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SUMMARY. 

A tubular reactor, in which there is a dis- 

persed plug-flow and in which a single cell fermentation 

occurs is critically analyzed using a lumped approxi- 

mation technique. Estimates of the bounds of Fermentation 

Number where multiple solutions can occur and the necessary 

and sufficient conditions for stability to small pertur- 

bations are presented. 

Analysis has been made of fermentation processes 

involving both gaseous and non-gaseous limiting substrates 

and operated under sterile and non-sterile feed soeeueionss 

non-inhibitory and inhibitory kinetic have been examined 

in all cases. The results are presented both analytically 

and graphically, and they are compared with those obtained 

using a marching Runge-Kutta method.
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PREFACE 

The work of the The Tower Fermentation Group at the University of 

Aston in Birmingham is jointly supervised by Dr. E.L. Smith (Department 

of Chemical Engineering) and Dr. R.N. Greenshields (Department of 

Biological Sciences). The overall objective of the Group is to study 

the design, operation and control of tower fermenters and to explore 

their use in selected fermentation processes. As explained in Chapter 2, 

the tower fermenters developed at Aston are simple tubular reactors which 

when used for aerobic fermentations are operated as bubble columns. 

At present, four members of the Group are examining the feasibility 

of using tower fermenters for the following processes: 

1. the continuous production of alcohol from sugar solutions 

using flocculent yeasts, 

2. the treatment of afl uenks containing simple sugars and poly- 

saccharides using filamentous fungi, and 

3. the production of secondary metabolites, in particular acetic 

acid using bacteria. 

Because of interest in the use and production of. fungi, two other members 

of the Group are studying factors that control the growth and aggregation 

of filamentous micro-organisms. 

In the past, preliminary work with the processes described above 

was undertaken : research into the effects of tower design and operating 

conditions on gas hold-up, liquid-phase mixing and gas-liquid mass-~- 

transfer was also carried out. A summary of much of this work has been 

given by FIDGETT (8), whose research and that of the author was prompted 

by the need to develop mathematical models of tower fermentation systems 

so that experimental results could be correlated with design and operat- 

ing parameters and future research could be well planned and executed.
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Fidgett was the first member of the Group to carry out research on the 

mathematical modelling of tower fermentation processes, and this thesis 

describes work which complements that of Fidgett. Whereas Fidgett used 

stage-wise models to describe mixing in tower fermenters, the author 

has directed his attention to the axially dispersed plug-flow model in 

order to take advantage of the results of SHAYEGAN SALEK (279:, 

(Shayagan Salek, a former member of the Group, obtained experimental 

values for the liquid phase Peclet or Bodenstein Number in tower systems). 

Kinetic models used to describe fermentation processes are stil] 

at the development stage, and so relatively simple models must still be 

used in order to gain insight into what is happening in real processes. 

The dispersed plug-flow model has been applied previously by CHEN (69) 

in a study of processes involving exponential growth of micro-organisms 

and by other researchers (33,70) in studies of processes involving 

Monod kinetic models. Consequently, it seemed to the author that the 

next logical step in the mathematical analysis of general fermentation 

processes was to consider inhibitory effects. In order to take advantage 

of developments that have already occurred in the analysis of continuous 

flow stirred tank fermenters (31,32), the author chose as his objective 

the analysis of nutrient-inhibited fermentation processes. 

The thesis is divided into six chapters, the first including a 

general description of fermentation processes. This description high- 

lights the complexity of microbiological systems and includes features 

which cannot be readily included in mathematical models at present. A 

classification of kinetic models devised by TSUCHIYA, FREDRIGKSON and 

ARIS (6) is also given in this chapter. This has been included because 

the author is of the opinion that it provides excellent insight into the 

nature of kinetic models. The final section describes the kinetic model
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used in the research. 

In the second chapter attention is focussed on tower fermenters. 

A description of mixing in gas-sparged tubular reactors is given, and 

alternative models of liquid-phase mixing are outlined. The mixing model 

used in the author's research, that is to say the axially dispersed 

plug-flow model, is also included. 

The dimensionless equations describing the behaviour of a dispersed 

plug-flow reactor in which a nutrient-inhibited fermentation occurs 

are introduced in the third chapter. A physical explanation for all 

dimensionless parameters appearing in the equationsis also given. Steady- 

state equations, used in the fifth chapter, are presented at the end of 

chapter three. 

In chapter four advantage is taken of the lumped approximation 

technique described by HLAVACEK and HOFMANN (67) to obtain equations 

which can be treated analytically. Modified dimensionless groups are 

also defined : these make it possible to disregard the extent of mixing 

and to present results in a concise manner since the Bodenstein Number 

is not used explicitly. Steady-state solutions for the following 

situations are then given: 

1. non-inhibitory fermentation processes 

(a) sterile feed conditions 

(b) non-sterile feed conditions 

2. inhibitory fermentation processes 

(a) Pe es conditions 

All positive roots of the equations have been calculated and the bounds 

of multiplicity domains determined. These results are then used to 

analyse system stability using the First Method of Liapunov, and various 

stable and unstable situations are explained by comparing expressions 

for the rate of wash-out of micro-organisms and for the rate of microbial
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growth. Ina final section, graphs summarising the steady-state results 

are presented : all parameters that influence system- behaviour are 

included in the plots. 

Steady-state solutions have also been obtained numerically using 

a ''shooting'! method : the method and results are introduced in the fifth 

chapter. Graphs are used to compare the results obtained by the lumped 

approximation method with those found by the exact method. At low values 

of the Bodenstein Number agreement is excellent : at high values there 

are some interesting differences which deserve further study. 

In chapter six ideas for future work are given. 

The work summarised in this thesis represents the first step in a 

systematic analysis of fermentation processes taking place in tubular 

devices. The results obtained to date will open the way for the use of 

more powerful methods of analysis and will make it possible to study 

more complex kinetic models. These latter models will include those 

describing product-inhibited fermentations and processes involving more 

than one rate-limiting nutrient or product.



I -—- MATHEMATICAL MODELLING OF FERMENTATION PROCESSES. 

1.1) INTRODUCTION. 

Before starting this chapter it is necessary to stress 

that practical fermentation processes are so complicated that kinetic 

models have to be much simplified. The insight gained even from the 

‘mo st element ary model is not to be despised, altnough it would be 

the height of folly to expect such a model to explain exactly the 

behaviour of real systems. Since no kinetic model is ever the perfect 

expression of a real fermentation process, the simplifying assumptions 

on which it is based must be clearly stated and understood and tested 

experimentally. 

The microbial mass in a culture can exist in two 

geometrical states Pet - either freely suspended or adhering to 

surfaces in the container. Freely suspended micro-organisms can 

occur either as single cells or in multi-cellular groups called 

flocs. Also, any surface in contact with a microbial suspension 

may become biologically active due to adhesion of micro-organisms 

which sometimes form continuous layers of microbial mass called 

films. Very little is known about the flocculation and adhesion 

processes: a more detailed discussion of flocculation is presented 

in the paper by ATKINSON and DAOUD [2] and of adhesion in the paper 

by ATKINSON and FOWLER [3]. In this work the flocculation and 

adhesion processes will be neglected and a single cell fermentation 

will be analyzed. This does not mean that these processes are con- 

sidered unimportant, but simply that the author does not intend to 

consider them in this thesis. 

Unicellular micro-organisms occur in all sorts of 

different shapes and sizes, depending on the species and on the way 

they have been grown. But for our purpose, it is possible to dis- 

regard these variations and consider a generalized unicellular 

micro-organism, It will be supposed that this micro-organism can
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grow in a medium containing a carvon source (e.g. glucose), a 

nitrogen source (e.g. ammonium ions), a sulphur source (e.g. 

sulphate ions) and small amounts of other nutrients. This typical 

micro-organism should be regarded as an abstraction in much the same 

way as the average man, 

The number of chemical reactions involved in microbial 

growth processes is unknown but it is probably of the order of a 

thousand, Of these a few may occur spontaneously but the vast 

majority eee an be catalyzed by specific enzymes. These reactions 

can be classified into two groups - catabolic reactions and anabolic 

reactions, The catabolic reactions, also called degradative re- 

actions, degrade the carbon substrate, usually after the introduction 

of inorganic phosphate, to smaller molecules which can then be utilized 

as building blocks for the synthesis of new cell material. In the 

course of these reactions energy in the form of ATP is produced for 

utilization in the subsequent energy-requiring reactions. The 

anabolic reactions, also called biosynthetic reactions, convert the 

basic small molecules into macromolecules using ATP as the source of 

energy. 

According to species, micro-organisms are able to live 

either in the presence or in the absence of oxygen. Some are in- 

tolerant to one or other of these conditions and are classified as 

strict aerobes or anaerobes: but many micro-organisms can tolerate 

both conditions and are referred to as facultative anaerobes. 

The consititution of a micro-organism is determined to a 

considerable extent by the medium in which it is growing. A rich 

medium tends to cause the cells to grow more rapidly than does a poor 

medium. Sometimes, one substrate (e.g. glucose) is preferred to 

another (e.g. galactose), and organisms will grow in the presence of 

both, using only one until it is exhausted and then, after a short 

lag, the other, Following such a switch, the generation time may
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change, and cells of different size and composition may be pro- 

duced. 

Temperature also affects the growth of a culture but 

probably has less effect on composition than does the nature of 

the growth medium. Many species grow best between 30° and 37%, 

but, although some tolerate much higher or lower temperatures, only 

a few are truly thermophilic or cryophilic in the sense of growing 

better at high or low temperatures. 

Some micro-organisms have the genetic ability, under 

adverse conditions, to undergo physiological and morphological 

changes called sporulation, The most characteristic property of 

spores is extreme resistance to environmental hazards such as heat, 

desiccation, organic solvents and starvation conditions. Sporulation 

may occur at the end of the growth process when nutrients becomes 

exhausted or at low frequencies during the growth. 

When a spore suspension is introduced to favourable 

environmental conditions, the spore will, after sdequate activation 

followed by germination, undergo a period of intense biosynthetic 

activity which ends at the time of cell division called outgrowth. 

During this period the micro-organism is rebuilt and normal growth 

resumed. 

Mutations occur spontaneously in a culture and there is 

no way of preventing their occurrence. Some mutants may be able to 

grow better in the environment prevailing in the culture than 

non-mutants. Such mutants tend to disseminate through the whole 

population as growth progresses. Mutations can be specially trouble- 

some in continuous culture. 

In a growth culture dead micro-organisms make no con- 

tribution to the Eowth of the population, A micro-organism may 

die as a result of adverse environmental factors such as high 

temperature or high concentration of a toxic chemical, or due to the



occurrence of non-viable mutation. Before an experimental deter 

mination of the amount of dead cells is started it is necessary 

to devise a method to distinguish between dead and dormant cells. 

In this section are summarized all the important aspects 

of the growth of microbial populations. In this work we do not 

intend to present a universal analysis which includes all these 

aspects. The aim of this section is to give the reader some idea 

of the limitation of our analysis. 

The literature of microbial growth is vast, but the 

books by DEAN and HINSHELWOOD [4] and MANDELSTAM and MACQUILLEN [5] 

provide excellent insight into the nature and structure of microbial 

growth processes and are good starting pointsfor those with a chemical 

engineering background. 

1.2) CLASSIFICATION OF FERMENTATION KINETIC MODELS. 

In this section we follow closely TSUCHLYA,FREDERICKSON 

and ARIS [6]. They proposed a complete classification of kinetic 

models for growth of microbial populations. 

The mathematical approach to the study of microbial 

populations has generally been based either on the use of population 

density (number of cells per unit of volume) or biomess concentration 

(mass of cells per unit of volume). Kinetic models based on the 

first approach are referred to as "segregated nett models", since 

life is considered to be segregated into structural units which are 

called "cells", On the other hand, kinetic models based on biomass 

concentration are referred to as "non-segregated kinetic models"* 

  

*The name "non-segregated kinetic model" was introduced by 

FREDRICKSON ,MEGEE III and TSUCHIYA [7].



since the population mass is considered to be distributed uniformly 

throughout the culture. 

Another basis for classification of mathematical approaches 

is provided by the observation that the cells may be assumed to be 

"structured" or "unstructured". A segregated kinetic model is re- 

ferred to as a "structured segregated kinetic model" if properties 

for distinguishing one cell from another are specified: such pro- 

perties might be age, size, mass or chemical composition of the cells. 

A non-segregated kinetic model may also be said to be "structured", 

if the composition of the population varies with the conditions of 

growth. 

Finally, it is possible to classify the mathematical 

approaches as either "stochastic" (probabilistic) or "deterministic". 

In fact, a real fermentation process is always segregated and 

structured, and its growth and reproduction should be treated 

stochastically. However, the biological knowledge and mathematical 

tools necessary for formulation and study of this general model do 

not exist, and a less general aporoach gives useful results. In this 

work only "deterministic, unstructured, non-segregated kinetic models" 

will be considered: these models have been reviewed in FIDGETT'S 

thesis [8]. 

1.3) DETERMINISTIC UNSTRUCTURED .NON-SEGREGATED KINETIC MODELS. 

The most widely used deterministic, unstructured non- 

eee apitos kinetic model is the MONOD model*[9] which is a modifi- 

cation of the M'KENDRICK and PAI model [10]. M'KENDRICK and PAT 

assumed that the growth rate is proportional to biomass concentration, ** 

L5G ss 

R =. 2m (La3 01) 

  

*MONOD attached mush less significance to his model than subsequent 

researchers. 
**The use of biomass concentratimwas recommended by MONOD:M'KENDRICK 

and PAI used population balance.



only if an "unlimited supply of nutrient" is available. When sub- 

strate for growth has been consumed, they postulated that the 

specific growth rate is a linear function of concentration of this 

substrate, i.e. 

w= @s Caen) 

sO 

R, = asm (14343) 

M'KENDRICK and PAI assumed also that the rate of con- 

sumption of a given substrate is proportional to the rate of growth, 

so 

= i GEG 

MONOD [9] recognized that the specific growth rate 

could have a maximum value and proposed the following relationship 

ma he 5 uw =. max (1.505) 

K,+s 

which is similar to the BRIGGS-HALDANZ [11] relationship for enzyme 

kinetics*, 

It is easy to show that for s >> K, we obtain 

os ou 13.5) 
max 

and for s << K. we get 

uo Pmax ” , (1.507) 

K. is a constant having ths same dimensions as those of 

the substrate concentration and is known as the MICHAELIS constant**, 

lee 

u = max (1.318) 
  

  

*This is known to physical chemists as LANGMUIR-HINSHELWOOD, to 
chemical engineers as HOUGEN-WATSON ana to biochemists as 

MICHABLIS~—MENTEN . 
**Sometimes known as tne saturation constant,
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we obtain 

Ss = K.- (2 aco) 

Thus, numerically, K, equals the concentration of sub- 

strate at which thse specific growth-rate is equal to one~halr the 

maximum specific growth-rate, 

Most investigators have found that the MONOD relationship 

provides a reasonable fit for experimental data. However, as pointed 

out by POWELL [12], this relationship cannot be valid for those 

substrates which limit growth at low concentrations and are inhibitory 

to the organisms at higher concentrations. 

One plausible mechanism for substrate inhibition would 

be a reduction in the activity of an enzyme by complexing with excess 

substrate. The most widely used kinetic model for this situation 

is the one proposed by HALDANE [13] in 1930 for the inhibition of 

enzymes at high substrate concentrations, This model may bé expressed 

as 

#3 
U = rite yr (2.5.9) 

Although there is no theoretical basis for the use of this 

kinetic model for micro-organism growth, some researchers 

(14] [15] [16] have concluded that this equation provided the best 

fit for their data. Recently, EDWARDS [17] tested five inhibitory 

kinetic models with eight sets of experimental data and found that 

the above model was the best choice, 

The maximum specific rate attainable may be obtained by 

setting the first derivative equal to zero to obtain: 

  

oe AR EK, (1.3.10) 

The maximum specific growth rate is then
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pss os * uted ‘oS (Le dela) 

d+ 2 s 

i 

ie K, eK, we get 

* = u i 

aie equation (1.3.11) becomes 

u = “max ©, (1S ade) 
K.+8 

Consequently, the Monod model is only a special case of 

this kinetic model. A more detailed treatment of the properties 

of this model is given by DIXON and WEBB [18]. 7 

The above kinetic models are the most widely used 

ones [19]-[21], and all the other models are modifications of 

them [22]-[23]. 

It is well known that deterministic, unstructured, non- 

- segregated kinetic models (at least the known models) cannot 

explain unbalanced growth processeSi.e., situations where 

structural properties change’ with conditions of growth. These 

situations are expected to be explained by structured kinetic models, 

but such models as pointed out by FREDERICKSON [25], are not suitable 

for use in dispersed plug-flow models of reactors, Consequently, 

we will neglect them in this thesis. Those interested in such 

models should keep the papers of FREDERICKSON, TSUCHIYA and co- 

workers under close surveillance, 

1.4) SUMMARY. 

In this chapter we have reviewed the points which are 

essential to the development of the research. In the first section 

we described all the important aspects of the growth of microbial 

populations: this was necessary to call attention to the complexity



of growth processes. In the following section we looked at ways 

of classifying kinetic models, and based on this classification 

we chose the class of kinetic models most suitable for use with the 

dispersed plug-flow model. In the last section we introduced the 

most widely used deterministic, unstructured, non-segregated kinetic 

model, which will constitute the centre of the analysis.
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IL - MATHEMATICAL MODELLING OF A TUBULAR REACTOR USED AS A FERMENTER. 

2.1) INTRODUCTION. 

The aim of this chapter is to review the mathematical 

models which can be used in the analysis of tubular devices. As it 

is interest in the use of the tower fermenter which has motivated the 

research it seems appropriate to begin this chapter with a few 

comments about it. 

The tower fermenter is a piece of industrial equipment 

specially devised for fermentation ghee often involving 

flocculeat micro-organisms. It can be described as a tubular reactor, 

the top of which opens out into a large settling zone. FIGURE (2.1.1) 

shows diagrammatically a tower fermenter. 

For the purpose of design and mathematical analysis 

it is convenient to separate the tubular zone (reaction zone) from 

the settling zone (separation zone). If we consider the tubular 

section only the tower fermenter may be considered as a tubular 

reactor, 

As the kinetic models of flocculent microbial process 

are still not sufficiently developed to be used in mathematical 

analysis of growth processes, they will not be considered in this 

work. Our intention is to apply the single-cell fermentation kinetics 

presented in the previous chapter to the analysis of a tubular reactor 

as a fermenter, The reader has to accept this work as a first step 

Opening the way to more sophisticated mathematical analysis. 

2.2) MIXING IN A TUBULAR REACTOR USED FOR AN AEROBIC PROCESS. 

Mixing in a tubular reactor in which an aerobic ferment- 

ation process is occurring is achieved by injecting air. This produces 

swarms of air bubbles which travel up through the equipment. 

According to MORRIS, GREENSHIELD and SMITH [26] the air
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flow may be characterized by three general pattems: 

1. bubbly flow with low backmixing; 

2. bubbly flow with high backmixing; and 

5. slug flow. 

The first pattern occurs at low superficial gas 

velocities (~ 1 cm/sec), the second at higher velocities 

(~ 3 cm/sec) and the last one at still higher values (> 5 cm/sec). 

We will restrict our analysis to the first two patterns since the 

difference is due only to the intensity of mixing. Three important 

parameters are influenced by the superficial gas velocity - the 

gas hold-up, the volumetric mass transfer coefficient and a mixing 

parameter which depends on the mathematical model we use to analyse 

the process. It has been shown that the liquid flow rate has an 

insignificant effect on these parameters [27]. 

Since we are considering single cell fermentation pro- 

cesses we may neglect the influence of flocs on the mixing pattems 

and consider the mixing behaviour as similar to that in bubble column 

reactors. 

There are several ways of expressing the quality of 

the mixing process which occurs within a tubular reactor, One extreme 

possibility is that of perfect mixing: this can be defined as a state 

in which the composition of the culture is the same at all points in 

the tube. The other extreme possibility is plug-flow: this can be 

defined as the state in which the culture moves without any axial 

mixing with a flat velocity profile. All the other states of mixing 

lie between these two extremes and are called non ideal mixing. 

2.3) MATHEMATICAL MODEL FOR A TUBULAR REACTOR USED FOR AN 
AEROBIC PROCESS. 

In order to model the behaviour of a tubular reactor 

in which an aerobic fermentation process is occurring we have at our 

disposal several approaches. For ideal situations, as mentioned in
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the last section, the well mixed and the plug-flow models are suit- 

able. Since the pioneer wor« of MONOD [28] and NOVICK and SZILARD [29], 

who formulated the basic theory of the use of the well mixed reactor 

as a fermenter, the well mixed approach has been widely studied. A 

detailed study of non-inhibitory fermentation processes (MONOD model) 

under sterile feed conditions for a non-gaseous limiting substrate 

using the LIAPUNOV theorem can be found in the work of RAMKRISHNA [30]. 

The same type of analysis for inhibitory fermentation processes has been 

carried out by YANO and KOGA [31], and ANDREWS [32] and for the case 

with wall growth by CHL, HOWELL and PAULOWSKY [33]. A similar problem 

involving subdstrate-inhibited enzyme reactions has been analyzed by 

MACGRATH and YANG [34], O'NEILL [35], and O'NEILL,LILLY and ROWE [36]. 

The plug flow approach is rarely considered [37],[38]. | 

For mixing patterns between these two extremes we have 

three options: 

1. stagewise models, 

2, dispersed plug-flow models and 

3. more sophisticated models. 

The last option involves any combination one can 

imagine of well mixed and plug-flow models. Those interested in 

the applications of the third option to non-inhibitory fermentation 

processes should read FAN, TSAI and ERICKSON [39] 

2.4) STAGEWISE MODELS. 

The mixing cell model and back-flow cell model are 

the best known examples of stagewise models. Their basic unit is the 

Stirred cell. The mixing cell model consists of a series of stirred 

cells: the culture and the air are fed to the first cell from which 

they flow through the other cells in succession. The back-flow cell 

model is very similar to the mixing cell model, the difference being 

the recirculating flow between neighbouring cells which contributes



2.5). 

14. 

to the mixing. In both models the total volume between the inlet 

and the outlet of the tube is equally divided between the cells. 

The mixing parameter common to both models is the number of cells, 

N, whica is determined by the analysis of the mixing process: in the 

case of back-fllow cell model the recirculating flow between heigh- 

bouring cells is an additional mixing parameter. 

The use of the above models in the analysis of tubular 

reactor has the Ha oetnaetientagos from a mathematical view point: 

1. the transient behaviour vi represented by a set of non- 

linear first order ordinary differential equations, and 

2. the steady-state is represented by a set of non-linear 

algebraic equations. 

Applications of these models to non-inhibitor fermentation pro- 

cesses can be found in the paper by FAN, ERICKSON, SHAH and 

TSAI [40]. Some research involving use of the back-flow cell 

model in fermentation is being carried out at Aston University [41]. 

In this thesis we will ignore such models. 

DISPERSED PLUG-—FLOW MODELS. 

In a tubular reactor we have deviations from the two 

ideal cases described in Section ( 2.2 ) due to two factors: 

1. non-flat velocity profile, and 

2. low intensity mixing processes. 

Usually these two factors are superimposed. In order to overcome 

the difficulties that arise we have to use the dispersed plug-flow 

model [42]. This model is the most widely used model for describing 

the non-ideal mixing behaviour of tubular devices [43]-[47]. 

Mathematically this model is much more complicated than 

the stagewise model, but the mathematical tools necessary to analyse
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it have developed fast in the last ten years. The unsteady~state 

behaviour of a dispersed plug-flow reactor is described by a set 

of parabolic partial differential equations and the steady-state 

is represented by a set of second order ordinary differential 

equations. The most widely used set of boundary conditions was 

independently determined by LANGMUIR [48] and DANCKWERTS [49]; 

this aspect of the problem has been widely studisd by several 

other researchers [50]-[54]. The numerical methods which can be 

used in the exact analysis of the steady-state have been presented 

in a sequence of papers by KUBICEK and HLAVACEK [55]-[63]. Stability 

analysis of the exact problem can be found elsewhere [64]-[66]. 

Approximate methods are described in the paper of HLAVACEK and 

HOFMANN [67] and COHEN and POORE [68]: use is made of a lumped 

approximation method in Chapter IV. 

Since the dispersed plug-flow model is the most ex- 

tensively studied mathematical model we hava chosen it as the basis 

for our studies. 

2.6) SUMMARY. 

In this section we have described in a very simple 

way the mixing behaviour of the equipment which constitutes the 

centre of our interest - the tower fermenter. Following that des- 

cription we have summarized the mathematical models at our disposal, 

explaining the reason for choosing the dispersed plug-flow model.
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IIT - BALANCE EQUATIONS. 

3.1) INTRODUCTION. 

The dispersed plug-flow model is the most widely 

used model in the analysis of tubular reactors. It has been 

used by CHEN [69] in a seen of processes involving exponential 

growth of micro-organisms and by CHEN, FAN and BRICKSON [70] 

in an analysis of fermentation reactions described by a modified 

MONOD model, in which endogenous metabolism is considered, 

FREDRICKSON, MEGEE and TSUCHIYA [7 ] in their analysis of mathe- 

matical models for fermentation processes presented the general 

equations which govem the tubular reactor but they only con- 

sidered non-gaseous substrates. 

The aim of this chapter is to present the balance 

equations together with appropriate boundary and initial conditions 

describing the behaviour of a dispersed plug~flow reactor in which 

a growth-limited fermentation occurs. In the development of the 

equations we will avoid detailed consideration of the gas-phase 

by assuming that the concentration of a gaseous limiting substrate 

at the gas/culture interface is constant and independent of the 

concentrate of this substrate in the gas-phase. In order to 

simplify the equations, the air hold-up is assumed to be constant 

and uniform, To eliminate the air hold-up from the equations we 

define the volumetric mass transfer coefficient relative to culture 

volume, Finally, we assume that the dispersion coefficients for 

the limiting nutrient and for the biomass are the same, 

3.2) CONSERVATION EQUATIONS. 

In this work a vertical tubular reactor in which 

turbulent flow occurs and in which a nutrient-inhibited fer 

mentation process takes place will be analyzed. In such a 

reactor the air or other gas is introduced through holes or



17. 

nozzles in a perforated plate or pipe, while the nutrients or 

the culture itself are introduced either from the bottom con- 

currently or from the top countercurrently. The fermentation 

process, in which the raw material is converted into desirable 

products, occurs along the length of the tube. 

For mathematical simplicity, the reactor is assumed 

to be operating under isothermal conditions, with constant air 

hold-up, and with axial dispersion superimposed on a flat profile. 

Under these circumstances, when radial dispersion can be neglected 

in comparison with axial dispersion, the material balance equations 

for a gaseous limiting nutrient are (see Appendix A) 

am am a?m * sm 
wt Ge DF > eee : Pau) ul 

2s a hy oe *_5_m a+ Vv ae D rt K a(s*=s) 7 Kase 7K Ss i oeyes 

where the symbols have their usual significance (see Nomenclature). 

io | BOUNDARY AND INITIAL CONDITIONS. 

Following the pioneer work of LANGMUIR [48] ana 

DANCKWERTS [49] the consensus is that appropriate boundary 

conditions for this mathematical model are 

V(a-m ) -09 

£=0;t>0 => (3.5ek) 

-p V(s-s ) =) 

SS 6 
Zeal; t>o0=>l * (3.3.2) 

we eo 
ot 

In order that this mathematical problem becomes a 

completely defined problem, we must specify in addition initial 

conditions. The appropriate initial conditions appear to be
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m 

t+ =0; 2 € (0,L)=> : (3.303) 

s = Ss. 
1 

i} = 

where (0,L) is the open setO <x<L. 

3.4) DIMENSIONLESS MATHEMATICAL PROBLEM. 

It is advantageous to render the equations (3.2.1) 

and (3.2.2) together with conditions (3.3.1)-(3.3.3) dimension- 

less by introducing the following set of dimensionless variables: 

u = cca (3 ad) 

v= Siwat (3.4.2) 

x= = (r4.9) 

y=. = (3 .tre44) 

When these dimensionless variables are inserted in 

equations (3.2.1) and (3.2.2) and in conditions (3.3.1)-(3.3.3) 

we get 

ou. or. ae Ugtu) (vo-v 
a” bo oe du rr reel (3-145) 

ov 1 or ae Ug tu) (vo-v we 2 SE. Bs wa(vey) +30 pipet amr — ya (5elee6) 

together with conditions 

y=03;x>0 aa = (Sek. 7) 

a i R_ a 2. o Fe 15250 ae ya ee (3.408) 

Sa0 : ye CG.) u=U, 5 v= V,. (3.4.9) 

It becomes evident that there are nine parameters. 

The first
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Bo = - C310} 

is the BODENSTEIN NUMBER: it defines the intensity of the 

mixing process that occurs within the reactor, The second para- 

meter 

* 

Fe = ae (3.4.11) 

which we will call the FERMENTATION NUMBER, is the ratio between 

the characteristic time of the reactor’, L/V, and the character 

istic time of the fermentation process, 1/y*. The third para~ 

meter 

ates oe (3 .t-012) 
v 

is the MASS TRANSFER NUMBER. It is the ratio between the 

characteristic time of the reactor, L/V, and the characteristic 

time of the mass transfer process. If we compare the inter- 

pretation of Ma and Fe we perceive that they are similar. The 

parameter 

ite 6s (3.4.13) 
Ky 

is the INHIBITION NUMBER*. Its domain is 

0. <a ed (3 4014) 

as K, < K,- The nutrient inhibition increases as In increases, 

The parameters up and vo must not be confused with 

the values of the variables u and v at the inlet. Their definitions 

are 

  

+The characteristic time of the reactor is sometimes called the 

residence time. Biochemical engineers know the inverse of the 

characteristic time of the reactor as the dilution rate. 

*The inverse of the Inhibition Number is known to Biochemists as 

The Relative Inhibition Constant [18].



ee Oey = 

and 

Yo = a : (3.4016) 

Finally Uz> Vy and v* are, respectively, the 

initial value of u, the initial value of v and the value of 

v at the gas/culture interface. 

3.5) STEADY STATE CONSERVATION EQUATIONS. 

The steady state equations are obtained by setting 

the time derivative equal to zero 

  

2 

= oa, + MBs 4 Re (uo+u ,) (vo ‘2 =0 (3501) 
dy? dy 1+(vo-v,)+in(vo-v.)* 

2 

= Oa a + Ma(v*=v) + 
dy dy 

7 (uo+u,) (vorv.) 6 (3.5.2) 

Is(vo-v,)*In(vo-v, )* 

together with conditions 

=. = 0 

dy 
ee (3.5.3) 

a a Bee 

ay 

u_ + = oe = 10 
s Bo ae 

dy 

Tek oy (3.5.4) 
a oy 

Teton S. =.0 

dy 

where the subscript s refers to the steady state. 

For a non-gaseous substrate (Ma =0) it is possible 

to reduce the boundary problem (3.5.1)-(3.5.4) to a homogeneous 

problem. Introducing the variable
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we obtain 

2 

% wa oie eM (3.5.6) 

y=Os o = 0 (3.5.7) 

1 @ 

The only possible solution of the problem (3.5.6)- 

(3.5.8) is the fermentation invariant 

4-20 (3.569) 
s 

or 

av (3.5.10)- 

Consequently, for a non-gaseous substrate equations 

(3.5.1)-(3.5.4) become 

ef au, pe: & (uo+u,)(vo-u,) 

= dy* dy 1+(vo=u,)+In(vo-u_)? 
e004 oe 

¥ = 0 = es =0 (3.5.02) 

dy 

eee ny ye eee koe we Oa (3.5.13) s Bo ay 

3.6) SUMMARY. 

In this chapter we have presented the balance 

equations together with appropriate boundary and initial 

conditions which constitute the model of dispersed plug—flow 

reactor in which 2 nutrient-inhibited fermentation process occurs. 

Suitable dimensionless variables and parameters were introduced 

into the equations in order to obtain a dimensianless mathematical 

problem. Finally, suitable steady-state equations for gaseous and 

non—gaseous limiting substrate have been obtained. 

Mathematically, the problem to be studied for
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unsteady-state conditions is a system of non-linear parabolic 

partial differential equations and for the steady-state conditions 

a system of non-linear second order ordinary differential 

equations. For a non=gaseous limiting substrate under steady- 

state conditions the system of ordinary differential equations 

can be reduced to only one equation subjected to appropriats 

boundary conditions. 

The equations presented in this chapter will be 

extensively used in the following chapter.
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4e1) INTRODUCTION. 

In this chapter the problem formulated in the last 

chapter will be analyzed qualitatively. In order to do this an 

analytical but approximate method described by HLAVACEK and 

HOFMANN [67] will be used. This method which reduces the system 

‘of non-linear parabolic partial differential equations to a system 

of first order non-linear ordinary differential equations enables 

us to obtain "first approximation" estimtes of the bounds of the 

multiplicity domains. These estimates are not exact in the sense 

that we never known whether they will lie above or tess the exact 

values: but very often, especially in the analysis of fermentation 

processes, the coefficients in the govermming equations are not known 

precisely enough to justify an exact approach. Finally, it is worth 

remembering that an exact analysis without the use of "first 

approximation" estimates is an excellent method of wasting computer 

time. From the above considerations it is evident that a qualitative 

investigation is an important step in the overall analysis. 

Before starting the analysis it is necessary to point 

out that the method chosen enables us to take advantage of 

Liapunov's First » Method to draw a number of useful conslusions. 

To finish this section we should like to point out that 

the method used in this chapter was first given by FRANK-KAMENETSKIT Cvehe 

The application to general parabolic partial differential equations 

with a non-linear source term is shown in the paper by HLAVACEK and 

KUBICEK [55]. 

4.2) LUMPED APPROACH. 

In this section we will follow closely HLAVACEK and 

HOFMANN [67]. The simplest linear form of equation (4.3.5 ) 

or (4.3.6 ) occurs for Ma and Fe equal to zero. It is 

a Le 
= ~ Bo oa . = (4ec24,)



2h.o 

together with the boundary conditions 

< 26 y =0 2 0 (462.2) 

ss L 2b. y=l g + a 0 (hi2ed) 

and the initial condition 

n=O; 01) $= 4, (4.204) 
The solution of this problem is [67] 

$ = . F(A, 280 sy» ) ex] (Ae < = =i (402.5) 
O 

m=4 

where 

A. Bo 
no 

Boe 
co 

After a short initial period the first term corres- 

tan r. = . (ps2 eb) 

  

ponding to the lowest eigenvalue, Ai, will dominate the series; 

consequently 

= F(d,B0,7,4,) exp [- (4+ *) x (102.7) 1, 9 J IPs Bo L . ole 

Differentiation of equation (4.2.7) with respect to x 

leads to 

Bo iltae 4 Be 

and a comparison of equation (4.2.8) and (4.2.1) yields 

2 2 B 2 2e, 2¢. - (es ae (244249) 

Introducing (4.2.9) into the system of equations 

(403-5 )-(4.3.6 ) results in 

du . oo uot) (vo-v 
ones asf ae 9 ° 

dx 3 , :) + Fe —— (4.2.10) 

av. ma Be 2 Uo+u) (vo-v 
aa Ma(v*-v) + Fe Se Pee ter) (4.2.11) 

together with the initial condition 

x20 =pusu,; vs. (4.2.12)
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The above derivation, as pointed out by ARIS [72], is 

notable for its complete abandonment of rigour. 

Since 

Li a? Bo 
se 0 eg , 7) =1 (4.2.13) 

- 

‘the lumped approach provides a mathematical relationship between 

the stirred tank reactor and the tubular reactor, 

The steady state equations are obtained by setting the 

time derivative equal to zero, so 

For -_ (uot) (vo-v,.) (4.2.14) 
1+(vo-v,) +In(vo-v.) r 

u 
Ss   

vy. = Fe* (uot) (vo-v,) + Ma*(v*~v_) (h@.15) 
s 

1+( “oro )+In( vo-v,)* 

whe re 

Fe 
Fe* = ha? Bo (4.2.16) 

Bo kL 

and 

Ma* = ee Bo (4.2.17) 

Bo Poke 

are the Modified Fermentation Number and the Modified Mass Transfer 

Number, respectively. It is easy to show that 

fin 86 oe um: Wa 2: fim o 

Bo+>0O Fe*  Bo+O0O  Ma* a 5S (4.2.18) 

"Table (4.1.1) was obtaimed using the values of \4 cal- 

culated by HLAVACEK and HOFMANN [67]. It shows that 

Fe 2 Fe* (4.2.19) 

and. 

Ma > Ma* (4.2.2) 

and that the ratio Fe/Fe* or Ma/Ma* increases as Bo increase , 

If the characteristic time of the fermentation process, 1/y*, and 

the characteristic time of the mass transfer process, 1/K, 35 are 

considered to be independent of the mixing process, one must



TABLE (4.4.1) 

  

    

  

    

Bo ts gee = as 

OPO; 1,09025 

0.05 1.0080 

O50 1.0166 

TOO dg 7 

2.00 ie DOU 

3.00 Loh So 

5.00 1.9430 

£64.00 Se O29 

50.00 12.669     

Modifying factors for several 

values of Bo. 

26.
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conclude that the characteristic time of the chemical reactor 

increases as Bo increases, 

4.3) CALCULATION OF THS STEADY-STATE SOLUTIONS. 

Let us consider the steady-state equations (4.2.1) 

and (4.2.15). A simple relationship between the dimensionless 

microbial concentration and the dimensionless substrate con- 

centration is obtained by subtracting equation (4.2.14) from 

equation (4.2.15): this leads to 

u, + Ma*v* 

1+Ma* 
(45 2) Vv = 

Ss 

This relation is not valid for unsteady-state conditions. Con- 

bining equation (4.3.1) and equation (4.2.14) it is possible to 

obtain a single equation for the dimensionless microbial concen- 

tration which can be written as 

a =Fe* (uotu,) [v, (Ma*+1)-Ma*v*—u, ] 
' Che 502) 

In * #47) -Ma*y*_ aah. (Ma*+1)+[vo (Ma*+1)-Ma*v n+ ee [vo (Ma*+1)—Ma*v*—u. ]? 

It is advantageous to start the calculation of the steady- 

state by considering non-inhibitory fermentation processes under 

sterile feed conditions. Under these circumstances a O and In =O 

and equation (4.3.2) becomes 

u, [vo (Ma*+1)-Ma*v*—u. ] 
(403.3) u_ = Fe* 

Ss   

(Ma*+1)+[vo(Ma*+1)-Ma*v*—u_] 

It is easy to see that 

Go ad (40304) 
S42 

is a possible steady-state. The other possible steady-state is 

Ma*+1 u_ =[Vo(Ma*+1)-Ma*v*] - Fee 
Sa 

(40325) 

Since Uy can never fall below zero, we have 

« < (VoL) (Ma*+1)-Ma*y* 
pre Seamer (423.6) 

Consequently, in the domain
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0 : (Yo+1) (Ma*+1)-Ma*v* 
ooo vo(Ma*+1) - Ma*v* (4-3-7) 

the sterile steady-state is the only possible steady-state. On 

the other hand, in the domain 

Vorl) (Ma*+1 )—Ma*v* 
ye meee < Pet < = :4-°) 

both the sterile and the non sterile steady-states are possible. 

For non-inhibitory fermentation processes under non- 

sterile feed conditions equation (4.3.2) becomes 

a, = Bet (Hot) [vo (ier1) tty] (e509)   

(Ma*+1)+ [vo (Ma*+1)-Ma*v*—u _] 

Firstly, we will study the existence and uniqueness of solutions 

in the domain 

O <u, € vo(Ma*+1) - Ma*v*, (4.3.10) 

A strong uniqueness condition independent of Fe* is abtained by 

writing the above equation as 

Foe* = uw, {(Ma*+1)+[vo (Ma*+1)- atv*—u]} 

(3 ta) 
  

(uo+u.) [vo(Ma*+1)-Ma*v* ~ u,] 

The right-hand side of equation (4.3.11) varies from zero ,as 

u, > 0, to infinity, as ue Vo(Ma*+1)-Ma*v*; this ensures the 

existence of solutions in the domain (4.3.10) for all values of 
of equation (4.3.11) 

Fe*,. If the right-hand side, is monotomically increasing in that 

domain there is only one value of us for which the left-hand side 

is equal to Fe*. Consequently a necessary and sufficient condition 

for uniqueness is [73] 

  

Se ee ee | (423.12) 

" (uo tu) [vo (Ma*+1)-Ma*v*— u,] 

An algebraic manipulation shows that condition (4.3.12) is satisfied 

when 

uo *(1+Ma*) [vo (1+Ma*)-Ma*v*] > 0, (436235) 

Since uo > 0, 1+Ma*>0 and



29-6 

vo(1+Ma*) - Ma*v* > 0 Ch Suthy 

we conclude that the uniqueness ecnat ane is satisfied for all 

possible values of uo,vo,v* and Ma*. Consequently, equation 

(4.3.11) has only one solution in the domain (4.3.10). 

For an inhibitory fermentation process under sterile 

feed conditions equation (4.3.2) becomes 

  

  

  

  

us = Fe*u, [vo (Ma*+1)-Ma*v*—u . ] (4.3.15) 

1 in (Ma*+1)+[vo(Ma*+1)—Ma*v*—u_] + Teta lVo (Ma*+1)-Ma*y*—u_ hen 

This equation admits only one solution in the domain 

0 < Fe* < 2|JIn| +1; (4-03.15) 

this solution is the sterile solution 

us, = 0. (4.3.17) 

For 

Fe* = 2|JIn| +1 (4.3418) 

there are two solutions; 

tS 0 (4.3.19) 

and 
* 

us = Vo(Ma*+1)-Ma*y* - eS : (4.23420) 
’ Vin 

In the domain 

oe * * Va ** * Ve ollgalel < Bet < (1+Ma*)+[vo(Ma*+1)-Ma*y*] + - | 0 (ita +1)-Ma*v* ]? (423.21) 

[vo (Ma*+1)-Ma*v* ] 

three solutions are admissible; 

as = 0 (ho Svea) 

SW x a 

We (ro(ila* +1) arv4}-(uat 2) 8 slits 1) tal | (4403.23) 
2 = ‘ 

— *_ _ 

a, = (vo(at+2) uae ]-(e+2){ #52 1)= se 1) Foi)" a| | (4035.24) 
3 

Finally, in the domain 

(1+Ma*)+[vo (Ma*+1)-Ma*v*] + [vo (Ma*+1)—Ma*y* ]? 
eee: 

Ma*+1 
< Fe* < co (43025) 

[vo (Ma*+1)-Ma*v* ] 

both



  

ae eno | (4.3.26) 

and 

ug, =[vo(lla*+1)—Ma*v# ]- oD ae (463.27) 

are possible solutions. 

For inhibitory fermentation processes under non-sterile 

feed oasitions the algebraic manipulation becomes cumbersome and, 

consequently, the old-fashioned graphical method of analysis will 

be used, The stability analysis for a non-gaseous limiting substrate 

may be found in section (4.5). 

4.4) STABILITY ANALYSIS. 

It was shown by LIAPUNOV [ 74] that the stability of a 

steady-state could be studied by considering the linear approxi- 

mation of the equation describing small departures from the steady- 

state. This mathematical tool is described in APPENDIX B. 

Let us start the analysis of the steady-state by consider 

ing a non=inhibitory fermentation process under sterile feed 

conditions. As we have shown in the last section the possible 

steady-—states are 

  

a0 : ! (4-35.44) 
for 

Oc Pee ewe y (40leL) 

and 

us = [vo(Ma*+1)—Ma*v*] - (4.3.5) 

for 

(wotl) (Ma*+1)—-Ma*v* ‘ 
vo(Ma*+1)-Ma*y* — < Fe" < © (4.3.8) 

The corresponding dimensionless limiting substrate concentrations 

are 

+ oo Meaty 
Ss 2 et (40. 2) 

and
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iE 
ferri ° (4.04423) Vv = ~ Se Vo 

For the sterile steady-state we have, as shown in Appendix B 

a 

  

  

  

  

a7 : (dp0lede) 
Saar Myer ye) - (3 - re Ma 

1+(vo-v,) _ 

or after introducing equation (4.4.9) 

eae ee a. [vo(Ma*+1)-Ma*v* ] 0 ] 

oS (1+Ma*)+[vo(Ma*+1)-Ma*v* J 

A= (p45) 

pe —L¥o(Ma*+1)-Ma*y*] (Eps 
(1+Ma*)+[vo(Ma*+1)-Ma*v*] Oc 

and consequently 

tr = ta Ma + Fe [v9 (1+Ma* )-Ma*v* ] fe) 

= 7% (1+Mla*) +[vo (1+Ma*)—Ma*v* ] 

and 

% [vo (1+Ma*)-Ma*v* ] hae Bo\ | 

ar es =outa Be - ( +==\) (4.4.7) 
{3 . YP (1+Ma*)+[vo(1+Ma*)-Ma*v* ] fO. 86 | 

So, the sterile steady-state will bé asymptotically stable, i.e., 

  

  

tra <0 (3-9) 

and 

deta > 0 (Be10) . 

ats 

O < Pet < (itlla*)+[vo(1+Ma*)-Matv*] (404.8 ) 
[vo (1+Ma*)—Ma*v*] 

and unstable, if 

(LiMa*)+[vo(1+Ma*)-Matv*] oe 2 o. (4ee9 ) 
[vo (1+Ma*)-Ma*v* ] 

For the non-sterile steady-state we have
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mH 2 

(55 + Ee saan "Fe 8 1+ vor 

  

  

  

  

  

[1+(vo-v)]? | 
. oe (4-041) 

F a 
! : 1+ ro-7) (8 ~ 77 yiene eh 

[1+(vo-v)]? 

or 

0 coe 

a3 
Bo (Be), 

eo {lvo(1+Ma*)-Ma*v* ](Fe*-1)-(1+Ma*) }(Fe*-1) | 

(Fe*)? (404. 1b) 
fs a - i[vo (1 +Ma*)—Ma*v*] (Fe*-1)-(1+Ma*) }(Fe*-1) 

Bo, (Fe*)? 

From (4.4.11) 

iia {Lvo (1+Ma*)—Ma*y*] (Fe*-1)- (14 *_ 

and 

jeu o e+ %) He (pelrel 5) 

consequently the condition 

tr <0 (3-9) 

and 

deta > 0 (B-10 ) 

imply that 

ee < Fe* < w (do deL.) 

Thus ,we see that the sterile steady-state is stable in the domain 

( 4.4.8) and the non-sterile steady-state in the domain 

(4.4.9), in which the sterile steady-state is unstable. 

For an inhibitory fermentation process under sterile 

feed conditions we have



a (s+ 7) -TFe (vo-v,) 

3 oeo$o 

1+(vo-v_)+In(vo-v,) 

Fe (vo-v.,) 
, 1+(vo-v,)+in(vy-v.) 

eoomre Us il e In(vo-v. 1 
  (ot-5 ) 
[1+(vo-v,)+In(vo-v_)?]? 

  

S: ) - Ma - Fe u,[1-In(vo-v,)*] eee Set 

[1+(vo-v,)+In(vo-v_)?]? 

Considering the sterile steady-state we have 

Ua, = 0 (403022) 

and 

ae, 
Sa 1+ Ma* ? 

  (4.4.16,) 

so 

stoe a + Fe [vo (Ma*+1)-Ma*v* ] 

3 ope 1+[vo (Ma*+1)-Ma*v*] + 

ee [Vo (Ma*+1)~Ma* v* ] 
  

In 
Tries [Vo (Ma*+1)—Ma*v* ]? 1+[vo (Ma*+1)-Ma*v* J+ 

  0 
Tate [vo (ia*+1)—Ma*v*]? (aD) 

aoe = - Ma 

Consequently 

[vo (Ma*+1)-Ma*v* ] (4.4.18) 
in (Ma*+1)—Ma*v* + Gerry Vo(1+Ma*)—Ma*v* ]? 

4 2 
tna o( Ap pase 

; 1+[ vo 

and 

Aen ne [vo(1+Ma)-Ma*v* ] . 
detA= - = + - }lla| | Fe in : eo 

1+[vo (1+Ma*)—Ma*v* ] +=, [vo (1+Ma )-Ma*v* J 
  

Bo . 4 
- Ca 2) (tpol+5 19) 

.



tu consequently ,the sterile steady-state will be asymp tgcally stable 

  

  

  

at 

: 

O < Fe*¥ < 1+[vo(1+lla*)—Ma*v* ] ss —— [vo(1 +Ma*)—Ma*y* ]? 

[vo (1+Ma* )~Ma*y* ] 

For 

ui. = (wo(Lekat) arta] (2iae)f Eetod) sie? I) "Bte 

- 
ain 

and 

= (Fo%=1)- |WfFe*=1) hr | 
es [v, (1+Ma*)—Ma*v*]- (2eues)f 2In 

which implies that 

ee gy co Gated Hy et)? uta 
ay. ee 2in 

and 

2 _ (Fet-1)-){Fe*¥=1) 7—4in | 
— ain 

After introducing (4.4.21) or (4.4.22) into (4.4.15) we get 

0 e@oo 

A a 

os Ag”, Bo 
e ‘ ee0 

Bo   
if sees Bo [2-(Fe*-1) (vo-v,) Ju, ree 3 

Fe*(vo-v_)” 

  

au -(%+ = Mar (Zs t) [2-(Fe*-1) (vo-v,) Ju, 

Fe*(vo-v,)* 

The conditions 

dstA >0O (B=10 ) 

trh < 0 (B~9) 

implies that 

2S (Fe*-1) (vo-v, ) 

Jee 

(4044.20) 

he te OO) 

(403-52) 

(tol. ZL) 

(4.4. 2) 

(404023) 

(404-624)
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or after assuming Fe* > 1 

us > vo(1+Ma*) - Ma*v* - (iswe®) (404025) 

[Jin | 
But 

u = vo(1+Ma*)-Ma*v* - (1+Ma*) (4.4.26) 
“pif |Jin| 

ie the bifurcation point where the two non-sterile steady—states 

are generatdad. This corresponds to the condition 

(Fe*~1)?— 4In = 0. (4.0027) 

And so the solution 

a ( #2 + 
u__ =[Vo(1+Ma*)—-Ma*v* ]-(1+Ma*) (Het-1) 4] (Fe*—1)"-4rn (4.04.28) 

S32 2kn | 

does not satisfy the above inequality and consequently, this steady- 

state is unstable. The solution 

sggnlro(toae) ater -(san | Cet -4in (404-029) 

obeys the inequality for all values and so it is stable. 

we 5) PHYSICAL INTERPRETATION OF STABILITY FOR A NON-GASEOUS 
LIMITING SUBSTRATE, 

In this section a physical explanation of stability 

of a fermentation process involving a non-gassous limiting substrate 

is obtained by using the old-fashioned graphical method. 

Let us consider the non-inhibitory fermentation process 

under sterile feed conditions. The steady state equation can be 

written as 

us = us (vo-u,) (4.5.1) 

Fe* 1+(vo=u 5) 

The left hand side of the above equation can be inter 

preted as the rate of microbial wash-out and the right hand side as 

the rate of microbial growth, The rate of microbial wash-out is a 

linear function of u, with angular coefficient 1/Fe*, For a given
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experiment the angular coefficient increases when the culture flow 

rate increases. In FIGURE (4.5.1) we plot both rates as a 

function of use 

Let us examine the physical meaning of FIGURE (4.5.1). 

The intersections of the curve OAB and the straight lines 0Q or OR 

are the possible steady-states. The straight line 0Q represents 

the case 

O< Fet «< Aate (4.5.2) 
and the straight line OR represents the case 

l+v, 
Fe* > mie ; (A545) 

In the first case we have only one intersection at OAB. 

Consider a small positive variation of us while all the other 

parameters remain constant we perceive the rate of microbial wash- 

out becomes bigger than the rate of microbial growth. This brings 

the microbial concentration back to the steady-state, so the steady— 

state is stable. 

In the second case the straight line intersects the curve 

OAB in two points. Consider the sterile steady-state:we perceive 

that for a small positive variation of uy the rate of microbial 

growth becomes bigger than the rate of microbial wash-out. This brings 

the microbial concentration away from the steady-state, so it is 

unstable. For the non-sterile steady-state a small increase of 

microbial concentration makes the rate of wash-out bigger than the 

rate of microbial growth. This brings the microbial concentration 

back to the steady-state. On the other hand, a small decrease of 

microbial concentration makes the rate of microbial growth bigger 

than the rate of microbial wash-out, so the non-sterile steady-state 

is stable to both types of perturbations, 

The above analysis gives a physical interpretation for the 

results we obtained in the previous section for non-inhibitory
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Graphical analysis of a non-inhibitory 

fermentation process under sterile feed 

conditions. 
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fermentation processes under sterile feed conditions, 

For non—inhibitory fermentation processes under non- 

sterile feed conditions we have 

Us = (votu,)(voru,) (d405 os) 
Fe* 1+(vo-u_) 

Ss 

The above relationship is plotted in FIGURE (4.5.2). As 

we can see there is only one steady-state for all possible values 

of Fe*, This steady-state is stable. 

For inhibitory fermentation processes under sterile feed 

conditions we have 

  

/ = u, (vou. ) (4055) 

Fe* 1+(vo-u,)+In(vo-u,)* 

' As we can see in FIGURE (4.5.3) there are four possible 

situations. The first one, rep resented by the straight line 09 

corresponds to 

0.< .Fe*< 2 fin. + 1 (4.5.6) 

In these circumstances there is only one steady-state the 

sterile steady-state. The graph shows that it is stable. 

The second case which corresponds to 

Fe* = 2JIn +1 (40507) 

is represented by the line OR. The sterile steady-state is still 

stable: but the non-sterile steady-state is stable only to positive 

perturbations and not to negative perturbations and so must be con- 

sidered unstable, The third case is represented by the line OS. This 

case admits three steady-states as shown in the graph - one sterile 

and two non-sterile steady-states. The sterile steady-state is still 

stable, the middle steady-state is unstable and the other is stable. 

The middle steady-state may be described as a "growth point" because 

it represents the minimum initial microbial concentration to avoid wash- 

out, This case corresponds to the domain
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Graphical analysis of a non-inhibitory 

fermentation process under non-sterile 

feed conditions.
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ee 
2° 2@JIn+1l< Fe* ¢< SA to + Taste! (4.5.8) 

Finally we have the case represented by the line oT. 

In this situation the sterile steady-state becomes unstable and 

the non-sterile Steady-state becomes stable, 

4.6) GRAPHICAL ANALYSTS. et ot 

The aim of this section is to plot graphically the results 
obtained in the last three sections in order to facilitate inter 

pretation, To simplify the analysis the dimensionless parameters 

Vo (1+Ma* )-Ma*y* 
Vo se 14+Ma* 

(4.6.1) 

and 

Up = Tae 
(4.6.2) 

and the dimensionless variable 

ie = : 2 

(4.6.3) + Ma 

are defined. These symbols were chosen because Vo= Vo, Uo = Ug 

and Ue a when Ma* = 0; this set of equations describes the 

case of a non-gaseous limiting substrate, - Introducing (4.6.1)- 
(4.6.3) into (4.3.2 ) we obtain 

a = Fe* (Uo+U.) (Vo-U.) 

1+ (Vo-U +I (Vo-U.)* 
  (4.46 ot) 

Before starting the graphical analysis it is useful to give a physical 
interpretation of the parametergsUo and Vo. Ug is closely related 

to ue; Ug =0 corresponds to sterile feed conditions; and Ug = 0 

to non-sterile feed conditions. The interpretation of Vo is more 

difficult: this parameter can never be equal to zero because this 

implies that the limiting substrate is not even fed into the reactor, 
So 

1. for a non gaseous limiting substrate (Ma*=0 ) 

Vo = Vo 

(4.6.5)



2. for a gaseous limiting substrate under saturated 

feed conditions (Ma* 4 0) 

Vo = Uo* (4.6.6) 

where 

* 

Yo = Yo" = E, (4.627) 

3. for a gaseous limiting substrate with no limiting 

substrate in the feed (vo = 0) 

Y= =e, (44.6.8) 

In the interpretation of the graphs it is useful to consider 

the particular situations listed above. Formulae used in 

preparing the graphs are tabulated in APPENDIX C. 

As in the algebraic analysis we start by considering 

non-inhibitory fermentation processes under sterile feed con- 

ditions, In FIGURE (4.6.1) U,/Vo is plotted versus Fe*, the 

unstable steady-state being represented by a apbtea Lainey. 7 In 

this graph we see that the sterile steady-state (U,= 0) is 

stable in the domain 

6 2itee < = (4.6.9) 

tile ¢ Tet < (4.6.10) 

The non-sterile steady-state (U,>0) does not exist in the 

domain where the sterile steady-state is stable because in this 

region U./Vo is negative and thus has no. physical meaning. But 

the non-sterile steady-state is stable in the domain where the 

sterile steady-state is unstable. Put in another way, in the 

domain
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dde 

itYo. (4.6.11) 
O 

Ore (We* < 

the phenomena known by biochemical engineers as wash-out occurs: 

and so in practice for the reactor to work at all the condition 

1+Vo 

° 
Fe*> (4.6.12) 

mist be obeyed, FIGURE (4.6.2) shows the non-sterile steady- 

state for several values of Vo. In FIGURE (4.6.3) we have 

plotted U ./Vo versus Fe for a non gaseous limiting substrate 

to show the influence of Bo, 

FIGURE (4.6.4) shows the only possible solution 

for a non-inhibitory fermentation process under non-sterile 

feed conditions, This solution is stable for all values of 

Fe*, FIGURE (4.6.5) shows the influence of Ug on the solution. 

It is easy to perceive that it approaches asymptotically the 

situation shown in FIGURE (4.6.1) as Up > 0. For high values 

of Up the curve goes rapidly to the vinta ity on U/Vo Os 

FIGURE (4.6.6) shows U./Vo plotted against Fe for several values 

OL BO. 

For inhibitory fermentation processes under sterile 

feed conditions the situation illustrated in FIGURE (4.6.7) 

is obtained. In the domain 

O <Fe* < 2|JIn| +1 (4.06.13) 

only the sterile steady-state is stable: this corresponds to 

the so-called wash-out condition. In the domain 

2 

i. ane Mo este xu (4.6.14) 

there are two solutions; the sterile steady-state which is 

unstable (dotted line) and a non-sterile steady-state which 

is stable. Finally in the domain
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2|JIn| +1< Fe* < Ha (e629) 
° 

multiplicity occurs. In this domain we have three steady- 

states the sterile steady-state which is stable and two non- 

sterile steady-states one stable and the other unstable. 

FIGURE (4.6.8) shows the effect of In on the non-sterile steady- 

states. - FIGURE (4.6.9) illustrates the effect of Bo for a 

non-gaseous limiting substrate. 

Finally, an inhibitory fermentation process under 

non-sterile feed conditions is considered. The stability 

analysis for this situation was done by means of the graphical 

method considered in FIGURE(4.6.13).FIGURE (4.6.10) shows 

the: general shape of the curve to be expected, but it is 

not possible to obtain analytical estimates of the boundaries 

of the regions. The graph shows that for low values of Fe* 

there is only one solution, and this is also the case at high 

values of Fe*: these solutions are stable. For intermediate 

values of Fe* there is a region where multiplicity occurs. 

In this region three non-sterile steady-states occur, the 

intermediate steady-state being unstable (dotted line). 

FIGURE (4.6.1 shows the effects of Uo and FIGURE (4.6.12) 

the effect of Bo. 

4.7) SUMMARY. 
In this chapter an analysis of the problem proposed 

in Chapter 3 is made by using a lumped approximation technique. 

First, steady-states are calculated for all situations except 

inhibitory fermentation processes under non-sterile feed con- 

ditions; and then the stability of these steady state 

is analyzed by using the Direct Liapunov Method. In order to 

analyse inhibitory fermentation processes under non-sterile 

feed conditions use is made of an elementary graphical method
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FIGURE (4.6.13) 

  

  (Wot Us)(Ao-Us) 

4+ (Vo-Utc) + Im (Yo-tus)* 

—7       
Graphical analysis of a inhibitory fermentation 

process under non-sterile feed conditions. 
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which allows physical interpretation of the results for all 

cases, Finally, the results obtained are plotted graphically. 

The results obtained in this chapter can also be 

used in the analysis of the well-mixed reactor for which they 

are exact. The aim of the work, however, is the analysis of 

the tubular reactor used as a fermenter. In this situation 

the results obtained must be considered as first approximations, 

especially when high values of Bo are considered.
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V - NUMERICAL ANALYSIS FOR THE EXACT PROBLEM FOR A NON-GASEOUS 
LIMITING SUBSTRATE 

5.1) INTRODUCTION 

In this chapter the equation goveming a fermentation 

process involving a non-gaseous limiting substrate will be 

analyzed by using a numerical method. The goal of this analysis 

is to compare exact solutions with those obtained in the last 

chapter using the lumped approximation method. 

In order to solve the exact problem the "shooting method" 

has been used. This method reduces the boundary value problem to 

an initial value problem by introducing an estimate of the steady- 

state microbial concentration at the fermenter outlet. The initial value 

problem may then be solved by a RUNGE-KUTTA marching technique, and 

the solution can be tested against the boundary condition at the 

inlet. If the solution does not satisfy this boundary condition 

a new estimate of the microbial concentration at the outlet is intro- 

duced and the procedure repeated until the boundary condition at the 

inlet is satisfied. It is possible to associate this procedure with 

any method for finding the roots of non-linear equations. KUBICEK 

and HLAVACEK [55][56] have shown how this is possible with the 

Newton and Richmond methods in order to obtain second and third order 

convergence, respectively. Unfortunately, due to time limitations some 

precision ha@ to be sacrificed and a simplified method used. 

5.2) NUMERICAL CALCULATIONS. 

For a non-gaseous limiting substrate the steady-state 

equation is 

2 = 

=o 5 4 oe + Fe (uta) (v, u,) 8 - = =0 (5.2.1) 
  

2 1+(¥, u,)+in(v, us) 

together with the boundary conditions 

y=0 => %s _ (5.2.2) 
dy
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y= s>u's 5.75). 5.0 (5.2.3) s Bo == dy 

From (3.5.10) it is possible to conclude that 

we 6% (5.2.4) 

After choosing 

us, =a O<ae vy, (5.2.5) 

at y =0, the above boundary value problem reduces to the initial- 

value problem 

Tev,-8,) aay, a 
° s ° s 

us = @ 

y=0=>> (5.2.7) 

os =O 

ay 

This problem may be solved by using the RUNGE-KUTTA marching techniqe 

from y =0 to y =1 todtain 

8(a) = |Us+ = 5 = 0 | (5.2.8) 

In order to find the values of @ for which (5.2.8) is 

satisfied a sequence of equally spaced values of q@ in the interval 

[0,v] is chosen and 8(a) calculated for each value of a. 

The computer problem used was based on the FLOWCHART (5.2.1). 

The RUNGE-KUTTA method employed can be found in the text by 

ABRAMOWITZ and STEGUN [79]. 

An example of the results obtained by the computer are 

given in TABLE (5.2.1). Values of u, at the fermenter outlet can 

then be found graphically as shown in FIGURE (5.2.1). 

In order to control the error in the computer calculations



PROGRAM FLOWCHART 

( ‘SEGIN ) 

Vv. 

Read 

Bo, Fe, In, uy, Vo, B 

and 71 

  
  

  

  
  

    
  

  
  

    
  

  
Write 

No 
STOP UW, and 

Residuum 
  

Yes 

  

  

          
  

  

  

Calculate us Ye Calculate 
and: ws. at 
outlet using Residuum 
RUNGE = KUTTA         
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FERMENTATION NUMBER 

a/v 5.0 9.0 

0.1 0.12632 0.30612 

B.2 -0.22782 -0.56800 

0.3 -0.29879 -0.77565 

0.4 -0.33215 -0.91575 

0.5 -0.31893 -0.97279 

0.6 -0.24767 -0.92589 

0.7 -0.10351 -0.74808 

0.8 0.13317 -0.40352 

0.9 0.48384 0.15650 

1.0 1.00000 1.00000         

Numerical example for No= ho, Bo= 0.04 , m= 0.0 

and Uo: 0.0.
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sh BEE (5.2.2) 

  

AXTAL DISTANCE STEP 
  

  

  

u,/¥ eg he 2x 1077 

0.1 -0.11832 -0.12202 

0.2 0 623K21 -0.24119 

0.3 -0.34603 -0.35601 

0.4 -0.45189 -0.46400 

0.5 -0.54781 -9.56087 

0.6 0.62633 -0.63838 

Oe? -0.67128 -0.67894 

0.8 064122 -0.63818 

0.9 -0.39471 -0.36947 

1.0 1.00000 1.00000         

Error control for Fe= 40.0 , Bo= 1.0, Im= 0:5 

Uz 0.0 Gnd Wo b.o. 

67.6



68. 

we rQ@n the problem for 

Fé =. 30,0,: 36a 1.0; Un =045; ae O08 sv = 1.0 

initially considering steps of 107°? and then 0.2 x 107? to obtain 

the results shown in TABL@ (5.2.2). : 

It may be concluded that steps of 10°? are dangerously 

near the point where the results become meaningless, but due to 

time limitations we have used it. The trial runs suggest that 

steps of 10°° or smaller should be used especially if a 

sophisticated method @f calculation is to be used, 

5.3) NUMERICAL ANALYSIS FOR A NON-GASEOUS LIMITING SUBSTRATE. 

Considering a non-inhibitory fermentation process under 

sterile feed conditions for which LP 1.Q,and Bo =.0.01 the 

results shown in TABLE (5.3.1) were obtained. FIGURE (5.3.1) 

compares the results obtained in the previous chapter with those 

obtained in this chapter: there is a very good agreement. - 

FIGURES (5.3.2) and (5.3.3) comparethe results for Bo = 1.0 and 

Bo = 5.0 respectively. The former shows good agreement, but the 

latter show only "poor agreement" for small values of Fe. These 

figures were constructed using the data shown in TABLZS (5.3.2) 

and (5.3.3), respectively. 

Finally considering an inhibitory fermentation process 

under sterile feed conditions we obtain the results shown in 

FIGURES (5.3.4) and (5.3.5) for Bo = 0.01 and Bo= 5.0 respectively. 

5.4) DISCUSSION AND CONCLUSIONS. 

The method used to obtain the above results was somewhat 

cumbersome and the precision was relatively low. The use of a high 

precision method, such as that proposed by KUBICEK and HLAVACEK root 

requires more computer time than was available to the author. 

For inhibitory fermentation process under sterile feed



  

AS LS (5.3.1) 

  

SEREMER TATION NUMBER 
  

  

= 2:0 3.0 40 5.0 6.0 2 oD 8.0 

Gil 20.01, «0.08 * -O108 40.73 50.18. Oubs' > See? 

Goo S Oi02 600.06. 40.19... w6.ch © -0,33 | =0,41.° =0.50 

Oe 2 0.8 30:0? © a S06 3r- Oe ie. 0956 30.68 

O.8.4.0.10 -0.0h°° -0220 °° “40.3). 20.50 <.-0.68 . -0.99 

O.5 10.316 0,00 <0,163:,.-O153 0.50. --0.60, «0.85 

O668 0.55. 0.08 20.08 («0s25 ““O.KR. 0.60. <0377 

Or? B.O:37 7 0.2%. 10,05. 0.10 (40527 © 07435... 0259 

Ose bG.5s. 0.50 Ovee ~ -O.25.. 0,00 Ors “au cer 

co F698 0.65 0.57 | 9 G.48 6 O.yO” SP S088 

130 1. 100s 00 00. 00s. 00 aD       

Numerical data. used in 

Bo= 0.04 

{m < 0-0 

Uo = 0-0 

No= 41.0 

  

Vv 
RESI\OUUM 

FIGURE (5.3.1) 

69.6
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2 ACB ae. e (edec) 

  

  

  

  

FERMENTATIOR NUMBER 

Us 2.0 3.0 4.0 5.0 6-0 7-0 8.0 

Oot t. O.01. -0.0b4.. -0,09: . -O.34* . ~0,598:*. 20 633° * 038 

O-2} 0.02 +: =0.06° -0.15 -0.24  +0.3%3 -0.42 -0.50 

Oed.F 00027 =0,07. 0419: <0.52.° 0.53 BOSE. 46.68 

O.&} 0.10 <-0.05 -0.20 -0.35 0.50 -0.64 -0.79 

0.5%: O.16 0.00 <-0.16 -0.33 -0.50 <=0.66 -0.83 

0.6] 0.26 0.08 +-0.08° -0.25 .-0.42 °° -0.60. -0.977 

0.7] 0.38 0.2E G05 ° “0,17 “0.27 Soy © «0,59 

0.8] 0.53 0.39 0.26 its “=G,00- “Use. Qua? 

0.97 0.74 0.65 0,57 0.49 0.40 0.32 0.23 

2 Ou 00 1.00 1.00 1.00 1.00 1.00 1.00       
  
  a 

RESIDVOM 

Numerical data used in FIGURE (5.3.2) 

Bo= 4.0 

Im = 0.0 

Uo = 0-0 

Voz L.o 

(i.
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conditions agreement between the exact and approximate method is 

very good for small values of Bo (Bo = 0.01): this is to be ex- 

pected since the fermenter tends to behave like a well-mixed tank 

reactor. When the Bo increases (Bo = 1.0 and Bo = 5.0) the graphs 

show increasing degreeSof deviation... It is difficult to assess 

the extent of this disagreement because values of U, calculated in 

the last chapter ar€ somewhere within the fermenter and the values 

of wm calculated in this chapter corresponds to that at the outlet. 

For an inhibitory fermentation process the agreement is 

good for both Bo = 0.01 and Bo = 5.0 as show in FIGURES (5.3.4) 

and (533.5). 

The results show that the region of wash-out predicted 

in the last chapter tends to be conservative, i.e., smaller than 

that predicted by numerical calculations. Also, the disagreement 

between the methods appearsto be greater for small values of Fe: 

such values are associated with the frontier between the wash-out 

region and the "active" i, mandation regions and with the multiplicity 

regions. The disagreement between the methods decreases as Fe 

increases, but this can be attributed to the fact that both solutions 

converge to a las Fe > ow. 

For the range of values of Bo reported by the Tower 

Fermenter Group [27], i.e., Bo < 1.0, the results obtained by 

using the approximate analytical method appear to be satisfactory. 

To achieve high values of Bo in practice,tubular fermenter would 

need to be fitted with special baffles to prevent back-mixing of 

the liquid-phase and microbial suspension, 

The next obvious step in the research appears to be a 

more numerical analysis. But before rushing into an exploration 

of this area, it might be prudent to work and see if expesrimentalists 

can confirm some of the prediction of the mathematical model. 

For a gaseous limiting substrate the situation becomes
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a little more complicated. We need to solve two non-linear second 

order ordinary differential equations and calculate two residuals 

which are function of two estimates at the outlet. This would 

require a more sophisticated method of searching for the roots 

and possibly more time On the computer.
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VI - FINAL COMMENTS AND SUGGESTIONS FOR FUTURES WORK. 

In this chapter we take stock of the results already 

obtained in order that the importance of future work can be 

assessed. This assessment will allow us to optimize the 

theoretical and the practical research. 

So far in considering a single cell fermentation process 

only substrate-limited fermentation processes have been analyzed. 

It is also possible to consider product-inhibited fermentation 

processes. In such problems three balance equations have to be 

solved - one for the micro-organism, one for the limiting substrate 

and one for the product. A possible kinetic model for such a 

process may be expressed by the relationship 

Re = ym (6.1) 

where 

Sele eas c u Rte ie, (6.2) 

and 

eee R, ee yy (6.3) 
s 

and 

aL 
= — 

6. R, . R, | (6.4) 

In meetings of the Tower Fermenter Research Group at 

Aston mention has frequently been made of the importance of the 

so-called secondary metabolites. This word was coined by micro- 

biologists to describe preducts of fermentation processes in the 

non-growth phase. However, the absence of a widely accepted model 

‘for such processes precludes any possibility of theoretical analysis 

at the present time, although it could be a profitable area in the 

future. 

When considering fermentation processes where ii cropiad 

aggregates occur we find that extensive use has been made of the
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analogy between floes/films and catalyst pellets/slabs (See the work 

of ATKINSON and co-workers [751-[76]. The idea is appealing, but 

the quasi~steady state situation is far from real and the agreement 

that it is a reasonable assumption does not satisfy the desire for 

a more exact aporoach, The latter can be started by abandoning the 

above analogy and considering models which describe more realistically 

the microbial growth phenomena. The correct mathematical problem for 

a microbial film, assuming MONOD kinetics, is 

  

as a*s K s oy Ce 6.5 ~ pe ~ pte (6.5) 
s 

as 
5-8, “Da ate = Ot) 5 t 20 ; (6.6) 

ds 
Te (6.7) 

dé gs 
at ae at y = £(t); t+ 20 (6.8) 

and. for a spherical floc 

as D @ i? os K s eo Pee Meck (6.9) at 0m or. K+5 

as ans, = D oat rs (t); = > 0 (6.10) 

ds 
ree Pe ee (6.11) 

dé as oa hee rs (6); t:3 0 (6.12) 

The above mathematical problem constitutes a non-linear Stefan 

Problem with the non-linearity due to the source term. A pre- 

liminary search in the mathematical literature appears to indicate 

that this kind of problem has never been considered befofe. The 

non-linear Stefan Problems already studied are due to the presence 

of a non-linear coefficient, i.e., D =D(s). FIGURES (6.1) ana 

(6.2) show the meaning of ¢(+) for film and flocs respectively. 

In the construction of the above equations the microbial concen- 

tration inside of the film/floc is assumed constant.
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FIGURE (6.1) 
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Diagram of a microbial film.



FIGURE (6.2) 

  
Diagram of a microbial floc. 

e(+) 
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Another possibility for future work is to consider the 

dispersion coefficients of the nutrient and microbial phases to 

be different. This is a natural continuation of the present 

research and only time constraints prevented us from including 

such an analysis in thé thesis. Such a case appears to be im- 

portant when flocculation occurs, but as yet there are no 

experimental data to support such modelling approaches. Fora 

non-gaseous limiting substrate it is possible to take advantage 

of the relation 

1 oe ee (6.13) 

to simplify the numerical calculatwons. 

As far as numérical analysis is concermed the work is 

still incomplete. The results obtained to date are not as 

advanced as we expected, and the mathematical tools used are not 

as sophisticated as those employed in the analysis of tubular 

chemical reactors. Nevertheless the results are useful because 

they show that those obtained by the lumped approximation are not 

far from the truth, at least in qualitative terms. 

For those looking for an analytical area of research it 

is worth pointing out that the equation which governs the steady- 

state for a non-gaseous limiting substrate, a .6«, Bauatien.( 5,59.41), 

belongs to a class of non-linear equations called non-linear equations 

of polynomial class [78]. It is possible that in a theoretical study 

of multiplicity this kind of non-linear equation might provide ‘ fruitful 

starting point and, consequently, some general mathematical conclusions 

may be obtained if someone looks in this direction. 

On experimental grounds we would like to see if the 

predictions of our waaly eka: especially those concemed with variations 

of Bo, are confirmed or refuted. In the case of disagreement between 

model and experiment the cause must be elucidated in order that the 

model be modified in the correct way. A comparison of the mixing
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patterms of nutrient and microbial phases, especially when microbial 

flocs occur, may be useful in the design of tubular equipment. 

The suggestions we have made in this section represent 

only the tip of the iceberg, and a large number of problems still 

remain hidden waiting for a general analysis.
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APPENDIX A 

  

MATERIAL BALANCE FOR AEROBIC FERMENTATION PROCESSES IN 

TUBULAR REACTORS. 

Let us consider a tubular reactor in which an aerobic 

fermentation process is occurring. The reactor is shown 

diagrammatically in FIGURE (A-1). Its length is L and its 

cross sectional area is S. 

The material balance equations are obtained by carry- 

ing out balances over a thin cylinder through which the culture 

and the air are flowing (See FIGURE (A-\)). 

For unsteady-state conditions, the material balance 

is 

out algal 

rate of mass{ _ |rate of mass| _— |rate of mass 

accumulation 

r fii of ca (A-1) 

generation 

We begin applying the law of conservation to the microbial 

mass. The rates of microbial mass in through the face at & due to 

convective motion and turbulent mixing are, respectively 

bs of microbial mass 4 

due to convective motion | ~ ae V(1-e)8 (A-2) 

rate of microbial mass in =Jj | (1-e)s (43) 

due to turbulent mixing [2 

and the rates if microbial mass out through the face at & + Ad 

are 

rate of microbial mass out é | v(1-e)s (A~2,) 

due to convective motion | evae 

rate of microbial mass out| _ J (1-e)s (A~5) 

due to turbulent mixing " 
+d   

The rate of mass generation within the volume elemen 

as



ie of microbial mass generatio ie R, (1-e)s Ag (A~6) 
within the volume element 

and finally the rate of microbial mass accumulation in the volume 

element is 

aoa of accumulation of fr (1-e)s am Ae (A-7) 

[microbial mass in the volume element 

Introducing (A-2)-(A-7) into (A-1) and dividing by 

‘(l-e)S A€ we get 

  

  

on n| -n pS se | 
aa re ge beh eh ee, Ng (4-8) 

Ae Ae 

Considering that 

fim m - 0 _ om 
Ae +0 srbe Se (A-9) 

Ae 

and 

in oo 3 a aS 
beso. “ene wines = (A-10) 

. AL 

we obtain 

gn Boe er os m + Rg. (A~11) 
ae 

Since 

R= A (a,s) (A-12) 

we have to consider a material balance on the limiting substrate. 

The balance will be similar to the microbial balance. Consequently 

we can write 

a of limiting substrate 2 5| V(l-e)s (A-13) 

due to convective motion 

ne of limiting substrate * K,a(st-s)S Ae (A+24) 

due to mass Eang(r. 
rate of limiting substrate out v(1-e)s (A-15) 

£+hd 
s 

due to convective motion   

rate of limiting substrate out|_ J (ime)S (A-16) 

  

due to turbulent mixing i 

88.



89. 

rate of limiting substrate consumption|_ R,(1-e)s Aé (an17) 

within volume element 

and 

rate of accumulation of = (nels < 3 Ag (A-18) 

limiting substrate in the volume element 

Introducing (A-13)-(A-18) into (A-1) and dividing by 

(1-c)S Ae we get 

v- ene” Sle -? ei ee + Kia(e*oa) +R, (CAAS) 
de 

But 

in s 27 8 oe 
he oO eee Ss (A-20) 

Ae 

and 

ge ae - J as 
im s os 

Aé> 0 £+ Ad Lee 5 (A-21) 

Ae 

SO 

9s ees +. me Ge a) - Ka(s s) + Re: (A~22) 

Assuming an analogy between mixing and molecular 

diffusion, we write 

— gn 

and 

Tam Dee (A~2),) as s 96 at 

In spite of the lack of experimental values of -. and va 

we would expect that 

AD, (A-25) 
However, in this work we will assume that 

Dy See D (A-26) 

leaving the former case to future studies. Introducing (A-23) and 

(A-24.) into (A-11) and (A-22) we get
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a*n ul a 
wat ae = > 3e7 +R, (A-27) 

2 +V ge Zs + Ka(s*-s)+ Rs (A~28) 

Finally, we assume that 

R, 0.4 MS 

K, +8 + ale (A-29) 

and 

Re == Hoax 2 
(A-30) 

K.+s+ we 

K
l
h
 

and on introducing these relationships into (A-27) and (A-28) we 

obtain 

2 

S+vB-0 . Hoax © § (A-31) 
K.+s+ s? 

s /k;, 
and 

2 
go. vy ths ye K.a(s*-s) eu Hae 8 (A~32) at ae ae t Gee oe s is, 

In developing the above mathematical model certain 

assumptions were made and these simplify the mathematical model 

considerably. They are: 

a) flat velocity profile, 

b) axial dispersion only, 

c) the same dispersion coefficient for the nutrient and 

microbial phases, 

d) Haldane enzyme kinetics. 

Although in practice very few systems, if any, qualify 

to be described in this way, it is useful to examine this model 

to illustrate the principles which govem the use of a tubular 

reactor for fermentation processes,
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APPENDIX B 

ANALYSIS OF LOCAL STABILITY FOR NON LINEAR ORDINARY 

DIFFERENTIAL EQUATIONS USING THE FIRST METHOD OF LIAPUNOV 

Since the work of BILOUS and AMUNDSON [B-l Jin 1955, it 

‘has become a straightforward matter to evaluate the local stability 

of chemical reactors governed by an autonomous system of ordinary 

differential equations. The First Method of Liapunov provided 

a basis for the study of the local stability of the steady— 

states. 

Consider the system 

oe = 2(z) (B+1) 
dt 

where 

X42 
co (B-2) 

x2 

and 

f4 (x4 xe) 

£(x) = (B-3) 
fa (x1 »Xa) 

A steady-state solution Xs of this system is one which 

satisfies 

£(x,) =Q (B—1,) 

It was shown by LIAPUNOV [B-1|that the question of the 

stability of a steady-state could be answered by investigating 

the properties of equations (B-1) linearized about the steady- 

state. This system of linearized equations can be represented by 

M say (B-5) 
at 

whe re 

Y =2-%, (B-6) 

and
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A= ea (B-7) 

x= X, 

V£(x) is the gradient of the vector field f(x) and may 

be represented as 

ae f4 (x4 x9) | 
ka GX vee) = | (2-8) 

df 2(%1 .X2) df a (x4 »X2) 

/ OX4, dXa | 

Let us represent the determinant and the trace of A as 

det A ad tr A respectively. Then, according to HLAVACEK, 

KUBICEK and JELINEK[B-2\the critical point y =Q is classified 

as follows: 

1. If det A <0, it is a saddle point and consequently always un- 

stable. 

2. If det A > O and (tr A)*® - 4det A 20, it is a node. It is a 

stable node if tr A <O and an unstable node if trA >0. 

3. If det A >0O and (tr A)? - 4det A <0, it is a focus. 

It is a stable focus if tr A <0 and an unstable focus if 

tr A> 0. 

It is easy to see that the necessary and sufficient 

condition for the steady-state to be asymtotically stable is 

for the conditions 

det A > 0 | (B-9) 

tra <. 0 (B-10 ) 

to be satisfied. In spite of the fact that no information is 

obtained about how large a perturbation can be tolefated before 

unstability will occur, the linear approximation analysis still 

remains as the most useful single approach to system stability. 

REFERENCE. 
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A.I.Ch.E.Journal, 1956, 2, 117. 
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Chem.Eng.Sci., 197, 25, lu.
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APPENDIX C. 

EQUATIONS USED FOR PREPARING FIGURBS (4.5.1) TO (4.5.12). 

The following equations were used for preparing the 

graphs shown in Chapter IV:- 

1+ ee 

Vo, 

1, Fe* = u,) (Cm) 

to plot the non-sterile steady state shown in 

FIGURE (4.5.1)-(4.5.3). 

2. Fe* _¥,l1 - (7,-U;,) (C-2) 
oc - Vea 

to build FIGURES (4.5.4)-(4.5.6) 

_ 1+ (V,-U,)+In(V,-T.) 

(¥a59 4) 
3. Fe* (C-3) 
  

to calculate the non-sterile steady-state plotted 

in FIGURES (40507) — (40509) 

2 uef2 + (vv) + In(V,-U.) ] 

gt hee 9) 

to obtain FIGURES (4.5.10)-(4:5.12). 

4. Fe* = (C—4.) 
 



NOME NCLATURE. 

[ ] gives dimensions: ( ) defines symbol 

A 

Bo 

Fe 

In 

matrix defined in Appendix A 

Bodenstein number 3) 

dispersion coefficient [L°T"+] 
* 

fermentation number (7) 

inhibition number Cpe.) 

volumentric mass transfer coefficient [T+] 

saturation constant [ML *] 

inhibition constant (wu? J 

axial distance [L] 

tube length [L] 

microbial concentration [ML *] 

mass transfer number es 

Vv 

product concentration [ML7°] 

rate of microbial growth (722-4 ] 

rate of substrate consumption (um 9274] 

substrate concentration [ML °] 

time [T] 

: : 5 : : mm 
dimensionless microbial concentration ( 2) 

YK 
s 

: . : : i ; mo 
dimensionless inlet microbial concentration ) 

1K. 

K 

: A ; s_-s 
dimensionless substrate concentration ( ° ) 

8 

dimensionless inlet microbial concentration (=2) 

s 

axial velocity [LI7™*] 

dimensionless time e 

D4.
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y = dimensionless axial distance (a) 

¥ = yield coefficient 

w = dimensionless variable (w-u-v) 

Ay = eigenvalue 

a maximum specific growth rate [T+] 

u* = maximum specific growth mte [17+] 

% = modifying factor ; 

) = function 

Subscripts 

0 = inlet value 

a = * Initial value 

Ss = steady-state value 

Superscripts 

* when used with variable means the value at the 

gas/culture interface 

when used with dimensionless numbers means the 

modified number used with the lumped aporoximation 

method (see Chapter 4 )
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