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Summary. 

The development of methods designed to produce continuous 

solutions to linear, ordinary differential equations is described. 

These solutions are based on a set of orthogonal polynomials. 

This work is then incorporated into state estimation theory and a 

continuous filter is developed. 

A new sequential adaptive filter is then developed which 

effectively compensates for errors in the mathematical description 

of the process. This adaptive filter finds the mean and covariance 

of ‘fictitious inputs' and uses these parameters to compensate for 

the model errors. 

The results show the application of the above topics to 

.some simple linear and non-linear systems and demonstrate the 

effectiveness of the adaptive filter in situations involving poor 

models. The adaptive filter also provides information concerning 

the nature of the model errors which may be used to improve the 

model formulation.
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Nomenclature. 

. 

Generally, higher case letters denote Matrices or Operators (e.g. 

E denotes the expectation operator; V denotes a covariance matrix). 

Lower case letters denote vectors or scalars. 

The dot notation (e.g. *) denotes differentiation with respect to 

time. 

The dash notation (e.g. et (x,y) ) denotes partial differentiation 

with respect to the subscripted variable.
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INTRODUCTION. — 

 



1s Introduction. 

Physical systems are designed and built to perform 

certain defined functions. Chemical process plants, electric 

power systems, etc. must meet their respective load demands. 

Submarines, aircraft and spacecraft must navigate their 

respective environments. In order to determine whether a system 

is performing properly, and ultimately to control the system 

performance, the engineer must know what the system is'doing' at 

any instant of time. That is, the engineer must know the state of 

the system. In navigation, the state consists of position and 

velocity of the craft in question; in chemical processes the 

state consists of the various flows, pressures, temperatures, 

concentrations, etc. that exist throughout the particular system. 

Physical systems are often subject to random disturbances, so 

that the system state may itself be random. In order to determine 

the state of a system, the engineer builds a measurement device 

(e.g. flowmeter, thermometer, pressure gauge, etc.) and takes 

measurements or observations on the system. These measurements are 

generally contaminated with noise caused by the electronic and 

mechanical components of the measuring device. 

The problem of determining the state of a system from 

noisy measurements is called estimation, or filtering, and is the 

main subject of this thesis. It is of central importance in 

engineering, since state estimates are required in monitoring, 

and for the control of systems. Furthermore, a large class of 

system identification problems can be regarded as problems of 

filtering. 

This thesis discusses the development of filter theory 

from its origins in the work of K. Gauss, to the important



contribution made by R.E. Kalman. A discussion of the present 

state of the art reveals problem areas and introduces the concept 

of 'adaptive filtering'. The attempts to construct adaptive 

filters which are discussed, however, are not totally satisfactory 

and outstanding problems remain. A new adaptive filter is described, 

which overcomes many of these problems. 

The approach taken in this thesis is that the mathematical 

model of a system and the actual dynamics of that system rarely 

match. This fact is accepted at the outset and the new adaptive 

filter, while retaining the sequential structure of the basic 

Kalman filter, compensates effectively for these model errors. 

Furthermore, this new filter provides useful information 

concerning the type of model error that exists. This information 

is particularly helpful to any work aimed at improving the model. 

It must be remembered that ‘the ultimate aim of filtering 

is to provide estimates of the systems state, and statistical 

parameters describing the state estimation errors, that can be 

used to control the system. Therefore, a modification to the 

Kalman filter is described which produces continuous state 

estimates from discrete measurements. These continuous estimates 

can be used in a control scheme to produce continuous control 

functions, and thus achieve finer control than would be possible 

with the standard discrete form of the Kalman filter.
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Identification Techniques. 

Over the past fifteen years, increasing attention has 

been given to the problem of determining, from records of 

experimental input/output data, useful mathematical descriptions 

of dynamical systems. The study of such problems has received 

great impetus more recently as a result of investigations on 

large scale process plant and adaptive systems, and the ready 

availability of digital ana analogue computers has facilitated 

the implementation of sophisticated data processing operations. 

It is largely as a result of these developments that System 

Identification, or (in alternative and probably preferable 

terminology), Parameter Estimation, in a control engineering 

context is currently recognised as a substantial topic for 

research and development. 

It is advisable at this stage to examine what is implied 

by the term 'Identification'. A little thought will indicate that 

the term is something of a misnomer, although its use is fairly 

commonly accepted, and perhaps VParansces Estimation’ would be a 

more precisely descriptive term to use. This is because even in 

the simplest system no useful progress can be made unless we are 

willing to make some a-priori assumptions about the structure of 

the unknown system. It is the nature of these basic structural 

assumptions which distinguishes the various identification 

techniques in use at the present time. They amount to a choice 

of a basic type of mathematical model of the system, with a 

(finite) number of unknown parameters which are to be determined 

by experiment. Some of the best known examples are:



(a) Weighting sequence models. (39) 

(b) Frequency response models (39,9,22,2) 

(c) Differential equation models. (2,21, 30,27) 

(a) Difference equation models. (39,1,28) 

(e) Orthogonal function expansions (40,29,49) 

Once the choice of structural model has been made (e.g. 

as above) the problem reduces to a more readily definable one of 

parameter estimation. 

In order to asses the merits of a proposed scheme for 

identification, it is necessary to consider a number of related 

aspects. The main points for consideration are: 

(1) The usefulness of the selected model structure. 

(2) The size and cost of computer hardware required to estimate 

the model parameters. a 

(3) The amount of time and data which is required to achieve 

the desired confidence in the model parameters. 

(4) The types and nature of test signals which are to be used, 

and the extent to which they are likely to disturb normal 

operation of the system. 

All of these factors interact, and (1) and (2) can only 

be evaluated subject to ereincerine judgements. It is possible 

however, to obtain some quantitative criteria in connection with 

(3) and (4) for some of the schemes listed above, on the basis of 

statistical analysis.



  

2 eas Estimation of Step Response and Impulse Response 

= (64) 

Here the basic weighting sequence model (a) listed 

previously is used. That is for a single input/single output 

system represented by a linear stationary model the output 2(t) 

can be expressed in terms of the input x(t) via the well known 

convolution integral 

z(t) = 5 hn(Y) x(t-%) av 

Where h(@) is the impulse response function for the system. In 

the discrete case this equation is replaced by the following: 

Co 

2(t,) = a, x(t;_4) 

where the ay is a weighting sequencewhichis intimately related 

to the impulse response function h(%) above. 

An attempt is made to estimate values of the impulse 

response function, or the step response function which will best 

fit the observed conditions. 

Given complete freedom of the choice of input signals 

x(t), the problem would be very simple in principle: One would 

simply apply narrow pulses or step disturbances at the input to 

the system, and observe the resulting response z(t), at 

appropriate time intervals. It must be remarked however, that the 

use of narrow pulse inputs ana even step disturbances as test 

signals in many systems is just not feasible. This is because if 

the input is to contain sufficient energy to excite the system 

its amplitude must be very large. Frequently this makes it quite 

impossible to obtain reliable results with such test signals



since the likelihood is high that certain parts of the system 

(e.g. actuating valves, or amplifiers) will be driven into 

saturation. The observed responses thus would not be truly 

representative of the normal modes of operation. 

elec Correlation Analysis (39.23 eelb 
  

This technique has been developed to overcome the 

problems outlined in the above section. By considering correlation 

functions of the inputs and outputs of a system and using as a 

test signal an approximation to white noise (e.g. pseudo-random 

binary sequences) good estimates of the impulse and step response 

functions can be obtained. 

PARSE) Frequency Response Estimation (39, 9). 

The estimation technique here is based on the use of a 

sinusoidal test signal. Although techniques are available which 

will work with random input/output data (22, 25) Sine wave testing 

is a very powerful technique, and is very well established both 

in theory and in practice. However, it is not always convenient 

to use such a technique for an accurate determination of the 

frequency response of the system under examination. Very often, 

it is simply not feasible to inject sinusoidal disturbances at 

the input which is of most interest in a system. For such 

situations several alternative: procedures have been investigated 

with a fair degree of success (64). These modifications are based 

on using the random disturbances which occur during normal 

operation of the system.



The identification techniques which have been considered 

so far could be termed 'linear black-box techniques' (7,64,65), 

in that the only a-priori assumptions made about the systems to be 

tested were that they were linear and time invariant. Within this 

broad framework it is usually necessary to estimate the values of 

a large number of parameters in order to arrive at an adequate 

model of the system's characteristics. This can often lead to an 

inconvenient commitment of time to test a particular system in 

_practice. Also the development of these techniques has been 

based on single input/output systems and although they can be 

extended to nalete anna issetens (usually with a considerable 

increase in complexity) the extension to the multi-output c    

completely prohibitive in practice. (7,64). 

From this point of view, there is considerable incentive 

to find ways of using more a-priori information and to attack the 

multi dimensional case directly. The obvious way to do this is to 

study the underlying mechanics, physics and chemistry of the system 

in the first instance; and to obtain a set of differential or 

difference equations to represent the essential features of the 

system's structure. After simplifying these (e.g. by reducing their 

order as far as possible, and usually, by linearising them about 

some nominal state), experience has shown that one is left with 

the problem of estimating, from the measurable data, the 'best! 

values for the unknown parameters and coefficients which appear 

in the assumed equations. This is essentially a problem of 

statistical estimation (13). -
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202 Statistical Parameter Estimation Theory. 

Galen Historical Developments. 
  

Almost synonymous with estimation and smoothing is the 

‘least-squares' principle. Through a period of over 160 years 

since the pioneering work of Legendre (36) and the fundamental 

publication of Gauss (24), the stage has been reached in which, 

whenever confronted with a data set suspected of containing 

random errors, the 'most probable' or 'best' estimate of the 

desired parameters is computed by means of some variation of the 

method of least-squares estimation. 

Perhaps the first major advance in estimation theory since 

the introduction of the least-squares principle was the 'method of 

moments' formulated by Pearson (47, 48). Although the method of 

moments is no longer widely used, one often encounters situations 

in which the method is applicable when other estimators exibiting 

greater theoretical attributes can be employed only with a large 

amount of labour. The main disadvantage with the method of moments 

is that it has been established that the estimates found with this 

technique are not the best possible from the view point of 

efficiency (17). 

The present firm foundations of estimation theory are 

attributed to Fisher. His contributions are contained in a series 

of fundamental papers (17, 19, 20). Fisher demonstrated that the 

method of maximum likelihood was usually superior to the method 

of moments and that estimates derived by the likelihood technique 

could not be improved essentially. To students of scientific 

history it comes as no great surprise that Gauss had, at least 

in particular cases, anticipated the important general method of 

estimation introduced by Fisher as the method of maximum
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likelihood. 

Fisher also introduced a set of definitions that have 

been adopted for describing estimators. He introduced such terms 

as unbiased, sufficiency, efficiency and asymptotic efficiency 

‘into the theory of estimation. These concepts motivated a whole 

series of statistical theories and publications dealing with the 

detailed theoretical aspect of estimators. In particular, general 

-isation of the theory led to the relatively recent development 

of non parametric estimation in which the exact nature of the 

probability distribution for the random variables need not be 

specified. By carefully examining the foundations of estimation 

and introducing new concepts, Fisher freed estimation theory 

from the tight confines that had existed since the work of Gauss. 

Almost concurrently with Fisher's statistical 

investigation was the rapid development of communication theory 

by engineers and physicists. Communication theory, as originally 

conceived, was applied to the transmission of intelligence by 

electrical means. By the very nature of the transmission media, 

communications were found to be perturbed by a random process, or 

noise, introduced by thermal motion in resistors, electron motion 

in vacuum-tubes, galactic and ionospheric noise in propagation, 

etc. Communication engineers were vitally concerned with the affect 

of these noise sources on the intelligibility of signals within 

communication channels. The first attempts to reduce the effects 

of unwanted noise introduced riters designed to estimate the 

power-frequency spectrum of Cheetos ead signal. These attempts 

were in the proper direction but were severely limited because of 

the lack of an estimation theory that could be used to synthesise 

the required noise-separation filters.
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A fresh approach to the study of information transmission 

in the presence of perturbing noise is generally attributed to 

N.Wiener (1942). However an indepéndent and similar theory had 

already been published by A.Kolmogorov in 1941 (35,56). Wiener 

made two important contributions. First he demonstrated that 

estimation theory could be applied to synthesise an electrical 

filter that would provide a 'best' separation of a desired signal 

in the presence of undesired noise. Secondly, Wiener emphasised 

the viewpoint of treating signals and noise as stochastic 

processes rather than viewing them in terms of their frequency 

spectra. 

Wiener's work coincided with the birth of a new branch of 

science: Information theory, or statistical communication theory. 

This coincidence resulted in the almost immediate adoption of 

Wiener's technique. Moreover, as usual with each significant 

advance, a number of modifications of the original technique were 

formulated. 

At first glance, Wiener's theory appears to be essentially 

a least squares estimation process. This is indeed the case. However 

Wiener made elegant use of the fact that he was estimating 

parameters from input data in the form of a stochastic process. 

Thus by leaning strongly upon the known properties of stochastic 

processes, he formulated an optimum estimator which makes the 

best separation between the desired Signal and the undesired 

noise. An important point is that Wiener demanded that the 

optimum estimator be allineart physically realisable filter. The 

concept not only proves the Seietones of such filters, but also, 

in theory, permits one to synthesise the optimal filters. Of course 

because the theory provides more specific properties of the 

optimum estimator than are attainable from a conventional least
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Squares calculation, one must be prepared to pay a penalty for 

the increased output. The cost is in the requirement for more 

a-priori knowledge of the probability distributions of both the 

  desired signal and undesired noise. These additional requirements 

are the reasons why filter theory has become classed as a facet 

of probability theory. 

2s2e2e More Recent Theoretical Developments. 
  

The copious present-day theories for smoothing and 

prediction of time series, with few exceptions, owe their genesis 

to the original papers of Wiener (56) and Kolmogorov (35). These 

papers appeared during World War II, a period during which many 

serious and urgent smoothing and prediction problems were being 

attacked by military systems designers. Although the mathematical 

treatments in these papers were serious stumbling blocks, engineers 

were willing to overcome these hurdles because they realised that 

for the first time an analytical synthesis technique was available 

for the systematic design of filters. Unfortunately, the abstract 

formalisms coupled with almost unsurmountable difficulties of 

solving a certain basic integral equation (Wiener-Hopf equation) 

deterred many readers from a full understanding of the rather 

simple underlying principles of the Wiener-Kolmogorov theory. 

The number of papers which have generalised, modified and 

extended the original Wiener-Kolmogorov theory is far too large 

to allow an adequate reference list to be compiled. However, 

extensive bibliographies on this subject are given in references 

(6, 52,58). Some extensive developments of the Wiener-Kolmogorov 

theory are contained in the publications of Darlington (14)
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Bendat (4), Wainstein and Zubakov (55), Yaglom (57), and Lanning 

and Battin (37). 

The Wiener-Kolmogorov theory has not been universally 

accepted, and various erieiei ens have been directed at the theory. 

The criticisms have been partly directed at the underlying 

assumptions and partly toward the often unsurmountable practical 

problems of actually synthesising the optimal filters. These 

criticisms have been the motivation for several modifications as 

well as generalisations of the original concept. 

At first, before the theory had been well assimilated 

almost everyone was content with the hypothesis that both the 

signal and noise were stationary processes; However, as 

engineering technology became more refined and systems became 

more complex, the stationarity hypothesis was questioned. For 

this reason the Wiener-Kolmogorov theory has been extended to 

encompass non stationary signals (15, 45, 46, 53). The cases of 

sampled data systems with and without the stationarity hypothesis, 

have also received their due share Gtistcention (21). Theories 

have also been formulated for situations in which the linear 

filters are permitted to have time varying elements (4). 

The most severe problems encountered in the application 

of the Wiener-Kolmogorov theory to specific applications arise 

from the problems in synthesising the theoretically optimum 

filter responses. Except for a relatively few, special and simple 

examples, the synthesis of the filter is an extremely labourious 

task and frequently one must resort to approximations and certain 

compromises (54). 

The Wiener-Kolmogorov methods have been criticised
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because the transfer responses are dictated completely by a 

minimal-error criterion and the computation thus ignores the 

filter's transient response (44). Wiener filters frequently 

result in underdamped systems which exhibit oscillatory 

transient responses that can be inconvenient. 

The Wiener-Kolmogorov theory has served as both an end in 

itself and as the motivation for related theories which are designed 

to avoid the problems encountered in solving the Wiener-Hopf 

equation, as well as the practical problem of synthesising the 

theoretically optimum filter from its impulse response. An 

alternative approach to signal filtering and prediction has been 

suggested, which essentially avoids the Wiener-Hopf integral 

equation by substituting an equivalent differential equation. Of 

more practical interest, is the fact that the differential 

equation technique has the property that the optimum filter can 

be synthesised in a sequential fashion and, thus, is often readily 

implemented. Although these differential equation techniques were 

independently developed, they are in- most instances equivalent or 

intimately related to recursive least squares estimators (12, 

13). 

The primary impetus for the current activity in the theory 

of sequential estimation stems from the work of Kalman and Bucy 

(31, 32, 33, 34). Both Kalman and Bucy independently recognised 

that, rather than attack the Wiener-Hopf equation directly with 

the attendant problems of factorisation, it is frequently 

desirable to convert the integral equation into a non linear 

differential equation whose Betton yields the covariance matrix 

of the minimum filtering error. In turn, this matrix contains all 

the necessary information for the design of the optimum filter.



oy Kalman Filtering. 

Geos Linear Filtering. 

The paper by Kalman (31) in 1960 introduced a different 

approach to the problem of Wiener and Kolmogorov for random 

sequences. In 1961 Kalman and Bucy (34) generalised the results 

to random processes. These results are closely related to those 

obtained for sequential least squares estimation (12, 13), but it 

would be wrong to allow this similarity to be construed as a 

criticism of their work. Their development is much more rigorous 

and general, and they have generated a new and powerful technique 

for both estimation and control problems. 

The practical implications of linear filtering theory 

were soon recognised by the engineering community. Whereas 

classical least squares methods involve simultaneous processing 

of batches of observation with attendant data storage requirements, 

the filter operates on the data sequentially, requiring no data F 

storage. The filter generates new estimates as new observations 

become available, thus opening the possibility of real-time 

estimation. As a by-product, the filter generates the estimation 

error covariance matrix, which measures the uncertainty in the 

estimate. 

Other important advantages accrue from the filter theory. 

It is possible, for eenelee to perform a complete error analysis 

without actually simulating the filter. The filter also offers 

advantages over least squares in applications to non linear 

problems. Thus, although the linear filter is completely equivalent 

to least squares when the latter is properly interpreted, it 

offers numerous advantages in applications.



The structure of the discrete linear time invariant 

Kalman filter can be briefly summarised in the following 

relationships: 

Given a Mathmatical Model? 

x(it1l) = % x(i) + u 

where x(i) is the n dimensional state vector at the it? time 

increment, and 9 is an n x n transition matrix; and Given an 

estimate (i) for x(i) with a known error covariance matrix, 

i s, ; Ane VA) = ECx(4) = 84) G(a) - Ha)? 

and knowing that, 

7 
Eu = 0 and Euw = Q (a known covariance matrix), then a prediction 

(itl) of x(it1) can be calculated via X(itl) =  %i) 

and the prediction error covariance matrix 

V(ae1) = E(x(441) - (441)) (Card) - X(ar2))7 

can be calculated via 

—_ A T 

V(itl) = 8 Vii) B+ Q u 

When the measurement z(itl), which is related to the state via 

z(i+l) = H x(itl) +
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Where z is an h-vector of measurements 

H is an h x n matrix and v is an h-vector of random variables 

with Ev =0 

and Bw "= R 

becomes available an estimate R4+1) of x(itl) can be calculated. 

Q(ae1) = X(iel) + K(4+1) (2(441) - BO X(4+2)) 

where K(i+1) = V(it1) HE” (HV(it1)H? + R72 

is a gain matrix calculated to minimise the estimation error 

covariance matrix which can now be calculated as 

Fae1) = (1 - K(i2)H) VWO4e2) 

This whole process is repeated for the subsequent time increments. 

The practicality of the Kalman approach to the estimation 

problem was first exploited in aerospace applications (38,43). 

Following these early pioneering investigations, a number of 

authors reported interesting applications of linear filter theory 

(3, 59, 62, 63, 66,60,61). 

The experience gained in applying the Kalman filter to physical 

systems has been invaluable in highlighting various problem 

areas. Considerable engineering experience is needed to properly 

identify the system to which the filter is to be applied, to 

model adequately that system, and then to develop a practical 

programme that mechanises the filter. The optimisation of the
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filter must include many factors which are difficult or impossible 

to describe mathematically, such as the trade off between 

performance and computer size. The’ statistical parameters are 

rarely based on the actual statistics of the physical systems, 

because these statistics are either too complicated or are not 

well known. The problems encountered in Kalman filtering in 

general fall into the following categories: 

(a) Loss of positive definiteness in the covariance matrix 

resulting from numerical errors. 

(b) Improper mathematical model, leading to a divergence of the 

estimates from the states, 

(c) Non-linear phenomena generally aggravated by a poor selection 

of the starting estimates. 

Item (a) can be removed reasonably efficiently by basing 

the filter on square root algorithms (50), by simply rearranging 

the basic Kalman equations to ensure positive definiteness (43), 

or by accounting for numerical error as input noise to the system 

(43, 50). Item (c) will be considered in the section on Non-linear 

estimation. 

The problem of filter divergence (51, 43, 50) is 

essentially caused by the filter being constructed on the basis 

of an erroneous model. The filter therefore learns the wrong 

state too well when it operates over many observations. The 

  

problem is particularly acute when the noise inputs to the sys 

are small and when measurement noise is small. Eventually, the 

error covariance matrix becomes very small, the filter gain is 

therefore small, and eiyeecuent observations have little effect 

on the estimate. But the dynamical system model in the filter is 

different from the actual system model, so that the estimate and
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the state can diverge. 

A number of techniques have been proposed for overcoming 

the divergence problem. 

(1) Directly increasing the Prediction-error Covariance Matrix. 

Arguments for using this approach are as follows: 

State equations which are invalid have been used to update the 

estimates. One should therefore increase the prediction-error 

covariance matrix in accordance with the errors involved in the 

time updating of the estimates. The difficulties in using this 

approach lie in defining the real error source. Their formulation 

can also become extremely complex. Hence, for practical usage it 

is better to say that fictitious-errors are introduced to cause 

an increase in the prediction error a-priori covariance matrix. 

(43, 50,38). 

(2) Overweight the most recent data. 

In this approach it is also recognised that the a-priori 

covariance matrix may be overly optimistic. This matrix, however, 

is not modified on the basis of adding the effects produced by 

fictitious-error in the dynamical model. Instead, a non-optimal 

filter algorithm is adopted which attaches a greater significance 

to the recent observations than the optimal filter does. The a- 

posteriori covariance matrix is modified to conform with the non- 

optimal algorithm. (50, 43,38). 

(3) Modelling of Parameter Uncertainties. 

In this approach those. portions of the dynamics (and/or 

measurement functions) which are poorly known are parametrised, 

and these parameters are considered as unknown quantities.
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Instead of estimating these parameters, the filter can be 

redeveloped to include their uncertainty in the state equations. 

The parameter uncertainty will always degrade the state estimates, 

since we are not improving our estimate of these parameters 

themselves. This is a desirable feature that will tend to keep the 

covariance matrix sensitive to incoming information (43,50). 

' (4) Limited Memory Filtering. 

In this approach conditioning of the estimate on old data 

is discarded in batches. This has the effect of keeping the 

estimates locked on to the more recently acquired observations. 

(41, 43, 50, 60). 

All the approaches described above will prevent divergence, 

but they suffer from over estimating the error covariance matrix 

so that the estimates are 'noisier' than perhaps they need be. 

Another bad feature of these methods is that they contain various 

'fudge'factors that require 'cut and try' experiments to fix.. 

(5) Adaptive Filtering 

Other attempts to solve the divergence problem are the so- 

called ‘adaptive filter techniques. These approaches look at the 

residuals between the predictions and the measurements. These 

residuals should be small, random and should posses statistical 

properties consistent with the statistical parameters defined in 

the filter algorithm. The basic idea of adaptive filtering is to 

let the residuals themselves determine appropriate noise input 

levels (10, 41, 42, 43, 63, 67, 68). 

Adaptive filtering is a more general and powerful technique 

than the methods described above, but again it usually over estimates 

the error covariance matrix. This is because it treats the input 

noise that is supposed to represent the model errors as a zero 

mean stochastic process and this need not be a true assumption.
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The adaptive filter of Coggan and Wilson (10) attempts to == 

alleviate this provlem by removing bias, but this causes further 

problems in that only state-variable estimation is possible while 

bias is being removed. 

2.3.2 Non-linear Problems. 

Exact equations of the evolution of the conditional 

probability distribution function of the estimates of non-linear 

systems can be formulated (43). These equations, in fact, require 

the precise knowledge of an infinite set of parameters (e.g. all 

the statistical moments) and therefore only approximate solutions 

are practically possible (43). 

An alternative approach to non-linear problems is to 

linearise the equations about a nominal state trajectory using a 

Taylor series expansion. A set of linear equations is then 

obtained in the state-deviations from the nominal. These equations 

can then be used in the Linear Kalman filter described in the 

previous section. Jaswinski (43) describes this 'Extended Kalman 

filter! and also some modifications based on iteration to improve 

the estimate. He also shows some comparisons between the approx- 

imate non-linear filters:and the Extended Kalman filters. 

His conclusions are that the differences between the 

“imate non-linear filters and the iterated Extended Kalman 

filter are negligible but the Extended Kalman filter, although 

showing bias, is probably the most useful because of its simplicity 

and speed of computation. 

The problems of the Extended Kalman filters can be looked 

at in the framework of the divergence problems of the previous



section. Once a nominal trajectory has been chosen and the 

equations linearised, we are faced with a linear filtering problem, 

if divergence (or bias) occurs it is because the linear model 

does not accurately represent the real situation. Various 

techniques for dealing with this problem have been discussed and 

criticisms made (10, 41, 42, 43, 50, 63, 67) - Clearly the problem 

of adequately compensating for errors in the mathematical model is 

essentially unsolved. 

The discussion above has shown that the Kalman approach 

to estimation possesses theoretical and practical advantages over 

alternative methods. It is for this reason that the basic Kalman 

approach is used in the development of a piece-wise continuous 

filter in the next section. The divergence problem which, as has 

been mentioned, is the mone serious problem associated with Kalman 

filtering applications, is then examined in detail and an 

algorithm is developed to prevent the estimates diverging from 

the true states.
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3. Theoretical Developments. 

  

Piece-wise Continuous Filter and Adaptive Filter. 

The filter to be developed can be thought of as a 

prediction-correction procedure. Starting from a state of known 

mean and covariance, predictions are calculated for the time 

evolution of the mean andthe error goyerionee matrix.As observations 

become available these predictions are corrected to provide 

updated estimates of the state variables and the error covariance 

matrix. 

The computation of the predictions is essentially the 

solution of a set of differential equations. At present the 

standard methods of solving differential equations on digital 

computers yield discrete solutions. However, solutions in 

continuous form have considerable advantages, especially in a 

control context. These advantages are that many standard 

mathematical tools (e.g. differentiation, inte gration, 

interpolation, extrapolation, etc.), become available. 

5.1. Prediction. 

Given a set of differential equations 

Sevres (05) aes We isieeiee e laliacce sisal sere CL) 

where x is an n-dimensional state-vector and u is an m-dimensional 

vector of known parameters (e.g. forcing functions, control 

functions, etc.) 

and given an initial condition
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x(t.) = Xx 

Then find the solution x(t) for ty €+¢ te. 

The solution is to be continuous over this range. 

3.1.1. Linear-Stationary Case. 

Here the differential equations (1) can be simplified: 

KS PK + Puss ee cece e ese eee eee ee eee ee eee (2) 

Where FP) is an n x n known constant matrix and F, is ann x m 
va 

known constant matrix. 

Now approximating x by orthogonal polynomials (appendix 1) gives 

x R RP reece e eters ccc er mr cciet oc sees) 

Where A is an n x (ptl) matrix of coefficients and P is a (ptl) 

e es 
vector (p) 3 Py 3 seee+Dy 3 Py) 

Where the Pp, are a set of orthonormal polynomials. 

Defining a matrix D such that 

DP = dP/dt and substituting this and (3) into (2) 

gives ADP FLAP + Fou 
ZL 

For this differential equation to be approximated optimally 

(ADP-F,AP-Fu,P)= 0 i (Appendix 1) 

Where the left hand side is an inner product in the polynomial 

function space.
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ice. AD = FyA + (FaU,P)soece sees eee eee cence ence Gl) 

Incorporating the initial conditions, the polynomial approximation 

must satisfy the following equations. 

AP(t,) = x. 

ADP(t,) = F\x,+(Fou,P) P(t,) 

Ae 1° X, + Fy(Fou,P) P(t,)+(Fu,P) DPC t,) 2. AD°P(t,) 

AD? P(t.) = Fy? x, + Fy°CFau,P) P(t,)+F,(F2U,P)D P(t,) 

+(Fou,P)D* P(t,) 

etc. 

These equations can be written in matrix form: 

M 
. eee Ae nD 

(P(4,) :DP(t,): D P(t.) Steeeeeees D P(t,)) 

N= (x, : FLX - (F5u,P) P(t) : etc) 

and then the coefficient matrix for the optimal p’) order 

polynomial approximation is: 

ale 
Auber Ne Micacatersitre ei sterelele lore ni sia’ ccalt aisisia's ett cvaretd cota) 

The matrix M depends only on the polynomials being used so that 

_ can be predefined and held in the computer as a constant 

matrix. The solution then is found by forming the matrix N, 

-1 
and performing the matrix multiplication NM .
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The computation of N involves the term (F5u,P), this 

exists if u can be approximated by polynomials over the range 

ey <6 ue =tse te 

The exact solution may be written as an infinite series thus: 

ce £" DP gic eens erase CC) 

where by are n-dimensional vectors of coefficients, and because 

of the orthogonality of the Py the error of the approximation can 

be estimated as, : 

ow Doel Poe 

therefore the total square error of the approximation is, 

t 
ore oe Pe AEH DL y//” veeoannennne ol) 

‘ : 

and if it is assumed that the series is monotonically convergent 

after some number of terms less than p then, 

Sg e/a a (8) tot © pt Ge se cceccsocece 

Where A(p) is the pon column of A. 

Then if 

+ where e_ is some preset error 1 Ky 1 # (eg) s 

bound, define ke such that, 

= Kk, // Ap) // = (e,) Cee recececcesecevcrcsscevccvese(9)
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(x,)/? then specifies a time scale factor which will define the 

th ; : 
range to ensure convergence of a p -order approximation to 

within the error bound. Note that this allows the time scale 

factor to increase if a larger range is acceptable. 

3.1.2 Linear Non-Stationary Case. 

Here the differential equations can be written, 

x =F, (t) x+ Fy ER reettew es cies etateng ts CLO) 

Where FL (t) is now an n x n matrix of functions of t, and Fs (t) 

is ann x m matrix of functions of t. 

Assume the solution can be approximated by, 

Cee eins: p19 07@ ajevw'v srnreteiere Geld) 
q c 2 

Xx + T = a; ay 

iso 

a, are n-vectors of coefficients 

<th . ‘ : 
ay (t) are i”°-order scalar polynomials in +t 

T is an n x n diagonal matrix with 

er ies t-t, where t, is the time at which the condition x°. is 
> reeds ao qi) 

given. 

Usually the ty = i (i.e. initial value problems) but this method 

can be generally applied to + situation where the ty are not 

all equal (i.e. split boundary condition problems). 

Substituting (11) into (10) gives, 

X=P yp a, (4, (ts 2 Ke) = iets ee 

u c 

FL (e)x'+ Fe (t) es a a,(t) +R (t) a



Therefore 34 (7g, (t) + Iq, (t) - F, (t) Tay (t) Day 

SP (t)) xeat or. Ct luiM ee a es teste) 

dee. - 
ZCy (bt) ay = Blt) cece reece sees eee ee eee ee eee e cece ee (15) 

Where Cy (t) = Tq, Ce) er Iq, (t) - FE (+) Tq, (+) 

and B(t) = Fy (t) x° + Fy (t) u 

Making equation (13) exact at qtl collocation points (appendix 2) 

gives; 

CHiram nC, NCE can tu eter ep BeC tr) det yeemeres (Lt) 

Cy (ts) ay + Cy (+5) ay + oeeeeeeeee= B (t5) 

Cy (Egy) Bo + Cy (Hogg) ay teeeeeeee= B (tQ,y) Qe? a0: 

These equations could in theory be solved for the nx(qt1) unknowns 

a, , however, in practise this would require an enormous amount i 

of storage. To overcome this problem nominal solutions, 

satisfying the specified conditions, are assumed for all the Xy 

except X > this reduces the simultaneous differential equations 

(10) to a single differential equation for x+ The solution of 

this equation by the method outlined above, provides the nominal 

trajectory of Xy+ This is then used to update the nominal 

solutions of all the xy in turn. This procedure is repeated until



all the solutions converge to the approximation defined by 

equation (11). To ensure that this approximation suitably 

represents the solution to the differential equation (10); the 

approximation error can be linked to the range in an analogous 

way to that defined by equations (7), (8), (9). 

3.1.3 Non-Linear Equations. 

Here the differential equations remain in their most 

general form defined by equation (1). 

Using nominal trajectories Sas that satisfy the specified 

conditions for x, these equations can be linearised. 

< Cxtrdeeus) = f(x", wee ea (x*,u) ax 

Where dx are deviations from the nominal trajectory 

Ox a) X=" 

then 

ak = fy C8" Ud dx + 2(x¥u) - Mo... (15) 

Equation (15) is now linear and can be solved for dx by either of 

the above methods depending on whether the x* are constant or not. 

If the solution is to be obtained via the non-stationary 

method (collocation) then the nominal trajectories are updated via 

x* = x* + dx/2 

These nominal solutions will converge to the true 

solutions for a wide variety of situations (59, 70).
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If the stationary method of solution is to be used (this 

has the advantage of being faster) then the nominal trajectories 

are updated via: 

x* = x* + Gx/2 

tv 

where ax = — a ax at 
t-t 
f16 ee 

i.e. dx is the time average of dx over the range +32 co ty 

These nominal trajectories x*, and therefore the 

deviations dx, will converge (59, 70) . When this convergence 

occurs the solution x is calculated as, 

x = x* + dx 

This will not be the true solution but only the closest 

approximation that can be obtained by stationary equations.



State Variable Estimation. 

  

The problem in its most general form is: 

Given a mathematical model for the evolution of the state 

variables; and given a measurement model for the connection 

between the measurements and the states; then devise an algorithm 

“for the evolution of the optimum state estimates and the evolution 

of the covariance matrix of the estimation errors. 

In mathematical terms this can be expressed as follows: 

Process Model: 

Kia LOGUSY) is as ee nse se enee acer aera ClG) 

Where x is the n-dimensional state vector. 

u is an m-dimensional vector of known parameters (e.g. forcing 

functions, control functions, etc.). 

and y is a r-dimensional vector of random disturbances. 

Measurement Model: 

ZEMAC HM) resisters ncietee ters teeremre rer eete eile cine cali) 

Where z is an h-dimensional vector of measurements 

and v is an h-dimensional vector of random variables. 

For the linear stationary case these equations can be Simplified: 

k= Phx + Fou + Poy @16.9.9161014 69 sib he. viele e wee CLO) 

Where Fy is nxn known constant matrix, 

F3 is nxm known constant matrix 

F is nxr known constant matrix.



ZuaTHR STOW we gials oolsiere ge eibise sie ¢.e's s sinieiais pisses eCLO) 

Where H is h x n known constant matrix. 

To solve this problem various initial conditions need to 

be specified. 

Consider that: 

E(y) =0 

  

and a 2 eds gay ECV yD adeia 
t cietom 0 

Assume that an estimate exists over the time range t= +< ty 

such that, 

S(t) is an estimate of x(t) tf tet, 

and X(t) = x(t) -% t) 

“a ty Py ee 
and V(t,) ed! 5 E(x(t) x(t) ) dt is known, 

"ino t ° 

then a prediction x(t) can be found for x(t) +42 we ts 

eee ith x(t,)R(t,) via x = Fyx + Fou we x(t, )=x(t) 

by the method discussed previously. 

Now let 

t 
my §* B(x) (xX) at 

© 

represent the average covariance matrix of the errors in the 

prediction ¥ of x over the range t,2 tt. ta 

Now, 

— A 
x(t) = @ (t, t-t,+t,) x(t-t+t,) 

+h( t,t-t,+t,) Fy ul t-t,+t,)
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where Z(t,7) is the fundamental matrix of the system defined by, 

" a Blt,7) = F, B(t,7) 
at 

with ¢(7,%) =I 

and A(t,7) = f° B(t,%,) a% 
w 

For the linear time invariant situation @(t,%) is only dependent 

on the value of (t-7) : 

Therefore, 

B(t,t-t,+t,) = B(t5, ty) 

Therefore, 

x(t)-x(t) = B(t,,t) €(t-t,+t,) +A(t,,t,) F, y(t-t5+ty) 

Then assuming y(t-t5+t,) and R(t-t,+t,) are independent random 

variables, 

= “a a Al V(t,) = 9 V(t)) @ +A, QPZA 

Where g Blt, ty) 

and A= Altz,t)) 

to simplify the terminology. 

Now assume that measurements are available as continuous 

functions z(t) for the time range ty4 t ¢ t, and consider that 

t 

Ve (vw?) dt =R is given 
t 
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and that,, 

Ev = 0 

Then the optimal estimate Rt) for x(t) over the time range 4, ¢tSt., 

assuming that v(t) and x(t)-x(t) are independent Gaussian random 

processes, is given by, 

Mt) = ¥(t) + K(a(t)-Hx(t) ) 

Where K is an n x h matrix chosen to minimise the covariance 

matrix Ft5) (appendix 3) a 

Cre ee T -1 
i.e. Roe V(t5) H (HV(t5) HO + R) 

a i 
and V(t) = (I-KH) V(t.) 

To summarise: 

The piece-wise continuous estimator described above 

consists of the following operations. 

Prediction: 

= Zee. 5 
Predict x(t) for +, St€ts 4, via 

yx + Fou BiFee aerate ere eetol stem er aTole oinpsia sere (OO) mi
le
 

are 

with initial condition, 

= cay 
x(t,) = x(t,) 

u Ariat 2 Cees (22) gM) gh +e v(t, + Fy Q Fy V(t, 44) 

Kifay eet) Peg R) auth tee (28)



Estimation. 

Mt) H(t) + Kogyqy (2(t)-He(t)) for t,4 t £ ty) 

vate rests (es) 

eae Pe (Gey RUEU( Ss) teh pe craven ap cP) 

22. Non-Linear Estimation. 

The equations for the process model cannot, in the non- 

linear situation, be simplified and must be treated in their 

general form (equation 16). 

Using the same technique for linearisation described 

previously (equation 15) enables the non-linear system to be 

filtered by the linear filter just developed. 

Clearly the estimation of unknown parameters can be 

treated in exactly the same way merely by regarding them as state 

variables and augmenting the state-vector. 

The filters described above bear very close relationships 

to the Kalman filter and the Extended Kalman filter (31, 33, 43). 

The main difference is that the continuous and the AiG coventaabie 

matrix function E(X(t) %(4)7) has been discretised and replaced 

by the step function Tt). The result of this is to remove an 

awkward non-linear matrix differential equation (34, 38,43 ) from 

the algorithm. The avoidance of this matrix Riccati differential 

equation has immediate benefits in the context of continuous non- 

linear estimation because in this case the computation of the
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state estimates and the error covariance matrix are coupled and 

the matrix Riccati equation would have to be solved in real time. 

Further benefits of the avoidance of the Riccati equation will 

become obvious as the adaptive filter is developed. 

The similarities with the Kalman filters, however, are 

sufficient to allow the stability theorems developed for the 

latter (34, 38, 43)to be directly applied to this situation. 

3.3 Adaptive Filtering. 

The most serious problem encountered in practical 

applications of state variable and parameter estimation is that 

of the divergence of the estimates from the true values. This 

divergence is caused by the use of an inaccurate mathematical 

model. 

Consider the true system equations to be represented by: 

x, = £5(x.U.,¥,) maeplcke (os setsiciesis) cule spotemamen so) 

and the model to be represented by, 

Kin = Fil XqeUige Vg) cocccecerecceececcescees eee (26) 

Clearly equation (25) can be written as, 

ot Eyl % 24g rg) = £ (e595 9 V,)- F(X, B55)



and defining 

Fw F(x Ugg) £ (XU 2¥,) 

Where Fy is ann xf matrix of the formF, (i,j) =0 except for at 

most, one element in each row and column which may be unity; 

and w is an f-vector, where f is the dimensionality of the model 

errors. 

Then, 

%, = f(x Ugey,) + Fw Duly ea bacewsles sue sCa7) 

and comparing this with equation (26) shows that the model 

represented by the function Pe? can produce the true state if 

it is disturbed by the 'fictitious inputs' F We In general of 

course FLW will be unknown, but approximating this model 

compensation term by a Gaussian random process will at least make 

the errors in using the inaccurate model random and unbiased. 

The problem of the adaptive filter is then to discover the 

mean (Ew) and covariance matrix (E(w-Ew)(w-Ew)?) ana the matrix 

Fy for the random approximation to the model errors. A realisation 

of the above factors will be called a 'Model Error Compensation! 

strategy. Clearly the optimum strategy will produce a well 

tuned filter, that is a filter in which the estimation error 

covariance matrix is minimised while at the same time prevented 

from becoming over optimistic. 

Considering fC") to be linear and stationary and 

approximating F,w by a random process, 4 

k= Fy ae Fy ut FP, yr Fy Ew
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where the subscripts m and s have been dropped to simplify the 

terminology in the following developments. 

Now EW is an unknown vector of parameters and could, in 

theory, be estimated by forming an augmented state vector, 

x FLY. x it F 

Ew] |O OJ|jEw ° ° siseisd on 20) 

‘ 
In practice this increases the dimensionality of the 

filter problem, which causes a disproportionate increase in 

computation time, and is therefore to be avoided if possible. The 

technique used follows that described by Schmidt ( 50 ) and 

Jazwinskij (43) and consists of writing out formally the filter 

equations for the augmented system equation (28) but then only to 

take the estimates of x leaving the Ew constant. This means that 

the value of Ew will not be improved by the filter but the orror 

committed by not improving the estimate will bemodelled so that 

its effect on the estimates of x will be taken into account. 

The modification to the filter just proposed produces the 

following equation: (appendix 4). 

Prediction: 

o+4: - for the range te tr tay via 

xX = Fix + Bou + Pry + FLEW seeseeeseeseeeee(29) 

with the initial condition x(+;) = Sey 

Vt) = BH) go" +aP, Q P78 Tg Xt.) + Me,)07 

Dee +AF, Ne FOS ele steerare event 50)



where nw as aT . . 
& B(x=%) (w-Ew P rc C(t) = 1 if B(x-%) (w-Ew)” at PF," AY 

eva idee Che 

Gt,,,) = 8 Xt,) +AF, v, FTA? Gu ao) : yy Fh Salen old feats 

where t, 
itl 

coe sae § B(x-X) (wow)? at F747 
igre a 

and boa ; - 

Mae 1 S E(w-Ew) (w-Ew)~ dt 

tier 4 fy 

Estimation: 

stochastic processes. That is Ne must accurately represent the 

F er -1 K(i41) = V(ty,4) 2 ones eee (52) 

S(t) = ¥(t) + K(4+2) (a(t) - w x(t) ) 

Oia leek ee Ce) 

" = (1-K(i+1) H) V(t, 4) 0000-2 eeeee een e ee (3) 

Go
 

we f BP
 VL
 ! = (T-K(i+2) H) C(t, 45) s0 0022020 0eeee00e 0 (35) 

ql 

These equations will work if Ew and vy define consistent 

covariance matrix of the errors (w-Ew). This means that an error 

in the value of Ew will deteriorate the accuracy of the state est- 

imates by requiring a to increase, which will result in a larger 

A 
estimation error covariance matrix V(t).



42 

If the values of Ew and Ne define consistent stochastic 

processes then the residuals (z-Hx) will be a Zero mean white 

noise process with, 

t. art x 
c S77 w(z-ne) (2-nz)? at = x W(t, ,,)E IR .....(36) 

This equation provides a consistency check on the value 

of we Assume that Ne can be represented by a diagonal matrix Ic 

where c is a scalar; let ¢ be an a-priori guess for c, and define fi 

@=c-E then, 

eS 2 age ae ° 
a j E(z-Hx) (z-Hx)” dt = HV HE +RH(HA FCS a € 

ET aan y 

Therefore: 

3 S341 Dee ea ae s ot. c= ie 5 E(z-Hx) (z-Hx) dt-Trace(H V H“+R) 

ati Fy ty 
  

Trace((HO F,) (HA Bi) 

66 es o90( D7) 

Whence ¢ is updated to (c+) unless this is negative in which 

case €=0. 

Equation (37) requires a value for 

t. 

a t t 
Aes ts 

i+1 7 = 
E(z-Hx)~ (z-Hx) at 
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representing this by B(ts44)> and using an exponential filter 

gives, 

Sek sede 
E(t eee ty) hd if (a-Hx) "( 2-H) at-g(t,)) 

t. at 
Seles ty 

eee ceee cece (50) 

where Of & £1 

Equation (38) is a recursive relation for the scalar 

quantity g(t) which is an estimate of! the trace of the covariance 

matrix of the residuals. This equation along with equation (37) 

can be implemented alongside the filter algorithm discussed 

previously. This will ensure that the statistics used in the 

filter are consistent with the statistics of the residuals. 

The value found for ie from equations (37) and (38) will 

be consistent with whatever-value of Ew is used, but clearly to 

optimise the performance of the adaptive filter some method is 

needed to obtain an accurate estimate of Ew. It is obvious from 

its definition that Ve will be minimised when Ew is known 

precisely and from equation (37) this means that an accurate Ew 

will minimise the quantity g(t) defined in equation (38). Therefore 

the computation of a value for Ew is similar to optimal control 

problems designed to minimise an objective function of the form 

yes at, fe E(z-Hx)"(2-Hx) at 

Let w = some a-priori prediction of Ew and, 

=e
 

let w = Ew - w.
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Let x represent the prediction of x with Ew replaced by W then, 

ek + AFT 

Then: 

t, i+] a % 
Ska e i E(2-HE) 7(2-H%)-(z-H®)? Ha Fw 

fie 30 8 
  

2 wl ~ ~ (HO F,%) 7 (2-H) +(HA FT) (Har, Tat 

t 

Setting QJ _ = 0 for all i gives, 
ows 

eo Se q 
a i E(z-Hx)” dt HAF = (HAF,W)” HOF 

aoe 4 4 Z 
Lg tS, 

From which, 

= 
Ws 2 (Har, 7G, de)? (Pee HR at ..(39) 

tyi,a=0 4 ee ace ape a 

and the prediction of Ew is updated to be wew+W. 

t. 
To calculate 1 (3 E(z-HX) at represent this by 

Pyare zi 

Scere then use an exponential filter 

t. 

V(taay) = Ye + ACF 4 (at) w(t) at ¥(+,)) 
tee a ey 

ane Pe ee Cio)
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where 0 £@ £1 

Equation (40) is a recursive relation for the mean of the 

residuals and can be simply implemented along with the filter. 

To summarise, the adaptive filter developed so far 

consists of the prediction/estimation equations (29 to 35) along 

with the following relationships. 

Ew u = Cece cece ceseccceccccscvecsscccscvecce( Hl) 

c, 

B(taey) = HCH ALF (at) HRC tat YCE,)) 
deal isis 

Ra pee eh SETI) 

W = (Ha RS RS RORY Cty) Ror n3) 

Wie WW eitaevcjsls eae Sout ce se cots as ceacins (LEY 

Ge 
B(ty4,) = a(t, ee 2 fetes (z-Hx)"(z-HX) at-g(t,)) 

isa 
Meiaietewvitis eiettic/e eleisiste (ILD) 

Vay = LC cece eccecesecrceccereeevececeeceeee (46) 

XR
 = qi Vi i = e(ts 44) - Trace (H V(t; .4)H + R) 

np : 1 Tt Trace ((HA i) (Ha Fi) 2) hes. Ca)
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ne ‘ 
c+c unless this is negative when, ot

 
" 

Otlereerr aioe ciara shatehs iter eteteiivs lave. ove bal etatamate ai ofa elettae ye gietkiar se «! (HO)) el
 

" 

The algorithm described above has similarities with the 

adaptive filters of Coggan and Wilson (10.38 ) and Jazwinski 

43,63), but contains certain-advantages. The main advantage is that 

both the mean and the covariance of the model error compensation 

term are adjusted. This means that the filter will converge with 

a smaller covariance term than the filter described by Jazwinski. 

This results in the covariance of the estimation errors being 

smaller. At the same time the consistency requirement (equation 36) 

ensures that this smaller covariance matrix is not over optimistic. 

The Coggan and Wilson algorithm also provides, in a way, for the 

updating of the mean of the compensation term, by removing 

measured bias from the estimates. But their method results in the 

inability to perform parameter estimation while bias is being 

removed. The filter described above has no such limitation 

provided the steps (equation 43 and 44) are performed only every 

6 tine increment (where @ is as yet undetermined) this allows 

the filter to respond as much as it can to changing conditions, 

so that the compensation term is only conditioned on error caused 

by poor model. 

There are a few remaining problems to be discussed before 

the theoretical development of this new adaptive filter is 

completely general. The most important of these is the determin- 

ation of the matrix fis This matrix will, in general, be unknown. 

Although in some situations there may be some information 

available about the nature of F,. Such a situation is when the 4 

true system equations (25) are known but considered too complicated



for 'on line! filtering. Therefore a simplified model (26) is 

selected, in which case there does exist knowledge of the model 

error committed. 

In general situations, however, equation (25) is unknown, 

so that all that can be said about Fy is that ¥, (4, j)=0 except 

for, at most, one element in each row and column, which may be 

unity. The method proposed to find which particular matrix of 

this form represents Fy, is as follows. The @imension of the error 

compensation term (#) is taken to be unity, this means Ey is 

reduced to an n-dimensional column Rector ae with each element 

zero except, at most, one. Each column vector of this type is 

tried in the filter and the vector that produces a minimum for 

g(t) equation (45) is selected as the first column of F,. That is 4 

a 
FAC.) = F,, (3) for j=l ton 

* 
Where F E is the vector that minimises g(t) 4 

The dimension (#) is then increased to two and the same 

process uséd to fix the second column of Pye This is continued 

until f#=h the dimension of the measurement vector. This is the 

largest number of independent variables that can be computed via 

equation (43) and therefore restricts the method to finding model—____ 

error compensation vectors with dimension less than or equal toh 

The remaining problems are associated with the choice of 

the values of & and B® in equations (38 and 40) and with the



number of time increments (e) that must elapse before each 

implementation of the equations (43, 44). Clearly the choice of 

these parameters affect the optimality of the performance of the 

adaptive filter. 

These points 

as no general result 

considerations. 

The complete 

follows: 

Initially at time t, 

a “a 2 
x(t), C(t,), V(t), 

Then predict for the 

with X(t, )=*(t,) 

will be discussed in the following sections, 

can, at present, be developed from theoretical 

adaptive filter can now be summarised as 

specify, 

g(t,), (ts), ct, Ww, and F, 

2te ‘ range t,€t€t,,, via, 

oe feuer Poy + FW Rieleiolerstoieeie: = cicfeimeiG 29), 

Vets.) = Mt, 8" +AP,oP, 7A” + 9E(t,) +O7(t,)07 

+ (AP,)(AF,)7¢ weit sales eisle ots o's cece 590), 

Cl tees POE FAR, Vee Ae kiss. ste ees (5D) 

Take measurements, 

z(t 44) 

n 

then, Y(t 

atv Mts 

Hq x(t, 44) FN, “esiv vie civisle.e eins pie civisis vig've.0( 92) 

© Pia a 
PCa) fo ae ~ Hetenae- WED) 

tieavts te E 

  

Meester COS)
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W = ((naP,)7(Har,)) "CHAR, )? X(t 44) eee (54) 

-.” 
MEW OW 9) oiarsialnin’s cists rieteraibisitinia sisieieis wis sey an (99) 

Le 
BCE, )ease ty) RCE) (a-HX)*( 2-HX) at 

eae t 

t. 

ah 

BE ca ))) pant ornate anak es os. (56) 

@ = g(t, ,,)-TRACE(HV(t, ,,)H™+R) 
- iene s ate eT 

4 t 
TRACE( (HOF, ) (HAF, ) ) 

c¢=c¢+@ unless this is negative, when ¢=o 

eee eeeecee( 58) 

Ka Vityy a )HaCHV(tiy JH TRE 0 acces meme (59) 

Now estimate, 

Fz ere: =5 < X(t) = x(t) + K(z(t)-Hx(t)) t Stet, oy oe eee (60) 

“a = 

W(t5,,) = (I-KE) V(t, ,,) see ecceeeeeeceee eee (61) 

A = 
OCF)! = CUEKU)E C(t) Mec sdaisiscecsieen esse (62) 

Equations 49 to 62 are now repeated for ten samples and the final 

value of g(t) is stored. The matrix Fy is then changed as described 

previously and the equations 49 to 62 repeated for a further ten 

samples. This is continued until all possible F, 's have been k 

tried and the Fy, that minimises g(t) selected. The equations 

49 to 62 are then used recursively for all subsequent samples.



(4.1) 

(4.2) 

(4.3) 

(heh) 

Wy (4). 

DISCUSSION OF COMPUTER ALGORITHMS. 

Linear Stationary Prediction. 

Linear Non-stationary Prediction, 

State Variable and Parameter Estimation. 

Adaptive Estimation.
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Chapter (4). Discussion of Computer Algorithms. 

The programmes to be described here have all been written 

in 'BASIC' for use on the Department's Honeywell 316 computer. 

This language was chosen because of its ease of implementation 

and its facility for on-line programme development. The 'BASIC 

compiler was augmented with subroutines written in 'FORTRAN'. 

These subroutines perform the following matrix manipulations: 

Matrix inversion; matrix transposition; matrix addition, 

subtraction and multiplication by a scalar; and matrix multiplic- 
i 

ation (appendix 14). The Programme Listings are shown in the 

appendices referred to in each section. 

dod Linear-Stationary Prediction. 

The set of orthogonal polynomials used in this programme 

were calculated from the relationship, 

4) 

fi P pe ayv=T Dt ee cee meee me cee ccc eeesvcesceeeeee(appendix 5) 
-1 

That is the Py are orthonormal over the range -lé¢7 41 

where, 

T = 2t- any 2 

ones 

and equation (1) section 3.1.1 becomes, 

ax = at £(x,u) 
T8 ae,
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dee. Ax _ (bart) £CK,U) cece cece cess eee eee eee 6 (63) 

ar 2 

The matrix D defined such that DP = dP/dt = P can be calculated 

from, 

(DP,P) = (P,P) 

° +1 
i.e. D=(P,P) = ff DV BETg oon tan. Cen (e4) 

1 

(appendix 6). 

The matrix M defined by, 

M = (P(t, : DP(t,) : D°P(t,) : ete.) 

is easily computed and its inverse found (appendix 7). 

The programme can now be written following the theoretical. 

development in section (3.1.1) for three separate cases: 

1. u(t) is constant over the range t Stet. 

2. u(t) is known in terms of the polynomials P for the range 

t Stet.. 

3. u(t) is known at any point (t) in the range t 4tet,.(figurel ] 

(appendix 8). 

For (1) above the matrix N (see section 3.1.1) reduces to, 

fe f : Pp. Nee (x, + Fyx,+(Fou,P) P(t) es XytFy (Fou, P)P(t) sisieie a0) 

because every differential coefficient of u with respect to t is 

Zero. This is a special case of (2) above as a constant u can be 

readily expressed in terms of the polynomials p. 

For (2) the matrix N is easily calculated because the



Figure (1). 

Diagram of Linear Stationary Programme. 
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ok 

term (F5u,P) is just the coefficient matrix of the polynomial 

representation of u. 

For (3) it is clear that before N can be calculated it is 

necessary to compute the coefficient matrix (F5u,P) for the 

polynomial representation of u. This is performed via Gaussian 

Quadrature. 

+1 . 
(u,P) = Sf upr ax 

-1 

= EF a, ulz,) P™(7,) 

= (W(7,) UC%3) 2...) |] ay P (7) 
Tr 

a, P(T5) 

etc 

where the d, and o; are the 8-point Guassian weights and abscissae 
ae 

(appendix 9). The 8-point formula was chosen to combine high 

accuracy with good computation speed. 

The programmes just described were written to produce 10° 

order polynomial approximations with the range adjustable to make 

the solutions accurate to within the preset error bound e,=107" 

(see section 3.1.1). The choice of 10 for the order of the 

polynomial approximation is somewhat arbitrary, its optimisation 

depends on a trade-off Detects time of calculation of the 

coefficients, (which increases with the order), and number of 

steps taken to cover the full time-range of interest, (which 

decreases with the order). No general theoretical statements can 

be made about this balance as it depends upon the differential 

equations to be solved,



w uw 

Results of the application of these programmes are shown 

and discussed in chapter 5. 

i . rN
 

Linear Non-Stationary Prediction. 

From section 3.1.2 it can be seen that the polynomials 

used in this programme must be such that the zeroes of each ay (t) 

are real, distinct and lie within the range t Stet. 

Normalising this range by substituting, 

  

shows that the zeroes of each q, (7) must lie within the range 

-1274+1, 

Now defining a variable s such that, 

coS(s) = 7 

and defining functions 

a,(s) = COS(is) 

It is clear from the following identity ( 69 ) 

COS((i+2)s) = 200S(s) cOS((i+1)s)-CoS(is) 

dre. 9, ,0(8) = 27a, ,,(8)-a,(s)
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that the a, (8) are 24 order polynomials in Y with 

a7) = 2 

a,(7) = 7 = COS(s) 

ap(7) = 2-1 = 2008%(s)-1 

etc. 

What is more, it is obvious that -1£7¢+1 for any value of s. 

Therefore the zeroes of a, are real, @istinct and lie between 

-1 and +1 for all i; and are given by, 

t ° a, 0) 

which implies, 

YF = COS( (2n-1)) 

ai 

u 

for n=1,2,3,etc. 

These polynomials are 'Chebycheff Polynomials’ and are orthogonal 

over the range -1 to +1 with respect to the weighting function 

ty) = vin 

+1 
oe andy tgif). 4, aT te, iAj 

i=j 

uw ° 

" 

ni
a 

The programme to solve differential equations by this method 

consists of a BASIC programme which accesses four FORTRAN sub- 

routines (figure2 ) (appendix 10). These subroutines perform the 

following operations.



Figure (2). 

Diagram of Collocation Programme. 
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Subroutine (1) Calculates the collocation points. 

Subroutine (2) Sets up the simultaneous equations as described 

in section 3.1.2. 

Subroutine (3) Solves these equations for the coefficients of 

the polynomial. approximation. 

Subroutine (4) Calculates the value of the approximation at 

some chosen points. 

Results of the application of this programme are shown and 

discussed in chapter 5. 

4.3 State Variable and Parameter Estimation. 

The programme to achieve estimation was developed by 

adding the algorithm described in section 3.2 to the prediction 

programmes described above. (Figure 43). Only the estimation 

programme with linear stationary prediction has been developed. 

This is because it produces the prediction in a shorter 

computation time than the other methods. (appendix 11). 

Any error incurred by neglecting any non-stationary aspects of 

the equations over each range is absorbed into the statistics 

describing the random disturbances on the process. 

Results of the application of the estimation programme 

are shown and discussed in chapter 5. 

Leu Adaptive Estimation. 
  

This programme was developed from the estimation programme 

just described by adding the modifications discussed in section 

3.3 (Figure 4) (appendix 12).



Figure (3). 

Diagram of the Standard Filter, 
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Figure (4). 

Diagram of the Adastive Filter. 
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De Discussion of Results. 

Sel Simulation. 

The application of the simulation programmes described 

(4.1, 4.2) is quite straight forward, Results are shown for two 

systems. 

Sete Linear System (Figure 5). 

A = -(k,+ a/v)A + kB + a/v AL 

B= ky A-(cotl, te, +0/v) B 

© = k,B - g/vo 

D= kB - o/vD 

with k,=0.538 min’> 3 k5=0.385 mat : k,=0 062 min > 

, =0.246 mines 3 and q/v=0.308 spon 

Figure (6) shows the results obtained by simulating this 

system with the linear stationary programme described. (4.1). 

Figure (7) shows the results obtained with the collocation 

programme. (4.2). 

elee Non Linear System (Figure 8). 

% = -(yta/v,)x, + a/v, X 

K> = -(kata/va)%5 + a/vo xy, 

Y= -9/vyyy- Cs, B/pe) x, + a/v, J 

33 = -W/V5Y5 -(k3H/pe) x, + a/¥5 y



with Kk, = EXP(36.49 - (12100/y,)) min-+ 

ey = EXP(36.49 - (12100/y3)) min”? 

H = 10 cal/gm.mole 

q = 1 litre/min 

v5 3 litres 

V2 = 2 litres 

c=l 

Soe ok 

Figures (9, 10) show the results obtained by simulating 

this system with the linear stationary programme described (4.1). 

Figures (11, 12) show the results obtained with the collocation 

programme (4.2). 

51.3 Discussion of Simulations. 

Figures (6, 7) show the results obtained when the system 

(5.1.1) was disturbed by the deterministic step function i) 

shown. Comparison of Figures (6) and (7) show that both the stat- 

ionary programme and the collocation programme produce identical 

results with the automatic range of solution effectively varying 

the range as the system changes from a steady state to a dynamic 

state. 

The collocation programme, however, took very much longer 

to compute the solution than did the stationary programme. This is 

because it is a more general programme, capable of dealing with 

non-stationary problems and also capable of solving problems with 

a wide variety of specified conditions (e.g. split boundary value 

problems, or conditions in functional form). 

Figure (6a) shows the results obtained by the stationary 

programme when the system was disturbed by the random function Ay
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Figure (7). 

Results of Simulation (Collocation Programme). 
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Figure (9). 

Graph of Simulated Concentrations. 
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Figure (11) 

Graph of Simulated Concentrations. 
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Figure (12). 

Graph of Simulated Temperatures. 
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where EA, = 10 and B(A,-10)*= 1.333 . 

The automatic range of solution was, in this situation, suppressed 

and a constant range of 2 minutes was used. This was because the 

system was in a constant dynamic state so that no advantage was 

obtained by allowing the range to vary. 

Figures (9, 10, 11, 12) show the results obtained when the 

system (5.1.2) was disturbed by the random functions x, and y, 

where Ex, = 10 and B(x,-10)*= 0.335 

n and By, = 350 and E(y,-350)°= 133.33 

Comparison of Figures (9, 10) with Figures (11, 12) show that the 

results obtained by the stationary programme are identical to the 

results obtained by the collocation programme. This means that the 

non-linear system (5.1.2) can be closely approximated by a linear 

stationary model over the range of 2 minutes. The automatic 

variation of the range of solution was again supressed because of 

the random inputs. 

The above results show that the stationary programe is an 

effective way of obtaining piece-wise continuous solutions to 

linear, and non-linear, differential equations. The results indicate 

however, that the collocation programme would be more suited to 

solving problems involving complicated specified conditions, as it 

is unable to compete with the stationary programme in simple initial 

value problems because of its larger computation time. 

5.2 State Fstimation. 

Figure (13) shows the results obtained by using the filter 

described (4.3),the system (5.1.1) and the measurement model. 

2(t,) =H x(t,)+v with$ H=/1000 
i 0100 

The measurements were obtained from the simulation results 

(Figure 6) by corrupting them with additive noise v such that, 

Ev =0 and Evv! = 0.0833 I
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These measurements are, of course, discrete, whereas the filter 

requires continuous measurement functions. The choice of 

measurement function is somewhat arbitrary and its selection 

is dependent upon what is required from the estimates and what 

degree of complexity can be handled. For instance, probably the 

simplest measurement function is the step function defined by, 

z(t) = 2(%, 44) i 441 

This choice will result in the estimates %(t) themselves being 

functions with discontinuities at the sampling points. 

The measurement function used in this work was chosen as 

the straight line from the previous estimates to the new 

measurements i.e. 

aw 

z(t) = dt +e cece 

“A 
where, ble (a(t, 4) -BR(E,))/ (4, ,4-t,) 

and @ = (t,,,HR(t,)-t, 2(t,,,))/(t,,.-t,) 
2 A oe Ue vets 1+) ahd 

Now the linear approximation to the true state can be written, 

Hx(t) “ bt + a 

where, b W (Hx(t, 1) -Hx(t,))/(t,,-t,) 

and, d= (ti) Hx(t,)-t, Hx(t5 4) )/(t5.4-*;)



The measurement error can therefore be approximated as, 

. wow 
v(t) ¥ 2(t)-Hx(t) = (B-v)t+(@-a) = de+d 

The covariance matrix of the errors in the measurement function 

v, 
ras 

pet f Ev(t)v2(t) at 
oe et 

is then approximated by, 
4 

t i+] a 
ee al i B(St+a) (b+) Tat 
eae) 

which, if the range t,StStsy is normalised to (-1 to +1), 

reduces to, 

n ca a Re - (AV(4,)H” + R,) 

where Rg, is the error covariance matrix of the discrete 

measurements. 

The use of this Pedsivedontiecuner cn results in the 

estimates being continuous for all time. The differential 

coefficients of the estimates, however, show simple discontinuities 

at the sample points. These discontinuities can be removed by 

using more complicated measurement functions (e.g. quadratic or 

higher order polynomials). 

The value of the disturbance covariance matrix (Q) in this 

situation represents the covariance matrix of the errors on the



value of A and was in this case 0.0833 . Poor initial estimates 

‘of the state variables were made and the initial covariance 

“aw 

matrix of the estimation errors v(t.) was taken as unity. 

5.3 Parameter Bstanaeion. 

Figures (14, 15, 16) show the results obtained by using 

the same system as before (5.1.1) but with Ay and kk considered 

as unknown parameters. An augmented state vector was set up and 

the equations linearised as described (3.1.3). 

Estimates were obtained for the state variables-and for 

the unknown parameters using the eene measurements as before 

(Figure 6). The initial estimates were taken to be zero for each 

component and the initial covariance matrix of the estimation 

errors was again taken as unity. 

The value of the disturbance covariance matrix (Q), this. 

time, represents the covariance of the unknown value of A, and as 

such is a parameter that affects the performance of the filter. If 

the value of Q is too high the estimates are 'noisy ', if it is 

too low the estimates are unable to Fe to any change in the 

input. Many experiments with different Q's would be necessary to 

decide which Q to use, but even then little could be decided with- 

out reference to the true value of the states. The value of Q 

used to obtain the results shown in Figures (14, 15, 16) was 

0.0833, and the fact that the results are in fairly good agreement 

with the true. values is the result of the use of information that 

would not normally be available in a real situation. These results 

therefore, demonstrate clearly the problems encountered while 

trying to estimate states and parameters in the presence of 

uncertainties in the statistical parameters of the system.



Figure (14). 

Parameter Estimation Using the Standard Filter. 
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Figure (15). 

Estimation of the Input Concentration. (Ag) 
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Figure (16). 

Stimation of Rate Constant (k,). 
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5.4 Adaptive Filtering acer) 

At the end of chapter (3) it was noted that the parameters 

a, A, ande could not be evaluated from theoretical considerations. 

fo investigate the effects of varying these parameters, some 

initial guesses had to be made. Initially ® was set = 1/i where i 

is the number of Bante taken, ana & was set = 0.25 . The effect 

of different values of e (i.e. the number of time increments that. 

“must elapse before each implementation of equations (43, 44) ), 

could now be investigated. 

t 

Sobel Experiment With A Poor Model. (The Effect of Varying 6) 

The poor model used was: 

As - Oxy + 0.308)A + 0.385B + 0.5084, 

es kj A-B 

Ay =) 

Ky =.0 

which is the same as system (5.1.1) but with the components C and 

D ignored. The measurements were taken from the simulation of the 

true system Figure -(6a) and were linked to the state variables by, 

Zo=\ Hx + ov 

with, H 0 

Le
ge

r 
r
o
 

o
o
 

o
o
 

e
e
d
 

" oO
 

p> 3 Q te
 

= S " ° oO @ Ww Ww H and, Ev 

The value of Q was taken to be 0.01 with, 

F. 

i.e. a disturbance with zero mean and variance of 0.01 on the 

value of AS was expected. This was not the true value of the



input disturbance, which was unknown, and so represents a further 

error with this model. 

The matrix Pye which is the compensation incidence matrix, 

was restricted to be one of: 

c
o
o
r
 

o
O
O
r
O
 

o
o
O
o
r
 

o
o
r
o
 

because, by definition, A and Ky are parameters and are 

therefore modelled correctly. To find which of these matrices. is 

the best representation of es each one was used in the filter 

for ten sample increments and the effect on the TRACE of the 

   
residual covariance matrix (g) recorded. The matrix that m: mised 

(g) was then selected as Pe 

Figures (17, 18, 19, 20, 21, 22, 23) show the results 

  

obtained by filtering this poor model with e=2, 

  

and 6.    > 

results obtained With e=) and 6 were quite close together and in 

good agreement with the true values. The matrix found for F 

  

exh and 6 was: 

o
O
r
»
°
o
 

and Figure (21) shows the compensation function (w). F, and w 

together form the optimal compensation strategy for this system 

and in fact show that the model is in error because it does not 

allow for B to leave the system except by changing to A, whereas 

in the true system B can also change to C and to D. Therefore w



  

Graph of Output Concentration (A) (Rstimates). 

(*)-e=2 : (+)-e=4 : (*)-e=6 
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Figure (18). 

Graph of Output Concentration (B) (Bstimates). 

(*)-e=2 : (+)-e=4 : (°)-0=6 
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gure (19). 

Graph of Input Concentration (A) (Estimates). 
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Graph of Fictitious Input (w 

Figure (21). 
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gure (22). 

Graph of Fictitious Input (ws). 

(#)-e=2 : (4)-e=4 : (*)-0=6 
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Figure (23). 

Graph of The TRACE of The Residual Covatiance Matrix (¢). 
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provides a rate of loss of B which matches the rate of B cha 

  

to C and D in the true system. 

The results obtained with e=2, however, were very different 

even though the TRACE of the residual covariance matrix (g) 

Figure (23) would seem to indicate that e=2 gave the best 

performance. The explanation for this is quite obvious, and 

indeed these results could have been intuitively expected. The 

compensation term defined by equations (43, 44) should represent 

errors resulting from the poor model i.e. errors that remain 

after the filter has converged. If these equations are used too 

frequently, then the filter is not allowed to converge and 

compensation is conditioned on random errors resulting from poor 

starting conditions or particularly poor measurements. This 

Situation is aggravated further in this case by the fact that the 

fully augmented system equations are unobservable as, Py was l 

found to be, 

Fy = 

O
O
O
H
 

o
O
o
r
o
e
o
 

(appendix 13). 

Sete Experiment with a Poor Model.(The Effect of Varying Pf ). 

Figures (24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34) show 

the results obtained by filtering the same poor model with e=l 

and with@ =0.2, 05255 Osos 0645055, 0.6. This means that 

compensation for bias is performed every nee measurement and is 

based on a value for the bias calculated from equation (40). 

The results obtained with fp 30.2, 0-25, 0.5 and 0.4 vere 

all similar withA=0.3 giving the best performance (g minimised) 

Figure (29).
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Graph of Output Concentration (A) (Bstimates). 
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Figure (25). 

Graph of Output Concentration (B) (Estimates).   
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I * 

I pS 
I +k 

201 * 

I ok 
i Ke 
I * + . 

I tek 
501 ok 

I eet Me 
I wk 

I * 

I o * 
401 Ke 

I aw 

I ok 
I ok 
I ok 

50; $i 
I #e 

I kt 
I Hs 
I * 

601 x 
i * 
I * 
I * 

I +e 
701 od 

I * 

1 Ke 
I * 

I * 
80; % 

1 o* 
i +# 
I *+ 
I 

90; * 

¥ * 
z Ed 
i x 
I *+ 

1 ok 
Sample Number



Figure (26). 

Graph of Input Concentration (A,) (Estimates). 
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Graph of Rate Constant (k,) (Zstimates). 

Figure (27). 
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Figure (28). 

Graph of Fictitious Input (w). 
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Gravh of The TRACE of The Resifiual Covariance Matrix (¢). 
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Figure (30). 

Graph of Output Concentration (A) (Estimates). 

(*)=A20.4 2 (+)78=0.5 3 (+) 7250-6 
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e (31). 

Graph of Output Concentration (B) (Estimates). 

(*)73=0-4 3 (+) 78=0.5 3 (.)7A=0-6 

13-75 15 

          

I x Concentration 

I * 
a * 

I * 

1oi a 

Le 
i * ri 
I * 
I * 

201 * 

1 * 

I * 
I * 

i x + : 
301 o + # 

I Ht : 
T o* 

I . 

I * 6 

40] 
I x 

1 

I 
I #F 

501 Rt 
I ox 

I 

1 

I 

601 * 
1 + 

I 

i 
I i= 

701 * 
I # 
i +e 

it He 
i aE 

801 xt 
I ; $e 
I $e 

i *+ 
I ee 

901 +e 
I oe 
i ok 
I # 

re * + 

I aR 

Sample Number



i Qo oO 

Figure (32). 

Graph of Input Concentration (AS) (Estimates). 
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Figure (33). 

Graph of Rate Constant (sy) (Estimates). 
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The matrix F, was found to be, 
4 

ay 4 = 

O
O
r
O
 

which matches the actual errors in the model. 

The results obtained with @=0.5 and 0.6, however, were 

again very different, and again for similar reasons. In these 

cases Fy was found to be, 

Fy = 

O
o
o
o
,
 

O
O
r
O
 

  

With PB =0.5 or 0.6 in equation (40) too much weight is given to 

the most recent measurement so that ¥ ceases to be a reliable 

estimate of the mean of the residuals. 

The reason B =0.3 is better than# =0.2 is related to the 

fact that exh. As 8 decreases, less weight is given to recent 

measurements in equation (40). There comes a point where so 

little weight is given to new data that the affect of compensating 

is not noticed in o time increments, when the next compensation 

calculation is performed. Again y ceases to be a reliable 

estimate of the mean of the residuals. 

The results discussed so far show that there is a Lowest 

value for e, below which the compensation equations fail, and 

also that there is a range of values of 8 outside which problems   

again arise. The values of these parameters that are indicated by 

the preceding results are e=h and# =0.3. 

Figures (35, 36, 37, 38) show the results of the adaptive 

filter using e= and 6=0.3, the results of the standard filter,



re (35). 
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Figure (36). 

Gravh of Output Concentration (8). 

(*)-Simulated : (+)-Estimated : (+)-Estimated 
(Adaptive Filter) (Standard Filter). 
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Figure (37). 

Graph of Output Concentration (As). 

Number 

: (.)-Estimated 
(Standare Filter) 

17-5 212625 5 

* Concentration 

* 

* 
* 

x 
. * 

+ fe 

+ * 
e+ 

+ * 
* + 

x * 
7 + * 

* 

. * * 

. + 

e+ 
+ * 

+ 
Fk, 

+4 
. +# 

x + 
* oF 

* + 

* + 
* * 

* + 

. a 
* + 

. * * 

* oe 

* + 

‘* + 

* + 
* + 

« + 
+ 

* ate 

x + 

* + 
* * 

oe + 
* sa 

* + 

% + 

. * + 

« + 
# *



Figure (38). 

Graph of Rate Constant Us). 
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and the true values. Figures (357, 38), in particular, show the 

improvement obtained by using the adaptive filter. Fisures (35, 

36) seem to indicate that there is little difference between the 

two, but this is to be expected because both A and B are measured 

80 that most of the errors will be attributed to the estimates of 

by the standard filter. ae and Key 

5h eS Another Poor Model. 

Figures (39, 40, 41, 42) show the results obtained by the 

adaptive filter; the standard filter; and the true values for the 

model. 

A =.-0.8468 + 0.3858 

B = 0.5388 - B 

with Bim fe | and EV a= ° 7 
ol and Evy = 0.8535 

The value of Q was taken to be 0.01 with il 

0 

The true system was still the same (5.1.1) and the measurements 

were taken from the simulation Figure (6a). 

These results show that the adaptive filter is superior 

to the standard filter, especially Figure (41) which shows the 

TRACE of the residual covariance matrix. Examination of Ficure 

(41), however, shows a drawback to the adaptive filter as 

develoved so far. 

In this case Bi was found to be, zi = [3] 

This was chosen from the three following possibilities:
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Figure (39). 

Graph of Output Concentration (A). 
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Graph of Output Concentration (B). 
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of the TRACE of the Residual Covariance Matrix (f). 
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1 . 0 Boe: 
0 3 He ‘ Olea: 

py the fact that g at (1) (see Figure (41)) was less than g at (2) 

or (3). However, the rate of decrease of g between (2) and (3) was 

much greater than between (0) and (1) so that it would have been 

more reasonable to select 

Bi = 110 rather than By etl 
ol ° 

This problem is caused. by the fact that Ais a moving weight, so 

that each measurement is treated equdlly. This results in the 

“order of trial of the possible FB, YS having an affect, because if 

the state of the filter is poor at the begining of a trial period 

then the convergence of g will be slow. To overcome this his 

redefined as X=1/i (where i is the number of samples taken) until 

&=0.2, where it remains constant. This places greater 

  

recent measurements so that initial conditions are damped 

  

more quickly. This is also a more practical situation asc =1/i 

tends to zero as i tends to infinity, so that some lower limit to 

Q& would be necessary in any case. 

  

Figures (43, 44, 45, 46, 47) show the results obtai 

with the adaptive filter with the modified value fore. In this 

case oe was found to be . 

Beer eee Bren) -B3 
and the correction term 

is shown in Figures (45, 46). These graphs show that w, is round 

to be positive to compensate for the omission of Ay 3) and that 

  

Wo is found to be negative to compensate for the omission of ¢
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and D from the model. Comparison with Figures (39, 40, 41, 42) 

show that these results are superior to the standard filter and 

are very good approximations to the true values. 

Sobek Avplication To A Poor Non-linear Model. 
  

The adaptive filter with es, B=0.3, ando{=1/i until 

o=0.2, where it remains constant, was then applied to the following 

system Figure (48). 

x = -(Kto/v)x + a/v X 

y = -a/v y-KH + a/v y,   

  

pe 

with K = EXP(36.49-(12100/y) ) 

H = 10 

21 wah pe lO ei ee eID Sy, i= 350 

which is a single stage approximation to the system described 

   previously (5.1.2). The measurements were obtained by add 

random perturbations to the simulation results (4 

  

and were linked to the state variables by; 

Z = Hxty 

with Hs=) (62) a 

Figures (49, 50, 51, 52) show the results obtained with 

both the adaptive filter and the standard filter. These results 

were obtained with the additional error R,=0.0535 when it should 

have been 0.3353 .



Figure (48). 
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Graph of Output Concentration (x). 
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Figure (50). 

Graph of Output Temperature (y). 
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Pigures (53, 54, 55, 56) show the results for t! 

  

system but with Ra set correctly at 0.333 . The error committed by 

using the incorrect value of RB, alters the results obtained by the 

standard filter quite considerably, but has hardly any affect on 

the adaptive filter. 

Pigures (57,58,59,60) show the results obtained for the 

same system, but with R58 235 ty 

These results demonstrate quite clearly the bias that 

results from using a standard filter in conjunction with 

  

an 

’ 

inaccurate model. This bias is much reduced by the adaptive 

filter. Furthermore, the adaptive filter provides an indie 

  

of the area of the model errors. This is provided by the com 

  

sation tion (w) Figures (51, 55, 59). For this particula    c 

system the compensation function is aifficult to ana 

0 

merely tells us that the poor model.is neglecting so los 

  

m the system. In all these results (Figures 49 to 60) the 

matrix F, was found to be F,=[0) - Clearly to improve this model, 

either some theoretical modelling is required, or more m 

  

should be taken. 

525 General Discussion. 

    

The results presented demonstrate a number of import 

points. 

Lie She standard filter provides useful estimates when the model 

and the statistical parameters are known (Figure 13). 

2e The standard filter produces biassed, or even divergent, 

estimates when uncertainties are introduced inte the model 

equation, or statistical parameters (Figures 37, 38, 39, 40). 

3. The adavtive filter produces much improved estimates over
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Graph of Output Concentration (x). 
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the standard filter when dealing with uncertain models. 

(Figures 37, 38, 43, 44). 

lite The adaptive filter provides an indication of the model 

errors, Which can be very helpful to any attempt to improve 

the model. (Figures 45, 46, 51, 955 59) 

The results also show that the adaptive filter is robust 

with respect to its parameters (AB, and e). That is, the 

adaptive filter performs well over quite a large range of these 

parameters. However, problem areas have been indicated. (Figures 

19, 20, 32, 33). When e becomes too small or 8 becomes either too 

small or too large the estimates become 'noisy' and tend to 

oscillate about the true values. Another problem that has been 

demonstrated is that of unobservability. (appendix 15). This 

problem is caused by attempting to find too many fictitious 

inputs and is simply avoided by restricting the search for FB, so 

that unobservable models are omitted. 

®he choice of ten sample steps for the testing of each 

possible Fy, is arbitrary, but it was felt that it was long 

enough for the filter to converge, without being too lo so 

  

that the optimum Fy could be found quickly and efficiently. 

It is clear that the optimum values of the adaptive 

filter parameters (&, B , and e) are inter-related and in some way 

depend on the speed of response of the system. However, the fact 

that these parameters are based upon sample number and not on the 

independent variable (time), compensates for the system's speed 

of response, so that the results obtained should be fairly 

general.
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6. Conclusions and Points for Further Development. 

This thesis has discussed the importance of system 

identification, or, state and parameter estimation in modern 

control engineering. The relevant literature has been examined 

and the Kalman filter has been introduced and discussed. Problems 

arising in the application of the Kalman filter have been pointed 

out. 

A number of theoretical developments have been made in 

this thesis. First a method of solving differential equations, 
' 

providing piece-wise continuous functions, has been developed. 

The basic Kalman filter has then been reformulated by 

  

orporating 

the new continuous solution programme, to provide piece-wise 

continuous estimates. The ability to produce continuous estimates 

has required the introduction of continuous measurement functions. 

The measurement functions described in the text are particularly 

simple to construct from the discrete data obtained by sampling 

the system, and ensure that the estimates are continuous at every 

point. However, there is a great deal of flexibility in the 

  

the measurement functions are defined and this allows for freedom 

  

in the choice of sampling strategy (e.g. where in the range of 

solution is most convenient to sample; how many samples to include 

in the range of solution or whether to vary the length of the 

‘solution range, etc.). This is an area where further work nm 

  

produce interesting results. 

The continuous filter so developed is analogous to the 

original Kalman filter so the problems, already mentioned, which 

affect the Kalman filter are shared by this new filter. These 

problems, whether caused by uncertainties in the model, or by the 

filter statistics, or neglected non linearities, show themselves



by making the state estimates and the estimation error covariance 

matrix inconsistent statistics. That is, the estimation error 

bi eerie ene bass calculated in the filter may become a very poor 

representation of the true (put unknown) estimation errors. A 

number of approaches to this problem, proposed in the literature, 

have been discussed and various short comings highlighted (e.g. 

the need for unreasonable a-priori information, or the inability 

to estimate parameters). These approaches, however, have Epi 

to introduce the concept of an adaptive filter i.e. a filter 

which is able to change its own operating parameters to improve 

its estimations. This concept of an adaptive filter has been taken 

and a new adaptive filter has been developed which, although 

  

utilising some of the ideas already presented in the liters re 

has introduced new concepts, helpful in solving some of the probl- 

ems of adaptive filtering. 

The use of the TRACE of the residual covariance matrix, pre— 

viously mentioned in the literature (10, 45,68), has been used very 

effectively, not only as a means of adapting the input disturbance 

covariance matrix, but also as a useful performance index for the 

  

ter/model combination. It is in this area that sone future 

research is possible. The TRACE of the residual covariance trix 

  

can be used to select different types of model, or to select the 

  correct order of model, where very little a-priori knowledre is 

available. 

The calculation of a model error compensation strategy 

has been introduced as an important step in adaptive filtering. 

The model error compensation sbrateny effectively changes the 

model after every so many measurements and thus improves the 

performance of the filter while allowing parameter estimation to



be performed. Furthermore the compensation function 

  

necessarily representing any real variable, does indicate the 

source and type of model error that exists. This information can 

_ be very helpful to any modelling work that seeks to improve the 

mathematical model used. 

The concepts introduced in the adaptive filter have 

parameters associated with them. The results, while demonstrating 

the usefulness of the adaptive filter ee applied to models 

containing serious errors and omissions, indicate values for 

these parameters which seem to be aunts general. Further work is 

needed in using the adaptive filter on-line with some real process. 

In this connection it must be noted that the adaptive filter 

increased the time of estimation over the standard filter by 

approximately 8%. Bearing-an mind that the programmes were written 

in BASIC for simulation work, this would indicate a very small 

time penalty to pay for the increased accuracy of the adaptive 

filter. Also the adaptive filter can be used with much simpler 

models than the standard filter and yet provide estimates of 

similar accuracy. From this point of view the adaptive filter 

could be faster to use by decreasing the time for the prediction 

  

ile maintaining the same general level of accuracy.
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Appendix (1). 

Abstract Vector Spaces, Inner Products, and Orthogonality ( 71 ). 

De 

6. 

7. 

8. 

  

An abstract vector space (V) has the following properties. 

If f and g are in V so is f+g. 

f£ + (gth) = (fg) + he f,8,hé6V. 

There is an element o6V such that hto=h for all hévV. 

For each h6V there is an element ’-h€V such that 

h + (-h) = 0. 

gth = hres g,heV. 

For each real number a : ahéV. 

a(gth) = ag + ah. 

For each real number a,b ;, (at+b)h = ah + bh. 

a(bh) = (ab)h. 

Euclidean n-dimensional real space (En). The elements 

consist of sequences of n real numbers. 

Fon) BS (dys +ee ee eB) 

The space of polynomial functions of order less than or 

equal to n (Pn). Here, 

os rs



a 

Inner Products. 

An inner product on a vector space (¥) is a mapping V x V 

into the real line. That is a real number is associated with 

every pair of vectors in V with the following properties. 

i (af,g) = a(f,g). 

2. (f+g,h) = (2,n) + (g,h). 

3s Cig ea2 852) » 

4 (£,f) > 0 unless f=0 

Se (f,g) = some real number: . 

Examples. 

1. For the space En 

n 

(£,6) = 2 a, b, 

2. For the space Pn 

+1 
(eye) ae S Fe ate 

Bi 

If (f,g) = 0 then the vectors f,g, are said to be orthogonal (in 

the case of Ee this means that f and g are perpendicular). 

A set of vectors ty such that if 3 a; f; =o implies 

a; =o for all i; are said to be linearly independent. 

In an n-dimensional vector space every set of mn vectors 

are linearly dependent. Therefore any arbitrary vector g can be 

written as; 

a, f. for some ay if the f; form a linearly 

independent set.
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A set of linearly independent vectors is called orthogonal it, 

CGE) a0 ay AS 

cme) 

An orthogonal set is called orthonormal if, 

(g »f,) = 1 for all i. 

Any vector 2, not in the space (V) can be approximated by a vector 

g which is an element of (V); 

  

3 

2%g = .& a,f. 
so Sse | tart 

The best choice of the aj is when the error is orthogonal to the 

approximation. 

fi) 20 (forall 4. 

" © 

a
 ry
 

  

Therefore: 4 3 
(2,%) Bay (sy f,) if the f, are orthogonal. 

and, 

(2,8) =a; if the 5, are orthonormal. 

This can be generalised by considering a vector space consisting
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of sets of m 

  

oF
 

or, in matrix terminology, 

G@ = AP where Fo= 

4 

and aoa cee eeee o 
ray

 
eS 

DP 
ec
cc
oe
s 

  

m, 0. 

  

Now any set of m-vectors, Z, not in the space can be approximat ee E Py 

‘by a vector G 

Z2°G = AF 

and the best choice of the matrix A is when, 

(4Z-G,F) =0 

where (G,F) is a generalised inner product defined by;



(GF) = preys fy) (8ysf5) veeeeeee 

(85,£3) 

Cag by cece cece ce cee eens 

Clearly, . & 
GSP) =iFSe) 

If the fare orthonormal then, 

(F,F) =I , 

and the best choice of A reduces to, 

A = (2,F). 

Lh;



  

The Method of Collocation 6 : 

An arbitrary function of (t) £(t) can be represented by 

an infinite series of orthogonal polynomials: 

PSE ey ee eC) 

an a order. polynomial approximation to f(t) can be written; 

yw f(t) Mie oes) aca (OD) 
2=0 BS ae 

and because, 

(2(t)-y,p5(t)) =o for ofjfn (appendix 1) 

Cay-by) Py(4),7y(t)) + GE ay p(t), 94(t) ) = 0 

Therefore: 

for o4iSn. 

The error f(t)-y = e can therefore be written as, 

ele = ay p, (t) Mister ccc here) 

and the (ntl)th order approximation o. to this is, 

= cz, p(t) 

where c, are found via,
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- = £jént1 (e en 9? 4) =10 for ofj4n 

tie ec; = 0 for ofi¢n 

and, = 
Cnt1 = Apel 

Therefore the zeros of e are approximately the same as the zeros 

of Prep (t)+ The approximation can therefore be found by setting 

y=f(t) at the collocation points. (i.'e. at the zeros of Ppyy 6%) ye 

Clearly this approximation is not optimal in the sense 

iscussed in appendix (1) but only nearly optimal. As n increases 

so this method approaches the optimal approximation defined by, 

a, = CR0E)S p,(*t))/(p, (2), p,(t)).....(appendix BL).



  

Minimum Variance Estimation (31, 33, 43). 

Let z = Hx+v be an h dimensional vector measurement of 

the n dimensional state vector x, where H is an h xn matrix and 

y is an h dimensional vector of random variables with, 

Ev = 0 and Evy =R 

Let X be a prediction of x with, 

E(x-x) = 0 and Exe) (x) = 7 

Now assuming, 

E(x-X)v" = 0 

Then, 

nia oe Shon * 5 5 : 
x = x + K(z-Hx) is a minimum variance estimation of 

x. if K is a suitable weig ri. K must be calculated to 

minimise, 

TRACE (B(x-%)(x-2)") = trace CW) 

Now, 

a Bem race on 

= V-KuV-VaK" + K(RenVE’)K* An 
Vv 

es 

and TRACE (V) is minimised when, 

“a 
TRACE( aV ) =o for all i and j. 

ak(i, 3) ‘



  

Now, 

  

= K(RHHVHE) K7(4,5) + K G,J) (R 

  

KG, 5) BV = Va? 44,9) 

where, 

K(4,3) = __ak 
aKa, 5) 

i.e. 

ak(m,k) = 0 m fit4 KF 

aK(4, 5) i n= a ease 

Therefore K must satisfy, 

nee (an a ale oA OTE VE Rd) 
RACE (K(i,j) ((R+HVH™) K” - HV) + (K(R+HVE")-VE) KU, 5) uw ° 

for all i,j 

This means that, 

a peeO (KC R+HVH)-VE 

Therefore, 

x = Va’ (Renvuty + 

This important result can be obtained by a large variety of 

methods. For a discussion of the different approaches see 

references (43).
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Appendix (4). 

The Modellingof Uncertain Parameters (43, 50). 

Consider the equation; 

x= Pye Fw ORT is Sse CE Ds ieee ncn) 
4 

where x is an n dimensional state vegtor and w is an 2 dimensional 

vector of unknown parameters. 

Py is an nxn matrix, and, 

FP, is an nx? matrix. 

Equation (1) can be rewritten, 

CE Oe areas ae 

uation can be used in the filter described in the text to 

  

produce estimates of x and w. This procedure, however, can be 

time consuming because the dimensionality has been increased 

(from n to (n+®) ). 

fo overcome this the a-priori value w of w will not be 

improved by the filter, but the error committed in using Ww owill 

be modelled. fo do this consider the formal equations of the 

augmented system (2). 

The prediction error co Lance matrix will be,



VE by vor 
<7 = 

vf 5c W7, Vy 

= =). 2,2 
Where Vi, = EB(x-x) (x-x) 

= or 
= = E(x-x) (wew) 

and Vw 

me aos and Vy = E( w-w) Cw-w) 

Now wis not to be improved by the filter so Vy, remains constant. 

Therefore: 

: <= A aA iP 

x Ve ww g Cth Vy Vow g ° 

To ve | foot i + FA G) x, W x,W ow 4 cae ap ert 

“a 

where, Meee B(x-%) (xB) 7 

~ 

eae Vja = E(x) (ww)? 

and @ is the fundamental matrix derived from equation (1) andA 

is the integral of @ over the time increment. 

Therefore, from (3),



  

to 

ee . AT 7. A . 
¥, = 9 Vg +ar,% ne 4G i 5, ave 

- Din Te 
+ OF, V, ered Rs hale wince scela Rest sine) eiesera SRP) 

and, Ve ow =@ View +OF, i Wegieintete tis aera os ea eer eias a Gory 

For the next time increment, 

A =: ’ 

V = (I-KEH) V 

dee. 

“a a i = 
Ve View i-K,, 0 ee Voesw 

Ap = a . =—T = 

v x,W Vi “Ky WX z x,W Vy 

ae a Eenee ee a ere 1 where, Koa Ne He (By gh Gee R) 

and, 

G _g Mt Fh . ea Row x.y Be eet BD) 

from. 

Hom (hee) 

Therefore: a oe 
Mee = (I-K, H,) Ng Wwe Wineidic ole cere seins 6s ec been tO) 

Aw 

and, Vege = (I-K Pa a Wisieigle Pale mele rei@ clcinie’sicls'see (07)



  

Now defining 

al
 

" 

  

2}
 a t Vey (AF, 

then the resulting modification to the filter can be written as 

follows: 

Prediction. 

  

the rang Lt4 For the range ti et toa via 

*d
 

+ tag
 

I
 

n tay 

he es ate) 

Te6ts 44) = (te? tar VFA? + 9+) + Cee? 

al
 

ct v
 " 

eh Dee g(t.) +AP, V, FA 

Estimation. 

HY TCH eV Ree x = Vx aa itl 

u Me) = k(t) + K, (a(t)-H k(t) ty seet, 

“a 
Vy(5 43) = CI-KHL) V(t, 4) ¥
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“aw 
c(t, a+1) = (1-KB) cCta) 

ete 

These equations show how the filter is to be modified in order to 

account for the errors in W without having to improve on this a- 

priori prediction. Clearly this modified filter will no longer be 

optimal, in the sense that the maximum information contained in 

the measurements is being utilised, but on the other hand it will 

process the data a lot more quickly, without impairing the 

“a 

knowledge of the errors in x.
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The Calculation of Orthonormal Polynomials. 

Orthonormal polynomials Py are defined by the relationship, 

> 

A set of orthogonal polynomials a, are defined by, 

Sie 

JS a,a,0t = 0 if5 
mols tod 

be t=j 

Now defining a, and q atta 3 then ene can be calculated from 
1,0 

+a 
t+ at =o J ( 31 0) 

i.e. A 
Sie =e 

The coefficients of Gp can then be calculated from, 

p 
I,4odt = 0 ote 

' P
o
y
 

2 an o © 2, o
 0 °



nay
 

z 

and so on up to any order (m) required. 

The by can then be calculated from, 

and then the normalised orthogénal (orthonormal) polynomials oh
 

calculated from, 

The polynomials thus calculated are known as normalised Legendre 

polynomials and are listed below up to the 9 Scorer. 

pie 0.707 ’ 

a = lees 

Do = ~0.791 + 2.3726" 

Dy = -2.806t + 4.677¢7 

By, = 0-795 — 2.955t> + 9.281" 

Dee ee 20.521t> + 18.469t7 

Dg = -0-797 + 16.752t* - 50.195t* + 36,8148 

By -5.9389t + 53.9%" es 118.6¢2 * 93.41%? 

Pg = 0.799 = 28,745t + 198.1t* - a7y.ot® + 1n6.9%8 

oS " 7.509t - 111.3t? + 433.9t7 - 619.8t" +292.7¢7



  

a wa
 

Appendix (6). 

The Calculation: of the Matrix Differential Operator. 
  

The matrix differential operator defined on the basis of 

the orthonormal Legendre polynomials p, (appendix 5) is calculated 
a 

from the relationship, 

DP i=" 2 

where, 

ee D5 an 

ua 

D 
“Mm. 

This means: 

CDP. P) a(R, P) 

Therefore 

D(P,P) = (P,P) 

Therefore . 
D = (P,P) = 

Therefore re * 
Dale: p 

a eB 

Pay 

a We
 

n ap /at 

ap, Jat 

P,P? at 

PoPy sees 

. at 

BAP se" 

or, writing P = LT where L is the coefficient matrix of the 

hormalised Legendre polynomials and, 

eS 

w
n
 

T 
t 
t 
t 

t 

5



Then, 

Therefore, 

° 

1 

Therefore, 

(2 tt? 2. at ut 

157 

+1 
D=L o ° ° ° ° 

ro 2 3 

4 es es - etc. Fat ue 
at at” 2t? at 
2.3 

at? 3? 54 34? 

etc. 

therefore, 

D= L ° ° ° ° oe 

2 

t ta/aie ie? /s abet /iesa| eee 
ae“/2 207/35 atltyy 2t7/5 

3 é 
349/3 3tt/u 3t7/5 3876 | 

t etc “1 

Therefore, 

eee Ls: ° ° ° ° : 

2 
& o “3 9 etc t i 

Oh / SiO a7 5 

2 On 675) 5



  

The matrix D defined above is easily computed and the 

1.732 

2.646 

3-317 

5.372 

ns et
 

ii)
 

N 

5.916 

7416 

8.659 

9-741 

O
o
 

6
 

O
R
 
O
e
m
.
 

O
O
 

oO
 

O
8
0
"
 
O
R
O
 

CO 

41.956 

11.616 0 

QO 13.691 

13.065 0 

o
S
 

o
e
 

0
 

Oo
 

° 

15.959 0 

oO 16.0 

15.703 0 

4 

58: 

6,
 

O
S
G
e
o
.
 

OF
 

o 
°o

 

O'
 

§Ol
. 

OF
 

F
O
R
O
 

B
I
S
 

Or
 

Oo
) 

0 0 

17.991 0  



stationary differential equations is defined by: 

and is quite simply calculated and inverted using Gaussian 

The Calculation of Matrix M and Its Inverse. 

The matrix M required for the solution of linear 

Elimination. 

Appendix (7). 

M = (P(t,) DP(t,) D°P(t,) etc) 

The result to four decimal places being: 

1.414 

1.kly 

0.9435 

0.471 

0.18 sO
 

0.06. fu
 

3 

0.0179 

| 0.0045 

0.0010 

0.0002   L 
7 ~_

 
as
 0.0 

Oo aD, We
 

0.0060 

0.0014 

0.0003 

0.0198 

0.0079 

0.0025 

0.0007 

0.0002 

5 

° 

0.0045 

0.0045 

0.002k, 

0.0010 

0.0003 

0.0001 

0 

0.0005 

0.0005 

0.0002 

0.0001 

0 

O
O
 

O
D
.
 

O
e
 

Oi
 

oO
 

O
e
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Oo 
s
o
m
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° 
O
r
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Oo 
oO 

o 
oO
 

oO
 

O
D
 

S
:
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O
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DIM KC9s9)5MC959)sB6959)5W6959)2 E0929)» F6959) sAC9) 26999) 

DIM ¥C97sS(999) 

A4&=02R1=0 
FOR 1=057: FOR J=0>7: READ WCJ»T): NEXT 

FOR 1=0,29: FOR J=0,9:EC1>J)=0:FC15U)=03 

READ ECIsJ): NEXT J: NEXT I 

FOR 12059: FOR J=0,1: READ FCI,J): NEXT J: NEXT I 

PRINT “INPUT ORDER" INPUT N 

PRINT “INPUT MATRI : FOR 1=05N-12 FOR J=OsN=1:2 INPUT MCIouJd) 

NEXT J: NEXT I 

PRINT “INPUT INITIAL: CO 

PRINT “INPUT FORCING F 

INPUT BGJ>sT): NEXT J? 
CALL (458002022 WC050)5 

FOR 1=05N-1 
Z(1s0)=701) 

    FOR J=0s1 

   

  

   

Qa N= 13, INPUT YL): NEXTST 

73: FOR J=02N-1 

    

EXT 
¥CO20)9Ns8s 8) 

     

_ NEXT 1 
FOR 1=159 
CALL C4sKC050)2F(OsT-1)2AC0)sN1051) 
CALL C49MC0s02sZCOs1=195 260s TI 5Ns No 1) 
CALL €3sZ(0s1)sACO) + 20051) sNo 1151) 
NEXT 1 
ALL €4520050)s E0050) 5S56050)sNs 10210) 
HOR T=OsN=1s FOR J=0,93 PRINT SCIsd)s2 NEXT J: PHINT £ NEXT I 
DATA «7158068-01>» 157247, 1627s «2564545 2564549 0 B21887s 1 ST24T 
DATA «71 5806E-015~ 61190579 - ©2169799—+20191659—6814775E-01 » eB 14775E-01 
DATA 02019165 62169.795 0119057s 0141375 6158949 - 242519 7E-012= 0257779 
DATA 25777192 —©A2519T7E-O1 > 0158945 014137901 46471 9 = +28 73R7E-O1 » «2498 
DATA 0176223- 0176222 - «249695 «28738 7E-Ols 0146471 5 01 368532—=011 4497 
DATA) ='* 2175932 «1952465 «1952465- 9701144975 1 36853 

   

  

   

  

              

  

   

DATA 114627 -2103435- 2479922 e2BA799IAs «-AORAQKE-OF | 
DATA 2103451146275 «B2346E-015- 02191945 «241 8675-2 104888s— 2 LOABBK 
DATA 2418679 =9219194s eB2I46E-01 5-2 4299 168-01» 01379322- 0230696 
DATA «2865052 - «246505» «2306265-+137933> «429907E-01 

  

FOR I=059: FOR J=0s9: READ BCIs5J)¢ NEXT ds: NEXT I 
112° FOR Lis-1s15-5 
113° PRINT 
115 FOR J=0,9:YCU)=T1Itd 
1116" NEXT. J 
118 CALL (458(020)5¥C0)2400)51051051) 
120° CALL €459S€0s0)>ACO)sYCO)5Ns 1051) 

POR VI=OsN-1% PRINT YCI)s: NEXT: I 
122)" NEXT. 11 
150 DATA 144142151 4142s «8164932 09427825 68164885 210819 

DATA +471373> «4898832 6210817 «356346F-015 «1885345 P1774 
152 DATA «120A64> -356343E-015 -A448956H-O28s e62R3R84E-01 

153° DATA *©777455E-01 » 6501901 F-015e197963F-015 «448952F-08 

154 DATA ©451217E-035 -17946R-01>5 

155 DATA «244876H-02> -451213E-03 
3317-015 0167275F-01» «79179 7E-02 
77 3198-045 +448 3268-025 -60419F=02 

  

156° DATA +46821 3E-02>5 «25189E-02>5 -95223E-03»s «242955E-03 
157 DATA 637731 7E-04s -270303E-05s5 -994838% 
158 DATA +113423E-02>.4671454E é 
159 DATA +201232E-04» «270301E: 

  

-035 -137943E-02 
Bs 294 03s «92548E-04 

5s © 168949F-06 

    

160 DATA +198406E-03> -281513K-03> «2425R8KE-035 01 54823H-03> «75298 SE-04 

   
161 DATA +2775E-049 «754581 E-05s +143103E-05s © 1 H8949E-065 «9390 558-08 

170 DATA 2©7071095~-1 e224745 1 6224759145811 52-4e T4388 s 40 T4341 

171 DATA -1+87083511 02251 5-28 ©0624 2H 006265 2612131 5-21-2131 

172) DATA 95+4601+-222-737322247395- 
173° DATA 944-995.-2216-215 
174 DATA -3212.44, .1204685055-. 
175 DATA -1034+86>8623-79s-+474301 
176. DATA 2+91915-105-1071839+5s- 

    
  

  

3451653501781 -2460246 
2160232 2454976»-53¢54119535e412 

65026E05s «265028 E05, © 73809.» 76-6612 

Ss ©17075E06s -» 369953E06.s «8369955806 
202347E0Ss 0151 765E04s-- 789-1 BEO6 

  

   

  

  

      

EV? DATA’ 2276218E07> - -59189E07s «591 89E07s- 30808 52138-7585 = 3055017 
178 DATA +427964E055-+41 740806» «292255E0 75-21 461 47E08 

179 DATA 6501118E08s--10649F09s -10649E09 
180 DATA -797109205050505302030%0302051+22474s020203020302050 
181 
182 DATA 050302020505 ©795492505-709S5492s0996 

DATA -+7905612022+37171202020205050s0205 

  

280624902 4057707 

280742090202030 
183 DATA 0594239726505 -20+52065091% 64685502020305=279674190 
184 DATA 1627316202-5001947s 05 36 28096509090309-5 298871 90> 530899 
185 DATA 05-118 2578505 73-4058 50505 «79855209 -28 7454505158 2091 
186 DATA 059-274-201 5903146+7950505 75888 5s09-111 2833024332933 
167. DATA 053-619.823022924662



  

fhe Calculation of Forcing Functions) by Gaussian Quadrature. 

The 6-point Gaussian weights andabscissaeare given belo 

te a 
+ .96028 10122 

+ 279666 22238 
+ 252553 , -31570 
+ 218543 36268 

As described in the text (section 4.1) the coefficient matrix for 

the polynomial approximation to the following functi 

  

(uP) = (w04) 095) «..) fa, P74) 
dy (4) 

s
e
e
s
 

where the u(%,) are the values of the forcing functions at the 

Gaussian abscissa. Clearly the matrix, 

. a, P°(%) 

a, PT(s,) 

er a, PY, 

depends only on the polynomials P and the Gaussian weights and 

abscissae; as» Vie 

)



This matrix is therefore independent. of the differential 

  

being solved. Therefore this matrix can be precomputed and stored 

in the programme (appendix 8) for solving differential cquations. 

The result of the calculation of the value of ay a is: 2 

pt 
Bg 7 3 

0.0716 0.1575 0.222) 80.256: 0.256 . 0.222 . 0.257 0.0716 

-0.119 70.217 -0.202 -0.0815 -0.9815 -0.202 -0.217 -0.119 

O.1h1 0.159 -0.0425 -0.258 0.258 -0.0425 0.159 0.141 

0.146 -0.0287 0.250 0.176 -0.176 -0.250 -0.0287 O.146 

0.137 -0.114 -0.218 0.195 0.195 -0.218 -0.114 0.137 

-0.2115 0.210 -0.0228 -0.248 0.248 0.0228 -0.210 Ost 

0.0823 -0.219 0.242 =0.105 -0.105 O.242 -0.219 QO. 

| | a 
j 0823 

[ao 0.138 -0.231. 0.287 -0.287 0.232 -0.138 0.0450 

t
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10 
iS" 
2A 
i) 
w 
40 
Al 
45 

a 
GY 
90, 
148, 
110 
115 
120 
136 
140 

DIM X0903YC9s9)3009)5HO9)s BOI) s VO9s9)s AC929)s W099) 
“FOR 1=@29: “FOR J=@,9: VWCIlsJ)=0: NEXT J: NEXT I 
INPUT As,.BsN 
FOR 1=@sN-1: INPUT HCI), @CI): NEXT I 
01=0 
CALL (15015 As Bs XC@)) 
PRINT 2 PRINT “ORDER'SO12: PRINT 

CALL ¢ 45 X€@)2015YCBsG)s VCOsG)5 008) sHCOIsN 15H) 

FOR K=0sN-1} 
FOR 1=0501 
CALL €2sYCD209)2XCO)s O60)s ACHs G)sHCO)s BCA) sNsO1sKs 1) 
NEXT I 
CALL C3s01sN>s VOGs0)s K1sk) 

CALL ( 4, XCG)501s YCGs 0) 5 VCE, Os OC G),HCO2Ks Kd 
NEXT K 
FOR I=@501 
FOR J=@sN-1 

EE BSE E He Be dD FE tO FEO BA SaaENSRSRMRA ESI 
160 
170 
ISG 
196 

NEXT J 
NEXT 1) 
O1=O01+1 
GOTO 46 
FOR J=@sN-1: PRINT : FOR 
WCLsJO=VCIsJ) 
PRINT VC€IoJ)3 

NEXT IsNEXT J 
PRINT 
GOTO 56 

    

SUBROUTINE COLNA CRO1s As BsX) 
DIMENSION 1¢18)5XC1@) 
COMMON/C1/PC 1051095 FC1Gs 10) 
NORD=INTCRO1+0-5)+1 
DO 1 I=1lsNORD 
TC1)=C€2e*FLOATCI- 1241. )9*3- 1415970 2. ¥ FLOATCNORD) 9 
KCL =H. 5* CA+B+CB-A)*COSCTCID)) 

1 CONTINUE 
DO 2 J=1sNORD 
POlsJ)=1 
FC1sJ)=0 
PC2,J)=C2.*XCJ)-B-AI/CB-A)D 
FC2sJ)=20/0B-A) 
IFCNORD-3) 22 43 4 
DO 3 I=3sNORD 
PCIsJ e#PCOs JD*PCI-15J)-PCI- 255) 
RCIsJ=2e*PCOsJ* FCI - 15 J)+20*FC2, J #PCI- 15 J)-FCI- 23 5) 
CON TINUE 
CON TINUE 
RETURN 
END 

    

    

SUBROUTINE COLNBCY>» Xs 05 AsH» Bs RVs0 1, KK» RI) 
DIMENSTON X€1@)50C10)5AC1@s 10)5HC10)s BC16)sYC 10s 10) 
COMMON7C1/PC 18s 19)5FC105 10) 
COMMON/ C27 RM C105 10)5DC10) 
NORD=INTCO1+. 5)+1 
K=INTCRK+.5)4+1 
N=INTCRN+. 5) 
T=INTCRI+¢ 5)+1 
DO 1 J=1sNORD 
RM CTs JD=CXCL)- OCKID¥ FC Us L)- CACKS KI CXCT = OCK) = Le EPC Ia 1) 
DCI)=6.0 
DO 3 L=1sN 
TFCL-K) 49.33 4 
DCI)=ACKsL)*¥(Ls1)+DC1) 
CON TINUE 
DCT)=DCI9+BCKI+ACKS KD) *HCK) 
CON TINUE 
RETURN 
END 

SUBROUTINE COLNCCO1ds. RNs Vs RRs RK) 
DIMENSION VC10516)5BC10511) 
COMMON /ZC2EZRM C105 10)95D010) 
N=INTCO I+. 5) +1 
KFISIN TC Riese S41 a en



  

si “4 Appendix (11), 

. Programme for State Variable and Parameter Estimation. 

 



DIM 2€951995M095995B06951)2EC959)s¥09)2S0929)5RO9) 
DIM 10939)3HC959) P6959) 286999) 566959) 50959) sNC999) 
DIM X6999) 
INPUT Z1sK7:N5=RND(Z1) 
FOR 1=059: READ RCI): NEXT I 
AS=1 
FOR [=0,9: FOR J=0,9: 
READ ECI,d)? NEXT J: 
INPUT N 
PRINT “INPUT INITIAL CONDS": FOR I=0sN-1: INPUT ¥CI)¢ NEXT I 
GOSUB 200 
CALL CAsHC050) 5 ¥ (022860502 sN9sNs 1) 
CALL €3s¥CO)sYCO)»Z2(050)5No15150) 
GOSUB 45 
PRINT : PRINT "PREDICTIONS" 
GOSUB 112 
IF A85125.1235123 
FOR I=1,9° 
CALL €4s(0s0)5ZC051-1)5200s1)5NsNo1) 
NEXT 1 
CALL €452(020)2EC0.092560,095Ns10210) 
RETURN 
DATA 670710951 «224745 1+581152 187083» 201213192634516 
DATA 2+54976+ 26738097 20919155 3608085 
Ji=0 ‘ 
CALL €35D(050)5DC050)5D€050)5102102050) 

FOR I=059: IF I=0 GOTO 108 
FOR J=J1,1-1.2: READ DCIsJ): NE 
NEXT I 
GOTO 21 
GALL (42 SC010)+R(0)+¥(0)sNs1091) 
POR I=0.N-1: PRINT ¥C1)5 ToT 
PRINT : RETURN 
PRINT “INPUT MEASUREMENTS":N4=N92: S9=-1: GOSUB 450 

GOSUB 248 
PRINT ¢ PRINT "ESTIMATES" 
GOSUB 112 3 
GOSUB 212 
GOTO 26 
DATA 1264142151241 425 «8164935 69427R2s eK1 64885 0210819 

DATA ©471373>% «4898835 «2108175 e356346F-019 0 18B533s e 217714 

DATA 120464> «356343E-01.5 «448956 8-02» «624334F-01 
DATA ©777455E=015 «501901 E-015+197963E-01» -448959F-02 
DATA ©45121 78-035 61 7946EF-01 5 2331 7E-01 5 0 1K 7275E-015 079179 7K-02 

DATA «2448 76E-02>5 -451213K-03>5 TT3Z19DE-04s «448 326E-025 -60419E-02 
DATA «46821 3E-02+ -25149F 03% -2B42955E=-03 

DATA +377317E-04s «27030 -03s «137943E-02 

Ae Tt TAO RN SLND. £77 AGA   

CIsJ)=0: NEAT 
EAT 1 

  

FOR J=Os1 

  

    
J2Jlsd1+C-1)91CL +1) 

  

   

  

  

        



 



eve 
205 
206 
207 
208 
209 
210 
ehi 
212 
213 
a4 
215 
216 
217 
218 
220 
222 
224 
225, 
226 
230 
231 
232 

233 
234 
235, 
236 
237 
238 
239 

240 
2at 
e242 
243 
244 
245 
Bay 
248 
249 
250 
2St 
252 
253 
254 
25s 
256 

257 
258 
259. 
260 
261 
262 
263 
265: 
400 
401 
402 
403 
450 
452 
453 
asa 

CALL €4216020)5L0020)50C050)sNs Ns NO) 

CALL €43)C0+0)5206050)5L0050)5NsNs NO) 

MA wevewnm ae ANEUL MAL sds 4 Js NEAL 

CALL €32P(020)»?(020)2PC0s0)+N9sN92050) 
PHINT “INPUT MEAS-ERROR VAR-": FOR I=0,N9=-12 INPUT PCIs1): NEXT I 
CALL €32V€020)>VC0.0)sVC0s0)sNsNs020) 
PRINT “INPUT INITIAL ERROR VAR.'": FOR I=0sN-1: INPUT VGIs1)2 NEXT Dae 
GALL €35X€020)+KC020)sX6020)5N> 
PRINT “INPUT FORCING va 
INPUT X€1,1): NEXT I 
CALL €35™C0s0)5/C0s0)sMC030)sNsNs 090) 
GOSUB 460 
FOR J=0,N-1: FOR J1=0.N-12 IF MCJsJ1)><0 GOTO 215: NEXT Jl: NEXT J 
CALL (3526020) +2(050) 526020) sNsNs0s0) 
FOR [=0sN-1:Z¢1,1)=1: NEXT I 
(@7=1:C6=121=1:C6=9 3 
CALL. €3>6(050)+G(0s0)5G60s0)sNsNs 090) ; 
CALL €352(050)»GC0+0)+6(020)sNsNs1/G791) Ie 
IF ABS(C6-GCJsJ1))--1£-025 23052305224 se 
CALL €452(0530)5M(020)5Z(02N)sNsNsN) : 
CALL (3»Z(02N)+Z(605N)sZ(020)sNsNs250) 3 
T=1+1:C7=C8:C&=C8*I:C6=GCueJ1): GOTO 220 : 
GALL €22H(0s0)sL(0s0)sN9sN) 

    

     

  

  

  

   
CALL (€4sHC0s0)s06020)5L6050)5N9sNs NO) 
CALL €32P(020)5L(020)s8C050)5N9sN9s1733173) 
POR TP=O0s5N9-1: FOR J=0sN9-12 PRINT QCIsJ)3: NEXT J: PRINT ¢ NEXTSI 
CALL €256(€020)sZ(050)sNsN) 
CALL €4560030)5 76050) >L0050)5N>NsN) 
CALL €45L0050)5Z6020)sVC0.0)sNsNsN) 
CALL €32VC0s0)sXC0s0)5VC0s0)sNs No 151) 
CALL €2sH(0s0)52Z(020)sN9sN) 

  

CALL (45HCO+0)21(020) +7600) »N9sNsN9D 
GALL €322€020)>0(050)»Z(020)2N9sN9s191) 
RI=-1:N8=N92 CALL €1+70020)+2C€020)sN8sR1) 
IF R1>0 THEN PRINT "NO INVERSE 243": GOTO S00 
GALL ¢471.(050)+Z(02N9) »N(020)»NsN9sN9) 
RETURN 
CALL (4HC020).S€020)21L(020)2N9sNs 10) 
GALL (€358€020)sL¢020)5Z(020)sN9s2215-1) * 
CALL €35L0022)sL(0s2)520022)2N9.8s0s-1) / 
CALL (4,N€0,0)526050)5L(050)sNsN9s10) 
CALL (63>SC0s0)sL6020)»S(020)2Ns 109151) 
CALL €4sNC020)2HC020)sL6020)»N2N9sN) 
CALL €32Z€050)Z(020)s7(050)»NsN2020) 
FOR ISO05N-1:ZCIs1)=1: NEXT I 
CALL (35L60+0)5Z60+0)5L06020)sNe Na 19-1) 
CALL €22L¢6020)22(020)+NsN) 
CALL €42L.6050)>VC020)5ZC0sN)sNoN 
CALL (45Z7(€02N)sZ(020)sV6020)sNaN 
CALL (22NC€020)sL(0s0)2NsN9) 
CALL €4,NC0>0)206020)s2Z(020)2N2N9sN9) 
CALL (45Z6020)sL6050)5ZCO2N) oN N9sN) 
CALL €35VC020)s2602N)sV(0,0)>NsNe 151) z 
RETURN a 
DATA 1«73205+ 3687297 2+645769 50916112 50196119 7693723 
DATA 3431657 7+4161429 6949899 60245519 9«53982s1169585 
DATA 348722758 +65817211+6159s132959127+15061510+9234 
DATA 13+69085 1599915435702 9+740615 13006539 15+7034217+9915 
FOR I=0,N4-1: INPUT 8C151)2:NS=aNDCO)?8C1+1)=BC1»1)+K7KCN5S- 05) 
PRINT B(151)28C1,0)=(BC1,0)4+801,1))/1 04142) 
BCI>1)=€BC121)-BC150)/1-414219/1-22474: NEXT I 
RETURN 

   
         



  

Abpendix (12). Race 

Programme for Adaptive Estimation. 

ash 

   



W
A
A
A
U
L
W
V
H
 

159 

DIM 26951992MC99)>B699192EC929) ACI) 2Y(9) 9 S0959) 9 R09) 
DIM L099) 5HO929)2PC6959) 506959) 556929) 50999) 9NC999) 
DIM K€929)5CC6959)5D6959) 
INPUT Z15K7:NS=RNDCZ1) 
FOR 1=0292 READ RCI): NEXT I 
AB=1:P1=1:P2=0:P3=10:19=0: J9=02VS=-12V9=100 
DIM K(9512),FC99) 
L8=0:L9=4 
262-25: V2=0:Z4=0 
FOR 12059: FOR J=0,98ECIs5J)=0: NEXT Jt FOR J=OsI 
READ ECT.J)s NEXT J: NEXT I 
J7=0 
Lo=6 

REM STANDARD FILTER 
INPUT N 
GOSuUB 200 
POR T=0,N-1: INPUT YC1>: NEXT I 
GOTO 330 
GALL €4,H(0,0)s¥(0)+8C0.0)sN9sNo1) 
CALL €352(050)+26050)52(050)sNs120/0) 
GOSUB 45 
IF A8,125,1235123 
FOR I=1,9 
CALL €45MC02095Z0051-1)5206051)2N2No 1) 
CALL €322(€05192AC02sZ0051)2No191223) 
Z3=0 
NEXT I 
CALL (4,26020)sEC020)S(020)5Ns10510) 
RETURN 
DATA 70710951 -282474s 145811591 +8708 3s 20121319 2634516 
DATA 2549769273809» 29191 523208085 
CALL €4,S(0»0)>RC092ACO)»Ns 1051) 
PRINT ACO): PRINT AC1): PRINT AC2): PRINT AC3) 
PRINT KCO.1): PRINT K(11)2: PRINT v2 
RETURN 

~N4=N9259=-1: GOSUB 450 
CALL €32SC€020)2¥(0)+SCOs0)5Ns 15191441421) 
GOSUB 256 
GOSUB 112 
CALL (32A(0)2AC02,¥CO)»Ns 15150) 
GOTO 330 
GOTO 25 
DATA 14142151 +4142s 816493, 69427829 0816488» 210819 
DATA ©471373> «489883> 0210817» ©356346E-O1» «1885335 217714 
DATA 2120464> -356343E-01 » -4489568-025 +628334E- 
DATA «777455E-015 65019018 796BE-O15 «4489528-02 
DATA 0451217E-03> -17946E r-O1s e1 67275801» «79179 7E-028 

DATA +244876F-025.45121 77319E-O4s «448 326R-02s -60419R-02 
DATA +46821 38-025 ©25189H-025 «952938-03s «242955H-03 
DATA «3773178-04> «27030 3E-05+ +9948 38E-035 61 37943F-02 
DATA +1134238-02s -671454E-03> «292949K-03» -925488-04 
DATA .201232E-04, 6270301 8-055 1689.45       

    
   

    

         



206 
207 
208 
209 
210 
25 
212 
213 
214 
215 
216 
217 
218 
220 
222 
224 
225 
226 
230 
231 
232 
233 
235 
236 
237 
238 
239 
240 
BAL 
242 
243 
Baa 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
859 
260 
261 
262 
263 
264 
265 
266 
267 
268 

270 
art 

CALL €35P(0050)5P(050)5P(050)5N95N9,050) 
FOR 1=0,N9-1: INPUT PCI51): NEXT I 
CALL, €329€050)5VC020)5VC02095NsNs00) 
POR T=0>N-12 INPUT VCI>1): NEXT I 
N6=12 CALL €35C(0+0).C(0,0),0C020)5NN2020) 
N6=22D(0.0)=12DC151)=12X(0,0)=01E-O12XC1,1)=01F-01 
N7=12K(0.3)=1:F1=0 
CALL €32VC0s0)5V6050)5VC0s0)sN»Ny 01 E-0550) 
GOTO 24 
POR J=0>N-12 FOR J1=0sN-1: IF MCJsJ1)><0 GOTO 215: 
CALL (€3527(020)52(0,0)22(050)5NsNs0s0) 
FOR 1=05N-1:Z¢151)=1: NEXT I 
C7=1:C8=2:1=2:C6=100 
CALL (€3,G(050)+G(00)26(050)+NsNs020) 
CALL €35Z(050)56(020)5GC020)5NsNs 2/0791) 
IF ABSCC6-GCJ>J1))-+1E-022230,230,224 
CALL €452€020)2"(020)sZC€0.N)sNs NaN) 
CALL €352(€02N)»Z(05N)sZC020)+NsN3 220) 
T=1+1?C7=C8:C8=C8*1:C6=GCJ2J12: GOTO 220 
CALL €25H(050)sL0600)»N9sN) 
CALL €4,VC050)5L06050)506050)5NsN» NID 
CALL €4,HC0s0)+QC€050)5L(050)5N9sNN9) 
CALL (35PC050)5L(6050)5960509sN9sN9s1/32173) 
CALL €45MC020)5G6(030)»SC020)sNsNsND 
POR 1=0,N-12SCIs1)=SCIs1)+1: NEXT I 
CALL (€255(€050)5Z2(00)s.NsN) 
CALL €4,5(€020)2V6020)sL000)sNsNsN) 
CALL €45L.6050)22(020)5V(020)sNsNoN) 
CALL €455€050)5CC(050)526050)5NsNsNd 
GALL (€252€0095L(0,0)5NsN) 
CALL €35VC0s0)5L(0,0)sVC020)sNs Noto 1) 
CALL C4,G(050),KC0»3)sS(020)sNsNsN7) 
CALL €2sSC€030)5L60s0)5NsN7) 
CALL (€4,5(€0,0)5L(050),NC050)»NsN75N)2. GOTO 610 
GALL €35NC0,0)5N(0,0)2SC020)5Ns No F120) 
CALL, €32Z605095SC020)sCC0s0)2N2No 191) 
CALL (€32VC020)2CC00),V(050)5NsNo1s1): GOTO S05 
CALL (25H(C0:0)52(050)5N95N) 
GALL (€4,V€050)52(050)5L(050)5N>NoNID 
CALL €45H(0>0)5L06050)sZ(020)sN9sNsN9) 
CALL €332€0:0)29C€050)52(050)sN9sN9e151)2 GOTO 600 
R1S-1:N8=N9: CALL (152(050)5Z(050)5N85R1) 
TF R120 THEN PRINT "NO INVERSE 2 GoTo 500 
CALL (4sL.6020)52C€05N9)sNCO20)sNsN92N9) 
CALL (35L6020)+26050)sL(050)9NsNso 15-1) 
GOTO 26 
CALL (43H(00)»S(050)sL60,0)5N9sNs 10) 
CALL (35B(0+0)5L(6050)5Z(020)sN9s 2915-1) 
CALL (35L6052)5L00s2)5Z(022)5N9.8202-1): GOTO 550 
CALL €45N(020)52(6050)sL(0.0)5N2N9210): GOTO 515 
CALL (335€0+0)+L600)+S(020)5Ns 105151) 
CALL €4,N(0+0)>HC0s0)sL(020)5NsNOsN) 
FOR I=0,N-1:L¢1,1)=LCI,1)-1: NEXT I 
CALL €4sL(€050)2VC020)5Z(00)sNsNsN) 
CALL €25L060+0)2ZC0»N)sNsN) 
CALL €45Z(050)5Z(02N)2(050)sNsNsND 
CALL (42N(020)>0C0+0)+Z(050)sNsN9,NO) 
CALL (25NC€02095Z¢0»N)sNs NO) 
CALL €43Z6050)5Z605N)»0(050)sNsN9»N) 
oti C320 COs. 0)20COs00sVCOs0IeNaN> ls td         

  

  

   

   

    

    

    

NEXT diz NEXT J 

ef 

   



weet 

332 
333 
334 
335 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
350 
351 
370 
371 
372 
373 
374 
375 
376 
377 
378 
490 
AOt 
402 
403 
410 

415 
416 
417 
418 
419 
420 
450 
452 
453 
454 
500 
505 
506 
SO7 
508 
$09 
S510 
Sd oh 
516 
517 
518 
519 
520 
522 
523 
524 
525 
526 
528 

MVT Sar SIO U NOG EVOS ING 2s 

MCO0s02=-G6--252MC0s1)=-0 121 EOS/CYC1) 12)*O6 
MC1s0)=-G6*102MC151)=--25-10%.121 HO5*O670Y C1) 12) 
ACOd=0-G6= 225) *Y60)410%.25 
AC1II=C~ «25*Y C1) )-¥ CO) *06*104+350*.25 
Z3=+-707109 
GOTO 344 
CALL (C45KC053)>KC0s1)5L.0050)5N2N791) 
CALL €32AC00sL6050)5ACO)5No 15124142151) 
CALL €4sDC0s0)5KC0s2)5L(050)sNs N61) 
CALL €3sAC0)sL0020)sAC0)sNo15151241421) 
GOTO 214 
TF P1<0 THEN GOTO 339 
Pea=Parl: IF P2<P3 THEN GOTO 339 

    

  

  

REM ADAPTIVE PART OF FILTER 
IF V9=<V2 THEN GOTO 372 
V9=V28HC9s I9+JTI=HI92VK=19:2 GOTO 372 

  

CALL €3sKC0+ 3459) sKCOs 34+U9) sKCOs 3+J9) >No 15050) 
CALL €3sKCOs1)5KCOs1)5KC051)5Ns15050)2KC19,3+59)=1: GOTO 415 
I9=19+1: IF J9#J7=0 THEN GOTO 375 
FOR J8=0sJ9+J7-1: IF I19=H(9.J8) THEN GOTO 372 
NEXT JS 
P2=0:N7=J9+1 
If 19=N THEN GOTO 400 
IF J9=N9 THEN Pl=-1:N7=N7-1: GOTO 415 
GOTO 370 
IF V8<0 THEN GOTO 410 
CALL €3sKCOs 3+J9)sKC0Os 
KCV8s 3+U9)=1 2 J9=J9F12 8 
GOTO 3728 
N7=N7-1:2P1=-1 
CALL €3sC(050)5CC0s0)5CC0s0)5NsNs0s0) 
L8=0:24=0 
CALL €35KC0,0)5KC050)5K6050)5N9s15050) 
CALL €35VC050)5V(050)sVC050)sN»Ns 050) 
FOR [=0,N<12VC1I,19=1: NEXT I 
GOTO 339 
FOR T=0sN4-12 INPUT BCIs1)2N 
BC1I30)=€BC150)+8C151)9)/14.41421 
BC1s 1)=€8C1s1)-BC150)/1641421)/1-22474: NEXT I 
RETURN 
END 
CALL €4,6€050)5DC050)5S(020)5Ns Ns NG) 
CALL €25S(C0s0)sL(050)sNsN6) 
CALL €4sSC€0s0)5XC€050)5NC050)5NsN6sN6) 
CALL C4sNC020)2L(020)sS(020)5NsN6sN) 
CALL Seem age 022 ViEOe GaN Nate > 
GOTO 249 
N=N 

CALL €35KC030)520€050)5KC050)5N9s 1591-26526) 
L6=L8+1: IF L8<L9 GOTO 532 
CALL €4sGC0s0)5K(053)52(020)NsNoN7) 
CALL €4sHC0s0)5s2(050)52Z(05N)sN9sNaN7) 
CALL €25Z€0sN)56(050)5N95N7) 
CALL €45GC€050)5Z(05N)sZ06020)sN7sN9sNT7) 
Ris<1 
CALL €1520020)5260509)5N75R1) 
TP RisO0 THEN PRINT "NO INVERSE S24": GOTO S00 
CALL €4.G0020)5KC020)5Z60s0)sN7»N901) 
CALL C49ZCO2N7) 5260202460020) sN7+N721> 

    

J9VsKCO» 3+59)2Ns 15050) 
1:19=-1 

  

     RNDCO):8C1s19=BC1s1)+K7*ON5= <5) 

     



293 
554 
359 
356 
570 
ST? 
$72 
573 
600 

601 
602 
610 
611 
612 
613 
614 
615 

V1=0. 
FOR I=0,N9-12V1=V14+e5*L¢Ol,I): NEXT I 

   

  

Lael? Z5=1/Z24 
VO=C1-Z5)#V2t+Z 541 
C3=(V2-C1)/62 
FISF1+Z5*C3 
IF F1<0 THEN F1=0 
GOTO 261 
C1=0 
FOR 1=0sN9-1:2C1=C1+2C131)2 
GOTO 253 
CALL €22HC0s0)sLC0s0)sN9sN) 
CALL C4sNC030)2L6050)5SC0s0)sNs Ns NO) 
CALL €4sHC020)5SC020)sL0€0s0)5N9sNs NO) 
C2=0 
F 
GOTO 246 

  

2 I1=0,N9-1:C2=C2+LC1,1):
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pendix (13). 

Obsarnvability (43, 65). 

The concept of observability can be introduced in an 

interesting way by considering, first, a related question. That 

is, given two ie order linear time invariant systems forced by 

the same inputs, 

a My x, + uU 

and X5 = My X, + U 

fons must M, and Mj satisfy so that a measurement 
1 2 

    
then what condi 

  

taken from both systems will always be the same if the sta xy 

and Xp are initially the same; i.e. let the measurements be, 

2,(%) = Hx, (+) 

3 Zak oe = et: and 25(%) x5(t) 

and let , (0) =x,(0)=x(o) 

then what relationship exists between M, and MN, so that, 

z,(%) = 23(t) AG for ali to 

First it is obvious that, 

M, (+) t M,(t-¥) 
x(t) = eo x,(0) + «fe : 

oO 

u(r) ay 

H(t) eae? 
and, x5(t) = 6 x5(0) + if 2 uy) av 

o



Now defining o 

Hx) 

eeu 

and, X 

then, Hx, 

Therefore: 

Ei, 

Therefore: 

Tot aoe 
H Ny ES 

  

Now, 

ap STE M) Ms Cx) 

Therefore: 

H, 7) 

Therefore: 

a> 

Therefore: 

BL 

perators E, M, and MS such that, 

= Hx 

= ¥,(u) 

= (un) 

=H Mj(u) = Hx, =H M,(u) 

=H M5 ; 

=H 

gs HGy 

My ( t) +t MC t-7) 
=e x0) s : e (D-M3) “(Par 

differential operator 

My t-T) £ 

= x(t) + J e Qh-H,) x(T)aT 

My (4-1) 
: ae if M.-M,) = AXLE. =H 4270 (24 -M5) <0 for of7Et 
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must equal n where n is the order of the system. 

If this rank is less than n, then Mj, need not be equal to 

My » and more than one system will be capable of producing the 

same measurements z(t). 
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The use of orthogonal polynomials in simulation and state 
estimation 
  

R. F.. Kilbride-Newman and B. Gay, Birmingham 

Introduction 

At present the standard methods of solving differential 
equations on digital computers yield solutions in discrete 
form. iowever, solutions in continuous form have 
considerable advantages, and this paper describes a method 
of obtaining continuous solutions to stationary-differential 
equations by utilizing the properties of orthogonal poly- 
nomials. 

  

A method of obtaining continuous estimates of state 
variables and parameters from 'noisy' measurements is also 
described. The resulting filter is similar to the Kalman 
filter (1) and consequently previous theorems concerning the 
convergence of the estimates can be applied directly to this 
new filter. = 

1. Simulation 

The mathematical description of a large number of 
processes can be reduced to a set of ordinary differential 
equations. For the purpose of this paper simulation will be 
taken to mean the solution of such sets of differential 
equations. 

A set of linearly independent polynomials forms a basis 
for the polynomial function space. Any function in this 
space can be written as a linear combination of the basis 
vectors. 

An arbitrary function (w) not in this space can be 
approximated by a vector (y) : 

0 
wey = f Os Ps 

ae, se 
where p; are the basis vectors and a, are the coordinates of 
the approximation. 

The best choice of the a, occurs when the error is 
orthogonal to the approximati dn ive. 

(we - 95 P,) = 0 for alli 

where the left hand side defines an inner product for the 
function space thus, 

76 

(xs) =f," x(t) y(t) at 

If the basis vectors are orthonormal then we have the 
result = 

(Wo py) = ay 

This result can be generalised to consider sets of 
functions i.e. w = (wy a) y 

P= (Py severe Ba) F 
then the matrix of coefficients 

A= (wp) = 2! wey pe)T at. 

  

defines the set of best estimates such that 

w= Ap 

and the error is minimised. 
A set of linear stationary differential equations can 

be written 

R= Mx + Nu q) 
where x is an m-dimensional state-vector 

uis a j-dimensional vector of forcing functions 
and Nis an mx j matrix. : 

Approximating x by polynomials gives, 

x = Ap 

Defining a matrix D such that _ 

Dp = dp/dt 

and substituting into (1) gives 

ADp = MAp + Nu - (2) 
For the differential equation to be approximated 

optimally we must have 

; (ADp - MAp - uu, p) = 0 

WO ay = MA + (Nu, p) (3) 
Now the inital conditions give 

A p(t) = IR, 

then AD p(t.) = MAp(t,) + (Huy p) PC ty) 
ADSp(ty) = MADp(t,) + (Nu, p) Dp(t,) 

0 AD*p(ty) = MAD%p(t,) + (ilu, p) 0%P(t,) 
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Defining the matrix & = (p(t)! Dp(ty)i { D"p(t,) t 

and the matrix F = (x, t Mx, + (Nu, p) p(t): etc.) 

then A= € t7! from equation (3) 

and x = Ap gives a set of polynomials that satisfy the 
differential equation in a least squares sense over a chosen 
range of the independent variable. 

Now the exact solution may be written as an infinite 
series thus:- 

xed B P; where the B, are m-«imensional vectors 
i=0 of coeffitients 

and because of the orthogonality of the p. the error of the 
polynomial approximation can be estimated as 

e #=B Pp, 
aoe hae al 

therefore the total squared error of the approximation 
mee] tte eel 2 

© tor Sty ele dt = Baal 
and if it is assumed that the series is monotonically 
convergent after some number of terms less than n we have 

© tot = Ul Beall 2 < Wanll? where An is the nth 
column of A 

If WAnil # (e.)* 
where e. is som preset error bound, then define k. such 

. Met a flan =< te,)? 
1 

(k.) 7” then specifies a time scale factor which will 

define the range to ensure convergence to within the error 

bound. ote that this allows the time-scale factor to 
increase if a larger range.is acceptable. 

th Computationally, the matrix A of coefficients for a 
10"'-order fit is calculated over an initial range of the 
independent variable. The error of the approximation is 
checked for convergence and if necessary a suitable time 
scale factor k. is calculated which redefines the range. 
This process “is then continued until the required range of 
the independent variable has been covered. 

tstimetion 

    

Consider the differential equation def 
(1) and consider that u is a set of stoch 
such that 

e(u) = 0 1 t T 
and Te Je e(uu) dt =Q 

by equation 
¢ disturbances 

  

18   

where e is the expected value operator. 

Assume that an estimate exists over the time range 
ty < t< t) such that 

S(t) is an estimate of x(t) tg t <ty 
and a = x(t) - A(t) 

an a 

(ey) oor ie e(x (t)% (t)") dt is known, 

Then a seiution can be found by the method explained in 
Sec. 1 for the time range q ie oe ty. 

_tet X(t) represent this prediction of x(t) ty< t <t, 

and V(tp) = ' ue ie te e(x-x) (xn)! dt 
A = Te 

therefore W(t,) = O(tysty) Wty) O(ty»tp) + a aal (4) 
where @(t,,t) is the fundamental matrix defined by 

d_ P(t, ,t) = MG(ty st) O(tysty) = 1 
ci 

and 62 See Oty, TN AT. 

  

Now assune that measurements are available as continuous 
functions z(t) for the time range, t;< t<t, and are 
related to the state variables by 

a(t) = Hx(t) + v 

where H is a measurement matrix and v is additive noise such 
that 

e(v) = 0 

and 1 

ese 
Then the optimal estimate of x(t) for tye t¢ ty is 

Siren ey 

X(t) = x(t) + K(z(t)-H X(t) ) (5) 
w, . lf K is chosen to minimise the convariance matrix of 
x(t) the result is 

K = V(tyyHT(H V(t,)HT +R)! (6) 

ant V(t) = (I= KH) V(t) (7) 

2 e(v Vv) dt =R 

The above equations define an estimator that is 
continuous over a chosen range. tstimates are obtained for 
all the state variables and the covariance matrix of the



  

| 
| 

    

estimation error is also computed. 

These equations bear a close similarity to the standard 
equations of the Kalman filter (1,2,3), The main difference 
is that the continuous and differentiable matrix function 

tay ¥, 
(x(t) x(t) ) is replaced by the step function V(t). The 
result of this is that the awkward Riccati matrix differentia 
eguation is removed from the algorithm. 

3, Parameter estimation 

If in equation (1) there exist some unknown parameters 
then the equation can be considered as a non-linear system 
oy pape these unknown parameters as state-variables so 
tha’ 

x = f(x, k) + Nu (8) 

where k is a vector of unknown parameters. 

Using initial guesses x*, k*, equation (8) can be 
linearised 

F(xt + bx, KH + AR) = f(xh, kA) + £8 (x8 kA)AX 
Smeg ora Sap 

slr x, k* 

where f,'(x*,k#) = se 

and f," (xt ke} =    
then from equation (8) 

Ax = £1 (x*,k*) Ax + fi! (x, k*) AK + F(x*,k*) + Nu 

chejesore [2 = oe eee + (POA, k*) + NU 
Rea 60 ea oO Wa 6 

and using the results of section (2) on the augmented system 
above provides continuous estimates of the state variables 
and the parameters. 

4, Hon-linear Estimation 

Using the procedure explained in section (3) non-linear 
models can be linearise: about some nominal state, The 
results of section (2) can then be applied to the linearised 
model to provide continuous estimates of state variables and 
parameters. 
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The simplest technique is to linearise the model about 
the current state estimates, but there are alternatives 

based upon an extrapolating of the current estimates into 
the next time range and linearising about this extrapolated 
state. 

5. Results 
The results show the method applied to a continuous 

stirred tank reactor in which the following reaction occurs: 
k k 
eRe C 
bby 

The feed contains A only. The coefficients defining 
this system are 

ky = 0.538, kp = 0.385, k. = 0.062, ky = 0.246 

and the ratio of volumetric flowrate of feed to the capacity 
of the reactor = 0.308 
then 

fx, ]- [70-846 0.385 0 0 ix] + [0.308 x,] 
% 0.538 -1 0 0 Ik, 0 
Ky 0 0.062 -9.3080 |k, 0 
x4 0 0.246 0 -0.303 Pg 0 

there ee output concentration of A 
uae ® of B 

. 5) " " fC x3 = 0 

Xyae % 5 of D 

x. = input concentration of A. 

5.1 Simulation 

This system was simulated for a series of step chonges 
in the value of x,. The values of x,-x, are plotted in 
Fig. (1) and the Value of x, is compared with the 
analytical solution. The agreement is seen to be good. 

Additional runs of the simulation will be presented 
which demonstrate the effect of a variable range of 
solution. 

The polynomials used for the simulation were normalised 
legendre polynomials. 

81



    

§.2 State-variable estimation 

The values of x, and Xy obtained by the simulation were 
corrupted by additive noise“(standard deviation = 0.2888) and 
used as measurements for an estimation of all the state- 
variables (Fig. ue The measurement function was chosen as 
the straight line from the previous estimates to the new 
heasurements, the measurements being taken at the end of the 
range of solution. The method, however, allows a great deal 
of freedon as to when the measurements are taken within the 
range and in the number of measurements used to define the 
measurement function. (Appendix 1.) 

The value of Q represents the covariance of the errors 
on the known value of x, and was in this case 0.0833, Poor 
initial estimates of the state variables were made (Fig.(2)) 
and the initial covariance matrix of the estimation errors 
Nee taken as the unit matrix. 

5.3 Parameter estimation 

The values of x, and k, were considered unknown and an 
augmented state vector set tp. 

Estimates were obtained for the state variables and for 
the unknown parameters using the same measurements as before 

(Figs. (3,4,5)).° The initial estimates were taken to be 
zero for each component and the initial covariance of the 
estimation errors was again taken as the unit matrix. 

  

The value of Q this time represents the covariance of 
the unknown value.of x, and as such is a parameter that 
affects the performancé of the filter. If the value of Q is 
too high the filtered estimates are 'noisy'. The value of 
Q used to obtain the results was 0.0833, 

6. Discussion 

The results show that the method described provides a 
solution to the problems of simulation and of obtaining good 
continuous estimates of state variables and unknown parameters. 
In particular good estimates are obtained of unknown process 
inputs (Fig.(4)) a problem that has currently been reported 
to cause difficulty (4). 

The advantage of continuous solutions is that many 
standard math ical tools (e.g. differentiation, 
integration, interpolation, extrapolation, etc.)oecome 
available, particularly in such problems as optimal control. 
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Further work jn progress includes snsion | 1 
with inaccurate models through the pro; vice of 
covariance matrix Qthat is to say, the »oblem of « 
filtering, Attention will also be given to the stre 
taking the measurements. 

Appendix 1 

“ : A 
Consider the situation where x(ty) j.e. the estimate of 

Katt= t and V(ty) are known. 

At t = t, measurements 2(t,) become available, with a 

covariance matrix of errors = R.. 

The measurement function to be used is the straight line 
from Hx (ty) to ato) and is given by 

A A 
At) = bt +d ty <t<t, 

where ® = (Au) - iix(ty))'Z (ty = ty)s 
and od (tolix( ty) sty %(t5)) / (ty = t)) 

The linear approximation to the true state is 
Hx(t) = bt +d 

where b = (H x (ty) = Hx(ty) / (t, ity) 

and d= (tollx(t,) - thHx(ty)) 7 (tp - ty) 

The linear approxination to the measurement error 
, A 

v(t) = 2(t) - Hx(t) = (b -b)t + (d = d) 

ebt+d 

The covariance matrix R = fe ev(t) v(t)? dt 
1 

  

is calculated from 
Bees Tenner ane e (bt + d) (bt +d)! at 

t 

  

If the range tis is ty is normalised to -1 to +1, 

the above result reduces to 

Ref [HV(t,) WT eR | : 1 0 
0.9833 0 | 

In this work R, = [ 
0 0.0833 
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