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Summary 

A review of both analogue and digital computer methods applied in 

the solution of the fluid network problem precedes a discussion of 

computational aspects and a description of the matric topological methods 

used. A new approach to the problem by ordering according to a 

Hamiltonian route is considered and a special matrix A defined for the 

purpose. Some properties of A are investigated and its operational 

aspects developed using newly created algorithms, especially one for 

finding such a route in a network. ~ The use of # is explored in this 

context by applying it to the solution of recently published network 

| examples. The computed results are described in some detail, together 

with the relevant programs. 

Key words: Network, graph theory, Hamiltonian path.



ACKNOWLEDGEMENTS 

The Directors and the Governors of the Polytechnic, Wolverhampton 

for their sponsorship, kind support and facilities provided in connection 

with this research. 

Professor G.V. Jeffreys 

for providing research facilities in the Department of Chemical 

Engineering, the University of Aston in Birmingham. 

Dr. B. Gay 

for his supervision of this project and the many helpful and constructive 

comments in the preparation of ‘this thesis. 

Computer Centre Staffs 

at the Polytechnic, Wolverhampton and the University of Aston in 

Birmingham for their assistance with processing the computer programs 

involved with this research.



Summary 

CONTENTS 

Acknowledgements 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

iL 

2 

2 

10 

APPENDIX 

EXAMPLES 

Introduction 

Recent Solution by Computer 

Computational Aspects 

A New Ordering Approach; Hamiltonian 

Path Considerations 

Some Mathematical Properties of A 

The Application of A in the Network Problem 

The Non-Linear Flow Problem 

User's Guide to the Chained Algorithms 

Results, Discussion, Comparison 

Conclusion, Summary of Theory and 

Further Research 

Regula Falsi 

Algorithm DIR 

= WHE 

S MR 

fn ATOM 

= MAL 

s BREN 

Eo HAMIL 

= DISP 

zs COLL 

S HAMIL9 

= DISP3 

Bibliography and References 

Nomenclature 

Index 

Page 

a5: 

21 

29 

32 

38 

41 

45 

49 

Sis 

58 

61 

65 

70 

76 

81 

86 

93 

97 

99 

101 

103 

118 

123 

125



CHAPTER 1 

Introduction 

The importance of the connections of systems has long been a 

preponderating and preoccupying concern of mankind. It has appeared in 

mythology as a problem in the labyrinth of Knossos and a practical 

solution with Hercules cleansing the Augean stables. It has held sway in 

the Roman Empire with the aqueducts and the sewer system which Gibbon (1.1, 

1.2) says '...rank....among the noblest monuments of Roman genius and 

power' and describes as ‘stupendous’. The Roman construction of roads 

linked the Empire for rapid communication, transit of troops and 

conveyance of tributes to Rome. Navigation and exploration gave rise to 

cartography and metal mines required roadway enumeration in the course of 

ore extraction. 

As time passed it became apparent that multiplicity meant complexity 

and that obtaining a solution often resulted in an approximation that was 

barely tolerable. -Today the general network problem is of greater 

significance than ever, embracing heart by-passes, motorway interchanges, 

integrated circuit layouts, timetables, bridge construction, chemical 

process plants, mine ventilation, distribution services, communication 

and computer links, neurological considerations and the like. 

The purpose of this research is to investigate in the field of fluid 

network analysis with a view to devising improved techniques, implementing 

new computer methods, reducing repetitious and tedious data handling and 

compacting the concepts.



Historically the significance of the difficulties became apparent 

when the problem was expressed analytically. The use. of mathematics in 

its predictive function confronted the network practitioners with the 

realisation that analytical solutions did not exist, that new theories 

were needed and that new fields had to be opened before achieving success. 

The response was surprising and incredible. The most famous is that of 

Kirchhoff (1.3) who produced the laws of conservation of current at a node 

and zero sum of potential drops and rises round a circuit. mca have been 

called 'First' and 'Second' but were indiscriminately referred to by 

Kirchhoff himself (1.4) and are more accurately called Kirchhoff's Current 

Law (KCL) and Kirchhoff's Voltage Law (KVL). Apart from the Axiom of 

Connectivity they form the basis of Graph Theory, which developed a 

century later. The obvious analogy between KCL, KVL and pipe flow was soon 

discovered. It is observed that the former becomes a conservation of mass 

law, the latter a summation of pressure differences while the actual 

disparity, the electromagnetic field, is often overlooked. The Kirchhoff 

laws, however, are associated with the graph rather than with the electric 

phenomena. 

On a practical note it is surprising that a mining engineer, Atkinson 

(1.5), put forward a mathematical solution for flow in parallel branches. 

He had arrived at the problem when he realised that 'coursing' the air 

through mine workings (i.e. serially) was inferior to ‘splitting’ the air 

down parallel branches. The flow being non-linear meant that the root 

could not be found immediately for the two simultaneous equations. He 

approximated by using a chord on the curve, the 'Regula Falsi’ (1.6) 

method (cf Appendix). The procedure has been used for a good first 

approximation before proceeding with, say, the Newton-Raphson method (1.8). 

Atkinson's name was commemorated by using it for a unit of mine airway 

resistance, now superseded by the Gaul in Syst&me International d'Unités.



The seminal paper for pipe flow was undoubtedly that of Hardy Cross 

(1.9). He assumed a small mesh error in the flow, expanded binomially and 

calculated it -- a first approximation method used by Newton. The process 

was ‘carried out for each mesh of the network then the calculated errors 

were re-applied to then uranchess some branches were in several meshes and 

so would have several corrections. This paper was on city water supply 

and distribution of water in buildings. 

The solution of electrical problems had advanced considerably by this 

time, the difficulties of pipe and pipe network problems were just being 

realised. The electrical cases were involved with essentially linear 

elements i.e. the current was proportional to the ene applied. For 

pipes the resistance varied with the velocity and so the work of K4rm4n and 

Prandtl (1.10) and others indicated that regimes of flow would affect the 

resistance in different ways. A variety of formulas generated from 

laboratory data appeared. The Americans preferred something like the 

Hazen-Williams formula (1.11) and used an index of flow of 1.852 for Q. 

In mining engineering this approach was also adopted by the Hay Committee 

(1.12) in 1924; the index was taken as 2, though the practical variation 

is between about 1.85 and 2.2. There are other difficulties here, 

connected with the inaccurate measurement of yell ty. and the rapid 

decrease of cross-sectional area. 

Two classes of analogue computer ‘were used in the period 1930-50. 

The first type was electrical for modelling fluid flow, the second was 

hydraulic for simulating air flow (1.7,1.8). 

Special methods of solution were also attempted, for example the 

graphical scheme of Freeman and Howland (1.13). In this they used design 

curves to find successive working points; by moving from chart to chart an



      

   

es and nomograms were constructed for the appropriate power    



CHAPTER 2 

Recent Solution by Computer 

Analogue 

The invention of the transistor in 1948 has had the most significant 

influence on fluid network solution. At that time the response speed was 

limited and the importance of the device was not immediately grasped. 

Non-linearities were sought and investigated. Maas (2.1) used the tungsten 

filament lamp to approximate to the square law and his Lamp Analogue was 

used successfully for the Dutch State Mines. Scott (2.2) examined this 

idea for the National Coal Board; the limitations were those of range and 

Power consumption. The Americans constructed the filament itself to 

specification for McIlroy's (2.3) Fluistor. The overall concept was to 

connect non-linear elements as per the network to be simulated, apply the 

appropriate voltages then measure the currents directly. The numbers 
“ 

would be scaled. The disadvantages of analogue computers were evident, 

that a map had to be made and a patch panel connected. 

An analogue of linear resistance elements which were successively 

adjusted was developed by Scott, Hinsley and Hudson (2.4). The flow 

formula P = RQ? was linearised by P = SQ where S = RQ with S recalculated 

" from S 2G, + RQ and the process iterated to balance. This mt] 

calculator required patching; it was produced by Nash and Thompson for 

the National Coal Board. A portable version was made in Japan by Hiramatsu 

(2.5). An improvement was proposed by Scott and Hudson (2.6) with their 

automatic analogue. In this a comparator relay indicated balance of the 

current for square-law flow so that measurements could be taken, otherwise 

a motor-driven potentiometer correction was achieved by using a negative- 

feedback signal. This analogue was not built 

3



but the prototype behaved successfully, 

To complete this brief outline of the analogue approach, the latest 

computer is transistorised with circuits designed to produce a Square-law, 

1.8-law or other law for H=RQ” at the setting of a rotary switch. The 

device was made by Network Analysers Limited (2.7) and is thought to be 

the largest constructed so far, simulating 410 branches, It was 

commissioned by the Mining Enforcement and Safety Administration, Denver, 

Colorado. The elements were newly designed by Williams (2.8) using, 

integrated circuit operational amplifiers with the law of flow formed by 

a function generator. Suitable buffering using a silicon bi-polar 

transistor improved the accuracy so that errors near zero were reduced 

cpnaicerstiy, Digital voltmeters were also given improved accuracy by 

incorporating integrated operational amplifiers in their design. 

In the overall consideratiéns of the analysers and analogues the 

main disadvantage, of having patch panels, is an advantage for simulation 

of a network. A combined simulation and solution has very pleasing 

features; a network change can be designed and calculated on the same 

machine. The ability to feed signals to the device from the system can 

be used for monitoring against predicted values, thus the provision for 

Planning well ahead of Possible fault combinations is useful, as is the 

Possibility of nearly immediate calculation, simulation and correction 

with an on-line machine, 

Digital 

When the transistor was able to be used as a fast switch it was 

Possible to replace thermionic valves with devices that were smaller, 

more robust, longer lived, less Power-consuming and less costly. The 

digital computer then had the capability of solving network and general



scientific problems involving repetitive calculations and large systems. 

This has advanced even panther with the introduction of microprocessors. 

| 
, 

The emphasis on the method of network solution changed with more 

consideration being given to convenient data handling, the realisation 

that some form of ordering was necessary and that graph theoretic relations 

would assist in computer programs. ) 

In 1961 Branin (2.9) produced a paper on the theory of linear graphs 

which was applicable to the electrical network problem. This was an 

extension of previous work and the prolific fundamental work of Kron 

-(2.10). The elements of graph theory were reviewed and topological 

matrices presented together with their interrelationships illustrated by 

Roth's diagram and its extension. The orthogonal transformation method 

of Kron was introduced and the nodal, mesh and tree method solutions were 

discussed, The existence of uverces of the orthogonal matrices, proved 

by Roth, were explained and their uniqueness established. The definitions 

and details of these matrices are deferred a little because the electrical 

case has an opposite definition of A , the current flow is different and 

the effects of mutual inductance do not exist in the case of fluids. 

Ingels and Powers (2.11) used an IBM 650 computer to solve networks 

by a Hardy Cross method. They used Taylor series to expand the law of 

flow, arriving at the first-order approximation which Hardy Cross had 

reached by binomial expansion. The next term in the series would give 

second-order convergence and is the basis of the Newton-Raphson method. 

Among the networks they solved was one of Doland (2.12) used in a paper 

immediately after that of Hardy Cross.’ They concluded that the method 

always converged. For convenience they took a power of 2; the similar



airflow networks had been computed with this power by Taylor (1.8) using 

a Newton-Raphson method some three years earlier. 

Daniel (2.13) seems to have overlooked Branin's considerable work and 

describes the topology of the network with his own ‘circuit matrix' C 

(which corresponds to € in this thesis). The direction of mesh flow was 

taken arbitrarily. He used the Hardy Cross method of solution for the 

non-linear networks and made enlightening comments on convergence to a 

solution. Considerable fluctuation was observed even when simple changes 

were made to the network. He thought that convergence was achieved by 

taking the simplified pressure-drop formulas, such as that of Hazen and 

Williams (1.11). However, the iteration to a solution he called the 

"inner cycle'; the process was modified somewhat for compressible gas flow. 

The graph theory aspect is still of interest, Daniel described the 

formation of tree and non-tree arrays, showing that there was a pace ieee 

correspondence between the non-tree branches (links) and the meshes. He 

stated that it was convenient to take the mesh flow direction from the 

link direction, there being one link per mesh by definition of a tree. The 

consideration of the minimum number of branches connected in other meshes 

he termed ‘overlap'; '...one of the so-called criteria for convergence of 

the Hardy-Cross method' (his hyphen). One program was based on the 

Newton-Raphson method, which he observed would not be affected by large 

overlapping meshes but would take substantially longer to solve than by the 

Hardy Cross way. He further commented that the rate of convergence also 

depended ‘strongly’ on the pressure-flow characteristics of the common 

branches and that mesh selection is often made with pipes of nearly the 

same diameter in each mesh. Scott (2.14,2.15) had commented on this for 

mine networks, that high resistance branches should not be used as common 

to two meshes. In an appendix Daniel derived the condition for convergence 

of a Colebrook-White equation and showed that practical values will cause



such convergence. 

| 
| The paper of Gay and Middleton (2.16) approached the problem from a 

graph theoretic point of view and used orthogonal transformations to 

reduce one matrix size and improve inversion times. The foe matrices 

used were A, Band C. A is a branch by node incidence matrix where 

a branch is represented as directed towards a node by +1 and at its other 

end node by -l1; the remaining nodes are not involved with this branch and 

so are ascribed 0. Each row of A therefore has one +1 and one -l. In 

use, however, the pressure-drops along a branch are relative to some datum 

node so its column is removed from the augmented A matrix to avoid a 

_vredundant equation and provide a consistent set. The array is sparse, at 

most consisting of 2b non-zero entries in a size of b(n-1), where b and n 

represent branches and nodes, 

The B matrix is a branch by tree node-to-datum path array, the 

direction of a tree branch away from datum being taken as positive. 

Handling can be improved by forming B, » the tree branch array, then 

numbering the links upwards from n inclusive to b3 the latter represent 

the closing branches of the meshes 1 to m, where m is the number of 

meshes and m=b-ntl. The link direction defines the sense of circulation 

for its particular mesh (pace Daniel (2.13)), and By =O by definition. 

The branch by mesh matrix C indicates the direction of a branch 

with respect to a mesh by +1 if in the same direction, -l if opposite 

and 0 if absent from that mesh. The matrix size is b by m and its 

sparsity depends on the branches common to many meshes. Taking the link 

numbering mentioned, there is one link per mesh, that is +1 on the 

diagonal of the link-mesh part of the matrix 

GQ, = U (2.1)
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a unit square matrix of size m by m, 

The nodal method of solution adopted by Gay and Middleton (2.16) 

used the A andC matrices to transform nodal quantities to branch 

quantities and mesh eee to branch quantities, respectively, when 

pre-multiplying the appropriate vectors. These matrices are related by 

AC =0 CED) 

and GA=0 (2.3) 

When e' is the vector of nodal pressures relative to the datum node then 

e =Ae’ (2.4) 

is the vector of branch pressure rises and 

i= C4 (2.5) 

similarly for the branch flows in terms of the mesh flows. 

If the branch pressure sources are E then the equivalent mesh pressure 

sources are 

Ez =¢E (2.6) 

while for the vector I of branch flows due to external inputs the 

vector of node to datum path flows is ; 

r=A1 oe) 
Because of equations (2.2) and (2.3) 

Ki=o (2.8) 

and Ge=0 ; (2.9) 

which are the topological versions of KCL and KVL respectively. 

If the network is considered as analogous to an electrical linear 

steady-state network then a similar set of laws holds 

V=Er+e (2.10) 

where V is the branch pressure vector. 

se es : @.11) 

with J as the branch flow vector.
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V=ZI (2.12) 

where Z is the branch resistance matrix, the Ohm's Law type of equation. 

SEY V, (2.13) 

with Y the admittance matrix of Mho's Law, the reciprocal of the 

resistance matrix. Both Z and Y are diagonal matrices in fluid 

applications. 

Substitution of (2.10) and (2.11) in (2.13) gives 

te ee) (2.14) 

Rearrangement and pre-multiplication by K leads to 

Aye = A(l-yE) +Ai (2.15) 

The last term is zero, from (2.8). Al is ie from (2.7) and e =Ae’ 

from (2.4) hence 

Ayae' = I-AYE (2.16) 

and inverting to obtain e » the vector of nodal pressures 

e'= (Ava) (1'- Ayn) (2.17) 

The branch flows can be obtained from the vector J as 

J=¥V = Y(E +Ae+) (2.18) 

Using the C matrix together with Ee =O a mesh method of solution can 

be reached similarly 

i’ = (zc) G(m- zr) (2.19) 

A linearisation method propounded by Bending and Hutchison (2.17) 

was claimed to be simpler in conception, more general in application and 

often shorter in computation time than the Hardy Cross and diakoptics 

methods used by Gay and Middleton (2.16), Their method was to derive a 

set of equations of the network which consisted of mass balances for each 

node, pressure drop equations for each branch, specified pressure drop 

equations for each pump, input and output flow rates and enough nodal 

specifications to define the problem. The laminar and turbulent regimes
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were separately defined with the’ latter giving rise to non-linearities 

which were linearised using an initial guess of velocity. The method 

converged very slowly with pipe velocity oscillation about the correct 

values, which could be. improved by taking the mean of consecutive velocity 

results. The large number of sparse simultaneous equations had to be 

solved for each iteration, a two-stage Gaussian elimination and operator 

list were employed. The contrast with the Hardy Cross and diakoptics 

approach is that while the topology and enough extra specifications were 

needed for input there was no need for mesh specifications nor two sets of 

matrices to define decomposition. They concluded that linearisation was 

a satisfactory general method for steady-state solution of a pipe network 

with a single incompressible fluid. 

The solution approach of Mah (2.18) was to restructure the problem by 

decomposition techniques and use efficient data handling so that both the 

density of the mathematical verresente tian and the number of operations 

would be reduced. Mah drew attention to the existence in his matrix of 

two types of equation, Type 1 being linear (KCL) and Type 2 non-linear 

(KVL). The coefficients of these equations were given by the incidence 

matrices M and C-(A and C in this thesis). The partial ordering 

was accomplished by using an algorithm which reassigned nodes and branches 

so that no node was incident with a branch which had already been 

assigned to a previous node. The structure achieved was upper triangular 

and fewer operations were required per iteration. The solution could then 

be performed using the product form inverse, which was further extended 

to the non-linear equations by taking a row-oriented product form. A 

second solution method improved on this by eliminating the elements 

below the diagonal for the first (n-1) rows and performing Gaussian 

elimination on the remaining submatrix in the right hand corner section 

of the matrix.



a: 

The number of calculations for the mesh equations were reduced by 

using an algorithm to find a near-minimal set of branches for the meshes 

to be solved; the multiplications per iteration thereby being reduced. 

Mah claimed this as a new direction in the field of computation with the 

use of graph chearetias techniques directly enhancing the efficiency of 

computation. 

A simpler version of the orthogonal mesh method was proposed by Gay 

and Preece (2.19) where the transformed network can be regarded as 

consisting of ‘open' and 'closed' paths, the tree node-to-datum and mesh 

paths. The vectors associated with this network are primed and 

Partitioned into tree and link submatrices, thus 

  

(2.20) 

By ey a 
ay: (2.21) ‘ : 

where I is the vector of nodal flows and constitutes the flows in the 

v = [¥ 

Ms 

  

node-to-datum paths. Because the sum of the pressure rises and sources 

round a mesh is zero (from KVL) 

t. 
2.22 u, ¢ ) 

The flows in the original network may be related to the flows in the 

: E,+e 
vor Yate 

orthogonal network by a transformation operator 

J=exs (2.23) 

The two sets of paths can then be related by 

or [Bic] (2.24) 

The pressure vectors are similarly related 

Vien av (2.25) 

so ves@s) = *Faxy' (2.26)
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Using the previous equations (2.1), (2.9), (2.20), (2.21), (2.24) 

together with G= Ui 

ac 1, , ~ ' 
i= (Ez.c, + 2) (5, - C,2,B,1) (2.27) 

and E, = C.Ey+ E, a f (2,28) 

The flows can be calculated using (2.23), (2.12) and (2.10). 

The improvement of this method over the usual solution by inversion 

is that the matrix to be inverted is of size m by m instead ofx-\ by w-( 

also links of zero resistance can be included if required. The advantage 

over the usual transformation method is that smaller topological matrices 

are used, together with a simpler notation due to ordering.



CHAPTER 3 

Computational Aspects 

Recent Computer solution 

In the case of analogue solutions, which may be dismissed here quite 

shortly, the major improvement has been made with the design of the 

function generator to represent the required law. The disadvantage of 

patch panels has not yet been avoided, automatic patching has been 

suggested. The nearest approach seems to be that used by Membrain (3.1) 

with the construction of a digital computer simulating an analogue, which 

is set by keyboard. 

Improvements for the digital solution were made in the handling of 

data on an orderly scale by Kron (2.10) with the introduction of his 

tensors, by Branin (2.9) with the topological matrices and use of digital 

computers. The size of the network caused difficulty when large, the 

solution then being by Kron's diakoptical method. The initial way of 

solving appeared to be by setting up the Ohm's Law type of equation and 

inverting the coefficient matrix or by using some form of elimination. 

This type of inversion would be sized for the number of branches (assuming 

the primary concern is with branch flows) and the inversion time would 

be proportional to@i). This matrix was usually. symmetrical so the 

inversion time could be reduced toe)/2 » Data input to a computer would 

usually include all zeroes, hence a items, 

The topolegical matrices used to describe the network reduced the 

drudgery of setting up some of the equations and were able to disentangle 

the meshes, thus a column of the C array gives all the branches in a mesh 

and from the Happ (5.1) relationship 

15
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Cc, = -B, Ay (3.1) 

C can be generated from the data input of the other arrays. These 

matrices have the same advantage as the inverted coefficient matrix that 

once found they can be used repeatedly for that network. As indicated 

elsewhere, the A matrix is sparse and the others may have large sections of 

zeroes. Handling of these can be improved by using sparsity techniques 

(3.2). Two cases are immediate, that a resistance matrix is diagonal for 

a fluid network, hence its trace can be entered as data and the product 

made without any zeroes. The saving on data input is then ve? - b, on 

multiplication v2 - b and on matrix addition(b-1 ¥ The input of A can 

be made by defining the branches with their end mates as in Preece's (6.1) 

node connection panel. As the unaugmented A array has b(n-1) entries 

this saves b(n-3) zeroes being entered. Quite often two of the three 

topological matrices have to be entered, it is convenient to enter one 

and calculate the other and hence reduce data input error and validation 

time. If the topological macrices can be ordered in some way there can 

be computational savings of space and time. 

The ordering of links by Preece (6.1) had not only reduced the Ce 

array to diagonal but had made it a unit matrix, thereby eliminating a 

(b-n+1) by m matrix multiplication. The adoption of the B matrix meant 

that By was a null matrix. 

Mah (4.2) applied ordering with sparse techniques to the Gay and 

Middleton (6.6) test network. His occurrence matrix was composed of 

the partitioned matrices 

  

in the notation of this thesis. It was improved by renumbering the 

branches using his Algorithm PO to obtain an upper triangular matrix for
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Ay which was subsequently inverted more economically, The mesh matrix 

was improved by using Algorithm MLC to find near-minimal length meshes 

and reduce the density of the occurrence matrix. The operations required 

for R meshes he quotes as of the order 12k, but having obtained the 

improved structure it can be used eT esAle with savings in operations 

each time. With a network directed according to some sign convention 

the inaccessible node of PO is made datum and combined into Mah's 

Algorithm PODA. 

Inversion and inversion methods have been regarded as the most 

fruitful way of reducing computation time (which is te related to 

storage space and cost) because of the wide applications in the scientific 

field. Gay and Preece (6.8) quoted relative inversion times for Gauss- 

Jordan, ICL package, Choleski and Caffrey methods and mentioned 

Branin's LAT (link at a time) solution. The importance of economical 

working is significant where any solutions are required for a problem 

or where the network is large. For small one-off problems the data 

validation print-out and output can take most of the time. 

The Bending and Hutchison (2.17) linearisation method used Gaussian 

elimination for the Gay and Middleton (2.16) test example and ran in 

Fortran on the Cambridge University Titan (prototype Atlas II), using 12K 

48-bit words and taking 2.1 seconds for 6 iterations to finish. Time 

comparisons are machine- as well as method-dependent; it is difficult to 

define and compare computer powers. 

Mah (2.18) used the Product Form of the Inverse, which expresses the 

inverse as a product of elementary matrices and corresponds with the



Gauss-Jordan elimination method. With his occurrence matrix including 

non-linear rows it was possible to modify the PFI to perform for row 

eee than column orientation. An example of the reduction was quoted 

for b=200, m=10 with nodes of average degree 3. Gaussian elimination by 

a complete matrix multiplication required 2.7x10° products, PFI 3.1x10°. 

A further reduction to 6ctecioe multiplications was possible by 

partitioning and lower triangularisation with back substitution, The 

computer used was not stated nor was the time. Gay and Middleton (2.16) 

using Daniel's (2.13) method needed 15 iterations and took 30 minutes on 

an Elliott 803 computer for the maximum overlap case. 

The method of solution affects computation time and storage, fluid 

networks being non-linear attract the Hardy Cross method, or the Newton- 

Raphson because of its second order convergence. The emphasis on these 

methods is linked with the number of iterations on the inner cycle, if 

these can be reduced a saving of time is achieved. The difficulty has 

often been to find some usually empirical method that will accelerate 

convergence. Various factors have been proposed but they seem to be 

characterised by the type of network. Oscillations in the solution 

cause an increase in the number of iterations and are not easy to avoid. 

They may require another form of mesh selection. The diakoptical methods, 

e.g. Mullineux and Reed (3.3), are usually applied to large networks; 

node-to-datum analysis can be performed and multiple couplings of effects 

between branches can be incorporated if required. 

Rather than calculate with either the mesh method or the nodal 

method a combination of both can be used as in the mixed-mode method of 

Branin (5.2) and the hybrid method of Hamam and Brameller (3.4).
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The orthogonal method, used by Kron (2.10) with his tensors has 

become popular as a similarity transformation with matrix methods. The 

matrices A and Care rectangular and cannot be inverted but are square 

when used as AYA or ézc. Similarly with the combined transformation 

operator ¥ = Bic] which is b by (m+n-1) when used as in equation 

(2,26) 
' a ' . 

Vi = (¥Z4)I G22) 

essentially sets the system as being transformed to 

1 me) 
Vi ZdJI (3.3) 

ef. Kron (2.10). 

The Present Work 

A description of the computers and languages used for this thesis is 

apposite. Initial exploration was made on an ICL 1903A 96K words machine 

by hands-off bureau working. The language used here was Fortran IV. Some 

approximate times of inversions are covered in the Results, Chapter 9. 

The other two machines were Hewlett-Packard 2000E and 2000, both used 

Separately in interactive mode. The Wolverhampton version had two fixed 

and two interchangeable discs with a capacity of 72K words of /@ bits. 

The speed of operation was not quoted, being overshadowed by the teletype 

printing speed in any case. The interactive approach was particularly 

appreciated because of the immediacy of error correction. It was also 

a spur for data reduction and more problem solving. Several thousand 

minutes were logged. The two systems were not compatible, having some 

differing commands, four different teletypes, two different visual display 

units for the purposes of this research. Acoustic couplers were used on 

occasion. Paper tapes were not compatible. 

The language involved here was Basic, Hewlett-Packard E level was used 

mainly. The programs were written after flowcharts had been cousiructed
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for the algorithms and were tested, rewritten or modified heuristically. 

Continuous looping was detected by inserting a print order at a flowchart 

junction with a code letter, Such diagnostic programs were extremely- 

useful for finding repetitious node sequences made by an algorithm 

traversing a loop in the network when it should have stepped out. In 

general the program listings in this thesis are not diagnostic but 

diagnostic statements occasionally appear. 

The program size is restricted in Basic and depends on the aggregate 

size of the matrices used and what might happen to them; this affects the 

length of a program. The facility of a CHAIN command was used so that a 

suite of programs could be linked together and worked through sequentially. 

The variables and arrays common to the programs are stated in the lowest 

numbered line of the program and repeated in that order for the subsequent 

programs. After one program has been completed the common material is 

taken on to the next chained pEaeeatt and the first is overwritten. It is 

Possible to put intermediate answers into the common arrays and carry them 

forward that way. Temporary arrays are entered under a DIMENSION statement, 

they are automatically destroyed when the next een is chained. This 

type of chain is distinct from the chain of graph theory, some care has 

been taken to keep the meanings separate in the text. 

The listings were produced by calling the program from the User 

Library and punching on tape, thus getting the actual program used. In 

the absence of a Hewlett-Packard line printer and with the difficulties 

of sprocket holes and left hand margin space the tape was run on a 

Friden Flexowriter with the margin adjusted, the line width adjusted 

manually and the print made on a good quality teletype roll.



CHAPTER 4 

A New Ordering Approach; Hamiltonian Path Considerations 

Attempts to improve the calculations by ordering have produced tri- 

diagonal matrices and compressed Ay ,» for example. Such compression can 

forfeit the advantage of handling a sparse matrix. The approach of Mah 

(4.2) in his algorithm PODA while reorganising the tree and Lee 

the branches causes the creation of nodes on limbs, the pendant nodes. 

While nodes on the ends of tree branches are not necessarily prohibited 

they can cause meshes that seem larger than are ideally required. For 

such a node the branch joining it must be a link by definition, the rest 

being tree branches which then contribute to the overlap problem by 

giving to the calculation extra branches in each mesh. 

Applying this Consideration of ordering to the graph matrices A ,B 

and C it was realised that certain improvements might be possible. Ay 

describes where the links are in the network and as these links can be 

anywhere reorganisation would appear to be awkward. Cy corresponds with 

Ay and the mesh numberings are improved by the arrangement for Cg to be a 

unit matrix. By is a zero matrix as the links cannot be in the tree path 

by definition. This leaves By » and it is observed that the datum can be 

taken arbitrarily and the nodes numbered likewise. From this consideration 

it seems reasonable that if there is just one tree branch from the datum 

node to the 'next' node then this branch will appear in all node-to-datum 

paths, A line of 1's in theBy matrix then occurs. Similarly with the 

second node, if there is one tree branch to its "next' node then all the 

remaining node-to-datum paths must go through it and its By row will 

contain one 0 (for the previous branch) and then all 1's. This argument 

can be repeated similarly for all the remaining nodes up to the last for 

aL
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(n-1) paths. 

As the nodes can be numbered in any fashion it would be more general 

to start at 1 and finish at n, rather than starting at n; as the datum 

node has to be eycrided it can be numbered 0. The Be matrix thus 

generated is: ] 

DA Le ccteweisene & 

TUS eSpace. 2 

DRL soecisis serie k 

q 

which is not strictly upper triangular but could be called ‘filled upper 

triangular' so that the leading diagonal is included with 1 everywhere 

else understood. A shorthand notation is suggested to save copious 

writing. A symbol from the Attic Greek alphabet A (digamma, now unused) 

is sufficiently distinctive Bol allusive. 

An immediate result is that the By, matrix is made implicit 

a’ 
p= By = ea (4.4) 

By oO 

Mathematical and computational advantages accrue. 

The B matrix now having been structured gives rise to three further 

questions, what does it mean geometrically, is it obtainable and is it of 

practical significance? The answer to the first is that from this 

definition the tree must go from node to node continuously, i.e. no node 

is reached twice on such a path. This type of traverse was proposed by 

Sir W.R. Hamilton, where, if the journey returns to the starting node a 

Hamiltonian circuit or tour is said to exist. What has been made here in 

the B, matrix is not a circuit but will be referred to as a Hamiltonian



path. Clearly, if a Hamiltonian circuit exists there will be at least 

one Hamiltonian path in it. 

Hamiltonian Considerations 

Conditions for the existence of a Hamiltonian circuit or path have 

been the cause of concern since their discovery. At present no necessary 

and sufficient condition has been found. Various theorems and corollaries 

of different strengths have been proposed; some of them have been 

investigated in this context of practical distribution networks. 

The many theoretical investigators of graphs included Whitney (4.3), 

who looked at the aspects of chains and separability. A graph is separable 

if it can be divided into two or more sub-graphs by the removal of a single 

node, the cut-node. Whitney produced theorems which included a pacceee 

and sufficient condition for a graph to be non-separable (that it should 

contain no cut-node). 

The investigations of Dirac (4.4) involved the degrees of the nodes, 

that is the number of their incident branches. In his notation, if the 

degree of a node is @ then a sufficient condition that the graph is 

Hamiltonian is that for each node v of all the n nodes of the graph, 

Q(v)2n/2. For computing purposes this implies that the degree of each 

node is needed as extra information, which might be obtained by summing 

the columns of A . The condition was strengthened by Pésa (4.5) who 

considered the Hamiltonian path and stated that for a graph with more than 

two nodes the degree of each should be at least (n-1)/2. 

Berge (4.6) in his classic text proved that in a graph where every 

Pair of nodes is joined in at least one direction, a 'compiete’ graph, then
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it contains a Hamiltonian path. He related this to Dirac's theorem. Some 

interest in matching nodes with their connected nodes led to the Hungarian 

Method (4.6); it was proved that by taking half the out-degrees of 

successive nodes then a Hamiltonian path formed a decreasing sequence. 

A study of Hamiltonian paths in tree graphs was made by Cummins (4.7), 

where the nodes themselves represent the trees of a digraph. Kamae (4.8) 

investigated the generation of all such trees and gave an algorithm for the 

generation of a Hamiltonian path. Another approach was that of Kishi and 

Kajitani (4.9) who decomposed tree graphs into subgraphs then constructed 

Hamiltonian circuits using a 14-step algorithm, Further work on tree 

graphs was performed by Chen (4.10) who also published more information 

in that reference. In the utilisation of these works for this thesis it 

was considered that as only one Hamiltonian path need be found for A the 

importance of tree graph relationships must take a lower priority. 

Wang and Kleitman (4.11) considered the degree sequence of the nodes 

in the graph and gave a proof which under certain conditions was necessary 

and sufficient for the existence of the graph. One of the iff conditions 

was that the degrees of all n nodes should be at least n, which is not 

realistic for practical networks and so their constructing algorithm 

has not been used here. 

The so-called Kozyrev-Grinberg necessary condition for a 

Hamiltonian circuit is referred to by Gehner (4.12). It is 
n 

Ds a2)(E = £4))= 0 (4.5) é y i 
i=2 

where the graph has n nodes, fs is the number of interior regions, fi the 

number of exterior regions bounded by i branches, as determined by some 

circuit. While of relevant interest it was not worth while constructing 

an algorithm because a Hamiltonian path was considered as fundamental.



Some more recent results have been published in a book by Andrd4sfai 

(4.13). It defines a graph as 'strongly directed' if the branches are 

orientated so that each node is accessible from any other along directed 

paths, often referred to as the traffic condition. Then for a simply 

connected, strongly directed graph of n nodes the sum of the in-degree 

and out-degree of each node must be at least n. 

It is perhaps here that there is a clue to the existence of a 

Hamiltonian path in practical distribution networks, the traffic condition 

is designed whereas graph examples are constructed as graphs. Other factors 

such as economy also influence the practical design. 

A recent address by Lesniak-Foster (4.14) summarised the sufficient 

conditions for Hamiltonian graphs and included various properties. He 

concludes that the best possible sufficient condition is that of Chvatal. 

Wide interest in the subject ie leading to the development of a new field 

called ‘hamiltonian theory’. 

Reverting to the practical problems, an approach to the difficulty 

can be made by looking at the exclusivity aspect. Mullineux and Reed (6.2) 

postulated and proved that a graph that can be separated by the removal 

of two nodes and their incident branches to leave four or more sub- 

eraphs cannot contain a Hamiltonian path. This should assist here by 

distinguishing such graphs. A graph which does not have four or more
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subgraphs does not necessarily have a Hamiltonian path; this problem 

can be tackled in another way. In a paper by Roberts and Flores (6.3) is 

proposed an M array of node connections which could be searched for a 

Hamiltonian path. While it would appear that this is a brute force and 

combinatorial way it must be borne in mind that for the conjectured 

method of solution just one Hamiltonian path is required and that this can 

reduce the search, 

For the system to be of use in the practical network context it is 

thought that the differences between graph theoretic and fluid networks 

ought to be regarded. If the Hamiltonian path existence cannot be found 

for a theoretical network then there may be difficulties in the practical 

case. Definitions of the practical case should be regarded more closely: 

i) a node being the junction of two or more branches means that there is 

not a node at the end of an isolated branch, in other words the graph is 

"connected' in the graph theorenic sense, 

ii) parallel branches can be calculated using some reciprocal law such as 

1/R® Die: the parallel branches can be lumped for the purposes of a 

global solution; the graph theoretic definition of this is that the graph 

is ‘simple’. 

In this context it is thought that the practical graphs have a 

feature not necessary for theoretical graphs. It stems from consideration 

of the practical networks being distributive; there is a supply and demand 

at each node, an intake and return, a connected positive and negative. 

Thus the graph theoretic example of Deo (4.15) of Fig. 4.1 has a 

Hamiltonian path and no Hamiltonian circuit but is thought to be 

impractical because of being graphically separable at its cut-node. 

In the case of digraphs the M array can be completed with the nodes
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Fig. 4.1 

in the array as those which are reached in a positive direction, The 

search can then be made and if a Hamiltonian path exists it will be found. 

Because the array is smaller than that of the undirected graph the search 

would usually be quicker. A combination of the Mullineux-Reed criterion 

and the M algorithm provides the closest answer to the practical 

Hamiltonian path existence problem at present. 

The M. array and its use - Examples. 

In the case of Fig. 4.1 an M array description might be made by 

numbering the branches and the = as shown in Fig. 4.2. Although such 

a numbering can be arbitrary, this case has been chosen to bring out 

several aspects of the technique. 

Fig. 4.2 

(node 

connection 

column) 

  
Starting at node 1 (simply to order the approach) and looking for a
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Hamiltonian path, the first route tried would be 

1-2-3 (stops at end of column 3), the next route to be tried 

1-3-3) (stops at the end of column 2), the next to be tried 

1-4-5 then 

1-5-4 then the next route starts at node 2 (for simplicity) 

2-[eS* then 2-1-4-5)- 2515-4 

2-3-1-4-5 First Hamiltonian path and second 2-3-1-5-4 

3-1-2 Starts at 3 (for simplicity) 

3-2-1-4-5 Third . Hamiltonian path and fourth 3-2-1-5-4 

4-1-2-3 (mote: has gone into a closed loop 1-2-3), 4-1-3, 4-1-5 

4-5-1-2-3 Fifth Hamiltonian path and sixth, 4-5-1-3-2 

5-1-2-3 (closed loop, node 4 unreachable), 5-1-3-2, 5-1-4 

5-4-1-2-3 Seventh Hamiltonian path and eighth, 5-4-1-3-2 

All routes have been tested, all Hamiltonian paths found. A Hamiltonian 

circuit consideration would require that the starting and finishing node 

must be the same - numerically seen here as not arising. 

For a directed network there is a reduced M array. Suppose, for 

brevity, that Fig. 4.2 has branches directed from low node number to high 

node number, then 

  

is half the number of former entries. There is no Hamiltonian path; also 

this can be deduced because nodes 3 and 5 must both be finishing nodes only, 

but one alone is needed. The particular example is a variation of a wheel 

(cf. WHE) with node 1 as a source hub and two pieces of the rim missing 

(2-4, 3-5), the other pieces of rim are directed oppositely,



CHAPTER 5 

| Some Mathematical Properties of & 

The matrix # as previously defined can also be regarded as a straight 

mathematical entity and as an operator. 

by fs 

i ids cieiey he By a) 

Rode k: aay 

Coes dgeceel ; 

L r Bay ee 

  

In the case of pre-multiplication 

  

  

(5.1) 

(5.2) 

This property reduces a pre-multiplication to simple addition, each 

solution element being the upwards sum of the elements below it with 

itself e.g. 

u 15 

> 10 

>
 w " oa 

N wo 

~ rw
 

and similarly for any further columns. 

(5.3) 

The transpose of f follows normally and its pre-multiplication, fa ’ 

is the downwards sum of the elements e.g. 

29
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4 9 

k. 3 = 12 (5.4) 

2 14 

1 15 

The inverse of £ is sometimes needed in manipulation; it is 

easily obtained by the so-called Exchange Method which utilises row 

operations to alter the matrix positions in 

[Aiv] ~[vis'] (5.5) 
flea me (a 

a 1 1 

f= iL 1]: i (5.6) 

al : 

Q qe |e 1 

fii. 1] fi 7 

eal 1 1 

= seen: E Soe. (5.7) 

10 Lot 

L aE u 

aa ib (Tn 7] 

Le} 1 1 

. Re ciolaas, ooh sa tects (5.8) 

100 1120) 

10 11 

L ele 1         
The process continues upwards from the bottom row, eventually 

giving:
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L Det 

1 1-1 

a 1-1 

a ary (5.9) 

: 1-1 

ik 1 

Taking the Happ (5.1) relationship 

B= Ay (5.10) 

and using the proposed definition 

B= A (5.11) 

then ERS ae E (5.12) 

Inverting this equation gives 

A= #! (5.13) 

which is the transpose of the inverse found above. 

Having defined a particular By it is to be expected that Ay is also a 

Particular matrix and this tela known. 

Another Happ equation 

Cy = -BAg (5.14) 

becomes 
~ 

Cy= ~h AL : (5.15) 

with the multiplication process simplified to cumulative addition. 

Similarly the Branin (5.2) equation 

D= AB, (5.16) 

becomes : 

D= Af (5.17) 

and it is realised that fk permutes.



CHAPTER 6 

The Application of A in the Network Problem 

Solution by means of Equation 14 of Gay and Preece (6.8) can be 

simplified by taking the foregoing considerations and ordering, together 

with the use of the mathematical properties of fh: By becomes AL 

‘ ae! ' 
toda eee L Lie 2 1, 

at alee |e Si saa a = 
Teo eas 1 us = ule (6.1) 

7 

1 r if 1 1 
This has a significance that the flow through the datum node (0) is the 

sum of all the node-to-datum path flows. As By is now defined by A there 

is a saving of (eine places of store, By not usually being sparse. f in 

its operational mode can be expressed in program form by an order. The 

multiplication involving G@a1)- operations is completely obviated and 

. Z iat ; 
the summation reduced from (n-2)° to (n-2)(n-1)/2 additions, a saving of 

Gre=5nt6)/2 operations. A further saving is achieved in the transformation 

matrix % , 

(6.2)    
as B, =O only C. has to be stored. The transformation itself 

vo aft (6.3) 

AOC Tene 
oe ee Sse | eae = J 4) 

oO: Ufji’ i’ 
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has the same number of operations, BI having been previously computed 

in each method. 

There are also topological advantages achieved with this convention 

and method of Timsevine, the tree branches are numbered and run 

sequentially from 1 to n-l3 the links, if directed from low-number node 

to high-number node, are all positive and the meshes are sequentially 

defined by them. The links are described by G =U, (Preece (6.1), also 

Daniel (6.5)), in the mesh method. 

The dual of the mesh method is the nodal method and f is of use 

here as expected from Chapter 5. 

ALY, = [a] x (6.5) 

t Ye 

  

AY becomes [x 

ol ~ 

; -[?%+ A, (6.6) 

<1 
The computational saving of the & Yt product is made from 

ea Yy 

ah Yo9 

1. =1 ae 

He (6.7) 

Yy-1yn-1 

b-1 differences compared with b(n-1) products and (b-1)(n-1) additions. 

No further saving for AYE occurs as AY would usually be carried 

forward. 

ot 
The f matrix in equation (6.7) corresponds with one of Mullineux 

and Reed (6.2), being the trunk portion of their AY incidence matrix 

when AS is unaugmented. Their considerations were with sub-graphs, 

trunks being an alternative name for Hamiltonian paths.



Algorithms and Overlap Considerations 

Apart from the straightforward space and time savings mentioned, 

there is another aspect of effective saving. The assignment and control 

of data can be organised so that the minimum amount of data is handled. 

Instead of entering the A matrix or the M matrix, for example, a sparse 

version of A with the 0's suppressed can be used. A graph can be 

considered as made up of nodes and so the branches could be defined as 

node connections. These need not be numbered because a nodal dyad would be 

unique for specifying a branch (it had been stipulated that the network 

was simple and connected). A Hamiltonian path could be expressed as a 

node string, however in practice it is more usual for both nodes and 

branches to be numbered. The branches may be taken sequentially and 

entered as a nodal dyad, thus describing the network in terms of nodes, 

branch-ordered. From this the M matrix can be constructed by algorithm 

ATOM (q.v.). The saving for this method is b for the branch numbers, being 

now implicit, instead of the A matrix b(n-1) entries (or (n-1)(b-ntl) if 

A, 2 only is needed), b(n-3) numbers. This reduces the chance of data 

input error, validation time and space. 

After the M matrix has been constructed and an output for validation 

has been made the next algorithm can be called. With interactive computing 

this may be made by means of a COMMON statement in BASIC and suppression 

of now unwanted data. Such an algorithm might be MAL (q.v.) where the 

matrix is searched to find a Hamiltonian path; a slight modification can 

be made for the algorithm to find all such paths, but only one is needed 

for the purposes of calculation. As Roberts and Flores (6.3) remark, 

",..The computer program is fairly easy to describe and fairly difficult 

to implement...' It is sometimes helpful to renumber a network to make it 

more tractable, especially as considerable time could be spent in sorting



through nodes which do not have an end node to complete the path. For n 

nodes Roberts and Flores claim that the time taken by their program is 

“essentially independent' while Christofides (6.4) says it varies 

exponentially, especially when n*20. Several improvements in the 

procedures have been suggested by Christofides and others. However, the 

programs used were not for similar purposes, e.g. the minimum cost for the 

Travelling Salesman problem is not required here, the conjecture is that 
| 

any Hamiltonian path will suffice. 

Apropos of this, solution speed has been related to the way the tree 

of a network has been taken. Hardy Cross convergence appeared to be 

partly dependent on the amount of overlap of branches used in each mesh 

calculation. The observation of Daniel (6.5) is apposite...'the method of 

finding the minimum overlap suffered from the usual disadvantages, i.e. 

what is obvious to the eye is not obvious to the computer’. Consider his 

network and numbering in Fig. 6.1 
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3 z lL iS 

D 6 10 be 

1 13 
Fig. 6.1 5 9 

Application of the M algorithm would give the tree structure of Fig. 6.2. 
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Fig. 6.2 i 13 
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This solution while not minimum overlap effectively renumbers branches and 

meshes, automatically identifying the branches in each mesh -- a great 

convenience for computer work. 

Middleton (6.6) found that maximum overlap hindered Hardy Cross 

convergence although the cutting pattern for his diakoptical solution 

reduced the running time. Preece (6.1) found that minimum overlap gave 

swift convergence and that the trunk was the easiest to set up for 

maximum overlap. It would appear that the pattern and selection affect 

overlap, for whereas in Fig. 6.2 a total of 81 branches would be used in 

calculation in Fig. 6.3 only 55 are involved. Without a Hamiltonian path 

the minimum overlap would reduce the number of branches for the 

calculation to 37. With a Hamiltonian path the overlap is essentially 

arbitrary and only depends on the selection of the starting point. 
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In the test example of Gay and Middleton (6.6) their overlap for 

Case 1 was with 70 (total) branches used, Case 2 105 and Case 3118. A 

Hamiltonian path taken through the network with their numbering involves 

103 branches for mesh calculations. 

Instead of a direct solution by orthogonal means the indirect 

construction of the C,Z4C, + Ly matrix, after Percival (6.7) for 

example, further utilises the A ordering. The tree branches being link- 

defined are signed negatively, hence the overall product is positive. The
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fluid resistance matrix is then composed: 

i) On the diagonal -- the sum of the branch resistances round each mesh 

respectively. 

ii) Off the diagonal -- the sum of the branch resistances common to 

meshes i and j. 

Hence the input of C is avoided and only the sparse Ay is needed for 

the input, 

An algorithm such as HAMIL (q.v.) can be used to perform the 

calculation, where the chained programs can be: 

™~ ‘ O--©-8--@--@ 
The DISP algorithm (q.v.) displays the results, being too long to be 

incorporated with HAMIL, while BREN (q.v.) renumbers the branches. 

The foregoing remarks apply to the solution of the linear case, as in 

Gay and Preece (6.8) and which is solved by the A method in the 

illustrative example of the Appendix EXAMPLES with numerical results. 

The Hamiltonian tree from the M algorithm has an arbitrary degree of 

overlap since only the first tree found is used and the procedure is in no 

way concerned with the overlap property. Therefore if this algorithm is 

to be used for a Hardy Cross solution it may be modified, however Preece 

stated that the degree of overlap of the tree is not of significance when 

based on matrix iterative methods, so a tree found by this method has 

advantages over the Hardy Cross method.



CHAPTER 7 

The Non-Linear Flow Problem 

The problem of flow in pipes has’an additional difficulty in that 

the fluid resistance depends upon the Reynolds Number and the relative 

roughness of each pipe. There are many empirical formulas covering 

various conditions but that of Colebrook and White is considered to be of 

greater accuracy. Where # = (Re, ¢/D), with € the absolute roughness 

and D the diameter, the rough pipe version is: 

$7? = -2.5 1n(0.27 «/D + 0.885 Re 16”4) (7.1) 

as used by Gay and Middleton (6.6) in their test example. Their network 

consisted of 38 pipes, each 100 feet long, 6 inches in diameter and 

considered hydraulically smooth. It was decided to choose an initial 

value of ~ = 0.005 as being representative of the range in which the flows 

should occur; from this it ee possible to use equation (7.1) to obtain 

the initial Reynolds Numbers: 

Re = 0.885 $”#/(exp(-f"#/2.5) - 0.27 €/D) (7.2) 

From equation (7.2) the branch flows J could be calculated using 

J=nDpRe / 4e (Gilbey) 

where e is the density, J the quantity flow rate in cusecs, D the diameter 

and ps the coefficient of viscosity, taken as 0.000 672 in these 

calculations. This gave for each branch: 

J = 0.00000423 Re (7.4) 

When the approximate flows had been calculated it was possible to 

compute the first fluid resistances approximately. Considering the branch 

flows and the nodal flows in cusecs, it is convenient to calculate in 

heads rather than pressures. With L feet the length of pipe and u the 

fluid velocity in feet per second, the formula: 

Ap=4pLu/ D : (5) 
a
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can be adapted to give the linearised fluid resistance: 

Sn= | 649 roll a (7.6) 
ae D? 

The new flow Q can then be calculated by considering: the system as 

instantaneously linear and solving it by using the Hamiltonian path 

method. A comparison of the new flows and the old flows can be made to 

determine whether the latter are accurate enough for the required 

purposes or whether to update the J array of the previous flows with the 

Q array of the flows just calculated. As the new flows affect the 

Reynolds Numbers for the branches these can be calculated to determine 

the new values of $ for each branch. Also at this stage some form of 

convergence accelerator can be used, the average of the last two flows was 

taken. The organisation of the calculation is shown in Fig. 7.1. Due to 

the non-linear nature of the flow it is necessary to recalculate the fluid 

resistances before the next linear solution in a program such as HAMIL9. 

Implementation of the system for interactive computer solution was 

made by the chained Algorithms COL1, HAMIL9 and DISP3 (q.v.) and examples 

of their use are given in EXAMPLES following the Algorithm Appendix. 

The computation for the non-linear case is of interest when compared 

with previous solutions. The interactive working has the advantage that 

the pipe lengths, diameters and roughness (for the whole system with 

these programs) can be varied on input from case to case; this allows a 

study of flow and pressure changes with ageing to be performed rapidly if 

desired. The data for input having been reduced to the minimum thus 

reduces input time, fatigue and error; also errors can be corrected rapidly, 

the print-out of data for validation assists with this. Convergence to a 

stable solution can be fairly rapid, depending upon the programmed 

accuracy constant (which itself can be altered by the change of one program
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Fig. 7.1 

It was found, for example, that the Gay and Middleton (6.6) test network 

could be entered by teletype aad) converged in four iterations in 7 minutes, 

the flow accuracy being set at 10%. This time could probably be reduced 

by using a data tape input prepared off-line and by excising the print-out 

of the final fluid resistances. -In this case the HAMIL9 program 

involved a 17x17 matrix inversion without further printing other than to 

count the loops, a delay of about 7 seconds a line. 

The first non-linear example referenced is a network similar to one 

of Gay and Preece (6.8) in which there are 9 nodes, 12 branches, 4 nodal 

flows but with all the pipes 100 feet long, 6 inches in diameter and with 

a relative roughness of 0.000 3. The second non-linear example is that of 

Gay and Middleton (6.6) computed to a flow accuracy within 0.1% of the 

previous individual pipe flow.



CHAPTER 8 

User's Guide to the Chained Algorithms 

Details of the algorithms are included with their descriptions in 

the Algorithms section of the Appendix but it is convenient to consider 

the overall handling of data for problem solving at this stage. The 

initial assumptions are that flows in a network have to be determined and 

that the network has already been numbered for nodes and branches. 

Details of the fluid resistances, pump pressures and nodal flows are also 

available; the resistances are linear. In order to contribute to the 

data handling the branches of the network are taken in natural order and 

described as being directed from the smaller node number to the larger 

node number; this then directs the branch and the pump pressure in that 

branch, being - if in the same direction, + if opposite. The nodal flows 

are prefixed (+) when directed to the node, - if away from the node. 

The size of the matrix to be inverted is m by m, Because the Gay and 

Preece (6.8) Equation 14 is to be used, this has te be put into HAMIL8, 

line 22 as a DIMENSION statement e.g. 

22 DIM C(4,4),P(4), F(4) 

Instructions are incorporated in the algorithms, which also print when 

they have been entered in the chaining process, though this is partly for 

diagnostic use. Starting with 

GET-ATOM21 

from the User Library, the first data asked for are nodes and branches 

n,b 

is entered. An upper limit of these has to be fixed because of program 

and storage size considerations. Generally, the final number of nodes 

provided for was 41 and the number of branches 40 (originally it was 80); 
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the size is checkable by inspecting A(40,2) in line 10, the common 

statement of any chained program in the suite. 

The branches are next entered in natural order, low node to high 

D525 2535295957 peeves «sy ceetCs 

An immediate print out of this occurs, allowing for data errors and 

correction errors such as ...5,6¢€5,... The branches are in original 

natural sequence downwards e.g. line 9 is branch 9, The node-by~node 

M array is constructed by this algorithm, its printout is for checking 

purposes. This can be performed by taking any node, finding its column 

then seeing if the other nodes listed in this column are joined to it. 

Reading down the columns should show low numbers (nodes) to high. The 

final row is all zeroes, the end of column markers (originally -1 was 

used). The depth of the M matrix is dependent on how the nodes are 

connected; the algorithm does not count rows for this but truncates at 

the first row of zeroes reached. Modifications would have to take this 

into account, M(20,40) is assumed as an arbitrary depth of 20. 

There is not enough storage space to allow this program a 

Hamiltonian path search so the M algorithm search is entered, MAL41. 

This starts at node 1 (arbitrarily), goes to the first node in its 

column, goes to that column and so on. If all the nodes can be reached 

in this way they are printed from the J(I) array and that is the 

Hamiltonian path. However it is quite likely that a node to go to has 

already been visited, in this case the next node down the column is 

taken and the process tried again. If this is repeatedly unsuccessful 

the end of column terminator 0 is-reached and the Process must step back 

to the previous node column then down one row from the node there that 

was last used. It is important that the process of stepping forward and 

stepping back avoids a loop of any length in the network, probably the
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most frustrating and difficult error to encounter, When all the paths 

have been tested the process is checked back to node 1, Failure to find 

a pain has a message giving the starting node and that it has been 

checked back to node 1. The next starting node is tried similarly. When 

all nodes have been tried as starting nodes a message that all nodes have 

been tested is given, indicating that a Hamiltonian path does not exist in 

the network. It is sometimes useful to check this (again) with the MR 

algorithm which looks for 4 or more subgraphs, the proof that no 

Hamiltonian path exists, At the successful end the numbers 0,1,2,... for 

f# are printed below the J(I) path to indicate the numerical correspondence 

of nodes. 

The next input is for original resistances and pump pressures, in 

pairs, of the original branches. This is then followed by an input of 

nodal flows, + if directed to the node, - if away. A reminder is given 
‘ 

and it is noted that all nodal flows are entered, even any original 

datum node flow. The algorithm BREN5 renumbers the branches for the 

pattern, sorting the tree branches from the link branches, re-directing 

pump pressures where necessary and shuffling the nodal flows. 

The algorithm HAMIL8 solves the system for the mesh flows i’ ) in 

effect at this stage the original network has been transformed to a 

Hamiltonian path network and this transformed to a mesh system for 

solution 

vez (8.1) 

which is solved by inversion. The indirect method of creating the VA 

matrix means that it has off-diagonal elements. 

The algorithm DISP adjusts the flows to the original network 

numbering. The sign with the flow is the direction in relation to the
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network and is useful for diagnosing errors, a modulus of the flow was 

found to conceal any direction error. Numerical checking is straight- 

forward; as the tree pressure rises are also printed out they can 

contribute to this. .



CHAPTER 9 

Results, discussion, comparison 

The lengthiest part of the calculation was considered to be that 

taken up by inversion. This was regarded at the outset for the purpose 

of familiarisation and time reduction if possible. The Gauss-Jordan 

method used by Brameller, Allan and Hamam (9.1) was tried on the ICL 1903A 

computer for various matrix sizes and ICL times noted. The ICL package 

FPMGEIN was thought to be worth comparing with as it was designed for 

making the most of the hardware. The comparison is indicated for some 

test matrices in Table 1. 

Table 1. Comparison of Matrix Inversion Times. 

Brameller, Allan & Hamam ICL package 

Matrix Mill Occupation K words Mill Occupation K words 

Size Time Time min.sec Time Time min.sec 

OCcompile) 0.10 0.33 0.06 0.24 138 

4x4 0.06 0.26 139 0.06 0.25 138 

8x8 0.06 0.25 0.06 0.25 138 

17x17 0.12 0.29 0.09 0.29 139 

21x21 0.13 0.33 0.10* 0,30 139 

0)4,8,17,21 0.17 0.39 Viabove 0.19 0.41 142 

40x40 0.48 1.14 143 0.31 0.54 143 

40x40 

+Trace 2 4.11 4.37 

D417 0,090.29   
*with re-inversion test 

The fastest inversion time was thought by Gay and Preece (6.8) to be 

by using the Caffrey (9.2) algorithm; when compared with a Gauss-Jordan 
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method it took about 43% of the time. A similar comparison here shows that 

the ICL FPMGEIN package is about 35% faster than the Brameller-Allan- 

Hamam Gauss-Jordan inversion. Comparisons are difficult to make because 

of differing packages and their program efficiencies. The occupation time 

is also involved with the data handling as well as the type of hardware, 

for example the Titan (Atlas II) of Bending and Hutchison (2.17) taking 

2.1 seconds on the 17-mesh example mentioned earlier. 

It would be expected that a manufacturer's package would be written 

in a low-level language to make the process faster and more economic in 

storage space. 

When a 17x17 matrix was inverted on the Hewlett-Packard 2000E on an 

interactive basis there was no visible delay, the time taken was masked 

by the slow rate of printing; it was barely detectable on the visual 

display unit, again because of the data validation print precautions. 

In direct comparison with the Gay and Preece (6.8) problem the 

approach offered some interesting features; 

1. The choice of the tree can be made automatically by algorithm. The 

overlap considerations would appear to imply that this is neither 

maximum nor minimum. 

2. The data input: here all the nodal flows can be entered if the datum 

node is to be found by an algorithm. The branch resistances and 

pressure sources are entered in the same way. 

3. The topological matrices C and B are not entered, saving handling, 

space, time and possibility of error and checking. Instead the A 

matrix, at most a bx2 array, can be used. 

4. The Equation 14 of Preece, a very economical method of solution, is 

created differently; the first array to be inverted G zie, + Z 

is found by putting the mesh resistance sums as the diagonal elements
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and mutual mesh resistances as the off-diagonal elements -- a summation 

process rather than a matrix transposition, triple matrix product and sum. 

| is not necessarily the same for the electrical case where mutual 

effects and special devices such as gyrators would require modifications 

for the matrix operations in program form.) 

5a The second factor E-C,Z,B 1 has the product By asa f 

summation and can be calculated over i meshes of j tree jbranches from 

MGi,2) “4 
~ P 1 

+ - S°Baa = -Z {i Ck, Z,B,I he Eitn-1 CE,~ Z, BI ); @D 

j=M(i,1)+1 ise 

where n-l<igb. The premultiplication by Gq distributes the tree 

branch potentials to the meshes, but it can be replaced because of 

the network numbering by summing from the lower node of each link, 

going up the tree as far as the link's upper node, thereby dispensing 

with Cy and as G is known, C altogether. 

6. In the calculation of the branch flows, where for mesh i the end- 

nodes are M(i:,1) and M(i,2) respectively, 

J= 

  

(9.2) 

Cy assigns the mesh flows to the tree branches of that mesh and can 

be expressed as an addition 
m. 

Ake ie , « (9.3) 
Ard 

where £, = GG, if M(k,1)+1€j€M(k,2) or f, = 0 for all other 

  

cases. Cy can again be eliminated because the network has been 

ordered and directed, so the tree links in each mesh are known from 

the start and finish of the mesh-defining link. As the tree branch 

directions are always opposed to the link directions (by convention) 

all non-zero terms are -1, hence the minus sign in equations 9.1 and 

9.3.
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The numerical results all compare favourably with those. published, 

in ‘particular the Gay and Middleton (6.6) non-linear test example was very 
j 

interesting. When calculated to an accuracy of 0.1%, that is 

|Flow2 - Flowl|<|o.001 Fiow2| as included in EXAMPIES (q.v.), it was 

found that the greatest difference of flow (in branch 15) was 8.03%. 

Working. with the printed pressure drops at 3 decimal places showed for 

KVL that each of the 17 meshes had an error less than 0.000 0, while 

working with 5 decimal places from the flow results gave for KCL an error 

of 0.000 4 (at node 20, with the smallest flow of the network in branch 

20), the rest being better than 0.000 0. This implies that the 8% maximum 

error lies with the Hardy Cross method. 

The convergence to a solution was investigated for different 

accuracies and is shown in Table 9.2. 

Table 9.2, Gay and Middleton (6.6) Test Example, using A 

% accuracy Iterations Time (approx.), min. 

10 4 a) 

iu g Ly. 

0.1 11 12 

0.01 7 10 

0.001 100 19 
oscillates 

The times are not really significant, they included putting in all 

the data by hand (not tape) and also depended on the time-sharing load. 

Altering the relative roughness to 0,000 3 required the same number of 

iterations for the first four accuracies listed. At 10% accuracy the 

maximum error against the Middleton results (El) was just below 8%, 

while the 4 iterations here compare favourably with the 15 quoted. 

It is concluded that this method has the potential for giving 

faster, more accurate results with quicker convergence and less data 

handling than other methods and in particular outruns Hardy Cross.



CHAPTER 10 

Conclusion, Summary of Theory and Further Research. 

At the close of this thesis it is apposite to consider the success 

of the methods and their ne aan on the results generally as they will 

provide pointers for future work. The conjecture that a Hamiltonian path 

exists in practical networks allows the of method to be used; this orders 

the network and together with a branch direction convention implicitly 

numbers it. In such a network it appears that the description has been 

reduced to that of showing where the links are connected. Topological 

matric solution now has the advantage that C and c can be dispensed with, 

Bi is now defined as - » so leaving some form of A for link description. 

Because e is now known, only Ay is needed and it can be handled not as a 

sparse matrix but as the smaller node-connection array of m pairs of 

numbers. : . 

The solution of the network can occur at one of two levels, those of 

the expert and non-expert network investigator. The expert most probably 

has to draw up a master layout for calculation purposes, normally this 

would be unnumbered or numbered with dummy ciphers for identification. 

It is then easy to find a Hamiltonian path by eye from any node as datum, 

or in the case where the proposed datum is not a starting point for a 

Hamiltonian path then from the nearest suitable node to it. The numbers 

assigned, say from 0 upwards naturally, then order the network and only 

the minimum data input is thus required. The solution can then be made 

orthogonally by summing mesh resistances and by finding mutual mesh 

resistances. In the linear case the inversion then leads straightforwardly 

to the solution; the non-linear case requires the resistances to be found 

and iteration to give convergence to a solution. 
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In the case of the non-expert it is possible to handle all the 

information by suitable algorithms of some complexity. Data is entered 

under the system as numbered, a Hamiltonian path is found and the network 

automatically re-numbered. Solution then takes place and the results 

output in terms of the original numbering. The matrix size for inversion 

is the same as for the expert, no extra time would be needed for this but 

time for the data handling, validation print-outs and searching would be 

needed. In the case where a network does not have a Hamiltonian path (so 

far not encountered in practice) an algorithm can state this. It is 

assumed that the Mullineux-Reed (6.2) test has been applied bef ore 

attempting solution because it definitely shows when no Hamiltonian path 

can exist. If required, the check product Ge can be added at the end 

with a small algorithm generating C, from the link data entered. 

The f# method has advantages and disadvantages; being based on the 

conjecture that at least one Hamiltonian path exists in the practical 

network the disadvantage is that it must be found. When it has been 

found then the path defines the tree, links and meshes; the numbering 

can then be natural or implicit; with the disadvantage that an already- 

numbered network would have to be re-numbered and a housekeeping system 

set up and kept, together with handling algorithms. The major advantage 

of defining By as A makes B implicitly known and leads to dispensing 

with C , c andA,, while the only disadvantage here appears to be that if 

the other matrices are required they would have to be generated 

algorithmically, via Cc =h, etc. As far as data input is concerned, 

at most only a bx2 array is needed to describe the network (at least, an 

mx2 array) an advantage which has no matching drawback. Ley is used then 

f is known for any size and hence all the formulas involving these two 

operators present little difficulty in operation. For input in the 

method only a node-to-node branch list is needed to describe the network
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instead of an A matrix, for example. The nodal pressures are easily 

calculated up the tree now that By is ordered, an operation sums the 

branch pressure rises. However, the algorithms themselves present 

disadvantages in that they can be difficult to construct and guarantee; 

neither are they dynamic and it is easy to hypothesize that unforeseen 

difficulties may occur. Many programs were developed to implement the 

algorithms for computer operation, the kernel being that for finding a 

Hamiltonian path in a network. Also, diagnostic programs were constructed 

and proved useful but risked exceeding the limited storage size allowed 

for one program. 

Compared with other methods the A approach is different and 

arguably simpler, for example that of Mah (4.2) which can leave pendant 

nodes. The SEARCH BT algorithm of Preece (6.1) has been obviated but at 

the expense of devising an algorithm for finding a Hamiltonian path. The 

A process appears to be one step beyond Mah's claim (4.2) '...that 

graph-theoretic techniques are used directly to enhance computational 

efficiency..' in that by postulating a route the graph-theoretic methods 

are enhanced as well. 

At this juncture it is convenient to summarise some definitions and 

properties of £ as discussed in the text. Table 10.1 shows some of 

these properties and relationships with the topological matrices. 

The theoretical results are promising, as well as being 

mathematically satisfying in relation to the trunk of Mullineux and 

Reed (6.2). Computations with this system have the advantage that 

several matrices are eliminated and some operations reduced; the main



Table 10.1 Some Properties of f 

deel te 1 

De eee 1b 

What it is, A = Dios ok i.e. a square array 

Oo re (10.1) 

Le 1 

1 -1 i 

oO 
dy = 

=1 
Its inverse ie = (10.2) 

oO Le; 

1     
How it multiplies, converting matrix multiplication to cumulative addition: 

A fa,v, 0,4} = fatvtcta, bret, ctd, a} (10.3) 

eis (10.4) 

ih au (10.5) 

C,= -A4, (10.6) 

DA (10.7) 

D= -C; = (10.8) 

y= [pic] = (20.9) 

  

re



matrix to disappear is By » which becomes implicit and is handled in the 

operator mode of A » The ordering process has neatness, simplicity and 

possibly elegance -- a long way from Sir W.R. Hamilton's original idea of 

a 'Tour of the World’, sold for twenty-five guineas in 1859, 

The interactive programs developed were chosen to explore the problem, 

the commencement being the tests for Hamiltonian paths or circuits in a 

network. When the positive tests of Dirac (4.4) and Pésa (4.5) had been 

completed the negative test (i.e. no path) of Mullineux and Reed (6.2) 

was programmed; its major difficulty was to define separability 

numerically then count the subgraphs. Input of the network was made by 

describing a branch by its end nodes but for the path-searching 

requirement these had to be converted to the M array of Roberts and 

Flores (6.3). The Hamiltonian path search program then found the first 

such path and renumbered the nodes. The branches had to be renumbered as 

it was assumed that all branches and nodes had been numbered in the raw 

datas; a program was constructed for this. The solution program for the 

network used the new numbering because of the improved efficiency of 

computation. The results for this system then had to be converted to 

original branch and node numbering together with direction re-assignment; 

a program for this was also developed. Notes on the programs available 

are shown in Table 10.2. 

Looking towards the future from this stance reveals several promising 

paths for research. The major requirement is for a proof of the existence 

of a Hamiltonian path in every practical network. No such proof has been 

found but the exclusion condition of Mullineux and Reed (6.2) is of great 

use. 

The inspection of all Hamiltonian paths in a network might be of



Table 10.2 

Name 

DIR 

MR 

WHE 

ATOM 

BREN 

HAMIL 

DISP 

DISP3 

COLL 

54 

Programs available and used in solution 

Mark 

9 

44 

16 

21 

41 

5 

8 linear 

9 non-linear 

- linear 

- non-linear 

Purpose 

Dirac test for Hamiltonian circuit 

followed by Pésa test. 

Mullineux-Reed test for no Hamiltonian path. 

Tests if the network is a wheel, 

Converts nodal description of branches to 

M. 

Searches M for a Hamiltonian path. 

Renumbers the branches according to ft . 

Computes flows, pressures ing numbering. 

Displays results with original numbering. 

Displays results. fh numbering assumed, 

Colebrook-White solution for non-linear 

flow.
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benefit where both the overlap problem and considerations for minimisation 

are concerned. This could also be of interest in the context of tree 

graphs for these networks. Faster selection methods need to be regarded 

as well. 

The algorithms used here are based on experimental requirements, 

these can be blended for further economies in time, space, cost and data. 

The most obvious improvement has been that of the sparse (nodal) array of 

the links to define the network, 

A itself may have further useful properties; the dissection of large 

networks into f -based elements needs investigation. The Travelling 

Salesman problem with a A approach should lead to a path-cost 

minimisation that may be of value. Other similar problems might be worth 

considering, especially as A can represent infinite grids. 

The problems of convergence to a solution in the non-linear cases 

have usually been bound up with the method of solution, often Newton- 

Raphson. The next term in the expansion 

(eth) = £ + net + n7e"/2 + 0, t (10.10) 

could be taken as in Bailey's method, with 

bee (10.11) 
£e =ofe" (2F* 

or by the Laguerre method, as advocated by Wilkinson (10.1, 10.2), 

n-r 2 4 
h = -nf/ft + (nel) (E> = nee) (10.12) 

r 

where n is the degree of the polynomial. 

On a larger scale the fA method should extend to non-planar networks
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and compressible flow problems, as well as to other disciplines yielding 

to similar methods of attack. Inversion times can be halved because of 

the symmetry of the mesh resistance matrix, but the asymmetrical case 

needs some consideration. 

The aims of this research of investigating fluid network analysis, of 

trying to devise new techniques, of implementing them in new computer 

methods as well as compacting the concepts and reducing tedious data 

handling have been achieved with some success. The A concept in its 

many forms (a matrix, a route, an operator) is novel, it eliminates the B 

array and in effect removes B from the data, from handling and from 

storage space, leaving it to be programmed implicitly. The matrices Cc 

and Gerad not be used and only Ap need be entered to describe the 

network; even so it is not a sparse matrix in the usual sense but is a 

node-connection array, At is not needed but is known to any size. C 

can be generated from Ay if required. The computing algorithms 

complement the theoretical considerations and enable computation, the 

most important being the search for a Hamiltonian path, to be made by 

means of a special node-connection array. There is also an advantage 

that checking is readily achieved by eye from the data output. The 

connection of these programs in a suite forms a powerful analytical tool, 

as shown in the detailed numerical results of the EXAMPLES, A theoretical 

advantage of the method advocated is that usually a Hamiltonian path is 

not unique and this does not affect the final outcome.



APPENDIX 

| 
|Regula Falsi, attributed to Robert Recorde, ‘Ground of Artes’, 

1558 edition, Folio 24. 

“Gesse at this woorke as happe doth leade. 

By chaunce to truthe you may procede. 

And first woorke by the question, 

Although no truthe therein be don. 

Suche falsehode is so good a grounde, 

That truth by it may soon be founde. 

From many bate to many mo, 

From to fewe take to fewe also. 

With to much ioyne to fewe againe, 

To to fewe adde to manye plaine. 

In lerossewaies multiplye contrary kinde, 

All truthe by falsehode for to fynde." 

i.e. the solution of 

which is 

ag, t+ b= £) 

ag, +b=f, 

x i 0 

(1.6) 

7)
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* ALGORITHM DIR 

The conditions of Dirac and Pésa can be used to test if a 

Hamiltonian circuit or path exists in a network. The former condition 

states that if the degree of every node is greater than or equal to n/2 

then such a circuit exists. The Pésa condition is somewhat stronger, 

depending on whether the degree of each node is not less than (n-1)/2. 

This algorithm is probably a reasonable investigatory test, a 

necessary and sufficient condition has not yet been found. The practical 

disadvantage is that most distribution networks have many nodes of small 

degree, as seen in the test example of Gay and Middleton (6.6) which 

has 22 nodes but the highest degree there is 5.



ALGORITHM DIR 
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Dirac condition 
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LIS 60 

DIRQ 

10 

20 

70 
0 

50 
60 
70 
80 
90 
100 
110 
120 
130 
iho 
150 
160 
170 180 
190 
200 
201 
210 
220 
230 
2ho 
250 
260 
270 

PRINT "TESTS FOR HAMILTONIAN CIRCUITS AND PATHS, 
DUE TO DIRAC" 

PRINT "AND POSA. THESE ARE SUFFICIENT BUT NOT 
NECESSARY CONDITIONS." 

PRINT "ENTER THE NUMBER OF NODES, N" 
INPUT N 
PRINT "ENTER THE DEGREE OF EACH NODE" 
PRINT "NUMBER OF NODES";N 
DIM P[4o] 
MAT P=ZER 
LET I=1 
FOR I=1 TO N 
INPUT P 
NEXT I 
LET I=1 
IF P[I]<N/2 THEN 200 
I=I+i 
IF I <= N THEN 140 
PRINT "DIRAC CONDITION SATISFIED FOR H-CIRCUIT" 
GOTO 201 
IF I <= N THEN 140 
PRINT "DIRAC CONDITION FOR H-CIRCUIT NOT SATISFIED" 
LET I=) 
IF P[I]<(N-1)/2 THEN 260 
I=I+1 
IF I <= N THEN 210 
PRINT "POSA CONDITION SATISFIED FOR H-PATH" 
GOTO 270 
PRINT "POSA CONDITION NOT SATISFIED FOR H=PATH" 
END
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ALGORITHM WHE 

| 
This algorithm is designed to test whether a source or sink wheel 

exists in a digraph. Should such a wheel exist then a Hamiltonian path 

must start or finish respectively at the hub because the rim can only be 

reached once from the hub or the hub once from the rim; branches on the 

rim are disposed clockwise or anticlockwise exclusively. \ 

In the algorithm M(I,J) represents the element in the Roberts and 

Flores (6.3) M array; the number of rows of this has been called Y. The 

symbol A is a node counter. -1 is used as a bottom of column marker. The 

test is based on the fact that any hub must reach every node, if this is so 

then any commencement or termination (-1) on the first row of the M array 

would indicate a source or sink wheel. A hub is identified. 

As the input is common to several programs it has not been shown on 

the flow diagram; it is the number of nodes, the M array and the number of 

rows it has.
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WHEL6 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
‘ce 
190 
210 
220 
230 
eho 
250 
260 

obo 
290 
300 
310 
320 
330 
340 
350 
360 
370 
3 
390 
hoo 
410 
420 
430 
4ho 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 

REM-TESTS IF THE NETWORK CONTAINS A WHEEL 
PRINT "ENTER NODES N,ROWS OF M Y" 
PRINT "ENTER M MATRIX" 
INPUT N,Y 
PRINT "NUMBER OF NODES";N 
DIM M(40,40],x11,40] ,J(40] 
PRINT N 
MAT INPUT MLY,N] 
LET I=J=1 
MAT PRINT M 
LET A=0 
IF M[I,J] <= 0 THEN 170 
LET I=I+1 
LET A=A+1 
IF A=N-1 THEN 480 
GOTO 120 
LET J=J+1 
IF J=N+1 THEN 230 
LET I=1 
LET A=0 
GOTO 120 
PRINT "NO SOURCE WHEEL" 
LET T=J=D=1 
IF M[1,J]=-1 THEN 290 
LET J=J+1 
IF J=N THEN 500 
GOTO 250 
LET “Xe1 
LET B=J 
IF X <> B THEN 340 
LET X=B+1 
IF X=N+1 THEN 520 
LET I=1 
IF Mase THEN 420 
IF M[I,x] <= 0 THEN 380 
GoTo 400 
IF X=B THEN 320 
GoTo 540 
LET I=I+1 
GOTO 350 
LET D=D+1 
IF D=N THEN 460 
LET X=X+1 
GOTO 330 
PRINT "SINK WHEEL" ;B 
GOTO 560 
PRINT "SOURCE WHEEL, NODE";J 
GOTO 550 
PRINT "NO WHEELS, DIAGNOSTIC ROUTE 1" 
GOTO 550 
PRINT "NO WHEELS, DIAGNOSTIC ROUTE 2" 
GOTO 550 
PRINT "NO WHEELS, DIAGNOSTIC ROUTE 3" 
STOP 
END 
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ALGORITHM MR 

This algorithm is based on the test of Mullineux and Reed (6.2) 

which states that in a simple connected graph if the removal of two nodes 

and their incident branches leads to four or more subgraphs being formed 

then the graph has no Hamiltonian path. 

The scheme here is to start with the separating nodes Nl and N2 at 

1 and 2 then compare the columns Cl and C2 which run in order and are 

first compared with Nl and N2 and adjusted to be different from them. 

The Roberts and Flores (6.3) M array, which has been read in as data, 

is scanned down columns Cl and C2 to see if they have nodes in common. 

An array C(I) is used as a counter for every distinct subgraph. The end 

of a column is 0; when reached the second column is stepped on until all 

the nodes have been scanned, then Cl is advanced byl if possible, the next 

C2 scanned and so on. At the end of this process the array C(I) is 

summed to see if it contains 4 or more. The appropriate output statement 

is made. 

The beginning and end connectors are assumed to be chained between 

other programs.
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200 
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450 

INPUT N,Y 
DIM ML 40,40] ,c[4o] 
MAT INPUT MiY,N] 
MAT PRINT M 
LET Ni=1 
LET N2=2 
PRINT "A"; 
LET C1=1 
LET C2=2 
LET S=0 
FOR I=1.TO 40 
LET C[I]=0 
NEXT I 
PRINT "B"; 
LET H=X=1 
IF Ci=N1 THEN 165 
GOTO 175 
PRINT "C"; 
LET C1=C1+1 
PRINT "yp"; 

IF Ci=N THEN 540 
IF Cl=N2 THEN 165 
LET C2=C1+1 
IF C2=N1 THEN 205 
GOTO 215 
PRINT "E"; 
LET C2=C2+1 
PRINT "F"; 
IF C2=N+1 THEN 240 
GOTO 250 
LET C1=C1+1 
LET C2=C1+1 
GOTO 130 
IF C2=N2 THEN 205 
LET X=1 
PRINT "G"; 
IF Mi, c1 J=0 THEN 490 
IF M[H,C1J=N1 THEN 330 
IF M[H,C1]=N2 THEN 330 
Ir m[H,C1]=C2 THEN 510 
GOTO 360 
PRINT “H"; 
LET H=H+1 
GOTO 270 
PRINT "K"; 
TF M[x,C2l=0 THEN 390 
GOTO 410 
LET X=1 
GOTO 330 
IF M[X,C2]=N1 THEN 460 
IF ML X,C2]=N2 THEN 460 
IF M[X,C2]=C1 THEN 510 
IF M{H,C1 J=M[x,C2] THEN 460 
GOTO 510
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490 
500 
510 
520 
530 
Sho 
550 
560 
570 
580 
590 
600 
610 
620 
630 
635 
oy 
50 

660 
670 
6380 

700 
710 

PRINT "L"; 
LET X=X+1 
GOTO 360 
LET clci J=clc2]=1 
Goto 240 
PRINT "M"; 
Let c{c1]=clc2]=0 
GOTO 205 
PRINT "N"; 
FOR I=1 TO 40 
LET S=S+c[1] 
NEXT I 
IF S$ >= 4 THEN 700 
LET N2=Ne+1 
IF N2=N+1 THEN 630 
PRINT "0"; 
GOTO 640 
PRINT "P"; 
GOTO 65 
LET N1i=N1+1 
LET N2=N1+1 
IF Ni=N THEN 680 
GOTO 630 
PRINT "AN H-PATH EXISTS" 
GOTO 710 
ppine "AN H-PATH DOES NOT EXIST" 
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ALGORITHM ATOM 

This algorithm is the first in a suite that will solve many network 

problems. It can have been connected to any previous tests for Hamiltonian 

circuits or paths if necessary. Assuming that a start is made here then the 

degrees of each node are not required for data but the nodes and branches 

are required for each program of the suite. The network is described by 

ordered input of the I branches, given by their end nodes, A(I,1) and A(I,2). 

The convention being used for this is that of low node number to high node 

number as branch direction (which might be arbitrary). Allowance is made 

for the higher valued node to be called Ls Inconsistent numbering is checked 

and an error message given if found. The M of Roberts and Flores (6.3) is 

annotated M(K,L). The first node is then put into the a,, position of the 
1 

M array and the branch number checked to see if all branches have been 

processed; if not, the next branch is put into the array. The counter K 

fits the node into its proper row in the first empty space of M, L 

represents the appropriate column. 

The nodes now in the array have not been ordered and have to be 

shuffled into low to high number order down each column. Various constants 

are reset. 

It is possible for an element in the first row to be zero (e.g. for 

a wheel) so provision for this must be allowed. If a column of five 0's 

exists then the next column is commenced provided it is not the last; when 

it is, then the M array is printed so that the last row is all 0 and 

lower rows are suppressed. 

When the first element is not zero the next row down for that column 

is tested for zero. If that is not zero then the relative sizes of the two
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numbers are checked; if they are correctly aligned a row is stepped down 

and these two numbers checked and so on until the end of the column is 

reached. When two numbers are not in the required form they are 

interchanged and a counter G incremented by 1. The test G=5 is arbitrary 

and will probably have to be increased when there are many rows of M. 

The columns are shuffled in turn from L=l to L=n. 

The program has been extensively patched since its inception.



De 
ALGORITHM ATOM 

   

  

   

N,B 
Sparse A 

en   

  
JL=A(I,1) | sa 

Check 
Branch 

Conven 
-tion 

    
   

  

   
   

  

RLSKE) 
  

i I 
L=ACI,2) 
  

    >. mien Sem 

E x “” M(KL A . ac S )   

    

7 

M(K,L)=A(I,1) 

<e 
I=I+1 
K=1 
F1=0 

  

        
  

      

   
      

  

m
a



73, 

ALGORITHM ATOM 

  

tncmemerenerfememmeed K=K+] ie 
eS cK, 120 le MHL) Em. 

Se YOR 

      

    

      

ry MCK#1,L) 7 i ~ 70 me 
A n 

   

  

C=M(K,L) | 
M(K, L)=M(K+1,L) 

Ss. 

M(K+1,L)™ x 
= os | 

Serer lamer 
    

  

  

      

  

        

  

  

      

      
       



LIS 
ATOM21 

10 

Alt 

12 
13 
14 
30 
ho 
yy 
42 
50 
60 

0 
0 

90 
100 
110 
al 
120 
130 
140 
150 
151 
152 
160 
170 
171 

190 
200 
210 
211 
220 
230 
eho 
eks 
250 
260 
261 
262 
265 

269 
271 
273 
215 
280 
285 
290 
302 
303 
310 
320 
330 
3h1 
350 
360 
370 

360 

74 

coM N,B,M(20,40] ,al40,2],3(41],2{40],E[40] ,rL 40], 
viso] ,BL4o] 

REM-CONVERTS THE SPARSE DIRECTED A MATRIX TO 
NODAL MATRIX M. 

PRINT "INPUT N,B. MAT A IS READ NEXT" 

PRINT "INPUT N=NODES, B=BRANCHES. N<=41, B<=80" 

INPUT N,B 
MAT M=ZER 
LET I=J=K=L=C=1 
PRINT "SPARSE A MATRIX, LOW NODE TO HIGH NODE" 

F1=0 

MAT INPUT A[B,2] 
MAT PRINT A 
TF A{I,1]>ali.2] THEN 171 
IF AlT,2]>AlT,1] THEN 111 
PRINT “CHECK BRANCH CONVENTION" 
STOP 
LET F1=K=1 
LET L=A(1.2] 
IF M[K,L]=0 THEN 150 
LET K=K+1 
GOTO 120 
LET M[K,LJ=Al1.1] 
IF F1=0 THEN 170 
LET K=! 
GOTO 220 
LET F1=K=1 
LET T=AlT,1] 
IF M[K,L]=O THEN 210 
LET K=K+1 
Goto 180 
LET MIK,LJ=a(T,2] 
IF F1=0 THEN 110 
IF I=B THEN 260 
LET I=I+1 
LET K=1 
LET F1=0 
GOTO 70 
LET F1=0 
LET L=1 
G=0 
LET K=1 
IF M[K,LJ]=0 THEN 275 
IF pe L]=0 THEN 360 

Tr MUK,L]<M[K+1,L] THEN 302 
GOTO 310 
IF M[K+1,L]=0 THEN 280 
G=G+1 
IF G=5 THEN 360 
GOTO 265 
LET K=K+1 
GOTO ai 
LET C=MLK,L] 
LET M[K,LI=M(K+1 ,D] 
LET M[K+1,L]=C 
LET K=K+41 
GOTO 280 
LET L=L+1 
IF LAN+1 THEN 262 
IF F1#0 THEN 390 
Fi=1
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ALGORITHM MAL 

The search for a Hamiltonian Path in the M array is undertaken in 

this much modified algorithm. The various arrays and constants are first 

set to zero, The rows and columns markers J and L have already been set to 

1 (not shown), J is tested for the last node and if so skips to a 

temporary Stop. The first element of the M array is tested for greater 

than zero; if this is not so then the column is tested for last node (i.e, 

last column of M ). When a zero is found the column is stepped along to 

the next, which is also tested for zero. Two consecutive zeroes constitute 

an error, as only one first row zero, the sink hub of a wheel, can be 

entertained, 

Assuming a normal M array, the X(1,J) array is begun with a -l, 

indicating the starting node. The J array is to hold the Hamiltonian path, 

hence the column number J is entered each time. K is a counter. The array 

W(J) is a device, superseding two flags, to enable a row to be stepped 

down smoothly from its row used Previously. When X(1,J)=1 it means that 

J has already been used in the recent Hamiltonian path attempt and that 

an alternative must be searched for. 

The counter K is tested to see if the process has been finished, if 

so the J array is printed, being the node succession in original 

numbering of the Hamiltonian path. The # path is defined as 0,1,2. 

  

«+e(n-1) and this is simply printed under the J succession (note the 

relationship is implicitly made). The next Program, BREN 5, is chained. 

When K does not indicate the end, the M array element is called T; 

if it is zero then it would mean a sink hub, but this must be at the end 

of the path and should have been found under the immediately previous
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M(I,J)=0 test, therefore a step-back routine must be entered (see below). 

When T#0 the X array is scanned to see if X(1,T) contains a marker a3 af oe 

has been used (i.e. the node is already in the Hamiltonian chain) then the 

column is stepped down to the next number and the row number W(J) is 

incremented by 1. A Ton is thus traversed until an unused node is 

encountered or the end of column zero is reached, 

| 
When the X array indicates that a node can be used, a 'step-on' 

routine is initiated; K is incremented, the node is added to the 

Hamiltonian node path string and the new column to be used next is noted. 

The next element of the M array is inspected similarly, 

When a column has been tested until a zero is reached and it is not 

the last node, a 'step-back' Procedure has to be entered. As stepping back 

must terminate at the starting node, the counter K is tested if =1; 

When K#1 the X array for this column must be reset to 0 because it could 

be accessed from another node later.on; the individual row marker W(J) is 

also set to zero. K is also stepped back by 1 and the previous node 

returned to, The previous node column has obviously been stepped down 

Tow by row, there is no need to start at the first row again because (a) 

this would lead to a looping procedure (b) if an earlier row had been 

successful there would be no need to step back; hence its W(J) is 

increased by l. 

When a Hamiltonian path cannot be reached from a node (see EXAMPLE) 

the step-back process leads to K=1 and hence a test if L, the column F 

counter, has been tried for all nodes. If it has a Message that all nodes 

have been tested is printed before stopping. When all nodes have not been 

tested the node counter L is incremented once, also J which then starts 

from its next node.
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263 
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270 
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aq 
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564 
566 
568 
570 
580 

590 
610 
620 
630 
640 

COM N,B,M[20,40],a(40,2],0(41],z{40] ,eL40],1[40],v[50], 
B[4o] 

PRINT "MALU1 ENTERED" 
REM-USE FOR CASES THAT HAVE PASSED THE M-R TEST 
pim x[2,40],wl4o] 
LET J=L=1 
LET F1=0 
FOR I=1 TO 40 
Let x[1,I]=s(r]=wlrJ=xl2,T]=0 
NEXT I 
fC 

IF J>N THEN 750 
IF M[1,3]>0 THEN 230 
IF J<N THEN 180 
PRINT "LAST NODE, STARTS WITH 0” 
GOTO 750 
LET J=J+1 
LET L=L+1 
IF ML1,J]>0 THEN 230 
PRINT “TWO CONSECUTIVE 0 STARTS" 
GOTO 750 
LET x[1,J]=1 
tet glij=o 
LET K=1 
LET T=w[J]+1 
wlgJ=I 
IF F1=N THEN 410 
IF M[I,J]=0 THEN 400 
IF K=N THEN 610 
LET T=M[I,J] 
IF T=0 THEN 400 
GOTO 370 
GOTO 260 
IF x[1,T]=0 THEN 535 
LET I=I+1 
wls]=I 
GoTo 280 
IF K=1 THEN 580 
LeT x[1,J[K]]=0 
le 
xl2,a(K]]=1 
LET K=K-1 
LET J=J[K] 
GoTo 260 
LET K=K+) 
LET J[KJ=T 
LET J=T 
Ler x(1,TJ=1 
FOR I=1 TO K 
x{e2, a1] J=0 
NEXT I 
GOTO 260 
PRINT L;"STARTING NODE, NO PATH; CHECKED BACK TO wt 

GOTO 700 
PRINT "H-PATH "; 
FOR I=1 TO N 
PRINT J[I]; 
NEXT I 

T



650 
660 
670 
680 
690 
691 
692 
700 
710 
720 

THO 
750 

760 

PRINT 
PRINT "DIGAMMA"; 03 
FOR I=1 TO N-1 
PRINT I3 
NEXT I 
PRINT 
GOTO 751 
IF L=N THEN 740 
LET L=L+1 
LET J=L 
Goto 90 
PRINT "ALL NODES TESTED" 
STOP 
CHAIN "BREN5" 
END 

80
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ALGORITHM BREN 

The branches of the original network having been searched by the 

previous chained program MAL have now to be numbered according to the & 

path. At the end of the solution stage the old branch numbers must be 

referred to again; as the M array has been completed and need not be 

rebaniee it can be discarded by overwriting with link information for the 

next program. 

The original data of resistance (U), pressure (S) and all nodal 

flows (W) are entered in sequence from the old branch numbering. A 

branch array of the first node (a smaller ordinal than that of the second 

node), A(I,1) is tested against the Hamiltonian path array containing 

J(L) to find L. An error check is incorporated to allow for mis-typing. 

Similarly the node at the end of the branch is checked for its A number M. 

The branch direction convention is still necessary for the next chained 

program HAMIL so if the branches have ‘changed ends’ then the branch 

pressure source sign must be changed. This is achieved by testing L<M 

and reversing the sign if not. 

The next test simply sorts tree branches from link branches by 

seeing if the branch nodes are now consecutively numbered. An array of 

new branch numbers B(J) is formed by adjusting one of the node ordinals, 

for with datum node numbered 0 a branch to n is numbered n + The 

resistance and pressure for this branch are now set in arrays ZandE . 

The link branches are numbered differently and put into the Marray 

as M(P,1), M(P,2). P is the link counter (it also numbers the meshes, 

though this is not used). By adding P to (n-l1) the new link branch 

resistances and pressure sources are entered in the Zand E arrays. The
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link branches are next tested and numbered according to the end nodes. 

Link arrays are set up as M(P,1), M(P,2) as the M array is common to the 

next program. The tree branches are now implicit. 

The process is repeated for all branches. 

This algorithm was modified from earlier forms as the specifications 

changed, it therefore contains some redundant information. 

The next program chained is HAMIL, the solution routine.
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coM N,B,M[20,40],al40,2] £41 bezel elt ete 
BL 40 

DIM ul80],s{80], wl4o] 
PRINT "BREN5 ENTERED" 
PRINT "ENTER U (OLD Z), S (OLD E), ALTERNATELY" 
FOR I=1 TO B 
Input u[1],s[1] 
NEXT I 
PRINT "ENTER ALL NODAL FLOWS" 
FOR J=1 TON 
INPUT w[J] 
NEXT J 
LET I=1 
LET P=0 
FOR I=2 TO 
I[t-1J=w (s(t) 
NEXT I 
LET I=1 
IF I>B THEN 560 
LET L=1 
IF A[I,1]=J[L] THEN 240 
LET L=L+ti 
IF L>N THEN 230 
GOTO 190 
ate Mia CHECK IF EXTRA NODE" 
LET M 
IF alr 2]-a(m] THEN 295 
LET M=M+1 
IF M>N THEN 290 
GOTO 250 
PRINT "ERROR, CHECK IF EXTRA NODE" 
IF L<M THEN 298 
s[1J=-s[T] 
GOTO 300 
IF ABS tL M)=1 THEN 340 
LET P=P+1 
LET B[IJ=N-1+P 
GoTo 470 
IF M>L THEN 400 
B[I]=L-1 
eee 
ELL-1]=S[I 
Goto 450 
LET B[IJ=M-1 
LET z[M-1]=vu[T] 
LET E[M-1 J=s[T] 
LET I=I+1 
GOTO 170 
LET Z[N-1+P]=u[T] 
LET E[N-1+P ]=S[T] 
LET M[P,1]=L-1 
LET M[P,2]=M- 
TF MLP,1]<MlP,2] THEN 490 
MEP, 1]=M=1 
MLP,2]=L-1 
coro 450 
CHAIN "HAMIL8" 
END
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ALGORITHM HAMIL 

{This algorithm performs the main calculation in the program suite for 

the solution of the network. The special numbering of the nodes, branches 

and links allows some of the structure to be known implicitly and the 

programming to be condensed. “ explanation of the arrays used in this 

program is of assistance here because of certain storage reduction 

techniques. The M array was that of Roberts and Flores (6.3) but as the 

Hamiltonian path has already been found and the network renumbered it has 

no further use per se; it can be overwritten and so has been used in 

algorithm BREN as a convenient place to contain the new link numbering. 

A is still the original end-node numbering of the branches. The initial 

resistances U , pump pressuresS and the nodal flows W (meaning a ) have 

been shuffled into the arrays Z, E and I in their new numbering and 

were carried into HAMIL by the COMMON statement. J is the key array 

holding the # path node array (in original node numbers). B is an array 

containing the old branch node numbers, needed for reference later and 

carried from BREN.Q is the final array of flows found by HAMIL. 

Intermediate arrays are needed for this particular program and are 

entered under a DIMENSION statement so that they can be lost on chaining 

the next program, DISP. They are C,, an array built up piece by piece 

to be the fluid resistance matrix €,2,C, + Ly ), which is inverted 

into itself, P is used to find the net pressure in a mesh, incorporating 

the link pressure sources and the tree pressure rises given by V. F holds 

the mesh flows resulting from an Ohm's Law type of calculation. 

Due to a limitation of this BASIC dialect it was not possible to use 

computed dimensions, which meant that the temporary arrays Cue baeand  e: 

had to be dimensioned manually before entering the program, ergo before 

entering the suite. As this can cause a dimensioning error diagnostic
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attention was drawn to the required provision at the commencement in ATOM21. 

To check this at the outset it is helpful to start the suite with 

GET-HAMIL8 

LIS-22,22 

(output ) 22 DIM C(4,4),P(4), F(4) 

22 DIM C(17,17), P(17), F(17) (i.e. changing from a 

4-mesh to a 17-mesh 

network) 

KIL-HAMIL8 (H-P 2000E dialect )/PUR-HAMIL8 (H-P 2000 dialect) 

NAM-HAMIL8 

SAV 

GET-ATOM21 

This has then set the size of C to be inverted. 

The algorithm itself constructs the © array by first adding the: link 

resistances into the diagonal matrix positions. The tree resistances have 

to be added next but are influenced by the way the links are arranged and 

how they overlap or otherwise. A counter Jl denotes the next branch after 

a node (i.e. by adding 1 to the node number), M(a,1) and M(a,2) represent 

the end nodes of branch a. Running up the tree the tree branch resistances 

are added into the diagonal positions of the matrix being formed, which 

should thus contain the sums of the appropriate mesh resistances. A counter 

Jl is set up for the next branch to the node under consideration; the off- 

diagonal element is zeroed and the ends of the branch inspected. They can 

be as in Fig. Hl 

    
  

M(I1,2) = M(J1,1 x a 
ee ay M(I1,2)<NQ1,1) 

Fig. HL
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and can be either left to right or right to left in general, A positive 

result means no mesh and so the next step is to set ne the symmetrical 

Ronnanent in C . When this test breaks down a counter K2 is set at the 

lower node number and 1 added to make it the next branch. A test is then 

carried out to see if the ‘lower' node is smaller than the other end node; 

when it is, the end of the mesh is called K3. A further test is carried 

out to see if the mesh end has reached-the other node end; a it has not 

then the calculation adds all the tree branch resistances for the mesh into 

the off-diagonal matrix position (the link resistances only appear in the 

elements of the leading diagonal). Again the symmetrical element is 

constructed. Il being a mesh counter and Jl referring to links, the other 

cases are shown in Fig. H2. 

— 

  

CILLA NCL, 2) M(J1,2) €M(11,2) 

Fig. H2 

In this way the orthogonal transformation matrix can be set up 

directly, without reference to Gor A 

Starting with the last nodal flow, this must flow along the tree 

branch to that node, hence the nodal flow can be assigned to the branch 

flow array and by stepping down the tree the other nodal flows can be 

added into the tree branch flow array. A temporary vector V of tree 

pressures is set up and a temporary vector P of the link pump pressures 

is also created; the former is subtracted from the latter to give net 

mesh pressure differences. The orthogonal transformation matrix is 

inverted and multiplied into the mesh pressure matrix to give the mesh 

circulating flows, i’ » in array F . Working round each mesh in turn
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these corrections are added to the tree branches, some of them having 

several corrections (cf. overlap). As F contains i the link branches 

in the branch flow array have already been found and are now assigned. This 

Ronsier ds the solution for flows. In order to keep within the storage size 

requirements and to allow for larger meshes to be used, the output of 

results was handled separately in the algorithm DISP (q.v.) which is 

chained next. 

Two versions of HAMIL were constructed, HAMIL8 applies to linear 

network systems and HAMIL9 to non-linear; these are different because of 

the comparison of flows necessary to obtain convergence.
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ALGORITHM HAMIL 

       
AMILS Acrays J 

Dimensioned _ 

sae 
M(I1,2) 
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PCIL)=E(NL+IL) 

 5(11.)=M(11,1)41 

    
rae 
JL=J1+1 j 

H Q(J1)=QCI1)-FCLL 
B J1=s141 j 

  
     

ALGORITHM HAMIL



HAMIL8 

com N,B,M[20,40],A(40,2],3(141],2[ 40] .EL40] .1[40] ,vi50], 10 

12 
13 
we 
22 
70 
fe 

0 
85 
90 
95 
100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155. 
60 

165 
170 
175 

185 
190 
195 
200 
205 
210 
215 
220 
222 
225 
226 
227 
230 
232 
233 
255 
eho 
ahs 
250 
55 
a 
265 
267 
269 

N1=N-1 
L1=B-N1 
PRINT "HAMIL8 ENTERED" 
Dim c(4,4],P(4],Fl4] 
FOR T1=1 TO L1 
eL31,11J=z[11+N1] 
FoR Ji=m[11,1]+1 To m[r1,2] 
e[11,11]=cl11,11]+z(31] 
NEXT J1 
FOR J1=I1+1 TO L1 
c[I1,J1]=0 
IF u(r 2] = 
ots ae +1 
IF M 
es 
K3=M[J1,2] 
IF ly <= M[I1,2] THEN 140 
K3=M[11,2 
FOR K1=K2 TO K3 
e{11,91 J=c[I1,31]+z(k1] 
NEXT K1 
Cls1js71 Jaci risa) 
NEXT J1 
NEXT I1 
Qini J=1{N1] 
FOR I1=N1-1 TO 1 STEP -1 
Q{t1 J=ql114+1]42[11] 
NEXT T1 
FOR Ii=1 TO N1 
viz1J=e(11J-z[11]*Qf1] 
NEXT T1 
FOR Ii=1 TO 11 
p(11 J=E(N1+I1] 
FOR J1=M(11,1]+1 TO M[I1,2] 
p(x J=P(11 J-vls1] 
NEXT J1 
NEXT Il 
PRINT "CTTRANSZTCTZL" 
MAT PRINT C 
MAT C=INV(C) 
PRINT "INVERSE" 
MAT PRINT C 
MAT F=C*P 
FOR I1=1 TO L1 
FOR Ji=M[11,1]+1 To M[11,2] 
alsiJ=9(51J-F[11] 
NEXT J1 
a{n1+11 J=F[11] 
NEXT 1 
CHAIN "DISP" 
END 

oo <= M[J1,1] THEN 125 
+1 

BL4o] ,Ql4o] 

= M[J1,1] oR M[g1,2] <= M[I1,1] THEN 155



9S: 

ALGORITHM DISP 

The output requirements could not be met within the HAMIL program 

due to the length and storage already taken, hence a further program had 

to be chained for thiss The calculation of the solution had taken place 

in the simplified notation of the A conjecture, the results have to be 

transformed from the new system back to the original branch numbers. 

This algorithm commences by finding in natural order the corresponding 

old branch number, B(I). It then finds the old node numbers at the ends 

of this branch from the Hamiltonian path array J(I) using the current 

node numbering. The flow for the branch can be printed but it may have to 

be adjusted according to the flow convention and node numbering. 

If a particular flow is negative the convention is that the flow is 

in the same direction as the graph direction; this ae from low node 

number, A(K,1), to high node number, A(K,2). However the calculation was 

performed in the new system and the selection of the Hamiltonian path 

could have interchanged them as new node numbers. Thess are almost found 

in the algorithm as I3 and 14. From the J(I) array I3 and I4 are only 

needed relatively, the actual A numbering of the nodes is (13-1) and 

(14-1) when the datum is chosen as 0, but the criterion here is whether 

I3<14. The new nodes were numbered implicitly in the MAL algorithm. 

Assuming that a particular flow Q(I1) was negative then 13<14 would 

mean that the flow was in the original graph direction A(K,1) to A(K,2). 

A print of the flow from A(K,1) to A(K,2) would be made, together with 

the pressure difference. When the nodes have been interchanged, 14<13, 

the flow is directed from A(K,2) to A(K,1) and this is printed, together 

with the value and the pressure difference.
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The other two cases occur where the value of the flow is positive. 

If the nodes are in order, I3<1I4, then the direction has reversed and is 

A(K,2) to A(K,1), the flow is printed-and the pressure difference. When 

I4<I3 the flow direction has two reversals and so is from A(K,1) to A(K,2), 

the flow and pressure difference are printed. The sign of the flow has 

not been suppressed as this is a useful diagnostic because it relates the 

practical and theoretical directions.
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DISP 

10 

12 
15 
20 
30 
4o 
50 
60 
7 

fo) 

100 
105 
110 
Tes 
120 

125 
130 

135 
140 
145 

147 
150° 

160 
170 

180 
190 
200 
210 
220 

COM N,B,M[20,40],A[40,2],3[41],2[40] E[40],1[ 40], 
V[ 50] ,B[40] ,Qi4o] 

PRINT "DISP ENTERED" 
S=0 
FOR Ii=1 TO B 
FOR K=1 TO B 
IF B[K]=I1 THEN 60 
NEXT K 
FOR I3=1 TON 
IF J[13]=A[K,1] THEN 90 
NEXT 13 
FOR T4=1 TON 
IF 3(T4] =A K,2] THEN 110 
NEXT T4 
IF Q[11]<O THEN 140 
IF 13<I4 AND J[13]<J[I4] THEN 130 
PRINT "FLOW FROM"3A[K,1]3;"TO"A[K,2]3Q[11]3"DP"; 

-E({ Ii J-Z[ 11 ]*Q{11] 
GoTo 160 
PRINT "FLOW FROM"A[K,2]3"TO";A[K,1];Q[I1];"DP"; 

-E[11]-Z[11]*Q[ 11] 
GOTO 160 
IF 13<I4 THEN 150 
PRINT "FLOW PROM" 5A K,2] 5 "TO" ALK, 1 ]3QL11];"DP"; 

2E[ Ti ]42(11 ]*Q( 11] 
GOTO 160 
PRINT "FLOW FROM";A[K,1];"TO"3A(K,2];Q[11];"DP"sz[ 11] 

*Q([I1J-E[I1] 
NEXT 11 
PRINT "NODAL PRESSURES RELATIVE TO DATUM NODE"J[ 1]; 

"ARE?" 

FOR Ii=1 TO N-i 
S=S+Z[I1]*Q(I1]-E[I1] 
PRINT "NODE"; J[11+1];S 
NEXT Ti 
END
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ALGORITHM COLL 

For the solution of networks with non-linear elements this program 

adjusts the initial resistances, takes in, arranges and validates the data. 

It also issues instructions and information, such as the precautionary 

note regarding HAMIL9 where certain arrays cannot be given computed 

dimensions. 

The arrays and data held in COMMON include nodes (all of them), 

branches and a counter 0 for the number of loops performed to convergence. 

The M array is for the node-connected links only, the network being 

assumed to be already numbered according to the Hamiltonian path concept, 

Q and J are flow arrays, the latter being set up by COL1, the former 

being repeatedly found in the next program, HAMIL9, Z and E are the 

branch fluid resistances and branch pump pressures; the former depends 

upon the flow and the array is calculated in HAMIL9 and subsequently 

updated there. I is the array for the non-datum flows 1.2 » D and K 

are the pipe constants, length, diameter (in feet) and relative roughness. 

The initial calculation assumes that all pipes will be operating in 

a Tange of 9 at about # =0.005 and the S array is constructed from this 

figure. The Reynolds Number for each branch is calculated from this 

information and the branch flows calculated from the Reynolds Numbers 

and entered in the J array. The program HAMIL9 (q.v.) is chained next. 

wnensPommemref HAMIL Jom)
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98 
eLagl. 

  

COM NsbsOsMC40.21.0f40).2040), EL AGIs I CALI, JLACI Ls Ds 
PRINT "NETWVOPK ASSUMED NUMEZPED AS PEP LIGAMMA 
PRINT “HAMIL 9 LINE 22 MUST BE ADJUSTED FOP M 
PRINT "AND VECTOP V DIMENSIONED (N-1)" 
PRINT "ENTEP NODES N» BPANCHES B" 
LET 0=-1 
INPUT NoE 
PPINT “ENTER LINKS AS LOV-HIGH NODE CONNECTIOI 
MAT INPUT MCB-N+1. 2) 
MAT PRINT M 
PRINT "ENTER L IN FEET» D IN FEET, PELATIVE POUGHNESS E/D=K" 
PRINT "PROGRAM TAKES G AS 32-2 FT/S*Ss PI AS 3.14159" 
INPUT Ls DsK 
PRINT "ENTER PUMP PRESSURE HEADS FOP ALL BRANCHES, AFPAY E" 
FOR J=1 TO B 
INPUT EfJ] 
NEXT J 
PRINT "ENTER NON-DATUM FLOWS, ARPAY I" 
FOP L=1 TO .W-1 
INPUT ICL] 
NEXT L 
FOR Bl=1 TO B 
LET SCB11=.005 
LET K1=.27%K 
LET A=-885 
LET X1=1/SGR(SCB11) 
RCBIISAxM1/CEMPC-X%1/2-5) -K1) 
JCE1]=4.23E-06*RCB1] 

THODN RC4O) 
SIZE 

  

    

      

      

  

    

NEXT 51 
CHAIN “HAMIL9" 

STOP. 
END:
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ALGORITHM HAMIL9 

This is a revised version of the HAMIL8 algorithm for the purposes of 

non-linear, Colebrook-White equation solution, As the low-high convention 

is considered as having been adopted then the counting is made up the tree 

only (HAMIL8 allowed either way). The process of array creation is much 

the same but the fluid resistances vary with each iteration, hence they 

have to be calculated to give a fair approximation in the Z array before 

going into the calculation proper. The new arrays needed in the program 

are then J, a flow vector for comparison and S a Colebrook-White vector 

to hold the recalculated go for each branch. 0 is an outer loop 

counter to check for convergence difficulties. 

When the difference between all the newly calculated flows Q aaa the 

last calculated flows J is less than 10% of the latter the display 

algorithm DISP3 (q.v.) is chained; otherwise the flow vector J is updated 

with Q and the new g calculated for each branch and the process 

recycled to the calculation of the next set of fluid resistances.



HAMIL9 

    

100 

10 CoM NeBeQsMC40s 214 06.4024 2A02+ ECMO IEAEI, IEATIsLe Dees $6407> 

12 R(40) 

13 
22 DIM Cl4s.4].PC4)sFC4I-V0113 
25 FOR 82=1 TO B 
30 ZEB2I=SCE2I#L*GA*ABSCILEQI/32-2*D15*3- 1415912) 
46 NEXT Be 

70 FOR I1=1 TO L! 
75 CCL1s113=ZC11+N1) 
8G FOP Jl=MCI1,1]+1 TO MCI1,21 
85 CLIIL1I=CLI1,117+Z0d1] 
99 NEXT Jl 
95 FOR Jl=Il+1 TO L1 
19g Cl11s,Jd11=0 
105 IF MCI1s2] <= M€dls.1] THEN 155 
110 K2=MCJls11+1 
125 K3=MCJ1ls2] 
130 IF MCJl,2] <= MEI1s21 THEN 140 
185 K3=MC11,22 
149 FOR Kl=K2 TO K3 
145 CCI1sd1I=CCI1sd1I+Z0K1) 
150 NEXT Kl 
155 Cdl» TVISCCI1sd11 
160 NEXT Jl 
165 NEXT I! 
170 QCNIJ=ICN12 
175 FOR Il]=Ni-1 TO 1 STEP -1 
18@ QCIII=QCLI+1I+1IC112 
185 NEXT 11 + 
198 FOR Il=1 TO NI 
195 VCIIISECIII-ZOL1I*QC11) 
260 NEXT 11 
205 FOR I1=1 TO LI 
216 PCIIISECNI+113 
215 FOR Jil=MCI1,1]+1 TO MCI1,2) 
220 PCI1I=PL113-VeU1)I 
222 NEXT JI 
225 NEXT 11 
238 MAT C=INVCC) 
235 MAT F=CxP 
240 FOR I1=1 TO LI 
245 FOR JisMtI1,1]+1 TO MEI1s2] 
250 QtdlI=QCdlI-FCI1 
255 NEXT Jl 
260 QCNI+113=FCI1] 
265 NEXT-11 
266 0=0+1 
267 PRINT "OUTER LOOP TRAVERSED"s03 "TIMES" 

270 FOR P=l1 TO B 
280 IF ABSCQCPI-dfP}) >= ABS(-1*GLP1) THEN 318 

290 NEXT P 
308 CHAIN "DISP3" 

31@ FOR B3=1 TO B 
315 JCB3I=(JCB3I+00B31972 
317 Kl=+27%K 
318 A=-885 
319 RCB31=ABS(JCB3I/4- 23E-G6) 
320 . SCB31=-2-5*L0G(K1+A/(REB3]*SQR(S£B3I))) 

i 

33 NEXT 53 
349 GOTO 25 
350 END
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ALGORITHM DISP3 

| 

This algorithm simply prints out the vector of branch flows, 

followed by the nodal pressures up the tree. Because of the nero of 

the fluid resistances these were also printed to give a record and so that 

the final resistances could be used as a check if required.



DISP3 uae 

10 COM N»BsOsMC4G, 21500 401.Z0401,EC 401,10 461+JC401+L» Ds Ks SC48), 

26 PRINT "BRANCH FLOWS APE:" R(40) 

30 FOR bé=1 TO B 
31 IF RCB61<2020 THEN 35 
32 IF RCB631<4088 THEN 37 
33 PRINT QCB6]3 "TURBULENT" 

34 GOTO 4g 

35 PRINT QCB6)3"LAMINAR" 

36 GOTO 46 
37 PRINT QCB613"TRANSITIONAL" 

4Q NEXT B6 
58 PRINT “NODAL PRESSURES AFE:" 

60 W=o 
76 FOR BS=1 TO N-1 
8G W=W+Z0B5]*QCES]-ELBSI 

98 PRINT WsZCBS) 

91 NEXT BS 
110 STOP 
126 END
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EXAMPLES 

Treatment of the Gay and Preece (6.8) network by the A method, 

Their numbering of nodes and branches is taken to enable convenient 

comparison. The branch directions cannot be transferred because the 

method assumes the convention of low node number to high node number as 

the defining direction for the input of A, the node-connected branch 

matrix. 

Recapitulating the network for use in this context: 

  

The algorithm ATOM takes the data for sequential branches as node 

connections e.g. branch 9 is entered as 1,4 for the ninth pair. An 

immediate print is made for data validation. The number of nodes and 

branches is common to all the chained programs. This algorithm produces 

the M matrix of Roberts and Flores (6.3) which is printed for checking 

purposes. 

The MAL algorithm is chained next and scans the M array for one 

Hamiltonian path. The first path found is printed together with the 

corresponding f path numbering; visual checking is easily performed. 

This network was given alternative numberings to test the searching powers 

of the algorithm, for example the pattern:



LS; 

  

has no Hamiltonian path starting at 1, thereby causing the process to step 

back, reach this decision then step on to a node 2 start. 

The program next chained is BREN which takes in the data of 

resistance and pump pressure per branch with the original numbering. The 

nodal flows are next entered, differing from Gay and Preece non-datum flows 

entry because the datum in the A system has been found (O - 1) but 

not yet assigned. The branches are all renumbered by the algorithm, 

which then chains HAMIL. 

The HAMIL algorithm solves the system which is now in the & 

numbering. The array (E,2,C42,) is printed next for validation 

purposes, inverted and the inverse also recorded. The program is too 

lengthy to contain detailed output orders and so these are chained in the 

DISP algorithm, 

The DISP algorithm relates the solution in the new numbering to the 

original numbering and prints it. Because the branch flow directions can 

change, the possible negative sign is avoided and the end nodes 

interchanged for this. The branches are printed sequentially in f# order 

e.g. the third line is #& branch 3 which corresponds with original branch 

11; the f& tree branches are printed first followed by the link branches. 

The latter are sequential so that the ninth row is the first link, which
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defines mesh 1 , etc. Both branch flows and directed pressure drops are 

printed. This is followed by a summation of branch pressures up the tree. 

The datum node number is printed because it is not necessarily l. 

It is observed that neither C nor B, are entered t 

and that Ay » a Sparse matrix, has been entered as a 

node-connection list. 

An alternative numbering of the same Example is included to allow 

for a start from another node. The numerical results are essentially the 

same as those published (with the exception of the mis-print for their 

branch 12, which should be a pressure rise of -78.1). 

A network of Gay and Middleton (2.16) with pumps in two meshes is 

next solved linearly. This is illustrative of the f method, showing how 

the nodes are renumbered and the links are taken into account. The 

numerical results when rounded agree with those published. 

A 4-mesh network of pipes solved non-linearly is included next to 

investigate convergence and handling convenience. The problem is assumed 

already sorted about a Hamiltonian path, which is different from the two 

previous examples of 4-mesh networks. The compactness of the data input 

is shown, i.e. only 4 links instead of 12 branches. Only 4 iterations were 

required for a 10% accurate solution. 

The Gay and Middleton (2.16) test example is next shown solved non- 

linearly from the f numbering illustrated. The compactness of the results 

is evident. The accuracy constant was taken as 0.1% (cf. p.48) and both 

KCL and KVL check to better than 0.000. These results had to be Xeroxed 

due to a breakdown of the Friden Flexowriter.
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Gay and Preece (6.8) network, linear 

RUN 
ATOM21 

INPUT N,B. MAT A IS READ NEXT 
INPUT N=NODES, B=BRANCHES. N<=41, B<=80 
29,12 
SPARSE A MATRIX, LOW NODE TO HIGH NODE 
91 52,2,3,2,5,55136)75758,4,55559,1541446,349.8.9 

2 

2 3 

2 5 

5 v4 

6 iC 

? 8 

4 5 

5 9 

1 4 

4 6 

s 9 

8 9 

: 1 2 1 : : 2 3 
5 9. 5 

oO 5 0 6 7 0 8 ° 8 
oO 0 0 ° 9 ° 0 0 ° 
oO ° 0 0 0 0 0 0 0 

MAL41 ENTERED 
H-PATH 1 2 3 9 : 4 6 7 8 
DIGAMMA O 1 2 3 5 6 7 8 
BREN5 ENTERED 
ENTER U (OLD Z), S (OLD E), ALTERNATELY 

2 
ENTER ALL NODAL FLOWS 
210 
20 
220 
20



20 
2-15 
20 
2-15 
20 
HAMIL8 ENTERED 
CTTRANSZTCTZL 
ak 0 7 

° 20 <i 14 

18 5 31 12 

7 14 36 

INVERSE 
7.71358E-02 1.54555E-02 -4.490486E-02  -6.02623E-03 

1.54555E-02 7.18185E-02 -9.85466E-03 -2.76498E-02 

~4 .49486E-02 -9.85466E-03 .06324 -8.50762E-03 

-6.02623E-03 -2.76498E-02  -8.50762E-03 4 ,25381E-02 

DISP ENTERED 
FLOW FROM 2 TO 1 +921299 DELTAP-3 .6852 
FLOW FROM 3 TO 2 7.80787 DELTAP-39. 0394 

FLOW FROM 3 TO 9 12.1921 DELTAP-73. 1528 

FLOW FROM 9 To 5 1.02942 DELTAP-7 .20591 
FLOW FROM 5 To 4 1.21021 DELTAP-6.05104 
FLOW FROM 4 TO 6 12.1315 DELTAP-48 . 526 
FLOW FROM 7 70 6 2.86849 DELTAP-14.3425 
FLOW FROM 7 To 8 Breer? DELTAP-30.698 
FLOW FROM 2 TO 5 6.8865' DELTAP-41 .319: 

FLOW FROM 5 70.7 6.7057! DELTAP-40.2347 

FLOW FROM 1 TO 4 10.9213 DELTAP-43.6852 
FLOW FROM 9 To 8 11.1627 DELTAP-78. 139 

NODAL PRESSURES RELATIVE TO DATUM NODE 1 ARE: 
NODE 2 3.6852 
NODE 3 ho. 7246 
NODE 9 -30.4282 
NODE 5 ~37.6341 
NODE 4 -43.6852 
NODE 6 -92.2112 
NODE Z -77 .8687 
NODE -108.567 

DONE 

107
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Gay and Preece (6.8) network with alternative numbering. Linear. 

ATOM21 

INPUT N,B. MAT A IS READ NEXT 
INPUT N=NODES, B=BRANCHES. N<=41, B<=80 
29,12 
SPARSE A MATRIX, LOW NODE TO HIGH NODE 
215251 4¥91.)7,2,3,394,3;52440,418,5,6,619,7,8,859 

2 

1 4 

1 7 

2 3 

3 4 

3 5 

4 6 

4 8 

5 6 

6 9 

z 8 

8 9 

2 1 2 1 3 4 1 4 6 

= S 4 3 6 5 8 T 8 
T 0 5 6 0 9 0 9 0 
0 0 0 8 0 0 0 0 0 
0 oO 0 0 0 0 0 0 0 

MAL41 ENTERED 
1 STARTING NODE, NO PATH; CHECKED BACK TO FIRST NODE 

H-PATH 2 1 4 3 5 6 9 8 
DIGAMMA O 1 2 3 4 5 6 % 
BREN5 ENTERED ; 
athe U (OLD Z), S (OLD E), ALTERNATELY 
24,0 
26,0 
25,0 
24,0 
25,0 
24,0 
26,0 
27,0 
25,0 
28,0 
26,0 
27,0 
ENTER ALL NODAL FLOWS



20 
210 
20 
20 
2-15 
20 
220 
20 
2-15 
HAMIL8 ENTERED 
CTTRANSZTCTZL 
46 1 14 

1 19 5 

14 5 20 

29 5 14 

INVERSE 
5.04786E-02  -1.82914E-02  -5.60084E-03 

-1,829148-02 -06324 -9.85466E-03 

-5.60085E-03 -9.85467E-03 7.18185E-02 

-3.59447E-02 9.78377E-03 -2.20489E-02 

DISP ENTERED 
FLOW FROM 1 TO 2 921305 DP-3.68522 
FLOW FROM 1 TO 4 -6.88656 DP-41 .3194 
FLOW FROM 4 TO 3 -1.21021 DP-6.05104 
FLOW FROM 3 TO 5 12.1315 DP-48.5261 
FLOW FROM 6 TO 5 2.86849 pP-14.3424 
FLOW FROM 6 TO 9 -3.83729 DP-30.6983 
FLOW FROM 8 TO 9 11.1627 DP-78.139 
FLOW FROM 7 To 8 12.1921 DP-73. 1528 
FLOW FROM 7 TO 1 7.80787 DP-39.0394 
FLOW FROM 2 TO 3 -10.9213 pP-43.6852 
FLOW FROM 4 TO 6 -6.70578 DP-40.2347 
FLOW FROM 8 TO 4 1.02942 DP-7 .20597 
NODAL PRESSURES RELATIVE TO DATUM NODE 2 A 
NODE 1 3.68522 
NODE 4 -37.6342 
NODE 3 -43.6852 
NODE 5 92.2113 
NODE 6 -77 8689 
NODE 9 -108.567 
NODE 8 -30.4283 
NODE 7 42.7245 

DONE 

109 

29 

5 

14 

36 

-3.59447E-02 

9.78376E-03 

-2.204898-02 

- 063949 

RE



Gay and Middleton (6.6) network. Linear. 

ATOM21 

INPUT N,B. MAT A IS READ NEXT 

ehh N=NODES, B=BRANCHES. N<=41, B<=80 

24,5 
SPARSE A MATRIX, LOW NODE TO HIGH NODE 

21 2515351545254, 34 
1 ie 

1 z 

1 4 

2 4 

3 4 

2 1 a 1 

3 4 4 2 
4 0 ° 3 
oO 0 0 0 

MAL41 ENTERED 
H-PATH 1 2 4 3 
DIGAMMA O 1 2 3 
BREN5 ENTERED 
ENTER U (OLD Z), S (OLD E), ALTERNATELY 
24,0 
2135 
25,4 
28 50) 
22,2 
ENTER ALL NODAL FLOWS 
2-2 
24 
22 
2-4 
HAMIL8 ENTERED 
CTTRANSZTCTZL 

10 7 

7, 12 

INVERSE 
- 169014 -9.85915E-02 

~-9.85915E-02 - 140845 

DISP ENTERED 
FLOW FROM 2 TO 1 1.16901 DP-4 .67606 

FLOW FROM 2 To 4 -2.83099 DP-8.49296 
FLOW FROM 4 T6,3 -.394366 DP 1.21127 

FLOW FROM 3 TO 1 237th DP-7.39437 
FLOW FROM 1 To 4 -1.5633 DP-3.8169 
NODAL PRESSURES RELATIVE TO DATUM NODE 1 

NODE 2 4.67606 
NODE 4 -3.8169 
NODE 3 -2.60563 

DONE 
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coLt i 101 
A 4-mesh network of pipes. Non-linear. 

NETWORK ASSUMED NUMBERED AS PEP DIGAMMA METHOD 

HAMIL 9 LINE 22 MUST BE ADJUSTED FOR MESH SIZE 

AND VECTOP V DIMENSIONED (N-1) 

ENTER NODES N» BRANCHES B 

29542 
ENTER LINKS AS LOW-HIGH NODE CONNECTIONS, APRAY M 

20s 3561526572158 

@ 3 

@ Ss 

g q 

1 & 

ENTER L IN FEET. D IN FEET» RELATIVE POUGHNESS E/D=K 

PROGRAM TAKES G AS 32-2 FT/S*Ss PI AS 3-+14159 
71082 +5» - 8003 
ENTER PUMP PRESSURE HEADS FOR ALL BRANCHES, APRAY E 

20 
28 
20 
20 
28 
20 
20 
26 
20 
20 
26 
26 
ENTER NON-DATUM FLOWS, ARPAY I 
20 
21 
20 
22 ® 
20 
2-165 

26 
2-165



OUTER LOOP TRAVERSED @ 
OUTER LOOP TRAVERSED 1} 
OUTER LOOP TRAVER 2 
OUTER LOOP TRAVERS. 3 
OUTER LOOP TRAVERSED 4 
BPANCH FLOWS ARE: 
-+121933 TURBULENT 
-90982 TURBULENT 

-9- G98OS5E-G2 TURBULENT 
+8O04626 TURBULENT 

-1-19537 TURBULENT 
-1-94386 TUREULENT 
+456136 TURBULENT 

--469248 TUPBULENT 
+895606 TURBULENT 

2151511 
-+925184 
-1-83895 TURBULENT 
NODAL PRESSURES APE: 
-1-78364 14-6281 
98-7758 110-624 
97-7802 16-9424 
176-621 97-9841 
2-81427 145-399 
“129575 126-826 
-1G4-192 55-6468 
-136-913 56-9679 

DONE 
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TIMES 
TIMES 
TIMES 
TIMES 
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GET-coL1 ‘ ae 
RUN z . 

COL! 

NETVORK ASSUTED NUMBERED AS PER DIGAMNA METHOD 
HAMIL 9 LINE 62 MUST BE ADJUSTED FOR MESH SIZE 
AND- VECTOR UV DIMENSIONED ¢N-1) : 
ENTER, NODES N» BRANCHES B 

ENTER LINKS AS LOW-HIGH NODE CONNECTI 
&. 
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TRAVERSED 6 
TRAVERSED '7 
TRAVERSED & 
TRAVERSED 9 TIMES 
TRAVERSED 10 TIMES Ty 

 



LOOP TRAVERSED 11 
ICH FLOWS 
31365 

-Te72835E-92 
+895455 

TIMES : A177, 
RESISTANCES ARE: 
61.629 

        

   

      

    

+ 649 49 302.808 
-.517612 237.23 
1.26691 620-24 

-1+06599 515-47 
-.257042 111-511 
-1.48596 135-294 
-- 64184 TURBULENT 298-993 

-+562748 TURBULENT 259.56 
-1+49597 TURBULENT 693-449 
--G96704 38+ 6366 
*711931 334.206 

- 1.66439 514.641 \ 
-1-41115 NT 696-191 
-2.04336 TURBULENT 1034-47 
1.95664 TURBULENT 987-+577 
+878953 TURBULENT 418-597 

-5¢S50962E-92 TURBULENT 21-6997 
s294944 TURBULENT 129-352 

-1.87864 TURBULENT 522-012 
~«GA955 TURBULENT 362-841 
-» SSSA66 TURSULENT 270-825 
«890937 TURBULENT 425.233 
+893555 TURBULENT 426-591 

-1677632 TURBULENT 896-589 
+826945 TURBULENT 383-373 
*TT1984 TURBULENT 364-595 

“1642496 TURBULENT 763-476 
1.1671 TURBULENT 568-947 

79843219 TURBULENT 490-832 
-1-58496 * TURBULENT 745-357 
= »813319 TURBULENT 385.595 
~-808635 TURBULENT 383.299 
“1627519 TURBULENT 6240595 
6322286 TURBULENT 2946169 

  

    ~299522 TUR 
NODAL PRESSURES ¢ 
273801 
2730-76 
3038-11 
3234-78 
3111-98 
3897-77 
3348.29 
3319-62 
2227.67 
2035.76 
1889-7 
914.73 
910.994 
1148.93 
601-146 

T L278 76, 

  

   

    

95-68 
2.744 

ml Swe 15 
“196-386 
“1586235 

DONE
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NOMENCLATURE 

etc. Matrices in Clarendon Medium/Century Schoolbook Bold type 

unit matrix 

branch by node topological matrix 

branch by path-to-datum matrix ” 

branch by mesh matrix 

branch by cutset matrix 

transformation matrix 

a special topological matrix (defined on p. 22) 

nodes in configuration 

branches in configuration 

meshes in configuration 

Kirchhoff's Current Law (the 'First Law') 

Kirchhoff's Voltage Law (the ‘Second Law') 

null matrix 

vector of node-to-datum path pressure rises, (n=-1x1) 

vector of branch pressure rises, (bx1) 

vector of branch pressure sources, (bxl) 

vector of path pressure sources, (bxl) 

vector of branch flows not due to external flows, (bx1) 

vector of mesh flows, (mxl) 

vector of branch flows due to external inputs, (bxl) 

vector of node-to-datum path flows, (n=1xl) 

vector of branch pressure rises due to branch resistances, (bxl) 

vector of branch flows, (bxl) 

branch resistance matrix, (bxb) 

branch admittance matrix, (bxb) 

the degree of a node, i.e. the number of incident branches. The 

demidegree is e/2 

‘if and only if’ 

123



Re Reynolds Number 

density 

Viscosity 

head difference | 

diameter 

length 

natural logarithm 

velocity 

quantity flow rate 

= (Re,€/d), where € is the roughness 

Subscripts and superscripts 

-1 

tree branches 

link branches 

matrix inverse 

Matrix transpose 

124
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