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SUMMARY 

The application of the Kalman Filter to the on-line 
estimation of the state of a chemical process has so far 
met with a limited amount of success due to the 
inaccuracies and non-linearities of the mathematical 
models developed to describe the process being studied. 
To overcome these problems two theoretical developments 
are proposed; the first being an adaptive form of the 
Kalman Filter which compensates for modelling errors 
by finding the mean and covariance of a number of 
"fictitious inputs" and the second a numerical 
technique for determining the state transition matrix 
of non-linear systems by the use of eigenvector theory. 

Following a series of off-line experiments, these 
modified forms of the Kalman Filter were applied to 
the on-line estimation of the state of a pilot plant 
scale double effect evaporator. The work involved can 
be conveniently divided into the following three 
sections. 

First of all a seventh order mathematical model 
of the evaporator together with suitable heat transfer 
correlations and compatible with the Kalman Filter 
was derived and then tested by comparing the 
simulated responses with plant data. 

Secondly two major software packages were 
developed, 

(i) The Hadios Executive Package which was used 
for interactive data acquisition and, 

(ii) The On-line Digital Filtering Package (OLDFP), 
a real time operating system which controls the 
execution and data acquisition of filtering programs 
written in Fortran. 

Finally a series of on-line filtering experiments 
were carried out, the results of which show that the 
proposed theoretical developments considerably improve 
the performance of the Kalman Filter by eliminating 
bias and divergence. 

KEY WORDS - KALMAN FILTER, ON-LINE COMPUTATION, MATHEMATICAL 
MODELLING, EIGENVECTOR THEORY, SIMULATION.
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CHAPTER 1 

INTRODUCTION



eS INTRODUCTION 

The fundamental objective when designing, 

constructing and operating physical systems is 

to convert some readily available raw material 

into a required commodity with a desired quality. 

To achieve this objective it is necessary to be 

able to control the physical system at a state at 

which the raw materials are efficiently converted 

into the product. The action of control is 

essentially a decision making process and as 

such requires an accurate knowledge of the state 

of the system under study. The problem of 

accurately determining the state of a system 

from noisy measurements is called estimation or 

filtering and is the main subject of this thesis. 

The complexity of the processes found within 

the chemical industry and the speed at which 

decisions need to be made has led to the use of 

high speed digital computers to help the 

engineer in the estimation and control of the 

state of the system. Computers are particularly 

useful when using modern control schemes where 

two sources of information are available for the 

estimation of the state of the physical system. 

The two sources of information available are



measurements of process variables and a mathematical 

description of the physical system. In chemical 

engineering systems both are subject to error. 

The combination of information from measure- 

ments and a mathematical description of the 

system to provide 'best' estimates of the 

state of a process is an area of recursive 

estimation or filtering which has been the 

subject of much research for many years. In 

1960 Kalman (1.1) extended filtering theory to 

cover the estimation of states described by a 

set of linear ordinary differential equations 

and following this development the classical 

Kalman Filter has been widely applied in many 

diverse fields, in particular the aerospace 

industry. Unfortunately, the use of the 

classical Kalman Filter in the chemical industry 

has been rather limited due to the following 

reasons; 

(i) A lack of knowledge of the process under 

consideration. 

(ii) Chemical processes usually yield complicated 

mathematical models which are generally non-linear, 

of a high order and often consist of partial 

differential equations.



The objective of this thesis is to develop 

modifications to the classical Kalman Filter 

which will overcome some of the problems 

outlined above. The effectiveness of the 

proposed modifications will then be demonstrated 

first of all by a series of simulated experiments 

and secondly by the real time, on-line estimation 

of the state of a pilot plant scale double 

effect evaporator whose dynamic characteristics 

are poorly understood. 

THESIS OUTLINE BY CHAPTER 

Chapter 2 reviews the relevant literature 

concerning the development of estimation theory 

and in particular the problems associated with 

real time estimation for chemical processes. 

Finally, a brief review of heat exchanger dynamics, 

relevant to double effect evaporators, is presented. 

Chapter 3 discusses two theoretical develop- 

ments which should improve the performance of 

the classical Kalman Filter. The first of these 

developments is an adaptive form of the Kalman 

Filter which compensates for a poor mathematical 

description of the process under study and the



second is a numerical procedure for overcoming 

the non-linearities of a process. 

The results of a series of simulated 

experiments using various forms of the Kalman 

Filter are presented and discussed in chapter 4. 

The double effect evaporator, its operation 

and instrumentation and the link to the H316 

computer system are described in chapter 5. 

Chapter 6 describes the computer programs 

available for on-line experiments with the double 

effect evaporator. This description includes 

the standard manufacturers software and 

applications packages developed as part of this 

research. 

The development of a mathematical model to 

describe the processes occurring in the double 

effect evaporator is described in chapters 7 and 

8; chapter 7 is concerned with a steady state 

analysis and chapter 8 with the development and 

testing of a dynamic model. 

Chapter 9 describes the on-line implementation 

of the forms of the Kalman Filter developed in 

chapter 3. Finally the experimental results 

obtained are presented and discussed. 
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Chapter 10 presents the conclusions made as 

a result of this research and makes recommendations 

for further study.



CHAPTER 2 

LITERATURE REVIEW



2.1 INTRODUCTION 

The operation of all types of chemical engineering 

process plant requires some form of control system to 

maintain the product at some predetermined quality. 

The types of control systems now available range from 

the process operator through to on-line control using 

high speed digital computers. As the sophistication of 

the control system used increases so does the required 

knowledge of the process. For example, a process 

operator will be aware of simple relationships between 

operating conditions and measurements and adjust the controls 

accordingly, whereas, for process control and optimisation 

using modern multivariable control theory, a detailed 

mathematical model describing both steady and dynamic 

states, must be derived in order to satisfy the 

requirements of this theory for accurate values of all 

the state variables necessary to describe the system. 

The derivation of an accurate mathematical model often 

proves to be a source of difficulty Ee limitations are 

usually imposed by the physical information available, 

the type of mathematical model used and the number of 

measurable variables. Furthermore, the task is often 

complicated by two main factors; (i) the measurements 

made are often corrupted by noise caused either by the 

components of the measuring device or other nearby 

electrical systems. (ii) The system itself may be 

subject to random disturbances. 

The problem of determining the state of a system



from noisy measurements is called estimation or 

filtering and, due to its central importance in 

engineering, has been the subject of man's attention 

since the pioneering work of Gauss (2.2) and Legendre 

(2.1). <A wide variety of techniques have been developed 

during this period and, in general terms, each one 

depends upon the type of model used, the availability 

of experimental measurements and the nature of variables 

of special interest. With the advent of high speed 

data processing more advanced techniques of data analysis 

have become available. 

The purpose of this review is to survey those 

techniques applicable to on-line process identification 

and in particular examine the reported applications and 

modifications of a type of recursive estimation known 

as Kalman Filtering. The problem of extending this 

linear theory to non-linear systems is considered together 

with reported difficulties of implementing this technique 

in real time. Finally the mathematical modelling of 

evporators and heat transfer equipment is briefly 

reviewed. 
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2.2. ESTIMATION AND IDENTIFICATION THEORY 
  

2.2.1, HISTORICAL DEVELOPMENT 

The recovery of information from measurements 

corrupted by uncertainty has long been a struggle 

endured by many an investigator. Probably the 

earliest attempts at a solution to this problem were 

those proposed by Legendre (2.1) in 1806 and Gauss 

(2.2) in 1809. The fundamental publication by Gauss 

describes his attempts at determining the orbital 

elements of a celestial body from available data. The 

method used has come to be known as the "Method of 

Least Squares" and since its conception, whenever an 

investigator has been confronted with data suspected 

of containing random errors, the "most probable" or 

"best" estimate of the desired parameter is computed 

by means of some variation of this method. The method 

of least squares is a deterministic approach to the 

problem of minimising errors and, in basic terms, 

attempts to pass the solution of a physical model as 

closely as possible through the measurements made. 

The most serious drawback of this method is that all 

measurements need to be available before minimisation 

can take place. Consequently, as the number of measure- 

ments increase, the computational requirements involved 

in obtaining a solution can become prohibitive. Deutsch 

(2.3) gives a review of the many aspects and applications 

of this approach to estimation. 

Perhaps the first two significant advances in 

estimation theory were due to Pearson (2.4) and Fisher (2.5).



Pearson developed a technique known as the "Method of 

Moments" which is no longer widely used as it has been 

established that the estimates obtained were not the 

best possible from the point of view of efficiency. 

Fisher demonstrated that the method of maximum likeli- 

hood was usually superior to the method of moments and 

that estimates derived by this technique could not be 

essentially improved. 

The estimators discussed above are merely smoothing 

procedures, and in no way make use of any known statistics 

of the system under consideration in order to provide 

more accurate estimates of its state. Theoretical 

considerations show that this could be accomplished if 

the correct weighting matrix for the data could be 

computed for the system considered. However, Deutsch 

(2.3) and Swerling (2.6) both agree that this can be 

rarely accomplished in practical applications. 

The need for some new type of estimator making use 

of morea prioriinformation was made painfully obvious by 

a rapid development of communication theory by engineers 

and physicists. Communication theory, as originally 

conceived, was applied to the transmission of intelligence 

by electrical means. At this time the major concern was 

with the effect of random processes, or noise, on the 

intelligibility of signals within communication channels. 

The first attempts at the reduction of the effects of 

noise were in the proper direction but were severely limited 

because of the lack of an estimation theory that could be



used to synthesize the required noise separation filters. 

A fresh approach to estimation theory came with 

the use of known system statistics. Researchers in this 

field have termed this the probalistic approach to the 

problem. The foundations of estimation theory using 

this method are attributed to the original and parallel 

developments of Wiener (2.7) and Kolmogorov (2.8). These 

works, although containing complex mathematical treatments, 

offered for the first time an analytical synthesis technique 

which could be used for the separation of a desired signal 

from an environment of undesired noise. Wiener's theory 

appears to be essentially a least squares estimation 

process. However, he made elegant use of the fact that 

he was estimating parameters from input data in the form 

of a stochastic process. The technique derived is based 

upon frequency domain analysis and reduces to the solution 

of a complex integral equation (the Wiener-Hopf equation). 

Using this method solutions can be obtained for estimation 

problems relating to a class of linear, stationary systems. 

An engineer would classify such systems as simple when 

compared to the more important cases of non-linear and 

non-stationary. problems. These more complex problems 

remain essentially unsolved despite various modifications 

and extensions to the Wiener-Kolmogorov theory which have 

been proposed. The conclusion reached by most authors 

is that the assumptions required to enable the solution 

of the Wiener-Hopf integral for complex systems renders 

the theory inadequate for non-linear estimation. 
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2.2.2. PROCESS IDENTIFICATION 

Since the publication of the Wiener-Kolmogorov 

theory, an increasing amount of attention has been 

focused on the problem of determining, from input/output 

data, useful mathematical descriptions of dynamic systems. 

The introduction of the high speed digital computer has 

added extra impetus to this trend by facilitating the 

implementation of sophisticated data processing operations. 

The field has subsequently become rather diverse and a 

precise definition of the term "Identification" is some- 

what difficult to come by. Astrom (2.9) defines 

identification as, "the determination, on the basis of 

input controls and output measurements of a mathematical 

model equivalent to the process under consideration", and 

this being very general is more applicable than most. 

The task of subdividing identification into different 

classes is simplified by the fact that the technique used 

is usually dictated by the type of mathematical model 

used to represent the system. In the final analysis this 

amounts to the nature of the basic structural assumptions 

made about the system under consideration. General 

reviews of identification techniques have been published 

by Nieman et al. (2.10), Seinfeld (2.11) and Cuenod and 

Sage (2.12). Seinfeld states that the following broad 

classes of problems require estimation techniques: 

(i) The determination of model parameters in 

non-linear algebraic models from experimental measure- 

ments, e.g., the determination of chemical reaction rate 

pete



constants from experimental reaction rate measurements. 

(ii) The determination of model states and parameters 

in non-linear dynamic models from laboratory and plant 

output data, e.g., the modelling and simulation of non- 

linear dynamic processes from operating data. 

(iii) The on-line modelling of dynamic processes 

where a continuous output signal is used to generate 

instantaneous estimates of the states and parameters in 

process models. 

. The techniques involved in the solution of the third 

class of problem are classified as sequential or non- 

sequential estimators. In the sequential approach, 

estimates of state variables and parameters are generated 

at each sampling instant. Non-sequential estimators are 

based on taking a series of samples over a known time 

interval. This thesis is primarily concerned with the 

solution of the third class of problem using a sequential 

technique. 

A sequential solution to the estimation problem is 

commonly referred to as a filter because current state 

and parameter estimates are calculated as the output 

measurements become available, hence continuously 

filtering the system. The filtering problem can thus be 

'identified' as the estimation of the current state of a 

dynamic system using all past and present measurements. 

2.2.3, KALMAN FILTERING 

The general linear non-stationary filtering problem 

was essentially solved using the concept of state 
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variables in the classical method due to Kalman (2.13), 

Kalman and Bucy (2.14) and Kalman (2.15). The technique 

-used manages to remove the inherent difficulties in the 

solution of the Wiener-Hopf integral by substitution of 

an equivalent non-linear differential equation. It is 

this non-linear differential equation, which on solution, 

yields the covariance matrix of the minimum filtering 

error. In turn this matrix contains all of the 

information necessary for the design of the optimum 

filter. This approach has the practical advantage that 

the optimum filter can be synthesised in a sequential 

manner and thus is often readily implemented in real 

time without the attendant problems of data storage 

requirements encountered in earlier least squares 

approaches. 

The Kalman-Bucy method (hereafter referred to as 

the Kalman Filter) can be summarised by the following 

five relations, (2.14): 

(i) The differential equation governing the optimal 

filter which is excited by the observed signals and 

generates the best linear estimate of the message. 

(ii) The differential equations governing the error 

of the best linear estimate. 

(iii) The time-varying gains of the optimal filter 

expressed in terms of the error variances. 

(iv) The non-linear differential equations governing 

the covariance matrix of the errors of the best linear 

estimate, called the variance equation. 
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(v) The formula for prediction. 

A continuous time linear dynamical system can 

be described either by a differential equation formu- 

lation or by a linear difference equation. For the 

purpose of this thesis a system characterised by 

difference equations will be considered. 

The time-discrete Kalman Filter is composed of 

matrix recursion relations, the simplicity of which 

makes them particularly amenable to implementation on 

a digital computer. The derivation of these relations 

is accomplished in a manner that relies more upon physical 

intuition than upon mathematical sophistication. A 

number of different derivations are provided by Sorenson 

(2.16). 

The Kalman Filter algorithm provides an optimal esti- 

mate of the state of a linear, time varying, dynamic 

system observed sequentially in the presence of additive 

white gaussian noise; such systems are referred to as 

linear stochastic dynamic systems. The estimate obtained 

at each time is optimal in the sense that it is the 

maximum likelihood estimate conditioned on all observa-— 

tions up to that time. Such a system can be described 

by the following vector set of differential equations: 

x(t) A(t). x(t) + B(t). 2(t) - (2.1) 

u y(t) = M(t). x(t) + v(t) - (2.2) 

where, t denotes time, 

x is an n*1 vector of state variables, 

y is an m*1 vector of measurements, 

Z is a p*1 vector of random system disturbances, 
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represented by a zero mean, white gaussian noise process, 

v is an m¥l1 vector of random measurement noise, 

represented by a zero mean, white gaussian noise process, 

A is an n*n matrix of coefficients, 

B is an n*p matrix of coefficients, 

M is an m*n measurement matrix. 

By integration of equation 2.1 the system is 

converted to discrete time and can be represented by 

the vector set of difference equations, 

x(k+1) = o(k+1,k) x(k) + [(k+1,k). B(k). 2(k) 

= (2,3) 

y(k) = M(k). x(k) + v(x) = (2.4) 

where, ¢ is the n*n state transition matrix, 

T is the n*p integral state transition matrix, 

= k* = s k k¥ At and At thay ty 

For a stationary linear system, the transition matrices 

are given by, 

o(k+1,k) = exp (A. t) - (2.5) 

teed 
T(k+1,k) = f exp (A(t, +At-t)). dr - (2.6) 

t. 
kK 

The respective variances of u(k) and v(k) are given by, 

a Q(k) = E(z(k).2(k)7) - (2.7) 

R(k) = E(v(k).v(k)") (2.8) 

where, superscript T denotes matrix transposition. 

Finally, assuming that the initial state prediction, 

x(0,-1), together with its error covariance, P(0O,-1), are 

known, then the linear Kalman Filter determines the 

estimate of state and minimises the quantity J as 

follows: 
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k-1 

J = 3 (Rk) - x(k,k))7. Par,ky7t + 4 2 
j=0 

; s Ler age cy ea, 
CCyG@3t1) = MCj+i). xCjt1,3)) . ROHL) - 

(y(J+1) = M(JtT)- xCJ+1, 5)) - (2.9) 

where, x(k) is the true state of the system, 

x(j,i) denotes the estimate of the state x at 

time j given measurements up to time i, 

i <=j, 

P(j,i) denotes the covariance of the error in 

this estimate, and, 

superscript -l denotes matrix inversion. 

The Kalman Filter algorithm may be written as a 

set of prediction and estimation equations as follows:- 

Prediction: 

x(k+1,k) = $(k+1,k). x(k,k) - (2.10) 

P(k+1,k) = $(k+1,k). P(k,k). o(k+1,k)7 

+ T(k+1,k). B.Q(k+1). B? r(k+i,k)? 
= (211) 

Estimation: 

K(k+1) = P(k+1,k). M7(k+1). (M(k+1). P(k+1,k). 

M(k+1)? + R¢k+1)) 7? - (2.12) 

x(K+1,k+1) = x(k+1,k) + K(k+1) ( y(k+1) - M(k+1). 

x(k+1,k)) -. (2.13) 

P(k+1,k+1) = (I - K(k+1). M(k+1)). P(k+1,k) 

= (2.14) 
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or, = (I - K(k+1). M(k+1) ). P(k+1,k). (I - K(k+1). 

M(c+1) )7 + KCc+1). RUKH). K(e+1)7 

= (2.15) 

where, K(j) is an n*m weighting or filter gain matrix. 

It can be seen by examination of equation 2.13 

that the estimate of the state vector, x(k+1,k+1), is 

the sum of the predicted state and the weighted measure- 

ment error, K(k+1). ( y(k+1) - M(k+1). x(kt1,k)) . The 

original derivation of the algorithm (2.13) points out 

a number of valuable features of estimates thus 

calculated. These are that the estimate is uniformly 

asymptotically stable and that the convergence of the 

variances of the estimates, as each successive measurement 

is processed, is insensitive to round off errors, 

provided the system is observable and controllable. 

The dual concepts of observability and controlla- 

bility were introduced by Kalman (2.13) in his original 

work as a part of his general filtering theory. Coggan 

and Noton (2.17) interpret these concepts as follows: 

(i) A system is observable, if with perfect 

measurements and no random disturbances, all the state 

variables can be determined after a finite number of 

measurements. 

(ii) A system is controllable if all the states are 

excited by the random disturbances u(k). 

The more important concept to the field of filtering 

theory is that of observability. If one of the state 

variables of the system can not affect the measurement 

-17-



vector then the consequent unobservability leads to 

the estimates produced by the filter being sub- 

optimal. 

The time taken for the filter to converge has 

been shown by Storey (2.18) to depend on the accuracy 

of the initial state estimate, x(0,-1), and the initial 

error covariance, P(O,-1). The larger the initial 

error in the estimates, the longer the filter takes to 

converge. This is because until the system has 

become observable, the filter relies on the initial 

state estimate. For the case of a large initial error 

covariance matrix, the filter will display a slower 

response since it will rely initially upon current 

noisy measurements. 

The statement of the filter algorithm, equations 

2.10 to 2.15, gives alternatives, equations 2.14 and 

2.15, for determining the error covariance of the 

state estimations. It has been shown by Aoki (2.18) 

that equation 2.16 is preferable since the right hand 

side is the sum of two symmetric positive definite 

matrices while equation 2.14 is at best the difference 

of two positive definite matrices. Thus, equation 2.15 

is better conditioned for numerical computation and 

will retain the positive definiteness and symmetry of 

P(k,k). 

Following the original work of Kalman the main 

contributions to the field of linear filtering theory 

have been aimed at generalising Kalman's earlier work. 
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The most significant of these are developments by 

Cox (2.20), Kushner (2.21) and Friedland and Bernstein 

(2.22) in extending the theory to allow for correlation 

between the system and measurement noise. The problem 

of coloured (time-correlated) noise is partially 

solved by Kalman (2.15). A good review of these 

generalisations is given by Jazwinski (2.23). 

2.2.4. EXTENSION TO NON-LINEAR SYSTEMS 
  

The theoretical developments discussed in the 

preceeding section have been based upon systems which 

can be described by a set of first order, linear 

differential equations, the outputs of the systems 

being provided by quantities that are linearly related 

to the state variables. For such systems the theory 

developed by Kalman provides an optimal filter. 

Unfortunately, such a model is not immediately appli- 

cable to most engineering problems of significance 

except as a very rough approximation. The dynamical 

system for most engineering problems is frequently 

found to be described by a series of nth order non- 

linear differential equations. The fact that nth order 

derivatives appear does not offer any theoretical 

difficulty because any nth order differential equation 

may be written as a system of n first order differential 

equations. However, the output of the system commonly 

appears in terms of quantities that have a non-linear 

algebraic relation with the state variables and this 
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poses considerable theoretical and practical problems 

if an optimal solution is required. The application 

of the Kalman Filter to such problems may seem strange 

due to its completely linear basis. However, its 

computational ease and conceptual simplicity, not to 

mention its success with large numbers of linearisable 

problems, has led to a large number of suggested 

modifications to allow its extension to non-linear 

systems. 

Exact optimal solutions to non-linear estimation 

problems can be obtained theoretically using general 

recursion relations describing the evolution of the 

conditional probability density function in terms of 

the a priori distributions and the measurement data. 

This conditional probability density function of the 

state conditioned on the measurement data contains all 

the available information that can be used in the 

development of estimation and control policies for 

stochastic dynamical systems with noisy measurements. 

In a comparison of several filters for non-linear 

estimation problems, Alspach (2.24) states that despite 

the considerable interest shown to this problem in the 

literature, it is seldom possible to express the 

conditional probability density function in a form 

that can be used to generate specific estimation 

policies. This is due to the fact that such expressions 

require a precise knowledge of an infinite set of 

parameters. 
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Using finite dimensional approximations two 

techniques have been proposed to allow the approximate 

solution of the recursion relations discussed above. 

The first of these is due to Bucy and Senne (2.25) 

and is based upon a specific rotating variable density 

grid, numerical integration technique. The second 

method due to Alspach and Sorenson (2.26), uses a 

method involving the approximation of certain densities 

by a sum of Gaussian like densities with positive 

weighting coefficients. The main problem encountered 

in implementing either of these techniques on a 

practical basis is the excessively expensive amount of 

computation required when compared to the most advanced 

modification of the Kalman Filter. Alspach (2.24) and 

Jazwinski (2.23) are in agreement on this point, and 

both of them consider that this fact alone gives even 

greater importance to the work done in applying Kalman's 

original theory to non-linear systems. 

The theoretical development which enables such 

applications is basically an extension of the linear 

theory in which a Taylor series expansion, neglecting 

second and higher order.terms, is used to linearise the 

state and/or the measurement functions about a nominal 

trajectory. The resulting algorithm has come to be 

known as the 'Extended Kalman Filter'. The derivations 

reported by Jazwinski (2.23), Kushner (2.27) and 

Sorenson (2.16) are representative of many found in the 

literature. The fundamental assumption made in these 

derivations is that a nominal solution of the non-linear 

w21-



differential equations must not only exist, but also 

provide a 'good' approximation to the actual behaviour 

of the system. A summary of the derivation is given 

below. 

Consider the non-linear stochastic system 

described by 

x(k+1) = £(x(k), u(k)) + z(k) - (2.16) 

y(k) = M(x(k), u(k)) + v(k) = (2) 

where, z and v are as defined for linear systems, and 

u is a vector of system inputs. 

If the system equations are linearised about the current 

estimate of state, x(k,k), by means of a truncated 

Taylor series expansion, the state transition matrix 

becomes, 

o(k+1,k) = I + At. df (x(k), u(k)) 
x(k) x(k, 1) 

= 162). 18) 

Similarly, if the measurement equation is expanded 

about the current predicted state, the measurement 

matrix becomes, 

M(k+1) =I + At. oM(x(k), u(k)) 
x(k)   x(k+1,k) 

= (2.19) 

Substitution of the above two equations into the linear 

Kalman Filter, equations 2.10 to 2.15, yields the 

Extended Kalman Filter. Unfortunately, there is no 

longer a theoretical proof of the convergence, stability 
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and optimality of the estimates generated by the filter 

once this modification has been made. However, it can 

be stated that if the fundamental assumption and dual 

restrictions of observability and controllability are 

obeyed then the filter will provide sub-optimal 

estimates. 

The Extended Kalman Filter is shown by Jazwinski 

(2.23) to be an extremely efficient estimator when 

applied to systems which can be categorised as mildly 

non-linear. In the event that the linearisation 

previously described became inappropriate in terms of 

accurately describing the system then the Extended 

Kalman Filter can cause severe discrepancies between 

the estimates generated and the true state. Such 

problems are commonly referred to as divergence (or 

bias) and the various techniques proposed to deal with 

such systems can be classified as either second-order 

filters or iterated filters. 

The more complex of these two classes of filter 

is the second order filter, which takes into account 

second or higher order terms in the Taylor series 

expansion. Reported applications of the second order 

filter disagree as to the effectiveness of this modifi- 

cation. Athans (2.28), using a specific example, 

concludes that a second-order filter improves the 

prevention of divergence. Wishner et al. (2.30) reach 

the same conclusion when comparing three non-linear 

filters. However, Jazwinski (2.23) is much less 
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definite and states that although second order filters 

are more effective at removing bias, they do not solve 

the problem completely. More recently Alspach (2.24) 

and Tse (2.29) conclude that no real improvement is 

obtained and there is a greatly increased computational 

requirement. It is probably true that the effectiveness 

of second order filters is determined by the non-linear- 

ities present in the system model. In cases where bias 

is less likely, the increased computational burden may 

outweigh the improvement in the accuracy of the 

estimates. 

The approach adopted by iterated filters is to 

relinearise at each stage about the new estimate 

obtained, thus producing a first iterated estimate. If 

the residual is not satisfactory after one iteration, 

another linearisation is performed. ‘Wishner (2.30), 

Denham and Pines (2.31), Leung and Padmanabhan (2.32) 

and Jazwinski (2.23) are all in agreement as to the 

improved performance obtained by iterated filters. In 

general they have been found to be more effective in 

preventing divergence than second order or Extended 

Kalman Filters. 

Recently, several attempts have been made to 

clarify the individual requirements of the various 

methods proposed for solving the non-linear estimation 

problem. Particular attention has been focussed on 

determining when a truly optimal filter is worth while 

or necessary and under what conditions is some version 

of the modified Kalman Filter adequate. These attempts 
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have been made by several authors (2.24, 2.33, 2.34 

and 2.35). The conclusions reached are vague in that 

the only recommendation made is that the choice of 

filter is very much system dependent. For systems 

with only slight non-linearities the extra computa-— 

tional requirements of the more complicated methods 

may be unjustified in terms of the degree of increased 

accuracy obtained, whereas for complex non-linear 

systems the simpler methods may break down completely. 

2.2.5. APPLICATIONS 

The first reported application of the Kalman 

Filter was in 1962 by the aerospace industry. Smith, 

Schmidt et al. (2.36, 2.37, 2.38) applied the filtering 

theory developed by Kalman to the field of celestial 

navigation. Since then the theory has been applied in 

many fields as diverse as Agricultural Pest Control 

(2.39), Traffic Surveillance and Control (2.40) and 

Stock Market Forecasting (2.41). 

The Kalman Filter was not applied to estimation 

problems in the chemical industry until 1968. The 

major reason for this delay is that chemical processes 

yield complicated dynamic models which are usually 

non-linear, have distributed parameters and are of 

relatively high order. Thus, it is difficult for 

researchers to derive accurate mathematical models 

which can be linearised whilst still obeying the 

restricting assumptions made in the derivation of the 

Extended Kalman Filter. To overcome this problem early 
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research was centered around the use of simulated 

experiments, in which identical mathematical models 

were used in both the filter and the simulation 

procedure used to obtain the "pseudo-measurements". 

Such experiments, although they do not always present 

a true picture of the difficulties encountered in 

on-line applications, provide solutions to many 

practical and theoretical problems. The success 

achieved in these off-line applications, together with 

the fact that the Kalman Filter algorithm can be 

implemented on a relatively small computer, was enough 

proof that sucessful on-line applications could be made. 

The applications reviewed can be divided by 

authors as follows: 

Coggan, Noton and co-workers 

One of the most notable of the earlier chemical 

engineering applications of the Kalman Filter was by 

Noton and Choquette (2.42, 2.43) in the identification 

of a reactor train for The Polymer Corporation. The 

initial work was done using an off-line computer applied 

to open loop control experiments. Following the success 

of these experiments further work was done during 

closed loop experiments using a remote time-sharing 

computer. Although this work cannot be described as an 

on-line application, the overall exercise was success- 

ful in as much as a significant improvement over manual 

control was reported. 

The theoretical problems encountered when dealing 

with systems containing large numbers of state variables, 
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unknown parameters, transport lags and strong non- 

linearities was tackled with considerable success by 

Coggan and Noton (2.17). In this paper the Extended 

Kalman Filter is applied to simulated systems exhibiting 

large random disturbances and having unknown initial 

values. The possibility of trading model simplification 

for unecessary numerical accuracy is also discussed. 

An approach to model reduction is suggested by 

Cogganand Wilson (2.45), who minimise the number of 

state variables required to describe a system. The 

Extended Kalman Filter is modified to evaluate 

measurement error statistics and detect the presence 

of bias. The same authors also report the on-line 

implementation of this filter (2.46). The minicomputer 

used had 4K words of memory and was applied to a tenth 

order system. 

Seinfeld and co-workers 

Seinfeld and co-workers have made major practical 

and theoretical contributions in the field of state and 

parameter estimation using the Kalman Filter. Attempts 

have also been made to define theoretically an analysis 

of the errors of the estimates generated by the filter 

algorithm. 

Seinfeld (2.47) has extended the Kalman Filter to 

stochastic systems described by non-linear parabolic 

and hyperbolic partial differential equations. However, 

the convergence of this type of filter is somewhat 

suspect and the computational requirements of the 
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on-line implementation of such a system are prohibitive. 

Gavalas and Seinfeld (2.48) reduce a plug flow catal- 

ytic reactor problem to a lumped-parameter system 

and successfully estimate state variables. The 

equivalent distributed-parameter system is filtered 

by Seinfeld et al. (2.49), but problems of convergence 

and observability remain unsolved for such systems. 

A study of the incorporation of these techniques into 

a distributed-parameter control problem is carried 

out by Yu and Seinfeld (2.50). This work utilises a 

simulated scalar parabolic system. More recently 

Ajinkya, Ray, Yu and Seinfeld (2.51) report the 

development of an approximate non-linear filter which 

is applied to systems described by coupled ordinary 

and partial differential equations. Results are 

quoted for the application of this filter to an ingot 

heating problem. 

Sargent and co-workers 

Goldman and Sargent (2.52, 2.53) report a 

feasibility study carried out on the possible on-line 

use of the Kalman Filter for state and parameter 

estimation in chemical engineering systems. The 

extended filter algorithm is derived for disturbance 

free processes and applied to the estimation of a 

simulated distillation column and a fixed bed catalytic 

reactor. The measurements made available by the 

simulation procedure are corrupted by superimposed 

Gaussian or rectangular noise. The filter is shown to 
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be robust in estimating bias and drift. It was also 

reported that convergence of the filter from initial 

estimates, x(0,-1), is accelerated by selecting a 

high initial estimation error covariance matrix, 

P(O,-1). The general conclusions reached in the 

choice of the initial value of P(0O,-1) have since 

been verified by other workers, see for example 

Yoshimura and Soeda (2.55). However, the assumption 

of a disturbance free process severely limits the 

possible applications of the filter used in this work 

and might even be viewed as a factor which would 

devalue the validity of the results obtained. 

An extension of the non-linear catalytic reactor 

study as part of an optimal control scheme is reported 

by Joffe and Sargent (2.54). The non-linear distributed 

parameter stochastic system is decomposed into a non- 

linear lumped parameter model. Both the process and 

control scheme are simulated and found to be insensitive 

to the statistical assumptions, initial estimates and 

process noise covariance of the filter algorithm. 

Recently, Fortescue and Kershenbaum (2.56) report 

the on-line application of a Kalman Filter to the 

estimation of a pilot plant scale carbon dioxide 

absorption-desorption unit. The computer used in this 

work was a Honeywell series 16 machine. Steady state 

experiments were carried out to determine the absorption 

parameters of a distributed parameter model from plant 

measurements. The results obtained display good 
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convergence and the problems of non-linearity are 

essentially overcome. 

Wells and co-workers 

Wells (2.56) demonstrated the use of the Extended 

Kalman Filter in estimating state variables and 

parameters in a highly non-linear simulated chemical 

process. The study of computation times made, indicated 

that for a physical system of similar dimension the 

Kalman Filter could be implemented in real time. An 

important concept discussed in this paper, is the 

analogy between the process noise covariance matrix, 

Q, and process uncertainty. Wells states that the 

magnitude of the Q matrix can be increased for : 

systems that have dynamics that are not well understood 

or for state equations that represent a model 

simplification, thus placing more weight upon the 

measurements. From this he concludes that an exact 

description of the process dynamics of a system is not 

necessary to achieve good estimates. This would appear 

to be highly beneficial to chemical engineering problems 

as high numerical accuracy is not required by such 

systems and so model simplifications and approximations 

can be made with corresponding adjustments to the Q 

matrix. Unfortunately, this conclusion has been shown 

to be without foundation by Jazwinski (2.23) and Coleby 

(2.58). The reason given by these workers is that if 

the Q matrix is increased in magnitude it is likely 

that the filter will rely on the noisy and perhaps 
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biased measurements made. 

Mehra and Wells (2.57) and Wells and Wismer 

(2.59) report on the dynamic modelling and on-line 

carbon estimation of a basic oxygen furnace used for 

steel making. Results are quoted for the on-line 

implementation of both a linear Kalman Filter and a 

second order non-linear filter. The authors claim 

an increase in accuracy of the estimates of between 

30 and 50% when compared to other forms of state 

estimation. 

Soliman and co-workers 

Soliman, Ray and Szekely (2.60) report on the 

application of an Extended Kalman Filter to the 

problem of state estimation in a stainless steel 

manufacturing process. Good estimates of the molten 

metal composition were obtained even when only a 

limited number of temperature measurements were made 

available. In this work the Extended Kalman Filter 

was shown to be capable of producing reliable estimates 

in the presence of realistically high process and 

measurement noise. The authors conclude that the 

filter used would be applicable to an on-line situation 

and state that work is in progress in this direction. 

Ramirez and co-worker 

Lynch and Ramirez (2.61) present the development 

and real-time implementation of a time-optimal control 

algorithm for a continuous stirred-tank reactor. 

Estimation and filtering are carried out by an 

=oi=



Extended Kalman Filter. The reaction studied is the 

decomposition of hydrogen peroxide with a homogeneous 

catalyst of potassium iodide. The experimental work 

was done in an on-line environment using a General 

Data Corporation Nova 1210 Minicomputer with 8K 

words of memory. Lynch and Ramirez conclude that 

the Kalman Filter works very well in estimating the 

unmeasured system states and filtering the measurement 

noise in the system. However, the authors do not 

implement the complete filter algorithm in an on-line 

situation. The filter gain matrix, K, is assumed 

to be constant for a system at or near to steady 

state and is computed off line from a steady state 

value of the estimation error covariance matrix, P(k,k). 

These assumptions are only valid whilst the system 

under study remains at or near to a steady state. - 

Fisher, Seborg and co-workers 

Perhaps the most complete study of modern control 

theory, from an experimental point of view, was carried 

out during the years of 1972 to 1974 by Seborg, Fisher 

and co-workers in the Department of Chemical Engineering 

at the University of Alberta, Canada. The objective 

of this research is to examine promising modern control 

techniques and with due consideration to the practical 

constraints of the equipment available, to evaluate 

these techniques by on-line real time application to 

pilot plant units. The research carried out was 
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specifically concerned with the implementation of 

computer control to a pilot plant size, double effect 

evaporator and the subsequent evaluation of multi- 

variable design, analysis and control techniques. 

During this study the evaporators electronic 

instrumentation was interfaced to an IBM 1800 

computer allowing the computer programmer access to 

50 process variables. 

The research done can be conveniently divided 

as follows: 

(1) Modelling and dynamic simulation of the 

evaporator. 

(2) Conventional control. 

(3) Multivariable feedback control. 

(4) Multivariable servo control. 

(5) Other multivariable control techniques. 

(6) On-line estimation and filtering. 

All of the reports made during this study are published . 

collectively by Fisher and Seborg (2.62). 

The publications of major concern to this review 

are those which report on the on-line implementation 

of the Kalman Filter. The first of these, by 

Hamilton, Seborg and Fisher (2.63), is a report on 

the application of the stationary form of the discrete 

Kalman to state estimation in noisy processes. The 

effectiveness of the filter was demonstrated by both 

simulated and experimental tests. The authors state 

that the incorporation of the filter into a multi- 
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variable computer control system resulted in control 

being significantly better than when the Kalman Filter 

was omitted or replaced by a conventional exponential 

filter. This study was undertaken in the presence 

of process and/or measurement noise levels of 10% and 

it is interesting to note that the authors conclude 

that although the filter estimates were sensitive to 

unmeasured process noise, this effect could be 

reduced by treating the noise covariance matrices R 

and Q as design parameters rather than statistics. 

This would appear to indicate that the on-line 

application of the Kalman Filter involves a certain 

amount of 'tuning'. 

In the later publication by Seborg, Fisher and 

Hamilton (2.64) several Kalman Filters and Luenberger 

observers are applied to a computer-controlled evap- 

orator and the results compared. In conclusion it 

is stated that although the Luenberger Observer 

performed well under normal conditions, it was quite 

sensitive to process noise and unmeasured process 

disturbances. This difficulty was also encountered 

in the application of the Kalman Filter, but as 

described earlier, this was overcome by the variation 

of the R and Q matrices. 

Payne and Coleby 

The first experimental studies of the on-line 

implementation of non-stationary forms of the Kalman 

Filter are reported in publications by Payne (2.65) 
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and Coleby (2.58). Both of these works studied the 

on-line, real-time state estimation of an essentially 

uncontrolled double effect evaporator, whose 

instrumentation was interfaced to a Honeywell 316 

computer with 16K words of memory. 

The earlier work of Payne was involved in the 

application of the extended form of the Kalman Filter. 

In order to bring about a meaningful real-time implemen- 

tation, Payne considerably reduced the order of the 

system to yield a fourth order model and fed measured 

inputs directly into his transition matrix, 9(k+1,k). 

Also included in this publication are the results of 

an off-line study into the effects of varying the value 

of the Q matrix when applying the Kalman Filter to state 

and parameter estimation. The results obtained show 

that the filter performance is improved by separating 

the diagonal elements of Q such that confidence in the 

model is reflected by a small constant on the diagonal 

elements corresponding to the measured state variables 

and a large constant on the elements corresponding to 

parameters and unmeasured variables. The work of Payne 

highlighted the many difficulties that are encountered 

during on-line implementation, many of which have been 

overlooked by workers carrying out research using 

simulated studies. Two of the most notable points 

are the cycle time required by the filter algorithm 

for large systems and the assumptions required in 

order to make the system operate within the limits 

imposed by the equipment used. 
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Following the work of Payne, the problem of a 

poor system model was tackled by Coleby. A solution 

to this problem was attempted by two separate 

approaches. The first of these, which is not 

reviewed here, is to improve the mathematical model 

describing the evaporator system. This modelling 

exercise resulted in a 7th order model of the system. 

The second approach was to modify the filter algorithm 

into which the improved model would be included. 

Coleby states that in cases where there is doubt 

about the accuracy of one or more of the prediction 

equations, some method to control filter divergence 

should be incorporated within the filter algorithm. 

The results of an off-line survey of the various 

techniques proposed as solutions to this problem 

shows that the modification proposed by Coggan and 

Wilson (2.45) was the most appropriate (a more 

detailed discussion of such techniques is included 

in section 2.2.6). - Following these off-line studies 

Coleby implemented the theoretical developments made 

into an on-line filtering package. The results 

obtained from this experimentation indicate that 

although the modifications to the filter algorithm were 

successful, the mathematical model used was still 

rather questionable. This led to the net results 

obtained still falling short of what would be considered 

as a satisfactory level of accuracy. 
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2.2.6 DIFFICULTIES ENCOUNTERED IN APPLICATIONS OF 

THE KALMAN FILTER 

A survey of the reported applications of the 

Kalman Filter reveals that the difficulties encoun- 

tered fall into two broad categories. 

(i) Computational considerations. 

(ii) Divergence or bias problems. 

2.2.6.1. COMPUTATIONAL CONSIDERATIONS 
  

During the early simulation experiments carried 

out using the Kalman Filter investigators encountered 

difficulties because of the requirement of high 

precision in the filter computations and specifically 

in the computation of the estimation error covariance 

matrix, P(k,k); see equation 2.14. This matrix is 

susceptible to round off errons because its elements 

decrease in magnitude after many sets of data have 

been processed. These errors can cause the diagonal 

elements of P(k,k), which represent variances, to 

become negative and hence meaningless. Sorenson 

(2.16) proposed an alternative form for the equation 

used to compute P(k,k), see equation 2.15, and as 

was stated in section 2.2.3, Aoki (2.18) showed this 

alternative form to be preferable. 

A further problem concerning computational accuracy, 

as well as computation time and storage, arises when 

a large number of measurement sources are available. 

The problem is caused by the need to invert m*m 

dimensional matrix, where m is the number of 
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measurements. This inversion is necessary to compute 

the filter gain matrix, K(k), as shown by equation 

2.12. One method proposed, and successfully 

demonstrated, to overcome this problem, in cases 

where the measurements are uncorrelated has been 

presented by Singer and Sea (2.66) and Sorenson (2.16). 

The method involves the processing of measurements 

individually and circumvents the requirement for an 

inversion. In practical applications of the Kalman 

Filter, Singer and Sea report a 30% reduction in the 

computer time required for the execution of the filter 

algorithm. 

2.2.6.2. DIVERGENCE PROBLEMS 

The most disturbing problem encountered during 

applications of the Kalman Filter is that of divergence 

away from the true state of the estimates produced. 

Three possible causes of this problem have been 

identified by Alspach (2.24) as; 

(i) Excessive non-linearities within the system. 

(ii) Incorrect system statistics. 

(iii) Construction of the filter on the basis 

of an erroneous mathematical model. 

The possibility of excessive non-linearities 

within the system has been considered quite extensively 

in section 2.2.4. However, one further point remains 
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to be discussed, this being the computation of the 

predicted values of the state variables. It has 

been shown by many authors, see for example Coggan 

and Noton (2.17), Goldman (2.53) and Wells (2.56), 

that it is not practical to attempt the computation 

of the predicted state using equation 2.10. This 

is because the state transition matrix is not 

accurate enough to give good results unless the 

prediction interval is very small. Clearly a very 

small prediction interval is not practical in most 

cases because of the time required to execute the 

filter algorithm. To overcome this problem most 

investigators have used one of the many available 

numerical integration techniques; the technique used 

normally being determined by the type of system under 

consideration. 

The problem of incorrect system statistics can 

be subdivided into two main areas,the incorrect choice 

of the initial conditions and their error covariances, 

i.e. x(O,-1) and P(O,-1), and the incorrect choice of 

the system input and measurement noise covariances, 

Q(k) and P(k). Research into the effects of using 

incorrect initial conditions (2.52, 2.53, 2.67, 2.68) 

has shown that providing the system model is correct, 

divergence will only occur if there is any inconsistency 

in the choice of the error covariance of the initial 

state vector, P(O,-1). That is to say, if the state 
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vector, x(0,-1) is known to be suspect, this must 

be reflected in the choice of P(0,-1), i.e. the 

diagonal elements of P(O,-1) must be larger than 

when x(0,-1) is known to be correct. The general 

conclusion of the quoted works is that provided 

the initial values allocated to P(0,-1) are large 

enough the filter will converge to the true state. 

One disadvantage of this approach is that the larger 

P(O,-1) the longer it takes the filter to converge. 

However, in such cases some authors, see for example 

(2.17), have found that where knowledge of the system 

considered indicates some cross-correlation between 

initial estimation errors the inclusion of the 

relevant off-diagonal elements in P(0,-1) helps to 

promote the convergence of the filter. 

The difficulties encountered when an incorrect 

choice of measurement and process noise statistics is 

made seems to be rather more complex than the choice 

of initial conditions. This would seem to be 

inevitable as neither Q(k) nor R(k) is updated by the 

‘filter algorithm. The reported applications of the 

Kalman Filter, see for example (2.63, 2.65) have 

stated that filter performance is improved by treating 

these matrices as design parameters rather than system 

statistics. Coleby (2.58) agrees with this statement 

as far as the process noise covariance matrix, Q(k), 

is concerned, as it is rarely determinable for 
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on-line chemical engineering applications. However, 

he differs in his treatment of the measurement noise 

covariance, R(k), as the statistics should be readily 

evaluated for most types of instrument used in 

on-line applications. Thus, the problem would 

appear to reduce to one of determining Q(k). 

Divergence may occur in cases where the values of 

Q(k) are too small, as the computed value of P(k/k-1) 

see equation 2.11, will be falsely low thus causing 

the value of K(k) to be so small that insufficient 

weight is placed upon new measurement data. The 

difficulties encountered are made more acute by the 

fact that if one overcompensates and makes Q(k) 

too large, the filter is 'loosened' and the estimates 

produced become noisy as well as it taking longer for 

the filter to converge. An interesting approach to 

this problem is made by Mehra (2.69) and Graupe and 

Krause (2.70) who compute the matrices Q and R from 

measurement data prior to filtering. Unfortunately 

the only practical results given are for single out- 

put systems and immense problems are invisaged by 

Graupe and Krause in extending this method to multi- 

output systems. Other approaches have been suggested 

but the problem remains unsolved theoretically as far 

as the practical implementation of the filter is 

concerned. The method used to determine the value 

of Q for on-line applications remains one of trial 

and error. 
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Accurate modelling of chemical processes, 

particularly in the dynamic state, is notoriously 

difficult. This problem is accentuated in on-line 

applications of the Kalman Filter because of the 

type of mathematical model required. Thus, it is 

extremely unlikely that an accurate model of the 

system to be estimated will be available. The 

presence within the filter of a poor mathematical 

representation of the system is probably the most 

common cause, not to mention the most difficult to 

deal with, of filter divergence in the estimation of 

chemical processes. Construction of the filter on 

the basis of an erroneous model will cause divergence 

due to the filter "learning the wrong state too well" 

when it operates over many observations. The problem 

is particularly acute when the noise inputs to the 

system and/or the measurement noise are very Tow, for; 

as was discussed earlier, this will cause the filter 

to converge rapidly and take little notice of 

subsequent measurement data. Perhaps the most ironical 

factor which has to be taken into account when deciding 

upon a strategy for the solution of this problem is 

that in the original derivation of the linear filter 

Kalman assumes that the system dynamics are completely 

known and are precisely modelled. This will never be 

true in practice and therefore the usefulness of more 

detailed models of the system considered is questionable. 
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The first attempts at a solution to the problem 

of filter divergence caused by a poor model were 

centred around the manipulation of the matrix of 

input noise covariances, Q. Researchers into this 

problem, see for example Schlee et al. (2.71) and 

Jazwinski (2.23), found that inaccuracies in the 

mathematical model could be compensated for by 

increasing the value of the Q matrix. This 

procedure amounts to the addition of constant 

"fictitious noise" to the system which prevents the 

convergence of the error covariances of the predictions 

and thus forces the filter to take into account the 

measurements made at every sampling time. This 

adjustment to the Q matrix is justified by the fact 

that the difference between the true and estimated 

state could be due to unknown disturbances upon the 

system inputs if the model used is correct. Ina 

discussion of this technique Jazwinski concludes that 

this method will be adequate for some inaccurate 

systems. However, this method has two obvious 

disadvantages. Firstly, the increase in Q will be 

constant and as this adjustment is meant to compen- 

sate for modelling error, then the error itself must 

be assumed constant. An assumption which cannot be 

justified in all cases. The second disadvantage is 

that as the Q matrix has a larger value than is 

normal, then the filter will not completely converge 

and consequently the estimates produced will be 

somewhat noisy. 
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An alternative approach to the problems encoun- 

tered when using poor models is suggested by, amongst 

others, Anderson (2.72) who proposes the overweighting 

of the more recent information. The necessary 

weighting is accomplished by an exponential time 

factor. This method makes use of the fact that if 

the model used is inaccurate then the model errors 

themselves degrade the value of information in the 

distant past. Anderson (2.72) and Jazwinski (2.23) 

have shown the effect of such filters during 

simulated experiments. The results obtained show 

that this modification enables the filter to reduce 

divergence but not completely remove it. The main 

problem encountered in using this method is that of 

determining the exponential time factor, i.e. the 

number of past measurements that are to be taken 

into account by the filter. It is felt by the author 

that this fact alone will severely limit the 

possible applications of such filters. 

The principle outlined above is also utilised 

by Lee (2.73) who develops a "moving-average" filter. 

This method presumes a poor model to be applicable 

only over a limited time span and furthermore, 

projections outside of this time span lead to model 

errors. Unfortunately, the problem of determining 

the exponential time factor is even more difficult 

than for the overweighting type of filter. 
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The obvious disadvantages of the approaches 

discussed so far led to the development of a 

completely different method by Schmidt (2.44). 

This method involves the use of new parameters 

within the system to account for the uncertainty 

that exists within the model. These parameters are 

then estimated along with the remaining state 

variables describing the system. This approach has 

serious disadvantages when applied to systems which 

already have a large number of state variables, 

because the computational burden imposed by increasing 

the size of the state vector by the addition of these 

parameters may be intolerable. Another disadvantage 

of this approach is that the system may become 

unobservable as there may not be enough measurements 

available to carry out the filtering procedure. 

Improved methods for estimating these parameters, 

which at the same time reduce the computation load, 

are proposed by Friedland (2.74) and Lin (2.75). 

Friedland uses a technique of augmenting the state 

vector and Lin one of invariant imbedding. These 

techniques succeed in reducing the computational 

burden but fail to take into account the need to 

reduce rather than increase the degree of the state 

vector for filters applied to complex systems such 

as chemical processes. 

In the earlier discussion on the extension of 

the Kalman Filter to cope with non-linear systems, 
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see section 2.2.4, it was stated that when the non- 

linearities of the system are such that a successful 

linearisation cannot be achieved, divergence problems 

may be severe. It is felt by some authors, see for 

example Coleby (2.58), that such problems are 

analogous to those of an initial poor model and 

that the method proposed by Leung and Padmanabhan 

(2.32) could be applied. This method involves 

smoothing the trajectory back one measurement and 

relinearising the model to obtain an improved 

prediction. If the residuals between the estimates 

and the measurements are not within the statistical 

limits of the system the step is repeated, using a 

recursive relationship, until convergence is 

obtained. This technique was found to be effective 

when applied to the er etionya? concentration and 

temperature trajectories for a simulated CSTR system. 

Possible applications of this iterated filter are 

limited by the increased computational burden imposed 

by the iterative nature of the filter and also by the 

fact that if the non-linear model is itself a poor 

one, divergence can arise within the recursive algorithm 

itself. 

The most recent and probably the most powerful 

technique developed to solve the divergence problem 

is the so-called "Adaptive Filter". This technique 

examines the residuals between the predictions and 
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the measurements so as to determine appropriate 

values for the process noise covariance matrix, 

Q(k). In 1968 Jazwinski (2.76, 2.77) proposed one 

of the first Adaptive Filters. The filter 

developed provides feedback from the residuals 

in terms of system noise input levels. Onset of 

divergence causes the residuals to grow and the 

consequent increase in the value of the matrix 

Q(k) degrades the prediction error covariance 

matrix, increases the filter gain, and thus causes 

the filter to overweight incoming measurement data. 

Due to the theoretical complexities involved in 

such an operation Jazwinski makes assumptions about 

the form of the matrix Q(k), i.e. 

Q(k) = q(k). I - (2.16) 

where q(k) is a scalar adaptively calculated and 

I is the identity matrix. This assumption somewhat 

limits the applications of this filter because, by 

making the diagonal elements equal, Jazwinski was 

in fact assuming that noise levels are uniform 

throughout the system. 

Sriyananda (2.78) makes greater use of the 

available system statistics for the control of 

divergence. He defines an innovation process IN 

as; 

IN(K) = y(k) - M(k). x(k,k-1) = (2.17) 

ad Ta



which is a non-stationary gaussian white noise 

process with variance (M(k). P(k,k-1). Moxy? + 

R(k)). He states that it would be expected that 

(In(k)? IN(k)) would be less than three times 

the trace of this variance (M(k). P(k,k-1). Mcx)? 

+ R(k)) with more than 90% probability. If this 

is not the case then divergence can be suspected 

and the filter gain, K(k), is frozen at its eusrent 

value. This has the effect of increasing P(k,k-1) 

because on updating it is in fact incremented by 

the factor Q(k) after allowing for the effect of 

the transition matrix. This process continues 

until (IN(k)? IN(k)) is less than the trace of 

(M(k). P(k,k-1). mck)? + R(kK)), when the filter 

gain, K(k), is again recursively updated. In the 

absence of process noise, i.e. Q(k) is a null matrix, 

the filter gain K(k), would remain frozen and thus 

keep the error within bounds. This techniuge only 

attempts to prevent divergence increasing and does 

not try to remove the damage done. 

A method for the detection and elimination of 

divergence which uses as a basis a similar method 

to that proposed by Sriyananda (2.79) is derived 

by. Coggan and Wilson (2.45). The authors state 

that in the standard Extended Kalman Filter there 

is no feedback of statistical data from the process 

and consequently if the model is incorrect or the 
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assumed, statistical characteristics are wrong 

the accuracies of the predicted values will be 

quite different from those indicated by the pred- 

iction error covariance matrix, P(k,k-1). To 

overcome this the matrix S(k), which represents 

the expected covariances of the differences 

between the predicted and measured values of 

the measured variables, is defined as follows: 

S(k) = (M(x). P(k,k-1). M(k)? + RUk)) - (2.18) 

The corresponding covariance matrix determined 

from the data is, 

Z(ktl) = acZ(k) + (1-a). 2(cti). 2Cetl)- 

Ha 2e09)) 

where, z(k+1) = M(k). x(ic+1,k) - y(k+1)- b(k+1) 

= (2420) 

and, b(k+1) a.b(k+1) + (l-a).(M(k). x(kt1,k) 

- y(k+1)) en 2e21) 

An exponential filter (a=exp (-h/T); o< hb) as 

used in preference to an aggregated sample because 

Z(k) and b(k) are dynamic statistics. If the 

measurements have errors with zero mean, b(k+1) 

gives the filtered mean error, and if an element 

of b(k+1) is persistently positive or negative 

this implies biased predictions. 

This development is incorporated into the 

Kalman Filter by the following procedure after 
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the relevant matrix computations have been carried 

out; 

(i) Element Zia replaces element Sig Lf 

Sig > Sid 

(ii) Compute the matrix v(k) where 

VG) = M(x)". (S(k) - RCk)). MCs) 

- Mc)? MGk). P(k,k-1). Ms)? MCk) 

+ P(k,k-1) - (2.22) 

(444) Element Via replaces element Pia if 

Vena 
(iv) Elements of the bias vector b(k) are 

subtracted from corresponding elements of x(k,k-1) 

to give bias free predictions of the measured 

variables. The results obtained by Coggan and 

Wilson clearly demonstrate the ability of this 

procedure to prevent and remove filter bias. The 

procedure does, however, have drawbacks in cases 

where parameter estimation is required as well as 

state estimation. In such cases the bias vector, 

b(k), cannot be used to produce a bias free state 

as this deviation is the driving force required to 

drive the parameters to their true values. In 

addition to this, the method does not take into 

account deviations of the unmeasured variables, 

although correction of the measured variables will 

obviously go some way to limiting the divergence of 

the estimates of these variables. 
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A more recent development in the field of 

adaptive filtering is reported by Jazwinski (2.79) 

who proposes using a low frequency random forcing 

function to represent the model error. The filter 

tracks this random forcing function in addition to 

the system state and thus adapts to observable 

model or environmental variations. The model for 

the random forcing function is a polynomial with 

random, time-varying, coefficients which allows 

adaption to almost any model or system variation. 

Jazwinski models his system thus; 

x(k+1,k) = $(k+1,k). x(k,k) + G(k). u(k) 

- (2.23) 

where u(k) represents the low frequency random 

forcing function and G(k) represents the matrix of 

noise correlation. The vector u(k) is incorporated 

into an augmented state vector for estimation within 

the Kalman Filter. 

The filter developed by Jazwinski is somewhat 

contradictory as, although it is adaptive in nature, 

a knowledge of the system being considered is 

required in order to make a prior specification of 

the matrix G(k). A further disadvantage of this 

filter is the extra computational burden invoked. 

The Extended Kalman Filter consists of five 

recursive relationships whereas Jazwinski's Adaptive 
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Filter consists of 18 such relationships. Despite 

the partitioning of some of the relationships to 

discard the statistics of the forcing functions 

there is a considerable increase in the computation 

load. 

Coleby (2.58) reports on the results of a 

simulation study of several of the filters discussed 

above and recommends that in cases where divergence 

problems are suspected or likely some method to 

control them should be incorporated into the filter 

algorithm. In conclusion Coleby states that 

Adaptive Filters are generally found to give the 

best performance and states that the method 

proposed by Coggan and Wilson is one of the most 

appropriate in terms of its computational require- 

ments and accuracy of estimates produced. 

Reported studies of Adaptive Filters, see for 

example (2.45, 2.58 and 2.79), have shown them to 

be more general and powerful in dealing with the 

problems of divergence due to poor mathematical 

models. Kilbride-Newman (2.80) emphasizes this but 

criticizes the filters discussed so far because 

they over estimate the error covariance matrix, P(k,k). 

This is because most Adaptive Filters treat the 

input noise that is supposed to represent the model 

errors as a zero mean stochastic process and this 

need not be a true assumption. The Adaptive Filter 
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of Coggan and Wilson (2.45) attempts to alleviate 

this problem by removing bias, but, as was discussed 

earlier, this causes further problems in that only 

state-variable estimation is possible. To over- 

come this problem Kilbride-Newman (2.80) develops 

an Adaptive Filter along similar lines to that of 

Jazwinski (2.79), but uses an alternative method 

for the computation of the vector u(k), and 

modifies the nature of G(k) so that it becomes a 

noise incidence matrix which is itself adaptively 

estimated. Thus, no prior knowledge of the 

system is required except an inaccurate model and 

the system statistics. The method, which is 

discussed in greater detail in Chapter 3, uses an 

exponential filter on the mean and covariances of 

the residuals to estimate the mean, u(k), and the 

covariances of the so-called fictitious inputs, C(k). 

It is the fictitious inputs genérated by the filter 

which compensate for the modelling errors. This is 

similar to the approach adopted by Coggan and 

Wilson (2.45) but has a number of advantages. 

Kilbride-Newman's filter can not only be used for 

parameter estimation, in addition to the usual 

state estimation, but also introduces the new concept 

of a model error compensation erreceert This is 

due to the fact that the mean of the fictitious 

disturbances, u(k), is not updated at each time 
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interval and therefore the mean of the fictitious 

inputs is only conditioned on the error remaining 

due to the poor model. The model error compensation 

strategy effectively updates the system model after 

a fixed number of measurements and thus improves 

the performance of the filter. Furthermore the 

compensation function, although not necessarily 

representing any real variable, does indicate the 

source and type of model error that exists. There 

are, aS is always the case, a number of drawbacks. 

First of all there are a number of parameters 

required by the filter which need to be specified a 

priori. Also, the estimates produced may be suspect 

for the first few samples as it takes some time 

for the model error compensation strategy to be 

optimised. Despite these drawbacks and the fact 

that the filter cycle time is increased by some 

10%, the author feels that Kilbride-Newman's Adaptive 

Filter is the most promising development made so 

far in the field of recursive filtering as applied 

to chemical engineering processes. 
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2.3. HEAT EXCHANGER AND EVAPORATOR MODELLING 

2.3.1. INTRODUCTION 

The basic principles of operation of an 

evaporator are easily understood by anyone in the 

process industry. However, a detailed analysis of 

the dynamic behaviour of such systems yields a 

complex set of interacting flow, pressure and 

temperature variables. Thus, if one were to 

derive a comprehensive mathematical model for one 

of the many common forms of evaporator, the number 

of state variables used would be far too large for 

the model to be used in an on-line application of 

the Kalman Filter. It is also likely that the 

model developed would contain partial differential 

equations. The above restrictions make it clear 

that to enable the derivation of a suitable model 

certain guide lines need to be stated a priori. 

The criteria adopted in this research are as 

follows: 

(i) The model shall contain only those state 

variables of dominant or special interest. 

(ii) The model will consist of a set of first 

order ordinary differential equations suitable for 

use within the Kalman Filter. 

(iii) The state variables of special interest 

are those directly concerned with the heat transfer 

dynamics of the evaporator studied. 
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This brief review of the literature appertaining 

to the modelling of evaporators has been carried 

out with the above criteria in mind and accordingly 

is limited to shell and tube type heat exchangers 

involving an isothermal condensing medium. In 

particular the dynamics of shell and tube evapor- 

ators, similar to the process under study, are 

considered. 

2.3.2. HEAT EXCHANGER MODELLING 

Heat transfer equipment, in its many diverse 

forms, is to be found as an integral part of 

virtually all chemical and industrial processes. 

This has led to a vast amount of research being 

carried out into the dynamic and steady state 

behaviour of heat exchangers. Due to the great 

diversity in heat exchange equipment, the numerous 

process applications and the fact that three modes 

of heat transfer are involved to varying degrees, 

the field of research into the behaviour of heat 

exchangers is both extremely broad and complex. 

The literature published is reviewed annually by 

authors such as Eckert et alia., see for example 

(2.81), who cite substantial numbers of papers dealing 

with this topic. 

2.3.2.1. STEADY STATE ANALYSIS 

During the last fifteen years a great deal of 
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consideration, both experimentally and theoretically, 

has been given to the problem of two phase, vapour 

liquid flow and most of the published works in this 

area have been aimed at providing correlations and 

predictions of various aspects of heat exchange 

equipment. An area which has received special 

attention in the past and in fact still does, is 

the problem of predicting individual heat transfer 

coefficients. The results given in the literature 

for computing heat transfer coefficients are 

usually rather complex due to the fact that they 

are normally given as functions of design geometry, 

flow dynamics, physical properties and position 

within the heat transfer equipment. Kern (2.82), 

McAdams (2.83) and Kreith (2.84) give a large number 

of examples of this type of work. 

In 1899 the first of many publications on the 

study of evaporators appeared in the form of 

Kestners original patent application (2.85) for 

climbing film evaporators. The first attempt at 

providing an empirical formula for predicting heat 

transfer coefficients is reported by Brooks and 

Badger (2.86), who produce a correlation from their 

experimental results for a water/steam system. The 

results obtained using this correlation proved to 

be unrealistic, because of the centrally located 

thermocouples used in the experiments and the 

assumption that the evaporator can be divided into 
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a preboiling and a boiling zone. 

Stroebe et al. (2.87) show that the assumption 

of a preboiling zone is not necessarily true and 

overcome this problem by feeding liquid in a 

boiling condition into the tubes. The correlation 

produced for predicting the heat transfer coefficient 

isof the form: 

7.8 * 108 * y0-1 eee = (2.24) h, = 0.3 2 0.13 'b pr) +95 * (AT) 

where, hy is the film heat transfer coefficient for 

the boiling material in Btu.hr! ft72 op7} 

V is the specific volume of vapour in 

3 ft? ip ? 

Nor is the dimensionless Prandtl Number, 

o is the surface tension in dynes emt, 

AT, is the difference between the average tube 

wall temperature and the average liquid temperature 

in °F. This correlation has the advantage of taking 

into account the physical properties of the liquid 

in the tubes of the evaporator. 

The research of Gupta and Holland (2.89) shows 

that the omission of the liquid feed rate from 

Stroebe's correlation is highly significant and 

proposed an alternative form of correlation. The 

correlation produced by Gupta and Holland for 
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predicting heat transfer coefficients for water 

systems is of the form: 

mo: 6 a/A = v. + 90.3 * (Ty — 71) * co - (2.25) 

where, q/A equals the heat flux in Btu. hr7t op-1 

M is the liquid feed rate in lbs hr7!, 

T. is the temperature of the feed in OF, 

T) is the boiling temperature in OF, 

C. is the specific heat in Btu. 1b7? oy] 

and, » is a graphically read function of the 

temperature driving force. 

When the feed enters at its boiling point equation 

2.25 reduces to: 

a/A = ¥. Me? - (2.26) 
0.6 

and thus, U, = ¥%— - (2.27) 
AT 

The authors state that U,> the overall boiling 

heat transfer coefficient (Btu. nr-l, #t72, Op-l) | 

was predicted to an accuracy of 2.85% when using 

this method. The accuracy quoted is found by 

calculating the standard deviation. Gupta and 

Holland, despite the fact that they neglect the 

physical properties of the feed stream, claim that 

this correlation has been found to accurately 

predict heat transfer coefficients for other physical 

systems.



  

A more complex approach is adopted by both 

Dukler et al. (2.90) and Beveridge et al. (2.91) 

who report on the development of mathematical 

models of evaporation systems which are used within 

computer flowsheeting programs. Beveridge et al. 

divide the evaporator tubes into six distinct regions 

for heat transfer. Each region requires an 

accurate prediction of the film side heat transfer 

coefficient to be computed, and due to the varying 

nature of these regions, a different correlation 

is used for each calculation. The reason for 

using such a complex procedure is that earlier 

correlations are inadequate due to the following: 

(i) The correlations are very much equipment 

and system dependent. 

(ii) The correlations are not sufficiently 

accurate. 

(iii) Some of the required parameters are 

difficult to precompute for design purposes. 

The main drawback with this model is that it is 

very difficult to determine the point of transition 

from one regime to the next. 

In the development of a non-linear, distributed 

parameter, dynamic model for a simple single-tube 

heat exchanger, Heidemann (2.92) uses the same type 

of correlations for predicting the heat transfer 

coefficients as those determined in earlier 

experimentation by Gallatig (2.93). These 
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correlations are assumed by the authors to be linear 

functions of the arithmetic mean temperature driving 

force, the shellside vapour flowrate and the tube- 

side liquid flowrate. The coefficients used in these 

correlations are determined by multivariable 

regression analysis. 

The main cause of inaccuracy in the majority 

of these correlations is their system and equipment 

dependence. As a result it would probably be 

advantageous to develop correlations based on one 

of the reported developments but using one's own 

experimental data to determine any unknown 

parameters which may be system dependent. 

2.3.2.2. DYNAMIC ANALYSIS 

Over the last thirty years a considerable amount 

of attention has been focussed on the study of the 

dynamic behaviour of heat exchangers. The research 

carried out falls into two main categories: 

(i) The development of transfer functions for 

the system considered using experimental data 

obtained by using both frequency response and pulse 

testing methods. 

(ii) An analytical approach based upon a knowledge 

of the physical laws and system geometry appertaining 

to the process considered. 

The first of these two methods consists of 
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measuring the response to a known disturbance to 

the system and then fitting a transfer function 

to this output response. A comprehensive summary 

of these methods is presented by Buckley (2.94) who 

surveys many of the classical frequency-response 

methods used in the design and testing of heat 

exchanger control systems. One of the many 

applications of the frequency response technique 

is reported by Lees and Hougen (2.95) who use a 

cosine pulse function to evaluate the dynamics of 

a shell and tube heat exchanger. At present the 

successful applications of this technique have been 

limited to single input/single output systems and is 

therefore of little value in model development for 

complex processes. However, research is at present 

being carried out by Momen (2.105) into the use of a 

pseudo random binary sequence technique for 

calculating transfer functions from experimental 

data for quite complex multiple input/multiple output 

heat exchange equipment. If such techniques prove 

to be successful a highly significant advance will 

have been made which will allow the use of this 

technique in the development of models for complex 

heat transfer equipment. 

Models developed using the physical laws and 

system geometry governing a particular heat exchanger 

have been used within many control systems and 
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control system design techniques. The majority of 

the literature shows that such models are similar 

in approach, differing mainly in the type of 

disturbance applied to the system. Within the 

accuracy of the assumptions made, the models 

developed are applicable for all types of input 

disturbance and include process non-linearities. 

In general the models developed by analytical 

techniques based upon a knowledge of the system 

considered, contain a set of partial differential 

equations, with the outlet temperature as the 

dependent variable and time and position along the 

exchanger tubes being the independent variables 

Early research in this field was severely limited 

due to the lack of accurate, high speed digital 

computers. This meant unrealistic assumptions had 

to be made, e.g. constant physical properties, 

constant heat transfer coefficients and the use of 

lumped parameters, in order to obtain any form of 

solution in a realistic time period. 

A complicated distributed parameter model which 

includes the effects of the main flow streams and 

the heat capacities of the exchanger walls and tubes 

is developed by Stermole and Larson (2.96). The 

model produced is rather complex and requires the 

specification of heat transfer correlations. Two 

different models are obtained by assuming that the 
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heat transfer coefficients are functions of; 

a) the average bulk temperature and flowrate, 

and b) the flowrate only. 

The resultant models are solved using Laplace 

transformations. The first of these models proved 

to be satisfactory but the second, as well as an 

attempt to simplify the model using linearisation 

by perturbation techniques, was found to be 

unsuccessful. Privett and Ferrell (2.97) report 

on the satisfactory results obtained from a similar 

model which appears to be an extension of the one 

produced by Sterrole and Larson. A further develop- 

ment of this type of model is provided by Stainthorp 

and Axon (2.98), who make allowances within their 

model for variable tube passes In this research, 

the dynamics of a multipass heat exchanger is 

modelled as a combination of a number of single 

tube exchangers with each flow reversal chamber 

assumed to be a first order lag. The mathematical 

solution is either inverted to give a time-dependent 

solution or left as a transfer function from which 

frequency-response data may be obtained. 

It has been argued by many researchers that the 

dynamic behaviour of heat exchangers can only be 

described accurately by distributed parameter models. 

Korol'kov (2.98) derives a comprehensive partial 

differential equation model and uses the results 
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obtained as a standard reference for comparison 

with predictions from both lumped parameter models 

and simplifications of the standard model. Basing 

his conclusions on the difference between the 

output responses of the 'simple' models and that 

of the standard model, Korol'kov states that all 

of the 'simple' models proved to be inadequate. 

Unfortunately, no experimental results are presented 

to give credibility to this work. However, Finlay 

and Smith (2.100) use a similar technique and 

verify their standard reference model by comparing 

it with experimental data. Finlay and Smith also 

state that in certain conditions the simplified 

models can be applied and show the. results obtained 

to be of an acceptable accuracy. 

In parallel with these attempts to show that 

lumped parameter models are not very accurate in 

describing the behaviour of a system, a number of 

researchers were exploring the possibilities of 

using some type of model reduction technique in 

order to convert the extremely complex and cumbersome 

sets of partial differential equations into a form 

more acceptable to heat exchanger control systems. 

These techniques usually involve some form of 

linearisation of the original model. Koppel (2.101) 

attempts to remove some of the inaccuracies caused 

by linearisation of the partial differential equations 
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by substitution of a normalised variable for the 

temperature prior to linearisation and solution 

by Laplace transformation methods. He states that 

the advantage is that the normalised equation is 

no longer very dependent upon small perierione in 

the ratio of heat exchange to heat capacity and 

hence heat transfer coefficient. By comparison 

with experimental data Koppel shows that this 

approach provides an improvement on previous 

techniques when the disturbances are small. 

A different approach was adopted by Myers 

et al. (2.102) who assumed that knowing the initial 

and final temperature distributions in the axial 

direction of the heat exchanger, these distributions 

could be applied during the transient period. This 

assumption is then used to simplify the distributed 

parameter model. The justification for this 

assumption is rather questionable and it is probable 

that this technique is only applicable to systems 

with a large capacitance. 

Using a set of Hermitian polynomials to 

approximate the dependence of temperature on axial 

position, Dorri (2.103) reduces a set of partial 

differential equations to a set of ordinary differen- 

tial equations. The resulting equations are shown to 

be easily soluble using an analogue computer but no 

verification by comparison with experimental data 

is provided. 
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A theoretical and experimental study of a 

single tube condenser is reported by Schoenberg 

(2.104) who concludes that predicted responses 

from a mathematical model of this type of process 

were very sensitive to the heat transfer coefficients 

and the temperature drop across the tube and shell. 

In developing a mathematical model he prefers to 

approximate the fundamental dynamic phenomena 

rather than attempting a rigorous solution of 

the partial differential equations governing the 

condenser. This approach appears to be quite a 

sound one in view of the fact that most generalised 

techniques have been found to fail in one situation 

or another. In addition to this it is quite likely 

that experimental observations of a process will 

lead to sensible simplifications of the model 

developed. The model developed by Schoenberg (2.104) 

consists of a set of eight ordinary non-linear 

differential equations. The model is linearised 

for small perturbations and solved by using Laplace 

transformations. The results obtained from this 

model are shown to be accurate in the early stages 

of a transient period by comparing them with 

experimental data. During the later stages the 

prediction error increases to a greater extent and 

is attributed by the author to neglecting a time 

lag in the vapour-liquid interface. 
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2.3.3. DYNAMICS OF EVAPORATOR SYSTEMS 
  

The majority of the research carried out into 

the dynamics of evaporator systems has been primarily 

concerned with the prediction of outlet concentration 

of a required product. Most researchers in this 

area have treated the heat transfer dynamics of 

the system being considered as secondary factors 

in their work due to the following reasons: 

(i) The time constants associated with the 

dynamics of heat transfer processes are very much 

smaller than those associated with the dynamics of 

the concentration processes. 

(ii) The pressure and hence the temperature in 

most evaporation equipment is controlled. 

These reasons make valid the assumptions that the 

dynamics of the heat transfer processes can be 

ignored and that any change can be considered as a 

step change. 

Mathematical models of evaporator systems 

reported in the literature have used both empirical 

and theoretical approaches. Johnson (2.106) presents 

a variety of empirical models of differing complexity 

and fits parameters with experimental data from his 

falling-film evaporator. Nisenfeld and Hoyle (2.107) 

consider simple empirical models for feed forward 

control and use two first-order lags and a time delay 

to dynamically represent a six-effect evaporation 

process. 
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The first theoretical derivation presented in 

the literature is due to Anderson et al. (2.108). 

This work reports on the derivation of lumped 

parameter, sixth order model for a single effect 

evaporator. By neglecting both vapour space and 

heat transfer dynamics the model is reduced to a 

third order system. A frequency response comparison 

between the model and the equipment used proved 

inconclusive. The original model developed in 

this work is similar in some respects to the one 

proposed earlier by Day (2.109). 

Zavorka et al. (2.110) report on the develop- 

ment of a general model for a single-effect of a comm- 

ercial sugar evaporator. This model was extended 

to a triple-effect system after simplification and 

includes non-linear relations for the heat transfer 

coefficients in terms of solution concentrations 

and liquid levels. Two drawbacks with this work 

are firstly the omission of a general heat balance 

and secondly the assumption that vapourisation is 

proportional to the heat transferred to the liquid. 

Burdett and Holland (2.111) derive a mathematical 

model for a seventeen-effect evaporator system used 

in a desalination process. The model, which contains 

380 non-linear equations in 380 unknowns, is shown 

by a comparison with experimental results to be 

accurate over large time spans and for large process 

disturbances. 
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As was discussed in section 2.2.5., a great 

deal of work has been done in this area, as well 

as in the areas of state estimation and computer 

control, by workers from the Department of Chemical 

Engineering, University of Alberta, Canada - see 

(2.62). The initial publication of Ritter and 

Andre (2.112) presents a direct derivation of a 

five-equation model for a double effect evaporator. 

Following this work, Newell and Fisher (2.113) 

develop a generalised approach for the modelling 

of multiple-effect evaporators. The approach 

presented separates the development of dynamic 

equations from the specification of evaporator 

configuration and since it is modular, is convenient 

to use. Using this technique a tenth-order non- 

linear, dynamic model of a double-effect pilot plant 

evaporator is derived and then linearised to produce 

a fifth-order state-space model. The authors report 

that comparison with experimental open-loop responses 

shows the results produced by the model to be 

extremely satisfactory. Wilson et al. (2.114) 

continue this work with a report on a procedure for 

reducing the order of the model obtained. The 

approach used is an intuitive one in which high order 

models can be approximated by state space models by 

setting the derivatives of the first-order equations 

with small time constants equal to zero. 
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More recently Niemi and Koinstinen (2.115) 

developed a fifth order mathematical model for a 

single effect evaporator used for concentrating 

black liquor in the wood pulping industry. The 

model is verified by comparison of the results of a 

computer simulation with experimental data obtained 

using radioactive tracers. Following this comparison 

experimental observations are used to linearise and 

simplify the models where possible. The authors 

conclude that the results obtained from the final 

model show it to be capable of producing an 

acceptable response to solids concentration and 

could be extended to cover the steam feed input. 

Two works which remain to be considered are 

those due to Payne (2.65) and Coleby (2.58) who 

consider the same evaporator as the one studied in 

this research. Payne derives a comprehensive 18th 

model of a double effect evaporator using an 

analytical technique based on the physical laws 

governing the system. This model is then reduced 

to a fourth order one by assuming that the vapour 

phase dynamics of the evaporator are controlled. As 

a consequence, it can be assumed that the derivatives 

of the equations describing temperatures related to 

the vapour space are zero. Coleby assumes that the 

vapour phase dynamics can be described by alge- 

braic equations since the time constants associated 
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with the vapour phase dynamics are small compared to 

those relating to the heat transfer dynamics. In 

order to obtain a differential equation describing 

the rate of change of the liquid flow on the shell- 

side of the various evaporator units, Coleby 

differentiates an algebraic equation and then 

applies the chain rule. The resulting seventh order 

model required the introduction of a number of 

parameters before it gave satisfactory results and 

even then was liable to cause bias due to the 

assumption neglecting the vapour phase dynamics. 
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2.4. CHAPTER REVIEW 

The discussion in the preceding sections of this 

chapter has been concerned with the application of 

process identification techniques to chemical 

engineering systems. In particular, a type of re- 

cursive state estimator known as the Kalman Filter 

has been discussed. Also, the mathematical modelling 

of heat exchange equipment with special reference 

to the heat transfer dynamics of evaporators has 

been considered. This discussion has revealed that 

the following areas require further exploration: 

(i) The development, testing and comparison of 

strategies to ensure and promote the convergence of 

the estimates generated by the Kalman Filter. This 

study to be carried out in a simulated environment. 

(ii) The application of established techniques 

to the mathematical modelling of the heat transfer 

dynamics of a pilot plant scale double effect 

evaporator. It is evident from the literature survey 

that the model which will describe the behaviour of 

the double effect evaporator most accurately will 

be the one obtained by combining the pertinent 

features of several of the modelling approaches 

already discussed and then reducing the degree of 

this model by the use of experimental observation. 

(iii) The on-line application of the modified 

Kalman Filter to the study of the heat transfer 
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dynamics of a double effect evaporator. The 

literature survey has revealed that the on-line 

applications of the Kalman Filter reported so far 

have been mainly concerned with the use of simplified 

filters to track controlled rather than open loop 

systems. 

With the exception of chapters five and six 

which describe the hardware and software used in 

on-line experimentation, the remainder of this 

thesis will follow the structure given above. 
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CHAPTER 3 

THEORETICAL DEVELOPMENTS



3.1. INTRODUCTION 

The most serious problem encountered in applying 

the Kalman Filter to non-linear processes is that of 

divergence of the estimates away from the true state. 

This problem, together with the solutions proposed 

in the literature, has already been discussed in 

some detail in section 2.2.6.2, where the three 

possible causes of divergence were identified as; 

(i) Excessive non-linearities. 

(ii) Incorrect system statistics. 

(iii) Use of a poor mathematical model. 

When considering the effects of using incorrect 

system statistics a number of authors, see for example 

(3.1, 3.2, 3.3), recommend the approach of treating the 

relevant matrices as design parameters rather than as 

system statistics. This approach, hereafter referred 

to as 'Filter Tuning', has been shown by the 

literature to be a successful one despite the fact 

that it is no more than a process of trial and 

error. Indeed, one can go so far as to state that 

the success achieved when using this technique is 

such that a more sophisticated method to solve the 

problem of incorrect system statistics is unnecessary. 

The main disadvantage of this technique is that the 

Filter Tuning needs to be carried out with reference 

to the physical processes considered in order that 
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the value assigned to each statistic reflects the 

likely uncertainty of the particular variable(s) 

referred to. 

The main aim of this chapter is to develop 

techniques to deal with the problems of excessive 

non-linearities and poor mathematical models. In 

section 3.2 the problem of dealing with poor 

mathematical models will be considered. First of 

all, the Adaptive Filter due to Kilbride-Newman (3.4) 

is discussed in detail and then modifications to 

enable its on-line application are proposed. The 

problem of excessive non-linearities is dealt with 

in section 3.3. A statement of this problem, as seen 

by the author, is made and then an entirely new 

technique for linearisation is developed and discussed. 

aiGe



«2. ADAPTIVE FILTERING wo
 

In cases where divergence problems are 

suspected or likely some method to control them 

should be incorporated into the filter algorithm. 

In section 2.2.6.2. the application of Adaptive 

Filters to control divergence was discussed and it 

was found that they are more general and powerful 

in dealing with bias than other filters. 

3.2.1. KILBRIDE-NEWMAN'S ADAPTIVE FILTER 
  

Consider the true system equations to be 

represented by: 

x ont (xg, u S a Zs) - (3.1) 5° 

and the model to be represented by, 

) - (3.2) m 
x =f x u 

m ( m’ Ym? 4m 

Equation 3.1 can also be written as, 

x, = £, (ay, Ug, 25) + £, (xy, Uy 25) - 

£7 (Xoo Us 25) = 63.3) 

Define, 

Byw =f > (x oyatee 2) £, (%gs Uy» 2) 

- (3.4) 

where, Fy is an n*l matrix of the form Fy (isd) 2 0: 

except for at most, one element in each row 

and column which may be unity, 

wis an 1*1 vector, 
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and, 1 is the dimensionality of the model errors. 

It then follows that, 

Kons fh (x, u 2 Zz.) + Fy.W = (3.5) 3? 

Comparing equations 3.5 and 3.2 it can be seen 

that iF (x, u, z) can generate the true state if 

it is disturbed by the inputs Fy.w. These inputs 

are referred to as 'fictitious inputs' because they 

have no physical significance yet they provide the 

necessary corrections to compensate for modelling 

errors. In general Fy.w will be unknown, but 

approximating this model compensation term by a 

Gaussian random process will at least make the 

errors incurred in using the inaccurate model 

random and unbiassed. 

The next step in the development of the 

Adaptive Filter is to find a way of calculating 

the mean (Ey), the covariance (E(w-Ew). (w-Ew)") of 

the fictitious inputs and the matrix Fy, for the 

random approximation to the model errors. A 

realisation of the above factors will be known as 

a 'Model Error Compensation' strategy. In developing 

this strategy the primary aim will be to provide a 

filter in which the estimation error covariance 

matrix is minimised while at the same time prevented 

from becoming over optimistic. 

Considering fn (x, u, z) to be linear and 
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stationary and approximating Fy.wW by a random 

process, 

kK=FL/x+Fi,u+F z+ F, Ew - (3.6) 
L 2 3 4 

where, Fy is an n*n matrix of coefficients, 

Fo is an n*p matrix of coefficients, 

is an n*r matrix of coefficients, 

p is the dimensionality of the vector of 

system inputs, 

r is the dimensionality of the vector of 

process noise, 

and, removing the subscripts m and s to simplify 

the terminology in the following developments. 

At this point there are two possible routes 

which one could take. The first possibility is to 

estimate Ew, which is an unknown vector of parameters, 

by forming an augmented state vector. A consideration 

of the likely increase in dimensionality together 

with the subsequent increase in computation time 

and storage requirements leads to this approach 

being discarded. Indeed the problems associated 

with increased dimensionality are ones which should 

always be avoided, particularly when dealing with 

the complex non-linear systems frequently found in 

chemical engineering processes. The second 

possibility, which possesses no disadvantages as 

regards increased dimensionality, is to write out 

formally the filter equations for the augmented 
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system described above, but then only to take 

estimates of the true state vector, x, leaving the 

model error vector, Ew, constant. This technique 

follows that described by Schmidt (3.5) and 

Jazwinski (3.6) and although it takes no account 

of the variation in the value of Ew the error 

committed in not improving the estimate will be 

modelled so that its effect on the estimates of 

x will be taken into account. 

The following derivation follows that of 

Kilbride-Newman (3.4) with the exception that the 

filter developed in this instance is applicable to 

discrete-time systems as apposed to the continuous— 

time systems dealt with in the original publication. 

Consider a poorly modelled unforced dynamical 

system represented by the following differential 

equation, 

X(t)0= Fiex(t) + Fjw(t) - (3.7) 

On integration this yields, 

x(k+1) = $(k+1,k), x(k) + [(k+1,k), Fy.w(k) 

- (3.8) 

which can be rewritten as, 

x(k+1) ¢(k+1,k) T(k+1,k) Fy x(k) 

w(k+1) 0 Oo “| wok) 

- (3.9) 
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If the formal equations of this augmented system 

are now considered, the prediction error covariance 

matrix will be, 

P_(k+1,k) P (k+1,k) 
P(k+1,k) = s ry 

Py wiktl, k) De (k+1,k) 

- (3.10) 

where, P_(k+1,k) = E(x(k+1) - x(k+1,k))(x(k+1) - 

x(k+1,&))7 

Py wokt1,k) = E(x(k+1) - x(k+1,k))(w(k+1) - 

Ew)? 

Pi (k+1,k) = E(w(k+1) - Ew)(w(k+1) - Bw)7 

x(k+1) is the actual state vector at time tad 

and, w(k+1) is the actual modelling error vector 

at time ted: 

Since the a-priori value of w(k), Ew, is not improved 

by the filter then PL (k+1,k) remains constant and 

the relationship for calculating the prediction 

error covariance matrix becomes, 

P,(k+1,k) Pyy(Ktt,k) | fo(k+1 i) TCk+1,4) Fy 
a = 

Be yistisk): Py ° I 

P(x, k) Py w0k k) | | o(k+1,«) 

Dees) ey O 

T 
T(k+i,k) , Fy 

I 
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Defining, 

E 
Pow (k+1,k).(T(k+1,k) Fy) - (3.12) C(ic+1, kx) 

T 
(kk). (T(s,k-1) Fy) =3(3.15) C(k, i) ae 

then the modified filter algorithm can be written 

down as the following set of prediction and 

estimation equations: 

Prediction 

x(kt1,k) = 9(k+1,k).x(k) + [(k+1,k).F,.Ew 

- (3.14) 

PL (k+1,k) = o(k+1,k).P,(k,k) o(k+1,«)7 ete 

By a T(k+1,k)? + $(k+1,k). T(k+1,k).F,.P,.F 

C(k,k) + CC, k)T. (att, k)T 

- (3.15) 

C(k+1,K) = $(k+1,k). C(k,k) + T(k+tL,k). Fy. 

PF), r(kt1,k)> - (3.16) Wat 

Estimation 

K(k+1) = PL (k+1,k). M(c+1)7. (M(K+1). PL (k+1,k). 

M(k+1)? + RCK+1))72 En (Sa17) 

x(k+1,k+1) = x(k+1,k) + K(k+1).(y(k+1) - 

M(k+1). x(k+1,k)) = (3.18) 
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Pi (i+1,k+1) = (I-K(k+1). M(k+1)). P,(k+1,k). 

(1-K(k+1). M(k+1))7 + KCkc+1). R(k+1). 

K(ke+1)7 - (3.19) 

C(k+1,k+1) = (I-K(k+1). M(k+1)). C(ic+1,k). 

(I-K(c+1). M(k+1))7 + K(ct1). R(k+1). 

K(x+1)7 E532 20) 

The Adaptive Filter shown above, equations 

3.14 to 3.20, will only perform satisfactorily if 

Ew and 2s define consistent stochastic processes. 

In other words, PL must accurately represent the 

covariance matrix of the errors (w(k) - Ew). This 

means that an error in the value of Ew will 

deteriorate the accuracy of the state estimates by 

requiring Py to increase, which in turn results in 

a larger estimation error covariance matrix, P(k,k). 

Thus, in order to complete the derivation of the 

filter, some means of providing a consistency check 

on the value of Py must be developed and, in addition, 

a method for updating the a-priorivalue of the model 

error vector, Ew, needs to be developed. 

Firstly, a method for providing a consistency 

check on the value of Py will be developed. If 

the values of Ew and Po define consistent stochastic 

processes, then the residuals vector, (y(k) - M(k). 

x(k,k-1)), will be a zero mean white noise process 
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with, 

1 yet 
Geet) Ce 

E(y(t) - M(t). x(t)) (y(t)-M(t). x(t)) at 

k+1~ K) k 

= M(k+1). P(kt1,k). M(kt1)7 + R(c+1) 

EM( 3521) 

If it is now assumed that Pw can be represented by 

a diagonal matrix, I*c, where c is a scalar, then 

defining io = c-c, where ¢ is an a-priori guess for 

c, we obtain, 

a 

—1_ fp 1 acyct)-mct). x(t) )(y(t)-M(t). x(t))7. at 
Cty te) 

= M(k+1). P(k+1,k). M(ct1)" + R(k#1) + (M(k+1). 

P(k+1,k).F,). ((k+1). T(k+1,k).¥4)7.¢ 

- (3.22) 

Therefore, 

t 
k+1 ors (se f 

Coeeaee 

E(y(t)-M(t). x(t))?. (y(t)-M(t)x(t)). at 
wn) *k 

TRACE (M(k+1). P(k+1,k). M(k+1)7 + R(k+1)))/(TRACE 

COMC+L). P+1, 1). 4) (MC#1). Tt) Fy )™)) 

- (3.23) 
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where the TRACE of a matrix is defined as the sum 

of the diagonal elements. Equation 3.23 enables the 

required consistency check on Pw to be made and as 

a result © is updated to (¢ + @) unless this is 

negative, in which case ¢ = O. 

Equation 3.23 requires a value for, 

7 eed i 
Cia eS f E(y(t) - M(t). x(t)) 

k+1 K t, 

(y(t) - M(t). x(t)). dt 

The required value is obtained by representing the 

above expression by g(t,+ 1) and using an exponen- 

tial filter as follows, 

ted 
R(t) = B(t_) + aC s »f (te) - 

M(t). x(t))™, (y(t) - M(t). x(t)). dt - g(t,)) 

= (3524) 

where, O<a<l. 

Clearly, the above equation needs to be transformed 

into a discrete form, as it is unlikely that 

differential equations will be available to 

represent the functions y(t) and M(t). This is 

done by assuming a linear relationship for both 

y(t) and M(t) between the sampling points ty and 

teed: Thus, equation 3.22 becomes, 
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e(k+1) = g(k) + a(2( (y(k+1) - M(k+1). 

x(k+1,k))*(y(k+1) - M(k+1) x(t1,))) + C(yCk) 

M(k). x(k, k-1))7(y(k) - Mc). x(ic,k-1))) 

- g(k)) - (3.25) 

Equation 3.25 is a recursive relation for the 

scalar quanitity g(k), which is an estimate of 

the trace of the covariance matrix of the residuals. 

This equation together with equation 3.23 can be 

implemented alongside the filter algorithm defined 

by equations 3.14 to 3.20. This will ensure that 

the statistics used in the filter are consistent 

with the statistics of the residuals. 

The derivation of the filter has now reached 

the stage where the value found for P,, from Ww 

equations 3.23 and 3.25 will be consistent with 

whatever value of Ew is used. However, in order 

to optimise the performance of the Adaptive 

Filter, some method is required to obtain an 

accurate estimate of Ew. From its definition, it 

can be seen. that Py will be minimised when Ew is 

known precisely and by examination of equation 3.23 

it is clear that an accurate Ew will minimise the 

quantity g(k) defined in equation 3.25. Therefore, 

the computation of a value for Ew is similar to 

optimal control problems designed to minimise an 
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objective function of the form, 

a kad - 
a aE a E(y(t) - M(t). x(t)) 

(y(t) - M(t). x(t)). dt 

= (3:26) 

Let w be some a-prior prediction of Ew, then 

If the prediction due to the mathematical model of 

the system considered is represented by x(k), i.e: 

XK (k+1) = o(k+1,k). x(k,k) 

then, 

x(kt1,k) = X(k+1) + T(kct1,k). Fg. ¥ 

= (3.27) 

Substituting equation 3.27 into equation 3.26 and 

setting 3J/8 w(k) =O for all k gives, 

t kt 
a sare E(y(t) - M(t). ¥(t))7. dt. 

ri 

M(k+1). I(k+t1,k). Fy = 

(MCeeE ys TCktl Ek) & Pe 

M(k+1) [T(k+1,k). Fy 

- (3.28) 
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Rearranging this equation we obtain, 

nur) T(k+1,k).F,)7. 
(tei Pg) 

(MQkt1).  T(k#1,k).F4))*. (M(ct1). 

t 
P(k+1,k).F4)7 f S*4Ecy(t)-M(t). 

ty 
K(t)). dt - (3.29) 

av 

The value of W can now be updated to (W + w). 

Following a similar procedure to that used for 

checking the consistency of Pos the quantity, 

t. 
ee Ge Seas ce 

ty 
is represented by Y(ty 44) and using an exponential 

filter can be calculated using the following 

equation: 

Gun) CG) — ee (y(t) y(t = y(t.) +8 ¥CC) = 
ae Seti tk ty, 

M(t). x(t)). dt- y (t,)) - (3.30) 

where, O< 8 < l. 

Equation 3.30 can now be transformed into a 

discrete form by a similar procedure to the one 

used to obtain equation 3.25 from equation 3.24. 

The resulting equation is as follows: 
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y(e+1) = y(k) + B(4(y(k+1)-M(k+1). x(k+1,k)) 

+ $(y(k)-M(k). x(k,k-1)) - y(k)) 

- (3.31) 

Equation 3.31 is a recursive relationship for 

estimating the mean of the residuals. This 

equation together with equation 3.29 can be 

implemented alongside the filter algorithm, 

equations 3.14 to 3.20. This will provide a 

method for calculating an accurate estimate of 

Ew and so ensure that the filter performance is 

optimised. 

The derivation of the adaptive filter can 

now be completed as follows: 

Consider a noisy, forced dynamical system 

represented by the following set of differential 

equations, 

x(t) = F,. x(t) + Fy. u(t) + Fg. 2(t) + Fy. © 
2° 3° 

- (3.32) 

with measurements, 

y(t) = M(t). x(t) + v(t). - (3.33) 

Integration of equation 3.32 gives, 

x(k+1) = o(k+1,k). x(k) + T(kt+1,k).F).u(k) 

+ [(k+1,k).F3. 2(k) + Fy. Ww 

- (3.34) 
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If the matrices Q(k) and R(k) are as defined in 

section 2.2.3, the complete adaptive filter will 

consist of the following prediction/estimation 

relationships. 

Prediction 

x(k+1,k) = (k+1,k). x(k,k) + T(k+1,k).Fp.u(k) 

+ [(k+H,k).F,. 2(k) + Fy. w 

- (3.35) 

P(k+1,k) = (kt1,k). P(k,k). $(k+1,k)? 

+ T(k+1,k). Fz. Q(k+1).F,". r(kt1,k)? 

+ o(ktl,k). C(k,k) + CCk,k)". o(ictd,k)? 

+( TC k+1,k). Fy) ( P(k+1,k). Fo. c 

- (3.36) 

C(k+1,k) = $(k+1,k). C(k,k) + T(k+1,k). Fy. 

py. F.o. peti, k)- 4 
= (337) 

Take measurements, 

y(k) = M(k). x(k) + v(ic) 

y(k+1) = yCk) + BCA (y(s+1) - M(k+1). x(k+1,k)) + 2(y(k) - 

M(k). x(k,k-1)) - y(k)) - (3.38) 
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w= ((M(k+1). T(k+1,k).F,)7. (M(k+1). 

P(k+1,k).F,)) 7. (MCc#1). P(k+1,k).F4)7. 

y(k+1) = (3.39) 

we=Wwe+w - (3.40) 

g(k+1) = e(k) + a(A(Cy(+1) - MCk+1). x(k+1,k))7. 

Cy(k+1) - M(k+1). x(k+1,k))) + 4 (Cy(k) - 

M(k). x(k,k-1))?, (yk) - M(k). 

  

x(k,k-1))) - (3.41) 

g(t) = TRACE (M(k+1). P(k+1,k). M(c+1)7 
KeL TRACE ((M(k+1). T(k+1,k). F,)(M(Ck+1). 

+ ROk+1)) if STE) 

T(k+1,k).F,)") 

ements 4, os 
=C, +¢. c. =O kd itd Set Sea. 

= 0 Cry < 0 

Py = 1-Cgay - (3.44) 

Estimation 

K(k+1) = P(c+1,). M(k+1)7. (M(k+1). P(k+1,k). 

L M(c+1)" + RCk#1))~ - (3.45) 
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X(k+1,k+1) = x(k+1,k) + K(k+1).(y(kt1) - 

M(k+1). x(k+1,k) - (3.46) 

P(k+1,k+1) = (I-K(k+1). M(k+1)). P(k+1,k). 

(1-K(k+1). M(k+1))? + K(k+1). R(k+1). 

K(k+1)? - (3.47) 

C(k+1,k+1) = (I-K(k+1). M(k+1)). C(k+1,k). 

(1-K(k+1). M(k+1))7 + K(c+1). R(e+1). 

ithe 
K(k+1) - (3.48) 

The Adaptive Filter developed above, equations 

3.35 to 3.48, can now be used in exactly the same 

recursive manner as the Extended Kalman Filter. 

3.2.2. IMPLEMENTATION OF THE ADAPTIVE FILTER 
  

The Adaptive Filter derived in the previous 

section is not as yet ready to be applied in either 

an on-line or simulated environment because the 

parameters a and 8 and the matrix Fy are unknown. 

The problem of parameter estimation also requires 

consideration and, as will be seen later, the 

associated parameter, 8, needs to be determined. 
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3.2.2.1. THE Fy MATRIX 

The Fy, Matrix will, in general, be unknown, 

although in situations where deliberate modelling 

errors have been committed some information will 

be available about the nature of Fy: Such a 

Situation would occur if the true system 

equations are known but considered too complicated 

or involve too many state variables for on-line 

filtering. The use of a simplified model in 

such cases will mean there exists a knowledge of 

the modelling error committed. 

In the majority of situations all that is 

known about Fy is that Fy (i,j) = O except for, 

at most, one element in each row and column, 

which may be unity. Having stated this, it should 

be pointed out that there is little theoretical 

evidence that such a structure is correct. 

However, the constraints placed upon the 

structure of Fy does ease its computation, and 

as will be discussed in chapter 4, it turns out 

that such a structure is likely to be near to the 

truth. In order that the locations of these 

non-zero elements may be determined, the following 

procedure is adopted. The dimension of the model 

error compensation term, 1, is taken to be unity 
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and thus Fy is reduced to an n-dimensional vector. 

Each unit vector of this form is tried in the 

filter and the vector that minimises g(k) is 

selected as the first column of Fy: The 

dimension of F, is then increased to 2 and the 
4 

same process used to determine the second 

column of Fy: This process is continued until 

1 = M, the dimension of the measurement vector. 

This is the largest number of independent 

variables that can be computed via equation 3.39 

and therefore restricts this method to finding 

model error compensation vectors with dimension 

less than or equal to M. Whilst the dimensionality 

of Fy is being varied care is needed to ensure 

that the correct dimensions are used when 

inverting the following matrix, 

(M(k+1) T(k+1,k). F,)" (M(k#1)  T(c+1,&).F4), 

See equation 3.39. When Fy is a n*1 vector this 

matrix will be a 1*1; when Fy is an n*m matrix 

the dimensions will be m*m and etc. 

When considering a possible application of 

the Adaptive Filter, particularly in cases where 

the dimensionalities of the state and measurement 

vectors are large, it soon becomes clear that the 
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determination of the Fy matrix is the most 

serious drawback of this filter. For example, 

if n = 8 andm = 5, then a total of 30 trial 

runs would need to be carried out in order to 

determine Fy: Clearly this would not be 

possible in an on-line situation and a way of 

reducing the number of trials needs to be 

found. No theoretical technique is available 

to do this but in most applications an examination 

of the mathematical model will lead to a considerable 

reduction in the number of trials required. Since 

F, relates the state vector to the model error 

vector, which is in turn determined by a 

calculation involving the vector of residuals, 

see equation 3.39, then errors can only be 

determined for state variables which occur in 

those differential equations that describe the 

behaviour of measured state variables, e.g. if 

the differential equation describing xj is, 

eee) cad 

where Thy is a time constant, 

then, if x] is measured, the possible non-zero 

elements of the first column are (1,1) and (7,1) 
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3.2.2.2. THE PARAMETERS a AND 8 

The values chosen for both of these parameters 

will clearly affect the optimality of the perfor- 

mance of the adaptive filter. At present, no 

theoretical treatment exists which will enable 

the calculation of either a or 8 and so it is 

necessary to determine them by trial and error 

experiments using a simulated filter. Kilbride- 

Newman (3.4) carried out: extensive experimentation 

in order to find suitable values for these 

parameters and obtained the following results, 

a = 1/k : 1/k > 0.2 

0.2 : 1/k < 0.2 

0.2, <°8 < 0.4. 

In the case of 8 the best performance was 

obtained when a value of 0.3 was used but for 

different systems this may vary within the limits 

given above. 

3.2.2.3. PARAMETER ESTIMATION AND 6 

In the discussion of adaptive filters in 

section 2.2.6.2. it was stated that the Adaptive 

Filter due to Kilbride-Newman (3.4) was capable 

of parameter estimation in addition to state 
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estimation. This is true so long as equations 

3.39 and 3.40 are only included in the filter 

algorithm at every 6th time increment. This 

restriction allows the filter to respond as 

much as it can to changing conditions thus ensuring 

that the model error compensation term is only 

conditional on errors caused by a poor 

mathematical model. This procedure does, however, 

introduce an unknown parameter, 9, which again 

has to be determined by trial and error. 

Kilbride-Newman (3.4) found that the optimal 

value of 6 was 4 but that good results were 

obtained by the following range of values, 

3<68<6 

3.2.3. DISCUSSION OF THE ADAPTIVE FILTER   

Once the parameters a, 8 and 6 and the 

matrix Fy, have been determined from initial on- 

line experimentation using the filter, it only 

remains to specify the following quantities, 

x(0,0), C(0,0), P(0,0), g(0), y(0), ¢, 

w, R(k), Q(k), 

before the Adaptive filter derived in section 

3.2.1., equation 3.35 to 3.48, can be applied 

in an on-line environment. The two most powerful 
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features of this adaptive filter are, (i) the 

filter's ability to eliminate divergence, and 

(ii) the model error compensation strategy. 

The importance of eliminating divergence in 

chemical engineering applications was stressed 

in section 2.2.6.2. However, the ability of 

the adaptive filter to indicate possible areas 

of modelling error must be an extremely 

significant eset: Indeed it should eventually 

be possible to improve poor mathematical models 

by examination of the values of both F, and Ww 

computed by the filter. 

The adaptive filter is not, however, without 

a number of disadvantages. The earlier discussion 

on the determination, of F, highlighted the fact 
4 

that this may be a lengthy process. Other 

problem areas which have been indicated are 

those associated with the choice of a, B and 86. 

Although the adaptive filter is reasonably 

robust with respect to these parameters, it was 

found by Kilbride-Newman (3.4) that in cases 

where a is too small or 8 is either too small or 

too large the estimates become noisy and tend to 

oscillate about the true values. 

The restriction placed on the number of 

fictitious inputs, W, when determining F, was 
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done primarily to combat the problem of unobser- 

vability. If one tries to determine too many 

fictitious inputs the performance of the adaptive 

filter is likely to display the type of 

instability obtained when applying any form of 

the Extended Kalman Filter to processes offering 

too few measurements. 

The increased cycle time of the adaptive 

filter is not a serious problem in the majority 

of chemical engineering applications as the 

time constants associated with such processes 

are large enough to allow ample time for the 

execution of the filter algorithm. However, 

the possibility that convergence will be 

delayed due to the time required to optimise 

w is a problem which needs consideration. 

The slower convergence is due to the fact that 

w is only updated every 6 time increments. 

However, this problem will only occur in systems 

where parameter estimation is being carried out. 
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3.3. EXCESSIVE NON-LINEARITIES 

The original developments made by Kalman 

(3.7) in the field of sequential estimation are, 

strictly speaking, only applicable to systems 

described by sets of linear, first order 

difference equations. If this theory is to be 

extended to processes described by sets of 

non-linear differential equations we need to 

make the following fundamental assumption 

(see Sorenson (3.8)): 

"A nominal solution of the non-linear 

differential equations must not only exist but 

also provide a 'good' approximation to the actual 

behaviour of the system. The approximation is 

'good' if the difference between the nominal 

and actual solutions can be described by a system 

of linear differential equations known as ‘linear 

perturbation equations'". 

Once this assumption has been made the 

derivation of the Extended Kalman Filter can 

proceed. However, as was discussed in section 

2.2.4, the reported applications of the Extended 

Kalman Filter state that there are a number of 

instances when divergence will occur due to the 

above assumption being untrue. The proposed 

solutions to this problem include: 
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(i) Using numerical integration to compute 

the predictions. 

(ii) Second order filters. 

(iii) Iterated filters. 

The results obtained using these techniques 

have, however, not been completely satisfactory. 

In order to try and identify the problem areas, 

let us first consider the derivation of the 

Extended Kalman Filter in greater detail. 

The derivation of the Extended Kalman 

Filter essentially consists of developing an 

expression to compute a state transition matrix 

relating the state of the system at time ty, to 

the state at t Consider an unforced dynamical 
k+1° 

system represented by the following set of 

differential equations. 

x = f(x) - (3.49) 

where, f(x) is a non linear function with respect 

to one or more state variables; usually a high 

proportion in chemical engineering systems. 

Now consider the calculation of the state of the 

system at time tha by using simple Euler numerical 

integration and knowing the state at time ty, 
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Ck) = £(x(k)) - (3.50) 

and, x(k+1) = h(x(k)) x(k) + £(x(k)). At 

= G51) 

where, h(x(k)) represents the integral of f(x), 

evaluated between the limits ty and teat: 

The function h (x(k)) is now expanded about a 

nominal trajectory, x(k), using a Taylor series 

expansion 

h (x(kK)) = h(x(k)) | _ + (x(k) - X(k)). 
x(k) 

ah (x(k) ) 1, ext 0s) 
ax(s) Xk) 2+ 

27h(x(k)) e 
ax(k)* a 

X(k) 

- (3.52) 

Replacing h(x(k)) by x(k+1) and truncating the 

series to the first derivative we obtain, 

x(k+1) = X(kt1) + (x(k) - X(k)). BBG) 

x(k) 

- (3.53) 

If perturbation variables are now introduced, 

6x = X-X 
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equation 3.53 can be simplified to, 

6x(k+1) = Vase 8x(k) - (3.54) 

x(k) 

Thus, by comparison with linear systems, we can 

see that the matrix, 

2G) - (3.55) 

X(s) 

is an approximation to the non-linear state 

transition matrix, 4%(k+1,k). 

Differentiating equation 3.51 with respect to 

x(k) gives, 

ah(x(k)) =I+ af(x(k)) , At 
ox(k) ox(k) 

X(k) x(k) 

- (3.56) 

Therefore, our approximate non-linear state 

transition matrix can be computed by use of the 

following expression, 

af (x(k)) $(k+1,k) = I + x(k) At - (3.57) 

K(k) 

where, df(x(k))/3x(k) is known as the Jacobian of 

partial derivatives and is defined as, 
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CEST --- ES 

af(x(k)) _ 
x(a oe 

- (3.58) 

Thus, it can be clearly seen that the value of 

@(k+1,k) calculated by the procedure given above 

is at best only approximately correct. From 

this statement it follows that as the non- 

linearity of the system considered increases 

then the error in the value of $(k+1,k) will also 

increase. Coggan and Noton (3.9) confirm the 

existence of the above errors when they state 

that sufficiently accurate state predictions can 

only be obtained using such a state transition matrix 

if the sampling interval, thar th is sufficiently 

small. To overcome this problem most of the 

reported applications of the Kalman Filter have 

used numerical integration to compute the 

predicted state. Thus, although one can be 

confident that the state predictions are 

sufficiently accurate, the related statistics may 

be grossly inaccurate due to the use of an 
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inaccurate state transition matrix in the 

calculation of P(k,k+1), see equation 2.11. 

Clearly this shows that a new and more accurate 

method for calculating $(k+1,k) is required. 

3.3.1. ALTERNATIVE PROCEDURES FOR CALCULATING 
  

THE STATE TRANSITION MATRIX. 

There are two possible approaches to the 

problem of how to calculate a more accurate 

state transition matrix: 

(i) Post computation - that is, having 

calculated the predicted state by some type of 

numerical integration, compute a matrix which 

will accurately describe the transition from 

the estimated state at time ty to the predicted 

state at time teed? 

(ii) Pre-computation - that is, develop a 

method for calculating an accurate state 

transition matrix knowing only the estimated 

state at time tye This matrix can then be used 

to compute both the predicted state at time teed 

and the related statistics. 

The second of these two approaches would 

appear to be the most consistent with the 

requirements of the Kalman Filter. However, a 
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literature survey of the relevant techniques 

reveals only one possibility for calculating 

$(k+1,k) in this way. This technique involves 

the calculation of a functional known as the 

Matrizant (3.10). Unfortunately no algorithm 

has yet been developed for the rapid calculation 

of a numerical value for the Matrizant. 

Two techniques which involve the first type 

of approach are ones that use either multiple 

linear regression or the Canonical Transformation. 

The technique utilising multiple linear regression, 

although feasible, was not adopted because p 

samples, where p is the number of unknowns in 

o(k+1,k), would have to be taken before evaluation 

was possible and due tothis, the resulting state 

transition matrix would contain too high a 

proportion of over weighted historical data. 

Thus, the most suitable approach is one involving 

Canonical Transformations. 

3.3.2. THE CANONICAL TRANSFORMATION 

For the sake of clarity, before considering 

the calculation of $(k+1,k) for non-linear 

systems, the theory of Canonical Transformations 

applicable to linear systems will be considered. 
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Consider the following set of linear 

differential equations, 

x(t) = F).x(t) - (3.59) 

with the initial condition, 

iar x(0) - (3.60) 

The eigenvalues of this system, 1, are defined 

by the following equation, 

| Fi - Xe O) - (3.61) 

Corresponding to each of these eigenvalues there 

is at least one non-trivial solution, v, to 

equation 3.62. 

- (3.62) 

The solution corresponding to AG is called the 

ith eigenvector, Va- 

Defining the eigenvector matrix, V, as, 

v= v v - (3.63) 

it can be shown, see Bellman (3.11), that if Fi 

is pre-multiplied by v1 ana post-multiplied by 

V, the resulting matrix, A, takes the form I. i, 

182, 

vVe=tTI, - (3.64) 
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Tranforming x and x as follows, 

x = Vit. x = (3.65) 

xs =evllx - (3.66) 

we obtain our transformed system, 

x =A. x - (3.67) 

Since A is a diagonal matrix the transformed 

2* 
equations have now been decoupled, that is Xp 

* 

depends only on Xj- Hence, each individual 

equation can now be written as, 

x = a,. x = (2268) 

the solutions of which are, 

: = a . 3.69 Xj (t) = exp ( q:t)- x; (0) - (3.69) 

Thus, the solution of equation 3.67 is, 

x(t) oan bee lexp Qt) a 

exp Oost) = ¢3)..70) 

( 
' 

exp Qt) 

writing, the vector, 

exp Oyt) 

exp gt) 

' 
exp Ot)     
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as exp (At), equation 3.70 becomes, 

* * 
x(t) = bE. exp (At). Xo =a(. 71) 

If the above equation is written in discrete 

form, 

x * 
x (k+1) = I. exp (A.At). x (k) = (3.72') 

where, At = tad - ty, 

the equivalent equation for the untransformed 

and then compared with 

state, 

x(kt+1) = $(k+1,k). x(k) =a aro) 

it is clear that the expression I. exp (A.At) 

represents the state transition matrix for the 

transformed state, 6*(k+1,k). 

At this point it is worth noting two of the 

properties of Canonically Transformed systems. 

These are, (i) The eigenvalues of both the 

original and the transformed systems are identical. 

(ii) The tranformed state transition 

* 
matrix, > (k+1,k) is a diagonal matrix. 

3.3.3. THE APPLICATION OF CANONICAL TRANSFORMATIONS 

TO NON-LINEAR SYSTEMS 

Consider an unforced dynamical process 

described by the following set of non-linear 
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differential equations, 

x = £(x) = (3.74) 

Rearrangement of the above set of equations often 

makes it possible to rewrite 3.74 in the form, 

x= FL (x). x - (8.75) 

where, Fi Cs) is an n*n matrix of coefficients. 

This matrix is evaluated by substituting the 

value of the state vector, x, into the expressions 

obtained by the rearrangement of equation 3.74. 

Writing equation 3.75 in discrete form, 

x(k) = F)(k). x(k) - (3.76) 

it can be seen that the matrix Fi (k) is in 

effect a linearisation of the system equations 

about the nominal state trajectory at time th 

LoCn5 

Fy Cs) = F(x) - (3.76a) 

x(k) 

Clearly this linearisation procedure will produce 

a solution which accurately describes the state 

of the system in the immediate vicinity of the 

sampling point tye The eigenvalues, A(k), and 

the eigenvector matrix, v(k), corresponding to 

the solution given by equation 3.76 can now be 
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determined thus allowing the computation of 

the transformed state vector, x*(k), as follows: 

1 x*(k) = Vola). x(k) - (3.77) 

The next step in the procedure is to 

calculate a value for the transformed state 

vector at time teat: This can be done by using 

an appropriate numerical integration technique 

and then following the same procedure as that 

given above for time ty 

Having obtained values for both x* (i) and 

x* (+1) and assuming the existence of a 

transformed state transition matrix for non-linear 

systems, $ Cktl, &), then the equation relating 

these quantities can be obtained by assuming 

that such an equation will be of the same form 

as in the linear case, equation 3.72, i.e., 

x*(k+1) = o*(k+1,k). x*(k) - (3.78) 

Assuming that $* (ic+1, k) is a diagonal matrix 

(c.f. linear case), then it is simply calculated 

as follows: 

* * * 
o, i (k+1,k) = xy (k+1) / x; (k) ; i=1,n 

- (3.79) 

It now remains to develop a method for retransforming 
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$* (kt1,k). This is done by substituting 

equation 3.77 and the corresponding equation 

for time t 1 into equation 3.78 and re-arranging, 
k+ 

x(k+1) = (V(kt1). o*(k+1,k). V74Ck)). x(k) 

Ee Canso) 

Comparing equations 3.80 and 3.73 it can be 

deduced that, 

—1 o(kt1,k) = V(k+1). 6*(+1,k). V7) 

- (3.81) 

3.3.3.1. THE GENERAL NON-LINEAR CASE 

The majority of mathematical models describing 

the transient behaviour of chemical engineering 

processes consist of sets of equations which are 

not only non-linear but also include forcing 

functions or inputs, u(t), and some vector 

describing process noise, z(t). Thus the 

general mathematical model will be, 

& = f£(x,u,z) - (3.82) 

As before, this equation can usually be rearranged 

(c.f. equations 3.74 and 3.75) to give, 

x= Fi (x,u,z). et Fo(x,u,Z). a+ 

F CE pay. /Z. - (3.83) 
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Considering Fo(x,u,z) and F3(x,u, 2) to be linear 

and stationary, then the discrete form of 

equation 3.83 is, 

x(k+1) = $(k+1,k). x(k) + [(k+1,k) 

(Fo.u(k) + F3-2(k)) - (3.84) 

Transformation of equation 3.84 gives, 

x*(k+1) = o*(k+1,k). x*(k) + P*(k+1,k), 

(Fp .uk) + Fy. 2(K)) - (3.85) 

* at where, Fy = V(k)7).F, - (3.86) 

-) 2a] and F3 = V"*(k).F, - (3.87) 

Substitution of equations 3.77, 3.86 and 3.87 

into 3.85 and comparing the resulting equation 

with 3.84 yields the following relationships 

between transformed and untransformed transition 

matrices, 

$(k+1,k) = V(k+1).¢ *(k+1,k). Wiis) - (3.88) 

T(k+1,k) = V(k+1).7 *(k+1,k). Vick) - (3.89) 

In order to calculate values for both 

* 

$* (k+1,k) and IT (k+1,k) it is necessary to make the 

following -assumptions, 
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(i) D*(ct1,k) is a diagonal matrix 

(ii) The relationship between $*(k+1,k) 

and rT *(k+1,k) is as follows, 

* * * 
P"(k+1,k) = 6 (k+1,k). At = (8090) 

The first assumption can be justified by 

considering the derivation of this matrix for 

the linear case where it can be proved that 

r* (+1, kk) is diagonal. The second assumption 

is more difficult to justify. However, since 

the system is discrete the value of 6" (t1,k) 

will be constant between ty and thay and thus, 

equation 3.90 which is in fact the correct 

relationship for linear systems, is a reasonable 

approximation to other more complex relationships 

which could be derived. 

Combining equations 3.90 and 3.85 and 

considering the ith state variable gives the 

following equation for the calculation of 

o" (ctl, k), 

* (w+1,k) = x0 (c+1)/(xe(k) + At. s, (is $546 , =X )/ Cx; Cs) - $,(k)) 

3; i = 1,n - (3.91) 

* 

where, s(k) = Fy u(k) + Fj z(k). Once the 

transformed state transition matrix, o*(kt1,k), 

has been calculated by the above method, the 
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transformed integral state transition matrix 

can be determined using equation 3.90. 

3.3.3.2. SUMMARY OF THE CALCULATION PROCEDURE 

The complete calculation procedure for the 

general non-linear case can now be summarised 

as follows: 

(i) Compute Fy (k) - equation 3.76a. 

(ii) Determine the eigenvalues, A(k), and 

the eigenvectors, V(k). 

(iii) Calculate the transformed state vector, 

x" (k) - equation 3.77, and s(k) - equation 3.85. 

(iv) By an appropriate type of numerical 

integration determine the solution of equation 

3.82, x(kF1). 

(v) Compute Fy (k+1) - equation 3.76a. 

(vi) Determine the eigenvalues, A(k+1), and 

the eigenvectors, V(k+1). 

(vii) Calculate the transformed state vector, 

x"(k+1) - equation 3.77, and $(k+1) - equation 

3.85. 

(viii) Compute $* (c+1,k) - equation 3.91. 

(ix) Compute r*(k+1,k) - equation 3.90. 

(x) Retransform both 6" (k+1,k) and T* (+1, k) 

- equations 3.88 and 3.89. 
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The above procedure is presented schematically in 

Figure 3.1. 

3.3.4. DISCUSSION OF CANONISATION PROCEDURE 

The procedure summarised in the preceeding 

section produces a considerably more accurate 

value for the state transition matrix, $(k+1,k), 

than was achieved by previous methods because 

of the way it 'fits' the matrix to a known 

change in state. Initial tests show that when 

both types of $(k+1,k) (i.e. the one derived at 

the beginning of section 3.3 and the one 

summarised in section 3.3.3.2) are used to 

calculate the value of x(k+1) from x(k) the 

error is reduced from 10% to less than 1%. 

From this result it can be concluded that the 

value of $(k+1,k) found by the new procedure 

'fits' the change from x(k) to x(k+1) very 

accurately whereas the value of $(k+1,k) found 

by the previous method is a poor approximation 

to the correct value. 

The introduction of this canonisation 

procedure into the Kalman Filter will essentially 

produce a new type of filter with, as yet, unknown 

characteristics. The cycle time of this new 
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filter will undoubtedly be greater than that for 

a conventional Extended Kalman Filter, but in 

cases of high non-linearity where the system 

time constants are large (i.e. chemical 

engineering processes) it will enable greater 

confidence to be placed in the statistics 

generated by the filter. One further 

advantage which has not yet been discussed is 

the absence of unknown parameters from the 

filter. This must surely be a significant 

advantage over many filters proposed in the 

literature. 

Prior to the on-line implementation of the 

new filter a number of points needed to be 

investigated in a simulated situation. These 

points are as follows: 

(i) The characteristics of the new filter 

need to be determined. 

(ii) An efficient routine for calculating 

the eigenvalues and eigenvectors needs to be 

found. 

(iii) The absence of undesirable numerical/ 

roundoff errors needs to be established. 
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3.4. CHAPTER REVIEW 

Two modifications to the Kalman Filter 

have been developed in order to eliminate 

divergence and bias problems due to, 

(i) A poor mathematical model. 

(ii) Excessive non-linearities. 

Discussion of these developments has 

revealed a number of areas requiring further 

investigation prior to the on-line implementation 

of the modified filters. This investigation 

will be discussed in chapter four. 
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CHAPTER 4 

SIMULATION STUDIES OF THE KALMAN FILTER 
 



4.1. INTRODUCTION 

In section 2.2.5 the discussion on the 

application of Kalman Filters to chemical enginee- 

ring processes reported that the majority of the 

research carried out in this area has been 

concerned with the performance of simulated 

filters. It was noted that although the results 

given in the literature were encouraging, a 

number of problems associated with the on-line 

implementation of Kalman Filters had been over- 

looked. This does not mean that these simulation 

studies are devalued in any way, merely that they 

should be regarded as the first and indeed an 

essential step in the application of Kalman 

Filters to chemical engineering processes. In 

the author's own experience, the most important 

features of such simulation studies are that they 

enable the elimination of any numerical problems 

associated with the proposed filter and allow the 

filter performance to be assessed in a situation 

which is accurately known. Thus, the results 

obtained in simulation studies give a good 

indication of what to expect when the filter is 

applied in an on-line context, and this is the 

main objective of the investigation reported in 

this chapter. 
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The theoretical developments proposed in 

chapter three are aimed at ensuring and promoting 

the convergence of the Kalman Filter when applied 

to chemical engineering processes. In order to 

assess the performance of these new filters, the 

accuracy of the estimates produced will be 

compared with the accuracy of those generated 

by standard forms of the Kalman Filter. This 

investigation takes the form of firstly 

producing noisy measurements from a computer 

program written to simulate the behaviour of a 

three tank blending system. These results are 

then used as measurement data to test each filter 

being studied. Finally the estimates generated 

are output in both graphical and digital forms. 
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4.2. THEORETICAL BACKGROUND 

The experiments done in this study of the 

performance of the Kalman Filter were carried out 

by using three computer programs. The separation 

of the experimental procedure into these sections 

was done primarily to simplify the task of writing 

the programs. The first of these is a program to 

simulate the transient and steady state behaviour 

of a three tank blending system. This program, 

known as SIMULPROG, uses a mathematical model 

of a blending system similar to the one used by 

Coggan and Noton (4.1) in earlier simulation 

studies of the Extended Kalman Filter. In order 

to produce realistic measurement data the results 

generated by this program are corrupted at the 

sampling times by the addition of Gaussian noise. 

The second computer program includes five different 

forms of the Kalman Filter and is known as FILTER. 

This program was written in modular form and is 

similar in structure to on-line filtering programs 

except that the results output are more comprehen- 

sive than would normally be required and, due to 

its off-line nature, it uses a simpler method for 

acquiring measurement data. Although this 

program does not take place in real aime it gives 

a good indication of the likely cycle time of each 
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filter because the program is run separately for 

each of the filters. In this program calculation 

of the errors in the estimates produced by 

each filter is straightforward since the correct 

values are available. These error calculations 

are carried out after each cycle of the filter. 

Two sets of results are produced by this program; 

the first set may be output to a line printer, 

the other being stored inside the computer for 

use by the third program. The third program is 

called GRAPHPLOT and its function is to display 

graphically the estimates produced by FILTER. 

4.2.1. THE THREE TANK BLENDING SYSTEM 
  

The process chosen to test the filters is 

the three tank blending system shown schematically 

in Figure 4.1. This system is not intended to 

represent a real plant but is thought to exhibit 

features which are not only typical of chemical 

processes but will also impose on the filters the 

kind of rigorous tests required. These features 

include non-linearities within the mathematical 

description of the process, an unknown variable 

transport lag, measurements which are few and 

inaccurate and of course unmeasured random 

disturbances. One further point which influenced 

the choice of this process is that it contains a 
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relatively large number of state variables and 

thus in this sense is not only representative 

of real plants but also enables a realistic 

study of the problems associated with the 

important concept of observability. 

With reference to Figure 4.1, q is a 

volumetric flowrate, C is a solute concentration, 

and V is the known volumetric hold-up of a 

vessel. Perfect mixing is assumed in each vessel 

but in the dynamic state the concentration cy 

entering vessel 3 differs from Co the concentra- 

tion in vessel 2 due to a transport lag in the 

long pipe connecting the two vessels. Each 

vessel has a hydraulic time constant, ane but the 

effect of variation in hold-up with throughput 

upon the concentration dynamics is assumed to be 

swamped by other effects and is neglected. The 

state variables and known parameters of this 

process are defined in Table 4.1. 

Random disturbances enter the process only 

through the feed streams, a, b and c and because 

of this the inputs are estimated along with the 

other process variables. To enable this 

estimation the inputs are described by the 

following type of differential equation, 

x = a. (2) = 5.) (ara) 
J J J J 
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where, a4 = log, (a5)/8 

a, is an auto-correlation coefficient 

S is the sampling interval (hrs) 

xj is an input to the system 

and, X; is the steady state value of x; 

It is via equation 4.1 that both random and 

deterministic changes are introduced into the 

system. Random disturbances are simulated by the 

addition of Gaussian noise to Xj prior to the 

calculation of the derivative of this state 

variable. Since the nominal values of the inputs 

differ appreciably from their steady state values 

the expected behaviour of these state variables 

will be an exponential approach towards the 

steady state value; the slope of this approach 

depending upon the value selected for the auto- 

correlation coefficient, a5. When Xj has 

converged on Xj the value of this input will 

display random deviations from the steady state 

value due to the random noise introduced into the 

system. Once the system has reached steady state 

it is possible to introduce further transients 

by varying the values of X;- Clearly, such 

variations will cause the system to move towards 

a new steady state. 
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The state equations describing the blending 

system are: 

Ky = (%_ - ¥)/Ty - (4.2) 

Ky = (X7-%g - X1.%_)/V, - (4.3) 

Ra = (4) - X3 + %5)/Tho - (4.4) 

Xq = (%. Xp - X3-%4 + Xg-%X9)/Vo - (4.5) 

5 = (X3 - X5 + X11)/Thg w6t 38) 
X = (%3. X13 — X¥5-%g + X11-%X,9YV, - (4.7) 

5 (x, - Xy) - (4.8) 

%_ = Bye (Xe ea) - (4.9) 

Xo = a3. (Ky - Xg) - (4.10) 

X10 = a4. (X19 - X19) - (4.11) 

x a5- (X11 - X44) - (4.12) 

X19 = ag.(X,9 - X90) - (4.13) 

Gy3(t) = x4 (t-T) - (4.15) 

T = Vo3/%3) 

where, Vo3 is the volumetric hold-up in the pipe 

between vessels 2 and 3. 

For the purpose of simulation the concentration 

1 
entering vessel 3, Cy, is treated as the state 

variable x. It is calculated by storing all 13° 

of the previous values of X4 in an array and then 

when a value of X13 is required, this is found by 

calculating t-T and then linearly interpolating between 

the two consecutive values of X4 which lie either 

side of t-T. During the initial period when the 

value of t-T is negative, the value of X13 is assumed 

to remain constant at its nominal value. 
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4.2.2. DESCRIPTION OF THE FILTERS TESTED 

The performance of five different forms of 

the Kalman Filter are assessed in this investiga- 

tion and for the sake of brevity each of these 

filters has been assigned a reference number 

which will be used as a means of identification 

throughout the remainder of this thesis. The 

task of classifying these filters is achieved by 

dividing the process of filtering into the 

following three steps: 

(I) PREDICTION - The calculation of the 

predicted state, x(k+1,k). 

(II) STATE TRANSITION - The calculation of 

the state transition matrix, ¢(kt1,k) 

(III) ESTIMATION - The calculation of the 

estimated state, x(k,k). 

Each of these steps can in turn be carried out by 

two different methods: 

Methods of PREDICTION:- (i) x(k+1,k) is calculated 

by first determining $(k+1,k) from the estimated 

state x(k,k) and then using the following equation, 

x(k+1,k) = o(k+1,k). x(k,k) - (4.16) 

(c.f. equation 2.10) This method will be referred 

to as ‘Prediction via the State Transition Matrix'. 

(ii) x(k+1,k) is calculated 

by the use of the Runge-Kutta 4 type of numerical 
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integration; for a detailed account of this form 

of numerical integration see Lapidus (4.2). From 

now on this method will be referred to as 

‘Prediction via RK4 integration'. Methods of 

STATE TRANSITION:- (i) The state transition 

matrix, ¢(k+1,k), is calculated by using equations 

3.57 and 3.58. This method will be known as 

'The calculation of the state transition matrix 

by a truncated Taylor series'. 

(ii) The state transition matrix, 

o(k+1,k), is calculated by the procedure given in 

section 3.3.3.2. This method will be referred 

to as 'The calculation of the state transition 

matrix by canonisation'. 

Methods of ESTIMATION:- (i) With the exception of 

the prediction step, equation 2.10, estimation 

proceeds as shown in section 2.2.3., equations 

2.11 to 2.15. This method will be known as the 

‘Kalman Filter'. 

(ii) Estimation proceeds 

as outlined in section 3.2, equations 3.35 to 3.48. 

This method will be known as the 'Adaptive Filter'. 

N.B. When using this method and using Prediction 

via RK4 it is necessary to take into account the 

model error vector w when calculating the 

derivatives of the state variables - see equation 3.32. 

The filters tested in this investigation can 
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now be classified as follows. 

TYPE 1 

TYPE 2 

TYPE 3 

TYPE 4 

TYPE 5 

Of these 

forms of 

:- Prediction via state transition. 

State transition matrix calculated by 

a truncated Taylor Series. 

Estimation by the Kalman Filter. 

:- Prediction via RK4. 

State transition matrix calculated by 

a truncated Taylor Series. 

Estimation by the Kalman Filter. 

:- Prediction via RK4. 

State transition matrix calculated by 

canonisation. 

Estimation by the Kalman Filter. 

:- Prediction via RK4. 

State transition matrix calculated by 

a truncated Taylor Series. 

Estimation by the Adaptive Filter. 

:- Prediction via RK4. 

State transition matrix by canonisation. 

Estimation by the Adaptive Filter. 

five filters the first two are standard 

the Extended Kalman Filter and the last 

three are new filters which are to be tested. 

4.2.3. CALCULATION OF EIGENVALUES AND EIGENVECTORS 

In order to determine the state transition 
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matrix by the method given in section 3.3.3.2 it is 

necessary to be able to compute rapidly the eigen- 

values and eigenvectors of a known matrix A. 

The fundamental algebraic eigenproblem is the 

determination of those values of X for which the 

set of n simultaneous linear equations in n knowns, 

Al ox Sk - (4.17) 

has a non-trivial solution. Equation 4.17 may 

.be written in the form, 

(A - 4.1). v=0 - (4.18) 

and for arbitrary A this set of equations has only 

the trivial soluvion v = 0. The general theory of 

simultaneous linear algebraic equations shows that 

there is a non-trivial solution if, and only if, 

the matrix (A-AI) is singular, i.e. 

det (A-AI) = 0 - (4.19) 

Equation 4.19 is called the chardeteristic equation 

of the matrix A and its roots are called the 

eigenvalues, 4. Corresponding to each eigenvalue, 

A, the set of equations 4.18 has at least one 

non-trivial solution, v, known as an eigenvector. 

For the case of distinct eigenvalues it can be 

shown that there exists a set of n eigenvectors 

each of which is unique and linearly independent 

apart from an arbitrary multiplier. In most cases 

it is convenient to choose this multiplier so that 
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the eigenvector has some desirable numerical 

property, such vectors are called normalised 

vectors. 

In situations where the dimension of the 

matrix is large or when the eigenvalues and 

eigenvectors need to be calculated often the most 

suitable techniques are normally numerical 

methods. Wilkinson (4.3) gives excellent explan- 

ations of some of these methods. Many of these 

numerical techniques for finding the eigensystem 

of a matrix consist essentially of the determination 

ofa similarity transformation which reduces a 

matrix A of general form to a matrix B of special 

form, for which the eigenproblem may be more 

simply solved. One of the many algorithms for 

determining eigenvalues is the LR. transformation 

due to Rutishauser (4.4). The development of this 

method is regarded by Wilkinson (4.3) as the most 

significant advance made in connection with the 

eigenvalue problem since the advent of automatic 

computers. Rutishauser's algorithm gives a 

reduction of a general matrix to triangular form 

by means of non-unitary transformations. Rutishauser 

(4.4) writes 

A= LR = (4.020) 

where L is the unit lower-triangular matrix and 
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R is the upper-triangular matrix. Suppose we now 

form the similarity transform Ll. Aa.L. of the 

matrix A, this gives, 

1 Lo uaseteat tet) (UR) eo =k te 254-21) 

Hence, if we decompose A and then multiply the 

pactors in the reverse order, a matrix similar to 

A is obtained. In the LR algorithm this process 

is repeated indefinitely. If we rename the 

original matrix A, then the algorithm is defined 

by the equations 

- (4.22) 

Clearly As is similar to As_y and hence by 

induction to Ay Rutishauser (4.4) showed that 

under certain restrictions, 

. a 
Lg > I and Rg = As = 2 

ass +o - (4.23) 

Reference (4.5) gives an example of the application 

of the LR algorithm to computer based eigenproblems. 

The computer program given is written in the 

Fortran IV language (for details of Fortran IV 
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programming see McCracken (4.6)), and so is easily 

utilised in this study as the same language is 

used. This example elaborates considerably 

on the basic LR method and the resulting 

program is long and involved. However, because 

certain extra features are included, it is 

computationally quite efficient. The program 

incorporates the following features: 

(i) Economy of storage, 

(ii) Special handling of tridiagonal matrices 

to take advantage of their high proportion of 

zeros, and, i 

(iii) Acceleration of convergence, when 

appropriate. 
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4.3. THE ICL 1904S COMPUTER 

The computer programs written for these 

simulation studies incorporate a number of features 

not usually included in on-line programs. These 

features are as follows: 

(i) Increased error checking 

(ii) Error calculation 

(iii) Comprehensive printout. 

Thus, the programs require a large amount of 

computer time and core space. It was therefore 

decided to use the university's central computer 

in this investigation. 

The present configuration is:- 

(1) An ICL 1904S Central Processing Unit with 

hardware floating point arithmetic and 192K 

words of 500 nanosecond memory (word = 24 bits). 

(2) An Operators Console. 

(3) Input: 2101 card reader, 2000 cards/minute 

1916 paper tape reader, 1000 

characters/second. 

(4) Output: 1933 lineprinter, 1350 lines/minute, 

120 characters/line. 

1925 paper tape punch, 110 characters/ 

sec. 

1934 graph plotter, 30 inches wide, 

300 steps/sec, step size 0.005 ins. 
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(5) 

(6) 

(7) 

(8) 

Magnetic Tapes: 

4 magnetic tape decks using 0.5 ins magnetic 

tape. Information is stored across 9 tracks 

at a density of 1600 characters/inch. The 

maximum transfer rate is 160,000 characters/ 

sec. 

Magnetic Discs: 

4 exchangeable disc drives, each drive 

holding 8,192,000 characters stored on 203 

tracks. The transfer rate is 208,000 

characters/sec. 

4 exchangeable disc drives, each drive holding 

60,000,000 stored on 203 tracks. The transfer 

rate is 417,000 characters/sec. 

Magnetic Drums: 

1 1964 Slow speed drum with storage capacity 

of 512K words. The maximum transfer rate is 

100K characters/sec. 

1 2851 High speed drum with storage capacity 

of 512K. The maximum transfer rate is 1300K 

characters/sec. 

Front End Processor: 

A Digico Micro 16v acts as a front end 

processor to the 1904S mainframe. At present 

there are 32 eraiaets. Transfer rates are 

2400 bauds for V.D.U.'s and 110 bands for teletypes. 
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4.4. DISCUSSION OF COMPUTER PROGRAMS 

As was stated in section 4.2 this investigation 

into the behaviour of various forms of the Kalman 

Filter was carried out using three computer 

programs. The relationship between these programs 

and the order in which they are executed is shown 

schematically in Figure 4.2. The results produced 

by both the simulation program, SIMULPROG, and the 

filtering program, FILTER, were initially stored 

on disc files so that they could be examined 

using a visual display unit (V.D.U.) before 

either a permanent copy was produced on the line 

printer or a graph was plotted using the graph 

plotting program, GRAPHPLOT. 

All of the programs used in this investigation 

are written in the FORTRAN IV computer language 

according to the specifications given by McCracken 

(4.6). 

4.4.1. THE SIMULATION PROGRAM - SIMULPROG 

Simulation of the behaviour of the three tank 

blending system shown in Figure 4.1 is achieved by 

the numerical integration of the mathematical model 

of the process given by equations 4.2 to 4.13. 

The writing of the computer program to perform this 

task was considerably simplified by the use of a set 

of subroutines to perform the integration. These 
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FIGURE 4.2 - RELATIONSHIP OF COMPUTER PROGRAMS 
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subroutines are in fact modified forms of those 

first published by Gay and Payne (4.7). In this 

earlier work Gay and Payne interfaced a set of 

four Fortran subroutines to a BASIC-16 interpreter 

to produce an interactive digital simulation 

package known as the Aston Simulation Package (ASP): 

a fuller description of this package will be given 

in section 6.4. These subroutines, after modifi- 

cations to give them greater compatibility with a 

main program written in Fortran, were used to form 

the program SIMULPROG. The structure of the 

main segment of this program is the same as that 

given in Figure 6.2and is shown schematically by 

the flowchart given in Figure 4.3. In this flow- 

chart all write instructions, with the exception 

of those indicating otherwise, direct output to 

disc file SIMULRES. 

Using the ASP subroutines it is possible to 

perform numerical integration using either the 

modified Euler method or the Runge-Kutta fourth 

order method. In this application the Runge-Kutta 

method is used. 

4.4.2. THE FILTERING PROGRAM - FILTER. 

The process of filtering the data produced by 

the program SIMULPROG is carried out by the program 
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FIGURE 4.3 — FLOWCHART OF SIMULPROG 
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FIGURE 4.3 - continued 

  

  

  

  

  

      

  

 



FILTER which includes the five different forms of 

the Kalman Filter described in section 4.2.2. Due 

to the variety of filters to be included it was 

decided to write this program in modular form, 

i.e. as a set of subroutines. The subroutines 

can then be called, when required, by a main- 

program named FILTEST. Thus, the complete 

program consists of the following segments:- 

MAIN SEGMENT :- FILTEST 

PREDICTION SEGMENTS: - Subroutine PREDI - prediction 

via the State Transition 

Matrix. Subroutine PRED2 - 

prediction via RK4 numerical 

integration. 

SEGMENTS TO CALCULATE 

THE STATE TRANSITION 

MATRICES: - Subroutine TRANSI - Calculation 

using a truncated Taylor series. 

Subroutine TRANS2 - Calculation 

by canonisation. 

ESTIMATION SEGMENTS: - Subroutine KALMAN - Kalman 

Filter. Subroutine ADAPT - 

Adaptive Filter. 

In addition to the above segments, the following 

subroutines are necessary in order to complete the 

program: —- 
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Subroutine 

Subroutine 

Subroutine 

Subroutine 

Subroutine 

Subroutine 

MODEL 

RUTIS 

MATMUL 

MATADD 

MATRAP 

MATINV 

Subroutines ZERO, 

PRNTF, INTI, INTX 

Calculates the coefficients 

matrix A(x) as defined by, 

x = A(x). x 

Calculates the eigenvalues and 

eigenvectors of a Matrix using 

Rutishausers LR transformation 

3; see reference (4.5). 

performs matrix multiplication. 

performs matrix addition. 

performs matrix transposition. 

performs matrix inversion by 

the method of Gauss—Jordan. 

perform numerical integration 

by the fourth order Runge-Kutta 

method. These routines are 

again modifications of those 

used by Gay and Payne (4.7) 

Throughout the program communication between 

segments is by argument transfer. The complete 

program occupies 29K words of computer core space 

and takes between 70 and 170 seconds to run depending 

on the type of filter used. 

The more important segments of FILTER will now 

be discussed individually. 
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4.4.2.1. THE MAIN SEGMENT - FILTEST 
  

FILTEST is the main segment of FILTER and 

essentially its functions are to handle input and 

output, call the subroutines necessary to perform 

the task of filtering, calculate the errors in 

the estimated state vector and test for the end 

of the run. The type of filter used in a particular 

run is determined by the value of the variable 

ITYPE and, as shown by Figure 4.4., the five 

different types of filtering are achieved by the 

following combinations of subroutines:- 

Type 1 Filter - (1) KALMAN 

(2) TRANS1 

(3) PRED1 

Type 2 Filter - (1) KALMAN 

(2) PRED2 

(3) TRANS1 

Type 3 Filter (1) KALMAN 

(2) PRED2 

(3) TRANS2 

Type 4 Filter - (1) ADAPT 

(2) PRED2 

(3) TRANS1 

Type 5 Filter - (1) ADAPT 

(2) PRED2 

(3) TRANS2 
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FIGURE 4.4 - FLOWCHART OF FILTEST 
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FIGURE 4.4 - continued 
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FIGURE 4.4 - continued 
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4.4.2.2. THE ESTIMATION SEGMENTS - KALMAN AND ADAPT 

One of the most attractive features of the 

Kalman Filter is its ease of implementation on a 

digital computer and as a result both of the 

estimation segments consist simply of CALLS on the 

matrix manipulation routines. The flowchart of 

subroutine KALMAN is given in Figure 4.5 and as 

can be seen it is simply an equation by equation 

translation of the algorithm defined by equations 

2.11 to 2.15. 

Figure 4.6 shows the flowchart of subroutine 

ADAPT which, despite its additional complexity and 

storage requirements, is also easily translated 

from the algorithm defined by equations 3.35 to 

3.48. 

4.4.2.3. THE PREDICTION SEGMENTS - PRED1 and PRED2 

The simplest of the segments in FILTER is 

subroutine PRED1. Since all that is required of 

PRED1 is to multiply the estimated state vector, 

x(k,k), by the state transition matrix, $(k+1,k), 

calculated by subroutine TRANS1, this subroutine 

consists of just two lines of program. However, as 

shown by Figure 4.7, subroutine PRED2 is rather 

more complex. In this segment of the program the 
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FIGURE 4.5 - FLOWCHART OF SUBROUTINE KALMAN 
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FIGURE 4.6 ~ FLOWCHART OF SUBROUTINE ADAPT 
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FIGURE 4.7 —- FLOWCHART OF SUBROUTINE PRED2 
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predicted state vector, x(k+1,k), is calculated from 

the estimated state, x(k,k), by the Runge-Kutta 

fourth order method of numerical integration. As 

shown by the flowchart, the integration is 

performed by CALLS on the subroutines ZERO, PRNTF, 

INTI and INTX. 

4.4.2.4. THE STATE TRANSITION SEGMENTS - TRANS1 

and TRANS2 

Subroutine TRANS1 calculates the state 

transition matrix, ¢(k+1,k), using a truncated 

Taylor series. This method, which was described 

in detail in section 3.3, requires the calculation 

of the Jacobian of partial derivations for the 

mathematical model being used. For the system 

described by the model 

x = £(x) - (4.24) 

the Jacobian of partial derivations is defined as, 

at(x) _ af, af, 

- ry 
; ' - (4.25) 

af, az, 
eee ox, 

The state transition matrix can now be calculated 

as follows, 
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Thus, 

at each cycle of the filter by setting all 

elements of the matrix THY to zero except for 

o(k+1,k) = I + Of(x) 
ax 

those defined below: 
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x(k,k) 

in this example ¢(k+1,k) can be calculated 

(4. 

(4, 

(4. 

(4. 

(4. 

(4, 

(4. 

(4. 

(4. 

(4, 

(4. 

(4. 

(4. 

(4. 

- (4.26) 
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*9 THY (4,10)= —2 * at = 
2 

THY (5,3) = a + Mt +1 o 
n3 

THY (5,5) = oe * At s 
n3 

THY (5,11) = eat a 
3 

*4(t-T) THY (6,3) = * At Es 
3 

x 

THY (6,4) = st at i 
3 

< 
THY (6,5) = sf * at S 

3 
=x 

THY (6,6) = = * At +1 2 
3 

X. 

aHY (6)11)/= 22) * At s 
V3 

x 

THY (6,12) = —2 + at = 
V3 

THY (7,7) = A, * At +1 S 

THY (8,8) = Ay * At +1 ig 

THY (9,9) = Ag * At +1 = 

THY (10,10) = A, * At +1 = 

THY (11,11) = A, * At +1 _ 

THY (12,12) = Ag * At +1 = 

The flowchart for subroutine TRANS1 is shown 

Figure 4.8. 
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FIGURE 4.8 - FLOWCHART OF SUBROUTINE TRANS1 
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Calculation of the state transition matrix 

by the method of canonisation is rather more 

sophisticated than the method described above and 

consequently subroutine TRANS2 is not only more 

complicated but also requires more computer time 

for its execution. The subroutine is probably 

best understood by comparing the flowchart given 

in Figure 4.9 and the calculation procedure 

shown schematically in Figure 3.1. As can be 

seen from the flowchart TRANS2 calls subroutine 

MODEL to calculate the coefficient matrix A(x) 

and then calls subroutine RUTIS to find the 

eigenvalues and eigenvectors. One of the 

advantages of using this method to calculate 

¢(k+1,k) is that once the transformed state 

transition matrix, 9*(k+1,k), has been calculated, 

the integral state transition matrix, [(k+1,k), can 

be computed with very little extra effort. 

4.4.2.5. SUBROUTINE MODEL 

In the earlier discussion on the calculation 

of the state transition matrix by the method of 

canonisation it was stated that in many cases it 

is possible to rearrange non-linear models into 

the form, 
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FIGURE 4.9 - FLOWCHART OF SUBROUTINE TRANS2 
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x(k) = A(x). x(k) (4.57) 

In this application of the Kalman Filter such a 

rearrangement is possible and consequently when 

required, A(k) is calculated by subroutine MODEL. 

The method used is to set all elements of the 

matrix 

A(1,1) 

A(1,7) 
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(4.59) 
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A(5,11) = = - (4. 
“18 

A(6,4) = Sa es - (4 
x4(t) V3 

A(6,6) = is = 
M5 

A(6,12) = 70 CAs 
3 

A(7,7) = Ay * (pK) * Gd - 4. 

A(8,8) = AL (%g-Xg) * oy ena 

A(9,9) = A, + (%9-%q) * G) ets 

ACLO;1O) =) at CG - x15) * (Cam) ~ (4. 
10 

ACI tls) Ant (4 4-*4,) - Go = (4s 

RO2, 12), = Age Z - (4. (%9-¥19) * (——) 6 12 °~12 X19 

4.4.5. THE GRAPHPLOTTING PROGRAM - GRAPHPLOT 

The problem of how to display the results 

obtained to the best advantage is one which is 

common to many forms of technical research. 

70) 

<Tl) 

172) 

73) 

74) 

75) 

76) 

77) 

78) 

79) 

It 

is now widely accepted that in many cases the best 

method to use is some kind of graphical display. 

However, as is usually the case the best method 

is not always the easiest one to implement and 

in the case of graph plotting this has certainly 
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been the situation for some time. Fortunately the 

advent of both V.D.U.'s with graphical capabilities 

and high speed graph plotters, either of which 

can be linked to a digital computer, has 

considerably alleviated the problem. Therefore, 

it was decided to write a program which could 

plot all of the results obtained on the ICL 1934 

graph plotter. Figure 4.10 shows the flowchart 

of the GRAPHPLOT program which was written using 

the recently developed GINO-F software (4.8). 
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FIGURE 4.10 - FLONCHART OF GRAPHPLOT 
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4.5. RESULTS AND DISCUSSION 

Once the computer programs discussed in the 

previous section had been developed and debugged, 

it was necessary to decide upon a suitable series 

of experiments to test the optimality and 

convergence of the five types of filter. The 

strategy adopted was to first of all generate a 

set of noisy measurements using SIMULPROG and then 

use this data in a series of experiments to tune 

all of the filters. In these initial experiments 

the correct mathematical model was used in order 

to simplify the optimisation of the various 

parameters and starting conditions. The best 

performance of each filter was determined by 

examination of the errors in the state estimates 

which are calculated as follows: 

(i) The error in each state estimate at each 

eycle of the filter is calculated using, 

EC) = [100 * (x(k, k) = x()) * (Geey)| - (4.80) 

where, x(k) is the correct value of the state vector at time te 

k 

(ii) The cumulative error, = ECL), for: 
i=l 

the run is calculated, 

(iii) At the end of the run the average error 
NC 

; L. 7 : ak for each state variable, (+) gh e04); is 

calculated: NC is the total number of filter cycles. 
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(iv) The mean error for the experiment is 

calculated by summing the average errors for 

each state variable and dividing by the degree 

of the state vector. 

When the filter tuning experiments were 

complete there followed three sets of experiments 

to determine the performance of each type of 

filter in the presence of noisy measurements, 

incorrect starting conditions and finally a 

poor mathematical model. 

4.5.1. SIMULATION RESULTS 

In order that suitable measurement data 

could be provided for the filtering experiments 

two runs of SIMULPROG were carried out. In the 

first run the three tank blending system is 

initially in a period of transition towards a 

steady state, which is almost reached after 10 

hours. The second run begins in the same ene but 

after 5 hours the mean values of both of the inputs 

and X,, are modified to 
ie 8’ 

produce additional transient behaviour. 

to the first tank, x, 

The modifications made are, 

Xy - decreased by 1.0 

Xg - increased by 0.09 
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One of the features of both of these runs is 

that whereas the flowrates of the system reach 

steady values after approximately two hours, the 

concentrations of the system do not begin to 

approach steady values until the end of the 

simulation experiments. 

The measurements produced in both of these 

runs of SIMULPROG were corrupted by the addition 

of Gaussian noise with the following statistics: 

Flowrates - 4 Ost wt ° Q u 
Concentrations - p= 0, 9 = 0.01 

Thus, the measurements were very noisy. 

4.5.2. FILTER TUNING EXPERIMENTS 

Using the results produced by the first run of 

SIMULPROG a series of experiments were carried out 

to optimise the performance of each filter. Since 

the experiments for each filter were carried out 

separately and in view of the fact that the features 

to be considered are different in each case, it is 

convenient to discuss the filters individually. 

TYPE 1 

It was never expected that the results 

produced by this filter would be at all acceptable 

and this fear was confirmed by the early experiments. 

The results obtained can only be regarded as the 
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worst examples of many of the problems associated 

with the Extended Kalman Filter. However, the 

performance of this type of filter can be 

regarded as one which all of the others should 

improve upon and is thus useful in determining 

which filter, if any, provides the best estimates. 

It was found that the errors in the estimates 

were minimised when, 

R(k) = 1.0¥*I , Q(k) = 1.5*I. 

TYPE 2 

The use of numerical integration to compute the 

estimates considerably improves the optimality 

and convergence of the Extended Kalman Filter. 

The tuning experiments carried out with this 

filter showed that the most accurate estimates 

were obtained when, 

Rk) = 1.0*L , Qk) = 1.541. 

TYPE 3 

The optimisation of this filter took longer 

than the others due to a number of numerical 

problems associated with the computation of the 

inverse eigenvector matrix, io It soon became 

apparent that the eigenvector matrix was becoming 

Singular as the three tank blending system 
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approached a steady state. This is due to the way 

in which the inputs to the system are modelled. 

Examination of equation 4.1 reveals the fact that 

as 5 approaches x; the related coefficient in 

the A(x) matrix, see equations 4.74 to 4.79, tends 

towards zero. As a result of this the eigenvector 

matrix will contain some small diagonal elements 

and singularity is to be expected. The problem 

was overcome by multiplying the eigenvector 

matrix by a suitable scalar prior to its inversion. 

This action in no way affects the computation of 

¢(k+1,k) as the scaling factor eventually cancels 

out. 

Following the solution of these numerical 

problems it was found that the errors in the 

estimates were minimised when, 

R(k) = 1.0*I , Q(k) = 0.5*1. 

TYPE 4 

The procedure for tuning the adaptive filters 

is quite different to that followed for the previous 

filters as more parameters and matrices need to be 

determined. To begin with the matrices R(k) and 

Q(k) were set to the same values as those used 

for the Extended Kalman Filter (type 2) and the 

parameters «,8 and @ were given the following 

values, 
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a= z » where k = the number of filter cycles, 

until a = 0.2 when it remains constant. 

0.3 D a 

6=4 

The next step in the tuning process was to determine 

the matrix Fy. The procedure followed was as 

discussed in section 3.2.2.1., e.g. in determining 

the first column of Fy the following values were 

tried, 

(i) All elements zero except Fy(1,1) which 

equals l, 

(ii) All elements zero except F4(7,1) which 

equals 1. 

The reason for’choosing these particular elements 

to have non-zero elements was that since the first 

measurement is of xy then it can be seen from 

equation 4.2 that the only state variables involved 

are xX) and X7- In all twelve different values of 

Fy were tried before deciding on the following 

matrix, 

i] H 5 oy Ca al 

a B B j 

except for, 

F4(7,1), Fy(8,2), F4(5,3), F4(6,4), F,(10,5), 

F,(11,6), 

all of which were assigned the value l. 
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One of the features of the Adaptive Filter 

which cannot be backed up by theoretical 

considerations is the way in which the matrix 

ee is determined when there is no information 

available about the likely accuracy of the 

mathematical model being used. However, the 

results obtained in the experiments discussed 

above do lend weight to the procedure used. 

For example, in determining column 2 of Fy the 

non-zero elements tried were F4(1,2), F,(2,2), 

and F4(8,2) and the values of g(k) obtained were, 

0.8058, 0.8361 and 0.1754 

respectively. Thus the obvious choice for this 

column of F, is the one where element 8 contains 
4 

one. This behaviour was observed throughout the 

entire procedure for finding Fy and it seems to 

indicate that normally a local minimum does exist. 

One further observation made whilst finding Fy 

was that it may not necessarily have the maximum 

number of columns, i.e. the matrix is n*¥l and 1 

may be less than or equal to m. This observation 

was made whilst determining the sixth column of Fy 

when it was found that the improvement in both the 

accuracy of the estimates and the minimisation of 

g(k) were minimal when this column was added to 

the matrix. 
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Attention was now focussed on the parameters 

a, B and 6. Each of these parameters was varied 

within the ranges given in sections 3.2.2.2. and 

3.2.2.3. and because only a very small difference 

in filter performance was observed, these 

parameters were left at their initial values for 

the remaining experiments. 

Finally the matrices R(k) and Q(k) were 

varied and it was noticed that far more weight 

is placed on the measurements by the Adaptive 

Filter. Thus, it was found that the following 

values of R(k) and Q(k) minimised the error in 

the estimates, 

R(k) = 2.25*I , Q(k) = 0O.1*I. 

TYPE 5 

This filter is essentially a hybrid version 

of types 3 and 4 and as such is somewhat of an 

unknown quantity. The parameters a, 8 and 6 were 

assigned the same values as those used previously 

and although Fy, was redetermined, it was found 

to have exactly the same value as that found 

for the fourth type of filter. However, the 

effects of a different kind of state transition 

matrix did display themselves in the values chosen 

for R(k) and Q(k), which were, 

R(k) = 2.0*I , Q(k) = O.5*1. 
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4.5.3. FILTERING RESULTS 

Applying the principle that one learns to 

walk before attempting to run, the first set of 

experiments, RUN 1, is merely a test of the 

smoothing capabilities of each type of filter, 

i.e. one is testing the efficiency of each filter 

in removing measurement noise. The next set of 

experiments, RUN 2, is a test of how rapidly the 

estimates generated by each type of filter will 

converge on the actual state when the initial value 

of the state vector, x(0,0), is incorrect, the 

measurements used in this set of experiments 

are the same as those used in RUN 1. The most 

significant test of filter performance was 

carried out in the final set of experiments, RUN 3. 

In RUN 3, not only are the measurements noisy and 

the value of x(0,0) incorrect, but also the 

mathematical model incorporated in each filter is 

@ poor one. There are many instances in the 

literature when reference is made to a poor 

mathematical model without ever quantifying what 

is meant by such a statement. This raises the 

question, what makes a poor model? In referring 

to RUN 3 this statement should be taken to mean 

that not only are some of the parameters incorrect, 

but also a change in state takes place which can 
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in no way be predicted by the mathematical model 

incorporated in the filters. Thus, this change, 

details of which are given in section 4.5.1, can 

only be detected through the measurements 

supplied to the filter at each sampling time. 

RUNS 1, 2 and 3 are summarised in table 4.2. 

The graphs of the estimates generated in RUN 3 

display all of the features of all three sets of 

experiments and are included in Appendix A. 

4.5.4. DISCUSSION OF FILTERING RESULTS 

The results given in Table 4.3 and Appendix A 

show quite clearly that the inclusion of a strategy 

to promote and ensure the convergence of the 

Extended Kalman Filter does produce a considerable 

improvement in the accuracy of the estimates 

generated. It is however, necessary at this point 

to consider the advantages and disadvantages of 

the various filters tested. 

4.5.4.1. FILTERING OF MEASUREMENT NOISE 

When both the mathematical models of a process 

and the initial state estimates are known accurately 

then the task of state estimation reduces to one 

of filtering off measurement and process noise. 

Thus, the results of RUN 1 show the capability 

-157-



TABLE 4.2 - SUMMARY OF RUNS 1, 2 AND 3 

  

RUN 1 RUN 2 RUN 3 
  

Noisy - » =0 Noisy - 1 =0 Noisy - n= 0 

  

  

  

eS o = 0.1,0.01 | o = 0.1,0.01 | o = 0.1,0.01 
Simulprog run 1 Simulprog run 1 Simulprog run 2 

Correct Incorrect Incorrect 
see table 4.1 x,=4.00 x7=5.1 see run 2 

X9=0.40 Xg=0.48 

INITIAL Xg=8.00 Xgl .85 

CONDITIONS x4=0.49 X4970.33 
- x(0,0) ee a 2 X,=8.00 X41 73.20 

Xg=0.30 X 970.28 

Correct Correct Incorrect 
see table 4.1 see table 4.1 tng = 0.34 

= 9.00 
MATHEMATICAL v3 = 28.0 

Noo X_ = 0.90       0.90 * 
a
 

u 

   



TABLE 4.3 - AVERAGE ESTIMATION ERRORS 
  

  

  

        
  

RUN NUMBER 
TYPE OF FILTER a, 2 3 

a 9.070 9.699 10.269 

2 1.815 2.985 6.098 

3 0.471 1.418 2.567 

4 0.612 1.875 2.429 

5 0.673 1.593 G.197. 

TABLE 4.4 - COMPUTATIONAL REQUIREMENTS 
  

  

  

  

TYPE OF FILTER | rym (mL) | (relative to type 2) 
1 76 -10% 

2 82 0 

3 117(86) +25% (+5%) 

4 135 +15% 

5 162 +40%       

  

 



of each filter to smooth the state estimates and 

as shown in Table 4.3, with the exception of 

Type 1, all of the filters perform reasonably 

well. The first type of filter exhibits divergence 

not because of the noisy measurements but because 

of the inaccurate predictions computed. This 

fact clearly demonstrates that the use of a 

truncated Taylor series expansion is not a 

particularly accurate way of calculating 

o$(k+1,k). As a result of this, it is not 

surprising that the best performance is given by 

the third type of filter. However, this result 

is far from conclusive as the Adaptive filters 

(types 4 and 5) produce comparable performances 

and indeed the second type of filter produces 

estimates which are quite acceptable. 

One general point which emerges from this 

set of experiments is that the filters have been 

tuned correctly since the estimates computed are 

affected by both the predictions and the measure- 

ments. This might seem to be an unnecessary 

observation but there have in the past been 

instances reported in the literature, see for 

example Goldman (4.9), where the matrices Q(k) 

and R(k) are selected such that the measurement 

vector, y(k) has little affect on the estimates. 
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4.5.4.2. CONVERGENCE FROM INCORRECT INITIAL ESTIMATES 

The different characteristics of the filters 

began to emerge in RUN 2 of this investigation. 

The first type of filter initially shows some signs 

of convergence, but the estimates very quickly 

become biased as in RUN 1. The main difference 

between the second and third types of filter in 

this run is the rate at which the two estimates of x4 

converge on the actual state. Since the concentration 

X4 is not only representedby anon-linear differential 

equation but also unmeasured it is significant 

that the third type of filter converges more 

rapidly as this confirms the greater accuracy of 

the canonisation method for calculating the state 

transition matrix. In general all of the filters 

converge rapidly on flowrates but the third and 

fifth types of filter aremore effective in their 

convergence on concentrations and in particular 

on %4- 

It was in this set of experiments that doubts 

first began to arise EDO ENCnS optimality and 

convergence of the fifth type of filter. One of 

the features of this filter which became apparent 

in this run was that although the estimates 

converged, the diagonal elements of the error 

covariance matrix, P(k,k), associated with 
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unmeasured variables became unusually large. As 

will be discussed later there are no general 

theoretical results which can be used to predict 

the observability of non-linear systems put a 

fairly reliable indication that a system is 

unobservable is that the estimates oscillate 

about the actual state and the related diagonal 

elements of P(k,k) become rather large. Thus, 

the fifth type of filter appears to converge but 

at the same time displays one of the features of 

unobservability. In an attempt to overcome this 

problem the matrices P(0,0), R(k), Q(k) and the 

parameters a, 8 and 6 were all varied but this 

approach met with little success. It was therefore 

decided that as none of the other filters displayed 

this behaviour it must be due to the design of 

the filter itself. 

4.5.4.3. POOR MATHEMATICAL MODELS 

The most significant results obtained in this 

investigation were those produced by the third 

set of experiments. The first and perhaps the 

most important observation to be made is that 

both the first and the second types of filter fail 

to detect the changes caused by the modifications 

made to Xq and Xg after 5 hours. This is caused 
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by the filter gain matrix K(k) becoming too small 

for the measurements to have a significant affect 

on the estimates. All of the filters initially 

have quite large filter gains but as the filters 

converge the matrix P(k+1,k) becomes smaller and 

as a result K(k) becomes small : see equation 2.12. 

Thus, when changes are made which are not 

predicted by the mathematical model the first 

two filters have learned the current state too 

well and the estimates generated diverge from 

the actual state of the process. One technique 

which could be used to combat this problem is to 

increase the value of Q(k) and decrease the value 

of R(k). However, as was discussed earlier, this 

has the effect of making the estimates noisier 

and causing the value of P(k,k) to become 

unduly large. 

The third, fourth and fifth types of filter 

do detect this change in state but the methods of 

detection are somewhat different. The fourth type 

of filter monitors the change by making use of 

its model error compensation strategy to correct 

the values of the derivatives produced by the 

mathematical model. To illustrate this point 

let us compare the value of W at the end of RUN 2 

with that at the end of RUN 3. 
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RUN 2 - 0.184, 0.067, 0.560, 0.019, -0.007, -0.194 

RUN 3 - -1.469, 0.276, -0.680, 0.023, -0.008, -0.198 

As can be seen the first two elements of W are 

much larger for RUN 3 and due to the structure 

of Fy this means that differential equations 4.8 

and 4.9 are being corrected. Thus, the modelling 

error committed by changing Xq and Xg is being 

compensated for. In addition to this as the 

model error vector increases in size so does Py 

and thus P(k+1,k) becomes larger : see equation 

3.36. In turn this causes the filter gain to 

increase (see equation 3.45) and so more attention 

is given to new measurements. 

The reason the third type of filter is able 

to detect the change is that the filter gain 

matrix has a different structure due to the way 

in which $¢(k+1,k) is calculated. The different 

structure means that flowrates can only be 

affected by other measured flowrates and similarly 

for concentrations. For filters with state 

transition matrices calculated using a truncated 

Taylor series this is not the case and each state 

variable can be affected by measurements of both 

concentration and flowrate. For the third type 

of filter this different structure together with 

the fact that the elements of K(k) are in general 

larger means that it is able to react quickly to 
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new measurement data. 

One other interesting observation which was 

made regarding the different way in which the 

filters react to the change in Xq and Xg is 

that the third type of filter compensates by 

changing x, and Xo whereas the fourth filter 
8 

is more correct in changing Xo and Xg- 

In general the results of RUN 3 tend tO. 

indicate that all of the filters except the first 

can cope with the inaccuracies caused by 

incorrect model parameters but only the third, 

fourth and fifth types can detect changes which 

can not be predicted by the mathematical model. 

4.5.4.4. COMPUTATIONAL REQUIREMENTS 
  

Having discussed the superior performance 

of the filters which include the theoretical 

developments proposed in chapter three, it is 

now time to review the disadvantages of these 

modifications in terms of their increased 

computational requirements. As can be seen from 

Table 4.4 the implementation of the fifth type 

of filter requires an excessive increase both 

in the necessary computer memory and the 

execution time. This fact alone constitutes a 

sufficient reason that this filter should not be 
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considered for an on-line application and when 

the doubts about its properties of convergence 

and optimality had been reviewed it was decided 

that this filter had too many disadvantages to be 

regarded as an improvement over the Extended 

Kalman Filter. It is rather ironic that this 

should be so in the case of what initially was 

regarded as the most sophisticated of all of 

the five types of filter. 

The increase in computing power required by 

the third type of filter led to an investigation 

into ways of decreasing both the execution time 

and the computer memory required. The 

simplifications considered were, (i) assume the 

eigenvector matrix to be constant throughout the 

run, (ii) assume the eigenvalues are the same as 

the diagonal elements of the coefficients matrix, 

A(x). The second simplification was one which 

resulted from the observation that the eigenvalues 

rarely differed from the diagonal elements of A(x) 

except in the fourth significant digit. However, 

this assumption only produced a marginal improvement 

in the computational requirements of this type of 

filter. The first simplification did, however, 

lead to a significant decrease in both execution 

time and required computer memory and, as can be 

seen by the figures in parenthesis in Table 4.4., 

-164-



the third type of filter now requires only 5% 

more computing power’ than the second type of 

filter. The eigenvector matrix chosen for this 

simplified filter was the one obtained halfway 

through the first set of experiments and in 

RUN 3 this produced an increase in estimation 

error of 0.056 

(i.e. from 2.367 to 2.423) 

when compared with the complete version of the 

filter. Clearly the choice of eigenvector matrix 

will influence the performance of this simplified 

filter quite considerably and although it is 

fairly easy to find the matrix which produces the 

best performance in off-line experiments, it may 

be more difficult in an on-line situation. 

In general both the third and fourth types of 

filter require greater computing power but it is 

felt that this disadvantage is outweighed by the 

superior performance obtained. 

4.5.4.5. OBSERVABILITY 

The concept of observability in non-linear 

systems is one which has been considered by many 

researchers in this field and although a number 

of them, see for example Coggan and Noton(4.), 
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have attempted to quantify observability, there 

are as yet no general theoretical results which 

can be used to predict the observability of such 

systems. It is felt, however, that when a 

system is unobservable this fact will be 

displayed by the results obtained i filtering 

experiments. The behaviour characteristic of 

unobservability is that some of the estimates 

oscillate about the true states and the related 

diagonal elements of the error covariance matrix, 

P(k,k), become unusually large. During this 

investigation two experiments were carried out to 

try and establish the observability of this 

process. In the first experiment the state 

vector was extended to include c! and as Beet or 
a result both x13 and Xg appear to be unobservable 

(see Appendix A-15). This is quite interesting 

since it is not clear whether or not G5 can be 

considered as a state variable. Jacobs (4.10) 

states that the degree of the state vector, n, 

is determined by the number of state variables 

necessary to describe the dynamic behaviour of 

the system and that it is normally helpful to 

regard the n state variables as coordinate axes 

defining an n dimensional state space. From this 

' 
definition it- is clear that since C 2 is in fact 
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Cy delayed, then both x, and x relate to the 
4 13 

same coordinate axis in state space. As a result 

of this 13 is redundant and it is therefore 

not surprising that it causes unobservability. 

The second experiment carried out (Appendix 

A-16) was to see what happened if the degree of 

y(k) was decreased to five by ommitting the 

measurement of X5- The results show that Xs 

and to a certain extent Xg are now both 

unobservable. 

A great number of additional experiments 

could have been carried out to see what other 

situations lead to the estimates becoming 

unobservable, but it was felt that the results 

already obtained demonstrate the system's 

observability. However, it is clear that great 

care is necessary when choosing the state variables 

and measurements of a process to be investigated. 

4.5.5. CONCLUSIONS 

The results obtained in this investigation 

have led to the following general conclusions 

being made about the filters tested: 

(i) When the Extended Kalman Filter incorporates 

a poor model some strategy to ensure and promote 

convergence is required. 
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(ii) The strategies proposed in chapter three, 

i.e. types 3 and 4 filter, are strategies capable 

of improving the performance of the Extended 

Kalman Filter when it incorporates a poor model. 

(iii) It is not as yet possible to combine 

both of these theoretical developments within 

the same filter, i.e. type 5. 

(iv) The Adaptive filter is more correct in 

the way it compensates for a poor model. 

(v) The matrix Fy, can be determined by a 

realistic number of trials using the Adaptive 

filter. 

(vi) When the mathematical model of a process 

includes non-linearities, calculation of the state 

transition matrix, $(k+1,k), by canonisation, 

i.e. type 3 filter, improves the performance of 

the Extended Kalman Filter. 

(vii) The third type of filter can be considerably 

simplified without any great loss of accuracy. 

(viii) Observability is an important concept to 

be borne in mind when deciding on which state 

variables to estimate and what measurements are 

necessary. 
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4.6. CHAPTER REVIEW 

The simulation studies of the Kalman Filter 

reported in this chapter have shown that the 

theoretical developments proposed in chapter 

three improve the performance of the filter when 

the mathematical model used to represent the 

process is either a poor one or includes non- 

linearities. The importance of the concept of 

observability has also been discussed. 

The results of this investigation have shown 

that it is feasible to apply the second, third 

and fourth filters in an on-line situation. 
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CHAPTER 5 

THE DOUBLE EFFECT EVAPORATOR/COMPUTER SYSTEM



eds INTRODUCTION 

State estimation in a real time, on-line 

environment requires the linking of the chemical 

engineering process under study to a computer so 

that measurement data can be obtained and processed 

as required. Subsequently, information can be 

returned to the process either by additional 

hardware, i.e. on-line control, or by tele-printer 

messages to a process operator. 

The chemical engineering process used in this 

research was a double effect evaporator using a 

water/steam system. The evaporator was linked 

by a Honeywell Analogue Digital Input Output 

System (HADIOS) to a Honeywell 316 Computer. 

The measurements taken from the evaporator were 

'conditioned' insitu prior to transmission along 

cabling to the computer. 

Figure 5.1 shows a schematic representation 

of the system. 
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5.2. THE DOUBLE EFFECT EVAPORATOR 

The double effect evaporator was manufactured 

and commissioned by the Kestner Evaporator and 

Engineering Company Limited. The plant was 

designed for operation either as a single or a 

double effect evaporator, with the additional 

option of running under vacuum conditions. For 

the purpose of this research the evaporator 

was operated as a double effect system under 

vacuum conditions. A detailed description of 

the engineering construction is provided in 

Table 5.1 and the original operating conditions 

suggested by the manufacturers are given in (3.1). 

5.2.1. PROCESS DESCRIPTION 

The evaporation process consists of two 

stages, a climbing film first effect and a forced 

circulation second effect. A schematic diagram of 

the evaporator is shown in Figure 5.2, with 

Plates 1 and 2 showing front and rear views of the 

plant. 

The liquid to be fed to the evaporator is first 

of all pumped by a centrifugal type pump to two 

header tanks situated eight metres above the plant. 

It is then gravity fed to the tubeside of the 

preheater unit where it is heated before passing 
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PLATE 1 - DOUBLE EFFECT EVAPORATOR (FRONT VIEW) 

KEY A = First Effect 
B = Preheater 
C = Second Effect 
D = Condenser 
E= Second Effect Separator



 



PLATE 2 - DOUBLE EFFECT EVAPORATOR (REAR VIEW SHOWING REMOTE 

CABINET) 
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on to the tubeside of the first effect. Heat 

transfer to the tube contents of the first effect 

is by condensation of steam onto the tube walls; 

steam supply to the first effect shell is from 

the departmental steam generator. The evaporation 

process which takes place inside the tubes of 

the first effect is rather complex and can be 

best visualised by dividing it into three regions. 

On entering the tubes the liquid is first of all 

heated to its boiling point, following which 

there is a region of nucleate boiling and slug 

flow. Finally comes the region where the vapour 

flows up the centre of the tube dragging a liquid 

film up the tube walls. In this region the film 

appears to climb up the tube walls and it. is this 

physical feature which gives rise to the name of 

this evaporation unit. In the climbing film 

region evaporation is greatly promoted by the fact 

that the only phase in contact with the tube walls 

is the liquid phase. The vapour/liquid mixture 

leaving the first effect is separated by means of 

a cyclone separator into a liquid stream which 

passes directly to the second effect separator 

and a vapour stream which passes firstly to the 

shellside of the preheater and then to the second 

effect shell; condensation of a proportion of this 

vapour takes place in both units. 
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Liquid from the base of the second effect 

separator is pumped through the tubes of the second 

effect calandria by a centrifugal type pump. The 

heated liquid then passes back to the separator 

under the pressure of a hydrostatic head caused 

by the liquid level in the separator being above 

that of the liquid entry point. Since the vapour 

space in the second effect separator is subjected 

to the pull of the vacuum pump flash boiling 

occurs as the heated liquid from the tubes of 

the calandria enters. 

Vapour from the second effect separator and 

vapour/liquid from the second effect calandria shell 

enter the shellside of the water cooled, Spiteri 

shell and tube condenser, where all of the remaining 

vapour is condensed and then drawn off from the 

base of this unit by apositive displacement rotary 

pump (Mono pump). 

When the evaporator is operated under vacuum 

conditions, the vacuum pump draws on the shell- 

side of the condenser. 

5.2.2. PROCESS OPERATION 

START UP 

Start up of the evaporator is achieved by 

adopting the following procedure: 
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(i) All electricity power supplies are turned 

on. 

(ii) The water supply to the ground level 

feed tank and pump seals is turned on. 

(iii) The cooling water supply to the condenser 

tubes is turned on. 

(iv) The pump feeding the header tanks is 

switched on. 

(v) When the header tanks are full, the second 

effect separator is half filled with liquid feed 

using the specially installed pipelines connecting 

the header tanks and the separator. 

(vi) The condensate pump is primed and then 

switched on. 

(vii) The vacuum pump is switched on and once the 

pressure has fallen to a satisfactory level the 

circulation pump is also switched on. 

(viii) The required level of feed rate from the 

header tanks to the preheater tubes is established. 

(ix) Once liquid has been observed passing 

through the section of glass tube in the liquid 

line coming from the cyclone separator, the 

required level of steam supply to the first effect 

shell is established. For the next five minutes 

the various vapour traps and bleed lines from the 

first effect shell are left open to allow all air 

to be purged from the system. 
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(x) The system is then allowed to come to 

steady state for a period of fifteen minutes before 

commencing experimentation. 

RUNNING PROCEDURE 

During the entire operating period the 

following checks are made at regular intervals: 

(i) A satisfactory vacuum is being maintained. 

(ii) The level in the second effect separator 

is not too high. This is necessary since there is 

no liquid take off from the separator and 

consequently, during certain operating conditions 

the level will rise. 

(iii) The pressure of the steam supply is 

constant. 

SHUT DOWN 

Shut down of the evaporator is achieved by 

the following procedure: 

(i) The steam supply is turned off and the 

first effect shell allowed to drain. 

(ii) The liquid feed supply to the preheater 

tubes is turned off. 

(iii) The circulation and vacuum pumps are 

turned off. This allows air to enter the system 

through the vacuum pump seals thus allowing the 

evaporator vapour spaces to return to atmospheric 

pressure. 
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(iv) The second effect separator, second 

effect tubes, preheater tubes and first effect 

tubes are all drained of liquid. 

(v) When the condenser shell has been drained 

of liquid the condensate pump is switched off. 

(vi) All cooling water and mains water supplies 

are turned off. 

(vii) All electricity supplies are turned off. 

5.2.2. PROCESS NOTATION . 

In order to distinguish between the many 

process variables, parameters and physical 

properties associated with the double effect 

evaporator the following method of process notation 

is adopted. 

(i) Each stream of the double effect evaporator 

is arbitrarily assigned a reference number, as 

shown in Figure 5.3. 

(ii) Each unit of the double effect evaporator 

is assigned a two letter mneumonic as follows, 

Preheater - PH 

First Effect - FE 

Second Effect - SE 

Second Effect Separator - SP 

Condenser - CD 
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(iii) Temperature, vapour pressure, liquid level, 

liquid flow, vapour flow and enthalpy are denoted 

by the symbols T, P, H, M, V and E respectively. 

(iv) Subscript t refers to the tubeside 

and subscript s to the shellside. 

Thus, Tj, refers to the temperature of the 

condensate, M, refers to the liquid feed flowrate, 

Ho refers to the liquid level in the second 

effect separator and if C were to represent 

specific heat then Crgy would refer to the 

specific heat of the first effect tubes. 

5.2.4. PROCESS INSTRUMENTATION 

At the double effect evaporator eighteen 

process variables are measured by four different 

types of transducer. With the exception of the 

turbine flowmeter all of the transducers provide 

analogue signals in the form of voltages or currents. 

The output from the turbine flowmeter is in the form 

of a TTL compatible pulsed voltage, the frequency 

of which can be monitored by use of the counter 

input subinterface of the HADIOS data logger - 

see section 5.3.3. As all of the measurement 

signals are susceptible to corruption by electrical 

noise, all cabling is screened and all screens are 

insulated. The positioning and function of each 

transducer is shown schematically in Figure 5.4. 
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FIGURE 5.4 
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Temperature is measured by NiCr/NiAl thermo- 

couples, using an isothermal (0%) reference 

chamber as the cold junction. This isothermal 

reference chamber is incorporated into the 

data logger remote cabinet which is situated 

adjacent to the evaporator. Pressure measurement 

both absolute and differential, is by strain gauge 

transducer of the wheatstone bridge type. Two 

different types of flowmeter are used to make 

on-line measurements of flowrate. The flowrate 

to the first effect tubes is measured by a turbine 

flowmeter, whereas flow from the base of the 

cyclone separator is measured by a variable area 

magnetic flowmeter. The flowrate of cooling 

water to the condenser tubes is measured off-line 

by a rotameter. A summary of the specifications 

of each transducer installed at the double effect 

evaporator is given in Table 5.2. 
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5.3. THE HONEYWELL 316/HADIOS DATA ACQUISITION 
  

SYSTEM 

The data acquisition and processing system 

used for the purpose of state identification of the 

double effect evaporator consists of the following 

three units: 

(i) A Honeywell 316 Digital Computer and 

associated peripherals - see Plate 3. 

(ii) A Honeywell Analogue Digital Input Output 

System (HADIOS) - see Plate 3. 

(iii) A data logger remote cabinet - see Plate 2. 

This cabinet contains all the equipment necessary 

to produce and condition the measurement signals 

received from the double effect evaporator. On 

leaving the remote cabinet the measurement signals 

are in a form acceptable to HADIOS and in which 

they are more readily transmitted along the trunk 

cabling to the computer room. 

The details relating to Honeywell units in the 

following sections are taken from standard 

Honeywell publications (3.2, 3.3). 

5.3.1. THE HONEYWELL 316 DIGITAL COMPUTER 

The Honeywell 316 computer was designed for 

both batch scientific applications and real-time, 
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on-line data processing and control. The wide 

variety of applications which can be implemented 

include data acquisition, simulation and batch 

scientific computation. 

These applications are undertaken using an 

instruction repertoire of seventy two commands, 

a memory cycle time of 1.6 s and input/output 

data handling at a maximum word rate of 156 kHz/s. 

The computer is a stored program, parallel binary 

type using two's complement machine code. A 

single 10-bit address with indexing and indirect 

addressing accesses a 16-bit (i.e. 5 octal digits 

plus sign bit) coincident-current ferrite core 

memory; one hardware index register is provided. 

The memory is a random access system expandable 

from 4K to 32K words - the computer used in this 

research has a memory of 16K words. Other 

features of the CPU include a real time clock, 

high speed multiply/divide and a single interrupt 

line. 

The general characteristics of the Honeywell 

316 computer are given in Table 5.3. and the 

instruction repertoire is summarised in Appendix 

B-1. 

The H316 computer uses the DAP-16 symbolic 

assembly program language for translation of 
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TABLE 5.3 - HONEYWELL 316 LEADING PARTICULARS 

  

  

Primary power 

Type 

Addressing 

Word length 

Machine code 

Circuitry 

Signal levels 

Memory type 

Memory size 

Memory cycle time 

Instruction complement 

Speed, Add 

Subtract 

Multiply 

Divide 

Standard memory protect 

Standard interrupt 

Input/Output Modes 

Standard I/O lines   

475 watts, 5.5 amps at 115 vac 

410% at 60% 2Hz 

Parallel binary, solid state 

Single addressing with indexing 

and indirect addressing 

16 bits (single precision) 

32 bits (double precision) 

Two's complement 

Integrated 

0 volts 

Passive: +6 volts 

Active: 

Coincident-current ferrite core 

16K 

1.6 us 

72 instructions 

3.2 us 

3.2 us 

8.8 us 

17.6 us 

Designed to protect memory data 

in event of primary power failure 

Single standard interrupt line 

Single word transfer 

Single word transfer with 

priority interrupts 

10 bit address bus (4 function 

code and 6 device address), 

16 bit input bus, 

16 bit output bus, 

Priority interrupt external 

control and sense lines 
   



TABLE 5.3 - HONEYWELL 316 LEADING PARTICULARS (cont) 

  

  

Standard teletype 

Environment 

Cooling   

Read paper tape at 10cps 

Punch paper tape at 10cps 

Print at 10cps 

Keyboard input 

Off-line paper tape preparation 

reproduction and listing. 

Room ambient for computer less 

I/O devices: 0 to 45°C 

Filtered forced air 
  

TABLE 5.4 - HADIOS ADDRESS LINES 

  

DEVICE ADDRESS LINE 
  

  

A.D.C. 

COUNTER INPUT 

DIGITAL INPUT 

DIGITAL OUTPUT 

CONTROLLER   

00 (AA)”, 01 (BB) 

02 (CC), 03 (DD) 

10 (II) 

13 (00) 

ieee)     

The two 16 channel multiplexers attached to the A.D.C. 

are numbered 00 and 01 

The codes in parenthesis are for cross referencing 

purposes with Appendix B-2 

 



source programs to machine code. The other source 

program languages available to the user are 

BASIC-16 and FORTRAN. 

5.3.1.1. PERIPHERAL EQUIPMENT 

Six peripheral devices are connnected to the 

I/O bus of the central processor and with the 

exception of the visual display unit are all to 

be found in the departmental computer laboratory. 

The peripherals are as follows: 

(i) A high speed paper tape reader operating 

at 200 characters per second. 

(ii) A high speed paper tape punch operating 

at 75 characters per second. 

(iii) A magnetic tape cassette unit, used both 

for input and output; input at 375 bytes per 

second and output at 375 bytes per second. 

(iv) A teletype operating at 10 characters 

per second. 

(v) A Tektronics 4010-1 visual display unit 

(VDU). This VDU is capable of both graphical and 

character display and in the alphanumeric output 

mode operates at a rate of 200 baud. It is 

possible to use the VDU both in the computer room 

and adjacent to the double effect evaporator. 
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Attached to the VDU is a hardcopy unit, which 

produces permanent copies of the display when 

these are required. The hardcopy unit can be 

operated either by depressing a switch situated 

on the VDU or by programmed command. 

(vi) An AED 3100P floppy disk drive unit. 

5.3.2. THE HONEYWELL ANALOGUE DIGITAL INPUT 

OUTPUT SYSTEM (HADIOS) 

The Honeywell Analogue Digital Input Output 

System (HADIOS) provides a flexible method of 

interfacing the H316 computer to a wide range of 

input/output devices in on-line applications. 

HADIOS consists basically of a controller, 

connected to the computer input/output data and 

control lines, which generates subsidiary data, 

addresses and controls for up to fifteen different 

subinterfaces. These subinterfaces can be analogue 

or digital and input or output. The modularity of 

construction of HADIOS allows systems to be simply 

configured to meet the particular requirements 

of each application. 

The following standard subinterfaces are 

included in the HADIOS system used in this 

research: 

(i) High level analogue inputs. This 

-182-



subinterface consists of a single channel analogue 

to digital converter (A.D.C.), with a maximum 

conversion rate of 40 kHz, connected to two 

sixteen channel multiplexer subinterfaces. 

Thus, a maximum of thirty two separate analogue 

signals can be processed in turn by the ADC, the 

input signal (O to 5v) being converted to a 

binary integer with ten bit resolution, i.e. O 

to 1023, 9. 

(ii) High speed counter input. The high 

speed counter input provides a method of monitoring 

the number of changes of level of a discrete input. 

The counter is incremented by a positive voltage 

pulse from logic '0' to logic '1l'. The current 

contents of the counter can be obtained by a 

programmable command. Facilities for presetting 

the counter and interrupt generation when half 

full are also available and can both be achieved 

by programmable commands (see Appendix B-2). 

Each counter input subinterface card has an 

eight bit register with a range of O to 25515: 

When this subinterface is being operated in the 

non-interrupt mode the eight bit register 

automatically returns to zero when a count of 

255169 is reached whereas in the interrupt mode 
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when the 8 bit register is half full, i.e. it 

contains 12719; an interrupt of the central 

processor is generated. 

(iii) Logic level non-isolated input. This 

subinterface senses the voltages present on 

sixteen parallel input lines. The input signals 

are low impedance voltages switchable from 

logic '1' to logic '0'. The signals sensed are 

transferred to the A register of the computer as 

a sixteen bit pattern. 

(iv) Logic level flip flop output. This 

subinterface enables a sixteen bit pattern to be 

output to sixteen parallel output lines. For 

each bit of the output value set to binary '1' 

the appropriate output line is raised to logic 

‘1l'. The output lines retain their current 

levels until the next value is transferred to the 

subinterface from the computer. 

To summarise the following facilities were 

available: 

32 Analogue inputs 

1 Counter input 

1 Logic level input 

1 Logic level output 

Details of the address line connections between 
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the controller and the various subinterfaces are 

given in Table 5.4. 

Operation of these subinterfaces is achieved 

by the output of control signals (initiated by 

programmable command) from the computer to the 

HADIOS controller, which then carries out the 

majority of address and function decoding before 

initiating the required function of the 

requested subinterface. The system also has the 

ability to operate under interrupt control. This 

kind of operation is governed by the interrupt 

mask circuits of the HADIOS controller which can 

be set by the execution of programmable commands. 

Details of the programmable instructions used to 

operate HADIOS are given in Appendix B-3. 

In this research seventeen of the analogue 

input channels were used to record the output 

of four pressure transducers, two differential 

pressure cells, one variable-inductance flowmeter 

and ten thermocouples. The counter input 

subinterface was used to record the pulsed 

‘output of aturbine flowmeter and logic level 

input and output options were used for remote 

program control and program status respectively. 

Seoeae REMOTE SIGNAL CONDITIONING 
  

-185-



In order to convert the signals produced by 

the various measuring instruments into a form 

acceptable to HADIOS, a remote signal conditioning 

cabinet was constructed by departmental. technicians. 

Within this cabinet all the analogue signals are 

converted, where necessary, to voltages and then 

amplified into the range O to 5v D.C. Also 

contained in this cabinet are the line drivers 

for the transmission of digital signals, the 

power supplies required by the transducers and 

the De La Rue Zerac isothermal reference chamber. 

The cabinet is situated adjacent to the evaporator 

both for convenience and also to minimise the 

effects of electrical noise during the transmission 

of the signals to the computer room. 
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5.4. CHAPTER REVIEW 

The equipment used in the on-line application 

of various forms of the Kalman Filter is discussed. 

The double effect evaporator is described 

diagramatically and details are given of the 

process occurring and the method of operation. 

The instrumentation associated with the evaporator 

is listed and the function of each transducer 

is tabulated. Finally, the more important 

features of the data acquisition system are 

described. A full account of the data acquisition 

system is not included in this thesis because such 

a description would not only be extremely lengthy 

but also unnecessary in order to understand the 

experiments carried out. 
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CHAPTER 6 

HONEYWELL 316 COMPUTER SOFTWARE



6.1. INTRODUCTION 

The H316 computer described in the previous 

chapter was used in this research for both on-line 

and simulation experiments concerned with the 

double effect evaporator. For such applications 

the available software ideally needs to be versatile, 

efficient in its use of computer memory, easy to 

implement and reasonably quick in its execution. 

Clearly it would be extremely difficult to 

combine all of these features within the same 

applicationsprograms and so it was necessary to 

achieve some kind of compromise. This was done 

by combining standard software and user written 

programs in such a way that in the early stages 

of this research, when new techniques were being 

tested, the emphasis was put on ease of implemen- 

tation and versatility whereas in the later stages 

the emphasis was placed upon speed of execution 

and efficient use of computer memory. 

In order to achieve these specifications when 

constructing the required applications programs 

the following standard software was used, 

(1) BASIC-16 Interpreter. 

(2) FORTRAN Compiler. 

(3) DAP-16MOD2 Assembler. 

(4) OP-16 Real time operating system. 

(5) Utility packages to load relocatable 
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programs into core and dump them out again. This 

software was used to produce the following 

applications programs, 

(1) HADIOS EXEC. - An interactive, on-line, 

data acquisition system which was made by combining 

the BASIC compiler with a number of subroutines 

written in the DAP-16 assembler language. 

(2) O.L.D.F.P. - An On Line Digital Filtering 

Package which uses the OP-16 real time operating 

system to schedule programs written in DAP-16 

and FORTRAN. 

In addition the previously reported Aston 

Simulation Package (6.1) and the computer soft- 

ware used to drive the graphical capabilities of 

the Tektronics 4010-1 VDU will be discussed. 
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6.2. STANDARD SOFTWARE 

6.2.1. BASIC-16 INTERPRETER 

The Beginners All purpose Symbolic Instruction 

Code (BASIC) is an interactive, problem orientated, 

high-level language with a simple vocabulary and 

grammar. The language was originally developed 

at Dartmouth College and general details are 

well documented (6.2). 

The BASIC compiler is interpretative in 

operation, i.e. each instruction is translated 

from source to machine code and executed whenever 

it is encountered. All constants are stored 

internally in floating point format but input 

may be in integer, fixed point or floating point 

form. The output format is adjusted by BASIC to 

provide maximum precision from six figure 

significance. 

The BASIC-16 Interpreter (6.3) is the 

Honeywell version of BASIC for series 16 machines 

with memory size 4K words or more. In standard 

form, communication with BASIC-16 is from the 

V.D.U. or a teletype, but a machine code 

modification to the interpreter program (See 

Appendix B-3) enables input/output via the paper 

tape reader and punch. One feature of BASIC-16 

which makes its use extremely attractive when 
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the computer used has no backing store is that 

source code can be punched onto paper tape using 

an off-line teletype, loaded into the computer 

at run time via the paper tape reader and then, 

after the necessary on-line editing to debug the 

program, the source code can be dumped onto 

paper tape via the paper tape punch. 

An additional refinement provided in BASIC- 

16 is the CALL statement, which enables a 

FORTRAN/DAP-16 subroutine to be accessed from 

a BASIC program. The general form of the 

statement is 

In CALL (sn, A), A >, AL) Qe a 

where, ln is the line number of the statement, 

CALL is the statement operator, 

sn is the subroutine reference number, 

and, Ay to A, are arguments to be passed to the 

subroutine called. Unlike the CALL statement 

in FORTRAN, the subroutine is not accessed by 

name but by a reference number to an entry in a 

table containing the starting addresses of the 

subroutines. The arguments AL to AL correspond 

to the dummy arguments of the FORTRAN subroutine 

definition. Since all BASIC variables are real 

in the FORTRAN sense, the dummy arguments in the 

FORTRAN or DAP-16 subroutine must also be real 
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and any integer numbers required must be converted 

internally. Where a FORTRAN dummy argument is a 

subscripted variable, the corresponding BASIC 

argument is the first subscript required of the 

array, e.g. CALL (1, X, A(O), B(O,O)). This 

distinction is necessary because BASIC arrays 

are numbered from zero whereas FORTRAN arrays 

are numbered from one. 

6.2.2. FORTRAN COMPILER 

The Honeywell FORTRAN IV compiler has been 

produced for series 16 machines according to the 

American Standards Association specification (6.4). 

Details of the programming language are well 

documented (6.5). Operation of the compiler in 

the batch mode requires the addition of simple 

control characters ($0 or $END) to terminate 

each propren Peripheral device codes are as 

follows, 

1 - Teletype 

2 - paper tape reader/punch 

In Honeywell FORTRAN (6.6) a number of non- 

standard refinements are available which permit 

both direct access to the computer's memory and 

modifications of the main arithmetic register 
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(the 'A' register). A summary of these instructions 

is given in Appendix D-2. 

FORTRAN source tapes are prepared off-line 

on paper tape in the standard format. The object 

code generated by the compiler is normally 

directed to the paper tape punch and the listings 

are output to the teletype. 

6.2.3. DAP-16MOD2 ASSEMBLER 

To avoid programming directly in machine 

code, a symbolic assembler, DAP-16MOD2, is provided 

by the manufacturer (6.7). Each machine 

operation is assigned a symbolic name (a summary 

of DAP-16 instructions is given in Appendix B-1) 

and where necessary, each address referenced by 

an instruction is given a symbolic label. The 

assembler is a 'one for one' language, i.e. one 

symbolic instruction corresponds to one machine 

code operation, except in the case of pseudo- 

operations, which request action by the assembler 

rather than specifying an operation code. The 

source code, punched off-line on paper tape, is 

usually poecmbied in two passes in order to 

minimise the object code. 

The assembler produces two independent 
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outputs. The first is the object code which is 

punched onto paper tape for further processing 

by the loader, and the second is the assembly 

listing which is printed at the teletype. 

Included in the listing are programmer comments, 

any error messages and an octal representation 

of each machine code instruction or data word. 

Examples of DAP-16MOD2 assembly listings are 

included in Appendices C and E. 

6.2.4. OP-16 REAL TIME OPERATING SYSTEM 

OP-16 is a small multiprogramming operating 

system complete with I/O drivers utility and 

support programs, debugging aids, and on-line 

peripheral device test programs. It is capable 

of operating in a core-only or core/secondary 

storage environment and satisfies the requirements 

of a small, efficient programming system to 

implement real-time data acquisition and control. 

Any OP-16 system is composed of the following 

components (see Figure 6.1), 

(1) RTX-16 Real-Time Executive 

(2) Utility routines (optional) 

(3) Debugging Aids 

(4) Real-time peripheral device drivers and 

test programs 
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(5) Fortran package 

(6) User programs (DAP-16 or FORTRAN) 

The RTX-16 Executive is the central and most 

important component of any OP-16 system. Due to 

its modular nature it can be configured so 

that it provides the necessary facilities for 

any unique system. The capabilities and thus, 

the components included in any OP-16 system are 

determined by the configuration module (XCOM) 

which is written by the user and included in 

the RTX-16 executive. In its most general form 

the RTX-16 executive can perform the following 

functions, 

(1) Execute programs according to their 

priority. 

(2) Keep track of the co-ordination 

requirements of programs, devices and core storage. 

(3) Handle the interrupts which communicate 

external conditions to the Executive and its 

programs. 

(4) Keep track of the time of day in order 

to execute programs at certain times or after a 

certain delay. 

(5) Handle communications between programs 

and the Executive. 
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(6) Handle communications between the 

operator and the Executive. 

(7) Detect and report errors in the system 

or individual programs. 

(8) Perform the necessary book keeping for 

a multiprogramming multilevel system. 

The general principles involved in writing 

the user programs and configuring an OP-16 system 

will not be discussed here as they are well 

documented in the manufacturer's user guide (6.8). 

However, four general features of the RTX-16 

executive which are of particular significance 

when developing on-line filtering programs will 

now be discussed and then in section 6.6 the 

configuration of the RTX-16 executive used in 

this research will be described. 

6.2.4.1. SYSTEM FUNCTIONS 

The RTX-16 executive provides a number of 

system functions which can be requested from 

either a user program (DAP-16 or FORTRAN) known 

by the Executive or by the on-line utility 

program (ONLCUP). These system functions can 

be summarised as follows: 
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FUNCTION 1 - REQUEST PROGRAM 

The requested program is not started up by 

this function but merely requested. The 

Executive Scheduler will then start the program 

as soon as possible. 

FUNCTION 2 - SCHEDULE LABEL 

The major use of the Schedule Label function 

is that a program which services another can call 

the first one back after its service is complete. 

Thus, if program 1 requests the execution of 

program 2 and then waits for the second program 

to run, the first program can be restarted by a 

schedule label function at the end of program 2. 

FUNCTION 3 - CONNECT CLOCK 

This function is used to connect a program 

to the clock for automatic initiation by the 

Executive Real Time clock program. This 

function can be used to cause the periodic 

scheduling of a program or to cause a program to 

be executed after a time delay (this puts the 

program into a wait state). 

FUNCTION 4 - DISCONNECT CLOCK 

This function requests the executive to stop 

the periodic execution of a program or to cancel 

the automatic resumption of a program in the wait 

state. 
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FUNCTION 5 - CONNECT INTERRUPT 

This function requests the executive to set 

the interrupt mask so that the specified 

peripheral device may interrupt the central 

processor. The connect interrupt function also 

causes the Executive to establish the necessary 

linkages with the interrupt response code specified 

by the user program for the peripheral device. 

FUNCTION 6 - DISCONNECT INTERRUPT 

This function informs the Executive that 

the calling program no longer wishes to respond 

tothe named interrupt. 

FUNCTION 7 - TERMINATE 

When this function is executed the Executive 

is informed that this program has finished and 

as a result control is returned to the executive 

with no return to the program. 

FUNCTION 8 - WAIT 

This function informs the Executive that 

the program wishes to suspend execution until it 

is restarted by a schedule label function. 

The programming details associated with the 

above system functions are given in Appendix D-1 
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for DAP-16 programs, Appendix D-2 for FORTRAN 

programs and Appendix D-3 when used in conjunction 

with the utility program (ONCLUP). 

6.2.4.2. INTERRUPT HANDLING 

Any peripheral device, including the 

computer's real time clock, which interrupts 

the central processor brings into action the 

Executive Interrupt Handler. Whenever an 

interrupt occurs, the Interrupt Handler determines 

the source of the interrupt and jumps to the 

user's interrupt response code for that interrupt. 

The linkages between the Interrupt Handler and 

the interrupt response code are established by 

the Executive Interrupt Definition Table which 

is part of the Executive Configuration Module 

(XCOM). The user's interrupt response code 

needs to be brief and after its execution control 

returns to the Interrupt Handler which optionally 

schedules a label in the user's program and then 

returns control to the Scheduler. When an 

interrupt has occurred all non-interrupt code 

will be suspended until all interrupts have 

been serviced. 
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6.2.4.3. THE ON-LINE UTILITY PROGRAM (ONLCUP) 

The On-line Utility Program is run under the 

control of the RTX-16 Executive and provides the 

following on-line facilities: 

(i) Program debugging tools 

(ii) Data transfer and verification between a 

variety of storage devices and external media. 

(iii) Optional operator control over the 

initiation and termination of periodic programs 

and initiations of 'single shot' programs 

(iv) Control of the location and size of the 

core area available to the operator for on-line 

manipulations 

(v) Printing and adjusting of the time of 

day. 

Essentially ONLCUP provides a conversational 

interface between the operator and the OP-16 

operating system via a teletype or VDU. Use of 

ONLCUP is quite straightforward and it can be 

started up most of the time that the RTX-16 

Executive is running. Typing a dollar sign ($) on 

the teletype or VDU causes an interrupt of the 

central processor and as a result of this ONLCUP 

is started up. On start up 'SF=' is typed on 

the teletype and then ONLCUP remains in the receive 
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mode until a legitimate command is received. A 

list of the commands available when using the 

ONLCUP program is given in Appendix D-3. The 

utility program can be terminated at any time 

by typing in an exclamation mark (!) when the 

message 'SF=' is output. 

6.2.4.4. THE FORTRAN PACKAGE 

The FORTRAN package which can be incorporated 

in the RTX-16 Executive provides one method of 

running FORTRAN programs in an OP-16 system. 

It consists of two main sections, 

- (i) OPED - the input/output editor 

(ii) RFMATH - the re-entrant floating point 

mathematics routines. 

Providing a FORTRAN program is constructed using 

the special OP-16 Fortran Libraries both of the 

above facilities are used. This means that the 

total core requirements of a number of FORTRAN 

programs is reduced due to the use of these 

common subroutines. 

FORTRAN programs to be run under OP-16 should 

begin and finish with the HEADER and TERMINATE 

statements respectively but apart from this they 

can be written in standard FORTRAN IV. Details 

of the above statements and the other special 
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features of Honeywell Extended Fortran permitted 

in programs to be run under OP-16 are given in 

Appendix D-2. 

6.2.5. UTILITY PROGRAMS 

When running a program written in either 

the FORTRAN or the DAP-16MOD2 languages, the 

first step is the off-line preparation of a 

source tape. The result of a successful 

compilation or assembly of this source code is 

an object code tape, which must be loaded into 

the desired locations in core and then dumped 

onto paper tape to form a self-loading system 

tape (SLST). This is achieved by loading an 

SLST of the object tape loader (LDR-APM) into 

memory and utilising it to enter the object 

code tape of the program. Object tapes of 

supporting programs and/or library subroutines 

are loaded similarly. When all of the necessary 

object code programs have been loaded an SLST 

of the punch and load program (PAL-AP) is loaded 

into core and is then used to produce an SLST of 

the complete program on either paper tape or 

magnetic tape cassette. 
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6.2.5.1. OBJECT LOADER (LDR-APM) 

Object code produced by the DAP-16MOD2 assembler 

or the FORTRAN compiler is processed by a loader 

to form a core image in memory. References to 

external names such as library or user written 

subroutines are also resolved. To the loader, 

object code tapes of programs written in both 

DAP-16MOD2 or FORTRAN are identical and so 

programs from both of these sources can be 

combined. 

The memory of a 316 computer with 16K words 

of core is divided into 32 sectors each containing 

512 words of memory. Since an instruction word 

of sixteen bits requires four bits to represent 

a sufficient number of operands, direct addressing 

is only possible within the same sector or between 

any sector and the sector designated as base 

sector (base sector is usually the lowest sector 

of memory but by use of the base sector relocation 

program shown in Appendix B-4 it can be changed 

to other sectors in core). This restriction on 

direct addressing means that when loading object 

code tapes to form a program which occupies more 

than one sector of memory it is necessary to 

provide indirect address links to satisfy intersector 

references. The loader handles these indirect 
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address links in three ways. The first method is 

to locate these links in base sector. This is 

perhaps the most straightforward method and as 

a result is widely used. Alternative methods 

involve the location of these links within the 

same sector as the instruction requiring 

indirect addressing, this is referred to as 

desectorised loading. The second method 

achieves this by use of the SETB (set base) 

pseudo operation within a DAP-16MOD2 program and 

the third method by allocating an area of core 

at load time. When using the second and third 

ways of satisfying intersector references care 

is needed to ensure all links are handled correctly 

and consequently these methods are only used 

when the first method is difficult to implement. 

As mentioned above it is possible to change 

the sector which is designated as Base Sector by 

using the Base Sector Relocation program shown 

in Appendix B-4. This feature of the H316 

computer is extremely useful when constructing 

packages which involve the BASIC-16 Interpreter 

because, in such cases, there are only 48 locations 

available in sector O for the intersector 

references required by the FORTRAN or DAP-16 

subroutines. To avoid having to construct these 
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packages by using a desectorised load, the BASIC-16 

Interpreter uses Sector O as Base Sector and the 

FORTRAN/DAP-16 Subroutines use Sector 37 as 

Base Sector. This means that every time the 

Basic CALL statement is executed Base Sector 

needs to be relocated and this is done by the 

DAP-16 program shown in Appendix B-4. 

When loading object tapes the loader provides 

a method of checking which programs have been 

loaded and which ones are still required by 

giving the operator the option of starting the 

execution of the loader two locations above its 

normal entry point. This action causes a 

memory map of the routines involved to be 

displayed on either the V.D.U. or the teletype. 

The memory map obtained also gives information 

about the intersector linkages which are 

referred to as BASE by the loader. 

6.2.5.2. PUNCH AND LOAD PROGRAM (PAL-AP) 

Program tapes that are called self loading 

system tapes (SLST) are ones which can be loaded 

into core by use of the key-in loader (a small 

machine code program which permanently occupies 

the first 173 locations of core) and a two-part 

self contained loader. SLST's are produced by 
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using PAL-AP to dump the specified area of 

computer memory onto paper tape. PAL-AP's first 

action is to punch out a two part self-contained 

loader that is used to supplement the key-in 

loader at program load time. The contents 

of the memory are then punched out. 
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Q
 wo GRAPHICAL SOFTWARE 

One of the most attractive features of the 

Tektronics 4010-1 VDU is that it is capable of 

providing graphical displays. To drive this 

graphical capability the manufacturers provide 

a set of subroutines (6.9) which, because they 

are written in FORTRAN, are completely machine 

independent. Thus, after the addition of two 

simple machine code programs, one for input and 

the other for output, a graphical system can be 

easily implemented on the H316 computer. 

Gro... EXTENDED BASIC GRAPHICS 

EXTENDED BASIC GRAPHICS is a package based on 

the BASIC-16 Interpreter and nine FORTRAN subroutines 

which implement the full graphical facilities of 

the Tektronics 4010-1 VDU. The nine FORTRAN 

subroutines, which can be accessed from a BASIC 

program via the CALL statement, are essentially 

communications programs which provide both 

efficient access to the manufacturers graph 

plotting software and oe between the 

BASIC and FORTRAN sections of the package. Brief 

details of the facilities available to the BASIC 

programmes are given below. For full details 
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refer to the manufacturer's user guide (6.9) and 

the EXTENDED BASIC GRAPHICS user manual (6.10). 

Subroutine 1 

Purpose : To enter or leave the graphics mode. 

* CALL ; CALL (1, F, X, Y) 

Arguments : F = 1 enter graphics mode 

F # 1 leave graphics mode 

X, Y screen coordinates of beam after 

termination. 

Subroutine 2 

Purpose : To set the virtual or screen windows. 

CALL : CALL (2, F, XO, X1, YO, Y1) 

Arguments : F 1 set virtual window 

F # 1 set screen window 

XO, X1, YO, Yl virtual or screen coordinates. 

Subroutine 3 

Purpose : To perform the following graphical 

functions; draw a line, move the graphical 

cursor and plot a point. 

CALL : CALL (3, F, X, Y) 

Arguments : F = 1 to 12 inclusive - type of graphical 

function - see (6.10) 

X, Y Co-ordinates moved to by the graphical 

cursor. 
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Subroutine 4 

Purpose : To draw a dashed line 

CALL : CALL (4, F, X, Y, L) 

Arguments : F = 1 to 4 - type of dashed line - 

see (6.10). 

X, Y Co-ordinates moved to by the 

graphical cursor. 

L Dashed line specification - 

see (6.9). 

Subroutine 5 

Purpose : To provide graphical input via the cursor 

CAGE: CALLS, Fa C, 55%) 

F = 1 Virtual cursor 

F # 1 Screen cursor 

X, Y Co-ordinates of cursor 

Cc Code for keyboard character input - 

see (6.9). 

Subroutine 6 

Purpose : To output alphanumeric characters 

CALL : CALL (6, C) 

Argument : C Code for character output - see (6.9). 

Subroutine 7 

Purpose : To provide facilities for adjusting the 

position of the alphanumeric cursor. 

“CADET CAE C7, -E) 
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Arguments : F = 1 to 12 - function required - see 

(6.10). 

Subroutine 8 

Purpose : To examine or change the common area of 

the FORTRAN subroutines 

CALL : CALL (8, F, A(1)) 

Arguments : F = 1 Copy COMMON area into the array A 

F # 1 Copy Array A into the COMMON area 

A Array dimensioned A(55) in the 

BASIC program. 

Subroutine 9 

Purpose : To input a character from the keyboard 

CALL : CALL (9, C) 

Argument : C Code for character input - see (6.9). 

The construction of the Extended Basic Graphics 

package is achieved by the following procedure: 

(1) Load an SLST of the BASIC-16. Interpreter 

into sectors O to 7. 

(2) Using LDR-APM, load the object tapes of 

the nine FORTRAN subroutines accessible from BASIC 

into the top of core. 

(3) Load the object tapes of manufacturers 

software. 

(4) Load the object tapes of the FORTRAN 

library subroutines. 
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During the loading of the above subroutines 

the intersector references are located in 

sector 37 and when the package is being operated 

the Base Sector relocation program shown in 

Appendix B-4 is used to change Base Sector when 

the need arises. 

The above loading procedure means that the 

middle section of core is available for the BASIC 

program and variable storage. Following a 

successful load of the various components, an 

SLST of the Extended Basic Graphics package can 

be obtained using PAL-AP. 

An example of a BASIC program for use with 

this package is given in Appendix F-8. 
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6.4. THE ASTON SIMULATION PACKAGE - ASP 

The Aston Simulation Package was developed 

by Gay and Payne (6.1) so that interactive 

simulation could be carried out on a digital 

computer. ASP is based on the BASIC-16 Interpreter 

and four FORTRAN subroutines which carry out the 

task of numerical integration by either the 

fourth order Runge-Kutta method or the Modified 

Euler method. The use of an interactive language 

restores to the user the advantages of the direct 

access which is a feature of analogue simulation 

whilst avoiding the disadvantages of using an 

analogue computer. In addition, the use of 

FORTRAN subroutines to perform the integration 

of first order differential equations reduces 

the knowledge of numerical analysis demanded 

of the user. 

The FORTRAN subroutines which can be accessed 

from a BASIC program are as follows: 

Subroutine 1 - FORTRAN NAME 'ZERO' 

Purpose : To initialise the COMMON area of the 

FORTRAN subroutines and set the 

independent variable to zero. 

CALL = CALL (1, 0) 

Arguments : T independent variable. 
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Subroutine 2 - FORTRAN NAME 'PRNTF' 

Purpose : To control output from the BASIC program 

and signal the end of the simulation. 

CALL : CALL (2, P, E, Il, I2) 

Arguments : P the required print out interval. 

E the value of the independent variable 

at which the run will terminate. 

Il when the independent variable 

reaches E, Il is returned with a 

value of 2.0, otherwise Il = 1.0. 

I2 when the independent variable: is 

zero or a multiple of P, 12 is 

returned with a value of 2.0, 

otherwise it equals 1.0. 

Subroutine 3 - FORTRAN NAME 'INTI' 

Purpose : To integrate the independent variable 

and perform the necessary housekeeping 

operations for the integration 

procedure. 

CALL : CALL (3, T, H, K) 

Arguments : T independent variable 

H integration step length 

K integration order (K=2.0 for modified 

Euler and K=4.0 for Runge Kutta 4) 

Subroutine 4 - FORTRAN NAME 'INTX' 

Purpose : To integrate the dependent variable. 
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CALL : CALL (4, X, DX) 

Arguments : K dependent variable. 

DX derivative of X. 

A typical layout for a BASIC program using 

the four subroutines discussed above is given in 

Figure 6.2, and contains the following four 

main sections: 

1. Initialisation section 

In this section of the program the integration 

data (H, E, P, K) and the initial values of the 

dependent variables are input, preliminary 

calculations are carried out and then subroutine 

ZERO is called to initialise COMMON and set the 

independent variable to zero. 

2. Derivative section 

This section contains the algebraic equations 

that establish the derivatives of the variables 

to be integrated. 

3. Output section 

First of all subroutine PRNTF is called and 

then the flags Il and I2 are tested to see if 

output is due or whether the end of the simulation 

has been reached. 
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START 

INITIALISATION SECTION 

(i) INPUT INTEGRATION 
DATA - H,E,P,K 

ii) INPUT INITIAL 
VALUES - X 

iii) CALL (1,7) 

pe 
DERIVATIVE SECTION 

CALCULATE DERIVATIVES 
- DX 

t 

  

  

  

  

  

OUTPUT SECTION 

CALL (2,P,E,11,12)       

     

  

PRINT OUT INDEPENDENT 
AND DEPENDENT VARIABLES 

  

INTEGRATION SECTION 

(i) INTEGRATE INDEPEN- 
DENT VARIABLES 
- CALL (3,T,H,K) 

(ii) INTEGRATE DEPEND- 
ENT VARIABLES 
- CALL (4,X,DX)         

GENERAL STRUCTURE OF ASP PROGRAMS 

FIGURE 6.2.



  

4. Integration section 

This section consists of a list of CALL 

statements starting with the independent 

integration routine INTI, and followed by the 

CALL statements to routine INTX to integrate 

the dependent variables. The last statement 

of this section directs the computation to the 

first line of the derivative section. 

An example of a BASIC program written for 

use with ASP is given in Appendix F-4. 

An SLST of ASP can be obtained by following 

a similar procedure to that described previously 

for Extended Basic Graphics. 
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6.5. THE HADIOS EXECUTIVE PACKAGE MK.2. 
  

As was discussed earlier it was decided that 

for the preliminary on-line experiments carried 

out in this research the computer software should 

be versatile and easily implemented. Since the 

BASIC-16 Interpreter offers excellent facilities 

for the modification of user programs, a software 

package which includes facilities for BASIC 

programs to access the HADIOS system (see 5.3.2) 

regularly at a chosen time frequency would satisfy 

pheiacared requirements. This package, known 

as The HADIOS EXECUTIVE PACKAGE Mk.2, consists 

of two main components, 

(1) BASIC-16 Interpreter 

(2) HADIOS EXECUTIVE PROGRAM Revision O1l., 

which communicate by the BASIC CALL statement. 

The HADIOS EXECUTIVE PROGRAM was written to 

perform the following functions, 

(i) To initiate regular access of the 

HADIOS system at the required frequency. This 

action is caused by a CALL statement in the 

BASIC program. 

(ii) At the desired time to access (scan) 

the HADIOS devices required by the BASIC program. 
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(iii) To handle all interrupts of the computer. 

(iv) To provide an idling loop in which to 

wait for the next scan. 

(v) To terminate the execution of the 

HADIOS EXECUTIVE PROGRAM after the required 

number of scans have taken place. 

(vi) To check for error conditions. 

The HADIOS EXECUTIVE PROGRAM is written in 

the DAP-16MOD2 language and it services the 

following HADIOS devices, 

(a) The analogue to digital converter - a 

total of 32 analogue channels can be accessed 

via 2 multiplexers. 

: (b) The counter input. 

(c) Digital input 

(d) Digital output. 

A description of the HADIOS EXECUTIVE PROGRAM 

and an assembly listing are given in Appendix C-1l. 

The construction of the HADIOS EXECUTIVE 

PACKAGE Mk.2 is a rather complex procedure: and 

so will not be discussed here but is included 

in Appendix C-5. 

6.552. DETAILS OF THE 'CALLS' FROM A BASIC PROGRAM 

The two CALLS which should be included in a 
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BASIC program in order to set up communication 

with the HADIOS EXECUTIVE PROGRAM are, 

1. CALL (1,P),P5,P3,P,,P5,P¢,P7,Pg,P9,P},,A(0)) 

- the fundamental CALL which gives the necessary 

information to the executive for the setting up of 

regular scanning of the HADIOS devices. 

2. CALL (2) 

- the secondary CALL on the executive which 

returns the computer to the idling loop if more 

scans are required. 

PARAMETERS - P; 

The parameters required in the CALL statements 

are, 

‘J
 ! 1 HADIOS devices required - see Table 6.1. 

Po - Honeywell Real Time Clock Interrupt Frequency 

(secs); this is the frequency at which 

scanning takes place. 

Pg - Total number of Real Time Clock Interrupts 

(or scans) required. 

Py - Ensemble number (>1) - only applicable for 

analogue measurements (see DATA below). 

Ps - First analogue channel number. 
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TABLE 6.1 - DEVICES SELECTED TABLE 

  

  

Nessus DEVICES SELECTED 
OF PL 

ak Analogue inputs only 

8 Counter inputs only 

9 Analogue + Counter 

64 Digital input only 

65 Digital input + Analogue 

72 Digital input + Counter 

73 Digital input + Counter + Analogue 

512 Digital output only 

513 Digital output + Analogue 

520 Digital output + Counter 

521 Digital output + Analogue + Counter 

576 Digital output + Digital input 

577 Digital output + Digital input + 

Analogue 

584 Digital output + Digital input + 

Counter 

585 Digital output + Digital input + 

Counter + Analogue        



Last analogue channel number. 

Type of counter scanning required - only 

applicable if the counter option is 

selected. 

Oo- count of pulses during a clock interval 

starting with Pe GO < Pg < 25544) in 

the counter register at the beginning 

of each interval. 

Cumulative count of pulses over the 

total number of scans - P, should be 
8 

set to zero. When using this type of 

counter scanning the counter register 

is set to zero at the start of the 

first scan but from then on is never 

reset by the program. Care is needed 

in interpreting the value returned to 

the user's program because when a 

count of 25516 is achieved the register 

returns to zero. 

counter interrupts when half full, i.e. 

when the counter register contains 

12710: When using this option the 

counter register is set to the preset 

value (O < Pg < 12659) at the start 

of every clock interval. 
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Pg - Counter preset value. 

Pg - Type of digital input required - only 

applicable if the digital input option is 

selected. 

= 0 - 16 bit pattern input is converted to 

the real equivalent of the binary 

integer and is stored in A(34). The 

16 bit word is treated as 1 sign bit 

and 15 magnitude bits and will be 

converted to an integer in the range 

-32768,5 to 3276755. 

= 1- 16 bit pattern is stored in a 16 

element array, A(34) to A(52), each 

element being either 1 or O. 

P - Type of digital output required - only 
10 

applicable if the digital output option is 

selected. 

= O - the real number stored in A(35), by 

the BASIC program is converted to the 

equivalent binary integer and output 

as a 16 bit pattern. The value of A(35) 

must be in the range ~32768, 4 to 3276715 

and will be converted to its binary 

equivalent (1 sign bit and 15 magnitude 

bits). 
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1 - The 16 element array, A(53) to 

A(68), each element having been set 

to either 1 or O by the BASIC program, 

is output as the corresponding 16 bit 

pattern. 

= 2 - special purpose output - see Appendix 

Cc-6. 

DATA STORAGE - A(1) 

The data values transmitted to or received 

from the HADIOS EXECUTIVE PROGRAM are stored in 

the one dimensional array A(I), which must be 

dimensioned A(68) in the BASIC program. 

A(O) to A(31) - value of respective analogue 

input channel at a clock interrupt. 

These values are the averages of 

the ensemble number of readings 

(4) taken at the clock interrupt. 

A(32) - time between the preset value being output 

at a clock interrupt and the first half 

full counter interrupt (secs). 

A(33) - value in the counter input register at a 

clock interrupt. 

A(34) - Digital input value. 

A(35) - Digital output value. 
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A(36) - Number of half full counter interrupts 

since the last clock interrupt. 

A(37) to A(52) - digital 

A(53) to A(68) - digital 

6.5.2. 

input array (Pg=1) 

output array (Py9=1) 

STRUCTURE OF THE BASIC PROGRAM 

BASIC programs written for use with the 

Hadios Executive Package 

following structure, 

DIM A(68) 
A 

t 
! 
| 
U 

' 

"INITIALISATION' 

' 

| 

! 

v 
CALL(1,P, ,P ae 

3? a?P 
P 2° 5° 

line A , 

| 

' 

" INTER-SCAN 

BASIC 

PROCESSING' 
' 
| 

| 

! 

' 

oP 7? 

Mk.2 should have the 

Definition of Pi to Pio and 

any other initialisation 

Sequences required by the 

user's program. 

Pore: 9°97 A(0)) Se 10’ 

Immediately after the CALL 

to subroutine 1 the first 

scan takes place followed 

by a return to line A. 

After any processing at the 

BASIC level the CALL to 

subroutine 2 returns the 
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--
> 

1 
'TERMINATION' 

' 
' 
' 

Vv 
END 

program to the idling loop 

where the next clock interrupt 

is awaited. After the clock 

interrupt and the subsequent 

scan have taken place a 

return to line A again 

takes place. This sequence 

is repeated until a total of 

Pg scans have taken place 

when, after the normal 

Inter-scan Basic processing, 

the CALL to subroutine 2 

causes the program to 

return to line B. 

Any termination sequences 

required by the user's 

program 

6.5.3. ERRORS GENERATED BY THE HADIOS EXECUTIVE 
  

PACKAGE MK. 2. 

Providing the BASIC program has been written 

according to the above structure and if sufficient 
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execution time has been allowed for Inter Scan 

Basic Processing the Hadios Executive Package 

should run without error. However, to safeguard 

against corruption of the machine code by 

either mistakes in the BASIC program or incorrect 

parameter values, a number of error checks are 

made by the Hadios Executive Program. The 

errors generated are in addition to the standard 

BASIC-16 errors and are tabulated in Appendix C-7. 

In situations where the premature termination 

of the program is desirable this can be done by 

setting sense switch two. This action is 

preferable to the more normal use of sense 

switch one because it causes all interrupts to 

be disenabled. 
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6.6. THE OLDFP EXECUTIVE 

The first stage in the construction of an 

OP-16 system is to consider what features the 

system should include in order to provide the 

desired facilities. Thus, in the case of the 

On Line Digital Filtering Package (referred 

to as OLDFP from now on) the main features 

required of the executive section of the 

package are as follows: 

Gy: To provide a Fortran capability so that 

Fortran programs can be scheduled and executed 

when required to do so by the user. 

(ii) To handle output to the high speed 

punch so that the results of the filtering 

procedure can be punched out onto paper tape. 

(iii) To handle input and output to the 

teletype or VDU so that the user can communicate 

with both the utility program (ONLCUP) and the 

Fortran programs known to the executive. The 

presence of this feature is also required so 

that the executive can advise the user of any 

errors which may occur. 

(iv) To handle all forms of communication 

with HADIOS; this includes interrupts. 

(v) To provide the user with the on-line 

utilities needed to interrogate and control 

the system. 
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Once the above specifications have been 

stated the components required to make up the 

Executive were chosen. As shown by Table 6.2 

the first component of the OLDFP Executive is 

the RTX-16 Executive and this meets the first 

specification. The second specification is met 

by the fourth component, i.e. the High Speed 

Punch Driver, the third by component 3, i.e. the 

ASR Input/Output Driver and the fourth 

specification by the second component, i.e. the 

Hadios Input/Output Drivers. Finally, component 

5, the On-Line Utility Program satisfies the 

fifth specification. Apart from the Executive 

Configuration Module, XCOM, and the supervisory 

program for the Hadios Drivers, all of the 

components required to construct the OLDFP 

Executive are standard items-of software. 

Having decided on the required components, 

the next task was to write those items of soft- 

ware which are non standard. The Hadios 

Supervisory program and the reasons for its 

presence will be discussed in the next section. 

The construction of XCOM was a more complex 

task since it is in this module that the 

capabilities of the Executive are established. 
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TABLE 6.2 - COMPONENTS OF THE OLDFP EXECUTIVE 

  

  

  

NAME COMPONENTS 

f RTX-16 (i) Basic Executive - EXEC-A 

EXECUTIVE (ii) Executive Configuration 
Module - XCOM 

(iii) Program Communication 
Routine - FIFO 

(iv) Error Print Program 
- EPMOD 

(v) Fortran Package - FORTSY 
- RMATH 

(Routines 1-6) 

2 HADIOS INPUT/ (i) Hadios Digital Input/ 
Output Driver - HAD-DIO 

OUTPUT DRIVERS 
(ii) Hadios Analogue Input 

Driver - HAD-ANI 

(iii) Supervisory program - 
H1-H6 

iS ASR TELETYPE Ci) ASR Driver Program - 
ASRD-S 

INPUT/OUTPUT 
(ii) Fortran Input/Output 

DRIVER Extensions ASF1/2. 

4 HIGH SPEED (i) High Speed Punch Driver 
Program HSPD-H 

PUNCH DRIVER 
(ii) Forced 8 parity check - 

5 ON-LINE UTILITY 

PROGRAM-ONLCUP   C8OPF 

See Reference 6.11 

   



Apart from its complexity a number of obscure 

points had to be resolved during the writing of 

XCOM. These points, together with others which 

were encountered, are reviewed in Appendix E-5. 

The construction of XCOM is discussed in 

section 6.6.3 and Appendix E-2. 

Finally, it had to be decided how the system 

was to be loaded into the computer's memory, as 

this had a bearing on some of the more minor 

components required. The loading procedure 

was not easily determined since the manufacturer's 

user's guide (6.8) is not at all clear on this 

point. The general procedure which was 

eventually used is as follows; 

(i) The system was separated into the 

five components shown in Table 6.2, 

(ii) Each component was loaded separately. 

So that the Executive program knows where the other 

components are, a program specifying their start 

addresses (see Appendix E-4) was link loaded 

with the RTX-16 Executive. Similarly, so that 

the other four components know the key locations 

in the Executive the routine XLOCS was link 

loaded with each of them. After a number of 

trial loads, the optimum useage of core was 
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achieved and, as will be discussed in more detail 

later on, the OLDFP Executive was then constructed. 

6.6.1, THE HADIOS INPUT/OUTPUT DRIVERS 

The OP-16 standard software includes two 

drivers to access HADIOS namely HAD-DIO, the 

digital input/output driver, and HAD-ANI, the 

analogue input driver. Since these programs 

are more easily requested by programs written in 

DAP-16 and because they are rather rudimentary 

in nature, it was decided to write a supervisory 

program. This program, shown in Appendix E-1, 

has six functions, five of which can be simply 

requested from a FORTRAN program using the 

REQUEST function, see Appendix D-2. 

The six functions performed by the 

supervisory program are, 

Hl - Digital input, input value is stored in 

location BUFD 

H2 - Digital output, output value should be 

stored in location BUFD+1. 

H3 - Counter input, input value is stored in 

location BUFD+2. 

H4 - Preset counter, output value should be 

stored in location BUFD+3. 
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HS - Counter half-full interrupt response 

code, the time (mil, secs., mins., hrs) 

at which the interrupt occurs in stored 

locations BUFD+8,9,10,11. 

H6 - Analogue input, analogue channels O-16 

are scanned an ensemble number of times 

and the average value for each channel 

is stored in the corresponding element 

of an array in the Fortran program. 

With the exception of function H5, the time (mil, 

secs., mins., hrs) at which the function was 

executed is stored in locations BUFD+4,5,6 and 7. 

When the half-full counter interrupt option 

is required the counter should be preset to a 

value between O and 127 using H4 before using 

the CONNECT INTERRUPT system function to 

establish the necessary links between the 

Interrupt Handler and H5. 

Prior to the use of the analogue input function 

the required ensemble should be stored in location 

ENS1; the default value is 10, also the start 

address of the Fortran array in which the values 

of the analogue channels are to be stored should 

be put into location ADRS. 

The addresses of locations ENS, BUFD and 

ADDRS can be specified in Fortran programs by 
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declaring them to be external variables and then 

satisfying them at load time by loading an object 

tape of a program similar to those shown in 

Appendices E-3 and G-9. Alternatively the 

utility program can be used to store the values 

when the OLDFP Executive is running. 

6.6.2. FORTRAN PROGRAMS 

In order to write the Executive Configuration 

Module (XCOM) the number and names of the Fortran 

programs known by the Executive needs to be 

specified. It was felt that for on-line 

filtering experiments two Fortran programs 

would be required, the first of them, called IN, 

to initialise the various parameters associated 

with Kalman Filtering and data acquisition, and 

the second, called HT, to perform the periodic 

tasks of filtering and data acquisition. Both 

of these programs will be discussed in chapter 9. 

6.6.3. THE EXECUTIVE CONFIGURATION MODULE (XCOM) 

The Executive Configuration Module (XCOM) 

consists of a series of tables written by the user. 

These tables provide the information required by 

the executive to operate the system and are 
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described in detail in the manufacturer's user 

guide (6.8). A listing and brief description 

of the XCOM module used in the OLDFP Executive 

is given in Appendix E-2. 

6.6.4. CONSTRUCTION OF THE OLDFP EXECUTIVE 
  

The detailed loading procedures for the 

five sections of the OLDFP Executive shown in 

Table 6.2 are given in Appendices E4 to E8. 

Having loaded all of these programs into core as 

described and made the necessary corrections to 

the standard software, see Appendix E-9, the 

punch and load program is used to produce an SLST 

of the complete executive program, locations 

7708 to 16377.. The layout of the various 

sections of the executive is shown in Figure 6.3. 

65G.0~ OPERATING PROCEDURE 

The OLDFP Executive is started up by setting 

the P/Y register of the computer to 1000, and 
8 

pressing the start button. The Executive then 

performs its own initialisation procedures 

following which the user should enter the utility 

program and make the following modifications, 
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(i) Location 3241, should be set to the first 

executable instruction of HT. 

(ii) Location 3246, should be set to the first 

executable instruction of IN. 

(iii) Any other address links, see section 

6.6.1, should be established. 

The OLDFP Executive is now capable of 

running two Fortran programs (HT and IN) and 

servicing input and output to the teletype, the 

high speed punch and HADIOS. In addition the 

utility program (ONLCUP) provides a conversational 

interface between the operator and the executive. 

The system errors which may be detected whilst 

the OLDFP executive is running are tabulated in 

Appendix E-10. 

In order to assess the reliability of the 

OLDFP Executive a dynamic logging program (program 

HT) was written in Extended Honeywell Fortran. 

This program includes all of the features of OP-16 

which are to be used in the on-line filtering 

programs discussed in chapter 9. Apart from testing 

the OLDFP Executive this program also gives a good 

example of how to operate the system. A listing 

of this program together with the print out 

obtained during a typical operating session are 

included in Appendix E-13. 
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a
 ny
 CHAPTER REVIEW 

The standard Honeywell software has been 

discussed with special reference to those 

programs used to construct the applications 

packages required by this research. The graphical 

software and the previously reported Aston 

Simulation Package were then described and 

finally the two main on-line applications packages 

were described. The first of these is the 

HADIOS EXECUTIVE PACKAGE which is mainly for use 

where the editing facilities and versatility of 

the BASIC-16 Interpreter are required. The 

second package is the 0.L.D.F.P. EXECUTIVE 

which when combined with the Fortran Programs 

discussed in chapter 9, provides a facility for 

on-line filtering experiments. 
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CHAPTER 7 

STEADY STATE ANALYSIS OF THE DOUBLE 
  

EFFECT EVAPORATOR



oe INTRODUCTION xy
 

Before any on-line filtering experiments can 

be carried out with the double effect evaporator 

a great deal of preparatory work is required in 

order to produce both the required statistical 

information and a mathematical model to 

describe the transient and steady state 

behaviour of the evaporator. The work carried 

out in this area can be conveniently separated 

into the categories of steady state and dynamic 

analysis. 

This chapter is based around a steady 

state analysis of the evaporator which has the 

following objectives: 

(i) To produce correlations relating the 

electrical signals generated by the evaporator 

instrumentation to the measured process variables. 

(ii) An analysis of the measurement statistics 

under operating conditions is required to produce 

a suitable value for the R(k) matrix (see section 

2.2.6.2). 

(iii) An attempt to quantify the heat losses 

that exist within the evaporator system must be 

made. 
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(iv) An equation describing the overall heat 

transfer coefficient for each of the four items 

of heat exchange equipment must be obtained. 

The fourth objective is of particular 

importance because, as was discussed previously 

in the literature survey, the predicted transient 

response of outlet temperatures from heat 

exchange equipment is highly susceptible to 

changes in the heat transfer coefficient. 
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ae INSTRUMENT CALIBRATION _ 

When mechanical/electrical transducers 

operate in a pilot plant environment, frequent 

calibrations are required in order to maintain 

consistent on-line results. Since the electrical 

signals generated by the instrumentation 

installed at the evaporator are corrupted by 

noise the calibrations are carried out on-line 

to the computer so that large sample sizes can 

be averaged, thus filtering numerically. 

All of the instruments calibrated were 

assumed to have a linear correlation of the 

form, a 

y =a + bx - (7.1) 

where, y is the value of the measured process 

variable, 

x is the corresponding reading obtained 

from the transducer by the H316/HADIOS 

data acquisition system, 

and, a and b are the intercept and slope of 

the line respectively. 

When sufficient data sets (x, y) have been 

collected a linear regression is carried out to 

determine the values of the coefficients 'a' and 
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'b'. The BASIC program which was used in 

conjunction with the Hadios Executive Package 

Mk.2 to obtain the x values is shown in 

Appendix Fl. The computer program used to 

carry out the linear regression, MULREG, is 

a library program supplied as standard software 

with the University's Hewlett Packard 2000 Access 

Computer (7.1), see Appendix H-9 for the data 

layout for this program. The individual values 

of 'a', 'b' and the related correlation coefficients 

are given for each instrument in Table 7.1. 

The methods. used to obtain the y values 

necessary for the linear regressions discussed 

above differ for each instrument and so they 

will now be described individually. 

leads THERMOCOUPLES 

Measurement of temperature by thermocouple is 

considerably more accurate than alternative methods 

against which to calibrate, particularly when an 

isothermal reference chamber is available as a 

cold junction. Consequently, calibration is 

only really necessary to determine the intercept, 

a, as it can not be predicted accurately due to 
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TABLE 7.1 -— DOUBLE EFFECT EVAPORATOR INSTRUMENT 

  

  

          

CALIBRATIONS 

Channel’ | INTERCEPT SLOPE CORRELATION UNITS OF 
No (a) (b) COEFFICIENT MEASURED 

VARTAELE 

oO -1.2576 0.119093 0.9999787 &c 
1 -1.2338 0.119093 0. 9999798 Ce 
2 -1.3624 0.119093 0.9999862 °c 
3 -1.2767 0.119093 0.9999851 26 

4 -1.2433 0.119093 0.9999193 °c 
5 -1.1433 0.119093 0.9999526 °c 
6 -1,2576 0.119093 0.9999698 ec 

7 ~1.2243 0.119093 0.9999898 =e 

8 =1,2719 0.119093 0.9999873 2G 
9 -1.1481 0.119083 0.9999746 oe 
10 | 0.914674.10°_0.637724.10°4] 0. 982882 kg.st 
n -0. 1464545 0.2815899.10° 0. 9985759 M 
12 -2.688774 0. 2222609 0.999558 kPa 
13 -4,021423 0. 2164091 0.9996781 kPa 
14 98.17401 0. 1379926 0.99973226 kPa 
15 -9.298042 0.2931805 0.9998976 kPa 
16 -0,2937119.167 0.4728656.104 0. 9810014 kg.s 
17. | 0.25.10°3 0.695.10~4 0.999981 kg.s t 
  

*For a full description of all of the evaporator instrumentation 

see Table 5.2 and Figure 5.4 

 



the nature of the amplifiers installed in the 

remote signal conditioning cabinet. 

The value of the slope, b, was calculated 

using data supplied by the manufacturer (7.2) 

as follows. 

Temperature (y) Output* Reading (x) 

Ore Ov ° 

100°C 4.1v 840 

Thus, 

b = 0.119093 ae (ee) 

*The output of each thermocouple is amplified by 

a gain of 1000. 

The value of the intercept, a, corresponding 

to this slope was then found by collecting a 

series of values of the analogue reading (x9) 

when the thermocouple was immersed in melting ice 

contained in a vacuum flask. The value of 'a' 

can then be calculated as follows, 

a = -0.119093. Xo - (7.3) 

As a check on the accuracy of the manufacturer's 

data these calibrations were then checked using a 

portable electronic thermocouple having an accuracy 

of # 0-1°C. 
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7.2.2. DIFFERENTIAL PRESSURE CELLS 

The differential pressure cell used for 

measuring the steam flow into the first effect 

is used in conjunction with an orifice plate. 

The pressure drop across the orifice plate was 

measured by use of a rotary differential pressure 

gauge; this reading being recorded along with 

the corresponding analogue signal generated by 

the differential pressure cell. 

The measured pressure drop was then used to 

calculate a theoretical steam flowrate by 

following the procedure given by the relevant 

British Standard (7.3). The values of ‘'a' and 

'b' were then calculated by carrying out a 

linear regression on the analogue readings (x) 

and the calculated flowrates (y). As a final 

check, the amount of condensate coming from the 

first effect shell was measured after the 

evaporator had been operating at steady state 

for some time. This flowrate was then compared 

with that predicted by the correlation and 

after ten such checks an agreement of * 3% was 

obtained. 

The correlation for the differential pressure 

cell used for measuring the height of liquid in the 
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second effect separator was determined by recording 

the analogue readings at ten known liquid heights. 

7.2.3. STRAIN GAUGE PRESSURE TRANSDUCERS 
  

To determine the correlations for the three 

pressure transducers associated with vacuum 

pressures, analogue readings were recorded at 

regular intervals in the range 7 to 101 kPa. 

Before taking the readings the vacuum pump was 

switched on so that the pressure in the 

evaporator could be reduced to the desired 

level. The evaporator was then sealed off 

from the atmosphere and the vacuum pump was 

switched off. After a few minutes observation 

to ensure that the reading was steady, the 

pressure was measured using a mercury in glass 

manometer connected to the relevant evaporator 

unit. 

The transducer associated with the steam 

pressure on the shellside of the first effect was 

calibrated by allowing a flow of steam into the 

first effect and when steady state had been 

reached, sealing off the shell from the steam 

supply and the atmosphere, and then measuring the 

pressure with a C-spring bourdon tube pressure 

gauge. 
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7.2.4. FLOWMETERS 

Both the variable area magnetic flowmeter and 

the turbine flowmeter were calibrated by disconnec- 

ting the respective downstream pipe and measuring 

the flowrate through the flowmeter using a stop 

watch and a two litre measuring cylinder. Whilst 

this measurement was being taken the temperature 

of the water leaving the flowmeter was measured 

so that the liquid density could be found and 

hence the volumetric flowrate converted to a 

mass flowrate. 
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aw ie ON-LINE STEADY STATE EXPERIMENTS 

Within the evaporator system there is rarely 

a situation of true steady state due to the 

fluctuating level in the second effect separator 

and the random disturbances on the inputs to the 

system. However, it can reasonably be assumed that 

despite the above fluctuations all other variables 

will remain constant once thermal equilibrium 

has been reached within the evaporator. The 

validity of this assumption can be demonstrated 

by an examination of the standard deviations of 

the temperature measurements when data is 

collected every three seconds over a five minute 

time interval. 

Usa. MATHEMATICAL MODEL 

The steady state mathematical model of the 

evaporator has been developed using the process 

notation discussed in section 5.2.3. Thus, the 

following subscripted variables are used: 

temperature (20) 

1 vapour flowrate (kg.s ~) 

1) , 
liquid flowrate (kg.s_ 

2) Hw 
= 

a
A
 

a 

enthalpy (kJ.s_ 
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In additidén the following unsubscripted variable 

is used in the model: 

H1 = the accumulation in the second effect 

separator (xg.s7) 

The following assumptions are made: 

(i) The specific heat of the liquid is a 

constant denoted by Cy. where c, = 4.1868 kJ.kg7). 

Sout, 

(ii) The saturated vapour enthalpy can be 

represented by the function G(T) (kd.kg7?.°c74) 

where, 

2 1G5) = cS TF Ad) - (7.4) 

where A(T) is the latent heat of vapourisation 

at temperature T in kJ.kg >. 

(iii) There is no mass loss from the system. 

(iv) Where vapour and liquid mixtures exist 

they Reece at the saturated vapour temperature 

corresponding to the operating pressure. 

(v) The heat exchanger shells are well 

mixed regions so that the exit and shell 

temperatures are equal. 

(vi) Heat transfer from the heat exchanger 

shells is due to vapour condensation alone. 

(vii) All steam entering the first effect shell 

condenses to liquid at a temperature of 100°C. 
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Thus, Ms Ve - (7.5) 

ly T. = 100°C - (7.6) 

(viii) The cyclone separator is 100% efficient, 

there is no condensation at this point in the 

system and the separation is isothermal. 

Thus, My = M, EaCKan) 

Vey - (7.8) 

Tee tec= a, (Geo) 

(ix) Liquid in the second effect separator 

is well mixed and at a uniform temperature. 

Thus, Ty = Ts =4€7.10) 

where, Ty = the temperature of the accumulated 

liquid. 

(x) The circulation pump provides a constant 

circulation through the tubes of the second effect 

calandria. 

Thus, M,, = M [a7 th) 
14 15 

The steady state mathematical model of the 

evaporator can now be written out as a series of 

mass and energy balances over each heat exchange 

unit. The relevant process variables associated 

with the steady state mathematical model are 

shown in Figure 7.1. 
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FIGURE 7.1 
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7.3.1.1. MASS BALANCES 

PREHEATER tubes My = My - (7.12) 

shell V, = M, + Vy = (7218) 

FIRST EFFECT tubes M, = V, + My - (7.14) 

shell V, = M, - (7.15) 

SECOND EFFECT tubes My, = Myy - (7.16) 

shell My + Vg = Myo + Vyg- (7.17) 

SECOND EFFECT SEPARATOR M,, + Mg = Vg + M,, + Hl 

- (7.18) 

CONDENSER tubes Myo = Myg - (7.19) 

shell Myo + Vyo + Vg = My 

- (7.20) 

7.3.1.2. ENERGY BALANCES 

2 3 PREHEATER ; E, + EB, = Ey + E, 

~ (7.21) 

FIRST EFFECT E, +E, = E, + E, 

- (7.22) 

SECOND EFFECT E,+#5=24 +2 

= (7.23) 

SECOND EFFECT SEPARATOR El4 + Eg = Eg + Els cf En 

- (7.24) 

CONDENSER E 

- (7.25) 
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In equation 7.24 Ey, is used to denote the enthalpy 

of the accumulation in the second effect 

separator. 

Based on the assumptions made and taking 

the datum temperature as o°C, the enthalpy terms 

are defined by, 

BE, = M.C,.7 = (7626) 

Ey = My-C,.T, : SeCTR27) 

E, = V3-G(T,) =4C7e28) 

EB, = Vq-G(T,) + Mg-C,.Ty = (a 29) 

EB, += M,.C,.T, (7.30) 

Bee Vacca.) = (7231) 

B, = V7-G(T,) + M7.C,.T, =7n 52) 

Eg = Mg.C.T, = 17.38) 

Ey = Vp-G(Ty) ErC7ao4) 

Eig = Yy0-S(To) + Mi9-8p-Tio - (7.35) 

By) = My -S-Ty - (7.36) 

Eye = Myo-S-Tie Seiea7) 

Eig = Myg-Cy-Thg =" (7.38) 

Eyq = Myg-Cy-Th, = (089) 

Bis = My5-Cy-T5 — (7.40) 

Ey = H.C,.Ty = (7041) 
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Thus, the steady state mathematical model of the 

double effect evaporator consists of the 37 

equations defined by 7.5 to 7.41. 

Lene THERMODYNAMIC CORRELATIONS 

Before attempting the solution of a 

mathematical model associated with the evaporator 

a number of correlations relating physical and 

thermodynamic properties with process variables 

need to be developed. Since all of the models 

of the evaporator are to be solved on-line in 

real time, it is convenient to correlate the 

available data into algebraic equations, thus 

avoiding the storage and interpolation of large 

arrays of physical property data. For the liquid 

and solid phases the relevant physical properties 

are assumed constant, see Table 7.2, but for the 

vapour phase, the variation of pressure, density, 

latent heat and enthalpy with temperature is 

greater and must be considered. 

Pressure - temperature 

In on-line steady state and dynamic experiments, 

it is necessary to obtain a correlation relating 

the temperature of steam to its pressure. An 
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TABLE 7.2 - LIQUID AND SOLID PHASE PHYSICAL PROPERTIES 

RELEVANT TO THE DOUBLE EFFECT EVAPORATOR 

  

PROPERTY VALUE 
  

C,-Specific heat 

of liquid water 

C,-Specific heat 

of copper- 

tubes 

C.-Specific heat 

of mild steel- 

shells 

9; -Density of 

liquid water 

C,-Specific heat 

of steam     

4.1868 kJ.kg7?.°c7} 

0.38494 kJ.kg7t, cu} 

0.45186 kJ.kgt.°c7t 

985.22 kg.m7> 

1.9 kJ. kg 2.7} 

   



algorithm has been developed by Richards (7.4) 

where the pressure P (kPa) is related to 

temperature T(K) by the function, 

P= P.. exp (13.3185. 7 - 1,976.7? - 0.6445.7° 

- 0.1299.7*) - (7.42) 

where, T=1 - oy 
iT 

and, TS and 2 are the temperature and pressure 

of saturated steam at atmospheric pressure 

(373.15 K and 101.325 kP,) 

To calculate T when P is given, a first 

estimate of T is formed by ignoring all but the 

first term of the polynomial in equation 6.2.1, 

P 
108, (jor, 335) - (7.43) 

13.3185 

4 ji 

and successively more accurate estimates are 

obtained by recursive calculations, 
2 

T, + ((0.1299 T, + 0.6445).T,+1.976) T, 
Tati f 
  

13.3185 

- (7.44) 

when, for some small value of n, | Dota | <5, 

where E is a small constant, the desired estimate 

of T (Oey can be found as follows, 

373.15 
T= 7 - 273.15 - (7.45) (oT) 
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Appendix F-2 shows a Basic program written 

to test the above algorithm and a print out of 

some of the calculated values. 

Density - temperature 

Using density - temperature data taken from 

steam tables (7.5) a linear regression analysis 

was carried out using the MULREG computer 

program (7.1). The best fit was obtained by 

correlating the natural logarithms of the 

data. The resulting equation is, 

log, (9, (7). 1000) = 1.93.log, T - 3.1487 

- (7.46) 

where, ey is the vapour density (g.m7?) and the 

correlation coefficient is 0.9935. 

Latent heat - temperature 

The resulting equation from a similar linear 

regression analysis on latent heat - temperature 

data is, 

A(T) = 2501.64 - 2.407.T - (7.47) 

where, A is the latent heat (xd.keg7}) and the 

correlation coefficient is 0.9997. 
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Enthalpy - temperature 

The relationship between vapour enthalpy and 

temperature is given by, 

G(T) = c,.T + A(T) 

where, G(T) is the vapour enthalpy (kd kg?) and 

1 C., the specific heat, is 4.1868 kJ.kg7+.°c7!, p? 

Combining the above equation and equation 7.47, the 

resulting equation is, 

G(T) = 1.7798.T + 2501.64 - (7.48) 

(OSES SOLUTION OF THE STEADY STATE MODEL 

Substitution of equations 7.26 to 7.41 into 

7.21 to 7.25 leaves a mathematical model consisting 

of 14 linear simultaneous equations which 

contain 35 process variables. The following 

measurements are available from the double 

effect evaporator: 

Direct Measurements: - T],T,T3,Ty,Tg,T ToT 3/T 4 

T15:Mg.Mg,Vg.H. 

Indirect Measurements (temperatures obtained from 

pressures by using the temperature-pressure 

correlation):- T6,Tg,Ti9- 

Off-line Measurements:- MyoM,1>Mz- 
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Thus, since Mo=Ve (equation 7.15), 19 measurements 

are available leaving 16 unknown process variables: 

If we now take into account assumptions (vii), 

(viii) and (ix) the mathematical model now 

consists of 19 equations containing 16 unknowns. 

This leads to a redundancy of either three 

equations or three measurements. 

In this particular solution the measurement 

of height in the second effect separator, H, is 

discarded as it is known to be a noisy variable. 

This fact is particularly noticeable at high 

steam flowrates when thc boiling which takes 

place in the second effect separator makes it 

almost impossible to make an accurate measurement 

of height. In order to determine the heat loss 

from the first effect of the evaporator the 

measurement of steam flowrate, Ve, is also 

discarded. This leaves one redundant equation 

which was found by examination to be equation 

7.25. Thus, the steady state model of the 

evaporator now consists of 18 linear simultaneous 

equations containing the following 18 unknown 

process variables, 

My Mg Me oM7 +My oMy 31M goMy5,V3,V4,Vg.V7+V9,Vyo, 
T.,T7,T,,H1. 
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Solution of the steady state model now 

proceeds as follows. The equations associated 

with the first effect are solved in a stepwise 

manner, i.e. by elimination and substitution. 

From equation 

M, = 

From equation 

From equation 

M, = 

From equation 

V4 = 

Since T3 

©, 125 

My - (7.49) 

7.14 and assumption (viii), 

My - Mg - (7.50) 

Mg Viton) 

V3 = (7.52) 

G@513 and to2k, 

(Bi FEs Eor Vg G(T, ))/(C, -T{-G(14)) 

=) (7.53) 

=t(7e54) 

is rarely exactly the same as Tg, 

equation 7.9 is modified as follows, 

T, = (T3+TQ)/2 - (7.55) 

From equations 7.22 and 7.15, 

Ve = (E7-Ey)/(G(T,) - C,-T;) - (7-56) 
Pp 
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From equation 7.15, 

Ms = Ve - (7.57) 

Finally, using assumption (vii), 

a= 100°C - (7.58) 
5 

The heat loss from the first effect can now be 

calculated using the measured value of the steam 

flowrate, 

Heat Loss = (Vg (measured) - Vg(calculated)) 

-G(T¢) - (7.59) 

The unknown process variables associated with 

the second effect can now be determined by setting 

up a set of five simultaneous equations and then 

solving them by Gauss-Jordan Elimination. 

From equation 7.20, 

Mig + Yio ro Vo = Myy - (7.60) 

From equation 7.17, 

Mig + Vig = Mg + Vy - (7.61) 

From equations 7.23 and 7.16, 

eG d, 
Pp Mae, ast is)) 7 Mio 10" 10°97 10) 

= E, - (7.62) 
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From equations 7.24 and 7.16, and assumption (ix), 

My 4°Cp- (Ty 5-T 4) ~ Vg-G(Tg) + M,C: 

Teas C7268) 

From equations 7.18 and 7.16, 

Vous l= Mg - (7.64) 2 

The right hand side of equations 7.60 and 7.64 

contain only measured or previously calculated 

variables and so these equations can be solved 

simultaneously for the unknown process variables, 

M H1 
107 M14°%9°Yi0° = 

To complete the solution, from equation 7.16, 

Mi = Mig ~- (7.65) 

From assumption (ix), 

Ty = Tis /- (7.66) 

From equation 7.19, 

Myg = Myo - (7.67) 

The heat loss from the second effect can now be 

determined by using equation 7.25 to provide 

a calculated value for Mj1> 

Heat Loss = (M, , (measured) - M,,(calculated)) 

*C_*+T. 
Pp 

11 - (7.68) 
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UeSeas DISCUSSION OF STEADY STATE COMPUTER 

PROGRAM AND EXPERIMENTAL PROCEDURE 

The computer program for acquiring the 

experimental data and solving the steady state 

model as shown by equations 7.49 to 7.68 is 

listed in Appendix F-3 and the flowchart is 

shown in Figure 7.2. This program is written in 

the Basic Language and is run in conjunction 

with the Hadios Executive Package Mk.2, see 

section 6.5. 

Once the experimental equipment has been 

set up as discussed in Chapter 5, the evaporator 

is allowed to come to steady state for a period 

of time not less than twenty minutes. The steady 

state computer program is then set into operation 

and after the date, the time, the interval between 

scans and the total number of scans in the 

experiment have been entered as data via the VDU, 

a message informing the user that the experiment 

has started is printed out and data acquisition 

commences. 

During the experimental period accurate 

measurements of the cooling water flowrate (My 9), 

the condensate flowrate (My 4) and the steam 
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FLOWCHART OF ON-LINE STEADY STATE LOGGING PROGRAM 
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condensate flowrate (Ms) are taken manually at 

the evaporator. The cooling water flowrate is 

measured using a calibrated rotameter and the 

condensate and steam condensate flowrates by 

collection and measurement over a known time 

interval. Three values of each measurement are 

taken and the average values used in the 

subsequent calculations. 

When the required number of scans have 

taken place a message informing the user of this 

fact is printed out and the off-line measurements 

are then entered into the program via the VDU. 

The program then calculates the average values 

and the standard deviations of the measured 

variables and prints out a table of these values 

on the VDU. It is at this time that the validity 

of the steady state assumption is checked. The 

thermocouples installed at the evaporator for 

the purpose of temperature measurement are very 

accurate and if the standard deviations associated 

with these instruments are large then the 

evaporator is considered not to have been at 

steady state and the experiment is terminated. 

If the standard deviations of the temperature 

are acceptable the program continues to solve the 
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heat and mass balances of the evaporator and 

then to print out the results. An example of 

the computer printout obtained during a steady 

state experiment is given in Table 7.3. 

Ts3-De RESULTS AND DISCUSSION 

Using the procedure described above a total 

of 70 experiments were carried out to enable an 

analysis of the steady state behaviour of the 

evaporator. These experiments were conducted 

at 35 different steady state situations to 

enable a check to be made on the repeatability 

of the results obtained. The results obtained 

in these 35 sets of experiments are summarised 

in Table 7.4 and shown for each individual heat 

transfer unit of the evaporator in Appendices H-1 to 

H-4, 

7.3.5.1. HEAT TRANSFER CORRELATIONS 

For the general heat exchanger with an 

isothermal condensing vapour in the shell and no 

change of phase in the fluid flowing through the 

tubes, the experimental overall heat transfer 

-257-



TABLE 7.3 - EXAMPLE PRINTOUT FROM ON-LINE STEADY 

STATE LOGGING PROGRAM 

STEADY STATE LOGGING PROGRAM = BOGEE a 
     

INPUT DATE (DAYSsMNTHSesYRS-) 122s 25 77 

INPUT TIME CHRSe»MINSes SECSe) !142 35.0 

INPUT INTERVAL BETWEEN SCANS (SECS.)!3 

INPUT TOTAL NUMBER OF SCANS!190 

INPUT 1 IF HARDCOPIES REQUIRED!@ 

SCANNING HAS STARTED 
PII RR A IO 

SCANNING HAS FINISHED 
FOI IORI A I oe 

INPUT COOLING WATER RATE (KG/MIN) !25e9 

INPUT CONDENSATE RATE ¢SECS/KG) !28 

INPUT STEAM CONDENSATE RATE (SECS/KG) !42 

STEADY STATE LOGGING Eee - PAGE 1 
    

TIME 14 3 35 3: @ 

CHANNEL, MEASUREMENT CONVe VALUE STDe DEV. 

Q 1396946 15¢ 469 «718 155E-01 
1 279-822 32-891 °924388E-81 
2 193- 432 216674 © 382733E-81 
3 S25- 421 61-2973 *911986E-81 
4 502-715 S8- 6266 + 382733E-@1 
5 5340716 6265376 © 382733E-01 
6 648-833 75-9184 ° 159344 
7 421+ é81 48-9855 ® 
8 6456257 7S° 5739 ° 143206 
9 646-913 7508945 «159344 

10 218-891 + 230S549E-@1 « 225835E-83 
11 647-6735 166775 * 1B3119E-61 
12 2116347 44-2853 2111585 
13 129-293 22-8189 «© 184878 
14 321-558 142-547 * 631219 
as 137-626 38-8753 « ESS641E-@1 
16 613-613 © 26078 SE-@1 oe A94441E-B4 
17 663675 ° 463806E-81 +3408 21E-G2



TABLE 7.3 cont'd 

STEADY STATE LOGGING PROGRAM 
== 

DATE 22° 7 Bris 17 

TIME 14 3 Jone 9 

  

- PAGE 

STREAM LIQUID VAPOUR 
(KG/S) «KG/S) 

1 + 46380 6E-81 a 
2 + 4638B6E-G1 9g 
3 ® ¢ 203021E-81 
4 ©33162E-92 2 169859E-81 
Ss *200879E-01 a 
6 a * 200079E-81 
a 26078 5E-01 + 203621E-01 
8 + 26078 5E-91 9 
9 @ © 154122E-91 

18 °181492E-91 ° 215288E-92 
11 °357143E-81 @ 
12 © 431667 8 
13 © 431667 G 
14 2e11234 @ 
5 2e 11234 g 
16 ° 196663E-91 ® 

STEADY STATE LOGGING PROGRAM - PAGE 
Sis Ssssssssssssseseseeeeeseseeesee2e2=   

DATE 22 7 eae 17 

TIME 14 ¢ 35 8 @ 

COMPARISON OF MEASURED & CALCULATED VALUES 

MEASURED 
CON DEN SATE ©357143E-81 
STEAM © 2385 49E-B1 
STEAM COND. * 23809SE-91 

ACCUMULATION *731B64E-01 

HEAT LOSSES 

HEAT LOSS FROM FIRST EFFECT 
HEAT LOSS FROM SECOND EFFECT 
TOTAL HEAT LOSS 
HEAT LOSS FROM EVAPORATOR 

HEAT TRANSFER COEFFICIENTS 

PREHEATER ° 678891 
1ST- EFFECT 1.74383 
&NDe EFFECT 2.68751 

CON DEN SER 253064 

CALCUL ATED 
°398 14E-@1 
+ 200079E-81 
+ 280079E-61 
¢ 196663E-81 

192531 
+8 40813 

1686613 
2- 16942 

CKW/M t 2eK > 
CKW/Mt 2eK D 
CKW/Mt 2eK > 
CK W/Mt 2%K > 

  

TEMP. 
(DEG) 

210674 
61-2973 
7508945 
75° S739 

198 
109-854 
75-9965 
7509184 
62. 1783 
730 4292 
48.9855 
15+ 409 
32-091 
62-5376 
58+ 6266 
58+ 6266 

  

(KG/S) 
(KG/S) 
(KG/S) 
(KG/S) 

(KJ/S) 
(KJ/S) 
(KJ/S) 
€2) 

EN TH AL. PY 
(KJ/S) 

4e 2988 
11.9031 
53-5291 
45-8348 
8- 37691 

5309624 
S7- 4885 
8. 28919 

40-26 
11.2459 
Te 32472 

27-8 486 
57-9982 

$53.08 
518-491 

2- 61813
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coefficient is given by, 

=o. U=7% - (7.69) 

where, U is the overall heat transfer coefficient 

(kW. M7? x71) 

A is the total surface area of the outside 

of the tubes (M7), 

Q is the rate of heat transfer (kW) 

and AT is the temperature driving force (K). 

The experimental overall heat transfer 

coefficients are calculated for each heat exchange 

unit of the double effect evaporator during the 

execution of the steady state computer program 

and the values determined are printed out after 

the steady solution, see Table 7.3. The surface 

area of the tubes, A, was calculated from 

engineering drawings, see Table 5.1, and the 

heat transferred, Q, and the temperature driving 

force, At, are calculated from the solution of 

the steady state model of the evaporator as 

follows: 

PREHEATER (PH) 

Q= Mj *C*(T5-T,) - (7.70) 
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At =  (T)-T,) 

T,-T. 
400% 

LOG GT)   

FIRST EFFECT (FE) 

Q = Vgt(C,*(Tg-T.) +4 (Tg) 

(T.+T,,) (T,+T,) pay S562 eZee At = 5 3 

SECOND EFFECT (SE) 

isi cp Cast is) 

ene 1a 5 
ee T-T 106 ql 28) 

107714 

CONDENSER (CD) 

Q = My o*C5*(T1 3-710) 

Pega 2 
Tithe Log(,/+=12) 

fie a3 

(7. 

(7. 

CC. 

(7. 

Gee 

Ots 

CT. 

71) 

72) 

73) 

74) 

76) 

77) 

The experimental heat transfer coefficients 

calculated in this way are tabulated in Appendix H. 

Theoretical heat transfer coefficients were 

calculated for the general heat exchanger by 
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the method of McAdams (7.6). For heat exchangers 

with an isothermal condensing vapour in the 

shell, the tubeside heat transfer coefficient, 

h is given by the Seider and Tate equations +? 

and the shellside heat transfer coefficient, 

h,, is given by the Nusselt equation for 

condensate films. The clean overall heat 

transfer coefficient, U, can then be calculated 

by, 

  - (7.78) 

For the preheater, the second effect calandria 

and the condenser the heat transfer coefficients 

calculated using the above approach differed 

from the corresponding experimental values by 

*20%. At the first effect the experimental 

results are consistently three to four times 

larger than those obtained theoretically. Taiice 

the first effect is a two phase climbing film 

type evaporator and the algorithm for the theoretical 

heat transfer coefficient is for a general heat 

exchanger with a single liquid phase in the tubes, 

the experimental results are very feasible and 

indeed an improvement in performance of this 
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i 

magnitude for two phase flow conditions is well 

within the claims of Kestner's Patent (7.7). 

The above disucssion clearly shows that the use 

of theoretical values for the heat transfer 

coefficients is not advisable if accurate 

results are required. Thus, the results of 

all the steady state experiments were correlated 

into linear equations of the type reported by 

Heidemann et al. (7.8) and Gallatig (7.9). 

The heat transfer coefficient is assumed to be 

a function of the arithmetic mean temperature 

driving force, the shellside vapour flow rate 

and tubeside liquid flow rate. The resulting 

equations are as follows: 

PREHEATER (PH) 

  

ST CiraT) Upp = 2 + b.(Ty A 2’) # ¢.M, + d.V, 

- (7.79) 

FIRST EFFECT (FE) 

es ECle+t.) Ug = 8 + BACT. z. 7) + M5 + 4-V, 

- (7.80) 

SECOND EFFECT (SE) 

Ugg = 2 +d. (Tyo - Tis*Tia)) + o.M,, + 4.V 
a 5 

- (7.81) 

SE 4 
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CONDENSER (CD) 

U 
cD 

= (lant ias) 
=at b.(T) - A 13) + C.Mi 9 +d. 

(VigtVg) - (7.82) 

In the above equations a,b,c and d are constants 

which were determined from the results given in 

Appendices H-1 to H-4 by multivariable regression 

analysis. The theory of multivariable regression 

analysis is given by Davies (7.10). The results 

of the analysis, which was carried out using 

the MULREG computer program (7.1), are given 

in Table 7.5. Appendices H-5 to H-8 show the 

predicted values calculated using these 

correlations together with the percentage 

deviations from the experimental values. As 

can be seen from these results the deviations 

from the expected values are all within the range 

+4% and this was felt by the author to represent 

a sufficient degree of accuracy for these 

correlations to be used in future experimentation 

with the double effect evaporator. 

7.3.5.2. HEAT LOSSES FROM THE EVAPORATOR 

As described in section 7.3.3. the results 
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TABLE 7.5 -— RESULTS OF THE MULTIVARIABLE REGRESSION 

ANALYSIS FOR OVERALL HEAT TRANSFER 
  

COEFFICIENT CORRELATIONS 

  

  

    

MULTIPLE 
a b c da CORRELATION 

COEFFICIENT 

PREHEATER | 7.21546.10°-] -1.68154.10 “| 8.23371 |13.¢6061 | 0.98714 

FIRST 2 EFFECT 2.32106 -9.52303.10 “| 7.11163 |152.481 | 0.99627 

SECOND 2 ERYECT 1.29675 4,34556.10 0.814137|-92.922 | 0.98581 

CONDENSER | 1.01167 5.08808. 1073 | -1. 64215] -2.9272610°O. 99391         | 
   



of the steady state experiments include 

information on the heat losses from the evaporator 

system. Due to insufficient measurements of the 

relevant variables within the system being 

available, it is only possible to compute the 

heat losses from the first and second effects of 

the evaporator and not, as would be more desirable 

for each heat exchange unit. These two heat 

losses are then lumped together and expressed 

as a percentage heat loss of the total heat 

input to the evaporator. The results obtained 

are shown in Table 7.6 and as can be seen they 

show no obvious trends. Attempts to correlate 

the heat loss with the main process flows and 

temperatures proved unsuccessful. Since the 

average percentage heat loss is found to be 

9.57% and due to the fact that it can not be 

defined either empirically or theoretically, 

errors will arise in any dynamic simulation of 

the evaporator system. However, as will be 

discussed in section 8.3.1 other means have 

been devised to minimise the effects of such 

errors. 

7.3.5.3. MEASUREMENT STATISTICS 

Section 7.2 described the calibration of 
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TABLE 7.6 - STEADY STATE HEAT LOSSES FROM THE 
  

DOUBLE EFFECT EVAPORATOR 

  

  

  

RUN LOSS FROM ist LOSS FROM 2nd TOTAL LOSS 
NO EFFECT (kJ/s) EFFECT (kJ/s) (%) 

aL 2.72 1.64 8.86 

2 9.26 2.31 14.30 

3 3.55 1.72 9.44 

4 11.89 3.94 7.61 

5 4.03 1.43 9.77, 

6 3.61 1.48 8.28 

7 2.13 1.26 6.04 

8 9.38 2.58 12.02 

9 8.98 2.52 11.49 

10 3.71 LOL 8.58 

ch 8.94 2.88 10.03 

12 8v 1.09 6.04 

13 5.95 2.47 7.54 

14 5.86 3.14 10.20 

15 5.53 2.91 9.66 

16 3.01 2.75 6.07 

17 3.27 2.64 5.55 

18 12.18 5.03 15.09 

Lo 3.60 2.17 6.26 

20 12.81 4.61 15.67 

21 12.58 4.73 15.82 

22 3.37 147 6.03 

23 8.78 3.88 10,07 

24 10.11 4.32 11.82 

25 12.94 4.95 16.19 

26 4.85 2.04 7.38          



TABLE 7.6 continued 
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the various measuring instruments installed at 

the double effect evaporator. Although these 

calibrations go some way to accounting for 

the effects of noise both from external 

sources and from the instruments themselves, 

they do not-include anyform of compensation for 

noise due to the evaporation process itself. 

Thus, any measurement made includes an element 

of uncertainty which has to be accounted for. 

To overcome this problem the results from 

the steady state experiments were used to provide 

the necessary statistics. The mean of the signals 

recorded during each experiment is taken as the 

true value of that process variable, and the 

noise, or error, to be represented by the 

calculated standard deviation from this value. 

These results were then averaged over all of 

the steady state experiments and used to 

produce a standard deviation for each of the 

measured variables. These results are shown in 

Table 7.7 and will be used later in the on-line 

filtering experiments. 

Meas CHAPTER REVIEW 

The methods used in carrying out this steady 
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TABLE 7.7 - WEIGHTED STANDARD DEVIATIONS OF DOUBLE 
  

EFFECT EVAPORATOR INSTRUMENTATION 

  

  

CHANNEL* MEAN STANDARD 
RC) DEVIATION 

° 0.1593 
1 0.0988 
2 0.1127 
3 0.1768 
4 0.0884 
5 0.1624 
6 0. 2096 
7 0.1531 
8 0.2051 
9 0.1251 
10 0.6056.107° 
41 0.1087 
12 0.6404 
13 0.4646 
14 1.9203 
15 0.6658 
16 0.0193 
17 0.931.107*         

*For a full description of all of the evaporator 

instrumentation see Table 5.2 and Figure 5.4.



state analysis have been described and the 

results obtained presented and discussed. The 

experimental results have been used both to 

generate equations describing the overall heat 

transfer coefficients and to calculate the 

statistical uncertainty associated with each 

of the measuring instruments. An attempt to 

quantify the heat losses that exist within 

the evaporator system proved to be inconclusive. 
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CHAPTER 8 

DYNAMIC ANALYSIS OF THE DOUBLE EFFECT EVAPORATOR



co
 =i. INTRODUCTION 

The objective of this dynamic analysis is to 

produce a mathematical model which will describe 

the transient and steady state behaviour exhibited 

by the double effect evaporator. The main 

constraint on this modelling exercise is that the 

model developed must be suitable for inclusion 

within all of the forms of the Kalman Filter 

which are to be used in on-line experiments. 

This constraint highlights the following factors 

which need to be taken into account during model 

development:- 

(i) The model must consist of a set of 

ordinary differential equations in order to be 

compatible with the Kalman Filter. Such an 

approach is a direct contrast to the majority of 

research currently being carried out into the 

dynamics of heat exchange equipment where 

distributed-parameter models are preferred. 

Simplification of these more exact models is 

achieved by space lumping the equations into 

a number of well-mixed regions. 

(ii) The model developed must be readily 

implemented on a digital computer and be of an 
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order that makes a solution in real-time a 

feasible objective. Due to the size and complexity 

of the double effect evaporator a comprehensive 

mathematical model describing its dynamic behaviour 

will inevitably involve too many equations to be 

solved in real-time. Thus, it will be necessary 

to reduce the model to a more convenient order; 

this is a process that was found to be necessary 

by previous workers in this field, see for 

example Payne (8.1), Coleby (8.2) and Hamilton 

et al. (8.3). 

(iii).The model should take into account the 

measurements that are available from the double 

effect evaporator. More explicitly, this statement 

should be taken to mean that all of the process 

variables included in the model should either be 

directly available as measurements, be calculated 

during the solution of the model, or both. 
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8.2. DEVELOPMENT OF A DYNAMIC MODEL OF THE 

DOUBLE EFFECT EVAPORATOR 

The approach adopted in the development of 

this dynamic model was to derive lumped parameter 

equations for the general heat exchanger in which 

vapour condenses on the outside of tubes through 

which liquid is flowing without a change in phase. 

These equations are then applied, where possible, 

to the heat exchange units of the double effect 

evaporator in order to produce a comprehensive 

mathematical model. Simplifications are then 

made to produce a model which can be implemented 

in real time during the on-line filtering experi- 

ments. 

8.2.1. ASSUMPTIONS 

In order to derive the dynamic model of the 

evaporator as outlined above, it is necessary to 

make the following assumptions: 

(i) The heat exchanger shells are well mixed 

regions such that the exit stream and shell 

temperatures are equal. 

(ii) The temperature of the tube contents is 

taken to be that of the liquid stream leaving the 

tubes. 
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(iii) Where vapour and liquid phases exist 

together, the temperature of the mixture is taken 

to be that of the saturated vapour at the 

operating pressure. 

(iv) The heat given up by the shell-side to 

the tube-side contents is considered to be by 

condensation of the vapour alone. 

(v) The shell volumes are constant, i.e. there 

is no liquid hold up. 

(vi) Since the cooling water flowing through 

the tubes of the condenser is obtained from the 

departmental supply it is assumed that this flow- 

rate is constant. 

(vii) The liquid flowing through the tubes of 

the second effect calandria is circulated by a 

powerful pump and so this flowrate is also assumed 

to be constant. 

(viii) The vapour pressure in the condenser shell 

is considered to be constant. 

(ix) The steam pressure on the shell-side of 

the first effect is also considered to be constant. 

(x) Boiling in the second effect separator 

is isothermal. 

(xi) Separation in the cyclone separator is 

isothermal and there is no liquid hold-up at this 

point in the system. 
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(xii) The heat transfer coefficient correlations 

discussed in chapter 7 also apply to the dynamic 

state. 

In addition to the above assumptions, the 

thermodynamic correlations discussed in section 

7.3.2 are considered to be applicable to the 

dynamic state. 

Two of the above assumptions were arrived at 

from experimental observations made during the 

operation of the double effect evaporator. 

Assumption (ix), i.e. constant steam pressure 

in the first effect shell, was decided upon after 

a study of how the steam pressure varied when step 

changes to the feed flowrate or the steam flowrate 

were made. Appendix J-1 shows two examples of the 

pressure variation when such step changes are 

made. As can be seen from Figure J-1.1 when the 

steam flowrates is changed the pressure does 

increase but because this change only lasts for 

around 20 seconds and since it has an amplitude 

of approximately 2 kPa, it can be considered to 

be insignificant. For the case of a change in 

feed flowrate the effects on the steam pressure 

have to be transmitted thermally from the tubeside 

contents and so one would expect the pressure 

change to be smaller. As can be seen from Figure 

J-1.2 this turns out to be so. 
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The other assumption which resulted from 

experimental observations was the one concerning 

the pressure in the condenser shell, i.e. 

assumption (viii). Since all step changes are 

introduced into the system at the first effect 

or preheater then the condenser is not only 

farthest removed from them but also nearest to 

the very powerful vacuum pump. These two 

factors suggest that pressure variations are 

unlikely to be of any significance in the 

condenser shell and this assumption is confirmed 

by Figures J-2.1 and J-2.2. As there is no 

pressure transducer installed at this point 

in the system, the dynamic responses shown are 

of the shell outlet temperature, Ti1> which is 

of course directly related to the pressure in 

the condenser shell. 

8.2.2. GENERAL APPROACH 

Figure 8.1 shows a schematic diagram of the 

general heat exchanger used to develop general 

equations applicable to the dynamic state. 

TUBESIDE 

For a liquid flowing through the tubes without 
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THE GENERAL HEAT EXCHANGER 
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a change of phase, the process can be modelled by 

the following mass and energy balances, 

MASS _IN = MASS OUT - (8.1) 

HEAT IN - HEAT OUT = ACCUMULATION 

= (8.2) 

where, HEAT IN = HEAT CONTENT OF INPUT STREAM 

+ HEAT TRANSFERRED FROM THE 

SHELLS IDE 

HEAT OUT = HEAT CONTENT OF OUTPUT STREAM 

ACCUMULATION = CHANGE IN HEAT CONTENT OF 

TUBES 

+ CHANGE IN HEAT CONTENT OF THE 

LIQUID IN THE TUBES. 

Thus from equation 8.1, 

M, = M, = (8.3) 
—A——= 3 

and from equation 8.2 and assumptions (ii) and (xii), 

  

ar: fe T,+T, Ss (V-Py CytW, Cy) = My-C,. (Ty-Tp)+U.A. (Tp-AB) 

- (8.4) 

SHELLS IDE 

As shown by Figure 8.1, vapour and liquid enter 

the shell of the general heat exchanger where some 

of the vapour condenses on the outside of the tubes. 
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The latent heat released by this condensation is 

then transferred to the contents of the tubes. 

Finally, the resultant vapour and liquid mixture 

leaves the shell without any hold up. Quantita- 

tively, this process can be described by the 

following mass and energy balances, which have 

been constructed in a similar way to that reported 

by Niemi and Koistinen (8.4). 

MASS IN - MASS OUT = ACCUMULATION 

=) (8:5) 

where, ACCOMULATION = CHANGE IN MASS CONTENT 

OF SHELLSIDE. Since the shell volume and liquid 

density have been assumed to be constant, the 

accumulation of vapour is linked to changes in 

density. Thus, 

ACCUMULATION = Vs. doy 
Tat - (8.6) 

HEAT IN - HEAT OUT = ACCUMULATION 

- (8.7) 

where, HEAT IN = HEAT CONTENT OF INPUT STREAM, 

HEAT OUT = HEAT CONTENT OF OUTPUT STREAM 

+ HEAT TRANSFERRED TO THE TUBESIDE 

ACCUMULATION = CHANGE OF HEAT CONTENT OF SHELL 

+ CHANGE OF HEAT CONTENT OF VAPOUR 

DUE TO TEMPERATURE VARIATIONS 

+ CHANGE OF HEAT CONTENT OF VAPOUR 

DUE TO DENSITY VARIATIONS. 
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Thus, from equations 8.5, 8.6 and assumption (v), 

ome V2 = M, uy ve - Mp - Vp - (8.8) 

Since vapour density is a function of pressure 

and temperature and because the vapour is assumed 

to be saturated, 

ep = £(T,P) = g(P) - (8.9) 

Over the normal operating range of the double 

effect evaporator, the above equation can be 

approximately represented by a linear relation- 

ship of the form, 

p=b. P+C - (8.10) 

where, b and c are constants. 

Differentiation of the above equation gives, 

do 5p, 2 eas (8.11) 

Combining equations 8.11 and 8.8 the shellside 

mass balance becomes, 

Dia Viv bo= Mo + Vo = My = Vp - (8.12) 

From equation 8.7 and using assumptions (i), (iii), 

(iv), (v), (xii) the shellside energy balance can 

be written down as follows, 
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2D c+ c ae a Se Mesa: :Spy) + By + Var GyrTp + ATQ)) = My C,-TV. 
at | 

(Tg: + A(T.) = Bs = Vy (TC, e A(T)) - UA. 

(r, tes 
2 

= (13) 

Combining equations 8.8 and 8.13, the shellside 

energy balance becomes, 

aT, ie te (We Cc. fe Vi< Pp: Coy = M,-©p(To-Tp) 

* Vo ©, (1o-T) * Vg) = ACTS) 

= itt) 
a 
  

+ 2(2,) CM) = U.An CT, 

= (8.14) 

  

Thus, for the purpose of this modelling exercise, 

the dynamic behaviour of the general heat 

exchanger shown in Figure 8.1 will be described 

by equations 8.3, 8.4, 8.12 and 8.14. 

8.2.3. THE COMPREHENSIVE MODEL 

Development of a comprehensive model of the 

-275-



double effect evaporator can now proceed by 

applying, where possible, the equations obtained 

in section 8.2.2 to each of the heat exchange 

units. 

8.2.3.1. THE PREHEATER (PH) 

At the preheater liquid flows through the 

tubes without a change in phase and a vapour 

stream enters the shell, is partially condensed 

and leaves as a two phase stream. Thus, 

equations 8.3, 8.4, 8.12 and 8.14 can be applied 

once all terms involving Mo have been removed 

since this variable will always be zero. 

Adopting the process notation used in section 

5.2.3 and Figure 8.1 the following mass and 

energy balances are obtained. 

Tubeside Mass Balance, 

My = My - (8.15) 

Tubeside Energy Balance, 

2 pue: Pn: Sp * Mone: %) 7 MS - 

(T,-T2) + Upg- Apy (Ty - 221) 

- (8.16) 
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Shellside Mass Balance, 

dP = » De Vous = V3 = M, - Vy - (8.17) 

Shellside Energy Balance, 

aT is 
= (Wous: Cc. + Vous: Pa: cy) = V3- Coe 

(Ty-T,) + Vg (ACTS) - (T,)) + My. A(T4) 

T,-T 
+ Uby- Aby (Ty - =, 1) 

- (8.18) 

8.2.3.2. THE FIRST EFFECT (FE) 

In the tubes of the climbing film type first 

effect, the liquid is partially vapourised by the 

condensation of the shellside steam. This process 

is assumed to take place in the following three 

stages. Firstly, the liquid entering the tubes 

is heated to its boiling point. There then 

follows a region of nucleate boiling and slug 

flow. Finally comes the region where vapour 

flows up the centre of the tube dragging a 
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liquid film up the tube walls. Thus, for most 

of the tube there exists two phases which are 

mixed to varying degrees. After a consideration 

of the physical processes described above, it 

was decided to assume that on average the first 

effect tube contains two well mixed phases. 

Clearly this is an approximation to the actual 

situation but it was felt that the increased 

accuracy which would be obtained if more complex 

descriptions were used would be outweighed by the 

computational disadvantages which would accompany 

the resulting increase in model order. Having 

made the assumption that the tubeside is well 

mixed the general approach for shellside 

processes was applied by reversing the sign 

of the heat transferred term. Thus, the following 

mass and energy balances were obtained. 

Tubeside Mass Balance, 

dP = é = Ee = oD. Vert = My M, Vv, (8.19) 

Tubeside Energy Balance, 

aT - _ Wap e C. + Vert: Pa. c,) = My. Ce 

DHT 
(T)-T7) +X (T,) (M7-Ma) + UppApe (Ts - 5 2) 

- (8.20) 
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Applying assumptions (i), (iii), (iv), (v) 

and (ix) to the shellside of the first effect the 

following process description is obtained; 

steam, enters the first effect shell at a constant 

pressure, condenses isothermally and then 

leaves the shell without hold up. Thus, the 

dynamics of the first effect shell can be 

described by the following equation, 

Ts = constant - (8.21) 

It should be noted, however, that the overall 

heat transfer coefficient, Ung is a function of 

steam flowrate and temperature and so the 

measurement of steam flowrate is not redundant. 

8.2.3.3. THE CYCLONE SEPARATOR 

As it has been assumed that the cyclone 

separator operates isothermally and also that 

there is no liquid hold-up at this point in the 

system (assumption (xi)) then the following 

algebraic equations can be written down. 

T, = T3 = Tg - (8.22) 

My = Mg - (8.23) 

vy - V3 - (8.24) 

-279-



8.2.3.4. THE SECOND EFFECT CALANDRIA (SE) 

The process taking place at the second 

effect calandria is the same as that described 

in section 8.2.2 and so the following mass and 

energy balances are easily obtained by 

substituting the correct process variables 

into equations, 8.3, 8.4, 8.12, and 8.14. 

Tubeside Mass Balance, 

Mig = Mis ; - (8.25) 

Tubeside Energy Balance, 

aT = — (Vgnt: Lu: Sp + Wont: Ce) = Maa c, 

De are 
(Ty 5- Ti 4) + Usp: Asp (Tio = = 15) 

- (8.26) 

Shellside Mass Balance, 

dP = a a Dis Vors = M, + V4 - Mio - Vio 
t 

- (8.27) 

Shellside Energy Balance, 

aT = 
cee (Wong: Cc. fe Vors- P10- Cy = My. Cy 

(TT) + Vg-Co(Tg-TM9) + Vy (T4)-A(T19)) 

Tats) # XE 19) Oho Ma) ~ Usnase “Tio 7 tS, 

- (8.28) 
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8.2.3.5. THE SECOND EFFECT SEPARATOR (SP) 

The second effect separator was modelled as 

a well stirred tank operating at the temperature 

of the liquid outlet stream (T Hot liquid 
is?° 

enters the second effect separator from the 

tubes of the second effect calandria and from the 

base of the cyclone separator. The liquid from the 

second effect calandria is in fact super heated 

and so on entry a certain proportion of this 

liquid flashes off instantaneously. As a result 

of this flash boiling the liquid level in the 

separator is nearly always changing. 

Taking account of assumption (vii), the unsteady 

state mass balance for this unit can be written 

down as, 

dH. 
dt 

Mg - Vo = (8.29) SSpuNer a 

where, Agp is the cross-sectional area of the 

second effect separator, and, H is the height 

of liquid in this unit. The unsteady state energy 

balance for the second effect separator is, 

oi C= M,,.c dt ©B-T5)- Asp Pps Sp = Mya Sp (TMa-TM5) 

+M Cre Tg = Vo (Co tg A(Tg)) - (8.30) 
Saaep 
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Expanding the left hand side of the above equation, 

combining the resulting equation with 8.28 and 

taking note of assumption (x), the energy 

balance for the second effect separator becomes, 

otis A CH= My.C. (9 =a “sp: PuSp: 14°Sp> (Ty 4-T 15) 

15) ot 5) + Mg.) (Tg-T 

=2(8.31) 

8.2.3.6. THE CONDENSER (CD) 

‘ 

Since there is no change of phase in the 

condenser tubes equations 8.3 and 8.4 were used 

to describe the tubesSide dynamics as follows, 

Tubeside Mass Balance, 

Mis ee paCe82) 

Tubeside Energy Balance, 

aT hse ae Wont: On: c, * Wong: Cy) = Myo Cys 

Toot 
(Me-T13) * Ucp-Acp (Ty, - 42,18) 

- (8.33) 

In the condenser shell, vapour from both the 

second effect separator and the second effect 
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calandria shell is condensed and the resulting 

liquid, together with the liquid from the 

second effect calandria shell, is drawn off 

without hold-up by the condensate pump. The 

vacuum pump connected to the condenser shell 

maintains a constant pressure at this point in 

the system (assumption (viii)) and so the 

temperature of the outlet stream also remains 

constant (see Appendix J-2 and Table 7.4). 

Thus, as the flow of vapour into the condenser 

shell varies, the change in the amount of heat 

to be removed is reflected by the variation in 

the tubeside outlet temperature (T)3)- Inherent 

in this last statement is the assumption that 

since the temperature of the outlet stream is 

constant the condenser shell is also maintained 

at a constant temperature. The condenser shell 

algebraic mass and energy balances can now 

be written down as follows, 

Shellside Mass Balance, 

M =Vo tu + Vi - (8.34) 
11 9 10 10 

Shellside Energy Balance, 

Miao = Vo (C-T9* A(T))) + Vi 0p: Tot 

Tate: A(T 19) )*My9-C,-T1o - Yop: Acp(T11 - = 12) 

=3.35) 

-283-



8.2.4. THE REDUCED MODEL 

The comprehensive model developed in the 

previous eeeion consists of eleven differential 

equations and nine algebraic equations. In 

this form the model can not be readily used 

in on-line filtering experiments for the 

following reasons: 

(i) The order of the model (eleventh) is too 

large for a reasonable filter cycle time to be 

achieved. This is a fairly crucial consideration 

because of the time constants associated with 

the heat exchange units of the double effect 

evaporator. 

(ii) The following process variables are 

neither calculated nor measured - V3) Vv Vv 
4° 9? 

M, and Mio: In addition, the measuring instrument 

used to monitor the flowrate of liquid from the 

base of the cyclone separator (Mg) is rather 

slow in responding to variations in flowrate. 

The reasons for this measurement delay are two 

fold. Firstly the mechanical construction of 

this instrument does not lend itself to the 

rapid changes in flowrate which occur. Secondly 

a steam trap is installed in the pipeline between 

the cyclone and the flowmeter and this is bound 

to cause some delay. 
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As a result of the second of these reasons 

six relationships need to be developed so that 

Vv, the process variables V. Mg and 3° Var Vor My, 

Mio can be calculated. These relationships 

were obtained by incorporating the simplifications 

described below into the comprehensive model. 

(i) Previous research in the field of heat 

transfer dynamics (see for example Payne (8.1), 

Coleby (8.2), Andre (8.5) and Zavorka et al. 

(8.6)), has shown that the time constants 

associated with the vapour phase dynamics are 

of a small enough magnitude for flowrates 

associated with the vapour phase to be approxi- 

mated by algebraic equations with little loss 

in accuracy. Figure J-3.1 shows that the pressures 

associated with the shellside vapour spaces change 

rapidly for the first twenty seconds after a step 

change to the steam flowrate but thereafter the 

variation is much smaller and over a far greater 

time period. For a step change to the feed 

flowrate, Figure J-3.2 shows that there is very 

little change in the pressures associated with the 

shellside vapour spaces. Thus, the experimental 

evidence suggests that algebraic equations 

would be satisfactory as long as some term to 
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account for the change in pressure is included. 

The strain gauge pressure transducers used to 

measure the relevant pressures are shown by 

the standard deviations given in Table 7.7 

(channels 12, 13 and 15) to be accurate 

instruments and so the following simplfication 

was incorporated into the model, 

AP . aP q Tee ae (8.36) 

where, AP = P(t. 41) - P(t), 

and, At = ¢. =arG, 

As a result of this simplification, equations 

8.17, 8.19 and 8.27 are modified. 

(ii) The second simplification was made after 

an examination of Figures J-3.1 and J-3.2 which 

show that the pressure associated with the second 

effect separator is fairly constant when step 

changes are made to either the steam flowrate or 

the feed flowrate. Thus, it is reasonable to 

assume that the boiling point of the second 

effect separator is controlled at T Therefore 
15° 

equation 8.31 becomes, 

M4 © (T14-T) 5) + Mg- C,(Tg-T 15) - Vg: A(T 14° “p 1s) 

Zo - (8.37) 
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(iii) From assumption (iv) the rate of heat 

lost from the shellside of the preheater, at any 

instant in time, to the tube contents can be 

expressed as, 

My. A(T) - (8.38) 

This is equivalent, discounting heat losses, to 

the rate of heat gained by the preheater tube 

contents, i.e. 

M,. cy (Tp-T)) - (8.39) 

Thus, combining 8.38 and 8.39, 

upiae Sp (Panty) - (8.40) 
A(T4) 

Similarly, for the first effect, 

Wey =e ern is) taeManC ps 7ata Reece 641) 
MT, ) 

Finally, for the second effect, 

My =i cpr dseis 4M, = (8.42) 
10 a 

A(T) 

8.2.5. SUMMARY AND DISCUSSION OF THE REDUCED MODEL 

The dynamic model of the double effect evaporator 

developed above consists of the following thirteen 
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inputs, eleven algebraic 

differential equations. 

Inputs to the Model 

equations and seven 

My Myo oMygoVgoT) 073/75. Ty ToT 5:P4rP7 Pio 

Algebraic Equations 

My = My - (8.43) 

v7 = Vg 4(T5) - Mp-C,-(T7-Tp) - (8.44) 

(Ty) 

v3 7, - (8.45) 

= AP fay My = My-Vz - 72 0. Vege (8.46) 

M, = M, - (8.47) 

Miva else pn taen) - (8.48) 
A(T 4) 

iz ap f Vg 7 Very = 4: b. Voue (8.49) 

Wo = els Sp: Tats) - (8.50) 
A(T) 

van = Mev, = Men = 0 Dey, = (8,51) 10 ~ Ma*¥q ~ Mig ~ —20- P+ Vsre : 

Vp = MaaCp: Ta-Tas) + Ma-Sp-(TerTas) 

APs) 
= (8.52) 
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=V, + M + V a= '9) Mio © Yio = C8299) 

Differential Equations 

aT, 2 Vent: Pup * Mone Ce) = My-Cp-(Ty-TQ) 

T+T * Upg-Apye (Ty-72TL) - (8.54) 

GP Waeeon + VeeeG Car = yea ( rT 
rate PHs’"s PHs' “4° “v 3) ED 3°74 

HVS) = (TD) My. A (US Ane 

aorta) - (8.55) (Ty- 

rete * Vepes © 7-Cy) = My-C, (Ty-T7) 

ToeT, 
+2 (T7)(M7-My) + Upg- App (*5- 72) 

=" (8-56) 

Scio 2 (Nszs Ss * Vses: °10°Cy) = Ma-“p(T4-T ro) 

# ¥g6.. Teg) + Ty(ACEY = 129) 

Pee * A(Ty9) Myon) ~ Ugg-Agg(Tyo7 14718) 

- (8.57) 
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aT 
= Wepre Spe ene 1) i Miao rag 13) 

Tot: * Ugp:Agp(T 1-22" "23) - (8.58) 

Ora (Von Ph C+ Wau C,) = Ma Cuu(Te eT: |) it Wsnt: PLS * Veet: 14°Sp: Tis-T a 

T +0 * Usg-Agg(Tyq7 14715) - (8.59) 

gH - SF agp. Py, = Mg - Vg - (8.60) 

The above mathematical model now satisfies 

the objectives stated in the introduction to this 

chapter, namely, it is compatible with the Kalman 

Filter, it can be readily implemented on a digital 

computer, is of an order that makes a solution 

in real time feasible and takes account of the 

measurements available from the double evaporator. 

It may be thought at this stage that the process 

of model reduction has oversimplified the system, 

but it must be remembered that for the application 

of the Kalman Filter, the definition of a complex 

system model should be unnecessary. Huddle and 

Wismer (8.7), Payne (8.1) and Coleby (8.2) all 

indicate that unavoidable modelling errors and 
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simplifications can be consider a so long as the 

development of any reduced model includes those 

process variables of dominant or special 

interest. 
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8.3. SIMULATION OF THE DYNAMIC MODEL 

Having completed the development of the dynamic 

model the accuracy of the predictions made must 

be tested by comparing them with the measured 

responses obtained during on-line experiments 

with the double effect evaporator. The necessary 

data for this simulation exercise was obtained 

by using the steady state logging program 

shown in Appendix F-3 and the experimental 

procedure described in Section 7.3.4. Following 

the successful execution of the steady state 

logging program the dynamic logging program is 

requested and after it has started a step change 

is introduced into the evaporator system via 

either the steam flowrate or the feed flowrate. 

8.3.1. DISCUSSION OF THE COMPUTER PROGRAM 

The computer program which simulates the 

dynamic model of the double effect evaporator 

was written in the Basic language according to 

the program structure shown in Figure 6.2 so 

that it can be run with the ASP compiler (see 

section 6.4). A listing of this program is 

given in Appendix F-4. 
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Two features of this program which require 

some explanation are those concerning the 

procedure used to account for heat losses and 

the value used for the parameter 'b' (see 

section 8.2.2). Since the steady state analysis 

of the evaporator failed to produce a correlation 

to account for heat losses it was necessary to 

include some compensation strategy into the 

model. At the start of all of the on-line 

experiments, the double effect evaporator is 

at a steady state and so all of the dynamic model's 

differential equations should have zero 

derivatives. A series of preliminary experiments 

with the model simulation program showed that this 

was rarely the case and so it was decided to 

include in each differential equation a residual 

term such that at the start of all experiments 

involving the dynamic model the derivatives are 

zero. These residuals can justifiably be 

regarded as heat loss terms in view of the fact 

that the results shown in Table 7.6 indicate 

an average heat loss from the evaporator of 10%. 

The 'b' parameter discussed in section 

8.2.2 was evaluated by using the MULREG computer 

program (8.8) to perform a linear regression 

on pressure-density data obtained from steam tables 

(8.9). 
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8.4. RESULTS AND DISCUSSION 

Using the computer program shown in Appendix 

F-4 a number of simulation experiments were 

carried out. The results of two of these 

experiments are shown in Appendix J. The first 

(see Appendix J-4) shows the predictions and, 

where applicable, the measurements obtained 

when a step change was made to the steam 

flowrate. The second (see Appendix J-5) shows 

the responses obtained when a step change is 

made to the feed flowrate. During all of these 

experiments, the inputs to the dynamic model are 

obtained from the results of the on-line dynamic 

logging experiments. 

From the simulation results the following 

points arise for discussion; 

(i) In general the predictions made by the 

model for tubeside temperatures arebetter than 

for shellside temperatures. Figures J-4.1, J-4.6, 

J-5.1, J-5.5 and J-5.6, show that the predictions 

follow the measurements quite closely as far as 

tubeside temperatures are concerned. There are 

a number of reasons which could be proposed to 

explain why shellside temperatures are not as 

well modelled but the most probable one is that 
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when the evaporator is in a dynamic state the 

liquid and vapour phases are not in equilibrium 

and consequently assumptions (i) and (iii) will 

not be strictly correct. 

(ii) A further point which can be made 

about the shellside temperature predictions 

(see Figures J-4.2, J-4.3 and J-5.3) is that 

they change more rapidly and as a result reach 

steady state earlier than the measurements indicate 

to be the case. This could be caused by the 

use of algebraic equations to model the 

liquid and vapour flowrates. However, since 

there is considerable evidence that the time 

constants associated with the shellside liquid 

and vapour phase dynamics are Smadtencuee to 

be neglected then it could well be that the 

discrepancies are partially due to the sluggish 

responses by the thermocouples. In a number of 

cases, the thermocouples installed at the double 

effect evaporator are not ideally situated and 

as a result their distance from the heat exchange 

units will inevitably cause some measurement 

delay. 

(iii) A comparison of the results obtained 

from a step change to the steam flowrate with 
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those obtained from a step change to the feed 

flowrate show that the changes in the state 

variables are much greater for the first of these 

two types of step change. This is entirely due 

to the limited range of feed flowrates which 

can be used when operating the evaporator. If 

the flowrate is too low, almost all of the 

liquid feed is vapourised at the first effect 

and if it is too high the cyclone separator 

fills with liquid because of the steam trap 

in the line between the cyclone and the second 

effect separator. 

(iv) Figures J-4.7 and J-5.7 show that the 

predicted and measured heights in the second 

effect separator are in close agreement. This 

is a particularly pleasing result as it confirms 

some of the assumptions made during the derivation 

of the dynamic model. Inherent in the 

differential equation used to predict the height 

in the second effect separator (equation 8.60) 

is the assumption that there is no mass loss 

from the system. Although this assumption may 

not be exactly correct the results obtained do 

show it to be a reasonable approximation to the 

truth. The second assumption which is confirmed 
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by these results is the one concerning the use 

of algebraic equations to calculate the 

liquid and vapour flowrates occurring at the 

evaporator. Clearly the use of algebraic 

equations does not cause a significant loss 

in accuracy. The third point which is 

clarified by these results is the apparent 

contradiction between the results of the 

steady state analysis and the assumption of 

constant flowrate through the second effect 

calandria tubes. The steady state analysis 

(see Chapter 7) tends to indicate that this 

flowrate changes between different steady states 

due to the variation in height in the second 

effect separator causing the circulation 

pump to act against differing heads. However, 

the results obtained during these dynamic 

Smee on experiments (see Figures J-4.7 and 

J-5.7) show that this variation in flowrate is 

not a significant one. 

Figures J-4.7 and J-5.7 also show that on 

average the measurements of height in the second 

effect separator are approximately correct. 

However, one can not rely too much on a single 

measurement because of the noise it may contain; 
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this noise being caused by the boiling which 

takes place at the second effect separator. 

(v) The discrepancy between the measured and 

predicted values of Ti3 (see Figure J-4.5) for 

a step change to the steam flowrate is quite 

an appreciable one. However, since Ty does 

not change very much the only way in which 

the derivative of Ti3 can increase significantly 

is if the heat transfer coefficient Uap: 

increases. Equation 7.82 shows that the only 

way in which Uep will change in this situation 

is if the vapour flowrate into the shell, ViotVg> 

increases and as the coefficient for the vapour 

flowrate term, d, is small, the predicted 

response of Ti3 may initially lag behind the 

measured value. 

(vi) Figure J-5.4 shows that the prediction 

of the temperature of the exit stream from the 

second effect shell, Tig» is noisier than might 

be expected. This is caused by the complicated 

nature of the equation used to predict Tio: 

Since this equation contains a large number of 

terms which include flowrates calculated from 

measured inputs to the dynamic model, then if 

any one of these measurements is noisy the 
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the derivative could well be incorrect and on 

integration a noisy prediction will be generated. 

(vii) Figures J-4.1, J-5.1 and J-5.2 indicate 

that some of the predicted temperatures associated 

with the first effect and the preheater are slow 

in reaching steady values following the introd- 

uction of a disturbance to the system. it is 

felt that this is caused by not updating the 

residuals used in the calculation of the 

derivative terms (see section 8.3.1). Clearly 

the heat loss from a heat exchange unit will 

change as the heat transferred varies but 

there is no way of knowing when the residual 

(or heat loss) terms should be modified. 

(viii) The differential equations included 

in the dynamic model are solved using Runge-Kutta 

fourth order numerical integration which provides 

accurate predictions only if the step length is 

not too large. To determine the optimal 

integration interval the values of T, obtained 

after 30 seconds using different step lengths 

were compared. Table 8.1 shows that if a step 

length of 1 second is regarded as a standard 

then integration intervals between 5 and 15 

seconds are acceptable. 
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TABLE 8.1. ~— COMPARISON OF THE ACCURACIES OF 

DIFFERENT STEP LENGTHS 

  

  

STEP LENGTH VALUE OF T, 

(SEC) AFTER 30 SECS 

1 75.4137 

5 75.4561 

10 75.5090 

15 75.5133 

20 75.9500 

25 76.6298 

30 77.6321        



The overall conclusion made about the 

dynamic model after this simulation study was 

that although it is bound to be somewhat 

approximate due to the fact that it consists 

of ordinary differential equations, it does 

provide predictions which are sufficiently 

accurate for on-line filtering experiments. 
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8.5. CHAPTER REVIEW 

A mathematical model describing both the 

dynamic and steady states of the double effect 

evaporator has been derived. The model is 

compatible with the Kalman Filter and can be 

readily solved on a digital computer in a time 

which makes on-line applications feasible. 

The results of model simulation experiments 

have been reported and after a comparison of 

the predictions with measurement data the model 

was found to be acceptable. 
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CHAPTER 9 

ON-LINE FILTERING EXPERIMENTS



as INTRODUCTION co
 

The culmination of this research project was 

the on-line application of the Kalman Filter. 

Every aspect of the work reported so far has 

been directed towards these on-line filtering 

experiments and during them the reliability 

and efficiency of all of the developments made 

was rigorously tested. 

The discussion of the simulation studies of 

the Kalman Filter, see chapter four, revealed 

that the following three filters were the most 

suitable for on-line applications, 

TYPE 2 - The Extended Kalman Filter, 

TYPE 3 - The Extended Kalman Filter - using 

a state transition matrix calculated by the 

canonisation procedure discussed in chapter three. 

TYPE 4 - The Adaptive Kalman Filter. 

Thus, three on-line filtering programs were 

constructed using the above forms of the Kalman 

Filter and the dynamic model of the double effect 

evaporator discussed in chapter eight. These 

programs were written in Extended Honeywell 

Fortran so that they could be executed under the 

control of the OLDFP Executive, see chapter 6. 
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9.2. DISCUSSION OF THE ON-LINE FILTERING 

PROGRAMS 

Each on-line filtering program to be run 

under the control of the OLDFP Executive consists 

of two master segments, INIT and FILTER. 

Initialisation of all of the variables required 

for the filtering process is carried out by 

INIT. Following this initialisation FILTER is 

executed periodically to perform the task of 

filtering. The two main functions of FILTER 

are to handle all input/output and also to call 

on a number of other routines to perform the 

specialised tasks of prediction - subroutine 

PREDIC, estimation - subroutines KALMAN and 

ADAPT and calculation of the state transition 

matrix - subroutines TRANS(1) and TRANS(2). 

Communication between all of the segments of 

these programs is by three named COMMON Blocks:- 

(i) COMMON/KALM/ - all variables and arrays 

associated with the estimation segments 

(ii) COMMON/MODEL/ - all variables and arrays 

associated with the prediction segment. 

(iii) COMMON/SCAN/ - all variables and arrays 

associated with the data acquisition process. An 

explanation of all of the variables contained in 

the above COMMON Blocks is given in Table 9.1. 
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TABLE 9.1 - COMMON BLOCKS FOR ON-LINE FILTERING 
  

  

  

    

PROGRAMS 

COMMON 
Brock, | |W EI SEle MEANING 
NAME 

KALM XE(I) VECTOR OF ESTIMATED STATE VARIABLES 
XP(I) VECTOR OF PREDICTED STATE VARIABLES 
Y(1) VECTOR OF MEASUREMENTS 

PE(I,J) | STATE VARIABLE ERROR COVARIANCE 
MATRIX 

R(I,J) | MEASUREMENT ERROR COVARIANCE MATRIX 
Q(I,3) | PROCESS NOISE COVARIANCE MATRIX 

THY(I,J) | STATE TRANSITION MATRIX, $(k+1,k) 
GAMMA(I,J) | INTEGRAL STATE TRANSITION MATRIX, 

T(k+1,k) 
RK(I,J) | FILTER GAIN MATRIX 
RM(I,J) | MEASUREMENT MATRIX, M i.e. y=M.x 

N DEGREE OF STATE VECTOR 
M DEGREE OF MEASUREMENT VECTOR 
P SAMPLING INTERVAL, At. 

C(I,3) | STATE VARIABLE AND MODEL ERROR 
COVARIANCE MATRIX 

GAM(T) VECTOR OF RESIDUALS,y _ 
WW(I) VECTOR OF MODEL ERRORS, W 

F4(1,J) | RELATIONSHIP BETWEEN THE MODEL 
ERROR VECTOR, W, AND THE STATE _ 
VECTOR, x, i.e x(t)=F1.x(t)+F4.W. 

ALPHA EXPONENTIAL FILTER CONSTANT, o 
BETA EXPONENTIAL FILTER CONSTANT, 2 
ITHETA NUMBER OF FILTER CYCLES BETWEEN 

UPDATES OF W 
Mra NUMBER OF COLUMNS IN MF4 

G ESTIMATE OF THE TRACE OF 
RESIDUALS COVARIANCE MATRIX, g 

cc DIAGONAL ELEMENT OF MODEL ERROR 
COVARIANCE MATRIX, c, i.e. 
Py=l.c 

MODEL | vitove VOLUMES OF EVAPORATOR TUBES AND 
SHELLS 

W1towe MASSES OF EVAPORATOR TUBES AND 
SHELLS 

cltoca SPECIFIC HEATS 
AltoA4 HEAT TRANSFER AREAS 

A5 CROSS SECTIONAL AREA OF SECOND 
EFFECT SEPARATOR        



TABLE 9.1 - continued 

  

  

  

HA1toHA4 
- HB1toHB4 COEFFICIENTS FOR HEAT TRANSFER 
HC1toHC4 CORRELATIONS 
HD1toHD4 

T(16) DOUBLE EFFECT EVAPORATOR 
TEMPERATURES 

W(16) DOUBLE EFFECT EVAPORATOR LIQUID 
FLOWRATES 

V(16) DOUBLE EFFECT EVAPORATOR VAPOUR 
FLOWRATES 

H HEIGHT IN SECOND EFFECT SEPARATOR 
DP1 AP 
pee PRESSURE DERIVATIVES, At 

P12 PRESSURE - CHANNEL 12 
P15 PRESSURE - CHANNEL 15 

. U1ltoU4 OVERALL HEAT TRANSFER COEFFICIENTS 
R4,R7,R10 VAPOUR DENSITIES 

SCAN INTR SAMPLING INTERVAL 
STEP INTEGRATION STEP LENGTH 

NCYCLE NUMBER OF FILTER CYCLES REQUIRED 
NCOUNT NUMBER OF FILTER CYCLES SO FAR 
IPRST COUNTER PRESET VALUE 
IPRNT HIGH SPEED PUNCH PRINT OUT FLAG : 

1 to PRINT. 
C(I) INSTRUMENT CALIBRATIONS - INTER- 

CEPTS 
D(T) INSTRUMENT CALIBRATIONS - SLOPES       

-ESTIMATED AND MEASURED STATE VARIABLES 

  

  

  

ESTIMATE] PREDICTION | MEASUREMENT Seeanee VARIABLE 

XE(1) XP(1) Y¥(1) Ty PREHEATER TUBES EXIT 
TEMPERATURE 

XE(2) XP(2) ¥(2) t% PREHEATER SHELL EXIT 
TEMPERATURE             

 



TABLE 9.1 - continued 

  

  

XE(3) XP(3) ¥(3) T, FIRST EFFECT TUBES 
EXIT TEMPERATURE 

XE(4) xP(4) - Tq | SECOND EFFECT SHELL 
EXIT TEMPERATURE 

XE(5) xP(5) ¥(4) T,3 | CONDENSER TUBES EXIT 
TEMPERATURE 

XE(6) XP(6) ¥(5) T,4 | SBOOND EFFECT TUBES 
EXIT TEMPERATURE 

XE(7) XP(7) Y(6) H HEIGHT IN SECOND 
EFFECT SEPARATOR         

  
 



9.2.1. THE INITIALISATION. SEGMENT - INIT 
  

In. the initialisation segment the COMMON 

Blocks described above are set up either by 

arithmetic assignment statements or by reading 

in values input at the V.D.U. It will be 

noticed from the listing of INIT, See Appendix 

G-1, that many of the simple variables in 

COMMON/MODEL/ and the arrays in COMMON/SCAN/ 

are not initialised in this segment. This is 

because their values do not vary from experiment 

to experiment and so these variables and arrays 

are initialised when the program is loaded by 

the use of a Block Data Subprogram, see Appendix 

G-10. 

Once the initialisation process is complete, 

a message informing the user that the program is 

ready to start is printed at the VDU and bit 1 

of the digital output display is set. The 

digital input switches are now repeatedly sensed 

until bit 2 is set, at which time the filtering 

program FILTER, is connected to the clock for 

periodic execution and INIT is terminated. 

QRZ. a. THE FILTERING SEGMENT - FILTER 

As shown by the flowchart in Figure 9.1 and 
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FLOWCHART OF ON-LINE FILTERING PROGRAM 
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the listing given in Appendix G-2, the first 

action on entering FILTER is to signal the start 

of its execution by outputting the number of 

scans done to the digital output display. 

Interrupt is now connected to the counter 

input subinterface so that the flowrate to the 

preheater tubes can be obtained. The other 

instrument signals are then measured via the 

analogue inputs function, H6, of the HADIOS 

Supervisory program. The analogue measurements 

are then converted to the correct units and 

the inputs to the dynamic model set up. The 

counter frequency is now evaluated and converted 

into the correct units. The final step before 

filtering takes place is to set up the measure- 

ment vector, y. 

Apart from during the first execution of 

this program, the next step is to call upon one 

of the estimation routines, KALMAN or ADAPT, to 

perform the task of filtering. Following this, 

the results from the filtering process are printed 

out at the VDU and then punched out by the high 

speed punch so that a permanent copy of the 

results can be obtained. Output to the high 
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speed punch is not via a WRITE statement because 

the OP-16 Fortran Package does not support 

this peripheral device. Instead the punch 

driver-program is requested directly using 

the REQUEST statement (see line 152 of Table 

G-2.1). Due to the way in which the output to 

the punch is obtained the paper tape produced is 

in binary format and although these tapes have 

to be converted to Asciiformat before they can 

be used in other programs, the use of binary 

format is quite an advantage because the output 

is greatly condensed and so less time is required 

by this operation. 

The remainder of this program is devoted 

to the calculation of the predicted state from 

the estimates already obtained and the 

calculation of the state transition matrix. 

Finally, before terminating the program, a check 

is made to see whether the user wishes to abort 

the experiment. The user can bring about this 

action by setting bit 1 of the digital input 

switches. 

9.2.3. SUBROUTINE PREDIC 

The function of subroutine PREDIC is to solve 
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the dynamic model of the double effect evaporator 

discussed in chapter 8 by the fourth order 

Runge-Kutta method of numerical integration. 

The listing of this subroutine, see Appendix 

G-5, shows that the structure of this program 

is similar to that of the Basic program used 

for the dynamic model simulation studies, see 

Appendix F-4. The main differences are that 

there is no input/output and numerical 

integration is performed explicitly instead 

of by calling subroutines. 

9.2.4. SUBROUTINE TRANS(1) 

Subroutine TRANS(1) calculates the state 

transition matrix, $(k+1,k), using a truncated 

Taylor series, see section 3.3. This method 

requires the calculation of the Jacobian of 

partial derivatives for the mathematical model 

used and so, as shown in section 4.4.2.4, the 

state transition matrix is calculated as follows, 

o(k+1,k) = 1 + 2£G0 ae) (Ge) 
ox 

x(k,k) 

Thus, when using this method, $(k+1,k) can be 
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calculated at each cycle of the filter by 

setting all elements of the matrix THY to zero 

except for those defined below: 

TAY (1,1) = (-0.8.Up,.Apy = My.C,)-phe, + 1 

= (9.2) 

At 
THY (1,2) = (Upg-Apy) prvi gators) 

La ptt. e THY (2,1) = (0.5.Upy-4pg)-ptva (27%) 

r at THY (2,2) = (-V3.C,-Vg-L+M,.L-Upy-4py)-pty2 * 1 

- (9.5) 

= ot = THY (2,3) = (V3. Ch+V5. L)-pt¥e (9.6) 

a ie oe THY (3,1) = (Mj.C,+0.5.Upp-App) -pry3 (9.7) 

THY (3,3) = (~My. C,*L. (Mg-Mp) - 0.5.Upp- App) - 

Divs ok ail 

THY (4,2) = (My.C,+V4(C)+L)). pete - (9.9) 

THY (4,4) = (-My.C,-V4(Cp#L)+L(Myq-My) - Usp-Agg)- 

at piva * - - (9.10) 

-308-



THY (4,6) = 

THY (5,5) = 

THY (6,4) = 

THY (7,7) = 

where, DIV1 

DIV2 

DIV3 

DIV4 

DIVS 

DIV6 

and, L 

9.2.5. 

(O 

(-M. 

(U 

5.0 

12° 

at 
sE‘4sz)-pive * 

You: 

aTi 

a 
aTi 

Cc. 
Pp 

At 
sE‘4sE)-pIv4 

-0.5.U 

a 

QA(Ti)) 

(-2.4068.Ti+2501.6) 

- 2.4068 

SUBROUTINES TRANS(2) AND RUTIS 

at 
cp‘4cp) *ptvs 

- (9. 

eb 

= (9. 

= (9. 

= (9. 

= (9. 

eae 

= (ee 

a. 

= (Gc 

or 

  

One of the disadvantages of using the 

alaly) 

12) 

13) 

14) 

15) 

16) 

Lz) 

18) 

a9) 

20) 

-21) 

canonisation procedure described in section 3.3. 
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to calculate the state transition matrix is that 

this method increases the computational require- 

ments of the Kalman Filter. The discussion of 

the results obtained during the simulation 

studies of the Kalman Filter, see chapter 4, 

pointed out that a considerable saving in the 

required computational power could be achieved 

by assuming that the eigenvector matrix required 

by this procedure was constant. For the on-line 

filtering experiments the fact that the computer 

to be used had only 16K words of memory and a 

cycle time of 1.6us prompted an investigation 

into the possibility of using the simplified 

canonisation procedure described in section 

4.5.4.4. 

The simplified canonisation procedure which 

is being proposed for the on-line filtering 

programs can be best explained by reference to 

the diagram shown below. 

; fssie eS 
x(k) transformation a 

numerical 

J 

! 
' 

e - ' 
integration 

' 
' 

' 
' 
' 
' 
' 
' 

1 

transformation 
x(k+1). x* (k+1) 

_~—— ---/ 

6 (k+1,k) eee a OLE (+1, I) 

SIMPLIFIED CANONISATION PROCEDURE 
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In the above diagram the process of transformation 

is carried out by using equation 3.77, calculation 

of ¢%k+1,k) is done using equation 3.79, and 

retransformation is carried out by using equation 

3.81. In all of the equations quoted above 

the eigenvector and inverse eigenvector matrices 

V(k) and vox)7, have constant values when this 

simplfied procedure is used. The use of the 

above procedure greatly reduces the computational 

requirements of this form of the Kalman Filter 

and, as was discussed in section 4.5.4.4, does 

so without a significant loss in accuracy. 

Clearly, before deciding to use the 

simplified canonisation procedure it is necessary 

to try and determine eigenvector and inverse 

eigenvector matrices which can be used through 

out the on-line filtering experiments. The 

investigation to find these matrices was 

carried out off-line and is described below. 

The first requirement of this investigation 

was to develop a means of calculating the 

coefficients matrix, A(k), which will be used to 

determine the eigenvalues and eigenvectors of 

the process occurring at the double effect 
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evaporator. This was done by rearranging the 

differential equations of the dynamic model 

see equations 8.54 to 8.60, into the form, 

x(k) = A(k). x(k) - (9.22) 

Thus, when the matrix A has to be evaluated, it 

is obtained by setting all of the elements of 

the matrix to zero except for those defined 

below, 

A(1,1) = (-My-C, - 0.5.Upy-Apy) + mw - (9.23) 

A(1,2) = (Upy-Apy) ai - (9.24) 

A(2,1) = (0.5.0, 1 
pH4“py): pive 22>) 

a 1 A(2,2) = (-V3.(C,#L) + My-L-Upy-Apy)-  prye 

- (9.26) 

A(2,3) = (V3. (C,+L)). a - (9.27) 

A(3,1) = (My.C, + 0.5.Upg4pp). pig - (9-28) 

A(3,3) = (-My.C,+L. (Mg-My) - 0.5.Upg-Apg) 

tvs - (9.29) 
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a 
piv4 =) (2.30) A(4,2) = (Mq-C)+V4.(C,+L)). 

A(4,4) = (-M,- CV 4- (C +L) +L (My o-M,)-Usp- Asp): 

seg 
Div4 - (9.31) 

(6) = (Oe 5s Use) | a , -5-Usp-Ase)- Drva - (9.32) 

= wld —_ A(5,5) = (-Myg-C, - 0.5.Ugp-Acp)- prys - (9-33) 

C684) =| CUseukee) kee = (9-34) , sE‘4“sE)* Dive : 

1 
sE‘4sg)* prve ~ 69-35) A(6,6) = (-My4.C, - 0.5.0 

ACT, 7)! = 2 (9.36) 

where, DIV1 to DIV6 and L are as defined by 

equations 9.14 to 9.21. 

To determine the eigenvalues and eigenvectors 

of the above system a Basic program was written, 

see Appendix F-6, to be executed with a package 

called ASPEIG which is based on the BASIC-16 

Interpreter. This package includes two Fortran 

subroutines, the first (subroutine number 5) to 

calculate the eigenvalues and eigenvectors of the 

system and the second (subroutine number 6) to 

invert a given matrix by the method of Gauss-Jordan. 
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The program used to determine the eigenvectors 

and eigenvalues of the coefficients matrix is 

based on Rutishauser's LR transformation (9.1) 

and is a modified form of the program first 

reported by Carnahan et al. (9.2). 

The final requirement of this investigation 

is a source of values for the process variables 

which are used to calculate the coefficients 

matrix, A(k), see equations 9.28 to 9.36. These 

values were obtained by solving the algebraic 

equations of the dynamic model, equations 8.43 

to 8.53, using the measurements obtained during 

dynamic logging experiments as the inputs to 

the model equations. During these dynamic 

logging experiments disturbances were introduced 

into the system by a step change to either the 

feed or the steam flowrates. 

Since the interval between successive 

measurements was ten seconds during the dynamic 

logging experiments the Basic program shown in 

Appendix F-6 was used to calculate and printout 

the coefficients matrix, the eigenvalues and the 

eigenvector and inverse eigenvector matrices 

every ten seconds for the duration of the 

experiment (normally ten minutes). 
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From the results of this investigation the 

following observations were made, 

(i) The eigenvalues of the system changed 

by less than 5% for a step change to the feed 

flowrate. 

(ii) The eigenvalues of the system changed 

by approximately 10% for a step change to the 

steam flowrate. 

(iii) The eigenvalues changed most noticeably 

during the first two minutes following the 

introduction of a step change. 

(iv) The eigenvalues obtained during different 

runs of the program never differed by more than 

30%. 

From these observations and since there is 

no way known to the author whereby the average 

eigenvector matrix can be calculated from these 

results, it was decided to choose an eigenvector 

matrix from a period of response following a 

step change to the steam flowrate during the 

most representative run. The most representative 

run was chosen as the one which on average has 

eigenvalues in the middle of the range of all 

of the experiments. 
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As a result of this investigation subroutine 

TRANS(2), see Appendix G-7, was written to 

calculate the state transition matrix at each 

cycle of the filter using the simplified 

canonisation procedure described above and 

subroutine RUTIS was written to set up the 

constant eigenvector and inverse eigenvector 

matrices when this is required by subroutine 

TRANS(2). 

9.2.6. CONSTRUCTION OF THE ON-LINE FILTERING 
  

PROGRAMS 

The remaining subroutines required to 

construct the on-line filtering programs are the 

estimation segments, KALMAN and ADAPT, and the 

matrix manipulation routines, MATINV, MATMUL, 

MATADD and MATRAP. All of these subroutines are 

the same as those used in the simulation studies 

(see chapter 4) and so they will not be described 

here. The listings of these subroutines are 

given in Appendices G-3, G-4 and G-9 respectively. 

Using the routines shown in Table 9.2 the 

three on-line filtering programs, FILTER2, FILTER3 

and FILTER4 were now constructed. In order to 
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TABLE 9.2 -— COMPONENTS OF ON-LINE FILTERING PROGRAMS 

  

  

FILTER2 FILTER3 FILTER4 

INIT INIT INIT 

FILTER FILTER FILTER 

KALMAN KALMAN ADAPT 

PREDIC PREDIC PREDIC 

TRANS (1) TRANS (2) TRANS (1) 

- RUTIS - 

MATLIB MATLIB MATLIB 

LINKS* LINKS* LINKS* 

PROGRAM PROGRAM PROGRAM           

*See Appendix G-11



make these programs compatible with the OLDFP 

Executive a special version of the Fortran 

Libraries tape, see Appendix G-15, was used 

when loading these programs. The loading 

procedures for these programs are given in 

Appendices G-12, G-13 and G-14. 

The Executive errors which may be 

generated by the on-line filtering programs at 

run time are tabulated in Appendix G-16. 
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9.3. EXPERIMENTAL PROCEDURE 

Before on-line experiments can commence both 

the sampling interval (or filter cycle time) and 

the step length used in the prediction routine, 

subroutine PREDIC, need to be determined. Due 

to the limited range of step lengths which can 

be used with subroutine PREDIC, see section 8.4 

and Table 8.1, it was decided to use the smallest 

practical step length, i.e. five seconds, and 

determine the minimum sampling interval which 

this requires. If this step length had caused 

the sampling interval to be too large then 

the step length could have been increased but 

this proved unnecessary as the following 

results show that a satisfactory sampling 

interval could be achieved when using a step 

length of five seconds. 

Type 2 Sampling Interval 23 seconds 

Type 3 Sampling Interval = 24 seconds 

Type 4 Sampling Interval 29 seconds 

No precise breakdown of the above times could be 

obtained but it was determined that the execution 

of subroutine PREDIC took approximately 12 seconds. 

In order to standardise the results obtained a 
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sampling interval of 30 seconds was used during 

the on-line experiments and it was felt that 

this compared favourably with the sampling 

intervals of 60 seconds and 120 seconds used 

by Coleby (9.3) and Payne (9.4). 

Following the start up of the double effect 

evaporator as described in section 5.2.2, the 

procedure used for the on-line filtering 

experiments was, 

(i) Load the HADIOS Executive Package Mk.II 

and the steady state logging program into the 

H316 computer. 

(ii) Execute the steady state logging program 

to check that the evaporator is at steady state 

and to obtain initial values for the filtering 

programs. 

(iii) Load the OLDFP Executive and one of the 

on-line filtering programs (FILTER2, 3 or 4) into 

the H316 computer. 

(iv) Enter the Utility Program (ONLCUP) by 

typing a '$' character at the VDU. 

(v) Set the system time using the replace 

time (RT) function. 

(vi) Use the replace core (RC) function to 
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store the start address of the initialisation 

program, INIT, in location 3246.. 

(vii) Request the initialisation program and 

then terminate the utility program. 

(viii) Enter the initial values, statistics 

and parameters at the VDU as required by INIT. 

(ix) Following the printing of the "Ready 

to Start" message at the VDU, a final check 

is made to ensure that everything is ready for 

the experiment to begin and then the. filtering 

program is connected to the RTX-16 Real Time 

Clock program by setting bit 2 of the digital 

input switches. 

(x) During the first five minutes of the 

filtering experiment the results output to the 

VDU are examined carefully to ensure that the 

filter is operating correctly. The filter is 

deemed to be operating correctly if the 

following conditions are met during this initial 

period. 

(a) The estimates are converging towards 

steady values which are in close agreement with 

the measurements. 
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(b) The predictions calculated by the dynamic 

model display the sort of behaviour which is 

consistent with the evaporator being at steady 

state. 

(c) The diagonal elements of the error 

covariance matrix are converging to steady 

values which are of the order of l. 

Once the filtering programs had been debugged 

the above checks were only really necessary for 

the Extended Kalman Filter (Type 2), the other 

types of filter always displaying good convergence. 

This is probably the first observation made 

during the on-line filtering experiments which 

points to the instability of the classical 

Kalman Filter when it is applied to the estimation 

of chemical processes. 

If the filter is operating correctly the 

. System is then disturbed by making a step change 

to the steam flowrate. During certain on-line 

experiments it was decided at this time that the 

filter was not operating correctly and so the 

run was aborted by setting bit 1 of the digital 

input switches. 

(xi) After the experiment had been proceeding 
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for 15 to 16 minutes a further step change to 

the steam flowrate was made. 

(xii) Once the experiment had finished the 

evaporator was left for forty minutes so that 

it could again reach steady state and then 

steps (i) to (xi) were repeated for as many 

experiments as were required. 

When a sufficient number of experiments had 

been completed the binary format tapes containing 

the filtering results were converted to Ascii 

format tapes using the Fortran program shown 

in Appendix G-17. The results were then plotted 

at the VDU using the graph plotting program 

shown in Appendix F-5 and, when required, 

permanent copies of these graphs were obtained 

using the Hard Copy Unit (for examples of the 

graphs obtained see Appendix K). 

Qage. FILTER TUNING EXPERIMENTS 

Before the experiments described above could 

be carried out it was necessary to optimise the 

performance of each filter. These filter tuning 
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experiments were carried out using the procedure 

outlined in the previous section with the exception 

that no step changes were introduced into the 

system. Unlike similar experiments carried out 

under simulated conditions, see chapter 4, there 

is no way of determining the errors contained 

in the state estimates generated during on-line 

experiments and so a more qualitative approach 

had to be adopted. Ideally, the estimates 

obtained should initially rely on the noisy 

measurements so that they converge on the true 

state of the plant and thereafter they should 

display the influence of both the predictions and 

the measurements such that the errors introduced 

by process noise and measurement inaccuracies are 

eliminated without divergence or bias being 

caused. Fortunately, only the process noise 

covariance matrix (the Q matrix) needs to be 

determined during these filter tuning experiments 

as the measurement noise covariance matrix has 

already been determined from the steady state 

analysis of the evaporator, see chapter 7. 

From the results obtained during these 

experiments, see Table 9.3, the following points 

were noted, 
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TABLE 9.3 - RESULTS OF ON-LINE FILTER TUNING 

  

  

        

EXPERIMENTS 

VARIABLE VALUE 

P(0,0) OFF DIAGONAL ELEMENTS=0 
DIAGONAL ELEMENTS=5 

R(k) OFF DIAGONAL ELEMENTS=O 
DIAGONAL ELEMENTS= 
0.1768, 0.2051, 0.1674, 
0.0988, 0.1624, 0.1087 

Q(k) OFF DIAGONAL ELEMENTS=O0 
DIAGONAL ELEMENTS 
=0.1 to 1.0 (TYPE2) 
=0.1 (TYPES) 
=0.1 (TYPE4 ) 

Fy ALL ELEMENTS ZERO 

    
EXCEPT FOR THE 
FOLLOWING: - 
(2,3), (3,1), (4,2), 
(5,4), (6,5), (7,6) 

   



(i) To ensure convergence of the estimates, 

the values of P(0,0) need to be approximately 

equal to I*5. If the values specified for P(0,0) 

are much less than I*5 then the estimates tend 

to become biased and if they are much greater than 

I*5 then the rate of convergence is poor. 

(ii) A satisfactory value for the Q matrix 

of the second (or Extended) type of Kalman 

Filter could not be found. All that can be 

definitely stated is that it is somewhere in 

the region between 0.1*I and 1.0*I1. 

(iii) When determining the F, matrix for the 
4 

Adaptive (type 4) filter, the procedure adopted 

was the same as that used in the simulated study 

of the Kalman Filter (see section 4.5.2): this 

procedure is described in detail in section 3.2.2.1. 

A total of ten trials were conducted before the 

matrix given in Table 9.3 was chosen and it is 

interesting to note that the first state variable, 

i.e. the temperature of the liquid leaving the 

preheater tubes, is not related to any of the 

elements in the model error vector, W. From 

this we can conclude that this state variable 

is well modelled. 
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(iv) The values assigned to the parameters 

of the Adaptive Filter, i.e. a, 8 and 6, were 

the same as those used during the simulated 

studies of the Kalman Filter (see section 4.5.2.) 

ies 

a= 4 

B = 0.3 

a= a : > > 0.2 

012 1012 

where k = the number of filter cycles. 

During the on-line filter tuning experiments with 

the Adaptive Filter the above parameters were 

varied within the ranges given in sections 3.2.2.2 

and 3.2.2.3. but this had only a slight effect on 

the filter's performance. This observation confirms 

the findings of Kilbride-Newman who states that 

the Adaptive Filter is robust with respect to 

its parameters. 

The above points will be discussed in more 

detail in the next section of this chapter. 
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Lee RESULTS AND DISCUSSION 

The final stage in this research project was 

to carry out on-line filtering experiments with 

the following three forms of the Kalman Filter, 

TYPE 2 (FILTER2) - The Extended Kalman Filter 

TYPE 3 (FILTER3) - The Extended Kalman Filter 

using a state transition matrix calculated by the 

canonisation procedure. 

TYPE 4 (FILTER4) - The Adaptive Kalman Filter. 

The object of this study was to attempt to show 

whether or not the theoretical developments proposed 

in chapter 3 will stand up to the rigorous tests 

of an on-line application, i.e. will they promote 

and ensure the convergence of the Kalman Filter. 

The reasons for including the Extended Kalman 

Filter (TYPE 2) in this set of experiments are 

two fold. Firstly it is hoped that some of the 

faults which the other types of filter are 

attempting to cure will be displayed and secondly 

the results obtained using this type of filter 

can be used as a standard for assessing the 

performance of the other filters. 

In all thirty three on-line filtering 

experiments were carried out, but since each 
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experiment generates at least seven graphs, only 

those results which highlight the points to be 

made during this discussion are included in 

this thesis. These results are to be found 

in Appendix K as follows, 

Appendix K-1 - Results obtained using the 

second type of filter. 

Appendix K-2 ~ Results obtained using the 

third type of filter. 

Appendix K-3 - Results obtained using the 

fourth type of filter. 

One further point which should be made 

before the discussion of the results commences 

is that during these experiments a certain amount 

of numerical filtering is carried out when the 

measurements are taken. This is done by 

specifying an esemble of 10 for the analogue 

inputs. Thus, at every sampling time each 

analogue input is measured ten times and the average 

value transferred to the master segment of the 

filtering programs, FILTER (see Appendix G-2). 

This averaging was done to try and remove some 

of the more spurious measurements obtained in 
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the hope that this would not only ease the task 

of filtering but also ensure the accuracy of the 

inputs to the dynamic model. 

The first point to note from the results 

shown in Appendix K is that all of the filters 

initially produce estimates which converge 

rapidly towards the measurements. This feature 

is most noticeable after the first cycle of 

the filter when, in almost every case, the 

estimates change sharply from the initial guess 

to a value near to the measured state. These 

observations would seem to confirm the findings 

of other researchers in this area (see for 

example (9.5), (9.6), (9.7), (9.8)) who, as was 

discussed in chapter 2, state that as long as 

the initial error covariance matrix, P(0,0) is 

large enough then the estimates will converge on 

the true state no matter how poor the initial 

guesses are. Specifying a large value for P(0,0) 

means that initially the filter relies almost 

entirely on the measurements and so, inherent 

in the above statement regarding the convergence 

of the estimates, is the assumption that during 

the first few cycles of the filter, the measurements 
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are accurate. In this particular application 

this assumption is not an unreasonable one 

because the double effect evaporator is 

initially at steady state. 

One further observation which can be made 

about this initial period is that convergence is 

a lot slower for unmeasured state variables than 

it is for those which are measured. Figures 

K-1.2, K-2.4 and K-3.4 show that the estimates 

of the second effect calandria shell outlet 

temperature do not settle down to steady values 

until after the fourth or fifth cycle of the 

filter whereas measured state variables converge 

after the first or second cycle of the filter: 

Figures K-1.1, K-1.4, K-2.1, K-2.3, K-2.5, K-2.7, 

K-3.1, K-3.2, K-3.3, K-3.5 and K-3.7 are all 

particularly good examples of the converge of 

measured state estimates during the first two 

cycles of the filter. This type of pehaviour was 

also observed during the simulation studies of the 

Kalman Filter, see chapter 4. 
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RESULTS OBTAINED USING THE EXTENDED KALMAN FILTER 

(TYPE 2) - See Appendix K-1. 

The many difficulties which are encountered 

when applying the Extended Kalman Filter to the 

estimation of the state of chemical processes 

are highlighted by the results shown in Appendix 

K-1. It has already been pointed out that the 

Filter Tuning experiments failed to determine 

suitable values for the Q matrix for this filter 

and the following discussion will show why this 

was So. 

In experiment number 19, see Figures K-1.1, 

K-1.2, K-1.3 and K-1.4, the Q matrix was assigned 

the values: 1.0*I. As can be seen from the 

results of this experiment this caused the 

predictions generated by the dynamic model to 

be more or less completely ignored, in fact the 

graphs of the estimates and measurements are 

very nearly coincident. Figure K-1.4 is a 

particularly good example of this behaviour and 

indeed shows that in this case the predictions 

are tracking the measurements. This proves 

quite conclusively that the estimate generated 

by the filter are being influenced almost 
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exclusively by the measurements and as a result 

very little filtering is taking place. 

In an attempt to cure the above problems 

the Q matrix was decreased to 0.1*I but as can 

be seen from the results of experiment number 21, 

see Figures K-1.5, K-1.6, K-1.7 and K-1.8, this 

caused many of the measurements to be disregarded 

after the initial period of convergence. Figure 

K-1.8 shows a classic example of divergence due 

to poor modelling. This result shows that the 

estimates generated by the filter are depending 

almost entirely on the predictions and because, 

as was discussed in chapter eight, the modelling 

of the temperature of the liquid leaving the 

Sicaeueer tubes is suspect in certain situations 

the estimates have diverged from the true state. 

When analysing this particular set of results one 

must be careful not to confuse the measured 

state with the true state because the measurements 

are almost certainly lagging behind the true state 

in this case. However, the fact that in Figure 

K-1.8 the measured and estimated states bear no 

relationship to one another leads to the conclusion 

about the divergence of the estimates. 
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A further problem often encountered when 

applying the Extended Kalman Filter to chemical 

processes is that of the observability of 

unmeasured state variables. Figure K-1.7 shows 

the estimated temperature for the outlet stream 

from the second effect calandria shell and it 

can be seen that after about 16 minutes there 

is a very sharp change in the curve. This may 

be an indication of unobservability and if it is 

then the fact that this behaviour is not displayed 

by Figure K-1.2 leads to the possible conclusion 

that the observability of a system is affected 

by the values assigned to the Q matrix. 

The most acceptable of all of the results 

pbteined using the Extended Kalman Filter is shown 

by Figure K-1.9. A comparison of this figure with 

the corresponding results obtained using the other 

two filters, see Figures K-2.6 and K-3.6, shows 

that the estimates generated by the Extended 

Kalman Filter (Type 2) are quite acceptable even 

though they lag behind the measurements, a fact 

which contradicts the assumption that the 

measurements lag behind the true state. This 

result led to a series of experiments where each 

diagonal element of the Q matrix was assigned a 
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different value from the range O.1 to 1.0. 

Unfortunately, it was not possible to determine 

a combination of values which produced satisfac- 

tory results for all of the estimates generated 

during one experiment. The failure of these 

experiments tends to contradict the results of 

other researchers in this area, see for example 

Schlee (9.9), Jazwinski (9.10) and Wells (9.11), 

who concluded that the Extended Kalman Filter 

(Type 2) can be successfully applied to 

uncertain processes if the Q matrix has a large 

value. 

As a result of the experiments discussed 

above the following overall conclusions can be 

made about the application of the Extended 

Kalman Filter (Type 2) to chemical processes 

which are poorly understood. 

(i) Increasing the value of the Q matrix 

does not lead to satisfactory estimates being 

generated. 

(ii) Divergence and bias are present to such 

a degree that the estimates generated are in 

general unreliable. 
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RESULTS OBTAINED USING THE EXTENDED KALMAN FILTER 
  

WITH A STATE TRANSITION MATRIX CALCULATED BY THE 

SIMPLIFIED CANONISATION PROCEDURE (TYPE 3) - See 
  

Appendix K-2. 

The mathematical model of the double effect 

evaporator developed in chapter 8, is essentially 

linear in nature but the process which it models 

is a non-linear one. Thus, in this application, 

the benefits of the third type of filter are 

entirely due to the way in which the state 

transition matrix is fitted to the change in 

state during the sampling interval. This fitting 

process ensures that the estimates and related 

statistics are consistent and consequently the 

filtering results are much better for this type 

of filter (Type 3), see Appendix K-2, than for the 

standard Extended Kalman Filter (Type 2) see 

Appendix K-1. 

The two results which clearly display the 

superior performance of this type of filter are 

Figures K-2.1 and K-2.7. Figure K-2.1 shows 

the way in which both the predictions and 

measurements are being combined to produce good 
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estimates of the preheater tubes outlet temperature. 

When this result is compared with the results 

obtained by the Extended Kalman Filter it can 

be seen by a comparison of Figure K-2.1 and 

Figure K-1.1 that the estimates generated by 

the third type of filter are not dependent 

exclusively on the measurements nor, as shown by 

a comparison of Figure K-2.1 with Figure K-1.5, 

are they dominated by the predictions. 

Figure K-2.7 is perhaps one of the best 

examples of how a filter should work when applied 

to a chemical process. The results show that the 

measurements and the predictions are both 

influencing the estimates but at the same time 

the process noise present in the measurements is 

being filtered off. This result is particularly 

pleasing when it is compared with the results 

given by the Extended Kalman Filter, see Figure 

K-1.4, and the Adaptive Filter, see Figure K-3.7, 

where there is considerable evidence that the 

estimates are dependent on the measurements. 

Confirmation of the above findings is obtained 

by comparing the results shown in Figures K-2.2. 

and K-2.3. with corresponding results given by 
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the Extended Kalman Filter (Type 2), see Figure 

K-1.6. Note there is no evidence of bias or 

divergence in Figures K-2.2. or K-2.3, whereas 

there are serious doubts as to the convergence 

of the estimates shown in Figure K-1.6. 

A further point which can be made about 

the results given in Appendix K-2 is that there 

is no evidence of unobservability, in particular 

see Figure K-2.4 and compare this with Figure 

K-1.7. 

The only drawback of this type of filter 

is that it appears unable to completely compensate 

for gross modelling errors. A comparison of the 

results obtained for the condenser tubes outlet 

temperature, see Figure K-2.5, with the 

corresponding results produced by the Extended 

Kalman Filter, see Figures K-1.3 and K-1.8, 

shows that although the measurements and predictions 

are being acknowledged in the case of the third 

type of filter, the poor modelling of this state 

variable causes the estimates to be biased. 

The overall conclusions which can be made 

about this type of filter (Type 3) following 
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the on-line experiments discussed above are, 

(i) The estimates generated by this filter 

in general show good convergence and are 

influenced by both the measurements and the 

predictions. 

(ii) There is no evidence of unobservability 

(iii) The problems encountered with the 

Extended Kalman Filter (Type 2) when choosing 

the Q matrix have been overcome by this filter 

(Type 3). 

(iv) The main drawback with this filter is 

that it does not completely compensate for gross 

modelling errors. 

The final comment which can be made about 

this filter is concerned with its somewhat 

empirical nature which is due to the use of 

constant eigenvector and inverse eigenvector 

matrices for the simplified canonisation procedure. 

This simplification does not appear to be 

detrimental to the performance of the filter in 

any way and indeed because of the way in which the 

eigenvector and inverse eigenvector matrices are 

determined the filter is essentially fitted to 

the process under study. This is thought to be 
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one of the features of this filter which causes 

its performance to be greatly superior to the 

Extended Kalman Filter (Type 2). 

RESULTS OBTAINED USING THE ADAPTIVE KALMAN FILTER 
  

(TYPE 4) - See Appendix K-3. 

With the exception of Figures K-3.6 and 

K-3.7, which will be discussed later, the results 

shown in Appendix K-3 indicate that the Adaptive 

Filter (Type 4) is also capable of overcoming 

the problems encountered when applying the 

Extended Kalman Filter (Type 2) to chemical 

processes which are poorly understood. A 

comparison of Figures K-3.1, K-3.2 and K-3.3, 

with the corresponding results for the Extended 

Kalman Filter (Type 2), see Figures K-1.1, K-1.5 

and K-1.6, shows that the Adaptive Filter is 

capable of compensating for the non-linearity 

and uncertainty of the process. Figure K-3.2 in 

particular shows the way in which the Adaptive 

Filter uses both the predictions and the 

measurements to calculate the estimates. It is 

also worth noting here that Figure K-3.4 does not 

exhibit any of the signs of unobservability shown 

by the Extended Kalman Filter, see Figure K-1.7. 
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The most important of the results shown in 

Appendix K-3 is Figure K-3.5. This result when 

compared with the results of both of the other 

two filters - see Figures K-1.3, K-1.8 and K-2.5, 

shows quite clearly that the model error 

compensation strategy incorporated within the 

Adaptive Filter, greatly improves the estimates 

generated for a state variable which is poorly 

modelled. At the end of the experiment (Run 23) 

during which the results shown in Figure K-3.5 

were produced the model error vector, W-see 

equation 3.34, was found to be, 

0.013, 0.021, 0.019, 0.413, 0.032, 0.029 

Due to the nature of the Fy, matrix this means 

that the derivative of the state variable 

describing the condenser tubes outlet temperature 

is being compensated by 0.413 as against 0.013 to 

0.032 for the other derivatives. This shows 

quite clearly the way in which the Adaptive Filter 

is compensating for this modelling error. 

The only results the Adaptive Filter produced 

which were not as good as had been expected are 

those shown by Figures K-3.6 and K-3.7. These 

results show that the estimates are relying 
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almost entirely on the measurements. This is 

not so surprising for the estimates of the 

second effect tubes outlet temperature, see 

Figure K-3.6, because it has already been shown 

see Figures K-1.9 and K-2.6, that this variable 

is not modelled as well as the dynamic analysis 

discussed in chapter 8 indicated. However, both 

the dynamic analysis, see Figures J-4.7 and J-5.7, 

and the results generated by the third type of 

filter, see Figure K-2.7, show that the 

predictions of height in the second effect 

separator are accurate and so it is surprising 

that the estimates generated by the Adaptive 

Filter rely on the measurements. In an attempt 

to cure this problem column 6 of the Fy matrix 

was removed, i.e. the second effect separator is 

now assumed to be correctly modelled. The results 

obtained thereafter were very similar to those 

shown by Figure K-2.7. From this it can be 

concluded that in cases where the model is known 

to be correct no model error compensation should 

be attempted. 

As a result of the experiments discussed 

above the following overall conclusions can be 

made about the application of the Adaptive Filter 
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(Type 4) to chemical processes which are poorly 

modelled. 

(i) The estimates generated by the Adaptive 

Filter generally show good convergence and are 

influenced by both the measurements and the 

predictions. 

(ii) There is no evidence of unobservability. 

(iii) The problems concerning the choice of the 

Q matrix have been overcome by the Adaptive Filter. 

(iv) The model error compensation strategy is 

capable of overcoming gross modelling errors. 

(v) For variables which the model is known 

to describe accurately no error compensation 

should be attempted. 

The final comment which can be made about the 

Adaptive Filter is that despite its increased 

computational requirements it is the most 

effective of the filters tested during these 

on-line experiments 
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9.5. CHAPTER REVIEW 

The theoretical developments proposed in 

chapter 3 were combined with the dynamic model 

developed in chapter 8 to produce two modified 

forms of the Extended Kalman Filter. These 

filters were used to carry out on-line filtering 

experiments under the control of the OLDFP 

Executive and the results compared with the 

standard Extended Kalman Filter. The results 

obtained from the on-line experiments led to the 

following general conclusions, 

(i) The Extended Kalman Filter (TYPE 2) 

does not perform satisfactorily during on-line 

applications to non-linear processes. 

(ii) The Extended Kalman Filter using a state 

transition matrix calculated using a canonisation 

procedure (TYPE 3) overcomes many of the problems 

reported previously for non-linear applications. 

(iii) The Adaptive Kalman Filter produced 

results during the on-line experiments which show 

it to be capable of overcoming the effects of 

poor models. 

(iv) The dynamic model of the double effect 

evaporator developed in chapter 8 can be improved 

particularly with respect to the modelling of the 

condenser tubes outlet temperature. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK



akokoake CONCLUSIONS 

The main aim of the research reported in this 

thesis is to overcome some of the problems 

associated with the application of the Kalman 

Filter to chemical process plant. These problems 

were discussed at length in chapter 2 and those 

areas requiring further study were found to be the 

application of the Kalman Filter to (i) processes 

whose dynamic characteristics are poorly 

understood and (ii) to highly non-linear processes. 

When either of the above conditions is true then 

the estimates generated by the filter, in 

particular those variables that are not available 

as measurements, may exhibit bias and in 

extreme cases diverge from the true state. 

Two theoretical developments which have been 

proposed to combat these problems are the Adaptive 

Kalman Filter first reported by Kilbride-Newman 

(10.1) and a form of the Extended Kalman Filter 

which uses a canonisation procedure to calculate 

the state transition matrix. The results of 

simulation studies of various forms of the Kalman 

Filter led to the general conclusion that the 

modified forms of the filter displayed an 
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improvement in performance over the classical 

Kalman Filter in that they ensured and promoted 

the convergence of the estimates generated. 

Following the success of these off-line 

experiments it was decided to apply the modified 

filters to the estimation of the state of a 

pilot plant scale double effect evaporator 

whose dynamic behaviour is poorly understood. 

In order to do this it was poceeear to develop 

two major software packages. The HADIOS 

EXECUTIVE PACKAGE is an interactive data 

acquisition program based on the BASIC-16 

language and was used in the early stages of 

this research. The On-line Digital Filtering 

Package (OLDFP) is a more sophisticated data 

acquisition system which is based around the 

OP-16 real time operating system. Both of 

these packages have proved to be extremely 

successful and because of their general nature 

their use is not confined to applications 

involving the double effect evaporator. 

The next stage in this research was the 

development of a mathematical model to describe 

both the steady and dynamic states of the double 

effect evaporator. As a result of this 
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modelling exercise a seventh order mathematical 

model together with suitable heat transfer 

correlations and compatible with the Kalman 

Filter was derived and then tested by comparing 

the simulated responses with plant data. 

Although offering scope for improvement in 

accuracy, the predictions produced by integration 

of the dynamic model equations were close enough 

to the experimental responses obtained following 

two types of step change for the model to be 

adopted for on-line estimation. 

The on-line filtering experiments carried 

out with the double effect evaporator proved to 

be rigorous and exacting tests for the theoretical 

developments which have been proposed in this 

research. This is mainly because the process 

taking place at the double effect evaporator is 

not controlled and so due to their dynamic 

nature these experiments constitute a more 

realistic test of the Kalman Filter than do 

those reported for closed loop experiments. 

After a comparison of the results obtained the 

following general conclusions were made:- 

(i) The Extended Kalman Filter requires some 

strategy to eliminate bias and divergence when it 
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is to be applied to this sort of process. 

(ii) The use of the canonisation procedure 

to calculate the state transition matrix 

improves the performance of the Kalman Filter 

because the estimates and error covariances 

generated by the filter are now consistent. 

When using the simplified canonisation procedure, 

i.e. the eigenvector matrix is assumed to be 

constant, this form of the Kalman Filter is some- 

what empirical in nature and so, once the eigen- 

vector matrix has been calculated, is process 

dependent. However, this is not a defect in the 

filter because it enables the fitting of the 

Kalman Filter to the process under study. In 

view of the increased computational requirements 

of more sophisticated filters and the uncertainty 

present in the modelling of most chemical processes 

this feature must be a considerable asset to this 

type of filter. One failing of this type of 

filter is that it is unable to cope with gross 

modelling errors and so it can only be applied 

with mathematical models of proven accuracy. 

(iii) The main asset of the Adaptive Kalman 

Filter is its model error compensation strategy. 

The results obtained show that this filter 
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efficiently removes errors due to poor modelling. 

The main drawback with the Adaptive Filter is the 

time needed to determine the Fy matrix. 

(iv) When using either the Adaptive Filter 

or the modified Extended Kalman Filter the 

problems associated with the choice of Q matrix 

are overcome. 

(v) The cycle time (30 seconds) achieved 

during the on-line filtering experiments shows 

that the application of thése modified forms 

of the Kalman Filter is a feasible proposition. 

10.2. RECOMMENDATIONS FOR FUTURE WORK 
  

At the conclusion of any research project 

although a large proportion of the problems 

originally investigated have been solved, it is 

inevitable that further areas requiring some 

study are uncovered. As a result of this 

particular project it is apparent that further work 

is required in the following areas. 

(i) There is considerable scope for further 

research in the area of dynamic modelling of 

the evaporator. In cases such as this, where 
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the dynamic behaviour is poorly understood, it 

would be interesting to see whether better models 

could be obtained by the use of a pseudo random 

binary sequence technique for calculating 

transfer functions - see Momen (10.2). 

(ii) Further work needs to be done into the 

interpretation of the results generated by the 

Adaptive Filter regarding modelling erros. 

Ultimately it would be preferable to use the 

Adaptive Filter as a means of improving the 

model and then be able to revert to a simpler 

form of Kalman Filter. 

(iii) The techniques which are now available 

for improving the performance of the Kalman 

Filter in chemical engineering applications are 

sufficiently sophisticated for this means of 

estimation to be regarded as reliable. Thus, 

further research could now be usefully carried 

out into the use of the Kalman Filter in on-line 

control applications. 
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