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SUMMARY 

For the implementation of on-line process control, it is often necessary 

to determine the true state of the plant, in real time, from insufficient and 

noisy measurements. Further information may be available in the form of a 

mathematical model: the measurements and model predictions can be combined 

to give a 'best' estimate of the process state. One such technique is the 

minimum variance recursive estimator or Kalman filter. 

This research is primarily an on-line application of the Kalman filter to the 

estimation of the temperatures, flows and overall heat transfer coefficients of a 

double effect evaporator. Two dynamic models are derived - a comprehensive 

eighteen order system and a fourth order reduced model. 

Two major software packages are developed - ASP, for interactive digital 

simulation and BASELINE for interactive data logging. Both packages are not 

confined to the double effect evaporator system as they are specifically designed 

for any programmer with a knowledge of BASIC. 

From on-line steady state experiments, accurate heat transfer coefficient 

correlations are derived which provide supporting equations for dynamic 

simulation. The results of comprehensive model simulation sive that the 

system response cannot be determined without a knowledge of the vapour phase 

dynamics. The response of the reduced model linulgtan closely follows the 

plant response to an identical disturbance and so this model is adopted for Kalman 

filter experiments.



The Kalman filter algorithm is implemented on-line in real time and further 

off-line experiments are carried out to determine the influence of the process 

noise statistics on the estimation of states and parameters (the overall heat 

branstek coefficients). Best estimation is achieved both by separating the elements 

of the process noise covariance matrix that correspond to the measured variables 

aed the parameters, and also by bfilising the heat transfer coefficient correlations 

as parameter prediction equations.
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CHAPTER 1 

INTRODUCTION 

The fundamental goal of estimation is to obtain the 'best' estimate of an 

unknown quantity by combining and interpreting imperfect information about 

that quantity. The term 'best' implies the existence of a cost function which 

is minimised by proper use of the information. Ina chemical engineering context, 

the quantity may be a state variable or parameter required for process control 

which is either unmeasurable or subject to measurement errors. In addition to 

measurements, the state of the process can be predicted by some form of 

mathematical model. The results of such predictions are also subject to errors 

due to inherent simplifying assumptions and an inability to describe 

mathematically the random disturbances which are evident in all processes. 

In a situation where little information is reliable, optimal control may still be 

feasible provided that 'best' estimates of the Be cit state of the system are 

available. 

Thus the problem of optimal control in the presence of poor measurements 

and predictions centres around state estimation. Linear estimation with a least 

squares cost was applied by Gauss ( 1 ) as early as 1809 to determine the 

orbital elements of celestial bodies from uncertain measurements. More recently, 

Wiener ( 2 )and Kalman ( 3 ) have tended the theory to estimate states 

described by a set of linear differential equations. The optimal, sequential, 

discrete-time estimation technique of Kalman, the so-called Kalman filter, has 

received much attention from researchers in the aerospace industry ( 4 ).



Extensions for non-linear systems have been proposed but in most applications 

there remains no guarantee that estimates are ‘best'. 

There are few reported applications of this technique to the estimation of 

states and parameters of chemical process systems. Coggan and Noton( 5 ) 

demonstrated the extension of the techniques to industrial processes with simulated 

measurements and like many other reported applications, the simulations are 

performed by machines of far greater power than a process control minicomputer. 

Ina real process application, it is necessary to. execute the filter algorithm and 

integrate the model equations in real time so that states and parameters can be 

used in an optimal control scheme. There are few reported applications of real 

time, on-line Kalman filtering in chemical engineering. 

This thesis is concerned with estimation of states and parameters of a double 

effect evaporator by the extended Kalman filter algorithm. The research is 

composed of the following four tasks: 

(1) A survey of Kalman filtering techniques and their applications with 

special reference to the computational features of the algorithm. The 

thermal dynamics of heat exchangers is also briefly reviewed. 

(2) Construction of the hardware and software links between the computer 

and evaporator. © 

(3) On-line and off-line simulation of steady-state and dynamic models 

of the evaporator. Dynamic modelling is restricted to the heat transfer 

mechanisms of the evaporator.



(4) On-line and off-line filtering experiments to prove the feasibility 

of implementing the algorithm in real time and to investigate the influence 

of filter statistics upon accuracy of estimation. 

Thesis Outline by Chapter 
  

Chapter 2 is devoted to a review of the linear and non-linear Kalman 

filter algorithms. Particular attention is paid to reported improvements in 

computational efficiency in terms of execution time and numerical errors 

involved in approximations. Finally, a brief review of heat exchanger dynamics, 

relevant to the double effect evaporator, is presented. 

The double effect evaporator, its operation and instrumentation and the 

link to the computer system are described in Chapter 3. Detailed plant description 

is provided in Appendix 1, and the construction of the computer/data logger 

- interface is given in Appendix 2. 

Chapter 4 describes the computer programs available for the computer-plant 

system. This includes the ae manufacturers software and packages developed 

as part of the research for interactive on-line operations - BASELINE (Appendix 3) 

and interactive digital sinslonen - ASP (Appendix 4). Once constructed, the 

packages are available to any programmer with a knowledge of BASIC. 

In Chapter 5, the steady state and dynamic models of the double effect 

evaporator are derived. Froman eighteen order system (Appendix 5), a fourth 

order reduced dynamic model is derived by assuming the system vapour pressure 

is controlled. This simplified model is suitable for implementation in the real-time 

Kalman filter algorithm.



Chapter 6 describes the on-line implementation of steady state and dynamic 

models. The on-line experimental method and computer programs (Appendix 6) 

are presented for calibrations, steady state runs, dynamic logging and Kalman 

filtering. Off-line simulation of the comprehensive and reduced models of 

Chapter 5 is also discussed. 

In Chapter 7, the results of the experiments described in Chapter 6 are 

analysed and discussed. Relevant tables and figures are to be found in Appendix 7. 

The principal study of Kalman filtering is extended from on-line implementation 

to an off-line investigation into the influence of the process fifa statistics upon 

filter convergence. The results of filtering with two alternative parameter 

prediction strategies, over a wide range of plant operations, are compared. 

Chapter 8 presents a concluding summary of results and recommendations 

for further study.



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In the application of control to chemical engineering plant, some form 

of mathematical description of the physical process is required. A process 

operator is aware of simple relationships between operating conditions and 

measurements and adjusts controls accordingly. For sophisticated process 

control and optimisation, a detailed mathematical model, describing steady- 

state and dynamic responses, must be formulated. In many cases, the physical 

information available for developing an accurate model . limited and many 

variables may not be accessible for measurement. In other instances, the 

physical form of the model and Sib pe some of the parameters are known from 

theoretical analysis or previous tests. However, in all cases, the model cannot 

be described accurately without the estimation of unknown parameters from 

experimental results. The installation of an on-line computer provides high- 

speed access to measurements and sufficient computing power to ioaiy modern 

theory in the identification of the model. A great’number of methods can be 

utilised in the solution of these process identification and parameter estimation 

ee bleiae each depending upon the pode litna method and the availability of 

experimental data. 

The purpose of this review is to survey the methods available for on-line 

process identification (taken to include the special case of parameter estimation) 

with special reference to the technique of Kalman filtering. The computational 

difficulties of implementing this technique in real time are considered together



with reported applications, including those to chemical engineering. Finally, 

the mathematical modelling of heat transfer equipment is briefly reviewed. 

2.2 Process Identification 
  

Process identification is defined by Astrom ( & ) as, 

"the determination, on the basis of input controls and output measurements, 

of a mathematical model equivalent to the process under consideration." 

Identification techniques vary according to the structure of model, the 

criterion chosen to determine equivalence, the calculation technique and the 

quantity and quality of the experimental data. The following broad classes 

of problems necessitate identification techniques:- 

1. The determination of parameters in algebraic models from 

experimental measurements. 

2. The off-line determination of states and parameters in dynamic 

models from plant output data. 

3. The on-line modelling of noisy dynamic processes, where a plant output 

signal is used to generate an instantaneous estimate of state and parameters in 

a process model, 

Although this review is concerned principally with the third class of 

problem, a number of general reviews of identification techniques in all three 

classes are reported by Nieman etal ( 7 ), Seinfeld ( 8 ) and Cuenod and 

Sage ( 9 ). 

Techniques for the solution of the third type of problem are classified as 

sequential or non=sequential. In the sequential approach, state variables and



parameter estimates are generated at each sampling (measurement) instant. 

In eet! methods, the estimation is based on a series of samples over 

a known period of time. Further, in non-sequential methods, the structure of 

the model may be known, from a physical description of the process, or 

completely unknown (the 'black-box' approach). These include the methods of 

quasilinearisation by Bellman ( 10 ), correlation analysis by Briggs et al 

(11 ), and the numerical inversion of the Laplace transform applied by Price 

(12). 

A sequential solution to the estimation problem is also referred to as a 

filter since current state estimates as well as parameter estimates are generated 

as the output measurements become available, hence continuously filtering the 

system. Thus the filtering problem is concerned with estimating the current state 

of a dynamic system based on all past and present measurements. The weighting 

of previous measurements in the filter calculations is referred to as the filter 

memory. 

Historically, filtering theory has passed through three consecutive periods. 

The first period started with the Wiener-Kolmogorov theory of steady state 

filtering for stationary stochastic processes ( 2 ) where solutions are obtained 

in the frequency deinaifi: The work of the second period is based on the linear, 

discrete time filtering problems for non EP tlonsry processes using the concept of 

state variables. This work is referred to as Kalman filtering after the original 

classical paper by Kalman ( 3 ). Finally, in the third period, the work is 

directed towards Kalman filtering for non-linear systems, e.g. Jazwinski (13 ), 

and distributed parameter systems by Seinfeld (14 ).



2.3 Mathematical Representation of the Process 
  

The structure of the model selected to represent the process has a great 

influence upon the identification technique and hence the required on-line 

computation time. In the technique of Kalman filtering the distinction between 

linear and non-linear models is of great significance. The systems under 

consideration are restricted to non-distributed parameter models. 

2.3.1. Linear system 

A linear dynamic stochastic system can be described by the vector set of 

first order differential equations, 

x(t)..-= A(t) x) - B(t) u (s) 25351 

M(t) x (t) + v(t) 21352 i} y (t) 

where x is an nx | state vector, y isanmx 1 measurement vector, 

u ee p x 1 vector of system disturbances, v isa mx 1 vector of random 

measurement disturbances, A(t) is the n x n plant matrix, B(t) is the n x p driving 

matrix and M(t) is the p x n measurement matrix. 

A special case of the general linear system is the linear stationary model, 

x(t) 

y(t) fo M wt) te v(t) 2:3:4 

Axe. #: Bu (t) Aesis 

By integration equation 2.3.1 can.be converted into a discrete state equation 

giving 

x(kk+ 1) = ok + 1,k)x(k) + Tr (k + T,k) ulk) 535 

y(k) = M(k) x(k) + v(k) 2.3.6 

where &(k+1,k) and T(k + 1,k) are the state transition matrices for the



interval te tot. 1" o(k,k) = 1 and o(k+1,k) = 1 at steady state. 

For a linear system the transition matrices are given by 

o(k + 1,k) = exp (As at) 2.39 

nee | rik +T,k) = v exp (A+ (t + At-+t)) ¢dr 2,3.8 
t 
k 

Where: Aft + -t 
Ret eg 

2.3.2 Non-linear system 
  

A non-linear stochastic system can be represented by 

x(t) 

y(t) 

i f(x(t), u(t), p(t)) + w(t) 2.3.9 

h(x(t), u(t)) + vit) | 2.3010 

where p(t) is a vector of unknown parameters, u(t) are the system inputs and 

controls, w(t) are the system random disturbances and f and h are non-linear 

functions. 

Astrom (6) differentiates between non-linearity in the state variables 

and non-linearity in the parameters. These two aspects of linearity have no 

relation since F system normally referred to as linear may be non-linear in the 

parameters. By expanding the state vector to include the parameter vector, 

x(t) =~ f&(t), u(t) + w(t) 2131411 

the estimation of states and parameters becomes one kind of calculation. 

The discrete non-linear system is given by, 

x(k +1) = F'Q&(k), ukk)) + wk) Pidske 

y(k) =  h'(x(k), u(k)) + — vk) 2.3.13 

where f' and h' are non-linear transition functions. 

-g-



As a first approximation, a randomly varying parameter can be represented 

by 

Xp(t) =, 0 2.3, 14 

or in discrete form 

xp (k + 1) = » (k) 254.15 

where the corresponding diagonal element of the augmented transition matrix 

is unity. | 

Coggan and Noton ( 5 ) and Noton ( 15 ) define a parameter as a 

continuous variable with random increments added at each sampling time. 

During the sampling interval, the effect of the added increment is to cause the 

variable to decay towards the mean, 

xp (t) = &p - % ()) 9 3°18 

Tp 

and the corresponding transition equation is 

»» (k+1) = ap (k) + (1 = aplp + (I - ap’)? op w(k) 2.351% 

where w(k) is an uncorrelated random process having zero mean and unit 

covariance, ap is the autocorrelation coefficient for xp over the sampling 

intervals, Tp is a filter time constant and 

ap = exp( -s/Tp), Zeaste 

op is the variance and Xp the mean of xp(k). The rate of decay to the mean 

value is a function of ap . When ap= 1, the xp (k) are correlated, equation 

2.3.17 becomes identical to equation 2.3.14. When ap = 0, the xp (k) are 

uncorrelated, xp (k + 1) is a random variable oscillating about the mean xp «



2.4 The Kalman Filter 

2.4.1 Linear Systems 

A number of approaches to the linear filtering problem have been proposed 

in the literature. Different criteria, usually minimum-variance or least-squares 

have been used to derive a discrete or continuous recursive filter algorithm. 

In the work of Kalman ( 3 ) and Kalman and Bucy (16) the estimate of state is 

treated a a conditional expection viewed as an orthogonal projection in Hilbert 

space. The same problem is solved by Bayes theorem by Ho and Lee (17) and 

Cox (18), who uses a Be aie beoarominilig formulation. Bellman et al (19) use 

variational methods to derive a two-point boundary-value problem which is 

solved by invariant imbedding. A theorem of least-squares due to Gauss is used 

by Goldman and Sargent (20), and Aoki (21 ve utilises the boneent of 

maximum-likelihood. 

For a linear stationary system, where the process and measurement noise 

is Gaussian, the maximum-likelihood, id hua eodinnce and least-squares 

estimates are the same. Even for non-linear, non-Gaussian noise the leads subabes 

estimate minimises the . covariance of the estimate (3 ). A number 

of different derivations of the linear Kalman filter are provided by Sorensen 

C28), 

Consider the linear discrete stochastic system described by 

xk+1) = ok + 1,k) x(k) + r(k + 1,k) w(k) 2.45) 

y (k) = Mk) x(k) +  v(k) 24,2



The respective covariances of w(k) and v(k) are given by 

Q(k) 

R(k) 

€{w (k) wik)'3 74.3 

Efvik) viel at a4 

ll 
i] 

The filter algorithm may be written as a set of prediction and estimation 

equations as follows :- 

Prediction : 

x(k + 1k) = @(k + 1,k) x(kik) 3 2.4.5 

Pk +k) = oe +1,k) Pik) ok + 1,k) 

me Oe 1k) Ok +1) kee 214.8 

Estimation : 

Kk +1) = Pk + 1k) Mk +1) [Mk +1) Pk + Wk +1) Mk +1) 

+ Rk +1] 7 | OP 

xk+iWk+1) = xk+Ik) + Kk+Dfyk+1) 

- Mk +1) xk + IIk)| 2.4.8 

Pik+Mk+1) = [I-Kk+1)Mk+1)] Pk +k) 2.4.9 

Pk+ik+1) = [I-Kk+1)Mk+1)] Pk + Uk)[T - Ke + 1)M(e+ 1] 7 

+ KKk+1)Rk+1) KK +1) 2.4.10 

where x(j|i)denotes the estimate of the state x at time j, given observations 

_ through time i. P(j[i) denotes the covariance of the error in this estimate. 

The term [yk +1) - M(k + 1)x(k + ik) | of equation 2.4.8 represents the 

difference between the measurement and the predicted measurement. The estimate 

of the state vector x(k + I|k + 1) is the sum of predicted state x(k + I|k) and the 

weighted measurement error. The weighting matrix K(k + 1) is called the filter 

gain matrix. The initial state estimate and the initial covariance, x(e|o) and 

P(o|o), determine the basic speed of response of the filter. The magnitude of the 

initial state error will cause an initial error in the covariance matrices which



results in an initial error in the filter gain K(k + 1). This initial error affects 

the time required for the filter to reach its steady state (convergence). Similarly, 

if P(olo) is large the filter gain will be large initially. This also increases the 

time to reach steady state, since the filter will initially rely upon current 

noisy measurements. 

Aoki (‘21 ) shows that the alternative equation for correcting the error 

covariance matrix (equation 2.4.10) is preferable to equation 2.4.9 since the 

right hand side of 2.4.10 is the sum of two symmetric positive definite matrices 

while 2.4.9 is at best the difference.of two positive definite matrices. 

Consequently, 2.4.10 is better conditioned for numerical computation and will 

retain the positive definiteness and symmetry of P(k + I[k + 1). 

In the original derivation of the algorithm ( 3 ) a number of valuable 

features of the linear estimator are described. Namely, that the estimate is 

uniformly assymptotically stable and that the convergence of the variances of 

the estimates, as each successive measurement is processed, is insensitive to 

round off errors provided the system is observable and controllable. Coggan and 

Noton ( 5 ) interpret the concepts of observability and controllability as 

follows: 

(1) A system is observable, if with perfect measurements and no random 

disturbances, all the state variables can be determined after a finite 

number of measurements. 

(2) A system is controllable if all the sho tes are excited by the random 

disturbances w(k). 

The recursive algorithm has great appeal in on-line applications because 

—-13 —



the filter utilises all the eyatlable data, including all current observations and 

prior data without storing previous Pie It is clearly optimal to base 

an estimate on all the available information. Bawavert the algorithm depends 

upon a knowledge of the dynamics, measurement function and statistical 

properties of the system, Q(k) and R(k). If the dynamics are imprecisely known, 

the filter may diverge from the true state due to model inaccuracies (23). 

Jazwinski ( 24 ) has suggested that divergence can be minimised by limiting the 

memory of the filter, thus placing less weight on the earlier measurements. One 

such filter developed by Tarn and Zaborsky ( 25 ), exponentially increases the 

measurement noise covariance matrix of old observations. The texuliing 

modification to the filter algorithm is at equation 2.4.6 which becomes 

ae + 1)k) Plklk)@ e+ 1) 
Me + 1k) Qk +1) M+ 1k) 

Pk+1|k) = 1 
c 24:10 
+ 

where c ¢ 1 and is chosen asprion by the designer and has the effect of 

escalating exponentially with time the covariance matrix of ot past observation, 

i.e. making past observations have less effect upon current estimates. Goldman 

and Sargent (20 ) sineeeally utilise a number of limited memory filters 

including the oscillating memory filter of Jazwinski, in which the memory is 

cleared at regular intervals and the filter is restarted. Improvement of the filter 

in uncertain environments is reviewed by Leonedes and Pearson ( 26 ) who 

conclude that the optimal technique depends upon each particular problem, 

its accuracy requirements and available computer storage. Errors in the 

mathematical model have been studied analytically by Huddle and Wismer ( 27 ) 

and Griffin and Sage ( 28 ) to enable the reduction of high order systems. 

The linear estimator requires:a knowledge of the process and measurement 

noise covariance matrices Q(k) and R(k). In most on-line systems they are 

uae



uekuown amd wus be approximated. Mehra (29 and 30’) proposes an 

on-line method for their estimation which assumes the system is time invariant 

and completely controllable and observable. A similar approach based on an- 

autogressive moving-average model is developed by Krause and Graupe ( 31 ). 

2.4.2 Non-linear Systems 
  

Non-linear filtering theory has developed from the classical linear Kalman 

filter in two ways. The first, is basically an extension of the linear theory in 

which a Taylor series expansion, aallating second hd higher order terms, 

is used to linearise the state and/or measurement functions. Conditions of 

optimality of the estimate and its error covariance are no longer guaranteed and 

divergence and bias affect the numerical stability of the filter algorithm. 

The second approach is based on the exact equations satisfied by the conditional 

expectation, minimum variance, or conditional probability density function. 

It can be shown that the optimal filter cannot be obtained by a finite 

dimensional system. Finite dimensional approximations have been employed 

to derive suboptimal filters, each derivation based upon the definition of 

optimality and the approximation. Amongst the many reported derivations of 

suboptimal filters, those of Jazwinski ( 82 ) and Kushner ( 33 ) are representative. 

Consider the non-linear stochastic system described by 

x(k+1) = F(x(k), uk)) + whk) 2.4.11 

yk) = Ak(k), uk)) + vik) : 974,12 

where w(k) and v(k) are white Gaussian noise processes with covariances 
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given by 

E tte) wt} = Qk) 2.4.18 

B iv(k) v' deh R(k) 2.4.14 

If the system equations are linearised about the current estimate of 

state by means of a truncated Taylor series expansion, the state transition matrix 

becomes, 

q 

ak + 1k) = Ataf), uk)) | eri 2.4.15 
xtk) | «(etl 

and the measurement matrix is linearised about the predicted state, 

Mk+1) = Atah(x(k), ulk)) | 2.4.16 
3x(k) x(k + Ik) 

  

where the bar is taken to represent linearisation about the current estimate. 

The linearised filter equations are as follows: 

Prediction : 

kad, 
x(k + 1]k) = x(klk) + i: f(x (klk), u (k)) dt 2447 

he - 

Pkt ik) = Ok + 1,k)Plklk) dk +1sk) + Qk+l) 2.4.18 

Estimation : , 

K(k + 1) = Pk + Wk) Mk + 1) [ Mk +1) Pk + Uk) M (ke #1) 

+ Rk+1)] 7! 2.4.19 

x(k + Uk +1) = xk+ ik) + Kk +1) [yk +1) 

- Mk +1) xk + 1|k)] 2.4.20 

P(k + 1|k + 1) [I-Kk +1) Mk +1)] Pk + ikofT- Kk + Mk +1]! 

+ Kk+I)RKt DK K+) 2.4.21 

where K(k + 1) is the filter gain. This algorithm is the first-order or extended 

Kalman filter. Unlike the linear filter, there is no theoretical proof of 
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convergence and stability but it is possible to determine by inspection whether or 

not the state variables are excited by the random disturbances (controllability). 

Observability is not always obvious, and Aoki (21 ) suggests that it can be 

determined during computation. The algorithm has been extended to account 

for non-Gaussian noise and disturbances by Friedland and Bernstein (34 ). 

Convergence can be improved by the inclusion of second-order terms 

in the Taylor series expansion of equations 2.4.15 and 2.4.16, but only at the 

expense of computation time. The justification of added complexity and 

computational requirements in these so called second-order filters depends upon 

the degree of non-linearity of the system. Reported filtering of simulated systems, 

such as Athans ( 35 ) and Schwartz and Stear ( 36 ) are in disagreement as to the 

value of such improvements. The simulated Scheie are, however, formulated 

solely for the purpose of testing the usefulness of extensions to the filter 

equations. Athans ( 85 ) states that unpublished results indicate that second- 

order filters diverge more than first order filters. This could be true if the 

Taylor series expansion of equation 2.4.15 is divergent. 

Denham and Pines ( 37 ) have proved that the effect of measurement function 

non-linearity can be reduced by iterating about the prediction stage of the 

algorithm. The estimate obtained at equation 2.4.20 is used to recalculate 

M(k + 1) for equations 2.4.19 and 2.4.20 until the estimate convergences. 

Errors due to the linearisation’of the state equations can be iterated similarly. 

An estimate obtained at equation 2.4.20 is used to recompute ® (k,k + 1) 

which smooths back the estimate to tee This modified previous estimate is 

then re-estimated through the prediction and estimation stages of the algorithm. 

until the estimate converges. This iterated, extended Kalman filter was first



described by Wishner et al (38 ). 

The effect of bias or drift in measurements can be incorporated into the 

model by relating the predicted value of a measurement es to the instrument 

reading Yo 

eine ee. 2.4.22 

Goldman and Sargent (20 ) regard the bias parameter, B, and drift parameter, 

Y, as state variables and include them in the augmented state vector. 

Friedland (39 ) has studied the effects of bias in the state equation and derives 

a two-level filter algorithm. The state is first estimated as if no bias is present 

and then this estimate is corrected to account for bias. Computationally, this 

decoupling of state estimation and bias correction is attractive because the 

dimension of the state vector is not increased. 

In on-line applications of the extended Kalman filter, the non-linear 

mathematical model is an approximation to the true process behaviour. 

Consequently, the process noise covariance matrix, Q, cannot be accurately 

determined. Wells (40 ), suggests that Q can be taken to represent either 

uncertainty in the model and the linearisations, or the process aie statistics. 

In this case, the numerical values assigned to Q depend upon trial ond error 

methods and an intuitive feel for the accuracy of the model. 
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2.5 Computational Considerations 
  

The computational requirements of the Kalman filter presents a 

formidable obstacle to its real-time implementation. In systems with a 

large number of state variables, the sampling frequency of process 

measurements is limited by both the necessity to minimise numerical error 

at the prediction stage and by the computation of the matrix inverse at the 

correction stage. The first fully reported case of real-time non-linear 

filtering on a minicomputer is by Schmidt et al (41 ) in which.a study of 

the guidance system of the USAF/ lockheed C5 transport aircraft reveals the 

practical problems of storage, timing and computation of transition matrix. 

In the case of linear systems the transition matrices, @ and [ , 

can be computed a priori from the exponential matrix, 

&k+ Lk) = exp(AAt) a. 2.204 

where A is the plant matrix and At = tr yo he Bul hard and 

Kropholler ( 42 ) review the available methods for the computation of 

the exponential matrix including the class of "stiff" problems in which the 

absolute values of the smallest and largest eigenvalues of A differ 

considerably. Since the estimation error covariance matrix, P, does not 

Sabena upon the observations (equations 2.4.5 - 2.4.10), the values of 

P and K can also be computed a priori. In real time applications this provides 

a possibility of trading processing time against storage by precomputing 

P and K and storing K. 

In non-linear systems, the matrices@and Mare those of the linearised 

may 
system and thus require computation at each filter cycle. The minimum



sampling interval will be increased further by the necessity to reduce the 

integration step length for the prediction of state variables ( equation 2.4.17). 

2.5.1 Filter Algorithm 
  

Wells ( 43 ) proposes an approximate method for the elimination of 

matrix inverse for non-linear systems by considering only the diagonal 

elements of the predicted error covariance matrix, P(k + 1] k), (equation 

2.4.18). The consequent reduction in processing time and accuracy of 

estimation is not reported. 

Jazwinski (13 ) and Singer and Sea (44) show how the matrix inversion 

is reduced by processing the measurement vector one measurement set ata time. 

When the measurement sets are uncorrelated, the measurement vector can be 

ordered so that the noise covariance matrix is of the block diagonal form, 

— — 

Ri{k + Ty m, 

Rik + 1) = Ro(k + 1) My 7 23552 

— 

RAR Oe     en 7 

where each R. (k + l)isan m, xm, covariance matrix and the sum of the 

dimensions of. the lesser matrices equals that of the original R(k + 1) matrix. 

The correspohding measurement vector is partitioned as



at 

[yk +0) Mik +i) xk+Itvik+1)| 
| 

yk+1) =]yok+1)} = | Mok+1)xk+t1)4#vak +1)! 
: ‘ : 2.5.3 

| 
days 1) LM M.s(k + 1) x (k + 1) + ve get | 

. wth ‘ 
Thus there are t uncorrelated measurement sets, the i set having m, elements. 

i 

The filter algorithm becomes, 

Prediction: | | 

Ly x(k + I{k) = x(klk) ce] stetae, u(k} dr: 258 

‘ 

2. P+ Ik) = &&+ 1k) Pak) pk + 1k) + Qt) 2,50 

Estimation: 

3i Setis =. 31 

It P(k + ik) A + 1) LM, + 1)P{k+ 1k)M," + 1) 

Cae). iene 2.5.6 
| 

4. K(k + 1) 

ul 5. x(k+ Wk+1) = x(k +k) + Kk +1) [y.k +1) . M.(k + 1) 

x X(k + 1 k)}: 2:57 
/ oe hea is vr : a hA L 6. Pik+ Wk #1) = LT - Ki + Mk + 1] Pk + Tk)[T- K(k+ 1M k+ 1] 

+ Ki e#1) Ree) K."(e+1) 2.5.8 

vs Ifi< t put i = i+ 1 and return to step 4. 

8. Set k = k+1 return to step 1. 

In this sequential processing procedure, the inversion of one mxm 

matrix is replaced by the inversion of + matrices of dimensions m) x m, 

My X Moy eves fe m In the special case where all the measurement 

noises are uncorrelated, (m = +), the inversions reduce to m scalar divisions. 
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One column of the gain matrix, K(k + 1), is formed during each measurement 

iteration and M.(k + 1) is a row vector. This technique vies the identical 

solution to the extended Kalman filter algorithm with a theoretical reduction 

in the computational requirements of the covariance correction equation of 

over 50% (44). In addition, the iterative nature of the algorithm permits 

priority and interrupt measurement strategies without disturbing the Kalman 

filter operation. 

2.5.2 Transition Matrix 
  

Accurate prediction of state variables by the state transition method 

is not possible for non-linear systems and consequently an Slretnenive method 

(e.g. Runge-Kutta) must be adopted in equation 2.5.4. To predict the 

state covariance matrix (equation 2.5.5.), some form of transition matrix 

is required, Forthe continuous non-linear system, 

x(t) = “F(x(t), u(t)), Lider 

the transition matrix is expressed as a Taylor series expansion 

Uke 1K) ST te Nett uit) 
OX 

  

2 2 
en At 9 f(x(t), u(t)) 

2 ox. ef 

+ higher order terms 

x = x(k) 2.5.10 
  

  

When the series is truncated after the first order term, the transition matrix 

is that used in the extended Kalman filter, and after second-order terms, in 

the second-order filter. Clearly the second-order method requires greater 

computer time and storage, although comparisons of the accuracy of the 
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methods (35 and 38 ) do not consider problems of this type. Both methods 

are susceptible to errors as the sampling interval, 4t, increases and the series 

may even diverge. Since the transition matrix represents the influence of the 

model upon the calculation of the filter gain and covariance matrices, these 

errors must be minimised. This may not be possible in real-time applications, 

although some trading of computer time and accuracy has been reported (41 ). 

One possibility suggested by Wells (40) is to adune errors by "judicious" 

selection of the Q matrix. However, no theoretical method has been 

developed for non-linear systems. 

McLean et al (45 ) derive the transition matrix continuously by solving 

the state equations with n sets of perturbation equations, each with a unit 

initial condition on one of the x. and the remainder zero. As the state 

equation is solved for each unit initial condition, tha corresponding column 

of the transition matrix is formed. After each filter cycle, the initial conditions 

are reset to unity or zero and the computation is carried out until the next 

observation time. This algorithm utilizes all available computer time between 

observations, but is not suitable for highly non-linear systems where the 

integration method requires a small step length.. 

2.5.3 Prediction of State Variables 
  

Selection of a numerical integration method for the state variable 

prediction stage of the filter algorithm depends upon available computer 

time, storage and required accuracy. Integration methods have been reviewed 

by Distefano (46 ) including the classical Euler and Runge-Kutta methods 
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and more recent methods for the solution of "stiff" dynamic equations. 

Wells (40 ), in an off-line Kalman filter experiment, suggests the Euler 

method but notes significant increase in error with large step length. 

Schmidt (41 ), ina real-tiine application, applies the transition matrix 

method of the _ linear filter and experiences difficulty in dervod a 

sufficiently accurate 4(k + 1,k). 

2.5.4 Observation Interval 
  

Ina real-time application, the minimum observation el is the 

sum of the times required for measurement, state variable prediction, 

executions of a filter cycle and output of information and control signals. 

If the interval is excessive the computation of $(k + 1,k) will generate 

significant errors, so that for a highly non-linear system, measurements should 

be made as frequently as possible. Athans (47 ), presents an on-line strategy 

for selecting the best single measurement at any given time so that the 

measurement policy can be specified in advance. Mehra (48 ) compares 

the extended Kalman filter at different measurement rates in the simulation of 

a balistic re-entry vehicle. The use of measurement averaging during the 

filter cycle time is studied by Schmidt et al (41 ). While this averaging 

process smooths the signal noise as desired, there is a danger of smoothing 

the signal itself and causing estimation bias. 

2.5.5 Storage and Processing Time 
  

The requirements of storage and execution speed of the non-linear 

filter algorithm are a function of the system order and the number of



measurements. Mendel (49 ), derives an equation for the computation time 

of any system based upon the times associated with total number of 

multiplications, additions and computer logic time. The total storage is 

reduced by making explicit use of the structure of the system matrices and 

processing time is reduced by the sequential algorithm (equations 2.5.4 - 

2.5.9). Coggan and Wilson (50 ) have implemented the Kalman filter 

algorithm on a PDP-8 minicomputer with 4K of core. Inclusive of matrix 

subroutines, the computer will support a ninth-order system with a filter 

cycle time of nine seconds. Wells ( 40 ) on a more powerful Univac 1108 

computer, reports a pis caeaihy time of 1.8 msec for a sixth order system 

(compared with 0.6 seconds for the equivalent system on the PDP-8). 

2.5.6 Filter Performance 
  

To minimise the quantity of data output during a filter cycle, it is 

convenient to express the filter performance as a single vector of estimation 

errors. When a digital simulation is used to generate "plant" data, the 

actual states x are available and the filter performance can be compared 

on the basis of the following vectors. 

li Root mean square error - Wishner etal (38 ). 

N ul 
ck) = SK) = xik{k))? ? 2.5.12 

t=] a 

where N is the number of samples in the run. 

2. Ratio of scaled variables - Coggan and Noton ( 5 ). 

d(k) = log 10 ee 2d 
x(k) 

a 
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In a real application, x is never known. The matrix of error covariances, 

P(klk), is the only information available (51 ). For any variable the 

theoretical estimation error vector can be expressed as, 

elk)’ = ea0( 1 + afk). ) 2.514 
  

where 3 -(k) is the vector of square roots of the diagonal elements of 

P(k k) and X is the vector of state means. If the state is not randomly varying 

about a mean value the error can be expressed as 

e(k) = oa 9( 1 + o¢lk) ) 2.5.15 
x (kj k) 

but this does not account for bias and drift in the estimate. 

If the physical model is accurately described by equations 2.4.11] and 

2.4.12, P(klk), can be used to describe the manner in which ie estimates - 

converge to the true state. Examination of P(klk) element by element is 

unsatisfactory, since it involves a elements. Sorensen ( 22), introduces 

the concept of the error ellipsoids defined as the n-dimensional taeée of 

constant robe billey density. The direction and magnitude of the principal 

axes of the ellipsoids are defined by the eigenvectors and eigenvalues of ~ 

P(k|k) which + positive-definite (i.e. complete controllability and 

observability). 

The error ellipsoid is used to characterise the variation of the estimates 

about the true states. For a given confidence limit, it is possible to 

integrate the probability density over the surface of the ellipsoid to obtain 

the probability that the true state will lie within the ellipsoid. When the 
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magnitude of an axis decreaess) the conclusion is that the error in the estimate 

is decreasing in the direction of that state variable. As the number of filter 

cycles increases, the magnitudes of the axes deeusire , i.e. the filter 

converges. A two-dimensional example is daicribad diagramatically by 

Bryson and Ho ( 52 ) and by computer animated film by Woodside (53 ). 

2.6 Kalman Filter Applications 
  

2.6.1 General Applications 
  

Since the original classical paper by Kalman ( 3 ), linear and non- 

linear filtering theory has been applied successfully in the aerospace field. 

Certainly, many of the theoretical and practical advances have been 

contributed by aerospace and electrical engineering researchers. The first 

practical application of the extended Kalman filter is by Smith, Schmidt et 

al to space vehicle guidance (45 ) and orbit determination (54 ). The 

dynamic equations for these tous are well-known from satellite orbit 

mechanics and the equations of motion. The measurements, based on radar 

and in-board celestial readings are subject to errors, the statistical 

characteristics of which can be determined. These applications are 

reviewed ns Schmidt ( 55) and Sorensen (22). Re-entry vehicle 

trajectory estimation studied by Athans et al (35 ) presents a more severe 

modelling problem - the dominant forces are aerodynamic rather than 

gravitational. Because of the relatively poor Lnavelatica of atmospheric 

conditions, these forces cannot be described acedlcwly: Furthermore, 

the dynamics are much more non-linear than orbit dynamics and may be



expressed in different co-ordinate systems. Mehra (48 ) proves that bias 

is reduced by the selection of the least non-linear co-ordinate system and 

by implementing an iterative filter algorithm. 

Most reported results i this field are either concerned with the 

simulation of known system dynamics corrupted by noise to provide 

measurements", or only successful final results are published. The 

practical bolicatibn of the Kalman filter on-line to a real process with 

uncertain dynamics is not extensively reported. A detailed study of the 

application of the linearised theory to the USAF/Lockheed C-5A aircraft 

navigation is reported by Schmidt et al ( 41 ) including the real-time 

computational problems of storage, numerical precision, observation interval 

and linearised transition matrix calculation. - 

Kalman filtering has become an integral part of the broader field 

of modern control theory, where accurate state and parameter estimation 

is required for an optimal control scheme. The theory is included in 

control textbooks by Astrém (56 ), Bryson and Ho ( 52 ) and Sage and 

Melsa (57 ). 

Outside of the aerospace and chemical engineering fields, Kalman 

filtering is used by Wheelwright and Makridakis (58 ) as a technique 

for preparing short to medium-term economic forecasts, where although 

more accurate, it is found to be more expensive than conventional time- 

series analysis. Other recent applications include agricultural pest 

control by Ford-Livene (59 ) in predicting the number of pests and optimum 

pesticide distribution from a pest reproduction model; the surveillance and 
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control of traffic movements by Szeto (60 ); harmonic analyis by 

Sharma et al (61 ); nuclear reactor control by Godbole (62 ); the 

control of a cement mill by Belanger (63 ) and telescope position 

estimation by Tse (64 ). 

2.6.2 Chemical Engineering Applications 
  

The identification techniques developed in the aerospace problems 

are directly applicable to chemical engineering systems. In most Siegen es 

the system dynamics are non-linear, uncertain and contain unknown 

parameters and the measurements are affected by noise. Often, when 

reliable dynamic models are derived, they consist of sets of distributed 

parameter differential equations too complex for on-line, real-time filtering. 

The selection of the Kalman filtering technique for the identification of 

chemical engineering processes is based upon the following:- 

1. Some of the difficulties associated with model building and 

parameter identification in multivariable systems are overcome. Since the 

structure of the model is retained and a measure of the accuracy of the 

estimation is available as P(k + I{k + 1), the method lends itself to the 

development of suitable models and testing of model simplification. 

2. The filter is robust in as much as approximate models do not 

drastically affect the accuracy of estimation. 

3. Since the algorithm is sequential in operation and discrete 

measurements are always made sequentially, existing on-line measurement 

strategies require no modification.



4; Computationally, the algorithm is attractive for on-line use 

because previous measurements are not stored. Thus a system with a large 

number of state variables can be handled by a comparatively small process 

. control computer. 3 

5. Due to erratic disturbances, a chemical process jis seldom at 

steady-state which precludes the use of many alternative identification 

methods. The Kalman filter can be utilised during normal process operations. 

6. The Kalman filter can be extended to include process non-linearites 

and transport lags. 

7. Measurement noise statistics, R, can be derived from separate 

on-line experiments. The selection of the process noise matrix, Q, is 

more complex but this problem is by no meons specific to chemical 

engineering applications. 

8. Milapahamical processes have large time constants so that problems 

of observation interval and on-line computation time are eliminated. The 

on-line filter may even be computed via a remote time-sharing terminal. 

Chemical engineering applications can be conveniently divided by 

authors as follows: 

Coggan, Noton and co-workers 
  

One of the first chemical engineering applications of the extended 

* Kalman filter is by Noton and Choquette, in Canada, in the identification 

of a reactor train for The Polymer Corporation. Initially (65 ), the computer 

was used in an off-line manner during open-loop control experiments and 

‘later ( 66 ) during closed loop experiments via a remote time-sharing



computer. Due to commercial secrecy, the mathematical model is not 

published but reference is made to unmeasured state vaciebhas: randomly 

varying parameters and transport lags. In a chemical engineering context, 

this on-line work has pioneered the solution of many of the practical problems 

of applying the filter in real-time. Although not fully computerised (some 

measurements are input manually via scan switches at the process control 

room), the overall exercise is successful, in as much as an improvement 

over manual control is experienced. One theoretical development from this 

application is the decomposition of high order systems to minimise filter 

computation time (67 ). This has particular reference to sparsely coupled 

subsystems with few stochastic inputs. 

In England, the applications are reported by Coggan and: Noton ( 5 ). 

This notable paper solves the theoretical problems of large numbers of state 

variables, parameter state equations and transport lags that are characteristic 

of chemical processes. An important distinction between two types of state 

variables is reported - 

a. Interdependent state variables: variables which ore dependent upon 

the process and are affected by disturbances either directly or indirectly 

b, Non-interdependent state variables: variables which affect, but 

are not affected by the interdependent variables. 

A state variable, Xe is interdependent if the ith row of the transition 

matrix contains one or more non-zero off-diagonal elements. The magnitude 

of the coefficients of interdependent variables in the transition matix has 

great influence upon observability and is discussed later.



The estimation procedure is applied to simulated systems exhibiting 

strong non-linearites, intermittent measurements, large random disturbances, 

unknown parameters, transport lags and unknown initial values. The possibility 

of trading model simplification for unnecessary numerical accuracy is also 

discussed. An approach to model reduction, prior to estimation is suggested 

by Coggan and Wilson ( 51 ) to minimise the number of state variables 

required to describe a system. The filter algorithm is extended to evaluate 

measurement error statistics and detect the presence of bias. Although the 

heat exchanger and absorber systems are simulated, feedback of these statistics, 

within the algorithm, aaa! the estimation error when the model is erroneous. 

The authors also report the on-line implementation of the filter algorithm 

ona minicomputer ( 50 ), including an investigation of the computation time 

per filter syelé for various dimensions of the state vector. These filter cycle 

times could be improved by use of the sequential processing technique. 

However, the description of the implementation of the software for a io" 

order system on a 4K computer refutes previous assumptions regarding the 

impracticability of the estimator algorithm. 

Sargent and co-workers 
  

The feasibiltiy of using the Kalman filter for on-line state and parameter 

estimation in chemical engineering systems has been reported by Goldman and 

Sargent (20). The extended filter algorithm is derived for disturbance-free 

processes and applied to the identification of a simulated distillation column 

anda fiedebad catalytic reactor with superimposed Gaussian or rectangular 

measurement noise. The extended Kalman filter is shown to be robust in 
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estimating bias and drift in simulated measurements and the oscillating memory 

filter is proved to be less sensitive to modelling errors than the classical 

growing memory filter. It is reported that the convergence of the filter 

from initial estimates, x(0J0), is accelerated by selecting a high initial 

estimation error covariance matrix, P(0}0). However, this is only the case 

for systems assumed to. have no process noise and accurate measurements. 

Klinger ( 68 ) investigates the effect of prior information in the estimation 

of noise free processes and concludes that theoretically unbiased convergence 

can be achieved from P(0J0) = © .I. 

An extension of the non-linear catalytic reactor study as part of an 

optimal control scheme is reported by Joffe and Sargent (69 ) including the 

piiect of input noise disturbance. The non-linear distributed parameter 

stochastic system is decomposed into a non-linear lumped parameter model. 

Both the process and control scheme are simulated and found to be insensitive 

to the statistical assumptions, initial estimates and process noise convariance 

of the filter algorithm. 

Wells 
  

Wells (40 ) applies the Kalman filter to the identification of states and 

parameters of a simulated, six-dimensional non-linear well-stirred reactor 

model. Ona large off-line Univac 1108 computer, the filter cycle time is 

reported as 1+8 msecs, which could be further improved by the sequential 

processing technique. An important concept, discussed in this paper, is the 

analogy between the process noise covariance matrix, Q, and process 
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uncertainty. The magnitude of the Q matrix can be increased for systems 

that have dynamics that are not well understood or for state equations that 

represent a model simplification, thus placing more weight upon the 

measurements. Consequently, an exact description of the process dynamics 

is not necessary to achieve good estimates. In chemical engineering problems, 

high numerical accuracy is not required so that some model simplifications 

and approximations can be attempted with corresponding adjustment of the 

Q matrix. 

Seinfeld and co-workers 
  

Seinfeld (‘70 ) has extended the Kalman filter to stochastic systems 

described by non-linear parabolic and hyperbolic partial differential equations. 

The computational requirements of the on-line implenieniahign of such a system 

are prohibitive. Gavalas and Seinfeld (7 1 ) reduce a plug flow batalytic 

reactor problem to a lumped-parameter system and successfully estimate state 

variables. The equivalent distributed-parameter system is filtered by Seinfeld 

et al ( 14 ), but problems of caniaenes and observability in distributed- 

parameter systems remain unsolved. The incorporation of these techniques 

into a distributed-parameter control problem is studied by Yu and Seinfeld (72) 

utilising a simulated scalar parabolic system. Since many chemical engineering 

systems can be only accurately modelled by distributed-parameter systems, there 

is clearly further useful work to be carried out in this area. 
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2.7 Heat Exchanger Dynamics 
  

2.7.1 . Introduction 

The study of the dynamic behaviour of heat exchangers has received 

increasing amounts of attention from investigators. Considariid the great 

diversity in heat exchange equipment, the endless variety of process 

applications and the fact that the three basic modes of heat transfer are 

involved to varying degrees, the field of heat exchanger dynamics is both 

extremely broad and complex. General reviews of the literature, nich as those 

by Williams and Morris (73 ) and Williams (74 ) cite a substantial number of 

papers dealing with this subject. 

This brief review is limited to shell and tube type exchangers involving 

an isothermal condensing medium. In particular, the dynamics of shell and tube 

evaporators, similar to the process under study, are considered. 

Mathematical models of heatexchangers involving condensible media 

have been developed for use in control applications. Some researchers use 

an analytical approach based on a knowledge of the governing laws and 

the system geometry whereas others develop transfer functions from laboratory 

test data inveline both frequency response and pulse testing methods. Within 

the accuracy of the assumptions, eile developed by the former method are 

applicable for all types of input disturbance and include process non-linearites. 

Buckley (75 ) presents a comprehensive summary of the latter methods which 

incorporate classical frequency-response methods in the design and testing of 

heat exchanger control systems. 
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wer iZ Analytical Methods 
  

Figure 2.1 represents the simple case of liquid flowing through a 

vapour heated tube of a concentric-tube heat exchanger. An unsteady 

state heat balance on the process fluid is given by 

  

aT, + Vy aly = 4h il cmel a) 

of ox po) Fy 

on the tube wall by, 

dT = 4d ih. (T. 4 - 4hid, pale a1) 

“A pc ld bd.4) pc (d an) 
WwW WwW ] www dees 

and on the steam space by 

Vado H) _ “ hs ae > one AH. 4hd. . (T. 1) 

where T, h, d, ¢,p and H represent temperature, local heat transfer 

coefficient, diamater, specific heat, density and specific enthalpy. 

Subscripts 1, w and s refer to process fluid, tube wall and vapour space 

respectively. The term A H of equation 2.7.3 represents ihe difference 

in enthalpy between vapour entering the exchanger shell and the vapour 

and/or condensate leaving. Ue is the shell volume and. v, is the process 
] 

fluid velocity. 

These equations are formulated subject to the following assumptions: 

(1) Temperature and velocity profiles of the fluid are uniform across 

any diameter, i.e. plug flow, and heat transfer by diffusion in the 

— 36 = 

Zctu 
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taiticn of flow is negligible both in the process fluid and tube wall. 

(2) The thermal conductivity of the wall is infinite in the direction at 

right angles to the direction of flow and zero in the direction of flow. 

(3) There are no heat losses through the heat exchanger outer wall. 

(4) Heat transfer at the tube surface is proportional to temperature 

difference. 

(5) The vapour temperature, To, is uniform throughout the shellside 

of the exchanger and any condensate does not lose sensible heat. 

(6) Densities, specific heat, cross sections and heat transfer coefficients 

are constant, 

and thus represent a heat exchanger having distributed fluid thermal 

capacitance. 

When the outlet fluid temperature response to disturbances in inlet 

temperature or vapour temperature is required, these assumptions render equations 

belak@ bitaa biotin, A general solution can therefore be obtained in terms of 

the three variables by taking Laplace transformations and solving the resulting 

differential equation in x for the appropriate boundary conditions, e.g. 

Finlay (76 ). The dynamics of a multipass exchange is described by 

Stainthorp and Axon (77 ) asa SSeibinotion of a number of single tube 

exchangers with each flow reversal chamber assumed to be a first order lag. 

The mathematical solution is either inverted to give a time-dependent solution, 

or left as a transfer function from which frequency-response data may be 

obtained. 

In industrial applications, the frequency-response data are more 

a ae



acceptable in-control system design because the frequency-response 

characteristic can be obtained directly from the transfer function of the system, 

frequency-response data are compatible and additive, and the techniques are 

extensively developed. Representative papers are those of Stermole and 

Larson (78 ) and Stainthorp and Axon (77 ). 

The assumptions listed are not sufficient to render equations 2.7.1 - 

2.7.3 linear when the response to disturbance in flow rate is required and when 

the shellside is non-isothermal. The non-linearity is a consequence of the 

dependence of heat transfer coefficient upon fluid velocity ths vapour 

Eiaalce and-density upon temperature. Standard non-linear correlations, 

e.g. Dittus-Boelter and Nusselt equations, are available to determine heat 

transfer coefficients while the temperature dependence of vapour enthalpy and 

density is usually available in tabular form. 

When industrial scale heat exchangers are considered, there are eight 

non-linear dynamic relationships of interest, namely the response of the tube 

or shellside outlet temperatures to changes in the inlet temperatures or flow 

rates of either tube or chelitide Huid: The distributed-parameter models 

derived are exceedingly complex, and numerical evaluation is feasible only 

with the aid of a high-speed digital computer. Heidemann et al (79 ) 

develop the non-linear distributed dynamic model for a simple single-tube 

heat exchanger based upon experimental heat transfer coefficient correlations 

and constant shellside vapour pressure. 

Distributed-parameter models can be simplified in two ways. Firstly, 

the distributed-parameter system can be represented by a lumped-parameter 

3H oe



analogy. Thermal capacitance is assumed to act at a point rather than as a 

continuous function of length. Dependence on position is thus removed and 

the describing equations have time as the only independent variable. An 

example of this approach is the work of Fricke et al (80 ) in which a multi- 

pass exchanger is represented by 6 lumped sections on the shellside and 24 

lumped sections on the tube side in order to fascilitate simulation on an 

analog computer. The second method of simplification is linearisation of the 

basic model describing the distributed parameter system e.g. Stermole and 

Larson (78 ), which permits the use of Laplace transforms to generate 

frequency response curves. The converse of the spacetumping simplification, 

time-lumping, is developed for a parallel flow heat chanel by Schmidt and 

Clark ( 81 ), and the corresponding computational ‘ecuicecmats are found to 

be less than the conventional method. A-simplification by the use of 

Hermitian polynomials is successfully applied by Dorri ( 82:.). 

2.7.3 Evaporator Models 
  

Mathematical models of evaporator systems reported in.the literature, 

use both empirical and theoretical approaches. Johnson ( 83 ) fits 

parameters to various models of a falling-film evaporator. Nisenfeld and 

Hoyle ( 84 ) consider simple empirical models for feed-forward control and 

use two first-order lags and a time delay to represent dynamically a six-effect 

evaporation process. 

The first theoretical derivation is by Anderson et al ( 85 ) where a 

lumped-parameter, sixth order model of single pan-type evaporator effect 
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is reduced to a third-order system by neglecting vapour space and heat 

transfer dynamics. In the analysis, only small variations are considered and 

the equations are linearised in all the variables. Andre and Ritter (86 ), 

Rayalod the lumped-parameter dynamic equations of a double-effect evaporator 

and replace the vapour phase equations with their steady-state counterparts. 

The computer simulation of the resulting fifth order model gives excellent 

agreement with aS aetinaltia data. This dynamic model is used further in 

evaporator control system design by Ritter and Andre ( 87 ) and computer 

control of an evaporator tay Newell (88 ). The effect of simplification in the 

development of the same model (86 ) and alternative control strategies is 

developed by Newell and Fisher (89 ). A comprehensive model of 

17-effect desalination evaporator: is developed by Burdett and Holland ( 90 ) 

and includes the formulation of the heat transfer dynamics of the large 7 

cylindrical walls of each effect. 

In a recent paper by Hamilton etal (91), the fifth order evaporator model 

(86 ) is used further in filtering experiments that provide accurate estimation of 

state for various control algorithms. The filtering technique does not give 

optimal estimates because the filter gain matrix is adjusted intuitively rather than 

by the Kalman algorithm. Since the overall objective of the work is one of 

evaporator control, rather than estimation, the aeeurcily and assumptions of this 

simplified filter is not discussed. 
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2.8 Chapter Review 

Process identification techniques are surveyed with special reference 

to the technique of Kalman filtering. The computational difficulties of 

programming the Kalman filter in real time have been considered together 

with reported applications. Mathematical modelling of heat transfer 

equipment has been briefly considered and it appears that heat transfer 

processes of the type under consideration can be modelled by established 

techniques. 

The principle areas for further exploration are: 

1. The efficient on-line real-time implementation of the Kalman 

filter algorithm on a small computer. 

2. The analysis of the effect of uncertainty in the mathematical 

model and noise statistics in non-linear systems. 

3. The application of the Kalman filter to the study of heat transfer 

dynamics, where time constants are small, and hence available computation 

time is. small. 
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CHAPTER 3 

‘THE DOUBLE-EFFECT EVAPORATOR - COMPUTER SYSTEM 
  

3.1 General 

One of the main advantages of linking a digital computer to a 

chemical engineering process is that the computer is capable of logging 

or storing numerous measurements at high speed. Furthermore, the measurements 

can be processed immediately, so that the results of the computation can be 

made available to the process end of the ben. The haters of the 

information returned to the process depends upon the sophistication of the 

on-line hardware, ranging from direct digital control to simple teleprinter 

messages for a process operator. 

Figure 3.1 shows the general layout of the evaporator-computer system. 

From the process instrumentation, a number of analogue signals are connected 

to the peiieae cabinet of a two-part data logger situated alongside the process. 

~ By means of trunk cabling, the remote eabinet is linked to the main cabinet 

of the data logger, which is itself connected to the digital computer. Compares 

information is returned to the communication teletype at the plant end of the 

system, which facilitates remote control of computer programs and input/output 

of data. 

All logging operations are executed from the digital computer by 

programmed commands output to the main cabinet. The commands are decoded 

into data logger instructions to perform operations such as channel scanning, 

clock reading and amplification. A scan instruction causes the input side of an
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analogue to digital converter (ADC) to be switched to the required analogue 

channel connected at the remote cabinet. The digital output of the ADC 

returns to the computer for numerical conversion and processing. 

3.2 Double Effect Evaporator 
  

The evaporator was manufactured and erected by Kestner Evaporator and 

Engineering Company Limited. Originally (92 ), the plant was designed to 

‘operate as Bike? two single or one double effect evaporator with an additional 

option of vacuum operation. The author has been principally concerned with 

operation in the double-effect, vacuum state. A summary of the evaporator 

units is given here; a detailed description of the engineering construction is 

provided in Appendix 1. 

3.2.1 Process Description 
  

A flow diagram of the double-effect evaporator is presented in Figure 3.2. 

The first effect of the evaporator is of the Kestner climbing film type (93 ) 

and consists principally of a vertical liquor preheater, a climbing film calandria 

and a tangential cyclone separator. Evaporation is carried out by the climbing 

film method, in which the liquor is’in contact with the steam heated tubes fora 

short period of time. 

The vertical second effect is of the forced circulation type and consists 

of the heating calandria, the salting-out type separator and the circulation 

pump. Liquor from the separator is continuously circulated through the tubes of 

as Se
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the calandria at high velocity and back into the separator. Vapour from the 

shellside of the preheater is used as heating medium on the shellside of the 

calandria. The liquid level in the separator is approximately one meter above 

the top tube plate of the calandria and the resulting static head in the tubes 

prevents boiling until the liquor enters the separator. 

Vapour from the second effect separator and the second effect calandria 

shell is passed to the shellside of the water cooled, vertical, shell and tube 

condenser. Under vacuum operating conditions, the vacuum pump draws on 

the shellside of the condenser. 

3.2.2 Process Operation 
  

Cold feed water from storage tanks mounted Se the evaporator is 

gravity fed to the shell and tube Brabiea tee, where heat is exchanged with 

vapour leaving the cyclone separator. From the preheater, the warm feed 

enters the base of the tubes of the climbing film evaporator, which are heated 

externally by 240 Bhima (20 p.s.i.g.) saturated steam. Boiling occurs at the 

bottom of the tubes and the consequent release of vapour produces two-phase 

flow conditions throughout the tubes. The mixture of liquid and vapour is then 

separated by the cyclone separator. 

Under vacuum operating conditions, the vapour space pressure throughout 

the evaporator is maintained constant by the vacuum pump, so that heat transfer 

from the vapour leaving the preheater shell is then used as heating medium on 

the shellside of the second effect calandria, where further condensation occurs



as a result of heat transfer. The resulting mixture of liquid and unused vapour 

is drawn into the shellside of the condenser and joins the condensate stream 

pumped from the system. 

From the base of the cyclone separator the hot liquid Flows to the 

large second effect separator and is mixed by the action of the circulation 

pump. Since there is no solution being concentrated, the liquid level in the 

second effect separator varies throughout the operation, according to liquid 

feed rate and the total thermal load on the system. The vapour alice by 

boiling in the second effect separator is drawn to the shellside of the condenser 

by the vacuum pump, which permanently maintains the evaporator pressure 

at approximately 6 Nie (28 inches Hg) vacuum. 

The operating conditions of the evaporator may be varied by manual 

control of feed rate, steam rate or condenser cooling water rate. 

3.2.3 Process Notation 
  

Each steam of the double effect evaporator is arbitrarily assigned a 

reference number, as shown in Figure 3.2. Temperature, liquid flow, vapour 

flow and enthalpy are assigned the symbols T, M, V and H respectively. 

Thus qT, refers to the temperature of the condensate and M, the feed rate to 
] 

the first effect. Where vapour temperature is measured indirectly by pressure, 

the symbol T is preferred. The head in the second effect is denoted by He: 
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3.2.4 Process Instrumentation 
  

All process variables measured via the data logger must be provided as 

analogue D.C. voltages. Furthermore, the analogue signals are susceptible 

to corruption by electrical noise, so that all cabling must be screened and all 

screens insulated. The positioning of transducers is shown in Figure 3.3. 

Temperature is measured by NiCr/NiAl thermocouples and an isothermal 

(0°C) reference chamber incorporated into the remote cabinet of the data logger 

provides a cold junction for each thermocouple. The flow rates to the first and 

second effect are measured by variable area magnetic flowmeters. Each 

flowmeter includes a D.C. potentiometer exhibiting linear flow/current 

characteristics. Similar whee of potentiometer are included in the strain gauges 

measuring absolute vacuum and the differential pressure cells measuring the 

head in the second effect shart steam flow through an orifice plate. The 

flow rate of cooling liquid to the condenser is measured off-line by rotameter. 

The transducers are summarised in Table 3.1. 
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Table 3.1 - Double Effect Evaporator Transducers 

  

  

| Variable Lichanne! Hee Mecsurement |. Inu gh @Andloguel 
| Name | No. | Device range 2 eer ce 

| t | 14 | Strain gauge | 4-200kNm 2 | +5V | 

| Tho 15 | Sin inccabae | 4-200 kNm~~ : +5V | 

| ee eta : Variable crea | 0-70 gs! | 4-20 mA* 

| Mg : 17 Variable area | 0-40 ae | " 

| Heng eats Differential pressure 0-40 m HO cor 

| V ! 19 | Orifice/D.P. | 0-20 os tae ie 

| ta | 20 | Thermocouple ! 0-100 C | 0-25 mV : 

| las : a | : | ; es 
ee 

eg | ee 
My oo | Rotameter , | 0-1000gs~! ie 
  

* The milliamp signals on channels 16-19 are converted to analogue voltages 
by connecting a resistance in parallel across the input terminals of the remote 
cabinet 
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3.3 The Digital Computers 
  

3.3.1 The PDS 1020 

Originally, the MDP200 data logger was linked to a Pacific Data Systems 

1020 digital computer with 4K core and a cycle time of 2.3 ms for input/output 

of data and commands; the logger and PDS1020 are hardware compatible. 

Each stores data and instivetions as 16 bit, binary coded decimal (BCD) words 

plus a sign bit. The on-line programming capabilities are restricted to the use 

of machine code or assembler instructions and examples have been previously 

reported ( 12 ). 

3.3.2 The Honeywell 316 
  

Limitations of storage, speed and Sebcanming capability have led to the 

acquisition of a Honeywell 316 computer, shown tal Flgora 3.4. The H316 

system (94 ) consists of the 1.6 microsecond cycle time CPU, 12K of core, 

paper tape reader, paper tape punch and ASR33 teletype. Input/output to 

magnetic tape cassettes provides an option to paper tape reader and punch. 

The word length is 16 bits (i.e. 5 octal digits plus sign bit) and the CPU includes 

real time clock and high speed multiply/divide options. 

Figure 3.4, a simplified block diagram of the H316 CPU, shows the 

BG chine registers, the control limit of the CPU, the I/O bus for input/output 

of data and the address bus for selection of peripheral device. Data and 

instructions from memory are transferred to and from the registers through the 

M-register. The A-register (and its extension the B-register) is the primary 

arithmetic and logic register of the computer, and the P-register contains the 

Ag
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location of the next instruction to be executed. All input/output devices 

are connected to the same I/O bus, which essentially consists of 16 parallel 

input lines to the A-register. On execution of a programmed |/O instruction 

the data lines of the required device are directed to the I/O bus by the bit 

pattern entered into the address bus as part of the instruction. The data is then 

transferred to or from the A-register during one memory cycle. Under normal 

off-line working the teletype, reader and punch are connected to the I/O bus 

in the proximity of the computer. During on-line work the teletype can be 

removed to the evaporator laboratory to provide remote control of computer 

programs. 

Data words are stored in binary form using two's complement notation to 

signify negative numbers. The H316 accepts and processes data words in both 

single and double word length format Soieipendifg to single precision integer — 

and real variables. Instruction words are divided into four types - memory 

reference, |/O, shift and generic operating on the contents of the appropriate 

machine registers. The direct address of a memory reference instruction can 

be modified by the index register to produce a new effective address. 

3.4 The MDP 200 Data Logger 
  

The Electronic Associates MDP 200, shown in Figure 3.1, is housed in 

two sections - he main and remote cabinets. In the main cabinet, located 

alongside the H316, are the Buffer the Multiplexer, Reed Relay Scanner, 

Analogue to Digital Converter (ADC), Differential Buffer and Trunk Selector. 

The remote cabinet, situated by the evaporator, consists of a Scan Control Unit, 

Reed Relay Trays, Gain Control Patch Panel, Preamplifier and Visual Display 
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Unit. Also housed in the remote cabinet are a De La Rue Zerac isothermal 

reference chamber, four manual scan switches and four sense lines - an 

extension of the H316 sense switches. 

Operation of the MDP 200 is initiated by the output of a BCD command 

from the A-register of the H316 along the I/O bus to the Buffer and Multiplexer. 

This unit acts as a buffer and translator between the computer and logger, 

interpreting the command as an instruction to reference either the digital clock, 

a particular adlecte channel or the scan switches. The Digital Clock provides 

BCD output of either hours and minutes or seconds and tenths of seconds. Scan 

switches are a set of four manual digi-switches on the remote cabinet which 

enable decimal numbers to enter the A-register of the computer from the remot 

cabinet and, in conjunction with the sense lines, are used for remote program 

control. 

Readings from the Digital Clock and scan switches are connected directly 

through the Buffer and Multiplexer; scanning of analogue input channels is 

as follows: 

1. From the Buffer and Multiplexer the command to read a particular 

channel is directed to the Reed Relay Scanner. 

2. The Reed Relay Seanrae signals the scan control unit to activate 

the reed relay on the required channel. 

3. The incoming analogue signal is amplified by a factor of 1, 10, 

100 or 1000; the required gain is set either by program control or manually 

by patch panel on the remote cabinet. 
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4. Between the remote cabinet and the main cabinet the analogue signal 

is transmitted via the screened trunk cabling to the differential buffer in the 

main cabinet which removes the effect of differences in electrical ground 

between the cabinets. 

5. An optional electronic filter is applied to the analogue signal to 

remove noise; the filter is selected manually’or by program control. 

6. Digitisation of the analogue signal takes place in the ADC and when 

conversion is complete, the 16 bit BCD data word is transferred to the H316 

A-register via the |1/O bus. At the same time, the digital output of the ADC 

is displayed at the Visual Display Unit. 

Maximum scanning speeds of 30 channels/second (filter out) and 10 channels/ 

second (filter in) are available. 

3.5 The MDP200 - H316 Interface 
  

While the PDS 1020 is hardware compatible with the data logger, the 

link between the H316 and MDP 200 was achieved by the construction of a 

special purpose hardware interface. The interface is necessary to provide 

logic level conversion and timing during input/output, so that the H316 can 

be programmed to emulate the operation of the PDS1020. A detailed explanation 

of the dacten and construction of the interface is given in Appendix 2. Each 

16 bit BCD data/command word is conveniently passed to and from the 

A-register via the 16 parallel lines of the |/O bus. However, the additional 

sign bit provided : the ADC is handled separately. Additional facilities 

incorporated into the interface design include the extension of the H316 sense 

switches to the remote cabinet, 
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3.6 Chapter Review 

Chapter 3 describes the components of the experimental system - the 

double effect evaporator, MDP200 data logger, PDS 1020 and Honeywell 316 

digital computers and MDP200-H316 interface. A detailed description of the 

evaporator heat exchangers and design of the MDP200-H316 interface is 

provided in appendices 1 and 2. A general view of the evaporator and remote 

data logger cabinet is shown in Plate 1. The main cabinet and computer 

hardware are shown in Plate 2. 

Following the computer system hardware, it is necessary to describe 

the computer programs that control data logging operations. This includes 

both the standard Honeywell software and the programs written specifically 

for this on-line system. 
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PLATE 1 - THE DOUBLE EFFECT EVAPORATOR 
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PLATE 2 - THE HONEYWELL 316 COMPUTER 
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CHAPTER 4 

THE HONEYWELL 316 SYSTEM SOFTWARE 
  

AK) Genemt 

By comparison with large multi-access computers, the minicomputer 

is limited in memory size, machine code instruction set and numerical 

precision. An instruction word of sixteen bits requires 4 bits to represent a 

sufficient number of operands. An indirect addressing bit and an indexing 

bit are necessary and consequently, the maximum number of locations that 

‘ ts 10 
can be accessed by direct addressing is 1024 ( 2 -) or two sectors - the 

current sector of the instruction and the lowest sector in memory (base 

8 5 ‘ ; VA cay 
sector). By indirect addressing the maximum number is 16384 ( 2 °), since 

the index and indirect addressing bits are still required. At the expense of 

computing time, numerical precision is improved by storing data as double 

or treble length words. 

Since the computer system has no backing store, the system does not 

support multiprogramming and all programs are executed in the batch mode. 

Running a program commences with the off-line preparation of a source tape 

for either the DAP-16 assembler or FORTRAN compiler. The result of 

successful compilation or assembly is an object code tape, which must then 

be loaded into core and dumped to forma self-loading system tape (SLST). 

This is achieved by loading a self-loading object tape loader into memory 

and then utilising the loader to enter the object program. Supporting 

programmer and/or library subroutines, in object code, are loaded similarly. 

When all necessary object wie are loaded, the contents of memory are 

dumped onto paper tape or magnetic tape cassette to form an SLST 
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and the program is executed. In the event of an execution error, the whole 

operation may require to be repeated. 

During normal off-line processing, the time-consuming compiling and 

loading procedure is avoided by use of the interactive compiler for the language 

BASIC. Although execution of interpretative BASIC programs is somewhat slower 

than FORTRAN or DAP=-16, the interactive use during execution and program 

modification outweighs the disadvantages. The version of the BASIC compiler 

for the H316 computer, BASIC-16, has a number of non-standard additional 

refinements. The most important of these is the ability of BASIC to access 

FORTRAN or DAP~16 subroutines that are permanently resident in core. This 

means that any repetitive operation or calculation programmed at the FORTRAN 

or DAP-16 level, can be accessed interactively and with a simple data input/ 

output format. Also, the combination of DAP-16 and BASIC provides the 

dedicated utility subroutines with the supporting computing power of a high level 

language. 

This technique has been used to produce an interactive, on-line, data 

logging system (BASELINE) and an interactive digital simulation program (ASP). 

4,2 Standard Software 

4.2.1 DAP-=16 Assembler 
  

To avoid programming directly in machine code, a symbolic assembler, 

DAP-16, is provided by the manufacturer (95 ). Each machine operation is 

assigned a symbolic name and where necessary, each address referenced by an 

instruction is given a symbolic label. The assembler is a ‘one for one’ language, 

i.e. one symbolic instruction corresponds to one machine code operation, 

except in the case of pseudo-operations, which request action by the 
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! assembler rather than specifying an operation code. The source text, produced 

off-line on paper tape, is usually assembled in two passes. 

The assembler produces two independent outputs. The first is the object 

code which is punched onto paper tape for further processing by the loader, 

and the second is the assembly listing which is printed at the teletype. Included 

in the listing are programmer comments, any error messages and an octal 

representation of each machine code instruction or data word. Examples of 

DAP-16 source and assembly listings are included in Appendix 3. 

  

4.2.2 FORTRAN Compiler 

The Honeywell FORTRAN IV compiler has been produced for 16 bit 

computers according to the American Standards Association specification (96 ). 

Details of the programming language are well documented (97 ). Operation — 

of the compiler in the batch mode requires the addition of simple control 

characters (Fo ) to terminate each program. Peripheral device codes are 

dedicated to | - teletype and 2 - paper tape reader/punch. 

FORTRAN source tapes are prepared off-line on paper tape in the standard 

format. Object code output is normally directed to the paper tape punch and 

listings are output to the teletype. 

4.2.3 FORTRAN Translator 
  

The FORTRAN translator is a standard, one pass, package which converts 

FORTRAN source programs into DAP-16 assembly source instructions. This 

enables DAP-16 source statements to be inter-mixed with FORTRAN statements 
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in a defined manner, thus increasing the programming scope beyond the machine- 

independent ihrcintient of FORTRAN. Source tape preparation is identical to 

FORTRAN with the exception that an 'A' is inserted into the comment column 

when a line contains an assembler instruction. Translator output comprises 

a paper tape and teletype listing of the output DAP-16 source tape. The 

teletype listing optionally includes the translator source program. 

The FORTRAN translator comprises the rd faanee of the FORTRAN compiler 

with two restrictions. Firstly, doubly sabeciteeld dynamic arrays are not 

permitted, and secondly, an array which is a dummy argument of a subroutine 

can have only one dimension. The latter restriction is avoided by the programming 

technique adopted for the Kalman filter subroutine described in Section 6.6.2. 

4.2.4 Object Loader 

Object code produced by the DAP-16 assembler or FORTRAN compiler 

is processed by a loader to form a core image in memory. References to 

external names such as library or user written subroutines are also resolved. 

To the loader, object code from both DAP-16 and FORTRAN is identical, so 

thaf programs from the two separate sources can be inter-mixed. 

There are two modes of operation of the loader. In the first, the 

desectorising mode, the loader handles all intersector references by generating 

indirect address links where necessary. These links are usually located in base 

sector, unless the assembler program specifies a location elsewhere by the SETB 

(set base) pseudo-operation. The second mode of operation, the load mode, 

assumes that all intersector links are handled by the assembler program. Where 
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links exist, they are noted by the loader, thus providing a method of debugging 

and loading a program when cross-sector references require special treatment. 

4.2.5 BASIC-16 

BASIC is an interactive, problem-orientated, high-level language with 

a simple vocabulary and grammar. The language was originally developed at 

Dartmouth College and general details are well documented (98 ). 

The BASIC compiler is interpretative in operation, i.e. each instruction 

is translated from source to machine code and executed whenever it is 

encountered. All constants are stored internally in floating point format but 

input may be in integer, fixed point or floating point form. The output format 

is adjusted by BASIC to provide maximum precision from six figure significance. 

BASIC-16 is the Honeywell version of BASIC for 16 bit machines with 

memory size 4K or more. In standard form, communication with BASIC is from 

the teletype, but a machine code modification to the computer permits input/ 

output via the paper tape reader and punch. 

An additional refinement provided in BASIC=16 is the CALL statement, 

which enables a FORTRAN/DAP-16 subroutine to be accessed from a BASIC 

program. The general form of the statement is 

In CALL (sn, Gi, Gor veeey a) 

where In is the line number of the statement 

CALL is the statement operator 

Sn is the subroutine reference number (1 to 10) 

a, toa. are arguments to be passed to the subroutine called.



Unlike the CALL statement in FORTRAN, the subroutine is not assessed 

by name but by a reference number to an entry ina table stored in the BASIC-16 

compiler, containing the starting addresses of up to ten subroutines. The 

arguments a, to a. correspond to the dummy arguments of the FORTRAN 
] 

subroutine definition. Since all BASIC variables are real in the FORTRAN 

sense, the dummy arguments in the FORTRAN subroutine must also be real and 

any integer numbers required must be converted internally. Where a FORTRAN 

dummy argument is a subscripted variable, the corresponding BASIC argument 

is the first subscript required of the array, e.g. CALL (1, X, A(0), B(0,0)). 

4.3 Applications Programs 
  

4,3.1 Interactive BASIC/FORTRAN Systems 
  

The two principal advantages of combining FORTRAN or DAP=16 subroutines 

with BASIC are the capability for interactive programming and the increased 

speed of execution. In addition, a programmer considers only the correct number 

and order of arguments and need not be aware of the content of the subroutines. 

The disadvantage of such a system is the reduction in available core store by 

duplication of software in the compiler and subroutines. 

Production of an interactive system tape is initiated by loading the 

BASIC compiler and object tape loader into the lower part of memory. Next, 

the object tape produced from compilation or assembly of the subroutines is 

loaded into the highest available sector, together with supporting library 

routines. Cross sector link addresses are stored in a table in base sector 

within the BASIC compiler. The starting addresses of each subroutine are then 

manually patched into a dedicated area of the compiler and a permanent copy 
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of the complete system tape is dumped onto paper tape or magnetic tape 

cassette. 

During initialisation of the compiler, the highest address available for 

storage of BASIC programs is set to the address immediately below the first 

subroutine. 

4.3.2 BASELINE 

BASELINE is the name given to the BASIC/FORTRAN system used for 

on-line data logging operations (99 ). 

The operation of the MDP200 is controlled by a number of subroutines 

constructed to emulate the action of the PDS1020 digital computer. A 

detailed description of the FORTRAN and DAP=-16 subroutines is given in 

Appendix 3. A fundamental assembler subroutine creates the logic output 

pulses and BCD command words to control the operation of the data logger. 

When the BCD data word is returned to the A-register of H316,another subroutine 

converts BCD to binary by the ADD-3 algorithm {100) , 

Ai the BASIC level the subroutines are as follows:- 

(1) The statement CALL (1, N, V, F) causes MDP200 analogue 

channel number N to be scanned and the variable V to be set equal to 

the current data value on this channel. If the channel is out of range 

(i.e. N < 0 or N39) the flag F is set to unity, otherwise F is zero. 

(2) The sade lie causes the variable H to be set equal 

to the current hours and minutes reading of the MDP200 clock,H is a four



digit value (0 ¢< H < 2359) in which the two leftmost digits represent the 

hours and the two rightmost represent the minutes. 

(3) The statement CALL (3,S) causes the vosteble S to be set equal to 

the current seconds reading of the MDP200 clock. S is a four digit value in 

which the two leftmost digits represent seconds, the third digit represents 

tenths of seconds and the fourth digit is always zero. 

(4) The statement CALL (4,D) causes the variable D to be set equal to 

the current setting of the four scan switches on the MDP200 remote cabinet. 

(5) The statement CALL (5,0) stops the H316 er time clock. This 

statement is used in association with subroutine 7 when the cio facility 

is used. 

(6) The statement CALL (6,T,X) tests the sense switches on the H316 

computer or the sense lines on the remote cabinet. If sense switch number T is 

set, X is set to 2, otherwise X = 1. 

(7) The statement CALL (7, I, Nl, N2, R, A(O,0), R1,D1, E) causes 

channels N1 to N2.to be scanned R times and the averageof each 

channel value’to be sired in A(N1, D1) to A(N2, D1). This sequence is 

repeated every I seconds a total number of R_ times and each tiiay D1 is 

incremented by 1. This operation utilises the interrupt facility of the 

computer, i.e. the computation in progress is suspended and: resumed after the 

scans have been carried out. If interrupt is not required I is set equal to zero. 

The flag E indicates whether the channels selected are out of range. 

4.3.3 ASP 

The BASIC compiler is combined with a set of FORTRAN subroutines for 

numerical integration to form the Aston Simulation Program (ASP), (101,102) 
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ASP is used in the simulation of continuous dynamic systems and was designed 

to study dynamic models of the evaporator. 

To minimise programming by the user, the COMMON area of memory 

is used for transmission of variables required only by the subroutines. One 

result of this organisation is that ue BASIC simulation program must be 

structured in a prescribed manner for initialisation of variables, statement of 

derivatives and numerical integration. A detailed description of program 

structure and FORTRAN subroutines is provided in Appendix 4. The BASIC 

subroutine calls are as follows:- 

(1) CALL (1,T) initialises the COMMON area of core and the 

independent variable, T. | 

(2) CALL (2, P, E, Fl, F2) calls the output control subroutine. The 

print interval, Py and the final value of independent variable, E, are compared 

with the current value of T. When the independent variable increases by the 

print interval, P, flag F2 is returned with the value 2, otherwise, it remains 

at 1. At the end of the run (T > E), flag Fl is see Elariyad 

(3) CALL (3, T, H, R) integrates the independent bie! T, and 

performs housekeeping operations, through COMMON, for the integration 

procedure. H is the integration step length, and R, specifies the integration 

order. R= 2 for the modified Euler method and R = 4 for the Runge-Kutta 

fourth order. method. 

(4) CALL (4, X, DX) causes the integration of the dependent variable 

X from it derivative DX. | 

(5). CALL (5, Av BAG, WQ); Z(0) )accesses the function generation 

subroutine. For a given value A of W (where Z = f(W)), a corresponding value



B of Z is computed by linear interpolation. The table of data of Z and W 

contains a total of C entries. 

4.3.4 Kalman Filter Subroutine 
  

To increase processing speed during real time state variable and 

parameter estimation, the Kalman Filter program is written in FORTRAN and 

incorporated into BASELINE as an optional eighth subroutine. The implementation 

of the algorithm is described in Section 6.6. The BASIC statement is:- 

where 

CALL (8, P (0,0), Q(0, 0), R(0,0), M(0, 0), F(0,0), X(0), Y(0), El, 

S(0,0), K(0,0), N, M) 

the transition matrix (input). 

the process noise matrix (input). 

the measurement noise matrix (input). 

the measurement matrix (input). 

the estimation error covariance matrix (input/output). 

the state variable vector ( input/output). 

the measurement vector (input). 

the filter convergence factor (input). 

the predicted residual covariance matrix (output). 

the filter gain matrix (output). 

the number of state variables (input). 

the number of measurements (input)



4.4 Chapter Review 

Chapter 4 describes the computer programs available for the H31é6 - 

evaporator system. This includes the standard software-DAP-16 assembler, 

FORTRAN IV compiler, FORTRAN translator and BASIC-16 compiler, and the 

applications software-BASELINE and ASP. The latter are constructed from a 

combination of standard software and special purpose subroutines to provide 

interactive programming facilities for on-line data logging aa dyateae simulation. 

Once constructed, the applications packages are available to any programmer 

with a knowledge of BASIC. 

Having described the system hardware and software, it is next necessary 

to formulate mathematical models of the steady state and dynamic behaviour 

of the evaporator. The on-line implementation and solution of the models is 

effected by use of the software applications packages. 
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CHAPTER 5 

MATHEMATICAL MODELS 
  

5.1 General 

Mathematical models of process plant often contain many more variables 

than those of aerospace systems, which represent the most common application 

of Kalman filtering. Detailed models of evaporators can be formulated as 

distributed-parameter equations but in the case of the double-effect evaporator, 

this means a large number of state variables and insufficient computer time and 

storage for implementation of the filter algorithm. Thus, some form of 

simplified model must be developed so as to reduce computational requirements 

yet still retain the essential characteristics of a detailed model. This is usually 

achieved by transforming the equations to a lumped-parameter form. Further 

simplifications can be made by making realistic assumptions based upon a 

detailed understanding of the operation of the evaporator. Such an understanding 

is achieved by both visual observation of normal process operating conditions 

and by performing on-line steady state experiments to determine unknown 

parameters such as overall heat transfer coefficients. 

Steady-state experiments, over the whole range of siebdtied of the 

evaporator, produce data for the formulation of steady-state Sadelations 

relating unknown parameters to operating. conditions. This provides a 

comparison with existing correlations, developed for similar equipment, and 

numerical values for unknown coefficients in the dynamic model. Due to 

random disturbances, the evaporator is never at true steady state so that the 

experimental data are combined to form the best available correlations. The 
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accuracy of correlations and simplifying assumptions is determined by simulating 

the dynamic model and comparing the simulated results with real plant data. 

5.2 Steady-State Model 
  

The steady state model consists of mass and energy balances over each unit 

of the evaporator and the determination of overall heat transfer coefficients based 

upon heat transfer in each exchanger. In some cases, the flows and enthalpies 

of each stream can be calculated directly from mecsbiaigenss,aehile in all other 

cases the mass and energy balance equations must be solved. 

The stream notation described in Section 3.2.2 is used throughout the 

derivations. The symbols M, V, T and H represent liquid flow, vapour flow, 

temperature and enthalpy respectively. Figure 5.1 shows double effect evaporator 

with stream numbers, mass flows and instrumentation. 

* §.2.1 Mass Balances 

At the preheater, second effect and condenser shells there is a change of 

phase as vapour condenses 

V. -V, + M, | 5.2.1 

Me 10 ae Byes? 

VigtMigt Yo = May 5.2.3 

Within the tubes of the climbing-film first effect the liquid feed is 

partially vaporised,
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Mo ee Mee / 5.2.4 

and the resulting vapour/liquid mixture is separated at the cyclone 

Ms + Vo = Ms ~ V3 ; a.a60 

The liquid heated in the forced-circulation second effect is vaporised in 

the second effect separator where there is an accumulation of liquid, denoted 

by My, 

Mg + M4 Sis * Noo NK 5.2.6 

For completeness, the continuity equations not involving phase change 

are stated. At the preheater tubes, 

M. = M ine 

Vane M 5.32.6 

and at the second effect and condenser tubes, 

eee | 5.2.9 

Myo = M3 . 5:21.10 

5.2.2 Energy Balances 
  

The energy balances over each unit are derived to obtain the enthalpy 

of each steam subject to the following assumptions :-- 

1. There are no heat losses in the system.



2. Where vapour and liquid/vapour mixtures exist they are at the 

saturated vapour temperature at the operating pressure. 

3. The heat exchanger shells are well-mixed so that the exit and 

shell temperatures are equal. 

Again, using the stream notation of Section 3.2.3, the following equations 

are derived:- 

Preheater 

+ Hy, A, 

Ist Effect 

ye 
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Based on the above assumptions and taking the datum temperature as O°C, 

the enthalpy terms are defined by 
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where at is the liquid heat capacity and g(T) is the saturated vapour 

enthalpy function defined by 

g(T) = oe + dy 

where ) is the latent heat of vaporisation at temperature T. T Pp p 

The energy balance equations can be further simplified by assuming the 

cyclone separates liquid and vapour isothermally, 

Te eer et Judedd 

Kater yt 5.2.34 

T mead 4.00 

and the liquid in the second effect separator is well-mixed and at constant 

temperature 

T = T 0.24.36 

5.269 Saldtion of Equations 
  

Equations 5.2.1 - 5.2.36 represent 36 equations in 51 unknowns. In 

addition the 17 measurements are made: 

mass: flows : M,, Mg, Mar Ver M. 5 

liquid temperatures : Ty To, Toy Ty Thos Tha Ty Ts



vapour pressure ¢emperatures) : Ty Tes Tho Ty / 

giving a redundancy of 2 when all measurements are weighted equally. The 

redundancy is used to calculate the steam feed rate to the first effect, Ver which 

is known to be an unreliable measurement and the condenser cooling water rate, 

Mio so as fo give a measure of total system heat loss. The controlled variables 

M M r t are M, Th, Vis Ts, 12! Thos 14 and the condenser vacuum temperature | 

T 

vac” 

In practice, the solution of the complete set of 36 equations can be 

simplified by not stating explicitly the simple mass and energy balances 

(equations 5.2.7 - 5.2.10 and 5.2.33 - 5.2.36) and thus reducing the 

required programming (Section 6.3.3). - 

5.3 Dynamic Model 

As shown in the literature review, Section 2.7, the heat transfer dynamics 

of exchangers can be accurately described by distributed-parameter models. 

Simplification of these exact models is principally effected by space lumping the 

equations into a number of discrete well-mixed regions. The objective of this 

modelling exercise is to produce a set of ordinary differential equations suitable 

for use in the real-time application of the Kalman filter algorithm. Consequently, 

the total number of equations is reduced by space lumping the shell and tubes of 

each exchanger. The assumptions are as follows: 

ee 

-1. The heat exchanger shells are well mixed regions so that the exit and 

shell temperatures are equal. Where vapour and liquid mixtures exist, the 

temperature is that of the saturated vapour at the operating pressure. 
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2. In the majority of the heat exchanger tubes, liquid is the plug flow 

regime. A lumped liquid temperature is approximated by the arithmetic 

mean of liquid inlet and outlet temperatures. 

3. In the tubes of the climbing film first effect, the liquid and vapour 

are assumed to be well mixed. 

4. The exchanger tubes have zero thermal resistance. 

5. The temperature driving force is given by the arithmetic mean of the 

inlet and outlet temperature differences. 

6. There are no heat losses. 

The volume fraction of vapour (where vapour and condensate exist together) 

is denoted by Y, the shell and tube volume by W, and W., the overall heat 

transfer coefficient by U, the heat transfer area by A, liquid density by Uv 

vapour density and latent heat by N and >) N where N refers to the stream 

number and, hence temperature at which the vapour density or latent heat is 

calculated. The subscripts c, e, f and g refer to the condenser, first effect, 

second effect and preheater respectively. eh and H represent the liquid 

specific heat and liquid head in the second effect separator. The relationship 

between vapour density and temperature is assumed to be of the form eS = X(T). 

Again, the stream notation of Section 3.2.3 is adopted. 

A detailed derivation of the dynamic model is given in Appendix 5, and 

Vv 

is summarised overleaf. 
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5.3.5 Second Effect Separator 
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5.3.7 Discussion of Model 
  

Equations 5.3.1 to 5.3.30 describe the dynamics of all uncontrolled 

variables in the double eect evaporator. The overall heat transfer coefficients 

are assumed to be known from steady-state correlations. The principal uncertainty 

in the development of the model, is the dynamics describing the behaviour of 

vapour. pressure throughout the system. The dynamic characteristics of the vacuum 

pump are unknown, and the effect of byairostenie heads and two-phase conditions 

is not measurable with pilot scale equipment.- Consequently, the dynamic model 

contains terms involving variation in vapour reuieererne and density which, if 

the vacuum pump and vapour phase characteristics were known, would otherwise 

be unnecessary. 

A simulation of the above model contains no pressure constraints apart 

from through Ae in the iatcticas shell. The relationship between vapour phase 

temperatures Coat Tis. Toy Ty and TL, cannot be deduced from steady-state 

experiments because of the random nature of the vacuum pump operation and the 

uncertain pressure differences caused by mixtures of vapour and liquid in the 

pipe-lines to and from the preheater and second effect shells. However, the 

steady-state operating equations approximate the dynamic behaviour of vapour 

temperature around steady-state conditions. 

If the vapour pressures are assumed to be controlled variables, varying 

slowly under the influence of the vacuum pump, then the dynamic model can be 

simplified to consider only the liquid phase temperature dynamics. Furthermore, 

since the vapour side equations time constants are very much smaller than the 

liquid phase, the vapour side equations can be replaced by the equivalent steady~ 

_ state equations. 
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Re 4 Reduced Model 

For the application of Kalman filter theory, the definition of complex 

system model is not necessary. Huddle and Wismer (27 ), indicate that 

unavoidable modelling errors and simplifications can be considered but any 

reduced model must include those state vector components! of dominant or 

special interest to the designer. The effect of errors and simplifications can be 

lumped into the process noise covariance matrix. 

A simplified dynamic model is obtained from equations 5.3.1 to 5.3.30 by 

assuming the vapour temperatures are controlled variables. All other previous 

assumptions are inherent in this simplification. 

Sree | Bichemtar 

At the preheater tubes, there is no vapour phase and thus the liquid 

temperature dynamic equation is unchanged, 

WR: dT, ‘ MC, a1) - Me of aed or 2.) 5.421 

Ba. dee 2 
  

and at the shellside, when Ty is a controlled variable, the steady-state equations 

defining the vapour the liquid rate leaving are, 
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5.4.2 First Effect 

Both the shellside and tubeside of the first effect contain vapour/liquid 

mixtures at controlled temperatures Ts and T_.. The steady-state equations are 
7 

= es = ot i 

V7 Meo Ta Ae 5.4.4 
A7 
  

M =M,-V 5.4.5 

5.4.3 Cyclone Separator 
  

The cyclone separator is assumed to act isothermally and at steady-state, 

Vy = tT, = Ve 5.4.6 

M = M3 §.4:7 

V5 = Va 5.4.8 

5.4.4 Second Effect 

At the tubes of the second effect, there is no change of phase and the 

liquid inlet temperature, T is the controlled boiling temperature in the second 
iS. 

effect separator. The dynamic energy equation becomes 

\ = me - \ 

CER CV ieemenace ig iad) o "PH 0 Mais) \ eg 409 
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and the shellside steady-state equations T15 controlled) are 
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5.4.5 Second Effect Separator 
  

The boiling point in the second effect'separator is assumed to be controlled 

at T,_. An unsteady state energy balance gives, 
15 

a s MC as / AN 
Per OO eee ae ta lia) Meo oC ig AD 

dt D412 

and the unsteady state mass balance 

Vote a i 5.4.13 
9 ae 

dt 

hence from substitution, 

t = - - er \ s Pie eet aep is lw Mee gl Ma As 
di | 5.4.14 

5.4.6 Condenser 

In the detailed model, the vapour side temperature T ae 9 assumed to be 
V 

controlled. Thus the simplified equations are the same.



  

A ay, : We 1213" : ree ( ieee Toa) | 5.4.15 
2 dt a! 

Thy = Vo st st MoS 10 Viol i0 * Mio) 7 Hee Tae ~ 12 * N13) 
| 7 

Woon : 25 4.16 

M1 = Vo + Mo RE gees Oe 5.4.17 

5.4.7 Discussion of Reduced Model 
  

Equations 5.4.1 to 5.4.17 represent the reduced dynamic model of the 

evaporator. There are four differential equations; three describing variation of 

liquid temperature at exchanger tube anor and one describing the behaviour of 

head in the second effect separator. The vapour side temperatures are assumed 

to be controlled via the vacuum pump at the condenser. The effect of all types 

of assumptions is tested by Simulation and comparison with experimental data. 
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5.5 Chapter Review 

Chapter 5 describes the development of the steady state and dynamic models 

of the double effect evaporator. A reduced dynamic model is derived by assuming 

the vapour pressure is controlled. This simplified model is suitable for 

implementation in the real-time Kalman filter algorithm. 

Following the derivation of the mathematical models, it is necessary to 

describe their on-line implementation together with off-line simulation 

experiments. 
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CHAPTER 6 

SIMULATION AND ON-LINE EXPERIMENTS 
  

6.1 Introduction 

In previous chapters, the development of the hardware, software and 

mathematical models for the on-line system is described. The combination of 

on-line (BASELINE) and off-line (ASP) interactive program packages with the 

steady state and dynamic models provides a basis for the on-line investigation 

into the operation of the double effect evaporator. The objective of this 

chapter is to describe the experiments that comprise this investigation. 

During recent years, the development of process control computers has 

reached a high degree of seni ceicns currently a complete cenirc! processor 

and memory can be accommodated ona single printed circuit board - thus 

drastically reducing hardware costs. Data logging equipment has also developed 

rapidly with the inieodeeton of solid-state components offering high -speed 

scanning and analogue to digital conversion. One unobvious drawback to the 

acquisition of such hardware. is the availability of software and a mathematical 

description of the process. In any on-line experimentation,. the computer programs 

provide the essential links between computer, plant and operator. The scope of 

on-line operations depends upon -the flexibility of such programs and the extent 

of mathematical modelling. 

At the simplest level, an on-line computer can be programmed in machine 

code to control a data logger and print or store the digital values derived from 

analogue measurements. This type of application represents the minimum 
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improvement over conventional 'stand-alone' logging systems and fails to utilize 

the programming potential of the modern, high-speed, digital computer. A 

minor improvement is effected by storing the instrument calibration constants 

‘in core so that the plant measurements can be presented in standard engineering 

units. Only by excessively time consuming machine code programming can more 

complex applications be achieved. 

When the machine code data acquisition programs are linked to a high-level 

language compiler to forma package such as BASELINE, the whole range of 

operations usually associated with off-line computing becomes available for 

on-line usage. Logical operations, data input/output handling ‘tig numerical 

techniques such as matrix arithmetic and calculation of erigse rd functions can 

be included with on-line programs to provide extensive programming capabilities. 

Another devoniage, apparent with the use of BASELINE, is the interactive operation 

of BASIC in the development, testing and editing of programs. Algorithms of 

the complexity of the non-linear Kalman filter can be programmed and tested in 

a fraction af the time required for their development in machine code. Furthermore, 

any programming errors ee detected either before execution or while running 

under control of the BASIC compiler, thus avoiding the possibility of corrupting 

the contents of the computer memory. Although the interpretitive nature of 

BASIC represents an addition to program execution time, in most cases the 

advantages of high leve! programming outweigh the disadvantage of a reduction 

in processing speed. 

The principle requirements of on-line programs that are not apparent 

when writing conventional off-line programs are as follows: 
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1. Program Timing During on-line experimenis, htbrsend are 

required at definite times. Consequently any other processing must cease when 

a measurement time occurs so that the compuier can be dedicated to data logger 

control. By means of the hardware interrupt facility connected to the H316 real 

‘time clock, any program may be temporarily suspended while on-line operations 

are performed. Updated variables, derived from measurements are then stored 

into the appropriate area of the background.program before contro! is returned. 

The quantity of processing between each instrument sampling is governed by the 

maximum measurement frequency for a given application and the rate of operation 

of the data logger under computer control. Where ibe sampling frequency is 

critical, as in the case of on-line Kalman filtering, timing experiments are required 

a priori. 

2. Program Control: Unlike batch ota processing, the timing and 

execution of on-line programs requires control from the process end of the system, 

In industrial computer control applications, this means the incorporation of a special- 

purpose plant operators console into the computer system. Since the BASIC 

compiler is interactive in operation, program editing and initiation for the 

evaporator system can be carried out via the remote teletype. Control of BASIC 

programs during execution is effected by use of the sense switches and their 

extensions located in the MDP200 remote cabinet. 

3. Results Output During the course of an on-line experiment vast 

quantities of information may be processed which in an off-line program could be 

printed at a teletype. The output of even minor quantities during on-line 
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experiments may be excessive in terms of computer time usage. Consequently, 

the results of on-line experiments are either stored in the computer so that they 

can be dumped at the teletype when CPU time is no longer at a premium, or the 

quantity of output is balveed to. a minimum by further processing. When the 

results of computations cannot be checked as they are performed, special 

precautions must be taken during the development of programs to ensure bawiblere 

accuracy (and hence confidence) before running on-line. 

Compared with conventional experimentation, the operation and instrumentation 

of the double effect evaporator is steighleward except in the type of transducers 

selected to transmit analogue signals to the data logger. All ni eects are 

converted to ad.c. voltage by linear transducers and are susceptible to corruption 

by electrical noise. This effect is not apparent with conventional instrumentation 

where the results of high frequency background voltages are damped out within 

continuous recording equipment. The analogue voliages input to the data logger 

are sampled at discrete times by the ADC and thus the effect of noise becomes 

evident. This problem is overcome, in part, by electronic filtering at the ADC - 

but only at the expense of an increase in the logger sampling time per channel. 

Numerical smoothing is obtained by repetitive scanning of each channel at each 

sampling interval to obtain an ensemble average based upon the state of the 

instruments over a few seconds rather than at a single instant. An investigation 

into the effect of noise on the MDP200 ADC is reported by Chard (103). The 

total resulting signal fluctuation is the sumof the effects of background and MDP200 

reed relay noise. During instrument calibration, both effects are considered by 

operating on-line to the computer.



Like many other experimental systems, the time-consuming operations 

are concerned with hardware rather than computer proaaene The maintenance 

of process plant, instruments and data logger during on-line experiments, while 

requiring greater effort than program control, form a necessary part of 

experimentation a highlight the more realistic problems not experienced by 

theoretical studies reported in the literature. 

The sequence of simulation and on-line experiments is as follows: 

1. Instrument Calibration This is carried out on-line to the computer 
  

to take into account normal instrument noise. 

2. Steady State Operations On-line steady-state experiments are 
  

performed over the whole range of operation of the evaporator and the 

mathematical model is solved to determine unmeasured variables. Further 

off-line processing is used to analyse all steady-state results to determine 

correlations for the heat transfer coefficients. 

3. Dynamic Logging Between successive steady state conditions the 

transient state of each instrument is recorded for later comparison with the 

resulis of Agneta simulations. The logs include the response of all plant 

measurements to step changes in plant control variables (preheater feed rate 

and steam rate to the first effect). 

  

4. Dynamic Simulation © The dynamic models, including correlations 

for heat transfer coefficients are simulated using the ASP package. Comparison 

of the simulated response with the dynamic logs provides a qualitative indication 

of the ‘fit! of the mathematical model.



5. Kalman Filtering The non-linear mathematical model is incorporated 

into the Kalman filter algorithm. The following experiments are performed 

a) On-line, real time state variable and parameter estimation 

b) Off-line estimation based on real plant data, to determine 

the affects of measurement and model error statistics on the performance 

of the filter. 

The teletype listings of all computer programs are combined in 

Appendix 6.. Block diagrams defining the general structure of programs are 

included in this chapter and reference is made to the appropriate program in 

the Appendix. 

6.2 General Operations 
  

In all on-line and simulation experiments, a computational! algorithm is 

derived from the mathematical model and translated tie the BASIC language. 

The use of the interactive packages BASELINE and ASP requires programs to 

be structured in a definite manner to utilize the supporting FORTRAN and 

assembler subroutines. In all cases, at the BASIC programming level, calibration 

constants, temperatures, flows etc. are stored in arrays - each subscript 

corresponding to the appropriate channel or stream number. Correlations, 

determined from steam tables, relating the physical properties of saturated steam 

to temperature are stored in BASIC as either standard functions or subroutines 

for convenient reference from within programs. 

6.2.1 On-line Program Structure 
  

Figure 6.1 shows a block diagram of the general structure of an on-line 
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program. Execution commences with the program stored in the computer and the 

BASIC eeticiler requesting a programmer operation by printing a question mark 

character at the remote teletype. On receiving the appropriate command, RUN, 

the program initialisation section is executed to enable input of run time data. 

The program then cycles around a test of sense switch using the sixth BASELINE 

subroutine, 

CALL (6, 2, L1) 

until, in this case, the second sense switch is depressed and the numerical state of 

the flag L1 is incremented from unity. Effectively this forces the execution of 

the program to wait for remote operation of the switch when plant logging operations 

can commence. 

The principal data logging operation of scanning consecutive channels is 

performed by the seventh subroutine, 

CALL (7; 3.7.81, NZ, E) AO,0),:S) 1, E)) 

where I is the interval, in seconds, at which the scanning operation is repeated; 

N1 and N2 are the first and last channels in the scanning sequence ; 

E is the number of samples taken to form an ensemble average at each 

sampling time ; 

A(0,0) is the first element of the BASIC array into which the digitised, 

averaged analogue recordings are stored; 

T is the total number of interrupts required during a given experimental 

run; : 

S is a record of the number of interrupts performed up to the current time; 

El is an error flag indicating whether N1 or N2 are out of range of the 

available channel numbers. 
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When logging operations commence, this subroutine is called explicitly 

to set up the interrupt frequency for the computer real time clock and the link 

addresses between the machine code subroutines and the BASIC compiler for the 

variable names. In particular, the array A is used to store the ensemble averages 

of the ADC output from A(N1, S) to A(N2, S). 

Subsequent explicit calls to this subroutine are not necessary since it is 

accessed automatically every I seconds by means of the computer real time 

clock. Each time the subroutine is serviced on interrupt the data values are 

copied into the array A so that they can be further processed by BASIC programs. 

Once initialised interrupt continues until either S=T, the fifth BASELINE 

subroutine is called, 

CALL (5, 0) 

or program control is returned to the teletype by manual intervention or a 

program execution error. 

When logged data are available to the BASIC compiler, the information 

is processed and relevent results are output or stored. The nature of the 

processing depends upon the specific application and varies in complexity from 

simple conversion of raw data by calibration constants to execution of the 

Kalman filter algorithm. Following processing,a further sense switch test 

determines whether the interrupt logging operations are terminated. If the 

operations are continued the program waits for the next interrupt by testing the 

state of the variable S in the argument list of the seventh subroutine . When all 

logging operations are complete or the sense switch is depressed, the complete 

results are output to the teletype. Following ébiput! the computer returns to 

the programmer request mode by printing the question mark character.



Although Figure 6.1 shows the processing of a single batch of data between 

each Break the seventh subroutine is written to permit interrupt during the 

processing of a batch. This requires storage of data in the array A while 

processing of previous batches is completed. Consequently, the depth to which 

successive processing can be interrupted is governed by the available storage in 

the BASIC compiler. 

A detailed description of the BASELINE subroutines and their method of 

operation is given in Appendix 3. 

6.2.2 Simulation Program Structure 
  

Dynamic models are simulated using the ASP package (101,102 ). This is 

constructed to minimise programming effort by using the COMMON area of 

memory for transmission of variables required only by the FORTRAN simulation 

subroutines. BASIC programs, using the ASP subroutines, must be written 

according to the structure shown in iadte 6.2. There are three sections, as 

follows. 

1. Initialisation Section — In this section, the program data are input 
  

including the initial values of the dependent variables in the differential equations. 

Also the first ASP subroutine is called, 

CALL (1, T) 

to zero the independent variable T and to initialise the COMMON area of core. 

2. Derivative Section This section contains the derivative and algebraic 
  

expressions that comprise the dynamic model, translated into BASIC and arranged 
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FIGURE 6.2 
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into the correct order. At the end of this section the second ASP subroutine 

is called to control output of information . 

CALL (2,°P7 8) Fi; Fe) 

The flag F2, is set whenever the independent variable becomes equal to the 

value specified by the print interval, P, and the flag Fl when the independent 

variable becomes equal to the terminal value E. Control of the output of the 

dependent variables is carried out by tests on the numerical values of the flags 

in the BASIC program. 

3. Integration Section This section commences with a call to the 
  

third subroutine 

CALL (3, Fy Hy RD 

to increment the independent variable, T, by the step length, H..R determines 

the order of integration of the dependent variables - either 2 (Modified Euler) 

or 4 (Runge-Kutta). This is followed by a list of calls to the fourth subroutine 

CALL (4, X, D1) 

whieh integrates the derivative D1 over the step length to give the dependent 

variable X. The length of the list of CALL statements is fixed by the number of 

first order differential equations to be integrated. At the end of the integration 

section, program control is Jadonaiiienelly transferred to the start of the derivative 

section. 

In addition to the integration subroutines, a function generation subroutine 

is included in the ASP package, 

CALL 5(A, B, C, X(0), Y(0)) 

where from a table of data Y = f(x) stored in the BASIC compiler and containing 
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C entries, a value B of Y is computed from a value A of X by linear interpolation. 

The principal advantage of ASP is that the user need not be aware of the 

FORTRAN subroutines providing the program is correctly structured. As with 

BASELINE, the writing and editing of programs is simplified by the interactive 

operation of the BASIC compiler. 

A detailed description of the FORTRAN subroutines and their incorporation 

into the BASIC compiler is given in Appendix 4, 

6.2.3 General Correlations 
  

Continual reference to tables or charts for evaluation of non-linear functions 

can be avoided by representing the data by some approximate algebraic function. 

In the worst case, this may represent the development of an iterative algorithm 

while at the simplest level the data may be approximated by a linear equation. 

In on-line steady state and dynamic experiments, it is necessary to obtain 

a correlation relating the temperature of saturated steam to its pressure. This is 

because all vapour side measurements are made with pressure transducers. An 

algorithm has been developed by Richards ( 104) where the pressure P (kNm72) 

is related to temperature T (CK) by the function, 

2 3 
- 0.1299 T4 ) 6.2.1 0

 tl P_ exp (13.3185 T-1.976T - 0.64457 

where T ] aE 6.2.2 
; 

and Ty, P is the temperature and pressure of saturated steam at atmospheric 

pressure (373. 15 °K and 101.325 Nin 4); 
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To calculate T when P is given, a first estimate of T is formed by ignoring 

all but the first term of the polynomial in equation 6.2.1 

TO€)2s° ince 
101.325 6;2:3 

13.3185 

and successively more accurate estimates are obtained by recursively calculating 

T(n+1) = T(1) + ((0.1299T(n) + 0.6445) Tln) + 1.976) T(n)@ 
13.3185 
  

6.2.4 

When, for some small value of n, |T(n +1) -T(n)] < Ewhere E is a small 

constant, the desired estimate of T "ss is found from equation 6.2.1 by 

T = 9373.15 = 273.15 6.2.5 

(T= T(n + 1)) 

Program | of Appendix 6 shows the above algorithm translated into a BASIC 

subroutine. It is important to differentiate between BASIC subroutines ( the 

GOSUB statement) and FORTRAN subroutines that are called ‘from BASIC ( the 

CALL statement). The variable names in a BASIC subroutine are not dummy 

names transferred as arguments in the FORTRAN sense, and thus must correspond 

to variable names within the main program. Program 1 contains the listing of 

the iterative subroutine and a test program comparing the calculated values with 

data brates from steam tables (105). The execution commands and results 

are included as an example of BASIC operations. 

For simulation of the dynamic model, further correlations relating latent 

heat and enthalpy to temperature are advantageous. The relationship between 

vapour density and temperature is required for simplification of the vapour side 

equations in the dynamic model. Correlations are obtained by carrying out 
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linear regression on data obtained from steam tables using a denied Honeywell 

program - statistical least squares (SLS). The data for the SLS program is selected 

to be in the region of vacuum operation of the double effect evaporator. The 

results of the regression analysis are described in Section 7.1.2, the correlations 

are as follows 

Enthalpy : g(T) = 4.1868T +. A(T) 6.2.6 

Latent heat ©: \ (1) = -2.4068T + 2501.6 6.237 

Density : log, {1) = 1.93 logT - 3.1487 6.2.8 

6.2.4 Calibrations 

Where mechanical/electrical transducers operate in a pilot plant 

environment, frequent lbretion is required in order to maintain consistent 

on-line results. Since the electrical signals are corrupted by noise, the 

calibrations are carried out on-line to the computer so that the common mode 

rejection facility of the MDP200 data logger is utilized. On-line operation 

further enables the same channel to be scanned rapidly so that large sample sizes 

can be averaged - thus filtering numerically. 

The on-line calibration program follows the form of Figure 6.1. 

The channels are calibrated singly using the first BASELINE subroutine, 

CALL (1, N, V, F) 

which causes channel number N to be scanned once and the data value to be 

stored in BASIC as the variable V. The flag F is set if the channel is out of the 

range of available numbers. Interrupt and repetitive processing is not required. 

The program is initialised by inputting the number of the channel to be 
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calibrated and the execution sequence waits for manual intervention by testing 

the state of sense switch 2. When the switch is depressed logging operations begin 

and the channel is scanned continuously until the switch is released, the average 

of all the scans is then printed at the teletype and the computer returns to the 

waiting state. If a new channel is required, the program is reinitialised by 

pressing sense switch 3 stints print out. Program 2 shows the on-line calibration 

program together with an example of normal output. During continuous scanning, 

mene ureinenls of flow, temperature or pressure are taken manually at the 

evaporator. 

Measurement of temperature by thermocouple is considerably more accurate 

than alternative methods against which to calibrate, particularly when an 

isothermal reference chamber is available as a cold junction. Consequently, the 

calibration procedure described above serves only as a check against manufacturers 

calibration data. The flow meters are calibrated against flows recorded with 

Sineaeorie cylinder and a stop-watch, and pressure transducers against a 

mercury manometer. 

When sufficient data sets are collected, a linear regression is carried out 

with the SLS program. The calibration of the differential pressure gauge on the 

main steam feed orifice plate requires a polynomial regression. Again a standard: 

Honeywell program is available. 

6.3 Steady State Experiments 
  

On-line operation of the double-effect evaporator at steady state provides 

a broad insight into the complexities of the computer/plant system, Furthermore, 
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when the on-line measurements are used to solve the steady-state model 

(equations 5.2.1 to 5.2.36), the unmeasured process variables can be calculated 

so that the state of each process stream is available. From further off-line analysis 

of steady-state data the heat transfer coefficients of each heat exchanger can be 

calculated. From sets of data based on Hoan state runs over the whole range of 

operation of the evaporator, the correlations relating heat transfer coefficients 

to plant operating conditions are computed. The correlations are then available 

for the simulation of dynamic models and in the real time application of the 

Kalman filter. 

One observation of both off-line and boule experiments is that the 

plant is never at true steady state. The effects of random disturbances on feed 

liquor flow and temperature, the unknown performance characteristics of the 

vacuum pump and the accummulation in the second effect represent constant 

dynamic disturbances and at best the plant attains a pseudo steady state condition 

By means of the seventh subroutine of the BASELINE ‘paehoas: a BASIC program is 

written to scan the instruments at pseudo steady eA over a period of one half 

hour. The effects of any major dynamic disturbances are reflected in the standard 

deviations of the analogue signals. When the deviations are large, the steady 

_ state mass and energy balances are not executed and further time is allotted to 

enable the plant state to settle before recommencing on-line logging. 

6.3.1 On-line Program 
  

The on-line steady state program (Program 3 of Appendix 6) follows the 

form outlined in Figure 6.1.



When the program is entered at.the BASIC level, the starting time of 

operations is recorded by reading the MDP200 24 hour clock by the second 

BASELINE subroutine, 

CALL (2, T9) 

and ihe variable T? is returned with the current time. Run time data are then 

entered from the teletype as follows. 

1. Sampling interval - the time between successive interrupts and hence 

the execution of subroutine 7 

2. Samples required - the total number of samples in the steady state run 

3. Ensemble - the number of scans at each sampling interval taken to form 

the ensemble average 

4. Steam valve position - since the steam flow calibration is known to be 

unreliable, the valve position is recorded to assist in reconciling differences 

between measured and calculated steam rates. 

5. Water flow rate. As the cooling waite flow rate to the condenser is not 

measured on-line, the rotameter reading is converted to the appropriate flow rate 

and input to the program via the teletype. 

6. The temperature of the steam in the feed line to the first effect calandria 

is input by the scan switches at the MDP200 remote cabinet. By means of the 

fourth BASELINE subroutine, 

CALL (4, W1) 

the four digit value set at the scan switches is stored into the BASIC variable W1. 

Although the steam pressure is regulated during normal operations, the pressure 

fluctuates according to the quantity of condensate in the steam supply lines and 

the requirements of other users in the laboratory.



When all run data are input, the computer waits for manual control 

of sense switch 3 at the remote cabinet and when the switch is depressed, on-line 

steady state experiments are executed as follows. 

1. In order to measure the accummulation in the second effect, the 

differential pressure transducer recording liquid head is scanned rapidly 200 times 

and an accurate reading of time is taken from the MDP200 clock. The time and 

the average of the scans are stored for comparison with similar readings at the end 

of the run. 

2. The interrupt scanning operations are initiated by calling the seventh 

BASELINE subroutine. Following this call, computer operations are temporarily 

suspended at each sampling interval and subroutine seven is executed. The total 

number of interrupts is given by the ‘samples required’ input during program 

initialisation. ‘ 

3. The results of scanning the analogue values are stored as continuous 

sum and sum of squares for later computation of mean and standard deviation. 

4. The program then tests sense Switch 4 for manual run termination before 

Hie rdauspadsauriies of samples is achieved (e.g. in the case of plant breakdown). 

If the test is positive, the real time clock is stopped by a call to the fifth 

subroutine. If the test is negative, the program waits for interrupt to occur at the 

next sampling interval by baiting the state of the ‘scans done! flag in the argunent 

list of subroutine seven. 

5. On return from interrupt, the 'scans done' flag is incremented and program 

control returns to step 3 above. 

6. When the total number of samples is achieved or when sense switch 4 
a 

is manually set, the head in the second effect is again scanned rapidly 200 times 
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and an accurate time reading is taken so that the accummulation can be 

calculated. 

7. The analogue values are averaged and the standard deviations computed. 

If the standard deviations are large, the complete steady state run is terminated 

by pressing sense switch |] which creates a BASIC program break. 

8. The results of the calculations areprinted in the analogue output section 

which lists the mean and standard deviation of each channel. The mean values 

are then converted into SI units by the.calibration constants and the resulting 

vapour pressures converted to temperature by the subroutine described in 

Section 6.2.3. The steady state mass and energy balances are solved to datennine 

unmeasured variables. When the mass flow, temperature and enthalpy of each 

stream have been computed, a comprehensive converted output is printed at the 

teletype. 

6.3.2 Experimental Procedure 
  

Steady state operations commence when plant conditions are steady following 

start up. Since the plant is neverat true steady state, the best pseudo steady 

state conditions are achieved by adjusting either the steam rate to the first effect 

or liquid feed rate to the preheater and allowing sufficient time for the major 

dynamic effects to settle. During this time, each instrument is scanned and the 

digital output of the ADC is observed at the visual display unit of the MDP200 

remote cabinet. This provides a check on instrument and logger operation before 

each on-line run is initiated. 

When the plant is settled and the instruments are checked, the BASIC 

program is entered by the RUN command. The current time is immediately printed



for later reference and the run-time values of sampling interval, samples required, 

ensemble, steam valve position and condenser cooling water rate are input. 

The temperature of the steam in the feed line to the first effect is set on the 

scan identification switches; the numerical value is derived from pressure guage 

observations and the use of steam tables. Logging commences as soon as sense 

switch 3 is depressed and the ADC output for any channel can be displayed at the 

VDU, thus providing a continuous ehesk on the performance of the MDP200 main 

cabinet. 

As logging continues, the steam condensate from the shellside of the first 

effect is collected for comparison with the computed steam rate. In the event of 

a plant or logger breakdown, logging operations are terminated by manual 

operation of sense switch 4 when program execution is immediately directed to 

the analogue output section so that the.cumulative effects of errors can be 

observed. Prior to the analogue output section, the MDP200 clock is read and 

the current time output. Under normal running conditions logging scence 

until the total number of samples required is achieved. During the subsequent 

computation and output, the operating conditions of the plant are changed in 

anticipation of a further steady state run. When the plant is settled again, the 

program is re-entered. 

6.3.3 Implementation of the Steady State Model 

When the steady state analogue output section is complete, the raw data 

are converted to S| units so that the mass and energy balances can be solved. The 

converted measurements are stored ina BASIC array, each subscript 
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corresponding to the instrument channel number. Figure 5.1 shows the pilot plant 

including stream numbers and instrument readings. In the steady state model, 

(equations 5.2.1 to 5.2.36) equations 5.2.7 - 5.2. 10 and 5.2.33 - 5.2.36, 

the simple mass and energy balances are included for completeness only and thus 

it is unnecessary to program every equation when simple relationships can be 

implied. The stream notation of Figure 5.1 is adopted in stating the calculation 

order. 

After the accumulation in the second effect (My) is calculated, the 

enthalpies of some streams can be computed directly from measurements ; 

(datum of OC is assumed), 

Hou MCT, : 6.3.1 

H,- * MCT, 6.3.2 

Hy Me Myatt) | 6.359 

Hoe MaC.Tg : 6.3.4 

Hy = (Mg - My) aT) 6,3:5 

He (MAM, Cl 6.3.6 

Ae Mi9CoT 19 ok : By dcr 

He = My 300713 : 6.3.8 

HA - MCT 5 | 6.3.9 

where g(T) is the vapour enthalpy function. 
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An energy balance on the cyclone separator (equation 5.2.13) gives 

H ee eae : 6.3. 
Z 8 3 

and hence the temperature of the liquid/vapour mixture leaving the first effect 

tubes can be calculated by solving 

g(T_)(M, - Mg) + M,C.1, = H 6.3. I, 

for TD. This requires the enthalpy correlation (equation 6.2.6) 

g(T) = 4.1868T + 1) ; 6.4. 
where ) (T) = -2.4068T + 2501.6 6.3. 

and rearrangement to give 

T, = H,- 2501.6 (M,-M 

1.78(M, -M 

  

ee. 
from an energy balance on the first effect (equation 5.2.12) the steam rate 

can be calculated. Assuming the steam loses heat by condensation only, 

Ve. =M, = H - 4H 
5 6 7 2 ; 6.3. 

g(T 5) - oy 

and hence the enthalpies of the steam and condensate streams follow directly. 

  

He = oa : 6.3, 

From the energy balance on the preheater (Equation 5.2.11) the rate of 

condensation in the preheater shell is determined, 

MT) 
and hence 

Hy (liquid) = ae 6.3. 
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H , (vapour) = (M, - Mg - M,) g(T 4) 6.3.20 

The circulation rate from the second effect separator through the second 

effect is found from an energy balance on the separator (Equation 5.2.15), 

CVS 818 oiAL 6.3.21 
CMa a 

and hence 

Hig = MasCol ag ! 6.3.22 

His = MigC Ti . 6.3.23 

From the energy balance on the second effect (equation 5.2.14) the rate 

of condensation in the second effect shell is determined, 

  

Mig ote a is iy Me > Maier OU oh) 6.3.24 

Ag 
and Here, 

Hiplliquid) = Mig Cg 6.3.25 

Hy 9(vopour) = (M, - Mg = M, Ja(T, 9) 6.3:26 

From the energy balance on the condenser (equation 5.2.16), the cooling 

water rate in the condenser can be calculated, 

Mio = Ha - Ho ~ Hg (liquid) ~ H, (vapour) | 

ott) 
6.3.27 

  

The above equations together with the measurements and the implied 

simple mass balances define the flow, temperature and enthalpy of each stream. 

The redundancy in the model (2) is used to calculate the steam flow to the first 
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effect shell and the condenser cooling water rate - the latter providing a 

measure of total system heat losses when compared with the measured flow rate. 

6.3.4 Results Output 

Figure 6.3 shows a typical teletype listing resulting from a steady state 

run. When logging is complete, raw data are output to the teletype in the 

analogue output section. During normal vacuum operations, the analogue 

signals are arranged to be negative voltages so that major hardware faults can 

be detected visually by a change in sign. If the analogue results are acceptable 

the program performs the heat and mass balances and presents the results ina 

omprehensive converted output section. For each unit of the evaporator the 

temperature, flow rate and enthalpy are printed for each stream, as shown in 

Figure A7.8.Following the converted output, the following computed flows and 

data are printed for later reference during off-line analysis. 

1. Second effect pump circulation rate. 

2. Input and calculated condenser cooling water rates. 

3. The measured accumulation in the second effect 

4. Calculated steam rate to the first effect 

5. Steam valve position 

6.4 Dynamic State Logging 
  

On completion of a successful steady state run, the control variables - 

preheater feed and first effect steam rate - are manually adjusted. When the 

plant settles to a new steady state another run is commenced. During the settling 

time, the dynamic state of the plant is recorded for later comparison with 
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FIGURE 6.3 - STEADY STATE PROGRAM : ANALOGUE OUTPUT SECTION 

STEADY STATE LOGGING PROGRAM 

START TIME 1614 HRS, 

SAMPLING INTERVALI.3@ 

SAUiPLES REQUIRED 120 

EN SEMBLE 112 

STEAM VALVE POSITION 1.375 

WATER FLOW RATE 1742 

READY 

FINISH TIME 1624 HRS 

19 SCANS DONE 

ANALOGUE OUTPUT 

CHANNEL NO- MEAN ST DEW 

12 -233-355 2006155 
13 -9. 66667 ©582398 
14 -3854e17 3- 74166 
is =1729-72 1°87083 
16 -5323.73 4089898 
17 -3464096 2082843 
18 -5136-56 | Be 7178 
19 -7259-59  -45°0777 

29 "=517-32 es ©559G617 

21 “6435-658 | 4.15331 

29 -~613-206 -829156 

au -1693-97 522915 

24 ~1373-63 2.39792 

25 -1445-8 ; 2634521 

27 ‘9386175 4089898 

28 -1840-83 7617635 

29 -1898+23 T+ 31437



simulated results. The data represents the response of the plant to a step change 

in control variable settings. 

6.4.1 Dynamic Log Program 
  

Figure 6.1 shows the layout of the dynamic state log program; this 

is incorporated into the steady state logging program from statement 4000 (Program 

3, Appendix 6). Once the program is initiated, a variable code is input as a 

reference for the type of step change. The codes are l-change in preheater 

feed rate, 2-change in steam rate to the first effect. The program then waits 

for sense switch 3 to be depressed so that logging operations can commence. 

The manual operation of the switch coincides with the exact time of disturbing 

plant operations. Logging begins immediately and is repeated every minute by 

the interrupt facility of BASELINE subroutine 7. Each time the ensemble averaged 

analogue’ data are available, they are converted to SI units by the calibration 

constants and stored in a two-dimensional BASIC array. In the Byer of a plant 

be logger breakdown, logging operations are terminated when sense switch 3 

is reset. 

Theoretically, the program will continue to log a store dato until manual 

intervention. However, the total quantity of data that can be cee in the array 

is limited by the available free storage in the BASIC compiler. Consequently, 

the total number of stored values for each channel is restricted to 30 (i.e. 30 

minutes of dynamic logging). 
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6.4.2 Dynamic Log Output 
  

After 30 minutes logging or following manual intervention, the stored 

converted measurements are printed as shown in Figure A7.48. Firstly, the control 

variable code is translated into either the steam rate of liquid feed rate and output 

to the teletype. Then for each channel, the measurements, based on averaging 

over each minute, are printed in the following order and units, 

Channels 1285 ia kN 

#7 @ 16; 17 ee 

’ 18 m 

. 19 analogue value 

aie 20 = 29 eG 

6.5 Simulation Experiments 
  

6.5.1 General 

Digital simulation has become an increasingly popular technique in the 

analysis of continuous systems. Nevertheless, it is important to realise the 

objectives and limitations of simulating dynamic models in isolation from real 

plant data. The reasons for using digital simulation are twofold. Firstly, a 

dynamic model may be developed before a process is constructed or when 

process experiments cannot be carried out. In this.case, the simulation results 

provide an accurate response of the model only and any comparison between 

the numerical results and the real process is purely qualitative. Secondly, 

a dynamic model may be simulated when some accessible process mea surements 

exist. The results of simulation can be compared with real data and the model 

may be modified to 'fit' the data so that the results of further simulation 
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experiments are comparatively reliable. Kalman filtering can be seen as a 

technique for continuously updating variables and parameters (estimation) based 

on simulated (predicted) and measured variables. 

The objectives of the simulation experiments are as follows 

1. To compare the numerical solution of the comprehensive model 

(equations 5.3.1 - 5.3.30) with on-line data from dynamic logging. This 

requires that the initial conditions of the numerical integration are the same as 

those of the real plant, i.e. the previous steady state values recorded prior to 

disturbciues of the evaporator. 

2. To ascertain the suitability of the mathematical model in on-line, 

real-time Kalman filtering. System order and available computer time at the 

filter prediction step (equation 2.5.4) are important factors in achieving this 

objective. Clearly the storage and integration time reduited for the 18th order 

comprehensive model are impractical in a real-time application and the 4th order 

reduced model (equations 5.4.1 - 5.4.17) can be utilised if the filter is 

insensitive to.model simplification (27 ). Since one of the principal objectives 

of the research is to implement the Kalman filter algorithm in real time it is 

apparent that without such a technique an on-line study of the evaporator 

dynamics, is not feasible. 

3. To justify the reduction in the order of the model by simulation 

and comparison with the results of dynamic sae. The reasons for such 

simplifications are twofold. In addition to shahacenin to devise a simple 

model suitable for implementation of the filter algorithm, the dynamic 

characteristics of the vapour phase of the evaporator are uncertain. During the 

-107—



theoretical derivation of the comprehensive model (Section 5.3.7) it was noted 

that the vacuum pump controls the vapour pressure throughout the evaporator 

and that the dynamics of the pump and the liquid heads in connecting pipework 

are not known. Furthermore, the time constants of the vapour phase differential 

equations are small in comparison to those of the liquid. This suggests that the 

vapour phase dynamic equations can be replaced by their steady sisi counterparts 

and the effect of the vacuum pump be treated as a control variable which is 

either constant or varying ina known manner. 

6.5.2 Simulation Programs - General 
  

One of the principal achievements in the development of: fa ASP package 

(Appendix 4) is that the programming effort required of the user is minimised. 

When a Siauladion program is structured in the format of Section 6.2.2, a 

knowledge of numerical integration methods is not required. Thus the simulation 

of the comprehensive and reduced dynamic models is simply performed by 

programming the derivative equations in the correct order in BASIC, calling the 

appropriate subroutines and determining a suitable integration step length by 

trial and error. 

Although the evaporator never attains true steady state conditions, it is 

assumed that it has reached such a state at the end of a 'steady state’ run. 

Conse tienily) for simulation purposes, the derivative expressions are forced to 

zero when the plant measurements are input as initial conditions. This is 

effected by evaluating a constant loss term for each derivative equation during 

the initialisation section of a simulation program, such that the derivative is zero. 
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The loss term remains constant in the dynamic equation throughout a complete 

simulation run. In practice, the loss term represents the sum of the following 

effects. | 

1. Plant heat losses which are not accounted for in the derivation of 

the dynamic model 

2. Errors due to the transient state of the plant which is assumed to be 

at steady state , 

3. Errors in the evaluation of heat transfer coefficients from the steady 

state correlations (Section 7.3). 

4. Errors in the steady state solution of the dynamic model due to 

assumptions in the mathematical derivation e.g. space lumping, perfect 

mixing, etc. 

One exception to the calculation of zero derivatives is the equation 

defining the rate of change of the liquid level in the second effect separator. 

The liquid head varies throughout all plant operations and so the derivative 

expression is always finite (except at the unique state when the accumulation is 

zero) and requires computation at the start of a simulation run. 

The unknown parameters in the model are the overall heat transfer 

coefficients. Section 7.3 describes the calculation of the correlation fora 

general heat exchanger with an isothermal vapour shell and liquid in the tubes. 

The correlation is calculated as the sum of effects due to the arithmetic mean 

temperature driving force, the liquid flow rate and the vapour flow rate. For 

example, using the variables of the preheater 
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a cM, +dV, 6:54) 

2 

where a, b, c and d are constants. The correlations are incorporated-into the 

derivative section of a simulation program and thus vary continuously as plant 

conditions change. 

Measured disturbances in the evaporator variables are due to step 

changes in either the steam feed rate or the liquid feed to the preheater. When 

the derivatives of the dynamic model are set to zero, the differential equations 

are disturbed by an identical step change so that the results of the dynamic log 

and simulation can be compared graphically. 

6.5.3 Implementation of Comprehensive Model 
  

Prior to simulation, the comprehensive dynamic model (equations 5.3.1 - 

5.3.30) is simplified by substituting the vapour density correlation, 

log? (T)=1.93 log T - 3.1487 6.5.2 

and its derivative 

he = ed = (1) 6.5.3 
dT Lees 

into the vapour phase dynamic equations (5.3.2, 5.3.3, 5.3.7, 9.368, 5.3.20, 

5.3.21); equation 6.5.3 is the function X (T) utilised in the derivation of the 

model. Further, to define completely the simulation algorithm, the heat transfer 

coefficient correlations and loss terms referred to above. are stated below. The 

notation detailed in Section 5.3 is adopted. 
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Preheater 

  

  

  

Be MS ae) MATa” cri 6.5.4 
2 

od ig) 549 Vary * a4 Oe 6.5.8 
2 

U = 682 - 27.55 ("1 ‘ ie): 13.44 M, + 5.27V, 6.5.6 
2 

First Effect 

ge ieee ol N77 UA) 6.5.7 

U, = 623.66 - 11.3405 (T,-T,) - 1.039M, +58.026V, 6.5.8 
| 5 

Second Effect 

Lg ede pe YA ho” Se Ts Bo 2 
ee 

Be Hig la) s Ain Ma = 46) wa 

YA To” Tu sts ) 
et) 

U, = 218076 - (Tio Su Tash 65.93M,, +85.5 V0 
ey 65.11 

Second Effect Separator 

Ly = Mees 14 “ Moe hie * Vos O15512 
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Condenser 

os MaMa Ta) Yeh Moae” Tat hd) | 6:5.13 
il HES 

UL = PS” ie a 

ee 

+ 61VQHNAG) 6.5.14 

The heat transfer coefficient correlations are the results of the 

multivariable linear regression analysis of steady state data described in 

Section 7.3; 

Combination of the comprehensive model of Section 5.3 with the above 

equations gives the derivative expressions suitable for simulation with the 

ASP package. The eighteen first order differential equations are as follows: 

Preheater 

  

  

  

dT, = aes (A ae L 

dt 2 6.5.15 

OW Pe 
tg/ L p 

dTy 2 VgCMg 71) + Vy - Vy YiAa(T4” 2 12) Ls 

dbo B22 iy 6.5.16 

WCE Yo) E+ ¥ Ag 4) 

gy ee : ee Veo EN Woe aT 

dt 6.5.17 
  

Weg Yao fi : 
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dt dt dt 
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Nic (AYP + Y A7KM1)) 

ay = Ne 7 ee a Ty gly 

dt dt 6.5.21 
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dt NS dt \7 dt 
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dt dt 
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dt 
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10 

dt 
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In translating the above equations into BASIC, it is necessary to modify 

the order so that the right hand-side of assignment statements contain all known 

variables. Thus equation 6.5.20 precedes equation 6.5. 18 and equation 6.5.30 

precedes equation 6.5.23. 

6.5.4 Simulation of Comprehensive Model 
  

Figure 6.2 shows a block diagram of the ASP simulation of the comprehensive 

model (Program 4 of Appendix 6). At the initialisation section the following 

operations are performed.. 

1. The physical constants (heat exchanger dimensions, liquid density, etc.) 

are assigned to variable names. 

2. BASIC functions are defined for calculation of (1), X(T) and A - 

3. Initial conditions, taken from plant steady state data, are input together 

with integration step length and order, print interval and final value. 

4. The heat transfer coefficients are calculated from the correlations stored 

in a BASIC subroutine. 

5. The loss terms are calculated from the input data and output to the 

teletype. 

6. The first ASP subroutine is called. 

In the derivative section the differential equations are stated in the correct 

order and the output is controlled by calling the second subroutine. During each pass 

through the derivative section, the heat transfer coefficients are recalculated except 

at the first pass when the values are available from the calculation of the loss terms. 
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At the output section the flow and temperature of each stream of the evaporator 

is printed out. 

As described in Section 6.2.2, the integration section consists of a call 

to the third ASP subroutine followed by eighteen calls to the fourth subroutine 

to integrate eoch derivative expression. 

6.5.5 Implementation of Reduced Model 
  

The reduced dynamic model, equations 5.4.1 to 5.4.17, ‘is derived from the 

comprehensive model by assuming the vapour side temperatures are controlled by 

the vacuum pump. In order.to assess the 'goodness of fit' of the reduced model it is 

necessary to regard the vapour temperatures as measured variables. A record of the 

response of the vapour temperatures is available from dynamic logging experiments 

and can be incorporated into simulation programs by utilising the function generation 

subroutine of ASP. 

The heat transfer coefficient correlations and loss terms are identical to 

those in the comprehensive model equations, and the four first order differential 

equations are, 

  

  

dene MAC (1 )-T,) + Mahe( "4 = cae L, 6.5.33 

dt 2 

A els 

dig gaye tial * VEE Nig = ig tas) eid 6.5.34 
dt 2 

ics 
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Pa na id) bop" 15 ee ee | 
dr 2 A Aig 6.5.35 

a igt ioe ag lig) * Yehe(Tee . Teta) 2 6.5.36 
dt 3 gar 
  

5 Wier Me 

velar Tee Tae M15" 
of equation 6.5.35. which is derived from a steady state 

The controlled temperatures are T Le and all mass flows are 

controlled, except M 
8 

energy balance on the first effect, 

ee ee sa oC 6.5.37 
A7 
  

6.5.6 Simulation of Reduced Model 
  

Program 5 of Appendix 6 shows the ASP simulation of the reduced model. The 

operation of the program is similar to the simulation of the comprehensive model 

(Figure 6.2). At the initialisation section, the vapour phase data from a dynamic log 

are input to a number of arrays and the fifth ASP subroutine carries out interpolation 

on the data throughout a simulation run. Effectively this provides a continuous 

‘measurement! of the control variables in the derivative section of the program. 
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-6.6 Kalman Filtering 

6.6.1 General 

In Chapter 5, the development of the comprehensive dynamic model 

indicated that an accurate mathematical description of the evaporator is 

represented by @ non-linear, 18th order model. While a model of this order is 

clearly impractical for on-line algorithms, the development of a reduced model 

produces a more approximate description of plant performance. Since the ultimate 

objective of dynamic modelling of process plant is to devise a model suitable for 

optimal multivariable control, it is necessary to use the most accurate model available 

or devise a method for continuously updating the simplified model to coincide with 

plant performance. When the results of dynamic simulation and plant data are 

combined by an on-line scauantiel mete tle technique such as Kalman filtering 

(Figure 6.4) the unknown model parameters and state variables can be estimated 

accurately. This assumes a knowledge of the model and measurement error 

statistics and sufficient computer time to execute the filter algorithm, take 

measurements and output results. Thus, when the filter estimation errors converge 

to their minimum values, the estimate of the states and parameters represents the 

‘best available! description of the plant based on current and previous measurements. 

Furthermore, the dynamic model, including the estimated parameters, will be the 

‘best! mathematical representation of the process at that time. 

One important factor in judging the performance of the filter algorithm is the 

reliability of both initial statistics defining estimation error (P(0 |0)) and the 

constant statistics that define measurement and process noise (R andQ). In 

particular, process noise statistics can be considered to be contributed to from 
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FIGURE 6.4% 
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three sources, 

1. Errors in the model due to all types of assumatttin and simplification 

2. Numerical errors in the calculation of the transition matrix 

3. Random disturbances to system inputs (measured or unmeasured) and 

controls. 

Since, as yet, there is no method of computing Q during a filter cycle for 

non-linear problems (Section 2.5), the numerical value of Q is determined by 

trial and error and an intuitive feel for the accuracy of estimation. While it seems 

that the correct selection of Q will account for modelling errors, the effect of the 

higher uncertainity on estimation of parameters is unsure. Further, one criticism 

of the filter performance ( 13 ), is that once converged it 'learns' the process too 

well so that when plant conditions change, the estimated state variables are 

considerably slower in response. Again, this must be accounted for in the selection 

of Q since it is only at equation 6B of Figure 6.4 that the predicted estimation error 

covariance matrix can be 'loosened' to take account of changes of this type. 

The objectives of the on-line Kalman filtering experiments are as follows: 

1. To develop and test a FORTRAN subroutine to execute the Kalman 

filter algorithm in real time. From both hardware and software considerations, the 

timing of filter cycle and ane logging is critical so that a knowledge of computation 

time is necessary before going on-line to the evaporator. 

2. To provide a sc iafe ae between the performance of the reduced model 

and the plant in real time, thus confirming the filtering technique as a possible 

basis for a multivariable control scheme. 

3. To investigate the performance of the filter algorithm in estimating plant 

parameters (heat transfer coefficients) over a wide range of dynamic operations. 
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4. To determine the effects of uncertainty in the process noise error 

statistics upon the filter convergence at steady state and the loosening of the filter 

during transient operations. 

In the reduced model, the parameters are the overall heat transfer 

coefficients for which correlations are available. The correlations are themselves 

approximate due to inherent errors in the on-line calculation of the steady state 

model. This provides an opportunity for testing the convergence of the parameter 

estimates when they are predicted at equation 6A by the correlations,and when 

they are driven to steady state by assuming a zero derivative state equation. 

The examination of the filter performance in 3. and 4. above is carried 

out off-line eis previously stored plant measurements This removes the time 

consuming plant operations from experiments and permits repetitive processing of 

identical sets of data to examine the effect of process noise statistics on convergence 

and loosening of the filter. 

6.6.2 Kalman Filter Software 
  

During on-line experiments, the extended Kalman filter, Figure 6.4, is 

used. The first order approximation to the transition matrix has the disadvantage 

that the numerical error increases as the sampling interval between measurements 

increases. In order to minimise computation time and to avoid the matrix inversion 

involved in the classical form of the algorithm, the sequential processing algorithm 

described in Section 2.5, is utilised. It is reasonable to assume that measurements 

are uncorrelated, in which case the sequential algorithm represents a substantial 

saving in filter execution time. It is also advantageous to separate the computational 
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features of the algorithin into two parts. 

1. Equations 6A and 6B of Figure 6.4 iatetent ine part of the algorithm 

coniributed to direct by the mathematical model. For Boke ligeor problems 

computation of the transition matrix, (k + 1,k),is required at each filter cycle. 

These operations differ according to the mathematical model and the method of 

integration selected. 

2. Once the integration step is performed and the transition matrix is 

computed, the calculation of the remainder of the filter algorithm is common to all 

filtering applications. Provided the measurements are available at the appropriate 

time, the necessary matrix operations should be executed as quickly as possible and 

with minimum programming effort. 

These two features of the filter algorithm require different methods of 

programming. Integration and calculation of transition matrix are problem 

~~ orientated and are written in BASIC where interactive execution and editing is 

a great advantage. The calculation of the filter cycle is a fixed Snérdnie and 

is programmed once only in FORTRAN as a subroutine. The compiled subroutine 

is then loaded into memory with other BASELINE subroutines and is thus permanently 

available in on-line applications. 

Subroutine KALMAN executes the problem independent Section of the algorithm 

SectionA3.7. Due to difficulties in loading the subroutine iitouttig BASELINE 

package, described in Appendix 3, all matrices that are transferred as subroutine 

arguments are singly subscripted arrays. This is a requirement of the FORTRAN 

translator package which permits the mixing of assembler and FORTRAN instructions 

that is necessary to effect loading of the subroutine. The disadvantages of this 
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complex operation are compensated for by the benefit of processing speed at the 

FORTRAN level. Since the filter algorithm is most conveniently programmed 

in two dimensional form, a nina ndard FORTRAN function is used to translate a 

doubly subscripted. expression into a single subscript. This requires the maximum 

dimension of the matrices to be stated and it is set to 10. In practice this represents 

a maximum of 10 state variables and 10 measurements. The subscript function is, 

LM oj = Tee ari 10 

and thus a two dimensional filter algorithm is executed in one dimensional form. 

From the BASIC level, the subroutine is accessed by the instruction 

CALL (8, P(0,0), Q(,0), RO,0), M(O,9), F(O,0), XO), YO), E2, 

$(0,0), K(0,0), N, M) 

where P,Q, R, M, F, S and K are the matrices d 7, Q,.R,-M, P, S and K of 

Figure 6.9, X is the state vector of N elements and Y is the M- measurement 

vector. E2 is the filter memory weighting factor (c ). 

In order to minimise redundant computation time during on-line Kalman 

. filtering, it is necessary to determine the program execution time q priori. The 

total time to performa filter cycle is the sum of the time for measurement, subroutine 

execution, integration and calculation of © . The error of approximation involved 

in the palaulatian af the transition matrix is thus reduced by selecting the 

minimum sampling interval. Program 6 shows a simple BASIC 

program that determines the execution time of the Kalman filter cycle for various 

numbers of state variables and measurements. Before and after each call to the 

subroutine the MDP200 clock is read and the numerical difference in seconds 

pe kc



is printed at the teletype. Program 7 includes a listing of the results. 

The filter subroutine is incorporated into on-line programs as shown in 

Figure 6.1 ° Pollawing the input of initial ehraiions for the state variables and 

the filter error statistics, the transition matrix is calculated and the numerical 

integration (state variable prediction) is performed over the sampling interval. 

.Channel scanning is then initiated by a call to the seventh BASELINE subroutine 

after which the scanning sequence is repeated at the anita sampling interval. 

When fresh measurements are available to the program, they are converted by the 

calibration constants, the filter cycle is executed and the state variable estimates 

are output to the teletype. The quantity of output is dependent upon the available 

time during the computations but in real-time operations it is restricted to the 

estimates and their error statistics. When the filter cycle and output is complete, 

the integration is performed up to the next sampling interval and the new transition 

matrix is prepared. The program then waits for the real time clock to interrupt 

program execution. Each time the measurements become available, the complete 

cycle of data conversion, filtering, output, integration and calculation of $ 

is repeated. 

The general program structure, shown in Figure 6.1. can be adapted for 

off-line use by reading in data from paper tape at each sampling interval rather 

than taking actual measurements on interrupt. This removes both the on-line 

plant operation and the timing co-ordination from experiments. 
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6.6.3 Filter Representation of Reduced Model 

State Equations 

For filtering experiments the state vector of the reduced model, (equations 

marca to. 6.5.37, ) contains 8 state variables. Thus the state vector X 

of Figure 6.4 is 

X = 6.671 

    
where the heat transfer coefficients are unknown system parameters. 

The dimension of the measurement vector is reduced by assuming the input 

disturbances and controlled variables are noise free measurements and are used 

in the calculation of the elements of the transition matrix at each filter cycle. 

In particular, this includes the measurements of vapour pressure (temperature) which, 

from plant observations, are known to vary when the plant is at unsteady state. This 

method of utilising reliable measurements, not in the state vector, directly is used 

by Schmidt et al (41 ). The measurement vector is thus, 
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y = 14 6.6.2 

and since calibration constants are used for conversion from raw measurements, the 

measurement state equation is, 

y a x 6.6.3 

The plant state equations are given in ee 6.5.33 to 6.5.37. 

Classically, the parameter state equations can be represented by zero derivative 

expressions. However, further information is available in the form of the steady 

state LaieloHioni (equations 6.5.6, 6.5.8, 6.5.11, 6.5.14) which relate thie overal| 

heat transfer coefficients to the operating conditions of the plant. Although the 

correlations are not dynamic equations, and hence their diagonal elements on the 

transition matrix will be unity, it is clearly beneficial to use all state variable 

information at the prediction stage. This provides an opportunity for comparing 

both methods of predicting parameters. 

Prediction Stage 

At the prediction step (equation 6A) the filter algorithm is influenced by the 

process model. At the state variable prediction, 
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3 k+1 

xkt+1[k) = xklk) + / - F(x) dt 6.6.4 

the state equations are integrated over the sampling interval. Since the ASP 

and BASELINE subroutines cannot be combined, the integration step is programmed 

in BASIC. One important consideration in Hic ing a numerical integration method 

is the time required to carry out an integration step. It is necessary to minimise the 

number of derivative function evaluations whilst maintaining numerical precision. 

in terms of BASIC programming, the most efficient method (i.e. requiring the least 

number of statements to be interpreted) is the Euler method, where the four 

derivative equations can be stated briefly and repetitively integrated over a smal 

step length. 

The influence of the process model at the prediction of the estimation error 

covariance matrix 5 

P+ 1k) = Ok +1,k) Plkik) O'k+1,k) + Qk) 6.6.5 

is accounted for by the transition matrix. Since the state equations are non-linear, 

the transition matrix is a function of the state. If the dynamic model is expanded 

in a Taylor series expansion and truncated after the first derivative terms the 

transition matrix elements are, 

pied 

Mig PUSp 

534 a ~ M,C A " 60, ye ( iy * UA, ee 
6.6.6 
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615, 5) = 06,46 =v O0;7) =O, 8) =.1 6.6.16-19 

and all other elements of are zero. The above expressions contain the measured 

control variables and input disturbances - M,, Ty Te Moye Tho Th5 Fe) 

Tho Tp, TD 

Filter Statistics 

In the real-time application of the Kalman filter, it is necessary to state 

initial valde of the state variables, their aaiination error covariances and the error 

covariance matrices of the measurement and process noise (R and Q). The most 

accurate initial estimates of state variables are obtained by making an initial 

measurement, prior to filtering, and utilizing these measurements and a prediction 

of the parameters (based on either an approximate guess or the steady state 

correlations) in the vector x(0| 0). The effects of the magnitude of P(O | 0) has 

been extensively reported (20 ). Off-line experimentation indicates that the 

magnitude of the diagonal elements should be sufficient to guarantee convergence 

of the algorithm within a few filter cycles. 

The numerical values of the diagonal elements of the measurement noise 

covariance matrix, R, are determined by examining the standard deviations in the 

analogue output section of the steady state logging program. Although the plant 

is never at true steady fe this represents the most accurate available estimate of R. 

Selection of the diagonal elements of Q is not so straightforward. The process noise 

matrix can be regarded as the compounded result of errors from different sources and 

the selection of the numerical values depends upon the accuracy of the model and 

the dynamic state of the plant. The influence of variations in Q on the performance 
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of the filter algorithm is a principal study in this research. 

6.6.4 On-line Real-Time Filter Program 
  

One important objective in writing the real-time Kalman filter program is 

the provision of a general programming facility, so that the experimental variables 

such as sampling interval, integration step length, error covariance matrices, etc., 

can be changed without major programming effort. A listing of the on-line real- 

time program is shown in Progra 7 of Appendix € . The program is written with 

a number of BASIC subroutines which are called froma central program based on the 

eynamic logging program which performs the essential task of plant measurement. 

The subroutines and the statement numbers of Program 8 at which they commence are 

as follows: 

1. Initialisation Subroutine - 300 - 
  

Prior to measurement on interrupt, each channel is scanned a to provide 

initial conditions. The raw analogue data are converted into SI units and the steady 

state loss terms are calculated. This implies that the filtering operations are 

initialised when the evaporator is at steady state which is necessary when the heat 

loss terms are unknown. The initial transition matrix, based on the initial 

measurements, is then computed. - 

2. Transition Matrix Subroutine - 1000 
  

Here, each non-zero element of the transition matrix (equations 6.6.6 to 

6.6.19) is calculated and assigned to the appropriate doubly subscripted BASIC 

variable. 
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3. Kalman Filter Subroutine - 1110 
  

When a measurement set is available the FORTRAN subroutine (KALMAN) 

is called from BASIC and a filter cycle is executed. 

4. Output Subroutine - 2000 
  

Following the execution of a filter cycle, an optional printout of all output 

variables from the filter subroutine is available. By simple programming in BASIC, 

this subroutine can be by~passed or reduced according to the available output time. 

5. Heat Transfer Coefficient Subroutine - 4000 
  

The steady state correlations are evaluated based on the current estimates 

of state variables and measurements of control variables. 

6. Conversion Subroutine - 5000 
  

Analogue measurements are converted to S] units by the appropriate calibration 

constants. The steam flow rate to the first effect is calculated from a polynomial. 

7. Enter Integration Subroutine - 6000 eee - 
  

The dynamic state equations are integrated over the sampling interval using 

a small step length. The total computation time, and hence integration step length, 

is determined by trial and error and is arranged to occupy all available processor 

time during a measurement cycle. 

Execution follows the form shown in Figure 6.1. After the program is 

initiated the necessary arrays are dimensioned and the calibration data is stored. The 

program then prints out the start time by reading the MDP200 clock, the elements 

of the covariance matrices are assigned, and the sampling. interval and ensemble are 
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input. The initialisation subroutine is then called and the explicit call to BASELINE 

subroutine 7 is made after which the measurements are taken automatically at the 

required sampling interval. After each measurement the raw data is converted, a 

filter cycle is executed, the results are printed out and the integration step is 

performed. In the remaining time, the Resta waits for the next sampling time to 

be reached. The program can be terminated by manual intervention at the BASIC 

level by pressing sense switch 1 and creating a program break. 

For off-line processing of measurements stored on paper tape, the program 

is essentially the same. Whereas in real-time execution BASELINE subroutine 7 

is executed automatically to perform measurements, in off-line execution the 

sampling interval is fixed when the measurements are stored on paper tape and thus 

data are input from the tape reader when required. 

6.6.5 Filtering Experiments 
  

The following on-line, real-time experiments are performed 

1. Testing of the subroutines and the feasibility of filtering the evaporator 

system in real time. 

2. Estimation of the optimum integration step length to maintain numerical 

precision during state variable prediction. 

3. Determination of suitable initial statistics for real-time state variable and 

parameter estimation. 

4. Real-time parameter estimation based on both the steady state correlations 

and the zero derivative expressions at the state variable prediction step. 

3. By means of the modification to the BASIC program, permitting paper 
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tape input/output, the measurements of a steady-state and dynamic run are dumped 

onto paper tape for off-line processing. 

Paper-tape measurements provide a permanent record of plant operating 

conditions so that repetitive off-line filtering experiments can be performed as 

follows: 

1. Examination of the filter matrices not available during real-time 

processing. In particular, filter convergence and loosening during both steady state 

and dynamic operations. 

2. Investigation of the effect of the numerical value of the process noise 

statistics upon convergence and loosening of the filter. 
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6.7 Chapter Review 

Chapter 6‘describes the on-line implementation of steady state and dynamic 

models with the interactive program packages, ASP and BASELINE. The on-line 

_ experimental method and computer programs are described for calibrations, steady- 

ss runs, dynamic logging and Kalman filtering. Off-line simulation of the 

Be irchensive and reduced models of Chapter 5 is performed prior to filtering in 

order to compare theoretical and measured dynamic responses. The fourth order 

reduced model is adopted for use in eighth order Kalman filtering experiments where 

the four plant overall heat transfer coefficients are unknown parameters to be 

estimated. 
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CHAPTER 7 

RESULTS, ANALYSIS AND DISCUSSION 
  

7.1 Introduction 

In Chapier 6, the experimental method and on-line programs are described. 

The objective of this chapter is to report and discuss the experimental results and 

their analyses in the following order. 

1. Preparatory experiments - namely on-line instrument calibrations and 

computation of thermodynamic correlations. 

2. On-line steady-state runs over the whole range of operation of the 

evaporaior. 

3. Analysis of the teletype output resulting from steady-state experiments 

to determine heat transfer coefficients for each heat exchange unit. Comparison 

of calculated heat transfer coefficients with theoretical values derived from well- 

known published relationships and computation of correlations based on plant 

operating conditions. ae - 

4. On-line recording of the dynamic response of the evaporator (dynamic 

logs). 

o. SiIGHion of comprehensive and reduced models and comparison of 

simulated response with the results of dynamic logs. 

6. On-line real-time Kalman filtering experiments to perform estimation 

of plant parameters (heat transfer coefficients). Off-line filter timing experiments 

are performed before aera on-line. 

7. Off-line filtering experiments based on real plant measurements 

permanently stored on paper tape. Repetitive processing of data permits the 

analysis of the influence of the filter statistics on the performance of the algorithm 
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and the accuracy of the estimation. 

The fixed order of experimentation described above is necessary to achieve 

the objectives of implementing the Kalman filter on-line to the double effect 

evaporator and investigating the effect of variations in the filter noise statistics. 

The flow of information between each experimental stage is shown in Figure 7.1. 

Clearly, any on-line operations cannot proceed without instrument calibrations 

and evaluation of thermodynamic relationships while for simulation and filtering, 

the dynamic model and heat transfer coefficient correlations are prerequisite. 

Comparison of the results of dynamic simulation with recorded measurements 

provides both a qualitative estimate of the accuracy of the mathematical model 

and an indication of the suitability of the reduced model at the state Potable 

prediction stage of the filter algorithm. 

Graphs and tables of data are presented in Appendix 7. Where results are 

analysed by computer, the relevant programs are presented in Appendix 6. 

7.2 Preparatory Experiments 
  

7.2.1 Instrument Calibration 
  

When the evaporator is operating continuously on-line to the computer system, 

the cumulative effects of mechanical vibrations and temperature variations cause 

drift in the performance of the d.c. transducers. In order to maintain maximum 

accuracy, it is necessary to recalibrate some instruments periodically. The 

calibration procedure described in Section 6.2.4 and Program 2 of Appendix 6 can 

be executed at any time to produce analogue values for corresponding transducer 

positions. 
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There are two distinct classes of instrument calibration. Firstly, calibration 

of flowmeters, pressure transducers and differential pressure gauges where the 

relationship betieen the electrical transducer output and the flow or pressure 

input is not known a priori. Thus the analogue results and regression equations 

cannot be compared with standard equations or manufacturers data. Furthermore, 

it is this class of instrument that requires periodic recalibration. The second 

class is the calibration of thermocuples where the instrument itself produces 

a d.c. voltage which is more accurate than the available devices against which 

to calibrate. In this case, once only calibration experiments serve as a check 

against faulty thermocouple connections and provide a qualitative estimate of 

the reliability of manufacturers calibration data. When thermocouple extension 

or compensation cabling is used to carry the analogue signal to the remote 

cabinet of the MDP200, it is possible for secondary couples to be set up where 

poor or reverse connections are made. 

For both classes of calibration it is essential to calibrate on-line to the 

computer system to include noise and/or bias effects produced by the MDP200 

and the logger/computer interface. All analogue inputs to the MDP200 remote 

cabinet are connected so that the digitised signals are negative when the 

evaporator is operating under normal vacuum conditions. This provides an 

instant check of instrument failure during on-line operations by observing the 

sign of the ADC output signal at either the remote cabinet VDU or in the 

analogue output section of the teletype output as shown in Figure 6.5. To 

obtain maximum numerical precision the four digit BCD integer output from the 

ADC is converted to a corresponding four digit real decimal number by the 

BASELINE subroutines, i.e. the maximum absolute value stored at the BASIC 
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level is 9999.0 and the minimum is 0.0. 

A detailed discussion of the calibration of each analogue channel is 

unnecessary and the following results are taken as typical of each type of 

instrument. 

1. Channel 17-Flowmeter to 2nd Effect Separator 
  

Figure A7.1 shows the calibration of the second effect flow meter. The 

data pairs are flow rates, recorded by measuring cylinder and stop watch, and 

corresponding analogue signals produced by Program 2. The data are input to 

the Honeywell SLS program from hich the graph and statistical output shown in 

the Figure are extracted. Operating experience has shown that with the exception 

of the steam orifice plate differential pressure gauge, the Fischer-Porter magnetic 

variable-area flow meters are the least reliable instruments and require frequent 

recalibration. Principally, this is due to friction effects on the potentiometer 

arm of the linear displacement transducers. Also, as can be observed in Figure 

A7.1, a small amount of hysteresis is present in the movement of the flowmeter 

magnetic, plug. 

2. Channel 15-Second Effect Shel! Pressure Transducer 
  

Calibration of the vacuum pressure in the shellside of the second effect 

is shown in Figure A7.2 All pressure transducers are calibrated by removing 

the instrument from the evaporator to a simple mercury manometer circuit. 

In all cases the linear correlation coefficient between the pressure (kNm~2) 

and analogue output is very nearly unity. | Since the pressure transducers contain 

few mechanical parts and each unit is protected from external disturbance , 

recalibration is seldom required. 
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3 Channel 18 Liquid Level in Second Effect Separator 
  

Like the pressure transducers, the differential pressure meters cannot be 

disturbed externally and a strong linear correlation is evident, as shown in 

Figure A7.3. During normal operation of the evaporator, the liquid head in the 

second effect is fluctuating rapidly due to boiling. Instantaneous measurement 

of fluctuations is avoided by increasing the mechanical damping applied to the 

differential pressure diaphragm, thus smoothing the resulting analogue signal. 

The response of the average liquid level in the separator is never fast enough 

to be smoothed itself by adjustment of the mechanical damping. 

4. Channel 19 Steam Flow Rate an ‘ 
  

Although the pressure in the steam supply is regulated to 240 kNm=2 (20 psig) 

pressure fluctuation occurs due to condensate in the delivery lines and the 

requirements of other users in the laboratory. Thus the acquisition of a single 

undisturbed steady-state reading requires the collection of condensate over a long 

period. Since the steady-state mathematical model contains redundancy, the steam 

flow rate is Spored during steady-state runs and at the same time the condensate 

flow rate is measured. When the standard deviations on the analogue macsuremnet 

of channel 19 is small, the data is included in the steam flow calibration. From 

the results of 100 steady state runs, the steam rate is related to the analogue 

value by carrying out a polynomial regression as shown in Figure A7.4 The 

resulting polynomial is required for simulation of the reduced model and on-line 

Kalman filtering. 

5. Channels 20-27 Thermocouple Calibrations 
  

The once only calibration of thermocouples is shown in Figure A7.5. 

The line shows the manufacturers data relating millivolt signal to temperature, 
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and the points are measurements recorded by Beckman thermometer and plotted 

against the logged analogue value for all thermocouples. The results satisfactorily 

confirm the manufacturers recommended correlation within the limits of 

experimental accuracy. 

A summary of the results of all calibrations is shown in Table A7.1. The 

linear correlation coefficients are included to indicate the reliability of the 

linear equations. In all cases the conversion is effected by multiplying the 

slope by the negative, four digit, analogue voltage and adding to the intercept. 

Instrument type is denoted by PT - pressure transducer, DP - differential pressure 

gauge, FM = magnetic flow meter and TC = thermocouple. 

TABLE 7.1 = Results of Calibrations 
  

  ania es yy 

  

Channel ! Instrument | Units. | Slope | Intercept | Correlation 
No. Type | [ee | Coefficient 

Pl? ae ert -kNm™ | 0.0264 | 103.993 0.9999 
1909. PT /kNm™~ | 0.0518 | 100.221 0.9997 

P14 ee PT Lin: | 0.0235 | 97.36 | 0.9997 
15 | ey | ee 2 0.0863 : | 99.08 0.9999 

16° EM Mategs © 4G |-0.896x10-. | =26.43.21 0.9962 
/ a7 | eM. | gs! /-o.szix110 | -15,04 | 0.9978 
ee. |. oP | m(H,0) -0.43x 107° | 0.031 | 0.9998 

| Te Ee | ~0.025 0 | 0.99999. | | 20-27 
Bika bala   

The. polynomial for the steam flow rate ge to the first effect is, 

MS = -11.381 - 0.3255 x 10°*Ay - 0.234755 x io"? Aye 

where Av is the voltage reading. The correlation coefficient is 0.975661. 
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7.2.2 Thermodynamic Correlations 

The statement and solution of the mathematical models of the evaporator 

require a knowledge of the relationship between physical and thermodynamic 

properties and the state variables. When the model is to be solved on-line in 

real-time, it is most convenient to correlate the available data into algebraic 

equations, thus avoiding storage and interpolation of large arrays of physical 

property data. For the liquid phase the physical properties are assumed constant 

but for the vapour phase, the variation of pressure, density, latent heat and 

enthalpy with temperature is gréater and must be considered. 

1, Pressure-temperature 
  

A computer algorithm for the calculation of vapour temperature from pressure 

is described in Section 6.2.3. A BASIC subroutine derived from the algorithm 

is included in all on-line programs where pressure measurement is recorded. Within 

the range of vacuum operation of the evaporator, the algorithm is accurate to 

within the approximations of the state equation from which it is derived (0.1%) 

2. Density-temperature 
  

Figure A7.6 shows the results of a linear regression analysis on density- 

temperature data derived from steam tables ( 105 ). The best fit is found by 

correlating the natural logarithms of the data. The resulting equation is 

log p, (T) = 1.93 log T - 3.1487 Fi26\ 

with a correlation coefficient of 0.9935 where Pv is ing ne For the 

implementation of the comprehensive dynamic model the derivative of density 

with respect to temperature is required, 
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di ae : 720 

3. Latent heat-temperature 
  

Figure A7.7 shows the results of a linear regression analysis on latent heat- 

temperature data. The resulting equation is 

A(T) = 2501-64-2.407T (J 5 7233 

with a correlation coefficient of 0.9996. 

4. Enthalpy - temperature 
  

The relationship between vapour enthalpy is given by 

Wi Ge AT) Ug) 7.2.4 

where the specific heat Cp is 4.1868 J aks ‘ 

7.3 Steady State Experiments | 
  

7.3.1 Introduction 

On-line operation of the evaporator at steady state is beneficial in two ways. 

Firstly, a qualitative feel for the operation of the evaporator is acquired at the 

same time as obtaining numerical results to the solution of the steady state model. 

With such interaction between visual observation and computer program, new 

modelling ideas can be incorporated into the program and tested immediately. The 

second benefit, once the steady state model is established, is the collection of 

on-line data across the whole range of operation of the evaporator. As described in 

Section 6.3, the acquisition of such data is aided by an informative teletype 

output and the ability to reject unsatisfactory data prior to the solution of the 

mathematical model. 

~141 =



When a representative sample of results is available, the data are processed 

off-line to determine experimental heat transfer coefficients and at the same time 

compare the results with coefficients calculated from established correlations. 

From the on-line records and experimental heat transfer coefficients, steady state 

correlations are computed by multivariable linear regression analysis. 

7.3.2 On-line Experiments 
  

Formerly the steady state mathematical model was derived with only vapour 

assumed to be present in the shell sides of the heat exchangers. Consequently, 

initial steady state runs produced inconsistency in the numerical solution of the 

model. One example is the shellside of the preheater where the heat gained by 

the liquid in the tubes cannot be accounted for by the enthalpy loss due to a small 

drop in vapour temperature. A similar effect was observed in the shellside of the 

second effect. The only conclusion from these observations is that vapour is 

condensing in the Soko shells, the enthalpy being provided by latent heat 

of condensation. These numerical observations were confirmed visually by 

inserting a glass section in the pipe from the second effect shell to the condenser 

when large quantities of condensate were seen _ be present. Prior to visual 

observation, the mathematical model was modified while on-line to the evaporator 

to determine condensate rates; the vapour only steady state model contains 

sufficient redundancy to permit this. Sasiefoctory experimental results with 

reproducibility were obtained. This clearly demonstrates the benefit of the 

interactive facility of BASELINE, where BASIC instructions can be quickly edited 

while the evaporator is running so that alternative models can be tested. As a 

result of the modifications described above, the two-phase model was concluded 

to be the best representation of the process and steady state runs were collected 

across the whole range of operation of the evaporator. 
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Output produced by an on-line steady state run is shown in Figures6.3 & A7.8 

including the preliminary input data and the analogue and converted output sections. 

In all, a total of 96 steady state runs bead on the steady state model of Chapter 5 

were collected. Presentation of the output resulting from all on-line experiments 

is voluminous and thus a representative sample of 8 converted outputs, representing 

results over the whole range of operating conditions, are presented in Figures A7.8 

to A7.15. The figures are copies of results obtained during actual experimental 

runs. 

The converted output section of each steady state run presents an informative 

analysis of each unit of the evaporator. For example, in Figure A7.8 the temperature, 

mass flow and enthalpy flow of each stream is shown. The symbols L and V refer to 

the liquid and vapour streams respectively. At the preheater shell, the exit stream 

is a mixture of both liquid and vapour which is input to the shellside of the second 

effect where further condensation occurs. At the climbing film first effect, the 

liquid entering the tubes is partially vaporised by steam (symbol S) which is 

assumed to lose heat by condensation only ~ the steam condensate is denoted by 

SC. The partially vaporised tubeside stream is separated at the cyclone where 

the liquid stream is fed to the second effect Sepditiok (L IN FROM CS) and the 

vapour passes to the preheater shell. Liquid circulates from the second effect | 

to the second effect separator (L IN FROM E2) where boiling occurs and the 

liquid level is continuously changing (ACCUMULATION). At the condenser, 

vapour from the second effect separator (VIN (E2S)) and liquid and uncondensed 

vapour from the shellstde of the second effect (V IN (E2), LIN), are fed to the 

shellside. Following the output of flow, temperature and enthalpy of each stream 

of each unit, additional information on pump circulation rate, condenser cooling 
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water rate (calculated and input), accumulation, steam rate and steam valve 

position are printed. 

Each figure represents data collected over a 30 minute period with a 

sampling interval of 30 seconds and an ensemble of 12 samples dt each sampling 

time. This represents continuous channel scanning for virtually the complete 

sampling interval with a small period allotted for data conversion and summation. 

Notable features of the eight representative listings are summarised in Table 7.2. 

The symbols H and L in Table 7.2 indicate high and low. settings of the 

controlled variables. For comparative purposes, the sample listings are arranged 

factionally. ihe rate of circulation through the second effect is computed from 

a heat balance on the second effect separator and is consistently of the order of 

3200 cae . The accumulation in the second effect separator varies according to the 

total thal load and liquid feed rate. When the steam rate is high, the 

accumulation is small and in particular, when the liquid feed rate is low, there 

exists a negative accumulation (Figures A7.10, A7.11 and A7.14), The 

accumulation is independent of the condenser cooling water rate where the available 

thermal capacitance for condensation is far in excess of the evaporator 

requirements. 

Although the steady state flows and temperatures for the liquid streams are 

self-evident, the vapour phase temperatures require further discussion. Since the : 

system is operating under vacuum it would be expected that the vapour temperature 

throughout the evaporator is uniform. From the condenser shell, the vacuum is 

drawn on both the second effect separator and the second effect shell and hence the 

preheater shell and cyclone. As Table 7.2 clearly indicates, there is an obvious 
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temperature variation between successive exchanger shells. This is due to the 

pressure drop produced by the formation of condensate in the vapour pipe lines 

between the heat exchangers. 

One further observation from Table 7.2 is the variation in vacuum temperature 

throughout all steady state runs. This is true of all on-line operations. Although 

the operating characteristics of the saeden pump are unknown it is always set to 

operate at the maximum obtainable suction of 6 lini (28" Hg). There is some 

apparent correlation between the vacuum temperature and the condenser cooling 

liquid rate. As Table A7.4 shows, this is by no means reproducible. Once the 

condenser cooling water rate is set and the plant is settled, reproducibility of : 

steady state results is possible, with small variations in operating vacuum 

temperature, as long as the cooling water rate is maintained constant. These 

small variations are due to condensate leaving the condenser at approximately 

the same level as that at which the vacuum is drawn. 

As a result of the above discussion, the condenser cooling water rate is 

maintained constant during dynamic logs and real-time Kalman filtering. This 

means that the vacuum temperature is maintained approximately constant thus 

avoiding the complex interaction between vapour rate, eooling liquid rate and 

vacuum temperature. 

In the case of comparison of simulated results with dynamic state logs the 

small variations in vacuum temperature are regarded as inputs to the dynamic 

model. Thus while variations in vacuum temperature are considered in this way, 

no attempt is made to describe their dynamic behaviour mathematically. An 

investigation into the vacuum dynamics of the condenser is suggested for future 
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‘ work in Section 8.3. 

7.3.3 Off-line Analysis 
  

For economy of processing and on-line program execution jit is convenient to 

terminate steady state calculations at the t hveried output section. Further useful 

information that can be obtained from an individual steady state run is the 

calculation of experimental heat transfer coefficients for each exchanger and the 

overall system heat losses. At the same time it is beneficial to compare the 

calculated heat transfer coefficients with those derived from published correlations. 

These additional calculations are performed off-line and relevant data from the 

on-line records are input from the paper tape reader. 

When the results of off-line processing for all steady state runs are available, 

the heat transfer coefficient correlations are computed by multivariable linear 

regression analysis. The analysis is programmed in FORTRAN and performed by 

an ICL 1905E computer. 

For each heat exchanger unit, the results of all steady state runs are 

summarised in Tables A7.1 - ATA: The table contains the shellside vapour and 

tubeside liquid flow rates, the vapour temperature and the liquid inlet and outlet 

temperatures. For the description of the theory of the results analysis, the stream 

notation of Section 3.2.3 is adopted. 

7.3.3.1 Theory 

1. System Heat Losses 
  

For a given steady state run the total heat input rate to the evaporator is 

given by, 

Hoot (in) = gee tt Hy | 7.3.1 
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and the total heat output by, 

(out)< 3. Hoe +H A Jaaem 
oT 1 13 6 

Thus the total system heat loss is given by, 

(loss) (out) - H ror ror” < “ror Acc wae 

where Hacc ig the enthalpy accumulation inthe second effect. All enthalpy 

“rates in Equation 7.3.1 to 7.3.3 are calculated directly from measurements. An 

alternative estimate of the heat loss is derived from the difference between the 

measured and calculated condenser cooling liquid rate. The redundancy in the 

steady state mathematical model permits the iidependeat computation of this flow 

rate at the final stage of solution and this represents a measure of the theoretical 

heat load on the condenser when heat losses are assumed to be zero. The computed 

heat loss is given by, 

HE 67 (loss) = (Mj, (cale) - M, 4 (meas) Cp T15-T19) Vide 

and the experimental and computed heat losses as a percentage of the total heat 

input are given by, 

n = He oz (loss) , <rrO0) 763.9 

Aro fin) 

* | 

7 ne He 67 (loss) 100 

3 Bean: imo 7.3.6 

2. Heat Transfer Coefficients 
  

For the general heat exchanger with an isothermal condensing vapour in 

the shell, the experimental overall heat transfer coefficient is given by 

ear | 743.7 
A AT 

Im 
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where Q is the heat transferred per second, A is the total surface area of the outside 

of the tubes and AT, is the ideal log mean temperature difference (LMTD). For 

off-line processing, the surface area of the tubes is calculated from engineering 

drawings (Appendix 1) and the heat transferred and LMTD are derived from the 

steady state converted output. For example, for the preheater, 

AT = T, - TY, 

(as 7.358 

and the heat transferred is given by, 

Q = M,Cp(T, - T,) 7.3.9 

The climbing film first effect is an exception to this calculation procedure 

inde both the shell and tubes are assumed to be isothermal and tubeside vaporisation 

takes place. The total heat transferred is calculated from the measured steam rate. 

The steam is assumed to condense at the Operating pressure and there is no liquid 

subcooling. 

Q = V5(Cp (T, - Ts) + d) T6380 

and the temperature driving force is given by the difference in shellside and 

tubeside temperatures. 

AT e-15°s4 7iGodl 

Theoretical heat transfer coefficients are calculated by the method of Kern 

( 106). For heat exchangers with an isothermal condensing vapour in the shell, 

_the tubeside heat transfer coefficient is given by the Seider and Tate equations, 
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0.33 ° 

dyer Fe & am) he é 7.3.12 
WT 

for Re < 2100, and 

: 0.8 0.83 0.14 . 
ey, ($8) (See' (—) | 7.3.13 

Pha. H k bw 

for Re 2 2100, where for both correlations, 

RoR dG. 
Hl 

and 

h, ‘6 the tubeside heat transfer coefficient Wace ch 

d ~ is the tube inside diameter ; oe im) 

Lis the length of a single tube pass (m) 

M is the mass flow of liquid _ CS gs’) 

Cp is the liquid specific heat fy ou 

k is the liquid thermal conductivity Wm ees 

is the liquid viscosity. (Nsm~~) : 

Hy is the liquid viscosity of the temperature of the tube wall (Nsm”“) 

G_ is the liquid mass velocity (gst 

Shellside heat transfer coefficients are given by the Nusselt equation 

for condensate films, 

  

Bae 0538 
hes 3 Oe p | FiBit4 
k uc! 

where G eV . 
NP. 7e8e15 

=150 =



and all physical properties are taken at the temperature of the condensed liquid. 

c| is the condensate loading per unit length of tube.and the modified symbols 

are as follows. 

ho is the shellside heat transfer coefficient Wine co} 

V is the mass flow of condensing vapour Bo) 

P is the wetted perimeter of the tubes (m) 

N, is the total number of tubes 

e ° . 2 

g_ is the gravitational acceleration (9.807 ms ) 

The clean overall heat transfer coefficient is given by 

U . hh, 
ae 7idet6 
Suet 

3. Physical Properties 

Calculation of the theoretical heat transfer coeffigients requires a 

knowledge of the variation of viscosity and thermal conductivity with temperature. 

The temperature dependance of the physical properties of water is reported by 

Singh and Dass (107 ). The following correlations are proposed, 

logp = © -3.438 + 475.45 : : | 7ST 7.3017 

logk = 2.241 = 62.58 . 753418 
T+ 118 

where T is °C. The units of equations 7.3.16 and 7,3.17 are consistent with 

equations 7.3.12 to 7.3.15 and the reported maximum errors are 1.5% and 

2.2% respectively in the range 0-100°C. 
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The dimensions and geometry of each exchanger are given in Table Al. 

of Appendix 1. For the preheater and condenser, the tube length is given by 

the product of the length of a single tube and the number of tubes. The first 

and second effect evaporators are single-pass multitube exchangers and for 

calculation of heat transfer coefficients the tube length is given by the height 

of a single tube. 

4. Heat Transfer Coefficient Correlation 
  

The results of all steady state runs are correlated into the linear equation 

of the type implemented by Heidemann et al (79 ). The heat transfer coefficient 

is assumed to be a function of the arithmetic mean temperature driving force, the 

shellside vapour flow rate and tubeside liquid flow rate. For example, for the 

preheater the function is of the form 

Ug =a + b(T, = (1, +T.) }+ cM, + dV, 723019 

2 

where a, b, c andd are constants. The theory of multivariable regression analysis 

is taken from Gore ( 108 ) and is not reported. 

7.3.3.2 Computer Programs 
  

1. Steady State Analysis Program 
  

A BASIC listing of the steady state analysis program is given in 

Program 8 of Appendix 6.. The principal operation of calculating experimental : 

and theoretical heat transfer coefficients ‘ performed by a BASIC subroutine which 

is accessed four times, (i.e. once for each heat exchanger) during the processing of 

data from a steady state run. Program data, derived from steady state listings, 

are punched onto paper tape in the following order. 
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a) Data required in the calculation of overall system heat losses as 

described in Section 7.3.3.1. This consists of the enthalpies of the inlet and 

outlet streams, the computed condenser cooling water rate and the cooling water 

inlet and outlet temperatures. 

b) For each exchanger, data required in the calculation of the heat transfer 

coefficients - the vapour and liquid flow rates and tempeniavees: and the physical 

dimensions of the exchanger. 

Once the program is initialised, the overall run data are input from the 

tape reader and the actual and computed heat losses are output to the teletype 

as shown in Figure A7.16. The program then outputs the title of the first heat 

exchanger (preheater) and enters the subroutine where the exchanger data are 

input. The heat transferred, heat flux, log mean temperature difference and 

heat transfer Be ofiiciehe, based on the experimental record, are then calculated 

and output. From the experimental data, the theoretical heat transfer coefficient 

is calculated as follows. 

a) F aherae - the average liquid temperature is determined from the 

arithmetic mean of the inlet and outlet temperatures, the Reynolds number is 

computed and the appropriate Seider and Tate equation (7.3.12 or 7.3.13) is 

solved to determine the tubeside heat transfer coefficient. 

b) Shellside - Since the mean film temperature is not available it is 

approximated by (for example, in the preheater shell) 

10 = ig nae My 14) 
m a 7.3.20 

Seer 

where h, is an estimate of the shellside coefficient and h, is the tubeside 

coefficient calculated as described above. The Nusselt equation (7.3.14) is 
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is then solved iteratively until the numerical value of h. converges. 

c) Overall - From the tubeside and shellside coefficients, the theoretical 

overall heat transfer coefficient is calculated (equation 7.3.16) and output to 

the teletype. 

When the analysis of one exchanger is complete, the subroutine is 

re-entered until all four heat transfer coefficients are calculated and the 

processing of a single run is complete. Program execution order then returns 

to process data for the next run. Processing of data for the first effect does not 

follow the same procedure as the other exchangers. Since vaporisation takes place 

in the evaporator tubes, the total heat load is determined from the measured 

steam rate rather than from the liquid temperature change. Thus the analysis 

subroutine is called after the first effect data are input and the heat load is 

calculated. This is executed simply by programming a jump to the appropriate 

BASIC eee. in the subroutine, the subroutine exit is the same. This facility 

_is specific to the BASIC language where subroutines are not compiled independently 

and hence there are no dummy variable names. One advantage of this 

subroutine processing procedure is the ability to inhibit or add to the teletype 

output interactively. Once the data from all steady state runs is available on 

paper tape the processing can be repeated and any output extracted from the 

subroutine each time it is accessed. 

2. Regression Analysis Program 
  

The regression analysis program is run on an ICL 1905E computer and accepts 

data for each steady state run from punched cards. A single data set consists of 

experimental heat transfer coefficient, arithmetic mean temperature difference, 
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tubeside liquid flow rate and shellside vapour flow rate. The program computes 

the value of the constants a,b,c and d in equation 7.3.19 and the multiple 

correlation coefficient from the 96 sets of data for each heat exchanger. 

7.3.3.3 Results and Discussion 
  

Figure A7.16 shows the teletype output from the steady state analysis program 

for a single steady state run. For all 96 runs the output is voluminous and thus 

the relevant results are summarised in Tables A7.5 to A7.9. 

Table A7.5 shows the Sette heat losses, as a percentage of the total heat 

entering the system, calculated from measured enthalpies and from the solution of 

the mathematical model. For each steady state run the loss is approximately 10% 

when computed by either method. The numerical difference between the results of 

each method-is due to errors in the steam flow rate. For the experimental heat loss 

the measured steam rate is utilised but for the calculated loss the rate is computed 

from the steady state model of the first effect which is subject to measurement 

errors and heat losses. It is not possible to divide the overall heat loss into the 

individual losses for each heat exchanger as there are insufficient measurements to 

compute both theoretical and experimental heat transfer rates, For dynamic 

simulation and on-line Kalman filtering the system heat’ losses are assumed to be 

negligible, although as Table A7.5 indicates, this assumption is not always valid. 

Investigation and correlation of losses for each unit is suggested for further work 

in Chapter 8. 

Tables A7.6 to A7.9 show the experimental and theoretical heat transfer 

coefficients for each heat exchanger. For the preheater, second effect 

100



and condenser (Tables A7.6, A7.8 and A7.9) the experimental results are close 

to the theoretical values with varying degrees of scatter due to deviation from 

steady state operating conditions, measurement olga and the use of unmeasured 

variables calculated from the steady state model, At the First effect (Table A7.7) 

the experimental results are consistently three to four times higher than theoretical 

values. Since the effect is a two-phase climbing film type evaporator and the 

algorithm for the theoretical heat transfer coefficient is for a general exchanger 

with a single liquid phase in the tubes, the experimental results are as expected. 

Improvement in exchanger performance of this magnitude for two-phase flow 

conditions is within the claim of Kestner's Patent ( 93 ) for the climbing film 

evaporator. 

Results of multivariable regression analysis for each heat exchanger unit are 

summarised in Table 7.3. The table includes values for the constants a, b, ¢ and 

d of equation 7.3.19 and the multiple correlation coefficient. The form of the 

correlation sauen is shown in Section 6.5.3. The zero coefficient for c 

in the second effect correlation arises because a constant pump circulation rate 

(3200 od is assumed and thus the contribution due to tubeside liquid flow is 

lumped into the constant a. 

TABLE 7.3 Results of Multivariable Regression Analysis for Overall Heat Transfer 
_ Coefficient Correlations . 

Correlation 

. b | ‘ 2 Coefficient 

Preheater 682 62). 91 527555 © 13,44 | B27. i OF 925 
| | 

Ist Effect | 623,66 | -11.34 | 15047 ob oes.” i. 0.9987 
} } | | | | 

2nd Effect | 3900.00 | -161.6 | 0.0 =.) 6865 | 0.8629 | 

EGandenders) “1151¢92 9 863,01 4. 2 *'0,66357 2 61200" | | 0.9989 | 
Poisaneshilisssinantcdbiesgs (aibiaiceankaciams els va Rea ‘ ; 5 ‘ i i   

= 16566=-



Although the correlation coefficients for the first effect and condenser 

are near unity, at the! prehearar and second effect the influence of unmeasured 

variables is evident. The poor correlation coefficient for those exchangers is due 

to. the errors involved in the calculation of the quantity of liquid and vapour 

present in the exchanger shells. The heat transfer coefficient is strongly influenced 

by the shellside vapour rate (coefficient d) and where the vapour rate is 

calculated by the steady state model, i.e., at the preheater and second effect, 

errors due to the dynamic state of the plant are ident However, the above 

correlations represent the best available relationships between overall heat transfer 

coefficients and operating conditions and are utilised for dynamic simulation and 

Kalman filtering. 

7.4 Dynamic Logs 

7.4.1 General 

Between successive on-line steady state runs, the state of the plant in 

response to disturbance is recorded in the form of dynamic logs. Program 3 of 

Appendix 6 is used to average measurements over each minute of plant operation 

and the resulting data are stored ina BASIC array. When the plant is again at 

steady state, usually after 30 minutes, the results are listed at the teletype. 

The purpose of this data acquisition is to provide real plant reponses for comparison 

with the results of simulation of the reduced dynamic model. 

There are four conretied variables by which manual plant disturbances can 

be introduced , 

1. Feed rate to the preheater 

2. Steam rate to the first effect 
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3. Operating vacuum 

4. Condenser cooling water rate 

As discussed in Section 7.3.2, the dynamic effects of disturbances in 

operating vacuum Rid canlenser cooling water rate are uncertain and so for 

dynamic logging experiments, the plant response to changes in preheater feed 

rate and steam rate are considered. Two step changes have been selected to 

describe qualitatively the dynamic characteristics of the evaporator - an increase 

in preheater feed rate and an increase in steam rate to the first effect. 

In both cases, the plant is assumed to be operating at steady state prior to the 

disturbance and the dynamic logging program is initiated at the same time as the 

manual step change is introduced. 

7.4.2 Step Change in Prehater Feed 
  

In an ideal system, where the vacuum pressure is maintained constant, 

the effect of an increase in the liquid feed to the system is to decrease the 

proportion of feed vaporised by the constant steam supply. Thus the flow rate 

of liquid from the cyclone to the second effect separator increases and the 

vapour flow from the cyclone remains constant. Since the vapour leaving the 

cyclone is used in the shellside of the preheater, the increased liquid flow causes 

a drop in the tubeside exit temperature. The only other apparent change is an 

liciecse in the rate at which the liquid level in the second effect separator 

is changing due to the increased flow from the cyclone. 

The response of the real system to an increase in preheater feed rate is shown 

in Figures A7.17 to A7.22, taken from the output of the dynamic logging program. 
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The step change in flow rate is immediately transmitted through the first effect 

to the cyclone separator and is recorded by the flow meter measuring the liquid 

rate to the second effect (Figure A7.17). The increased flow to thie second 

effect separator causes an immediate increase in the rate of gee taplotion which then 

remains approximately constant for the remaining measurement time (Figure A7.18). 

An increase in flow to the first effect produces less boiling since a 

greater proportion of the heat transferred is required for sensible heating. The 

decrease uh vapour within the system causes the vacuum pump to reduce slightly 

the operating pressure a thus the Ltt point) so that the vapour rate increases 

to satisfy the combined capacity of the vacuum pump and condenser. This reduction 

in vapour temperature occurs throughout the whole system and is conveniently 

observed at the cyclone separator (Figure A7.19). The decrease in vapour 

temperature at the cyclone is also apparent at the shellside of the preheater 

(Figure A7.20). The temperature of the liquid leaving the tubes of the preheater 

is reduced by two mechanisms. Firstly, by the increased liquid throughput and 

secondly by the reduction in the temperature driving force due to the small change 

in shellside vapour temperature (Figure A7.20). 

At the second effect separator, the reduction in vapour pressure causes an 

increase in boiling and a decrease in the temperature of the circulating liquid 

pumped to the second effect (Figure A7.21) and a corresponding decrease in the 

temperature of the cooling liquid leaving the condenser (Figure A7.22). 

The overall system response to the increase in feed liquid rate follows the 

response of the ideal system described above. There is, however, the underlying 

dynamic response of the vacuum pump to changes in the total vapour in the system 

which affects all heat exchangers to a minor extent. 
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7.4.3 Step Change in Steam Rate to Ist Effect 

In an ideal system, where the vacuum pressure is maintained constant, 

the effect of an increase in the steam rate to the first effect is to increase the 

proportion of feed vaporised in the first effect. thus making more vapour available 

for heat transfer in the shells of the preheater and second effect. Consequently , 

the temperature of the liquid leaving the preheater increases and the heat 

transferred to the circulating liquid in the second effect produces more boiling 

in the second effect separator. The combined effect of a reduction in the liquid 

rate from the cyclone separator and the increased heat transfer in the second 

effect causes the rate of change of liquid level in the second effect separator to 

decrease. The temperature of the cooling liquid leaving the condenser increases 

as the additional vapour is condensed. 

The response of the real system to an increase in steam feed rate is shown 

_in Figures A7.23 to A7.28. At the first effect, there is an immediate increase in 

the proportion of vapour in the tubes and thus the liquid flow from the cyclone to 

the second effect separator decreases (Figure A7.23). The rapid increase in vapour 

within the system causes the vacuum pump to increase the operating pressure (and 

thus the boiling point) so that the overall vapour rate to the condenser reduces 

to satisfy the combined capacity of the yeeoum pump and condenser. This 

increase in vapour temperature occurs throughout the whole system and is 

conveniently observed at the cyclone Seiuentor (Figure A7.24). The temperature 

of the liquid leaving the tubes of the preheater is increased by virtue of the 

greater temperature driving force created by the increase in shellside vapour 

temperature (Figure A7.25). The small increase in system operating pressure 

causes the preheater feed rate to drop due to the resulting reduction in liquid 
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delivery head (Figure A7.73). 

At the second effect separator, thd (heretse in vapour pressure occurs at 

such a rate that boiling is not increasedand the temperature of the circulating 

liquid pumped to the second effect (Figure A7.26) increases. As the shellside of 

the second effect contains more vapour available for heat transfer, the temperature 

rise of the circulating liquid also increases (Figure A7.26). With more vapour 

being drawn into the condenser from the second effect separator and, as 

uncondensed vapour, from the second effect shell, the coolant exit temperature 

rises (Figure A7.27). The rate of change of the head in the second effect (Figure 

A7.28) decreases as less liquid is fed from the cyclone separator. 

The overall system response to the increase in the feed rate to the first 

effect follows the response of the ideal system. When the step change is large, 

the response of the vacuum pump performance to changes in the total vapour 

in the system significantly affects the plant performance. 

7.5 Dynamic Simulation 
  

7.5.1 General 

Appendix 5 describes the development of an eighteenth order dynamic model 

of the evaporator. The derivation of the dynamic equations for the shellsides of 

heat exchangers, where liquid and vapour exist together, cannot be derived by 

the classical method of setting the accumulation terms equal to the difference 

between the inlet and outlet flows. In this case, the steady state aerating 

equations are perturbed to give a dynamic equation representing the plant response 

to small deviations from steady state. 
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For Kalman filter experiments, the eighteenth order model is impractical 

and the simplifications described in Section 5.4 are used to reduce the model to a 

fourth order system. The simplifications are possible because the time constants of 

the vapour phase dynamic equations are considerably smaller than those of the 

‘liquid phase. Thus the vapour phase dynamic equations are replaced by their 

steady state counterparts. One further justification for the model simplification 

is that the influence of the vacuum pump on the system dynamics is unknown 

and not accounted for in the comprehensive model. For the reduced model, the 

vacuum pressure is assumed to be constant throughout the evaporator system. 

For simulation of the reduced model, this simple mathematical description of 

the vapour phase is extended by treating a measured vapour temperature profile 

as an input to the dynamic model. The simulated response of the liquid phase 

dynamics is compared with the measured response.. Real plant data are 

available in the form of dynamic logs. 

For simulation, both models are disturbed by the same system changes 

described under dynamic logging, Section 7.4 - the response to step changes in 

preheater liquid feed rate and steam rate to the first effect. 

7.5.2 Simulation of Comprehensive Model 
  

Program 4 of Appendix 6 shows the ASP simulation of the eighteenth order 

comprehensive model, equations 6.5.15 to 6.5.32. Initial conditions are taken 

from a steady state run prior to the introduction of a plant disturbance and 

subsequent dynamic logging. A step change, equivalent to the disturbance created 

for the dynamic logging, is programmed at the start of a simulation after solving the 

steady state equations for the loss terms (Section 6.5.3). The objective of 

calculating the loss terms is to force the dynamic equations to have zero 
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derivatives based on the initial condition data. 

The program output is shown in Figure A7.29. At each print out interval 

a teletype listing is produced of the state of each unit of the evaporator. This 

includes temperatures Cc), flows ess): vapour fraction (where liquid and 

vapour are together in the shellsides of the exchangers) and the overall heat 
oe 

transfer coefficient (Wm K .. The symbols are L = liquid, V - vapour and 

LV for liquid/vapour mixtures. At the right hand side of each variable is listed 

the corresponding derivative. 

All comprehensive model simulations are initialised with the same steady 

state conditions. Integration is carried out by the fourth order Runge-Kutta method 

with a step length of 0.01 seconds. The teletype listing is produced every 0.1 

seconds of simulation time. 

7.5.2.1 Step Change in steam rate to Ist Effect 
  

The response of the model to a step change in steam flow rate is shown in 

Figures A7.29 to A7.31. The magnitude of the step is from 15.4 ha to 

24 ae introduced into the system at time zero. Figure A7.29 shows the dynamic 

state of the model at time zero. The immediate effect of the large step change 

in steam rate is evident at the first effect. The derivative of the temperature 

of the liquid/vapour mixture within the tubes is initially large and positive as 

the dynamic equations responde to the increase in heat input. Similarly, the 

dynamic equations for the tubeside liquidand vapour flow rates have large 

derivatives as the increase in heat input immediately affects the boiling rate. 

The increase in the derivatives of vapour rate and temperature from the first 

effect is also evident at the shellside of the preheater and hence the shellside 

of the second effect. This is due to the incorporation of temperature derivative 
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terms in the dynamic equations of the shellsides (equations 6.5.18, 6.5.19, 

6.5.28) as result of the steady state equation perturbation described in Appendix 5.. 

Since the dynamics of the connecting pipework is not included in the model, 

the large initial derivative of the temperature of the liquid leaving the first effect 

tubes (and hence the cyclone) produces a large initial derivative of the boiling 

rate in the second effect separator (equation 6.5.31). 

After 0.1 seconds, Figure A7.30, the variables of the preheater and First 

effect dynamic equations respond in the same way as the variables measured in the 

dynamic log response to increase in steam rate (Section 7.4.3). The temperature 

of the liquid/vapour mixture within the first affect tubes increases by 14°C and at 

the same time, all shellside derivatives remain considerably larger than theskok 

the tubeside liquid variables. The temperature of the liquid leaving the preheater, 

second effect and condenser tubes increases; the same trend is observed in the 

dynamic log. This also applies to the decrease in the liquid head in the second 

effect separator. 

The simulated response of the shellside variables requires further discussion. 

The effect of the large magnitude of the step change and hence the large derivative 

for the first effect variables causes the shellside derivatives to be correspondingly 

large. This is a direct result of the approximation of the dynamic squetians as 

perturbed steady state operating equations. For example, the fact that a step 

change in steam feed rate causes the initial derivative of the vapour rate in the 

shellside of the second effect to be large is not a true physical representation 

of the system. However, equation 6.5.28 is an approximation to the variation 

around steady state which is dependent upon other approximate derivative 
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expressions for the vapour and liquid rates leaving the preheater shell 

| (equations 6.5.18 and 6.5.19). In Buctigblor, equation 6.5.18 is dependent upon 

the derivative of the temperature within the tubes of the climbing-film first 

effect fascia §.5.20) which is sorartaslly large due to the magnitude of the 

step change. In the real situation, this derivative would not be large due to the 

influence of the vacuum pump on the vapour phase of the system. . An increase in 

steam rate causes an increase in boiling rate rather than boiling temperature. 

The approximate derivative equation for the ka fling rate in the second 

effect separator (equation 6.5.32) is also dependent upon re derivative of the 

boiling temperature in the first effect (hence the cyclone separator). The result 

of this apparent rapid increase in boiling is to reduce the temperature in the 

separator, equation 6.5.29, thus adding to the error involved in the approximation 

in equations 6.5.27 and $.5.28. | This produces very large derivatives for the flow 

of the liquid/vapour mixture in the shellside of the second effect. The rapid 

increase in shellside vapour rate in the second effect causes the heat transfer 

coefficient to increase. Furthermore, since the vapour rate derivatives are large 

and also increase from the first effect to the preheater and second effect, the 

corresponding temperature derivatives (equations 6.5.16 and 6.5.25) become 

negative. The negative shellside derivative affects the dynamic equation for the 

vapour fraction in the exchanger shell (equation 6.5.26) such that there is an 

apparent drop in the vapour fraction. These effects are apparent at the preheater 

shell and, to a greater extent, in the shellside of the second effect. 

The interaction between the second effect and second effect_separator causes 

the magnitude of the error in the second effect shellside derivatives to increase. 

Further increase in the shellside vapour rate increases the heat transfer coefficient. 
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This causes an apparent drop in the shellside temperature whieh interacts between 

the shellside liquid rate (equations 6.5.27) and hence the vapour rate (equation 

6.5.28). Similarly, the large initial derivative of the vapour leaving the second 

effect separator (equation 6.5.31) reduces the temperature of the liquid in the 

separator (equation 6.5.29) which also affects the second effect shellside liquid 

and vapour rates (equations 6.5.27 and $.5.28) and the boiling rate itself 

(equation 6.5.31). 

After 0.2 seconds (Figure A7.31), the effect of the large initial derivatives 

results in an increase in the errors involved in the second effec}/separator 

system such that the variables become unreal e.g., the negative liquid flow rate 

in the second effect shell and the drop in shellside temperature below the tubeside 

liquid temperature. However, although the results of the shellside simulations are 

unsatisfactory, the tubeside liquid temperatures show the same qualitative trend as th 

dynamic logs. 

7.5.2.2 Ramp disturbance in steam rate to Ist effect 
  

In an attempt to simulate the comprehensive model without including the 

effects of large initial derivatives, the steam rate disturbance is input as a sequence 

of small steps added to the flow at each output time (0.1 seconds). Figures A7.32 

to A7.38 show the response of the comprehensive model to an increase of 0.1 gs" 

of steam every 0.1 seconds. Thus an overall increase of 10 a is effected in 

10 seconds which compared to an overall simulation time of 30 minutes is 

representative of a step change. 

At time zero seconds (Figure A7.32), the model is at steady steady state 

and all initial derivatives, with the exception of the head in the second effect 

separator, are zero. As soon as the output is complete, the steam rate is 
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incremented by 0.1 gs and the simulation continues. 

After 0.1 seconds (Figure A7.33), the response of the first effect and 

preheater follows the same trend as the large step change simulation. At the 

first effect tubes the temperature of the vapour/liquid mixture increases by 0.3 oe 

and correspondingly the vapour rate increases and the liquid rate decreases . 

At the preheater, the tubeside liquid temperature increases but the shellside vapour/ 

liquid temperature decreases. This is due to the magnitude of the initial derivatives 

of the shellside vapour/liquid mixture when the small step change is introduced. 

In all cases, the magnitude of the shellside vapour rate derivatives increases 

throughout the system. For example, in Figure A7.33 the derivative of the vapour 

rate at the second effect shell is greater than that of the preheater shell which is 

greater than that of the vapour (boiling) rate at the first effect tubes. This is due 

to the initialisation of the derivatives of the vapour phase aye equations and 

the effect is to produce a negative derivative for the shellside temperatures 

(equations 6.5.16 and 6.5.25). 

Aé the simulation coals (Figures A7.34 - A7.37) the instability in the 

second effect/separator system, described previously, becomes apparent and after 

0.6 seconds, negative flows are computed. Examination of the derivatives of the 

negative flow in the second effect shell at 0.7 seconds (Figure A7.33) shows that 

the dynamic model compensates for this by increasing the derivative. 

Thus the effect of reducing the size of ae disturbance and stepping the 

steam rate at each print interval is to reproduce the same vapour phase trends as 

for the large step change. The time taken for the simulation to become unrealistic 

is extended. The qualitative response of tubeside liquid temperatures and the level 
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in the second effect separator are the same as those recorded by dynamic logging 

experiments. 

7.5.2.3 Step Change in Preheater feed 
  

The response of the comprehensive model to a step change in flow rate 

of liquid to the preheater is shown in Figures A7.39 to A7.41. A step change 

from 27 wk to 40 Bee is idbut to the system at time zero (Figure A7.39). The 

initial derivative of the preheater outlet temperature is negative, as is expected 

from the results of dynamic logging experiments for the same step change (Section 

7.4.2). Asa result of the derivation of the shellside dynamic equations, other 

derivatives are non-zero. The preheater shellside vapour and liquid rates 

(equations 6.5.18 and 6.5.19) are dependent upon the preheater tubeside temperature 

derivative, the first effect tubeside temperature is dependent upon the increased 

liquid flow rate (equation 6.5.20) and the first effect shellside flows (equations 

6.5.22 and 6.5.23) are dependent upon both the increase in flow rate and the 

derivative of the first effect tubeside temperature. Like the response of the model 

to a step change in steam rate, the vapour flow derivative at the preheater shell 

is used in the computation of the boiling rate derivative in the second effect 

separator (equation 6.5.31). 

Examination of the signs of the initial derivatives shows that the qualitative 

trends for the variables are the same as those of the dynamic log. The increase in 

liquid feed rate'reduces the vaporisation inthe first effect tubes and lowers the boilin 

temperature. At the preheater, the tubeside liquid temperature falls as a result of : 

both the increased flow rate and decreased vapour rate. The increase of the liquid 

flow from the cyclone to the second effect separator causes the head to increase. 

See.



The magnitude of the initial derivatives shows the sensitivity of the vapour 

phase and shellside dynamic equations to input disturbances. At the first effect tubes 

the temperature derivative is ee large as are the vapour and liquid rate derivatives. 

The magnitude of the preheater vapour rate derivative is also evident in the 

computation of the derivative of the second effect shellside vapour rate. 

After 0.1 seconds (Figure A7.40) the effect of large initial derivatives in the 

variables in the exchanger shells is the same as for the response to change in steam 

feed rate. The interaction between the second effect and second effect separator 

increases the derivatives so that after 0.2 seconds (Figuke A7.41) unrealistic flows 

are computed for the liquid /vapour mixture in the second effect shell. From 

steady state and dynamic logging measurements, the highest temperature in the 

system is observed at the tubes of the climbing film evaporator. The increase in 

feed to the preheater reduces this boiling temperature (Figure A7.19) and all other 

vapour phase temperatures. In Figure A7.41, this trend is observed at the first 

effect and preheater, but at the second effect the reverse situation is observed 

as the shellside temperature increases. Ina practical sense, this situation is 

impossible since the preheater and second effect shells are connected. 

Although the response of the vapour phase dynamic equations shows instability 

and unrealistic results, the response of the liquid phase variables shows the same 

qualitative trend as the dynamic log (Figures A7.17 to A7.22). The liquid 

temperatures in the preheater, second effect and condenser tubes show a reduction 

in temperature while the head in the second effect separator increases. 
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7.5.2.4 Ramp Change in Preheater Feed 
  

In order to reduce the effects of large initial derivatives upon the dynamic 

simulation, the feed disturbance is input as a sequence of small steps added to the 

flow at each output time (0.1 seconds). Figures A7.42 to A7.47 show the response 

of the comprehensive model to an increase in ied rate of 0.1 Se aNery 0.1 seconds. 

Thus a step change of 10 sare is input to the system over 10 cond which when 

compared to the observed response time of the system is relatively small. 

Initially (Figure A7.42), the model is at steady state and all initial derivatives 

with the exception of the head in the second effect separator, are zero. As soon as 

=] the output is complete, the preheater feed is incremented by 0.1 gs and the 

simulation continues. 

After 0.1 seconds (Figure A7.43), the response of the first effect and preheater 

follows the same trend as the large step change simulation. At the first effect tubes 

and preheater shell, the derivatives are still large by comparison with the liquid side 

values. While the simulation continues (Figure A7.44 to A7.47), the response of 

the liquid phase follows the trend of the dynamic logs but the derivatives of the 

vapour phase increase. Ultimately the simulation will produce unrealistic results. 

Thus the response of the system to small step changes is the same as the response for 

the large step change. As expected, the time taken to become unstable is greater. 

7.5.2.5 Conclusions 

The response of the eighteen order comprehensive model to system disturbances 

can be divided into two distinct fiat: Firstly, at the heat exchanger tubes, the 

response of the liquid temperatures follows the same qualitative trends as the 

dynamic logs (Figures A7.17 to A7.28). Secondly, in the heat exchanger shells 
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where the vapour and liquid/vapour mixtures exist, the time constants are much 

smaller and thus aaa the simulation begins, the simulated variables become 

unrealistic. This is due to the fact that the real system is constrained by the 

operation of the vacuum pump and this is not included in the dynamic model. A 

step change in steam rate creates an increase in boiling and not in vapour 

temperature because the vacuum pump attempts to maintain the system vapour 

pressure constant.. The reverse situation applies to astep change in preheater 

feed rate. Thus the exclusion of the vacuum pump dynamics, however uncertain, 

produces unsuccessful simulation results. The dynamic model contains simplified 

equations based on the perturbation of the steady state equations. In particular, 

at the preheater and second effect shells these approximate equations produce 

instability in the simulation. Furthermore, the heat transfer coefficient correlations 

for these two haat exchangers are subject to greater errors than those of the first 

effect and condenser (Table 7.3). 

7.5.3 Simulation of Reduced Model 
  

In the reduced model of the evaporator (equations 6.5.33 to 6.5.36) the 

dynamics of the vapour and vapour/liquid phases is not considered. This reduction 

in the order of the model is based upon the assumption that the vacuum operating 

pressure, and thus the vapour craijuré throughout the whole system, is constant. 

This means that the vapour phase dynamic equations, which have the smaller time 

constants, aré replaced by their steady state equations. Mathematically, the 

assumption that the vapour pressure is constant is the simplest description. In 

practice the vapour pressure is observed to change when the system is disturbed 

Ey step changes in preheater feed and steam rate to the first effect (Section 7.4). 

In order to simulate the reduced model with realistic inputs, the measured vapour 
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temperature response is input to the reduced model throughout the simulation so 

that the experimental. and simulated plant response can be observed. This is 

carried out by means of the function generation subroutine of the ASP package. 

Program 5 of Appendix 6 shows the ASP simulation of the fourth order 

reduced model. Initial conditions are taken from a steady state run prior to 

dynamic logging. At the nee time, seven BASIC arrays are loaded with the 

Busdtite log output from vapour phase measurements from 30 minutes logging. 

These are as follows: 

Array name Variable 

rN The mean time at which samples are taken 

B . The steam flow rate (analogue value) 

C The preheater shellside temperature 

E The cyclone vapour/liquid temperature 

F : The vapour temperature at the operating 
vacuum 

G The second effect shellside temperature 

H The preheater feed temperature 

The numerical values input to the arrays depends upon the step change and 

corresponding dynamic log. For example, the logged response to a step change in 

preheater feed is shown in Figure A7.48. From this log the appropriate vapour side 

pressures are converted to temperatures (Section 6.2.3) and loaded from statement 

4000 of Program 5 (Figure A7.49). At each integration step a linear interpolation 

is performed by the fifth ASP subroutine to determine the appropriate vapour 

temperature at a given time. The preheater feed temperature is included because 

the temperature of the water supply to the evaporator is known to vary. For each 
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reduced model simulation, the above data preparation is required. Figures A7.48 

and A7.49 are representative of the input data for all simulations. 

A step change in preheater feed or first effect steam is programmed at the 

start of a simulation, after solving the steady state equations for the loss terms 

(Section 6.5.3). The program output is voluminous and is not included, the 

simulation and dynamic log data are presented graphically. For comparison 

purposes, the axes of graphs for the same variable are the same for all simulations. 

The initial steady state conditions are not the same for each simulation, but are 

the results of experimental steady state runs prior to dynamic logging. 

The dynamic equations of the reduced model are as follows: 

Preheater Tubes 

dle a ! ‘ 23 5 Cp ot.)  Ugde tt, = 0) FIB) ek, 

See 7.5.1 
  

0.5W, pC, 

| Second Effect Tubes 

_————_ 

at : | ee IN Bie 
SW ACS 

ito é wae , 
MS Tye Tg) tT UAL Tig > gt tyale et, 
  

Condenser Tubes 

dt : See Bi 
0.5 Wie Po, 

ts as , 18 = MCT 9 - Tyg) + Ucdc Tae - Mgt Tyg) + by 
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Second Effect Separator 
  

Be ae ae ay) geo las Toe 
OG Ms 

3 15 Tibi A 
  

where the flow from the cyclone separator to the second effect separator is given 

by the steady siate energy balance on the first effect, 

M M, = AUST. -T oo, -M,C¢ (T, - T.) Pe ee oy Tiss 
  

Az 

p Taner Tyee T and To are available in the form of dynamic Temperatures T Oe 15” vee 7 4 

log output which is incorporated into the simulation as described above. 

When the heat transfer coefficient correlations are included in the above 

equations the model becomes non-linear. For example, a step change is steam 

rate changes the heat transfer coefficient in the first effect (equation 768.9)4 is 

in turn changes the quantity of vapour leaving the first effect (and hence the cyclone 

A steady state energy balance on the shellsides of the preheater and second effect 

gives new vapour flow ie which in turn affect the heat transfer coefficients 

in equations 7.5.1] and 7.5.2. Also, via the steady state energy balance on the 

condeiter shell, the coefficient in equation 7.5.3 changes. The dynamic equation 

for the head in the second effect separator (equation 7.5.4) is dependent upon 

equation 7.5.3 and , through equation 7.5.5, upon the heat transfer coefficient 

in the first effect and equation 7.5.1. This inraienoa is discussed further in 

Section 7.6.2. 

A step change in preheater feed rate (M,) influences equations 7.5.1 and 

7.5.5 (and hence equation 7.5.4) directly. The change in vapour rate produced 
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from the first effect, and hence the preheater and second effect, influences the 

heat transfer coefficients in equations 7.5.1, 7.5.2 and 7.5.3. 

7.5.3.1 Step Change in Steam Rate to First Effect 
  

Figures A7.50 to A7.53 show the response of the reduced model to a step 

increase in steam rate from 15.4 ae to 22.3 acne . Integration is by the fourth 

order Runge-Kutta method with a step length of 0.5 seconds. The figures also 

include the response recorded during dynamic logging experiments when the plant 

steam rate is changed by an identical step. 

At a tubes of the preheater (Figure A7.50)the liquid i ceetiures rece | 

The rate of increase is initially greater than the experimental response and 

subsequently, the new steady state temperature is lower than that recorded. A 

similar effect is observed at the second effect tubes (Figure A7.51) and the 

condenser tubes (A7.52). In the derivation of the dynamic model, the liquid in 

the exchanger tubes is assumed to be well mixed. In practice, there is some 

deviation from this ideal situation. At the preheater and condenser, there is 

more than one tube pass and thus the difference between simulated and 

experimental responses is initially large. The second effect is a single pass, 

forced circulation evaporator with a high bieealenee rate, thus the well-mixed 

approximation is near to reality (Figure A7.51). The off-set of the responses is 

due to the effect of the change in vacuum pressure (observed in dynamic logging 

Section 7.4.3) and to the change in system heat losses as temperatures increase. 

This latter effect would diminish the difference between simulated and experimental 

responses. The prediction of the head in the second effect separator closely 

follows the measured response. Measurement noise is due to violent boiling that 

occurs in the separator. 
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A reverse step change in steam rate from 27.4 ae to 16.8 a produces 

the response shown in Figures A7.54 to A7.57.. The response of the liquid 

temperature in the preheater, second effect and condenser tubes is the reverse 

of the increase step change. Due to the reduction in the system heat input 

the accumulation in the second effect separator (Figure A7.57) is considerably 

greater than the previous simulation (Figure A7.53). 

7.5.3.2 Step Change in Preheater Feed Rate 
  

Figures A7.58 to A7.61 show the response of the reduced model to a step 

increase in preheater feed rate from 30.7 ae to 41.2 aa The fourth order 

Runge-Kutta integration method is used with a step length of 1 second. 

At the preheater (Figure A7.58), the simulated tenipenatuce response has the 

same characteristics as the response to steam change = high initial rate of change 

and deviation from the new steady state value. The magnitude of the temperature 

change is considerably less than for the steam change responses. At the second 

effect (Figure A7.59) and condenser (Figure A7.60), the simulated temperature 

response, like the measured values shows little change. In an ideal system, the 

increase in preheater feed does not affect these variables since the same proportion 

of feed would be vaporised by the constant steam rate. In practise, the initial 

increase in feed rate means that a greater proportion of the steam is required for 

sensible heating in the first effect. Alihough this proportion is small, the 

reduction in boiling in the first effect provides less vapour for the preheater and 

second effect shells and the Fe ioaratote of the circulating liquid in the second 

effect tubes falls (Figure A7.50).. The reduction in boiling affects the condenser 

liquid temperature in the same manner (Figure A7.60). As more feed is entering 

the system and less boiling takes place the accumulation in the second effect is 
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large (Figure A7.61). 

A reverse step change in preheater feed rate from 41.4 a) to 22.1 see 

produces the response shown in Figures A7.62 to A7.65. The response of the 

liquid temperature in the preheater, second effect and condenser tubes is the 

reverse of the increase step change. Since the magnitude of the step change 

is large, the accumulation in the second effect separator is negative 

(Figure A7.65). 

7.5.3.3 Conclusions 

From visual inspection of the graphical results of the reduced model simulation 

(Figures A7.54 to A7.65), there is close agreement between computed and measured 

variables. The deviation from the measured response is due to the assumption that 

the liquid within the heat exchanger tubes is well-mixed. Where the assumption 

is close to reality, at the second effect, the agreement is best. 

As a result of the above investigation the fourth order reduced model is used 

for Kalman filtering experiments. 

7.6 Kalman Filtering 

7.6.1 General 

In the first place, the objective of the Kalman filtering experiments is 

to prove that the filter algorithm can be successfully implemented in real-time 

on-line to to the evaporator system. Secondly, by performing off-line experiments 

with real plant data, it is hoped to achieve a greater understanding of the influence 

of the filter statistics in the estimation of states and parameters when the evaporator 
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is in pseudo steady state and dynamic operation. 

Experiments in real time Kalman filtering are constrained by both the system 

hardware and software. Available computer storage restricts the maximum order 

of the mathematical model (the number of state variables) and also the number of 

measurements. Processing speed in numerical integration and execution of the 

filter algorithm requires consideration in real-time exiperinente as does the time 

taken for scanning channels of the data logger. In off-line processing none of 

these constraints are present. If the available computer core is too small, then 

programs can be run on a larger ee hiags Program execution time is also 

irrelevent since measurements are not required in real time but can be made 

available as conventional program data. 

7.6.2. Preliminary Considerations 
  

Implementation of the reduced dynamic model of the evaporator for 

Kalman filtering experiments gives a state vector containing four measurable 

variables and four parameters (the overall heat transfer coefficients). 

Prior to performing on-line filter experiments and considering the real-time 

implementation of the algorithm it is necessary to consider, 

a) System controllability 

b) System observability 

c) Asa result of a) and 6) to determine the best measurement strategy 

d) The measure of filter performance. 

The model, equations 7.5.1 to 7.5.4, is non-linear and the truncated Taylor 

series expansion from which the transition matrix is derived gives the following 

=175 =



incidence relationship (where an element is unity, the corresponding element of 

the transition matrix is non-zero). 
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Inspection of the incidence matrix shows that one effect of the assumptions 

used to reduce the order of the comprehensive dynamic model is to remove the 

links between the state equations. If the equations are completely independent, 

then the four equation system is not observable and controllable, and thus the 

filter algorithm is not suitable for state variable and parameter estimation. It is 

necessary to examine the incidence matrix and the available measurements to 

determine at which point the system is completely observable and controllable and 
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hence determine the best measurement strategy. 

7.6.2.1 Controllability 
  

A system is controllable if it can be moved from any state x(t.) ott ae 

to any other desired state x(t) in a finite time interval tT (T= ie ty) 

by applying a piecewise continuous input-vector u(t) throughout + . Thus 

a system is controllable if every state variable is affected by the control and 

random inputs. For the evaporator system the control inputs are the preheater 

feed rate and temperature and the steam flow rate to the first effect. The 

condenser cooling water rate and the process vacuum pressure are not changed 

manually. Although the vacuum pressure is set constant initially, it is observed 

to vary throughout normal plant operations (Section 7.4). Thus in the real 

system, changes in input variables are observed to affect all the state-variables. 

In the reduced seal the system is controllable only if the vapour phase 

temperatures (Ty, To, Thos Ths ne, that appear in the state equations and the 

transition matrix are also regarded as system inputs. This is confirmed by the 

results of reduced model simulation where the same vapour phase measurements are 

regarded as system inputs. 

7.6.2.2. Observability 
  

A system is observable if all its states can be derived from the measurement 

vector of the system, directly or indirectly. Examination of the incidence matrix 

of equation 7.6.1 shows that the third state variable, Tig must be measured in 

order to determine Uc. Any combination of this measurement with one other 

measurable stqte variable will give an observable system because of the relationship 

between the fourth state variable He and To and Ty. From two such measurements 

all the states can be derived. 
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7.6.2.3. Measurement Strategy 
  

For filtering experiments, the minimum measurement strategy is to sample 

the vapour temperatures, the ienckc cooling water outlet temperature 

and one other state variable. In practice, all 16 plant measurements are 

available within two seconds and so the four state variables are measured 

in addition to the vapour temperatures. The effect of reducing the number of 

measured state variables is not considered. 

Executing the filter algorithm for an eighth order system with a 

measurement vector of 16 elements is beyond the storage capacity of the 

computer. Consequently, the measurement vector is reduced to the four measured 

state variables. The remaining measurements are input directly to the state 

equations and the transition matrix. This means that at the state variable and 

estimation error covariance matrix prediction step, 'noise-free' measurements 

are included to obtain the best possible prediction and to maintain control 

ability. At the estimation error covariance prediction step, the effect of random 

disturbances on the vapour phase ‘noise-free’ measurements can be accounted for 

in the selection of the elements of the process noise matrix, Q, 

The measurement strategy described above thus 

a) reduces the measurement vector, thus minimising filter execution time, 

b) maintains observability and controllability by including the 'noise-free’ 

measurements 

c) maintains accuracy at the state variable prediction step by including 

the hoise-free' measurements 

d) Utilises all available state information by including measurements of 

four state variables. 
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7.6.2.4 Filter Performance 
  

Ina real-time, on-line situation, where the true values of states and 

parameters are unknown, some measure of filter performance is required. In the 

linear case, with Gaussian measurement and process noise, the true state is given 

by the vector of state estimates once the filter has converged. The convergence 

can be observed by examining the estimation error covariances (or deviations) 

as each filter cycle is.executed. In non-linear pusteih convergence to the true 

state is not guaranteed and the estimates may diverge or be biased. 

The size of non-linearities depends on both the magnitude of the second 

partial derivatives in the truncated Taylor series expansion defining the 

transition matrix and on the estimation error covariance. These are termed the 

real and induced non-linearities respectively, the combination of both sources 

is termed mixed non-linearity. A non-linearity ech-ciwaas be induced by setting 

the initial estimation error covariance matrix, P(0,0), sufficiently large. 

The published reports of the significance of non-linearities are described in 

Section 2.4.2. In general, Rsclinser effects are significant when noise inputs 

are small while the estimation error variance is relatively large. Intuitively, 

this is obvious since large noise inputs can affecinvaly mask neglected non- 

linearities. If Q is sufficiently large in equation 6B of Figure 6.9, then P 

cannot become very small as a result of information contained in the 

observations, since noise is continuously added to the system. If Q is small and 
$ 

P is initially large but subsequently becomes small, then even small bias or 

divergence can be significant. 
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Thus, in addition to the numerical value of the state variables, the 

diagonal elements of the error covariance matrix represent a measure of the 

filter performance when considered together with the real system non-linearities 

and the numerical value of Q. The equations of the reduced model (equation 

7.5.1 to 7.5.4) are linear in the measured state variables if the parameters are 

assumed to be constant. When the parameters are treated as state variables, 

the second order derivative terms become small (differentiation of equations 

6.6.6 to 6.6.19) and the terms above ‘second order are zero. . In light of 

the 'small' non-linearities in the state equations the diagonal elements of the 

error covariance matrix are taken to represent some measure of the filter 

performance. 

7.6.3 On-Line Experiments 
  

7.6.3.1 Program Timing 
  

The on-line filtering program is described in Section 6.6.2. Within a 

single filter cycle the following five operations require computation time. 

1. The execution of the filter cycle for the given number of state 

variables and measuremenis. 

2. Repetitive channel scanning with ensemble averaging to minimise 

signal noise. 

3. Numerical integration of the state equations and calculation of the 

variable elements of the transition matrix. 

4. Teletype output of relevant results. 

5. Other computation at the BASIC level, such as conversion of 

measurements and waiting for real time clock interrupt. 
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When the Kalman filter subroutine (Program A3.19) is accessed from 

BASIC, the processing time for a given number of state variables and measurements 

is fixed and is independent of the sampling interval. Filter subroutine timing 

experiments are performed prior to on-line operation. The time taken to 

execute the program for various numbers of state variables, and measurements 

is shown in Figure A7.66. A system comprising of 8 state variables and 4 

measurements requires approximately 18 seconds of computation time. 

The maximum rate of measurement is fixed at 10 channels per second. 

Higher rates are possible with the MDP200 but the adverse effects of reed relay 

noise outweigh the benefits of signal averaging. Thus sixteen measurements 

scanned repetitively with ensemble of 5 requires approximately 8 seconds of 

computer time. 

A number of methods are cainhle for performing numerical integration, 

e.g., Runge-Kutta, Euler, etc., but it is advantageous to select the mathe 

that provides the greatest accuracy with the least processing time. Unlike 

other comparative studies of methods of numerical integration (46 ), it is 

the total number of BASIC statements and not the number of derivative function 

evaluations that determines the optimum processing speed. For this reason, the 

Euler method with a step [ant of 0.5 seconds is selected. By this method, 

120 seconds of simulation time can be executed in approximately 75 seconds, 

providing accurate state variable prediction. 

An overall sampling interval of 120 seconds thus requires approximately 

101 seconds to complete a filter, measurement, and numerical integration cycle. 
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The time available for output of results and other BASIC computations is 

approximately 19 seconds which, ata teletype sped of 10 characters per 

second, permits only the output of the estimates hd the diagonal elements 

of the transition matrix. Consequently, the output of other relevant matrices 

is not included in real-time filtering experiments, but is output during off-line 

processing where computation time is not at a premium. 

7.6.3.2 Parameter Prediction 
  

The state equations for the parameters are given by equating the derivatives 

to zero, thus giving unity on the corresponding diagonal elements of the 

transition matrix. This technique is suitable for updating the estimation error 

covariance matrix (equation 6B of Figure 6.9) but at the state variable 

prediction (equation 6A), an Slfeiective strategy is available. This is to 

utilize the heat transfer coefficient correlations, based on the current estimates 

(and the current non-state variable measurements) to calculate the parameters 

at each filter cycle. It is beneficial to use all available Eiewration to 

provide the best predicted values of state variables. A comparison of these two 

methods of parameter prediction is included in the off-line filter experiments. 

7.6.3.3 Program Output 
  

The teletype output from an on-line filtering experiment is shown in 

Figures A7.67 to A7.69. At each filter cycle the predicted (P), estimated (E), 

and measured (M) variables are printed together with a list of the square roots 

of the diagonal elements of the estimation error covariance matrix. The state 

variables are printed in the order,



and the measured variables in the order 

" "4 Ng 

The order of the estimation error deviations is the same as for the state variable 

output. The single integer above the output for each cycle refers to the number 

of that cycle. 

7.6.3.4 Filter Statistics 

In the example shown in Figures A7.67 to A7.69, the strategy of parameter 

prediction by the correlations is adopted. The filter statistics are 

P(0,0) = 1000.1 

Q mo Os ed 

#20140 O05 

3 SONOS. 0°-| 

| 0 0 o.1 0 

lo 0 0 0.15 

The high initial estimation error covariance implies a lack of confidence 

in the initial state variable estimates. The smaller numerical value of the 

diagonal elements of Q signifies confidence in the model, the accuracy of the 

linearisation and also indicates that random input disturbances are small. Since 

the measurements are not scaled variables, the diagonal elements of the 

measurement noise matrix R require interpretation. The first three diagonal 

elements refer to temperature measurements which are known to be accurate. 

A value of 0.15 at R(4,4) signifies a larger error in the measurement of the head 

in the dagond effect separator. This is known to be the noisiest of all process 

signals (Figure A7.52) and the magnitude of R(4,4) relative to the absolute value 
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of the head is considerably greater than the other diagonal elements. 

7.6.3.5 Experimental Procedure 
  

The on-line filter experiment (Program 7 of Appendix 6) proceeds as follows 
O. The evaporater 's brought to shady stale. 

1, Run time data - sampling interval and ensemble size - are input to the 

program and the diagonal elements of the covariance matrices, described above, 

are assigned. 

2. An initial measurement cycle establishing the. interrupt frequency, is 

executed to provide initial values for the predicted state variables. The heat 

transfer coefficient correlations are solved to give initial values for the 

parameters. — 

3. The steady state mathematical model, including the heat transfer 

coefficient correlations, is solved to provide the initial loss terms for the 

numerical integration. This means that prior to on-line filtering the plant is 

always at pseudo steady state. 

4, The problem independent section of the filter algorithm is executed 

to filter the measurements. The estimated and measured state variables are 

output to the teletype. 

5. The elements of the transition matrix are computed from the estimates 

and the noise-free measurements. 

6. The state equations (including the heat transfer coefficient correlations 

where applicable) are solved numerically up to the next measurement time. The 

future predictions of the state variables are output to the teletype. 

7. The computer waits for the next measurement time to occur. 

8. On interrupt, the analogue channels are scanned and the resulting 

measurements are converted to SI units. 
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9. The experiment proceeds recursively from 4. above. 

7.6.3.6 On-line Results 
  

Figure A7.67 shows the teletype output for the first 3 filter cycles. 

At time zero the measuremenis and initial predictions are the same and so the 

estimates are equal to the predicted values regardless of the initial statistics . 

For the measured state variables, the effect of the large initial values of the 

diagonal elements of P(0,0) combined with the correspondingly small values 

of Q, is to force the filter gain matrix K to be nearly unity on the diagonal 

elements. This results in estimates that tend towards the measurements 

initially and the diagonal elements of the estimation error covariance matrix 

converge rapidly. This condition is only desirable when the measurements 

are good, but it has the disadvantage that the algorithm will not 'loosen' 

when the plant conditions change due to the magnitude of Q. 

The relationship between the initial satienen and the estimation of 

parameters is more complex. When Q is small, i.e. there is confidence in the | 

model, the filter algorithm will adjust the P eiicee to 'fit' the transition 

matrix. The rate of convergence also depends upon the magnitude of the off- 

diagonal elements of the transition matrix which relate measured state variables 

to the parameters and also the confidence in the predicted state variables. Thus, 

although the measured variable diagonal elements of the estimation error 

eaitanee matrix converge rapidly, the fact that the parameter deviations also 

converge (Figures A7.68, A7.69) does not imply that the parameter estimates are 

best. For this reason, it is necessary to perform off-line filter experiments in 

order to ‘tune! the filter to give the best estimates under all operating conditions. 
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The 8th state variable, the overall heat transfer coefficient in the first 

effect, does not converge. This is discussed further under off-line processing 

(Section 7.6.4). 

lt is worth noting that the prediction of the Ist state variable, Toy is 

some way from the measurement but the predictions of the remaining three 

measured state variables is good. 

7.6.4 Off-line Experiments 
  

The off-line filter investigation is concerned with 'tuning' the filter by 

_ observing the effect of variation in the elements of the Q matrix to obtain best 

estimates of states and parameters. Clearly, determination of the best Q matrix 

for a single set of data does not imply that the matrix is suitable for all plant 

operating conditions. Consequently, two sets of measurements, collected by 

the dynamic, logging program and stored on paper tape, are selected for off-line 

filtering experiments. The data sets are as follows. 

a) DATA 1 consists of measurements taken over 30 minutes with a 

sampling interval of 30 seconds. The plant is initially at pseudo steady 

state, which is maintained, without adjusting controls, for the whole 

period. | 

b) DATA 2 consists of measurements taken over 60 minutes with a 

7 sampling interval of 30 seconds. The plant is initially at steady state 

and the following disturbances are introduced. 

A. After 7 minutes the steam flow rate to the first effect is increased. 
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B. After 28 minutes the liquid feed to the preheater is increased. 

C. After 40 minutes both the steam and feed rates are decreased. 

~ As described in Section 7.6.3.2, there are two alternative parameter 

prediction strategies. These are PREDICTION 1, where the predicted heat 

transfer coefficient is equal to the previous estimate, and PREDICTION 2, 

where the heat transfer coefficient ES ireldsions provide predictions of 

parameters based on current estimates and inoisetree! measurements. When 

filtering is carried out off-line to the evaporator, the constraint of numerical 

integration in real time is not applicable. Thus the. prediction of state 

variables is carried out with a smaller step length so that any possibility of 

numerical error is removed. 

Measurements are processed by the same program as the on-line experiments 

except that data are derived from the paper tape reader and not the MDP200. 

The filter statistics, with the exception of the Q matrix, are identical, i.e. 

the diagonal elements of P(0,0) ee 1000 and those for Rare .1, .1, .l and .15 

respectively. For each set of data and prediction strategy, the diagonal elements 

of the Q matrix are set to 0.1, 1 and 10. Asa result of observed parameter 

estimates, the effect of variation along the diagonal elements of Q is also 

considered for DATA 2. The experimental results consisting of state estimates 

and measurements, where applicable, are presented graphically. The square 

roots of the corresponding diagonal elements of the estimation error covariance 

matrix, Tp, are also graphed. 
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7.6.4.1 DATA 1 PREDICTION 1 
  

One effect of increasing the magnitude of the diagonal elements of the 

Q matrix is to reduce the confidence in the model thus forcing the state 

variables to the measurements. Since the parameters are related to these 

measurements by the model, the parameter estimates will be slow to converge, 

ifatall. This effect is exemplified by Figure A7.70, the Ss Sesion of the 

preheater tubeside liquid temperature. As described in Section 7.5.3, this 

variable is not predicted accurately by the reduced model and thus the estimates 

tend to the measurements, that is away from the poor predictions, as q increases 

(Q = q.]). As the measurement tends to steady state, the estimate tends to the 

ccosurementd Hence, for this state variable, the choice of q is dependent upon 

the dynamic state of the process. 

The magnitude of the diagonal element of the error covariance matrix is. 

maintained large when Q is large at the error covariance prediction stage of the 

algorithm. Thus when q = 0.1 the error covariance matrix becomes small but at 

the same time the estimate se erded towards the poor prediction. This is 

divergence. -A filter is said to diverge when the error in the estimates far exceeds 

the error bounds predicted by the error covariance matrix. Divergence is caused 

by the failure to properly reflect all sources of uncertainty in the filter statistics, 

resulting in a covariance matrix which is optimistically small, and a filter which 

may disregard measurements. It is assumed that the measurements of Figure A7.70 

are near to the true value of the variables, thus since the model is poor for 

prediction, the estimate diverges when q = 0.1. 

This problem is not apparent for at the next state variable - the second effect 

tubeside liquid temperature, Figure A7.7.1. Both prediction and measurement are 
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good so that even when q=0.1, the estimates do not diverge. The results for 

q= 1.0 and q = 10.0 lie so close to the measurements that they are not presented. 

For the third state variable, the condenser tubeside liquid temperature, 

Figure A7.72, the estimates for all q are good but there is apparent periodic 

divergence. This is due to an intermittent error in the meckeeaent of the 

condenser feed liquid temperature. This is not a measured site variable but it 

is required in the state variable prediction step and in the computation of the 

transition matrix. The reduction in the order of the system is justified by 

including measurements of this kind in the mathematical model. Figure A7.72 

shows that estimation is poor when such measurements are not noise-free and 

in particular when their noise statistics are not included in the filter algorithm. 

Such divergence is compensated for by increasing q but only at the expense of 

increasing Tp: 

State variable 4, the liquid level in the second effect separator is a noisy 

measurement that is well predicted, Figure A7.73. Thus when q is small, the 

noise is filtered and divergence does not occur. 

The effect of variation of g upon the parameters is shown in Figures A7.74 

to A7.77. Convergence is slow when there is no confidence in the model 

(q= 10.0). Intuitively, this would appear correct since the filter could not be 

expected to solve the model for the parameters when the state estimates tend 

towards the measurements. In the case of SV5, the preheater overall heat transfer 

coefficient (Figure A7.74), this implies that accurate parameter estimation is 

only possible after a large number of filter cycles. When q is small the 

corresponding state variable, To, diverges so that the parameter estimate is 
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inaccurate. State variable 6, the second effect overall heat transfer coefficient 

Figure A7.75, is linked to an accurate state variable estimate, Ty and so the 

parameter estimates are good. This is also true for the condenser overall heat 

transfer coefficient, Figure A7.76, but the influence of the input measurement 

errors shown in Figure A7.72, produces some deviation. 

State variable 8, the first effect overall heat transfer coefficient 

(Figure A7.77) ies further explanation. The estimate remains constant at 

the initial prediction and the estimation error deviations increase throughout the 

experiments. This effect is observed in all on-line and off-line experiments. 

Equation 7.6.1 shows the incidence relationship to state variable 4, the second 

effect separator head. Not only is this measured state variable very noisy but 

the magnitude of the element on the transition matrix is extremely small 

le 4, Thus the first effect overall haat transfer coefficient is only 

weakly observable from a poor measurement. This combination of weak 

observability and poor measurement means that the estimation errors increase and 

the estimate is updated by an insignificant quantity at each filter cycle. 

The preceding discussion of DATA 1 PREDICTION 1 experiments highlights 

the problems of applying the Kalman filter to the estimation of the parameters of 

a real process. When measurements are poor, estimation is not possible unless 

the model provides an accurate prediction. When the mode! is poor or the system 

is weakly observable parameter estimates may not converge unless measurements 

are accurate. 

7.6.4.2 DATA.2 PREDICTION 1 
  

DATA 2 represents plant measurements over a wide range of operating 
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conditions. Disturbances A, B and C are substantial and are used to examine 

the performance of the converged filter. 

Estimation of the measured state variables, Figures A7.78 to A7.81 follows 

the same trend as DATA 1. At the preheater tubeside, Figure A7.78 the 

prediction is poor and when q ' 0.1 the estimates diverge. For state variable 2, 

Figure A7.79, where prediction and measurement are good, the estimation is 

always good. The intermittent measurement error on state variable 3 (Figure A7.80) 

is also apparent in DATA 2. The filter will overcome measurements of this type when 

the diagonal elements of Q are decreased thus placing less weight on the 

" measurements. At the second effect ee mr liquid head, Figure A7.81, a 

substantial measurement error, in additon to a noisy signal, is present. Clearly, 

when measurement errors of this magnitude, not adequately described by the 

diagonal elements of R, are present the filter estimates are biased. In practice, 

it may be possible to adapt the oscillating and limited memory filters suggested 

by Jazwinski ( 13 ) when such errors occur . Apart from the three major 

measurement errors in Figure A7.81, the filter ee adequately in smoothing 

the noisy signal. 

Parameter estimates for DATA 2 are shown in Figures A7.82 to A7.87. The 

eighth state variable, the first effect overall heat transfer coefficient , is not 

presented since the error, like DATA 1, diverges and the estimate is constant. As 

the plant operating conditions change so the heat transfer coefficients vary 

accordingly. The degree of variation, i.e. the response of the parameters, 

depends upon the accuracy of the estimation of the measured state variables and 

the magnitude of q. Apart from the initial prediction at time zero, the heat 

transfer coefficient correlations are not implemented. This means that the 
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parameters will be adjusted according to the dynamic state of the plant and 

within the error bounds determined by the estimation error covariance matrix P. 

Figure A7.82 shows the estimation of the preheater overall heat transfer 

coefficient, Up. The diagonal elements of the Q matrix are the same for all 

state variables so that when q = 10 for Up, q is the same for Tos which follows 

the measurements closely. Conversely, when q is 0.1, Ty is divergent and once 

the filter is converged the parameter is slow to respond. Figure A7.5 shows that 

the parameter responds when q is large, i.e. there is uncertainty in the model. 

The same response is observed at Figures A7.83 (Uz) and A7.84 (U.). In general, 

it can be seen that once the filter is converged, it does not loosen when dynamic 

changes occur at the plant. When q is large, the parameter responds slowly to 

plant disturbances because confidence in the model is not maintained. 

When the elements of the G matrix are divided into q, the first four elements 

corresponding to the measured state variables and Go for the parameters, greater 

response is observed. In Figure A7.85, Us, qy is small while qo is large. The 

parameter Pesboids to the change in conditions rapidly because the model has 

greater confidence. Comparing Figure A7.85 to A7.82 shows that when q is 

divided the parameter tends to steady state between each disturbance. Furthermore, 

the filter loosens as each change occurs by increasing the diagonal element of the 

P matrix - shown as co: The same effect is observed at Ur, Figure A7.86 and 

U., Figure A7.87. Inall cases, the subsequent improvement in the parameter 

estimates produces better estimates for the measured state variables. 

The DATA 2 PREDICTION 1 experiments show that the filter response to 

dynamic plant conditions is the same as for the steady state (DATA 1) when the 
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elements along the Q matrix diagonal are identical. When the elements are 

separated the estimates of state variables tend toward the accurate measurements 

and the filter loosens to adapt to changes in parameters. 

7.6.4.3 DATA 1 PREDICTION 2 
  

The second method of prediction calculates parameters from the heat transfer 

coefficient correlations. At each filter prediction step the parameters at the 

next sampling interval are computed from the predicted state variables and the 

Eisen free measurements. At the cheater tubes, Figure A7.88, the effect of 

continuously updating the heat transfer coefficient is to force the predicted state 

variable away from the measurement. This enhances the conclusion of the 

dynamic seavlation that the ‘ait mixed assumption is inadequate creating a faster 

response in the predicted state than the measurement. When q = 0.1, the estimate 

diverges and only when q = 10 does the estimate tend towards the measurements. 

The same effect is observed at all the measured state variables (Figures A7.89 

- A7.91) although the prediction and measurement are good at the second effect 

tubes, Figure A7.89 and the input measurement error is apparent at Figure A7.90. 

The parameter estimates are shown in Figures A7.92 to A7:95. One effect 

of the alternative prediction strategy is to generate steady state estimates of the 

heat transfer coefficients. The disadvantage of this method is that errors in the 

input measurements affect the correlations. Thus at state variable 5, Figure A7.92 

and state variable 7, Figure A7.94, the estimates diverge when the predictions 

are erroneous. In the steady state condition,. this can be overcome by decreasing 

~qwhich effectively tightens the filter so that it does not respond to dynamic 

changes. - The estimation of state variable 8, Figure A7.95, follows the 

prediction only and the effect of weak observability is apparent. 
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By comparison with Figures A7.70 to A7.77, it can be seen that including 

the heat transfer coefficient correlations in the state variable prediction causes 

the parameters to converge to their steady state values. The method is unstable 

when the noise free measurements, required by the correlations, are erroneous. 

7.6.4.4 DATA 2 PREDICTION 2 
  

Estimation of the measured state variables, Figures A7.96 to A7.99, follows 

the same trend as DATA 1. At the preheater tubeside, Figure A7.96, the 

prediction is poor and when q = 0.1 the estimates diverge. For state variable 

2, Figure A7.97, where prediction and measurement are good, the estimation is 

always neue The intermittent measurement error on state variable 3, Figure 

A7.98, is smoothed out by decreasing q, thus tightening the filter by placing 

less weight on the measurements. At the second effect sepataier liquid head, 

a substantial measurement error can be smoothed by the same method. 

Parameter estimates are shown in Figures A7.100 to A7.102 and include 

the case where the elements of the Q matrix are split. As a result of the heat 

transfer coefficient prediction, the parameters respond immediately to any 

changes in plant operating conditions ana are driven to the steady state values. 

The effect pralviding Q is to loosen the filter by increasing the diagonal 

elements of the error covariance matrix (e.g. eo Figure A7.102). Since the 

parameters are predicted by the correlations, loosening of this nature does not 

produce the substantial changes observed in Figures A7.85 to A7.87(STRATEGY 1). 

7.6.4.5 Conclusions 
  

With the exception of the liquid head in the second effect separator, the 

system measurements are good and can be used to compare the performance of 
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of the filter. 

Errors in the mathematical model that create divergence can be 

compensated for by increasing the diagonal elements of Q associated with the 

parameyers. 

When the parameters are not predicted by the correlations, the filter 

tightens when q is small such that any deviation from the predicted states due 

to random or system disturbances is not accounted for. 

Including the parameter correlations at the state variable prediction, 

improves the parameter estimation for all q. As expected, it is beneficial to 

include all available mathematical models. 

In order to apply the filter algorithm in real time, a reduced model based 

on liquid phase dynamic equations and including noise-free vapour phase 

measurements has been used. When errors occur in these input measurements 

they are not compensated for by the filter algorithm. Errors of this type affect 

both state variable and parameter estimates. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 
  

8.1 Conclusions 

8.1.1 Software and Hardware Developments 
  

As part of the research, two major software packages have been developed. 

The Aston Simulation Program ( 101 ), produced for simulation of the comprehensive 

and dynamic models, provides an interactive digital simulation tool. The on-line 

logging package, BASELINE, includes fundamental subroutines to perform data 

logger control functions. Within BASELINE, the benefits of an interactive 

language have been retained for real time applications with a computer system 

of minimum configuration. 

The application of these packages is not confined to the double effect 

evaporator system. They are specifically designed to be available to any user 

with a knowledge of the interactive language BASIC. 

Communication between the plant and computer is achieved by 

conventional instrumentation and a special-purpose electronic interface to a 

data logger. 

8.1.2 Mathematical Modelling 
  

Analysis of on-line results from steady state modelling of the mass and 

energy flows in the evaporator has produced accurate heat transfer coefficient 

correlations. These correlations have provided supporting equations for the 

simulation of both the 18th order comprehensive dynamic model and the 4th 

order reduced model. Simulation of the comprehensive model proves that the 
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system response cannot be determined without a knowledge of the vapour phase 

dynamics. This problem is seen as being beyond the scope of this Bicol: It 

has been overcome by including the vapour phase measuremenis in the simulation 

of the reduced model which contains simplifying assumptions. The results of the 

reduced model simulation show that the simulated and experimental response to 

two types of step change are close enough for the model to be adopted for on-line 

estimation. In addition to the four measured variables, four overall heat transfer 

coefficients (parameters), are to be estimated. 

8.1.3 On-line Estimation 
  

Applying the Kalman filter to a Chemical Engineering system is very 

different from its original application. In the Aerospace Industries, the 

mathematical relationships are well known and the measurements are corrupted by 

noise whereas in Chemical Engineering systems, the mathematics are uncertain and 

the available measurements are more reliable. The non-linear reduced model has 

been incorporated into the Kalman filter algorithm for the estimation of state 

variables and parameters. The filter is suitable for a real time application when 

the order of the mathematical model and the number of measurements are small. 

This means that in order to maintain the filter cycle time in proportion to the 

model time constants, the number of measurements has been reduced to four. 

Other available measurements, concerned with the vapour phase, have not been 

disregarded but are included in the prediction stage of the filter as noise-free 

measurement inputs. With a cycle time of two minutes and the Euler method of 

state variable prediction, the filter has been executed in real time. 

Due to practical constraints, it has not been possible to investigate the 

influence of process noise statistics on filter performance on-line to the evaporator. 
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Consequenily, off-line experiments, based upon real process measurements have 

’ been carried out with two alternative parameter prediction strategies. The first 

sets the parameter prediction equal to the previous estimate in the classical 

way and the influence of the magnitude of the diagonal elements of the process 

noise matrix, Q, are as follows: 

(1) When the elements are small, the filter converges rapidly and fails 

to predict parameters when the plant is in a dynamic state. 

(2) When the elements are large, implying a lack of confidence in the 

model, the state variable estimates tend towards the measurements and 

the parameters are slow to respond. 

(3) The above difficulties have been overcome by separating the diagonal 

elements of Q such that confidence in the model is reflected by a small 

constant on the elements corresponding to the measured state, variables and 

a large constant on the elements corresponding to the airaniiaets’ This 

forces the parameters to respond to changes reflected in both the 

measured and predicted state arioniee. 

(4) In all cases, estimation of states is improved by the separation of the 

diagonal elements of Q. 

In this type of estimation there is a risk of disregarding the meaning of 

the parameters. They are heat transfer cheHicients and not simply coefficients 

in a dynamic equation that must fit a measured and predicted response. This is 

overcome by use of the second method of prediction, where the parameters are 

calculated by the heat transfer coefficient correlations. The conclusions from 

this estimation are as follows: 

(1) Due to the correlations, the parameter estimates respond rapidly to 
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dynamic changes in plant operating conditions. 

(2) The estimation of measured state. variables is influenced by the 

diagonal elements of the Q matrix as described in (1) and (2) above. 

(3) For the parameters, separation of the diog@anl elements does not 

substantially improve estimation. However, as for the first method of 

prediction, the separation does improve estimation of siates. 

In off-line processing, the combination of parameter prediction and 

separated elements of the Q Ro iix has given best estimates. The method is 

susceptible to errors in the noise free measurements in the same way as the 

simulation of the reduced model is influenced by errors in measurements of the 

vapour phase. 

The Kalman filter has been shown to be applicable to on-line real-time 

estimation for the system under consideration. 

8.2 Relationship of Resulis to Published Work 
  

The application of the Kalman filter to a double effect evaporator is 

reported by Hamilton et al ( 91 ). The fifth order model includes the dynamics 

of liquid concentrations and all state variables are measured. From a linear model 

a filter gain matrix.is precomputed and used in simulation and on-line filter 

experiments. Like the results of this thesis, the eae indicates the need for off-line 

tuning of the filter before attempting on-line estimation. However, the use of 

simulated measurements in off-line filtering and not real plant data, presupposes 

that the model is a true representation of the plant performance. The investigation 

into the effect of an unmeasured disturbance proves that these modelling 

inaccuracies can be accounted for by increasing the magnitude of q (decreasing 
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the ratio r/q adopted in the paper). Since there is no parameter estimation and 

the converged filter gain matrix is precomputed, He on-line experiments are 

simply measurement filtering to provide smoothed or for a control algorithm. 

The fact that zero-mean Guassian noise is added to the soctins measurements for 

the investigation does not prove that the filter algorithm is suitable for state 

variable and parameter estimation in non-linear systems. 

Kalman filtering and parameter estimation have been reported by Joffe 

and Sargent ( 69 ), ina simulation study of the estimation of catalyst activity 

ae decay in the control-of a tubular reactor. The non-linear distributed parameter 

system is decomposed into a non-linear lumped parameter system which is linearised 

for filtering. The magnitude of the elements of the process noise matrix do not 

affect convergence of the parameters although with the filter statistics used, 

induced modelling error causes one parameter to converge fo a spurious value. 

Wells ( 40 ), estimates reaction rate parameters in a simulated, non-linear 

well stirred, reactor application. Good estimation is achieved by ‘judicious’ 

selection of the Q matrix. This selection includes the separation technique 

suggested in this thesis where the diagonal elements corresponding to the parameters 

are greater than those of the measured variables. Anorexia parameter prediction 

equations are included by differentiating the known parameter Ginctions with 

respect to the measured state variables. 

More recently, Fortescue and Kershenbaum ( 109 ), have reported an on-line 

real-time study of estimation on a pilot scale CO. absorption -desorption unit. 

The computer system is a member of the Honeywell series 16 machines. Estimation 

with a distributed parameter model is carried out at steady state to determine 
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absorption parameters from plant measurements. The influence of filter 

statistics on convergence and details of the mathematical model are yet to be 

published but the problems of implementing the filter algorithm for a non-linear 

system have been overcome and the published results show good convergence of 

estimates. 

8.3 Recommendations for Future Work 
  

The following areas for further work are apparent. 

(1) lt would be ccgnthe caus to extend the ASP chee to include an 

‘ntearahion method based upon optimised error-controlled step length. 

The use of this efficient integration method in simulation would be suitable 

for Kalman filter applications if the data logger and integration subroutines 

can be successfully loaded into the memory of the Honeywell 316. 

(2) The BASELINE package requires further development so that redundant 

time spent whilst sampling the MDP200-ADC can be utilised more efficiently 

in background programming. 

(3) There is much work to be done in dunemié mouelie of the evaporator. 

Additional instrumentation and steady state runs are required to determine 

the heat losses at each heat exchanger. Dynamic analysis of the performance 

of the vacuum pump and the vapour phase may provide an alternative 

method to the use of noise-free measurements in the prediction step of the 

“filter. The assumption of perfect mixing in the preheater and condenser 

tubes is inadequate. A model based on a number of well-mixed regions 

would be more suitable but this has the disadvantage of increasing the 

order of the system. 

= Oa



(4) There are many possibilities for future work in on-line Kalman filtering. 

The estimation of unmeasured inputs, the effect of the initial filter statistics 

and the reduction in the number of state variable measurements are studies 

that can be based upon the existing reduced model. This project has served 

to highlight the need for adaptive estimation of the Q matrix. Adaptive 

filtering including parameter estimation in non-linear chemical engineering 

systems is, as yet, an unexplored area. 

(5) Adaptive estimation, without parameter estimation, is possible when 

the parameters are predicted by the heat transfer coefficient correlations and 

are not included in the filter model. This reduces the number of state 

variables to four so that the increase in available computer time can be 

dedicated to the necessary additional matrix operations. 
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LIST OF SYMBOLS 

Cy
: 

.&
 

C
O
)
 

S
5
0
 

—
 

< 
un

 
Fa
e 

Aa
s 

OU
 

+
 

Si
e 
S
e
e
 
A
e
 

ad
 

ar
te

 
oO

 

plant matrix 

driving force matrix 

filter exponential weighting factor 

liquid specific heat in idealised exchanger 

liquid specific heat : 

tube wall specific heat in idealised exchanger 

inside diameter of tube 

Outside diameter of tube 

shell diameter 

state function — linear 

state function - non-linear 

vapour enthalpy function 

measurement function - linear 

measurement function - non-linear 

enthalpy of stream j 

head in second effect separator 

identity matrix 

discrete step in time 

filter gain matrix 

number of measurements 

mass flow rate of stream j 

measurement matrix 

number of state variables 

estimation error covariance matrix 

vapour pressure (Section 6.2.3) 

diagonal element of Q 

process noise matrix 

measurement noise matrix 

predicted residual covariance matrix 

time 

temperature of stream j 

Liquid temperature 
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LIST OF SYMBOLS (cont) 

a tube wall temperature 

a shellside vapour temperature — 

i filter time constant 

uU vector of system inputs 

Vv vector of measurement disturbances _ 

; vapour flow rate of stream j 

: vector of input disturbances 

x state vecior 

se a vector of randomly varying parameters 

y measurement vector 

vapour Bootie 

Greek Symbols 

a(T) vapour density - temperature function 

Gp autocorrelation coefficient 

B bias parameter 

1 drift parameter 

r Input transition matrix 

r linearised input transition matrix 

A time difference between samples 

» latent heat | 

@ state transition matrix 

@ linearised state transition matrix 

op square root of diagonal element of P 

P, liquid density 

P; density of vapour stream j 

Subscripts 

c condenser 

e first effect 

f second effect 

g preheater 

t tubeside 

5 shellside 
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