STATE VARIABLE AND PARAMETER ESTIMATION.

A thesis sﬁbmitted for the degree of
Doctor of Philosophy
by
Robert F. K;lbride—mewman

S
\\-\\ -. e \ .‘\—--1"‘-"

( .\\ \ 4

Department of Chemical Engineering
University of Aston in Birmingham

October i9?4



Summary.

The development of methods designed to produce continuous
solutions to linear, ordinary differential equations is described.
These solutions are based on a set of orthogonal polynomials.

This work is then incorporated into state estimation theory and a

continuous filter is developed.

A new sequential adaptive filter is then developed which
effectively compensates for errore in the mathematical description
of the process. This adaptive filter finds the mean and covariance
of 'fictitious inputs' and uses these parameters to compensate for

the model errors.

The results show the appiication of the above topics to
.some simple linear and non-linear systems and demonstrate the
effectiveness of the adaptive filter in situations involving poor
models. The adaptive filter also provides information concerning
the nature of the model errors which may be used to improve the

model formulation.
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Nomenclature.

.

Generally, higher case letters denote Matrices or Operators (e.g.

E denotes the expectation operator; V denotes a covariance matrix).

Lower case letters denote vectors or scalars.

The dot notation (e.g. %) denotes differentiation with respect to

timee.

The dash notation (e.ge fi (x,¥) ) denotes partial differentiation

with respect to the subscripted variable.
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1, Introduction.

Physical systems are designed and built to perform
certain defined functions. Chemical process plants, electric
power systems, etc. must meet their respective load demands.
Submarines, aircraft and spacecraft must navigate their
respective environments. In order to determine whether a systenm
is performing properly, and ultimately to control the system
performance, the engineer must know what the system is'doing' at
any instant of time. That is, the engineer must know the state of
the system. In navigation, the state consists of position and
velocity of the craft in question; in chemical processes the i
state consists of the various flows, pressures, temperatures,
concentrations, etc. that exist throughout the particular system.
Physical systems are often subject to random disturbances, so
that the system state may itself be random. In order to determine
the state of a system, the engineer builds a measurement device
(e.g. flowmeter, thermometer, pressure gauge, etc.) and takes
measurements or observations on the.system. These measurements are
generally contaminated with noise caused by the electronic and

mechanical components of the measuring device.

The problem of determining the state of a system from
noisy measurements is called estimation, or filtering, and is the
main subject of this thesis. It is of central importance in
engineering, since state estimates are required in monitoring,
and for the control of systems. Furthermore, a large class of
system identification problemq can be regarded as problems of

filtering.

This thesis discusses the development of filter theory

from its origins in the work of K. Gauss, to the important



contribution made by R.E. Kalman. A discussion of the present

state of the art reveals problem areas and introduces the concept
of 'adaptive filtering'. The attempts to construct adaptive

filters which are discussed, however, are not totally satisfactory
and outstanding problems remain. A new adaptive filter is described,

-

which overcomes many of these problems.

The approach taken in this thesis is that the mathematical
model of a system and the actual dynamics of that system rarely
match. This fact is accepted at the outset and the new adaptive
filter, while retaining the sequential structure of the basic
Kalman filter, compensates effectively for these model errors.
Furthermore, this new filter provides useful information
concerning the type of model error that exists. This information

is particularly helpful to any work aimed at improving the model.

It must be remembered that fhe ultimate aim of filtering
is to provide estimates of the systems state, and statistical
parameters describing the state estimation errors, that can be
used to control the system. Therefore, a modification to the
Kalman filter is described which produces continuous state
estimates from discrete measurements. These continuocus estimates
can be used in a control scheme to produce continuous control
functions, and thus achieve finer control than would be possible

with the standard discrete form of the Kalman filter.
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Identification Techniques.

Ir\)
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Over the past fifteen years, increasing attention has
been given to the problem of determining, from records of
experimental input/output data, useful mathematical descriptions
of dynamical systems. The study of such problems has received
great impetus more recently as a result of investigations on
large scale process plant and adaptive systems, and the ready
availability of digital and analogue computers has facilitated
the implementation of sophisticated data processing operations,
It is largely as a result of these developments that System
Identification, or (in alternative and probably preferable
terminology), Parameter Estimation, in a control engineering
context is currently recognised as a substantial topic for

research and development.

It is advisable at this stage to examine what is implied
by the term 'Identification'. A little thought will indicate that
the term is something of a misnomer, although its use is fairly
commonly accepted, and perhaps 'P;rameter Estimation' would be a
more precisely descriptive term to use. This is because even in
the simplest system no useful progress can be made unless we are
willing to make some a-priori assumptions about the structure of
the unknown system. It is the nature of these basic structural
assumptions which distinguishes the various identification
techniques in use at the present time. They amount to a choice
of a basic type of mathematical model of the system, with a

(finite) number of unknown parameters which are to be determined

by experiment. Some of the best known examples are:



(a) Weighting seqﬁence models. (39)

(b) Frequency response models (39,9,22,2)
(cs Biffsrential equation models. £2,11,30,27)
(d) Difference equation models. (39,1,28)
(e) Orthogonal function expansions _ (40,29,49)

Once the choice of structural model has been made (e.g.
as above) the problem reduces to a more readily definable one of

parameter estimation.

In order to asses the merits of a proposed scheme for
identification, it is necessary to consider a number of related
aspects. The main points for consideration are:

(1) The usefulness of the selected model structure.

(2) The size and cost of computer hardware required to estimate
the model parameters. )

(3) The amount of time and data which is required to achieve
the desired confidence in the model parameters.

(4) The types and nature of test signals which are to be used,

and the extent to which they are likely to disturb normal

operation of the system.

All of these factors interact, and (1) and (2) can only
be evaluated subject to engineering judgements. It is possible
however, to obtain some quantitative criteria in connection with
(3) and (4) for some of the schemes listed above, on the basis of

statistical analysis.



2ol Estimation of Step Response and Impulse Response

= (64)

Here the basic wéighting sequence model (a) listed
previously is used. That is for a single input/single output
system represented by a linear stationary model the output z(t)
can be expressed in terms of the input x(t) via the well known

convolution integral

2(t) = $T n@) x(t-7) a7

Where h(@) is the impulse response function for the system. In

the discrete case this equation is replaced by the following:

oo
z(t,) =5§i a, x(ti-j)

where the a:j is a weighting sequencewhich is intimately related

to the impulse response function h(¥) above.

An attempt is made to estimate values of the impulse
response function, or the step response function which will best

fit the observed conditions.

Given complete freedom of the choice of input signals
x(t), the problem would be very simple in principle: One would
simply apply narrow pulses or step disturbances at the input to
the system, and observe the resulting response z(t), at
appropriate time intervals. It must be remarked however, that the
use of narrow pulse inputs 5nd even step disturbances as test
signals in many systems is just not feasible. This is because if
the input is to contain sufficient energy to excite the system
its amplitude must be very large. Frequently this makes it quite

impossible to obtain reliable results with such test signals



since the likelihood is high that certain parts of the systen
(e.g. actuating valves, or amplifiers) will be driven into
saturation. The observed responses thus would not be truly

representative of the normal modes of operation.

221,72 Correlation Analysis (%39, 23, 18).

This technique has been developed to overcome the
problems outlined in the above section. By considering correlation
functions of the inputs and outputs of a system and using as a
test signal an approximation to white noise (e.g. pseudo-randomn
binary sequences) good estimates of the impulse and step response

functions can be obtained.

2¢1:7% Frequency Resvonse Estimation (39, 9).

The estimation technique here is based on the use of a
sinusoidal test signal. Although techniques are available which
will work with random input/output data (22, 25) Sine wave testing
is a very powerful technique, and is very well established both
in theory and iﬁ practice. However, it is not always convenient
to use such a technique for an accurate determination of the
frequency response of the system under examination. Very often,
it is simply not feasible to inject sinusoidal disturbances at
the input which is of most interest in a system. For such
situations several alternative'procedures have been investigated
with a fair degree of success (64). These modifications are based
on using the random disturbances which occur during normal

operation of the system.



The identification techniques which have been considered
so far could be termed 'linear black-box techniques' (7,64,65),
in that the only a-priori assumpticns made about the systems to be
tested were that they were linear and time invariant. Within this
broad framework it is usually necessary to estimate the values of
a large number of parameters in order to arrive at an adequate
model of the system's characteristics. This can often lead to an
inconvenient commitment of time to test a particular system in
_practice. Also the development of these techniques has been
based on single input/output systems and although they can be
extended to multi-input'systems (usually with a considerable
increase in complexity) the extension to the mmlti-output case is

completely prohibitive in practice. (7,64).

From this point of view, there is considerable incentive
to find ways of using more a-priori information and to attack the
multi dimensional case directly. The obvious way to do this is to
study the underlying mechanics, physics and chemistry of the system
in the first instance; and to obtain a set of differential or
difference equations to represent the essential features of the
system's structure. After simplifying these (e.g. by reducing their
order as far as possible, and usually, by linearising them about
some nominal state), experience has shown that one is left with
the problem of estimating, from the measurable data, the 'best!
values for the unknown parameters and coefficients which appear
in the assumed equatjons.'This is essentially a problem of

statistical estimation (13). -
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Cieic Statistical Parameter Estimation Theory.

A Historical Developments.

Almost synonymous with estimation and smoothing is the
'least-squares' principle. Through a period of over 160 years
since the pioneering work of Legendre (3%6) and the fundamental
publication of Gauss (24), the stage has been reached in which,
whenever confronted with a data set suspected of containing
random errors, the 'most probable' or 'best' estimate of the
desired parameters is computed by means of some variation of the

method of least-squares estimation.

Perhaps the first major advance in estimation theory since
the introduction of the least-squares principle was the 'method of
moments' formulated by Pearson (47, 48). Although the method of
moments is no longer widely used, one often encounters situations
in which the method is applicable when other estimators exibiting
greater theoretical attributes can be employed only with a large
amount of labour. The main disadvantage with the method of moments
is that it has been established that the estimates found with this
technique are not the best possible from the view point of

efficiency (17).

The present firm foundations of estimation theory are
attributed to Fisher. His contributions are contained in a series
of fundamental papers (17, 19, 20). Fisher demonstrated that the
method of maximum likelihood was usually superior to the method
of moments and that estimates derived by the likelihood technique
could not be improved essentially. To students of scientific
history it comes as no great surprise that Gauss had, at least
in particular cases, anticipated the important general method of

estimation introduced by Fisher as the method of maximum
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likelihood.

Fisher also introduced a set of definitions that have
been adopted for describing estimators. He introduced such terms
as unbiased, sufficiency, efficiency and asymptotic efficiency
'into the theory of estimation. These concepts motivated a whole
series of statistical theories and publications dealing with the
detailed theoretical aspect of estimators. In particular, general
-isation of the theory led to the relatively recent development
of non parametric estimation in which the exact nature of the
probability distribution for the random variables need not be
specified. By carefully examining the foundations of estimation
and introducing new concepts, Fisher freed estimation theory

from the tight confines that had existed since the work of Gauss.

Almost concurrently with Fisher's statistical
investigation was the rapid development of communication theory
by engineers and physicists. Communication theory, as originally
conceived, was applied to the transmission of intelligence by
electrical means. By the very nature of the transmission media,
communications were found to be perturbed by a random process, or
noise, introduced by thérmal motion in resistors, electron motion
in vacuum-tubes, galactic and ionospheric noise in propagation,
etc. Communication engineers were vitally concerned with the affect
of these noise sources on the intelligibility of signals within
communication channels. The first attempts to reduce the effects
of unwanted noise introduced filtefs designed to estimate the
power-frequency spectrum of the-desired signal. These attempts
were in the proper direction but were severely limited because of
the lack of an estimation theory that could be used to synthesise

the required noise=-separation filters.
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A fresh approach to the study of information transmission
in the presence of perturbing noise is generally attributed to
N.Wiener (1942). However an indepéndent and similar theory had
already been published by A.Kolmogorov in 1941 (35,56). Wiener
made two important contributions. First he demonsfrated that
estimation theory could be applied to synthesise an electrical
filter that would provide a 'best' separation of a desired signal
in the presence of undesired noise. Secondly, Wiener emphasised
the viewpoint of treating signals and noise as stochastic
processes rather than viewing them in terms of their frequency

spectra.

Wiener's work coincided with the birth of a new branch of
science: Information theory, or statistical communication theory.
This coincidence resulted in the almost immediate adoption of
Wiener's technique. Moreover, as usual with each significant
advance, a number of modifications of the original technique were

formulated.

At first glance, VWiener's theory appears to be essentially
a least squares estimation process. This is indeed the case. However
Wiener made elegant use of the fact that he was estimating
parameters from input data in the form of a stochastic process.
Thus by leaning strongly upon the known properties of sto:hastic
processes, he formulated an optimum estimator which makes the
best separation between the desired signal and the undesired
noise. An important point is that Wiener demanded that the
optimum estimator be allinear, physically realisable filter. The
concept not only proves the existence of such filters, but also,
in theory, permits one to synthesise the optimal filters. Of course

because the theory provides more specific properties of the

optimum estimator than are attainable from a conventional least
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squares calculation, one must be prepared to pay a penalty for
the increased output. The cost is in the requirement for more
a-priori knowledge of the probability distributions of both the
desired signal and undesired noise. These additional requirements
are the reasons why filter theory has become classed as a facet

of probability theory.

v« More Recent Theoretical Developments.

The copious present-day theories for smoothing and
prediction of time series, with few exceptions, owe their genesis
to the original papers of Wiener (56) and Kolmogorov (35). These
papers appeared duriné World War II, a period during which many
serious and urgent smoothing and prediction problems were being
attacked by military systems designers. Although the mathematical
treatments in these papers were serious stumbling blocks, engineers
were willing to overcome these hurdles because they realised that
for the first time an analytical synthesis technique was available
for the systematic design of filters. Unfortunately, the abstract
formalisms coupled with élmost unsurmountable difficulties of
solving a certain basic integral equation (Wiener-Hopf equation)
deterred many readers from a full understanding of the rather

simple underlying principles of the Wiener-Kolmogorov theory.

The number of papers which have generalised, modified and
extended the original Wiener-Kolmogorov theory is far too large
to allow an adequate reference list to be compiled. However,
extensive bibliographies on this subject are given in references
(6, 52,58). Some extensive developments of the Wiener-Kolmogorov

theory are contained in the publications of Darlington (14)
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Bendat ( 4 ), Wainstein and Zubakov (55), Yaglom (57), and Lanning

and Battin (37).

The Wiener-Kolmogorov theory has not been universally
accepted, and various criticﬁsms have been directed at the theory.
The criticisms have been partly directed at the underlying
assumptions and partly toward the often unsurmountable practical
problems of actually synthesising the optimal filters. These
criticisms have been the motivation for several modifications as

well as generalisations of the original concept.

At first, before the theory had been well assimilated
almost everyone was content with the hypothesis that both the
signal and noise were stationary processes; However, as
engineering technology became more refined and systems became
more complex, the stationarity hypothesis was questioned. For
this reason the Wiener-Kolmogorov theory has been extended to
encompass non stationary.signals (15, 45, 46, 53). The cases of
sampled data systems with and without the stationarity hypothesis,
have also received their due share of.attention (21). Theories
have also been formulated for situations in which the linear

filters are permitted to have time varying elements (4).

The most severe problems encountered in the application
of the Wiener-Kolmogorov theory to specific applications arise
from the problems in synthesising the theoretically optimum
filter responses. Except for a relatively few, special and simple
examples, the synthesis of the filter is an extremely labourious
task and frequently one must resort to approximations and certain

compromises (54).

The Wiener-Kolmogorov methods have been criticised
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because the transfer responses are dictated completely by a
minimal-error criterion and the computation thus ignores the
filter's transient response (44). Wiener filters frequently
result in underdamped systems which exhibit oscillatory

transient responses that can be inconveniente.

The Wiener-Kolmogorov theory has served as both an end in
itself and as the motivation for related theories which are designed
to avoid the problems encountered in solving the Wiener-Hopf
equation, as well as the practical éroblem of synthesising the
theoretically optimum filter from its impulse response. An
alternative approach to signal filtering and prediction has been
suggested, which essentially avoids the Wiener-Hopf integral
equation by substituting an equivalent differential equation. Of
more practical interest, is the fact that the differential
equation technique has the property that the optimum filter can
be synthesised in a sequential fashion and, thus, is often readily
implemented. Although these differential equation techniques were
independently developed, they are in-most instances equivalent or
intimately related to recursive least squares estimators (12,

13).

The priméry impetus for the current activity in the theory
of sequential estimation stems from the work of Kalman and Bucy
(31, 32, 33, 34). Both Kalman and Bucy independently recognised
that, rather than attack the Wiener-Hopf equation directly with
the atten@ant problems of factorisation, it is frequently
desirable to convert the integral equation into a non linear
differential equation whose s&lution yields the covafiance matrix

of the minimum filtering error. In turn, this matrix contains all

the necessary information for the design of the optimum filter.



Kalman Filtering.

[AY]
.
o

Linear Filtering.

The paper by Kalman (31) in 1660 introduced a different
approach to the problem of Wiener and Kolmogorov for random
sequences. In 1961 Kalman and Bucy (34) generalised the results
to random processes. These results are closely related to those
obtained for sequential least squares estimation (12, 13), but it
would be wrong to allow this similarity to be construed as a
criticism of their work. Their development is much more rigorous
and general, and they have generated a new and powerful technique

for both estimation and control problems.

The practical implications of linear filtering theory
were soon recognised by tﬁe engineering community. Whereas
classical least squares methods involve simultaneous processing
of batches of observation with attendant data storage requirements,
the filter operates on the data sequentially, requiring no data
storage. The filter generates new estimates as new observations
become available, thus opening the possibility of real-time
estimation. As a by-product, the filter generates the estimation
error covariance matrix, which measures the uncertainty in the

estimate.

Other important advantages accrue from the filter theory.
It is possible, for exampie, to perform a complete error analysis
without actually simulating the filter. The filter also offers
~advantages over least squares in applications to non linear
problems. Thus, although the linear filter is_completely equivalent
to least squares when the latter is properly interpreted, it

offers numerous advantages in applications.



The structure of the discrete linear time invariant
Kalman filter can be briefly summarised in the following

relationships:

Given a Mathmatical Model:
x(i+l) =g x(4i) + u

where x(i) is the n dimensional state vector at the ith time

increment, and @ is an n X n transition matrix; and given an

estimate X(1) for x(i) with a known error covariance matrix,
(4 A . A
V(1) = E(x(1) - R(4)) (x(1) - R’

and knowing that,

T

Eu = O and Euu” = Q (a known covariance matrix), then a prediction

X(i+1) of x(i+1l) can be calculated via X(i+l1) = & R(1)

and the prediction error covariance matrix
T(1+1) = E(x(1+1) - X(1+1)) (x(i+1) - F(i+1))T

can be calculated via

n

-— A T
| V(i+l) g v(i) g + Q

—

When the measurement z(i+l), which is related to the state via

z(1i+1) = H x(i+l) + v
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Where z is an h-vector of measurements

H is an h X n matrix and v is an h-vector of random variables
with Ev = 0O

and EVVT= R

becomes available an estimate §T1+l) of x(i+l) can be calculated.

R0i+1) = X(i+1) + K(i+1) (z(i+1l) - B X(i+1))

where K(i+l) = V(i+l) HT (Hﬁ(i+l)HT + R)-l

is a gain matrix calculated to minimise the estimation error

covariance matrix which can now be calculated as

T(1+1) = (I - K(4+1)H) V(i+1)

This whole process is repeated for the subsequent time increments.

The practicality of the Kalman approach to the estimation
problem was first exploited in aerospace applications (38,43).
Following these early pioneering investigations, a number of
authers reported interesting applications of linear filter theory

(3, 59, 62, 63, 66,60,61).

The experience gained in applying the Kalman filter to physical
systems has been invaluable in highlighting various problem
areas. Considerable engineering experience is needed to properly

identify the system to which the filter is to be applied, to

model adequately that system, and then to develop a practical

programme that mechanises the filter. The optimisation of the

_—
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filter must include many factors which are difficult or impossible

to describe mathematically, such as the trade off between

performance and computer size. The® statistical parameters are

rarely based on the actual statistics of the physical systems,

because these statistics are either too complicated or are not

well known. The problems encountered in Kalman filtering in

general fall into the following categories:

ta) Loss of positive definiteness in the covariance matrix
resulting from numerical errors.

kb) Improper mathematical model, leading to a divergence of the
estimates from the states.

(¢) Non-linear phenomena generally aggravated by a poor selection

of the starting estimates.

Item (a) can be removed reasonably efficiently by basing
the filter on square root algorithms (50), by simply rearranging
the basic Kalman equations to ensure positive definiteness (43),
or by accounting for numerical error as input noise to the system
(43, 50). Item (c) will be considered in the section on Non-linear

estimation.

The problem of filter divergence (51, 43, 50) is
essentially caused by the filter being constructed on the basis
of an erroneous model. The filter therefore learns the wrong
state too well when it operates over many observations. The
problem is particularly acute when the noise inputs to the system
are small and when measurement noise is small. Eventually, the
error covariance matrix becomes very small, the filter gain is
therefore small, and subsequené observations have little effect -
on the estimate. But the dynamical system model in the filter is

different from the actual system model, so that the estimate and
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the state can diverge.

A number of techniques have been proposed for overcoming

the divergence problen.

(1) Directly increasins the Prediction-error Covariance Matrix.

Arguments for using this approach are as follows:

gtate equations which are_invalid have been used to update the
estimates. One should therefore increase the prediction-error
covariance matrix in accordance with the errors involved in the
time updating of the estimates. The difficulties in using this
approach iie in defining the real error source. Their formulation
can also become extremely complex. Hence, for practical usage it
is better to say that fictitious-erfcrs are introduced to cause

an increase in the prediction error a-priori covariance matrix.

(43, 50,38).

(2) Overweight the most recent data.

In this approach it is also recognised that the a-priori
covariance matrix méy be overly optimistic. This matrix, however,
is not modified on the basis of adding the effects produced by |
-fictitious—error in the dynamical model. Instead, a nonéoptimal
filter algorithm is adopted which attaches a greater significance
to the recent observations than the optimal filter does. The a-
posteriori covariance matrix is modified to conform with the non-

optimal algorithm. (50, 43, 38).

(3) Modelling of Parameter Uncertainties.

In this approach thosé portions of the dynamics (and/or
measurement functions) which are poorly known are parametrised,

and these parameters are considered as unknown quantities.

e
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Instead of estimating these parameters, the filter can be
redeveloped to include their uncertainty in the state equations.
The parameter uncertainty will always degrade the state estimates,
since we are not improving our estimate of these parameters
themselves. This is a desirable feature that will tend to keep the

covariance matrix sensitive to incoming information (4%,50).

(4) Limited Memory Filtering.

In this approach conditioning of the estimate on old data
is discarded in batches. This has the effect of keeping the
estimafes locked on to the more recently acquired observations.
(41, 43, 50, 60).

All the approaches described above will prevent divergence,
but they suffer from over estimating the error covariance matrix
so that the estimates are 'noisier!' than perhaps they need be.
Another bad feature of these methods is that they contain various
' fudge! factors that require 'cut and try' experiments to fix..

—

(5) Adaptive Filtering

Other attempts to solve the divergence problem are the so-
called 'adaptive filter' techniques. These approaches look at the
residuals between the predictions and the measurements. These
residuals should be small, random and should posses statistical
properties consistent with the statistical parameters defined in
the filter algorithm. The basic idea of adaptive filtering is to
let the residuals themselves determine appropriate noise input
levels (10, ‘i, 42, L3, 63, 67, 68).

Adaptive filtering is a more general and powerful technique
than the methods described above, but again it usually over estimates
the error covariance matrix. This is because it treats the input
noise that is supposed to represent the model errors as a zero

mean stochastic process and this need not be a true assumption.
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The adaptive filter of Coggan and Wilson (10) attempts to 5
alleviate this problem by removing bias, but this causes furiher
problems in that only state-variable estimation is possible while

bias is being removed.

ol ST Non-linear Problems.

Exact equations of the evolution of the conditional
probability distribﬁtion function of the estimates of non-linear
systems can be formulated (43). These equations, in fact, require
' the precise knowledge of an infinite set of parameters (e.g. all
the statistical moments) and therefore oﬁly approximate solutions

are practically possible (43).

An alternative approach to non-linear problems is to
linearise the equations about a nominal state trajectory using a
Taylor series expansion. A set of linear equations is then
obtained in the state-deviations from the nominal. These equations
can then be used in the Linear Kalman filter described in the
previous section. Jaswinski (43) describes this 'Extended Kalman
filter' and also some mod%fications based on iteration to impfove
the estimate. He also shows some comparisons between the approx-

imate non-linear filters - and the Extended Kalman filters.

His conclusions are that the differences between the
ximate non-linear filters and the iterated Extended Kalman
filter are negligible but the Extended Kalman filter, although
showing bias, is probably the most useful because of its simplicity

and speed of computation.

The problems of the Extended Kalman filters can be looked

at in the framework of the divergence problems of the previous



section. Once a nominal trajectory has been chosen and the

equations linearised, we are faced with a linear filtering problem,

if divergence (or bias) occurs it is because the linear model

does not accurately represent the real situation. Various
techniques for dealing with this problem have been discussed and

criticisms made (10, 41, 42, L3, 50, 63, 675 « Clearly the problem

of adequately compensating for errors in the mathematical model is

essentially unsolved.

The discussion above has shown that the Kalman approach
to estimation possesses theoretical and practical advantages over
alternative methods. It is for this reason that the basic Kalman
approach is used in the development of a piece-wise continuous
filter in the next section. The divergence problem which, as has
been mentioned, is the mﬁst serious problem associated with Kalman
filtering applications, is then examined in detail and an
algorithm is developed to prevent the estimates diverging from

the true states.
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= Theoretical Developments.

Piece-wise Continuous Filter and Adaptive Filter.

The filter to be developed can be thought of as a
prediction-correcfion procedure. Starting from a state of known
mean and covariance, predictions are calculated for the time
evolution of the mean andthe error co;ariance matrix.As observations
become available these predictions are corrected to provide
updated estimates of the state variables and the error covariance

matrix.

The computation of the predictions is essentially the
solution of a set of differential equations. At present the
standard methods of solving differential equations on digital
computers yield discrete solutions. However, solutions in
continuous form have considerable advantages, especially in a
control context. These advantages are that many standard
mathematical tools (e.g. differentiation, int e gration,

interpolation, extrapolation, etc.), become available.

sl Prediction.

Given a set of differential equations
i = f(x,U)................-..........-o(l)

where X is an n-dimensional state-vector and u is an m-dimensional
vector of known parameters (e.g. forcing functions, control
functions, etc.)

and given an initial condition
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x(to) = X

Then find the solution x(t) for t, € ¢ % t,

The solution is to be continuous over this range.

3e1.1e " Linear-Stationary Case.

Here the differential equations (1) can be simplified:
x=le"'Fau-..-.-q..-_}.....o....-......oa(a)

Where Fl is an n ¥ n known constant matrix and F, is an n x m

2
known constant matrix.

Now approximating X by orthogonal polynomials (appendix 1) gives
x zAP.Ot.‘C.0..0l-.tl..Oll.l....!..'.....(B)'

Where A is an n x (p+l) matrix of coefficients and P is a (p+l)
: ’ : T

vector (po 3 Py 3 eeseeDy pp)

Where the p; are a set of orthonormal polynomials.

Defining a matrix D such that

DP = dP/dt and substituting this and (3) into (2)

F

gives ADP AP + qu

1

For this differential equation to be approximated optimally

(ADP-F,AP-F,u,P)= O ' (Appendix 1)

Where the left hand side is an inner product in the polynomial

function space.
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i.e- AD=F1A+(FZU,P).---.-.........-.......'--(1]-)

Incorporating the initial conditions, the polynomial approximation

must satisfy the following equations.

AP(to) = X

ADP(t ) = Fix +(F,u,P) P(t )

2

F % x + F(F,u,P) P(t )+(F,u,P)DR(t,)

2
AD P(to)

AD® P(t,) Fy? x, + F°(F,u,P) P(t )+F(F,U,P)D P(t,)

+(F2u,P)D2 P(to)

etc.

These equations can be written in matrix form:

M

1l

. PR - S g
(P(to):DP(to): D P(to) seeecreens D. P(to))

N = (xo s Fixg ¢t (Fou,P) P(to) s+ etc)

and then the coefficient matrix for the optimal pth-ordor
polynomial approximation is:

1

A - N M- looooo.oo.cn-.cuooc.---u.-q.-lcoo(s)

The matrix M depends only on the polynomials being used so that

M_l can be predefined and held in the computer as a constant

matrix., The solution then is found by forming the matrix N,

) -1
and performing the matrix multiplication NM .
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The computation of N involves the tern (qu,P), this
exists if u can be approximated by polynomials over thie range

< <
t0 =t = tf

The exact solution may be written as an infinite series thus:

X = €=0 hi P4 PR g U e S R S g REals LR LR ()

where bi are n-dimensional vectors of coefficients, and because
of the orthogonality of the Py the error of the approximation can

be estimated as,
e o op+1 pp-t-l

therefore the total square error of the approximation is,

£
f
etot :jt eTedt x// bp+l//2 -..-o--oooo.l(?)
o v

and if it is assumed that the series is monotonically convergent

after some number of terms less than p then,

e SN g v AT R

Where A(p) is the pth column of A.
Then if
// Atp) // # (e )% where e_ is some preset error
P s

bound, define ko such that,

= %
K I A(p) [/ = (e.) sesrssesecsisscnssssssseenasess(9)
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(ks)l/p then specifies a time scale factor which will define the
thi , ; "

range to ensure convergence of a p =-order approximation to

within the error bound. Note that this allows the time scale

factor to increase if a larger range is acceptable.

siliat Linear Non-Stationary Case.

Here the differential equations can be written,
}C=Fl (t)x+F2 (t) u...--....-........(lO)

Where Fl (t) is now an n x n matrix of functions of t, and F2 (t)

i8 an n x m matrix of functions of t.

Assume the solution can be approximated by,

Gil): Seinviain o6 0ion s b b nw® bk

a
c 1
X i+ T E: ai qi
i=0

ai are n-vectors of coefficients
.th 4 ! :
a4 (t) are i” -order scalar polynomials in t

T is an n X n diagonal matrix with

is the time at which the condition xc. is

T - e t
T(i,l) t tl where i 1)

given.
Usually the b, o= t (i.e. initial value problems) but this method
can be generally applied to %~ situation where the ti are not

all equal (i.e. split boundary condition problems).

Substituting (11) into (10) gives,

X =T g a, g (tYy+L a ' (%)
P i ! §iq1

1

' Lt q
F]_ (t)x+rl (t) T§ al qi(t) 7 Fa (t) ®



Therefore 33 (T4, (t) + Iq; (t) - F) (%) Tq, () Ja,

=F, (t) 2+ F, (E)uueesen R T R b
dees =
ZC; (£) & = B(t)eeeserosconncsvacocsnesscansanasess(l3)
Where Cy (t) = Tdi (t) + Ig; (t) - Fi (%) Tq; (t)
and B(t) =F) (t) x* +F, (t) u

Making equation (13) exact at q+l1 collocation points (appendix 2)

gives;

C, (tl) aj *+ Cy (tl) 8] * eeeeceeneea= B (tl)...........(lq)

co (tz) ao + Cl (tz) al +* R I I R B (ta)
n " n n n n ‘ n n
" 1" n n " n n n

" " " n n " n "

C ok tiiyd a, + T (tq+l) 87 *eeeeesce= B (L )

o] g+l” 7o qtl

These equations could in theory be solved for the nx(q+l) unknowns

a; , however, in practise this would require an enormous amount

i
of storage. To overcome this problem nominal solutions,
satisfying the specified conditions, are assumed for all the Xy
eXcept Xy this reduces'the simultaneous differential equations
(10) to a single differential equation for X1 The solution of
this equation by the-metho& outlined above, provides the nominal
trajectory of Xq e This is then used to update the nominal

solutions of all the Xy in turn. This procedure is repeated until



all the solutions converge to the approximation dcfjned by
equation (1l1l). To ensure that this approximation suitably
represents the solution to the differential equation (10); the
approximation error can be linked to the range in an analogous

way to that defined by equations (7), (8), (9).

ol's Non-Linear. Egquations.

Here the differential equations remain in their most
general form defined by equation (1).

Using nominal trajectories x*, that satisfy the specified
conditions for x, these equations can be linearised.

£ ix*+dx,n ) = € (2%,0) + fi (x*,u) @éx

Where dx are deviations from the nominal trajectory
ax = X=X*

then

s = fr (x*,u) dx + £(x*,u) = %% veieuee...(15)

Equation (15) is now linear and can be solved for dx by either of

the above methods depending on whether the x* are constant or not;

If the solution is to be obtained via the non-stationary

method (collocation) then the nominal trajectories are updated via
KR =Xt +odx )0

These nominal solutions will converge to the true

solutions for a wide variety of situations (59, 70).
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If the stationary method of solution is to be used (this
has the advantage of being faster) then the nominal trajectories

are updated via:

b 5 I g EE/Z
t
where ax = z—;h— _Sf dx dt
.=t
£: 70 to

i.e. dx is the time averagse of dx over the range tof ¢ tf.

- These nominal trajectories x*, and therefore the
deviations dx, will converge (59, 70) . - When this convergence

occurs the solution x is calculated as,

Pl B el T

This will not be the true solution but only the closest

approximation that can be obtained by stationary equations.



5s1laly State Variable Estimation.

The problem in its most general form is:
Given a mathematical model for the evolution of the state
variables; and given a measurement model for the connection
between the measurements and the states; then devise an algorithm
" for the evolution of the optimum state estimates and the evolution

of the covariance matrix of the estimation errors.

In mathematical terms this can be expressed as follows:

Process Model:

ko (XN F) e RN L nes b o TR L L 16)

Where x is the n-dimensional state vector.

u is an m-dimensional vector of known parameters (ec.g. forcing

functions, control functions, etc.).

and y is a r-dimensional vector of random disturbances.

Measurement Model:

Z = h(X,V) o.o-o--c.-.o-vooaclo--.-a-..o--.(l?)

Where z is an h-dimensional vector of measurements

and v is an h-dimensional vector of random variables.

For the linear stationary case these equations can be simplified:

i = le e Fau L ij oc.o.o..-n...otoo-..oo.(ls)

Where F, is nxn known constant hmatrix,
F2 is nxm known constant matrix ,

F3 is nxr known constant matrix.



z=Hx+v.l.l.."'...I..ll.....l..ll.l.l.(lg)

Where H is h x n known constant matrix.

To solve this problem various initial conditions need to
be specified.
Consider that:

E(y) =0

E(y,yT) dt = Q

£
and, 1
!

et S

Assume that an estimate exists over the time range tof t £ ty

such that,
R(t) is an estimate of x(t) £€t <ty
and %X(t) = x(t)-?(t)

and V(tl) =z 1 S E(x(t) x(t) ) dt 4is known,
t.=-t
0 t0

N
ot
N

then a prediction x(t) can be found for x(t) t

= B A
via x = le + Fau %}th x(tl)=x(tl)

by the method discussed previously.

Now let
o ta — =
V(t)) = 1 5S¢ E(x-x) (x-x) dt
t-t, by

represent the average covariance matrix of the errors in the

prediction X of X over the range t. € t € t

ik 2

Now,
— A

+A(t,t—ta+tl) F, u(t-t2+tl)
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where #(t,7) is the fundamental matrix of the system defined by,

4 @#(t,7) = Fy #(t,7)
dat
with g(7,7) =1
and A(t,7) = j° g(t,7) a1,

7

For the linear time invariant situation @(t,¥) is only dependent

on the value of (t-Y) '

Therefore, jis;
Bt b=t +t,) = B(t,,t,)
Therefore,
x(t)-x(t) = Blt,,t,) ?c‘(t-t2+tl)+A(t2,tl) Fy y(t=t,*t,)

Then assuming y(t-t +t1) and X(t- b+t ) are independent random

variables,

= A T BT

V(t,) =@ v(ty) @ +AF3 Q FBA
Where g = ﬁ(tz,tl)
and A= A(ta’tl)

to simplify the terminology.

Now assume that measurements are available as continuous

functions z(t) for the time range tlé t £ t, and consider that

t
1 & (va) dt = R is given
tZ-tl

5
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and that,,

Ey =0

Then the optimal estimate R(t) for x(t) over the time range b stet,,

assuming that w(t) and x(t)-x(t) are independent Gaussian random

processes, is given by,
2t) = X(t) + K(z(t)-Ex(t) )

Where K is an n x h matrix chosen tolminimise the covariance

matrix ?(ta) (appendix 3) ¥

i.e. K = T(t,) HT(H?(tZ) gt 4+ gyt
; % ""(

and V(ta) = (I-KH) V t?_)

To summarise:
The piece-wise continuous estimator described above
consists of the following operations.
Prediction:
- e & £ A
Predict x(t) for ti_t_ti+l via

-

nle

=F1X+Fau ..--....-..-..-.....-.-.-....(ZO)

with initial condition,

%(t,) = RAe)
V(t, ) =@ V(t.) oF +aF, Q F.RAT
1+l = i 3Q 3A ..-..........(21)

-

7 T T -1
Kegep) = VQtg,q) HOQH V(t, ) HO + R) 7 ........(22)



Estimation.
Rt) = X(1) + Ky qy (2(0)-Ex(1)) for ;€ ¢ € ¢, )
¥ 0"'........(23)
A —-—
v(ti"’l) = (I-I{u._rl)l{) V(ti"’l) --.--........-.......(2@)

sl Non-Linear Estimation.

The equations for the process model cannot, in the non-
linear situation, be simplified and must be treated in their

- general form (equation 16).

Using the same technique for linearisation described
previously (equation 15) enables the non-linear system to be

filtered by the linear filter just developed.

Clearly the estimation of unknown parameters can be
treated in exactly the same way merely by regarding them as state

variables and augmenting the state-~vector.

The filters described above bear very close relationships
to the Kalman filter and the Extended Kalman filter (31, 33, 43).
The main difference is that the continuous and the differenti;ble
matrix function E(X(t) gtt)T) has been discretised and replaced
by the step function G(t). The result of this is to remove an
awkward non-linear matrix differential equation (34, 38,43 ) from
the algorithm. The avoidance of this matrix Riccati differential
eqﬁation has immediate benefits in the context of continuous non-

linear estimation because in this case the computation of the



state estimates and the error covariance matrix are coupled

the matrix Riccati equation would have to be solved in real time.

Further benefits of the avoidance of the Riccati equation will

become obvious as the adaptive filter is developed.

The similarities with the Kalman filters, however, are
sufficient to-allow the stability theorems developed for the

latter (34, 38, 43)to be directly applied to this situation.

. Adaptive Filtering.

The most serious problem encountered in practical
applications of state variable and parameter estimation is that
of the divergence of the estimates from the true values. This

divergence is caused by the use of an inaccurate mathematical

model.

Consider the true system equations to be represented by:

is = fs(xs,us,ys) 5 AR R o TR o R )

and the model to be represented by,

im = fm(xm’um’ym) o.oo--.oo-t.o.lc---.---000(26)

Clearly equation (25) can be written as,

ks = fm(xs’us’ys) i fs(xs’us’ys)-fm(xs’us’ys)



and defining

Fhw = fs(xs,us,ys) - fm(xs,us,ys)

Where Fq is an n x £ matrix of the formFLﬁi,j):O except for at
most, one element in each row and column which may be unity;

and w is an f—vectof, where £ is the dimensionality of the model
errors.

Then,

28 = fm(xs,us,ys) + FL*‘W -h.-.---.-.ouo--a..-(Z?)

and comparing this with equation (26) shows that the model
repfesented by the function fm(‘) can produce the true state if
it is disturbed by the 'fictitious inputs® Fuw. In general of
course Fhw will be unknown, but approximating this model

compensation term by a Gaussian random process will at least make

the errors in using the inaccurate model random and unbiased.

The problem of the adaptive filter is then to discover the
mean (Ew) and covariance matrix (E(w-Ew)(w—Ew)T) and the matrix
Fh for the random approximation to the model errors. A realisation
of the above factors will be called a 'Model Error Compensation'
strategy. Clearly the optimum strategy will produce a well
tuned filter, that is a filter in which the estimation error

covariance matrix is minimised while at the same time prevented

from becoming over optimistic.

Considering fm(') to be linear and stationary and

approximating Fhw by a random process,

= Fl SR F2 ek F3 g FL+ Ew
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where the subscripts m and s have been dropped to simplify the

terminology in the following developments.

Now EW is an unknown vector of parameters and could, in

theory, be estimated by forming an augmented state vector,

b'q F.F X e F2 u 4 F3 ¥

Ew} 10 OJ{Ew 0 0 Y s (7055 )

'
In practice this increases the dimensionality of the

filter problem, which causes a disproportionate increase in
computation time, and is therefore to be avoided if possible. The
technique used follows that described by Schmidt ( 50 ) and
Jazwinski (43) and consists of writing out formally the filter
equations for the augmented system equation (28) but then only to
take the estimates of x leaving the Ew constant. This means that
the value of Ew will not be improved by the filter but the crror
committed by not improving the estimate will bemodelled so that

its effect on the estimates of X will be taken into account.

The modification to the filter just proposed produces the

following equation: (appendix 4).

Prediction:

<. & .
for the range_ti-t—ti_‘_1 via

X = FlE * Fou + Fgy + F Ew G il s v esk29)

with the initial condition E(ti) 3 ﬁkti)

Vty,y) = 6 ep) o° var, e rfa T+ g Bey) + Bey)g”

pHfee 1)
+AFL|. Vw Fi{.A -.....o.....(}O)
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t.

where AN i - - T
- ([ WX - Ty, 4 T
C(t,) = 1 .f E(x-%) (w-Ew)~ dt F,"A
R R

ter LN T T
C(ty,q) =@ C(ty) +AF, V, FI"A © covvnniinn.nnn(31)

wvhere t
iy i+l 5 . 5
CLES a0 1 f E(x-x) (w-Ew)~ dt F, A"
T gt b
o1 ¥ 1 o )
and ti+l ; -
j e 1 S E(w-Ew) (w-Ew) = dt
i1t Yy
Estimation:
K(i+l) = V(t,..) HT (H V(t )HT + R)-l (32)
e i+l i+l LN B BN B B )
A i S
x(t) = x(t) + K(i+1) (z(t) - H x(t) )
<L
; b e LT G M BN

Rt (TR ALY HINCE, L0 ) wean s s s oh par o 30)
A ] %
C(ti+l) = FI—K(1+1) H) C(ti+1) Sent senensesiveiel D)

These equations will work if Ew and Vw define consistent
stochastic processes. That is Vw must accurately represent the
covariance matrix of the errors (w-Ew). This means that an error
in the value of Ew will deteriorate the accuracy of the state est-
imates by requiring Vw to increase, which will result in a larger

A
estimation error covariance matrix V(t).
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If the values of Ew and V, define consistent stochastic
processes then the residuals (z-Hx) will be a zZero mean white
noise process with,

Reoab T ] 2 A .
il j- E(z-Hx) (z-Hx)" dt = H V(ti+1)H $RS ateesl 56)

This equation provides a consi§tency check on the value
of Vw. Assume that Vw can be represented by a diagonal matrix Ic

where ¢ is a scalar; let ¢ be an a-priori guess for ¢, and define

¥=c-C then,
fi+l - — = P T
1 J' E(z-Hx) (z-Hx)' dt = H V HE+R+(EA PO (HAF )T
ti417% t
Therefore:
S i+l I - o o m
Sy 77 BB (2-ED) at-Trace(n T B+R)
el T

i
Trace((szFq) (HZ&FA) )

o ¥ i)

Whence ¢ is updated to (E+€) unless this is negative in which

case C=0.,

Equation (37) requires a value for

ti+l

2 J' E(z-H%) T (z=-Hx) dt
1417 % £

t
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representing this by g(ti+l), and using an exponential filter
gives,

t1+1 _.i_ ("
B(ty,q) = 8(ty) +o(__1 ,f (z-Hx) ~(z-Hx) dt-g(t,))

R T e
=
lt.t.lo...a:-lcss)

where Of« £1

Equation (38) is a recursiwe relation for the scalar
quantity g(t) which is an estimate of' the trace of the covariance
matrix of the residuals. This equation along with equation (37)
can be implemented alongside the filter algorithm discussed
previously. This will ensure that the statistics used in the

filter are consistent with the statistics of the residuals.

The value found for V  from equations (37) and (38) will
be consistent with whatever-value of Ew is used, but clearly to
optimise the performance of the adaptive filter some method is
needed to obtain an accurate estimate of Ew. It is obvious from
its definition that Vw will be minimised when Ew is known

precisely and from equation (37) this means that an accurate Ew

will minimise the quantity g(t) defined in equation (38). Therefore

the computation of a value for Ew is similar to optimal control
problems designed to minimise an objective function of the form
ti+l

J = 1 J- E(z—HE)T(z-HE) dt

gl O
o o SRR ti

Let w

]

some a-priori prediction of Ew and,

=

let EWw - W,
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Let x represent the prediction of x with Ew replaced by W then,

— = ~
X =R ASFMW

Then:
Yie1 i S %
AR D J 7 mz-mR)N(2-mR)- (2-5%) T Ha ¥
bietty &y
-(HD Fb_w) (z=-HX)+(HA Fhwj (I—U\FI+ w) dt
I
Setting 9J_ = 0 for all i gives,
bwi
' tin e :
1 f E(z-HX)" dt HA FL} = (HA FL:F:’) HA F4
t. =%t
i+l "% ti

From which,

o ', X
W=_ 1 _ «mHar) mar ) Hwar)T (1e(zmR)at ..(39)
CPAPES 4 I
= it U i

and the prediction of Ew is updated to be W=w+w.

e
To calculate 1 j'l+l E(z-HX) dt represent this by

Vst Sty

X(ti+1) then use an exponential filter
¥t i= e )+ B 1 £ Caley-mR(8) Yatm ¥(5.))
» K7 ey i e 3 anE = i

i+1_ti i
OOOCDOIOUOIIOO(L!-O)
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where 0 £8 €1
Equation (40) is a recursive relation for the mecan of the

residuals and can be simply implemented along with the filter.

To summarise, the adaptive filter developed so far
consists of the prediction/estimation equations (29 to 35) along

with the following relationships.

EW = W a5 sis onussisnesesnseseocnssensionsssesnsiil)
X
¥ty =¥+ AL [T (a0)-ER(D)at- Y(t,))
L kR
..-..-.-.......oo-'-o(‘r-!'a)
'

=
i

a5 -
((Ha £)T(EA £))7HEA £)TY () .0 (13)
W5 W W ol B e tedn v o e At re (e

7 )
gty,1) = g(t)+s(__1 R (2-EX) " (2-HX) dt-g(t,))

e
a1 S ti

-o.o-.-o.ooo--.oco-'(li'5)

L6 N el ol e s W A s e e s b elee e o i iB)

W

c = g(ti+1) - Trace (H V(t )HT + R)

1wl

M e I | L
Trace ((HA i) (HA Fu,) ) casie sk it?)
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iy = ” . : 3
c c+c unless this is negative when,

(o} .-|.a.-t..oilt'0..ouonaoolO.lli..l.aolt.oo..c-.--o(l!-'s)

ol
n

éhe algorithm described above has similarities with the

adaptive filters of Coggan and Wilson (10 .38 ) and Jazwinski
@3.63 , but contains certain-advantages. The main advantage is that
both the mean and the covariance of the model error compensation
term are adjusted. This means that the filter will converge with
a smaller covariance term than the filter described by Jazwinski.
This results in the covariance of the estimation errors being
smaller. At the same time the consistency requirement (eguation 36)
ensures that this smaller covariance matrix is not over optimistic.
The Coggan and Wilson algorithm also provides, in a way, for the
updating of the mean of the compensation term, by removing
measured bias from the estimates. But their method results in the
inability to perform parameter estimation while bias is being
removed. The filter described above has no such limitation
provided the steps (equation 43 and 44) are performed only every

ébtime increment (where © is as yet undetermined) this allows
the filter to respond as much as it can to changing conditions,
so that the compensation term is only conditioned on error caused

by poor model.

There are a few remaining prob}ems to be discussed before
the theoretical development of this new adaptive filter is
completely general. The most important of these is the determin-
ation of the matrix FL. This matrix will, in general, be unknown.
Although in some situations there may be some information
available about the nature of Fh' Such a situation is when the
true system equations (25) are known but considered too complicated



for 'on line' filtering. Therefore a simplified model (26) is
selected, in which case there does exist knowledgé of the model

error committed.

In general situations, however, equation (25) is unknown,

so that all that can be said about F, is that Fk(i,j)zo except

A
for, at most; one element in each row and column, which may be
unity. The method proposed to find which particular matrix of
this form represents Fq is as follows. The dimension of the error
compensation term () is taken to bé unity, this means Fq is
reduced to an n—@imensional column véctor Fql with each element
zero except, at most, one. Each column vector of this type is

tried in the filter and the vector that produces a minimum for

g(t) equation (45) is selected as the first column of Fq. That is

. * ]
F‘,+(J,l) = F

L (3) for j=1 ton

*
Where F & is the vector that minimises g(t)

L

The dimension (f) is then increased to two and the same

process used to fix the second column of Fq. This is continued
until € =h the dimension of the measurement vector. This is the
largest number of independent variables that can be computed via
equation (43) and therefore restricts the method to finding model —

error compensation vectors with dimension less than or equal to h

The remaining problems are associated with the choice of

the values of & and @ in equations (38 and 40) and with the



number of time increments (e) that must elapse before each

implementation of the equations (43, 44). Clearly the choice of

these parameters affect the optimality of the performance of the

adaptive filter.

These points
as no general'result

considerations.

The complete

follows:

Initially at time ty

A Fal ~
x(ty), C(t;), V(ty),

Then predict for the

N

= F.x
14

with %(t,)=X(t,)

will be discussed in the following sections,

can, at present, be developed from theoretical

adaptive filter can now be summarised as

specify,

g(ti), thi), c, w, and 17‘1+

L2 ;
range ti't“ti+l via,

+F2u+F3y+FL{-W .‘.l....'...'."(l':‘g)

Tty ) = d0Ce)8" +aFar, AT + oCcty) +C7(t,)0"

+ <AF4)(AF4>TE

C(t

Take measurements,

Z(ti+1)

n

then, X(t

i+1)

¥ty

-n..oano.-ooo-o-oot-cbt(so)

= 00 AR e A RR R L e (5

H x(ti+l) o T v et e n wn e Halles isievie sl D)

t

e Bl .
)1 [T Gace) - ERCeeKe)

s
1

A PR WA S Y



49

¥ = (cuar,) T (nar ) "HEAF )T ¥ty 0) eeenl(50)

; = ; i g' Iolllloon..-i'n--occlocn..lt.l-(ss)
541 o b
g(ti+1) - g(ti) + A (( L) (z-Hx) "(z-Hx)dt
e

"g(ti)) nloootc-0-..-o-oa..lo.o..o.c.'¢.(56)

~ o 4§
c = g(ti+1)—TRACE(HV(tifl)H +R)
0000000000(57)
TRACE((HAFH)(HﬂFq)T)
¢ =c¢ + ¢ unless this is negative, when c=o0

cocsssssse(58)

o T, — St -1
K = V(ti+1)H (ﬂv(ti+l)H +R) oo e it el 50)

Now estimate,
R(t)

x(t) + K(z(t)=-Hx(t)) tiététi+l et liGD)

Pl O
V(ti+l) = (I-KH) V(ti+l) R B bR sieias o ele aie e ais (LY

A —
C(ti+l) = (I—KH) C(t ) .o-o-noonnloo--t.o--t(62)

A L
Equations 49 to 62 are now repeated for ten samples and the final
value of g(t) is stored. The matrix F1+ is then changed as described
previously and the equations 49 to 62 repeated for a further ten
samples. This is continued until all possible Fq 's have been

tried and the F1+ that minimises g(t) selected. The equations

49 to 62 are then used recursively for all subsequent samples.
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CHAPTER (L).

DISCUSSION OF CCMPUTER ALGORITHMS.

Linear Stationary Prediction.
Linear Non-stationary Prediction.
State Variable and Parameter Estimation.

Adaptive Estimation.
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Chapter (4). Discussion of Computer Alsorithms.

The programmes to be described here have all been written
in 'BASIC' for use on the Department's Honeywell 316 computer.
This language was chosen because of its ease of implementation
and its facility for on-line programme development. The 'BASIC!
compiler was augmented with subroutines written in 'FORTRAN'.,
These subroutines perform the following matrix manipulations:
Matrix inversion; matrix transposition; matrix addition,
subtraction and multiplication by a scalar; and matrix multiplic-

.

ation (appendix 14). The Programme Listings are shown in the

appendices referred to in each section.

Bl Linear-Stationary Prediction.

|

The set of orthogonal polynomials used in this programme

were calculated from the relationship,

+1

j PPT d7=I--.oo.-ho.o....c.ltnocoonuoo.otot.o.o-(a_plpendix 5)
-1

That is the p; are orthonormal over the range -1£7 £l

where,
7 =2t - to-tf
_tf—to

and equation (1) section 3.1.1 becomnes,

dx = dt £(x,0)

d
. a7
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Jea. X (tf-to) G T B B s R R P O T

ar 2

The matrix D defined such that DP = dP/d? = P can be calculated

fron,
(DP,P) = (P,P)
. ol N
ice- D=(P,P) - J. PPT drnloooooclt‘.-.'00(64)
-1

(appendix 6).

The matrix M defined by,

Wi :
M= (P(to & D P(to) : D P(to) : etc,)

is easily computed and its inverse found (appendix 7).

The programme can now be written following the theoretical.
development in section (3.1.1l) for three separate cases:
l. u(t) is constant over the range toétftf
2. u(t) is known in.terms of the polynomials P for the range
toétftf.
3. u(t) is known at any point (t) in the range toétftf.(figurel )
(appendix 8).
For (1) above the matrix N (see section 3.1.1) reduces to,

Jat : . p.2
N = (x, + Fyx +(Fou,P) P(t)) : Fy X *F (Fou, PIP(E ) .enetl)

because every differential coefficient of u with respect to t is
zero. This is a special case of (2) above as a constant u can be

readily expressed in terms of the polynomials p.

For (2) the matrix N is easily calculated because the

—
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Diagram of Linear Stationary Programme.
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term (Fau,P) is just the coefficient matrix of the polynomial

representation of u.

For (3) it is clear that before N can be calculated it is
necessary to compute the coefficient matrix (Fau,P) for the

polynomial representation of u. This is performed via Gaussian

Quadrature.
+1 T
Cu, Py e = JU up~as
-1

. .
= CUlr Y BT de ol | Al F (T

ll'l
d; P (Té)

etc

where the d. and ﬂ& are the 8-point Guassian weights and abscissae

i
(appendix 9). The 8-point Tormula was chosen to combine high
accuracy with good computation speed.

The programmes just described were written to produce 10th

order polynomial approximations with the range adjustable to make
the solutions accurate to within the presgt error bound es=1o'“
(see section 3.1.1). The choice of 10 for the order of the
polynomial approximation is somewhat arbitrary, its optimisation
depends on a trade-off between‘the time of calculation of the
coefficients, (which increases with the order), and number of
steps taken to cover the full fime-range of interest, (which
decrecases with the order). No general theoretical statements can
be made about this balance as it depends upon the differential

equations to be solved.
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Results of the application of these programmes are shown

and discussed in chapter 5.

=
.
mno

Linear Non-Stationary Prediction.

From sectioh 3.1.2 it can be seen that the polynomials

used in this programme must be such that the zeroes of each qi(t)

—

are real, distinct and lie within the range toététf.

Normalising this range by substituting,

shows that the zeroes of each'qiff) must lie within the range
«1£7<+] .

Now defining a variable s such thét,
Cos(s) = T
and defining functions

qi(s) = COS(is)

-

It is clear from the following identity ( 69 )

CoS((i+2)s)

2C0S(s) COS((i+1)s)-COS(1is)

(s) = thi+l(s)-qits)

i.e. qi+2
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that the qi(s) are i*® order polynomials in 7 with

q (7)) =1

q,(7) = 7 = COS(s)

6, (7) = 27-1 = 2c08%(s)-1
etc.

What is more, it is obvious that -1£¥<4+1 for any value of s.
Therefore the zeroes of inr) are real, distinct and lie between

-1 and +1 for all i; and are given by,

S

I
(o}

qikr)

which implies,

7 = Cos( (2n-1))

24

]

for n=l,2,5,etc.

These polynomials are 'Chebycheff Polynomials' and are orthogonal

over the range -1 to +1 with respect to the weighting function
£.0) = L/VI9F

y ]
SR I o R DT el 143

3=

ni
o

)
rofa

The programme to solve differential equations by this method
consists of a BASIC programme which accesses four FORTRAN sub-
routines (figure2 ) (appendix 10). These subroutines perform the

following operations.



Figure (2).

Diagram of Collocation Programme.
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Subroutine (1) Calculates the collocation points.

Subroutine (2) Sets up the simultaneous equations as described
in section 3%.l.2.

Subroutine (3) Solves these equations for the coefficients of
the polynomial. approximation.

Subroutine (4) Calculates the value of the approximation at
some chosen points.

Results of the application of this programme are shown and

discussed in chapter 5.

L.3 State Variable and Parameter Estimation.

The programme to achieve estimation was developed by
adding the algorithm described in section 3.2 to the prediction
programmes described above. (Figure 3). Only the estimation
programme with linear stationary prediction has been developed.
This is because it produces the prediction in a shorter
computation time than the other methods. (appendix 11).

Any error incurred by neglecting any non-stationary aspects of
the equations over each range is absorbed into the statistics

describing the random disturbances on the process.

Results of the application of the estimation programme

are shown and discussed in chapter 5.

I:l'-"
-
-

Adaptive Estimation.

This programme was devéloped from the estimation programme
Just described by adding the modifications discussed in section

3.3 (Figure () (appendix 12).
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igure (4).
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~ Results of the application of this programme and investig-
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CHAPTER (5).

|
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Simulation,
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Application to a Poor Non-linear Model.

General Discussion.
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5 Discussion of Results.
5.1 Sinmulation.

The application of the simulation programmes described

Clial, 4.2) is quite straight forward. Results are shown for two

systems.
Seded Linear System (Figure 5).
A= —(kl+ a/v)A + sz + q/v Ao
= s el
B = kA (k2+L3+<4+q/V)B
C = kBB - Q/VC
D = kLI.B - G_/VD

1 ; k,=0.385 mi s k.=0.062 min~t -

with k1=0.538 min =

k4=0.246 min'l ; and q/v=0.308 minwl .

Figure (6) shows the results obtained by simulating this
system with the linear stationary programme described. (4.1).
Figure (7) shows the results obtained with the collocation

programme. (4.2).

il Non Linear System (Fipure 8).

%, = —(1c1+q/v1)xl - q/vl X
2 = ~(k*a/vo)x, + afv, %)

?1 = -Q/Vlyl—(le/pc)xl + q/v1 o

¥5 = -a/v,y, ~(kH/pe)x, + o/v, ¥y



with ky = EXP(36.49 - (12100/yl)) min"l
k, = EXP(36.49 - (12100/y,)) min
H = 10 cal/gm.mole
q = 1 litre/min
vy = 3 litres
v, = 2 litres
c = 1
ip = L

Figures (9, 10) show the results obtained by simulating
this system with the linear stationary programme described (4.1).
Figures (11, 12) show the results obtained with the collocation

programme (4.2).

§.l.§ Discussion of Simulations.

Figures (6, 7) show the results obtained when the system
(5.1.1) was disturbed by the deterministic step function (Ao)
shown. Comparison of Figures (6) and (7) show that both the stat-
ionary programme and the collocation prograrme produce identical
results with the automatic range of solution effectively varying
the ranpe as the system changes from a steady state to a dynamic
state.

The collocation programme, however, took very much longer
to compute the solution than did the stationary programme. This is
because it is a more gene?al programme, capable of dealing with
non-stationary problems and also capable of solving problems with
a wide variety of specified cdﬁditions (e.g. split boundary value
problems, or conditions in functional form).

Figure (6a) shows the results obtained by the stationary

programme when the system was disturbed by the random function Ao
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Figure (5).
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Fipure (6).

Results of Simulation (Linear Stationary Programme).

(N -Simulated : (x¥¥)-Analytical Solution.

1L

Concentration

12

30

- e e ———_

- - =y

e

o TR At e empng




67

Fizure (6a).

Results of Simulation with Random Input.
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Figure (7).
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Results of Simulation (Collocation Progranne).
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Figure (8).
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Fipure (9).

Graph of Simulated Concentrations.
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Graph of Simulated Temperatures.
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Graph of Simulated Teﬁperatures.

*)-Input (yo) : (*)-intermediate (yl) : (+)-Output (ya)

0 ¥ 3 Temperature

+ % .



4

Whate EA, = 10 and E(A-10)°= 1.333 .

The automatic range of solution was, in this situation, suppressed
and a constant range of 2 minutes was used. This was because the
system was in a constant dynamic state so that no advantage was
obtained by allowing the range to vary.

Figures (9, 10, 11, 12) show the results obtained when the

system (5.1.2) was disturbed by the random functions x  and y,

where Exo 10 and E(xo-10)2= 0.333

[}

and By, = 350 and E(y,-350)%= 133.33

i
Comparison of Figures (9, 10) with Figures (11, 12) show that the
results obtained by the stationary programme are identical to the
results obtained by the collocation programme. This means that the
non-linear system (5.1.25 can be closely approximated by a linear
stationary model oﬁer the range of 2 minutes. The automatic
variation of the range of solution was again supresced because of
the random inputs.

The above results show that the stationary programse is an
effective way of obtaining picce-wise'continuous solutions to
linear, and non-linear, differential equations. The results indicate
however, that the collocation programme would be more suited to
solving problems involving complicated specified conditions, as it

is unable to compete with the stationary programme in simple initial

value problems because of its larger computation time.

5.2 State Estimation.,

Figure (13) shows the results obtained by using the filter

described (4.3),the system (5.1.1) and the measurement model.

z(t,) = B x(t,)+v  with; H =11000
< 0100

The measurements were obtained from the simulation results
(Figure 6) by corrupting them with additive noise v such that,

Ev =0 and Bvvy = 0.0833 I



Figure (1%).

Results Obtained by the Standard Filter.
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These measurements are, of course, discrete, whereas the filte
requires continuous measurement functions. The choice of
measurement function is somewhat arbitrary and its selection

is dependent upon what is reguired from the estimates and what
degree of complexity can be handled. For instance, probably the

simplest measurement function is the step function defined by,

z(t) = 2(t,,,) 17 PV 3

This choice will result in the estimates {At) themselves being"

functions with discontinuities at the sampling points.

The measurement function used in this work was chosen as
the straight line from the previous estimates to the new

measurements i.e.

A
z(t) =Dt + d tiététi+l
A
where, o = (z(ty, )-nx(t I, =t)
and @il HR(t,)- ty 3 05 )l 4 )
’ Jkik 5 o s g i+l” i

Now the linear approximation to the true state can be written,

Hx(t) ¢ bt + 4

where, b

(Hx(t o) =Hx(£,))/(ty 0 -5,)

and, d = (g, Hx(t,)-t, Hx(t; 1))/(t

1+17%)



The measurement error can therefore be approximated as,
~ g P ne ~
v(t) ¥ z(t)-Hx(t) = (b-b)t+(d=-d) = bt+d
The covariance matrix of the errors in the measurement function

ti+1 7
B T £ Ev(t)vi(t) dt

Pavit
is then approximated by,
i
e
1+l ~ ~ A ar T
R%¥ 1 f E(bt+d)(bt+d) "dt
o

which, if the range tiététi+l is normalised to (-1 to +1),

reduces to,

N
RY 1 (HV(t,)HET + R.)
3‘ 2 m

where Rm is the error covariance matrix of the discrete

measurements.

The use of this measurement‘function results in the
estimates being continuous for all time. The differential
coefficients of the estimates, however, show simple discontinuities
at the sample points. These discontinuities can be removed by
using more complicated megsurement functions (e.g. quadratic or

higher order polynomials).

The value of the disturbance covariance matrix (Q) in this

" situation represents the covariance matrix of the errors on the
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value of AO and was in this case 0.083%3 . Poor initial estimates
.0f the state variables were made and the initial covariance

N
matrix of the estimation errors V(to) was taken as unity.

5.3 Parameter Estimation.

Figures (14, 15, 16) show the results obtained by using

the same system as before (5.1.1) but with AO and k., considered

>
as unknown parameters. An augmented state vector was set up and
the equations linearised as described (3.1.3).
Estimates were obtained for the state variables-and for
i
the unknown parameters using the same measurements as before
(Figure 6). The initial estimates were taken to be zero for each

component and the initial covariance matrix of the estimation

errors was again taken as unity.

The value of the disturbance covariance matrix (@), this
time, represehts the covariance of the unknown value of AO and as
such is a parameter that affects the performance of the filter. If
the value of @ is too high the estimates are 'noisy ', if it is
too low the estimates are unable to respond to any change in the
input. Many exper;ments with different Q's would be nececsary to
decide which Q to use, but even then little could be decided with-
out reference to the true value of the states. The value of Q
used to obtain the results shown in Figures (14, 15, 16) was
0.0833, and the fact that the results are in fairly good agreement
with the true values is the result of the use of information that
would not normally be available in a real situation. These results
therefore, demonstrate clearly the problems encountered while
trying to estimate states and parameters in the presence of

uncertainties in the statistical parameters of the systen.
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Parameter Estimation Using the Standard Filter.
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Figure (16).

Estimation of Rate Constant (k.).

i

81

(r~)-Estimate : (»"~~)-Simulated
—..L‘. Y -’._2 ~ O_ - “2 4 :
=
ol /
L
Jio
10

A
()
s 800
PA
20§ Y
25 |14
0 \"
E bl
i f'
30 ¢ |
108
i K
§e 3
;



{0
no

5.0 Adaptive Filtering.

At the end of chapter (3) it was noted that the parameters
X, R, and & could.not be evaluated from theoretical consideration
To investigate the effects of varying these parameters, some
initial guesses had to be made. Initially &X was set = 1/4i where i
is the number of saﬁples taken, and/B was set = 0.25 « The effect
of different values of e (i.e. the number of time increments that'
must elapse before each implementation of equations (43, 44) ),

could now be investigated.

Saliel Experiment With A Poor Model. (The Effect of Varying

The poor model used was:

A = -(kl + 0.308)A + 0.385B + O.EOSAO

-

Bi= klA—B
Ao =0
kl =0

—

which is the same as system (5.1.1) but with the components C and
D ignored. The measurements were taken from the simulation of the

true system Figure.(6a) and were linked to the state variables by,

with, H=[1000
0 A 0,
" o L ] T... z
and, Ev = 0 and Evv: = 0.083%33 I

The value of Q@ was taken to be 0.0l with,

s

OMHOO

i.,e. a disturbance with zero mean and variance of 0.0l on the

value of Ao was expected. This was not the true value of the



input disturbance, which was unknown, and SO represents a further
error with this model.

The matrix Fh’ which is the compensation incidence matrix,

was restricted to be one of:

O 0O
OO RO
000K
o o il o

because, by definition, AO and k) are parameters and are
therefore modelled correctly. To find which of these matrices. is
the best representation of Fq’ each one was used in the filter
for ten sample increments and the effect on the TRACE of the

s

residual covariance matrix (g) recorded. The matrix that minimised

(g) was then selected as Fh'

Figures (17, 18, 19, 20, 21, 22, 23) show the results
obtained by filtering this poor model with e=2, 4, and 6. The

results obtained with e=4 and 6 were quite close together and in

good agreement with the true values. The matrix found for F, with

exL and 6 was:

OO O

and Figure (21) shows the compensation function (w). Fh and w

together form the optimal compensation strategy for this system
and in fact show that the modél ig in error because it does not
allow for B to leave the system except by changing to A, whereas

in the true system B can also change to C and to D. Therefore w



Figure (17).

Graph of Qutput Concentration (A) (Estimates).
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Figure (18).

Graph of Output Concentration (B) (Estimates).
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Fizure (19).

Graph of Input Concentration (AO) (Estimates).
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Figure (20).
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Figure (21).

Graph of Fictitious Input (wl).
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Figure (22).

Graph of Fictitious Input (wz).
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Figure (23).

Gravh of The TRACE of The Residual Covatiance Matrix (g).

(¥)-e=2 : (+)-e=4 : (*)-8=6
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provides a rate of loss of B which matches the rate of E changing

&

to C and D in the true system.

The results obtained with e=2, however, were very different
even though the TRACE of the residual covariance matrix (g)
Figure (23) would seem to indicate that e=2 gave the best
performance. The explanation for this is quite obvious, and
indeed these results could have been intuit;vely expected. The
compensation term defined by eéuationé (43, 44) should represent
errors resulting from the poor model i.e. errors that remain
after the filter has converged. If these equations are used too
frequently, then the filter is not allowed to converge and
compensation is conditioned on random errors resulting from poor
starting conditions or particularly poor measurements. This
situation is aggfavated further in this case by the fact that the
fully augmented system equations are unobservable as, F, was

o

found to be,

e =] 10
o e
Q0
00 (apprendix 13).
S5eljo2 Experiment with a Poor Model.(The Effect of Varyinz A2 ).

Figures (24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 54) show
the results obtained by filtering the same poor model with e=l
and with@ =0.2, 0.25, 0.3, 0.4, 0.5, 0.6, This means that
compensation for bias is performed every uth measurement and is

based on a value for the ﬁias calculated from equation (40).

The results obtained *.r.:ithﬂ e, 025, 0.5 and"0,i Were
all similar with® =0.3 giving the best performance (g minimised)

Figure (2é).



Figure (2L).

Graph of Output Concentration (A) (Estimates).
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Figure (26).

Graph of Input Concentration (Ao) (Estimates).

(#)-=0.2 : (+)58=0.25 : (.)-B=0.3
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Fipure (27).

Graph of Rate Constant (kl) (Estimates).
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Figure (29).

Gravh of The TRACE of The Resifiual Covariance Matrix (g).

(¥)-g=0.2 : (+)-8=0.25 : (.)-8=0.3
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Figure (31).
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Figure (32).

Graph of Input Concentration (AO) (Estimates).
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Figure (33%).

Graph of Rate Constant (kl) (Estimates).
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The matrix F4 was found to be,
FL|.=

OO O

which matches the actual errors in the model.

The results obtained with #=0.5 and 0.6, however, were
again very different, and again for similar reasons. In these

cases Fq was found to be,

[eNele
OORrOo

.'.’ithﬁ =0.5 or 0.6 in equation (40) too much weight is given to
the most recent measurement so that ¥ ceases to be a reliable
estimate of the mean of the residuals.

The reason@=0.3 is better than@® =0.2 is related to the
fact that e=4, AS,B decreases, less weight is given to recent

S0

@

measurenments in equation (40). There comes a point wher

little weight is given to new data that the affect of compensating
. 18 not noticed in e time increments, when the next compensation

calculation is performed. Again 2{ceases to be a reliable

estimate of the mean of the residuals.

The results discussed so far show that there is a lowest
value for e, below which the compensation equations fail, and
also that there is a range of values offg outside which problems
again arise. The values of these parameters that are indicated by

the preceding results are e=L hnd13=0.3.

Figures (35, 36, 37, 38) show the results of the adaptive

filter using e =4 and,B:O.B, the results of the standard filter,
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Figure (35).

Graph of Output Concentration (A).
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Figure (36).

Graoh of Qutout Concentration (B).

(#)-Simulated : (+)-Estimated : (+)=Estimated
' (Adaptive Filter) (Standard Filter).
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Pigure (37).

Graph of Output Concentration (AO).
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Figure (38).

Graph of Rate Constant (kl).
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and the true values, Figures (37, 33), in particular, show the
improvement obtained by using the adaptive filter. Figures (35,
36) seem to indicate that there is little difference between the

two, but this is to be expected because both A and B are measured

so that most of the errors will be atiributed to the estimates of

Ao and k3 by the standard filter.
S5ee3 Another Poor Model.

Figures (39, 40, 41, 42) show the results obtained by the

adaptive filter; the standard filter; and the true values for the

model.
A = -0.846A + 0.385B
é = 0.538A4 -~ B

with H =

i i) and EVT= 0
o and Bvv = 0.8331

The value of @ was taken to be 0.01 with F_=|1
5 0
The true system was still the same (5.1.1l) and the measurements

were taken from the simulation Figure (6a).

These results show that the adaptive filter is superior
to the standard filter, especially Figure (41) which shows the
TRACE of the residual covariance matrix. Examination of Figure
(41), however, shows a drawback to the adaptive filter as

developed so far.

In this case F, was found to be, B =4k
b b 0

This was chosen from the three following possibilities:
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Fizure (39).,

Graph of Output Concentration (A).
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Pirsure (LO).

Gravh of Output Concentration (B).
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Fizure (L1).

Grarh TRACE of the Residual Covariance Matrix (7).
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[l - [O] 1 0
0] ! 1 ! 01
by the fact that g at (1) (see Figure (41)) was less than g at (2)
or (3). However, the rate of decrease of g between (2) and (3) was
auch greater than between (0) and (1) so that it would have been
more reasonable to select
Fl‘. =13 0 rather than Fll- = I
01 0]
This problem is cauéed by the fact that A is a moving weight, so
that each measurement is treated equdlly. This results in the
" order of trial of the possible Fu's having an affect, bhecause if
the state of the filter is poor at the begining of a trial period
then the convergence of g will be slow. To overcome this ol is
redefiﬁed as ®{=1/i (where i is the number of samples taken) until
A=0.2, where it remains constant. This places greater weipght on
recent measurements so that initial conditions are damped out
more quickly. This is also a2 more practical situation asef =1/1i
tends to zero as i tends to infinity, so that some lower limit to

& would be necessary in any case.

igures (43, 4Lk, L5, 46, 47) show the results obtained
with the adaptive filter with the modified wvalue forof. In this

o

case P, was found to be

L
F, =110
i [01

and the correction term

W =

W

is shown in Figures (45, 46). These graphs show that wy is round
to be positive to compensate for the omission of AO ;i and that

w2 is found to be negative to compensate for the omission of C
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and D from the model. Comparison with Figures (39, 4O, 41, 42)
show that these results are superior to the standard filter and

are very good approximations to the true values.

Selislt Avpplication To A Poor Non-linear HModel.

The adaptive filter with e=4, B=0.3, and(=1/1i until
oA=0.2, where it remains comstant, was then applied to the following

system Figure (L48).

X = =(K+g/v)x + q/fv X

¥y = -¢/v y-KH + g/v ¥

pC A
with K = EXP(36.49-(12100/y))
Ho= 10
q:l,v:h,p:l,C:l,Xo"-‘lO,yO:j,:)O

which is a single stage approximation to the system described
previously (5.1.2). The measurements were obtained by adding
random perturbations to the simulation results (Figures 9, 10)

and were linked to the state variables by;

Zz = Hx+v

with H= (0 1)

Figures (49, 50, 51, 52) show the results obtained with
both the adaptive filter and the standard filter. These results
were obtained with the additional error Rm=0.0833 when 1t should

have begen 0.333% .
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Fipure (4L8).

Single Stage Stirred Tank Reactor With Non-linear Reaction.

Flowrate g litre/min Output Concentration x
Input Concentration x »
Input Temperature % // Output Temperature y
fm+_ ek A
/f//

Volume v litre

Reaction In Tank,

b fl(x,y,xo}

(5
il

£, (%,¥,,)
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Figures (53, 54, 55, 56) show the results for the same
system but with Rm set correctly at 0.333 . The error commitied by
using the incorrect value of Rm alters the results obtained by the
standard filter guite comsiderably, but has hardly any affect on

the adaptive filter.

Pigures (57,58,59,60) show the results obtained for the

same system, but with Rﬁz&,}& - ‘

These results demonstrate quite clearly the bias that
results from using a standard filter in conjunction with an

[

inaccurate model. This bias is much reduced by the adaptive
filter. Furthermore, the adaptive filter provides an indication
of the area of the model errors. This is provided by the compen-
sation function (w) Figures (51, 55, 59). For this particular

system the compensation function is daifficult to ana

merely tells us that the poor model.is neglecting sou LOSSE

4

from the system. In all these results (Figures 49 to 60) the

k_ - 3 . "
matrix F, was found to be FL=EU Clearly to improve this model,
o

X
| i
g

ner some theoretical modell is required, Oor more measurements

[

i

(o)

should be taltens

BaD General Discussion.

The results presernted demonstrate a number of important
points.
e The standard filter provides useful estimates when the model
and the statistical parameters are known (Figure 13),
Zu The standard filter produces biassed, or even divergent,
cstimates when uncertainties are introduced intc the model
equation, or statistical parameters (Figures 37, 33, 39, 40) .

61 The adantive filter produces much improved estimates over
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the standard filter when dealing with uncertain models.
(Figures 37, 38, 43, Lk).

L. The adaptive filter provides an indication of the model
errors, which can be very helpful to any attempt to dmprove

the model. (Figures 45, 46, 51, 55, 59).

The results also show that the adaptive filter is robust
with respect to its parameters (&, B, and ). That is, the
adaptive filter performs well over quite a large range of these
parameters. iowever, problem areas have been indicated. (Figures
19, 20, 32, 33). When e becomes too émall or g becomes' either too
small or too large the estimates becoﬁe 'noisy' and tend to
oscillate about the true values. Another problem that has becen
demonstrated is that of unobservability. (appendix 13). This
problem is caused by attempting to find too many fictitious

inputs and is simply avoided by restricting the seared for F, 80
i £ 2 L

that unobservable models are omitted.

The choice of ten sample steps for the testing of each
possible Fh is arbitrary, but it was felt that it was long
enough for the filter to converge, without being too long, so

that the optimum Fh could be found quickly and efficiently.

It is clear that the optimum values of the adaptive
filter parameters (&,8, and e) are inter-related and in some way
depend on the speed 0f response of the system. However, the ract
that these parameters are bascd upon sample number and not on the
independent variable (time), compensates for the systen's speed
of response, so that the resu%ts obtained should be fairly

general.
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6 Conclusions and Points for Further Develovment.

This thesis has discussed the importance of system
identification, or, statp and parameter estimation in modern
control engineering. The relevant lite}ature has been examined
énd the Kaiman filter has been introduced and discussed. Problems
arising in the application of the Kalman filter have been pointed

out.

A number of theoretical developments have been made in

this thesis. First a method of solving differential equations,
.

providing piece-wise continuous functions, has been developed.
The basic Kalman filter has then been reformulated by incorporating
the new continuous solution programme, to provide piece-wise
continuous estimates. The ability to produce continuous estimates
has required the introduction of continuous measurement functions.,
The measurement functions described in the text are particularly
simple to construct from the discrete data obtained by sampling
the system, and ensure that the estimates are continuous at every
point. However, there is a great deal of flexibility in the way
the measurement functions are defined and this allows for freedom
in the choice of sampling strategy (e.g. where in the range of
solution is most convenient to sample; how many sawples to include
in the range of solution or whether to vary the length of the
solution range, etc.). This is an area where further work might

produce interesting results.

The continuous filter so developed is analogous to the
original Kalman filter so the problems, already mentioned, which
affect the Kalman filter are shared by this new filter. These

problems, whether caused by uncertainties in the model, or by the

filter statistics, or neglected non linearities, show themselves
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by making the state estimates and the estimation error covariance
matrix inconsistent statistics. That is,‘thc estimation error
covariance matrix calculated in the filter may become a very Boor
representation of the true (but unknown) estimation errors. A
number of approaches to this problem, proposed in the literature,
have been discussed and various short comings highlighted (e.g.
the need for unreasonable a-priori information, or the inabllity
to estimate parameters). Lhese approaches, however, have servéd

to introduce the concept of an adaptive filter l.e. a filter

which is able to change its own operdting parameters to improve
its estimations. This concept of an adaptive filter has been taken
and a new adaptive filter has been developed which, althougnh
utilising some of the ideas already presented in the literature
nas introduced new concepts, helpful in solving some of the probl-

ems of adaptive filtering,

The use of the TRACE of the residual covariance matrix,pre-
viouslymentioned in the literature (10,43, 68), has been used very
effectively, not only as a means of adapting the input disturbance
covariance matrix, but also as a useful performance index for the
filter/model combination. It is in this area that some future
research is possible. The TRACE of the residual covariance matrix
can be used to select different types of model, or to select the
correct order of model, where very litile a-priori knowledge is

available.

The calculation of a model error compensation strategy

nas been introduced as an important step in adaptive filtering.

[fLh?

The model error compensation strategy effectively changes the
model after every 50 many measurements and thus improves the

serformance of the filter while allowing parameter estimation to



be performed. Furthermore the compensation function , althourgh not

4=
ate tne

necessarily representing any real variable, does indic

&
0

source and type of model error that exists. This information can
be very helpful to any modelling work that seeks to improve the

mathematical model used.

The concepts introduced in the adaptive filter have
parameters associated with them., The results, while demonstrating
the usefulngsa of the adaptive filter wheﬁ applied to models
containing serious errors and omissions, indicate values for
these parameters which seem to be quike general, Further work is
needed in using the adaptive filter on-line with some real process.
In this connection it must be noted that the adaptive filter
increased the time of estimation over the standard filter by
approximately 8%. Bearing-in mind that the programmes were written
in BASIC for simulation work, this would indicate a very small
time penalty to pay for fhc increased accuracy of the adaptive
filter. Also the adaptive filter can be used with much simpler
models than the standard filter and yet provide estimates of
similar accuracy. From this point of view the adaptive filter
could be faster to use by decreasing the time for the prediction

steps, while maintaining the same general level of accuracy.
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Appendix (1).

Abstract Vector Spaces. Inner Products, and Orthogonality ( 71 ).

3.

9

An abstract vector space (V) has the following properties.

1f £ and g are in V so is f+g.

f + (g+h) = (£f+g) + h: f,g,heV.

There is an element o8V such that h+o=h for all heV.
For each h6V there is an element ‘'~-h€V such that

h + (=h) O

]

g+th h+g ¢ g,heV.
For each real number a : aheV.
a(g+th) = ag + ah.

For each real number a,b : (a+b)h = ah + bh.

a(bh) = (ab)h.

Sxamples.

-

i

Euclidean n-dimensional real space (En). The elements

consist of sequences of n real numbers.

T (al, ..... LN TR (bl,......bn)

The space of polynomial functions of order less than or

equal to n (Pn). Here,



|
—
=

« Inner Products.

An inner product on a vector space (¥) is a mapping V x V
into the real line. That is a real number is associated with

every ﬁair of vectors in V with the following properties.

s ) (af;g) = a(f,g).

2, (£+g,h) = (f;h) + (g;h)s

3% (f,8) = (g,1).

By (£,£) o ‘ unless f=0

5 (f,g) = some real number:,

1. PFor the space En

n
(£,8) = ;& a, b,

2, For the space Pn

+1
(Rl s the abe
&3

1f (£f,g) = o then the vectors f,g, are said to be orthogonal (in

the case of E3 this means that f and g are perpendicular).

A set of wvectors f, such that if .:E &. ¥ = o dnplies
i =kt 1

a =0 for all i; are said to be linearly independent.
In an n-dimensional vector space every set of mdn vectors

are linearly dependent. Therefore any arbitrary vector g can be

written as;

n
= s i 2 linear
£ s fi for some ay if the fi form & linearly

independent set.
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A set of linearly independent vectors is called orthogonal d-£y;

P

(f‘} ,f) = 0 i)éj

e 4

An orthogonal set is called orthonormal if,
(f ,.i‘i) =1 for all i.

Any vector 2, not in the space (V) can be approximated by a vector

g which is an element of (V);

s

i.e- Zl_vﬁ' = -. '1"“
AR b Wt B

1

The best choice of the a; is when the error is orthogonal to the

approximation.

Therefore:
(z,f‘i) = (g,f_l)
T

Therefore: 3
(z,fi) =ay (fi 'fi) if the f; are orthogonal.
and,

(z,fi} = a; if the i,‘i are orthonormal.

This can be generalised by considering a vector space consisting
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of sets of m vectors. i.e.

n
o ey 7, :
6 =fe;] =% [ay,: %3
b2 o
g a

or, in matrix terminology,

G = AF where F = Pfl'

Hy

- P
and A = &l,l e naniean al,n?

Tm sr e e 0

..-.-.Ia
i,k m,ng

llow any set of m-vectors, 4, not in the space can be approximated
by a vector G
Z ¥G = AF
and the best choice of the matrix A 1s when,
(2-G,F) =0

-

where (G,F) is a generalised inner product defined by;
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Appendix (2).

The Method of Collocation ( 69 ).

An arbitrary function of (t) f(t) can be represented by

an infinite series of orthogonal polynomials:

£(t) =i§ & Gyl o (D)

an nthorder polynomial approximation to £(t) can be written;

y ~ £(t) y_.g__; Berp ) o e, (2

and because,

(f(t)-y,pj(t)) = o0 for o%j%n (appendix 1)

(]
(a;-D,) pi(t),pj(t)) % (igm-l a; py(t), pj(t) ) = o

Therefore:

; for o%i<n.
i i L3
The error f(t)-y = e can therefore be written as,

o = 2

i=n+l ai pl(t) -..---.-......(3)

and the (n+l)th order approximation e, to this is

a+1

1sg® ©p Py(t)

where ¢; are found via,
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(e-e_,p,) =0 for ofj€n+l
n’"J
e ¢; = o for o£i€n
and, .
€a+l = Zn+l

Therefore the zeros of e are approximately the same as the zeros
of pn*l(t).'The approximation can therefore be found by settiing

y=f(t) at the collocation points. (i.e. at the zeros of pr+1(t} ¥a

Clearly this approximation is not optimal in the sense

iscussed in appendix (1) but only nearly optimal. As n increases

so this method approaches the optimal approximation defined t

\f
R I B & - W

a; = (f(t){ pi(t))/(pi(t), pi(t)).....(appcndix Y,



Avpendix (3).

Minimum Variance Estimation (31, 38, 43).

Let 2z = Hx+v be an h dimensional vector measurement of
the n dimensional state vector X, where H is an h X n matrix and
v is an h dimensional vector of random variables with,

Ev = o and EVVT = R

Let X be a prediction of x with,

= 3 ™ = = T =
E(x-x) = o and E(x-x)(x-x)" =V
Now assuming,
e m
E(x-x)v™ = o 5
Then,
A B - oo J . o :
s SR T n(z~ux) is a minimum variance estimation of
x.if K is a suitable welpl cri « K must be calculated to

= V-KHV-VHTKT + K(R+HVHT)K®

N
and TRACE (V) is minimised when,

. S
TRACE( dV ) =0 for all 4 and j.

-

a.
L
b
—~
[E%
-
o
S



Now,

N 5 *m - R
av . K(R+HTHD) Ko(i,3) + K (1,3 (R+HTHDIKE
(L, ) |

8 — S
_k(1,3) HV - VET KK1,3)

where,
K(isa) = dK-
aK(1,])
i.e.
dk(m,k) = o m#Ai, k s
dx(i, J) 4 moed, XK= R

Therefore K must satisfy,

»

m 'l ) -' . = -'_T 7 i o v ™ '-—Y"T T--:IP 1-:1-" I 20N
TRACKE (1{(1,3) ((R+HVH Yog T = B (K(R+HVH Y=VH") K{1,J) )

I
(o}

for all %,3

This means that,

1
o

(K(R+H¥Hi)-ﬁuT)

Therefore,

K = THL(R+EVET) T

This important result can be obtained by a large variety of
nethods. For a discussion of the different approaches sce

references (43).
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Appendix (4).

The Modellingof Uncertain Parameters ( 43, 50 e

Consider the equation;

X = Ff‘*’ Pow o-o--a-o.ooa_oo.tcooocoo----oo-o(l)

A

where X is an n dimensional state vecgtor and w is an € dimensional

vector of unknown parameters.

Fl is an nxn matrix, and,

F, is an nx? matrix.

L

Equation (1) can be rewritten,

il §obEY x
;4 1 Fy
III; O 0'. ‘U'-' t.lnooc.-...oo.-.o-loocon-l(z)

e

This equation can be used in the filter described in the text Lo
produce estimates of X and w. This procedure, however, can be
time consuming because the dimensionality has been increased

(from n to (n+) ). :

To overcome this the a-priori value w of w will not be
improved by the filter, but the error committed in using W owill
be modelleds To do this consider the formal equations of tLhe

augmented system (2).

ma

The prediction error cov: -~iance matrix will be,



e c g T
.—T .
L 3% W2 vw
= — o =T
Where vx = B(x-x)(x-x)
=y =T
— = E(x-x) (w-w)
and vx,w
- — o =
and V. = E(w-w){w-w)

W

Now w is not to be improved by the filter so V‘? remains constant.
. ;

T 2
iThereiore:

3z = v A A T
X Vx,w 0 A‘u Vx Vx,w ’ S
TR S O B BT (3)
XyW X, W W L T i
N
where, ‘Jx = E(x-?)(x-‘?)T
P
afd; Vi, u = E(x-3) (w-w) T

and @ is the fundamental matrix derived from equation (1) and &

is the integral of @ over the time increment,

Therefore,; from (3),



150

AT
X

o~ :
=g Vg +Aﬁqv

<
i

T 0 L I
Bl vx,w Fh -

)"!'r
= PR
+Aru V\"f L#A .II........'I..I.....(Lr)
and’ Vx,“’=gvx’wl +AF!+ Vw o-oou.a.tlt.l....olltl(B)
For the next time increment,
A e i
V = (I-KH) V
J-.e.
A A - =
\ s e -
Vs !x’w s KAy 0 Vx Ux a
Am 1R = £, =
/- v e I z
XyW W X, WX X,W W

where, K. =V._H_ (H.V.H _ + R)

and,

ancExcls found from.
H = (H 0
(5, 0
Therefore:

<D
1] :
—
H
|

-
e

o=
b

i
S|
s

oo
&

and,

1
—
- =
I
)
Lol
-
e
<

..I.I..".-.II-....II..-('?)



Now defining

- = i
=2 i
G ‘x.w Qﬁ‘b)
A A T
g = Vx,ﬁ (AFA)

b=

then the resulting modification to the filter can be written as

follows:

Prediction,

o . m £ é
For the range ti t ti+l via

X = le = Fhw
WLER T S RO D)
05 i
(o T A I s U A AT T
Vo (ty,q) = 00, (08" +AF T r TA" + olle,) + Tt )0
Bty ) = #8(t,) +AF, ¥ B IA"

Istimation.

K. = V.(t L T

x % i+1)Hx Hx Vx(t )Hx

i+l

2t

1]

x(t) + K. (z(t)-.HxE(f)) t,etLt,

(I-KXHX) Vx(t.

X( ti+1) 1+1)

n



-
3

A : 5
U(ti"'l) = (I-anx) c(t )

14

These equations show how the filter is to be modified in order to
account for the errors in w without having to improve on this a-
oriori prediction. Clearly this modified filter will no longer be
optimal, in the sense that the maximum information contained in
the measurements is being utilised, but on the other hand it will
process the data a lot more quickly, without impairing the

”
knowledge of the errors in X,



Avpendix (5).

The Calculaticn of Orthonormal Polynonials.

Orthonormal polynOmials.pi are defined by the relationship,

+1
Jp.p.at = o 143
L¥ kel
IR
A set of

orthogonal polynomials q; are defined by,

=1

J- q:q.dt =2 B dL;

Y .
bl l:"]

then a

Now defining qozl and q1=t+a 1,0

4,0 ;

+1
_{ (t-r-al’o)dt =7
l.e.

al,o fe

The coefficients of q, can then be calculated from,

hfl
q g.d4% =0

can be calculated

150



and so on up to any order (m) required.

The bi can then be calculated from,

and then the normalised orthogonal (orthonormal)

calculated from,

*_J
7

polynomials

o

The polynomials thus calculated are known as normalised Legendre

: g . th
polynomials and are listed below up to the 9 “-order.

p, = 0.707 .
pl = l.th

' =7 2
b, = =0.791 + 2.372t
p, = -2.806t + e 6775

b o . =

B, = 0.795 = 7.955t° + 9.281t
pe = 4397t - 20.521t° + 18,4607
bg = =0.797 + 16.732t2 - 50.195t% + 35.81t6
Py = =5.989t + 53,9t = 118.6t7 + 73.41t7
Py = 0.799 - 28.745t2 + 158.1t" - 274.0t8 + 146.8t8

o
I

7.539t - 111.3t2 + 433.9t2 - 619.8t¢ +292.7t7
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Appendix (6).

The Calculation' of the Matrix Differential Operator.

The matrix differential operator defined on the basis of
the orthonormal Legendre polynomials Py (appendix 5) is calculated

from the relationship,

DP = P
where, 3
iy & P = [k ;
P=fp ] and P = dpo/dt
Py :
-pm. —dpm/at.:
This means:
(DP,P) = (B, %)
Thercfore
D(P,P) = (P,P)
Therefore - st m
D= (BP) = [P;pt at
-1
Therefore G e : . .
D= .f P5P, PyPy eeeo
& =
b 3 dt
[P,y ByPy .-

or, writing P = LT where L is the coefficient matrix of the

hormalised Legendre polynomials and,

dSB i s
t
£
£

| 62




Therefore,

Therefore,
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. D defined above is casily computed and the result is:
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Appendix (7).

The Calculation of Matrix M and Its Inverse.

The matrix M required for the solution of linear

stationary differential equations ig defined by:

M = (P(t,) DP(t,) DZP(tO) etc)

¥
and is gquite simply calculated and inverted using Gaussian
Elimination.

The result to four decimal places being:

gl

l.414 © 0] 0 € 0 @) o 8] 0
1.414 0,816 0] 0 G @) 0 0 0] 0
0.943% ,0.816 Qa2 l 0 0 0] 0 0 0 0
0471 o.qu 0.211 0.0356 © 0 AR ol
0,189 0.218 0.120 0.0356 ©.0045 O (6 Batio IR - Il
0.0628 0.0777 0.0502 0.0198 0.0045 0.,0005 0O 0 0 0
©.0179.0.,02%3 0.0167° 0.0079 ©.0024 0.0005 O 0 0 0
1 0.0045 0.0060 0.0047 0.0025 0.0010 0.0002 © 6] C (@}
0.0010 0.,0014 0.0011 ©.0007 ©0.0003 0.,0001 O© 0 0 0
0.0002 0.0003 0.0002 0.0002 0.0001 O 0 0 0 0
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. Appendix (9).

The Calculation of Forcing Functions by Gaussian Quadrature.

The 8-point Gaussian weights and abscissae are given belows

£l iy
+ .96028 .10122
3479666 v, 22238
* .52553 » 31370
+ .18343 ; . 56268

As described in the text (section 4.l) the coefficient matrix for

the polynomial approximation to the following functions is:

(u,P) = (u(%3) u(9y) ...) [a, 2%(2)

where the u(?,.) are the values of the forcing functions at the

Gaussian abscissa. Clearly the matrix,

da PT(a’E)

:T

depends only on the polynomials P and the Gaussian weightis and

abscissae; di, 0"1.



This matrix is therefore independent of the differential equaticn
being solved. Therefore this matrix can be precomputed and stored
in the programme (appendix 8) for solving differential cguations.

The result of the calculation of the value of dl PT(qfl is:

r
0.0716 Q157 . 0.222 0256 0,256, 0.222 - 0.1572.0,0716

-0.119  =0.217 -0.202 -0.0815 -0.Q815 —0.202 -0.217 =0.119
0.141 0.159 -0.0425 -0.258 -0.258 -0.0425 0.159 0.1kl
=0.146 =0,0287 0.250 0.176 =0.176 =0.250 =0.,0287 0.1L6
01357 S0.1IL 08218 " 0.195  DL195 -0.218M=0.114 05137
<0.115 0.210 -0.0228 -0.248 0.248 0.0228 -0.210 & .0.115

{ 0.0823 -0.219 0.242 -0.105 -0.105 O.242 =0.219 Q.

0323
-0.0430 0.158 -0.231. 0.287 -0.237 0.251 -0.133 0.0430

g
b=
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~ INPUT HCI)»0CI): NEXT I

F COLNA CRO1s 85 BsX)
CTC10).XC10)

. COLNBCY» Xs G5 AsHs By N5 0 15 RK» RI)
[ XC10)50C10)5AC 10, 10),HC10)5 BC18)» Y10, 10)
~ '.lﬂa lﬁ): F( 10, 1@







50)5DC050)5D€050)5>105105050)
IF I=0 GOTO 108 _
1,28 READ DCI,J): NEXT Jrd1=J14C=1)1C1+1)

0)sRC0)»Y(0)sN>1051)
PRINT YCI)s: NEXT I

WINPUT MEASUREMENTS":N4=N9:S9=-12 GOSUB 450

NT "ESTIMATES"™

137 .489883,.21031?..356345E oz,.:assaa..2177:4
20464 '3553435-01,.4489565-0?..5?8334E-01

“"024 .ﬂSlai 3[‘:"031 - 3?7319E'0ﬂ: 13483265"023 uﬁ )4 .
=025 «251H9E=025 « 95223FKE~-03, « 2429 55E=03

i) -2?0_3035—05: «IOUR3BE=03s « 1 37943E~ 63
Ve s BTV AGBHAF =1 2s s D00 LO0OF =174 s GOEAR T =]
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205 CALL (3:PC05,0)»PC0,0)5PC050)5N9,N9,0,0)

206 PRINT "INPUT MEAS«ERROR VAR.": FOR I=0,N9=1: INPUT PCI»I): NEXT I
207 CALL (35VC050),VC0-,0)5V(0,0)sNsN»050)

2085 BRINT “INPUT INITIAL ERROR VAR"™: FOR Is0sN=1: INPUT UClsl): NEXT IS

209 CALL (3,XC050)5sX(050)sX(0s0)5NsN50,0)

210 PRINT "INPUT FORCING VAR«": FOR I=0,N-=1

211 INPUT XCI1,1): NEXT I

212 CALL (3:MC0s0)sMC0s0)sM(02s0)5NsN»050)

213  GOSUB 460

214 FOR J=0sN=13 FOR J1=0sN=13 IF M(JsJ1)><0 GOTO 215t NEXT Jl: NEXT J
215 CALL (3,Z(050)sZ2C0,0)57Z2C050)5NsN505,0)

216 FOR I=0sN=12ZCIl,1)=12 NEXT 1

217 C7=1:08=1:1=1:06=9 :

218 CALL. (35G(050)5G(050)5GC0s0)5NsNs050)

220 CALL (35ZC0,0)5GC0,0),GC0-0)>N>N>1/C721)

222 IF ABS(CA=G(JsJ1))=1E=-02,230,230,224

224  CALL (45,Z2C0,02:M{0:0)sZC0sN)sN»NsN)

225 CﬂLL C32ZC0sN)»ZCDsNY»Z(0Ds0)sNsN»2,0)

226 I=I+1:C7=CB:CHB=CE*1:Ch=GCJ»J1): GOTD 220

230 CALL (25HC050),LC0»0D)sN9,N)

231 CALL (45VCDs0):LC050)20¢050)2Ns NaNG)

232 CALL (45H(CD»0)5Q0€05,0),LC05,0)5N9,N5N9)

233  CALL (3:PC00)>L(020Y50C(0s0)sN22N9s1/351/3)

2834 FOR 1=05N9=12 FOR J=0,N9=1: PRINT GCIsdJ)s3 s NEXT J: PRINT $ NEXTH I
235 CALL (256€050)5,ZC050)5NsN)

236 CALL (4553€C05,0)5,7C0,0)5LC050)sNsNsN)

237 CALL €451L€C0,0)5Z2€0,0)5(050)5N2N»N)

238 CALL €3,V€05,0)5XC05,0)5UC0,0),NsNs1,51)

239 CALL (2sH(0,0)»7ZC020)sN95N)

240 CALL (45VC050)5,7C050)5L(0,0)5N,N5N9)

241 CALL (4,HC(0>0)sL(0,0)57ZC050)5N9,N,NO)

248 CALL (3,Z2€05,02,0C00s0)2s7ZC00)sN9,N95151)

243 @ Ri==1:NB8=N9: CALL (15Z(0,0)sZ(050)sN8BsR1)

244 IF R1>0 THEN PRINT "NO INVERSE 243'": GOTO 500

245 CALL (4,LC020)5,Z2(DsN9)N(0»,0)sNsNG»>ND)

247 RETURN

248 CALL (4,H(050)5SC0,0)Y5LC050)sN95Ns 10)

249 CALL (3:8(0,0)5,LC(0,0)57ZC050)5N95,2515-1)

250 CALL (3,L(0s2)sLC(0»2)3Z2(0:s2)5N9»85,0s-1)

251 CALL (4»NC0,0):2€0,0)5LC050)2NsN9»10)

28528 CALL (32SC050)5LC0»0)55C(05,0)sN>10s151)

253 CALL C(4,N(D>0),H(0»0),L(0,0)>N>N9»N)

294 " CALL (3,2€050)2ZC(050)57ZC050)»NsNs0»0)

255  FOR I=05N=12ZC1lsl)d=12: NEXT I

256 CALL (3,LC0,0)5Z(0,0)5L(050),NsN»15=-1)

257 CALL (25L(0D20)>ZC0,0)5N»N)

258  CALL (4,LC(050)5VC02,0)5Z2C0,N)»N»,N5N)

259 CALL (45ZC(0>N)»ZC0s0)2VC0>0)sNsNsN)

260 CALL (25N(0D»0)5LC050)5NsN9)

261 CALL C(45NC0,0)5R€050)52C050)sNsN9sNA)

262 CALL (45ZC050)2LC050)sZC05N)sN>N9sN)

263 CALL (35VC050)52C0sN)sV(0s0)sNsNs151)

265 RETURN

400 DATA 1732055348729 735246457655+4916115519A81157.937253
401 DATA 343165 T3Te41A18,09.940K0ne2455159«53982,11.95K5
402 DATA 3.BT722758¢65817511661595139591,5715061510.9234
403 DATA 134690851 5¢9991:4.3570259«74061513:065351570345179915
450 FOR I=05N4=1: INPUT BCIl»1):NS=aNDC(0O):BCIs1)=B(I>1)+KX 7 (N5=+5)
ASPE S PRINT Bll»1)¢BCI;0)=(B(1,0)+B(I1513)/1 41421

453 BlIs1)=(BCI»1)-BC(I,0)/1.41421)/1.224T4: NEXT 1

454 RKRETIURN
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Programme for Adaptive Estimation.

R




'EITlrd)ﬁOl NEXT Jt FOR J=0s51 .

Hal¢41ﬁ21-816493’-942782:-816488::210839 )
» -48'95333 «210817» 03563465:-01 3. 1885333 02?7?14

» tE?ﬂSGSE-O S: -9948 .'38 E—O.‘S: . ! 379435-62“
2BT1454E-035 «292942E-035 «92548E-04
‘-9?0 301E=055 «168949E-04



205

206
207
208
209
210
211
212
213
214
215
216
217
218
220
228
224
225
226
230
231
232
233
235
2835
237
238
239
240
241
242
243
244

245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

CALL (3:PC0,0)5P(0s0)5P(Ds0)>NIsN9I»,0,0)

FOR 1T=0LN9-1t INPUT P(I,I1): NEXT I

CALL (3,VC0-0)sUC020)5VC0s0)sN>N>0:0)

FOR I=0,N=1: INPUT UCIs>I): NEXT 1

N6=12 CALL (3,C(0»,0)2CC(0,0)5CC05s0)sNsN>0,0)
N6=2:DC0s0)=1:DC151)=12X(05,0)=e1E=D1:XC151)=e1E=01
N7=1:K(D»3)=1:F1=0

CALL (35,UVC0,0),UC050)5UC050)sNsNs «1E=-05,0)

GOTO 24

POR J=0sN=12 FOR J1=0,N=1: IF M(JsJ1)><0 GOTO 2152
CALL (3:7Z€050)sZC050)52C050)sNsN>050)

FOR 1=0,N=-18Z2CI1,T)=1: NEXT 1

C7=1:C8=2:1=2:C6=100

CALL (3,GC0s0),G(0,0),GC0,0)sNsNs0»,0)
CALE (35ZC0,0),GC050)5G€050)sNsN»s2/C751)
IF ABRS(CA=GC(JsJ1))=e1E=-02,230,230,204

CALL (45ZC05,002MC050)2ZC05N) s NsNyN)

CALL (357ZC0sN)»ZC(0sNY)»Z(050)5NN5250)
I=I+1:C7=CB2C8=CB*1:CA=G(JsJ1): GOTO 220
CALL (2,HC(050),L(0,0)5N9,N)

CALL C(4,VC050),L(050)sQ(0,0),N,N>N9)

CALL (4,HC0>0)50¢0,0),L¢05,0),N9,N»N9I)

CALL (3,PC050)sLC0,0),0C00s0)sN9,N951/321/3)

CALL (45MC0:005GC050)5S00,0)5N»N»N)

FOR I=0,N=-12S5C1»1)=5C1,1)+1: NEXT 1
CALL €2:,5(050)5sZ2C0s0)5NsN)

CALL (455(0s0),UC05,0)5,LC0>,0)5NsNsN)
CALL (451L.C0s0)5Z2C0s0)5VC05,0)sNsN5N)

CALE (45 5(050)5CC00)5ZC0s0)sNsNsN)

CALL (2,Z€0,02,LC0,0)5N>N)

CALL €¢3,VC0s0) L0505 C0s0)sNsNs151)

CALL C(4,GC0,0)sKC053)55(0,0)5sN»NsNT)

CALL (2:5C050)5L(0,0)5sNsNT)

CALL (4, SC0;0)5LC0,0)sNCOs0)sNsNT7sNY)2. GOTO 610
CALL (35,NC0,0)5NC0,0)550050)5NsNsF150)

CALL (35Z€050)5S50050)5C(0s0)5sN5Ns5151)

CALL (3,UC0s0)5CC(0:0)5V(C050)>N2N>151)2 GOTO S0O5
CALL (2,HC(0,0)5Z2C¢05s0)5N9,N)

CALL (4,VUCD50)5Z2C050)5,LC05»0)5sNsN>ND)

CALL (4,HCD,0),LC0:0)5Z(050)sN9,N,NG)

CALL (35Z2€050)5Q€050)52C050)2N9,N9,15,1): GOTO 600
Rl==1:NB=N9: CALL (1,Z(0,0),ZC(0D50),NB8,R1)

IF R1>0 THEN PRINT "NO INUVERSE 253": GOTO 500
CALL C45LC0»0)s2C0sN9)sNC(0»0) 5N N3, NI)

CALL (3:LC0s0)5Z2C0s0)2LC0»,0)sNsNs1s=-1)

GOTO 26

CALL (45HC(D>0)»5(05,0),L€0,0)sN9,Ns10)

CALL (3,BC0,0)sLC050)572(0,0)2sN952515-1)

CALL (3,L€052):,L(02s2)57Z(0,2)5N9,8,0:s=1)2 GOTO 550

CALl (45NC0,0),2C0,0)L(0,0)5>NsN95,10)2 GOTO 518§

CALL €(325€0,0),LC0D50)>5(050)>N>105151)
CALL C(45N(0s0)sHC050)5LC0D»0)5N>N9»N)
FOR I=0sN=13LCI,I)=LC(I,I)=12 NEXT I
CALL (45,0L.€050)5V(050)5Z2C05,0)sNsNsN)
CALL (251.C0,0),2C0sN)sN,N)

CALL (4,Z2C050)5Z(0sN)»U(050),N,NsN)
CALL (45NC05,0),0€0:0)5ZC050)5NsNI,N9)
CALL (2,N(C0s0),ZC0sN)>N,N9)

CALL (45ZC050):ZC0-sN)>0¢0,0),NsN9»N)

CALL (3,UVC0,0),0C00)5VC050)sNaN51»1)

NEXT

Jile

NEXT o
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7'-25:”(0:!) =9 Y21 EQS/ACYC 1) 12)%Q6 = -
"‘I;D?Hfl.! 1 32-025"10*- 121E05%¥QA/7CY (1) 12)

;ﬁﬂxﬁiﬂ;ﬁ::xco,1>,Lc0.0>,N,N7,1>
. €35AC005L€050),AC0),Ns151+4142151)
%atD(O’U)JKCOJa):L(D)O):N:N6J!)

IF P2<P3 THEN G0TO 339
VE PART OF FILTER

(9, J9+J7)=19:VUB=19: GOTO 372
3sKC05»3+J9)5K (05 3+J9) 9K (05 3+J9)5N515050) 5
_:K(O:1)3K(0:l):K(O:l):NJl:O:O) K(I19,3+J9)=1: GOTO
9+1: IF J9+J7=0 THEN GDTOD 375 i
"=@,J9*J7-1= IF 19=H(9,J8) THEN GOTO 372

I THEN GOTO 400
 THEN P1=-13N7=N7-1: GOTO 415

~FOR -aa M-l:VtI,Ia 13 NEXT I
bL 10 339

(BCTs1)=BCI,0)/1+41421)/1.22474: NEXT I

Z(O:O):G(O:O):N?aN?:l)

e et e e e R | ow gl oAl



253

554
S
556
570
SIE

572
SIS
600
601

6502
6510
611

612
613
614
615

Ji=0

FOR I=0,N9=12V1=V1+e5%LCI,1)2 NEXT I
LU= 4+ ] 2 Z5=1/24

V2=(1=245)*V2+Z5%V1

C3=(Ve=-C1y/C2

F1=F1+Z5%C3

IF F1<0 THEN F1=0

GOTO 261

C1=0

FOR I1=0sN9-1:C1=C1+ZC151)s NEAT I
GOTO 253

CALL (2,HC0,0)LC05,0),N9,N)

CALL C4sNC(D»0),LC050)5 SC0s0)2Ns NsNG)
CALL (4>H(Ds0)5>50020),LC05,0)5N9,N»ND)
C2=0

FOR I=0,N9=13C2=C2+LCI>1): NEXT I
GOTO 246



Avpendix (13).

Obsarvabiiity (43, 65).

The concept of observability can be introduced in an

170

interesting way by considering, first, a related question. That

is, given two nth order linear time invariant systems forced by

the same inputs,

"oe

oe

i
ot
s
=t

and

AL

then what conditions must M; and M, satisfy so that 2 measurement

2
taken from both systems will always be the same if the states

and X. are initially the same; i.e. let the measuremenis be,

1

zl(t) Hzl(t)

and z5(t)

]

sz(t)
and let xl(o)zx2(0)=x(o)

”

then what relationship exists between M, and M, so that,

z, (t) = za{t) = z(t) for all t*o

“irst it is obwvious that,

M- (t) A O &
0 (t) = et x (o) + aj' i u(r) do
My(t) g L)

and, xa(t_} = e X2CO) + df 2 u@) a4y

}:1



o

In particular, i s i i P A

*

E 1 “1 #. 7% (:&) = H(x)

T e R jﬁ R M g
5 (;&) = e :%o) + ! B A (D-M?_)- xf)’)d?‘
where D is the differential operator

Theretoret R

R T ) (R NI
ﬁl "_2"1(::) = si(t) + ; euMl {Mi-mz} 47)@0" : | . . :

' Thérefote;z ! .I:‘:'- I..__ 1 - l' ) x .- iy -;l‘- : i3 | @ : ;'_ 'j':' _'T : ;:i_: & %
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= gtC, =

must equal n where n is the order of the system,

If this rank is less-tﬁan-n;'then;Ml need not be egual to

M, , and more than one syStem will be capable of producing the ,
same measurements z(t). . o e e Sty
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The use of orthogonal polynomials in similation and state
estimation

R. F. wilbride-Newman and B. Gay, Birmingham
Introduction

At present the standard methods of solving differential
equations on digital computers yield solutiops in discrete
form. Howaver, solutions in continuous form have
considerable advantages, and this paper describes a method
of obtaining continuous solutions to stationary differential
equations by utilizing the properties of orthogonal poly-~
nomials.

A method of obtaining continuous estimates of state
variables and parameters from 'noisy' measurements is also
described. The resulting filter is similar to the Kalman
filter (1) and consequently previous theorems concerning the
convergence of the estimates can be applied directly to this
new filter. =

1. Simulation

The mathamatical description of a large number of
processes can be reduced to a set of ordinary differential
equations. For the purpese of this paper simulation will be
taken to mean the solution of such sets of differential
equations.

A set of linearly independent polynomials forms a basis
for the polynomial function space. Any function in this
space can be written as a linear combination of the basis
vectors.,

An arbitrary function (w) not in this space can be
approximated by a vector (y) :

n

w =y = L

i=0

where p. are the basis vectors and a; are the coordinates of
the approximation.

ey Py

The best choice of the «, occurs when the error is
orthogonal to the approximat%&n i.e.

(W -y, pi) = 0 for all i

vhere the left hand side defines an inner product for the
function space thus,
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(an) =1 x(e) yit) dt

If the basis vectors are orthancrmal then we have the
result

(wy p;) = @5
This result can be generalised tu consider sets of
functions i.e, w = (”1 A }

- 5
p (p0 o pn)
then the matrix of coefficients
A = (w,p) = _;I w(t) pi‘_T dt.

defines the set of best estimates such that
= Ap

and the error is minimised,

A set of linear stationary differential equations can
be written

X = Mx '+ Nu (1)

where x is an m-dimensional state-vector
uis a j-dimensional vector of forc1ng functions
and N is an m x j matrix.

Approximating x by peolynomials gives

X' =wfp
Defining a matrix D such that s
Dp = dp/dt
and substituting into (1) gives
ADp = MAp + Nu . (2)

For the differential equation to be approximated
optimally we must have

(ADp = MAp = wu, p) =0

1.8 pp = MA + (Nu, p) (3)
flow the inital conditions aive

A p(t Yui= Xo
then AD p(t ) = Mﬂp(tO) + (Nu, p) p(to)

Ap? p(t ) = HADp(tO) + (Nu, p) Dp(to}

o3 p(t ) = mADPp(t ) + (Hu, p) 0%(t,)

77



Defining the matrix £ = (p(t,)" bp(t,), L 0"p(t,) )
and the matrix F = (x; :Mxo + (Nu, p) pt)):  ete.)
then A/SF £ from equation (3)

and x = Ap gives a set of polynomials that satisfy the
differential equation in a least squares sense over a chosen
range of the independent variable,

Now the exact solution may be written as an infinite
series thus:-

X =E Bi P; where the B, are m-uimensional vectors
i=0 of coeffitients

and because of the orthogonality of the p. the error of the

polynomial approximation can be estimated as

€ = Basq Phan
therefore the total squared error of the approximation
o +1 T S 2
e ot =J o1 eedt= (B,
and if it is assumed that the series is monotonically
convergent after some number of terms less than n we have

€ o ° I Bn+]u 2. < (Innllz where An is the nth

] column of A
If | Anll  # (eg) :
where e_ is som® preset error bound, then define ks such

that ksnﬁn” I (Es)i

1
k) /™ then specifies a time scale factor which will
3

define the range to ensure convergence to within the error
bound. lote that this allows the time-scale factor to
increase if a larger range. is acceptable.

th Computationally, the matrix A of coefficients for a
10™"-order fit is calculated over an initial range of the
independent variable. The error of the approximation is
checked for convergence and if necessary a suitable time
scale factor k. is calculated which redefines the range.
This process “is then continued until the required range of
the independent variable has been covered.

2. Ltstimation

Consider the differential equalion defined by equation
(1) and consider that u is a set of stochastic disturbances
such that

e(u) = 0 1 ¢ T
and q-to JZO] (v ') dt =0
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where e is the expected value operator.

Assume that an estimate exists over the time range
t, < fis Y such that i

$(t) is an estinate of x(t) toé t <ty
and ¥ (t) = x{(t) - x(t)
and that ] ft‘ o v 1
E4] = elx () x (t [of i 380 .
v(t‘[) .—-——-E—-—t]_ t’o : ( ( ) ( ) ) S Known

0

Then a solution can be found by the method explained in
Sec. 1 for the time range Letst,.

Let X(t) represent this prediction of x(t) t;< t <t,

and Vi) = J/ﬂ 2 e(x-%) (x-» T at
(t5) B £ ) {r )

therefore ?Itzi = B(t,t5) V(L) B(t),tp) + A O

LB

where @(t,,t) is the fundancntal matrix defined by
d ﬁ(ti,t) =M 9(t1,t) ﬁ(tl’tl} =i
di t
and é=f2ﬂ(t.‘C}H dz .
t1 9
Now assume that measurements are available as continuous

functions z(t) for the time range, sty and are
related to the state variables by

B(t) = Hx(t) + v

where H is a fmeasurement matrix and v is additive noise such
that

e(v) =0
bR u/' Y2 elvy)dt =R

Then the optimal estimate of x(t) for tl's tgt, is
given by

P — -
x(t) = x(t) + K{z(t)-H x(t) ) (5)
If K is chosen to minimise the convariance matrix of

Ax}(t) the result is

K= V(t)H (H V(en" + r)"! (6)
one G(te) = (1 = K H) V(t,) (7)

The above equations define an estimator that is
continuous over a chosen range. tstimates are obtained for
all the state variables and the covariance matrix of the
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estimation error is also computed.

These equations bear a close similarity to the standard
equations of the Kalman filter (1,2,3), The main difference
is that the continuous and differentiable matrix function

ey A

€(X(t) X(t] ) is replaced by the step function V(t). The
result of this is that the awkward Riccati matrix differentia
eguation is removed from the algorithm.

3. Parameter estimation

If in equation (1) there exist some unknown parameters
then the equation can be considered as a non-linear system
b{ treating these unknown parameters as state-variables so
tha

x = f(x, k) + Nu (8)

where k is a vector of unknown parameters.

Using initial guecses x*, k*, equation (8) can be
linearised

F(x* + ax, K* + AK) = F(x¥, K*) + £, (x¥,k*)ax
40 ks k%) sk

where fx'(x*‘k*) = ’ar1fax] 3{1;3x2
_afm/ax] afm/ax2 at x*,k*
and f, ' (x*,k*) = (3 /iky afy/2k,
ooooooooo Te LRI at x*'k.*
ﬁafmfakl afm/akz L

then from equation (8)
ax = f '(x*,k*) ax 4 fi' (x*k*)ak + f(x*,k*) + Nu
therefore [Qﬁ C [?x'(x*,k*}[fk{x*.k*ﬂ{hi + [F(x*,k*) + Nu
k] LT 0% 0T sl o
and using the results of section (2) on the augmented system

above provides continuous estimates of the state variables
and the parameters.

4, Hon-linear Estimation

Using the procedure explained in section (3) non=linear
models can be lineariscd about some nominal state, The
results of section (2) can then be applied to the linearised
model to provide continuous estimates of state variables and
parameters.
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The simplest technique is to linearise the model about
the current state estimates, but there are alternatives
based upon an extrapolating of the current estimates into
the next time range and linearising about this extrapolated
state.

5. Results

The results show the method applied to a continuous
stirred tank reactor in which the following reaction occurs:
K :
0 E Sl
k ¥
Lt D 4
The feed contains A only. The coefficients defining
this system are

k] = 0.538, k, = 0.385, k, = 0.062, k, = 0.246

and the ratio of volumetric fléw;ate of feed to the capacity
of the reactor = 0.308

then
[% . [-0.846 0,385 0 0 T + [0.308 x5
X 0.538 -1 0 0 [k 0
Xq 0 0.062 -0.308 0 |lx, 0
Xq 0 0.246 0 -0.308 f4 0
Whigre Xy = output concentration of A
Xp = : of B
Xq = of C
xq = " " Of D
Xe = input concentration of A.

This system was simulated for a series of step chaonges
in the value of x.. The values of x,—x. are plotted in
Fig. (1) and the Value of x, is compared with the
analytical solutien. The agreement is seen to be good.

Additional runs of the simulation will be presented
which demonstrate the effect of a wvariable range of
solution.

The polynomials used for the simulation were normalised
legendre polynomials.
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5.2 State-variable estimation

The values of x; and xz_obtained by the simulation were
corrupted by additiva.noise (standard deviation = 0.2888) and
vsed as measurcments for an estimation of all the state-
variables (Fig. (2}). The measurement fynction was chosen as
the straight line from the previous estimates to the new
measurements, the measurements being taken at the end of the
range of solution. The method, however, allows a great deal
of freedon as to when the measurements are taken within the
range and in the nunber of measurements used to define the
neasurement function, (fppendix 1.)

The value of Q represents the covariance of the errors
on the known value of X and was in this case 0.0833, Poor
jnitial estimates of thg state variables were made (Fig.(2))
and the initial covariance matrix of the estimation errors

Q{t]ywas taken as the unit matrix.

5.3 Parameter estimation

The values of x.- and k, were considered unknown and an
augmented state vectgr set Ep.

Estimates were obtained for the state variables and for
the unknown parameters using the same measurements as before
(Figs. (3,4,5)).  The initial estimates were taken to be
zero for each component and the initial covariance of the
estimation errors was again taken as the unit matrix.

The value of § this time represents the covariance of
the unknown value.of x. and as such is a parameter that
affects the performancd of the filter, If the value of Q is
too high the filtered estimates are 'noisy'. The value of
Q used to obtain the results was 0,0833.

6. Discussion

The results show that the method described provides a
solution to the problems of simulation and of obtaining good

continuous estimates of state variables and unknown parameters.

In particular good estimates are obtained of unknown process
inputs (Fig.(4)) a problem that has currently been reported
to cause difficulty (4).

The advantage of continuous solutions is that many
standard mathematical tools (e.g. differentiation,
integration, interpolation, extrapolation, ete.)oecome
available, particularly in such problems as optimal control.

g2

Further work in progress includes ansion L 1
with inaccurate models through the proj yice of
covariance matrix Q-that is to say, the ;. Jblem of &
filtering, Attention will also be given to the stre
taking the measurements.

Appendix 1

" : A X i
Consider the situation where x(t1) i.e. the estimate of
xat t = t] and v(t1)are known.

At t = t2 measurements z(tz) become available, with a
covariance matrix of errors = Rm.

The measurement function to be used is the straight line
from Hx (t]) to z(tz} and is given by
A A

Zt) =bt +d tste,
where'_?: = (Aty) = WX(E)V/ (= t1)s
and d = (tzni(t]) -~ 4 At (4 - )

The lingar approximation to the true state is
Hx(t) = bt + d

where b = (H x (t2) : Hx(tl) / {t2 = 4)
and  d = (tHx(ty) - tHx(t))) 7 (t;, - t3)
The linear approximation to the measurement error
N A
v(t) =tz(t) = Hx(L) = (b =b)t+ (d - d)
=bt +d

The covariance matrix R = ——-}———‘f t ev(t) v{t}T dt
s A
is calculated from
tz = e e e
Ko e, e (bt + d) (bt + d)' dt
by vty

If the range t1 e vE tz is normalised to =1 to +1,

the above result reduces to
- 3 -
R oe Y/ LH V{t]) H] + mu]

In this work R = [0-”833 0 ]
0 0.0833
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