),W(2)) RETURN
33	FT=SWAVE(TIME,W(1),W(2)) RETURN
34	LR=SWAVE(TIME,W(1),W(2)) RETURN
35	RT=SWAVE(TIME,W(1),W(2)) RETURN END

SUBROUTINE INTJS(JS4,JS,JE,IOD,IPASS) IF(IOD.EQ.1) RETURN IF(IOD.EQ.2) JS=IPASS RETURN END

FUNCTION RAMP(TIME, RTIME, ERAMP, RMAG, FNT) SLOPE=RMAG/(ERAMP-RTIME) IF(TIME.LT.RTIME.OR.TIME.GT.ERAMP) I=1 IF(TIME.LT.ERAMP.AND.TIME.GT.RTIME) I=2 IF(ABS(TIME-ERAMP).LT.00005) I=3 GOTO (1,2,3),I RAMP=FNT RETURN RAMP=FNT+SLOPE*(TIME-RTIME) RETURN RAMP=FNT+RMAG RETURN END

FUNCTION STEP(TIME,STIME,FNT,SMAG) IF(TIME.LT.STIME.OR.TIME.GT.STIME) I=1 IF(ABS(TIME-STIME).LT..00005) I=2 IF(I.EQ.1) GOTO 1 IF(I.EQ.2) GOTO 2 1 STEP=FNT RETURN 2 STEP=FNT+SMAG

2 STEP=FNT+SMAG RETURN END

1

2

3

:)

FUNCTION SWAVE(TIME,WMAG,FREM) SWAVE-UMAG&SIN(FRED&TIME) RETURN END

```
SUBROUTINE COMN(C,D,E,REFLUX,HEAT,E2,E3)
C----Subroutine used to retrieve variable values from COMMON areas..
      It is called from BASIC
C
C
      REAL LR1, LR, LO, LO1
      COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11)
     1,ST(11),SV(11),EMV(11),L0,D0,F0,XF,XD,XB,FT,RT,LR,Q
      COMMON/MODEL/SX1(11,2),SY1(11,2),SYACT1(11,2),SSM1(11),SL1(11)
     2,ST1(11),SV1,L01,D1,F1,XF1,XD1,XB1,LR1,Q1
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, IC
      COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15)
     1, FKK(15,7), ET2, ET4, ET6, ET8, ET10, EFR, ELR, EXF, EV
      DIMENSION C(1), D(1), E(1)
C----
      IE2=E2
      IE3=E3
      IF(IE3.EQ.0) GOTO 50
      LR=REFLUX
      Q=HEAT
      RETURN
C----
   50 CONTINUE
    DO 80 IP=1,NT
      C(IP)=SX(IP,IC)
      C(IP+11)=SYACT(IP,IC)
      C(IP+22)=SSM(IP)
      C(IP+33)=SL(IP)
      C(IP+44)=ST(IP)
      C(IP+55)=EMV(IP)
      C(IP+66)=SV(IP)
   80 CONTINUE
C---
      D(3)=F0
      D(4) = XF
      D(5)=RT
       D(6) = FT
      D(7)=LR
      D(11)=Q
C----
      IF(IE2.EQ.0) RETURN
C----
       DO 400 IP=1,NT
       E(IP)=SX1(IP,IC)
       E(IP+11)=SYACT1(IP,IC)
       E(IP+22)=SSM1(IP)
       E(IP+33)=SL1(IP)
       E(IP+44)=ST1(IP)
   400 CONTINUE
C----
       E(56) = EFR
       E(57)=ELR
       E(58)=EXF
       E(59)=EV
       RETURN
```

END

SUBROUTINE SDINT(XX, DX, TD, DTD, IOD, INTCAL) C C----Integrator subroutine : Simple and Modified Euler methods C COMMON/INTEG/JS4, JS, JE, ND DIMENSION DXA(24) IF(INTCAL.EQ.1) JN=0 GOTO(6,5),IOD CONTINUE 6 GOTO 7 C-JS=JS+1 5 IF(JS.EQ.3) GOTO 20 IF(JS.EQ.2) GOTO 10 C. DT=DTD 7 3 TD=TD+DT CONTINUE 10 C---JN=JN+1 IF(JN.GT.ND) JN=JN-ND GOTO(19,18),IOD C--XX=XX+DX*DT 19 TD=TD-DTD RETURN IF(JS.EQ.1) GOTO 11 18 IF(JS.EQ.2) GOTO 12 C----DXA(JN)=DX 11 XX=XX+DX*DT RETURN C----XX=XX+(DX-DXA(JN))*DT/2. 12 RETURN C---CONTINUE 20 TD=TD-DTD RETURN END SUBROUTINE INTPAS(IPASS, IOD) COMMON/INTEG/JS4, JS, JE, ND IF(IOD.EQ.1) RETURN IF(JS.GT.2) JS=0 IF(IOD.EQ.2.AND.IPASS.GT.2) IPASS=0

RETURN

```
SUBROUTINE SDBUB(IIP, IIC, XX, YYC, TBUB)
      COMMON/BUB/NPLATE, NCOMP, TCP, EPSIL
      COMMON/HOUSE/VA,VB,A(2),B(2),C(2),F
      COMMON/WORK/Z(2),P(2),Y(15),G(15),S1,S2,S3,S4,S5,S6
     1,87,88,89,810
C----
      J7=IIC
      Z(J7)=XX
      2(2)=1.-2(1)
      DO 20 J=1,NCOMP
      IF(IC.GT.1) GOTO 1
      S1=(2.*VB-VA)*(1.-Z(J))**2.0
      S2=2.*(VA-VB)*(1.-Z(J))**3.00
      G(IC)=EXP(F*(S1+S2))
      GOTO 2
    1 CONTINUE
      S1=(2.*VA-VB)*(1.-Z(J))**2.0
      S2=2.*(VB-VA)*(1.-Z(J))**3.0
      G(J)=EXP(F*(S1+S2))
    2 CONTINUE
   20 CONTINUE
C---
   25 CONTINUE
      $1=0.
      S2=0.
      00 30 J=1,NCOMP
      P(J)=EXP(F*(A(J)-B(J)/(TBUB+C(J))))
      Y(J)=G(J)*Z(J)*P(J)/TCP
      S1=S1+Y(J)
      S3=-F*B(J)*Y(J)/((TBUB+C(J))**2.0)
      S2=S2+S3
   30 CONTINUE
      S4=1.-S1
      IF(A8S(S4).LE.EPSIL) GOTO 50
      TBUB=TBUB-S4/S2
     GOTO 25
C----
   50 CONTINUE
      DO 60 J=1,NCOMP
      P(J)=EXP(F*(A(J)-B(J)/(TBUB+C(J))))
      Y(J)=G(J)*Z(J)*P(J)/TCP
   60 CONTINUE
C----
      J=IIC
      YYC=Y(J)
      RETURN
      END
```

:L

Table 6.10 FORTRAN Subroutines: for Model II

BASIC Call

SIMUL: CALL(2,T3,T4,Z2,T9)

T3 is time

- T4 is integration step length
- Z2 is integration method
- T9 steering flag (integrate Model II or refine Model II profiles based on latest estimates)

	SUBROUTINE SIMUL(TIME, DT, RIOD, KFLAG) REAL LR, L, LAMDA, LAMDA1, LAMDA2, M, L0, KFLAG
С	This subroutine in conjunction with SIMULX form the FILTER model
1	COMMON/COLUMN/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11), ST(11),SVR(11),EM(11),SL0,SD0,SF0,SXF,SXD,SXB,FT,RT,RL0,Q0 COMMON/MODEL/X(11,2),Y(11,2),YACT(11,2),M(11),L(11),T(11) ,SV,L0,D,F,XF,XD,XB,LR,Q COMMON/DATA/AREA,PAI,HC,THETA 2,LAMDA1,LAMDA2,DEN1,DEN2,RAD,DDIAM,HA(2),HB(2),HHC(2) COMMON/KOLPAR/NT,NPLATE,NCOMP,IPF,ICC COMMON/INTEG/JS4,JS,JE,ND COMMON/WORK/G(2),PP(2),DXT(15),Z(15),ZZ,DENM,S3,S4
3	3,85,86,87,88,89,810
Ū	IC=ICC IF(KFLAG.NE.0.) GOTO 50000 IOD=IFIX(RIOD)
C	- JS=0
	JE=0 IPASS=0
C	- VBOTT=SV
	VT=VBOTT
9	CONTINUE LO=L(NPLATE)-VBOTT
	D=VT-LR
	XD=YACT(1,IC)
C	- CALL SIMULX(VBOTT)
C	-
C	STP=TIME
	DO 90 INTCAL=1,NT
	TIME=STP CALL INTJS(JS4,JS,JE,IOD,IPASS)
	CALL SDINT(X(INTCAL, IC), DXT(INTCAL), TIME, DT, IOD, INTCAL)
	CONTINUE
50000 C	CONTINUE
	DO 200 IP=1,NT CALL SDBUB(IP,IC,X(IP,IC),Y(IP,IC),T(IP))
C	LAMDA=X(NT,IC)*LAMDA1+(1X(NT,IC))*LAMDA2 VBOTT=Q/LAMDA VT=VBOTT
C	- YACT(NT,IC)=Y(NT,IC)*EM(NT) IP=NPLATE
C	
300	CONTINUE K=IP+1
	YACT(IP,IC)=EM(IP)*Y(IP,IC)+(1EM(IP))*YACT(K,IC) IP=IP-1
	IF(IP.LT.1) GOTO 360 GOTO 350
360	CONTINUE

```
C-----
      DO 250 I=1,NT
      IF(I.GE.IPF) GOTO 230
                                        - 415 -
      L(I)=LR
      GOTO 250
  230 IF(I.EQ.NT) GOTO 240
      L(I)=LR+F
      GOTO 250
  240 L(I)=L0
  250 CONTINUE
C----
      IF(KFLAG.NE.0.) GOTO 400
      IPASS=IPASS+1
      CALL INTPAS(IPASS, IOD)
      IF(JS.NE.0) GOTO 9
  400 SV=VBOTT
      RETURN
      END
      SUBROUTINE SIMULX(VBOTT)
C
   ---Used in conjunction with SIMUL for filter model integration..
C-
C
      REAL L,M,LO,LR
      COMMON/MODEL/X(11,2),Y(11,2),YACT(11,2),M(11),L(11)
     1,T(11),SV,L0,D,F,XF,XD,XB,LR,Q
      COMMON/WORK/G(2), PP(2), DXT(15), Z(15), ZZ, DENM, S3, S4, S5, S6
     2, $7, $8, $9, $10
      COMMON/KOLPAR/NT,NPLATE,NCOMP, IPF, IC
C----
      VT=VBOTT
      DO 50 IP=1,NT
      IF(IP.EQ.1) IK=1
      IF(IP.GT.1.AND.IP.LT.IPF) IK=2
      IF(IP.EQ.IPF) IK=3
      IF(IP.GT.IPF.AND.IP.LT.NT) IK=4
      IF(IP.EQ.NT) IK=5
      GOTO(10,20,30,20,40),IK
   10 K=IP+1
      DXT(IP)=(LR*(XD-X(IP,IC))+VT*(YACT(K,IC)-YACT(IP,IC)))/M(IP)
      GOTO 50
   20 J=IP-1
      K=IP+1
      DXT(IP)=(L(J)*(X(J,IC)-X(IP,IC))+VT*(YACT(K,IC)-
     1YACT(IP,IC)))/M(IP)
      GOTO 50
   30 J=IP-1
      K=IP+1
      DXT(IP)=(L(J)*X(J,IC)-L(IP)*X(IP,IC)+VBOTT*(YACT(K,IC)-
     +YACT(IP,IC))+F*XF)/M(IP)
      GOTO 50
   40 J=IP-1
      DXT(IP)=(L(J)*X(J,IC)-L(IP)*X(IP,IC)-VBOTT*YACT(IP,IC))/M(IP)
   50 CONTINUE
      RETURN
      END
```

Table 6.11 FORTRAN Subroutines: for Estimation with EKF1 BASIC Calls

KALMAN: CALL(5,Y(1),U(1),K(1),M(1),L(1),P9,D9)

where Y array contains the noisy measurements U,K,M and L are workspace arrays P9 is flag set in the matrix inversion routine D9 is flag in matrix inversion routine

P10F10: CALL(3,S9)

where S9 is sample interval

PKK: CALL(6).

	SUBROUTINE KALMAN(Y, DX, XX, DY, YY, FLAG, DET)	
с с с с с с	The Kalman Estimation step is done here.Measurement vector Y is supplied from BASIC.Note reference trajectory is previous estimates DET and FLAG flag any numerical difficulty in the Matrix inversion.	
	<pre>REAL LR,L0 COMMON/MODEL/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11) 1,ST(11),SV,L0,D,F,XF,XD,XB,LR,Q COMMON/FILTER/P(15,15),FKT(15,15),EX(11),FKM(7,15) 1,FKK(15,7),ET2,ET4,ET6,ET8,ET10,EFR,ELR,EXF,EV COMMON/CONVEC/FKR(7),FKQ(15) COMMON/INVERS/A(7,14) DIMENSION Y(1),DX(1),XX(1),DY(1),YY(1),SR(7,7)</pre>	
C	D0 50 I=1,11 DX(I)=SX(I,1)-EX(I) 0 CONTINUE DX(12)=F-EFR DX(13)=XF-EXF DX(14)=SV-EV DX(15)=LR-ELR	
	DY(1)=Y(1)-ET2 DY(2)=Y(2)-ET4 DY(3)=Y(3)-ET6 DY(4)=Y(4)-ET8 DY(5)=Y(5)-ET10 DY(6)=Y(6)-EFR DY(7)=Y(7)-ELR	
	FKM(1,1)=FDTX(ET2) FKM(2,3)=FDTX(ET4) FKM(3,5)=FDTX(ET6) FKM(4,7)=FDTX(ET8) FKM(5,9)=FDTX(ET10) FKM(6,12)=1. FKM(7,13)=1.	
C C C	CALCULATE K(k+1) NOW CALL MATTPS(7,15,FKM,FKK) CALL MATMUL(15,15,7,P,FKK,FKK,2) CALL MATMUL(7,15,7,FKM,FKK,SR,0) CALL DIAADD(7,SR,FKR,SR) CALL MATINV(7,SR,SR,FLAG,DET) CALL MATMUL(15,7,7,FKK,SR,FKK,1)	
с с с	CALCULATE DX(K+1,K+1) NOW IE. STATE DEVIATIONS CALL MATVEC(7,15,FKM,DX,YY)	
	CALL VECTOR(7,0Y,YY,YY,2) CALL MATVEC(15,7,FKK,YY,XX) CALL VECTOR(15,DX,XX,DX,1) CALL VECTOR(15,DX,XX,DX,1) CALL KALMA1(DX) RETURN END	

- 417 -

SUBROUTINE KALMA1(DX) С C----Used in conjunction with Subroutine KALMAN. C REAL LR,LO COMMON/MODEL/SX(11,2),SY(11,2),SYACT(11,2),SSM(11),SL(11) 1,ST(11),SV,L0,D,F,XF,XD,XB,LR,Q COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15) 1, FKK(15, 7), ET2, ET4, ET6, ET8, ET10, EFR, ELR, EXF, EV DIMENSION DX(1) C----DO 100 I=1,11 SX(I,1)=EX(I)+DX(I)IF(SX(I,1).GT.1.) SX(I,1)=.9999 IF(SX(I,1).LT.0.) SX(I,1)=.0001 100 CONTINUE F=EFR+DX(12) XF=EXF+DX(13) SV = EV + DX(14)LR=ELR+DX(15) EFR=F ELR=LR EXF=XF EV=SV RETURN END SUBROUTINE PKK C C-----Calculates P(K,K) C REAL LO, LR COMMON/MODEL/SX(11,2), SY(11,2), SYACT(11,2), SSM(11), SL(11) 2,ST(11),SV,L0,D,F,XF,XD,XB,LR,Q COMMON/CONVEC/FKR(7), FKQ(15) COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15) 1,FKK(15,7),ET2,ET4,ET6,ET8,ET10,EFR,ELR,EXF,EV FKI=1. CALL MATMUL(15,7,15,FKK,FKM,FKT,0) CALL DIASUB(15, FKI, FKT, FKT) CALL MATMUL(15,15,15,FKT,P,P,2) CALL MATTPX(15, FKT, FKT) CALL MATMUL(15,15,15,P,FKT,P,1) CALL MATTPS(15,7,FKK,FKM) CALL DIAMUL(7,7,15,FKR,FKM,FKM) CALL MATMUL(15,7,15,FKK,FKM,FKT,0) CALL MATADD(15, P, FKT, P) RETURN END

- 419 -

```
SUBROUTINE TRANS(S)
C
C----Calculates the system Transition Matrix by a first
С
       order Taylor Series approximation.
C
       REAL LR, LO, K, M, L
      COMMON/MODEL/X(11,2),SY(11,2),Y(11,2),M(11),L(11)
      1,ST(11),SV,L0,D,F,XF,XD,XB,LR,Q
      COMMON/FILTER/P(15,15), FKT(15,15), EX(11), FKM(7,15)
      1, FKK(15,7), ET2, ET4, ET6, ET8, ET10, EFR, ELR, EXF, EV
      DIMENSION K(11)
· C----
      V=EV
      DO 20 I=1,15
      IM1 = I - 1
      IP1=I+1
      DO 10 J=1,15
      FKT(I, J)=0.
      IF(I.GT.11) GOTO 9
      K(I)=Y(I,1)/X(I,1)
      IF(J.EQ.IM1) FKT(I,J)=S*L(IM1)/M(I)
      IF(J.EQ.I ) FKT(I,J)=1.-S*(L(I)+V*K(I))/M(I)
      IF(I.EQ.11 ) GOTO 10
      IF(J.EQ.IP1) FKT(I,J)=(S*V*Y(J,1)/X(J,1))/M(I)
      GOTO 10
    9 IF(I.EQ.J) FKT(I,J)=1.
   10 CONTINUE
   20 CONTINUE
C----
      FKT(11,11)=1.-S*(L0+V*K(11))/M(11)
C----
      FKT(1,1)=1.+S*(K(1)*(LR-V)-LR)/M(1)
      FKT(1,15)=S*(Y(1,1)-X(1,1))/M(1)
      FKT(7,12)=S*(XF-X(7,1))/M(7)
      FKT(7, 13) = S * F/M(7)
      FKT(11,12)=S*X(10,1)/M(11)
      FKT(11,15)=S*X(10,1)/M(11)
C----
      J=15
      DO 11 I=1,10
      T=S*(X(I-1,1)-X(I,1))/M(I)
      FKT(I,J)=T
      IF(I.LE.7) GOTO 11
      FKT(I, J-1)=T
   11 CONTINUE
C---
      J=14
      DO 12 I=2,10
      FKT(I,J)=S*(Y(I+1,1)-Y(I,1))/M(I)
   12 CONTINUE
      FKT(11,14)=-S*Y(11,1)/M(11)
      RETURN
     END
```

- 420 -

```
SUBROUTINE MATMUL(N,M, IP, A, B, C, IFLAG)
      DIMENSION A(N,M), B(M, IP), C(N, IP), T(15)
C
C----If IFLAG .EQ. 0
                       then normal
                        then first matrix is answer
С
     If IFLAG .EQ. 1
      If IFLAG .EQ. 2 then second matrix is answer
C
C
      IF(IFLAG.NE.0) GOTO 3
      DO 11 I=1,N
      DO 9
            J=1, IP
      S1=0.
      DO 8 K=1,M
      S1=S1+A(I,K)*B(K,J)
    8 CONTINUE
      C(I,J)=S1
    9 CONTINUE
   11 CONTINUE
      RETURN
C----
    3 II=1
      JJ=1
    4 L=0
      I = 0
      J=0
    5 CONTINUE
      GOTO(10,20), IFLAG
   10 J=J+1
      I = I I
      GOTO 30
   20 I=I+1
      J=JJ
   30 L=L+1
      S1=0.
      DO 1 K=1,M
      S1=S1+A(I,K)*B(K,J)
    1 CONTINUE
      T(L)=S1
      IF(L.EQ.M) GOTO 6
      GOTO 5
    6 CONTINUE
C----
      DO 50 L=1,M
      IF(IFLAG.EQ.1) C(II,L)=T(L)
      IF(IFLAG.EQ.2) C(L,JJ)=T(L)
   50 CONTINUE
C----
      GOTO(60,70), IFLAG
   60 II=II+1
      IF(II.GT.N) RETURN
      GOTO 4
   70 JJ=JJ+1
      IF(JJ.GT.IP) RETURN
      GOTO 4
      END
```

```
SUBROUTINE MATTPX(N,A,AT)

DIMENSION A(N,N),AT(N,N)

J=1

DO 1 I=J,N

DO 2 K=J,N

IF(I.EQ. K) GOTO 2

TEMP=A(I,K)

AT(I,K)=A(K,I)

A(K,I)=TEMP

2 CONTINUE

J=J+1

IF(J.EQ.N) RETURN

1 CONTINUE
```

```
END
```

```
SUBROUTINE DIAADD(N,A,B,C)
DIMENSION A(N,N),B(N),C(N,N)
DO 1 I=1,N
C(I,I)=A(I,I)+B(I)
1 CONTINUE
RETURN
END
```

```
SUBROUTINE DIASUB(N,FKI,B,C)
DIMENSION B(N,N),C(N,N)
DO 3 I=1,N
DO 1 J=1,N
IF(I.EQ.J) GOTO 2
1 C(I,J)=-B(I,J)
GOTO 3
2 C(I,J)=FKI-B(I,J)
3 CONTINUE
RETURN
```

```
END
```

```
SUBROUTINE MATADD(N,A,B,C)
DIMENSION A(N,N),B(N,N),C(N,N)
DO 2 I=1,N
DO 1 J=1,N
1 C(I,J)=A(I,J)+B(I,J)
2 CONTINUE
RETURN
END
```

```
SUBROUTINE MATTPS(N,M,A,AT)
DIMENSION A(N,M),AT(M,N)
DO 2 I=1,N
DO 1 J=1,M
1 AT(J,I)=A(I,J)
2 CONTINUE
RETURN
END
```

```
SUBROUTINE DIAMUL(N,N,IP,R,B,C)
DIMENSION R(1),T(10),C(N,IP),B(N,IP)
DO 3 J=1,IP
DO 2 I=1,N
T(I)=R(I)*B(I,J)
2 CONTINUE
DO 1 K=1,N
1 C(K,J)=T(K)
3 CONTINUE
RETURN
END
```

```
FUNCTION FDTX(ET)
COMMON/HOUSE/VA,VB,A(2),B(2),C(2),F
COMMON/WORK/VP(2),PP(2),Y(15),G(15),P,F1,F2,DF1,DF2
1,S6,S7,S8,S9,S10
P=760.
D0 1 I=1,2
1 VP(I)=EXP(F*(A(I)-B(I)/(C(I)+ET)))
F1=P-VP(2)
F1=P-VP(2)
DF1=-F*B(2)*VP(2)/((C(2)+ET)**2.)
DF2=F*B(1)*VP(1)/((C(1)+ET)**2.)-F*B(2)*VP(2)/((C(2)+ET)**2.)
FDTX=F2**2.0/(DF1*F2-DF2*F1)
RETURN
END
```

SUBROUTINE VECTOR(N,X,Y,ANS,IFLAG) DIMENSION X(1),Y(1),ANS(1) DO 3 I=1,N GOTO (1,2),IFLAG 1 ANS(I)=X(I)+Y(I)

- GOTO 3
- 2 ANS(I)=X(I)-Y(I)
- 3 CONTINUE RETURN END

SUBROUTINE MATVEC(N,M,A5,XV,AX) DIMENSION A5(N,M),XV(M),AX(N) DO 2 I=1,N SUM=0. DO 1 J=1,M SUM=SUM+A5(I,J)*XV(J) AX(I)=SUM CONTINUE RETURN END

-	SUBROUTINE MATINV(N, B, BI, IFLAG, DET)
с с	-IFLAG and DET are error flags.
С	REAL IFLAG
	COMMON/INVERS/A(7,14)
	DIMENSION B(7,7),BI(7,7) DET=1.0
	IFLAG=0.
	DO 200 I=1,N DO 100 J=1,N
100	A(I,J)=B(I,J)
200	CONTINUE EPSIL=1.E-10
	N1=2*N
	DO 3 I=1,N DO 3 J=1,N
1	IF(I-J) 1,2,1 KK=J+N
•	A(I,KK)=0.0
2	GOTO 3 KK=J+N
	A(I,KK)=1.0
3	CONTINUE DO 50 IP=1,N
	IM=IP IST=IP+1
	IF(IST.GT.N) GOTO 11000
	DO 10 I=IST,N IF(ABS(A(IM,IP))-ABS(A(I,IP))) 9,10,10
9	I M=I
	CONTINUE
C	
11	IF(ABS(A(IM,IP))-EPSIL) 11,13,13 IFLAG=1.
13	IF(A(IM,IP)) 13,70,13
14	IF(IM-IP) 14,20,14 D0 15 J=IP,N1
	AL=A(IP,J) DET=DET*AL
	A(IP,J)=A(IM,J)
15 20	A(IM,J)=AL AL=A(IP,IP)
	A(IP,IP)=1.
25	DO 25 J=IST,N1 A(IP,J)=A(IP,J)/AL
	DO 40 I=1,N
30	IF(I-IP) 30,40,30 AL=A(I,IP)
35	DO 35 J=IP,N1 A(I,J)=A(I,J)-AL*A(IP,J)
40	CONTINUE
50 C	CONTINUE
	DO 60 I=1,N
	DO 55 J=1,N K=J+N
55	BI(I,J)=A(I,K)
60	CONTINUE RETURN
70	IFLAG=2.
	DET=0.0 RETURN
Character State	END

	423
	SUBROUTINE MATINV(N, B, BI, IFLAG, DET)
с с	-IFLAG and DET are error flags.
С	REAL IFLAG
	COMMON/INVERS/A(7,14) DIMENSION B(7,7),BI(7,7)
	DET=1.0
	IFLAG=0. D0 200 I=1,N
100	DO 100 J=1,N A(I,J)=B(I,J)
200	CONTINUE
	EPSIL=1.E-10 N1=2*N
	DO 3 I=1,N DO 3 J=1,N
	IF(I-J) 1,2,1
1	KK=J+N A(I,KK)=0.0
2	GOTO 3 KK=J+N
	A(I,KK)=1.0
3	CONTINUE DO 50 IP=1,N
	IM=IP IST=IP+1
	IF(IST.GT.N) GOTO 11000 DO 10 I=IST,N
	IF(ABS(A(IM,IP))-ABS(A(I,IP))) 9,10,10
9 10	IM=I CONTINUE
11000 C	CONTINUE
100	IF(ABS(A(IM, IP))-EPSIL) 11,13,13
11	IFLAG=1. IF(A(IM,IP)) 13,70,13
13	IF(IM-IP) 14,20,14
14	DO 15 J=IP,N1 AL=A(IP,J)
	DET=DET*AL A(IP,J)=A(IM,J)
15	A(IM,J)=AL
20	AL=A(IP,IP) A(IP,IP)=1.
25	DO 25 J=IST,N1 A(IP,J)=A(IP,J)/AL
	DO 40 I=1,N
30	IF(I-IP) 30,40,30 AL=A(I,IP)
35	DO 35 J=IP,N1 A(I,J)=A(I,J)-AL*A(IP,J)
40	CONTINUE
50 C	CONTINUE
	DO 60 I=1,N DO 55 J=1,N
	K=J+N
55 60	BI(I,J)=A(I,K) CONTINUE
70	RETURN IFLAG=2.
	DET=0.0
	RETURN END

Table A6.12	BASIC	program	for	estimation	with EKEL	

5 KEM BASIC PROGRAM FOR USE WITH EKF1 HHM 6 KALMAN FILTER SIMULATION OF A FINARY DISTILLATION PROCESS 7 PFM 8 ESTIMATING 11 PLATE LIQUID COMPOSITIONS AND 4 PARAMETERS- FEEL FEM 9 HEM. HATE, FEED COMPOSITION, REFLUX HATE AND EDIL-UF MATE .. 10 REM 7 PROCESS MEASUREMENTS .. 5 TEMPERATURES AND 2 FLOVEATES 11 1. FM 11M C(225), D(14), E(70), F(28), F(4), S(2), K(2), Z(7), Y(7), X(11) . 2 13 LIM J(10), U(15), K(15), L(7), M(7) 14 GOSLIF 9900 15 15=P:E9=13:C9=FND(E9) 17 11.13.14.18,19.09=0 FRINT "INPUT MEASUREMENT NOISE PARAMETERS ":: INFUT C7, C8, C9 201 21 PEINT "PEINT INTERVAL ? ":: INFUT G2 21 FRINT "INFUT X0, X1, Y0, Y1, J7, X2":: INFUT XK, X1, YK, Y1, J7, A2 59=X2: HEM SAMPLING INTERVAL 24 PEINT "INPUT Z1, 12, 16 ":: INPLT Z1, 12, 16 38 FRINT "INFUT 22, 14, 17 ": INFUT 22, 12, 17 31 PEINT "SET SS3 AND SS4 AND INPUT 23 "#: INFUT 23 32 F1=2: F2=1: L(1)=1: L(2)=10: F1=1: F4=0: V1=10.34 112 12 E 4= 1 15 GOSLE 1000:11=2:12=1 FOR 1=1, (:F(1)=.1E-01: NEX1 1: FOR 1=7, 11: F(1)=.5E-02: NEX1 1 SP 55 F(12), F(14), F(15)=1:F(13)=.15 HOR I=16, 20: H(I)=. 1H-01: NEXT I: H(21), H(22)=1 18 1.5 +(23)=.11-02: FOR 1=24,27: +(1)=.4E-01: NEXT 1: +(25)=.1E-01 16 FOR 1=3, 13: FEAD D(1): NEXT 1 SIX DATA 18, . 4, 30. 41, 29. 44, 7. 25, 7 :? [A]A 16.11(.27, 390, 3.41, (.59 95 1(14)=.11-02 110 GOLUF 1100 115 FOF I=1, 11:X(1)=C(1): NEXT I 125 (ALL (3,54) 121 COSUL BER GCSUF 3000: GOSUB 3030 107 184 POSUE 9300: GOSUE 9305 130 GOSLE 2000 130 FFM 204 F1=2:5(1)=.1:5(2)=4: GOSUB 999 5(1)= . 14: 5(2)=- 4: GOSUH 999 201 202 S(1)=.28:5(2)=-3: GOSUE 999 202 5(1)= . 4: 5(2)= 4: GOSLE 999 SINE F1=1:5(1)=.18:5(2)=.5E-01: GOSUE 999 808 5(1)=.3:5(2)=-.7t-01: GOSUE 999 210 CALL (2,11,12,21) 220 11=11+12 230 18=18+1 233 1 + 1x=1+ 14EN 240 235 3010 268 . 20 315UN 9700 215 HEY. 250 CALL (2, 13, 14, 7.2, 0)

- 426 -

```
260
    13=13+14
278
     19=19+1
287
    15 19=17 THEN 400
290
    3010 245
100
    19=6:19=6:14=14+1
:71
    30508 9650: GOSUF 9900: FOR I=1, 11:X(1)=E(I): NEX1 I
191
     Y(1) = C(45) + C8 + J(1) : Y(2) = L(47) + C8 + J(2) : Y(3) = C(49) + L8 + J(3)
107
    Y(4)=C(51)+C8*J(4):Y(5)=C(53)+C8*J(5)
    Y(\ell) = D(3) + C9 + J(\ell) : Y(7) = D(7) + C9 + J(7)
419
189
    3051F 810
    LALL (2, 13, 14, 21, 1)
410
     CALL (E)
411
412
    1+ 14=62 1HEN 415
413
    (ALL (3, 59): GOIO 430
415
    GOSUH 3980:14=0
1.20
    GOSLE BER: GOSUE 3000: GOSUE 30(0: PEINT : CALL (3). 5E-02)
1.88
    GOSUL 3030
    PEINT : FRINT "-----
                                                                -----
425
130
    SOSLE 9650: GOSUE 9300: GOSUE 9500
435
    18 11>10 14EN 465
11.6
    SOLO 130
415 (ALL (2,6,2(P)):2(7)=24: (ALL (2,5,2(P))
474
     END
BOO PRINT : GOSUL 9650
802 PEINT "STATE OF COLUMN ": PEINT
     FOF I=1,11: PRINI C(1), C(1+11), C(1+22): NEXT 1: FFINT
803
276
     + + I=1,11: PHINT C(1+33), C(1+44), C(1+((): NEX]
                                                       I
805
    SOSUE 900: PEINT : PEINT "STATE OF MOLEL": PEINT
KP4 FOF I=1, 11: FFIN1 X(1), E(1), E(1+11), E(1+33), E(1+44): NEX1 I
RPH
    FFINT E(56), E(57), E(58), E(59), D9
     PEINT : PEINT "-----": RETURN
8199
810
    CALL (5,Y(1), U(1), K(1), L(1), M(1), F9, L9)
815
     IF 19=0 THEN KETLEN
829
     11 19=1 THEN 830
825
    11 19=2 14EN 840
     $10F
8:1
836
     PEINT "PINOTAL ELEMENT 100 SMALL IN MATINE": STOP
    PEINT "PIVOTAL ELEMENT ZERO ": STOP
820
900
     FRINT D(3), D(4), D(5), D(6), D(7)
941
     FETURN
999
     (ALL (7, 11, 5(1), F(1), W(1), F1, F2): FF1UHN
18.90
     FFM.
16.56
     FOF 1=1,11: INPUT C(1),C(1+11),C(1+22): NEXI 1
1030
     FOF 1=1 10 11: INPUT C(1+33), C(1+44), C(1+55): NEXT 1
1077
      FOF 1=1,66:E(1)=U(1): NEX1 I
1940
      FEM
1950
      CALL (2,C(1),D(1),E(1),E(1),E1,E2,E4,U1)
:364
      FETURN
1102
      FFM
1110
      CALL (2, C(1), D(1), E(1), F(1), E1, E2, E4, V1)
1130
      RE JUNY
2000
     UP=45:51=4: P2=. 11771E05: GOSUE 8500: HETLEN
3940
      L2=31:51=4:12=8688: GOSLE 8500: FETUEN
3134
      CALL (2, C(1), 15, 15, 1, 0): GOLLB 3500
34:20
     CALL (2, ((1), 15, 15, 2, 0): GOLUH 3500
3650
     IF 13=0 THEN GOSUE 3200
      REILAN
3855
```

- 428 -

```
CALL (2. C(1), 15, 7, 4, 0): GOSUH 3600
 3848
3070
      CALL (2, C(1), 7, 14, 5, 0): GOSUF 3620: FHINT
      CALL (2, C(1), 15, 15, 1, 0): GOSUE 3500: FETUEN
3188
      NY=7: CALL (2, C(1), N9, 1, 0, 1): GOSUE 3250
3200
3210
      N9=15: CALL (2, C(1), N9, 1, 0, 2)
3250
      FCF I=1, N9: PHINT C(I): NEXT I: PHINT : RETURN
      FOR 1=1,15: PRINT C(1), C(1+15), C(1+30), C(1+45), C(1+60): NEXT 1
3500
3585
      FAINT
3510
      FOR 1=1,15: PRINT C(1+75), C(1+90), C(1+105), C(1+120), C(1+135)
3515
      NEXT I: PRINT
3520
      HOF 1=1,15: PHINT C(1+150), C(1+165), C(1+180), C(1+195), C(1+210)
3525
      NEXT 1: FRINT : RETURN
36.9.0
      FOR I=1, 15: FRINT C(1), C(1+15), C(1+30), C(1+45): NEXT 1
      PRINT : FOR I=1, 15: FRINT C(I+60), C(I+75), C(I+90): NEXT I: KETUR
3610
3620
      FRINI
3650
      FOIL 1=1,7: FFINI C(1+49), C(1+56), C((3+1), C(70+1): NEXI I
SFFA
      FRINT : FOR 1=1,7: FRINT C(1+77), C(1+84), C(1+91): NEXT 1: RETURN
3800
      GOSLH 9650: FOR I=1.11: PRINT C(1).X(1).E(1): NEXT I
      PRINT : FRINT E(56), E(57), E(58), E(59): RETURN
38.18
      PRINT "MEASUREMENTS --- TIME =": TI: PEINT Y(1), Y(2), Y(3)
3499
2718
      FRINT Y(2), Y(5), Y(6), Y(7): PRINT : METURN
8500
      CALL (1, U1, U2, S1, B1, B2, E7)
8510
     11 E7 <> 0 THEN 9000
8520
     RETURN
9000
     FEINI "DISK EFROR !": STOP
9360
     12=2:51=25: H2= . 11772 FA5: GOSUE 8500: HETUEN
9345
      2(1)=29: CALL (2,5,2(0))
9316
      (ALL (2,1,Z(0)):Z(1)=X0:Z(2)=X1:Z(3)=Y0:Z(4)=Y1: CALL (2,2,Z(0))
9320
     Z(5)=X0:Z(6)=Y0:Z(0)=2: GOSUB 9600
     2(5)=X1:2(0)=3: GOSUB 9600
9330
9348
     Z(()=YK+Y1: GOSUB 9600:Z(5)=X0: GOSUF 9600
9350
     Z(E)=YP: GOSUE 9600: GOSUE 9650
     2(()=11:2(0)=2: GOSUB 9600
9360
9378
      2(6)=12: GOSUE 9600:2(6)=13: GOSUE 9600
9375
     Z(E)=V4: GOSUF 9E00:2(6)=V1: GOSUE 9600
     X7=XP:W1=V1:W2=V2:W3=V3:W4=V4: HEIUNN
9380
9580
     15=15+X2
9505 Z(0)=3:Z(5)=15:Z(6)=V1: GOSLB 9600:V1=V1
95.0
      IF J7=1 THEN 9590
9520
      ?(R)=2:2(5)=X7:2(6)=W2: GOSUF 9600
953P
     Z(V)=3:Z(5)=15:Z(6)=V2: GOSUB 9604:W2=V2
2535 . IF J7=2 THEN 9590
9537
      2(0)=2:2(5)=X7:2(6)=W3: GOSUF 9600
9528
      2(0)=3:2(5)=15:2(6)=V3: GOSUB 9(00:W3=V3
9515
     1F J7=3 THEN 9590
9550
      2(0)=2:2(5)=X7:2(6)=44: GOSUE 9600
9555
      2(0)=3:2(5)=15:2(6)=V4: GOSUB 9660:14=V4
     X1=15:2(0)=2:2(6)=W1: GOSUB 9688: FETURN
9590
9646
     CALL (2, 3, 2(6)): KEIUNN
      F3=0: CALL (4, C(1), L(1), E(1), K0, 60, E2, E3)
9651
9618
      VI=L(10): V2=E(10): V3=C(4)-.4: V4=E(4)-.4: KF1UHV
9744
      L2=37:51=27: H2= . 11768105: GOSUH 8500: HETLAN
9800
      htm
9820 UI=0:U2=42:51=18:51=8192:52=.1175805: GOSUB 8500: KETUKN
9900 FOF 1=1,7:K7=0: FOF 12=1, 50:K7=K7+KNL(E): NEXT 12
9992
      J(1)=C7*(17-25): NEX1 1: FETURN
```

23913

Table A6.13 Memory map of Segment 1: EKF2

*LOW	05470.		INIT2	22000
*START	17777	1	INITS	23000
*HIGH	33224		P10F10	24000
*NAMES	11445		MATTPX	24162
*COMN	34737		TRANS	25000
*BASE	33253		MATMUL	26000
*BASE	32764		COMN	27000
*BASE	30772		MATADD	27524
*BASE	31765		FDTX	30470
*BASE	27760		SDBUB	31000
*BASE	26746		DIAADD	31504
*BASE	25761		KALMA1	32000
*BASE	24757		SDINT	32164
*BASE	23757		MATTPS	32502
*BASE	22761		INTPAS	
*BASE	21760		INTJS	33052
*BASE	20763		. L±33	33110
ABS	05470		INT	33124
L#22	05554		IDINT	33124
H≢22	05560		IFIX	33124
N≢22	05576		C≢21	33134
S≢22	05753		F≢AT	33142
A±22	05760		PRIN	34737
D±22	06035		DATA	35013
M±11	06163		HOUSE	35053
M≢22	06204		BUB	35075
C±12	06247		CONVEC	35101
E±22	06370		INTEG	35135
ALOG	06477		INVERS	35141
EXP	06563		WORK	35205
SQRT	06677		COLUMN	
SIN	06757		MODEL	35743
ATAN	07065		FILTER	
KOMMON	20000		KOLPAR	37477
INIT	20006			
INIT1	21000			

*LOW	05470
*START	17777
*HIGH	33224
*NAMES	11541
*COMN	34737
*BASE	33253
*BASE	32764
*BASE	31765
*BASE	26773
*BASE ·	25765
*BASE	24773
*BASE	23774
*BASE	22775
*BASE	21774
*BASE	20775
ABS	05470
L±22	05554
H±22	05560
N≢22	05576
S≢22	05753
A±22	05760
D≢22	06035
M≢11	06163
M≢22	06204
C≢12	06247
E≢22	06370
ALOG	06477
EXP	06563
SQRT	06677
SIN	06757
ATAN	07065
KOMMON	20000
DCOL	20006
DCOL1	21000
DCOL2	22000

DCOL3	23000
DCOL5	24000
DCOL6	24444
PERTUB	25000
RAMP	25302
DCOL4	26000
STEP	26434
SDBUB	31000
DIAADD	31504
KALMA1	32000
SDINT	32164
MATTPS	
INTPAS	33000
INTJS	33052
L±33	33110
INT	33124
IDINT	33124
IFIX	33124
C±21	33134
F≢AT	33142
PRIN	34737
DATA	35013
HOUSE	35053
BUB	35075
CONVEC	35101
INTEG	35135
INVERS	35141
JORK	35205
COLUMN	35335
MODEL	35743
FILTER	36273
KOLPAR	37477

Table A6.15	Memory	map	of S	Segment	3:	EKF2
-------------	--------	-----	------	---------	----	------

*LOU	05470	MATINU	23000
*START	17777	P10F10	
*HIGH	33224	DIASUB	
*NAMES	11321	DIAMUL	
*COMN	34737	MATTPX	24476
*BASE	31765	TRANS	25000
*BASE	26773	MATMUL	26000
*BASE	25761	РКК	26500
*BASE	24762	MATVEC	26624
*BASE	23771	COMN	27000
*BASE	32764	MATADD	27524
*BASE	33253	FDTX	30470
*BASE	30772	SDBUB	31000
*BASE	27760	DIAADD	81504
*BASE	22764	KALMA1	32000
*BASE	21775	SDINT	
*BASE	20774	MATTPS	
ABS	05470	INTPAS	33000
L#22	05554	INTJS	33052
H≢22	05560	L≢33	33110
N±22	05576	INT	33124
S#22	05753	IDINT	33124
A±22	05760	IFIX	33124
D≢22	06035	C±21	33134
M±11	06163	F£AT	33142
M±22	06204	PRIN	34737
C±12	06247	DATA	35013
E±22	06370	HOUSE	35053
ALOG	06477	BUB	35075
EXP	06563	CONVEC	35101
SQRT	06677	INTEG	35135
SIN	0.6757	INVERS	
ATAN	07065	WORK	35205
KOMMON	20000	COLUMN	
SIMUL	20006	MODEL	35743
SIMULX	21000	FILTER	36273
VECTOR	21636	KOLPAR	37477
KALMAN	22000		

Table A7.1 On-line BASIC program: Distillation Column

```
FEM .. MERRE CONTROL OF REBOILER AND AFFLUX HOLD-UPS
10
   EIM A(13), H(8(), C(7), D(29):N, 1, S=0
:5
   PFINT "INFUT A(1), A(2) AND M6800 A(0) ";: INFUT A(1), A(2), 51
20
   A(12)=1:5=51*A(1)
22
   FRINT "INFUT P=1 IF PRINT TEMPERATURES ":: INFUT P
25
   PHINT "INPUT F9=1 IF FLOT ":: INFUT P9: IF F9=1 THEN GOSUB 400
36
             35
   HEM
   (ALL (1, A(0), B(0))
10
             GET HOLD-UF VALUES
50
    I.FM
    ROSUL 1000
FP
    HEM
             GET M6800 CONTROL VALUES
BM
   BOSUH 2000
85
    1F F9=0 THEN 110
87
    IF 17=P THEN GOSUB 410
90
    GOLLE 500
140
    CALL (2)
110
     CALL (5, 6, C(0)): C(7)=24: CALL (5, 5, C(4))
120
     END
13?
     FFINT "INPUT X0, X1, Y0, Y1, M6800 A(0) ": INPUT X0, X1, Y0, Y1, 5: 17=0
440
200
     KEILIN
              INITIALISE GRAPHICS
     HEM
410
     ((7)=29: CALL (5, 5, C(0))
120
     CALL (5, 1, C(0)): C(1)=X0: C(2)=X1: C(3)=Y0: C(4)=Y1: CALL (5, 2, C(0))
:30
     C(5)=XP:C(6)=YP:C(0)=2: GOSUB 9600:C(5)=X1:C(0)=3: GOSUE 9600
440.
     Y1=YC+Y1:C(6)=Y1: GOSUE 9600:C(5)=X0: GOSUE 9600:C(6)=Y0: GOSUE 960
1.50
460
     17=1
     C(0)=2:C(6)=L1: GOSUB 9600:C(6)=L2: GOSUB 9600:C(6)=L1: GOSUB 9600
47F
     X7=XV:W1=L1:W2=L2: RETURN
1.512
              PLOT ROUTINE
     HEM
500
     X7=1:1=1+5
510
     C(+)=3:C(5)=1:C(6)=L1: GOSUB 9600:W1=L1
520
     C(@)=2:C(5)=X7:C(E)=W2: GOSUB 9600
530
     C(0)=3:C(5)=T:C(0)=L2: GOSUP 9600:W2=L2
540
     KEM
550
     1 F N=1 THEN 700
555
     C(0)=2:((5)=X7:((6)=C1: GOSUE 9600
510
     C(0)=3:C(5)=1: GOSUB 9600:W3=C1
510
     C(R)=2:C(5)=X7:C(6)=C2: GOSUE 9600
530
     C(P)=3:C(5)=1: GOSUB 9600:W4=C2
540
595
     V = 1
     C(V)=2:C(C)=W1: GOSUE 9600: RETURN
600
     C(P)=P:C(5)=X7:C(6)=W3: GOSUB 9660
760
     C(0)=3:C(6)=C1: GOSUE 9(00:C(5)=1: GOSUE 9600:V3=C1
716
     ((@)=2:C(5)=X7:C(6)=W4: GOSUE 9600
 :20
     C(0)=3:C(6)=C2: GOSUB 9600:C(5)=1: GOSUF 9600:04=C2
730
748 3010 600
      V1=H(45)*5/1023:L1=(-.58(4E-01+.541*V1)/1.5
 1666
 1885 BV2=6(44) *5/1023:L2=(-60+40.1*V2)/1.6
      IF P=0 THEN RETURN
 18.18
      11=F(37)*5*23.181/1023+3.2204
 1020
      17= 6(38) + 5+ 23. 422/ 1623+ 4. 688
 1838
       TP=+(36) + 5+23.038/1023+3.6394
 16:48
       1=1+5: FKIN1 "'IIME=";1
 10:50
 1868 PHINE LISL2; 11: 17; 10; C1; C2: PHINE
      FE-1LIN
 1876
       C1=F(57)/. 32767E05*10
 2448
      C2=E(58)/. 32767E05*10
 24115
      FEIUNN
 2010
      CALL (5, 3, C(0)): RETURN
 9140
```

Table A7.2 On-line SD BASIC program: Distillation Column

```
PROGRAM ORIGIN :4000
   DATA ORIGIN
                   :5500
   REM
   REM .. PROGRAM FOR M6800 CONTROL OF REBOILER AND REFLUX
   REM
          HOLD-UPS IN THE IBM DISTILLATION COLUMN
   REM
          CONTROL O/P'S ARE SENT TO THE H316 EVERY SCAN
   REM
          INTERVAL
   DIM A(11), B(86), D(29), E1(1), E2(1), V(6), BIAS
   DIM TIMER/:06/, PFLAG/0/, I/0/, EN, LN, N, U, M, T1, T7, T10
   DIM J, VARPI, K1, K2, TI1, TI2, S1, S2, STIME, SMAG, U1, U2, UN, L1, L2
   DIM XFLAG/0/, P1, P2, V1, V2, ISTEP/0/
   REM
   ON ERROR GOTO 9999
   FOR J=0 TO 1 \ E1(J)=0.0 \ E2(J)=0.0 \ NEXT J
   FOR J=O TO 11 \ A(J)=O \ NEXT J
   FOR J=O TO 86 \ B(J)=O \ NEXT J
   FOR J=0 TO 29 \ D(J)=0 \ NEXT J
   REM
 5 CALL SUBO
   INPUT "A(0), A(2), VARPI, STIME, SMAG " A(0), A(2), VARPI, STIME, SMAG
   INPUT "REF. & REB. SET-POINTS AND PERC1" S1,S2,P1
   INPUT "P+I CONTROL PARAMETERS K1,K2,TI1,TI2 " K1,K2,TI1,TI2
   PRINT "INPUT VALVE SETTINGS V(1),V(2),V(3),V(5),V(6)"
   INPUT V(1), V(2), V(3), V(5), V(6)
   REM
   A(1)=1 \setminus A(3)=36 \setminus A(4)=47 \setminus A(5)=33
10 CALL SUB1(A(0),B(0))
   GOSUB 9500
   IF XFLAG=0 THEN GOSUB 600
   I=I+1 \ IF I=VARPI THEN PFLAG=1
   ISTEP=ISTEP+1 \ IF ISTEP=STIME THEN GOSUB 900
   FOR J=36 TO 47 \ IF B(J)<0 THEN B(J)=0 \ NEXT J
   T1=B(37)*5*23.181/1023+3.2204
   T7=B(38)*5*23.422/1023+4.688
   T10=B(36)*5*23.038/1023+3.6394
   V1=B(45)*5/1023 \ L1=(-.05864+.541*V1)/1.5
   V2=B(44)*5/1023 \ L2=(-60.0+40.1*V2)/1.6
   REM
20 IF L1 > P1*S1 THEN GOTO 25
   N=5 \ GOSUB 9000 \ GOTO 27
25 E1(1)=L1-S1
   U1=V(5) + K1*(E1(1)-E1(0)) + K1*A(0)*E1(1)/TI1
   IF U1<0.0 THEN U1=0.0 \ IF U1>10.0 THEN U1=10.
   N=5 \ UN=U1*32767/10 \ GOSUB 8000
   V(5)=U1 \ GOTO 28
27 V(5)=UN
28 D(0)=U \ E1(0)=E1(1)
   REM
30 E2(1)=L2-S2
```

```
U2=V(6) + K2*(E2(1)-E2(0)) + K2*A(0)*E2(1)/TI2
```

```
IF U2<0.0 THEN U2=0.0 \ IF U2>10.0 THEN U2=10.0
    N=2 \ UN=U2*32767/10 \ GOSUB 8000
    D(1)=U
    V(6)=U2 \ E2(0)=E2(1)
    REM
 35 IF PFLAG=1 THEN GOSUB 800
    REM
    M=2
    CALL SUB4(M,D(O))
 40 CALL SUB2
    GOTO 10
600 FOR J=1 TO 6 \ IF J=4 THEN NEXT J
    ELSE UN=V(J)*32767/10 \ N=J \ GOSUB 8000 \ NEXT J
    XFLAG=1
    RETURN
    REM
                                                  -----
SOO PRINT \ PRINT "------
    FRINT \ PRINT USING 802, ISTEP, L1, L2, E1(1), U1
802 FORMAT "SCAN=#### L1=-##.### L2=-##.### E1=-##.### U1=-##.###"
    PRINT \ PRINT USING 804, T1, T7, T10, E2(1), U2
804 FORMAT "T1=-###.## T7=-###.## T10=-###.## E2=-##.### U2=-##.### "
    PRINT \ I=0 \ PFLAG=0 \ RETURN
900 N=3 \ UN=SMAG*32767/10 \ GOSUB 8000 \ RETURN
8000 U=INT(UN)
    CALL SUB3(N,U)
    RETURN
2000 UN=.05/10*32767 \ GOSUB 8000 \ RETURN
9500 IF B(57)=0 THEN RETURN
    ELSE S1=B(57) \ S2=B(58) \ RETURN
9999 EN=ERR \ LN=ELN \ CALL SUB99(EN+LN)
    END
```

the Newbury VDU

	Pr	ogram	Location
TEST	DAC	**	'753
	STA	TEMP	'754
	INA	'1004	'755
	JMP	*-1	'756
	STA	FLAG	'757
	LDA	TEMP	'760
	JMP*	TEST	'761
TEMP	BSZ	1	'762
FLAG	BSZ	1	'763

Table A7.4 On-line BASIC program: Double-Effect Evaporator ... FROGRAM FOR ON-LINE MEROE CONTROL OF TEMPERATURES ... 10 KEM. IN A DOUBLE-EFFECT EVAPORATOR FEM. 12 28 REM 25 FFM D(0) GOES 10 STEAM LALVE D(1) GOES 10 INFLOW VALVE h+M .7 35 [IM E(4), Z(4) PEINT " INPUT PROP. CONS. K5 , K7 ": INFLT K5, K7 37 PFINI " INPUT TIME INTEGRAL 11, 12 ":: INFUT 11, 12 39 PRINT " INFUT SET VALUES DI , D3 ":: INFUT DI,L3 18. PEINT " INFUT SET VALUE OF VARIABLES": : INFUT ST, S8 42 FFINT " INFUT CONTROLLED CHANNELS ":: INFLI MI,ME 43 7(1) = 57:2(3) = 5811 11. F(1)=0:E(3)=0 DIM A(13), E(86), C(7), D(29) 58 FRINT "INPUT X0, X1, Y0, Y1 ":: INFUT X0, X1, Y0, Y1 122 PEINT "INPUT CHANN. NO. TO BE PLOTTED J":: INFUT J 123 PRINT "INPUT CHANN.NO TO BE PLOTTED K ": INFLT K 121 FRINT "INPUT CHANN. NO. TO BE PLOTIEL L ":: INFUT L 121 FFINI " INFUT CHANN. FOR HISTO. FLOTTING CIECE ":: INFUT CI.C? 121 PEINT "INFUT SCALING FACTOR FOR CI & C2 ": INPUT F1 128 PRINT "INPUT SCAN INTERVAL ":: INFUT 53 130 PEINT "INPUT MULTIPLES OF MICHO SCAN ": INFUT S2 120 160 FFINT " NO. OF SCANS .. ": INPUT SI GOSUN (80: CALL (5, 1, C(0)) 162 CALL (5.2.C(M)): GOSLE 700 163 : + 4 N = 1115 P(C1)=P1: F(C2)=D3 202 5=52*53 x=P:A(1)=52:A(2)=51:A(12)=1 265 270 CALL (1, A(0), H(0)) FOF 1=0 10 9 280 290 E(1)=E(1)*128/1024 388 NEX1 I F(10)=B(10)*.245E-01/71(.8+.105E-01 310 320 H(11)=H(11)*.51-01/1024+.2221-01 H(12)=B(12)*31.5/1024-2.52 330 3FP F(14)=F(14)*52.636/1024+1.4 370 F(15)=B(15)*19.127/1024 100 H(37)=H(55)/(3270+53)+.394E-02 405 GOSUL 900 TO ENAMLE FLOTTING B(75), B(76) IS KEMOVED 410 HEM .. U(0) IN MESER CORRESPONDE TO E(57) IN H316 & 50 ON 415 KEM MESAR CONTROL OUTFUTS 120 **HEM** 425 +(15)=+(57)/. 32E05: +(76)=+(58)/. 32E05 1+ N>1 THEN 512 542 501 C(5)=0:C(6)=F(.]):C(0)=2 CALL (5, 3, C(0)) -26 507 L1=F(C1)*F1:L3=F(C2)*F1SAR Y1=F(J):V1=B(K):W1=B(L) 510 6010 513 GOSUH 540 512 513 1+1=1 515 E(1)=E(2):E(3)=E(2) 520 (ALL (2) 522 (ALL (5, 6, C(0)) 523 ((1)=24: CALL (5, 5, C(0)) 574 ENL 540 X=X+5

- 436 -

```
541
      L2=B(C1)*F1:L4=B(C2)*F1
540
     Y2=P(J):V2=E(K):W2=E(L)
514
     C(5)=X:C(6)=Y2:C(0)=3
546
     GOSUR 1000
- 48
     C(5) = X - S: C(6) = V1: C(0) = 2
556
     GOSUB 1000
552
     C(5) = X: C(6) = V2: C(0) = 3
554
     CALL (5,3,C(0))
556
     C(5) = X - S: C(6) = W1: C(0) = 2
     GOSUE 1000
558
     C(5)=X:C(6)=W2:C(0)=3
560
562
     GOSUB 1000
     C(5)=X-S:C(6)=L1:C(0)=2: GOSUE 1000
564
     C(5)=X:C(0)=3: GOSLB 1000
566
567
     C(6)=L2: GOSUB 1000
     C(5)=X-S:C(6)=L3:C(0)=2: GOSLE 1000
568
578
     C(5)=X:C(0)=3: GOSUF 1000
572
     C(6)=L4: GOSUE 1000
574
     C(5)=X:C(6)=Y2:C(0)=2: GOLUE 1000
57 5
     Y1=Y2: V1=V2: W1=W2
57 E
     L1=L2:L3=L4
580
    RETURN
     C(7)=29: CALL (5, 5, C(0)): C(1)=XP: C(3)=YP
600
(2) ((2)=X1:C(4)=Y1
630 FEILEN
. 70
     C(5)=X0:C(6)=Y0:C(0)=2: GOLUE 1000
710
     C(5)=X1:C(6)=Y0:C(0)=3: GOSLF 1000
715
     Y1=Y1+YP
720
     C(5)=X1:C(6)=Y1: GOSUE 1000
130
     C(5)=X0:C(6)=Y1: GOSLE 1000
740
     ((5)=X0:L(C)=Y0: GOSUH 1000
750
     RETURN
     E(2) = S7 - B(M1): E(4) = S8 - E(M2)
900
915
     KE=K5/11:K8=K7/12
     L2=K5*(E(2)-E(1))+K(*5*E(2)
917
920 D1=D1+D2
922
     D4=K7*(F(4)-E(3))+K8*5*E(4)
924
     1:3=13-00
    IF DI<=0 1HEN LI=0
925
     11 D3<=0 1HEN D3=0
926
     D(0)=D1*.32767E05/.4E-01:D(1)=13*.32767E05/.8E-01
936
932
     D(2)=100
     IF ABS(D(0))>. 327E05 THEN 950
937
930
     IF ABS(D(1))>. 327E05 THEN 950
910
     CALL (4,0,3,D(0))
950
     RETURN
```

```
:200 CALL (5, 3, C(0)): HEILKN
```

- 438 -

```
PROGRAM ORIGIN :4000
    DATA ORIGIN :5000
    REM ... PROGRAM FOR M6800 CONTROL OF TEMPERATURES
                 IN A DOUBLE-EFFECT EVAPORATOR
    REM
    REM
    REM
                    2 P+I CONTROL LOOPS
    REM
            RPV1, RPV2 ARE INITIAL VALVE SETTINGS
    REM
    DIM A(11), B(86), D(29), E1(2), E2(2), TIMER/06/, PFLAG
    DIM KPS, KPF, KIS, KIF, AVS, AVF, RPV1, RPV2, TIS, TIF, L/0/
    DIM S, SV1, SV2, I, F, L1, S1, EN, LN, U, N, M
    REM
    ON ERROR GOTO 9999
    CALL SUBO
    PRINT "INPUT CONTROLLER PARAMETERS !"
    PRINT \ INPUT "KPS & TIS FOR STEAM " KPS, TIS
    INPUT "KPF & TIF FOR FEED " KPF, TIF
    INPUT "STEAM & FEED VALVE AVERAGE POS. AVS,AVF " AVS,AVF
    INPUT "SET POINTS SV1 & SV2 " SV1, SV2
    INPUT "A(O), PRINT FLAG " S, PFLAG
    FOR I=O TO 11 \ A(I)=O \ NEXT I
    INPUT "F,L1,S1,A(1) " F,L1,S1,A(1)
    REM
    FOR I=O TO 86 \ B(I)=O \ NEXT I
    FOR I=O TO 29 \ D(I)=O \ NEXT I
    REM
    A(0)=S \setminus A(2)=S1 \setminus A(3)=F \setminus A(4)=L1
    A(5)=33
    E1(1)=0.0 \ E2(1)=0.0
    KIS=KPS/TIS \ KIF=KPF/TIF
    REM
 10 CALL SUB1(A(0), B(0))
    IF B(59)=0 THEN 15
    SV1=B(57)*.04/32767 \ SV2=B(58)*.08/32767
 15 REM
    L=L+1 \ IF L<=6 THEN GOSUB 1000
    IF A(1)=1 THEN 18
    ELSE GOSUB 2000
 18 IF L=12 THEN L=0
    E1(1)=E1(2) \setminus IF A(1)=9 \text{ THEN } E2(1)=E2(2)
    REM
    IF PFLAG=0 THEN 20
    PRINT USING 901, SV1, SV2, AVS, AVF
901 FORMAT "-##.### -##.### -#######.## -#######.##"
    B(35)=B(54)/50.0 \ REM -- CONVERT TO SECS.
    PRINT USING 902, B(57), B(58), B(37), B(55), B(56)
902 FORMAT "-######## -######.# -###.### -#### -####"
    PRINT D(0),D(1)
    PRINT
 20 M=2
```

```
CALL SUB4(M,D(O))
     CALL SUB2
     GOTO 10
     REM
1000 B(36)=B(10)*.0245/716.8 + .105E-01
     E1(2)=SV1-B(36) \ IF ABS( E1(2) ) < 3.E-04 THEN RETURN
     RPV1=KPS*(E1(2)-E1(1)) + KIS*S*E1(2)
     AVS=AVS+RPV1 \ IF AVS>32.E3 THEN AVS=32.E3
     IF AVS<0.0 THEN AVS=0.0
     D(0)=INT(AVS)
     U=INT(AVS) \ N=1
  30 CALL SUB3(N+U) \ RETURN
     REM .
2000 B(37)=( B(55)/(3270*S) + .00394 )
E2(2)=SV2-B(37) \ IF ABS( E2(2) ) < 3.0E-03 THEN RETURN
     RPV2=KPF*(E2(2)-E2(1)) + KIF*S*E2(2)
     AVF=AVF-RPV2 \ IF AVF>32.E3 THEN AVF=32.E3
     IF AVF<0.0 THEN AVF=0.0
     D(1) = INT(AVF)
     U=INT(AVF) \ N=2
  40 CALL SUB3(N+U) \ RETURN
     REM
9999 EN=ERR \ LN=ELN
     CALL SUB99(EN,LN)
```

非

END

REFERENCES

1.	Knuth, D.E. "Ancient Babylonian Algorithms, Communications
	of the ACM, Vol. 15, p. 671, July (1971).
2.	Wilkes, M.V., Babbage as a computer pioneer, Historia
	Mathematica, Vol. 14 (1977).
3.	Randell, B. (ed.), The Origins of Digital Computers,
	Selected Papers, Springer-Verlag, New York (1973).
4.	Mollenhoff, G.G. "John V. Atanasoff, DP Pioneer" Computer-
	world, March 13, 20, 27 (1974).
5.	Tremblay, J.P. and Bunt, R.B. An Introduction to Computer
	Science - An Algorithmic Approach, McGraw-Hill Book Co. (1981).
6.	Huskey, H.D., and Huskey, V.R., Chronology of Computing Devices,
	IEEE Trans. on Computers, Vol. C-25, p. 1190, Dec. (1976).
7.	Push-Button Era Inaugurated, Oil Gas. J., 57, p. 78, April 6
	(1959).
8.	Lemay, L.P., On-Line Computer Control of a Chemical Plant,
	Proc. Computing and Data Process. Soc. Canada, pp. 258-277
	(1962).
9.	Guisti, A.L., Otto, R.E. and T.J. Williams, Direct Digital
	Computer Control, Control Eng. 9(6), pp. 104-108 (1962).
10.	Morello, V.S., R.H. Foy and K.A. Otto., Computer Applications
	Symposium, Chicago, Illinois (1962).
11.	Savas, E.S., Computer Control of Industrial Processes,
	McGraw-Hill, Inc. (1965).
12.	Microprocessor Applications, Cases and Observations,
	H.M.S.O. London (1980).

- Hilburn, J.L. and P.M. Julich, Microcomputers/Microprocessors: Hardware, Software and Applications, Prentice-Hall, Inc., Englewood Cliffs, N.Y. (1976).
- 14. Callacher, J., Industrial Data Acquisition and Control Systems,
 Microprocessors and Microsystems, Vol. 3, No. 5, p. 210,
 June (1970).
- Depledge, P.G. "A Review of Available Microprocessors,
 I.J.E.E.E. 16, No. 2, pp. 114-123 (1979).
- 16. 'What's New in Computing' Magazine, p. 3, April (1982).
- Cushman, R.H., Eighth Annual Microprocessor/Microcomputer
 Chip Directory, EDN, Vol. 26, No. 22, pp. 100-200, Nov. (1981).
- Smith, M.F., Comparative Software Analysis of the MC6809,
 Microprocessors and Microsystems, Vol. 5, No. 9, Nov. (1981).
- Depledge, J.P., Recent Developments in the Design of Microcomputer System Components, I.J.E.E.E., Vol. 19, p. 197-122, Manc. U.P. (1982).
- 20. Office Systems, Sept. (1982).
- 21. Computer Weekly, p. 12, Dec. (1982).

22. What Micro? No. 1, November/December (1982).

- 23. Beyers, J.W., et al., A 32-bit VLSI CPU chip, IEEE Journal of Solid State Circuits SC-16, No. 5, pp. 537-545, October (1981).
- 24. Best, D.W., et al., An Advanced-Architecture CMOS/SOS Microprocessor, J. of I.E.E.E. Micro, p. 11, Aug. (1982).
- Stanton, B.D., Reduced Problems in New Control System
 Design, Hydrocarbon Processing, p. 67, Aug. (1982).
- Kane, L.A. What's wrong with Process Control?, Hydrocarbon Processing, Vol. 8, p. 61, Aug. (1982).

- 27. Takahashi, Y., et al., Simple Discrete Control of Industrial Processes, Trans. ASME, Series G, J. Dyn. Sys. Meas. and Contr., Vol. 97, No. 4, p. 354, Dec. (1975).
- 28. Cummings, G.A. and G.S. Miller, Applications of a Bipolar Microprocessor Chip Set to Control Systems, Proc. Joint Automatic Control Conf. p. 27 (1977).
- 29. Auslander, D.M., et al., Process Control Experience and a Self-Tuning method for a Discrete-Time, finite-time setting controller/observer, Trans. ASME, J.Dyn.Sys.Meas. and Control, Sept. (1977).
- McMahon, T.K., Distributed Digital Control Control Technology
 Breakthrough, Chem. Eng., p. 117, Oct. 19 (1979).
- 31. Auslander, D.M., et al., Direct Digital Process Control: Practice and Algorithms for Microprocessor Application, Proc. of the IEEE, Vol. 66, No. 2, p. 199, Feb. (1978).
- 32. Bond, A., Distributed microprocessors replace the computer in total digital control system, Process Engineering, p. 64, Jan. (1976).
- 33. Taylor, R.A., A Distributed Microprocessor Control Philosophy, ISA Annual Conference 1977, p. 131.
- 34. Buchner, M.R. and I. Lefkowitz, Distributed Computer Control for Industrial Process Systems: Characteristics, Attributes, and An Experimental Facility, Control Systems Magazine IEEE, p. 8, Mar. (1982).
- 35. Williams, D.L., Microcomputers enhance computer control of chemical plants, Chemical Engineering, p. 95, July 18 (1977).
 36. Process Control systems for the 80s, Processing, p. 33, January (1980).

- 37. Sheppard, P.F., Functional and Geographical Distributed Control of Industrial Processes, Fourth International Conference on Trends in On-Line Computer Control Systems, IEE, 5-8 April (1982).
- 38. Steelman, D.M., Distributed Cement Plant Control The Intelligent Approach, IEEE Trans. on Industry Applications, Vol. IA-18, No. 2, p. 192, Mar/Apr (1982).
- Fisher, K.J., Distributed Process Control System for an Iron Ore Processing Plant, op. cit. p. 199.
- 40. Sansom, P., Concepts and Trends in Industrial Schemes, Chemistry and Industry, p. 39, Sept.(1982).
- 41. Adam Osborne and Associates, In., An Introduction to Microcomputers, (1975).
- 42. Hilburn, J.L. and P.M. Julich, Microcomputers/Microprocessors: Hardware, Software, and Applications, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1976).
- 43. Leventhal, L.A., Introduction to Microprocessors: Software,
 Hardware and Programming Englewood Cliffs, London, Prentice-Hall (1978).
- 44. Ward, A.R., LSI Microprocessors and Microcomputers. A bibliography, Computer, p. 35, July (1974).
- 45. Nichols, A.J., An Overview of Microprocessor Applications, Proc. of the IEEE, p. 951, June (1976).
- Biewer, M., Don't Confuse Microprocessors with computers,
 Systems, p. 27, Dec/Jan. (1975).
- 47. Capece, R.P., and J.G. Posa, Microprocessors and Microcomputers:
 One-chip Controllers to High-end Systems, McGraw-Hill Publications
 Co., N.Y., (1981).
- 48. Randle, W.C., and N. Kerth, Microprocessors in Instrumentation, Proc. of the IEEE, Vol. 66, No. 2, p. 172, Feb. (1978).

- Leventhal, L.A., Microprocessors in Aerospace Applications, Simulation, p. 111, April (1978).
 Klig, V., Biomedical Applications of Microprocessors, Proc. of the IEEE, Vol. 66, No. 2, p. 151, Feb. (1978).
- 51. Weissberger, A., Microprocessors in the Processing Plant, IEEE Trans. on Ind. Electr. and Cont. Inst., Vol. IECI-22, No. 3, p. 354, Aug. (1976).
- 52. Rees, V.J., Digital Filter Design Programming a Microprocessor to act as a digital filter, Wireless World, p. 47, Oct. (1976).
- 53. Ahmed, N. and J.P. Jayapalan, On Digital Filter Implementation via Microprocessors, IEEE Trans. on Ind. Electr. and Contr. Instru., Vol. IECI-23, No. 3, p. 249, Aug. (1976).
- 54. Allen, J. and A.G.J. Holt, Microprocessor Implementation of a Simple, Low-Pass Filter, Int. J. Elect. Eng. Educ., Vol. 16, pp. 191-209, Manchester U.P., (1979).
- 55. Edwards, G., Digital Filters can Simplify Signal Processing, Electronic Eng., p. 53, June (1976).
- 56. Lin, B., Effect of finite wordlength on the Accuracy of Digital Filters - A Review, IEEE Trans. on Circuit Theory, CT-18 No. 6, pp. 670-677, Nov. (1971).
- 57. Bibbero, R.J., Microprocessors in Instruments and Control, John Wiley and Sons, N.Y. (1977).
- 58. McKay, C.W. and C. Gross, A Microprocessor-based Flow Monitoring System, J. of ISA AC, p. 821 (1976).
- 59. Beveridge, G.S.G., Hill, R.G. and M.R. Aguilar, Interactive Computer Flowsheeting on a Microcomputer, Annual Research Meeting, Inst. I. Chem. E., 6th-8th April, London (1982).
 60. Mann, R., Stavridis, Maduka, V. and M. Abdul Ahad, Some practical "apple"-ications of a microcomputer, op.cit.

- 62. Tao, T.F., Yehoshua, D.B. and R. Martinez, Applications of Microprocessors in Control Problems, Proc. 1977 Joint Automatic Control Conf., pp. 8-16.
- 63. Reed, M. and H.W. Megler, A Microprocessor-based Control System, DEEE Trans. Ind. Electron. Cont. Instrum., Vol. IECI-24, No. 3, pp. 253-257 (1977).
- 64. Farrar, F.A. and R.S. Aidens, Microprocessor Requirements for Implementing Modern Control Logic, IEEE Trans. Automa. Contr. Vol. AC-25, No. 3, pp. 461-468 (1980).
- 65. Borisson, U. and R. Syding, Self-tuning of an One-crusher, Automatica, Vol. 12, pp. 1-7 (1976).
- 66. Sastry, V.A., D.E. Seborg and R.K. Woods, An Application of a Self-tuning Regulator to a Binary Distillation Column, Proc. JACC, pp. 346-354 (1976).
- 67. Keviczky, L., J. Hetthesy, M. Higler and J. Korbostori, Self-tuning Control of Cement raw material handling, Automatica, Vol. 14, pp. 525-532 (1978).
- 68. Cegrell, T. and T. Hedqvist, Sucœssful Adaptive Control of Paper Machines, Automatica, Vol. 11, pp. 53-59 (1975).
- 69. Clarke, D.W., Cope, S.N. and P.J. Gawthrop, Feasibility Study of the Application of Microprocessors to Self-tuning Regulators, OUEL Report, 1137/75, 110p.
- 70. Astrom, K.J. and B. Wiffenmark, On Self-Tuning Regulators, Automatica, Vol. 9, pp. 185-199 (1973).
- 71. Clarke, D.W. and P.J. Frost, Control BASIC for Microcomputers, IEE Conf. in Trends in On-line Computer Control, Sheffield (1979).

72.	Sheirah, M.A., Malik, O.P. and G.S. Hope, Self-tuning
	Microprocessor Universal Controller, IEEE Trans. on Ind.
	Electon., Vol. IE-29, No. 1, Feb. (1982).
73.	Baradello, C.S., Design of Adaptive Algorithms for Microcomputer
	Process Control, Ph.D. Thesis, Carnegie-Mellon University (1978).
74.	Jensen, K.M., A Microprocessor-based Adaptive Observer for Control
	of Distributed Parameter Systems, Ph.D. Thesis, Univ. of Wyoming (1979)
75.	Stinson, S.C., Process control equipment ignores recession,
	C & EN, p. 15, Dec. 7 (1981).
76.	Bailey, S.J., Process Controllers 1975: Tradition Holding
17 M. 2. 1974	off New Technology, Control Engineering, p. 36, Oct. (1975).
77.	Process Control Survey 1982, Process Engineering, Sept. (1982).
78.	Barnes, G.F., Single-loop Microprocessor Controllers, Inst.
	Tech., p. 47, Dec. (1977).
79.	Fraade, D.J., Using a Microprocessor to Solve pH Control
	Problems, Inst. Tech., p. 61, Nov. (1978).
80.	Mitchell, J.W., Microprocessors control chemical addition and
	Coking unit Cooling, Hydrocarbon Processing, p. 137, Feb.
	(1979).
81.	Langill, A.W. and D.A. Borses, A close look at two micro-
	processor control applications, Instruments and Control
	Systems, p. 43, April (1977).
82.	Carter, J.W., The Problems of using microprocessors, Measurement

- 446 -

- and Control, Vol. 11, p. 45, Feb. (1978).
- 83. Crutchley, W., Microcomputer Control Course, Instruments and
 Control Systems, Part I, p. 63, Jan.; Part II, p. 43, Feb.;
 Part III, p. 49, March; Part IV, p. 67, April (1979).
- 84. Computer Weekly, Dec. 16/23 (1982).
- 85. Dickey, T.E., Evaluation of Microprocessors for Process Control Applications, Ph.D. Thesis, Carnegie-Mellon University (1981).

American Standards Association, FORTRAN-proposed standard,
1969.
DAP-16 & DAP-16MOD2 Honeywell Series 16 Assembly Languages
Document No. 41286384-000-01, Honeywell Inc. (1971).
Motorola, M6800 Programming Reference Manual, Phoenix,
Arizona (1976).
M6800 Microcomputer System Design Data, Motorola SPD, Inc.
Arteaga, P., M.Sc. Research Project, University of Aston-in-
Birmingham (1979).
Varelas, T., M.Sc. Research Project, University of Aston-
in-Birmingham (1981).
The SD BASIC Compiler Manual, Software Dynamics Inc. (1976).
Gay, B. and A. Jordan, Private Communication.
Shafii, A.F.B., User Manual for the Linked H316-M6800 twin-
processor system, February (1983).
Kalman, R.E., A new approach to linear filtering and
prediction problems, Trans. ASME, J. Basic Eng., Vol. 83,
pp. 95-107, Dec. (1961).
Kalman, R.E. and R.S. Bucy, New Results in linear filtering
and prediction theory, Trans. ASME, J. Basic Eng., Vol. 83,
p. 95-107, Dec. (1961).
Doob, J.L., Stochastic Processrs, John Wiley and Sons Inc.,
N.Y., (1955).
Bryson, A.E. and Y.C. Ho, Applied Optimal Control,
Hemisphere Publishing Corp. (1975).
Jazwinski, A.H., Stochastic Processes and Filtering Theory,
Academic Press, London (1970).

- 100. Astrom, K.J., Introduction to Stochastic Control Theory, N.Y., Academic Press (1967).
- 101. Kuo, B.C., Discrete Data Control Systems, Prentice-Hall, Inc. Englewood Cliffs, N.Y. (1970).
- 102. Mendel, J.M., Computational Requirements for a Discrete Kalman Filter, IEEE Trans. on Auto. Contr., Vol. 4C-16, No. 6, p. 748, Dec. (1971).
- 103. Noton, A.R.M., Two-level form of the Kalman Filter, IEEE Trans. on Auto. Contr., Vol. AC-16, No. 2, p. 128, April (1971).
- Aoki, M., Optimisation of Stochastic Systems, Academic Press, N.Y. (1967).
- 105. Noton, A.R.M. and P. Choquett, Proc. IFAC/IFIP Symp., Toronto (1968).
- 106. Choquette, P., A.R.M. Noton and C.A.G. Watson, Proc. IEEE, Vol. 58, No. 1, p. 10 (1970).
- 107. Coggan, G.C. and A.R.M. Noton, Discrete-Time Sequential State and Parameter Estimation in Chemical Engineering, Trans. Inst. Chem. Eng., Vol. 48 (1970).
- 108. Coggan, G.C. and J.A. Wilson, Symp. on On-Line Computer Methods Relevant to Chemical Engineering, Trans. Inst. Chem. Engrs., Nottingham, England.
- 109. Goldman, S.F. and R.W.H. Sargent, Chem. Eng. Sci., Vol. 26, pp. 1535-1542 (1971).
- 110. Coggan, G.C. and J.A. Wilson, Computer Journal, Vol. 14, pp. 61-64 (1971).
- 111. Webb, R.N., Development of an Adaptive Kalman Filter for Estimation in Chemical Plants, Ph.D. Thesis, University of Aston-in-Birmingham (1977).

_ 448 _

- 112. Fisher, D.G. and D.E. Seborg, Multivariable Computer Control - A Case Study, North-Holland/American-Elsevier, (1976).
- 113. Payne, S.G., The Application of On-Line Estimation to a Double-Effect Evaporator, Ph.D. Thesis, University of Aston-in-Birmingham (1974).
- 114. Coleby, J.M., The Application of Digital Filtering Methods to State and Parameter Estimation in Process Plant, Ph.D. Thesis, University of Aston-in-Birmingham, (1974).
- 115. Dahlqvist, S.A., Control of Top and Bottom Product Compositions in a Pilot Distillation Control, I.Chem.E. Symp. Series, No. 56 (1979).
- 116. Joseph, B. and C.B. Brosilow, Inferential Control of Processes, AIChE Journal, Vol. 24, No. 3, p. 485, May (1978).
- 117. Brosilow, C.B. and M. Tong, The Structure and Dynamics of Inferential Control Systems, Ibid., Vol. 24, No. 3, p. 492 (1978).
- 118. Joseph, B. and C.B. Brosilow, Construction of Optimal and Sub-Optimal Dynamic Estimators, Ibid. Vol. 24, No. 3, p. 500 (1978).
- 119. Daie, S., Computer Control of Chemical Plants with Special Reference to Distillation, Ph.D. Thesis, University of Aston-in-Birmingham, (1980).
- 120. Wick, H.J., On-Line Estimation of Centre Temperatures of Ingots in Soaking Pits, Colloquim on Kalman Filters and their Applications, IEE Computing and Control Division, London, 17th Nov. (1980).

- 121. Brambilla, A., G. Nardini, G.F. Nencetti and S. Zanelli, Hydrodynamic Behaviour of Distillation Columns: Pressure Drop in Plate Distillation Columns. I.Chem.E. Symposium Series, No. 32 (1969).
- 122. Bubble Tray Design Manual, AIChemE, New York, (1958).
- 123. Jordan, A. and B. Gay, Private Communication.
- 124. Mukesh, D., Dynamics of a Continuous Stirred Tank Reactor for Different Reaction Orders, Ph.D. Thesis, University of Aston-in-Birmingham (1980).
- 125. Dilfanian, S., Simultaneous Chemical Reaction and Distillation of Formaldehyde, Ph.D. Thesis, University of Aston-in-Birmingham, (1978).
- 126. Yu, T.K. and J.H. Seinfeld, IEEE Trans. Auto Control, AC-16, p. 495 (1971).
- 127. Gay, B. and A.F. Shafii, The Development and Use of a Linked Micro- and Minicomputer System for Real-Time Data Acquisition and Process Control, Annual Research Meeting, IChemE, 6th-8th April, London (1982).
- 128. Nawari, M.O.M., Private Communication.
- Youla, D.C., J.J. Bongiorno and H.A. Jabr, Modern
 Wiener-Hopf Design of Optimal Controllers, Part I: The Single-Input-Output Case, IEEE Trans. on Auto. Contr., Vol. AC-21, No. 1, p. 3, Feb. (1976).
- 130. ibid; Modern Wiener-Hopf Design of Optimal Controllers Part II: The Multivariable Case, IEEE Trans. on Auto.
 Contr., Vol. AC-21, p. 373, June (1976).
- Bishop, R., Basic Microprocessors and the 6800, Hayden Book
 Co., Inc., Rochelle Park, N.J., (1979).