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SUMMARY



Summaxry

Thq main purpose of the work described in this thesis is the
development of computer programs for the analysis‘of complex pipe
network systems. For the solution of this problem the application of
matrix methods and graph theory has been proposed.

Four network describing matrices, two of which have not been
previously presented in a chemical engineering context, are used to
produce digital computer programs which are more efficient than programs
 using the traditional theory of Hardy Cross. The programs are easy to
use, the data preparation is simple, a flow distribution which satisfies
Kirchoff's Laws does not have to be specified and no mesh formation is
required., The methods are insensitive to initial estimates of flow and
friction factor and therefore these can be assigned by the programs.
The results generated by the programs are.compared to the results of
network analyses available in the literature.

For larger networks the technique of Diakoptics, an extension of
the application of matrix methods, is proposed. It is shown that there
are two diakoptic solution equations, one of which has not been
previously presented. There are advantages, in terms of increased
efficiency and the reduction of computer storage requirements, to be
gained by the use of diakoptics. The solution equations can also be
generated automatically.

Pumps and node to datum pressures may be included in a problem
specification and a solution to such a problem achieved with little
extension of the basic theory. It is suggested that designers, using
basic theory only, can check if network problems are under or over
gpecified.

Finally it is suggested that using basically identical techniques,
matrix methods can be applied to a variety of chemical engineering

problems such as the solution of systems containing mixed linear and

non-linear elements.
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Introduction

In recent years problems associated with the design and analysis
of pipework, both of chemical plant and distribution systems, have
become increasingly complex, necesgitating machine-aided solution,
The economic considerations associated with large systems are also
complex, since between 30 per cent and 50 per cent of the capital cost
of a chemical plant is taken up by piping (47), the use of computer
facilities is at a premium and design office overheads continue to
rise. All of these indicate the need for efficient solutions to pipe
network problems.

Chemical engineers have generally used the classical theories of
Hardy Cross to solve network problems, However the traditional hand
calculation methods are not compatible with modern computer theory,
and therefore programs written to implement these methods suffer from
the following disadvantages:

1) They require large amounts of computer storage.

2) They require much complex data preparation and a large degree of
precalculation, which has to be carried out by a competent
engineer, before a solution can be attempted.

3) They are not guaranteed to converge to a solution.

Modern computer theory is orientated towards using machines more
efficiently by reducing occupation time and storage requirements

accompanied by the minimum of basic input data.

Middleton (%) has shown that efficient computer programs can be
constructed for pipe network analysis using modern principles of network

theory originally developed by power systems analysts, He has also
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suggested that there are further extensions of electrical network

theory which may be applied with advantage to pipe network analysis,

The purpose of this thesis is to investigate and extend modern

network theory and computational techniques and apply these to pipe

network problems with a view to producing more efficient computer

programs which will satisfy the following criteria:

1)

2)

3)

4)

That only a minimum of input data should be necessarily prepared,
thus reducing, as far as possible, sources of error.

That the programs should be capable of finding any errors in the
data preparation.

Thet the programs should necesgitate no precalculation before a
solution can be attempted and can therefore be used by persons
having no detailed knowledge of computers or any specialised
branch of mathematics,

That in operation the programs should be efficient in time and
storage requirements,

It is with these considerations in mind that the present study

was undertaken.
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2.1 Introduction

It was reported (6) in 1968 that all the methods of solving pipe net-
work problems were based on techniques developed in 1936 by Hardy Cross
(17), although since 1965 various authors (9), (20) have shown interest
in the application of matrix techniques to pipe network problems., It has
been claimed that these latter techniques have many advantages over
established methods of analysis, but chemical engineers in general do not
appear to be familiar with the matrix, graph and tensor theory, which is
commonly used by electrical engineers involved in the study of power
systems analysis to solve network problems.,

The advantages claimed for the matrix analyéis of networks have not
been applied to pipe network problems by more than a few authors (6), (42);
therefore any survey of the literature of network analysis by a chemical
engineer wishing to apply modern techniques to pipe network problems must
be a twofold exercise. On the one hand the existing methods of pipe net-
work analysis must be examined and evaluated to determine any deficiencies
and find areas of possible improvement, and on the other the analysis of
network solutions outside of the discipline of chemical engineering must be
examined and evaluated to discover if any of the techniques used therein can
be applied with advantage to pipe network problems. Chapters (2.2) to
(2.5) therefore deal with the methods of solution based on the work of Hardy
Cross, and Chapter (2.6) reviews the methods of network analysis based on

matrix techniques which have been reported by workers in the electrical

engineering and power systems discipline.



2,2 The Hardy Cross Methods
In 1936 Hardy Cross (17) proposed two methods of network analysis of

fluid flow problems based on the two Kirchoff Laws., For the solution to a
network problem to exist, it is a requirement that the following two laws
be satisfied.

Law 1:

The algebraic sum of all of the currents flowing into and out of any

node or network junction is zero.
Law 2:

The algebraic sum of all the voltage differences around any closed

loop or mesh of a network is zero. |

The two Kirchoff Laws were developed for use with electrical networks
but they may equally well be applied to pipe networks, provided that fluid
flow is the analogue of current, and pressure the analogue of potential.

A further relationship is required for the Hardy Cross solutions, it
is the relationship for any pipe of pressure, flow and hydraulic resistance
which is analagous to Ohms Law, given by equation (2,2.1)

V=2J (2.2.1)

The relationship for fluid networks is assumed to be equation (2,2,2)

AP = RQ" (2.2.2)

The two solution methods which require different iteration schemes are
relaxation methods. If the flows are taken as unknowns an initial guess is
made of the solution which satisfies the first law and an iteration which
recalculates the solution is carried out until the flow distribution
gatisfies the second law. Alternatively if the pressures are taken as
unknowns, an initial guess is made of the solution which satisfies the

gecond law and is iterated upon until the first law is satisfied,
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The two solution methods are commonly called the methods of balancing
flows and the method of balancing heads, but are referred to in this thesis
as the Hardy Cross mesh and nodal methods,

For various reasons which are discussed at a later stege, the mesh
approach has attracted the most attention, and it is proposed to show the
development of the Hardy Cross theory of this method. The theory of the
nodal approach is similar and need not be developed.

According to Kirchoff's second law, the solution to a network problem
is achieved if the sum of the pressure drops around every closed loop is
zero, as expressed by equation (2,2.3)

ZAP = ZRQ" =0 (2.2.3)

For any pipe of the network with an initial guess of flow Qo, the
solution of the flow Q is expressed by equation (2.2.4),

Q=Qo + € | (2.2.4)
which may be expressed in terms of pipe pressures as equation (2.2.5)

RQ™ = R(Qo + €)° (2.2.5)
which can be expanded by the binomial method to yield equation (2.2.6)

R n! Q,on-h ¢b

b =21 b! (n-b)! (2.2.6)

RQ" = RQo" +
If Kirchoff's second law is assumed to be true and § is sufficiently
small, then equation (2.2.6) may be truncated after the first summation and
considering every pipe in any mesh, an equation of the form of (2.2.3) may
be set up for every mesh as in equation (2.2.7)
TRAO = - T Ruo" g (2.2.7)
This may be manipulated so that for any given mesh the correction of flow
to be added to each pipe in the mesh, provided ¢is agsumed to be constant
for each pipe, is given by equation (2.2.8)
. ( _E_E‘}il_ (2.2.8).
- -_ERnQon-l)

which can be expressed more readily as equation (2.2,9)
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e = - zAP
h TR (2.2.9)

where the signs of ZAP and ZR' of this equation are respectively with

and without due reference to the direction of flow in the pipes,

2.3 The Iteration Scheme

Equations (2.2.3) to (2.2.9) form the basis of the iteration scheme
of the mesh method, From g knowledge of the demands and supplies on a
network, each pipe is assigned a flow so that for the overall network
Kirchoff's first law is satisfied, from whichAP and R' are evaluated for
each pipe. Having specified the pipes which make up particular meshes €
may be found for each mesh, Hardy Cross selected the meshes of a network
by eye based on experience. It is shown in Chapter (3) that there are
specific relationships between the pipes, Junctions and meshes of a net-
work developed by Veblen (25).

Having found ¢ from equation (2,2.9) for a first mesh, the flows in
the pipes of that mesh are corrected and the process repeated for all
succeeding meshes. If after all the meshes have been corrected, the
second Kirchoff Law is not satisfied, the first mesh is recorrected and
the whole cycle repeated until the second Law is exactly or very nearly
satisfied. A flow chart which is the basis of a computer program develop-
ed to utilise the above method is shown in figure (2.2.1).

Perry (43) says that the exponent n of equation (2.2.5) must be a
positive integer for the sum formula of the binomial expansion to apply,
and Hardy Cross points out that truncation of equation (2.2.6) is only
valid if € is small. In the fluid flow case n will be between unity and
two, depending on the Reynolds Number, and & may be very large, especially
at the beginning of the iteration scheme. However since any pipe may be
included in more than one mesh, and will be corrected more than once during

each iteration cycle, Hardy Cross maintained that convergence would be



Figure (2.2.1)

The Iteration Scheme of the Hardy Cross Mesh Method
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sufficiently rapid for practical purposes. It has been observed by others,
notably Middleton (6), that this is not always the case.

The Hardy Cross methods were developed for hanﬁ calculations, implying
that only small networks were congidered, and that the calculator was
familiar with the type of problem to be solved. This thesis is concerned
with the solution of large scale problems, for which it is difficult to
acquire a "feel", let alone calculate solutions by hand. This "feel" is
almost impossible to program, and so a predetermined solution pattern
must be followed, which can lead to lengthy calculation and inefficient

convergence,

2.4 Applicatiorns of the Hardy Cross Methods

The problems of programming, convergence and data handling associated
with the Hardy Cross methods have been discussed by many authors, but before
analysing their contributions in detail, it is proposed to outline some of
the common points by way of introduction,

Travers says (2) that the convergence of the Hardy Cross methods is
dependent on choosing the tree of minimum resistance, ie as far as is
possible, the tree is made up of the branches having the least resistance.
A tree is assumed to be any path through the network which passes through
all the nodes and forms no closed loops. It is also argued by Daniel (3) -
and Middleton (6) that convergence is most rapidly achieved if the tree of
minimum overlap is chosen as a starting point. The condition of minimum
overlap is given by having, as far as is possible, the minimum number of
branches in each mesh. Applying the nodal method Van der Berg (26) points
out that convergence is dependent on the order in which the nodes are
analysed. The difficulty of data preparation and handling has been
reported by many workers (1), (2), (3), (37), (35), and various attempts

have been made to obviate the necessity of defining the meshes by eye, and

assigning an assumed golution to the network.
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A list of some of the advantages and disadvantages of using the Hardy
Cross methods serves as a prologue to the discussion of the computer

applications.
2.4.1 Disadvantages of the Hardy Cross Methods
1. Might not converge due to
(a) meshes being wrongly chosen either because the tree of
minimum resistance or minimum overlap has not been chosen;
(b) nodes have been analysed in the wrong order;
(¢) initial guesses have been wrongly chosen,
2. Data preparation is tedious and likely to be a source of errors.
3. Needs "feel" for problem, which is difficult with large networks.
4. Equations cannot automatically take into account pressure |
specified nodes or pump terms in pipes.

2.4.2 Advantages of Hardy Cross Methods

l. Easy to program in terms of the simplicity of the method.
2. Choice of methods, depending on the type of network to be

analysed.

2.4.3 Computer Application of Kniebes and Wilson (27)

One of the easiest reported computer solutions to the network problem
was by Kniebes and Wilson, using the Hardy Cross mesh method based equation
(2.2.,2) with an exponent n of value 1.8. The program is reported as
being most efficient for systems of the order of 250-400 pipes, but it is
difficult to assess the value of this information since no details of the
numbers of meshes in the systems are available, More importantly, it is
reported that the solution was efficient for large error criteria, but the
number of iterations increased markedly if greater accuracy was required.
This has also been noticed by the author and is discussed in Chapter (5).

2.4.4 The Computer Application of Hunn and Ralph (28)

Quantitative information on a computer application of the mesh method

1s given by Hunn and Ralph (28), the program allows for the inclusion of
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pumps or other non pipe elements that have a pressure versus flow relation-
ship that can be expressed as a polynomial. A novel way of agsigning the
initial guesses of flow to the pipes is demonstréted. It appears ;o be the
same as assigning the demands and supplies to the tree pipes only, This is
a feasible solution from which a true solution may be calculated. The
actual pipes making up the tree of the network are also used at the end of
the calculation to evaluate the pressures at the pipe junctions from a
knowledge of the individual pipe pressure drops. Hunn and Ralph (28) state
that this assignment of flows in the correct manner to the tree pipes is
the most critical operation of the entire data preparation, but it is
reported by Middleton (6) and Daniel (3) that the assignment problem is not
nearly as influential as loop formation on the rate of convergence, Further
investigation of the Hunn and Ralph work reveals however, that the assign-
ment problem is in fact one of correct loop formation.

The fact that complex data preparation and handling were required
before a solution could be attempted on the computer cannot be criticised,
since it was probably a property of the limited storage and input
capability of the early IBM 650 machine that was used. Care was taken to
ensure that the data input to the machine was correct by operating data
checks, such as testing that all loops were closed paths. The results that
Hunn and Ralph obtained in terms of the flows in each pipe at solution are
used by Middleton (6) to compare the accuracy in terms of individual pipe
flows with the results obtained by the diakoptics method.

2.4.5 The Computer Application of Ingels and Powers (29)

A further application of the mesh method in a computer program is
reported by Ingels and Powers (29). They showed that calculations based
on the Hazen-Williams relationship with a constant value of the exponent n
of equation (2.2.2) can be seriously in error, typically about a 20 per cent
error for flows of 100,000 1b/hr in 6 inch pipes. To overcome this, a more

realistic flow equation developed by Ingels (30), which approximates the
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friction factor - Reynolds Number relationship of the Moody diagram (31)
is used. They used for Re > 2100, a power series of the form of equation
(2.4.1)

$=-a+co +a0° (2.4.1)
where © is expressed by equation (2.4.2)

© = (-b + log, ,(Re))™ (2.4.2)
and a, b, ¢ and d are polynomial functions of the relative roughness ©</D
The friction factor found by this method is then used in the Darcy-Wisbech

relationship given by equation (2.4.3)

AP = 8oLo? _ (2.4.3)
g A°D°
It is algo shown that by truncating a Taylor series expansion of equation
(2.4.4)
AP =£(Q) (2.4.4)
that R' the resistance term of the Hardy Cross expression of equation
(2.2.9) is equivalent to equation (2.4.5)

. 3AP
Bf mrlos (2.4.5)

which may be rewritten using the Darcy-Wisbech relationship and the

empirically determined friction factor to give equation (2.4.6)

2
R"BTAQE o ﬁ{...g m*@._:% (2.4.6)
SJ'ZD

which on substitution for d$/dq gives equation (2.4.7)

R' = 3_5_2 - KQ62 log e (c + 2d©) (2.4.7)

wherein K of (2.4.7) is expressed by equation (2.4.8)

8L
K= géxznﬁ

The empirical relationship, equation (2.4.7): ig said to work well for

(2.4.8)

turbulent flow in rough pipes, but varies considerably from the Moody

diagram (31) for low values of roughness at high Reynolds Numbers. Though
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the importance is realised of dealing with "real" systems, it is felt that
the above development is unqeceasarily complex and a better method of |
calculating realistic friction factors is proposed in Chapter (3). The
work (29) also proposes a method of assigning the initial guesses of flow
to the pipes of the network by starting at the major demand or supply
Junction and working through the network proportioning the flows by a
simple power law. No mention is made of the significance or value of this
procedure.

Using equation (2.4.3), three networks previously reported were
analysed, the largest of these due to Dolan (32) and the results associated
with this network are examined in Chapter (5), together with the results
obtained for thé same network by the author,

2.4.6 The Work of Travers (2)

The problem of convergence of the Hardy Cross methods has been studied
by Travers using a modification of equation (2.2,2) with a value of 1.85
for the exponent n. It is reported that networks of 650 pipes and 500
nodes have been analysed and that the mesh method converges faster. This
is to be expected, since such a system would contain only 151 meshes.
Significantly less than the numbep of nodes, thus requiring far fewer
computational operations for a solution to be achieved by the mesh method.
A further limitation of the work is the apparently unrealistic resistances
which have been assumed to include constant friction factors, It was
indicated in Chapter (2.4) that Travers proposed that maximum rate of con-
vergence is achieved by choosing the tree of minimum resistance; if, as in
most cases, the pipes are of similar resistances, this procedure is equiv-
alent to choosing the tree of minimum overlap as advocated by Daniel (3).

Further evidence of the type of data preparation problems encountered
with large scale problems is also outlined, and like previously reported

authors, Travers proposes (2) the use of sub-programs to find the meshes

of a network from simple input and also the use of error detection procedures
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for examining the input data. Concluding, Travers points out that there
will always be a strong case for using the mesh method since most of the
networks, especially distribution networks, that chemical engineers

analyse are not heavily meshed.
2.4.7 The Application of the Mesh Method by Daniel (3)

A comprehensive application of the mesh method which takes into
account compressible and incompressible flow by constructing polynomials
for changes in viscosity and density with respect to pressure and temp-
erature is proposed by Daniel (3). The program which uses as its basis
the flow sheet shown in figure (2.2,1), includes an extra iteration loop
not shown on that figure. This iteration loop finds the friction factor

at high Reynolds Numbers using the Colebrook relationship of equation

(2.4.9)

¢ = 1 (2.4.9)
(0.868 1n (_g___ + _2_%))2
3.7D Re (fp

This determines the pipe resistances more accurately than any of the
previous works. The friction factors are recalculated on the outermost
iteration loop of figure (2.2.1) only, by a self contained iteration scheme.
Middleton suggests (6) that this has an advantage in terms of the saving
in computation time, but it is shown in Chapter (5) that significant
reduction in the total time needed for computation is achieved if the
friction factors are determined on the innermost loop of figure (2.2.1).
Despite this failing the program is useful since it demonstrates a novel
way of finding the correction € for a mesh, which takes into account the
direction of the correction automatically by using a branch-mesh incidence
matrix. This mgtrix is fully described in Chapter (3). The recognition of
the existence of this matrix is an important step towards the total matrix
analysis of networks, but Daniel (3) used the matrix only as a storage tool

which could handle the complex data associated with large networks. Con-
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sidering this last point, Daniel also advocated that any computer program
ahould.be capable of finding inconsistencies in the data preparation., To
8implify this preparation he proposed a method of generating a branch-mesh
incidence matrix from a knowledge of the tree and link branches. However
the resulting meshes remain those which would have been chosen by eye.
Daniel notes this fact and declares that in his early work he was disturbed
by the fact that the maximum overlap choice of meshes could produce
convergence problems, and so developed a program which attempted to find
the tree of minimum overlap., It is reported that this program took longer
to run than the program which achieved a solution by the Hardy Cross mesh
method under the maximum overlap condition.,

A comparigon with a modified Newton-Raphson iteration scheme using
the Jacobian matrix of derivatives was attempted but abandoned because of
convergence problems. This particular method has been further successfully
investigated by Brameller (20) and is discussed more fully later.

Bearing in mind the necessity to attempt to solve "real" problems, it
is worthwhile considering the statement by Daniel that networks should be
analysed in terms of mean, minimum, maximum and fire fighting flow
conditions, and Middleton (6) has some comments which are discussed later
on the convergence of programs under these four conditions.

2.4.8 The Application of the Nodal Method by Van der Berg (26)

All the applications so far discussed have been based on the mesh
method; an application which is gimilar to the nodal method of Hardy Cross
was developed by Van der Berg (26). He stated that the convergence of the
nodal method was dependent on the order in which the nodes are analysed.
To take advantage of this he constructed a procedure for determining the
required order.

For every node he constructed a graph by plotting the value of a
residual flow r at the node against the actual pressure P at the node.

The residual ry which is the difference between the inputs and the outputs,
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external sources considered, of any node i is given by equation (2.4.10)
r, = 1j2ij + 1! (2.4.10)
For a converging solution the residual r calculated after each iteration
would be expected to reduce to zero, and the pressure at the node to
converge to its true solution. A graph such as the one shown in figure
(2.4.1) would therefore be expected for every node.
Van der Berg maintains that the node to be corrected first has the
maximum value of all the graphs for the integral of equation (2.4.11)
Pgl)
74 = rydP i =1, 2... number of nodes (2.4.11)
(0)
Py

This integral which has as its limits the most recently calculated pressure
Pil) and the previously calculated pressure Pgo) for a particular node i is
approximately equal to the area of the triangle shown on figure (2.4.1) and
therefore 7i may be expressed by the approximation shown in equation

(2.4.12)
)i=%z (P - PEO)) (2.4.12)

where fﬁ is assumed to be the approximate value of the pressure which
reduces the residue, and hence the amount of pressure correction to be
applied at the node, to zero. The actual value of Ei may be determined by
letting the pressure Pio) at node i be equal to the pressure P§0) of any
adjacent nodes j. The values of the flows in the pipes ij can then be
calculated for two pressures Pi and Pi' such that the value of the residual
of flow at node i changes sign. To complete the solution of equation
(2.4.12), B, may then be obtained by the approximation given in equation
(2.4.13)

B, =~ % (p}+P}") (2.4.13)

For a converging solution with the residual of flows at every node reducing,

the calculated value of the nodal pressures Pgo) will move into the interval
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Figure (2.4.1)

Residue as a function of Pressure

Van der Berg (26)

Aston University

lustration removed for copyright restrictions
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of Pi and Pi' eventually to coincide with the value of pressure Pi at
solution,

The above procedure does not give a method for calculating the
corrected value of pressure Pil), it simply indicates where the correction
ought to start. It is thought by the author that Van der Berg's selection
mechanism is based on correcting first the nodes which are converging to
a solution the least quickly.

The method of correcting any nodal pressure derived by Van der Berg is
based on finding a correction ZLPiD) for node i which has to be added to
the calculated value of the nodal pressure Pio) at node i. thPiO) is
glven by equation (2.4.14)

APio) =n ri/ (*31 qi(‘j’) / Pio)_ Pgo)) (2.4.14)

with the result that the updated value of pressure at node i is given by
equation (2.4.15)
Pg_l) ” pio) + AP(iO) (2.4.15)

It is claimed that the improved method of calculating updated nodal
pressures, together with the knowledge of where to start the corrections,
will speed up the calculation procedures. However, for large systems one
cannot follow a true optimum strategy for the choice of nodes to be
corrected., This is because of the two approximations of equations (2.4.12)
and (2.4.13) and also because having corrected a particular node, the
integral values in the area immediately surrounding that node will have
changed, necessitating their recalculation.

Van der Berg maintained that it is possible to overcome this feature
by letting the new nodal pressure leave a residue that has some value
greater or less than zero, the accelerating factor being determined by

the user's experience.

The final non matrical approach to network analysis is also based on

the Hardy Cross lNodal method.
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2.4.9 The Application of Knights and Allen (35)

The nodal method was chosen by Knight and Allen (35) because in a
preliminary analysis of the methods available they thought that its
advantages of simpler data preparation and programming, together with more
certainty of a result, seemed to outweigh the fact that convergence was
aloyer. The main criticism of their method apart from the arbitrary node
numbering, which is common in the gas industry (41) is the use of the Drew
and Generaux (36) relationship, for finding the friction factors, given by
equation (2.4.16)

0.152 (2.4.16)

¢ = 0.0351 Re
This suffers from the usual errors in straight line plots on a log-log
scale when comparad with a Moody diagram (31). However the quantitative
results produced for a sample network, the geometry of which is indicated,
are used in Chapter (5) and compare favourably with the results obtained
using programs developed as a result of the work of this thesis.
2.4.10 Summary

Most of the developments in network analysis described so far took
place before 1965. In view of the fact that cheap, fast and large storage
capability computers were not readily available before that year, it is
unjust in the light of the availability of modern machines to over-criticise
the various attempts at developing computer programs to solve network
problems. However some general comments on the comparison of the various
applications is justified.

It ig difficult to evaluate many of the results of the applications,
different machines were used, different workers used varying programming
techniques, but more importantly little iﬁformation is available about the
geometries of the gsystems analysed, Workers have reported efficiencies of

methods for varying numbers of pipes with no reference to the numbers of

nodes, meshes and the way the meshes were made up. The very use of the
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words "efficient convergence" is also difficult to evaluate since some
authors (37) say that since the data available about real systems may be
subject to errors of plus or minus ten per cent, the convergence criterion
should be adjusted accordingly, whilst others concentrating on evaluating
"beét" methods apply the strictest limits to convergence.

In the late 1960's and early 1970's a new trend towards the use of
matrix analysis can be observed. The reason for this is that the use of
matrix techniques for the manipulation of large sets of numbers is very
compatible with the workings of modern computers. The concept of matrix
methods as computation tools is discussed more fully elsewhere in this
thesis,

Notwithstanding the use of matrix techniques, the underlying theories
of more modern approaches to pipe network problems remain based on the

Hardy Cross approaches or some modification of those methods.

2,5 The Matrix Application of Fincham et al (1)

In 1970 a paper by Fincham (1) shows that the application of matrix
methods to gas distribution systems could aid the solution of the network
analysis. Fincham recognised the existence of two major matrices, a C
matrix which relates the way in which the branches of a graph of a network
are connected to the meshes of the network, and an incidence matrix A
which relates the way in which the branches of the graph of a network are
connected to the nodes of a network. He also realised that this A matrix
could be partitibned into two submatrices, one of which is square and non-
singular, and that a submatrix of the C matrix is related to the square
non-singular submatrix of A. The important concept which Fincham's work
lacks i1s that the partitioning of any matrix of a graph of a network is

equivalent to partitioning the network itself as demonstrated in Chapter

(3).



-20-

Through the use of the C matrix Fincham developed a set of m linear

equations of the form of equation (2.5.1)

Er = 8 zr C Xr ' (2.5.1)
This is similar to an equation developed in Chapter (3) which gives the
relationship between the mesh flows Xr, and the pipe pressure terms Er,
and the individual pipe impedances Zr transposed to mesh quantities.

The equation was developed as a result of the linearization of

equation (2.2.2) into the form of equation (2.5.2)

AP = (R [Q] )q (2.5.2)
Equation (2.5.1) was solved by a Newton Raphson method, if an approximation
of flow Xr exists a better approximation Xr + 1 can be found., The method
was found to be convergent. Further extensions (42) of the matrix theory
allowed for the inclusion of non pipe terms such as compressors, but the
development is unnecessarily complicated, further matrices being introduced
which do not have the true transformation character of the A and C matrices.
A very simple way of representing non pipe terms and pressure specified
nodes is shown in Chapter (3), which is inherently more acceptable to the
network theorist. In a later work (37), Fincham reviews the methods of
network analysis in programmed form which were available to his organis-
ation. It is reported that all the methods were based on the Hardy Cross
mesh method (indicating that the theoretical treatment outlined in (1) had
not been made use of ). Many of these programs are outside of the scope of
this thesis since they deal with high pressure and transient flow, but the
criteria on which the programs are designed are applicable to all network
analyses. Data preparation must be simple, error diagnostics must be
written into programs, and in the case of gas networks, especially older
distribution systems where the demand and supply data is within only about
ten per cent of the assumed value, the convergence criterion must be
adjusted accordingly.

An interesting feature of the developed programs (37) is the inclusion
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of an accelerating factor. Instead of adding to each loop the correction
factor § , a modified factor W & 1is added where W is given by equation
(2.5.3)

1.2 <w <1.,6 (2.5.3)
W has been found empirically and it is suggested that the limits given are
the most efficient. Increased efficiencies up to 50 per cent are reported.

2.5.1 The Application of the Mesh Method by Brammeller (20)

For every mesh of a network, Brameller developed an equation which
gave the solution of the mesh flow in terms of an initial guess of the
individual pipe flows and the unknown mesh flows. This is achieved by
summing the individual branch pressure drops around every mesh, The result
is a set of M equations, where M is the number of meshes, of the form of
equation (2.5.4)

b
£(q) = ;;."Rij (ng + qk)2 (2.5:4)

where k is from 1 to M, b is the number of branches in any mesh and i, j are
the terminal nodes of branch b.

For a converged solution the sum of the pressure drops around every
mesh will be zero and the LHS of equation (2,5,4 will also be zero. The
Newton-Raphson iteration scheme is used by Brameller to solve the k set of
equations. This involves finding the inverse of the matrix of partial’
derivatives called the Jacobian matrix., From this an updated value of flow
Ql can be found according to equation (2.5.5)

Q! = ¢ - 71 (@®)£(Q°) (2.5.5)

Evaluating the method, Brammeller states, "In many instances the
method proved very successful but it has the disadvantage of being very
gensitive to the correct estimation of initial guesses and the mathematical
conditioning of the equations. Even with the most advanced techniques for
getting initial values of flow the convergence can be comparitively slow."

The author believes that the "mathematical conditioning of the

equations" is the same problem of correct mesh formation noticed by the
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users of the standard Hardy Cross mesh method. The technique advocated

by Brameller has not been further investigated by the author.

2.6 Introduction

It has been indicated (1), (2), (3) that the use of matrix techniques
as data handling tools is invaluable, and theoretically (1), (42) that
matrices can be an aid in the analysis of large scale distribution problems,
using modern computers. Matrix analysis has however been used by workers
such as Kron and Happ, not as tools which help the solution of network
problems, but in the fundamental approach to network analysis. The use of
matrices as network describing devices (1), (2), (3) is only a small facet
of the classical work of Kron; this work, "Tensor Analysis of Networks" (4),
has remained the fundamental source of information relating to the solution
of large scale power distribution gystems.

The principles of the orthogonal network and the square non singular
transformation tensor were established in the work (4), and later develop-
ments (11) in the fields of electric theory related to rotating electrical
machines led to the development of diakoptics(5). The word "diakoptics" has
been given many interpretations, but it can be taken to mean "tearing apart
a system". The three major works (4), (5), (11) were in the early years
little understood and discredited as being extensions of matrix partitioning
techniques, heavily veiled in tensor theory. For this reason the techniques
asgociated with diakoptics were little used until very recently. The first
practical application of diakoptics to fluid flow systems was attempted by
Middleton (6) in 1968, though earlier Kron (9) had proposed a theoretical
treatment of fluid network systems. The literature is replete with Kron's
- theoretical treatments of subjects related to disciplines outside his own,
(1), (8), (10) and although few of his suggestions have found application

it is argued that chemical engineers, using those suggestions, would find
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many valuable new tools for problem solving, as is discussed in Chapter

(5).

2.6.1 The Matrix Approach to letwork Analysis and its Extension,

Diskoptics

The most basic concept underlying Kron's approach to network analysis
is the decision to look at a network in a series of alternative ways. In
the preceding discussion the pipes of a network have been the focal point,
with the emphasis shifted to the ends of the pipes, as in the nodal
approach, or to the way flow takes place in a series of branches, as in
the mesh approach. Kron's concept in simple terms can be visualised as
taking both of these focal points into consideration at the same time, not
treating them as isolated reference frames. Extending this, Kron suggests
that the single reference frame can be established by certain paths within
a network. There are two types of path, the open path, which is a path
which connects nodes but does not form closed loops, and the closed path
which is equivalent, but not necessarily identical, to the mesh. The
importance of these paths and a rigid definition of their existence is
outlined in Chapter (3).

The new reference frame, called the orthogonal reference frame, con-
cerned with the two types of path of which there are in total the same
number as there are pipes in the network, is used to set up transformation
tensors associated with the network which are square and non singular.

From this Kron was able to develop solution equations to the network prob-
lem and claimed that these equations are automatically generated (5) by

the very existence of the transformation tensors. He was further able to
show that any network system may be torn into subdivisions, a quasi-solution
obtained for each subdivision, and reconnected to obtain an overall solution.
Two distinct advantages of using this latter approach rather than any other
are that larger systems may be solved, and because of this, it is possible

that faster solution times will be achieved pro ratum using the same



computer.
2.6.2 The Application of Orthogonality

Within the discipline of electrical engineering, a few workers have
attempted to simplify the work of Kron. In 1950 le Corbeiller applied
Kron's interpretation of the orthogonal network to simple resistance
electrical networks (12) and produced two matrix methods of attacking
network problems; the node to datum and mesh methods. It was claimed
that these were different from the classical nodal and mesh methods
developed by Roth. However Roth, a graph theorist, was able to justify
Kron's tensor approach in terms of topological concepts (14) and show
that a direct analogy could be drawn between his own approach and that of
le Corbeiller. Roth later showed (13) that Kron's method of tearing could
also be Jjustified in terms of topological concepts and that there are
distinct advantages to be gained in terms of the solution time of a
particular problem, when compared to partitioning, K partitioning and
standard inversion. The work (13) unfortunately only takes into account
the nodal method of diakoptics and no comparison is given for the mesh
diakoptics method of which Roth does not seem to have been aware,

In 1967 Branin, a circuit theorist, states that (15) the ever
increasing size of the problems of that discipline were good applications
to test the theories of Kron. As early as 1956 Branin had interpreted
the tensor concepts of Kron as purely matrix equations (16), but at the
same time shows that the orthogonal mesh and nodal equations are not simply
gets of algebraic equations but are network equations., Further, Branin
points out that (16) there are at least four ways of looking at the two
square non singular transformation tensors ¥ and < in terms of tieset and
cutset, incidence, boundary and coboundary and tensor operators, depending
on the discipline with which one is concerned. This has probably been one

of the most consistent points of confusion over the validity of Kron's

work.
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Using boundary and coboundary operators, Branin successfully shows
the difference between the Kirchoff-Maxwell or Hardy Cross (17) inter-
pretation and that of the orthogonal approach of Kron. He also shows
(16) that the operators ¥ and o« are made up of two separate submatrices
which can themselves be partitioned.

Convinced of the potential of the Kron methods, Branin went on to
develop computer programs (18) to solve circuit problems. Describing this
work (19), Branin reiterates the comments of Hardy Cross type of analysts,
in that the data input to a computer by a user must be reduced to a minimum
to save on the likelihood of errors, and if it is possible to let the
machine set up the matrices needed for computation, and that the program
must be able to detect errors in the input. A more technical contribution
suggests a way of minimizing the total computational time required for a
solution to a network problem by reducing the amount of matrix inversion
that is normally required for all the Kron methods. Branin shows a method
called the "link at a time" method of constructing a matrix identical to
the inverted nodal solution matrix without inversion. Branin reports,
however, that the proposed algorithh is untested with regard to its
computational efficiency. This matter has been investigated by the author
and a comparison of solving network problems by this method and ordinary
inversion methods is recorded in Chapter (5). The same work (19) outlines
a further network defining matrix D, which although it has no relationship
with diakoptics is useful since it explains in topological terms the
approach of Brameller (3%) and, as shown in Chapter (3), may be used as a
gubstitute for the A matrix in the nodal method of solution.

Further work on producing circuit analysis programs by Branin (21) .
justifies the use of the matrix techniques of Kron in terms of their
bookkeeping abilities and their compatability with modern computers, It
is also pointed out that since most of the matrices used in describing the

network are sparse, it is important that the use of sparsity techniques
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such as those of Sato and Tinney (22) for improving the efficiency of
inversion is considered., The importance of bearing in mind engineering
applications in the development of theoretical treatments is adequately
shown in the description of a further network analysis program NETI (23).
This includes in one of the iteration loops the engineer himself,

Branin has made many more useful contributions than thoge outlined
above and they have been included in the author's theoretical treatment of
the network problem and are pointed out in Chapter (3).

2.6.3 Brameller and Diakoptics

Brameller, who was discussed earlier as having made contributions to
the Hardy Cross methods of analysis (20), has also applied Kron's
diakoptic techniques to electrical systems (39). He demonstrated the
manner in which tearing a system into its component parts is analogous to
partitioning of a set of equations, Linear electrical problems are solved
using tensorial analysis based on the study of concepts that remain
invariant when a system ig broken up into components and afterwards
reconnected into any possible configuration, However the explanation of
the significance of the matricea used related to network variables is
treated in electrical tensor terms. This could confuse chemical enginecrs
not familiar with tensor concepts. Apart from showing that the method of :
tearing and reconnection is a viable computational procedure, some vnluable
comparisons between tearing and partitioning as methods of solution are
made:

a) TFor partitioning the full matrix must be available,
b) The same amount of matrix inversion is required by the two methods,

but the matrix multiplications associated with partitioning far exceed

those of tearing,
¢) If some or all of the subdivisions of a network are identical, fewer

operations are required 1o solve by tearing,

The above three points arise out of the analysis of linear systems;
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for systems of mixed linear and non-linear components a fourth point

could be added:

d) For repeated iterations only the non-linear components have to be
inverted more than once.
Further justification for the use of the methods of tearing is

outlined by Brameller (2():

e) Existing digital computers can be used to solve larger scale problems
than before,

f) For large problems computation time may be reduced.

g) Alterations to a subdivision may be effected more easily, the over-
all equations do not have to be changed.

h) The necessity of using matrices greatly helps computation since
matrix representation in digital machines is easily achieved and
special routines may be used for their handling.

2.6,4 The Work of Happ

In a major work (24), Happ has influenced the development of the
theory of pipe networks of this thesis by simplification of the application
of Kron's orthogonal approach. Happ's theory has been developed for
electrical resistance networks, buj the use of simple matrices has made
this development easy to understand and apply to fluid networks. It is
not proposed to discuss in detail the contributions of Happ at this stage,
gince Chapter (3) contains most of the theoretical developments of Happ.
Their application to fluid networks is pointed out as they are encountered.

2.6.5 The Work of Middleton

Middleton (6) was able to show that there are advantages to be
gained by using the diakoptics approach to network analysis. Using the
network describing matrices A and C he was able to show that the two
clagssical methods of nodal and mesh could be derived with no reference
to diakoptics. Neither of these two methods was applied to pipe network

problems and programmed. This is unfortunate since any comparison of the
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methods of analysis of pipe network problems ought to include those
methods available. However from his theoretical derivation of the
classical methods, Middleton produced one solution equation of diakoptics.
This was achieved by the construction of an all-mesh or an all-node-to-
datum network, which involves the addition of fictitious branches to
generate square transformation matrices. The square transformation
matrices developed were thought to have the same meaning as A and C. It
is shown in Chapter (3) that the square transformation matrices may be
formed directly from the existing network, and that in fact A and C are
only constituent parts of two square non singular transformation matrices
oCand ¥.

Middleton successfully derives the solution equations of diakoptics
and applies the method to pipe network problems by constructing a computer
program. This program together with another using the Hardy Cross mesh
method was developed for an Elliot 803 machine with backing store.

He showed that under the condition of maximum overlap, the Hardy
Cross mesh method when used to solve a test network which he had devised
(called TEST 1 in this thesis), did not converge to a solution after two
hours, whereas the diakoptic program always converged to a solution in the
same number of iterations and in less time, no matter what overlap
condition was chosen.

The work (6) includes a comparison of the results available in the
literature at that time., The results of the analysis of other authors for
three networks are shown. Middleton says that any comparison with his own
work in terms of efficiencies of methods is difficult because of a lack of
available information., The major significance of the comparison, apart
from proving the validity of the diakoptic method, appears to have been a
justification for the use of the Colebrook equation for determining
friction factors. This gave results in terms of individual pipe flows

using the diakoptics program which were in good agreement with the



published data.

A network analysed by Middleton but not used in this work because
better test networks have been devised, was due to Hunn and Ralph. This
shows admirably one of the special facilities of the diakoptics approach,
which is that a river which may be the source point of a variety of pipes
may be taken as a common datum.

The choice of cutting pattern was also investigated and it was shown
that the number of iterations was the same for each choice, but the total
computational time however varied, and Middleton proposes the rule of
thumb, that the subdivisions should have an equal number of nodes with a
minimum of cut branches, to minimise the total computational time.

It was also shown that the effect of initial guess of flows had little
effect on the total number of iterations required for solution.

An investigation of the effect of the removal of branches of the
network produced the expected result that certain branches played a more
important role than others., Starting from a converged solution, a new
solution was achieved after the removal of one branch after three
iterations, whilst after the removal of an alternative branch a solution
wag achieved after eight iterations, the same number as were required
for the original solution. A similar experience was recorded for changes
in inputs and outputs to a system.

Middleton c;ncludes that the nodal diakoptics method is at least as
efficient as the Hardy Cross method, but more efficient in terms of
storage. The data are easier to compile for diakoptics. The changes in
the geometry of a network can be easily handled by diakoptics, whereas a
whole new data preparation has to be carried out for the Hardy Cross
method., No choice of initial flows has to be made by a user, since

because the method is insensitive to the choice, the machine can be

instructed to assign initial flows.

An extension of the theoretical treatment of the problem shows how
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the equations of diakoptics may be used to check the specification of
mixed unknown and known properties during design analysis,

It is shown later in this thesis that the situation of mixed unknown
and known nodal pressures and demands or supplies may be eagily written in
into a computer program.

The work of this thesis is an extension of the work of Middleton.
Different concepts are used, and it is believed that the concepts of

diakoptics have been applied with greater understanding,

2.7 Summary of 2,2 to 2.6

It is apparent from the preceding discussion that there are two
alternative approaches to the solution of network problems. One, the
Hardy Cross method favoured by chemical engineers. It has been shown that
this method has been modified by some workers to improve the convergence
of solution, limit the amount of data handling, and apply the method to
modern computers, by the implementation of some simple matrix techniques.
However, the method still requires large amounts of storage space, and
Middleton (6) reports that under the condition of maximum overlap, the
method does not guarantee a solution. In the test network shown in
figure (5.2.1) for instance, there is a choice of about 350 million trees,
gsome of which may give convergent conditions.

The alternative approach, the orthogonal method of Kron, is relative-
ly untried in the discipline of chemical engineering, apart from the
practical application of Middleton (6), and the theoretical developments
of Brameller (3°) and Fincham (42). Other analysts suggest that this
alternative approach has many advantages over the Hardy Cross method, the
equations of solution are self generating, data preparation is reduced to
a minimum, convergence is guaranteed, compatability with modern computers
ig of the first order, convergence is not dependent on initial guesses of

golution, and most importantly, a whole new range of equations called
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diakoptics can be developed from the basic theory which enables engineers
to tackle problems previously outside their scope, and to see the whole
spectrum of network analysis from an entirely different viewpoint.

The advantages claimed for this alternative approach, and its
apparent conceptual simplicity, suggested that further investigation of the
application of electrical theory to pipe network problems, which led
immediately to a study of linear graph theory, matrix representation,
tensor transformation and diakoptics, would produce theories which would
promote a better understanding of the design and analysis of pipe network
problems, but at the same time be a computationally useful tool.

The next chapter describes this investigation.



CHAPTER 3

THE THEORY OF PIPE NETWORK ANALYSIS
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3.1 Introduction

The development of a series of equations which permit the solution
of both large and small scale problems is presented. The equations,
which result from using an electrical analogy for fluid flow, are
derived using Kron's (11) orthogonal network concepts of the existence,
within the network, of node to datum and mesh paths.

A new equation of diakoptics is presented which gives a route for
an entirely different method of solution, which does not appear to have
been published elsewhere.

It is further shown that the inclusion of pump terms, other non
pipe elements and pressure specified nodes may also be taken into account
with little extension of the basic theory.

The chapter commences with a discussion of basic topological and
graphical network theory, leading #o a discugsion of the integer matrix
representations of graph theory, being based on the work of Veblen (25)
and Branin (1€6). The electrical analogy for fluid flow 1s established
which leads to the discussion of orthogonal network theory. The concept
of tensor transformation favoured by electrical engineers is dispensed
with, tensors being treated as transformation matrices. The matrices
of the orthogonal network are then related to the matrices of graph
theory.

It is then shown how the classical nodal and mesh methods developed
by Roth (14) may be set up. The network equations are then expanded to
include the concept of tearing. There are two approaches to this
problem, each resulting in a different method of solution.

Throughout the theoretical development, computational aspects are

pointed out, showing that the orthogonal concepts are not only powerful
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numerical techniques, but that they also lead to a different understanding
of network problems which will help engineers to tackle the problems of

model building, design and the study of large acaie network problems.
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3.2 Topological Concepts

The analysis of any network system requires the knowledge of some
topological concepts. A network of pipes may be represented by a graph
which has no physical properties associated with it. Figure (3.2.1)
shows the graph which is a schematic representation of a pipe network
that is used later to show worked examples of the theoretical developments
of this chapter.

Each pipe of the network is represented by a branch of the graph
and these branches are assumed to be connected in the same way as the
pipes of the network. Every branch is assumed to run between two junction
points or nodes.

BEvery graph must consist of the two elements:

(a) branches

(b) nodes
and may also contain the following elements which are discussed more fully
below:

(¢) subgraphs

(d) meshes

(e) node to datum paths

If a path can be traced out through all the nodes, travelling along
branches only, then the graph is a connected graph. However a connected
graph may itself be a subgraph of a larger unconnected graph.

A property of a connected graph is that it contains at least one
tree, a tree being any path traced out within a connected graph, through
all of the nodes, which forms no closed loops or meshes (ie the traced
path does not pass through the same node twice). A mesh is generally

referred to as a collection of branches within a connected network which
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forms a cloged loop. However, a more precise definition of a mesh ig
specified for use in this thesis. A mesh is a series of branches within
a connected graph which contains one unique non ffee branch (called a
link branch) and sufficient tree branches to make up a closed loop, The
mesh path, a term which is used later in this thesis, refers to the path
traced out through the graph by the branches which make up a particular
mesh., A connected graph therefore contains as many meshes as there are
link branches, and the same number of tree branches minus one as there are
nodes,

Once the tree of a graph has been selected the meshes are automatic-
ally generated, or alternatively, if the link branches of the meshes of
a graph have been selected, then the tree branches must be automatically
generated.

A further concept necessary to the discussion of graph theory is that
if each branch has assigned to it a positive direction, then the graph is
sald to be directed. It is also assumed that there is a direction
aasoeiatéd with each mesh of the graph, and by convention the direction of
the mesh is assumed to be that of its defining link,

The dual of the mesh path is the node to datum path which is
asgsociated, for the purpose of this work, with tree branches only. The
node to datum path, as suggested by its name, is a path traced out from
any node through to the datum node (which for the time being is any node
so selected), and is automatically generated once the tree of the graph is
chosen. There are therefore, as many node to datum paths as there are
non datum nodes.

Figure (3.2.1) shows the graph of a network which has 12 branches and
Each branch has assigned to it a direction and both branches and

9 nodes,

nodes have individual reference numbers. The tree branches are shown on

the graph by the heavier lines.
Figure (3.2.2) shows the same graph which has 4 meshes and associated
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Figure (3.2.1)

The graph of a network showing a tree

Figure (3.2.2)

The pgraph of a network showing meshes

corresponding to the tree of figure (3.2.1)
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with each, a direction.

A summary of the relationships between the elements of the graph
of a connected network has been developed by Veblen (25) and is shown
below:

Meshes = Branches = Non-datum nodes
Node to Datum Paths = Non-datum nodes
Tree Branches = Non-datum nodes

Link Branches = Meshes

3.3 Matrix Relationships of a Directed Connected Graph

Five matrices, A, B, C, D and F, which describe a connected
directed graph can be established. An important consideration of this
chapter is not only the definition of these matrices, but also the way

in which they are interrelated, andlhow each may be established from a
simple connection list. This connection list which is discussed more
fully at a later stage, contains the basic information about the branch=-
node interconnections.

The computer programs which have been developed use the five matrices
to a large extent, and therefore their size, and the speed at which they
may be manipulated, is of paramount importance. The five matrices
contain only +41s, ~1ls and Os, and since they are usually sparse, special
techniques may be implemented for their manipulation.

In order to esgtablish the matrices it is helpful to assign each
branch, node and mesh a reference number. In figure (3.2.1) the graph

has the branches numbered 1 to 12, the nodes numbered 1 to 9 and the

meshes numbered 1 to 4.

3.3.1 The incidence matrix A

The incidence matrix A is derived from the augmented incidence matrix

Aa which describes the relationship between the nodes and branches of the

graph. A? has the dimensions branches by nodes (ie the rows correspond to
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branches and the columns to nodes). Each row of 5? contains a +1, a -1,
and Os such that the a® (k,j) element contains a +1, -1 or 0 if the kth
branch is positively, negatively or not directed towards the jth node.
Since each row of A% contains one +1 and one -1, the sum of the elements
in each row is zero and the columns are not linearly independent, and one
column may be deleted, It is convenient for reasons of storage to delete
the column corresponding to the node of the highest reference number.
This node is henceforth referred to as the datum node. The matrix formed
as a result of this deletion is called the incidence matrix A. The rows

of A may be partitioned into tree and link branches as in equation (3.3.1)

A
A (3.3.1)

14
and figure (3.3.1) shows the A matrix in this state for graph of figure
(3.2.1). The partitioning of A is most easily achieved if the tree
branches have reference numbers starting at 1, through ND where IiD is the
number of tree branches, the link branch reference numbers being assigned
from ND + 1 through ND + M where M is the number of link branches.

3.3.2 The node to datum path matrix B

The inverse of Ap is related to the node to datum path matrix ET'
which is the tree partitioned part of another matrix B. The B matrix .
describes the relationship between the node to datum paths and the
branches of the graph, and has the dimensions branches by node to datum
paths. Each row of the matrix may contain +ls, =-ls or 0Os, such that
the b (k,j) element contains a +1, =1 or O if the kth branch is positively;
negatively or not included in the jth node to datum path. The positive
direction of the node to datum path is away from the datum node. The

requirement that node to datum paths are limited to tree branches allows

the B matrix to be partitioned as in equation (3.3.2),



Fi e
An
A
Fi
B,
3

1) The A matrix of the of fi 2,1)
1 -1 0 0 O O 0 O
0O 1 -1 0 0 0 0 O
0O -1 0 0 1 0 0 O
0O 0 0 0 -1 0 1 0
O 0 0 0O 0 1 -1 ©
0O 0 0 0 0 0 1 -1
0O 0 0 1 -1 0 0 O
0O 0 0 0 1 0 0 O
-1 0 0 1 0 0 0 O
0 0 0 -1 0 1 0 O
0O 0 -1 0 0 0 0 O
0O 0 0 0 O 0 0 1
2) The B matrix of the graph of figure (3,2,1)
1 0 0 0 O O 0 O
0O 0 -1 0 O 0 0 O
1 -1 L. 0 © 0 0 ©
o 0 0 0 0 1 1 1
0O 0 0 0 O 1 o0 o0
0O 0 0 0 O 0 0 -1
o 0 0 1 0 0O 0 O
i} 3+ 2 1 21 ¥ 1 13
o 0 0 0O O 0 0 O
O 0 0 0 O O O O
0O 0 0 0 O O O O
O 0 0 O O O 0 ©°
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€iving a null sub=-matrix O; of dimensions meshes by nodes. An example of
B in its partitioned form is given in figure (3.3.2). The relationship
between A, and B, which has been shown by Happ (24), is given by equation

(3.3.3)

o v
& = & (3:3:3)

The use of the A and B matrices, their storage, handling and setting
up in computer programs, is discussed in appendix (1).

3.3¢3 The branch-mesh incidence matrix C

Since most graphs contain more than one mesh, it is convenient to
have available a further connectiop matrix called the branch-mesh
incidence matrix C. The C matrix contains the information which indicates:
the way in which particular branches make up the meshes of the graph, and
has the dimensions branches by meshes., Each column of C contains +ls,

-1s and Os, such that the ¢ (k,j) element contains a +1, -1 or O if the
kth branch is positively, negatively or not included in the jth mesh.
Like the A and B matrices, C may also be partitioned into tree and link

parts as in equation (3.3.4),

C = (3.3.4)

ép Irgd
ég ngﬁ

This produces the result that the submatrix C, can be shown to be a unit
matrix, which is achieved if the referencing of the meshes is related to
the referencing of the link branches. It has already been indicated that
the link branches have been referenced with the highest numbers. The unit
matrix C; is produced if that mesh referenced as mesh 1 has as its link

branch the lowest referenced link branch. The remaining link branches in



=-A1=

ascending order of reference numbers then determine the reference numbers
of the remaining meshes. The algorithm which defines the referencing
procedure is shown below,

Mesh Reference (k) = Link Branch Reference (k) - Non-datum Nodes

k=312 oo oM

The value of this overall procedure is that the unit matrix never has
to be stored by the computer, and only information about the tree branches
has to be handled, but it is only achieved by careful referencing of
branches and meshes. It is shown in appendix (1) that the formation and
referencing of the meshes may be performed by a computer program,

Figure (3.3.3) shows the C matrix in partitioned form for the graph
of figure (3.2.1).

Equations (3.3.5) and (3.3.6) show the readily proved (24) relation=-

ship between A, B and C.

4G e Gl w0 (3.3.5)
Cp = 'BIEL (3.3.6)

Equation (3.3.6) is particularly useful, since it implies that QT may be
made available fo a computer program by inputting the branch-node
connection list and set up by a matrix multiplication, greatly reducing
the amount of input required by a program. The full matrix multiplication
ﬂﬁown in equation (3.3.6) is not required since special techniques which
take advantage of the sparsity of AL may be used, as is shown in appendix

(1),

3.3.4 The cutset matrix D

The D matrix is not commonly used by network theorists but since it
gives rise to an alternative way of solving network problems (19) as out-
lined in appendix (2) its inclusion is necessary. The D matrix describes
the relationship between the cutsets of a graph and the branches. A cut-

get is defined as a collection of branches which, when cut across their

axes, produce, from a connected graph, two disconnected subgraphs. In
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the ultimate case a single branch cut across its axis may also produce a
cutset and two subgraphs, one of which will contain only one node.

Each cutset is agsumed to be associated witﬁ a unique tree branch
Just as each mesh is associated with a unique link branch. Cutsets may
be defined by enclosing the non-datum terminal node of a node to datum
path by a circle. Any link branches cut by this circle together with a
single tree branch belong to the same cutset. The tree branch which
defines the cutset is assumed to be that tree branch which is the first
tree branch in the node to datum path that originates at the node which
has been encircled. BEach cutset also has a positive direction associated
with it, and each cut link is assumed to have an orientation to the cut-
set. The orientation of each cut link is assumed to be positive or
negative depénding on whether its direction relative to the encircled
node is the same as or oppositive to the defining tree branch. That is
the orientation of the cutset itself is independent of the direction of
the tree branch relative to the encircled node, The D matrix for the
graph of figure (3.2.1) is shown in partitioned form in figure (3.3.4),
and for example if node 1 of figure (3.2.1) is enclosed by a circle, tree
branch 1 is cut and becomes the cutset defining branch. Link branch 9 is
also cut and since its direction is opposite to that of the tree branch,
the entry in D is -1.

The D matrix has the same dimensions as A and may be partitioned

into tree and link parts as in equation (3.3.7).

D = (3.3.7)

CHIG
&d |4F

The partitioning produces the unit matrix‘gm, which serves to explain
more fully the concept of one tree branch being associated with each cut-

get. The submatrix D, is related to Cp as shown in equation (3.3.8).

"I_)L = -"CJI‘ (303.8)



Figure (3,3,3) Ihe C matrix of the graph of figure (3.2,1)

1 0 0 O
0 0 -1 0
<1 0 -1 0

. 0 -1 0 -1

= 0 -1 0 0
0o 0 0 1
-1 1 0 0
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Figure (3.3,4) The D f the graph of figure (3,2,1)
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This relationship implies that any D matrix required by a computer
program may be set up within the machine, rather than input by a user.
This is further discussed in appendix (1).

3.3.5 The link mesh matrix F

The matrix has the same dimensions as C and has the function of
defining the meshes within the graph of a network in terms of the link
branches only. Since link branches cannot be tree branches and vice
versa, the form of F is very simple. The F matrix for figure (3.2.1) is
shown in figure (3.3.5), in its partitioned form. A helpful way of
visualising F is to see it as the dual of B, where B defines node to
datum paths within the graph in terms of tree branches only. The result
is that F takes the form given by equation (3.3.9).

O

L

E,

E e o =

a
7

(3.3.9)

CENC

3.3.6 The compound matrices ¥ and e<

Two square matrices which are fundamental to the concepts of the
orthogonal network theory, and which are combinations of the A, B, C and
F matrices described above, may be set up for the graph of any network.
The ¥ matrix which relates the paths of a network, both node to datum and
mesh, to the branches is a combination of the B and C matrices. It has
the dimensions branches by branches and may be partitioned as shown in
equation (3.3.10).

¥y '!TL B |9T
Yo iKLL 2, 1HL

The !rmatrix which represents the graph in figure (3.2.1) is shown in its

= l_g (3.3.10)

partitioned form in figure (3.3.6).

The o¢matrix which is also square and has the dimensions branches by

branches may be thought of as a matrix which describes for the overall

graph, the incidence of the branches at the nodes and in the meshes. It
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Figure (3,3,5) The F matrix of the eraph of fieure (3,2.1)
0 0 0 0
0 0 0 0
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Figure (3,3,7) The % matrix for the graph of figure (3,2,1)
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is a combination of the A and F matrices and may be partitioned into

four submatrices as shown in equation (3.3.11).
Bpr | S
% | %t ay,

The ©<matrix for the graph of figure (3.2.1) is shown in figure (3.3.7).

-l - Alr (3.3.11)

o
L3

3.4 The Electrical Analogy

Viater and gas distribution networks have an obvious electrical
analogue, and it is advantageous to discuss the solution of these types
of network problems in electrical terms for two reasons.

These are that most of the research into, and the application of,
modern solution methods of network analysis has been conducted by
electrical engineers. Therefore the discussions available in published
form are almost wholly conducted in electrical engineering terminology.
Secondly, the simplicity of linear electrical resistance networks is
understood by engineers of all disciplines.

It is assumed that voltage, current and resistance are respectively
the analogue of pressure, fluid flow and hydraulic resistance. For fluid
flow a simple linear relationship between pressure and flow is only
possible at low Reynolds Numbers. At higher Reynolds Numbers the
hydraulic resistance is a function of flow and friction factor.

The physical properties associated with the branches of a network
may be analysed by first considering a single branch only. It is
assumed that this branch may consist of the following three elements:

a) an admittance or coil Y;

b) a voltage source E, which is analogous to a compressor in a

pipe network;

c) a current source I which is analogous to a demand or supply to

a pipe network.
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A branch containing these elements is shown in figure (3l )

The equation relating the properties associated with the coil is
equation (3.4.1),

J = Y*V (3.4.1)
or alternatively equation (3.4.2),

Vo= 2% (3.4.2)
where Y and 2 are respectively the admittance and impedance of the coil,
and J and V are respectively the current flowing in the coil and the
potential across the coil,

The voltage V may be related to the potential across the extremities
of the branch, denoted by e, and the potential developed by the active
voltage source E. If both E and e are orientated as shown in figure
(3.4.2), then the relationship for V is given by equation (3.4.3),

V = E+e (3.4.3)
The current J may be likewise expressed as the sum of two individual
currents. One of these, I, is assumed to be due to the external current
gsource. In the fluid flow case I may be assumed to be the current
component in the branch due to the flows entering or leaving the branch
which are demands on, or supplies to,the overall network, The other
component which makes up J is i, This is assumed to be a component of
current in the branch due to all other causes other than I, TFor instance
it may be due to voltage sources or the way in which the branch is inter-
connected within a network. The resulting equation for J, provided the
two components I and i are assumed to flow as in figure (3.4.2), is given
by equation (3.4.4),

J = I+i (3.4.4)

The single branch of figure (3.4.2), excited by a current source I,
will have J made up of one current component I only. If, on the other
hand, only a potential source E is applied across the extremities of the

branch, J will be made up of i only, but for this to arise the branch must
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Figure (3.4.2) A primitive branch showing the orientation of E, I

and i
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be connected within the network, since a return path must be available
for the i component to flow.

Alternative representations of the componenfs of current and voltage
are discussed later and the significance of i and I in a single branch
will become more obvious at that stage.

Equations (3.4.1) and (3.4.2) can now be expressed as equations
(3.4.5) and (3.4.6),

E+e = 7 (I+1) (3.4.5)
I+i = Y (E+e) (3.4.6)
These equations are now used to interrelate the physical properties of

the connected network and those of another network, the primitive network.

3.5 T formation Matri d their relation to G Theo

The primitive network may be considered to be a "torn model" of a
connected network. It is a network which consists of as many unconnected
or single branches as exist in the connected network. Each branch of
the primitive network is assumed to be identical to the single branch
discussed in Chapter (3.1).

The graph of the primitive network representing the connected network
of the graph of figure (3.2.1) is shown in figure (3.4.3). It is next
shown that it is possible to transform variables associated with the
primitive network to those associated with the connected network, and vice
versa.

Having established the electrical analogy equations for a network,
equations (3.4.1) and (3.4.2) expressed invector form are assumed to
represent the relationship of flow, pressure and resistance associated

with the b branches of the primitive network, given by equations (3:5:1)

and (3.5.2).

V = 2. (3.5.1)
_!l = IOE (305.2)
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Figore (3.4.3) The praph of the primitive network representins the

network of the rraph of firure (3.2,1)
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A further set of b equations in vector form represents the relation-
ships of the variables associated with the b branches of the connected
network; these equations are (3.5.3) and (3-5-4)--

Ve = Zc,Jc (3.5.3)

Je = Ye.Ve (3.5.4)
where the subscript c indicates that the equations are equations of the
connected network.

There is a link between variables such as J and Jc. It is agsumed
that there exists a device ! for transforming the quantities associated
with the connected network to those of the primitive network, such that
the relationship is given by equation (3.5.5)

J = ¥.Jc (36545)
and that the device !has a reverse role such that the relationship given
by equation (3.5.6) also exists,

Jo = oJ (3.5.6)
ie the inverse of ¥, étranaforms variables associated with the primitive
network to those associated with the connected network. The relationship

between ¥ and o<is given by equations (3.5.7) and (3.5.8),

(3.5:7)
(3.5.8)

which imply that both § and o€ are square non singular transformation

¥l .

oe'l -

lege 1R¢

matrices.

In electrical terms the power requirement imposed upon a transform-
ation of the sort outlined above, that the power input or dissipated
remains invariant under transformation of variables, has been shown by
Happ (24) to give the result expressed by equation (3.5.9),

x¥ -7 (3.5.9)
The variables Zo and Z may also be transformed. Premultiplication of

A
equation (3.5.1) by ¥ and substitution for J from equation (3.5.5) gives
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equation (3.5.10),

\J
¥y =

|[e<¢

.2.¥%.Jc (3.5.10)
It is assumed that the left hand side of (3.5.10) may be re-expressed to
give equation (3.5.11),

Ve = ¥.2.¥.Jc (3:5.11)
with the result that an expression for Zc in terms of Z is given by
equation (3.5.12),

Zc = ¥.2.% (3:5512)
The equivalent expression for Yc may also be easily derived to give
equation (3.5.13),

Yo = &.Y.ox¢ (3.5.13)

The whole procedure for both Zc and Yc may also be shown in reverse
to transform variables associated with the connected network to those of
the primitive network. In the next section it is shown how the two
devices ¥ and oCare used in network theory and how they are related to

the matrices of graph theory described in chapter (3.3.6).

3.6 Orthogonal Network Theory

Two states of a network have been described, the connected and the
primitive, A further astate, called the orthogonal state by Kron (5), is
introduced from %hich the solution equations to network problems may be
established.

The orthogonal network has the same graph as the connected network
and the two networks are therefore equivalent. The way in which the
current and voltage quantities are represented in the orthogonal network
is however different from their representation in the connected network.
Conventional network theory usually regards the branch or the node as the
focal point of attention, orthogonal network theory is concerned with
series of branches called paths which exist within the network. Two

types of path are assumed to exist simultaneously. They are the open and
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the closed path., It is shown later that these two sets of paths are
respectively identical to the node to datum and mesh paths of the graph
of a network, but the nomenclature of open and closed path is retained
for the time being since network variables are being discussed.

The current and voltage quantities, I, i, E and e are associated in
a specific manner with the open and closed paths; assumptions are made
which restrict currents and voltages to certain paths within the network.
Happ (24) defines the two types of path in the very widest sense and for
a more detailed account of the significance of these paths the reader
should refer to his work. This thesis is restricted to a more precise
definition of the two types of path, which simplifies the derivation of’
solution equations and is more easily understood.

3.6.1 The open paths of a network

In the widest sense these are paths in the network which form no
closed loops and they can be made up of tree and link branches, and are
paths along which properties may act from one node to another. For the
purpose of this work however, the open pathg are restricted to the tree
branches of the graph of the network and are therefore identical to the
node to datum paths of chapter (3.3.”7), In this way it is possible to use
the describing matrices set up for the graph of a network to relate
properties associated with the branches or pipes of the actual network,
to the other components of the network. The closed paths are similarly
defined.

3.6.2 The closed paths of a network

In the widest sense a closed path is made up of any series of
branches within a network which forms a closed loop, along which a
property may act. For the purpose of this work however, the closed
paths are restricted to the single defining link branches and their

agsociated tree branches of the gréph of the network, and are therefore

jdentical to the mesh paths of chapter (3.3.3).
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The devices ¥ and e of chapter (3.5) were shown to be transforming
devices which were able to interrelate variables associated with two tspes
of network, the primitive and the connected, but with no indication of
their structure. By looking at the connected network as a network which
is made up of a combination of two types of path it is possible to show
that the ¥ and o of chapter (3.5) are equivalent to the ¥ and o of
chapter (3.3.6). This concept of using the graph describing matrices of
chapter (3.3.6) to interrelate the network variables of chapter (3.4) is
of the utmost importance in the understanding of orthogonal network
theory.

Orthogonal network theory is the study of the variables associated
with the two types of path. Consider the superimposition of current
variables on the connected network. The current Jc is made up of two
components, Ic and ic; both of these components are assumed to flow in -~
each branch, with no mention of a particular current component being
confined to a particular branch or set of branches. In the orthogonal
network current components I' and i' are associated with the sets of
branches which make up the two types of path and are therefore not branch
properties but path properties. I' is associated with the node to datum
paths and i' is associated with the mesh paths. A similar assumption is
made for the voltage components,

The next two chapters describe the definition and significance of

these path components.

3.7 Superimposing Current Components on the Node to Datwm and Mesh Paths

of a Hetwork

The physical significance of the superimposition of current components

on an orthogonal network will be established.

The current vector I' which is imposed on the node to datum paths

represents the current in the network due to the external current sources,
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or in the case of fluid flow, the demands and supplies of the network.,
These currents within the network are assumed to be the external currents
which enter the network at a particular node and flow through the network
to the datum node, along the node to datum path associated with the entry
node, None of these currents can therefore appear in the link branches.
There will be the same number of node to datum currents as there are node
to datum paths, but some of the currents may have zero value. For example,
superimposition of four node to datum currents on the network shown in
figure (3.7.1) shows that although the network contains eight tree
branches there are only seven of these utilised to carry node to datum
flows, Since there is no demand or supply at node (4), branch 7 has a
zero flow, and similarly since there is no demand or supply at the datum
node (node (9) in figure (3.7.1)), the sum of the flows in branch 8 is
also zero, ‘

The second orthogonal current vector is i'. This is the current
vector due to all sources other than I'. In the network shown in figure
(3.7.2) there are four i' current components each associated with a link
branch, the flow in that link representing the flow in the mesh defined
by that link.

The connected network and the orthogonal network are assumed to be
. equivalent networks, and therefore Jc, the flow down any branch of either
network_must be identical. Equation (3.7.1) shows the conceptual
difference in the assignment of the individual current components to the
branches. The partitioned form of the equation further emphasises the

difference between the two types of network.

(3.7.1)
il

Connected Orthogonal

Network Network
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Figure (3,7,1) Superimposition of node to datum current gources on

a network

The four external flows produce node to datum flows in seven branches

only.
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2) Superimposition of megh nt o network

Four link flows and their assoeisated menhesa
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The orthogonal variables I' and i' may be transformed to primitive
variables using equation (3.5.5) at the same time establishing the
significance of the device ¥, The transformation equation is given in
figure (3.7.3). ¥ is formed in figure (3.7.3) from the actual live
currents flowing in the branches of the orthogonal network and those
flowing in the primitive network., ‘E may be partitioned vertically, pro-
ducing two submatrices which are seen to be identical to the two graph
description matrices B and C developed in chapters (3.3.2) and (3.3.3).
Thus transformations of the type given by equation (3.5.5) may be carried
out by using combinations of simple graph describing matrices. This
establishes the concept that the orthogonal network is indeed equivalent
to the connected network. In chapter (3.3.6) E'was set up for the graph
of the connected network with no mention of the physical properties
associated with the network, whilst § has been established in this
chapter by reference to actual live currents in the branches of the net-
work.

In a similar manner, o€ of equation (3.5.6) may also be constructed
from the live currents of a network and be shown to be identical to the
o< matrix of chapter (3.3.6).

From the relationship expressed in equation (3.5.5) a further
equation which shows the two individual transformations of I' and i' to

give J may be set up as in equation (3.7.2).

o | (3.7.2)

The concepts presented so far may be summarised by reference to
figures (3.7.4a) and (3.7.4b), which are graphs of the network used in
Iappendicea (3) and (9) to solve worked examples of network problems.
They have various components of current assigned to their branches.

Figure (3.7.4a) shows the currents as they have been assumed to be
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assigned to a connected graph, Each of the twelve branches has been
assigned two components of current, Figure (3.,7.4b) shows the currents

as they have been assigned to the orthogonal network, Each of the naths,
node to datum and mesh, has been assigned one component of flow On]y,.and
the network is therefore described in terms of twelve individual compoﬁantn
of current as opposed to the 24 individual components of the connecter
network, Conceptually the currents of figure (3,7.4b) may be viewed as
being made up of a combination of the external currents assigned to the
branches of figure (3.7.1) and the resultant mesh currents assigned to

the branches of figure(3.7.2).

3.8 Superimposing Voltage or Pressure Contours on the Node to Datin

and Mesh Paths

Just ag it has been shown that two orthogonal current components can
be assigned to festricted paths within a network, it is also posgnible tc
show that orthogonal voltazge components may be established which are also
associated with the node to datum and mesh paths., The significance of B
and e associated with a primitive network has been established, and this
can be used to show the two voltage components E' and e' that are asnoc-

jated with the orthogonal equation by using the transformation equation

(3.8.1):

log ¢

Ec = 11 (3.8.1)
This equation is the dual of equation (3.5.6). The form of ¥ is known,
and if the primitive V is represented by its individual components Ii and

e in partitioned form, then Ve is given by equation (3.8.2),

Bpl & Eptep

Ec = . (BCR.?)
c E. + e
QT HL =L =L

It is now necessary to suppose that Ve is made up of two components of

flow which themselves may be partitioned into tree and link parts to



Figures (3,7,4a) and (3,7,4b) The superimposition of current components

on_ the connected and orthogonal networks

Figure (3.7.:n)

The connected network

Figure (3.7.4b)

/

The orthogonal network



€ive equation (3.8.3),

(3.8.3)

By performing the multiplications of this equation each of the components
of voltage on the LHS may be examined in terms of those on the RHS., It
is found that ec; is given by equation (3.8.4),

e

ey = Cpeep + Up.ep (3.8.4)

which sums the individual branch potentials around every mesh of the net-
work and therefore according to Kirchoff's Second Law, ecq reduces to a

null vector. The remaining components of voltage are given in equations

(3.8.4b) to (3.8.44):

W

Eep = Bn.E (3.8.4D)
Ee, = (§T-§T+§L) (3.8.4c)
ecq = ET-.QT (3.8.4d)

The orthogonal vector Vc is now given by equation (3.8.5),

EpT + ecn

Ve = (3.8.5)
Eeq + Op

To unify the index notation it is necessary to introduce superscripts
ingtead of subscripts and the equation for Vc then becomes (3.8.6),

Ve = E'+p¢g' (3.8.6)
Equation (3.5.3) of the orthogonal network can now be expressed in terms

of the individual components of currents and voltages, as in equation

(3.8.7),
I.I

-gc_! § T (3-8.7)
i'

Ity
+
kb—
n
1S<c

which may be expanded to demonstrate the role of the transformation

matrices as in equation (3.8.8),
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| bty | Bripgy

'+ e' = T . - I Y - . (3.8.8)
2pefpeBp | Spedpelp + 4y

from which a solution equation in terms of i' or o' may be obtained pro-

vided that E' is expressed in partitioned form as in equation (3.8.9),

E' = (3.8.9)

In equation (3.8.8), e' is an overall branch vector; in the following
equations e' is regarded as a tree branch vector since the link branch

part of the vector is a null vector.

Ep +g' = (BpZpeBp)oI' + (Bpedpelp)-a’ (3.8.10)
E} = (Epe2p-Bp)l' + (Gp 3, 8 + 2.1 (3.8.11)
X = CpeZplp +2) (8 - Cp-ZpBpeI') (3.8.12)
o = (Bpe2p-Bp).I' + (ET.QT.QT).;' (3.8.13)

Of the two solution equations, (3.8.12) is the more immediately
interesting since it can be compared with the equation (3.8.14),

1! = (E2E) 82D (3.8.14)
which is called the classical mesh equation, used by Middleton (6), to
express the solution of the mesh flows i' in terms of primitive quantities
only. Under which condition, since no primitive expression for I was

available, equation (3.8.14) remained insoluble.

Equation (3.8.12) is used in a modified form in the worked example of
appendix (3) to show that network problems may be solved by the equation,
but using orthogonal instead of primitive variables.

The equivalent orthogonal equations in terms of o€ are outlined in
equation (3.8.15),

I Appedy + ALYy | ALYy léﬁ te

- 2% - I B
i -Y-L'AL I =T, =5
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which is expanded in appendix (4) to yield the solution equations for i'
and e' and show a comparison with the classical nodal method. A worked
example for the nodal method is shown in appendix (5). The comparison
with the classical nodal method is easily achieved if, of the two solution
equations that can be developed out of equation (3.8.15), only the one i
e' is considered.

A further simplifying concept that can be used to advantage is that
of equivalent voltage or current sources. Equation (3.4.5) may be
manipulated to give, for the primitive network, equation (3.8.16),

2.i = g+ (B-2.I) (3.8.16)
The current vector I has been transformed to an equivalent voltage source
(2.I). A similar substitution can be made using (Y.E) in equation (3.4.6)
to transform E into an equivalent current source, with the result that
equation (3.8.8) can be re-expressed with the current source vector as

zero in equation' (3.8:17);

'I","F— 1 w ~
vod B | i
- “ = S . (3.8.17)
) A
and the solution for i' is given by equation (3.8.18),
~ o %t
1 = (CpeZpCp + 2) 0 B (3.8.18)
1
where E; is given by equation (3.8.19),
w! ~ ;
B, = Cpo(Bp - Zplp)t By (3.8.19)

with the result that equation (3.8.18) can be seen to be comparable with
equation (3.8.14), save for the partitioning of the C matrix. Appendix

(4) shows a similar comparison for e'.
Middleton (6) used Roth's (14) algebraic diagram to develop the
classical solution equations, and then proceeded to develop the solution

to the diakoptic equations. There ig little similarity in the concepts

of the classical approach and the diakoptic approach, and therefore



Middleton's (6) development does not follow smoothly. It has been shown
above however, that the classical methods may be derived out of the
orthogonal approach, but not vice versa. The next two chapters show that

the equations of diakoptics follow naturally from the orthogonal approach.

3.9 The Transformation of one Orthogonal Network to another

The development of the equations of diakoptics necessitates the
setting up of a network which is equivalent to the orthogonal network but
which is in a subdivided state, and reéuires the ability to transform
variables associated with torn networks to those of the other. This
chapter proposes the transformation matrix for this purpose, and shows
that it has a special form,

Equation (3.5.5) describes the transformation of orthogonal variables
to those of the primitive. If the torn network contains the same number
of branches as the orthogonal network, then it transforms to the primitive
in a similar menner, as in equation (3.9.1),

I =Y. (3.9.1)
where the superscript refers to the torn network. J for the primitive
network must be the same for both transformations such that a relation

between the orthogonal and torn networks is given by equation (3.9.2),
#* *
¥.Jc = ¥ .Jc (3.9.2)
This equation may be premultiplied by‘é?to give the transformation of

*
torn variables to orthogonal by the transformation matrix‘gf as in

equation (3.9.3),

¥
Jo = ¥ .dc

*

(3.9.3)

¥
The transformation matrix ¥ may be partitioned as in equation (3.9.4),

i

(3.9.4)

and the form of the four components of ¥**ig given by equation (3.9.5),l
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(3.9.5)

If the torn and orthogonal networks have identical node to datum

paths, then equation (3.9.5) reduces to equation (3.9.6),

w % )
Upp | &p-Sp + 4
¥ - (3.9.6)
O | Y

If both networks also have the same meshes, then equation (3.9.6) reduces

to equation (3.9.7),

.

(3.9.7) -

1
which is the one to one transformation matrix that one would require to

transform the variables of one network to those of another identical
network.

In the same way that a dual ™exists of the transformation matrix §,
the dual of {H also exists and is generated by equation (3.9.8),

<" o Yol (3.9.8)

BARL
o< can be shown to consist of four submatrices which, if the node

to datim paths are the same, give rise to the form of equation (3.9.9),

U,

=IT e T

#*

| 0
g( =

e (3.9.9)
4, + Cpedp | Ut

It was shown in chapter (3.5) that the Zc variables of the
orthogonal network could be transformed to the Z variables of the
primitive network using the transformation matrices o€ and !,

The variables g; of a torn network can be transformed to the Zc
variables of an orthogonal network using o_?* and f*, and employins the
pame algebra as in equations (3.5.10) to (3.5.12) to give the expres-ion

for g;, equation (3.9.10),
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z6 - ¥7.20.%" C(3.9.10)

*
The equivalent expression for Yc is equation (3.9.11),
* o * 4 i
Yo = X .YoX (3.9.11)
The four equations (3.9.11), (3.9.10), (3.9.6) and (3.9.9) have an
important role in the solution of network problems using diakoptic

methods,

3.10 Introduction to Diakoptics

It is proposed to show that the concepts of node to datum and mesh
paths which were used in chapter (3.8) to obtain solution equations to
network problems may be further extended to produce two new solution
equations called the equations of diakoptics. These equations make
possible the analysis of much larger systems than can be analysed by
existing methods.

The technique of solving network problems by diakoptics can be
visualised as a two s£age operation., The equations of the primitive
branches of a network are solved sequentially. By removing selected
branches from the graph of a network, it is possible to produce a series
of subgraphs which would normally be linked together by the cut branches.
The primitive branches of the network which represent the sub networks
are interconnected and a quasi-solution found for each of the separate
sub networks in terms of the orthogonal variables, This is the first
stage of solution called low-level interconnection.

Using the solution equations of the individual sub networks, and the
information about the cut branches, the sub networks are interconnected
and a solution is found for the overall network. This is the second
stage of solution called high-level interconnection. In terms of
computing efficiency this means that the low-level interconnections for

a series of sub networks may be carried out separately and since only
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the solution equation for each sub network has to be retained for hirh-
level interconnections, the storage requirements are the same for the
overall network as for the largest sub network, "A second advantage of
the technique is that the necessary inversion of the solution matrix is
reduced to the inversion of the matrix of the largest sub network. For
example, the solution of the network by the nodal method in the worked
example of appendix (5) requires the inversion of an 8 by 8 matrix,
whilst the solution of the same network by nodal diakoptics, appendix
(8), requires the inversion of a 5 by 5 and 2 by 2. The number of
operations required to obtain the inverse of a matrix is approximately
a cubic function of the size of the matrix, therefore the nodal
diakoptic method is the much more efficient of the two methods.

3.10.1 Low-level interconnection

To establish the concepts underlying the equation of diakoptics,
the equations will be developed for a single low-level interconnection,
The primitive branches of the total network will be interconnected in
one operation., The equations of solution arrived at in this manner are
similar to those derived in chapter (3.8), but the development is
expanded, and the equations later applied to the solution of sub networks
of larger systems,

The nodal method of diakoptics sums the solution of voltage effects
from the external sources, and the voltage effects due to all other
sources, to produce a solution to the overall network problem. The
significance of the two effects is pointed out in the development., The

orthogonal equation (3.8.8) may be solved in terms of two components

Yo and Y, to give equations (3.10.1) and (3.10.2).

1 % [] prd ' |

'YT = Eil + g' e ‘I}T-_ZJP.ET.E + 'B"T'EI"‘Q‘T._l" (3.10.1)
1 2 1 )1 o ’

¥y = B = CpeZpeBp.I' + (CpepeCp + Zp) i (3.10.2)
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ET can be expressed as two further components as in equations (3.10.3)
and (3.10.4),

1 pef '
zé ) . BpeZpeBpel — (3.10.3)

3,52) = BpeZp.Cped (3.10.4)

These two equations may be re-expressed as equations (3,10.5) and

(3.10.6),
3.;%1) - iT.gT. (3.10.5)
(2) . B B Zy-in (3.10.6)
Eél) is assumed to be the voltage component of solution due to the

(2)

external sources and V the component due to all other sources.
Equations (3.10.5) and (3.10.6) can be rewritten as equations

(3.10.7) and (3.10.8),

AR (3.10.7)
L P T : (3.10.8)

such that V is given by equation (3.10.9),

v, y(2) (3.10.9)
Also let V. be expressed by equation (3.10.10),
Yo = BpeY : (3.10.10)

The componentzL may also be expressed in terms of the two components

given in equations (3.10.11) and (3.10.12),

(1) % |
V7 = CpeZpeB.L (3.10,11)
v(2) | (CpeZip-Cp + Z)-L" (3.10.12)
—L L] _L - . -

and these equations can be reduced to equations (3.10.13) and (3.10.14),

1 v
E£ ) CreZpely (3.10.13)
v(?) _ ¢ 2.1 (3.10.14)

=L )

From equation (3.10.7), Eél) can be expressed by equation (3.10.20),
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w

E£1) = QT.X(l) (3.10.20)

The solution equation (3.10.9) is now shown to produce an algorithm
for the solution of the nodal pressures of the network,

The component 3(1) of equation (3.10.9) is calculated from equation
(3.10.7). The component E(z) is calculated using equation (3.10.2),
which may be reduced by expressing the voltage component as §* as in
equation (3.10.15),

E - E - EI(}) (3.10.15)

where E£1)

give for i' equation (3.10.16),

may be expressed in terms oflg(l) from equation (3.10.20) to

. v -1
it = (CpeZp-Cp + Z1) 7 E (3.10.16)
and i' can be transformed as in equation (3.10.17),

iy = Cped! (3.10.17)

with the result that 2(2) can be found from equation (3.10.8). Notice
that Ef of equation (3.10,15) may be found from equation (3.8.4c).

From the two components of voltage E(l) and 3(2) the node to datum
voltages ET can be found from equation (3.10,10) and by subtraction of
the pressure source vector given by equation (3.8.4b),

L

E\ = B.E | (3.8.4b)

The node to datum voltage e' is given by equation (3.10.19),

e' =V, - B (3.10.19)

The above development has shown that the node to datum voltages e' may
be calculated from two separate components‘g(l) and 1(2). However it
was shown that the much simpler development of chapter (3.8) produces a
golution in terms of the nodal pressure. The difference between the two
developments is conceptual., The development of this chapter treats the

tree branches of a network as a separate radial network for which a

golution component of voltage is found. The link branches are then
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interconnected into the tree branches in equation (3.10.16) to produce
a further component of voltage, the interconnection component, which
added to the tree component produces the required solution, A worked
example of low-level interconnection showing the principle of two
component solution is shown in appendix (7).

The concepts are further expanded. The equations of the sub
networks of a large system, if they can be treated as their radial

(1)

equivalents, may be treated as the voltage component V of a solution.
The equations of the branches which interconnect together the sub
networks may be treated as the link branches of the above development to
(2)

produce a voltage component of solution V

3.10,2 Hipgh-level interconnection and nodal diakoptics

The principles will be developed for the interconnection of the
sub networks of a large system which has been torn apart. A worked
example which uses these principles is shown in appendix (8).

Just as the component of voltage X(l) was calculated for the tree
branches in chapter (3.10,1), a component 1(1) is calculated for an
equivalent radial network for high level interconnection. To do this
it is necessary to assume that there exists for each sub network an
equivalent radial network, the equations of which represent the equations
asgociated with the interconnected sub network, which may contain tree
and link branches, in an equivalent radial form, These radial
equivalents are then assumed to be a series of primitive branches of a
much larger system which themselves are to be interconnected. The node
to datum potentials e' of each subdivision may be calculated by any of
the methods developed in chapter (3.8). Each 9f the sub networks will
then have associated with it a vector e'. Now this vector must be
thought of as a single component of a larger vector E(l), so that E(l)

is thought of as being made up of radial equivalent potentials e', not
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individual potentials e' as in chapter (3.10.1).

For each sub network, e' is most easily obtained by firstly conver-
ting the primitive potential sources in the subdivisions to equivalent
current sources using the dual of equation (3.8.16). This produces a
solution of the node to datum potentials for each subdivision given by

equation (3.10.21),

e' = @rlfrri‘:r + ELoIL-AL).I.* (3.10.21)
where zf is the node to datum vector which contains both primitive
current and voltage sources,

Now if e' of each subdivision is assumed to be one component of 3(1)
then @TIT&T + _‘AL.IL.AL)"l must be assumed to be the equivalent radial
form of a subnetwork which corresponds to gT of equation (3,10.7). That
is each matrix (E,I..‘_f,r.g,r + _ZK_L._‘{L.%)-]' is thought of as a single
component of the matrix QT.

To find‘2(2) in chapter (3.10.1), C was used for transforming
orthogonal mesh variables to tree variables, although only _C}T was written
into the equations because QL is a unit matrix. A similar matrix also
exists for transforming orthogonal mesh variables to equivalent radial
variables, This matrix is a partitioned part of the E** matrix of

chapter (3.9), just as C is a partitioned part of & of chapter (3.7).

The form of !** has been indicated previously and its partitioned part

* %

!&L of equation (3.9.6) is exactly analogous to QT. It is also true
*
that the partitioned part !;L is analogous to EL and is a unit matrix.

The concept which has to be established is that as C is the trans-
forming matrix of the primitive and orthogonal system, !E; combined with
ﬁ;; is the transforming matrix of the new primitive system consisting of
the equivalent radial forms of the sub networks and the connected

orthogonal network.

*
In the following equations transformations uaingg§?§land EEL S
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made which are analogous to the transformations made in chapter (3.10.1),
where the transformation of a variable by C was reduced to a transform-

ation of the type shown in equation (3.8.8),given by equation (3.8.8a)

(€:2-0) = (CpeBpely + %) (3.8.82)

where the unit matrix is omitted. Any transformation which follows,
: AR B** . ; .
using the partitioned form of & , implies transformation by both oL
g (iR " k.
and i1 but multiplication by §LL omitted.
*

The precise form of §;L is that it shows the incidence of the cut
branches at their nodes and has the dimensions total number of nodes by
number of cut branches. That is, it is capable of transforming
properties associated with nodes to those of cut branches and vice versa.

The equivalent equation to (3.10.20) is given by (3.10.22),

g£1) -8 () (3.10.22)
where, as outlined above, the individual components of 1(1) are the nodal
vectors of the sub networks and the components of Eél) are cut branca

properties as opposed to link branch properties. Similarly the

equivalent to equation (3.10.6) is given by equation (3.10.23),

) o # =1 _*
i' = (‘z_;LogTogTL + EL) .EL (3.10.23)
where the individual components of ET are made up of the matrices
v ~ _1
(&T'XL'ﬁT + AL'XL'éL) of each of the sub networks and the Z; components

are cut branch components as opposed to link branch components of chapter
(3.10.1). i, can be found from the equivalent of equation (3.10.17) as

ghown in equation (3.10.24),

X (3.10.24)

1
ip =2,

i
E(z) is then given by the equivalent of (3.10.8), remembering the form
of the components of Z;. From which equation (3.10.9) may be solved,

which together with equations (3.10.18) and (3.10.19) gives a route to

£ind the node to datum potentials of the connected network. A computation
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algorithm may be developed from the above reasoning and is shown in
figure (3.10,1). This algorithm forms the basis of the program written
to utilise the nodal diakoptic method which is discussed in chapter (4).
The steps of the algorithm may be described as follows:
Step 1: This converts the potential sources to equivalent current
sources and transforms the result to a nede to datum quantity
Ef for every sub network,
Step 2: Transforms the primitive variables expressed in ;f to their
radial equivalents for every sub network.
Step 3: Transforms any primitive potential sources in the cut branches
to orthogonal potentials.
Step 4: Transforms the equivalent radial potentials to connected
orthogonal variables.
Step 5: Combines the two types of orthogonal potentials, one due to the
link branches, the other due to the equivalent radial networks,
Step 6: Transforms the equivalent radial networks and cut branches to
orthogonal mesh variables, ie the interconnection step.
Step 7: Transforms the mesh variables to orthogonal tree current
variables,
Step 8: Finds the orthogonal branch potentials due to interconnection.
Step 9: Sums the two components of solution of voltages.
Steps 10 and 11: Evaluates the node to datum potentials e' for the over-
all network.

3,10.3 Mesh diakoptics

A second series of diakoptic equations may also be developed, and
gince it relies on mesh solutions it is felt it will be more useful to
engineers than the nodal diakoptic approach for the reason that most

engineering networks are not heavily meshed.

It was realised by the author sometime ago that a dual of the nodal
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Figure (3,10,1) An algorithm for solving network problemg by the
nodal diakoptics technique

15
10, ¥, = B.Y

110 g_' - _V_T - Ef
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diakoptic technique ought to exist, just as most other concepts of
network analysis are matched by a dual (for example the dual of the node
to datum path is the mesh path)., However it was also realised that
removing a series of branches from the graph of a network, in the same
way as the nodal diakoptic method, which reduces the number of meshes
but leaves the same number of nodes, was not a viable proposition,
because there would remain insufficient mesh information to produce a
solution.

An alternafive method of cutting which does not appear to have been
presented elsewhere is now proposed.

The nodal diakoptic technique relies on cutting selected branches
across their axes, thereby producing separate sub networks with the cut
branches treated in isolation, It is suggested that the mesh diakoptic
method relies on cutting the network along the axes of the selected cut
branches, through the terminal nodes of the cut branches., With the cut
branches removed, sub networks are_produced which now contain as many
unclosed meshes as there are cut branches. To maintain enough
equations to solve the subnetworks in terms of their mesh equivalents,
it is necessary to provide a closing path for the opened meshes. This
is achieved by assuming that there exists a short circuit between the
two nodes from between which a cut branch has been removed,

The total number of mesheg in the sub networks is then the same as
that in the fully interconnected network, thereby giving sufficient
equations for solution of the overall network.

The outline of the proposed equations is shown below, but the
explanation is not as comprehensive as that for nodal diakoptics since
many of the same principles are involved.

The starting point is the orthogonal equation (3.8.15),
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From this equation the principle of the eummation of two current compon=-

(3.8.15)

ents, one due to the external sources and the other due to interconnec
tion, is shown to produce a solution to a low-level interconnection.
The progression to the interconnection of subdivisions (high-level inter-
connections) is discussed later in this chapter.
Equation (3.8.15) can be solved in terms of QT and gL-to give
equations (3.10.25) and (3.10.26),
= "3 A . . A . . - ] ' i )
I'=(ApXpedy + &Y A ) (B + @) + ALY B! (3.10.25)
i, = i' = YA (Br+e') + Y .E! (3.10.26)

(1) 4og (2)

Let J,, consist of two components J as given by equations

-JII
(3.410.27) and (3.10.28),

gél) = (ApXpedy + K.Y A ).Eh + K.Y B (3.10.27)

32 . U s Laade (3.10.28)

Since A is made up of Ag and A, and Y is made up of Y, and XL, equation
(3.10.27) can be rewritten as equation (3.10.29),
1 M -

gé) = AJY.(AEp + E) (3.10.29)
The primitive potential source E can be expressed by equation (3.10.30),

E = (_gr + E‘ (3.10.30)
and therefore equation (3.10.29) can be expressed as equation (3.10.31),

Q.(l) = Y.E (3.10.31)

which is an expression for the current component of solution due to

voltage sources, which can be transformed as in equation (3.10.43),

i1 . pALY (3.10.43)

2
The second component due to interconnection is obtained uaing‘gg )

which can be expressed as equation (3.10.32),
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._I,E,z) o _Z.I._J}_.g' (3.10.32)

;g’ can be transformed to the primitive ¢ and Qéz) transformed using the

equation equivalent to (3.10.43) to give for g(z) equation (3.10.33),
32 Y.e (3.10.33)

Equation (3.10.26) may also be expressed in terms of two components

given by equations (3.10.34) and (3.10.35),

g_:f'l) - Y .ALE, + Y. (3.10.34)
.{I(Jz) = Y A e | (3.10.35)

Equation (3.10.34) can be shown (equation (3.10.30)) to reduce to
equation (3.10.36),
iﬁl) = Y .E (3.10.36)

It is seen that in equation (3.8.15), multiplications by the matrix
F have not been shown because of the special form of the matrix, Tt must
be realised however, that in the mesh diakoptic development it plays an
important role. For instance the multiplication of a mesh vector by
the F matrix results in a branch vector, but since only the link branch
partition of the branch vector is significant the tree branch partition
‘is neglected.

It can also be shown that equation (3.10.35) will reduce to
equation (3.10.37),

32 . pXe (3.10.37)

To find the solution of flow J, which is given by equation (3.10.38),
3 _J_(l) +g(2) (3.10.38)

- (2)

g(l) may be evaluated from equation (3.10.31) and J'°/ from equation

(3.10.33).
Equation (3.10.25) may be reduced by expressing the current compon-

ents by 1& and gél) as in equation (3.10.39),

i = x -E.gl) (3.10.39)
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where I' is found from I' = A I, Equation (3.10.39) is the dual of
equation (3.10.15). Substituting equation (3.10.39) into (3.10.25)
gives a solution in terms of e' of the form of eqﬁation (3.10.40),

g = Gplpdy + Loea)™ I (3.10.40)
This equation may be transformed by A to give e. QFQ) may then be found
from equation (3.10.33).

From the two components 1(2) and.g(l) the current component J is
found. J may be transformed to J;, by E and since there is no component
of flow li, the overall solution to the mesh currents given by equation
(3.10.41),

it = 4 -1 (3.10.41)

reduces to equation (3.10.42),

it o= g (3.10.42)

The equations shown above may be rearranged to produce a computa-
tional algorithm for the golution by high=-level interconnection of large
scale systems, as shown in figure (3.10.2).

A much simpler method of finding the solution of the mesh currents,
which isg similar to the classical mesh method, was developed in chapter
(3.8). Equations (3.10.25) to (3.10.42) propose a method which obtains
the same result but is conceptually different. The mesh flows are a |

(1)

direct result of two components, one due to J'~’, the current invoked by
the external sources E and I, and the other, £(2)’ invoked by the inter-
connection, From this development the extension to high-level inter-
connection follows.,

Consgider a large network that has been subdivided by the elimination
of the cut branches, which have been removed in accordance with the
principle laid down at the beginning of this chapter, The solutions to

the subdivisions are obtained in terms of their mesh equivalents by the

mesh method proposed in chapter (3.8) with the current sources treated



_83-
as equivalent voltage sources.

A new network can then be visualised., This network which is an
orthogonal network is equivalent to the connected orthogonal network
and consists of a collection of mesh equivalent sub networks and a serics
of unique cut branches. Using the g?* transformation matrix which has
the ability to transform the variables associated with one orthogonal
network to another, it is possible to transform the variables of the
mesh equivalent sub networks and cut branches to variables of the connec-
ted orthogonal network, provided they have the same nede to datum p=ths.

Equation (3.10.43) shows how the current component‘i(l) can be
transformed to a connected orthogonal network variable bylg for low-
level interconnection. In the same way that a partitioned part of ¥
is the transformation matrix for torn to orthogonal variables analo;ous
to C, so a partitioned part of g;* acts as a transformation matrix to
transform the equivalent mesh and cut branch quantities to orthogonal
quantities and is the analogue of A,

In chapter (3.9) it was stated that under certain conditions o
has a special form., Provided that the node 1o dnfum patha Af the 4w
equivalent networks are identical, then the submatricesefzg andgé:;
reduce to unit matrices and“_{;; ig zero. The important submatrix 0_{5
is an incidence matrix and indicates the manner in which the cut
branches are included in their original meshes. The exact form of the
submatrices 1; ando_ég is shown in the worked examples of appendices
(7) and (9).

Just as the primitive variable Y can be transformed to the
orthogonal variable (z.ing), variables agsociated with the equivalent
mesh networks together with the cut branches can be transformed to
connected orthogonal variables of the form @Ew.z,g?{). If each equi-
valent mesh equation is thought of as equivalent to a single mesh

path, then the overall torn network may be thought of in terms of a
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collection of individual mosh »naths to be joined together by link
branches. For low-level interconnection a series of tree branches and
link branches were interconnected by equation (3.10.40). The equivalent
equation for the torn to orthogonal transformation is given as equation
(3.10.44),

. ~ ¥ % -l T _1 * .
e' = &K(CrZp.Cp + Zp) ik, + L)L (3.10.44)

where XT is agsociated with link branches.
The mesh equationg in (QT'ET'ET + EL)-l have been treated ag "
branches (Xr) of an equivalent system which has been transformed accord-

ing to equation (3.10.45),

ot +* ¥ ~ %
oL T ol :
Kl K+ G = Uy T'3r| 9 |ipp
3l (3.10.45)
¥
of
8 l RSN pa¥

Further transformation usingqs;; may be developed which are analogous
to the transformations employing A used in low-level interconnections.
The result is that the algorithm shown in figure (3.10.,2) may be
developed for the solution of large scale problems by high-level mesh
diakoptics. The algorithm has been used as the basis of a computer
program which is discussed at a later stage.

Step 13 Converts the node to datum current source to equivalent
potential sources and transforms the primitive branch
quantities to orthogonal mesh quantities for each sub network.

Step 2: Finds the component of current for solution due to the
external sources for each subnetwork,

Step 3: Converts any current sources in the cut branches to orthogenal
quantities.

Step 4: Combines the equivalent mesh currents and any of those in the
cut branches in terms of orthogonal quantities.

Step 6: Transforms the equivalent mesh quantities and cut branch

quantities to give the node to datum potentials of the
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Figure (3.10,2) algorithm for ving network prob by the mesh

diakoptic technique

3 I = Kol

4) -_Iq(;l) - ;;_;** g_(l)

5) I = 1 -3V

O & - GG B
7) e = %K.

8 2% . (Guseg+2)hs

10) 4 = 2

11) 1! = J
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equivalent system, The interconnection step.

Step T: Gives the branch potentials of the mesh equivalent system.

Step 8: Transforms the mesh eduivalent potentiais to the component
of solution g(z) to give a mesh current vector for each of the
sub networks,

Step 9: Combines the two current components of solution.

Steps 10 and 11: The node to datum current sources have to be restricted
to tree branches in this thesis and therefore J calculated in
step 9 is in fact the individual mesh flows i' of the sub ri:t-

works .

3.10.4 Summary

From the mathematical development it is perhaps difficult to see
the wider implications of applying the matrix methods to complex pipe
network problems. These are discussed later.

It has been shown that network problemsg can be solved by four
alternative methods. It is assumed that each of the primitive sources
of current and potential are completely specified at the outset of the
problem. Two methods solve the node to datum potentials of a network
problem. One of these methods does so by evaluating the potential

- component due to all of the tree branches, then adding to this a
potential component which is due to the interconnection of all of the
link branches in one operation. The second node to datum potential
method is the diakoptics method. This may be regarded as an extension
of the first method. Instead of interconnecting all of the link
branches in one operation, diakoptics uses the first method to inter-
connect the links of the sub networks and then interconnects the sub
networks themselves. The two other methods solve the network problem

in terms of the individual mesh flows. The orthogonal mesh method solves
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the mesh flows by interconnecting the tree and link branches in one
operation, The mesh diakoptic method solves a component of the over-
all mesh flows for each of a series of sub networks, these sub networks
are then themselves interconnected to provide the overall solution,

It is shown later that the concepts of sequential intercomnnection
may be further expanded.

30]1 Tt :‘l":‘\r\hnﬂ(\,‘fj{r\:\_ 'hl- e R

Consider the solution of network problems by nodal diakoptics,

The development has assumed that the solution equations to the radial
equivalent are interconnected in a single operation, It is conceivable
that in some circumstances it is undesirable to interconnect the sub-
division solutions in one complete operation. For instance, when there

are a large number of cut branches, the size of the interconnection
matrix will be large, and its inversion time consuming,

In these cases the equations of diakoptics may be expanded. Consider
a large network which has been divided into four subdivisions by a large
number of cut branches. The radial equivalents of two sub networks may
then be interconnected by using the cut branches which interconnect the
two subdivisions. The radial equivalent equations of the single sub
network produced may then be evaluated, and stored. The process can
then be repeated for the remaining two of the original sub networks.

Two further sub networks are therefore produced, and their equations
in terms of radial equivalents may be interconnected using the information
about the remaining cut branches. This procedure of interconnection by
groups can be extended to any degree, limited only by the number of cut

branches between particular sub networks,
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3.12 Extension of Network Concepts

Middleton has shown (6) that to achieve a solution to a network of
b branches, 2b primitive source quantities must be specified, The nou~
to datum flow 1' constrained to tree branches only automatically spﬂcify
the primitive current sources associated with the m link branches as
zero. The remaining 2b-m quantities must be speciCied by the engincer
at the outset of the problem. They are usually made up of b-m nodie *o
datum currents and b potential sources,

Designers, especially chemical engineers, often wish to specify 2
combination of primitive potential sources, node to datum flows and nodle
to datum potentials, Fowever if the designer chooses not fo gpecify a
particular node to datum source, then by definition each of the primitive

branches along which that node to datum source is assumed to act will n-ve

its primitive current source incompletely specified, This is becance tre
primitive curreﬁt source in a single branch of a network is the rosult of
the sunmation of the effects of all the node to datum sources which act
along that branch.

If the designer specifies, as an alternative to a node to datum
current gource, a node to datum potential source, the primitive branch
gources will remain incompletely specified and the problem cannot be
solved by the methods outlined so far, For example, if the node to
datum flow at node 1 of the network of figure (3.7.1) is not specified
the primitive current sourcesg in ﬁranches 1, 3 and 8 cannot be
completely specified, ard the problem is insoluble, even ii the node
to datum potential has been specified, This is bhecause there is ro
known method of transforming node to datum potentials e to primitive
current sources I, nnlile the primitive potential sources X which mii-

eanily be transformed to primitive current sources.

From the opening sentence of this chapter it is quite obvious th-t



the addition of a further branch to an existing completely specified
network necessitates the specification of a further primitive source
before a solution can be attempted, This fact can be used to advantso=,
If a branch which consists of a potential source I only is added to the
network between the datum node and any other, then this latter node will
be maintained at a potential equal to the value of the potential source.
This potential source can also be transformed to a current source 7.

It is now necessary to suppose that the node to datum path whiei
is associated with the potential specified node is neglected and th:u" it
is transferred to branch added to the network, Tn real terms this mearz
that the primitive current sonrces associated with the brarciics of the
network hecome once again fully specified, since the unspeciflied node
to datum current now acts along the additional branch, For a single
branch the primitive potential source caﬁ be casily transforped to =
current source and vice versa,

The source vector (B -‘g.l) of equation (3.8.14) can thus be fully
specified for a network even if the rnode to datum current sources are
not fully specified. The addition of the further branch however
increases the size of the problem, necessitating greater amountc of
computation,

There is a further consideration concerning the additional branch,
If the node to datum potential of that branch is fto he a certain
snroified value determined at the outset, and the brareh has been
assumed to have a source, either of potential or equivalent current,
of the same value as the nnde *o datum potential, then it is quite
obvious that e for the branch mist be zero, This means that the
sdditional branch rmst have a 7zero impedance,

A worked example of solving a network prohlem which has one of its

nnde to datum potentials specified is shown in appendix (6). A complote



program called FPSMESHFLAN has been written which is 2ble to solve the
type of problem outlined above and is discussed in Chapter (4).

From the development outlined in this chpptér the writing of a
computer program to implement the method appears to be a difficult task
gince it is inferred that a new node to datum path and hence a new sot
of meshes has to be defined for every potential specified node, Tt is
shown below that this is not necessarily the case and that implemen*atinn
of the method is quite simple,

The addition of a further branch to a network must create an
additional mesh. If as outlined above the additional hranch has been
specified as the node to datum path of the potential specified node tien
the first branch in the original node to datum path of that node must
become the link branch of the additional mesh., If all the node to d~tum
gources, both I and e, are then specified together as a vector and the
pressure source in the additional branch is specified as zero, then tlhi=
orthogonal mesh flows may be solved, but in terms of the modified node
to datum and mesh equations.

The same result can be achieved more simply, Maintain the node to
datum paths and mesh paths as for a complete node to datum current
specification, Assign the value of the unknown node to datum current
as zero. The primitive current sources in all of the branches of the
network are therefore completely specified. The node to datum potential
is then treated as a potential source in the additional branch, Since
no current due to external sources flows down either the additional
‘branch or the first branch in the node to datum path, then in fact
either of these branches may be assumed to be the link branch of the
additional mesh.

Therefore the nodal potential specified problem may be solved by

getting up the equations as for the complete current source specifica%inn,
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with the unknown node to datum currents specified as zero, A branch »f
zero impedance containing a potential source equal to the value of the
potential specified at the node is then added to the network as a link
branch., With the result that only an additional mesh path must be
evaluated for solution, the node to datum paths remain the same., 1In
Chapter (4) it is shown how this procedure may be performed automatically

by a computer program.

3.13 Yon Linear Systems

A variety of methods of solving linear network problems hag been
proposed. It has been implicit in the development of these methods that
the branches are of congtant admittance or impedance. This is not, of
course, the case for fluvid networks, and it is necessary to propose an
iteration scheme for their solution. |

For a single pipe the pressure drop between two nodes expressed in
standard engineering notation is g;ven by equation (3.13.1),

AP - 4¢;eu2 a0
)

the velocity term in (3,13,1) can be re-expressed to give equation
(3.13.2),
2 3
AP = 40L (3.13.2)
(b])f%?

thig equation can be expressed in for form of equation (3.4.2) as in

equation (3.13.3),

L
M)Q (3.13.3)

o -
D Az
: ; X
It follows that from equation (3.13.1) an expression for(*Re may be
given by equation (3.13.4),
3 1
¢>f? Re = (AP be ) {(3.13.4)
2
4L M
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and it is known from the work of Colebrook and White (46) that the
friction factor for turbulent flow in smooth and rough pipes is given

by equation (3.13.5),

&/D 1
q)% - 251n( * % (3.13.5)
: 37 11307 ke Aadara

At the start of computation an initigl estimate is made of the flow [, and
the friction factor(b for every pipe of the network. Then, using any of
the solution equations proposed, the branch pressure drop is calculated.
The value of the friction factor is then recalculated using equation
(3.13.4) and branch flows recomputed with a changed admittance or

impedance., The iteration cycle may be repeated until a desired degree

of convergence is obtained,

3.14 Convergence of llon Linear Solution
Various methods have been proposed as efficient convergence tects,
Middleton (6) suspests a convergence test of the form of equation

(3.14.1),

2 /
_ :EAE_')zg limit (3.14.1)
1

This implies that the square root of the sum of the squares of the

M=

differences of the node to datum pressures between two successive
iterations is less than a value chosen by the unser. This has the drav-
back that convergence is not uniformally applied across the network,
since if some nodal pressures are much larger than the majority, the
difference between successive iterations is likely to be large and
convergence therefore slow. Alternatively if some of the pressﬁres

are smaller than the majority the difference between two successive
iterations will be small and the system will appear to have. converged

according to equation (3.14.1), but some nodal pressures may be wron:ly
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evaluated, The method also assumes that the node to datum pregsures are
calculated, In engineering applications attention is more usually
focussed on the flows in, and the pressure drops'alnng a pipe, Bixbhy
(41) using a modified Hardy Cross balancing heads method, proposes the
criterion that the correction & for every mesh of a converged system be
less than 50 cu ft. This has the obvious drawback thzt for low flow
systems, an unconverged solution will satisfy the criterion. Bixby
maintains however that since the criterion is specific teo high flow gas
distribution systems, it is quite adequate for that purpose. The
convergence criterion used by the author is based on the difference of
two successively iterated branch flows according to equation (3.14.2),
l_e_'_;___i_l_ &£ Convergence Criterion (3.14.2)
i

: S TR T Bﬁ
The difference between two successively iteration branch flows must be
less than a percentage of the most recently calculated value of the
branch flow for every pipe of the network before a solution is assumed
to be converged.

This system has one disadvantage which is that i{ the value of the
flow in some of the branches is oscillating markedly whilst the others
may have nearly converged, the overall convergence test will never De
gatisfied, This event may happen in the Ease of very small pipes or
very low flows. However from the performance of the programs it hes
been realised that solutions will convérge by any of the four methods to
within about 0,1 per cent in approximately thirteen iterations. Tt is
therefore quite easy to write into a program some device which outputs
the available information about two successive iterations once a

maximum number of iterations has been exceeded.
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3.15 Further Applications of Matrix Methods

It was suggested in chapter (3.12) that a variety of network
variables may be sgpecified at the outset of a pro%lem. It was algo
shown that the equations of network analysis could be successfully
manipulated to produce A solution to such a problem, This concept
can be further extended in a wsy which is useful to the design
engineer,

In design problems, especially those concerned with piping in
chemical plants, network systems may he underspeciflied or more
unusually overspecified. Since there are only b solution equations,

the 2b variables associated with the (B - 2.1) matrix, or its dusal,
must be specified, If less than 2b variables are gpecified then
simply by looking at the primitive describing equations the designer
can determine what further information is necessary to complete the
gpecification., For overspecified systems, which is in fact the
original network with node to datum pressures gpecified as shown in
figure (3.12), the designer has a choice. He can respecify the system '
correctly, or altermatively fictitious branches can be added to the
original network to accommodate the overspecification and the
problem ig then solved.

The solution to some network problems requires the manipulation
of admittances or impedances which may contain a mixture of linear
and non-linear quantities. Serious computational difficulties can
arise with these cases since sth gystems fail to converge when

gtandard non-linear techniques are used. Diakoptics can be used to

advantage in such cases.

For the nodal diakoptics method the non-linear elements may be

confined to the link branches and therefore all the linear non variant

elements confined to the cutsections. The result is that a solution
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which has to iterate through the high-=level interconnection process

only is possible,resulting in a faster iteration cycle,



CHAPTER 4

DISCUSSION OF COMPUTER PROGRAMS
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4.1 Introduction

The programs described below were written for an ICL 1905 series
machine which is briefly described in appendix (11). For two reasons,
the ALGOL language has been used exclusively, The author was more
familiar with this language than with any other, and qualitatively it
wag felt that this language was more suited to the complex dynamic
programming needed to handle the matrix manipulations of the proposed
programs,

It has been suggested by some authors, (37), (44), (20), that the
comparison of computational méthods of analysing network problems is
for many reasons a difficult task. Four of these reasons are outlined
below:

1) Differing machines are used by a variety of authors.

2)  Authors have varying experience and ability.

3) Differing methods of attacking the same problems have been used,
for example the use of matrix methods by some amthors and the use
of a variety of friction factér finding procedures,

4) A whole range of widely varying convergence criteria have been

uged to asgsess the performance of particular programs.

The difficulty of comparing the relative merits of differing metiods

of solving pipe network problems is emphasised by the fact that apart
from the limited comparison of the Hardy Cross mesh method and the nodal
method of diakoptics by Middleton (6), no such comparison exists,

Five programs together with three supplementary programs have been
written to compare the efficiencies of five varying methods of solving

pipe network problems. It is hoped that such a comparison will obviate



some of the difficulties expressed above, The programs may be classed

into three separate groups. These are:

1) The Hardy Cross mesh method which has been developed to resemble
as closely as possible the program due to Daniel (3), and a
modification of this method which incorporates the friction factor
finding routine in a different iteration loop to that used by
Daniel,

2) The orthogonal nodal and mesh methods equivalent to the classical
mesh and nodal methods. This group includes two other programs,
one which is very similar to the orthogonal mesh method which has
been extended to include the realistic possibility that nodal
pressures in addition to nodal flows may be specified at the out-
set of a problem. The second extension utilises the link at a
time algorithm proposed by Branin (21), further discussed in
appendix (10), which gives an alternative method of calculating
the inverse of the nodal solution matrix,

3) The nodal and mesh diakoptic methods.
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4.2 The Hardy Cross Programs

The basic method for solving pipe network problems by the Hardy
Cross mesh technique has been outlined in Chapter (2)., A detailed flow-
sheet indicating the methodology of the program HCMESHIN, the author's
interpretation of the program due to Daniel (3), is shown in figure
(4.2,1). The flowsheet for the modified Hardy Cross mesh method called
HCMESHOUT is shown in figure (4.2.2). Only that part of the flowsheet
which is different from HCMESHIN is given. The computer listing for
these two programs is shown in appendices (12.1) and (12,2). Marked
on the flowsheets are BLOCK numbers; these are devices which it is
thought will simplify the discussion of flowsheets and listings. It is
not intended that the BLOCKS define any specific limits of the area of
program occupation within a computer., BLOCK is simply a device into
which certain functions of the programs may be grouped.

The reasons for writing the program HCMESHOUT are discussed later,
but since it is basically similar to HCMESHIN it is advantageous to
discuss the two programs simultaneously.

BLOCKS 1-6 and 14 are common to both flowsheets. They incorporate
operations which are basically bookkeeping routines. These organise the
information available about the network into a form acceptable to the
calculation procedures.

In the discussion of all of the programs below reference is made to
the input data required by the programs. For reasons of clarity this is
not treated in detail at the present time but a complete discussion of
the data required by each program will be found in chapter (4.9).

BLOCK 1 Inputs basic network data, the number of branches, meshes, and



the number of branches in the largest mesh, From this data
the size of the arrays needed to handle to the hydraulic data
and the arrays necessary for the calculation routines is
determined and computer storage assigned.,

BLOCK 2 Inputs the fluid data of viscosity and density together with
the convergence criterion,

BIOCK 3 Inputs the network geometry. Each branch, mesh and node of
the network is assigned a reference number by the user, and
the data prepared as is discussed later in chapter (4.9). The
input is in the form of an integer list,

BLOCK 4 From the information contained in BLOCK 3 a modified branch-
mesh incidence matrix is formed,

BLOCK 5 Inputs the initial puesses of flow, with direction relative to
that of the branches, as they have been chosen by the user.
Also input at this stage are the hydraulic data for the network
in terms of the lengths, diameters and relative roughnesses.

BIOCK 6 Outputs all the information about the network which is
available to the computer, This serves two purposes. A data
check may be eagily performed to establish that the data
prepared is identical to the data input. A record of
particular data input and the final results of an analysis is
available together.

BLOCK 14 Outputs for every branch of the network a converged solution
in terms of the individual pipe flow, friction factor, length,
diameter, relative roughness and Reynolds number. The number
of iterations required for solution is also output.

4.2.1 The proeram due to Daniel (3), HCMISEIN

BILOCK 7 This is the start of the iterative section of the program and

is identified in the program listing as label L4:. TImmediately



BLOCK 8

BLOCK 9

BIOCK 10

~-100=-

preceding L4: the integer variable QQ is assigned an initial
value of 1 and as iteration proceeds the value of QQ is updated
to keep a record of the number of iterations,
It is felt that the use of a sophisticated friction factor
finding routine, for branches in which the guess of flow is
likely to be inaccurate, is computationally wasteful, On the
first iteration cycle therefore an estimated value of the
friction factor of 0,002 is assigned to each branch. From
the résulta shovn in Chapter (5) it can be seen that for the
smooth pipes of water networks this is a reasonable value. On
subsequent iteration cycles a new friction factor is determined
using the Colebrook White equation by the procedure FINDPHI,
which is described at a later stage.
For each branch of the network R' is evaluation using equation
(4.2:1)

2QLe
- —;E;-

A second vector of flow Q3 is set equal to the initial guess

R (4.2.1)

of flow Ql. This array Q3 is used later in the program to
test for convergence.

The start of this BLOCK is associated with label L5:. A
further flow vector Q2 which is used in the convergence tests
is set equal to the initial guess or the last calculated value
of flow. For a single mesh of the network this block finds
the correction factor & to be added to each branch from
equation (2.2.9).

Adds on to the value of flow in each branch of a mesh the
value of § called ERROR in the program, with due regard for

the sign of €.



BLOCK 11

BLOCK 12

BLOCK 13

=] 0=

This takes the form of a counter which notes the number of
meshes corrected, In the program it is in fact an ALGOL 'FOR'
loop. If all the meshes have not been 'corrected, control
returns to BLOCK 9 for the next mesh.

This tests whether or not the difference between the most
recently calculated flow Q1 (from BLOCK 10) and the uncorrected
flow Q2 is less than a percentage of Ql, determined by the
convergence criterion, for every branch of the network. If

one or more branches of the network do not satisfy the
criterion, control passes back to BLOCK 8 (via L5: on the flow-
sheet) which recorrects the first mesh etc. If convergence on
this iteration loop is satisfactory then control is passed on
to BLOCK 13,

This is a further test which determines if convergence is
gatigfactory for the outermost iteration loop. The value of
the newly corrected flow Ql, which has been calculated by
iteration with a constant value for the friction factor, is
compared with the value of flow Q3. The value of Q3 is either
the initial guess of flow or the value of flow calculated at
the previous constant value of friction factor. If the
difference between the two flows is not less than a percentage
of the corrected flow, determined by the convergence criterion
for all of the branches, then number of branches which have
converged is output and control is returned to BLOCK 7 (via
L4:). A new friction factor is determined and the iteration
procedure restarted, If convergence is satisfactory for all
of the branches, then control continues to the output procedure

of BLOCK 14.
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|
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HCM-SHOUT

The construction of BLOCKS 7-11 of figure (4.2.2) is basically

similar to those of HCMESHIN except that the roufing of the return of

control for the iteration cycles is modified.

BLOCK 7

BLOCK 8

BLOCK 9

BILOCK 10

BLOCK 11

BLOCK 12

An initial value of 1 is assigned to QQ, the counter which
notes the number of iteration cycles. The label L4: determines
the start of the iteration procedure. On the first iteration
a friction factor of value 0,002 is assigned to each branch

of the network., On subsequent iteration cycles the friction
factor is determined using the procedure FINDPHI,

Determines, using equation (4.2,1), R!' for every branch of

the nétwork. A second vector of flow G2 igs also established
and set equal to the present value of the branch flow which is
to be corrected,

Using a modification of equation (2.2.9) the correction &
called LRROR in the program is determined for a single mesh,
With due regard for the its sign the correction is applied to
each branch of the mesh.

Determines if all the meshes have been corrected. If not,
control is returned to BIOCK 9 and the next mesh treated.
Otherwise control passes automatically to BLOCK 12,

The newly corrected value of the branch flows is stored in

the computer as the array Q1. The convergence test is applied
to the difference between Ql and Q2 for every branch, If the
abgsolute value of the difference is not less than a percentare,
determined by the convergence criterion, of the flow Ql for
any of the branches then, having output the number of branches
converged, control is returned (via L4: on flowsheet) to BLOCa

7 and the iteration cycle repeated. Otherwise control is
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Fisure (4,2,2) The Flowsheet for HCMESHOUT

Start ' BLOCK NULBIR

BLOCKS 1 to 6
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First time
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System converged NO 12
YES
Print Results 14

END
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transferred to the output procedure of BLOCK 14,

The difference between HCMISHIN and HCMESHOUT can be discussed by
reference to the two sets of program description notes outlined above,
Chronologically, HCMuSHIN was the first network program written by the
author, and it was intended that the program be constructed to reserble
as closely as possible the Hardy Cross program due to Daniel (3). It
was felt that this Hardy Cross mesh analysis was representative of the
existing programs, and that it could be used as a comparison with the
programs written as a result of the matrix method gtudies. However in
gtudies of the efficiencies of the matrix programs it became clear that
it was advantageous to calculate the friction factor after each iteration
and not only after finding a converged solution with a constant friction
factor. The reason for this phenomena is not fully understood, but it
is obviously related to the number of operations required to find a
realistic friction factor. The calculation of these friction factors
using the Colebrook White equation necessitates the use of a separate
iteration procedure because of the nature of the equation. Therefore
the use of the equation at every iteration would be time consuming. This
is probably the reason that Daniel (3) calculated the friction factors
on the outer iteration loop only. It was found that calculation of
only a first approximation of the friction factor at every iteration was
sufficient to achieve a converged solution and eventually a correct
value of the friction factor, in a more rapid time than iterating the
friction factor on an outer loop only,

From this knowledge it was clear that the program due to Daniel (3)
might be improved. It then became necessary to produce the improved
program HCMuSHOUT, One of these reasons was to determine exactly the
improvement in convergence that could be found for the Hardy Cross method

and to determine whether or not the improvement was as marked as with
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the matrix methods. The second reason wag that it would be scientifically
unwise to attempt a comparison between the unimproved Hardy Cross program
and the newly developed matrix programs. The significance of the improve-
ment of convergence is discussed in Chapter (5).

The proposed improvement was applied in the following manner. In
HCMESHIN the first test for convergence is applied at BLOCK 12 and if
the system is not converged then control is returned via L5: to BLOCK 8,
which then recalculates the mesh corrections for constant R' (hence
constant friction factor). If the flows in this immer loop have converged
a further convergence test is applied at BLOCK 13 and for an unconverged
solution a new friction factor is calculated in BIOCK 7 and iteration on
the inner loop recommenced, In HCMESHOUT a single convergence test is
applied at BLOCK 12 and for an unconverged solution control is transferred
immediately via L4: %o BLOCK 7 to determine realistic friction factors.

Apart from'any improvement to be gained by the modification a further
small computational advantage for HCMLSHOUT is achieved since the conver-

gence test is applied fewer times,

4.3 NODEFLAN

The basis of the program, a listing of which is given in appendix
(12.3), is the solution of the equation which gives the node to datum
pressures of a network given the pump terms, pipe admittances and node to
datum flows. The equation is solfed iteratively since the pipe admitt-
ances are dependent on flow and friction factor. To start the iteration
procedure an estimate has to be made of individual branch flows and
friction factors. Fortunately the estimation of initial wvalues is not
critical, as is shown in Chapter (5), nor is there any necessity that
the initial flow distribution satisfy Kirchoffs First Law.

The input procedures used in NODEFLAN are used in three other
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programs which are described at a later stage. The similarity of the

inputs to each of the programs is more than a computational phenomena,

Data preparation is identical for the four programs. This reduces the

amount of user time required to produce input for differing programs,

and also alds comparison of the performance of the programs, since the

computation time spent reading data is identical,

The program, the flowsheet of which is shown in figure (4.3.1), is

constructed as a series of self-contained procedures as is explained

below,

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

Inputs the number of nodes and branches, From this information
the program sets up the array storage required for computation.
Inputs the lengths, diameters, relative roughness and pump
terms for every pipe of the network., This information is
gtored in the labelled arrays set up in BLOCK 1,

Inputs the network geometry as a connection list. This list

is a two column integer list which is described in appendix (1).
Inputs the fluid data which are the node to datum fluid flows
agssigned to each node, the density and viscosity of the fluid,
the value of the constant x and the convergence criterion.
Input as the last piece of data is the datum node pressure,

The node to datum solution equation generates the node to datum
pressures and therefore the pressure at any node will be
relative to the pressure at the datum node. Rather than leave
the datum node at a value of zero units of pressure, it wasl
decided to cive the user the choice of specifying the datum
node pressure. This has been achieved with only a small
increase in computational effort,

Assigns to each pipe an initial estimate of flow and friction

factor.
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BLOCK 7

108~

Using the procedure INPUTS the available information about

the network system presented to the computer is output to thé
Lineprinter, This facilitates error detection and records the
input data for correlation with the results,

This is the main computation section of the program and can be
identified with label Ll: on both the flowsheet of figure
(4.3.1) and the listing of appendix (12,3). Immediately
preceding Ll: the counter Q is assigned an initial value of 1.
By updating the value of this counter by 1 at each iteration,
a record is kept of the number of iterations performed by the
program.

The méin calculation routine consists of the two procedures
FORMY and EVALUATE; these compute the algorithm of figure
(4.3.2), which is constructed as a series of Steps.

Step 1 is performed by the small procedure FORMY which finds
the admittance Y for every branch of the network., Steps 2 to
8 are computed by EVALUATE,

From the branch admittances the (E.lﬂé) matrix is computed.

It would be expected that to obtain such a matrix two sets of
matrix multiplications (Iﬂé) and (E.(lﬂﬁ)) would be required.
This would be computationally time consuming. From the worked
example in appendix (5) it can be seen that (E,z.é),for

pipe networks which have no mutual admittance between the
primitive branches of the network,has a special form, The
matrix is square and has the dimensions of non datum node., the
diagonal elem-nts are the sums of the admittances of the
branches which are incident at the node whose reference number
corresponds to the row or column number of the matrix., The

off diagonal terms are the negative of the admittances of the
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branches which run between two nodes. All other elements of
(L.I'.j\_) are zero,
It is therefore a more simple procedure to set up (E.Imé)
directly using the information about the branch admittances
and the information contained in the connection list,
Obtaining the inverse of (Egi.é) for Gtep 3 is a computation-
ally time consuming task, but since the matrix has the follow-
ing properties, its inversion may be speeded up. The matrix
has its largest elements on the diagonal and is most usually
very sparse, it is also symmetric. The procedure which takes
advantage of these properties and is used in the program to
find the inverse of (A.Y.A) is called MYTRIX,
The solution matrix has to be inverted many times in the case
of fluid flows because of the iteration technique required.
The importance of finding an efficient inversion routine which
takes advantage of the properties of the matrix is great.
Different inversion routines have been investigated by the
author and are discussed in chapter (4.10).
Step 4 of the algorithm is easily achieved by the multiplic-
ation of two column vectors Y and E, from which (E.i,g), also
a column vector, can be constructed by selecting, with
reference to the connection list, the correct elements from
the (Y.E) vector. In the theory of network analysis of
chapter (3.8), the admittance matrix Y is square, but since
there are no mutual admittances between any of the primitive
branches, it has a very simple form., The diagonal elements
of the matrix are the only non-zero entries and therefore this
information may be stored in the computer as a column vector.

~
Step 5 is computed by subtracting (ﬁ.xﬂﬁ) from the column
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vector of node to datum flows (the demand and supply vector).
Premultiplication of the matrix of Step 5 by the inverse of the
node to datum solution matrix yields thé solution for the node
to datum pressure computed for the initial values of branch
flow and friction factor,

From the node to datum pressure the vector of individual branch
pressures e can be found from Step 7 and the overall branch
pressure drop found by summing the effect of pump sources and
pressures as in Step 8. The program then uses the overall
branch pressure drop to find the Reynolds Number for each
branch, If the flow is in either the laminar or transitional
region, a message is printed out accordingly. A new value of
the friction factor and of the flow is then determined for
every pipe., A percentage convergence test as described
previously is then applied., The number of branches which are
assumed to have converged is printed out and if convergence is
not satisfactory, the newly calculated values of flow and
friction factor are used to restart the iteration cycle, via
Ll:, otherwise control is passed to the procedure which prints
the converged results called SHOW.

Immediately preceding SHOW the number of iterations that the
golution required to converge is printed out. The procedure
SHOW then prints the pipe reference number, the node from which
direction the pipe flow is orientated, the node to which the
flow is orientated, the flow, the pressure drop along the pipe
and the friction factor in the pipe. The procedure then prints
a node reference number and the pressure at that node,

The program then terminates.
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Fisure (4,3,1) The Flowysheet for NODEFLAN

Start

Input number of
branches and nodes

Input lengths, diameters, relative
roughness and pump terms for every branch

Input Connection List

Input demands and supplies, fluid
density, viscosity and convergence
criterion and datum node pressure

Assign to each branch estimate of

Ll:

flow and friction factor

Print data using INPUTS

Reset branch
flows and
friction factors

Solve node to datum
equations to give e'

Find branch flows and
pressure drops and friction
factors

NO

System converged ?

YES

Print number of iterations

Print results using SHOW

END

BLOCK NULBER
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Fisure (4,3,2) The algorithm for the method of caleulating node io

datum pressures

STEP NO

1 1811.25.00.%°

Y,

% Jk.Lk.q)k.(:

k = 1,2 .. number of branches

2 (4.X.4)
3 (E.x.a)™
4 LY.E
5 (r' - £.1.B)
6 et = (Rx.a)l.(z - L.Y.E)
1 e = Ag'
8 vV = E+e
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4.4 MESHFLAKR

BLOCKS 1 to 3 of figure (4.4.1), which is the basic flowsheet for
MESHFLAX, the listing of which is given in appendix (12.4), are similar
to those of the flowsheet for NODEFLALl as shown in figure (4.3.1).

The remaining BLOCKS of the flowsheet organise the input data,
print it out on the line printer as a data check and for referencing
purposes, and set up the equations of megsh flow analysis and solve these
equationg, The solution equation for the mesh orthogonal method is
equation (3.8.12), The main procedure of the program called EVALUATOR
golves this equation for the mesh flows by an iteration procedure. The
basic algorithm for one iteration loop is given in figure (4.4.2). The
implementation of this algorithm is a computationally more difficult
task than the solution of the nodal equation. Both the Cp and QT matrices
have to be egtablished before computation can begin.

It has been shown that §T may be obtained from equation (3.3.3)
and that QT may be obtained from equation (3.3.6). The calculation of
the inverse of éT' needed to find,ET, is a time consuming task, and so
the alternative method of generating @T from the connection list is used,
This procedure, developed in appendix (1), called SEARCHBT, has been
shown to be a computationally more efficient method of generating‘ET
than inversion of An.

The bulk of the program can now be described,

BLOCK 4 Using the input information of BLOCK 3 the procedure SEARCHBT
is called and the B matrix established. The procedure haninC
i3 next called and using the information about ET and gL,xrom

.the connection 1ligt, the tree branch mesh incidence matrix gm
ig set up. The unit matrix QL ig also established. It has
been argued previously in this thesie that the special form of

QL allows the matrix to be omitted from equations, calculations



BLOCK 5

BLOCK 6

BLOCK 7

134

and storace space. However it is established in MESHFLAN to
enable the solution of the equationg as if they were in the
clagsical unpartitioned form, For a more efficient progran,
accompanied by an increase in available storage, the elimin-
ation of QL is a trivial task,

From a knowledge of node to datum demand and supply vector I'
the primitive tree current sources]ﬁyare egtablished using
ET' The primitive source vectorlq‘is then stored as a constant
constant.

Using the information about the primitive source vector, the
initial flows are assigned to each branch of the network, The
tree branches are assigned a flow equal to the primitive
current source plus 1cu ft/min and the link branches assigned
a flow of 1 cu ft/min. A value of 0,002 is assigned to each °
branch as the friction factor.

Inputs the fluid properties and convergence criteria. Two
constants X and Y are next evaluated. This is an operation
to obviate the necessity of recalculating these constants for
every branch on every iteration, Y has no connection with
admittances, it is used only as a constant in this program.
This is a self contained procedure called INPUTS which prints
the data available about the network on the lineprinter.

This BLOCK contains the main elements of the iteration loop
and corresponds to label Ll: in the program listing of
appendix (12.4) and in the flowsheet of figure (4.4.1). At
label Ll: the program calls the procedure FORMZ which finds
the impedance of every branch of the network, The steps
éutlined in the algorithm of figure (4.4.2) are now computed

by the procedure BEVALUATOR,
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Since the C matrix exists as a complete matrix (C.Z.C)
cannot be computed in the same way as (E.iﬂg). However,
because the primitive impedance matrix Z can be represented
as a vector (only the diagonal elements of the square matrix
are non-zero), (Eﬂgﬂg) may be calculated using the algorithm
shown below.

branch

c.2.¢ (1,3) = LL(T,k) 2(k)"C(4,k)
k=1
J=1,2 . . . mesh

i 1,2 . . . mesh

Alternatively if C has been retained in list form, as is used
in HCMESHIN, then (C.Z.C) can be found directly since the
completed matrix has a special form, The diagonal elements
are the sum of the impedances of all the branches making up
that mesh which has as its reference number the diagonal
element reference numbers. The off diapgonal elements are the
negative or positive of the impedances of the tree branches,
which are common to one or more meshes, depending on whether
they are orientated relative to the link branches in a like or
unlike manner.

The mesh solution matrix is square, symmetric and sparse and
the special inversion procedure MYTRIX may be used to implement
step 2 of the algorithm,

Step 3 is accomplished by a vector multiplication using the
gtored primitive current source vector.

3tep 4 can be accomplished in one operation, Ei'is derived
from the primitive voltage sources E and subtraction from this

primitive vector of the equivalent voltage sources in Zp.l,
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Figure (4,4,1) The Flowsheet for MESHFLAN

START BLOCK NUMBER
Input number of 1
branches and nodes
Input lengths, diameters, relative >
roughness and pump terms for every branch
Input Connection List and Demand 3
and Supply vector
Find E‘I‘ using SEARCHBT
Find QT uTing MAKEC 4
Set initial egtimates of
flow and friction factor
Input fluid density, viscosity 5
and convergence criteria
Print data using INPUTS 6
___(:::)—————-Solve mesh solution equation
Find branch flows and
Reset flows friction factors
T
System
NO converged?
YES
Print results using OUTPUT 8

LND
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Figure (4,4,2) The algorithm for solution of network problems by

the mesh orthogonal method

Step No
1 (C.2.0)
2 (G.2.0)™"
3 E'P-I-'I'
4 (B}, - CpeZp-Ly)
5 1= (€20 (') - EpezpeIy)
6 i = c.i
7 dp = Ip+ iy
8 I = 4
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gives a vector which ig then premultiplied by C. The full
matrix multiplications of step 5 are then carried out to yield
the vector of mesh flows i'. The branch flows i due to the
mesh flows are then found in step 6,

Step 7 sums for the tree branches the branch flows due to the
mesh flows and the primitive current sources. The total flow
in the link branch is due only to a single mesh flow as in
step 8.

The program next evaluates the pressure drop along every branch
and if the flow is in the laminar region (Re<2100) or in the
transitional region (2100<Re < 3000) then a message is output
accordingly. The friction factor is then evaluated for every
branch,

A percentage convergence test is then applied to the individual
branch flows and if the system is not converged the number of
branches which have converged is printed and control is passed
back to the start of BLOCK 7 wvia Ll:, Otherwise control is
passed to L2: which labels BLOCK 8,

The procedure OUTPUT prints the results in terms of pipe
reference number, flow, pressure drop and friction factor.

The program then terminates.

4.5 LATTLODEFLA

This program, a listing of which is given in appendix (12.5), solves

the same node to datum pressure equation as NODEFLAN and uses basically

the same algorithm with the omission of Step 2 as is shown in figure

(4:9:2)4

The program uses the untried method of developing the nodal solution

matrix (Eﬂz,é) from a starting point of the tree solution matrix
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(ET-EToET). The elements of this latter matrix are then updated by an

amount given by equation (4.5.1),
2401, 5) = 251, 3) - (25(5,0) - 25(1,0)). (2(p,3) - 25(q,3))
2%(p,p) + 2(2,a) - 2(pya) - 2(q,p) + 2,

(4.5.1)

which determines the effect of adding into the network a single link
branch which runs between nodes p and q. The method is further discussed
in appendix (10),
~/
To construct (ET'—T'ET) it is of course necessary to have available

the B

Bp matrix, It has already been shown in chapter (4.4) that the gr

matrix may be established within a computer program from a connection

list. The impedances ET may also be made available since they represent

the reciprocal of the admittances X@.

The flowsheet for LATTHODEFLAN is shown in a simple form in figure

(4.5.1).

BLOCK 1 This performs the same function as BLOCK 1 of NODEFLAN.

BIOCK 2 This is a self contained routine which assigns the initial
guesses of flow and friction factor, and reads in as data the
following information: pipe lengths, diameters, pump terms,
relative roughnessg, connection list, node to datum demands and
supplies, fluid density, viscosity, the value of X and the
convergence criteria.

BLOCK 3 Uses the routine INPUTS to record together with the expected
results the data required for solution.

BLOCK 4 It is shown in appendix (1) that there are two ways of producing
'ET' The more efficient procedure has been shown in MiSHFLAIN,

but for the sake of comparison the method which has now been

obviated is shown in this program. The method relies on the

straight forward inversion of the A, matrix, by the Guass-Jordan
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technique. This can only be achieved by partitioning of the A
matrix by a row changing procedure or by careful referencing.
of the tree and link branches, The procedure SETUPB ig used
to perform the inversion,

This is the main solution and iteration BLOCK which comprises
the two procedures ZANDY and EVALUATOR. Label Ll: on the
flowsheet and in the listing of appendix (12.5) indicates

the start of the iteration loop, Immediately preceding label
Ll: the counter Q which records the number of iterations
performed by the computer is assigned the value of 1.

From the initial estimates of flow and friction factor the
vector of branch impedance Z ig established, In this program
the (Ehfzﬁ?z%) matrix is constructed by using the method pro-
posed in chapter (4.4) for (Eﬂgﬂg) which takes advantage of
the fact that the matrix ZT can be expressed as a vector. An
alternative method of constructing (ET'QT'ET) can be derived
by examining the form of the completed matrix (see the smaller
of the two subnetworks of appendix (8)). The elements on the
diagonal of the matrix are the sum of the impedances of all of
the branches in the node.to datum path which has its reference
number the same as the column or row of the diagonal element,
The off diagonal terms are the sum of the impedances which are
common to the two node to datum paths corresponding to the
elemental positions of the array. The matrix is therefore
gymme tric and has its largest elements on the diagonal, With
the (ET'—TtET) matrix constructed each element is then updated
as previously described. It is important to note that every
element of the matrix has to be updated before the effect of

adding in another link branch is considered. For instance for
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Firure (4,5,1) The Flowsheet for LATTNODEFLAN
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System
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END

BLOCK NULMBER
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the network of figure (3.7.1) the (ET-ZToET) matrix is an & x 8
and the addition of one link branch requires the updating of

64 elements and the inclusion of the further three link branches
requires 192 more updating operations,

After all the link branches have been added into the tree
gsolution matrix the steps 4 to 8 of the algorithm in figure
(4.3.2) are evaluated in a similar way to the operations of
NODEFLAN, A percentage convergence test is then applied to the
individual branch flows and if the system is not satisfactorily
converged control passes back via Ll: to the start of BLOCK 5
and the iteration cycle repeated, otherwise control
automatically transfera'to L4g:.

BLOCK 6 The procedure SHOW outputs the converged solution in terms of
pipe flows, pressure drops and friction factors together with
the number of iterations the program has performed.

The three programs NODEFLAN, MESHFLAN and LATTCLAN are compared in
terms of their relative efficiencies and their ability to produce

accurate results by solving a variety of network problems in Chapter

(5).

4.6 NPSMESHFLAU

This program, a listing of which is shown in appendix (12,6), is
a modification of MEGSHFLAN and it is not necessary to produce a flow-
sheet to describe it, since this would be very similar to figure (4.4.1).
NPSLESHFLAN was designed to solve network problems that have their node
to datum pressures specified in addition to node to datum flows, A
. worked example which shows the mathematics of the method is demonstrated

in appendix (6).

A basic requirement of the method is that for every pressure
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specified node a fictitious branch has to be added to the network, This
branch becomeg the link branch of an additional network mesh, The
pressure at the specified node is then assumed to-be a pump source and
is included asg such in the fictitious branch, which is assumed to have

a zero impedance, Computation then proceeds in much the same way as for
the straight forward mesh method with the exception that the gize of the
network describing matrices must be increased,

In NPSMESHFLAN the procedure is accomplished in the following
manner, where any discussion of BLOCKS refers to figure (4.4.1). After
the operations in BLOCK 1 have been performed, a list which contains the
information about pressures at specified nodes ig input. The list takes
the form of a vector which contains zero entries and non zero entries,
the non zero entries corresponding to the pressure that has been
gpecified at a particular node., The program notes the sign of the non
zero entry and the reference number of the node at which the pressure has
been specified. The program then makes provision for updating the
storage which it is to allocate to the network matrices. For instance
if there are two nodes that have been assigned pressures, then the
dimensions of the C matrix are increased by 2 along both axes.

BLOCK 2 is then operated and the network data is input and stored
in the network arrays according to the reference number of the branches,
It is important to note that only information about the existing pipes
of the network has to be input.

The connection ligt for the existing branches is then input in
BLOCK 3, together with the vector of node to datum supplies. Zero
entries are made in this latter vector at the positions which correspond
to the reference number of the pressure specified nodes.,

Immediately preceding the operation of BLOCK 4 the main part of the

additional computation.required for the method is performed. The
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information contained in the nodal pressure specified vector called
NODPRES is again examined. The non zero entries encountered are used
to provide the additional information required to‘supplement the
connection list which is later used to find the meshes of the network.
If a positive entry in NODPRES is encountered, the fictitious branch
to be added to the network will be directed towards the datum node and
away from the pressure specified node. Two entries are thus made in the
connection list for every pressure specified node. One entry is
positive and corresponds to the reference node towards which the
fictitious branch is directed and the other is the negative value of
the reference node away from which the fictitious branch is directed,

The value of the non zero entry in NODPRES is then transferred to
the enlarged pump term vector as the highest referenced element.

Computation then proceeds almost exactly as for MESHFLAN with
the provision that only information about the real branches of the
network has to be handled, except in the computation of the additional
mesh flows,

In some cases it may be necessary to specify both node to datum
flows and a nodal pressure, This is accomplished by assigning non zero
quantities to both the node to datum flow vector and the node to datum
potential vector in the appropriate element which corresponds to the

node reference number,

4.7 NODEDIAK

This program was developed using the algorithm for the solution of
network equations in terms of the high-level interconnection of radial
equivalent sub networks as described in chapter (3.10.?). The program
ig similar in many ways to the diekoptics program developed by Middleton

(6). TUnfortunately however, because of changes in the computer service
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that operates at the University of Aston, the author was not able to
have the "hands on" facility that Middleton was able to use to great
advantage. '

Middleton was able to test the effect of removing or adding branches
and changing the nodal demands or any other network variable using an
already converged solution, It is felt that this facility would
normally be incorporated in a commercial extension of the diakoptics
programs presented, The program described below is inherently more
simple than that of Middleton, because of the straightforward once at a
time calculation that is performed. Further advantages of using the
"hands on" facility are discussed in Chapter (5).

The program; a listing of which is shown in appendix (12,7), is
written as a series of self contained procedures., This has the advan-
tage that the different routines may be written and tested separately
and the logic of the computation steps is more straightforward. The
program may be described in the broadest terms by the following. It
finds and stores for every sub network the radial equivalent solution
equations., The radial equivalent equations of the sub networks are
then interconnected using the link branches and the node to datum
potentials evaluated. This process is repeated until a convergence
criterion is satisfied, whereupon the results are output. Because
information about one sub network only is held in the main core store,
the disc backing store must be used., There are special procedures
particular to the ICL series which are designed to transfer information
from the main store to the discs. These procedures must therefore be
regarded as routines which cannot necessarily be transferred to an
alternative series of machines. The use of the backing store also
means that much of the program relies on the correct functioning of the

logic of the basic bookkeeping procedures.
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There are three backing store procedures used in this program and
their function is described below.,
'PROCEDURE' WORKSTORE (1, A, B)

The routine allocates scratch storage on the disc, The entry N
allocates a number to a particular file on the disc. Four separate files
referenced 1 to 4 are used. The entry A is a string quote ('('ED')')
particular to the ICL series and the entry B is a store allocation
device. When calling the procedure the file number, string and the
amount of store required are entered in the brackets,

'PROCEDURE' GETARRAY (N, A, B) and 'PROCEDURE' PUTARRAY (N, A, B)

These two routines are very gimilar and are used for the actual
transfer of information., PUTARRAY transfers whole arrays from the main
store to the backing store and GETARRAY transfers information from the
disc to the main core store, The entries in the brackets are N, the
file number of the disc storage, A, the name of the array, and B, the
starting value of where the array is to be stored or obtained from. One
added feature of the B entry is that it updates itself., So that if, for
instance, the procedure PUTARRAY is called, the array to be stored will
be stored on the disc from the elemental position of B onwards. The
result will be that the final value of B will be the next available
vacant storage space, and a further array can be stored automatically

above the last.

It has been stated that the algorithm presented in chapter (3.10.1)
is used as the basig of this program. In fact the computation algorithm
is different from the theoretical algorithm, because of the use of
computer backing store, The computational algorithms for both NODEDIAK
and MESHDIAK are shown in figure (4.7.2). It is hoped that the

algorithms written side by side will show the duality of the two

approaches.
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The flowsheet for NODEDIAK is shown in figure (4.7.1).

BIOCK 1

BIOCK 2

BLOCK 3

BLOCK 4

BLOCK 5

BLOCK 6

Inputs the density and viscosity of the network fluid, the
value of X, g, and the convergence criterion,

Inputs overall network data consisting of the number of cut-
sections, cutbranches and the total number of nodes,

The procedures WORKSTORE, GETARRAY, PUTARRAY are established.
The inversion procedure MYTRIX ig egtablished, WORKSTORE ig
then used to assign the storage space required on the disc.
The array storage is then assigned to the named arrays.
Inputs the cut branch hydraulic data, diameters, lengths,
pump terms snd relative roughnesses, and also sets up the
initial guesses of flow and friction factor for the cut pipes.
The !;; matrix indicating the incidence of the cut pipes at
the network nodes is input in a special form, This form is
a two column integer list similar to the connection list out-
lined in NODEFLAN, It is important to note that the network,
having been subdivided, is allocated local and global
references for the nodes and branches, The connection list

for E;; refers to the incidence of the cut branches to the
global referenced nodes. The complete !f* matrix need not be
set up, since only !;; is used in the solution equations,
Inputs for each cutsection the number of branches and nodes in
those cutsections.

Various counters are used in this program to check the number
of iterations, organise the data transfers, and to simplify
the matrix multiplications associated with each cutsection,

In thig BLOCK these counters are assigned their particular

initial values and the global arrays are assigned zero values

in preparation for the matrix multiplications within the bulk
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-126-

of the program. The label L7: which is associated with the
start of this BLOCK is uged as the indicator of the start of
the main {teration loop.
This-is the start of the part of the program which finds the
equivalent radial equations for each sub network, For an
individual cutsection the number of branches and nodes from
the input of BLOCK 5 are used to assign the core storage space
to the cutsection arrays.
This is essentially the main calculation area of the program
which uses a procedure called CALCULATE, which is itself made
up of a collection of procedures outlined in BLOCKS 8.1 to
8,11. Of these BLOCKS 8.1 to 8.5 organise the handling of
the hydraulic data of a cutsection,
On the first iteration CALCULATE instructs the computer to
read in the node to datum flows assigned to each node, the
pipe diameters, lengths, pump terms and relative roughness
for each branch of the cutsection. The cutsection connection
list is also input and the initial estimates of flow and
friction factor are then assigned. The information about
diameters, lengths, pump terms, roughnesses, node to datum
flows and connection list is then stored on the disc using
the procedure PUTARRAY outlined above,
If CALCULATE is encountered other than the firsgt time for any
cutsection then the stored information is brought down from
the disc using GETARRAY, ready to be used for computation.
BLOCK 8,6 The informatien made available to the progranm
about a particular cutsection is printed out, as
a data check and as a record to correlate with the

results, when CALCULATE is encountered for the



BLOCK 8,7

BLOCK 8.8

BLOCK 8.9
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first time for any cutsection,

If the solution in terms of the node to datum
potentials for the connected network has converged
according to criterion laid down in the procedure
TEST which is discussed later, then the flows in'
every branch of the cutsection are evaluated using
FINDFLOW, These flows together with the branch
pressure drops and node to datum pressures are
then printed out using the procedure RESULTS.

The positioning of 8.7 is thought to be the
computationally most efficient possible, since
after employing RESULTS, control is transferred to
the main program at BLOCK 9 and further computation
in CALCULATE is not required,

If CALCULATE is encountered for any cutsection
other than the first time, the flows and friction
factors in each branch of the cutsection are
calculated from the node to datum pressures found
on the preceding iteration using the procedure
FINDFLOW, Otherwise the initial estimate of flow
and friction factor is used for further computaution,
The remainder of the procedure CALCULATE computes
steps 1 to 4I0f figure (4.7.2). This particular
BLOCK uses the procedure ADMIT to compute step 1
for a particular cutsection. As indicated in the
discugssion of the program NODEFLAN, the (iﬁx.é)
matrix does not have to be set up by two matrix
multiplications, Advantage can be taken of the

knowledge of the final form of the matrix. The
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connection 1list and the impedance vector Y only
being used. The inverse of (E{Xﬁg) is computed
using MYTRIX and the reault‘stored.

BLOCK 8,10 The procedure EDASH computes steps 2 and 3 of the
algorithm and the resulting component of pressure
V(l) for a cutsection ig transferred to a global
array EDASHA which, when all of the cutsections
have been considered, will contain all of the
components of pressure due to the external sgources
in equivalent radial form ready for high level
interconnection,

BLOCK 8,11 The proceduie YBDASH is responsible for forming
the radial equivalent part of the high-level
interconnection matrix called YB, This is
achieved by evaluating step 4 of the algorithm
for each cutsection using the particular part of
E;; which refers to that cutsection., The matrix
computed in step 4 is transferred to the global
array YB which is successively updated as each
cutsection is considered.

This is esgentially the terminal statement of the 'FOR' loop

which determines whether or not all of the cutsections have

been considered. If all the cutsection solution equations
have been found, control returns to BLOCK 7 for the next
cutsection,

The high-level interconnection matrix YB is updated along its

diagonal elements by the values of the impedances of the link

branches as in step 6 of the algorithm to give the completed

interconnection solution matrix, Its inverse is then found
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Ficowe (4,7,1) The Flouysheet for NODEDIAK
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Figure (4,7,2) The computational algorithmg of the djakoptic methods
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and stored.,

BIOCK 11 The component of pressure 1(2) due to the interconnection of
the equivalent radial sub networks and the link branches is
found using the procedure FINDPRESS, This corresponds to
steps 7 to 11 of the algorithm. The pressure componenta‘i(2)
and E(l) are then summed in step 13 to give the overall
gsolution of node to datum potentials for any iteration.

BIOCK 12 To determine if the solution in terms of the node to datum
potentials has converged to within the limit stated by the
convergence criterion input in BLOCK 12, a percentage test,
as outlined previously in applied.

If the system has conﬁerged, control is sent immediately back
to BLOCK 6 via label L7: with the flag DECIDE set to a value
of 2, which will permit CALCULATE to pfint out the converged
gsolution using the procedure RESULTS, Alternatively the new
flows and friction factors in the cutpipes are computed using
CUTFLOW and control passes back to BLOCK 6 via label L7: with
DECIDE set to a value of 1, which allows CALCULATE to perform
another full iteration.

BLOCK 13 Immediately preceding BLOCK 10 is a test statement which
transfers control immediately to CUTRESULTS after CALCULATE
has printed a converged solution, CUTRESULTS outputs the

flows and pressure drops for every cut pipe.

4.8 MNESHDIAK

This program, a listing of which is given in appendix (12.8), was .
developed using the algorithm of figure (3.10.3) for the solution of
network equations in terms of high level interconnection of mesh

equivalent sub networks as described in chapter (3.10.3).
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The program is written as a series of self contained procedures and
the basic flowsheet is shown in figure (4.8.1). The disc backing store
is used extensively and the three ICL procedures outlined in chapter
(4.?) are used to transfer information from the main core store to the
discs and vice versa.

The computation algorithm shown in figure (4.7.2) is slightly
different from the algorithm of figure(3.10,2) since each cutsection
is treated in isolation by the program. The basis of the program is
that it finds for each cutsection the mesh equivalent component of
flow due to the external sources for each cutsection and stores this
in the form of the mesh solution equation, The individual cutsections
are interconnected and the second component of flow due to the inter-
connection of the equivalent mesh equations by the cut branches is
found, The two components of flow are then summed to give the
individual mesh flows for the connected network., An iteration process
ig mainteined until the mesh flows have converged to a satisfactory
degree. The degree of convergence being decided by the user,

BIOCK 1 Inputs the density and viscosity of a fluid and the value of x

BLOCK 2 Inputs the overall network data: number of cutsections, cut-
branches, and total number of nodes and meshes,

BLOCK 3 The procedures PUTARRAY, GETARRAY and WORKGTORE are set up
and the latter used to assign four files on the disc storage.

BIOCK 4 Sets up the global arrays, then inputs the cutbranch
hydraulic data of diameter, length, pump terms and relative
roughness. The initial estimates of flow and friction factor
are then assigned to the cutbranches, Inputs the matrix
o(** which indicates the incidence of the cutbranches in the

=LT
original meshes of the network, The data preparation of the
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BLOCK 6

BLOCK 7

BLOCK 8
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matrix together with the data preparation for all of the
programs is discussed in the next chapter,
Inputs the number of branches and meshes in each of the cut-
sections,
The various counters which control the use of the discs and
those which are used as flags are assigned their initial
values., The high~level interconnection matrix ZHICON is set
to zero., The label L7: is associated with the start of this
BLOCK and labels the first statement in the main iteration
loop,
This is essentially the start of the loop which calculates for
every cutsection the equivalent mesh solution equation, TFor
an individual cutsection the number of branches, meshes and
hence nodes obtained from the input of BLOCK 5 are used to
aggign core storage space to the cutsection arrays.
This is the part of the program which contains the
computational procedures to find the equivalent mesh solution
equations., The main procedure is CALCULATE which consists of
BLOCKS 8,1 to 8.11
BIOCK 8,1 to 8.8
On the first iteration for any cutsection the
vector of node to datum flows is input, The
hydraulic data is input in the same order as for
the cutbranches, The branch-node connection list
igs input and the estimates of the individual
branch flows and friction factors assigned. In
order to evaluate the Cp matrix and to assign
the primitive tree branch current sources the ET

matrix is evaluated using the technique described
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in appendix (1) by the procedure SEARCHBT, The
procedure MAKEC is then used to evaluate Cp.
The primitive current sources are then evaluated,
The information necessary for succeeding iterations
is then stored on the disc, Notice that Bp does
not have to be used on subsequent iterations and
can be neglected,

On iterations other than the first the necessary
information about a cutsection is transferred from
disc storage to the core store as in BLOCK 8,8,

On any iteration, other than the first, the
corrected value of flow for every branch of a
cutsection is evaluated using MESHFLOW, From A
knowledge of the individual mesh flows the tree
branch flow due to the mesh flows is evaluated and
summed together with the current source to give

the corrected branch flow, The link branch flows
of the sub network are identical to - the mesh flow
of the mesh which the links define., A corrected
value of the friction factor is also evaluated
using FINDPHI, This procedure contains a further
procedure called RESULTS which is called if the
gsystem has converged on the preceding iteration.
RESULTS prints the pipe reference number, the pipe
flow, pressure drop and friction factor contrel is
then passed directly to BLOCK 9, not necessitating

further computational effort in procedure

CALCULATE.

BLOCK 8,10 The procedure FORMCZC evaluates the impedance
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vector and stores the result, The branches in the
cutsections which act as short circuits are then
given zero impedances, The mesh gsolution matrix
(ET'ZT-QT +Z;), step 1 of figure (4.7.2), is then
formed and inverted. In the program MESHFLAN a
special algorithm was developed to obviate the
double matrix multiplication, this is once again
used. Notice too that only QT of the branch-mesh
incidence matrix is used, Step 2 and 3 of the
algorithm of figure (4.7.2) are then computed.

The resulting mesh flows of the cutsection are
part of a larger vector,i(l) which containg the
component of flow due to the external sources,
These mesh flows are then transferred to the
global matrix ready for use at the interconnection
stage., The whole of the operation of BLOCK 8,10
is very similar to the procedure EVALUATOR of the
program MESHFLAN,

Step 4 of the algorithm, which indicates the
formation of the interconnection matrix, is
achieved in a sequential manner. For every cut-
section the mesh solution matrix is pogt- and pre-
multiplied by the partitioned part of nj;; which
relates the cutbranches to that cutsection, (3ee
worked example in appendix (9)). The interconnec-
tion matrix therefore has the value of its
elements updated by every cutsection, When all
the cutsections have been considered the inter-

connection solution matrix will be complete save
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for the addition of the admittances of the cut-

branches along the diagonal elements,
Essentially the end of a 'FOR' loop, this determines if all
the cutsections have been considered, If so, control passes
to BLOCK 10, otherwise control is passed back to BILOCK 7,
This checks if a converged solution was achieved on the last
iteration, If so, BLOCK 8.9 will have output the results for
every cutsection and only the results for the cutpipes have to
be evaluated, no further calculation being necessary.
Procedure INTERCONECT is therefore by-passed. Alternatively
iteration is continued by using INTERCONECT to complete
steps 7 to 13 of the algorithm,
The admittances of the cutpipes are first evaluated. The
completed high-level interconnection matrix is formed as in
step 6 and inverted, The component of flow due to the
external sources is then transformed byEﬁE; to a cutbranch
variable by step 7. In the algorithm of WODEDIAK step & is
summed the effect of external sources Xél) due to cutsections
and the pump sources, ie external sources, in the link branch
branches, There is no equivalent step in MESHDIAK since the
cutbranches are assumed to be the link branches of the
original network and therefore contain no external flows. ‘l*
is therefore the negative of gél) only. 3tep 9 evaluates a
cut branch pressure component which is trangformed byW§;; in
step 10 to give for every mesh of the cutsections a pressure
component, The individual mesh solution matrices stored in
BLOCK 8.10 are brought down from the disc and the component
of flow due to interconnection is found in step 11, This

step is repeated for every cutsection. The two mesh
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components of flow are summed in step 13 to give the overall
component of mesh flow in the interconnected network,

Usin: the individual mesh flows the cufpipe flows and pressure
drops are found in CUTVALUES, The procedure FINDPHI then
evaluates a new friction factor for each cutpipe, CUTVALUES
then determines if a converged solution was achieved on the
last iteration, If so the results for the cutpipes are outmt
using CUTRESULTS and control is immediately passed to the end
of the program label 1200:, Otherwise control is transferred
to BLOCK 13,

This consists of the procedure TESTS which by applying a
percentage convergence test to the individual mesh flows
evaluates whether or not a converged solntion has been
achieved, If a converged solution is achieved, the flag
TRIGGER is set to a value of 1, (which will indicate to

BIOCK 9 to print out the converged results), otherwise
TRIGGER is set to O (which will indicate to BLOCK 9 to

compute another iteration), and control is sent back to

BLOCK 6 via label LT7:.

4.9 Data Preparation

As an aid to the understanding of the programs discussed previously,

the data preparation, its format and a recommended manner of present-

ation for card input is demonstrated. The twelve branch network which

is used extensively throughout this thesis is the subject of the data

preparation,

The Hardy Cross Method

Both ICMESHIN and HCMESHOUT require identical data preparations.

It has previously been the subject of discussion that data preparations
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for this method are tedious. Each branch is asgigned 2 reference
number and given a direction, which is the direction of assumed flow.
The meshes of the network are then chogen by eye and referenced, each
particular mesh being assigned a positive direction which is the
direction of its defining link, A list is then made up of, in the
first column, the number of branches in a particular mesh and in
succeeding columns the reference numbers of those branches with their
direction relative to the direction of the mesh in question., This is
repeated for all the meshes, This method of inputting the mesh inform-
ation has a major computational drawback. No advantage may be taken of
the partitioning of the branch-mesh incidence matrix since the referenced
link branches will appear randomly in the rows of the matrix set up. As
discussed in chapter (3.3.3), this can be obviated by referencing the
link branches with the highest numbers.

The lengths, diameters and relative roughpess are all tabulated in
ascending order of reference number, The flows which have been assigned
to each branch to gatisfy Kirchoff's First Law are also input in
éscending order of reference together with their direction relative to
that of the assumed direction of the branch.

A typical data preparation would then be:

4 Number of meshes

12 umber of branches

4 laximum number of branches in any one mesh
0,001 Convergence criterion

2 Exponent n of equation (2.2.2)

62.4 Density of fluid

2.42 Viscosity of fluid

4 9 -1 -3 1

4 10 T =4 =5 Number of branches in mesh, and branches which
4 11 =2 -3 8 make up the mesh

4 12 -8 6 -4



1 A0

10 =20 5 . o« » EtC Tlows assigned to each branch
100 100 100 , . . ete Length of pipes

0.9 0,5 0.5 . +:0 etc Diameter of pipes

0 0 0 .« « «» etc Relative roughness of pipes

The Orthogonal Methods

The data preparation for NODEFLAN, MESHFLAN and LATTCLAN ig
identical, and that for NPSMESHFLAN very similar, Each branch and node
is assigned a reference number from 1 onwards. It appears that no
importance is attached to the referencing of tree or link branches for
NODEFLAN, but as discussed previously referencing of the link branches
with the highest numbers results in the unit matrix QL which can be used
to advantage in the other programs,

Yo mesh information has to be prepared since this is automatically
generated by the programs which require the information,

A typical data preparation for the first three programs would be:
12 Number of branches
8 Number of non datum nodes

100 100 100 . . . etc Length of pipes

0,5 0.5 0.5. . . etc Diameter of pipes

0 0 0 . « «» etc Pressure sources in pipes

0 0 0 . « » etc Relative roughness of pipes
-1 2 Branch-node connection list
2 =3

a2 5

.« « etc

.10 0 20 .. .etc DNode to Datum demand-supply terms

62.4 The density of the fluid
2.42 The viscosity of the fluid
3.141 The value of the constant X

0,001 Convergence criterion
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{ODEFLAN requires one supplementary piece of data, the datum
pressure which ;s input as the last item.,

A complete data preparation for NPSNMESHFLAN is achieved by
supplementing the list shown above., A list of the pressures at the
pressure specified node with correct referencing is prepared and input
immediately after the first two pieces of data.

The computer output is similar for the four programs; an example,

which is taken from NODEFLAN, is shown below.,

Pipe No From Node To Wode Flow cu/ft Pressure 1b/sq ft F/T-ctar

1 1 2 88. 382 -148,58 0.00170
2 2 5 37.531 -31.64 0.0020

3 5 3 31.464 -23.04 0,00208
37 15 13 35.138 20,10 0,002
38 13 21 66.932 -89.81 0,00179

The Diakoptic Method

The data preparations for the two diakoptic methods are very
similar, However, the program NODEDIAK is much more developed than
MESHDIAK and therefore the data preparation is better organised. It is
wiser therefore to consider the two separately.

NODEDIAK

Any number of cutbranches up to M where M is the number of link
branches in the connected network may be removed, It is quite obvious,
however, that the removal of only those branches which are required to
isolate the cutsections, provided each of the cutsections is connected
by at least one branch to the datum node, is the most computationally
efficient, Each branch and node of the cutsections is assigned its o

local reference number, each cutsection also being assigned a reference
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number, Every branch and node of the connected network having been
assigned a reference number, the branches and nodes of the cutsectiong
have two reference numbers. The global reference numbers being used to
prepare the cutbranch-node connection list, The data is then prepared
as follows; the example used is that of appendix ( 8), assuming all
the pipes are 100 ft by 0.5 ft in diameter, smooth and there are no

pumps in the system,

62,4 Density of fluid
2.42 Viscogity of fluid
3.141 Value of the constant x
32.2 Value of the constant g.
0,001 Convergence criterion
2 Number of cutsections
2 Number of cutbranches
8 Total number of non-datum nodes
0.5 0.5 Cutpipe diameters
100 100 Cutpipe lengths
0 0 Cutpipe pump terms
0 0 Cutpipe roughness
-4 6
Cutpipe connection list
=5 7
7 5 The number of branches and non-datum
3 3 nodes in each cutsection
10 O 20 O 0 lode to datum flows for cutsection 1

0.5 0.5 0.5 0.5 0.5 0.5 0.5 Diameters, lengths, pump terms and
100 100 100 100 100 100 100 roughnesses for pipes of cutsection

0 0 0 0 0 0 0 1

1 -2 2 =3 =3 6 5 =6 Connection list for cutsection 1

4 -5 =1 4 =2 5
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<15 0 =15 Node to datum flows for cutsection 2
0.5 0.5 0,5 Diameters, lengths, pump terms and
100 100 100 relative roughnesses for cutsection
0 0 0 2

0 0 0

3 -4 1 =2 2 =3 Connection 1ist for cutsection 2

This small network has not in fact been analysed by the program
NODEDIAK but some of the output for a larger network which is discussed
later is shown below.

aT

Resultes {or Section o 1

ipe Ho Hode to llode Friction Foector Flow o £+/min
1 ] 2 0,00307 104.64
2 2 3 0,00264 151.A8
ete
Ynde o Preggure Th/cq ft
1 -54.80
2 ~4R.59

Reanl ta for Section o 2

Pinn o Tnlm ta Minda TAan e FF/mis
1 1 3 0.00247 244,99
P4 P 3 n,n0297 122,10
aten

Reanlta for Cutpipeg

Cutnine Nn Flow en f1/min
] 130,80

2 40.28
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MESHDIAK

Not being as well developed as NODEDIAK, certain restrictions mict
at present be applied in the data preparation for NESHDIAK, One of these
is that the cut branches must be numbered with the highest local
reference numbers in the cutsections. This is a computational require-
ment, not a failing of the theory of the method, For instance, the fdata
preparation shown below is for the network of appendix (9), but in that
worked example the cutbranches are not referenced with the highest
numbers and the'reader will have to mentally adjust the branch reference
numbers accordingly. This is easily achieved since’'the node reference
numbers are unchanged for the data preparation shown below, Also, only
branches which will appear in two or more cutsections may be removed
from a network for 1T.0INT K. Any further limitations in the data
preparation will be explained as the restriction is encountered, Assume
that all pipes are 100 ft in length, 0.5 ft in diameter, smooth and have

no pump terms associated with them,

62.4 Density of fluid

2,42 Vigcosity of fluid

3.141 The value of the constant X
0,001 Convergence criterion

2 Humber of cutsections

2 Number of cutbranches

8 Total number of non-datum nodes
4 Total number of meshes

0.5 0.5 Diameter of cutpipes

100 100 Length of cutpipes

0 0 Pump terms in cutpipes

0 0 Relative roughness of cutpipes
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1 0 This is the cutpipe-mesh incidence
0 1 matrix. It shows the way in which
1 0 the cutpipes were included in the
L.
0 1 untorn meshes, This is the full ST
matrix for the problem, In NODEDIAK
*x

ETL was formed by the program using
only a cutpipe-node connection list.
With the restriction that the short
circuits in the torn meshes are

referenced with the highest numbers
it is a trivial task to remove thig

requirement of data preparation.

7 2 The number of branches (includin:-

7 2 short circuits) and meshes in each
cutsection

10 O 20 0 0 The node to datum flows assigmed to

the nodes of cutsection 1., Since

the method of cutting proposed

bisects nodes, the question of which

cutsection to assign the node to

datum flow of the bisected nodes

arises, The flow can be assigned

to either, or proportionatly to both.
0,5 0.5 0,5 0.5 0.5 0,5 0.5 The diameters, lengths, pump terms
100 100 100 100 100 100 100 and relative roughnesses of the pipes

0 0 0 0 0 0 0 of cutsection 1

1 =2 2 =3 -2 5 -1 4 Connection list of cutsection 1

-3 6 4 -5 5 -6
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-15 0© -15 0 0 Vode to datum flows for cutsection 2
0.5 0.5 0.5 0,5 0.5 0.5 0.5 Diameters, lengths, pump terms and
100 100 100 100 100 100 100 relative roughnessea of the pipes of
0 0 0 0 0 0 0 cutsection 2

0 0 0 0 0 0 0

1 =2 2 =3 2 =5 1 =4 Connection list of cutsection ?

4,10 Natrix Inversion

All of the matrix methods described in this chapter necessitate
the inversion of at least one solution matrix. Irrespective of the
method in question, the solution matrix will have the following proper-
ties,

It will be sparse, symmetric and have its largest elements on the
diagonal. Inversion routines which take advantage of these properties
have been investigated.

Four procedures, a self contained ICL package, a Guass=Jordan
elimination routine, a Choleski routine and a modified Choleski routine
due to Caffrey (33) were studied, The results in terms of the time
taken for inversion are discussed in Chapter (5).

It was quite obvious at the start of this research project that
the inversion of the solution matrices was likely to be one of the
main obstacles in the way of producing efficient programs. The existing
methods of inversion were therefore investigated. However, it became
equally obvious that this investigation could develop into a major tasik,
when the original aim of this research was to prodvce solutions to nei-
_ work problems. The author admite that there are probably more efficient
inversion routines than the one which was finally selected, for instarce

the techniques of Sato and Tinney (22) could be considered. However the
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existence of more efficient inversion routines does not detract from
the value of the solution methods proposed since these improved routjnég
can only increase the overall efficiencies of the-deveioped programs,
The production of more efficient programs and the question of inverzion
is further discussed in Chapter (6).

The Choleski method was used by Middleton (6), and he found the
method to be efficient, ie sufficiently efficient to make the diakopties
program converge to a solution more quickly than the Hardy Cross program
due to Daniel (3). The Caffrey routine is more efficient than the
Choleski method. It was constructed to invert a positive definite
symmetric matrix by a simplified variant of the square root method.
However it was noted by Randell and Broyden (34) that the method would
invert non-positive symmetric matrices provided that the leading minors
of the matrix were non-zero., The method was therefore suitable for the
inversion of network solution matrices. It has the advantage that
fewer temporary storage locations are required, no identity matrix is
used, no square roots are computed, only n (where n is the order of the
matrix) divisions are performed, and as n becomes large the number of
multiplications approaches njf?.

The routine which has been constructed is called MYTRIX and can
be found implemented in all of the programs developed from the matrix
methods, with the exception of LATTHODEFLAN, in appendices (12.3) to

(12.8).
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501 Introduction

Six different network problems have been analysed using the
programg described in Chapter (4). The examples have been chosen
because it is thought that they represent the variety of realistic
cases. For instance, one network consists of a large number of
branches and is heavily meshed, whilst another has a smaller number
of branches and is not heavily meshed, The smallest network consists
of 28 branches and the largest, of 112 branches. One of the major
difficulties of selecting representative network problems is the
lack of available networks for analysis. The author is therefore
indebted to W S Atkins and Partners for permission to reproduce in
a modified form the two networks of figures (5.2.8) and (5.4.8).

The following chapters degcribe the results obtained in the

solution of six network problems by a variety of methods.

5.2 The Hardy Cross Methods

In order to verify the results obtained by Middleton and Gay
(15), who used a program based on the Hardy Cross mesh method,
similar to HCMESHIN, and to compare this program with HCIESHOUT,
the test network developed by Middleton was reconstructed. This
water distribution network called TiGT1 contains 21 non-datum nodes,
38 branches and therefore 17 meshes., Each branch is 100 ft in length
and 0,5 ft in diameter and is smooth, The system contains no pumps.
TEST1 with 6 node to datum flows specified in cu ft/min is shown in

figure (5.2.1).

Middleton (6) examined three different cases of loop formation;
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Figure (59,2,1) TBST1 The Network due to Middleton (6)
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minimum, arbitrary and maximum overlap. These three cases are repro-
duced in figures (5.2.2), (5.2.3) and (5.2.4) respectively, In all
cages the tree branches are the more heavily draﬁn and have the lowest
reference numbers, The choice of node referencing is the same for each
of the cases since this is not important for the Hardy Cross methods.
The mesh reference numbers are assumed to be associated with the
reference numbers of the link branches as described in chapter (3.3.3).
Each branch and mesh is assumed to be directed. The directions of the
branches of figures (5.2.2) to (5.2.4) are not indicated on the networl
since they may be found in table (1) and the node to datum flows in
table (2), which together with all tables referred to hereafter will

be found in appendix (13).

The results obtained by Middleton and Gay (45) in terms of the
number of iterations required for solution for the three cases outlined’
above are shown in table (3).

The results obtained by the author for the same analysis are shown
in tables (4) and (5). In all three tables the difference in the
relative number of iterations and the relative computational times is
gimilar for the minimum and arbitrary overlap choices., Too much
significance shonld not be attached to the computation time since it
represents the total 'mill' time, which includes time elements other
than the mathematical computation times. However there is a marie!
difference in the actual number of iterations needed to achieve corver-
gence, Unfortunately Middleton and Gay do not indicate the valne of !'he
convergence criterion nor the manner in which it is apﬁlied. The
convergence criterion used throughout this thesis, unless otherwise
stated, is that the difference between a corrected and an uncorrected
branch flow be less than 0.1 per cent of the corrected flow applied in

the manner described in chapter (3.31). For minimum and arbitrary
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Figure (5.2.4) TEST1 Maximum Overlap Condition
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overlap conditions the results from HCMESHOUT agree with those of
Middleton and Gay. However the difference in the number of iterations
for arbitrary and maximum overlap choices of table (3) does not agree
with the relative difference for the same two cases in table (4), nor
for the improved program of table (5). These latter two tables in fact
indicate that there is little difference between the arbitrary and
maximum cases, both in the number of iterations and the speed of
convergence., One can only conjecture that the results obtained by
lliddleton and Gay were not the results for the maximum overlap condition
of TEST1 quoted, due to a mistake in the data preparation, or due to the
fact that the initial estimate of flow distribution caused the solution
to be unstable, though the latter is unlikely.

The results in terms of the individual pipe flows for HCLIESHIN
and HCMuSHOUT for all three cases of overlap are compared with the
results of the minimum overlap case of Middleton (6) in tables (6) and
(7) respectively. There is good agreement between the flows calculated
by HCMZSHIN, LHCMESHOUT and the results obtained by Middleton ().

The reduction in the time required for solution of HCMiSHOUT in
terms of the solution time of HCMESHIN is also well demonstrated,

Table (8) shows the percentage reduction in convergence time for the
improved program HCIMESHOUT in terms of the equivalént solution time for
HCMESHIN,

A similar analysis wns carried out on the three cases of minimun,
arbitrary and maximum overlap for the network of Knight and Allen (355
as shown in figures (5.7.5) to (5.2.7). The results obtained in terms
of the individual pipe flows for the maximum condition of overlap give
good agreement with the flows calculated by the orthogonal matrix
methods as shown in table (12). Knights and Allen analysed their net-

work as a town's gas distribution system, but Middleton reports that Lue[
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Eleure (5,2,6) The network due o Knirhte ond Allen (35)
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Pigure (5,2,7) The network Aduc to Knights and Allen (35)

Maximm Overlap Condition
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did not define the values of viscosity and density. Their network has
been analysed as a water distribution system for the comparison of
HCMESHIK and HCLISHOUT,

The connection list for all three cases of overlap is shown in
table (9) and the dimensions of the network for minimum overlap are
given in table (10). The node to datum supply vector used in all
cages for this network is shown in table (11). The convergence times
and the number of iterations required for solution for HCMESHIN and
HCMESHOUT ares shown in tables (13) and (14). Further evidence can be
deduced from.these two tables that the program HCMESHOUT is more
efficient than HCMESHIN as shown in table (15).

The network W S Atkins No 1 and also that due to Dolan were also
analysed under three conditions of overlap. The connection lists for
the three cases of overlap for the water distribution network W S
Atkins No 1 of figures (5.2.8) to (5.2.10) are shown in table (16),
and the dimensions of the network corresponding to the case of minimum
overlap are shown in table (17). The node to datum flows for thic
network are shown in table (18). The connection lists for the three
cases of overlap for the water network due to Dolan of figures (5.2.11)
to (5.2.13) ere shown in table (19) and the dimensions of the network
corresponding to the case of minimum overlap are shown in table (20).
The node to datum flows for this network are shown in table (21).

The percentage reduction in solution time for HCMLSHOUT for the networl
% S Atkins No 1 is shown in table (22) and that for the network due to
Dolan is shown in table (23).

The relative accuracy of the results of HCMESHIN and HCMESHOUT are
discussed at a later stage, but it is necessary to consider the philos-
ophy of employing either of these two methods at the present time. Tire

time dJdependence of achieving » converged solution on the choice of mesh
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Figure (5,2,8) The network W 5 Atking No 1
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i 2,10) The Metwork W S Atking No 1

Maximum Overlap Choice

18

22 20 1A 15
DO O

17

25

1._]
e
e
po— |

‘O
e}
-3
-1

14 8 o

12 7

24

)



=164~

Figure (5,2,11) The Network due %o Dolan

Minimun Overlap Case
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Fipure (5,2,12) The Network due to Dolan

Arbitrary Overlap Case
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formation is well demonstrated. The choices are of course extremes,
but it is important to note the relatively small difference in conver-
gence times and number of iterations for the arbitrary choice and
maximum overlap choices, It is a reasonable conclusion therefore that
the choice of even an arbitrarily selected set of meshes can lead to
convergence problems and that only the minimum overlap condition leads
to swift convergence,

The maximum overlap condition, the trunk, is however the easiest
to set up, but for a large network the setting up of the minimum over-
lap condition requires great skill and experience, The data
preparations for HCMESHIN and HCHESHOUT under any condition of overlap
are tedious, especially so with maximum oveflap because of the greater
number of branches in the meshes. Flows also have to be assigned to
each branch together with their assumed directiog relative to the
direction of the branches., By way of an example the data preparation
for the 112 branch network TiST2 required 190 cards, five times as
many as for the matrix methods.

The user of the Hardy Cross methods is therefore faced with a
dilemma; the eagsiest choice of meshes leads to tedious data preparations
and convergence problemg, the most difficult choice of meshes requires
expertise or long periods of time to set up,

The results obtained for the two Hardy Cross programs are compared
with the results obtained using the matrix methods later in this thesis.
To get up the comparison the more efficient program, ICMESHOUT, only
will be considered and the condition of arbitrary overlap used to
compare convergence times. The reason for this is that the program
- HCMESHOUT has conclusively been shown to be the more efficient Hardy
Cross program and that the arbitrary choice of overlap is representative

of mesh formations likely to be set up.
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5¢3 The Matrix Methods

There are four orthogonal matrix programs and three of thesge will
now be examined; the fourth, NPSMESHFLAN, ig conﬁtructed similarly to
MESHFLAN and its general performance is also similar. However because
of its special function it is discussed at the end of this section.

It will be shown that the choice of mesh formation has no effect
on the convergence, the choice of initial guess has no effect on conver-
gence and that convergence of a network analysed under a range of node
to datum supplies is only minimally affected by the range of flows.

The network TEST1 was solved using IODEFLAN, MESHFLAN and
LATTHODEFLAN for the three cases shown in figures (5.2,2) to (5.2.4).
The results in terms of the individual pipe flows are given in table
(24) for the three analyses of the maximum overlap condition.

The lack of effect on convergence of the choice of meshes is well
demonstrated in table (25). The three cases of the network due to
Knights and Allen shown in figures (5.2.5) to (5.2,7) were similarly
examined and the results in terms of individual branch flows for the
maximum overlap condition are shown in table (12). The effect of
the choice of overlap on convergence ig further indicated in table (26)
which shows the nunber of iterations and the time required for solntion
for the three overlap cases., Table (27) shows the number of iteratiorc
and the time required for the solultion of the three overlap cases of
the network W 3 Atkins No 1 and table (28) shows the same information
for the three cases of the network due to Dolan.

The most obvious conclusion to be drawn from the results presented
80 far for the matrix methods is the overwhelming disadvantage in terms
of time required for the solution of network problems using the program
LATTIJODEFLAN, In the analysis of the sixteen network cases presented,

there is no evidence to support Branin's claim (19) that the method
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S e,

would be more efficient than the standard orthogonal method, Even in
the analysis of a network which is not heavily meshed, for instance that
due to Dolan, where only a few link branches have to be added into the
tree solution matrix, there is no advantage in using the method, 1In
this particular case the program MESHFLAN is the most efficient of the
three programs,

Further discussion of the orthogonal matrix programs therefore
excludes any reference to the program LATTNODEFLAN since it has been
shown that this method is in no way more successful in the analysis
of network problems than even the Hardy Cross methods.,

5.3.1 The stability of the matrix methods

To analyse the stability of the matrix methods the program NODEFLAN
has been used. Various estimates of the initial flows have been used,
various convergence criteria have been used, and‘a range of node to
datun flows has been uged. This range of node to datum flows satisfies
the criterion established by Daniel (3) which is discussed in chapter
(2.4.7).

To analyse each of the matrix methods, including the diakoptics
methods, under all of the above conditions would be an onerous task,
However, since the general approach underlying all the matrix methods is
basically similar, it was thought that the analysis of NODEFLAN and
MESHFLAN only would indicate the stability of all of the methods. Tt
gsoon was clear that both methods were equally stable, and that the
results of tests applied to one of the methods would be representative
of the results from all methods, NODEFLAN was then selected as the
single program on which to base further stability studies. Some of the
results obtained in stability studies using MESHFLAN are however
presented below to egtablirh that the stability of all of the matrix

methods is excellent. To further demonstrate stability a comparison was
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made with the Hardy Cross program HCMESHOUT,

2+3+.2 Convergence of the matrix methods

Middleton (6) examined the effect of the choice of the initial
estimate of the individual branch flows on the convergence of hig
diakoptics program. He noted that only minor changes in the number of
iterations required for solution occurred. However the range of initial
estimates was not large. Table (29) shows the number of iterations
required for the solution of the maximum overlap case of figure
(5.2.4) for a wide range of initial estimates of branch flow, using
NODEFLAN, This table quite clearly shows that the choice of initial
estimates of flows has little effect on the rate of convergence, This
is because the node to datum flows will dictate on the first iteration
that the calculated branch flows will be of the correct order,
irrespective of the value of the branch admittances., For succeeding
iterations therefore the branch admittances quickly become better
approximations, because of the relatively small changes in friction
factor.

The major conclusion to be drawn from the above discussion is that
it is reasonable to allow the program to assign the initial estimates
of branch flows internally, With fhe result that less time is spent
by the user preparing and inputting these estimates.

The convergence criterion used to study the effect of initial
egtimates of flow was uniformly applied as 0,1 per cent of the calculated
flow. To further demonstrate the stability of the matrix methods, the
maximum overlap case of TEST1 was analysed with the initial estimate
of flow of 1 cu ft/min for every branch with a wide range of convergence
criterion. The results obtained in terms of the number of iterations
required for solution for NODEFLAN, MESHFLAN and HCMUSHOUT are shown in

table (30). In view of the large difference in the number of iterations
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required by the matrix methods and the Hardy Cross method, the 8ignifi-
cance of the results may be obscure. Figure (5.3.1) indicates the
significance clearly, the graph shows a log-lineéi plot of the
convergence versus the number of iterations required for solution,

NB that the scale of the x axis, the number of iterations, for the
Hardy Cross method is one fifth of that for the matrix methods.

Two important conclusions can be drawn from the graph, The slopes
of the NODEFLAN and MESHIFLAN plots are very similar showing that the
methods are equally dependent on convergence, The fact that MESIFLAN
constantly requires more iterations than NODEFLAN at any particular
convergence is discussed at a later stage. The second and most
important conclusion is that as the convergence criterion is
decreased, the Hardy Crogs method requires relatively more iterations
to converge to a solution than either of the two matrix methods,
demonstrating further the inadequacy of the Hardy Cross methods.

It has previously been stated that the time required for solution
as indicated by the computer output must be treated with some caution,
With this in mind the graph in figure (5.3.2) has been constructed
to show only the general time dependence of the three programs on the
choice of convergence criterion. No absolute time comparison can be
evalvated, however the general conclusion, that the program MESHFLAN
requires more computation time to converge than NODEFLAN, is formed
and also that HCMESIOUT requires many more iterations at lower
convergence criterion,

The final test of the stability of the matrix methods was achieved
by changing the node to datum supplies at a fixed value of the initial
estimate of flow and at a fixed value of convergence criterion. The
maximum overlap case of TEST]1 was used and the node to datum flows

taken as those in table (2) times some constant. The results obtained
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for the analysis are shown in table (31), which shows that at high flow
rates convergence ig marginally slower because the initial guess of flow
is small compared to calculated branch flow at solution, as discuszsed
previously, and that at low flow rates convergence is markedly slower
because of the difficulty of maintaining accurate friction factors

from iteration to iteration at low Reynolds !umbers. In the inter=-
mediate range little or no effect on convergence is apparent,

5.3.3 Specifving nodal pressures

The analysis of the minimum overlap case of TLST1 by the program
UODEFLAN gave the results for the node to datum pressures shown in
table (32). The information contained in this table was then used to
verify the performance of the program which solves network problems
that may have some of their node to datum pressures specified, called
FPSMESHFLAN, From a knowledge of the converged nﬁde to datum pressure
at node (8) of TEST1 the input data to NPSMESHFLAN was arranged so that
the node to datum flow at node (8) was initially specified as zero, and
the node to datum pressure at node (8) specified at the same pressure
as the resultant node to datum pressure calculated by INODEFLAN for
the same node.

According to the theory previously discussed the successfully
converged program IWPSMGSHFLAN ought to give the same individual branch
flows for the above gituation as the node to datum flow fully specified
case. Table (33) shows the results obtained by NPSMESHFLAN for the
above network problem.and the results obtained from NODEFLAN for the
flow fully specified case., As can be seen, the program NPSMESHFLAN
converged with very similar individual branch flows as the solution
to the flow fully specified analysis of NODEFLAN, Further verification
of the performance of NPSMUSHFLAN was attempted using the results

obtained by NODEFLAN for the flow fully specified case of maximum
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overlap of the network due to Knights and Allen., Table (34) shows the
node to datum pressures obtained by HODEFLAN for the above analysis.
Using the information contained in this table, two analyses were
attempted., The first with flow specified as zero at node (9) and a
pressure of 65,308,.4 specified at the same node, and the extension of
this case with the flow also specified as zero at node (11) but the
pressure at that node specified as 16,906,4. The results obtained in
terms of the individual pipe flows for both of these analyses are
compared to the results obtained by NODEFLAN for the flow fully
specified case.

As can be seen from table (35), the results for the two analyses
of the Knights énd Allen network fully support the propesition that
IIPSIESHFLAN is an excellent program for analysing the realistic
pressure and flow specified problem, In all three analyses NPSMEGHFLA
required one further iteration than the flow fully specified analysis
of MESHFLAN; the reason for this is that on the first iteration the
individual branch flows are not calculated as accurately as in the
flow fully specified case, The fact that the program requires in
general only one further iteration is not thought to be & computational

drawback.

5.4 The Diakoptic Methods

A small scale analysis of the convergence of the diakoptics
programs under a variety of conditions has showm the methods involved
to be stable., This agrees with the suggestion previously put forward
that the stability of all the matrix methods could be established by
the analysis of one of the gimpler matrix programs., The analysis of
the performance of lODEFLAN has shown conclusively over a wide range

of conditions that the matrix methods are stable, Middleton (6) has
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also given evidence of the stability of the nodal diskoptic method and
therefore no further investigation of the stability of the diakoptics
methods in general is necegsary.

The following discussion is therefore concerned only with the
relative accuracy of the results produced by the two diakoptics
programs, the saving in storage and the speed of convergence,

To verify the results obtained by NODEDIAK the TEST1 network was
torn into three sub networks as shown in fipgure (5.4.1). The commection
list and node to datum flows for each of the cutsections are given in
tables (36) and (37) respectively. The results in terms of the
individual pipe flows and the comparison with the results of Middleton
are given in table (38). As can be seen from this table, the results
from NODEDIAK are in good agreement with those of Middleton save for
the flow in branch 8 of cutsection 1, However further analysis of
{iddleton's results show that the flow recorded for that branch could
not have been arrived at by the program because of the values of the
flows in the surrounding branches. The flow should be 13.98, not
14.98 cu ft/min, and the error in Middleton's results is therefore
probably typographical. No valuable information can be gained by
analysing the small errors between the two sets of results since
l'iddleton has not recorded his convergence criterion. Further evidence
which shows the similarity between the results obtained by Middleton
end those obtained from NODEDIAK is given in table (39). This table
shows the node to datum pressures for the network TiGT1 shown in
figure (5.4.1), together with the equivalent results from a different -
cutting pattern analysed by Middleton. As can be seen there is
excellent agreement between the two sets of results.

The network due to ¥nights and Allen as stated previously has been

examined as a water distribution network in this thesis; however to
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Figur 1) The notwork TEST1 subdivided into three gub networks

hy six cntbranches for analysig by WODEDIAK




compare the results of the program NODEDIAK with the results obtained by
Middleton (€) and Knights and Allen (35) the network was analysed once
only as a gas distribution sygtem, The valuesg of the gas density and
viscosity used are the gsame as those uged by Middleton, the information
being obtained from Perry (43). The connection 1ist for the network
shown in figure (5.4.?) is given in table (40) and the node to datum
flows for each section in table (41). The results in terms of the
individual branch flows are given in table (42). A1l three sets of
results are in good agreement, larger errors only occuring in branches
of low flow. The agreement is better than that reported by Ingels anrd
Powers (29) who experienced a 20-30 per cent difference between their
own results and those of Knights and Allen,

The small network due to Dolan (32) has been analysed by Tngels
and Powers (29) and Middleton (6), The connection list for the analynis
of this network by NODEDIAK is given in table (42) and the dimensions
of the network for the figure (5.4.3) are shown in table (42) and the
node to datum flows for the same figure in table (45). The results
obtained by four analyses are shovm in table (46). The maximum overlap
choice using NODEFLAN is in good agreement with the results obtained by
NODEDIAK and there in turn are in good agreement with those obtained
by Middleton, However the results obtained by Tngels and Powers do
not completely agree with those of the three other analyses. Noct of
the disagreement arises in branches of low flow, of which there are
many in this small network. The fact that so many low flow branches
are present is difficult to understand since the original analysis by
Dolan was for a fire-fighting system, for which the demands on the
gystem are of at least an order too small,

The program NODEDIAK has been shown to give results which are in

good agreement both with those available in the literature and with
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Figure (9,4,2) The network due to Krights ond Allen subdivided in'-

four cutsections by nine cutbranches for analysis %
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The network due to Dolan gubdivided into three
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the results ohbtained from the programs HCMESHOUT, NODEFLAN and MESIHFLAL,
No comparison of the relative speed of convergence or the storage
requirement of NODEDIAK has been evaluated at this stage, It is felt
that the networks analysed in this chapter are not large enough to

show clearly the advantages of using the diakoptice methods, The
reason for thig is that the computation time given as output from the
programs includes the compilation time and it is known approximately
that the compilation time for NODEDIAK is in the order of 30 seconds
and that for NODEFLAN in the order of 10 seconds. Therefore any
analygis of efficiency of the programs which converge to solutions in
the order of 30-50 seconds for the above networks is likely to be
inconclusive, Two further networks have been examined, one is a water/
gas distribution network by ¥ 5 Atking ~211ed TEST3, and the otter ralle:
TE5T2 has been constructed by the author to represent the type of
network problem encountered in heat transfer studies,

The following discusgion is mainly concerned with the performance
of NODEDIAK and MFSIIDIAK in the snalysis of these two networks. However
since no comparison éan be made, for these two networks, with published
information, it is first necessary to establish the accuracy of the
results of MESHDIAK, The network TEST1 shown in a subdivided state in
figure (5.4.4) was analysed by MESHDIAK, The connection lists and nnde
to datum flow vectors for the cutsections are given in tables (47) and
(48) respectively. The results obtained by MISHDIAK are compared in
table (49) with the results obtained by MESHFLAN for the maximum over-
lap analysis of TEST1. These latter results have previously been
shown in table (22) to be true and accurate results. As can be seen
from table (49), the results produced by MESHDIAK are in good agreement
with those produced by MESHFLAN, This is especially true in the more

critical low flow branches, for instance cutbranch 3.



-1£2-

Fipure (5,4,4) The network TIST1 subdivided for analysis by MESHDI 4k
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5.4.1 The analysis of larger networks

To establish the performance in terms of solution time and stora:e
requirements for the diakoptics methods, the network TEST2 shown in
figure (5.4.5) was devised.

This network was analysed using HCMLSHOUT, NODWFLAN and MESHFLAN
for the arbitrary overlap case shown. For the analysis the network was
assumed to be a water distribution system of 112 identical smooth pipes
of length 100 ft and 0.5 ft in diameter with no pumps in the system,

It is thought that the preparation of separate tablegs to indicate the
connection list of the three cases of TEST2 analyses would be bulky,
therefore the directions of the branches for all the cases are shown

on the figures. A single table (50) shows the node to datum flows for
the arbitrary overlap case shown in figure (5.4.5), the node to datum
flows for the other two énalyses of NMuSIIDIAK and.NODEDIAK are identical,
and therefore the vector of node to datum flows for these cases may be
obtained by cross referencing from the figures (5.4.6), (5.4.7) an’
table (50).

The program HCMESHOUT analysing the arbitrary overlap case did
not converge to a solution and the iteration scheme was stopped after
2000 seconds. Approximately 350 iterations had been completed and the
information about the number of branches assumed to have converged

indicated that a solution was converging as shown below.

Number of iterations Number of branches converged
60 2
120 8
180 18
240 62
300 89
350 95

Stopped



=184~

Figure (5.4.5) The Arbitrary Overlap Condition of TEST2




For the major part of the time of this research project less thsn
20K of core storage was available for data handling; under this
condition the programg NODEFLAN and MESHFLAN could not solve the
arbitrary overlap case of TEST?2 because they required too much storage
space. However, when more core gstore became available the programs were
re-run with the same data. 3ufficient storage was available but neither
of the programs had converged to a solution after 550 seconds, when the
iteration cycle was interrupted by the University's computer operating
system. From the information about the number of branches converged at
each iteration both programs were converging to a solution, but slowly,
only two branches being converged by NODEFLAN and one branch being
converged by MESIHFLAN,

One of the most important factors of the WODEDIAK and MESHDIAK
analyses i3 the fact that they both converged to a successful solution
using less than 20K of storage and therefore these two programs
provided the only way in which a network problem of this size could
be snalysed on the smaller machine. A further decisive factor is that
JODEDIAK converged to a solution in 369 seconds and MESHDIAK in 310
gseconds, proving beyond all doubt the efficiency of these methods.

The results obtained by both programs are given in table (51). The
agreement between the two sets of results is excellent both in the low
flow branches and in the critical cutbranches,

A second large network has also been examined. This network
called TEST3 is shown in figure (5.4.8). The branches and nodes are
numbered with the tree branches indicated by the heavier lines. The
branches are assumed to be identical, 100 ft in length, 0.5 ft in
diameter and smooth, There are no pumps in the system. The node to
datum flow vector for this network is shown in table (52)., This overall
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Firure (5.4.6) The network TL3T2 subdivided into two sub networkg
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Figure (5-4.8) The arbitrary overlap case of TEST3
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Fipure (5,4,9) The network TEST3 subdivided for analysis by hGLL.
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Higure (5,4,10) The network TEST3 gsubdivided for =nalyaig by MNESHDIMAL
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terms of the individual pipe flows given in table (53).

The network was also subdivided as shown in figures (5.4.9) =zn2
(5.4.10) and analysed using NODEDIAK and MESHDI&K-respectively. The
relative accuracy of the results produced by these two programs has
previously been egtablished and interest in the results obtained from
the analysis of TUJST3 centres only around the relative solution times
and number of iterations required for solution, The following results

were obtained from the four analyses of TEST3,

Progranm Solntion Time secs Tterations
MESHFLAX 134 11
NODEFLAN 163 12
MESHDIAK 94 11
NODEDI AK 130 12

TEST3 has a large number of branches, but is not over meshed.
This is borne out in the above results since the program M=SHFLAN is
more efficient than NODEFLAN, However since the network is large the
saving in solution time by the use of the diakoptics programs is
also well demonstrated., Jotice too how the program MESHDIAK is more

efficient than NODEDIAK because of the few meshes in the network,

5.5 Inversion Procedures

As previously discussed, four procedvres for the inversion of the
network solution matrices were investigated. Using NODEFLAN to
analyse an arbitrary overlap choice of TEST1 the following results

were obtained:

Inversion Procedure Solution Time secs
Gaugsg-Jordan T2
ICL Package 58
Choleski | ‘ 43

Modified Choleski 31
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Purther analyses of the sort outlined above were performed with
MESHFLAN with the same result that the modified Choleski procedure
due to Caffrey (33) was found to be the inversior procedure which

gave the most rapid convergence.

5.6 Discussion of Results

The results clearly show that there are advantages to be gained
using the matrix methods for the computation of network problems, In
the analysis of the smaller networks the programs NODEFLAN and MGSIF Ll
have been shown to be more efficient than the Hardy Cross methods.

Each one of these programs is of course suited to a particular type

of network problem. For a heavily meshed system NODEFLAN ig clearly

the most efficient program, whilst for networks which are not heavily
meshed MEGHI'LAN is the most efficient program., In the intermediate
range, there is little to choose between the two programs but it must
be remembered that because of the nature of the solution method employed
in MESHFLAN, the number of computational operations required by this
program is greater than that required for NODEFLAN, The reason for
this is that the A matrix normally associated with the node to datum
method may be very simply represented within the computer. The C
matrix of the mesh method has been stored as a full matrix and apart
from the special algorithm proposed for forming the mesh solution matrix,
any matrix multiplications involving C must therefore be carried out in
full,

In the analysis of larger network systems the two diakoptics
programs have been shown to be the most efficient., Clearly however the
same problem arises with MiuSIIDTAK as with MESHFLAN in that the C matrix
for each of the sub networks is stored in its entirety, apart from

the omigsion of the link partition part C;. No definitive analysis

has been carried out to determine the relative efficiencies of NODEDIAK
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and MESIDIAK but it is fel+ that NODEDIAK is more suitable for the
analysis of large heavily meshed networks and MESHDIAK suitable for
the analysis of large networks which are not heavily meshed,

The question of the relative efficiencies of these two programs
is of course related to the problem of choice of cutting pattern.
Middleton (6) has proposed the rule of thumb for the most efficient
cutting pattern associated with nodal diakoptiecs. It is that the
network should be subdivided into the maximum number of sub networks
of approximately equal numbers of nodes by the minimun number of cut-
branches, A similar rule is suggested for mesh diakoptics. It is
that the network should be subdivided into the maximum number of sub-
networks of approximately equal numbers of meshes by the minimum
number of cutbranches,

The data preparations are easier to compile for all of the matrix
methods. An extension of this is that an engineer analysing a network
gystem by adding or removing branches, or interconnecting series of
networks can achieve this easily with no necessity to recompile new
data preparations. Middleton (6) has shown this particular facility
of the diakoptics method to be at least as important as the increased
efficiency of the method. As discussed previously any commercial
application of MESHDIAK or NODEDIAK would be expected to have incor-
porated into it the facility of calculating a solution to a changed
enalysis from an already converged solution.

The matrix methods have also been shown to be insensitive to the
initial estimate of flow and friction factor with the results that
these can be assigned by the program rather than input as data. It
has further been shown that the recalculation of accurate friction
factors on every iteration is not necegsary, for turbulent flow the
nralculation of only a first order éorrection being necessary to maintain

convergence to an accurate solution.
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6.1 Corclusions

The results produced in Chapter (5) Justify the agsumption put
forward in the introduction to this thesis, that the use of matrix
methods applied to the solution of pipe network problems would result
in more efficient means of solving those problems., Tt is the author's
opinion however that the simplicity and conceptual clarity of the new
methods is qualitatively of equal importance to the increase in
efficiency.

Using four basic network describing matrices, six computer progroms
have been developed. LATTHODEFLAN, the program which incorporates the
algorithm due to Branin (19) for the updating of a tree solution
matrix by the addition of link branches, has been shown to be less
efficient than even the Hardy Cross methods. The link at a time method
suffers from the fact that the (ET'ET'ET) matrix has to be constructed
or every iteration by the full matrix multiplications, and since the
completed matrix is not very sparse, no special techniques can be
implemented for the lengthy updating procedure. Further, the amount
by which each element ig updated requires for its computation five
gubtractions, three additions, one multiplication and one division.
LATTHODEFLAN may therefore be disregarded as an efficient method of
gsolving network problems,

The remainder of the programs can be classed into two groups:
the orthogonal methods and the diakoptic methods. Both groups of
programs have been shown to be more efficient than the Hardy Cross
The data are easy to prepare and therefore the likelihood of

methods.

error generation is decreaged. The convergence of the methods is not
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dependent on the initial estimates of flow and frietion factor, and
because a flow distribution which gatisfies Kirchoff's Laws does not
have to bhe specified, the initinl) estimates may bé generated automatic-
21ly by the programs. The methods have been shown 4o be very stable
over a large ranre of node ‘o datum flow specificatinong and mesh
formations. Friction factors are acenrately calculated using a first
order correction of the Colebrook White equation on every iteration.

The inclusion into a network specification of ron pipe elements
such as pump terms and node to datum pressures may also be accomplisied
with the minimum of effort, whilst for the Hardy Cross methods this iz
a2 difficult task.

The diakoptiecs programs have been shown to be the mogst efficie-t
for the solution of large scale problems, As the =ize of the problem
is increased the overall performance of the diakoptics programs,
relative to the performance of other methods, is enhanced, o detailnn
investigation of any optimum cutting patterns hes been made, however
it iz felt that the two =ets of simple rules for subdividing networks
will ensure efficient convergence.

The data preparation technique for all of the matrix methods hna
been refined, with the result that to set un the coemnlete aolution
equations, only information about the physical data and a branch-node
cormection list is required, Since none of the matrix methods is
dependent on the choice of mesh formation, the branches of the graph
of a network may bhe arbitrarily numbered from 1 to BR, where BR is tle
number of branches in the system. Thig is the case even for programs

which ngse the C matrix since this matrix can be automatically generated

by the program. However, it has been shown that fewer operations ares

required to compute the ET and. QT matrices if the tree branches are

agsigned the lowest reference numbers, and that in this case the mesh
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formation of QT is identics]l to that chosen by the user., A sefisen

technique of generating Bp from a connection 1ist has also been

proposed,

Partitioning of the connection list has the further advantage tha%
less computer storage is required gince B;, and C; are respectively mill
and unit matrices, neither of which have to be assirmed storage.

The partitioned form of all the network dencribing matrices gives
the two square transformation matrices simple characteristics, from
which it is quite easy to see the equivalence of partitioning the
describing matrices and partitioning of the network itself, The
partitioning of the network led to the important concept of the node to
datum path which is the dual of the mesh path., Without the node to
datum path concept, the two mesh equations of orthogonal and diakoptics
solutions could not have been applied to pipe network flows. The two
path concept has simplified the transformation between two types of
network to such an extent that only the simplest of matrices is
needed to perform the transformation, It is important to node that
the graph describing matrices can be related directly to physical
phenomena in the actual network,

The transformation matrices can be constructed directly as in the
orthogonal methods, or by a series of matrix multiplications as in the
diakoptics methods, However, algorithms have heen suggested for the
formation of the diakoptic solution matrices which, from a knowledge
of their expected form, enable them to be set up with the minimum of
effort. Simil~r1r, rules have been formulated for the direct formatimm
of the mesh and node to datum solution matrices (Eﬂiﬂﬁ) and (E,g,g),

. greatly reducing the normal computation time required to establish
An inversion procedure which takes advantage of the

thege matrices.

special propertic: of the golution matrices has been proposed, together
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with 2 technique for further redneing computer storage requirements by
reducing the diagonal matrix of primitive admittances to a vector,

It was realised in the early development of the theory that the
concepts of nodz to datum and mesh paths have a much wider application
to chemical engineering problems. For instance, the concents can be
applied to the network of finite difference approximations of partial
differential equations and therefore the solution equations to such
problems can be automatically set up with a mininum of effort. In this
particular case the solution matrices of the subdivided system can be
made, in general, equivalent and therefore large amounts of computer
storage and time can be saved as only one of these matrices has to be
stored and inverted,

Systems of mixed linear and non-linear elements may also be solved
more easily by using diakoptics, allowing the solution equations to

cycle through the non-linear iteration only,

6.2 Recommendations for further Investipation

It is a feature of modern chemical engineering that designers nse
Computer Aided Design principles in the construction of chemical plant:
It is suggested that the techniques of transformation matrices can be
applied to the desipgn problem, The components of a chemical plant can be
represented as a collection of unique parts, each agsociated with a
deseribins equation. Such a syctem can be visunalised as equivalent to
the collection of primitive branches of a network, These primitive
branches may then be interconnected in any manner desired using the
transformations that have previously been discussed.

One of the further advantages of wsing the diakoptics methods
which has not been anzlysed in this thesis is the efficiency of the

ton-1ine' method of operation, A designer can effect changes to the
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shape of. a network from an 2lresdy converged solution, greatly reducing
the amount of computation time required, since 2 new network formmlation
does not have to be carried out, althouch for the ﬁardy Cross methods
this would be a necescity, Chanses in node to datum flows may 21go be
facilitated easily since no new flow distribution hns +o be specified,
Solutions to a series of individual network problems may be obtained znd
stored, with the result that the designer can at any time interconnect
any of the series in any manner with the minimum of effort., Thig is 2
particularly impertant facility for dealing with network systems ir wihicli:
the boundory conditions are other than physical, for evample the inter-
connection of systems belonging to different #rea boards in the gas
industryr.

It i=s satrongly recommended therefore that any commerci~l appliec-
ation of theltwo diakoptica programs should incorporate some interactiv
facility.

Althouch it has been shown that certain of the matrix methods ~re
more efficient than the remainder when #nalysing particnlar problems,
for ingtsnce for heavily meshed systems the node to datum methods are
most efficient, mich werl remaina to be done on improving the performm o
of the programs, Sparsity and reduced storage techtniques can be
investigated., The full potential of the mesh diakoptics method must

also he further investigated and compared to the fully developed node

to datum diakoptics method.
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Iist of Symbols

Transformation Matrices

< |4 g [@ lw |

IR

Branch-node incidence matrix

llode to datum path matrix

Branch~mesh incidence matrix

Cutset matrix .

Link-branch matrix

Square orthogonal transformation matrix

Square orthogonal transformation matrix

Supplementary Matrix Notation

gm etc
éL ete

a (i,3) ete

Hode to datum partition of A etc

Mesh partition of A ete |

lode to datum - node to datum partition of ¥
lesh = node to datum partition of &

Augmented branch-node incidence matrix
Branch-node incidence matrix for torn network
Square orthogonal transformation matrix relating
torn and primitive systems etc

Square orthogonal transformation matrix relating
torn and connected networks

Flement (i,j) of A matrix ete

Seneral Matrix Notation

o |a

I

-1

|==

I>-
-
Ia

Identity matrix

Mall matrix
Trangpose of matrix
Inverce of matrix

Matrix miltiplication
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Yeotors and Matrices of Netwopk Variables

E

| I

|~

(LT SR T B

o

Je, Ve

Il'

1

]

12 ete

Primitive non pipe pres=nure tern usually asgocizted
with pumps

Primitive branch potenti»1 rise across extremities
of branch

Primitive total flow in branch

Primitive branch current sonrce

Primitive branch component of current due to m=sh
flows

Totrl potentizl rise in primitive branch
Primitive branch admittince

Primitive branch impedance

Orthogonal potential source

Orthogonal node to datum potential

Orthogonal current source usually node to datum
flows

Orthogonal mesh component of flow

Vectors associated with connecterd network
Components of vector T etc

Toltage sonrce which incorporates equivalent
enrrent, sonrcea

Cucrent souree which incorporstes equivalent

vol tase aources

Phrsical Metwork Variablegs

A
D
L
P

Crosa sectionsl area of pipe
Dismeter of pipe

Jength of pipe

Fluid pregaure

Flnid flow in pipe
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R Hydranlic resistance

R' Regicstarce term due to Hardy Cross
i Fluid velocity

Re Reynolds Number

Other Notation

b, BR Mumber of branches in network
m, M Timber of meshes in network
ND mimber of non datum nodes or node to datum paths

in network
) o8 Van der Berg flow residue at node i

n Hardy Cross Exponent

“reeck Symbolg

m

Pipe roughness

Fluid density

Friction factor

Fluid viscosity

Correction term due to Hardy Crozs
Correction term due to Van der Berg

Variable used by Ingels and Powers in friction

O ~ <" * 6 ~

factor determination
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